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BOHNENBLUST–HILLE INEQUALITIES FOR LORENTZ SPACES
VIA INTERPOLATION

ANDREAS DEFANT AND MIECZYSŁAW MASTYŁO

We prove that the Lorentz sequence space `2m=.mC1/;1 is, in a precise sense, optimal among all sym-
metric Banach sequence spaces satisfying a Bohnenblust–Hille-type inequality for m-linear forms or
m-homogeneous polynomials on Cn. Motivated by this result we develop methods for dealing with
subtle Bohnenblust–Hille-type inequalities in the setting of Lorentz spaces. Based on an interpolation
approach and the Blei–Fournier inequalities involving mixed-type spaces, we prove multilinear and
polynomial Bohnenblust–Hille-type inequalities in Lorentz spaces with subpolynomial and subexponential
constants. An application to the theory of Dirichlet series improves a deep result of Balasubramanian,
Calado and Queffélec.

1. Introduction and classical results

In seminal work, Bohnenblust and Hille [1931] proved that there exists a positive function f on N

such that, for each n and every m-homogeneous polynomial on Cn, the p̀-norm with p D 2m=.mC 1/
of the set of its coefficients is bounded above by the constant f .m/ times the supremum norm of the
polynomial on the unit polydisc Dn. The primary interest of this result is that f .m/ is independent of
the dimension n and, moreover, the exponent 2m=.mC 1/ is optimal. This result was a key point in the
celebrated solution by Bohnenblust and Hille of Bohr’s absolute convergence problem for Dirichlet series
(see, e.g., [Bohnenblust and Hille 1931; Bohr 1913; Defant et al. 2016; Defant and Sevilla-Peris 2014]).

Recently, more sophisticated results were obtained and successfully applied to verify several long-
standing conjectures in the convergence theory for Dirichlet series (and intimately related complex analysis
in high dimensions). A striking improvement was given in [Defant et al. 2011], proving that f .m/ in fact
grows at most exponentially in m, and a recent result even states that f .m/ is subexponential, in the sense
that for every " > 0 there is a constant C."/ such that f .m/�C."/.1C "/m for each m 2N [Bayart et al.
2014b]. Estimates of this type proved to be useful in many different areas of analysis, for example the
modern Hp-theory of Dirichlet series and (the intimately connected) infinite-dimensional holomorphy (see,
e.g., [Bayart et al. 2014a; Defant and Sevilla-Peris 2014]), the study of summing polynomials in Banach
spaces (see [Albuquerque et al. 2014; Defant et al. 2012; Dimant and Sevilla-Peris 2013], for example),
and even in quantum information theory (see [Montanaro 2012]) and more generally in Fourier analysis
of Boolean functions. A good general reference in this area is the recent book of O’Donnell [2014].

Mastyło was supported by the Foundation for Polish Science (FNP).
MSC2010: 46B70, 47A53.
Keywords: Bohnenblust–Hille inequality, Dirichlet polynomials, Dirichlet series, homogeneous polynomials, interpolation

spaces, Lorentz spaces.

1235

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2016.9-5
http://dx.doi.org/10.2140/apde.2016.9.1235
http://msp.org


1236 ANDREAS DEFANT AND MIECZYSŁAW MASTYŁO

Our aim is to prove multilinear and polynomial Bohnenblust–Hille inequalities in the setting of Lorentz
spaces. In the remainder of this introduction we give more precise details on the state of the art of BH
inequalities (multilinear and polynomial) and isolate the two natural problems that mainly concern us.

We will consider Banach sequence spaces .X.I /; k � kX / of C-valued sequences .xi /i2I , which are
defined over arbitrary given (index) sets I. In what follows, Lorentz spaces will play an important role.
Given 1�p <1 and 1� q �1, the Lorentz space p̀;q.I / ( p̀;q for short) on a nonempty set I consists
of all x D .xi /i2I for which the expression

kxk`p;q D

(�P
k2J x

�
k
q.kq=p � .k� 1/q=p/q

�1=q if q <1;
supk2J k

1=px�
k

if q D1;
(1)

is finite. Here, as usual, for a given x D .xi /i2I 2 `1.I /, we denote by x� D .x�j /j2J the nonincreasing
rearrangement of x, defined by

x�j D inf
˚
� > 0 W cardfi 2 I W jxi j> �g � j

	
; j 2 J;

where J D f1; : : : ; ng whenever card I D n, and J D N whenever I is infinite. The expression (1) is
a norm if q � p and a quasinorm if q > p. In the second case, k � k`p;q is equivalent to a norm. Of course,

p̀;p is the Minkowski space p̀, since the map x 7! x� is an isometry.
The following two finite index sets will be of special interest: for each m, n 2 N,

M.m; n/Dfi D .i1; : : : ; im/ W ik 2N; 1� ik � ng and J.m; n/Dfj 2M.m; n/ W j1� j2� � � � � jmg:

Below we explain the two inequalities we are interested in, the so-called multilinear and polynomial
Bohnenblust–Hille inequalities, and we motivate the two problems we intend to handle.

The multilinear BH inequality. Given a Banach sequence space X (defined over arbitrary index sets)
and m 2 N, we denote by

BHmult
X .m/ 2 Œ1;1�

the best constant C � 1 such that for each n and every complex matrix aD .ai /i2M.m;n/ we have

k.ai /i2M.m;n/kX � Ckak1; (2)

where

kak1 D sup
k.xk

i
/n
iD1
k1�1

1�k�m

ˇ̌̌̌ X
iD.i1;:::;im/2M.m;n/

aix
1
i1
� � � xmim

ˇ̌̌̌
:

For the sake of completeness we give a short review of the history of the inequalities of the form (2),
emphasizing those results, old and very recent, which are of relevance to this article. (For more on that
we once again refer to [Defant and Sevilla-Peris 2014].) The case m D 2 reflects a famous result of
Littlewood [1930]:

BHmult
`4=3

.2/ <1:
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Solving Bohr’s so-called absolute convergence problem on Dirichlet series, Bohnenblust and Hille
[1931] studied the case of arbitrary m and proved that

BHmult
`2m=.mC1/

.m/ <1: (3)

This result was improved by [Blei and Fournier 1989; Fournier 1987] showing that, even,

BHmult
`2m=.mC1/;1

.m/ <1: (4)

In Section 4 we give a modified version of their proof from [Blei and Fournier 1989].
Finally, Bayart, Pellegrino and Seoane-Sepúlveda [Bayart et al. 2014b] showed that the constants in (3)

are subpolynomial in the following sense: there is a constant � > 1 such that for all m we have

BHmult
`2m=.mC1/

.m/� �m.1�/=2; (5)

where  is the Euler–Masceroni constant. Note that there exists a uniform constant C > 0 such that, for
any finite index set I ,

k p̀.I / ,! p̀;1.I /k � C log.card I /I (6)

hence, by (5), there exists ı > 1 such that, for each m, n and every matrix .ai /i2M.m;n/,

k.ai /i2M.m;n/k2m=.mC1/;1 �m
ı.logn/kak1:

In view of this, and comparing with (4) and (5), the following natural question appears:

Problem 1. Does there exist a constant ı > 0 such that for each m we have

BHmult
`2m=.mC1/;1

.m/�mı‹

We provide far-reaching partial solutions extending all results mentioned before. The main contributions
are given in Theorems 6 and 12.

The polynomial BH inequality. Every m-homogenous polynomial

P.z/D
X
˛2Nn0
j˛jDm

c˛z
˛

in n complex variables z D .z1; : : : ; zn/ 2 Cn can be uniquely rewritten in the form

P.z/D
X

j2J.m;n/

cj zj1 � � � zjm ; (7)

and we denote its supremum norm by

kP k1 D sup
k.zi /

n
iD1
k1�1

ˇ̌̌̌ X
jD.i1;:::;in/2J.m;n/

cj zj1 � � � zjm

ˇ̌̌̌
:

Given a Banach sequence space X (defined over an arbitrary index set) and m 2 N, we denote by

BHpol
X .m/ 2 Œ1;1�
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the best constant C � 1 such that, for each n and every m-homogeneous polynomial P as in (7), we have

k.cj .P //j2J.m;n/kX � CkP k1: (8)

Let us again give a short review of the most important results on such inequalities (for more information,
again see [Defant and Sevilla-Peris 2014]).

By inventing polarization, Bohnenblust and Hille [1931] deduced from (3) that

BHpol
`2m=.mC1/

.m/ <1: (9)

The fact that p D 2m=.mC 1/ is optimal here was a crucial step in the solution of Bohr’s so-called
absolute convergence problem. Again, mainly motivated by problems on the general theory of Dirichlet
series and holomorphic functions in high dimensions, the first qualitative improvement of the constants
was done in [Defant et al. 2011]: for every " > 0 there is a constant C."/ > 0 such that, for all m,

BHpol
`2m=.mC1/

.m/� C."/.
p
2C "/m: (10)

Bayart et al. [2014b] proved that these constants are even subexponential in the following sense:

BHpol
`2m=.mC1/

.m/� C."/.1C "/m: (11)

We are going to see that a standard polarization argument extends (9) to Lorentz spaces:

BHpol
`2m=.mC1/;1

.m/ <1I (12)

but the following problem will turn out to be much more challenging:

Problem 2. To what extent do (10) and (11) hold when we replace `2m=.mC1/ by the Lorentz sequence
space `2m=.mC1/;1?

Concerning the extension of (10), our main result is given in Theorem 14.
Why do Lorentz spaces play an essential role within the context of Bohnenblust–Hille inequalities?

We prove (see Theorem 1) that, among all symmetric Banach sequence spaces X satisfying a multilinear
or polynomial Bohnenblust–Hille inequality as in (2) or (8), the sequence space X D `2m=.mC1/;1 is the
smallest one (and in this sense the “best”).

2. Preliminaries

Throughout the paper, for a given finite set fXigi2I of Banach spaces which are all contained in some
linear space X, we denote by

L
i2I Xi the Banach space of all x 2

T
i2I Xi equipped with the norm

kxkL
i2I Xi

D

X
i2I

kxkXi :

For each m 2N we denote by M.m/ and J.m/ the union of all M.m; n/ and J.m; n/, n 2N, respectively.
We define an equivalence relation in M.m; n/ in the following way: i � j if there is a permuta-
tion � of f1; : : : ; mg such that .i1; : : : ; im/D .j�.1/; : : : ; j�.m//, and denote by Œi � the equivalence class
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of i 2M.m; n/. The following disjoint partition of M.m; n/ will be very useful:

M.m; n/D
[

j2J.m;n/

Œj �:

For 1� k �m, let Pk.m/ denote the set of all subsets of
˚
1; : : : ; m

	
with cardinality k. We denote the

complement of S 2 Pk.m/ in f1; : : : ; mg by yS . If S 2 Pk.m/, then let M.S; n/ be the set of all indices
i WS!f1; : : : ; ng, so in the special case S D f1; : : : ; kg we clearly have that M.k; n/DM.S; n/. Finally,
for i 2M.S; n/ and j 2M. yS; n/ we define i ˚ j 2M.m; n/ through

i ˚ j D

�
i on S;
j on yS:

Given m, n, k 2 N with 1 � k < m and 1 � p, q � 1, we define the norm k � k.m;n;k;p;q/ on the
space CM.m;n/ of all matrices aD .ai /i2M.m;n/ by

kak.m;n;k;p;q/ D
X

S2Pk.m/

� X
i2M.S;n/

� X
j2M. yS;n/

jai˚j j
q

�p=q�1=p
;

and denote the corresponding Banach space byM
S2Pk.m/

p̀.S/Œ`q. yS/�:

Clearly, this is the `1-sum of all Banach spaces p̀.S/Œ`q. yS/�, where p̀.S/Œ`q. yS/� is, by definition,
CM.m;n/ normed by

kak
`p.S/Œ`q. yS/�

D

� X
i2M.S;n/

� X
j2M. yS;n/

jai˚j j
q

�p=q�1=p
:

We will consider (classes of) Banach lattices. Of particular importance are symmetric spaces. We
recall that a Banach lattice E on a measure space .�;†;�/ is said to be symmetric if g 2 E and
kf kE D kgkE whenever �f D �g and f 2E. Here �f denotes the distribution function of f , defined
by �f .�/D �ft 2� W jf .t/j> �g for �� 0. Throughout the paper, by a Banach sequence lattice on a
finite or countable set I we mean a real or complex Banach lattice E on the measure space .I; 2I; �/
(on I , for short), where � is the counting measure. In the case when E is symmetric, E is said to be a
symmetric Banach .sequence/ space.

A symmetric space E is called fully symmetric whenever it is an exact interpolation space between
L1.�/ and L1.�/; that is, for any linear operator T WL1.�/CL1.�/! L1.�/CL1.�/ such that
kT kL1.�/!L1.�/ � 1 and kT kL1.�/!L1.�/� 1 we have that T maps E into E and kT kE!E � 1. It
is well known that symmetric spaces that have the Fatou property or have order continuous norm are fully
symmetric (see [Bennett and Sharpley 1988; Kreı̆n et al. 1982], for example).
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We will need the concept of discretization of a Banach lattice. Let .�;†;�/ be a measure space and
let d D f�kgNkD1 �† be a measurable partition of �, i.e., �D

SN
kD1�k , where �i \�j D∅ for each

i , j 2 f1; : : : ; N g with i 6D j . Then, given a Banach lattice X on .�;†;�/, the discretization Xd is
the Banach space of all simple functions f 2X of the form f D

PN
kD1 �k��k 2X , equipped with the

induced norm from X .
The notion of Lorentz spaces over arbitrary measure spaces will be essential in what follows. Given a

measure space .�;†;�/ and 0 < p <1, 0 < q �1, the Lorentz space Lp;q.�;�/ (Lp;q.�/ or Lp;q ,
for short) is defined to be the space of all (equivalence classes of) measurable functions f on �, equipped
with the quasinorm

kf kLp;q D

��
.q=p/

R1
0 f �.t/qtq=p�1 dt

�1=q if q <1;
supt>0 t

1=pf �.t/ if q D1;

where f � is the decreasing rearrangement of f , defined on Œ0;1/ by

f �.t/D inffs > 0 W �f .s/� tg:

(We adopt the convention inf∅D1.) In the case when�D I is a nonempty set with counting measure �,
the space Lp;q.�;�/ in fact coincides with the Lorentz sequence space p̀;q.I / already defined in (1).
Indeed, in this case, given a function f D x on �D I we have x�

k
D f �.t/ for every t 2 Œk�1; k/, k 2 J,

where J D f1; : : : ; card I g if I is finite and J D N if I is infinite. Thus kf kLp;q D kxk`p;q , where the
latter norm is as defined by the formula (1).

We recall that the Köthe dual space . p̀;1/0 of the Lorentz space p̀;1 D p̀;1.I / coincides with the
Marcinkiewicz space mp, which consists of all complex sequences x D .xi /i2I such that

kxkmp D sup
k2J

1

k1=p

kX
jD1

x�j <1;

and which, with this norm, forms a Banach space. Moreover, we note that by standard comparison with
the integral of t˛ on Œ1; N �, we have for each N 2 N and every ˛ 2 .0; 1/,

NX
kD1

1

k˛
<

1

1�˛
N 1�˛: (13)

Combining this inequality (for ˛ D 1=p) with x�
k
� k�1=pkxk`p;1 for k 2 J yields

mp D p̀;1

up to equivalent norms:
1

p0
kxkmp � kxk`p;1 � kxkmp ; x 2 p̀;1:

(As usual we write 1=p0 WD 1�1=p.) Many of our arguments will be based on interpolation theory. Here
we recall some of its basic concepts and provide some special facts we are going to use. Recall that if
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EAD .A0; A1/ is a quasinormed couple then, for any a 2 A0CA1, we define the K-functional

K.t; aI EA/D inffka0kA0 C tka1kA1 W a0C a1 D ag; t > 0:

For 0 < � < 1 and 0 < q <1, the real interpolation space .A0; A1/�;q is the space of all a 2 A0CA1,
equipped with the quasinorm

kak�;q D

�Z 1
0

.t��K.t; aI EA//q
dt

t

�1=q
;

with an obvious modification for q D1.
The following well-known and easily verified interpolation property holds: if .A0; A1/ and .B0; B1/

are two quasinormed couples, T is a map from .A0; A1/ to .B0; B1/ (i.e., T WA0 C A1 ! B0 C B1

and the restrictions of T to Aj are bounded from Aj to Bj for each j 2 f0; 1g) with the quasinorms
Mj D kT WAj !Bj k, then T W .A0; A1/�;q! .B0; B1/�;q is also bounded and, for its quasinorm M, we
have

M �M 1��
0 M �

1 :

Lorentz spaces arise naturally in the real interpolation method since most of their important properties can
be derived from real interpolation theorems. We briefly review some basic definitions. The pair .L1; L1/ is
especially important for the understanding of the spaceLp;q . It is well known that, for every f 2L1CL1,

K.t; f IL1; L1/D

Z t

0

f �.s/ ds D tf ��.t/; t > 0:

Hence, for each � 2 .0; 1/,

kf k�;q D

�Z 1
0

Œt1��f ��.t/�q
dt

t

�1=q
:

An immediate consequence of Hardy’s inequality is the following well-known formula, which states that,
for 1 < p <1, 1� q �1 and � D 1� 1=p,

.L1; L1/�;q D Lp;q;

and, moreover,
1

p0
kf k.L1;L1/�;q � kf kLp;q � kf k.L1;L1/�;p :

The following result will be used (which follows from the more general Theorem 4.3 of [Holmstedt
1970]): Let 1=pD .1��/=p0C�=p1, 0<p0, p1<1, p0¤p1 and 0< q�1. Then, up to equivalent
norms, we have

.Lp0 ; Lp1/�;q D Lp;q:
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More precisely,

C�1��min.1=q;1=p0/.1� �/�min.1=q;1=p1/
�
p

q

�1=q
kf kLp;q

� kf k.Lp0 ;Lp1 /�;q

� C��max.1=q;1=p0/.1� �/�max.1=q;1=p1/
�
p

q

�1=q
kf kLp;q ; (14)

where C > 0 is a universal constant.
We will also make intensive use of complex interpolation, and denote by ŒA0; A1�� the complex

interpolation spaces as defined, for example, in [Calderón 1964]. We recall that if X0 and X1 are two
complex Banach lattices on a measure space .�;†;�/ then

ŒX0; X1�� DX
1��
0 X�1 ; (15)

with equality of norms provided one of the spaces has order continuous norm; here, following Calderón,
we denote by X1��0 X�1 the Calderón space of all x 2 L0.�/ such that jxj � �jx0j1�� jx1j� �-a.e. on �
for some constant � > 0 and some xi 2Xi with kxikXi � 1 for i D 0, 1. We put

kxkX1��0 X�1
D inf �:

3. The optimality of Lorentz spaces

The following theorem motivates our study; we show that, in the context of multilinear and polynomial
Bohnenblust–Hille inequalities, Lorentz spaces are in a certain sense optimal. Before we state and prove
these results we recall that, if X is a symmetric Banach sequence space on I and �A denotes the indicator
function of a set A� I , clearly k�AkX depends only on card.A/. The function �X .k/D k�AkX , where
A � I with card.A/ D k, is called the fundamental function of X . It is well known (see, e.g., [Kreı̆n
et al. 1982, Theorem 2.5.2]) that, if 1� p <1 and X is a symmetric Banach sequence space on I such
that k�AkX D card.A/1=p for every indicator function �A (that is, �X .k/D k1=p for every A� I with
card.A/D k), then p̀;1 ,!X with

kxkX � kxk`p;1 ; x 2 p̀;1:

Thus p̀;1 is the smallest symmetric Banach sequence space on I whose norm coincides with the p̀-norm
on indicator functions.

Theorem 1. Fix a positive integer m. The Lorentz space `2m=.mC1/;1 is the smallest symmetric Banach
sequence space X such that BHmult

X .m/ < 1. Also, the Lorentz space `2m=.mC1/;1 is the smallest
symmetric Banach sequence space X such that BHpol

X .m/ <1.

Proof. We follow an argument inspired by [Bohnenblust and Hille 1931]. Assume that X is a symmetric
Banach sequence space such that BHmult

X .m/ < 1, i.e., for each n 2 N and every complex matrix
aD .ai /i2M.m;n/ we have

kakX � BHmult
X .m/kak1: (16)
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It suffices to show that the fundamental function

�.n/ WD

 nX
iD1

ei


X

; n 2 N; (17)

satisfies

�.n/� C.m/n
.mC1/=.2m/

(18)

for each n 2N. For fixed N, choose some N �N matrix .ars/ such for every r , s we have jarsj D 1 andPN
kD1 ark NaskDNırs (e.g., arsDe2�irs=N with 1�r; s�N ), and define the matrix aD .ai /i2M.m;n/ by

ai1:::im D ai1i2 � � � aim�1im :

Since jai1:::im j D 1, we have �.Nm/D kakX . We now estimate the norm kak1. We first do the trilinear
case mD 3, where the argument becomes more transparent. We take x, y, z 2 CN with supremum norm
at most 1; then, using the Cauchy–Schwarz inequality and the properties of the matrix, we haveˇ̌̌̌X

i;j;k

aijajkxiyj zk

ˇ̌̌̌
�

X
k

ˇ̌̌̌X
i;j

aijajkxiyj

ˇ̌̌̌
jzkj

�N 1=2

�X
k

ˇ̌̌̌X
i;j

aijajkxiyj

ˇ̌̌̌2�1=2

DN 1=2

� X
i1;i2
j1;j2

ai1j1 Nai2j2xi1 Nxi2yj1 Nyj2

X
k

aj1k Naj2k

�1=2

DN 1=2N 1=2

�X
i1;i2
j

ai1j Nai2jxi1 Nxi2yj Nyj

�1=2
DN

�X
j

ˇ̌̌̌X
i

aijxi

ˇ̌̌̌2
jyj j

2

�1=2

�N

�X
i1i2

X
j

ai1j Nai2jxi1 Nxi2

�1=2
DN 3=2

�X
i

jxi j
2

�1=2
�N 4=2:

In the general case we take z.1/; : : : ; z.m/ 2 CN, each with supremum norm at most 1, and repeat this
procedure to getˇ̌̌̌ NX

i1;:::;imD1

ai1i2 � � � aim�1imz
.1/
i1
� � � z

.m/
im

ˇ̌̌̌
�Nm=2

�X
i1

jz
.1/
i1
j
2

�1=2
�Nm=2N 1=2: (19)

Hence kak1 �N .mC1/=2 for each N, and by (16) we have �.Nm/�BHmult
X .m/.Nm/.mC1/=.2m/. Since

for each positive integer n there is N such that Nm � n < .N C 1/m, we finally obtain (18).
To prove the second statement, we assume that X is a symmetric Banach sequence space such that, for

each n and every m-homogeneous polynomial P.z/D
P
˛2Nn0 ; j˛jDm

c˛z
˛, we have.c˛/˛2Nn0 ; j˛jDm


X
� BHpol

X .m/kP k1:
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Following nontrivial ideas of Bohnenblust and Hille [1931] it is possible to modify the proof of the first
statement, which leads to a sort of deterministic proof of the second statement. Here we give an alternative,
probabilistic argument. As in (17) we consider the fundamental function �.n/, n 2 N, of X . Then, by
the Kahane–Salem–Zygmund inequality (see [Kahane 1985], for example), there is a constant CKSZ � 1

such that for every choice of N there are signs "˛ D˙1 for which

sup
z2DN

ˇ̌̌̌ X
˛2NN0
j˛jDm

"˛z
˛

ˇ̌̌̌
� CKSZ

�
N
�mCN�1

m

�
logm

�1=2
:

Since the sequence .�.N /=N/ is nonincreasing and for each N we have

Nm

mŠ
�

�NCm�1
m

�
�Nm;

it follows that �.Nm/�mŠ�
��
NCm�1

m

��
for each N. Combining the above estimates we conclude that,

for each N,
�.Nm/� BHpol

X .m/CKSZmŠ
p

logm.Nm/.mC1/=.2m/:

This easily implies that there exists a constant C.m/ > 0 such that

�.n/� C.m/n.mC1/=.2m/; n 2 N;

and the conclusion again follows. �

4. Multilinear BH inequalities for Lorentz spaces revisited

In this section we present a slightly modified proof of (4), which was first given in [Blei and Fournier
1989]. We need to prove four preliminary lemmas.

Lemma 2. For each matrix aD .ai /i2M.m;n/ and each S �M.m; n/,

1

E.S/

X
i2S

jai j �mkak`m=.m�1/;1 ;

where
E.S/ WD max

1�k�m
cardfik W i 2 Sg:

Proof. Clearly
k.m�1/=ma�k � kak`m=.m�1/;1 ; 1� k � nm:

Now note that
P

i2S jai j has not more that E.S/m summands and that
PE.S/m

kD1
a�.k/ sums the first

E.S/m many largest jai j, i 2 S . As a consequence, we obtain by (13) (with ˛ D 1� 1=m) that

X
i2S

jai j �

E.S/mX
kD1

a�k � kak`m=.m�1/;1

E.S/mX
kD1

k�.m�1/=m �mkak`m=.m�1/;1E.S/;

as desired. �
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Lemma 3. For each matrix aD .ai /i2M.m;n/ the index set M.m; n/ splits into a union of m subsets Sk
such that, for every 1� q <1,

max
1�k�m

kaSkk
`1.fkg/Œ`q.fbkg/� �m1=qkak`qm=.m�1/;1 ;

where, for S �M.m; n/, we put aS D ai for i 2 S and aS D 0 for i 62 S .

Proof. It suffices to show the desired inequality for q D 1: for arbitrary 1 < q <1 apply the case q D 1
to jaj1=q instead of to a. In view of Lemma 2 we show that there are appropriate sets Sk for which

max
1�k�m

kaSkk
`1.fkg/Œ`1.fbkg/� � sup

S�M.m;n/

1

E.S/

X
i2S

jai j;

and without loss of generality we may assume that the supremum on the right side is at most 1.
Given 1� k �m, observe that

nX
`D1

X
i2M.m;n/
ikD`

jai j �

X
i2M.m;n/

jai j �E.M.m; n//D n:

Hence there is some 1� `.k/� n such that for

T 1k D fj 2M.m; n/ W jk D `.k/g

we have X
i2T 1

k

jai j � 1:

Then, for

N1 DM.m; n/ n

m[
kD1

T 1k ;

we obviously get E.N1/� n� 1. If we now repeat this procedure with N1 instead of M.m; n/, then we
obtain m new index sets T 2

k
, 1� k �m, in N1, for whichX

i2T 2
k

jai j � 1

and

E.N2/� n� 2 with N2 D
�

M.m; n/ n

m[
kD1

T 1k

�
n

� m[
kD1

T 2k

�
:

Continuing for j 2 f3; : : : ; ng, we find index sets T j
k

, 1� j � n, 1� k �m, such thatX
i2T

j

k

jai j � 1; 1� k �m; 1� j � n (20)

and

E.Nn/D 0 with Nn DM.m; n/ n

n[
jD1

m[
kD1

T
j

k
:
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Define, for 1� k �m,

Sk D

n[
jD1

T
j

k
:

Obviously, we have that Nn D∅ and hence

M.m; n/D

m[
kD1

Sk :

Finally, for any 1� k �m,

kaSkk
`1.fkg/Œ`q.fbkg/� D sup

1�j�n

X
i2M.fbkg;n/ja

Sk
i˚j
j � sup

1�j�n

X
i2M.fbkg;n/

i˚j2
Sn
lD1 T

l
k

jai˚j j � 1:

Let us comment on the argument for the last estimate: Assume without loss of generality that n D 2.
Then, by construction, given j D 1 or j D 2 we have that either i ˚ j 2 T 1

k
for all i 2 M.fbkg; n/ or

i ˚ j 2 T 2
k

for all i 2M.fbkg; n/. The conclusion follows from (20). �

Lemma 4. For each matrix aD .ai /i2M.m;n/ and every 1� q <1,

kak`qm=..q�1/mC1/;1 �m
1=q

X
1�k�m

kak
`1.fkg/Œ`q0 .fbkg/�:

Proof. Since for every 1<r <1we havemrD`r;1 with k � k`r;1�k � kmr and (`r;1/0Dmr isometrically,
the required inequality follows by Lemma 3 and a simple duality argument. Indeed, take a matrix a and
sets Sk according to Lemma 3. ThenX

i2M.m;n/

jaibi j �

X
1�k�m

X
i2M.m;n/

jaib
Sk
i
j

�

X
1�k�m

kak
`1.fkg/Œ`q0 .fbkg/�kbSkk`1.fkg/Œ`q.fbkg/�

� max
1�k�m

kbSkk
`1.fkg/Œ`q.fbkg/� X

1�k�m

kak
`1.fkg/Œ`q0 .fbkg/�

�m1=qkbk`qm=.m�1/;1

X
1�k�m

kak
`1.fkg/Œ`q0 .fbkg/�;

the desired conclusion. �

The last lemma needed is the following so-called mixed BH inequality (this is a simple consequence of
the multilinear Khinchine inequality; see, e.g., [Bayart et al. 2014b; Bohnenblust and Hille 1931; Defant
et al. 2016]).

Lemma 5. For each n and each matrix aD .ai /i2M.m;n/ we have

nX
jD1

� X
i2M.fbkg;n/jai˚j j

2

�1=2
�
p
2
m�1
kak1; 1� k �m:
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Combining Lemmas 4 (with q D 2) and 5 gives the proof of (4). As a byproduct we get the following
estimate for the constant:

BHmult
`2m=.mC1/;1

.m/�m1=2
p
2
m�1

:

We note a disadvantage of this proof: it does not give polynomial growth of BHmult
`2m=.mC1/;1

.m/ in m as

we obtained for BHmult
`2m=.mC1/

.m/ in (5).

4.1. Polynomial growth, part I. We are going to give a first improvement of the result from (5). Our
estimate shows that the symmetric Banach sequence space

X D `2m=.mC1/;2.m�1/=m

satisfies the BH inequality from (2) with a constant growing subpolynomially in m. It is important to
note that X is strictly larger than the Lorentz space `2m=.mC1/;1; however, X has the same fundamental
function as `2m=.mC1/;1, which of course fits with Theorem 1.

Theorem 6. There exists a constant ı > 0 such that, for each m,

BHmult
`2m=.mC1/;2.m�1/=m

.m/�mı :

The proof combines ideas and tools from [Blei and Fournier 1989; Bohnenblust and Hille 1931;
Littlewood 1930] with some more recent ones from [Bayart et al. 2014b]. The following lemma, the
proof of which is explicitly included in the proof of [Bayart et al. 2014b, Proposition 3.1], is crucial.
For 1 � p � 2 we write Ap � 1 for the best constant in the Khinchine–Steinhaus inequality: for each
choice of finitely many ˛1; : : : ; ˛N 2 C,

k.˛k/
N
kD1k`2 � Ap

�Z
TN

ˇ̌̌̌ NX
kD1

˛kzk

ˇ̌̌̌p
dz

�1=p
;

where dz stands for the normalized Lebesgue measure on the N-dimensional torus TN. Recall that
Ap �

p
2 for all 1� p � 2.

Lemma 7. For each n, each matrix aD .ai /i2M.m;n/ and each 1� k < m, we have

kak.m;n;k;2k=.kC1/;2/ � A
m�k
2k=.kC1/ BHmult

`2k=.kC1/
.k/kak1:

The second lemma needed is an immediate consequence of [Blei and Fournier 1989, Theorem 7.2]:

Lemma 8. For each 1� q <1 there is a constant Cq � 1 such that, for each 1� t < q and each matrix
aD .ai /i2M.m;n/,

kak`mqt=.mqCt�q/;t � Cqmkak.m;n;m�1;t;q/:

Proof of Theorem 6. For q D 2 and t D 2.m� 1/=m we have mqt=.mqC t � q/D 2m=.mC 1/: Hence,
given a matrix aD .ai /i2M.m;n/, Lemma 8 yields

kak`2m=.mC1/;2.m�1/=m � C2mkak.m;n;m�1;2.m�1/=m;2/:
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Moreover, by Lemma 7 we have

kak.m;n;m�1;2.m�1/=m;2/ � A2.m�1/=m BHmult
`2.m�1/=m

.m� 1/kak1:

Combining with (5) we conclude (because Ap �
p
2 for each 1� p � 2) that

kak`2m=.mC1/;2.m�1/=m � C2m
p
2�.m� 1/.1�/=2kak1;

as required. �

4.2. Polynomial growth, part II. In this section we use complex and real interpolation as well as results
from [Fournier 1987] to improve Theorem 6 considerably (see Theorem 12). The starting point for what
we intend to prove is the following result:

Lemma 9. For each m, n, k 2 N with 1� k �m we have that M
S2Pk.m/

`1.S/Œ`1. yS/� ,! `m=k;1.M.m; n//

� �mk ��1:
Proof. A variant of this result is mentioned without proof in [Fournier 1987, p. 69] — the special case kD1
is given in Fournier’s Theorem 4.1; for the general case, analyze the proof of that theorem and use in
particular his Theorem 3.3 instead of Theorem 3.1, in combination with Cauchy’s inequality. �

We will need the following obvious technical result; since we here are interested in precise norm
estimates, we prefer to include a proof.

Lemma 10. Let J be a finite set and let Y andXj , j 2J , be Banach lattices on a measure space .�;†;�/.

Then
L
j2J .X

1��
j Y � /D

�L
j2J Xj

�1��
Y � for every � 2 .0; 1/, withM

j2J

.X1��j Y � / ,!

�M
j2J

Xj

�1��
Y �
� cardJ;

�M
j2J

Xj

�1��
Y � ,!

M
j2J

.X1��j Y � /

� cardJ:

Proof. Choose x 2
L
j2J .X

1��
j Y � / with norm less than 1. Since kxkX1��

j
Y � < 1 for each j 2 J, there

exist yj 2 Y and xj 2Xj with kyj kY � 1 and kxj kXj � 1 for each j 2 J such that

jxj � jxj j
1��
jyj j

�; j 2 J:

This implies

jxj �
�
min
k2J
jxkj

�1���max
k2J
jykj

��
:

Clearly,
mink2J jxkj

L
j2JXj

�
P
j2J kxj kXj � cardJ and

maxk2J jykj

Y
� cardJ yield

x 2

�M
j2J

Xj

�1��
Y �
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with

kxk.
L
j2J Xj /

1��Y � � cardJ:

This shows the first estimate from our statement. The proof of the second statement is straightforward. �

Now we use real and complex interpolation to deduce, from Lemma 9, the following result:

Lemma 11. For each m, n, k 2 N with 1� k �m we have M
S2Pk.m/

`2k=.kC1/.S/Œ`2. yS/� ,! `2m=.mC1/;2k=.kC1/.M.m; n//

� 2�mk �3=2:
Proof. We claim that the following norm estimate holds: M

S2Pk.m/

`1.S/Œ`2. yS/� ,! `2m=.mCk/;1.M/

�r�mk �; (21)

where MDM.m; n/. Indeed, combining complex interpolation first with Lemma 10
�
with norm

�
m
k

��
and then with Lemma 9

�
with norm

�
m
k

��1=2�, we obtainM
S2Pk.m/

`1.S/Œ`2. yS/�D
M

S2Pk.m/

`1.S/
�
Œ`1. yS/; `1. yS/�1=2

�
D

M
S2Pk.m/

�
`1.S/Œ`1. yS/�; `1.S/Œ`1. yS/�

�
1=2

D

M
S2Pk.m/

�
`1.M/; `1.S/Œ`1. yS/�

�
1=2

,!

�
`1.M/;

M
S2Pk.m/

`1.S/Œ`1. yS/�

�
1=2

with norm �
�m
k

�
,! Œ`1.M/; `m=k;1.M/�1=2 with norm �

�m
k

��1=2
D `2m=.mCk/;1.M/:

Observe that the last equality here holds with equality of norms; to see this note that for every 1 < p <1
and 0 < � < 1 we have, by (15),

E WD Œ`1.M/; p̀;1.M/�� D `1.M/
1��

p̀;1.M/
� :

Taking Köthe duals we obtain E 0 D `1.M/1�� .mp.M//� D .mp/1=� , which, for � D 1
2

and p Dm=k,
gives E 0 Dm2m=.m�k/.M/, and by duality

E D `2m=.mCk/;1.M/:

This proves the claim from (21). Now, for �k D .k� 1/=k we have

Œ`1.S/; `2.S/��k D `2k=.kC1/.S/:
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Hence we deduce from (21) and, again, Lemma 10 thatM
S2Pk.m/

`2k=.kC1/.S/Œ`2. yS/�D
M

S2Pk.m/

Œ`1.S/; `2.S/��k Œ`2.
yS/�

D

M
S2Pk.m/

�
`1.S/Œ`2. yS/�; `2.S/Œ`2. yS/�

�
�k

D

M
S2Pk.m/

�
`1.S/Œ`2. yS/�; `2.M/

�
�k

,!

� M
S2Pk.m/

`1.S/Œ`2. yS/�; `2.M/

�
�k

with norm �
�m
k

�
,! Œ`2m=.mCk/;1.M/; `2.M/��k with norm �

�m
k

�.1��k/=2
and so the norm of the inclusion map is less than or equal to�m

k

��m
k

�.1��k/=2
D

�m
k

�1C1=.2k/
�

�m
k

�3=2
:

We now need the equality

Œ`2m=.mCk/;1.M/; `2.M/��k D `2m=.mC1/;2k=.kC1/

with Œ`2m=.mCk/;1.M/; `2.M/��k ,! `2m=.mC1/;2k=.kC1/.M/
� 2:

In fact, from (15) it follows that for 1� qj � pj <1 with j D 0, 1 and � 2 .0; 1/ we have

Œ p̀0;q0 ; p̀1;q1 �� D . p̀0;q0/
1�� . p̀1;q1/

� :

And, further, for 1=p D .1� �/=p0C �=p1 and 1=q D .1� �/=q0C �=q1 it can be shown, similarly to
in the nonatomic case in [Grafakos and Mastyło 2014, Lemma 4.1], that in the atomic case we have

. p̀0;q0/
1�� . p̀1;q1/

�
D p̀;q

with
k. p̀0;q0/

1�� . p̀1;q1/
� ,! p̀;qk � 2

1=p:

Thus, taking � D .k � 1/=k, q0 D 1, p0 D 2m=.mC k/ and p1 D q1 D 2, we obtain the required
embedding. Combining all together, we finally arrive at M

S2Pk.m/

`2k=.kC1/.S/Œ`2. yS/� ,! `2m=.mC1/;2k=.kC1/

� 2�mk �3=2;
which completes the proof. �

A combination of (5) and Lemmas 7 and 11 leads to the following substantial improvement of
Theorem 6:
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Theorem 12. For each m, k 2 N with 1� k �m we have

BHmult
`2m=.mC1/;2k=.kC1/

.m/� 2
�m
k

�3=2
Am�k2k=.kC1/ BHmult

`2k=.kC1/
.k/:

In particular, for each k there is some ı.k/ > 0 such that, for each m> k,

BHmult
`2m=.mC1/;2.m�k/=.m�kC1/

.m/�mı.k/:

5. The polynomial BH inequality for Lorentz spaces

Let us start with a standard polarization argument, showing how the multilinear BH inequality in Lorentz
spaces from (4) transfers to a polynomial BH inequality in Lorentz spaces (as already stated in (12)).

Theorem 13. Given m 2 N, there is a constant C > 0 such that for every m-homogeneous polynomial
P D

P
j2J.m;n/ cj zj1 � � � zjm in n complex variables we have

k.cj /j2J.m;n/k`2m=.mC1/;1 � CkP k1I

in other terms,
BHpol

`2m=.mC1/;1
.m/ <1:

Proof. Take some m-homogeneous polynomial P as above, and let aD .ai /i2M.m;n/ be the associated
symmetric matrix. Then for every j 2 J.m; n/ we have

cj D cardŒj �aj

and, by standard polarization,

kak1 �
mm

mŠ
kP k1:

Obviously, 
p̀;1.M.m; n// ,! p̀;1.J.m; n//; .bi /i2M.m;n/ 7! .bj /j2J.m;n/

� 1:
Combining all this we obtain

k.cj /j2J.m;n/k2m=.mC1/;1 D k.cardŒj �aj /j2J.m;n/k`2m=.mC1/;1

� k.cardŒi �ai /i2M.m;n/k`2m=.mC1/;1

�mŠk.ai /i2M.m;n/k`2m=.mC1/;1

�mŠBHmult
`2m=.mC1/;1

.m/kak1 �m
m BHmult

`2m=.mC1/;1
.m/kP k1;

which is the estimate we aimed for. �

5.1. Hypercontractive growth. We now improve the preceding theorem by showing forXD`2m=.mC1/;1
that the constant BHpol

X .m/ in fact has hypercontractive growth in m; this extends (10) from Minkowski
spaces `2m=.mC1/ to Lorentz spaces `2m=.mC1/;1.

Theorem 14. For every " > 0 there is a constant C."/ > 0 such that, for each m,

BHpol
`2m=.mC1/;1

.m/� C."/.
p
2C "/m:
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Our proof needs four preliminary lemmas. The understanding of the diagonal operator

D.m; n/WCM.m;n/;s ,! CJ.m;n/; .ai /i2M.m;n/ 7! .cardŒj �.mC1/=.2m/aj /j2J.m;n/;

will turn out to be crucial; here CM.m;n/;s stands for all symmetric matrices in CM.m;n/, namely all matrices
.ai /i2M.m;n/ for which ai D aj whenever j 2 Œi �. Moreover, for 1 < p <1 denote by `sp;1.M.m; n//
the subspace CM.m;n/;s of p̀;1.M.m; n//, and similarly define the subspace `sp.M.m; n// for 1� p <1.

In Lemma 16 we will use interpolation in order to establish norm estimates for these diagonal operators
in Lorentz sequence spaces. In order to do so, we need another technical lemma on real interpolation:

Lemma 15. Let X0 and X1 be fully symmetric spaces on a measure space .�;†;�/. If Xd0 and Xd1 are
discretizations of X0 and X1 generated by the same measurable partition of �, then for every � 2 .0; 1/
and 1� q �1 the inclusion map idW .Xd0 ; X

d
1 /�;q! .X0; X1/�;q is an isometric isomorphism, i.e.,

kf k.Xd0 ;X
d
1 /�;q

D kf k.X0;X1/�;q for f 2 .Xd0 ; X
d
1 /�;q:

Proof. Let f�kgNkD1 �† be a given measurable partition of �. Define the linear map

P WL1.�/CL1.�/! L1.�/CL1.�/; f 7!

NX
kD1

�
1

�.�k/

Z
�k

f d�

�
��k :

Since P W .L1.�/; L1.�//! .L1.�/; L1.�// with kP kL1.�/!L1.�/ � 1 and kP kL1.�/!L1.�/ � 1,
and X0 and X1 are fully symmetric, it follows that

P W .X0; X1/! .Xd0 ; X
d
1 /

with kP kXj!Xdj � 1 for j 2 f0; 1g. This implies that, for every f 2Xd0 CX
d
1 , we have, since P.f /D f ,

K.t; f IXd0 ; X
d
1 /DK.t; Pf IX0; X1/�K.t; f IX0; X1/; t > 0:

Since the opposite inequality is obvious, the required statement follows. �

The next result will be essential:

Lemma 16. There is a uniform constant L> 0 such that, for each m and n,D.m; n/W `s2m=.mC1/;1.M.m; n// ,! `2m=.mC1/;1.J.m; n//
� Lm:

Proof. The proof is based on interpolation, and the abbreviations MDM.m; n/ and JD J.m; n/ will be
used. We claim that

kD.m; n/W `s1.M/! `1.J/k � 1; kD.m; n/W `
s
2.M/! `2.J/k �

p
m: (22)

Indeed, for every a 2 CM.m;n/;s we have

kD.m; n/ak`1.J/ D
X
j2J

cardŒj �.mC1/=.2m/jaj j D

X
j2J

cardŒj �.mC1/=.2m/�1 cardŒj �jaj j

�

X
j2J

cardŒj �jaj j D

X
i2M

jai j D kak`s1.M/
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and

kD.m; n/ak`2.J/ D

�X
j2J

cardŒj �.mC1/=mjaj j
2

�1=2
D

�X
j2J

cardŒj �.mC1/=m�1 cardŒj �jaj j
2

�1=2

D .mŠ/1=.2m/
�X

j2J

cardŒj �jaj j
2

�1=2
�
p
m

�X
i2M

jai j
2

�1=2
D
p
mkak`s2.M/;

which proves (22). We now apply the two-sided norm estimate from (14). In the special case when
p0 D q0 D 1, p1 D q1 D 2, q D 1 and � D .m� 1/=m, we have p D 2m=.mC 1/ and, in particular,
1� .p=q/1=q D 2m=.mC 1/ < 2. Then, for I DM.m; n/ or I D J.m; n/,

.`1.I /; `2.I //.m�1/=m;1 D `2m=.mC1/;1.I /;

and there is C > 0 such that, for all a 2 CM.m;n/;s ,

m3=2

C.m�1/
kak`2m=.mC1/;1.I / � kak.`1.I /;`2.I //.m�1/=m;1 �

Cm2

m�1
kak`2m=.mC1/;1.I /: (23)

It follows from Lemma 15 that

kak.`s1.M/;`
s
2.M//.m�1/=m;1

D kak.`1.M/;`2.M//.m�1/=m;1 for a 2 CM.m;n/;s: (24)

Now we interpolate; we recall that, for every operator T between interpolation pairs .A0; A1/ and .B0; B1/
and every 0 < � < 1, we have

kT W .A0; A1/�;1! .B0; B1/�;1k � kT WA0! B0k
1��
kT WA1! B1k

� :

In particular,D.m; n/W .`s1.M/; `s2.M//.m�1/=m;1! .`1.J/; `2.J//.m�1/=m;1


� kD.m; n/W `s1.M/! `1.J/k
1=m
kD.m; n/W `s2.M/! `2.J/k

.m�1/=m:

As a consequence we obtain that, for every a 2 CM.m;n/;s,

m3=2

C.m�1/
kD.m; n/ak`2m=.mC1/;1.M/

(23)
� kD.m; n/ak.`1.J/;`2.J//.m�1/=m;1

� kD.m; n/W `s1.M/! `1.J/k
1=m
kD.m; n/W `s2.M/! `2.J/k

.m�1/=m
kak.`s1.M/;`

s
2.M//.m�1/=m;1

(24)
D kD.m; n/W `s1.M/! `1.J/k

1=m
kD.m; n/W `s2.M/! `2.J/k

.m�1/=m
kak.`1.M/;`2.M//.m�1/=m;1

(23)
� kD.m; n/W `s1.M/! `1.J/k

1=m
kD.m; n/W `s2.M/! `2.J/k

.m�1/=mCm
2

m�1
kak`2m=.mC1/;1.J/:

Combining the above estimates with (22), we conclude that, for every a 2 CM.m;n/;s,

kD.m; n/ak`2m=.mC1/;1.M/ � C
2
p
m
p
m
.m�1/=m

kak`2m=.mC1/;1.J/ � C
2mkak`2m=.mC1/;1.J/;
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and this completes the proof. �

In what follows we will need the Khinchine–Steinhaus inequality for homogeneous polynomials due
to [Bayart 2002]: given 0 < p < q <1, for every m-homogeneous polynomial P on Cn we have�Z

Tn
jP.z/jq dz

�1=q
�

r
q

p

m�Z
Tn
jP.z/jp dz

�1=p
I (25)

note that it is shown in [Defant and Mastyło 2015, Theorem 2.1] that the constant
p
q=p that appears is

optimal. For the proof of Theorem 14, this fact will only be used for the case p D 1 and q D 2.
Next, we also require a lemma — which is (implicitly) in [Bayart et al. 2014b] and (explicitly) in

[Defant et al. 2016, Section 9] — however only in the case k D 1.

Lemma 17. Let P D
P

j2J.m;n/ cj zj1 � � � zjm be an m-homogeneous polynomial in n variables and let
aD .ai/i2M.m;n/ be its associated symmetric matrix. Then for every S 2 Pk.m/, 1� k �m, we have� X

i2M.S;n/

� X
j2M. yS;n/

cardŒj �jai˚j j
2

�1
2
2k
kC1

�kC1
2k
�

r
kC1

k

m�k
.m� k/Šmm

.m� k/m�kmŠ
Bmult
`2k=.kC1/

.k/kP k1:

The fourth lemma is an immediate consequence of [Blei and Fournier 1989, Theorem 3.3]; here we
will use only the case q D 2.

Lemma 18. Given 1� q <1, there is a constant Cq � 1 such that, for every matrix aD .ai /i2M.m;n/,

kak`mq=.mCq�1/;1 � Cqmkak.m;n;1;1;q/:

We are now ready to give the proof of Theorem 14.

Proof of Theorem 14. Assume that P is an m-homogeneous polynomial on Cn with coefficients
.cj /j2J.m;n/ and denote by .ai /i2M.m;n/ the coefficients of the associated symmetric m-linear form A.
We have the simple fact that, for all i 2M.f1g; n/ and j 2M.fb1g; n/,

cardŒi ˚ j ��m cardŒj �:

Hence we deduce from Lemmas 16, 18 (with q D 2) and 17 (with k D 1) that, for each m and n,

k.cj /j2J.m;n/k2m=.mC1/;1

D k.cardŒi �ai /i2J.m;n/k2m=.mC1/;1

� Lmk.cardŒi �1�.mC1/=2mai /i2M.m;n/k2m=.mC1/;1

� LmC2mk.cardŒi �1�.mC1/=.2m/ai /i2M.m;n/k.m;n;1;1;2/

D LmC2m max
S2P1.m/

X
i2M.f1g;n/

� X
j2M.fb1g;n/

ˇ̌
cardŒi ˚ j �.m�1/=.2m/ai˚j

ˇ̌2�1=2

� LmC2m max
S2P1.m/

X
i2M.f1g;n/

� X
j2M.fb1g;n/

ˇ̌
.m cardŒj �/.m�1/=.2m/ai˚j

ˇ̌2�1=2
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�LmC2mm
.m�1/=.2m/ max

S2P1.m/

X
i2M.f1g;n/

� X
j2M.fb1g;n/cardŒj �.m�1/=mjaj j

2

�1=2

� LmC2mm
.m�1/=.2m/ max

S2P1.m/

X
i2M.f1g;n/

� X
j2M.fb1g;n/cardŒj �jaj j

2

�1=2

� LmC2mm
.m�1/=.2m/

p
2
m�1
�

.m� 1/Šmm

.m� 1/m�1mŠ
�Bmult

`1
.1/�kP k1:

This completes the argument. �

We conclude with the following remark: The estimate (11) suggests that the constant
p
2 in Theorem 14

could be improved. Here
p
2 appears since our proof applies (25) for p D 1 and q D 2, which is an

inequality on homogeneous polynomials of arbitrary degreem. We have already indicated that the constant
p
2 in the inequality (25) is optimal (note that, in contrast to this, the best constant in (25) for polynomials

of degree only mD 1 equals
p
�=2; see [Sawa 1985; König 2014]).

5.2. The Balasubramanian–Calado–Queffélec result revisited. In this section we improve a remarkable
result by Balasubramanian, Calado and Queffélec [Balasubramanian et al. 2006]. By P.mc0/ we denote
the linear space of all m-homogeneous continuous polynomials on c0, which, together with the supremum
norm on the open unit ball in c0, forms a Banach space. On the subspace c00 of all finite sequences in c0,
each such polynomial has a unique monomial series decomposition P.z/D

P
j˛jDm c˛.P /z

˛, z 2 c00,
(or, in different notation, P.z/D

P
j2J.m/ cj zj , z 2 c00). A Dirichlet series D D

P
n ann

�s is said to
be m-homogeneous whenever an ¤ 0 implies nD p˛ and j˛j Dm (where p is the sequence of primes).
All m-homogeneous Dirichlet series D D

P
n ann

�s which converge on fs W Re s > 0g and are such
that the holomorphic function D.s/ D

P1
nD1 ann

�s for Re s > 0 is bounded form (together with the
supremum norm on fs W Re s > 0g) the Banach space Hm

1.
It is remarkable that there is a unique isometric isomorphism

BWP.mc0/!Hm
1; P D

X
j˛jDm

c˛.P /z
˛
7!D D

X
n

ann
�s;

such that c˛ D an whenever nD p˛. (For more information see [Defant et al. 2016; Defant and Sevilla-
Peris 2014; Queffélec and Queffélec 2013].) Then the following theorem is an immediate consequence of
this identification and Theorem 14:

Theorem 19. For every Dirichlet series D D
P
n ann

�s 2 Hm
1 we have .a�n/ 2 `2m=.mC1/;1. More

precisely, for every " > 0 there is C."/ > 0 such that, for every D 2Hm
1,

1X
nD1

a�n
1

n.m�1/=.2m/
� C."/.

p
2C "/mkDk1: (26)

At the end of the previous section we discuss in some detail why our proof of Theorem 14 and then
also (26) leads to the constant

p
2.
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Note that for every sequence aD .an/ 2 `2m=.mC1/;1 we have

1X
nD1

janj
1

n.m�1/=.2m/
�

1X
nD1

a�n
1

n.m�1/=.2m/
� kak`2m=.mC1/;1 <1:

Balasubramanian et al. [2006] proved that there is a constant c.m/ > 0 such that, for every Dirichlet
series D D

P1
nD1 ann

�s 2Hm
1,

1X
nD1

janj
.logn/.m�1/=2

n.m�1/=.2m/
� c.m/kDk1; (27)

and in addition it is shown that the exponent in the log term is optimal. In contrast to (26), it is unknown
whether the best constant in (27) has exponential growth.

A natural question appears: how is this result related to the estimate from Theorem 19? To see this,
let `1.!/ be the weighted `1-space with weight ! D .!n/ given by

!n D
.logn/.m�1/=2

n.m�1/=.2m/
; n 2 N: (28)

We observe that `1.!/ is different from `2m=.mC1/;1; in fact, if we would have `1.!/� `2m=.mC1/;1, or
equivalently `1 � `2m=.mC1/;1.!�1/, then by the closed graph theorem

sup
n2N

kenk`2m=.mC1/;1.!�1/ <1:

But since, for each n 2 N,

kenk`2m=.mC1/;1.!�1/ D

 en!n

`2m=.mC1/;1

D
n.m�1/=.2m/

.logn/.m�1/=m
;

we get a contradiction. Similarly, if `2m=.mC1/;1 � `1.!/ then there would exist a constant C > 0 such
that, for each N 2 N,

NX
nD1

.logn/.m�1/=2

n.m�1/=.2m/
D

 NX
nD1

en


`1.!/

� C

 NX
nD1

en


`2m=.mC1/;1

D CN .mC1/=.2m/;

which is again impossible. We conclude the paper with the following formal improvement of Theorem 19
and the Balasubramanian–Calado–Queffélec result (27):

Corollary 20. For each m 2 N and every Dirichlet series
P1
nD1 ann

�s 2Hm
1,

.an/n 2 `1.!/\ `2m=.mC1/;1;

where the weight ! is given by the formula (28).
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