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NONLINEAR BOUNDARY LAYERS FOR ROTATING FLUIDS

ANNE-LAURE DALIBARD AND DAVID GÉRARD-VARET

We investigate the behaviour of rotating incompressible flows near a nonflat horizontal bottom. In the flat
case, the velocity profile is given explicitly by a simple linear ODE. When bottom variations are taken
into account, it is governed by a nonlinear PDE system, with far less obvious mathematical properties.
We establish the well-posedness of this system and the asymptotic behaviour of the solution away from
the boundary. In the course of the proof, we investigate in particular the action of pseudodifferential
operators in nonlocalized Sobolev spaces. Our results extend an older paper of Gérard-Varet (J. Math.
Pures Appl. (9) 82:11 (2003), 1453–1498), restricted to periodic variations of the bottom, using the recent
linear analysis of Dalibard and Prange (Anal. & PDE 7:6 (2014), 1253–1315).

1. Introduction

The general concern of this paper is the effect of rough walls on fluid flows, in a context where the rough
wall has very little structure. This effect is important in several problems, like transition to turbulence or
drag computation. For instance, understanding the connection between roughness and drag is crucial for
microfluidics, because friction at solid boundaries is a major factor of energy loss in microchannels. This
issue has been much studied over recent years, through both theory and experiments [Lauga et al. 2007;
Bocquet and Barrat 2007]. Conclusions are ambivalent. On the one hand, rough surfaces may increase
the friction area, and thus enstrophy dissipation. On the other hand, recent experiments have shown that
rough hydrophobic surfaces may lead to drag decrease: air bubbles can be trapped in the humps of the
roughness, generating some slip [Vinogradova and Yakubov 2006; Ybert et al. 2007].

Mathematically, these problems are often tackled by a homogenization approach. Typically, one
considers Stokes equations over a rough plate, modelled by an oscillating boundary of small wavelength
and amplitude:

0ε : x3 = εγ (x1/ε, x2/ε), ε� 1, (1-1)

where the function γ =γ (y1, y2) describes the roughness pattern. Within this formalism, the understanding
of roughness-induced effects comes down to an asymptotic problem, as ε→ 0. The point is to derive
effective boundary conditions at the flat plate 00, retaining in this boundary condition an averaged effect
of the roughness. We refer to the works [Achdou et al. 1998a; 1998b; 1998c; Amirat et al. 2001; Jäger
and Mikelić 2001; 2003; Neuss et al. 2006; Bresch and Milisic 2010; Mikelić et al. 2013] on this topic. In
all of these works, a restrictive hypothesis is made, namely periodicity of the roughness pattern γ . This
hypothesis simplifies greatly the construction of the so-called boundary layer corrector, describing the

MSC2010: primary 35Q30; secondary 35Q86.
Keywords: fluid mechanics, geophysical fluids, Ekman layers, boundary layers.
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small-scale variations of the flow near the boundary. This corrector is an analogue of the cell corrector in
classical homogenization of heterogeneous media.

The main point and difficulty is the mathematical study of the boundary layer equations, which are
satisfied formally by the boundary layer corrector. When γ is periodic in y1, y2, the solution of the
boundary layer system is itself sought periodic, so that well-posedness and qualitative properties of the
system are easy to determine. When the periodicity structure is relaxed, and replaced by general ergodicity
properties, the analysis is still possible, but much more involved, as shown in [Basson and Gérard-Varet
2008; Gérard-Varet 2009; Gérard-Varet and Masmoudi 2010]. A key feature of these articles is the
linearity of the boundary layer system: after the rescaling y = x/ε, it is governed by Stokes equations in
the boundary layer domain

�bl = {y : y3 > γ (y1, y2)}. (1-2)

It thus reads 
−1v+∇ p = 0 in �bl,

div v = 0 in �bl,

v|∂�bl = φ

(1-3)

for some Dirichlet boundary data φ that has no decay as y1, y2 go to infinity, but no periodic structure.
As a consequence, spaces of infinite energy, such as H s

uloc, form a natural functional setting for such
equations.

A natural challenge is to extend this type of analysis to nonlinear systems. This is the goal of the
present paper. Namely, we will study a nonlinear boundary layer system that describes a rotating fluid
near a rough boundary. The dynamics of rotating fluid layers are relevant in the context of geophysical
flows, for which the Earth’s rotation plays a dominant role. The system under consideration reads

v · ∇v+∇ p+ e× v−1v = 0 in �bl,

div v = 0 in �bl,

v|∂�bl = φ.
(1-4)

These are the incompressible Navier–Stokes equations written in a rotating frame, which is the reason for
the extra Coriolis force e× u, where e = e3 = (0, 0, 1)t. The equations in (1-4) can be obtained through
an asymptotics of the full rotating fluid system

Ro(∂t u+ u · ∇u)+ e× u−E1u = 0, div u = 0, (1-5)

where Ro and E are the so-called Rossby and Ekman numbers. These parameters are small in many
applications. In the vicinity of the rough boundary (1-1), and in the special case where

E∼ ε2, Ro∼ ε, (1-6)

it is natural to look for an asymptotic behaviour of the type

uε(t, x)∼ v(t, x1, x2, x/ε),

where v= v(t, x1, x2, y), y ∈�bl. Injecting this ansatz in (1-5) yields the first two equations in the system
(1-4), where the “slow variables” (t, x1, x2) are only parameters and are eluded.
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The main goal of this paper is to construct a solution v of system (1-4), under no structural assumption
on γ . We shall moreover provide information on the behaviour of v away from the boundary. We will in
this way generalize [Gérard-Varet 2003] by the second author in which periodic roughness was considered.
See also [Gérard-Varet and Dormy 2006]. Before stating the main difficulties and results of our study,
several remarks are in order:

(1) The choice of the scaling (1-6), which leads to the derivation of the boundary layer system, may seem
peculiar. It is, however, the richest possible, as it retains all terms in the equation for the boundary layer.
All other scaling would provide a degeneracy of system (1-4).

(2) In the flat case, that is, for the roughness profile γ = 0, and for φ= (φ1, φ2, 0), with φ1, φ2 independent
of y, the solution of (1-5) is explicitly given in complex form by

(v1+ iv2)(y)= (φ1+ iφ2) exp
(
−(1+ i)y3/

√
2
)
, v3 = 0. (1-7)

This profile, sometimes called the Ekman spiral, solves the linear ODE

e× v− ∂2
3v = 0.

Considering roughness turns this linear ODE into a nonlinear PDE, and as we will see, changes drastically
the properties of the solution.

(3) Rather than the Dirichlet condition v|∂�bl = φ, some slightly different settings could be considered:

• One could for instance prescribe a homogeneous Dirichlet condition v|∂�bl = 0, and add a source
term with enough decay in y3. This would correspond to a localized forcing of the boundary layer.

• One could replace the Dirichlet condition by a Navier condition, that is, a condition of the type

D(u)n× n|∂�bl = f, u · n|∂�bl = 0,

with D(u) the symmetric part of ∇u, and n the normal unit vector at the boundary. For instance,
one could think of (1-1) as modelling an oscillating free surface, under the rigid lid approximation.
In this context, the Navier condition would model a wind forcing, and the boundary layer domain
would model the water below the free surface (changing the direction of the vertical axis). We
refer to [Pedlosky 1987] for some similar modelling, and to [Casado-Díaz et al. 2003; Bucur et al.
2008; Bonnivard and Bucur 2012; Dalibard and Gérard-Varet 2011] for the treatment of such Navier
condition. As shown in those papers, some hypothesis on the nondegeneracy of the roughness is
necessary to the mathematical analysis.

However, our analysis does not extend to the important case of an inhomogeneous Dirichlet condition at
infinity, which models a boundary layer driven by an external flow. For linear systems, one can in general
lift this Dirichlet data at infinity, and recover the case of a Dirichlet data at the bottom boundary, like in
(1-3). But for our nonlinear system (1-4), this lift would lead to the introduction of an additional drift
term in the momentum equation, which would break down its rotational invariance.
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2. Statement of the results

Our main result is a well-posedness theorem for the boundary layer system (1-4), where φ is a given
boundary data, with no decay tangentially to the boundary, and satisfying φ · n|∂�bl = 0. As usual in
the theory of steady Navier–Stokes equations, the well-posedness will be obtained under a smallness
hypothesis. We first introduce, for any unbounded �⊂ Rd , the spaces

L2
uloc(�)=

{
f : sup

k∈Zd

∫
B(k,1)∩�

| f |2 <+∞
}
,

and for all m ≥ 0, H m
uloc(�)= { f : ∂α f ∈ L2

uloc(�) ∀α ≤ m}.

These spaces are of course Banach spaces when endowed with their natural norms.

Theorem 1. Let γ be bounded and Lipschitz and �bl be defined as in (1-2). There exists δ0,C > 0, such
that for all φ ∈ H 2

uloc(∂�bl) satisfying φ · n|∂�bl = 0 and ‖φ‖H2
uloc
≤ δ0 system (1-4) has a unique solution

(v, p) with

(1+ y3)
1/3v ∈ H 1

uloc(�bl), (1+ y3)
1/3 p ∈ L2

uloc(�bl),

and

‖(1+ y3)
1/3v‖H1

uloc
+‖(1+ y3)

1/3 p‖L2
uloc
≤ C‖φ‖H2

uloc
.

This theorem generalizes the result of [Gérard-Varet 2003], dedicated to the case of periodic roughness
pattern γ . In this case, the analysis is much easier, as the solution v of (1-4) is itself periodic in y1, y2.
Through standard arguments, one can then build a solution v satisfying∫

T2

∫
y3>γ (y1,y2)

|∇v|2 <+∞.

Moreover, one can establish exponential decay estimates for v as y3 goes to infinity. This exponential
decay is related to the periodicity in the horizontal variables, which provides a Poincaré inequality for
functions with zero mean in x1. When the periodicity assumption is removed, one expects the exponential
convergence to be no longer true: this has been notably discussed in [Gérard-Varet and Masmoudi 2010;
Prange 2013] in the context of the Laplace or the Stokes equation near a rough wall. It is worth noting
that in such context, the convergence can be arbitrarily slow. In fact, there is in general no convergence
when no ergodicity assumption on γ is made. A remarkable feature of our theorem for rotating flows is
that decay to zero persists, despite the nonlinearity, and without any ergodicity assumption on γ . We
emphasize that this decay comes from the rotation term. However, exponential decay is replaced by
polynomial decay, with rate O(y−1/3

3 ) for v.
Let us comment on the difficulties associated with Theorem 1. Of course, the first issue is that the

data φ does not decay as (y1, y2) goes to infinity, so that the solution v is not expected to decay in the
horizontal directions. If �bl were replaced by

�M
bl := {y : M > y3 > γ (y1, y2)}, M > 0,
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together with a Dirichlet condition at the upper boundary, one could build a solution v in H 1
uloc(�

M
bl ),

adapting ideas of Ladyženskaya and Solonnikov [1980] on Navier–Stokes flows in tubes. Among those
ideas, an important one is to obtain an a priori differential inequality on the local energy

E(t) :=
∫
{|(y1,y2)|≤t}

∫
{M>y3>γ (y1,y2)}

|∇v|2.

Such a differential inequality, known in the literature as a Saint-Venant estimate, appeared previously in
other contexts; see for instance [Wheeler and Horgan 1976; Wheeler et al. 1975]. Namely, one shows an
inequality of the type

E(t)≤ CM(E ′(t)+ E ′(t)3/2+ t2).

However, the derivation of this differential inequality relies on the Poincaré inequality between two planes,
or in other words on the fact that �M

bl has a bounded direction. For the boundary layer domain �bl, this is
no longer true, and no a priori bound can be obtained in this way. Moreover, contrary to what happens
for the Laplace equation, one cannot rely on maximum principles to get an L∞ bound.

Under a periodicity assumption on γ , one can restrict the domain to the periodic slab

{y : (y1, y2) ∈ T2, y3 > γ (y1, y2)}.

In this manner, one has again a domain with a bounded direction (horizontal rather than vertical). One
can establish again Saint-Venant estimates leading to the exponential decay mentioned above. It allows
one to prove well-posedness of the boundary layer system. However, this approach does not work in our
framework, where no structure is assumed on the roughness profile γ .

For the Stokes boundary layer flow

−1v+∇ p = 0, div v = 0 in �bl, v|∂�bl = v0, (2-1)

this problem is overcome in [Gérard-Varet and Masmoudi 2010] by N. Masmoudi and the second author.
The main idea there is to get back to the domain �M

bl by imposing a so-called transparent boundary
condition at y3 = M . This transparency condition involves the Stokes analogue of the Dirichlet-to-
Neumann operator, and, despite its nonlocal nature (contrary to the Dirichlet condition), allows then to
apply the method of Solonnikov. We refer to [Gérard-Varet and Masmoudi 2010] for more details.1 Of
course, the use of an explicit transparent boundary condition at y3 = M is possible because v satisfies a
homogeneous Stokes equation in the half-space {y3 > M}, which gives access to explicit formulas.

Such simplification does not occur in the context of our rotating flow system: in particular, the main
issue is the quasilinear term u · ∇u in system (1-4), in contrast with previous linear studies. In fact, even
without this convective term, the analysis is not easy. In other words, the Coriolis–Stokes problem

e× v+∇ p−1v = 0 in �bl,

div v = 0 in �bl,

v|∂�bl = φ

(2-2)

1Actually, [Gérard-Varet and Masmoudi 2010] is concerned with the 2D case. For adaptation to 3D, we refer to [Dalibard and
Prange 2014].
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already raises difficulties. For instance, to use a strategy based on a transparent boundary condition, one
needs to construct the solution of the Dirichlet problem in a half-space for the Stokes–Coriolis operator,
when the Dirichlet data has uniform local bounds. But contrary to the Stokes case, there is no easy
integral representation. Still, such a linear problem was tackled in the recent paper [Dalibard and Prange
2014] by the first author and C. Prange. To solve the Dirichlet problem, they use a Fourier transform in
variables y1, y2, leading to accurate formulas. The point is then to be able to translate information on
the Fourier side to uniform local bounds on v. This requires careful estimates, as spaces like L2

uloc are
defined through truncations in space, which are not so suitable for a Fourier treatment. Similar difficulties
arise in [Alazard et al. 2016], devoted to water waves equations in locally uniform spaces.

The linear study [Dalibard and Prange 2014] is a starting point for our study of the nonlinear system
(1-4), but we will need many refined estimates, combined with a fixed point argument. More precisely,
the outline of the paper is the following.

• Section 3, the main section of the paper, will be devoted to the system
e× v+∇ p−1v = div F in {y3 > M},

div v = 0 in {y3 > M},
v|y3=M = v0.

(2-3)

The data v0 and F will have no decay in horizontal variables (y1, y2). The source term F , which is
reminiscent of u⊗ u, will decay typically like |y3|

−2/3 as y3 goes to infinity. This exponent is coherent
with the decay of u given in Theorem 1. The point will be to establish a priori estimates on a solution v
of (2-3), with no decay in (y1, y2), decaying like |y3|

−1/3 at infinity. Functional spaces will be specified
in due course.

• On the basis of previous a priori estimates, we will show well-posedness of the system
v · ∇v+ e× v+∇ p−1v = 0 in {y3 > M},

div v = 0 in {y3 > M},
v|y3=M = v0

(2-4)

for small enough boundary data v0 (again, in a functional space to be specified). This will be done in the
first subsection of Section 4.

• Finally, through the next subsections of Section 4, we will establish Theorem 1. The solution v of (1-4)
will be constructed with the help of a mapping F = F(ψ, φ), defined in the following way:

(1) First, we will introduce the solution (v−, p−) of
v− · ∇v−+ e× v−+∇ p−−1v− = 0 in �M

bl ,

div v− = 0 in �M
bl ,

v−|∂�bl = φ,

6(v−, p−)e3|y3=M = ψ,

(2-5)

where6(v, p)=∇v−
(

p+ 1
2 |v|

2
)
Id. Note that a quadratic term 1

2 |v|
2 is added to the usual Newtonian

tensor in order to handle the nonlinearity.
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(2) Then, we will introduce the solution (v+, p+) of (2-4), with v0 := v
−
|y3=M .

(3) Eventually, we will define F(ψ, φ) :=6(v+, p+)e3|y3=M −ψ .

The point will be to show that for small enough φ, the equation F(ψ, φ)= 0 has a solution ψ , knowing
that F(0, 0) = 0. This will be obtained via the inverse function theorem (using the linear analysis of
[Dalibard and Prange 2014]). For such ψ , the field v defined by v± over {±y3 > M} will be a solution of
(1-4). Indeed, v is always continuous at y3 = M by the definition of v+, while the condition F(ψ, φ)= 0
means that the normal component of the stress tensor 6(v, p) is also continuous at y3 = M .

3. Stokes–Coriolis equations with source

A central part of the work is the analysis of system (2-3). For simplicity, we take M = 0. The case
without source term (F = 0) was partially analyzed in [Dalibard and Prange 2014], but we will establish
new estimates, notably related to low frequencies. Let us emphasize that the difficulty induced by low
frequencies already appeared in Proposition 2.1 on page 6 of the above work, even in the case of classical
Sobolev data: in such case, some cancellation of the Fourier transform v̂0,3 at frequency ξ = 0 was
assumed. We make a similar hypothesis here. The main theorem of the section is:

Theorem 2. Let m ∈ N, m� 1. Let v0 ∈ H m+1
uloc (R

2) with third component satisfying v0,3 = ∂1v
∗

1 + ∂2v
∗

2 ,
with v∗1 , v∗2 in L2

uloc(R
2). Let F ∈ H m

loc(R
3
+
) such that (1+ y3)

2/3 F ∈ H m
uloc(R

3
+
). There exists a unique

solution v of system (2-3) such that

‖(1+ y3)
1/3v‖Hm+1

uloc (R
3
+)
≤ C

(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖(1+ y3)
2/3 F‖Hm

uloc(R
3
+)

)
(3-1)

for a universal constant C.

Prior to the proof of the theorem, several simplifying remarks are in order:

• Obviously, uniqueness comes down to showing that if F = 0 and v0 = 0, the only solution v of
(2-3) such that (1+ y3)

1/3v ∈ H m
uloc(R

3
+
) is v = 0. This result follows from [Dalibard and Prange 2014,

Proposition 2.1], in which even a larger functional space was considered. Hence, the key statement our
theorem is the existence of a solution satisfying the estimate (3-1).

• In order to show existence of such a solution, we can assume v0,1, v0,2, v∗ := (v∗1 , v
∗

2) and F to be
smooth and compactly supported (resp. in R2 and R3

+
). Indeed, let us introduce

(vn
0,1, v

n
0,2, v

∗,n)(y1, y2) := χ((y1, y2)/n)ρn ? (v0,1, v0,2, v
∗)(y1, y2),

Fn(y) := χ̃(y/n)ρ̃n(y) ? F(y),

where χ ∈ C∞c (R
2), χ̃ ∈ C∞c (R

3) are 1 near the origin, and ρn, ρ̃n are approximations of unity. These
functions are smooth, compactly supported, and satisfy

‖(vn
0,1, v

n
0,2)‖Hm+1

uloc (R
2) ≤ C‖(v0,1, v0,2)‖Hm+1

uloc (R
2),

‖v∗,n‖Hm+2
uloc (R

2) ≤ C‖v∗‖Hm+2
uloc (R

2),

‖(1+ y3)
2/3 Fn

‖Hm
uloc(R

3
+)
≤ C‖(1+ y3)

2/3 F‖Hm
uloc(R

3
+)
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for a universal constant C . Moreover, (vn
0,1, v

n
0,2), v

∗,n and Fn converge strongly to (v0,1, v0,2), v∗ and F
in H m+1(K ), H m+2(K ) and H m(K ′) respectively for any compact set K of R2 and any compact set K ′

of R3
+

. Now, assume that for all n ∈N, there exists a solution vn corresponding to the data vn
0,1, vn

0,2, v∗,n,
and Fn, for which we can get the estimate

‖(1+ y3)
1/3vn
‖Hm+1

uloc (R
3
+)
≤ C

(
‖(vn

0,1, v
n
0,2)‖Hm+1

uloc (R
2)+‖v

∗,n
‖Hm+2

uloc (R
2)+‖(1+ y3)

2/3 Fn
‖Hm

uloc(R
3
+)

)
for a universal constant C . Then,

‖(1+ y3)
1/3vn
‖Hm+1

uloc (R
3
+)
≤ C ′

(
‖(v0,1, v0,2)‖Hm+1

uloc (R
2)+‖v

∗
‖Hm+2

uloc (R
2)+‖(1+ y3)

2/3 F‖Hm
uloc(R

3
+)

)
for a universal constant C ′. We can then extract a subsequence weakly converging to some v, which is
easily seen to satisfy (2-3) and (3-1).

• Finally, if v0,1, v0,2, v∗ and F are smooth and compactly supported, the existence of a solution v of (2-3)
can be obtained by standard variational arguments. More precisely, one can build a function v such that∫

R3
+

|∇v|2 ≤ C
(
‖F‖L2(R2)+‖v0‖H1/2(R2)

)
,∫

R2×{y3<a}
|v|2 ≤ Ca

(
‖F‖L2(R2)+‖v0‖H1/2(R2)

)
∀a > 0.

Higher-order derivatives are then controlled by elliptic regularity. Hence, the whole problem is to establish
the estimate (3-1) for such a solution.

We are now ready to tackle the proof of Theorem 2. We forget temporarily about the boundary condition
and focus on the equations

e× v+∇ p−1v = div F, div v = 0 in R3
+
, (3-2)

Our goal is to construct some particular solution of these equations, satisfying for some large enough m,

‖(1+ z)1/3v‖L∞ ≤ C‖(1+ z)2/3 F‖L∞(Hm
uloc)
. (3-3)

We will turn to the solution of the whole system (2-3) in a second step.

3.1. Orr–Sommerfeld formulation. To handle (3-2), we rely on a formulation similar to Orr and Som-
merfeld’s rewriting of Navier–Stokes. Namely, we wish to express this system in terms of v3 and
ω := ∂1v2− ∂2v1. First, we apply ∂2 to the first line, −∂1 to the second line, and combine to obtain

∂3v3+1ω = s3 := ∂2 f1− ∂1 f2, with f := div F =
(∑

j

∂j Fi j

)
i
. (3-4)

Similarly, we apply ∂1∂3 to the first line of (3-2), ∂2∂3 to the second line, and −(∂2
1 + ∂

2
2 ) to the third line.

Combining the three, we are left with

−∂3ω+1
2v3 = sω := ∂1∂3 f1+ ∂2∂3 f2− (∂

2
1 + ∂

2
2 ) f3. (3-5)
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From ω and v3, one recovers the horizontal velocity components v1, v2 using the system

∂1v1+ ∂2v2 =−∂3v3, ∂1v2− ∂2v1 = ω.

We are led to the (so far formal) expressions

v1 = (∂
2
1 + ∂

2
2 )
−1(−∂3∂1v3− ∂2ω),

v2 = (∂
2
1 + ∂

2
2 )
−1(−∂3∂2v3+ ∂1ω).

(3-6)

Our goal is to construct a solution (v3, ω) of (3-4)–(3-5), by means of an integral representation. Since
the vertical variable will play a special role in this construction, we will denote it by z instead of y3:
y = (y1, y2, z). We write (3-4)–(3-5) in the compact form

L(D, ∂z)V = S, V :=
(
v3

ω

)
, S :=

(
s3

sω

)
, D :=

1
i
(∂1, ∂2),

where L(D, ∂z) is a Fourier multiplier in variables x1, x2 associated with

L(ξ, ∂z) :=

(
∂z (∂2

z − |ξ |
2)

(∂2
z − |ξ |

2)2 −∂z

)
.

We will look for a solution of the form

V ( · , z)=
∫
+∞

0
G(D, z− z′)S( · , z′) dz′+ Vh, (3-7)

where:

• G(D, z) is a matrix Fourier multiplier, whose symbol G(ξ, z) is the fundamental solution over R of
L(ξ, ∂z) for any ξ ∈ R2:

L(ξ, ∂z)G(ξ, z)= δz=0

(
1 0
0 1

)
.

• Vh is a solution of the homogeneous equation. The purpose of the addition of Vh is to ensure the
decay of the solution V. More details will be given in due course.

3.1.1. Construction of the Green function. We start with the construction of the fundamental solution
G(ξ, z). Away from z = 0, it should satisfy the homogeneous system, which requires one to understand
the kernel of the operator L(ξ, ∂z). This kernel is a combination of elements of the form eλz V, where λ is
a root of the characteristic equation

det L(ξ, λ)= 0, i.e., − λ2
− (λ2

− |ξ |2)3 = 0, (3-8)

and V is an associated “eigenelement”, meaning a nonzero vector in ker L(ξ, λ). A careful study of the
characteristic equation was carried out recently in [Dalibard and Prange 2014]. Notice that (3-8) can
be seen as an equation of degree three on Y = λ2

− |ξ |2 (with negative discriminant). Using Cardano’s
formula gives access to explicit expressions. The roots can be written as ±λ1(ξ), ±λ2(ξ) and ±λ3(ξ),
where λ1 ∈ R+, λ2, λ3 have positive real parts, λ1 ∈ R, λ2 = λ3, Imλ2 > 0. The λi are continuous
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functions of ξ (see Remark 4 below for more). The above work also provides their asymptotic behaviour
at low and high frequencies. This behaviour will be very important to establish our estimates.

Lemma 3 [Dalibard and Prange 2014, Lemma 2.4]. As ξ → 0, we have

λ1(ξ)= |ξ |
3
+ O(|ξ |5), λ2(ξ)= eiπ/4

+ O(|ξ |2), λ3(ξ)= e−iπ/4
+ O(|ξ |2).

As ξ →∞, we have

λ1(ξ)= |ξ | −
1
2 |ξ |
−1/3
+ O(|ξ |−5/3),

λ2(ξ)=|ξ |−
1
2 j2
|ξ |−1/3

+O(|ξ |−5/3), λ3(ξ)=|ξ |−
1
2 j |ξ |−1/3

+O(|ξ |−5/3), where j = exp(2iπ/3).

Remark 4. We insist that λ2 and λ3 are distinct and have a positive real part for all values of ξ , whereas
λ1 6= 0 for ξ 6= 0. Moreover, it can be easily checked that λ2

i is a C∞ function of |ξ |2 for i = 1, . . . , 3.
Using the fact that λ2 and λ3 never vanish or merge, while λ1 vanishes for ξ = 0 only, we deduce that
λ2, λ3 are C∞ functions of |ξ |2, and that λ1(ξ) = |ξ |

331(ξ), where 31 ∈ C∞(R2), 31(0) = 1 and 31

does not vanish on R2.

Regarding the eigenelements, an explicit computation shows that for all i = 1, . . . , 3,

V±i :=
(

1
±�i

)
and �i :=

−λi

λ2
i − |ξ |

2
satisfy L(ξ,±λi )V±i = 0. (3-9)

We can now determine G; our results are summarized in Lemma 5 below. We begin with its first
column G1 =

(G11
G21

)
, a solution of L(ξ, ∂z)G1 = δ

( 1
0

)
. As explained above, for z 6= 0, we know G1(ξ, z)

is a linear combination of e±λi z V±i . Furthermore, we want to avoid any exponential growth of G as
z→±∞. Thus G1 should be of the form

G1 =

{∑3
i=1 A+i e−λi z V−i , z > 0,∑3
i=1 A−i eλi z V+i , z < 0.

We now look at the jump conditions at z = 0. For f = f (z), recall that [ f ]|z=z′ := f (z
′
+)− f (z

′
−)

denotes the jump of f at z′. Since{
(∂2

z − |ξ |
2)2G11− ∂zG21 = 0,

∂zG11+ (∂
2
z − |ξ |

2)G21 = δz=0,

we infer that

[G21]|z=0 = 0, [∂zG21]|z=0 = 1, [∂k
z G11]|z=0 = 0, k = 0, . . . , 3.

This yields a linear system of six equations on the coefficients A±i . One finds Ai := A+i =−A−i , and the
system ∑

i

λi�i Ai =
1
2 ,

∑
i

Ai = 0,
∑

i

λ2
i Ai = 0.

Note that ∑
i

λi�i Ai =−
∑

i

λ2
i

λ2
i − |ξ |

2
Ai =−

∑
i

|ξ |2

λ2
i − |ξ |

2
Ai
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taking into account the second equality. Hence, we find|ξ |2/(λ2
1− |ξ |

2) |ξ |2/(λ2
2− |ξ |

2) |ξ |2/(λ2
3− |ξ |

2)

1 1 1
λ2

1 λ2
2 λ2

3

A1

A2

A3

=
−1

2
0
0

.
The determinant of the matrix is

D1 := |ξ |
2 D,

where

D :=

∣∣∣∣∣∣
1/(λ2

1− |ξ |
2) 1/(λ2

2− |ξ |
2) 1/(λ2

3− |ξ |
2)

1 1 1
λ2

1 λ2
2 λ2

3

∣∣∣∣∣∣.
After a few computations, we find that

D1 = |ξ |
2(λ2

2− λ
2
1)(λ

2
3− λ

2
1)

(
1

(λ2
1− |ξ |

2)(λ2
2− |ξ |

2)
−

1
(λ2

1− |ξ |
2)(λ2

3− |ξ |
2)

)
, (3-10)

and

A1 =−
1

2D1
(λ2

3− λ
2
2), A2 =−

1
2D1

(λ2
1− λ

2
3), A3 =−

1
2D1

(λ2
2− λ

2
1). (3-11)

Computations for the second column G2 of G are similar. It is of the form

G2 =

{∑3
i=1 B+i e−λi z V−i , z > 0,∑3
i=1 B−i eλi z V+i , z < 0,

with jump conditions

[∂k
z G22]|z=0 = 0, k = 0, 1, [∂k

z G12]|z=0 = 0, k = 0, . . . , 2, [∂3
z G12]|z=0 = 1.

We find Bi := B+i = B−i and the system�1 �2 �3

λ1 λ2 λ3

λ3
1 λ3

2 λ3
3


B1

B2

B3

=
 0

0
−

1
2

.
The determinant of the matrix is now D2 := −λ1λ2λ3 D, and

B1 =
λ2λ3

2D2

(
1

λ2
2− |ξ |

2
−

1
λ2

3− |ξ |
2

)
, B2 =

λ1λ3

2D2

(
1

λ2
3− |ξ |

2
−

1
λ2

1− |ξ |
2

)
,

B3 =
λ1λ2

2D2

(
1

λ2
1− |ξ |

2
−

1
λ2

2− |ξ |
2

)
.

(3-12)

This concludes the construction of the matrix G. We sum up our results in the following lemma, in which
we also give the asymptotic behaviours of the coefficients Ai , Bi , V±i and of G as ξ → 0 and |ξ | →∞.
The latter follow from Lemma 3 and Remark 4 and are left to the reader.
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Lemma 5. We have

G1 =

{∑3
i=1 Ai e−λi z V−i , z > 0,

−
∑3

i=1 Ai eλi z V+i , z < 0,
G2 =

{∑3
i=1 Bi e−λi z V−i , z > 0,∑3
i=1 Bi eλi z V+i , z < 0,

where

V±i =
(

1
∓λi/(λ

2
i − |ξ |

2)

)
and where Ai and Bi are defined by (3-11) and (3-12) respectively.

Asymptotic behaviour:

• For |ξ | � 1, there exists N > 0 such that Ai , Bi , �i = O(|ξ |N ) for i = 1, . . . , 3, and |�i |& |ξ |−N. As
a consequence, G(ξ, z)= O(|ξ |N ) for all z.

• As ξ → 0, we have

Ai (ξ)→ Ai ∈ C∗, i = 1, . . . , 3,

B1(ξ)∼
B1

|ξ |
, B1 ∈ C∗, Bi (ξ)→ Bi ∈ C∗, i = 2, 3,

�1 ∼�1|ξ |, �1 ∈ C∗, �i (ξ)→�i ∈ C∗, i = 2, 3.

(3-13)

More precisely, we can write, for instance,

B1(ξ)=
B1

|ξ |
β1(ξ) ∀ξ ∈ R2

for some function β1 ∈ C∞(R2) such that β1(0)= 1. Similar statements hold for the other coefficients.
It follows that

G(ξ, z)=
(

O(1) O(|ξ |−1)

O(1) O(1)

)
as |ξ | → 0 for all z ∈ R.

3.1.2. Construction of the homogeneous correction. We will see rigorously below that the field

VG( · , z) :=
∫
+∞

0
G(D, z−z′)S( · , z′)dz′=

∫
+∞

0
F−1
ξ→(y1,y2)

(
G( · , z−z′)F(y1,y2)→ξ S( · , z′)

)
dz′ (3-14)

is well-defined and satisfies (3-4)–(3-5). However, the corresponding velocity field does not have a good
decay with respect to z. This is the reason for the additional field Vh in formula (3-7). To be more specific,
let us split the source term S into S(z′)= S0(z′)+ ∂z′S1(z′)+ ∂2

z′S
2(z′), with

S0(z′) :=
(
∂2(∂1 F11+ ∂2 F12)− ∂1(∂1 F21+ ∂2 F22)

−(∂2
1 + ∂

2
2 )(∂1 F31+ ∂2 F32)

)
(3-15)
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and

S1(z′) :=
(

∂2 F13− ∂1 F23

∂1(∂1 F11+ ∂2 F12)+ ∂2(∂1 F21+ ∂2 F22)− (∂
2
1 + ∂

2
2 )F33

)
,

S2(z′) :=
(

0
∂1 F13+ ∂2 F23

)
.

(3-16)

Roughly, the idea is that

V ( · , z) :=
∫
+∞

0

(
G(D, z− z′)S0(z′)+ ∂zG(D, z− z′)S1(z′)+ ∂2

z G(D, z− z′)S2(z′)
)

dz′

has a better decay. Using the fact that

∂zG(D, z− z′)=−∂ ′zG(D, z− z′),

we see that going from VG to V is possible through integrations by parts in the variable z′, which generates
boundary terms. We recall that the jump of G(D, z− z′) at z = z′ is zero, and that[

∂zG(D, z− z′)
]∣∣

z=z′ =

(
0 0
1 0

)
.

On the other hand, the first component of S2 is zero, so that the jump of ∂zG21 at z = z′ is not involved in
the two integrations by parts of ∂2

z G(D, z− z′)S2(z′). Formal computations eventually lead to

Vh( · , z) := V ( · , z)− VG( · , z)

= −
[
G(D, z− z′)

(
S1( · , z′)+ ∂z S2( · , z′)

)]+∞
0 +

[
∂zG(D, z− z′)S2( · , z′)

]+∞
0

= G(D, z)
(
S1( · , 0)+ ∂z′S2( · , 0)

)
− ∂zG(D, z)S2( · , 0).

Back to the expression of the Green function, we get

Vh( · , z)=−
(∑

i Ai e−λi z V−i
∑

i Bi e−λi z V−i
)(

S1( · , 0)+ ∂z′S2( · , 0)
)

+
(∑

i Aiλi e−λi z V−i
∑

i Biλi e−λi z V−i
)
S2( · , 0). (3-17)

It is a linear combination of terms of the form e−λi z V−i , and therefore satisfies the homogeneous Orr–
Sommerfeld equations. Hence, V is (still formally) a solution of (3-4)–(3-5).

We now need to put these formal arguments on rigorous grounds. As mentioned after Theorem 2, there
is no loss of generality assuming that F is smooth and compactly supported.

Lemma 6. Let F be smooth and compactly supported. The formula (3-7), with Vh given by (3-17), defines
a solution V = (v3, ω)

t of (3-4)–(3-5) satisfying

V ∈ L∞loc(R+, H m(R2)), |D|−1ω ∈ L∞loc(R+, H m(R2)) for any m.

Proof. Let us show first show that the integral term VG (see (3-14)) satisfies the properties of the lemma.
The main point is to show that for any z, z′ ≥ 0, the function

Jz,z′ : ξ → G(ξ, z− z′)Ŝ(ξ, z′) belongs to L2((1+ |ξ |2)m/2dξ)× L2(|ξ |−1(1+ |ξ |2)m/2dξ)
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for all m. Therefore, we recall that F̂ = F̂(ξ, z′) is in the Schwartz class with respect to ξ , smooth and
compactly supported in z′. Also, G(ξ, z− z′) is smooth in ξ 6= 0 (see Remark 4), and continuous in z, z′.
It implies that Jz,z′ is smooth in ξ 6= 0, continuous in z, z′. It remains to check its behaviour at high and
low frequencies.

• At high frequencies (|ξ | � 1), from Lemma 5, it is easily seen that Jz,z′ is bounded by

|Jz,z′(ξ)| ≤ C |ξ |N
2∑

k=0

|∂k
z′ F̂(ξ, z′)|

for some N. As F̂ and its z′-derivatives are rapidly decreasing in ξ , it will belong to any L2 with
polynomial weight.

• At low frequencies (ξ ∼ 0), one can check that |Ŝ(ξ, z′)| ≤ C |ξ |. Hence, using again the bounds
derived in Lemma 5,

G(ξ, z− z′)Ŝ(ξ, z′)=
(

O(1)
O(|ξ |)

)
.

The result follows.

From there, by standard arguments, VG defines a continuous function of z with values in H m(R2)×

|D|−1 H m(R2) for all m. Moreover, a change of variable gives

VG( · , z)=
∫
+∞

0
G(D, z′)S( · , z− z′) dz′.

By the smoothness of S, we deduce that VG is smooth in z with values in the same space. The fact that it
satisfies (3-4)–(3-5) comes of course from the properties of the Green function G, and is classical. We
leave it to the reader.

To conclude the proof of the lemma, we still have to consider the homogeneous correction Vh . Again,
Vh is smooth in ξ 6= 0 and z. Thanks to the properties of F, it is decaying fast as |ξ | goes to infinity.
Moreover, from the asymptotics above, one can check that Vh =

( O(1)
O(|ξ |)

)
for |ξ |� 1. Finally, as its Fourier

transform is a linear combination of e−λi (ξ)z V−i (ξ), it satisfies (3-4)–(3-5) without source. �

Let us stress that, with the same kind of arguments, one can justify the integration by parts mentioned
above, and write

V ( · , z) :=
∫
+∞

0

2∑
k=0

∂k
z G(D, z− z′)Sk(z′) dz′. (3-18)

We will now try to derive the estimate (3-3), starting from this formulation.

3.1.3. Main estimate. By Lemma 6, we know that formula (3-7) (or equivalently (3-18)) defines a
solution V of (3-4)–(3-5). Our main goal in this section is to establish that V obeys inequality (3-3). Our
main ingredient will be:

Lemma 7. Let χ = χ(ξ) ∈ C∞c (R
2), and P = P(ξ) ∈ C∞(R2

\ {0}) defined by

P(ξ)= pk(ξ)|ξ |
α−k Q(ξ)
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near ξ = 0, with pk a homogeneous polynomial in ξ1, ξ2 of degree k, α > 0, and Q ∈ C∞(R2). Assume
furthermore that α− k ≥−2. For v0 ∈ L1

uloc(R
2), we define ui

= ui (y1, y2, z) by

ui ( · , z) := χ(D)P(D)e−λi (D)zv0. (3-19)

Then, there exists C and δ > 0 independent of v0 such that

‖eδzu2
‖L∞(R3

+)
+‖eδzu3

‖L∞(R3
+)
‖ ≤ C‖v0‖L1

uloc
.

Moreover, there exists C and δ > 0 independent of v0 such that

‖(1+ z)
α
3 u1
‖L∞(R3

+)
‖ ≤ C‖v0‖L1

uloc
.

Remark 8. Showing that the definition (3-19) makes sense is part of the proof of the lemma. Namely, it
is shown that for any z > 0, the kernel

K (x1, x2, z) := F−1
ξ→(x1,x2)

(
χ(ξ)P(ξ)e−λi (ξ)z

)
defines an element of L1(R2). In particular, (3-19) is appropriate: ui

= K ( · , z) ? v0 defines (at least) an
L1

uloc function as the convolution of functions of L1 and L1
uloc.

We refer to Appendix A for a proof. Lemma 7 is the source of the asymptotic behaviour of the
solution v of (1-4). As always in this type of boundary layer problem, the asymptotic behaviour is given
by low frequencies, corresponding to the cut-off χ. In particular, the decay is given by the characteristic
root λ1(ξ), which vanishes at ξ = 0.

Proof of estimate (3-3). We distinguish between low and high frequencies.

Low frequencies. We introduce some χ = χ(ξ) ∈ C∞c (R
2) equal to 1 near ξ = 0. We consider

V [
=

∫
R+

2∑
k=0

I k( · , z, z′) dz′,

I k( · , z, z′) := χ(D)∂k
z G(D, z− z′)Sk( · , z′).

(3-20)

In what follows, we write
Sk
= (sk

3 , sk
ω)

t and I k
= (I k

3 , I k
ω)

t .

We will use the following fact, which is a straightforward consequence of (3-15)–(3-16): ŝ0
3 and ŝ1

ω are
homogeneous of degree 2 and ŝ0

ω is homogeneous of degree 3, while ŝ1
3 and ŝ2

ω are homogeneous of
degree 1.

Study of I 0. We find

I 0
3 ( · , z, z′)= sgn(z− z′)χ(D)

∑
Ai (D)e−λi (D)|z−z′|s0

3( · , z′)+χ(D)
∑

Bi (D)e−λi (D)|z−z′|s0
ω( · , z′),

I 0
ω( · , z, z′)=−χ(D)

∑
Ai (D)�i (D)e−λi (D)|z−z′|s0

3( · , z′)

− sgn(z− z′)χ(D)
∑

Bi (D)�i (D)e−λi (D)|z−z′|s0
ω( · , z′).
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We also have

∂z I 0
3 ( · , z, z′)=−χ(D)

∑
Ai (D)λi (D)e−λi (D)|z−z′|s0

3( · , z′)

− sgn(z− z′)χ(D)
∑

Bi (D)λi (D)e−λi (D)|z−z′|s0
ω( · , z′).

We note that ŝ0
3(ξ, z′) and ŝ0

ω(ξ, z′) are products of components of F̂(ξ, z′) by homogeneous polynomials
of degrees 2 and 3 respectively in ξ . Using the asymptotic behaviours derived in Lemma 5 together with
Lemma 7, we deduce

‖I 0
3 ( · , z, z′)‖L∞(R2) ≤

C
(1+ |z− z′|)2/3

‖F( · , z′)‖L1
uloc(R

2),

‖I 0
ω( · , z, z′)‖L∞(R2) ≤

C
1+ |z− z′|

‖F( · , z′)‖L1
uloc(R

2),∥∥∥∥ D
|D|2

I 0
ω( · , z, z′)

∥∥∥∥
L∞(R2)

≤
C

(1+ |z− z′|)2/3
‖F( · , z′)‖L1

uloc(R
2),∥∥∥∥ D

|D|2
∂z I 0

3 ( · , z, z′)
∥∥∥∥

L∞(R2)

≤
C

(1+ |z− z′|)4/3
‖F( · , z′)‖L1

uloc(R
2).

(3-21)

The last two bounds will be useful when estimating the horizontal velocity components through (3-6).
We insist that ∂z I 0

3 has a better behaviour than I 0
3 , because there is an extra factor λ1(D) in front of A1

and B1, which gives a higher degree of homogeneity at low frequencies for the term in exp(−λ1(D)z).
This is why we can apply D/|D|2 to that term. As for the terms in exp(−λi (D)z) for i = 2, 3, there is no
singularity near ξ = 0 when we apply D/|D|2 because of the homogeneity of degrees 2 and 3 in ŝ0

3(ξ, z′)
and ŝ0

ω(ξ, z′) respectively.

Study of I 1. We find

I 1
3 ( · , z, z′)=−χ(D)

∑
Ai (D)λi (D)e−λi (D)|z−z′|s1

3( · , z′)

− sgn(z− z′)χ(D)
∑

Bi (D)λi (D)e−λi (D)|z−z′|s1
ω( · , z′),

I 1
ω( · , z, z′)= sgn(z− z′)χ(D)

∑
Ai (D)λi (D)�i (D)e−λi (D)|z−z′|s1

3( · , z′)

+χ(D)
∑

Bi (D)λi (D)�i (D)e−λi (D)|z−z′|s1
ω( · , z′),

and also

∂z I 1
3 ( · , z, z′)= sgn(z− z′)χ(D)

∑
Ai (D)(λi (D))2e−λi (D)|z−z′|s1

3( · , z′)

+χ(D)
∑

Bi (D)(λi (D))2e−λi (D)|z−z′|s1
ω( · , z′).

Thanks to the derivation of the Green function with respect to z, an extra factor λ1(D) appears together
with A1(D) or B1(D). This provides a higher degree of homogeneity in |ξ | at low frequencies. It
compensates for the loss of homogeneity of S1 compared to S0. More precisely, we note that ŝ1

3(ξ, z′)
and ŝ1

ω(ξ, z′) are products of components of F̂(ξ, z′) by homogeneous polynomials of degrees 1 and 2
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respectively in ξ . We also get

‖I 1
3 ( · , z, z′)‖L∞(R2) ≤

C
(1+ |z− z′|)4/3

‖F( · , z′)‖L1
uloc(R

2),

‖I 1
ω( · , z, z′)‖L∞(R2) ≤

C
(1+ |z− z′|)5/3

‖F( · , z′)‖L1
uloc(R

2),∥∥∥∥ D
|D|2

I 1
ω( · , z, z′)

∥∥∥∥
L∞(R2)

≤
C

(1+ |z− z′|)4/3
‖F( · , z′)‖L1

uloc(R
2),∥∥∥∥ D

|D|2
∂z I 1

3 ( · , z, z′)
∥∥∥∥

L∞(R2)

≤
C

(1+ |z− z′|)2
‖F( · , z′)‖L1

uloc(R
2).

(3-22)

Study of I 2. We find

I 2
3 ( · , z, z′)= sgn(z− z′)χ(D)

∑
Ai (D)(λi (D))2e−λi (D)|z−z′|s2

3( · , z′)

+χ(D)
∑

Bi (D)(λi (D))2e−λi (D)|z−z′|s2
ω( · , z′),

as well as

I 2
ω( · , z, z′)=−χ(D)

∑
Ai (D)(λi (D))2�i (D)e−λi (D)|z−z′|s2

3( · , z′)

− sgn(z− z′)χ(D)
∑

Bi (D)(λi (D))2�i (D)e−λi (D)|z−z′|s2
ω( · , z′),

and

∂z I 2
3 ( · , z, z′)=−χ(D)

∑
Ai (D)(λi (D))3e−λi (D)|z−z′|s2

3( · , z′)

− sgn(z− z′)χ(D)
∑

Bi (D)(λi (D))3e−λi (D)|z−z′|s2
ω( · , z′).

This time, s2
3 = 0 and ŝ2

ω is homogeneous of degree 1. We get as before that

‖I 2
3 ( · , z, z′)‖L∞(R2) ≤

C
(1+ |z− z′|)2

‖F( · , z′)‖L1
uloc(R

2),

‖I 2
ω( · , z, z′)‖L∞(R2) ≤

C
(1+ |z− z′|)7/3

‖F( · , z′)‖L1
uloc(R

2),∥∥∥∥ D
|D|2

I 2
ω( · , z, z′)

∥∥∥∥
L∞(R2)

≤
C

(1+ |z− z′|)2
‖F( · , z′)‖L1

uloc(R
2),∥∥∥∥ D

|D|2
∂z I 2

3 ( · , z, z′)
∥∥∥∥

L∞(R2)

≤
C

(1+ |z− z′|)8/3
‖F( · , z′)‖L1

uloc(R
2).

(3-23)

Combining (3-21)–(3-23), we find

‖v
[

3( · , z)‖L∞(R2) ≤ C
∫
+∞

0

1
(1+ |z− z′|)2/3

1
(1+ z′)2/3

dz′‖(1+ z2/3)F‖L∞(L1
uloc(R

2)),

‖ω[( · , z)‖L∞(R2) ≤ C
∫
+∞

0

1
1+ |z− z′|

1
(1+ z′)2/3

dz′‖(1+ z2/3)F‖L∞(L1
uloc(R

2)),
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and ∥∥∥∥ D
|D|2

ω[( · , z)
∥∥∥∥

L∞(R2)

≤ C
∫
+∞

0

1
(1+ |z− z′|)2/3

1
(1+ z′)2/3

dz′‖(1+ z)2/3 F‖L∞(L1
uloc(R

2)),∥∥∥∥ D
|D|2

∂zv
[

3( · , z)
∥∥∥∥

L∞(R2))

≤ C
∫
+∞

0

1
(1+ |z− z′|)4/3

1
(1+ z′)2/3

dz′‖(1+ z)2/3 F‖L∞(L1
uloc(R

2)).

We deduce that (see Lemma 16 in Appendix B)

‖v
[

3( · , z)‖L∞(R2) ≤ C(1+ z)−1/3
‖(1+ z2/3)F‖L∞(L1

uloc(R
2)),

‖ω[( · , z)‖L∞(R2) ≤ C(1+ z)−2/3 ln(2+ z)‖(1+ z2/3)F‖L∞(L1
uloc(R

2)),
(3-24)

and ∥∥∥∥ D
|D|2

ω[( · , z)
∥∥∥∥

L∞(R2)

≤ C(1+ z)−1/3
‖(1+ z2/3)F‖L∞(L1

uloc(R
2)),∥∥∥∥ D

|D|2
∂zv

[

3( · , z)
∥∥∥∥

L∞(R2)

≤ C(1+ z)−2/3 ln(2+ z)‖(1+ z2/3)F‖L∞(L1
uloc(R

2)).

(3-25)

High frequencies. To obtain the estimate (3-3), we still have to control the high frequencies

V #
=

∫
R+

2∑
k=0

J k( · , z, z′) dz′, J k( · , z, z′) := (1−χ(D))∂k
z G(D, z− z′)Sk( · , z′). (3-26)

Instead of Lemma 7, we shall use this (see Appendix A for a proof):

Lemma 9. Let χ ∈C∞c (R
2), with χ=1 in a ball Br := B(0, r) for some r>0. Let P= P(ξ)∈C3

b(R
2
\Br ).

For v0 = v0(y1, y2) ∈ H N
uloc(R

2), N ∈ N, we define ui
= ui (y1, y2, z) by

ui ( · , z) := (1−χ(D))P(D)e−λi (D)zv0. (3-27)

Then, for N large enough and δ > 0 small enough,

‖eδzu1
‖L∞(R3

+)
+‖eδzu2

‖L∞(R3
+)
+‖eδzu3

‖L∞(R3
+)
‖ ≤ C‖v0‖H N

uloc(R
2).

Remark 10. As in the proof of Lemma 7, part of the proof of Lemma 9 gives a meaning to (3-27). In
particular, it is shown that for n large enough, and any z > 0, the kernel

Kn(x1, x2, z) := F−1((1+ |ξ |2)−n(1−χ(ξ))P(ξ)e−λi (ξ)z
)

belongs to L1(R2) so that ui
= Kn ? ((1−1)nv0) defines at least an element of L2

uloc as the convolution
of functions in L1 and L2

uloc (assuming N ≥ 2n).

The analysis is simpler than for low frequencies. From (3-26), (3-15)–(3-16) and Lemma 5, we
decompose the components of J k for k = 0, 1, 2 into terms of the form

(1−χ(D))R(D)e−λi (D)|z−z′|∂
a1
1 ∂

a2
2 F jl,

where F jl are components of our source term F , a1,a2= 0,1,2 with 1 ≤ a1+ a2 ≤ 3, and R(D) is of
the form

R(D)=R
(
λ1(D), λ2(D), λ3(D), D

)
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for some rational expression R=R(λ1, λ2, λ3, ξ). Considering the behaviour of λi (ξ) at infinity (see
Lemma 7 and Remark 4), it can be easily seen that |ξ |−2n R(ξ) ∈ C3

b(R
2
\ Br ) for some n large enough.

Thus, we can apply Lemma 9 with

P(ξ)= |ξ |−2n R(ξ), v0 = (∂
2
1 + ∂

2
2 )

n∂
a1
1 ∂

a2
2 F jl( · , z′).

This shows that for m large enough (m = N + 2n+ 3),

‖J k( · , z, z′)‖L∞(R2) ≤ C e−δ|z−z′|
‖F( · , z′)‖Hm

uloc(R
2). (3-28)

Also, up to taking a larger m, one can check that

‖∂z J k( · , z, z′)‖L∞(R2) ≤ C e−δ|z−z′|
‖F( · , z′)‖Hm

uloc(R
2). (3-29)

We deduce from (3-28)–(3-29) that for m large enough

‖V #( · , z)‖L∞(R2)+‖∂z V #( · , z)‖L∞(R2)≤C
∫
+∞

0
e−δ|z−z′|(1+z′)−2/3 dz′‖(1+z)2/3 F‖L∞(Hm

uloc)

≤C(1+z)−2/3
‖(1+z)2/3 F‖L∞(Hm

uloc)
. (3-30)

Together with (3-24), this inequality implies the estimate (3-3). �

Together with (3-25), inequality (3-30) further yields∥∥∥∥(1+ z)1/3
D
|D|2

∂zv3

∥∥∥∥
L∞(R3

+)

+

∥∥∥∥(1+ z)1/3
D
|D|2

ω

∥∥∥∥
L∞(R3

+)

≤ C‖(1+ z)2/3 F‖L∞(Hm
uloc)
. (3-31)

3.2. Proof of Theorem 2. In the last section, we have constructed a particular solution of (3-4)–(3-5)
satisfying (3-3) and (3-31); in the rest of this section, we denote this particular solution as V p

= (v
p
3 , ω

p)t.
The bound (3-31) implies in particular that∥∥(1+ z)1/3(v p

1 , v
p
2 )
∥∥

L∞(R3
+)
≤ C ‖(1+ z)2/3 F‖L∞(Hm

uloc)
, (3-32)

where v p
1 , v p

2 are recovered from v
p
3 , ωp through formula (3-6).

We still need to make the connection with the solution of (2-3). Following the discussion after
Theorem 2, for smooth and compactly supported data, such a solution exists, and the point is to establish
(3-1). We introduce

v := v− v p, ω = ω−ωp.

Functions v3 and ω satisfy the homogeneous version of the Orr–Sommerfeld equations:

∂3v3+1ω = 0, −∂3ω+1
2v3 = 0. (3-33)

These equations are completed by the boundary conditions

v3|z=0 = v0,3− v
p
3 |z=0, ∂zv3|z=0 =−∂1(v0,1− v

p
1 )− ∂2(v0,2− v

p
2 ),

ω|z=0 = ∂1(v0,2− v
p
2 )− ∂2(v0,1− v

p
1 ).

(3-34)
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System (3-33)–(3-34) is the formulation in terms of vertical velocity and vorticity of a Stokes–Coriolis
system with zero source term and inhomogeneous Dirichlet data. Formal solutions are given by(

v̂3(ξ, z)
ŵ(ξ, z)

)
=

3∑
i=1

e−λi (ξ)zCi (ξ)V−i (ξ), (3-35)

where coefficients Ci obey the system 1 1 1
λ1 λ2 λ3

�1 �2 �3

C1

C2

C3

=
 v̂3|z=0

−∂z v̂3|z=0

−ω̂|z=0

. (3-36)

The determinant D3 of this system is

D3 := (λ2− λ1)(�3−�1)− (λ3− λ1)(�2−�1),

so that D3→ D3 ∈ C∗ as ξ → 0∗.
After tedious computation, we find

C1 =
1

D3

(
(λ2�3− λ3�2)v̂3|z=0+ (�3−�2)∂z v̂3|z=0+ (λ2− λ3)ŵ|z=0

)
,

C2 =
1

D3

(
(λ3�1− λ1�3)v̂3|z=0+ (�1−�3)∂z v̂3|z=0+ (λ3− λ1)ŵ|z=0

)
,

C3 =
1

D3

(
(λ1�2− λ2�1)v̂3|z=0+ (�2−�1)∂z v̂3|z=0+ (λ1− λ2)ŵ|z=0

)
.

(3-37)

Nevertheless, the expressions in (3-35) are not necessarily well-defined, due to possible singularities at
ξ = 0. In particular, if we want to apply Lemma 7, we need the coefficient in front of e−λ1(ξ)z to contain
somehow some positive power of ξ . Using the asymptotics of Lemma 3, we compute

|C1(ξ)| ≤
∣∣v̂3|z=0

∣∣+ ∣∣∂z v̂3|z=0
∣∣+ ∣∣ŵ|z=0

∣∣, (3-38)

|C2(ξ)| ≤ |ξ |
∣∣v̂3|z=0

∣∣+ ∣∣∂z v̂3|z=0
∣∣+ ∣∣ŵ|z=0

∣∣, (3-39)

|C3(ξ)| ≤ |ξ |
∣∣v̂3|z=0

∣∣+ ∣∣∂z v̂3|z=0
∣∣+ ∣∣ŵ|z=0

∣∣ (3-40)

for small |ξ |. The asymptotics is given by:

Lemma 11. The boundary data ∂z v̂3|z=0, ω̂|z=0 in (3-34), as well as v̂0,3|z=0 (which appears in v̂3|z=0)
“contain a power of ξ at low frequencies”. More precisely, for ξ small enough, they can all be decomposed
into terms of the form ξ · f̂ for some f ∈ L2

uloc(R
2). As a consequence, for any function Q ∈ C∞(R2),∥∥∥∥∥∥χ(D)Q(D) exp(−λ1(D)z)

∂zv3|z=0

ω|z=0

v0,3|z=0

∥∥∥∥∥∥
L∞(R2)

≤ C(1+ z)−1/3(
‖(v0,1, v0,2)‖L2

uloc(R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
,
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and for j = 2, 3,∥∥∥∥∥∥χ(D)Q(D) exp(−λ j (D)z)

∂zv3|z=0

ω|z=0

v0,3|z=0

∥∥∥∥∥∥
L∞(R2)

≤ Ce−δz
(
‖(v0,1, v0,2)‖L2

uloc(R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
.

(2) Concerning the boundary data v p
3 |z=0 (which is the other term in v3|z=0), we have, for any function

Q ∈ C∞(R2), ∥∥(χ(D)Q(D) exp(−λ1(D)z)
)
v

p
3

∣∣
z=0

∥∥
L∞(R2)

≤ C(1+ z)−1/3
‖F‖L1

uloc(R
2),∥∥(χ(D)Q(D) exp(−λ j (D)z)

)
v

p
3

∣∣
z=0

∥∥
L∞(R2)

≤ Ce−δz‖F‖L1
uloc(R

2).

Proof. The first part of the statement is obvious for the last two boundary data, namely

∂zv3|z=0 =−∂1(v0,1− v
p
1 )− ∂2(v0,2− v

p
2 ), and ω|z=0 = ∂1(v0,2− v

p
2 )− ∂2(v0,1− v

p
1 ).

It remains to consider v0,3. This is where the assumption on v0,3 in the theorem plays a role. Indeed,
we have v0,3 = ∂1v

∗

1 + ∂2v
∗

2 , so that it satisfies the properties of the lemma. The estimate is then a
straightforward consequence of Lemma 7.

The former argument does not work with the boundary data v p
3 |z=0: indeed, if we factor out crudely a

power of ξ from the integral defining it, then the convergence of the remaining integral is no longer clear.
Therefore we go back to the definition of u p

3 ; we have, using the notations of (3-20),

χ(D)v p
3 |z=0 =

∫
R+

2∑
k=0

I k
3 ( · , 0, z′) dz′.

It can be easily checked that the terms with I k
3 for k = 1, 2 do not raise any difficulty (in fact, the trace

stemming from these two terms contains a power of ξ at low frequencies.) Thus we focus on∫
R+

I 0
3 ( · , 0, z′) dz′ =

∫
R+

(
χ(D)

3∑
i=1

Ai (D)e−λi (D)z′s0
3( · , z′)+χ(D)

3∑
i=1

Bi (D)e−λi (D)z′s0
ω( · , z′)

)
dz′.

Applying exp(−λ j (D)z), we have to estimate the L∞(R2) norms of∫
R+

χ(D)Q(D)
3∑

i=1

Ai (D)e−λi (D)z′−λ j (D)zs0
3( · , z′) dz′,

∫
R+

χ(D)Q(D)
3∑

i=1

Bi (D)e−λi (D)z′−λ j (D)zs0
ω( · , z′) dz′.

We recall that ŝ0
3(ξ, z′) and ŝ0

ω(ξ, z′) are products of components of F̂(ξ, z′) by homogeneous polynomials
of degrees 2 and 3 respectively in ξ , and that the behaviour of Ai , Bi is given in Lemma 5. When i = j = 1,
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using Lemma 7 and Lemma 16 in Appendix B, the corresponding integral is bounded by∫
R+

1
(1+ z+ z′)2/3

1
(1+ z′)2/3

dz′ ‖(1+ z)2/3 F‖L∞(L1
uloc)
≤ C(1+ z)−1/3

‖(1+ z)2/3 F‖L∞(L1
uloc)
.

When i = 2, 3, the integral is bounded by∫
R+

exp(−δz′)
(1+ z)2/3

1
(1+ z′)2/3

dz′ ‖(1+ z)2/3 F‖L∞(L1
uloc)
≤ C(1+ z)−2/3

‖(1+ z)2/3 F‖L∞(L1
uloc)
.

When j = 2, 3, the integral is bounded by∫
R+

exp(−δz)
(1+ z′)2/3

1
(1+ z′)2/3

dz′ ‖(1+ z)2/3 F‖L∞(L1
uloc)
≤ C exp(−δz)‖(1+ z)2/3 F‖L∞(L1

uloc)
.

Gathering all the terms, we obtain the estimate announced in the lemma. �

Going back to (3-35), we infer that

(1+ z)1/3‖χ(D)v3( · , z)‖L∞(R2)+ (1+ z)2/3‖χ(D)ω( · , z)‖L∞(R2)

≤ C
(
‖(v0,1, v0,2)‖L2

uloc(R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
. (3-41)

Then, for further control of the horizontal components (v1, v2), one would like an analogue of (3-25),
namely a bound like

(1+ z)1/3
∥∥∥∥ D
|D|2

χ(D)∂zv3( · , z)
∥∥∥∥

L∞(R2)

+ (1+ z)1/3
∥∥∥∥ D
|D|2

χ(D)ω( · , z)
∥∥∥∥

L∞(R2)

≤ C
(
‖(v0,1, v0,2)‖L2

uloc(R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
.

However, such an estimate is not clear. Indeed, in view of (3-35), we have

χ(D)
(
∂zv3( · , z)
ω( · , z)

)
= χ(D)

3∑
i=1

e−λi (D)z
(
−λi (D)Ci

−�i (D)Ci

)
.

The term with index i = 1 does not raise any difficulty, because λ1(D) and �1(D) bring extra powers
of ξ , which are enough to apply Lemma 7. But the difficulty comes from indices 2 and 3. For instance,
they involve terms of the type

χ(D)P0(D)e−λ2,3(D)v̂0, with P0 homogeneous of degree 0,

and therefore are not covered by Lemma 7: with the notations of the lemma, one has α = 0, which is
not enough. Typically, these homogeneous functions of degree zero involve Riesz transforms, meaning
P0(ξ)= ξkξl/|ξ |

2, k, l = 1, 2.
Hence, one must use extra cancellations. We recall that in view of (3-6), we want to exhibit cancellations

in |D|−2(D1∂zv3+ D2ω) and in |D|−2(D2∂zv3− D1ω). Let us comment briefly on the first term. We
compute (−ξ1λi−ξ2�i )Ci for i =2, 3 in terms of the boundary data. Setting v0=v0−v

p
|z=0, we find that

C2(ξ)=
1

D3
(λ3�1−λ1�3)v̂0,3+

1
D3

[(
(�3−�1)iξ1−iξ2(λ3−λ1)

)
v̂0,1+

(
(�3−�1)iξ2+iξ1(λ3−λ1)

)
v̂0,2

]
.
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We then use the asymptotic formulas of Lemma 3. In particular,

(−ξ1λ2− ξ2�2)
(
(�3−�1)iξ1− iξ2(λ3− λ1)

)
= |ξ |2+ O(|ξ |3),

(−ξ1λ2− ξ2�2)
(
(�3−�1)iξ2+ iξ1(λ3− λ1)

)
=−i |ξ |2+ O(|ξ |)3.

A similar formula holds for C3. It follows that there exist Q2, Q3 ∈ C∞(R2)2 such that

F(χ(D)|D|−2(D1∂zv3+ D2ω))

= χ(ξ)
−ξ1λ1− ξ2�1

D3|ξ |2
e−λ1(ξ)zC1(ξ)

+
1

D3

[
(λ3�1− λ1�3)(−ξ1λ2− ξ2�2)e−λ2z

+ (λ1�2− λ2�1)(−ξ1λ3− ξ2�3)e−λ3z]v̂0,3

+

∑
i=2,3

χ(ξ)e−λi z Qi (ξ) · v̂0,h(ξ, z).

The first two terms are treated in the same way as Lemma 11, factoring out a power of ξ when necessary,
and going back to the definition of v p. We leave the details to the reader. The inverse Fourier transform of
the last term is F−1(χQi e−λi z)∗v0,h , which is bounded in L∞(R2) by e−δz‖v0,h‖L2

uloc
. Similar statements

hold for χ(D)|D|−2(−∂z D2v3+ D1ω). It follows that

(1+ z)1/3‖χ(D)v( · , z)‖L∞(R2)

≤ C
(
‖(v0,1, v0,2)‖L2

uloc(R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
. (3-42)

We now address the estimates of v̂(ξ, z) for large frequencies. The arguments are very close to the
ones developed after Lemma 9. Using (3-35) and (3-37), for |ξ | � 1, we find that v̂3(ξ, z) and ω̂(ξ, z)
can be written as linear combinations of terms of the type

Ri j (λ1, λ2, λ3, ξ) exp(−λi (ξ)z)ĝ j (ξ), 1≤ i, j ≤ 3,

where g1 = v3|z=0, g2 = ∂zv3|z=0 and g3 =ω|z=0 and Ri j is a rational expression. Thus, using Lemmas 3
and 5, there exists n ∈ N such that |ξ |−2n Ri j (λ1, λ2, λ3, ξ) is bounded as |ξ | →∞ for all i, j . Lemma 9
then gives that for some N sufficiently large,

∥∥(1−χ)(D)v3( · , z)
∥∥

L∞(R2)
≤ Ce−δz

3∑
j=1

‖g j‖H N
uloc
,

∥∥(1−χ)(D)ω( · , z)
∥∥

L∞(R2)
≤ Ce−δz

3∑
j=1

‖g j‖H N
uloc
,

and similar estimates hold for (D/|D|2)∂zv3 and (D/|D|2)ω. Using (3-34) and (3-28)–(3-29), we infer
that for some m ≥ 1 large enough,∥∥(1−χ(D))v( · , z)

∥∥
L∞(R2)

≤ Ce−δz
(
‖v0‖Hm+1/2

uloc (R2)
+‖(1+ z)2/3 F‖Hm

uloc(R
3
+)

)
. (3-43)
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Gathering (3-42) and (3-43), we deduce that u satisfies the estimate

‖(1+ z)1/3v‖L∞ ≤ C
(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
for m large enough. Thus, in view of the estimate (3-3) satisfied by v p, we know v = v+ v p is a solution
of (2-3) satisfying

‖(1+ z)1/3v‖L∞ ≤ C
(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
for m large enough. It remains to go to the higher regularity bound (3-1). First, up to taking a slightly
larger m, we clearly have

‖(1+ z)1/3∇v‖L∞ ≤ C
(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖(1+ z)2/3 F‖Hm
uloc(R

3
+)

)
.

This follows from direct differentiation of formula (3-7) satisfied by v p and formula (3-35) satisfied by
v = v−v p. Clearly, the differentiation is harmless, in particular at low frequencies where it may even add
positive powers of ξ . It follows that our solution belongs to H 1

uloc(R
3
+
), and thus enters the framework of

local elliptic regularity theory for the Stokes equation. In particular, for any k ∈ Z3 with kz ≤ 2,

‖v‖Hm+1(B(k,1)∩�bl) ≤ C
(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖F‖Hm
uloc(R

3
+)
+‖v‖H1(B(k,2)∩�bl)

)
≤ C

(
‖v0‖Hm+1/2

uloc (R2)
+‖(v∗1 , v

∗

2)‖L2
uloc(R

2)+‖F‖Hm
uloc(R

3
+)
+‖v‖H1

uloc(R
3
+)

)
and for any k ∈ Z3 with kz > 2,

‖v‖Hm+1(B(k,1)∩�bl) ≤ C
(
‖F‖Hm(B(k,2)∩�bl)+‖v‖H1(B(k,2)∩�bl)

)
≤ C |kz|

−1/3(
‖(1+ z)2/3 F‖Hm

uloc(R
3
+)
+‖(1+ y)1/3v‖H1

uloc(R
3
+)

)
.

The bound (3-1) follows.

4. Proof of Theorem 1

4.1. Navier–Stokes–Coriolis system in a half-space. This section is devoted to the well-posedness of
system (2-4) under a smallness assumption. Once again, we can assume M = 0 with no loss of generality.
Following the analysis of the linear case performed in the previous section, we introduce the functional
spaces

Hm
:=
{
v ∈ H m

loc(R
3
+
) : ‖(1+ y3)

1/3v‖Hm
uloc
<+∞

}
, m ≥ 0,

and we set ‖v‖Hm = Cm‖(1+ y3)
1/3v‖Hm

uloc
, where the constant Cm is chosen so that if u, v ∈ (Hm)3 for

some m > 3
2 , then

‖u⊗ v‖Hm ≤ ‖u‖Hm‖v‖Hm .

Clearly Hm is a Banach space for all m ≥ 0.
The result proved in this section is the following:
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Proposition 12. Let m ∈ N, m � 1. There exists δ0 > 0 such that for all v0 ∈ H m+1
uloc (R

2) such that
v0,3 = ∂1v

∗

1 + ∂2v
∗

2 , with v∗1 , v∗2 in L2
uloc(R

2) and

‖v0‖Hm+1
uloc (R

2)+‖(v
∗

1 , v
∗

2)‖L2
uloc(R

2) ≤ δ0, (4-1)

the system 
v · ∇v+ e× v+∇ p−1v = 0 in {y3 > 0},

div v = 0 in {y3 > 0},
v|y3=0 = v0

has a unique solution in Hm+1.

Remark 13. The integer m for which this result holds is the same as the one in Theorem 2.

Proof. Proposition 12 is an easy consequence of the fixed point theorem in Hm+1. For any v0 ∈ H m+1
uloc (R

2)

such that v0,3 = ∂1v
∗

1 + ∂2v
∗

2 , with v∗1 , v∗2 in L2
uloc(R

2), we introduce the mapping Tv0 :Hm+1
→Hm+1

such that Tv0(u)= v is the solution of (2-3) with F = u⊗ u. Notice that ‖(1+ z)2/3 F‖Hm
uloc
≤ ‖u‖2Hm . As

a consequence, according to Theorem 2, there exists a constant C0 such that for all u ∈Hm+1,

‖Tv0(u)‖Hm+1 ≤ C0
(
‖v0‖Hm+1

uloc (R
2)+‖(v

∗

1 , v
∗

2)‖L2
uloc(R

2)+‖u‖
2
Hm+1

)
. (4-2)

Let δ0 < 1/(4C2
0), and assume that (4-1) is satisfied. Thanks to the assumption on δ0, there exists

R0 > 0 such that

C0(δ0+ R2
0)≤ R0. (4-3)

Moreover, R0 ∈ [R−, R+], where

R± =
1

2C0
(1±

√
1− 4δ0C2

0 ).

Therefore 0< R− < (2C0)
−1, and we can always choose R0 so that 2R0C0 < 1. Then according to (4-1),

(4-2) and (4-3),

‖u‖Hm+1 ≤ R0 =⇒ ‖Tv0(u)‖Hm+1 ≤ R0.

Moreover, if ‖u1
‖Hm+1, ‖u2

‖Hm+1 ≤ R0, then setting w = Tv0(u
1)− Tv0(u

2), we have w is a solution of
(2-3) with w|z=0 = 0 and with a source term F1

− F2
= u1

⊗ u1
− u2
⊗ u2. Thus, using once again

Theorem 2 and the normalization of ‖ · ‖Hm ,∥∥Tv0(u
1)− Tv0(u

2)
∥∥
Hm+1 ≤ C0‖F1

− F2
‖Hm ≤ 2C0 R0‖u1

− u2
‖Hm+1 .

Notice that in the inequality above, we have assumed that ‖ · ‖Hm ≤ ‖ · ‖Hm+1 , which is always possible if
the normalization constant Cm is chosen sufficiently small (depending on Cm+1, m being large but fixed).

Thus, since 2C0 R0 < 1, we know Tv0 is a contraction over the ball of radius R0 in Hm+1. Using
Banach’s fixed point theorem, we infer that Tv0 has a fixed point in Hm+1. This concludes the proof of
Proposition 12. �
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4.2. Navier–Stokes–Coriolis system over a bumped half-plane. We now address the study of the full
system (1-4). We follow the steps outlined in the introduction, which we recall here for the reader’s
convenience: We first prove that there exists a solution (v−, p−) of the system (2-5) for φ,ψ in some
function spaces to be specified, then construct the solution (v+, p+) of (2-4) with v+|y3=M = v

−
|y3=M .

Eventually, we define a mapping F by F(φ, ψ) :=6(v+, p+)e3|y3=M−ψ . We recall that v= 1y3≥Mv
+
+

1y3<Mv
− is a solution of (1-4) if and only if F(φ, ψ)= 0. The goal is therefore to show that for all φ

small enough (in a function space to be specified) the equation F(φ, ψ)= 0 has a unique solution.

Step 1. We study the system (2-5). We introduce the function space

V :=
{
φ = (φh, φ3) : φh ∈ H 2

uloc(∂�bl), φ3 ∈ H 1
uloc(∂�bl), φ · n|∂�bl = 0

}
(4-4)

for the bottom Dirichlet data, and we set

‖φ‖V := ‖φh‖H2
uloc
+‖φ3‖H1

uloc
.

As for the stress tensor at y3 = M, since we will need to construct solutions in H m+1
uloc (see Proposition 12),

we look for ψ in the space H m−1/2
uloc (R2). We then claim that the following result holds:

Lemma 14. Let m ≥ 1 be arbitrary. There exists δ > 0 such that for all φ ∈ V and all ψ ∈ H m−1/2
uloc (R2)

with ‖φ‖V ≤ δ and ‖ψ‖Hm−1/2
uloc (R2)

≤ δ, system (2-5) has a unique solution

(v−, p−) ∈ H 1
uloc(�

M
bl )× L2

uloc(�
M
bl ).

Moreover, it satisfies the following properties:

• H m+1
uloc regularity: for all M ′ ∈ ]sup γ,M[,

(v−, p−) ∈ H m+1
uloc

(
R2
× (M ′,M)

)
× H m

uloc
(
R2
× (M ′,M)

)
,

with

‖v−‖Hm+1
uloc (R

2×(M ′,M))+‖p−‖Hm
uloc(R

2×(M ′,M)) ≤ CM ′
(
‖φ‖V +‖ψ‖Hm−1/2

uloc (R2)

)
.

• Compatibility condition: there exists v∗1 , v
∗

2 ∈ H 1/2
uloc such that v−3 |y3=M =∇h · v

∗

h .

Proof. We start with an H 1
uloc a priori estimate. We follow the computations of [Dalibard and Prange

2014], dedicated to the linear Stokes–Coriolis system. We first lift the boundary condition on ∂�bl,
introducing

vL
h := φh, vL

3 := φ3−∇h ·φh(y3− γ (yh)).

Then ṽ := v−− vL and p̃ = p− satisfy

−1ṽ+ (vL
+ ṽ) · ∇ṽ+ ṽ · ∇vL

+ e3 ∧ ṽ+∇ p̃ = f in �M
bl ,

div ṽ = 0 in �M
bl ,

ṽ|∂�bl = 0,(
∂3ṽ−

(
p̃+
|ṽ+ vL

|
2

2

)
e3

)∣∣∣∣
y3=M
= ψ − ∂3v

L
|y3=M := ψ̃,

(4-5)

where f =−1vL
+ vL
· ∇vL

+ e3 ∧ v
L.
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Notice that thanks to the regularity assumptions on φ and v∗, we have ψ̃ ∈ L2
uloc(R

2) and f ∈ H−1
uloc(R

2).
We then perform energy estimates on the system (4-5), following the strategy of Gérard-Varet and
Masmoudi [2010], which is inspired by the work of Ladyžhenskaya and Solonnikov [1980]. The idea is
to work with the truncated energies

Ek :=

∫
�M

bl ∩{(y1,y2)∈[−k,k]2}
∇ṽ · ∇ṽ, (4-6)

and to derive an induction inequality on (Ek)k∈N. To that end, we consider a truncation function
χk ∈ C∞0 (R

2) such that χk ≡ 1 in [−k, k]2, Suppχk ⊂ [−k − 1, k + 1]2, and χk, χ
′

k, χ
′′

k are bounded
uniformly in k. Along the lines of [Dalibard and Prange 2014], we multiply (4-5) by the test function

ϕ =

(
ϕh

∇ ·8h

)
:=

(
χk ṽh

−∇h ·
(
χk
∫ y3
γ (yh)

ṽh(yh, z) dz
)) ∈ H 1(�b)

= χk ṽ−

(
0

∇hχk(yh) ·
∫ y3
γ (yh)

ṽh(yh, z) dz

)
.

Since this test function is divergence-free, there is no commutator term stemming from the pressure. In
[loc. cit.], an inequality of the following type is derived:

Ek ≤ C
(
(Ek+1− Ek)+ (‖φ‖

2
V +‖ψ‖

2
H−1/2

uloc
)(k+ 1)2

)
.

This discrete differential inequality is a key a priori estimate, which allows for the construction of a solution.
Indeed, introducing an approximate solution ṽn for |y1, y2| ≤ n, say with Dirichlet boundary conditions
at the lateral boundary, a standard estimate yields that En ≤ Cn, where this time Ek =

∫
|χk∇ṽ

n
|
2.

Combining this information with above induction relation allows one to obtain a uniform bound on the
Ek of the type Ek ≤ Ck2, from which we deduce a H 1

uloc bound on ṽn uniformly in n. From there, one
obtains an exact solution by compactness. We refer to [loc. cit.] for more details.

Here, there are two noticeable differences with [loc. cit.]:

• The boundary condition at y3 = M in (4-5) does not involve a Dirichlet-to-Neumann operator, which
makes things easier.

• On the other hand, one has to handle the quadratic terms (vL
+ ṽ) · ∇ṽ+ ṽ · ∇vL, which explains the

introduction of the |v|2 in the stress tensor at y3 = M.

Therefore we focus on the treatment of these nonlinear terms. The easiest one is∣∣∣∣∫
�M

bl

(ṽ · ∇vL) ·ϕ

∣∣∣∣≤ C‖φ‖V Ek+1,

where the constant C depends only on M and on ‖γ ‖W 1,∞ . On the other hand,∫
�M

bl

(
(vL
+ ṽ) · ∇ṽ

)
· (χk ṽ)=

∫
�M

bl

χk(v
L
+ ṽ) · ∇

|ṽ|2

2

=−

∫
�M

bl

|ṽ|2

2
(vL
+ ṽ) · ∇χk +

∫
R2
χk

(
(vL

3 + ṽ3)
|ṽ|2

2

)∣∣∣∣
y3=M

.
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The first term on the right-hand side is bounded by C(Ek+1− Ek)
3/2
+C‖φ‖V(Ek+1− Ek). We group

the second one with the boundary terms stemming from the pressure and the Laplacian. The sum of these
three boundary terms is ∫

R2
χk

(
−∂3ṽ · ṽ+ (v

L
3 + ṽ3)

|ṽ|2

2
+ p−ṽ3

)∣∣∣∣
y3=M

.

Using the boundary condition in (4-5), the integral above is equal to

−

∫
R2
χk ṽ|y3=M ·

(
ψ̃ +

(
ṽ · vL

|y3=M +
1
2 |v

L
|y3=M |

2)e3
)
,

which is bounded for any δ > 0 by

C‖φ‖V Ek+1+ δEk+1+Cδ
(
‖φ‖2V +‖φ‖

4
V +‖ψ‖

2
Hm−1/2

uloc

)
(k+ 1)2.

There remains ∫
�M

bl

(
(vL
+ ṽ) · ∇ṽ

)
·

(
0

∇hχk(yh) ·
∫ y3
γ (yh)

ṽh(yh, z) dz

)
,

which is bounded by C(Ek+1− Ek)
3/2
+C‖φ‖V(Ek+1− Ek). Gathering all the terms, we infer that for

‖φ‖V ≤ 1,

Ek ≤ C
(
(Ek+1− Ek)

3/2
+ (Ek+1− Ek)+‖φ‖V Ek + (‖φ‖

2
V +‖ψ‖

2
Hm−1/2

uloc
)(k+ 1)2

)
,

where the constant C depends only on M and on ‖γ ‖W 1,∞ . As a consequence, for ‖φ‖V small enough,
we infer that for all k ≥ 1,

Ek ≤ C
(
(Ek+1− Ek)

3/2
+ (Ek+1− Ek)+ (‖φ‖

2
V +‖ψ‖

2
Hm−1/2

uloc
)(k+ 1)2

)
.

Thanks to a backwards induction argument (again, we refer to [Gérard-Varet and Masmoudi 2010] for all
details), we infer that

Ek ≤ C(‖φ‖2V +‖ψ‖
2
Hm−1/2

uloc
)k2

∀k ∈ N

for a possibly different constant C . It follows that

‖ṽ‖H1
uloc(�

M
bl )
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
)

and therefore v− satisfies the same estimate. From there, we can derive an L2
uloc estimate for the pressure.

Indeed, using the equation and the boundary condition at y3 = M , it follows that for all y ∈�M
bl ,

p−(yh, y3)= ∂3v
−

3 |y3=M −

∣∣v−|y3=M
∣∣2

2
−ψ3(yh)−

∫ M

y3

(1v−3 − v
−
· ∇v−3 )(yh, z) dz.

Note that by the divergence-free condition, the first-term in the right-hand side can be written as
− divh v

−

h |y3=M . For k ∈ Z2, let ϕk ∈ H 1
0 (�

M
bl ) such that Suppϕk ⊂ (k + [0, 1]2) × R. We multiply
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the above identity by ϕk(xh, z) and integrate over �M
bl . After some integrations by parts, we obtain∫

�M
bl

p−ϕk =

∫
�M

bl

v−h |y3=M · ∇hϕk −

∫
�M

bl

|v−|y3=M |
2

2
ϕk −

∫
�M

bl

ψ3ϕk

−

∫
�M

bl

(∫ M

y3

(1hv
−

3 + ∂
2
3v
−

3 − v
−
· ∇v−3 )(yh, z) dz

)
ϕk(y) dy. (4-7)

Using classical trace estimates and Sobolev embeddings, it follows that for all q ∈ ]1,∞[,∥∥v−|y3=M
∥∥

Lq
uloc(R

2)
≤ C

∥∥v−|y3=M
∥∥

H1/2
uloc(R

2)
≤ C‖v−‖H1

uloc(�
M
bl )
. (4-8)

Therefore the top line of the right-hand side of (4-7) is bounded by C(‖φ‖V + ‖ψ‖Hm−1/2
uloc

)‖ϕk‖H1 for
φ,ψ small enough. We now focus on the second line of (4-7). The easiest term is the advection term: we
have, since ϕk has a bounded support (uniformly in k),∣∣∣∣∫

�M
bl

∫ M

y3

v− · ∇v−3 (xh, z) dzϕk(y) dy
∣∣∣∣≤ C‖v−‖L4

uloc
‖∇v−‖L2

uloc
‖ϕk‖L4 ≤ C‖ϕk‖H1‖v−‖2H1

uloc
.

We then treat the two terms stemming from the Laplacian separately. For the horizontal derivatives, we
merely integrate by parts, recalling that ϕk ∈ H 1

0 (�
M
bl ), so that∫

�M
bl

∫ M

y3

1hv
−

3 (yh, z)dzϕk(y) dy =−
∫
�M

bl

∫ M

y3

∇hv
−

3 (yh, z) · ∇hϕk(y) dz dy,

and the corresponding term is bounded by C(‖φ‖V +‖ψ‖Hm−1/2
uloc

)‖ϕk‖H1 . As for the vertical derivatives,
we have∫

�M
bl

(∫ M

y3

∂2
3v
−

3 (yh, z)dz
)
ϕk(y) dy =

∫
�M

bl

(
∂3v
−

3 (yh,M)− ∂3v
−

3 (y)
)
ϕk(y) dy

=−

∫
�M

bl

(
∇h · v

−

h (yh,M)+ ∂3v
−

3 (y)
)
ϕk(y) dy

=

∫
�M

bl

v−h (yh,M) · ∇hϕk(y) dy−
∫
�M

bl

∂3v
−

3 (y)ϕk(y) dy. (4-9)

Both terms of the right-hand side are bounded by C‖v−‖H1
uloc
‖ϕk‖H1 .

Taking the estimate (4-7), we infer that there exists a constant C (independent of ϕk and of k) such
that for all ϕk ∈ H 1

0 (�
M
bl ) supported in (k+ [0, 1]2)×R,∣∣∣∣∫

�M
bl

p−ϕk

∣∣∣∣≤ C(‖φ‖V +‖ψ‖Hm−1/2
uloc

)‖ϕk‖H1
0 (�

M
bl )
.

We deduce that

‖p−‖H−1
uloc(�

M
bl )
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
).

Using the equation on (v−, p−), we also have

‖∇ p−‖H−1
uloc(�

M
bl )
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
).
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It then follows from Nec̆as inequality (see [Boyer and Fabrie 2013, Theorem IV.1.1]) that p− ∈ L2
uloc(�

M
bl ),

with

‖p−‖L2
uloc(�

M
bl )
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
).

We still have to establish the two properties itemized in Lemma 14. We focus first on the higher-order
estimates. Note that using interior regularity results for the Stokes system (see [Galdi 2011]), one has
v−∈ H N

uloc(�
′) for all open sets �′ ⊂ R2 such that �′ ⊂ �M

bl and for all N > 0. In particular, for all
M1<M2 in the interval ]sup γ,M[, we have v−∈ H m+1

uloc (R
2
×(M1,M2)) and p−∈ H m

uloc(R
2
×(M1,M2)).

We now tackle the regularity for y3>M ′, where M ′ ∈ ]sup γ,M[. Our arguments are somehow standard
(and mainly taken from [Boyer and Fabrie 2013]), but since there are a few difficulties related to the
nonlinear stress boundary condition at y3 = M , we give details. The idea is to use an induction argument
to show that v−∈ H l

uloc(R
2
×[M ′,M]) for all sup γ < M ′ < M and for 1≤ l ≤m+1. Unfortunately, the

induction only works for l ≥ 2: indeed, the implication h ∈ H s(R2)⇒ h2
∈ H s(R2), which is required to

handle the nonlinear boundary condition at y3 = M, is true for s > 1 only. Therefore we treat separately
the case l = 2. In the sequel, we write ‖φ‖+‖ψ‖ as a shorthand for ‖φ‖V +‖ψ‖Hm−1/2

uloc
.

To prove H 2
uloc regularity, the first step is to prove a priori estimates for ∂1v

−, ∂2v
− in H 1

uloc. To that
end, we first localize the equation near a fixed k ∈ Z2, then differentiate it with respect to y j , j = 1, 2.
Let θ ∈ C∞0 (R

2) be equal to 1 in a neighbourhood of k ∈ Z2, and such that the size of Supp θ is bounded
uniformly in k (we omit the k-dependence of θ and of all subsequent functions in order to alleviate the
notation). It can be easily checked that the equation satisfied by wj := ∂j (θv

−) is

−1wj + e3 ∧wj + v
−
· ∇wj +∇∂j (θp−)= F j in �θ ,

divwj = g j in �θ ,

wj |y3=M ′ ∈ H 1/2(R2),(
∂3wj −

(
∂j (θp−)+ v− ·wj −

1
2 |v
−
|
2∂jθ

)
e3
)∣∣

y3=M = ∂j (θψ),

wj = 0 on ∂ Supp θ × (M ′,M),

where �θ := Supp θ × (M ′,M) and

F j = ∂j
(
−2∇θ · ∇v−− v−1θ + (v− · ∇θ)v−+ p−∇θ

)︸ ︷︷ ︸
‖·‖H−1≤C(‖φ‖+‖ψ‖)

−∂jv
−
· ∇(θv−),

g j = ∂j (v
−
· ∇θ)= O(‖φ‖+‖ψ‖) in L2(R2

× (M ′,M)).

By standard results, see [Galdi 2011, Section II.3], there exists w̄j ∈ H 1(�θ ) such that

div w̄j = g j , w̄j = wj at ∂�θ \ {y3 = M},

‖w̄j‖H1(�θ ) ≤ C
(
‖g j‖L2(�θ )+‖wj‖H1/2({y3=M ′})

)
.

Note that we do not need to correct the trace of wj at {y3=M}, as there is no Dirichlet boundary condition
there. Moreover, we are not sure at this stage that this trace is an H 1/2

uloc function. We rather prescribe an
artificial smooth data for w̄j at this boundary, chosen so that it satisfies the good compatibility condition.
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Finally, w̃j = wj − w̄j satisfies

−1w̃j + e3 ∧ w̃j + v
−
· ∇w̃j +∇q̃ j = F̃ j in �θ ,

div w̃j = 0 in �θ ,

w̃j |y3=M ′ = 0, w̃j = 0 on ∂ Supp θ × (M ′,M),(
∂3w̃j − (q̃ j + v

−
· w̃j )e3

)∣∣
y3=M = ψ̃j ,

with F̃ j = −∂jv
−
· ∇(θv−)+ O(‖φ‖+ ‖ψ‖) in H−1, and ‖ψ̃j‖H−1/2 ≤ C(‖φ‖+ ‖ψ‖). We obtain the

estimate

‖∇w̃j‖
2
L2(�θ )

≤ C(‖φ‖2+‖ψ‖2)+
∣∣∣∣∫
�θ

(∂jv
−
· ∇(θv−)) · w̃j

∣∣∣∣+ 2
∫

Supp θ
|v−|y3=M |

∣∣w̃j |y3=M
∣∣2.

We first deal with the boundary term:∫
Supp θ

∣∣v−|y3=M
∣∣∣∣w̃j |y3=M

∣∣2 ≤ ∥∥v−|y3=M
∥∥

L2(Supp θ)

∥∥w̃j |y3=M
∥∥2

L4(Supp θ)

≤ C
∥∥v−|y3=M

∥∥
H1/2

uloc

∥∥w̃j |y3=M
∥∥2

H1/2(Supp θ) ≤ C‖v−‖H1‖w̃j‖
2
H1

≤ C(‖φ‖+‖ψ‖)‖∇w̃j‖
2
L2 .

Hence for ψ and φ small enough we can absorb this term in the left-hand side of the energy inequality.
As for the quadratic source term, we write

∂jv
−
· ∇(θv−)= ∂jv

−

1 w1+ ∂jv
−

2 w2+ ∂jv
−

3 θ∂3v
−

= ∂jv
−

1 w1+ ∂jv
−

2 w2+ ∂3v
−w j,3− v

−

3 ∂jθ∂3v
−.

For i = 1, . . . , 3, j = 1, 2, k = 1, 2, we have∫
�θ

|∂iv
−
||wj ||w̃k | ≤ C‖v−‖H1

uloc(�
M
bl )
‖wj‖L4(�θ )‖w̃k‖L4(�θ )

≤ C(‖φ‖+‖ψ‖)(‖w̃1‖
2
H1(�θ )

+‖w̃2‖
2
H1(�θ )

)+C(‖φ‖+‖ψ‖)3

and ∣∣∣∣∫
�θ

v−3 ∂jθ∂3v
−
· w̃j

∣∣∣∣≤ C‖v−3 ‖H1
uloc
‖∂3v

−
‖L2

uloc
‖w̃j‖H1(�θ ).

Therefore, we obtain, for ‖φ‖+‖ψ‖ small enough,

‖w1‖
2
H1(�θ )

+‖w2‖
2
H1(�θ )

≤ C(‖φ‖2+‖ψ‖2).

Using the same idea as above to estimate ∂j (θp−), this gives

‖∇hv
−
‖H1

uloc(R
2×(M ′,M))+‖∇h p−‖L2

uloc(R
2×(M ′,M)) ≤ (‖φ‖V +‖ψ‖Hm−1/2

uloc
).

Since v− is divergence-free, similar estimates hold for ∂3v
−

3 . Thus v−3 ∈ H 2
uloc(R

2
× (M ′,M)). As for the

vertical regularity of v−h , we observe that ∂3v
− is a solution of the Stokes system with Dirichlet boundary
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conditions
−1∂3v

−
+∇∂3 p− = F3 in R2

× (M ′,M),

div ∂3v
−
= 0 in R2

× (M ′,M),

∂3v
−
|y3=M = G,

∂3v
−
|y3=M ′ = G ′,

where

F3 =−e3 ∧ ∂3v
−
− ∂3(v

−

h · ∇hv
−)− ∂3(v

−

3 ∂3v
−) ∈ H−1

uloc(R
2), Gh = ψh ∈ H m−1/2

uloc (R2),

and G3 = ∂3v
−

3 |y3=M ∈ H 1/2
uloc(R

2), G ′∈ H m−1/2
uloc (R2). Using the results of Chapter IV in [Galdi 2011],

we infer that ∂3v
−
∈ H 1

uloc(R
2
× (M ′,M)), ∂3 p−∈ L2

uloc(R
2
× (M ′,M)), and

‖∂3v
−
‖H1

uloc(R
2×(M ′,M))+‖∂3 p−‖L2

uloc(R
2×(M ′,M)) ≤ C(‖F‖H−1

uloc
+‖G‖H1/2

uloc
+‖G ′‖H1/2

uloc
)≤ C(‖φ‖+‖ψ‖)

for φ and ψ small enough. Gathering the inequalities, we obtain

‖v−‖H2
uloc(R

2×(M ′,M))+‖p−‖H1
uloc(R

2×(M ′,M)) ≤ C(‖φ‖V +‖ψ‖Hm−1/2
uloc

).

Of course, all inequalities above are a priori estimates, but provide H 2
uloc regularity (and a posteriori

estimates) through the usual method of translations.
We are now ready for the induction argument. Let k ∈ Z2 be fixed. Define a sequence ϑ2

k , . . . , ϑ
m+1
k

such that ϑ l
k := θ

l
1(z−M)θ l

2(yh − k), where θ l
1 ∈ C

∞

0 (R), θ
l
2 ∈ C

∞

0 (R
2) are equal to 1 in a neighbourhood

of zero. We require furthermore that Suppϑ l+1
k ⊂ (ϑ l

k)
−1({1}). We then define a Cm+1,1 domain�k ⊂�

M
bl

such that Suppϑ2
k b�k , and such that ∂�k ∩ ∂�bl =∅ (see Figure 1). Notice also that we choose �k so

that diam(�k) is bounded uniformly in k (in fact, we can always assume that �k = (k, 0)+�0 for some
fixed domain �0.)

yh = k
y3 = M

�k

∂�bl

Supp θk θ−1
k ({1})

Figure 1. The domain �k .
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Multiplying (2-5) by ϑ l
k and dropping the dependence with respect to k, we find that vl

:= ϑ l
kv
−,

pl
:= p−ϑ l

k is a solution of 
−1vl

+∇ pl
= f l in �k,

div vl
= gl in �k,

∂nv
l
− pln =6l on ∂�k,

(4-10)

where
f l
:= −2∇ϑ l

k · ∇v
l−1
−1ϑ l

kv
l−1
− (e3 ∧ v

l−1
+ vl−1

· ∇vl−1)ϑ l
k + pl−1

· ∇ϑk,

gl
= vl−1

· ∇ϑk,

6l
= θ l

2(yh − k)
(
ψ + 1

2 |v
l−1
|
2 e3|y3=M

)
on ∂�k ∩ {y3 = M},

6l
= 0 on ∂�k ∩ {y3 = M}c.

(4-11)

Now, Theorem IV.7.1 in [Boyer and Fabrie 2013] implies that for all l ∈ {2, . . . ,m}, for ‖φ‖V+‖ψ‖Hm−1/2
uloc

small enough,

(vl, pl) ∈ H l(�k)× H l−1(�k) =⇒ (vl+1, pl+1) ∈ H l+1(�k)× H l(�k),

and

‖vl+1
‖H l+1(�k)+‖pl+1

‖H l (�k) ≤ C
(
‖vl
‖H l (�k)+‖pl

‖H l−1(�k)+‖ψ‖H l−1/2(�k)

)
.

Indeed, assume that (vl, pl) ∈ H l(�k)× H l−1(�k). Then f l+1
∈ H l−1(�k), gl+1

∈ H l(�k), with

‖ f l+1
‖H l−1(�k) ≤ C(‖vl

‖H l +‖vl
‖

2
H l +‖pl

‖H l−1(�k)), ‖g
l+1
‖H l ≤ C‖vl

‖H l .

Moreover, vl
∈ H l−1/2(∂�k). Since l ≥ 2, using product laws in fractional Sobolev spaces (see [Strichartz

1967]), we infer that |vl
|
2
|y3=M ∈ H l−1/2(R2), and therefore 6l+1

∈ H l−1/2(R2). From [Boyer and Fabrie
2013, Theorem IV.7.1], we deduce that (vl+1, pl+1) ∈ H l+1(�k)× H l(�k), together with the announced
estimate. By induction, v− ∈ H m+1

uloc (�
M
bl ) and p− ∈ H m

uloc(�
M
bl ).

There only remains to check the compatibility condition at y3 = M. Notice that

v−3 ||y3=M = φ3+

∫ M

γ (yh)

∂3v
−

3 = φ3−

∫ M

γ (yh)

∇h · v
−

h = φ3− γ (yh) ·φh +∇h · v
∗

h,

where

v∗h =−

∫ M

γ (yh)

v−h ∈ H 1/2
uloc(R

2).

Since φ3−γ (yh) ·φh = 0 due to the nonpenetrability condition φ ·n= 0, we obtain the desired identity. �

Step 2. Once (v−, p−) is defined thanks to Lemma 14, we define (v+, p+) in the half-space {y3 > M}
by solving (2-4) with v+|y3=M = v

−
|y3=M . According to Lemma 14 and to standard trace inequalities,∥∥v−|y3=M
∥∥

Hm+1/2
uloc (R2)

≤ C(‖φ‖V +‖ψ‖Hm−1/2
uloc

)

for some constant C depending only on M and on ‖γ ‖W 1,∞ . As a consequence, if C(‖φ‖V+‖ψ‖Hm−1/2
uloc

)+

‖v∗h‖L2
uloc
≤ δ0, according to Proposition 12 the system (2-4) with v0 = v

−
|y3=M has a unique solution.
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Additionally, 6(v+, p+)e3|y3=M+ belongs to H m−1/2
uloc (R2). Thus the mapping

F : V × H m−1/2
uloc (R2)→ H m−1/2

uloc (R2),

(φ, ψ) 7→6(v+, p+)e3|y3=M+ −ψ,

is well-defined. Clearly, according to Lemma 14, for φ = 0 and ψ = 0, we have v− = 0, v+ = 0 and
therefore F(0, 0)= 0.

The strategy is then to apply the implicit function theorem to F to find a solution of F(φ, ψ)= 0 for
φ in a neighbourhood of zero. Therefore we check that F is C1 in a neighbourhood of zero, and that its
Fréchet derivative with respect to ψ at (0, 0) is an isomorphism on H m−1/2

uloc (R2).

F is a C1 mapping in a neighbourhood of zero: Let φ0, ψ0 and φ, ψ be in a neighbourhood of zero (in
the sense of the functional norms in V and H m−1/2

uloc (R2)). We denote by v±0 , p±0 , v±, p± the solutions
of (2-4), (2-5) associated with (φ0, ψ0) and (φ0+φ,ψ0+ψ) respectively, and we set w± := v±− v±0 ,
q± = p±− p±0 .

On the one hand, in �M
bl , we know w− is a solution of the system

−1w−+ e3 ∧w
−
+ (v−0 +w

−) · ∇w−+w− · ∇v−0 +∇q− = 0,

divw− = 0,

w−|∂�bl = φ,(
∂3w

−
− q−e3−

2v−0 ·w
−
+ |w−|2

2
e3

)∣∣∣∣
y3=M
= ψ.

Performing estimates similar to the ones of Lemma 14, we infer that for ‖φ0‖V + ‖ψ0‖Hm−1/2
uloc

and
‖φ‖V +‖ψ‖Hm−1/2

uloc
small enough,

‖w−‖H1
uloc(�bl)

+‖w−|y3=M‖Hm+1/2
uloc
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
).

It follows that
w− = w−L + O(‖φ‖2V +‖ψ‖

2
Hm−1/2

uloc
)

in H 1
uloc(�

M
bl ) and in H m+1

uloc ((M
′,M)× R2) for all M ′ > sup γ , where w−L solves the same system as

w− minus the quadratic terms w− · ∇w− and |w−|2|y3=M .
On the other hand, using Theorem 2, one can show that w+ = w+L + O(‖φ‖2V +‖ψ‖

2
Hm−1/2

uloc
), where

−1w+L + e3 ∧w
+
+ v+0 · ∇w

+

L +w
+

L · ∇v
+

0 +∇q+L = 0 in y3 > M,

divw+L = 0 in y3 > M,

w+L |y3=M = w
−

L |y3=M .

Using Theorem 2, we deduce that if ‖(1+ y3)
1/3v+0 ‖Hm+1

uloc
is small enough (which is ensured by the

smallness condition on ‖φ‖, ‖ψ‖), we have∥∥(1+ y3)
1/3w+L

∥∥
Hm+1

uloc (R
3
+)
≤ C

∥∥w−L |y3=M
∥∥

Hm+1/2
uloc
≤ C(‖φ‖V +‖ψ‖Hm−1/2

uloc
).
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Therefore, in H m−1/2
uloc (R2),

F(φ0+φ,ψ0+ψ)−F(φ0, ψ0)=−ψ+∂3w
+

L |y3=M− (q+L +v
+

0 ·w
+

L )|y3=M e3+O(‖φ‖2V+‖ψ‖
2
Hm−1/2

uloc
).

It follows that the Fréchet derivative of F at (φ0, ψ0) is

Lφ0,ψ0 : (φ, ψ) 7→ −ψ + ∂3w
+

L |y3=M − (q+L + v
+

0 ·w
+

L )|y3=M e3.

Using the same kind of arguments as above, it is easily proved that w±L depend continuously on v±0 , and
therefore on φ0, ψ0. Therefore F is a C1 function in a neighbourhood of zero.

dψF(0, 0) is invertible: Since dψF(0, 0) = L0,0(0, · ), we consider the systems solved by w±L with
v±0 = 0 and φ= 0. We first notice that if L0,0(0, ψ)= 0, then wL := 1y3≤Mw

−

L +1y3>Mw
+

L is a solution of
the Stokes–Coriolis system in the whole domain �bl, with wL |∂�bl = 0. Therefore, according to [Dalibard
and Prange 2014], wL ≡ 0 and therefore ψ = 0. Hence ker dψF(0, 0)= {0}, and dψF(0, 0) is one-to-one.

On the other hand,

(∂3w
+

L − q+L e3)|y3=M = DN(w−L |y3=M),

where DN is the Dirichlet-to-Neumann operator for the Stokes–Coriolis system, introduced in [loc. cit.].
In particular, in order to solve the equation

L0,0(0, ψ1)= ψ2

for a given ψ2 ∈ H m−1/2
uloc (R2), we need to solve the system

−1w−L + e3 ∧w
−

L +∇q−L = 0,

divw−L = 0,

w−L |∂�bl = 0,

(∂3w
−

L − q−L e3−)|y3=M =−ψ2+DN(w−L |y3=M).

According to Section 3 in [loc. cit.], the above system has a unique solution w−L ∈ H 1
uloc(�

M
bl ). There only

remains to prove that w−L ∈ H m+1
uloc ({M

′ < y3 < M}) for all sup γ < M ′ < M . Therefore, we notice that
in the domain R2

× (M ′,M), the horizontal derivatives of w−L (up to order m) satisfy a Stokes–Coriolis
system similar to the one above (notice that the Dirichlet-to-Neumann operator commutes with ∂1, ∂2).
It follows that ∇αhw

−

L ∈ H 1
uloc(R

2
× (M ′,M)) for all |α| ≤ m. In particular, ∇αhw

−

L |y3=M ∈ H 1/2
uloc(R

2)

and therefore w−L |y3=M ∈ H m+1/2
uloc (R2). It can be checked that DN : H m+1/2

uloc (R2)→ H m−1/2
uloc (R2). As a

consequence, ψ1= ∂3w
−

L −q−L e3 ∈ H m−1/2
uloc (R2). Therefore dψF(0, 0) is an isomorphism of H m−1/2(R2).

Using the implicit function theorem, we infer that for all φ ∈ V in a neighbourhood of zero, there exists
ψ ∈ H m−1/2

uloc (R2) such that F(φ, ψ)= 0. Let v := 1y3≤M v
−
+ 1y3>M v

+, where v−, v+ are the solutions
of (2-5)–(2-4) associated with φ, ψ . By definition, the jump of v across {y3 = M} is zero, and since
F(φ, ψ)= 0,

6(v−, p−)e3|y3=M = ψ =6(v
+, p+)e3|y3=M .
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Using once again the fact that |v+|2|y3=M = |v
−
|
2
|y3=M , we deduce that

(∂3v
−
− p−e3)|y3=M = (∂3v

+
− p+e3)|y3=M .

Thus there is no jump of the stress tensor across {y3 = M}, and therefore v is a solution of the Navier–
Stokes–Coriolis system in the whole domain �bl. This concludes the proof of Theorem 1.

Appendix A: Proofs of Lemmas 7 and 9

Proof of Lemma 7. We begin with a few observations. First, replacing χ by χ1 := Qχ ∈ C∞c (R2), it
is enough to prove the lemma with Q = 1. Moreover it is clearly sufficient to prove the lemma for
pk(ξ)= ξ

a
1 ξ

b
2 , with a+ b= k. Notice also that since α− k ≥−2, we can always write α− k = 2m+αm ,

with αm ∈ [−2, 0[ and m ∈ N. Then ξa
1 ξ

b
2 |ξ |

α−k is a linear combination of terms of the form ξa′
1 ξ

b′
2 |ξ |

αm ,
with a′+ b′+αm = α and a′, b′ ∈ N. Therefore, in the rest of the proof, we take

Q ≡ 1, P(ξ)= ξa
1 ξ

b
2 |ξ |

β, with a, b ∈ N, β ∈ [−2, 0[, a+ b+β = α.

Some of the arguments of the proof are inspired by the work of Alazard, Burq and Zuily [Alazard et al.
2016] on the Cauchy problem for gravity water waves in H s

uloc spaces. We introduce a partition of unity
(ϕq)q∈Z2 , where Suppϕq ⊂ B(q, 2) for q ∈ Z2 and supq ‖ϕq‖W k,∞ < +∞ for all k. We also introduce
functions ϕ̃q ∈ C∞0 (R

2) such that ϕ̃q ≡ 1 on Suppϕq , and, say Supp ϕ̃q ⊂ B(q, 3). Then, for j = 1, 2, 3,

u j (xh, z)=
∑
q∈Z2

χ(D)P(D)e−λ j (D)z(ϕqv0)

=

∑
q∈Z2

∫
R2

K j (xh−yh, z)ϕq(yh)v0(yh)dyh =
∑
q∈Z2

∫
R2

K j
q (xh, yh, z)ϕq(yh)v0(yh)dyh, (A-1)

where

K j (xh, z)=
∫

R2
ei xh ·ξχ(ξ)P(ξ)e−λ j (ξ)z dξ, K j

q (xh, yh, z)= K j (xh − yh, z)ϕ̃q(yh).

We then claim that the following estimates hold: there exists δ > 0, C ≥ 0 such that for all xh ∈R2, z > 0,

|K 1(xh, z)| ≤
C

(1+ |xh| + z1/3)2+α
, |K j (xh, z)| ≤ C

e−δz

(1+ |xh|)2+α
for j = 2, 3. (A-2)

Let us postpone the proof of estimates (A-2) and explain why Lemma 7 follows. Going back to (A-1),
we have, for j = 2, 3,

|u j (xh, z)| ≤ Ce−δz
∑

q∈Z2,|q−xh |≥3

1
(|q − xh| − 2)2+α

∫
|ϕq(yh)v0(yh)| dyh

+Ce−δz
∑

q∈Z2,|q−xh |≤3

∫
|ϕq(yh)v0(yh)| dyh

≤ Ce−δz‖v0‖L1
uloc
.
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In a similar fashion,

|u1(xh, z)| ≤ C
∑

q∈Z2,|q−xh |≥3

1
(|q − xh| − 2+ z1/3)2+α

∫
|ϕq(yh)v0(yh)| dyh

+C
∑

q∈Z2,|q−xh |≤3

1
(1+ z1/3)2+α

∫
|ϕq(yh)v0(yh)| dyh

≤ C‖v0‖L1
uloc
(1+ z)−α/3.

The estimates of Lemma 7 follow for z ≥ 1.
We now turn to the proof of estimates (A-2). Once again we start with the estimates for K 2, K 3, which

are simpler. Since λ2, λ3 are continuous and have nonvanishing real part on the support of χ , there exists
a constant δ > 0 such that Re(λ j (ξ)) ≥ δ for all ξ ∈ Suppχ and for j = 2, 3. Clearly, for |xh| ≤ 1 we
have simply

|K j (xh, z)| ≤ e−δz‖χ P‖L1 .

We thus focus on the set |xh| ≥ 1. Let χ j (ξ, z) := χ(ξ) exp(−λ j (ξ)z). Then χ j ∈ L∞(R+,S(R2)), and
for all n1, n2, n3 ∈ N, there exists a constant δn > 0 such that∣∣(1+ |ξ |n3)∂

n1
1 ∂

n2
2 χ j (ξ, z)

∣∣≤ Cn exp(−δnz).

Estimate (A-2) for K 2, K 3 then follows immediately from the following lemma (whose proof is given
after the current one):

Lemma 15. Let P(ξ)= ξa1
1 ξ

a2
2 |ξ |

β , with a1, a2 ∈ N, β ∈ [−2, 0[, and set α := a1+ a2+β. Then there
exists C > 0 such that for any ζ ∈ S(R2) , for all xh ∈ R2, |xh| ≥ 1,∣∣P(D)ζ(xh)

∣∣≤ C
|xh|

2+α

(
‖ζ‖1+

∥∥|yh|
a1+a2+2∂

a1
1 ∂

a2
2 ζ
∥∥
∞

)
.

We now address the estimates on K 1. When |xh| ≤ 1, z≤ 1, we have simply |K 1(xh, z)| ≤ ‖Pχ‖1, and
the estimate follows. When z≤1 and |xh|≥1, we apply Lemma 15 with ζ(ξ)=F−1

(
χ(ξ) exp(−λ1(ξ)z)

)
.

Notice that

‖ζ‖1 .
∥∥χ(ξ) exp(−λ1(ξ)z)

∥∥
W 3,1,

and ∥∥|yh|
a1+a2+2∂

a1
1 ∂

a2
2 ζ
∥∥
∞
.
∥∥ξa1

1 ξ
a2
2 χ(ξ) exp(−λ1(ξ)z)

∥∥
W 2+a1+a2,1 .

Since the right-hand sides of the above inequalities are bounded (recall that λ1(ξ) = |ξ |
331(ξ) with

31 ∈ C∞(R2); see Remark 4), it follows that estimate (A-2) is true for z ≤ 1 and |xh| ≥ 1.
We now focus on the case z ≥ 1. We first change variables in the integral defining K 1 and we set

ξ ′ = z1/3ξ , x ′h = xh/z1/3. Since P is homogeneous, this leads to

K 1(xh, z)=
1

z(2+α)/3

∫
R2

ei x ′h ·ξ
′

P(ξ ′)χ
(
ξ ′

z1/3

)
exp

(
−λ1

(
ξ ′

z1/3

)
z
)

dξ ′.
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Since λ1/|ξ |
3 is continuous and does not vanish on the support of χ , there exists a positive constant δ′

such that λ1(ξ)≥ δ
′
|ξ |3 on Suppχ . Therefore, for |x ′h| ≤ 1, we have

|K 1(xh, z)| ≤
1

z(2+α)/3
∥∥exp(−δ′|ξ |3)P(ξ ′)

∥∥
L1,

and the estimate for K 1 on the set |xh| ≤ z1/3 is proved.
For |x ′h| ≥ 1, we split the integral in two. Let ϕ ∈ C∞0 such that ϕ ≡ 1 in a neighbourhood of zero. Then

K 1(xh, z)=
1

z(2+α)/3

∫
R2

ei x ′h ·ξ
′

P(ξ ′)ϕ(ξ ′)χ
(
ξ ′

z1/3

)
exp

(
−λ1

(
ξ ′

z1/3

)
z
)

dξ ′

+
1

z(2+α)/3

∫
R2

ei x ′h ·ξ
′

P(ξ ′)(1−ϕ(ξ ′))χ
(
ξ ′

z1/3

)
exp

(
−λ1

(
ξ ′

z1/3

)
z
)

dξ ′

=: K 1
1 + K 1

2 .

We first consider the term K 1
2 . Because of the truncation 1−ϕ, we have removed all singularity coming

from P close to ξ = 0. Therefore, performing integrations by parts, we have, for any n ∈ N, for j = 1, 2,

x ′j
n K 1

2 (xh, z)=
1

z(2+α)/3

∫
R2

ei x ′h ·ξ
′

Dn
ξ ′j

[
P(ξ ′)(1−ϕ(ξ ′))χ

(
ξ ′

z1/3

)
exp

(
−λ1

(
ξ ′

z1/3

)
z
)]

dξ ′.

When the Dξ ′j
derivative hits P(1−ϕ), we end up with an integral bounded by

Cn

∫
R2
|ξ ′|α1ξ ′∈Supp(1−ϕ) exp(−δ′|ξ ′|3) dξ ′ ≤ Cn.

When the derivative hits χ(ξ ′/z1/3) the situation is even better, as a power of z1/3 is gained with each
derivative. Therefore the worst terms occur when the derivative hits the exponential. Remember that
λ1(ξ)= |ξ |

331(ξ), where 31 ∈ C∞(R2) with 31(0)= 1 and 31 does not vanish on R2. Therefore, for
all ξ ′ ∈ R2, z > 0,

exp
(
−λ1

(
ξ ′

z1/3

)
z
)
= exp

(
−|ξ ′|331

(
ξ ′

z1/3

))
.

We infer that for any 0≤ n ≤ 3+bαc, on Suppχ( · /z1/3), we have∣∣∣∣P(ξ ′)∇n
ξ ′j

exp
(
−λ1

(
ξ ′

z1/3

)
z
)∣∣∣∣≤ Cn exp

(
−
δ′

2
|ξ |3

)
. (A-3)

We deduce eventually that

|K 1
2 (xh, z)| ≤ C

1
z(2+α)/3

1
(1+ |x ′h|2+α)

≤
C

(|xh| + z1/3)2+α
.

For the term K 1
1 , we use once again Lemma 15, with

ζ := F−1
(
ϕ(ξ ′)χ

(
ξ ′

z1/3

)
exp

(
−λ1

(
ξ ′

z1/3

)
z
))
.
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Using the same type of estimate as (A-3) above, we obtain

|K 1
2 (xh, z)| ≤ C

1
z(2+α)/3

1
|x ′h|2+α

≤
C
|xh|

2+α .

This concludes the proof of Lemma 7. �

Proof of Lemma 15. We have
P(D)ζ = Da1

1 Da2
2 Op(|ξ |β)ζ.

Thus we first compute Op(|ξ |β)ζ . We first focus on the case β ∈ ]−2, 0[. We follow the ideas of Droniou
and Imbert [2006, Theorem 1], recalling the main steps of the proof. The function ξ ∈R2

7→ |ξ |β is radial
and locally integrable, and thus belongs to S ′. Its Fourier transform in S ′(R2) is also radial and homoge-
neous of degree−β−2∈]−2, 0[. Therefore it coincides (up to a constant) with | · |−β−2 in S ′(R2

\{0}), and
since the latter function is locally integrable, we end up with F−1(|ξ |β)= C |xh|

−β−2 in S ′(RN ). Hence

P(D)ζ(xh)= C∂a1
1 ∂

a2
2

∫
R2

1
|yh|

β+2 ζ(xh − yh) dyh .

Notice that in the present case, we do not need to have an exact formula for P(D)ζ , but merely some infor-
mation about its decay at infinity. As a consequence we take a shortcut in the proof of [Droniou and Imbert
2006]. We take a cut-off function χ ∈ C∞0 (R

2) such that χ ≡ 1 in a neighbourhood of zero, and we write

P(D)ζ(xh)= C
∫

R2

χ(yh)

|yh|
β+2 ∂

a1
1 ∂

a2
2 ζ(xh − yh) dyh

+C
∑

0≤i1≤a1
0≤i2≤a2

Ci1,i2

∫
R2
∂

i1
1 ∂

i2
2 (1−χ(yh))∂

a1−i1
1 ∂

a2−i2
2

(
1

|yh|
β+2

)
ζ(xh − yh) dyh

=: I1+ I2.

We now choose χ in the following way. Let n = b|xh|c ∈ N, and take χ = χn = η( · /n), where
Supp η ⊂ B

(
0, 1

2

)
and η ≡ 1 in a neighbourhood of zero. Notice in that case that if yh ∈ Suppχn , then

|xh − yh| ≥ |xh|/2. Therefore, for the first term, we have

|xh|
2+α
|I1| ≤(n+ 1)β

(∫
|yh |≤n/2

|yh|
−β−2 dyh

)∥∥|yh|
2+a1+a2∂

a1
1 ∂

a2
2 ζ
∥∥

L∞ ≤C
∥∥|yh|

2+a1+a2∂
a1
1 ∂

a2
2 ζ
∥∥

L∞ .

Using the assumptions on η and χn and the estimate∣∣∣∣∂a1−i1
1 ∂

a2−i2
2

(
1

|yh|
β+2

)∣∣∣∣≤ C
|yh|

α+2−i1−i2
≤

C
nα+2−i1−i2

∀yh ∈ Supp(1−χn),

we infer that
|I2| ≤ C‖ζ‖L1n−α−2

≤ C‖ζ‖L1 |xh|
−α−2.

Gathering all the terms, we obtain the inequality announced in the lemma. To conclude the proof, we still
have to consider the case β =−2: in such a case, |ξ |β corresponds to inverting the Laplacian over R2.
Hence, the kernel |xh− yh|

−β−2 has to be replaced by 1
2π ln(|xh− yh|). This does not modify the previous

reasoning. �
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Proof of Lemma 9. The proof is somewhat simpler than the one of Lemma 7. As indicated in the remark
following Lemma 9, notice that for n > 1, for all ξ ∈ R2, z > 0,∣∣(1+ |ξ |2)−n(1−χ(ξ))P(ξ)e−λ j (ξ)z

∣∣≤ ‖P‖L∞(Bc
r )

e−δz

(1+ |ξ |2)n
,

and the right-hand side of the above inequality is in L1(R2) for all z. As a consequence, for j = 1, . . . , 3,
n > 1, the kernel

Kn, j (xh, z) :=
∫

R2
ei xh ·ξ (1+ |ξ |2)−n(1−χ)(ξ)P(ξ) exp(−λ j (ξ)z) dξ

is well-defined and satisfies

‖Kn, j ( · , z)‖L∞(R2) ≤ Cn‖P‖L∞(Bc
r )

e−δz.

Furthermore, if a1, a2 ∈ N with a1+ a2 ≤ 3,

xa1
1 xa2

2 Kn, j (xh, z)=
∫

R2
ei xh ·ξ Da1

1 Da2
2

(
(1+ |ξ |2)−n(1−χ)(ξ)P(ξ) exp(−λ j (ξ)z)

)
dξ.

Hence, up to taking a larger n and a smaller δ,

|Kn, j (xh, z)| ≤ Cn‖P‖W 3,∞(Bc
r )

e−δz(1+ |xh|)
−3,

and in particular, Kn, j ∈ L∞z (L
2
xh
). Thus for any f ∈ L2

uloc,∥∥(1+ |D|2)−n(1−χ(D))P(D) exp(−λ j (D)z) f
∥∥

L∞ = ‖Kn, j ∗ f ‖L∞ ≤ Ce−δz‖ f ‖L2
uloc
.

Taking f = (1+|D|2)nv0= (1−1h)
nv0 for some v0 ∈ H 2n

uloc, we obtain the result announced in Lemma 9.

Appendix B. Estimates on a few integrals

Lemma 16. There exists a positive constant C such that for all z ≥ 0,∫
∞

0

1
(1+ |z− z′|)2/3(1+ z′)2/3

dz′ ≤
C

(1+ z)1/3
,∫

∞

0

1
(1+ |z− z′|)(1+ z′)2/3

dz′ ≤
C ln(2+ z)
(1+ z)2/3

,

and for all γ, δ > 0 such that δ < 1 and γ + δ > 1, there exists a constant Cγ,δ such that∫
∞

0

1
(1+ z+ z′)γ

1
(1+ z′)δ

dz′ ≤
Cγ,δ

(1+ z)γ+δ
∀z ≥ 0.

Proof. The first two inequalities are obvious if z is small
(
say, z ≤ 1

2

)
, simply by writing

1
1+ |z− z′|

≤
C

1+ z′
.

Hence we focus on z′ ≥ 1
2 . In that case, changing variables in the first integral, we have∫

∞

0

1
(1+|z−z′|)2/3(1+z′)2/3

dz′=
1

z1/3

∫
∞

0

1
(z−1+|1−t |)2/3

1
(z−1+t)2/3

dt≤
1

z1/3

∫
∞

0

1
|1−t |2/3

1
t2/3 dt,
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which proves the first inequality. The second one is treated in a similar fashion:∫
∞

0

1
1+ |z− z′|

1
(1+ z)2/3

dz′ = z−1
∫
∞

0

1
z−1+ |1− t |

1
(z−1+ t)2/3

dt≤ z−1
∫
∞

0

1
z−1+ |1− t |

1
t2/3 dt.

It is easily checked that ∫ 3/2

1/2

1
z−1+ |1− t |

dt ≤ C ln(2+ z).

The second estimate follows. The last estimate is proved by similar arguments and is left to the reader. �
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[Achdou et al. 1998c] Y. Achdou, O. Pironneau, and F. Valentin, “Effective boundary conditions for laminar flows over periodic
rough boundaries”, J. Comput. Phys. 147:1 (1998), 187–218. MR Zbl

[Alazard et al. 2016] T. Alazard, N. Burq, and C. Zuily, “Cauchy theory for the gravity water waves system with non-localized
initial data”, Ann. Inst. H. Poincaré Anal. Non Linéaire 33:2 (2016), 337–395. MR Zbl

[Amirat et al. 2001] Y. Amirat, D. Bresch, J. Lemoine, and J. Simon, “Effect of rugosity on a flow governed by stationary
Navier–Stokes equations”, Quart. Appl. Math. 59:4 (2001), 769–785. MR Zbl

[Basson and Gérard-Varet 2008] A. Basson and D. Gérard-Varet, “Wall laws for fluid flows at a boundary with random
roughness”, Comm. Pure Appl. Math. 61:7 (2008), 941–987. MR Zbl

[Bocquet and Barrat 2007] L. Bocquet and J.-L. Barrat, “Flow boundary conditions from nano- to micro-scales”, Soft Matter 3:6
(2007), 685–693.

[Bonnivard and Bucur 2012] M. Bonnivard and D. Bucur, “The uniform rugosity effect”, J. Math. Fluid Mech. 14:2 (2012),
201–215. MR Zbl

[Boyer and Fabrie 2013] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations
and related models, Applied Mathematical Sciences 183, Springer, 2013. MR Zbl

[Bresch and Milisic 2010] D. Bresch and V. Milisic, “High order multi-scale wall-laws, Part I: The periodic case”, Quart. Appl.
Math. 68:2 (2010), 229–253. MR Zbl

[Bucur et al. 2008] D. Bucur, E. Feireisl, Š. Nečasová, and J. Wolf, “On the asymptotic limit of the Navier–Stokes system on
domains with rough boundaries”, J. Differential Equations 244:11 (2008), 2890–2908. MR Zbl

[Casado-Díaz et al. 2003] J. Casado-Díaz, E. Fernández-Cara, and J. Simon, “Why viscous fluids adhere to rugose walls: a
mathematical explanation”, J. Differential Equations 189:2 (2003), 526–537. MR Zbl

[Dalibard and Gérard-Varet 2011] A.-L. Dalibard and D. Gérard-Varet, “Effective boundary condition at a rough surface starting
from a slip condition”, J. Differential Equations 251:12 (2011), 3450–3487. MR Zbl

[Dalibard and Prange 2014] A.-L. Dalibard and C. Prange, “Well-posedness of the Stokes–Coriolis system in the half-space over
a rough surface”, Anal. PDE 7:6 (2014), 1253–1315. MR Zbl

http://dx.doi.org/10.1016/S0045-7825(97)00118-7
http://dx.doi.org/10.1016/S0045-7825(97)00118-7
http://msp.org/idx/mr/1625432
http://msp.org/idx/zbl/0920.76063
http://msp.org/idx/mr/1661558
http://msp.org/idx/zbl/0931.76077
http://dx.doi.org/10.1006/jcph.1998.6088
http://dx.doi.org/10.1006/jcph.1998.6088
http://msp.org/idx/mr/1657773
http://msp.org/idx/zbl/0917.76013
http://dx.doi.org/10.1016/j.anihpc.2014.10.004
http://dx.doi.org/10.1016/j.anihpc.2014.10.004
http://msp.org/idx/mr/3465379
http://msp.org/idx/zbl/1339.35227
http://dx.doi.org/10.1090/qam/1866556
http://dx.doi.org/10.1090/qam/1866556
http://msp.org/idx/mr/1866556
http://msp.org/idx/zbl/1019.76014
http://dx.doi.org/10.1002/cpa.20237
http://dx.doi.org/10.1002/cpa.20237
http://msp.org/idx/mr/2410410
http://msp.org/idx/zbl/1179.35207
http://dx.doi.org/10.1039/B616490K
http://dx.doi.org/10.1007/s00021-011-0052-3
http://msp.org/idx/mr/2925104
http://msp.org/idx/zbl/1294.35088
http://dx.doi.org/10.1007/978-1-4614-5975-0
http://dx.doi.org/10.1007/978-1-4614-5975-0
http://msp.org/idx/mr/2986590
http://msp.org/idx/zbl/1286.76005
http://dx.doi.org/10.1090/S0033-569X-10-01135-0
http://msp.org/idx/mr/2663000
http://msp.org/idx/zbl/05720455
http://dx.doi.org/10.1016/j.jde.2008.02.040
http://dx.doi.org/10.1016/j.jde.2008.02.040
http://msp.org/idx/mr/2418180
http://msp.org/idx/zbl/1143.35080
http://dx.doi.org/10.1016/S0022-0396(02)00115-8
http://dx.doi.org/10.1016/S0022-0396(02)00115-8
http://msp.org/idx/mr/1964478
http://msp.org/idx/zbl/1061.76014
http://dx.doi.org/10.1016/j.jde.2011.07.017
http://dx.doi.org/10.1016/j.jde.2011.07.017
http://msp.org/idx/mr/2837691
http://msp.org/idx/zbl/1235.35025
http://dx.doi.org/10.2140/apde.2014.7.1253
http://dx.doi.org/10.2140/apde.2014.7.1253
http://msp.org/idx/mr/3270164
http://msp.org/idx/zbl/1304.35535


42 ANNE-LAURE DALIBARD AND DAVID GÉRARD-VARET

[Droniou and Imbert 2006] J. Droniou and C. Imbert, “Fractal first-order partial differential equations”, Arch. Ration. Mech.
Anal. 182:2 (2006), 299–331. MR Zbl

[Galdi 2011] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations: steady-state problems,
2nd ed., Springer, 2011. MR Zbl

[Gérard-Varet 2003] D. Gérard-Varet, “Highly rotating fluids in rough domains”, J. Math. Pures Appl. (9) 82:11 (2003),
1453–1498. MR Zbl

[Gérard-Varet 2009] D. Gérard-Varet, “The Navier wall law at a boundary with random roughness”, Comm. Math. Phys. 286:1
(2009), 81–110. MR Zbl

[Gérard-Varet and Dormy 2006] D. Gérard-Varet and E. Dormy, “Ekman layers near wavy boundaries”, J. Fluid Mech. 565
(2006), 115–134. MR Zbl

[Gérard-Varet and Masmoudi 2010] D. Gérard-Varet and N. Masmoudi, “Relevance of the slip condition for fluid flows near an
irregular boundary”, Comm. Math. Phys. 295:1 (2010), 99–137. MR Zbl
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We prove uniqueness results for a Calderón-type inverse problem for the Hodge Laplacian acting on
graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements
of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth-order
potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute
boundary conditions, and on the construction of complex geometrical optics solutions which reduce the
Calderón-type problem to a tomography problem for 2-tensors. The arguments in this paper allow us to
establish partial data results for elliptic systems that generalize the scalar results due to Kenig, Sjöstrand
and Uhlmann.
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1. Introduction

This article is concerned with inverse problems with partial data for elliptic systems. We first discuss
the prototype for such problems, which comes from the scalar case: the inverse problem of Calderón
asks to determine the electrical conductivity  of a medium � from electrical measurements made on its
boundary. More precisely, let �� Rn be a bounded domain with smooth boundary and let  2 L1.�/
satisfy  � c > 0 a.e. in �. The full boundary measurements are given by the Dirichlet-to-Neumann map
(DN map)

ƒDN
 WH

1
2 .@�/!H�

1
2 .@�/; f 7! @�uj@�;
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where u 2 H 1.�/ is the unique solution of div.ru/ D 0 in � with uj@� D f , and the conormal
derivative @�uj@� is defined in the weak sense. Equivalently, one can consider the Neumann-to-Dirichlet
map (ND map)

ƒND
 WH

� 1
2
˘ .@�/!H

1
2 .@�/; g 7! vj@�;

where div.rv/D 0 in � with @�vj@� D g, and H
� 1
2
˘ .@�/ consists of those elements in H�

1
2 .@�/

that are orthogonal to constants. The inverse problem of Calderón asks to determine the conductivity 
from the knowledge of the DN map or (equivalently) the ND map. There is a substantial literature on this
problem, with pioneering works including [Faddeev 1965; Calderón 1980; Sylvester and Uhlmann 1987;
Novikov and Khenkin 1987; Nachman 1988; Novikov 1988]. We refer to the surveys [Novikov 2008;
Uhlmann 2014] for more information.

The Calderón problem with partial data corresponds to the case where one can only make measurements
on subsets of the boundary. Let �D and �N be open subsets of @�, and assume that we measure voltages
on �D and currents on �N. If the potential is grounded on @�n�D but can be prescribed on �D, the partial
boundary measurements are given by the partial DN map

ƒDN
 f j�N for all f 2H

1
2 .@�/ with supp.f /� �D:

If instead we can freely prescribe currents on �N but no current is input on @� n�N, then we know the
partial ND map:

ƒND
 gj�D for all g 2H

� 1
2
˘ .@�/ with supp.g/� �N:

The basic uniqueness question is whether a (sufficiently smooth) conductivity is determined by such bound-
ary measurements. We remark that in the partial data case there seems to be no direct way of obtaining the
partial DN map from the partial ND map or vice versa, and the two cases need to be considered separately.

By now there are many uniqueness results for the Calderón problem with partial data involving varying
assumptions on the sets �D and �N. For further information we refer to the survey [Kenig and Salo 2014]
for results in dimensions n� 3 and [Guillarmou and Tzou 2013] for the case nD 2. We only list here
some of the main results for the partial DN map:

� When n � 3, we know �D can be possibly very small but �N has to be slightly larger than the
complement of �D [Kenig et al. 2007].

� When n� 3, we know �D D �N D � and the complement of � has to be part of a hyperplane or a
sphere [Isakov 2007].

� When nD 2, we know �D D �N D � can be an arbitrary open set [Imanuvilov et al. 2010].

� When n� 3, we know �D D �N D � and the complement of � has to be (conformally) flat in one
direction and a certain ray transform needs to be injective [Kenig and Salo 2013] (a special case of
this was proved independently in [Imanuvilov and Yamamoto 2013]).

The approach of [Kenig et al. 2007] is based on Carleman estimates with boundary terms and the approach
of [Isakov 2007] is based on reflection arguments. The paper [Kenig and Salo 2013] combines these
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two approaches and extends both. There seem to be fewer results for the partial ND map, especially in
dimensions n� 3; see [Isakov 2007; Chung 2015]. In fact, in dimensions n� 3 the Carleman estimate
approach for the partial ND map seems to be more involved than for the partial DN map. We remark that
there are counterexamples for uniqueness when �D and �N are disjoint [Daudé et al. 2015].

The purpose of this paper is to consider analogous partial data results for elliptic systems. In the full
data case (�D D �N D @�), many uniqueness results are available for linear elliptic systems such as the
Maxwell system [Ola et al. 1993; Kenig et al. 2011; Caro and Zhou 2014], Dirac systems [Nakamura and
Tsuchida 2000; Salo and Tzou 2009], the Schrödinger equation with Yang–Mills potentials [Eskin 2001],
elasticity [Nakamura and Uhlmann 1994; 2003; Eskin and Ralston 2002], and equations in fluid flow
[Heck et al. 2007; Li and Wang 2007]. In contrast, the only earlier partial data results for such systems
in dimensions n� 3 that we are aware of are [Caro et al. 2009] for the Maxwell system and [Salo and
Tzou 2010] for the Dirac system. One reason for the lack of partial data results for systems is the fact
that Carleman estimates for systems often come with boundary terms that do not seem helpful for partial
data inverse problems (see [Eller 2008; Salo and Tzou 2009] for some such estimates).

In this paper we establish partial data results analogous to [Kenig et al. 2007] for systems involving
the Hodge Laplacian for graded differential forms, on certain Riemannian manifolds in dimensions n� 3.
These are elliptic systems that generalize the scalar Schrödinger equation .�4Cq/uD0 and are very close
to the time-harmonic Maxwell equations when nD3. In fact, using the results of the present paper, we have
finally been able to extend the partial data result of [Kenig et al. 2007] to the Maxwell system [Chung et al.
2015]. The main technical contribution of the present paper is a Carleman estimate for the Hodge Laplacian,
with limiting Carleman weights, that has boundary terms involving the relative and absolute boundary
values of graded forms. The boundary terms are of such a form that allows us to carry over the Carleman es-
timate approach of [Kenig et al. 2007] to the Hodge Laplace system. As far as we know, this is the first ana-
logue of [Kenig et al. 2007] for systems besides [Salo and Tzou 2010], which considered a very special case.

In a sense, to deal with boundary terms for systems in a flexible way, one first needs a good understanding
of the different splittings of Cauchy data in the scalar case. This encompasses both the scalar DN and
ND maps simultaneously, since the “relative-to-absolute” map defined in Section 2 generalizes both the
notion of the DN and ND maps. Therefore the methods developed in [Chung 2015] for the partial ND
map, involving Fourier analysis to treat the boundary terms in Carleman estimates, will be very useful in
our approach. We expect that the methods developed in this paper open the way for obtaining partial data
results via Carleman estimates for various elliptic systems. This has already been achieved for Maxwell
equations [Chung et al. 2015].

The plan of this document is as follows. Section 1 is the introduction, and Section 2 contains precise
statements of the main results. Section 3 collects notation and identities used throughout the paper. In the
interest of brevity, we have omitted the proofs of these identities and interested readers can find them in
the arXiv version of this paper [Chung et al. 2013, Appendix]. Sections 4–6 will be devoted to the proofs
of the Carleman estimates. In Section 4, we will give the basic integration by parts argument for k-forms
and simplify the boundary terms. In Section 5, we prove the Carleman estimates for 0-forms using the
arguments from [Chung 2015; Kenig and Salo 2013]. We will conclude the argument in Section 6 by
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showing that the Carleman estimates for graded forms follow from an induction argument, given the
corresponding result for 0-forms. In Section 7 we will construct relevant complex geometrical optics
solutions, following the ideas in [Dos Santos Ferreira et al. 2009a]. In Section 8 we will present the
Green’s theorem argument and give the density result based on injectivity of a tensor tomography problem,
which finishes the proofs of Theorems 2.1 and 2.2. Section 9 will contain the proof of Theorem 2.3 and
make some remarks about the case of dimensions n� 4.

2. Statement of results

The results in this paper are new even in Euclidean space, but it will be convenient to state them on certain
Riemannian manifolds following [Dos Santos Ferreira et al. 2009a; 2016; Kenig and Salo 2013]. Suppose
.M0; g0/ is a compact oriented manifold with smooth boundary, and consider a manifold T D R�M0

equipped with a Riemannian metric of the form g D c.e˚ g0/, where c is a smooth conformal factor
and .R; e/ is the real line with Euclidean metric. A compact manifold .M; g/ of dimension n � 3,
with boundary @M, is said to be CTA (conformally transversally anisotropic) if it can be expressed as a
submanifold of such a T . A CTA manifold is called admissible if additionally .M0; g0/ can be chosen to
be simple, meaning that @M0 is strictly convex and for any point x 2M0, the exponential map expx is a
diffeomorphism from some closed neighbourhood of 0 in TxM0 onto M0 (see [Sharafutdinov 1994]).
Most of the geometric notions defined here will be from [Taylor 1996] and we refer the reader there for a
more thorough treatment of the subject.

Let ƒkM be the k-th exterior power of the cotangent bundle on M, and let ƒM be the corresponding
graded algebra. The corresponding spaces of sections (smooth differential forms) are denoted by �kM
and �M. We will define 4 to be the Hodge Laplacian on M, acting on graded forms:

�4D dıC ıd:

Here d is the exterior derivative and ı is the codifferential (adjoint of d in the L2 inner product). Suppose
Q is an L1 endomorphism of ƒM ; that is, Q associates to almost every point x 2M a linear map Q.x/
fromƒxM to itself, and the map x 7! kQ.x/k is bounded and measurable. Later will consider continuous
endomorphisms, meaning that x 7!Q.x/ is continuous in M. The continuity of Q will simplify matters
since the recovery of Q from boundary measurements involves integrals over geodesics, and continuity
ensures that these integrals are well defined.

We would like to consider boundary value problems for the operator �4CQ. In order to do this, we
will define the tangential trace t W�M !�@M by

t W ! 7! i�!;

where i W @M!M is the natural inclusion map. Then the first natural boundary value problem to consider
for �4CQ, acting on graded forms u, is the relative boundary problem

.�4CQ/uD 0 in M;

tuD f on @M;

tıuD g on @M:
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If Q is such that 0 is not an eigenvalue for this problem, then this problem has a unique solution [Taylor
1996, Section 5.9] and we may define a relative-to-absolute map

N RA
Q WH

1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/!H

1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/

by
N RA
Q .f; g/D .t �u; tı �u/;

where � is the Hodge star operator on M.
The second natural boundary value problem to consider is the absolute boundary value problem

.�4CQ/uD 0 in M;

t �uD f on @M;

tı �uD g on @M:

Assuming 0 is not an eigenvalue, this defines an absolute-to-relative map

NAR
Q WH

1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/!H

1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/

by
NAR
Q .f; g/D .tu; tıu/

for appropriate Q. For more details on the relative and absolute boundary value problems for the Hodge
Laplacian, see [Taylor 1996, Section 5.9].

These maps both give rise to a Calderón-type inverse problem which asks if knowledge of N RA
Q or NAR

Q

suffices to determine Q. If we restrict ourselves to considering the case of 0-forms only and if Q acts on
0-forms by multiplication by a function q 2L1.M/, then the relative-to-absolute and absolute-to-relative
maps become the DN and ND maps, respectively, for the Schrödinger equation

.�4C q/uD 0 in M;

where u is now a function on M and 4 is the Laplace–Beltrami operator on functions. Our problem is
therefore a generalization of the standard partial data problem for the scalar Schrödinger equation on a
compact manifold with boundary.

Let us review some earlier results for the Schrödinger problem in the scalar case, in dimensions n� 3.
If M is Euclidean, Sylvester and Uhlmann [1987] proved that knowledge of the full DN map uniquely
determines the potential q. Versions of this problem on admissible and CTA manifolds as defined above
have been considered in [Dos Santos Ferreira et al. 2009a; 2016]. Partial data results for the DN map
have been proven in [Bukhgeim and Uhlmann 2002; Isakov 2007; Kenig et al. 2007] for the Euclidean
case, and more recently in [Kenig and Salo 2013], the last of which contains the previous three results
and extends them to the manifold case. Improved results in the linearized case are in [Dos Santos Ferreira
et al. 2009b]. Partial data results for the ND map, analogous to the ones in [Kenig et al. 2007], were
proven in [Chung 2015]. Other partial data results for scalar equations with first-order potentials as well
were obtained in [Dos Santos Ferreira et al. 2007; Chung 2014], and some of those techniques will be
useful to us in this paper as well.
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For the Hodge Laplacian acting on graded forms, we are not aware of previous results dealing with
the determination of a potential from the relative-to-absolute or absolute-to-relative maps. However,
[Krupchyk et al. 2011] reconstructs a real analytic metric from these maps in the case of no potential,
and [Sharafutdinov and Shonkwiler 2013; Shonkwiler 2013; Belishev and Sharafutdinov 2008; Joshi and
Lionheart 2005] recover various kinds of topological information about the manifold from variants of
these maps, again in the case of no potential. We remark that full data problems for the Hodge Laplacian
in Euclidean space can be solved in a very similar way as in the scalar case (see Section 9), but full data
problems on manifolds and partial data problems even in Euclidean space are more involved.

In order to describe the main results precisely, we will define “front” and “back” sets of the boundary @M
as in [Kenig et al. 2007]. If M � T D R�M0 is CTA, we can use coordinates .x1; x0/, where x1 is
the Euclidean variable, and define the function ' W T ! R by '.x1; x0/ D x1. As discussed in [Dos
Santos Ferreira et al. 2009a], ' is a natural limiting Carleman weight in M. Now define

@MC D fp 2 @M j @�'.p/� 0g;

@M� D fp 2 @M j @�'.p/� 0g:

Then the main results of this paper are the following.

Theorem 2.1. Let M �R�M0 be a three-dimensional admissible manifold with conformal factor c D 1,
and letQ1 andQ2 be continuous endomorphisms ofƒM such thatN RA

Q1
,N RA

Q2
are defined. Let �C� @M

be a neighbourhood of @MC, and let �� � @M be a neighbourhood of @M�. Suppose

N RA
Q1
.f; g/j�C DN

RA
Q2
.f; g/j�C

for all .f; g/ 2H
1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/ supported in ��. Then Q1 DQ2.

Theorem 2.2. Let M be a three-dimensional admissible manifold with conformal factor c D 1, and let
Q1 and Q2 be continuous endomorphisms of ƒM such that NAR

Q1
, NAR

Q2
are defined. Let �C � @M be a

neighbourhood of @MC, and let �� � @M be a neighbourhood of @M�. Suppose

NAR
Q1
.f; g/j�C DN

AR
Q2
.f; g/j�C

for all .f; g/ 2H
1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/ supported in ��. Then Q1 DQ2.

In the case that M is a domain in Euclidean space, we can also extend the results to higher dimensions.

Theorem 2.3. Let M be a bounded smooth domain in Rn, with n� 3, and let Q1 and Q2 be continuous
endomorphisms of ƒM such that N RA

Q1
, N RA

Q2
are defined. Fix a unit vector ˛, and let '.x/D ˛ � x. Let

�C � @M be a neighbourhood of @MC, and let �� � @M be a neighbourhood of @M�. Suppose

N RA
Q1
.f; g/j�C DN

RA
Q2
.f; g/j�C

for all .f; g/ 2H
1
2 .@M;ƒ@M/�H�

1
2 .@M;ƒ@M/ supported in ��. Then Q1 DQ2. The same result

holds if we replace the relative-to-absolute map with the absolute-to-relative one.
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Theorem 2.1 is a generalization to certain systems of the scalar partial data result of [Kenig et al. 2007]
for the DN map, and similarly Theorem 2.2 is an extension to systems of the scalar result of [Chung 2015]
for the ND map. To be precise, the above theorems are stated for the linear Carleman weight and not for
the logarithmic weight as in [Kenig et al. 2007; Chung 2015]. This restriction comes from the lack of
conformal invariance of the full Hodge Laplacian. However, in the scalar case we could use the conformal
invariance of the scalar Schrödinger operator together with a reduction from [Kenig and Salo 2013] to
recover the logarithmic weight results of [Kenig et al. 2007; Chung 2015] from the above theorems.

The proofs of Theorems 2.1 and 2.2 involve three main ingredients — the construction of complex
geometrical optics (CGO) solutions, a Green’s theorem argument, and a density argument relating this
inverse problem to a tensor tomography problem where one determines a tensor field from its integrals
along geodesics (see Section 8). Both the construction of CGO solutions and the Green’s theorem
argument require appropriate Carleman estimates.

To describe them, we will introduce the following notation. For a CTA manifold M, let N be the
inward pointing normal vector field along @M. We can extend N to be a vector field in a neighbourhood
of @M by parallel transporting along normal geodesics, and then to a vector field on M by multiplying
by a cutoff function. For u 2�M we will let

u? DN
[
^ iNu;

where N [ is the 1-form corresponding to N and iN is the interior product, and

u D u�u?:

Letr denote the Levi-Civita connection onM, andr 0 denote the pullback connection on the boundary. Let

�' D e
'
h h2�e�

'
h ;

where ' is a limiting Carleman weight as described in [Dos Santos Ferreira et al. 2009a]. Note that by
[loc. cit.] such weights exist globally ifM is a CTA manifold. Then the Carleman estimates are as follows.

Theorem 2.4. Let M be a CTA manifold, and let Q be an L1 endomorphism of ƒM. Define �C � @M
to be a neighbourhood of @MC. Suppose u 2H 2.M;ƒM/ satisfies the boundary conditions

uj�C D 0 to first order;

tuj�c
C
D 0;

thıe�
'
h uj�c

C
D h�ti�e

�
'
h u

(2-1)

for some smooth endomorphism � independent of h. Then there exists h0 such that if 0 < h < h0,

k.��' C h
2Q/ukL2.M/ & hkukH1.M/C h

1
2 ku?kH1.�c

C
/C h

1
2 khrNu kL2.�c

C
/:

Here H 1 signifies the semiclassical H 1 space with semiclassical parameter h, and for instance

kukH1.M/ D kukL2.M/CkhrukL2.M/:
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The constant implied in the & sign is meant to be independent of h. Note that the last boundary condition
in (2-1) can be rewritten as

thıuj@M D�t id'u� h�tiNu:

Theorem 2.5. Let M be a CTA manifold, and let Q be an L1 endomorphism of ƒM. Define �C � @M
to be a neighbourhood of @MC. Suppose u 2H 2.M;ƒM/ satisfies the boundary conditions

uj�C D 0 to first order;

t �uj�c
C
D 0;

thı � e�
'
h uj�c

C
D h�ti� � e

�
'
h u

(2-2)

for some smooth endomorphism � independent of h. Then there exists h0 such that if 0 < h < h0,

k.��' C h
2Q/ukL2.M/ & hkukH1.M/C h

1
2 ku kH1.�c

C
/C h

1
2 khrNu?kL2.�c

C
/:

Note that Theorem 2.5 is actually Theorem 2.4 with u replaced by �u. Therefore it suffices to prove
Theorem 2.5 only. It is also worth noting that the Carleman estimates are proved for CTA manifolds in
general, with no restriction on either the dimension, the conformal factor, or the transversal manifold
.M0; g0/. Theorems 2.4 and 2.5 are extensions to the Hodge Laplace system on CTA manifolds of the
scalar and Euclidean Carleman estimates in [Kenig et al. 2007; Chung 2015].

Finally, we sketch the main ideas in the proofs of the theorems and highlight the new features in our
approach. The main difficulty in proving the Carleman estimates is the fact that the standard integration
by parts argument, which gives a useful Carleman estimate for scalar equations with Dirichlet boundary
condition [Kenig et al. 2007], results in complicated boundary terms when one is dealing with a system of
equations (see Proposition 4.1). The Fourier analytic methods of [Chung 2015] will be crucial in handling
these boundary terms. We first prove Theorem 2.5 for 0-forms (i.e., scalar equations) by adapting the
Euclidean arguments of [Chung 2015] to the manifold case. After an initial estimate for the vectorial
boundary terms in Proposition 4.2, Theorem 2.5 is proved for k-forms by induction on k. The proof
of the Carleman estimates is long and technical, due to the work required to simplify and estimate the
boundary terms.

After proving the Carleman estimates, the construction of CGO solutions proceeds as in the scalar
case [Kenig et al. 2007; Dos Santos Ferreira et al. 2009a] and in the full data Maxwell case [Kenig et al.
2011]. The end result is given in Lemma 7.6. There the amplitude in the solutions is vector-valued, and
later one needs to use the flexibility in choosing the components of this vector. The inverse problem is
solved by inserting the CGO solutions in a standard integral identity, Lemma 8.1. Here an unexpected
feature appears: recovering the matrix potential reduces to inverting mixed Fourier/attenuated geodesic
ray transforms as in the scalar case [Dos Santos Ferreira et al. 2009a], but the components of the matrix
turn out to depend on the geodesic along which they are integrated. We resolve this difficulty when
dim.M/D 3 by making use of ray transforms on tensors of order � 2 and using recent results on tensor
tomography [Paternain et al. 2013]. When the underlying space is Euclidean, we can use classical Fourier
arguments and prove the uniqueness result also when dim.M/� 4.
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3. Notation and identities

As stated before, the basic reference for the following facts on Riemannian geometry is [Taylor 1996].
Let .M; g/ be a smooth (D C1) n-dimensional Riemannian manifold with or without boundary. All
manifolds will be assumed to be oriented. We write hv;wi for the g-inner product of tangent vectors,
and jvj D hv; vi

1
2 for the g-norm. If x D .x1; : : : ; xn/ are local coordinates and @j are the corresponding

vector fields, we write gjk D h@j ; @ki for the metric in these coordinates. The determinant of .gjk/ is
denoted by jgj, and .gjk/ is the matrix inverse of .gjk/.

We shall sometimes do computations in normal coordinates. These are coordinates x defined in a
neighbourhood of a point p 2 M int such that x.p/ D 0 and geodesics through p correspond to rays
through the origin in the x-coordinates. The metric in these coordinates satisfies

gjk.0/D ıjk; @lgjk.0/D 0:

The Einstein convention of summing over repeated upper and lower indices will be used. We convert
vector fields to 1-forms and vice versa by the musical isomorphisms, which are given by

.Xj @j /
[
DXk dx

k; Xk D gjkX
j;

.!k dx
k/] D !j @j ; !j D gjk!k :

The set of smooth k-forms on M is denoted by �kM, and the graded algebra of differential forms is
written as

�M D

nM
kD0

�kM:

The set of k-forms with L2 or H s coefficients are denoted by L2.M;ƒkM/ and H s.M;ƒkM/, respec-
tively. Here H s for s 2 R are the usual Sobolev spaces on M. The inner product h � ; � i and norm j � j
are extended to forms and more generally tensors on M in the usual way, and we also extend the inner
product h � ; � i to complex-valued tensors as a complex bilinear form.

Let d W�kM !�kC1M be the exterior derivative, and let � W�kM !�n�kM be the Hodge star
operator. We introduce the sesquilinear inner product on �kM,

.� j �/D

Z
M

h�; N�i dV D

Z
M

�^�N� D .�� j ��/:

Here dV D�1D jgj
1
2 dx1 � � � dxn is the volume form. The codifferential ı W�kM!�k�1M is defined

as the formal adjoint of d in the inner product on real-valued forms, so that

.d� j �/D .� j ı�/ for � 2�k�1M and � 2�kM compactly supported and real:

These operators satisfy the following relations on k-forms in M :

�� D .�1/k.n�k/; ı D .�1/k.n�k/�nCk�1 � d � :
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If X is a vector field, the interior product iX W�kM !�k�1M is defined by

iX!.Y1; : : : ; Yk�1/D !.X; Y1; : : : ; Yk�1/:

If � is a 1-form then the interior product i� D i�] is the formal adjoint of �^ in the inner product on
real-valued forms, and on k-forms it has the expression

i� D .�1/
n.k�1/

� � ^�:

The interior and exterior products interact by the formula

i�˛^ˇ D .i�˛/^ˇC .�1/
k˛^ i�ˇ;

where ˛ is a k-form and ˇ an m-form. In particular if ˛ and � are 1-forms then

i�˛^ˇC˛^ i�ˇ D h˛; �iˇ:

In addition, the differential and codifferential satisfy the product rules

d.f �/D df ^ �Cfd�; ı.f �/D�idf �Cf ı�:

The Hodge Laplacian on k-forms is defined by

��D .d C ı/2 D dıC ıd:

It satisfies �� D ��. The above quantities may be naturally extended to graded forms.
We will also have to deal with forms that are not compactly supported on M. We have already

introduced the tangential trace t W�M !�@M by

t W ! 7! i�!;

so if u is a graded form on M, then tu is a graded form on @M. Then

.tu j tv/@M

is interpreted in the same manner as .u j v/M above. If u and v are graded forms on M, we will also
define

.u j v/@M D

Z
@M

hu; Nvi dS D

Z
@M

t i�u^�Nv dS;

where dS is the volume form on @M. Now if � 2 �k�1M and � 2 �kM then d and ı satisfy the
integration by parts formulas

.d� j �/M D .� ^ � j �/@M C .� j ı�/M ; (3-1)

.ı� j �/M D�.i�� j �/@M C .� j d�/M : (3-2)

Note also that
.i�� j �/@M D .� ^ � j �/@M :

Here � denotes both the unit outer normal of @M and the corresponding 1-form.
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Applying these formulas for the Hodge Laplacian gives

.��u j v/M D .u j ��v/M C .� ^ ıu j v/@M � .i�du j v/@M � .i�u j dv/@M C .� ^u j ıv/@M ;

where u and v are k-forms, or graded forms. We can also redo the integration by parts to write the
boundary terms in terms of absolute and relative boundary conditions, so

.��u j v/M D .u j ��v/MC.tu j t i�dv/@MC.tı�u j t i��v/@MC.t �u j t i�d �v/@MC.tıu j t i�v/@M :

The Levi-Civita connection, defined on tensors in M, is denoted by r and it satisfies rX� D �rX .
We will sometimes write rf (where f is any function) for the metric gradient of f , defined by

rf D .df /] D gjk@jf @k :

If X is a vector field and �, � are differential forms we have

rX .�^ �/D .rX�/^ �C �^ .rX�/:

If X; Y are vector fields then
ŒrX ; iY �D irXY :

We can also express d using the r operator, as follows: if ! is a k-form on M, and X1; : : : ; XkC1 are
vector fields on M, then

d!.X1; : : : ; XkC1/D

kC1X
lD1

.�1/lC1.rXl!/.X1; : : : ;
yXl ; : : : ; XkC1/;

where yXl means that we omit the Xl argument. Moreover if e1; : : : ; en are an orthonormal frame of TM
defined in a neighbourhood U �M we have

�ı! D

nX
jD1

iejrej!:

For the statements of the Carleman estimates, we introduced the notation

u? DN
[
^ iNu and u D u�u?;

where N is a smooth vector field which coincides with the inward pointing normal vector field at the
boundary @M, and is extended intoM by parallel transport. Note that iNu D 0, N ^u?D 0, and tu?D 0
at @M. In addition, if u and v are graded forms on M, then

.tu j tv/@M D .tu j tv /@M D .u j v /@M

and
.t iNu j t iN v/@M D .t iNu? j t iN v?/@M D .u? j v?/@M :

If X is a vector field, we can break down X into parallel and perpendicular components in the same way
by using .X[/] and .X[

?
/]. The ? and k signs are interchanged by the Hodge star operator:

�.u /D .�u/? and � .u?/D .�u/ :
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Note that by its definition in terms of parallel transport, rNN D 0. Thus rN commutes with N^ and iN .
If we view @M as a submanifold embedded into M, then TM splits into T @M ˚ N@M, where

T @M is the tangent bundle of @M and N@M is the normal bundle. Then the second fundamental form
II W T @M ˚T @M !N@M of @M relative to this embedding is defined by

II.X; Y /D .rXY jN/N:

The second fundamental form can also be defined in terms of the shape operator s W T @M ! T @M by

s.X/DrXN:

Then

II.X; Y /D .s.X/ j Y /N:

These two operators carry information about the shape of the @M in M, and thus show up in our boundary
computations.

Now we move to some more specific technical formulas used in the paper. The proofs involve routine
computations and are omitted, but interested readers may find the proofs in the arXiv version of this paper
[Chung et al. 2013, Appendix]. We begin with a simple computation.

Lemma 3.1. If � and � are real-valued 1-forms on M and if u is a k-form, then

� ^ i�uC i�.�^u/C �^ i�uC i�.� ^u/D 2h�; �iu:

We also give an expression for the conjugated Laplacian.

Lemma 3.2. Let .M; g/ be an oriented Riemannian manifold, let � 2 C 2.M/ be a complex-valued
function, and let s be a complex number. If u is a k-form on M, then

es�.��/.e�s�u/D�s2hd�; d�iuC sŒ2rgrad.�/C���u��u:

Next, an expansion for the expression tı.

Lemma 3.3. Let u 2�k.M/. Then

�t .ıu/D�ı0tu C .S � .n� 1/�/t iNu?C trN iNu;

where � is the mean curvature of @M, and S W�k�1.@M/!�k�1.@M/ is defined by

S!.X1; : : : ; Xk�1/D

k�1X
`D1

!.X1; : : : ; sX`; : : : ; Xk�1/;

with s W T @M ! T @M being the shape operator of @M.

Now for t iNd .

Lemma 3.4. Let u 2�k.M/. Then on @M,

t iNduD trNu CStu � d
0t iNu:
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We also need an expansion for tıB , where B is the operator

B D
h

i

�
d ı id'c C id'c ı d � d'c ^ ı� ı.d'c ^ � /

�
D
h

i
Œ2rr'c C�'c�:

Lemma 3.5. If u 2�k.M/ is such that tuD 0, then

tıBuD ı0tBuC 2ihr 0.r'c/ trN iNu� 2ih@�'ctrNrN iNu

C ih
�
2..n� 1/� �S/@�'c C 2@

2
�'c C4'c

�
trN iNuC 2ih.S � .n� 1/�/tr.r'c/ iNu

C ih
�
.S � .n� 1/�/4'c CrN4'c

�
t iNu

C 2ihtiNR.N;r.'c/ /u?C 2ihtrŒ.r'c/ ;N �iNu� 2ihis.r'c/ trNu :

Finally, we will need to do a computation to split the Hodge Laplacian into normal and tangential parts.
To do this, we will take advantage of a Weitzenböck identity, which says

4D Q4CR;

where R is a zeroth-order linear operator depending only on the curvature ofM,4 is the Hodge Laplacian,
and Q4 is the connection Laplacian:

Q�u WD r�ru:

We then have the following result for Q�.

Lemma 3.6. Let u 2�k.M/ satisfy tuD 0. Then

t iN Q�uD Q�
0t iNuC trNrN iNuC t r.s

2/iNu�S2iNu;

where S2!.X1; : : : ; Xk�1/ WD
Pk�1
lD1 !.: : : ; s

2Xl ; : : :/.

4. Carleman estimates and boundary terms

As noted in the Introduction, Theorem 2.4 follows from Theorem 2.5, so it enough to show that we can
prove Theorem 2.5.

In proving the Carleman estimates, it will suffice to work with smooth sections of ƒM and apply a
density argument to get the final result. Let �k.M/ denote the space of smooth sections of ƒkM, and
�.M/ denote the space of smooth sections of ƒM.

In this section we give an initial form of the Carleman estimates by using an integration by parts
argument as in [Kenig et al. 2007]. To do this, we will first need to understand the relevant boundary
terms. We will use the integration by parts formulas

.du j v/M D .� ^u j v/@M C .u j ıv/M ; (4-1)

.ıu j v/M D�.i�u j v/@M C .u j dv/M (4-2)

for u; v 2�.M/.
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As in [Kenig et al. 2007], we will need to work with the convexified weight

'c D 'C
h'2

2"
:

Then
��'c D e

'c
h .�h2�/e�

'c
h :

Writing
d'c D e

'c
h hde�

'c
h D hd � d'c^;

ı'c D e
'c
h hıe�

'c
h D hıC id'c ;

we have
��'c D d'cı'c C ı'cd'c :

By Lemma 3.2 we can write this as AC iB , where A and B are self-adjoint operators given by

AD�h2��
�
d'c ^ id'c C id'c .d'c ^ � /

�
D�h2�� jd'cj

2;

B D
h

i

�
d ı id'c C id'c ı d � d'c ^ ı� ı.d'c ^ � /

�
D
h

i
Œ2rr'c C�'c�:

Let k � k indicate the L2 norm on M, unless otherwise stated. Then, for u 2�k.M/,

k�'cuk
2
D
�
.AC iB/u

ˇ̌
.AC iB/u

�
D kAuk2CkBuk2C i.Bu j Au/� i.Au j Bu/:

Integrating by parts gives

.Bu j Au/D
�
Bu

ˇ̌
h2dıuCh2ıdu�jd'cj

2u
�

D .hdBu j hdu/C .hıBu j hıu/�
�
jd'cj

2Bu u
�
C h.Bu j �^hıu�i�hdu/@M

D .ABu j u/C h.hdBu j �^u/@M � h.hıBu j i�u/@M C h.Bu j �^hıu�i�hdu/@M

and after a short computation

.Au j Bu/D .BAu j u/�
2h

i
..@�'c/Au j u/@M :

This finishes the basic integration by parts argument and shows the following:

Proposition 4.1. If u 2�M, then

k�'cuk
2
D kAuk2CkBuk2C .i ŒA; B�u j u/C ih.hdBu j �^u/@M

�ih.hıBu j i�u/@M C ih.Bu j �^hıu�i�hdu/@M C 2h..@�'c/Au j u/@M : (4-3)

Now we invoke the absolute boundary conditions to estimate the nonboundary terms and to simplify
the boundary terms in (4-3). It is enough to consider differential forms u 2�k.M/ for fixed k.

Proposition 4.2. Let u 2�k.M/ such that

t �uD 0;

thı �uD�t id' �uC h�tiN �u
(4-4)

for some smooth bounded endomorphism � whose bounds are uniform in h.
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Then the nonboundary terms in (4-3) satisfy

kAuk2CkBuk2C .i ŒA; B�u j u/&
h2

"
kuk2

H1.M/
�
h3

"

�
ku k2

H1.@M/
CkhrNu?k

2
L2.@M/

�
(4-5)

for h� "� 1. Also, the boundary terms in (4-3) have the form

�2h3.@�'rNu? j rNu?/@M � 2h
�
@�'.jd'j

2
Cj@�'j

2/u
ˇ̌
u
�
@M
CR; (4-6)

where

jRj.Kh3kr 0tu k2@M C
h

K
ku k2@M C

h3

K
krNu?k

2
@M

for any large enough K independent of h.

Proof of Proposition 4.2. We will prove (4-5) first. The argument follows the one given in [Chung 2015]
for scalar functions.

Note that A and B have the same scalar principal symbols as they do for 0-forms: that is, given a local
basis dx1; : : : ; dxn for the cotangent space with dxI D dxi1 ^ � � � ^ dxik ,

AD AsC hE1; As.fdx
I /D .Af /dxI;

and

B D BsC hE0; Bs.fdx
I /D .Bf /dxI;

where E1 and E0 are first- and zeroth-order operators, respectively, with uniform bounds in h and ".
Therefore locally

ŒA; B�.fdxI /D .ŒA;B�f /dxI C h
�
ŒE1; Bs�C ŒAs; E0�C hR

�
.fdxI /;

where R is a first-order operator with uniform bounds in h and ". Choosing a partition of unity �1; : : : ; �m
of M such that this operation can be performed near each supp.�j /, the argument for scalar functions in
the proof of Proposition 3.1 from [Chung 2015] implies

i.ŒA; B�u j u/D

mX
jD1

i.ŒA; B�u j �ju/D 4
h2

"
k.1C h"�1'/uk2

L2
C h.BˇBu j u/C h2.Qu j u/;

where Q is a second-order operator. Recall that

B D
h

i

�
d ı id'c C id'c ı d � d'c ^ ı� ı.d'c ^ � /

�
;

so using integration by parts with the above formula, we get

h.BˇBu j u/D h.ˇBu j Bu/� ih2.i�ˇBu j id'cu/@M � ih
2.�^id'cˇBu j u/@M

� ih2.�^ˇBu j d'c^u/@M � ih
2.i�.d'c^ˇBu/ j u/@M

D h.ˇBu j Bu/� ih2.d'c^i�ˇBu j u/@M � ih
2.�^id'cˇBu j u/@M

� ih2.id'c�^ˇBu j u/@M � ih
2.i�.d'c^ˇBu/ j u/@M :
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By Lemma 3.1 we obtain

h.BˇBu j u/D h.ˇBu j Bu/� 2ih2.@�'cˇBu j u/@M :

The absolute boundary condition says that t �uD 0, so u? D 0 at the boundary. Therefore

h.BˇBu j u/D h.ˇBu j Bu/� 2ih2.@�'cˇBu j u /@M D h.ˇBu j Bu/� 2ih
2.t@�'cˇBu j tu /@M :

The boundary term in the last expression is bounded by

h3"�1ktBuk2
L2.@M/

C h3"�1ku k2
L2.@M/

:

At the boundary,

tBuD
h

i
t Œ2rr'c C�'c�uD

h

i

�
�2@�'ctrNu � 2@�'ctrNu?C 2tr.r'c/ u C�'ctu

�
;

so

ktBuk2
L2.@M/

. kthrNu k2L2.@M/
CkthrNu?k

2
L2.@M/

Ckthr.r'c/ u k
2
L2.@M/

Ch2ktu k2
L2.@M/

. kthrNu k2L2.@M/
CkthrNu?k

2
L2.@M/

Cku k2
H1.@M/

:

Now by Lemma 3.4,

t iNhduD thrNu C hStu � hd
0t iNu:

Since t �uD 0, we have iNu; u? D 0 at the boundary, and thus

t iNhduD thrNu C hStu :

Therefore
kthrNu k

2
L2.@M/

. kt iNhduk2L2.@M/
C h2ku k2

L2.@M/

. kt iN � .hı �u/k2L2.@M/
C h2ku k2

L2.@M/

. kthı �uk2
L2.@M/

C h2ku k2
L2.@M/

. kuk2
L2.@M/

;

where in the last step we invoked the absolute boundary condition. Therefore

ktBuk2
L2.@M/

. kthrNu?k2L2.@M/
Cku k2

H1.@M/
;

and thus

h.BˇBu j u/.
h2

"
kBuk2

L2
C
h3

"
ku k2

H1.@M/
C
h3

"
khrNu?k

2
L2.@M/

:

Similarly

h2.Qu j u/. h2kuk2
H1 C h

3
ku k2

H1.@M/
C h3khrNu?k

2
L2.@M/

:

Therefore

i.ŒA; B�u j u/&
h2

"
kuk2

L2
�
h2

"
kBuk2

L2
� h2kuk2

H1 � h
3"�1ku k2

H1.@M/
� h3"�1khrNu?k

2
L2.@M/

:
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Meanwhile, since t �uD 0 on @M we can write

h2.khduk2
L2
Ckhıuk2

L2
/D h2

�
.hd �u; hd �u/C .hı �u; hı �u/

�
D h2.�h24�u j �u/� h3.�^hı�u j �u/@M

D h2.Au j u/C h2.jd'cj
2u j u/� h3.�^hı�u j �u/@M

D h2.Au j u/C h2.jd'cj
2u j u/C h3.thı�u j t iN�u/@M :

Using the absolute boundary conditions again, we have

thı �uD�t id' �uC h�tiN �u

D @�'tiN �uC h�tiN �u;
so

h2.khduk2
L2
Ckhıuk2

L2
/.

1

K
kAuk2

L2
CKh4kuk2

L2
C h2kuk2

L2
C h3kt iN �uk

2
L2.@M/

;

or
kAuk2

L2
&Kh2.khduk2

L2
Ckhıuk2

L2
/�K2h4kuk2

L2
�Kh2kuk2

L2
�Kh3ku k2

L2.@M/
:

We take K � 1
˛"

with ˛ large and fixed. Putting this together with the inequality for .i ŒA; B�u j u/ and
Gaffney’s inequality kukH1 � kukL2 CkhdukL2 CkhıukL2 when t �uD 0, we obtain

kAuk2CkBuk2C .i ŒA; B�u j u/&
h2

"
kuk2

H1 � h
3"�1

�
ku k2

H1.@M/
CkhrNu?k

2
L2.@M/

�
for h� "� 1. This proves (4-5).

We will now show the expression (4-6) for the boundary terms in (4-3). Recall that these boundary
terms are given by

ih.hdBu j �^u/@M � ih.hıBu j i�u/@M C ih.Bu j �^hıu�i�hdu/@M C2h..@�'c/Au j u/@M : (4-7)

Note that

ih.hdB�uj�^�u/@M�ih.hıB�uji��u/@MCih.B�uj�^hı�u�i�hd�u/@MC2h..@�'c/A�uj�u/@M

D ih.hdBu j �^u/@M�ih.hıBu j i�u/@MCih.Bu j �^hıu�i�hdu/@MC2h..@�'c/Au ju/@M :

Moreover, if u satisfies the absolute boundary conditions (4-4), then �u satisfies the relative boundary
conditions

tuD 0;

thıuD�t id'uC h�tiNu;
(4-8)

and vice versa. Therefore it suffices to prove that if u satisfies (4-8) then the boundary terms (4-7) become

�2h3.@�'rNu j rNu /@M � 2h
�
@�'.jd'j

2
Cj@�'j

2/u?
ˇ̌
u?
�
@M
CR; (4-9)

where

jRj.Kh3kr 0t iNuk2@M C
h

K
ku?k

2
@M C

h3

K
krNu k

2
@M (4-10)

for any large enough K independent of h.
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So let’s return to (4-7), and assume u satisfies (4-8). The condition tu D 0 implies the first term
ih.hdBu j � ^u/@M is zero. Therefore we are left with

�ih.hıBu j i�u/@M C ih.Bu j � ^ hıu/@M � ih.Bu j i�hdu/@M C 2h..@�'c/Au j u/@M :

We calculate each of the terms individually.
Firstly,

ih.Bu j �^hıu/@M D ih.Bu j �^h.ıu/ /@M

D�ih.iNBu j h.ıu/ /@M

D�ih.t iNBu j thıu/@M :

Now

BuD
h

i
.2rr'c C�'c/u;

so

t iNBuD
h

i
tiN

�
2r.r'c/ � 2@�'crN C�'c

�
u

D
h

i

�
2r.r'c/ t iN � 2@�'ctrN iN C t�'ciN

�
u:

Therefore,

�ih.t iNBu j thıu/@M

D 2h.@�'cthrN iNu j thıu/@M � 2h.hr.r'c/ t iNu j thıu/@M � h
2.t�'ciNu j thıu/@M :

Now if thıuj@M D�t id'uC h�tiNu and tuD 0, then

thıuj@M D .@�'C h�/tiNu: (4-11)

Therefore

�ih.t iNBu j th.ıu//@M D 2h
�
@�'cthrN iNu

ˇ̌
.@�'Ch�/tiNu

�
@M

� 2h
�
hr.r'c/ t iNu

ˇ̌
.@�'Ch�/tiNu

�
@M

� h2
�
t�'ciNu

ˇ̌
.@�'Ch�/tiNu

�
@M
:

Moreover, by Lemma 3.3,

th.ıu/D hı0tu C h..n� 1/� �S/tiNu?� thrN iNu:

Since tuD 0,

th.ıu/D h..n� 1/� �S/tiNu?� thrN iNu:

Substituting this into (4-11) gives

thrN iNuD
�
�@�' � h� C h.n� 1/� � hS

�
t iNu: (4-12)
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Therefore

�ih.t iNBu j th.ıu//@M D�2h
�
@�'c.@�'Ch��h.n�1/�ChS/tiNu

ˇ̌
.@�'Ch�/tiNu

�
@M

� 2h
�
hr.r'c/ t iNu

ˇ̌
.@�'Ch�/tiNu

�
@M

� h2
�
t�'ciNu

ˇ̌
.@�'Ch�/tiNu

�
@M
:

We can write this as

ih.Bu j �^hıu/@M D�2h
�
@�'j@�'j

2t iNu
ˇ̌
t iNu

�
@M
CR2; (4-13)

where R2 satisfies the bound on R in (4-10).
Secondly,

�ih.Bu j i�hdu/@M D ih..Bu/ j iNhdu/@M

D ih.t.Bu/ j t iNhdu/@M :

By Lemma 3.4,

t iNhduD thrNu C hStu � hd
0t iNu;

so if tuD 0,

t iNhduD thrNu � hd
0t iNu:

Therefore

�ih.Bu j i�hdu/@M D ih
�
tBu

ˇ̌
thrNu �hd

0t iNu
�
@M
:

Expanding B , this becomes

h
�
th
�
�2@�'crNuC2r.r'c/ uC.4'c/u

� ˇ̌
thrNu �hd

0t iNu
�
@M
:

Since tuD 0, the last expression is equal to

�2h
�
@�'cthrNu�thr.r'c/ u

ˇ̌
thrNu �hd

0t iNu
�
@M
: (4-14)

The

�2h.@�'cthrNu j �hd
0t iNu/@M

part has the same type of bound as in (4-10), so

�ih.Bu j i�hdu/@M D�2h.@�'cthrNu j thrNu /@M CR3; (4-15)

where R3 has the same bound as in (4-10).
Thirdly,

ih.hıBu j i�u/@M D ih.h.ıBu/ j i�u/@M

D�ih.ht.ıBu/ j t iNu/@M :
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By Lemma 3.5,

htıBuD hı0tBuC2ih2r 0.r'c/ trN iNu�2ih
2@�'ctrNrN iNu

Cih2
�
2..n�1/��S/@�'cC2@

2
�'cC4'c

�
trN iNu

C2ih2.S�.n�1/�/tr.r'c/ iNuCih
2
�
.S�.n�1/�/4'cCrN4'c

�
t iNu

C2ih2t iNR.N;r.'c/ /u?C2ih
2trŒ.r'c/ ;N �iNu�2ih

2is.r'c/ trNu :

The terms on the last two lines, when paired with ihtiNu, are bounded by (4-10).
Moreover, using the boundary conditions in the form of equation (4-12) on the

h3
��
2..n�1/��S/@�'cC2@

2
�'cC4'c

�
trN iNu

ˇ̌
t iNu

�
@M

term shows that this too is bounded by (4-10). Therefore we need only worry about the first three terms.
For the �ih.hı0tBu j t iNu/ term, we can integrate by parts to get

�ih.tBu j hd 0t iNu/@M D�2h
�
htrr.'c/uC

1
2
h�'ctu j hd

0t iNu
�
@M
:

Since tuD 0, we get

ih.tBu j hd 0t iNu/@M D 2h.htrr.'c/u j hd
0t iNu/@M :

Now
trr.'c/uD trr.'c/ u?C trr.'c/?u

since tuD 0. Thereforeˇ̌
ih.tBu j hd 0t iNu/@M

ˇ̌
�Kh3kr 0t iNuk

2
@M CKh

3
ku?k

2
@M CKh

3
krNu k

2;

and so this term is bounded by (4-10).
For the 2h3

�
r 0
.r'c/

trN iNu
ˇ̌
t iNu

�
@M

term, we can use equation (4-12) to get

2h3
�
r
0
.r'c/

trN iNu
ˇ̌
t iNu

�
@M
D�2h2

�
r
0
.r'c/

.�@�'�h�Ch.n�1/��hS/tiNu
ˇ̌
t iNu

�
@M
:

and then use Cauchy–Schwarz, so this term is bounded by (4-10) too. Therefore

�ih.hıBu j i�u/@M D 2h
3
�
@�'ctrNrN iNu

ˇ̌
t iNu

�
@M
CR1; (4-16)

where R1 is bounded by (4-10).
Finally,

2h..@�'c/Au j u/@M D 2h
�
.@�'c/Au

ˇ̌
u?
�
@M

D 2h
�
.@�'c/.Au/?

ˇ̌
u?
�
@M

D 2h
�
.@�'c/t iNAu

ˇ̌
t iNu

�
@M

because of the boundary condition tuD 0. Now AD�h2�� jd'cj
2, so

2h
�
.@�'c/t iNAu

ˇ̌
t iNu

�
@M
D�2h

�
.@�'c/h

2t iN�u
ˇ̌
t iNu

�
@M
� 2h

�
.@�'c/jd'cj

2t iNu
ˇ̌
t iNu

�
@M
:
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Using the Weitzenböck identity, we can write �2h
�
.@�'c/h

2t iN�u
ˇ̌
t iNu

�
@M

as

�2h
�
.@�'c/h

2t iN Q�u
ˇ̌
t iNu

�
@M
C 2h

�
.@�'c/h

2RtiNu
ˇ̌
t iNu

�
@M
:

The second term is bounded by (4-10). For the first term, we can apply Lemma 3.6 to get

�2h
�
.@�'c/h

2trNrN iNu
ˇ̌
t iNu

�
@M
�2h

�
.@�'c/h

2 Q4
0t iNu

ˇ̌
t iNu

�
@M
Ch3

�
tr.s2/iNu�S2iNu

ˇ̌
t iNu

�
@M
;

where S2!.X1; : : : ; Xk�1/ WD
Pk�1
lD1 !.: : : ; s

2Xl ; : : : /. The last term is bounded again by (4-10) and
we can integrate by parts in the Q40 part to get something bounded by (4-10) as well. Therefore

2h..@�'c/Au j u/@M D�2h
�
.@�'c/jd'cj

2t iNu
ˇ̌
t iNu

�
@M
�2h

�
.@�'c/h

2trNrN iNu
ˇ̌
t iNu

�
@M
CR4;

where R4 is bounded by (4-10).
Now putting this together with (4-13), (4-15), and (4-16), we get that the boundary terms in (4-3) have

the form

�2h
�
@�'j@�'j

2t iNu
ˇ̌
t iNu

�
@M
�2h

�
@�'cthrNu

ˇ̌
thrNu

�
@M
C2h3

�
@�'ctrNrN iNu

ˇ̌
t i�u

�
@M

�2h
�
.@�'c/jd'cj

2t iNu
ˇ̌
t iNu

�
@M
�2h

�
.@�'c/h

2trNrN iNu
ˇ̌
t iNu

�
@M
CR:

The ˙2h3
�
@�'ctrNrN iNu

ˇ̌
t i�u

�
@M

terms cancel, leaving us with

�2h
�
@�'j@�'j

2t iNu
ˇ̌
t iNu

�
@M
�2h

�
@�'cthrNu

ˇ̌
thrNu

�
@M
�2h

�
.@�'c/jd'cj

2t iNu
ˇ̌
t iNu

�
@M
CR:

We can replace 'c by ' and incorporate the error into R, without affecting the bound on R, to get

�2h
�
@�'j@�'j

2t iNu
ˇ̌
t iNu

�
@M
� 2h

�
@�'thrNu

ˇ̌
thrNu

�
@M
� 2h

�
@�'jd'j

2t iNu
ˇ̌
t iNu

�
@M
CR

and the proposition follows. �

5. The 0-form case

We will now prove Theorem 2.5 in the 0-form case. In the case where .M; g/ is a domain in Euclidean
space, Theorem 2.5 for 0-forms is the Carleman estimate given in [Chung 2015, Theorem 1.3]. In this
section we will deal with the added complication of being on a CTA manifold, rather than in Euclidean
space. Most of the ideas are from [Chung 2015] with necessary modifications added to adapt to the
manifold case.

If u is a zero form, then iNuD 0, so u? D 0 and uD u . Theorem 2.5 reduces to the estimate

k.��' C h
2Q/ukL2.M/ & hkukH1.M/C h

1
2 ku kH1.�c

C
/; (5-1)

where Q 2 L1.M/ and 0 < h < h0, for functions u 2 H 2.M/ with uj�C D 0 to first order and
h@�.e

�
'
h u/D h�e�

'
h u on �c

C
. By arguing as in the beginning of Section 6 below, the estimate (5-1)

will be a consequence of the following proposition.
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Proposition 5.1. Suppose u is a function in H 2.M/ which satisfies the following boundary conditions:

u; @�uD 0 on �C;

h@�.e
�
'
h u/D h�e�

'
h u on �cC

(5-2)

for some smooth function � independent of h.
Then

h
1
2 khr 0ukL2.�c

C
/ . k�'cukL2.M/C hkukH1.M/C h

3
2 kukL2.�c

C
/:

We will prove this proposition in the case where the metric g has the form g D e˚g0. However, if g
were of the form g D c.e˚g0/, we could write

k�'cukL2.M/ D kh
2e

'c
h 4c.e˚g0/e

�
'c
h ukL2.M/

& kh2e
'c
h 4e˚g0e

�
'c
h ukL2.M/� hkukH1.M/: (5-3)

Therefore the proposition remains true even in the case when the conformal factor is not constant. More
generally, the proofs of the Carleman estimates work for any smooth conformal factor, and thus as noted
earlier, the Carleman estimates hold on CTA manifolds in general.

The operators. Here we introduce the operators we will use in the proof of Proposition 5.1. Similar
operators are found in [Chung 2014; 2015]. Suppose F.�/ is a complex-valued function on Rn�1, with the
properties that jF.�/j;ReF.�/' 1Cj�j. Fix coordinates .x1; x0/ on Rn, and define Rn

C
to be the subset

of Rn with x1 > 0. Define S.Rn
C
/ as the set of restrictions to Rn

C
of Schwartz functions on Rn. Finally, if

u 2 S.Rn
C
/, then define Ou.x1; �/ to be the semiclassical Fourier transform of u in the x0 variables only.

Now for u 2 S.Rn
C
/, define J bycJu.x1; �/D .F.�/C h@1/ Ou.x1; �/:

This has adjoint J � defined by

bJ �u.x1; �/D .F .�/� h@1/ Ou.x1; �/:
These operators have right inverses given by

1J�1uD 1

h

Z x1

0

Ou.t; �/eF.�/
t�x1
h dt;

2J ��1uD 1

h

Z 1
x1

Ou.t; �/eF .�/
x1�t

h dt:

Now we have the following boundedness result, given in [Chung 2015].

Lemma 5.2. The operators J, J �, J�1, and J ��1, initially defined on S.Rn
C
/, extend to bounded

operators
J; J � WH 1.RnC/! L2.RnC/;

J�1; J ��1 W L2.RnC/!H 1.RnC/:

Moreover, these extensions for J � and J ��1 are isomorphisms.
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Note that similar mapping properties hold between H 1.Rn
C
/ and H 2.Rn

C
/, by the same reasoning.

We’ll record the other operator fact from [Chung 2015] here, too.
Let m; k 2 Z, with m; k � 0. Suppose a.x; �; y/ are smooth functions on Rn�1�Rn�1�R that satisfy

the bounds
j@ˇx@

˛
� @
j
ya.x; �; y/j � C˛;ˇ .1Cj�j/

m�j˛j

for all multiindices ˛ and ˇ, and for 0� j � k. In other words, each @jya.x; �; y/ is a symbol on Rn�1

of order m, with bounds uniform in y, for 0 � j � k. Then we can define an operator A on Schwartz
functions in Rn by applying the pseudodifferential operator on Rn�1 with symbol a.x; �; y/, defined by
the Kohn–Nirenberg quantization, to f .x; y/ for each fixed y.

Lemma 5.3. If A is as above, then A extends to a bounded operator from HkCm.Rn/ to Hk.Rn/.

The graph case. Suppose f WM0! R is smooth. In this section, we’ll examine the case where M lies
in the set fx1 � f .x0/g and �c

C
lies in the graph fx1D f .x0/g. For this section we’ll make two additional

assumptions on f and M0.
First, we’ll assume g0 is nearly constant; that is, there exists a choice of coordinates on the subset

P.M/ which consists of the projection of M onto M0 such that when represented in these coordinates,

jg0� I j � ı

on P.M/, where ı is a positive constant to be chosen later.
Second, we’ll assume f is such that rg0f is nearly constant on P.M/; that is, there exists a constant

vector field K on TM0 such that
jrg0f �Kjg0 � ı;

where ı is the same constant from above. The choice of ı will depend ultimately only on K. In the next
subsection we’ll see how to remove these two assumptions.

Now we can do the change of variables .x1; x0/ 7! .x1 � f .x
0/; x0/. Define zM 0 and z� 0

C
to be the

images of M and �C respectively under this map. Note that fx1 � f .x0/g maps to .0;1/�M0, and �c
C

maps to a subset of 0�M0. Observe that in the new coordinates, '.x/D x1Cf .x0/.
Now it suffices to prove the following proposition.

Proposition 5.4. Suppose w 2H 2. zM 0/, and

w; @�w D 0 on z� 0C;

h@ywjz� 0c
C

D
wCrg0f � hrg0w� h�w

1Cjrg0f j
2

;
(5-4)

where � is smooth and bounded on zM 0. Then

h
1
2 khrg0wkL2. z� 0c

C
/
. k zL 0';"wkL2. zM 0/C hkwkH1. zM 0/

C h
3
2 kwk

L2. z� 0c
C
/
;

where
zL 0';" D .1Cjrg0f j

2/h2@21� 2.˛Crg0f � hrg0/h@1C˛
2
C h24g0

and ˛ D 1C h
"
.x1Cf .x

0//. Note that on zM 0, we know ˛ is very close to 1.
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This proposition implies Proposition 5.1 in the graph case described above.

Proof of Proposition 5.1 in the graph case. Suppose u 2 H 2.M/, and u satisfies (5-2). Let w be the
function on zM defined by w.x1; x0/ D u.x1 C f .x0/; x0/. Then w 2 H 2. zM 0/, and w satisfies (5-4).
Therefore by Proposition 5.4,

h
1
2 khr 0wk

L2.z� 0c
C
/
. k zL 0';"wkL2. zM 0/C hkwkH1. zM 0/

C h
3
2 kwk

L2. z� 0c
C
/
:

Now by a change of variables,
kukL2.�c

C
/ ' kwkL2. z� 0c

C
/
;

kukH1.M/ ' kwkH1. zM 0/
;

and
khr 0ukL2.�c

C
/ ' khrg0wkL2. z� 0c

C
/
:

Moreover,
. zL 0';"w/.x1�f .x

0/; x0/D L';".u.x1; x0//C hE1u.x1; x0/;

where E1 is a first-order semiclassical differential operator. Therefore by a change of variables,

k zL 0';"wkL2. zM 0/ . kL';"ukL2.M/C hkukH1.M/:

Putting this all together gives

h
1
2 khrg0ukL2.�cC/

. kL';"ukL2.M/C hkukH1.M/C h
3
2 kukL2.�c

C
/: �

We can do a second change of variables to move to Euclidean space. By our assumption on M0, we
can choose coordinates on P. zM 0/D P.M/ such that

jg0� I j � ı:

Now we have a change of variables giving a map from P. zM 0/ to a subset of Rn�1, and hence a map
from zM 0 to a subset of Rn

C
, where the image of z� 0

C
lies in the plane x1D 0. Let zM and z�C be the images

of zM 0 and z� 0
C

respectively under this map. We’ll use the notation .x1; x0/ to describe points in Rn
C

, where
now x0 ranges over Rn�1. Now it suffices to prove the following proposition.

Proposition 5.5. Suppose w 2H 2. zM/, and

w; @�w D 0 on z�C;

h@ywjz�c
C

D
wCˇ � hrxw� h�w

1Cj j2
;

(5-5)

where � is smooth and bounded on zM, and ˇ and  are a vector-valued and scalar-valued function,
respectively, which coincide with the coordinate representations of rg0f and jrg0f jg0 . Then

h
1
2 khrx0wkL2.z�c

C
/
. k zL';"wkL2. zM/

C hkwk
H1. zM/

C h
3
2 kwk

L2.z�c
C
/
;

where
zL';" D .1Cj j2/h2@21� 2.˛Cˇ � hrx/h@1C˛

2
C h2L;
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and L is the second-order differential operator in the x0-variables given by

LD gij0 @i@j :

Proposition 5.4 can be obtained from Proposition 5.5 in the same manner as before, with errors
from the change of variables being absorbed into the appropriate terms. Therefore it suffices to prove
Proposition 5.5.

To do this, we’ll split w into small and large frequency parts, using a Fourier transform. Recall that we
are assuming

jrg0f �Kjg0 � ı:

Translating down to zM, and recalling that g0 is nearly the identity, we get that there is a constant vector
field zK on zM such that

jˇ� zKj � Cı and
ˇ̌
 � j zKj

ˇ̌
� Cı ;

where Cı goes to zero as ı goes to zero. Now choose m2 >m1 > 0 and �1 and �2 such that

j zKjq
1Cj zKj2

< �1 < �2 <
1

2
C

j zKj

2

q
1Cj zKj2

< 1:

The eventual choice of �j and mj will depend only on zK.
Define � 2 C10 .R

n/ such that �.�/ D 1 if j�j < �1 and j zK � �j < m1, and �.�/ D 0 if j�j > �2 or
j zK � �j>m2.

Now suppose w 2 C1. zM/ such that w � 0 in a neighbourhood of z�C, and w satisfies (5-5). We can
extend w by zero to the rest of Rn

C
. Then w 2 S.Rn

C
/, and we can write our desired estimate as

h
1
2 kwk PH1.@Rn

C
/
. k zL';"wkL2.Rn

C
/C hkwkH1.Rn

C
/C h

3
2 kwkL2.@Rn

C
/:

Recall that Ow.x1; �/ is the semiclassical Fourier transform of w in the x0-directions, and define ws
and w` by Ows D � Ow and Ow` D .1� �/ Ow, so w D wsCw`.

Now we can address each of these parts separately.

Proposition 5.6. Suppose w is as above. There exist choices of m1, m2, �1, and �2, depending only
on zK, such that if ı is small enough,

h
1
2 kwsk PH1.@Rn

C
/
. k zL';"wkL2.Rn

C
/C hkwkH1.Rn

C
/C h

3
2 kwkL2.@Rn

C
/:

Before proceeding to the proof, let’s make some definitions. If V 2Rn�1 and a 2R, define A˙.a; V; �/
by

A˙.a; V; �/D
1C iV � �˙

p
.1C iV � �/2� .1Cjaj2/.1� j�j2/

1Cjaj2
:

In other words, A˙.a; V; �/ are defined to be the roots of the polynomial

.1Cjaj2/X2� 2.1C iV � �/X C .1� j�j2/:
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In the definition, we’ll choose the branch of the square root which has nonnegative real part, so the branch
cut occurs on the negative real axis.

Proof. Now consider the behaviour of A˙.j zKj; zK; �/ on the support of �, or equivalently, on the support
of Ows . If � > 0, we can choose �2 such that on the support of Ows ,

1� .1Cj zKj2/.1� j�j2/ < �:

Then on the support of Ows , the expression

.1C i zK � �/2� .1Cj zKj2/.1� j�j2/

has real part confined to the interval Œ� zK2 �m22; �Cm
2
2�, and imaginary part confined to the interval

Œ�2m2; 2m2�. Therefore, by correct choice of � and m2, we can ensure

ReA˙.j zKj; zK; �/ >
1

2.1Cj zKj2/

on the support of Ows . This allows us to fix the choice of �1, �2, m1, and m2. Note that the choices
depend only on zK, as promised.

The bounds on A˙.j zKj; zK; �/ allow us to choose F˙ so that F˙ D A˙.j zKj; zK; �/ on the support
of Ows , and ReF˙; jF˙j ' 1Cj�j on Rn, with constant depending only on K. Therefore FC and F� both
satisfy the conditions on F in Section 2. If T represents the operator with Fourier multiplier  (in the
x0-variables), then it follows that the operators h@y �TFC and h@y �TF� both have the properties of J �

in that section.
Up until now, the operator zL';" has only been applied to functions supported in zM. However, we can

extend the coefficients of zL';" to Rn
C

while retaining the jˇ� zKj< Cı and
ˇ̌
 � j zKj

ˇ̌
� Cı conditions.

Then

k zL';"wskL2.Rn
C
/ D

�.1Cj j2/h2@2y�2.˛Cˇ �hrx/h@yC˛2Ch2L�wsL2.Rn
C
/

�
�.1Cj zKj2/h2@2y�2.1C zK �hrx/h@yC1Ch24x0�wsL2.Rn

C
/
�CıkwskH2.Rn

C
/

for sufficiently small h and some Cı which goes to zero as ı goes to zero. Meanwhile,

.1Cj zKj2/.h@y �TFC/.h@y �TF�/ws D .1Cj
zKj2/.h2@2y �TFCCF�h@y CTFCF�/ws:

Since F˙ D A˙. zK;K; �/ on the support of Ows , this can be written as

.1Cj zKj2/.h2@2y�TACCA�h@yCTACA�/ws D ..1Cj
zKj2/h2@2y�2.1C

zK �hrx/h@yC1Ch
2
4x/ws:

Therefore

k zL';"wskL2.Rn
C
/ �

.h@y �TFC/.h@y �TF�/wsL2.Rn
C
/
�CıkwskH2.Rn

C
/:

Now by the boundedness properties,.h@y �TFC/.h@y �TF�/wsL2.Rn
C
/
' kwskH2.Rn

C
/;
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so for small enough ı,

k zL';"wskL2.Rn
C
/ & kwskH2.Rn

C
/:

Then by the semiclassical trace formula,

k zL';"wskL2.Rn
C
/ & h

1
2 kwsk PH1.@Rn

C
/
:

Finally, note that

k zL';"wskL2.Rn
C
/ D k

zL';"T�wkL2.Rn
C
/

. k.1Cj j2/�1 zL';"T�wkL2.Rn
C
/

. kT�.1Cj j2/�1 zL';"wkL2.Rn
C
/CkhE1wkL2.Rn

C
/;

where hE1 comes from the commutator of T� and .1C j j2/�1 zL';". By Lemma 5.3, E1 is bounded
from H 1.Rn

C
/ to L2.Rn

C
/, so

k zL';"wskL2.Rn
C
/ . k zL';"wkL2.Rn

C
/C hkwkH1.Rn

C
/:

Therefore

k zL';"wkL2.Rn
C
/C hkwkH1.Rn

C
/ & h

1
2 kwsk PH1.@Rn

C
/

as desired. �

Now we have to deal with the large frequency term.

Proposition 5.7. Suppose w is the extension by zero to Rn
C

of a function in C1. zM/ which is 0 in a
neighbourhood of z�C, and satisfies (5-5), and let w` be defined as above. Then if ı is small enough,

h
1
2 kw`k PH1.@Rn

C
/
. k zL';"wkL2.Rn

C
/C hkwkH1.R

nC1
C

/
C h

3
2 kwkL2.@Rn

C
/:

Proof. Suppose V 2 Rn. Recall that we defined

A˙.a; V; �/D
1C iV � �˙

p
.1C iV � �/2� .1Cjaj2/.1� j�j2/

1Cjaj2
;

so A˙.a; V; �/ are roots of the polynomial

.1Cjaj2/X2� 2.1C iV � �/X C .1� j�j2/:

Now let’s define

A"˙.a; V; �/D
˛C iV � �˙

q
.˛C iV � �/2� .1Cjaj2/.˛2�g

ij
0 �i�j /

1Cjaj2
;

so A"
˙
.V; �/ are the roots of the polynomial

.1Cjaj2/X2� 2.˛C iV � �/X C .˛2�g
ij
0 �i�j /:
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Recall that ˛ is defined by ˛ D 1C h

"
.x1Cf .x

0//.
�

Again we’ll use the branch of the square root with
nonnegative real part.

Now set � 2 C10 .R
n�1/ to be a smooth cutoff function such that � D 1 if

j zK � �j<
1

2
m1 and j�j<

1

2

j zKjq
1Cj zKj2

C
1

2
�1;

and � D 0 if j zK � �j �m1 or j�j � �1.
Now define

G˙.a; V; �/D .1� �/A˙.a; V; �/C �

and
G"˙.a; V; �/D .1� �/A

"
˙.a; V; �/C �:

Consider the singular support of A"
˙
.; ˇ; �/. These are smooth as functions of x and � except when

the argument of the square root falls on the nonpositive real axis. This occurs when ˇ � � D 0 and

g
ij
0 �i�j �

˛2j j2

1Cj j2
:

Now for ı sufficiently small, depending on zK, this does not occur on the support of 1� �. Therefore

G"˙.; ˇ; �/D .1� �/A
"
˙.; ˇ; �/C �

are smooth, and one can check that they are symbols of first order on Rn.
Then by properties of pseudodifferential operators,

.1Cj j2/.h@y �TG"
C
.;ˇ;�//.h@y �TG"�.;ˇ;�//

D .1Cj j2/
�
h2@2y �TG"C.;ˇ;�/CG"�.;ˇ;�/h@y CTG

"
C
.;ˇ;�/G"�.;ˇ;�/

�
C hE1;

where E1 is bounded from H 1.RnC1
C

/ to L2.RnC1
C

/. This last line can be written out as

.1Cj j2/h2@2y � 2.˛Cˇ � hrx/h@yT1��T1C� C .˛C h
2L/T.1��/2 C hE1CT�2 � 2h@yT�

by modifying E1 as necessary. Now T�w` D 0, so

.1Cj j2/.h@y �TG"
C
.;ˇ;�//.h@y �TG"�.;ˇ;�//w` D

zL';"w`� hE1w`:

Therefore

k zL';"w`kL2.RnC1
C

/
&
.h@y �TG"

C
.;ˇ;�//.h@y �TG"�.;ˇ;�//w`


L2.R

nC1
C

/
� hkw`kH1.R

nC1
C

/
:

Now
G"C.; ˇ; �/DGC.j

zKj; zK; �/C
�
G"C.; ˇ; �/�GC.j

zKj; zK; �/
�
;

and
T
G"
C
.;ˇ;�/�GC.j zKj; zK;�/
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involves multiplication by functions bounded by O.ı/, so

kT
G"
C
.;ˇ;�/�GC.j zKj; zK;�/

vk
L2.R

nC1
C

/
. ıkvk

H1.R
nC1
C

/
:

Therefore

k zL';"w`kL2.RnC1
C

/
&
.h@y �TGC.j zKj; zK;�//.h@y �TG"�.;ˇ;�//w`L2.RnC1C /

� hkw`kH1.R
nC1
C

/
� ık.h@y �TG"�.;ˇ;�//w`kH1.R

nC1
C

/
:

Now we can check that GC.j zKj; zK; �/ satisfies the necessary properties of F from this section, so

k zL';"w`kL2.RnC1
C

/
& k.h@y �TG"�.;ˇ;�//w`kH1.R

nC1
C

/
� hkw`kH1.R

nC1
C

/

� ık.h@y �TG"�.;ˇ;�//w`kH1.R
nC1
C

/
:

Then for small enough ı,

k zL';"w`kL2.RnC1
C

/
& k.h@y �TG"�.;ˇ;�//w`kH1.R

nC1
C

/
� hkw`kH1.R

nC1
C

/

& h
1
2 k.h@y �TG"�.;ˇ;�//w`kL2.Rn0 /

� hkw`kH1.R
nC1
C

/
:

Now by (5-5),

h@yw D
wCˇ � hrxwC h�w

1Cj j2

on @Rn
C

, so

h@yw` D
w`Cˇ � rxw`

1Cj j2
C hE0w

on @Rn
C

, where E0 is bounded from L2.Rn�1/ to L2.Rn�1/. Therefore

k zL';"w`kL2.Rn
C
/ & h

1
2

w`Cˇ � rxw`1Cj j2
�TG"�.;ˇ;�/w`


L2.@Rn

C
/

� hkw`kH1.Rn
C
/� h

3
2 kwkL2.@Rn/

& h
1
2 kw`k PH1.@Rn

C
/
� hkw`kH1.Rn

C
/� h

3
2 kwkL2.@Rn

C
/:

Now
kw`kH1.Rn

C
/ . kwkH1.Rn

C
/

and
k zL';"w`kL2.Rn

C
/ . k zL';"wkL2.Rn

C
/C hkwkH1.Rn

C
/:

Therefore
k zL';"wkL2.Rn

C
/C hkwkH1.Rn

C
/C h

3
2 kwkL2.@Rn

C
/ & h

1
2 kw`k PH1.@Rn

C
/

as desired. �

Now combing the results of Propositions 5.6 and 5.7 gives

h
1
2 kw`k PH1.@Rn

C
/
C h

1
2 kwsk PH1.@Rn

C
/
. k zL';"wkL2.Rn

C
/C hkwkH1.R

nC1
C

/
C h

3
2 kwkL2.@Rn

C
/:
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Since w D wsCw`, we get

h
1
2 kwk PH1.@Rn

C
/
. k zL';"wkL2.Rn

C
/C hkwkH1.R

nC1
C

/
C h

3
2 kwkL2.@Rn

C
/

for w 2 C1. zM/ such that w � 0 in a neighbourhood of z�C, and w satisfies (5-5). A density argument
now proves Proposition 5.5, and hence Proposition 5.1, at least under the assumptions on g0 and f made
at the beginning of this section.

Finishing the proof. Now we need to remove the graph conditions on �c
C

, and the conditions on the
metric g0. Since �C is a neighbourhood of @MC, in a small enough neighbourhood U around any point p
on �c

C
, we know �c

C
coincides locally with a subset of a graph of the form x1 D f .x

0/, with M \U
lying in the set x1 >f .x0/. Moreover, for any ı > 0, if rg0f .p/DK, then in some small neighbourhood
of p, we have jrg0f �Kjg0 < ı. Additionally, since we can choose coordinates at p such that g0 D I
in those coordinates, for any ı > 0 we can ensure that there are coordinates such that jg0� I j � ı in a
small neighbourhood of p. We can choose ı to be small enough for Proposition 5.1 to hold, by the proof
in the previous subsection.

Now we can let Uj be open sets in M such that fU1; : : : ; Umg is a finite open cover of M such that
each M \Uj has smooth boundary, and each �c

C
\Uj is represented as a graph of the form x1 D fj .x

0/,
with jrg0fj �Kj jg0 < ıj , and there is a choice of coordinates on the projection of M \Uj in which
jg0� I j � ıj , where ıj are small enough for

h
1
2 khrtvj kL2.�c

C
\Uj /
. kL';"vj kL2.M\Uj /C hkvj kH1.M\Uj /

C h
3
2 kvj kL2.�c

C
\Uj /

to hold for all vj 2H 2.M \Uj / such that

vj ; @�vj D 0 on @.Uj \M/ n�cC;

h@�.e
�
'
h vj /D h�e

�
'
h vj on �cC\Uj :

(5-6)

Without loss of generality we may assume each Uj is compactly contained in U 0j � .0; 1/, where U 0j is a
coordinate chart of M0.

Now let �1; : : : ; �m be a partition of unity subordinate to U1; : : : ; Um, and for w 2H 2.M/ satisfying
(5-2), define wj D �jw. Then if �c

C
\Uj ¤¿, we know wj satisfies (5-6) for some � , and so

h
1
2 khrtwj kL2.�c

C
\Uj /
. kL';"wj kL2.M\Uj /C hkwj kH1.M\Uj /

C h
3
2 kwj kL2.�c

C
\Uj /

:

Adding together these estimates gives

h
1
2 khrtwkL2.�c

C
/ .

mX
jD1

kL';"wj kL2.M/C hkwkH1.M/C h
3
2 kwkL2.�c

C
/:

Each kL';"wj kL2.M/DkL';"�jwkL2.M/ is bounded by a constant times kL';"wkL2.M/ChkwkH1.M/,
so

h
1
2 khrtwkL2.�c

C
/ . kL';"wkL2.M/C hkwkH1.M/C h

3
2 kwkL2.�c

C
/:

This finishes the proof of Proposition 5.1.
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6. The k-form case

We will prove Theorem 2.5 for u 2�k.M/ by induction. If k D 0, then iNuD 0, so u? D 0 and uD u .
Then Theorem 2.5 for k D 0 becomes the Carleman estimate (5-1) that was established in Section 5.

Note that it suffices to prove Theorem 2.5 for u 2�k.M/, with the appropriate boundary conditions,
for each k, and QD 0. Then the final theorem follows by adding the resulting estimates and noting that
the extra h2Qu term on the right can be absorbed into the terms on the left for sufficiently small h.

Proof of Theorem 2.5 for k � 1. Suppose u 2 �k.M/ with k � 1. First note that if we impose the
boundary conditions (2-2) of Theorem 2.5, substituting the result of Proposition 4.2 into (4-3) gives

k�'cuk
2
D kAuk2CkBuk2C .i ŒA; B�u j u/� 2h3.@�'rNu? j rNu?/�c

C

� h
�
@�'.jd'j

2
Cj@�'j

2/u
ˇ̌
u
�
�c
C

CR; (6-1)

where

jRj � C

�
Kh3kr 0tu k2�c

C

C
h

K
ku k2�c

C

C
h3

K
krNu?k

2
�c
C

�
:

Recall also from Proposition 4.2 that the nonboundary terms kAuk2CkBuk2C .i ŒA; B�u j u/ satisfy

kAuk2CkBuk2C .i ŒA; B�u j u/&
h2

"
kuk2

H1.M/
�
h3

"

�
ku k2

H1.@M/
CkhrNu?k

2
L2.@M/

�
(6-2)

for h� "� 1. We now return to (6-1) and examine the boundary terms. On �c
C

, there exists "1 > 0
such that @�' < �"1. Using this together with (6-1) and (6-2) gives

k�'cuk
2
CKh3kr 0tu k2�c

C

C
h

K
ku k2�c

C

C
h3

K
krNu?k

2
�c
C

&
h2

"
kuk2

H1.M/
Ch3krNu?k

2
�c
C

Chku k2�c
C

for large enough K. The last two terms on the left side can be absorbed into the right side, giving

k�'cuk
2
CKh3kr 0tu k2�c

C

&
h2

"
kuk2

H1.M/
C h3krNu?k

2
�c
C

C hku k2�c
C

:

Now we want to analyze the boundary term on the left, and this is the part where we will use induction
on k:

Lemma 6.1. If u 2�k.M/ and u satisfies the boundary conditions (2-2), then

h3kr 0tu k2�c
C

. k�'cuk2C h2kuk2H1.M/
C h2ku k2�c

C

: (6-3)

If (6-3) is granted, fix K sufficiently large and then take h� "� 1 to obtain

k�'cuk
2 &

h2

"
kuk2

H1.M/
C h3krNu?k

2
�c
C

C hku k2�c
C

C h3kr 0tu k2�c
C

:

Rewriting without the squares,

k�'cuk&
h
p
"
kukH1.M/C h

1
2 khrNu?k�c

C
C h

1
2 ku kH1.�c

C
/:



74 FRANCIS J. CHUNG, MIKKO SALO AND LEO TZOU

Now if u satisfies (2-2) then so does e
'2

2" u since " is fixed. Therefore

ke
'2

2"�'uk&
h
p
"
ke

'2

2" ukH1.M/C h
1
2 khrN e

'2

2" u?k�c
C
C h

1
2 ke

'2

2" u kH1.�c
C
/:

Since e
'2

2" is smooth and bounded on M, we get

k�'uk& hkukH1.M/C h
1
2 khrNu?k�c

C
C h

1
2 ku kH1.�c

C
/:

Thus Theorem 2.5 for k � 1 will follow after we have proved Lemma 6.1.

Proof of Lemma 6.1. For the 0-form case, this follows from Theorem 2.5 for 0-forms, which in this section
we are assuming has been proved. Therefore we can seek to prove (6-3) for k-forms by induction on k.

Let k > 0, and assume (6-3) holds for .k�1/-forms satisfying (2-2). Now let U1; : : : ; Um � T be an
open cover of �c

C
such that each Ui \�cC has a coordinate patch, and let �1; : : : ; �m be a partition of

unity with respect to fUig such that
P
�i D 1 near �c

C
and rN�i D 0 for each i . It will suffice to show

h3kr 0t�iu k
2
�c
C

. k�'cuk2C h2kuk2H1.M/
C h2ku k2�c

C

:

Now on Ui \�cC, let fe1; : : : ; en�1g be an orthonormal frame for the tangent space, and extend these
vector fields into M by parallel transport along normal geodesics.

Observe for all ! 2�k.Uj \�cC/ one can write

! D
1

k

n�1X
jD1

e[j ^ iej!: (6-4)

Therefore we can write

r
0t�iu D

1

k
r
0

n�1X
jD1

e[j ^ iej t�iu D
1

k
r
0

n�1X
jD1

e[j ^ t iej�iu :

Then it suffices to show

h3
r 0.e[j ^ t iej�iu /2�c

C

. k�'cuk2C h2kuk2H1.M/
C h2ku k2�c

C

;

or equivalently,

h3kr 0t iej�iu k
2
�c
C

. k�'cuk2C h2kuk2H1.M/
C h2ku k2�c

C

: (6-5)

Now we want to apply the induction hypothesis to iej�iu , so we have to check that it satisfies the bound-
ary conditions (2-2). In fact we will have to modify iej�iu slightly to achieve this. Let �.x/ be a function
defined in a neighbourhood of the boundary as the distance to the boundary along a normal geodesic, and
extend it to the rest ofM by multiplication by a cutoff function. Then the claim is that vD iej�i .u Ch.1�
e�

�
h /Zu / satisfies the absolute boundary conditions (2-2), where Z is an endomorphism yet to be chosen.
Since u satisfies (2-2), iej�iu and iej�i .h.1� e

�
�
h /Zu / both vanish to first order on �C. Therefore

v does as well.
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Moreover, t � iej�iu D 0 on �c
C

if iN iej�iu D��i iej iNu D 0 on �c
C

, and this again follows from
the fact that u satisfies (2-2). Note that .1� e�

�
h /D 0 at @M, so t � v D 0 on �c

C
.

Finally, by Lemma 3.3,

�tı � iej�iu D�ı
0t .�iej�iu / C .S � .n� 1/�/t iN .�iej�iu /?C trN iN � iej�iu :

Since t � iej�iu D 0 on �c
C

, the first term vanishes there as well. Therefore on �c
C

,

�thı � iej�iu D h.S � .n� 1/�/t iN .�iej�iu /?C thrN�i iN � ieju :

Now
thrN�i iN � ieju D thrN�i iN e

[
j ^�u .�1/

k�1

D thrN�i iN e
[
j ^ .�u/?.�1/

k�1

D thrN�i iN e
[
j ^�u.�1/

k�1

D .�1/k�ie
[
j ^ thrN iN �u;

so
�thı � iej�iu D h.S � .n� 1/�/t iN .�iej�iu /?C .�1/

k�ie
[
j ^ thrN iN �u: (6-6)

Applying the same calculation to the iej�ih.1� e
�
�
h /Zu term gives

�thı � iej iej�ih.1� e
�
�
h /Zu D .�1/k�ie

[
j ^ th

2
rN .1� e

�
�
h /iN �Zu I

the other term vanishes since .1� e�
�
h /D 0 at the boundary. Thus

�thı � iej iej�ih.1� e
�
�
h /Zu D .�1/k�ie

[
j ^ t iN � hZu :

Meanwhile, by Lemma 3.3 and by (2-2),

�thı �uD h.S � .n� 1/�/t iN .�u/?C thrN iN .�u/D t id' �u� h�tiN �u:

Viewing this as an equation for thrN iN .�u/ and substituting into (6-6) gives

�thı � iej�iu D h.S � .n� 1/�/t iN .�iej�iu /?

C .�1/k�ie
[
j ^

�
�h.S � .n� 1/�/t iN .�u/?C t id' �u� h�tiN �u

�
:

Therefore

�thı � iej�i .u C h.1� e
�
�
h /Zu /

D h.S � .n� 1/�/t iN .�iej�iu /?

C .�1/k�ie
[
j ^

�
�h.S � .n� 1/�/t iN .�u/?C t id' �u� h�tiN �uC t iN � hZu

�
:

Now if we let
Z D �N ^ .S C � � .n� 1/�/iN�;

where here we identify S and � with their extensions by parallel transport to a neighbourhood of the
boundary, then

t iN �Zu D .S C � � .n� 1/�/t iN �u D .S C � � .n� 1/�/t iN �u;



76 FRANCIS J. CHUNG, MIKKO SALO AND LEO TZOU

and

�thı � iej�i .u C h.1� e
�
�
h /Zu /D h.S � .n� 1/�/t iN .�iej�iu /?C .�1/

k�ie
[
j ^ t id' �u:

Since t �uD 0 on �c
C

, we can replace the d' in t id' �u with its normal component:

t id' �uD�@�'tiN �u:

Then
�ie

[
j ^�t id' �uD @�'�ie

[
j ^ t iN .�u/?

D @�'�ie
[
j ^ t iN �u

D�@�'tiN�ie
[
j ^�u

D @�'tiN � iej�iu .�1/
k :

Since t � iej�iu D 0 on �c
C

,

�ie
[
j ^�t id' �uD�t id' � iej�iu .�1/

k

and

.�1/k�ie
[
j ^�t id' �uD�t id' � iej�iu :

Therefore

�thı � iej�i .u C h.1� e
�
�
h /Zu /D t id' � iej�iu � h�

0t iN � iej�iu ;

where � 0 is a smooth bounded endomorphism. We can replace u on the right side by u Ch.1�e�
�
h /Zu ,

since .1�e�
�
h / is zero at the boundary. Therefore vD iej�i .u Ch.1�e

�
�
h /Zu / satisfies the boundary

conditions (2-2), and so by the induction hypothesis,

h3kr 0tvk2�c
C

. k�'cvk2C h2kvk2H1.M/
C h2kvk2�c

C

:

Keeping in mind that the second term of v is zero at the boundary, and O.h/ elsewhere, we get

h3kr 0t iej�iu k
2
�c
C

. k�'cvk2C h2ku k2H1.M/
C h2ku k2�c

C

: (6-7)

Now

k�'cvk. k�'c iej�iu kChk�'c iej�i .1� e
�
�
h /Zu k:

The commutators of �'c with iej�i and iej�i .1� e
�
�
h /Z are O.h/ and first-order, so

k�'cvk. kiej�i�'cu kChkiej�i .1� e
�
�
h /Z�'cu kChku kH1.M/

. k�'cu kChku kH1.M/:

Substituting back into (6-7) gives

h3kr 0t iej�iu k
2
�c
C

. k�'cu k2C h2ku k2H1.M/
C h2ku k2�c

C

:

This proves (6-5), which finishes the proof of the lemma. �
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7. Complex geometrical optics solutions

We will begin by constructing CGOs for the relative boundary case. To start, we can use the Carleman
estimate from Theorem 2.4 to generate solutions via a Hahn–Banach argument. The notations are as in
Section 2.

Proposition 7.1. Let Q be an L1 endomorphism on ƒM, and let �C be a neighbourhood of @MC. For
all v 2 L2.M;ƒM/, and f; g 2 L2.M;ƒ@M/ with support in �c

C
, there exists u 2 L2.M;ƒM/ such

that
.�4�' C h

2Q�/uD v on M;

tuD f on �cC;

thı�'uD g on �cC;
with

kukL2.M/ . h�1kvkL2.M/C h
1
2 kf kL2.�c

C
/C h

1
2 kgkL2.�c

C
/:

Proof. Suppose w 2�.M/ satisfies the relative boundary conditions (2-1) with � D 0, and examine the
expression ˇ̌

.w j v/� .t i�hd'w j hf /�c
C
� .t i�w j hg/�c

C

ˇ̌
: (7-1)

This is bounded above by

hkwkL2.M/h
�1
kvkL2.M/C h

1
2 kt i�hd'wkL2.�c

C
/h
1
2 kf kL2.�c

C
/C h

1
2 kt i�wkL2.�c

C
/kgkL2.�c

C
/:

By Lemma 3.4,
t i�hd'w D he

'
h trN .e

�
'
hw/ C hStw � he

'
h d 0t iN .e

�
'
hw/:

Since tw D 0,
t i�hd'w D htrNw � he

'
h d 0t iN .e

�
'
hw/:

Therefore
kt i�hd'wkL2.�c

C
/ � khrNw kL2.�c

C
/Ckw?kH1.�c

C
/:

Then by Theorem 2.4,ˇ̌
.w j v/C .t i�hd'w j hf /�c

C
C .t i�w j hg/�c

C

ˇ̌
. k.�4' C h2Q/wkL2.M/

�
h�1kvkL2.M/C h

1
2 kf kL2.�c

C
/C h

1
2 kgkL2.�c

C
/

�
:

Therefore on the subspace˚
.�4' C h

2Q/w
ˇ̌
w 2�.M/ satisfies (2-1) with � D 0

	
� L2.M;ƒM/;

the map
.�4' C h

2Q/w 7! .w j v/� .t i�hd'w j hf /�c
C
� .t i�w j hg/�c

C

defines a bounded linear functional with the bound

h�1kvkL2.M/C h
1
2 kf kL2.�c

C
/C h

1
2 kgkL2.�c

C
/:
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By Hahn–Banach, this functional extends to the whole space, and thus there exists a u 2 L2.M;ƒM/

such that
kukL2.M/ . h�1kvkL2.M/C h

1
2 kf kL2.�c

C
/C h

1
2 kgkL2.�c

C
/

and
.w j v/� .t i�hd'w j hf /�c

C
� .t i�w j hg/�c

C
D
�
.�4'Ch

2Q/w
ˇ̌
u
�
:

Integrating by parts and applying the boundary conditions (2-1) gives

.w j v/� .t i�hd'w j hf /�c
C
� .t i�w j hg/�c

C

D
�
w
ˇ̌
.�4�'Ch

2Q�/u
�
� h.ti�hd'w j tu/@M � h.ti�w j thı�'u/@M

for all w 2 �.M/ satisfying the relative boundary conditions (2-1) with � D 0. Varying w over the
compactly supported elements of �.M/ one sees that .�4�' C h2Q�/uD v on M , which reduces the
above relation to

�.t i�hd'w j hf /�c
C
� .t i�w j hg/�c

C
D�h.ti�hd'w j tu/@M � h.ti�w j thı�'u/@M

for all w 2�.M/ satisfying the relative boundary conditions (2-1) with � D 0. We now vary w satisfying
condition (2-1) with � D 0 and i�w D 0 to obtain tuD f on �c

C
. Finally, by varying w over all forms

satisfying conditions (2-1) with � D 0, we see that thı�'uD g on �c
C

.
To summarize, we can see that

.�4�' C h
2Q�/uD v on M;

tuD f on �cC;

thı�'uD g on �cC;

as desired. �

To match notations with previous papers, we will begin by rewriting this result, along with the Carleman
estimate, in � notation, as follows.

Theorem 2.4 becomes the following.

Theorem 7.2. LetQ be an L1 endomorphism onƒM. Define �C� @M to be a neighbourhood of @MC.
Suppose u 2H 2.M;ƒM/ satisfies the boundary conditions

uj�C D 0 and r�u j�CD 0;

tuj�c
C
D 0;

tıe��'uj�c
C
D �tiN e

��'u

(7-2)

for some smooth endomorphism � independent of � . Then there exists �0 > 0 such that if � > �0,

k.��� CQ/ukL2.M/ & �kukL2.M/CkrukL2.M/C �
3
2 ku?kL2.�c

C
/

C �
1
2 kr

0t iNukL2.�c
C
/C �

1
2 krNu kL2.�c

C
/;

where
�� D e

�'�e��':
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By choice of coordinates, note that the same theorem holds for � < 0, with �C replaced by ��.
Then Proposition 7.1 becomes the following.

Proposition 7.3. Let Q be an L1 endomorphism on ƒM. For all v 2 L2.M;ƒM/ and f; g 2
L2.�c

C
; ƒ�c

C
/, there exists u 2 L2.M;ƒM/ such that

.�4�� CQ
�/uD v on M;

tuD f on �cC;

tı��uD g on �cC;

with

kukL2.M/ . ��1kvkL2.M/C �
� 1
2 kf kL2.�c

C
/C �

� 3
2 kgkL2.�c

C
/:

Now we turn to the construction of the CGOs themselves. From now on we will invoke the assumption
that the conformal factor c in the definition of M as an admissible manifold satisfies c D 1. Below
we will consider complex-valued 1-forms, and h � ; � i will denote the complex bilinear extension of the
Riemannian inner product to complex-valued forms.

We assume

.M; g/b .R�M0; g/; g D e˚g0;

where .M0; g0/ is a compact .n�1/-dimensional manifold with smooth boundary. We write x D .x1; x0/
for points in R�M0, where x1 is the Euclidean coordinate and x0 is a point in M0. Let Q be an L1

endomorphism of ƒM. We next wish to construct solutions to the equation

.��CQ/Z D 0 in M;

where Z is a graded differential form in L2.M;ƒM/ having the form

Z D e�sx1.ACR/:

Here s D � C i� is a complex parameter where �; � 2 R and j� j is large, the graded form A is a smooth
amplitude, and R will be a correction term obtained from the Carleman estimate. Inserting the expression
for Z in the equation results in

esx1.��CQ/e�sx1RD�F;

where

F D esx1.��CQ/e�sx1A:

The point is to choose A so that kF kL2.M/ DO.1/ as j� j !1.
By Lemma 3.2, we have

F D .��� s2C 2sr@1 CQ/A:

We wish to choose A so that r@1AD 0. The following lemma explains this condition. Below, we identify
a differential form in M0 with the corresponding differential form in R�M0 which is constant in x1.
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Lemma 7.4. If u is a k-form in R�M0 with local coordinate expression uD uI dxI, then

r@1uD 0 () uI D uI .x
0/ for all I:

If r@1uD 0, then there is a unique decomposition

uD dx1 ^u0Cu00;

where u0 is a .k�1/-form in M0 and u00 is a k-form in M0. For such a k-form u, one has

�uD dx1 ^�x0u
0
C�x0u

00;

where � and �x0 are the Hodge Laplacians in R�M0 and in M0, respectively.

Proof. In the .x1; x0/-coordinates g has the form

g.x1; x
0/D

�
1 0

0 g0.x
0/

�
:

Consequently, for any k; l the Christoffel symbols satisfy

� l1k D
1
2
glm.@1gkmC @kg1m� @mg1k/D 0:

This shows r@1 dx
I D 0 for all I, and therefore any k-form uD uI dx

I satisfies

r@1.uI dx
I /D @1uI dx

I:

Thus r@1uD 0 if and only if each uI only depends on x0. In general, if u is a k-form on R�M0 we
have the unique decomposition

uD dx1 ^u0Cu00;

where u0.x1; � / is a .k�1/-form in M0 and u00.x1; � / is a k-form in M0, depending smoothly on the
parameter x1. If r@1uD 0, then uD dx1 ^u0Cu00, where u0 and u00 are differential forms in M0.

Suppose now that uD dx1 ^u0Cu00, where u0 and u00 are forms in M0. Denote by dx0 and ıx0 the
exterior derivative and codifferential in x0. Clearly

d.dx1 ^u0/D�dx1 ^ dx0u
0; du00 D dx0u

00:

The identity ıD�
Pn
jD1 iejrej , where ej is an orthonormal frame in T .R�M0/ with e1D @1, together

with the fact that r@1u
00 D 0, implies

ıu00 D ıx0u
00:

Finally, computing in Riemannian normal coordinates at p gives

ı.dx1 ^u0/jp D�

nX
jD1

i@jr@j .u
0
J dx

1
^ dxJ /jp

D�

nX
jD2

i@j .dx
1
^r@ju

0/jp D�dx
1
^ ıx0u

0
jp:
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Thus
ı.dx1 ^u0/D�dx1 ^ ıx0u

0:

It follows directly from these facts that

�.dx1 ^u0Cu00/D�.dıC ıd/.dx1 ^u0Cu00/

D dx1 ^�x0u
0
C�x0u

00: �

Returning to the expression for F, the assumption r@1AD 0 gives

F D .��� s2CQ/A:

Writing Y k for the k-form part of a graded form Y and decomposing Ak D dx1 ^ .Ak/0C .Ak/00 as in
Lemma 7.4, we obtain

F k D dx1 ^ .��x0 � s
2/.Ak/0C .��x0 � s

2/.Ak/00C .QA/k:

Thus, in order to have kF kL2.M/DO.1/ as j� j!1, it is enough to find for each k a smooth .k�1/-form
.Ak/0 and a smooth k-form .Ak/00 in M0 such that

k.��x0 � s
2/.Ak/0kL2.M0/ DO.1/; k.A

k/0kL2.M0/ DO.1/;

k.��x0 � s
2/.Ak/00kL2.M0/ DO.1/; k.A

k/00kL2.M0/ DO.1/:

If .M0; g0/ is simple, there is a straightforward quasimode construction for achieving this.

Lemma 7.5. Let .M0; g0/ be a simple m-dimensional manifold, and let 0 � k �m. Suppose . yM0; g0/

is another simple manifold with .M0; g0/b . yM0; g0/, fix a point ! 2 yM int
0 nM0, and let .r; �/ be polar

normal coordinates in . yM0; g0/ with centre !. Suppose �1; : : : ; �m is a global orthonormal frame of
T �M0 with �1 D dr and r@r�

j D 0 for 2� j �m, and let f�I g be a corresponding orthonormal frame
of ƒkM0. Then for any � 2 R and for any

�
m
k

�
complex functions bI 2 C1.Sm�1/, the smooth k-form

uD eisr jg0.r; �/j
� 1
4

X
I

bI .�/�
I;

with s D � C i� for � real, satisfies

k.��x0 � s
2/ukL2.M0/ DO.1/; kukL2.M0/ DO.1/

as j� j !1.

Proof. We first try to find the quasimode in the form u D eis a for some smooth real-valued phase
function  and some smooth k-form a. Lemma 3.2 implies

.��x0 � s
2/.eis a/D eis 

�
s2.jd j2� 1/a� isŒ2rgrad. /aC .�x0 /a���x0a

�
:

Let .r; �/ be polar normal coordinates as in the statement of the lemma, and note that

g0.r; �/D

�
1 0

0 h.r; �/

�
globally in M0 for some .m� 1/� .m� 1/ symmetric positive definite matrix h.
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Define

 .r; �/D r:

Then  2 C1.M0/ and jd j2 D 1, so that the s2 term will be zero. We next want to choose a so that
2rgrad. /aC .�x0 /aD 0. Note that

rgrad. / Dr@r ; �x0 D
1

2

@r jg0.r; �/j

jg0.r; �/j
:

Thus, choosing aD jg0j�
1
4 Qa for some k-form Qa, it is enough to arrange that

r@r QaD 0:

Using the frame f�j g above, with �1 D dr , we write

QaD �1 ^ Qa0C Qa00;

where Qa0 is a .k�1/-form and Qa00 is a k-form in M0 of the form

Qa0 D
X

J�f2;:::;mg
jJ jDk�1

˛1;J �
J; Qa00 D

X
J�f2;:::;mg
jJ jDk

ˇJ �
J

for some functions ˛1;J and ˇJ inM0. Now, the form of the metric implies r@r�
1D 0, and by assumption

r@r�
j D 0 for 2� j �m. Therefore

r@r QaD
X

J�f2;:::;mg
jJ jDk�1

@r˛1;J �
1
^ �J C

X
J�f2;:::;mg
jJ jDk

@rˇJ �
J:

In the definitions of Qa0 and Qa00, we may now choose

˛1;J D bf1g[J .�/; ˇJ D bJ .�/;

where bI are the given functions in C1.Sm�1/. The resulting k-form u D eis jg0j
� 1
4 Qa satisfies the

required conditions. �

The next result gives the full construction of the complex geometrical optics solutions.

Lemma 7.6. Let .M; g/ b .R�M0; g/, where g D e˚ g0, assume .M0; g0/ is simple, and let Q be
an L1 endomorphism of ƒM. Let . yM0; g0/ be another simple manifold with .M0; g0/b . yM0; g0/, fix
a point ! 2 yM int

0 nM0, and let .r; �/ be polar normal coordinates in . yM0; g0/ with centre !. Suppose
�1; : : : ; �n is a global orthonormal frame of T �.R�M0/ with �1 D dx1, �2 D dr , and r@r�

j D 0 for
3� j � n, and let f�I g be a corresponding orthonormal frame of ƒ.R�M0/. Let also � 2 R. If j� j is
sufficiently large and if s D � C i�, then for any 2n complex functions bI 2 C1.Sn�2/ there exists a
solution Z 2 L2.M;ƒM/ of the equation

.��CQ/Z D 0 in M
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having the form

Z D e�sx1
�
eisr jg0.r; �/j

� 1
4

�X
I

bI .�/�
I

�
CR

�
;

where kRkL2.M/ DO.j� j
�1/. Further, one can arrange that the relative boundary values of Z vanish

on �c
C

or �c� (depending on the sign of � ).

Proof. Try first Z D e�sx1.ACR/, where r@1AD 0. By the discussion in this section, we need to solve
the equation

esx1.��CQ/.e�sx1R/D�F;

where
F D .��� s2CQ/A:

Decomposing the k-form part of A as Ak D �1 ^ .Ak/0C .Ak/00 as in Lemma 7.4, where �1 D dx1, we
obtain

F k D �1 ^ .��x0 � s
2/.Ak/0C .��x0 � s

2/.Ak/00C .QA/k:

Let �1; : : : ; �n and f�I g be orthonormal frames as in the statement of the result. We can use Lemma 7.5
to find, for any

�
n�1
k�1

�
functions b0J .�/ and for any

�
n�1
k

�
functions b00J .�/, quasimodes

.Ak/0 D eisr jg0j
� 1
4

X
J�f2;:::;ng
jJ jDk�1

b0J .�/�
J ;

.Ak/00 D eisr jg0j
� 1
4

X
J�f2;:::;ng
jJ jDk

b00J .�/�
J:

Recalling that Ak D �1 ^ .Ak/0C .Ak/00 and relabeling functions, this shows that for any
�
n
k

�
functions

bI 2 C
1.Sn�2/ we may find Ak of the form

Ak D eisr jg0j
� 1
4

X
I�f1;:::;ng
jI jDk

bI .�/�
I;

with k.��� s2/AkkL2.M/ D O.1/ and kAkkL2.M/ D O.1/ as j� j !1. Repeating this construction
for all k, we obtain the amplitude

AD eisr jg0.r; �/j
� 1
4

X
I

bI .�/�
I;

with the same norm estimates as those for Ak . Then also kF kL2.M/DO.1/. Then Proposition 7.3 allows
us to find R with the right properties. �

Note that if Z is a solution to .��C�Q��1/Z D 0 in M, and Z has relative boundary values that
vanish on �c

C
, then �Z is a solution to .��CQ/�Z D 0 in M, and �Z has absolute boundary values

that vanish on �c
C

. Thus this construction also gives us solutions with vanishing absolute boundary values
on �c

C
.
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8. The tensor tomography problem

Now we can begin the proof of Theorems 2.1 and 2.2. First we will use the hypotheses of Theorem 2.1 to
obtain some vanishing integrals involving .Q2�Q1/.

Lemma 8.1. Suppose the hypotheses of Theorem 2.1 hold. Using the notation in Lemma 7.6, let
Z1; Z2 2 L

2.M;ƒM/ be solutions of .��CQ1/Z1 D .��CQ2/Z2 D 0 in M of the form

Z1 D e
�sx1

�
eisr jg0j

� 1
4

�X
I

cI .�/�
I

�
CR1

�
;

Z2 D e
sx1

�
eisr jg0j

� 1
4

�X
I

dI .�/�
I

�
CR2

�
;

with vanishing relative boundary conditions on �c� and �c
C

respectively. Then

..Q2�Q1/Z1 jZ2/M D 0:

Note that while the orthogonality condition derived in the lemma does not use the particular form of
the solution, we will only apply this identity to solutions of the given form.

Proof. Let Y be a solution of .��CQ2/Y D 0 in M with the same relative boundary conditions as Z1;
such a solution exists by the assumption on Q2. Then consider the integral�

.N RA
Q1
�N RA

Q2
/.tZ1; tıZ1/

ˇ̌
.t iNd �Z2; t iN �Z2/

�
@M
:

By definition of the N RA map, this is�
.t �.Z1�Y /; tı � .Z1�Y //

ˇ̌
.t iNd �Z2; t iN �Z2/

�
@M

D
�
t �.Z1�Y /

ˇ̌
t iNd �Z2

�
@M
C
�
tı�.Z1�Y /

ˇ̌
t iN �Z2

�
@M
:

Recall from the section on notation and identities that

.��u j v/M D .u j ��v/MC.tu j t i�dv/@MC.tı�u j t i��v/@MC.t �u j t i�d �v/@MC.tıu j t i�v/@M :

Since the relative boundary values of .Z1 � Y / vanish, by definition, the integration by parts formula
above implies�
t�.Z1�Y /

ˇ̌
t iNd�Z2

�
@M
C
�
tı�.Z1�Y /

ˇ̌
t iN�Z2

�
@M
D .�4.Z1�Y / jZ2/M�.Z1�Y j �4Z2/M

D .Q2Y�Q1Z1 jZ2/M�.Z1�Y j �Q2Z2/M

D ..Q2�Q1/Z1 jZ2/M :

Meanwhile, by the hypothesis on N RA
Q1

and N RA
Q2

, we have N RA
Q1
.Z1 � Y / D N RA

Q2
.Z1 � Y / on �C.

Therefore�
t �.Z1�Y /

ˇ̌
t iNd �Z2

�
@M
C .tı�.Z1�Y /

ˇ̌
t iN �Z2/@M

D
�
t �.Z1�Y /

ˇ̌
t iNd �Z2

�
�c
C

C
�
tı�.Z1�Y /

ˇ̌
t iN �Z2

�
�c
C

:
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Now by construction, Z2 has relative boundary values that vanish on �c
C

. But

t iN �Z2j�c
C
D 0 () .�Z2/?j�c

C
D 0

() � .Z2/ j�c
C
D 0

() .Z2/ j�c
C
D 0

() tZ2j�c
C
D 0:

Similarly,
t iNd �Z2j�c

C
D 0 () tı �Z2j�c

C
D 0:

Therefore the fact that Z2 has relative boundary values that vanish on �c
C

implies�
t �.Z1�Y /

ˇ̌
t iNd �Z2

�
�c
C

C
�
tı�.Z1�Y /

ˇ̌
t iN �Z2

�
�c
C

D 0:

Therefore
..Q2�Q1/Z1 jZ2/M D 0

for each such pair of CGO solutions Z1 and Z2. �

Remark. The proof of the Lemma 8.1 does not use the actual forms of the CGO solutions. The integral
identity holds for all solutions Z1 and Z2 with vanishing relative boundary conditions on �c� and �c

C

respectively. However, the identity is only of interest to us for the particular forms of CGO solutions
which we stated.

Working through the same argument with �Z1 and �Z2 gives us the following lemma as well.

Lemma 8.2. Suppose the hypotheses of Theorem 2.2 hold. Using the notation in Lemma 7.6, let
�Z1;�Z2 2 L

2.M;ƒM/ be solutions of .��CQ1/�Z1 D .��CQ2/�Z2 D 0 in M of the form

Z1 D e
�sx1

�
eisr jg0j

� 1
4

�X
I

cI .�/�
I

�
CR1

�
;

Z2 D e
sx1

�
eisr jg0j

� 1
4

�X
I

dI .�/�
I

�
CR2

�
:

Then
..Q2�Q1/Z1 jZ2/M D 0:

Therefore both of the main theorems reduce to using the condition .QZ1; Z2/L2.M/ D 0 for solutions
of the type given in Lemma 7.6 to show QD 0.

The next result shows that from the condition .QZ1; Z2/L2.M/ D 0 for solutions of the type given
in Lemma 7.6, it follows that certain exponentially attenuated integrals over geodesics in .M0; g0/ of
matrix elements of Q, further Fourier transformed in x1, must vanish.

Proposition 8.3. Assume the hypotheses in Theorem 2.1 or 2.2, with QDQ2�Q1 extended by zero to
R�M0. Fix a geodesic  W Œ0; L�!M0 with .0/; .L/2 @M0, let @r be the vector field inM0 tangent to
geodesic rays starting at .0/, and suppose f�I g is an orthonormal frame of ƒ.R�M int

0 / with �1 D dx1,
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�2 D dr , and r@r�
j D 0 for 3� j � n. (Such a frame always exists.) Then for any � 2 R and any I; J

one has Z L

0

e�2�r
�Z 1
�1

e�2i�x1hQ.x1; .r//�
I ; �J i dx1

�
dr D 0:

Proof. Using the notation in Lemma 7.6, let Zj 2 L2.M;ƒM/ be solutions of .�� CQ1/Z1 D
.��CQ2/Z2 D 0 in M of the form

Z1 D e
�sx1

�
eisr jg0j

� 1
4

�X
I

cI .�/�
I

�
CR1

�
;

Z2 D e
sx1

�
eisr jg0j

� 1
4

�X
I

dI .�/�
I

�
CR2

�
;

where sD �Ci�, � > 0 is large, �2R, and cI ; dI 2C1.Sn�2/. We can assume kRj kL2.M/DO.�
�1/

as � !1, and that the relative (absolute) boundary values of Z1 are supported in zF and the relative
(absolute) boundary values of Z2 are supported in zB . By Lemma 8.1 (Lemma 8.2), we have

0D lim
�!1

.QZ1; Z2/L2.M/

D

Z
Sn�2

Z 1
0

e�2�r
�X
I;J

�Z 1
�1

e�2i�x1hQ.x1; r; �/�
I ; �J i dx1

�
cI .�/ dJ .�/

�
dr d�:

We now extend the M0-geodesic  to yM0, choose ! D .�"/ for small " > 0, and choose �0 so that
.t/D .t; �0/. The functions cI and dJ can be chosen freely, and by varying them we obtainZ 1

0

e�2�r
�Z 1
�1

e�2i�x1hQ.x1; r; �0/�
I ; �J i dx1

�
dr D 0

for each fixed I and J . Since Q is compactly supported in M int
0 , this implies the required result.

It remains to show that a frame f�I g with the required properties exists. Let !D .0/, and let . yM0; g0/

be a simple manifold with .M0; g0/b . yM0; g0/ such that the yM0-geodesic starting at ! in direction �.!/
never meets M0. (It is enough to embed .M0; g0/ in some closed manifold and to take yM0 strictly convex
and slightly larger thanM0.) Let .r; �/ be polar normal coordinates in yM0 with centre !D .0/, fix r0>0
so that the geodesic ball B.!; r0/ is contained in yM int

0 , and let O� 2 Sn�2 be the direction of �.!/. Choose
some orthonormal frame �3; : : : ; �n of the cotangent space of @B.!; r0/ n f.r0; O�/g, and extend these as
1-forms in M int

0 by parallel transporting along integral curves of @r . We thus obtain a global orthonormal
frame �2; : : : ; �n of T �M int

0 with �2 D dr and r@r�
j D 0 for 3� j � n. Moreover, �1; : : : ; �n will be a

global orthonormal frame of T �.R�M int
0 / inducing an orthonormal frame f�I g of ƒ.R�M int

0 /. �

We will now show how the coefficients are uniquely determined by the integrals in Proposition 8.3.
This follows by inverting attenuated ray transforms, a topic of considerable independent interest (see the
survey [Finch 2003] for results in the Euclidean case, and the survey [Paternain et al. 2014] and references
below for the manifold case). The transform in Proposition 8.3 is not exactly the same kind of attenuated
ray transform/Fourier transform as in the scalar case, for instance, in [Dos Santos Ferreira et al. 2009a],
since the matrix element of Q that appears in the integral may actually depend on the geodesic  (note



PARTIAL DATA INVERSE PROBLEMS FOR THE HODGE LAPLACIAN 87

that the 1-forms � depend on  ). To clarify this point, we fix some global orthonormal frame f"1; : : : ; "ng
of T �.R�M0/ with "1 D dx1, and let f"I g be the corresponding orthonormal frame of ƒ.R�M0/.
Define the matrix elements

qI;J D hQ"
I ; "J i:

Define also

OqI;J .�1; x
0/D

Z 1
�1

e�ix1�1qI;J .x1; x
0/ dx1:

Then the conclusion in Proposition 8.3 impliesZ L

0

e�2�r OqI 0;J 0.2�; .r//h�
I ; "I

0

ih�J ; "J
0

i dr D 0

for any �2R, for any I; J , and for any maximal geodesic  inM0. (Note that the inner products h�I ; "I
0

i

do not depend on x1.)
Up until now everything discussed in this paper has held for any dimension n � 3. Now, however,

we will invoke the assumption that n D 3. Then qI;J is an 8� 8 matrix. In this case we may choose
�1Ddx1, �2Ddr , and �3D �g0 dr , where dr is the 1-form dual to P on the geodesic  . Let also fej g
be the orthonormal frame of vector fields dual to f"j g (which is assumed to be positively oriented). It
follows that

h�1; "1i D 1;

h�2; "1i D 0;

h�3; "1i D 0;

h�1; "2i D 0;

h�2; "2i D he2; Pi;

h�3; "2i D �he3; Pi;

h�1; "3i D 0;

h�2; "3i D he3; Pi;

h�3; "3i D he2; Pi:

The relations for �f1;2gD�1^�2, �f3;1g, �f2;3g and "f1;2g, "f3;1g, "f2;3g can be determined from the above
relations by duality. Finally, h�0; "I i D 1 if I D 0 and 0 otherwise, and the other relations for �0, "0,
�f1;2;3g, and "f1;2;3g are similar.

Now choosing I D J D 1 (here we identify 1 with f1g) we obtainZ L

0

e�2�r Oq1;1.2�; .r// dr D 0 for all � and  .

This means that the usual attenuated geodesic ray transform of the function Oq1;1.2�; � / in M0 vanishes
for all �. First we have Oq1;1.2�; � / 2 C1.M0/ for all � [Frigyik et al. 2008, Proposition 3], and then
Oq1;1.2�; � /D 0 for all � by the injectivity of the attenuated ray transform [Salo and Uhlmann 2011] and
so q1;1 D 0. The same argument applies for all pairs .I; J / where

I; J 2
˚
0; 1; f2; 3g; f1; 2; 3g

	
:

Now consider the case where I D 1 and J D 2. ThenZ L

0

e�2�r
�
Oq1;2.2�; .r//he2; PiC Oq1;3.2�; .r//he3; Pi

�
dr D 0:
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Then the injectivity result for the attenuated ray transform on 1-tensors [Salo and Uhlmann 2011] together
with the regularity result [Holman and Stefanov 2010, Proposition 1] says

Oq1;2.2�; x/"
2
C Oq1;3.2�; x/"

3
D 0

for all �¤ 0, from which we can conclude

q1;2 D q1;3 D 0:

The same argument then applies for all pairs .I; J / where

I 2
˚
0; 1; f2; 3g; f1; 2; 3g

	
and J 2

˚
2; 3; f1; 2g; f3; 1g

	
;

or vice versa.
Finally, consider the case when I D J D 2. For brevity, we’ll write hej ; Pi as Pj . Then I D J D 2

gives Z L

0

e�2�r
�
Oq2;2 P

2
2 C Oq2;3 P2 P3C Oq3;2 P3 P2C Oq3;3 P

2
3

�
dr D 0: (8-1)

The integrand here can be represented as the symmetric 2-tensor

f 2;2 WD

 
Oq2;2

1
2
. Oq2;3C Oq3;2/

1
2
. Oq2;3C Oq3;2/ Oq3;3

!

(in coordinates provided by f"2; "3g) applied to . P; P/. This shows that the attenuated ray transform of
the 2-tensor f 2;2 in .M0; g0/, with constant attenuation �2�, vanishes identically.

We will now make use of the methods of [Paternain et al. 2013] in this tensor tomography problem. We
only give the details in the case where Q (and hence f 2;2) is C1. The result also holds for continuous Q
by using an elliptic regularity result for the normal operator, but in the present weighted case for 2-tensors
the required result may not be in the literature. We only say that such a result can be proved by adapting
the methods of [Holman and Stefanov 2010] to the 2-tensor case (in particular one needs a solenoidal
decomposition f D f sC dˇ of a 2-tensor f and a further solenoidal decomposition ˇ D ˇsC d� of
the 1-form ˇ, and one then shows that the normal operator acting on “solenoidal triples” .f s; ˇs; �/ is
elliptic because the weight comes from a nonvanishing attenuation).

Since f 2;2 is C1, the injectivity result for the attenuated ray transform on symmetric 2-tensors (see
[Assylbekov 2012], following [Paternain et al. 2013]) says

f 2;2 D�XuC 2�u;

whereX is the geodesic vector field on .M0; g0/, and u is a smooth function on the unit circle bundle SM0

that corresponds to the sum of a 1-tensor and scalar function, with

uj@M0 D 0:
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Here we have identified f 2;2 and u with functions on SM0 as in [Paternain et al. 2013]. We can also
express u and f 2;2 in terms of Fourier components as in [loc. cit.],

uD u�1Cu0Cu1;

f 2;2 D f
2;2
�2 Cf

2;2
0 Cf

2;2
2 :

Here u0 2C1.M0/, u1Cu�1 corresponds to a smooth 1-tensor in M0, and u0, u1, u�1 vanish on @M0.
Then

�X.u�1Cu0Cu1/C 2�.u�1Cu0Cu1/D f
2;2
�2 Cf

2;2
0 Cf

2;2
2 :

Now parity implies the equations

2�.u�1Cu1/DXu0 and �X.u�1Cu1/C 2�.u0/D f
2;2
�2 Cf

2;2
0 Cf

2;2
2 :

Assume � is nonzero. Using the first equation in the second one implies

�
X2.u0/

2�
C 2�u0 D f

2;2; (8-2)

where X2u0 corresponds to the covariant Hessian r2u0 of u0. The first equation implies u0 vanishes to
first order on @M0.

Unfortunately, this is not enough to conclude that the coefficients of f 2;2 are 0. However, going back
and choosing .I; J /D .2; 3/; .3; 2/, and .3; 3/ gives us three additional equations of this type with the
same elements qI;J . More specifically,

f 2;3 D

 
Oq2;3

1
2
. Oq3;3�Oq2;2/

1
2
. Oq3;3�Oq2;2/ �Oq3;2

!
;

f 3;2 D

 
Oq3;2

1
2
. Oq3;3�Oq2;2/

1
2
. Oq3;3�Oq2;2/ �Oq2;3

!
;

f 3;3 D

 
Oq3;3 �

1
2
. Oq2;3COq3;2/

�
1
2
. Oq2;3COq3;2/ Oq2;2

!

are all of the same form. Therefore it follows that f 2;2C f 3;3 and f 2;3� f 3;2 are as well. But these
are both scalar matrices, and if

�
X2.u0/

2�
C 2�u0

is a scalar matrix, then also the covariant Hessian r2u0 is a scalar matrix in the f"2; "3g basis.
To make the previous statement more explicit, identify .M0; g0/ with the unit disk in R2 and choose

an isothermal coordinate system .x1; x2/ in which the metric is given by e2�ıjk for some � 2 C1.M0/.
Choosing e2 D e��@1 and e3 D e��@2, the condition r2u0.e2; e2/�r2u0.e3; e3/D 0 implies

@21u0� @
2
2u0C b � ru0 D 0 in M0



90 FRANCIS J. CHUNG, MIKKO SALO AND LEO TZOU

for some vector field b2C1.M0;R
2/ depending on �. Since u0 vanishes to first order on @M0, extending

u0 by zero to R2 we have
@21u0� @

2
2u0C b � ru0 D 0 in R2;

where u0 2 H 2.R2/ is compactly supported and b is some smooth compactly supported vector field.
Uniqueness for hyperbolic equations [Taylor 1996, Section 2.8] implies u0 D 0.

The above argument shows that f 2;2 C f 3;3 and f 2;3 � f 3;2 are 0. Thus Oq2;2 C Oq3;3 D 0 and
Oq2;3 � Oq3;2 D 0, showing that f 2;2 and f 2;3 are trace-free. Taking traces in (8-2) and using that u0
vanishes to first order on @M0 implies u0D 0 by unique continuation for elliptic equations. Thus f 2;2D 0
and similarly f 2;3 D 0, which shows that q2;2, q2;3, q3;2, and q3;3 are zero as well.

The same argument now works for the remaining entries of q, and this finishes the proof.

9. Higher dimensions

In higher dimensions, n > 3, as noted above, everything up to and including the proof of Proposition 8.3
still holds. However, this does not reduce easily into a tensor tomography problem, as in the three-
dimensional case, because we cannot choose the basis f�ig so that �3; : : : ; �4 to depend on �2 D dr in a
tensorial manner.

More precisely, in general we lack tensors Ti for which �i D Ti .�2; : : : ; �2/ for i � 3, as is the case in
three dimensions. Moreover, even if the results of Proposition 8.3 can be reduced to a tensor tomography
problem, there is no guarantee that it will be one for which there are useful injectivity results, since there
are very few such results for k-tensors with k > 2.

However, in the Euclidean case we can do better, since we have the extra freedom to vary the Carleman
weight '. In particular, we can construct CGOs to reduce the problem in Lemmas 8.1 and 8.2 to a Fourier
transform, as has been done for inverse problems for scalar functions, e.g., in [Bukhgeim and Uhlmann
2002]. Therefore we can conclude this paper by a proof for higher dimensions, in the Euclidean case.

Proof of Theorem 2.3. Fix coordinates x1; : : : ; xn on Rn. The corresponding basis for the cotangent space
is dx1; : : : ; dxn, and this gives a corresponding basis fdxI g for ƒM.

Now note that if f is a scalar function, 4.fdxI /D .4f /dxI. Therefore if ˛ and ˇ are unit vectors
such that ˛ �ˇ D 0, then

e�
˛�x
h h2.�4CQ/.e

.˛Ciˇ/�x
h dxI /DO.h2/dxI:

Therefore Proposition 7.1 implies there exists r 2 L2.M;ƒM/ such that

.�4CQ/.e
.˛Ciˇ/�x

h .dxI C r//D 0;

with krkL2.M/ D O.h/, and Z D e
.˛Ciˇ/�x

h .dxI C r/ has relative boundary conditions which vanish
on �c

C
.

Now if k and ` are mutually orthogonal unit vectors which are both orthogonal to ˛, then we can set
ˇ1 D `C hk and ˇ2 D `� hk, and create

Z1 D e
.�˛Ciˇ1/�x

h .dxI C r1/ and Z2 D e
.˛Ciˇ2/�x

h .dxI C r2/
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so that .�4CQ1/Z1 D .�4CQ2/Z2 D 0, and Z1 and Z2 have relative boundary conditions that
vanish on �c� and �c

C
respectively.

Then Lemma 8.1, together with the hypotheses of Theorem 2.3, implies

.Q1�Q2 j e
�i2k�x/D 0:

This can be done for any k orthogonal to ˛. Since ˛ can be varied slightly without preventing the relative
boundary conditions of the solutions from vanishing on the correct set, this is in fact true for k in an open
set, from which we can conclude that Q1 DQ2 on M.

The absolute boundary value version works similarly, with the appropriate change in the CGOs. �
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ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY

ANDREA MONDINO AND EMANUELE SPADARO

The Euclidean mixed isoperimetric-isodiametric inequality states that the round ball maximizes the
volume under constraint on the product between boundary area and radius. The goal of the paper is to
investigate such mixed isoperimetric-isodiametric inequalities in Riemannian manifolds. We first prove
that the same inequality, with the sharp Euclidean constants, holds on Cartan–Hadamard spaces as well
as on minimal submanifolds of Rn. The equality cases are also studied and completely characterized;
in particular, the latter gives a new link with free-boundary minimal submanifolds in a Euclidean ball.
We also consider the case of manifolds with nonnegative Ricci curvature and prove a new comparison
result stating that metric balls in the manifold have product of boundary area and radius bounded by the
Euclidean counterpart and equality holds if and only if the ball is actually Euclidean.

We then consider the problem of the existence of optimal shapes (i.e., regions minimizing the product of
boundary area and radius under the constraint of having fixed enclosed volume), called here isoperimetric-
isodiametric regions. While it is not difficult to show existence if the ambient manifold is compact,
the situation changes dramatically if the manifold is not compact: indeed we give examples of spaces
where there exists no isoperimetric-isodiametric region (e.g., minimal surfaces with planar ends and more
generally C0-locally asymptotic Euclidean Cartan–Hadamard manifolds), and we prove that on the other
hand on C0-locally asymptotic Euclidean manifolds with nonnegative Ricci curvature there exists an
isoperimetric-isodiametric region for every positive volume (this class of spaces includes a large family
of metrics playing a key role in general relativity and Ricci flow: the so-called Hawking gravitational
instantons and the Bryant-type Ricci solitons).

Finally we prove the optimal regularity of the boundary of isoperimetric-isodiametric regions: in the
part which does not touch a minimal enclosing ball, the boundary is a smooth hypersurface outside of a
closed subset of Hausdorff codimension 8, and in a neighborhood of the contact region, the boundary is a
C1,1 hypersurface with explicit estimates on the L∞ norm of the mean curvature.
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1. Introduction

One of the oldest questions of mathematics is the isoperimetric problem: what is the largest amount of
volume that can be enclosed by a given amount of area? A related classical question is the isodiametric
problem: what is the largest amount of volume that can be enclosed by a domain having a fixed diameter?

In this paper we address a mix of the previous two questions, namely we investigate the following
mixed isoperimetric-isodiametric problem: what is the largest amount of volume that can be enclosed by
a domain having a fixed product of diameter and boundary area?

Of course, if we ask the three above questions in the Euclidean space, the answer is given by round
balls of suitable radius, but, of course, the situation in nonflat geometries is much more subtle. We start
by recalling classical material on the isoperimetric problem which motivated our investigation on the
mixed isoperimetric-isodiametric one.

The solution of the isoperimetric problem in the Euclidean space Rn can be summarized by the classical
isoperimetric inequality

nω1/n
n Vol(�)(n−1)/n

≤A(∂�) for every �⊂ Rn open subset with smooth boundary, (1-1)

where Vol(�) is the n-dimensional Hausdorff measure of � (i.e., the “volume” of �), A(∂�) is the
(n−1)-dimensional Hausdorff measure of ∂� (i.e., the “area” of ∂�), and ωn := Vol(Bn) is the volume
of the unit ball in Rn. As is well known, the regularity assumption on � can be relaxed a lot (for instance
(1-1) holds for every set � of finite perimeter), but let us not enter into technicalities here since we are
just motivating our problem.

As anticipated above, in the present paper we will not deal with the isoperimetric problem itself but
we will focus on a mixed isoperimetric-isodiametric problem. Let us start by stating the Euclidean mixed
isoperimetric-isodiametric inequality, which will act as model for this paper. Given a bounded open
subset �⊂Rn with smooth boundary, by the divergence theorem in Rn (see Section 2 for the easy proof),
we have

n Vol(�)≤ rad(�)A(∂�), (1-2)

where rad(�) is the radius of the smallest ball of Rn containing � (see (2-1) for the precise definition).
As observed in Remark 2.1, inequality (1-2) is sharp and rigid; indeed, equality occurs if and only if � is
a round ball in Rn.

In sharp contrast with the classical isoperimetric problem, where both problems are still open in
the general case, it is not difficult to show that the inequality (1-2) holds in Cartan–Hadamard spaces
(i.e., simply connected Riemannian manifolds with nonpositive sectional curvature) and on minimal
submanifolds of Rn; see Propositions 3.1, 3.3 and 3.7. Even if the validity of inequality (1-2) in such
spaces is probably known to experts, we included it here in order to motivate the reader and also because
the equality case for minimal submanifolds presents an interesting link with free-boundary minimal
surfaces: equality is attained in (1-2) if and only if the minimal submanifold is a free-boundary minimal
surface in a Euclidean ball (see Proposition 3.3 for the precise statement and Remarks 3.5–3.6 for more
information about free-boundary minimal surfaces).
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If on one hand the negative curvature gives a stronger isoperimetric-isodiametric inequality, on the
other hand we show that nonnegative Ricci curvature forces metric balls to satisfy a weaker isoperimetric-
isodiametric inequality. The precise statement is the following.

Theorem 1.1 (Theorem 4.1). Let (Mn, g) be a complete (possibly noncompact) Riemannian n-manifold
with nonnegative Ricci curvature. Let Br ⊂ M be a metric ball of volume V = Volg(Br ), and denote by
BRn

(V ) the round ball in Rn having volume V. Then

rad(Br )A(∂Br )= rA(∂Br )≤ n Volg(Br )= radRn (BRn
(V ))ARn (∂BRn

(V )). (1-3)

Moreover equality holds if and only if Br is isometric to a round ball in the Euclidean space Rn. In
particular, for every V ∈ (0,Volg(M)),

inf
{
rad(�)P(�) : �⊂ M,Volg(�)=V

}
≤ nV = inf

{
rad(�)P(�) : �⊂ Rn,VolRn (�)=V

}
, (1-4)

with equality for some V ∈ (0,Volg(M)) if and only if every metric ball in M of volume V is isometric to
a round ball in Rn. In particular if equality occurs for some V ∈ (0,Volg(M)) then (M, g) is flat, i.e., it
has identically zero sectional curvature.

Remark 1.2. Since by Bishop–Gromov volume comparison, we know that if Ricg ≥ 0 then for every
metric ball Br (x0)⊂ M ,

Volg(Br (x0))≤ ωnrn
= VolRn (BRn

r ).

It follows that
rad(Br (x0))≥ radRn (BRn

(V )),

where BRn
(V ) is a Euclidean ball of volume V = Volg(Br (x0)). Therefore Theorem 1.1 in particular

implies P(Br (x0))≤PRn (BRn
(V )), but is a strictly stronger statement, which to the best of our knowledge

is original. The aforementioned counterpart of Theorem 1.1 for the isoperimetric problem was proved
instead by Morgan and Johnson [2000, Theorem 3.5] for compact manifolds and extended to noncompact
manifolds in [Mondino and Nardulli 2016, Proposition 3.2].

In Section 5 we investigate the existence of optimal shapes in a general Riemannian manifold (M, g).
More precisely, given a measurable subset E ⊂M we denote by P(E) its perimeter and define its extrinsic
radius as

rad(E) := inf
{
r > 0 : Volg(E \ Br (z0))=0 for some z0 ∈ M

}
,

where Br (z0) denotes the open metric ball with center z0 and radius r > 0. We consider the following
minimization problem: for every fixed V ∈ (0,Volg(M)), find

min{rad(E)P(E) : E ⊂ M,Volg(E)=V}, (1-5)

and call the minimizers of (1-5) isoperimetric-isodiametric sets (or regions). To best of our knowledge
this is first time such a problem is considered in the literature.

As it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact
then for every volume there exists an isoperimetric-isodiametric region (see Theorem 5.2 and Corollary 5.3)
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but if the ambient space is noncompact the situation changes dramatically. Indeed in Examples 5.6–5.7
we show that in complete minimal submanifolds with planar ends (like the helicoid) and in asymptotically
locally Euclidean Cartan–Hadamard manifolds, there exists no isoperimetric-isodiametric region of
positive volume. On the other hand, we show that in C0-locally asymptotically Euclidean manifolds (see
Definition 5.4 for the precise notion) with nonnegative Ricci curvature for every volume there exists an
isoperimetric-isodiametric region:

Theorem 1.3 (Theorem 5.5). Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci
curvature and fix any reference point x̄ ∈M. Assume that for any diverging sequence of points (xk)k∈N ⊂M,
i.e., d(xk, x̄)→∞, the sequence of pointed manifolds (M, g, xk) converges in the pointed C0 topology to
the Euclidean space (Rn, gRn , 0).

Then for every V ∈ (0,Volg(M)) there exists a minimizer of the problem (1-5); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Let us mention that the counterpart of Theorem 1.3 for the isoperimetric problem was proved in
[Mondino and Nardulli 2016] capitalizing on the work by Nardulli [2014].

Remark 1.4. It is well known that the only manifold with nonnegative Ricci curvature and C0-globally
asymptotic to Rn is Rn itself. Indeed if M is C0-globally asymptotic to Rn then

lim
R→∞

Volg(BR(x̄))
ωn Rn = 1,

which by the rigidity statement associated to the Bishop–Gromov inequality implies that (M, g) is globally
isometric to Rn. On the other hand, the assumption of Theorem 1.3 is much weaker as it asks (M, g) to be
just locally asymptotic to Rn in the C0 topology and many important examples enter in this framework,
as explained in Example 1.5.

Example 1.5. The class of manifolds satisfying the assumptions of Theorem 1.3 contains many geomet-
rically and physically relevant examples.

• Eguchi–Hanson and, more generally, ALE gravitational instantons. These are 4-manifolds, solutions of
the Einstein vacuum equations with null cosmological constant (i.e., they are Ricci flat, Ricg ≡ 0), they are
noncompact with just one end which is topologically a quotient of R4 by a finite subgroup of O(4), and
the Riemannian metric g on this end is asymptotic to the Euclidean metric up to terms of order O(r−4),

gi j = δi j + O(r−4),

with appropriate decay in the derivatives of gi j (in particular, such metrics are C0-locally asymptotic, in the
sense of Definition 5.4, to the Euclidean 4-dimensional space). The first example of such manifolds was
discovered by Eguchi and Hanson [1978]; inspired by the discovery of self-dual instantons in Yang–Mills
theory, they found a self-dual ALE instanton metric. The Eguchi–Hanson example was then generalized
by Gibbons and Hawking [1978]; see also the work by Hitchin [1979]. These metrics constitute the
building blocks of the Euclidean quantum gravity theory of Hawking (see [Hawking 1977; 1979]). The
ALE gravitational instantons were classified by Kronheimer [1989a; 1989b].
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• Bryant-type solitons. The Bryant solitons, discovered by R. Bryant [2005], are special but fundamental
solutions to the Ricci flow (see, for instance, the work of Brendle [2013; 2014] for higher dimensions).
Such metrics are complete, have nonnegative Ricci curvature (they actually satisfy the stronger condition
of having nonnegative curvature operator) and are locally C0-asymptotically Euclidean. Other soliton
examples fitting our assumptions are given by Catino and Mazzieri [2016].

Section 6 is then devoted to establishing the optimal regularity for isoperimetric-isodiametric regions
under suitable assumptions on regularity of the enclosing ball. We first observe that outside of the contact
region with the minimal enclosing ball B, such sets are locally minimizers of the perimeter under volume
constraint. Therefore by classical results (see, for example, [Morgan 2003, Corollary 3.8]) in the interior
of B the boundary of the region is a smooth hypersurface outside a singular set of Hausdorff codimension
at least 8.

The rest of the paper is devoted to proving the optimal regularity at the contact region. We first
show in Section 6A that isoperimetric-isodiametric regions are almost-minimizers for the perimeter
(see Lemma 6.3) and therefore, by a result of Tamanini [1982] their boundaries are C1,1/2 regular (see
Proposition 6.1). In Section 6B, by means of geometric comparisons and sharp first-variation arguments,
we show that the mean curvature of the boundary of an isoperimetric-isodiametric region is in L∞ with
explicit estimates. Finally in Section 6C we establish the optimal C1,1 regularity. We mention that, strictly
speaking, Section 6B is not needed to prove the optimal regularity; in any case we included such a section
since it provides an explicit sharp L∞ estimate on the mean curvature and is of independent interest. Now
let us state the main regularity result.

Theorem 1.6 (Theorem 6.11). Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that
Volg(E \ Brad(E)(x0))= 0. Assume B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such
that ∂E \ Brad(E)−δ(x0) is C1,1 regular.

An essential ingredient in the proof of Theorem 1.6 is Proposition 6.12, which roughly tells that the
boundary of E leaves the obstacle at most quadratically. Then the conclusion will follow by combining
Schauder estimates outside of the contact region (see Lemma 6.13) with the general fact that functions
which leave the first-order approximation quadratically are C1,1 — see Lemma 6.14. Although the
techniques exploited for this part of the paper are inspired by the ones introduced in the study of the
classical obstacle problem (see, for example, [Caffarelli 1998]), here we treat the geometric case of the
area functional in a Riemannian manifold with volume constraints and we take several short-cuts thanks
to some specifically geometric arguments, such as the theory of almost minimizers. In particular, such a
geometric situation doesn’t seem to be trivially covered by the regularity results for nonlinear variational
inequalities, as developed, for example, by Gerhardt [1973] — see Remark 6.16.

Remark 1.7. Note that the C1,1 regularity is optimal, because in general one cannot expect to have
continuity of the second fundamental form of ∂E across the free boundary of ∂E , i.e., the points on the
relative (with respect to ∂B) boundary of ∂E ∩ ∂B. The same is indeed true for the simplest case of the
classical obstacle problem.
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2. Notation, preliminaries and the Euclidean case

Let (Z , d) be a metric space. Given an open subset �⊂ Z , we define its extrinsic radius as

rad(�) := inf{r > 0 :�⊂ Br (z0) for some z0 ∈ Z}, (2-1)

where Br (z0) denotes the open metric ball of center z0 and radius r > 0.
The model inequality for the first part of the paper is the Euclidean mixed isoperimetric-isodiametric

inequality obtained by the following integration by parts. Let � ⊂ Rn be a bounded open subset with
smooth boundary and let x0 ∈ Rn be a point such that

max
x∈�
|x − x0| = rad(�). (2-2)

Denoting by X the vector field X (x) := x − x0, by the divergence theorem in Rn we then get

n Vol(�)=
∫
�

div X dHn
=−

∫
∂�

X · ν dHn−1
≤ rad(�)A(∂�), (2-3)

where Vol(�) denotes the Euclidean n-dimensional volume of �, ν is the inward-pointing unit normal
vector and A(∂�) is the Euclidean (n−1)-dimensional area of ∂�, which here is assumed to be smooth.
Notice that, analogously, if �⊂ Rn is a finite-perimeter set, one gets the inequality

Vol(�)≤
rad(�)

n
P(�), (2-4)

where, of course, P(�) denotes the perimeter of � (see Section 5A for the definitions of P(�) and
rad(�) for finite-perimeter sets).

Remark 2.1. The inequalities (2-3) and (2-4) are sharp and rigid: indeed equality occurs if and only if
� is a round ball.

3. Euclidean isoperimetric-isodiametric inequality in Cartan–Hadamard manifolds
and minimal submanifolds

In order to motivate and gently introduce the reader to the topic, in this section we will prove that the
Euclidean isoperimetric-isodiametric inequality holds with the same constant in Cartan–Hadamard spaces
and in minimal submanifolds. Possibly apart from the rigidity statements, here we do not claim originality
since such inequalities are probably well known to experts (see [Burago and Zalgaller 1988; Hoffman and
Spruck 1974; Michael and Simon 1973]). However we included this section for the following reasons:

• While for the isoperimetric-isodiametric inequality the proofs are a consequence of a nondifficult
integration by parts argument, the corresponding statements for the classical isoperimetric inequality
are still open problems (see Remarks 3.2 and 3.4). This suggests that possibly in other situations
isoperimetric-isodiametric inequalities may behave better than the classical isoperimetric ones.

• The rigidity statements, in the case of minimal submanifolds, show interesting connections between
the isoperimetric-isodiametric inequality and free-boundary minimal surfaces, a topic which recently
has received a lot of attention (for more details, see Remarks 3.5 and 3.6).
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3A. The case of Cartan–Hadamard manifolds. Recall that a Cartan–Hadamard n-manifold is a com-
plete simply connected Riemannian n-dimensional manifold with nonpositive sectional curvature. By
a classical theorem of Cartan and Hadamard (see, for instance, [do Carmo 1992]) such manifolds are
diffeomorphic to Rn via the exponential map. The next result is a sharp and rigid mixed isoperimetric-
isodiametric inequality in such spaces. For this section, without losing much, the nonexpert reader
may assume the region � ⊂ M has smooth boundary; in this case the perimeter is just the standard
(n−1)-volume of the boundary (the perimeter will instead play a role in the next sections about existence
and regularity of optimal sets).

Proposition 3.1. Let (Mn, g) be a Cartan–Hadamard manifold. Then for every smooth open subset (or
more generally for every finite-perimeter set) �⊂ Mn,

n Vol(�)≤ rad(�)A(∂�), (3-1)

where Vol(�) denotes the n-dimensional Riemannian volume of � and A(∂�) the (n−1)-dimensional
area of the smooth boundary ∂� (in the case where � is a finite-perimeter set, just replace A(∂�) with
P(�), the perimeter of �, on the right-hand side, and rad(�) is as in Section 5A).1 Moreover, if for
some � the equality is achieved, then � is isometric to a Euclidean ball.

Proof. Let �⊂ Mn be a subset with finite perimeter; without loss of generality we can assume that � is
bounded (otherwise rad(�)=+∞ and the inequality is trivial). Let x0 ∈ Mn be such that

max
x∈�

d(x, x0)= rad(�),

where d is the Riemannian distance on (Mn, g); for convenience we will also define dx0( · ) := d(x0, · ).
Let u := 1

2d
2
x0

; by the aforementioned Cartan–Hadamard theorem (see, for instance, [do Carmo 1992]),
we know that u : Mn

→R+ is smooth and by the Hessian comparison theorem, one has (D2u)i j ≥ gi j ; in
particular, by tracing, we get 1u ≥ n. Therefore, by the divergence theorem, we get

n Vol(�)≤
∫
�

1u dµg =−

∫
∂∗�

g(∇u, ν) dHn−1
=−

∫
∂∗�

d(x, x0)g(∇dx0, ν) dHn−1

≤ rad(�)Hn−1(∂∗�)= rad(�)P(�), (3-2)

where µg is the measure associated to the Riemannian volume form, ∂∗� is the reduced boundary of �
(of course, in the case where � is a smooth open subset, one has ∂∗�= ∂�), ν is the inward-pointing
unit normal vector (recall that it is Hn−1-a.e. well-defined on ∂∗�), and we used that dx0 is 1-Lipschitz.
Of course (3-2) implies (3-1). Notice that if equality holds in the second line, then � is a metric ball of
center x0 and radius rad(�). Moreover if equality occurs in the first inequality of the first line then we must
have (D2d2

x0
)i j ≡ 2gi j on �, and by standard comparison (see, for instance, [Ritoré 2005, Section 4.1]) it

follows that � is flat. But since the exponential map in M is a global diffeomorphism, it follows that � is
isometric to a Euclidean ball. �

1For the readers’ convenience we recall here the definition of rad(�) for a finite-perimeter set �⊂ M such that rad(�) :=
inf{r > 0 : Vol(� \ Br )= 0, Br ⊂ M metric ball}.
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Remark 3.2 (Euclidean isoperimetric inequality on Cartan–Hadamard spaces). The statement correspond-
ing to Proposition 3.1 for the isoperimetric problem is the following celebrated conjecture: Let (Mn, g)
be a Cartan–Hadamard space, i.e., a complete simply connected Riemannian n-manifold with nonpositive
sectional curvature. Then every smooth open subset � ⊂ Mn satisfies the Euclidean isoperimetric
inequality.

This conjecture is generally attributed to Aubin [1976, Conjecture 1] but has its roots in earlier work
by Weil [1926], as we are going to explain. The problem has been solved affirmatively in the following
cases: in dimension 2 by Weil [1926] (Beckenbach and Radó [1933] gave an independent proof in 1933,
capitalizing on a result of Carleman [1921] for minimal surfaces), in dimension 3 by Kleiner [1992] (see
also the survey paper by Ritoré [2005] for a variant of Kleiner’s arguments), and in dimension 4 by Croke
[1984]. An interesting feature of this problem is that the above proofs have nothing to do with each other
and that they work only for one specific dimension; probably also for this reason such a problem is still
open in the general case.

3B. The case of minimal submanifolds. Given a smoothly immersed submanifold Mn ↪→ Rn+k, by the
first variation formula for the area functional we know that for every �⊂ Mn open bounded subset with
smooth boundary and every smooth vector field X along �,∫

�

divM X dHn
=−

∫
�

H · X dHn
−

∫
∂�

X · ν dHn−1, (3-3)

where H is the mean curvature vector of M and ν is the inward-pointing conormal to � (i.e., ν is the unit
vector tangent to M, normal to ∂� and pointing inside �).

We are interested in the case where Mn ↪→ Rn+k is a minimal submanifold, i.e., H ≡ 0, and �⊂ Mn

is a bounded open subset with smooth boundary ∂�. Let x0 ∈ Rn+k be such that

max
x∈�
|x − x0|Rn+k = radRn+k (�),

and observe that, defining X (x) := x − x0, one has divM X ≡ n. By applying (3-3), we then get

nHn(�)=

∫
�

divM X dHn
=−

∫
∂�

X · ν dHn−1
≤ radRn+k (�)Hn−1(∂�). (3-4)

Notice that equality is achieved if and only if � is the intersection of M with a round ball in Rn+k

centered at x0 and ν(x) is parallel to x− x0, or in other words if and only if � is a free-boundary minimal
n-submanifold in a ball of Rn+k. So we have just proved the following result.

Proposition 3.3. Let Mn ↪→ Rn+k be a minimal submanifold and �⊂ Mn a bounded open subset with
smooth boundary ∂�. Then

nHn(�)≤ radRn+k (�)Hn−1(∂�)

with equality if and only if � is a free-boundary minimal n-submanifold in a ball of Rn+k.

Remark 3.4 (Euclidean isoperimetric inequality on minimal submanifolds). The statement corresponding
to Proposition 3.3 for the isoperimetric problem is the following celebrated conjecture: Let Mn

⊂ Rm
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be a minimal n-dimensional submanifold and let �⊂ Mn be a smooth open subset. Then � satisfies the
Euclidean isoperimetric inequality (1-1), and equality holds if and only if � is a ball in an affine n-plane
of Rm.

To our knowledge the only two solved cases are (i) when ∂� lies on an (m−1)-dimensional Euclidean
sphere centered at a point of � (the argument is by monotonicity; see, for instance, [Choe 2005, Section
8.1]) and (ii) when � is area-minimizing with respect to its boundary ∂� by Almgren [1986]. Let us
mention that a complete solution of the above conjecture is still not available even for minimal surfaces
in Rm, i.e., for n = 2; however, in the latter situation, the statement is known to be true in many cases (let
us just mention that in the case where� is a topological disk, the problem was solved by Carleman [1921],
and the case m = 3 and ∂� has two connected components was settled much later by Li, Schoen and Yau
[Li et al. 1984]; for more results in this direction and for a comprehensive overview, see the beautiful survey
paper [Choe 2005]). Let us finally observe that, when n=2 and m=3, the above conjecture is a special case
of the Aubin conjecture recalled in Remark 3.2, since of course the induced metric on a immersed minimal
surface in R3 has nonpositive Gauss curvature; this case was settled in the pioneering work by Weil [1926].

Remark 3.5 (free-boundary minimal submanifolds and critical metrics). After a classical work of Nitsche
[1985], recent years have seen an increasing interest in free-boundary submanifolds, also thanks to works
of Fraser and Schoen [2011; 2012] on the topic. By definition, a free-boundary submanifold Mn of the
unit ball Bn+k is a proper submanifold which is critical for the area functional with respect to variations
of Mn that are allowed to move also the boundary ∂Mn, but under the constraint ∂Mn

⊂ ∂Bn+k. As a
consequence of the first variational formula, such a definition forces on one hand the mean curvature
to vanish on Mn

∩ Bn+k and on the other hand the submanifold to the meet the ambient boundary
∂Bn+k orthogonally. These are characterized by the condition that the coordinate functions are Steklov
eigenfunctions with eigenvalue 1 [Fraser and Schoen 2011, Lemma 2.2]; that is,

1xi = 0 on M and ∇ν xi =−xi on ∂M.

It turns out that surfaces of this type arise naturally as extremal metrics for the Steklov eigenvalues (see
[Fraser and Schoen 2012] for more details); Steklov eigenvalues are eigenvalues of the Dirichlet-to-
Neumann map, which sends a given smooth function on the boundary to the normal derivative of its
harmonic extension to the interior.

Remark 3.6 (examples of free-boundary minimal submanifolds). Let us recall here some well known
examples of free-boundary minimal submanifolds in the unit ball Bn+k

⊂ Rn+k ; for a deeper discussion
on the examples below, see [Fraser and Schoen 2012].

• Equatorial disk. Equatorial n-disks Dn
⊂ Bn+k are the simplest examples of free-boundary minimal

submanifolds. By a result of Nitsche [1985], any simply connected free-boundary minimal surface in B3

must be a flat equatorial disk. However, if we admit minimal surfaces of a different topological type,
there are other examples, such as the critical catenoid described below.

• Critical Catenoid. Consider the catenoid parametrized on R× S1 by the function

ϕ(t, θ)= (cosh t cos θ, cosh t sin θ, t).
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For a unique choice of T0 > 0, the restriction of ϕ to [−T0, T0]× S1 defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical catenoid in B3. Explicitly, T0 is the unique positive solution of t = coth t .

• Critical Möbius band. We think of the Möbius band M2 as R× S1 with the identification (t, θ) ∼
(−t, θ +π). There is a minimal embedding of M2 into R4 given by

ϕ(t, θ)= (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ).

For a unique choice of T0 > 0, the restriction of ϕ to [−T0, T0]× S1 defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical Möbius band in B4. Explicitly T0 is the unique positive solution of coth t = 2 tanh 2t .

• A consequence of the results of [Fraser and Schoen 2012] is that for every k ≥ 1 there exists an
embedded free-boundary minimal surface in B3 of genus 0 with k boundary components.

Since of course radRn+k (�) ≤ radM(�), where radM( · ) is the extrinsic radius in the metric space
(M, dg), we have a fortiori that

nHn(�)≤ radM(�)Hn−1(∂�). (3-5)

But in this case the rigidity statement is much stronger, indeed in the case of equality, the center of the
ball x0 must be a point of M. Moreover, for every x ∈ ∂� the segment x, x0 must be contained in M ;
therefore M contains a portion of a minimal cone C centered at x0. But since by assumption M is a
smooth submanifold and since the only cone smooth at its origin is an affine subspace, it must be that M
contains a portion of an affine subspace. By the classical weak unique continuation property for solutions
to the minimal submanifold system, we conclude that M is an affine subspace of Rn+k. Therefore we
have just proven the next result.

Proposition 3.7. Let Mn ↪→ Rn+k be a connected smooth minimal submanifold and �⊂ Mn a bounded
open subset with smooth boundary ∂�. Then

nHn(�)≤ radM(�)Hn−1(∂�) (3-6)

with equality if and only if M is an affine subspace and � is the intersection of M with a round ball in
Rn+k centered at a point of M.

Remark 3.8. If we allow M to have conical singularities, then (3-6) still holds with equality if and only
if M is a minimal cone and � is the intersection of M with a round ball in Rn+k centered at a point of M .

Concerning this, recall that in the case where n = 2 and k = 1 every minimal cone smooth away from
the vertex is totally geodesic; indeed one of the principal curvatures is always null for cones and so the
mean curvature vanishes if and only if all of the second fundamental form is null. Therefore equality in
(3-6) is attained if and only if M2 is an affine plane and � is a flat 2-disk. The analogous result for n = 3
and k = 1 is due to Almgren [1966] (see also the work of Calabi [1967]).

For the general case of higher dimensions and codimensions, a minimal submanifold 6k in Sn is natu-
rally the boundary of a minimal submanifold of the ball, the cone C(6) over6. Using this correspondence
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it is possible to construct many nontrivial minimal cones: Hsiang [1983a; 1983b] gave infinitely many
codimension-1 examples for n ≥ 4, the higher-codimensional problem was investigated in the celebrated
paper of Simons [1968] and the related work of Bombieri, De Giorgi and Giusti [Bombieri et al. 1969].

4. The isoperimetric-isodiametric inequality in manifolds with nonnegative Ricci curvature

In this section we show a comparison result for manifolds with nonnegative Ricci curvature which
will be used in Section 5 to get existence of isoperimetric-isodiametric regions in manifolds which are
asymptotically locally Euclidean and have nonnegative Ricci (the so-called ALE spaces).

Theorem 4.1. Let (Mn, g) be a complete (possibly noncompact) Riemannian n-manifold with nonnegative
Ricci curvature. Let Br ⊂ M be a metric ball of volume V = Vol(Br ), and denote by BRn

(V ) the round
ball in Rn having volume V. Then

rad(Br )P(Br )= rP(Br )≤ nV = radRn (BRn
(V ))PRn (BRn

(V )). (4-1)

Moreover equality holds if and only if Br is isometric to a round ball in the Euclidean space Rn. In
particular, for every V ∈ (0,Vol(M)),

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV = inf

{
rad(�)P(�) :�⊂ Rn,VolRn (�)=V

}
, (4-2)

with equality for some V ∈ (0,Vol(M)) if and only if every metric ball in M of volume V is isometric to a
round ball in Rn. In particular, if equality occurs for some V ∈ (0,Vol(M)) then (M, g) is flat, i.e., it has
identically zero sectional curvature.

Proof. Let us fix an arbitrary x0 ∈ M and let Br = Br (x0) be the metric ball in M centered at x0 of
radius r > 0. It is well known that the distance function dx0( · ) := d(x0, · ) is smooth outside the cut
locus Cx0 of x0 and that µg(Cx0)= 0. From the coarea formula it follows that for L1-a.e. r ≥ 0 one has
Hn−1(Cx0 ∩ ∂Br (x0))= 0 and, since the cut locus is closed by definition, we get that for L1-a.e. r ≥ 0 the
distance function dx0( · ) is smooth on an open subset of full Hn−1 measure on ∂Br (x0).

Let us first assume that r > 0 is one of these regular radii; the general case will be settled in the end
by an approximation argument. It is immediate to see that on ∂Br (x0) \ Cx0 we have |∇dx0 | = 1 and
thus ∂Br (x0) \ Cx0 is a smooth hypersurface. In particular, since Hn−1(∂Br (x0)∩ Cx0)= 0, we have that
Br (x0) is a finite-perimeter set whose reduced boundary is contained in ∂Br (x0) \ Cx0 . Letting ν be the
inward-pointing unit normal to ∂Br (x0) on the regular part ∂Br (x0)\Cx0 , from the Gauss lemma we have

ν =−∇dx0 on ∂Br (x0) \ Cx0 . (4-3)

Therefore, setting u := 1
2d

2
x0

, we get

rP(Br (x0))=−

∫
∂Br (x0)\Cx0

dx0(x)g(∇dx0(x), ν(x)) dHn−1(x)=−
∫
∂Br (x0)\Cx0

g(∇u, ν) dHn−1

=− lim
ε↓0

∫
∂Br (x0)\Cx0

g(∇uε, ν) dHn−1,

where uε ∈ C2(M) is an approximation by convolution of u such that ‖∇uε −∇u‖L∞(∂Br (x0),Hn−1)→ 0,
1uε → 1u in C0

loc(M \ Cx0) and 1uε ≤ n, where in the last estimate we used the global Laplacian
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comparison stating that 1u is a Radon measure with 1u ≤ nµg. More precisely, one has that 1uxM \Cx0

is given by µg multiplied by a smooth function bounded above by n, and the singular part (1u)s of
1u is a nonpositive measure concentrated on Cx0 . Now ∇uε is a C1 vector field and we can apply the
Gauss–Green formula for finite perimeter sets [Ambrosio et al. 2000, Theorem 3.36] to get

rP(Br (x0))= lim
ε↓0

∫
Br (x0)

1uε dµg = lim
ε↓0

∫
Br (x0)\Cx0

1uε dµg ≤

∫
Br (x0)\Cx0

lim sup
ε↓0

1uε dµg

=

∫
Br (x0)\Cx0

1u dµg ≤ n Vol(Br ), (4-4)

where in the first inequality we used Fatou’s lemma combined with the upper bound 1uε ≤ n and the
last inequality is ensured by the local Laplacian comparison theorem. Notice that if equality occurs then
1u = nµg on Br (x0) \ Cx0 and, by analyzing the equality in Riccati equations, it is well known that this
implies Br (x0) is isometric to the round ball in Rn.

If r > 0 is a singular radius, in the sense that Hn−1(∂Br (x0)∩Cx0) > 0, then by the above discussion we
can find a sequence of regular radii rn→r and, by the lower semicontinuity of the perimeter under L1

loc con-
vergence [Ambrosio et al. 2000, Proposition 3.38] combined with (4-4), which is valid for Brn (x0), we get

rP(Br (x0))≤ lim inf
n→∞

rnP(Brn (x0))≤ lim inf
n→∞

∫
Brn (x0)\Cx0

1u dµg ≤ lim sup
n→∞

∫
M\Cx0

χBrn (x0)1u dµg

≤

∫
M\Cx0

lim sup
n→∞

χBrn (x0)1u dµg =

∫
Br (x0)\Cx0

1u dµg ≤ n Vol(Br ), (4-5)

where in the first inequality of the second line we used Fatou’s lemma (we are allowed since χBrn (x0)1u≤n
on M \ Cx0), and the last inequality follows again by local Laplacian comparison. Notice that, as before,
equality in (4-5) forces 1u = nµg on Br (x0) \ Cx0 and then Br (x0) is isometric to a Euclidean ball.

The second part of the statement clearly follows from the first part combined with the Euclidean
isoperimetric-isodiametric inequality (2-3). �

5. Existence of isoperimetric-isodiametric regions

In Section 3 we saw explicit isoperimetric-inequalities in some special situations: Cartan–Hadamard
spaces and minimal submanifolds. In the present section we investigate the existence of optimal shapes:
as it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact, an
optimal set always exists but if the ambient space is noncompact the situation changes dramatically. The
subsequent sections will be devoted to establishing the sharp regularity for the optimal sets.

5A. Notation. Let (Mn, g) be a complete Riemannian manifold and denote by dg the geodesic distance,
by µg the measure associated to the Riemannian volume form and by X(M) the smooth vector fields.
Given a measurable subset E ⊂ M, the perimeter of E is denoted by P(E) and is given by the formula

P(E) := sup
{∫

E
div X dµg : X ∈ X(M), spt(X)b M, ‖X‖L∞(M,g) ≤ 1

}
,
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and, for any open subset �⊂ M, we write P(E, �) when the fields X are restricted to having compact
support in �. It is out of the scope of this paper to discuss the theory of finite-perimeter sets; standard
references are [Ambrosio et al. 2000; Evans and Gariepy 1992; Maggi 2012].

Since from now on we will work with sets of finite perimeter, which are well defined up to subsets of
measure zero, we will adopt the following definition of extrinsic radius of a measurable subset E ⊂ M :

rad(E) := inf{r > 0 : µg(E \ Br (z0))=0 for some z0 ∈ M},

where Br (z0) denotes the open metric ball with center z0 and radius r > 0. A metric ball Br (z0) satisfying
µg(E \ Br (z0))= 0, is called an enclosing ball for E .

We consider the following minimization problem: for every fixed V ∈ (0, µg(M)), find

min{rad(E)P(E) : E ⊂ M, µg(E)=V}, (5-1)

and call the minimizers of (5-1) isoperimetric-isodiametric sets (or regions).

5B. Existence of isoperimetric-isodiametric regions in compact manifolds. Let us start with the fol-
lowing lemma, stating the lower semicontinuity of the extrinsic radius under L1

loc convergence.

Lemma 5.1 (lower semicontinuity of extrinsic radius under L1
loc convergence). Let (M, g) be a (not

necessarily compact) Riemannian manifold and let (Ek)k∈N∪{∞} be a sequence of measurable subsets
such that χEk → χE∞ in L1

loc(M, µg). Then

rad(E∞)≤ lim inf
k∈N

rad(Ek).

Proof. Without loss of generality we can assume lim infk∈N rad(Ek)<∞ so, up to selecting a subsequence,
we can assume χEk → χE∞ a.e. and limk↑+∞ rad(Ek)= `<∞. Let Bk := Brad(Ek)(xk) be enclosing balls
for Ek . Then two cases can occur. Either xk is unbounded, i.e., supk dg(xk, x̄) =∞ for any x̄ ∈ M, in
which case it follows that E∞ =∅ and the conclusion of the lemma is proved, or there exists x∞ ∈ M
such that, up to passing to a subsequence, xk→ x∞. In this case it is readily verified that

µg
(
Ek \ Brad(Ek)+|xk−x∞|(x∞)

)
= 0,

from which it follows, by taking the limit as k→+∞, that µg(E∞ \ B`(x∞))= 0, which by definition
implies rad(E∞)≤ `. �

The next theorem is a general existence result for minimizers of the problem (5-1), as a special case
it will be applied in Corollary 5.3 to compact manifolds and in Theorem 5.5 for asymptotically locally
Euclidean manifolds (ALE for short) having nonnegative Ricci curvature. Let us observe that the existence
of a minimizer in a noncompact manifold for the classical isoperimetric problem is much harder due to
the possibility of “small tentacles” going to infinity in a minimizing sequence; this difficulty is simply not
there in the isoperimetric-isodiametric problem we are considering, since it would imply the radius goes
to infinity. We believe that this simplification, together with sharp inequalities obtained in the previous
section, is another motivation to look at the isoperimetric-isoperimetric inequality since it appears more
manageable in many situations than the classical isoperimetric one.
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Theorem 5.2 (sufficient conditions for existence of isoperimetric-isodiametric regions). Let (Mn, g) be a
possibly noncompact Riemannian n-manifold satisfying the following two conditions:

(1) lim infr→0+ supx∈M µg(Br (x))= 0.

(2) There exists ε0 > 0 and a function

8Isop : [0, ε0)→ R+, with limt↓08Isop(t)= 0,

such that for every finite-perimeter set E ⊂ M with P(E) < ε0 the weak isoperimetric inequality
µg(E)≤8Isop(P(E)) holds.

Let V ∈ (0, µg(M)) be fixed and let (Ek)k∈N ⊂ M be a sequence of finite-perimeter sets satisfying

µg(Ek)= V ∀k ∈ N and sup
k∈N

(
rad(Ek)P(Ek)

)
<∞. (5-2)

Then there exist R > 0 and a sequence (xk)k∈N of points in M such that µg(Ek \ BR(xk))= 0, i.e., BR(xk)

are enclosing balls for Ek .
In particular, if there exists a minimizing sequence (Ek)k∈N for the problem (5-1) relative to some fixed

V ∈ (0, µg(M)) such that µg(Ek ∩ K ) > 0 for infinitely many k and a fixed compact subset K ⊂ M, then
there exists an isoperimetric-isodiametric region of volume V.

Proof. We start the proof with the following two claims.

Claim 1: infk rad(Ek) > 0. Otherwise, up to subsequences in k, there exist rk ↓ 0 and xk ∈ M such that
µg(Ek \Brk (xk))= 0. But then the assumption (1) implies µg(Ek)≤µg(Brk (xk))= 0, contradicting (5-2).

Claim 2: infk P(Ek) > 0. Otherwise, by the assumption (2) we get µg(Ek) ≤ 8Isop(P(Ek)) → 0,
contradicting again (5-2).

Combining the two claims with (5-2), we have that there exists C > 1 such that

1
C
≤ P(Ek)≤ C and 1

C
≤ rad(Ek)≤ C, (5-3)

so that the first part of the proposition is proved.
If now there exists a compact subset K ⊂ M such that µg(Ek ∩ K ) > 0 for infinitely many k then by

(5-3), up to enlarging K and selecting a subsequence in k, we can assume µg(Ek \ K ) = 0. But then
the characteristic functions (χEk )k∈N are precompact in L1(K , µg) since the total variations of χEk are
equibounded by (5-3) (see [Ambrosio et al. 2000, Theorem 3.23]). The thesis then follows by the lower
semicontinuity of the perimeter under L1

loc convergence (see [loc. cit., Proposition 3.38]) combined with
Lemma 5.1. �

Clearly if the manifold is compact all the assumptions of Theorem 5.2 are satisfied and we can state
the following corollary.

Corollary 5.3 (existence of isoperimetric-isodiametric regions in compact manifolds). Let (Mn, g) be a
compact Riemannian manifold. Then for every V ∈ (0, µg(M)) there exists a minimizer of the problem
(5-1); in other words, there exists an isoperimetric-isodiametric region of volume V.



ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY 109

5C. Existence of isoperimetric-isodiametric regions in noncompact ALE spaces with nonnegative
Ricci curvature. Let us start by recalling the notion of pointed C0 convergence of metrics.

Definition 5.4. Let (Mn, g) be a smooth complete Riemannian manifold and fix x̄ ∈ M . A sequence of
pointed smooth complete Riemannian n-manifolds (Mk, gk, xk) is said to converge in the pointed C0

topology to the manifold (M, g, x̄), and we write (Mk, gk, xk)→ (M, g, x̄), if for every R > 0 we can
find a domain�R with BR(x̄)⊆�R ⊆M, a natural number NR ∈N, and C1 embeddings Fk,R :�R→Mk

for large k ≥ NR such that BR(xk)⊆ Fk,R(�R) and F∗k,R(gk)→ g on �R in the C0 topology.

Theorem 5.5. Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci curvature and
fix any reference point x̄ ∈ M. Assume that for any diverging sequence of points (xk)k∈N ⊂ M, i.e.,
d(xk, x̄)→∞, the sequence of pointed manifolds (M, g, xk) converges in the pointed C0 topology to the
Euclidean space (Rn, gRn , 0).

Then for every V ∈ [0, µg(M)) there exists a minimizer of the problem (5-1); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Proof. Since volume and perimeter involve only the metric tensor g and not its derivatives, the hypothesis
on the manifold (M, g) of being C0-locally asymptotic to Rn implies directly that assumptions (1) and (2)
of Theorem 5.2 are satisfied. Therefore the thesis will be a consequence of Theorem 5.2 once we show
the following: given Ek ⊂ M a minimizing sequence of the problem (5-1) for some fixed volume V ∈
[0, µg(M)), there exists a compact subset K ⊂M such that µg(Ek∩K )> 0 for infinitely many k. We will
show that if this last statement is violated then (M, g) is flat and minimizers are metric balls of volume V.

By the first part of Theorem 5.2 we know that there exist R > 0 and a sequence (xk)k∈N of points in M
such that µg(Ek \ BR(xk))= 0, i.e., BR(xk) are enclosing balls for Ek .

Fixing any reference point x̄ ∈M, if lim infk d(xk, x̄) then clearly we can find a compact subset K ⊂M
such thatµg(Ek∩K )>0 for infinitely many k and the conclusion follows from the last part of Theorem 5.2.
So assume d(x̄, xk)→∞. Since M is C0-locally asymptotic to Rn, combining Definition 5.4 with the
Euclidean isoperimetric-isodiametric inequality (2-3), we get

lim inf
k→∞

rad(Ek)P(Ek)≥ nV. (5-4)

But since (M, g) has nonnegative Ricci curvature, the comparison estimate (4-2) yields

lim
k→∞

rad(Ek)P(Ek)= inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV. (5-5)

The combination of (5-4) with (5-5) clearly implies

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
= nV.

The rigidity statement of Theorem 4.1 then gives that any metric ball in (M, g) of volume V is isometric
to a round ball in Rn, and therefore in particular is a minimizer of the problem (5-1). �

5D. Examples of noncompact spaces where existence of isoperimetric-isodiametric regions fails.

Example 5.6 (minimal surfaces with planar ends). If M ⊂ R3 is a helicoid, or more generally a minimal
surface with planar ends, then it is in particular C0-locally asymptotic to R2 in the sense of Definition 5.4.
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Then, if we consider a sequence of metric balls Brk (xk)⊂ M of fixed volume V > 0 such that xk→∞,
we get limk→∞ rad(Brk (xk))Vol(Brk (xk))= 2V. In particular, for every V > 0 we have

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ 2V .

But then Proposition 3.7 implies the infimum is never achieved, or more precisely it is achieved if and
only if M is an affine subspace.

The same argument holds for any minimal n-dimensional submanifold in Rm with ends which are
C0-locally asymptotic to Rn.

Example 5.7 (ALE spaces of negative sectional curvature). Let (Mn, g) be a simply connected non-
compact Riemannian manifold with negative sectional curvature and assume that (M, g) is C0-locally
asymptotic to Rn in the sense of Definition 5.4. Then, if we consider a sequence of metric balls Brk (xk)⊂M
of fixed volume V > 0 such that xk→∞, we get limk→∞ rad(Brk (xk))Vol(Brk (xk))= nV. In particular,
for every V > 0 we have

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV .

But then Proposition 3.1 implies the infimum is never achieved, or more precisely it is achieved by a
region � if and only if � is isometric to a Euclidean region, which is forbidden since M has negative
sectional curvature.

6. Optimal regularity of isoperimetric-isodiametric regions

In this last section we establish the optimal regularity for the isoperimetric-isodiametric regions, i.e., the
minimizers of problem (5-1), under the assumption that the enclosing ball is regular.

6A. C1, 1
2 regularity.

6A1. First properties. Let E be a minimizer of the isoperimetric–isodiametric problem in (M, g) with
volume µg(E)= V > 0. Let x0 ∈ M satisfy µg(E \ Brad(E)(x0))= 0 and, for the sake of simplicity, we
fix the notation B := Brad(E)(x0) for an enclosing ball. In the sequel, we always assume that B has regular
boundary and we assume to be in the nontrivial case µg(B \ E) > 0.

By the very definition of isoperimetric-isodiametric sets, we have

P(E)≤ P(F) ∀ FM E b B such that µg(F)= V. (6-1)

In particular, E is a minimizer of the perimeter with constrained volume in B, and therefore we can apply
the classical regularity results (see, for example, [Morgan 2003, Corollary 3.8]) in order to deduce that
there exists a relatively closed set Sing(E)⊂ B such that dimH(Sing(E))≤ n− 8 and ∂E ∩ B \Sing(E)
is a smooth (n−1)-dimensional hypersurface.

Moreover, by the first variations of the area functional under volume constraint, one deduces that the
mean curvature is constant on the regular part of the boundary: i.e., there exits H0 ∈ R such that

EHE(x)= H0νE ∀ x ∈ ∂E ∩ B \Sing(E), (6-2)
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where

EHE(x) :=
n−1∑
i=1

∇τi τi ,

for {τ1, . . . , τn−1} a local orthonormal frame of ∂E around x ∈ ∂E ∩ B \Sing(E), νE the interior normal
to E and ∇ the Riemannian connection on (M, g).

In this section we prove the following.

Proposition 6.1. Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that

µg(E \ Brad(E)(x0))= 0.

Assume that B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such that ∂E \ Brad(E)−δ(x0)

is C1, 1
2 regular.

Remark 6.2. In particular, given the partial regularity in B as explained in Section 6A1, we conclude
that E is a closed set whose boundary is C1, 1

2 regular except on at most a closed singular set Sing(E) of
dimension less than or equal to n− 8.

6A2. Almost-minimizing property. The main ingredient of the proof of Proposition 6.1 is the following
almost-minimizing property.

Lemma 6.3. Let E be an isoperimetric-isodiametric set in M and let B denote an enclosing ball as above.
There exist constants C, r0 > 0 such that, for every x ∈ B and for every 0< r < r0,

P(E)≤ P(F)+Crn
∀ FM E b Br (x). (6-3)

Remark 6.4. Note that Br (x) is not necessarily contained in B.

Proof. We start by fixing parameters η, c1 > 0 and two points y1, y2 ∈ B such that dg(y1, y2) > 4η,
B4η(y1)⊂ B, B4η(y2)⊂ B and

P(E, Bη(yi )) > c1, i = 1, 2. (6-4)

Note that the possibility of such a choice is easily deduced from the regularity of the previous subsection,
or more simply from the density estimates for sets of finite perimeter in points of the reduced boundary.
For simplicity of notation, set Di := Bη(yi ). By a result by Giusti [1981, Lemma 2.1], there exist
v0,C1 > 0 such that, for every v ∈ R with |v|< v0 and for every i = 1, 2, there exists Fi which satisfies

Fi M E ⊂ Di ,

µg(Fi )= µg(E)+ v,
P(Fi )≤ P(E)+C1v.

(6-5)

Note that in [Giusti 1981, Lemma 2.1] the property (6-5) is proven in the Euclidean space with the
flat metric, but the proof remains unchanged in a Riemannian manifold (up to a suitable choice of the
constants v0,C1).
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Next, let r0 > 0 be a constant to be fixed momentarily such that r0 < η and

sup
x∈B

µg(Br (x))≤ C2rn < v0 ∀r ∈ [0, r0] (6-6)

for some C2 > 0 depending just on B and r0. Since dg(y1, y2) > 4η, for every x ∈ B, we know Br0(x)
cannot intersect both D1 and D2: therefore, without loss of generality, we can assume Br0(x)∩ D1 =∅.
If r < r0 and F ⊂ M is any set such that F M E b Br (x), we consider F ′ := F ∩ B. Note that F ′ ⊂ B
and moreover

|µg(F ′)−µg(E)| ≤ µg(Br (x))≤ C2rn < v0.

According to (6-5) we can then find F ′′⊂ B such that µg(F ′′)=µg(E), F ′′M F ′ b D1 and

P(F ′′)≤ P(F ′)+C1|µg(F ′)−µg(E)|. (6-7)

Using the fact that E minimizes the perimeter among compactly supported perturbation in B, we deduce
that

P(E)≤ P(F ′′)
(6-7)
≤ P(F ′)+C1|µg(F ′)−µg(E)| ≤ P(F)+P(B)−P(F ∪ B)+C2rn. (6-8)

Next note that, if ∂B is C1,1 regular, then one can choose r0 > 0 such that the following holds: there
exists a constant C3 > 0 such that, for every x ∈ B and for every r ∈ (0, r0),

P(B)≤ P(G)+C3rn
∀G M B b Br (x). (6-9)

In order to show this claim, it enough to take r0 small enough (in particular smaller than half the injectivity
radius) in such a way that, for every p ∈ ∂B, there exists a coordinate chart ξ : B2r0(p)→ Rn such that
ξ(∂B)⊂ {xn = 0} and ξ is a C1,1 diffeomorphism with dξ(p) ∈SO(n), ξ(p)= 0 and g(0)= Id, where
g is the metric tensor in the coordinates induced by ξ . Indeed, in this case we have P(B, Br (p)) ≤
(1+Cr)ωn−1rn−1 for every r < r0 and, for every G such that G M B b Br (p),

P(G, Br (p))≥ (1−Cr)P
(
proj(ξ(G)), ξ(Br (p))

)
≥ (1−Cr)ωn−1rn−1,

where proj denotes the orthogonal Euclidean projection on {xn = 0} and we have used the regularity of ξ .
Applying (6-9) to G = F ∪ B and using (6-8), we conclude the proof. �

6A3. Proof of Proposition 6.1. Now we are in the position to apply a result by Tamanini [1982, Theorem 1]
(the result is proved in Rn with a flat metric, but the proof is unchanged in a Riemannian manifold) in
order to give a proof of the above proposition.

To this aim, we start by considering any point p ∈ ∂B ∩ ∂E ; we denote by Expp : Tp M → M the
exponential map and we let r0 > 0 be less than the injectivity radius. Since by Lemma 6.3 the set E is an
almost minimizer of the perimeter, the rescaled sets

E p,r :=
Exp−1

p (E ∩ Br0(p))

r
⊂ Tp M ' Rn (6-10)

converge, up to passing to a suitable subsequence, to a minimizing cone C∞ in the Euclidean space (see
[Maggi 2012, Theorem 28.6]). Moreover, since E is enclosed by B and ∂B is C1,1, it is immediate to check
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that if r0 > 0 is chosen small enough in (6-10), then C∞ ⊂ {x : g(νB(p), x)≥ 0}; we deduce that every
tangent cone to E at p needs to be contained in a half-space, and therefore by the Bernstein theorem is flat
(see [Giusti 1984, Theorem 17.4]). This implies that every such point p is a point of the reduced boundary
of the set (see [Ambrosio et al. 2000, Definition 3.54]) and therefore we can apply the aforementioned
result by Tamanini to conclude that ∂E is a C1,1/2 regular hypersurface in Br (p) for every p ∈ ∂B ∩ ∂E
and for every r < 1

2r0. By a simple covering argument, the conclusion of the corollary follows.

6B. L∞ estimates on the mean curvature of the minimizer. In this section we prove that the boundary
of E has generalized mean curvature, in the sense of varifolds, which is bounded in L∞. To this aim, we
compute the first variations of the perimeter of E along suitable diffeomorphisms.

6B1. First variations. We start by fixing two points y1, y2 ∈ ∂E ∩ B \Sing(E) and a real number η > 0
such that B4η(y1)⊂ B, B4η(y2)⊂ B and

B4η(y1)∩ B4η(y2)= B4η(y1)∩Sing(E)= B4η(y2)∩Sing(E)=∅.

Note that such a choice is possible under the hypothesis that µg(B\E)> 0 because of the partial regularity
in Section 6A1. Let X ∈ X(M) be a vector field with support contained in a metric ball Bη(y) for some
y ∈ M . Clearly, Bη(y) cannot intersect both B2η(y1) and B2η(y2), because dg(y1, y2) ≥ 8η; therefore,
without loss of generality let us assume Bη(y)∩ B2η(y1) = ∅. It is not difficult to construct a smooth
vector field Y supported in Bη(y1) such that the generated flow {8Y

t } satisfies the following property for
small |t |:

µg(8
Y
t ◦8

X
t (E))= µg(E). (6-11)

Note that the generated flows {8X
t }t∈R and {8Y

t }t∈R are well defined and for |t | sufficiently small are
diffeomorphisms of M . Moreover, 8Y

t ◦8
X
t (E)⊂ Brad(E)+|t |‖X‖∞ . We can then deduce that

rad(E)P(E)≤ rad
(
8Y

t ◦8
X
t (E)

)
P
(
8Y

t ◦8
X
t (E)

)
≤
(
rad(E)+|t |‖X‖∞

)
P
(
8Y

t ◦8
X
t (E)

)
=: f (t). (6-12)

Taking the derivative of the last functional as t ↓ 0+ and as t ↑ 0−, by the well-known computation of the
first variations of the area we get that

0≤ lim
t↓0+

f (t)− f (0)
t

= ‖X‖∞P(E)+ rad(E)
∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y ) dHn−1, (6-13)

0≥ lim
t↑0−

f (t)− f (0)
t

=−‖X‖∞P(E)+ rad(E)
∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y ) dHn−1, (6-14)

where div∂E X :=
∑n−1

i=1 g(∇τi X, τi ) for a (measurable) local orthonormal frame {τ1, . . . , τn−1} of ∂E .
(Note that in writing (6-13) and (6-14) we have used that ∂E is a C1,1/2 regular submanifold up to singular
set of dimension at most n−8 and that Y is supported in Bη(y) where ∂E is smooth in order to make the
integration by parts.) In the case V ∈ (0, µg(M)), we have rad(E) > 0 and thus P(E) <∞. Moreover,
from (6-11) we deduce that

0= d
dt |t=0

µg(8
Y
t ◦8

X
t (E))=−

∫
∂E

g(X, νE) dHn−1
−

∫
∂E

g(Y, νE) dHn−1. (6-15)
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Therefore, from (6-2) and (6-13)–(6-15) we conclude∣∣∣∣∫
∂E

div∂E X dHn−1
∣∣∣∣≤ 1

rad(E)

(
P(E)‖X‖∞+

∣∣∣∣∫
∂E

g
(
EHE , Y

)
dHn−1

∣∣∣∣)
≤

1
rad(E)

(
P(E)‖X‖∞+ |H0|

∣∣∣∣∫
∂E

g(Y, νE) dHn−1
∣∣∣∣)

=
1

rad(E)

(
P(E)‖X‖∞+ |H0|

∣∣∣∣∫
∂E

g(X, νE) dHn−1
∣∣∣∣)≤ C‖X‖∞ (6-16)

for some C =C(rad(E),P(E), |H0|) > 0, for every vector field X with support contained in a metric ball
Bη(y) for some y ∈ M. By a simple partition of unity argument, (6-16) holds for every X ∈ X(M). In
particular, by the use of Riesz representation theorem we have proved the following lemma. To this aim,
we denote by M(M, TM) the vectorial Radon measures Eµ on M with values in the tangent bundle TM .

Lemma 6.5 (the mean curvature is represented by a vectorial Radon measure). Let E ⊂ M be an
isoperimetric-isodiametric region for some V ∈ (0, µg(M)) and denote by B an enclosing ball. If ∂B is
smooth, then there exists a vectorial Radon measure EHE ∈M(M, TM) concentrated on ∂E such that
for every C1 vector field X on M with compact support, letting 8X

t : M → M be the corresponding
one-parameter family of diffeomorphisms for t ∈ R,

δE(X) := d
dt |t=0

P(8X
t (E))=−

∫
M

g(X, EHE). (6-17)

Moreover, the total variation of EHE is finite; i.e.,

| EHE |(M)≤ C = C
(
P(E), rad(E), |H0|

)
∈ [0,∞).

Remark 6.6. Note that
EHExB := EHEHn−1x(∂E ∩ B), (6-18)

where EHE is the mean curvature vector on the smooth part of ∂E as defined in (6-2).

We close this subsection by noting that if

g(X (x), νB(x))≥ 0 ∀ x ∈ ∂B ∩ Bη(y), (6-19)

where νB is the interior normal to ∂B (note that ∂B ∩ Bη(y) can also be empty), then 8Y
t ◦8

X
t (E)⊂ B

for t ≥ 0. In particular, the minimizing property of E gives

P(8Y
t ◦8

X
t (E))≥ P(E) ∀ t ≥ 0, (6-20)

which combined with (6-2) and (6-15) implies

0≤ d
dt |t=0+

P(8Y
t ◦8

X
t (E))=

∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y )

=

∫
∂E

div∂E X dHn−1
+ H0

∫
∂E

g(νE , X), (6-21)
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which in view of (6-17) gives

g(νB, EHE)x(∂E ∩ ∂B)≤ H0Hn−1x(∂E ∩ ∂B), (6-22)

where the inequality is intended in the sense of measures, i.e.,
∫

A g(νB, EHE) ≤ H0Hn−1(A) for every
measurable set A ⊂ ∂E ∩ ∂B.

6B2. Orthogonality of EHE . We have seen in the previous section that EHE is well defined as a measure
on all ∂E . Translated into the language of varifolds, we have shown that the integral varifold associated to
∂E has finite first variation. A classical result due to Brakke [1978, Section 5.8] (see also [Menne 2013]
for an alternative proof and for fine structural properties of varifolds with locally finite first variation)
implies that for Hn−1-a.e. x ∈ ∂E it holds that EHE(x) ∈ (Tx∂E)⊥. This is not quite enough for our
purposes; indeed in the next lemma we will show that EHE is normal to ∂E as measure, which is a strictly
stronger statement. Note that the proof is based on the fact that E is a minimizer for the problem (5-1),
and will not make use of the aforementioned structural result by Brakke.

Lemma 6.7 (the mean curvature measure is orthogonal to ∂E). Let E , B, M, V, EHE be as in Lemma 6.5.
Then EHE(x) ∈ (Tx∂E)⊥ for | EHE |-a.e. x ∈ ∂E ; i.e., the mean curvature is orthogonal to ∂E as a measure.

Remark 6.8. In other words, there exists an R-valued finite Radon measure HE on M concentrated on
∂E such that EHE = HEνE ; moreover, by (6-2), HEx(B ∩ ∂E)= H0Hn−1x(∂E ∩ B).

Proof. In view of (6-2) we only need to prove the claim for EHEx∂B. Assume by contradiction that there
exists a compact subset K ⊂ ∂B ∩ ∂E such that

| EHT
E |(K ) > 0, (6-23)

where EHT
E := PT ∂E( EHE) is the projection of EHE onto the tangent space of ∂E (or, equivalently, onto

T ∂B, because ∂E and ∂B are C1 and Tx∂E = Tx∂B for every x ∈ ∂B ∩ ∂E).
The geometric idea of the proof is very neat: if the mean curvature along K ⊂ ∂E ∩∂B has a nontrivial

tangential part, then deforming infinitesimally E along this tangential direction will not increase the
extrinsic radius (since the deformation of E will stay in the ball B), will not increase the volume (because
the deformation is tangential to ∂E) but will strictly decrease the perimeter; so, after adjusting the volume in
a smooth portion of ∂E , this procedure builds an infinitesimal deformation of E which preserves the volume,
does not increase the extrinsic radius but strictly decreases the perimeter, contradicting that E is a minimizer
of the problem (5-1). The rest of the proof is a technical implementation of this neat geometric idea.

For every ε > 0 we construct a suitable C1 regular tangential vector field. To this aim, we consider the
polar decomposition of the measure EHT

E = v|
EHT

E |, where v is a Borel vector field such that v(x) ∈ T ∂B
and g(v(x), v(x))= 1 for | EHT

E |-a.e. x ∈M . By the Lusin theorem we can find a continuous vector field w
such that | EHT

E |({v 6=w})≤ ε and spt(w)⊂ Kε := {x ∈ ∂E ∩∂B : dg(x, K ) < ε}. Moreover, by a standard
regularization procedure via mollification and projection on T ∂B, we find a vector field Xε such that
Xε(x) ∈ T ∂B for every x ∈ ∂B ∩ K2ε, ‖Xε −w‖∞ ≤ ε and spt(Xε)⊂ K2ε. Note that∫

M
g(Xε, EHE)=

∫
M

g(Xε−w, EHE)+

∫
{w=v}

g(v, EHE)+

∫
{w 6=v}

g(w, EHE)→| EHT
E |(K ) as ε→0. (6-24)
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Since Xε is a smooth vector field compactly supported in M and tangent to ∂B, the generated flow 8
Xε
t

is well defined and maps B into B for every t ∈ R and by (6-24)

d
dt |t=0

P(8Xε
t (E))=−

∫
∂E

g(Xε, EHE)≤−
1
2 |
EHT

E |(K ) < 0 (6-25)

for ε > 0 small enough. Moreover, since Xε is supported in K2ε and K ⊂ ∂B and Xε is tangent to
∂B = ∂E in K , we have

d
dt |t=0

µg(8
Xε
t (E))=−

∫
∂E

g(νE , Xε) dHn−1
→ 0 as ε→ 0. (6-26)

Up to choosing a smaller compact set, we can suppose that K is contained in a small ball Br0(x) with
x ∈ ∂E∩∂B such that (∂E \∂B)∩(M \ B4r0(x)) 6=∅. Now fix y ∈ ∂E \

(
∂B∪ B4r0(x)∪Sing(E)

)
and let

r ∈ (0, r0) be such that B2r (y)∩
(
∂B ∪ B4r0(x)∪Sing(E)

)
=∅. For ε > 0 small enough it is not difficult

to construct a smooth vector field Yε supported in Br (y) such that the generated flow 8
Yε
t satisfies the

following properties ((6-28) is intended for small t):

d
dt |t=0

µg(8
Yε
t ◦8

Xε
t (E))= 0, (6-27)∣∣P(8Yε

t (E), B2r (y))−P(E, B2r (y))
∣∣≤ Cµg(8

Yε
t (E)1E). (6-28)

Notice that the combination of (6-26), (6-27) and (6-28) gives∣∣∣ d
dt |t=0

P(8Yε
t (E))

∣∣∣≤ C
∣∣∣ d
dt |t=0

µg(8
Yε
t (E))

∣∣∣= C
∣∣∣ d
dt |t=0

µg(8
Xε
t (E))

∣∣∣→ 0 as ε→ 0. (6-29)

Moreover, since for small t > 0 we have 8Yε
t (E)1E ⊂ B2r (y), which is disjoint from ∂B, and since by

construction 8Xε
t maps B into B, it is clear that

8
Yε
t ◦8

Xε
t (E)⊂ B for t > 0 sufficiently small.

Therefore, since by assumption E is a minimizer for the problem (5-1), we get

d
dt |t=0

P(8Yε
t ◦8

Xε
t (E))≥ 0. (6-30)

But on the other hand, combining (6-25) and (6-29) we get

d
dt |t=0

P(8Yε
t ◦8

Xε
t (E))=

d
dt |t=0

P(8Yε
t (E))+

d
dt |t=0

P(8Xε
t (E))

≤−
1
4 |
EHT

E |(K ) < 0 for ε > 0 small enough.

Clearly the last inequality contradicts (6-30). We conclude that it is not possible to find a compact
subset K ⊂ ∂B ∩ ∂E satisfying (6-23); therefore the measure | EHT

E | vanishes identically and the proof
is complete. �
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6B3. L∞ estimate. The next step is to show that the signed measure HE is actually absolutely continuous
with respect to Hn−1x∂E with L∞ bounds on the density. The upper bound follows from (6-22). For the
lower bound we use the following lemma, which is an adaptation of [White 2010, Theorem 2] to our
setting (notice that the statement of White’s theorem is more general as includes higher codimensions
and arbitrary varifolds, but let us state below just the result we will use in the sequel).

Lemma 6.9. Let N n
⊂ Mn be an n-dimensional submanifold with C2 boundary ∂N and denote by νN

the inward-pointing unit normal to ∂N. Fix a compact subset K ⊂ ∂N and assume that, denoting by EHN

the mean curvature of ∂N, we have

g( EHN , νN )≥ η on K .

Then, for every ε > 0 there exists a C1 vector field Xε on M with the following properties:

Xε(x)= νN ∀x ∈ K, (6-31)

|Xε|(x)≤ 1 ∀x ∈ M, (6-32)

spt(Xε)⊂ Kε := {x ∈ M : d(x, K )≤ ε}, (6-33)

g(Xε, νN )(x)≥ 0 ∀x ∈ ∂N, (6-34)

d
dt |t=0

P(8Xε
t (E))≤−η

∫
∂E
|Xε| dHn−1 (6-35)

for every subset E ⊂ N with C1 boundary ∂E , where 8Xε
t denotes the flow generated by the vector

field Xε.

Lemma 6.9 will be used to prove the following lower bound on the mean curvature measure HE of ∂E .

Lemma 6.10 (lower bound on HE ). Let E , B, M, V, EHE , HE be as in Lemma 6.7. Assume η :=
inf∂B HB >−∞, where HB := g( EHB, νB) and EHB is the mean curvature vector of ∂B. Then

HEx(∂E ∩ ∂B)≥ ηHn−1x(∂E ∩ ∂B). (6-36)

Proof. Fix any K ⊂ ∂E ∩ ∂B. For every ε ∈ (0, 1) let Xε be the C1 vector field obtained by applying
Lemma 6.9 with N = B; then by (6-35) and (6-33) we get

−η

∫
∂E
|Xε| dHn−1

≥
d
dt |t=0

P(8Xε
t (E))=−

∫
Kε

g(Xε, νE) d HE

=−

∫
K

g(Xε, νB) d HE −

∫
Kε\K

g(Xε, νE) d HE →−HE(K ) as ε→ 0, (6-37)

where in the second identity we used that νB = νE on K ⊂ ∂E ∩ ∂B. Using (6-31) and (6-32), we have

−η

∫
∂E
|Xε|dHn−1

=−η

∫
K
|Xε|dHn−1

−η

∫
∂E∩(Kε\K )

|Xε|dHn−1
→−ηHn−1(K ) as ε→ 0. (6-38)

In particular, in the limit as ε→ 0 we deduce from (6-37) that

ηHn−1(K )≤ HE(K ). (6-39)

Since this holds for every K ⊂ ∂E ∩ ∂B, it is easily recognized that (6-36) follows. �
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6C. Optimal regularity. In this section we prove that the boundary of an isoperimetric-isodiametric
set E is C1,1 regular away from the singular set.

Theorem 6.11. Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that

µg(E \ Brad(E)(x0))= 0.

Assume B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such that ∂E \ Brad(E)−δ(x0) is
C1,1 regular.

Note that the C1,1 regularity is optimal, because in general one cannot expect to have continuity of
the second fundamental form of ∂E across the free boundary of ∂E , i.e., the points on the relative (with
respect to ∂B) boundary of ∂E ∩ ∂B.

6C1. Coordinate charts. We start by fixing suitable coordinate charts. Since E is bounded, there exists
r0 > 0 such that for every x0 ∈ ∂E there is a normal coordinate chart (�, ϕ) with x0 ∈� and

ϕ :�⊂ M→ Bn−1
r0
× (−r0, r0)⊂ Rn−1

×R

such that ϕ(x0)= 0, g(0)= Id and ∇g(0)= 0, where g denotes the metric tensor in these coordinates.
Moreover, by the C1,1/2 regularity of ∂E established in Section 6A, up to rotating these coordinate charts
and eventually changing r0, we can also assume that for every point x0 ∈ ∂B ∩ ∂E the following also
holds:

• ∂E and ∂B are, respectively, C1,1/2 and C∞ regular submanifolds, given in this chart as graphs of
functions u, ψ : Bn−1

r0
→
(
−

1
2r0,

1
2r0
)

with u ∈ C1,1/2 and ψ ∈ C∞.

• The functions u and ψ satisfy ψ(x)≤ u(x) for every x ∈ Bn−1
r0

,

u(0)= ψ(0)= |∇u(0)| = |∇ψ(0)| = 0,

and ‖u‖C1 ≤ δ0 and ‖ψ‖C1 ≤ δ0 for a fixed δ0 > 0, which will be later assumed to be suitably small.

On every such a chart, the C1,1/2 regular submanifold ∂E ∩� is given as the set {(x, u(x)) : x ∈ Bn−1
r0
}.

We can consider the natural coordinate chart on it given by (x, u(x)) 7→ x ∈ Bn−1
r with induced metric

tensor given by hi j := g(Ei , E j ), where Ei := ei + ∂i u en for i = 1, . . . , n− 1. In particular,

hi j = gi j + ∂i u gnj + ∂ j u gni + ∂i u ∂ j u gnn, (6-40)

where ∂i u = ∂i u(x) and gi j = gi j (x, u(x)). We will use the notation h̃ for the function

h̃ : Bn−1
r0
×R×Rn

→ Rn×n,

h̃i j (x, z, p)= gi j (x, z)+ pi g jn(x, z)+ p j gni (x, z)+ pi p j gnn(x, z),

with the obvious relation hi j = h̃i j (x, u(x),∇u(x)). Note that h̃ is smooth as a function in (x, z, p).
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6C2. First variation formula in local coordinates. We consider next functions ξ ∈ C∞c (B
n−1
r0

) and
χ ∈ C∞c (−r0, r0), and we assume χ |(−r0/2,r0/2) ≡ 1 in such a way to ensure that χ ◦ u(x)= 1 for every
x ∈ Bn−1

r0
(by the assumptions made on u). Consider the associated vector field X (x, y) := ξ(x)χ(y)en

and note that X ∈ C∞c (�,Rn) and X |∂E = ξ(x)en . Setting F(t, p) := p+ t X (p), there exists ε0 > 0
such that Ft := F(t, · ) is a diffeomorphism of � into itself for every |t | ≤ ε0.

Consider now the variations of the area along this one-parameter family of diffeomorphisms under the
assumption ξ ≥ 0 on 3(u) := {x ∈ Bn−1

r0
: u(x)= ψ(x)}. Arguing as in (6-21), we get

0≤
∫
∂E

div∂E X dHn−1
− H0

∫
∂E

g(X, νE) dHn−1

=

∫
6

hi j g(∇Ei X, E j ) dHn−1
− H0

∫
g(X, νE) dHn−1, (6-41)

where in the second line we have used a simple computation for the tangential divergence of X . Noting
that

∇Ei X =∇ei+∂i u en X =∇ei X + ∂i u ∇en X

= ∂iξ en + ξ∇ei en + ∂i u ξ∇en en = ∂iξ en + ξ0
k
inek + ∂i u ξ0k

nnek,

we get
hi jg(∇Ei X,E j )= hi j(∂iξ g jn+ξ0

k
ing jk+∂i u ξ0k

nng jk
)
+hi j(∂ j u ∂iξ gnn+ξ∂ j u0k

ingkn+∂ j u ∂i u ξ0k
nngkn

)
= ∂iξ

(
hi j g jn+hi j∂ j u gnn

)
ξ
(
hi j∂i u0k

nng jk+hi j∂ j u ∂i u0k
nngkn)

+ξ
(
hi j0k

ing jk+hi j∂ j u0k
ingkn

)
. (6-42)

In particular, by a simple integration by parts, (6-41) reads as∫
Bn−1

r

ξLu
√

det(hi j ) dx ≤ 0 ∀ ξ ∈ C1
c (B

n−1
r ), ξ |3(u) ≥ 0, (6-43)

where 3(u) := {x ∈ Bn−1
r : u(x)= ψ(x)} and

Lu(x) := div
(

A(x, u(x),∇u(x))∇u(x)+ b(x, u(x),∇u(x))
)
− f (x) (6-44)

with

• A = (ai j )i, j=1,...,n−1 : Bn−1
r × (−r, r)×Rn−1

→ R(n−1)×(n−1) is a smooth function given by

ai j (x, z, p) := gnn(x, z)h̃i j (x, z, p);

• b : Bn−1
r × (−r, r)×Rn−1

→ Rn−1 is a smooth regular function given by

bi (x, z, p) := h̃i j (x, z, p)g jn(x, z);

• f : Bn−1
r → R is a C0,α regular function given by

f (x) := hi j∂i u 0k
nng jk + hi j∂ j u ∂i u 0k

nngkn + hi j0k
ing jk + hi j∂ j u 0k

ingkn − H0g(en, νE),

where hi j
= h̃i j (x, u(x),∇u(x)), gi j = gi j (x, u(x)), 0k

i j = 0
k
i j (x, u(x)) and νE = νE(x, u(x)).
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Explicitly expanding the divergence term in Lu we deduce that

Lu(x)= ci j∂i j u+ d, (6-45)

where
ci j
= ai j

+ gnn∂lu ∂p j hil
+ gln∂p j h

il, (6-46)

with ∂p j hil
= ∂p j h̃il(x, u(x),∇u(x)), gi j = gi j (x, u(x)) and d ∈ C0,α(Bn−1

r ) is given by

d = gnn∂i hi j∂ j u+ gnn∂zhi j∂i u ∂ j u+ ∂i gnnhi j∂ j u+ ∂ngnnhi j∂i u ∂ j u

+g jn∂i hi j
+ g jn∂zhi j∂i u+ ∂i g jnhi j

+ ∂ng jnhi j∂i u− f (6-47)

where the entries of h and of its derivatives are computed in (x, u(x),∇u(x)), while those of g and the
derivatives of the metric are computed in (x, u(x)).

Note that (6-43) is equivalent to the pair of differential relations{
Lu ≤ 0 in Bn−1

r ,

Lu = 0 in Bn−1
r \3(u),

(6-48)

where the first inequality is meant in the sense of distribution, while the second equation is pointwise
(also recalling that u is smooth outside the contact set 3(u)).

6C3. Quadratic growth. Note that by the explicit expressions of the previous subsection it turns out that
ci j, d ∈ C0,α(Bn−1

r0
) with uniform estimates (by the assumptions in Section 6C1):

‖ci j
‖C0,α(Bn−1

r0 )+‖d‖C0,α(Bn−1
r0 ) ≤ C. (6-49)

Since c(0)= Id and ci j are Hölder continuous, up to choosing a smaller δ0 > 0 (and consistently a smaller
r0 > 0), we can also ensure that ci j is uniformly elliptic with bounds

1
2 Id≤ c ≤ 2 Id.

The next lemma shows that u leaves the obstacle ψ at most as a quadratic function of the distance to
the free-boundary point.

Proposition 6.12. Let E ⊂ M be an isoperimetric-isodiametric set. Then, there exists a constant C > 0
such that, for every x0 ∈ ∂E ∩ ∂B, setting coordinates as in Section 6C1, we have

u(x)−ψ(x)≤ C |x |2 ∀ x ∈ Bn−1
r0/2 . (6-50)

Proof. Let us consider the homogeneous part of the operator L , i.e., Lw := ci j∂i jw. Since L(u−ψ)=
Lu−Lψ − d , for every r ≤ r0 we can write (u−ψ)|Bn−1

r
= w1+w2 with{

Lw1 = 0 in Bn−1
r ,

w1 = u−ψ on ∂Bn−1
r ,

(6-51)

and {
Lw2 = Lu−Lψ − d in Bn−1

r ,

w2 = 0 on ∂Bn−1
r .

(6-52)
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We start by estimating w2 from below. Considering that Lw2+Lψ + d = Lu ≤ 0, we can apply the
L∞ estimate for elliptic equations [Gilbarg and Trudinger 1983, Theorem 8.16]. In order to understand
the dependence of the constant on the domain, we can rescale the variables in this way: v : Bn−1

1 → R

given by v(y) := r−2w2(r y). Then, the equation satisfied by v is

Lv(y)+Lψ(r y)+ d(r y)= Lu(r y)≤ 0.

We can then conclude using [loc. cit., (8.39)] that

sup
Bn−1

1

(−v)≤ C‖Lψ(r y)+ d(r y)‖Lq/2(Bn−1
1 ) ≤ C,

where now C is a dimensional constant (only depending on q > n−1, which for us is any fixed exponent —
note that the hypothesis (8.8) in [loc. cit., Theorem 8.16] is satisfied because we are considering the
operator L which has no lower-order terms). In particular, scaling back to w2 we deduce that

w2(x)≥−Cr2
∀ x ∈ Bn−1

r . (6-53)

This clearly implies w1(0) = u(0)−ψ(0)−w2(0) ≤ Cr2. We can then use the Harnack inequality
for w1 (see [loc. cit., Theorem 8.20]) and conclude

w1(x)≤ C inf
Bn−1

r/2

w1 ≤ Cw1(0)≤ Cr2
∀ x ∈ Bn−1

r/2 . (6-54)

Finally note that in Bn−1
r \3(u) we have the equality Lw2 = −Lψ − d. Therefore, the function

z := w2+C |x |2 satisfies Lz ≥ 0 for a suitably chosen constant C = C(‖Lψ‖L∞, ‖d‖L∞). By the strong
maximum principle [loc. cit., Theorem 8.19] we deduce that

max
Bn−1

r \3(u)
z ≤ max

∂(Bn−1
r \3(u))

z ≤ Cr2,

where we used that z|∂Bn−1
r
=Cr2 and that for every x ∈3(u)∩Bn−1

r we have z(x)=−w1(x)+C |x |2≤Cr2

by the positivity of w1. In conclusion, we have

u(x)−ψ(x)≤ |w1(x)| + |w2(x)| ≤ Cr2

for every x ∈ Bn−1
r/2 . Since r ≤ r0 is arbitrary, by eventually changing the constant C , we conclude the

proof of the proposition. �

6C4. Curvature bounds away from the contact set. Next we analyze the points p ∈ ∂E \ ∂B which are
close to ∂B. To this aim we fix a constant s0 > 0 such that the following holds: if dist(p, ∂E ∩ ∂B)=
dist(p, x0) < s0, then p belongs to the coordinate chart � around x0 as fixed in Section 6C1 and moreover,
in these coordinates, p = (x, z) ∈ Bn−1

r0
× (−r0, r0) (necessarily with x 6∈3(u)) satisfies

Bn−1
4δ (x)⊂ Bn−1

r0
with δ := 1

2 dist(x,3(u)).

Note that the existence of such a constant s0 > 0 is ensured by a simple compactness argument. Recall
also that by the quadratic growth proved in the previous section we know

‖u‖L∞(Bn−1
2δ (x)) ≤ Cδ2.
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The following lemma gives a curvature bound for ∂E in points p as above.

Lemma 6.13. Let p ∈ ∂E \∂B satisfy dist(p, ∂E ∩∂B) < s0. Fixing x0 ∈ ∂E ∩∂B and the corresponding
coordinate chart as in Section 6C1 with the notation fixed above, we then conclude

‖D2u‖L∞(Bn−1
δ (x)) ≤ C, (6-55)

where C > 0 is a dimensional constant.

Proof. Since on Bn−1
4δ ⊂ Bn−1

r0
\3(u) the equation Lu = 0 is satisfied, the proof is a consequence of

the basic interior Schauder estimates for second-order elliptic equations (see [Gilbarg and Trudinger
1983, Theorem 6.2]). More precisely we write the equation as Lu =−d , where d ∈ C0,α is defined as in
(6-47) and satisfies (6-49), and we apply [loc. cit., Theorem 6.2]) to such an equation. Indeed, by simply
recalling the definition of the norms in [loc. cit., Theorem 6.2] we have, setting dy := dist(y, ∂Bn−1

2δ (x)),

δ2
‖D2u‖L∞(Bn−1

δ (x))≤C
(
‖u‖L∞(Bn−1

2δ (x))+ sup
y∈Bn−1

2δ (x)
d2

y|d(y)|
)
+C sup

y,z∈Bn−1
2δ (x)

min{dy,dz}
2+α |d(y)−d(z)|

|y−z|α

≤C
(
‖u‖L∞(Bn−1

2δ (x))+δ
2
‖d‖L∞(Bn−1

2δ (x))

)
+Cδ2+α

[d]C0,α(Bn−1
2δ (x))≤Cδ2. �

6C5. C1,1-regularity. In this section we finally prove Theorem 6.11. The proof is based on the following
property: by Proposition 6.12 and Lemma 6.13, there exists δ > 0 such that for every x0 ∈ ∂B ∩ ∂E there
exists r0 > 0 satisfying, fixing coordinates as in Section 6C1,

|u(y)− u(x)−∇u(x) · (y− x)| ≤ 1
2C |x − y|2 ∀ x, y ∈ Br0(x0). (6-56)

Indeed, if x ∈ ∂E ∩ ∂B, then centering the coordinates at x , we have 0= u(0)= |∇u(0)|, and (6-56) is
a direct consequence of (6-50). On the other hand, if x /∈ ∂E ∩ ∂B, then setting the coordinates as in
Lemma 6.13, we deduce (6-56) from (6-55).

The conclusion of Theorem 6.11 is then a direct consequence of the following lemma combined with a
standard partition of unity argument.

Lemma 6.14. Let � ⊂ Rn be an open subset and let u : �→ R be a C1 function. Assume there exist
C > 0 and a countable covering {Bi }i∈N of � made by open balls Bi ⊂� such that for every x, y ∈ Bi ,∣∣u(y)− u(x)−∇u(x) · (y− x)

∣∣≤ 1
2C |x − y|2. (6-57)

Then the distribution ∂2
i j u ∈ D

′(�) is represented by an L∞(�) function, and

‖∂2
i j u‖L∞(�) ≤ C .

Proof. By a standard partition of unity argument it is enough to prove that for every ball Bi the restriction
of the distribution ∂2

i j uxBi is represented by an L∞(Bi ) function, and ‖∂2
i j u‖L∞(Bi ) ≤ C . In order to

simplify the notation, let us fix i ∈N and set B := Bi . For every fixed ϕ ∈ C∞c (B) let Qϕ
: Rn
×Rn

→ R

be defined by

Qϕ(v1, v2) :=

∫
B

u
∂2ϕ

∂v1∂v2
. (6-58)
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We first claim
|Qϕ(v, v)| ≤ C |v|2‖ϕ‖L1(B) ∀ϕ ∈ C∞c (B), ∀ v ∈ Rn, (6-59)

where C is given by (6-57). To prove (6-59), we write (6-57) exchanging x and y and sum up to get∣∣(∇u(x)−∇u(y)) · (x − y)
∣∣≤ C |x − y|2.

Choosing y = x + tv in the last estimate, we get

|(∇u(x + tv)−∇u(x)) · v|
t

≤ C ∀ v ∈ Sn−1, ∀ t ∈ (0, 1− |x |). (6-60)

Now using that u is C1 and ϕ ∈ C∞c (B), we can integrate by parts to get∣∣∣∣∫
B

u
∂2ϕ

∂v∂v

∣∣∣∣= ∣∣∣∣∫
B

∂u
∂v

∂ϕ

∂v

∣∣∣∣= ∣∣∣∣∫
B
(∇u(x) · v) lim

t↓0

ϕ(x + tv)−ϕ(x)
t

dx
∣∣∣∣

=

∣∣∣∣limt↓0

∫
B

(
∇u(x − tv)−∇u(x)

t
· v

)
ϕ(x) dx

∣∣∣∣≤ C‖ϕ‖L1(B) ∀v ∈ Sn−1, (6-61)

where in the second line we used the change of variable x 7→ x + tv, and the last inequality follows from
(6-60). The inequality (6-61) proves our claim (6-59).

We now show (6-59) implies that the distribution ∂2
i j u is represented by an L∞(B) function and

‖∂2
i j u‖L∞(B) ≤ C . To this aim, observe that for every ϕ ∈ C∞c (B), by the Schwartz lemma, the map

Qϕ
: Rn
×Rn

→ R defined in (6-58) is a symmetric bilinear form. Using (6-59), by polarization of Qϕ

we get
|Qϕ(∂i , ∂ j )| =

1
4

∣∣Qϕ(∂i + ∂ j , ∂i + ∂ j )− Qϕ(∂i − ∂ j , ∂i − ∂ j )
∣∣≤ C‖ϕ‖L1(B) (6-62)

for every i, j = 1, . . . , n. But now

Qϕ(∂i , ∂ j )= 〈∂
2
i j u, ϕ〉D′,D,

where 〈 · , · 〉D′,D denotes the pairing between distributions and C∞c test functions. Therefore (6-62)
combined with the Riesz representation theorem concludes the proof. �

The arguments above prove also the following slightly more general regularity result for isoperimetric
regions inside a C2 domain. In order to state it, for a subset A ⊂ M and for some δ > 0, let us denote by
Bδ(A)= {x ∈ M : infy∈A d(x, y)≤ δ} the δ-tubular neighborhood of A.

Theorem 6.15 (C1,1 regularity of isoperimetric regions inside a C2 domain). Let (M, g) be a Riemannian
manifold, let � ⊂ M be an open subset with C2 boundary ∂� and fix v ∈ (0, µg(�)). Let E ⊂ � be a
finite-perimeter set with µg(E)= v and minimizing the perimeter among regions contained in �, i.e.,

P(E)= inf{P(F) : F ⊂�, µg(F)=v}.

Then, there exists δ > 0 such that ∂E ∩ Bδ(∂�) is C1,1 regular.

Remark 6.16. Theorem 6.15 already appeared in [White 1991, Proposition, p. 418], though the arguments
in the proof are very concise (line 7, p. 419 in [White 1991]) and basically consist of referring to the
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work of Gerhardt [1973]. Nevertheless, it seems that one of the hypotheses of [Gerhardt 1973] is not met
for the operator H in [White 1991]. Indeed, H is the Euler–Lagrange operator of the functional

8(u)=
∫

L(x, u(x),∇u(x)) dx,

and a simple computation shows

H(u)=
∂L
∂z
(x, u(x),∇u(x))− div

(
∂L
∂p
(x, u(x),∇u(x))

)
,

where we named the variables as L = L(x, z, p). Now the operator H is of the form considered in
[Gerhardt 1973] (here there is a conflict of notation between the two papers, therefore we put a bar for
the notation in [loc. cit.]),

Au+ H =− div
(
ā(x, u(x),∇u(x))

)
+ H .

In our case the vector field ā is given by ∂L/∂p and the forcing term H is given by (∂L/∂z)(x,u(x),∇u(x)).
In [loc. cit.] the forcing term H is assumed to be W 1,∞ (see equation (5) in [loc. cit.]), which in the
present situation would be verified only knowing already that u ∈ W 2,∞, which is, however, what one
wants to deduce.

We do not exclude that going through the proofs of [loc. cit.] one could overcome such a difficulty;
however, we think the approach of the present paper could be of independent interest, especially because
it is self-contained and based on an elementary use of Schauder estimates.

6D. Further comments. We have proven the above regularity of the isoperimetric-isodiametric sets
E ⊂ M under the assumptions that the enclosing ball B = Brad(E)(x0) has smooth boundary. Actually,
the following is true and is a direct consequence of the argument used above.

(A) If ∂B ∈ C1,α for some α ∈ (0, 1], then in a neighborhood of ∂B the isoperimetric-isodiametric sets
have the boundary ∂E , which is C1,α regular.

Indeed, under the assumption in (A), the arguments in Lemma 6.3 show that ∂E is C1,κ regular in
a neighborhood of ∂B for k = min

{
α, 1

2

}
. Moreover, a careful inspection of the proof of the optimal

regularity in Theorem 6.11 shows that the conclusion of (A) holds true with the right Hölder exponent
(in the case α = 1 the proof is a straightforward generalization; for α ∈

( 1
2 , 1

)
more details need to be

checked). Nevertheless, we do not do it here.
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NONRADIAL TYPE II BLOW UP FOR
THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION

CHARLES COLLOT

We consider the semilinear heat equation in large dimension d � 11

@tuD�uCjuj
p�1u; p D 2qC 1; q 2 N;

on a smooth bounded domain � � Rd with Dirichlet boundary condition. In the supercritical range
p � p.d/ > 1C 4

d�2
, we prove the existence of a countable family .u`/`2N of solutions blowing up at

time T > 0 with type II blow up:
ku`.t/kL1 � C.T � t /

�c`

with blow-up speed c` > 1
p�1

. The blow up is caused by the concentration of a profile Q which is a
radially symmetric stationary solution:

u.x; t/�
1

�.t/
2
p�1

Q

�
x� x0

�.t/

�
; �� C.un/.T � t /

c`.p�1/

2 ;

at some point x0 2�. The result generalizes previous works on the existence of type II blow-up solutions,
which only existed in the radial setting. The present proof uses robust nonlinear analysis tools instead,
based on energy methods and modulation techniques. This is the first nonradial construction of a solution
blowing up by concentration of a stationary state in the supercritical regime, and it provides a general
strategy to prove similar results for dispersive equations or parabolic systems and to extend it to multiple
blow ups.
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1. Introduction

1A. The semilinear heat equation. We study solutions of the semilinear heat equation (NLH)�
@tuD�uCjuj

p�1;

u.0/D u0; uD 0 on @�;
(1-1)

where u is real-valued, p is such that the nonlinearity is analytic, that is p D 2qC 1, q 2N, and �� Rd

is a smooth bounded open domain. For smooth enough initial data u0 satisfying some compatibility
conditions at the border @�, the Cauchy problem is well posed and there exists a unique maximal solution
u 2 C

�
.0; T /; L1.�/

�
. If T <C1, the solution is said to blow up and necessarily

lim
t!T
ku.t/kL1.�/ DC1:

This paper addresses the general issue of the asymptotic behavior as t ! T . In the case �D Rd, there is
a natural scale invariance, namely if u is a solution then so is

u�.�
2t; x/ WD �

2
p�1u.�2t; �x/: (1-2)

The Sobolev space that has an invariant norm for this scale change is

PH sc .Rd / WD

�
u W

Z
Rd
j�j2sc j Ouj2 d� <C1

�
; sc WD

d

2
�

2

p�1
; (1-3)

where Ou stands for the Fourier transform of u. Two particular solutions arise, the constant-in-space
blow-up solution

u.t; x/D˙
�.p/

.T � t /
1
p�1

; �.p/ WD
�
1

p�1

� 1
p�1
; (1-4)

and the unique (up to translation and scale change) radially decaying stationary solution Q (see [Li 1992]
and references therein) solving the stationary elliptic equation

�QCQp D 0: (1-5)

1B. Blow-up for .NLH/. Being one of the model nonlinear evolution equations, blow-up dynamics
has attracted a great amount of work (see [Quittner and Souplet 2007] for a review). In particular, one
is interested in the description of the solution near the set of blow-up points, that is, the points x for
which there exists .tn; xn/! .T; x/ such that ju.tn; xn/j ! C1. A comparison argument with the
constant-in-space blow-up solution (1-4) implies the lower bound

lim sup
t!T

ku.t/kL1.T � t /
1
p�1 � �.p/

and leads to the following distinction between type I and type II blow up [Matano and Merle 2004]:

u blows up with type I if lim sup
t!T

ku.t/kL1.T � t /
1
p�1 <C1;

u blows up with type II if lim sup
t!T

ku.t/kL1.T � t /
1
p�1 DC1:
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The ODE blow up (1-4) does not see the dissipative term in (1-1) whereas type II blow up involves an
interplay between dissipation and nonlinearity, and therefore its existence and properties may change
according to d and p. In the series of works [Giga 1986; Giga and Kohn 1985; 1987; 1989; Giga et al.
2004; Merle and Zaag 1998; 2000], the authors show that in the energy subcritical range 1 < p < dC2

d�2
,

all blow-up solutions are of type I and match the constant-in-space solution (1-4):

lim sup
t!T

ku.t/kL1.T � t /
1
p�1 D �.p/:

In the energy critical case p D dC2
d�2

, d D 4, Schweyer [2012] constructed a radial type II blow-up
solution, following the analysis of critical problems [Merle and Raphaël 2005a; 2005b; 2006; Raphaël
and Schweyer 2013; 2014; Raphaël and Rodnianski 2012; Merle et al. 2013]; see also [Filippas et al.
2000]. In that case, the scale invariance (1-2) implies that there exists a one-dimensional continuum of
ground states �

1

�
2
p�1

Q

�
x

�

��
�>0

:

The properties of the ground state (1-5) then allow the existence of a solution u that stays close to this
manifold,

uD
1

�.t/
2
p�1

Q

�
x

�.t/

�
C "; k"k� 1;

such that �.t/! 0 for some time T > 0, which makes the solution blow up. This blow-up scenario is not
always possible as it heavily relies on the asymptotic behavior of the ground state, and is impossible in
dimension d � 7 [Collot et al. 2016].

In the radial energy-supercritical case p > dC2
d�2

, the Joseph–Lundgren exponent [1973]

pJL WD

(
C1 if d � 10;

1C 4

d�4�2
p
d�1

if d � 11
(1-6)

dictates the existence of type II blow-up solutions. For dC2
d�2

< p < pJL, type II blow-up solutions do not
exist [Matano and Merle 2004; Mizoguchi 2011b]. For p >pJL, type II blow-up solutions are completely
classified. In [Herrero and Velázquez 1994] the authors predicted the existence of a countable family of
solutions u` such that

ku.t/kL1 � C.un.0//.T � t /
`

˛.d;p/
2
p�1 ; ` 2 N; ` > 1

2
˛;

(˛ is defined in (1-10)), which are the same speeds as in the present paper. The rigorous proof was first made
in an unpublished paper [Herrero and Velázquez] and then in [Mizoguchi 2004]. In the series of works
[Matano 2007; Matano and Merle 2009; Mizoguchi 2007; 2011a] any type II blow-up solution was proved
to have one of the above blow-up rates. These works have the powerful advantage that they deal with large
solutions, but strongly rely on comparison principles that are only available for radial parabolic problems.
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1C. Outlook on blow up for other problems. Many model nonlinear equations share similar features
with (NLH). The construction of solutions concentrating a stationary state for the energy-supercritical
Schrödinger and wave equations has been done in [Collot 2014; Merle et al. 2015], and recently for
the harmonic heat flow in [Biernat and Seki 2016]. These concentration scenarios happen on a central
manifold near the continuum of ground states�

1

�
2
p�1

Q

�
x

�

��
�>0

;

whose topological and dynamical properties have been a popular subject of studies [Schlag 2009; Krieger
et al. 2015]. The possibility of various blow-up speeds is linked to the regularity of the solutions, and this
is why parabolic problems are more rigid, thanks to the regularizing effect, than dispersive problems, for
which a wider range of concentration scenarios exists [Krieger et al. 2008].

A major goal is the study of blow up for general data, where nonradial stationary states can appear
as blow-up profiles [Duyckaerts et al. 2012]. The solution may also not be a small perturbation of it.
One thus needs robust tools for the perturbative study of special nonlinear profiles as well as a better
understanding of the set of stationary solutions. The present work is a step toward this general aim.

1D. Statement of the result. We revisit the result of [Herrero and Velázquez 1994; Mizoguchi 2004;
2005] with the techniques employed in [Raphaël and Rodnianski 2012] to address the nonradial setting.
From [Li 1992], for p > pJL (defined in (1-6)) the radially decaying ground state Q, solution of (1-5),
admits the asymptotic

Q.x/D
c1

jxj
2
p�1

C
a1

jxj
C o.jxj� / as jxj !C1; a1 ¤ 0; (1-7)

with

c1 WD
h
2

p�1

�
d � 2�

2

p�1

�i 1
p�1
; (1-8)

 WD 1
2
.d � 2�

p
4/; 4 WD .d � 2/2� 4pcp�11 .4> 0() p > pJL/; (1-9)

and we define
˛ WD  �

2

p�1
: (1-10)

For n 2 N we define the following numbers (4n > 0 if p > pJL):

�n WD
�.d � 2/C

p
4n

2
; 4n WD .d � 2/

2
� 4pc1C 4n.d Cn� 2/:

The above numbers are directly linked with the existence and the number of instability directions of
type II blow-up solutions concentrating Q. Our result is the existence and precise description of some
localized type II blow-up solutions in any domain with smooth boundary.

Theorem 1.1 (existence of nonradial type II blow up for the energy-supercritical heat equation). Let
d � 11, pD2qC 1>pJL, q2N, where pJL is given by (1-6). Let Q,  , ˛, n and sc be given by (1-7),
(1-9), (1-10), (1-18) and (1-3) and " > 0. Let �� Rd be a smooth open bounded domain. For x0 2�
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let �.x0/ be a smooth cut-off function around x0 with support in �. Pick ` 2 N satisfying 2` > ˛. Then,
there exists a large enough regularity exponent

sC D sC.`/ 2 2N; sC� 1;

such that under the nondegeneracy condition�
1
2
d � n

�
… 2N for all n 2 N such that d � 2n � 4sC; (1-11)

there exists a solution u 2 C
�
Œ0; T /; L1.�/

�
of (1-1) with u0 2H sC.�/ (which can be chosen smooth

and compactly supported) blowing up in finite time 0 < T <C1 by concentration of the ground state at
a point x00 2� with jx00� x0j � ". It is given by

u.t; x/D �x0.x/
1

�.t/
2
p�1

Q

�
x� x00
�.t/

�
C v; (1-12)

where:

(i) x00 is the only blow-up point of u.

(ii) Blow-up speed:

kukL1.�/ D c.u0/.T � t /
� 2`
˛.p�1/ .1C o.1// as t ! T; c.u0/ > 0; (1-13)

�.t/D c0.u0/.1C o.1//.T � t /
`
˛ as t ! T; c0.u0/ > 0: (1-14)

(iii) Asymptotic stability above scaling in renormalized variables:

lim
t!T

�.t/ 2
p�1 v.t; x0C�.t/x/


H s.�.t/�1.��fx0g//

D 0 for all sc < s � sC: (1-15)

(iv) Boundedness below scaling:

lim sup
t!T

ku.t/kH s.�/ <C1 for all 0� s < sc : (1-16)

(v) Asymptotic of the critical norm:

ku.t/kH sc .�/ D c.d; p/
p
`
p
j log.T � t /j.1C o.1// as t ! T; c.d; p/ > 0: (1-17)

Comments on Theorem 1.1:

(1) On the assumptions. First, the assumption p > pJL is not just technical as radial type II blow up is
impossible for dC2

d�2
< p < pJL [Matano and Merle 2004; Mizoguchi 2011b]. Nonradial type II blow

up solutions in this latter range, if they exist, must have a very different dynamical description. Next, if
p is not an odd integer, then the nonlinearity x 7! jxjp�1x is singular at the origin, yielding regularity
issues. In that case the techniques used in the present paper could only be applied for a certain range of
integers `. Eventually, the condition (1-11) is purely technical, as it avoids the presence of logarithmic
corrections in some inequalities that we use. It could be removed since the analysis relies on gains that
are polynomial and not logarithmic, but would weigh down the already long proof. Note that a large
number of couples .p; `/ satisfy this condition. Indeed, only finitely many integers n are concerned by
(1-20), and the value of n is very rarely a rational number by (1-18).



132 CHARLES COLLOT

(2) Blow-up by concentration at any point and manifold of type II blow-up solutions. For any x0 2�,
Theorem 1.1 provides a solution that concentrates at a point that can be arbitrarily close to x0. In fact
there exists a solution that concentrates exactly at x0, meaning that this blow up can happen at any point
of �. To show that, one needs an additional continuity argument, in addition to the information contained
in the proof, to be able to reason as in [Planchon and Raphaël 2007; Merle 1992], for example. This
continuity property amounts to proving that the set of type II blow-up solutions that we construct is a
Lipschitz manifold with exact codimension in a suitable functional space. This was proved in the radial
setting in [Collot 2014] and the analysis could be adapted here using the nonradial analysis provided in
the present paper. However a precise and rigorous proof of this fact would be too lengthy to be inserted
in this paper. Let us stress that the solutions built here possess an explicit number of linear nonradial
instabilities. An interesting question is then whether or not these new instabilities can be used, with the
help of resonances through the nonlinear term, to produce new type II blow-up mechanisms around Q in
the nonradial setting.

(3) Multiple blow ups and continuation after blow up. As in our analysis we are able to cut and localize
the approximate blow-up profile, there should be no problems in constructing a solution blowing up with
this mechanism at several points simultaneously, as in [Merle 1992]. Cases where the blow-up bubbles
really interact can lead to very different dynamics; see [Martel and Raphaël 2015; Jendrej 2016] for recent
results. From the construction, as t ! T, we have u admits a strong limit in H sc

loc.�nfx0g/. One could
investigate the properties of this limit in order to continue the solution u beyond blow-up time, which is
a relevant question for blow-up issues [Matano and Merle 2009], especially for hamiltonian equations
where a subcritical norm is under control.

1E. Notation. In the analysis, C will stand for a constant which may vary from one line to another,
whose value just depends on d and p. The notation a . b means that a � Cb for such a constant C, and
aDO.b/ means jaj. b.

Supercritical numerology. For d � 11 the condition p >pJL, where pJL is defined by (1-6), is equivalent
to 2C

p
d � 1 < sc <

1
2
d . We define the sequences of numbers describing the asymptotic of particular

zeros of H (defined in (1-30)) for n 2 N:

�n WD
�.d � 2/C

p
4n

2
; 4n WD .d � 2/

2
� 4cp1C 4n.d Cn� 2/; (1-18)

˛n WD n�
2

p�1
; (1-19)

where 4n > 0 for p > pJL. We will use the following facts in the sequel:

0 D ; 1 D
2

p�1
C 1; n <

2

p�1
for n� 2 and n ��nI (1-20)

see Lemma A.1 (where  is defined in (1-9)). In particular ˛0D˛, ˛1D 1 and ˛n<0 for n � 2. A
computation yields the bound

2 < ˛ < 1
2
d � 1
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(see [Merle et al. 2015]). We let

g WDmin.˛;4/� "; g0 WD 1
2

min.g; 1; ı0� "/; (1-21)

where 0 < "� 1 is a very small constant just here to avoid keeping track of some logarithmic terms later
on. For n 2 N we define1

mn WDE
�
1
2

�
1
2
d � n

��
(1-22)

and denote by ın the positive real number 0� ın < 1 such that

d D 2nC 4mnC 4ın: (1-23)

For 1� L a very large integer, we define the Sobolev exponent

sL WDm0CLC 1: (1-24)

In this paper we assume the technical condition (1-11) for sC D sL, which means

0 < ın < 1 (1-25)

for all integers n such that d � 2n � 4sL (there is only a finite number of such integers by (1-20)). We
let n0 be the last integer to satisfy the condition

d � 2n0 � 4sL and d � 2n0C1 > 4sL (1-26)

and we define
ı00 WD max

0�n�n0
ın 2 .0; 1/: (1-27)

For all integers n� n0 we define the integers

Ln WD sL�mn� 1 (1-28)

and in particular L0 D L. Given an integer ` > 1
2
˛ (that will be fixed in the analysis later on), for

0� n� n0 we define the real numbers

in D `�
 � n

2
: (1-29)

Notations for the analysis. For R � 0, the euclidean sphere and ball are denoted by

Sd�1.R/ WD
�
x 2 Rd;

dX
iD1

x2i DR
2

�
and Bd .R/ WD

�
x 2 Rd;

dX
iD1

x2i �R
2

�
:

We use the Kronecker delta notation:

ıi;j WD

�
0 if i ¤ j;
1 if i D j

1EŒx� stands for the entire part: x� 1 < EŒx�� x.
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for i; j 2 N. We let
F.u/ WD�uCf .u/; f .u/ WD jujp�1u

so that (1-1) can be written as
@tuD F.u/:

When using the binomial expansion for the nonlinearity, we use the constants

f .uC v/D

pX
lD0

C
p

l
ulvp�l ; C

p

l
WD

�p
l

�
:

The linearized operator close to Q (defined in (1-5)) is

Hu WD ��u�pQp�1u (1-30)

so that F.QC "/��H". We introduce the potential

V WD �pQp�1 (1-31)

so that H D��CV . Given a strictly positive real number � > 0 and function u W Rd ! R, we define
the rescaled function

u�.x/D �
2
p�1u.�x/: (1-32)

This semigroup has the infinitesimal generator

ƒu WD
@

@�
.u�/j�D1 D

2

p� 1
uC x:ru:

The action of the scaling on (1-1) is given by the formula

F.u�/ WD �
2.F.u//�:

For z 2 Rd and u W Rd ! R, the translation of vector z of u is denoted by

�zu.x/ WD u.x� z/: (1-33)

This group has the infinitesimal generator�
@

@z
.�zu/

�
jzD0

D�ru:

The original space variable will be denoted by x 2� and the renormalized one by y, related through
x D zC�y. The number of spherical harmonics of degree n is

k.0/ WD 1; k.1/ WD d; k.n/ WD
2nCp� 2

n

�nCp�3
n�1

�
for n� 2:

The Laplace–Beltrami operator on the sphere Sd�1.1/ is self-adjoint with compact resolvent and its
spectrum is fn.dCn�2/ W n2Ng. For n2N the eigenvalue n.dC2�n/ has geometric multiplicity k.n/,
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and we denote by .Y .n;k//n2N; 1�k�k.n/ an associated orthonormal Hilbert basis of L2.Sd /:

L2.Sd�1.1//D
C1M?

nD0

Span
�
Y .n;k/; 1� k � k.n/

�
;

�Sd�1.1/Y
.n;k/
D n.d Cn� 2/Y .n;k/;

Z
Sd�1.1/

Y .n;k/Y .n
0;k0/
D ı.n;k/;.n0;k0/; (1-34)

with the special choices
Y .0;1/.x/D C0; Y 1;k.x/D�C1xk; (1-35)

where C0 and C1 are two renormalization constants. The action of H on each spherical harmonic is
described by the family of operators on radial functions

H .n/
WD �@rr �

d � 1

r
@r C

n.d Cn� 2/

r2
�pQp�1 (1-36)

for n 2 N, as for any radial function f they produce the identity

H

�
x 7! f .jxj/Y .n;k/

�
x

jxj

��
D x 7! .H .n/.f //.jxj/Y .n;k/

�
x

jxj

�
: (1-37)

For two strictly positive real numbers b.0;1/1 > 0 and � > 0 we define the scales

M � 1; B0 D jb
.0;1/
1 j

� 1
2 ; B1 D B

1C�
0 : (1-38)

The blow-up profile of this paper is an excitation of several directions of stability and instability around
the soliton Q. Each one of these directions of perturbation, denoted by T .n;k/i , will be associated to a
triple .n; k; i/, meaning that it is the i -th perturbation located on the spherical harmonics of degree .n; k/.
For each .n; k/ with n � n0, there will be LnC 1 such perturbations for i D 0; : : : ; Ln except for the
cases n D 0, k D 1, and n D 1, k D 1; : : : ; d , where there will be Ln perturbations for i D 1; : : : ; Ln
(nD 1; 2). Hence the set of triples .n; k; i/ used in the analysis is

I WD
˚
.n; k; i/ 2 N3 W 0� n� n0; 1� k � k.n/; 0� i � Ln

	
n
�
f.0; 1; 0/g[ f.1; 1; 0/; : : : ; .1; d; 0/g

�
(1-39)

with cardinal

#I WD
n0X
nD0

k.n/.LnC 1/� d � 1: (1-40)

For j 2 N and an n-tuple of integers �D .�i /1�i�j , the usual length is denoted by

j�j WD

jX
iD1

�i :

If j D d and h is a smooth function on Rd then we use the following notation for the differentiation:

@�h WD
@j�j

@
�1
x1 � � � @

�d
xd

h:
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For J an #I-tuple of integers, we introduce two other weighted lengths

jJ j2 D
X
n;k;i

�
 � n

2
C i

�
J
.n;k/
i ; (1-41)

jJ j3 D

LX
iD1

iJ
.0;1/
i C

X
1�i�L1
1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I
2�n

.i C 1/J
.n;k/
i : (1-42)

To localize some objects we will use a radial cut-off function � 2 C1.Rd /:

0� �� 1; �.jxj/D 1 for jxj � 1; �.jxj/D 0 for jxj � 2; (1-43)

and for B > 0, we let �B denote the cut-off around Bd .0; B/:

�B.x/ WD �

�
x

B

�
:

1F. Strategy of the proof. We now describe the main ideas behind the proof of Theorem 1.1. Without
loss of generality, via scale change and translation in space one can assume that x0 D 0 and Bd .7/��.

(i) Linear analysis and tail computations. The linearized operator near Q is H D���pQp�1 and its
generalized kernel is

ff W 9j 2 N such that H jfD0g D Span.T .n;k/i /.n;i/2N2; 1�k�k.n/;

where

T
.n;k/
i .x/D T

.n/
i .jxj/Y .n;k/

�
x

jxj

�
;

T
.n/
i being radial, is located on the spherical harmonics of degree .n; k/, with

T
.0;1/
0 DƒQ; T

.1;k/
0 D @xkQ; HT

.n;k/
0 D 0; HT

.n;k/
iC1 D�T

.n;k/
i : (1-44)

For any L 2N, defining sL, n0.L/ and Ln.L/ by (1-24), (1-26) and (1-28), H sL is coercive for functions
that are not in the suitably truncated generalized kernel:Z

"H sL"& krsL"k2
L2
Ck"k2loc if " 2 Span.T .n;k/i /?0�n�n0; 1�k�k.n/; 0�i�Ln ; (1-45)

where k"k2loc means any norm of " on a compact set involving derivatives up to order 2sL. A scale change
for these profiles produces the identity

@

@�
.T
.n;k/
i /j�D1.x/DƒT

.n;k/
i .x/� .2i �˛n/T

.n;k/
i .x/ as jxj !C1: (1-46)

(ii) The renormalized flow. For u a solution, � W .0; T / ! R and z W .0; T / ! Rd, we define the
renormalized time

ds

dt
D

1

�2
; s.0/D s0: (1-47)
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Then v D .��zu/� solves the renormalized equation

@sv�
�s

�
ƒv�

zs

�
:rv�F.v/D 0: (1-48)

(iii) The dynamical system for the coordinates on the center manifold. Let I be defined by (1-39). For an
approximate solution of (1-1) under the form

uD

�
QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i

�
z; 1
�

(1-49)

described by some parameters b.n;k/i 2 R, one has the identity from (1-44) and (1-45):

�zt :ru�
�t

�
ƒuC

� X
.n;k;i/2I

b
.n;k/
i;t T

.n;k/
i

�
z; 1
�

D @tu� F.u/

D
b
.1;� /
1

�
:ruC

b
.0;1/
1

�2
ƒuC

� X
.n;k;i/2I

b
.n;k/
iC1 � .2i �˛n/b

.1;0/
1 b

.n;k/
i

�2
T
.n;k/
i

�
z; 1
�

C ; (1-50)

where b.1;� /1 D .b
.1;1/
1 ; : : : ; b

.1;d/
1 / and with the convention b.n;k/LnC1

D 0. The error term  is negligible
under a size assumption on the parameters. Identifying the terms in the above identity yields the finite-
dimensional dynamical system28̂̂<̂

:̂
�t D�

b
.0;1/
1

�
; zt D�

b
.1;� /
1

�
;

b
.n;k/
i;t D�

1

�2
.2i �˛n/b

.0;1/
1 b

.n;k/
i C

1

�2
b
.n;k/
iC1 8.n; k; i/ 2 I:

(1-51)

(iv) The approximate blow-up profile. Equation (1-51) admits for any `2N with 2`>˛ an explicit special
solution . N�; Nz; Nb.n;k/i / such that Nz D 0 and N� � .T � t /

`
˛ for some T > 0. Moreover, when linearizing

(1-51) around this solution, one finds an explicit number m of directions of linear instability and #I �m
directions of stability. In addition, for the renormalized time s associated to N�, one has

lim
t!T

s.t/DC1; j Nb
.i;n/

k
.s/j. s�

�n
2
�i : (1-52)

Our approximate blow-up profile is then given by�
QC

X
.n;k;i/2I

Nb
.n;k/
i .t/T

.n;k/
i

�
Nz.t/; 1

N�.t/

:

(v) The blow-up ansatz. Following (iv), we study solutions of the form

uD �

�
QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i

�
z; 1
�

Cw (1-53)

2Again, with the convention b.n;k/
LnC1

D 0.
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and decompose the remainder w according to

wint WD �3w; wext WD .1��3/w; " WD .��zwint/�; (1-54)

where wext is the remainder outside the blow-up zone, wint the remainder inside the blow-up zone, and "
is the renormalization of the remainder inside the blow-up zone corresponding to the scale and central
point of the ground state Qz;1=�. Now w is orthogonal to the suitably truncated center manifold

" 2 Span.T .n;k/i /?0�n�n0; 1�k�k.n/; 0�i�Ln ; (1-55)

which fixes in a unique way the value of the parameters b.n;k/i , � and z. We then define the renormalized
time s associated to � via (1-47). We take b, � and z to be perturbations of Nb, N� and Nz for the renormalized
time:

b
.n;k/
i .s/D Nb

.n;k/
i .s/C b

0.n;k
i .s/; �.s/D N�.s/C�0.s/; z.s/D Nz.s/C z0.s/: (1-56)

We define four norms for the remainder in (1-53) and (1-54):

E� WD kr�"k2L2.Rd /; E2sL WD
Z

Rd
jH sL"j2; kwextkH� .�/ and kwextkH sL .�/;

where � is a slightly supercritical regularity exponent

0 < � � sc� 1: (1-57)

One has that E2sL & kr2sL"kL2 from (1-45).

Interpretation: We decompose a solution near the set of localized and concentrated ground states �.Qz;1=�/
according to (1-53). A part, �

�P
.n;k;i/2I b

.n;k/
i T

.n;k/
i

�
z;1=�

, is located on the truncated center manifold;
it decays slowly, see (1-52), while interacting with the ground state, see (1-51), and is responsible for the
blow up by concentration, and one has an explicit behavior of the coordinates, (1-51). The other part, w,
is orthogonal to the truncated center manifold (1-55); it is expected to decay faster as H is more coercive,
see (1-45), on this set, and not to perturb the blow-up dynamics. The change of variables (1-47) and
(1-48) transforms the blow-up problem into a long-time asymptotic problem by (1-52).

Bootstrap method in a trapped regime: We study solutions that are close to the approximate blow-up
profile for the renormalized time, i.e., that satisfy

E� Ckwextk
2
H� .�/ . 1; E2sL CkwextkH sL .�/ .

1

�2.2sL�sc/ sLC.1�ı0/C�
; (1-58)

jb
0.n;k/
i j. s�

�n
2
�i; j�jC jzj � 1: (1-59)

The size of the excitation is
1

�2.2sL�sc/sLC.1�ı
0
0/

so �
�P

.n;k;i/2I b
.n;k/
i T

.n;k/
i

�
z;1=�

and � > 0 in (1-58) quantifies the fact that the remainder w is smaller
than the excitation.
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(v) The bootstrap regime. From (1-1) and (1-50), the evolution of the solution under the decomposition
(1-53) and (1-54) has the form

@twext D�wextC��3wC 2r�3:rwC .1��3/w
p; (1-60)

@twint D�Hz; 1
�
wintC� CNL

C�

��
b
.1;� /
1

�2
C
zt

�

�
:r.QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i /

�
z; 1
�

C�

��
b
.0;1/
1

�2
C
�t

�

�
ƒ.QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i /

�
z; 1
�

C�

� X
.n;k;i/2I

�
�b

.n;k/
i;t �

.2i �˛n/b
.0;1/
1 b

.n;k/
1 C b

.n;k/
iC1

�2

�
T
.n;k/
i

�
z; 1
�

; (1-61)

where Hz;� D���pQ
p�1

z;1=�
and NL stands for the purely nonlinear term.

Modulation: The evolution of the parameters is computed using the orthogonality directions related to
the decomposition, i.e., by taking the scalar product between (1-61) and .T .n;k/i /z;1=� for 0 � n � n0,
1� k � k.n/ and 0� i � Ln, yielding in renormalized time an estimate of the form3ˇ̌̌̌
�s

�
Cb

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
Cb

.1;� /
1

ˇ̌̌̌
C

X
.n;k;i/2I

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.n;k/
i b

.0;1/
1 Cb

.n;k/
iC1

ˇ̌
.
p
E2sLCs

�L�3: (1-62)

These estimates hold because the error produced by the approximate dynamics is very small (s�L�3) on
compact sets, and on the other hand the remainder " is also very small on compact sets and located far
away from the origin by (1-58) and the coercivity (1-45).

Lyapunov monotonicity for the remainder: From the evolution equations (1-60) and (1-61), in the boot-
strap regime (1-58) one performs energy estimates of the form

d

dt

�
1

�2.��sc/
E� CkwextkH� .�/

�
.

1

�2s1C�
0 C

1

�.��sc/

p
E�kr� kL2 ; (1-63)

d

dt

�
1

�2.2sL�sc/
E2sL CkwextkH2sL .�/

�
.

1

�2.2sL�sc/C2sLC2�ı0C�C�
C

1

�2sL�sc

p
E2sLkH

sL

z; 1
�

 kL2 ;

(1-64)

where � > 0 represents a gain. The key properties yielding these estimates are the following. The control
of a slightly supercritical norm (1-57) and another high regularity norm allows us to control precisely
the energy transfer between low and high frequencies and to control the nonlinear term. The dissipation
in (1-60) and (1-61) (for the second equation it is a consequence of the coercivity (1-45)) erases the
border terms and smaller-order local interactions. Finally, the approximate blow-up profile is in fact a
refinement of (1-49), where the error in the approximate dynamics is well localized in the self-similar

3With the convention b.n;k/
LnC1

D 0.
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zone jx � zj �
p
T � t , by the addition of suitable corrections via inverting elliptic equations and by

precise cuts.

(vi) Existence via a topological argument. In the bootstrap regime close to the approximate blow-up
profile described by (1-58) and (1-59), one has precise bounds for the error term  . Reintegrating the
energy estimates (1-63) and (1-64) then leads to the bounds

E� Ckwextk
2
H� .�/� 1; E2sL CkwextkH sL .�/�

1

�2.2sL�sc/ sLC.1�ı0/C�
;

which are an improvement of (1-58). Therefore, a solution ceases to be in the bootstrap regime if
and only if the bound (1-59) describing the proximity of the parameters with respect to the special
blow-up parameters . Nb; N�; Nz/ is violated. From (iv), the parameters admit . N�; Nz; Nb/ as a hyperbolic orbit
with m directions of instability and #I �m of instability. From the modulation equations (1-62), the
remainder w perturbs these dynamics only at lower order. Therefore, an application of the Brouwer fixed
point theorem yields the persistence of an orbit similar to . N�; Nz; Nb/ for the full nonlinear equation, i.e.,
with a perturbation along the parameters that stays small for all time. This gives the existence of a true
solution of (1-1) that stays close to the approximate blow-up profile for all renormalized times, implying
blow up by concentration of Q with a precise asymptotic.

The paper is organized as follows. In Section 2 we recall the known properties of the ground state
in Lemma 2.1 and describe the kernel of the linearized operator H in Lemma 2.3. This provides a
formula to invert elliptic equations of the form Hu D f , stated in Definition 2.6, and allows us to
describe the generalized kernel of H in Lemma 2.10. The blow-up profile is built on functions depending
polynomially on some parameters and with explicit asymptotic at infinity, and we introduce the concept
of homogeneous functions in Definition 2.14 and Lemma 2.15 to track this information easily. With these
tools, in Section 3 we construct a first approximate blow-up profile for which the error is localized at
infinity in Proposition 3.1 and we cut it in the self-similar zone in Proposition 3.3. The evolution of
the parameters describing the approximate blow-up profile is an explicit dynamical system with special
solutions given in Lemma 3.4 for which the linear stability is investigated in Lemma 3.5. In Section 4
we define a bootstrap regime for solutions of the full equation close to the approximate blow-up profile.
We give a suitable decomposition for such solutions, using orthogonality conditions that are provided
by Definition 4.1 and Lemma 4.2, in Lemma 4.3. They must satisfy in addition some size assumption,
and all the conditions describing the bootstrap regime are given in Definition 4.4. The main result of
the paper is Proposition 4.6, stating the existence of a solution staying for all times in the bootstrap
regime, whose proof is relegated to the next section. With this result we end the proof of Theorem 1.1 in
Section 4B. To do this, the modulation equations are computed in Lemma 4.7, yielding that solutions
staying in the bootstrap regime must concentrate in Lemma 4.8 with an explicit asymptotic for Sobolev
norm in Lemma 4.9. In Section 5 we prove the main proposition, Proposition 4.6. For solutions in the
bootstrap regime, an improved modulation equation is established in Lemma 5.1, and Lyapunov-type
monotonicity formulas are established in Propositions 5.3 and 5.5 for the low regularity Sobolev norms
of the remainder, and in Propositions 5.6 and 5.8 for the high regularity norms. With this analysis one
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can characterize the conditions under which a solution leaves the bootstrap regime in Lemma 5.9, and
with a topological argument provided in Lemma 5.10, one ends the proof of Proposition 4.6.

The appendix is organized as follows. In Appendix A we give the proof of Lemma 2.3, describing the
kernel of H . In Appendix B we recall some Hardy and Rellich-type estimates, among which the most
useful is given in Lemma B.3. In Appendix C we investigate the coercivity of H in Lemmas C.2 and C.3.
In Appendix D we prove some bounds for solutions in the bootstrap regime. In Appendix E we give the
proof of the decomposition Lemma 4.3.

2. Preliminaries on Q and H

We first summarize the content and ideas of this section. The instabilities near Q underlying the blow up
that we study result from the excitement of modes in the generalized kernel of H. We first describe this
set. Since H is radial, we use a decomposition into spherical harmonics, restricted to spherical harmonics
of degree n, see (1-37), it becomes the operator H .n/ on radial functions defined by (1-36). Using ODE
techniques, the kernel is described in Lemma 2.3 and the inversion of H .n/ is given by Definition 2.6 and
Lemma 2.13. By inverting successively the elements in the kernel of H .n/, one obtains the generators of
the generalized kernel

S
j Ker..H .n//j / of this operator in Lemma 2.10.

To track the asymptotic behavior and the dependence in some parameters of various profiles during
the construction of the approximate blow-up profile in the next section, we introduce the framework of
“homogeneous” functions in Definition 2.14 and Lemma 2.15.

2A. Properties of the ground state and the potential. Any positive smooth radially symmetric solution to

��� ��p D 0

is a dilate of a given normalized ground state profile Q:

� DQ�; � > 0;

�
��Q�Qp D 0;

Q.0/D 1:

See [Li 1992] and references therein. The following lemma describes the asymptotic behavior of Q. We
refer to [Ding and Ni 1985] for earlier work.

Lemma 2.1 (asymptotics of the ground state [Li 1992, Lemma 4.3; Karageorgis and Strauss 2007,
Lemma 5.4]). Let p > pJL (defined in (1-6)). We recall that g > 0, c1 and  are defined in (1-9) and
(1-21). One has the asymptotics

QD
c1

r
2
p�1

C
a1

r
CO

�
1

rCg

�
as r!C1; a1 ¤ 0; (2-1)

V D�
pc

p�1
1

r2
CO

�
1

r2C˛

�
as r!C1; (2-2)

d

d�
Œ.Q�/

p�1�j�D1 DO

�
1

r2C˛

�
as r!C1; (2-3)



142 CHARLES COLLOT

and these identities propagate to the derivatives. There exists ı.p/ > 0 such that the following pointwise
bounds hold for all y 2 Rd :

0 <Q.y/ <
c1

jyj
2
p�1

; (2-4)

�
.d � 2/2

4jyj2
C
ı.p/

jyj2
� V.y/ < 0: (2-5)

Remark 2.2. The standard Hardy inequalityZ
Rd
jruj2 �

.d � 2/2

4

Z
Rd

u2

jyj2
dy

and (2-4) then imply the positivity of H on PH 1.Rd /:Z
Rd
uHudy �

Z
Rd

ı.p/u2

jyj2
dy: (2-6)

It is worth mentioning that the aforementioned expansion (2-1) is false for p � pJL. This asymptotic
at infinity of Q is decisive for type II blow up via perturbation of it, as from [Matano and Merle 2004;
Mizoguchi 2011b] it cannot occur for dC2

d�2
< p < pJL.

2B. Kernel of H .

Lemma 2.3 (kernel of H .n/). We recall that the numbers .n/n2N and g are defined in (1-18). Let n 2N.
There exist T .n/0 ; �.n/ W .0;C1/! R two smooth functions such that if f W .0;C1/! R is smooth and
satisfies H .n/f D 0, then f 2 Span.T .n/0 ; �.n//. They enjoy the asymptotics8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

T
.n/
0 .r/ D

r!0

lX
jD0

c
.n/
j rnC2j CO.rnC2C2l/ 8l 2 N; c

.n/
0 ¤ 0;

T
.n/
0 �

r!C1
Cnr

�n CO.r�n�g/; Cn ¤ 0;

�.n/ �
r!0

c0n

rd�2Cn
and �.n/ �

r!C1
Qc0nr
�n ; c0n; Qc

0
n ¤ 0:

(2-7)

Moreover, T .n/0 is strictly positive, and for 1 � k � k.n/ the functions y 7! T
.n/
0 .jyj/Yn;k.jyj=y/ are

smooth on Rd. The first two regular and strictly positive zeros are explicit:

T
.0/
0 D

1

C0
ƒQ and T

.1/
0 D�

1

C1
@yQ; (2-8)

where C0 and C1 are the renormalized constants defined by (1-35).

Proof. The proof of this lemma is done in Appendix A. �

Remark 2.4. The renormalized constants in (2-8) are here to produce the identities T .0/0 Y .0;0/ DƒQ

and T .1/0 Y .1;k/ D @xkQ by (1-35). For each n 2 N, only one zero, T .n/0 , is regular at the origin. We
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insist on the fact that �n > 0 is a positive number4 for n large by (1-20), making these profiles grow as
r!C1.

2C. Inversion of H .n/. We start by a useful factorization formula for H .n/. Let n 2N and W .n/ denote
the potential

W .n/
WD @r.log.T .n/0 //; (2-9)

where T .n/0 is defined in (2-7) and define the first-order operators on radial functions

A.n/ W u 7! �@ruCW
.n/u; A.n/� W u 7!

1

rd�1
@r.r

d�1u/CW .n/u: (2-10)

Lemma 2.5 (factorization of H .n/). The factorization

H .n/
D A.n/�A.n/ (2-11)

holds. Moreover one has the adjunction formula for smooth functions with enough decayZ C1
0

.A.n/u/vrd�1 dr D

Z C1
0

u.A.n/�v/rd�1 dr:

Proof. As T .n/0 >0 by (2-7), W .n/ is well defined. This factorization is a standard property of Schrödinger
operators with a nonvanishing zero. We start by computing

A.n/�A.n/uD�@rru�
d � 1

r
@ruC

�
d � 1

r
W .n/

C @rW
.n/
C .W .n//2

�
u:

As W .n/ D @rT
.n/
0 =T

.n/
0 , the potential that appears is nothing but

d � 1

r
W .n/

C @rW
.n/
C .W .n//2 D

@rrT
.n/
0 C

d�1
r
T
.n/
0

T
.n/
0

D
�H .n/T

.n/
0 C

�n.dCn�2/
r2

CV
�
T
.n/
0

T
.n/
0

D
n.d Cn� 2/

r2
CV

as H .n/T
.n/
0 D 0, which proves the factorization formula (2-11). The adjunction formula comes from a

direct computation using integration by parts. �

From the asymptotic behavior (2-7) of T .n/0 at the origin and at infinity, we deduce the asymptotic
behavior of W .n/:

W .n/
D

(
n
r
CO.1/ as r! 0;
�n
r
CO

�
1

r1CgCj

�
as r!C1;

(2-12)

which propagates to the derivatives. Using the factorization (2-11), to define the inverse of H .n/ we
proceed in two steps: first we invert A.n/�, then A.n/.

4This notation seems unnatural but matches the standard notation in the literature.
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Definition 2.6 (inverse of H .n/). Let f W .0;C1/! R be smooth with f .r/D O.rn/ as r ! 0. We
define5 the inverses .A.n/�/�1f and .H .n//�1f by

.A.n/�/�1f .r/D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1ds; (2-13)

.H .n//�1f .r/D

(
T
.n/
0

RC1
r .A.n/�/�1f=T

.n/
0 ds if .A.n/�/�1f=T .n/0 is integrable on .0;C1/;

�T
.n/
0

R r
0 .A

.n/�/�1f=T
.n/
0 ds if .A.n/�/�1f=T .n/0 is not integrable on .0;C1/:

(2-14)

Direct computations give indeed H .n/ ı .H .n//�1 D A.n/� ı .A.n/�/�1 D Id, and A.n/ ı .H .n//�1 D

.A.n/�/�1. As we do not have uniqueness for the equationHuDf , one may wonder if this definition is the
“right” one. The answer is yes because this inverse has the good asymptotic behavior; namely, if f � rq as
r!C1, one would expect u� rqC2 as r!C1, which will be proven in Lemma 2.9. To keep track of
the asymptotic behaviors at the origin and at infinity, we now introduce the notion of admissible functions.

Definition 2.7 (simple admissible functions). Let n be an integer, q be a real number and f W .0;C1/!R

be smooth. We say that f is a simple admissible function of degree .n; q/ if it enjoys the asymptotic
behaviors

f D

lX
jD0

cj r
nC2j

CO.rnC2lC2/ 8l 2 N (2-15)

at the origin for a sequence of numbers .cl/l2N 2 RN, and at infinity

f DO.rq/ as r!C1; (2-16)

and if the two asymptotics propagate to the derivatives of f .

Remark 2.8. Let f W .0;C1/ be smooth. We define the sequence of n-adapted derivatives of f by
induction:

fŒn;0� WD f and for j 2 N; fŒn;jC1� WD

�
A.n/fŒn;j � for j even;
A.n/�fŒn;j � for j odd:

(2-17)

From the definition (2-10) of A.n/ and A.n/�, and the asymptotic behavior (2-12) of the potential W .n/,
one notices that the condition (2-16) on the asymptotic at infinity for a simple admissible function of
degree .n; q/ and its derivatives is equivalent to the following condition for all j 2 N:

fŒn;j � DO.r
q�j / as r!C1; (2-18)

where the adapted derivatives .fŒn;j �/j2N are defined by (2-17). We will use this fact many times in the
rest of this subsection, as it is more adapted to our problem.

The operators H .n/ and .H .n//�1 leave this class of functions invariant, and the asymptotic at infinity
is increased by �2 and 2 under some conditions (that will always hold in the sequel) on the coefficient q
to avoid logarithmic corrections.

5We know u is well defined because from the decay of f at the origin one deduces .A.n/�/�1f DO.rnC1/ as y! 0 and
so u0=T n0 is integrable at the origin from the asymptotic behavior (2-7).
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Lemma 2.9 (actions ofH .n/ and .H .n//�1 on simple admissible functions). Let n2N and f be a simple
admissible function of degree .n; q/ in the sense of Definition 2.7, with q > n�d and �n�2�q 62 2N.
Then for all integer i 2 N:

(i) .H .n//if is simple admissible of degree .n; q� 2i/.

(ii) .H .n//�if is simple admissible of degree .n; qC 2i/.

Proof. Step 1: action of H .n/. For all integers i and j one has ..H .n//if /Œn;j � D fŒn;jC2i� by (2-17)
and (2-11). Using the equivalent formulation (2-18), the asymptotic at infinity (2-16) for H if is then a
straightforward consequence of the asymptotic at infinity (2-16) for f . Close to the origin, one notices
that H .n/ D ��.n/C V with �.n/ D @rr C d�1

r
@r � n.d C n� 2/. If f satisfies (2-15) at the origin,

then so does .�.n//if by a direction computation. As V is smooth at the origin, .H .n//if also satisfies
(2-15). Hence .H .n//if is a simple admissible function of degree q� 2i .

Step 2: action of .H .n//�1. We will prove the property for .H .n//�1f , and the general result will follow
by induction on i . Let u denote the inverse by H .n/, that is, uD .H .n//�1f .

Asymptotic at infinity. We will prove the equivalent formulation (2-18) of the asymptotic at infinity (2-16).
From (2-17), (2-13), (2-14) and (2-11), uŒn;j � D fŒn;j�2� for j � 2 so the asymptotic behavior (2-18) at
infinity for the n-adapted derivatives of u are true for j �2. Therefore it remains to prove them for j D0; 1.

Case j D 1. From the definition of the inverse (2-14) and of the adapted derivatives (2-17), one has

uŒn;1� D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1 ds:

From the asymptotic behaviors (2-16) and (2-7) for f and T .n/0 at infinity and the condition q > n� d ,
the integral diverges and we get

uŒn;1�.r/DO.r
qC1/ as r!C1; (2-19)

which is the desired asymptotic (2-18) for uŒn;1�.

Case j D 0. Suppose .A.n/�/�1f=T .n/0 D uŒn;1�=T
.n/
0 is integrable on .0;C1/. In that case

uD T
.n/
0

Z C1
r

uŒn;1�

T
.n/
0

ds:

If q >�n�2, then by the integrability of the integrand and (2-7), we get the desired asymptotic uŒn;0�D
uDO.r�n/DO.rqC2/. If q <�n�2 then from (2-19) we have uŒn;1�=T

.n/
0 DO.rqC1Cn/ and thenRC1

r uŒn;1�=T
.n/
0 ds D O.rqC2Cn/, from which we get the desired asymptotic u D O.rqC2/. Now

suppose uŒn;1�=T
.n/
0 is not integrable. Then we must have q > �nC 2 by (2-19), and u is given by

uD�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

ds;

and the integral has asymptotic O.rqC2Cn/. We hence get uDO.rqC2/ at infinity using (2-7).

Conclusion. In both cases, we have proven that the asymptotic at infinity (2-18) holds for u.
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Asymptotic at the origin. We have

uD�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

dsC aT
.n/
0 ;

where aD 0 if uŒn;1�=T
.n/
0 is not integrable, and aD

RC1
0 uŒn;1�=T

.n/
0 ds if it is. By (2-7), T .n/0 satisfies

(2-15). Thus it remains to prove (2-15) for �T .n/0

R r
0 uŒn;1�=T

.n/
0 ds. We proceed in two steps. First,

from (2-15) for f we obtain that for all integers j, p,

uŒn;1� D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1 ds D

lX
jD0

Qcj r
nC1C2j

C zRl ;

where @kr zRl D O.r
max.nC2lC3�k;0// as r ! 0 for some coefficients Qcj depending on the cj and the

asymptotic at the origin of T n0 . It then follows that

�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

ds D

lX
jD0

Ocj r
nC2C2j

C yRl ; where @kr yRl D
r!0

O.rmax.nC2lC4�k;0//;

for some coefficients Ocl . This implies that u satisfies (2-15) at the origin. �

We can now invert the elements in the kernel of H .n/ and construct the generalized kernel of this
operator.

Lemma 2.10 (generators of the generalized kernel of H .n/). Let n 2 N, n, g0, .H .n//�1 and T .n/0 be
defined by (1-18), (1-21), Definition 2.6 and Lemma 2.3. We denote by .T .n/i /i2N the sequence of profiles
given by

T
.n/
iC1 WD �.H

.n//�1T
.n/
i ; i 2 N: (2-20)

Let .‚.n/i /i2N be the associated sequence of profiles defined by

‚
.n/
i WDƒT

.n/
i �

�
2i C

2

p� 1
� n

�
T
.n/
i ; i 2 N: (2-21)

Then for each i 2 N,

T
.n/
i is simple admissible of degree .n;�nC 2i/; (2-22)

‚
.n/
i is simple admissible of degree .n;�nC 2i �g0/; (2-23)

where simple admissibility is defined in Definition 2.7.

Proof. Step 1: admissibility of T .n/i . From the asymptotic behaviors (2-7) at infinity and at the origin,
T
.n/
0 is simple admissible of degree .n;�n/ in the sense of Definition 2.7. Additionally, �n > n� d

since �2nC d � �20C d D 2C
p
4 > 0 by (1-9) and since .n/n2N is decreasing by (1-18). One

has also �n� 2� .�n/D�2 … 2N. Therefore one can apply Lemma 2.9: for all i 2 N, T .n/i given by
(2-20) is an admissible profile of degree .n;�nC 2i/.
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Step 2: admissibility of ‚.n/i . We start by computing the following commutator relations using (1-36),
(2-9) and (2-10):

A.n/ƒDƒA.n/CA.n/� .W .n/
Cy@yW

.n//;

H .n/ƒDƒH .n/
C 2H .n/

� .2V Cy:rV /:
(2-24)

We now proceed by induction. From the previous equation, and the asymptotic behaviors (2-7), (2-2) and
(2-12) of the functions T .n/0 , V and W .n/, we get that ‚.n/0 is simple admissible of degree .n;�n�g0/.
Now let i � 1 and suppose that the property in (2-23) is true for i � 1. Using the previous formula and
(2-21) we obtain

H .n/‚ni D�‚
.n/
i�1� .2V Cy:rV /T

.n/
i :

The asymptotic at infinity (2-2) of V yields the decay 2V C y:rV D .y�2�˛/. As T .n/i is simple
admissible of degree .n; 2i � n/ and from the induction hypothesis, we have that H .n/‚

.n/
i is simple

admissible of degree .n; 2i � 2� n�g0/ because g0 < ˛ by (1-21). One has 2i � 2� n�g0 > n� d
because

2i � 2� 2n�g
0
C d � �20�g

0
C d D 2C

p
4�g0 > 0

as 0<g0<1, i�1, and .n/n2N is decreasing by (1-18) and (1-9). Similarly

�n� 2� .2i � 2� n�g
0/D�2i Cg0 … 2N:

Therefore we can apply Lemma 2.9 and obtain that .H .n//�1H .n/‚
.n/
i is of degree .n; 2i � n � g0/.

From Lemma 2.3 one has .H .n//�1H .n/‚
.n/
i D ‚

.n/
i C aT

.n/
0 C b�.n/, for two integration constants

a; b 2 R. At the origin �.n/ is singular by (2-7); hence b D 0. As T .n/0 is of degree .n;�n/ with
�nC 2i �g

0 > �n (because i � 1), we get that ‚.n/i is of degree .n; 2i � n�g0/. �

2D. Inversion of H on nonradial functions. The definition of the inverse of H .n/, Definition 2.6,
naturally extends to give an inverse of H by separately inverting the components onto each spherical
harmonic. There will be no problem when summing, as for the purpose of the present paper one can
restrict to the following class of functions that are located on a finite number of spherical harmonics.

Definition 2.11 (admissible functions). Let f W Rd ! R be a smooth function, with decomposition
f .y/D

P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/, and q be a real number. We say that f is admissible of degree q
if there is only a finite number of couples .n; k/ such that f .n;k/ ¤ 0, and that for every such couple,
f .n;k/ is a simple admissible function of degree .n; q/ in the sense of Definition 2.7.

For f D
P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/ an admissible function, we define its inverse by H by

.H .�1/f /.y/ WD
X
n;k

Œ.H .n//�1f .n;k/.jyj/�Y .n;k/
�
y

jyj

�
(2-25)

(the sum being finite), where .H .n//�1 is defined by Definition 2.6. For n, k and i three integers with
1� k � k.n/, we define the profile T .n;k/i W Rd ! R as

T
.n;k/
i .y/D T

.n/
i .jyj/Y .n;k/

�
y

jyj

�
; (2-26)
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where the radial function T .n/i is defined by (2-20). From Lemma 2.10, T .n;k/i is an admissible function
of degree .�nC2i/ in the sense of Definition 2.11. The class of admissible functions has some structural
properties: it is stable under summation, multiplication and differentiation, and its elements are smooth
with an explicit decay at infinity. This is the subject of the next lemma.

Lemma 2.12 (properties of admissible functions). Let f and g be two admissible functions of degrees q
and q0 in the sense of Definition 2.11, and � 2 Nd. Then:

(i) f is smooth.

(ii) fg is admissible of degree qC q0.

(iii) @�f is admissible of degree q� j�j.

(iv) There exists a constant C.f; �/ such that for all y with jyj � 1,

j@�f .y/j � C.f; �/jyjq�j�j:

Proof. From Definition 2.11, f D
P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/ and gD
P
n;k g

.n;k/.jyj/Y .n;k/.y=jyj/

and both sums involve finitely many nonzero terms. Therefore, without loss of generality, we will assume
that f and g are each located on only one spherical harmonic: f D f .n;k/Y .n;k/ and gD g.n

0;k0/Y .n
0;k0/,

for f .n;k/ and g.n
0;k0/ simple admissible of degrees .n; q/ and .n0; q0/ in the sense of Definition 2.7. The

general result will follow by a finite summation.

(i) Now y 7! f .n;k/.jyj/ is smooth outside the origin since f is smooth, and y 7! Y .n;k/.y=jyj/ is also
smooth outside the origin; hence f is smooth outside the origin. The Laplacian on spherical harmonics is

.��/if D .��/i
�
f .n;k/.jyj/Y .n;k/

�
y

jyj

��
D ..��.n//if .n;k//.jyj/Y .n;k/;

where ��.n/ D�@rr � d�1r @rCn.d Cn�2/. From the expansion of f .n;k/ in (2-15), .��.n//if .n;k/

is bounded at the origin for each i 2 N. Therefore .��/if is bounded at the origin for each i and f is
smooth at the origin by elliptic regularity.

(ii) We treat the case where nCn0 is even, and the case nCn0 odd can be treated with exactly the same
arguments. As the product of the two spherical harmonics Y .n;k/Y .n

0;k0/ decomposes onto spherical
harmonics of degree less than nCn0 with the same parity as nCn0, the product fg can be written as

fg D
X

0�Qn�nCn0

Qn even; 1�Qk�k.Qn/

a
n;k;n0;k0;Qn; Qk

f .n;k/g.n
0;k0/Y .Qn;

Qk/

with a
n;k;n0;k0;Qn; Qk

some fixed coefficients. Now fix Qn and Qk in the sum; one has nCn0D QnC2i for some
i 2 N. Using the Leibniz rule, as @jr f .n;k/ DO.rq�j / and @jr g.n;k/ DO.rq

0�j / at infinity, we get that
@
j
r .f

.n;k/g.n
0;k0//DO.rqCq

0�j / as y!C1, which proves that f .n;k/g.n
0;k0/ satisfies the asymptotic

at infinity (2-16) of a simple admissible function of degree . Qn; q C q0/. Close to the origin, the two
expansions (2-15) for f .n;k/ and g.n

0;k0/, starting at rn and rn
0

respectively, imply the same expansion
(2-15) starting at ynCn

0

for the product f .n;k/g.n
0;k0/. As nCn0D QnC2i , we know f .n;k/g.n;k/ satisfies
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the expansion at the origin (2-15) of a simple admissible function of degree . Qn; q C q0/. Therefore
f .n;k/g.n;k/ is simple admissible of degree . Qn; qCq0/ and thus fg is simple admissible of degree qCq0.

(iii) We treat the case where n is even, and the case n odd can be treated with exactly the same reasoning.
Let 1� i � d ; we just have to prove that @yif is admissible of degree q�1 and the result for higher-order
derivatives will follow by induction. We recall that Y .n;k/ is the restriction of a homogeneous harmonic
polynomial of degree n to the sphere. We will still denote by Y .n;k/.y/ this polynomial extended to
the whole space Rd and they are related by Y .n;k/.y/D jyjnY .n;k/.y=jyj/. This homogeneity implies
y:r.Y .n;k//.y/D nY .n;k/.y/ and leads to the identity

@yi

�
f .n;k/.jyj/Y .n;k/

�
y

jyj

��
D

�
@rf

.n;k/.jyj/�n
f .jyj/

jyj

�
yi

jyj
Y .n;k/

�
y

jyj

�
C
f .jyj/

jyj
@yiY

.n;k/

�
y

jyj

�
: (2-27)

One has now to prove that the two terms on the right-hand side are admissible of degree q� 1. We only
show it for the last term, the proof being the same for the first one. As @yiY

.n;k/.y=jyj/ is a homogeneous
polynomial of degree n�1 restricted to the sphere, it can be written as a finite sum of spherical harmonics
of odd degrees (because n is even) less than n� 1 and this gives

f

jyj
@yiY

.n;k/

�
y

jyj

�
D

X
1�n0�n�1

n0 odd; 1�k�k.n0/

ai;n;k;n0;k0
f

jyj
Y .n

0;k0/

�
y

jyj

�

for some coefficients ai;n;k;n0;k0 . Now fix n0; k0 in the sum. At infinity ai;n;k;n0;k0f .jyj/=jyj satisfies the
asymptotic behavior (2-16) of a simple admissible function of degree .n0; q� 1/. Close to the origin, one
has from (2-15), the fact that n0C 2j D n� 1 for some j 2 N, that for any i 2 N,

ai;n;k;n0;k0
f .r/

r
D

iX
lD0

Qclr
n�1C2l

CO.rn�1C2iC2/D

iX
lD0

Oclr
n0C2jC2l

CO.rn
0C2jC2iC2/;

which is the asymptotic behavior (2-15) of a simple admissible function of degree .n0; q � 1/ close to
the origin. Therefore, ai;n;k;n0;k0f .r/=r is a simple admissible function of degree .n0; q � 1/. Thus
.f =jyj/@yiY

.n;k/.y=jyj/ is an admissible function of degree .q� 1/. The same reasoning works for the
first term on the right-hand side of (2-27), and therefore @yi Œf

.n;k/.jyj/Y .n;k/.y=jyj/� is admissible of
degree q� 1.

(iv) We just showed in the last step that @�f is admissible of degree q�j�j for all � 2Nd; we then only
have to prove (iv) for the case �D .0; : : : ; 0/. This can be showed via the brute force bound for jyj � 1

jf .y/j D

ˇ̌̌̌
f .n;k/.jyj/Y .n;k/

�
y

jyj

�ˇ̌̌̌
� kY .n;k/kL1 jf

.n;k/.jyj/j � C jyjq

by (2-16) since f is a simple admissible function of degree .n; q/. �

The next lemma extends Lemma 2.9 to admissible functions. We do not give a proof, as it is a direct
consequence of the latter.
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Lemma 2.13 (action of H on admissible functions). Let f be an admissible function in the sense of
Definition 2.11 written as f .y/D

P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/, of degree q, with q > n�d . Assume
that for all n2N such that there exists k, 1�k�k.n/ with f .n;k/¤0, we have q satisfies�q�n�2 622N.
Then for all integers i 2 N, recalling that H�1f is defined by (2-25):

(i) H if is admissible of degree q� 2i .

(ii) H�if is admissible of degree qC 2i .

2E. Homogeneous functions. The approximate blow-up profile we will build in the following subsection
will look like QC

P
b
.n;k/
i T

.n;k/
i for some coefficients b.n;k/i (T .n;k/i being defined in (2-26)). The

nonlinearity in the semilinear heat equation (1-1) will then produce terms that will be products of the
profiles T .n;k/i and coefficients b.n;k/i . Such nonlinear terms are admissible functions multiplied by
monomials of the coefficients b.n;k/i . The set of triples .n; k; i/ for which we will make a perturbation
along T .n;k/i is I, defined in (1-39). Hence the vector b representing the perturbation will be

b D .b
.n;k/
i /.n;k;i/2I D .b

.0;1/
1 ; : : : ; b

.0;1/
L ; b

.1;1/
1 ; : : : ; b

.1;1/
L1

; : : : ; b
.n0;k.n0//
0 ; : : : ; b

.n0;k.n0//
Ln0

/: (2-28)

We will then represent a monomial in the coefficients b.n;k/i by a tuple of #I integers

J D .J
.n;k/
i /.n;k;i/2I D .J

.0;1/
1 ; : : : ; J

.0;1/
L ; J

.1;1/
1 ; : : : ; J

.1;1/
L1

; : : : ; J
.n0;k.n0//
0 ; : : : ; J

.n0;k.n0//
Ln0

/

through the formula

bJ WD .b
.0;1/
1 /J

.0;1/
1 � � � � � .b

.n0;k.n0//
Ln0

/
J
.n0;k.n0//

Ln0 : (2-29)

We associate three different lengths to J for the analysis. The first one, jJ j WD
P
J
.n;k/
i , represents the

number of parameters b.n;k/i that are multiplied in the above formula, counted with multiplicity, i.e., the
standard degree of bJ. In the analysis, the coefficients b.nk/i will have the size jb.n;k/i j. jb.0;1/1 j

�n
2
Ci.

The second length,

jJ j2 WD
X
n;k;i

�
 � n

2
C i

�
J
.n;k/
i ;

is tailor-made to produce the following identity if these latter bounds hold:

jbJ j. .b.0;1/1 /jJ j2 I

i.e., jJ j2 encodes the “size” of the real number bJ. For the construction of the approximate blow-up
profile, we will invert several times some elliptic equations, and the i-th inversion will be related to the
third length

jJ j3 WD

LX
iD1

iJ
.0;1/
i C

X
1�i�L1
1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I
2�n

.i C 1/J
.n;k/
i :

To track information about the nonlinear terms generated by the semilinear heat equation (1-1) we
eventually introduce the class of homogeneous functions.
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Definition 2.14 (homogeneous functions). Let b denote a #I-tuple under the form (2-28), m 2 N and
q 2 R. We recall that jJ j2 and jJ j3 are defined by (1-41) (1-42) and bJ is given by (2-29). We say that a
function S W RI �Rd ! R is homogeneous of degree .m; q/ if it can be written as a finite sum

S.b; y/D
X
J2J

bJSJ .y/;

#J <C1, where for each tuple J 2 J , one has that jJ j3 Dm and that the function SJ is admissible of
degree 2jJ j2C q in the sense of Definition 2.11.

As a direct consequence of Lemma 2.12, and so we do not write here the proof, we obtain the following
properties for homogeneous functions.

Lemma 2.15 (calculus on homogeneous functions). Let S and S 0 be two homogeneous functions of
degrees .m; q/ and .m0; q0/ in the sense of Definition 2.14, and � 2 Nd . Then:

(i) @�S is homogeneous of degree .m; q� j�j/.

(ii) SS 0 is homogeneous of degree .mCm0; qC q0/.

(iii) If , writing SD
P
J2J b

J
P
n;k S

.n;k/
J Y .n;k/, one has 2jJ j2Cq>n�d and�2jJ j2�q�n�2 622N

for all n; J such that there exists k, 1� k � k.n/ with S .n;k/J ¤ 0, then for all i 2N, H�i .S/ (given
by (2-25)) is homogeneous of degree .m; qC 2i/.

3. The approximate blow-up profile

3A. Construction. We first summarize the content and ideas of this section. We construct an approximate
blow-up profile relying on a finite number of parameters close to the set of functions .�z.Q�//�>0; z2Rd .
It is built on the generalized kernel of H , Span..T .n;k/i /n;i2N; 1�k�k.n// defined by (2-26), and can
therefore be seen as a part of a center manifold. The profile is built on the whole space Rd for the moment
and will be localized later.

In Proposition 3.1 we construct a first approximate blow-up profile. The procedure generates an error
term  , and by inverting elliptic equations, i.e., adding the term H�1 to our approximate blow-up
profile, one can always convert this error term into a new error term that is localized far away from the
origin. We apply this procedure several times to produce an error term that is very small close to the
origin. Then, in Proposition 3.3 we localize the approximate blow-up profile to eliminate the error terms
that are far away from the origin. We will cut in the zone jyj �B1 DB

1C�
0 , where �� 1 is a very small

parameter. In this zone, the perturbation in the approximate blow-up profile has the same size as ƒQ,
being the reference function for scale change. It will correspond to the self-similar zone jxj �

p
T � t

for the true blow-up function, where T will be the blow-up time.
The blow-up profile is described by a finite number of parameters whose evolution is given by the

explicit dynamical system (3-58). In Lemma 3.4 we show the existence of special solutions describing
a type II blow up with explicit blow-up speed. The linear stability of these solutions is investigated in
Lemma 3.5.
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There is a natural renormalized flow linked to the invariances of the semilinear heat equations (1-1).
For u a solution of (1-1), � W Œ0; T .u0//! R�

C
and z W Œ0; T .u0//! Rd two C 1 functions, if one defines

for s0 2 R the renormalized time

s.t/ WD s0C

Z t

0

1

�.t 0/2
dt 0 (3-1)

and the renormalized function

v.s; � / WD .��zu.t; � //�;

then from a direct computation, v is a solution of the renormalized equation

@sv�
�s

�
ƒv�

zs

�
:rv�F.v/D 0: (3-2)

Our first approximate blow-up profile is adapted to this new flow and is a special perturbation of Q.

Proposition 3.1 (first approximate blow-up profile). Let L 2 N, L� 1, and let b D .b.n;k/i /.n;k;i/2I
denote a #I-tuple of real numbers with b.0;1/1 > 0. There exists a #I-dimensional manifold of C1

functions .Qb/b2R�
C
�R#I�1 such that

F.Qb/D b
.0;1/
1 ƒQbC b

.1;� /
1 :rQbC

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

� @Qb
@b
.n;k/
i

� b; (3-3)

where b.1;� /1 denotes the d -tuple of real numbers .b.1;1/1 ; : : : ; b
.1;d/
1 /, where we used the convention

b
.n;k/
LnC1

D 0, and where  b is an error term. Let B1 be defined by (1-38). If the parameters satisfy the size
conditions6 b.0;1/1 � 1 and jb.n;k/i j . jb.0;1/1 j

�n
2
Ci for all .n; k; i/ 2 I, then  b enjoys the following

bounds:

(i) Global7 bounds. For 0� j � sL,

kH j bk
2
L2.jyj�2B1/

� C.L/.b
.0;1/
1 /2.j�m0/C2.1�ı0/Cg

0�C.L/�; (3-4)

kr
j bk

2
L2.jyj�2B1/

� C.L/.b
.0;1/
1 /2.

j
2
�m0/C2.1�ı0/Cg 0�C.L/�; (3-5)

where C.L/ is a constant depending on L only.

(ii) Local bounds.

8j � 0; 8B > 1;

Z
jyj�B

jr
j bj

2 dy � C.j;L/BC.j;L/.b
.0;1/
1 /2LC6: (3-6)

where C.L; j / is a constant depending on L and j only.

6This means that under the bounds jb.n;k/i j �Kjb
.0;1/
1 j

�n
2 Ci for some K > 0, there exists b�.K/ such that the estimates

that follow hold if b.0;1/1 � b�.K/ with constants depending on K. In what follows, K will be fixed independently of the other
important constants.

7The zone y � B1 is called global because in the next proposition we will cut the profile Qb in the zone jyj � B1.
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The profile Qb is of the form

Qb WDQC˛b; ˛b WD
X

.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si ; (3-7)

where T .n;k/i is as in (2-26), and the profiles Si are homogeneous functions in the sense of Definition 2.14
with

deg.Si /D .i;� �g0/ (3-8)

and with the property that for all 2 � j � LC 2, we have @Sj =@b
.n;k/
i D 0 if j � i for nD 0; 1 and if

j � i C 1 for n� 2.

Remark 3.2. The previous proposition is to be understood in the following way. We have a special
function depending on some parameters b close to Q, that is to say, at scale 1 and with concentration
point 0 for the moment. Equation (3-3) means that the force term (i.e., when applying F ) generated by
(NLH) makes it concentrate at speed b.0;1/1 and translate at speed b.1;� /1 , while the time evolution of the
parameters is an explicit dynamical system given by the third term. These approximations involve an
error for which we have some explicit bounds (3-4) and (3-6).

The size of this approximate profile is directly related to the size of the perturbation along T .0;1/1 , the
first term in the generalized kernel of H responsible for scale variation. Indeed we ask for jb.n;k/i j .
jb
.0;1/
1 j

�n
2
Ci, and the size of the error is measured via b.0;1/1 ; see (3-4), (3-5) and (3-6). Therefore b.0;1/1

will be the universal order of magnitude in our problem.
Because of the shape of this approximate blow-up profile (3-7), when including the time evolution of

the parameters in (3-3) we get

@s.Qb/�F.Qb/C b
.0;1/
1 ƒQbC b

.1;� /
1 :rQb DMod.s/C b; (3-9)

where8

Mod.s/D
X

.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jDiC1Cın�2

@Sj

@b
.n;k/
i

�
: (3-10)

For all 2� j � LC 2, as Sj is homogeneous of degree .j;� �g0/ in the sense of Definition 2.14 from
(3-8), and from the fact that @Sj =@b

.n;k/
i D 0 if j � i for nD 0; 1 and if j � i C 1 for n � 2, one has

that for all j , n, k, i , we have @Sj =@b
.0;1/
i is either 0 or is homogeneous of degree .a; b/ with a � 1,

meaning that it never contains nontrivial constant functions independent of the parameters b. Hence,
if the bounds jb.n;k/i j . jb.0;1/1 j

�n
2
Ci hold, since jb.0;1/1 j . 1 and �n � � from (1-18), one has in

particular that on compact sets for any 2� j � LC 2 and .n; k; i/ 2 I,
@Sj

@b
.n;k/
i

DO.jb
.0;1/
1 j/: (3-11)

Proof of Proposition 3.1. Step 1: computation of  b . We first find an appropriate reformulation for the
error  b given by (3-3) when Qb has the form (3-7).

8Here ın�2 D 1 if n� 2, and is zero otherwise.
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Rewriting of F.Qb/ in (3-3). We start by computing

�F.Qb/DH.˛b/�.f .Qb/�f .Q/�˛bf
0.Q//

D

X
.n;k;i/2I

b
.n;k/
i HT

.n;k/
i C

LC2X
iD2

H.Si /�.f .Qb/�f .Q/�˛bf
0.Q//

D�b
.0;1/
1 ƒQ�b

.1;�/
1 :rQ�

X
.n;k;i/2I

b
.n;k/
iC1 T

.n;k/
i C

LC2X
iD2

H.Si /�.f .Qb/�f .Q/�˛bf
0.Q//;

(3-12)
where we used the definition of the profiles T .n;k/i from (2-26), and the convention b.n;k/LnC1

D 0. For
i D 2; : : : ; L, we regroup the terms that involve the multiplication of i parameters b.n;k/j in the nonlinear
term �.f .Qb/�f .Q/�˛bf 0.Q//. Since p is an odd integer,

�
f .Qb/�f .Q/�˛bf

0.Q/
�
D

pX
kD2

C
p

k
Qp�k˛kb

D

pX
kD2

C
p

k
Qp�k

� X
jJ j1Dk

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

LC2Y
iD2

S
Ji
i

�
;

(3-13)
where J D .J .0;1/1 ; : : : ; J

.n0;k.n0//
Ln0

; J2; : : : ; JLC2/ represents a .#ICLC1/-tuple of integers. Anticipating
that the profile Si will be a homogeneous profile of degree .i;  �g0/, we define for such tuples J ,

jJ j3 D

LX
iD1

iJ
.0;1/
i C

X
1�i�L1; 1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I; 2�n

.i C 1/J
.n;k/
i C

LC2X
iD2

iJi : (3-14)

We reorder the sum in the previous equation, (3-13), partitioning the .#ICLC 1/-tuples J according
to their length jJ j3 instead of their length J1:

�
f .Qb/�f .Q/�˛bf

0.Q/
�
D

LC2X
jD2

Pj CR:

Pj captures the terms with polynomials of the parameters b.n;k/i of length jJ j3 D j :

Pj D

pX
kD2

CkQ
p�k

� X
jJ jDk;jJ j3Dj

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

LC2Y
iD2

S
Ji
i

�
: (3-15)

The remainder contains only terms involving polynomials of the parameters b.n;k/i of length j � j3 greater
than or equal to LC 3:

RD
�
f .Qb/�f .Q/�˛bf

0.Q/
�
�

LC2X
iD2

Pi : (3-16)
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From (3-12) we end up with the final decomposition

�F.Qb/D�b
.0;1/
1 ƒQ� b

.1;� /
1 :rQ�

X
.n;k;i/2I

b
.n;k/
iC1 T

.n;k/
i C

LX
iD2

H.Si /�

LC2X
iD2

Pi �R: (3-17)

Rewriting of the other terms in (3-3). From the form of Qb in (3-7), one has

b
.0;1/
1 ƒQb D b

.0;1/
1 ƒQC

X
.n;k;i/2I

b
.0;1/
1 b

.n;k/
i ƒT

.n;k/
i C

LC2X
iD2

b
.0;1/
1 ƒSi ; (3-18)

b
.1;� /
1 :rQb D b

.1;� /
1 :rQC

dX
jD1

� X
.n;k;i/2I

b
.1;j /
1 b

.n;k/
i @xj T

.n;k/
i C

LC2X
iD2

b
.1;j /
1 @xjSi

�
; (3-19)

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

� @Qb
@b
.n;k/
i

D

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jD2

@Sj

@b
.n;k/
i

�
: (3-20)

Expression of the error term  b . Using (2-21), we define

‚
.n;k/
i .y/ WD‚

.n/
i .jyj/Y .n;k/

�
y

jyj

�
:

From (3-17)–(3-20),  b given by (3-3) is a sum of terms that are polynomials in b, and, denoting a
monomial by bJ, we rearrange them according to the value jJ j3:

 b D

LC2X
iD2

Œˆi CH.Si /�C b
.0;1/
1 ƒSLC2C

dX
jD1

b
.1;j /
1 @xjSLC2

C

X
.n;k;i/2I

.�.2i �˛n/b
.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 /

@SLC2

@b
.n;k/
i

�R; (3-21)

where the profiles ˆi are given by the formulas

ˆ2 WD .b
.0;1/
1 /2‚

.0;1/
1 C

dX
kD1

b
.0;1/
1 b

.1;k/
1 ‚

.1;k/
1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
1 @xj T

.0;1/
1 C

dX
kD1

b
.1;j /
1 b

.1;k/
1 @xj T

.1;k/
1

�

C

X
.n;k;0/2I; n�2

�
b
.0;1/
1 b

.n;k/
0 ‚

.n;k/
0 C

dX
jD1

b
.1;j /
1 b

.n;k/
0 @xj T

.n;k/
0

�
�P2; (3-22)
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and for i D 3; : : : ; LC 1,

ˆi WD b
.0;1/
1 b

.0;1/
i�1 ‚

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.0;1/
1 b

.1;k/
i�1 ‚

.1;k/
i�1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
i�1 @xj T

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.1;j /
1 b

.1;k/
i�1 @xj T

.1;k/
1

�

C

X
.n;k;i�2/2I; n�2

�
b
.0;1/
1 b

.n;k/
i�2 ‚

.n;k/
i�2 C

dX
jD1

b
.1;j /
1 b

.n;k/
i�2 @xj T

.n;k/
i�2

�

C b
.0;1/
1 ƒSi�1C

dX
mD1

b
.1;m/
1 @xmSi�1

C

X
.n;k;j /2I

�
�.2j �˛n/b

.0;1/
1 b

.n;k/
j C b

.n;k/
jC1

� @Si�1
@b
.n;k/
j

�Pi ; (3-23)

ˆLC2 WD b
.0;1/
1 ƒSLC1C

dX
mD1

b
.1;m/
1 @xmSLC1

C

X
.n;k;j /2I

�
�.2j �˛n/b

.0;1/
1 b

.n;k/
j C b

.n;k/
jC1

� @SLC1
@b
.n;k/
j

�PLC2: (3-24)

Step 2: definition of the profiles .Si /2�i�LC2 and simplification of  b . We define by induction a
sequence of couples of profiles .Si /2�i�LC2 by�

S2 WD �H
�1.ˆ2/

Si WD �H
�1.ˆi / for 3� i � LC 2; with ˆi defined by (3-22), (3-23), (3-24);

(3-25)

where H�1 is defined by (2-25). In the next step we prove that there is no problem in this construction.
Since the Si are defined in this way, by (3-21) we get the final expression for the error

 bDb
.0;1/
1 ƒSLC2C

dX
jD1

b
.1;j /
1 @xjSLC2C

X
.n;k;i/2I

�
�.2i�˛n/b

.0;1/
1 b

.n;k/
i Cb

.n;k/
iC1

� @SLC2
@b
.n;k/
i

�R: (3-26)

Step 3: properties of the profiles Si . We prove by induction on i D 2; : : : ; LC2 that Si is homogeneous of
degree .i;��g0/ in the sense of Definition 2.14, and that for all 2� j �LC2, we have @Sj =@b

.n;k/
i D 0

if j � i for nD 0; 1 and if j � i C 1 for n� 2.

Initialization. We now prove that S2 is homogeneous of degree .2;� �g0/, and that @S2=@b
.n;k/
i D 0

if 2� i for nD 0; 1 and if 1� i for n� 2. We claim that ˆ2 is homogeneous of degree .2;� �g0� 2/
and that @ˆ2=@b

.n;k/
i D 0 if 2� i for nD 0; 1 and if 1� i for n� 2. To prove this, we prove that these

two properties are true for every term on the right-hand side of (3-22).
From Lemma 2.10,‚.0;1/1 is simple admissible of degree .0;�C2�g0/ in the sense of Definition 2.11.

We also know .b
.0;1/
1 /2 can be written under the form J

.0;1/
1 D 2 and J .n;k/i D 0 otherwise and one has

jJ j2D2 and jJ j3D2. Therefore, .b.0;1/1 /2‚
.0;1/
1 is homogeneous of degree .jJ j3;�C2�g0�2jJ j2/D

.2;� �g0� 2/. The same reasoning applies for b.0;1/1 b
.1;k/
1 ‚

.1;k/
1 for 1� k � d .
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For 1� j � d , we know T
.0;1/
1 is admissible of degree .0;�C2/ by Lemma 2.12, so @xj T

.0;1/
1 is ad-

missible of degree .�C1/ by Lemma 2.10. We also know b.1;j /1 b
.0;1/
1 can be written in the form bJ with

J
.0;1/
1 D 1, J .1;j /1 D 1 and J .n;k/i D 0 otherwise; therefore jJ j3D 2 and jJ j2D 1C

�1
2
C1D 2C ˛�1

2
by

(1-18). Thus b.1;j /1 b
.0;1/
1 @xj T

.0;1/
1 is homogeneous of degree .jJ j3;�1C1�2jJ j2/D .2;� �2�˛/.

As g0<˛, it is then homogeneous of degree .2;��g0�2/. The same reasoning applies for 1� j; k� d
to the term b

.1;j /
1 b

.1;k/
1 @xj T

.1;k/
1 .

We now examine for .n; k; 0/ 2 I the profile

b
.0;1/
1 b

.n;k/
0 ‚

.n;k/
0 C

dX
jD1

b
.1;j /
1 b

.n;k/
0 @xj T

.n;k/
0 :

‚
.n;k/
0 is simple admissible of degree .n;�n�g0/ by Lemma 2.10, and b.0;1/1 b

.n;k/
0 can be written in the

form bJ for J .0;1/1 D1, J .n;k/0 D1 and J .n
0;k0/

i D0 otherwise. One then has jJ j3D2 and jJ j2D1C
�n
2

.
Therefore, b.0;1/1 b

.n;k/
0 ‚

.n;k/
0 is homogeneous of degree .jJ j3;�n � g0 � 2jJ j2/ D .2;� � g0 � 2/.

Similarly the terms in the sum in the above identity are homogeneous of degree .2;� �g0� 2/.
We now look at the nonlinear term P2. Since, for 2� i � LC 2, the profile Si involves polynomials

of b in the form bJ with jJ j3 D i , from its definition (3-15) P2 does not depend on the profiles Si for
2� i � LC 2 and can be written as

P2 D CQ
p�2

�
b
.0;1/
1 T

.0;1/
1 C

dX
kD1

b
.1;k/
1 T

.1;k/
1 C

X
.n;k;0/2I

b
.n;k/
0 T

.n;k/
0

�2
for a constant C . We have to prove that all the mixed terms that are produced by this formula are
homogeneous of degree .2;  � g0 � 2/. We write it only for one term, and apply the same rea-
soning to the others. For all ..n; k; 0/; .n0; k0; 0// 2 I2, by Lemmas 2.10 and 2.15 and (2-1), the
profile b.n;k/0 b

.n0;k0/
0 Qp�2T

.n;k/
0 T

.n0;k0/
0 is homogeneous of degree .2;� � 2�˛/ and then of degree

.2;� � 2� g0/. As we said, similar considerations yield that all the other terms are homogeneous of
degree .2;  �g0� 2/. This implies that P2 is homogeneous of degree .2;� �g0� 2/.

We have examined all terms in (3-22) and consequently proved that ˆ2 is homogeneous of degree
.2;� � 2�g0/. By a direct check of all the terms on the right-hand side of (3-22), with P2 given by the
above identity, one has that @ˆ2=@b

.n;k/
i D 0 if 2� i for nD 0; 1 and if 1� i for n� 2. We now check

that we can apply Lemma 2.15(iii) to invert ˆ2 and to propagate the homogeneity. For all #I-tuples J
with jJ j3D 2, one has indeed for all integers n that 2jJ j2�n�2�g0 > n�d as the sequence .n/n2N

is decreasing and d � 2 � 2 > 0. For the second condition required by the lemma, we notice that g0

is not a “fixed” constant in our problem, as its definition (1-21) involves a parameter ". The purpose of
the parameter " is the following: by choosing it appropriately, we can suppose that for every 0� n� n0
and #I-tuple J with jJ j3 D 2 we have

�2jJ j2C  Cg
0
� n … 2N:

This allows us to apply Lemma 2.15(iii): S2 is homogeneous of degree .2;� � g0/. We also get that
@S2=@b

.n;k/
i D 0 if 2 � i for n D 0; 1 and if 1 � i for n � 2 as this is true for ˆ2. This proves the

initialization of our induction.
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Heredity. Suppose 3� i �LC1, and that Si 0 is homogeneous of degree .i 0;� �g0/ for 2� i 0 � i , and
that @S 0i=@b

.n;k/
j D 0 if i 0 � j for nD 0; 1 and if i 0�1� j for n� 2. We claim that ˆi is homogeneous

of degree .i;� �g0� 2/ and that @ˆi=@b
.n;k/
j D 0 if i � j for nD 0; 1 and if i � 1� j for n� 2. We

prove it by looking at all the terms on the right-hand side of (3-23). With the same reasoning we used
for the initialization, we prove that

b
.0;1/
1 b

.0;1/
i�1 ‚

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.0;1/
1 b

.1;k/
i�1 ‚

.1;k/
i�1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
i�1 @xj T

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.1;j /
1 b

.1;k/
i�1 @xj T

.1;k/
1

�

C

X
.n;k;i�2/2I; n�2

�
b
.0;1/
1 b

.n;k/
i�2 ‚

.n;k/
i�2 C

dX
jD1

b
.1;j /
1 b

.n;k/
i�2 @xj T

.n;k/
i�2

�
is homogeneous of degree .i; �g0�2/. From the induction hypothesis, b.0;1/1 ƒSi�1 is homogeneous of
degree .i;� �g0� 2/. From Lemma 2.12, for 1� j � d , we know @xjSi�1 is homogeneous of degree
.i�1;��g0�1/, so that b.1;j /1 @xjSi�1 is homogeneous of degree .i;��g0�2�˛/; since ˛ is positive,
it is then homogeneous of degree .i;��g0�2/. Still from the induction hypothesis, for all .n; k; i 0/2 I,�

�.2i 0�˛n/b
.0;1/
1 b

.n;k/
i 0 C b

.n;k/
i 0C1

� @Si�1
@b
.n;k/
i 0

is homogeneous of degree .i;��g0�2/. The last term to be considered is Pi . Since, for 2� j �LC2,
the profile Sj involves polynomials of b of the form bJ with jJ j3 D i , from its definition (3-15) Pi does
not depend on the profiles Sj for i � j � LC 2 and can be written as

Pi D

pX
kD2

CkQ
p�k

� X
jJ jDk; jJ j3Di

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

i�1Y
jD2

S
Jj
j

�
:

Let k be an integer 2� k �p; let J be a #ICL-tuple with jJ j3D i . Then from the induction hypothesis,

Qp�k
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

i�1Y
jD2

S
Jj
j

is homogeneous of degree
�
i;� �2� .k�1/˛�g0

Pi�1
jD2 Jj

�
. As k � 2 and ˛ > g0, it is homogeneous

of degree .i;  � 2�g0/.
We just proved that ˆi is homogeneous of degree .i;� � 2�g0/. By a direct check of all the terms

on the right-hand side of (3-23), with Pi given by the above formula, one has that @ˆi=@b
.n;k/
j D 0 if

i � j for nD 0; 1 and if i �1� j for n� 2. We now check that we can apply Lemma 2.15(iii) to get the
desired properties for Si D�H�1ˆi . For all #I-tuples J with jJ j3D i and integers n, the first condition
jJ j2�  � 2�g

0 > n� d is fulfilled since �2n� d � �2 � d > 2. For the second condition, again
as in the initialization, as g0 is not a “fixed” constant in our problem (its definition (1-21) involves a
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parameter "), we can choose it such that for every 0� n� n0 and #I-tuple J with jJ j3 D i ,

�2jJ j2C  Cg
0
� n … 2N:

We thus can apply Lemma 2.15(iii): Si is homogeneous of degree .i;� � g0/. One also obtains that
@Si=@b

.n;k/
j D 0 if i � j for nD 0; 1 and if i � 1 � j for n � 2, as this is true for ˆi . This proves the

heredity in our induction.
The last step, that it is the heredity from LC 1 to LC 2, can be proved exactly the same way and we

do not write it here.

Step 4: bounds for the error term. In Step 2 we computed the expression (3-26) of the error term  b .
In Step 3 we proved that the profiles Si were well defined and homogeneous of degree .i;� �g0/. We
can now prove the bounds on  b claimed in the proposition. In the sequel we always assume the bounds
jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci and jb.0;1/1 j � 1.

Homogeneity of  b . We claim that  b is a finite sum of homogeneous functions of degree .i;��g0�2/
for i � LC 3. For this we consider all terms on the right-hand side of (3-26). As SLC2 is homogeneous
of degree .LC 2;� � g0/ from Step 3, the function b.0;1/1 ƒSLC2 is homogeneous of degree .LC 3;
��g0�2/ by Lemma 2.15. Similarly for 1� j �d , we know b.1;j /1 @xjSLC2 is homogeneous of degree
.LC3;��g0�2�˛/ (and then homogeneous of degree .LC3;��g0�2/ as ˛>0), and for .n; k; i/2I,

.�.2i �˛n/b
.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 /

@SLC2

@b
.n;k/
i

is homogeneous of degree .LC 3;� �g0� 2/. From its definition (3-16), and since Si is homogeneous
of degree .i;� �g0/ for 2� i � LC 2, we have R is a finite sum of homogeneous profiles of degree
.i;� � ˛ � 2/ with i � LC 3. All this implies that  b is a finite sum of homogeneous functions of
degree .i;� �g0� 2/ for i � LC 3.

Proof of an intermediate estimate. We claim that there exists an integer A � LC 3 such that for � a
d -tuple of integers, j 2 N and B > 1 we haveZ

jyj�B

j@� bj
2

1Cjyj2j
dy � C.L/

AX
iDLC3

jb
.0;1/
1 j

2iBmax .4iC4.m0� j�jCj2 /C4.ı0�1/�2g 0;0/: (3-27)

We now prove this bound. We proved earlier that  b is a finite sum of homogeneous functions of
degree .i;� �g0� 2/ for i � LC 3. Consequently, it suffices to prove this bound for a homogeneous
function bJf .y/ of degree .jJ j3;� � g0 � 2/ with jJ j3 � L C 3. As f is admissible of degree
.2jJ j2�  �g

0� 2/, one then computesZ
jyj�B

jbJ @�f j2

1Cjyj2j
� C.f /jb

.0;1/
1 j

2jJ j2

Z B

0

.1C r/4jJ j2�2�2g
0�4�2j�2j�jrd�1 dr

� C.f /jb
.0;1/
1 j

2jJ j2Bmax .4jJ j2C4.m0C jCj�j2
/C4.ı0�1/�2g 0;0/

(we avoid the logarithmic case in the integral by changing a bit the value of g0 defined in (1-21), by
changing a bit the value of "). This concludes the proof of (3-27).
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Proof of the local bounds for the error. Let j be an integer, and � 2 Nd with j�j D j . From (3-27),
jb
.0;1/
1 j � 1 and B > 1, we obtain, by (3-27),Z

jyj�B

j@� bj
2 dy � C.L/jb

.0;1/
1 j

2LC6Bmax .4AC4.m0� j�jCj2 /C4.ı0�1/�2g 0;0/;

which gives the desired bound (3-6).

Proof of the global bounds for the error. Let j � 2sL, and � 2Nd with j�j D j . Using (3-27), we notice
that for LC 3� i � A one has

max
�
4i C 4

�
m0�

j�jC j

2

�
C 4.ı0� 1/� 2g

0; 0

�
D 4i C 4

�
m0�

j�jC j

2

�
C 4.ı0� 1/� 2g

0:

This implies Z
jyj�B1

j@� bj
2

1Cjyj2j
dy � C.L/

AX
iDLC3

jb
.0;1/
1 j

2iB
4iC4.m0� j�jCj2 /C4.ı0�1/�2g 0

1

� C.L/jb
.0;1/
1 j

2. j
2
�m0/C2.1�ı0/Cg 0�C.L/�;

which is the desired bound (3-5). Let j be an integer, j � sL. Now, as H D ��C V , where V is a
smooth potential satisfying j@�V j � C.�/.1Cjyj/�2�j�j, by (2-2) one obtainsZ

jyj�B1

jH j bj
2 dy � C.L/

X
j 0Cj�j1D2j

Z
jyj�B1

j@� bj
2

1Cjyj2j
0 dy

� C.L/
X

j 0Cj�jD2j

AX
iDLC3

jb
.0;1/
1 j

2iB
max.4iC4.m0�j /C4.ı0�1/�2g 0;0/
1

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�

using (3-27) (because again 4iC4.m0�j /C4.ı0�1/�2g0 > 0 as i �LC3 and j � sL). This proves
the last estimate (3-4). �

We now localize the perturbation built in Proposition 3.1 in the zone jyj � B1 and estimate error
generated by the cut. We also include the time-dependence of the parameters following Remark 3.2. We
recall that sL is defined by (1-24).

Proposition 3.3 (localization of the perturbation). The function � is a cut-off defined by (1-43). We keep
the notations from Proposition 3.1. I D .s0; s1/ is an interval, and

b W I ! R#I ; s 7! .b
.n;k/
i .s//.n;k;i/2I ;

is a C 1 function with the a priori bounds9

jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci ; 0 < b

.0;1/
1 � 1; jb

.0;1/
1;s j. jb

.0;1/
1 j

2: (3-28)

9This means that under the bounds jb.n;k/i j �Kjb
.0;1/
1 j

�n
2 Ci for some K > 0, there exists b�.K/ such that the estimates

that follow hold if b.0;1/1 � b�.K/ with constants depending on K. In what follows, K will be fixed independently of the other
important constants.
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We define the profile zQb as

zQb WDQC Q̨b DQC�B1˛b; Q̨b WD �B1˛b: (3-29)

Then one has the identity (Mod.s/ being defined by (3-10))

@s zQb �F. zQb/C b
.0;1/
1 ƒ zQbC b

.1;� /
1 :r zQb D Q bC�B1 Mod.s/ (3-30)

with, for 0 < �� 1 small enough, an error term Q b satisfying the following bounds:

(1) Global bounds. For any integer j with 1� j � sL� 1 we haveZ
Rd
jH j Q bj

2 dy � C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/�Cj�: (3-31)

For any real number sc � j < 2sL� 2,Z
Rd
jr
j Q bj

2 dy � C.L/jb
.0;1/
1 j

2. j
2
�m0/C2.1�ı0/�Cj�; (3-32)

and for j D sL, one has the improved boundZ
Rd
jH sL Q bj

2 dy � C.L/jb
.0;1/
1 j

2LC2C2.1�ı0/C2�.1�ı
0
0/: (3-33)

(2) Local bounds. One has that ( b being defined by (3-3))

8jyj< B1; Q b.y/D  b; (3-34)

and for any 1� B � B1 and j 2 N,Z
jyj�B

jr
j Q bj

2 dy � C.L; j /BC.L;j /jb
.0;1/
1 j

2LC6: (3-35)

Proof. First, we compute the expression of the new error term by rewriting the left-hand side of (3-30)
using (3-9) and the fact that F.Q/D 0:

Q b D �B1 bC @s.�B1/ Q̨b �
�
F.QC�B1˛b/�F.Q/��B1

�
F.QC˛b/�F.Q/

��
C b

.0;1/
1 .ƒQ��B1ƒQ/C b

.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/

C b
.1;� /
1 :.rQ��B1rQ/C b

.0;1/
1 :.r.�B1˛b/��B1r˛b/: (3-36)

Local bounds. In the previous identity, one clearly sees that all the terms, except �B1 b , have their
support in B1 � jyj. Thus, for B � B1, the bound (3-35) is a direct consequence of the local bound (3-6)
for  b .

Global bounds. Let m1C 1� j � sL. We will prove the bounds (3-31) and (3-33) by proving that this
estimate holds for all terms on the right-hand side of (3-36). The reasoning to prove the estimates will be
similar from one term to another. For this reason, we shall go quickly whenever an argument has already
been used earlier.
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The �B1 b term. As H D��CV for V a smooth potential with @�V . .1Cjyj/�2�j�j by (2-2), and
as .@kr .�B1//.r/D B

�k
1 @kr �.r=B1/, we have the identity

H j .�B1 b/D �B1H
j bC

jX
�2Nd

0�j�j�2j�1

f�@
� b;

where for each � 2Nd, with 0� j�j � j �1, we have f� has its support in B1 � jxj � 2B1 and satisfies
jf�j � C.L/B

�.2j�j�j/
1 . Using (3-4) and (3-5) we obtainZ

Rd
jH j .�B1 b/j

2dy

�C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�

C

jX
�2Nd

0�j�j�2j�1

B
�.4j�2j�j/
1 b

2. j�j
2
�m0C2.1�ı0/Cg

0�C.L/�/
1

�C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�: (3-37)

Similarly, one obtains, for any integer j 0 with 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.�B1 b/j

2
� C.L/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/Cg 0�C.L/�: (3-38)

Using interpolation, this estimate remains true for any real number j 0 with 0� j 0 � 2sL� 2.

The @s.�B1/˛b term. We first split using (3-7):

@s.�B1/˛b D @s.�B1/

� X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si

�
: (3-39)

We compute

@s.�B1/D .b
.0;1/
1 /�1b

.0;1/
1;s

jyj

B1
.@r�B1/

�
y

B1

�
:

We first treat the Si terms. As we already explained in the study of the �B1 b term, one has

H j .@s.�B1/Si /D
X

�2Nd ; j�j�2j

f�@
�Si

with f� a smooth function, with support in B1 � jxj � 2B1 and satisfying jf�j �C.L/b
.0;1/
1 B

�.2j�j�j1/
1

(because jb.0;1/1;s j . jb
.0;1/
1 j2 by (3-28)). As Si is homogeneous of degree .i;� � g0/ in the sense of

Definition 2.14, from (3-8) and jb.n;k/i j. jb.0;1/1 j
�n
2
Ci we getZ

Rd
jH j .@s.�B1/Si /j

2 dy � C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/� (3-40)
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using Lemma 2.15. Now we treat the T .n;k/i terms in the identity (3-39). Let .i; n; k/ 2 I. Then again
one has the decomposition

H j Œ@s.�B1/b
.n;k/
i T

.n;k/
i �D b

.n;k/
i

X
�2Nd ; j�j�2j

f�@
�T

n;k
i

with f� a smooth function, with support in B1 � jyj � 2B1 and satisfying jf�j � C.L/b
.0;1/
1 B

�.2j�j�j/
1 .

As T .n;k/i is an admissible profile of degree .�nC 2i/ in the sense of Definition 2.11 by (2-26) and
Lemma 2.10, @�T n;ki is admissible of degree .�nC 2i � j�j/ by Lemma 2.12 and we computeZ

Rd
jb
.n;k/
i f�@

�T
n;k
i j

2 dy �
C.L/jb

.0;1/
1 j�nC2iC2

B
2.2j�j�j1/

1

Z 2B1

B1

r�2nC4i�2j�j1rd�1 dr

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C�.2j�2i�2ın�2mn/:

As .i; n; k/ 2 I, we know i � Ln so if j D sL one has 2j � 2i � 2ın � 2mn � 2� 2ın. Therefore we
have proved the bound (we recall that ı00 Dmax0�n�n0 ın 2 .0; 1/)Z

Rd
jH j .@s.�B1/b

.n;k/
i T

.n;k/
i /j2 dy �

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/C�.1�ı

0
0/ if j D sL:

(3-41)
From the decomposition (3-39), the bounds (3-40) and (3-41), we deduce the boundZ

Rd
jH j .@s.�B1/˛bj

2 dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if 0� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL:
(3-42)

Using verbatim the same arguments, one gets that for any integer 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.@s.�B1/˛bj

2 dy � C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�; (3-43)

which remains true for any real number j 0 with 0� j 0 � 2sL� 2 by interpolation.

The F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q// term. It can be written as

F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

D�.�B1˛b/��B1�˛bC .QC�B1˛b/
p
�Qp ��B1..QC˛b/

p
�Qp/: (3-44)

We now prove the bound for the two terms that have appeared. From the identity

�.�B1˛b/��B1�˛b D�.�B1/˛bC 2r�B1 :r˛b;

as � is radial and as .@kr .�B1//.r/D B
�k
1 @kr �.r=B1/, one sees that this term can be treated exactly the

same way we treated the previous term: @s.�B1/˛b . This is why we claim the following estimates that



164 CHARLES COLLOT

can be proved using exactly the same arguments:Z
Rd
jH j .�.�B1˛b/��B1�˛b/j

2 dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL:
(3-45)

We now turn to the other term in (3-44), which can be rewritten as

.QC�B1˛b/
p
�Qp ��B1..QC˛b/

p
�Qp/D

pX
kD2

C
p

k
Qp�k�B1.�

k�1
B1
� 1/˛kb :

All the terms are localized in the zone B1 � jyj � 2B1. From the definition (3-7) of ˛b , (3-8), (2-1) and
Lemma 2.15, for each 2� k � p one has that Qp�k˛k

b
is a finite sum of homogeneous profiles of degree

.i;� �˛� 2/ for i � k, yieldingZ
Rd

ˇ̌
H j

�
.QC�B1˛b/

p
�Qp ��B1..QC˛b/

p
�Qp/

�ˇ̌2
dy

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�: (3-46)

From the decomposition (3-44) and the estimates (3-45) and (3-46) one getsZ
Rd

ˇ̌
H j

�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�ˇ̌2
dy

� C.L/

(
jb
.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 j˛�C.L/�

�
if j D sL:

(3-47)

The same methods used for the two previous terms yield the analogue estimate for

r
j 0
�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�
for any integer 0� j 0 � 2sL� 2, and by interpolation, we obtain, for any real number j 0 with 0� j 0 �
2sL� 2,Z

Rd

ˇ̌
r
j 0
�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�ˇ̌2
dy

� C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�: (3-48)

The b.0;1/1 .ƒQ � �B1ƒQ/ term. As @�.ƒQ/ � C.�/.1 C jyj/��j�j for all � 2 Nd by (2-7) and
HƒQD 0, one computesZ

Rd

ˇ̌
H j .b

.0;1/
1 .ƒQ��B1ƒQ//

ˇ̌2
dy � C.j /jb

.0;1/
1 j

2

Z 2B1

B1

r�2�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C2�.j�m0�ı0/ (3-49)
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with sL �m0 � ı0 D LC 1� ı0 > 1� ı0 for j D sL. For any integer j 0 with EŒsc� � j 0 � 2sL � 2,
similar reasoning yields the estimateZ

Rd
jr
j 0.b

.0;1/
1 .ƒQ��B1ƒQ//j

2 dy � C.j 0/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�:

By interpolation, one has for any real number j 0 with EŒsc�� j 0 � 2sL� 2,Z
Rd

ˇ̌
r
j 0.b

.0;1/
1 .ƒQ��B1ƒQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�: (3-50)

The b.0;1/1 .ƒ.�B1˛b/��B1ƒ˛b/ term. First we write this term as

b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b D b

.0;1/
1 .y:r�B1/˛b:

Now, we notice that

b
.0;1/
1 .y:r�B1/D b

.0;1/
1

jyj

B1
.@r�/

�
jyj

B1

�
is very similar to

@s.�B1/D .b
.0;1/
1 /�1b

.0;1/
1;s

jyj

B1
.@r�B1/

�
y

B1

�
in the sense that it enjoys the same estimates, as jb.0;1/1;s j. .b

.0;1/
1 /2 by (3-28). Thus, we can get exactly

the same estimates for the term b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/ that we obtained previously for the term

@s.�B1/˛b with the exact same methodology, yieldingZ
Rd

ˇ̌
H j

�
b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/

�ˇ̌2
dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if 0� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL;
(3-51)

and for any integer j 0 with 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.b

.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b//j

2 dy � C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�: (3-52)

The b.1;� /1 :.rQ��B1rQ/ term. First we rewrite

b
.1;� /
1 :.rQ��B1rQ/D

dX
iD1

b
.1;i/
1 .1��B1/@yiQ: (3-53)

Now let i be an integer, 1� i � d . From the asymptotic (2-1) of the ground state

j@�Qj � C.�/.1Cjyj/�
2
p�1
�j�j
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and the fact that H@xiQD 0, we deduceZ
Rd

ˇ̌
H j

�
b
.1;i/
1 ..1��B1/@yiQ/

�ˇ̌2
dy � C.j /jb

.0;1/
1 j

�1C2

Z 2B1

B1

r�21�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/�2.1�ı0/C2�.j�m1�ı1/

with sL�m1� ı1 D LCm0�m1C 1� ı1 > 1� ı1 for j D sL. So we finally get, putting together the
two previous equations,Z

Rd

ˇ̌
H j

�
b
.1;� /
1 :.rQ��B1rQ/

�ˇ̌2
dy � C.j /jb

.0;1/
1 j

2

Z C1
B1

r�2�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/�2.1�ı0/C2�.1�ı1/: (3-54)

Now, for any integer j 0 with EŒsc�� j 0� 2sL�2, as EŒsc� > sc�1, similar reasoning yields the estimateZ
Rd

ˇ̌
r
j 0.b

.1;� /
1 :.rQ��B1rQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�:

By interpolation, one has for any real number j 0 with EŒsc�� j 0 � 2sL� 2,Z
Rd

ˇ̌
r
j 0.b

.1;� /
1 :.rQ��B1rQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�: (3-55)

The b.0;1/1 :.r.�B1˛b/��B1r˛b/ term. We first rewrite

b
.0;1/
1 :.r.�B1˛b/��B1r˛b/D

dX
iD1

b
.1;i/
1 @yi .�B1/˛b:

Let i be an integer, 1� i � d . For all � 2 Nd , we know @�.�B1/� C.�/B
�j�j
1 . From (3-7) and (3-8),

˛b is a sum of homogeneous profiles of degree .i;�/. Using Lemma 2.15, one computesZ
Rd

ˇ̌
H j .b

.1;i/
1 @yi .�B1/˛b/

ˇ̌2
dy � C.L/jb

.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�:

With the two previous equations, one has proved thatZ
Rd

ˇ̌
H j

�
b
.0;1/
1 :.r.�B1˛b/��B1r˛b/

�ˇ̌2
dy � C.L/jb

.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�: (3-56)

Using exactly the same arguments, one can prove that for any integer 0 � j 0 � 2sL � 2, the analogue
estimate for rj

0

.b
.0;1/
1 :.r.�B1˛b/��B1r˛b// holds. By interpolation, it gives that for any real number

0� j 0 � 2sL� 2 we haveZ
Rd

ˇ̌
r
j 0
�
b
.0;1/
1 :.r.�B1˛b/��B1r˛b/

�ˇ̌2
dy � C.L/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/C˛�C.L/�: (3-57)

End of the proof. For the estimate concerning the operator H (resp. the operator r), we have estimated
all terms on the right-hand side of (3-36) in (3-37), (3-42), (3-47), (3-49), (3-51), (3-54) and (3-56) (resp.
the right-hand side of (3-36) in (3-38), (3-43), (3-48), (3-50), (3-52), (3-55) and (3-57)). Adding all these
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estimates, as 0 < b.0;1/1 � 1 is a very small parameter, one sees that there exists �0 WD �0.L/ such that
for 0 < � < �0, the bounds (3-31) and (3-33) hold (resp. the bound (3-32) holds). �

3B. Study of the approximate dynamics for the parameters. In Proposition 3.3 we stated the existence
of a profile zQb such that the force term F. zQb/ generated by (NLH) has an almost explicit formulation
in terms of the parameters b D .b.n;k/i /.n;k;i/2I up to an error term Q b . Suppose that for some time,
the solution that started at zQb.0/ stays close to this family of approximate solutions, up to scaling and
translation invariances, meaning that it can be written approximately as �z.t/. zQb.t/;1=�.t//. Then zQb.s/
is almost a solution of the renormalized flow (3-2) associated to the functions of time �.t/ and z.t/,
meaning that

@s. zQb/�
�s

�
ƒ zQb �

zs

�
:r zQb �F. zQb/� 0:

Using the identity (3-30), this means

�

�
b
.0;1/
1 C

�s

�

�
ƒ zQb �

�
b
.1;� /
1 C

zs

�

�
:r zQbC�B1 Mod.s/� 0:

From the very definition (3-10) of the modulation term Mod.s/, projecting the previous relation onto the
different modes that appeared10 yields8̂̂̂̂

<̂̂
ˆ̂̂̂:

�s

�
D�b

.0;1/
1 ;

zs

�
D�b

.1;� /
1 ;

b
.n;k/
i;s D�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 8.n; k; i/ 2 I

(3-58)

with the convention b.n;k/LnC1
D 0. The understanding of a solution starting at zQb.0/ then relies on the

understanding of the solutions of the finite-dimensional dynamical system (3-58) driving the evolution
of the parameters b.n;k/i . First we derive some explicit solutions such that �.t/ touches 0 in finite time,
signifying concentration in finite time.

Lemma 3.4 (special solutions for the dynamical system of the parameters). We recall that the renormalized
time s is defined by (3-1). Let `� L be an integer such that 2˛ < `. We define the functions8̂̂̂<̂

ˆ̂:
Nb
.0;1/
i .s/D

ci

si
for 1� i � `;

Nb
.0;1/
i D 0 for ` < i � L;

Nb
.n;k/
i D 0 for .n; k; i/ 2 I with n� 1;

(3-59)

with .ci /1�i�` being ` constants defined by induction as

c1 D
`

2`�˛
and ciC1 D�

˛.`� i/

2`�˛
ci for 1� i � `� 1: (3-60)

10This will be done rigorously in the next section.
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Then Nb D . Nb
.n;k/
i /.n;k;i/2I is a solution of the last equation in (3-58). Moreover, the solutions �.s/

and z.s/ of the first two equations in (3-58) starting at �.0/ D 1 and z.0/ D 0, taken in original time
variable t , are z.t/D 0 and

�.t/D

�
˛

.2`�˛/s0

�`
˛
�
.2`�˛/

˛
s0� t

�`
˛

: (3-61)

Proof. It is a direct computation that can safely be left to the reader. �

As s0 > 0 and 2` > ˛, (3-61) can be interpreted as: there exists T > 0 with �.t/� .T � t /
`
˛ as t! T .

Now, given 1
2
˛ < `� L, we want to know the exact number of instabilities of the particular solution Nb.

In addition, in Propositions 3.1 and 3.3, we needed the a priori bounds

jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci

to show sufficient estimates for the errors  b and Q b . Around the solution Nb defined by (3-59), b.0;1/1 is
of order s�1, and so the a priori bounds we need become11

b
.n;k/
i . s

n�
2
�i :

Therefore, by “stability” of Nb we mean stability with respect to this size and introduce the following
renormalization for a solution of (3-58) close to Nb:

b
.n;k/
i D Nb

.n;k/
i C

U
.n;k/
i

s
�n
2
Ci
: (3-62)

It defines a #I-tuple of real numbers U D .U .n;k/i /.n;k;i/2I , and we order the parameters as in (2-28) by

U D
�
U
.0;1/
1 ; : : : ; U

.0;1/
L ; U

.1;1/
1 ; : : : ; U

.1;1/
L1

; : : : ; U
.n0;k.n0//
0 ; : : : ; U

.n0;k.n0//
Ln0

�
: (3-63)

In the next lemma we state the linear stability result for the renormalized perturbation .U .n;k/i /.n;k;i/2I .

Lemma 3.5 (linear stability of special solutions). Suppose b is a solution of the last equation in (3-58).
Define U D .U .n;k/i /.n;k;i/2I by (3-62) and order it as in (3-63).

(i) Linearized dynamics. The time evolution of U is given by

@sU D
1

s
AU CO

�
jU j2

s

�
; (3-64)

where A is the block diagonal matrix

AD

0BBB@
A` .0/
zA1

: : :

.0/ zAn0

1CCCA:
11One notices that this bound holds for Nb.n;k/i .



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 169

The matrix A` is defined by

A` D

0BBBBBBBBBBBBBBBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : :

�.2i �˛/ci ˛ `�i
2`�˛

1 .0/
:::

: : :
: : :

�.2`�˛/c` 0 1

0 �˛ 1
2`�˛

1
:::

: : :
: : :

0 �˛ i�`
2`�˛

1
::: .0/

: : :
: : :

:::
: : : 1

0 �˛ .L�`/
2`�˛

1CCCCCCCCCCCCCCCCCCCCCA

: (3-65)

The matrix zA1 is a block diagonal matrix constituted of d matrices zA01:

zA1 D

0B@ zA
0
1 .0/
: : :

.0/ zA01

1CA; zA01 D

0BBBBBBBBBB@

˛
`�˛�1

2
�1

2`�˛
1
: : :

: : : .0/

˛
`�˛�1

2
�i

2`�˛
1
: : :

: : :

.0/
: : : 1

˛
`�˛�1

2
�L1

2`�˛

1CCCCCCCCCCA
: (3-66)

For 2� n� n0 the matrix zAn is a block diagonal matrix constituted of k.n/ times the matrix zA0n:

zAn D

0B@ zA
0
n .0/
: : :

.0/ zA0n

1CA; zA0n D

0BBBBBBBBBBB@

˛
`��n

2

2`�˛
1
: : :

: : : .0/

˛
`��n

2
�i

2`�˛
1
: : :

: : :

.0/
: : : 1

˛
`��n

2
�Ln

2`�˛

1CCCCCCCCCCCA
: (3-67)

(ii) Diagonalization, stability and instability. A is diagonalizable because A` and zAn for 1� n� n0 are.
A` is diagonalizable into the matrix

diag
�
�1;

2˛

2`�˛
; : : : ;

i˛

2`�˛
; : : : ;

`˛

2`�˛
;
�1

2`�˛
; : : : ;

`�L

2`�˛

�
:

We denote the eigenvector of A associated to the eigenvalue �1 by v1 and the eigenvectors associated to
the unstable modes 2˛=.`�˛/; : : : ; `˛=.`�˛/ of A by v2; : : : ; v`. They are a linear combination of the
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` first components only. That is to say, there exists a #I � #I matrix coding a change of variables:

P` WD

�
P 0
`

0

0 Id#I�`

�
; (3-68)

with P 0
`

an invertible `� ` matrix and Id#I�` the .#I � `/� .#I � `/ identity matrix such that

P`AP
�1
` D

0BBB@
A0
`

.0/
zA1

: : :

.0/ zAn0

1CCCA; (3-69)

A0` D

0BBBBBBBBBBBBB@

�1 q1
2˛
2`�˛

.0/ q2
: : :

::: .0/
`˛
2`�˛

q`
�˛
2`�˛

1
: : :

: : :
.0/ : : : 1

˛ `�L
2`�˛

1CCCCCCCCCCCCCA
(3-70)

with .qi /1�i�` 2 R` being some fixed coefficients. zA01 has max.EŒi1�; 0/ nonnegative eigenvalues and
L1�max.EŒi1�; 0/ strictly negative eigenvalues (in being defined by (1-29)). For 2� n� n0, we know
zA0n has max.EŒin�C 1; 0/ nonnegative eigenvalues and Ln C 1 �max.EŒin�C 1; 0/ strictly negative

eigenvalues.

Proof. (i) As b and Nb are solutions of (3-58), we compute (with the convention Nb.n;k/LnC1
D 0 and U .n;k/LnC1

D 0)

U
.n;k/
i;s D

1

s

��
 � n

2
C i � .2i �˛n/ Nb

.0;1/
1 s

�
U
.n;k/
i � .2i �˛n/ Nb

.n;k/
i s

�n
2
CiU

.0;1/
1

�.2k�˛n/U
.0;1/
1 U

.n;k/
i CU

.n;k/
iC1

�
:

As Nb.0;1/1 D `=.2`�˛/, we obtain

 � n

2
C i � .2i �˛n/ Nb

.0;1/
1 D ˛

`� �n
2
� i

2`�˛
:

We then get (3-65) by noticing that Nb.0;1/i D 0 for i � `C 1 and because by definition  D 0. We get
(3-66) and (3-67) by noticing that Nb.n;k/i D 0 for i � 1.

(ii) zAn for 1 � n � n0 is diagonalizable because it is upper triangular. Their eigenvalues are then the
values on the diagonal, and the last statement in (ii), about the stability and instability directions comes
from the very definition (1-29) of the real number in for 1 � n � n0. It remains to prove that A` is
diagonalizable. We will do it by calculating its characteristic polynomial.
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Computation of the characteristic polynomial for the top left corner matrix. We let A0
`

be the `� ` matrix

A0` D

0BBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : : .0/

�.2i �˛/ci ˛ `�i
2`�˛

1
:::

: : :
: : :

::: .0/
: : : 1

�.2`�˛/cl 0

1CCCCCCCCA
:

We recall that as ˛ > 2, we have `� 2 so A0
`

has at least 2 rows and 2 columns. We let

P`.X/D det.A0`�X Id/:

We compute this determinant by expanding with respect to the last row and iterating by doing that again
for the subdeterminant appearing in the process. Eventually we obtain an expression of the form

P` D .�1/`.2`�˛/c`C .�X/

"
.�1/`C1.2`� 2�˛/c`�1C

�
˛

2`�˛
�X

�
�
.�1/`.2`� 4�˛/c`�2C

�
2˛

2`�˛
�X

�
Œ � � � �

�#
: (3-71)

We define the polynomials .Ai /1�i�` and .Bi /1�i�` and .Ci /1�i�`�1 as

Ai WD .�1/
`�iC1.2`C 2� 2i �˛/c`C1�i ;

Bi WD .i � 1/
˛

2`�˛
�X;

Ci WD .�1/
`C1�i .X.2`� 2i �˛/c`�i C

2`�˛

i
c`�iC1/:

(3-72)

This way, the determinant P` given by (3-71) can be rewritten as

P` D A1CB1
�
A2CB2ŒA3CB3Œ � � � ��

�
: (3-73)

We notice by a direct computation from (3-72) that

A1CB1A2 D C1:

Moreover, this identity propagates by induction and we claim that for 1� i � `� 2,

Ci CB1B2AiC2 D BiC2CiC1: (3-74)

Indeed, from (3-60) one has
2`�˛

i C 1
c`�i D�˛c`�i�1;
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and from (3-72)

BiC2CiC1�Ci D

�
.i C 1/

˛

2`�˛
�X

�
.�1/`�i

�
X.2`� 2i � 2�˛/c`�i�1C

2`�˛

i C 1
c`�i

�
� .�1/`C1�i

�
X.2`� 2i �˛/c`�i C

2`�˛

i
c`�iC1

�
D .�1/`�i

 �
.i C 1/

˛

2`�˛
�X

��
X.2`� 2i � 2�˛/c`�i�1�˛c`�i�1

�
�X.2`� 2i �˛/˛

i C 1

2`�˛
c`�i�1C˛

2 i C 1

2`�˛
c`�i�1

!

D .�1/`�ic`�i�1X

�
˛
i C 1

2`�˛
.2`� 2i � 2�˛/C˛�X.2`� 2i � 2�˛/

�
2`� 2i �˛

2`�˛
˛.i C 1/

�
D .�1/`�ic`�i�1X.2`� 2i � 2�˛/

�
˛

2`�˛
�X

�
D AiC2B1Bi :

From the above identity we can rewrite P` given by (3-73) as

P` D A1CB1A2CB1B2A3CB1B2B3.A4CB4. � � � //

D C1CB1B2A3CB1B2B3.A4CB4. � � � //

D B3
�
C2CB1B2.A4CB4. � � � //

�
D B3B4

�
C3CB1B2.A5CB5. � � � //

�
:::

D B3 � � �B`.C`�1CB1B2/:

(3-75)
The last polynomial that appeared is, by (3-72),

C`�1CB1B2 DX.2�˛/c1C
2`�˛

`� 1
c2�X

�
˛

2`�˛
�X

�
D .X C 1/

�
X �

˛`

2`�˛

�
and so we end up from (3-75) with the final identity for P`:

P` D .X C 1/
Ỳ
iD2

�
i˛

2`�˛
�X

�
:

This means that A0
`

is diagonalizable with eigenvalues .1;�2˛=.2`�˛/; : : : ; `=.2`�˛//: there exists
an invertible `� ` matrix zP` such that zP`A` zP�1` D diag.�1; 2=.2`� ˛/; : : : ; `=.2`� ˛//. We denote
by P 0

`
the matrix

P 0` WD

�
zP`

IdL�`

�
:
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Then, from (3-65), there exists ` real numbers .qi /1�i�n 2 R` such that

P 0`A`.P
0

`/
�1
D

0BBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : : .0/

�.2i �˛/ci ˛ `�i
2`�˛

1
:::

: : :
: : :

::: .0/
: : : 1

�.2`�˛/cl 0

1CCCCCCCCA
:

This implies that A` can be diagonalized and that its eigenvalues are of simple multiplicity given by�
�1; 2˛=.2` � ˛/; : : : ; ˛`=.2` � ˛/;�˛=.2` � ˛/; : : : ;�˛L � `=.2` � ˛/

�
, and that the eigenvectors

associated to the eigenvalues �1, and 2˛=.2`�˛/; : : : ; ˛`=.2`�˛/ are linear combinations of the ` first
components only. This concludes the proof of the lemma. �

4. Main proposition and proof of Theorem 1.1

We recall that the approximate blow-up profile �z. zQ Nb;1=�/ was designed for a blow up on the whole
space Rd. In this section, we state in the main proposition of this paper, Proposition 4.6, the existence of
solutions staying in a trapped regime (defined in Definition 4.4) close to the cut approximate blow-up
profile ��z. zQ Nb;1=�/. We then end the proof of Theorem 1.1 by proving that such a solution will blow up
as described in the theorem.

4A. The trapped regime and the main proposition.

4A1. Projection of the solution on the manifold of approximate blow-up profiles. The following reasoning
is made for a blow up on the whole space Rd. As in this case our blow-up solution should stay
close to the manifold of approximate blow-up profiles .�z. zQb;�//b;z;�, we want to decompose it as a
sum �z. zQb;�C "�/ for some parameters b; z; � such that " has “minimal” size. The tangent space of
.�z. zQb;�//b;z;� at the point Q is Span.T .n;k/i /.n;k;i/2I[f.0;1;0/;.1;1;0/;:::;.1;d;0/g. One could then think
of an orthogonal projection at the linear level, i.e., hT .n;k/i ; "i D 0. The profiles T .n;k/i are, however, not
decaying quickly enough at infinity so that this duality bracket would make sense in the functional space
where " lies. For these grounds we will approximate such orthogonality conditions by smooth profiles
that are compactly supported.

Definition 4.1 (generators of orthogonality conditions). For a very large scale M � 1, for n� n0 and
1� k � k.n/ we define

ˆ
.n;k/
M D

LnX
iD0

ci;n;M .�H/
i .�MT

.n;k/
0 /D

LnX
iD0

ci;n;M .�H
.n//i .�MT

.n/
0 /Y .n;k/ (4-1)

(Ln and T .n;k/0 being defined by (1-28) and (2-26)), where

c0;n;M D 1 and ci;n;M D�

Pi�1
jD0 cj;n;M

˝
.�H/j .�MT

.n;k/
0 /; T

.n;k/
i

˛
h�MT

.n/
0 ; T

.n/
0 i

: (4-2)
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Lemma 4.2 (generation of orthogonality conditions). For n � n0, 1 � k � k.n/, 0 � i � Ln, j 2 N,
n0 2 N and 1� k0 � k.n0/, the following holds for c > 0:

h.�H/jˆ
.n;k/
M ; T

.n0;k0/
i i D ı.n;k;i/;.n0;k0;j /

Z C1
0

�M jT
.n/
0 j

2rd�1

� cM 4mnC4ını.n;k;i/;.n0;k0;j /: (4-3)

Proof. The scalar product is zero if .n; k/ ¤ .n0; k0/ because by construction ˆ.n;k/M (resp. T .n
0;k0/

i )
lives on the spherical harmonic Y .n;k/ (resp. Y .n

0;k0/). We now suppose .n; k/D .n0; k0/ and compute
using (4-1): ˝

.�H/jˆ
.n;k/
M ; T

.n;k/
i

˛
D

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
:

If j > i for all l , then .H .n//lCjT
.n/
i D 0 and

˝
.�H/jˆ

.n;k/
M ; T

.n;k/
i

˛
D 0. If j D i then only the first

term in the sum is not zero since .�H .n//iT
.n/
i D T

.n;k/
0 and

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
D hT

.n/
0 �M ; T

.n/
0 i � cM

4mnC4ın

from the asymptotic behavior (2-7) of T .n/0 . If j < i then

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT ni
˛

D ci�j;n;M hT
.n/
0 �M ; T

.n/
0 iC

i�j�1X
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
D 0

from the definition (4-2) of the constant ci�j;n;M . �

4A2. Geometrical decomposition. First we describe here how we decompose a solution of (1-1) on the unit
ball Bd .1/ onto the set .�z. zQb;�//b;jzj� 1

8
;0<�< 1

8M
of concentrated ground states, using the orthogonality

conditions provided by Lemma 4.2. This provides a decomposition for any domain containing Bd .1/. Let
0 < �� 1 to be fixed later on. We study the set of functions close to .�z. zQb;�//b;jzj� 1

8
;0<�< 1

8M
such

that the projection onto the first element in the generalized kernel dominates:12

u W 9. Q�; Qz/2
�
0; 1
8M

�
�Bd

�
1
8

�
such that

ku�Q
Qz; 1
Q�

kL1.Bd .1//<
�

Q�
2
p�1

and k.��Qzu/Q��QkL1.Bd .3M//<
˝
.��Qzu/Q��Q;Hˆ

.0;1/
M

˛
: (4-4)

Lemma 4.3 (decomposition). There exist �;K > 0 such that for any solution u 2 C1.Œ0; T /;�Bd .1// of
(1-1) satisfying (4-4) for all t 2 Œ0; T /, there exists a unique choice of the parameters � W Œ0; T /!

�
0; 1
4M

�
,

12Note that .��Qzu/Q� is defined on 1
Q�
.Bd .1/� Qz/, which contains Bd .7M/ as j Qzj < 1

8 and 0 < j Q�j < 1
8M

; thus the second
estimate makes sense.
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z W Œ0; T /! Bd
�
1
4

�
and b W Œ0; T /! RI such that b.0;1/1 > 0 and

uD . zQbC v/z;� on Bd .1/;
X

.n;k;i/2I

jb
.n;k/
i jC kvk

L1. 1
�
.Bd .0;1/�fzg// �K�

with v D .��zu/�� zQb satisfying the orthogonality conditions

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln:

Moreover, �, b and z are C1 functions.

Proof. It is a direct consequence of Lemma E.2 from the appendix. �

Decomposition and adapted norms for the remainder inside a bounded domain. Let u be a solution
of (NLH) in C 1.Œ0; T /;�/ with Dirichlet boundary condition such that the restriction13 of u to Bd .1/
satisfies the conditions of Lemma 4.3. Then from this lemma, for all t 2 Œ0; T / we can decompose u
according to

u WD ��z. zQb; 1
�
/Cw; (4-5)

cutting the approximate blow-up profile in the zone 1 � jxj � 2, and w is a remainder term satisfying
wj@� D 0 as Bd .7/�� and uj@� D 0. To study w inside and outside the blow-up zone, we decompose
it according to

wint WD �3w; wext WD .1��3/w; " WD .��z.t/wint/�.t/; (4-6)

where wint and wext are the remainder cut in the zone 3 � jxj � 6, " is the renormalized remainder at
the blow-up area, and is adapted to the renormalized flow. We notice that the support of wext does not
intersect the support of the approximate blow-up profile ��z. zQb; 1

�
/, that the supports of wint and wext

overlap, and that .wext/j@�D 0. From Lemma 4.3 and its definition, " is compactly supported and satisfies
the orthogonality conditions (4-11). We measure " through the following norms:

(i) High-order Sobolev norm adapted to the linearized flow. We define

E2sL WD
Z

Rd
jH sL"j2: (4-7)

This norm controls the L2 norms of all smaller-order derivatives with appropriate weight from
Lemma C.3 since " satisfies the orthogonality conditions (4-11), and the standard PH 2sL Sobolev
norm

E2sL � C
X
j�j�2sL

Z
Rd

j@�"j2

1Cjxj4i�2�C
CCk"k2

PH2sL
:

(ii) Low-order slightly supercritical Sobolev norm. Let � be a slightly supercritical regularity:

0 < � � sc� 1: (4-8)

13We recall that � contains Bd .7/.
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We then define the following second norm for the remainder:

E� WD k"k2PH�
: (4-9)

Existence of a solution staying in a trapped regime close to the approximate blow-up solution. From now
on we focus on solutions that are close to an approximate blow-up profile in the sense of the following
definition.

Definition 4.4 (solutions in the trapped regime). We say that a solution u of (1-1) in C 1.Œ0; T /;�/ is
trapped on Œ0; T / if it satisfies all of the following. First, it satisfies the condition (4-4) and then can be
decomposed via Lemma 4.3 according to (4-5) and (4-6):

u WD ��z. zQb; 1
�
/Cw; wint WD �3w; wext WD .1��3/w; " WD .��z.t/wint/�.t/ (4-10)

with " satisfying the orthogonality conditions

h";H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln: (4-11)

To the scale � given by this decomposition, we associate the renormalized time s defined by (3-1) with
s0 > 0. The #I-tuple of parameters b is represented as a perturbation of the solution Nb of the dynamical
system (3-58) given by (3-59):

b
.n;k/
i .s/D Nb

.n;k/
i .s/C

U
.n;k/
i .s/

s
�n
2
Ci
: (4-12)

We let U WD .U .n;k/i /.n;k;i/2I . To use the eigenvectors of the linearized dynamics, Lemma 3.5, we define

Vi WD .P`U/i for 1� i � `; (4-13)

where P` is defined by (3-68). All these parameters must satisfy the following estimates, where 0< Q�� 1,
0 < "

.n;k/
i � 1 for .n; k; i/ 2 I with .n; k; i/ … f1; : : : ; `g � f0g � f1g; K1 and K2 will be fixed later on.

Initial conditions. At time t D 0 (or equivalently s D s0):

(i) Control of the unstable modes on the radial component:

jVi .0/j � s
�Q�
0 for 2� i � `: (4-14)

(ii) Control of the unstable modes on the other spherical harmonics:

j.U
.n;k/
i .0//j � "

.n;k/
i for .n; k; i/ 2 I with 1� n and 0� i < in: (4-15)

(iii) Control of the stable modes:

V1.0/�
1

10s
Q�
0

; jU
.0;1/
i .0/j �

"
.0;1/
i

10s
Q�
0

for `C 1� i � L; (4-16)

jU
.n;k/
i .0/j �

"
.n;k/
i

10s
Q�
0

for .n; k; i/ 2 I with 1� n and in < i � Ln; (4-17)

jU
.n;k/
i .0/j �

"
.n;k/
i

10
for .n; k; i/ 2 I with 1� n and i D in: (4-18)
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(iv) Smallness of the remainder:

kwk2
H2sL

<
1

s
2`
2`�˛

.2sL�sc/

0

: (4-19)

(v) Compatibility conditions at the border:148̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Qw0 WD w.0/ 2H
1
0 .�/;

Qw1 WD @tw.0/D�w.0/Cw.0/
p
2H 1

0 .�/;

Qw2 WD @
2
tw.0/D�

2w.0/C�.w.0/p/Cpw.0/p�1.�w.0/Cw.0/p/ 2H 1
0 .�/;

:::

QwsL�1 WD @
sL�1
t w.0/ 2H 1

0 .�/:

(4-20)

(vi) Initial scale and initial blow-up point:

�.0/D s
� `
2`�˛

0 and z.0/D 0: (4-21)

Pointwise in time estimates. The following bounds hold on .0; T /:

(i) Parameters on the first spherical harmonics:

jVi .s/j � s
�Q� for 1� i � `; jU

.0;1/
i .s/j � "

.0;1/
i s�Q� for `C 1� i � L: (4-22)

(ii) Parameters on the other spherical harmonics: for .n; k; i/ 2 I with n� 1,

j.U
.n;k/
i .s//j � 1 if 0� i < in; (4-23)

jU
.n;k/
i .s/j �

"
.n;k/
i

s Q�
if in < i � Ln and jU

.n;k/
i .s/j � "

.n;k/
i if i D in: (4-24)

(iii) Control of the remainder:

EsL.s/�
K2

s2LC2.1�ı0/C2.1�ı
0
0/�
; E� .s/�

K1

s2.��sc/
`

2`�˛

;

kwextk
2
H2sL

�
K2

�2.2sL�sc/s2LC2.1�ı0/C2.1�ı
0
0/�
; kwextk

2
H� �K1:

(4-25)

(iv) Estimates on the scale and the blow-up point:

�� 2s�
`

2`�˛ and jzj � 1
10
: (4-26)

Remark 4.5. For a trapped solution one has the above estimates on the parameters from (3-59), (4-12),
(4-13), (4-22), (4-23) and (4-24),

jb
.n;k/
i j �

C

s
�n
2
Ci
; b

.0;1/
1 D

`

2`�˛

1

s
CO.s�1�Q�/ (4-27)

14We make an abuse of notations here. The identities given for the time derivatives of w are only true close to the border
of �, but which is enough as the required conditions are trace-type conditions; see [Evans 2010].
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for C independent of the other constants. The bounds (4-25) on the remainders for the solution described
by Proposition 4.6, because of the coercivity estimate Lemma C.3 implies that

kwkH� .�/ � CK1; kwkH2sL .�/�
C.K1; K2;M/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
: (4-28)

A trapped solution must first satisfy the condition (4-4) in order to apply the decomposition in Lemma E.1,
and then the variables of this decomposition must satisfy suitable bounds. However, these additional
bounds in turn provide a much stronger estimate than (4-4). Indeed, one has, from (4-10), (3-29), (3-7),
(4-27), (D-2),

inf
.Q�;Qz/2.0; 1

8M
/�Bd. 1

8
/

Q�
2
p�1 ku�Q

Qz; 1
Q�

kL1.Bd .1//

��
2
p�1 ku�Qz; 1

�
kL1.Bd .1//

Dk zQbC"�QkL1. 1
�
.Bd .0;1/�fzg//Dk�B1˛bC"kL1. 1

�
.Bd .0;1/�fzg//

�k�B1˛bkL1.Rd /Ck"kL1.Rd /�
C

s
C

C

s
d
4
��
2

� �;

k.��z/u��QkL1.Bd .3M//�k˛bkL1.Bd .3M//Ck"kL1.Bd .3M//�
C

s
C
C

s2
: (4-29)

Using (4-10), (4-11), (3-29), (3-7), (4-27), (4-3) and (2-7) one gets

h.��z/u��Q;Hˆ
.0;1/
M i D h˛b;Hˆ

.0;1/
M i

D b
.0;1/
1 hT

.0;1/
0 ; �MT

.0;1/
0 iCO.s�2/�

c

s
D
c1

s
cM d�2

CO.s�2/

for some c > 0, which, combined with the above estimate gives

k.��z/u��QkL1.Bd .3M//�
˝
.��z/u��Q;Hˆ

.0;1/
M

˛
for M large enough as d � 2 > 0. Therefore, a solution cannot exit the trapped regime because the
condition (4-4) fails: the estimates on the parameters and the remainder have to be violated first. We thus
forget about this condition in the following.

The key result of this paper is the existence of solutions that are trapped on their whole lifespan.

Proposition 4.6 (existence of fully trapped solutions). There exists a choice of universal constants for the
analysis15

LD L.`; d; p/� 1; 0 < �D �.d; p;L/� 1; M DM.d; p;L/� 1;

� D �.L; d; p/; K1 DK1.d; p;L/� 1; K2 DK2.d; p;L/� 1;

0 < "
.0;1/
i D "

.0;1/
i .L; d/� 1 for `C 1� i � L; 0 < "1 D "1.L; d/� 1;

0 < "
.n;k/
i D "

.n;k/
i .L; d/� 1 for .n; k; i/ 2 I with 1� n; inC 1� i � Ln;

0 < Q�D Q�.`; L; d; p; �/� 1 and s0 D s0.`; d; p;L;M;K1; K2; "
.n;k/
i ; Q�/� 1

(4-30)

15The interdependence of the constants is written here so that the reader knows, for example, that s0 is chosen after all the
other constants.
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such that the following fact holds close to � zQ Nb.s0/;1=�.s0/, where Nb is given by (3-59) and �.s0/ satisfies
(4-21). Given a perturbation along the stable directions, represented by w.s0/, decomposed in (4-5),
satisfying (4-19) and (4-11), and V1.s0/, .U

.0;1/

`C1
.s0/; : : : ; U

.0;1/
L .s0//, .U

.n;k/
i .s0//.n;k;i/2I; n�1; in�i

satisfying (4-16), (4-17) and ((iii)), there exists a correction along the unstable directions represented
by .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in satisfying (4-14) and (4-15) such that the
solution u.t/ of (1-1) with initial datum u.0/D � zQb.s0/;1=�.s0/Cw.s0/ with

b.s0/D

 
Nb
.n;k/
i C

U
.n;k/
i .s0/

s
�n
2
Ci

0

!
.n;k;i/2I

(4-31)

is trapped until its maximal time of existence in the sense of Definition 4.4.

Proof. The proof is relegated to Section 5. �

4B. End of the proof of Theorem 1.1 using Proposition 4.6. In this subsection we end the proof of the
main theorem, Theorem 1.1, by proving that the solutions given by Proposition 4.6 lead to a finite-time
blow up with the properties described in Theorem 1.1. The proof of Theorem 1.1 is a direct consequence
of Proposition 4.6 and Lemmas 4.8, 4.9 and 4.10. Until the end of this subsection, u will denote a
solution that is trapped in the sense of Definition 4.4 on its maximal interval of existence. First, we
describe the time evolution equation for ". It then allows us to compute how the time evolution law for
the parameters � and z related to the decomposition (4-5) depends on the other parameters. The bounds
on the parameters and the remainder for a trapped solution then imply that � goes to zero with explicit
asymptotic in finite time, that z converges, and that the solution undergoes blow up by concentration with
a control on the asymptotic behavior for Sobolev norms.

4B1. Time evolution for the error. Let u be a trapped solution. From the decomposition (4-5) we compute
that the time evolution of the remainder is

wt D�
1

�2
��z.eMod.t/ 1

�
C Q b; 1

�
/C�wC

pX
kD1

C
p

k
.��z zQb; 1

�
/p�kwk

C���zQ 1
�
C 2r�:r�zQ 1

�
C��zQ

p
1
�

.�p�1� 1/ (4-32)

with the new modulation term being defined as

eMod.t/ WD �B1 Mod.t/�
�
�s

�
C b

.0;1/
1

�
ƒ zQb �

�
zs

�
C b

.1;� /
1

�
:r zQb: (4-33)

From (4-32) and (4-6), as the support of wext is outside Bd .2/ and as �z. zQb;�/ is cut in the zone
1� jxj � 2, the time evolution of wext is

@twext D�wextC��3wC 2r�3:rwC .1��3/w
p:

The excitation of the solitary wave �z. Q̨b;1=�/ has support in the zone jx� zj � 2�B1 and from (4-26),
jzjC�B1� 1, so it does not see the cut by � of the approximate blow-up profile. From this, (4-32) and
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(4-6), the time evolution of wint is therefore given by

@twintCHz; 1
�
wint D�

1

�2
��z.BMod.t/ 1

�
C Q b; 1

�
/CL.wint/CNL.wint/C zLCfNLC zR; (4-34)

where Hz;1=�, NL.wint/, L.wint/ are the linearized operator, the nonlinear term and the small linear term
resulting from the interaction between wint and a noncut approximate blow-up profile �z. zQb; 1

�
/:

Hz; 1
�
WD ���p.�z. zQ 1

�
//p�1; Hb;z; 1

�
WD ���p.�z. zQb; 1

�
//p�1 (4-35)

NL.wint/ WD F.�z. zQb; 1
�
/Cwint/�F.�z. zQb; 1

�
//CHb; 1

�
.wint/; (4-36)

L.wint/ WDHz; 1
�
wint�Hb;z; 1

�
wint D

p

�2
�z.�

p�1
B1

˛
p�1

b
/ 1
�
: (4-37)

The last terms in (4-34) are the corrective terms induced by the cut of the approximate blow-up profile
and the cut of the error term:16

zL WD ���3w� 2r�3:rwCp�zQ
p�1
1
�

.�p�1��3/w; (4-38)

fNL WD
pX
kD2

C
p

k
�zQ

p�k
1
�

.�p�k ��k�13 /�3w
k; (4-39)

zR WD���zQ 1
�
C 2r�r�zQ 1

�
C��zQ

p
1
�

.�p�1� 1/; (4-40)

and one notices that their support is in the zone 1� jxj � 6. Using the definition of the renormalized flow
(3-2) and the decomposition (4-5) we compute, using (4-32),

@s"�
�s

�
ƒ"�

zs

�
:r"CH"D��.�yCz/. QMod.s/C Q b/CNL."/CL."/C�2Œ��z.zLC zRCfNL/��; (4-41)

with the purely nonlinear term and the small linear term in adapted renormalized variables being defined
as

NL."/ WD F. zQbC "/�F. zQb/CHb."/; L."/ WDH"�Hb"; (4-42)

whereHb WD ���p zQ
p�1

b
is the linearized operator near zQb . One notices that the extra terms induced

by the cut, �2Œ��z.zLC zRCfNL/��, have support in the zone 1
2�
� jyj � 7

�
(by(4-26)).

4B2. Modulation equations. We now quantify how the evolution of one parameter b.n;k/i , � or z depends
on all the parameters .b.n;k/i /.n;k;i/2I and the remainder ".

Lemma 4.7 (modulation). Let all the constants of the analysis described in Proposition 4.6 be fixed
except s0. Then for s0 large enough, for any solution u that is trapped on Œs0; s0/ in the sense of
Definition 4.4 the following holds for s0 � s < s0:ˇ̌̌̌
�s

�
Cb

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
Cb

.1;�/
1

ˇ̌̌̌
C

X
.n;k;i/2I; i¤Ln

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i Cb

.n;k/
iC1

ˇ̌
�
C.L;M/

sLC3
C
C.L;M/

s

p
E2sL ; (4-43)

16Again, the excitation of the solitary wave �z. Q̨b;1=�/ is not present here as its support is in the zone jxj � 1; see (4-26).
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X
.n;k;i/2I; iDLn

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i

ˇ̌
�
C.M;L/

sLC3
CC.M;L/

p
E2sL : (4-44)

Proof. We let

D.s/D

ˇ̌̌̌
�s

�
C b

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
C b

.1;� /
1

ˇ̌̌̌
C

X
.n;k;i/2I

ˇ̌
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

ˇ̌
(4-45)

with the convention b.n;k/LnC1
D0. Taking the scalar product of (4-41) with .�H/iˆ.n;k/M , using (4-3), gives17

heMod.s/; .�H/iˆ.n;k/M i D h�H"; .�H/iˆ
.n;k/
M i � h Q b; .�H/

iˆ
.n;k/
M i

C

�
�s

�
ƒ"C

zs

�
:r"CNL."/CL."/; .�H/iˆ.n;k/M

�
: (4-46)

Now we look closely at each one of the terms of this identity.

The modulation term. From the expression (3-29) of zQb , the bound (3-11) on @Sj =@b
.n;k/
i , and the bounds

(4-27) on the parameters, one has

zQb DQC�B1˛b DQCO.s
�1/ and

@Sj

@b
.n;k/
i

DO.s�1/ on Bd .0; 2M/:

From (3-10), (4-33) and (4-45), the modulation term can then be rewritten as

Mod.s/D �B1
X

.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jDiC1Cın�2

@Sj

@b
.n;k/
i

�

�

�
�s

�
C b

.0;1/
1

�
ƒ zQb �

�
zs

�
C b

.1;� /
1

�
:r zQb

D �B1

X
.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

�
T
.n;k/
i

�

�
�s

a
C b

.0;1/
1

�
ƒQ�

�
zs

�
C b

.1;� /
1

�
:rQCO

�
jD.s/j

s

�
;

where the O.jD.s/j=s/ is valid in the zone jyj � 2M . From the orthogonality relations (4-3), we then get

heMod.s/; .�H/iˆ.n;k/M iCO

�
jD.s/j

s

�

D

8̂̂̂<̂
ˆ̂:
�C h�MƒQ;ƒQi

�
�s
�
Cb

.0;1/
1

�
for .n;k; i/D .0;1;0/;

�C 0h�MrQ;rQi
�zj;s
�
Cb

.1;k/
1

�
for .n; i/D .1;0/; 1� k� d;

h�MT
.n;k/
0 ;T

.n;k/
0 i

�
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i �b

.n;k/
iC1

�
otherwise;

(4-47)

where C and C 0 are two positive renormalization constants.

17We do not see the extra terms zL, zR andfNL because their support is in the zone 1
2�
� jyj (from (4-26)) which is very far

away from the support of ˆ.n;k/
M

, in the zone jyj � 2M (s0 being chosen large enough so that this statement holds).
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The main linear term. The coercivity estimate (C-16) and the Hölder inequality implyZ
jyj�2M

j"j dy . C.M/
p
E2sL :

Hence, from the orthogonality (4-11) for ", we obtain, for 0� n� n0, 1� k � k.n/,ˇ̌
hH";H iˆ

.n;k/
M i

ˇ̌
D

(
0 for i < Ln;ˇ̌
h"; .�H/iC1ˆ

.n;k/
M i

ˇ̌
DO.

p
E2sL/ for i D Ln:

(4-48)

The error term. Using the local bound (3-35) for Q b and (4-27),ˇ̌
h Q b;H

iˆ
.n;k/
M i

ˇ̌
�
C.L;M/

sLC3
: (4-49)

The extra terms. From (4-27), the coercivity estimate (C-16), the bound (4-25) on E2sL and (4-45), one
obtains ˇ̌̌̌�

�s

�
ƒ"C

zs

�
:r";H iˆ

.n;k/
M

�ˇ̌̌̌
�
C.L;M/

s

p
E2sL C

jD.s/j

sLC1�ı0C�.1�ı
0
0/
:

Now, as Qp�1� zQp�1
b
DO.s�1/ on the set jyj � 2M from (3-7) and (4-27), using the estimate (D-2)

on k"kL1 , from the definition (4-42) of NL."/ and L."/ and the coercivity (C-16), one gets, for s0 large
enough, ˇ̌

hNL."/CL."/;H iˆ
.n;k/
M i

ˇ̌
� C.L;M/E2sL CC.L;M/

p
E2sL
s
� C.L;M/

p
E2sL
s

:

Putting together the last two estimates yieldsˇ̌̌̌�
�s

�
ƒ"C

zs

�
:r"CNL."/CL."/;H iˆ

.n;k/
M

�ˇ̌̌̌
�
C.L;M/

p
E2sL

s
C

C.L;M/jD.s/j

sLC1�ı0C�.1�ı
0
0/
: (4-50)

Final bound on jD.s/j. Summing the previous estimates we performed on each term of (4-46) in
(4-47)–(4-50) yields

jD.s/j � C.L;M/
p
EsL C

C.L;M/

sLC3
:

We now come back to (4-46), combine again (4-47) with the above bound on jDj, (4-48), (4-49) and
(4-50), yielding the desired bounds (4-43) and (4-44) of the lemma. �

4B3. Finite-time blow up. We now reintegrate in time the time evolution of � and z we found in
Lemma 4.7 to obtain their behavior and show the blow up.

Lemma 4.8 (concentration and asymptotic of the blow-up point). Let u be a solution that is trapped on
its maximal interval of existence. Then it blows up in finite time T > 0 with s.t/!C1 as t! T and we
have the following:

(1) Concentration speed. We have � �
t!T

C.u.0//.T � t /
`
˛ , with C.u.0// > 0.

(2) Behavior of the blow-up point. There exists z0 such that limt!T z.t/D z0 and for all times s � s0,

jz.s/j DO.s
�Q�
0 /: (4-51)
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Proof. From the Cauchy theory in L1, (3-1) and (4-26), if T 2 .0;C1� denotes the maximal time
of existence of u, one necessarily has lims!T s.t/ D C1. From the estimate (4-27) on b.0;1/1 , the
modulation (4-43) and (4-25), one has

�s

�
D�

c1

s
CO.s�1�Q�/:

We reintegrate using (4-21) (we recall that c1 D `=.2`�˛/ from (3-59)):

�D
.1CO.s

�Q�
0 //

s
`

2`�˛

; (4-52)

which is valid as long as the solution u is trapped. In addition, if the solution is trapped on its maximal
interval of existence, then the function represented by O. � / admits a limit as s!C1. In turn, from
ds
dt
D

1
�2

we obtain

s D s0

�
1�

˛s
˛

2`�˛

0

2`�˛

Z t

0

.1CO.s
�Q�
0 // dt 0

�� 2`�˛
˛

:

Hence there exists T > 0 with

s �
t!T

C.u.0//.T � t /�
2`�˛
˛ : (4-53)

Injecting this identity in (4-52) then gives ��C.u.0//.T � t /
`
˛ as t! T . Now we turn to the asymptotic

behavior of the point of concentration z. From (4-43), using b.1;i/1 DO.s�
˛C1
2 / from (4-23) for 1� i � d ,

one gets

jzi;sj DO.s
�c1�

˛C1
2 /DO.s�1�

˛
2
.1C 1

2`�˛
//: (4-54)

As ˛ > 0, this implies the convergence and the estimate of z claimed in the lemma. �

4B4. Behavior of Sobolev norms near blow-up time. From Lemma 4.8, the L1 bound on the error (D-2)
and the bounds on the parameters (4-27), any solution that is trapped on its maximal interval of existence
indeed blows up at the time T given by Lemma 4.8 because limt!T kukL1 DC1. The behavior of the
Sobolev norms is the following.

Lemma 4.9 (asymptotic behavior for subcritical norms). Let u be a solution that is trapped for all times
s � s0 and T be its finite maximal lifespan.18 Then

(i) Behavior of subcritical norms.

lim sup
t!T

kukHm.�/ <C1 for 0�m< sc :

(ii) Behavior of the critical norm.

kukH sc .�/ D
t!T

C.d; p/
p
`
p
j log.T � t /j.1C o.1//:

18T is finite by Lemma 4.8.
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(iii) Boundedness of the perturbation in slightly supercritical norms.

lim sup
t!T

ku���z.Q 1
�
/kHm.�/ <C1 for sc <m� �: (4-55)

Proof. The trapped solution u can be written as

uD ��z. zQb; 1
�
/Cw D ��z.Q 1

�
/C �z. Q̨b; 1

�
/Cw:

We first look at the second term �z. Q̨b;1=�/, being the excitation of the ground state. It has compact
support in the zone jxj � 2B1�. From (1-38) and (4-52), one gets 2B1�� 1 as s0� 1, so that �z. Q̨b;1=�/
has compact support inside Bd .1/. This implies that

k�z. Q̨b; 1
�
/kH� .�/ � Ck�z. Q̨b; 1

�
/k PH� .Rd /

;

the latter norm being easier to compute. Indeed by renormalizing one has

k�z. Q̨b; 1
�
/k PH� .Rd /

D
1

���sc
k Q̨bk PH� .Rd /

:

As

Q̨b D �B1

� X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si

�
from (3-29) and (3-7), the bounds (4-27) on the parameters b.n;k/i , together with the asymptotic at infinity
of the profiles T .n;k/i and Si described in Lemma 2.10 and Proposition 3.3 imply that k Q̨bk PH� � C=s.
Hence

k�z. Q̨b; 1
�
/kH� �

C

s1�
`.��sc/
2`�˛

! 0

as t ! T as � � sc� 1.
Now, following the second paragraph of Remark 4.5, we get that kwkH� �CK1 is uniformly bounded

until the blow-up time. Combined with what was just said about the boundedness of �z. Q̨b;1=�/, we get
that (iii) holds for all 0�m� � . This, together with the asymptotic of the ground state (2-1) then gives
(i) and (ii). �

4B5. The blow-up set. We recall that x 2� is a blow-up point of u if there exists .tn; xn/! .T; x/ such
that ju.tn; xn/j !C1. For trapped solutions one has the following result.

Lemma 4.10 (description of the blow-up set). Let u be a solution that is trapped for all times s � s0 and
T be its finite maximal lifespan.19 Then z0 given by Lemma 4.8 is a blow-up point of u, and it is the only
one.

Proof. From the L1 bound (4-29) and the fact that limt!T s.t/DC1 from Lemma 4.8, u.s; z.s//�
�.s/�

2
p�1Q.0/ as s!C1. From Lemma 4.8, this implies that u.t; z.t//!C1 as t ! T and that

z0 D limt!T z.t/ is indeed a blow-up point.

19T is finite by Lemma 4.8.
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Now take another point x 2�, x¤ z0. From (4-55), the asymptotic ofQ (Lemma 2.1), and Lemma 4.8,
there exists R > 0 such that

sup
0�t<T

ku.t/kH� .Bd .x;R// <C1:

This local boundedness, by Sobolev embedding and Hölder, implies that

sup
0�t<T

ku.t/kW 1;q.Bd .x;R// <C1; q D
2d

d C 2� 2�
>

2d

d C 2� 2sc
D d

p� 1

pC 1
:

The above inequality, after applying Lemma 4.11 several times and using Sobolev embedding, implies
that there exists r > 0 such that

sup
0�t<T

ku.t/kL1.Bd .x;r// <C1:

Therefore, x is not a blow-up point of u. �

In the proof of the previous lemma, we used the following result.

Lemma 4.11 (parabolic bootstrap). Let R > 0 and x 2� such that B.x;R/��. Let q0 >
p�1
pC1

d . There
exists �.q0/ > 0 such that for any q > q0, if u 2 C

�
Œ0; T /;W 1;1.�/

�
is a solution of (1-1) satisfying

sup
0�t<T

ku.t/kW 1;q.Bd .x;R// <C1 (4-56)

then

sup
0�t<T

ku.t/k
W 1;q.1C�/.Bd.x;R

2
// <C1: (4-57)

Proof. The proof relies on a classical use of estimates for the heat kernel. Without loss of generality we
assume q0 < d . If u solves (1-1) and satisfies (4-56) then the localisation v D �R=2u solves

vt D�v� 2r:�R
2
:ru���R

2
uC�R

2
jujp�1u

and using the Duhamel formula can then be written as

v.t/DKt � v.0/C

Z t

0

Kt�s �
�
�2r:�R

2
:ru���R

2
uC�R

2
jujp�1u

�
ds;

where the heat kernel is Kt .x/D .4�t/�
d
2 e�

jxj2

4t . One then has the formula

rv.t/DrKt � v.0/C

Z t

0

rKt�s � Œ�2r:�R
2
:ru���R

2
u� ds

C

Z t

0

Kt�s �
�
r�R

2
jujp�1uC�R

2
rujujp�1

�
ds: (4-58)
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We estimate the last term using the Hölder, Sobolev and Young inequalities:20Z t

0

Kt�s � Œ�R
2
rujujp�1� ds


Lq.1C�/

�

Z t

0

Kt�s � Œ�R
2
rujujp�1�


Lq.1C�/

ds

.
Z t

0

kKt�sk
L
.1C 1

q.1Ck/
�.!� 1q //

�1

rujujp�1
L
.!C 1q /

�1 ds

.
Z t

0

kKt�sk
L
.1�!� �

q.1C�/
/
�1krukLq

jujp�1
L!
�1 ds

.
Z t

0

1

.t � s/�.�;q/
krukLq kruk

p�1
Lq0

ds .
Z T

0

ds

.t � s/�.�;q/
;

where

! D
.d � q0/.p� 1/

dq0
and �.�; q/D

.d � q0/.p� 1/

2q0
C

�d

2q.1C �/

(note � � 0 as q0 < d ). For � � 0 and p�1
pC1

d � q � d , if � is fixed, � is strictly decreasing with respect
to q, and if q is fixed, � is strictly increasing with respect to �. As �.0; q0/ < 1 since q0 >

p�1
pC1

d , this
implies that there exists �.q0/ > 0 such that for all q0 � q � d , and 0 < � � �.q0/, we have �.�; q/ < 1.
The above inequality then implies that in that range,Z t

0

Kt�s � Œ�R
2
rujujp�1� ds


Lq.1C�/

<C1:

We claim that this term was the “worst” to be estimated in (4-58) and that using the very same techniques,
one can estimate similarly all the other terms on the right-hand side in the same range 0 < � � �.q0/
leading to

sup
0�t<T

krv.t/kL.1C�/q <C1;

which implies that sup0�t<T kv.t/kW 1;.1C�/q <C1 by Sobolev embedding and the Hölder inequality.
This concludes the proof, as v D u on B

�
x; R

2

�
. �

5. Proof of Proposition 4.6

This section is devoted to the proof of this latter proposition, which will then end the proof of the main
theorem. For all trapped solutions u in the sense of Definition 4.4, we let s� D s�.u.0// be the exit time
from the trapped regime:

s� D sup
˚
s � s0 such that (4-22), (4-23), (4-24), (4-25) and (4-26) hold on Œs0; s/

	
: (5-1)

If s�<C1, after s�, one of the bounds (4-22), (4-23), (4-24), (4-25) or (4-26) must then be violated. The
result of the first part of this section is a refinement of this exit condition. In Lemma 5.1 and Propositions 5.3,
5.5, 5.6 and 5.8 we quantify accurately the time evolution of the parameters and the remainder in the
trapped regime. Combined with the modulation equations of Lemma 4.7, this allows us to show that in

20As q � q0 >
p�1
pC1d , p > dC2

d�2
, and d � 11 all the computations below are rigorous.
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the trapped regime, all the components of the solution along the stable directions of perturbation are under
control; see Lemma 5.9. Moreover, from (4-52), (4-26) is always fulfilled as long as the other bounds hold.
As a consequence, the exit time of the trapped regime is in fact characterized by the following condition:
just after s�, one of the bounds in (4-22) and (4-23) regarding the unstable parameters is violated.

We prove Proposition 4.6 by contradiction. Suppose that given a stable perturbation of � zQ Nb.s0/;1=�.s0/
as described in Proposition 4.6, the solution starting from � zQb.s0/;1=�.s0/Cw.s0/ leaves the trapped
regime in finite time for all initial corrections .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in
along the unstable directions. This means from the previous paragraph that the trajectory of�

V2.s/; : : : ; V`.s/; .U
.n;k/
i .s//.n;k;i/2I;1�n; i<in

�
leaves the set21 B`�11 .s�Q�/�BK1.1/ in finite time. But at the leading order, the dynamics of this trajectory
are linear repulsive. In Lemma 5.10 we show how the fact that all the trajectories leave this ball is a
contradiction to Brouwer’s fixed point theorem.

5A. Improved modulation for the last parameters b
.n;k/

Ln
. In Lemma 4.7, the modulation estimates

(4-43) for the first parameters are better than the ones for the last parameters b.n;k/Ln
, (4-44). When looking

at the proof of Lemma 4.7, we see that this is a consequence of the fact that the projection of the linearized
dynamics onto the profile generating the orthogonality conditions, hH";H iˆ

.n;k/
M i, cancels only for

i < Ln. However, as we explained in the introduction of Lemma 4.2, H iˆ
.n;k/
M has to be thought as an

approximation of T .n;k/i , and in that case the previous term would cancel also for i D Ln. It is therefore
natural to look for a better modulation estimate for b.n;k/Ln

. In the next lemma we find a better bound by,
roughly speaking, integrating by parts in time the projection of " onto T .n;k/Ln

in the self-similar zone.

Lemma 5.1 (improved modulation equation for b.n;k/Ln
). Suppose all the constants in Proposition 4.6 are

fixed except s0. Then for s0 large enough, for any solution that is trapped on Œs0; s0/, for 0 � n � n0,
1� k � k.n/, the following holds for s 2 Œs0; s0/:ˇ̌̌̌
b
.n;k/
Ln;s

C .2Ln�˛n/b
.0;1/
1 b

.n;k/
Ln

�
d

ds

�˝
HLn."�

PLC2
iD2 Si /; �B0T

.n;k/
0

˛
h�B0T

.n;k/
0 ; T

n;k
0 i

�ˇ̌̌̌

�
C.L;M/

p
E2sL

sın
C

C.L;M/

sLC
g0

2
Cın�ı0C1

: (5-2)

Remark 5.2. From (5-19), we see that the denominator is not zero. From (5-19) and (5-20), one has the
following bound for the new quantity that appeared when comparing this new modulation estimate to the
former one (4-44):ˇ̌̌̌ ˝

HLn."�
PLC2
iD2 Si /; �B0T

.n;k/
0

˛
h�B0T

.n;k/
0 ; T

n;k
0 i

ˇ̌̌̌
� C.L;M/s�L�

g0

2
Cı0�ın CC.L;M;K2/s

�LCı0�ınC�.1�ı
0
0/:

(5-3)

21Here K is the number of directions of instabilities on the spherical harmonics of degree greater than 0, that is, K D
d.EŒi1�� ıi12N/C

P
2�n�n0

k.n/.EŒin�C 1� ıin2N/, and Ba1.r/ is the ball of radius r of Ra for the usual j � j1 norm.
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This is a better bound compared to the required bound (4-24) on b.n;k/Ln
in the trapped regime, that is,

jb
.n;k/
Ln
j � Cs�

�n
2
�Ln D Cs�L�ınCı0 .

Proof of Lemma 5.1. First, from the fact that HT .n;k/0 D 0, the asymptotic (2-7) of T .n;k/0 and (4-27), we
obtain

suppŒHLn.�B0T
.n;k/
0 /�� fB0 � jyj � 2B0g and jHLn.�B0T

.n;k/
0 /j �

C.L/

s
n
2
CLn

: (5-4)

Step 1: computation of a first identity. We will now prove the identity

d

ds

�
hHLn"; �B0T

.n;k/
0 i

�
D
�
b
.n;k/
Ln;s

C .2Ln�˛n/b
.0;1/
1 b

.n;k/
Ln

�
hT
.n;k/
0 ; �B0T

.n;k/
0 i

C
d

ds

�LC2X
jD2

˝
Sj ;H

Ln.�B0T
.n;k/
0 /

˛�

CO.
p
E2sLB

4mnC2ın
0 /CO

�
C.L/

sLC1C
g0

2
�ı0�ın�2mn

�
:

(5-5)

From the evolution equation (4-41) and the fact that H is self-adjoint we obtain

d

ds

�
hHLn"; �B0T

.n;k/
0 i

�
D h";HLn.@s�B0T

.n;k/
0 /i

C

D
� eMod.s/� Q bC

�s

�
ƒ"C

zs

�
:r"�H"CNL."/CL."/;HLn.�B0T

.n;k/
0 /

E
: (5-6)

The terms created by the cut of the solitary wave �2��zŒ. QLC zRCfNL/�� do not appear because they
have their support in the zone 1

2�
� jyj, which is far away from the zone jyj � 2B0 as B0� 1

�
in the

trapped regime by (4-52). We now look at all the terms in the above equation.

The @s.�B0/ term. From the modulation equation (4-43) and the bound (4-25), one has jb.0;1/1;s j � Cs
�2.

Hence, using the asymptotic (2-7) of T .n;k/0 and the fact that HT .n;k/0 D 0 and (4-27), we get that
HLn.@s�B0T

.n;k/
0 / has support in B0 � jyj � 2B0 and satisfies the bound

jHLn.@s�B0T
.n;k/
0 /j �

C.L/

s
n
2
CLnC1

:

Using the coercivity estimate (C-16), we obtainˇ̌
h";HLn.@s�B0T

.n;k/
0 /i

ˇ̌
� C.L/

p
E2sLs

2mnCın : (5-7)

The error term. For jyj � 2B0, one has Q b D b by (3-34). As  b is a finite sum of homogeneous profiles
of degree .i;� � 2�g0/ for some i 2 N (which was proved in Step 4 of the proof of Proposition 3.1),
the bounds on the parameters (4-27) imply that j b.y/j �C.L/s�

C2Cg
2 for B0 � jyj � 2B0. Combined

with (5-4), this yieldsˇ̌
h Q b;H

Ln.�B0T
.n;k/
0 /i

ˇ̌
� C.L/B

d�n�2Ln��g
0�2

0 �
C.L/

sLC1C
g0

2
�ı0�ın�2mn

: (5-8)
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The remainder’s contribution. Using (5-4), the bounds j�s
�
j � Cs�1 and jzs

�
j � Cs�

˛C1
2 (which are

consequences of the modulation estimate (4-43) and (4-25)) and the coercivity estimate Lemma C.3,
one gets ˇ̌̌̌�

�s

�
ƒ"C

zs

�
:r"�H";HLn.�B0T

.n;k/
0 /

�ˇ̌̌̌
� C.L/

p
E2sLs

2mnCın : (5-9)

The small linear term can be written as L."/ D .pQp�1 �p zQp�1
b

/; hence from the form of zQb , see
(3-29), one has j.pQp�1�p zQp�1

b
/j �C.L/s�1�

˛
2 . Its contribution is then of smaller order using (5-4):

ˇ̌
hL."/;HLn.�B0T

.n;k/
0 /i

ˇ̌
� C.L/

p
E2sLs

2mnCın�
˛
2 : (5-10)

The nonlinear term can be written as NL."/ D
Pp

kD2
C
p

k
"k zQ

p�k

b
. From the coercivity estimate

Lemma C.3, we get Z
B0�jyj�2B0

"2

jyjnC2Ln
dy � C.L;M/E2sLs

2sL�
n
2
�Ln :

Using the bootstrap bounds (4-25) and (4-27), one computesp
E2sLs

2sL�
n
2
�Ln �K2s

ınC2mn�.�24 C
�.1�ı0

0
/

2
/
� B

ınC2mn
0

for s0 large enough (because  > 2). For 2� k � p, we know j"k�2 zQp�k
b
j � C is bounded by (D-2), so

using the two previous equations and (5-4), one getsˇ̌
hNL."/;HLn.�B0T

.n;k/
0 /i

ˇ̌
�
p
E2sLs

2mnCın (5-11)

for s0 large enough. Combining (5-9), (5-10) and (5-11), we have the following upper bound for the
remainder’s contribution:ˇ̌̌̌�

�s

�
ƒ"C

zs

�
:r"�H"CNL."/CL."/;HLn.�B0T

.n;k/
0 /

�ˇ̌̌̌
� C.L;M/

p
E2sLs

2mnCın: (5-12)

The modulation term. For .n0; k0; i/ 2 I, one has

hT
.n;k/
i ;HLn.�B0T

.n;k/
0 /i D hHLnT

.n;k/
i ; �B0T

.n;k/
0 i D 0

if .n0; k0; i/ ¤ .n; k; Ln/. Indeed, if .n0; k0/ ¤ .n; k/ then the two functions are located on different
spherical harmonics and their scalar product is 0. If i ¤ Ln then i < Ln and HLnT

.n;k/
i D 0. This

implies the identity from (4-33) since B1� B0:

heMod.s/;HLn.�B0T
.n;k/
0 /i

D
�
b
.n;k/
Ln;s
C.2Ln�˛n/b

.0;1/
1 b

.n;k/
Ln

�
hT
.n;k/
0 ; �B0T

.n;k/
0 i

C

LC2X
jD2

X
.n0;k0;i/2I

�
b
.n0;k0/
i;s C.2i�˛n0/b

.0;1/
1 b

.n0;k0/
i

�� @Sj

@b
.n0;k0/
i

;HLn.�B0T
.n;k/
0 /

�

�

�
�s

�
Cb

.1;0/
1

�
hƒ zQb;H

Ln.�B0T
.n;k/
0 /i�

��
zs

�
Cb

.1;� /
1

�
:r zQb;H

Ln.�B0T
.n;k/
0 /

�
: (5-13)
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For 2 � j � LC 2 and .n0; k0; i/ 2 I, as Si is homogeneous of degree .i;� � g0/, using (4-27) and
(5-4), we haveˇ̌̌̌

.2i �˛n0/b
.0;1/
1 b

.n0;k0/
i

�
@Sj

@b
.n0;k0/
i

;HLn.�B0T
.n;k/
0 /

�ˇ̌̌̌
�

C.L;M/

sL�ı0�ınC2mnC1C
g0

2

: (5-14)

Using the modulation bound (4-43), the asymptotics (2-1) and (2-7) ofQ andƒQ, (4-27) and (5-4), we findˇ̌̌̌�
�s

�
C b

.1;0/
1

�
hƒ zQb;H

Ln.�B0T
.n;k/
0 /i �
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(5-15)

is very small as L� 1. Moreover for 2� j � LC 2, one hasX
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From similar arguments we used to derive (5-14), one has the similar bound for the last term, yieldingX
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Coming back to the decomposition (5-13), and applying (5-14) and (5-16) gives
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In the decomposition (5-6), we examined each term in (5-7), (5-8), (5-12) and (5-17), yielding the
identity (5-5) we claimed in this first step.

Step 2: end of the proof. From (5-5) one obtains
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: (5-18)

The size of the denominator is, from the asymptotic (2-7) of T .n;k/0 and (4-27),

h�B0T
.n;k/
0 ; T

.n;k/
0 i � cs2mnC2ın (5-19)
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for some constant c > 0. As the denominator just depends on b.0;1/1 , using the bound jb.0;1/1;s j � Cs
�2

and the asymptotics (2-7) of T .n;k/0 , we obtainˇ̌̌̌
ˇ dds
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0 ; T
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ˇ� C.L;M/

s2mnC2ınC1
:

Also, using again the coercivity estimate Lemma C.3, (5-4) and the fact that for 2� j �LC 2, we know
Sj is homogeneous of degree .j;� �g0/, we obtainˇ̌̌̌�
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Hence, plugging the three previous identities in (5-18) gives the identity (5-3) claimed in the lemma. �

5B. Lyapunov monotonicity for low regularity norms of the remainder. The key estimate concerning
the remainder w is the bound on the high regularity adapted Sobolev norm at the blow-up area: E2sL .
However, the nonlinearity can transfer energy from low to high frequencies, and consequently to control
E2sL we need to control the low frequencies. This is the purpose of Propositions 5.3 and 5.5, where we
find an upper bound for the time evolution of kwintk PH� .Rd /

and kwextkH� .�/.

Proposition 5.3 (Lyapunov monotonicity for the low Sobolev norm of the remainder in the blow-up zone).
Suppose all the constants involved in Proposition 4.6 are fixed except s0 and �. Then for s0 large enough
and � small enough, for any solution u that is trapped on Œs0; s0/ the following holds for 0� t < t.s0/:

d

dt

�
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�
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p
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; (5-21)

where the norm E� is defined in (4-9).

Remark 5.4. Equation (5-21) should be interpreted as follows. The term
p
E�

�2.��sc/C2 s
.��sc/`
2`�˛

C1

is from (4-25) and (4-52) of order 1
s
ds
dt

(as ds
dt
D ��2). The 1=s

˛
4L then represents a gain: it gives that

the right-hand side of (5-21) is of order .1=s1C
˛
4L /ds

dt
, which when reintegrated in time is convergent

and arbitrarily small for s0 large enough. The third term shows that one needs to have
p
E� . s�

��sc
2 to

control the nonlinear terms, which holds because of the bootstrap bound (4-25).

Proof of Proposition 5.3. To show this result, we compute the left-hand side of (5-21) and we bound it
above it using all the bounds that hold in the trapped regime. The time evolutionwint given by (4-34) yields
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We now give an upper bound for each term in (5-22). As all the terms involve functions that are compactly
supported in � since wint is, all integrations by parts are legitimate and all computations and integrations
are performed in Rd (e.g., L2 denotes L2.Rd /).

Step 1: inside the blow-up zone (all terms except the three last ones in (5-22)).

The linear term. By (4-35) using dissipation, we first computeZ
r
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� .�Hz; 1
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Z
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;

which becomes after an integration by parts and using the Cauchy–Schwarz inequalityZ
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p.�z.Q 1

�
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�
L2
:

Using interpolation, the coercivity estimate (C-16) and the bounds of the trapped regime (4-25) on ", one
has for the first term (performing a change of variables to go back to renormalized variables)
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:

As Qp�1 D O..1C jyj/�2/ from (2-2), using the Hardy inequality (B-7) we get for the second term
after a change of variablesr��2�p.�z.Q 1
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Combining the four above identities we obtainZ
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The modulation term. To treat the error induced by the cut separately, we decompose as follows, going
back to renormalized variables using Cauchy–Schwarz:ˇ̌̌̌Z
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For the first term in the above equation, using (4-33) and the modulation estimates (4-43) and (4-44), we get
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Under the trapped regime bound (4-25), one has
p
E2sL C s�L�3 � s�L�1Cı0��.1�ı

0
0/. Moreover, from

the asymptotics of Q, ƒQ, T .n;k/i and Sj ((2-1), (2-7), Lemma 2.10 and (3-8)), and the bounds on the
parameters (4-27), one has
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All these bounds then imply that for the modulation term that is located at the blow-up zone in (5-24),
we have
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We now turn to the second term in (5-24). The blow-up point z is arbitrarily close to 0 by (4-51)
and from the expression of the modulation term (4-33), all the terms except �z
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�s
�
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We insert the two previous equations into the expression (5-24), yieldingˇ̌̌̌Z
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The error term. As jzj � 1 by (4-51) and B1� � 1 by (4-27) and (4-52), from the expression of
the error term (3-36), all the terms except �z.b
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. Therefore, making the following decomposition and coming back to

renormalized variables, using the estimates (3-32) and (4-43), one computesˇ̌̌̌Z
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The nonlinear term. First, coming back to renormalized variables, as NL."/D
Pp
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C
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k
zQ
p�k

b
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performing an integration by parts we writeˇ̌̌̌Z
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(5-27)
We fix k, 2� k � p, and focus on the k-th term in the sum. The first term is estimated using interpolation,
the coercivity estimate (C-16) and the bound (4-25):
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For the second term in (5-27), as QQb D O..1C jyj/�2/ by (3-29) and (4-27), we first use the Hardy
inequality (B-7):r��2C.k�1/.��sc/. zQp�k
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Fix .�i /1�i�k 2 Nkd satisfying
Pk
iD1 j�i j D �.n; k/ in the above sum. We define the following family
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We now recall the commutator estimate
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provided 1< q; p1; p01<C1 and 1�p2; p02�C1. This estimate, combined with the Hölder inequality
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From Sobolev embedding, one has on the other hand that
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Plugging this estimate in (5-29) using (5-30) givesr��2C.k�1/.��sc/. zQp�k
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Injecting this bound and the bound (5-28) in the decomposition (5-27) yieldsˇ̌̌̌Z
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The small linear term. One has L."/D�p.Qp�1� zQp�1/". The potential here admits the asymptotic
Qp�1� zQp�1 . jyj�2�˛ at infinity, which is better than the asymptotic of the potential appearing in the
linear term Qp�1 � jyj�2 we used previously to estimate it. Hence using exactly the same techniques
one can prove the same estimateˇ̌̌̌Z
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End of Step 1. We come back to the first identity we derived, (5-22), and insert the bounds we found for
each term in (5-23), (5-25), (5-26), (5-31) and (5-32) to obtainˇ̌̌̌Z
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Step 2: the last three terms outside the blow-up zone in (5-22). By a change of variables, we see that
the extra error term (4-40) is bounded:

kr
� zRkL2.Rd / � C:

Then, the extra linear term in (5-22) is estimated directly via interpolation using the bound (4-28):r�����B.0;3/w� 2r�B.0;3/:rwCp�zQp�11
�

.�
p�1

B.0;1/
��B.0;3//w

�
L2.Rd /

� kwkH�C1 � kwk
1� 1
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H� kwk
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�
1

�2sL��sLC1�ı0C�.1�ı
0
0/
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�
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� 2
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D
C.K1; K2/

�2s1C
˛
2L
CO.��scC�

L
/

because 1=�2sL��sLC1�ı0C�.1�ı
0
0/� 1 in the trapped regime. For the last nonlinear in (5-22), one has,

using (D-4) and (4-28),

kfNLkH� � CkwkH�kwk
p�1

H
d
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C��sc

� C.K1/kwk
.p�1/.d
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C��sc��/=.2sL��/

H2sL
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�
1
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�2s1C
˛
2L
CO.��scC�

L
/
:

The three previous estimates imply that for the terms created by the cut in (5-22), we have the estimate
(we recall that ���sc=s

`.��sc/
2`�˛ D 1CO.s

�Q�
0 / from (4-52))ˇ̌̌̌Z

r
�wint:r

� . QLC zRCfNL/
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s
˛
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CO.�C��sc

L
/
: (5-34)

Step 3: conclusion. We now come back to the first identity we derived, (5-22), and insert the bounds
(5-33) and (5-34), yielding

d
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CO.�C��sc

L
/

pX
kD2

� p
E�

s�
��sc
2

�k�1i
:

As the constants never depend on s0 or on �, as L� 1 is an arbitrary large integer, 0 < � � sc � 1,
˛
2
� sup0�n�n0 ın > 0, we see that for s0 sufficiently large and � sufficiently small, the terms on the

right-hand side of the previous equation can be as small as we want, and (5-21) is obtained. �



198 CHARLES COLLOT

Proposition 5.5 (Lyapunov monotonicity for the low Sobolev norm of the remainder outside the blow-up
area). Suppose all the constants involved in Proposition 4.6 are fixed except s0 and �. Then for s0
large enough and � small enough, for any solution u that is trapped on Œs0; s0/ the following holds for
t 2 Œ0; t.s0//:

d

dt

�
kwextk

2
H�

�
�

C.K1; K2/

s1C
˛
2L
CO.�C��sc

L
/�2
kwextkH� : (5-35)

Proof. From the evolution equation of wext, given in Section 4B1, we deduce

d

dt
kwextk

2
H� .�/ � CkwextkH� .�/

�wextC��3wC 2r�3:rwC .1��3/w
p

H� .�/

: (5-36)

For the linear terms, using interpolation and the bounds (4-25) and (4-28) one finds

k�wextC��3wC 2r�3:rwkH� .�/

� CkwextkH�C2.�/CCkwkH�C1.�/
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0
0/

� 2
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� C.K1; K2/
1

�2s1C
˛
2L
CO.�C��sc

L
/

because 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/ � 1 in the trapped regime from (4-52). For the nonlinear term,

using (D-4), interpolation and then the bootstrap bound (4-28),

k.1��3/w
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kH� � CkwpkH� .�/ � CkwkH� .�/kwk
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H
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C��sc .�/

� C.K1/kwk
.p�1/
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C��sc��
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H2sL .�/
� C.K1/kwk

2
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H2sL .�/
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C.K1; K2/
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CO.�C��sc

L
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:

Injecting the two above estimates in (5-36) yields the desired identity (5-35). �

5C. Lyapunov monotonicity for high regularity norms of the remainder. We derive Lyapunov-type
monotonicity formulas for the high regularity norms of the remainder inside and outside the blow-up
zone, E2sL and kwextkH2sL , in Propositions 5.6 and 5.8. In our general strategy, we have to find a way to
say that w is of smaller order compared to the excitation ��z. Q̨b;1=�/ and does not affect the blow-up
dynamics induced by the latter. This is why we study the quantity E2sL : it controls the usual Sobolev
norm H 2sL and any local norm of lower-order derivative, which is useful for estimates, and is it adapted
to the linear dynamics as it undergoes dissipation. Finally, for this norm one sees that the error Q b is of
smaller order compared to the main dynamics of ��z. zQb; 1

�
/ (this is the �.1� ı00/ gain in (3-33)).

Proposition 5.6 (Lyapunov monotonicity for the high regularity adapted Sobolev norm of the remainder
inside the blow-up area). Suppose all the constants of Proposition 4.6 are fixed, except s0 and �. Then
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there exists a constant ı > 0 such that for any constant N � 1, for s0 large enough and � small enough,
for any solution u that is trapped on Œs0; s0/, the following holds for 0� t < t.s0/:

d

dt

�
E2sL

�2.2s�L�sc/
CO.L;M/

�
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�2.2sL�sc/sLC1�ı0C�.1�ı
0
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0/
C
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E2sL

sLC1�ı0C�.1�ı
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C.L;M/

N 2ı
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pX
kD2
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1CO. 1

L
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�k�1C.L;M;K1;K2/
s
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L
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p
E2sL
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0
0/C
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2L
CO.��scC�

L
/

#
; (5-37)

where OL;M .f / denotes a function depending on time such that jOL;M .f /.t/j � C.L;M/f for a
constant C.L;M/ > 0, and where E� and E2sL are defined in (4-9) and (4-7).

Remark 5.7. Equation (5-37) has to be understood the following way. The O. � / in the time derivative
is a corrective term coming from the refinement of the last modulation equations; see (4-44) and (5-2).
It is of smaller order for our purpose so one can “forget” it. On the right-hand side of (5-37), the first
two terms come from the error Q b made in the approximate dynamics. The third one results from the
competition of the dissipative linear dynamics and the lower-order linear terms that are of smaller order
(the motion of the potential in the operator Hz;1=� involved in E2sL , and the difference between the
potentials �z. zQb;1=�/p�1 and �z.Q1=�/p�1). The penultimate represents the effect of the main nonlinear
term, and shows that one needs E� smaller than ssc�� to control the energy transfer from low to high
frequencies. The last one results from the cut of w at the border of the blow-up zone.

Proof of Proposition 5.6. From (4-41) one has the identity

d

dt

�
E2sL

�2.2sL�sc/

�
D
d

dt

�Z
jH

sL

z; 1
�

wintj
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D�2

Z
H
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�

wintH
sLC1

z; 1
�

wintC

Z
H
sL

z; 1
�

wintH
sL

z; 1
�

�
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��z.�eMod.t/ 1

�
/

�
C 2

Z
H
sL

z; 1
�

wint

�
H
sL

z; 1
�

�
1

�2
��z.� Q b 1

�
/CNL.wint/CL.wint/

�
C
d

dt
.H

sL

z; 1
�

/wint

�
C 2

Z
H
sL

z; 1
�

wintHz; 1
�
. QLCfNLC zR/: (5-38)

The proof is organized as follows. For the terms appearing in this identity: for some (those on the second
line), we find direct upper bounds (Step 1), then we integrate by parts in time some modulation terms
that are problematic to treat the second term on the right-hand side (Step 2), and eventually we prove
that the terms created by the cut of the solitary wave (the last line) are harmless and use a dissipation
property at the linear level (produced by the first term on the right-hand side) to improve the result (Step 3).
Throughout the proof, the estimates are performed on Rd , as wint has compact support inside �, and we
omit it in the notations.
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Step 1: brute force upper bounds. We claim that the nonlinear term, the error term, the small linear term
and the term involving the time derivative of the linearized operator in (5-38) can be directly bounded
above, yieldingH sL

z; 1
�

�
NL.wint/�

1

�2
��z. Q b; 1

�
/CL.wint/

�
C
d

dt
.H
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/wint
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0
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1Cjyj2ı

�1
2
�

(5-39)

for some constant ı > 0. We now analyse these four terms separately.

The error term. We decompose between the main terms and the terms created by the cut. The cut induced
by Q� WD�.�yCz/ only sees the terms b.0;1/1 ƒQCb

.1;� /
1 :rQ because all the other terms in the expression

(3-36) of Q b have support inside Bd .2B1/ and because jzj � 1 by (4-51) and B1� 1
�

by (4-52). For the
main term we use the estimate (3-33), and for the second the bound on the parameters (4-27) and the
asymptotics (2-7) and (2-1) of ƒQ and @Q,H sL
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�

�
L2
� C

H sL

z; 1
�

�
1

�2
�z Q b; 1

�

�
L2
CC

H sL

z; 1
�

�
1

�2
.1��/�z Q b; 1

�

�
L2

�
kH sL Q bkL2

�2sL�sc
C

1

�2.2sL�sc/C4

Z ˇ̌
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(5-40)

since ˛ > 1; hence
�2.˛�1/

s
C

1

s
˛C1
2

� 1;

since 1=�2sL�scC2sLC2�ı0C�.1�ı
0
0/� 1 in the trapped regime from (4-52).

The nonlinear term. We begin by coming back to renormalized variables:

kH
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.NL.wint//kL2 �
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because NL."/ D
Pp

kD2
C
p

k
zQ
p�k

b
"k. We fix k with 2 � k � p and study the corresponding term

in the above sum. One has H D �� � pQp�1, and Q is a smooth profile satisfying the estimate
QDO..1Cjyj/�

2
p�1 /, which propagates to its derivatives from (2-1). Similarly, from (4-27) and (3-29),

one has zQb D O..1C jyj/
� 2
p�1 / and it propagates to the derivatives. The Leibniz rule for derivation
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then yields

kH sL. zQ
p�k

b
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We fix �i 2Nkd with
P
j�i j1� 2sL and focus on the corresponding term in the above equation. Without

loss of generality we order by increasing length: j�1j � � � � � j�kj. We now distinguish between two cases.

Case 1: j�kjC
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:

As the coefficients are in increasing order and L is arbitrarily very large, for 1 � j < k we have
j�i jC

d
2
� 2sL. We then recall the L1 estimate (D-3):
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The two previous estimates imply thatZ Qk
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Case 2: j�kj C
2.p�k/
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C 2sL �
Pk
iD1 j�i j > 2sL. This means 2.p�k/

p�1
�
Pk�1
iD1 j�i j > 0. Hence, there

are two subcases: the subcase j�i j D 0 for 1 � i � k � 1 and the subcase j�k�1j D 1 (because the �i
are ordered by increasing size j�i j). If j�i j D 0 for 1� i � k� 1, then, using the weighted L1 estimate
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(D-2), the coercivity estimate (C-16) and the bound (4-25), we obtainZ Qk
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:

If j�k�1j D 1, then, using the weighted L1 estimate (D-2) for r", the coercivity estimate (C-16) and
the bound (4-25), we obtainZ Qk
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In both subcases, we haveZ Qk
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Now we come back to (5-41), which we reformulated in (5-42) where we estimated the terms appearing in
the sum in (5-43) and (5-44), obtaining the following bound for the nonlinear term’s contribution in (5-38):
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The small linear term and the term involving the time derivative of the linearized operator. We claim that
there exists a constant ı WD ı.d; L; p/ > 0 such thatH sL
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We now prove this estimate. The small linear term is in renormalized variables by (4-36) and (4-37):Z ˇ̌
H
sL

z; 1
�

.L.wint//
ˇ̌2
D

p2

�2.2sL�sc/C4

Z �
H sL..Qp�1� zQ

p�1

b
/"/
�2
:



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 203

For � 2Ns , one has the following asymptotic behavior for the potential that appeared, from the bounds
on the parameters (4-27) and the expression of zQb (3-29):
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for � small enough, because ˛ > 2, and for some constant ı that can be chosen small enough so that
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(This technical condition is useful to apply a coercivity estimate for the next equation; all the terms
appearing are indeed strictly positive by (1-25).) We recall that H D���pQp�1, where Q is a smooth
potential satisfying
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where we used for the last line the weighted coercivity estimate (C-16), which we could apply because
ı satisfies the technical condition (5-47). We now turn to the term involving the time derivative of the
linearized operator in (5-38). Going back to renormalized variables, it can be written as
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For � 2 Nd, one has the following asymptotic behavior for the two potentials that appeared (from the
asymptotic (2-1) and (2-7) of Q and ƒQ):

j@�.Qp�2@yiQ/j �
C.�/

1Cjyj2C1Cj�j
for 1� i � d; and j@�.Qp�2ƒQ/j �

C.�/

1Cjyj2C˛
:

Therefore, as H D���pQp�1, where Q is a smooth potential satisfying

j@�Qj �
C.�/

1Cjyj
2
p�1
Cj�j1

;
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using the Leibniz rule and the two above identities,ˇ̌̌̌Z
H
sL

z; 1
�

wint
d

dt
.H

sL

z; 1
�

/wint

ˇ̌̌̌
�
C.L/

�ˇ̌
�s
�

ˇ̌2
C
ˇ̌
zs
�

ˇ̌2�
�2.2sL�sc/C4

X
�i2Nd

j�i j1�2sL; iD1;2

Z
j@�1"jj@�2"j

1Cjyj4sLC2�2j�1j�2j�2j

�
C.L/

�2.2sL�sc/C4 s2

X
�i2Nd

j�i j1�2sL; iD1;2

Z
jH sL"j2

1Cjyj2ı
(5-49)

for ı < ˛; 1 being defined by (5-47), where we used the weighted coercivity estimate (C-16) and the
fact that

ˇ̌
�s
�

ˇ̌
� s�1 and

ˇ̌
zs
�

ˇ̌
� s�1�

˛�1
2 by (4-43) and (4-27). We now combine the estimates we have

proved, (5-48) and (5-49), to obtain the estimate (5-46) we claimed.

End of the proof of Step 1. We now gather the brute force upper bounds we have found for the terms we
had to treat in (5-40), (5-45) and (5-46), yielding the bound (5-39) we claimed in this first step.

Step 2: integration by parts in time to treat the modulation term. We now focus on the modulation term in
(5-38) which requires a careful treatment. Indeed, the brute force upper bounds on the modulation (4-43)
are not sufficient and we need to make an integration by parts in time to treat the problematic term b

.n;k/
Ln;s

.
We do this in two steps. First we define a radiation term. Next we use it to prove a modified energy estimate.

Definition of the radiation. We recall that ˛b D
P
.n;k;i/2I b

.n;k/
i T

.n;k/
i C

PLC2
iD2 Si , where T .n;k/i is

defined by (2-26) and Si is homogeneous of degree .i;� �g0/ in the sense of Definition 2.14; see (3-8).
We want to split ˛b in two parts to distinguish the problematic terms involving the parameters b.n;k/Ln

. For
i D 2; : : : ; LC 2, as Si is homogeneous of degree .i;� �g0/, it is a finite sum

Si D
X

J2J .i/

bJfJ ; with bJ D
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i ; (5-50)

where J .i/ is a finite subset of N#I and for all J 2 J .i/, jJ j3 D i and fJ is admissible of degree
.2jJ j2�  �g

0/ in the sense of Definition 2.11. We then define the following partition of J .i/:

J1.i/ WD
˚
J 2 J .i/; J .n;k/Ln

D 0 for all 0� n� n0; 1� k � k.n/
	
;

J2.i/ WD
˚
J 2 J .i/; jJ j D 2 and 9.n; k; Ln/ 2 I; J

.n;k/
Ln

� 1
	
;

J3.i/ WD J .i/nŒJ1.i/[J2.i/�;

S i WD
X

J2J2.i/

bJfJ ; S 0i WD
X

J2J3.i/

bJfJ ;

(5-51)

and the following radiation term:

� WDH sL

�
�B1

� X
0�n�n0
1�k�k.n/

b
.n;k/
Ln

T
.n;k/
Ln

C

LC2X
iD2

S 0i

��
C

LC2X
iD2

H sL.�B1S i /��B1H
sLS i : (5-52)
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From (5-51), for all J 2 J3.i/ there exists n with 0 � n � n0 such that J .n;k/Ln
� 1 and jJ j � 3. As

ın0 > 0, this implies
8J 2 J3.i/; jJ j2 >LC 2� ı0: (5-53)

Using this fact, (2-7), the fact that H sLT
.n;k/
Ln

D 0 since sL >Ln for all 0� n� n0, (5-51) and (4-27),
the radiation satisfies

k�kL2 �
C.L;M/

sLC1�ı0C�.1�ı
0
0/
; kH�kL2 �

C.L;M/

sLC2�ı0C�.2�ı
0
0/
; (5-54)

kr�kL2 �
C.L;M/

sLC
3
2
�ı0C�. 32�ı

0
0/
; kƒ�kL2 �

C.L;M/

sLC1�ı0C�.1�ı
0
0/
: (5-55)

We eventually introduce the remainders

R1 WDH
sL

�
�B1

X
.n;k;i/2I; i¤Ln

�
b
.n;k/
i;s C .2i �˛n/b

.n;k/
i b

.0;1/
1 � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jD2

@Sj

@b
.n;k/
i

��

�

�
�s

�
C b

.0;1/
1

�
H sLƒ QQb �

�
zs

�
C b

.1;� /
1

�
:H sLr zQb

CH sL

�
�B1

X
.n;k;Ln/2I

.2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

�
T
.n;k/
Ln

C

LC2X
jD2

@S 0j

@b
.n;k/
Ln

��

C

X
.n;k;Ln/2I

.2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

�LC2X
jD2

H sL.�B1
@Sj

@b
.n;k/
Ln

/��B1H
sL

@Sj

@b
.n;k/
Ln

�

R2 WD
X

.n;k;Ln/2I

�
b
.n;k/
Ln;s

C .2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

��LC2X
jD2

�B1H
sL

@Sj

@b
.n;k/
Ln

�
;

R3 WD
X

.n;k;i/2I; i¤Ln

b
.n;k/
i;s

@

@
b
.n;k/

i

�;

so that they produce, by (5-52) and (4-33), the identity

H sL.eMod.s//D @s�CR1CR2CR3: (5-56)

The remainder R1 enjoys the following bounds by (4-43), (2-22), (3-8), (5-51), (5-53) and (4-27):

kR1kL2 �
C.L;M/

sLC2�ı0C.1�ı
0
0/�
C
C.L;M/E2sL

s2
: (5-57)

From the definition (5-51) of Sj and the construction (3-25) of Sj , one has

LC2X
jD2

HSj D�
X

.n;k;Ln/2I

b
.0;1/
1 b

.n;k/
Ln

�
ƒT

.n;k/
Ln

� .2Ln�˛n/T
.n;k/
Ln

�
�

X
.n;k;Ln/2I

b
.n;k/
Ln

b
.1;� /
1 :rƒT

.n;k/
Ln

Cp.p� 1/Qp�2
� X
.n;k;Ln/2I

b
.n;k/
Ln

T
.n;k/
Ln

�� X
.n0;k0;i/2I

b
.n0;k0/
i T

.n0;k0/
i

�
:



206 CHARLES COLLOT

As H sLT
.n;k/
Ln

D 0 since sL>Ln for all 0� n� n0, using the commutator identity (2-24), the asymptotic
(2-22) of T .n;k/i , (4-27) and (2-2) (as ˛ > 2), one hasZ

.1Cjyj4C2ı/

�
�B1H

sLC1
LC2X
jD2

@Sj

@
b
.n;k/
Ln

�2
�
C.L/

s
;

where ı is defined by (5-47), from which we deduce, using (4-44),

.1Cjyj/2CıHR2L2 � C.L;M/

sLC4
C
C.L;M/

p
E2sL

s
: (5-58)

Finally for the last remainder, from (5-52), (4-43), (4-27), (4-25), (2-22) and (5-51), for s0 large enough
one has the estimate

kR3kL2 �
C.L;M/

sLC2�ı0C�.1�ı
0
0/
: (5-59)

Modified energy estimate. We now prove the modified energy estimate (compared to (5-38))

d

dt

�Z
.H

sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
//2
�

�
1

�2.2sL�sc/C2s

�
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
CC.L;M/

p
E2sL

�Z
jH sL"j2

1Cjyj2ı

�1
2

CE2sL
pX
kD2

�p
E�
1CO. 1

L
/

s�
��sc
2

�k�1C.L;M;K1;K2/
s
˛
L
CO.�C��sc

L
/

�
�2

Z
H
sL

z; 1
�

wintH
sLC1

z; 1
�

wint

C2

Z
H
sL

z; 1
�

wintH
sL

z; 1
�

.zLC zRCfNL/: (5-60)

From the time evolution (5-56), (4-32) of � and w and because the support of �z.�1=�/ is disjoint from
the one of zL, zR, and fNL, one gets the following expression for the left-hand side of (5-60):

d

dt

�Z �
H
sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
/

�2�
D�2

Z
H
sL

z; 1
�

wintH
sLC1

z; 1
�

wint�
2

�2sLC2

Z
H
sL

z; 1
�

wint�z.R2; 1
�
/�

2

�2sL

Z
�z.� 1

�
/H

sLC1

z; 1
�

wint

C2

Z �
H
sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
/

�"
H
sL

z; 1
�

�
NL.wint/�

1

�2
�z. Q b; 1

�
C.��1/eMod.t/ 1

�
/CL.wint/

�

C
d

dt
.H

sL

z; 1
�

/wint�
1

�2C2sL
�z

��
R1CR3C

�s

�
ƒ�C2sL

�s

�
��
zs

�
:r�

�
1
�

�#

�
2

�4sLC2

Z
�z.� 1

�
/�z.R2; 1

�
/C2

Z
H
sL

z; 1
�

wintH
sL

z; 1
�

. QLCfNLC zR/: (5-61)

We now analyse all the terms in this identity, except the first one and the last one, which we will study
in the next step. Using the estimate (5-58) on the remainder R2, going back in renormalized variables
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and using the coercivity (C-16), one gets for the second term in (5-61)ˇ̌̌̌
2

�2sLC2

Z
H
sL

z; 1
�

wint�z.R2; 1
�
/

ˇ̌̌̌
� C

Z
jH sL�1"j

1Cjyj2Cı
.1Cjyj2Cı/jHR2j

�
C.L;M/

p
E2sL

�2.2sL�sc/C2s

��Z
jH sL"j2

1Cjyj2ı

�1
2

C
1

sLC3

�
:

Going back to renormalized variables, integrating by parts and using the estimate (5-54) on H� gives
for the third term in (5-61)ˇ̌̌̌

2

�2sL

Z
�z.� 1

�
/H

sLC1

z; 1
�

wint

ˇ̌̌̌
�

C.L;M/

�2.2sL�sc/C2

p
E2sL

sLC2�ı0C�.2�ı
0
0/
:

To bound the fourth and the fifth terms in (5-61) from above, we go back to renormalized variables and
use the bound (5-39) on the error, the nonlinear term, the small linear term and the term involving the
time derivative of the linearized operator we derived in Step 1, together with the bounds (5-54) and (5-55)
on �, ƒ�, r� and the fact that ˇ̌̌̌

�s

�

ˇ̌̌̌
� Cs�1 and

ˇ̌̌̌
zs

�

ˇ̌̌̌
� Cs�1�

˛�1
2

in the trapped regime, and the bound (5-57) and (5-59) on the remainders R1 and R3, yieldingˇ̌̌̌Z �
H
sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
/

��
H
sL

z; 1
�

�
NL.wint/�

1

�2
�z. Q b; 1

�
C.��1/eMod.t/ 1

�
/CL.wint/

�
C
d

dt
.H

sL

z; 1
�

/w�
1

�2C2sL
�z

��
R1CR3C

�s

�
ƒ�C2sL

�s

�
��
zs

�
:r�

�
1
�

��
�

2

�4sLC2

Z
�z.� 1

�
/�z.R1; 1

�
/

ˇ̌̌̌

�
1

�2.2sL�sc/C2s

�
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
CC.L;M/

p
E2sL

�Z
jH sL"j2

1Cjxj2ı

�1
2

CE2sL
pX
kD2

�p
E�
1CO. 1

L
/

s�
��sc
2

�k�1C.L;M;K1;K2/
s
˛
L
CO.�C��sc

L
/

�
:

We finish the proof of the bound (5-60) by inserting into the identity (5-61) the three previous bounds
we proved on the second, third, fourth and fifth terms.

Step 3: use of dissipation. We find an upper bound for the last terms in (5-60) and improve the energy
estimate using the coercivity of the quantity �

R
H sLC1"H sL".

The dissipation estimate. We recall that H D ��� pQp�1, the potential �pQp�1 being the Hardy
potential

pQp�1 <
.d � 2/2� 4ı.p/

4jyj2
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for some constant ı.p/>0 by (2-5). Hence, using the standard Hardy inequality one gets for the linear term

�

Z
H
sL

z; 1
�

wintHz; 1
�
H
sL

z; 1
�

wint

D�
1

�2.2s�L�sc/C2

Z
H sL"HH sL"

D
1

�2.2s�L�sc/C2

�
�

Z
jrH sL"j2C

Z
pQp�1jH sL"j2

�
D

1

�2.2s�L�sc/C2

��
.d � 2/2� 1

2
ı.p/

.d � 2/2
C

ı.p/

2.d � 2/2

� Z
jrH sL"j2C

Z
pQp�1jH sL"j2

�
�

1

�2.2s�L�sc/C2

�
�
.d � 2/2� 1

2
ı.p/

4

Z
jH sL"j2

jyj2
�

ı.p/

2.d � 2/2

Z
jrH sL"j2

C
.d � 2/2� ı.p/

4

Z
jH sL"j2

jyj2

�
D�

ı.p/

8�2.2s�L�sc/C2

Z
jH sL"j2

jyj2
�

ı.p/

2.d � 2/2�2.2s�L�sc/C2

Z
jrH sL"j2: (5-62)

Bounds for the terms created by the cut. We study the last terms in (5-60). From its definition (4-40), and
as �Cjzj� 1 by (4-52) and (4-51), the remainder zR is bounded by a constant independent of the others:

kH
sL

z; 1
�

zRkL2 � C: (5-63)

For the nonlinear term, for any very small � > 0, by (D-4), (4-39) and (4-28),

kH
sL

z; 1
�

fNLkL2 � C
pX
kD2

kwkkH2sL

� CkwkH2sL

pX
kD2

kwkk�1
Hd=2C�

� CkwkH2sL

pX
kD2

kwk
.k�1/.1�d=2C���

2sL��
/

H� kwk
.k�1/.d=2C���

2sL��
/

H2sL

� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�1C.p�1/d=2C���
2sL��

D C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�1C.p�1/ 2=.p�1/���scC�
2sL��

� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�1C 2
2sL��

D
C.K1; K2/

�2sL�scC2 sLC2�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/

(5-64)
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because 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52), if � has been chosen small enough. For the extra

linear term in (5-60), performing an integration by parts, using Young’s inequality for any " > 0, (4-25)
and (4-28) giveˇ̌̌̌Z

H
sL

z; 1
�

wintH
sL

z; 1
�

zL

ˇ̌̌̌
D

ˇ̌̌̌Z
H
sL

z; 1
�

wintH
sL

z; 1
�

�
���3w�2r�3:rwCp�zQ

p�1
1
�

.�
p�1
1 ��3/w

�ˇ̌̌̌
�CkH

sL

z; 1
�

wintkL2 kwkH2sLCC"krH
sL

z; 1
�

wintk
2
L2
C
C

"
kwintk

2
H2sL

�C"krH
sL

z; 1
�

wintk
2
L2
C

C.K1;K2; "/

�2.2sL�sc/ sLC1�ı0C�.1�ı
0
0/

�
C"

�2.2s�L�sc/C2

Z
jrH sL"j2C

C.K1;K2; "/

�2.2sL�sc/C2sLC2�ı0C�.1�ı
0
0/C

˛
2`�˛

(5-65)

because in the trapped regime �2s � s�
˛

2`�˛ by (4-52).

Conclusion. We insert into the modified energy estimate (5-60) the bounds (5-62), (5-63), (5-64) and
(5-65), yielding

d
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�Z �
H
sL

z; 1
�

wintC
1

�2sL
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�
/

�2�
�

1

�2.2sL�sc/C2s

"
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s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
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p
E2sL

�Z
jH sL"j2

1Cjyj2ı
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2

CE2sL
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E�
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2

�k�1C.L;M;K1; K2/
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˛
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CO.�C��sc
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sı.p/

8

Z
jH sL"j2

jyj2
�

sı.p/

2.d�2/2

Z
jrH sL"j2

CC"s

Z
jrH sL"j2C

C.K1; K2;M;L/
p
E2sL

sLC1�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/

#
: (5-66)

For any N � 1, using Young’s inequality and splitting the weighted integrals in the zone jyj �N 2 and
jyj �N 2 gives for " small enough and s0 large enough,

C.L;M/
p
E2sL

�Z
jH sL"j2

1Cjyj2ı

�1
2
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sı.p/� sC"
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CC.L;M/N 2ı

Z
jyj�N 2

jH sL"j2

1Cjyj2ı
�
sı.p/
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N 2ı
:

Finally, from the bound (5-54) on the size of � , one has
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/
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0
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���
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where OL;M . � / denotes the usual O. � / for a constant in the upper bound that depends only on L and M .
Plugging the two previous identities into the modified energy estimate (5-66) yields the bound (5-37)
we claimed in this proposition. �

Proposition 5.8 (Lyapunov monotonicity for the high regularity Sobolev norm of the remainder outside
the blow-up zone). Suppose all the constants of Proposition 4.6 are fixed except s0. Then for s0 large
enough, for any solution u that is trapped on Œs0; s0/ the following holds for 0� t < t.s0/:

kwextk
2
H2sL

� k@
sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0

C
C.K1; K2/

�2.2sL�sc/s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-67)

Proof. From the time evolution of wext, given in Section 4B1, we get

@kC1t wext D�@
k
t wextC .1��3/@

k
t .w

p/C��3@
k
t wC 2r�3:r@

k
t w: (5-68)

We make an energy estimate for @sLt wext and propagate this bound via elliptic regularity by iterations,
which is standard in the study of parabolic problems. All computations, unless mentioned, are performed
on �, and we omit this in the notation for simplicity.

Step 1: estimate on the force terms. We first prove some estimates on the force terms on the right-hand
side of (5-68). From the decomposition (4-10) and the evolution (4-32) ofw, in the exterior zone�nBd .2/,
@kt w can be written as

@kt w D

kX
jD0

X
C.�/

1Cj.p�1/Y
iD1

@�iw (5-69)

for some constants C.�/, where the inner sum is over � D .�i /1�i�1Cj.p�1/ 2 Ndk.p�1/ withP1Cj.p�1/
iD1 j�i j1 D 2.k � j /. Fix k � sL, an integer j with 0 � j � k, and a sequence of d -tuples

.�i /1�i�1Ck.p�1/ 2Ndk.p�1/ satisfying
P1Cj.p�1/
iD1 j�i j D 2.k�j /. One can assume that the d -tuples

�i are ordered by decreasing length: j�1j � j�2j � � � � .

The case k D sL. We want to estimate the above term in the zone �nBd .2/.

Subcase 1: j�1j � � . Using Hölder, Sobolev embedding
�
since in that case �i < 2sL � d

2
for 2 � i �

1C j.p� 1/
�
, interpolation and (4-28), for � > 0 small enough,1Cj.p�1/Y

iD1

@�iw


L2
� k@�1wkL2

1Cj.p�1/Y
iD2

k@�iwkL1

� kwkH j�1j

1Cj.p�1/Y
iD2

kwkHd=2C�Cj�i j
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� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�j�1j��CP1Cj.p�1/iD2
j�i jCd=2C���

2sL��

D C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�1� .j.p�1/�1/.��sc��/
2sL��

�
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
; (5-70)

as 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52).

Subcase 2: j�1j< � . Then �i < � for all 1� i � j.p� 1/ and @�iw 2 Lpi with pi given by

1

pi
D
1

2
�
� � j�i j

d

by Sobolev embedding. We define i0 as the integer 2� i0 � 1C j.p� 1/ such that
Pi0�1
iD1

1
pi
< 1
2

andPi0
iD1

1
pi
�

1
2

. We know i0 exists because 1
p1
< 1

2
and

P1Cj.p�1/
iD1

1
pi
�

1
2

. We define Qpi0 > 2

by 1
Qpi0
D

1
2
�
Pi0�1
iD1

1
pi

and Qs � � as the regularity giving the Sobolev embedding H Qs�j�i0 j! L Qpi0 :

Qs D

i0X
iD1

j�i jC .i0� 1/

�
d

2
� �

�
:

This implies that
Qi0
iD1 @

�iw 2 L2 with the estimate (from Hölder inequality)

 i0Y
iD1

@�iw


L2
� Ck@�i0wk

L
Qpi0

i0�1Y
iD1

k@�iwkLpi � kwkH Qs

i0�1Y
iD1

kwkH� � C.K1/kwk
Qs��
2sL��

H2sL
;

where we used interpolation and (4-25). Therefore, for � > 0 small enough, using Sobolev embedding,
the above estimate, interpolation and (4-25),1Cj.p�1/Y

iD1

@�iw


L2
�

 i0Y
iD1

@�iw


L2

1Cj.p�1/Y
iDi0C1

kwk
H
d
2
C�Cj�i j

� C.K1/kwk
Qs��
2sL��

H2sL

1Cj.p�1/Y
iDi0C1

kwk
1�

d=2C�Cj�i j��

2sL��

H� kwk

d=2C�Cj�i j��

2sL��

H2sL

� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�2sL���j.p�1/.��sc/C.j.p�1/�i0C1/�
2sL��

� C.K1; K2/
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

(5-71)

as 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52).
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End of substep 1. Inserting (5-70) and (5-71) into the identity we obtain

k@
sL
t wkL2.�nBd .2// �

C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
: (5-72)

Estimate for the nonlinear term in (5-68). With the very same arguments used in the first substep, one
obtains the bound

k@
sL
t w

p
kL2.�nBd .2// �

C.K1; K2/

�2sL�scC2 sLC2�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/
: (5-73)

The case k < sL. Again, for 0� k < sL, the same method yields

k@kt wkH2.sL�1�k/.�nBd .2// �
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛
2`�˛

CO. 1
L
/
; (5-74)

kr@kt wkH2.sL�1�k/.�nBd .2// �
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛
2.2`�˛/

CO. 1
L
/
; (5-75)

k@kt w
p
kH2.sL�1�k/.�nBd .2// �

C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-76)

Step 2: energy estimate for @sLt wext. We claim that for 0� t < t 0,

k@
sL
t wextk

2
L2
� k@

sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0 (5-77)

and we now prove this estimate. From (5-68) one has the identity

@t .k@
sL
t wextk

2
L2
/

D�2

Z
jr@

sL
t wextj

2
C 4

Z
@
sL
t wextr�3:r@

sL
t wC 2

Z
@
sL
t wext@

sL
t ..1��3/w

p
C��3w/ (5-78)

and we are now going to study the right-hand side of this equation.

Use of dissipation. We study all the terms except the nonlinear one in (5-78). After an integration by
parts, using Cauchy–Schwarz, Young’s and Poincare’s inequalities,ˇ̌̌̌Z

@
sL
t wextr�3:r@

sL
t wC

Z
@
sL
t wext@

sL
t .��3w/

ˇ̌̌̌
D

ˇ̌̌̌
�

Z
��3@

sL
t w@

sL
t wext�r�3:r@

sL
t wext@

sL
t wC

Z
@
sL
t wext@

sL
t .��3w/

ˇ̌̌̌
� C

�
k.1��2/@

sL
t wkL2 k@

sL
t wextkL2 Ck.1��2/@

sL
t wkL2kr@

sL
t wextkL2

�
� C."/k.1��2/@

sL
t wkL2 C "kr@

sL
t wk

2
H1
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for any " > 0. Adding the dissipation term in (5-78), taking " small enough and using the bound (5-72)
on the force term @

sL
t w gives

�

Z
jr@

sL
t wextj

2
C 4

Z
r�3:r@

sL
t w@

sL
t wextC

Z
@
sL
t wext@

sL
t .��B.0;3/w/

� Ck.1��2/@
sL
t wk

2
L2
� Ck@

sL
t wk

2
L2
�

C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/

�
C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

(5-79)

because in the trapped regime, �2s � s�
˛

2`�˛ .

Estimate for the nonlinear term. We now turn to the nonlinear term in (5-78), and use the estimate (5-73)
for @sLt w

p we found in the first step, yieldingˇ̌̌̌Z
@
sL
t wext@

sL
t ..1��3/w

p

ˇ̌̌̌
�

C.K1; K2/k@
sL
t wextkL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
: (5-80)

End of Step 2. We collect the estimates (5-79) and (5-80) found in the previous substeps, which gives the
desired bound (5-77) we claimed in this step.

Step 3: iteration of elliptic regularity. We claim that for i D 0; : : : ; sL,

k@itwextk
2
H2.sL�i/

� k@
sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0

C
C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-81)

We are going to show this estimate by induction. This is true for i D sL from the result (5-77) of the
last step, and because of the compatibility conditions (4-20) at the border. Now suppose it is true for i ,
with 1 � i � sL. Then as @i�1t wext solves (5-68), from elliptic regularity one gets (again because of
the compatibility conditions (4-20) at the border), from the induction hypothesis and the bounds (5-76),
(5-76) and (5-76) on the force terms

k@i�1t wextk
2
H2.sL�i/C2

� k.1��B.0;4//@
i�1
t .wp/C��B.0;4/@

i�1
t w

C 2r�B.0;4/:r@
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t wk2

H2.sL�i/
Ck@itwextk

2
H2.sL�i/

� k@
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t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0

C
C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
:
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This shows that the inequality (5-81) is true for i � 1. Hence, by iterations, the inequality (5-81) is true
for i D 0, which gives the estimate (5-67) we had to prove. �

5D. End of the proof of Proposition 4.6. Proposition 4.6 states that, once the constants involved in
the analysis, which are listed at its beginning, are well chosen, given an initial data of (1-1) that is a
perturbation of the approximate blow-up profile along the stable directions of perturbation, there is a way
to perturb it along the unstable directions of perturbation to produce a solution that stays trapped for all
time in the sense of Definition 4.4. The strategy of the proof is the following. We argue by contradiction
and suppose that for all perturbations along the unstable directions, the corresponding solution will
eventually escape from the trapped regime. First, we characterize the exit of the trapped regime through a
condition on the size of the unstable parameters, and then we show that arguing by contradiction would
amount to go against Brouwer’s fixed point theorem.

We fix �.s0/ satisfying (4-21), w.s0/ decomposed in (4-5) satisfying (4-19) and (4-11), V1.s0/,
.U

.0;1/

`C1
.s0/; : : : ; U

.0;1/
L .s0// and .U .n;k/i .s0//.n;k;i/2I with 1�n; in�i satisfying (4-16), (4-17) and ((iii)).

For any .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in satisfying (4-14) and (4-15), let u denote
the solution of (1-1) with initial datum u.0/D � zQb.s0/;1=�.s0/Cw.s0/ with b.s0/ given by (4-31). We
define the renormalized exit time s� D s�

�
.V2.s0/; : : : ; V`.s0//; .U

.n;k/
i .s0//.n;k;i/2I;1�n; i<in

�
:

s� WD sup
˚
s � s0; u is trapped in the sense of Definition 4.4 on Œs0; s/

	
: (5-82)

By a continuity argument, one always has s� > s0.

Lemma 5.9 (characterization of the exit of the trapped regime). For L and M large enough and � close
enough to sc , there exists a choice of the other constants in (4-30), except s0 and �, such that for any s0
large enough and � small enough, if s� <C1, at least one of the following two scenarios hold:

(i) Exit via instabilities on the first spherical harmonics.

Vi .s
�/D .s�/�Q� for some 1� i � `:

(ii) Exit via instabilities on the other spherical harmonics.

U
.n;k/
i .s�/D 1 for some .n; k; i/ 2 I; with 1� n and i < in:

Proof. A solution u is trapped if the parameters and the error involved in its decomposition (4-10) satisfy
the bounds (4-22), (4-23), (4-24), (4-25) and (4-52). At time s�, the bound (4-52) is strict by (4-51) and
(4-52), and we are going to prove that (4-25) is strict in Step 1 and that (4-24) is strict in Step 2. Thus,
(4-22) or (4-23) must be violated at the time s� and the lemma is proved.

Step 1: improved bounds for the remainder w. We will now prove the estimates

E� .s�/�
K1

2.s�/
2.��sc/`
2`�˛

; E2sL.s
�/�

K2

2.s�/2LC2�2ı0C2�.1�ı
0
0/
;

kwext.s
�/k2H� �

K1

2
and kwext.s

�/k2
H2sL

�
K2

2�2.2sL�sc/ s
2LC2.1�ı0/C2�.1�ı

0
0
/
:

(5-83)
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Bound on E� . Let K1 and K2 be any strictly positive real numbers. Then from Proposition 5.3, for s0
and � large enough, we have

d

dt

�
E�

�2.��sc/

�
�

p
E�

�2.��sc/C2 s
.��sc/`
2`�˛

C1

1

s
˛
4L

�
1C

pX
kD2

� p
E�

s�
��sc
2

�k�1�
:

On Œs0; s��, one has p
E�

s�
��sc
2

�K1s
�
˛.��sc/
4`�2˛

by (4-25); hence for s0 large enough,

d

dt

�
E�

�2.��sc/

�
�

p
E�

�2.��sc/C2 s
.��sc/`
2`�˛

C1

1

s
˛
8L

:

One has � D
�
s0
s

� `
2`�˛ .1CO.s

�Q�
0 // by (4-52) and we assume that jO.s�Q�0 /j � 1

2
. We reintegrate the

above equation using (4-25) and (4-19):

E� .s�/�
1

.s�/
2`.��sc/
2`��

��
3

2

�2��sc
C s

2`.��sc/
2`�˛

0

22.��sc/C3L

˛s
˛
8L

0

p
K1

�
:

Therefore, once L is fixed we choose � close enough to sc so that

˛

8L
>
2`.� � sc/

2`�˛

and then for s0 large enough one has

s
2`.��sc/
2`�˛

0

22.��sc/C3L

˛s
˛
8L

0

� 1:

For any choice of the constants K1 > 10, we then have

E� .s�/�
1

.s�/
2`.��sc/
2`��

��
3

2

�2��sc
C
p
K1

�
�

K1

2.s�/
2`.��sc/
2`��

: (5-84)

Bound on E2sL . Let K1 and K2 be any strictly positive real numbers. By Proposition 5.6, for any N � 1

the following holds for s0 and � large enough:
d

dt

�
E2sL

�2.2s�L�sc/
CO.L;M/

�
1

�2.2sL�sc/ sLC1�ı0C�.1�ı
0
0/

�p
E2sL C

1

sLC1�ı0C�.1�ı
0
0/

���
�

1

�2.2sL�sc/C2s

"
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C
C.L;M/

p
E2sL

sLC1�ı0C�.1�ı
0
0/
C
C.L;M/

N 2ı
E2sL

C E2sL
pX
kD2

�p
E�
1CO. 1

L
/

s�
��sc
2

�k�1C.L;M;K1; K2/
s
˛
L
CO.�C��sc

L
/
C

C.L;M;K1; K2/
p
E2sL

sLC1�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/

#
:

In the trapped regime, from (4-25) one has
p
E�

s�
��sc
2

�K1s
�
˛.��sc/
4`�2˛ :
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Consequently, for N and s0 large enough the previous identity becomes

d

dt

�
E2sL

�2.2s�L�sc/
CO.L;M/

�
1

�2.2sL�sc/sLC1�ı0C�.1�ı
0
0/

�p
E2sL C

1

sLC1�ı0C�.1�ı
0
0/

���

�
1

�2.2sL�sc/C2s

�
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
C

1

N 2ı
E2sL

�
:

Since from (4-52) we have

�D

�
s0

s

� `
2`�˛

.1CO.s
�Q�
0 //;

when reintegrating in time the previous equation using the trapped regime bounds (4-25) and (4-19), one
gets

E2sL.s
�/� �.s�/2.2sL�sc/

"
O.L;M/

�
1

�.s�/2.2sL�sc/.s�/2LC2�2ı0C2�.1�ı
0
0/
.
p
K1C 1/

�
C E2sL.s0/COL;M

�
1

s
LC1�ı0C�.1�ı

0
0/

0

�p
E2sL.s0/C

1

s
LC1�ı0C�.1�ı

0
0/

0

��
C

Z s�

s0

1

�2.2sL�sc/ s2LC3�2ı0C�.1�ı
0
0/

�
C.L;M/

p
K2CC.L;M/C

K2

N 2ı

�#

�
1

.s�/2LC2�2ı0C2�.1�ı
0
0/

�
C.L;M/.1C

p
K2/CC.L/

K2

N 2ı

�
�

1

K2.s�/
2LC2�2ı0C2�.1�ı

0
0/

(5-85)

if N and K1 have been chosen large enough.

Bound on kwextkH� . We recall the estimate (5-35):

d

dt

�
kwextk

2
H�

�
�

C.K1; K2/

s1C
˛
2L
CO.�C��sc

L
/�2
kwextkH� :

For any choice of the constants of the analysis in Proposition 4.6 such that all the previous propositions
and lemmas hold, for s0 large enough,

d

dt

�
kwextk

2
H�

�
�

1

s
˛
4L�2

kwextkH� :

We reintegrate this equation in the bootstrap regime, by applying the bounds (4-25) and (4-19) on
kwextkH�

�
using the relation ds

dt
D

1
�2

�
:

kwext.s
�/kH� �

p
K2

C.L/

s
˛
4L

0

C
C

s
2`
2`�˛

.2sL�sc/

0

�
K2

2
(5-86)

for K2 chosen large enough.
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Bound on kwextkH2sL . We recall the estimate (5-67):

kwextk
2
H2sL
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t wext.0/k
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CO.��scC�
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/
:

One has wext D .1��3/w, so @sLt wext D .1��3/@
sL
t w. Recall that we proved the bound (5-72) in the

trapped regime for @sLt w.t/ outside the blow-up zone in the proof of Proposition 5.8. The same proof
gives for s0 large enough, taking in account the bound (4-19) on w at initial time,

k@
sL
t wext.0/kL2 � 1:

Inserting this estimate and (5-72) into the previous identity gives, for s0 large enough,
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; (5-87)

where we used the equivalence � � s�
`

2`�˛ from (4-52), and where the last line holds for K2 large
enough.

End of step 1. We have proven (5-84), (5-85), (5-86) and (5-87), yielding the estimate we claimed, (5-83).

Step 2: improved bounds for the stable parameters. We claim that once L, M , �, K1 and K2 have been
chosen so that the result of Step 1 holds, there exist Q� > 0 and strictly positive constants .".0;1/i /`C1�i�L,
."
.n;k/
i /.n;k;i/2I; 1�n; in�i such that

jV1.s
�/j �

1

2.s�/�Q�
; jU

.0;1/
i .s�/j �

"
.0;1/
i

2.s�/ Q�
for `C 1� i � L; (5-88)

and for .n; k; i/ 2 I, n� 1,

jU
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"
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i

2.s�/ Q�
if in < i; jU

.n;k/
i .s�/j �

"
.n;k/
i

2
if in D i: (5-89)
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We now prove all these improved bounds: first we prove the one for b.n;k/Ln
, then the one for the U .n;k/i ,

i ¤Ln, and finally the one for V1. For technical reasons, we introduce for .n; k; i/2 I the function g.n;k/i ,
a solution of the ODE

d
ds
g
.n;k/
i

g
.n;k/
i

D .2i �˛n/b
.0;1/
1 ; g.s0/D s

`.2i�˛n/
2`�˛

0 : (5-90)

As b.0;1/1 D
`

s.2`�˛/
CO.s�1�Q�/, for Q� small enough and s0 large enough one has

g
.n;k/
i .s/D s

`.2i�˛n/
2`�˛ .1CO.s

�Q�
0 // with jO.s�Q�0 /j � 1

2
: (5-91)

Improved bound for b.n;k/Ln
. First we notice that since L is chosen after `, one can assume that for all

0 � n � n0, we have in < L. We rewrite the improved modulation equation (5-2) for b.n;k/Ln
, using the

estimate (5-3) for the extra term in the time derivative and the function g.n;k/Ln
(satisfying (5-90) and

(5-91)), yieldingˇ̌̌̌
d
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g 0

2
for � small enough (g0 being fixed). The notationOL;M;K2. � / is the usualO. � / notation

with a constant depending on L, M and K2. One has 2Ln�˛nD 2L� d2 �2ınC2m0C
2
p�1

. Hence for
L large enough, the quantity �L��.1� ı00/C ı0� ınC

`.2Ln�˛n/
2`�˛

is strictly positive for all 0� n� n0.
Therefore, reintegrating in time the previous identity yields, using (4-16) and (4-17),

jb
.n;k/
Ln

.s�/j �
C.L;M;K2/

.s�/LC�.1�ı
0
0/Cı0�ın

C
1

sLCı0�ınCQ�

s
`.2Ln�˛n/
2`�˛

�L�ı0Cın�Q�

0

.s�/
`.2Ln�˛n/
2`�˛

�L�ı0Cın�Q�

3

2
s
LCı0�ınCQ�
0 jb

.n;k/
Ln

.s0/j

�
C.L;M;K2/

.s�/LC�.1�ı
0
0/Cı0�ın

C
3"
.n;k/
Ln

20

1

.s�/LCı0�ınCQ�
:

Therefore, if Q� < �.1� ı00/, for any 0 < ".n;k/Ln
< 1, for s0 large enough, we have
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2.s�/LCı0�ınCQ�
: (5-92)

Improved bound for b.n;k/i , in<i <Ln. Using the same methodology we used to study the parameter b.n;k/Ln
,

we take the modulation equation (4-43), we integrate it in time, applying the bounds (4-22), (4-23), (4-24)
and (4-25), yieldingˇ̌̌̌
d
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The condition in< i ensures that `
2`�˛

.2i�˛n/�
�n
2
�i > 0. For Q� small enough, we can then integrate

in time the previous equation, the first term on the right-hand side giving then a divergent integral. Then
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applying the bound (5-91) on g.n;k/i and the initial bound (4-17) on b.n;k/i , one obtains
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if s0 is large enough and ".n;k/iC1 is small enough, because L� ı0 >
�n
2
C i .

Improved bound for b.n;k/i if in D i and 1� n. In that case, `
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Integrating the modulation equation and making the same manipulations we made for in < i then yields
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if ".n;k/iC1 is small enough and s0 is large enough.

Improved bound for V1. We recall that from (4-13), V1 denotes the stable direction of perturbation for the
dynamical system (3-58) contained in Span..U .0;1/i /1�i�`/. From the quasidiagonalization (3-69) of the
linearized matrix A`, under the bootstrap bounds (4-22), (4-23), (4-24) and (4-25), its time evolution is
given by
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which when reintegrated in time gives, if ".0;1/
`C1

is small enough, s0 is large enough, and using (4-16),
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.s�/2 Q�
C
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.s�/ Q�
�
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2s Q�
: (5-95)

End of Step 2. We choose the constants of smallness in the following order so that all the improved
bounds we proved, (5-92), (5-93), (5-94), (5-95), hold together. For any choice of K1, K2, L, M , �
in their ranges, there exists Q� > 0 such that Q� < �.1� ı00/ and �n

2
C i C Q� < `

2`�˛
.2i � ˛n/ for all

.n; k; i/ 2 I with in < i . First choose the constant ".0;1/`C1 small enough so that the improved bound (5-95)
for V1 holds for s0 large enough. Next choose ".0;1/`C2 such that the improved bound (5-93) for U .0;1/`C1

holds for s0 large enough. By iteration we then choose ".0;1/`C3 ; : : : ; "
.0;1/
L to make all the bounds (5-93)

hold until the one for U .0;1/L�1 . Then the final one, (5-92), for U .0;1/L , holds for s0 large enough without any
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conditions on ".0;1/i for `C 1� i � L� 1. The same reasoning applies for the stable parameters on the
spherical harmonics of higher degree (1� n� n0). We have proved (5-88). �

We fix all the constants of the analysis so that Lemma 5.9 holds, and we will just possibly increase the
initial renormalized time s0, which does not change its validity. The number of instability directions is

mD `� 1C d.EŒi1�� ıi12N/C
X

2�n�n0

k.n/.EŒin�C 1� ıin2N/:

To prove Proposition 4.6, we have to prove that there exists an additional perturbation along the unstable
directions of perturbations such that the solution stays forever trapped. We prove it via a topological
argument, by looking at all the solutions associated to the possible perturbations along the unstable
directions of perturbation. For this purpose, we introduce the set

B WD
˚�
V2.s0/; : : : ; V`.s0/; .U

.n;k/.s0/i /.n;k;i/2I; 1�n; i<in
�
2 Rm W jVi .s0/j � s

�Q�
0 for 2� i � `;

jU .n;k/.s0/i j � "
.n;k/
i for .n; k; i/ 2 I; 1� n; i < in

	
;

which represents all the possible values of the unstable parameters so that the solution to (1-1) with initial
data given by (4-5) and (4-31) starts in the trapped regime. We then define the following application
f W D.f /� B! @B that gives the last value taken by the unstable parameters before the solution leaves
the trapped regime (when it does):

f
�
V2.s0/; : : : ; V`.s0/; .U

.n;k/
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D
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The domain D.f / of the application f is the set of the m-tuples of real numbers�
V2.s0/; : : : ; V`.s0/; .U

.n;k/
i /.n;k;i/2I; 1�n; i<in

�
in B such that the solution starting initially with a decomposition given by (4-5) and (4-31) leaves the
trapped regime in finite time s�. The following lemma describes the topological properties of f .

Lemma 5.10 (topological properties of the exit application). There exists a choice of smallness constants
."
.n;k/
i /.n;k;i/2I; 1�n; i<inC1 such that the following properties hold for s0 large enough:

(i) D.f / is nonempty and open, and the inclusion @B � D.f / holds.

(ii) f is continuous and is the identity on the boundary @B.

Proof. Step 1: the outgoing flux property. We prove in this step that one can choose the smallness constants
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the exit time from the trapped regime is s. To prove this we compute the time derivative of the unstable
parameters when they are on @B, and show that it points toward the exterior. Indeed from the modulation
equation (4-43) and (3-69) (where we injected the bounds of the trapped regime (4-22), (4-23), (4-24)
and (4-25)),
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Therefore, as i < in, by iterations (i.e., by choosing first ".n;k/0 , then ".n;k/1 , and so on until choosing
"
.n;k/

`C1
) we can choose all the smallness constants and s0 large enough so that

i˛

2`�˛

.�1/j

s1CQ�
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C s�LC`
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Consequently, any solution that is trapped until s such that at time s,�
.s/ Q�

s
Q�
0

V2.s/; : : : ;
.s/ Q�

.s0/ Q�
V`.s/; .U

.n;k/
i .s//.n;k;i/2I; 1�n; i<in

�
2 @B

leaves the trapped regime after s.

Step 2: end of the proof of the lemma. Step 1 directly implies that D.f / contains @B, and that f is the
identity on @B. If a solution u leaves at time s�, it also implies that it never hit the boundary before s�.
Consequently, as the trapped regime is characterized by nonstrict inequalities, and because everything in
the dynamics of (1-1) is continuous with respect to variation on these unstable parameters, we get that
D.f / is open, and that the exit time s� and f are continuous on D.f /. �

We can now end the proof of Proposition 4.6.

Proof of Proposition 4.6. We argue by contradiction. If for any choice of initial perturbation along
the unstable directions of perturbation, the solution leaves the trapped regime, then it means that the
domain of the exit application f defined by (5-96) is D.f /D B. But then from Lemma 5.10, f would
be a continuous application from B towards its boundary, being the identity on the boundary, which is
impossible thanks to Brouwer’s theorem, and the contradiction is obtained. �

Appendix A: Properties of the zeros of H

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. The proof relies solely on ODE techniques (in the same spirit as [Gui et al. 1992;
Li 1992]) and is as follows. First, we describe the asymptotics of the equation H .n/f D 0 at the origin
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and at infinity in Lemma A.1. Then we construct the special zeroes T .n/0 and �.n/ in these asymptotic
regimes using a perturbative argument and obtain their asymptotic behavior in Lemma A.2. Finally we
show that they are not equal via global invariance properties of the ODE in the phase space .f; @rf / in
Lemma A.3, yielding that they form indeed a basis of the set of solutions.

Let f W .0;C1/ be smooth such that H .n/f D 0. First we make the change of variables f .r/Dw.t/
with t D ln.r/ 2 .�1;C1/. Then w solves

w00C .d � 2/w0� Œe2tV.et /Cn.d Cn� 2/�w D 0; (A-1)

where V is defined by (1-31) and satisfies e2tV.et / D O.e2t / ! 0 as t ! �1, and e2tV.et / D
�pc

p�1
1 CO.e�t˛/ as t !C1, by (2-2). Hence (A-1) is similar to the following ODEs as t !˙1:

w00C .d � 2/w0C .pcp�11 �n.d Cn� 2//w D 0; (A-2)

w00C .d � 2/w0�n.d Cn� 2/w D 0: (A-3)

The first step in the proof of Lemma 2.3 is to describe their solutions.

Lemma A.1. Span.e�nt ; e�
0
nt / (resp. Span.ent; e.�n�dC2/t /) is the set of solutions of (A-2) (resp.

(A-3)), where n is defined in (1-18) and

 0n WD
d � 2C

p
4n

2
; (A-4)

where4n > 0 is defined in (1-18). These numbers satisfy

0 D ; 1 D
2

p� 1
C 1 and 8n� 2; n <

2

p� 1
;  0n >

.d � 2/

2
; (A-5)

where  is defined in (1-9).

Proof. From the standard theory of second-order differential equations with constant coefficients, the set
of solutions of (A-2) (resp. (A-3)) is Span.e�nt ; e�

0
nt / (resp. Span.ent ; e.�n�dC2/t /), where n and

 0n are defined by (1-18) and (A-4). For any n 2 N, one computes from its definition in (1-18) that the
number 4n used in the definitions (1-18) and (A-4) of n and  0n is strictly positive: 4n > 0. Indeed,
4n �40 by (1-18), and 40 > 0 if and only if p > pJL, where pJL is defined in (1-6), and the present
paper is concerned with the case p > pJL.

From the formula (1-18), one computes that 0 D  and 1 D 2
p�1
C 1, where  is defined in (1-9).

For all n 2 N, from the definition (A-4) of  0n and since 4n > 0, one gets that  0n >
d�2
2
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compute from (1-18) that
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giving
p
42 >

p
41C 2. This, by (1-18), implies

2 D
d � 2�

p
42

2
<
d � 2�

p
41� 2

2
D 1� 1D

2

p� 1
C 1� 1D

2

p� 1
:

This implies n< 2
p�1

for all n� 2 because the sequence .n/n2N is decreasing by its definition (1-18). �

Lemma A.2. There exist w.n/1 , w.n/2 , w.n/3 and w.n/4 solving (A-1) such that

w
.n/
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t!�1

qX
iD0
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.nC2i/t

CO.e.nC2qC2/t /; w
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w
.n/
3 D

t!C1
Qc2e
�nt CO.e.�n�g/t / and w

.n/
4 �

t!C1
Qc3e
� 0nt DO.e.�n�g/t /; (A-7)

with constants c1; Qc1; Qc2; Qc3 ¤ 0. Moreover the asymptotics hold for the derivatives.

Proof. Step 1: existence of w.n/1 . For nD 0, we take the explicit solution w.0/1 DƒQ.e
t /, which satisfies

(A-6) by (2-1). Now let n� 1. Using the Duhamel formula for solutions of (A-1), the fundamental set
of solutions for the constant coefficient ODE (A-3) begin provided by Lemma A.1, a solution of (A-1)
satisfying the condition on the left in (A-6) with c0 D 1 can be written as

w
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We now use a standard contraction argument. For t0 2 R we endow the space
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For u 2X we define the function ˆu W .�1; t0�! R by
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ˆ maps X into itself. Indeed as the potential V is bounded from (2-2), a brute force bound on the above
equation yields that

j.ˆu/.t/j � CkV kL1.e
t
CkukXe
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and therefore kˆukX � CkV kL1.et0 CkukXe2t0/. The same brute force bound for the difference of
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Hence kˆu�ˆvkX �CkV kL1e2t0ku�vkX and ˆ is a contraction for t0� 0 small enough. Therefore,
ˆ admits a fixed point in X , denoted by u1. From the Duhamel formula (A-8) and the definition (A-10)
of ˆ, we know w

.n/
1 WD e

nt Cu1.t/ is then a solution of (A-1) on .�1; t0�, which, from the definition
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(A-9) of X , satisfies

w
.n/
1 D e

nt
CO.e.nC1/t / as t !�1: (A-11)

We extend it to a solution of (A-1) on R ((A-1) being linear with smooth coefficients), still naming it w.n/0 .
Step 2: asymptotics of w.n/1 . At present, we will refine the asymptotics (A-11). We reason by induction.
We claim that if for k 2 N and .ci /0�i�k 2 RkC1 one has

w
.n/
1 D

kX
iD0

cie
.nC2i/t

CO.e.nC2kC2/t / as t !�1 (A-12)

then there exists ckC1 2 R such that

w
.n/
1 D

kC1X
iD0

cie
.nC2i/t

CO.e.nC2kC4/t / as t !�1: (A-13)

We now prove this fact. Fix k � 1 and assume that w.n/1 satisfies (A-12). As V is a smooth radial profile,
one has that @2qC1r V.0/D 0 for any q 2 N, implying that there exists .di /i2N 2 RN such that

V.et /D

kX
iD0

die
2it
CO.e.2kC2/t / as t !�1: (A-14)

We insert this and (A-12) into (A-8) and integrate to find

w
.n/
1 D e

nt
C

1

2nCd�2

Z t

�1

�
en.t�t

0/
�e.2�n�d/.t�t

0/
�� kX
iD0

iX
jD0

cjdi�j e
.nC2iC2/t 0

CO.e.nC2kC4/t
0

/

�
dt 0

D entC

kX
iD0

e.nC2iC2/t

2nCd�2

�
1

2iC2
�

1

2nCdC2i

� iX
jD0

cjdi�jCO.e
.2C2kC4/t /:

This asymptotic has to be coherent with the assumption (A-12); hence for all 0� i � k� 1 one has�
1

2i C 2
�

1

2nC d C 2i

� iX
jD0

cjdi�j

2nC d � 2
D ciC1:

The above identity is then the formula (A-13) one has to prove.
Thus, one has proven that the asymptotic on the left of (A-6) holds for w.n/1 . It remains to show that it

also holds for the derivatives. Differentiating (A-8) gives

.w
.n/
1 /0.t/D nent C

1

2nC d � 2

Z t

�1

�
nen.t�t

0/
C .nC d � 2/e.2�n�d/.t�t

0/
�
w
.n/
1 e2t

0

V:

We use the same reasoning we did for w.n/1 : we insert the asymptotic (A-12) at any order for w.n/1 we
just showed and (A-14) into the above formula, integrate in time and match the coefficients we find with
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(A-12), yielding that

.w
.n/
1 /0.t/D

kX
iD0

.nC 2i/cie
.nC2i/t

CO.e.nC2kC2/t /

for any k 2 N. Therefore, one has proven that the asymptotic on the left of (A-6) holds for w.n/1 and
.w
.n/
1 /0. As w.n/1 solves (A-1), its second derivative is given by

.w
.n/
1 /00 D�.d � 2/.w

.n/
1 /0C Œe2tV.et /Cn.d Cn� 2/�w

.n/
1 ;

and therefore by (A-14) the expansion also holds for .w.n/1 /00. Differentiating the above equation, using
again (A-14) and the expansions for w.n/1 , .w.n/1 /0 and .w.n/1 /00, one obtains the expansion for .w.n/1 /000.
By iterating this procedure we obtain the expansion on the left of (A-6) for all derivatives of w.n/1 .

Step 3: existence and asymptotics of w.n/2 . Let t0 2 R. We use the Duhamel formula for (A-1), the
solutions of the underlying constant coefficient ODE (A-3) being provided by Lemma A.1. For t � t0,
the solution of (A-1) starting from w

.n/
2 .t0/D e

.2�d�n/t0 , .w.n/2 /0.t0/D .2� d � n/e
.2�d�n/t0 can be

written as

w
.n/
2 D e

.2�d�n/t
�

1

2nC d � 2

Z t0

t

.en.t�t
0/
� e.2�n�d/.t�t

0//V .et
0

/e2t
0

w
.n/
2 .t 0/ dt 0: (A-15)

We claim that for t0� 0 small enough, we have

jw
.n/
2 � e

.2�d�n/t
j �

e.2�d�n/

2
(A-16)

for all t � t0. To show that, let T be the set of times t � t0 such that this inequality holds. T is closed via
a continuity argument, and is nonempty as it contains t0. For t 2 T we compute by brute force on the
above identity:

jw
.n/
2 � e

.2�d�n/t
j � CkV kL1e

.2�n�d/te2t0:

Hence, for t0� 0 small enough, jw.n/2 � e
.2�d�n/t j � e.2�n�d/t=3, implying that T is open. Therefore,

T D .�1; t0� by a connectedness argument and w.n/2 satisfies (A-16) for all t � t0. We insert (A-16)
into (A-15) to refine the asymptotics (the constant in the O. � / depends on kV kL1):

w
.n/
2 D e

.2�d�n/t
C

Z t0

t

.en.t�t
0/
� e.2�d�n/.t�t

0//O.e.4�n�d/.t�t
0// dt 0

D e.2�d�n/t C ent
Z t0

t

O.e.4�2n�d/t
0

/ dt 0C e.2�n�d/t
Z t0

t

O.e2t
0

/ dt 0

D e.2�d�n/t CO.e.4�n�d/t /C e.2�n�d/t
�Z t0

�1

O.e2t
0

/ dt 0�

Z t

�1

O.e2t
0

/ dt 0
�

D e.2�d�n/t
�
1C

Z t0

�1

O.e2t
0

/ dt 0
�
CO.e.4�n�d/t /

D Qc1e
.2�d�n/t

CO.e.4�n�d/t /

with Qc1 ¤ 0 if t0� 0 is chosen small enough. We just showed the asymptotic on the right of (A-6).
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Step 4: existence and asymptotics of w.n/3 and w.n/4 . Using exactly the same techniques we used at �1
to construct w.n/1 and w.n/2 as perturbations of the solutions described by Lemma A.1 of the asymptotic
constant coefficients ODE (A-3), we can construct two solutions of (A-1), w.n/3 and w.n/4 , satisfying

w
.n/
3 � Qc2e

�nt ; w
.n/
4 � Qc3e

� 0nt as t !C1 (A-17)

with Qc2; Qc3 ¤ 0, as perturbations of the solutions e�nt and e�
0
nt of the asymptotic ODE (A-2) at C1.

We leave safely the proof of this fact to the reader. We now show why the second term in the asymptotic
of w.n/3 is O.e.�n�g/t /, where g is defined in (1-21). Using Duhamel’s formula for (A-1), with the set of
fundamental solutions of the asymptotic equation (A-2) described in Lemma A.1, w.n/3 can be written as

w
.n/
3 D a1e

�ntCb1e
� 0nt�

1

�nC 0n

Z t

0

.e�n.t�t
0/
�e�

0
n.t�t

0//e2t
0

.V .et
0

/Cpcp�11 e�2t
0

/w
.n/
3 .t 0/dt 0

for a1 and b1 two coefficients. We use the bounds V.et
0

/C pc
p�1
1 e�2t

0

D O.e�˛t
0

/ from (2-2) and
(A-17) to find

w
.n/
3 .t/D a1e

�nt C b1e
� 0nt �

1

�nC  0n

Z t

0

.e�n.t�t
0/
� e�

0
n.t�t

0//O.e.�n�˛/t
0

/:

After few computations, we obtain two new coefficients Qa1 and Qa2 such that

w
.n/
3 .t/D Qa1e

�nt C Qb1e
� 0nt CO.e.�n�˛/t /:

As � 0n < �n by (1-18), the asymptotic (A-17) implies Qa1 D Qc2 ¤ 0. From the definition (1-21) of g,
this parameter is tailor-made to produce �0�g > � 00 (by (1-9) and (1-18)). By (1-18), one then has
�n�gC 

0
n � �0�gC 

0
0 > 0. As g satisfies also g < ˛, the above identity then yields

w
.n/
3 .t/D Qc2e

�nt CO.e.�n�g/t /:

Using exactly the same methods we use to propagate the asymptotic of w.n/1 to its derivatives in Step 2,
the above identity propagates to the derivatives of w.n/3 . �

Lemma A.3. The solutions w.n/1 and w.n/4 given by Lemma A.2 are not collinear. Moreover, w.n/1 has
constant sign.

Proof. We formulate (ODEn) as a planar dynamical system:

d

dt

�
w1

w2

�
D

�
0 1

n.dCn�2/Ce2tV.et / �.d�2/

��
w1

w2

�
;

with w1 D w and w2 D w0. By their asymptotics from Lemma A.1, 
w
.n/
1 .t/

.w
.n/
1 /0.t/

!
D c1e

nt

�
1

n

�
CO.e.nC2/t / as t !�1;

 
w
.n/
4 .t/

.w
.n/
4 /0.t/

!
� Qc3e

� 0nt

�
1

� 0n

�
as t !�1;
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and we may take c1; Qc3 > 0 without loss of generality. Thus, close to �1, we know .w
.n/
1 .t/; .w

.n/
1 /0.t//

is in the top right corner of the plane. It cannot cross the ray f0g� .0;C1/ because there the vector field�
w2

�.d�2/w2

�
points toward the right. Neither can it go below the ray

�
x;�d�2

2
x
�
x�0

. To see that, we
compute the scalar product between the vector field and a vector that is orthogonal to this ray and that
points toward north at any time t 2 R:��

0 1

n.dCn�2/Ce2tV.et / �.d�2/

��
1

�
d�2
2

��
�

�
d�2
2

1

�
D
.d � 2/2

4
C e2tV.et /Cn.d Cn� 2/ > 0

because e2tV.et / > .d�2/2

4
, where the potential �V is below the Hardy potential (see (2-5)). Hence

.w
.n/
1 .t/; .w

.n/
1 /0.t// stays in the top right zone whose border is

f0g � .0;C1/[
�
x;�

d � 2

2
x
�
x�0

:

In particular, w.n/1 > 0 for all times, which proves the positivity of w.n/1 . Since the trajectory .w.n/4 .t/;

.w
.n/
4 /0.t// is asymptotically collinear to the vector

�
1
� 0n

�
, which does not belong to this zone (from

Lemma A.1) nor its opposite, one obtains that w.n/1 and w.n/4 are not collinear. �

We now end the proof of Lemma 2.3. The fundamental set of solutions of (A-1) is provided by
Lemma A.2. Asw.n/1 is not collinear tow.n/4 , there exists a1¤ 0 and a2 such thatw.n/1 Da1w

.n/
3 Ca2w

.n/
4 .

From the asymptotics (A-7) and the positivity of w.n/1 shown in Lemma A.3, one then has

w
.n/
1 D be

�nt CO.e.�n�g/t / as t !C1; b > 0:

We call T n0 the profile associated to w.n/1 in the original space variable r : T n0 .r/D w
.n/
1 .ln.r//, which

solves H .n/T
.n/
0 D 0. The above identity means T n0 D a1r

�n CO.r.�n�g/ as r !C1, and (A-6)
implies T n0 .r/D

Pq
iD0 b

n
i r
nC2l CO.rnC2C2q/ as r ! 0, for some coefficients .bi /i2N 2 RN, for any

q 2 N. These asymptotics propagate to the derivatives. This is the identity (2-7) we had to prove.
Let us denote by w another solution of (A-1) that is not collinear to w.n/1 and w.n/4 . Now (A-6)

and (A-7) imply that w � ce.2�n�d/t as t !�1 and w D de�nt CO.e.�n�g/t / as t !C1 with
c; d ¤ 0. These asymptotics propagate to higher derivatives. The solution of H .n/�.n/ D 0 given by
�.n/.r/D w.ln.r// then satisfies the desired asymptotics (2-7). Eventually, the Laplacian on spherical
harmonics of degree n is (for f radial)

�.f Yn;k/D

��
@rr C

d � 1

r
@r �

n.d Cn� 2/

r2

�
f

�
Yn;k;

meaning, by the asymptotics (2-7), that for any j 2N, we know �j .T n0 .jxj/Yn;k.x=jxj// is a continuous
function near the origin. Therefore, T n0 Yn;k is smooth close to the origin by elliptic regularity. It is
also smooth outside as a product of smooth functions, and thus smooth everywhere, ending the proof of
Lemma 2.3. �
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Appendix B: Hardy- and Rellich-type inequalities

We recall in this section the Hardy and Rellich estimates, to make this paper self-contained. They are
used throughout the paper, and especially to derive a fundamental coercivity property of the adapted high
Sobolev norm in Appendix C. We now state a useful and very general Hardy inequality with possibly
fractional weights and derivatives. A proof can be found in [Merle et al. 2015, Lemma B.2].

Lemma B.1 (Hardy-type inequalities). Let ı > 0, q � 0 satisfy
ˇ̌
q�

�
d
2
� 1

�ˇ̌
� ı and u W Œ1;C1/! R

be smooth and satisfy Z C1
1

j@yuj
2

y2q
yd�1 dyC

Z C1
1

u2

y2qC2
yd�1 dy <C1:

(i) If q > d
2
� 1C ı, then

C.d; ı/

Z
y�1

u2

y2qC2
yd�1 dy �C 0.d; ı/u2.1/�

Z
y�1

j@yuj
2

y2q
yd�1 dy: (B-1)

(ii) If q < d
2
� 1� ı, then

C.d; ı/

Z
y�1

u2

y2qC2
yd�1 dy �

Z
y�1

j@yuj
2

y2q
yd�1 dy: (B-2)

Proof. Let R > 1. The fundamental theorem of calculus gives

u2.R/

R2qC2�d
�u2.1/D 2

Z R

1

u@yu

y2qC2�d
dy � .2qC 2� d/

Z R

1

u2

y2qC2�d
dy:

The integrability of u2=y2qC3�d over Œ1;C1/ implies that u2.Rn/=R
2qC2�d
n ! 0 along a sequence of

radii Rn!C1. Passing to the limit through this sequence we get

.2qC 2� d/

Z C1
1

u2

y2qC2�d
dy �u2.1/D 2

Z C1
1

u@yu

y2qC2�d
dy:

We apply the Cauchy–Schwarz and Young inequalities to findˇ̌̌̌
2

Z C1
1

u@yu

y2qC2�d
dy

ˇ̌̌̌
� 2

�Z C1
1

u2

y2qC3�d
dy

�1
2
�Z C1

1

j@yuj
2

y2qC1�d
dy

�1
2

� "

Z C1
1

u2

y2qC3�d
dyC

1

"

Z C1
1

j@yuj
2

y2qC3�d
dy

for any " > 0. If q > d
2
� 1C ı, then the two above identities giveZ C1

1

u2

y2qC2�d
dy �

u2.1/

2ı
C
"

2ı

Z C1
1

u2

y2qC3�d
dyC

1

2ı"

Z C1
1

j@yuj
2

y2qC3�d
dy:
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Taking "D ı, one gets Z C1
1

u2

y2qC2�d
dy �

u2.1/

ı
C
1

ı2

Z C1
1

j@yuj
2

y2qC3�d
dy;

which is precisely the identity (B-1) we had to prove. If q < d
2
� 1� ı then one obtainsZ C1

1

u2

y2qC2�d
dy � �

u2.1/

2
�
d
2
� 1� q

� C "

2ı

Z C1
1

u2

y2qC3�d
dyC

1

2ı"

Z C1
1

j@yuj
2

y2qC3�d
dy:

Taking "D ı, one gets Z C1
1

u2

y2qC2�d
dy �

1

ı2

Z C1
1

j@yuj
2

y2qC3�d
dy;

which is precisely the second identity (B-2) we had to prove. �

Lemma B.2 (Rellich-type inequalities). For any u 2H 2.Rd /,�
.d � 4/d

4

�2 Z
Rd

u2

jxj4
dx �

Z
Rd
j�uj2 dx;

d2

4

Z
Rd

jruj2

jxj2
dx �

Z
Rd
j�uj2 dx: (B-3)

If q � 0 and u W Rd ! R is a smooth function satisfyingZ
Rd

�
j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

u2

1Cjxj2qC4

�
dx <C1;

then

C.d; q/
X

1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�
dx�C 0.d; q/

Z
Rd

u2

1Cjxj2qC4
dx �

Z
Rd

j�uj2

1Cjxj2q
dx: (B-4)

Proof. The inequality (B-3) is standard and we omit its proof. To prove (B-4) we reason with smooth and
compactly supported functions, and then conclude by a density argument.

Step 1: control of the first derivatives. Using integration by parts we computeZ
Rd

u�u

1Cjxj2qC2
dx D�

Z
Rd

jruj2

1Cjxj2qC2
dxC

1

2

Z
Rd
u2�

�
1

1Cjxj2qC2

�
dx:

We then use the Cauchy–Schwarz and Young inequalities to obtain

C

Z
Rd

jruj2

1Cjxj2qC2
dx�C 0

Z
Rd
u2
�
�

�
1

1Cjxj2qC2

�
�

1

.1Cjxj2qC2/.1Cjxj/2

�
dx

�

Z
Rd

j�uj2

.1Cjxj2qC2/.1Cjxj/�2
dx:

Noticing that .1Cjxj2qC2/.1Cjxj/�1 � .1Cjxj2q/ and thatˇ̌̌̌
�

�
1

1Cjxj2qC2

�
�

1

.1Cjxj2qC2/.1Cjxj/2

ˇ̌̌̌
�

C

1Cjxj2qC4
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leads to the estimate

C.d; p/

Z
Rd

jruj2

1Cjxj2qC2
dx�C 0.d; q/

Z
Rd

u2

1Cjxj2qC4
dx �

Z
Rd

j�uj2

1Cjxj2q
dx: (B-5)

Step 2: control of the second order derivatives. Again using integrations by parts one findsZ
Rd

j�uj2

1Cjxj2q
D

Z
Rd

jr2uj2

1Cjxj2q
C

nX
iD1

@xiur@xiu:r

�
1

1Cjxj2q

�
��uru:r

�
1

1Cjxj2q

�
;

in which by using the Cauchy–Schwarz and Young inequalities, for any " > 0, we can control the last two
terms byˇ̌̌̌Z

Rd

nX
iD1

@xiur@xiu:r

�
1

1Cjxj2q

�
��uru:r

�
1

1Cjxj2q

�ˇ̌̌̌

� C"

Z
Rd

jr2uj2

1Cjxj2q
dxC

C

"

Z
Rd

jruj2

1Cjxj2qC2
dx:

Therefore for " small enough the two above identities yieldZ
Rd

jr2uj2

1Cjxj2q
dx � C

�Z
Rd

�
j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

u2

1Cjxj2qC4

�
dx

�
:

Combining this identity and (B-5), one obtains the desired identity (B-4). �

Lemma B.3 (weighted and fractional Hardy inequality). Let

0 < � < 1; k 2 N and 0 < � satisfying �C �C k < 1
2
d;

and let f be a smooth function satisfying the decay estimates

j@�f .x/j �
C.f /

1Cjxj�Ci
for � 2 Nd; j�j1 D i; i D 0; 1; : : : ; kC 1: (B-6)

Then for " 2 PH�CkC�, we have "f 2 PH �Ck with

kr
�Ck."f /kL2 � C.C.f /; �; k; �; d/kr

�CkC�"kL2 : (B-7)

If f is smooth and radial then (B-6) is equivalent to

j@irf .r/j �
C.f /

1C r�Ci
; i D 0; 1; : : : ; kC 1: (B-8)

Proof. Step 1: the case kD 0. A proof of the case kD 0 can be found in [Merle et al. 2015], for example.

Step 2: the case k � 1. Let f , ", �, � and k satisfy the conditions of the lemma, with k � 1. Using the
Leibniz rule for the entire part of the derivation,

kr
�Ck."f /k2

L2
� C

X
.�;Q�/2N2d

j�j1CjQ�j1Dk

kr
�.@�"@Q�f k2

L2
: (B-9)
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We can now apply the result obtained for kD 0 to the norms kr�.@�k"@Q�kf k2
L2

in (B-9). We have indeed
that @�" 2 PH�Ck2C�, and that @Q�f satisfies the appropriate decay condition by (B-6). It implies that for
all .�; Q�/ 2 N2d with j�j1CjQ�j1 D k,

kr
�.@�k"@Q�kf k2

L2
� Ckr�C�Ck"k2

L2

which implies the result: kr�Ck."f /k2
L2
� C.C.f /; �; d; k; ˛/kr�C�Ck"k2

L2
.

Step 3: equivalence between the decay properties. We want to show that (B-6) and (B-8) are equivalent
for radial smooth functions. Suppose that f is smooth, radial, and satisfies (B-6). Then one has

@iyf .y/D
@f

@ix1
.jyje1/;

where e1 stands for the unit vector .1; : : : ; 0/ of Rd. From this formula, we see that the condition (B-6) on
.@f=@ix1/.jyje1/ implies the radial condition (B-8). We now suppose that f is a smooth radial function
satisfying the radial condition (B-8). Then there exists a smooth radial function � such that

f .y/D �.y2/:

With a proof by induction that can be left to the reader, one has that the decay property (B-8) for f
implies the following decay property for �:

j@iy�.y/j �
C.f /

1Cy
�
2
Ci
; i D 0; 1; : : : ; kC 1:

Now the standard derivatives of f are easier to compute with �. We claim that for all � 2Nd there exists
a finite number of polynomials Pi .x/ WD Cix

i1
1 � � � x

id
d

, for 1� i � l.�/, such that

@�f .x/D

l.�/X
iD1

Pi .x/@
q.i/

jxj
�.jxj2/;

with 2q.i/�
Pd
jD1 ij D j�j1 for all i . The proof by induction of this fact can also be left to the reader.

The decay property for � then impliesˇ̌
Pi .x/@

q.i/

jxj
�.jxj2/

ˇ̌
�

C

1Cy˛C2q.i/�
Pd
jD1 ij

D
C

1Cy˛Cj�j1
;

which in turn implies the property (B-6). �

Appendix C: Coercivity of the adapted norms

Here we prove coercivity estimates for the operator H under suitable orthogonality conditions, following
the techniques of [Raphaël and Rodnianski 2012]. We recall that the profiles used as orthogonality
directions, ˆ.n;k/M , are defined by (4-1). To perform an analysis on each spherical harmonic and to be
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able to track the constants, we will not study directly A.n/ and A.n/�, but the asymptotically equivalent
operators

zA.n/ W u 7! �@yuC eW .n/u; A.n/� W u 7!
1

yd�1
@y.y

d�1u/C eW .n/u; (C-1)

where eW .n/
D�

n

y
: (C-2)

By the definition (1-18) of n, they factorize the operator

zH .n/
WD �@yy �

d � 1

y
@y �

pc
p�1
1

y2
C
n.d Cn� 2/

y2
D zA.n/� zA.n/: (C-3)

The strategy is the following. First we derive subcoercivity estimates for zA.n/�, zA.n/ and H .n/. A
summation yields subcoercivity for �� � pcp�11 =jxj2, and hence for H as they are asymptotically
equivalent. Roughly, this subcoercivity implies that minimizing sequences of the functional I.u/ DR
uH su are “almost compact” on the unit ball of PH s\.Span.ˆ.n;k/M //?. In particular if the infimum of I

on this set was 0, it would be attained, which is impossible from the orthogonality conditions, yielding
the coercivity

R
uH su& kuk2

PH s
via homogeneity.

Lemma C.1. Let n be an integer, q � 0 and u W Œ1;C1/! R be smooth satisfyingZ C1
1

j@yuj
2

y2q
yd�1 dyC

Z C1
1

u2

y2qC2
yd�1 dy <C1: (C-4)

(i) There exist two constants c; c0 > 0 independent of n and q such that

c

Z C1
1

u2

y2qC2
yd�1 dy � c0u2.1/�

Z C1
1

j zA.n/�uj2

y2q
yd�1 dy: (C-5)

(ii) Let ı >0 and suppose
ˇ̌
q�

�
d
2
�1�n

�ˇ̌
>ı. Then there exist two constants c.ı/; c0.ı/>0 depending

only on ı such that

c.ı/

Z C1
1

u2

y2qC2
yd�1 dy � c0.ı/u2.1/�

Z C1
1

j zA.n/uj2

y2q
yd�1 dy: (C-6)

Proof. Coercivity for zA.n/�. We first computeZ C1
1

j zA.n/�uj2

y2q
yd�1 dy D

Z C1
1

j@yuCy
�1.d � 1� n/uj

2

y2q
yd�1 dy:

We make the change of variable uD vynC1�d. By (C-4), v2=y2q�2nCdC1 and j@yvj2=y2q�2nCd�1

are integrable on Œ1;C1/. As qC d
2
� n �

d
2
�  > 1 by (1-9) and (1-18), we can apply (B-2) to the
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above identity and obtain (C-5) viaZ C1
1

j zA.n/�uj2

y2q
yd�1 dy D

Z C1
1

j@yvj
2

y2q�2nC2d�2
yd�1 dy

� C

Z C1
1

v2

y2q�2nC2d�2
yd�1 dy �C 0v2.1/

D C

Z C1
1

u2

y2qC2
yd�1 dy �C 0u2.1/:

Coercivity for zA.n/. This time the integral we have to estimate isZ C1
1

j zA.n/uj2

y2q
yd�1 dy D

Z C1
1

j@yuCy
�1nuj

y2p
yd�1 dy:

We make the change of variable uD vy�n. By (C-4), v2=y2pC2n�dC1 and j@yvj2=y2pC2nC3�d are
integrable on Œ1;C1/. As

ˇ̌
q �

�
d
2
� 1� n

�ˇ̌
> ı, one can apply (B-1) or (B-2) to the above identity:

there exists c D c.ı/ and c0 D c0.ı/ such thatZ C1
1

j zA.n/uj2

y2q
yd�1 dy D

Z C1
1

j@yvj
2

y2qC2n
yd�1

� c

Z C1
1

v2

y2qC2nC2
yd�1 dy � c0v2.1/

D c

Z C1
1

u2

y2qC2
yd�1 dy � c0u2.1/;

which is precisely the identity (C-6). �

Lemma C.2 (coercivity of H under suitable orthogonality conditions). Let ı > 0 and q � 0 such that22ˇ̌
q�
�
d
2
�2�n

�ˇ̌
�ı for all n2N. Let n02N[f�1g be the lowest number such that q�

�
d
2
�2�n0C1

�
<0.

Then there exists a constant c.ı/ > 0 such that for all u 2H 2
loc.R

d / satisfying the integrability conditionZ
Rd

j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

Z
u2

1Cjxj2qC4
<C1

and the orthogonality conditions23 (ˆ.n;k/M being defined in (4-1))

hu;ˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; (C-7)

one has the inequality

c.ı/

�Z
Rd

j�uj2

1Cjxj2q
C

jruj2

jxj2.1Cjxj2q/
C

u2

jxj4.1Cjxj2q/

�
�

Z
Rd

jHuj2

1Cjxj2q
: (C-8)

22We recall that n!�1; hence for ı small enough many q satisfy this condition.
23With the convention that there are no orthogonality conditions required if n0 D�1.
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Proof. In what follows, C.ı/ and C 0.ı/ denote strictly positive constants that may vary but only depend
on ı, d and p.

Step 1: We claim the following subcoercivity estimate for zH WD ���pcp�11 =jxj2:Z
RdnBd .1/

j zHuj2

jxj2q
dx � C.ı/

Z
RdnBd .1/

u2

jxj2qC4
dx�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2

�
; (C-9)

where fjSd�1.1/ denotes the restriction of f to the sphere. We now prove this inequality. We start with
the decomposition

u.x/D
X

n; 1�k�k.n/

u.n;k/.jxj/Y .n;k/
�
x

jxj

�
:

We recall the link between u and its decomposition ( zH .n/ being defined by (C-3)):Z
RdnBd .1/

j zHuj2

jxj2q
dx D

X
n; 1�k�k.n/

Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy; (C-10)

Z
RdnBd .1/

u2

jxj2qC4
dx D

X
n; 1�k�k.n/

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy: (C-11)

As zH .n/ D zA.n/� zA.n/ and
ˇ̌
q�

�
d
2
� 2� n

�ˇ̌
> ı for all n 2 N, we apply (C-5) and (C-6) to obtain for

each n 2 N,Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy

� C.ı/

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy �C 0.ı/

�
.u.n;k//2.1/C zA.n/.u.n;k//2.1/

�
: (C-12)

We now sum this identity over n and k. The second term on the right-hand side is

X
n;1�k�k.n/

.u.n;k//2.1/D

Z
Sd�1

� X
n; 1�k�k.n/

u.n;k/.1/Y .n;k/.x/

�2
dx D

Z
Sd�1

u2.x/ dx

because .Y .n;k//n;1�k�n is an orthonormal basis of L2.Sd�1/. From (C-1), and as n��n as n!C1
by (1-18), the last term on the right-hand side of (C-12) isX

n; 1�k�n

j zA.n/u.n;k/j2.1/� C
X

n; 1�k�k.n/

.1Cn2/ju.n;k/j2.1/Cj@yu
.n;k/
j
2

� C
�
kujSd�1.1/k

2
H1 CkrujSd�1.1/ � Enk

2
L2

�
� C

�
kujSd�1k

2
L2
CkrujSd�1.1/k

2
L2

�
:
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We insert the two above equations into (C-12) and obtain

X
n; 1�k�n

Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy

� C.ı/
X

n; 1�k�n

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy �C 0.ı/

�
kujSd�1k

2
L2
CkrujSd�1.1/k

2
L2

�
:

In turn, we insert this identity into (C-10) using (C-11) to obtain the desired estimate (C-9).

Step 2: subcoercivity for H . We will prove the estimateZ
Rd

jHuj2

1Cjxj2q
dx

�C.ı/

�Z
Rd

j�uj2

1Cjxj2q
dxC

Z
Rd

jruj2

jxj2.1Cjxj2q/
dxC

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�
�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C˛
Ckuk2

H1.Bd�1.1//

�
: (C-13)

Away from the origin, the Cauchy–Schwarz and Young inequalities, the bound V C pcp�11 jxj�2 D

O.jxj�2�˛/ from (2-2) and (C-9) give (for C > 0)Z
RdnBd .1/

jHuj2

jxj2q
dx D

Z
RdnBd .1/

j zHuC .V Cpc
p�1
1 jxj�2/uj2

jxj2q
dx

� C

Z
RdnBd .1/

j zHuj2

jxj2q
dx�C 0

Z
RdnBd .1/

juj2

jxj2qC4C2˛
dx

� C.ı/

Z
RdnBd .1/

u2

1Cjxj2qC4

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
RdnBd .1/

juj2

1Cjxj2qC4C2˛

�
:

Close to the origin, using Rellich’s inequality (B-3),Z
Bd .1/

jHuj2 dx � C

Z
Bd .1/

j�uj2 dx�
1

C

Z
Bd .1/

juj2 dx

� C

Z
Bd .1/

juj2

jxj4
dx�

1

C
kukH1.Bd�1.1//:

Combining the two previous estimates we obtain the intermediate identityZ
Rd

jHuj2

1Cjxj2q
dx�C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2

C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkuk2

H1.Bd�1.1//

�
:
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Now, as H D��CV with V DO..1Cjxj/�2/, using Young’s inequality, the above identity and (B-4),
for " > 0 small enough (depending on ı) one hasZ

Rd

jHuj2

1Cjxj2p
dx

D .1� "/

Z
Rd

jHuj2

1Cjxj2p
dxjHuj2dxC "

Z
Rd

jHuj2

1Cjxj2p
dx

� .1� "/C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
C
"

2

Z
Rd

j�uj2

1Cjxj2q
dx� "

Z
Rd

jV uj2

1Cjxj2q
dx

� .1� "/C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
CC.q/

"

2

X
1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�
dx� "C 0.q/

Z
Rd

u2

1Cjxj2qC4
dx

� C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
C
C.q/"

2

X
1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
;

which is the identity (C-13) we claimed.

Step 3: coercivity for H . We now argue by contradiction. Suppose that (C-8) does not hold. Up to a
renormalization, this means that there exists a sequence of functions .un/n2N such that, for all n,Z

Rd

jHunj
2

1Cjxj2q
! 0;

Z
Rd

j�unj
2

1Cjxj2q
C

jrunj
2

jxj2.1Cjxj2q/
C

junj
2

jxj4.1Cjxj2q/
D 1: (C-14)

Up to a subsequence, we can suppose that un ! u1 2 H
2
loc.R

d /, the local convergence in L2 being
strong for .un/n2N and .run/n2N, and weak for .r2un/n2N. Then (C-14) implies

kunk
2
H1.Bd�1.1//C

Z
Rd

junj
2

1Cjxj2qC4C˛
!ku1k

2
H1.Bd�1.1//C

Z
Rd

ju1j
2

1Cjxj2qC4C˛
:

Now un converges strongly to u1 in H s.Bd .0; 1// for any 0 � s < 2. The trace theorem for Sobolev
spaces ensures that

k.un/jSd�1.1/k
2
L2
Ck.run/jSd�1.1/k

2
L2
!k.u1/jSd�1.1/k

2
L2
Ck.ru1/jSd�1.1/k

2
L2
:
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We insert the three previous identities into the subcoercivity estimate (C-13) yielding

k.u1/jSd�1.1/k
2
L2
Ck.ru1/jSd�1.1/k

2
L2
C

Z
Rd

ju1j
2

1Cjxj2qC4C˛
Cku1k

2
H1.Bd .1// ¤ 0;

which means that u1 ¤ 0. On the other hand, the lower semicontinuity of norms for the weak topology
and (C-14) imply

Hu1 D 0:

Hence u1 is a nontrivial function in the kernel of H, and is smooth from elliptic regularity. It satisfies
the integrability condition (still from lower semicontinuity)Z

Rd

j�u1j
2

1Cjxj2q
dxC

jru1j
2

1Cjxj2qC2
dxC

Z
ju1j

2

1Cjxj2qC4
dx <C1:

We now decompose u1 into spherical harmonics, u1D
P
n; 1�k�k.n/ u

.n;k/
1 Y.n;k/, and will show that for

each n; k one must have u.n;k/1 D 0, which will give a contradiction. For each n; k, the nullity Hu1 D 0
implies H .n/u

.n;k/
1 , where H .n/ is defined in (1-36). By Lemma 2.3 this means u1 D aT

.n/
0 C b�.n/

for a and b two real numbers. The previous equation implies the following integrability for u.n;k/1 :Z
ju
.n;k/
1 j2

1Cy2qC4
yd�1 dy <C1:

By (2-7), as �.n/ � y�d�nC2 does not satisfy this integrability at the origin whereas T .n/0 is regular, one
must have b D 0. Then, if n� n0C 1,

jT
.n/
0 j

2

1Cy2qC4
yd�1 � y�2n�2q�5Cd:

From the assumption on n0 and (1-18), one has

�2n� 2q� 5C d D�1� 2
�
qC 2C n0C1�

d
2

�
C 2.n0C1� n/ > �1;

implying that jT .n/0 j
2=.1Cy2qC4/yd�1 is not integrable on Œ0;C1/; hence aD 0. If n� n0 then the

orthogonality condition (C-7) goes to the limit as ˆ.n;k/M is compactly supported and implies

hu1; ˆ
.n;k/
M i D 0;

which, in spherical harmonics, can be rewritten as

0D hu.n;k/1 ; ˆ
.n;k/
M i D ahT

.n/
0 ; ˆ

.n;k/
M i:

However, from (4-3) this in turn implies aD 0. We have proven that for all n; k u.n;k/1 D 0; hence u1D 0,
which is the desired contradiction, as we proved earlier that u1 is nontrivial. The coercivity (C-8) must
then be true. �

If one adds analogous orthogonality conditions for the derivatives of u and uses a bit more the structure
of the Laplacian, one gets that the weighted norm kH i=.1Cjxjp/ukL2 controls all derivatives of lower
order with corresponding weights.
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Lemma C.3 (coercivity of the iterates of H ). Let i be an integer with 2i > � such that for all n 2 N

satisfying mnC ın � i one has ın ¤ 0. Let n0 be the lowest integer such that mn0C1C ın0C1 > i . Let
u 2 PH 2i \ PH� .Rd / satisfy (where ˆ.n;k/M is defined in (4-1))

hu;H jˆ
n;k
M i D 0 for 0� n� n0; 0� j � i �mn� 1; 1� k � k.n/: (C-15)

Then there exists a constant ı > 0 such that for all 0� ı0 � ı,

C.ı; i/
X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2�C2ı
0
dx �

Z
Rd

jH iuj2

1Cjxj2ı
0
dx; (C-16)

which in particular implies that

kuk PH2i � C.ı; i/

�Z
Rd
jH iuj2 dx

�1
2

: (C-17)

Proof. Step 1: equivalence of weighted norms. We claim that for all integers j ,

H juD .��/juC
X

j�j�2j�2

fj;�@
�u (C-18)

for some smooth functions f� having the decay j@�
0

fj;�j � C.1C jxj
2j�j�jCj�0j/�1. This identity is

true for j D 1 because HuD ��uC V u with the potential V being smooth and having the required
decay by (2-2). If the aforementioned identity holds true for j � 1 then

H jC1uD .��CV /

�
.��/juC

X
j�j�2j�2

fj;�@
�u

�
D .��/jC1uCV.��/juC

X
j�j�2j�2

.��CV /.fj;�@
�u/;

and hence it is true for j C 1 since V is smooth and satisfies the decay (2-2). By induction it is true for
all j 2 N and (C-18) is proven. Then (C-18) implies thatZ

Rd

jH iuj2

1Cjxj2ı
dx � C

X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx: (C-19)

Step 2: weighted integrability in PH 2i\ PH�. We claim that for all functions u2 PH 2i\ PH� .Rd / and ı0>0,X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx <C1: (C-20)

Indeed, let � be a j�j-tuple with j�j � 2i . We split into two cases. First if j�j � � , as � < d
2

and 2i > � ,
the Hardy inequality B.3 yieldsZ

Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx �

Z
Rd

j@�uj2

1Cjxj2.��j�j/
dx � Ckuk2

PH�
<C1
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and we are done. If � < �� 2i then by interpolation u 2 PH j�j.Rd / and thenZ
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx �

Z
j@�uj2 dx <C1:

Thus (C-20) holds, which together with (C-19), implies, for all ı0 � 0,

iX
jD0

Z
Rd

jH juj2

1Cjxj4i�4jC2ı
0
dxC

jrH j�1uj2

1Cjxj4i�4jC2C2ı
0
dx <C1: (C-21)

Step 3: intermediate coercivity. Let ıDmin
�
ı0; : : : ; ın0C1;

1
2

�
if ın0C1¤ 0 and ıDmin

�
ı0; : : : ; ın0 ;

1
2

�
if ın0C1D 0. The conditions on the ın of the lemma imply ı > 0. We claim that for all integers 1� l � i ,

C.ı/

Z
Rd

jH l�1uj2

1Cjxj4i�4.l�1/C2ı
0
CC.ı/

Z
Rd

jrH l�1uj2

1Cjxj4i�4lC2C2ı
0
�

Z
Rd

jH luj2

1Cjxj4i�4lC2ı
0
: (C-22)

We now prove this estimate. We want to apply Lemma C.2 to the function H l�1u with weight q D
ı0C 2.i � l/. To use it, we have to check the orthogonality and integrability conditions that are required,
and the conditions on the weight.

Integrability condition. It is true because of (C-21).

Condition on the weight. For the case n� n0C 1, by (1-23) one computesˇ̌
ı0C2.i�l/�

�
d
2
�n�2

�ˇ̌
D
ˇ̌
ı0�2ın0C1�2.mn0C1�i/�2.l�1/�2.mnCın�mn0C1�ın0C1/

ˇ̌
: (C-23)

One has 2.l �1/� 0 as l � 1 and 2.mnC ın�mn0C1� ın0C1/� 0 because .mnC ın/n is an increasing
sequence from (1-22) and (1-18). For the subcase ın0C1 D 0, as mn0C1 > i and mn0C1 is an integer,
2.mn0C1� i/ > 2. Therefore �2.mn0C1� i/�2.l �1/�2.mnC ın�mn0C1� ın0C1/D�a for a� 2,
and inserting it into the above identity as 0 < ı0 < 1 givesˇ̌

ı0C 2.i � l/�
�
d
2
� n� 2

�ˇ̌
D jı0� aj � ı0 � ı:

For the subcase ın0C1 ¤ 0, we have ı0� 2ın0C1 � ı� 2ın0C1 � �ın0C1 � �ı. Moreover, mn0C1 � i
and �2.mn0C1� i/� 2.l � 1/� 2.mnC ın�mn0C1� ın0C1/� 0, implying

ı0� 2ın0C1� 2.mn0C1� i/� 2.l � 1/� 2.mnC ın�mn0C1� ın0C1/� ı
0
� 2ın0C1 � �ı;

and therefore by (C-23) this yields in that caseˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı:

In both subcases one has
ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı. For the case n� n0,ˇ̌

ı0C 2.i � l/�
�
d
2
� n� 2

�ˇ̌
D
ˇ̌
ı0� 2ınC 2.i � l C 1�mn/

ˇ̌
:

In the above identity, 2.i � lC 1�mn/ is an even integer, and ı0� 2ın is a number satisfying ı0� 2ın �
ı�2ın��ı and we recall that ı<1, and ı0�2ın��2ın��1. Therefore jı0�2ınC2.i�lC1�mn/j� ı,
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yielding ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı:

Therefore, for each n 2 N, we have
ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı.

Orthogonality conditions. Let n00 D n
0
0.l/ 2 N[f�1g be the lowest number such that

2.i � l C 1/C ı0� 2.mn00C1
C ın00C1

/ < 0:

By construction one has n00 � n0. If n00 D�1 then we are done because no orthogonality condition is
required. If n00 ¤�1, let n be an integer, 0� n� n00. By the definition of n00,

2.i � l C 1/C ı0� 2.mnC ın/ > 0;

which implies 0 � l � 1 � i �mn � 1 as ı0 � 2ın � ı � 2ın � �ın � 0. The orthogonality condition
(C-15) then gives, for any 1� k � k.n/,

hu;H l�1ˆ
.n;k/
M i D 0:

We have then proved that for all 0� n� n00, 1� k � k.n/,

hH l�1u;ˆ
.n;/k
M i D 0;

which are the required orthogonality conditions.

Conclusion. One can apply Lemma C.2 to H l�1u with weight q D 2i � 2l C ı0, giving the desired
coercivity estimate (C-22).

Step 4: iterations of coercivity estimates. We show the following bound by induction on l D 0; : : : ; i :Z
Rd

jH luj2

1Cjxj2ı
0
dx � c.ı; i/

X
0�j�j�2l

Z
Rd

j@�uj2

1Cjxj4i�2�C2ı
0
dx: (C-24)

This property is naturally true for l D 0. We now suppose it is true for l � 1 with 0� l � 1� i � 1. From
the formula (C-18) relating �l to H l , we see that (using the Cauchy–Schwarz and Young inequalities)Z

Rd

jH luj2

1Cjxj4.i�l/C2ı
0
� C.i/

Z
Rd

j�luj2

1Cjxj4.i�l/C2ı
0
�C 0.i/

X
0�j�j�2l�2

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0

� C.i/

Z
Rd

j�luj2

1Cjxj4.i�l/C2ı
0
�C 0.i/

Z
Rd

jH iuj2

1Cjxj2ı
0
;

where we used the induction hypothesis (C-24) for l � 1 for the second line. We now use (C-24) and
(B-4) to recover a control over all derivatives:
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Rd

j�luj2

1Cjxj4.i�l/C2ı
0
� C.i/

X
1�j�j�2

Z
Rd

j@��l�1uj2

1Cjxj4.i�l/C4�2j�j
�C 0.i/

Z
Rd

j�l�1uj2

1Cjxj4.i�l/C4

� C.i/
X

0�j�j�2

Z
Rd

j�l�1@�uj2

1Cjxj4.i�.l�1//�2j�j
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

� C.i/
X

0�j�j�2

X
1�j�0j�2

Z
Rd

j@�
0

�l�2@�uj2

1Cjxj4.i�.l�1//C4�2j�j�2j�
0j

�C 0.i/

Z
Rd

j�l�2uj2

1Cjxj4.i�l/C8
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

� C.i/
X

0�j�j�4

Z
Rd

j�l�2@�uj2

1Cjxj2pC4.i�.l�2//�2�
�C 0.i; ı/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

:::

� C.i/
X

0�j�j�2l

Z
Rd

j@�uj2

1Cjxj2pC4�2�C2ı
0
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0
:

Inserting this last equation into the previous one we obtainZ
Rd

jH luj2

1Cjxj4.i�l/C2ı
0
� C.ı; i/

X
0�j�j�2l

Z
Rd

j�l�2@�uj2

1Cjxj2pC4�2�
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0
:

This, together with (C-22), gives that (C-24) is true for l . Hence by induction it is true for i , which is
precisely the estimate (C-16) we had to show and ends the proof of the lemma. �

Appendix D: Specific bounds for the analysis

This section is dedicated to the statement and the proof of several estimates used in the analysis.

Lemma D.1 (specific bounds for the error in the trapped regime). Let " be a function satisfying (4-25)
and (4-11). We recall that E� and E2sL are defined by (4-9) and (4-7). Then the following bounds hold:

(i) Interpolated Hardy-type inequality. For � 2 Nd and q > 0 satisfying � � j�jC q � 2sLZ
j@�"j2

1Cjyj2q
dy � C.M/E

2sL�.j�jCq/

2sL��

� E
j�jCq��
2sL��

2sL
: (D-1)

(ii) Weighted L1 bound for low order derivative. For 0� a � 2 and � 2 Nd with j�j � 1, @�"

1Cjyja


L1
� C.K1; K2;M/

p
E�
1CO. 1

L2
/ 1

saCj�j1C.
d
2
��/C. 2

p�1
CaCj�j1/˛=LCO.��scL /

: (D-2)

(iii) L1 bound for high order derivative. For � 2 Nd with j�j � sL,

k@�"k2L1 � C.M/E
2sL�j�j1�d=2

2sL��
CO. 1

L2
/

� E
j�j1Cd=2��

2sL��
CO. 1

L2
/

2sL
: (D-3)
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Proof. (i) We first recall that from the coercivity estimate (C-16) one has

kr
�"k2

L2
D E� ; kr2sL"k2L2 � C.M/kH sL"k2

L2
D C.M/E2sL :

If the weight satisfies q < d
2

, then the inequality (D-1) claimed in the lemma is a consequence of the
standard Hardy inequality, followed by an interpolation: @�"

1Cjxjq

2
L2
� Ckr j�j1Cq"k2

L2
� Ckr�"k

2
2sL�.j�j1Cq/

2sL��

L2
kr

2sL"k
2
j�j1Cq��

2sL��

L2

� C.M/E
2sL�.j�j1Cq/

2sL��

� E
j�j1Cq��

2sL��

2sL
:

If the potential satisfies q D 2sL� j�j, then the inequality (D-1) claimed in the lemma is a consequence
of the coercivity estimate (C-16):  @�"

1Cjxjq

2
L2
� C.M/E2sL :

For a weight that is in-between, i.e., d
2
� q < 2sL � j�j1, the inequality (D-1) is then obtained by

interpolating the two previous ones, as

j"j2

1Cjxj2b
�

�
j"j2

1Cjxj2a

�c�b
c�a

�
j"j2

1Cjxj2c

�b�a
c�a

:

(ii) As the dimension is d � 11 and L� 1 is big, one has @�"=.1C jxja/ 2 L1 with the following
bound (using the bound (i) we just derived): @�"

1Cjxja


L1
�C.z/

�r d2�z� @�"

1Cjxja

�
L2
C

r d2Cz� @�"

1Cjxja

�
L2

�
�C.z/

�
kr

d
2
�zCaCj�j1"kL2Ckr

d
2
CaCj�j1Cz"kL2

�
�C.M;z/

�
E
2sL�.aCj�j1Cd=2�z/

2sL��

� E
aCj�j1Cd=2�z��

2sL��

2sL
CE

2sL�.aCj�j1Cd=2Cz/

2sL��

� E
aCj�j1Cd=2Cz��

2sL��

2sL

�
for z > 0 small enough. We then let z1 be so close to 0 (of order L�1) that its impact when using the
bootstrap bounds (4-25) is of order s�

1

L2 (since the constant C.M; z1/ explodes as z1 approaches 0, we
cannot take z1 D 0, but z1 very close to d

2
is enough for our purpose). Inserting the bootstrap bounds

(4-25) then yields the desired result (D-2).

(iii) It can be proved exactly the same way we did for (ii). �

Lemma D.2 (a nonlinear estimate). Let d 2 N, a � 0 and b > d
2

. Let � � Rd be a smooth bounded
domain. There exists a constant C > 0 such that for any u; v 2Hmax.a;b/.�/,24

kuvkHa.�/ � C
�
kukHa.�/kvkHb.�/CkukHb.�/kvkHa.�/

�
: (D-4)

24The product uv indeed belongs to Ha.�/ as Hmax.a;b/.�/ is an algebra since b > d
2 .
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Proof. Without loss of generality one assumes d
2
< b � d

2
C
1
4

,

b WD d
2
C ıb; with 0 < ıb � 1

4
: (D-5)

Indeed, if (D-4) holds for all b 2
�
d
2
; d
2
C
1
4

�
then for any b0 > d

2
C
1
4

, applying (D-4) to the pair of
parameters

�
a; d

2
C
1
4

�
and using the fact that kf kHd=2C1=4.�/ � kf kHb.�/ for any f 2H b.�/ gives

that (D-4) holds for the pair of parameters .a; b0/.

Step 1: a scalar inequality. We claim that for all .�1; �2/ 2 Œ0; 1�2 with �1 C �2 � 1 and for all
.�1; �2; �3; �4/ 2 Œ0;C1/ satisfying �1 � �2 and �3 � �4,

�
�1
1 �

1��1
2 �

�2
3 �

1��2
4 � �1�4C�2�3: (D-6)

We now prove this estimate. Since 1� �1� �2 � 0 and 0� 1� �2 � 1, one has

8.x; z/ 2 Œ1;C1/� Œ0;C1/; x1��1��2z1��2 � z1��2 � 1C z:

Let .�1; �2; �3; �4/ 2 Œ0;C1/ satisfying 0 < �1 � �2 and 0 < �3 � �4. We apply the above estimate
to x D �2

�1
� 1 and z D �1�4

�2�3
, and multiply both sides by �2�3, yielding the desired estimate (D-6)

after simplifications. If �1 D 0 or �3 D 0, (D-6) always holds. Consequently, (D-6) holds for all
.�1; �2; �3; �4/ 2 Œ0;C1/ satisfying 0 < �1 � �2 and 0 < �3 � �4.

Step 2: proof in the case �D Rd and a � b. We claim that for u; v 2Ha.Rd /,

kuvkHa.Rd / � C
�
kukHa.Rd /kvkHb.Rd /CkukHb.Rd /kvkHa.Rd /

�
: (D-7)

We now show the above estimate. Let u; v 2H s2.Rd /. First, one obtains an L2 bound using Hölder and
Sobolev embedding

�
as b > d

2

�
:

kuvkL2.Rd / � kukL2.Rd /kvkL1.Rd / � CkukHa.Rd /kvkHb.Rd /: (D-8)

Secondly, one decomposes a D AC ıa, where A WD EŒa� 2 N is the entire part of a and 0 � ıa < 1.
Using the Leibniz rule one has the identity

kr
a.uv/k2

L2.Rd /
� C

X
.�1;�2/2N2d

j�1jCj�2jDA

kr
ıa.@�1u@�2v/k2

L2.Rd /
: (D-9)

We fix .�1; �2/ 2 N2d with j�1jC j�2j D A in the sum and aim at estimating the corresponding term.
We recall the commutator estimate

kr
ıa.@�1u@�2v/kL2 . kr j�1jCıaukLp1k@�2vkLq1 Ckr j�2jCıavkLp2k@�1ukLq2 (D-10)

for 1
p1
C

1
p2
D

1
p01
C

1
p02
D
1
2

, provided 2�p1; p2<C1 and 2� q1; q2�C1. We now chose appropriate
exponents p1 and p2 in several cases.

Case 1. j�2j D 0. Then j�1jC ıa D a and using Sobolev embedding
�
as b > d

2

�
,

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd / � CkukHa.Rd /kvkHb.Rd /: (D-11)
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Case 2. 1 � j�2j < a � d
2

and j�1j C ıa < b. Then b < j�2j C d
2
< a by (D-5) and using Sobolev

embedding, one computes

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd / � CkukHb.Rd /kvkHa.Rd /: (D-12)

Case 3. 1� j�2j<a� d2 and b � j�1jCıa. Then b < j�2jC d
2
<a by (D-5) and b � j�1jCıa � a. We

let x WDmin
�
ıb
2
; a�j�2j�

d
2

�
> 0. Using Sobolev embedding, interpolation and (D-6)

�
since b > d

2
Cx

and j�1jC j�2jC ıa D a
�
, one computes

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd /�CkukH j�1jCıa .Rd /kvkH j�2jCd=2Cx.Rd /

�Ckuk
a�j�1j�ıa

a�b

Hb.Rd /
kuk

j�1jCıa�b

a�b

Ha.Rd /
kvk

a�j�2j�d=2�x

a�b

Hb.Rd /
kvk

j�2jCd=2Cx�b

a�b

Ha.Rd /

�C
�
kukHa.Rd /kvkHb.Rd /CkukHb.Rd /kvkHa.Rd /

�
: (D-13)

Case 4. a� d
2
� j�2j< a. Let x WD 1

2
min.a� j�j2; ıb/ > 0. We define p1, q1 and s by

1

q1
WD

1

2
�
a� x� j�2j

d
;

1

p1
D
1

2
�
1

q1
and s D

d

q1
:

One has j�1jC ıaC s D d
2
C x < b, and, using Sobolev embedding,

kr
j�1jCıaukLp1k@

�2vkLq1 � CkukH j�1jCıaCskvkHa�x � CkukHbkvkHa (D-14)

and 1
p1
C

1
q1
D

1
2

, p1 ¤C1.

Case 5. j�2j D a. Then j�1jC ıa D 0 and using Sobolev embedding
�
as b > d

2

�
,

kr
j�1jCıaukL1.Rd /k@

�2vkL2.Rd / � CkukHb.Rd /kvkHa.Rd /: (D-15)

Conclusion. In all possible cases, by (D-11)–(D-15) there always exist p1; q1; p2; q2 2 Œ2;C1/ with
p1; p2 ¤C1, 1

p1
C

1
q1
D

1
2

and

kr
j�1jCıaukLp1 .Rd /k@

�2vkLq1 .Rd /Ckr
j�1jukLq2vkr

j�2jCıavk
Lp2.R

d /

� CkukHb.Rd /kvkHa.Rd /CCkukHa.Rd /kvkHb.Rd /;

where the estimate for the second term on the left-hand side of the above equation comes from symmetric
reasoning. We now come back to (D-9), and apply (D-10) and the above identity to obtain

kr
a.uv/kL2.Rd / � CkukHb.Rd /kvkHa.Rd /CCkukHa.Rd /kvkHb.Rd /:

The above estimate and (D-8) imply the desired estimate (D-7) by interpolation.

Step 3: proof in the case �D Rd and a � b. The proof is similar and simpler and we do not write it
here. Therefore, (D-7) holds for all a � 0 and b > d

2
.

Step 4: proof in the case of a smooth bounded domain �. There exists zC > 0 such that for any
f 2Hmax.a;b/.�/ there exists an extension Qf 2Hmax.a;b/.Rd / with compact support, satisfying Qf D f
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on � and
1

zC
k Qf kHc.Rd / � kf kHc.�/ �

zCk Qf kHc.Rd /; c D a; bI

see [Adams and Fournier 2003]. Let u; v2Hmax.a;b/.�/ and denote by Qu and Qv their respective extensions.
Using (D-7) and the above estimate then yields

kuvkHa.�/ � k Qu QvkHa.Rd /

� C
�
k QukHa.Rd /k QvkHb.Rd /Ck QukHb.Rd /k QvkHa.Rd /

�
� C zC 2

�
kukHa.�/kvkHb.�/CkukHb.�/kvkHa.�/

�
and (D-4) is obtained. �

Appendix E: Geometrical decomposition

This section is devoted to the proof of Lemma 4.3.

Lemma E.1. Let X denote the functional space

X WD
˚
u 2 L1.Bd .0; 4M// W hu�Q;Hˆ

.0;1/
M i> ku�QkL1.Bd .0;3M//

	
: (E-1)

There exists �;K > 0 such that for all u 2X \fku�QkL1.Bd .0;4M/// < �g, there exists a unique choice
of parameters b 2RI with b.0;1/1 >0, �> 0 and z 2Rd such that the function v WD .��zu/�� zQb satisfies

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln (E-2)

and such that
j�� 1jC jzjC

X
.n;k;i/2I

jb
.n;k/
i j �K: (E-3)

Moreover, b, � and z are Fréchet differentiable25 and satisfy

j�� 1jC jzjC
X

.n;k;i/2I

jb
.n;k/
i j �Kku�QkL1.Bd .0;3M//: (E-4)

Proof. We first define the application � as

� W L1.Bd .0; 3M//� .0;C1/�RdC#I
! R1CdC#I ;

.u; Q�; Qz; Qb/ 7!
�
h.�Qzu/ 1

Q�

�Q�˛ Qb;H
iˆ
.n;k/
M i

�
; where 1� k � k.n/; 0� n� n0; 0� i �Ln:

(E-5)

Then � is C1. From the definition (3-7) of ˛b , and the orthogonality conditions (4-3), the differential of �
with respect to the second variable at the point .Q; 1; 0; : : : ; 0/ is the diagonal matrix

D.2/�.Q; 1; 0; : : : ; 0/D�

0BB@
hT
.0/
0 ; �MT

.0/
0 i IdLC1

: : :

hT
.n0/
0 ; �MT

.n0/
0 i IdLn0

1CCA; (E-6)

25For the ambient Banach space L1.Bd .0; 3M//.
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where IdLn is the Ln � Ln identity matrix. D.2/�.Q; 1; 0; : : : ; 0/ is invertible for M large by (4-3).
Consequently, from the implicit functions theorem, there exist �;K > 0, such that for all

u 2X \
˚
ku�QkL1.Bd .0;3M// < �

	
;

there exists a choice of the parameters Q�D Q�.u/, Qz D Qz.u/ and Qb D Qb.u/ such that

�.u; Q�; Qz; Qb/D 0; j Q�� 1jC jQzjC
X

.n;k;i/2I

j Qb
.n;k/
i j �Kku�QkL1.Bd .3M// (E-7)

and it is the unique solution of �.u; Q�; Qz; Qb/D 0 in the range

j Q�� 1jC jQzjC
X

.n;k;i/2I

j Qb
.n;k/
i j �K:

Moreover, they are Fréchet differentiable, again from the implicit function theorem. Now, defining
�D 1= Q�, b D Qb and z D�Qz, this means by (E-5) that the function w WD .��zu/��Q�˛b satisfies

hw;H iˆ
.n;k/
M i D 0; for 0� n� n0; 1� k � k.n/; 0� i � Ln:

Finally, still from the implicit function theorem, from the identity for the differential (E-6), the definition
(E-1) of X and (4-3),

b
.0;1/
1 D�ŒD.2/�.Q; 1; 0; : : : ; 0/��1.�.u; 1; 0; : : : ; 0//C o.ku�QkL1.Bd .3M///

D
hu�Q;H 1ˆ

.0;1/
M i

hT
.0/
0 ; �MT

.0/
0 i

C o
�
hu�Q;H 1ˆ

.0;1/
M i

�
> 0;

where the o. � / is as �! 0, and the strict positivity is then for � small enough. Consequently, in that
case zQb DQC�.b.0;1/1 /�.1C�/=2

˛b is well defined, and one has .b.0;1/1 /�
1C�
2 � 2M for � small enough.

Thus, for v WD .��zu/�� zQb ,

hv;H iˆ
.n;k/
M i D h Qv;H iˆ

.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln

because the support of v� Qv is outside Bd .0; 2M/. One has found a choice of the parameters �, b and z
such that b.0;1/1 > 0 and (E-2) and (E-3) hold. This choice is unique in the range (E-3) and the parameters
are Fréchet differentiable since under (E-3), they are equal to the parameters given by the above inversion
of �. �

Lemma E.2. There exist ��; zK>0 such that the following holds for all 0<�<��. Let O be the open set of
L1.Bd .0; 1// of functions u satisfying (4-4). For each u2O there exists a unique choice of the parameters
�2

�
0; 1
4M

�
, z2Bd

�
0; 1
4

�
and b2RI such that b.0;1/1 >0 and vD .��zu/�� zQb 2L1

�
1
�
.Bd .0; 1/�fzg/

�
satisfies26

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln (E-8)

26The following assertions make sense as v is defined on 1
�
.Bd .0; 1/�fzg/, which indeed contains Bd .0; 2M/ since

0 < � < 1
4M

and jzj � 1
4 , and as ˆ.n;k/

M
is compactly supported in Bd .0; 2M/ by (4-1).
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and X
.n;k;i/2I

jb
.n;k/
i jC kvk

L1. 1
�
.Bd .0;1/�fzg// �

zK�: (E-9)

Moreover, the functions �, z and b defined this way are Fréchet differentiable on O.

Proof. Let K and �0 be the numbers associated to Lemma E.1.

Step 1: existence. Let
. Q�; Qz/ 2

�
0; 1
8M

�
�Bd

�
0; 1
8

�
(E-10)

be such that

ku�Q
Qz; 1
Q�

kL1.Bd .1// <
�

Q�
2
p�1

;

k.��Qzu/Q��QkL1.Bd .4M// < h.��Qzu/Q��Q;Hˆ
.0;1/
M i;

which exists by (4-4). We define w WD .��Qzu/Q�. It is defined on the set .1= Q�/.B.1/� Qz/, which contains
Bd .7M/ as 0 < Q� < 1

8M
and jzj � 1

8
. From this fact and the above estimates, w satisfies

kw�QkL1.B.7M// < �; kw�QkL1.Bd .3M// < hw�Q;Hˆ
.0;1/
M i: (E-11)

Thus for � small enough, one can apply Lemma E.1: there exists a choice of the parameters z0, b0 and �0

such that v0 D .��z0w/�0 � zQb0 satisfies (E-8) and b
0.0;1/
1 > 0. This choice is unique in the range

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �K: (E-12)

Moreover, the estimate

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �Kkw�QkL1.Bd .0;3M/// �K�:

holds. Now we define
b D b0; z D QzC Q�z0; �D Q��0 (E-13)

and v D v0. One has then b.0;1/1 > 0, and from (E-10) and the above estimate,X
.n;k;i/2I

jb
.n;k/
i j �K�; jzj � 1

4
; 0 < � <

1

4M

for � small enough. From the definitions of w, v0 and v one has the identity

uD .vC zQb/z; 1
�
; with v satisfying (E-8):

From (3-7), (3-29) and the above estimate,

kvk
L1. 1

�
.Bd .1/�z// D �

2
p�1 ku� �z. zQb; 1

�
/kL1.Bd .1//

� �
2
p�1 ku� �Qz.Q 1

Q�

/kL1.Bd .1//C�
2
p�1 k�Qz.Q 1

Q�

/� �z. zQb; 1
�
/kL1.Bd .1// � CK�
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for some constant C > 1 independent of the others. Therefore, one takes zK D CK, and the choice of
parameters �, z and b that we just found provides the decomposition claimed by the lemma and the
existence is proven.

Step 2: differentiability. We claim that the parameters �, b and z found in Step 1 are unique; this will be
proven in the next step. Therefore, from their construction using the auxiliary variables Q� and Qz in Step 1,
and since the parameters �0, z0 and b0 provided by Lemma E.1 are Fréchet differentiable, �, b and z are
Fréchet differentiable.

Step 3: uniqueness. Let Ob, O�, Oz be another choice of parameters with Ob.0;1/1 > 0, 0 < �< 1
4M

and jzj � 1
4

such that (E-8) and (E-9) hold for OvD .��Ozu/ O��
zQb . The function .��Qzu/Q�, where Q� and Qz were defined

in (E-10) in the first step, then satisfies the bound

k.��Qzu/Q��QkL1.B.3M// < �0

for � small enough by (E-11), and admits two decompositions

.��Qzu/Q� D .
zQb0 C v

0/z0; 1
�0
D . zQ ObC Ov/ Oz�Qz

Q�
;
Q�
O�

such that v and v0 satisfy (E-8). By (E-12), the first parameters satisfy

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �K�0:

We claim that the second parameters satisfyˇ̌̌̌
Q�

O�
� 1

ˇ̌̌̌
C

ˇ̌̌̌
Oz� Qz

Q�

ˇ̌̌̌
C

X
.n;k;i/2I

j Ob
.n;k/
i j �K�0; (E-14)

which will be proven hereafter. Then, as such parameters are unique under the above bound by Lemma E.1,
one obtains

Q�

O�
D
1

�0
;
Oz� Qz

Q�
D z0; Ob D b0;

implying that O�D �, Oz D z and Ob D b, where �, z and b are the choice of the parameters given by the
first step defined by (E-13). The uniqueness is obtained.

Proof of (E-14). From the assumptions on Ob, O� and Oz, the definition of zQb (3-29) and (E-9), for � small
enough we have

ku�Q
Oz; 1
O�

kL1.Bd .1// �
C zK�

O�
2
p�1

:

From (E-10) one also has
ku�Q

Qz; 1
Q�

kL1.Bd .1// �
�

Q�
2
p�1

:

From the two above estimates, one deduces that

kQ
Oz; 1
O�

�Q
Qz; 1
Q�

kL1.Bd .1// �
�

Q�
2
p�1

C
C zK�

O�
2
p�1

: (E-15)
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Assume that O� � Q�. Then, since Q is radially symmetric and attains its maximum at the origin, and
Oz 2 Bd .0; 1/ because j Ozj � 1

4
, the above inequality at x D Oz implies

Q.0/

�
1

O�
2
p�1

�
1

Q�
2
p�1

�
DQ

Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Qz/

�Q
Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Oz/

D jQ
Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Oz/j

� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
;

which gives ˇ̌̌̌
1

O�
2
p�1

�
1

Q�
2
p�1

ˇ̌̌̌
� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
:

The symmetric reasoning works in the case O�� Q� and one obtains that in both casesˇ̌̌̌
1

O�
2
p�1

�
1

Q�
2
p�1

ˇ̌̌̌
� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
:

Basic computations show that for � small enough the above identity impliesˇ̌̌̌
1�
O�

Q�

ˇ̌̌̌
� C zK� or O�D Q�.1CO.�//;

obtaining the first bound in (E-14) for � small enough. We insert the above estimate into (E-15), yielding

kQ
Oz; 1
Q�

�Q
Qz; 1
Q�

kL1.Bd .1// � kQ Oz; 1
Q�

�Q
Oz; 1
O�

kL1.Bd .1//kCkQ Oz; 1
O�

�Q
Oz; 1
O�

kL1.Bd .1//k �
C zK�

Q�
2
p�1

;

which implies in renormalized variables
�
as j Ozj � 1

8
and Q�� 1

8M

�
,

kQ� � Oz�Qz
Q�

QkL1.Bd .0;2M// � C
zK�:

As Q is smooth, radially symmetric and radially decreasing this impliesˇ̌̌̌
Oz� Qz

Q�

ˇ̌̌̌
� C zK� or Oz D QzC Q�O.�/

and the second bound in (E-14) is obtained. �
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