ANALYSIS \& PDE

BOUNDARY C ${ }^{\text {º }}$ REGULARITY OF POTENIIAI TLNCYIONS N OPI MAI IR ANSPORTATION WITH OUADRIME COST

BOUNDARY $C^{1, \alpha}$ REGULARITY OF POTENTIAL FUNCTIONS IN OPTIMAL TRANSPORTATION WITH QUADRATIC COST

Elina Andriyanova and Shibing Chen

We provide a different proof for the global $C^{1, \alpha}$ regularity of potential functions in the optimal transport problem, which was originally proved by Caffarelli. Our method applies to a more general class of domains.

1. Introduction

We study the global $C^{1, \alpha}$ regularity of potential functions in optimal transportation with quadratic cost. Let Ω and Ω^{*} be the source and target domains associated with densities $1 / C<f<C$ and $1 / C<g<C$, respectively, where C is a positive constant. The optimal transport problem with quadratic cost is about finding a map $T: \Omega \rightarrow \Omega^{*}$ among all measure-preserving maps minimizing the transportation cost

$$
\int_{\Omega}|x-T x|^{2} d x
$$

Here the term "measure-preserving" means that $\int_{T^{-1}(B)} f=\int_{B} g$ for any Borel set $B \subset \Omega^{*}$. Brenier [1991] proved that one can find a convex function u such that

$$
T(x)=D u(x) \quad \text { for a.e. } x \in \Omega .
$$

Indeed, the convex function u satisfies $\int_{(\partial u)^{-1} B} f=\int_{B} g$ for any Borel set $B \subset \Omega$, where ∂u is the standard subgradient map of the convex function u. We call u a Brenier solution of the optimal transport problem if it satisfies the property above. When the target domain Ω^{*} is convex, Caffarelli proved that $\partial u(\Omega)=\Omega^{*}$ and that u is an Alexandrov solution, namely u satisfies $(1 / C)|A \cap \Omega| \leq|\partial u(A)| \leq C|A \cap \Omega|$ for any Borel set $A \subset \Omega$. Moreover, if we extend u to \mathbb{R}^{n} via

$$
\tilde{u}:=\sup \left\{L \mid L \text { is linear, }\left.L\right|_{\Omega} \leq u, L(z)=u(z) \text { for some } z \in \Omega\right\}
$$

then \tilde{u} is a globally Lipschitz convex solution of

$$
C^{-1} \chi_{\Omega} \leq \operatorname{det} \tilde{u}_{i j} \leq C \chi_{\Omega} .
$$

We will still use u to denote this extended function. Caffarelli [1992b] proved interior $C^{1, \alpha}$ regularity by using his techniques for studying the standard Monge-Ampère-type equation; see [Caffarelli 1990a; 1990b; 1991].

[^0]Then, Caffarelli [1992a] proved the boundary $C^{1, \alpha}$ regularity result under the condition that both Ω and Ω^{*} are convex. Below we will briefly discuss the main ideas involved in his proof. First, Caffarelli established a fundamental property of convex functions, namely the existence of sections centred at a given point (see the statement of Lemma 2.5). Then, he proved that such sections are decaying geometrically, namely there exists a constant δ such that

$$
\begin{equation*}
S_{\delta h}(y) \subset \frac{3}{4} S_{h}(x) \quad \text { for any } y \in \frac{1}{2} S_{h}(x) . \tag{1-1}
\end{equation*}
$$

Here $S_{h}(x)$ denotes the section of u centred at x with height h. From (1-1) we obtain the quantitative strict convexity estimate

$$
\begin{equation*}
u(z) \geq u(x)+D u(x) \cdot(z-x)+C|z-x|^{\beta} \quad \text { for any } x, z \in \bar{\Omega}, \tag{1-2}
\end{equation*}
$$

for some $\beta>1$. From (1-2), it is easy to check that u^{*}, the standard Legendre transform of u, is $C^{1, \alpha}$ on $\bar{\Omega}^{*}$. Recall the well-known fact that u^{*} is indeed the potential function of the optimal transport problem from Ω^{*} to Ω. Therefore, by switching the role of u and u^{*} one can show the global $C^{1, \alpha}$ regularity of u.

The convexity of domains is crucial in Caffarelli's approach. Indeed, the convexity of Ω ensures that u^{*} is an Alexandrov solution, while the convexity of Ω^{*} ensures that the sections of u^{*}, centred at some point in $\bar{\Omega}^{*}$, have some doubling property. Here we provide a different proof of the global $C^{1, \alpha}$ result. Instead of deducing the $C^{1, \alpha}$ regularity of u from the strict convexity of u^{*}, we prove the $C^{1, \alpha}$ regularity of u directly. Moreover, our method works for a slightly more general class of domains, namely we allow the source to be a domain obtained by removing finitely many disjoint convex subsets from a convex domain.

We would like to mention that in recent years the regularity of optimal transport maps has attracted much interest and there are many important works related to it; to cite a few, see [Figalli and Loeper 2009; Liu 2009; Trudinger and Wang 2009b; 2009a; Figalli and Rifford 2009; Loeper 2011; Loeper and Villani 2010; Liu et al. 2010; Kim and McCann 2010; Figalli et al. 2010; 2011; 2012; 2013a; 2013b].

The rest of the paper is organized as follows. In Section 2 we introduce some notations and preliminaries, and state the main results. Section 3 is devoted to the proof of global C^{1} regularity. In the last section we complete the proof of the main results.

2. Preliminaries and main result

The main result of this paper is the following theorem:
Theorem 2.1. Let Ω and Ω^{*} be two bounded domains in $\mathbb{R}^{n}, n \geq 2$, and f and g be densities of two positive probability measures defined in Ω and Ω^{*}, respectively, satisfying $C^{-1} \leq f, g \leq C$ for a positive constant C. Assume that Ω^{*} is convex and Ω is Lipschitz.
(i) If, for any given $x \in \bar{\Omega}$, there exists a small ball $B_{r_{x}}(x)$ such that, for any convex set $\omega \subset B_{r_{x}}(x)$ centred in Ω, we have $\int_{\omega} f \leq C \int_{\omega / 2} f$ for some constant C independent of ω, then the potential function и is $C^{1}(\bar{\Omega})$. (Here f is defined to be 0 outside Ω.)
(ii) If Ω is a domain obtained by removing finitely many disjoint convex subsets from a convex set, then the potential function u is $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$.

Remark 2.2. (a) It is easy to see that in Theorem 2.1(i) we allow Ω to be any polytope (not necessarily convex). We also note that the C^{1} regularity always holds in dimension two without any condition on Ω. This is a classical result of Alexandrov; see also [Figalli and Loeper 2009].
(b) One may want to prove higher regularity when the densities are smooth; however, in view of the following simple example we see that this is impossible. Let the dimension be $n=2$. Let $\Omega:=B_{2}-B_{1}$, with uniform probability density, and let $\Omega^{*}:=B_{\sqrt{3}}$, with uniform probability density. Then by symmetry it is easy to compute that the optimal transport map is $T(x)=\sqrt{|x|^{2}-1} x /|x|$, which is only $C^{1 / 2}$ on $\partial B_{1} \subset \partial \Omega$.

In the following we will use $S_{h}\left(x_{0}\right)$ to denote a section of u with height h, namely

$$
S_{h}\left(x_{0}\right):=\left\{x \mid u<p \cdot\left(x-x_{0}\right)+h\right\},
$$

where p is chosen so that x_{0} is the centre of mass of $S_{h}\left(x_{0}\right)$. We say a point $x_{0} \in \bar{\Omega}$ is localized (with respect to u) if, for any sequences $h_{k} \rightarrow 0$ and $x_{k} \rightarrow x_{0}$ satisfying $x_{0} \in S_{h_{k}}\left(x_{k}\right)$, we have that $S_{h_{k}}\left(x_{k}\right)$ shrinks to the point $x_{0} \in \bar{\Omega}$.

Now we record a fundamental property of convex sets.
Lemma 2.3 (John's lemma). Let $U \subset \mathbb{R}^{n}$ be a bounded, convex domain with its centre of mass at the origin. There exists an ellipsoid E, also centred at the origin, such that

$$
E \subset U \subset n^{3 / 2} E
$$

The original John's lemma does not require that the ellipsoid is centered at the origin, and the constant $n^{3 / 2}$ can be replaced by n. We refer the reader to [Liu and Wang 2015] for a simple proof of the existence and uniqueness of such an ellipsoid.

By John's lemma we can show the following property of convex functions:
Lemma 2.4. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Let L be a supporting function of u. Then any extreme point of $\{u=L\}$ is localized.

Proof. Suppose to the contrary that there exists an extreme point x_{0} of $\{u=L\}$ which is not localized. Then there exist sequences $x_{k} \rightarrow x_{0}$ and $h_{k} \rightarrow 0$ such that $x_{0} \in S_{h_{k}}\left(x_{k}\right)$, and that $S_{h_{k}}\left(x_{k}\right)$ contains a segment of length greater than or equal to some positive constant δ. Since $S_{h_{k}}\left(x_{k}\right)$ is convex and centred at x_{k}, by John's lemma there exists a unit vector ξ_{k} such that I_{k}, the segment connecting $x_{k}-\delta /\left(2 n^{3 / 2}\right) \xi_{k}$ and $x_{k}+\delta /\left(2 n^{3 / 2}\right) \xi_{k}$, is contained in $S_{h_{k}}\left(x_{k}\right)$. Denote by L_{k} the defining function of $S_{h_{k}}\left(x_{k}\right)$, namely $S_{h_{k}}\left(x_{k}\right)=\left\{u \leq L_{k}\right\}$. Then it is easy to see that $D L_{k}$ is bounded; hence, by passing to a subsequence, $L_{k} \rightarrow L_{\infty}$ for some linear function L_{∞}. Also by passing to a subsequence we may assume $\xi_{k} \rightarrow \xi_{\infty}$ for some unit vector ξ_{∞}. Then u is linear on I_{∞}, which is the segment connecting $x_{0}-\delta /\left(2 n^{3 / 2}\right) \xi_{\infty}$ and $x_{0}+\delta /\left(2 n^{3 / 2}\right) \xi_{\infty}$. Hence $I_{\infty} \subset\{u=L\}$, which contradicts the assumption that x_{0} is an extreme point of $\{u=L\}$.

The following property of sections of convex functions was proved by Caffarelli [1992a]. Here we provide a different proof by using a well-known fact that if a continuous map from a ball to itself fixes the boundary then it must be surjective. We learned this method from Wang; see [Sheng et al. 2004, Section 4].

Lemma 2.5. Let $u: \mathbb{R}^{n} \rightarrow[0, \infty]$ be a convex function. Assume that:
(1) $u(0)=0, u \geq 0$.
(2) u is finite in a neighbourhood of 0 .
(3) The graph of u contains no complete lines.

Then for $h>0$ there exists a slope p such that the centre of mass of the section

$$
S_{h, p}:=\{x \mid u \leq x \cdot p+h\}
$$

is defined and equal to 0 .
Proof. Let

$$
\begin{cases}u_{k}(x)=u(x) & \text { in } B_{k}, \tag{2-1}\\ u_{k}=\infty & \text { in } \mathbb{R}^{n}-B_{k} .\end{cases}
$$

We only need to show the existence of sections $S^{k}:=\left\{x \mid u_{k} \leq x \cdot p_{k}+h\right\}$ centred at 0 with bounded p_{k}. Then $S_{h, p}=\lim _{k \rightarrow \infty} S^{k}$ is the desired section in the lemma.

Take a large ball B_{r}. For any $p \in B_{r}$, let z_{p} be the centre of mass of the section $S_{p}:=\left\{x \mid u_{k}(x) \leq x \cdot p+h\right\}$. Then we obtain a mapping $M_{1}: p \rightarrow z_{p}$ from B_{r} to \mathbb{R}^{n}. If $p \in \partial B_{r}$, it is easy to see that $p \cdot z_{p}>0$ provided r is sufficiently large.

If there is no $p \in B_{r}$ such that $z_{p}=0$, then we can define a mapping $M_{2}: z_{p} \rightarrow t_{p} z_{p}$, where $t_{p}>0$ is a constant such that $t_{p} z_{p} \in \partial B_{r}$. We then obtain a continuous mapping $M=M_{2} \circ M_{1}$ from B_{r} to ∂B_{r} with the property that

$$
\begin{equation*}
p \cdot M(p)>0 \quad \text { on } \partial B_{r} . \tag{2-2}
\end{equation*}
$$

To get a contradiction, we extend the mapping M to $B_{2 r}$ as follows. For any point $p \in \partial B_{2 r}$, let $p_{1}=p, p_{0}=\frac{1}{2} p \in \partial B_{r}$ and $p_{t}=(1-t) p_{0}+p_{1}$. We extend the mapping M to $B_{2 r}$ by letting $M\left(p_{t}\right)=(1-t) M\left(p_{0}\right)+t p_{1}$. Then, by (2-2), $M(p) \neq 0$ on $B_{2 r}$ and M is the identity mapping on $\partial B_{2 r}$. This is a contradiction.

Hence, for each $k>0$, there exists a $p_{k} \in \mathbb{R}^{n}$ such that $S^{k}:=\left\{x \mid u_{k} \leq x \cdot p_{k}+h\right\}$ is centred at 0 . Moreover, $\left|p_{k}\right| \leq C$ for some constant independent of k. Indeed, we can argue as follows: By rotating the coordinates we may assume $p_{k}=(a, 0, \ldots, 0)$ with $a>0$. Let $\alpha^{+}=\sup \left\{x_{1} \mid\left(x_{1}, 0, \ldots, 0\right) \in S^{k}\right\}$ and $\alpha^{-}=-\inf \left\{x_{1} \mid\left(x_{1}, 0, \ldots, 0\right) \in S^{k}\right\}$. Then $\alpha^{+} / \alpha^{-} \rightarrow \infty$ as $a \rightarrow \infty$. Since S_{k} is centred at $0, a$ cannot be too large.

The following Alexandrov-type estimates were proved by Caffarelli [1996]:
Lemma 2.6. Let u be a convex solution of

$$
\operatorname{det} D^{2} u=d \mu
$$

in the convex domain S with $u=0$ on ∂S. Assume S is normalized, namely $B_{1} \subset S \subset n^{3 / 2} B_{1}$. Assume $d \mu(S) \leq \theta d \mu\left(\frac{1}{2} S\right)$ for some constant θ, where $\frac{1}{2} S$ is a dilation of S with respect to the origin.
(a) $(1 / C)\left|\inf _{S} u\right|^{n} \leq d \mu(S) \leq C\left|\inf _{S} u\right|^{n}$, where C is a constant depending only on θ.
(b) $|u(x)|^{n} \leq C d \mu(S) d(x, \partial S)$.

3. Global C^{1} regularity

In this section, we prove Theorem 2.1(i).
Lemma 3.1. Suppose u is a globally Lipschitz convex function. Assume that u is C^{1} at all of the extreme points of a convex set $K=\{u=L\}$, where L is a linear function satisfying $u \geq L$ and $u(y)=L(y)$ for some $y \in \mathbb{R}^{n}$. Then u is C^{1} on K.

Proof. By subtracting L we may assume $K=\{u=0\}$. If K is a bounded convex set, then for any $x \in K$ we have

$$
x=\sum_{i=1}^{k} \lambda_{i} x_{i}
$$

where $x_{i}, i=1, \ldots, k$, are extreme points of $K, \lambda_{i} \geq 0$ and $\sum_{i=1}^{k} \lambda_{i}=1$. Since u is C^{1} at $x_{i}, i=1, \ldots, k$, we have $0 \leq u(z)=o\left(z-x_{i}\right), i=1, \ldots, k$. Now, by convexity we have

$$
0 \leq u(z)=u\left(\sum_{i=1}^{k} \lambda_{i}\left(z-x+x_{i}\right)\right) \leq \sum_{i=1}^{k} \lambda_{i} u\left(z-x+x_{i}\right)=\sum_{i=1}^{k} \lambda_{i} o(z-x)=o(z-x)
$$

Hence, u is C^{1} at x.
If K is unbounded, it is well-known that $K=\operatorname{covext}[K]+\operatorname{rc}[K]$, where covext $[K]$ is the convex hull of the extreme points of K, and $\operatorname{rc}[K]:=\lim _{\lambda \downarrow 0} \lambda K$ is the recession cone of K. Hence we need only to show that u is C^{1} at points represented by $x=x_{0}+q$, where x_{0} is an extreme point of K and $q \in \operatorname{rc}[K]$. For any $M \geq 0$, by using the facts that u is Lipschitz and $x_{1}:=x_{0}+M q \in K$ we have that $u\left(z-x+x_{1}\right) \leq C|z-x|$. By convexity we have

$$
u(z)=u\left(\frac{M-1}{M}\left(z-x+x_{0}\right)+\frac{1}{M}\left(z-x+x_{1}\right)\right) \leq \frac{M-1}{M} o(|z-x|)+\frac{C}{M}|z-x| .
$$

By letting $M \rightarrow \infty$ we have $0 \leq u(z) \leq o(|z-x|)$. Hence u is C^{1} at x.
Since u is convex, for any unit vector γ the lateral derivatives

$$
\partial_{\gamma}^{+} u(x)=: \lim _{t \searrow 0} t^{-1}(u(x+t \gamma)-u(x)) \quad \text { and } \quad \partial_{\gamma}^{-} u(x)=: \lim _{t \searrow 0} t^{-1}(u(x)-u(x-t \gamma))
$$

exist. To prove that $u \in C^{1}(\bar{\Omega})$, it suffices to prove that

$$
\begin{equation*}
\partial_{\gamma}^{+} u\left(x_{0}\right)=\partial_{\gamma}^{-} u\left(x_{0}\right) \tag{3-1}
\end{equation*}
$$

at any point $x_{0} \in \partial \Omega$ for any unit vector γ. By convexity, it suffices to prove this for $\xi=\xi_{k}$ for all $k=1,2, \ldots, n$, where $\xi_{k}, k=1, \ldots, n$, are any n linearly independent unit vectors.

Proof of Theorem 2.1(i). By Lemmas 3.1 and 2.4 we only need to show that u is C^{1} at localized points. Assume to the contrary that u is not C^{1} at $x_{0} \in \partial \Omega$. Let us assume that $x_{0}=0, u(0)=0, u \geq 0$ and $\partial_{1}^{+} u(0)>\partial_{1}^{-} u(0)=0$. Since $\partial \Omega$ is Lipschitz, we may also assume that $-t e_{1} \in \Omega$ for $t \in(0,1)$, where e_{1} is the first coordinate direction.

Figure 1. Centred section.

Now we consider a section $S_{h}\left(x^{\prime}\right)$, where $x^{\prime}=\left(-a^{\prime}, 0, \ldots, 0\right)$ for some small constant $0<a^{\prime}<\frac{1}{2} r_{0}$, where $r_{0}:=r_{x_{0}}$ is the radius in the condition of Theorem 2.1(i). Note that by John's lemma there exists an ellipsoid E with centre x^{\prime} such that $E \subset S_{h}\left(x^{\prime}\right) \subset n^{3 / 2} E$. Since u is Lipschitz and $\partial_{1}^{+} u(0)>0$, we have that $C^{-1} \varepsilon \leq u\left(\varepsilon e_{1}\right) \leq C \varepsilon$ for any small positive ε, where C is a positive constant. Since $\partial_{1}^{-} u(0)=0$, we have $u\left(-M a^{\prime} e_{1}\right)=o\left(a^{\prime}\right)$, where $M=2 n^{3 / 2}$. Hence, we can choose small ε and a^{\prime} so that the following properties hold:
(1) $o\left(a^{\prime}\right)=u\left(-M a^{\prime} e_{1}\right) \leq C^{-1} \varepsilon \ll a^{\prime}$,
(2) εe_{1} is on the boundary of some section $S_{h}\left(x^{\prime}\right)$, and
(3) $S_{h}\left(x^{\prime}\right) \subset B_{r_{0}}(0)$.

The existence of such a section $S_{h}\left(x^{\prime}\right)$ in (2) follows from the property that a centred section, say $S_{h}(x)$, various continuously with respect to the height h; see [Caffarelli and McCann 2010, Lemma A.8], and (3) follows from the assumption that $x_{0}=0$ is localized.

Let L be the defining linear function of $S_{h}\left(x^{\prime}\right)$; by (1) it is easy to see that L is increasing in the e_{1} direction (see Figure 1); hence,

$$
\begin{equation*}
(L-u)(0) \geq(L-u)\left(x^{\prime}\right)=h . \tag{3-2}
\end{equation*}
$$

Since $\int_{S_{h}\left(x^{\prime}\right)} f \leq C \int_{\frac{1}{2} S_{h}\left(x^{\prime}\right)} f$, we have that

$$
\begin{equation*}
(L-u)(0) \leq C\left(\frac{\varepsilon}{a^{\prime}}\right)^{\frac{1}{n}} h, \tag{3-3}
\end{equation*}
$$

contradicting (3-2), since $a^{\prime} \gg \varepsilon$. Here we have followed the argument of [Caffarelli 1996]. Indeed, let A be an affine transform normalizing $S_{h}\left(x^{\prime}\right)$; then $v:=(u-L)\left(A^{-1} x\right) / h$ satisfies det $D^{2} v=f\left(A^{-1} x\right) / h^{n}$ in $A\left(S_{h}\left(x^{\prime}\right)\right)$ and $v=0$ on $\partial S_{h}\left(x^{\prime}\right)$. Hence, by applying Lemma 2.6 to v and translating back to u we get (3-3).

Hence, u must be C^{1} at any localized point x_{0}. Therefore $u \in C^{1}\left(\mathbb{R}^{n}\right)$.

Remark 3.2. The proof of Theorem 2.1(i) shares some similarities with the proof of C^{1} regularity for the obstacle problem in [Savin 2005] (see Proposition 2.8 in that paper).

4. Global $C^{1, \alpha}$ regularity

In this section, we prove Theorem 2.1(ii). First we point out that to prove $u \in C^{1, \alpha}(\bar{\Omega})$, it suffices to prove that there exist constants $C>0, \alpha \in(0,1)$ and $r>0$ such that, for any point $x_{0} \in \bar{\Omega}$,

$$
\begin{equation*}
u(x)-\ell_{x_{0}}(x) \leq C\left|x-x_{0}\right|^{1+\alpha} \tag{4-1}
\end{equation*}
$$

for every $x \in B_{r}\left(x_{0}\right) \cap \bar{\Omega}$. From (4-1) one can prove that $u \in C^{1, \alpha}(\bar{\Omega})$, using the convexity of u. In the following we will show that a relaxed version of (4-1) is enough to show $u \in C^{1, \alpha}(\bar{\Omega})$, and it has the advantage of avoiding some annoying limiting picture.

By the assumption of Theorem 2.1(ii) we write $\Omega=U-\sum_{i=1}^{k} C_{i}$, where U is an open convex set, and $C_{i}, i=1, \ldots, k$, are closed disjoint convex subsets of U; see Figure 2 . Given any $x \in \bar{\Omega}$, we introduce the function

$$
\begin{equation*}
\rho_{x}(t):=\sup \left\{u(z)-u(x)-D u(x) \cdot(z-x)| | z-x \mid=t, x+s \frac{z-x}{|z-x|} \in \bar{\Omega} \text { for any } s \in\left[0, r_{0}\right]\right\} \tag{4-2}
\end{equation*}
$$

where r_{0} is a fixed small positive constant depending on Ω, and its smallness will be clear in the proof of Lemma 4.1. Indeed, we need to take r_{0} small enough that $B_{r_{0}}(x) \cap \partial U$ can be represented as the graph of some Lipschitz function for any $x \in \partial U$ with the Lipschitz constant independent of x, and that

$$
r_{0} \ll \min \left\{\operatorname{dist}\left(\partial U, \partial C_{i}\right), \operatorname{dist}\left(\partial C_{j}, \partial C_{l}\right) \mid i=1, \ldots, k, 1 \leq j \neq l \leq k\right\}
$$

Lemma 4.1. Suppose that there exist $r>0$ and $\delta \in(0,1)$ such that for any $x \in \bar{\Omega}$ we have

$$
\begin{equation*}
\rho_{x}\left(\frac{1}{2} t\right) \leq \frac{1}{2}(1-\delta) \rho_{x}(t) \tag{4-3}
\end{equation*}
$$

whenever $t \leq r$. Then $u \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$.

Figure 2. Domain Ω.

Proof. For $t=r / 2^{k}$, we have

$$
\begin{equation*}
\rho_{x}(t) \leq \frac{(1-\delta)^{k}}{2^{k}} \rho_{x}(r) \leq \frac{t}{r}(1-\delta)^{\log (r / t) / \log 2} \rho_{x}(r) \leq C t^{1+\alpha} \tag{4-4}
\end{equation*}
$$

where C depends on r, δ and $\rho_{x}(r)$, and $\alpha=-\log (1-\delta) / \log 2$.
Suppose $x, y \in \bar{\Omega}$ and $|x-y| \ll r \ll r_{0}$. We need to consider two cases:
(a) x, y are close to ∂U.
(b) x, y are close to ∂C_{i} for some $1 \leq i \leq k$.

We will deal with case (a) first; case (b) follows from a similar argument. Without loss of generality we may assume that $B_{3 r_{1}} \subset U$ for some small fixed r_{1}, that $r_{0} \ll r_{1}$, and that $\operatorname{dist}\left(\partial B_{3 r_{1}}, \partial U\right) \gg r_{1}$. Denote by $\mathscr{C}_{x, r_{1}}$ the convex hull of x and $B_{r_{1}}$. By convexity, $\mathscr{C}_{x, 3 r_{1}} \subset U$. Then we prove the following claim:
Claim 1. For any $z \in B_{r / 2}(x) \cap \mathscr{C}_{x, 2 r_{1}}$, we have $|D u(x)-D u(z)| \leq C|x-z|^{\alpha}$.
Proof of Claim 1. Observe that $\operatorname{dist}\left(z, \partial \mathscr{C}_{x, 3 r_{1}}\right) \geq(1 / C)|x-z|$ for some large constant C. Hence, $B_{(1 / C)|x-z|}(z) \subset B_{r} \cap \mathscr{C}_{x, 3 r_{1}}$. Now, for any $\tilde{z} \in \partial B_{(1 / C)|x-z|}(z)$, by (4-4) we have that

$$
\begin{equation*}
u(\tilde{z}) \leq u(x)+D u(x) \cdot(\tilde{z}-x)+C|\tilde{z}-x|^{1+\alpha} . \tag{4-5}
\end{equation*}
$$

By convexity we also have

$$
\begin{equation*}
u(\tilde{z}) \geq u(z)+D u(z) \cdot(\tilde{z}-z) \tag{4-6}
\end{equation*}
$$

and

$$
\begin{equation*}
u(z) \geq u(x)+D u(x) \cdot(z-x) \tag{4-7}
\end{equation*}
$$

By (4-5), (4-6) and (4-7) we have

$$
\begin{equation*}
(D u(z)-D u(x)) \cdot(\tilde{z}-z) \leq C|\tilde{z}-x|^{1+\alpha} . \tag{4-8}
\end{equation*}
$$

Note that $|\tilde{z}-z| \approx|\tilde{z}-x| \approx|z-x|$ provided $\tilde{z} \in \partial B_{(1 / C)|x-z|}(z)$ and C is sufficiently large. Since (4-8) holds for any $\tilde{z} \in \partial B_{(1 / C)|x-z|}(z)$, it follows that $|D u(x)-D u(z)| \leq C|x-z|^{\alpha}$.

Now suppose $|x-y| \ll r$. If either $y \in \mathscr{C}_{x, 2 r_{1}}$ or $x \in \mathscr{C}_{y, 2 r_{1}}$ holds, then by Claim 1 we have $|D u(x)-D u(y)| \leq C|x-y|^{\alpha}$. Otherwise one may find a point $z \in \mathscr{C}_{x, r_{1}} \cap \mathscr{C}_{y, r_{1}}$ such that $|z-x| \approx$ $|z-y| \approx|x-y|$. Then by applying the estimate in Claim 1 we have

$$
|D u(x)-D u(y)| \leq|D u(x)-D u(z)|+|D u(y)-D u(z)| \leq C\left(|x-z|^{\alpha}+|y-z|^{\alpha}\right) \leq C|x-y|^{\alpha} .
$$

We can prove case (b) by a similar argument. Indeed, $\partial C_{1} \cap B_{r}(x)$ can be represented as the graph of some Lipschitz function for any fixed $x \in \partial C_{1}$ provided $r \ll r_{0}$. Then, by the assumption that the C_{i} are disjoint, it is easy to find a small ball $B_{3 r_{1}} \subset \Omega$ such that $\mathscr{C}_{z, 3 r_{1}} \subset \Omega$ for any $z \in B_{r}(x) \cap \bar{\Omega}$. Then, by a similar argument to the proof of case (a), we can show that $|D u(x)-D u(y)| \leq C|x-y|^{\alpha}$ provided $|x-y| \ll r$.

The following lemma shows that the centred sections are well-localized provided the heights are sufficiently small.

Lemma 4.2. There exists a height $h_{0}>0$ such that, for any $x \in \bar{\Omega}$, the section $S_{h}(x)$ intersects at most one of $\partial U, \partial C_{i}, i=1, \ldots, m$, provided $h \leq h_{0}$.
Proof. Suppose to the contrary there exist sequences $x_{k} \in \bar{\Omega}$ and $h_{k} \rightarrow 0$, such that $S_{h_{k}}\left(x_{k}\right)$ intersects at least two of $\partial U, \partial C_{i}, i=1, \ldots, m$. Passing to a subsequence we may assume $x_{k} \rightarrow y \in \bar{\Omega}$. Since u is strictly convex in the interior of Ω, we have either $y \in \partial U$ or $y \in \partial C_{i}$ for some i. Denote by L_{k} the defining function of $S_{h_{k}}\left(x_{k}\right)$, namely $S_{h_{k}}\left(x_{k}\right)=\left\{u \leq L_{k}\right\}$. Then, passing to a subsequence we may assume $L_{k} \rightarrow L$ for some affine function L, and $S_{h_{k}}\left(x_{k}\right) \rightarrow S \subset\{u \leq L\}$. It follows from the properties of $S_{h_{k}}\left(x_{k}\right)$ that:
(i) S is centred at y.
(ii) S intersects at least two of $\partial U, \partial C_{i}, i=1, \ldots, m$.
(iii) $L(y)=\lim _{k \rightarrow \infty} L_{k}\left(x_{k}\right)=\lim _{k \rightarrow \infty} u\left(x_{k}\right)+h_{k}=u(y)$.

By (i) and (iii) we have that $S \subset\{u=L\}$. Then by (ii) we see that S passes through the interior of Ω, which contradicts the fact that u is strictly convex in the interior of Ω.
Proof of Theorem 2.1(ii). Step 1. The main observation in this step is that if (4-3) is violated for small δ, then u is close to a linear function on a segment connecting x and some point $z_{\delta} \in \bar{\Omega}$. Hence, if (4-3) is violated for arbitrary r, δ, then one can find a sequence of points x_{k} such that u is more and more linear around x_{k} in some direction as $k \rightarrow \infty$. The "almost linearity" will be clear if we perform blow-up and an affine transform on u properly restricted to some carefully chosen section around x_{k}, and a line segment will appear on the graph of the limiting function. The detailed argument goes as follows.

To prove $\rho_{x}(t) \leq C t^{1+\alpha}$ for any $x \in \bar{\Omega}$ and any $t \leq r$, by Lemma 4.1 we assume to the contrary that there exist sequences $t_{k} \leq 1 / k, \delta_{k}=1 / k$ and $x_{k} \in \bar{\Omega}$ such that

$$
\begin{equation*}
\rho_{x_{k}}\left(\frac{1}{2} t_{k}\right) \geq \frac{1}{2}(1-1 / k) \rho_{x_{k}}\left(t_{k}\right) . \tag{4-9}
\end{equation*}
$$

Suppose the supremum in (4-2) (when $x=x_{k}$ and $t=\frac{1}{2} t_{k}$) is attained at $\frac{1}{2}\left(x_{k}+z_{k}\right) \in \bar{\Omega}$; by the definition of ρ_{x} we see that $\overline{z_{k} x_{k}} \subset \bar{\Omega}$, where $\overline{z_{k} x_{k}}$ denotes the segment connecting z_{k} and x_{k}. By passing to a subsequence, we may assume $x_{k} \rightarrow x_{\infty} \in \partial \Omega$.
Choosing sections. For each k, let $S_{h_{k}}\left(x_{k}\right)$ be a section of u with centre x_{k}, where h_{k} is chosen so that $z_{k} \in \partial S_{h_{k}}\left(x_{k}\right)$. Similar to the proof of Theorem 2.1(i), the existence of such a section follows from the property that a centred section, say $S_{h}(x)$, varies continuously with respect to the height h; see [Caffarelli and McCann 2010, Lemma A.8] for a proof. It is easy to see that $h_{k} \rightarrow 0$.

Normalization. Let L_{k} be the defining function of $S_{h_{k}}\left(x_{k}\right)$. We normalize the section $S_{h_{k}}\left(x_{k}\right)$ by a linear transformation T_{k}, and let $S_{k}=T_{k}\left(S_{h_{k}}\left(x_{k}\right)\right)$. Note that $T_{k}\left(x_{k}\right)=0$ and $B_{1} \subset S_{k} \subset n^{3 / 2} B_{1}$. Also we let $u_{k}=\left(u-L_{k}\right)\left(T_{k}^{-1} x\right) / h_{k}$. Then u_{k} solves

$$
\begin{cases}\operatorname{det} D^{2} u_{k}=f_{k} & \text { in } S_{k}, \tag{4-10}\\ u_{k}=0 & \text { on } \partial S_{k},\end{cases}
$$

where $f_{k}=h_{k}^{-n}\left(\operatorname{det} T_{k}\right)^{-1} f\left(T_{k}^{-1} x\right) / g\left(D u\left(T_{k}^{-1} x\right)\right)$. After a rotation of coordinates, we may assume $T_{k}\left(z_{k}\right)$ is on the x_{1}-axis.

Linearity estimate. Let

$$
v_{k}(x):=u(x)-D u\left(x_{k}\right) \cdot\left(x-x_{k}\right)-u\left(x_{k}\right) ;
$$

from (4-9) we have that $v_{k}\left(\frac{1}{2}\left(x_{k}+z_{k}\right)\right) \geq \frac{1}{2}(1-1 / k) v_{k}\left(z_{k}\right)$. Let

$$
\tilde{L}_{k}(x):=L_{k}(x)-D u\left(x_{k}\right) \cdot\left(x-x_{k}\right)-u\left(x_{k}\right) .
$$

Then we have that $S_{h_{k}}\left(x_{k}\right)=\left\{v_{k} \leq \tilde{L}_{k}\right\}$. Since $S_{h_{k}}\left(x_{k}\right)$ is centred at $x_{k}, z_{k} \in \partial S_{h_{k}}\left(x_{k}\right), v_{k} \geq 0$ and $\tilde{L}_{k}\left(x_{k}\right)=h_{k}$, by John's lemma we have that $0 \leq \tilde{L}_{k}\left(z_{k}\right) \leq 2 n^{3 / 2} h_{k}$. Now,

$$
\left(v_{k}-\tilde{L}_{k}\right)\left(\frac{1}{2}\left(x_{k}+z_{k}\right)\right)-\frac{1}{2}\left(1-\frac{1}{k}\right)\left(\left(v_{k}-\tilde{L}_{k}\right)\left(x_{k}\right)+\left(v_{k}-\tilde{L}_{k}\right)\left(z_{k}\right)\right) \geq-\frac{1}{2 k}\left(\tilde{L}_{k}\left(x_{k}\right)+\tilde{L}_{k}\left(z_{k}\right)\right) \geq-\frac{3 n^{3 / 2}}{2 k} h_{k}
$$

Since $v_{k}-\tilde{L}_{k}=u-L_{k}$, from the above estimate and the definition of u_{k} we have

$$
\begin{equation*}
u_{k}\left(\frac{1}{2} T_{k} z_{k}\right) \geq \frac{1}{2}\left(1-\frac{1}{k}\right)\left(u_{k}(0)+u_{k}\left(T_{k} z_{k}\right)\right)-\frac{3 n^{3 / 2}}{2 k} \tag{4-11}
\end{equation*}
$$

Limiting problem. Now, by convexity we may take limits $S_{k} \rightarrow S_{\infty}$ and $u_{k} \rightarrow u_{\infty}$. Let f_{∞} be the weak limit of f_{k}. Then u_{∞} satisfies det $D^{2} u_{\infty}=f_{\infty}$ in the Alexandrov sense. Let $z_{\infty}:=\lim _{k \rightarrow \infty} T_{k}\left(z_{k}\right)$. By (4-11) we have

$$
\begin{equation*}
u_{\infty}=L \text { on the segment connecting } 0 \text { and } z_{\infty} \tag{4-12}
\end{equation*}
$$

where L is a supporting function of u_{∞} at 0 .
Step 2. In this step, we need to consider two situations:
(a) $x_{\infty} \in \partial C_{i}$ for some $1 \leq i \leq k$.
(b) $x_{\infty} \in \partial U$.

In each case, a contradiction is obtained at some carefully chosen extreme point (denoted by y) of $\left\{u_{\infty}=L\right\}$. Heuristically, we can choose a section of u_{∞} (denoted by S) around y such that y is much closer to ∂S in one direction than in the opposite direction. Hence, on one hand the Alexandrov-type estimate Lemma 2.6(a) shows that h, the height of the section S, should not be too small. On the other hand, Lemma 2.6 (b) shows that h is very small, which is a contradiction.

We deal with case (a) first.
Proof in case (a). Note that since $x_{\infty} \in \partial C_{i}$ for some $1 \leq i \leq k$ and $h_{k} \rightarrow 0$ as $k \rightarrow \infty$, by Lemma 4.2 we have that the support of f_{k} can be represented by $S_{k}-A_{k}$ when k is large, where A_{k} is an open convex subset of S_{k}. Let the convex set A_{∞} be the limit of the A_{k}. Then $S_{\infty}-A_{\infty}$ is the support of f. Since the centre of mass of S_{∞} is 0 and $0 \in S_{\infty}-A_{\infty}$, we have that the volume of $S_{\infty}-A_{\infty}$ is positive. Hence, it is easy to see that there exists a constant C such that $C^{-1} \chi_{S_{\infty}-A_{\infty}} \leq f_{\infty} \leq C \chi_{S_{\infty}-A_{\infty}}$.

Since $\overline{z_{k} x_{k}} \subset \bar{\Omega}$, we have $\overline{0 z_{\infty}} \cap A_{\infty}=\varnothing$.
Subcase 1: $\left\{u_{\infty}=L\right\}$ contains an interior point of $S_{\infty}-\bar{A}_{\infty}$.
Subcase 2: $\left\{u_{\infty}=L\right\} \cap S_{\infty} \subset \bar{A}_{\infty}$.

Figure 3. Two related sections.
For subcase 1 , take $x_{0} \in\left(S_{\infty}-\bar{A}_{\infty}\right) \cap\{u=L\}$. Take δ sufficiently small that $B_{\delta}\left(x_{0}\right) \subset S_{\infty}-\bar{A}_{\infty}$.
Choosing an extreme point. Let $y \in\{u=L\}$ be the point such that:
(1) $u_{\infty}(y)=\inf _{\{u=L\}} u_{\infty}$.
(2) y is an extreme point of the convex set $\left\{u_{\infty}=L\right\} \cap\left\{u_{\infty}=u(y)\right\}$.

It is easy to see that y is an extreme point of $\left\{u_{\infty}=L\right\}$.
Cutting a suitable section. By rotating the coordinates we may assume that $\left\{u_{\infty}=L\right\} \subset\left\{x_{1} \leq b\right\}$ for some constant $b>0$, and that $\left\{u_{\infty}=L\right\} \cap\left\{x_{1}=b\right\}=\{y\}$. Then we consider the section $S=$ $\left\{u_{\infty}<L+\varepsilon\left(x_{1}-b+a\right)\right\}$ (see Figure 3), where we fix a sufficiently small and then take $\varepsilon \ll a$, so that $S \Subset S_{\infty}$ and $a \gg d:=\max \left\{x_{1} \mid\left(x_{1}, 0, \ldots, 0\right) \in S\right\}-b$.

Using Alexandrov estimates to obtain a contradiction. On one hand, by the Alexandrov estimate we have

$$
\begin{equation*}
|S|^{2}>C \frac{a}{d} \varepsilon^{n} \tag{4-13}
\end{equation*}
$$

On the other hand, we consider another section $\tilde{S}=\left\{u_{\infty}<L+C \varepsilon\right\}$. Since u is Lipschitz, it is easy to see that $S \subset \tilde{S}$ provided C (independent of ε) is sufficiently large. By convexity we have $\left|B_{\delta}\left(x_{0}\right) \cap \tilde{S}\right| \geq C|\tilde{S}|$
for some constant C. We claim

$$
\begin{equation*}
|S|^{2} \leq C \varepsilon^{n} \tag{4-14}
\end{equation*}
$$

where the constant C is independent of d. The claim follows from the following argument. Let $v=$ $u_{\infty}-L-C \varepsilon$. Let $G:=\tilde{S} \cap B_{\delta}\left(x_{0}\right)$. By John's lemma, there exists an affine transformation A with $\operatorname{det} A=1$ such that

$$
B_{\bar{r}} \subset A(G) \subset n^{3 / 2} B_{\bar{r}}
$$

for some \bar{r}. Now $\bar{v}=v\left(A^{-1} x\right)$ satisfies $\operatorname{det} D^{2} \bar{v}=f_{\infty}\left(A^{-1} x\right) \geq C^{-1}$ in $A(G)$ and $|v| \leq C \varepsilon$ in $A(G)$. Then we have

$$
\begin{equation*}
C^{-1}|G| \leq \int_{G / 2} f_{\infty}=\left|\partial \bar{v}\left(A\left(\frac{1}{2} G\right)\right)\right| \leq C \frac{\varepsilon^{n}}{\bar{r}^{n}} \tag{4-15}
\end{equation*}
$$

Equation (4-14) follows from (4-15) and the fact that $|\tilde{S}| \approx|G| \approx \bar{r}^{n}$. Since $d \ll a$, it is easy to see that (4-14) contradicts (4-13).

For subcase 2, we need to choose the extreme point more carefully.
Choosing an extreme point. Let $\tilde{K} \subset \mathbb{R}^{n}$ be a supporting plane of the convex set A_{∞} at 0 . If A_{∞} is not C^{1} at 0 we choose \tilde{K} to be the one containing $\overline{z_{\infty} 0}$. Let y^{\prime} be the point where u_{∞} attains its minimum on $D:=\{u=L\} \cap \tilde{K} \cap \bar{S}_{\infty}$. It is easy to check that D is a convex set, and the set $D \cap\left\{x \mid u(x)=u\left(y^{\prime}\right)\right\}$ is also convex. Let y be an extreme point of $D \cap\left\{x \mid u(x)=u\left(y^{\prime}\right)\right\}$. We claim that y is an extreme point of $\{u=L\}$. Indeed, suppose not; then there exist $y_{1}, y_{2} \in\{u=L\} \cap S_{\infty} \subset \bar{A}_{\infty}$ such that $y=\frac{1}{2}\left(y_{1}+y_{2}\right)$. Since \tilde{K} is a supporting plane of A_{∞} and $y \in \bar{A}_{\infty}$, we have that $y_{1}, y_{2} \in D$. However, since $u(y)=\min \{u(x) \mid x \in D\}$, we have $y_{1}, y_{2} \in D \cap\left\{x \mid u(x)=u\left(y^{\prime}\right)\right\}$, which contradicts the choice of y as an extreme point of $D \cap\left\{x \mid u(x)=u\left(y^{\prime}\right)\right\}$.

Cutting a suitable section. By subtracting L and translating the coordinates we may assume that $y=0$, that $u_{\infty} \geq 0$, that $u_{\infty}\left(t e_{1}\right)=0$ for $t \in(0,1)$, and that $u_{\infty}\left(t e_{1}\right)>0$ for $t<0$. Let $0<\varepsilon \ll a$ be small positive numbers. Let $S_{h}\left(a e_{1}\right)$ be a section of u_{∞} with centre $a e_{1}$, where h is chosen so that $-\varepsilon e_{1} \in \partial S_{h}\left(a e_{1}\right)$. Since y is an extreme point of $\{u=L\}$, we have that $S_{h}\left(a e_{1}\right) \Subset S_{\infty}$ provided h is sufficiently small. Note that $h \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Using Alexandrov estimates to obtain a contradiction. Since A_{∞} is convex, it is easy to see that

$$
\int_{S_{h}\left(a e_{1}\right)} f_{\infty} \leq C \int_{\frac{1}{2} S_{h}\left(a e_{1}\right)} f_{\infty}
$$

for some constant C. Let L_{1} be the defining function of the section $S_{h}\left(a e_{1}\right)$, which is obviously decreasing in the e_{1} direction. Hence $\left(L_{1}-u_{\infty}\right)(0) \geq h$. Then by Lemma 2.6 we also have

$$
\left(L_{1}-u_{\infty}\right)(0) \leq C\left(\frac{\varepsilon}{a}\right)^{1 / n} h
$$

which contradicts the previous estimate.
Proof in case (b). The proof in case (b) follows from a similar argument to the proof of [Caffarelli 1992a, Lemma 4]; we sketch the argument here. Note that f_{k} is now supported in a convex domain $D_{k} \subset \bar{S}_{k}$.

Let $D_{\infty}:=\lim _{k \rightarrow \infty} D_{k}$. We have $z_{\infty} \in D_{\infty}$. Let L be the supporting function of u_{∞} at 0 such that $\overline{0 z_{\infty}} \subset\left\{u_{\infty}=L\right\}$. Similarly to the proof of subcase 1 of case (a), let $y \in\left\{u_{\infty}=L\right\}$ be the point such that:
(1) $u_{\infty}(y)=\inf _{\left\{u_{\infty}=L\right\}} u_{\infty}$.
(2) y is an extreme point of the convex set $\left\{u_{\infty}=L\right\} \cap\left\{u_{\infty}=u(y)\right\}$.

It is easy to see that y is an extreme point of $\left\{u_{\infty}=L\right\}$. Observe that $y \in D_{\infty}$, since otherwise u_{k} has positive Monge-Ampère measure outside D_{k} for large k. Let $z=(1-\sigma) y+\sigma z_{\infty}$ for some small positive σ; we may also find a section satisfying $S_{h}(z):=\left\{u_{\infty}<L\right\} \Subset S_{\infty}$ and $y+\varepsilon\left(y-z_{\infty}\right) /\left|y-z_{\infty}\right| \in \partial S_{h}(z)$ for small $\varepsilon \ll \sigma$. Since $y \in D_{\infty}$, there exists a sequence $y_{k} \in D_{k}$ such that $y_{k} \rightarrow y$ as $k \rightarrow \infty$. Let

$$
\tilde{z}_{k}:=(1-\sigma) y_{k}+\sigma T\left(z_{k}\right) ;
$$

it is easy to see that $\tilde{z}_{k} \rightarrow z$ as $k \rightarrow \infty$. Recall that $z_{\infty}:=\lim _{k \rightarrow \infty} T\left(z_{k}\right)$ with $T\left(z_{k}\right) \in D_{k}$. Let $\tilde{S}_{k}:=\left\{u_{k} \leq L_{k}\right\}$ be a section of u_{k} centred at \tilde{z}_{k} with height h. Then, passing to a subsequence, $\tilde{S}_{k} \rightarrow S_{h}(z)$ in Hausdorff distance. In particular, $\tilde{S}_{k} \Subset S_{k}$ provided k is sufficiently large. Then, by Lemma 2.6, we have that

$$
C h \leq\left(L_{k}-u_{k}\right)\left(y_{k}\right) \leq\left(\frac{\varepsilon}{\sigma}\right)^{1 / n} h
$$

for large k, which is a contradiction because $\varepsilon \ll \sigma$.
Theorem 2.1(ii) follows from the above discussions.

References

[Brenier 1991] Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions", Comm. Pure Appl. Math. 44:4 (1991), 375-417. MR 1100809 Zbl 0738.46011
[Caffarelli 1990a] L. A. Caffarelli, "A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity", Ann. of Math. (2) 131:1 (1990), 129-134. MR 1038359 Zbl 0704.35045
[Caffarelli 1990b] L. A. Caffarelli, "Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation", Ann. of Math. (2) 131:1 (1990), 135-150. MR 1038360 Zbl 0704.35044
[Caffarelli 1991] L. A. Caffarelli, "Some regularity properties of solutions of Monge Ampère equation", Comm. Pure Appl. Math. 44:8-9 (1991), 965-969. MR 1127042 Zbl 0761.35028
[Caffarelli 1992a] L. A. Caffarelli, "Boundary regularity of maps with convex potentials", Comm. Pure Appl. Math. 45:9 (1992), 1141-1151. MR 1177479 Zbl 0778.35015
[Caffarelli 1992b] L. A. Caffarelli, "The regularity of mappings with a convex potential", J. Amer. Math. Soc. 5:1 (1992), 99-104. MR 1124980 Zbl 0753.35031
[Caffarelli 1996] L. A. Caffarelli, "Boundary regularity of maps with convex potentials, II", Ann. of Math. (2) 144:3 (1996), 453-496. MR 1426885 Zbl 0916.35016
[Caffarelli and McCann 2010] L. A. Caffarelli and R. J. McCann, "Free boundaries in optimal transport and Monge-Ampère obstacle problems", Ann. of Math. (2) 171:2 (2010), 673-730. MR 2630054 Zbl 1196.35231
[Figalli and Loeper 2009] A. Figalli and G. Loeper, " C^{1} regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two", Calc. Var. Partial Differential Equations 35:4 (2009), 537-550. MR 2496656 Zbl 1170.35400
[Figalli and Rifford 2009] A. Figalli and L. Rifford, "Continuity of optimal transport maps and convexity of injectivity domains on small deformations of $\mathbb{S}^{2} "$, Comm. Pure Appl. Math. 62:12 (2009), 1670-1706. MR 2569074 Zbl 1175.49040
[Figalli et al. 2010] A. Figalli, L. Rifford, and C. Villani, "On the Ma-Trudinger-Wang curvature on surfaces", Calc. Var. Partial Differential Equations 39:3-4 (2010), 307-332. MR 2729302 Zbl 1203.53034
[Figalli et al. 2011] A. Figalli, L. Rifford, and C. Villani, "Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds", Tohoku Math. J. (2) 63:4 (2011), 855-876. MR 2872966 Zbl 1262.58013
[Figalli et al. 2012] A. Figalli, L. Rifford, and C. Villani, "Nearly round spheres look convex", Amer. J. Math. 134:1 (2012), 109-139. MR 2876141 Zbl 1241.53031
[Figalli et al. 2013a] A. Figalli, Y.-H. Kim, and R. J. McCann, "Hölder continuity and injectivity of optimal maps", Arch. Ration. Mech. Anal. 209:3 (2013), 747-795. MR 3067826 Zbl 1281.49037
[Figalli et al. 2013b] A. Figalli, Y.-H. Kim, and R. J. McCann, "Regularity of optimal transport maps on multiple products of spheres", J. Eur. Math. Soc. (JEMS) 15:4 (2013), 1131-1166. MR 3055758 Zbl 1268.49053
[Kim and McCann 2010] Y.-H. Kim and R. J. McCann, "Continuity, curvature, and the general covariance of optimal transportation", J. Eur. Math. Soc. (JEMS) 12:4 (2010), 1009-1040. MR 2654086 Zbl 1191.49046
[Liu 2009] J. Liu, "Hölder regularity of optimal mappings in optimal transportation", Calc. Var. Partial Differential Equations 34:4 (2009), 435-451. MR 2476419 Zbl 1166.35331
[Liu and Wang 2015] J. Liu and X.-J. Wang, "Interior a priori estimates for the Monge-Ampère equation", pp. 151-177 in Surveys in differential geometry 2014: regularity and evolution of nonlinear equations, edited by H.-D. Cao et al., Surv. Differ. Geom. 19, International Press, Somerville, MA, 2015. MR 3381500 Zbl 1326.35168
[Liu et al. 2010] J. Liu, N. S. Trudinger, and X.-J. Wang, "Interior $C^{2, \alpha}$ regularity for potential functions in optimal transportation", Comm. Partial Differential Equations 35:1 (2010), 165-184. MR 2748621 Zbl 1189.35142
[Loeper 2011] G. Loeper, "Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna", Arch. Ration. Mech. Anal. 199:1 (2011), 269-289. MR 2754343 Zbl 1231.35280
[Loeper and Villani 2010] G. Loeper and C. Villani, "Regularity of optimal transport in curved geometry: the nonfocal case", Duke Math. J. 151:3 (2010), 431-485. MR 2605867 Zbl 1192.53041
[Savin 2005] O. Savin, "The obstacle problem for Monge Ampere equation", Calc. Var. Partial Differential Equations 22:3 (2005), 303-320. MR 2118901 Zbl 1084.35026
[Sheng et al. 2004] W. Sheng, N. Trudinger, and X.-J. Wang, "Convex hypersurfaces of prescribed Weingarten curvatures", Comm. Anal. Geom. 12:1-2 (2004), 213-232. MR 2074877 Zbl 1065.53008
[Trudinger and Wang 2009a] N. S. Trudinger and X.-J. Wang, "On strict convexity and continuous differentiability of potential functions in optimal transportation", Arch. Ration. Mech. Anal. 192:3 (2009), 403-418. MR 2505359 Zbl 1214.49038
[Trudinger and Wang 2009b] N. S. Trudinger and X.-J. Wang, "On the second boundary value problem for Monge-Ampère type equations and optimal transportation", Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8:1 (2009), 143-174. MR 2512204 Zbl 1182.35134

Received 20 Nov 2015. Revised 8 Mar 2016. Accepted 29 Apr 2016.
ElinA Andriyanova: elina.andriyanova@anu.edu.au
Mathematical Science Institute, The Australian National University, Canberra ACT 2601, Australia
Shibing ChEN: shibing. chen@anu.edu.au
Mathematical Science Institute, The Australian National University, Canberra ACT 2601, Australia

Analysis \& PDE

msp.org/apde

EDITORS

Editor-in-Chief
Patrick Gérard
patrick.gerard@math.u-psud.fr
Université Paris Sud XI
Orsay, France

BoARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Yuval Peres	University of California, Berkeley, USA peres@stat.berkeley.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Gilles Pisier	Texas A\&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Vaughan Jones	U.C. Berkeley \& Vanderbilt University vaughan.f.jones@vanderbilt.edu	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	e Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor
See inside back cover or msp.org/apde for submission instructions.
The subscription price for 2016 is US $\$ 235 /$ year for the electronic version, and $\$ 430 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Analysis \& PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

$$
\text { APDE peer review and production are managed by EditFlow }{ }^{\circledR} \text { from MSP. }
$$

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2016 Mathematical Sciences Publishers

ANALYSIS \& PDE

Volume 9 No. 62016

A complete study of the lack of compactness and existence results of a fractional Nirenberg 1285equation via a flatness hypothesis, IWael Abdelhedi, Hichem Chtioui and Hichem Hajaiej
On positive solutions of the (p, A)-Laplacian with potential in Morrey space 1317
Yehuda Pinchover and Georgios Psaradakis
Geometric optics expansions for hyperbolic corner problems, I: Self-interaction phenomenon 1359
Antoine Benoit
The interior C^{2} estimate for the Monge-Ampère equation in dimension $n=2$ 1419
Chuanqiang Chen, Fei Han and Qianzhong Ou
Bounded solutions to the Allen-Cahn equation with level sets of any compact topology 1433
Alberto Enciso and Daniel Peralta-Salas
Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution 1447
Ryan Hynd and Erik Lindgren
Boundary $C^{1, \alpha}$ regularity of potential functions in optimal transportation with quadratic cost 1483
Elina Andriyanova and Shibing Chen
Commutators with fractional differentiation and new characterizations of BMO-Sobolev spaces 1497Yanping Chen, Yong Ding and Guixiang Hong

[^0]: This work is supported by the Australian Research Council. The authors would like thank Professor Xu-Jia Wang for sharing his proof of Lemma 2.5.
 MSC2010: 35B45, 35J60, 49Q20, 35 J 96.
 Keywords: optimal transport, quadratic cost, boundary regularity.

