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PARABOLIC WEIGHTED NORM INEQUALITIES
AND PARTIAL DIFFERENTIAL EQUATIONS

JUHA KINNUNEN AND OLLI SAARI

We introduce a class of weights related to the regularity theory of nonlinear parabolic partial differential
equations. In particular, we investigate connections of the parabolic Muckenhoupt weights to the parabolic
BMO. The parabolic Muckenhoupt weights need not be doubling and they may grow arbitrarily fast in
the time variable. Our main result characterizes them through weak- and strong-type weighted norm
inequalities for forward-in-time maximal operators. In addition, we prove a Jones-type factorization result
for the parabolic Muckenhoupt weights and a Coifman–Rochberg-type characterization of the parabolic
BMO through maximal functions. Connections and applications to the doubly nonlinear parabolic PDE
are also discussed.

1. Introduction

Muckenhoupt’s seminal result characterizes weighted norm inequalities for the Hardy–Littlewood maximal
operator through the so-called Ap condition

sup
Q
−

∫
Q
w

(
−

∫
Q
w1−p′

)p−1

<∞, 1< p <∞.

Here the supremum is taken over all cubes Q ⊂ Rn , and w ∈ L1
loc(R

n) is a nonnegative weight. These
weights exhibit many properties that are powerful in applications, such as reverse Hölder inequalities, a
factorization property, and characterizability through BMO, where BMO refers to the set of functions of
bounded mean oscillation. Moreover, the Muckenhoupt weights play a significant role in the theory of
Calderón–Zygmund singular integral operators; see [García-Cuerva and Rubio de Francia 1985].

Another important aspect of the Muckenhoupt weights and BMO is that they also arise in the regularity
theory of nonlinear PDEs. More precisely, the logarithm of a nonnegative solution to any PDE of the type

div(|∇u|p−2
∇u)= 0, 1< p <∞,

belongs to BMO and the solution itself is a Muckenhoupt weight. This was the crucial observation in
[Moser 1961], where he proved the celebrated Harnack inequality for nonnegative solutions of such
equations.
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Even though the theory of the Muckenhoupt weights is well established by now, many questions related
to higher-dimensional versions of the one-sided Muckenhoupt condition

sup
x∈R,h>0

1
h

∫ x

x−h
w

(
1
h

∫ x+h

x
w1−p′

)p−1

<∞

remain open. This condition was introduced by Sawyer [1986] in connection with ergodic theory. Since
then these weights and the one-sided maximal functions have been a subject of intense research; see
[Aimar and Crescimbeni 1998; Aimar et al. 1997; Cruz-Uribe et al. 1995; Martín-Reyes 1993; Martín-
Reyes et al. 1990; 1993; Martín-Reyes and de la Torre 1993; 1994; Sawyer 1986]. In comparison with
the classical Ap weights, the one-sided A+p weights can be quite general. For example, they may grow
exponentially, since any increasing function belongs to A+p . It is remarkable that this class of weights still
allows for weighted norm inequalities for some special classes of singular integral operators (see [Aimar
et al. 1997]), but the methods are limited to the dimension one.

The first extensions to the higher dimensions of the one-sided weights are by Ombrosi [2005]. The
subsequent research in [Berkovits 2011; Forzani et al. 2011; Lerner and Ombrosi 2010] contains many
significant advances, but even in the plane many of the most important questions, such as getting the full
characterization of the strong-type weighted norm inequalities for the corresponding maximal functions,
have not received satisfactory answers yet.

In this paper, we propose a new approach which enables us to solve many of the previously unreachable
problems. In contrast with the earlier attempts, our point of view is related to Moser’s work [1964; 1967]
on the parabolic Harnack inequality. More precisely, in the regularity theory for the doubly nonlinear
parabolic PDEs of the type

∂(|u|p−2u)
∂t

− div(|∇u|p−2
∇u)= 0, 1< p <∞ (1-1)

(see [Gianazza and Vespri 2006; Kinnunen and Kuusi 2007; Kuusi et al. 2012; Trudinger 1968; Vespri
1992]), there is a condition (Definition 3.2) that plays a role identical to that of the classical Muckenhoupt
condition in the corresponding elliptic theory. Starting from the parabolic Muckenhoupt condition

sup
R
−

∫
R−
w

(
−

∫
R+
w1−q ′

)q−1

<∞, 1< q <∞, (1-2)

where R± are space-time rectangles with a time lag, we create a theory of parabolic weights. Here we
use q to distinguish from p in the doubly nonlinear equation. Indeed, they are not related to each other.

The time variable scales as the modulus of the space variable raised to the power p in the geometry
natural for (1-1). Consequently, the Euclidean balls and cubes have to be replaced by parabolic rectangles
respecting this scaling in all estimates. In order to generalize the one-sided theory of weighted norm
inequalities, it would be sufficient to work with the case p = 2. However, in view of the connections
to nonlinear PDEs (see [Saari 2016; Kinnunen and Saari 2016]), we have decided to develop a general
theory for 1< p<∞. As far as we know, the results in this work are new even for the heat equation with
p = 2. There are no previous studies about weighted norm inequalities with the same optimal relation to
solutions of parabolic partial differential equations.
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Observe that the theory of parabolic weights contains the classical Ap theory as a special case. However,
the difference between elliptic and parabolic weights is not only a question of switching from cubes to
parabolic rectangles. There is an extra challenge in the regularity theory of (1-1) because of the time lag
appearing in the estimates. A similar phenomenon also occurs in the harmonic analysis with one-sided
weights, and it has been the main obstacle in the previous approaches [Berkovits 2011; Forzani et al.
2011; Lerner and Ombrosi 2010; Ombrosi 2005]. Except for the one-dimensional case, an extra time
lag appears in the arguments. Roughly speaking, a parabolic Muckenhoupt condition without a time lag
implies boundedness of maximal operators with a time lag. In our approach, both the maximal operator
and the Muckenhoupt condition have a time lag. This allows us to prove the necessity and sufficiency of
the parabolic Muckenhoupt condition for both weak- and strong-type weighted norm inequalities of the
corresponding maximal function. Our main technical tools are covering arguments related to the work
of Ombrosi [2005] and Forzani et al. [2011]; parabolic chaining arguments from [Saari 2016], and a
Calderón–Zygmund argument based on a slicing technique.

Starting from the parabolic Muckenhoupt condition (1-2), we build a complete parabolic theory of
one-sided weighted norm inequalities and BMO in the multidimensional case. Our main results are a
reverse Hölder inequality (Theorem 5.2), strong-type characterizations for weighted norm inequalities for a
parabolic forward-in-time maximal function (Theorem 5.4), a Jones-type factorization result for parabolic
Muckenhoupt weights (Theorem 6.3) and a Coifman–Rochberg-type characterization of parabolic BMO
through maximal functions (Theorem 7.5). In Section 8, we explain in detail the connection between
parabolic Muckenhoupt weights and the doubly nonlinear equation. We refer to [Aimar 1988; Fabes and
Garofalo 1985; Kinnunen and Kuusi 2007; Moser 1964; 1967; Saari 2016; Trudinger 1968] for more on
parabolic BMO and its applications to PDEs.

2. Notation

Throughout the paper, the n first coordinates of Rn+1 will be called spatial and the last one temporal.
The temporal translations will be important in what follows. Given a set E ⊂ Rn+1 and t ∈ R, we define

E + t := {e+ (0, . . . , 0, t) : e ∈ E}.

The exponent p, with 1< p <∞, related to the doubly nonlinear equation (1-1) will be fixed throughout
the paper.

Constants C without subscript will be generic and the dependencies will be clear from the context.
We also write K . 1 for K ≤ C with C as above. The dependencies can occasionally be indicated by
subscripts or parentheses, such as K = K (n, p).n,p 1.

A weight will always mean a real-valued positive locally integrable function on Rn+1. Any such
function w defines a measure absolutely continuous with respect to Lebesgue measure, and for any
measurable E ⊂ Rn+1, we define

w(E) :=
∫

E
w.
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We often omit mentioning that a set is assumed to be measurable. They are always assumed to be. For a
locally integrable function f , the integral average is denoted as

1
|E |

∫
E

f =−
∫

E
f = fE .

The positive part of a function f is ( f )+= ( f )+=1{ f>0} f and the negative part ( f )−= ( f )−=−1{ f<0} f .

3. Parabolic Muckenhoupt weights

Before the definition of the parabolic Muckenhoupt weights, we introduce the parabolic space-time
rectangles in the natural geometry for the doubly nonlinear equation.

Definition 3.1. Let Q(x, l) ⊂ Rn be a cube with center x and side length l and sides parallel to the
coordinate axes. Let p > 1 and γ ∈ [0, 1). We define

R(x, t, l)= Q(x, l)× (t − l p, t + l p)

and
R+(γ )= Q(x, l)× (t + γ l p, t + l p).

The set R(x, t, l) is called a (x, t)-centered parabolic rectangle with side l. We define R−(γ ) as the
reflection of R+(γ ) with respect to Rn

×{t}. The shorthand R± will be used for R±(0).

Now we are ready for the definition of the parabolic Muckenhoupt classes. Observe that there is a time
lag in the definition for γ > 0.

Definition 3.2. Let q > 1 and γ ∈ [0, 1). A weight w > 0 belongs to the parabolic Muckenhoupt class
A+q (γ ), if

sup
R

(
−

∫
R−(γ )

w

)(
−

∫
R+(γ )

w1−q ′
)q−1

=: [w]A+q (γ ) <∞. (3-1)

If the condition above is satisfied with the direction of the time axis reversed, we say w ∈ A−q (γ ). If γ is
clear from the context or unimportant, it will be omitted in the notation.

The case A+2 (γ ) occurs in the regularity theory of parabolic equations; see [Moser 1964; Trudinger
1968]. Before investigating the properties of parabolic weights, we briefly discuss how they differ from
the ones already present in the literature. The weights of [Forzani et al. 2011; Lerner and Ombrosi
2010] were defined on the plane, and the sets R±(γ ) in Definition 3.2 were replaced by two squares
that share exactly one corner point. The definition used in [Berkovits 2011] is precisely the same as our
Definition 3.2 with p = 1 and γ = 0.

An elementary but useful property of the parabolic Muckenhoupt weights is that they can effectively
be approximated by bounded weights.

Proposition 3.3. Assume u, v ∈ A+q (γ ). Then f =min{u, v} ∈ A+q (γ ) and

[ f ]A+q . [u]A+q + [v]A+q .

The corresponding result holds for max{u, v} as well.



PARABOLIC WEIGHTED NORM INEQUALITIES AND PARTIAL DIFFERENTIAL EQUATIONS 1715

Proof. A direct computation gives(
−

∫
R−(γ )

f
)(
−

∫
R+(γ )

f 1−q ′
)q−1

.

(
−

∫
R−(γ )

f
)(

1
|R+(γ )|

∫
R+(γ )∩{u>v}

f 1−q ′
)q−1

+

(
−

∫
R−(γ )

f
)(

1
|R+(γ )|

∫
R+(γ )∩{u≤v}

f 1−q ′
)q−1

≤

(
−

∫
R−(γ )

v

)(
1

|R+(γ )|

∫
R+(γ )∩{u>v}

v1−q ′
)q−1

+

(
−

∫
R−(γ )

u
)(

1
|R+(γ )|

∫
R+(γ )∩{u≤v}

u1−q ′
)q−1

≤ [u]A+q +[v]A+q .

The result for max{u, v} is proved in a similar manner. �

Properties of parabolic Muckenhoupt weights. The special role of the time variable makes the parabolic
Muckenhoupt weights quite different from the classical ones. For example, the doubling property does
not hold, but it can be replaced by a weaker forward-in-time comparison condition. The next proposition
is a collection of useful facts about the parabolic Muckenhoupt condition, the most important of which is
the property that the value of γ ∈ [0, 1) does not play as big a role as one might guess. This is crucial in
our arguments. The same phenomenon occurs later in connection with the parabolic BMO.

Proposition 3.4. Let γ ∈ [0, 1). Then the following properties hold true:

(i) If 1< q < r <∞, then A+q (γ )⊂ A+r (γ ).

(ii) Let σ = w1−q ′. Then σ is in A−q ′(γ ) if and only if w ∈ A+q (γ ).

(iii) Let w ∈ A+q (γ ), σ = w
1−q ′ and t > 0. Then

−

∫
R−(γ )

w ≤ Ct−

∫
t+R−(γ )

w and −

∫
R+(γ )

σ ≤ Ct−

∫
−t+R+(γ )

σ.

(iv) If w ∈ A+q (γ ), then we may replace R−(γ ) by R−(γ )−a and R+(γ ) by R+(γ )+b for any a, b≥ 0
in the definition of the parabolic Muckenhoupt class. The new condition is satisfied with a different
constant [w]A+q .

(v) If 1> γ ′ > γ , then A+q (γ )⊂ A+q (γ
′).

(vi) Let w ∈ A+q (γ ). Then

w(R−(γ ))≤ C
(
|R−(γ )|
|S|

)q

w(S)

for every S ⊂ R+(γ ).

(vii) If w ∈ A+q (γ ) with some γ ∈ [0, 1), then w ∈ A+q (γ
′) for all γ ′ ∈ (0, 1).

Proof. First we observe that (i) follows from Hölder’s inequality and (ii) is obvious. For the case
t + R−(γ )= R+(γ ) the claim (iii) follows from Jensen’s inequality. For a general t , the result follows
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from subdividing the rectangles R±(γ ) into smaller and possibly overlapping subrectangles and applying
the result to them. The property (iv) follows directly from (iii), as does (v) from (iv).

For (vi), take S ⊂ R+(γ ) and let f = 1S . Apply the A+q (γ ) condition to see that(
|S|
|R+(γ )|

)q

w(R−(γ ))= ( fR+(γ ))
qw(R−(γ ))

≤

(
−

∫
R+(γ )

f qw

)(
−

∫
R+(γ )

w1−q ′
)q/q ′

w(R−(γ ))

≤ Cw(S).

For the last property (vii), take R = Q(x, l)× (t − l p, t + l p). Let γ ∈ (0, 1) and suppose w ∈ A+q (γ ).
We will prove that the condition A+q (2

−1γ ) is satisfied. We subdivide Q into 2nk dyadic subcubes
{Qi }

2nk

i=1. This gives dimensions for the lower halves of parabolic rectangles R−i (γ ). For a given Qi ,
we stack a minimal amount of the rectangles R−i (γ ) so that they almost pairwise disjointly cover
Qi × (t− l p, t−2−1γ l p). The number of R−i (γ ) needed to cover Q× (t− l p, t−2−1γ l p) is bounded by

2nk
·
(1− 2−1γ )l p

2−nkp(1− γ )l p = 2nk(p+1) 2− γ
2(1− γ )

.

Corresponding to each Qi , there is a sequence of at most 2k
−1 vectors d j = 2−k−1le j with e j ∈ {0, 1}n

such that
Qi +

∑
j

d j = 2−k Q.

Next we show how every rectangle Ri (γ ) can be transported to the same spatially central position 2−k Q
without losing too much information about their measures. By (vi) we have

w(R−i (γ ))≤ C
(
|R−i (γ )|
|S|

)q

w(S)

for any S ⊂ R+i (γ ). We choose S such that its projection onto space variables is (Qi + d1)∩ Qi , and its
projection onto time variables has full length (1− γ )(2−kl)p. Then

w(R−i (γ ))≤ C0w(S)≤ C0w(R1−
i (γ )),

where R1−
i (γ )⊃ S is Qi + d1 spatially and coincides with S as a temporal projection. The constant C0

depends on n and q .
Next we repeat the argument to obtain a similar estimate for R1−

i (γ ) in the place of R−i (γ ). We obtain
a new rectangle on the right-hand side, on which we repeat the argument again. With k iterations, we
reach the inequality

w(R−i (γ ))≤ C2k
−1

0 w(R∗−i (γ )),

where R∗−i (γ ) is the parabolic box whose projection onto the coordinates corresponding to the space
variables is 2−k Q. The infimum of time coordinates of points in R∗−i (γ ) equals

inf{t : (x, t) ∈ R−i }+ (2
k
− 1)(1+ γ )(2−kl)p.
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As p > 1, the second term in this sum can be made arbitrarily small. In particular, for a large enough k,
we have

(2k
− 1)(1+ γ )(2−kl)p

≤ 2 · 2−k(p−1)l p
≤

1
100γ l p.

In this fashion, we may choose a suitable finite k and divide the sets R±(2−1γ ) into N .n,γ 2nkp parts
R±i (γ ). They satisfy

w(R−i (γ ))≤ C2k
−1

0 w(R∗−i (γ ))

and
σ(R+i (γ ))≤ C2k

−1
0 σ(R∗+i (γ )),

where all starred rectangles have their projections onto space variables centered at 2−k Q; they have equal
side length 2−kpl p, and

1
2γ l p

≤ d(R∗−i (γ ), R∗+j (γ )) < 2l p

for all i, j . All this can be done by a choice of k which is uniform for all rectangles.
It follows that(

−

∫
R−(2−1γ )

w

)(
−

∫
R+(2−1γ )

w1−q ′
)q−1

.
N∑

i, j=1

(
−

∫
R−i (γ )

w

)(
−

∫
R+j (γ )

w1−q ′
)q−1

.
N∑

i, j=1

(
−

∫
R∗−i (γ )

w

)(
−

∫
R∗+j (γ )

w1−q ′
)q−1

.
N∑

i, j=1

C = C(n, p, k, γ, q, [w]A+q (γ )),

where in the last inequality we used (iv). Since the estimate is uniform in R, the claim follows. �

4. Parabolic maximal operators

In this section, we will study parabolic forward-in-time maximal operators, which are closely related to the
one-sided maximal operators studied in [Berkovits 2011; Forzani et al. 2011; Lerner and Ombrosi 2010].
The class of weights in [Forzani et al. 2011], originally introduced by Ombrosi [2005], characterizes
the weak-type inequality for the corresponding maximal operator, but the question about the strong-type
inequality remains open. On the other hand, Lerner and Ombrosi [2010] managed to show that the
same class of weights supports strong-type boundedness for another class of operators with a time lag.
For the boundedness of these operators, however, the condition on weights is not necessary. Later the
techniques developed by Berkovits [2011] showed that a weight condition without a time lag implies
boundedness of maximal operators with a time lag. That approach applied to all dimensions. In our case
both the maximal operator and the Muckenhoupt condition have a time lag. This approach, together with
scaling of parabolic rectangles, allows us to prove both the necessity and sufficiency of the parabolic
Muckenhoupt condition for weak- and strong-type weighted norm inequalities for the maximal function
to be defined next.
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Definition 4.1. Let γ ∈ [0, 1). For f ∈ L1
loc(R

n+1) define the parabolic maximal function

Mγ+ f (x, t)= sup
R(x,t)
−

∫
R+(γ )
| f |,

where the supremum is taken over all parabolic rectangles centered at (x, t). If γ = 0, it will be omitted
in the notation. The operator Mγ− is defined analogously.

The necessity of the A+q condition can be proved in a similar manner to its analogue in the classical
Muckenhoupt theory, but already here the geometric flexibility of Definition 3.2 simplifies the statement.

Lemma 4.2. Let w be a weight such that the operator Mγ+
: Lq(w)→ Lq,∞(w) is bounded. Then

w ∈ A+q (γ ).

Proof. Take f > 0 and choose R such that fS+ > 0, where S+ = R+ if γ = 0. If γ > 0,

S+ = R−(γ )+ (1− γ )l p
+ 2pγ l p

will do. Redefine f = χS+ f . Take a positive λ < Cγ fS+ . With a suitably chosen Cγ , we have

w(R−)≤ w
(
{x ∈ Rn+1

: Mγ+ f > λ}
)
≤

C
λq

∫
R+

f qw.

The claim follows letting λ→ Cγ f = Cγ (w + ε)1−q ′ and ε → 0, and concluding by argumentation
similar to Proposition 3.4. �

Covering lemmas. The converse claim requires a couple of special covering lemmas. It is not clear
whether the main covering lemma in [Forzani et al. 2011] extends to dimensions higher than two. However,
in our geometry the halves of parabolic rectangles are indexed along their spatial centers instead of corner
points, which was the case in [Forzani et al. 2011]. This fact will be crucial in the proof of Lemma 4.4,
and this enables us to obtain results in the multidimensional case as well.

Lemma 4.3. Let R0 be a parabolic rectangle, and let F be a countable collection of parabolic rectangles
with dyadic side lengths such that for each i ∈ Z we have∑

P∈F
l(P)=2i

1P− . 1.

Moreover, assume P− * R− for all distinct P, R ∈ F . Then∑
P∈G

|P|. |R0|,

where G = {P ∈ F : P+ ∩ R+0 6=∅, |P|< |R0|}.

Proof. Recall that R± = R±(0). We may write G ⊂ G0(R0)∪G1, where

G0(R)= {P ∈ F : P ∩ ∂R+, |P|< |R|}

and
G1 = {P ∈ F : P ⊂ R+0 , |P|< |R0|}.
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That is, the rectangles having their upper halves in R+0 are either contained in it or they meet its boundary.
An estimate for G0(R) with an arbitrary parabolic rectangle R instead of R0 will be needed, so we start
with it. Let P be a parabolic rectangle with the spatial side length l(P) = 2−i. If P ∩ ∂R+ 6= ∅, then
P ⊂ Ai , where Ai can be realized as a collection of 2(n+ 1) rectangles corresponding to each face of R
such that

|Ai |. 2l(R)n · 2−i p
+ 2nl(R)p+n−1

· 2−i.

Now choosing k0 ∈ Z such that 2−k0 < l(R) < 2−k0+1, we get, by the bounded overlap,

∑
P∈G0(R)

|P| =
∞∑

i=k0

∑
P∈G0(R)
l(P)=2−i

|P|.
∞∑

i=k0

|Ai |. |R|.

Once the rectangles meeting the boundary are clear, we proceed to G1. The side lengths of rectangles
in G1 are bounded from above. Hence there is at least one rectangle with the maximal side length. Let 61

be the collection of R ∈ G1 with the maximal side length. We continue recursively. Once 6 j with
j = 1, . . . , k have been chosen, take the rectangles R with the maximal side length among the rectangles
in G1 satisfying

R− ∩
⋃

P∈
⋃k

j=1 6 j

P− =∅.

Let them form the collection 6k+1. Define the limit collection to be

6 =
⋃

j

6 j .

Each P ∈ G1 is either in 6 or P− meets R− with R ∈6 and l(P) < l(R). Otherwise P would have
been chosen to be an element of 6. This implies∑

R∈G1

|R| ≤
∑

R∈G1∩6

(
|R| +

∑
P∈G1:P−∩R− 6=∅
|P|<|R|

|P|
)
.

In the second sum, both P and R are in F , so P− * R− by assumption. Thus P ∩∂R− 6=∅, and the sum
in the parentheses is controlled by a constant multiple of |R| (by applying the estimate we have for G0(R̃),
where R̃ is a parabolic rectangle with upper half R−). The rectangles in each 6 j have equal side length
so that ∑

R∈G1

|R|.
∑

R∈G1∩6

|R| =
∑

j

∑
R∈G1∩6 j

|R|.
∑

j

∣∣∣∣ ⋃
R∈6 j

R
∣∣∣∣≤ ∣∣∣∣ ⋃

R∈G1

R
∣∣∣∣≤ |R0|. �

The hypotheses of the next lemma correspond to a covering obtained using the parabolic maximal
function, and the conclusion provides us with a covering that has bounded overlap. This fact is analogous
to the two-dimensional Lemma 3.1 in [Forzani et al. 2011].
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Lemma 4.4. Let λ > 0, f ∈ L1
loc(R

n+1) be nonnegative, and A ⊂ Rn+1 be a set of finitely many points
such that for each x ∈ A there is a parabolic rectangle Rx with dyadic side length satisfying

−

∫
R+x (γ )

f h λ. (4-1)

Then there is 0 ⊂ A such that for each x ∈ 0 there is Fx ⊂ R+x (γ ) with

(i) A ⊂
⋃

x∈0 R−x ,

(ii) (1/|Rx |)
∫

Fx
f & λ and

∑
x∈0 1Fx . 1.

Proof. To simplify the notation, we identify the sets R−x with their closures. Their side lengths are denoted
by lx . Let x1 ∈ A be a point with maximal temporal coordinate. Recursively, choose xk+1 ∈ A \

⋃k
j=1 R−x .

Define1={xi }i . This is a finite set. Take x ∈1with maximal lx and define 01={x}. Let 0k+1=0k∪{y},
where R−y * R−x for all x ∈ 0k and ly is maximal among the ly satisfying the criterion. By finiteness, the
process will stop and let 0 be the final collection.

Given x, y ∈ 0 with lx = ly =: r and x 6= y, their Euclidean distance satisfies

|x − y| ≥min
{ 1

2r, r p}.
There is a dimensional constant α ∈ (0, 1) such that αRx ∩ αRy = ∅, and, given z ∈ Rn+1, there is a
dimensional constant β > 0 such that ⋃

x∈0:z∈Rx

Rx ⊂ R(z, βr).

Thus

(βr)n(2βr)p
= |R(z, βr)| ≥

∑
x∈0: lx=r,

z∈Rx

|αRx | = (αr)n(2αr)p
∑

x∈0: lx=r

1Rx (z),

and consequently ∑
x∈0: lx=r

1Rx . 1. (4-2)

Define

Gx =
{

y ∈ 0 : R+x (γ )∩ R+y (γ ) 6=∅, |Ry|< |Rx |
}
.

By inequality (4-2), the assumptions of Lemma 4.3 are fulfilled. Hence∑
y∈Gx

|R+y (γ )|. |R
+

x (γ )|.

By (4-1), we have ∑
y∈Gx

∫
R+y (γ )

f . λ
∑
y∈Gx

|R+y (γ )|. λ|R
+

x (γ )|.
∫

R+x (γ )
f.

Let the constant in this inequality be N.
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Define s := #Gx . When s ≤ 2N, we choose Fx = R+x (γ ). If s > 2N, we define

E x
i =

{
z ∈ R+x :

∑
y∈0: ly<lx

1R+y (γ )(z)≥ i
}
.

Thus
∑

i 1E x
i
(z) counts the points y ∈ Gx whose rectangles contain z. Hence

2N
∫

E x
2N

f ≤
s∑

i=1

∫
E x

i

f =
∫

R+x (γ )
f

s∑
i=1

1E x
i
≤

∫
R+x (γ )

f
∑
y∈Gx

1R+y (γ ) =
∑
y∈Gx

∫
R+y (γ )

f ≤ N
∫

R+x (γ )
f.

For the set Fx = R+x (γ ) \ E x
2N , we have∫

Fx

f =
∫

R+x (γ )
f −

∫
E x

2N

f ≥ 1
2

∫
R+x (γ )

f & λ|R+x (γ )|.

It remains to prove the bounded overlap of Fx . Take z ∈
⋂k

i=1 Fxi . Take x j so that lx j is maximal
among lxi , i = 1, . . . , k. By (4-2) there are at most Cn rectangles with this maximal side length that
contain z. Moreover, their subsets Fx meet at most 2N upper halves of smaller rectangles so that
k ≤ 2NCn . �

Weak-type inequalities. Now we can proceed to the proof of the weak-type inequality. The proof makes
use of a covering argument as in [Forzani et al. 2011] adjusted to the present setting.

Lemma 4.5. Let q ≥ 1, w ∈ A+q (γ ) and f ∈ Lq(w). There is a constant C = C(n, γ, p, w, q) such that

w
(
{x ∈ Rn+1

: Mγ+ f > λ}
)
≤

C
λp

∫
| f |pw

for every λ > 0.

Proof. We first assume f > 0 is bounded and compactly supported. Since

Mγ+ f (x)= sup
h>0

1
R(x, h, γ )+

∫
R(x,h,γ )+

f

. sup
i∈Z

1
R(x, 2i , 2−2γ )+

∫
R(x,2i ,2−2γ )+

f

= lim
j→−∞

sup
i∈Z,i> j

1
R(x, 2i , γ ′)+

∫
R(x,2i ,γ ′)+

f,

it suffices to consider rectangles with dyadic side lengths bounded from below provided that we use
smaller γ , and the claim will follow from monotone convergence. The actual value of γ is not important
because of Proposition 3.4. We may assumew is bounded from above and from below (see Proposition 3.3).

Moreover, it suffices to estimate w(E), where

E = {x ∈ Rn+1
: λ < Mγ+ f ≤ 2λ}.
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Once this has been done, we may sum up the estimates to get

w
(
Rn+1

∩ {Mγ+ f > λ}
)
=

∞∑
i=0

w
(
Rn+1

∩ {2iλ < Mγ+ f ≤ 2i+1λ}
)

≤

∞∑
i=0

1
2i

C
λp

∫
| f |pw ≤

C
λp

∫
| f |pw.

Let K ⊂ E be an arbitrary compact subset. Denote the lower bound for the side lengths of the parabolic
rectangles in the basis of the maximal operator by ξ < 1. For each x ∈ K , there is dyadic lx > ξ such that

−

∫
R+(x,lx ,γ )

f h λ.

Define Rx := R(x, lx). Since f ∈ L1, we have

|R+x (γ )|<
1
λ

∫
f = C(λ, ‖ f ‖L1) <∞.

Thus supx∈K lx <∞. Let a =minw. There is ε > 0, uniform in x , such that

w((1+ ε)R−x \ R−x )≤ aξ n+p
≤ w(R−x )

and w((1 + ε)R−x ) ≤ 2w(R−x ) hold for all x ∈ K . By compactness, there is a finite collection of
balls B(x, ξ pε/2) to cover K . Denote the set of centers by A, and apply Lemma 4.4 to extract the
subcollection 0. Each y ∈ K is in B(x, ξ pε/2) with x ∈ A. Each x ∈ A is in R−z with z ∈ 0, so each
y ∈ K is in B(x, ξ pε/2)⊂ (1+ ε)R−z . Thus

w(K )≤
∑
z∈0

w((1+ ε)R−z )≤ 2
∑
z∈0

w(R−z )

≤
C
λq

∑
z∈0

w(R−z )
(

1
|R+z (γ )|

∫
Fz

f
)q

≤
C
λq

∑
z∈0

w(R−z )

|R−z |

(
−

∫
R+z (γ )

w1−q ′
)q−1 ∫

Fz

f qw

≤
C
λq

∫
f qw.

In the last inequality we used the A+q condition together with a modified configuration justified in
Proposition 3.4, and the bounded overlap of the sets Fz . �

Now we are in a position to summarize the first results about the parabolic Muckenhoupt weights. We
begin with the weak-type characterization for the operator studied in [Berkovits 2011]. Along with this
result, the definition in [Berkovits 2011] leads to all same results in Rn+1 as the other definition from
[Forzani et al. 2011] does in R2. The next theorem holds even in the case p = 1, which is otherwise
excluded in this paper.
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Theorem 4.6. Let w be a weight and q > 1. Then w ∈ A+q (γ ) with γ = 0 if and only if M+ is of
w-weighted weak type (q, q).

Proof. Combine Lemma 4.2 and Lemma 4.5. �

The next theorem is the first main result of this paper. Observe that all the parabolic operators Mγ+

with γ ∈ (0, 1) have the same class of good weights. This interesting phenomenon seems to be related to
the fact that p > 1.

Theorem 4.7. Let w be a weight and q > 1. Then the following conditions are equivalent:

(i) w ∈ A+q for some γ ∈ (0, 1).

(ii) w ∈ A+q for all γ ∈ (0, 1).

(iii) There is γ ∈ (0, 1) such that the operator Mγ+ is of weighted weak type (q, q) with the weight w.

(iv) The operator Mγ+ is of weighted weak type (q, q) with the weight w for all γ ∈ (0, 1).

Proof. This follows from Lemma 4.2, Lemma 4.5 and Proposition 3.4(vii). �

5. Reverse Hölder inequalities

Parabolic reverse Hölder inequalities have already been studied in [Berkovits 2011], and they were used
to prove sufficiency of the nonlagged Muckenhoupt condition for the lagged strong-type inequality. The
proof included the classical argument with self-improving properties and interpolation. Our reverse Hölder
inequality will lead to an even stronger self-improving property, and this will give us a characterization of
the strong-type inequality. We will encounter several challenges. For example, our ambient space does
not have the usual dyadic structure. In the classical Muckenhoupt theory this would not be a problem, but
here the forwarding in time gives new complications. We will first prove an estimate for the level sets,
and then we will use it to conclude the reverse Hölder inequality.

Lemma 5.1. Let w ∈ A+q (γ ), R̃0 = Q0 ×
(
τ, τ + 3

2 l p
0

)
and R̂0 = Q0 × (τ, τ + l p

0 ). Then there exist
C = C([w]A+q (γ ), n, p) and β ∈ (0, 1) such that for every λ≥ wR−0

, we have

w(R̂0 ∩ {w > λ})≤ Cλ
∣∣R̃0 ∩ {w > βλ}

∣∣.
Proof. We introduce some notation first. For a parabolic rectangle R = Q× (t0, t0+ 2l(Q)p), we define

R̂ = Q× (t0, t0+ l(Q)p) (5-1)

and
qR = Q×

(
t0+ (1+ γ )l(Q)p, 3

2 l(Q)p
)
. (5-2)

Here γ ∈
(
0, 1

2

)
, and by Proposition 3.4, we may replace the sets R±(γ ) everywhere by the sets R̂ and qR.

Note that R̂ = R−. The hats are used to emphasize that R̂ and qR are admissible in the A+q condition,
whereas R− is used as the set should be interpreted as a part of a parabolic rectangle. For β ∈ (0, 1), the
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condition A+q (γ ) gives ∣∣ qR ∩ {w ≤ βwR̂}
∣∣≤ β p′−1

∫
qR

w1−p′

w
1−p′

R̂

≤ (βC)p′−1
| qR|.

Taking α ∈ (0, 1), we may choose β such that∣∣ qR ∩ {w > βwR̂}
∣∣> α| qR|. (5-3)

Let
B =

{
Q×

(
t − 1

2 l(Q)p, t + 1
2 l(Q)p

)
: Q ⊂ Q0 dyadic, t ∈ (0, l p)

}
.

Here dyadic means dyadic with respect to Q0, and hence the collection B consists of the lower parts R̂ of
spatially dyadic short parabolic rectangles interpreted as metric balls with respect to

d((x, t), (x ′, t ′))=max
{
|x − x ′|∞,C p|t − t ′|1/p}.

Notice that the (n+1)-dimensional Lebesgue measure is doubling with respect to d .
We define a noncentered maximal function with respect to B as

MB f (x)= sup
{x}⊂B∈B

−

∫
B

f,

where the supremum is taken over all sets in B that contain x . By the Lebesgue differentiation theorem,
we have

R̂0 ∩ {w > λ} ⊂ {MB(1R̂0
w) > λ} =: E

up to a null set. Next we will construct a Calderón–Zygmund-type cover. The idea is to use dyadic structure
to deal with spatial coordinates, then separate the scales, and finally conclude, with one-dimensional
arguments, with the assumptions of Lemma 4.3.

Define the slice Et = E ∩ (Rn
×{t}) for fixed t . Since λ≥ wR̂0

, we may find a collection of maximal
dyadic cubes Qt

i ×{t} ⊂ Et such that for each Qi there is B t
i ∈ B with

B t
i ∩ (Q0×{t})= Qt

i and −

∫
B t

i

w > λ.

Clearly {B t
i }i is pairwise disjoint and covers Et . Moreover, since Qt

i is maximal, the dyadic parent Q̂t
i of

Qt
i satisfies

−

∫
Q̂t

i×I
w ≤ λ

for all intervals I 3 t with |I | = l(Q̂t
i )

p and especially for the ones with Q̂t
i × I ⊃ B t

i . Hence

λ <−

∫
B t

i

w .−
∫

Q̂t
i×I
w ≤ λ. (5-4)

We gather the collections corresponding to t ∈ (τ, τ + l p
0 ) together, and separate the resulting collection

into subcollections as
Q= {B t

i : i ∈ Z, t ∈ (0, l p)} =
⋃
j∈Z

Q j ,
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where Q j = {Q× I ∈Q : |Q| = 2− jn
|Q0|}. Each Q j can be partitioned into subcollections corresponding

to different spatial dyadic cubes Q j =
⋃

i Q j i . Here

Q j i = {Q× I ∈Q j : Q = Qt
i , t ∈ (τ, τ + l p)}.

If needed, we may reindex the Calderón–Zygmund cubes canonically with j and i such that j tells the
dyadic generation and i specifies the cube such that Qt

j i = Qt ′
j i . Then⋃

B∈Qi j

B ∩
⋃

B ′∈Qi ′ j

B ′ =∅

whenever i 6= i ′. Thus we may identify Q j i with a collection of intervals and extract a covering
subcollection with an overlap bounded by 2. Hence we get a covering subcollection of Q j with an overlap
bounded by 2, and hence a countable covering subcollection of Q such that its restriction to any dyadic
scale has an overlap bounded by 2. Denote the final collection by F . Its elements are interpreted as lower
halves of parabolic rectangles; that is, there are parabolic rectangles P with P− ∈ F .

Collect the parabolic halves P− ∈ F with maximal side length in the collection 61. Recursively, if 6k

is chosen, collect P− ∈ F with equal maximal size such that

P+ ∩
⋃

Q−∈
⋃k

i=1 6i

Q+ =∅

in the collection 6k+1. The collections 6k share no elements, and their internal overlap is bounded by 2.
Since each A ∈6k has equal size, the bounded overlap is inherited by the collection

6+k := {A
+
: A− ∈6k}.

Moreover, by construction, if A+ ∈6+i and B+ ∈6+j with i 6= j then A+ ∩ B+ =∅. Hence

F ′ :=
⋃

i

6i

is a collection such that ∑
P−∈F ′

1P+ ≤ 2.

According to (5-4) and Lemma 4.3, we get

w(E)≤
∑
B∈F

w(B).
∑
B∈F

λ|B| ≤
∑

P−∈F ′

(
λ|P−| +

∑
B∈F

B+∩P+ 6=∅
|B|<|P|

λ|B|
)
. λ

∑
P−∈F ′

|P+|.

Then

w(E).γ λ
∑

P−∈F ′
| qP|.

∑
P−∈F ′

λ
∣∣ qP ∩ {w > βλ}

∣∣≤ ∫⋃
S−∈F ′ Š∩{w>βλ}

∑
P−∈F ′

1P+ . λ
∣∣R̃0 ∩ {w > βλ}

∣∣. �
The fact that the sets in the estimate given by the above lemma are not equal is reflected in the reverse

Hölder inequality as a time lag. This phenomenon is unavoidable, and it was noticed already in the
one-dimensional case; see, for instance, [Martín-Reyes 1993].
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Theorem 5.2. Let w ∈ A+q (γ ) with γ ∈ (0, 1). Then there exist δ > 0 and a constant C independent of R
such that (

−

∫
R−(0)

wδ+1
)1/(1+δ)

≤ C−
∫

R+(0)
w.

Furthermore, there exists ε > 0 such that w ∈ A+q−ε(γ ).

Proof. We will consider a truncated weight w := min{w,m} in order to make quantities bounded. At
the end, the claim for general weights will follow by passing to the limit as m→∞. Without loss of
generality, we may take R−= Q× (0, l p). Define R̂ and qR as in the previous lemma (see (5-1) and (5-2)).
In addition, let R̃ be the convex hull of R̂ ∪ qR.

Let E = {w >wR−}. By Lemma 5.1,∫
R−∩E

wδ+1
= |R− ∩ E |wδ+1

R− + δ

∫
∞

wR−

λδ−1w({R− ∩ {w > λ}}) dλ

≤ |R− ∩ E |wδ+1
R− +Cδ

∫
∞

wR−

λδ−1
|{R ∩ {w > βλ}}| dλ

≤ |R− ∩ E |wδ+1
R− +Cδ

∫
R̃∩E

wδ+1,

which implies ∫
R−∩E

wδ+1
≤

1
1− δC

(
|R− ∩ E |wδ+1

R− +Cδ
∫

R̃\(R−∩E)
wδ+1

)
.

Consequently ∫
R−
wδ+1

≤
2− δC
1− δC

|R−|wδ+1
R− +

Cδ
1− δC

∫
R̃\R−

wδ+1

= C0|R−|wδ+1
R− +C1δ

∫
R̃\R−

wδ+1. (5-5)

Then we choose l p
1 = 2−1l p. We can cover Q by Mnp subcubes {Q1

i }
Mnp
i=1 with l(Q1

i )= l1. Their overlap
is bounded by Mnp, and so is the overlap of the rectangles

{R1−
i } = Qi ×

(
l p, 3

2 l p)
that cover R̃ \ R− and share the dimensions of the original R−. Hence we are in position to iterate. The
rectangles R(k+1)−

i j are obtained from Rk−
i as R1−

i were obtained from R− =: R0−
i , i = 1, . . . ,Mnp. Thus

∫
R−
wδ+1

≤ C0|R−|wδ+1
R− +C1δ

Mnp∑
i=1

∫
R1

i

wδ+1

≤

N∑
j=0

(
C j+1

0 (C1δ)
j

Mnp∑
i=1

|R j−
i |w

δ+1
R j−

i

)
+ (C1δMnp)

N
∫
⋃Mnp

i=1 R̃N
i \R

N−
i

wδ+1

= I+ II.
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For the inner sum in the first term we have
Mnp∑
i=1

|R j−
i |w

δ+1
R j−

i
≤

Mnp∑
i=1

2− jδnl−δ(n+p)
(∫

R j−
i

w

)δ+1

≤ 2− jδnln+p Mδ+1
np wδ+1

R .

Thus

I≤
(
−

∫
R
w

)1+δ

C0 Mδ+1
np ln+p

N∑
j=0

(C1C0δ)
j 2− jδn,

where the series converges as N→∞ if δ is small enough. On the other hand, if w is bounded, it is clear
that II→ 0 as N →∞. This proves the claim for bounded w, hence for truncations min{w,m}, and the
general case follows from the monotone convergence theorem as m→∞. The self-improving property of
A+q (γ ) follows from applying the reverse Hölder inequality coming from the A−q ′(γ ) condition satisfied
by w1−q ′ and using Proposition 3.4. �

Remark 5.3. An easy subdivision argument shows that the reverse Hölder inequality can be obtained
for any pair R, t + R where t > 0. Namely, we can divide R into arbitrarily small, possibly overlapping,
subrectangles. Then we may apply the estimate to them and sum up. This kind of procedure has been
carried out explicitly in [Berkovits 2011].

Now we are ready to state the analogue of Muckenhoupt’s theorem in its complete form. Once it is
established, many results familiar from classical Muckenhoupt theory follow immediately.

Theorem 5.4. Let γi ∈ (0, 1), i = 1, 2, 3. Then the following conditions are equivalent:

(i) w ∈ A+q (γ1).

(ii) The operator Mγ2+ is of weighted weak type (q, q) with the weight w.

(iii) The operator Mγ3+ is of weighted strong type (q, q) with the weight w.

Proof. Equivalence of A+q and weak type follows from Theorem 4.7. Theorem 5.2 gives A+q−ε , so (iii)
follows from Marcinkiewicz interpolation and the final implication (iii)⇒ (ii) is clear. �

6. Factorization and A+

1 weights

In contrast with the classical case, it is not clear what is the correct definition of the parabolic Muckenhoupt
class A+1 . One option is to derive an A+1 condition from the inequality of weak type (1, 1) for Mγ+, and
get a condition that coincides with the formal limit of A+q conditions. We propose a slightly different
approach and consider the class arising from factorization of the parabolic Muckenhoupt weights and
characterization of the parabolic BMO.

Definition 6.1. Let γ ∈ [0, 1). A weight w > 0 is in A+1 (γ ) if for almost every z ∈ Rn+1, we have

Mγ−w(z)≤ [w]A+1 (γ )w(z). (6-1)

The class A−1 (γ ) is defined by reversing the direction of time.
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The following proposition shows that, in some cases, the A+1 condition implies the A1-type condition
equivalent to the inequality of weak type (1, 1). Moreover, if γ = 0, then the two conditions are equivalent.

Proposition 6.2. Let w ∈ A+1 (γ ) with γ < 21−p.

(i) For every parabolic rectangle R, it holds that

−

∫
R−(2p−1γ )

w .γ,[w]A+1
inf

z∈R+(2p−1γ )
w(z). (6-2)

(ii) For all q > 1, we have w ∈ A+q .

Proof. Define δ = 2p−1γ . Take a parabolic rectangle R0. We see that every z ∈ R+0 (δ) is a center of a
parabolic rectangle with R−(z, γ )⊃ R−0 (δ) such that

−

∫
R−(δ)

w .−
∫

R−(z,γ )
w ≤ Mγ−w(z). w(z),

where the last inequality used (6-1). This proves (i). The statement (ii) follows from the fact that (6-2) is
an increasing limit of A+q (γ ) conditions; see Definition 3.2. �

Now we will state the main result of this section, that is, the factorization theorem for the parabolic
Muckenhoupt weights corresponding to the classical results, for example, in [Jones 1980; Coifman et al.
1983].

Theorem 6.3. Let δ ∈ (0, 1) and γ ∈ (0, δ21−p). A weight w ∈ A+q (δ) if and only if w = uv1−p, where
u ∈ A+1 (γ ) and v ∈ A−1 (γ ).

Proof. Let u ∈ A+1 (γ ), v ∈ A−1 (γ ) and fix a parabolic rectangle R. By Proposition 6.2, for all x ∈ R+(δ),
we have

u(x)−1
≤ sup

x∈R+(δ)
u(x)−1

=

(
inf

x∈R+(δ)
u(x)

)−1

.

(
−

∫
R−(δ)

u
)−1

,

and, for all y ∈ R−(δ), we have the corresponding inequality for v, that is,

v(y)−1
≤ sup

y∈R−(δ)
v(y)−1

=

(
inf

y∈R−(δ)
v(y)

)−1

.

(
−

∫
R+(δ)

v

)−1

.

Hence(
−

∫
R−(δ)

uv1−q
)(
−

∫
R+(δ)

u1−q ′v

)p−1

.

(
−

∫
R−(δ)

u
)(
−

∫
R+(δ)

v

)1−q(
−

∫
R+(δ)

v

)q−1(
−

∫
R−(δ)

u
)−1

= C,

which proves that uv1−q
∈ A+q (δ). The finite constant C depends only on γ, δ, [u]A+1 (γ ) and [v]A−1 (γ ).

For the other direction, fix q ≥ 2 and w ∈ A+q . Define an operator T as

T f =
(
w−1/q Mγ−( f q−1w1/q)

)1/(q−1)
+w1/q Mγ+( fw−1/q).

By boundedness of the operators

Mγ+
: Lq(w)→ Lq(w) and Mγ−

: Lq ′(w1−p′)→ Lq ′(w1−p′),
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we conclude that T : Lq
→ Lq is bounded. Let

B(w) := ‖T ‖Lq→Lq h[w]A+q 1.

Take f0 ∈ Lq with ‖ f0‖Lq = 1. Let

φ =

∞∑
i=1

(2B(w))−i T i f0,

where T i simply means the i-th iterate of T. We define

u = w1/qφq−1 and v = w−1/qφ.

Clearly w = uv1−q. We claim that u ∈ A+1 and v ∈ A−1 . Since q ≥ 2, the operator T is sublinear, and we
obtain

T (φ)≤ 2B(w)
∞∑

i=1

(2B(w))−(i+1)T i+1( f0)

= 2B(w)
(
φ−

T ( f0)

2B(w)

)
≤ 2B(w)φ.

Noting that φ = (w−1/qu)1/(q−1)
= w1/qv and inserting the above inequality into the definition of T, we

obtain
Mγ−u ≤ (2B(w))q−1u and Mγ+v ≤ 2B(w)v.

This implies u ∈ A+1 and v ∈ A−1 , so the proof is complete for q ≥ 2. Once the claim is known for q ≥ 2,
the complementary case 1< q < 2 follows from Proposition 3.4(ii). �

Next we will characterize A+1 weights as small powers of maximal functions up to a multiplication
by bounded functions. The following result looks very much like the classical characterization of
Muckenhoupt A1 weights. However, we emphasize that even if the maximal operator Mγ+ is dominated
by the Hardy–Littlewood maximal operator, the assumptions of the following lemma are not restrictive at
all when it comes to the measure µ. Indeed, the condition Mγ−µ <∞ almost everywhere still includes
rather rough measures. For instance, their growth towards the positive time direction can be almost
arbitrary, and the same property is carried over to the A+1 weights.

Lemma 6.4. (i) Let µ be a locally finite nonnegative Borel measure on Rn+1 such that M−µ <∞
almost everywhere. If δ ∈ [0, 1), then

w := (M−µ)δ ∈ A+1 (0)

with [w]A+1 (0) independent of µ.

(ii) Let w ∈ A+1 (γ
′). Then there exists a µ as above, δ ∈ [0, 1) and K with K , K−1

∈ L∞ such that

w = K (Mγ−µ)δ,

where γ ′ < γ .
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Proof. Let x ∈ Rn+1 and fix a parabolic rectangle R0 centered at x . Define B̃ = (2R0)
−. Decompose µ as

µ= µ1+µ2, where µ1 = µ|B̃ and µ2 = µ|B̃c . Kolmogorov’s inequality gives

−

∫
R−0

(M−µ1)
δ
≤ C |R−0 |

−δµ1(B̃)δ ≤ C
(
µ(B̃)

|B̃|

)δ
≤ C M−µ(x)δ.

On the other hand, for any y ∈ R−0 and a rectangle R(y, L)∩ (B̃)c 6=∅, we have L & l(R0). Moreover,
R(y, L)⊂ R(x,C L) so that

M−µ2(y). M−µ(x)

and

−

∫
R−0

(M−µ)δ ≤−
∫

R−0

(M−µ2)
δ
+−

∫
R−0

(M−µ1)
δ . M−µ(x)δ.

To prove (ii), take w ∈ A+1 (γ
′) and a parabolic rectangle R centered at x . By the reverse Hölder

property (Theorem 5.2), Remark 5.3, and inequality (6-1), we have(
−

∫
R−(γ )

w1+ε
)1/(1+ε)

. w(x).

Define µ= w1+ε and δ = 1/(1+ ε). By the Lebesgue differentiation theorem

w(x)≤ Mγ−µ(x)δ . w(x).

Hence

K =
w

(Mγ−µ)δ

is bounded from above and from below, which proves the claim. �

7. A characterization of the parabolic BMO

In this section we discuss the connection between parabolic Muckenhoupt weights and the parabolic BMO.
The parabolic BMO was explicitly defined by Fabes and Garofalo [1985], who gave a simplified proof of
the parabolic John–Nirenberg lemma in [Moser 1964]. We consider a slightly modified definition in order
to make the parabolic BMO a larger space and a more robust class; see [Saari 2016]. Our definition has
essentially the same connections to PDEs as the one in [Fabes and Garofalo 1985]. Moreover, this extends
the theory beyond the quadratic growth case and applies to the doubly nonlinear parabolic equations.

Definition 7.1. A function u ∈ L1
loc(R

n+1) belongs to PBMO+ if there are constants aR , that may depend
on the parabolic rectangles R, such that

sup
R

(
−

∫
R+(γ )

(u− aR)
+
+−

∫
R−(γ )

(aR − u)+
)
<∞ (7-1)

for some γ ∈ (0, 1). If (7-1) holds with the time axis reversed, then u ∈ PBMO−.
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If (7-1) holds for some γ ∈ (0, 1), then it holds for all of them. Moreover, we can consider prolonged
parabolic rectangles Q × (t − T l p, t + T l p) with T > 0 and still recover the same class of functions.
These facts follow from the main result in [Saari 2016], and they can be deduced from results in [Aimar
1988] and in a special case from results in [Fabes and Garofalo 1985].

The fact that γ > 0 is crucial. For example, the John–Nirenberg inequality (Lemma 7.2) for the
parabolic BMO cannot hold without a time lag. Hence a space with γ = 0 cannot be characterized through
the John–Nirenberg inequality. The following lemma can be found in [Saari 2016]. See also [Fabes and
Garofalo 1985; Aimar 1988].

Lemma 7.2. Let u ∈ PBMO+ and γ ∈ (0, 1). Then there are A, B > 0 depending only on n, γ and u
such that

|R+(γ )∩ {(u− aR)
+ > λ}| ≤ Ae−Bλ

|R| (7-2)

and

|R−(γ )∩ {(aR − u)+ > λ}| ≤ Ae−Bλ
|R|. (7-3)

There are also more elementary properties that can be seen from Definition 7.1. Since we will need
them later, they will be stated in the next proposition.

Proposition 7.3. (i) If u, v ∈ PBMO+ and α, β ∈ (0,∞), then αu+βv ∈ PBMO+.

(ii) u ∈ PBMO+ if and only if −u ∈ PBMO−.

Proof. For (i), note that (
u+ v− (au

R + avR)
)+
≤ (u− au

R)
+
+ (u− avR)

+,

and an analogous estimate holds for the negative part. Hence αu+βv ∈ PBMO+ with

aR =
au

R

α
+

avR
β
.

Since
(u− aR)

+
=
(
(−u)− (−aR)

)− and (u− aR)
−
=
(
(−u)− (−aR)

)+
,

the second assertion is clear. �

The goal of this section is to characterize the parabolic BMO in the sense of Coifman and Rochberg
[1980]. The Muckenhoupt theory developed so far gives a characterization for the parabolic Muckenhoupt
weights, so what remains to do is to prove the equivalence of the parabolic BMO and the A+q condition.

Lemma 7.4. Let q ∈ (1,∞) and γ ∈ (0, 1). Then

PBMO+ = {−λ logw : w ∈ A+q (γ ), λ ∈ (0,∞)}. (7-4)

Proof. We abbreviate R±(γ )= R± even if γ 6= 0. For u ∈ PBMO+, Lemma 7.2 gives ε > 0 such that

−

∫
R−

e−εu
= e−aRε−

∫
R−

eε(aR−u)
≤ e−aRε−

∫
R−

eε(aR−u)+
≤ C−e−aRε
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and, for some q <∞,

−

∫
R+

eεu/(q−1)
= eaRε/(q−1)

−

∫
R+

e(u−aR)ε/(q−1)

≤ eaRε/(q−1)
−

∫
R+

e(u−aR)
+ε/(q−1)

≤ C+eaRε/(q−1),

so w := e−uε
∈ A+q and u =−ε−1

· logw as it was claimed.
To prove the other direction, take w ∈ A+q with q ≤ 2. Choose

aR = logwR− .

Then by Jensen’s inequality and the parabolic Muckenhoupt condition, we have

exp−
∫

R+
(aR − logw)+ ≤−

∫
R+

exp(aR − logw)+

≤ 1+−
∫

R+
exp

(
aR −

1
1− q ′

logw1−q ′
)

≤ 1+ exp(aR)

(
−

∫
R+
w1−q ′

)q−1

= 1+wR−

(
−

∫
R+
w1−q ′

)q−1

≤ 1+CA+q .

On the other hand, again by Jensen’s inequality,

exp−
∫

R−
(logw− aR)

+
≤−

∫
R−

exp(logw− aR)
+

≤ 1+−
∫

R−
exp(logw− aR)

≤ 1+ exp(−aR)−

∫
R−
w

≤ 1+w−1
R−wR− ≤ 2.

This implies

log(2(1+CA+q ))≥−

∫
R+
(− logw− (−aR))

+
+−

∫
R−
(−aR − (− logw))+,

and u =− logw ∈ PBMO+. Applying the same argument for A−q ′ with q > 2 shows that − logw1−q ′
∈

PBMO− and consequently Proposition 7.3 implies −(q ′− 1) logw ∈ PBMO+. �

The following Coifman–Rochberg-type characterization [1980] for the parabolic BMO is the main
result of this section. Observe, that it gives us a method to construct functions of parabolic bounded mean
oscillation with prescribed singularities.
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Theorem 7.5. If f ∈ PBMO+ then there exist γ ∈ (0, 1), constants α, β > 0, a bounded function b ∈ L∞

and nonnegative Borel measures µ and ν such that

f =−α log Mγ−µ+β log Mγ+ν+ b.

Conversely, any f of the form above with γ = 0 and M−µ,M+ν <∞ belongs to PBMO+.

Proof. Take first f ∈ PBMO+. By Lemma 7.4,

f =−C logw

with C > 0 and w ∈ A+2 . By Theorem 6.3, there are u ∈ A+1 and v ∈ A−1 satisfying the corresponding
maximal function estimates (6-1) such that

w = uv−1.

By Lemma 6.4, there exist functions Ku, Kv, K−1
u , K−1

v ∈ L∞ and nonnegative Borel measures µ and ν
such that

u = Ku(Mγ−µ)α and v = Kv(Mγ+ν)β.

Hence f is of the desired form. The other direction follows from Lemma 6.4. �

8. Doubly nonlinear equation

We begin with pointing out that the theory discussed here applies not only to (1-1) but also to the PDEs

∂(|u|p−2u)
∂t

− div A(x, t, u, Du)= 0, 1< p <∞,

where A satisfies the growth conditions

A(x, t, u, Du) · Du ≥ C0|Du|p

and
|A(x, t, u, Du)| ≤ C1|Du|p−1.

See [Kinnunen and Kuusi 2007; Saari 2016] for more. For simplicity, we have chosen to focus on the
prototype equation (1-1) here.

Supersolutions are weights. We say that

v ∈ L p
loc

(
(−∞,∞);W 1,p

loc (R
n+1)

)
is a supersolution to (1-1) provided∫ (

|∇v|p−2
∇v · ∇φ− |v|p−2v

∂φ

∂t

)
≥ 0

for all nonnegative φ ∈ C∞0 (R
n+1). If the reversed inequality is satisfied, we call u a subsolution. If a

function is both sub- and supersolution, it is a weak solution.
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The definition above allows us to use the following a priori estimate, which is Lemma 6.1 in [Kinnunen
and Kuusi 2007]. Similar results can also be found in [Moser 1964; Trudinger 1968], but we emphasize
that the following lemma applies to the full range 1< p <∞ instead of just p = 2.

Lemma 8.1 [Kinnunen and Kuusi 2007]. Suppose v > 0 is a supersolution of the doubly nonlinear
equation in σ R, where σ > 1 and R is a parabolic rectangle. Then there are constants C = C(p, σ, n),
C ′ = C ′(p, σ, n) and β = β(R) such that∣∣R− ∩ {log v > λ+β +C ′}

∣∣≤ C
λp−1 |R

−
|

and ∣∣R+ ∩ {log v <−λ+β −C ′}
∣∣≤ C

λp−1 |R
+
|

for all λ > 0.

Remark 8.2. There is a technical assumption v > ρ > 0 in [Kinnunen and Kuusi 2007]. However, this
assumption can be removed; see [Ivert et al. 2014]. Indeed, Lemma 2.3 of [Ivert et al. 2014] improves
the inequality (3.1) of [Kinnunen and Kuusi 2007] as to make the proof of the above lemma work with
general v > 0 in the case of (1-1) or more general parabolic quasiminimizers.

Let v be a positive supersolution and set u =− log v. We apply Lemma 8.1 together with Cavalieri’s
principle to obtain

−

∫
R+
(u− aR)

b
+
+−

∫
R−
(aR − u)b

+
< C(p, σ, γ, n)

with b=min{(p−1)/2, 1}. A general form of the John–Nirenberg inequality from [Aimar 1988] together
with its local-to-global properties from [Saari 2016] can be used to obtain

−

∫
R+(γ )

(u− aR)++−

∫
R−(γ )

(aR − u)+ < C(p, σ, γ, n).

Hence u =− log v belongs to PBMO+ in the sense of Definition 7.1. The computations required in this
passage are carried out in detail in Lemma 6.3 of [Saari 2016]. We collect the results into the following
proposition, whose content, up to notation, is folklore by now.

Proposition 8.3. Let v > 0 be a supersolution to (1-1) in Rn+1. Then

u =− log v ∈ PBMO+.

In addition, v ∈
⋂

q>1 A+q .

Remark 8.4. This gives a way to construct nontrivial examples of the parabolic Muckenhoupt weights
and parabolic BMO functions.

Since log v ∈ PBMO−, we have that some power of the positive supersolution w satisfies a local A+2 (γ )
condition. This follows from Lemma 7.4. However, working a bit more with the PDE, it is possible
to prove a weak Harnack estimate which implies the improved weight condition stated in the above
proposition. This has been done in [Kinnunen and Kuusi 2007], but the refinement provided in [Ivert
et al. 2014] is again needed in order to cover all positive supersolutions.
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Applications. The previous proposition asserts that the definitions of parabolic weights and parabolic
BMO are correct from the point of view of doubly nonlinear equations. These properties can be used to
deduce two interesting results, the second one of which is new. The first one is a global integrability result
for supersolutions; see Theorem 6.5 from [Saari 2016]. The second application of the parabolic theory of
weights is related to singularities of supersolutions. It follows from Proposition 8.3 and Theorem 7.5. In
qualitative terms, the following theorem tells quite explicitly what kind of functions the generic positive
supersolutions are.

Theorem 8.5. Let v > 0 be a supersolution to (1-1) in Rn+1. Then there are positive Borel measures ν
and µ with

Mγ−ν <∞ and Mγ+µ <∞,

numbers α, β > 0, and a positive function b with b, b−1
∈ L∞(Rn+1) so that

v = b
(Mγ−ν)α

(Mγ+µ)β
.
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