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MULTIPLE VECTOR-VALUED INEQUALITIES
VIA THE HELICOIDAL METHOD

CRISTINA BENEA AND CAMIL MUSCALU

We develop a new method of proving vector-valued estimates in harmonic analysis, which we call “the
helicoidal method”. As a consequence of it, we are able to give affirmative answers to several questions
that have been circulating for some time. In particular, we show that the tensor product BHT˝… between
the bilinear Hilbert transform BHT and a paraproduct… satisfies the same Lp estimates as the BHT itself,
solving completely a problem introduced by Muscalu et al. (Acta Math. 193:2 (2004), 269–296). Then,
we prove that for “locally L2 exponents” the corresponding vector-valued

���!

BHT satisfies (again) the same
Lp estimates as the BHT itself. Before the present work there was not even a single example of such
exponents.

Finally, we prove a biparameter Leibniz rule in mixed norm Lp spaces, answering a question of Kenig
in nonlinear dispersive PDE.

1. Introduction

Vector-valued estimates for classical Calderón–Zygmund operators are known from the work of Burkholder
[1983], Benedek, Calderón and Panzone [Benedek et al. 1962], Rubio de Francia, Ruiz and Torrea [Rubio
de Francia et al. 1986], to mention a few. A customary way of proving such vector-valued estimates
is through weighted norm inequalities and extrapolation, as explained in [García-Cuerva and Rubio de
Francia 1985]. Initially, the vector-valued approach unified the existing theory for maximal operators,
square functions, and singular integrals. Later on, the setting was generalized to Banach spaces which
have the unconditional martingale difference property, and it was shown by Bourgain [1986] that this is
in fact a necessary condition for this theory.

For bilinear operators, however, the theory is far from being fully understood, even in the scalar case. In
this paper, we study vector-valued estimates for the bilinear Hilbert transform and for paraproducts. Our
initial motivation was an AKNS system-related problem, which can be reduced to understanding a Rubio de
Francia operator for iterated Fourier integrals. Because of the specific nature of this question, our general
approach is concrete, rather than abstract. As much as possible, the present article aims to be self-contained.

Central to time-frequency analysis is the bilinear Hilbert transform operator, defined by

BHT.f; g/.x/D p.v.
Z

R

f .x� t /g.xC t /
dt

t
:
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Figure 1. Range for BHT operator.

This operator was first introduced by Calderón, in connection with his work on the Cauchy integral on
Lipschitz curves. Lp estimates for BHT were proved nearly thirty years later, by M. Lacey and C. Thiele,
without establishing the optimality of the range.

Theorem 1 [Lacey and Thiele 1999]. BHT is a bounded bilinear operator from Lp �Lq into Ls for any
1 < p; q �1, 0 < s <1, satisfying 1

p
C
1
q
D

1
s

and 2
3
< s <1.

The range of the operator Range.BHT/ consists of the set of triples .p; q; s/ satisfying the conditions
above. The question that remains open is whether the bilinear Hilbert transform is bounded also for
s 2

�
1
2
; 2
3

�
. The Hölder-type condition 1

p
C
1
q
D
1
s

reflects the scaling invariance of the operator, and it can
be reformulated as 1

p
C
1
q
C
1
s0
D 1, where s0 is the conjugate exponent of s. Thus .p; q; s/ 2 Range.BHT/

if
�
1
p
; 1
q
; 1
s0

�
lies in the plane f.x; y; z/ 2 R3 j xCyC z D 1g, and is contained inside the convex hull of

the points

.0; 0; 1/; .1; 0; 0/;
�
1; 1
2
;�1

2

�
;

�
1
2
; 1;�1

2

�
; .0; 1; 0/

(see Figure 1). Regarded as a bilinear multiplier operator, BHT becomes equivalent to

.f; g/ 7!

Z
�<�

Of .�/ Og.�/e2�ix.�C�/ d� d�: (1)

The method of the proof, which breaks down when 1
p
C
1
q
�
3
2

, consists of approximating BHT by a model
operator obtained through a Whitney decomposition of the frequency region f� < �g. In essence, this
model operator is a superposition of “almost orthogonal” objects of a lower complexity, called discretized
paraproducts.

Paraproducts play an important role on their own, especially in the analysis of PDE. A paraproduct is
an expression of the form

.f; g/ 7!

Z
R

Z
R

f .x� t /g.x� s/k.s; t/ ds dt; (2)
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where k.s; t/ is a Calderón–Zygmund kernel in the plane R2. Alternatively, a paraproduct can be regarded
as a bilinear multiplier operator

.f; g/ 7!

Z
R2
m.�; �/ Of .�/ Og.�/e2�ix.�C�/ d� d�;

wherem is a classical Marcinkiewicz–Mikhlin–Hörmander multiplier in two variables, sufficiently smooth
away from the origin. The singularity of the multiplier m consists of one point: .�; �/D .0; 0/. On the
other hand, we can see from (1) that the BHT multiplier is singular along the line � D �.

We have the following result on paraproducts:

Theorem 2 [Meyer and Coifman 1997]. Any bilinear multiplier operator associated to a symbol m.�; �/
satisfying j@˛m.�; �/j. j.�; �/j�˛ for sufficiently many multi-indices ˛, maps Lp.R/�Lq.R/ into Ls.R/
provided that 1 < p; q �1, 1

2
< s <1, and 1

p
C
1
q
D

1
s

.

Following the presentation in [Muscalu and Schlag 2013], any bilinear operator of this form can be
essentially written as a finite sum of paraproducts of the form

.f; g/ 7!
X
k

�
.f � k/ � .g � k/

�
�'k.x/D

X
k

Pk.Qkf �Qkg/; (I)

.f; g/ 7!
X
k

�
.f �'k/ � .g � k/

�
� k.x/D

X
k

Qk.Pkf �Qkg/; (II)

.f; g/ 7!
X
k

�
.f � k/ � .g �'k/

�
� k.x/D

X
k

Qk.Qkf �Pkg/: (III)

From now on, a paraproduct will designate any of the expressions (I), (II) or (III), and will be denoted
by ….f; g/. Here  k.x/D 2k .2kx/, 'k.x/D 2k'.2kx/, O'.�/� 1 on

�
�
1
2
; 1
2

�
and is supported on

Œ�1; 1� and O .�/D O'.�=2/� O'.�/. The fQkgk represent Littlewood–Paley projections onto the frequency
j�j � 2k, while fPkgk are convolution operators associated with dyadic dilations of a nice bump function
of integral 1.

A classical application of Theorem 2 is the Leibniz rule

kD˛.f �g/ks . kD˛f kp1 kgkq1 Ckf kp2 kD
˛gkq2 ; (3)

which holds for any ˛ > 0, as long as 1
pi
C

1
qi
D
1
s

, 1<pi ; qi �1, and 1=.1C˛/< s <1. In particular,
if s � 1, which is the case in most applications, the Leibniz rule holds for any ˛ > 0.

For functions on R2, with (fractional) partial derivatives in both variables, a corresponding Leibniz
rule isD˛1Dˇ2 .f �g/s
. kD˛1D

ˇ
2 f kp1 kgkq1 Ckf kp2 kD

˛
1D

ˇ
2 gkq2 CkD

˛
1f kp3 kD

ˇ
2 gkq3 CkD

ˇ
2 f kp4 kD

˛
1gkq4 : (4)

The proof of the above inequality relies on discrete biparameter paraproducts…˝…, which are expressions
of the form X

k;l

�
.f � .'k˝ l// � .g � . k˝'l//

�
� k˝ l.x; y/: (5)
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Muscalu, Pipher, Thiele, and Tao proved the following theorem:

Theorem 3 [Muscalu et al. 2004a]. …˝… is a bounded operator from Lp.R2/�Lq.R2/ into Ls.R2/
provided that 1 < p; q �1, 1

p
C
1
q
D

1
s

, and 0 < s <1.

This further implies that (4) is true whenever

1

pi
C
1

qi
D
1

s
; 1 < pi ; qi �1; and max

�
1

1C˛
;
1

1Cˇ

�
< r <1:

If r � 1 the last condition is redundant, so (4) holds for any ˛; ˇ > 0.
Related to this, Carlos Kenig asked the following question, which has been circulating for some time:

Question 1. Assuming that 1 � s1; s2 <1, and ˛; ˇ > 0, is there a Leibniz rule for mixed norm Lp

spaces of the formD˛1Dˇ2 .f �g/Ls1x Ls2y . kD˛1Dˇ2 f kLp1x L
p2
y
kgk

L
q1
x L

q2
y
Ckf k

L
p3
x L

p4
y
kD˛1D

ˇ
2 gkLq3x L

q4
y

CkD˛1f kLp5x L
p6
y
kD

ˇ
2 gkLq5x L

q6
y
CkD

ˇ
2 f kLp7x L

p8
y
kD˛1gkLq7x L

q8
y
‹

Here the mixed norms are defined by

kf kLpxL
q
y
WD
kf kLqyLpx WD

�Z
R

�Z
R

jf .x; y/jq dy

�p
q

dx

�1
p

: (6)

A result of a similar type appeared in [Kenig et al. 1993], as an important tool in establishing local
well-posedness for the generalized Korteweg–de Vries equation. This is a dispersive, nonlinear equation
given by 8<:

@u

@t
C
@3u

@x3
Cuk

@u

@x
D 0; t; x 2 R; k 2 ZC;

u.x; 0/D u0.x/:

(7)

In order to prove existence, the authors use the contraction principle, but to be able to do so, they need to
construct a suitable Banach space. The norm of the Banach space involves mixed Lp norms of fractional
derivatives in the first variable D˛1 , and the Leibniz rule employed in this paper isD˛1 .f �g/�f �D˛1g�D˛1f �gLpxLqt . CkD˛11 f kLp1x L

q1
t
kD

˛2
1 gkLp2x L

q2
t
: (8)

Here ˛ 2 .0; 1/, ˛1C˛2 D ˛ and 1
p1
C

1
p2
D

1
p

, 1
q1
C

1
q2
D

1
q

. Also, p; p1; p2; q; q1; q2 2 .1;1/, but
one can allow q1 D1 if ˛1 D 0.

The fractional derivatives appear as a consequence of the smoothness requirement on the initial data:
u0 is assumed to be in some Sobolev space H˛.R/, where ˛ depends on the value of k in (7).

Question 1 is an extension of (8), and we managed to provide an answer by proving estimates for
…˝… in Lp spaces with mixed norms.

Biparameter bilinear operators were first studied in [Journé 1985], where he introduced a new way of
generalizing Calderón–Zygmund operators on product spaces. More exactly, in that work he proved that
“bicommutators of Calderón–Coifman-type” are bounded, which translates to “…˝… maps L2.R2/�
L1.R2/ into L2.R2/”. The full range of estimates for …˝… was established in [Muscalu et al. 2004a],
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where was also noticed that BHT˝BHT does not satisfy any Lp estimates. What remained undecided
for some time was the following question:

Question 2. Does the tensor product BHT˝… satisfy any Lp estimates? Would it be possible to prove it
satisfies the same estimates as the BHT itself ?

Some significant progress in answering this question was made by Silva [2014]. It was showed that
BHT˝… maps Lp �Lq into Ls under the constraints that 1

p
C
2
q
< 2 and 1

q
C

2
p
< 2. Our helicoidal

method allows us to remove these restrictions, proving in this way that BHT˝… satisfies indeed the
same Lp estimates as BHT.

As it turned out, the study of Question 1 and Question 2 is related to proving (sometimes multiple)
vector-valued inequalities for… and BHT. Let ErD .r1; r2; r/ be a tuple so that 1< r1; r2�1, 1� r <1
and 1

r1
C

1
r2
D

1
r

. We say that an inequality of the type�X
k

ˇ̌
BHT.fk; gk/

ˇ̌r�1r 
s

.
�X

k

jfkj
r1

�r1
p

�X
k

jgkj
r2

�r2
q

(9)

represents Lp estimates for vector-valued BHT, corresponding to the exponent Er ; in short, we have
Lp estimates for

���!

BHTEr .
Some Lp estimates for vector-valued BHT have been proved recently by Silva [2014], provided r 2�

4
3
; 4
�
. UMD-valued extensions for the quartile operator (the Fourier–Walsh analogue of BHT) were stud-

ied by Hytönen, Lacey and Parissis [Hytönen et al. 2013]. Their results, transferred to the Lp setting, hold
under the same constraint that r 2

�
4
3
; 4
�
. Moreover, through this method it is impossible to obtain vector-

valued extensions whenL1 orL1 spaces are involved, as these are not UMD spaces. A similar abstract ap-
proach was taken in [Di Plinio and Ou 2015], where Banach-valued estimates for paraproducts were proved.

In spite of these results, some important questions remained unsettled:

Question 3. Are there any exponents Er as before for which the corresponding vector-valued
���!

BHTEr satisfy
the same Lp estimates as the BHT itself ?

As the question suggests, until the present work, there was not even a single example of such an
exponent. We show that whenever Er is in the “local `2 range”

�
that is, 0� 1

r1
; 1
r2
; 1
r 0
�
1
2

�
,
���!

BHTEr satisfies
the same Lp estimates as the BHT operator. Moreover, whenever 2� p; q �1, we show Lp estimates
exist for any exponent Er D .r1; r2; r/.

To summarize, the main task of the present work is to give affirmative answers to Question 1, Question 2,
and Question 3 described above. In what follows, we will present our main results, sometimes in a more
general setting.

Theorem 4. For any ˛; ˇ > 0,D˛1Dˇ2 .f �g/Ls1x Ls2y . kD˛1Dˇ2 f kLp1x L
p2
y
kgk

L
q1
x L

q2
y
Ckf k

L
p3
x L

p4
y
kD˛1D

ˇ
2 gkLq3x L

q4
y

CkD˛1f kLp5x L
p6
y
kD

ˇ
2 gkLq5x L

q6
y
CkD

ˇ
2 f kLp7x L

p8
y
kD˛1gkLq7x L

q8
y

whenever 1 < pj ; qj �1, 1
2
< s1 <1, 1 � s2 <1, with 1

1C˛
< s1 <1, and the indices satisfy the

natural Hölder-type conditions.
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This answers Question 1 in the affirmative. Of course, one may wonder if Theorem 4 holds in arbitrary
dimensions. As the careful reader will notice, our methods allow for such a generalization, with the
outer-most Lebesgue exponent possibly less than 1, if all the indices pi ; qi involved are strictly between 1
and 1. However, in applications L1 norms appear, so it will be of interest to have a more general
theorem for 1 < pi ; qi �1. Although we cannot obtain this result in this paper due to some delicate
technical issues, we plan to return to this problem sometime in the future.

An n-dimensional version of a Leibniz rule was presented in [Torres and Ward 2015] for indices that
are again strictly between 1 and1:

kD
ˇ
2 .f �g/kLs1x L

s2
y .R�Rn/

. kDˇ2 f kLp1x L
p2
y .R�Rn/

kgk
L
q1
x L

q2
y .R�Rn/

Ckf k
L
p1
x L

p2
y .R�Rn/

kD
ˇ
2 gkLq1x L

q2
y .R�Rn/

:

This can be regarded as an n-dimensional generalization of (8), and it is simpler than our variant of the
Leibniz rule because it doesn’t require a multiparameter analysis.

Our Theorem 4 is a consequence, modulo technical but “classical” complications, of the following
result:

Theorem 5 (mixed norm estimates for paraproducts on the bidisc). Let 1 < pj ; qj �1, 1
2
< s1 <1,

1� s2 <1, so that 1
pj
C

1
qj
D

1
sj

, 1� j � 2. Then…˝….f; g/
L
s1
x L

s2
y
. kf k

L
p1
x L

p2
y
kgk

L
q1
x L

q2
y
:

The above theorem provides Lp estimates for … ˝… in mixed norm Lp spaces. Through our
methods, we can also recover the results from [Muscalu et al. 2006a], stating that …˝ � � � ˝… maps
Lp.Rn/�Lq.Rn/ into Ls.Rn/ whenever 1 < p; q �1, 1

2
< s <1 and 1

p
C
1
q
D

1
s
. Moreover, we

answer Question 2 by proving that BHT˝… and BHT˝…˝n satisfy the same Lp estimates as BHT:

Theorem 6. For any p; q; r with 1
p
C
1
q
D

1
r

, with 1 < p; q �1 and 2
3
< r <1,BHT˝…˝ � � �˝….f; g/


Lr .RnC1/

. kf kLp.RnC1/kgkLq.RnC1/:

The same is true for …˝ � � �˝…˝BHT˝…˝ � � �˝….

For n� 2, no such results were known previously, and furthermore, a new approach was necessary for
n� 3. This will be explained later in part (3) of the Remark on page 1939.

Some mixed norm Lp estimates for …˝d1 ˝BHT˝…˝d2 can also be proved (see Section 5.1). For
…˝BHT, they are similar to [Di Plinio and Ou 2015] in the case nD 1. We recently learned that in
[loc. cit.] mixed norm estimates for …˝…, close to our Theorem 5, are also obtained.

In proving the results mentioned above, multiple vector-valued extensions for BHT and … play a very
important role. Given a totally � -finite measure space .W; †; �/, and f; g W R�W! C, we define

BHT.f; g/.x;w/ WD p.v.
Z

R

f .x� t; w/g.xC t; w/
dt

t
:

Note that for a fixed value w2W, we have BHT.f;g/.x;w/DBHT.fw ;gw/.x/, where fw.x/Df .x;w/.
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Theorem 7. For any triple .r1; r2; r/ with 1 < r1; r2 �1, 1 � r <1 and so that 1
r1
C

1
r2
D

1
r

, there
exists a nonempty set Dr1;r2;r of triples .p; q; s/ satisfying 1

p
C
1
q
D

1
s

for which

BHT W Lp.RILr1.W; �//�Lq.RILr2.W; �//! Ls.RILr.W; �//:

This means that there exists a constant C so thatkBHT.f; g/kLr .W;�/

Ls.R/

� C
kf kLr1 .W;�/Lp.R/kgkLr2 .W;�/Lq.R/:

Depending on the values of r1; r2; r 0, we can give an explicit characterization of Dr1;r2;r , as follows:

(i) If 1
r1
; 1
r2
; 1
r 0
�
1
2

, then Dr1;r2;r D Range.BHT/.

(ii) If 1
r2
; 1
r 0
�
1
2

and 1
r1
> 1
2

, then Dr1;r2;r corresponds to the tuples .p; q; s/ 2 Range.BHT/ for which
0� 1

q
< 3
2
�
1
r1

.

(iii) If 1
r1
; 1
r 0
�
1
2

and 1
r2
> 1
2

, then the range of exponents is similar to the one in (ii), with the roles
of r1 and r2 interchanged. That is, Dr1;r2;r consists of tuples .p; q; s/ 2 Range.BHT/ for which
0� 1

p
< 3
2
�
1
r2

.

(iv) If 1
r1
; 1
r2
�

1
2

and 1
r 0
> 1

2
, then Dr1;r2;r corresponds to the tuples .p; q; s/ 2 Range.BHT/ for

which 0� 1
p
; 1
q
< 1
2
C
1
r

and �1
r
< 1
s0
< 1.

See Figures 2–4 for the ranges of BHT in the cases above.
We emphasize that whenever .p; q; s/ are such that 0 � 1

p
; 1
q
�
1
2

(and consequently 1 � s <1),
vector-valued estimates exist for any tuple .r1; r2; r/. These are the first examples of tuples .p; q; s/
which allow for any

���!

BHTEr extension.
Theorem 7 can be further generalized to multiple vector-valued inequalities. For an n-tuple P D

.p1; : : : ; pn/, the mixed LP norm on the product space

.W; †; �/D

� nY
jD1

Wj ;

nY
jD1

†j ;

nY
jD1

�j

�
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is defined as

kf kP WD

�Z
W1

� � �

�Z
Wn

ˇ̌
f .w1; : : : ; wn/

ˇ̌pn d�n.wn/�pn�1pn

� � � d�1.w1/

� 1
p1

:

Consider the tuples R1 D .r11 ; : : : ; r
n
1 /, R2 D .r

1
2 ; : : : ; r

n
2 / and R D .r1; : : : ; rn/ satisfying for every

1� j � n,

1 < r
j
1 ; r

j
2 �1; 1� rj <1;

1

r
j
1

C
1

r
j
2

D
1

r
j�

from now on, this will be written as 1 < R1; R2 �1, 1�R <1, and 1
R1
C

1
R2
D

1
R

�
. Then we have

the following multiple vector-valued result:

Theorem 8. Let R1; R2 and R be as above. If the tuples R1; R2; R satisfy the condition .rj1 ; r
j
2 ; r

j / 2

D
r
jC1
1 ;r

jC1
2 ;rjC1

for every 1� j � n� 1, then there exists a set DR1;R2;R of triples .p; q; s/ for which

BHT W Lp.RILR1.W; �//�Lq.RILR2.W; �//! Ls.RILR.W; �//:

In addition, DR1;R2;R DDr11 ;r
1
2 ;r

1 .
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Remark. (1) The vector spaces Lr.Wj ; †j ; �j / can be both discrete `r spaces or the Euclidean Lr.R/
spaces. For our applications, they are going to be either of these.

(2) If the exponents R1 D .r11 ; : : : ; r
n
1 /, R2 D .r

1
2 ; : : : ; r

n
2 / and RD .r1; : : : ; rn/ are in the “local L2”

range, then the multiple vector-valued inequalities hold for any .p; q; s/ 2 Range.BHT/. As particular
cases, we mention

BHT W Lp.`2.`1//�Lq.`1.`2//! Ls.`2.`2//;

BHT W Lp.`2.`1//�Lq.`2.`2//! Ls.`1.`2//

for any .p; q; s/ 2 Range.BHT/.
Also, for proving an equivalent of Theorem 6 in mixed norm spaces, we need the more complex version

BHT W Lp1x .L
p2
y .`

1.`2///�Lq1x .L
q2
y .`

2.`2///! Ls1x .L
s2
y .`

2.`1///:

(3) As mentioned earlier, multiple vector-valued estimates for BHT play an important role in estimating
BHT˝…˝

n

. In the case nD 1, one can obtain estimates for BHT˝… in the Banach range by using
duality and vector-valued inequalities of the type

BHT W Lp.`2/�Lq.`1/! Ls.`2/ and BHT W Lp.`1/�Lq.`2/! Ls.`2/:

However, `1-valued estimates cannot be avoided for n� 3, for example, if …˝…˝… has the form

…˝…˝….f; g/.x; y; z/D
X
k;l;m

Q1kQ
2
l P

3
m

�
P 1kQ

2
lQ

3
mf �Q

1
kP

2
l Q

3
m

�
.x; y; z/:

This is in part the novelty of our approach in Theorem 6, and it contrasts with the situation of classical
Calderón–Zygmund operators, where `1-valued estimates cannot be expected.

(4) The optimality of the range in Theorem 7 or that in Theorem 8 remains without answer, for now.
Since we use in our proofs the model operator for BHT, the obstructions appearing are similar to those in
[Lacey and Thiele 1999]. These are described in the constraint C.r1; r2; r 0/ on page 1954.

Equally important are multiple vector-valued inequalities for paraproducts, as they are essential in
proving Theorem 4.

Theorem 9. For any tuples R1 D .r11 ; : : : ; r
n
1 /, R2 D .r12 ; : : : ; r

n
2 / and R D .r1; : : : ; rn/ satisfying

componentwise 1 < R1; R2 �1, 1�R <1, and 1
R1
C

1
R2
D

1
R

,

… W Lp.RILR1.W; �//�Lq.RILR2.W; �//! Ls.RILR.W; �//;

provided 1 < p; q �1, 1
2
< s <1, and 1

p
C
1
q
D

1
s

.

In other words, vector-valued estimates for paraproducts exist within the same range as that of scalar
paraproducts. This is also the case with classical Calderón–Zygmund operators.
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Original motivation. We now describe the previously mentioned Rubio de Francia operator for iterated
Fourier integrals, and the context where it appeared. AKNS systems are systems of differential equations
of the form

u0 D i�DuCAu; (10)

where uD Œu1; : : : ; un�t is a vector-valued function defined on R, D is a diagonal n�n matrix with real
and distinct entries d1; d2; : : : ; dn, and AD .ajk. � //nj;kD1 is a matrix-valued function defined on R and
such that ajj � 0 for all 1� j � n.

Then one would like to prove that the solutions u�j (which depend on � as well) are bounded “for all
times”; that is,

ku�j k1 <1 for a.e. � and all 1� j � n: (11)

We want to have such an estimate under the weakest possible assumptions, so we only require the entries
of the potential matrix A to be integrable in some Lp spaces:

ajk. � / 2 L
pjk .R/ for all 1� j; k � n; j ¤ k:

In the case of an upper triangular matrix A, whose entries are functions gk 2 Lpk , the solutions uj .t/
at a fixed time t are a finite sum of expressions of the form

C

Z
x1<���<xm<t

g1.x1/ � � �gm.xm/e
i�.˛1x1C���C˛mxm/ dx1 � � � dxm:

Here m� n and ˛k ¤ 0 for all k, as a consequence of d1 ¤ � � � ¤ dn. Hence the problem (11) reduces to
estimating

zC ˛m.g1; g2; : : : ; gm/.�/ WD sup
t

ˇ̌̌̌Z
x1<���<xm<t

g1.x1/ � � �gm.xm/e
i�.˛1x1C���C˛mxm/ dx1 � � � dxm

ˇ̌̌̌
:

It was proved by Christ and Kiselv [2001a; 2001b] that zC ˛m is a bounded operator: zC ˛m.g1; : : : ; gm/sm . mY
kD1

kgkkpk

for all 1� pk < 2 such that 1
sm
D

1
p01
C � � �C

1
p0m

.

On the other hand, if the entries of the matrix A are L2 functions, the previous expression becomes
equivalent to

sup
t

ˇ̌̌̌Z
x1<���<xm<t

Of1.x1/ � � � Ofm.xm/e
i�.˛1x1C���C˛mxm/ dx1 � � � dxm

ˇ̌̌̌
; (12)

denoted C ˛m.f1; : : : ; fm/.�/. For mD 1, this is exactly the Carleson operator, while mD 2 corresponds
to the bi-Carleson operator of [Muscalu et al. 2006b], both of which are known to be bounded operators
(with the remark that for the bi-Carleson, the ˛k need to satisfy some nondegeneracy condition):

kC ˛2 .h1; h2/ks2 . kh1kp1 kh2kp2
for 1 < p1; p2 �1, 1

s2
D

1
p1
C

1
p2

, and 2
3
< s2 <1.
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Moreover, if instead of considering the sup in the expression (12), we look at the limiting behavior
limt!1 uj .t/, then we encounter iterated Fourier integrals, for example, the BHT operator as seen in
(1), or the bi-est operator of [Muscalu et al. 2004b]:Z

�1<�2<�3

Of1.�1/ Of2.�2/ Of3.�3/e
2�ix.�1C�2C�3/ d�1 d�2 d�3:

Now we consider the following mixed problem: The matrix A is the sum of a lower triangular matrix
with entries Ofk 2 L2, and an upper triangular matrix with entries gk 2 Lpk, where 1 � pk < 2. Using
Picard iteration, the solutions uj .t/ can be expressed as a series of terms of the form

C

Z
R

Of11.�11/ � � � Of1m1.�1m1/g21.x21/ � � �g2n2.x2n2/ � � �
Ofl1.�l1/ � � � Oflml .�lml / dx d�;

where RD f�11 < � � �< �1m1 < x21 < � � �< x2n2 < � � �< �l1 < � � �< �lml < tg.
The simplest of these operators, where the sup is dropped, is given by

M.f1; f2; g/.�/D

Z
x1<x2<x3

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3; (13)

where f1 2 Lp1, f2 2 Lp2, 1 < p1; p2 <1, and g 2 Lp with 1 < p < 2. The techniques from [Christ
and Kiselev 1998; 2001a; 2001b], akin to those used by Paley [1931], are based on a dyadic filtration
associated to one of the functions. This involves a structure on R similar to that of the dyadic mesh: on
every level of the filtration, one has a partition of R, and passing to the next level of the filtration means
refining the previous partition. We want to use g in order to obtain this structure and for simplicity we
assume kgkp D 1. Define the function

'.x/D

Z x

�1

jg.y/jp dy:

Its image is the unit interval Œ0; 1�, and the filtration will consist of preimages through ' of the collection D
of dyadic intervals in Œ0; 1�. Because ' is increasing, whenever x2 < x3 we have 0� '.x2/� '.x3/� 1.
Hence there exists a unique dyadic interval ! � Œ0; 1� such that '.x2/ is contained in the left half of !,
which we denote !L, while '.x3/ is contained in the right half !R. To simplify notation, we identify
'�1.!/ with !.

Then the operator M can be written asX
!2D

Z
x1<x2

x22!L;x32!R

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3

D

X
!

Z
x1<x2

x1;x22!L;x32!R

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3 (14)

C

X
!

Z
x1<L.!L/

x22!L;x32!R

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3: (15)

Here L.!L/ denotes the left endpoint of the interval !L. We call the operators in (14) and (15) M1

and M2 respectively. The first term M1 accounts for the occurrence of arbitrary intervals (they are in fact
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Figure 5. Range for Tr operator for 1� r � 2.

'�1.!L/), and this combined with Hölder’s inequality motivates the operator

Tr.f; g/.x/D

� NX
kD1

ˇ̌̌̌Z
ak<�1<�2<bk

Of .�1/ Og.�2/e
2�ix.�1C�2/ d�1 d�2

ˇ̌̌̌r �1
r

: (16)

We have the following result:

Theorem 10. If 1� r � 2, then

kTr.f; g/ks . kf kp kgkq

whenever 1
p
C
1
q
D

1
s

, and p; q; s satisfy

0� 1
p
; 1
q
< 1
2
C
1
r
; �

1
r 0
< 1
s0
< 1:

On the other hand, if r � 2, then Tr is a bounded operator with the same range as the BHT operator;
see Figure 5.

In Section 7 we will show how both M1 and M2 are bounded operators:

Theorem 11. The operators M1 and M2 satisfy the following:

M1 W L
p1 �Lp2 �Lp! Lq provided 1 < p < 2 and 1

p1
C

1
p2
C

1
p0
D

1
q
;

while

M2 W L
p1 �Lp2 �Lp! Lq provided 1 < p < 2; 1

p2
C

1
p0
< 1 and 1

p1
C

1
p2
C

1
p0
D

1
q
:

HenceM DM1CM2 is a bounded operator fromLp1�Lp2�Lp!Lq provided 1<p<2, 1
p2
C

1
p0
<1

and 1
p1
C

1
p2
C

1
p0
D

1
q

.

However, as Robert Kesler [2015] noticed, the boundedness of the operator M can also be proved
by making use of a vector-valued extension for the “linear” operator BHT.f1; � /. The constraint for the
exponents is given by 1

p2
C

1
p0
< 1. So even if M splits as M DM1CM2 and the range of M1 is larger,

one gets the same range for M through both methods.
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Because the intervals fŒak; bk�gk are disjoint and arbitrary, we refer to Tr as a bilinear Rubio de Francia
operator for iterated Fourier integrals. Recall that Rubio de Francia’s square function is the operator

f 7! RF.f /.x/ WD
� NX
kD1

ˇ̌̌̌Z
Ik

Of .�/e2�i�x d�

ˇ̌̌̌2 �1
2

D

� NX
kD1

jPIkf .x/j
2

�1
2

;

where fIk D Œak; bk�g1�k�N is a family of disjoint intervals, and PI .f / denotes the Fourier projection
of f onto the interval I. Using vector-valued singular integrals theory, Rubio de Francia [1985] proved the
boundedness of the RF operator on Lp for p � 2. Interpolating this result with estimates for Carleson’s
operator [1966], one gets more generally that the operator

RF�.f /.x/ WD
� NX
kD1

jPIkf .x/j
�

�1
�

is bounded on Lp, as long as 1
p
C
1
�
< 1.

In the particular case of a lacunary family of intervals (that is, Ik D Œ2k�1; 2k� and k 2 Z), the above
operator corresponds to a Littlewood–Paley square function with sharp cutoffs, which is bounded on
Lp.R/ for any 1<p <1. Even more, the Lp norm of the square function is comparable to the Lp norm
of the initial function:

C�1p kf kp �

�X
k2Z

ˇ̌̌̌Z
R

1f2k�1��<2kg
Of .�/e2�ix� d�

ˇ̌̌̌2 �1
2

p

� Cpkf kp:

Rubio de Francia’s theorem addresses the boundedness of a square function associated to an arbitrary
family of intervals, and in this sense it is optimal: in the case � D 2, the condition p � 2 is necessary,
while for � > 2, we need the strict inequality � > p0.

Returning to our operator Tr , note that it can also be regarded as a vector-valued bilinear Hilbert
transform

Tr.f; g/.x/D

�X
k

ˇ̌
BHT.PIkf; PIkg/.x/

ˇ̌r�1r
;

because the multiplier of the BHT operator is equivalent to 1f�1<�2g, as seen in (1).
Using solely Khintchine’s inequality, it was proved in [Grafakos and Li 2006] that�X

k

ˇ̌
BHT.fk; gk/

ˇ̌2�12
s

.
�X

k

jfkj
2

�1
2

p

�X
k

jgkj
2

�1
2

q

:

This implies the boundedness of Tr for r � 2, p; q � 2. But this is a very limited range, and in order to
obtain estimates in the case p < 2 or q < 2, one needs the full power of vector-valued extensions.

We note that our estimates for the operator Tr are sharp, in the sense that the same estimates are
satisfied by

.f; g/ 7!

�X
k

ˇ̌
PIkf .x/ �PIkg.x/

ˇ̌r�1r
: (17)
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In (17), BHT.PIkf; PIkg/ is replaced by the product of the functions PIkf �PIkg. In general, the best
one can hope for a bilinear Fourier multiplier operator is that it satisfies the same Lp estimates as the
product .f; g/ 7! f �g, and this is the case for Tr .

Moreover, in the special case of lacunary dyadic intervals, for any 1� r <1, we have that

.f; g/ 7!

�X
k

ˇ̌̌̌Z
2k<�<�<2kC1

Of .�/ Og.�/e2�ix.�C�/ d� d�

ˇ̌̌̌r �1
r

is a bounded operator from Lp�Lq to Ls for any .p; q; s/2Range.BHT/. The cases pD1 and qD1
cannot be obtained directly, but follow by duality.

Our initial proof of Theorem 10 did not involve vector-valued bilinear Hilbert transform operators,
but it was built around localizations of BHT, in conjunction with several stopping times. Afterwards we
realized that this method is suitable for other general situations, which eventually led to the development
of the helicoidal method. This applies to paraproducts, BHT, the Carleson operator, the Rubio de Francia
operator, etc. In the study of the Tr operator, the stopping times were dictated by level sets of linear
Rubio de Francia operators: RFr1.f / and RFr2.g/. For the vector-valued BHT, the three stopping times
that are used for estimating the trilinear form are dictated by level sets of�X

k

jfkj
r1

� 1
r1

;

�X
k

jgkj
r2

� 1
r2

and
�X
k

jhkj
r 0
� 1
r0

:

The method of the proof is described in more detail in Section 2.5.
Lastly, we want to point out an interesting connection with another open problem in time-frequency

analysis: the boundedness of the Hilbert transform along vector fields. More exactly, if v W R2! R2 is a
nonvanishing measurable vector field, then one defines the Hilbert transform along v as

Hvf .x; y/D p.v.
Z

R

f
�
.x; y/� t � v.x; y/

� dt
t
:

It was conjectured by Stein that Hv is a bounded operator on L2 whenever v is Lipschitz. Some partial
results in this direction are known in the case of a one-variable vector field. M. Bateman and C. Thiele
[2013] proved the Lp boundedness of Hv for 3

2
< p <1 and provided that v.x; y/D v.x; 0/.

The proof makes use of the Littlewood–Paley square function in the second variable and restrictions to
certain fixed sets G and H , together with single annulus estimates for Hv from [Bateman 2013]. In the
special case when f .x; y/D g.x/h.y/, estimates for the variational Carleson from [Oberlin et al. 2012]
yield the same result whenever p > 4

3
. It is still not known if this can be extended to general functions

f .x; y/, or whether one can push the lower bound for p below 4
3

.
Silva [2014] uses ideas similar to the ones described above, obtaining in this way vector-valued

extensions for BHT whenever 4
3
< r < 4. Our methods allow us to prove that vector-valued extensions

exist for any 1� r <1 (in fact, for any triple .r1; r2; r/). It would be interesting to understand whether
the localization argument that we are employing can be transferred to the study of the Hilbert transform
along vector fields.
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Besides having sharp estimates for the local version of the operator, the structure of the intervals chosen
through the triple stopping time can play a role in itself. The collections of intervals constitute a maximal
covering for the level sets of certain maximal operators, and for that reason, they form a sparse collection
of intervals (in the sense of [Lerner 2013]). From here, weighted estimates can be deduced, and a similar
approach was carried out in [Culiuc et al. 2016].

The rest of the paper is organized as follows: in Section 2 we recall some definitions and results
regarding multilinear operators. The helicoidal method is described in detail in Section 2.5. Multiple
vector-valued extensions for BHT are presented in Section 3, and those for paraproducts in Section 4.
Following in Section 5 are the estimates for BHT˝…˝

n

. The Leibniz rules are a modification of mixed
norm Lp estimates for …˝… and are discussed in Section 6. The Rubio de Francia theorem for iterated
Fourier integrals and its application to the AKNS system problem appear in Section 7.

2. Some classical results on the bilinear Hilbert transform

In this paper we use Chapter 6 of [Muscalu and Schlag 2013] as a black box, but we recall a few definitions
and results to ease the reading of the presentation. Essential here are the notions of size and energy, which
are quantities associated to certain subsets of the phase-frequency space.

Notation. For any interval I � R, define

Q�I .x/ WD

�
1C

dist.x; I /
jI j

��100
:

The mesh of dyadic intervals is denoted by D.

Definition 12. A tile is a rectangle P D IP �!P with the property that IP ; !P 2D or !P is in a shifted
variant of D. We define a tritile to be a tuple P D .P1; P2; P3/ where each Pi is a tile as defined above
and the spatial intervals are the same: IPi D IP for all 1� i � 3.

Definition 13 (order relation). Given two tiles P and P 0, we say P 0 < P if IP 0 ¨ IP and !P � 3!P 0 ,
and P 0 � P if P 0 <P or P 0 D P. Also, P 0 . P if IP 0 � IP and !P � 100!P 0 , and P 0 .0 P if P 0 . P
but P 0 — P.

Definition 14. A collection P of tritiles is said to have rank 1 if for any P;P 0 2P the following conditions
are satisfied:

� If the tritiles are distinct, i.e., P ¤ P 0, then P 0j ¤ Pj for all 1� j � 3.

� If !Pj0 D !P 0j0
for some j0, then !Pj D !P 0j for all 1� j � 3.

� If P 0j0 � Pj0 for some j0, then P 0j . Pj for all 1� j � 3.

� If in addition to P 0j0 � Pj0 one also assumes jIP 0 j � jIP j, then P 0j .
0 Pj for all j ¤ j0.

Definition 15. Let P be a sparse rank 1 collection of tritiles, and let 1� j � 3. A subcollection T of P

is called a j -tree if and only if there exists a tritile PT (called the top of the tree) such that Pj � PT;j
for all P 2 T. We write IT for IPT and !Tj for !PT ;j and we say T is a tree if it is a j -tree for some
1� j � 3.
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Definition 16. Let 1 � i � 3. A finite sequence of trees T1; : : : ; TM is said to be a chain of strongly
i -disjoint trees if and only if

(i) Pi ¤ P 0i for every P 2 Tl1 and P 0 2 Tl2 , with l1 ¤ l2;

(ii) whenever P 2 Tl1 and P 0 2 Tl2 with l1 ¤ l2 are such that 2!Pi \ 2!P 0i ¤∅, then if j!Pi j< j!P 0i j,
one has IP 0 \ ITl1 D∅, and if j!P 0

i
j< j!Pi j, one has IP \ ITl2 D∅.

(iii) whenever P 2 Tl1 and P 0 2 Tl2 with l1 < l2 are such that 2!Pi \2!P 0i ¤∅ and j!Pi j D j!P 0i j, then
IP 0 \ ITl1 D∅.

Definition 17. Let P be a tile. A wave packet on P is a smooth function �P which has Fourier support
inside 9

10
!P and is L2-adapted to IP in the sense that

j�
.l/
P .x/j � Cl;M

1

jIP j
1
2
Cl

�
1C

dist.x; IP /
jIP j

��M
(18)

for sufficiently many derivatives l and any M > 0.

2.1. Model operator for BHT. A discretized model operator for BHT is given by

BHTP.f; g/.x/D
X
P2P

1

jIP j
1
2

hf; �1P1ihg; �
2
P2
i�3P3.x/; (19)

where the family P of tritiles is sparse and has rank 1, while .� jPj /P2P are wave packets associated to
the tiles Pj . In some sense, the bilinear Hilbert transform is the canonical example of such an operator.
Above we also included the definitions of trees and chains of strongly disjoint trees because they are
essential in understanding such singular bilinear operators.

The model operator from (19) was introduced in [Lacey and Thiele 1999], and the bilinear Hilbert
transform itself can be represented as an average of such shifted model operators. The detailed reduction
can be found in [Muscalu and Schlag 2013, Chapter 6]. As a consequence, the boundedness of the bilinear
Hilbert transform within Range.BHT/ can be deduced from similar estimates for the model operator. Simi-
larly, estimates for vector-valued and for the localized bilinear Hilbert transform will follow once we prove
their equivalents for the model operator, and we will not insist on the exact distinction between the two.

It is worth mentioning however, that the model operator fails to be bounded for s� 2
3

, leaving undecided
the boundedness of the bilinear Hilbert transform itself for 1

2
< s � 2

3
.

Bilinear operators are often studied with the use of the associated trilinear form. In the case of the
(model operator for the) BHT operator, the trilinear form is given by

ƒBHTIP.f; g; h/D
X
P2P

1

jIP j
1
2

hf; �1P1ihg; �
2
P2
ihh; �3P3i: (20)

Definition 18. If P is a collection of tritiles and I0 is a dyadic interval, we denote by P.I0/ the tiles P
in P whose spatial interval IP is contained in I0:

P.I0/ WD fP 2 P W IP � I0g:
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Definition 19. Let P be a finite collection of tritiles, let j 2 f1; 2; 3g, and let f be an arbitrary function.
We define the size of the sequence hf; � jPj iP by

size
�
hf; �

j
Pj
iP

�
WD sup

T�P

�
1

jIT j

X
P2T

jhf; �
j
Pj
ij
2

�1
2

; (21)

where T ranges over all trees in P that are i -trees for some i ¤ j .

Lemma 20 [Muscalu and Schlag 2013, Lemma 6.13]. Let j 2 f1; 2; 3g and letE be a set of finite measure.
Then for every jf j � 1E one has

size
�
hf; �

j
Pj
iP

�
. sup
P2P

1

jIP j

Z
E

Q�MIP dx

for all M > 0, with implicit constants depending on M .

Thanks to Lemma 20, which is a consequence of the John–Nirenberg inequality, we can work with the
simpler “sizes”

sizef � sup
P2P

1

jIP j

Z
R

jf j � Q�MIP dx;

where M is some large number to be chosen later.
We will also need a size that behaves well with respect to localization. In the formula above we

consider the supremum over the spacial intervals IP of the collection P. In our proofs, we will need to
compare sizeP.I0/ f and .1=jI0j/

R
R
jf j � Q�I0 dx, so the following definition is natural:

Definition 21. If I0 is a fixed dyadic interval, then we define

esizeP.I0/f WD sup
J�3I0

9P2P.I0/;IP�J

1

jJ j

Z
R

jf j � Q�MJ dx: (22)

We note that for any function f ,
sizeP.I0/ f �

esizeP.I0/f:

Definition 22. Let P be a finite collection of tritiles, j 2 f1; 2; 3g and let f be a fixed function. We
define the energy of the sequence hf; � jPj iP by

energy
�
hf; �

j
Pj
iP

�
WD sup

n2Z

2n sup
T

�X
T2T

jIT j

�1
2

; (23)

where T ranges over all chains of strongly j -disjoint trees in P (which are i -trees for some i ¤ j ) having
the property that � X

P2T

jhf; �
j
Pj
ij
2

�1
2

� 2njIT j
1
2

for all T 2 T and such that � X
P2T 0

jhf; �
j
Pj
ij
2

�1
2

� 2nC1jIT 0 j
1
2

for all subtrees T 0 � T 2 T.
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We have the following estimates for the trilinear form and energy:

Proposition 23 [Muscalu and Schlag 2013, Proposition 6.12]. Let P be a finite collection of tritiles. Then

ƒBHTIP.f1; f2; f3/.
3Y

jD1

�
size.hfj ; �

j
Pj
iP /

��j �energy.hfj ; �
j
Pj
iP /

�1��j
for any 0 � �1; �2; �3 < 1 with �1 C �2 C �3 D 1; the implicit constants depend on the �j but are
independent of the other parameters.

Lemma 24 [Muscalu and Schlag 2013, Lemma 6.14]. Let j 2 f1; 2; 3g and f 2 L2.R/. Then

energy
�
hf; �

j
Pj
iP

�
. kf k2:

However, for our specific problem we need more accurate estimates for the localized trilinear form.
This will follow in Sections 2.4 and 3.1.

2.2. Interpolation. Since this is a fundamental tool in harmonic analysis, we recall a few facts about
interpolation methods. We adapt the results from [Thiele 2006] and emphasize how the constants change
through interpolation. In our applications, we need to keep track of the constants. Many of the proofs in
the following sections are iterative, and the operatorial norm obtained after interpolation becomes a “size”
on the subsequent step of the induction. We recall a few definitions and results, but we will be mainly
using their generalization to Banach spaces.

Definition 25. For a subset E � R of finite measure, define

X.E/D ff W jf j � 1E a.e.g:

We will denote by V the linear span of all X.E/, which plays an important role because it is a dense
subspace of all Lp spaces for 1� p <1.

Definition 26. A tuple ˛ D .˛1; : : : ; ˛n/ is called admissible if for all 1� i � n,

�1< ˛i < 1 and ˛1C � � �C˛n D 1;

and there is at most one index j0 so that j̨0 < 0. We call an index good if ˛i > 0 and bad if ˛i � 0.

Definition 27. A multilinear formƒ WV �� � ��V !C is of restricted type ˛D .˛1; : : : ; ˛n/with 0�˛i �1
if there exists a constant C (possibly depending on ˛) such that for each tuple E D .E1; : : : ; En/ of
measurable subsets of R and for each tuple f D .f1; : : : ; fn/ with fj 2X.Ej /, we haveˇ̌

ƒ.f1; : : : ; fn/
ˇ̌
� C

Y
j

jEj j j̨:

Theorem 28 (similar to [Thiele 2006, Theorem 3.2]). Let ˇ D .ˇ1; : : : ; ˇn/ be a tuple of real numbers
such that

P
j ǰ D 1 and ǰ > 0 for all j . Assume ƒ is of restricted type ˛ for all ˛ in a neighborhood

of ˇ satisfying
P
j j̨ D 1, with constant C.˛/ depending continuously on ˛. Then ƒ is of strong type ˇ

with constant C.ˇ/: ˇ̌
ƒ.f1; : : : ; fn/

ˇ̌
� C.ˇ/

nY
jD1

kfj k 1
ǰ

for all fj 2 V:
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For multilinear operators, it often happens that the target space is an Lp space with 0 < p < 1. This is
not a Banach space, but we can conclude the desired outcome by interpolating weak-Lq estimates for q
in a neighborhood of p. Additionally, Lq;1 norms are dualized in the following way:

Lemma 29 [Muscalu and Schlag 2013, Lemma 2.5]. Let 0 < r � 1, and A > 0. Then the following
statements are equivalent:

(i) kf kr;1 � A.

(ii) For every set E with 0 < jEj <1, there exists a major subset E 0 � E (i.e., jE 0j � jEj=2) so that
jhf; 1E 0ij. AjEj

1
r0 , where 1

r
C

1
r 0
D 1. (Note that for r ¤ 1, we have r 0 is a negative number.)

Definition 30. Let ˛ be an n-tuple of real numbers and assume j̨ � 1 for all j . An n-linear form ƒ is
called of generalized restricted type ˛ if there is a constant C (possibly depending on ˛) such that for
all tuples E D .E1; : : : ; En/, there is an index j0 and a major subset E 0j0 � Ej0 so that for all tuples
f D .f1; : : : ; fn/ with fj 2X.Ej / for j ¤ j0 and fj0 2X.E

0
j0
/,

ˇ̌
ƒ.f1; : : : ; fn/

ˇ̌
� C

nY
jD1

jEj j j̨: (24)

If a tuple ˛ D .˛1; : : : ; ˛n/ is good, then generalized restricted-type estimates coincide with restricted-
type estimates:

Proposition 31 (similar to [Thiele 2006, Lemma 3.6]). If ˛ D .˛1; : : : ; ˛n/ is a good tuple, and ƒ is of
generalized restricted type ˛ with constant C.˛/ and the major subset corresponds to the index j0, then
ƒ is of restricted type ˛ with constant C.˛/=.1� 2�j0/.

Theorem 32 [Thiele 2006, Theorem 3.8]. Assume

ƒD
˝
T .f1; : : : ; fn�1/; fn

˛
is of generalized restricted type ˇ, where

P
j ǰ D 1. Assume ˇk > 0 for 1 � k � n� 1 and ˇn � 0.

Assume ƒ is also of generalized restricted type ˛ with constant C.˛/ (continuously depending on ˛) for
all ˛ in a neighborhood of ˇ satisfying

P
j j̨ D 1. Then the multilinear operator T satisfies

T .f1; : : : ; fn�1/ 1
.1�ˇn/

� C.ˇ/

n�1Y
jD1

kfj k 1
ǰ

: (25)

2.3. Interpolation for Banach-valued functions. The Banach space interpolation theory is very similar
to the scalar version, the difference consisting in replacing the norm j � j on C by k�kX on a Banach spaceX.

We say that F 2 Lp.RIX/ provided

kF kLp.RIX/ WD

�Z
R

kF.x/k
p
X dx

�1
p

<1:

The question of integrability of F.x/ is reduced to the Lebesgue integrability of x 7! kF.x/kX . The set
of vector-valued step functions is dense in Lp.RIX/ and for this reason, similarly to the scalar case, it
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will be enough to deal with function in˚
F W kF.x/kX � 1E .x/ a.e. E � R subset of finite measure

	
:

The linear span of such sets will be denoted VX .
The multilinear form associated with an operator is obtained through dualization. More exactly,

kF kLp.RIX/ WD sup
kGk

Lp
0
.RIX�/

�1

ˇ̌̌̌Z
R

hG.x/; F.x/i dx

ˇ̌̌̌
whenever 1� p <1.

We will deal with a vector-valued multilinear (or multisublinear) operator of the form

ET W Lp1.RIX1/� � � � �L
pn�1.RIXn�1/! Lpn.RIXn/:

The multilinear form associated with this operator, ƒ W VX1 � � � � �VXn�1�VX�n ! C, is given by

ƒ.F1; : : : ; Fn�1; Fn/D

Z
R

˝
ET .F1; : : : ; Fn�1/.x/; Fn.x/

˛
dx:

The definitions and proofs from the scalar case are adaptable to the vector-valued situation. For complete-
ness, we present them here, adapting the equivalent statements from [Thiele 2006].

Definition 33. A tuple ˛ D .˛1; : : : ; ˛n/ is called admissible if ˛1C � � �C˛n D 1, ˛1; : : : ; ˛n < 1 and
for at most one index j0 we have j̨0 < 0.

A multisublinear form ƒ as above is of restricted type ˛ D .˛1; : : : ; ˛n/ for a good admissible tuple ˛
if there exists a constant C so that for each tuple E D .E1; : : : ; En/ of measurable subsets of R, and for
each tuple F D .F1; : : : ; Fn/ with kFj kX � 1Ej , we haveˇ̌

ƒ.F1; : : : ; Fn/
ˇ̌
� C jE1j

˛1 � � � jEnj
˛n:

Proposition 34 (equivalent of [Thiele 2006, Theorem 3.2]). Let ˇ D .ˇ1; : : : ; ˇn/ be an admissible tuple
of real numbers such that ǰ >0 for all j . Assume thatƒ is of restricted type ˛ for all admissible tuples ˛
in a neighborhood of ˇ. Then there is a constant C such that for all Fj 2 VXj ,ˇ̌

ƒ.F1; : : : ; Fn/
ˇ̌
� CkF1kL1=ˇ1 .RIX1/ � � � kFnkL1=ˇn .RIXn/:

Definition 35. Let ˛ be an admissible tuple; the n-sublinear form ƒ is of generalized restricted type ˛ if
there is a constant C such that for all tuples ED .E1; : : : ; En/ there is an index j0 and a major subset E 0j0
of Ej0(that is, jE 0j0 j � jEj0 j=2) such that for all tuples F D .F1; : : : ; Fn/ with kFj kXj � 1Ej for j ¤ j0,
and kFj0kXj0 � 1E 0j0

, we have ˇ̌
ƒ.F1; : : : ; Fn/

ˇ̌
� C

Y
j

jEj j j̨:

Proposition 36. If ƒ is of generalized restricted type ˛ D .˛1; : : : ; ˛n/, and j̨ > 0 for all j, then ƒ is
of restricted type ˛.
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On the other hand, if one of the indices j̨ is � 0, the generalized restricted-type implies only weak-Lp

estimates. This works in the case when the multisublinear form is given by

ƒ.F1; : : : ; Fn/D

Z
R

˝
ET .F1; : : : ; Fn�1/.x/; Fn.x/

˛
dx; (26)

and corresponds to an operator ET defined on VX1 � � � � �VXn�1 and taking values in VXn .

Proposition 37. Let ƒ be a multisublinear form as in (26), and ˛ D .˛1; : : : ; ˛n/ an admissible tuple
with ˛n � 0. Assuming that ƒ is of generalized restricted type ˛, we have

�
ˇ̌˚
x W
 ET .F1; : : : ; Fn�1/.x/Xn > �	ˇ̌ 1

1�˛n � A

n�1Y
jD1

jEj j j̨

for all tuples F D .F1; : : : ; Fn�1/ with kfj kXj � 1Ej .

Proposition 38. Assumeƒ is of generalized restricted type ˇ, where ˇ is an admissible tuple with ˇn � 0.
Assume ƒ is also of generalized restricted type ˛ for all admissible tuples ˛ in a neighborhood of ˇ. Then
ET satisfies  ET .F1; : : : ; Fn�1/L1=.1�ˇn/.RIXn/ � C n�1Y

jD1

kFj kL1= ǰ .RIXj /
: (27)

The proofs of the last two propositions follow exactly the same ideas as those corresponding to the
scalar case, with very minor differences.

2.4. A few technical lemmas. In this section, we present a few results that will be useful later on for
estimating a trilinear form associated to a collection P of tritiles well-localized in space: IP � I0 for all
P 2 P.

Lemma 39. If I0 is a fixed dyadic interval, k 2 ZC, and f is a function such that

2k�1 �
dist.suppf; I0/

jI0j
� 2k;

then

energyP.I0/
f . 2Mk

kf k2:

Proof. Following Definition 22, there exists a collection T of j -disjoint trees T 2 T � P.I0/, so that

.energyP.I0/
f /2 �

X
T2T

X
P2T

ˇ̌
hf; �Pj i

ˇ̌2
:

We define T WD
S
T2T

S
P2T P , the collection of all tiles in T, and estimate the right-hand side of the

expression above: X
T2T

X
P2T

ˇ̌
hf; �Pj i

ˇ̌2 .X
m�0

X
I�I0

jI jD2�mjI0j

X
P2T
IPDI

ˇ̌
hf; �Pj i

ˇ̌2
:
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The collection of tiles P 2 T with IP D I for a fixed interval I are all disjoint in frequency. In fact,
since they are of the same scale, they are translations of some fixed tile and hence

X
P2T
IPDI

ˇ̌
hf; �Pj i

ˇ̌2 . Z
R

jf .x/j2
�
1C

dist.x; I /
jI j

��2M
dx:

This implies

X
T2T

X
P2T

ˇ̌
hf; �Pj i

ˇ̌2 .X
m�0

X
I�I0

jI jD2�mjI0j

Z
R

jf .x/j2
�
1C

dist.x; I /
jI j

��2M
dx

.
X
m�0

X
I�I0

jI jD2�mjI0j

kf k22 2
�2kM

�
jI0j

jI j

��2M

. kf k22 2
�2kM

X
m�0

2�mM

. kf k22 2
�2kM: �

On the other hand, if f is supported inside 5I0, we know from Lemma 24, that energyP.I0/
f . kf k2.

Since the collection P.I0/ is localized in space on the interval I0, we have the following estimate for
the trilinear form ƒBHTIP.I0/:

Lemma 40 (refinement of [Muscalu and Schlag 2013, Proposition 6.12]). The trilinear form ƒBHTIP.I0/

satisfiesˇ̌
ƒBHTIP.I0/.f; g; h/

ˇ̌
. .sizeP.I0/ f /

�1 .sizeP.I0/ g/
�2 .sizeP.I0/ h/

�3 kf � Q�I0k
1��1
2 kg � Q�I0k

1��2
2 kh � Q�I0k

1��3
2 (28)

for any 0 � �1; �2; �3 < 1, with �1 C �2 C �3 D 1; the implicit constants depend on the �j , but are
independent of the other parameters.

Proof. For any l � 1, we define Il WD 2lC1I0 n 2
lI0, and I0 WD 2I0. In this way, for any x 2 Il ,

1C dist.x; I0/=jI0j � 2l.
We will be using the following decompositions:

f WD
X
k1�0

fk1 WD
X
k1�0

f � 1Ik1; (29)

and similarly,

g WD
X
k2�0

gk2 WD
X
k2�0

g � 1Ik2; h WD
X
k3�0

hk3 WD
X
k3�0

h � 1Ik3:
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From Proposition 23, the trilinear form can be estimated byˇ̌
ƒBHTIP.I0/.f; g; h/

ˇ̌
.

X
k1;k2;k3

ˇ̌
ƒBHTIP.I0/.fk1 ; gk2 ; hk3/

ˇ̌
.

X
k1;k2;k3

.sizeP.I0/ fk1/
�1.sizeP.I0/ gk2/

�2.sizeP.I0/ hk3/
�3

.energyP.I0/
fk1/

1��1.energyP.I0/
gk2/

1��2.energyP.I0/
hk3/

1��3:

We will only employ the extra decay in the energy; for the size, we have simply

sizeP.I0/ fk1 . sizeP.I0/ f

uniformly in k1.
On the other hand, since fk1 is supported on Ik1 , Lemma 39 implies

energyP.I0/
fk1 . 2

�k1Mkfk1k2:

Hence we obtainˇ̌
ƒBHTIP.I0/.f; g; h/

ˇ̌
. .sizeP.I0/ f /

�1.sizeP.I0/ g/
�2.sizeP.I0/ h/

�3

�

X
k1;k2;k3

.2�k1Mkfk1k2/
1��1.2�k2Mkgk2k2/

1��2.2�k1Mkhk3k2/
1��3:

The expressions in the last line are summable, via Hölder’s inequality; more exactly, since �j < 1,

X
k1�0

2�k1M
1��1
2

�
2
�k1

M
2.1��1/ kfk1k2

�1��1 . �X
k1

2
�k1M

1��1
1C�1

�1C�1
2
�X
k1

2
�k1

M
1��1 kfk1k

2
2

�1��1
2

. kf � Q�I0k
1��1
2

forM sufficiently large. Note the implicit constants will depend on �1 only. This proves inequality (28). �

2.5. The helicoidal method. With the intention of bringing to light the ideas behind our proofs, we
present the main strategy in a simplified setting. Unfortunately, we cannot avoid the specific terminology,
but one should think of the sizes as being averages, while the energies are L2 quantities that reflect
orthogonality. For estimating the norms kBHT.f; g/ks , we use interpolation results for the trilinear
form ƒBHT.f; g; h/ D hBHT.f; g/; hi. In what follows, ƒI0.f; g; h/ denotes a space localization of
ƒBHT.f; g; h/ to the fixed interval I0. More specifically, it is the form associated to a model operator of
BHT as in (19), where the spatial intervals of the tiles lie inside the fixed dyadic interval I0. Similarly,
ƒnI0.f; g; h/ denotes a space localization of the corresponding trilinear form in the multiple vector-valued
setting.

The helicoidal method is an iterated induction procedure suitable for proving vector-valued estimates
for linear and multilinear operators. We describe the main ideas in the case of the BHT operator, and
later on we will indicate the equivalent statements for paraproducts and the Carleson operator. At the
heart of our argument lies the following induction statement:
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Induction statement. Let n � 0. We fix I0 a dyadic interval, and F;G;H 0 subsets of R of finite
measure. Let R1 D .r11 ; : : : ; r

n
1 /; R2 D .r12 ; : : : ; r

n
2 / and R0 D ..r 0/1; : : : ; .r 0/n/ be n-tuples so that

1
R1
C

1
R2
C

1
R0
D 1, while f; g and h are vector-valued functions satisfying

kf .x/kLR1 .W;�/ � 1F .x/; kg.x/kLR2 .W;�/ � 1G.x/ and kh.x/kLR0 .W;�/ � 1H 0.x/:

Then we have the following estimate P.n/ for the trilinear form ƒnI0 :ˇ̌
ƒnI0.f; g; h/

ˇ̌
. .esizeI01F /

1
2
C
�1
2
�� .esizeI01G/

1
2
C
�2
2
�� .esizeI01H 0/

1
2
C
�3
2
��
jI0j

for every 0� �1; �2; �3 < 1, �1C �2C �3 D 1, satisfying an extra condition C.R1; R2; R0/.

In the local L2 case the condition C.R1; R2; R0/ is satisfied automatically: that is, the P.n/ statement
is true for all 0� �1; �2; �3 as above. This condition is the main obstruction in obtaining for

���!

BHTEr the
same range of Lp estimates as that of the scalar BHT; in (37) we point out the source of this constraint.
Now we present the proofs of the induction statements P.0/ and P.n/) P.nC 1/. Also, for the reader’s
convenience, we include the P.0/) P.1/ step.

As we will see later on, the fact that P.n/ implies our Theorems 7 and 8 is based on a standard triple
stopping time argument, involving the above localized sizes.

Check P.0/: This is the scalar BHT case, with jf j � 1F , jgj � 1G and jhj � 1H 0 . This situation is well
understood, and we have from Proposition 23:

jƒI0.f; g; h/j. .esizeI0f /
�1 .esizeI0g/

�2 .esizeI0h/
�3 .energyI0 f /

1��1 .energyI0 g/
1��2 .energyI0 h/

1��3

for any 0� �1; �2; �3 < 1 such that �1C �2C �3 D 1.
Since we are considering a localized model of BHT, where all the tiles have their spatial intervals IP

lying in I0, one can refine Lemma 20 by replacing energyI0 f with kf � Q�I0k2. Noticing that

kf � Q�I0k2 . .esizeI01F /
1
2 jI0j

1
2

and jI0j
1��1
2 jI0j

1��3
2 jI0j

1��3
2 D jI0j, we obtain the desired P.0/.

Check P.0/)P.1/. Assume that�X
k

jfkj
r1

� 1
r1

� 1F ;

�X
k

jgkj
r2

� 1
r2

� 1G and
�X
k

jhkj
r 0
�1
r0

� 1H 0 : (30)

Given that we know P.0/, we will prove P.1/, given byˇ̌̌̌X
k

ƒI0.fk; gk; hk/

ˇ̌̌̌
. .esizeI01F /

1
2
C
�1
2
�� .esizeI01G/

1
2
C
�2
2
��
�esizeI01H 0

� 1
2
C
�3
2
��
jI0j

for any 0� �1; �2; �3 < 1, �1C �2C �3 D 1, satisfying the constraint C.r1; r2; r 0/, given by

1C �1

2
�
1

r1
> 0;

1C �2

2
�
1

r2
> 0;

1C �3

2
�
1

r 0
> 0:
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ƒBHTIP.I0/.fN �1F ;gN �1G ;hN �1H 0/

ƒBHTIP.I0/.f2�1F ;g2�1G ;h2�1H 0/

ƒBHTIP.I0/.f1�1F ;g1�1G ;h1�1H 0/

I0

.sizeI0 1F /
1C�1
2
� 1r1 .sizeI0 1G/

1C�2
2
� 1r2 .sizeI0 1H 0/

1C�3
2
� 1
r0

� k1F � Q�I0kr1 k1G � Q�I0kr2 k1H 0 � Q�I0kr0

Figure 6. Output of the localization process.

Here an intermediate step is necessary in order to get a finer estimate for each ƒI0.fk; gk; hk/. That is,
we need to prove

ƒI0.fk � 1F ; gk � 1G ; hk � 1H 0/. kƒI0kkfk � Q�I0kr1 kgk � Q�I0kr2 khk � Q�I0kr 0 ; (31)

where the operatorial norm is given by

kƒI0k D .esizeI01F /
1C�1
2
� 1
r1
��
.esizeI01G/

1C�2
2
� 1
r2
��
.esizeI01H 0/

1C�3
2
� 1
r0
��:

Once we have such an estimate, we sum in k, use Hölder’s inequality and (30) to further estimate (31) by

kƒI0k
k1F � Q�I0kr1

jI0j
1
r1

k1G � Q�I0kr2

jI0j
1
r2

k1H 0 � Q�I0kr 0

jI0j
1
r0

jI0j:

This is illustrated in Figure 6 and it proves P.1/.
The proof of (31) is a slight modification of the proof of the boundedness of the bilinear Hilbert

transform. Using interpolation methods, we can assume that jfkj � 1E1 , jgkj � 1E2 , jhkj � 1E3 . So we
need to show

ƒI0.fk � 1F ; gk � 1G ; hk � 1H 0/. kƒI0kjE1j
˛1 jE2j

˛2 jE3j
˛3;

where .˛1; ˛2; ˛3/ is an admissible tuple arbitrarily close to
�
1
r1
; 1
r2
; 1
r 0

�
. In order to get the desired

expression for kƒI0k, we need another stopping time inside I0. This is illustrated in Figure 7.
Let I � I0 be a subinterval of I0. Now we use P.0/ as follows:ˇ̌
ƒI .fk � 1F ; gk � 1G ; hk � 1H 0/

ˇ̌
. .esizeI .1F � 1E1//

1C�1
2
�� .esizeI .1G � 1E2//

1C�2
2
�� .esizeI .1H 0 � 1E3//

1C�3
2
��
jI j

. .esizeI01F /
1C�1
2
�˛1�� .esizeI01G/

1C�2
2
�˛2�� .esizeI01H 0/

1C�3
2
�˛3��

� .esizeI1E1/
˛1 .esizeI1E2/

˛2 .esizeI1E3/
˛3 jI j:
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ƒI .fN �1F ;gN �1G ;hN �1H 0 /

ƒI .f2�1F ;g2�1G ;h2�1H 0 /

ƒI .f1�1F ;g1�1G ;h1�1H 0 /

I

ƒI 0 .fN �1F ;gN �1G ;hN �1H 0 /

ƒI 0 .f2�1F ;g2�1G ;h2�1H 0 /

ƒI 0 .f1�1F ;g1�1G ;h1�1H 0 /

I 0

ƒI 00 .fN �1F ;gN �1G ;hN �1H 0 /

ƒI 00 .f2�1F ;g2�1G ;h2�1H 0 /

ƒI 00 .f1�1F ;g1�1G ;h1�1H 0 /

I 00

Figure 7. Extra stopping time.

In order to obtain the last inequality, we have to make sure that the exponents

1C �1

2
�˛1� �;

1C �2

2
�˛2� �;

1C �3

2
�˛3� �

are all positive, which is always the case in the local L2 situation. Since .˛1; ˛2; ˛3/ are arbitrarily close
to
�
1
r1
; 1
r2
; 1
r 0

�
, this is the origin of the constraint C.r1; r2; r 0/ on page 1954.

Summing over the intervals I given by the alluded to triple stopping time over the corresponding
averages, we recover jE1j˛1 jE2j˛2 jE3j˛3 . We note that the operatorial norm given by interpolation is

.esizeI01F /
1C�1
2
� 1
r1
�Q�
.esizeI01G/

1C�2
2
� 1
r2
�Q�
.esizeI01H 0/

1C�3
2
� 1
r0
�Q�;

where Q� is slightly larger than the initial �, but the difference between the two is irrelevant.

Check P.n/)P.nC1/. Lastly, we present the general induction step, in the case of iterated `p spaces.
We have multi-indices Er1 D .r11 ; : : : ; r

n
1 /, Er2 D .r

1
2 ; : : : ; r

n
2 /, Er 0 D ..r

0/1; : : : ; .r 0/n/, and kf kEr1 � 1F ,
kgkEr2 � 1G , khk Er 0 � 1H 0 . Then P.n/ is equivalent to

ˇ̌
ƒnI0.f; g; h/

ˇ̌
D

ˇ̌̌̌Z
R

X
El

BHTP.I0/.fEl ; gEl/.x/ � hEl.x/ dx

ˇ̌̌̌

. .esizeI01F /
1
2
C
�1
2
�� .esizeI01G/

1
2
C
�2
2
�� .esizeI01H 0/

1
2
C
�3
2
��
jI0j; (32)

whenever I0 is a dyadic interval. For P.nC 1/ we consider nC 1 iterated `p spaces, given by the
multi-indices: ER1D .r1; Er1/, ER2D .r2; Er2/ and ER0D .r 0; Er 0/, while f; g and h are vector-valued functions
satisfying

kf k ER1
WD

�X
k

kfkk
r1
Er1

� 1
r1

�1F ; kgk ER2
WD

�X
k

kgkk
r2
Er2

� 1
r2

�1G ; khk ER0 WD

�X
k

khkk
r 0

Er 0

� 1
r0

�1H 0 :

(33)
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We want a result similar to (32), so we need to estimate

ƒnC1I0
.f; g; h/ WD

Z
R

X
k

X
El

BHTP.I0/.fk;El ; gk;El/.x/ � hk;El.x/ dx D
X
k

ƒnI0.fk; gk; hk/:

We can’t directly apply P.n/, and instead we will need the following result, similar to (31):ˇ̌
ƒnI0.fk; gk; hk/

ˇ̌
. kƒnI0kkfk � Q�I0kr1kgk � Q�I0kr2khk � Q�I0kr 0 ; (34)

where kƒnI0k D .
esizeI01F /

1C�1
2
� 1
r1
��
.esizeI01G/

1C�2
2
� 1
r2
��
.esizeI01H 0/

1C�3
2
� 1
r0
��. Once we have such

a result, P.nC 1/ follows easily by Hölder, exactly as before.
We will prove (34) by using restricted-type interpolation. Instead of estimating the trilinear form ƒnI0 ,

we will deal with

ƒ
n;F;G;H 0

I0
.fk; gk; hk/ WDƒI0.fk � 1F ; gk � 1G ; hk � 1H 0/: (35)

This is natural since condition (33) implies that the functions fk are supported on F, and similarly the
functions gk are supported on G and hk on H 0. By interpolation theory, we can assume that

kfkkEr1 � 1E1 ; kgkkEr2 � 1E2 ; and khkk Er 0 � 1E3 ;

and it suffices to prove ˇ̌
ƒ
n;F;G;H 0

I0
.fk; gk; hk/

ˇ̌
. kƒnI0kjE1j

˛1 jE2j
˛2 jE3j

˛3 (36)

for .˛1; ˛2; ˛3/ in a small neighborhood of
�
1
r1
; 1
r2
; 1
r 0

�
. Similarly to the case P.0/) P.1/, we will have

a stopping time inside I0, so in fact we need to estimate ƒn;F;G;H
0

I .fk; gk; hk/ for some I � I0. It is
here that we use hypothesis P.n/:ˇ̌

ƒ
n;F;G;H 0

I .fk; gk; hk/
ˇ̌
D
ˇ̌
ƒnI .fk � 1F ; gk � 1G ; hk � 1H 0/

ˇ̌
;

with kfk � 1F kEr1 � 1F\E1 , kgk � 1GkEr2 � 1G\E2 and khk � 1H 0k Er 0 � 1H 0\E3 . More precisely,ˇ̌
ƒ
n;F;G;H 0

I .fk; gk; hk/
ˇ̌

. .esizeI .1F � 1E1//
1
2
C
�1
2
�� .esizeI .1G � 1E2//

1
2
C
�2
2
�� .esizeI .1H 0 � 1E3//

1
2
C
�3
2
��
jI j

. .esizeI01F /
1
2
C
�1
2
�˛1�� .esizeI01G/

1
2
C
�2
2
�˛2�� .esizeI01H 0/

1
2
C
�3
2
�˛3��

� .esizeI1E1/
˛1 .esizeI1E2/

˛2 .esizeI1E3/
˛3 jI j

for .˛1; ˛2; ˛3/ in a neighborhood of
�
1
r1
; 1
r2
; 1
r 0

�
. Due to the stopping time, which is performed with

respect to the three sizes, we know the expressions .esizeI1E1/
˛1 add up to jE1j˛1 and it is similar for the

sizes of 1E2 and 1E3 . Interpolating, we get the desired (36). From the above equation, we can see why
the operatorial norm has the formƒnI0D .esizeI01F /

1C�1
2
� 1
r1
�Q�
.esizeI01G/

1C�2
2
� 1
r2
�Q�
.esizeI01H 0/

1C�3
2
� 1
r0
�Q�:
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The Q� (which is a slight modification on the � in the P.n/ statement), appears as an interpolation error;
moreover, the conditions

1C �1

2
�
1

r1
> 0;

1C �2

2
�
1

r2
> 0;

1C �3

2
�
1

r 0
> 0 (37)

are necessary, and they imply the constraint C.R1; R2; R0/. This ends the proof of the induction step.
The same method applies in the case of paraproducts. The difference here is that the energies are

L1 quantities, and for that reason we don’t have any extra assumptions; the range of the multiple vector-
valued extensions is the same as that of the paraproducts. The model operator for paraproducts …
corresponds to a “rank 0” family of tritiles; that is, once we know the spatial interval IP , there is no other
degree of freedom and the frequency intervals are

�
1=jIP j; 2=jIP j

�
or
�
0; 1=jIP j

�
. The exact definitions

will be introduced in Section 4.

Induction statement (paraproducts case). Under the same assumptions as in the induction statement on
page 1954, the localized trilinear form for paraproducts satisfies P.n/, given byˇ̌

ƒnI0.f; g; h/
ˇ̌
. .esizeI01F /

1�� .esizeI01G/
1�� .esizeI01H 0/

1��
jI0j;

provided

kf .x/kLR1 .W;�/ � 1F .x/; kg.x/kLR2 .W;�/ � 1G.x/ and kh.x/kLR0 .W;�/ � 1H 0.x/:

Finally, we want to point out that the helicoidal method applies equally in the case of (sub)linear
operators. One last example is that of the Carleson operator

CRf .x/D sup
N

ˇ̌̌̌Z
�<N

Of .�/e2�ix� d�

ˇ̌̌̌
for which UMD-valued extensions are already known from the work of Hytönen and Lacey [2013].

Demeter and Silva [2015] gave an alternative proof for `2-valued inequalities for the Carleson operator.
In fact, they present a new principle, built around ideas from [Bateman and Thiele 2013], for dealing
with `2-valued inequalities for sublinear operators which are not of Calderón–Zygmund type.

We do not present all the details here, but the essential statement for proving multiple vector-valued
inequalities for the Carleson operator, using the helicoidal method, is the following:

Induction statement (Carleson operator). Under the same assumptions as in the induction statement on
page 1954, the localized bilinear form for the discretized Carleson operator satisfies P.n/, given byˇ̌

ƒnC.I0/.f; g/
ˇ̌
. .esizeI01F /

1�� .esizeI01G/
1��
jI0j;

provided that
kf .x/kLR1 .W;�/ � 1F .x/ and kg.x/kLR2 .W;�/ � 1G.x/:

Comparing the main statements of the above three examples, we can see from the exponents of the
sizes that the range of Lp estimates for the vector-valued Carleson operator and for the vector-valued
paraproduct … will coincide with the range of the scalar operator. However, for BHT things are more
complicated.
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3. Multiple vector-valued estimates for BHT

In this section we describe the detailed proof of our Theorems 7 and 8.

3.1. Estimates for localized BHT. Here we assume that F;G and H 0 are fixed subsets of R of finite
measure and I0 is a fixed dyadic interval. We are interested in finding estimates for the bilinear operator

BHTF;G;H
0

I0
.f; g/.x/ WD

X
P2P.I0/

1

jIP j
1
2

hf � 1F ; �
1
P1
ihg � 1G ; �

2
P2
i�3P3.x/1H 0.x/:

In doing so, we first study the associated trilinear form

ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/ WD

X
P2P.I0/

1

jIP j
1
2

hf � 1F ; �
1
P1
ihg � 1G ; �

2
P2
ihh � 1H 0 ; �

3
P3
i:

While this operator satisfies the same estimates as the bilinear Hilbert transform, the localization to the
sets F;G and H 0, and the restriction to the tiles in P.I0/ will bring some extra decay. First we prove a
result in the “local L2 case”, when 1

r1
; 1
r2
; 1
r 0
< 1
2

. In this situation the proof is simpler, because we are
employing “energies”, which are L2 expressions, and they can easily be related to Lri averages when
ri � 2.

Proposition 41 (the case r1; r2; r 0>2). Let P be a family of tritiles, I0 a dyadic interval and F;G;H 0�R

sets of finite measure. Then one can find positive numbers a1; a2 and a3 so thatˇ̌
ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/

ˇ̌
. .sizeP.I0/ 1F /

a1.sizeP.I0/ 1G/
a2.sizeP.I0/ 1H 0/

a3kf � Q�I0kr1 kg � Q�I0kr2 kh � Q�I0kr 0 : (38)

We can choose aj D 1� 2
rj
� � > 0 for a very small � > 0.

Proof. In this case we are proving restricted-type estimates by applying directly Proposition 23: let
E1; E2; E3 be sets of finite measure, and jf j � 1E1 , jgj � 1E2 , jhj � 1E3 : We have

ƒBHT.f � 1F ; g � 1G ; h � 1H 0/. .sizeP.I0/.f � 1F //
�1.sizeP.I0/.g � 1G//

�2.sizeP.I0/.h � 1H 0//
�3

� .energy.f � 1F //1��1.energy.g � 1G//1��2.energy.h � 1H 0//1��3 (39)

for any 0� �1; �2; �3 < 1 such that �1C �2C �3 D 1. Recall that the sizes can be estimated by

sizeP.I0/.f � 1F /. sup
P2P.I0/

1

jIP j

Z
1E1 � 1F � Q�

M
IP
dx;

where M can be chosen as large as we wish. Then we observe that if E1 is supported away from I0, the
sizes will decay fast, giving the desired kf � Q�I0kr1 on the right-hand side. It is similar for E2 and E3.
For this reason, we can assume that the sets E1; E2; E3 are supported on 5I0 and then we will need to
show only that

jƒBHTIP.I0/.f �1F ;g�1G ;h�1H 0/j. .sizeP.I0/ 1F /
a1.sizeP.I0/ 1G/

a2.sizeP.I0/ 1H 0/
a3 kf kr1 kgkr2 khkr 0 :
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We are using the energies precisely for estimating the norms of f; g and h, so the sizes are playing the
role of a constant here. As we have seen in Lemma 24, the energies are bounded by L2 norms, so from
(39), we have

ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/. .sizeP.I0/ 1F /

�1.sizeP.I0/ 1G/
�2.sizeP.I0/ 1H 0/

�3 jE1j
1��1
2 jE2j

1��2
2 jE3j

1��3
2 :

By varying �1; �2 and �3, we see that these restricted-type estimates are true in a very small neighborhood
of
�
1
r1
; 1
r2
; 1
r 0

�
, and the interpolation, Theorem 28, yields strong-type estimates. Note that the constant in

this case is
.sizeP.I0/ 1F /

�1.sizeP.I0/ 1G/
�2.sizeP.I0/ 1H 0/

�3 ;

which depends on the functions 1F ; 1G ; 1H 0 , the fixed interval I0, the values of �1; �2, and �3, but not
on the functions f; g; h. �

Now we deal with the general Banach triangle case, where
�
1
r1
; 1
r2
; 1
r 0

�
is an admissible tuple satisfying

0 < 1
r1
; 1
r2
; 1
r 0
< 1:

The proof is going to be more complicated because we will need to use the sizes as well for reconstructing
the norms of f; g; h. In addition, we will also need to use the sizes of 1F ; 1G and 1H 0 later on.

Proposition 42. Let F;G and H 0 be as above and let P.I0/ be a family of tritiles localized to the dyadic
interval I0. Then there exist positive numbers a1; a2 and a3 so thatˇ̌
ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/

ˇ̌
. .esizeP.I0/1F /

a1.esizeP.I0/1G/
a2.esizeP.I0/1H 0/

a3kf � Q�I0kr1kg � Q�I0kr2kh � Q�I0kr 0 ; (40)

where 1
r1
C

1
r2
C

1
r 0
D 1. In fact, for � > 0 small enough,

a1 D
1C �1

2
�
1

r1
� �; a2 D

1C �2

2
�
1

r2
� �; a3 D

1C �3

2
�
1

r 0
� �; (41)

where �1; �2; �3 are so that 0� �1; �2; �3 < 1, �1C �2C �3 D 1, and the expressions in (41) are positive.

Proof. In this case, we will use the interpolation, Theorem 32, and for this reason we cannot obtain directly
the expression in the right-hand side of (40), which represents localized Lp norms. However, as we will
see soon, it will be enough to prove that ƒBHTIP.I0/ is of generalized restricted type ˛ D .˛1; ˛2; ˛3/ for
˛ in a small neighborhood of

�
1
r1
; 1
r2
; 1
r 0

�
. Then the result in (40) will be a consequence of the fast decay

of the wave packets away from I0.
We start with sets of finite measure E1; E2; E3 and define z� to be the exceptional set

z� WD

�
x WM.1E1/ > C

jE1j

jE3j

�
[

�
x WM.1E2/ > C

jE2j

jE3j

�
:

Let E 03 WDE3n z�. We want to prove that (40) holds for any functions f; g; h so that jf j � 1E1 , jgj � 1E2 ,
and jhj � 1E 03 . For simplicity, we assume that 1C dist.IP ; z�c/=jIP j � 2d for every tile P 2 P.I0/.
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Equivalently, we could decompose the collection of tiles into subcollections for which this property holds
for all d � 0. In the end, however, the estimate (40) will be independent of such a decomposition.

With the above assumption, for every P 2 P.I0/, we have

1

jIP j

Z
R

1E1 � 1F � Q�
M
IP
dx . 2d

jE1j

jE3j
and

1

jIP j

Z
R

1E2 � 1G � Q�
M
IP
dx . 2d

jE2j

jE3j
:

This is important because now we can perform a stopping time which will allow us to estimate the “sizes”
of the functions 1Ej . For each of the functions 1F � 1E1 , 1G � 1E2 and 1H 0 � 1E 03 , we will be looking for
maximal dyadic intervals J which are maximizers for

sup
J�I0

9P2P.I0/; IP�J

1

jJ j

Z
R

1E1 � 1F � Q�
M
J dx: (42)

This is the reason we introduced the new size in Definition 21.
The selection of the intervals and tiles is described in more detail in Section 3.2, so here we only sketch

this process.
We start with the largest possible value 2�l1 . 2d jE1j=jE2j and define Il1 to be the collection of

maximal dyadic intervals I with the property that it contains some IP 2 P.I0/ which is not contained in
any of the intervals previously selected, and I also has the property that

2�l1�1 �
1

jI j

Z
R

1E1 � 1F � Q�
M
I dx � 2�l1:

Then for each I 2 Il1 we find the relevant tiles P with IP � I , and move them into P.I /. Afterwards we
restart the algorithm for the collection P.I0/ n

S
I2Il1

P.I /.
The algorithm continues by decreasing 2�l1 until all tiles in P.I0/ are exhausted. In this way, for any

l1 and any I 2 Il1 , we have esizeP.I /.1E1 � 1F / � 2
�l1 . Similarly we define the collections of dyadic

intervals Il2 associated with the functions 1E2 � 1G as long as 2�l2 . 2d jE2j=jE3j.
For the third component, the collections Il3 are nonempty as long as 2�n3 . 2� zMd, and in that case,

for any I 2 Il3 , we have esizeP.I /.1H 0 �1E 03
/� 2�n3. The extra decay is due to the fact that E 03 is actually

supported on z�c.
Given l1; l2; l3 as above, we define I l1;l2;l3 WD Il1 \ Il2 \ Il3 . This is also going to be a collection of

dyadic intervals, and any tile in P.I0/ will be contained in some P.I /, with I 2 I l1;l2;l3. In fact, these
collections depend on the parameter d as well, which controls the distance from the exceptional set. We
have

P.I0/D
[
d

[
l1;l2;l3

[
I2I

l1;l2;l3
d

P.I /;

but we suppress the dependency on d in the notation. Thus

ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/D

X
l1;l2;l3

X
I2Il1;l2;l3

ƒ
F;G;H 0

BHTIP.I /.f; g; h/: (43)
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Every ƒF;G;H
0

BHTIP.I /.f; g; h/ is going to be estimated by Lemma 40:

ƒ
F;G;H 0

BHTIP.I /.f; g; h/. .esizeP.I /.1E1 � 1F //
�1.esizeP.I /.1E2 � 1G//

�2.esizeP.I /.1E 03
� 1H 0//

�3

� k1E1 � 1F � Q�Ik
1��1
2 k1E2 � 1G � Q�Ik

1��2
2 k1E 03

� 1H 0 � Q�Ik
1��3
2 :

For the particular function 1E1 � 1F and an interval I 2 Il1;l2;l3 , we have

�Z
R

1E1 � 1F � Q�
M
I dx

�1
2

. 2�
l1
2 jI j

1
2 . .esizeP.I /.1E1 � 1F //

1
2 jI j

1
2 :

In this way, as long as

1C �1

2
�
1

r1
> 0;

1C �2

2
�
1

r2
> 0;

1C �3

2
�
1

r 0
> 0; (44)

we can estimate ƒF;G;H
0

BHTIP.I0/
.f; g; h/ as

ƒ
F;G;H 0

BHTIP.I0/
.f;g;h/

.
X
l1;l2;l3

X
I2Il1;l2;l3

.esizeP.I /.1E1 �1F //
�1.esizeP.I /.1E2 �1G//

�2.esizeP.I /.1E 03
�1H 0//

�3

�
1

jI j

Z
R

1E1 �1F � Q�
M
I dx

�1��1
2
�
1

jI j

Z
R

1E2 �1G � Q�
M
I dx

�1��2
2
�
1

jI j

Z
R

1E 03
�1H 0 � Q�

M
I dx

�1��3
2

jI j

. .esizeP.I0/1F /
1C�1
2
� 1
r1 .esizeP.I0/1G/

1C�2
2
� 1
r2 .esizeP.I0/1H 0/

1C�3
2
� 1
r0
��

�

X
l1;l2;l3

X
I2Il1;l2;l3

2
�
l1
r1 2
�
l2
r2 2�l3.

1
r0
C�/
jI j: (45)

The quantity

.esizeP.I0/1F /
1C�1
2
� 1
r1 .esizeP.I0/1G/

1C�2
2
� 1
r2 .esizeP.I0/1H 0/

1C�3
2
� 1
r0
��

is going to represent the operatorial norm kƒF;G;H
0

BHTIP.I0/
k associated to the trilinear form ƒ

F;G;H
BHTIP.I0/

, as
seen in (40).

We are left with estimating
P
I2I l1;l2;l3 jI j, which can be realized in three different ways; for example,

X
I2Il1;l2;l3

jI j �
X
I2Il1

jI j D

X
I2Il1

1I


1;1

.
X
I2Il1

2l1M.1E1/ � 1I


1;1

. 2n1 jE1j:

For this reason, whenever 0� j̨ � 1, with ˛1C˛2C˛3 D 1, we haveX
I2Il1;l2;l3

jI j. .2l1 jE1j/˛1 .2l2 jE2j/˛2 .2l3 jE 03j/
˛3:
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This yieldsX
l1;l2;l3

X
I2Il1;l2;l3

2
�
l1
r1 2
�
l2
r2 2�l3.

1
r0
C�/
jI j

.
X
l1;l2;l3

2
�l1. 1r1�˛1/2

�l2. 1r2�˛2/2�l3.
1
r0
C��˛1/jE1j

˛1 jE2j
˛2 jE3j

˛3

.
�
2d
jE1j

jE3j

� 1
r1
�˛1

�
2d
jE2j

jE3j

� 1
r2
�˛2

.2�
fMd /. 1r0C��˛3/jE1j˛1 jE2j˛2 jE3j˛3

. 2�100d jE1j
1
r1 jE2j

1
r2 jE3j

1
r0:

Summing over d , this proves (40) in the particular case of characteristic functions. Upon interpolating,
we lose an �-power of esizeP.I0/1F and esizeP.I0/1G respectively, to getˇ̌
ƒ
F;G;H 0

BHT IP.I0/
.f;g;h/

ˇ̌
..esizeP.I0/1F /

a1 .esizeP.I0/1G/
a2 .esizeP.I0/1H 0/

a3kf � Q�I0kr1kg� Q�I0kr2kh� Q�I0kr 0 :

We note that the “weights” Q�I0 will not affect the interpolation process; once we have an inequality
that holds for characteristic functions of finite sets, interpolation implies a similar result in full generality.

The exponents a1; a2 and a3 can be described as

a1 D
1C �1

2
�
1

r1
� �; a2 D

1C �2

2
�
1

r2
� �; a3 D

1C �3

2
�
1

r 0
� �

for some sufficiently small �, and for 0� �1; �2; �3 < 1, satisfying �1C �2C �3 D 1, that will be chosen
later. �

Corollary 43 (the case rD1). Let 1<r1; r2<1 be such that 1
r1
C
1
r2
D1, and �1; �2 satisfy 1

2
.1C�1/>

1
r1

and 1
2
.1C �2/ >

1
r2

. Then

kBHTF;G;H
0

P.I0/
.f; g/k1

. .esizeP.I0/1F /
1C�1
2
� 1
r1
��
.esizeP.I0/1G/

1C�2
2
� 1
r2
��
.esizeP.I0/1H 0/

1C�3
2
��
kf � Q�I0kr1 kg � Q�I0kr2 :

Proof. A careful inspection of (45) shows that one can choose any triple .ˇ1; ˇ2; ˇ3/with ˇ1Cˇ2Cˇ3D1,
even with ˇ3 � 0, in the place of

�
1
r1
; 1
r2
; 1
r 0

�
. In this case we getˇ̌

ƒ
F;G;H 0

BHTIP.I0/
.f; g; h/

ˇ̌
. .esizeP.I0/1F /

1C�1
2
�ˇ1 .esizeP.I0/1G/

1C�2
2
�ˇ2 .esizeP.I0/1H 0/

1C�3
2
��
jE1j

ˇ1 jE2j
ˇ2 jE3j

ˇ3:

The restrictions are that ǰ <
1
2
.1C �j /, which works well for very small or negative values of ˇ3.

Interpolating between tuples .ˇ1; ˇ2; ˇ3/ that lie in a small open neighborhood of
�
1
r1
; 1
r2
; 0
�
, we get the

conclusion. In this case, the interpolation is used for estimating the L1 norm of the operator, and not the
trilinear form ƒ

F;G;H 0

BHTIP.I0/
. �
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3.2. Proof of Theorem 7. Recall that the vector-valued BHT is defined by

BHT.f; g/.x;w/D
Z

R

f .x� t; w/g.xC t; w/
dt

t
D BHT.fw ; gw/.x/:

Then the trilinear form associated with it is

ƒ��!BHT.f; g; h/D

Z
R

Z
W

BHT.f; g/.x;w/h.x;w/ d�.w/ dx:

First we prove generalized restricted-type estimates for ƒ��!BHT.f; g; h/, and the general result will
follow from the vector-valued interpolation result presented in Proposition 38. Let F;G and H be sets of
finite measure. In what follows, we will construct a major subset H 0 �H and show

jƒ��!BHTIP.f; g; h/j. jF j˛1 jGj˛2 jH j˛3 (46)

whenever kf .x; � /kLr1 .W;�/ � 1F .x/, kg.x; � /kLr2 .W;�/ � 1G.x/ and kh.x; � /kLr0 .W;�/ � 1H 0.x/. For
simplicity, assume jH j D 1. The exceptional set is defined as

� WD
˚
x WM.1F / > C jF j

	
[
˚
x WM.1G/ > C jGj

	
:

Because of the L1! L1;1 boundedness of the maximal operator, for a constant C large enough, we
have j�j � 1.

We partition the collection of tritiles according to the scaled distance from the exceptional set

Pd D

�
P 2 P W 1C

dist.IP ; �c/
jIP j

� 2d
�

and we will prove estimates equivalent to (46) for the family Pd, with an extra 2�10d decay:ˇ̌
ƒ��!BHTIPd .f; g; h/

ˇ̌
. 2�10d jF j

1
p jGj

1
q jH j

1
s0 : (47)

We suppress the d -dependency for the moment, but all the subcollections Injj and In1;n2;n3 will actually
depend on this parameter. At the very end we sum in d , and use interpolation, so that the final estimate
depends only on the fixed interval I0, and the fixed sets F;G;H 0.

Now we construct a collection fIn11 gn1�Nn1 of relevant dyadic intervals, according to the concentration
of 1F :

� Start with Nn1 such that 2�Nn1 � 2d jF j and let P0
Nn1�1
D P (here P0n1 will play the role of stock, or the

collection of available tiles).

� Define I
Nn1
1 to be the collection of maximal dyadic intervals I with the property that there exists at least

one tile P 2 P0
Nn1

with IP � I and

1

jI j

Z
1F � Q�

M
I dx � 2�Nn1: (48)

� For every such interval I, let P Nn1.I / be the collection of tiles P 2 P0
Nn1

with the property that IP � I .

� Set P0
Nn1
D P n

S
I2I
Nn1
1

P Nn1.I /.
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� Repeat the procedure for all n1 � Nn1. Let In11 denote the collection of maximal dyadic intervals which
contain a time interval IP for some P 2 P0n1�1 (which was not selected previously) and such that

2�n1�1 �
1

jI j

Z
1F � Q�

M
I dx < 2�n1:

� As before, Pn1.I / WD fP 2 P0n1 W IP � I g.

� Set P0n1 D Pn1�1 n
S
I2I

n1
1

Pn1.I / and notice that after a finite number of steps, P0n1 D∅.

�Note that we always have 2�n1 . 2d jF j.
For d sufficiently large, the intervals IP for P 2Pd are going to be essentially disjoint and the intervals

I 2 I
n1
1 can be selected in an easier way, but this is not the case, for example, when d D 0, which

corresponds to IP \�c ¤∅. However, for every n1, the intervals in I
n1
1 are going to be disjoint and this

is going to be used later in the proof.
Similarly, In22 denotes the collection of maximal dyadic intervals I containing at least some IP � I

for some P 2 Pd, and
1

jI j

Z
1G � Q�

M
I dx � 2�n2 . 2d jGj:

For 1H 0 , let In33 be the collection of maximal dyadic intervals I containing at least some IP for some
P 2 Pd and such that

1

jI j

Z
1H 0 � Q�

M
I dx � 2�n3 . 2�Md:

We define In1;n2;n3 WD I
n1
1 \I

n2
2 \I

n3
3 , and we further partition Pd as Pd D

S
n1;n2;n3

S
I2In1;n2;n3 P.I /.

For I 2 In11 , we have esizePn1 .I /
1F � 2

�n1. When we consider the intersection I 0 of different intervals
in I

n1
1 ; I

n2
2 and I

n3
3 , all we can say is that esizeP.I 0/1F . 2�n1. This fact is the technical obstruction in

obtaining vector-valued BHT estimates for any p; q; s in the whole range of BHT.
In a similar way, the relation .1=jI j/

R
R
1F � Q�

M
I dx � 2�n1 for I 2 I

n1
1 becomes for an interval

I 0 2 I
n1
1 \ I

n2
2 \ I

n3
3 an inequality: .1=jI 0j/

R
R
1F � Q�

M
I 0 dx . 2

�n1.
The trilinear form in (47) becomesX

n1;n2;n3

X
I2In1;n2;n3

ƒ��!BHTIP.I /.f; g; h/

D

X
n1;n2;n3

X
I2In1;n2;n3

Z
R

Z
W

BHTP.I /.fw ; gw/.x/ �hw.x/ d�.w/ dx

D

Z
W

� X
n1;n2;n3

X
I2In1;n2;n3

Z
R

BHTP.I /.fw �1F ; gw �1G/.x/ �1H 0.x/ �hw.x/ dx

�
d�.w/:

Note that the functions fw are supported on F, the gw on G and the hw on H 0, for a.e. w. We can apply
the localization, Proposition 42, to getˇ̌
ƒ
F;G;H 0

BHTIP.I /.fw ; gw ; hw/
ˇ̌

. .esizeP.I /1F /
a1 .esizeP.I /1G/

a2 .esizeP.I /1H 0/
a3 kfw � Q�Ikr1 kgw � Q�Ikr2 khw � Q�Ikr 0 ;

where 1
r1
C

1
r2
C

1
r 0
D 1.
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Recall the expressions for aj from (41):

a1 D
1C �1

2
�
1

r1
� �; a2 D

1C �2

2
�
1

r2
� �; a3 D

1C �3

2
�
1

r 0
� �;

where the only conditions we have on �1; �2 and �3 are that �1C�2C�3D 1 and aj > 0. Using Hölder’s
inequality, the initial trilinear form can be estimated byX
n1;n2;n3

X
I2In1;n2;n3

Z
W

ˇ̌
ƒBHTIP.I /.fw ; gw ; hw/

ˇ̌
.

X
n1;n2;n3

X
I2In1;n2;n3

.esizeP.I /1F /
a1 .esizeP.I /1G/

a2 .esizeP.I /1H 0/
a3

�Z
W

kfw � Q�Ik
r1
r1
d�.w/

� 1
r1

�Z
W

kgw � Q�Ik
r2
r2
d�.w/

� 1
r2

�Z
W

khw � Q�Ik
r 0

r 0 d�.w/

�1
r0

.
X

n1;n2;n3

X
I2In1;n2;n3

.esizeP.I /1F /
a1 .esizeP.I /1G/

a2 .esizeP.I /1H 0/
a3

�
k1F � Q�Ikr1

jI j
1
r1

k1G � Q�Ikr2

jI j
1
r2

k1H 0 � Q�Ikr 0

jI j
1
r0

jI j

.
X

n1;n2;n3

X
I2In1;n2;n3

2�
n1
p 2�

n2
q 2�n3.a3C

1
r0
/
jI j:

In the last inequality we need to assume 1
p
� a1C

1
r1
D
1
2
.1C �1/ and similarly 1

q
�
1
2
.1C �2/. We will

be summing jI j when I 2 In1;n2;n3. Note thatX
I2In1;n2;n3

jI j �
X
I2I

n1
1

jI j D

 X
I2I

n1
1

1I


1;1

.
 X
I2I

n1
1

2n1M.1F / � 1I


1;1

. 2n1 jF j:

Similarly,
P
I2In1;n2;n3 jI j . 2n2 jGj and

P
I2In1;n2;n3 jI j . 2n3 jH j and interpolating these three in-

equalities we get X
I2In1;n2;n3

jI j. .2n1 jF j/1.2n2 jGj/2.2n3 jH j/3;

where 0� j � 1 and 1C 2C 3 D 1. Finally,ˇ̌̌̌ X
n1;n2;n3

X
I2In1;n2;n3

ƒ��!BHTIP.I /.f;g;h/

ˇ̌̌̌
.

X
n1;n2;n3

2�
n1
p 2�

n2
q 2�n3

1C�3
2 .2n1 jF j/1.2n2 jGj/2.2n3 jH j/3

.
X

n1;n2;n3

2�n1.
1
p
�1/2�n2.

1
q
�2/2�n3.

1C�3
2
�3/ jF j1 jGj2:

The above series converges if we can pick j such that

1

p
> 1;

1

q
> 2 and

1C �3

2
> 3:
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This will be possible as long as
1

p
C
1

q
C
1C �3

2
> 1: (49)

If the above conditions are satisfied, we get generalized restricted-type estimates

jƒ��!BHT.f; g; h/j. jF j
1
p jGj

1
q:

There are four distinct cases:

(i) 1
r1
; 1
r2
; 1
r 0
�
1
2

. In this case, if we pick �1 D �2 � 0 and �3 � 1, all the conditions hold and the range
of Lp estimates for

���!

BHTEr is going to be the convex hull of the points

.0; 0; 1/; .1; 0; 0/;
�
1; 1
2
;�1

2

�
;

�
1
2
; 1;�1

2

�
; .0; 1; 0/:

That is, we get the same range as that of the BHT operator: p; q > 1, s > 2
3

and 1
p
C
1
q
D

1
s

.

(ii) 1
r2
; 1
r 0
�
1
2

and 1
r1
> 1
2

. For the condition 1
2
.1C�1/�

1
r1
>0 to hold, we have to choose �1> 2

r1
�1 and

this will imply that the range of the operator, described as a region in the hyperplane ˇ1Cˇ2Cˇ3D1,
is the convex hull of the points

.0; 0; 1/; .1; 0; 0/;
�
1; 1
2
;�1

2

�
;

�
1
r1
; 3
2
�
1
r1
;�1

2

�
;

�
0; 3
2
�
1
r1
; 1
r1
�
1
2

�
:

(iii) 1
r1
; 1
r 0
�
1
2

and 1
r2
> 1
2

. Similarly to the previous case, the range of the operator is the convex hull of

.0; 0; 1/; .0; 1; 0/;
�
1; 1
2
;�1

2

�
;

�
3
2
�
1
r2
; 1
r2
;�1

2

�
;

�
3
2
�
1
r2
; 0; 1

r2
�
1
2

�
:

(iv) 1
r1
; 1
r2
�
1
2

and 1
r 0
> 1
2

. The range is the convex hull of

.0; 0; 1/;
�
1
2
C
1
r
; 0; 1

2
�
1
r

�
;

�
1
2
C
1
r
; 1
2
;�1

r

�
;

�
1
2
; 1
2
C
1
r
;�1

r

�
;

�
0; 1
2
C
1
r
; 1
2
�
1
r

�
:

3.3. The cases r D 1 or ri D1. The proof is similar to the one in the previous Section 3.2. We first
consider the case r D 1. Because the dual space of L1.W; �/ is L1.W; �/, the functions appearing in
the trilinear form satisfy

kf .x; � /kLr1 .W;�/ � 1F .x/; kg.x; � /kLr2 .W;�/ � 1G.x/; kh.x; � /kL1.W;�/ � 1H 0 :

All the details are identical to the case r > 1; the restrictions are given by only two inequalities:

1C �1

2
>
1

r1
;

1C �2

2
>
1

r2
:

In the case r1 D r2 D 2 and r D 1, these are automatically satisfied and Dr1;r2;r D Range.BHT/.
When r1 D1, we use the fact that the adjoint BHT�;1 of BHT is a bilinear operator of the same kind,

which is bounded from Lr �Lr
0

! L1; more precisely,

ƒBHT.fw ; gw ; hw/D

Z
R

BHT.fw ; gw/.x/ � hw.x/ dx D
Z

R

fw.x/ �BHT�;1.gw ; hw/.x/ dx:

In proving the boundedness of vector-valued BHT via interpolation, we assume

kf .x; � /kL1.W;�/ � 1F .x/; kg.x; � /kLr .W;�/ � 1G.x/; kh.x; � /kLr0 .W;�/ � 1H 0 :
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Thenˇ̌
ƒBHTIP.I /.fw ; gw ; hw/

ˇ̌
�
BHT�;1

P.I /
.gw � 1G ; hw � 1H 0/ � 1F


1

. .esizeP.I /1F /
1C�1
2
��.esizeP.I /1G/

1C�2
2
� 1
r
��.esizeP.I /1H 0/

1C�3
2
� 1
r0
��
kgw � Q�Ikr khw � Q�Ikr 0 :

The rest follows as before. Note that in the case .1; 2; 2/ we have no constraints on p; q, and s except
those coming from the original BHT operator itself: indeed, for �2; �3 > 0, we have

1C �2

2
�
1

2
> 0;

1C �3

2
�
1

2
> 0:

3.4. Iterated Lp.W; �/ spaces estimates for BHT. Previously, we proved that for any tuple .r1; r2; r/
with 1

r1
C

1
r2
D

1
r

, 1� r <1, and 1 < r1; r2 �1, we have

BHT W Lp.RILr1.W; �//�Lq.RILr2.W; �//! Ls.RILr.W; �//

whenever p; q; r are in a certain range Dr1;r2;r , which can be described in a precise manner. The general
ideas for proving multiple vector-valued estimates for BHT (as presented in Theorem 8) via the helicoidal
method were described in the Introduction. In this section, we present in more detail the proof in the case
of two iterated spaces `s.`r/ in order to simplify the notation. First, we prove the following localized
vector-valued result:

Proposition 44.� NX
kD1

ˇ̌
BHTP.I0/.fk � 1F ; gk � 1G/

ˇ̌r�1r
� 1H 0


s

� zC

� NX
kD1

jfkj
r1

� 1
r1

� Q�I0


p

� NX
kD1

jgkj
r2

� 1
r2

� Q�I0


q

;

where zC D .esizeP.I0/1F /
1C�1
2
� 1
p
�� .esizeP.I0/1G/

1C�2
2
� 1
q
�� .esizeP.I0/1H 0/

1C�3
2
� 1
s0
��.

Proof. This is going to be a refinement of the proof of Theorem 7 from the previous section. In constructing
the collection of intervals Injj , we note that we only need to select intervals I that are already contained
in I0, because all the tiles in P.I0/ are such that IP � I0.

As before, we prove generalized restricted-type estimates, and we assume that the functions have the
properties �X

k

jfkj
r1

� 1
r1

� 1E1 ;

�X
k

jfkj
r2

� 1
r2

� 1E2 ;

�X
k

jhkj
r 0
�1
r0

� 1E 03
:

The exceptional set is defined by

z�D

�
M.1E1/ > C

jE1j

jE3j

�
[

�
M.1E2/ > C

jE2j

jE3j

�
;

and we assume the tiles to be such that 1C dist.IP ; z�c/=jIP j � 2d.
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For intervals I 2 In11 , we have

1

jI j

Z
R

1E1 � 1F � Q�
M
I dx �esizePn1 .I /

.1E1 � 1F /� 2
�n1 � 2d

jE1j

jE3j
:

When we consider intervals I 2 In11 \ I
n2
2 \ I

n3
3 , the above approximations become inequalities. We also

need to point out that

esizeP.I /.1E1 � 1F /�esizeP.I0/.1E1 � 1F / and
1

jI j

Z
R

1E1 � 1F � Q�
M
I dx �esizeP.I0/.1E1 � 1F /:

Now we add the trilinear forms in order to obtain generalized restricted-type estimates:X
k

ˇ̌
ƒBHTIP.I0/.fk �1F ;gk �1G ;hk �1H 0/

ˇ̌
�

X
n1;n2;n3

X
I2In1;n2;n3

X
k

ˇ̌
ƒBHTIP.I0\I/.fk �1F ;gk �1G ;hk �1H 0/

ˇ̌
.

X
n1;n2;n3

X
I2In1;n2;n3

.esizeP.I /.1E1 �1F //
1C�1
2
� 1
r1
��
.esizeP.I /.1E2 �1G//

1C�2
2
� 1
r2
��

�.esizeP.I /.1E 03
�1H 0//

1C�3
2
� 1
r0
�� k1E1 �1F � Q�Ikr1

jI j
1
r1

k1E2 �1G � Q�Ikr2

jI j
1
r2

k1E 03
�1H 0 � Q�Ikr 0

jI j
1
r0

jI j:

Using the modified sizes from Definition 21, this impliesX
k

ˇ̌
ƒBHTIP.I0/.fk � 1F ; gk � 1G ; hk � 1H 0/

ˇ̌
. .esizeP.I0/.1E1 � 1F //

1C�1
2
� 1
p
�� .esizeP.I0/.1E2 � 1G//

1C�2
2
� 1
q
�� .esizeP.I0/.1E 03

� 1H 0//
1C�3
2
� 1
s0
��

�

X
n1;n2;n3

X
I2In1;n2;n3

2�
n1
p 2�

n2
q 2�n3.

1
s0
C�/
jI j:

The last part adds up to something . 2� zMd jE1j
1
p jE2j

1
q jE3j

1
s0 , which is precisely what we were aiming

in the beginning.
The cases when one of r1; r2 or r 0 D1 follow in a similar manner. �

The above proposition is an intermediate step in the proof of Lp estimates for
���!

BHT ER, in the case of
two iterated vector spaces, which is presented below.

Proposition 45.�X
l

�X
k

ˇ̌
BHT.fkl ; gkl/

ˇ̌̌̌r�s
r
�1
s

t

� C

�X
l

�X
k

jfkl j
r1

�s1
r1

� 1
s1


p

�X
l

�X
k

jgkl j
rr

�s2
r2

� 1
s2


q

:

Proof. Once again, we use generalized restricted-type interpolation; F;G;H are sets of finite measure,
with jH j D 1. The exceptional set is defined as usual, and H 0 DH n�. The sequences of functions will
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be such that�X
l

�X
k

jfkl j
r1

�s1
r1

� 1
s1

� 1F ;

�X
l

�X
k

jgkl j
r2

�s2
r2

� 1
s2

� 1G ;

�X
l

�X
k

jhkl j
r 0
�s0
r0
�1
s0

� 1H 0 :

The collections Injj are going to be chosen in the same way as in the proof of Theorem 7, depending
on the sizes and averages of the characteristic functions 1F ; 1G ; 1H 0 . Proposition 44 yields the following:X

k

ˇ̌
ƒBHTIP.I /.fkl ;gkl ;hkl/

ˇ̌
. .esizeP.I /1F /

1C�1
2
� 1
s1
��
.esizeP.I /1G/

1C�2
2
� 1
s2
��
.esizeP.I /1H 0/

1C�3
2
� 1
s0
�� (50)

�

�X
k

jfkl j
r1

� 1
r1

Q�I


s1

�X
k

jgkl j
r2

� 1
r2

Q�I


s2

�X
k

jhkl j
r 0
� 1
r0

Q�I


s0
: (51)

Then we sum (51) over l as well, and apply Hölder on the triple .s1; s2; s0/. In this way, we recover
k1F � Q�Iks1 , and the corresponding quantities for the second and third entries. We haveˇ̌̌̌X
k;l

ƒBHT.fkl ; gkl ; hkl/

ˇ̌̌̌

.
X

n1;n2;n3

X
In1;n2;n3

.esizeP.I /1F /
1C�1
2
� 1
s1
��
.esizeP.I /1G/

1C�2
2
� 1
s2
��
.esizeP.I /1H 0/

1C�3
2
� 1
s0
��

�
k1F Q�Iks1

jI j
1
s1

k1G Q�Iks2

jI j
1
s2

k1H 0 Q�Iks0

jI j
1
s0

jI j

.
X

n1;n2;n3

X
In1;n2;n3

.“esize”P.I /1F /
1C�1
2
� 1
p
�� .“esize”P.I /1G/

1C�2
2
� 1
q
�� .“esize”P.I /1H 0/

1C�3
2
� 1
t0
��

� 2�
n1
p 2�

n2
q 2�n3.

�1
t0
C�/
jI j:

Remark. The “sizes” appearing in the line above are not exactly the ones from Definition 19, but the
modified ones from Definition 21 . Note that

max
�
esizeP.I /1F ;

1

jI j

Z
R

1F � Q�
M
I dx

�
� “esize”P.I /1F :

This is the step where we can prove also the localized version of the statement in Proposition 45. Assuming
all the tiles are sitting above an interval I0, we can obtain the same result with operatorial norm

.esizeP.I0/1F /
1C�1
2
� 1
p
�� .esizeP.I0/1G/

1C�2
2
� 1
q
�� .esizeP.I0/1H 0/

1C�3
2
� 1
t0
��:

The rest of the proof is identical to the simpler vector case of Theorem 7; the quantities on the left-hand
side add up to jF j

1
p jGj

1
q , provided

1C �1

2
>
1

p
;

1C �2

2
>
1

q
;

1C �3

2
>
1

s0
: �
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4. Similar results for paraproducts: proof of Theorem 9

The paraproduct case is similar to BHT, even though the bilinear Hilbert transform is a much more
complicated object. The extra difficulties are hidden in Proposition 23, but we will see from the proof of
the vector-valued extensions that the complexity of the paraproduct case is comparable to the “local L2”
case for BHT. In both situations, we recover the maximal range for vector-valued estimates.

We will be working with the discretized paraproduct of the functions f and g, which is defined by

….f; g/.x/D
X
I2I

1

jI j
1
2

hf; �1I ihg; �
2
I i�

3
I .x/:

Here I is a family of dyadic intervals, and the wave packets f�jI gI2I are so that two of the families are
lacunary (�jI is a wave packet on I � Œ1=jI j; 2=jI j� ), and the third one is nonlacunary (�j0I is a wave
packet on I � Œ0; 1=jI j� ). Again, we present the case of `p spaces for simplicity. The operator we are
interested in is

E…r.f; g/ WD

� NX
kD1

ˇ̌
….fk; gk/

ˇ̌r�1r
:

Remark. We could alternatively look at operators of the form

.f; g/ 7!

� NX
kD1

ˇ̌
…k.fk; gk/

ˇ̌r�1r
;

where each paraproduct …k is associated to a family Ik of dyadic intervals. The …k don’t need to be
precisely the same, but they display a similar behavior. Similarly, for

���!

BHT we could have a “perturbation”
BHTw for each w 2W, and the method of the proof applies in that case as well.

4.1. A few results about paraproducts. The concepts of sizes and energies are similar to the correspond-
ing ones for the bilinear Hilbert transform; we don’t need to organize the tiles into trees because the
family of tiles is of rank 0. We recall some definitions below.

Definition 46. Let I be a family of dyadic intervals. For any 1� j � 3, we define

sizeI
�
hf; �

j
I iI2I

�
D sup
I2I

jhf; �
j
I ij

jI j
1
2

if .�jI /I is nonlacunary

and

sizeI
�
hf; �

j
I iI2I

�
D sup
I02I

1

jI0j
1
2

�X
I2I
I�I0

jhf; �
j
I ij

2

jI j
� 1I

�1
2

1;1

if .�jI /I is lacunary.

Similarly to the BHT case, energy is defined as

energyjI
�
hf; �

j
I iI2I

�
WD sup

n2Z

2n sup
D

�X
I2D

jI j

�
;
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where D ranges over all collections of disjoint intervals I0 with the property that

jhf; �
j
I0
ij

jI0j
1
2

� 2n if .�jI /I is nonlacunary

and
1

jI0j

�X
I2I
I�I0

jhf; �
j
I ij

2

jI j
� 1I

�1
2

1;1

� 2n if .�jI /I is lacunary.

We have estimates similar to Lemmas 20 and 24. However, because we don’t need to use orthogonality
of trees, the energy becomes an L1 quantity.

Lemma 47 [Muscalu and Schlag 2013, Lemma 2.13]. If F is an L1 function and 1� j � 3, then

sizejI
�
hF; �

j
I iI2I

�
. sup
I2I

1

jI j

Z
R

jF j Q�MI dx

for M > 0, with implicit constants depending on M.

Lemma 48 [Muscalu and Schlag 2013, Lemma 2.14]. If F is an L1 function and 1� j � 3, then

energyjI
�
hF; �

j
I iI2I

�
. kF k1:

Proposition 49 [Muscalu and Schlag 2013, Proposition 2.12]. Given a paraproduct … associated with a
family I of intervals,ˇ̌

ƒ….f1; f2; f3/
ˇ̌
D

ˇ̌̌̌X
I2I

1

jI j
1
2

hf1; �
1
I ihf2; �

2
I ihf3; �

3
I i

ˇ̌̌̌

.
3Y

jD1

�
size.j /I .hfj ; �

j
I iI2I/

�1��j �energy.j /I .hfj ; �
j
I iI2I/

��j
for any 0� �1; �2; �3 < 1 such that �1C �2C �3 D 1, where the implicit constant depends on �1; �2; �3
only.

While the above proposition is the main ingredient, we need “localized” estimates. If I0 is some fixed
dyadic interval, then we define

….I0/.f; g/.x/D
X
I2I
I�I0

1

jI j
1
2

hf; �1I ihg; �
2
I i�

3
I .x/:

Here again we need some localization results which play the role of Proposition 42 and Corollary 43
from the BHT case.

The trilinear form associated to the localized paraproduct is given by

ƒ
F;G;H 0

….I0/
.f; g; h/ WDƒ….I0/.f � 1F ; g � 1G ; h � 1H 0/:
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Proposition 50. Let I0 be a fixed dyadic interval and F;G;H 0 � R sets of finite measure. Then there
exist some positive numbers 0� a1; a2; a3 < 1 so thatˇ̌
ƒ
F;G;H 0

….I0/
.f; g; h/

ˇ̌
. .esizeI.I0/1F /

a1 .esizeI.I0/1G/
a2 .esizeI.I0/1H 0/

a3 kf � Q�I0kr1 kg � Q�I0kr2 kh � Q�I0kr 0

whenever 1
r1
C

1
r2
C

1
r 0
D 1, and 1 < r1; r2; r 0 <1. Here aj D 1� 1

rj
� �.

Proof. The idea of the proof is very similar to that of Proposition 41. Restricted-type estimates are proved
by performing a triple stopping time and then the result follows by interpolation. We leave the routine
details to the reader. �

The case r D 1 is obtained through interpolation of restricted-type estimates only. This comes in
contrast with the r D 1 case for BHT, where generalized restricted-type interpolation is necessary. More
exactly, for the BHT operator, in order to conclude estimates for

�
1
r1
; 1
r2
; 0
�
, one needs to interpolate

between good (ˇi > 0) and bad (ˇ3 < 0) tuples ˇ D .ˇ1; ˇ2; ˇ3/.

Proposition 51. If H 0 is a fixed set of finite measure,ˇ̌
ƒ….I0/.f; g; 1H 0/

ˇ̌
.esizeI.I0/1H 0kf � Q�I0kp kg � Q�I0kq (52)

whenever 1
p
C
1
q
D 1, and 1 < p; q <1.

Proof. In this case ƒ….I0/.f; g; 1H 0/ becomes a bilinear form with respect to the first two entries.
Because of the decay of Q�I0 , it will be sufficient to prove the proposition in the case supp f; g � 5I0. By
Theorem 28, it will be enough to show restricted-type estimates for the bilinear form

.f; g/ 7!ƒ….I0/.f; g; 1H 0/:

Let F and G be sets of finite measure and jf j � 1F and jgj � 1G . Using Proposition 49 with �3 D 0
and estimating esizeI.I0/f . 1 and esizeI.I0/g . 1, we getˇ̌

ƒ….I0/.f; g; 1H 0/
ˇ̌
.esizeI.I0/1H 0 jF j

�1 jGj�2;

where �1C �2 D 1 and 0 < �1; �2 < 1. This proves restricted-type estimates in a small neighborhood
of
�
1
p
; 1
q

�
. �

4.2. Proof of Theorem 8: a particular case. We will be using vector-valued interpolation theorems, as
usual. Hence, we fix sets of finite measure F;G and H and we assume jH j D 1. Let f D ffkgk and
g D fgkgk , with .

P
k jfkj

r1/
1
r1 � 1F and .

P
k jgkj

r2/
1
r2 � 1G .

The exceptional set will be

z� WD
˚
x WM.1F /.x/ > C jF j

	
[
˚
x WM.1G/.x/ > C jGj

	
and H 0 DH n z�. We have a sequence of functions fhkgk with

�P
k jhkj

r 0
� 1
r0 � 1H 0 .

For every d � 0,

Id WD

�
I 2 I W 1C

dist.I;�c/
jI j

� 2d
�
:
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When estimating paraproducts associated to the collection Id, we get an extra 2�10d decay and thus the
d -dependency of the paraproducts can be assumed to be implicit. As before, for each of the sets F;G
and H 0 we define collections of disjoint maximal intervals J n11 , J n2

2 and J n3
3 respectively. For example,

if I 2 J n1
1 , then

2�n1�1 �
1

jI j

Z
R

1F � Q�I dx � 2
�n1 . jF j:

Returning to the operator E…r , we have for the associated multilinear formˇ̌̌̌X
k

ƒ….fk; gk; hk/

ˇ̌̌̌
�

X
n1;n2;n3

X
I02J n1;n2;n3

X
k

ˇ̌
ƒ….I0/.fk; gk; hk/

ˇ̌
:

Now we use the localization results of Proposition 50 to estimate the above expression by

X
n1;n2;n3

X
I02J n1;n2;n3

nX
kD1

.esizeI.I0/1F /
b1 .esizeI.I0/1G/

b2 .esizeI.I0/1H 0/
b3

� kfk � Q�I0kr1 kgk � Q�I0kr2 khk � Q�I0kr 0

.
X

n1;n2;n3

X
I02J n1;n2;n3

.esizeI.I0/1F /
b1 .esizeI.I0/1G/

b2 .esizeI.I0/1H 0/
b3

k1F � Q�I0kr1

jI0j
1
r1

k1G � Q�I0kr2

jI0j
1
r2

k1H 0 � Q�I0kr 0

jI0j
1
r0

jI0j:

Here we choose some 0� bj �aj , which we can do because the sizes are subunitary. Whenever 0� j � 1
are so that 1C 2C 3 D 1,X

I02J n1;n2;n3
jI0j. .2n1 jF j/1 .2n2 jGj/2 .2n3 jH j/3 :

Adding all the pieces together we haveˇ̌̌̌X
k

ƒ….fk; gk; hk/

ˇ̌̌̌
.

X
n1;n2;n3

2�n1.b1C
1
Qp
�1/2�n2.b2C

1
Qq
�2/2�n3.b3C

1
r0
�3/ jF j1 jGj2

. jF j
1
Qp jGj

1
Qq :

Of course, the last inequality is true provided we can choose 1; 2; 3 so that the series converges.
Choosing the �j and j̨ carefully, one can prove that the restricted weak-type estimates hold arbitrarily
close to the points

.0; 0; 1/; .1; 0; 0/; .0; 1; 0/; .1; 1;�1/:

Then the general result follows by interpolation.

Remark. With a few adjustments, the proof is valid in the case r D 1 as well.
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5. Tensor products BHT˝…˝n

In this section, we will prove the boundedness of the tensor product

BHT˝…˝n D BHT˝…˝ � � �˝… W Lp.RnC1/�Lq.RnC1/! Lr.RnC1/

whenever 1
r
D

1
p
C
1
q

, with 2
3
< r <1, 1� p; q <1.

If T1 W Lp.Rn1/�Lq.Rn1/! Lr.Rn1/ and T2 W Lp.Rn2/�Lq.Rn2/! Lr.Rn2/ are two bilinear
operators, then the tensor product

T1˝T2 W L
p.Rn1Cn2/�Lq.Rn1Cn2/! Lr.Rn1Cn2/

will act as T1 in the first variable and as T2 in the second variable. In our case, the operators are given by
singular multipliers, and in this situation we can give a characterization of the tensor product. Assume

T1.f; g/.x/D

Z
R2n1

Of .�1/ Og.�2/m1.�1; �2/e
2�ix.�1C�2/ d�1 d�2

and similarly

T2.f; g/.y/D

Z
R2n2

Of .�1/ Og.�2/m2.�1; �2/e
2�iy.�1C�2/ d�1 d�2:

Then the multiplier of the tensor product is precisely m1.�1; �2/ �m2.�1; �2/:

T1˝T2.f; g/.x; y/

D

Z
Of .�1; �1/ Og.�2; �2/m1.�1; �2/m2.�1; �2/e

2�ix.�1C�2/e2�iy.�1C�2/ d�1 d�2 d�1 d�2:

The multiplier associated with BHT is sgn.�1��2/, while the multiplier of a paraproduct of two functions
on the real line is a classical Marcinkiewicz–Mikhlin–Hörmander multiplier m.�1; �2/, smooth away from
the origin, satisfying the condition j@˛m.�/j. j�j�j˛j for sufficiently many multi-indices ˛. The decay
in m and a Fourier series decomposition allows one to approximate the multiplier by a finite number of
sums of the formX
k

O'k.�1/ O k.�2/ O k.�1C �2/;
X
k

O k.�1/ O'k.�2/ O k.�1C �2/ or
X
k

O k.�1/ O k.�2/ O'k.�1C �2/:

Recall that Qk is the Littlewood–Paley projection onto fj�j � 2kg (which is really the convolution
with  k. � /), and Pk is the projection onto fj�j � 2kg, corresponding to the convolution with 'k . Then
we can regard paraproducts as being expressions of the formX

k

Qk.Pkf �Qkg/.x; y/;
X
k

Qk.Qkf �Pkg/.x; y/ or
X
k

Pk.Qkf �Qkg/.x; y/: (53)

It is important in the following proofs that the outermost functions O'k.�1 C �2/ and O k.�1 C �2/ are
identically equal to 1 on the supports of O k.�1/ � O k.�2/ and O k.�1/ � O'k.�2/ respectively. This can always
be achieved with the price of an extra decomposition.
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Proposition 52. Let Tm W Lp.Rn/�Lq.Rn/! Lr.Rn/ be a bilinear operator with smooth symbol m,
and … W Lp.R/�Lq.R/! Lr.R/ a paraproduct as described above.

(1) If … is given by
P
kQk.Pkf �Qkg/.x; y/, then

.Tm˝…/.f; g/.x; y/D
X
k

Q2k
�
Tm.P

y

k
f;Q

y

k
g/
�
.x/D

X
k

Tm.P
y

k
f;Q

y

k
g/.x/:

(2) If … is given by
P
k Pk.Qkf �Qkg/.x; y/, then

.Tm˝…/.f; g/.x; y/D
X
k

P 2k
�
Tm.Q

y

k
f;Q

y

k
g/
�
.x/D

X
k

Tm.Q
y

k
f;Q

y

k
g/.x/:

Here we need to explain the notation: Q2
k

denotes the projection onto j�2j � 2k in the second variable,
and P y

k
f is a function of x only, with the variable y fixed. The exact formulas are

P
y

k
f .x/D

Z
R

'k.s/f .x; y � s/ ds; P 2k f .x; y/ D

Z
R

'k.s/f .x; y � s/ ds;

Q
y

k
f .x/D

Z
R

 k.s/f .x; y � s/ ds; Q2kf .x; y/D

Z
R

 k.s/f .x; y � s/ ds:

Proof. The proof is a series of direct computations, and we only present the case (1):

.Tm˝…/.f; g/.x; y/

D

Z
R2nC2

Of .�1; �1/ Og.�2; �2/m.�1; �2/�X
k

O'k.�1/ O k.�2/ O k.�1C �2/

�
e2�ix.�1C�2/e2�iy.�1C�2/ d� d�

D

X
k

Z
R2nC2

Of .�1; �1/ Og.�2; �2/m.�1; �2/ O'k.�1/ O k.�2/�Z
R

 k.s/e
�2�is.�1C�2/ ds

�
e2�ix.�1C�2/e2�iy.�1C�2/ d� d�

D

X
k

Z
R

 k.s/
�
Tm.P

y�s

k
f;Q

y�s

k
g/.x/

�
ds

D

X
k

Q2kTm.P
y

k
f;Q

y

k
g/.x/: �

A final ingredient that we will need in the proof of Theorem 6 is the following lemma, which appears
in [Ruan 2010]:

Lemma 53. Let f 2 S.Rn/, and 1� l � n, and fi1; : : : ; ilg � f1; : : : ; ng. Then

kf kLp .
� X

k1;:::;kl

ˇ̌
Q
i1
k1
� � �Q

il
kl
f
ˇ̌2�12

Lp

for any 0 < p <1.
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Lemma 53 above states that the Lp norm of f is bounded by the Lp norm of a square function
associated with the variables xi1 ; : : : ; xil , even when 0 < p � 1. In the case p > 1, it is well known that
the two norms are equivalent. When p < 1, the proof makes use of multiparameter Hardy spaces.

5.1. Proof of Theorem 6. We start with the proof in the case BHT˝…, in order to make the presentation
clear.

(a) Assume that….f; g/D
P
kQk.Pkf �Qkg/. Then Proposition 52 implies that BHT˝….f; g/.x; y/DP

kQ
2
k

BHT.P y
k
f;Q

y

k
g/.x/. Lemma 53 yields

kBHT˝…kLs.R2/ .
�X

k

ˇ̌
Q2kBHT.P y

k
f;Q

y

k
g/
ˇ̌2�12

Ls.R2/

:

For the paraproducts that we are considering, Qk.Pkf �Qkg/.y/D Pkf .y/ �Qkg.y/, so we need to
estimate �X

k

ˇ̌
BHT.P y

k
f;Q

y

k
g/
ˇ̌2�12

Ls.R2/

:

We first estimate the Ls norm of x 7!
�P

k jBHT.P y
k
f;Q

y

k
g/.x/j2

� 1
2 , and Fubini will imply the desired

result for BHT˝…. Here we use the vector-valued extension for the bilinear Hilbert transform

BHT W Lp.`1/�Lq.`2/! Ls.`2/;

which holds whenever .p; q; s/ 2 Range.BHT/. More exactly,

kBHT˝…kLs.R2/ .


�X

k

ˇ̌
BHT.P y

k
f;Q

y

k
g/.x/

ˇ̌2�12
Lsx


Lsy

.

sup
k

jP
y

k
f j

L
p
x

�X
k

jQ
y

k
gj2
�1
2

L
q
x


Lsy

.
sup

k

jP
y

k
f j

L
p
x


L
p
y


�X

k

jQ
y

k
gj2
�1
2

L
q
x


L
q
y

. kf kp kgkq:

To get the conclusion, we are using Fubini again, and the boundedness of the maximal and square function
operators.

(b) The case ….f; g/D
P
k Pk.Qkf;Qkg/ is more direct, but the ideas are similar. The functions ' in

the paraproduct definition are such that ….f; g/D
P
k.Qkf �Qkg/, so we have

BHT˝….f; g/.x; y/D
X
k

BHT.Qy
k
f;Q

y

k
g/.x/:
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Now we use the vector-valued extension BHT W Lp.`2/�Lq.`2/! Ls.`1/ (which is well-defined for
any .p; q; s/ 2 Range.BHT/) together with Fubini and the boundedness of the square function to get

kBHT˝…kLs.R2/ .


X
k

ˇ̌
BHT.Qy

k
f;Q

y

k
g/.x/

ˇ̌
Lsx


Lsy

.


�X

k

jQ
y

k
f j2

�1
2

L
p
x

�X
k

jQ
y

k
gj2
�1
2

L
q
x


Lsy

. kf kp kgkq:

The general case of Theorem 6 is similar, but slightly more technical. We present it below for
completeness. The paraproducts can be of three types, as seen in (53). This generates a partition of
f1; : : : ; ng into three subsets of indices I1, I2 and I3 so that if k 2 I1, then

….f; g/.y/D
X
k

Qk.Pkf �Qkg/.y/;

and similarly for I2 and I3.
Because the projections on different coordinates commute, i.e., Qi

k
P
j

l
DP

j

l
Qi
k

and Qi
k
Q
j

l
DQ

j

l
Qi
k

,
we can assume

I1 D f1; : : : ; lg; I2 D fl C 1; : : : ; l C dg; I3 D fl C d C 1; : : : ; ng:

Of course, we allow the possibility that one or even two of these sets of indices are empty. With this
assumption, Proposition 52 applied iteratively yields

BHT˝…˝ � � �˝….f; g/.x; y1; : : : ; yn/

D

X
k1;:::;kn

Q1k1 � � �Q
l
kl
QlC1
klC1
� � �QlCd

klCd
P lCdC1
klCdC1

� � �P nknı

BHT
�
P
y1
k1
� � �P

yl
kl
Q
ylC1
klC1
� � �Q

yn
kn
f;Q

y1
k1
� � �Q

yl
kl
PklC1 � � �P

ylCd
klCd

Q
ylCdC1
klCdC1

� � �Q
yn
kn
g
�
.x/:

The outer-most expressions Q1
k1
� � �Ql

kl
QlC1
klC1
� � �QlCd

klCd
P lCdC1
klCdC1

� � �P n
kn

are extremely important.
Expressions of the type Pk will be associated with `1 norms, and the Qk with `2 norms and square
functions. Here we want to apply Lemma 53, so we need to deal with the Qk functions first. Once we do
this, we can estimate the Lr norm of BHT˝…˝ � � �….f; g/ by

Š

� X
k1;:::;klCd

ˇ̌̌̌ X
klCdC1;:::;kn

P lCdC1
klCdC1

� � �P nknBHT
�
P
y1
k1
� � �Q

ylC1
klC1
� � �f;Q

y1
k1
� � �P

ylC1
klC1
� � �Q

ylCdC1
klCdC1

� � �g
�ˇ̌̌̌2�12

r

.
� X

k1;:::;klCd

ˇ̌̌̌ X
klCdC1;:::;kn

ˇ̌
BHT

�
P
y1
k1
� � �Q

ylC1
klC1
� � �f;Q

y1
k1
� � �P

ylC1
klC1
� � �Q

ylCdC1
klCdC1

� � �g
�ˇ̌ˇ̌̌̌2�12

r

. kf kp kgkq:
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For the last part we used the following vector-valued estimates for the BHT:

Lp
�
`1.� � � .`1„ ƒ‚ …

l

.`2.� � � .`2„ ƒ‚ …
d

.`2.� � � .`2„ ƒ‚ …
n�l�d

// � � �
�
�Lq

�
`2.� � � .`2„ ƒ‚ …

l

.`1.� � � .`1„ ƒ‚ …
d

.`2.� � � .`2„ ƒ‚ …
n�l�d

// � � �
�

7! Ls
�
`2.� � � .`2„ ƒ‚ …

l

.`2.� � � .`2„ ƒ‚ …
d

.`1.� � � .`1„ ƒ‚ …
n�l�d

// � � �
�

together with the boundedness of the maximal operator and square function.
Similarly, we can obtain estimates for …˝

d1
˝BHT˝…˝

d2 within the same range as that of BHT.
Some partial results in mixed norm Lp spaces can be obtained too, but the general case, for arbitrary
values of d1 and d2 remains open. We present a few particular cases that illustrate the main ideas, without
being too technical.

(i) Here, we prove mixed norm Lp estimates for …1 ˝ BHT˝…3, where …1 D
P
kQ

1
k
.P 1
k
�Q1

k
/,

…3 D
P
l Q

3
l
.Q3

l
�P 3
l
/, and the exponents pj ; qj are in Œ2;1/. We note that

…1˝BHT˝…3.f; g/.x; y; z/D
X
k;l

Q1kQ
3
l BHT.P xkQ

z
l f;Q

x
kP

z
l g/.y/;

and we want to estimate the above expression in the space k � k
L
s1
x L

s2
y L

s3
z

. The key observation is that
whenever 1 < s2; s3 <1,X

k;l

Q1kQ
3
l F.x; y; z/


L
s1
x L

s2
y L

s3
z

.
�X

k;l

ˇ̌
Q1kQ

3
l F.x; y; z/

ˇ̌2�12
L
s1
x L

s2
y L

s3
z

; (54)

which is a Banach-valued equivalent of Lemma 53. This result, for s1 > 1, can be found in [Fernandez
1987; Rubio de Francia et al. 1986], and it follows from the boundedness of Calderón–Zygmund operators
(the dual of the square function is such an operator) on Lp spaces with mixed norms. The proof in the
case s1 � 1 is a Banach space adaptation of the proof of Lemma 53. Given the special properties of the
Q1
k

and Q3
l

operators, we obtain

…1˝BHT˝…3.f; g/

L
s1
x L

s2
y L

s3
z
.
�X

k;l

ˇ̌
BHT.P xkQ

z
l f;Q

x
kP

z
l g/.y/

ˇ̌2�12
L
s1
x L

s2
y L

s3
z

:

The multiple vector-valued estimates

BHT W Lp2y .L
p3
z .`

1.`2////�Lq2y .L
q3
z .`

2.`1////! Ls2y .L
s3
z .`

2.`2////;

which exist in the local L2 case at least, together with Hölder’s inequality imply…1˝BHT˝…3.f; g/

L
s1
x L

s2
y L

s3
z

.
sup
k

�X
l

jP xkQ
z
l f .y/j

2

�1
2

L
p1
x L

p2
y L

p3
z

�X
k

ˇ̌
sup
l

jQxkP
z
l g.y/j

ˇ̌2�12
L
q1
x L

q2
y L

q3
z

. kf k
L
p1
x L

p2
y L

p3
z
kgk

L
q1
x L

q2
y L

q3
z
:
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The last inequality follows again from Banach-valued extensions of convolution operators. Since our proof
makes use of multiple vector-valued estimates for BHT, we cannot obtain mixed norm Lp estimates for
all the exponents in the Banach range. From the above example, one can see that besides the constraints
imposed by the square functions and maximal operators, we also need .p3; q3; s3/ 2Dp2;q2;s2 .

(ii) If d1 D 0 and d2 D 1, we have

BHT˝… W Lp1x L
p2
y �L

q1
x L

q2
y ! Ls1x L

s2
y

whenever 1 < p2; q2; s2 <1, 1 < p1; q1 �1, 2
3
< s1 <1 and .p2; q2; s2/ 2Dp1;q1;s1 .

(iii) If d1 D 1 and d2 D 0, we have

…˝BHT W Lp1x L
p2
y �L

q1
x L

q2
y ! Ls1x L

s2
y

whenever 1 < p2; q2; s2 <1, 1 < p1; q1 �1, 1
2
< s1 <1. Since the “target” spaces (that is, inner

spaces in the mixed norms) are strictly between 1 and1, the outer L1 cases (that is, p1D1 or q1D1)
follow easily from similar estimates on the adjoints.

We note that mixed norm estimates for …˝BHT appear also in [Di Plinio and Ou 2015], where all the
inner spaces involved are Lp spaces with 1 < p <1 (in our notation, that means 1 < p2; q2; s2 <1).

6. Leibniz rules: Theorem 4

Now we present some ideas behind the proof of Theorem 4. Littlewood–Paley projections play an
important role when dealing with derivatives:

D˛1D
ˇ
2 .f �g/.x; y/D

X
k;l

�
.f �'k˝'l/ � .g � k˝ l/

�
� .D˛1 k˝D

ˇ
2 l/.x; y/

D

X
k;l

�
.f �'k˝'l/ � .g � k˝ l/

�
� .2k˛ z k˝ 2

lˇ z l/.x; y/;

where
yz k.�/D

j�j˛

2k˛
O k.�/ and yz l.�/D

j�jˇ

2lˇ
O l.�/:

Then one can move the 2k˛ inside, and couple it with the  k because 2k˛ k.x/DD˛
zz k.x/. Here

yzz k.�/D
2k˛

j�j˛
y k.�/:

In this way, we obtain D˛1D
ˇ
2 .f � g/ D

z…˝ z….f;D˛1D
ˇ
2 g/C eight other similar terms. We can

estimate …˝… in Lp spaces with mixed norms, as long as the “outside” functions y k and y'k are
constantly equal to 1 on 2k�2 � j�j � 2kC2 and j�j � 2kC2 respectively. The operators z… are slightly
different, but using Fourier series we can write z….F;G/ as

.F;G/ 7!
X
n2Z

cn
X
k;l

�
F � .'k˝'l/ �G � .

zz k˝
zz l/
�
� k˝ z l;n.x; y/:
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Here the coefficients satisfy jcnj. n�M, and  k;n.x/D  k.xC 2�kn/. Now notice that the right-hand
side above becomes X

n

cn
X
l

Q2l
z….P

y

l;n
F;
zzQ
y

l;n
G/.x/;

which is a superposition of …˝… operators.
The proof of the Leibniz rule follows from

(1) (multiple) vector-valued estimates for the paraproduct

z….f; g/D
X
l

�
.f �'l/ � .g �

zz l/
�
� z l ;

(2) the boundedness of the shifted maximal and square functions:sup
l

jf �'l;nj

p
. loghnikf kp;

�X
l

jf �
zz l;nj

2

�1
2

p

. loghnikf kp:

Returning to the Leibniz rules, we have for s1; s2 � 1,kD˛1Dˇ2 .f; g/kLs2y Ls1x �X
n

jcnj


X
l

Q2l
z….P

y

l;n
F;
zzQ
y

l;n
G/


L
s2
y


L
s1
x

.
X
n

jcnj


�X

l

ˇ̌
z…ˇ1;ˇ2.P

y

l;n
F;
zzQ
y

l;n
G/
ˇ̌2�12

L
s2
y


L
s1
x

.
X
n

jcnj
sup

l

jP
y

l;n
F j

L
p2
y


L
p1
x


�X

l

j
zzQ
y

l;n
Gj2

�1
2

L
q2
y


L
q1
x

. kf k
L
p1
x L

p2
y
kD˛1D

ˇ
2 gkLq1x L

q2
y
:

Here we used the vector-valued estimates

z… W Lp1x .L
p2
y .`

1//�Lq1x .L
q2
y .`

2//! Ls1x .L
s2
y .`

2//;

as well as the boundedness of the square function and maximal operator. We note that the square function
is in the y-variable, and for that reason at first we cannot allow p2 D 1 or q2 D 1. However, this
obstruction can be removed by using duality.

The same proof works in the case 1
2
< s1 < 1, if 1 < p2; q2 <1. In this case, we use the subadditivity

of k � ks1s1 . The case 1
2
< s1 < 1 and p2 D1 requires a slightly different reasoning, and can be deduced

from the corresponding mixed norm estimates for …˝…. This will be presented at the end of this section.
A slightly more difficult case of the Leibniz rule is when one of the last components is a '-type

function:

D˛1D
ˇ
2 .f �g/.x; y/D

X
k;l

�
.f � k˝'l/ � .g � k˝ l/

�
� .D˛1'k˝D

ˇ
2 l/.x; y/

D

X
k;l

�
.f � k˝'l/ � .g � k˝ l/

�
� .2k˛ z'k˝ 2

lˇ z l/.x; y/:
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In this case

yz'k.�/D
j�j˛

2k˛
O'k.�/;

but z' doesn’t behave as nicely as z ; since yz' is not smooth at the origin, the decay in z' is much slower:

jz'.x/j �
1

.1Cjxj/1C˛
:

We use a Fourier series decomposition of yz'k on its support

yz'k.�/D
X
n2Z

cne
2�in�

2k � O'k.�/; where cn D
1

2k

Z
R

yz'k.�/e
�
2�in�

2k d�:

In this case we only have jcnj � 1=.1C jnj/1C˛, but this is enough for the coefficients to sum up, if
s1 > 1=.1C ˛/. Since s2 � 1, we will not have a similar issue when doing the decomposition in the
second variable.

Following the same line of ideas, the problem reduces to estimatingX
n

cn
X
k

P 1k
z…
� zzQxk;nF;Qxk;nG�.y/;

and it would imply “mixed square functions” estimates of the form�X
n

jQxk;nGj
2

�1
2

L
q1
x L

q2
y

:

This is bounded as long as 1< q1; q2<1, and in order to recover the case pi D1 or qi D1 we want to
make sure that the square functions are in the innermost variable, which is y. So we need a decomposition
of z l , as before. Also, we will need vector-valued estimates for the “generalized paraproduct”

.f; g/ 7!
X
k

.f � k �g � k/� z'k;

where the last component z' has slow decay. The vector spaces involved are .`2; `1; `2/ or .`2; `2; `1/,
and such estimates can be proved using ideas similar to those in Section 4, modulo standard technical
difficulties, as discussed in [Muscalu and Schlag 2013].

We now present the proof of the mixed norm estimates for the biparameter paraproducts:

Proof of Theorem 5. Since the other cases are very similar, we can assume that …y , the paraproduct acting
on the variable y, is of the form

…y. � ; � /D
X
k

Qk
�
Pk. � /;Qk. � /

�
:
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Then we can write …˝… as …˝….f; g/.x; y/D
P
kQ

2
k
….P

y

k
;Q

y

k
/.x/. Then we have

X
k

Q2k….P
y

k
;Q

y

k
/.x/


L
s2
y


L
s1
x

.


�X

k

ˇ̌
….P

y

k
;Q

y

k
/.x/

ˇ̌2�12
L
s2
y


L
s1
x

.
sup

k

jP
y

k
f .x/j


L
p2
y


L
p1
x


�X

k

jQ
y

k
g.x/j2

�1
2

L
q2
y


L
q1
x

:

In the above inequality we used the multiple vector-valued estimate

…x W L
p1
x .L

p2
y .`

1//�Lq1x .L
q2
y .`

2//! Ls1x .L
s2
y .`

2//;

which is a consequence of Theorem 9.
Now we focus on the case p2 D1; 1 < q2 D q <1, since q2 D1 is symmetric. We want to prove

that

…˝… W Lp1x L
1
y �L

q1
x L

q
y! Ls1x L

q
y ;

by using Banach-valued restricted-type interpolation. That is, for any sets of finite measure F;G;H , we
can find a major subset H 0 �H , and we will prove thatˇ̌̌̌Z

R2
…˝….f; g/.x; y/h.x; y/ dx dy

ˇ̌̌̌
. jF j˛1 jGj˛2 jH j˛3 (55)

for any functions f; g and h satisfying

kf .x; � /kL1y � 1F .x/; kg.x; � /kLqy � 1G.x/; kh.x; � /kLq
0

y
� 1H 0.x/;

and .˛1; ˛2; ˛3/ any tuple satisfying ˛1C˛2C˛3 D 1, situated in the neighborhood of
�
1
p1
; 1
p2
; 1
p0

�
.

A triple stopping time similar to the one appearing in the proof of Theorem 7 will allow us to recover
any exterior Lpjx norms, while the interior norms are fixed: L1y ; L

q
y ; L

q
y .

We will consider localizations of the paraproduct acting on the x-variable. More exactly, the following
estimate, the proof of which is a combination of Proposition 50 and Lp estimates for …˝…, is key:

If I0 is a fixed dyadic interval, then …F;G;H
0

I0
˝… W L1x L

1
y �L

q
xL

q
y! L

q
xL

q
y with operatorial norm…F;G;H 0I0

˝…

L1x L

1
y �L

q
xL

q
y!L

q
xL

q
y
D
.…F;G;H 0I0

˝…/�;1

L
q0

x L
q0

y �L
q
xL

q
y!L

1
xL

1
y
:

The latter is bounded above by.…F;G;H 0I0
˝…/�;1


L
q0

x L
q0

y �L
q
xL

q
y!L

1
xL

1
y
. .esizeI01H 0/

1
q
�� .esizeI01G/

1
q0
��
.esizeI01F /

1��;

which is a consequence of the localized multiple vector-valued estimates that always appear in the iterative
step of the helicoidal method.
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More exactly, we haveˇ̌
…
F;G;H
I0

˝….f; g/.x; y/h.x; y/ dx dy
ˇ̌

. .esizeI01H 0/
1
q
�� .esizeI01G/

1
q0
��
.esizeI01F /

1��kh.x; � /k
L
q0

y
� Q�I0


L
q0

x

kg.x; � /kLqy � Q�I0Lqx kf . � ; � /kL1x L1y :
This implies, after performing the usual stopping times, thatˇ̌̌̌Z

R2
.…˝…/.f; g/.x; y/h.x; y/ dx dy

ˇ̌̌̌
.

X
n1;n2;n3

X
I0

ˇ̌̌̌Z
R2
.…

F;G;H 0

I0
˝…/.f; g/.x; y/h.x; y/ dx dy

ˇ̌̌̌
.

X
n1;n2;n3

X
I0

.esizeI01F /
1�� .esizeI01G/

1�� .esizeI01H 0/
1��
jI0j:

From here, the desired Lp estimates follow almost immediately. �

7. Rubio de Francia theorem for iterated Fourier integrals

We end by answering the initial question that motivated the study of vector-valued BHT. More exactly, we
prove Theorem 10, which is a consequence of Theorem 7, with r1; r2 chosen carefully so that 1

r1
C

1
r2
D
1
r

.

Proof of Theorem 10. We start with the case r � 2; this follows from Theorem 7:

�X
k

jBHT.PIkf; PIkg/.x/j
2

�1
2

s

.
�X

k

jPIkf j
r1

� 1
r1


p

�X
k

jPIkgj
r2

� 1
r2


q

(56)

for any 1 < p; q <1; 2
3
< s <1.

This is implied by Rubio de Francia’s theorem, if one can find r1 and r2 with 1
r1
C

1
r2
D

1
2

and

1
p
< 1
r 01
; 1

q
< 1
r 02
:

This is possible as long as 1
s
D

1
p
C
1
q
< 1
r 01
C

1
r 02
D

3
2

, which coincides with the condition that we have
for the range of BHT.

The case 1� r < 2 is similar; for p; q; and s as above, one needs to find r1 and r2 � 2 so that

2� 1
r
D

1
r 01
C

1
r 02
> 1
p
C
1
q
:

Note that 1
p
< 1
r 01
D 1� 1

r
C

1
r2
�

1
r 0
C
1
2

, and similarly for q. Because of this restriction, the operator Tr
is bounded as long as admissible triple

�
1
p
; 1
q
; 1
s0

�
is in the convex hull of the points

.0; 0; 1/;
�
1
2
C

1
r 0
; 1
2
;� 1

r 0

�
;

�
1
2
; 1
2
C

1
r 0
;� 1

r 0

�
;

�
1
2
C

1
r 0
; 0; 1

2
�
1
r 0

�
;

�
0; 1
2
C

1
r 0
; 1
2
�
1
r 0

�
: �
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Remark. An alternative way of proving the boundedness of Tr within the range mentioned in Theorem 10
is by interpolating between

Lp1 �Lq1 ! Ls1.`2/ with p1; q1; s1 in the range of the BHT operator, and (57)

Lp2 �Lq2 ! Ls2.`1/ with p2; q2 > 1; s2 � 1: (58)

7.1. Boundedness of operatorsM1 andM2. In what follows we prove the boundedness of operatorsM1

and M2 presented in (14) and (15):

M1.f1; f2; g/.�/D
X
!

Z
x1<x2

x1;x22!L;x32!R

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3

and

M2.f1; f2; g/.�/D
X
!

Z
x1<L.!L/

x22!L;x32!R

Of1.x1/ Of2.x2/g.x3/e
2�i�.x1Cx2Cx3/ dx1 dx2 dx3:

For both operators, we are going to use the triangle inequality in Lr, the target space for operators M1

and M2. However, if r < 1, this inequality is not available anymore for the quasinorm k � kr and instead
we use the triangle inequality for k � krr . This is the only difference between the Banach and quasi-Banach
case, and for simplicity we assume r � 1. Also, as previously stated, we assume kgkp D 1.

Proposition 54. Let 1 < p < 2 and 1
r
D

1
s
C

1
p0
D

1
p1
C

1
p2
C

1
p0

. ThenM1.f1; f2; g/

r
. kf1kp1 kf2kp2 kgkp:

Proof. Recall that ! 2 D is the mesh of dyadic intervals contained in Œ0; 1�, and we identify them with
their preimage: ! � '�1.!/. We rewrite M1 as

M1.f1; f2; g/.�/D
X
!

BHT.P!Lf1; P!Lf2/.�/ �2g � 1!R.�/:

Then M1.f1; f2; g/

r
.
X
k�0

 X
j!jD2�k

BHT.P!Lf1; P!Lf2/ �2g � 1!R

r

.
X
k�0

� X
j!jD2�k

ˇ̌
BHT.P!Lf1; P!Lf2/

ˇ̌p�1p� X
j!jD2�k

ˇ̌2g � 1!R ˇ̌p0� 1
p0

r

.
X
k�0

� X
j!jD2�k

ˇ̌
BHT.P!Lf1; P!Lf2/

ˇ̌p�1p 
s

� X
j!jD2�k

k2g � 1!Rkp
0

p0

� 1
p0

:

We estimate k2g � 1!Rkp0 . kg � 1!Rkp D 2�
k
p using the Hausdorff–Young theorem. Also, there are

2k dyadic intervals of length 2�k in Œ0; 1� and because of this

M1.f1; f2; g/

r
.
X
k�0

2
�k. 1

p
� 1
p0
/
� X
j!jD2�k

jBHT.P!Lf1; P!Lf2/j
p

�1
p

s

:
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If we estimate the last term using the operator Tp directly, we will not obtain the full range stated above,
as there will appear extra constraints of the type

1
p1
C

1
p
< 3
2
; 1

p2
C

1
p
< 3
2
:

Instead, using Hölder and the fact that 1 < p < 2, we haveBHT.P!Lf1; P!Lf2/

`p.!/

�
BHT.P!Lf1; P!Lf2/


`2.!/

2k.
1
p
� 1
2
/:

Using the boundedness of T2, we have kM1.f1; f2; g/kr .
P
k�0 2

�k. 1
2
� 1
p0
/
kf1kp1kf2kp2 . �

Proposition 55. Let 1 < p < 2 and 1
r
D

1
s
C

1
p0
D

1
p1
C

1
p2
C

1
p0

. ThenM2.f1; f2; g/

r
. kf1kp1 kf2kp2 kgkp;

provided 1
p2
C

1
p0
< 1.

Proof. First, we remark thatˇ̌
M2.f1; f2; g/.�/

ˇ̌
�

X
!

jCf1.�/jjP!Lf2.�/jjbg!R.�/j;

where C is the Carleson operator, bounded on Lp whenever 1 < p <1. From here on the estimates are
similar to those in Proposition 54, but instead of the bilinear operator Tr.f; g/ we will have to use the
more restrictive Rubio de Francia operator RF� :

M2.f1; f2; g/

r
�

X
k�0

Cf1� X
j!jD2�k

jP!Lf2j
p

�1
p
� X
j!jD2�k

j2g � 1!R jp
0

� 1
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r

�

X
k�0

kCf1kp1

� X
j!jD2�k

jP!Lf2j
p

�1
p

p2

� X
j!jD2�k

k2g � 1!Rkp
0

p0

� 1
p0

�

X
k�0

2k.
1
p
� 1
�
/
kCf1kp1

� X
j!jD2�k

jP!Lf2j
�

�1
�

p2

� X
j!jD2�k

k2g � 1!Rkp
0

p0

� 1
p0

�

X
k�0

2
�k. 1

�
� 1
p0
/
kf1kp1 kRF�.f2/kp2 :

If p2 � 2,we can take � D 2 and there are no other restrictions. In the case p2 < 2, Rubio de Francia
requires 1

�
C

1
p2
< 1. This and the condition 1

�
�

1
p0
> 0 (so that the geometric series above is finite) can

be summarized as 1
p2
C

1
p0
< 1. �
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Note added in proof

We recently improved Theorems 4 and 5, allowing for the exponent s2 to be < 1. This is a consequence
of new multiple quasi-Banach valued inequalities for …. In [Benea and Muscalu 2016], we also prove
multiple quasi-Banach valued inequalities for the bilinear Hilbert transform operator, extending also
Theorem 7.
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