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In this article we are interested in the rigorous construction of geometric optics expansions for hyperbolic
corner problems. More precisely we focus on the case where self-interacting phases occur. Those phases
are proper to the high frequency asymptotics for the corner problem and correspond to rays that can
display a homothetic pattern after a suitable number of reflections on the boundary. To construct the
geometric optics expansions in that framework, it is necessary to solve a new amplitude equation in view
of initializing the resolution of the WKB cascade.
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1. Introduction

The aim of this article is to give rigorous methods to construct geometric optics expansions for linear
hyperbolic initial boundary value problems in the quarter-space. Such problems will be called corner
problems and are of the form(

L.@/u" WD @tu
"CA1@1u

"CA2@2u
" D 0;

B1u
"
jx1D0 D g

"; B2u
"
jx2D0 D 0; u"jt�0 D 0;

.x1; x2/ 2 RC�RC; t � 0; (1)

where the matrices A1; A2 are in MN .R/ and where the boundary matrices B1; B2 are elements of
Mp1;N .R/ and Mp2;N .R/ respectively (the values of the integers p1 and p2 will be made precise in
Assumption 2.2).

We have, in this article, chosen to work with only two space dimensions in order to save some notations.
However, all the following results can be generalized if one looks at problem (1) with extra space variables
x0 2 Rd�2 (with, of course, the suitable modifications on the operator L.@/ to preserve hyperbolicity).
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This article can be seen, in some sense, as a complement to the paper by Sarason and Smoller [1974]
in which the authors give intuitions and elements of proof about how to construct geometric optics
expansions but where the construction is not performed rigorously. To our knowledge it is the only paper
about this subject in the literature for general first-order systems and we shall rely on some of the deep
ideas of this seminal work. In particular, the links between the phase generation by reflections and the
geometry of the characteristic variety will be the foundation of the proofs in this article (see Section 3
and [Sarason and Smoller 1974, Section 6] for more details).

Indeed, in [Sarason and Smoller 1974] the authors give examples of corner problems whose character-
istic variety is such that, according to their argumentation, the associated ansatz of the geometric optics
expansion has to contain more phases than the analogous ansatz for each problem in the half-spaces
fx1 > 0g and fx2 > 0g. They also show that a new phenomenon, specific to corner problems, may
happen for some characteristic variety configurations: the existence of “self-interacting phases”. By
self-interacting phases we mean that some phases can regenerate themselves after a suitable number of
reflections on both sides of the corner. Such spectral configurations trap part of the solution in a periodically
repeating pattern of reflections from one side to the other (see Definition 4.8 and Figure 6 for more details).

Our aim is to give a rigorous construction of the geometric optics expansion when self-interacting
phases occur. This result is achieved in Theorem 4.27. The most interesting thing during this construction
is the appearance of a new amplitude equation whose resolution is needed to initialize the resolution of
the whole cascade of equations. More precisely, the resolution of the new amplitude equation requires the
invertibility of an operator acting on the trace of one of the self-interacting amplitudes. This operator
arises under the form .I �T/ and is reminiscent of Osher’s invertibility assumption [1973] for proving
an a priori estimate for (1). We show in Theorems 4.28 and 4.29 that a sufficient and necessary (in many
meaningful cases) condition for the new amplitude equation to be solvable in L2.RC/ is that the energy
associated with the trapped information does not increase. Such a formulation matches with the naive
(but intuitive) idea that if part of the information is trapped and increases after running through one cycle,
then the associated geometric optics expansion will blow up after repeated cycles.

Inverting an operator of the form .I �T/ in view of constructing the geometric optics expansion is not
surprising. Indeed, if we make the analogy with the analysis of the initial boundary value problem in
the half-space, the necessary and sufficient condition to ensure strong well-posedness is the so-called
uniform Kreiss–Lopatinskii condition (see [Kreiss 1970] and Assumption 2.11). When one wants to
construct geometric optics expansions for such problems in a half-space, a “microlocalized” version of
this condition arises [Williams 1996]. So one should expect that an analogous situation takes place for the
corner problem and that the solvability condition we exhibit here is a microlocalized version of a stronger
condition ensuring well-posedness of (1).

The full characterization of strong well-posedness for the corner problem has not been achieved yet.
Some partial results are known, for example for symmetric corner problems with strictly dissipative
boundary conditions (in that framework, the strong well-posedness can easily be obtained with few
modifications of the proofs of [Lax and Phillips 1960; Benzoni-Gavage and Serre 2007] for half-space
problems). However, there are, to our knowledge, few results concerning the general framework, that
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is to say, corner problems only satisfying the uniform Kreiss–Lopatinskii condition on each side. A
fundamental contribution to this study is the article by Osher [1973]. In this paper, the author uses the
invertibility of an operator of the form .I � T� /— here � denotes a time frequency — to establish a
priori energy estimates. More precisely, he uses such an invertibility property to construct a “Kreiss-type
symmetrizer” providing a priori energy estimates with a loss of regularity from the source terms to the
solution. Unfortunately the number of losses in the estimates is not even explicit. However, some new
results about the possibility to obtain energy estimates without loss can be found in [Benoit 2015].

We believe that, as for the half-space problems, the invertibility condition on .I �T/ is a microlocalized
version of Osher’s condition. It is also interesting to remark that the example given in Section 3E shows that
the invertibility condition on .I�T/may not be satisfied if we only impose the uniform Kreiss–Lopatinskii
condition on either side of the corner. But, looking still at the example of Section 3E, we observe that the
invertibility condition on .I�T/ is automatically satisfied if the boundary conditions are strictly dissipative.

The paper is organized as follows: In Section 2 we define some objects and introduce notations for deal-
ing with geometric optics expansions for initial boundary value problems. We also give some known results
about the well-posedness theory for the corner problem (1). In Section 3, we explain, and make complete,
the phase generation process by reflection as studied in [Sarason and Smoller 1974]. We also briefly give an
example of a 2� 2 corner problem for which geometric optics expansions contain infinitely many phases.

Section 4 is devoted to the proof of our main result. Firstly, we give a rigorous framework for the
description of the phases obtained by successive reflections. This framework has to be general enough
to take into account self-interacting phases. Then we construct the geometric optics expansion. To do
that, it is, in a first time, necessary to exhibit a global “tree” structure on the set of phases, then to find a
way to initialize the resolution. As already mentioned, the initialization requires solving a new amplitude
equation for the trace of a self-interacting amplitude. The derivation of this equation is performed in
Section 4B2. Then we show that, once we have organized the set of phases and we have constructed one
of the self-interacting amplitudes, we can construct all amplitudes associated with phases “close to” the
self-interacting ones. A more precise study of the structure of the phase set then permits to determine all
the phases in the geometric optics expansion.

The end of Section 4 aims at justifying the geometric optics expansion and then at giving a necessary
and sufficient condition to ensure that the operator .I �T/ is invertible. We also give examples of corner
problems with one loop and revisit some of the conclusions of [Sarason and Smoller 1974]. Finally, we
make some comments on our results and give some prospects in Section 5.

2. An overview of well-posedness for half-space and corner problems

2A. Notations and definitions. Let

� WD f.x1; x2/ 2 R2 j x1 � 0; x2 � 0g; @�1 WD�\fx1 D 0g; and @�2 WD�\fx2 D 0g

be the quarter-space and both its edges. For T > 0, we will define

�T WD ��1; T ���; @�1;T WD ��1; T �� @�1; and @�2;T WD ��1; T �� @�2:
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The used function spaces will be the usual Sobolev spaces Hn.X/, with the notations L2.X/DH 0.X/

andH1.X/ WD
T
nH

n.X/, where X is some Banach space. But we will also need the weighted Sobolev
spaces defined by Hn

 .X/ WD fu 2 D0.X/ j e�tu 2Hn.X/g for  > 0.
At last, during the construction of the WKB expansion, to make sure that amplitudes are smooth

enough, we shall need the source term in (1) to be flat at the corner. The associated space of profiles is
thus defined as

Hn
f WD

˚
g 2Hn.R�RC/ j 8k � n; @

k
xg.t; x/jxD0 D 0

	
8n 2 N[f1g: (2)

The flat-at-the-corner weighted Sobolev spaces Hn
f;

are defined in a similar way.
Throughout L will be the symbol of the differential operator L.@/; i.e., for � 2 R and � 2 R2,

L .�; �/ WD �I C

2X
jD1

�jAj :

The characteristic variety V of L.@/ is given by

V WD f.�; �/ 2 R�R2 j det L .�; �/D 0g:

In this article we choose to work with constantly hyperbolic operators. However, it has to be mentioned
that the analysis of Section 4 is slightly easier in the particular framework of strictly hyperbolic operators.
We thus assume the following property on L.@/:

Assumption 2.1. There exists an integer q � 1, real-valued �1; : : : ; �q analytic on R2 n f0g and positive
integers �1; : : : ; �q such that

det L .�; �/D

qY
jD1

.� C�j .�//
�j 8� 2 S1;

where the semisimple eigenvalues �j .�/ satisfy �1.�/ < � � �< �q.�/.

Let us also assume that the boundary of � is noncharacteristic, and that the matrices B1 and B2 induce
the good number of boundary conditions, that is to say:

Assumption 2.2. We assume that the matrices A1, A2 are invertible. Then p1 (resp. p2), the number of
lines of B1 (resp. B2), equals the number of positive eigenvalues of A1 (resp. A2).

Moreover we also assume that B1 and B2 are of maximal rank.

Under Assumptions 2.1 and 2.2, we can define the resolvent matrices

A1.�/ WD �A
�1
1 .�I C i�A2/ and A2.�/ WD �A

�1
2 .�I C i�A1/;

where � denotes an element of the frequency space

„ WD
˚
� WD .� D  C i�; �/ 2 C�R;  � 0

	
n f.0; 0/g:

For convenience, we also introduce „0 the boundary of „:

„0 WD„\f D 0g:
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For j D 1; 2 and � 2 .„ n„0/, we denote by Esj .�/ the stable subspace of Aj .�/ and by Euj .�/ its
unstable subspace. These spaces are well-defined according to [Hersh 1963]. The stable subspace Esj .�/
has dimension pj, whereas Euj .�/ has dimension N � pj. Let us recall the following theorem due to
Kreiss [1970] and generalized by Métivier [2000] for constantly hyperbolic operators:

Theorem 2.3 (block structure). Under Assumptions 2.1–2.2, for all � 2„, there exists a neighborhood V

of � in„, integersL1; L2�1, two partitionsN D�1;1C� � �C�1;L1D�2;1C� � �C�2;L2 with �1;l ; �2;l �1,
and two invertible matrices T1; T2, regular on V such that for all � 2 V ,

T1.�/
�1A1.�/T1.�/D diag

�
A1;1.�/; : : : ;A1;L1.�/

�
;

T2.�/
�1A2.�/T2.�/D diag

�
A2;1.�/; : : : ;A2;L2.�/

�
;

where the blocks Aj;l.�/ have size �j;l and satisfy one of the following alternatives:

(i) All the elements in the spectrum of Aj;l.�/ have positive real part.

(ii) All the elements in the spectrum of Aj;l.�/ have negative real part.

(iii) �j;l D 1, Aj;l.�/ 2 iR, @Aj;l.�/ 2 R n f0g, and Aj;l.�/ 2 iR for all � 2 V \„0.

(iv) �j;l > 1, and there exists kj;l 2 iR such that

Aj;l.�/D

264kj;l i 0
: : : i

0 kj;l

375;
the coefficient in the lower left corner of @Aj;l.�/ is real and nonzero, and moreover, Aj;l.�/ 2

iM�j;l .R/ for all � 2 V \„0.

Thanks to this theorem it is possible to describe the four kinds of frequencies, one for each part of the
boundary @�:

Definition 2.4. For j D 1; 2, we denote by

(1) Ej the set of elliptic frequencies, that is to say, the set of � 2„0 such that Theorem 2.3 for the matrix
Aj .�/ is satisfied with one block of type (i) and one block of type (ii) only;

(2) Hj the set of hyperbolic frequencies, that is to say, the set of � 2„0 such that Theorem 2.3 for the
matrix Aj .�/ is satisfied with blocks of type (iii) only;

(3) EH j the set of mixed frequencies, that is to say, the set of � 2„0 such that Theorem 2.3 for the
matrix Aj .�/ is satisfied with one block of type (i), one of type (ii) and at least one of type (iii), but
without a block of type (iv);

(4) Gj the set of glancing frequencies, that is to say, the set of � 2„0 such that Theorem 2.3 for the
matrix Aj .�/ is satisfied with at least one block of type (iv).

Thus, by definition, „0 admits the decomposition

„0 D Ej [ EH j [Hj [Gj :
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The study made in [Kreiss 1970; Métivier 2000] shows that the subspaces Es1.�/ and Es2.�/ admit a
continuous extension up to „0. Moreover, if � 2„0 n .G1[G2/, one has the decomposition

CN DEs1.�/˚E
u
1 .�/DE

s
2.�/˚E

u
2 .�/; (3)

and for j 2 f1; 2g,

Esj .�/DE
s;e
j .�/˚E

s;h
j .�/;

Euj .�/DE
u;e
j .�/˚E

u;h
j .�/:

where Es;ej .�/ (resp. Eu;ej .�/) is the generalized eigenspace associated with eigenvalues of Aj .�/ with
negative (resp. positive) real part, and where the spaces Es;hj .�/ and Eu;hj .�/ are sums of eigenspaces of
Aj .�/ associated with some purely imaginary eigenvalues of Aj .�/. From Assumption 2.2 we also have

CN D A1E
s
1.�/˚A1E

u
1 .�/D A2E

s
2.�/˚A2E

u
2 .�/: (4)

In fact, it is possible to give a more precise decomposition of the spaces Es;hj .�/ and Eu;hj .�/. Indeed,
let !m;j be a purely imaginary eigenvalue of Aj .�/, that is,

det.� C �A1C!m;2A2/D det.� C!m;1A1C �A2/D 0:

Then, using Assumption 2.1, there exists an index km;j such that

� C�km;2.�; !m;2/D � C�km;1.!m;1; �/D 0;

where �km;j is smooth in both variables. Let us then introduce the following classification:

Definition 2.5. The set of incoming (resp. outgoing) phases for the side @�1, denoted by I1 (resp. O1),
is the set of indicesm such that the group velocity vm WDr�km;1.!m;1; �/ satisfies @1�km;1.!m;1; �/ > 0
(resp. @1�km;1.!m;1; �/ < 0).

Similarly, the set of incoming (resp. outgoing) phases for the side @�2, denoted by I2 (resp. O2), is
the set of indices m such that the group velocity vm WD r�km;2.�; !m;2/ satisfies @2�km;2.�; !m;2/ > 0
(resp. @2�km;2.�; !m;2/ < 0).

Thanks to this definition, we can write the following decomposition of the stable and unstable compo-
nents Es;hj .�/ and Eu;hj .�/:

Lemma 2.6. For all � 2Hj [ EH j, j D 1; 2, we have

E
s;h
1 .�/D

M
m2I1

ker L .�; !m;1; �/; E
u;h
1 .�/D

M
m2O1

ker L .�; !m;1; �/; (5)

E
s;h
2 .�/D

M
m2I2

ker L .�; �; !m;2/; E
u;h
2 .�/D

M
m2O2

ker L .�; �; !m;2/: (6)
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From Assumption 2.2 we can also write

A1E
s;h
1 .�/D

M
m2I1

A1 ker L .�; !m;1; �/; A1E
u;h
1 .�/D

M
m2O1

A1 ker L .�; !m;1; �/; (7)

A2E
s;h
2 .�/D

M
m2I2

A2 ker L .�; �; !m;2/; A2E
u;h
2 .�/D

M
m2O2

A2 ker L .�; �; !m;2/: (8)

We refer, for example, to [Coulombel and Guès 2010] for a proof of this lemma.

2B. Known results about strong well-posedness. We consider the corner problem with source terms in
the interior of �T and on either side of the boundary @�T given by8̂̂̂̂

<̂̂
ˆ̂̂̂:

L.@/uD f on �T ;

B1ujx1D0 D g1 on @�1;T ;

B2ujx2D0 D g2 on @�2;T ;

ujt�0 D 0:

(9)

By strong well-posedness for the corner problem (9) we mean the following:

Definition 2.7. The corner problem (9) is said to be strongly well-posed if for T > 0 and for all
f 2 L2.�T / and gj 2 L2.@�j;T /, the corner problem (9) admits a unique solution u 2 L2.�T / with
traces in L2.@�1;T / and L2.�2;T / satisfying the energy estimate

kuk2
L2.�T /

Ckujx1D0k
2
L2.@�1;T /

Ckujx2D0k
2
L2.@�2;T /

� CT
�
kf k2

L2.�T /
Ckg1k

2
L2.@�1;T /

Ckg2k
2
L2.@�2;T /

�
(10)

for some constant CT depending on T.

As we have already mentioned in the Introduction, the full characterization of strong well-posedness
for the corner problem (9) has not been achieved yet. However, we have some partial results.

First of all, the strong well-posedness is proved in the particular framework of symmetric operators
with strictly dissipative boundary conditions, that is, boundary conditions defined as follows:

Definition 2.8. For j D 1; 2, the boundary condition BjujxjD0 D gj is said to be strictly dissipative if
the inequality

hAj v; vi< 0 8v 2 kerBj n f0g

holds and kerBj is maximal (in the sense of inclusion) for this property.

We thus have the following result:

Theorem 2.9 [Benoit 2015, chapitre 4]. Under Assumption 2.2, if the matrices A1 and A2 are symmetric
and if the boundary conditions of the corner problem (9) are strictly dissipative, then under a certain
algebraic condition on the matrix A�11 A2, the corner problem (9) is strongly well-posed is the sense of
Definition 2.7.
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We refer to [Benoit 2015, chapitre 4] for a proof of this result and for more details about the mentioned
algebraic condition (see hypothèse 4.1.2 of [Benoit 2015]).1 For more details about the algebraic condition
we also refer to [Métivier and Rauch 2016] in which the necessity of imposing this condition is shown.

It is also easy to show (see [Benoit 2015, paragraphe 5.3.1]) that a necessary condition for (9) to be
strongly well-posed is that each initial boundary value problem(

L.@/uD f;

BjujxjD0 D gj ; ujt�0 D 0;
on fxj > 0; x3�j 2 Rg for j D 1; 2; (11)

is strongly well-posed in the usual sense for initial boundary value problems in the half-space (see, for
example, [Benzoni-Gavage and Serre 2007]).

This implies that Theorem 2.9 is not sharp (except for ND2, thanks to [Strang 1969]) because there
exist nonstrictly dissipative boundary conditions leading to a strongly well-posed initial boundary value
problem (11) (see, for example, [Benoit 2014, paragraphe 5.3]).

However, the set of the boundary conditions making (11) strongly well-posed has been characterized
by [Kreiss 1970] and is composed of the boundary condition satisfying the so-called uniform Kreiss–
Lopatinskii condition:

Definition 2.10. The initial boundary value problem (11) is said to satisfy the uniform Kreiss–Lopatinskii
condition if for all � 2„, we have

kerBj \Esj .�/D f0g:

So for the corner problem (9) to be strongly well-posed it is necessary that, for j D 1; 2, the initial
boundary value problem (11) satisfies the “uniform” Kreiss–Lopatinskii condition. We thus make the
assumption:

Assumption 2.11. For all � 2„, we have

kerB1\Es1.�/D kerB2\Es2.�/D f0g:

In particular, the restriction of B1 (resp. B2) to the stable subspace Es1.�/ (resp. Es2.�/) is invertible, and
its inverse is denoted by �1.�/ (resp. �2.�/).

Unsurprisingly, the counterexample [Osher 1974a] shows that imposing the uniform Kreiss–Lopatinskii
condition on each side of the boundary is not sufficient to ensure that the corner problem (9) is strongly
well-posed.

3. The phase generation process and examples

Before constructing the geometric optics expansions, it is necessary to describe the expected phases in
these expansions. Since the boundary of the domain � is not flat, we expect that it is possible to generate
more phases than for half-space problems. Indeed, at the very first glance, we can think that a ray of

1We do not want to give more details about this condition because it is not used to construct the WKB expansion. Moreover,
this condition will be satisfied by all our examples.
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geometric optics can be reflected several times on the boundary of the domain, with different new phases
generated at each reflection.

It is thus very important in order to postulate an ansatz to be able to describe all the phases that can be
obtained by successive reflections on each side of the boundary.

Here, we shall go back to the discussion by Sarason and Smoller [1974] explaining this phenomenon
and establishing a very strong link between the geometry of the characteristic variety of L.@/ and the
phase generation process.

As already mentioned in the Introduction, we are interested here in corner problems which are
homogeneous in the interior and on one side of the boundary. The only nonzero source term, which arises
in the boundary condition on @�1, will be highly oscillating, and we want to understand which phases
can be induced by this source term. We will here describe the phase generation process when the source
term is taken on @�1; the arguments are the same for a source term on @�2.

3A. Source term induced phases. Our problem of study is8̂̂̂̂
<̂̂
ˆ̂̂̂:

L.@/u" D 0 on �T ;

B1u
"
jx1D0 D g

" on @�1;T ;

B2u
"
jx2D0 D 0 on @�2;T ;

u"jt�0 D 0;

(12)

where the source term on @�1;T is given by

g".t; x2/ WD e
i
"'.t;x2/g.t; x2/; (13)

where the amplitude g belongs to H1
f

and is zero for negative times. The planar phase ' is defined by

'.t; x2/ WD �t C �2x2

for two fixed real numbers � > 0 and �2.
The fact that g belongs to H1

f
implies that g" is zero at the corner. Assume that g identically vanishes

in a neighborhood of the corner. Then by finite speed of propagation for the half-space problem, we can,
at least during a small time interval, see the corner problem (12) as a boundary value problem in the
half-space fx1 � 0g.

Geometric optics expansions for boundary value problems in the half-space have already been studied
(see, for example, [Williams 1996]) and, going back over the existing analysis, we expect that the source
term g" on the side @�1 induces in the interior of the domain several rays associated with the planar
phases

'0;k.t; x/ WD '.t; x2/C �
0;k
1 x1;

where the .�0;k1 /k are the roots in the �1-variable of the dispersion relation

det L .�; �1; �2/D 0: (14)
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An important remark to understand the phase generation process is that the .�0;k1 /k are the intersection
points (with the convention that complex roots are viewed as intersection points at infinity) between the
line

˚
.�; �1; �2/; �1 2 R

	
and the section of the characteristic variety V at � D � .

Let us denote by pr the number of real roots of (14) and by 2pc the number of complex roots (which
occur in conjugate pairs). We also assume that .�; �2/ is not a glancing frequency for the matrix A1;
hence pr can be decomposed as pir C p

o
r , where pir (resp. por ) is the number of real roots inducing

an incoming (resp. outgoing) group velocity (see Definition 2.5). We thus have p1 D pir C pc and
N �p1 D p

o
r Cpc by Lemma 2.6. Firstly we shall consider '0i , one of the pir phases with an incoming

group velocity, and '0o , one of the por phases with an outgoing group velocity. We also denote by v0i
and v0o the associated group velocities. Phases associated with complex roots will be dealt with separately.
The following discussion should be performed for each such real phase.

We shall study separately the influence of the phases '0i and '0o upon the generation of phases.

The phase '0o : The phase '0o , associated with an outgoing group velocity, describes the “past” of the
information reflected on the side @�1 at the initial time. In other words, to know the origin of a point on
the side @�1, it is sufficient to travel along the characteristic with group velocity v0o by rewinding time
back to �1.

This leads us to separate two cases, making, thus, more precise the Definition 2.5:

Definition 3.1. An outgoing group velocity v D .v1; v2/ for the side @�1 (i.e., v1 < 0) is said to be

� outgoing-incoming if v2 > 0,

� outgoing-outgoing if v2 < 0.

First subcase: v0o outgoing-outgoing. Let us fix a point on the side @�1 and we draw the characteristic
line with group velocity v0o passing through this point. Since v0o is outgoing for each side of the boundary,
the information at the considered point of @�1 can only come from information in the interior of the
domain, which has been transported towards the side @�1; see Figure 1. But, without a source term in the
interior of �, such information is zero. As a consequence, the amplitude u0o associated with the phase '0o
is zero, since according to Lax’s lemma [1957] it satisfies the transport equation8<:@tu

0
oC v

0
o � rxu

0
o D 0;

u0ojt�0 D 0:

Outgoing-outgoing phases do not have any influence on the WKB expansion or on the phase generation
process and are therefore ignored from now on.

Second subcase: v0o outgoing-incoming. Once again, we fix a point on the side @�1 and we draw the
characteristic line with group velocity v0o passing through this point. As in the subcase of an outgoing-
outgoing, the information at the considered point of @�1 cannot come from the interior of the domain.

However, the characteristic associated with the group velocity v0o hits the side @�2 when we rewind
the time back to �1, so the information at the point of the side @�1 could a priori come from some
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Figure 1. The four different kinds of phases.

information on the side @�2, which would have been transported towards the side @�1. But this is not
possible at time t D 0 since the boundary condition on @�2 is homogeneous for negative times.

So, the amplitude associated with the outgoing-incoming phase '0o is zero at time t D 0 and even on a
small time interval if g" identically vanishes near the corner. That is why we do not take into account the
phase '0o initially in the phase generation process.

Let us stress here that the phase '0o is moved apart a priori only at time t D 0. Indeed, for some
configuration of the characteristic variety, this phase can be generated at a future reflection on the side @�2,
and will finally be included in the ansatz. We will make more comments on this point in Section 3C, after
having precisely described which reflections are taken into account.

The phase '0i : The phase '0i is associated with an incoming group velocity for the side @�1. Opposite to
the phase '0o , it describes the “future” of the source term g". That is to say, when time goes to C1, part
of the oscillations in g" is transported along the characteristic with group velocity v0i . So, the phase '0i
carries a nonzero information and has to be taken into account in the phase generation process.

However, once again, we have to separate two subcases, according to the following refinement of the
Definition 2.5:

Definition 3.2. An incoming group velocity v D .v1; v2/ for the side @�1 (i.e., v1 > 0) is said to be

� incoming-incoming if v2 > 0,

� incoming-outgoing if v2 < 0.

The four kinds of (nonglancing) oscillating phases used in this analysis are drawn in Figure 1.

First subcase: v0i incoming-incoming. We choose a point .0; x2/, on @�1 such that g".0; x2/ is nonzero
and we draw the characteristic with velocity v0i passing through this point. When t goes to C1, the
information transported along this ray will never hit the side @�2 and will be unable to generate new
phases by reflection. So, when the group velocity v0i is incoming-incoming, the phase generation process
for the phase '0i stops.

Second subcase: v0i incoming-outgoing. We fix a point .0; x2/ 2 @�1 with g".0; x2/¤ 0, and we draw
the characteristic with velocity v0i passing through this point. As v0i;2 is negative, this ray will hit, after
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a while, the side @�2. We thus expect that this ray will give rise to reflected oscillations and that this
reflection will create new phases. This reflection phenomenon and more specifically the new expected
phases will be described in the next section. But before that, we will conclude the discussion on the
phases induced by the source term g" by considering the possible complex-valued phases.

'0
k

complex-valued: We now deal with phases corresponding to roots in the �1-variable to the dispersion
relation (14) with nonzero imaginary part. Let us first introduce some vocabulary.

Definition 3.3. A phase '0
k

with �0;k1 2 C nR is said to be

� evanescent for the side @�1 if Im �
0;k
1 > 0,

� explosive for the side @�1 if Im �
0;k
1 < 0.

Thanks to the construction of geometric optics expansion for complex-valued phases made, for example,
in [Marcou 2010; Lescarret 2007], the expected behavior of the amplitudes associated with these phases
is a propagation of information in the normal direction to the side @�1. However, this propagation is
exponentially decreasing (resp. increasing) according to the variable x1 for the amplitudes linked with
evanescent (resp. explosive) phases. In all that follows, as we are looking for amplitudes in L2.�/ so as
in [Lescarret 2007; Marcou 2010; Williams 1996] we do not take into account explosive phases.

Thus, we only keep the evanescent phases. Since, for regularity considerations on the oscillating
amplitudes, we are working with a source term in H1

f
, this source term satisfies, in particular, g.t; 0/D 0.

Consequently, the information carried by evanescent phases will never hit the side @�2 and the evanescent
phases for the side @�1 are, as well as the incoming-incoming ones, stopping conditions in the phase
generation process.

To summarize, the phases induced directly by the source term g" are the incoming (for the side @�1)
phases and the evanescent phases for the side @�1. Incoming-incoming and evanescent phases will not be
reflected; thus we only have to study the reflections on @�2 associated with incoming-outgoing phases.

3B. The first reflection. We assume that the dispersion relation (14) has at least one solution in the
�1-variable generating an incoming-outgoing group velocity. We shall describe the reflection of one of
these phases. Of course, to determine all the expected phases in the WKB expansion, the following
discussion has to be repeated for each of these phases.

Let �01 be a fixed root in the �1-variable to (14). We denote by v0i the associated incoming-outgoing
group velocity which corresponds to rays emanating from @�1 and hitting @�2 in finite time. Let us also
assume that time is large enough so that the ray associated with v0i and emanating from the support of g"

has hit @�2. Once again, by (formal) finite speed of propagation arguments, the reflection of the ray can
not hit immediately the side @�1. Thus during a small time, we can represent our situation as an initial
boundary value problem in the half-space fx2 � 0g whose boundary source term has been turned on by
the amplitude for the outgoing (for the side @�2) phase '0i .

We thus have to determine the roots .�1;k2 /k in the �2-variable of the dispersion relation

det L .�; �01; �2/D 0: (15)
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Figure 2. The geometry of the characteristic variety and the phase generation.

Let us stress that we already know one of them, that is, �2. For each of the new roots, we associate to
it the phase

'1;k.t; x/ WD �t C �01x1C �
1;k
2 x2:

It is interesting to note that the .�1;k2 /k are the intersection points between V \f� D �g and the line˚
.�; �01; �2/; �22R

	
. Thus to determine the phases generated by the source term, it is necessary to consider

the intersection of V \f� D �g with a horizontal line, and to determine the phases generated by the first re-
flection, we have to consider the intersection of V \f�D �gwith a vertical line (see Figure 2). To determine
the phases generated by the second reflection, we will have to consider the intersection with a horizontal
line and so on. We see that this process strongly depends on the geometry of the characteristic variety V.

Repeating exactly the same arguments as those used for the phases induced by the source term,
we claim that outgoing-outgoing and incoming-outgoing phases can be neglected (at least initially for
incoming-outgoing phases). Consequently, for real roots of (15), we just have to consider those associated
with an incoming-incoming or outgoing-incoming group velocity. Let '1i denote one of these phases and
v1i its group velocity.

v1
i

incoming-incoming: In that case, as when the group velocity v0i was incoming-incoming, the
considered ray will never hit the side @�1, and it will never be reflected. The phase generation process
for the phase '1i stops, and we are free to study the reflection(s) of another root of (15).

v1
i

outgoing-incoming: The reflected ray travels towards @�1, it will hit @�1 after a while, and we will
have to determine how it is reflected back. So the phase generation process for the phase '1i continues.

Concerning complex roots of (15) (if such roots exist), we only add in the WKB expansion those
associated with evanescent phases for the side @�2 (that is to say, those satisfying Im �

1;k
2 > 0). As for

the complex-valued phases induced by the source term, they will never be reflected back, and the phase
generation process for these phases stops.

3C. Summary. To summarize, the phase generation process is the following: We start from a source
term on @�1 and we only study the reflections for the incoming phases that it induces. If all of the
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phases are incoming-incoming (or evanescent), then the process stops. Otherwise, we determine the
reflections on @�2 of all the incoming-outgoing phases and we shall consider them into the ansatz. If one
of these reflected phases is outgoing-incoming, we will determine its reflection on @�1, otherwise the
phase generation process stops. This leads us to consider sequences of phases which are alternatively
incoming-outgoing and outgoing-incoming until we find an incoming-incoming or evanescent phase
during a reflection, which ends the sequence.

There are, of course, two possibilities: either each of these sequences of phases generated by successive
reflections is finite, and then the number of phases in the ansatz will be finite (see the example of
Section 3E), or at least one of these sequences is infinite, and then the number of phases in the ansatz is
infinite (see Section 3D).

In all the preceding discussion, we used the tacit assumption that we never meet glancing phases. This
assumption is satisfied in all our examples and it will be clearly stated in Theorem 4.27. Formally glancing
phases should be stopping criterion as well as incoming-incoming and evanescent phases. However, how
to include rigorously glancing modes in the WKB expansion is left for future studies.

Let us also stress that during a reflection on the side @�1 (resp. @�2), the fact that outgoing-incoming
(resp. incoming-outgoing) phases are not considered does not prevent these phases from appearing in the
WKB expansion.

Indeed, let .�; �1; �2/ be an incoming-outgoing phase generated by the source term g" and .�; �1; Q�2/
be an outgoing-incoming phase also generated by the source term. This phase is a priori not taken into
account in the WKB expansion at the first step of the phase generation process described above. Let us
assume that the intersection between the characteristic variety V \f�D �g and the line

˚
.�; �1; �2/; �22R

	
contains a value of �2, say Q�

2
, such that the associated oscillating phase is outgoing-incoming and that

the intersection between V \f� D �g and the line
˚
.�; �1; Q�2

/; �1 2 R
	

contains the frequency .�; Q�
1
; Q�
2
/

(in other words, it is equivalent to say that there exists a rectangle with sides parallel to the x- and y-axes
whose corners are four points of V \f� D �g). If the frequency .�; Q�

1
; Q�
2
/ is associated with an incoming-

outgoing group velocity, we remark that by applying the phase generation process (more precisely during
the third reflection), we have to consider the frequency .�; �1; Q�2/, which has been initially excluded.

Moreover, when we study the reflections of the phase associated with the frequency .�; Q�
1
; Q�
2
/ on

the side @�1, we are led to consider one more time the phase with frequency .�; �1; �2/. So, the phase
associated with the frequency .�; �1; �2/ is “self-generating” or “self-interacting” because it is in the set
of the phases that it generates. Such a configuration in the characteristic variety will be called a “loop”.
An explicit example of a corner problem with a loop will be given in Section 3E.

The fact that at each reflection there is more than one generated phase and this self-interaction
phenomenon between the phases imply that there is no natural order on the set of phases as in the
N D 2 framework. Indeed, when N > 2 we have to deal with a tree matching the phase generation at
each reflection. Thus, constructing the WKB expansion when N > 2 will be less intuitive than when
N D 2, a framework in which it is sufficient to use the order induced by the phase generation process. In
Sections 4B1 and 4B4, we show how to overcome this lack of natural order in view of constructing the
WKB expansion.
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Figure 3. Phase generation for the corner problem of Section 3D.

3D. An example with infinitely many phases. The aim of this section is to illustrate the phase generation
process and to give an explicit example of a corner problem whose geometric optics expansion contains
an infinite number of phases. Moreover, this example will also stress the fact that the phase generation
process is much simpler when N D 2, since it gives a natural order of construction of the WKB expansion.

Let us consider the corner problem (12) with

A1 WD

�
0 �1

�1 �1

�
; A2 WD

�
0 1

1 �1

�
:

It is thus clear that p1 D p2 D 1; then we have to choose B1; B2 2 M1;2.R/ in such a way that the
boundary conditions on @�1 and @�2 are strictly dissipative [Strang 1969]. Moreover, one can easily
check that this corner problem satisfies Assumptions 2.1 and 2.2.

We choose
g".t; x2/ WD e

i
".tC

1
2x2/g.t; x/

for the source term on @�1 in the corner problem (12). Then the phase generation process for this problem
is precisely described in [Benoit 2015, paragraphe 6.6.1] and is illustrated in Figure 3. The phases that we
have to consider form a “stairway” in a parabola (see Figure 3). The points of this stairway are labeled
by two sequences .�1;p/p2N and .�2;p/p2N in such a way that points .�1;p; �2;p/p2N match with points
in the “top of the parabola”, whereas points .�1;p; �2;pC1/p2N match with points in the “bottom of the
parabola”. Finally we initialize at �1;0 D�12 and �2;0 D 1

2
. A simple computation shows that we have

�1;p D�2p
2
� 3p� 1

2
; �2;p D�2p

2
�pC 1

2
;

and

vp D
1

4p2C4pC2

�
4pC 1

�.4pC 3/

�
; wp D

1

4p2C8pC5

�
�.4pC 5/

4pC 3

�
:

So all the points of the “top” are associated with incoming-outgoing group velocities, while points of the
“bottom” are associated with outgoing-incoming group velocities. Thus according to the phase generation
process described above, the number of phases in the expansion will be infinite.
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Figure 4. Appearance of the characteristics for problem of Section 3D.

We refer to [Benoit 2015, paragraphes 6.6.2 and 6.6.3] for a rigorous construction of the geometric
optics expansion and a justification of its convergence towards the exact solution. The difficult part of
this analysis does not come from the construction because we are in the simpler case N D 2 but it comes
from the justification. Indeed, when infinitely many phases occur, to ensure that the WKB expansion (at a
finite order in terms of powers of ") makes sense, we have to ensure that a series converges.

Finally, we address the following phenomenon. If we fix a point .0; yp/ 2 @�1 and follow the
characteristic with group velocity vp , then we will hit @�2 at time tvp in a point .xp; 0/. Then if we start
from .xp; 0/ 2 @�2 and follow the characteristic line with group velocity wp , we will hit @�1 at time twp
in a point .ypC1; 0/. A simple computation shows that the considered sequences are given by

yp D
1

4pC1
y0; xp D

1

4pC3
y0; tvp D

1

vp;1
yp; twp D

1

vp;2
xp;

from which we deduce that from the starting point .0; y0/, y0 > 0, we will get closer and closer to
the corner at each reflection and will reach the corner in an infinite time. A scheme illustrating the
characteristic lines for this corner problem is given in Figure 4.

3E. An example with a loop. We consider the corner problem(
@tu

"CA1@1u
"CA2@2u

" D 0;

B1u
"
jx1D0 D 0; B2u

"
jx2D0 D g

"; u"jt�0 D 0;
.x1; x2/ 2�; (16)

with

A1 WD

243=
p
2 1=

p
2 0

1=
p
2 �3=

p
2 0

0 0 5=7

35; A2 WD

24�
p
2 0 0

0
p
2 0

0 0 �2

35:
This system does not have any physical meaning and is composed of a “wave type” equation and a
scalar transport equation. It is clear that the corner problem (16) satisfies Assumption 2.2 with p1 D 2
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Figure 5. Section of the characteristic variety and the phase generation for corner problem (16).

and p2 D 1. The corner problem (16) does not satisfy Assumption 2.1, but it is hyperbolic in the sense
of geometrically regular hyperbolic systems (see [Métivier and Zumbrun 2005, Definition 2.2]). This
hyperbolicity assumption is sufficient for our discussion as long as we do not have to consider the ansatz
frequencies corresponding to intersection points2 of the different sheets of the characteristic variety.

For the corner problem (16), the equation of the section of the characteristic variety with the plane
f� D 1g is given by

V�D1 W .5�
2
1 C 2�

2
2 � 6�1�2C 1/

�
1C 5

7
�1� 2�2

�
D 0;

and is composed of an ellipse and a crossing line; see Figure 5. If we choose

g".t; x1/D e
i
".tC

7
5x1/g.t; x1/

for the source term g" on @�2 in (16) then after the application of the phase generation process (see
Figure 5), we obtain a loop as introduced in Section 3C. The four self-interacting phases and the associated
group velocities are given by

'1.t; x/ WD t C
7
5
x1C 2x2; v1D

�
�1

1=5

�
; '2.t; x/ WD t C

7
5
x1C x2; v2D

�
5=7

�2

�
;

'3.t; x/ WD t C x1C x2; v3 D

�
�2

1

�
; '4.t; x/ WD t C x1C 2x2; v4 D

�
1

�1

�
;

(17)

2We have to stress that these intersection points, specific to geometrically regular hyperbolic systems, can, generically,
induce an infinite number of phases in the WKB expansion. Indeed, let us assume that in a given intersection point, one of
the sheets of the variety is associated with an incoming-outgoing group velocity, whereas the other sheet is associated with an
outgoing-incoming group velocity. Then, using the fact that the group velocities are regular, one can find a neighborhood on
each sheet such that the group velocity does not change type on this neighborhood. It immediately follows that if a ray of the
geometric optics expansion contains a frequency in these neighborhoods, it is automatically attracted toward the intersection
point by forming a “stairway”, like in Section 3D. The fact that this phenomenon does not occur for the corner problem (16), and
that the number of generated phases in finite, is somewhat very special.



1376 ANTOINE BENOIT

x2

v4

v1v1

v3

v2

suppg x1

Figure 6. The loop.

where v1 and v3 are outgoing-incoming, whereas v2 and v4 are incoming-outgoing. The precise values
of the fifteen other expected phases in the WKB expansion can be explicitly computable but they are not
really important for our actual discussion. Let us just stress that, as it can be seen in Figure 5, there are
four evanescent phases for the side @�2 but there are no oscillating phases of the form .1; �1; 0/. Thus, in
particular, the technical Assumption 4.9, used in the construction of the WKB expansion will be satisfied.

As in Section 3D we are not interested in the construction of the geometric optics expansion but we
want to study the behavior of the rays associated with the phases .'j /jD1;:::;4 when T is large.

If we start from a point .x0; 0/ 2 @�2 and make it travel along the characteristics with group velocity
v1, v2, v3 and v4, then after one cycle the ray will hit @�2 after a time of travel t0 in a point .x2; 0/.
Some computations, like those made in Section 3D, show that, for x0 > 0, we have

x2p D ˇ
�px0; tp D Q̨ˇ

�px0;

with

ˇ�1 WD
1

28
D
v1;2

v1;1

v2;1

v2;2

v3;2

v3;1

v4;1

v4;2
;

and Q̨ a nonrelevant parameter for our purpose. Since ˇ > 1, the ray concentrates at the corner. Moreover
the total time of travel towards the corner

P
p�0 tp is the sum of a finite geometric sum so the ray reaches

the corner in finite time.
We will come back in Section 4D to this example, and more precisely to the resolution of the new

amplitude equation needed to construct the geometric optics expansion. Let us conclude this section by
noting that Figure 6 depicts the characteristics associated with the group velocities .vj /jD1;:::;4.

4. Geometric optics expansions for self-interacted trapped rays

Until the end of this paper, we will study the following hyperbolic corner problem with N equations:(
@tu

"CA1@1u
"CA2@2u

" D 0;

B1u
"
jx1D0 D g

"; B2u
"
jx2D0 D 0; u"jt�0 D 0;

.t; x1; x2/ 2�T ; (18)
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where we recall that A1; A2 2MN .R/ with N � 2, B1 2Mp1;N .R/ and B2 2Mp2;N .R/. Our goal is
to construct the WKB approximation to the solution u" to (18) when self-interacting phases occur. But
before starting the construction of the geometric optics expansion, we shall give a precise and rigorous
meaning of the phase generation process described in Section 3. This is the object of the following section.

4A. General framework. In this section we define a general framework wherein we can construct
rigorously geometric optics expansions for corner problems. As already mentioned, the geometry of
the characteristic variety influences the phase generation process and consequently it also influences the
geometric optics expansion. Though not the most general, our framework will be general enough to take
into account one-loop and self-interacting phases. Possible extensions are indicated at the end of this article.

4A1. Definition of the frequency set and first properties. Let us start with the definition of what we mean
by a frequency set:

Definition 4.1. Let I be a subset of N and � 2 R, � ¤ 0. A set indexed by I,

F WD
˚
fi WD .�; �

i
1; �

i
2/; i 2I

	
;

will be a set of frequencies for the corner problem (18) if for all i 2I, the frequency fi satisfies

det L .fi /D 0

and one of the following alternatives:

(i) � i1; �
i
2 2 R.

(ii) � i1 2 .C nR/; � i2 2 R and Im � i1 > 0.

(iii) � i2 2 .C nR/; � i1 2 R and Im � i2 > 0.

In all that follows, if F is a frequency set for the corner problem (18), we will define

Fos WD ffi 2F satisfying (i)g;

Fev1 WD ffi 2F satisfying (ii)g;

Fev2 WD ffi 2F satisfying (iii)g:

It is clear that the sets Fos, Fev1 and Fev2 give a partition of F . Moreover, to each fi 2 Fos, we
can associate a group velocity vi WD .vi;1; vi;2/. Let us recall that the group velocity vi is defined in
Definition 2.5. The set Fos can be decomposed as

Fii WD ffi 2Fos j vi;1; vi;2 > 0g; Fio WD ffi 2Fos j vi;1 > 0; vi;2 < 0g;

Foi WD ffi 2Fos j vi;1 < 0; vi;2 > 0g; Foo WD ffi 2Fos j vi;1 < 0; vi;2 < 0g:

Fg WD ffi 2Fos j vi;1 D 0 or vi;2 D 0g;

The partition of F induces the following partition of I :

I DIg[Ioo[Iio[Ioi[Iii[Iev1[Iev2;

where we have denoted by Iio (resp. g, oo, oi, ii, ev1, ev2) the set of indices i 2I such that the corresponding
frequency fi 2Fio (resp. g, oo, oi, ii, ev1, ev2).
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From now on, the source term g" on the boundary in (18) is given by

g".t; x2/ WD e
i
" .�tC�2x2/g.t; x2/; (19)

where the amplitude g belongs to H1
f

and is zero for negative times.
The following definition gives a precise framework for the phase generation process described in

Section 3. More precisely, this definition qualifies the frequency set that contains all (and only) the
frequencies linked with the expected nonzero amplitudes in the WKB expansion of the solution to the
corner problem (18).

Definition 4.2. The corner problem (18) is said to be complete for reflections if there exists a set of
frequencies F satisfying the following properties:

(i) F contains the real roots (in the variable �1) associated with incoming-outgoing or incoming-
incoming group velocities and the complex roots with positive imaginary part to the dispersion
equation

det L .�; �1; �2/D 0:

(ii) Fg D∅.3

(iii) If .�; � i1; �
i
2/2Fio, then F contains all the roots (in the variable �2), denoted by �p2 , of the dispersion

relation det L .�; � i1; �2/D 0 that satisfy one of the following two alternatives:

(iii0) �p2 2 R and the frequency .�; � i1; �
p
2 / is associated with an outgoing-incoming group velocity or

an incoming-incoming group velocity.
(iii00) Im �

p
2 > 0.

(iv) If .�; � i1; �
i
2/2Foi, then F contains all the roots (in the variable �1), denoted by �p1 , of the dispersion

relation det L .�; �1; �
i
2/D 0 that satisfy one of the following two alternatives:

(iv0) �p1 2 R and the frequency .�; �p1 ; �
i
2/ is associated with an incoming-outgoing or an incoming-

incoming group velocity.
(iv00) Im �

p
1 > 0.

(v) F is minimal (for the inclusion) for the four preceding properties.

Remark. Property (i) establishes that the frequency set F contains all the incoming phases for @�1 that
are induced by the source term g".

Property (iii) (resp. (iv)) explains the generation by reflection on the side @�2 (resp. @�1) of a wave
packet that emanates from the side @�1 (resp. @�2).

An immediate consequence of the minimality of F is that Foo is empty. In all that follows, we will
assume that the dispersion relation det L .�; �1; �2/D 0 has at least one real solution �1 such that the
group velocity for the frequency f WD .�; �1; �2/ is incoming-outgoing. This assumption is, of course,
not necessary. However, without this assumption, it is easy to see that the phase generation for the corner

3 This restriction is probably not necessary. However, for a first work on this subject we did not want to add the technicality
induced by the determination of amplitudes associated with glancing frequencies (see [Williams 2000] for such a construction).
Incorporating glancing modes in the WKB expansion is left for future studies.
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problem (18) is not richer than the phase generation for the standard boundary value problem in the
half-space fx1 � 0g. Indeed, the minimality of the frequency set F would imply, in this case,

F DFii[Fev1 and 8fi 2F ; � i2 D �2:

For a corner problem that is complete for reflections, one can define the following functions. These
functions are defined on the index set I and give, in the output, the indices “in the direct vicinity” of the
input index:

ˆ; ‰ WI !PN .I /;

where PN .I / denotes the power set of I with at most N elements. More precisely, for i 2I and
fi D .�; �

i
1; �

i
2/,

ˆ.i/ WD
˚
j 2I j �

j
2 D �

i
2

	
and ‰.i/ WD

˚
j 2I j �

j
1 D �

i
1

	
:

Thanks to these functions, the index set I can be seen as a graph. This graph structure will be more
abstract than the description of I based on the wave packet reflections, but it will be easier to work with
when we will construct the WKB expansion. This graph structure is defined by the following relation:
two points i; j 2I are linked by an edge if and only if i 2ˆ.j / or i 2‰.j /.

In terms of wave packet reflection, the set ˆ.i/ (resp. ‰.i/) is the set of all indices of the phases that
are considered in the reflection of the wave packet with phase associated to fi on @�2. Let us stress that
the index i is not necessarily the index of an incident ray but can be the index of one of the reflected rays.

It is easy to see that functions ˆ and ‰ have the following properties. One can also check that these
properties are independent of the concept of “loop” that will be introduced in the following section.

Proposition 4.3. If the corner problem (18) is complete for reflections, then ˆ and ‰ satisfy the following
properties:

(i) 8i 2I, we have i 2‰.i/ and i 2ˆ.i/.

(ii) 8i 2I, 8j 2‰.i/, 8k 2ˆ.i/, we have ‰.i/D‰.j / and ˆ.i/Dˆ.k/.

(iii) 8i 2I, we have ˆ.i/ \Iev2 D ∅ and ‰.i/ \Iev1 D ∅, and, 8i 2 Iev1, 8j 2Iev2, we have
‰.i/�Iev1 and ˆ.i/�Iev2.

(iv) 8i 2Ios, we have #.ˆ.i/\Iev1\Iio\Iii/� p1 and #.‰.i/\Iev2\Ioi\Iii/� p2.

(v) 8i 2I, we have, on one hand, 8i1; i2 2ˆ.i/, i1 ¤ i2,

ˆ.i/\‰.i1/D fi1g and ‰.i1/\‰.i2/D∅;

and on the other hand, 8j1; j2 2‰.i/, j1 ¤ j2,

‰.i/\ˆ.j1/D fj1g and ˆ.j1/\ˆ.j2/D∅:

Proof. Properties (i), (ii) and (v) are direct consequences of the definition of the functions ˆ and ‰.
Property (iii) arises from the definition of the frequency set. Finally property (iv) is a consequence of the
block structure theorem (see Theorem 2.3). �
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Thanks to functions ˆ and ‰ it is easy to define the notion of two linked indices in the graph structure
of I. In terms of wave packet reflections, this notion means that the index i will be linked with the
index j if and only if j is obtained from the wave packet associated with i after several reflections. In
other terms, we can say that the index i generates the index j, or that i is the “father” of j. The following
definition makes this notion more precise:

Definition 4.4. If i 2Iio, we say that the index j 2Iio[Iev1 (resp. j 2Ioi[Iev2) is linked with the
index i if there exists p 2 2NC 1 (resp. p 2 2N) and a sequence of indices `D .`1; `2; : : : ; p̀/ 2 I p

such that

`1 2‰.i/\Ioi; `2 2ˆ.`1/ 2Iio; : : : ; j 2ˆ. p̀/ .resp. j 2‰. p̀//: (˛0)

We say that the index j 2 Iii is linked with the index i , if there is a sequence of indices ` D
.`1; `2; : : : ; p̀/ 2I p such that

`1 2‰.i/\Ioi; `2 2ˆ.`1/\Iio; : : : ; j 2

�
ˆ. p̀/ if p is odd,
‰. p̀/ if p is even.

(ˇ0)

If i 2Ioi, we say that the index j 2Iio [Iev1 (resp. j 2 Ioi [Iev2) is linked with the index i , if
there exists p 2 2N (resp. p 2 2NC 1) and a sequence of indices `D .`1; `2; : : : ; p̀/ 2I p such that

`1 2ˆ.i/\Iio; `2 2‰.`1/ 2Ioi; : : : ; j 2ˆ. p̀/ .resp. j 2‰. p̀//: (˛00)

We say that the index j 2Iii is linked with the index i , if there exists a sequence of indices ` D
.`1; `2; : : : ; p̀/ 2I p such that

`1 2ˆ.i/\Iio; `2 2‰.`1/\Ioi; : : : ; j 2

�
‰. p̀/ if p is odd,
ˆ. p̀/ if p is even.

(ˇ00)

Finally, if i 2Iii[Iev1[Iev2, there is no element of I linked with i .
Moreover, we will say that an index j 2I is linked with the index i by a sequence of type H (for

“horizontal”) (resp. V (for “vertical”)) and we will use the notation i
H
� j (resp. i

V
� j ) if the sequence

.i ; `1; `2; : : : ; p̀; j / satisfies (˛00) or (ˇ00) (resp. (˛0) or (ˇ0)).

Let us comment a bit on this definition. In terms of wave packet reflections, if one fixes an index
i 2Iio, an index j is linked with the index i if j comes from i after several reflections. More precisely,
the incoming-outgoing ray associated with i hits the side @�2 and is reflected in the outgoing-incoming
ray associated with the index `1. Then the ray of index `1 hits the side @�1, and generates the incoming-
outgoing ray associated with the index `2. This ray hits the side @�2 and so on until the ray associated
with the index p̀ generates by reflection the index j.

The distinction of cases based on the group velocity of the index j in the subcase (˛0) considers the fact
that a ray associated with an index in Iio[Iev1 (resp. Ioi[Iev2) can be generated by a ray associated
with p̀ only during a reflection on the side @�1 (resp. @�2), or equivalently after an even (resp. odd)
number of reflections, whereas a ray with an incoming-incoming group velocity can be generated by the
ray p̀ during a reflection on the side @�1 or one the side @�2. That is the reason why the subcase (ˇ0)
differs from the subcase (˛0).
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If one rather sees the index set I with a graph structure, saying that j is linked with i is no more
than saying that starting from i one can reach the index j by passing through the indices `i , with the
following rule of travel: if one reaches `l by following a vertical (resp. horizontal) edge of the graph,
then `lC1 will be reached by following a horizontal (resp. vertical) edge. A sequence of type H (resp. V )
just means that when we start from i , the first edge is a horizontal (resp. vertical) one.

The following proposition is an immediate consequence of Definitions 4.2 and 4.4.

Proposition 4.5. Let F be a complete-for-reflection frequency set indexed by I. Let I0 be the set of
indices in I generated by the source term g"; that is to say,

I0 WD
˚
i 2Iio[Iii[Iev1 j det L .�; � i1; �2/D 0

	
:

Let IR be the set of indices in I linked with one of the elements of I0. Then

IR DI:

Proof. Let FR be the set of frequencies indexed by IR . It is clear that the set FR satisfies properties (i)–(iv)
of Definition 4.2. Let us describe the verification of property (iii) to be more convincing.

We fix i 2IR , an incoming-outgoing index. Let ` be a sequence that links i to one of the indices
of I0. Then indices in Ioi\‰.i/, Iii\‰.i/ and Iev2\‰.i/ are linked with an element in I0 by the
sequence .`; i/. As a consequence, these indices are in IR . We just showed that IR satisfies property (iii)
of Definition 4.2.

We now want to show that IR D I. By contradiction, we assume that there exists j 2 .I nIR/.
Firstly, if j 2Iev1[Iev2[Iii, then the frequency set indexed by I nfj g still satisfies properties (i)–(iv)
in Definition 4.2. This fact contradicts the minimality of F .

Then, if j 2Iio [Ioi, we construct the set of indices linked with j, and we denote this set by zI.
Let zF be the frequency set indexed by zI. The set . zF [FR/ n . zF \FR/ satisfies properties (i)–(iv) in
Definition 4.2 and is strictly included in F because j 2 . zF \FR/. Once more, this fact is incompatible
with the minimality of the frequency set F. �

Proposition 4.5 concludes the description of our formal framework for frequency sets. Let us stress
that in this framework we do not assume that the number of phases in the WKB expansion is finite. The
assumption “#F < C1” will only be used to make sure that the formal geometric optics expansion
constructed in the following sections is relevant, in the sense that the expansion is well-defined and that it
does indeed approximate the exact solution. But it will not be used to construct the WKB expansion, at
least, at a formal level.

4A2. Frequency sets with loops. As mentioned in the beginning of this section, the aim of all that follows
is to construct rigorous geometric optics expansions for corner problem where some amplitudes in the ex-
pansion display a self-interacting phenomenon. To do that, we will need to consider corner problems whose
characteristic variety contains a “loop”. By loop, we mean that it is possible to find at least four points on
the section of the characteristic variety V \f� D �g such that if we draw the segments linking these points,
we obtain a rectangle or a finite “stairway” (see Section 3C and [Sarason and Smoller 1974, Figure 8]).
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Many kinds of loops are possible and few of them lead to a self-interaction phenomenon. That is why,
in all that follows, we will assume that there is a unique loop and that this loop induces a self-interaction
phenomenon. The uniqueness of the loop is probably not a necessary assumption, but it permits us to
simplify many steps of the proof and to save a lot of combinatorial arguments. We refer to [Benoit 2015,
paragraphe 6.10] for more details. The different kinds of loops are defined as follows:

Definition 4.6. Let i 2I, p 2 2NC 1 and `D .`1; : : : ; p̀/ 2 I p (we stress that elements of ` are not
necessarily distinct).

� We say that the index i 2I admits a loop if there exists a sequence ` satisfying

`1 2ˆ.i/; `2 2‰.`1/; : : : ; i 2‰. p̀/:

� A loop for an index i is said to be simple if the sequence ` does not contain a periodically repeated
subsequence.

� An index i 2Iio (resp. i 2Ioi) admits a self-interaction loop if i admits a simple loop and if the
sequence .i; `; i/ is of type V (resp. H ) according to Definition 4.4.

From now on, let us assume the following:

Assumption 4.7. Let (18) be complete for the reflections. We assume that the frequency set F contains a
unique loop of size 3 and that this loop is a self-interaction loop. More precisely, we want the following
properties to be satisfied:

(vi) 9.n1; n3/ 2I 2
io , .n2; n4/ 2I 2

oi such that

n4 2‰.n1/; n3 2ˆ.n4/; n2 2‰.n3/; n1 2ˆ.n2/:

(vii) Let i 2I be an index with a loop `D .`1; : : : ; p̀/. Then pD 3 and fi; `1; `2; `3gD fn1; n2; n3; n4g.

The fact that we restrict our attention to a loop of size 3 is just to simplify as much as possible the
redaction of the proof. However, all of the following construction can be generalized to loops with more
than three elements.

One of the main difficulties induced by the presence of a loop is that the definition of linked indices
does not permit us anymore to define a partial order on the frequency set, as can be done in the case
N D 2. Indeed, if one considers indices n1 and n3 defined in Assumption 4.7 then we have n1 V

� n3

and n3 V
�n1 but n1 ¤ n3. We will see in Section 4B1 how this new difficulty can be overcome.

We conclude this section by defining what we mean by “trapped” and “self-interacting” rays.

Definition 4.8. A ray of the geometric optics expansion is said to be trapped if when we follow its
characteristics, we never escape from a compact set.

A ray of the geometric optics expansion is said to be self-interacting if when we follow its characteristics,
we can find a repeating sequence of group velocities.

So a trapped ray is a ray which will never escape to “infinity”. The ray obtained by following the
characteristic lines for the indices .n1; n2; n3; n4/ is a self-interacting trapped ray, whereas, the ray
described in Section 3D is non-self-interacting trapped ray.
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To conclude this section let us give the following assumption about an extra special property which
applies to the frequency set F . This assumption will be useful in the beginning of Section 4B to derive
the WKB cascade. Moreover, some extra comments about this assumption can be found in Section 5.

Assumption 4.9. If Fev1 (resp. Fev1) is not empty then Fos does not contain any element of the form
fk D .�; 0; �

k
2 / (resp. fk D .�; �k1 ; 0//.

4A3. Some definitions and notation. For j 2Iev1[Iii[Iio (resp. i 2Iev2[Iii[Ioi), we denote by
f j WD .�; �

j
1 ; �

2
j / the associated frequency. Let us recall that thanks to the uniform Kreiss–Lopatinskii

condition, it is possible to define �j1 (resp. �j2 ), the inverse ofB1 (resp.B2) restricted to the stable subspace
Es1.i�; �

j
2 / (resp. Es2.i�; �

j
1 //.

To construct the amplitudes in the WKB expansion, we will need the following projectors and partial
inverses:

Definition 4.10. For j 2 f1; 2g and fk D .�; �k1 ; �
k
2 / 2 F, let us denote by P k1;s;j (resp. P k2;s;j ), the

projector on Es;ej .i�; �k3�j / (resp. Eu;ei .i�; �k3�j /) associated with the direct sum (3), and P k1 (resp. P k2 )
the projector on ker L .fk/ associated with the sums (5) (resp. (6)).

Let us denote by Qk1;s;j (resp. Qk2;s;j ), the projector on Es;ej .i�; �k3�j / (resp. Eu;ej .i� ; �k3�j /) asso-
ciated with the direct sum (4), and Qkj (resp. Qk2 ) the projector on A1 ker L .fk/ (resp. A2 ker L .fk/)
associated with the sums (7) (resp. (8)).

Let Rkj be the partial inverse of L .fk/, defined by the two relations

Rkj L .fk/D I �P
k
j ; P kj R

k
j DR

k
jQ

k
j D 0: (20)

Finally, to simplify the notation as much as possible, set

Sk1 WD P
k
1 �

k
1 ; Sk2 WD P

k
2 �

k
2 ; Sks;1 WD P

k
s;i�

k
1 ; Sks;2 WD P

k
s;2�

k
2 :

An important remark is that, for k 2Fos, if fk is the associated frequency then Ran L .fk/D kerQk1 D
kerQk2 , and that, for j 2 f1; 2g, the projector Qkj induces an isomorphism from RanP kj to RanQkj .

We will have to solve transport equations, so the following variables will be convenient:

8j 2Iio; t
j
io.t; x1/ WD t �

1

vj;1
x1; x

j
io.x1; x2/ WD x2�

vj;2

vj;1
x1; (21)

8j 2Ioi; t
j
oi.t; x2/ WD t �

1

vj;2
x2; x

j
oi.x1; x2/ WD x1�

vj;1

vj;2
x2: (22)

4B. Construction of the WKB expansion. During all the construction, we will have to consider three
kinds of phases, namely oscillating phases, evanescent phases for the side @�1 and evanescent phases for
the side @�2. These will be denoted by

'k.t; x/ WD h.t; x/; fki; fk 2Fos;

 k;1.t; x2/ WD h.t; 0; x2/; fki; fk 2Fev1[Fos;

 k;2.t; x1/ WD h.t; x1; 0/; fki; fk 2Fev2[Fos:
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For a given amplitude g 2H1
f

, zero for negative times, we will work with a source term on the side @�1
of the form

g".t; x2/ WD e
i
" .�tCx2�

n1
2 /g.t; x2/;

that is to say, a source term that “turns on” the index n1 on the loop, and that has an incoming group
velocity for the side @�1. So, we expect that the source term g" will generate a wave packet propagating
towards the side @�2.

As in [Lescarret 2007], evanescent modes will be treated in a “monoblock” way, that is to say, that for
an index i 2Iev1 (resp. i 2Iev2), all the indices j 2Iev1\ˆ.i/ (resp. j 2Iev2\‰.i/) will contribute
to a single vector-valued amplitude. To write off the ansatz and to describe with enough precision the
boundary conditions, it is useful to introduce the two equivalence relations

ˆ
� and

‰
� defined by

i
ˆ
� j” j 2ˆ.i/;

i
‰
� j” j 2‰.i/:

The fact that these relations are effectively equivalence relations is a direct consequence of Proposition 4.3.
Let C1 (resp. C2) be the set of equivalence classes for the relation

ˆ
� (resp.

‰
�), and R1 (resp. R2) be a

set of class representative for C1 (resp. C2). So R1 (resp. R2) is a set of indices which includes all the
possible values for �2 (resp. �1) of the different frequencies. Let us define R1 and R2 by

R1 WD
˚
i 2R1 jˆ.i/\Iev1 ¤∅

	
; (23)

R2 WD
˚
i 2R2 j‰.i/\Iev2 ¤∅

	
: (24)

R1 (resp. R2) is a set of class representative of the values in �2 (resp. �1) for which there is an evanescent
mode for the side @�1 (resp. @�2). At last, without loss of generality, we can always assume that n1 2R2;
in other words, we choose n1 as a class representative of its equivalence class.

We take for the ansatz

u".t;x/�
X
k2Ios

e
i
"'k.t;x/

X
n�0

"nun;k.t;x/

C

X
k2R1

e
i
" k;1.t;x2/

X
n�0

"nUn;k;1

�
t;x;

x1

"

�
C

X
k2R2

e
i
" k;2.t;x1/

X
n�0

"nUn;k;2

�
t;x;

x2

"

�
: (25)

And we now want to determine the profiles un;k and Un;k;i . We are looking for oscillating profiles un;k
in the space H1.�T /, whereas, the space for the evanescent profiles is (see [Lescarret 2007]):

Definition 4.11. For i D 1; 2, the set Pev;i of evanescent profiles for the side @�i is defined as functions
U.t;x;Xi /2H

1.�T�RC/ for which there exists a positive ı such that eıXiU.t;x;Xi /2H1.�T�RC/.

Plugging the ansatz (25) in the evolution equation of the corner problem (18) and identifying in terms
of powers of " leads us to solve the cascade of equations
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ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

L .d'k/u0;k D 0 8k 2Ios;

iL .d'k/unC1;kCL.@/un;k D 0 8n 2 N; 8k 2Ios;

Lk.@X1/U0;k;1 D 0 8k 2R1;

Lk.@X1/UnC1;k;1CL.@/Un;k;1 D 0 8n 2 N; 8k 2R1;

Lk.@X2/U0;k;2 D 0 8k 2R2;

Lk.@X2/UnC1;k;2CL.@/Un;k;2 D 0 8n 2 N; 8k 2R2;

(26)

where the “fast” differentiation operators Lk.@X1/ and Lk.@X2/ are given by

Lk.@X1/ WD A1
�
@X1 �A1.�; �

k
2 /
�

for k 2R1;

Lk.@X2/ WD A2
�
@X2 �A2.�; �

k
1 /
�

for k 2R2:

Then, plugging the ansatz (25) in the boundary conditions on the sides @�1 and @�2 gives

B1

� X
k2Ios

e
i
" k;1un;k.t;0;x2/C

X
k2R1

e
i
" k;1Un;k;1.t;0;x2;0/C

X
k2R2

e
i
" �tUn;k;2

�
t;0;x2;

x2

"

��
D ın;0e

i
" n1;1g; (27)

and

B2

�X
k2Ios

e
i
" k;2un;k.t;x1;0/C

X
k2R2

e
i
" k;2Un;k;2.t;x1;0;0/C

X
k2R1

e
i
" �tUn;k;1

�
t;x1;0;

x1

"

��
D0: (28)

Let us study the first boundary condition. If there are no evanescent phases for the side @�2 then it simply
reads

B1

� X
k2Ios

e
i
" k;1un;k.t; 0; x2/C

X
k2R1

e
i
" k;1Un;k;1.t; 0; x2; 0/

�
D ın;0e

i
" n1;1g;

whereas if there are evanescent phases for the side @�2 we can use Assumption 4.9 to decouple (27) into8̂̂̂̂
<̂
ˆ̂̂:
B1

� X
k2Ios

e
i
" k;1un;k.t; 0; x2/C

X
k2R1

e
i
" k;1Un;k;1.t; 0; x2; 0/

�
D ın;0e

i
" n1;1g;

B1
X
k2R2

e
i
" �tUn;k;2

�
t; 0; x2;

x2

"

�
D 0:

(29)

Indeed Assumption 4.9 implies the linear independence of the phases  k;1 and �t . The same reasoning
for the boundary condition gives8̂̂̂̂

<̂
ˆ̂̂:
B2

� X
k2Ios

e
i
" k;2un;k.t; x1; 0/C

X
k2R2

e
i
" k;2Un;k;2.t; x1; 0; 0/

�
D 0;

B2
X
k2R2

e
i
" �tUn;k;1

�
t; x1; 0;

x1

"

�
D 0:

(30)
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Now, using again the linear independence of the phases, the boundary conditions (29) and (30) can be
decomposed as the following cascades of equations:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

B1

� X
j2ˆ.n1/\Ios

un;j CUn;n1;1jX1D0

�
jx1D0

D ın;0g 8n 2 N; if n1 2R1;

B1

� X
j2ˆ.n1/

un;j

�
jx1D0

D ın;0g 8n 2 N; if n1 …R1;

B1

� X
j2ˆ.k/\Ios

un;j CUn;k;1jX1D0

�
jx1D0

D 0 8n 2 N; 8k 2R1n fn1g;

B1

� X
j2ˆ.k/

un;j

�
jx1D0

D 0 8n 2 N; 8k …R1n fn1g;

B2

� X
j2‰.k/\Ios

un;j CUn;k;2jX2D0

�
jx2D0

D 0 8n 2 N; 8k 2R2;

B2

� X
j2‰.k/

un;j

�
jx2D0

D 0 8n 2 N; 8k …R2:

(31)

and 8̂̂̂̂
<̂
ˆ̂̂:
B1

X
k2R2

Un;k;2

�
t; 0; x2;

x2

"

�
D 0 8n 2 N;

B2
X
k2R2

Un;k;1

�
t; x1; 0;

x1

"

�
D 0 8n 2 N:

(32)

At last, plugging the ansatz (25) in the initial condition of the corner problem (18) leads us to solve

8n 2 N;

8̂̂<̂
:̂

un;kjtD0 D 0 8k 2Ios;

Un;k;1jtD0 D 0 8k 2R1;

Un;k;2jtD0 D 0 8k 2R2:

(33)

The main steps in the construction of the geometric optics expansion are the following. First, before
solving the WKB cascade, we will describe a global structure on the set of indices I. More precisely, this
structure is based on a partition which takes into account the different relations that an index can have
with the elements of the loop. We will thus be able to express I as a union of nonintersecting “trees” (or
ordered sets by the relations

H
� and

V
�, see Definition 4.4). Then, we will construct the amplitudes for

the indices of the loop. To do this, we will need a new invertibility condition, which will be studied in
Section 4D.

Thanks to the knowledge of the amplitudes associated with the loop, we will be able to construct
the amplitudes in a direct neighborhood of the indices of the loop. In other terms, the new invertibility
condition will be used to start the construction of the geometric optics expansion.
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Then, to construct the remaining amplitudes, we will first make a more precise study of the structure of
the trees that form I. Using this more precise analysis, we will see that the construction of the amplitudes
in these trees is rather easy because one can define a partial order on these trees.

The scheme of proof, and more precisely the order of construction of the amplitudes will be exactly
the same for higher-order terms.

4B1. Global structure of the set of indices I. In this section we will construct a partition of I based
upon the position of the indices compared to the loop index n1 and no more on the different kinds of
elements in I. More precisely, the partition will be based upon the different kinds of sequences that can
link an index i to the loop index n1.

The idea of the construction is the following; firstly, thanks to Proposition 4.5, we know that every
index i in I is linked by a sequence of type V to one of the indices of I0 (cf. Definition 4.4). Without
loss of generality, one can always assume that for all indices i the sequence linking i to the index in I0

does not start by the subsequence .n4; n2; n3; n1/.
The following lemma is also immediate:

Lemma 4.12. For all i 2I, there exists at least one sequence of type V linking i to n1. Equivalently, for
all i 2I,

n1 V
� i;

where the notation
V
� has been introduced in Definition 4.4.

Proof. It is sufficient to treat the case of indices i linked with i0 for i0 2I0 n fn1g. For such indices,
there exists a sequence, denoted by Q̀, of type V linking i to i0. By definition, i0 2ˆ.n1/. So i is linked
with n1 by the type-V sequence defined by `D .n4; n3; n2; i0; Q̀/. �

Now, let i 2I nfn1; n2; n3; n4g, and let `i D .`1; `2; : : : ; p̀/ be a type-V sequence linking i to n1. The
way to construct the sets, denoted Aal ; Bbm ; Ccq ;Ddr , of the sought partition is based on the following
algorithm:

Let {1 WD #‰.n1/� 2, and

‰.n1/ n fn1; n4g WD fa1; a2; : : : ; a{1g:

Let l 2 f1; : : : ; {1g. We will say that i 2 Aal if and only if the sequence `i can be chosen such that
`1 D al .

At this stage, we have treated all the sequences that do not start with n4. To treat the sequences that
start with n4, let {4 WD #ˆ.n4/� 2, and

ˆ.n4/ n fn3; n4g WD fb1; b2; : : : ; b{4g:

Then for m 2 f1; : : : ; {2g, we will say that i 2Bbm if and only if the sequence `i can be chosen such that
`1 D n4 and `2 D bm.

Consequently we have treated all the sequences `i except those starting with .n4; n3/.
Finally let {3 WD #‰.n3/� 2, {2 WD #ˆ.n2/� 2 and

‰.n3/ n fn2; n3g WD fc1; c2; : : : ; c{3g; ˆ.n2/ n fn1; n2g WD fd1; d2; : : : ; d{2g:
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We define the sets Ccq and Ddr by the relations:

� For q 2 f1; : : : ; {3g, we have i 2 Ccq if and only if the sequence `i can be chosen such that `1 D n4,
`2 D n3 and `3 D cq .

� For r 2 f1; : : : ; {2g, we have i 2Ddr if and only if the sequence `i can be chosen such that `1 D n4,
`2 D n3, `3 D n2 and `4 D dr .

This algorithm permits to consider all the possible sequences because no sequence starts with the
subsequence .n4; n3; n2; n1/. Then, we repeat this construction for all the potential sequences linking i
to n1.

It is thus clear that�
I n fn1; n2; n3; n4g

�
D

� [
l�{1

Aal

�
[

� [
m�{2

Bbm

�
[

� [
q�{3

Ccq

�
[

� [
r�{4

Ddr

�
: (34)

The sets Aal and Bbm can be characterized as follows: Aal is the set of indices i 2I such that al H� i ,
whereas Bbm is the set of indices i 2I such that bm V

� i . In terms of wave packet reflection, the set Aal
gathers the indices obtained by reflection of the phase associated with the index al , this phase being
obtained by reflection of the wave packet associated with n1 on the side @�2. In a similar way, Bbm
gathers the indices obtained by reflection of the phase associated with the index bj. The phase associated
with bj being obtained by reflection of the phase associated with n4 on the side @�1. An analogous
characterization stands for the sets Ccq and Ddr .

Lemma 4.13. The decomposition�
I n fn1; n2; n3; n4g

�
D

� [
l�{1

Aal

�
[

� [
m�{2

Bbm

�
[

� [
n�{3

Ccn

�
[

� [
q�{4

Ddq

�
is a partition of I n fn1; n2; n3; n4g.

Proof. Let us first define the “mirror” sequence of a sequence by the relation

8`D .`1; `2; : : : ; p̀/ 2I p; ` WD . p̀; p̀�1; : : : ; `1/ 2I p:

Let l; l 0 2 f1; : : : ; {1g, l ¤ l 0.

Proof of Aal
\Aal 0

D∅: We argue by contradiction. Let us assume that there exists i 2 Aal \Aal0 .
Then by definition, there exists a type-H sequence ` D .`1; : : : ; p̀/ linking i to al and a type-H
sequence `0 D .`01; : : : ; `

0
p0/ linking i to al 0 . We now have to consider several cases depending on the

oddness/evenness of p and p0.

p; p0 2 2N: By the definition of type-H sequences, we have i 2 ‰. p̀/ and i 2 ‰.`0p0/. Thanks to
property (ii) of Proposition 4.3, `0p0 2‰. p̀/. The sequence .`; `0/ is consequently a type-H sequence
linking al to al 0 . But al 2 ˆ.al 0/, so the sequence .`; `0; al 0/ is a loop for the index al with exactly
pCp0C 1 elements. This contradicts Assumption 4.7.
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p 2 2N; p0 2 2NC 1: Now i 2‰. p̀/ and i 2ˆ.`0p0/ or equivalently `0p0 2ˆ.i/. The sequence .`; i; `0/
is a type-H sequence linking al to al 0 . Then .`; i; `0; al 0/ is a loop for the index al with pC p0C 2
elements. Once again, it contradicts Assumption 4.7.

The case p; p0 2 2NC 1 is quite similar to the case p; p0 2 2N, so we omit the proof.

We now deal with the proof of the property Aal \Bbm D∅, the other proofs showing that the other
kinds of intersections are empty are analogous and consequently they will not be treated here.

Proof of Aal
\Bbm

D∅: Once again, we argue by contradiction. Let i 2 Aal \ Bbm . Then by
the definitions of the sets Aal and Bbm , we have al H� i and bm V

� i . That is to say, there exists
`D .`1; : : : ; p̀/ a type-H sequence linking i to al and a type-V sequence `0 D .`01; : : : ; `

0
p0/ linking i

to bm. We have to consider the following cases:

p; p0 2 2N: We have i 2 ‰. p̀/ and i 2 ˆ.`0p0/. So it is possible to show exactly as in the proof of
one of the above subcases that the sequence .`; i; `0/ links al to bm. It follows from al 2 ‰.n2/ and
n4 2ˆ.bm/ that the sequence .`; i; `0; bm; n4/ is a loop for the index al with an odd number of elements.

p 2 2N; p0 2 2NC 1: We can show that the sequence .`; `0/ links al to bm. So .`; `0; bm; n4/ is a loop
for al with an odd number of elements, which is again a contradiction with Assumption 4.7. �

We have just shown that� [
i�{1

Aai

�
[

� [
i�{2

Bbi

�
[

� [
i�{3

Cci

�
[

� [
i�{4

Ddi

�
(35)

is a partition of I n fn1; n2; n3; n4g. A consequence is that to determine all the amplitudes in the WKB
expansion, it will be sufficient to construct the amplitude for the indices on the loop and then the amplitudes
in each set of the partition (35).

Moreover, the construction of the amplitudes in each set of the partition (35) can be made intrinsically
in this set. Indeed, the fact that (35) is a partition implies that an index i in one set of (35) is only linked,
by the boundary conditions (31), with other indices in the same set.

A last consequence of the fact that (35) is a partition of the frequency set is the following refinement
of Proposition 4.3:

Proposition 4.14. Let (18) be complete for the reflections, under Assumption 4.7. Let I be the index set;
then ˆ and ‰ satisfy, in addition to the properties of Proposition 4.3, the two extra properties:

(viii) ˆ.n1/ n fn2g �Iio[Iii[Iev1; ‰.n1/ n fn1g�Ioi[Iii[Iev2;

ˆ.n4/ n fn4g �Iio[Iii[Iev1; ‰.n3/ n fn3g�Ioi[Iii[Iev2:

(ix) Let i 2Iii[Iev1 and j 2Iii[Iev2. Then

i 2ˆ.n1/ D) ‰.i/Dfig; j 2‰.n1/ D) ˆ.j /Dfj g;

i 2ˆ.n4/ D) ‰.i/Dfig; j 2‰.n3/ D) ˆ.j /Dfj g:
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n1
˘

io
n2
˘

oi

n3
˘

io

n4
˘

oi

Dd2

�
io

�
ev2

�

d1

ii
�

d3

ii

�
oi
�
ii
�

io

�
ev2

�ev1

�
oi

�
oi
�
ii

�
io

�
oi

�
oi

�Aa1
oi

�Aa2
oi

�ev1 �

Bb1

io
�
ii

b2

�
ev2

�Cc1 oi
� iic2
��Cc3 oi
�
ii
�
io

�
ev2

�
oi

�
io

�
ev2

�
oi

�
oi
�
ii

�ev1�
io

Figure 7. “Tree structure” of the frequency set F .

Proof. (viii) We will here just show the first assertion, that is to say, ˆ.n1/n fn2g �Iio[Iii[Iev1. By
contradiction, let i 2ˆ.n1/\Ioi, i ¤ n2. Then, there exists j 2‰.i/\Iio; otherwise, the frequency
set indexed by I n fig is strictly included in F and satisfies (i)–(iv) of Definition 4.2.

Thanks to Lemma 4.12, we know that there exists a type-V sequence, ` D .`1; `2; : : : ; p̀/, with
necessarily p 2 2NC 1 (because n1; j 2Iio, see Definition 4.4), such that n1 V

� j. The sequence
.`; j; i/ is a self-interacting loop for n1 with an odd number of elements, but it is not the same loop as
fn1; n2; n3; n4g. This is a contradiction of Assumption 4.7.

(ix) This uses exactly the same reasoning as for (viii) and we will omit it here. The only difference is that we
cannot conclude that the loop is a self-interacting one because it may contain indices in Iii. Then we need
the uniqueness assumption of a loop and not only the uniqueness assumption of a self-interacting loop. �

Propertyˆ.n1/nfn2g�Iio[Iii[Iev1 of (viii) in Proposition 4.14 means that even if the characteristic
variety contains a loop, all the frequencies (but n2) associated with outgoing-incoming group velocity
are initially discarded. We already justified this observation in the phase generation process described in
Section 3. Property (ix) means that, thanks to the uniqueness assumption of a loop, an incoming-incoming
phase in the direct neighborhood of the loop can only be generated by reflection on one side of @� and
not on both sides.

Thanks to Proposition 4.14, partition (35) can be rewritten as�
I n fn1; n2; n3; n4g

�
D� [

al2‰.n1/\Iio

Aal

[
al2‰.n1/\.Iev1[Iii/

falg

�
[

� [
bm2ˆ.n4/\Ioi

Bbm

[
bm2ˆ.n4/\.Iev2[Iii/

fbmg

�

[

� [
cq2‰.n3/\Iio

Ccq

[
cq2‰.n3/\.Iev1[Iii/

fcqg

�
[

� [
dr2ˆ.n2/\Iio

Ddr

[
d2ˆ.n2/\.Iev2[Iii/

fdrg

�
: (36)

Let us conclude this section by noting that Figure 7 illustrates the “tree structure” of the frequency set F .
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4B2. Determination of the amplitudes on the loop and invertibility condition. Now that the global
structure of the frequency set is described, and thanks to the new properties of functions ˆ and ‰, it is
time to start the construction of the amplitudes in the WKB expansion. A good (and natural) choice to
initialize this construction is to determine first the amplitudes associated with the loop indices. To do that,
a new amplitude equation will be derived (see Section 3E).

The cascades of equations (26), (31) and (33) written for nD0 and kDn1 tell us that the amplitude u0;n1
satisfies 8<:L .d'n1/u0;n1 D 0;

iL .d'n1/u1;n1 CL.@/u0;n1 D 0;
(37)

in the interior, the boundary conditions8̂̂̂̂
<̂
ˆ̂̂:
B1

� X
j2ˆ.n1/\Ios

u0;j CU0;n1;1jX1D0

�
jx1D0

D g; if n1 2R1;

B1

� X
j2ˆ.n1/

u0;j

�
jx1D0

D g; if n1 2R1 nR1;

(38)

and 8̂̂̂̂
<̂
ˆ̂̂:
B2

� X
j2‰.n1/\Ios

u0;j CU0;n1;1jX1D0

�
jx2D0

D 0; if n1 2R2;

B2

� X
j2‰.n1/

u0;j

�
jx2D0

D 0; if n1 2R2 nR2;

(39)

and finally the initial condition

u0;n1jt�0 D 0: (40)

We will now explain the method of resolution of equations (37)–(40). The ideas described below are
classical; they explain why the amplitudes associated with oscillating phases satisfy transport equations
in the example of Section 3E and they will be applied to all the oscillating amplitudes.

Firstly, let us remark that the first equation of (37) tells us that the amplitude u0;n1 belongs to
ker L .d'n1/. In other words, we have the so-called polarization condition

P
n1
1 u0;n1 D u0;n1 ;

where P n11 is the projector defined in Definition 4.10. Now, composing the second equation of (37) with
the projector Qn11 defined in Definition 4.10 and using the polarization condition give us

Q
n1
1 L.@/P

n1
1 u0;n1 D 0:

But Lax’s lemma [1957] tells us that if the corner problem (18) is constantly hyperbolic then we have the
relation

Q
n1
1 L.@/P

n1
1 D .@t C vn1 � rx/Q

n1
1 P

n1
1 ;
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where vn1 is the group velocity associated with the phase 'n1 . So, the amplitude u0;n1 satisfies the
transport equation

.@t C vn1 � rx/Q
n1
1 u0;n1 D 0:

We are now interested in the boundary conditions. As mentioned in Section 3, the boundary conditions
needed to solve a transport equation in a quarter-space are linked with the nature of the transport velocity.
Let us recall the four possible alternatives:

� The transport velocity is outgoing-outgoing; then no boundary condition has to be imposed.
� The transport velocity is incoming-outgoing; then the transport equation needs a boundary condition

on @�1 only.
� The transport velocity is outgoing-incoming; then the transport equation needs a boundary condition

on @�2 only.
� The transport velocity is incoming-incoming; then the transport equation needs a boundary condition

on @�1 and on @�2.

Here, by assumption we have n1 2Iio, so no boundary condition on @�2 has to be imposed and we only
keep the boundary condition on @�2. Consequently, the amplitude u0;n1 satisfies the transport equation8̂̂̂̂

<̂
ˆ̂̂:
.@t C vn1 � rx/Q

n1
1 u0;n1 D 0;

B1

�P
k2ˆ.n1/

u0;k

�
jx1D0

D g;

u0;n1jt�0D 0;

if n1 …R1; (41)

and 8̂̂̂̂
<̂
ˆ̂̂:
.@t C vn1 � rx/Q

n1
1 u0;n1 D 0;

B1

�P
k2ˆ.n1/

u0;kCU0;n1;1jX1D0

�
jx1D0

D g;

u0;n1jt�0D 0;

if n1 2R1: (42)

In both cases, using the fact that ˆ.n1/\Ioi D fn2g thanks to (vi) of Assumption 4.7 and (viii) of
Proposition 4.14, the boundary condition of (41) reads

u0;n1jx1D0
C

X
k2.ˆ.n1/\.Iio[Iii//nfn1g

u0;kjx1D0
D �

n1
1 Œg�B1u0;n2jx1D0

�

when n1 …R1, and

u0;n1jx1D0
C

X
k2.ˆ.n1/\.Iio[Iii//nfn1g

u0;kjx1D0
CU0;n1;1jx1DX1D0

D �
n1
1 Œg�B1u0;n2jx1D0

�

when n1 2R1. Multiplying these conditions by the projector P n11 , using the fact that the u0;k are polarized
on ker L .d'k/, we obtain, in both cases, that the trace u0;n1 on @�1 is given by

u0;n1jx1D0
D S

n1
1 Œg�B1u0;n2jx1D0

�;

where we recall that the matrix Sn11 has been introduced in Definition 4.10.
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It is now easy to integrate (41) along the characteristics. We obtain the expression of u0;n1 according
to its trace on @�1; more precisely,

u0;n1.t; x/D S
n1
1 Œg�B1u0;n2jx1D0

�
�
t
n1
io .t; x1/; x

n1
io .x1; x2/

�
;

where the new variables tn1io and xn1io are defined in (21). As a consequence, the trace of u0;n1 on @�2 is
given by

u0;n1.t; x1; 0/D S
n1
1 Œg�B1u0;n2jx1D0

�

�
t
n1
io .t; x1/;�

vn1;2

vn1;1
x1

�
: (43)

Then we can repeat exactly the same reasoning for the second element n2 of the loop. Indeed, using the
fact that n2 2Ioi, u0;n2 will be determined by integration along the characteristics from its trace on @�2.
Thanks to Assumption 4.7 and property (viii) of Proposition 4.14, the trace u0;n2jx2D0

will depend only
of the trace u0;n3jx2D0

. The trace u0;n2jx1D0
, which appears in (43), is consequently given by

u0;n2.t; 0; x2/D�S
n2
2 B2u0;n3jx2D0

�
t
n2
oi .t; x2/;�

vn2;1

vn2;2
x2

�
: (44)

At last, repeating the same method, we obtain the traces of the two remaining amplitudes for the
indices of the loop:

u0;n3.t; x1; 0/D�S
n3
1 B1u0;n4jx1D0

�
t
n3
io .t; x1/;�

vn3;2

vn3;1
x1

�
: (45)

and

u0;n4.t; 0; x2/D�S
n4
2 B2u0;n1jx2D0

�
t
n4
oi .t; x2/;�

vn4;1

vn4;2
x2

�
: (46)

An important point in this analysis is that at each step of the computation, there is one and only one
outgoing phase coupled with the incoming phases in the equivalence classes, for the relations

ˆ
� and

‰
�, of

the indices nj. This fact will, a priori, not be true if one considers a frequency set containing several loops.
Thus, combining equations (43)–(46) we obtain, after some computations, the functional equation

determining the trace u0;n1jx2D0
:

.I �T/u0;n1jx2D0
D S

n1
1 g

�
t �

1

vn1;1
x1;�

vn1;2

vn1;1
x1

�
; (47)

where T is the operator defined by

.Tw/.t; x1/ WD Sw.t C˛x1; ˇx1/; (48)

with
S WD S

n1
1 B1S

n2
2 B2S

n3
1 B1S

n4
2 B2;

˛ WD
1

vn1;1

�
�1C

vn1;2

vn2;2
�
vn1;2vn2;1

vn2;2vn3;1
C
vn1;2vn2;1vn3;2

vn2;2vn3;1vn4;2

�
< 0;

ˇ WD
vn4;1

vn4;2

vn3;2

vn3;1

vn2;1

vn2;2

vn1;2

vn1;1
> 0:

(49)
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Given (47), we make the following assumption:

Assumption 4.15. For all  > 0, the operator .I �T/ defined in (48) is invertible from L2 .RC �R/ to
L2 .RC �R/ uniformly with respect with the parameter  > 0.

However, for T > 0 and for a source term in L2.��1; T ��RC/ that is zero for negative times, this
assumption will only give us amplitudes for indices of the loop which are L2.�T /. This is not sufficient to
construct the amplitudes of high order in the WKB expansion nor to make sure that the amplitudes linked
with an incoming-incoming group velocity are H 1.�T /. We thus need to reinforce Assumption 4.15 in
the following way:

Assumption 4.16. Let 2�K �1. For all  > 0, the operator .I �T/ defined in (48) is invertible from
HK
f;

to HK
f;

uniformly with respect with  > 0.

Let us stress that Assumption 4.16 is (at this stage of the analysis) purely formal and is introduced to
construct the WKB expansion. We will show in Section 4D the following proposition:

Proposition 4.17. If jS j<
p
ˇ (where S and ˇ are defined in (49)), for all  > 0, the operator .I �T/ is

uniformly invertible from L2 .RC �R/ to L2 .RC �R/. In particular, for all T > 0, equation (47) admits
a unique solution u 2 L2.��1; T ��RC/, zero for negative times, if the source term G is in L2.@�1;T /
and is zero for negative times.

If ˇ � 1 and G 2H1
f

, under the assumption jS j<
p
ˇ, the solution u of the equation .I �T/uDG

is in H1
f

.

If ˇ > 1 let K 2 N and G 2 HK
f

; then under the assumption jS jˇK�
1
2 < 1, the solution u of

.I �T/uDG is in HK
f

.

Assumption jS j<
p
ˇ, or jS jˇK�

1
2 < 1, gives us a framework in which we can, firstly ensure enough

regularity to construct (at least up to a finite order) the amplitudes in the WKB expansion, and secondly
construct the incoming-incoming amplitudes. More details and comments about the condition jS j<

p
ˇ

will be given in Section 4D.
From now on we denote by K 2N[fC1g the largest integer such that the solution u of the equation

.I �T/uDG is HK
f

for G 2HK
f

. In view of constructing the first corrector term and to ensure that the
WKB expansion is a good approximation to the exact solution, we need K � 3.

From all these considerations about (47), it follows that the trace u0;n1jx2D0
is uniquely determined

in HK
f

by the formula

u0;n1.t; x1; 0/D .I �T/�1S
n1
1 g

�
t �

1

vn1;1
x1;�

vn1;2

vn1;1
x1

�
; (50)

an equation which enables us to construct the amplitudes u0;nj , j D 1; : : : ; 4, by using (46), (45) and
(44) and integrating along the corresponding characteristics.

We summarize this construction of the amplitudes associated with loop indices by the following
proposition:
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Proposition 4.18. Under Assumptions 2.1–2.2 on the complete-for-reflections corner problem (18) and
under Assumptions 4.7 and 4.16, for j D1; : : : ; 4 and for all T >0, there exist functions u0;nj 2H

K.�T /,
with traces in HK

f
, satisfying the cascades of equations (26), (31), (32) and (33) written for nD 0 and

k D nj.

4B3. Determination of the amplitudes in the direct neighborhood of the loop. In this section we will show
that the knowledge of the amplitudes on the loop and the global structure of the index set I described in
Section 4B1 are sufficient to construct the amplitudes in the direct neighborhood of the indices of the
loop.

We have chosen to separate this construction from the construction of the amplitudes linked with
indices in the different sets of the partition (36). This choice is motivated by the following two reasons.
Firstly we think that it is important to make the computations explicit at least once (mainly because we
have not yet described the construction for evanescent phases). Secondly, the construction in the close
neighborhood of the loop remains unchanged, instead of the determination of the amplitudes associated
with indices in the different sets of the partition (36), under a weaker uniqueness assumption of the loop
(i.e., an assumption imposing the uniqueness of a self-interaction loop, but which allows other types of
loops in the frequency set).

We will here describe the determination of the amplitudes in ˆ.n4/; the construction for amplitudes
in ‰.n4/, ˆ.n2/ or ‰.n2/ is exactly the same. Using property (viii) of Proposition 4.14, we know
that ˆ.n4/\Ioi D fn4g. The boundary condition (31) written for k D n4 (if we choose n4 as a class
representative of its own equivalence class for the relation

ˆ
�) is given by

B1

� X
j2ˆ.n4/\.Iio[Iii/

u0;j CU0;n4;1jX1D0

�
jx1D0

D�B1u0;n4jx1D0
if n4 2R1; (51)

B1

� X
j2ˆ.n4/\.Iio[Iii/

u0;j

�
jx1D0

D�B1u0;n4jx1D0
if n4 2R1nR1; (52)

where in both cases, the source term is a known element of HK
f

.
Applying the uniform Kreiss–Lopatinskii condition to equations (51) and (52), and composing by the

projectors P j1 for j 2 ˆ.n4/\ .Iio [Iii/, and/or by P n4s;1, leads us to solve the uncoupled boundary
conditions

8j 2ˆ.n4/\ .Iio[Iii/; u0;j jx1D0
D�S

j
1B1u0;n4jx1D0

; (53)

and if, moreover, n4 2R1,

U0;n4;1jX1Dx1D0
D�S

j
s;1B1u0;n4jx1D0

: (54)

Thus, the construction of the possible evanescent amplitude for the side �1 can be made independently
of the construction of the amplitudes for oscillating phases.

Let us first briefly recall how to determine amplitudes for oscillating phases. We have several cases to
take into account.
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j 2Iio: Lax’s lemma and the polarization condition enable us to show that the amplitude u0;j satisfies a
transport equation with an incoming-outgoing velocity vj. That is why to construct this amplitude we just
need to know its trace on @�1. This trace is determined by (53), so integrating along the characteristics,
u0;j is given by

u0;j .t; x/D S
j
1B1u0;n4jx1D0

�
t
j
io.t; x1/; x

j
io.x1; x2/

�
: (55)

An important point for the end of the proof (more specifically for the construction of incoming-incoming
amplitudes in the set Bbj ) is that u0;j 2HK.�T / for all T > 0 and that its trace on the side @�2 is HK

f
.

We can easily see this fact in the formula (55).
In other words, the flatness at the corner of the source term g" is transmitted to the amplitudes close to

the loop.

j 2Iii: In this case, u0;j is solution to a transport equation with incoming-incoming velocity, so its
determination needs the traces on both sides @�1 and @�2. The boundary condition (53) gives the trace
on @�1. Concerning the trace on @�2, property (ix) of Proposition 4.14 shows that j is the only element
in its equivalence class for the relation

‰
�; in particular, j …R2. So the boundary condition (31) written

for k D j reads
B2u0;j jx2D0

D 0:

Using the uniform Kreiss–Lopatinskii condition, it follows that u0;j jx2D0 D 0. So the amplitude u0;j
satisfies the transport equation

u0;j D P
j
1 u0;j D P

j
2 u0;j ;

(
.@t C vj � rx/Q

j
1u0;j D 0;

u0;j jx1D0
D�S

j
1B1u0;n4jx1D0

; u0;j jx2D0
D 0; u0;j jt�0 D 0:

To solve this transport equation, we use the flatness at the corner of u0;n4jx1D0 to extend the problem in
the half-space fx1 � 0g by extending u0;j by zero to fx2 < 0g, we integrate along the characteristics, and
then we restrict the constructed solution to the quarter-space. The obtained solution u0;j is in HK.�T /,
thanks to the fact that u0;n4jx1D0 is flat at the corner.

One can also easily check that the obtained solution u0;j satisfies the property: if x1 � 0, then
u0;j jx1Dx1

2HK
f

. This extra regularity of u0;j will also be needed during the construction of higher-order
terms.

n4 2R1: The determination of the amplitude associated with an evanescent index for the side @�1 (or
even @�2) follows (in some sense) the same kind of ideas as the determination of amplitudes linked with
oscillating indices. Indeed, it will be easy to construct the amplitude linked with an evanescent index if
we know its trace (on @�1 for elements of Iev1 and the trace on @�2 for indices of Iev2).

However, we will in this proof treat the evanescent modes in only one block, as in [Lescarret 2007];
that is why the associated amplitudes will not satisfy transport equations as in the oscillating case. Thus,
we first recall the evolution equations and the boundary conditions satisfied by such amplitudes and then
we will give a method to solve these equations.

Plugging the ansatz (25) in the evolution equation of the corner problem (18) we have seen that the
amplitude Un;n4;1 has to satisfy the cascade of equations
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Ln4.@X1/U0;n4;1 D 0;

Ln4.@X1/Un;n4;1CL.@/Un�1;n4;1 D 0; 8n� 1;
(56)

where

Ln4.@X1/ WD A1.@X1 �A1.�; �
n4
2 //:

The boundary condition has also already been studied in the case n4 2 R1 and is given by (51). So
U0;n4;1 has to satisfy the system8̂̂̂̂

<̂
ˆ̂̂:
Ln4.@X1/U0;n4;1 D 0;

B1

� X
j2ˆ.n4/\.Iio[Iii/

u0;j CU0;n4;1jX1D0

�
jx1D0

D�B1u0;n4jx1D0
;

U0;n4;1jt�0 D 0;

(57)

and one has also to keep in mind that the boundary condition (32) will also have to be satisfied. First let
us solve (57). Let us recall the following lemma from [Lescarret 2007], which permits us to solve (56) in
the profile space Pev;1.

Lemma 4.19. For i D 1; 2, and k 2Ri , let

P
k
ev;iU.Xi / WD e

XiAi .�;�
k

3�i
/P

k
s;iU.0/; (58)

Q
k
ev;iF.Xi / WD

Z Xi

0

e.Xi�s/Ai .�;�
k

3�i
/P

k
s;iA

�1
i F.s/ds�

Z C1
Xi

e.Xi�s/Ai .�;�
k

3�i
/P

k
u;iA

�1
i F.s/ds: (59)

Then, for all F 2 Pev;i , the equation

Lk.@Xi /U D F

admits a solution in Pev;i . Moreover, this solution is given by

U D P
k
ev;iU CQ

k
ev;iF:

This lemma tells us that the evanescent amplitude of leading order U0;n4;1 satisfies P
n4
ev;1U0;n4;1 D

U0;n4;1. This relation is analogous to the polarization condition for oscillating phases and thanks to the
definition of P

n4
ev;1, enables us to determine U0;n4;1 if we know its trace on fX1 D 0g.

Unfortunately the system (57) does not give any information about this trace but only on the “double”
trace on fx1 DX1 D 0g. This is determined by

U0;n4;1jX1Dx1D0
D�S

j
s;1B1u0;n4jx1D0

:

It is then sufficient to lift the “double” trace in a “single” one. As in [Lescarret 2007], for example, choose

U0;n4;1.t; x; 0/ WD ��.x1/S
j
s;1B1u0;n4jx1D0

;

where � 2 C1c .R/ satisfies �.0/D 1.
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Now that the trace of U0;n4;1 on fX1 D 0g is determined, we can apply the operator P
n4
ev;1. Thus by

construction, the amplitude

U0;n4;1.t; x;X1/D��.x1/e
X1A1.�;�

n4
2 /S

n4
s;1B1u0;n4jx1D0

.t; x2/ (60)

is a solution to the system of equations (57).
Now, we consider the contribution of U0;n4;1.t; x1; 0; x1="/ in (32). From (60), this trace is explicitly

given by

U0;n4;1

�
t; x1; 0;

x1

"

�
D��.x1/e

x1
" A1.�;�

n4
2 /S

n4
s;1B1u0;n4jx1Dx2D0

;

but from the flatness of u0;n4jx1D0 at the corner, it follows that U0;n4;1.t; x1; 0; x1="/ is zero and that it
does not contribute4 to (32).

The determination of evanescent amplitudes for the side @�2 that can appear when we construct the
amplitudes associated with indices in ‰.n3/ or ‰.n1/ is totally similar. For example, for the indices
in ‰.n3/, we will start by determining U0;n3;2 on fx2 DX2 D 0g by using the boundary condition; then
we lift this double trace in a single one on fX2 D 0g. This trace is finally propagated in the interior
of � by the operator P

n3
ev;2 defined in (58). We also obtain that U0;n3;2.t; 0; x2; x2="/ is zero and as a

consequence, U0;n3;2.t; 0; x2; x2="/ does not contribute in (32).
Then we repeat this construction for all the indices in the direct neighborhood of the loop, so the

indices whose amplitudes have still to be determined in partition (36) are�[
al

Aal n falg

�
[

�[
bm

Bbm n fbmg

�
[

�[
cq

Ccq n fcqg

�
[

�[
dr

Ddr n fdrg

�
I

that is to say, it only remains to determine the amplitudes linked with indices in the trees of the partition (36).
Before constructing these amplitudes, we will need to have a more precise description of the structure of
those trees. It is the subject of the following section.

4B4. Local structure of the trees. Let us concentrate on the internal structure of the trees Aal appearing
in the partition (36) of I. The description for the trees Bbm , Ccq and Ddr is, up to a few modifications,
analogous and will not be given in detail here. Let us recall that a tree Aal has for its root an index
al 2 .‰.n1/ \ Ioi/ n fn4g and is the set of indices j linked with al by a sequence of type H (see
Definition 4.4). To simplify the future notations, we will define Aal WD Aa.

The following proposition has already been mentioned in Section 4B1, and is the main proposition
needed to understand the structure of Aa.

Proposition 4.20. Let j 2 Aa. Then there exists a unique sequence ` of type H linking j to a.

Proof. By contradiction, let `D .`1; `2; : : : ; p̀/ and `0 D .`01; `
0
2; : : : ; `

0
p0/, `¤ `

0, be two sequences of
type H which link j to a. We will separate several cases depending on the oddness/evenness of the
lengths p and p0, and without loss of generality we assume that p � p0.

4We will in fact show in the following that all the contributions of the evanescent phases for the side @�1 (resp. @�2) in (32)
are zero. As a consequence, the boundary condition (32) is in fact trivially satisfied as soon as the oscillating amplitudes remain
flat at the corner.



GEOMETRIC OPTICS EXPANSIONS FOR HYPERBOLIC CORNER PROBLEMS, I 1399

p; p0 2 2N: We have to distinguish two different subcases:

� If `0D .`; `0pC1; : : : ; p̀0/, then `0pC1 2ˆ.`
0
p0/. This allows us to show that the sequence .`0pC2; : : : ; p̀0/

is a loop for the index `0pC1 of length p0�p� 1. Thanks to Assumption 4.7, it is impossible.

� If `0 ¤ .`; `0pC1; : : : ; `
0
p0/, let m be the first integer such that `m ¤ `0m. From the preceding subcase,

we can assume that 1 �m < p. We will here deal with the case m 2 2NC 1 (the case m 2 2N can be
treated in a similar way, up to modification of the type of sequence). We have, `m 2ˆ.`0m/.

We have, once again two different possibilities:

� There exists l , where mC 1 < l � p, such that kl D k0
l
. Then let l be the first integer l , where

mC 1 < l � p, such that kl D k0l . Then if l 2 2N (resp. l 2 2NC 1), we have `l�1 2 ‰.`0l�1/ (resp.
`l�1 2ˆ.`

0
l�1
/). Consequently the sequence .`0m; : : : ; `

0
l�1
/ is a sequence of type H linking `l�1 to `m,

and the sequence .`mC1; : : : ; `l�2/ is a sequence of type V linking `l�1 to `m. From this observation,
we deduce that the sequence .`0m; : : : ; `

0
l�1
; `l�1; `l�2; : : : ; `mC1/ is a loop for the index `m. Once again,

this fact contradicts Assumption 4.7.

� If, for all q2fmC2; : : : ;pg, the indices `q and `0q are distinct, we easily see that .`0m; : : : ; `
0
p; p̀; : : : ; `m�1/

is a loop for `m.
We now consider the second subcase, that is to say:

p 2 2N, p0 2 2NC 1: If `0D .`; `0pC1; : : : ; `
0
p0/, we can show that .`0pC1; : : : ; `

0
p0/ is a loop for j, whereas,

if `0 ¤ .`; `0pC1; : : : ; `
0
p0/, we can repeat the analysis made in the subcase p; p0 2 2N to treat the subcase,

“There exists l , where mC 1 < l � p, such that `l D `0l”. If, for all q 2 fmC 2; : : : ; pg, the indices `q
and `0q are distinct, we can easily show that .`0m; : : : ; `

0
p; j; p̀; : : : ; `m�1/ is a loop for `m.

The other case, p; p0 2 2NC 1, is analogous, up to the inversion of the role played by the functions ˆ
and ‰, to the case p; p0 2 2N. This case, is left to the reader. �

Remark. As indicated in Section 4B1, the uniqueness of the sequence linking j 2 Aa to the root a
depends, in a nontrivial way, on Assumption 4.7.

Thanks to Proposition 4.20, it is now possible to give a more precise (and final) version of the properties
satisfied by functions ˆ and ‰:

Proposition 4.21. Let j 2Aa nfag. We denote by `D .`1; : : : ; p̀/ the sequence of typeH linking j to a.
Then, according to the parity of p, we have:

(i) If p 2 2N, then j …Ioi. Moreover, if j 2Iev1[Iii then ‰.j /D fj g.

(ii) If p 2 2NC 1, then j …Iio. Moreover, if j 2Iev2[Iii then ˆ.j /D fj g.

Proof. We will consider the case p 2 2N. Let us first show that j … Ioi. By contradiction, we assume
that j 2Ioi, but using the fact that the frequency set F is minimal, we can assume that ‰.j /\Iio ¤∅.

Let i 2 ‰.j / \ Iio. According to the analysis made in Section 4B1, we have i 2 Aa. Let `0 D
.`01; : : : ; `

0
p0/ be the sequence linking i to the root a. Reiterating the arguments used in the proof of

Proposition 4.20, it is sufficient to study the case `i ¤ `0i for all i .
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If p0 2 2N, we can then show that .`0; i; j; p̀; : : : ; `2/ is a loop with an odd number of elements for the
index `1, whereas if p0 2 2NC 1, the sequence .`0; i; p̀; : : : ; `2/ is a loop for `1. Both cases contradict
Assumption 4.7.

The proof of the assertion “If j 2Iii[Iev1, then ‰.j /D fj g” follows the same reasoning. �
The same proposition, up to some adaptations on the oddness/evenness according to the considered

tree, is true for all trees in partition (36).
In terms of wave packet reflection, Proposition 4.21 states that, on one hand, during a reflection on

the side @�1 (resp. @�2), an outgoing-incoming phase (resp. incoming-outgoing) cannot generate (resp.
incoming-outgoing) outgoing-incoming phases. This “natural” idea used in [Sarason and Smoller 1974]
is now rigorously justified.

4B5. Determination of the amplitudes for indices in the trees. Thanks to the precise description of the
internal structure of the different trees in the partition (36), it is easy to determine all the remaining
amplitudes in the WKB expansion, and to conclude the construction of the leading-order terms. Once
again, we will here only deal with a tree Aa. The construction is analogous for the other trees.

Let j be any index of Aa. We will show that it is always possible to determine the amplitude u0;j .
Thanks to Proposition 4.20, there exists a unique sequence of type H , denoted by `j D `D .`1; : : : ; p̀/,
linking j to the root a. The first step in the construction of the amplitude u0;j is to remark that
independently of the determination of u0;j , we can always first determine the amplitudes u0;`i , i D
1; : : : ; p.

Indeed, by the definition of sequences of type H (see Definition 4.4), `1 2 ˆ.a/ \ Iio. So, the
amplitude u0;`1 satisfies a transport equation given by8̂̂̂̂

<̂
ˆ̂̂:
.@t C v`1 � rx/Q

`1
1 u0;`1 D 0;

B1

� X
i2ˆ.`1/\.Iio[Iii/

u0;i jx1D0

�
D�B1u0;ajx1D0 ;

u0;`1jt�0 D 0;

if `1 2R1 nR1;

8̂̂̂̂
<̂
ˆ̂̂:
.@t C v`1 � rx/Q

`1
1 u0;`1 D 0;

B1

�P
i2ˆ.`1/\.Iio[Iii/

u0;i CU0;`1;1jX1D0

�
jx1D0

D�B1u0;ajx1D0 ;

u0;`1jt�0 D 0;

if `1 2R1;

(61)

because all the elements of ˆ.`1/ are linked with a by a sequence of length zero. Thanks to property (i)
of Proposition 4.21, it follows that ˆ.`1/ \ Ioi D fag. Consequently, multiplying (61) by S`11 (see
Definition 4.10), we can write

u0;`1jx1D0
D�S

`1
1 B1u0;ajx1D0

:

This equation determines the trace of u0;`1 on the side @�1 because the amplitude u0;a and its trace
have already been determined in Section 4B3. Integrating (61) along the characteristics, we determine
u0;`1 2H

K.�T / and the trace u0;`1jx2D0 2H
K
f

.
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Then we are interested in the construction of the amplitude u0;`2 , by the definition of type-H sequences,
`2 2‰.`1/\Ioi. Once again, we can apply Proposition 4.21 to show that

‰.`2/\Iio D f`1g:

This allows us to rewrite the transport equation on u0;`2 in the form(
.@t C v`2 � rx/Q

`2
2 u0;`2 D 0;

u0;`2jx2D0
D�S

`2
2 B2u0;`1jx2D0

; u0;`2jt�0 D 0;
(62)

and we solve this equation by integration along the characteristics.
We can reiterate the same kind of resolutions of transport equations for all the indices of the sequence `.

This operation permits us to construct all the amplitudes u0;`l , l D 1; : : : ; p. The important point in these
recursive resolutions is that since the first amplitude u0;a has its trace on @�1 in HK

f
, this flatness at the

corner is transmitted to all the amplitudes indexed by the sequence `.
Indeed, integration along the characteristics gives an explicit formula and it is easy to see on this

formula that the traces of the u0;`l are in HK
f

for all 1� l � p.
Once we have constructed all the amplitudes associated to the indices of `, it is easy to determine the

amplitude u0;j . We distinguish the following cases depending of the nature of the index j.

� j 2Iio (resp. j 2Ioi): Proposition 4.21 tells us that an index in Iio\Aa (resp. Ioi) can appear only
after an even (resp. odd) number of reflections, in other terms, the length of the sequence `, p 2 2N

(resp. p 2 2NC 1). Using the fact that j 2Iio (resp. j 2Iio), to construct the amplitude u0;j it is
sufficient to know u0;j

jx1D0
(resp. u0;j

jx2D0
). But, Proposition 4.21 implies that p̀ is the only element

of Ioi (resp. Iio) inˆ.j / (resp.‰.j /); multiplying by S
j

1 (resp. S
j

2 ), we can determine the trace u0;j
jx1D0

(resp. u0;j
jx2D0

) as a function of the trace u0;`p jx1D0 (resp. u0;`p jx2D0). Consequently the amplitude u0;j
is constructed.

Moreover, we can show that u0;j 2HK.�/, and that its traces on the sides @�1 and @�2 are in HK
f

.
This fact will be crucial to construct the incoming-incoming phases as well as the evanescent phases that
may appear in the WKB expansion.

� j 2Iii: An incoming-incoming index may appear after an even number of reflections as well as after an
odd number of reflections. We will here deal with the case p 2 2N; the case p 2 2NC 1 is totally similar.
Proposition 4.21 implies, on the one hand, that p̀ is the only index in ˆ.j /\Ioi and, on the other hand,
that ‰.j /D fj g. So the boundary conditions for the amplitude u0;j can be written in the form

u0;j
jx1D0

D�S
j

1B1u0;`p jx1
; u0;j

jx2D0
D 0:

It follows that the amplitude u0;j satisfies the incoming-incoming transport equation8<:.@t C vj � rx/Q
j

1u0;j D 0;

u0;j
jx1D0

D�S
j

1B1u0;`p jx1D0
; u0;j

jx2D0
D 0; u0;j

jt�0
D 0:

(63)
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To solve this equation, we extend the source term �S
j

1B1u0;`p jx1D0
by zero on fx2 < 0g (this extension

gives a regular function because u0;`p jx1D0 2 H
K
f

); then we restrict to fx2 � 0g the solution to the
transport equation in the half-space fx1 � 0; x2 2 Rg.

Consequently we have constructed u0;j 2HK.�T /, such that for all x1� 0, we have u0;j
jx1Dx1

2HK
f

.

� j 2R1 (resp. j 2R2): As in the case j 2Iio (resp. j 2Ioi), Proposition 4.21 tells us that an evanescent
index for the side @�1 (resp. @�2) can only appear after an even (resp. odd) number of reflections.
Moreover, Proposition 4.21 also implies that the only index of Ioi (resp. Iio) and ˆ.j / (resp. ‰.j /)
is p̀. We are now interested in the construction of the evanescent amplitude U0;j ;1 (resp. U0;j ;2).

Repeating the construction described in Section 4B3, to determine the amplitude U0;j ;1 (resp. U0;j ;2),
it is sufficient to start by determining the double trace on fX1 D x1 D 0g (resp. fX2 D x2 D 0g). Using
the fact that p̀ is the only element of Ioi (resp. Iio) in ˆ.j / (resp. ‰.j /) allows us to show that this
double trace is given by

U0;j ;1.t; 0; x
0; 0/D�S

j

s;1B1u0;`p jx1D0

.resp. U0;j ;2.t; x0; 0; 0/D�S
j

s;2B2u0;`p jx2D0
/:

We then lift this double trace to a single one by setting

U0;j ;1.t; x; 0/ WD ��.x1/S
j

s;1B1u0;`p jx1D0

.resp. U0;j ;2.t; x; 0/ WD ��.x2/S
j

s;2B2u0;`p jx2D0
/;

where �2C1c .R/ is such that �.0/D 1. Finally, Lemma 4.19 shows that the function U0;j ;1 (resp. U0;j ;2)
defined by

U0;j ;1.t; x;X1/D��.x1/e
X1A1S

j

s;1B1u0;`p jx1D0

.resp. U0;j ;2.t; x;X2/D��.x2/eX2A2S
j

s;2B2u0;`p jx2D0
/

(64)

is a solution to the cascades of equations (26), (31) and (33) written for nD 0 and k D j.
We are now interested in the influence of the evanescent phases previously constructed in the extra

boundary condition (32). For example, let us study the trace on fx2 D 0g of an evanescent phase for the
side @�1. From (64) this trace is explicitly given by

U0;j ;1

�
t; x1; 0;

x1

"

�
D��.x1/e

X1A1S
j

s;1B1u0;`p jx1D0
.t; 0/

because the only term depending on x2 in (64) is u0;`p jx1D0 . The flatness at the corner of u0;`p jx1D0 shows
that U0;j ;1.t; x1; 0; x1="/ is in fact zero and that it does not contribute in (32). The same result is also
true for all the other evanescent amplitudes (for both sides) in the tree Aa.

In this section we have shown that an arbitrary amplitude in the tree Aa can always be constructed.
As a consequence, all the amplitudes in the tree Aa can be determined. Then it is sufficient to repeat
the method of construction for each tree in the partition (36). So we have constructed all the amplitudes
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associated with indices in I n fn1; n2; n3; n4g, and we have thus finished the construction of the leading
term in the WKB expansion. We summarize the analysis with the following proposition:

Proposition 4.22. Under Assumptions 2.1–2.2 on the complete-for-reflections corner problem (18) and
under Assumptions 4.7–4.9 and 4.16, there exist functions .u0;i /i2Ios , .U0;i;1/i2R1 and .U0;i;2/i2R2
satisfying the cascades of equations (26), (31), (32) and (33) written for nD 0.

Moreover, the functions .u0;i /i2Ios admit the following regularity. For all T > 0:

� If i 2Iio[Ioi then u0;i 2HK.�T / and the traces u0;i jx1D0 and u0;i jx2D0 are in HK
f

.

� If i 2Iii then u0;i 2HK.�T /. Moreover, if ‰.i/D fig (resp. ˆ.i/D fig) then for all x1 > 0 (resp.
x2 > 0), the trace u0;i jx1Dx1 (resp. u0;i jx2Dx2 ) is HK

f
.

The functions .U0;i;1/i2R1 (resp. .U0;i;2/i2R2) are in Pev1 (resp. Pev2). Moreover, all the functions
.U0;i;1/i2R1 (resp. .U0;i;2/i2R2) satisfy U0;i;1.t; x1; 0; X1/D 0 (resp. U0;i;2.t; 0; x2; X2/D 0).

4B6. Construction of the higher-order terms in the WKB expansion. The construction for the higher-order
terms in the WKB expansion looks like the construction of the leading-order term. In particular, the
order of resolution will be the same: we start with the amplitudes on the loop, and then we show that the
knowledge of these amplitudes is sufficient to construct any amplitude in the trees of the partition (36).
In this section we only give the main steps of the construction of the term of order ", without all details.
Let us begin with the oscillating amplitudes.

For k 2Ios, the amplitude u1;k satisfies the equations(
iL .d'k/u1;kCL.@/u0;k D 0;

u1;kjt�0 D 0;
(65)

with the two boundary conditions

B1

� X
k2ˆ.k/\Ios

u1;k

�
jx1D0

D 0 if k …R1;

B1

� X
k2ˆ.k/\Ios

u1;kCU1;k;1jX1D0

�
jx1D0

D 0 if k 2R1;
(66)

and

B2

� X
k2‰.k/\Ios

u1;k

�
jx2D0

D 0 if k …R2;

B2

� X
k2‰.k/\Ios

u1;kCU1;k;2jX2D0

�
jx2D0

D 0 if k 2R2:
(67)

In a classical way, we compose the first equation of (65) by the partial inverse Rk1 if k 2Iio, Rk2 if k 2Ioi

and by Rk1 or Rk2 if k 2Iii. Let us recall that this partial inverse satisfies: for i D 1; 2,

R
k
i L .d'k/D I �P

k
i ; P

k
i R

k
i DR

k
i Q

k
i D 0:
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The first equation of (65), after this composition, reads

.I �P
k
i /u1;k D iR

k
i L.@/u0;k (68)

and determines in a unique way the unpolarized part of u1;k . Indeed, at this stage of the analysis, the term
of the right-hand side of (68) has already been constructed. As u0;k 2HK.�T / and its traces on the
sides @�1 and @�2 are in HK

f
, the unpolarized part of u1;k belongs to HK�1.�T / with traces in HK�1

f
.

To complete the construction of the oscillating amplitude u1;k , we just have to construct its polarized part,
that is to say, P k1 u1;k (or equivalently P k2 u1;k).

To determine the polarized part, we will repeat with some modifications, the method described for the
leading order. First, we remark that the evolution equation for the amplitude u2;k is

iL .d'k/u2;kCL.@/u1;k D 0;

and, after composition by Qk1 for k 2Iio, by Qk2 for k 2Ioi and by Qk1 or Qk2 for k 2Iii, is given by

Q
k
i L.@/P

k
i u1;k D�Q

k
i L.@/.I �P

k
i /u1;k

D�iQ
k
i L.@/R

k
i L.@/u0;k :

Thanks to Lax’s lemma [1957], this equation is a transport equation with speed vk on the polarized
part P ki u1;k . As a consequence, Qki P

k
i u1;k satisfies the same transport equation (with a nonzero source

term in the interior of �) as the transport equation satisfied by u0;k . This observation leads us to apply
the same method of construction as in Sections 4B3 and 4B5.

More precisely, we start with the indices on the loop; to fix the ideas, we will describe the construction
of u1;n4 . We have already seen that its unpolarized part is known. To construct the polarized part of u1;n4 ,
since it travels with an outgoing-incoming velocity, we need to know its trace on @�2. Repeating the
computation made in Section 4B2, we obtain an invertibility condition which reads

.I �T/P
n1
1 u1;n1jx2D0

DG1;

where G1 2HK�1
f

only depends on the unpolarized traces of the amplitudes associated with the elements
of the loop. Assumption 4.15 implies that P n4u1;n4 is solution to the transport equation8<:.@tCvn4 �rx/Q

n4
2 P

n4
2 u1;n4D�iQ

n4
2 L.@/R

n4
2 L.@/u0;n4 ;

P
n4
2 u1;n4jx2D0

D�S
n4
2 B2

�
.I�T/�1G1C.I�P

n4
2 /u1;n4jx2D0

C.I�P
n1
1 /u1;n1jx2D0

�
; P

n4
2 u1;n4jt�0D 0:

All the source terms in this equation are known, so we can integrate along the characteristics to determine
P
n4
2 u1;n4 . The source term in the interior is HK�2.�T / and the source term on the boundary is HK�1

f
,

so the solution P n42 u1;n4 is in HK�2.�T / with traces on @�1 and @�2 in HK�2
f

. The fact that the
construction of the term of order one in " needs two derivatives is classical, and more generally, the
construction of the term of order N0 needs 2N0 derivatives on the u0;j .

When the amplitudes associated with indices on the loop are determined, the construction of the
polarized parts of the other oscillating amplitudes follows exactly the same method. In particular the
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order of resolution is the same order as the order described in Section 4B5. That is why we will not give
more details about this construction.

We are now interested in the construction of the evanescent amplitudes of order ". Although these
amplitudes do not satisfy transport equations, the method of construction is based on the same ideas as
the method for oscillating amplitudes. Indeed, we remark that the amplitudes U1;k;i can be decomposed
in a polarized part (whose construction will use the techniques of the construction of U0;k;i ) and an
unpolarized part only depending of the known amplitude U0;k;i .

In this section we will only consider evanescent amplitudes for the side @�1, so we let k 2R1. The
amplitude U1;k;1 satisfies the system of equations8̂̂̂̂

<̂
ˆ̂̂:
Lk.@X1/U1;k;1CL.@/U0;k;1 D 0;

B1

� X
k2ˆ.k/\Ios

u1;kCU1;k;1jX1D0

�
jx1D0

D 0;

U1;k;1jt�0 D 0;

(69)

but thanks to Lemma 4.19, we know that the first equation of this system has a solution reading

U1;k;1 D P
k
ev1U1;k;1�Q

k
ev1L.@/U0;k;1; (70)

where we recall that the projectors P
k
ev1 and Q

k
ev1 are defined in (58) and (59). Using the fact that the

amplitude U0;k;1 has already been constructed, the unpolarized part of U1;k;1, namely Q
k
ev1L.@/U0;k;1,

is known. It is thus sufficient to construct the polarized part of U1;k;1, namely P
k
ev1U1;k;1. To do that, we

repeat the construction used for U0;k;1. By the definition of P
k
ev1, we know P

k
ev1U1;k;1 will be determined

if we can construct the trace of U1;k;1 on fX1 D 0g.
Firstly, the boundary condition (69) and Proposition 4.21 give the double trace on fx1 D X1 D 0g.

More precisely, this double trace is given by

U1;k;1jX1Dx1D0
D�S

k
s;1u1;kjx1D0

; (71)

where the source term is known because we have already constructed the oscillating amplitudes of order ".
To conclude we lift this double trace on fx1DX1D 0g in a single trace fX1D 0g exactly as has been done
for U0;k;1, and then we apply the operator P

k
ev1.

Finally we have to study the contribution of U1;k;1jx2D0 in the boundary condition (32). From
the decomposition (70), it is in fact sufficient to study the traces on fx2 D 0g of P

k
ev1U1;k;1 and of

Q
k
ev1L.@/U0;k;1. Concerning the first term, since it has been constructed exactly as lower-order evanescent

amplitudes, its trace on fx2D 0g will be zero if and only if (see (71)) the trace of u1;kjx1D0 on fx2D 0g is
zero. This point is a consequence of the fact that oscillating amplitudes of order one are, as the amplitudes
of order zero, flat at the corner.

Concerning the value of the trace on fx2D 0g of Q
k
ev1L.@/U0;k;1, let us first remark that from (59), the

operator Q
k
ev1 only acts on the fast variable X1. As a consequence it does not influence the value of a trace

for the slow variable x2. We thus have to study L.@/U0;k;1.t; x1; 0; x1="/. From (64), we can compute
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L.@/U0;k;1

�
t;x1;x2;

x1

"

�
D

�
�0.x1/C

1

"

�
M1

�
x1

"

�
u1;kjx1D0

.t;x2/CM0

�
x1

"

�
@tu1;kjx1D0

.t;x2/

CM2

�
x1

"

�
@2u1;kjx1D0

.t;x2/;

where Mi .x1="/ WD�Aie
x1
" A1S

k
s;1B1 (with the convention A0 WD I ). Evaluating the previous formula at

x2D 0, we obtain from the flatness of u1;kjx1D0 at the corner that the trace on fx2D 0g of Q
k
ev1L.@/U0;k;1

is zero. So the construction of the WKB expansion for the corner problem (18) is complete. To summarize
we give the following theorem:

Theorem 4.23. Under Assumptions 2.1–2.2 on the complete-for-reflections corner problem (18) and
under Assumptions 4.7 and 4.16, if Œ � � denotes the integer-part function, then there exist functions
.un;k/n�ŒK

2
�; k2Ios

, .Un;k;1/�ŒK
2
�; k2R1

and .Un;k;2/�ŒK
2
�; k2R2

satisfying the cascades of equations (26),
(31), (32) and (33).

Moreover, the functions un;k admit the following regularity. For all T > 0:

� If k 2Iio[Ioi then un;k 2HK�2n.�T / and the traces un;kjx1D0 and un;kjx2D0 are in HK�2n
f

.

� If n 2Iii, then un;k 2 HK�2n.�T /. Moreover, if ‰.k/ D fkg (resp. ˆ.k/ D fkg) then for all
x1 > 0 (resp. x2 > 0), the trace un;kjx1Dx1 (resp. un;kjx2Dx2 ) is HK�2n

f
.

The Un;k;1 (resp. Un;k;2) are in Pev1 (resp. Pev2). Moreover, the Un;k;1, Un;k;2 satisfy for all n; k,
Un;k;1.t; x1; 0; X1/D Un;k;2.t; 0; x2; X2/D 0.

4C. Justification of the WKB expansion. In this section we show that, if the corner problem (18) is
strongly well-posed, the truncated WKB expansion constructed in the preceding section is a good
approximation to the exact solution u" of the corner problem (18). Let us recall what we mean by strong
well-posedness:

Definition 4.24. The corner problem is said to be strongly well-posed if for all f 2 L2.�T /, g1 2
L2.@�1;T / and g2 2 L2.@�2;T / zero for negative times, the system8<:@tuCA1@1uCA2@2uD f;B1ujx1D0 D g1; B2ujx2D0 D g2; ujt�0 D 0;

admits a unique solution u 2 L2.�T /, with traces in L2.@�1;T / and L2.@�2;T /, satisfying the energy
estimate

kuk2
L2.�T /

Ckujx1D0k
2
L2.@�1;T /

Ckujx2D0k
2
L2.@�2;T /

� CT
�
kf k2

L2.�T /
Ckg1k

2
L2.@�1;T /

Ckg2k
2
L2.@�2;T /

�
: (72)

Let us recall that the strong well-posedness of the corner problem is demonstrated for the particular
class of symmetric corner problems with strictly dissipative boundary conditions.

To justify the convergence of the WKB expansion, we need to be sure that the amplitudes are regular
enough. The regularity has already been studied for the oscillating amplitudes. Concerning the evanescents’
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amplitudes, the following proposition shows that they are regular and also gives their size according to
the small parameter ".

Proposition 4.25. Let U be an element of Pev;1 (resp. Pev;2). Then the functions U.t; x; x1="/ and
.L.@/U.t; x;X1//jX1D

x1
"

(resp. U.t; x; x2="/ and .L.@/U.t; x;X2//jX2Dx2"
) are O."

1
2 / in L2.�T /.

We refer to [Benoit 2014] for a proof of this result.
Before showing that the truncated WKB expansion is a good approximation to the exact solution to the

corner problem (18), we have to make sure that the truncated WKB expansion makes sense. Indeed, we
saw in Section 3D that when there was an infinite number of phases generated by successive reflections,
it was not clear that the sum of all amplitudes defining the WKB expansion converges. That is why, to
avoid this difficulty we will restrict ourselves to a finite number of phases:

Assumption 4.26. We assume that the number of phases generated by successive reflections on the
sides @�1 and @�2 is finite. That is to say, #F <C1.

With this extra assumption, it is clear that the truncated WKB expansion makes sense. The main
theorem of this article is:

Theorem 4.27. Suppose Assumptions 2.1–2.2 for the complete-for-reflection corner problem (18) and
Assumptions 4.7, 4.9, 4.16 and 4.26 hold. Then, for N0 2 N, with N0 �

�
K
2
�
3
2

�
, we denote by u"app;N0

the geometric optics expansion truncated at order N0 defined by

u"app;N0 WD
X
k2Ios

e
i
"
'k.t;x/

N0X
nD0

"nun;k.t; x/

C

X
k2R1

e
i
"
 k;1.t;x2/

N0X
nD0

"nUn;k;1

�
t; x;

x1

"

�
C

X
k2R2

e
i
"
 k;2.t;x1/

N0X
nD0

"nUn;k;2

�
t; x;

x2

"

�
;

where functions un;k , Un;k;1 and Un;k;2 are given by Proposition 4.22. Then, if the corner problem (18)
is strongly well-posed, let u" be its exact solution, and the error u"�u"app;N0

is O."N0C1/ in L2.�T /.

Proof. Since we assumed that N0 �
�
K
2
�
3
2

�
, the term of order "N0C1 of the WKB expansion makes

sense and is at least in H 1.�T /. By construction of the un;k , Un;k;1 and Un;k;2, for n � N0C 1, the
remainder u"�u"app;N0C1

satisfies the corner problem8<:L.@/.u
"�u"app;N0C1

/Df "N0C1;

B1.u
"�u"app;N0C1

/jx1D0D 0; B2.u
"�u"app;N0C1

/jx2D0D 0; .u"�u"app;N0C1
/jt�0D 0;

(73)

with

f "N0C1 WD "
N0C1

� X
k2Ios

e
i
"
'kL.@/uN0C1;kC

X
k2R1

e
i
"
 k;1.L.@/UN0C1;k;1/jX1D

x1
"

C

X
k2R2

e
i
"
 k;2.L.@/UN0C1;k;2/jX2D

x2
"

�
:
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But the corner problem (18) is supposed to be strongly well-posed, so we can use the energy estimate (72),
to obtain

ku"�u"app;N0C1kL2.�T / � CT kf
"
N0C1

kL2.�T /:

The right-hand side can be estimated by

kf "N0C1kL2.�T /� "
N0C1

�X
k2Ios

kL.@/uN0C1;kkL2.�T /C
X
k2Iev1

kL.@/UN0C1;k;1. � ; � ;X1/jX1D
x1
"
kL2.�T /

C

X
k2Iev2

kL.@/UN0C1;k;2. � ; � ;X2/jX2D
x2
"
kL2.�T /

�
�C"N0C1

because, according to Proposition 4.25, .L.@/UN0;k;1/jX1Dx1"
and .L.@/UN0C1;k;2/jX2Dx2"

are O."
1
2 /

in L2.�T /, whereas L.@/uN0C1;k are O.1/ in L2.�T /, because uN0C1;k is at least in H 1.�T /.
We thus have shown that

ku"�u"app;N0C1kL2.�T / � CT "
N0C1;

and we conclude by the triangle inequality. �

4D. Study of the invertibility condition (47). In this section we will give a sufficient (and also necessary
in several relevant cases) condition ensuring that the invertibility condition (47) is satisfied. Let us recall
that this condition reads

u0;n1jx2D0
.t; x1/�Su0;n1jx2D0

.t �˛x1; ˇx1/D S
n1
1 g.t C ıx1; �x1/; (74)

with ˛; ˇ > 0, and ı < 0, � > 0. The exact expressions of these parameters are given by

S WD S
n1
1 B1S

n2
2 B2S

n3
1 B1S

n4
2 B2;

˛ WD �
1

vn1;1

�
�1C

vn1;2

vn2;2
�
vn1;2vn2;1

vn2;2vn3;1
C
vn1;2vn2;1vn3;2

vn2;2vn3;1vn4;2

�
;

ˇ WD
vn4;1

vn4;2

vn3;2

vn3;1

vn2;1

vn2;2

vn1;2

vn1;1
:

If we assume that dim ker L .i� ; �
n1
1 ; �

n1
2 / D 1 (an assumption which is automatically satisfied in the

strictly hyperbolic framework), then (74) is in fact a scalar equation:

u.t; x1/� zSu.t �˛x1; ˇx1/DG.t; x1/; (75)

where, thanks to the polarization condition, we write u0;n1jx2D0
.t; x1/D u.t; x1/en1 , with en1 chosen

such that ker.L .i�; �
n1
1 ; �

n1
2 //D Span en1 . The scalar zS is defined by the equality

Sen1 D
zSen1 ;

and without loss of generality we can assume that zS ¤ 0.
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In all that follows, it will be more convenient to rewrite (75) as

.I �T/uDG; (76)

where
.Tu/.t; x1/ WD zSu.t �˛x1; ˇx1/: (77)

A sufficient condition for (74) (and thus also (75)) to have a unique solution in the profiles space
L2.��1; T ��RC/ is given by the following theorem:

Theorem 4.28. If
jS j<

p
ˇ;

then for all  > 0, for all G 2 L2 .RC � R/, the functional equation (74) admits a unique solution
u 2 L2 .RC �R/, polarized on ker L .i�; �

n1
1 ; �

n1
2 /, and satisfying

kukL2 .RC�R/ � CkGkL2 .RC�R/;

where C does not depend on the parameter  .
In particular, for all T > 0, if G is in L2.@�2;T / and is zero for negative times, then (74) has a unique

solution u 2 L2.@�2;T /, polarized on ker.L .i� ; �
n1
1 ; �

n1
2 //, and satisfying

kukL2.@�2;T / � CT kGkL2.@�2;T /:

Proof. To solve (76) in a unique way, it is sufficient that T is a contraction on L2 .RC�R/ (or equivalently
on L2.��1; T ��RC/). A simple computation shows that is it effectively the case under the assumption
jS j<

p
ˇ. �

Remark. The fact that we are interested in uniform bounds (compared with the parameter ) of the
operator T is motivated by the following fact. In the analysis of the initial boundary value problem in
the half-space, one starts to deal with global problems in time. Then from the uniformity of the energy
estimate compared to  follows a principle of causality which allows for the restriction to problems where
the time variable lies in ��1; T �. We refer to [Benzoni-Gavage and Serre 2007; Chazarain and Piriou
1981] for more details about this proof.

To fully understand the condition jS j<
p
ˇ, it is important to note the following fact: if one considers

a point .0; L/ 2 @�1 and follows the characteristic curves associated with the indices on the loop, then
after three reflections, this traveling point goes back to @�1 in a new position .0; L0/ 2 @�1. Some basic
computations show that

ˇ D
L

L
0 : (78)

So, we have three possible behaviors depending of the value of ˇ:

� If ˇ > 1, then traveling along the bicharacteristics, the information approaches the corner.

� If ˇ < 1, then traveling along the bicharacteristics, the information goes away from the corner.

� If ˇ D 1, then the travel along the bicharacteristics is periodic.
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The condition jS j <
p
ˇ imposes that after one turn along the bicharacteristics associated with the

loop, the L2-norm of the trace has decreased.
In the scalar case, that is, when the matrix S can be replaced by the scalar zS ,5 that is to say, when

the rank of the projector P n11 is one, we can show that the condition j zS j<
p
ˇ is also necessary for the

well-posedness of (75). The idea of the proof is to use Laplace transformation in the time variable to
reduce to a situation already studied by Osher [1974b].

Theorem 4.29. Let ˛; ˇ > 0 and zS 2 R n f0g be such that zS >
p
ˇ. Then the equation

u.t; x/� zSu.t �˛x; ˇx/DG (79)

satisfies one of the alternatives:

(i) If ˇ < 1, then (79) written for G D 0 admits a nonzero solution in L2 .R�RC/, for all  > 0.

(ii) If ˇ > 1, then there exists g 2 L2 .R�RC/ such that (79) does not have any solution.

Proof. We begin with the proof of (i). We are looking for a nonzero solution u written in the form
u.t; x/DH.t/v.t; x/, where H is the Heaviside function. Applying the Laplace transform in the time
variable to (79) leads us to solve

Ov.�; x/� zSe�˛�x Ov.�; ˇx/D 0; (80)

where � 2 C, Re � > 0, is the dual variable of t . Following [Osher 1974b], let

OQv.�; x/D e
˛�x
1�ˇ x

� ln zS
lnˇ :

It easy to check that this function is a solution to (80). But Re.˛�=.1�ˇ// < 0, so using the assumption
zS >

p
ˇ, it follows that OQv 2 L2x.RC/.

However, in order to come back to the time variable, we want to apply the Paley–Wiener theorem to OQv.
That is why we denote by Ov.�; x/ the following modification of OQv:

Ov.�; x/D
1

.1C�/
OQv.�; x/:

It is easy to see that Ov is still a solution to (80). Moreover,

sup
>0

Z
R

Z
RC

jv. C i�; x/j2 dx d�� sup
>0

�Z
RC

x
�2 ln zS

lnˇ e
2x˛
1�ˇ dx

�Z
R

1

1C �2
d�� C:

We can thus apply the Paley–Wiener theorem, so there exists v 2
T
>0L

2
 .R�RC/ such that Ov is the

Laplace transform. As a consequence we have constructed a nonzero solution to (79).
To show (ii), using the same proof as in [Osher 1974b], it is sufficient to remark that the adjoint of T is

given by

T�v D�
zS

ˇ
v

�
t �

˛

ˇ
x;
1

ˇ
x

�
:

5When S is a matrix and not a number, it seems more difficult to show the analog of Theorem 4.29. That is why the restriction
to strictly hyperbolic operators is an easy way to obtain sharp results.
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So if ˇ > 1, the operator T� is as in (i), so

zS

ˇ
>

1p
ˇ
” zS >

p
ˇ;

and T� is not injective. As a consequence, T is not surjective. �

During the construction of the geometric optics expansion we saw that the invertibility of the operator
I �T on the weighted space L2 .R�RC/ was not sufficient to construct the term of order " which is,
however, necessary if we want to show that the truncated expansion approximates the exact solution.
More precisely, to construct the first corrector term, it is necessary that I �T is (at least) invertible from
H 3
f

to H 3
f

, and more generally if one wants the remainder u"�u"app;N0
to be O."N0C1/, it is needed that

I �T is invertible fromH
N0C3
f

inHN0C3
f

(to ensure that the term of order N0C1 is at least inH 1.�T /).
The following theorem shows that the solution to the functional equation (75) given by Theorem 4.28
inherits (under some restrictions) the regularity HK

f
of the source term. There are two different cases to

handle:

Theorem 4.30. (i) If 0 < ˇ � 1 and if jS j<
p
ˇ, then I �T is invertible from H1

f
to H1

f
.

(ii) Let K 2 N, if ˇ > 1 and if jS jˇK�
1
2 < 1, then I �T is invertible from HK

f
to HK

f
.

Proof. Let

u.t; x1/DG.t; x1/C

C1X
jD1

SjG.t CX
j

˛;ˇ
x1; ˇ

jx1/; (81)

where

X
j

˛;ˇ
WD

j�1X
kD0

˛ˇkCˇj˛:

It is easy to check that, under the assumption jS j<
p
ˇ, we have u is a solution to (75) which belongs to

L2.@�2;T /. According to Theorem 4.28, it is unique.
Then, we show that the solution u defined by (81) inherits the regularity of G. Firstly, according to the

particular form of (75), it is clear that independently of ˇ, for all n 2 N,

k@nt ukL2.@�2;T / � Ck@
n
t gkL2.@�2;T /; (82)

so we only have to deal with the derivatives in the spatial variable, because it will also permit us to deal
with the cross-derivatives by using (82). For n 2 N, a simple computation gives

@nx1uD @
n
x1
GC

C1X
jD1

Sj
� nX
lD0

�n
l

�
.X

j

˛;ˇ
/l.ˇj �/n�l@n�lt @lx1G

�
.t CX

j

˛;ˇ
x1; ˇ

jx1/ (83)

and leads us to a distinction depending on the value of ˇ.
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If ˇ � 1, then all the constants appearing during the derivation can be abruptly bounded from above
and we obtain

k@nx1ukL2.@�2;T / � k@
n
x1
GkL2.@�2;T /CCn;˛

C1X
jD1

�
jS jp
ˇ

�j nX
lD0

k@n�lt @lx1GkL2.@�2;T /;

where we used the change of variable �
s

y

�
D

"
1 X

j

˛;ˇ

0 ˇj

#�
t

x1

�
to force the appearance of the factor

p
ˇ. As a consequence, under the assumption jS j <

p
ˇ, the

solution u given by (81) is in H1.@�2;T / and we can check by (83) that its trace is also in H1
f

.
If ˇ > 1, we have

k@nx1ukL2.@�2;T / � k@
n
x1
GkL2.@�2;T /CCn;˛

C1X
jD1

.jS jˇn�
1
2 /j

nX
lD0

k@n�lt @lx1GkL2.@�2;T /

for 0 � n � K, this sum is finite thanks to the assumption jS jˇK�
1
2 < 1. We have thus shown that

u 2HK.@�2;T /. Once again, the flatness at the corner is given by computing the trace in (83), so we
have u 2HK

f
. �

Remark. As in the situation where an infinite number of phases was present in the WKB expansion
(see the example in Section 3D), we can remark that when the source term g is in C1c with its support
away from the corner, if we restrict ourselves to the construction of the WKB expansion for a finite time
T <C1, then the number of nonzero terms in the sum (81) is finite. Thus, in this framework the operator
.I �T/ is automatically invertible (independently of the parameters ˇ and S ). Its inverse is given by (81).

Theorem 4.30 seems to indicate that a corner concentration phenomenon is more difficult to handle
with than a separation from the corner phenomenon. Indeed, if ˇ < 1, the error between the exact solution
and the truncated WKB expansion is O."N / with N arbitrarily large, whereas if ˇ > 1, the norms of the
derivatives of the solution to (75) seem to get larger and larger. To prevent this “blow up”, we have made
the assumption jS jˇK�

1
2 <1 which “implies” that there exists a maximalN0 such that the error isO."N0/.

We do not claim that, for ˇ>1, Theorem 4.30 is sharp. But it is sufficient to treat the example of Section 3E.

4E. Examples for which the invertibility condition (75) is satisfied.

4E1. The example of Section 3E. We come back to the corner problem (16) and more precisely to the
resolution of the amplitude equation (75) for this problem.

First of all we have to specify the chosen boundary conditions. We set for B1 and B2 in (16)

B1 WD

�
1 0 0

0 �1 1

�
; B2 WD

�
0 �ı 1

�
; (84)

where ı 2 R, ı ¤ 0, is a fixed parameter.
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It is easy to see that the boundary condition defined by B1 on the side @�1 is strictly dissipative; in
particular, it satisfies the uniform Kreiss–Lopatinskii condition (see [Benzoni-Gavage and Serre 2007,
Proposition 4.4]). The real parameter ı¤ 0 encodes the dissipativity on the side @�2 in the following way:

� If jıj> 2�
1
4 , the boundary condition defined by B2 is strictly dissipative.

� If jıj D 2�
1
4 , the boundary condition defined by B2 is maximal dissipative.

� If 0 < jıj< 2�
1
4 , the boundary condition defined by B2 is not dissipative but it satisfies the uniform

Kreiss–Lopatinskii condition.

Reiterating the same kind of computations as those described in Section 4B2, using the fact that
dim L .d'1/D 1, shows that the amplitude equation for the amplitude associated with the phase '1 is
scalar and is given by

u.t; 0; x2/D�

1
5
� 6
p
2

.
p
2C 1/

�
1
5
�
p
2
�
ı2
u.t �˛x2; 0; 28x2/CG.t; x2/; (85)

where u is a real-valued function, G is an explicitly computable, but nonrelevant, source term and ˛ is
also not relevant.

According to Theorem 4.28, if

jıj>

vuut 1
5
� 6
p
2

.
p
2C 1/

�
1
5
�
p
2
�p
28
WD ı0 � 0:73

then the functional equation (85) admits a unique solution. We are thus able to construct the leading-order
term of the geometric optics expansion for more parameters than those leading to strictly dissipative
boundary conditions.

On the contrary, if

0 < jıj< ı0;

we are in a nondissipative framework, and according to Theorem 4.29, equation (85) admits a nonzero
solution for G D 0, so the leading-order term in the WKB expansion is not determined in a unique way.
This example shows that imposing the uniform Kreiss–Lopatinskii condition on each side of the boundary
is not sufficient to construct the geometric optics expansion in a unique way. It seems to be a good argument
in favor of the fact that the same situation is true for the strong well-posedness of the corner problem (18).

4E2. The example of Sarason and Smoller [1974]. In [Sarason and Smoller 1974], the authors construct
an example of 4� 4 a strictly hyperbolic operator whose section of the characteristic variety contains a
loop. This example, with the example of Section 3E, constitute, to our knowledge, the only two examples
of corner problems with a loop in the literature.

The main idea of the construction is a perturbation argument: we first choose a centered ellipse and we
fix three points P2; P3; P4 on this ellipse such that angle 3P2P3P4 is a perpendicular angle and the group
velocities are incoming-outgoing in P3 and outgoing-incoming in P2 and P4. This choice determines
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-4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

�2

�1

Figure 8. The construction of Sarason and Smoller for p1 WD 5�21 C 2�
2
2 � 6�1�2 � 1

and p2 WD 25
49
�21 C

14
5
�22 � 2�1�2� 1.

in a unique way a point P1 such that P1P2P3P4 is a rectangle. Then we construct a second ellipse
meeting P1 with an incoming-outgoing group velocity at this point (see Figure 8).

The variety constructed can be written in the form

p1.�; �1; �2/p2.�; �1; �2/D 0;

where the polynomials p1 and p2 are homogeneous of degree two. This variety contains the loop
.P1; P2; P3; P4/, but it cannot represent the section at � D 1 of the characteristic variety of a strictly
hyperbolic operator. Indeed, the two ellipses constructed previously intersect in four points, namely Q1,
Q2, Q3 and Q4. However, it can be shown that it is the section at � D 1 of the characteristic variety of a
geometrically regular hyperbolic operator with A1 and A2 of block diagonal form

A1 WD

2664
�a1 a2 0 0

a2 a1 0 0

0 0 �Qa1 Qa2
0 0 Qa2 Qa1

3775 and A2 WD

2664
�b 0 0 0

0 b 0 0

0 0 �Qb 0

0 0 0 Qb

3775
for suitable real parameters a1; a2; Qa1; Qa2; b and Qb (we refer to [Benoit 2015, paragraphe 6.9.6] or [Sarason
and Smoller 1974] for more details about the construction of A1 and A2).

Once the operator L.@/ is constructed, we add the boundary conditions

B1ujx1D0 WD g
"; B2ujx2D0 WD 0;

where B1 and B2 are defined by

B1 WD

�
1 0 0 �ı

0 0 1 0

�
; B2 WD

�
0 1 0 0

�ı 0 0 1

�
: (86)
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It is easy to check, using the particular form of A1 and A2 and the fact that the boundary conditions (86)
written for ı D 0 are strictly dissipative, that B1 and B2 satisfy the uniform Kreiss–Lopatinskii condition
for all ı. It is also easy to check that the boundary conditions B1 and B2 are strictly dissipative if ı is
sufficiently small.

Now that boundary conditions are fixed, we want to study the invertibility condition jS j<
p
ˇ, which

appears when we construct the WKB expansion of the corner problem68<:L.@/u" D 0;B1u
"
jx1D0 D g

"; B2u
"
jx2D0 D 0; u"jt�0 D 0;

(87)

where the source term is
g" D e

i
" .tCP1;2x2/g;

with g 2H1
f

, zero for negative times, and where P1 WD .P1;1; P1;2/.
The factor ˇ only depends of the coefficients of the operator L.@/. In particular, it does not depend

on ı and can be explicitly computed. The term S can be considered as a scalar (see Section 4D) and it is
given by

S WD S
P1
1 B1S

P2
2 B2S

P3
1 B1S

P4
2 B2;

where we have made the amalgam between the indices of the loop and the associated frequencies.
Once again, using the fact that the operator L.@/ defined two 2� 2 uncoupled systems, the stable sub-

spaceEs2.i; P4;1/ is given byEs2.i; P4;1/Dvect
˚
.0; 0; p4; q4/; . Qp; Qq; 0; 0/

	
. Thus, we can easily compute

S
P4
2 B2

2664
p1
q1
0

0

3775D PP4

0BBBB@
26664
Qp
Qq
q1

q1
0

0

37775C ı
266664

0

0
p4
q4

�
q1
Qp
Qq
�p1

�
q1
Qp
Qq
�p1

377775
1CCCCA WD Qcı

2664
0

0

p4
q4

3775;
where Qc is not zero and only depends of the projector PP4 on ker.L .�; P4// and we set ker.L .�; P1//D

vectf.p1; q1; 0; 0/g. Repeating exactly the same arguments for the other terms composing S , it is easy
to show that the invertibility condition (75) is equivalent to

cı2 <
p
ˇ; c > 0:

This condition is not satisfied for large values of ı. Let us remark on the following points: firstly, the
blow up phenomenon is in ı2 and not in ı4 as predicted in [Sarason and Smoller 1974]. Secondly, for
jıj small enough, the invertibility condition is satisfied and we are in the strictly dissipative framework.

Moreover, the condition cı2 <
p
ˇ is more precise than the analogous condition of [Sarason and

Smoller 1974]. Indeed it says that since we are working with L2-norms, to prevent the signal from

6We do not try here to determine all the phases in the WKB expansion because, due to a concentration of the phases in the
neighborhood of the intersection points of the ellipses (see Section 3E), the number of expected phases in the expansion will be
infinite.
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increasing in strength after a complete circuit, we must have that the amplification caused by the boundary
condition is less than the contraction of the support of the source term after a complete circuit.

Finally, since we have ˇ > 1 and S “scalar”, Theorem 4.29 tells us that if the condition cı2 <
p
ˇ is

not satisfied then the WKB expansion cannot be constructed for any source term on the boundary. This
conclusion is, in fact, worse than the conclusion of Sarason and Smoller, which says that in this case the
corner problem is poorly posed (see [Sarason and Smoller 1974, Definition 4.3]).

To construct a strictly hyperbolic corner problem whose characteristic variety contains a loop, Sarason
and Smoller use a perturbation argument. More precisely, they introduce a small coupling between the
two 2� 2 uncoupled systems defining L.@/ constructed in such a way to “pull apart” the two intersecting
ellipses of the characteristic variety; see Sections 7 and 9 of [Sarason and Smoller 1974]. They show
that if the perturbation is small enough then the obtained corner problem is strictly hyperbolic and the
boundary conditions defined by B1 and B2 satisfy the uniform Kreiss–Lopatinskii condition, and finally
that the perturbed system admits a loop in the section of its characteristic variety.

5. Conclusion

In this article we have shown a theorem which gives a rigorous geometric optics expansion for a
hyperbolic corner problem when the number of phases generated by reflections is finite, but our theorem
is general enough to apply to problems involving self-interacting phases. For such problems, a sequence
of propagation of, at least, four fixed group velocities is repeated ad vitam aeternam. The construction
of the geometric optics expansion then needs the solvability of a new amplitude equation, which is an
invertibility condition in the spirit of Osher’s condition [1973](see Assumption 4.15).

Of course, the construction given in this article can also be made if the section of characteristic variety
does not contain any loop. Without any surprise, in that framework the construction is much simpler
because the results in Sections 4B1 and 4B4 are more or less immediate and we can construct the
expansion as it has been done in [Benoit 2015, paragraphes 6.4–6.6]. Moreover, the construction can also
be adapted if the source term on the boundary does not turn on a self-interacting phase but if this phase
appears after several reflections.

We also think that it should be possible to show a version of Theorem 4.27 without the assumption of
the nonappearance of glancing modes during the phase generation process. Indeed, if one starts with a
hyperbolic frequency, then nothing ensures that after several reflections a glancing mode will not appear
in the phase generation process. However, thanks to [Williams 1996; 2000], we think that, after the
suitable modifications of the oscillating scales in the ansatz, glancing modes will, more or less, behave
like evanescent modes in the sense that they will create boundary layers in the expansion and that they
will not be reflected from one side to the other.

The proof of Theorem 4.27 should also work when there are several loops. There are two cases to
distinguish: first, if there is still a unique loop of interaction but other loops that are not interaction
loops and, second, the case where there is more than one interaction loop. In the first case, the proof of
Theorem 4.27 just has to be a bit adapted in a more technical way. In the second case, we think that the
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proof of Theorem 4.27 can also be adapted as long as the interaction loops do not intersect themselves,
but this is left for future work.

Finally, let us give some comments about Assumption 4.9. On one hand, this restriction is really
anecdotal because in the phase generation process described in Section 3 there is no mathematical reason
to systematically meet one of the axes f�1 D 0g or f�2 D 0g. The process depends on the geometry of the
characteristic variety and on the phase of the source term. Moreover, it is easy to see that Assumption 4.9
is clearly not sharp (but it has the advantage of simplicity). Indeed what we really need in our construction
is the following sharper version of Assumption 4.9: Let i 2Ios be the index associated to a frequency
given by .�; 0; �k2 / (resp. .�; �k1 ; 0/) and let � be defined by

� WD fi 2I n i
V
� ig;

.resp. � WD fi 2I n i
H
� ig/:

Then �\Iev1 (resp. �\Iev2) is empty. However, this new version seems not to be really less restrictive
than Assumption 4.9 as soon as we have some kinds of symmetries in the characteristic variety.

But on the other hand, and in the author’s opinion, an interesting question may be to consider WKB
expansions without Assumption 4.9. Indeed in such a framework one of the boundary conditions is given
by, for example,

B1

�X
k2Ios

u0;kC
X
k2R2

U0;k;2

�
jx1D0

D G ;

and it seems to be not so easy to adapt the previous construction when such a boundary condition occurs
because the resolution described in this paper is mainly based on the fact that we are able to determine
oscillating phases before evanescent ones. That is why the construction without Assumption 4.9 is left
for future studies.
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