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MAGNETIC WELLS IN DIMENSION THREE

BERNARD HELFFER, YURI KORDYUKOV, NICOLAS RAYMOND AND SAN VŨ NGO. C

This paper deals with semiclassical asymptotics of the three-dimensional magnetic Laplacian in the
presence of magnetic confinement. Using generic assumptions on the geometry of the confinement, we
exhibit three semiclassical scales and their corresponding effective quantum Hamiltonians, by means of
three microlocal normal forms à la Birkhoff. As a consequence, when the magnetic field admits a unique
and nondegenerate minimum, we are able to reduce the spectral analysis of the low-lying eigenvalues to a
one-dimensional „-pseudodifferential operator whose Weyl’s symbol admits an asymptotic expansion in
powers of „

1
2 .

1. Introduction

1A. Motivation and context. The analysis of the magnetic Laplacian .�i„r �A/2 in the semiclassical
limit „ ! 0 has been the object of many developments in the last twenty years. The existence of the
discrete spectrum for this operator, together with the analysis of the eigenvalues, is related to the notion
of a “magnetic bottle”, or quantum confinement by a pure magnetic field, and has important applications
in physics. Moreover, motivated by investigations of the third critical field in Ginzburg–Landau theory
for superconductivity, there has been great attention focused on estimates of the lowest eigenvalue. In the
last decade, it appears that the spectral analysis of the magnetic Laplacian has acquired a life of its own.
For a story and discussions about the subject, the reader is referred to the recent reviews [Fournais and
Helffer 2010; Helffer and Kordyukov 2014; Raymond 2016].

In contrast to the wealth of studies exploring the semiclassical approximations of the Schrödinger
operator �„2�CV , the classical picture associated with the Hamiltonian kp�A.q/k2 has almost never
been investigated to describe the semiclassical bound states (i.e., the eigenfunctions of low energy) of
the magnetic Laplacian. The paper [Raymond and Vũ Ngo. c 2015] is to our knowledge the first rigorous
work in this direction. In that paper, which deals with the two-dimensional case, the notion of magnetic
drift, well known to physicists, is cast in a symplectic framework, and using a semiclassical Birkhoff
normal form (see, for instance, [Vũ Ngo. c 2006; 2009; Charles and Vũ Ngo. c 2008]) it becomes possible
to describe all the eigenvalues of order O.„/. Independently, the asymptotic expansion of a smaller set of
eigenvalues was established in [Helffer and Kordyukov 2011; 2015] through different methods which act
directly on the quantum side: explicit unitary transforms and a Grushin-like reduction are used to reduce
the two-dimensional operator to an effective one-dimensional operator.
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The three-dimensional case happens to be much harder. The only known results in this case that provide
a full asymptotic expansion of a given eigenvalue concern toy models where the confinement is obtained
by a boundary carrying a Neumann condition on a half-space [Raymond 2012] or on a wedge in [Popoff
and Raymond 2013]. In the case of smooth confinement without boundary, a construction of quasimodes
by Helffer and Kordyukov [2013] suggests what the expansions of the low-lying eigenvalues could be.
But, as was expected by Colin de Verdière [1996] in his list of open questions, extending the symplectic
and microlocal techniques to the three-dimensional case contains an intrinsic difficulty in the fact that the
symplectic form cannot be nondegenerate on the characteristic hypersurface. The goal of our paper is to
answer this question by fully carrying out this strategy. After averaging the cyclotron motion, the effect
of the degeneracy of the symplectic form can be observed on the fact that the reduced operator is only
partially elliptic. Hence, the key ingredient will be a separation of scales via the introduction of a new
semiclassical parameter for only one part of the variables. These semiclassical scales are reminiscent of
the three scales that have been exhibited in the classical picture in the large field limit; see [Benettin and
Sempio 1994; Cheverry 2015]. They are also related to the Born–Oppenheimer-type of approximation
in quantum mechanics (see, for instance, [Born and Oppenheimer 1927; Martinez 2007]). In fact, in a
partially semiclassical context and under generic assumptions, a full asymptotic expansion of the first
magnetic eigenvalues (and the corresponding WKB expansions) has been recently established in any
dimension in the paper by Bonnaillie-Noël, Hérau and Raymond [Bonnaillie-Noël et al. 2016].

1B. Magnetic geometry. Let us now describe the geometry of the problem. The configuration space is

R3 D fq1e1C q2e2C q3e3 j qj 2 R; j D 1; 2; 3g;

where .ej /jD1;2;3 is the canonical basis of R3. The phase space is

R6 D f.q; p/ 2 R3 �R3g

and we endow it with the canonical 2-form

!0 D dp1 ^ dq1C dp2 ^ dq2C dp3 ^ dq3: (1-1)

We will use the standard Euclidean scalar product h � ; � i on R3 and k �k, the associated norm. In particular,
we can rewrite !0 as

!0..u1; u2/; .v1; v2//D hv1; u2i � hv2; u1i 8u1; u2; v1; v2 2 R3:

The main object of this paper is the magnetic Hamiltonian, defined for all .q; p/ 2 R6 by

H.q; p/D kp�A.q/k2; (1-2)

where A 2 C1.R3;R3/.
Let us now introduce the magnetic field. The vector field A D .A1; A2; A3/ is associated (via the

Euclidean structure) with the 1-form

˛ D A1dq1CA2dq2CA3dq3



MAGNETIC WELLS IN DIMENSION THREE 1577

and its exterior derivative is a 2-form, called the magnetic 2-form and expressed as

d˛ D .@1A2� @2A1/dq1 ^ dq2C .@1A3� @3A1/dq1 ^ dq3C .@2A3� @3A2/dq2 ^ dq3:

The form d˛ may be identified with a vector field. If we let

B Dr�A D .@2A3�@3A2; @3A1�@1A3; @1A2�@2A1/D .B1; B2; B3/;

then we can write

d˛ D B3dq1 ^ dq2�B2dq1 ^ dq3CB1dq2 ^ dq3: (1-3)

The vector field B is called the magnetic field. Notice that we can express the 2-form d˛ thanks to the
magnetic matrix

MB D

0@ 0 B3 �B2
�B3 0 B1
B2 �B1 0

1A:
Indeed we have

d˛.U; V /D hU;MBV i D hU; V �Bi D ŒU; V;B� 8.U; V / 2 R3 �R3; (1-4)

where Œ � ; � ; � � is the canonical mixed product on R3. We note that B belongs to the kernels of MB and d˛.
An important role will be played by the characteristic hypersurface

†DH�1.0/;

which is the submanifold defined by the parametrization

R3 3 q 7! j.q/ WD .q;A.q// 2 R3 �R3:

We may notice the relation between †, the symplectic structure and the magnetic field given by

j �!0 D d˛; (1-5)

where d˛ is defined in (1-3).

1C. Confinement assumptions and discrete spectrum. This paper is devoted to the semiclassical analy-
sis of the discrete spectrum of the magnetic Laplacian L„;A WD .�i„rq�A.q//2, which is the semiclassical
Weyl quantization of H (see (2-1)). This means that we will consider that „ belongs to .0; „0/ with „0
small enough.

If L is a self-adjoint operator, we denote its spectrum by s.L/. The discrete spectrum of L consists of
the isolated eigenvalues with finite multiplicity. The essential spectrum is by definition the complement
in s.L/ of the discrete spectrum and is denoted by sess.L/. It is empty when L has compact resolvent.

It is known (see, for example, [Avron et al. 1978]) that L„;A is essentially self-adjoint and we always
consider with the same notation its self-adjoint extension.



1578 BERNARD HELFFER, YURI KORDYUKOV, NICOLAS RAYMOND AND SAN VŨ NGO. C

Let us recall the assumptions under which the discrete spectrum actually exists. In two dimensions,
with a nonvanishing magnetic field, a standard estimate (see [Avron et al. 1978; Cycon et al. 1987]) gives

„

Z
R2
jB.q/jju.q/j2 dq 6 hL„;Au j ui 8u 2 C10 .R

2/: (1-6)

This implies that, as B.q/!C1, the magnetic Laplacian has compact resolvent. Except in special
cases when some components of the magnetic field have constant sign, this doesn’t hold anymore in
higher dimensions (see [Dufresnoy 1983]). One can give examples where jB.q/j!C1 and the operator
doesn’t have a compact resolvent. We should impose a control of the oscillations of B at infinity. Under
this condition, we get an estimate similar to (1-6) at the price of a small loss. When there exists a constant
C > 0 such that

krB.q/k6 C.1C b.q// 8q 2 R3; (1-7)

and b.q/ WD kB.q/k tends toC1, one can show again that the magnetic Laplacian has compact resolvent
[Helffer and Mohamed 1996].

In the semiclassical context, we would like to consider the case of R3 and, in addition to (1-7), a
confining assumption which allows the presence of the essential spectrum above a certain threshold. More
precisely:

Assumption 1.1. We assume that (1-7) holds and

b.q/> b0 WD inf
q2R3

b.q/ > 0: (1-8)

Under Assumption 1.1, it is proven in [Helffer and Mohamed 1996, Theorem 3.1] that there exist
h0 > 0 and C0 > 0 such that, for all „ 2 .0; h0/,

„.1�C0„
1
4 /

Z
R3
b.q/ju.q/j2 dq 6 hL„;Au j ui 8u 2 C10 .R

3/: (1-9)

In this case, if we do not assume that b.q/!C1, the spectrum is not necessarily discrete, but using
this inequality and Persson’s theorem [1960], we obtain that the bottom of the essential spectrum is
asymptotically above „b1, where

b1 WD lim inf
jqj!C1

b.q/:

More precisely, under Assumption 1.1, there exist h0 > 0 and C0 > 0 such that, for all „ 2 .0; h0/,

sess.L„;A/�
�
„b1.1�C0„

1
4 /;C1

�
: (1-10)

Assumption 1.2. We assume that

0 < b0 < b1: (1-11)

Moreover, we will assume that there exists a point q0 2 R3 and " > 0, Q̌0 2 .b0; b1/ such that

fb.q/6 Q̌0g �D.q0; "/; (1-12)
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where D.q0; "/ is the Euclidean ball centered at q0 and of radius ". For the rest of the article we let
ˇ0 2 .b0; Q̌0/. Without loss of generality, we can assume that q0 D 0 and that A.0/D 0 (which can be
obtained with a change of gauge).

Note that Assumption 1.2 implies that the minimal value of b is attained inside D.q0; "/.
Throughout this paper, we will strengthen the assumptions on the nature of the point q0. At some stage

of our investigation, q0 will be the unique minimum of b. Note in particular that (1-12) is satisfied as
soon as b admits a unique and nondegenerate minimum.

1D. Informal description of the results. Let us now informally walk through the main results of this
paper. We will assume (as precisely formulated in (1-11)–(1-12)) that the magnetic field does not vanish
and is confining.

Of course, for eigenvalues of order O.„/, the corresponding eigenfunctions are microlocalized in the
semiclassical sense near the characteristic manifold † (see, for instance, [Robert 1987; Zworski 2012]).
Moreover, the confinement assumption implies that the eigenfunctions of L„;A associated with eigenvalues
less than ˇ0„ enjoy localization estimates à la Agmon. Therefore we will be reduced to investigating the
magnetic geometry locally in space near a point q0 D 0 2 R3 belonging to the confinement region and
which, for notational simplicity, we may assume to be the origin.

Then, in a neighborhood of .0;A.0// 2†, there exist symplectic coordinates .x1; �1; x2; �2; x3; �3/
such that †D fx1 D �1 D �3 D 0g and .0;A.0// has coordinates 0 2 R6. Hence † is parametrized by
.x2; �2; x3/.

1D1. First Birkhoff form. In these coordinates suited for the magnetic geometry, it is possible to perform
a semiclassical Birkhoff normal form and microlocally unitarily conjugate L„;A to a first normal form
N„ D Opw

„
.N„/ with an operator-valued symbol N„ depending on .x2; �2; x3; �3/ in the form

N„ D �
2
3 C b.x2; �2; x3/I„Cf

?.„; I„; x2; �2; x3; �3/CO.jI„j1; j�3j1/;

where Ih D „2D2x1 C x
2
1 is the first encountered harmonic oscillator and where .„; I; x2; �2; x3; �3/ 7!

f ?.„; I; x2; �2; x3; �3/ satisfies, for I 2 .0; I0/,

jf ?.„; I; x2; �2; x3; �3/j6 C.jI j
3
2 Cj�3j

3
C„

3
2 /:

Since we wish to describe the spectrum in a spectral window containing at least the lowest eigenvalues,
we are led to replace I„ by its lowest eigenvalue „ and thus, we are reduced to the two-dimensional
pseudodifferential operator N Œ1�

„
D Opw

„
.N

Œ1�

„
/, where

N
Œ1�

„
D �23 C b.x2; �2; x3/„Cf

?.„; „; x2; �2; x3; �3/CO.„1; j�3j1/:

1D2. Second Birkhoff form. If we want to continue the normalization, we shall assume a new nondegen-
eracy condition (the first one was the positivity of b).

Now we assume that, for any .x2; �2/ in a neighborhood of .0; 0/, the function x3 7! b.x2; �2; x3/

admits a unique and nondegenerate minimum denoted by s.x2; �2/. Then, by using a new symplectic
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transformation in order to center the analysis at the partial minimum s.x2; �2/, we get a new operator N Œ1�

„

whose Weyl symbol is in the form

N
Œ1�

„
D �2.x2; �2/.�

2
3 C„x

2
3/C„b.x2; �2; s.x2; �2//C remainders;

with

�.x2; �2/D
�
1
2
@23b.x2; �2; s.x2; �2//

� 1
4 (1-13)

and where the remainders have been properly normalized to be at least formal perturbations of the second
harmonic oscillator �23 C„x

2
3 . Since the frequency of this oscillator is „�

1
2 in the classical picture, we

are naturally led to introduce the new semiclassical parameter

hD „
1
2

and the new impulsion

� D „
1
2 Q�

so that

Opw
„
.�23 C„x

2
3/D h

2 Opwh . Q�
2
3 C x

2
3/:

We therefore get the h-symbol of N Œ1�

„
,

N
Œ1�

h
D h2�2.x2; h Q�2/. Q�

2
3 C x

2
3/C h

2b.x2; h Q�2; s.x2; h Q�2//C remainders:

We can again perform a Birkhoff analysis in the space of formal series given by E DF ŒŒx3; Q�3; h��, where
F is a space of symbols in the form c.h; x2; h Q�2/. We get the new operator Mh D Opwh .Mh/, with

Mh D h
2b.x2; h Q�2; s.x2; h Q�2//C h

2Jh Opwh �
2.x2; h Q�2/C h

2g?.h;Jh; x2; h Q�2/C remainders;

where Jh D Opwh .
Q�23 C x

2
3/ and g?.h; J; x2; �2/ is of order three with respect to .J

1
2 ; h

1
2 /. Motivated

again by the perspective of describing the low-lying eigenvalues, we replace Jh by h and rewrite the
symbol with the old semiclassical parameter „ to get the operator MŒ1�

„
D Opwh .M

Œ1�

h
/ D Opw

„
.M

Œ1�

„
/,

with

M
Œ1�

„
D „b.x2; �2; s.x2; �2//C„

3
2 �2.x2; �2/C„g

?.„
1
2 ; „

1
2 ; x2; �2/C remainders: (1-14)

1D3. Third Birkhoff form. The last generic assumption is the uniqueness and nondegeneracy of the
minimum of the new “principal” symbol

.x2; �2/ 7! b.x2; �2; s.x2; �2//

that implies that b admits a unique and nondegenerate minimum at .0; 0; 0/. Up to an „
1
2 -dependent

translation in the phase space and a rotation, we are essentially reduced to a standard Birkhoff normal
form with respect to the third harmonic oscillator K„ D „2D2x2 C x

2
2 .

Note that all our normal forms may be used to describe the classical dynamics of a charged particle in
a confining magnetic field (see Figure 1).
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Figure 1. The dashed line represents the integral curve of the confining magnetic field
BD curlA through q0D .0:5; 0:6; 0:7/ for B.x; y; z/D

�
1
2
y; 1
2
z;
p
1C x2

�
and the full

line represents the projection in the q-space of the Hamiltonian trajectory with initial
condition .q0; p0/ (with p0D .�0:6; 0:01; 0:2/) ending at .q1; p1/. The motion is easier
to follow on a video: see http://tinyurl.com/3DMagneticFlow.

1D4. Microlocalization. Of course, at each step, we will have to provide accurate microlocal estimates
of the eigenfunctions of the different operators to get a good control of the different remainders. In a
first approximation, we will get localizations at the scales x1; �1; �3 � „ı (ı > 0 is small enough) and
x2; �2; x3 � 1. In a second approximation, we will get x3; Q�3 � „ı. In the final step, we will refine the
localization by x2; �2 � „ı.

1E. A semiclassical eigenvalue estimate. Let us already state one of the consequences of our investiga-
tion. It will follow from the third normal form that we have a complete description of the spectrum below
the threshold b0„C 3�2.0; 0/„

3
2 . This description is reminiscent of the results à la Bohr–Sommerfeld of

[Helffer and Robert 1984; Helffer and Sjöstrand 1989, Appendix B] (see also [Helffer and Kordyukov
2015, Remark 1.4]) obtained in the case of one-dimensional semiclassical operators.

Theorem 1.3. Assume that b admits a unique and nondegenerate minimum at q0. Define

� D
Hessq0b .B.q0/;B.q0//

2b20
; � D

s
detHessq0b

Hessq0b .B.q0/;B.q0//
: (1-15)

http://tinyurl.com/3DMagneticFlow
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There exists a function k? 2 C10 .R
2/ with arbitrarily small compact support, and

k?.„
1
2 ; Z/DO..„C jZj/

3
2 /

when .„; Z/! .0; 0/, such that the following holds:
For all c 2 .0; 3/, the spectrum of L„;A below b0„Cc�

1
2„

3
2 coincides modulo O.„1/ with the spectrum

of the operator F„ acting on L2.Rx/ given by

F„ D b0„C �
1
2„

3
2 �

�

2�
„
2
C„

�
1
2
�K„C k?.„

1
2 ;K„/

�
; K„ D „2D2xC x

2;

with some constant �.

Remark 1.4. The constant � in Theorem 1.3 is given by the formula

� D kr�2.0; 0/k2;

where the function � is given in (1-13). Observe also that � D �4.0; 0/.

Corollary 1.5. Under the hypothesis of Theorem 1.3, let .�m.„//m>1 be the nondecreasing sequence of
the eigenvalues of L„;A. For any c 2 .0; 3/, let

N„;c WD fm 2 N� j �m.„/6 „b0C c�
1
2„

3
2 g:

Then the cardinal of N„;c is of order „�
1
2 , and there exist �1; �2 2 R and „0 > 0 such that

�m.„/D „b0C �
1
2„

3
2 C

�
�
�
m� 1

2

�
�
�

2�

�
„
2
C �1

�
m� 1

2

�
„
5
2 C �2

�
m� 1

2

�2
„
3
CO.„

5
2 /

uniformly for „ 2 .0; „0/ and m 2 N„;c .
In particular, the splitting between two consecutive eigenvalues satisfies

�mC1.„/��m.„/D �„
2
CO.„

5
2 /:

Proof. If the support of k? is small enough, the hypothesis k?.„
1
2 ; Z/ D O..„C jZj/

3
2 / implies that,

when „ is small enough,

.1C �/K„ > K„C
2

�
k?.„

1
2 ;K„/> .1� �/K„

for some small � > 0. Therefore, since the eigenvalues of K„ are .2m� 1/„, m 2 N�, the variational
principle implies that the number of eigenvalues of K„C.2=�/k?.„

1
2 ;K„/ below a thresholdC„ belongs to�

1

2

�
C„

„.1C �/
C 1

�
;
1

2

�
C„

„.1� �/
C 1

��
:

Taking C„ D .2=�/.c � 1/�
1
2„

1
2 C .�=�2/„, and applying the theorem, we obtain the estimate for the

cardinal of N„;c . The corresponding eigenvalues of L„;A are of the form

�m.„/D „b0C �
1
2„

3
2 �

�

2�
„
2
C„

�
�
�
m� 1

2

�
„C k?.„

1
2 ; 2m� 1/

�
CO.„1/;
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with .2m� 1/„6 C„=.1� �/. Therefore there exists a constant QC > 0, independent of „, such that all
m 2 N„;c satisfy the inequality .2m� 1/„6 QC„ 12. Writing

k?.„
1
2 ; Z/D c0„

3
2 C �1„

1
2

�
1
2
Z
�
C c1„

2
C �2

�
1
2
Z
�2
C �3„ZC„

1
2O.hCjZj/2CO.Z3/;

we see that, for m 2 N„;c ,

k?.„
1
2 ; .2m� 1/„/D �1„

3
2

�
m� 1

2

�
C �2„

2
�
m� 1

2

�2
CO.„

3
2 /;

which gives the result. �

Remark 1.6. An upper bound of �m.„/ for fixed „-independentm with remainder in O.„
9
4 / was obtained

in [Helffer and Kordyukov 2013] through a quasimodes construction involving powers of „
1
4 . To the

authors’ knowledge, Corollary 1.5 gives the most accurate description of magnetic eigenvalues in three
dimensions, in such a large spectral window. Note also that the nondegeneracy assumption on the norm
of B is not purely technical. Indeed, at the quantum level, it appears through microlocal reductions
matching with the splitting of the Hamiltonian dynamics into three scales: the cyclotron motion around
field lines, the center-guide oscillation along the field lines, and the oscillation within the space of field
lines.

1F. Organization of the paper. The paper is organized as follows. In Section 2, we state our main results.
Section 3 is devoted to the investigation of the first normal form (see Theorem 2.1 and Corollary 2.4). In
Section 4 we analyze the second normal form (see Theorems 2.8 and 2.11 and Corollaries 2.9 and 2.13).
Section 5 is devoted to the third normal form (see Theorem 2.15 and Corollary 2.16).

2. Statements of the main results

We recall (see [Dimassi and Sjöstrand 1999, Chapter 7]) that a function m W Rd ! Œ0;1/ is an order
function if there exist constants N0; C0 > 0 such that

m.X/6 C0hX �Y iN0m.Y /

for any X; Y 2 Rd. The symbol class S.m/ is the space of smooth „-dependent functions a„ W Rd ! C

such that, for all ˛ 2 Nd,
j@˛xa„.x/j6 C˛m.x/ 8h 2 .0; 1�:

Throughout this paper, we assume that the components of the vector potential A belong to a symbol
class S.m/. Note that this implies that B 2 S.m/, and conversely, if B 2 S.m/, then there exist a
potential A and another order function m0 such that A 2 S.m0/. Moreover, the magnetic Hamiltonian
H.x; �/D k� �A.x/k2 belongs to S.m00/ for an order function m00 on R6.

We will work with the Weyl quantization; for a classical symbol a„D a.x; �I „/2S.m/, it is defined as

Opw
„
a  .x/D

1

.2�„/d

Z
R2d

eihx�y;�i=„a

�
xCy

2
; �

�
 .y/ dy d� 8 2 S.Rd /: (2-1)

The Weyl quantization of H is the magnetic Laplacian L„;A D .�i„r �A/2.
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2A. Normal forms and spectral reductions. Let us introduce our first Birkhoff normal form N„.

Theorem 2.1. If B.0/¤0, there exists a neighborhood of .0;A.0// endowed with symplectic coordinates
.x1; �1; x2; �2; x3; �3/ in which †D fx1 D �1 D �3 D 0g and .0;A.0// has coordinates 0 2 R6, and there
exist an associated unitary Fourier integral operator U„ and a smooth function f ?.„; Z; x2; �2; x3; �3/
compactly supported with respect to Z and �3, whose Taylor series with respect to Z; �3; „ isX

k>3

X
2`C2mCˇDk

„
`c?`;m;ˇ .x2; �2; x3/Z

m�
ˇ
3 ;

such that
U �
„
L„;AU„ DN„CR„; (2-2)

with
N„ D „2D2x3 C I„Opw

„
bCOpw

„
f ?.„; I„; x2; �2; x3; �3/;

and where

(a) we have I„ D „2D2x1 C x
2
1 ,

(b) the operator Opw
„
f ?.„; I„; x2; �2; x3; �3/ has to be understood as the Weyl quantization of an

operator-valued symbol,

(c) the remainder R„ is a pseudodifferential operator such that, in a neighborhood of the origin, the
Taylor series of its symbol with respect to .x1; �1; �3; „/ is 0.

Remark 2.2. In Theorem 2.1, the direction of B considered as a vector field on† is @=@x3 and the function
b 2 C1.R6/ stands for b ı j�1

j†
ı� , where � W R6! † W �.x1; �1; x2; �2; x3; �3/D .0; 0; x2; �2; x3; 0/.

In addition, note that the support of f ? in Z and �3 may be chosen as small as we want.

Remark 2.3. In the context of Weyl’s asymptotics, a close version of this theorem appears in [Ivrii 1998,
Chapter 6].

In order to investigate the spectrum of L„;A near the low-lying energies, we introduce the pseudodif-
ferential operator

N Œ1�

„
D „

2D2x3 C„Opw
„
bCOpw

„
f ?.„; „; x2; �2; x3; �3/;

obtained by replacing I„ by „.

Corollary 2.4. We introduce
N ]

„
D Opw

„
.N

]

„
/; (2-3)

with
N
]

„
D �23 C I„b.x2; �2; x3/Cf ?;].„; I„; x2; �2; x3; �3/;

and where b is a smooth extension of b away from D.0; "/ such that (1-12) still holds and where
f ?;] D �.x2; �2; x3/f

?, with � a smooth cutoff function that is 1 in a neighborhood of D.0; "/. We also
define the operator attached to the first eigenvalue of I„,

N Œ1�;]

„
D Opw

„
.N

Œ1�;]

„
/; (2-4)

where N Œ1�;]

„
D �23 C„b.x2; �2; x3/Cf

?;].„; „; x2; �2; x3; �3/.
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If " and the support of f ? are small enough, then we have:

(a) The spectra of L„;A and N ]

„
below ˇ0„ coincide modulo O.„1/.

(b) For all c 2 .0;min.3b0; ˇ0//, the spectra of L„;A and N Œ1�;]

„
below c„ coincide modulo O.„1/.

Let us now state our results concerning the normal form of N Œ1�

„
(or N Œ1�;]

„
) under the following

assumption.

Notation 2.5. If f D f .z/ is a differentiable function, we denote by Tzf . � / its tangent map at the
point z. Moreover, if f is twice differentiable, the second derivative of f is denoted by T 2z f . � ; � /.

Assumption 2.6. We assume that T 20 b.B.0/;B.0// > 0.

Remark 2.7. If the function b admits a unique and positive minimum at 0 and it is nondegenerate, then
Assumption 2.6 is satisfied.

Under Assumption 2.6, we have @3b.0;0;0/D0 and, in the coordinates .x2; �2;x3/ given in Theorem 2.1,

@23b.0; 0; 0/ > 0: (2-5)

It follows from (2-5) and the implicit function theorem that, for small x2, there exists a smooth function
.x2; �2/ 7! s.x2; �2/, with s.0; 0/D 0, such that

@3b.x2; �2; s.x2; �2//D 0: (2-6)

The point s.x2; �2/ is the unique (in a neighborhood of .0; 0; 0/) minimum of x3 7! b.x2; �2; x3/. We
define

�.x2; �2/ WD
�
1
2
@23b.x2; �2; s.x2; �2//

� 1
4:

Theorem 2.8. Under Assumption 2.6, there exist a neighborhood V0 of 0 and a Fourier integral operator
V„ which is microlocally unitary near V0 and such that

V �
„
N Œ1�

„
V„ DWN

Œ1�

„
D Opw

„
.N

Œ1�

„
/;

where N Œ1�

„
D �2.x2; �2/.�

2
3 C„x

2
3/C„b.x2; �2; s.x2; �2//C r„ and r„ is a semiclassical symbol such

that r„ DO.„x33/CO.„�23 /CO.�33 /CO.„2/.

Corollary 2.9. Let us introduce
N Œ1�;]

„
D Opw

„
.N

Œ1�;]

„
/;

where N Œ1�;]

„
D �2.x2; �2/.�

2
3 C„x

2
3/C„b.x2; �2; s.x2; �2//C r

]

„
, with r]

„
D �.x2; �2; x3; �3/r„, and

where � denotes a smooth and constant (with a positive constant) extension of the function �.
There exists a constant Qc > 0 such that, for any cut-off function � equal to 1 on D.0; "/ with support in

D.0; 2"/, we have:

(a) The spectra of N Œ1�;]

„
and N Œ1�;]

„
below .b0C Qc"2/„ coincide modulo O.„1/.

(b) For all c 2 .0;min.3b0; b0C Qc"2//, the spectra of L„;A and N Œ1�;]

„
below c„ coincide modulo O.„1/.
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Notation 2.10 (change of semiclassical parameter). We let hD „
1
2 and, if A„ is a semiclassical symbol

on T �R2, admitting a semiclassical expansion in „
1
2 , we write

A„ WD Opw
„
A„ D Opwh Ah DW Ah;

with
Ah.x2; Q�2; x3; Q�3/D Ah2.x2; h

Q�2; x3; h Q�3/:

Thus, A„ and Ah represent the same operator when hD„
1
2 , but the former is viewed as an „-quantization

of the symbol A„, while the latter is an h-pseudodifferential operator with symbol Ah. Notice that,
if A„ belongs to some class S.m/, then Ah 2 S.m/ as well. This is of course not true the other way
around.

Theorem 2.11. Under Assumption 2.6, there exists a unitary operator Wh as well as a smooth function
g?.h;Z; x2; �2/, with compact support as small as we want with respect to Z and with compact support
in .x2; �2/, whose Taylor series with respect to Z, h isX

2mC2`>3

cm;`.x2; �2/Z
mh`;

such that
W �h N

Œ1�;]

h
Wh DWMh D Opwh .Mh/;

with

Mh D h
2b.x2; h Q�2; s.x2; h Q�2//C h

2Jh Opwh �
2.x2; h Q�2/C h

2g?.h;Jh; x2; h Q�2/C h2RhC h1S.1/;

where

(a) the operator NŒ1�;]
h

is N Œ1�;]

„
(but written in the h-quantization),

(b) we have let Jh D Opwh .
Q�23 C x

2
3/,

(c) the function Rh satisfies Rh.x2; h Q�2; x3; Q�3/DO..x3; Q�3/1/.

Remark 2.12. Note that the support of g? with respect to Z may be chosen as small as we want. Note
also that we have used N

Œ1�;]

h
instead of NŒ1�

h
: since Wh is exactly unitary, we get a direct comparison of

the spectra.

Corollary 2.13. We introduce
M
]

h
D Opwh .M

]

h
/;

with
M
]

h
D h2b.x2; h Q�2; s.x2; h Q�2//C h

2Jh�2.x2; h Q�2/C h2g?.h;Jh; x2; h Q�2/:

We also define
M
Œ1�;]

h
D Opwh .M

Œ1�;]

h
/;

with
M
Œ1�;]

h
D h2b.x2; h Q�2; s.x2; h Q�2//C h

3�2.x2; h Q�2/C h
2g?.h; h; x2; h Q�2/:
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If " and the support of g? are small enough, we have:

(a) For all � > 0, the spectra of NŒ1�;]
h

and M
]

h
below b0h2CO.h2C�/ coincide modulo O.h1/.

(b) For c 2 .0; 3/, the spectra of M]

h
and M

Œ1�;]

h
below b0h2C c�

1
2h3 coincide modulo O.h1/.

(c) If c 2 .0; 3/, the spectra of L„;A and MŒ1�;]

„
DM

Œ1�;]

h
below b0„C c�

1
2„

3
2 coincide modulo O.„1/.

Finally, we can perform a last Birkhoff normal form for the operator MŒ1�;]

„
as soon as .x2; �2/ 7!

b.x2; �2; s.x2; �2// admits a unique and nondegenerate minimum at .0; 0/. Under this additional assump-
tion, b admits a unique and nondegenerate minimum at .0; 0; 0/.

Therefore we will use the following stronger assumption.

Assumption 2.14. The function b admits a unique and positive minimum at 0 and it is nondegenerate.

Theorem 2.15. Under Assumption 2.14, there exists a unitary „-Fourier integral operator Q„1=2 whose
phase admits an expansion in powers of „

1
2 such that

Q�
„1=2

MŒ1�;]

„
Q„1=2 D F„CG„;

where

(a) F„ is defined in Theorem 1.3,

(b) the remainder is in the form G„ D Opw
„
.G„/, with G„ D „O.jz2j1/.

Corollary 2.16. If " and the support of k? are small enough, we have:

(a) For all � 2
�
0; 1
2

�
, the spectra of MŒ1�;]

„
and F„ below b0„CO.„1C�/ coincide modulo O.„1/.

(b) For all c 2 .0; 3/, the spectra of L„;A and F„ below b0„C c�
1
2„

3
2 coincide modulo O.„1/.

Remark 2.17. Since the spectral analysis of F„ is straightforward, Corollary 2.16(b) implies Theorem 1.3.

The next sections are devoted to the proofs of our main results.

Mh

Theorem 2.11

MŒ1�

h

Corollary 2.13(b)

MŒ1�

„

change of
semiclassical

parameter

F„
Theorem 2.15

L„;A

Theorem 1.3

N„

Theorem 2.1

N Œ1�

„Corollary 2.4(b)

N Œ1�

„

Theorem 2.8

NŒ1�

h

change of
semiclassical

parameter
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3. First Birkhoff normal form

We assume that B.0/¤ 0 so that in some neighborhood � of 0 the magnetic field does not vanish. Up to
a rotation in R3 (extended to a symplectic transformation in R6) we may assume that B.0/D kB.0/ke3.
In this neighborhood, we may define the unit vector

bD
B

kBk
(3-1)

and find vectors c and d depending smoothly on q such that .b; c;d/ is a direct orthonormal basis.

3A. Symplectic coordinates.

3A1. Straightening the magnetic vector field. Let y� be a small neighborhood of 0 2 R2. We consider the
form d˛ and we would like to find a diffeomorphism �, defined on y�, such that ��.d˛/D d Oq1 ^ d Oq2,
where we use the notation �. Oq/D q. First, it is easy to find a local diffeomorphism ' such that

@3'. Qq/D b.'. Qq//

and '. Qq1; Qq2; 0/D . Qq1; Qq2; 0/. This is just the standard straightening lemma for the nonvanishing vector
field b.

The vector e3 is in the kernel of '�.d˛/, which implies that we have '�.d˛/D f . Qq/d Qq1 ^ d Qq2 for
some smooth function f .

But since the form '�.d˛/ is closed, f does not depend on Qq3. It is then easy to find another
diffeomorphism  , corresponding to the change of variables

Oq D  . Qq/D
�
 1. Qq1; Qq2/;  2. Qq1; Qq2/; Qq3

�
;

such that
 �.'�.d˛//D d Oq1 ^ d Oq2:

We let �D ' ı and we notice that

��.d˛/D d Oq1 ^ d Oq2; @3�. Oq/D b.�. Oq//: (3-2)

Remark 3.1. It follows from (3-2) and (1-4) that detT�D kBk�1.

3A2. Symplectic coordinates. Let us consider the new parametrization of † given by

� W y�!†;

Oq 7!
�
�. Oq/; A1.�. Oq//; A2.�. Oq//; A3.�. Oq//

�
;

which gives a basis .f1;f2;f3/ of T†,

fj D
�
T�.ej /; TA ıT�.ej /

�
; j D 1; 2; 3:

Using (1-5), and the fact that f3 is in the kernel of d˛, we find !0.fj ;f3/ D 0, j D 1; 2. Finally,
!0.f1; f2/D d˛.T�e1; T�e2/D �

�.d˛/.e1; e2/D 1.
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The following vectors of R3 �R3 form a basis of the symplectic orthogonal of T�. Oq/†:

f4 D kBk
� 1
2 .c; . tT�. Oq/A/c/;

f5 D kBk
� 1
2 .d ; . tT�. Oq/A/d/;

(3-3)

so that

!0.f4;f5/D�1:

We let f6 D .0;b/C�1f1C�2f2, where �1 and �2 are determined so that !0.fj ;f6/D 0 for j D 1; 2.
We notice that !0.fj ;f6/D 0 for j D 4; 5 and !0.f3;f6/D�1.

3A3. Diagonalizing the Hessian. We recall that

H.q; p/D kp�A.q/k2

so that, at a critical point p DA.q/, the Hessian is

T 2H
�
.U1; V1/; .U2; V2/

�
D 2

˝
V1�TqA.U1/; V2�TqA.U2/

˛
:

Let us notice that
T 2H.f4;f5/D 2kBk

�1
hB � c;B �di D 0;

T 2H.f4;f6/D 2hB � c;bi D 0;

T 2H.f5;f6/D 2hB �d ;bi D 0:

The Hessian, restricted to the symplectic orthogonal of T�. Oq/†, is diagonal in the basis .f4;f5;f6/.
Moreover we have

T 2H.f4;f4/D d2H.f5;f5/D 2kBk�1kB � ck2 D 2kBk�1kB �dk2 D 2kBk:

Finally we have

T 2H.f6;f6/D 2:

Now we consider the local diffeomorphism

.x; �/ 7! �.x2; �2; x3/C x1f4.x2; �2; x3/C �1f5.x2; �2; x3/C �3f6.x2; �2; x3/:

The Jacobian of this map is a symplectic matrix on †. We may apply the Moser–Weinstein argument
(see [Weinstein 1971]) to make this map locally symplectic near † modulo a change of variable which is
tangent to the identity.

Near †, in these new coordinates, the Hamiltonian H admits the expansion

yH DH 0
CO.jx1j3Cj�1j3Cj�3j3/; (3-4)

where yH denotes H in the coordinates .x1; x2; x3; �1; �2; �3/, and with

H 0
D �23 C b.x2; �2; x3/.x

2
1 C �

2
1 /; b D kB.x2; �2; x3/k: (3-5)
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3B. Semiclassical Birkhoff normal form.

3B1. Birkhoff procedure in formal series. Let us consider the space E of formal power series in .x1; �1; �3;„/
with coefficients smoothly depending on Qx D .x2; �2; x3/:

E D C1x2;�2;x3 ŒŒx1; �1; �3; „��:

We endow E with the semiclassical Moyal product (with respect to all variables .x1; x2; x3; �1; �2; �3/)
denoted by ? and the commutator of two series �1 and �2 is defined as

Œ�1; �2�D �1 ? �2� �2 ? �1:

The degree of x˛11 �
˛2
1 �

ˇ
3 „

` D z˛1 �
ˇ
3 „

` is ˛1C˛2CˇC 2`D j˛jCˇC 2`. The space of monomials of
degree N is denoted DN , and ON is the space of formal series with valuation at least N. For any �;  2 E ,
we define ad�  D Œ�; �.

Proposition 3.2. Given  2O3, there exist formal power series �; � 2O3 such that

ei„
�1 ad� .H 0

C /DH 0
C �;

with Œ�; jz1j2�D 0.

Proof. Let N > 1. Assume that we have, for �N 2O3,

ei„
�1 ad�N .H 0

C /DH 0
CK3C � � �CKNC1CRNC2CONC3;

with Ki 2 Di , ŒKi ; jz1j2�D 0 and RNC2 2 DNC2.
Let � 0 2 DNC2. Then we have

ei„
�1 ad�NC�0 .H 0

C /DH 0
CK3C � � �CKNC1CKNC2CONC3;

with KNC2 2 DNC2 such that

KNC2 DRNC2C i„
�1 ad� 0 H 0

CONC3:

Let us temporarily admit that (see Lemma 3.3 below)

i„�1 ad� 0 H 0
D i„�1b ad� 0 jz1j2CONC3:

We obtain
KNC2 DRNC2C b ad� 0 jz1j2;

which we rewrite as

RNC2 DKNC2C i„
�1b adjz1j2 �

0
DKNC2C bfjz1j

2; � 0g:

Since b. Qx/¤ 0, we deduce the existence of � 0 and KNC2 such that KNC2 commutes with jz1j2. �

Lemma 3.3. For � 0 2 DNC2, we have

i„�1 ad� 0 H 0
D i„�1b ad� 0 jz1j2CONC3:
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Proof. We observe that

i„�1 ad� 0 H 0
D i„�1 ad� 0 �23 C i„

�1 ad� 0.b. Qx/jz1j2/:

Let us write
� 0 D

X
j˛jCˇC2lDNC2

a˛;ˇ;l. Qx/z
˛
1 �
ˇ
3 „

l:

Then, for the first term, we have

i„�1 ad� 0 �23 Df�
0; �23g D �2�3

@� 0

@x3
D�2

X
j˛jCˇC2`DNC2

@a˛;ˇ;`

@x3
. Qx/z˛1 �

ˇC1
3 „

`
2ONC3:

We also have

i„�1.ad� 0 b. Qx//Df� 0; bgC„2ON D
@� 0

@�3

@b

@x3
C
@� 0

@�2

@b

@x2
�
@� 0

@x2

@b

@�2
CONC1

D

X
j˛jCˇC2`DNC2

ˇa. Qx/
@b

@x3
z˛1 jz1j

2�
ˇ�1
3 „

`
CONC1 2ONC1:

Therefore, for the second term, we get

i„�1 ad� 0.b. Qx/jz1j2/Di„�1.ad� 0 b. Qx//jz1j2C i„�1b. Qx/ ad� 0 jz1j2

Di„�1b. Qx/ ad� 0 jz1j2CONC3;

which completes the proof of the lemma. �

3B2. Quantizing the formal procedure. Let us now prove Theorem 2.1. Using (3-4) and applying the
Egorov theorem (see [Robert 1987; Zworski 2012] or Theorem A.2), we can find a unitary Fourier integral
operator U„ such that

U �
„
L„;AU„ D C0„COpw

„
.H 0/COpw

„
.r„/;

where the Taylor series (with respect to x1, �1, �3, „) of r„ satisfies rT
„
D  2 O3 and C0 is the value

at the origin of the subprincipal symbol of U �
„
L„;AU„. One can choose U„ such that the subprincipal

symbol is preserved by conjugation,1 which implies C0D 0. Applying Proposition 3.2, we obtain � and �
in O3 such that

ei„
�1 ad� .H 0

C /DH 0
C �;

with Œ�; jz1j2�D 0.
We can introduce a smooth symbol a„ with compact support such that we have aT

„
D� in a neighborhood

of the origin. By Proposition 3.2 and Theorem A.4, we obtain that the operator

ei„
�1 Opw

„
.a„/

�
Opw
„
.H 0/COpw

„
.r„/

�
e�i„

�1 Opw
„
.a„/

1This is sometimes called the improved Egorov theorem. It was first discovered by Weinstein [1975] in the homogeneous
setting. For the semiclassical case, see, for instance, [Helffer and Sjöstrand 1989, Appendix A].
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is a pseudodifferential operator such that the formal Taylor series of its symbol is H 0 C �. In this
application of Theorem A.4, we have used the filtration Oj defined in Section 3B1. Since � commutes
with jz1j2, we can write it as a formal series in jz1j2:

� D
X
k>3

X
2`C2mCˇDk

„
`c`;m.x2; �2; x3/jz1j

2m�
ˇ
3 :

This formal series can be reordered by using monomials .jz1j2/?m:

� D
X
k>3

X
2`C2mCˇDk

„
`c?`;m.x2; �2; x3/.jz1j

2/?m�
ˇ
3 :

Thanks to the Borel lemma, we may find a smooth function f ?.„; I; x2; �2; x3; �3/, with compact support
as small as we want with respect to „, I and �3, such that its Taylor series with respect to „; I; �3 isX

k>3

X
2`C2mCˇDk

„
`c?`;m.x2; �2; x3/I

m�
ˇ
3 :

This achieves the proof of Theorem 2.1.

3C. Spectral reduction to the first normal form. This section is devoted to the proof of Corollary 2.4.

3C1. Numbers of eigenvalues.

Lemma 3.4. Under Assumption 1.2, there exists h0 > 0 and "0 > 0 such that, for all „ 2 .0; h0/, the
essential spectrum of N ]

„
admits the lower bound

inf sess.N
]

„
/> .ˇ0C "0/„:

Proof. By using the assumption, we may consider a smooth function � with compact support and "0 > 0
such that

�23 C b.x2; �2; x3/C�.x2; x3; �2; �3/> ˇ0C 2"0:

Then, given � 2 .0; 1/ and estimating the second term in (2-3) by using that the support of f ? is chosen
small enough and the semiclassical Calderon–Vaillancourt theorem, we notice that, for „ small enough,

N ]

„
> .1� �/Opw

„

�
�23 Cjz1j

2b.x2; �2; x3/
�
: (3-6)

Since the essential spectrum is invariant by (relatively) compact perturbations, we have

sess
�
N ]

„
C .1� �/„Opw

„
�.x2; x3; �2; �3/

�
D sess.N

]

„
/:

Hence
inf sess.N

]

„
/> inf s

�
N ]

„
C .1� �/„Opw

„
�.x2; x3; �2; �3/

�
:

In order to bound the right-hand side from below, we write

N ]

„
C.1��/„Opw

„
�.x2;x3; �2; �3/> .1��/Opw

„

�
�23Cjz1j

2b.x2; �2;x3/
�
C.1��/„Opw

„
�.x2;x3; �2; �3/

> „.1��/Opw
„

�
�23Cb.x2; �2;x3/C�.x2;x3; �2; �3/

�
> „.1��/.ˇ0C2"0�C„/;
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where we have used the semiclassical Gårding inequality. Taking � and then „ small enough, this
concludes the proof. �

By using the Hilbertian decomposition given by the Hermite functions .ek;„/k>1 associated with I„,
we notice that

N ]

„
D

M
k>1

N Œk�;]

„
;

where
N Œk�;]

„
D „

2D2x3 C .2k� 1/„Opw
„
bCOpw

„
f ?;]

�
„; .2k� 1/„; x2; �2; x3; �3

�
(3-7)

acting on L2.R2/.

Lemma 3.5. For all � 2 .0; 1/, there exist C > 0 and h0 > 0 such that, for all k > 1 and „ 2 .0; h0/, we
have inf s.N Œk�;]

„
/> .1� 2�/b0.2k� 1/„.

Proof. Applying (3-6) to  .x1; x2; x3/D '.x2; x3/ek;„.x1/, we infer that

hN Œk�;]

„
'; 'i> .2k� 1/„.1� �/hOpw

„
.b/'; 'i:

With the Gårding inequality, we get

hOpw
„
.b/'; 'i> .b0�C„/k'k2;

and the conclusion follows by the min-max principle. �

We immediately deduce the following proposition.

Proposition 3.6. We have the following descriptions of the low-lying spectrum of N ]

„
.

(a) There exist „0 > 0 and K 2 N such that, for „ 2 .0; „0/, the spectrum of N ]

„
lying below ˇ0„ is

contained in the union
SK
kD1 sp.N

Œk�;]

„
/.

(b) If c 2 .0;min.3b0; ˇ0//, then there exists „0 > 0 such that for all „ 2 .0; „0/ the eigenvalues of N ]

„

lying below c„ coincide with the eigenvalues of N Œ1�;]

„
below c„.

Notation 3.7. If L is a self-adjoint operator and E < inf sess.L/, we denote by N.L; E/ the number of
eigenvalues of L lying in .�1; E/.

We deduce the following proposition.

Corollary 3.8. Under assumption (1-11), we have

N.L„;A; ˇ0„/DO.„�
3
2 /; N.N ]

„
; ˇ0„/DO.„�2/:

Proof. To get the first estimate, we use the Lieb–Thirring inequalities (which provide an upper bound
on the number of eigenvalues in dimension three) and the diamagnetic inequality (see [Raymond and
Vũ Ngo. c 2015] and (1-9)). To get the second estimate, we use the first point in Proposition 3.6. Moreover,
given � 2 .0; 1/, by using „ 2 .0; 1/ we infer

hN Œk�;]

„
 ; i> .1� �/„

˝
Opw
„

�
�23 C b.x2; �2; x3/

�
 ; 

˛
:
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Note that the last inequality is very rough. By the min-max principle, we deduce that

N.N Œk�;]

„
; ˇ0„/6 N

�
Opw
„

�
�23Cb.x2; �2; x3/

�
; .1��/�1ˇ0

�
:

Then, we conclude by using the Weyl asymptotics and our confinement assumption:

N
�
Opw
„

�
�23Cb.x2; �2; x3/

�
; .1��/�1ˇ0

�
DO.„�2/: �

Since N ]

„
commutes with I„, we also deduce the following corollary.

Corollary 3.9. For any eigenvalue � of N ]

„
such that �6ˇ0„, we may consider an orthonormal eigenbasis

of the space ker.N ]

„
� �/ formed with functions in the form ek;„.x1/'„.x2; x3/ with k 2 f1; : : : ; Kg.

Moreover, we have 1.�1;ˇ0„/.N
]

„
/DO.„�2/ and each eigenfunction associated with �6 ˇ0„ is a linear

combination of at most O.„�2/ such tensor products.

3C2. Microlocalization estimates. The following proposition follows from the same lines as in dimension
two (see [Helffer and Mohamed 1996, Theorem 2.1]).

Proposition 3.10. Under Assumptions 1.1 and 1.2, for any " > 0, there exist C."/ > 0 and h0."/ > 0 such
that, for any eigenpair .�;  / of L„;A with �6 ˇ0 „, we have for „ 2 .0; h0."//,Z

R3
e2.1�"/�.q/=„

1
2
j j2 dq 6 C."/ exp."„�

1
2 /k k2;

Q„;A.e.1�"/�.q/=„
1
2
 /6 C."/ exp."„�

1
2 /k k2;

where � is the distance to the bounded set fkB.q/k 6 ˇ0g for the Agmon metric .k.B.q/k � ˇ0/Cg,
with g the standard metric.

Proposition 3.11. Under Assumptions 1.1 and 1.2, we consider 0 < b0 < ˇ0 < b1 and there exist C > 0
and „0 > 0 such that, for any eigenpair .�;  / of L„;A with � 6 ˇ0„, we have for „ 2 .0; „0/ and
ı 2

�
0; 1
2

�
,

 D �0.„
�2ıL„;A/�1.q/ CO.„1/k k;

where �0 is a cutoff function compactly supported in the ball of center 0 and radius 1 and where �1 is a
compactly supported smooth cutoff function that is 1 in an open neighborhood of fkB.q/k6 ˇ0g.

Let us now investigate the microlocalization of the eigenfunctions of N ]

„
.

Proposition 3.12. Let � be a smooth cutoff function that is 0 on fb 6 ˇ0g and 1 on the set fb > ˇ0C "g.
If � is an eigenvalue of N ]

„
such that �6 ˇ0„ and if  is an associated eigenfunction, then we have

Opw
„
.�.x2; �2; x3// DO.„1/k k:

Proof. Due to Corollary 3.9, it is sufficient to prove the estimate for a function in the form  .x1; x2; x3/D

ek;„.x1/'.x2; x3/, where k lies in f1; : : : ; Kg and we have

N ]

„
 D � ; or equivalently N Œk�;]

„
' D �';
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where we recall (3-7). Then, we write

N Œk�;]

„
Opw
„
.�/' D �Opw

„
.�/'C ŒN Œk�;]

„
;Opw
„
.�/�'

and it follows that˝
N Œk�;]

„
Opw
„
.�/';Opw

„
.�/'

˛
D �kOpw

„
.�/'k2C

˝
ŒN Œk�;]

„
;Opw
„
.�/�';Opw

„
.�/'

˛
: (3-8)

Rough pseudodifferential estimates imply that there exist C > 0, „0 > 0 such that, for all „ 2 .0; „0/,ˇ̌˝
ŒN Œk�;]

„
;Opw
„
.�/�';Opw

„
.�/'

˛ˇ̌
6 C„2

Opw
„
.�/'

2CC„Opw
„
.�/'

2CC„˝Opw
„
.@3�/';Opw

„
.�3/Opw

„
.�/'

˛
: (3-9)

Combining (3-9) and (3-8), we getOpw
„
.�3/Opw

„
.�/'

6 C„ 12Opw
„
.�/'

; (3-10)

where � is a smooth cutoff function living on a slightly larger support than �. By using (3-10), we can
improve the commutator estimateˇ̌˝

ŒN Œk�;]

„
;Opw
„
.�/�';Opw

„
.�/'

˛ˇ̌
6 C„

3
2

Opw
„
.�/'

2:
We infer that, there exist C > 0, „0 > 0 such that for „ 2 .0; „0/,˝

N Œk�;]

„
Opw
„
.�/';Opw

„
.�/'

˛
6 ˇ0„

Opw
„
.�/'

2CC„ 32Opw
„
.�/'

2:
By using the semiclassical Gårding inequality and the support of �, we get˝

N Œk�;]

„
Opw
„
.�/';Opw

„
.�/'

˛
> .ˇ0C "0/„

Opw
„
.�/'

2
and we deduce Opw

„
.�/'

2 6 C„ 12Opw
„
.�/'

2:
The conclusion follows by a standard iteration argument. �

The following proposition is concerned with the microlocalization with respect to �3.

Proposition 3.13. Let �0 be a smooth cutoff function that is 0 in a neighborhood of 0 and let ı 2
�
0; 1
2

�
.

If � is an eigenvalue of N ]

„
such that �6 ˇ0„ and if  is an associated eigenfunction, then we have

Opw
„
.�0.„

�ı�3// DO.„1/k k:

Proof. We write again  .x1; x2; x3/D ek;„.x1/'.x2; x3/ with k 2 f1; : : : ; Kg and we have N Œk�;]

„
'D�'.

We use again the formula (3-8) with �0.„�ı�3/. We get the commutator estimateˇ̌˝
ŒN Œk�;]

„
;Opw
„
.�0.„

�ı�3//�';Opw
„
.�0.„

�ı�3//'
˛ˇ̌
6 C„

3
2
�ı
Opw

„
.�0.„

�ı�3//'
2:

We have
Opw
„

�
.„�ı�3/

2�20.„
�ı�3/

�
D Opw

„1�ı
.�23�

2
0.�3//;
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so that, with the Gårding inequality,˝
Opw
„

�
.„�ı�3/

2�20.„
�ı�3/

�
'; '

˛
> .1�C„1�ı/k'k2:

We infer �
„
2ı.1�Ch1�ı/�ˇ0„

�Opw
„
.�0.„

�ı�3//'
2 6 C„ 32�ıOpw

„
.�0.„

�ı�3//'
2: �

Using Opw
„
f ?.„; I„; x2; �2; x3; �3/DOpw

„
f .„; jz1j

2; x2; �2; x3; �3/, we deduce the following in the
same way.

Proposition 3.14. Let �1 be a smooth cutoff function that is 0 in a neighborhood of 0 and let ı 2
�
0; 1
2

�
.

If � is an eigenvalue of N ]

„
such that �6 ˇ0„ and if  is an associated eigenfunction, then we have

Opw
„

�
�1.„

�ı.x1; �1//
�
 DO.„1/k k:

Proposition 3.15. The spectra of L„;A and N ]

„
below ˇ0„ coincide modulo O.„1/.

Proof. We refer to [Raymond and Vũ Ngo. c 2015, Section 4.3], which contains similar arguments. �

This proposition provides Corollary 2.4(a). With Proposition 3.6, we deduce point (b).

4. Second Birkhoff normal form

4A. Birkhoff analysis of the first level. This section is devoted to the proofs of Theorems 2.8 and 2.11.
The goal now is to normalize an „-pseudodifferential operator N Œ1�

„
on R2 whose Weyl symbol has the

form
N
Œ1�

„
D �23 C„b.x2; �2; x3/C r„.x2; �2; x3; �3/;

where r„ is a classical symbol with the asymptotic expansion

r„ D r0C„r1C„
2r2C � � �

(in the symbol class topology), where each r` has a formal expansion in �3 of the form

r`.x2; �2; x3; �3/�
X

2`Cˇ>3

c`;ˇ .x2; �2; x3/�
ˇ
3 : (4-1)

The leading terms of N Œ1�

„
are

N
Œ1�

„
D �23 C„b.x2; �2; x3/C c1;1.x2; �2; x3/„�3CO.„�23 /CO.�33 /CO.„2/: (4-2)

4A1. First normalization of the symbol. We consider the local change of variables O'.x2; �2; x3; �3/D
. Ox2; O�2; Ox3; O�3/, where

Ox2 WD x2C �3@2s.x2; �2/; Ox3 WD x3� s.x2; �2/;

O�2 WD �2C �3@1s.x2; �2/; O�3 WD �3:
(4-3)

It is easy to check that the differential of O' is invertible as soon as �3 is small enough. Moreover, we have

O'�!0�!0 DO.j�3j/:
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By the Darboux–Weinstein theorem (see, for instance, [Raymond and Vũ Ngo. c 2015, Lemma 2.4]), there
exists a local diffeomorphism  such that

 D IdCO.�23 / and  � O'�!0 D !0: (4-4)

Using the improved Egorov theorem, one can find a unitary Fourier integral operator V„ such that
the Weyl symbol of V �

„
N Œ1�

„
V„ is yN„ WD N

Œ1�

„
ı O' ı  C O.„2/. From (4-4), and (4-3), we see that

Or„ WD r„ ı O' ı is still of the form (4-1), with modified coefficients c`;ˇ . Thus, using the new variables
and a Taylor expansion in �3, we get

yN„D O�
2
3C„b

�
Ox2CO. O�3/; O�2CO.�3/; Ox3Cs

�
Ox2CO. O�3/; O�2CO. O�3/

�
CO. O�23 /

�
CO. O�33 /C Or„CO.„2/

and thus

yN„ D O�
2
3 C„b

�
Ox2; O�2; Ox3Cs. Ox2; O�2/

�
C„O�3g. Ox2; O�2; Ox3/CO.„O�23 /C Or„CO. O�33 /CO.„2/ (4-5)

for some smooth function g. Ox2; O�2; Ox3/.
Therefore yN„ has the form

yN„ D O�
2
3 C„b

�
Ox2; O�2; Ox3Cs. Ox2; O�2/

�
C Oc1;1.x2; O�2; Ox3/„O�3CO.„O�23 /CO. O�33 /CO.„2/:

4A2. Where the second harmonic oscillator appears. We now drop all the hats off the variables. We use
a Taylor expansion with respect to x3, which, in view of (2-6), yields

b.x2; �2; x3C s.x2; �2//D b.x2; �2; s.x2; �2//C
1
2
x23@

2
3b.x2; �2; s.x2; �2//CO.x33/:

We let

� D
�
1
2
@23b.x2; �2; s.x2; �2//

� 1
4 and  D ln �: (4-6)

We introduce the change of coordinates . Lx2; Lx3; L�2; L�3/D C.x2; x3; �2; �3/ defined by

Lx2 D x2C
@

@�2
x3�3; L�2 D �2�

@

@x2
x3�3;

Lx3 D �x3; L�3 D �
�1�3;

(4-7)

for which one can check that C �!0 � !0 D O.x3�3/ D O.�3/. As before, we can make this local
diffeomorphism symplectic by the Darboux–Weinstein theorem, which modifies (4-7) by O.�23 /. In the
new variables (which we call .x2; x3; �2; �3/ again), the symbol LN„ has the form

LN„ D �
2.x2; �2/.�

2
3 C„x

2
3/C„b.x2; �2; s.x2; �2//C Lc1;1.x2; �2; x3/„�3

CO.„x33/CO.„�23 /CO.�33 /CO.„2/

for some smooth function Lc1;1.x2; �2; x3/.
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4A3. Normalizing the remainder. The next step is to get rid of the term Lc1;1.x2; �2; x3/„�3. Let

a.x2; �2; x3/ WD �
1

2

Z x3

0

Lc1;1.x2; �2; t / dt:

Since Lc1;1 is compactly supported, a is bounded, and one can form the unitary pseudodifferential
operator exp.iA/, where AD Opw

„
.a/. We have

exp.�iA/Opw
„
. LN„/ exp.iA/D Opw

„
. LN„/C exp.�iA/ŒOpw

„
. LN„/; exp.iA/�:

The symbol of Œexp.�iA/Opw
„
. LN„/; exp.iA/� is

„

i
e�iafN; eiagCO.„2/D „f LN„; agCO.„2/D „f LN0; agCO.„2/;

where LN0 is the principal symbol of LN„, which satisfies

LN0 D �
2
3 CO.�33 /:

Therefore f LN„; ag D f�23 ; agCO.�23 /. Since

f�23 ; ag D 2�3
@a

@x3
D��3 Lc1;1;

we get
exp.�iA/Opw

„
. LN„/ exp.iA/D Opw

„

�
LN„�„�3 Lc1;1CO.„�23 /CO.„2/

�
;

which shows that we can remove the coefficient of „�3. The new operator given by the conjugation
formula N Œ1�

„
D exp.�iA/Opw

„
. LN„/ exp.iA/ has a symbol of the form

N
Œ1�

„
D �2.x2; �2/.�

2
3 C„x

2
3/C„b.x2; �2; s.x2; �2//C r„; (4-8)

where r„ DO.„x33/CO.„�23 /CO.�33 /CO.„2/.
This proves Theorem 2.8.

4A4. The second Birkhoff normal form. We now want to perform a Birkhoff normal form for N Œ1�;]

„

relative to the “second harmonic oscillator”

�2.x2; �2/.�
2
3 C„x

2
3/:

Using Notation 2.10, we introduce the new semiclassical parameter hD „
1
2 , and use the relation

Opw
„
.N

Œ1�;]

„
/D Opwh .N

Œ1�;]

h
/:

Thus, let Q�j WD „�
1
2 �j . The new symbol NŒ1�;]

h
has the form

N
Œ1�;]

h
.x2; Q�2; x3; Q�3/D h

2
�
�2.x2; h Q�2/. Q�

2
3 C x

2
3/C b.x2; h

Q�2; s.x2; h Q�2//C h
�2r

]

h2
.x2; h Q�2; x3; h Q�3/

�
:

We introduce momentarily a new parameter � and define

N
Œ1�;]

h
.x2; Q�2; x3; Q�3I�/ WD �

2.x2; � Q�2/. Q�
2
3 C x

2
3/C b.x2; �

Q�2; s.x2; � Q�2//C h
�2r

]

h2
.x2; � Q�2; x3; h Q�3/:
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Notice that N
Œ1�;]

h
.x2; Q�2; x3; Q�3I h/ D h�2N

Œ1�;]

h
.x2; Q�2; x3; Q�3/. We define now a space of functions

suitable for the Birkhoff normal form in .x3; Q�3; h/. Let us now use the notation of the Appendix
introduced in (A-4) in the case when the family of smooth linear maps R2! R2 is given by

'�;R2.x2;
Q�2/D .x2; � Q�2/:

Let
F WD C.1/R2 ;

where the index R2 means that we consider symbols on R2. More explicitly, we have

F D
˚
d s.t. 9c 2 S.1I Œ0; 1�� .0; 1�/R2

ˇ̌
d.x2; Q�2I�; h/D c.'�;R2.x2;

Q�2/I�; h/
	
:

Then we define
E WDF ŒŒx3; Q�3; h��;

endowed with the full Poisson bracket

E � E 3 .f; g/ 7! ff; gg D
X
jD2;3

@f

@ Q�j

@g

@xj
�
@g

@ Q�j

@f

@xj
2 E ;

and the corresponding Moyal bracket Œf; g�. We remark that the formal Taylor series of the symbol
N
Œ1�;]

h
.x2; Q�2; x3; Q�3I�/ with respect to .x3; Q�3; h/ belongs to E . We may apply the semiclassical Birkhoff

normal form relative to the main term �2.x2; � Q�2/. Q�
2
3Cx

2
3/ exactly as in Section 3B1 (and also [Raymond

and Vũ Ngo. c 2015, Proposition 2.7]), where we use the fact that the function

.x2; Q�2; x3; Q�3I�; h/ 7! .�2.x2; � Q�2//
�1

belongs to E because �2 > C > 0 uniformly with respect to �. Let us consider  2 E , the formal Taylor
expansion of h�2r]

h2
.x2; � Q�2; x3; h Q�3/ with respect to .x3; Q�3; h/. The series  is of valuation 3 and we

obtain two formal series �; � 2 E of valuation at least 3 such that

Œ�; x23 C
Q�23 �D 0

and
eih
�1ad� .�2.x2; � Q�2/. Q�

2
3 C x

2
3/C /D �

2.x2; � Q�2/. Q�
2
3 C x

2
3/C �:

The coefficients of � are in S.1/ and one can find a smooth function �h 2 S.1/ with compact support
with respect to .x3; Q�3; h/ and whose Taylor series in .x3; Q�3; h/ is � . By the Borel summation, �h will
actually lie in S.m0/ with m0.x2; Q�2; x3; Q�3/D h.x3; Q�3/i�k for any k > 0, uniformly for small h > 0 and
� 2 Œ0; 1�. Notice that NŒ1�;]

h
2 C.m/ with mD h.x3; Q�3/i2 > 1, and that mm0 DO.1/.

Then, we can apply Theorem A.3 with the family of endomorphisms of R4 defined by

'�;R4.x2;
Q�2; x3; Q�3/D .x2; � Q�2; x3; Q�3/:

Thus, the new operator
Mh D e

ih�1 Opw
h
�hN

Œ1�;]

h
e�ih

�1 Opw
h
�h
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is a pseudodifferential operator whose Weyl symbol belongs to the class C.m/ modulo h1S.1/ (see the
notation of Theorem 2.11). Moreover, thanks to Theorem A.4, its symbol Mh admits the following Taylor
expansion (with respect to .x3; Q�3; h/)

Qb.x2; � Q�2; s.x2; � Q�2//C �
2.x2; � Q�2/. Q�

2
3 C x

2
3/C �:

We write � D
P
mC2`>3 cm;`.x2; �

Q�2/j Qz3j
?2mh` and we may find a smooth function g?.x2; � Q�2; Z; h/

such that its Taylor series with respect to Z, h isX
2mC2`>3

cm;`.x2; � Q�2/Z
mh`:

We may now replace � by h, which achieves the proof of Theorem 2.11.

4B. Spectral reduction to the second normal form. This section is devoted to the proof of Corollary 2.13.

4B1. From N Œ1�;]

„
to N Œ1�;]

„
. In this section, we prove Corollary 2.9.

Lemma 4.1. We have

N.N Œ1�;]

„
; ˇ0„/DO.„�2/; N.N Œ1�;]

„
; ˇ0„/DO.„�2/:

Proof. The first estimate comes from Proposition 3.6 and Corollary 3.8. The second estimate can be
obtained by the same method as in the proof of Corollary 3.8. �

Let us now summarize the microlocalization properties of the eigenfunctions of N Œ1�;]

„
in the following

proposition.

Proposition 4.2. Let �0 be a smooth cutoff function on R that is 0 in a neighborhood of 0 and let
ı 2

�
0; 1
2

�
. Let � be a smooth cutoff function that is 0 on the bounded set fx23Cb.x2; �2; s.x2; �2//6 ˇ0g

and 1 on the set fx23Cb.x2; �2; s.x2; �2//> ˇ0C Q"g, with Q" > 0. If � is an eigenvalue of N Œ1�;]

„
such that

�6 ˇ0„ and if  is an associated eigenfunction, then we have

Opw
„
.�.x2; �2; x3// DO.„1/k k;

and
Opw
„
.�0.„

�ı�3// DO.„1/k k:

Proof. The proof follows exactly the same lines as for Propositions 3.12 and 3.13. �

Lemma 4.1 and Proposition 4.2 on the one hand and Propositions 3.12 and 3.13 on the other hand are
enough to deduce Corollary 2.9(a) from Theorem 2.8. Part (b) easily follows from Corollary 2.4.

4B2. From N
Œ1�;]

h
to M

]

h
. Let us now prove Corollary 2.13(a). We get the following rough estimate of

the number of eigenvalues.

Lemma 4.3. We have

N.N
Œ1�;]

h
; ˇ0h

2/D N.Mh; ˇ0h
2/DO.h�4/; (4-9)

N.M
]

h
; ˇ0h

2/DO.h�4/: (4-10)
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Proof. First, we notice that NŒ1�;]
h

and Mh are unitarily equivalent so that (4-9) holds. Then, given � > 0
and h small enough and up to shrinking the support of g? and by using the Calderon–Vaillancourt theorem
(as in the proof of Lemma 3.4), M]

h
> zM]

h
in the sense of quadratic forms, with

zM
]

h
D Opwh

�
h2b.x2; h Q�2; s.x2; h Q�2//

�
C h2Jh Opwh

�
.�2.x2; h Q�2//� �

�
:

Since �2 > c > 0, we get

Opwh
�
h2b.x2; h Q�2; s.x2; h Q�2//

�
C h2Jh Opwh

�
.�2.x2; h Q�2//� �

�
> Opwh

�
h2b.x2; h Q�2; s.x2; h Q�2//

�
C
1
2
ch2Jh:

We deduce the upper bound (4-10) by separation of variables and the min-max principle. �

The following proposition deals with the microlocal properties of the eigenfunctions of NŒ1�;]
h

.

Proposition 4.4. Let � 2 .0; 1/, ı 2
�
0; 1
2
�
�
, and C > 0. Let � be a smooth cutoff function that is 0 on

fb.x2; �2; s.x2; �2//6 ˇ0g and 1 on the set fb.x2; �2; s.x2; �2//> ˇ0C Q"g, with Q" > 0. Let also �1 be a
smooth cutoff function on R2 that is 0 in a neighborhood of 0.

If � is an eigenvalue of NŒ1�;]
h

such that �6 ˇ0h2 and if  is an associated eigenfunction, we have

Opwh
�
�.x2; h Q�2/

�
 DO.h1/k k (4-11)

and if � is an eigenvalue of NŒ1�;]
h

such that �6 b0h2CCh2C� and if  is an associated eigenfunction,
we have

Opwh
�
�1.h

�ı.x3; Q�3//
�
 DO.h1/k k: (4-12)

Proof. The estimate (4-11) is a consequence of Proposition 4.2. Then, let us write the symbol of NŒ1�;]
h

,

N
Œ1�;]

h
D h2�2.x2; h Q�2/. Q�

2
3 C x

2
3/C h

2b.x2; h Q�2; s.x2; h Q�2//C r
]

h2
.x2; h Q�2; x3; h Q�3/:

We write˝
N
Œ1�;]

h
Opwh

�
�1.h

�ı.x3; Q�3//
�
 ;Opwh

�
�1.h

�ı.x3; Q�3//
�˛

D �
Opwh

�
�1.h

�ı.x3; Q�3//
�
 
2C ˝�NŒ1�;]

h
;Opwh

�
�1.h

�ı.x3; Q�3//
��
;Opwh

�
�1.h

�ı.x3; Q�3//
�
 
˛
:

We get˝�
N
Œ1�;]

h
;Opwh

�
�1.h

�ı.x3; Q�3//
��
;Opwh

�
�1.h

�ı.x3; Q�3//
�
 
˛
6 Ch3

Opwh
�
�1.h

�ı.x3; Q�3//
�
 
2;

where we have used (4-11). Then, we use that

b.x2; h Q�2; s.x2; h Q�2//> b0; �2.x2; h Q�2/> c0 > 0; �6 b0h2CCh2C�;

and the Gårding inequality to deduce

h2.Ch2ı �Ch�/
Opwh

�
�1.h

�ı.x3; Q�3//
�
 
2 6 Ch3Opwh

�
�1.h

�ı.x3; Q�3//
�
 
2:

The desired estimate follows by an iteration argument. �
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In the same way we can deal with M
]

h
.

Proposition 4.5. Let � 2 .0; 1/, ı 2
�
0; 1
2
�
�
, and C > 0. Let � be a smooth cutoff function that is 0

on fb.x2; �2; s.x2; �2// 6 ˇ0g and 1 on the set fb.x2; �2; s.x2; �2// > ˇ0 C Q"g, with Q" > 0. If � is an
eigenvalue of M]

h
such that �6 ˇ0h2 and if  is an associated eigenfunction, we have

Opwh .�.x2; h Q�2// DO.h1/k k (4-13)

and if � is an eigenvalue of M]

h
such that �6 b0h2CCh2C� and if  is an associated eigenfunction,

we have
Opwh

�
�1.h

�ı.x3; Q�3//
�
 DO.h1/k k: (4-14)

Proof. In order to get (4-13), it is enough to go back to the representation with semiclassical „, that
is, M]

h
DM]

„
. Indeed the microlocal estimate follows by the same arguments as in Propositions 3.12

and 3.13. Then, (4-14) follows as in Proposition 4.4. �

Propositions 4.4 and 4.5 and Theorem 2.11 standardly imply Corollary 2.13(a).

4B3. From M
]

h
to M

Œ1�;]

h
. Let us now prove Corollary 2.13(b). Note that part (c) is just a reformulation

of (b).
Let us consider the Hilbertian decomposition M

]

h
D
L
k>1M

Œk�;]

h
, where the symbol MŒk�;]

h
of MŒk�;]

h
is

h2b
�
x2; h Q�2; s.x2; h Q�2/

�
C .2k� 1/h3�2.x2; h Q�2/C h

2g?
�
h; .2k� 1/h; x2; h Q�2

�
:

There exists h0 > 0 such that for all k > 1 and h 2 .0; h0/,

hM
Œk�;]

h
 ; i>

˝
Opwh

�
h2b

�
x2; h Q�2; s.x2; h Q�2/

�
C .2k� 1/h3.�2.x2; h Q�2/� "/

�
 ; 

˛
:

Since each eigenfunction of MŒk�;]

h
associated with an eigenvalue less than ˇ0h2 provides an eigenfunction

ofM]

h
, we infer that the eigenfunctions ofMŒk�;]

h
are uniformly microlocalized in an .x2; �2/-neighborhood

of .0; 0/ as small as we want. Therefore, on the range of 1.�1;b0h2/.M
Œk�;]

h
/, we have

hM
Œk�;]

h
 ; i>

˝
Opwh

�
h2b

�
x2; h Q�2; s.x2; h Q�2/

�
C .2k� 1/h3.�2.0; 0/� 2"/

�
 ; 

˛
;

and, with the Gårding inequality in the „-quantization, we get

hM
Œk�;]

h
 ; i>

˝
Opwh

�
h2b0C .2k� 1/h

3.�2.0; 0/� "/�Ch4
�
 ; 

˛
:

This implies Corollary 2.13(b).

5. Third Birkhoff normal form

5A. Birkhoff analysis of the first level. In this section we prove Theorem 2.15.
We consider MŒ1�;]

„
D Opw

„
.M

Œ1�;]

„
/, with

M
Œ1�;]

„
D „b.x2; �2; s.x2; �2//C„

3
2 �2.x2; �2/C„g

?.„
1
2 ; „

1
2 ; x2; �2/:

By using a Taylor expansion, we get,

M
Œ1�;]

„
D„b0C

1
2
„Hess.0;0/b

�
x2; �2; s.x2; �2/

�
C„

3
2 �2.0; 0/Ccx2„

3
2Cd�2„

3
2C„O..„

1
2 ; z2/

3/; (5-1)
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where c D @x2�
2.0; 0/ and d D @�2�

2.0; 0/, and we have identified the Hessian with its quadratic form
in .x2; �2/.

Then, there exists a linear symplectic change of variables that diagonalizes the Hessian, so that, if L„
is the associated unitary transform,

L�
„
MŒ1�;]

„
L„ D Opw

„
. yM

Œ1�;]

„
/;

with
yM
Œ1�;]

„
D „b0C

1
2
„�.x22 C �

2
2 /C„

3
2 �2.0; 0/C Ocx2„

3
2 C Od�2„

3
2 C„O..„

1
2 ; z2/

3/;

where
� D

q
detHess.0;0/b.x2; �2; s.x2; �2//:

Since .@x3b/.x2; �2; s.x2; �2// D 0 and .0; 0/ is a critical point of s, we notice that @2x2x3b.0; 0; 0/ D
@2
�2x3

b.0; 0; 0/D 0. Thus
detHess.0;0;0/b.0; 0; 0/D �

2@2x3b.0; 0; 0/:

Using that b is identified with bı� (see Remarks 2.2 and 3.1), this provides the expression given in (1-15).
Note that Oc2C Od2Dk.rx2;�2�

2/.0; 0/k2 since the symplectic transform is in fact a rotation. Moreover,
we have

�.x22 C �
2
2 /C Ocx2„

1
2 C Od�2„

1
2 D �

��
x2�

Oc„
1
2

�

�2
C

�
�2�

Od„
1
2

�

�2�
�„
Oc2C Od2

�
:

Thus, there exists a unitary transform yU„1=2 , which is in fact an „-Fourier integral operator whose phase
admits a Taylor expansion in powers of „

1
2 , such that

yU �
„1=2

L�
„
MŒ1�;]

„
L„ yU„1=2 DW F„ D Opw

„
.F „/;

where

F „ D „b0C„
3
2 �2.0; 0/�

k.rx2;�2�
2/.0; 0/k2

2�
„
2
C„

�
1
2
� jz2j

2
CO..„

1
2 ; z2/

3/
�
:

Now we perform a semiclassical Birkhoff normal form in the space of formal series RŒŒx2; �2; „
1
2 ��

equipped with the degree such that x`2�
m
2 „

n
2 is `CmCn and endowed with the Moyal product. Let F T

„

be the full Taylor series of F „. We find a formal series �.x2; �2; „
1
2 / with a valuation at least 3 such that

ei„
�1ad�F T

„
D F T

„
;

where F T
„

is a formal series of the form

F T
„
D „b0C„

3
2 �2.0; 0/�

k.rx2;�2�
2/.0; 0/k2

2�
„
2
C
1
2
�„jz2j

2
C„kT .„

1
2 ; jz2j

2/;

and kT is a formal series in RŒŒ„
1
2 ; jz2j

2�� (and that can be also written as a formal series in Moyal power
of jz2j2, say .kT /?).

Let Q�.x2; �2; �/ be a compactly supported function whose Taylor expansion at .0; 0; 0/ is equal to
�.x2; �2; �/. By the Egorov theorem (Theorem A.2), uniformly with respect to the parameter �, we obtain

e�i„
�1 Opw

„
.Q�/ Opw

„
.F �2/e

i„�1 Opw
„
.Q�/
DW Opw

„
. zF�/
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is an „-pseudodifferential operator depending smoothly on �. Expanding zF� in powers of � in the S.1/
topology, and letting �D

p
„, we see that zFp

„
D F„C zG„, where

F„ D „b0C„
3
2 �2.0; 0/�

k.rx2;�2�
2/.0; 0/k2

2�
„
2
C
1
2
�„jz2j

2
C„k.„

1
2 ; jz2j

2/;

with k a smooth function with support as small as desired with respect to its second variable, and
zGh D „O.jz2j1/. It remains to notice that Opw

„

�
k.„

1
2 ; jz2j

2/
�

can be written as k?.„
1
2 ;K„/ modulo

Opw
„
.O.jz2j1//. This achieves the proof of Theorem 2.15.

5B. Spectral reduction to the third normal form. Corollary 2.16 is a consequence of the following
lemma and proposition.

Lemma 5.1. We have

N.MŒ1�;]

„
; ˇ0„/DO.„�2/; N.F„; b0„CC„1C�/DO.„�1C�/:

Proof. The first estimate follows from Lemma 4.3 and the second one from a comparison with the
harmonic oscillator in x2. �

The last proposition concerns the microlocalization of the eigenfunctions.

Proposition 5.2. Let � 2 .0; 1/, ı 2
�
0; 1
2
�
�
, and C > 0. Let � be a smooth cutoff function that is 0 in a

bounded neighborhood of .0; 0/ and 1 outside a bounded neighborhood of .0; 0/. If � is an eigenvalue of
MŒ1�;]

„
or of F„ such that �6 b0„CC„1C� and if  is an associated eigenfunction, we have

Opw
„

�
�.„�ı.x2; �2//

�
 DO.„1/:

Proof. The proof is similar to that of Proposition 4.4. �

Appendix: Egorov theorems

We start with the classical result (see, for instance, [Zworski 2012, Theorem 11.1; Robert 1987,
Théorème IV.10]).

Theorem A.1 [Zworski 2012, Theorem 11.1, Remark (ii) on p. 251]. LetP andQ be h-pseudodifferential
operators on Rd, with P 2 Opwh .S.1// and Q 2 Opwh .S.1//. Then the operator e

i
h
QPe�

i
h
Q is a

pseudodifferential operator in Opwh .S.1//, and

e
i
h
QPe�

i
h
Q
�Opwh .p ı �/ 2 hOpwh .S.1//:

Here p is the Weyl symbol of P, and the canonical transformation � is the time-1 Hamiltonian flow
associated with principal symbol of Q.

From this classical version of Egorov’s theorem, one can deduce the following refinement that is useful
when p does not belong to S.1/ (as is the case in this paper).
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Theorem A.2. Let P and Q be h-pseudodifferential operators on Rd, with P 2 Opwh .S.m// and Q 2
Opwh .S.m

0//, where m and m0 are order functions such that

m0 DO.1/; mm0 DO.1/: (A-1)

Then the operator e
i
h
QPe�

i
h
Q is a pseudodifferential whose symbol is in S.m/, and e

i
h
QPe�

i
h
Q
�

Opwh .p ı �/ 2 hOpwh .S.1//.

Proof. The proof is based on the following observation. In order to compare Opwh .pı�
t / and e

it
h
QPe�

it
h
Q,

we consider the derivative
d

d�

�
e
i�
h
Q Opwh .p ı �

t�� /e�
i�
h
Q
�
D e

i�
h
Q
�
i

h
ŒQ;Opwh .p ı �

t�� /�C
d

d�
Opwh .p ı �

t�� /
�
e�

i�
h
Q:

From hypothesis (A-1), the term ŒQ;Opwh .p ı �
t�� /� belongs to Opwh .S.1//; moreover, if we denote

by q0 the principal symbol of Q, we have
d

d�
Opwh .p ı �

t�� /D�Opwh .fq0; p ı �
t��
g/;

which implies that this term is also in Opwh .S.1//. By symbolic calculus, we see that

i

h
ŒQ;Opwh .p ı �

t�� /�C
d

d�
Opwh .p ı �

t�� / 2 hOpwh .S.1// (A-2)

uniformly for t; � in compact sets. It follows by integration from 0 to t that

e
it
h
QPe�

it
h
Q
D Opwh .p ı �

t /C h

Z t

0

e
is
h
QP1.s/e

� is
h
Q ds (A-3)

for some P1.s/ 2 Opwh .S.1//, uniformly for s 2 Œ0; t �. Applying Theorem A.1 to the integrand, we see
that e

it
h
QPe�

it
h
Q
�Opwh .p ı �

t / 2 hOpwh .S.1//. �

In order to quantize the formal Birkhoff procedure of Section 4A4, one needs to consider symbols
in a class C stable under the Moyal product. For that purpose we first define the families of symbols
S.mI Œ0; 1�� .0; 1�/, that is, of smooth functions a W R2d � Œ0; 1�� .0; 1�! C such that, for any ˛ 2 N2d,
there exists C˛ such that, for all .zI�; h/ 2 R2d � Œ0; 1�� .0; 1�,

j@˛za.zI�; h/j6 C˛m.z/

and where m is an order function on R2d. The pair .�; h/ is considered as a parameter.
Then, let .'�/�2Œ0;1� be a smooth family of linear maps R2d !R2d and define the following families

of symbols on R2d by

C.m/D
˚
a 2 S.mI Œ0; 1�� .0; 1�/

ˇ̌
a.zI�; h/D Qa.'�.z/I�; h/ with Qa 2 S.mI Œ0; 1�� .0; 1�/

	
: (A-4)

Theorem A.3. Let P and Q be h-pseudodifferential operators on Rd, with P 2 Opwh .C.m// and Q 2
Opwh .C.m

0//, where m and m0 are order functions such that

m> 1; m0 DO.1/; mm0 DO.1/:

Then e
i
h
QPe�

i
h
Q
D zP CR, where zP 2Opwh .C.m//, R 2 h

1Opwh .S.1//, and with zP �Opwh .pı�/2
hOpwh .C.1//.
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Proof. Since '� is linear, one can see (using, for instance, [Zworski 2012, Theorem 4.17]) that C is stable
under the formal Moyal product, i.e., for all order functions m1 and m2, we have

.C.m1// ? .C.m2//� C.m1m2/C h1S.1/:

Let � be the canonical transformation associated with Q. Then, since m> 1, we have p ı � 2 C.m/;
indeed, if we write the Hamiltonian flow of Q in terms of the variable Qz D '�.z/, we see from the
linearity of '� that the components of the transformed vector field belong to C.m0/. Therefore '� ı � is
of the form Q�� ı'� for some diffeomorphism Q�� depending smoothly on �.

Therefore, both terms in (A-2) belong to Opwh .C.1//. Applying this argument inductively in (A-3), we
may write, for any k > 0,

e
i
h
QPe�

i
h
Q
�Opwh .p ı �/� .h zP1C h

2 zP2C � � �Ch
k zPk/ 2 h

kC1 Opwh .S.1//;

with zPj 2 Opwh .C.1//. By a Borel summation in h, parametrized by Qz D '�.z/, we can find a symbol
yP 2 Opwh .C.1// such that we have the asymptotic expansion in Opwh .S.1//

yP � h zP1C h
2 zP2C � � � :

We conclude by letting zP D Opwh .p ı �/C yP. �

We will also need to examine how the Egorov theorem behaves with respect to taking formal power
series of symbols. For this, it is convenient to introduce a filtration of S.m/.

Theorem A.4. Let m be an order function on R2d, and let .Oj /j2N be a filtration of S.m/, i.e.,

O0 D S.m/; OjC1 �Oj :

Let P DOpwh p and QDOpwh q be h-pseudodifferential operators on Rd, with p 2 S.m/ and q 2 S.m0/,
where m0 is an order function such that m0 and mm0 are bounded.

Assume that
i

h
adq.Oj /�OjC1 8j > 0: (A-5)

Then for any k > 0, the Weyl symbol of the pseudodifferential operator

e
i
h
QPe�

i
h
Q
�

kX
jD0

1

j Š
. i
h

adQ/jP

belongs to Opwh .OkC1/. In other words, the series of exp
�
i
h

adQ
�
P converges to e

i
h
QPe�

i
h
Q for the

filtration .Oj /j2N.

Proof. By the Taylor formula, we can write

e
i
h
QPe�

i
h
Q
D

kX
jD0

1

j Š
.adih�1Q/

jP C
1

kŠ
.adih�1Q/

kC1

Z 1

0

.1� t /ke
it
h
QPe�

it
h
Q dt:

By Theorem A.2, we see that the integral belongs to Opwh .S.m//D Opwh .O0/. Therefore, by assump-
tion (A-5), the remainder in the Taylor formula lies in Opwh .OkC1/. �
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1609An analytical and numerical study of steady patches in the disc
FRANCISCO DE LA HOZ, ZINEB HASSAINIA, TAOUFIK HMIDI and JOAN MATEU

1671Isolated singularities of positive solutions of elliptic equations with weighted gradient term
PHUOC-TAI NGUYEN

1693A second order estimate for general complex Hessian equations
DUONG H. PHONG, SEBASTIEN PICARD and XIANGWEN ZHANG

1711Parabolic weighted norm inequalities and partial differential equations
JUHA KINNUNEN and OLLI SAARI

1737A double well potential system
JAEYOUNG BYEON, PIERO MONTECCHIARI and PAUL H. RABINOWITZ

2157-5045(2016)9:7;1-5

A
N

A
LY

SIS
&

PD
E

Vol.9,
N

o.7
2016


	1. Introduction
	1A. Motivation and context
	1B. Magnetic geometry
	1C. Confinement assumptions and discrete spectrum
	1D. Informal description of the results
	1D1. First Birkhoff form
	1D2. Second Birkhoff form
	1D3. Third Birkhoff form
	1D4. Microlocalization

	1E. A semiclassical eigenvalue estimate
	1F. Organization of the paper

	2. Statements of the main results
	2A. Normal forms and spectral reductions

	3. First Birkhoff normal form
	3A. Symplectic coordinates
	3A1. Straightening the magnetic vector field
	3A2. Symplectic coordinates
	3A3. Diagonalizing the Hessian

	3B. Semiclassical Birkhoff normal form
	3B1. Birkhoff procedure in formal series
	3B2. Quantizing the formal procedure

	3C. Spectral reduction to the first normal form
	3C1. Numbers of eigenvalues
	3C2. Microlocalization estimates


	4. Second Birkhoff normal form
	4A. Birkhoff analysis of the first level
	4A1. First normalization of the symbol
	4A2. Where the second harmonic oscillator appears
	4A3. Normalizing the remainder
	4A4. The second Birkhoff normal form

	4B. Spectral reduction to the second normal form
	4B1. From N[1], to 0mu-0mu N-5mu5mu[1],
	4B2. From 1mu-1mu N-1mu1mu[1],h to Mh
	4B3. From Mh to M[1],h


	5. Third Birkhoff normal form
	5A. Birkhoff analysis of the first level
	5B. Spectral reduction to the third normal form

	Appendix: Egorov theorems
	Acknowledgments
	References
	
	

