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COMMUTATORS WITH FRACTIONAL DIFFERENTIATION AND
NEW CHARACTERIZATIONS OF BMO-SOBOLEV SPACES

YANPING CHEN, YONG DING AND GUIXIANG HONG

For b ∈ L1
loc(R

n) and α ∈ (0, 1), let Dα be the fractional differential operator and T be the singular integral
operator. We obtain a necessary and sufficient condition on the function b to guarantee that [b, DαT ] is a
bounded operator on a function space such as L p(Rn) and L p,λ(Rn) for any 1< p<∞. Furthermore, we
establish a necessary and sufficient condition on the function b to guarantee that [b, DαT ] is a bounded
operator from L∞(Rn) to BMO(Rn) and from L1(Rn) to L1,∞(Rn). This is a new theory. Finally, we
apply our general theory to the Hilbert and Riesz transforms.

1. Introduction

For b∈ L1
loc(R

n), denote by B the multiplication operator defined by B f (x)=b(x) f (x) for any measurable
function f . If T is a linear operator on some measurable function space, then the commutator formed by
B and T is defined by [b, T ] f (x) := (BT −T B) f (x). Let 0≤ α≤ 1. The commutators we are interested
in here are of the form

[b, Tα] f (x)= p.v.
∫

Rn

�(x − y)

|x − y|n+α
(b(x)− b(y)) f (y) dy,

where � is homogeneous of degree zero, integrable on Sn−1.
The case α = 1 was first investigated by Calderón [1965] and now is well known as Calderón’s

first-order commutator. Calderón proved that b ∈ Lip(Rn) (Lipschitz space) is a sufficient condition for
the L p-boundedness of [b, T1] when � satisfies some assumptions but may fail to have any regularity.
However, this result has inspired many mathematicians to find new proofs, to make generalizations and to
find further applications. We refer the reader to [Calderón 1980; Coifman and Meyer 1975; 1978; Cohen
1981; Hofmann 1994; 1998], among numerous references, for its development and applications. We
would like to single out the work by Coifman and Meyer [1975], who found a new proof of Calderón’s
first-order commutator by reducing the commutator estimates to continuity of multilinear operators, which
was used to deal with higher-order commutators in the same paper and has since been widely developed.

Let us comment on the main idea of Calderón’s proof for future convenience. Firstly, the special
properties such as locality of Lipschitz functions enable Calderón to use a rotation method to reduce
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commutator estimates in the higher-dimensional cases to the one-dimensional case. Secondly, the one-
dimension commutator is just the commutator formed by b and d H/dx , the derivative of the Hilbert
transform. Then Calderón exploited the special properties of the Hilbert transform as being closely related
to analytic functions and used a characterization of the Hardy space H 1(R) in terms of the Lusin square
function to prove his theorem. It is the second part that has been reproved by Coifman and Meyer using
techniques from multilinear analysis.

The case α = 0 was first studied by Coifman, Rochberg and Weiss [Coifman et al. 1976], who showed
that b ∈ BMO(Rn), the bounded mean oscillation space, is a sufficient and necessary condition for the
L p-boundedness of [b, T0] when � ∈ Lip(Sn−1) (see also [Janson 1978; Uchiyama 1978]). For rough �,
similar results have also been obtained in [Álvarez et al. 1993; Hu 2003; Chen and Ding 2015]. It is
worth mentioning that the operator [b, T0] has a different character from [b, T1], whose research actually
was inspired by the factorization of Hardy spaces.

The case 0< α < 1 was first investigated by Segovia and Wheeden [1971], who obtained an analogue
for differentiation of a fractional order of the one-dimensional version of Calderón’s result [1965]. Murray
[1985] improved the results of [Stein and Weiss 1971], more or less along the research line initiated by
Calderón, by extending the commutator with derivatives of the Hilbert transform to those with fractional
derivatives of the Hilbert transform. It turns out that these commutators with fractional differentiation
are closely related to BMO-Sobolev spaces. Let 0< α ≤ 1, and consider the fractional differentiation
operators defined for f by

D̂αf (ξ)= |ξ |α f̂ (ξ).

The fractional Laplacian can be defined in a distributional sense for functions that are not differentiable
as long as f̂ is not too singular at the origin or, in terms of the variable x , as long as∫

Rn

| f (x)|
(|1+ |x |)α

dx <∞.

For a function f : Rn
→ R, we consider the extension u : Rn

×[0,∞)→ R that satisfies the equation

u(x, 0)= f (x), 4x u+ 1−α
y

u y + u yy = 0.

Caffarelli and Silvestre [2007] showed that

C Dαf = lim
y→0+
−y1−αu y =

1
α

lim
y→0

u(x, y)− u(x, 0)
yα

for some C depending on n and α.
Let Iα be the Riesz potential operator of order α. The Sobolev space Iα(BMO) is the image of

BMO under Iα. Equivalently, a locally integrable function b is in Iα(BMO) if and only if Dαb ∈ BMO.
Strichartz [1980] showed that, for α ∈ (0, 1), Iα(BMO) is a space of functions modulo constants that is
properly contained in Lipα, while Lip1 is properly contained in I1(BMO).

Murray studied it only in the one-dimensional case, the commutators [b, Tα] formed by b and DαH
or Dα, and showed that b ∈ Iα(BMO)(R) is equivalent to the L p-boundedness of [b, Tα]. Calderón’s
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original proof did not work well in this new situation. Instead, Murray used special properties of one-
dimensional commutators to represent them in a way that techniques of multilinear analysis developed
in [Coifman and Meyer 1975] could come into play. In the meantime, she showed that b ∈ Lip(R) is
also a necessary condition for L p-boundedness of [b, T1], thus providing a converse of Calderón’s results
on R. In the review of [Murray 1985] in Math Reviews, Y. Meyer indicates that the results there apply
to functions on Rn . However, a direct perusal of [Murray 1985] reveals that the paper only tackles the
case n = 1. (Meyer might have known how to treat n > 1.) Maybe, it can in particular be applied to
[b, Dα

] on Rn for n > 1. But we think the techniques may fail for [b, Tα] on Rn for n > 1. The reason is
that the higher-dimensional commutators are much more complicated due to the presence of �, which
cannot be represented easily.

In the case of 0 < α < 1, by applying an off-diagonal T 1 theorem (see [Hofmann 1998]), Q. Chen
and Z. Zhang [2004] obtained the (L p, Lq) bounds for the operator [b, Tα] with � ∈ Lip(Sn−1) and
Dαb ∈ Lr (Rn), where 1 < r <∞ and 1/p+ 1/r = 1/q. However, they pointed out that they do not
know whether the off-diagonal T 1 theorem is true for r = ∞, so the (L p, L p)-boundedness of the
operator [b, Tα] cannot be obtained in [Chen and Zhang 2004]. We think there are two reasons that the
(L p, L p)-boundedness of the operator [b, Tα] cannot be obtained in [Chen and Zhang 2004]. Firstly,
Calderón’s rotation method is of no use, since the elements in Iα(BMO)(Rn) are not local and do not
enjoy the properties of Lipschitz functions. Secondly, the T 1 theorem developed by David and Journé
[1984], which is a powerful tool for the commutators [b, d H/dx] and [b, Dα

] to give an alternate proof,
does not work well in general situations, such as the cases where the operators are rough or the cases
where the weak-boundedness property (WBP) is not easy to verify.

Here we use Fourier transform estimates and Littlewood–Paley theory developed in [Duoandikoetxea
and Rubio de Francia 1986] to get the L p-boundedness of [b, Tα] with rough kernel for all 1< p <∞,
which can be stated as follows.

Theorem 1.1. Suppose α ∈ (0, 1) and b ∈ Iα(BMO). If � ∈ L log+L(Sn−1) having the mean value zero
property, that is, ∫

Sn−1
�(x ′) dσ(x ′)= 0, (1-1)

then there is a constant C such that, for 1< p <∞,

‖[b, Tα] f ‖L p ≤ C‖Dαb‖BMO‖ f ‖L p .

We will prove this result in Section 2.

Remark 1.2. Our arguments depend heavily on the Fourier transform estimates, which is not a surprise
from the historical point of view of techniques in handling rough operators [Duoandikoetxea and Rubio de
Francia 1986]. But, as Murray has pointed out, the cases 0 < α < 1 are fundamentally different: the
underlying details turn out to be very subtle and quite different from the cases of α = 0 and α = 1.
Furthermore, we believe some modifications of the method in the present paper should provide an alternate
proof of Calderón’s first-order commutator estimate.
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As applications to partial differential equations have been found in the cases α = 0, 1 and Murray’s
one-dimensional result in the case 0< α < 1 (see [Calderón 1980; Chiarenza et al. 1991; Di Fazio and
Ragusa 1991; 1993; Murray 1987; Lewis and Silver 1988; Lewis and Murray 1991; 1995; Taylor 1991;
1997; 2015]), we also expect applications of our results to fractional-order partial differential equations
(see for instance [Silvestre 2007; Caffarelli and Silvestre 2007; Caffarelli and Stinga 2016] on fractional
elliptic equations).

Definition 1.3. A measurable function f ∈ L p(Rn), p ∈ (1,∞), belongs to the Morrey space L p,λ(Rn)

with λ ∈ [0, n) if the following norm is finite:

‖ f ‖L p,λ =

(
sup

x∈Rn,r>0

1
rλ

∫
Q(x,r)
| f (y)|p dy

)1/p

,

where Q(x, r)stands for any cube of radius r and centered at x0. When λ= 0, L p,λ(Rn) coincides with
the Lebesgue space L p(Rn).

It is well known that the Morrey space L p,λ(Rn) [1938] is connected to certain problems in elliptic PDEs.
Later, the Morrey spaces were found to have many important applications to the Navier–Stokes equations,
the Schrödinger equations, elliptic equations and potential analysis (see [Chiarenza and Frasca 1987;
Kato 1992; Taylor 1992; Ruiz and Vega 1991; Shen 2003; Di Fazio et al. 1999; Palagachev and Softova
2004; Deng et al. 2005; Adams and Xiao 2004; 2011; 2012]).

Recently, Chen, Ding and Wang gave a criterion of the boundedness of a general linear or sublinear
operator on Morrey spaces:

Theorem A [Chen et al. 2012]. Let 0< λ < n. Suppose that � ∈ Lq(Sn−1) for q > n/(n− λ) and S is
a sublinear operator satisfying |S f (x)| ≤ C

∫
Rn |�(x − y)|| f (y)|/|x − y|n dy. Let 1 < p <∞. If the

operator S is bounded on L p(Rn), then S is bounded on L p,λ(Rn).

Clearly, b∈ Iα(BMO)⊂Lipα for 0<α<1 implies |[b, Tα] f (x)|≤C
∫

Rn |�(x−y)|| f (y)|/|x − y|n dy.
Since � ∈ Lq(Sn−1)⊂ L log+L(Sn−1) for q > n/(n−λ), applying Theorem A and Theorem 1.1, we get:

Corollary 1.4. Let 0< λ< n. Suppose α ∈ (0, 1) and b ∈ Iα(BMO). If � ∈ Lq(Sn−1) for q > n/(n−λ)
and satisfies (1-1), then there is a constant C such that, for 1< p <∞,

‖[b, Tα] f ‖L p,λ ≤ C‖Dαb‖BMO‖ f ‖L p,λ .

Pérez [1995] gave a simple example to show that the commutator [b, T0] is not of weak type (1, 1)
when b∈BMO. However, if 0<α<1, b∈ Iα(BMO) and�∈Lip(Sn−1), it is easy to verify that k(x, y)=
(�(x − y)/|x − y|n+α)(b(x)− b(y)) is a standard kernel. Moreover, � ∈ Lip(Sn−1)⊂ L log+L(Sn−1),
we apply Theorem 1.1 (the L2-boundedness of [b, Tα]) to see [b, Tα] is a generalized Calderón–Zygmund
operator. So the weak type (1, 1)-boundedness of [b, Tα] is a natural consequence. Therefore, it will be
interesting to give a necessary condition for the L1

→ L1,∞ bounds of [b, Tα], which is our main aim in
this part. Moreover, we will also give the necessity of the L p,λ-boundedness of the commutator [b, Tα].

The following useful characterization of Lipα(R
n) is due to Meyers [1964]:
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Theorem B. Let α ∈ (0, 1]. A locally integrable function b is in Lipα(R
n) if and only if there is a

constant C such that, for any cube Q,

1
|Q|1+α/n

∫
Q
|b(x)− bQ | dx ≤ C.

We first give a necessary condition for the L p,λ bounds of [b, Tα].

Theorem 1.5. Suppose α ∈ (0, 1], b ∈ L1
loc(R

n) and � ∈ Lip(Sn−1) satisfies (1-1) or∫
Sn−1

�(x ′)x ′j dσ(x ′)= 0, (1-2)

for j = 1, 2, . . . , n. Assume � is not identically zero. If [b, Tα] is bounded on L p,λ(Rn) for some
1< p <∞ and 0≤ λ < n, then b ∈ Lipα(R

n).

Remark 1.6. In particular, if [b, Tα] is a bounded on L p(Rn) for some 1< p <∞, then b ∈ Lipα(R
n).

Remark 1.7. Since the structure of� is complicated and cannot be represented easily, the idea of proving
Theorem 1.5 is very different from Murray’s method [1985], where the proof depends on a special property
of the Hilbert transform H .

Theorem 1.8. Suppose α ∈ (0, 1], b ∈ L1
loc(R

n) and � ∈ Lip(Sn−1) satisfies (1-1) or (1-2). Assume � is
not identically zero. If [b, Tα] is bounded from L1(Rn) to L1,∞(Rn), then b ∈ Lipα(R

n).

Remark 1.9. As far as we know, this is the first example of a necessary condition for the L1
→ L1,∞-

boundedness of an operator.

The proof of Theorems 1.5 and 1.8 will be given in Sections 3 and 4, respectively.
Moreover, in the course of showing the main result, in conjunction with Calderón’s first-order estimates,

we obtain the characterizations of Lip(Rn) in terms of the L p-, (L1, L1,∞)- and L p,λ-boundedness of
commutators. If b ∈ Lip(Rn) and � ∈ Lip(Sn−1), then by Theorem 2 in [Calderón 1965] it is easy to
check that [b, T1] is a Calderón–Zygmund operator, so the weak type (1, 1)-boundedness of [b, T1] is a
natural consequence. Applying Calderón’s conclusion [1965, Theorem 2] and Theorems A, 1.5 and 1.8
for the case of α = 1, we give the characterizations for the Calderón commutator [b, T1] as follows.

Corollary 1.10. Let 1< p<∞ and 0<λ<n. Suppose that b∈ L1
loc(R

n) and�∈Lip(Sn−1) satisfy (1-2);
then the following four statements are equivalent:

(i) b ∈ Lip(Rn);

(ii) [b, T1] is bounded on L p(Rn);

(iii) [b, T1] is bounded from L1(Rn) to L1,∞(Rn);

(iv) [b, T1] is bounded on L p,λ(Rn).

For the case of α ∈ (0, 1), in conjunction with Theorems 1.1, 1.5 and 1.8, we get:

Theorem 1.11. Suppose α ∈ (0, 1), b ∈ L1
loc(R

n) and�∈Lip(Sn−1) satisfy the mean value zero property.
Let 1 < p <∞ and 0 < λ < n. Then the implications (i)=⇒ (ii)=⇒ (iii)=⇒ (iv) hold for the following
four statements:
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(i) [b, Tα] is bounded on L p(Rn);

(ii) [b, Tα] is bounded from L1(Rn) to L1,∞(Rn);

(iii) [b, Tα] is bounded on L p,λ(Rn);

(iv) [b, Tα] is bounded from L∞(Rn) to BMO(Rn).

We will prove Theorem 1.11 in Section 5.
Let Tα and T be the operators which are defined respectively by

Tα f (x)= p.v.
∫

Rn

�((x − y)′)

|x − y|n+α
f (y) dy, 0< α < 1, (1-3)

and

T f (x)= p.v.
∫

Rn

�̃((x − y)′)

|x − y|n
f (y) dy. (1-4)

We will give a relation between [b, Tα] and [b, DαT ] for the case of 0< α < 1.

Proposition 1.12. Let 0<α < 1. For any fixed operator Tα defined by (1-3) with�∈ L2(Sn−1) satisfying
(1-1), there exists a singular integral operator T defined by (1-4) with �̃ ∈ L2

α(S
n−1) satisfying (1-1) such

that Tα = DαT . Conversely, for any fixed singular integral operator T with �̃ ∈ L2
α(S

n−1) satisfying
(1-1), there exists an operator Tα with � ∈ L2(Sn−1) satisfying (1-1) such that Tα = DαT .

We will prove Proposition 1.12 in Section 6.
In particular, for any fixed singular integral operator T with �̃ ∈C2(Sn−1) satisfying (1-1), there exists

an operator Tα with � ∈ C1(Sn−1) satisfying (1-1) such that Tα = DαT . Then, applying the result of
Proposition 1.12, we get:

Corollary 1.13. Suppose α ∈ (0, 1), b ∈ L1
loc(R

n) and �̃ ∈ C2(Sn−1) satisfy (1-1). Let 1< p <∞ and
0< λ < n. Then the implications (i)=⇒ (ii)=⇒ (iii)=⇒ (iv) hold for the following four statements:

(i) [b, DαT ] is bounded on L p(Rn);

(ii) [b, DαT ] is bounded from L1(Rn) to L1,∞(Rn);

(iii) [b, DαT ] is bounded on L p,λ(Rn);

(iv) [b, DαT ] is bounded from L∞(Rn) to BMO(Rn).

Remark 1.14. We will give an application of Theorem 1.1 and Corollary 1.13 to Riesz transforms. In
fact, for 0< α < 1, since D̂αR j f (ξ)=−iξ j |ξ |

α−1 f̂ (ξ) a trivial computation gives

η(α)

(
p.v.

x j

|x |n+1+α

)∧
(ξ)= iξ j |ξ |

α−1, where η(α)=
1− n−α

2π
0
( 1

2(n+α− 1)
)

πn/2+α−10
( 1

2(1−α)
) .

From the above facts, we get

[b, DαR j ] f (x)= p.v.
∫

Rn

� j (x − y)
|x − y|n+α

(b(x)− b(y)) f (y) dy,
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where � j (x ′)= η(α)x j/|x |, j = 1, 2, . . . , n. Since � j (x ′) is in L log+L(Sn−1) and satisfies the mean
value zero property, by Theorem 1.1 we get, for 1< p <∞,

‖[b, DαR j ]‖L p ≤ C‖Dαb‖BMO‖ f ‖L p , j = 1, 2, . . . , n.

Now suppose that [b, DαR j ] are bounded operators from L∞ to BMO for j = 1, 2, . . . , n. The
vanishing moment of� j gives [b, DαR j ](1)(x)=−DαR j b(x)=−R j Dα(b)(x)∈BMO, j =1, 2, . . . , n.
Since R j : BMO→ BMO and

∑n
j=1 R2

j f =− f , we get

‖Dαb‖BMO =

∥∥∥∥ n∑
j=1

R2
j Dαb

∥∥∥∥
BMO
≤ C

n∑
j=1

∥∥∥∥(R j Dαb)
∥∥∥∥

BMO
≤ C.

This gives that Dαb ∈ BMO. Then, applying Corollary 1.13, for α ∈ (0, 1), 1< p <∞ and 0< λ < n
the following five statements are equivalent:

(i) b ∈ Iα(BMO);

(ii) [b, DαR j ], j = 1, . . . , n, are bounded on L p(Rn);

(iii) [b, DαR j ], j = 1, . . . , n, are bounded from L1(Rn) to L1,∞(Rn);

(iv) [b, DαR j ], j = 1, . . . , n, are bounded on L p,λ(Rn);

(v) [b, DαR j ], j = 1, . . . , n, are bounded from L∞(R) to BMO(Rn).

The following results show that if we assume some conditions on T , then we may characterize the
commutator [b, DαT ] directly.

Corollary 1.15. Suppose α ∈ (0, 1) and b ∈ L1
loc(R

n). If T is a bounded, invertible operator on BMO,
then when �̃ ∈ C2(Sn−1) satisfies (1-1), for 1< p <∞ and 0< λ < n the following five statements are
equivalent:

(i) b ∈ Iα(BMO);

(ii) [b, DαT ] is bounded on L p(Rn);

(iii) [b, DαT ] is bounded from L1(Rn) to L1,∞(Rn);

(iv) [b, DαT ] is bounded on L p,λ(Rn);

(v) [b, DαT ] is bounded from L∞(Rn) to BMO(Rn).

Proof. (i)=⇒ (ii) follows from Theorem 1.1 and (ii)=⇒ (iii)=⇒ (iv)=⇒ (v) follows from Corollary 1.13,
so it remains to prove (v)=⇒ (i). If [b, Tα] is bounded from L∞ to BMO, the vanishing moment of �
gives [b, DαT ](1)(x)=−T Dαb(x) ∈ BMO. Since T is a bounded, invertible operator on BMO, we get
Dαb ∈ BMO. �

Remark 1.16. Since H is a bounded, invertible operator on BMO(R), by Corollary 1.15 we have for
α ∈ (0, 1), 1< p <∞ and 0< λ < n that the following five statements are equivalent:

(i) b ∈ Iα(BMO);

(ii) [b, DαH ] is bounded on L p(R);
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(iii) [b, DαH ] is bounded from L1(R) to L1,∞(R);

(iv) [b, DαH ] is bounded on L p,λ(R);

(v) [b, DαH ] is bounded from L∞(R) to BMO(R).

2. Proof of Theorem 1.1

We first prove Theorem 1.1 by a key lemma, whose proof will be given below. Let φ ∈S (Rn) be a radial
function such that suppφ ⊂

{1
2 ≤ |ξ | ≤ 2

}
and∑

l∈Z

φ3(2−lξ)= 1 for any |ξ |> 0.

Define the multiplier Sl by Ŝl f (ξ)= φ(2−lξ) f̂ (ξ) for all l ∈ Z.

Lemma 2.1. Suppose that �(x ′) satisfies (1-1). Let

K j (x)=
�(x ′)
|x |n+α

χ{2 j≤|x |<2 j+1}(x)

for j ∈ Z. Define the multiplier T l
j (l ∈ Z) by T̂ l

j f (ξ)= φ(2 j−lξ)K̂ j (ξ) f̂ (ξ). Set

Vl f (x)=
∑
j∈Z

[b, Sl− j T l
j Sl− j ]( f )(x).

Let 0< α < 1. For b ∈ Iα(BMO)(Rn), the following conclusions hold:

(i) If � ∈ L∞(Sn−1), then there exists 0< τ < 1 such that

‖Vl f ‖L2 ≤ C‖�‖L∞2−τ |l|‖Dαb‖BMO‖ f ‖L2 for l ∈ Z. (2-1)

(ii) If � ∈ L1(Sn−1) then, for 1< p <∞,

‖Vl f ‖L p ≤ C‖�‖L1‖Dαb‖BMO‖ f ‖L p for l ∈ Z. (2-2)

The constants C in (2-1) and (2-2) are independent of l.

Proof of Theorem 1.1. Let us now finish the proof of Theorem 1.1 by using Lemma 2.1.
Let E0 = {x ′ ∈ Sn−1

: |�(x ′)|< 2} and Ed = {x ′ ∈ Sn−1
: 2d
≤ |�(x ′)|< 2d+1

} for d ∈ N. For d ≥ 0,
let

�d(y′)=�(y′)χEd (y
′)−

1
|Sn−1|

∫
Ed

�(x ′) dσ(x ′),

Then �(y′)=
∑

d≥0�d(y′). Since � satisfies (1-1),∫
Sn−1

�d(y′) dσ(y′)= 0 for all d ≥ 0.

Set

K j,d(x)=
�d(x)
|x |n+α

χ{2 j≤|x |<2 j+1}(x)
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and define T l
j,d and Vl,d in the same way as T l

j and Vl are defined in Lemma 2.1, replacing K j by K j,d .
With the notations above, it is easy to see that

[b, Tα] f (x)=
∑
d≥0

∑
l∈Z

∑
j∈Z

[b, Sl− j T l
j,d Sl− j ] f (x)=

∑
d≥0

∑
l∈Z

Vl,d f (x).

By interpolating between (2-1) and (2-2), there exists 0< θ < 1 such that

‖Vl,d f ‖L p ≤ C‖�d‖∞2−θ |l|‖Dαb‖BMO‖ f ‖L p for l ∈ Z. (2-3)

Taking a large positive integer N such that N > 2θ−1,

‖[b, Tα] f ‖L p ≤

∑
d≥0

∑
Nd<|l|

‖Vl,d f ‖L p +

∑
d≥0

∑
0≤|l|≤Nd

‖Vl,d f ‖L p =: J1+ J2.

For J1, using (2-3) we get

J1 ≤ C‖Dαb‖BMO
∑
d≥0

2d
∑
|l|>Nd

2−θ |l|‖ f ‖L p ≤ C‖Dαb‖BMO‖ f ‖L p .

Finally, by (2-2) we get

J2 ≤ C‖Dαb‖BMO
∑
d≥0

∑
0≤|l|<Nd

2dσ(Ed)‖ f ‖L p

≤ C‖Dαb‖BMO
∑
d≥0

2dσ(Ed)‖ f ‖L p

≤ C‖�‖L log+L‖D
αb‖BMO‖ f ‖L p .

Combining the estimates of J1 and J2, we get

‖[b, Tα] f ‖L p ≤ C(1+‖�‖L log+L)‖D
αb‖BMO‖ f ‖L p ,

which is exactly the required conclusion of Theorem 1.1. �

Proof of Lemma 2.1. Hence, to finish the proof of Theorem 1.1, it remains to prove Lemma 2.1. Let us
begin by giving some lemmas and their proofs, which will play a key role in the proof.

Lemma 2.2 [Christ and Journé 1987]. Let 2 j f (x) :=
∫

Rn ψ j (x, y) f (y) dy, where ψ j (x, y) satisfies the
standard kernel conditions, i.e., for some γ > 0 and C > 0,

|ψ j (x, y)| ≤ C
2 jγ

(2− j + |x − y|)n+γ
(2-4)

and

|ψ j (x, y+ h)−ψ j (x, y)| ≤ C
|h|γ

(2− j + |x − y|)n+γ
, |h| ≤ 2 j , (2-5)

for all x , y ∈ Rn and j ∈ Z. Suppose that du(x, t)=
∑

j∈Z|2 j 1(x)|2 dx δ2− j (t) is a Carleson measure,
where δ2− j (t) is Dirac mass at the point t = 2− j . Then

∑
j∈Z ‖2 j f ‖2L2 ≤ C‖ f ‖2L2 .
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Lemma 2.3. Let α ∈ (0, 1) and b ∈ Iα(BMO)(Rn). Let φ ∈ S (Rn) be a radial function such that
suppφ ⊂

{ 1
2 ≤ |ξ | ≤ 2

}
. Define the multiplier operator Sl by Ŝl f (ξ)= φ(2−lξ) f̂ (ξ) for l ∈ Z. Then for

1< p <∞ we have ∥∥∥∥(∑
j∈Z

22 jα
|[b, S j ] f |2

)1/2∥∥∥∥
L p
≤ C‖Dαb‖BMO‖ f ‖L p .

Proof. Let 8̂= φ and 82− j (x)= 2 jn8(2 j x); then S j f =82− j ∗ f . Let

k j (x, y)= 2 jα(b(x)− b(y))82− j (x − y);

then

2 jα
[b, S j ] f (x)=

∫
Rn

k j (x, y) f (y) dy.

It is easy to verify that k j (x, y) satisfies (2-4) and (2-5). Since

2 jα
[b, S j ]1= 2 jαS j b = 2 jα(|ξ |α|ξ |−αφ(2− jξ)b̂)∨ = (σ̂ (2− jξ)D̂αb)∨ =: Sαj (D

αb),

where σ̂ (ξ) = φ(ξ)|ξ |−α and Sαj is a multiplier defined by Sαj f (x) = σ2− j ∗ f (x), by Dαb ∈ BMO we
know

du(x, t)=
∑
j∈Z

|2 jα
[b, S j ]1(x)|2 dx δ2− j (t)

is a Carleson measure. Thus, by Lemma 2.2 we get∑
j∈Z

‖2 jα
[b, S j ] f ‖2L2 ≤ C‖ f ‖2L2 . (2-6)

Define the operator T by

T f (x)=
∫

Rn
K(x, y) f (y) dy,

where K : (x, y) 7→ {k j (x, y)} j∈Z with ‖K(x, y)‖C 7→`2 :=
(∑

j∈Z |k j (x, y)|2
)1/2. Thus, (2-6) says that

‖T f ‖L2(`2) ≤ C‖Dαb‖BMO‖ f ‖L2 .

On the other hand, for b ∈ Iα(BMO), it is easy to verify that, for 2|x − x0| ≤ |x − y|,(∑
j∈Z

|k j (x, y)− k j (x0, y)|2
)1/2

≤ C‖Dαb‖BMO
|x − x0|

α

|x − y|n+α
,

since Iα(BMO)⊂ Lipα for 0< α < 1. Then, by the result in [Grafakos 2004], we prove Lemma 2.3. �

Lemma 2.4. Let mδ, j ∈ C∞0 (R
n), 0< δ <∞, for any fixed j ∈ Z and let Tδ, j be the multiplier operator

defined by T̂δ, j f (ξ)= mδ, j (ξ) f̂ (ξ). For 0< α < 1, let b ∈ Lipα(R
n) and let [b, Tδ, j ] be the commutator

of Tδ, j . If , for some constants A > 0 and 0< β < 1,

‖mδ, j‖L∞ ≤ C A2− jα min{δ, δ−β} and ‖∇mδ, j‖L∞ ≤ C A2 j 2− jα,
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then there exists a constant 0< λ < 1 such that

‖[b, Tδ, j ] f ‖L2 ≤ C A min{δλ, δ−βλ}‖b‖Lipα‖ f ‖L2,

where C is independent of δ and j .

Proof. Without loss of generality, we may assume that ‖b‖Lipα = 1. Taking a C∞0 (R
n) radial function φ

with suppφ ⊂
{1

2 ≤ |x | ≤ 2
}

and
∑

l∈Z φ(2
−l x)= 1 for any |x |> 0. Let φ0(x)=

∑0
l=−∞ φ(2

−l x) and
φl(x) = φ(2−l x) for positive integers l. Let Kδ, j (x) = m∨δ, j (x), the inverse Fourier transform of mδ, j .
Split Kδ, j into

Kδ, j (x)= Kδ, j (x)φ0(x)+
∞∑

l=1

Kδ, j (x)φl(x)=:
∞∑

l=0

K l
δ, j (x).

Note that
∫

Rn φ̂(η) dη = 0 and

K̂ l
δ, j (x)= 2ln

∫
Rn

mδ, j (x − y)φ̂(2l y) dy =
∫

Rn
mδ, j (x − 2−l y)φ̂(y) dy.

Thus,

‖K̂ l
δ, j‖L∞ ≤

∥∥∥∥∫
Rn
(mδ, j (x − 2−l y)−mδ, j (x))φ̂(y) dy

∥∥∥∥
L∞

≤ C A2−l
‖∇mδ, j‖L∞

∫
Rn
|y||φ̂(y)| dy

≤ C A2−l2 j 2− jα.

(2-7)

On the other hand, by the Young inequality,

‖K̂ l
δ, j‖L∞ = ‖K̂δ, j ∗ φ̂l‖L∞ ≤ ‖K̂δ, j‖L∞‖φ̂l‖L1 ≤ C A2− jα min{δ, δ−β}. (2-8)

Therefore, by (2-7) and (2-8), for each 0< θ < 1,

‖K̂ l
δ, j‖L∞ ≤ C A2−θl2(θ−α) j min{δ1−θ , δ−(1−θ)β}. (2-9)

Then, from (2-8), (2-9) and the Plancherel theorem, we get

‖T l
δ, j f ‖L2 ≤ C A2− jα min{δ, δ−β}‖ f ‖L2 (2-10)

and

‖T l
δ, j f ‖L2 ≤ C A2−θl2(θ−α) j min{δ1−θ , δ−(1−θ)β}‖ f ‖L2 . (2-11)

Now we turn our attention to [b, T l
δ, j ], the commutator of the operator T l

δ, j . Decompose Rn into a grid
of nonoverlapping cubes with side length 2l . That is, Rn

=
⋃
∞

d=−∞ Qd . Set fd = f χQd ; then

f (x)=
∞∑

d=−∞

fd(x) for a.e. x ∈ Rn.
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It is obvious that supp([b, T l
δ, j ] fd) ⊂ 2nQd and that the supports of {[b, T l

δ, j ] fd}
+∞

d=−∞ have bounded
overlaps. So we have the almost orthogonality property

‖[b, T l
δ, j ] f ‖

2
L2 ≤ C

∞∑
d=−∞

‖[b, T l
δ, j ] fd‖

2
L2 .

Thus, we may assume that supp f ⊂ Q for some cube with side length 2l . Choose ϕ ∈ C∞0 (R
n)

with 0≤ ϕ ≤ 1, suppϕ ⊂ 100nQ and ϕ = 1 when x ∈ 30nQ. Set Q̃ = 200nQ and b̃= (b(x)−bQ̃)ϕ(x);
then

‖[b, Tδ, j ] f ‖L2 ≤

∑
l≥0

‖[b, T l
δ, j ] f ‖L2 ≤

∑
l≥0

‖b̃T l
δ, j f ‖L2 +

∑
l≥0

‖T l
δ, j (b̃ f )‖L2 =: I1+ I2.

For I1, we have
I1 ≤

∑
l≥0

‖b̃‖L∞‖T l
δ, j f ‖L2 ≤ C

∑
l≥0

2lα
‖b‖Lipα‖T

l
δ, j f ‖L2 .

Take θ such that α < θ < 1 in (2-11); then, by (2-10) and (2-11),

I1 ≤ C
(∑

l< j

2lα
‖T l

δ, j f ‖L2 +

∑
l≥ j

2lα
‖T l

δ, j f ‖L2

)

≤ C A
(∑

l< j

2(l− j)α min{δ, δ−β}+
∑
l≥ j

2(l− j)(α−θ) min{δ1−θ , δ−β(1−θ)}

)
‖ f ‖L2

≤ C A min{δ1−θ , δ−β(1−θ)}‖ f ‖L2,

where C is independent of δ. Similarly, we can get

I2 ≤ C A min{δ1−θ , δ−β(1−θ)}‖ f ‖L2 .

Thus
‖[b, Tδ, j ] f ‖L2 ≤ C A min{δλ, δ−βλ}‖ f ‖L2

with 0< λ= 1− θ < 1 and C independent of δ. �

Proof of (2-1) in Lemma 2.1. For j ∈ Z, define the operator Tj by Tj f = K j ∗ f , where K j (x) =
(�(x ′)/|x |n+α)χ{2 j≤|x |<2 j+1}(x). Since � ∈ L∞(Sn−1), for some 0< β < 1 we have

|K̂ j (ξ)| ≤ C‖�‖L∞2− jα min{|2 jξ |−β, |2 jξ |}

(see [Duoandikoetxea and Rubio de Francia 1986, pp. 551–552]). A trivial computation shows that
|∇ K̂ j (ξ)| ≤ C‖�‖L12(1−α) j . Set

m j (ξ)= K̂ j (ξ), ml
j (ξ)= m j (ξ)φ(2 j−lξ).

Define the operator T l
j by T̂ l

j f (ξ)= ml
j (ξ) f̂ (ξ). Thus ml

j ∈ C∞0 (R
n) with

‖ml
j‖L∞ ≤ C‖�‖L∞2− jα min{2−βl, 2l

} and ‖∇ml
j‖L∞ ≤ C‖�‖L∞2(1−α) j . (2-12)
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Thus Lemma 2.4 with δ = 2l and Iα(BMO)⊂ Lipα for 0<α < 1 says that, for some constant 0<λ< 1,

‖[b, T l
j ] f ‖L2 ≤ C‖�‖L∞‖Dαb‖BMO min{2−βλl, 2λl

}‖ f ‖L2, l ∈ Z. (2-13)

By the Plancherel theorem, we get

‖T l
j f ‖L2 ≤ C‖�‖L∞2− jα min{2−βl, 2l

}‖ f ‖L2 . (2-14)

For any j , l ∈ Z we may write

[b, Sl− j T l
j Sl− j ] f = [b, Sl− j ](T l

j Sl− j f )+ Sl− j ([b, T l
j ]Sl− j f )+ Sl− j T l

j ([b, Sl− j ] f ).

Then

‖Vl f ‖L2 ≤

∥∥∥∥∑
j∈Z

Sl− j ([b, T l
j ]Sl− j f )

∥∥∥∥
L2
+

∥∥∥∥∑
j∈Z

Sl− j T l
j ([b, Sl− j ] f )

∥∥∥∥
L2
+

∥∥∥∥∑
j∈Z

[b, Sl− j ](T l
j Sl− j ] f )

∥∥∥∥
L2

=: I1+ I2+ I3.

Below we shall estimate Ii for i = 1, 2, 3. By Littlewood–Paley theory and (2-13), we get

I1 ≤

(∑
j∈Z

‖[b, T l
j ](Sl− j f )‖2L2

)1/2

≤ C‖�‖L∞ min{2−βλl, 2λl
}‖Dαb‖BMO

(∑
j∈Z

‖Sl− j f ‖2L2

)1/2

≤ C‖�‖L∞ min{2−βλl, 2λl
}‖Dαb‖BMO‖ f ‖L2 . (2-15)

Now we estimate I2. By (2-14) and Lemma 2.3, we get

I2 ≤

(∑
j∈Z

‖T l
j ([b, Sl− j ] f )‖2L2

)1/2

≤ C‖�‖L∞ min{2−(β+α)l, 2(1−α)l}
(∑

j∈Z

22 jα
‖[b, S j ] f ‖2L2

)1/2

≤ C‖�‖L∞ min{2−(β+α)l, 2(1−α)l}‖Dαb‖BMO‖ f ‖L2 . (2-16)

Finally, by duality and (2-16) we get

I3 ≤ C‖�‖L∞ min{2−(β+α)l, 2(1−α)l}‖Dαb‖BMO‖ f ‖L2 . (2-17)

It follows from (2-15)–(2-17) that, for some constant 0< τ < 1,

‖Vl f ‖L2 ≤ C‖�‖L∞2−τ |l|‖Dαb‖BMO‖ f ‖L2 for l ∈ Z.

This completes the proof of (2-1). �
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Proof of (2-2) in Lemma 2.1. Since T l
j = Tj Sl− j for any j , l ∈ Z, we may write

[b, Sl− j T l
j Sl− j ] f = Sl− j ([b, Tj ]S2

l− j f )+ Sl− j Tj ([b, S2
l− j ] f )+ [b, Sl− j ](Tj S2

l− j f ).

Thus,

‖Vl f ‖L p ≤

∥∥∥∥∑
j∈Z

Sl− j ([b, Tj ]S2
l− j f )

∥∥∥∥
L p
+

∥∥∥∥∑
j∈Z

Sl− j Tj ([b, S2
l− j ] f )

∥∥∥∥
L p
+

∥∥∥∥∑
j∈Z

[b, Sl− j ](Tj S2
l− j f )

∥∥∥∥
L p

=: L1+ L2+ L3.

Below we shall estimate L i , i = 1, 2, 3. It is well known that, for any g ∈ L p(Rn),

|[b, Tj ]g(x)| ≤ C‖b‖Lipα M�g(x),

where

M�g(x)= sup
r>0

1
rn

∫
|x−y|<r

|�(x − y)||g(y)| dy.

From this we get, for 1< p <∞,∥∥∥∥(∑
j∈Z

|[b, Tj ]g j |
2
)1/2∥∥∥∥

L p
≤ C‖�‖L1‖b‖Lipα

∥∥∥∥(∑
j∈Z

|g j |
2
)1/2∥∥∥∥

L p
.

Then, by Littlewood–Paley theory and since Iα(BMO)⊂ Lipα for 0< α < 1, we have

L1 ≤ C
∥∥∥∥(∑

j∈Z

|[b, Tj ](S2
l− j f )|2

)1/2∥∥∥∥
L p
≤ C‖�‖L1‖Dαb‖BMO‖ f ‖L p .

For L2, by a similar proof to that of [Chen and Zhang 2004, (1.13)], we get∥∥∥∥(∑
j∈Z

|Tj f j |
2
)1/2∥∥∥∥

L p
≤ C‖�‖L1

∥∥∥∥(∑
j∈Z

|Dα f j |
2
)1/2∥∥∥∥

L p
.

Then, by Littlewood–Paley theory and the above inequality, we get

L2 ≤ C‖�‖L1

∥∥∥∥(∑
j∈Z

|Dα
[b, S2

l− j ] f |
2
)1/2∥∥∥∥

L p

≤ C‖�‖L1

∥∥∥∥(∑
j∈Z

|[b, Dα
]S2

l− j f |2
)1/2∥∥∥∥

L p
+C‖�‖L1

∥∥∥∥(∑
j∈Z

|[b, DαS2
l− j ] f |

2
)1/2∥∥∥∥

L p
.

Note that the kernel of [b, Dα
] is

K (x, y)= η(α)
b(x)− b(y)
|x − y|n+α

,

where η(α) is some normalization constant (see [Stein 1970]). Since K (x, y) is antisymmetric, WBP
is satisfied automatically. Also [b, Dα

]1= Dαb ∈ BMO so, by the T 1 theorem (see [David and Journé
1984]), [b, Dα

] is bounded on L2(Rn). It is easy to verify that K (x, y) is a standard kernel; then, by
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the Calderón–Zygmund theorem (see [Grafakos 2004]), we get that [b, Dα
] is bounded on L p(`2(Rn)).

Combining this with Lemma 2.3, we get

L2 ≤ C‖�‖L1‖Dαb‖BMO

∥∥∥∥(∑
j∈Z

|S j f |2
)1/2∥∥∥∥

L p
+C‖�‖L1

∥∥∥∥(∑
j∈Z

|2 jα
[b, S j ] f |2

)1/2∥∥∥∥
L p

≤ C‖�‖L1‖Dαb‖BMO‖ f ‖L p ,

where S j is the Littlewood–Paley operator given in the transform by multiplication with the function
|2− jξ |αφ2(2− jξ). By duality and the estimate of L2, we get

L3 ≤ C2−lα
‖�‖L1‖Dαb‖BMO‖ f ‖L p .

Combining the estimates of L1, L2 and L3, we get

‖Vl f ‖L p ≤ C‖�‖L1‖Dαb‖BMO‖ f ‖L p for l ∈ Z.

This completes the proof of (2-2). �

3. Proof of Theorem 1.5

In the proof of Theorem 1.5, for j = 1, . . . , 15, A j is a positive constant depending only on �, n, p, α, λ
and Ai , 1≤ i < j . We may assume ‖[b, Tα]‖L p,λ→L p,λ = 1. We want to prove that, for any fixed x0 ∈ Rn

and r ∈ R+,

M :=
1

|B(x0, r)|1+α/n

∫
B(x0,r)

|b(y)− a0| dy ≤ A(p, �, α, λ), (3-1)

where a0 = |B(x0, r)|−1
∫

B(x0,r)
b(y) dy. Since [b− a0, Tα] = [b, Tα], we may assume a0 = 0. Let

f (y)= (sgn b(y)− c0)χB(x0,r)(y), (3-2)

where c0 = (1/|B(x0, r)|)
∫

B(x0,r)
sgn b(y) dy. Then f has the following properties:∫

Rn
f (y) dy = 0, (3-3)

f (y)b(y) > 0, (3-4)

1
|B(x0, r)|1+α/n

∫
Rn

f (y)b(y) dy = M. (3-5)

Without loss of generality, we may assume that |�(x ′)−�(y′)| ≤ |x ′− y′| for all x ′, y′ ∈ Sn−1. Since �
satisfies (1-1) or (1-2), there exists a positive number A1 < 1 such that

σ(3) := σ
(
{x ′ ∈ Sn−1

:�(x ′)≥ 2A1}
)
> 0, (3-6)
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where σ is the measure on Sn−1 which is induced from the Lebesgue measure on Rn . Then, for
x ∈ G = {x ∈ Rn

: |x − x0|> A2r = (2A−1
1 + 1)r and (x − x0)

′
∈3},

|[b, Tα] f (x)| ≥
∣∣∣∣∫

Rn
�((x− y)′)|x− y|−n−αb(y) f (y) dy

∣∣∣∣−|b(x)|∣∣∣∣∫
Rn
�((x− y)′)|x− y|−n−α f (y) dy

∣∣∣∣
=: I1(x)− I2(x).

For I1(x), noting that if |y− x0|< r , we get |(x − x0)
′
− (x − y)′| ≤ 2|y− x0|/|x − x0| ≤ A1, then, since

� ∈ Lip(Sn−1), we get �((x − y)′)≥ A1. Thus it follows from (3-4) and (3-5) that

I1(x)≥ A1

∫
B(x0,r)

b(y) f (y)|y− x |−n−α dy ≥ A3rn+αM |x − x0|
−n−α.

Since � ∈ Lip(Sn−1) and by (3-3), we have

I2(x)≤ |b(x)|
∫

B(x0,r)
| f (y)|

∣∣∣∣�((x − y)′)
|x − y|n+α

−
�((x − x0)

′)

|x − x0|n+α

∣∣∣∣ dy ≤ A4rn+1
|b(x)||x − x0|

−n−α−1.

Let θ = p/(n(p− 1)+ pα+ λ) and

F =
{

x ∈ G : |b(x)|>
A3 Mrα−1

2A4
|x − x0| and |x − x0|< Mθr

}
.

This gives that I1(x)≥ 2I2(x) when x ∈ (G \ F)∩ {x : |x − x0|< Mθr}. Then we have

|[b, Tα] f (x)| ≥ I1(x)− I2(x)≥ 1
2 I1(x) for x ∈ (G \ F)∩ {x : |x − x0|< Mθr}.

Hence,

‖ f ‖p
L p,λ ≥ ‖[b, Tα] f ‖

p
L p,λ

≥
1

Mθλrλ

∫
|x−x0|<Mθr

|[b, Tα] f (x)|p dx

≥
1

Mθλrλ

∫
(G\F)∩{|x−x0|<Mθr}

( 1
2 A3 Mrα+n

|x − x0|
−n−α)p dx

≥
1

Mθλrλ

∫
{A5(|F |+(B2r)n)1/n<|x−x0|<Mθr}∩G

( 1
2 A3 Mrα+n

|x − x0|
−n−α)p dx

=
σ(3)

Mθλrλ

(
A3 Mrα+n

2

)p ∫ Mθr

A5(|F |+(A2r)n)1/n
t−n(p−1)−pα−1 dt

=
σ(3)

Mθλrλ

( 1
2 B3 Mrα+n

)p

(−n(p− 1)− pα)

(
(Mθr)−n(p−1)−pα

− A6(|F | + (A2r)n)(−n(p−1)−pα)/n).
Then, by ‖ f ‖L p,λ ≤ Cr (n−λ)/p and an elementary computation, we have

(|F | + (A2r)n)−(p−1)−pα/n
≤ A7(Mθ(−n(p−1)−pα)

+Mθλ−p)r−n(p−1)−pα.

Since λ= p/θ − n(p− 1)− pα, we get

(|F | + (A2r)n)−(p−1)−pα/n
≤ A8 Mθ(−n(p−1)−pα)r−n(p−1)−pα.
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Then we have
|F | ≥ A9 Mθnrn

− (A2r)n.

If M ≤ (2A−1
9 An

2)
1/(θn), then Theorem 1.5 is proved. If M > (2A−1

9 An
2)

1/(θn), then

|F | ≥ 1
2 A9 Mθnrn. (3-7)

Now let g(y)= χB(x0,r)(y). For x ∈ F ,

|[b, Tα]g(x)| ≥ |b(x)|
∣∣∣∣∫

B(x0,r)

�((x − y)′)
|x − y|n+α

g(y) dy
∣∣∣∣− ∫

B(x0,r)
|�((x − y)′)||x − y|−n−α

|b(y)| dy

=: K1− K2. (3-8)

For y ∈ B(x0, r) and x ∈ F we have that |x − x0| ' |x − y| and �((x − y)′)≥ A1. Now, regarding K1, it
follows that

K1 ≥ C |b(x)|
∫

B(x0,r)
|x − y|−n−α dy ≥ A10|b(x)||x − x0|

−n−αrn. (3-9)

For K2, since � ∈ L∞(Sn−1), we have

K2 ≤ C |x − x0|
−n−α

∫
B(x0,r)

|b(y)| dy ≤ A11|x − x0|
−n−αrn+αM. (3-10)

So, by (3-8)–(3-10) and since |b(x)|> (A3 Mrα/(2A4))|x − x0|/r when x ∈ F, we get, for x ∈ F ,

|[b, Tα]g(x)| ≥ A12|x − x0|
1−n−αrn+α−1 M − A11|x − x0|

−n−αrn+αM. (3-11)

Since ‖g‖L p,λ ≤ Cr (n−λ)/p, by (3-11) and Hölder’s inequality we have

A13r (n−λ)/p
≥ ‖[b, Tα]g‖L p,λ

≥

(
1

(Mθr)λ

∫
{ 1

4 A1/n
9 Mθr<|x−x0|<Mθr}

|[b, Tα]g(x)|p dx
)1/p

≥
1

(Mθr)λ/p+n/p′

∫
F∩{ 1

4 A1/n
9 Mθr<|x−x0|<Mθr}

|[b, Tα]g(x)| dx

≥ A12
Mrn+α−1

(Mθr)λ/p+n/p′

∫
F∩{ 1

4 A1/n
9 Mθr<|x−x0|<Mθr}

|x − x0|
1−n−α dx

− A11
rn+αM

(Mθr)λ/p+n/p′

∫
F∩{ 1

4 A1/n
9 Mθr<|x−x0|<Mθr}

|x − x0|
−n−α dx

=: L1− L2. (3-12)

To estimate L1 and L2, we first prove that∣∣F ∩ { 1
4 A1/n

9 Mθr < |x − x0|< Mθr
}∣∣≥ 1

4 A9 Mθnrn. (3-13)

Let

F =
(
F ∩

{1
4 A1/n

9 Mθr < |x − x0|< Mθr
})
∪
(
F ∩

{
|x − x0|<

1
4 A1/n

9 Mθr
})
=: E1 ∪ E2.
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Notice that

|E2| ≤
∣∣{x : |x − x0|<

1
4 A1/n

9 Mθr
}∣∣≤ (1

4

)nA9 Mθnrn.

If |E1|<
1
4 A9 Mθnrn , then

|F | = |E1| + |E2|<
1
4 A9 Mθnrn

+
( 1

4

)nA9 Mθnrn < 1
2 A9 Mθnrn.

This contradicts |F | ≥ 1
2 A9 Mθnrn . This proves (3-13). Now we turn to give the estimates of L1 and L2.

Since |x − x0|< Mθr and by (3-13),

L1 ≥ A12
∣∣F ∩ { 1

2 A1/n
9 Mθr < |x − x0|< Mθr

}∣∣ Mrn+α−1

(Mθr)λ/p+n/p′ (M
θr)1−n−α

≥ A14
Mθ(1−α)+1r (n−λ)/p

Mθ(λ/p+n/p′) . (3-14)

For L2, we have

L2 ≤ A11
rn+αM

(Mθr)λ/p+n/p′

∫
F∩{ 1

2 A1/n
9 Mθr<|x−x0|<Mθr}

|x − x0|
−n−α dx

≤ A11
rn+αM

(Mθr)λ/p+n/p′

∫
{ 1

2 A1/n
9 Mθr<|x−x0|<Mθr}

|x − x0|
−n−α dx

≤ A15
r (n−λ)/p M1−αθ

Mθ(λ/p+n/p′) . (3-15)

Now (3-12) and (3-14)–(3-15) show that

A13 ≥ (A14 Mθ(1−α)
− A15 M−αθ )

M
Mθ(λ/p+n/p′) .

Since θ = p/(n(p− 1)+ pα+ λ),

Mθ(λ/p+n/p′)
= M1−pα/(n(p−1)+pα+λ)

= M1−αθ .

Thus, we get

A13 ≥ A14 Mθ
− A15.

Therefore, M ≤ A(p, �, α, λ) and we complete the proof of Theorem 1.5. �

4. Proof of Theorem 1.8

As in the proof of Theorem 1.8, let A j , j = 1, . . . , 14, be positive constants depending only on �, n, α
and Ai , 1≤ i < j . Without loss of generality, we may assume that ‖[b, Tα]‖L1→L1,∞ = 1. For any fixed
x0 ∈ Rn and r ∈ R+, we also set a0 := |B(x0, r)|−1

∫
B(x0,r)

b(y) dy = 0 since [b− a0, Tα] = [b, Tα]. It is
our aim to prove the inequality

M =
1

|B(x0, r)|1+α/n

∫
B(x0,r)

|b(y)| dy ≤ A(n, �, α).
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Let f be as defined in (3-2) and 3 be as defined in (3-6). Take

G = {x ∈ Rn
: |x − x0|> A2r = (2A−1

1 + 1)r and (x − x0)
′
∈3}.

Then for x ∈ G we have

|[b, Tα] f (x)| ≥ |Tα(b f )(x)|−|b(x)||Tα f (x)|

=

∣∣∣∣∫
Rn
�((x− y)′)|x− y|−n−αb(y) f (y) dy

∣∣∣∣−|b(x)|∣∣∣∣∫
Rn
�((x− y)′)|x− y|−n−α f (y) dy

∣∣∣∣
=: I1(x)− I2(x).

Similar to the proof of Theorem 1.8, we get

I1(x)≥ A3rn+αM |x − x0|
−n−α

and

I2(x)≤ A4rn+1
|b(x)||x − x0|

−n−α−1.

Let

F =
{

x ∈ G : |b(x)|>
A3 Mrα−1

2A4
|x − x0| and |x − x0|< M1/(n+α)r

}
.

Then we have |[b, Tα] f (x)| ≥ 1
2 I1(x) when x ∈ (G \ F)∩ {x : |x − x0|< M1/(n+α)r}. Thus,

‖ f ‖L1 ≥

∫
{x∈Rn :|[b,Tα] f (x)|>1}

dx

≥

∫
(G\F)∩{|x−x0|<M1/(n+α)r}∩{|[b,Tα] f (x)|>1}

dx

≥

∫
(G\F)∩{|x−x0|<M1/(n+α)r}∩{A3 Mrα+n |x−x0|−n−α>2}

dx

≥

∫
{A6(|F |+(A2r)n)1/n<|x−x0|<A5 M1/(n+α)r}∩G

dx

=

∫ A5 M1/(n+α)r

A6(|F |+(A2r)n)1/n
tn−1 dt

∫
3

dσ(x ′).

Since ‖ f ‖L1 ≤ rn , we then have

|F | ≥ A7 Mn/(n+α)rn
− A8rn.

If M ≤ (2A8 A−1
7 )(n+α)/n , then Theorem 1.8 is proved. If M > (2A8 A−1

7 )(n+α)/n , then

|F | ≥ 1
2 A7 Mn/(n+α)rn. (4-1)

Now, let g(y)= χB(x0,r)(y). Similar to (3-11) in the proof of Theorem 1.5, for x ∈ F we have

|[b, Tα]g(x)| ≥ A9|x − x0|
1−n−αrn+α−1 M − A10|x − x0|

−n−αrn+αM.
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Since ‖g‖L1 ≤ Crn , we have

A11rn
≥ ‖g‖L1 ≥

∫
{x∈Rn :|[b,Tα]g(x)|>1}

dx ≥
∫

F∩{x :|x−x0|≥(2A10/A9)r}∩{x∈Rn :|[b,Tα]g(x)|>1}
dx .

For |x − x0| ≥ (2A10/A9)r ,

|[b, Tα]g(x)| ≥ 1
2 A9|x − x0|

1−n−αrn+α−1 M.

Thus,

A11rn
≥

∫
F∩{x :|x−x0|≥(2A10/A9)r}∩{x∈Rn :(A9/2)|x−x0|

1−n−αrn+α−1 M>1}
dx

=

∫
F∩{x :|x−x0|≥(2A10/A9)r}∩{x∈Rn :|x−x0|≤A12 M1/(n+α−1)r}

dx

=

∫
{x∈F :A13r≤|x−x0|≤A12 M1/(n+α−1)r}

dx . (4-2)

If M ≤ (A13/A12)
n+α−1, then we have proved Theorem 1.8. If M > (A13/A12)

n+α−1, then∫
{x∈F :A13r≤|x−x0|≤A12 M1/(n+α−1)r}

dx =
∫
{x∈F :|x−x0|≤A12 M1/(n+α−1)r}

dx −
∫
{x∈F :|x−x0|≤A13r}

dx

=: K1− K2. (4-3)

If M ≤ A−(n+α)(n+α−1)
12 , then Theorem 1.8 is proved. If M > A−(n+α)(n+α−1)

12 , we have

A12 M1/(n+α−1)
≥ M1/(n+α).

By (4-1), we get

K1 ≥

∫
{x∈F :|x−x0|≤M1/(n+α)r}

dx =
∫

F
dx = |F | ≥ 1

2 A7 Mn/(n+α)rn

and

K2 ≤

∫
{x∈F :|x−x0|≤A13r}

dx ≤ A14rn.

Combining these estimates, from (4-2) and (4-3) we get

A11 ≥
1
2 A7 Mn/(n+α)

− A14.

Then M ≤ A(n, �, α). �

5. Proof of Theorem 1.11

Let
k(x, y)=

�(x − y)
|x − y|n+α

(b(x)− b(y)).

Proof of (i)=⇒ (ii). Suppose that, for some 1< p <∞,

‖[b, Tα] f ‖L p ≤ C‖ f ‖L p ; (5-1)
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then, by Theorem 1.5 for λ= 0, we must have b ∈ Lipα. If � ∈ Lip(Sn−1) and b ∈ Lipα(R
n), there is a

constant C > 0 such that, for all x , x0, y ∈ Rn with 2|x − x0| ≤ |y− x |, the kernel k(x, y) satisfies the
inequality

|k(x, y)− k(x0, y)| ≤ C |x − x0|
α
|y− x |−n−α. (5-2)

Applying (5-1) and (5-2), by using a Calderón–Zygmund decomposition and a trivial computation, we get

‖[b, Tα] f ‖L1,∞ ≤ C‖ f ‖L1 . �

Proof of (ii)=⇒ (iii). Suppose that [b, Tα] is bounded from L1(Rn) to L1,∞(Rn); then by Theorem 1.8 we
must have b ∈Lipα . So k(x, y) satisfies (5-2). For fixed x ∈Rn , pick a cube Q = Q(x0, r) that contains x .
Let f = f1+ f2, with f1 = fχ2Q and f2 = fχ(2Q)c . We select a = [b, Tα] f (x0) and let 0< δ < 1; then(

1
|Q|

∫
Q

∣∣|[b, Tα] f (y)|δ−|a|δ
∣∣ dy

)1/δ

≤

(
1
|Q|

∫
Q
|[b, Tα] f (y)−a|δ dy

)1/δ

≤

(
1
|Q|

∫
Q
|[b, Tα] f1(y)|δ dy

)1/δ

+
1
|Q|

∫
Q
|[b, Tα] f2(y)−a| dy.

Since [b, Tα] : L1(Rn)→ L1,∞(Rn) and 0<δ < 1, Kolmogorov’s inequality [García-Cuerva and Rubio de
Francia 1985, p. 485] yields(

1
|Q|

∫
Q
|[b, Tα] f1(y)|δ dy

)1/δ

≤
1
|Q|

∫
Rn
| f1(y)| dy ≤ C M f (x).

By (5-2), it is easy to get
1
|Q|

∫
Q
|[b, Tα] f2(y)− a| dy ≤ C M f (x).

Combining these estimates, we get, for any fixed x ∈ Rn ,(
M]
(
|[b, Tα] f |δ

))1/δ
(x)≤ C M f (x).

Applying this inequality we get, for 1< p <∞ and 0< λ < n,∥∥(M]
(
|[b, Tα] f |δ

))∥∥1/δ
L p/δ,λ =

∥∥(M]
(
|[b, Tα] f |δ

))1/δ∥∥
L p,λ ≤ C‖M f ‖L p,λ ≤ C‖ f ‖L p,λ .

(see [Chiarenza and Frasca 1987]). On the other hand,

‖[b, Tα] f ‖L p,λ = ‖|[b, Tα] f |δ‖
1/δ
L p/δ,λ ≤

∥∥M]
(
|[b, Tα] f |δ

)∥∥1/δ
L p/δ,λ .

Combining these estimates, we get

‖[b, Tα] f ‖L p,λ ≤ C‖ f ‖L p,λ . �

Proof of (iii)=⇒ (iv). Suppose that [b, Tα] is bounded on L p,λ(Rn) for some 1< p <∞ and 0< λ < n;
then, by Theorem 1.5, we must have b ∈ Lipα . So k(x, y) satisfies (5-2). Let f = f1+ f2, with f1 = fχ2Q
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and f2 = fχ(2Q)c . For any cube Q = Q(x0, r),

1
|Q|

∫
Q
|[b, Tα] f (y)− [b, Tα] f (x0)| dy

=
1
|Q|

∫
Q
|[b, Tα] f1(y)| dy+

1
|Q|

∫
Q
|[b, Tα] f2(y)− [b, Tα] f (x0)| dy.

By Hölder’s inequality and since [b, Tα] is bounded on L p,λ(Rn), we get(
1
|Q|

∫
Q
|[b, Tα] f1(y)|p dy

)1/p

≤
1

r (n−λ)/p sup
t>0,x∈Rn

(
1
tλ

∫
Q(x,t)∩2Q(x0,r)

| f (y)|p dy
)1/p

≤
C

r (n−λ)/p r (n−λ)/p
‖ f ‖L∞ ≤ C‖ f ‖L∞ .

By (5-2), it is easy to get

1
|Q|

∫
Q
|[b, Tα] f2(y)− [b, Tα] f2(x0)| dy ≤ C‖ f ‖L∞ .

Combining these estimates, we get

‖[b, Tα] f ‖BMO ≤ C‖ f ‖L∞ . �

6. Proof of Proposition 1.12

Denote by Hm the spaces of spherical harmonics of degree m and let dm = dim Hm . If � ∈ L2(Sn−1)

satisfies (1-1), then we can write

�(x ′)=
∑
m≥1

dm∑
j=1

am, j Ym, j (x ′),

where {Ym, j }
dm
j=1 denotes the normalized orthonormal basis of Hm (see [Calderón and Zygmund 1978] or

[Stein and Weiss 1971]). Then ∑
m≥1

dm∑
j=1

a2
m, j <∞.

By [Chen et al. 2003, p. 528], we have

(Ym, j (x ′)|x |−n−α)∧(ξ)w m−n/2−α
|ξ |αYm, j (ξ

′).

Then we get

T̂α f (ξ)w |ξ |α
∑
m≥1

dm∑
j=1

m−n/2−αam, j Ym, j (ξ
′) f̂ (ξ).

Using this, we get

ÎαTα f (ξ)'
∑
m≥1

dm∑
j=1

m−n/2−αam, j Ym, j (ξ
′) f̂ (ξ).
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Let

�0(ξ
′)=

∑
m≥1

dm∑
j=1

m−n/2−αam, j Ym, j (ξ
′).

It is easy to verify that �0 satisfies (1-1) and

∑
m≥1

dm∑
j=1

mn
‖m−n/2−αam, j Ym, j‖

2
L2(Sn−1)

<∞.

Then by [Stein and Weiss 1971, Theorem 4.7, p. 165] there exists a function K (x)= �̃(x ′)/|x |n such
that K̂ (ξ)=�0(ξ

′) in the sense of principal value, where �̃ satisfies (1-1). Therefore, we get that

T f (x)= IαTα f (x)= p.v.(K ∗ f (x))

is a singular integral operator. In fact,

�̃(x ′)'
∑
m≥1

dm∑
j=1

m−αam, j Ym, j (x ′),

and

‖�̃‖2L2
α(Sn−1)

=

∑
m≥1

dm∑
j=1

m2α(m−αam, j )
2 <∞.

This says that, for 0< α < 1 and any operator Tα defined by (1-3) with � ∈ L2(Sn−1) satisfying (1-1),
there exists a singular integral operator T defined by (1-4) with �̃ ∈ L2

α(S
n−1) satisfying (1-1) such that

Tα = DαT . Conversely, for any fixed singular integral operator T with �̃ ∈ L2
α(S

n−1) satisfying (1-1),
there exists an operator Tα with � ∈ L2(Sn−1) satisfying (1-1) such that Tα = DαT . �
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