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NONLINEAR BOUNDARY LAYERS FOR ROTATING FLUIDS

ANNE-LAURE DALIBARD AND DAVID GERARD-VARET

We investigate the behaviour of rotating incompressible flows near a nonflat horizontal bottom. In the flat
case, the velocity profile is given explicitly by a simple linear ODE. When bottom variations are taken
into account, it is governed by a nonlinear PDE system, with far less obvious mathematical properties.
We establish the well-posedness of this system and the asymptotic behaviour of the solution away from
the boundary. In the course of the proof, we investigate in particular the action of pseudodifferential
operators in nonlocalized Sobolev spaces. Our results extend an older paper of Gérard-Varet (J. Math.
Pures Appl. (9) 82:11 (2003), 1453—-1498), restricted to periodic variations of the bottom, using the recent
linear analysis of Dalibard and Prange (Anal. & PDE 7:6 (2014), 1253-1315).

1. Introduction

The general concern of this paper is the effect of rough walls on fluid flows, in a context where the rough
wall has very little structure. This effect is important in several problems, like transition to turbulence or
drag computation. For instance, understanding the connection between roughness and drag is crucial for
microfluidics, because friction at solid boundaries is a major factor of energy loss in microchannels. This
issue has been much studied over recent years, through both theory and experiments [Lauga et al. 2007;
Bocquet and Barrat 2007]. Conclusions are ambivalent. On the one hand, rough surfaces may increase
the friction area, and thus enstrophy dissipation. On the other hand, recent experiments have shown that
rough hydrophobic surfaces may lead to drag decrease: air bubbles can be trapped in the humps of the
roughness, generating some slip [Vinogradova and Yakubov 2006; Ybert et al. 2007].

Mathematically, these problems are often tackled by a homogenization approach. Typically, one
considers Stokes equations over a rough plate, modelled by an oscillating boundary of small wavelength
and amplitude:

I?: x3=ey(xi/e x/e), ek, (1-1)

where the function y =y (y1, y2) describes the roughness pattern. Within this formalism, the understanding
of roughness-induced effects comes down to an asymptotic problem, as ¢ — 0. The point is to derive
effective boundary conditions at the flat plate I', retaining in this boundary condition an averaged effect
of the roughness. We refer to the works [Achdou et al. 1998a; 1998b; 1998c; Amirat et al. 2001; Jager
and Mikeli¢ 2001; 2003; Neuss et al. 2006; Bresch and Milisic 2010; Mikeli¢ et al. 2013] on this topic. In
all of these works, a restrictive hypothesis is made, namely periodicity of the roughness pattern y. This
hypothesis simplifies greatly the construction of the so-called boundary layer corrector, describing the

MSC2010: primary 35Q30; secondary 35Q86.
Keywords: fluid mechanics, geophysical fluids, Ekman layers, boundary layers.
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small-scale variations of the flow near the boundary. This corrector is an analogue of the cell corrector in
classical homogenization of heterogeneous media.

The main point and difficulty is the mathematical study of the boundary layer equations, which are
satisfied formally by the boundary layer corrector. When y is periodic in yi, y», the solution of the
boundary layer system is itself sought periodic, so that well-posedness and qualitative properties of the
system are easy to determine. When the periodicity structure is relaxed, and replaced by general ergodicity
properties, the analysis is still possible, but much more involved, as shown in [Basson and Gérard-Varet
2008; Gérard-Varet 2009; Gérard-Varet and Masmoudi 2010]. A key feature of these articles is the
linearity of the boundary layer system: after the rescaling y = x /¢, it is governed by Stokes equations in
the boundary layer domain

Qo ={y:y3 >y, )} (1-2)

It thus reads
—Av+Vp=0 in Qy,

divv=0 1in Qy, (1-3)
Vo, =@
for some Dirichlet boundary data ¢ that has no decay as y;, y, go to infinity, but no periodic structure.

As a consequence, spaces of infinite energy, such as H*

Wloc» form a natural functional setting for such

equations.

A natural challenge is to extend this type of analysis to nonlinear systems. This is the goal of the
present paper. Namely, we will study a nonlinear boundary layer system that describes a rotating fluid
near a rough boundary. The dynamics of rotating fluid layers are relevant in the context of geophysical
flows, for which the Earth’s rotation plays a dominant role. The system under consideration reads

vV-Vv+Vp4+exv—Av=0 in Qy,
divo =0 1in Qy, (1-4)
vlaqy = ¢
These are the incompressible Navier—Stokes equations written in a rotating frame, which is the reason for
the extra Coriolis force e x u, where e = e3 = (0, 0, 1)". The equations in (1-4) can be obtained through
an asymptotics of the full rotating fluid system

Ro(d;u +u-Vu)+exu—EAu=0, divu =0, (1-5)

where Ro and E are the so-called Rossby and Ekman numbers. These parameters are small in many
applications. In the vicinity of the rough boundary (1-1), and in the special case where

E~¢&2, Ro~e, (1-6)
it is natural to look for an asymptotic behaviour of the type
u®(t, x) ~v(t, xy, X2, x/€),

where v =v(¢, x1, X2, ¥), y € Qp1. Injecting this ansatz in (1-5) yields the first two equations in the system
(1-4), where the “slow variables” (¢, x1, x2) are only parameters and are eluded.
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The main goal of this paper is to construct a solution v of system (1-4), under no structural assumption
on y. We shall moreover provide information on the behaviour of v away from the boundary. We will in
this way generalize [Gérard-Varet 2003] by the second author in which periodic roughness was considered.
See also [Gérard-Varet and Dormy 2006]. Before stating the main difficulties and results of our study,
several remarks are in order:

(1) The choice of the scaling (1-6), which leads to the derivation of the boundary layer system, may seem
peculiar. It is, however, the richest possible, as it retains all terms in the equation for the boundary layer.
All other scaling would provide a degeneracy of system (1-4).

(2) In the flat case, that is, for the roughness profile y =0, and for ¢ = (¢, ¢», 0), with ¢, ¢, independent
of y, the solution of (1-5) is explicitly given in complex form by

(1 +iv2)(y) = (@1 +igo) exp(—(1+i)y3/v2), v3=0. (1-7)
This profile, sometimes called the Ekman spiral, solves the linear ODE
exv—dv=0.

Considering roughness turns this linear ODE into a nonlinear PDE, and as we will see, changes drastically
the properties of the solution.

(3) Rather than the Dirichlet condition v|yq,, = ¢, some slightly different settings could be considered:

 One could for instance prescribe a homogeneous Dirichlet condition v|3q,, = 0, and add a source
term with enough decay in y3. This would correspond to a localized forcing of the boundary layer.

o One could replace the Dirichlet condition by a Navier condition, that is, a condition of the type
D(u)nxn|3§2b1:f’ M‘n|3Qb1:0,

with D(u) the symmetric part of Vu, and n the normal unit vector at the boundary. For instance,
one could think of (1-1) as modelling an oscillating free surface, under the rigid lid approximation.
In this context, the Navier condition would model a wind forcing, and the boundary layer domain
would model the water below the free surface (changing the direction of the vertical axis). We
refer to [Pedlosky 1987] for some similar modelling, and to [Casado-Diaz et al. 2003; Bucur et al.
2008; Bonnivard and Bucur 2012; Dalibard and Gérard-Varet 2011] for the treatment of such Navier
condition. As shown in those papers, some hypothesis on the nondegeneracy of the roughness is
necessary to the mathematical analysis.

However, our analysis does not extend to the important case of an inhomogeneous Dirichlet condition at
infinity, which models a boundary layer driven by an external flow. For linear systems, one can in general
lift this Dirichlet data at infinity, and recover the case of a Dirichlet data at the bottom boundary, like in
(1-3). But for our nonlinear system (1-4), this lift would lead to the introduction of an additional drift
term in the momentum equation, which would break down its rotational invariance.
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2. Statement of the results

Our main result is a well-posedness theorem for the boundary layer system (1-4), where ¢ is a given
boundary data, with no decay tangentially to the boundary, and satisfying ¢ - n|yq,, = 0. As usual in
the theory of steady Navier—Stokes equations, the well-posedness will be obtained under a smallness
hypothesis. We first introduce, for any unbounded 2 C R?, the spaces

kezd

Lﬁloc(Q):!f: Sup/ |f|2<+00},
B(k,HNSQ

and for all m > 0, moQ)={f:0*f € L% (Q) Yo < m}.

uloc uloc
These spaces are of course Banach spaces when endowed with their natural norms.

Theorem 1. Let y be bounded and Lipschitz and Q) be defined as in (1-2). There exists &g, C > 0, such
that for all ¢ € H]ﬁOC(E)le) satisfying ¢ - nlyq,, = 0 and ||¢||Hz] < &g system (1-4) has a unique solution
(v, p) with

(I+yPveH L (o), (4333 pe L2 (Qw),
and

1A +59)" Pl 41T+ Pl = Clidllag,

This theorem generalizes the result of [Gérard-Varet 2003], dedicated to the case of periodic roughness
pattern y. In this case, the analysis is much easier, as the solution v of (1-4) is itself periodic in y;, y».
Through standard arguments, one can then build a solution v satisfying

[ / |Vv|2 < +00.
T2 Jy3s>y(y1.y2)

Moreover, one can establish exponential decay estimates for v as y3 goes to infinity. This exponential
decay is related to the periodicity in the horizontal variables, which provides a Poincaré inequality for
functions with zero mean in x;. When the periodicity assumption is removed, one expects the exponential
convergence to be no longer true: this has been notably discussed in [Gérard-Varet and Masmoudi 2010;
Prange 2013] in the context of the Laplace or the Stokes equation near a rough wall. It is worth noting
that in such context, the convergence can be arbitrarily slow. In fact, there is in general no convergence
when no ergodicity assumption on y is made. A remarkable feature of our theorem for rotating flows is
that decay to zero persists, despite the nonlinearity, and without any ergodicity assumption on y. We
emphasize that this decay comes from the rotation term. However, exponential decay is replaced by
polynomial decay, with rate O (y; 1/ 3) for v.

Let us comment on the difficulties associated with Theorem 1. Of course, the first issue is that the
data ¢ does not decay as (y;, y») goes to infinity, so that the solution v is not expected to decay in the
horizontal directions. If 2 were replaced by

QY ={y:M>y;>y(1,»)), M>0,
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together with a Dirichlet condition at the upper boundary, one could build a solution v in HJIOC(SZ{J‘{’ ,
adapting ideas of LadyZenskaya and Solonnikov [1980] on Navier—Stokes flows in tubes. Among those

ideas, an important one is to obtain an a priori differential inequality on the local energy

E(t) ::/ / Vo2
()t} HM>y3>y (y1,y2)}

Such a differential inequality, known in the literature as a Saint-Venant estimate, appeared previously in
other contexts; see for instance [Wheeler and Horgan 1976; Wheeler et al. 1975]. Namely, one shows an
inequality of the type

E(1) < Cy(E' )+ E'0)? +1%).

However, the derivation of this differential inequality relies on the Poincaré inequality between two planes,
or in other words on the fact that Qg’{ has a bounded direction. For the boundary layer domain 2y, this is
no longer true, and no a priori bound can be obtained in this way. Moreover, contrary to what happens
for the Laplace equation, one cannot rely on maximum principles to get an L°° bound.

Under a periodicity assumption on y, one can restrict the domain to the periodic slab

y:OnLy) €Ty >y, »2))

In this manner, one has again a domain with a bounded direction (horizontal rather than vertical). One
can establish again Saint-Venant estimates leading to the exponential decay mentioned above. It allows
one to prove well-posedness of the boundary layer system. However, this approach does not work in our
framework, where no structure is assumed on the roughness profile y .

For the Stokes boundary layer flow

—Av+Vp=0, divv=0 in Qy, vlaqy = Vo, (2-1)

this problem is overcome in [Gérard-Varet and Masmoudi 2010] by N. Masmoudi and the second author.
The main idea there is to get back to the domain Q{)‘]’ by imposing a so-called transparent boundary
condition at y3 = M. This transparency condition involves the Stokes analogue of the Dirichlet-to-
Neumann operator, and, despite its nonlocal nature (contrary to the Dirichlet condition), allows then to
apply the method of Solonnikov. We refer to [Gérard-Varet and Masmoudi 2010] for more details.! Of
course, the use of an explicit transparent boundary condition at y3 = M is possible because v satisfies a
homogeneous Stokes equation in the half-space {y3 > M}, which gives access to explicit formulas.
Such simplification does not occur in the context of our rotating flow system: in particular, the main
issue is the quasilinear term u - Vu in system (1-4), in contrast with previous linear studies. In fact, even
without this convective term, the analysis is not easy. In other words, the Coriolis—Stokes problem

exv+Vp—Av=0 1in Qy,
divv=0 in Qy, (2-2)
U|3Qb1 =¢

1Actuallly, [Gérard-Varet and Masmoudi 2010] is concerned with the 2D case. For adaptation to 3D, we refer to [Dalibard and
Prange 2014].
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already raises difficulties. For instance, to use a strategy based on a transparent boundary condition, one
needs to construct the solution of the Dirichlet problem in a half-space for the Stokes—Coriolis operator,
when the Dirichlet data has uniform local bounds. But contrary to the Stokes case, there is no easy
integral representation. Still, such a linear problem was tackled in the recent paper [Dalibard and Prange
2014] by the first author and C. Prange. To solve the Dirichlet problem, they use a Fourier transform in
variables y;, y», leading to accurate formulas. The point is then to be able to translate information on
the Fourier side to uniform local bounds on v. This requires careful estimates, as spaces like Lﬁloc are
defined through truncations in space, which are not so suitable for a Fourier treatment. Similar difficulties
arise in [Alazard et al. 2016], devoted to water waves equations in locally uniform spaces.

The linear study [Dalibard and Prange 2014] is a starting point for our study of the nonlinear system
(1-4), but we will need many refined estimates, combined with a fixed point argument. More precisely,
the outline of the paper is the following.

» Section 3, the main section of the paper, will be devoted to the system
exv+Vp—Av=divF in {y3 > M},
divv=0 in {y3 > M}, (2-3)
V|y;=m = vp.
The data vy and F will have no decay in horizontal variables (y;, y»). The source term F, which is

|=2/3

reminiscent of u ® u, will decay typically like |y3 as y3 goes to infinity. This exponent is coherent

with the decay of u given in Theorem 1. The point will be to establish a priori estimates on a solution v

=173

of (2-3), with no decay in (y1, y2), decaying like |y3 at infinity. Functional spaces will be specified

in due course.
» On the basis of previous a priori estimates, we will show well-posedness of the system
v-Vvt+exv+Vp—Av=0 in {y3 > M},
divv=20 in {y3 > M}, (2-4)
V]y;=m = Vo
for small enough boundary data vy (again, in a functional space to be specified). This will be done in the
first subsection of Section 4.

« Finally, through the next subsections of Section 4, we will establish Theorem 1. The solution v of (1-4)
will be constructed with the help of a mapping F = F (¥, ¢), defined in the following way:

(1) First, we will introduce the solution (v—, p~) of
vV  +exv +Vp T —AvT =0 inQ{;’,
divi"=0  inQY,
v aay = @,

ZWT, pesly=m =,

(2-5)

where X (v, p)=Vv— ( p+ % lv |2)Id. Note that a quadratic term % |v|? is added to the usual Newtonian
tensor in order to handle the nonlinearity.
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(2) Then, we will introduce the solution (vF, p*) of (2-4), with vy := v |y,=pm.
(3) Eventually, we will define (v, ¢) := Z(vT, pTesly,=m — V.

The point will be to show that for small enough ¢, the equation F (v, ¢) = 0 has a solution ¥, knowing
that (0, 0) = 0. This will be obtained via the inverse function theorem (using the linear analysis of
[Dalibard and Prange 2014]). For such v, the field v defined by vt over {£y; > M} will be a solution of
(1-4). Indeed, v is always continuous at y3 = M by the definition of v*, while the condition F (i, ¢) =0
means that the normal component of the stress tensor X (v, p) is also continuous at y3 = M.

3. Stokes—Coriolis equations with source

A central part of the work is the analysis of system (2-3). For simplicity, we take M = 0. The case
without source term (F = 0) was partially analyzed in [Dalibard and Prange 2014], but we will establish
new estimates, notably related to low frequencies. Let us emphasize that the difficulty induced by low
frequencies already appeared in Proposition 2.1 on page 6 of the above work, even in the case of classical
Sobolev data: in such case, some cancellation of the Fourier transform 0 3 at frequency & = 0 was
assumed. We make a similar hypothesis here. The main theorem of the section is:

Theorem 2. Letm e N, m > 1. Let vy € H’"H(Rz) with third component satisfying vo 3 = 01v] + 0205,

uloc

(R?). Let F € H" (R3) such that (14 y3)**F € H”!

. I ) 2
with v}, vy in L loc

uloc (R3). There exists a unique

solution v of system (2-3) such that

3 2/3
1+ 390l sy = C(I00ll e gy + 10T D2y 1A +397 Fllg ) G-D)
for a universal constant C.

Prior to the proof of the theorem, several simplifying remarks are in order:
« Obviously, uniqueness comes down to showing that if ¥ = 0 and vy = 0, the only solution v of
(2-3) such that (14 y3)!'?v € Hi (R3) is v =0. This result follows from [Dalibard and Prange 2014,

uloc
Proposition 2.1], in which even a larger functional space was considered. Hence, the key statement our

theorem is the existence of a solution satisfying the estimate (3-1).

e In order to show existence of such a solution, we can assume vy,1, vo2, v* := (v}, v;) and F to be
smooth and compactly supported (resp. in R? and [R{i). Indeed, let us introduce

(Vg1 V9.2, V"Y1, y2) i= x ((y1, y2)/n) " * (vo,1, vo,2, ) (V1. y2),
F"(y) == x(y/n)p" (y) * F(y),

where x € C (?O([RRZ), xeC é’O(R3) are 1 near the origin, and p”, p" are approximations of unity. These
functions are smooth, compactly supported, and satisfy

||(U6l,1, Ug,z)”Hﬂ(;'(Rz) < C|l(vo,1, U0,2)||HH£1(R2),
”U*Jl ”HS'(;%RZ) =< C ”U* ”HJY;Z(RZ)’

2/3 2/3
(1 + y3) Fn”HJTOC([Rf_) <Cll(1+y3) F”H];*l'oc([ggi)



8 ANNE-LAURE DALIBARD AND DAVID GERARD-VARET

for a universal constant C. Moreover, (vg’l, vg’z), v*®™ and F" converge strongly to (vo 1, Vo 2), v* and F
in H™"t1(K), H™**(K) and H" (K') respectively for any compact set K of R* and any compact set K’
of [F\Ri. Now, assume that for all n € N, there exists a solution v” corresponding to the data vg’l, v(’)”2, v
and F”", for which we can get the estimate
14 y3) 0" | s ez y < C(1WG 1 V5D s gy + 10" e oy 4+ 1AL+ 330> F™ || gy
uloc + uloc uloc

uloc(Ri))
for a universal constant C. Then,

2/3

1
I+ 33) 0" e gy = € (10,1, 202 e ey + 10 gy + 1L+ 39 Fll g )

for a universal constant C". We can then extract a subsequence weakly converging to some v, which is
easily seen to satisfy (2-3) and (3-1).

« Finally, if vg 1, vo.2, v* and F are smooth and compactly supported, the existence of a solution v of (2-3)
can be obtained by standard variational arguments. More precisely, one can build a function v such that

[ 190 = COF e + ool
R

+

f lv]? < Ca(I1Fll 2mey + lvoll i2gey)  Va > 0.
R2x {y3<a}

Higher-order derivatives are then controlled by elliptic regularity. Hence, the whole problem is to establish
the estimate (3-1) for such a solution.

We are now ready to tackle the proof of Theorem 2. We forget temporarily about the boundary condition
and focus on the equations
exv+Vp—Av=divF, divo=0 inR3, (3-2)

Our goal is to construct some particular solution of these equations, satisfying for some large enough m,

11+ ol < CIN + 22 F s (3-3)

uloc

We will turn to the solution of the whole system (2-3) in a second step.

3.1. Orr-Sommerfeld formulation. To handle (3-2), we rely on a formulation similar to Orr and Som-
merfeld’s rewriting of Navier—Stokes. Namely, we wish to express this system in terms of v3 and
w := d1vy — drv;. First, we apply 0, to the first line, —d; to the second line, and combine to obtain

B3+ Aw=s3:=fi —0i fr, with f:=divF = (Z 3; Fij) (3-4)
J

i

Similarly, we apply 993 to the first line of (3-2), d,03 to the second line, and —(8]2 + 822) to the third line.
Combining the three, we are left with

— w4 APvy =5, 1= 0103 f1 + D003 fo — (07 + 87) f. (3-5)
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From w and v3, one recovers the horizontal velocity components vy, vp using the system
01V] + 0hvp = —03v3, 01V — v = w.
We are led to the (so far formal) expressions
v =37 +85) 7" (=391 v3 — D),
v = (37 +83) 7 (=930203 + 1), oo

Our goal is to construct a solution (v3, ) of (3-4)—(3-5), by means of an integral representation. Since
the vertical variable will play a special role in this construction, we will denote it by z instead of y3:
vy = (1, 2, 2). We write (3-4)—(3-5) in the compact form

1
L(D,d.)V =S5, v:=(”3), S:=(s3>, D= =8y, &),
l

w S

where L(D, 9;) is a Fourier multiplier in variables x;, x, associated with

0. (@2 - |s|2>).

e = (g2 e

We will look for a solution of the form
400
V(-,z)zf G(D,z—2)S(-.2)dZ + V). (3-7)
0

where:

* G(D, z) is a matrix Fourier multiplier, whose symbol G (&, z) is the fundamental solution over R of
L(£, d,) for any £ € R%:

L(E. 3)G (€. 2) = 8. (é ?)

» V, is a solution of the homogeneous equation. The purpose of the addition of V), is to ensure the
decay of the solution V. More details will be given in due course.

3.1.1. Construction of the Green function. We start with the construction of the fundamental solution
G (&, 7). Away from z = 0, it should satisfy the homogeneous system, which requires one to understand
the kernel of the operator L (£, ). This kernel is a combination of elements of the form e**V, where A is
a root of the characteristic equation

detL(E, ) =0, ie, —22—02—EP)3 =0, (3-8)

and V is an associated “eigenelement”, meaning a nonzero vector in ker L(§, A). A careful study of the
characteristic equation was carried out recently in [Dalibard and Prange 2014]. Notice that (3-8) can
be seen as an equation of degree three on ¥ = A% — |£|? (with negative discriminant). Using Cardano’s
formula gives access to explicit expressions. The roots can be written as &1 (§), £A,(§) and £A3(§),
where A; € R4, Xy, A3 have positive real parts, A| € R, A2 = A3, ImA, > 0. The A; are continuous
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functions of & (see Remark 4 below for more). The above work also provides their asymptotic behaviour
at low and high frequencies. This behaviour will be very important to establish our estimates.

Lemma 3 [Dalibard and Prange 2014, Lemma 2.4]. As & — 0, we have
ME) =EP+O0UEP), 1@ =™ +0(E17), rE)=e ™+ 0(E).

As & — 00, we have

rmE) =151 = 315177+ 00817,
12(8) =1€1= 371617 P+ 03617P), 238) =181 —2j1€17 P+ 0(617P),  where j=expQin/3).
Remark 4. We insist that A, and A3 are distinct and have a positive real part for all values of &, whereas
A1 # 0 for & # 0. Moreover, it can be easily checked that )Ll.z is a C™ function of |£|? fori =1,..., 3.
Using the fact that A, and A3 never vanish or merge, while A; vanishes for & = 0 only, we deduce that

A2, A3 are C™ functions of |£|2, and that A, (§) = |£]°A(£), where A; € C®°(R?), A(0) =1 and A,
does not vanish on R

Regarding the eigenelements, an explicit computation shows that for alli =1, ..., 3,
yr—( ! and Q;: I S L, £2)VE=0 (3-9)
-\ Taoggp TR R

We can now determine G; our results are summarized in Lemma 5 below. We begin with its first

column G| = (G”) a solution of L(&, 0,)G| = 8( ) As explained above, for z % 0, we know G (&, z)

G
is a linear combination of eﬁ'ZVjE Furthermore, we want to avoid any exponential growth of G as

z — F00. Thus G; should be of the form
G = Z?:l A?e_kizvi_’ z>0,
PO AreivE 2 <0.

We now look at the jump conditions at z = 0. For f = f(z), recall that [ f]|,—, := f(z/+) — f(z/_)
denotes the jump of f at z’. Since

(32— |€1)2G 11 — 3.G2 =0,
39:G11 + (02 — E11)G21 = 8.0,
we infer that

[G21]l:=0 =0, [0:G21]lz=0 =1, [05Gi1]l:=0=0. k=0,....3.
This yields a linear system of six equations on the coefficients Al.i. One finds A; := A;r = —A;, and the

D onQidi=5 Y A;=0, Z,\ZA =0.
i

i

system

Note that

R My |s|2 _Zkz e
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taking into account the second equality. Hence, we find

2/ — €D (ERP/AS— 161 1EF/GF— 16D (Al —1
1 1 1 Ay | = 0
A2 A3 A3 A3 0
The determinant of the matrix is
Dy :=|§I°D,
where
/=g /03— &P 1/G5— 1%
D = 1 1 1
A 3 3
After a few computations, we find that
Dy =[5 —AD03 — x%)( : - ! ) (3-10)
A —EPYAS =16 (AT —[EPDHA3— 1€
and
1 1 1
Al=——— 3 =22), Ay=———R2 =12, A3=——R3-21). 3-11
1 2D1( 3 2) 2 2D1( 1 3) 3 2D1( 2 1) ( )

Computations for the second column G, of G are similar. It is of the form

Gy = 21'3:1 Bfe MV, 23>0,
Yo BrSEVE, 2 <0,

with jump conditions
[05Gnll.0=0, k=0,1,  [3:Gpll:=o=0. k=0,....2, [0 Gpll:—o=1.

We find B; := B;r = B, and the system

Q 2 Q3\ /B 0
Al A2 A3 B,|l=]| O
3 93 43 _1
A oA A3 ) \Bs 3
The determinant of the matrix is now D, := —AjA2A3D, and

5 xm( 1 1 ) 5 ,\m( 1 1 )
1 — - ) 2= - ’
2D, \22— ]2 A2— P 2D 23— &7 A7 — &P

5 xm( 1 1 )
3= - .
2Dy \ A3 — €12 A3 — €2

This concludes the construction of the matrix G. We sum up our results in the following lemma, in which

(3-12)

we also give the asymptotic behaviours of the coefficients A;, B;, Vl.jE and of G as £ — 0 and |§]| — oc.
The latter follow from Lemma 3 and Remark 4 and are left to the reader.



12 ANNE-LAURE DALIBARD AND DAVID GERARD-VARET

Lemma 5. We have

3 v — 3 I
Y AieTMVT, 2> 0, {Zizl Bie V7, z>0,
_ , =

G =
. 3 :
- Z?:l Aiel'ZViJr’ z <0, din BieA’ZViJr’ 2 <0,

where

£ 1
Vit = (:in/u% - |5|2)>

and where A; and B; are defined by (3-11) and (3-12) respectively.
Asymptotic behaviour:

o For || > 1, there exists N > 0 such that A;, B;, Q; = O(|&|N) fori=1,...,3,and |Q;| > |£]7V. As
a consequence, G(£, 7) = O(|&|N) for all z.

e As & — 0, we have

Ai(§) > A;jeC*, i=1,...,3,
B - _
Bl<s>~ﬁ, By eC*, B — B eC*, i=2,3, (3-13)

Q ~QlEl, QeC* QiE)—>QeC, i=2.3.

More precisely, we can write, for instance,

B, 5
Bi(§) = Eﬁl@) VEeR
for some function B € C*®(R?) such that B1(0) = 1. Similar statements hold for the other coefficients.
It follows that

o) O(I%“I_l))

G(S,Z)=(O(1) o)

as || = 0 forall z € R.

3.1.2. Construction of the homogeneous correction. We will see rigorously below that the field

+oo +oo
Voli= [ 0D.=)SCodd = [ (00 =) T e SC ) Gt

is well-defined and satisfies (3-4)—(3-5). However, the corresponding velocity field does not have a good
decay with respect to z. This is the reason for the additional field V}, in formula (3-7). To be more specific,
let us split the source term S into S(z') = $°(z") + 8,8 (z) + BZZ, S2(z'), with

SO(Z) = <32(31F11 + 02 F12) — 91(91 F21 + 32F22)) (3-15)

—(397 4+ 03)(01 F31 + 9, F32)
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and

S'(Z) = ( 0 F13— 01Fx3 )
T\ @1 Fi1 + 0 F12) + 001 Far + 0, F0) — (07 +03) F3)

0
52 7 = ( ) .
@) 01 F13 + 0253

Roughly, the idea is that

(3-16)

400
V(-.2):= / (G(D.z—2)8°()+0.G(D,z—)S'(Z) + 082G (D, 2 — ) S* () dz’
0
has a better decay. Using the fact that
azG(Ds Z— Z/) - _aéG(Dv Z— Z/)9

we see that going from Vg to V is possible through integrations by parts in the variable z’, which generates
boundary terms. We recall that the jump of G(D, z — 7') at z = 7’ is zero, and that

, 00
[0.G(D,z=2"]| _. = (1 o) :

On the other hand, the first component of § 2 is zero, so that the jump of 3,G»; at z =7’ is not involved in
the two integrations by parts of BZZG(D, 7 —2')S%(z’). Formal computations eventually lead to
Vh(',Z):= V(',Z)_VG(',Z)

= —[GD,z=)(S" (. )+ 8,87, )]y~ +[0.G(D, 2= )S*(-. )]~

=G(D,2)(S'(+,0)+3,5%(-, 0) — 3. G(D, 2)S(-, 0).
Back to the expression of the Green function, we get
V(- 2)=—(X; Aie ™7V, Y Bie V) (ST, 00+ 3,82(-, 0)

+(X; Airie ™7V 3 Birie ™MFV,T)S2(-,0). (3-17)

It is a linear combination of terms of the form e % “V.”, and therefore satisfies the homogeneous Orr—
Sommerfeld equations. Hence, V is (still formally) a solution of (3-4)—(3-5).

We now need to put these formal arguments on rigorous grounds. As mentioned after Theorem 2, there
is no loss of generality assuming that F is smooth and compactly supported.

Lemma 6. Let F be smooth and compactly supported. The formula (3-7), with V, given by (3-17), defines
a solution V = (v3, )" of (3-4)—(3-5) satisfying
Ve LX(Ry, H"(R?), |D| 'we LC.(Ry, H™(R?) for any m.

loc loc

Proof. Let us show first show that the integral term Vg (see (3-14)) satisfies the properties of the lemma.
The main point is to show that for any z, z’ > 0, the function

J.oE— GE z—2)8(,7) belongsto LA((1+|E[)™/?dE) x L*(1&|7" (1 +|61)™/*dE)
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for all m. Therefore, we recall that F = F (&, 7)) is in the Schwartz class with respect to &, smooth and
compactly supported in 7. Also, G (&, z — z’) is smooth in & # 0 (see Remark 4), and continuous in z, z'.
It implies that J, , is smooth in & # 0, continuous in z, z". It remains to check its behaviour at high and
low frequencies.

At high frequencies (|§]| > 1), from Lemma 5, it is easily seen that J, . is bounded by

2
)] < ClEIN Y [oh F e, )

k=0

for some N. As F and its z/-derivatives are rapidly decreasing in &, it will belong to any L? with
polynomial weight.

o At low frequencies (¢ ~ 0), one can check that |_§' (¢, 7] < C|&|. Hence, using again the bounds

G, z—7)S8E,7) = ( o )

derived in Lemma 5,

O(gD

The result follows.

From there, by standard arguments, V; defines a continuous function of z with values in H™(R?) x
| D]~ H™ (R?) for all m. Moreover, a change of variable gives

400
VG(',Z)=/ G(D,Z)S(-,z—7)d7Z.
0

By the smoothness of S, we deduce that V¢ is smooth in z with values in the same space. The fact that it
satisfies (3-4)—(3-5) comes of course from the properties of the Green function G, and is classical. We
leave it to the reader.

To conclude the proof of the lemma, we still have to consider the homogeneous correction Vj,. Again,
Vi is smooth in & # 0 and z. Thanks to the properties of F, it is decaying fast as || goes to infinity.
o ) for |£| « 1. Finally, as its Fourier

O(&D)
transform is a linear combination of e=*¢)? V.= (&), it satisfies (3-4)—(3-5) without source. O

Moreover, from the asymptotics above, one can check that V;, = (

Let us stress that, with the same kind of arguments, one can justify the integration by parts mentioned
above, and write

+oo 2
V(.2 :=/ Y 0 G(D, 2 -S4 d7. (3-18)
0 k=0
We will now try to derive the estimate (3-3), starting from this formulation.
3.1.3. Main estimate. By Lemma 6, we know that formula (3-7) (or equivalently (3-18)) defines a

solution V of (3-4)—(3-5). Our main goal in this section is to establish that V obeys inequality (3-3). Our
main ingredient will be:

Lemma 7. Let x = x (&) € C°(R?), and P = P(£) € C®(R?\ {0}) defined by

P&) = p®)IEI" Q)
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near & =0, with py a homogeneous polynomial in &, & of degree k, a > 0, and Q € C*®(R?). Assume
furthermore that o« — k > —2. For vg € Lllﬂoc(lR{2), we define u' = u'(y1, y2, z) by

u' (-, 2) == x(D)P(D)e Py, (3-19)
Then, there exists C and § > 0 independent of vg such that
€% | o gt + €273 | Loy I < Cllvoll
Moreover, there exists C and § > 0 independent of vg such that
¢ ]
11+ 2) 52l < Cllwolly,

Remark 8. Showing that the definition (3-19) makes sense is part of the proof of the lemma. Namely, it
is shown that for any z > 0, the kernel

K(x1,x2,2):= ‘Féi(xl,xz) (X (g)p(g)e—ki(é‘)z)

deﬁnes an element of L'(R?). In particular, (3-19) is appropriate: u’ = K (-, z) » v defines (at least) an

function as the convolution of functions of L' and L!

uloc uloc*

We refer to Appendix A for a proof. Lemma 7 is the source of the asymptotic behaviour of the
solution v of (1-4). As always in this type of boundary layer problem, the asymptotic behaviour is given
by low frequencies, corresponding to the cut-off x. In particular, the decay is given by the characteristic
root A1 (&), which vanishes at & = 0.

Proof of estimate (3-3). We distinguish between low and high frequencies.

Low frequencies. We introduce some x = x(§) € CSO(RZ) equal to 1 near £ = 0. We consider

2
B / DI CER LS
Rt £ (3-20)

I*(-, 2,7) = x(D)¥G(D, z — ) S*(- . ).
In what follows, we write

= (s%,55)" and IF=(}, 1Y)

We will use the following fact, which is a straightforward consequence of (3- 15) (3-16): 53 and s) are
homogeneous of degree 2 and so is homogeneous of degree 3, while s3 and s2 are homogeneous of
degree 1.

Study of I°. We find
(-, 2,2) =sgnz = x(D) Y Ai(D)e P10 )+ 5 (D) Y Bi(D)e 1 PEEs) (- 2,

190, 2,2) == x(D) Y Ai(D)Qi(D)e P21 o)
—sgn(z — ) x(D) Y Bi(D)Qu(D)e 1 PEIsH (. 2).
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We also have

0.13(+, 2,2) = —x (D) Y_ Ai(D)ri(D)e PRIs0( 2y
—sgn(z — ) x(D) Y Bi(D)r;i(D)e P50 ).
We note that sg (&,7) and s/:?)(é, 7') are products of components of F (¢, Z/) by homogeneous polynomials

of degrees 2 and 3 respectively in £. Using the asymptotic behaviours derived in Lemma 5 together with
Lemma 7, we deduce

C
0 / /
115(-, 2, 2) | pem2) < Atle—2DP IEC, DL @),

19C 2. D) ) < 1FCL D, e

' T4z —7
0 (3-21)
— ! /
H |D|2[w ) Lo (@) = Ut k—2) IEC DLy @)
! /
H GERSINEEE o = Atz —epa PG D e

The last two bounds will be useful when estimating the horizontal velocity components through (3-6).
We insist that o, Ié) has a better behaviour than Ié) , because there is an extra factor A;(D) in front of A
and Bj, which gives a higher degree of homogeneity at low frequencies for the term in exp(—A;(D)z).
This is why we can apply D/|D|? to that term. As for the terms in exp(—A; (D)z) fori =2, 3, there is no
smgularlty near £ = 0 when we apply D/|D|? because of the homogeneity of degrees 2 and 3 in 53 9, 7)
and so(é‘ 7') respectively.

Study of I'. We find

L+, 2,2) ==x(D) Y Ai(D)r(D)e HPlsi (. 7))
—sgn(z—2)x(D) Y Bi(D)i(D)e HPIsl (. 7)),
(- 2,2) =sgn(z = 2)x(D) Y Ai(D)A;(D)Qi(D)e HPlsi (., 7))
+x(D) Y Bi(D)Ai (D) (D)e P L ),

and also

0.13(+, 2, 2) =sgn(z = 2)x(D) Y Au(D)(hi(D))*e P EIsi (-, )
+x(D) Y Bi(D)(Ai(D))*e P52,

Thanks to the derivation of the Green function with respect to z, an extra factor A (D) appears together
with A;(D) or Bi(D). This provides a higher degree of homogeneity in |£| at low frequencies It
compensates for the loss of homogeneity of S' compared to S°. More precisely, we note that 53 1(,7)
and s} (&, 2’) are products of components of F (¢, Z) by homogeneous polynomials of degrees 1 and 2
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respectively in £&. We also get

()
1 / /
||I3(',Z, < )||L°°([R2) =< w lF(-,z )”Ll'uoc(Rz)’

()
1 / /
||Iw( 543, % )||L°O(R2) = w”F(' » L )”quoc(Rz)’
/ (3-22)
-, 2,2)

/
o G DLy @y,

<
H |D|2 ey (I+lz—

O 13(-,2,7) IFC DL @)

PO
H D™ re@y  (L+lz—=21)?

Study of I*. We find
I3(-.z.2) =sgnz —2)x(D) Y Ai(D)(hi(D)2e P53 2
+X(D) Y Bi(D)(1i(D)*e P22 (- ),

as well as

I2(-,2,2) = =x(D) ) Ai(D)(Mi(D))*Qi(D)e 1 P2g3 (- )
—sgn(z—2)x(D) Y Bi(D)(:i(D))*Qi(D)e P12 (. 7)),
and

0.13(+,2,2) = —x(D) Y Au(D)(hi(D))’e P53 (., 2
—sgn(z —2)x(D) Y BAD)hi (D)’ e P52 (- 7).

This time, s3 0 and s2 is homogeneous of degree 1. We get as before that

”F( ) Z,)“Lllllnc(Rz)’

(&
12 ‘,Z,Z/ 00 SV
IBC 2 Dllisen = o=

C

2

115C-, 2, 2l Loomey < WHF( S @)

(3-23)

DElat ) IFCL 2Dl ey

P
H |D rewey  (I+lz—=2)?

9 15(+.2.2)

/
e G DL, @)

<
H |D|2 L©(R2) - (1+|Z_

Combining (3-21)—(3-23), we find

1

(1 + |Z _ Z/|)2/3 (1 + Z/)2/3
1

1+[z—2|(1+2)%3

+00
b
lo3C-, Dl e@ey < C /0 dZ N+ 2P Fll gy @y

“+0o0
(-, )l pomey < C fo A1+ 2 Fll gz @y
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an
oo 1 1 / 2/3
H |D|2w ( »2) L@ = C/O a+ |Z_Z/|)2/3 (1+7)2/3 dz’||(1+2z) F”LO"(Llluoc(Rz))’
‘ —— 3,02+, 2) gc/+oo ! ! dZ A +2)*PF et -
PP ey T o (=2 (A +2)2 H iR

We deduce that (see Lemma 16 in Appendix B)
l3C D ey < CA+ PN+ Fll s gy

o’ (-, 2l < C(1+2)7 2+ +2)F|| o
ey = 2 n 2 2 Lo(LL (R2))
and
H ID|2w 9 <CA+ PUA+2) Fllpe, @)
00 2 uloc
L= (3-25)
—Bua(- <C(1+27* Mm@ 1+ F
2 3 ,Z) >~ ( +Z) n( +Z)”( +z ) ”LOO(LI1 ‘(RZ)).
|D| LOO(RZ) uloc
High frequencies. To obtain the estimate (3-3), we still have to control the high frequencies
2
=f Y Gz dhdd, TN 2 ) = A= x(DNEGID 2 =S (326)
R+

Instead of Lemma 7, we shall use this (see Appendix A for a proof):

Lemma9. Let x € C°(R?), with x =1 inaball B, := B(0, r) for somer >0. Let P= P (£) € C} (R*\ B,).
For vo =vo(y1, y2) € H}},.(R*), N € N, we define u' = u'(y1, y2, z) by

u'(+,2):=(1— x(D)P(D)e Py, (3-27)
Then, for N large enough and 6 > 0 small enough,
le%u | oty + €770 Loy + €76 ooy Il < Clloll gy gey-

Remark 10. As in the proof of Lemma 7, part of the proof of Lemma 9 gives a meaning to (3-27). In
particular, it is shown that for n large enough, and any z > 0, the kernel

Ky (x1,x2,2) :=F L+ )" (1= x (€) P(E)e ®)7)

belongs to L'(R?) so that u’ = K, » (1 — A)"vp) defines at least an element of L:‘;IOC as the convolution

of functions in L! and L2

o (assuming N > 2n).

The analysis is simpler than for low frequencies. From (3-26), (3-15)—(3-16) and Lemma 5, we
decompose the components of J* for k =0, 1, 2 into terms of the form

(1= x(D)R(D)e H P lgta® )

where Fj; are components of our source term F, a;,a;=0,1,2 with 1 <aj +a; <3, and R(D) is of
the form
R(D) = R(*(D), 22(D), 23(D), D)
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for some rational expression R = R(A1, A2, A3, §). Considering the behaviour of A;(£) at infinity (see
Lemma 7 and Remark 4), it can be easily seen that |€|"2"R(£) Cg (R?\ B,) for some n large enough.
Thus, we can apply Lemma 9 with

PE) =1§17"RE). vo=(0f +8)"8{" ;> Fu(-, 2.
This shows that for m large enough (m = N + 2n + 3),
15 2, Dl peey < Ce P ENFCL D lgm @y (3-28)
Also, up to taking a larger m, one can check that
18:7C- . 2. Dy < C e N (L 2Dl oy (3-29)

We deduce from (3-28)—(3-29) that for m large enough

uloc

+o00
IV Dl ey +10: V- 2 [l ey < € / T 142) 7 | (1+2) P F | oo
0
< CU42) " (A+2)*Fll oy .- (3-30)
Together with (3-24), this inequality implies the estimate (3-3). O

Together with (3-25), inequality (3-30) further yields

<CI(1+2)* Fllp~@n ). (3-31)
L®(R3)

31)3

|D|?

D
1 13 P
H( 2 D2

D
ovor e

L(RY)

3.2. Proof of Theorem 2. In the last section, we have constructed a particular solution of (3-4)—(3-5)
satisfying (3-3) and (3-31); in the rest of this section, we denote this particular solution as V¥ = (vé7 , wP).
The bound (3-31) implies in particular that

[+ P07 ) | @) < C I+ Pl

ulo(.

(3-32)

where vf s vf are recovered from vg , P through formula (3-6).

We still need to make the connection with the solution of (2-3). Following the discussion after
Theorem 2, for smooth and compactly supported data, such a solution exists, and the point is to establish
(3-1). We introduce

vi=v—v’, w=w-—o’
Functions v3 and w satisfy the homogeneous version of the Orr—Sommerfeld equations:
B+ Aw=0, —ho+A’v3=0. (3-33)
These equations are completed by the boundary conditions

V3lim0 = V03 — VY lim0,  9:03l:20 = =31 (vo,1 — v]) — 2 (vo2 — VD),
p » (3-34)
®|;=0 = 91 (vo,2 — vy) — 2(vo,1 — V).
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System (3-33)—(3-34) is the formulation in terms of vertical velocity and vorticity of a Stokes—Coriolis
system with zero source term and inhomogeneous Dirichlet data. Formal solutions are given by

A 3

v3(8, Z)) “2i(6)z -

N =) e "SRGV, , 3-35
(w@,z) ; (Vi) (3-35)

where coefficients C; obey the system

1 1 1)\ (G U3l:=0

M od a3 | |G| = —0:050=0 |- (3-36)
Q @2 23/ \C3 —o|;=0

The determinant D3 of this system is
D3 := (A2 — A1) (23 — Q1) — (A3 — A1) (22 — 1),
so that D3 — D3 € C* as € — Ox.

After tedious computation, we find

1 . N N
C,= 33(()»293 — A3Q2) 031220 + (23 — 22)8:03]:=0 + (A2 — A3)W|.—0),

1 D N A
Cr = FB((MQ] — M 23) D320 + (21 — 23)9.D3].20 + (A3 — A1) D].=0), (3-37)

1 . N N
C3= F(()\IQZ — M QD)V31z=0 + (22 — 21)8D3]:20 + (A1 — A2)W|.—0)-
3

Nevertheless, the expressions in (3-35) are not necessarily well-defined, due to possible singularities at
£ = 0. In particular, if we want to apply Lemma 7, we need the coefficient in front of e*1¥)% to contain
somehow some positive power of £. Using the asymptotics of Lemma 3, we compute

IC1 (&) < |D3]2=0| + |0:05]2=0] + | @ ].=0], (3-38)
|C2(8)] < 1&]|D3]z=0| + |8:D5]z=0] + |D].=0], (3-39)
|C3(&)] < |€]]D3]z=0| + |8:D3:0| + |@I.=0] (3-40)

for small |&|. The asymptotics is given by:

Lemma 11. The boundary data 9,05|,=0, ®|.=o in (3-34), as well as Vg 3|;=0 (Which appears in V3],=0)
“contain a power of £ at low frequencies”. More precisely, for & small enough, they can all be decomposed
into terms of the form & - ffor some f € L% _(R?). As a consequence, for any function Q € C*(R?),

uloc

;03] =0
x(D)Q(D)exp(—r1(D)2) | @l:—0
UO,?) |Z=O LOO(RZ)

< CU+27P(Ilwo1, vl 2wy + 107 Dz @)+ 10+ Fllyn @),
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and for j =2,3,

9;03z=0
x(D)Q(D)exp(—2;(D)z) | @l|=0
v0,3|Z=0 LOO(RZ)

< Ce ™ (Ilwo,15 vl 2, ey + 1T ¥ ey + 1A+ Fllgn gs)-

(2) Concerning the boundary data v‘; |.=0 (Which is the other term in v3|,—g), we have, for any function
Q €C®(R?),

| (x(D)Q(D) exp(=21(D)D)) VS ||l ooy < CA+D T PIF N1 oy

-5

| (D)D) exp(=2; (D)D) V5 | _g | ey = CeNF oy
Proof. The first part of the statement is obvious for the last two boundary data, namely

_ Py _ P _ Py _ P

0;v3|;=0 = —0d1(vo,1 —v}) —d2(vo2—v;), and wl,—0 = 91(vo2—v;y) — d2(vo,1 — V).

It remains to consider vg 3. This is where the assumption on vg 3 in the theorem plays a role. Indeed,
we have vg 3 = 01v] + d2v3, so that it satisfies the properties of the lemma. The estimate is then a
straightforward consequence of Lemma 7.

The former argument does not work with the boundary data yg |.=0: indeed, if we factor out crudely a
power of & from the integral defining it, then the convergence of the remaining integral is no longer clear.
Therefore we go back to the definition of uf ; we have, using the notations of (3-20),

2
xO0flo= [ Y ICL0.)dz!
R

+ k=0

It can be easily checked that the terms with Ié‘ for k =1, 2 do not raise any difficulty (in fact, the trace
stemming from these two terms contains a power of £ at low frequencies.) Thus we focus on

3 3
/ I)(-,0,2)d7 = f (x (D) Y Ai(D)e ' P7s(-, 2y + x(D) Y Bi(D)e <0, z’)) dz.
Ry Ry i=1 i=1

Applying exp(—A;(D)z), we have to estimate the L*>®(R?) norms of

3
/ X(D)Q(D) Y Ai(D)e PR PEQ(. )z,
Ry

i=1

3
f X(D)Q(D) Y Bi(D)e PR Degd (. 2y de.
Ry

i=1

We recall that s3 (&, z') and S/g(%' , Z/) are products of components of F(, z') by homogeneous polynomials
of degrees 2 and 3 respectively in £, and that the behaviour of A;, B; is given in Lemma 5. Wheni =j =1,
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using Lemma 7 and Lemma 16 in Appendix B, the corresponding integral is bounded by
1

R, (1+z24+2)23 (1423

When i =2, 3, the integral is bounded by

a2 11+ 2% Fll iy = CA+27 P10+ 02 Fll gy,

exp(—8z') 1 / 2/3 ~2/3 2
dz’ (1 PF|l oo <C(l+2)7?7) BFl ot -
fﬂ_‘p+ (178 GazpB &N+ Fl gy, ) < CA+ PN+ Fll ey,

When j =2, 3, the integral is bounded by

exp(—9dz)
R, (1 _|_Z/)2/3 (1 +Z/)2/3

Gathering all the terms, we obtain the estimate announced in the lemma. U

Az |1+ 2P F ey ) < Cexp(=82) 11+ 2> Fllpsoqg1 -

Going back to (3-35), we infer that
1+ 2P Ix(D)ws(-, D@ + 1+ Ix (D), Dl
< C(Ilwo,15 w022, gy + QT ¥DI2 @y + 1A+ Fllgn @) (G-41)
Then, for further control of the horizontal components (vy, v2), one would like an analogue of (3-25),

namely a bound like

(1+2)'7 +(1+2)"°

D
pEX (P32

D
> pEtDel. D

|D L>®(R?)
< C(I@wo.1, vo)llz2, @) + 1T v, @)+ 1A+ Fllgn @a))-

Loo(R2)

However, such an estimate is not clear. Indeed, in view of (3-35), we have

0 vg( ) —2i(D)z (_)\i(D)Ci)
D D e .
1 )( w(-9 ) =X )Z —2,(D)C;
The term with index i = 1 does not raise any difficulty, because A (D) and 2;(D) bring extra powers

of &, which are enough to apply Lemma 7. But the difficulty comes from indices 2 and 3. For instance,
they involve terms of the type

x (D) PO(D)e_“ﬁ(D)ﬁo, with Py homogeneous of degree 0,

and therefore are not covered by Lemma 7: with the notations of the lemma, one has « = 0, which is
not enough. Typically, these homogeneous functions of degree zero involve Riesz transforms, meaning
Py(§) = &&/IE1% k 1=1,2.

Hence, one must use extra cancellations. We recall that in view of (3-6), we want to exhibit cancellations
in |D|72(D1d,v3 + Dyw) and in |D|~%(D,3.v3 — Djw). Let us comment briefly on the first term. We
compute (—&1A; —&,2;)C; fori =2, 3 in terms of the boundary data. Setting vg = vg—v?|,—9, we find that

1
Cz(é)——(K391—)»193)v03+ [((93 Qig1—i&(A3—11)D 1 +((R—Q1)i&+i& (A3—11))Dg 5.
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We then use the asymptotic formulas of Lemma 3. In particular,

(—E122 — £22) (2 — Qg1 — 6203 — A1) = [E* + O (€,
(—&1h2 — £, (U — Q1)ikr +i&1 (3 — A1) = —ilE]* + O(&])°.

A similar formula holds for Cs. It follows that there exist Q», Q3 € C*°(R?)? such that

F(x(D)|D|"%(D13,v3 + Drw))

&0 — gZQle,M(S)Z

=x(&) NGE

Ci(§)

1 _ _ ~
+ F[O%‘Ql — M) (—E1h2 — £222)e 7 + (M Q2 — M) (—E1h3 — £,Q3)e D 5
3

+ Y XEeTMEQiE) Dy (€. 2).

i=2,3

The first two terms are treated in the same way as Lemma 11, factoring out a power of & when necessary,
and going back to the definition of v”. We leave the details to the reader. The inverse Fourier transform of
the last term is F ' (x Q;e™*i%) * V9,5, Which is bounded in L>®(R?) by e %2 lvo.nll L2, Similar statements
hold for x (D)|D|~2(—9,Dyv3 + Djw). It follows that

(142X D) (-, Dl @)
< C(I@wo.1, vo)llz2, @) + 1T vl @)+ 1A+ Fllygn @) (3-42)

We now address the estimates of v (&, z) for large frequencies. The arguments are very close to the
ones developed after Lemma 9. Using (3-35) and (3-37), for |£]| > 1, we find that v5(&, z) and @(&, z)
can be written as linear combinations of terms of the type

Rij(A1, A2, A3, &) exp(—2;(£)2)g;(§), 1<i,j<3,

where g1 = v3|;=0, g2 = 9;V3|;=0 and g3 = w|;—o and R;; is a rational expression. Thus, using Lemmas 3
and 5, there exists n € N such that |§|_2”Rl~j (A1, A2, A3z, &) is bounded as |&| — oo for all 7, j. Lemma 9
then gives that for some N sufficiently large,

3
[ —0MD)w3(, D oy < Ce™ Y il
j=1

3
|1 =0 D), D oo 2y = Ce™™ Z lejll .-
j=1

and similar estimates hold for (D/|D|2)8Zy3 and (D/|D|»)w. Using (3-34) and (3-28)—(3-29), we infer
that for some m > 1 large enough,

[ =X D)2 D ey = Ce™ (00l g, + 1A+ Fllgn ). (3-43)
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Gathering (3-42) and (3-43), we deduce that u satisfies the estimate
1/3 2/3
I+ P vl < C(Ivoll gz ge, + 1T )12, @)+ 1A+ Fllyn @)

for m large enough. Thus, in view of the estimate (3-3) satisfied by v”, we know v = v + v? is a solution
of (2-3) satisfying

11 +2) Pl < CIvoll vz e, + 1T V2, @y + 10+ Fllgn @)

for m large enough. It remains to go to the higher regularity bound (3-1). First, up to taking a slightly
larger m, we clearly have

10 +2"2V vl < (ol e gy + 1T, D2,y + 10+ DY Fllgy_ ).

This follows from direct differentiation of formula (3-7) satisfied by v? and formula (3-35) satisfied by
v =v —v?. Clearly, the differentiation is harmless, in particular at low frequencies where it may even add
positive powers of &. It follows that our solution belongs to Hulloc([R{i), and thus enters the framework of
local elliptic regularity theory for the Stokes equation. In particular, for any k € Z* with k, <2,

IVl s Bk, DR = C(||Uo||Hm1/2(Rz) T D2 @)+ IF g @y + 1011 sx2n0m)

= C(||Uo||Hml/2(Rz) T DIz @)+ IF g @)+ vl @)
and for any k € 73 with k, > 2,

10l 1 s, nng < CUIF lam@rngm + 101 m @enew)
~1/3 2/3 3
< Clt ™+ 2™ F g gy + 10400l o))

The bound (3-1) follows.

4. Proof of Theorem 1

4.1. Navier-Stokes—Coriolis system in a half-space. This section is devoted to the well-posedness of
system (2-4) under a smallness assumption. Once again, we can assume M = 0 with no loss of generality.
Following the analysis of the linear case performed in the previous section, we introduce the functional
spaces

H" = {ve Hp(R)) : [+ y3) Pvollgn < +oo}, m =0,

and we set [|vlgn = Cp || (1 4+ y3)!/3

some m > %, then

V|| H s where the constant C,, is chosen so that if u, v € (H™)3 for

[ @ vlggm < Nullzen ([0 ]l3m-

Clearly ‘H™ is a Banach space for all m > 0.
The result proved in this section is the following:
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Proposition 12. Let m € N, m > 1. There exists 59 > 0 such that for all vy € Hm+1(IR2) such that

uloc
. . 2 2
vo,3 = 01V} + 03, with v}, vy in Ly, (R”) and

100ll e 2y + VT VD22, < o, (4-1)
the system
v-Vv+exv+Vp—Av=0 in {y; > 0},
divv =0 in {y3 > 0},

V|y=0 = Vo
has a unique solution in H"+".
Remark 13. The integer m for which this result holds is the same as the one in Theorem 2.

Proof. Proposition 12 is an easy consequence of the fixed point theorem in %", For any v € Hﬂggl (R?)
such that v 3 = 3;v} + dv3, with v}, v} in L2, (R?), we introduce the mapping Ty, : H" ™! — #"+!
such that T, (u) = v is the solution of (2-3) with F = u ® u. Notice that |(1+2)*3Fllgn < lull3m. As

uloc
a consequence, according to Theorem 2, there exists a constant Cy such that for all u € H™ !,
2
| Tup @) [l 3gm+1 < Co(llvollel(Rz) 1T vz, @)+ 2115 41)- (4-2)
Letdg < 1/ (4C§), and assume that (4-1) is satisfied. Thanks to the assumption on &, there exists

Ro > 0 such that
Co(80 + R3) < Ry. (4-3)

Moreover, Rg € [R—, R ], where

Ry = %(1 +/1-45,C2).
0

Therefore 0 < R_ < (2C) ", and we can always choose Ry so that 2RyCqy < 1. Then according to (4-1),

(4-2) and (4-3),

||M||Hm+l S R() = ||TU0(I/£)||'Hm+1 S R().

Moreover, if [[u! [|lzm+1, |u?|lgm+1 < Ro, then setting w = T, (u') — T, (u?), we have w is a solution of
(2-3) with w|,—o = 0 and with a source term F' — F? = u' ® u' — u?> ® u®. Thus, using once again
Theorem 2 and the normalization of || - ||m,

| T ") = Ty ) | s < Coll F' = F2lgen < 2CoRo " — e [l

Notice that in the inequality above, we have assumed that || - ||3= < || - ||ym+1, Which is always possible if
the normalization constant C,, is chosen sufficiently small (depending on C,,+1, m being large but fixed).

Thus, since 2CoRy < 1, we know Ty, is a contraction over the ball of radius Ry in H" ! Using
Banach’s fixed point theorem, we infer that T, has a fixed point in H”*. This concludes the proof of
Proposition 12. O
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4.2. Navier-Stokes—Coriolis system over a bumped half-plane. We now address the study of the full
system (1-4). We follow the steps outlined in the introduction, which we recall here for the reader’s
convenience: We first prove that there exists a solution (v—, p~) of the system (2-5) for ¢, ¥ in some
function spaces to be specified, then construct the solution (v, p™) of (2-4) with v™| y3=M =V |y;=m.
Eventually, we define a mapping F by F(¢, ¢) := Z (v, pTesly,=m — . Werecall that v =15y vt +
1,,pv™ is a solution of (1-4) if and only if F(¢, ) = 0. The goal is therefore to show that for all ¢
small enough (in a function space to be specified) the equation F(¢, ) = 0 has a unique solution.

Step 1. We study the system (2-5). We introduce the function space
Vi={¢ = (¢n. #3) : b1 € Hyjoe (01). $3 € Hyjjo o (0Q01). ¢ - 1oy, = 0} (4-4)

for the bottom Dirichlet data, and we set

ol = lgnll .+ 113l -

As for the stress tensor at y3 = M, since we will need to construct solutions in H]ffoc (see Proposition 12),

we look for i in the space H, m-1/ 2([R?Z). We then claim that the following result holds:

uloc
Lemma 14. Let m > 1 be arbitrary. There exists § > 0 such that for all ¢ € V and all € Hlﬂo_cl/z(Rz)
with ||¢lly < & and ||| 12

+1

®) <6, system (2-5) has a unique solution

(W™, p7) € HL (M) x L2 (M),

uloc uloc

Moreover, it satisfies the following properties:
. H:ﬂil regularity: for all M’ € Jsup y, M|,
(v, p7) € HINHH(R? x (M, M)) x H!

uloc uloc

(R* x (M, M)),
with
0™l gt @ arnayy T 1P e, @2 s any) < Cu(lI¢lly + IIWIIH&;&(RZ))-

uloc

o . , 1/2 _
 Compatibility condition: there exists v}, v; € Hul{m such that vy |y,=p = Vj, - v}.

Proof. We start with an H!

uloc

2014], dedicated to the linear Stokes—Coriolis system. We first lift the boundary condition on 92y,

a priori estimate. We follow the computations of [Dalibard and Prange

introducing
v = dn, vy =63 = Vi (y3 — 7 )
Then v := v~ — vl and p = p~ satisfy
~AT+ (D) VIV +esAd+Vp=f inQY,
divv=0 in Q{,‘]’,
U]aq, =0, 4-5)

=y — 0l |yop =,
=M

. EiERa
030 — P+T e3

where f = —AvE + vl . Vol +e3 A0k
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Notice that thanks to the regularity assumptions on ¢ and v*, we have 1} € LﬁlOC(IRz) and f € Hu_l(:C([Rz).
We then perform energy estimates on the system (4-5), following the strategy of Gérard-Varet and
Masmoudi [2010], which is inspired by the work of LadyZhenskaya and Solonnikov [1980]. The idea is

to work with the truncated energies

Ey = / Vi -V, (4-6)
Q{15 y2) €l —k.k12)

and to derive an induction inequality on (Ey)ren. To that end, we consider a truncation function
Xk € C°(R?) such that xx = 1 in [—k, k1% Supp xx C [~k — 1,k + 11% and xx, x;, x; are bounded
uniformly in k. Along the lines of [Dalibard and Prange 2014], we multiply (4-5) by the test function

Ph Xk Un Lymb
= = i ~ e H (Q
Y (V ' q’h> (‘Vh Ok [y OO Z)dz)> (8%

~ 0
= vV — ) ~ .
e (vh XeCom) - L2 Bn (- 2) dz)
Since this test function is divergence-free, there is no commutator term stemming from the pressure. In
[loc. cit.], an inequality of the following type is derived:

Ex < C((Exs1 — ED) + (1915 + 1117, -12) (k +1)%).

uloc
This discrete differential inequality is a key a priori estimate, which allows for the construction of a solution.
Indeed, introducing an approximate solution 0" for |y, y»| < n, say with Dirichlet boundary conditions
at the lateral boundary, a standard estimate yields that £, < Cn, where this time E; = f | XkVﬁ"lz.
Combining this information with above induction relation allows one to obtain a uniform bound on the
E; of the type E; < Ck?, from which we deduce a H!

loc DOund on v" uniformly in n. From there, one

obtains an exact solution by compactness. We refer to [loc. cit.] for more details.
Here, there are two noticeable differences with [loc. cit.]:

o The boundary condition at y3 = M in (4-5) does not involve a Dirichlet-to-Neumann operator, which
makes things easier.

e On the other hand, one has to handle the quadratic terms (v’ 4 9) - Vo + 0 - VoL, which explains the
introduction of the |v|? in the stress tensor at y3 = M.

Therefore we focus on the treatment of these nonlinear terms. The easiest one is

f (@-Vub) g
QM

bl

<ClollyvEr+1,

where the constant C depends only on M and on ||y ||1.~. On the other hand,
El§

/((UL+5)-V5)-(Xkﬁ):/ xe(E ) V—
@ & 2

DIC— Lo P
=— — " +0) Ve + | xx|(v3 +03)—
QM 2 R2 2

bl

=M
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The first term on the right-hand side is bounded by C(Ey4; — E)3? + Cllolly(Exk+1 — Er). We group
the second one with the boundary terms stemming from the pressure and the Laplacian. The sum of these
three boundary terms is

- _ o
/ Xk<—83v-v+(v3L+v3)T+p U3
R? y3=M

Using the boundary condition in (4-5), the integral above is equal to
B /2 Xk17|y3=M ’ (1/7 + (5 ’ vL|y3=M + %|UL|)'3=M|2)63)’
R
which is bounded for any é > 0 by

CligllvEx+1 +8Eer + Cs(ID115 + 113+ 1912, -12) Gk + 1.

uloc

There remains

L D . 3] . O
/Qg((v +0)-V9) (Vth(yh)'fyy?yh) f’h(yh,z)dz>’

which is bounded by C(Ey, 1 — E;)*? + C||l¢|lv(Exs1 — Ex). Gathering all the terms, we infer that for
oy <1,

Ex = C((Ex1 — EQ? + (Ex1 — EQ) + 1@ IvEe + (DI + 1 113,-12) (k + 1)),

uloc

where the constant C depends only on M and on ||y | y1.~. As a consequence, for ||¢||y small enough,
we infer that for all k > 1,

E < C((Ext1 — EOY? + (Bt — EQ + (1915 + 19117 1)k + D?).

uloc

Thanks to a backwards induction argument (again, we refer to [Gérard-Varet and Masmoudi 2010] for all
details), we infer that

Ex < CUII%+ W13 1)k VkeN

uloc

for a possibly different constant C. It follows that

1513ty = CUDIY + 1l o1r2)

2
uloc

Indeed, using the equation and the boundary condition at y3 = M, it follows that for all y € Q{)"{ ,

and therefore v~ satisfies the same estimate. From there, we can derive an L, _estimate for the pressure.

|U_|y3:M|2

P_(J’h, y3):83v3_|y3=M_ D)

M
—¥3(yn) —/ (Avy —v™ - V) (v, 2) dz.
y3

Note that by the divergence-free condition, the first-term in the right-hand side can be written as
—divj, v, ly,=m. For k € Z2, let ¢, € Hy () such that Supp i C (k + [0, 11*) x R. We multiply
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the above identity by ¢k (x5, z) and integrate over SZM . After some integrations by parts, we obtain

_ _ [v™| MI2
fQMp ¢k=/QMvh|y3:M-Vhs0k—/QM ” wpk

bl bl bl
- fM (/ (Apvy + 0305 —v™ - VU3) (34, 2) dZ)‘Pk(Y) dy. (4-7)
) y3
Using classical trace estimates and Sobolev embeddings, it follows that for all g € |1, ool,

Therefore the top line of the right-hand side of (4-7) is bounded by C(||¢]ly + || ||Hm 1/z)||(pk||H1 for
¢, ¥ small enough. We now focus on the second line of (4-7). The easiest term is the advectlon term: we

uloc

”U_|y3=M ” qu (RZ) S CHv_ly3=M HHI/Z(RZ) C”U ”H1

have, since ¢, has a bounded support (uniformly in k),

V7 Vg (v, 2 dzge () dy| = Cllv s V07l leels < Cligell o7 1

We then treat the two terms stemming from the Laplacian separately. For the horizontal derivatives, we
merely integrate by parts, recalling that ¢y € H (Q ), so that

M M
/ / Apvy (yn, Ddzep(y) dy = —/ / Vivsy (i, 2) - Vagr(y) dz dy,
QM Jy; QY Jys

and the corresponding term is bounded by C(||¢|ly + ||V || -1 2)l@rll g1 As for the vertical derivatives,
uloc
we have

M
/QM (/ 3303 (Vs Z)d2>§0k()’)dy = /QM (3305 (yn, M) — 3305 () @x(y) dy
bl y3

bl

=—/M(Vh'vh_(yh»M)+83v3‘(y))<pk(y)dy

=/QM v, Yn, M) - Vi (y) dy—fQM vy Mer(y)dy.  (4-9)

Both terms of the right-hand side are bounded by C|jv~|| H) Nl -
Taking the estimate (4-7), we infer that there exists a constant C (independent of ¢, and of k) such
that for all ¢; € H (SZ ) supported in (k + [0, 11%) x R,

[ o
QM

bl

= Clely + 1l g lecl gl @

bl)

We deduce that
1P i1 oty = CCUSIY+ 11l n12).

Using the equation on (v—, p~), we also have

IV g1 @iy = CASIY + 11l i)
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It then follows from Necas inequality (see [Boyer and Fabrie 2013, Theorem IV.1.1]) that p~ € LﬁlOC(Q{;’ ,
with

P12

uloc

@y = CUBI+ 1]l 1),

We still have to establish the two properties itemized in Lemma 14. We focus first on the higher-order
estimates. Note that using interior regularity results for the Stokes system (see [Galdi 2011]), one has
v e HY (') for all open sets Q' C R? such that Q' C @}/ and for all N > 0. In particular, for all
M, < Mj in the interval Jsup y, M, we have v™e H'I.TH(R? x (M1, Ma)) and p~e H™ (R*x (M, M>)).

We now tackle the regularity for y; > M’, where M’ € Jsup y, M[. Our arguments are somehow standard
(and mainly taken from [Boyer and Fabrie 2013]), but since there are a few difficulties related to the
nonlinear stress boundary condition at y3 = M, we give details. The idea is to use an induction argument
to show that v~ € HélOC(R2 x [M’, M]) for all supy < M’ < M and for 1 <[ < m + 1. Unfortunately, the
induction only works for / > 2: indeed, the implication & € H*(R?) = h? € H*(R?), which is required to
handle the nonlinear boundary condition at y3 = M, is true for s > 1 only. Therefore we treat separately
the case [ = 2. In the sequel, we write ||¢|| + ||V ] as a shorthand for ||¢|y + ||¢/||H7711—l/2.

regularity, the first step is to prove a priori estimates for d;v~, d,v~ in Hulloc.

To prove Huzloc To that

end, we first localize the equation near a fixed k € 72, then differentiate it with respectto y;, j =1,2.
Let 6 € Cy° (R?) be equal to 1 in a neighbourhood of k € Z2, and such that the size of Supp 8 is bounded
uniformly in k£ (we omit the k-dependence of 6 and of all subsequent functions in order to alleviate the
notation). It can be easily checked that the equation satisfied by w; := 9;(6v™) is
—Awj+ezAw;+v -Vw; +Vo;(@p~)=F; inQy,
divw; =g; in Qq,
wjly=mr € H'2(R?),
(Bsw; — (8;0p7) +v™ - wj — 30T P9;0)es) |, _, = 8,09,
wj =0 ondSuppb x (M, M),
where Qg := Supp6 x (M, M) and
F; =0, (—2V9 VT —v A0+ (v -VO)v + p_VG) —djv™ - V(Ov7),
Il =1 =C I+ 1D
g =0;(v"-VO) =O0(Igl+ v inL*R*x (M, M)).

By standard results, see [Galdi 2011, Section 1I.3], there exists w; € H () such that
diVlZ)j:gj, ﬂ)j:wj at 0Q29 \ {y3 = M},
;| 12y < C (11851 22¢29) + W) | 17215 =001))) -

Note that we do not need to correct the trace of w; at {y3 = M}, as there is no Dirichlet boundary condition

there. Moreover, we are not sure at this stage that this trace is an Hullf)zc function. We rather prescribe an

artificial smooth data for w; at this boundary, chosen so that it satisfies the good compatibility condition.
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Finally, w; = w; — w; satisfies
—Al])j +63/\u~)j—|—v* -Vﬂ)j‘FVéj = Fj in g,
divw; =0 in Q,
Wily,=m =0, wj =0 ondSuppd x (M, M),
(83w; — (@ +v™ - wpes)|, _,, = V.

with Fj =—djv~ - V(@v )+ O(l¢ll + I¥]) in H~! and ||1/}j||H71/2 < C(|oll + lIv]). We obtain the
estimate

V511720, < CUIBIZ+ 19 17) +

(0v™ - V(6v7)) - )

_ ~ 2
+2f 0 Ly s |
Qp Supp 6

We first deal with the boundary term:

/S\uppe‘v_b?:M‘ |ﬁ)j |Y3=M ‘2 < H U_|y3=M HLZ(Suppe) H ﬁ)j |y3=M Hi“(Suppe)
< Cllo™ a2 185 yam [ s suppy = CI0™ e I 13

< Clgll + ¥ DIV I3,

Hence for ¢ and ¢ small enough we can absorb this term in the left-hand side of the energy inequality.
As for the quadratic source term, we write

0jv™ - V(0v™) = 9jv; wy + v, wy + 9jvy 0030~
=0jv; wi + 0jv, wy + 030" w;3—v; ;00307

Fori=1,...,3,j=1,2,k=1,2, we have

/Q 190wy | el < Cllo ™ gy 01l 42 1k )
6

< CUBI+ ¥ DU 131 g, + 1020131 q,,) + CUBI+ 1)

/ v3_8j983v_-17)j
Qg

Therefore, we obtain, for ||¢|| + ||| small enough,

and

< Cllvy g 18507 Nz 151 -

C C

2 2 2 2
lwillg g,y T lw2llz g, = CUPN™+ I I17).
Using the same idea as above to estimate 0;(6p™), this gives
”th_||HJ1OC(R2X(M’~M)) + ||Vhp_||L§loc(R2><(M/,M)) <elv+ ||¢||H$0;l/2)-

Since v~ is divergence-free, similar estimates hold for d3v5. Thus vy € Huzloc([R2 x (M, M)). As for the
vertical regularity of v, , we observe that 93v™ is a solution of the Stokes system with Dirichlet boundary
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conditions
—Adv” +Vd3p- =F;  inR? x (M, M),
divosv~ =0  inR>x (M, M),
BV [y=m =G,
BV = = G,
where

Fy=—e3 Ad3v™ —3(v) - Vi4uo) — 93(v; 3v7) € HL(R?), G =1y € HI- PR,

uloc uloc

and G3 = 3v5 |y,=m € HY? (R?), G'e Hmil/z([R?z). Using the results of Chapter IV in [Galdi 2011],

uloc uloc
we infer that 330~ € HL (R* x (M', M)), 3p~ € L2 (R* x (M’, M)), and

uloc

19507 gy, ey + 1932722, @exarany < CUF o +1GH 12 + 161 p2) < CAUIGH+ w1

uloc

for ¢ and ¢ small enough. Gathering the inequalities, we obtain

lv™ ”Huzlnc(sz(M/’M)) +lp~ ”HJ

loc

@xmy) = CUSY + 1Vl n-1r2).

Of course, all inequalities above are a priori estimates, but provide HuzlOC regularity (and a posteriori
estimates) through the usual method of translations.

We are now ready for the induction argument. Let k € Z> be fixed. Define a sequence 97, ..., z?,i”“
such that ﬁ,ﬁ = Qf(z — M)Gé(yh — k), where 0{ e P (R), Gé eCy° (R?) are equal to 1 in a neighbourhood
of zero. We require furthermore that Supp ﬁ,ﬁ“ C (15‘,16)_1 ({1}). We then define a C""*!-! domain €; C Qé‘f
such that Supp 19,(2 € Q, and such that 92, NIQ, = & (see Figure 1). Notice also that we choose €2 so
that diam(€2;) is bounded uniformly in k (in fact, we can always assume that ; = (k, 0) + Q¢ for some
fixed domain 2g.)

Yh l:k V3 = M
1972
021
[ Supp6s 6, (1)

Figure 1. The domain 2.
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Multiplying (2-5) by z?,i and dropping the dependence with respect to k, we find that v/ := z?,iv_,
pi= p*f},i is a solution of
—AV 4+ Vpl=f1 in
dive! =g’ in @, (4-10)
9, vl — pln =3 on gy,
where
L= =2Vl Vol =l — Adlu! =1 — (e3 A v/l 071 Vo=l 4 p! =t vy,

gl =v"" vy,

l l 1y, I—12 (4-11)
T =00n — (¥ + 3107 Pesly=m)  on 9 N{y3 = M},
=0 on 3% N {y3; = M}°.

Now, Theorem IV.7.1 in [Boyer and Fabrie 2013] implies that for all / € {2, ..., m}, for [|@ ||y + ||| ;ym-1/2
uloc
small enough,

W pheH @) x HTY Q) = " phY e HT (@) x H (),
and

10" 0 + 1P e < C>IV e + 12 1100 + 1V -120y))-
Indeed, assume that (v/, p') € H' (%) x H'='(Qy). Then fI*! e HI=\ (), ¢! € H(Q), with

I+1 l 12 l I+1 l
1 1@ < CUR g+ 10 g 1P 1), 18 g < Cl

Moreover, v' € H'=1/2(3). Since [ > 2, using product laws in fractional Sobolev spaces (see [Strichartz
1967]), we infer that |vl|2|y3:M € H'=12(R?), and therefore =/t! € H'=1/2(R?). From [Boyer and Fabrie
2013, Theorem IV.7.1], we deduce that (v/*!, p'*1) € H'T1(Q;) x H'(Qy), together with the announced

estimate. By induction, v~ € H*'(QY) and p~ € H™ (QM).

There only remains to check the compatibility condition at y3 = M. Notice that

M M

V3 | lys=m = &3 +/ d3v; = ¢3 —f Vi-v, =¢3—y(n) - dn+ Vi - vp,
y(n) y(n)

where

M

_ 12

vy = —/ v, € Huléc(le).
¥ (yn)

Since ¢3 —y (yn) - ¢ = 0 due to the nonpenetrability condition ¢ -n = 0, we obtain the desired identity. [

Step 2. Once (v, p~) is defined thanks to Lemma 14, we define (v", p™) in the half-space {y; > M}
by solving (2-4) with v ly;=m = v~ |y;=m. According to Lemma 14 and to standard trace inequalities,

[0 lvsm g2y < CUDIY + 11 o)

for some constant C depending only on M and on ||y [l y1.. As a consequence, if C(||@[ly+ [ m-12)+
uloc
vl 2, = 8o, according to Proposition 12 the system (2-4) with vo = v™|,—y has a unique solution.
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Additionally, S (v*, p*)es|,,—p+ belongs to HI '/

uloc

(R?). Thus the mapping

R?) — H" >R,

uloc

F:Vx H" 1?2

uloc
(¢7 1//) = E(U—‘ra p+)e3|y3=M+ - ‘/f’

is well-defined. Clearly, according to Lemma 14, for ¢ = 0 and ¥ = 0, we have v~ =0, vt =0 and
therefore F(0, 0) = 0.

The strategy is then to apply the implicit function theorem to F to find a solution of F (¢, ¥) = 0 for
¢ in a neighbourhood of zero. Therefore we check that F is C! in a neighbourhood of zero, and that its

Fréchet derivative with respect to ¥ at (0, 0) is an isomorphism on Hgf(;]/ 2([R{Z).

F is a C' mapping in a neighbourhood of zero: Let ¢, Yo and ¢, ¥ be in a neighbourhood of zero (in
the sense of the functional norms in V and Hﬁ;l/ 2([Riz)). We denote by vgt, p(jf, vt, pT the solutions
of (2-4), (2-5) associated with (¢, ¥o) and (¢ + ¢, Yo + V) respectively, and we set w* := vt — voi,
+_ o+ _ =+
q =P Do -
On the one hand, in Qﬂ’f , we know w™ is a solution of the system

—Aw” +e3Aw 4+ (v, +w ) -Vw +w -V, +Vg~ =0,

divw™ =0,
W aqy = @,
B B 20y w4 w?
<83w —q e3— 0 > e3 =Y.
y3=M

Performing estimates similar to the ones of Lemma 14, we infer that for ||¢olly + || Yol 12 and
uloc
lollv + ||‘/f||Hn:71/2 small enough,

- - 1h— y/ < — .
1™ i3, a0+ 10 Ly v < CSly + 11 1)

It follows that
w™ =w; + OUI5+ VI 1)

uloc

P
1 Huloc
w~ minus the quadratic terms w™ - Vw™ and |w_|2|y3:M.

On the other hand, using Theorem 2, one can show that w™ = w} + O (¢ |3, + Iy ||ilm71/z), where

uloc

(M) and in HH(M', M) x R?) for all M’ > supy, where w] solves the same system as

—sz+e3/\w++v8L-Vw'{+sz-Vv(T+Vq:=0 in y3 > M,
divwzr =0 iny;>M,
+ —
W lys=m =W ys=m-

Using Theorem 2, we deduce that if ||(1 + y3)/ 3v6r I H is small enough (which is ensured by the
smallness condition on ||¢]|, ||[¥]]), we have

[+ 59w | s gy < Clwzlmm | g < CABIY + 1 gn-1e).
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Therefore, in H'"_I/Z(Rz),

uloc

F(@o+¢, Yo+ ) = F(go, Yo) = = + 05w |ys=pr — (a7 + 5w ys=mes + OUSIS+ 17,0 12)-

uloc

It follows that the Fréchet derivative of F at (¢, Vo) is
‘C¢0,1//0 . (‘pv 1//) = —1// + 831'02_|y3=M - (C]Z_ + Ua_ : wz_)|y3=Me3-
Using the same kind of arguments as above, it is easily proved that wic depend continuously on voi, and

therefore on ¢y, V. Therefore F is a C! function in a neighbourhood of zero.

dy F(0,0) is invertible: Since dy F(0,0) = Lo0(0, -), we consider the systems solved by wf with
v(:)t =0 and ¢ =0. We first notice that if Lo(0, ) =0, then wy :=1,,<pyw; +1,,-y wzr is a solution of
the Stokes—Coriolis system in the whole domain 2y, with wyz |sq,, = 0. Therefore, according to [Dalibard
and Prange 2014], w; = 0 and therefore ¥ = 0. Hence ker dy F (0, 0) = {0}, and dy, F (0, 0) is one-to-one.
On the other hand,

(B3w] — g/ e3)ly=m = DN(wp |ys=m),

where DN is the Dirichlet-to-Neumann operator for the Stokes—Coriolis system, introduced in [loc. cit.].
In particular, in order to solve the equation

L0,0(0, Y1) =¥

for a given Yy € H, m—1/ 2([R{Z), we need to solve the system

uloc
—Aw] +esAw; +Vq; =0,
divw, =0,
w; lagy =0,
O3w; —q; e3—)|y;=m = =2 +DN(w |y;=m).
Loe (@), There only

remains to prove that w, € Hl’l’f(;gl({M/ < y3 < M}) forall supy < M’ < M. Therefore, we notice that

in the domain R? x (M’, M), the horizontal derivatives of w, (up to order m) satisfy a Stokes—Coriolis

According to Section 3 in [loc. cit.], the above system has a unique solution w, € H, !

system similar to the one above (notice that the Dirichlet-to-Neumann operator commutes with 9y, 93).
It follows that Viw, € Hulloc([F\R2 x (M', M)) for all || < m. In particular, V)w; |,,—m € H'/? (R?)

uloc

and therefore w; |y,—u € H™/2(R?). Tt can be checked that DN : H"2(R?) — H" Y*(R?). As a

uloc uloc uloc
m—1/2

consequence, Y| = dz3w; —q; e3 € H, (R?). Therefore dy F (0, 0) is an isomorphism of H™ 1/2(R?).

uloc
Using the implicit function theorem, we infer that for all ¢ € V in a neighbourhood of zero, there exists
= Hl:?(;l/z(Rz) such that (¢, ) =0. Let v:=1,,<py v~ +1,,-pv", where v, v are the solutions

of (2-5)—(2-4) associated with ¢, ¥. By definition, the jump of v across {y; = M} is zero, and since
Flp,¥) =0,

T, pesly=mu =¥ =S, pHesly—m.
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Using once again the fact that |v™ 12| yi=M = [V~ 12| ys=M» We deduce that
(030" — p~e3)lys=m = (330" — pTe3)ly=m.
Thus there is no jump of the stress tensor across {y; = M}, and therefore v is a solution of the Navier—
Stokes—Coriolis system in the whole domain 2. This concludes the proof of Theorem 1.
Appendix A: Proofs of Lemmas 7 and 9

Proof of Lemma 7. We begin with a few observations. First, replacing x by x; := Ox € Cfo([R{Q), it
is enough to prove the lemma with Q = 1. Moreover it is clearly sufficient to prove the lemma for
pr€) = éféé’, with a + b = k. Notice also that since « — k > —2, we can always write o« — k = 2m + «,,
with o, € [—2, 0[ and m € N. Then éf&é’lé}lo‘_k is a linear combination of terms of the form §f,$§’/|$|""",
with ¢’ +b' +a,, = o and @', b’ € N. Therefore, in the rest of the proof, we take

0=1, P& =¢£%LEP, witha,beN, Be[-2,0, a+b+B=aq.

Some of the arguments of the proof are inspired by the work of Alazard, Burq and Zuily [Alazard et al.
2016] on the Cauchy problem for gravity water waves in H, . spaces. We introduce a partition of unity
(®q)gez2> Where Supp ¢, C B(q, 2) for g € 7% and sup, l¢g llwre < +oo for all k. We also introduce
functions ¢, € Cgo([Rz) such that ¢, = 1 on Supp ¢,, and, say Supp ¢, C B(g, 3). Then, for j =1, 2, 3,

w (xp,2) =y x(D)P(D)e™" (g, vp)

qez?
=¥ [ K e onondy =Y [ K]0, 00m0n s, (4D
R R
qez? €72

where
K (xp, 2) = / EEXEPE VO dE, K] (s s D) = K (00— v g (9)-
R

We then claim that the following estimates hold: there exists § > 0, C > 0 such that for all x;, € R2, z>0,

C e %2

K'(xp, 2)| < , Ki(xp2)|<C—"0—— forj=2,3. A2
K (xn, 2)] (14 [xp| +21/3)2+ Ko, 2) (1 + |xp )2+ / (A2

Let us postpone the proof of estimates (A-2) and explain why Lemma 7 follows. Going back to (A-1),
we have, for j =2, 3,
1
(Ig —xnl —

u (xn, )| < Ce™® Y

qeZ?,|qg—x;|=3

2)2+a/|¢q(yh)yo()’h)|dyh

+Ce™ % Z l0g n)vo(yr)| dyn
qeZ?,|lqg—xp|<3

-8
< Ce ™ol
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In a similar fashion,

1
! <C d
Wl =C Y e [l onnonldy,

1
+C Z W f log (yn)vo(yr)| dyn

qeZ?,1q—xu|<3

qe??,|g—xu|=3

< Cllwoll1 (1427

The estimates of Lemma 7 follow for z > 1.

We now turn to the proof of estimates (A-2). Once again we start with the estimates for K2, K3, which
are simpler. Since Ay, Az are continuous and have nonvanishing real part on the support of yx, there exists
a constant § > 0 such that Re(A;(§)) > § for all £ € Supp x and for j = 2, 3. Clearly, for |x,| <1 we
have simply

K G, )| < el Pl

We thus focus on the set [x,| > 1. Let x;(§, 2) := x (§) exp(—=A;(§)z). Then x; € L (R4, S(R?)), and
for all ny, ny, n3 € N, there exists a constant §,, > 0 such that

(14 1£1")98]" 83> xj (5, 2)| < Cp exp(=8,2).

Estimate (A-2) for K2, K> then follows immediately from the following lemma (whose proof is given
after the current one):

Lemma 15. Ler P(§) = §&/" ;2|$|’3, withay,ar € N, B €[—2,0[, and set o := a; + ay + B. Then there
exists C > 0 such that for any ¢ € S(Rz),for all x, € R2, |xn| > 1,

C
[POIE0n)| = Tz (el Lot 20 a2 ).

We now address the estimates on K''. When |x;| <1, z <1, we have simply |K'(xn, 2)| <|IPx|:, and
the estimate follows. When z <1 and |xj| > 1, we apply Lemma 15 with ¢ (§) = Fl (X (&) exp(—Ay (g)z)).
Notice that

121 < || x (&) exp(=21(5)2) ||y
and
[ynl 22071052 || < (|67 852 X (€) exp(—A1 (E)2) || 2y anar -

Since the right-hand sides of the above inequalities are bounded (recall that A;(£) = |E]°A(£) with
A € C®(R?); see Remark 4), it follows that estimate (A-2) is true for z < 1 and |x;| > 1.

We now focus on the case z > 1. We first change variables in the integral defining K! and we set
g =713, X, = xp/z'/3. Since P is homogeneous, this leads to

K'(x ):; e € p (g & exp( —A & dg’
(ARG ER X\ )P\ TH s )R ) 95
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Since A;/|£]? is continuous and does not vanish on the support of y, there exists a positive constant 8’
such that A;(£) > 8'|&| on Supp x. Therefore, for |x;| <1, we have

1
K (e 21 = s |lexp (=816 PEN 1

and the estimate for K! on the set |x;| < z!/3 is proved.
For |x;| > 1, we split the integral in two. Let ¢ € C5° such that ¢ = 1 in a neighbourhood of zero. Then

K (o 2) = / e"x%‘f’P(s’w@/)x( & )exp(—xl(i)z) d&’
’ 2@H/3 Joo 7173 Z1/3

1 ix; & / / g g/ ,
+ s [P0 - 0@z ) ep( (5 )z e

= K11+K21.

We first consider the term Kzl. Because of the truncation 1 — ¢, we have removed all singularity coming
from P close to & = (. Therefore, performing integrations by parts, we have, for any n € N, for j =1, 2,

’n 1 ix, € ryn ’ ’ g’ £’ ’
Xj Kzl(xh,Z) = Z(pr—a)ﬂ/Rze ws Dg} |:P(§ (L -9 ))X<Z1/3) CXP(—)»1<21/3>Z>] dé§.

When the Dg; derivative hits P (1 — ¢), we end up with an integral bounded by

Cn fz |€/|a1§/65upp(lf¢) eXP(—5/|$/|3) d‘i:/ =< Cn
R

1/3

When the derivative hits x (£’/z!/3) the situation is even better, as a power of z!/3 is gained with each

derivative. Therefore the worst terms occur when the derivative hits the exponential. Remember that
A (E) = |EPPA1(E), where A € C*°(R?) with A;(0) =1 and A does not vanish on R?. Therefore, for

all¢’ e R%, z > 0,
exp| —A <§_/ z ) =exp| —IE'PA $/>
e N\z3))

We infer that for any 0 < n < 3+ |«], on Supp x (- /z!/?), we have

o g’
'P(f.} )VS} exp(—)q (m)z>

We deduce eventually that

8 5
<C, CXP(—EISI ) (A-3)

1 C
< .
Z(2+a)/3 (1 + |x;l|2+a) — (|xh| +Zl/3)2+a

|K3(xp,2)| < C

For the term K ]1, we use once again Lemma 15, with

B , S/ El
¢ =F 1<(p(§ )X(z]/3) exp(—)q(m)z)).
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Using the same type of estimate as (A-3) above, we obtain

1 1 C

1
|K, (x4, 2)| <C < .
2 7(2+a)/3 |x;;|2+a |xh|2+a

This concludes the proof of Lemma 7. g

Proof of Lemma 15. We have
P(D)¢ = D{' Dy Op(§17)¢.

Thus we first compute Op(|£|#)¢. We first focus on the case B € ]—2, O[. We follow the ideas of Droniou
and Imbert [2006, Theorem 1], recalling the main steps of the proof. The function £ € R? — |&|# is radial
and locally integrable, and thus belongs to S”. Its Fourier transform in S’(R?) is also radial and homoge-
neous of degree — B —2 € ]2, O[. Therefore it coincides (up to a constant) with | - |72 in S'(R*\{0}), and
since the latter function is locally integrable, we end up with F~!(|€|#) = C|x;,|#~% in S'(RV). Hence

a a 1
P(D)¢(xp) = C0,'05° /RZ Wf(xh —yn)dyp.

Notice that in the present case, we do not need to have an exact formula for P(D)¢, but merely some infor-
mation about its decay at infinity. As a consequence we take a shortcut in the proof of [Droniou and Imbert
2006]. We take a cut-off function x € Cgo([R?z) such that x =1 in a neighbourhood of zero, and we write

. X1 ay na
P(D)¢(xp) = C./Rz Wal 0,°¢(xp — yn) dyn
o L 1
+C > Cia / 818y’ (1 — x (yi))ay" "9y ( ﬁ+z)c(xh—yh>dyh
0ty R2 |yl
0<ir<a
=L+ .

We now choose x in the following way. Let n = [|x;|] € N, and take x = x, = n(-/n), where
Suppn C B (0, %) and n = 1 in a neighbourhood of zero. Notice in that case that if y, € Supp x,, then
|xn — yn| = |xn|/2. Therefore, for the first term, we have

240 s<n+1>f’(f
|

. |lyn|~F~2 dyh) [1yalPH 911852 || oo <C [yl 2011 85%¢ |, -
Yhi=<n

Using the assumptions on 1 and x, and the estimate
aa| —i1 aaz—iz ( 1 ) C c
SN

|yh|a+2—11—12 n(x+2—11—12
—a—2 —a—2
LI < Cliglpn™ "= < Cligllplxnl ™7

Vyn € Supp(1 — xn),

we infer that

Gathering all the terms, we obtain the inequality announced in the lemma. To conclude the proof, we still
have to consider the case B = —2: in such a case, |&|# corresponds to inverting the Laplacian over R?.
Hence, the kernel |x; — y;|~#~2 has to be replaced by % In(|xp — yu|). This does not modify the previous
reasoning. O
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Proof of Lemma 9. The proof is somewhat simpler than the one of Lemma 7. As indicated in the remark
following Lemma 9, notice that for n > 1, for all £ € R2 z > 0,

e %2
1+ 1&g

and the right-hand side of the above inequality is in L!(R?) for all z. As a consequence, for j =1, ..., 3,

[T+ 1ED) (1= x @) PE)e ™| < ||Pllre(se)

n > 1, the kernel
Ky j(xp,2) = /R i e E (14 1E12) (1 — x)(E) P(§) exp(—h; (£)z) d&

is well-defined and satisfies
8z

1Kn,j (s D lpomey < Cull PllLeseye™

Furthermore, if a1, ay € N with a; +a, <3,

XXy K (on, 2) = /R eMEDIDS (14 617" (1 = ) (€) P(§) exp(—2;(§)2)) dE.

Hence, up to taking a larger n and a smaller &,
1K j s 2)] < Cull Pllwsoegeye ™ (1 + lxn]) >,

and in particular, K, ; € L2°(L? ). Thus for any f € L]

uloc?
|+ 1D "1 = x (D) P(D) exp(=; (D)D) f | oo = 1K j 5 fllzm < Ce™ | flI 2, .

Taking f = (14|D[*)"vo = (1 — Ap)" v, for some vy € H*"

loc> WE obtain the result announced in Lemma 9.

Appendix B. Estimates on a few integrals

Lemma 16. There exists a positive constant C such that for all z > 0,

dZ S =y 1R
o (I+1]z=2D>PA+2)>3 (1+2)1/3
foo 1 ' Cln(2+72)
=TSm0
o (I+lz=2D+2)¥3 (1+2)273
and for all y, § > 0 such that § < 1 and y + 8 > 1, there exists a constant C,, 5 such that

00 1 1 . Cys
5 d7 < —78 Vz > 0.
o (+z+2)r (1+7) (1+2)v+

Proof. The first two inequalities are obvious if z is small (say, 7 < l), simply by writing

=3
1 C
< .
14+z—=2| " 1+7

Hence we focus on 7/ > % In that case, changing variables in the first integral, we have

o0 1 , 1 © 1 1 1 © 1 1
/ 2/3 23d221_3/ 1 2/3 (o1 23dt51_3/ 573 273 4t
o (+lz=2/D?BA+2)H¥ 2B Jo @EH1=)?B 0¥ 23 Jo  11=t23 1%/
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which proves the first inequality. The second one is treated in a similar fashion:

0 1 1 ;[ 1 R 1 1
s de =1 1 1 a3 di=z TRy LS
o I4+lz=21(0 42 0o T 41—t (z 1 41)2 o z V|1 —1]1%
It is easily checked that

3/2 1
——dt < CIn(2+2).
/1/2 z7h 11—

The second estimate follows. The last estimate is proved by similar arguments and is left to the reader. [J
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PARTIAL DATA INVERSE PROBLEMS FOR THE HODGE LAPLACIAN

FRANCIS J. CHUNG, MIKKO SALO AND LEO TZOoU

We prove uniqueness results for a Calderén-type inverse problem for the Hodge Laplacian acting on
graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements
of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth-order
potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute
boundary conditions, and on the construction of complex geometrical optics solutions which reduce the
Calderén-type problem to a tomography problem for 2-tensors. The arguments in this paper allow us to
establish partial data results for elliptic systems that generalize the scalar results due to Kenig, Sjostrand
and Uhlmann.
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1. Introduction

This article is concerned with inverse problems with partial data for elliptic systems. We first discuss
the prototype for such problems, which comes from the scalar case: the inverse problem of Calderén
asks to determine the electrical conductivity y of a medium €2 from electrical measurements made on its
boundary. More precisely, let 2 C R"” be a bounded domain with smooth boundary and let y € L°°(£2)
satisfy y > ¢ > 0 a.e. in 2. The full boundary measurements are given by the Dirichlet-to-Neumann map
(DN map)

APNCHE(0Q) > H2(0Q), > ydwulsg,

MSC2010: primary 35R30; secondary 58J32.
Keywords: inverse problems, Hodge Laplacian, partial data, absolute and relative boundary conditions, admissible manifolds,
Carleman estimates.
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where u € H'(Q) is the unique solution of div(yVu) = 0 in Q with u|yq = f, and the conormal
derivative yd,u|yq is defined in the weak sense. Equivalently, one can consider the Neumann-to-Dirichlet
map (ND map)

_1
AP HI2(0Q) > H2Z(0Q), g+ vlag,

where div(yVv) = 0in Q with yd,v|yq = g, and H;%(aﬂ) consists of those elements in H_%(E)Q)
that are orthogonal to constants. The inverse problem of Calderén asks to determine the conductivity y
from the knowledge of the DN map or (equivalently) the ND map. There is a substantial literature on this
problem, with pioneering works including [Faddeev 1965; Calderén 1980; Sylvester and Uhlmann 1987;
Novikov and Khenkin 1987; Nachman 1988; Novikov 1988]. We refer to the surveys [Novikov 2008;
Uhlmann 2014] for more information.

The Calderén problem with partial data corresponds to the case where one can only make measurements
on subsets of the boundary. Let I'p and I'y be open subsets of 02, and assume that we measure voltages
on I'p and currents on I'y. If the potential is grounded on €2 \ I'p but can be prescribed on I'p, the partial
boundary measurements are given by the partial DN map

ADNflp, forall £ e H?(3R2) with supp(f) C Tp.

If instead we can freely prescribe currents on I'y but no current is input on 2 \ I'y, then we know the
partial ND map:

_1
A?,IDg|pD for all g € H,, ?(9L2) with supp(g) C I'n.

The basic uniqueness question is whether a (sufficiently smooth) conductivity is determined by such bound-
ary measurements. We remark that in the partial data case there seems to be no direct way of obtaining the
partial DN map from the partial ND map or vice versa, and the two cases need to be considered separately.

By now there are many uniqueness results for the Calderén problem with partial data involving varying
assumptions on the sets I'p and I'y. For further information we refer to the survey [Kenig and Salo 2014]
for results in dimensions 7 > 3 and [Guillarmou and Tzou 2013] for the case n = 2. We only list here
some of the main results for the partial DN map:

e When n > 3, we know I'p can be possibly very small but I'y has to be slightly larger than the
complement of I'p [Kenig et al. 2007].

e When n > 3, we know ['p = I'y = I' and the complement of I" has to be part of a hyperplane or a
sphere [Isakov 2007].

e When n =2, we know I'p = 'y = I can be an arbitrary open set [Imanuvilov et al. 2010].

e When n > 3, we know [p = I'y = I and the complement of I" has to be (conformally) flat in one
direction and a certain ray transform needs to be injective [Kenig and Salo 2013] (a special case of
this was proved independently in [Imanuvilov and Yamamoto 2013]).

The approach of [Kenig et al. 2007] is based on Carleman estimates with boundary terms and the approach
of [Isakov 2007] is based on reflection arguments. The paper [Kenig and Salo 2013] combines these
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two approaches and extends both. There seem to be fewer results for the partial ND map, especially in
dimensions n > 3; see [Isakov 2007; Chung 2015]. In fact, in dimensions # > 3 the Carleman estimate
approach for the partial ND map seems to be more involved than for the partial DN map. We remark that
there are counterexamples for uniqueness when I'p and I'y are disjoint [Daudé et al. 2015].

The purpose of this paper is to consider analogous partial data results for elliptic systems. In the full
data case (I'p = 'y = d2), many uniqueness results are available for linear elliptic systems such as the
Maxwell system [Ola et al. 1993; Kenig et al. 2011; Caro and Zhou 2014], Dirac systems [Nakamura and
Tsuchida 2000; Salo and Tzou 2009], the Schrodinger equation with Yang—Mills potentials [Eskin 2001],
elasticity [Nakamura and Uhlmann 1994; 2003; Eskin and Ralston 2002], and equations in fluid flow
[Heck et al. 2007; Li and Wang 2007]. In contrast, the only earlier partial data results for such systems
in dimensions n > 3 that we are aware of are [Caro et al. 2009] for the Maxwell system and [Salo and
Tzou 2010] for the Dirac system. One reason for the lack of partial data results for systems is the fact
that Carleman estimates for systems often come with boundary terms that do not seem helpful for partial
data inverse problems (see [Eller 2008; Salo and Tzou 2009] for some such estimates).

In this paper we establish partial data results analogous to [Kenig et al. 2007] for systems involving
the Hodge Laplacian for graded differential forms, on certain Riemannian manifolds in dimensions n > 3.
These are elliptic systems that generalize the scalar Schrodinger equation (—A 4¢)u =0 and are very close
to the time-harmonic Maxwell equations when n = 3. In fact, using the results of the present paper, we have
finally been able to extend the partial data result of [Kenig et al. 2007] to the Maxwell system [Chung et al.
2015]. The main technical contribution of the present paper is a Carleman estimate for the Hodge Laplacian,
with limiting Carleman weights, that has boundary terms involving the relative and absolute boundary
values of graded forms. The boundary terms are of such a form that allows us to carry over the Carleman es-
timate approach of [Kenig et al. 2007] to the Hodge Laplace system. As far as we know, this is the first ana-
logue of [Kenig et al. 2007] for systems besides [Salo and Tzou 2010], which considered a very special case.

In a sense, to deal with boundary terms for systems in a flexible way, one first needs a good understanding
of the different splittings of Cauchy data in the scalar case. This encompasses both the scalar DN and
ND maps simultaneously, since the “relative-to-absolute” map defined in Section 2 generalizes both the
notion of the DN and ND maps. Therefore the methods developed in [Chung 2015] for the partial ND
map, involving Fourier analysis to treat the boundary terms in Carleman estimates, will be very useful in
our approach. We expect that the methods developed in this paper open the way for obtaining partial data
results via Carleman estimates for various elliptic systems. This has already been achieved for Maxwell
equations [Chung et al. 2015].

The plan of this document is as follows. Section 1 is the introduction, and Section 2 contains precise
statements of the main results. Section 3 collects notation and identities used throughout the paper. In the
interest of brevity, we have omitted the proofs of these identities and interested readers can find them in
the arXiv version of this paper [Chung et al. 2013, Appendix]. Sections 4-6 will be devoted to the proofs
of the Carleman estimates. In Section 4, we will give the basic integration by parts argument for k-forms
and simplify the boundary terms. In Section 5, we prove the Carleman estimates for O-forms using the
arguments from [Chung 2015; Kenig and Salo 2013]. We will conclude the argument in Section 6 by
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showing that the Carleman estimates for graded forms follow from an induction argument, given the
corresponding result for O-forms. In Section 7 we will construct relevant complex geometrical optics
solutions, following the ideas in [Dos Santos Ferreira et al. 2009a]. In Section 8 we will present the
Green’s theorem argument and give the density result based on injectivity of a tensor tomography problem,
which finishes the proofs of Theorems 2.1 and 2.2. Section 9 will contain the proof of Theorem 2.3 and
make some remarks about the case of dimensions n > 4.

2. Statement of results

The results in this paper are new even in Euclidean space, but it will be convenient to state them on certain
Riemannian manifolds following [Dos Santos Ferreira et al. 2009a; 2016; Kenig and Salo 2013]. Suppose
(Mo, go) is a compact oriented manifold with smooth boundary, and consider a manifold 7' = R x M
equipped with a Riemannian metric of the form g = c(e & go), where ¢ is a smooth conformal factor
and (R, e) is the real line with Euclidean metric. A compact manifold (M, g) of dimension n > 3,
with boundary dM, is said to be CTA (conformally transversally anisotropic) if it can be expressed as a
submanifold of such a 7. A CTA manifold is called admissible if additionally (Mg, go) can be chosen to
be simple, meaning that dMy is strictly convex and for any point x € My, the exponential map exp, is a
diffeomorphism from some closed neighbourhood of 0 in Tx My onto My (see [Sharafutdinov 1994]).
Most of the geometric notions defined here will be from [Taylor 1996] and we refer the reader there for a
more thorough treatment of the subject.

Let AK M be the k-th exterior power of the cotangent bundle on M, and let AM be the corresponding
graded algebra. The corresponding spaces of sections (smooth differential forms) are denoted by % M
and QM. We will define A to be the Hodge Laplacian on M, acting on graded forms:

—A=dj§+dd.

Here d is the exterior derivative and § is the codifferential (adjoint of d in the L? inner product). Suppose
Q is an L*° endomorphism of A M ; that is, Q associates to almost every point x € M a linear map Q(x)
from A M to itself, and the map x — || Q(x)|| is bounded and measurable. Later will consider continuous
endomorphisms, meaning that x — Q(x) is continuous in M. The continuity of Q will simplify matters
since the recovery of Q from boundary measurements involves integrals over geodesics, and continuity
ensures that these integrals are well defined.

We would like to consider boundary value problems for the operator —A + Q. In order to do this, we
will define the tangential trace ¢ : QM — Q0IM by

troitw,

where i : IM — M is the natural inclusion map. Then the first natural boundary value problem to consider
for —A + Q, acting on graded forms u, is the relative boundary problem

(—A+Qu=0 inM,
tu=f on JdM,
tbfu=g on M.
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If Q is such that O is not an eigenvalue for this problem, then this problem has a unique solution [Taylor
1996, Section 5.9] and we may define a relative-to-absolute map

NBA: H3(3M. AOM) x H™2(IM, AOM) — H2 (IM. AOM) x H™2 (IM. AdM)
by
NEM(f) = (w18 %),

where * is the Hodge star operator on M.
The second natural boundary value problem to consider is the absolute boundary value problem

(—A+Q)u=0 1in M,
txu=f on dM,
téxu=g on dM.

Assuming 0 is not an eigenvalue, this defines an absolute-to-relative map

NSR: H3(3M. AOM) x H™2(IM, AOM) — H? (IM, AOM) x H™2 (IM. AdM)
by
NGR(f. 8) = (tu, t8u)

for appropriate Q. For more details on the relative and absolute boundary value problems for the Hodge
Laplacian, see [Taylor 1996, Section 5.9].

These maps both give rise to a Calderdn-type inverse problem which asks if knowledge of N SA or N SR
suffices to determine Q. If we restrict ourselves to considering the case of O-forms only and if Q acts on
0-forms by multiplication by a function ¢ € L°° (M), then the relative-to-absolute and absolute-to-relative
maps become the DN and ND maps, respectively, for the Schrodinger equation

(—A4+qu=0 in M,

where u is now a function on M and A is the Laplace—Beltrami operator on functions. Our problem is
therefore a generalization of the standard partial data problem for the scalar Schrédinger equation on a
compact manifold with boundary.

Let us review some earlier results for the Schrodinger problem in the scalar case, in dimensions n > 3.
If M is Euclidean, Sylvester and Uhlmann [1987] proved that knowledge of the full DN map uniquely
determines the potential g. Versions of this problem on admissible and CTA manifolds as defined above
have been considered in [Dos Santos Ferreira et al. 2009a; 2016]. Partial data results for the DN map
have been proven in [Bukhgeim and Uhlmann 2002; Isakov 2007; Kenig et al. 2007] for the Euclidean
case, and more recently in [Kenig and Salo 2013], the last of which contains the previous three results
and extends them to the manifold case. Improved results in the linearized case are in [Dos Santos Ferreira
et al. 2009b]. Partial data results for the ND map, analogous to the ones in [Kenig et al. 2007], were
proven in [Chung 2015]. Other partial data results for scalar equations with first-order potentials as well
were obtained in [Dos Santos Ferreira et al. 2007; Chung 2014], and some of those techniques will be
useful to us in this paper as well.
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For the Hodge Laplacian acting on graded forms, we are not aware of previous results dealing with
the determination of a potential from the relative-to-absolute or absolute-to-relative maps. However,
[Krupchyk et al. 2011] reconstructs a real analytic metric from these maps in the case of no potential,
and [Sharafutdinov and Shonkwiler 2013; Shonkwiler 2013; Belishev and Sharafutdinov 2008; Joshi and
Lionheart 2005] recover various kinds of topological information about the manifold from variants of
these maps, again in the case of no potential. We remark that full data problems for the Hodge Laplacian
in Euclidean space can be solved in a very similar way as in the scalar case (see Section 9), but full data
problems on manifolds and partial data problems even in Euclidean space are more involved.

In order to describe the main results precisely, we will define “front” and “back” sets of the boundary dM
as in [Kenig et al. 2007]. If M C T = R x My is CTA, we can use coordinates (x1, x’), where x1 is
the Euclidean variable, and define the function ¢ : T — R by ¢(x1,x’) = x1. As discussed in [Dos
Santos Ferreira et al. 2009a], ¢ is a natural limiting Carleman weight in M. Now define

M4 ={p e dM |dyp(p) >0},
IM_ ={p €M | dyp(p) <0}

Then the main results of this paper are the following.

Theorem 2.1. Let M C Rx My be a three-dimensional admissible manifold with conformal factor ¢ = 1,

and let Q1 and Q, be continuous endomorphisms of AM such that N, 5’?, N g‘;‘ are defined. Let T+ C OM

be a neighbourhood of 0M ., and let T— C dM be a neighbourhood of OM_. Suppose
NGNS )y = NgS(f.9)Iry

forall (f,g) e H>(@OM, AdM) x H™2 (M, AOM) supported in T—. Then Q1 = Q.

Theorem 2.2. Let M be a three-dimensional admissible manifold with conformal factor ¢ = 1, and let
Q1 and Q» be continuous endomorphisms of AM such that N Slf, N 61; are defined. Let T C M be a
neighbourhood of M+, and let T_ C OM be a neighbourhood of dM_. Suppose

NGX(f @)Iry = Nox(f. &)y

forall (f,g) € H%((‘)M, AOM) x H_%(BM, AOM) supportedin I'—. Then Q1 = Q».
In the case that M is a domain in Euclidean space, we can also extend the results to higher dimensions.

Theorem 2.3. Let M be a bounded smooth domain in R", with n > 3, and let Q1 and Q2 be continuous
endomorphisms of AM such that N R’?, N 5’; are defined. Fix a unit vector «, and let 9(x) = o - x. Let
'y C OM be a neighbourhood of OM 4, and let T— C M be a neighbourhood of OM_. Suppose

NG @)y = NG (£ o)y

forall (f,g) € H%(aM, AOM) x H_%(GM, ANIM) supported in T—. Then Q1 = Q5. The same result
holds if we replace the relative-to-absolute map with the absolute-to-relative one.
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Theorem 2.1 is a generalization to certain systems of the scalar partial data result of [Kenig et al. 2007]
for the DN map, and similarly Theorem 2.2 is an extension to systems of the scalar result of [Chung 2015]
for the ND map. To be precise, the above theorems are stated for the linear Carleman weight and not for
the logarithmic weight as in [Kenig et al. 2007; Chung 2015]. This restriction comes from the lack of
conformal invariance of the full Hodge Laplacian. However, in the scalar case we could use the conformal
invariance of the scalar Schrédinger operator together with a reduction from [Kenig and Salo 2013] to
recover the logarithmic weight results of [Kenig et al. 2007; Chung 2015] from the above theorems.

The proofs of Theorems 2.1 and 2.2 involve three main ingredients — the construction of complex
geometrical optics (CGO) solutions, a Green’s theorem argument, and a density argument relating this
inverse problem to a tensor tomography problem where one determines a tensor field from its integrals
along geodesics (see Section 8). Both the construction of CGO solutions and the Green’s theorem
argument require appropriate Carleman estimates.

To describe them, we will introduce the following notation. For a CTA manifold M, let N be the
inward pointing normal vector field along dM. We can extend N to be a vector field in a neighbourhood
of M by parallel transporting along normal geodesics, and then to a vector field on M by multiplying
by a cutoff function. For u € QM we will let

up =N N NU,
where N is the 1-form corresponding to N and i is the interior product, and
Uy=u—uj.
Let V denote the Levi-Civita connection on M, and V' denote the pullback connection on the boundary. Let
Ay = e%the_%,

where ¢ is a limiting Carleman weight as described in [Dos Santos Ferreira et al. 2009a]. Note that by
[loc. cit.] such weights exist globally if M is a CTA manifold. Then the Carleman estimates are as follows.

Theorem 2.4. Let M be a CTA manifold, and let Q be an L°° endomorphism of AM. Define I'y. C oM
to be a neighbourhood of dM .. Suppose u € H*>(M, AM) satisfies the boundary conditions

ulr, =0 o first order,
W|I‘5‘r =0, (2-1)

th(ﬁe_%mpgr = hative_%u
for some smooth endomorphism o independent of h. Then there exists ho such that if 0 < h < hyg,
|~ 8 + 12Ol 2cary Z il any + B2 Ll ey + 12 1A VNl e .
Here H! signifies the semiclassical H! space with semiclassical parameter %, and for instance

lull g any = 1wl L2y + 1BVl L2 a1y
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The constant implied in the 2 sign is meant to be independent of 4. Note that the last boundary condition
in (2-1) can be rewritten as

thdulapy = —tigou —hotiyu.

Theorem 2.5. Let M be a CTA manifold, and let Q be an L°° endomorphism of AM. Define I'y. C oM
to be a neighbourhood of M .. Suppose u € H*>(M, AM) satisfies the boundary conditions

ulr, =0 to first order,
1 * ulr_C'_ =0, (2-2)

_@® . _@
théxe hulpgr =hotiy,*xe nu
for some smooth endomorphism o independent of h. Then there exists hg such that if 0 < h < hy,

1 1
I(=Ay + 1> Q)ullL2(ary 2 Pllull g1 ary + 12 il g @s) T2 [hVNuLl2re ).

Note that Theorem 2.5 is actually Theorem 2.4 with u replaced by *xu. Therefore it suffices to prove
Theorem 2.5 only. It is also worth noting that the Carleman estimates are proved for CTA manifolds in
general, with no restriction on either the dimension, the conformal factor, or the transversal manifold
(Mo, go). Theorems 2.4 and 2.5 are extensions to the Hodge Laplace system on CTA manifolds of the
scalar and Euclidean Carleman estimates in [Kenig et al. 2007; Chung 2015].

Finally, we sketch the main ideas in the proofs of the theorems and highlight the new features in our
approach. The main difficulty in proving the Carleman estimates is the fact that the standard integration
by parts argument, which gives a useful Carleman estimate for scalar equations with Dirichlet boundary
condition [Kenig et al. 2007], results in complicated boundary terms when one is dealing with a system of
equations (see Proposition 4.1). The Fourier analytic methods of [Chung 2015] will be crucial in handling
these boundary terms. We first prove Theorem 2.5 for O-forms (i.e., scalar equations) by adapting the
Euclidean arguments of [Chung 2015] to the manifold case. After an initial estimate for the vectorial
boundary terms in Proposition 4.2, Theorem 2.5 is proved for k-forms by induction on k. The proof
of the Carleman estimates is long and technical, due to the work required to simplify and estimate the
boundary terms.

After proving the Carleman estimates, the construction of CGO solutions proceeds as in the scalar
case [Kenig et al. 2007; Dos Santos Ferreira et al. 2009a] and in the full data Maxwell case [Kenig et al.
2011]. The end result is given in Lemma 7.6. There the amplitude in the solutions is vector-valued, and
later one needs to use the flexibility in choosing the components of this vector. The inverse problem is
solved by inserting the CGO solutions in a standard integral identity, Lemma 8.1. Here an unexpected
feature appears: recovering the matrix potential reduces to inverting mixed Fourier/attenuated geodesic
ray transforms as in the scalar case [Dos Santos Ferreira et al. 2009a], but the components of the matrix
turn out to depend on the geodesic along which they are integrated. We resolve this difficulty when
dim(M) = 3 by making use of ray transforms on tensors of order < 2 and using recent results on tensor
tomography [Paternain et al. 2013]. When the underlying space is Euclidean, we can use classical Fourier
arguments and prove the uniqueness result also when dim(M) > 4.
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3. Notation and identities

As stated before, the basic reference for the following facts on Riemannian geometry is [Taylor 1996].
Let (M, g) be a smooth (= C ) n-dimensional Riemannian manifold with or without boundary. All
manifolds will be assumed to be oriented. We write (v, w) for the g-inner product of tangent vectors,
and |v| = (v, v)% for the g-norm. If x = (x1, ..., x,) are local coordinates and d; are the corresponding
vector fields, we write g;x = (d;, di) for the metric in these coordinates. The determinant of (g;x) is
denoted by |g|, and (g7/%) is the matrix inverse of (g k)

We shall sometimes do computations in normal coordinates. These are coordinates x defined in a
neighbourhood of a point p € M™™ such that x(p) = 0 and geodesics through p correspond to rays
through the origin in the x-coordinates. The metric in these coordinates satisfies

gik(0) =6, 31gjk(0) =0.

The Einstein convention of summing over repeated upper and lower indices will be used. We convert
vector fields to 1-forms and vice versa by the musical isomorphisms, which are given by

(X79,)" = Xp dx*, X = g X7,
(wp a’xk)ﬁ =/ d;, o/ = gjka)k.

The set of smooth k-forms on M is denoted by 2% M, and the graded algebra of differential forms is
written as

n
QM = @ Qkm.
k=0

The set of k-forms with L2 or H*® coefficients are denoted by L2(M, AKM) and HS (M, A* M), respec-
tively. Here H® for s € R are the usual Sobolev spaces on M. The inner product (-, -) and norm |- |
are extended to forms and more generally tensors on M in the usual way, and we also extend the inner
product (-, -) to complex-valued tensors as a complex bilinear form.

Let d : QKM — Q¥T1M be the exterior derivative, and let % : QK M — Q"KM be the Hodge star
operator. We introduce the sesquilinear inner product on Qk M,

<n|c)=[M<n,E>dV=/MnA*E=(*n|*o.

Here dV = x1 = |g|% dx' .. dx" is the volume form. The codifferential § : QX M — Q¥~1M is defined
as the formal adjoint of d in the inner product on real-valued forms, so that

dn|t)=(@|6f) forne Q% 1M and e Qkm compactly supported and real.
These operators satisfy the following relations on k-forms in M':

Kk — (_l)k(n—k), § = (_l)k(n—k)—n+k—1 wd %,
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If X is a vector field, the interior product ix : Q¥ M — QK~1M is defined by
ixo(Y1,....Yg—1) =o(X, Y1, Y1)

If § is a 1-form then the interior product ig = igs is the formal adjoint of £A in the inner product on
real-valued forms, and on k-forms it has the expression

ie = (—1)"®D x £ Ak,
The interior and exterior products interact by the formula
iga A B = (iza) A B+ (—1)Fa nigB,

where « is a k-form and 8 an m-form. In particular if o and & are 1-forms then

iga AB+anigf={(at)B.
In addition, the differential and codifferential satisfy the product rules

d(fm) =df nn+ fdn. 8(fn)=—iarn+ fén.
The Hodge Laplacian on k-forms is defined by
—A=(d+8*=ds+4d.

It satisfies A* = xA. The above quantities may be naturally extended to graded forms.
We will also have to deal with forms that are not compactly supported on M. We have already
introduced the tangential trace t : QM — QoM by

tro—itw,
so if u is a graded form on M, then tu is a graded form on dM. Then

(tu [ 1v)am

is interpreted in the same manner as (1 | v)ps above. If u and v are graded forms on M, we will also
define

(u | v)opm 2/ (u,v)dS =/ tivu A*0dS,
oM oM

where dS is the volume form on dM. Now if € Q¥~1M and ¢ € Q¥M then d and § satisfy the
integration by parts formulas
dn|Om=©Anom + (0 [8)m. (3-1)
@ [mm =—0ul I mom + 1 dn)y. (3-2)
Note also that
S Imam = AN Dom-

Here v denotes both the unit outer normal of dM and the corresponding 1-form.
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Applying these formulas for the Hodge Laplacian gives
(—Au | v)p = (| —Av)y + 0 ASu [v)gp — (vdu [ v)gp — (vu | dv)gy + (v Au | Sv)am.
where u and v are k-forms, or graded forms. We can also redo the integration by parts to write the
boundary terms in terms of absolute and relative boundary conditions, so

(—Au|v)pr =W | —Av)pr+@u | tivdv)gp + @S *u | tiy *v)gps + (E*u | ti,d *v)gpr + (t8u | tiyv)gps.

The Levi-Civita connection, defined on tensors in M, is denoted by V and it satisfies Vyx = %Vy.
We will sometimes write V f (where f is any function) for the metric gradient of f, defined by

V= (df) =g f ok
If X is a vector field and 5, ¢ are differential forms we have

Vx(ng) = (Vxn) AL+ A (V).
If X, Y are vector fields then
[Vx.iy] =ivyy.
We can also express d using the V operator, as follows: if w is a k-form on M, and X1, ..., X4 are

vector fields on M, then

k+1

do(X1..... XeeD) = Y (DTN (Vx,0) (X1, X X)),
I=1

where X ; means that we omit the X; argument. Moreover if ey, . .., e, are an orthonormal frame of TM
defined in a neighbourhood U C M we have

n
—Sw = Zzejvejw.
Jj=1

For the statements of the Carleman estimates, we introduced the notation
Uy :Nb/\iNu and uy=u—uy,

where N is a smooth vector field which coincides with the inward pointing normal vector field at the
boundary dM, and is extended into M by parallel transport. Note thatiyuy=0, N Auj =0,andtu =0
at dM. In addition, if u and v are graded forms on M, then

(tu | tv)op = (tuy [ tvn)opr = (uy | vi)om
and

(tinu|tinv)opy = (tinur [tinvi)oy = (UL | vL)am.

If X is a vector field, we can break down X into parallel and perpendicular components in the same way
by using (X III’)ﬁ and (X%)*. The L and Il signs are interchanged by the Hodge star operator:

*(uy) = (xu)L and  * (up) = (xu)).
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Note that by its definition in terms of parallel transport, Vy N = 0. Thus Vy commutes with N A and i y.

If we view dM as a submanifold embedded into M, then TM splits into TdM & N IM, where
T OM is the tangent bundle of dM and N dM is the normal bundle. Then the second fundamental form
Il :TOM & TOM — NIM of M relative to this embedding is defined by

1I(X,Y)=(VxY | N)N.
The second fundamental form can also be defined in terms of the shape operator s : TdM — T IM by

s(X)= VxN.
Then
H(X,Y)=(s(X)| Y)N.

These two operators carry information about the shape of the dM in M, and thus show up in our boundary
computations.

Now we move to some more specific technical formulas used in the paper. The proofs involve routine
computations and are omitted, but interested readers may find the proofs in the arXiv version of this paper
[Chung et al. 2013, Appendix]. We begin with a simple computation.

Lemma 3.1. If £ and n are real-valued 1-forms on M and if u is a k-form, then
ENntqpu+igmAu) +nAigu+inE Au)=2(§ nu.
We also give an expression for the conjugated Laplacian.

Lemma 3.2. Let (M, g) be an oriented Riemannian manifold, let p € C*(M) be a complex-valued
function, and let s be a complex number. If u is a k-form on M, then

e (—=A)(e™*Pu) = —s*(dp, dp)u + 85[2Vgrad(p) + Aplu — Au.
Next, an expansion for the expression #6.
Lemma 3.3. Letu € Q%(M). Then
—t(8u) = —8"tuy+ (S — (n — Di)tiyuy +tVyinu,

where « is the mean curvature of M, and S : Q¥ (OM) — QK=1(dM) is defined by

k—1
So(X1..... Xp—1) =Y _ oX1.....5X¢. ... Xp_1),
=1

with s : ToM — T oM being the shape operator of OM.
Now for tiyd.

Lemma 3.4. Let u € QK(M). Then on M,

tiydu =tVyuy+ Stuy—d’tiyu.
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We also need an expansion for 6B, where B is the operator
h ) . h
B = l—[d Oigy. +idy.0d —dec A8 —68(dpe A )]: 7[2VV¢C + Agc].

Lemma 3.5. If u € QK (M) is such that tu = 0, then
t8Bu = §'tBu + 2ihV£V%)”tVNiNu —2ihdy@ctVy Vninu
+ih(2((n = D = $) v e + 2059 + Age)tVninu +2ih(S — (n — D)t Vv, inu
+ ih((S —(n—Dr)Apc + VNAgoc)tiNu
+2ihtiy R(N, V(pe)Du 1 + 2ihtV[(V(pc)",N]iNu — 2ihis(vwc)"tVNu||.
Finally, we will need to do a computation to split the Hodge Laplacian into normal and tangential parts.
To do this, we will take advantage of a Weitzenbock identity, which says

A=A+R,

where R is a zeroth-order linear operator depending only on the curvature of M, A is the Hodge Laplacian,
and A is the connection Laplacian:

Au = V*Vu.
We then have the following result for A.

Lemma 3.6. Let u € QX (M) satisfy tu = 0. Then
l‘l'NAu = A,tiNu +tVyVninu + tr(sz)iNu —Srinu,

where Sow (X1, ..., Xk—1) := Z;‘;ll (..., s2X;,..).

4. Carleman estimates and boundary terms

As noted in the Introduction, Theorem 2.4 follows from Theorem 2.5, so it enough to show that we can
prove Theorem 2.5.

In proving the Carleman estimates, it will suffice to work with smooth sections of AM and apply a
density argument to get the final result. Let % (M) denote the space of smooth sections of A¥ M, and
Q(M) denote the space of smooth sections of AM.

In this section we give an initial form of the Carleman estimates by using an integration by parts
argument as in [Kenig et al. 2007]. To do this, we will first need to understand the relevant boundary
terms. We will use the integration by parts formulas

(du [v)pm = Aulv)gy + (u]dv)m. 4-1)
Bu [v)y = —Gvu | V)op + (u | dv)y (4-2)

for u,v € Q(M).
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As in [Kenig et al. 2007], we will need to work with the convexified weight

he?

Yc =9+ 2_8
Then

—Ay, =eh (—h2N)e™ W .
Writing
dp, = et hde™ % =hd —dgcn,
oo =€ H h8e™ T = hS +igy,.

we have

_A(Pc = d‘Pc 8¢c + (ch d(ﬂc :
By Lemma 3.2 we can write this as A + i B, where A and B are self-adjoint operators given by

A=—h*A—(dgec Nigy, +iag, (doc A +)) = —h*A—|dgc|*,
h h
B = z_[d Oigy, tigp.0d —doc NS—8(doc A -)] = 7[2VV¢C + Agc].

Let | - | indicate the L2 norm on M, unless otherwise stated. Then, for u € Q¥ (M),
|Ag.ull* = ((A+iB)u | (A+iB)u) = ||Au||® + || Bu|®> +i(Bu | Au) —i(Au | Bu).
Integrating by parts gives
(Bu | Au) = (Bu ‘ h2d8u +h25du—|d<pc|2u)

= (hdBu | hdu) + (héBu | hdu) — (|d(pc|2Bu u) + h(Bu | vAhSu—i,hdu)gpy

= (ABu |u) +h(hdBu | vAu)ypr —h(h8Bu | iyu)gpr +h(Bu | v AhSu—i,hdu)gpy
and after a short computation

(A | Bu) = (BAu |0) — 2 (@) A [ ).
This finishes the basic integration by parts argument and shows the following:
Proposition 4.1. If u € QM, then
1Apeull® = || Aul|® + || Bu|® + G[4, Blu | w) + ih(hdBu | v Au)gp
—ih(héBu | iyu)gpr +ih(Bu | vAhSu—iyhdu)gp + 2h((0p@c) Au | u)gpr.  (4-3)

Now we invoke the absolute boundary conditions to estimate the nonboundary terms and to simplify
the boundary terms in (4-3). It is enough to consider differential forms u € QK (M) for fixed k.
Proposition 4.2. Let u € Q% (M) such that

txu =0,
(4-4)
thd xu = —tig, *u +hotiy *u

for some smooth bounded endomorphism o whose bounds are uniform in h.
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Then the nonboundary terms in (4-3) satisfy
2 2 h? 2 h? 2 2
[Aul|” + | Bul|” + (i[4, Blu |u) 2 ?HMHHI(M) - ?(HMIIHHI(BM) + “hVNuJ_”LZ(aM)) (4-5)
for h < & K 1. Also, the boundary terms in (4-3) have the form

—213 @y VvuL | Vvu)am —2h(dve(ldel* +13ve Py | ur) 5, + R, (4-6)

where
3

h h
IR S KRVt + a3y + 1 v 3y
for any large enough K independent of h.

Proof of Proposition 4.2. We will prove (4-5) first. The argument follows the one given in [Chung 2015]
for scalar functions.

Note that A and B have the same scalar principal symbols as they do for O-forms: that is, given a local
basis dx1,. .., dx" for the cotangent space with dx! = dx" Ao Adxik,
A=As+hEr,  As(fdx") = (Af)dx",
and
B =Bs+hEo, Bs(fdx')=(Bf)dx’,

where E; and Ey are first- and zeroth-order operators, respectively, with uniform bounds in 4 and &.
Therefore locally

[4, B)(fdx") = ([A, B]f)dx" + h([E1, Bs] + [As, Eol + hR)(fdx"),

where R is a first-order operator with uniform bounds in / and &. Choosing a partition of unity y1,..., xm
of M such that this operation can be performed near each supp(;), the argument for scalar functions in
the proof of Proposition 3.1 from [Chung 2015] implies

m 2
{4, Blu Ju) = i([A, Blu | zju) = 4%”(1 +he” p)ull +h(BpBu [u) +h*(Qu | u).
j=1

where Q is a second-order operator. Recall that

B = ?(a’ Oigy, tigp.0d —dpc NS—(dpc A -)),
so using integration by parts with the above formula, we get
h(BBBu | u) = h(BBu | Bu) —ih®(i, BBu | de. W) oM —ihz(v/\id%ﬂBu | u)ons
—ih?(vABBu | dpe Au)aps —ih? (in(dge ABBu) | 1)on
= h(BBu | Bu) —ih*(d¢c AiyBBu | u)ans —ih* (v Nigy. BBU | u)aps
— il (igp,v A BB | u)apg — ih? (iv(d@e ABBU) | u)an -
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By Lemma 3.1 we obtain
h(BBBu | u) = h(BBu | Bu) —2ih?*(3y@cBBu | u)yp.
The absolute boundary condition says that ¢ x u = 0, so ¥ = 0 at the boundary. Therefore
h(BBBu | u) = h(BBu | Bu) —2ih* @y BBu | up)aps = h(BBu | Bu) —2ih* (10, @cfBu | tuy)ap .-
The boundary term in the last expression is bounded by

e Bul 2 a0y + 12 a2 00
At the boundary,

h h
tBu = lfl‘[ZVVwc + A(pc]u = 7[—28v(pcl‘VNu||—2av(pctVNuJ_ + ZIV(V%)"M" + A(pcluu],
SO
tBu|? < |[thVyuy||? thv, 2 thV 2 B2 | tuy||?
[ u||L2(8M) <l Nu”||L2(8M)+|| NuJ_lle(aM)+|| (V(oc)||u||”L2(3M)+ | u"”L2(3M)
< TN 2 gypy + 1IN LI 2+ 1001 oy
Now by Lemma 3.4,
tiyhdu = thVyuy+ hStuy—hd'tiyu.

Since ¢ xu = 0, we have iyu,u = 0 at the boundary, and thus

tiyhdu = thVyuy+ hStu.

Therefore
”thVNuIIHI%Z(aM) < “tithu”iZ(aM) + h2||u||||]242(3M)

< i * (08 1) |22 gpgy + H2 00122500,
< [l2hé * u||1242(3M) + hz””ll”iz(aM)
5 ”u”iZ(aM),

where in the last step we invoked the absolute boundary condition. Therefore

||IBM||22(3M) < ”thVNuJ_lliZ(aM) + ”u"”ill(aM)’

and thus
h? 2 h? 2 h? 2
h(BBBu |u) < ?”Bu”LZ + ?”MII”HI(Q)M) + ?”hVNuJ_HLZ(aMy
Similarly
R (Qu | u) < W |ullFy + B> willz ppy + B NAVNU LI 2 a1y
Therefore

) h? h? _ _
A Bl ) 2 = [l = = Bl = 12l =™ s gpgy — 126~ IAVNUL I 20
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Meanwhile, since 7 * u = 0 on dM we can write
R2(|hdull3, + |hull3 ) = h*((hd *u, hd xu) + (h8 xu, h§ x u))
= h2(=h% Asu | su) —h3 (v ARS*u | %u)gpy
= h2(Au | u) + h2(|doc|®u | u) — 3 (v ARS*u | *u)apy
= h2(Au | u) + h2(|dee|®u | u) + h3(thSsu | tiy*u)ap.
Using the absolute boundary conditions again, we have
thd xu = —tig, *u+hotiy xu

= 0y@tiy xu + hotiy *u,
SO

1 .
R (Ihdul)}, + 1hsull?,) < EIIAulliz + KhHulZo + B2 {ull7> + B> Ntin * ul a0,
or
lAul7> 2 KR2(|hdull, + 1héullF o) — K2h* [ull7> — Kh*[ullFs — KR il 72 gpy -

~

We take K ~ % with « large and fixed. Putting this together with the inequality for (i[4, B]u | u) and
Gaffney’s inequality ||u|| g1 ~ |u|l;2 + ||hdul|;2 + ||hdul|;2 when t x u = 0, we obtain

: h? -
14w + || Bul® + G[A, Blu | u) 2 ?Hu”i]l =B (lunlF aagy + 1VNULIT > oap)

for h <« & « 1. This proves (4-5).
We will now show the expression (4-6) for the boundary terms in (4-3). Recall that these boundary
terms are given by

ih(hdBu |vAu)gpy —ih(h6Bu |iyu)gp +ih(Bu | vAhSu—ihdu)gpy +2h((0v@c)Au | u)gpr. (4-7)
Note that

ih(hdB*u|vasu)gp —ih(hdB*u |iy*u)gps +ih(Bsu | vAhSxu—iyhd xu)gpr +2h((0y@c) Axu | *u)gp

=ih(hdBu |vAu)yp—ih(héBu |iyu)gpr+ih(Bu | vAhSu—iyhdu)yps +2h((0p@c) Au | u)gpr.

Moreover, if u satisfies the absolute boundary conditions (4-4), then *xu satisfies the relative boundary

conditions
tu=20,
(4-8)
théu = —tigou +hotiyu,

and vice versa. Therefore it suffices to prove that if u satisfies (4-8) then the boundary terms (4-7) become

—213 By Vvun | Vvunam — 20 (3ve(ldel* + 19,0 )uy | uy),,, + R. (4-9)
where 3

. h h
IR| < Kh?|V'tiyu|3s, + ?HMJ_”%M + EHVNL!MI%M (4-10)

for any large enough K independent of /.
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So let’s return to (4-7), and assume u satisfies (4-8). The condition fu = 0 implies the first term
ih(hdBu | v Au)yp is zero. Therefore we are left with

—ih(héBu | iyu)gpr +ih(Bu | v AhSu)gp —ih(Bu | ivhdu)gps + 2h((0y@c) Au | u)gps .

We calculate each of the terms individually.

Firstly,
ih(Bu |vAhSu)gpy = ih(Bu | vAh(Su)))om
= —ih(iy Bu | h(8u))am
=—ih(tiyBu |théu)ypy.
Now
h
Bu = ?(2VV¢(, + Agc)u,
SO
. h .
tiyBu = thlN (ZV(V%)” —20y¢c VN + A(pc)u
h . . .
= ?(2V(V(pc)"”N —20,0:tVNIN + IA(PCZN)LL
Therefore,

—ih(tiy Bu | théu)ypy
=2h(0y@cthVyiyu | théu)gps —2h(hV(v(pC)”tiNu | th8u)aps — h?(t Aeinu | théu)apy.

Now if théulgpr = —tigou + hotiyu and tu = 0, then
théulgar = 0y + ho)tiyu. 4-11)
Therefore
—ih(tiy Bu | th(6u))oy = 2h(8v<pcthVNiNu } 0y +h0)tiNu)aM
—2h(hV(V¢C)”tiNu } (v +h0)tiNu)aM
—h?*(tAgcinu | Qv +ho)tinu)y,, .
Moreover, by Lemma 3.3,

th($u) = h8'tuy+ h((n — )k — S)tiyuy —thVyiyu.

Since tu =0,
th(6u) =h((n— 1)k —S)tiyuyg —thVyiyu.

Substituting this into (4-11) gives

thVniyu = (—0yp —ho +h(n — 1)k —hS)tiyu. (4-12)
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Therefore
—ih(tiy Bu | th(8u))apr = —2h(0y@c(dvp +ho —h(n—Dk +hS)tiyu | (0u@+ho)tinu)y,,
—2h(hV(V(pc)"tiNu ‘ (8v<p+h0)tiNu)aM
—hz(tchiNu ‘ (avgo—i-h(f)tiNu)aM.

We can write this as

ih(Bu | v ARSu)gpr = —2h(dveldve | tinu | tinu)y,, + Ra. (4-13)

where R» satisfies the bound on R in (4-10).

Secondly,

—ih(Bu | ivhdu)ay = ih((Bu)y | inhdu)ypy
=ih((Bu)|tinhdu)yp.
By Lemma 3.4,
tiyhdu = thVyuy+ hStuy—hd'tiyu,
soif tu =0,
tiyhdu = thVyuy—hd'tiyu.

Therefore

—ih(Bu | ivhdu)gpr = ih(tBu | thVyuj—hd'tiyu),,,.

Expanding B, this becomes

h(th(—28vgocVNu —i—ZV(V%)"u + (A(pc)u) ‘ thVNu"—hd/tiNu)aM.

Since tu = 0, the last expression is equal to
21 (3v et hVNu—thV (v, u | thVyuy—hd'tiyu),,,. (4-14)
The
—2h(ppcthVyuy | —hd'tiyu)ap
part has the same type of bound as in (4-10), so

—ih(Bu | ivhdu)ypy = —2h(0v@cthVnuy | thVyuy)am + R3, (4-15)

where R3 has the same bound as in (4-10).
Thirdly,

ih(héBu | ivu)ang = ih(h(8Bu)y | ivu)gpr
= —ih(ht(§Bu) | tinu)gp -
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By Lemma 3.5,
ht8Bu = hd'tBu+2ih*V (g, (VNinu=2ih*dy@ct Vy VNiNu
+ih? (2((n—1)k—8)dypc+205¢c + Age )t Vyinu
—|—2ih2(S—(n—1)K)tV(V%)"iNu—i—ihz((S—(n—l)K)Agoc—i—VN Agoc)tiNu
+2ih?tin R(N, V(@) L+2i R V(v .y NN U—=2i R 5 p0),t VN UL

The terms on the last two lines, when paired with i htiyu, are bounded by (4-10).
Moreover, using the boundary conditions in the form of equation (4-12) on the

R ((2((n =1k = 8)dype +2050c + Age )t Vninu | tinu)y,,

term shows that this too is bounded by (4-10). Therefore we need only worry about the first three terms.
For the —ih(h8'tBu | tiyu) term, we can integrate by parts to get

—ih(tBu | hd'tiyu)aps = —2h(ht V(g u+3hAgctu | hd'tiyu),,, .
Since tu = 0, we get

ih(tBu | hd'tiyu)gp = 2h(htVy(pu | hd'tiyu) gy .
Now

EVV (gt = VY (gt L +1VV(g) Ui
since tu = 0. Therefore
‘ih(tBu | hd'tiNu)aM} < Kh3||V’tiNu||§M + Kh3||uL||§M + K3 || Vyuy|?,

and so this term is bounded by (4-10).

For the 2h3(VEV%)"tVNiNu ‘ liNM)aM term, we can use equation (4-12) to get

2h3(VEV%)"tVNiNu | tinu)y,, = —2h2(VEV%)”(—8v<p—ha +h(n—1Dk—hS)tiyu | tinu)y,,.
and then use Cauchy—Schwarz, so this term is bounded by (4-10) too. Therefore

—ih(h8Bu | ivu)apr = 20 (Bvect Vn Vvinu | tiyu)z,, + Ri. (4-16)

where R; is bounded by (4-10).
Finally,
2h((@vpe) Au | u)apr = 2h((dvpe) Aut | u L)y,
= 2h((Bvge)(Au) L | u1) gy,
= Zh((avgoc)liNAu ‘ tiNu)aM

because of the boundary condition fu = 0. Now A = —h%?A — |d¢¢|?, so

2h((dvpe)tin Au | tinu) gy, = —2h((Bvee)h*tin Au | tinu)y,, —2h((v@e)|dpe*tinu | tinu) g,
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Using the Weitzenbdck identity, we can write —2/((3y¢c)h?tiy Au ’ 1iNU) gy, 8S
—2h((@vpe)htin Au | tinu)yy, + 2h((dvge)h> Riiyu | tinu) g,
The second term is bounded by (4-10). For the first term, we can apply Lemma 3.6 to get
—2h((@vpe)h?t VN Vninu ‘ tiNu)aM—2h((8v<pc)h2A’tiNu ‘ tiNu)aM+h3(tr(s2)iNu—S2iNu }tiNu)aM,

where Shw(X1q,..., Xp_1) = 25:11 o(...,s2X;,...). The last term is bounded again by (4-10) and
we can integrate by parts in the A’ part to get something bounded by (4-10) as well. Therefore

2h((Bvpe) Au | w)ans = —2h(Bvge)ldocltinu | tinu) yp, —2h((Bvpe) D2t Vy Vyinu | tinu) yy, + Ra,

where R4 is bounded by (4-10).
Now putting this together with (4-13), (4-15), and (4-16), we get that the boundary terms in (4-3) have
the form

—2h(3v<p|8v<p|21i1vu } tiNu)aM—2h(8v(pcthVNu" } thVNu”)aM+2h3(3v<pctVNVNiNu | tivu)aM
—=2h((vpe)lde*tinu | tinu) gy, —2h((0y )Rt Vy Vvinu | tinu),,, +R.
The :|:2h3(8v(pctVN VNinu ‘ tivu)aM terms cancel, leaving us with
—2h(3v¢|0ve|*tinu | tinu) gy, —2h(dvpcthVyuy| thVNu||)aM—2h((3,,gac)|d(pc|2tiNu |tinu)g,, +R.
We can replace ¢, by ¢ and incorporate the error into R, without affecting the bound on R, to get
—2h(0y@|dvePtinu | tinu)yy, —2h(0v@thVnuy | thVnwy) o, — 20 (Bvelde*tinu | tinu) gy, + R

and the proposition follows. O

5. The 0-form case

We will now prove Theorem 2.5 in the O-form case. In the case where (M, g) is a domain in Euclidean
space, Theorem 2.5 for O-forms is the Carleman estimate given in [Chung 2015, Theorem 1.3]. In this
section we will deal with the added complication of being on a CTA manifold, rather than in Euclidean
space. Most of the ideas are from [Chung 2015] with necessary modifications added to adapt to the
manifold case.

If u is a zero form, then iyu =0, so v = 0 and ¥ = uy.. Theorem 2.5 reduces to the estimate

1
1(=Ag + > Q)ull2ary Z hllull oy + h2 lunll g g (5-1)

where Q € L®(M) and 0 < h < hy, for functions u € H?(M) with ulr, = 0 to first order and
hav(e_%u) = hoe hu on IS . By arguing as in the beginning of Section 6 below, the estimate (5-1)
will be a consequence of the following proposition.
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Proposition 5.1. Suppose u is a function in H*(M ) which satisfies the following boundary conditions:
u,dpu =0 on 'y,

_e _e (5-2)

hoy(e”nu) =hoe "u on TS

for some smooth function o independent of h.
Then

1 3
h2||hV u Iz2are)y < 1AgcullLzary + Rl any + 221l L2 )
We will prove this proposition in the case where the metric g has the form g = e & go. However, if g
were of the form g = c(e & go), we could write
Qc _%c
IAg ulli 2y = 112 Acemgore™ " ullL2aan)
Pc _Yc
2 K% Acwgoe™ 1l L2y = hllull i any- (5-3)

Therefore the proposition remains true even in the case when the conformal factor is not constant. More
generally, the proofs of the Carleman estimates work for any smooth conformal factor, and thus as noted
earlier, the Carleman estimates hold on CTA manifolds in general.

The operators. Here we introduce the operators we will use in the proof of Proposition 5.1. Similar

operators are found in [Chung 2014; 2015]. Suppose F(£) is a complex-valued function on R”~!, with the

properties that | F(§)|,ReF(£) =~ 1 4 |£|. Fix coordinates (x1,x") on R”, and define R’} to be the subset

of R” with x; > 0. Define S(R'}) as the set of restrictions to R”, of Schwartz functions on R". Finally, if

u € S(R), then define #(x1, £) to be the semiclassical Fourier transform of u in the x” variables only.
Now for u € S(R”}), define J by

Tu(xi,€) = (F(€) + hdp)ii(x1, §).
This has adjoint J* defined by
T*u(x1,£) = (F(€) —hdy)a(x1, §).

These operators have right inverses given by

1 | F(§) =51
J U=y u(t,&)e ndt,
0

T, o L [T s FOM
J¥ T u = 7 u, ée A dt.
X1

Now we have the following boundedness result, given in [Chung 2015].

Lemma 5.2. The operators J, J*, J 1 and J*71, initially defined on S([RR’J’F), extend to bounded
operators
J,J* HY (RY) — L*(RY),
JTLIU AR - HY(RD).

Moreover, these extensions for J* and J*~1 are isomorphisms.
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Note that similar mapping properties hold between H ! (R") and H 2([R§’_"_), by the same reasoning.

We’ll record the other operator fact from [Chung 2015] here, too.

Let m,k € Z, with m, k > 0. Suppose a(x, £, y) are smooth functions on R”~1 x R?~! x R that satisfy
the bounds

|98 0g 0] a(x, £, 3)| < Cap(1+ £

for all multiindices @ and 8, and for 0 < j < k. In other words, each af;a(x, £,y) is a symbol on R*~!
of order m, with bounds uniform in y, for 0 < j < k. Then we can define an operator A on Schwartz
functions in R” by applying the pseudodifferential operator on R”~! with symbol a(x, &, y), defined by
the Kohn—Nirenberg quantization, to f(x, y) for each fixed y.

Lemma 5.3. If A is as above, then A extends to a bounded operator from HXt™(R") 10 H* (R™).

The graph case. Suppose [ : My — R is smooth. In this section, we’ll examine the case where M lies
in the set {x; > f(x')} and T'{ lies in the graph {x; = f(x’)}. For this section we’ll make two additional
assumptions on f and M.

First, we’ll assume g¢ is nearly constant; that is, there exists a choice of coordinates on the subset
P (M) which consists of the projection of M onto My such that when represented in these coordinates,

lgo—1]=<6

on P(M), where § is a positive constant to be chosen later.
Second, we’ll assume f is such that Vg, f is nearly constant on P (M ); that is, there exists a constant
vector field K on T'M such that
[Veof = Klgo =6.

where § is the same constant from above. The choice of § will depend ultimately only on K. In the next
subsection we’ll see how to remove these two assumptions.

Now we can do the change of variables (x1,x’) — (x; — f(x'), x'). Define M’ and fjr to be the
images of M and T respectively under this map. Note that {x; > f(x’)} maps to (0, 00) x My, and I"§
maps to a subset of 0 x My. Observe that in the new coordinates, ¢(x) = x1 + f(x').

Now it suffices to prove the following proposition.

Proposition 5.4. Suppose w € H2(M'), and
w,bw=0 on fg_,
W+ Vg, f -hVgow —how 5-4)
1+ |Vg, f1? ’

where o is smooth and bounded on M'. Then

1 ~/ 3
I Vg0l 2oy S NEg el gy + A0l g iy + 13 10l oy,
where

Lyo=(1+|Vgo f1P)h203 —2(c + Vg, f - hVgo)hdy + o + h2 Dy,

ando =1+ %(xl + f(x")). Note that on M’, we know « is very close to 1.
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This proposition implies Proposition 5.1 in the graph case described above.

Proof of Proposition 5.1 in the graph case. Suppose u € H?(M), and u satisfies (5-2). Let w be the
function on M defined by w(x1,x’) = u(x; + f(x'),x’). Then w € H2(M’'), and w satisfies (5-4).
Therefore by Proposition 5.4,
1 ~/ 3
BN Wl o oey S 1Z g ol gizn + R0 (iary + 3 102 ey

Now by a change of variables,

llargy = 1wl o,

lull e cany = 10l oy
and

12V ull2(re) = W Vgowll (e

Moreover,

(Lypw)(x1 = f(x), X)) = Loeulx1, ) + hEu(x1, '),

where E; is a first-order semiclassical differential operator. Therefore by a change of variables,

124,00l 210y < 1£o.eullizcany + hll .
Putting this all together gives
W2 1 Vgoullp2(re) S I £pettliLacany + el any + 02 ull e . O
We can do a second change Sf variables to move to Euclidean space. By our assumption on My, we
can choose coordinates on P(M’) = P(M) such that
|go—1]=3.

Now we have a change of variables giving a map from P(]\7I ’) to a subset of R*~!, and hence a map
from M’ to a subset of R’ ., where the image of fg_ lies in the plane x; = 0. Let M and f+ be the images
of M and Fjr respectively under this map. We’ll use the notation (x1, x”) to describe points in R”, where
now x’ ranges over R"~1. Now it suffices to prove the following proposition.

Proposition 5.5. Suppose w € H2(M), and
w,,w=0 on f+,

w+ B-hVyw—how (5-5)
L+ 1y ’

where o is smooth and bounded on M, and B and y are a vector-valued and scalar-valued function,
respectively, which coincide with the coordinate representations of Vg, f and |Vg, f |g,- Then

1 ~ 3
h2 ||hvxlw||L2(f‘3_) S ||£(p,8w||L2(M) +h”U)”H1(M) +h2 ||w||L2(f§_),
where
L =(1+| 2\1,292 2 2
0. = YI9)h*07 —2(e + B+ hVx)hoy +a” + h°L,
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and L is the second-order differential operator in the x'-variables given by
L=glo:0;.

Proposition 5.4 can be obtained from Proposition 5.5 in the same manner as before, with errors
from the change of variables being absorbed into the appropriate terms. Therefore it suffices to prove
Proposition 5.5.

To do this, we’ll split w into small and large frequency parts, using a Fourier transform. Recall that we
are assuming

|Vgof - K|g0 <é.

Translating down to M, and recalling that g¢ is nearly the identity, we get that there is a constant vector
field K on M such that
IB—K|=Cs and |y—|K|[<GCs.

where Cg goes to zero as § goes to zero. Now choose my > m; > 0 and pu; and s such that
K| 1 K|

—<[L1</,L2<§+—<1.
V1+K2 24/1+|KJ?

The eventual choice of (1; and m; will depend only on K.

Define p € C§°(R") such that p(§) = 1 if [§] < w1 and |I?§‘| <mi, and p(§) = 0 if |§] > o or
|K €| > ms. ~ ~

Now suppose w € C°°(M) such that w = 0 in a neighbourhood of I'y, and w satisfies (5-5). We can
extend w by zero to the rest of R, . Then w € S(R’} ), and we can write our desired estimate as

1 ~ 3
B30l 1 oy S 10wl + bWl gy + 2 [l 2.

Recall that w(x1, §) is the semiclassical Fourier transform of w in the x’-directions, and define wjg
and wy by Wy = pw and Wy = (1 — p)w, so w = wg + wy.
Now we can address each of these parts separately.

Proposition 5.6. Suppose w is as above. There exist choices of m1, ma, (1, and o, depending only
on K, such that if § is small enough,

1 ~ 3
B3l ey S 1 2gewlizagy) + Iwlla oy +h3 w2, ).

Before proceeding to the proof, let’s make some definitions. If V' € R"~! and a € R, define A+ (a, V, §)
by

L+iV-E£ VA +iV 62— (1 +]al?)(1 - [§?)
1+ af? '
In other words, A4 (a, V, §) are defined to be the roots of the polynomial

A:l:(a’ Vv, S) =

A+ aHX%2 =200 +iV-E)X + (1 —|E?).
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In the definition, we’ll choose the branch of the square root which has nonnegative real part, so the branch
cut occurs on the negative real axis.

Proof. Now consider the behaviour of A4 ( |IZ l, K, &) on the support of p, or equivalently, on the support
of ws. If n > 0, we can choose , such that on the support of Wy,

L= (1+ KA (1= [E7) <.
Then on the support of Wy, the expression
(1+iK-§)% =1+ K1~ [E])
has real part confined to the interval [—E 2_ m%, n—+ m%], and imaginary part confined to the interval

[—2my, 2m5]. Therefore, by correct choice of n and m,, we can ensure

RCA:I:(|K|,K,$) > m

on the support of ws. This allows us to fix the choice of w1, (2, m1, and m,. Note that the choices
depend only on K, as promised.

The bounds on A+ (|K|, K, £) allow us to choose Fy so that Fx = A4 (|K|, K, &) on the support
of Wy, and ReFy, |Fy| >~ 1+ |€] on R”, with constant depending only on K. Therefore F4 and F_ both
satisfy the conditions on F' in Section 2. If Ty, represents the operator with Fourier multiplier ¥ (in the
x'-variables), then it follows that the operators 79, — T, and hd, — Tg_ both have the properties of J*
in that section.

Up until now, the operator Z(p,S has only been applied to functions supported in M. However, we can
extend the coefficients of E(p,g to R’ while retaining the |8 — K | < Cs and ‘y — |I? |‘ < Cs conditions.
Then

1Z0.ewslzagen) = [ (A+1y R0 =20+ B-hV)hdy +a® +h> L)ws | 2
> |((1+]K1P)R?92—=2(1+ K -hVx)hdy +1+h? Ay )wg \|L2(R1)—c5||ws||mm)
for sufficiently small # and some Cg which goes to zero as § goes to zero. Meanwhile,
(14| RP)(hdy — T, )(hdy — Tr_yws = (1 + |[KP) (0202 T, 1 p_hdy + Tr, ).
Since F1r = A4+ (K, K, £) on the support of Wy, this can be written as
(1+ K (0?03 —Ta, +a_hdy + Ty 4 )ws = (1+|K[HR*92 —2(1 + K -hVx)hdy + 1 +h> Ay )w.
Therefore
||pr,ews||L2(R1) > ||(hdy — Tr, ) (hdy — Tr_)ws HLz(Ri) — Csl|wsll 2@ )-
Now by the boundedness properties,

” (hdy — TF+)(hay —TF )ws ”LZ(R’:L) = ||wS||H2(R1)’
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so for small enough 4,
1£g.ewsllL2@ny 2 lwsll g2 -
Then by the semiclassical trace formula,
~ 1
||£§0,£ws ”Lz(R{’i_) 2 h2 ”ws ||H1(8R’_1+_)'
Finally, note that
”»C(p,ews”Lz([R’fi_) = ||£¢,8pr”L2(R”+)
2\—1 7
S A+ 1y) £(p,spr”L2(R’j_)
2\-17
SITo(+ 1) Loewlz@ey + 1R E1wl L2 ),

where 7 E; comes from the commutator of 7, and (1 + |y|2)_15¢,,8. By Lemma 5.3, £ is bounded
from Hl([R{’i) to LZ(R’i), o)

ILp.ewslL2@n) < ILp.ewl2@y) +hlIwl ).
Therefore
- 1
1Zgewlizeg) +hIwlle ey 2 52 1wsl g1
as desired. O

Now we have to deal with the large frequency term.

Proposition 5.7. Suppose w is the extension by zero to R} of a function in C °°(]\2 ) which is 0 in a
neighbourhood of f‘+, and satisfies (5-5), and let wy be defined as above. Then if § is small enough,

1 ~ 3
h2 well g1 oy S 1Lo.ewlL2@y) + AWl g gty + A2 [l L2 orr)-

Proof. Suppose V € R". Recall that we defined

L4+iV-§+ /(1 +iV-6)2—(1+a>)(1—[§])

A:I:(a7V’§): 1+|a|2

so A4 (a,V,§) are roots of the polynomial
(1+1al>)X?=2(1+iV-E)X + (1 - [€[*).

Now let’s define

oIV -E @+ iV E2 = (4 |al?) o2 — gl &i8))

A% (a,V, &) =
+(@.V.5) 1+ [a]?

so A% (V. &) are the roots of the polynomial

(1+|aHX2 =2 +iV-E)X + (@* - gj &¢)).
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(Recall that « is defined by o = 1 + %(xl + f(x’ )).) Again we’ll use the branch of the square root with
nonnegative real part.
Now set { € CS°(R"™1) to be a smooth cutoff function such that { = 1 if

= 1 1 |K 1
Rogl<im ana <l K41,

> J1+IRP

and £ = 0if |K -&| > my or |§] > u1.
Now define
Gi(a,V.5)=(1-0Ax(@a,V.§)+¢
and
Gi(a,V.§) =(1-0A%(a, V.8 + ¢

Consider the singular support of A% (y, B,§). These are smooth as functions of x and § except when
the argument of the square root falls on the nonpositive real axis. This occurs when 8 -& = 0 and

a?ly)?

w6 < T

Now for § sufficiently small, depending on K, this does not occur on the support of 1 — . Therefore

GL(y.B.§) =(1-DAL(y.B.§) +¢

are smooth, and one can check that they are symbols of first order on R”.
Then by properties of pseudodifferential operators,

A+ 1yP)(hdy = Tas (,8.6) (hdy — TGz (7..8))
= (L +yI)(h*05 = Tos (v.8.6)+G= (r.8.513y + TGe (18,662 (v,8.6)) + hE1.
where E; is bounded from H! ([R’j_"'l) to LZ(RT’I). This last line can be written out as
(14 [y[HR*0; —2(a + - hV)hdy Tyt Tiqg + (@ + h*L)T(y_¢y2 + hEy + T2 —2h0, Ty
by modifying £ as necessary. Now Tz wy = 0, so

1+ |)/| )(hdy — TGa .8, 5))(h8 —TGe (.8, g))wg Z(p,gw[ —hEjwy.
Therefore
1Z.ewell 2y 2 |10y = Tax r8.6) 3y = Toe p.0)We | Loty = Hllwell g -

Now
G (y.B.&) = G+(IK|. K. £) + (G5.(y. B.&) — G+(IK|. K. §)).
and

T65 (r.8.6)-G+(RI.R.®
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involves multiplication by functions bounded by O(3), so

1765 ¢v..6)-6 &1L E 6V L2@r+1y S 0Vl gty
Therefore

1£g.ewell L2 grt1y 2 |13y —Tg, (71.8.6) M9y — TG (r.8.6)We HLZ(RT'I)
—hllwell g gty = 8l (hdy = Tae g ) well 1 gty
Now we can check that G, (|K|, K, £) satisfies the necessary properties of F from this section, so
||Z<p,8wﬁ||L2(R1+1) R Nhdy = Tae or.p.e)Wel g gty = Pllwel g ey
- 8||(h8y - TGi(%ﬂ,S))wZHHI(RTLI)-
Then for small enough 4,
||Z¢,8w€||L2(R"++1) 2 ||(hay - TGE_(V,ﬂ,E))wanl(R";‘I) - h”we”Hl([R’f'l)
1
2 h2|[(hdy = Tge (.6 well L2ray — hllwe IIHl(Rn++1)-

Now by (5-5),
w+ B-hVyw + how
L+ [y)?

on dR” , so
wy + B+ Vywy
1+y[?

on dR" , where E is bounded from L?(R"~!) to L?(R"~!). Therefore

hoywy = +hEow

1

Wy —I-,B-wag
L+ [y?

|

||Zw,sw£||L2(Ri) 2 —TGe (y.8.6)We

3
—hlwellgr gy =72 w2 orey
)

1 3
R h2lwell g ogeyy = llwell e @y — 12wl L2 owe)-

Now
lwell @y < lwlla ey
and
||E<o,swe||L2([R1) < ||E<o,sw||L2(Ri) +hlwll g ey
Therefore
1Zgewlzon)+hlwlm ) +h2 wlLomn ) 2 52 wel g1 p,
as desired. O

Now combing the results of Propositions 5.6 and 5.7 gives

1 1 ~ 3
h>2 ”wZHHI(BR’_’i_) +h2 ”wS”FII(aR’_’i_) < ”ﬁ(o,&‘w”Lz(R’_"_) + h||w||H1(R1+1) +h2 ”w“Lz(aRi)'
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Since w = wy + wy, we get
1 ~ 3
h2 IIwIIHI(aRi) SlLoewllrzmy) +h||w||H1(Rn++n) +h2 |wllL2eorn)

forw e C OO(M ) such that w = 0 in a neighbourhood of f‘+, and w satisfies (5-5). A density argument
now proves Proposition 5.5, and hence Proposition 5.1, at least under the assumptions on g¢ and f* made
at the beginning of this section.

Finishing the proof. Now we need to remove the graph conditions on I'S , and the conditions on the
metric go. Since '+ is a neighbourhood of M, in a small enough neighbourhood U around any point p
on I'{ , we know I'{ coincides locally with a subset of a graph of the form x; = f(x’), with M N U
lying in the set x; > f(x’). Moreover, for any § > 0, if V4, f(p) = K, then in some small neighbourhood
of p, we have |Vg, f — K|g, < 8. Additionally, since we can choose coordinates at p such that go = I
in those coordinates, for any § > 0 we can ensure that there are coordinates such that |go— /| < 4§ in a
small neighbourhood of p. We can choose ¢ to be small enough for Proposition 5.1 to hold, by the proof
in the previous subsection.

Now we can let U; be open sets in M such that {Uy, ..., Uy} is a finite open cover of M such that
each M N U; has smooth boundary, and each I'{. N U; is represented as a graph of the form x; = f; (x),
with |Vg, f; — Kj|g, < §;, and there is a choice of coordinates on the projection of M N U; in which
|go— 1| < d;, where §; are small enough for

1 3
hz|hVvjliL2es nuy) S 1£e.evillL2unuyy + 2lIVillE (aawy) + 121V llL2(re nujy
to hold for all v; € H2(M N U;) such that
Vi, 0,v; =0 on I(U; N M)\ TS,
j wv j ) J + (5-6)
hoy(e”#nv;) =hoe  nv; onT{NU;.

Without loss of generality we may assume each U; is compactly contained in U jO x (0, 1), where U JQ isa
coordinate chart of M.

Now let x1,..., xm be a partition of unity subordinate to Uy, ..., Uy, and for w € H?(M) satisfying
(5-2), define w; = y;w. Then if Fi NU; # @, we know w; satisfies (5-6) for some o, and so

1 3
h2|hVewjllL2(re nuyy S 1£p.eWillL2mnuyy +Blwillar enuy) + 12 [wjllLzcre noj)-

Adding together these estimates gives

m
1 3
h2([hViwll2cre ) < D Lpewillz2ary + hllwl g an + 72 lwllz2re)-
j=1
Each || Ly cwjl|L2(pr) = [1£p,eXj Wl L2(ar) is bounded by a constant times || Ly W] 12(ar) + AW g1 a1y
SO
1 3
hz|hViwllL2re) S 1£p.ewliL2an) +Alwllmran +h2 w2 re)-

This finishes the proof of Proposition 5.1.
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6. The k-form case

We will prove Theorem 2.5 for u € Q¥ (M) by induction. If k = 0, then iyu =0, so u | =0 and u = uj.
Then Theorem 2.5 for k = 0 becomes the Carleman estimate (5-1) that was established in Section 5.

Note that it suffices to prove Theorem 2.5 for u € Q¥ (M), with the appropriate boundary conditions,
for each k, and Q = 0. Then the final theorem follows by adding the resulting estimates and noting that
the extra 42 Qu term on the right can be absorbed into the terms on the left for sufficiently small /.

Proof of Theorem 2.5 for k > 1. Suppose u € QK (M) with k > 1. First note that if we impose the
boundary conditions (2-2) of Theorem 2.5, substituting the result of Proposition 4.2 into (4-3) gives

IApull® = || Aul|® + || Bu|l® + (i[A, Blu | u) — 2h> (3,9 Vyu_ | VNuL)re
— h(dve(lde]® +[dveP)uy | u")]"'i + R, (6-1)

where
3

h h
3 2 2 2
Rl = € (KRIV g + iy + IO IR )

Recall also from Proposition 4.2 that the nonboundary terms || Au||? + || Bul|?> + (i[A, Blu | u) satisty

h2 h3
1 Au||* + | Bu? + (i [A, Blu | u) 2 — IIuIIHl(M) (HMIIH%.Il(aM)‘F”hVNuJ_”iz(aM)) (6-2)

for h < ¢ <« 1. We now return to (6-1) and examine the boundary terms. On Fi, there exists g1 > 0
such that d,¢ < —e;. Using this together with (6-1) and (6-2) gives

h "3 K2
2 3 / 2 2 2 3 2 2
1Apeull” + KRV iullre + 4 lhullpe + ||VNMJ_||Fc R Il agy + 27 VN LT + Al

for large enough K. The last two terms on the left side can be absorbed into the right side, giving
2 31 10,112 h? o 3 2 2
1Ageull™ + KRZ|IVitwilleg 2 — Nl gy + 27 IVNU LI + Al -

Now we want to analyze the boundary term on the left, and this is the part where we will use induction
onk:

Lemma 6.1. If u € QK(M ) and u satisfies the boundary conditions (2-2), then
h3||V/tun||12~c+ SNAgull? + 12 [ulf ap) + h2||u||||12~5r- (6-3)
If (6-3) is granted, fix K sufficiently large and then take & < ¢ < 1 to obtain
1Agul® 2 ﬁ||7ft||§11(M) + R Vnupllfe +hlwillfe + 721V 0wl
e + + +

Rewriting without the squares,

lAp.ull 2 [||u||H1(M) +h? 17VNu lre + h? el (e -
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2
Now if u satisfies (2-2) then so does e % u since ¢ is fixed. Therefore

lle 5 —=lle % i qary + 12 |h Ve % ullrg + h2 e % uill g re -

Agpull 2 \/—
2
Since e % is smooth and bounded on M, we get
1 1
l1Agull Z Allull grany + 2 1RV U Llpg + A2 [luall g1 re -
Thus Theorem 2.5 for k > 1 will follow after we have proved Lemma 6.1.

Proof of Lemma 6.1. For the O-form case, this follows from Theorem 2.5 for O-forms, which in this section
we are assuming has been proved. Therefore we can seek to prove (6-3) for k-forms by induction on k.

Let k > 0, and assume (6-3) holds for (k—1)-forms satisfying (2-2). Now let Uy, ..., U, C T be an
open cover of I'{ such that each U; N 'S has a coordinate patch, and let y1, ..., ym be a partition of
unity with respect to {U; } such that ) x; = 1 near I'{ and Vy y; = 0 for each i. It will suffice to show

RVt ginlEe < 1 Agel® +h2ull 1 gy + 12l

Now on U; N I‘j_, let {eq,...,en—1} be an orthonormal frame for the tangent space, and extend these
vector fields into M by parallel transport along normal geodesics.
Observe for all w € Qk(UJ N T ) one can write

1 n—1
=2 Y et nico. (6-4)
j=1

Therefore we can write
1 n—1 1 n—1
b o+ b .
V't yiuy = %V/ Z e; Nie;t i) = %V/ Z e; Ntie; XiU.
Jj=1 Jj=1
Then it suffices to show

13|V (e} Atie, xiun) | 1

re S SN Apeull® + h el gy + 22 e

or equivalently,
3| V'tie, Xi“ll“%gr SNAgull? + 12 ullf o) + hzlluullﬁ« (6-5)

Now we want to apply the induction hypothesis to i, y;u, so we have to check that it satisfies the bound-
ary conditions (2-2). In fact we will have to modify i, y;u) slightly to achieve this. Let p(x) be a function
defined in a neighbourhood of the boundary as the distance to the boundary along a normal geodesic, and
extend it to the rest of M by multiplication by a cutoff function. Then the claim is that v =i, x; (uy+h(1—
e_%)Z u)) satisfies the absolute boundary conditions (2-2), where Z is an endomorphism yet to be chosen.

Since u satisfies (2-2), ie; x;uj and ie; y; (h(1 — e_%)Zu") both vanish to first order on I'. Therefore
v does as well.
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Moreover, t xie; xjuj =0 on 'S if iyie; iy = —yxiie;inuy =0 on I'C, and this again follows from
the fact that u satisfies (2-2). Note that (1 — e_%) =0atdM,sot*v=0o0nTY.
Finally, by Lemma 3.3,

—18 % ig; yiuy = —8't (xie; xiun)+ (S — (n — D) tin (xie; xiun) L+t VNIN * le; XiU.
Since t * e, y;uy = 0 on I'{, the first term vanishes there as well. Therefore on I'{,

—thS xie; yiuy=h(S —(n —D)i)tin (xie; xiun) L +1hVn xiin * ie;uy.

Now
thVN YiiN *ie;u) = thVN)(,-iNe? A suy(—1)F1
= thVy yiinel A (k) L (—1)*7!
= thVN)(iiNe? A >|<u(—1)k_1
= (=¥ yieh AthVyiy xu,
SO

—th§ % ig; xiun = h(S — (n — Di)tin (i, xin) L + (—D¥ yied AthVyiy *u. (6-6)

Applying the same calculation to the i¢; x; A (1 — e_%)Z u) term gives
—th8 % iejic; xih(1—e™ ) Zuy = (=1)¥ yieb Ath?Vy (1 — e~ )iy % Zuy;
the other term vanishes since (1 — e_%) = 0 at the boundary. Thus
—thS xieie; xih(1 —e_%)Zu" = (—l)k)(l-e; Atiy xhZu.

Meanwhile, by Lemma 3.3 and by (2-2),

—thdxu=h(S —(n—D)tiy(xu) L +thVyiy(xu) =tig, *u—hotiy *u.
Viewing this as an equation for 12 Vy iy (*u) and substituting into (6-6) gives
—thd *ie; xiun = h(S — (n — D)tin (xie; xivn) L

+ (—l)k)(l-e? A (—h(S —(n—=Dr)tin(*u)y +tigy *u—hotiy * u)
Therefore
—th8 % i, xi (un+h(1 —e~7) Zuy)
=h(S —(n— Di)tin (xie; xivn) L
+ (—l)k)(,-e]b A (—h(S —(n—=Dr)tin(xu)y +tigy *u—hotiy *u+tiy * hZu”).

Now if we let
Z=xNAS+o—(n—1k)iyx,

where here we identify S and o with their extensions by parallel transport to a neighbourhood of the
boundary, then

tinxZuy=(S+o—-m—D)tiy xuy=(S+o0—m—)x)tiy *u,
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and
—thé *ig; yi(uy+ h(l —e_%)Zu") = h(S — (n— Di)tin ki, yivn) L + (—l)k)(,-ejb- Aligy * U.
Since # xu = 0 on I'{, we can replace the dg in tig, * u with its normal component:
lige *u = —0,Qliy *u.
Then
)(ie}’. AN—tigy*u = 31,(,0)(,-6? Atiy (ku)
= 3v<ﬂ)(i€? ALIN * U
= —auwtiNXief A kU
= doptiy *ie; xittn(—1)*.
Since ¢ xi¢; xjuy=0o0nT'¢,
Xi€? A—tige ¥ U = —tigy *ie; xiup(—1)k
and
(—l)k)(ie})- N—ligy*U = —ligy *le; XiU|.
Therefore

—thd *ie; yi(uy+h(l —e~h)Zuy) = tigy * fe; xiun—ho'tin i, xiuy,

where ¢’ is a smooth bounded endomorphism. We can replace u) on the right side by uy+ A(1 —e_%)Z uy,
since (1— e_%) is zero at the boundary. Therefore v =i, y; (u)+ h(1 —e_%)Zu”) satisfies the boundary
conditions (2-2), and so by the induction hypothesis,

WIV'tvlIEe S 1Ape vl + 20113 gy + 22 01
Keeping in mind that the second term of v is zero at the boundary, and O(h) elsewhere, we get

h3||V'ti, Xi“ll“%i S8l + B2 luilZ1 p +h2||uu||12~i- (6-7)
Now
. . _0
[Ag 0]l £ ||A<pclej)(iull|| +h||A(pcleri(1 —e n)Zuy|.

The commutators of Ay, with ie; x; and i, ;i (1 — e_%)Z are O(h) and first-order, so
. . _p
[Ag vl S llie; xi Aportnll + llie,; xi (1 —e™ ") ZAguill + hlluill 71 (ar)

< A unll + Allwill g1 (ary-

Substituting back into (6-7) gives
WV tie; ximillfe S I Aganll® + 2 lnliFg ppy + 22 lhaill e -

This proves (6-5), which finishes the proof of the lemma. o
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7. Complex geometrical optics solutions

We will begin by constructing CGOs for the relative boundary case. To start, we can use the Carleman
estimate from Theorem 2.4 to generate solutions via a Hahn—Banach argument. The notations are as in
Section 2.

Proposition 7.1. Let Q be an L°° endomorphism on AM, and let Ty be a neighbourhood of 0M .. For
allve L>2(M,AM), and f,g € L>(M, AOM) with support in TS, there exists u € L>(M, AM) such
that
(=AM +h2Q"u=v on M,
tu=f onTS,
thé_yu=g onT4,
with
_ 1 1
lellz2any < B0 IL2 00y +R2 1 L2y + B2 182 (rs)-

Proof. Suppose w € Q(M) satisfies the relative boundary conditions (2-1) with o = 0, and examine the
expression

|(w | v) = (tivhdyw | hf )rg — (tivw [ hg)re |. (7-1)

This is bounded above by

_ 1 1 1
hlwllizzanh™ IvlL2ar) +h2 ltivhdpwllzzcreyh2 [ flLzcrey + A2 lItivwllz2cre) gl L2cre -

By Lemma 3.4,
tivhdyw = he tVy (e~ hw)y+ hStwy—hetd'tiy (e~ Fw).

Since tw =0,
tivhdyw = htVywy—he d'tiy (e hw).

Therefore

ltivhdpwllzzcrey < 1AVNwillL2re) + lwLllmrre).-
Then by Theorem 2.4,
|(w | v) + (tivhdyw | hf)re + (tivw [ hg)re
S I8¢ + 12 Q)wllL2an) (7 10l z2qary + 5211 L2re) + R gl L2ere )

Therefore on the subspace

{(—0y +h?Q)w | w e Q(M) satisfies (2-1) with o0 = 0} C L*(M, AM),
the map
(—8g + 2 Qw > (| v) = (tivhdgw | hf ) — (tivw | hg)re

defines a bounded linear functional with the bound

- 1 1
W vll2any + 21 f llz2ergy +h2 18l rey.-
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By Hahn—Banach, this functional extends to the whole space, and thus there exists a u € L2(M ,AM)
such that

_ 1 1
lullz 2y S h vz + 52 1A 2rey +h2lgliare)
and
(w | v) = (tivhdyw | hf)pgr — (tiyw | hg)pj_ = ((—A(p +h?Q)w ‘ u)
Integrating by parts and applying the boundary conditions (2-1) gives

(w | )~ (ivhdgw | hf )re — (tivw | hg)re
= (w | (—A—p+h*Q™)u) — h(tivhdyw | tu)gp — h(tivw | thé_yu)am
for all w € Q(M) satisfying the relative boundary conditions (2-1) with ¢ = 0. Varying w over the
compactly supported elements of (M) one sees that (—A_, +h%2Q*)u = v on M, which reduces the
above relation to
—(tivhdyw | hf)l"j‘r —(tiyw | hg)rgr = —h(tivhdyw | tu)gpr —h(tivw | thé_pu)gp

for all w € Q(M) satisfying the relative boundary conditions (2-1) with ¢ = 0. We now vary w satisfying
condition (2-1) with o = 0 and i,w = 0 to obtain fu = f on I'{. Finally, by varying w over all forms
satisfying conditions (2-1) with o = 0, we see that th§_,u = g on I'{..

To summarize, we can see that

(—A_p +h*Q"u=v on M,
tu=f onTg,
as desired. O

To match notations with previous papers, we will begin by rewriting this result, along with the Carleman
estimate, in T notation, as follows.
Theorem 2.4 becomes the following.

Theorem 7.2. Let Q be an L°° endomorphism on AM. Define 'y C dM to be a neighbourhood of oM 4.
Suppose u € H*(M, AM) satisfies the boundary conditions

ulr, =0 and Vyu|r, =0,
tulre =0, (7-2)
18.2_“"14|1~5r =otiye “Yu
for some smooth endomorphism o independent of t. Then there exists tg > 0 such that if T > 19,
I(=Ac + Qullz2an) Z Tllullzqary + 1Vull 2oy + 72 sl z2re)

1 . 1
+ 2 |IV'tinullp2cre) + T2 Vvl L2 (g
where
A =e™Ae ™%
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By choice of coordinates, note that the same theorem holds for t < 0, with I'; replaced by I'_.
Then Proposition 7.1 becomes the following.

Proposition 7.3. Let Q be an L>® endomorphism on AM. For all v € L>(M,AM) and f.g €
L2(T<, AFj_), there exists u € L>(M, AM) such that

(=A_:+Q0Mu=v onM,

tu=f onTS,

t16_;u=g onTq,

with
- 1 _3
lullz2any S T Hvlizean + 7 21 l2rey 72l L2cre)-

Now we turn to the construction of the CGOs themselves. From now on we will invoke the assumption
that the conformal factor ¢ in the definition of M as an admissible manifold satisfies ¢ = 1. Below
we will consider complex-valued 1-forms, and (-, -) will denote the complex bilinear extension of the

Riemannian inner product to complex-valued forms.
We assume

(M, g) € Rx My, g), g=edgo,

where (M, go) is a compact (n—1)-dimensional manifold with smooth boundary. We write x = (x1, x’)
for points in R x My, where x; is the Euclidean coordinate and x’ is a point in My. Let Q be an L
endomorphism of AM. We next wish to construct solutions to the equation

(—A+Q0)Z=0 in M,
where Z is a graded differential form in L?(M, A M) having the form
Z=e¢ "1 (A+R).

Here s = t +iA is a complex parameter where 7, A € R and |z| is large, the graded form A is a smooth
amplitude, and R will be a correction term obtained from the Carleman estimate. Inserting the expression
for Z in the equation results in
e (=A+ Q)e 'R =—F,
where
F=e"1(—A+ Q)e 1 A.

The point is to choose A so that || F|[z2¢3r) = O(1) as |t| — oo.
By Lemma 3.2, we have

F=(—A—5s*+25Vy + Q)A.

We wish to choose A so that V3, A = 0. The following lemma explains this condition. Below, we identify
a differential form in M with the corresponding differential form in R x My which is constant in x1.
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Lemma 7.4. If u is a k-form in R x Mo with local coordinate expression u = uy dx?, then
Vou=0 < ur=us(x’) foralll.
If Vg, u =0, then there is a unique decomposition
u=dx' ru' +u”,
where u’ is a (k—1)-form in My and u” is a k-form in My. For such a k-form u, one has
Au=dx' AApu' + Acu”,
where A and A are the Hodge Laplacians in R x Mo and in My, respectively.

Proof. In the (x1, x")-coordinates g has the form

g(-xla-x,) = ((1) gO?x/)) .

Consequently, for any k,/ the Christoffel symbols satisfy
Tl = 1" 18km + Ok gim — dmgik) = 0.
This shows Vj, dx! =0 for all I, and therefore any k-form u = u; dx' satisfies
Va, (ur dx’) = dyuy dx’.

Thus Vy,u = 0 if and only if each u; only depends on x”. In general, if u is a k-form on R x My we
have the unique decomposition

u=dx' ru' +u”
where u’(x1,-) is a (k—1)-form in My and u”(x1,-) is a k-form in My, depending smoothly on the
parameter x1. If Vj u =0, then u = dxY Au' +u”, where u’ and u” are differential forms in M.

Suppose now that u = dx! Au’ + u”, where u’ and u” are forms in M. Denote by dys and 8,/ the
exterior derivative and codifferential in x’. Clearly

d(dx' anu')y = —dx' Ady!,  du” = dyu”.

The identity § = — Z;-'Zl ie; Ve, , Where e; is an orthonormal frame in T'(R x M) with e; = d1, together

with the fact that Vy, u” = 0, implies

Su” =8,u”.

Finally, computing in Riemannian normal coordinates at p gives

n
8(dx' A)|p == iy, Vy (uy dx' ndx”)l,
j=1

n
=— Z iy, (dx' A Vo, u)lp = —dx' A8yl |p.
j=2
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Thus
§(dxt A’y = —dx NSl
It follows directly from these facts that
Aldx A" +u"y = —(d8 +8d)(dx Au' +u")
=dx' A Aypu’ + A, O
Returning to the expression for F, the assumption Vj, A = 0 gives
F=(-A—s>+0Q)A.

Writing Y* for the k-form part of a graded form ¥ and decomposing A% = dx! A (4%) + (4%)” as in
Lemma 7.4, we obtain

F¥ = dx! A (= Dy =sH)(AY) + (= Ay =549 + (04"
Thus, in order to have || F[|z2(pr) = O(1) as |t| — oo, it is enough to find for each k a smooth (k—1)-form
(A¥) and a smooth k-form (A¥)” in My such that

I(=A2 =AY L2 0g) = O 1A 200y = O(D),

|(=82 =53 A) L2010 = O, 1A L2010 = OD).
If (Mo, go) is simple, there is a straightforward quasimode construction for achieving this.

Lemma 7.5. Let (M, go) be a simple m-dimensional manifold, and let 0 < k < m. Suppose (1\710, £0)
is another simple manifold with (My, go) € (Mo, g0), fix a point w € M(i)m \ My, and let (r, 0) be polar
normal coordinates in (1\710, go) with centre w. Suppose n', ..., 0™ is a global orthonormal frame of
T* Mo with n' = dr and Vs, n/ =0for2 < j <m,andlet {n'} be a corresponding orthonormal frame
of A¥ M. Then for any A € R and for any (’;:) complex functions by € C®(S™™1), the smooth k-form

: _1
w=e"|go(r. )7+ Y by (O)n,
1

with s = T + i A for T real, satisfies

I(=Ax =sHull o) = O, Null L2 = O()

as |t| — oo.

Proof. We first try to find the quasimode in the form u = e/¥a for some smooth real-valued phase
function ¥ and some smooth k-form a. Lemma 3.2 implies

(—Ay =52V a) = eV [s2(dy |2 — 1)a — is[2Vgmana + (Ax¥)a] — Aya)

Let (, 6) be polar normal coordinates as in the statement of the lemma, and note that

w0 = (g o)

globally in My for some (m — 1) x (m — 1) symmetric positive definite matrix /.
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Define
v(r,0)=r.

Then ¥ € C*®(My) and |d/|? = 1, so that the s term will be zero. We next want to choose a so that
2Vgrad(lﬁ)a + (Ax¥)a = 0. Note that

0r|go(r, 0)]
lgo(r,0)]

. _1 U
Thus, choosing a = |go|™ #a for some k-form a, it is enough to arrange that

|
Veud) = Vo,» Ax¥ =3

Vy.d = 0.

r

Using the frame {7/} above, with n! = dr, we write
a=n'na +a"
where @’ is a (k—1)-form and &@” is a k-form in My of the form

a = Z 061,,]77‘], a' = Z ,BJUJ

Jc{2,....m} Jc{2,....,m}
|J|=k-1 |J|=k

for some functions o1,y and By in My. Now, the form of the metric implies Vj, n' =0, and by assumption
Vs, n/ =0 for 2 < j <m. Therefore

Voa= Y, drongntan’+ Yo dpn’

In the definitions of @’ and a”, we may now choose
a1,g =bgyus(0), Br=0bys(0),

: L : ; S DU
where b are the given functions in C(S™~1). The resulting k-form u = e’V |go| ™44 satisfies the
required conditions. U

The next result gives the full construction of the complex geometrical optics solutions.

Lemma 7.6. Let (M, g) € (R x My, g), where g = e ® g, assume (Mg, go) is simple, and let Q be
an L®° endomorphism of AM. Let (1\20, go) be another simple manifold with (My, go) € (1\20, g0), fix
a point w € M(i)m \ My, and let (r, 0) be polar normal coordinates in (]\20, go) with centre w. Suppose
nt,....n" is a global orthonormal frame of T*(R x My) with n' = dx', n> =dr, and Vs, n/ =0 for
3 < j <n,and let {n'} be a corresponding orthonormal frame of A(R x Mo). Let also A € R. If || is
sufficiently large and if s = T + i A, then for any 2" complex functions by € C*°(S"~2) there exists a
solution Z € L>(M, AM) of the equation

(—A+Q)Z=0 inM
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having the form

Z=eN [e"”|go(r, o) 5 [Z br (9)n’} + R]
1

where ||R||p2p) = O(|t|™Y). Further, one can arrange that the relative boundary values of Z vanish
on ' or T'S (depending on the sign of 7).
Proof. Try first Z = e™**1(A 4 R), where V3, A = 0. By the discussion in this section, we need to solve
the equation
e (—A+ Q)(e ' R) =—F,
where
F=(-A-5>+Q)A.

Decomposing the k-form part of A as AKX = n' A (4%) + (4¥)” as in Lemma 7.4, where ' = dx1, we
obtain
F¥ = ' A (=D =) (A9 + (=80 =545 + (0.

Let !, ..., 7" and {n!} be orthonormal frames as in the statement of the result. We can use Lemma 7.5
to find, for any (}_]) functions 5/, () and for any ("} ") functions b’ (9), quasimodes

P _1
(Ak)/ = !5 | go| 74 Z b./l(e)nj7
Jc{2,...,n}
|J|=k—1

- _1
(Ak)” = e!37|go| 74 Z bf;(@)rr’.
Jc{2,...,n}
|J|=k
Recalling that A¥ = n! A (4%)' + (4*)" and relabeling functions, this shows that for any (}) functions
by € C*®(S"2) we may find A¥ of the form

; _1
A =eTgo[7H Y br(O)n’,
1c{1,...,n}
|I|=k
with [|(—=A —S2)Ak||L2(M) = 0(1) and ||Ak||L2(M) = O(1) as |t| — oco. Repeating this construction
for all k, we obtain the amplitude

A= e |go(r, 9)|_% ZbI(G)UI’
1

with the same norm estimates as those for A%. Then also || F || r2(m) = O(1). Then Proposition 7.3 allows
us to find R with the right properties. O

Note that if Z is a solution to (—A + *Q*~1)Z = 0in M, and Z has relative boundary values that
vanish on I'¢, then *Z is a solution to (—A + Q) * Z = 0 in M, and *Z has absolute boundary values
that vanish on I'{ . Thus this construction also gives us solutions with vanishing absolute boundary values
on I'¢.

+
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8. The tensor tomography problem

Now we can begin the proof of Theorems 2.1 and 2.2. First we will use the hypotheses of Theorem 2.1 to
obtain some vanishing integrals involving (Q> — Q1).

Lemma 8.1. Suppose the hypotheses of Theorem 2.1 hold. Using the notation in Lemma 7.6, let
Z1,Z5 € L2(M, AM) be solutions of (—A + Q1)Z1 = (—A+ 02)Z> =0in M of the form

Zy= e [é’m|go|_‘l‘ [Z 61(9)771} n Rl],
1

Zy =™ [ei”|g0|_‘l‘ [Z dI(Q)UI} + Rz],
1
with vanishing relative boundary conditions on I'S. and T'S respectively. Then

((02—01)Z1| Z2)m =0.

Note that while the orthogonality condition derived in the lemma does not use the particular form of
the solution, we will only apply this identity to solutions of the given form.

Proof. Let Y be a solution of (—A 4+ Q,)Y = 0in M with the same relative boundary conditions as Z;
such a solution exists by the assumption on Q5. Then consider the integral

(NGX=NEN(Z1.18Z1) | (tind % Za. tin % Z2)) g3 -
By definition of the N R4 map, this is
(t%(Z1=Y), 18 % (Z1=Y)) | (tind * Z2, tip * Z2)4.,
= (*(Z1=Y) |tind % Z2) gy, + (165 (Z1=Y) | tin % Z2) 5
Recall from the section on notation and identities that
(—Au|v)pr =W | —Av)pr+(u | tiydv)gp + (8 xu | iy xv)gps + ( *u | tiyd *v)gpr + (E0u | tiyv)gpr.

Since the relative boundary values of (Z1 — Y) vanish, by definition, the integration by parts formula
above implies

(t(Z1=Y) | tind*Z2) gy, +(18%(Z1=Y ) | tin%Z2) gy, = (—A(Z1=Y) | ZD) M —(Z1-Y | —AZo)m
=(02Y-01Z1| Zo)m—(Z1-Y | -02Z2)m
=((02-01)Z1|Z2)m-

Meanwhile, by the hypothesis on Ng‘lA and NS‘;“, we have NSNZ1 —Y) = NS‘;‘(Zl —Y)onI'y.

Therefore

(t%(Z1=Y) | tind % Z2) gy, + (t8%(Z1=Y) | tin * Z2)om
=(tx(Z1-Y) | tind # Zo)pe + (18%(Z1=Y) | tin % Z2)pe
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Now by construction, Z, has relative boundary values that vanish on Fj_. But
= (*Z2)1lr¢ =0
= *(Z2ilre =0
= (Z2)ilrg =0

<~ tZle"j_ =0.

tiy *Zzlpi =0

Similarly,
tiNd*Zzhﬂ_ci_ =0 <= Z5*Zz|1-_c"_ =0.

Therefore the fact that Z; has relative boundary values that vanish on I'{ implies

Z1-Y ] Z5) e 7Z—Y iv%Z5) e =0.
(l*( 1 )‘thd* 2)F++(t8*( 1 )‘”N* Z)F+ 0
Therefore

((02—01)Z1|Z2)M =0

for each such pair of CGO solutions Z1 and Z5. O

Remark. The proof of the Lemma 8.1 does not use the actual forms of the CGO solutions. The integral
identity holds for all solutions Z1 and Z, with vanishing relative boundary conditions on ' and I'{
respectively. However, the identity is only of interest to us for the particular forms of CGO solutions
which we stated.

Working through the same argument with xZ; and *Z, gives us the following lemma as well.

Lemma 8.2. Suppose the hypotheses of Theorem 2.2 hold. Using the notation in Lemma 7.6, let
xZ1,%Zy € L>(M, AM) be solutions of (=A+ Q1) * Z1 = (—=A + Q2) * Z» =0 in M of the form

R G G
1

Zy =™ [em|g0|_‘l‘ [Z d1(9)01:| + Rz].
I
Then
((Q2—-01)Z1|Z2)m =0.

Therefore both of the main theorems reduce to using the condition (Q Z1, Z2)2(pr) = 0 for solutions
of the type given in Lemma 7.6 to show Q = 0.

The next result shows that from the condition (QZ1, Z2)12(ar) = 0 for solutions of the type given
in Lemma 7.6, it follows that certain exponentially attenuated integrals over geodesics in (My, go) of
matrix elements of Q, further Fourier transformed in x1, must vanish.

Proposition 8.3. Assume the hypotheses in Theorem 2.1 or 2.2, with Q = Q — Q1 extended by zero to
R x My. Fix a geodesic y : [0, L] — Mgy with y(0), y(L) € 0My, let 3, be the vector field in My tangent to
geodesic rays starting at y(0), and suppose {n'} is an orthonormal frame of A(R x M(i)m) with n! = dx!,
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n? =dr, and Vs, n/ =0 for3 < j <n. (Such a frame always exists.) Then for any A € R and any I, J
one has
L 00 i
/ e A" |:/ e 20 (xp, y ()0t 07 dx1i| dr =0.
0 —00
Proof. Using the notation in Lemma 7.6, let Z; € L?>(M, AM) be solutions of (—A + Q1)Z; =
(=A+ 02)Z> =0 in M of the form

Zy ="M [eisrlgol_‘l‘ [Z 01(9)771} + R1]7
1

Zy= o [ef"|go|—i [Z dr (0)@ n Rz],
1

where s = 7+iA, > 0is large, A € R, and ¢y, dy € C®(S"~2). We can assume || R; 220 = oY
as T — oo, and that the relative (absolute) boundary values of Z; are supported in F and the relative
(absolute) boundary values of Z; are supported in B. By Lemma 8.1 (Lemma 8.2), we have

0= lim (QZ1,Z2)12(m)
S [Z[ | oot o) dxl]cl ) d; (0)] dr do.
Ssn=2Jo 7. L/—o

We now extend the My-geodesic y to 1\20, choose w = y(—¢) for small & > 0, and choose 6 so that
y(t) = (¢, 6p). The functions c¢; and dj can be chosen freely, and by varying them we obtain

o0 00 )
[ e—”’[ f e—z’“l<Q(x1,r,eo)n’,n~'>dx1}dr=o
0

—00
for each fixed / and J. Since Q is compactly supported in M(i)m, this implies the required result.

It remains to show that a frame {5’} with the required properties exists. Let w = y(0), and let (MO, g0)
be a simple manifold with (Mg, go) € (Mo, go) such that the Mo—geodesic starting at w in direction v(w)
never meets My. (It is enough to embed (M, go) in some closed manifold and to take ]\20 strictly convex
and slightly larger than My.) Let (r, 6) be polar normal coordinates in My with centre & = y(0), fix rg >0
so that the geodesic ball B(w, rg) is contained in M™, and let § € S"~2 be the direction of v(w). Choose
some orthonormal frame 73, ..., n" of the cotangent space of dB(w, ro) \ {(ro, é)}, and extend these as
1-forms in M(i)nt by parallel transporting along integral curves of d,. We thus obtain a global orthonormal
frame n2,...,n" of T"‘M(i)nt with n? = dr and Vj, n/ =0 for3 < j <n.Moreover, n',...,n" will be a
global orthonormal frame of 7* (R x M(i)m) inducing an orthonormal frame {n’} of A (R x M(i)m). O

We will now show how the coefficients are uniquely determined by the integrals in Proposition 8.3.
This follows by inverting attenuated ray transforms, a topic of considerable independent interest (see the
survey [Finch 2003] for results in the Euclidean case, and the survey [Paternain et al. 2014] and references
below for the manifold case). The transform in Proposition 8.3 is not exactly the same kind of attenuated
ray transform/Fourier transform as in the scalar case, for instance, in [Dos Santos Ferreira et al. 2009a],
since the matrix element of Q that appears in the integral may actually depend on the geodesic y (note
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that the 1-forms 1 depend on ). To clarify this point, we fix some global orthonormal frame {e!, ..., &"}
of T*(R x M) with ¢! = dx!, and let {¢/} be the corresponding orthonormal frame of A (R x My).
Define the matrix elements

qr,; = (0el,e7).

Define also
(o,¢]

511,J(§1,x/)=/ e 8y 1 (x1, X)) dxy.

—00

Then the conclusion in Proposition 8.3 implies

L
[0 G0 @y Y n? 67y dr = 0

for any A € R, for any 7, J, and for any maximal geodesic y in M. (Note that the inner products (n’, ! /)
do not depend on x7.)

Up until now everything discussed in this paper has held for any dimension n > 3. Now, however,
we will invoke the assumption that n = 3. Then g7 j is an 8 X 8 matrix. In this case we may choose
n'=dx!, n?=dr, and n® = x4, dr, where dr is the 1-form dual to y on the geodesic y. Let also {e;}
be the orthonormal frame of vector fields dual to {&/} (which is assumed to be positively oriented). It
follows that

(771"91) =1, (771782) =0, <7’]1,83) =0,
(?,e') =0, (17.%) =(e2, 7).  (n7.&°) =(es,7),
(n*.e')y=0. (.&%) =—(es.7). (n°.&°) =(e2.7).

The relations for n{l’Z} =n'An? n{3’1}, n{2’3} and {12} 3.1 {23} can be determined from the above
relations by duality. Finally, (n°, /) = 1if I = 0 and 0 otherwise, and the other relations for °, °,

n{1’2’3}, and £41:2:3} are similar.
Now choosing I = J =1 (here we identify 1 with {1}) we obtain

L
/ e G112, y(r))dr =0 forall A and y.
0

This means that the usual attenuated geodesic ray transform of the function g;,1(2A,-) in My vanishes
for all A. First we have §1,1(2A,-) € C® (M) for all A [Frigyik et al. 2008, Proposition 3], and then
d1,1(2A,-) = 0 for all A by the injectivity of the attenuated ray transform [Salo and Uhlmann 2011] and
so ¢1,1 = 0. The same argument applies for all pairs (/, J) where

1,7 €{0,1,{2,3}.{1,2,3}}.

Now consider the case where I = 1 and J = 2. Then

L
/0 22 (41220 () ez )+ drs @A, () e, 7)) dr = 0.
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Then the injectivity result for the attenuated ray transform on 1-tensors [Salo and Uhlmann 2011] together
with the regularity result [Holman and Stefanov 2010, Proposition 1] says

41,222, X)e* + 41,322, x)&> =0
for all A # 0, from which we can conclude
912 =¢1,3 =0.
The same argument then applies for all pairs (/, J) where
1€{0.1,{2,3},{1,2,3}} and J €{2,3,{1,2}.{3.1}},

or vice versa.
Finally, consider the case when / = J = 2. For brevity, we’ll write (e;,y) as y;. Then I = J =2
gives

L
/ e 2T (92,273 + G2.,37273 + 4327372 + 43 373) dr = 0. (8-1)
0

The integrand here can be represented as the symmetric 2-tensor

f22. 42,2 1(G2,3+332)
3(@2,3+G3,2) 43,3

(in coordinates provided by {&2, £3}) applied to (y, y). This shows that the attenuated ray transform of
the 2-tensor f2°2 in (My, go), with constant attenuation —2A, vanishes identically.

We will now make use of the methods of [Paternain et al. 2013] in this tensor tomography problem. We
only give the details in the case where Q (and hence f2:?)is C . The result also holds for continuous Q
by using an elliptic regularity result for the normal operator, but in the present weighted case for 2-tensors
the required result may not be in the literature. We only say that such a result can be proved by adapting
the methods of [Holman and Stefanov 2010] to the 2-tensor case (in particular one needs a solenoidal
decomposition ' = f* + dp of a 2-tensor f and a further solenoidal decomposition 8 = 85 + d¢ of
the 1-form S, and one then shows that the normal operator acting on “solenoidal triples” ( /%, 8%, ¢) is
elliptic because the weight comes from a nonvanishing attenuation).

Since f2:2 is C, the injectivity result for the attenuated ray transform on symmetric 2-tensors (see
[Assylbekov 2012], following [Paternain et al. 2013]) says

2% = —Xu+2\u,

where X is the geodesic vector field on (Mg, go), and u is a smooth function on the unit circle bundle S M
that corresponds to the sum of a 1-tensor and scalar function, with

u|3M0 =0.
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Here we have identified f 2.2 and u with functions on S My as in [Paternain et al. 2013]. We can also
express u and f22 in terms of Fourier components as in [loc. cit.],
U=u_1+uo+us,
22 = f_ziz n foz,z n f22’2.

Here ug € C*°(My), u1 + u—; corresponds to a smooth 1-tensor in My, and ug, ©1, u—1 vanish on dMy.
Then

—X(u—1 +uo +ur) +2A(u_1 +uo+ur) = [+ 2+ 2
Now parity implies the equations
2A(u—1 +uy1) =Xup and —Xwu—1+uy)+2A(up) = f_22’2 + foz’2 + f22’2.

Assume A is nonzero. Using the first equation in the second one implies

_Xz(uo)

S T 2Aue=f72 (8-2)

where X2uj corresponds to the covariant Hessian V2ug of ug. The first equation implies uo vanishes to
first order on 0M.

Unfortunately, this is not enough to conclude that the coefficients of f2? are 0. However, going back
and choosing (1, J) = (2, 3), (3,2), and (3, 3) gives us three additional equations of this type with the
same elements gy y. More specifically,

£23 = 42,3 3(43,3—G2,2)
2(33,3—G2,2) —{3,2 ’
32 = 43,2 %(@3,3—@2,2)
1@33—G22)  —G2.3 ’
33 _ 43,3 —%(@2,34-@3,2)
f7=1 1.4 . .
—2(42,3+43,2) 42,2

are all of the same form. Therefore it follows that f22 4+ f3-3 and f2>3 — f32 are as well. But these
are both scalar matrices, and if
X2 (uo)
)

+ 2/\740

is a scalar matrix, then also the covariant Hessian V2u is a scalar matrix in the {2, £3} basis.

To make the previous statement more explicit, identify (Mo, go) with the unit disk in R? and choose
an isothermal coordinate system (x!, x2) in which the metric is given by e?*§ ik for some € C°(Mp).
Choosing e, = e 9; and e3 = e H0,, the condition V2ug(ez, e2) — V2ug(e3, e3) = 0 implies

a%uo—aguo +b-Vug=0 1in My
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for some vector field b € C (M, R?) depending on jt. Since ug vanishes to first order on My, extending
ug by zero to RZ we have
a%uo - 8%140 +b-Vug=0 in R?

where ug € H?(R?) is compactly supported and b is some smooth compactly supported vector field.
Uniqueness for hyperbolic equations [Taylor 1996, Section 2.8] implies u¢ = 0.

The above argument shows that f22 + 33 and 23 — 32 are 0. Thus g2 + g3 3 = 0 and
42,3 — g3 = 0, showing that f2’2 and f2’3 are trace-free. Taking traces in (8-2) and using that ug
vanishes to first order on dM¢ implies 1o = 0 by unique continuation for elliptic equations. Thus f2*2 =0
and similarly f 2.3 = (), which shows that q2.2, 42,3, 43,2, and g3 3 are zero as well.

The same argument now works for the remaining entries of ¢, and this finishes the proof.

9. Higher dimensions

In higher dimensions, n > 3, as noted above, everything up to and including the proof of Proposition 8.3
still holds. However, this does not reduce easily into a tensor tomography problem, as in the three-
dimensional case, because we cannot choose the basis {'} so that 53, ..., 7* to depend on n? = dr in a
tensorial manner.

More precisely, in general we lack tensors 7; for which ni =T; (nz, el 772) for i > 3, as is the case in
three dimensions. Moreover, even if the results of Proposition 8.3 can be reduced to a tensor tomography
problem, there is no guarantee that it will be one for which there are useful injectivity results, since there
are very few such results for k-tensors with k > 2.

However, in the Euclidean case we can do better, since we have the extra freedom to vary the Carleman
weight ¢. In particular, we can construct CGOs to reduce the problem in Lemmas 8.1 and 8.2 to a Fourier
transform, as has been done for inverse problems for scalar functions, e.g., in [Bukhgeim and Uhlmann
2002]. Therefore we can conclude this paper by a proof for higher dimensions, in the Euclidean case.

Proof of Theorem 2.3. Fix coordinates x1, ..., X, on R"™. The corresponding basis for the cotangent space
is dx1,...,dx" and this gives a corresponding basis {dx'} for AM.
Now note that if f is a scalar function, A( fdx’) = (A f)dx!. Therefore if o and B are unit vectors
such that « - 8 = 0, then
(a+if)-x

e~ T A=A+ Q)e * dxl)=00*dx".

Therefore Proposition 7.1 implies there exists r € L2(M, AM) such that

(A + 0)(e T (dx! +r)) =0,

with [[r||z2¢ary = O(h), and Z = P (dxT + r) has relative boundary conditions which vanish

on I'S.
+
Now if k and £ are mutually orthogonal unit vectors which are both orthogonal to o, then we can set
B1 =L+ hk and B, = £ — hk, and create

(@+iBp)-x

(—a+iBy)-x I I
Iz (dx" 4+r1) and Zy=e " (dx' +r)

lee
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so that (—A + 01)Z1 = (—A + 02)Z> =0, and Z; and Z, have relative boundary conditions that
vanish on I'¢ and I'{ respectively.
Then Lemma 8.1, together with the hypotheses of Theorem 2.3, implies

(01— 02 ] e %) =0.

This can be done for any k orthogonal to «. Since o can be varied slightly without preventing the relative
boundary conditions of the solutions from vanishing on the correct set, this is in fact true for k in an open
set, from which we can conclude that 0 = Q5 on M.

The absolute boundary value version works similarly, with the appropriate change in the CGOs. O
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ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY

ANDREA MONDINO AND EMANUELE SPADARO

The Euclidean mixed isoperimetric-isodiametric inequality states that the round ball maximizes the
volume under constraint on the product between boundary area and radius. The goal of the paper is to
investigate such mixed isoperimetric-isodiametric inequalities in Riemannian manifolds. We first prove
that the same inequality, with the sharp Euclidean constants, holds on Cartan—-Hadamard spaces as well
as on minimal submanifolds of R". The equality cases are also studied and completely characterized;
in particular, the latter gives a new link with free-boundary minimal submanifolds in a Euclidean ball.
We also consider the case of manifolds with nonnegative Ricci curvature and prove a new comparison
result stating that metric balls in the manifold have product of boundary area and radius bounded by the
Euclidean counterpart and equality holds if and only if the ball is actually Euclidean.

We then consider the problem of the existence of optimal shapes (i.e., regions minimizing the product of
boundary area and radius under the constraint of having fixed enclosed volume), called here isoperimetric-
isodiametric regions. While it is not difficult to show existence if the ambient manifold is compact,
the situation changes dramatically if the manifold is not compact: indeed we give examples of spaces
where there exists no isoperimetric-isodiametric region (e.g., minimal surfaces with planar ends and more
generally C-locally asymptotic Euclidean Cartan—-Hadamard manifolds), and we prove that on the other
hand on C%-locally asymptotic Euclidean manifolds with nonnegative Ricci curvature there exists an
isoperimetric-isodiametric region for every positive volume (this class of spaces includes a large family
of metrics playing a key role in general relativity and Ricci flow: the so-called Hawking gravitational
instantons and the Bryant-type Ricci solitons).

Finally we prove the optimal regularity of the boundary of isoperimetric-isodiametric regions: in the
part which does not touch a minimal enclosing ball, the boundary is a smooth hypersurface outside of a
closed subset of Hausdorff codimension 8, and in a neighborhood of the contact region, the boundary is a
C!! hypersurface with explicit estimates on the L> norm of the mean curvature.
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1. Introduction

One of the oldest questions of mathematics is the isoperimetric problem: what is the largest amount of
volume that can be enclosed by a given amount of area? A related classical question is the isodiametric
problem: what is the largest amount of volume that can be enclosed by a domain having a fixed diameter?

In this paper we address a mix of the previous two questions, namely we investigate the following
mixed isoperimetric-isodiametric problem: what is the largest amount of volume that can be enclosed by
a domain having a fixed product of diameter and boundary area?

Of course, if we ask the three above questions in the Euclidean space, the answer is given by round
balls of suitable radius, but, of course, the situation in nonflat geometries is much more subtle. We start
by recalling classical material on the isoperimetric problem which motivated our investigation on the
mixed isoperimetric-isodiametric one.

The solution of the isoperimetric problem in the Euclidean space R" can be summarized by the classical
isoperimetric inequality

na)}/ " Vol(Q) "~ V/" < A(82) for every Q C R" open subset with smooth boundary, (1-1)

where Vol(€2) is the n-dimensional Hausdorff measure of Q (i.e., the “volume” of 2), A(9Q) is the
(n—1)-dimensional Hausdorff measure of 92 (i.e., the “area” of 0€2), and w,, := Vol(B") is the volume
of the unit ball in R". As is well known, the regularity assumption on €2 can be relaxed a lot (for instance
(1-1) holds for every set €2 of finite perimeter), but let us not enter into technicalities here since we are
just motivating our problem.

As anticipated above, in the present paper we will not deal with the isoperimetric problem itself but
we will focus on a mixed isoperimetric-isodiametric problem. Let us start by stating the Euclidean mixed
isoperimetric-isodiametric inequality, which will act as model for this paper. Given a bounded open
subset 2 C R" with smooth boundary, by the divergence theorem in R" (see Section 2 for the easy proof),
we have

n Vol(2) < rad(£2).A(0€2), (1-2)

where rad(€2) is the radius of the smallest ball of R" containing 2 (see (2-1) for the precise definition).
As observed in Remark 2.1, inequality (1-2) is sharp and rigid; indeed, equality occurs if and only if Q is
a round ball in R™

In sharp contrast with the classical isoperimetric problem, where both problems are still open in
the general case, it is not difficult to show that the inequality (1-2) holds in Cartan—Hadamard spaces
(i.e., simply connected Riemannian manifolds with nonpositive sectional curvature) and on minimal
submanifolds of R"; see Propositions 3.1, 3.3 and 3.7. Even if the validity of inequality (1-2) in such
spaces is probably known to experts, we included it here in order to motivate the reader and also because
the equality case for minimal submanifolds presents an interesting link with free-boundary minimal
surfaces: equality is attained in (1-2) if and only if the minimal submanifold is a free-boundary minimal
surface in a Euclidean ball (see Proposition 3.3 for the precise statement and Remarks 3.5-3.6 for more
information about free-boundary minimal surfaces).
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If on one hand the negative curvature gives a stronger isoperimetric-isodiametric inequality, on the
other hand we show that nonnegative Ricci curvature forces metric balls to satisfy a weaker isoperimetric-
isodiametric inequality. The precise statement is the following.

Theorem 1.1 (Theorem 4.1). Let (M", g) be a complete (possibly noncompact) Riemannian n-manifold
with nonnegative Ricci curvature. Let B, C M be a metric ball of volume V = Voly(B,), and denote by
B®' (V) the round ball in R" having volume V. Then

rad(B,)A(dB,) = r A(3B,) < n Voly(B,) = radg: (B¥ (V)) Ar: (dB¥ (V). (1-3)

Moreover equality holds if and only if B, is isometric to a round ball in the Euclidean space R". In
particular, for every V € (0, Vol,(M)),

inf{rad(Q)P(Q) : @ C M, Volo(Q)=V} <nV =inf{rad( QP(Q) : Q CR", Volp(Q)=V}, (1-4)

with equality for some V € (0, Volg (M) if and only if every metric ball in M of volume V' is isometric to
a round ball in R". In particular if equality occurs for some V € (0, Volg(M)) then (M, g) is flat, i.e., it
has identically zero sectional curvature.

Remark 1.2. Since by Bishop—Gromov volume comparison, we know that if Ric, > 0 then for every
metric ball B,(xg) C M,
Vol (B, (x0)) < w,r" = Volg: (BX").
It follows that
rad(B,(x0)) > radg: (B (V)),

where B®' (V) is a Euclidean ball of volume V = Vol, (B, (x0)). Therefore Theorem 1.1 in particular
implies P(B;(xp)) < P« (B R*(v)), butis a strictly stronger statement, which to the best of our knowledge
is original. The aforementioned counterpart of Theorem 1.1 for the isoperimetric problem was proved
instead by Morgan and Johnson [2000, Theorem 3.5] for compact manifolds and extended to noncompact
manifolds in [Mondino and Nardulli 2016, Proposition 3.2].

In Section 5 we investigate the existence of optimal shapes in a general Riemannian manifold (M, g).
More precisely, given a measurable subset £ C M we denote by P(E) its perimeter and define its extrinsic
radius as

rad(E) := inf{r > 0: Volg(E \ B,(z0))=0 for some zg € M},

where B, (zg) denotes the open metric ball with center zg and radius r > 0. We consider the following
minimization problem: for every fixed V € (0, Vol (M)), find

min{rad(E)P(E) : E C M, Vol,(E)=V}, (1-5)

and call the minimizers of (1-5) isoperimetric-isodiametric sets (or regions). To best of our knowledge
this is first time such a problem is considered in the literature.

As it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact
then for every volume there exists an isoperimetric-isodiametric region (see Theorem 5.2 and Corollary 5.3)
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but if the ambient space is noncompact the situation changes dramatically. Indeed in Examples 5.6-5.7
we show that in complete minimal submanifolds with planar ends (like the helicoid) and in asymptotically
locally Euclidean Cartan—-Hadamard manifolds, there exists no isoperimetric-isodiametric region of
positive volume. On the other hand, we show that in C°-locally asymptotically Euclidean manifolds (see
Definition 5.4 for the precise notion) with nonnegative Ricci curvature for every volume there exists an
isoperimetric-isodiametric region:

Theorem 1.3 (Theorem 5.5). Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci
curvature and fix any reference point x € M. Assume that for any diverging sequence of points (xy)gxeny C M,
i.e., d(xy, X) — 00, the sequence of pointed manifolds (M, g, xi) converges in the pointed C° topology to
the Euclidean space (R", ggn, 0).

Then for every V € (0, Volg(M)) there exists a minimizer of the problem (1-5); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Let us mention that the counterpart of Theorem 1.3 for the isoperimetric problem was proved in
[Mondino and Nardulli 2016] capitalizing on the work by Nardulli [2014].

Remark 1.4. It is well known that the only manifold with nonnegative Ricci curvature and C%-globally
asymptotic to R" is R itself. Indeed if M is C°-globally asymptotic to R" then

[ Volg(Br(¥) _

1
R—00 w, R" ’

which by the rigidity statement associated to the Bishop—Gromov inequality implies that (M, g) is globally
isometric to R". On the other hand, the assumption of Theorem 1.3 is much weaker as it asks (M, g) to be
just locally asymptotic to R" in the C° topology and many important examples enter in this framework,
as explained in Example 1.5.

Example 1.5. The class of manifolds satisfying the assumptions of Theorem 1.3 contains many geomet-
rically and physically relevant examples.

o Eguchi—Hanson and, more generally, ALE gravitational instantons. These are 4-manifolds, solutions of
the Einstein vacuum equations with null cosmological constant (i.e., they are Ricci flat, Ric, = 0), they are
noncompact with just one end which is topologically a quotient of R* by a finite subgroup of O(4), and
the Riemannian metric g on this end is asymptotic to the Euclidean metric up to terms of order O (r %),

gij =06ij + o™,

with appropriate decay in the derivatives of g;; (in particular, such metrics are C O_locally asymptotic, in the
sense of Definition 5.4, to the Euclidean 4-dimensional space). The first example of such manifolds was
discovered by Eguchi and Hanson [1978]; inspired by the discovery of self-dual instantons in Yang—Mills
theory, they found a self-dual ALE instanton metric. The Eguchi—-Hanson example was then generalized
by Gibbons and Hawking [1978]; see also the work by Hitchin [1979]. These metrics constitute the
building blocks of the Euclidean quantum gravity theory of Hawking (see [Hawking 1977; 1979]). The
ALE gravitational instantons were classified by Kronheimer [1989a; 1989b].



ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY 99

o Bryant-type solitons. The Bryant solitons, discovered by R. Bryant [2005], are special but fundamental
solutions to the Ricci flow (see, for instance, the work of Brendle [2013; 2014] for higher dimensions).
Such metrics are complete, have nonnegative Ricci curvature (they actually satisfy the stronger condition
of having nonnegative curvature operator) and are locally C%-asymptotically Euclidean. Other soliton
examples fitting our assumptions are given by Catino and Mazzieri [2016].

Section 6 is then devoted to establishing the optimal regularity for isoperimetric-isodiametric regions
under suitable assumptions on regularity of the enclosing ball. We first observe that outside of the contact
region with the minimal enclosing ball B, such sets are locally minimizers of the perimeter under volume
constraint. Therefore by classical results (see, for example, [Morgan 2003, Corollary 3.8]) in the interior
of B the boundary of the region is a smooth hypersurface outside a singular set of Hausdorff codimension
at least 8.

The rest of the paper is devoted to proving the optimal regularity at the contact region. We first
show in Section 6A that isoperimetric-isodiametric regions are almost-minimizers for the perimeter
(see Lemma 6.3) and therefore, by a result of Tamanini [1982] their boundaries are C 1172 regular (see
Proposition 6.1). In Section 6B, by means of geometric comparisons and sharp first-variation arguments,
we show that the mean curvature of the boundary of an isoperimetric-isodiametric region is in L* with
explicit estimates. Finally in Section 6C we establish the optimal C'-! regularity. We mention that, strictly
speaking, Section 6B is not needed to prove the optimal regularity; in any case we included such a section
since it provides an explicit sharp L°° estimate on the mean curvature and is of independent interest. Now
let us state the main regularity result.

Theorem 1.6 (Theorem 6.11). Let E C M be an isoperimetric-isodiametric set and xo € M be such that
Vol, (E \ Brad(e)(x0)) = 0. Assume B := Braa(g)(X0) has smooth boundary. Then, there exists 6 > 0 such
that OF \ Brad(g)—s(xo) is chl regular.

An essential ingredient in the proof of Theorem 1.6 is Proposition 6.12, which roughly tells that the
boundary of E leaves the obstacle at most quadratically. Then the conclusion will follow by combining
Schauder estimates outside of the contact region (see Lemma 6.13) with the general fact that functions
which leave the first-order approximation quadratically are C!'!' —see Lemma 6.14. Although the
techniques exploited for this part of the paper are inspired by the ones introduced in the study of the
classical obstacle problem (see, for example, [Caffarelli 1998]), here we treat the geometric case of the
area functional in a Riemannian manifold with volume constraints and we take several short-cuts thanks
to some specifically geometric arguments, such as the theory of almost minimizers. In particular, such a
geometric situation doesn’t seem to be trivially covered by the regularity results for nonlinear variational
inequalities, as developed, for example, by Gerhardt [1973] — see Remark 6.16.

Remark 1.7. Note that the C!! regularity is optimal, because in general one cannot expect to have
continuity of the second fundamental form of d0E across the free boundary of dE, i.e., the points on the
relative (with respect to dB) boundary of dE N dB. The same is indeed true for the simplest case of the
classical obstacle problem.
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2. Notation, preliminaries and the Euclidean case

Let (Z, d) be a metric space. Given an open subset Q2 C Z, we define its extrinsic radius as
rad(Q2) :=inf{r > 0: Q C B,(z9) for some zg € Z}, (2-1)

where B, (z9) denotes the open metric ball of center zy and radius r > 0.

The model inequality for the first part of the paper is the Euclidean mixed isoperimetric-isodiametric
inequality obtained by the following integration by parts. Let 2 C R” be a bounded open subset with
smooth boundary and let xo € R" be a point such that

max |x — xo| = rad(£2). (2-2)

xe
Denoting by X the vector field X (x) := x — x¢, by the divergence theorem in R" we then get
n Vol(2) = / divX dH" = —/ X - vdH" ! <rad(2)A0RQ), (2-3)
Q aQ
where Vol(£2) denotes the Euclidean n-dimensional volume of €2, v is the inward-pointing unit normal
vector and .A4(9€2) is the Euclidean (n—1)-dimensional area of <2, which here is assumed to be smooth.
Notice that, analogously, if 2 C R" is a finite-perimeter set, one gets the inequality
rad(£2)
n

Vol(£2) < P(€), (2-4)

where, of course, P(£2) denotes the perimeter of 2 (see Section 5A for the definitions of P(2) and
rad(€2) for finite-perimeter sets).

Remark 2.1. The inequalities (2-3) and (2-4) are sharp and rigid: indeed equality occurs if and only if
2 is a round ball.

3. Euclidean isoperimetric-isodiametric inequality in Cartan-Hadamard manifolds
and minimal submanifolds

In order to motivate and gently introduce the reader to the topic, in this section we will prove that the
Euclidean isoperimetric-isodiametric inequality holds with the same constant in Cartan—-Hadamard spaces
and in minimal submanifolds. Possibly apart from the rigidity statements, here we do not claim originality
since such inequalities are probably well known to experts (see [Burago and Zalgaller 1988; Hoffman and
Spruck 1974; Michael and Simon 1973]). However we included this section for the following reasons:

o While for the isoperimetric-isodiametric inequality the proofs are a consequence of a nondifficult
integration by parts argument, the corresponding statements for the classical isoperimetric inequality
are still open problems (see Remarks 3.2 and 3.4). This suggests that possibly in other situations
isoperimetric-isodiametric inequalities may behave better than the classical isoperimetric ones.

» The rigidity statements, in the case of minimal submanifolds, show interesting connections between
the isoperimetric-isodiametric inequality and free-boundary minimal surfaces, a topic which recently
has received a lot of attention (for more details, see Remarks 3.5 and 3.6).
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3A. The case of Cartan—-Hadamard manifolds. Recall that a Cartan—-Hadamard n-manifold is a com-
plete simply connected Riemannian n-dimensional manifold with nonpositive sectional curvature. By
a classical theorem of Cartan and Hadamard (see, for instance, [do Carmo 1992]) such manifolds are
diffeomorphic to R” via the exponential map. The next result is a sharp and rigid mixed isoperimetric-
isodiametric inequality in such spaces. For this section, without losing much, the nonexpert reader
may assume the region Q2 C M has smooth boundary; in this case the perimeter is just the standard
(n—1)-volume of the boundary (the perimeter will instead play a role in the next sections about existence
and regularity of optimal sets).

Proposition 3.1. Let (M", g) be a Cartan—Hadamard manifold. Then for every smooth open subset (or
more generally for every finite-perimeter set) Q C M",

n Vol(€2) < rad(2).A(0€2), (3-1)

where Vol(R2) denotes the n-dimensional Riemannian volume of 2 and A(02) the (n—1)-dimensional
area of the smooth boundary 02 (in the case where 2 is a finite-perimeter set, just replace A(32) with
P(RQ), the perimeter of 2, on the right-hand side, and rad(Q) is as in Section 5A)." Moreover, if for
some S the equality is achieved, then 2 is isometric to a Euclidean ball.

Proof. Let Q2 C M" be a subset with finite perimeter; without loss of generality we can assume that €2 is
bounded (otherwise rad(€2) = +o00 and the inequality is trivial). Let xo € M" be such that

max d(x, xo) = rad(£2),
xe

where d is the Riemannian distance on (M", g); for convenience we will also define dy,(-) := d(xo, - ).
Letu := %dﬁo; by the aforementioned Cartan—-Hadamard theorem (see, for instance, [do Carmo 1992]),
we know that u : M" — R™ is smooth and by the Hessian comparison theorem, one has (D?u); > gij>in

particular, by tracing, we get Au > n. Therefore, by the divergence theorem, we get

n Vol(2) 5/ Audugz—/ g(Vu, v)dH"! =—/ d(x, x0)g(Vdyy, v) dH"~!
Q 0*Q2 0*Q

<rad(QH" 1 (3*Q) = rad(Q)P(Q), (3-2)

where 11, is the measure associated to the Riemannian volume form, 0* is the reduced boundary of €
(of course, in the case where €2 is a smooth open subset, one has 9*Q = 92), v is the inward-pointing
unit normal vector (recall that it is 7"~ !-a.e. well-defined on 3*Q2), and we used that d xo 18 1-Lipschitz.
Of course (3-2) implies (3-1). Notice that if equality holds in the second line, then €2 is a metric ball of
center xo and radius rad(€2). Moreover if equality occurs in the first inequality of the first line then we must
have (D2di0)i i =2g;; on L, and by standard comparison (see, for instance, [Ritoré 2005, Section 4.1]) it
follows that €2 is flat. But since the exponential map in M is a global diffeomorphism, it follows that €2 is
isometric to a Euclidean ball. O

IFor the readers’ convenience we recall here the definition of rad(€2) for a finite-perimeter set 2 C M such that rad(2) :=
inf{r > 0: Vol(2\ B;) =0, B, C M metric ball}.
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Remark 3.2 (Euclidean isoperimetric inequality on Cartan—Hadamard spaces). The statement correspond-
ing to Proposition 3.1 for the isoperimetric problem is the following celebrated conjecture: Let (M", g)
be a Cartan—Hadamard space, i.e., a complete simply connected Riemannian n-manifold with nonpositive
sectional curvature. Then every smooth open subset 2 C M" satisfies the Euclidean isoperimetric
inequality.

This conjecture is generally attributed to Aubin [1976, Conjecture 1] but has its roots in earlier work
by Weil [1926], as we are going to explain. The problem has been solved affirmatively in the following
cases: in dimension 2 by Weil [1926] (Beckenbach and Radé6 [1933] gave an independent proof in 1933,
capitalizing on a result of Carleman [1921] for minimal surfaces), in dimension 3 by Kleiner [1992] (see
also the survey paper by Ritoré [2005] for a variant of Kleiner’s arguments), and in dimension 4 by Croke
[1984]. An interesting feature of this problem is that the above proofs have nothing to do with each other
and that they work only for one specific dimension; probably also for this reason such a problem is still
open in the general case.

3B. The case of minimal submanifolds. Given a smoothly immersed submanifold M" — R"*X, by the
first variation formula for the area functional we know that for every 2 C M" open bounded subset with
smooth boundary and every smooth vector field X along €2,

/diVMXdH":—/ H-Xd?—l"—f X -vdH" !, (3-3)
Q Q IR

where H is the mean curvature vector of M and v is the inward-pointing conormal to €2 (i.e., v is the unit
vector tangent to M, normal to €2 and pointing inside 2).

We are interested in the case where M" <> R"*¥ is a minimal submanifold, i.e., H =0, and Q C M"
is a bounded open subset with smooth boundary 2. Let xo € R"*¥ be such that

max |x — xq|gr+x = radga+k (£2),
xe

and observe that, defining X (x) := x — xo, one has divy; X = n. By applying (3-3), we then get
nH"(Q2) = / divyy X dH" = —/ X - vdH"! < radge (Q)H (D). (3-4)
Q a0

Notice that equality is achieved if and only if Q is the intersection of M with a round ball in R"**
centered at xg and v(x) is parallel to x — xg, or in other words if and only if Q2 is a free-boundary minimal
n-submanifold in a ball of R"*X. So we have just proved the following result.

Proposition 3.3. Let M" < R"** be a minimal submanifold and Q C M" a bounded open subset with
smooth boundary 092. Then
nH™ () < radge (Q)H" 1 (3Q)

with equality if and only if Q is a free-boundary minimal n-submanifold in a ball of R"*K,

Remark 3.4 (Euclidean isoperimetric inequality on minimal submanifolds). The statement corresponding
to Proposition 3.3 for the isoperimetric problem is the following celebrated conjecture: Let M" C R™
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be a minimal n-dimensional submanifold and let 2 C M" be a smooth open subset. Then 2 satisfies the
Euclidean isoperimetric inequality (1-1), and equality holds if and only if Q2 is a ball in an affine n-plane
of R™,

To our knowledge the only two solved cases are (i) when €2 lies on an (m—1)-dimensional Euclidean
sphere centered at a point of €2 (the argument is by monotonicity; see, for instance, [Choe 2005, Section
8.1]) and (ii) when 2 is area-minimizing with respect to its boundary 02 by Almgren [1986]. Let us
mention that a complete solution of the above conjecture is still not available even for minimal surfaces
in R", i.e., for n = 2; however, in the latter situation, the statement is known to be true in many cases (let
us just mention that in the case where €2 is a topological disk, the problem was solved by Carleman [1921],
and the case m = 3 and 92 has two connected components was settled much later by Li, Schoen and Yau
[Liet al. 1984]; for more results in this direction and for a comprehensive overview, see the beautiful survey
paper [Choe 2005]). Let us finally observe that, when n =2 and m = 3, the above conjecture is a special case
of the Aubin conjecture recalled in Remark 3.2, since of course the induced metric on a immersed minimal
surface in R has nonpositive Gauss curvature; this case was settled in the pioneering work by Weil [1926].

Remark 3.5 (free-boundary minimal submanifolds and critical metrics). After a classical work of Nitsche
[1985], recent years have seen an increasing interest in free-boundary submanifolds, also thanks to works
of Fraser and Schoen [2011; 2012] on the topic. By definition, a free-boundary submanifold M" of the
unit ball B"** is a proper submanifold which is critical for the area functional with respect to variations
of M" that are allowed to move also the boundary d M", but under the constraint dM" C IB"tk As a
consequence of the first variational formula, such a definition forces on one hand the mean curvature
to vanish on M” N B"** and on the other hand the submanifold to the meet the ambient boundary
d B"** orthogonally. These are characterized by the condition that the coordinate functions are Steklov
eigenfunctions with eigenvalue 1 [Fraser and Schoen 2011, Lemma 2.2]; that is,

Ax; =0 onM and Vyx;i =—x; ondM.

It turns out that surfaces of this type arise naturally as extremal metrics for the Steklov eigenvalues (see
[Fraser and Schoen 2012] for more details); Steklov eigenvalues are eigenvalues of the Dirichlet-to-
Neumann map, which sends a given smooth function on the boundary to the normal derivative of its
harmonic extension to the interior.

Remark 3.6 (examples of free-boundary minimal submanifolds). Let us recall here some well known
examples of free-boundary minimal submanifolds in the unit ball B"** c R"*¥; for a deeper discussion
on the examples below, see [Fraser and Schoen 2012].

e Equatorial disk. Equatorial n-disks D" C B"t* are the simplest examples of free-boundary minimal
submanifolds. By a result of Nitsche [1985], any simply connected free-boundary minimal surface in B>
must be a flat equatorial disk. However, if we admit minimal surfaces of a different topological type,
there are other examples, such as the critical catenoid described below.

e Critical Catenoid. Consider the catenoid parametrized on R x S! by the function

@(t,0) = (coshtcosf, coshrsinb, t).
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For a unique choice of Ty > 0, the restriction of ¢ to [—Tp, Tp] X S I defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical catenoid in B>. Explicitly, Ty is the unique positive solution of # = coth z.

e Critical Mobius band. We think of the Mobius band M? as R x S! with the identification (¢, 8) ~
(—t, 0 + ). There is a minimal embedding of M? into R* given by

@(t,0) = (2sinht cos @, 2sinh ¢ sin @, cosh 2¢ cos 26, cosh 2t sin 26).

For a unique choice of Ty > 0, the restriction of ¢ to [—Tp, Tp] x S I defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical Mobius band in B*. Explicitly Tp is the unique positive solution of coth # = 2 tanh 2¢.

* A consequence of the results of [Fraser and Schoen 2012] is that for every k > 1 there exists an
embedded free-boundary minimal surface in B> of genus 0 with k boundary components.

Since of course radp.+ (2) < rady,(£2), where rady,(-) is the extrinsic radius in the metric space
(M, d,), we have a fortiori that

nH™ () < rady (M1 (3RQ). (3-5)

But in this case the rigidity statement is much stronger, indeed in the case of equality, the center of the
ball xo must be a point of M. Moreover, for every x € 02 the segment x, xo must be contained in M;
therefore M contains a portion of a minimal cone C centered at xo. But since by assumption M is a
smooth submanifold and since the only cone smooth at its origin is an affine subspace, it must be that M
contains a portion of an affine subspace. By the classical weak unique continuation property for solutions
to the minimal submanifold system, we conclude that M is an affine subspace of R"**. Therefore we
have just proven the next result.

Proposition 3.7. Let M" — R"** be a connected smooth minimal submanifold and Q@ C M™ a bounded
open subset with smooth boundary 90S2. Then

nH™(Q) < rady (QH" () (3-6)

with equality if and only if M is an affine subspace and <2 is the intersection of M with a round ball in
R™K centered at a point of M.

Remark 3.8. If we allow M to have conical singularities, then (3-6) still holds with equality if and only
if M is a minimal cone and € is the intersection of M with a round ball in R"** centered at a point of M.

Concerning this, recall that in the case where n =2 and k = 1 every minimal cone smooth away from
the vertex is totally geodesic; indeed one of the principal curvatures is always null for cones and so the
mean curvature vanishes if and only if all of the second fundamental form is null. Therefore equality in
(3-6) is attained if and only if M? is an affine plane and 2 is a flat 2-disk. The analogous result for n = 3
and k = 1 is due to Almgren [1966] (see also the work of Calabi [1967]).

For the general case of higher dimensions and codimensions, a minimal submanifold X* in §” is natu-
rally the boundary of a minimal submanifold of the ball, the cone C (X) over X. Using this correspondence
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it is possible to construct many nontrivial minimal cones: Hsiang [1983a; 1983b] gave infinitely many
codimension-1 examples for n > 4, the higher-codimensional problem was investigated in the celebrated
paper of Simons [1968] and the related work of Bombieri, De Giorgi and Giusti [Bombieri et al. 1969].

4. The isoperimetric-isodiametric inequality in manifolds with nonnegative Ricci curvature

In this section we show a comparison result for manifolds with nonnegative Ricci curvature which
will be used in Section 5 to get existence of isoperimetric-isodiametric regions in manifolds which are
asymptotically locally Euclidean and have nonnegative Ricci (the so-called ALE spaces).

Theorem 4.1. Let (M", g) be a complete (possibly noncompact) Riemannian n-manifold with nonnegative
Ricci curvature. Let B, C M be a metric ball of volume V = Vol(B,), and denote by BY' (V) the round
ball in R" having volume V. Then

rad(B,)P(B,) = rP(B,) <nV = radg: (B® (V))Pgr: (B¥ (V). (4-1)

Moreover equality holds if and only if B, is isometric to a round ball in the Euclidean space R". In
particular, for every V € (0, Vol(M)),

inf{rad(Q)P(Q) :  C M, Vol(Q)=V} < nV = inf{rad(Q)P(Q) :  C R", Volp: () =V},  (4-2)

with equality for some V € (0, Vol(M)) if and only if every metric ball in M of volume V is isometric to a
round ball in R". In particular, if equality occurs for some V € (0, Vol(M)) then (M, g) is flat, i.e., it has
identically zero sectional curvature.

Proof. Let us fix an arbitrary xg € M and let B, = B,(xp) be the metric ball in M centered at xy of
radius r > 0. It is well known that the distance function d,,(-) := d(xo, - ) is smooth outside the cut
locus Cy, of xp and that 14 (Cy,) = 0. From the coarea formula it follows that for L'-a.e. r >0 one has
H! (Cx, MAB,(x0)) =0 and, since the cut locus is closed by definition, we get that for Llae. r>0the
distance function dy,(-) is smooth on an open subset of full #"~! measure on 3B, (xp).

Let us first assume that r > 0 is one of these regular radii; the general case will be settled in the end
by an approximation argument. It is immediate to see that on 9B, (x¢) \ Cy, we have |Vd,,| = 1 and
thus 9B, (xp) \ Cy, is a smooth hypersurface. In particular, since H" 1D B, (x0) N Cyx,) = 0, we have that
B, (xp) is a finite-perimeter set whose reduced boundary is contained in 9B, (xo) \ Cy,. Letting v be the
inward-pointing unit normal to 9 B, (xo) on the regular part B, (xp) \ Cy,, from the Gauss lemma we have

V=—Vdy, ondB,(xp)\Cy- (4-3)
Therefore, setting u := %dfm, we get
rP(B,(xo)) = — / Ao (1) g (Vg (x), v(x)) dH" " (x) = — f g(Vu,v)ydH"™!
BB,(xo)\CXO aBr(XO)\cxo
= —lim g(Vug, v)dH" !,

40 J9B, (x0)\Cx,

where u, € C?>(M) is an approximation by convolution of u such that ||Vu, — Vull L8, (x). 271 —> 05

Au, — Au in C?

oc (M \ Cy) and Au, < n, where in the last estimate we used the global Laplacian
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comparison stating that Au is a Radon measure with Au < nug. More precisely, one has that Aur M\ Cy,
is given by p, multiplied by a smooth function bounded above by n, and the singular part (Au)* of
Au is a nonpositive measure concentrated on Cy,. Now Vu, isa C ! vector field and we can apply the
Gauss—Green formula for finite perimeter sets [Ambrosio et al. 2000, Theorem 3.36] to get

rP(B,(xp)) = lim Augdpg =lim Augdng 5/ lim sup Au, dju,
&0 J B, (xo) 0 JB, (x0)\Cy, B, (x0)\Cx, €10

= f Audpg < nVol(B,), (4-4)
By (x0)\Cx,

where in the first inequality we used Fatou’s lemma combined with the upper bound Au, < n and the
last inequality is ensured by the local Laplacian comparison theorem. Notice that if equality occurs then
Au =npug on B, (xo) \ Cy, and, by analyzing the equality in Riccati equations, it is well known that this
implies B, (xp) is isometric to the round ball in R”".

If r > 0 is a singular radius, in the sense that H" 1D B, (x0) NCy,) > 0, then by the above discussion we
1
loc

vergence [Ambrosio et al. 2000, Proposition 3.38] combined with (4-4), which is valid for B,, (x¢), we get

can find a sequence of regular radii , — r and, by the lower semicontinuity of the perimeter under L, _con-

n—oo n— 00

rP(By(xp)) <liminfr,P(B,, (x9)) <lim inff Audpg <lim sup/ XB,, (xo) Audg
n—00 By, (x0)\Cx M\Cy,

< / limsup xp,, (xg)Audpg = / Audpg < nVol(B,), (4-5)
M\Cy, By (x0)\Cxg

n—oo

where in the first inequality of the second line we used Fatou’s lemma (we are allowed since xp, (x,)Au <n
on M \ Cy,), and the last inequality follows again by local Laplacian comparison. Notice that, as before,
equality in (4-5) forces Au =nu, on B, (xo) \ Cx, and then B, (xo) is isometric to a Euclidean ball.

The second part of the statement clearly follows from the first part combined with the Euclidean
isoperimetric-isodiametric inequality (2-3). O

5. Existence of isoperimetric-isodiametric regions

In Section 3 we saw explicit isoperimetric-inequalities in some special situations: Cartan—Hadamard
spaces and minimal submanifolds. In the present section we investigate the existence of optimal shapes:
as it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact, an
optimal set always exists but if the ambient space is noncompact the situation changes dramatically. The
subsequent sections will be devoted to establishing the sharp regularity for the optimal sets.

S5A. Notation. Let (M", g) be a complete Riemannian manifold and denote by d, the geodesic distance,
by 1, the measure associated to the Riemannian volume form and by X(M) the smooth vector fields.
Given a measurable subset £ C M, the perimeter of E is denoted by P(FE) and is given by the formula

P(E) := sup{/ divXduy: X €e X(M), spt(X) EM, || X|lLxwm,g) < 1},
E
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and, for any open subset 2 C M, we write P(E, 2) when the fields X are restricted to having compact
support in 2. It is out of the scope of this paper to discuss the theory of finite-perimeter sets; standard
references are [Ambrosio et al. 2000; Evans and Gariepy 1992; Maggi 2012].

Since from now on we will work with sets of finite perimeter, which are well defined up to subsets of
measure zero, we will adopt the following definition of extrinsic radius of a measurable subset £ C M:

rad(E) :=inf{r > 0: ug(E \ B,(z0))=0 for some zg € M},

where B, (zp) denotes the open metric ball with center zg and radius r > 0. A metric ball B, (zp) satisfying
mg(E\ Br(z0)) =0, is called an enclosing ball for E.
We consider the following minimization problem: for every fixed V € (0, ug(M)), find

min{rad(E)P(E) : E C M, puy(E)=V}, (5-1)
and call the minimizers of (5-1) isoperimetric-isodiametric sets (or regions).

5B. Existence of isoperimetric-isodiametric regions in compact manifolds. Let us start with the fol-
lowing lemma, stating the lower semicontinuity of the extrinsic radius under LlloC convergence.

Lemma 5.1 (lower semicontinuity of extrinsic radius under LlloC convergence). Let (M, g) be a (not
necessarily compact) Riemannian manifold and let (Ey)renuoo) be a sequence of measurable subsets
such that xg, — XE,, in Ll (M, Wg). Then

loc

rad(E) < liminf rad(Ey).
keN

Proof. Without loss of generality we can assume lim inf <y rad(Ey) < 00 so, up to selecting a subsequence,
We can assume Xg, — XE, a.€. and limgq oo rad(Ey) = £ < 00. Let By := Braq(k,) (xi) be enclosing balls
for Ey. Then two cases can occur. Either x; is unbounded, i.e., sup, d,(xx, X) = oo for any x € M, in
which case it follows that £, = & and the conclusion of the lemma is proved, or there exists xooc € M
such that, up to passing to a subsequence, x; — Xoo. In this case it is readily verified that

/Lg(Ek \ Brad(Ek)+|xk—xoo|(xoo)) =0,

from which it follows, by taking the limit as k — +00, that g (Ex \ Be¢(xx)) = 0, which by definition
implies rad(E ) < £. O

The next theorem is a general existence result for minimizers of the problem (5-1), as a special case
it will be applied in Corollary 5.3 to compact manifolds and in Theorem 5.5 for asymptotically locally
Euclidean manifolds (ALE for short) having nonnegative Ricci curvature. Let us observe that the existence
of a minimizer in a noncompact manifold for the classical isoperimetric problem is much harder due to
the possibility of “small tentacles” going to infinity in a minimizing sequence; this difficulty is simply not
there in the isoperimetric-isodiametric problem we are considering, since it would imply the radius goes
to infinity. We believe that this simplification, together with sharp inequalities obtained in the previous
section, is another motivation to look at the isoperimetric-isoperimetric inequality since it appears more
manageable in many situations than the classical isoperimetric one.
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Theorem 5.2 (sufficient conditions for existence of isoperimetric-isodiametric regions). Let (M", g) be a
possibly noncompact Riemannian n-manifold satisfying the following two conditions:

(1) liminf, o+ Sup,cp ie(Br(x)) =0.

(2) There exists ey > 0 and a function
Prsop : [0, g0) = R, with lim, g Prsop(r) =0,

such that for every finite-perimeter set E C M with P(E) < g the weak isoperimetric inequality
M’g(E) = qDIsop(P(E)) holds.

Let V € (0, ug(M)) be fixed and let (Ex)ken C M be a sequence of finite-perimeter sets satisfying

pe(Ex)=V VkeN  and  sup(rad(Ex)P(Ey)) < . (5-2)
keN

Then there exist R > 0 and a sequence (x;)ren of points in M such that pg(E \ Bgr(x)) =0, i.e., Br(xy)
are enclosing balls for Ey.

In particular, if there exists a minimizing sequence (Ey)reN for the problem (5-1) relative to some fixed
Ve (0, ug(M)) such that ug(Ex N K) > 0 for infinitely many k and a fixed compact subset K C M, then
there exists an isoperimetric-isodiametric region of volume V.

Proof. We start the proof with the following two claims.

Claim 1: infy rad(Ey) > 0. Otherwise, up to subsequences in k, there exist r; | 0 and x; € M such that
g (Ex\ B, (xr)) = 0. But then the assumption (1) implies g (Ex) < pg (B, (xx)) = 0, contradicting (5-2).

Claim 2: inf; P(E;) > 0. Otherwise, by the assumption (2) we get gy (Ey) < Prsop(P(Er)) — 0,
contradicting again (5-2).

Combining the two claims with (5-2), we have that there exists C > 1 such that
% <P(Ey) <C and é <rad(Ey) <C, (5-3)

so that the first part of the proposition is proved.

If now there exists a compact subset K C M such that g (Ex N K) > 0O for infinitely many k then by
(5-3), up to enlarging K and selecting a subsequence in k, we can assume u,(Ey \ K) = 0. But then
the characteristic functions (xg, )ken are precompact in LY(K, ) since the total variations of x g, are
equibounded by (5-3) (see [Ambrosio et al. 2000, Theorem 3.23]). The thesis then follows by the lower
semicontinuity of the perimeter under LlloC convergence (see [loc. cit., Proposition 3.38]) combined with

Lemma 5.1. O

Clearly if the manifold is compact all the assumptions of Theorem 5.2 are satisfied and we can state
the following corollary.

Corollary 5.3 (existence of isoperimetric-isodiametric regions in compact manifolds). Let (M", g) be a
compact Riemannian manifold. Then for every V € (0, ug(M)) there exists a minimizer of the problem
(5-1); in other words, there exists an isoperimetric-isodiametric region of volume V.
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5C. Existence of isoperimetric-isodiametric regions in noncompact ALE spaces with nonnegative
Ricci curvature. Let us start by recalling the notion of pointed C° convergence of metrics.

Definition 5.4. Let (M", g) be a smooth complete Riemannian manifold and fix x € M. A sequence of
pointed smooth complete Riemannian n-manifolds (Mg, gk, xx) is said to converge in the pointed C 0
topology to the manifold (M, g, x), and we write (Mg, gk, xx) = (M, g, x), if for every R > 0 we can
find a domain Qg with Bg(¥) € Qg C M, a natural number Ng € N, and C! embeddings Fy g : Qr — My
for large kK > Ng such that Br(xx) C Fr g(R2g) and F,;‘"R(gk) — g on Qp in the co topology.

Theorem 5.5. Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci curvature and
fix any reference point x € M. Assume that for any diverging sequence of points (xy)reny C M, i.e.,
d(xy, X) = 00, the sequence of pointed manifolds (M, g, xy) converges in the pointed C° topology to the
Euclidean space (R", ggn, 0).

Then for every V € [0, g (M)) there exists a minimizer of the problem (5-1); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Proof. Since volume and perimeter involve only the metric tensor g and not its derivatives, the hypothesis
on the manifold (M, g) of being C%-locally asymptotic to R” implies directly that assumptions (1) and (2)
of Theorem 5.2 are satisfied. Therefore the thesis will be a consequence of Theorem 5.2 once we show
the following: given E; C M a minimizing sequence of the problem (5-1) for some fixed volume V €
[0, ug(M)), there exists a compact subset K C M such that ug (Ex N K) > 0 for infinitely many k. We will
show that if this last statement is violated then (M, g) is flat and minimizers are metric balls of volume V.

By the first part of Theorem 5.2 we know that there exist R > 0 and a sequence (xy)xen Of points in M
such that ug (Ex \ Br(xx)) =0, i.e., Bg(xy) are enclosing balls for Ey.

Fixing any reference point x € M, if liminf d(x, x) then clearly we can find a compact subset K C M
such that pg (ExNK) > 0 for infinitely many k and the conclusion follows from the last part of Theorem 5.2.
So assume d(X, x;) — oco. Since M is C%-locally asymptotic to R", combining Definition 5.4 with the
Euclidean isoperimetric-isodiametric inequality (2-3), we get

1ikl‘£1);1£f rad(Ey)P(Ey) = nV. (5-4)

But since (M, g) has nonnegative Ricci curvature, the comparison estimate (4-2) yields

k];ngo rad(Ep)P(Ey) = inf{rad(Q)P(Q) QCM, Vol(Q):V} <nV. (5-5)
The combination of (5-4) with (5-5) clearly implies

inf {rad(Q)P(Q) : @ C M, Vol(Q)=V} =nV.

The rigidity statement of Theorem 4.1 then gives that any metric ball in (M, g) of volume V is isometric
to a round ball in R", and therefore in particular is a minimizer of the problem (5-1). O
5D. Examples of noncompact spaces where existence of isoperimetric-isodiametric regions fails.

Example 5.6 (minimal surfaces with planar ends). If M C R? is a helicoid, or more generally a minimal
surface with planar ends, then it is in particular C%-locally asymptotic to R? in the sense of Definition 5.4.
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Then, if we consider a sequence of metric balls B, (x;) C M of fixed volume V > 0 such that x; — oo,
we get limy_, oo rad(B,, (xx)) Vol(B;, (xx)) = 2V. In particular, for every V > 0 we have

inf{rad(Q)P(Q) :  C M, Vol(Q)=V} <2V.

But then Proposition 3.7 implies the infimum is never achieved, or more precisely it is achieved if and
only if M is an affine subspace.

The same argument holds for any minimal n-dimensional submanifold in R” with ends which are
CV-locally asymptotic to R™.

Example 5.7 (ALE spaces of negative sectional curvature). Let (M", g) be a simply connected non-
compact Riemannian manifold with negative sectional curvature and assume that (M, g) is C%-locally
asymptotic to R" in the sense of Definition 5.4. Then, if we consider a sequence of metric balls B, (xx) C M
of fixed volume V > 0 such that x; — 0o, we get limy_, o rad(B;, (xx)) Vol(B,, (xx)) = nV. In particular,
for every V > 0 we have

inf {rad(Q)P(Q) : @ C M, Vol(Q)=V} <nV.

But then Proposition 3.1 implies the infimum is never achieved, or more precisely it is achieved by a
region  if and only if €2 is isometric to a Euclidean region, which is forbidden since M has negative
sectional curvature.

6. Optimal regularity of isoperimetric-isodiametric regions

In this last section we establish the optimal regularity for the isoperimetric-isodiametric regions, i.e., the
minimizers of problem (5-1), under the assumption that the enclosing ball is regular.

6A. CLz regularity.

6A1. First properties. Let E be a minimizer of the isoperimetric—isodiametric problem in (M, g) with
volume pg(E) =V > 0. Let xg € M satisfy o (E \ Brad(g)(x0)) = 0 and, for the sake of simplicity, we
fix the notation B := Br,q(g)(xo) for an enclosing ball. In the sequel, we always assume that B has regular
boundary and we assume to be in the nontrivial case (B \ E) > 0.

By the very definition of isoperimetric-isodiametric sets, we have

P(E)<P(F) VFAEGEB suchthat ug(F)=1V. (6-1)

In particular, E is a minimizer of the perimeter with constrained volume in B, and therefore we can apply
the classical regularity results (see, for example, [Morgan 2003, Corollary 3.8]) in order to deduce that
there exists a relatively closed set Sing(E) C B such that dimy (Sing(E)) <n—8 and dE N B\ Sing(E)
is a smooth (n—1)-dimensional hypersurface.

Moreover, by the first variations of the area functional under volume constraint, one deduces that the
mean curvature is constant on the regular part of the boundary: i.e., there exits Hy € R such that

Hp(x) = Hyvg Vx € dENB)\Sing(E), (6-2)
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where
n—1
Hp(x) =) Vi,
i=1
for {ry, ..., t,—1} a local orthonormal frame of 0E around x € dE N B\ Sing(E), vg the interior normal

to E and V the Riemannian connection on (M, g).
In this section we prove the following.

Proposition 6.1. Let E C M be an isoperimetric-isodiametric set and xo € M be such that

pg(E\ Brag(g)(x0)) = 0.

Assume that B := Bryq(g)(x0) has smooth boundary. Then, there exists § > 0 such that 9E \ Braa(g)—s(x0)
is Cl-2 regular.

Remark 6.2. In particular, given the partial regularity in B as explained in Section 6A1, we conclude
that E is a closed set whose boundary is C 13 regular except on at most a closed singular set Sing(E) of
dimension less than or equal to n — 8.

6A2. Almost-minimizing property. The main ingredient of the proof of Proposition 6.1 is the following
almost-minimizing property.

Lemma 6.3. Let E be an isoperimetric-isodiametric set in M and let B denote an enclosing ball as above.
There exist constants C, ro > 0 such that, for every x € B and for every 0 <r < ry,

P(E) <P(F)+Cr" VFAE E B, (x). (6-3)
Remark 6.4. Note that B, (x) is not necessarily contained in B.

Proof. We start by fixing parameters 7, ¢; > 0 and two points y;, y» € B such that dg(y1, y2) > 47,
B4n(y1) CB, B4n(y2) C B and

P(E, By(yi)) >c1, i=1,2. (6-4)

Note that the possibility of such a choice is easily deduced from the regularity of the previous subsection,
or more simply from the density estimates for sets of finite perimeter in points of the reduced boundary.
For simplicity of notation, set D; := B,(y;). By a result by Giusti [1981, Lemma 2.1], there exist
vg, C1 > 0 such that, for every v € R with |v| < vy and for every i = 1, 2, there exists F; which satisfies

F,ANE CD;,
g (F) = 1 (E) + v, (6-5)
P(F;) <P(E)+Cyv.

Note that in [Giusti 1981, Lemma 2.1] the property (6-5) is proven in the Euclidean space with the
flat metric, but the proof remains unchanged in a Riemannian manifold (up to a suitable choice of the
constants vy, C1).
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Next, let rg > 0 be a constant to be fixed momentarily such that ry < n and

sup ig(B,(x)) < Cor" <wvg  Vr €10, rol (6-6)

xeB

for some C, > 0 depending just on B and rg. Since dg(y1, y2) > 4n, for every x € B, we know B, (x)
cannot intersect both D and D;: therefore, without loss of generality, we can assume B, (x) N D = &.
If r <rgand F C M is any set such that F A E € B,(x), we consider F’ := F N B. Note that F' C B
and moreover

|I/Lg(F/) _Mg(E)l = Mg(Br(x)) < Cor" < vy.
According to (6-5) we can then find F” C B such that py(F") = ug(E), F"A F' € Dy and
P(F") <P(F')+ Cilug(F') — g (E)|. (6-7)

Using the fact that £ minimizes the perimeter among compactly supported perturbation in B, we deduce
that
(6-7)
P(E) <P(F") < P(F")+Cilpg(F') — ug(E)| < P(F)+P(B) — P(FUB) + Cor". (6-8)
Next note that, if B is C!! regular, then one can choose ry > 0 such that the following holds: there
exists a constant C3 > 0 such that, for every x € B and for every r € (0, ryp),

P(B) <P(G)+C3r" YGABE B, (x). (6-9)

In order to show this claim, it enough to take ry small enough (in particular smaller than half the injectivity
radius) in such a way that, for every p € 9B, there exists a coordinate chart & : By,,(p) — R” such that
£(0B) C {x, =0} and £ is a C"! diffeomorphism with d&(p) € SO(n), £(p) =0 and g(0) = Id, where
g is the metric tensor in the coordinates induced by &. Indeed, in this case we have P(B, B,(p)) <
(14 Cr)w,_r"! for every r < ro and, for every G such that G A B € B,(p),

P(G, B/(p)) = (1 — Cr)P(proj(€(G)), £(B,(p))) = (1 = Cryw, 17",

where proj denotes the orthogonal Euclidean projection on {x, = 0} and we have used the regularity of &.
Applying (6-9) to G = F U B and using (6-8), we conclude the proof. U

6A3. Proofof Proposition 6.1. Now we are in the position to apply a result by Tamanini [1982, Theorem 1]
(the result is proved in R” with a flat metric, but the proof is unchanged in a Riemannian manifold) in
order to give a proof of the above proposition.

To this aim, we start by considering any point p € dB N JE; we denote by Exp,, : T,M — M the
exponential map and we let ry > 0 be less than the injectivity radius. Since by Lemma 6.3 the set E is an
almost minimizer of the perimeter, the rescaled sets

_ Exp,'(EN By (p))

E,, = . CT,M~R" (6-10)

converge, up to passing to a suitable subsequence, to a minimizing cone C in the Euclidean space (see
[Maggi 2012, Theorem 28.6]). Moreover, since E is enclosed by B and 3B is C'!, it is immediate to check
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that if ry > O is chosen small enough in (6-10), then C, C {x : g(vp(p), x) > 0}; we deduce that every
tangent cone to E at p needs to be contained in a half-space, and therefore by the Bernstein theorem is flat
(see [Giusti 1984, Theorem 17.4]). This implies that every such point p is a point of the reduced boundary
of the set (see [Ambrosio et al. 2000, Definition 3.54]) and therefore we can apply the aforementioned
result by Tamanini to conclude that dE is a C''!/2 regular hypersurface in B, (p) for every p € dBNIE
and for every r < %ro. By a simple covering argument, the conclusion of the corollary follows.

6B. L estimates on the mean curvature of the minimizer. In this section we prove that the boundary
of FE has generalized mean curvature, in the sense of varifolds, which is bounded in L*°. To this aim, we
compute the first variations of the perimeter of E along suitable diffeomorphisms.

6B1. First variations. We start by fixing two points y;, y» € dE N B\ Sing(E) and a real number 1 > 0
such that By, (y1) C B, B4,(y2) C B and

Buy(y1) N Bay(y2) = Bay(y) N Sing(E) = Bay(y2) N Sing(E) = 2.

Note that such a choice is possible under the hypothesis that 1, (B \ E) > 0 because of the partial regularity
in Section 6A1. Let X € X(M) be a vector field with support contained in a metric ball B, (y) for some
y € M. Clearly, B,(y) cannot intersect both B;,(y;) and By, (y2), because d,(y1, y2) > 8n; therefore,
without loss of generality let us assume B, (y) N By, (y1) = @. It is not difficult to construct a smooth
vector field Y supported in B, (y1) such that the generated flow {®F} satisfies the following property for
small |z|:

1g(®F 0 B (E)) = pg(E). (6-11)

Note that the generated flows { CD,X }rer and {CD,Y }ter are well defined and for |¢| sufficiently small are
diffeomorphisms of M. Moreover, ®) o0 ®X(E) C Brad(g)+ 1| x]..- We can then deduce that

rad(E)P(E) <rad(®) 0@ (E))P(®] 0@} (E)) < (rad(E)+1t| | X o) P (P, 0@, (E)) =: £ (1). (6-12)

Taking the derivative of the last functional as ¢ |, 0" and as # 1 07, by the well-known computation of the
first variations of the area we get that

t)— f(0 -
0 < lim fO-fO _ | X looP(E) +rad(E) / divyp X dH" ! — / g(Hp,Y)dH"™!,  (6-13)
t}0* ! dE )
t)—f(@© -
0= tim 7SO _ iy Py +rd(E) [ aviexaw = [ gtz a6
10~ t dE oE
where divyg X := Zf:_ll g(V, X, 1;) for a (measurable) local orthonormal frame {7y, ..., 7,1} of JE.

(Note that in writing (6-13) and (6-14) we have used that dE isa C L172 regular submanifold up to singular
set of dimension at most n — 8 and that Y is supported in B, (y) where d E is smooth in order to make the
integration by parts.) In the case V € (0, g (M)), we have rad(E) > 0 and thus P(E) < oo. Moreover,
from (6-11) we deduce that

d

0=—+— g(X, vg)dH" ! —/ g(Y,vp) dH" L. (6-15)
dt |1=0

oE

1e(®) 0 D (E)) = — /

JoE
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Therefore, from (6-2) and (6-13)—(6-15) we conclude

i nl 7 n—1
/aEdlvaEXd’H S (P(E)||X||oo+‘/aEg(HE,Y)d’H )
n—1
< A (P(E)||X||oo+|Ho| /8Eg(Y, o) dH )
= n—1 .
- (P(E)IIXlloo+|Ho| [ et an )§C||X||Oo (6-16)

for some C = C(rad(E), P(E), |Ho|) > 0, for every vector field X with support contained in a metric ball
B,(y) for some y € M. By a simple partition of unity argument, (6-16) holds for every X € X(M). In
particular, by the use of Riesz representation theorem we have proved the following lemma. To this aim,
we denote by M(M, TM) the vectorial Radon measures it on M with values in the tangent bundle 7M.

Lemma 6.5 (the mean curvature is represented by a vectorial Radon measure). Let E C M be an
isoperimetric-isodiametric region for some V € (0, o (M)) and denote by B an enclosing ball. If 0B is
smooth, then there exists a vectorial Radon measure H £ € M(M,TM) concentrated on OE such that
for every C' vector field X on M with compact support, letting ®X : M — M be the corresponding
one-parameter family of diffeomorphisms for t € R,

SEX) =L

: - 1 -
G PN == [ . Fip). 61

Moreover, the total variation of H £ 1S finite; i.e.,
|Hg|(M) < C = C(P(E), rad(E), | Hy|) € [0, 00).

Remark 6.6. Note that
Hp B := HyH" 'L (3EN B), (6-18)
where H £ 1s the mean curvature vector on the smooth part of dE as defined in (6-2).

We close this subsection by noting that if
g(X(x),vp(x)) =0 Vxe€dBNBy,(y), (6-19)

where vp is the interior normal to 9B (note that 9B N B, (y) can also be empty), then CD,Y o CIDIX(E) CB
for t > 0. In particular, the minimizing property of E gives

P(@) 0o ®X(E) = P(E) Vt>0, (6-20)

which combined with (6-2) and (6-15) implies

d Y _ X .
0< dt|t=0+7)(q)t o@t (E)) —/

divag X d3"~! —/ g(Hg.,Y)
oE E

a

_ / divor X dH" + Hy / (e, X), 6-21)
oE 0E
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which in view of (6-17) gives
g(p, fIE)L(aE NdB) < HyH" 'L (AEN3B), (6-22)

where the inequality is intended in the sense of measures, i.e., f 4 8B, fIE) < HyH""'(A) for every
measurable set A C 0E N JB.

6B2. Orthogonality of Hp. We have seen in the previous section that Hp is well defined as a measure
on all 9E. Translated into the language of varifolds, we have shown that the integral varifold associated to
dFE has finite first variation. A classical result due to Brakke [1978, Section 5.8] (see also [Menne 2013]
for an alternative proof and for fine structural properties of varifolds with locally finite first variation)
implies that for H"~!-a.e. x € dE it holds that H £(x) € (T,dE)*. This is not quite enough for our
purposes; indeed in the next lemma we will show that H g is normal to OE as measure, which is a strictly
stronger statement. Note that the proof is based on the fact that E is a minimizer for the problem (5-1),
and will not make use of the aforementioned structural result by Brakke.

Lemma 6.7 (the mean curvature measure is orthogonal to 0E). Let E, B, M, V, H £ be as in Lemma 6.5.
Then Hg(x) € (T dE)™* for |Hg|-a.e. x € dE; i.e., the mean curvature is orthogonal to dE as a measure.

Remark 6.8. In other words, there exists an R-valued finite Radon measure Hr on M concentrated on
0FE such that ﬁE = Hgvg; moreover, by (6-2), HpL(BNOJE) = HoH" '_(E N B).

Proof. In view of (6-2) we only need to prove the claim for H gLOB. Assume by contradiction that there
exists a compact subset K C 9B N dE such that

\HI|(K) > 0, (6-23)

where H g = Pry E(ﬁ £) is the projection of H £ onto the tangent space of dE (or, equivalently, onto
T 9B, because JE and 9B are C! and T, dE = T, 9B for every x € dBNIE).

The geometric idea of the proof is very neat: if the mean curvature along K C dE N dB has a nontrivial
tangential part, then deforming infinitesimally £ along this tangential direction will not increase the
extrinsic radius (since the deformation of E will stay in the ball B), will not increase the volume (because
the deformation is tangential to d E') but will strictly decrease the perimeter; so, after adjusting the volume in
a smooth portion of d £, this procedure builds an infinitesimal deformation of E which preserves the volume,
does not increase the extrinsic radius but strictly decreases the perimeter, contradicting that E is a minimizer
of the problem (5-1). The rest of the proof is a technical implementation of this neat geometric idea.

For every & > 0 we construct a suitable C! regular tangential vector field. To this aim, we consider the
polar decomposition of the measure H g = v|ﬁ g |, where v is a Borel vector field such that v(x) € ToB
and g(v(x), v(x)) =1 for |iI g |-a.e. x € M. By the Lusin theorem we can find a continuous vector field w
such that |FI§|({U #w}) <eand spt(w) C K, :=={x € 0ENIB :d,(x, K) < ¢}. Moreover, by a standard
regularization procedure via mollification and projection on 7dB, we find a vector field X, such that
Xc(x) € TOB for every x € dBN Ky, || X — w|leo < € and spt(X,) C K».. Note that

/g(xs,ﬁg)=/ g(xg—w,ﬁmf g(v,ﬁE)+/ g(w, Hp)— [HL|(K) ase—0. (6-24)
M M {w=v} {w#v}
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Since X, is a smooth vector field compactly supported in M and tangent to dB, the generated flow <I>,X ¢
is well defined and maps B into B for every ¢ € R and by (6-24)
d X _ 7 LgT
- P@(E)=—| gXe, Hp)=<—3|H|(K) <0 (6-25)
dt |t=0 9E
for ¢ > 0 small enough. Moreover, since X, is supported in K, and K C dB and X, is tangent to
0B = 0E in K, we have

d

= ,ug(CID,XS(E)) = —/ ge, X)dH" ' >0 ase— 0. (6-26)
dt |1=0 9E

Up to choosing a smaller compact set, we can suppose that K is contained in a small ball B,,(x) with
x € JEN B such that (JE \ 0B) N (M \ Buy,(x)) # &. Now fix y € JE \ (0B U By, (x) USing(E)) and let
r € (0, rg) be such that By, (y) N (E)B U By, (x) U Sing(E)) = . For ¢ > 0 small enough it is not difficult
to construct a smooth vector field Y, supported in B, (y) such that the generated flow d>,Y ¢ satisfies the
following properties ((6-28) is intended for small ¢):

d Y. X, . _
0 (@1 0 @Y () =0, (6-27)
\P(QJ,Y‘(E), By (y)) — P(E, By ()| < Cug(q%yg (E)AE). (6-28)

Notice that the combination of (6-26), (6-27) and (6-28) gives

d Y. d Ye _~ld X, .
P (E))‘ §C| ols (@ (E))‘ _c) s @ ED 0 ase 0. (629)

Moreover, since for small > 0 we have CI>tY *(E)AE C By-(y), which is disjoint from 9B, and since by
construction thX * maps B into B, it is clear that

<I>,Y9 o GDIXS(E) C B for ¢t > O sufficiently small.

Therefore, since by assumption E is a minimizer for the problem (5-1), we get

d Y, X, _
En:op(@’ o ®;°(E)) = 0. (6-30)

But on the other hand, combining (6-25) and (6-29) we get

d Ye Xe _ i Y, i
dt |,=op(q>t o ®*(E) = dt |t:OP(q)t (E) + dt |1=0

= —%Iﬁgl([() <0 for € > 0 small enough.

P(D;(E))

Clearly the last inequality contradicts (6-30). We conclude that it is not possible to find a compact
subset K C 0B N JE satisfying (6-23); therefore the measure |H g | vanishes identically and the proof
is complete. O
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6B3. L°° estimate. The next step is to show that the signed measure Hp is actually absolutely continuous
with respect to H"~'LdE with L> bounds on the density. The upper bound follows from (6-22). For the
lower bound we use the following lemma, which is an adaptation of [White 2010, Theorem 2] to our
setting (notice that the statement of White’s theorem is more general as includes higher codimensions
and arbitrary varifolds, but let us state below just the result we will use in the sequel).

Lemma 6.9. Let N" C M" be an n-dimensional submanifold with C* boundary N and denote by vy
the inward-pointing unit normal to N. Fix a compact subset K C 0N and assume that, denoting by Hy
the mean curvature of o N, we have

g(Hy,vx) =1 onKk.

Then, for every & > 0 there exists a C' vector field X, on M with the following properties:

X.(x)=vy VxeKk, (6-31)

IX.|) <1 VxeM, (6-32)

spt(Xe) CKe.:={xeM:d(x, K) <e}, (6-33)
g(Xo,vn)(x) >0 Vx € N, (6-34)

& P@r@) = [ xgan (635)

for every subset E C N with C' boundary E, where QDIXS denotes the flow generated by the vector
field X .

Lemma 6.9 will be used to prove the following lower bound on the mean curvature measure Hg of 0E.

Lemma 6.10 (lower bound on Hg). Let E, B, M, V, ﬁE Hpg be as in Lemma 6.7. Assume n =
infyp Hg > —00, where Hg := g(Hp, vg) and Hp is the mean curvature vector of 0B. Then

Hg (JENIB) > nH" 'L(BE N 3B). (6-36)

Proof. Fix any K C dE N dB. For every ¢ € (0, 1) let X, be the C! vector field obtained by applying
Lemma 6.9 with N = B; then by (6-35) and (6-33) we get

d
—77/ X dH"™ = —  P(@](E)) = —/ g(X¢, vp)dHEg
9E dt|t:0 K,

= —/ 8(Xe,vp)dHEg —/ 8(Xe,ve)dHg — —Hg(K) ase— 0, (6-37)
K K \K
where in the second identity we used that vg = vg on K C dE NadB. Using (6-31) and (6-32), we have
—n/ | X |dH"~ ! = —n/ | X | dH" ! —n/ | Xp|dH" ' > —pH" N (K) ase—0. (6-38)
dE K IEN(K:\K)
In particular, in the limit as ¢ — 0 we deduce from (6-37) that

nH" ' (K) < Hg(K). (6-39)
Since this holds for every K C dE N JB, it is easily recognized that (6-36) follows. O
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6C. Optimal regularity. In this section we prove that the boundary of an isoperimetric-isodiametric
set E is C!! regular away from the singular set.

Theorem 6.11. Let E C M be an isoperimetric-isodiametric set and xo € M be such that

Mg(E \ Brad(E) (x0)) =0.

Assume B := By (x0) has smooth boundary. Then, there exists § > 0 such that OE \ Braq(g)—s(xo) is
Cc! regular.

Note that the C!! regularity is optimal, because in general one cannot expect to have continuity of
the second fundamental form of dE across the free boundary of dE, i.e., the points on the relative (with
respect to dB) boundary of 0E N 9B.

6C1. Coordinate charts. We start by fixing suitable coordinate charts. Since E is bounded, there exists
ro > 0 such that for every xo € dE there is a normal coordinate chart (€2, ¢) with xo € 2 and

gozﬁcM—)Br"O_lx(—ro,ro)c[R{"_lle

such that ¢(x¢) =0, g(0) =1Id and Vg(0) = 0, where g denotes the metric tensor in these coordinates.
Moreover, by the C!-!/2 regularity of E established in Section 6A, up to rotating these coordinate charts
and eventually changing rg, we can also assume that for every point xo € dB N dE the following also
holds:

o OE and 3B are, respectively, C''!/2 and C* regular submanifolds, given in this chart as graphs of
functions u, 1V : Bf()*l — (—3r0, 370) withu € C1"1/2 and ¢ € C™.

« The functions u and  satisfy ¢ (x) < u(x) for every x € B:’O_l,
u(0) =¥ (0) = [Vu(0)| = [V¢(0)| =0,
and ||u||c1 < 8o and ||| < & for a fixed §p > 0, which will be later assumed to be suitably small.
On every such a chart, the ch1/2 regular submanifold 0E N2 is given as the set {(x, u(x)):x € Bfo_l}.

We can consider the natural coordinate chart on it given by (x, u(x)) — x € B;“l with induced metric
tensor given by h;; := g(E;, E;), where E; :=¢; +d;ue, fori =1,...,n— 1. In particular,

hij = gij + 0iut 8nj + 0ju ni + 0ju jU un, (6-40)
where d;u = d;u(x) and g;; = g;;(x, u(x)). We will use the notation h for the function
h: Bfo_l x R x R" — R™™",
hij(x, 2, p) = 8ij (X, 2) + Pigjn(x. 2) + Pjgni (X, 2) + PiDjgun (X, 2),

with the obvious relation h;; = h; j(x, u(x), Vu(x)). Note that I is smooth as a function in (x,z, p).
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6C2. First variation formula in local coordinates. We consider next functions § € C° (Bfo_l) and
x € C2°(—ro, rp), and we assume x |(—r,/2,r,/2) = 1 in such a way to ensure that x ou(x) =1 for every
X € Bfo_l (by the assumptions made on u). Consider the associated vector field X (x, y) :=&x)x (y)e,
and note that X € C°(Q2, R") and X[y = &(x)e,. Setting F (¢, p) := p +tX(p), there exists g9 > 0
such that F, := F(¢, -) is a diffeomorphism of €2 into itself for every |¢| < &o.

Consider now the variations of the area along this one-parameter family of diffeomorphisms under the
assumption & >0 on A(u) :={x € BZ)‘I su(x) =Y (x)}. Arguing as in (6-21), we get

0< / divyg XdHn_l — H()/ g(X,vg) dHn_l
oE JoE

:/ h'g(Vg, X, Ej)dH"™! —Ho/g(X, vg)dH" !, (6-41)
%

where in the second line we have used a simple computation for the tangential divergence of X. Noting

that
VEX =Vi9ue, X = Vo, X +0;u V,, X

= 0i& ey +EVeey + JuEV, e, =& e, +ETNer + U TS e,
we get
ij 1] k k ij k k
:81-5(hijgjn+hij8jugnn)é(hijaiuF,'fngjk—i—hijajuaiul",]fngkn)
+E(WIT, gju+h0uTl ). (6-42)

In particular, by a simple integration by parts, (6-41) reads as

/ l5;‘Lu det(h;;)dx <0 Vé&e CCI(Bf_l), Elaw =0, (6-43)
B!~

where A(u) :={x € Bf_l cu(x) =Y (x)} and

Lu(x) :=div(A(x, u(x), Vu(x))Vu(x) + b(x, u(x), Vu(x))) — f(x) (6-44)

______ not1: B x (=1, 1) x R — RO=Dx@=D j5 3 smooth function given by
a'l (x, z, p) i= gun(x, DA (x, 2, p);
e b:B" ! x (—r,r) x R"! — R"! is a smooth regular function given by
b'(x,z, p):=h"(x,z, p)gjn(x, 2);
o f:B" ' = RisaC% regular function given by
f) =R u Ty gk +h70judiuly, gin+hITE gjx +h7d;u Tl gen — Hog(en. Vi),

where h'/ = h/ (x, u(x), Vu(x)), gi; = gij(x, u(x)), Tf; =T (x, u(x)) and vg = v (x, u(x)).
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Explicitly expanding the divergence term in Lu we deduce that

Lu(x) = cll 0jju+d, (6-45)
where
' =a" + gundu 8, h" + g1ndp, h', (6-46)
with 8,;h" = 3,;h" (x, u(x), Vu(x)), gij = gi;(x, u(x)) and d € C**(B"~) is given by
d= gnnaihijaju + gnnazhijaiu aju + aignnhijaju + angnnhijaiu aju
+8jndih"” + gjnd.h" diu+ ;g juh" + 3,8 juh" Qu — f  (6-47)
where the entries of / and of its derivatives are computed in (x, u(x), Vu(x)), while those of g and the

derivatives of the metric are computed in (x, u(x)).
Note that (6-43) is equivalent to the pair of differential relations

{Lu <0 inB" !,

oy (6-48)
Lu=0 inB!' "\ A(u),

where the first inequality is meant in the sense of distribution, while the second equation is pointwise
(also recalling that u# is smooth outside the contact set A (u)).

6C3. Quadratic growth. Note that by the explicit expressions of the previous subsection it turns out that
¢, d € C%*(B~") with uniform estimates (by the assumptions in Section 6C1):

™ ||C0va(BZ’0*1) + ||d||C0,,1(B:,071) <C. (6-49)

Since ¢(0) = Id and ¢/ are Holder continuous, up to choosing a smaller §o > 0 (and consistently a smaller
ro > 0), we can also ensure that ¢/ is uniformly elliptic with bounds

Ild<c=<2Id

The next lemma shows that u leaves the obstacle i at most as a quadratic function of the distance to
the free-boundary point.

Proposition 6.12. Let E C M be an isoperimetric-isodiametric set. Then, there exists a constant C > 0
such that, for every xog € 0E N 0B, setting coordinates as in Section 6C1, we have

u(x) =¥ (x) <Clx|> VxeB ). (6-50)
Proof. Let us consider the homogeneous part of the operator L, i.e., Lw := ¢/ 9; jw. Since L(u — ) =
Lu — Ly —d, for every r < rg we can write (u — w)|B;1_| = wy + wy with
=0 in B"~!
Lw in B . 6-51)
and |
=Lu— —d in BT
Lwr u—Ly in B 3 (6-52)
wy =0 on dB! .
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We start by estimating w, from below. Considering that Lw, + Ly +d = Lu <0, we can apply the
L™ estimate for elliptic equations [Gilbarg and Trudinger 1983, Theorem 8.16]. In order to understand
the dependence of the constant on the domain, we can rescale the variables in this way: v : BI‘_l - R
given by v(y) := r ">ws(ry). Then, the equation satisfied by v is

Lu(y) + Ly (ry) +d(ry) = Lu(ry) <0.
We can then conclude using [loc. cit., (8.39)] that
sup (—v) = ClILY (ry) +d () Lap -1y = €,
B)I‘l—]
where now C is a dimensional constant (only depending on ¢ > n— 1, which for us is any fixed exponent —

note that the hypothesis (8.8) in [loc. cit., Theorem 8.16] is satisfied because we are considering the
operator £ which has no lower-order terms). In particular, scaling back to w, we deduce that

wy(x) > —Cr* VYxeB' (6-53)

This clearly implies w;(0) = u(0) — ¥ (0) — w,(0) < Cr2. We can then use the Harnack inequality
for w; (see [loc. cit., Theorem 8.20]) and conclude
wi(x) < C inf w; < Cwi(0) <Cr® VxeB" (6-54)
r/2
Finally note that in B"~'\ A(u) we have the equality Lwy = —Ly — d. Therefore, the function
z:=wy + C|x|? satisfies £z > 0 for a suitably chosen constant C = C (|| Ly ||z, ||d||L=). By the strong
maximum principle [loc. cit., Theorem 8.19] we deduce that
max z< max z< Crz,
Bl NAW 3B TNAW)
where we used that z|aB;H = Cr? and that for every x € A(u)ﬂBf‘l we have z(x) = —w; (x)+C|x|?> < Cr?
by the positivity of w;. In conclusion, we have

u(x) — Y (x) < lwi ()| + lwa(x)| < Cr?

for every x € B /;1. Since r < ry is arbitrary, by eventually changing the constant C, we conclude the
proof of the proposition. 0

6C4. Curvature bounds away from the contact set. Next we analyze the points p € dE \ B which are
close to dB. To this aim we fix a constant so > 0 such that the following holds: if dist(p, dE N9B) =
dist(p, xo) < so, then p belongs to the coordinate chart €2 around xg as fixed in Section 6C1 and moreover,
in these coordinates, p = (x, z) € Bf()*l X (—rg, ro) (necessarily with x ¢ A(u)) satisfies

Bz(g_l(-x) C B;’lofl with § := %diSt(-x’ A(M))

Note that the existence of such a constant sy > 0 is ensured by a simple compactness argument. Recall
also that by the quadratic growth proved in the previous section we know

2
”u”LOO(BZ;I(x)) < (s~
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The following lemma gives a curvature bound for dE in points p as above.

Lemma 6.13. Let p € 0E \ 0B satisfy dist(p, 0ENIB) < sg. Fixing xg € 0E N OB and the corresponding
coordinate chart as in Section 6C1 with the notation fixed above, we then conclude

2
D ullLoo(Bg_l(x)) <C, (6-55)
where C > 0 is a dimensional constant.

Proof. Since on By lc Bfo_l \ A(u) the equation Lu = 0 is satisfied, the proof is a consequence of
the basic interior Schauder estimates for second-order elliptic equations (see [Gilbarg and Trudinger
1983, Theorem 6.2]). More precisely we write the equation as Lu = —d, where d € C* is defined as in
(6-47) and satisfies (6-49), and we apply [loc. cit., Theorem 6.2]) to such an equation. Indeed, by simply
recalling the definition of the norms in [loc. cit., Theorem 6.2] we have, setting d, := dist(y, 8338_ ! (x)),

: ld(y)—d(2)]
82||D2u||LOO(Bg’*1(x)) SC(||M||LOO(B;(;1(X))+ sup d?}ld(y”)—i—c sup mln{dy9dz}2+a—a
yeBy ! (x) y,z€BY (%) ly—2z]

2 2+ 2
= C(”u”Loc(Bélgl(x))"i"s ”d”Loc(Bélgl(x)))"i‘Cg a[d]co,a(ngl(x)) <Cé”. O

6C5. C'!'-regularity. In this section we finally prove Theorem 6.11. The proof is based on the following
property: by Proposition 6.12 and Lemma 6.13, there exists § > 0 such that for every xg € 9B N JE there
exists ro > 0 satisfying, fixing coordinates as in Section 6C1,

lu(y) —u(x) — Vu(x) - (y —x)| < 1Clx —y|* Vx,y € By (x0). (6-56)

Indeed, if x € dE N 0B, then centering the coordinates at x, we have 0 = u(0) = [Vu(0)|, and (6-56) is
a direct consequence of (6-50). On the other hand, if x ¢ dE N dB, then setting the coordinates as in
Lemma 6.13, we deduce (6-56) from (6-55).

The conclusion of Theorem 6.11 is then a direct consequence of the following lemma combined with a
standard partition of unity argument.

Lemma 6.14. Let Q C R" be an open subset and let u : Q@ — R be a C' function. Assume there exist
C > 0 and a countable covering {B;}ien of Q2 made by open balls B; C Q such that for every x, y € B;,

|u(y) —u(x) = Vu(x) - (y —x)| < 1Clx — y|% (6-57)
Then the distribution 8,-2]-” € D'(Q) is represented by an L*° () function, and
15 ull L) < C.

Proof. By a standard partition of unity argument it is enough to prove that for every ball B; the restriction
of the distribution aizjuLBi is represented by an L°°(B;) function, and ||a,-2ju||L°°(B,-) < C. In order to
simplify the notation, let us fix i € N and set B := B;. For every fixed ¢ € C>°(B) let Q¥ : R" xR" — R
be defined by

82
0%(vy, v2) 3=/ 4

. 6-58
Bu 31)131)2 ( )
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We first claim
10, v)| < CluPllglliis Yo eCE(B), YveR:, (6-59)
where C is given by (6-57). To prove (6-59), we write (6-57) exchanging x and y and sum up to get
|(Vu(x) = Vu() - (x = )| = Clx = yI*.

Choosing y = x + tv in the last estimate, we get

|(Vu(x +1v) = Vu(x)) - v

. <C VveS" L Vie©,1—]x). (6-60)

Now using that u is C!' and ¢ € C2°(B), we can integrate by parts to get
p(x +1v) —(x) J ‘
X

BRI ou 0 .
u — (Vu(x) - v)lim
g dvdv g v dv B 110 t

lim/'<Vu(x—tv)—Vu(x) -v)go(x)dx
B

<C Vo e §" L 6-61
i ; <Cll¢liLi Vv (6-61)

where in the second line we used the change of variable x + x + fv, and the last inequality follows from
(6-60). The inequality (6-61) proves our claim (6-59).

We now show (6-59) implies that the distribution a,?ju is represented by an L°°(B) function and
||85u|| Lo(B) < C. To this aim, observe that for every ¢ € C°(B), by the Schwartz lemma, the map
07 :R" x R" — R defined in (6-58) is a symmetric bilinear form. Using (6-59), by polarization of Q¥
we get

1093, 3))| = 1| Q%@ + 9, 9 +3;) — Q¥(3; — 3;, 3 — 3))| < Cll@ll 115 (6-62)
forevery i, j =1, ...,n. But now
Q% (9;, 9;) = (07u, )

where (-, -)p p denotes the pairing between distributions and C2° test functions. Therefore (6-62)
combined with the Riesz representation theorem concludes the proof. O

The arguments above prove also the following slightly more general regularity result for isoperimetric
regions inside a C? domain. In order to state it, for a subset A C M and for some § > 0, let us denote by
Bs(A) = {x € M :inf,c4 d(x, y) < 8} the §-tubular neighborhood of A.

Theorem 6.15 (C"! regularity of isoperimetric regions inside a C?> domain). Let (M, g) be a Riemannian
manifold, let Q@ C M be an open subset with C* boundary dQ and fix v € (0, Wg(82)). Let E C Q2 be a
finite-perimeter set with pg(E) = v and minimizing the perimeter among regions contained in 2, i.e.,

P(E) =inf{P(F): F C Q, ug(F)=v}.
Then, there exists 8 > 0 such that 9E N Bs(92) is C! regular.

Remark 6.16. Theorem 6.15 already appeared in [White 1991, Proposition, p. 418], though the arguments
in the proof are very concise (line 7, p. 419 in [White 1991]) and basically consist of referring to the



124 ANDREA MONDINO AND EMANUELE SPADARO

work of Gerhardt [1973]. Nevertheless, it seems that one of the hypotheses of [Gerhardt 1973] is not met
for the operator H in [White 1991]. Indeed, H is the Euler—Lagrange operator of the functional

O(u) = / L(x,u(x), Vu(x))dx,

and a simple computation shows

oL . (0L
H@u) = g(x, u(x), Vu(x)) — dlv(g(x, u(x), Vu(x))),

where we named the variables as L = L(x, z, p). Now the operator H is of the form considered in
[Gerhardt 1973] (here there is a conflict of notation between the two papers, therefore we put a bar for
the notation in [loc. cit.]),

Au+H =— div(c—z(x, u(x), Vu(x))) +H.

In our case the vector field @ is given by d L /dp and the forcing term H is given by (3L /9z) (x, u(x),Vu(x)).
In [loc. cit.] the forcing term H is assumed to be W™ (see equation (5) in [loc. cit.]), which in the
present situation would be verified only knowing already that u € W2, which is, however, what one
wants to deduce.

We do not exclude that going through the proofs of [loc. cit.] one could overcome such a difficulty;
however, we think the approach of the present paper could be of independent interest, especially because
it is self-contained and based on an elementary use of Schauder estimates.

6D. Further comments. We have proven the above regularity of the isoperimetric-isodiametric sets
E C M under the assumptions that the enclosing ball B = By,q(k)(xo) has smooth boundary. Actually,
the following is true and is a direct consequence of the argument used above.

(A) If 3B € C1* for some « € (0, 1], then in a neighborhood of 3B the isoperimetric-isodiametric sets
have the boundary dE, which is C!¢ regular.

Indeed, under the assumption in (A), the arguments in Lemma 6.3 show that dE is C'* regular in
a neighborhood of 0B for k = min{a, %} Moreover, a careful inspection of the proof of the optimal
regularity in Theorem 6.11 shows that the conclusion of (A) holds true with the right Hélder exponent
(in the case o = 1 the proof is a straightforward generalization; for o € (%, 1) more details need to be
checked). Nevertheless, we do not do it here.
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NONRADIAL TYPE IT BLOW UP FOR
THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION

CHARLES COLLOT

We consider the semilinear heat equation in large dimension d > 11
du=Au+uPu, p=2q+1,qeN,

on a smooth bounded domain € R with Dirichlet boundary condition. In the supercritical range
p=>pld)>1+ ﬁ, we prove the existence of a countable family (u)¢en Of solutions blowing up at
time 7" > 0 with type II blow up:

lue(®) oo ~ C(T —1)7¢¢

with blow-up speed ¢, > ﬁ. The blow up is caused by the concentration of a profile Q which is a
radially symmetric stationary solution:

cp(p—1)

u(ra 1) ~ Q(XA_XO), A Cun) (T —1) "7,
A() 7T @

at some point xo € 2. The result generalizes previous works on the existence of type II blow-up solutions,

which only existed in the radial setting. The present proof uses robust nonlinear analysis tools instead,

based on energy methods and modulation techniques. This is the first nonradial construction of a solution

blowing up by concentration of a stationary state in the supercritical regime, and it provides a general

strategy to prove similar results for dispersive equations or parabolic systems and to extend it to multiple

blow ups.
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1. Introduction

1A. The semilinear heat equation. We study solutions of the semilinear heat equation (NLH)

Oru = Au+ |u|P71,

1-1
u(0) =ug, u=0 on 02, (-1

where u is real-valued, p is such that the nonlinearity is analytic, that is p = 2g 4+ 1, ¢ € N, and Q C R¢
is a smooth bounded open domain. For smooth enough initial data ug satisfying some compatibility
conditions at the border 92, the Cauchy problem is well posed and there exists a unique maximal solution
ue C((O, T), LOO(Q)). If T < 400, the solution is said to blow up and necessarily

lim 1 oo = .
LLTHM()HL Q) = +0oo

This paper addresses the general issue of the asymptotic behavior as ¢ — 7. In the case Q2 = R, there is
a natural scale invariance, namely if u is a solution then so is

1y (A2, ) 1= A=Tu (A%, Ax). (1-2)

The Sobolev space that has an invariant norm for this scale change is

(1-3)

[STRSW

H% R?) := {u : / &[> 10> dE < —I—oo} Cose=4 o2
R4 p—1
where 1 stands for the Fourier transform of u. Two particular solutions arise, the constant-in-space
blow-up solution
1
u(t,x) = :I:LL, k(p) = (L_l)p_l, (1-4)
(T —t)rT p

and the unique (up to translation and scale change) radially decaying stationary solution Q (see [Li 1992]
and references therein) solving the stationary elliptic equation

AQ + QP =0. (1-5)

1B. Blow-up for (NLH). Being one of the model nonlinear evolution equations, blow-up dynamics
has attracted a great amount of work (see [Quittner and Souplet 2007] for a review). In particular, one
is interested in the description of the solution near the set of blow-up points, that is, the points x for
which there exists (¢,, x,) — (T, x) such that |u(¢,, x,)| — +00. A comparison argument with the
constant-in-space blow-up solution (1-4) implies the lower bound

limsup u(t) || Lo (T — )71 > k(p)

t—T

and leads to the following distinction between type I and type II blow up [Matano and Merle 2004]:

u blows up with type I if limsup |Ju(2)||poo (T — I)ﬁ < 400,
t—>T

u blows up with type IT if lim sup ||u(?) ||z (T — t)ﬁ = 400.

t—T
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The ODE blow up (1-4) does not see the dissipative term in (1-1) whereas type II blow up involves an
interplay between dissipation and nonlinearity, and therefore its existence and properties may change
according to d and p. In the series of works [Giga 1986; Giga and Kohn 1985; 1987; 1989; Giga et al.
2004; Merle and Zaag 1998; 2000], the authors show that in the energy subcritical range 1 < p < %,
all blow-up solutions are of type I and match the constant-in-space solution (1-4):

. 1
lim sup (1) | oo (T — 1) 7T = k(p).
t—>T

In the energy critical case p = %, d = 4, Schweyer [2012] constructed a radial type II blow-up
solution, following the analysis of critical problems [Merle and Raphaél 2005a; 2005b; 2006; Raphaél
and Schweyer 2013; 2014; Raphaél and Rodnianski 2012; Merle et al. 2013]; see also [Filippas et al.

2000]. In that case, the scale invariance (1-2) implies that there exists a one-dimensional continuum of

(=G,

The properties of the ground state (1-5) then allow the existence of a solution u that stays close to this

ground states

manifold,
1

X
= b 1’
u A([)AQ(A(I))—Fe el <«

such that A(z) — O for some time 7" > 0, which makes the solution blow up. This blow-up scenario is not

always possible as it heavily relies on the asymptotic behavior of the ground state, and is impossible in
dimension d > 7 [Collot et al. 2016].
In the radial energy-supercritical case p > %, the Joseph—Lundgren exponent [1973]

2
oL = ~+00 if d <10, (1-6)
It = ifd=1l
dictates the existence of type II blow-up solutions. For % < p < pJL, type 1l blow-up solutions do not

exist [Matano and Merle 2004; Mizoguchi 2011b]. For p > pr, type Il blow-up solutions are completely
classified. In [Herrero and Veldzquez 1994] the authors predicted the existence of a countable family of
solutions uy such that

lu(t) Lo ~ Clun(O)(T —t)a@m 71, LeN, {> La,

(o is defined in (1-10)), which are the same speeds as in the present paper. The rigorous proof was first made
in an unpublished paper [Herrero and Veldzquez] and then in [Mizoguchi 2004]. In the series of works
[Matano 2007; Matano and Merle 2009; Mizoguchi 2007; 2011a] any type II blow-up solution was proved
to have one of the above blow-up rates. These works have the powerful advantage that they deal with large
solutions, but strongly rely on comparison principles that are only available for radial parabolic problems.
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1C. Outlook on blow up for other problems. Many model nonlinear equations share similar features
with (NLH). The construction of solutions concentrating a stationary state for the energy-supercritical
Schrodinger and wave equations has been done in [Collot 2014; Merle et al. 2015], and recently for
the harmonic heat flow in [Biernat and Seki 2016]. These concentration scenarios happen on a central
manifold near the continuum of ground states

1 X
(=22,

whose topological and dynamical properties have been a popular subject of studies [Schlag 2009; Krieger

et al. 2015]. The possibility of various blow-up speeds is linked to the regularity of the solutions, and this
is why parabolic problems are more rigid, thanks to the regularizing effect, than dispersive problems, for
which a wider range of concentration scenarios exists [Krieger et al. 2008].

A major goal is the study of blow up for general data, where nonradial stationary states can appear
as blow-up profiles [Duyckaerts et al. 2012]. The solution may also not be a small perturbation of it.
One thus needs robust tools for the perturbative study of special nonlinear profiles as well as a better
understanding of the set of stationary solutions. The present work is a step toward this general aim.

1D. Statement of the result. We revisit the result of [Herrero and Velazquez 1994; Mizoguchi 2004;
2005] with the techniques employed in [Raphaél and Rodnianski 2012] to address the nonradial setting.
From [Li 1992], for p > pyr. (defined in (1-6)) the radially decaying ground state (J, solution of (1-5),
admits the asymptotic

ai

0(1) = —2—+ =L 0(x[) as x| — +o0, a1 #£0, (1-7)
Ix|7=1 Xl
with
o= [ 2 (a2 2 (19
yi=Xd-2-vD), A:=(d-22—4pcZt (A>0 p>pyr), (1-9)
and we define 5
a::y—ﬁ. (1-10)
For n € N we define the following numbers (A, > 0if p > pjr):
_—d=2)+ VA,

Api=(d—2)*>—4pcoo + 4n(d +n—2).

n - )
2
The above numbers are directly linked with the existence and the number of instability directions of
type II blow-up solutions concentrating Q. Our result is the existence and precise description of some
localized type II blow-up solutions in any domain with smooth boundary.

Theorem 1.1 (existence of nonradial type II blow up for the energy-supercritical heat equation). Let
d>11, p=2q+1>pjr, €N, where pjr, is given by (1-6). Let Q, y, o, Yn and s¢ be given by (1-7),
(1-9), (1-10), (1-18) and (1-3) and ¢ > 0. Let Q2 C R? be a smooth open bounded domain. For xg € 2
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let y(x0) be a smooth cut-off function around xo with support in Q. Pick £ € N satisfying 2¢ > a. Then,
there exists a large enough regularity exponent

S+ =854+{) €2N, sy >1,
such that under the nondegeneracy condition
(%d — )/n) ¢ 2N for alln € N such that d — 2y, < 4s4, (1-11)

there exists a solution u € C ([0, T), LOO(Q)) of (1-1) with ug € H+(2) (which can be chosen smooth
and compactly supported) blowing up in finite time 0 < T < 400 by concentration of the ground state at
a point x, € Q with |xy — xo| < &. It is given by

A) 7

U(E.X) = g (¥)— Q(x;(;)cé’)w, (1-12)

where:
() xg is the only blow-up point of u.

(i) Blow-up speed.:

2¢

ull ooy = c(uo)(T —1t) =D (1+0(1)) ast—T, c(ug) >0, (1-13)
A(t) = ¢ (uo)(1 + o(D)T —1)e  ast — T, ¢'(ug) > 0. (1-14)
(iii) Asymptotic stability above scaling in renormalized variables:
lim |2 7T o (. x0 + MO0 g5 0yt (@—txo) =0 Forall se <s <4 (1-15)
(iv) Boundedness below scaling:
lims;lp lu@)gs@) < +oo forall 0<s <s. (1-16)
—

(v) Asymptotic of the critical norm:

lu()| zrse @) = ¢(d, p)VE/|10g(T —=1)|(1 +o(1)) ast— T, c(d, p) > 0. (1-17)
Comments on Theorem 1.1:

(1) On the assumptions. First, the assumption p > pyr, is not just technical as radial type 1I blow up is
impossible for % < p < pjr [Matano and Merle 2004; Mizoguchi 2011b]. Nonradial type II blow
up solutions in this latter range, if they exist, must have a very different dynamical description. Next, if
p is not an odd integer, then the nonlinearity x — |x|?~lx is singular at the origin, yielding regularity
issues. In that case the techniques used in the present paper could only be applied for a certain range of
integers £. Eventually, the condition (1-11) is purely technical, as it avoids the presence of logarithmic
corrections in some inequalities that we use. It could be removed since the analysis relies on gains that
are polynomial and not logarithmic, but would weigh down the already long proof. Note that a large
number of couples (p, £) satisfy this condition. Indeed, only finitely many integers n are concerned by
(1-20), and the value of y, is very rarely a rational number by (1-18).
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(2) Blow-up by concentration at any point and manifold of type Il blow-up solutions. For any x¢ € €2,
Theorem 1.1 provides a solution that concentrates at a point that can be arbitrarily close to x¢. In fact
there exists a solution that concentrates exactly at xo, meaning that this blow up can happen at any point
of Q. To show that, one needs an additional continuity argument, in addition to the information contained
in the proof, to be able to reason as in [Planchon and Rapha&l 2007; Merle 1992], for example. This
continuity property amounts to proving that the set of type II blow-up solutions that we construct is a
Lipschitz manifold with exact codimension in a suitable functional space. This was proved in the radial
setting in [Collot 2014] and the analysis could be adapted here using the nonradial analysis provided in
the present paper. However a precise and rigorous proof of this fact would be too lengthy to be inserted
in this paper. Let us stress that the solutions built here possess an explicit number of linear nonradial
instabilities. An interesting question is then whether or not these new instabilities can be used, with the
help of resonances through the nonlinear term, to produce new type II blow-up mechanisms around Q in
the nonradial setting.

(3) Multiple blow ups and continuation after blow up. As in our analysis we are able to cut and localize
the approximate blow-up profile, there should be no problems in constructing a solution blowing up with
this mechanism at several points simultaneously, as in [Merle 1992]. Cases where the blow-up bubbles
really interact can lead to very different dynamics; see [Martel and Rapha&l 2015; Jendrej 2016] for recent
results. From the construction, as ¢ — T, we have u admits a strong limit in Hlf)‘é (2\{x0}). One could
investigate the properties of this limit in order to continue the solution u beyond blow-up time, which is
a relevant question for blow-up issues [Matano and Merle 2009], especially for hamiltonian equations
where a subcritical norm is under control.

1E. Notation. In the analysis, C will stand for a constant which may vary from one line to another,
whose value just depends on d and p. The notation a < b means that a < Cb for such a constant C, and
a = O(b) means |a| < b.

Supercritical numerology. For d > 11 the condition p > pjr, where pyy, is defined by (1-6), is equivalent
to24++vd—1<s. < %d . We define the sequences of numbers describing the asymptotic of particular
zeros of H (defined in (1-30)) for n € N:

_—d-2)+VE,
n-— 3 s

Ay = (d —2)? —4cpoo + 4n(d +n—2), (1-18)

2

-, (1-19)
p—1

Opn = V¥n

where A, > 0 for p > pjyr. We will use the following facts in the sequel:

2 2
Yo =Y, VI—E-FI, Vn<ﬁ

see Lemma A.1 (where y is defined in (1-9)). In particular ¢p=¢, ¢;=1 and o, <0 for n > 2. A

forn > 2 and y, ~ —n; (1-20)

computation yields the bound

1
2<Ot<§d—1
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(see [Merle et al. 2015]). We let
/

g :=min(e,A)—e, g = %min(g,l,&)—s), (1-21)

where 0 < ¢ <« 1 is a very small constant just here to avoid keeping track of some logarithmic terms later
on. For n € N we define!

mp = E[3(3d —vn)] (1-22)
and denote by &, the positive real number 0 < §,, < 1 such that
d =2yp +4my + 46,. (1-23)
For 1 < L a very large integer, we define the Sobolev exponent
sp,=mo+ L+ 1. (1-24)
In this paper we assume the technical condition (1-11) for s4+ = sz, which means
0<8, <1 (1-25)

for all integers n such that d — 2y, < 4sy, (there is only a finite number of such integers by (1-20)). We
let ng be the last integer to satisfy the condition

d—2yn, <4sp, and d —2ypy4+1 > 4sL (1-26)
and we define
86 ;= max &, € (0,1). (1-27)
0<n<ng

For all integers n < ng we define the integers
Ly, =sp—my,—1 (1-28)

and in particular Lo = L. Given an integer £ > %a (that will be fixed in the analysis later on), for
0 < n < ng we define the real numbers

in=40— (1-29)

2

Notations for the analysis. For R > 0, the euclidean sphere and ball are denoted by
d d
SY(R) = %x eR? Y 7= RZ} and BY(R):= %x eR? Y a7 < RZ} .
i=1 i=1
We use the Kronecker delta notation:

0 ifi#j,
5 :{ #J

1 ifi=]

1 E£[x] stands for the entire part: x — 1 < E[x] < x.
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fori, j € N. We let
Fu):=Au+ f(u), f@):=ul’"tu

so that (1-1) can be written as
d;u = F(u).

When using the binomial expansion for the nonlinearity, we use the constants

p
f(u+v)=ZClpulvp_l, Clp = (i))

=0

The linearized operator close to Q (defined in (1-5)) is
Hu:=—Au—pQP tu (1-30)

so that F(Q + &) ~ —H e. We introduce the potential

Vi=—pQ?! (1-31)
so that H = —A + V. Given a strictly positive real number A > 0 and function u : R? — R, we define
the rescaled function

2
uy(x) =A7—Tu(Ax). (1-32)

This semigroup has the infinitesimal generator

u—+x.Vu.

0
Au:= — I
ui= o=t P

The action of the scaling on (1-1) is given by the formula
F(uz) = 22(F(u));.
Forz e R? and u : RY — R, the translation of vector z of u is denoted by
u(x) :=ulx —z). (1-33)

This group has the infinitesimal generator

[%(rzu)] o =—Vu.

The original space variable will be denoted by x € Q2 and the renormalized one by y, related through
x =z + Ay. The number of spherical harmonics of degree 7 is

kO):=1,  k():=d. k(@)= 2":_1’—2(n+p—3

) for n > 2.
n—1

The Laplace—Beltrami operator on the sphere S71(1) is self-adjoint with compact resolvent and its
spectrum is {n(d +n—2) :n € N}. For n € N the eigenvalue n(d +2—n) has geometric multiplicity k(n),
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and we denote by (Y("’k))neN, 1<k<k(n) an associated orthonormal Hilbert basis of L2(S9):

+o00

4
L2S 1) =@ span(Y ™91 <k <k(n)).
n=0
Asd_l(l)y(n,k) =n(d+n-— 2)y(n,k), / y (k) y (' k") _ 8(n.ke).(n Ky (1-34)
Sd—l(l)
with the special choices
YOD@) =Co. Y1H(x) =—Cix. (1-35)

where Cy and C; are two renormalization constants. The action of H on each spherical harmonic is
described by the family of operators on radial functions

d—1 d -2
oy, 4=ty s ) _ por-! (1-36)
r r
for n € N, as for any radial function f they produce the identity
H(x £y @0 () = Oy @D (), (137)
X X
For two strictly positive real numbers b§0’1) > 0 and 1 > 0 we define the scales
M1, By=[p®V|"z B =Bl (1-38)

The blow-up profile of this paper is an excitation of several directions of stability and instability around
the soliton Q. Each one of these directions of perturbation, denoted by Tl.(n’k), will be associated to a
triple (n, k, i), meaning that it is the i-th perturbation located on the spherical harmonics of degree (1, k).
For each (n, k) with n < ng, there will be L, + 1 such perturbations fori =0, ..., L, except for the
casesn =0,k =1,andn =1,k =1,...,d, where there will be L, perturbations fori =1,..., L,
(n =1, 2). Hence the set of triples (n, k,7) used in the analysis is

I:={nk.i)eN>: 0<n=<ng, 1<k <k(n), 0<i <L,}\({(0,1,0)}U{(1,1,0),...,(1,d.0)})

(1-39)
with cardinal
no
#I:= Y k(n)(Lp+1)—d —1. (1-40)
n=0

For j € N and an n-tuple of integers ;t = (i )1<i<;, the usual length is denoted by

J
il =" .

i=1
If j =d and h is a smooth function on R? then we use the following notation for the differentiation:

glul

oHh:=—————h.
3?11 3%
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For J an #Z-tuple of integers, we introduce two other weighted lengths

=Y (—’” ;V” +i)Jl.("’k), (1-41)
n,k,i
L
=i+ 3 it Y "R, (1-42)
i=1 1<i<L; (n,k,i)eT
1<k<d 2<n

To localize some objects we will use a radial cut-off function y € C®°(R%):
O=<x=1L x(x[)=1 for x| <1, x(Ix[) =0 for [x| =2, (1-43)

and for B > 0, we let yp denote the cut-off around B4 (0, B):

xB(x):= X(%)-

1F. Strategy of the proof. We now describe the main ideas behind the proof of Theorem 1.1. Without
loss of generality, via scale change and translation in space one can assume that xo = 0 and B4(7) c Q.

(i) Linear analysis and tail computations. The linearized operator near Q is H = —A — pQP~! and its
generalized kernel is

. i k
{f :3j e Nsuchthat H/ f=0} = Span(Ti(n ))(n,i)eNZ, 1<k<k(n)
where

ak X
Tf(” )(x) — Ti(n)(|x|)Y(n,k)(m)’

Tl-(") being radial, is located on the spherical harmonics of degree (n, k), with

k k k k
70 =0, TP =050, HTS® =0, HTWP =-TP. (1-44)

For any L € N, defining s7,, no(L) and L, (L) by (1-24), (1-26) and (1-28), H*~ is coercive for functions
that are not in the suitably truncated generalized kernel:

. k
/ eH*le 2 |[V¥ee|2, + a2, if € € Span(T ™), o 1<k <kny. 0i<L, - (1-45)

where ||8||ﬁ)C means any norm of € on a compact set involving derivatives up to order 2sy,. A scale change
for these profiles produces the identity

d
7 (1) = AT @) ~ i =) T ) as [x] — oo (1-46)

(ii) The renormalized flow. For u a solution, A : (0,T) — R and z : (0,T) — R?, we define the

renormalized time
ds 1
E = ﬁ, S(O) = 350. (1—47)
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Then v = (7—;u),), solves the renormalized equation
As

Z
BSU—TAv—f.Vv—F(v)zo. (1-48)

(iii) The dynamical system for the coordinates on the center manifold. Let Z be defined by (1-39). For an
approximate solution of (1-1) under the form

u= (Q + > bl.("’k)Tl.(”’k)) (1-49)

- 21
(n,k,i)eT X

described by some parameters bl.("’k) € R, one has the identity from (1-44) and (1-45):

A
_Zt.vu—TtAu+ ( Z bl(z,k)Tl(n,k))

(n.ki)eT 2.}
= d;u ~ F(u)
b(ls') b(O,l) b'(n,k) —Qi—a )b(l’O)b.("’k)
=Vt e Au+( > ER— T,-(”’k)) Y. (1:50)
(n,k,i)ez Z,5
where bgl") = (bgl’l), e ,bil’d)) and with the convention bgl’]j_)l = 0. The error term V¥ is negligible

under a size assumption on the parameters. Identifying the terms in the above identity yields the finite-

dimensional dynamical system?
b 50’1) bgla' )
A A (1-51)

mly_ 1 . o1, 0k , L, ok :

At:

Zy =

(iv) The approximate blow-up profile. Equation (1-51) admits for any £ € N with 2 > « an explicit special
solution (1, Z, 51.(’1’k) Ysuch thatZ =0and A ~ (T — t)g for some 7' > 0. Moreover, when linearizing
(1-51) around this solution, one finds an explicit number m of directions of linear instability and #Z —m
directions of stability. In addition, for the renormalized time s associated to A, one has

_Y—¥Yn _;

lim s(t) = +o0, b\ () 572" (1-52)
t—>T

Our approximate blow-up profile is then given by
(n,k k
(e+ ¥ #Pwre®)
(n.ki)eT 20:30
(v) The blow-up ansatz. Following (iv), we study solutions of the form
u= X(Q + ) bl.(”’k)Tl.("’k)) +w (1-53)
(n.ki)eT 2.}

2 Again, with the convention bg;’ﬁ_)l =0.
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and decompose the remainder w according to

Wint := X3W, Wext -= (1 - 3w, &:= (T—Zwint)k’ (1-54)

where wey is the remainder outside the blow-up zone, wiy; the remainder inside the blow-up zone, and &
is the renormalization of the remainder inside the blow-up zone corresponding to the scale and central
point of the ground state Q, 1/5. Now w is orthogonal to the suitably truncated center manifold

k)L
€€ Span(Tl.(n ))Ognfno, 1<k=<k(n),0<i<L,’ (1-55)

which fixes in a unique way the value of the parameters bl.("’k), A and z. We then define the renormalized
time s associated to A via (1-47). We take b, A and z to be perturbations of b, A and Z for the renormalized
time:
(n,k) N _ j(n,k) "(n,k _ 7 — 3
b7 (s) =b; 7 (s) + b, (s), Als) = Als) + A (s), z(s) = Z(s) + 2/ (). (1-56)

We define four norms for the remainder in (1-53) and (1-54):
&g 1= ||VU€||iz(Rd)’ Exsy 1= /Rd |H el?,  |wexdlgo@ and  [|[Wexl sz @)
where o is a slightly supercritical regularity exponent
O0<o—sc K1 (1-57)

One has that x5, 2 [|V25L¢| 12 from (1-45).

Interpretation: We decompose a solution near the set of localized and concentrated ground states y(Q;,1/1)
according to (1-53). A part, )((Z(n’ k.i)eT bl.(”’k) Tl.(n’k))z’1 /20 is located on the truncated center manifold;
it decays slowly, see (1-52), while interacting with the ground state, see (1-51), and is responsible for the
blow up by concentration, and one has an explicit behavior of the coordinates, (1-51). The other part, w,
is orthogonal to the truncated center manifold (1-55); it is expected to decay faster as H is more coercive,
see (1-45), on this set, and not to perturb the blow-up dynamics. The change of variables (1-47) and

(1-48) transforms the blow-up problem into a long-time asymptotic problem by (1-52).

Bootstrap method in a trapped regime: We study solutions that are close to the approximate blow-up

profile for the renormalized time, i.e., that satisfy

1
2
o +lWextlgo@) S 1. E2sp + Wextllmor @) < 22@sL—sc) gL+(1—80)+v (1-58)
6; ") <7 F L Azl < 1 (1-59)
The size of the excitation is
1

12@sL—sc) gL+(1-80)

SO X(Z(n, k.i)er bl.("’k)Ti(n’k))Z’1 /A and v > 0 in (1-58) quantifies the fact that the remainder w is smaller

than the excitation.
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(v) The bootstrap regime. From (1-1) and (1-50), the evolution of the solution under the decomposition
(1-53) and (1-54) has the form

0 Wext = AWext + Axszw + 2V x3.Vw + (1 — y3)w?, (1-60)
0 Wing = — HZ% 1nt+Xw+NL
( )V(Q+ D A ")))
(n.k,i)eT x
pOv (1.k) o (1,K)
+X(( 12 +T)A(Q+ > opmOr )) 1
(n,k,i)ez Zx
. 0.1) . (k) | 1.(n.k)
2i —ay)b b +b;
+X( 3 (—bi(,’;’k)—( n)by 121 i+1 )Ti(n,k)) ’ (1-61)
(n.k,i)eT z.%

where H; , = —A—pQ 5 I/l 5, and NL stands for the purely nonlinear term.

Modulation: The evolution of the parameters is computed using the orthogonality directions related to
the decomposition, i.e., by taking the scalar product between (1-61) and (Tl.(n’k)) 2,1/ for 0 < n < ny,
1 <k <k(n)and 0 <i < L,, yielding in renormalized time an estimate of the form>

+b(1 )' Z }b(n k)+(2l Oln)b(n k)b(o 1)+bl(1{‘)|~ /52sL+S_L_3' (1-62)
(n,k,i)eT

As 0.0,
by
A+

)\

These estimates hold because the error produced by the approximate dynamics is very small (s~£~3) on
compact sets, and on the other hand the remainder ¢ is also very small on compact sets and located far
away from the origin by (1-58) and the coercivity (1-45).

Lyapunov monotonicity for the remainder: From the evolution equations (1-60) and (1-61), in the boot-

strap regime (1-58) one performs energy estimates of the form

d 1 1 1

E(m&r + ||wext||HG(Sz)) < 251K + 1050 VEIIVeY L2, (1-63)
d 1 - 1 1 st
dt ngSL Fllwexll g2se @) | = 22@2sL—sc)+2gL+2—80+v+k + A2s.—sc V E25. z,%w”Lz’

(1-64)

where k > 0 represents a gain. The key properties yielding these estimates are the following. The control
of a slightly supercritical norm (1-57) and another high regularity norm allows us to control precisely
the energy transfer between low and high frequencies and to control the nonlinear term. The dissipation
in (1-60) and (1-61) (for the second equation it is a consequence of the coercivity (1-45)) erases the
border terms and smaller-order local interactions. Finally, the approximate blow-up profile is in fact a
refinement of (1-49), where the error in the approximate dynamics is well localized in the self-similar

3With the convention bg’ Ij_)l =0.
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zone |x —z| ~ ~/T —t, by the addition of suitable corrections via inverting elliptic equations and by
precise cuts.

(vi) Existence via a topological argument. In the bootstrap regime close to the approximate blow-up
profile described by (1-58) and (1-59), one has precise bounds for the error term . Reintegrating the
energy estimates (1-63) and (1-64) then leads to the bounds

1
A2Q@sL—sc) gL+(1—=80)+v’

Eo + ”wext“%-la(g) L1, &gyt [Wextllmse o K

which are an improvement of (1-58). Therefore, a solution ceases to be in the bootstrap regime if
and only if the bound (1-59) describing the proximity of the parameters with respect to the special
blow-up parameters (b, A, %) is violated. From (iv), the parameters admit (A,Z,b)asa hyperbolic orbit
with m directions of instability and #Z — m of instability. From the modulation equations (1-62), the
remainder w perturbs these dynamics only at lower order. Therefore, an application of the Brouwer fixed
point theorem yields the persistence of an orbit similar to (A, Z, b) for the full nonlinear equation, i.e.,
with a perturbation along the parameters that stays small for all time. This gives the existence of a true
solution of (1-1) that stays close to the approximate blow-up profile for all renormalized times, implying
blow up by concentration of Q with a precise asymptotic.

The paper is organized as follows. In Section 2 we recall the known properties of the ground state
in Lemma 2.1 and describe the kernel of the linearized operator H in Lemma 2.3. This provides a
formula to invert elliptic equations of the form Hu = f, stated in Definition 2.6, and allows us to
describe the generalized kernel of H in Lemma 2.10. The blow-up profile is built on functions depending
polynomially on some parameters and with explicit asymptotic at infinity, and we introduce the concept
of homogeneous functions in Definition 2.14 and Lemma 2.15 to track this information easily. With these
tools, in Section 3 we construct a first approximate blow-up profile for which the error is localized at
infinity in Proposition 3.1 and we cut it in the self-similar zone in Proposition 3.3. The evolution of
the parameters describing the approximate blow-up profile is an explicit dynamical system with special
solutions given in Lemma 3.4 for which the linear stability is investigated in Lemma 3.5. In Section 4
we define a bootstrap regime for solutions of the full equation close to the approximate blow-up profile.
We give a suitable decomposition for such solutions, using orthogonality conditions that are provided
by Definition 4.1 and Lemma 4.2, in Lemma 4.3. They must satisfy in addition some size assumption,
and all the conditions describing the bootstrap regime are given in Definition 4.4. The main result of
the paper is Proposition 4.6, stating the existence of a solution staying for all times in the bootstrap
regime, whose proof is relegated to the next section. With this result we end the proof of Theorem 1.1 in
Section 4B. To do this, the modulation equations are computed in Lemma 4.7, yielding that solutions
staying in the bootstrap regime must concentrate in Lemma 4.8 with an explicit asymptotic for Sobolev
norm in Lemma 4.9. In Section 5 we prove the main proposition, Proposition 4.6. For solutions in the
bootstrap regime, an improved modulation equation is established in Lemma 5.1, and Lyapunov-type
monotonicity formulas are established in Propositions 5.3 and 5.5 for the low regularity Sobolev norms
of the remainder, and in Propositions 5.6 and 5.8 for the high regularity norms. With this analysis one
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can characterize the conditions under which a solution leaves the bootstrap regime in Lemma 5.9, and
with a topological argument provided in Lemma 5.10, one ends the proof of Proposition 4.6.

The appendix is organized as follows. In Appendix A we give the proof of Lemma 2.3, describing the
kernel of H. In Appendix B we recall some Hardy and Rellich-type estimates, among which the most
useful is given in Lemma B.3. In Appendix C we investigate the coercivity of H in Lemmas C.2 and C.3.
In Appendix D we prove some bounds for solutions in the bootstrap regime. In Appendix E we give the
proof of the decomposition Lemma 4.3.

2. Preliminaries on Q and H

We first summarize the content and ideas of this section. The instabilities near Q) underlying the blow up
that we study result from the excitement of modes in the generalized kernel of H. We first describe this
set. Since H is radial, we use a decomposition into spherical harmonics, restricted to spherical harmonics
of degree n, see (1-37), it becomes the operator H™ on radial functions defined by (1-36). Using ODE
techniques, the kernel is described in Lemma 2.3 and the inversion of H @) js given by Definition 2.6 and
Lemma 2.13. By inverting successively the elements in the kernel of H ™), one obtains the generators of
the generalized kernel | J ; Ker((H (n))7) of this operator in Lemma 2.10.

To track the asymptotic behavior and the dependence in some parameters of various profiles during
the construction of the approximate blow-up profile in the next section, we introduce the framework of
“homogeneous” functions in Definition 2.14 and Lemma 2.15.

2A. Properties of the ground state and the potential. Any positive smooth radially symmetric solution to
—Ap—¢? =0
is a dilate of a given normalized ground state profile Q:

~AQ- 07 =0,
0(0) = 1.

See [Li 1992] and references therein. The following lemma describes the asymptotic behavior of Q. We

¢=0x A>0,

refer to [Ding and Ni 1985] for earlier work.

Lemma 2.1 (asymptotics of the ground state [Li 1992, Lemma 4.3; Karageorgis and Strauss 2007,
Lemma 5.4]). Let p > py1 (defined in (1-6)). We recall that g > 0, coo and y are defined in (1-9) and
(1-21). One has the asymptotics

c a 1
:;'2"+r_)1/+0(ry—+g) as r — 400, a; # 0, (2-1)
rp-l
p—1
1
V:-pC:; +O(r2+°‘) as r — +oo, (2-2)
d—x[(QA) lp=1= Sra) @ Foo, (2-3)
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and these identities propagate to the derivatives. There exists §(p) > 0 such that the following pointwise
bounds hold for all y € Re:

0<Q(y) < —=2 (2-4)
|y|7=T
d—22  8(p)
— + V 0. 2-5
PIE: |y|2§ (y) < (2-5)

Remark 2.2. The standard Hardy inequality

d_22 2
[y
Rd 4 rd ||

and (2-4) then imply the positivity of H on H(R%):

2
/ uHudyz/ S 4 (2-6)
Rd rd |y]?

It is worth mentioning that the aforementioned expansion (2-1) is false for p < py;.. This asymptotic

at infinity of Q is decisive for type II blow up via perturbation of it, as from [Matano and Merle 2004;

Mizoguchi 2011b] it cannot occur for % <p<pJL-

2B. Kernel of H.

Lemma 2.3 (kernel of H (”)). We recall that the numbers (yn)nen and g are defined in (1-18). Let n € N.

There exist TO("), '™ : (0, +00) — R two smooth functions such that if f : (0, +00) — R is smooth and

satisfies H® f=0,then f € Span(TO(n), ™). They enjoy the asymptotics

l
(n) _ (n) n+2j n+2+21 (n)
Ty (r) rZOZCj r 4+ O(r ) VIeN, ¢, #0,
Jj=0
T()(n) ~ Cpr V4 O(r_y"_g), Cn #0, (2-7)
r——+o00
/
n n n) .z —n roa
r o rd—2n and T i Gl iy #0.

Moreover, TO(”) is strictly positive, and for 1 < k < k(n) the functions y — To(n)(|y|)Yn,k(|y|/y) are
smooth on R4, The first two regular and strictly positive zeros are explicit:

1 1
TO(O) = C_OAQ and TO(I) = —C—layQ, (2-8)

where Cy and Cy are the renormalized constants defined by (1-35).
Proof. The proof of this lemma is done in Appendix A. O

Remark 2.4. The renormalized constants in (2-8) are here to produce the identities TO(O) Y©0 = AQ
and T()(I)Y(l’k) = 0x, O by (1-35). For each n € N, only one zero, T("), is regular at the origin. We
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insist on the fact that —y, > 0 is a positive number? for n large by (1-20), making these profiles grow as
r — +o00.

2C. Inversion of H™. We start by a useful factorization formula for H ™. Let n € N and W ® denote
the potential
W™ = 9, (log(Ty")). (2-9)

where To(n) is defined in (2-7) and define the first-order operators on radial functions
1
A s g+ W™y AWy ﬁar(rd_lu) W™y, (2-10)
-
Lemma 2.5 (factorization of H ™). The factorization
H® — gm)* 4() (2-11)

holds. Moreover one has the adjunction formula for smooth functions with enough decay
400 +o00
/ (AMuyvrd='dr =/ u(A™*p)rd=1 gy,
0 0

Proof. As TO(") >0 by (2-7), W @) is well defined. This factorization is a standard property of Schrodinger
operators with a nonvanishing zero. We start by computing

d—1 d—1
AW* 40y — 5, — —dru + (—r w15, w™ 4 (W("))z)u.

As W = a,To(”) / T("), the potential that appears is nothing but

(n)  d=17@®) () (@) n(d+n—2) )
=Ly g wm p qpoyz 0l T HWTYW + (B2 4+ V)T,
r r T(n) T(n)
0 0
d+n-2
;

as H (")TO(") = 0, which proves the factorization formula (2-11). The adjunction formula comes from a
direct computation using integration by parts. O

From the asymptotic behavior (2-7) of To(n) at the origin and at infinity, we deduce the asymptotic
behavior of W ™):
T+0(0) as r — 0,

wm — .
T+ 0(srrery) asr— +oo,

(2-12)

which propagates to the derivatives. Using the factorization (2-11), to define the inverse of H ™ we
proceed in two steps: first we invert A™*, then A,

4This notation seems unnatural but matches the standard notation in the literature.
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Definition 2.6 (inverse of H ™). Let f : (0, +00) — R be smooth with f(r) = O(r") as r — 0. We
define® the inverses (A™*)~1 f and (H™)~1 f by

— 1 " _
(A0 = fo STPs Vs, (2-13)
0

To(n) fr+oo(A(")*)_1f/To(n) ds if (A(”)*)_lf/TO(”) is integrable on (0, +00),
—To(n)for (A(n)*)_lf/To(n) ds if (A(”)*)_lf/TO(") is not integrable on (0, +00).
(2-14)

(H) /() =

Direct computations give indeed H™ o (H™)~1 = 4®* o5 (4*)=1 =1d, and A o (HM)~! =
(A™*)=1 As we do not have uniqueness for the equation Hu = f, one may wonder if this definition is the
“right” one. The answer is yes because this inverse has the good asymptotic behavior; namely, if f &~ r? as
r — 400, one would expect u ~ r?%2 as r — 400, which will be proven in Lemma 2.9. To keep track of
the asymptotic behaviors at the origin and at infinity, we now introduce the notion of admissible functions.

Definition 2.7 (simple admissible functions). Let n be an integer, ¢ be a real number and f : (0, +00) —> R
be smooth. We say that f is a simple admissible function of degree (1, g) if it enjoys the asymptotic

behaviors ;

f=Y "t 4o t2) vieN (2-15)
j=0

at the origin for a sequence of numbers (c;);eny € RY, and at infinity
f=0@% asr— +oo, (2-16)

and if the two asymptotics propagate to the derivatives of f.

Remark 2.8. Let f : (0, +00) be smooth. We define the sequence of n-adapted derivatives of f by
induction:

A(")f[n,j] for j even,
A(")*f[n’j] for j odd.

From the definition (2-10) of A® and A™* and the asymptotic behavior (2-12) of the potential w @,
one notices that the condition (2-16) on the asymptotic at infinity for a simple admissible function of

Sy =f and for jeN,  fln,j+11:= (2-17)

degree (1, ¢q) and its derivatives is equivalent to the following condition for all j € N:

fin,1=0@977) asr— +oo, (2-18)
where the adapted derivatives ( f[,, ;])jen are defined by (2-17). We will use this fact many times in the
rest of this subsection, as it is more adapted to our problem.

The operators H ) and (H™)~! leave this class of functions invariant, and the asymptotic at infinity
is increased by —2 and 2 under some conditions (that will always hold in the sequel) on the coefficient ¢
to avoid logarithmic corrections.

SWe know u is well defined because from the decay of f at the origin one deduces (A(")*)_1 f=0@G"tasy - 0and
sou’/ T is integrable at the origin from the asymptotic behavior (2-7).
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Lemma 2.9 (actions of H™ and (H™)~! on simple admissible functions). Letn € N and f be a simple
admissible function of degree (n, q) in the sense of Definition 2.7, with q > yp, —d and —y, —2 —q & 2N.
Then for all integer i € N:

(i) (H®)! f is simple admissible of degree (n,q — 2i).

(i) (H™)~ f is simple admissible of degree (n,q + 2i).
Proof. Step 1: action of H™. For all integers i and j one has ((H("))if)[n,j] = fln,j+2i] by 2-17)
and (2-11). Using the equivalent formulation (2-18), the asymptotic at infinity (2-16) for H' f is then a
straightforward consequence of the asymptotic at infinity (2-16) for f. Close to the origin, one notices
that H® = 419, —n(d +n—2). If f satisfies (2-15) at the origin,
then so does (A™)i f by a direction computation. As V' is smooth at the origin, (H ™)’ f also satisfies

(2-15). Hence (H ™) f is a simple admissible function of degree ¢ — 2i.

Step 2: action of (H ™)~1. We will prove the property for (H )~ £, and the general result will follow
by induction on i. Let u denote the inverse by H™, that is, u = (H ™)~ f.

Asymptotic at infinity. We will prove the equivalent formulation (2-18) of the asymptotic at infinity (2-16).
From (2-17), (2-13), (2-14) and (2-11), u[,, ;] = fin,j—2] for j > 2 so the asymptotic behavior (2-18) at
infinity for the n-adapted derivatives of u are true for j > 2. Therefore it remains to prove them for j =0, 1.

Case j = 1. From the definition of the inverse (2—14) and of the adapted derivatives (2-17), one has
/ f To(n)sd Lds.

u[n,l] d IT(n)

From the asymptotic behaviors (2-16) and (2-7) for f and To(n) at infinity and the condition ¢ > y, —d,
the integral diverges and we get

U, 1(r) = o9ty as r — +oo, (2-19)
which is the desired asymptotic (2-18) for u[, 13-

Case j = 0. Suppose (A(”)*)_lf/TO(") = u[njl]/T(") is integrable on (0, +-00). In that case

_ 7 Uln,1]
=7 / i s

If ¢ > —y, —2, then by the integrability of the integrand and (2-7), we get the desured asymptotic u[, o] =
u=0(@r"")=0(r9"?). If g < —y, —2 then from (2-19) we have Uy, 1]/T n) = O(r4t1%¥n) and then
fr+ Uy, 1]/T( ) ds = O(rd+2+v), from which we get the desired asymptotic u = O(r9+2). Now
suppose u[y,1]/ T ™) is not integrable. Then we must have ¢ > —y,, + 2 by (2-19), and u is given by

_ Uln,1]
u=-T, /0 T(")d

and the integral has asymptotic O(r912%77). We hence get u = O(r97?) at infinity using (2-7).

Conclusion. In both cases, we have proven that the asymptotic at infinity (2-18) holds for u.
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Asymptotic at the origin. We have

o [ U] ()
u=-T, / (’ ds + aTy™,
0 TO")

where a = 0 if u[n,l]/TO(n) is not integrable, and a = f0+°° u[njl]/TO(”) ds if it is. By (2-7), TO(") satisfies
(2-15). Thus it remains to prove (2-15) for —TO(") for U1/ To(n) ds. We proceed in two steps. First,
from (2-15) for f we obtain that for all integers j, p,

!
.
/ fTO(n)sd—l ds — Zgjrn+1+2j + R,
0 ,

Jj=0

1
0
where 3’,‘ ﬁl = O(rmax(n+21+3-k.0)) 55 1 5 ( for some coefficients & 7 depending on the ¢; and the
asymptotic at the origin of 7;j'. It then follows that

r !
U S ~
_To(n) [n,1] ds = § :éjrn+2+21 + Rl» where 8le — O(I,max(n+21+4—k,0))’
() . r r—0
o T, =0
for some coefficients ¢;. This implies that u satisfies (2-15) at the origin. O

We can now invert the elements in the kernel of H and construct the generalized kernel of this
operator.

Lemma 2.10 (generators of the generalized kernel of H™). Letn € N, y,, g’, (H™)™ and TO(") be
defined by (1-18), (1-21), Definition 2.6 and Lemma 2.3. We denote by (Tl.(n))ieN the sequence of profiles
given by

T = —HM)IT™, ieN. (2-20)

Let (@l(n))ieN be the associated sequence of profiles defined by

2
O = AT (” oo Vn)Ti(”), i N, @21)
p [e—
Then for each i € N,
Tl.(n) is simple admissible of degree (n, —yn + 2i), (2-22)
@l(n) is simple admissible of degree (n, —yn +2i — g'), (2-23)

where simple admissibility is defined in Definition 2.7.

Proof. Step 1: admissibility of Tl.(n). From the asymptotic behaviors (2-7) at infinity and at the origin,
TO(") is simple admissible of degree (1, —y5) in the sense of Definition 2.7. Additionally, —y, > y, — d
since =2y, +d > =2y +d =2+ /A > 0 by (1-9) and since (y,)nen is decreasing by (1-18). One
has also —y, —2 — (—yn) = —2 ¢ 2N. Therefore one can apply Lemma 2.9: for alli € N, Tl.(") given by
(2-20) is an admissible profile of degree (n, —y, + 2i).
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Step 2: admissibility of @l("). We start by computing the following commutator relations using (1-36),
(2-9) and (2-10):

AMA = A4 L 40 _ (W(n) + yayW(n))’

HMWA=AH™ 4 2H® — 2V 4 y.VV).
We now proceed by induction. From the previous equation, and the asymptotic behaviors (2-7), (2-2) and
(2-12) of the functions To(n), V and W™, we get that @(()”) is simple admissible of degree (n, —y, — g’).
Now let i > 1 and suppose that the property in (2-23) is true for i — 1. Using the previous formula and
(2-21) we obtain

(2-24)

H®e! = —0™ -V +y.v)T™.

The asymptotic at infinity (2-2) of V yields the decay 2V + y.VV = (y727%). As Tl.(n) is simple
admissible of degree (n,2i — y,) and from the induction hypothesis, we have that H (”)®§") is simple
admissible of degree (n,2i —2 —y, —g’) because g’ < a by (1-21). One has 2i —2—y, — g’ > yn —d
because

2 =22y, —g'+d>2y—g' +d=2+VA—-g' >0

as 0<g’<1, i>1, and (¥n)nen is decreasing by (1-18) and (1-9). Similarly
Yn—2—Qi—2—y,—g)=-2i+g ¢2N.

Therefore we can apply Lemma 2.9 and obtain that (H®)~1H (”)(9(") is of degree (n,2i —y, —g’).
From Lemma 2.3 one has (H™)~1H (”)6(”) G)(n) + aT(n) + bF(”) for two integration constants
a,b € R. At the origin '™ is singular by (2-7); hence b = 0. As T(n) is of degree (n,—y,) with
—Yn +2i — g > —y, (because i > 1), we get that ®( ") is of degree (n,2i —y, — g’). O

2D. Inversion of H on nonradial functions. The definition of the inverse of H ), Definition 2.6,
naturally extends to give an inverse of H by separately inverting the components onto each spherical
harmonic. There will be no problem when summing, as for the purpose of the present paper one can
restrict to the following class of functions that are located on a finite number of spherical harmonics.

Definition 2.11 (admissible functions). Let f : R? — R be a smooth function, with decomposition
fO) =2 nk F@B(y)Y @K (y/|y]), and g be a real number. We say that f is admissible of degree ¢
if there is only a finite number of couples (1, k) such that f-%) =£ 0, and that for every such couple,
f n.5) is a simple admissible function of degree (7, ¢) in the sense of Definition 2.7.

For f = Zn,k 7@ (1y)Y @K (y/|y]) an admissible function, we define its inverse by H by
(=D )= TUE Rl o(2) (2:25)

(the sum being finite), where (H ™)~ is defined by Definition 2.6. For n, k and i three integers with
1 <k < k(n), we define the profile Tl-("’k) ‘R? > Ras

T (yy = 70|y - k)(|y|) (2-26)
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where the radial function Tl.(") is defined by (2-20). From Lemma 2.10, Tl.("’k) is an admissible function
of degree (—yp, +2i) in the sense of Definition 2.11. The class of admissible functions has some structural
properties: it is stable under summation, multiplication and differentiation, and its elements are smooth
with an explicit decay at infinity. This is the subject of the next lemma.

Lemma 2.12 (properties of admissible functions). Let f and g be two admissible functions of degrees q
and q' in the sense of Definition 2.11, and . € N<. Then:

(1) f is smooth.
(ii) fg is admissible of degree q + q'.
(iii) oM f is admissible of degree q — | .

(iv) There exists a constant C(f, u) such that for all y with |y| > 1,

04 £ ()] < C(f, )|y |71,

Proof. From Definition 2.1, / =3,  f O (IyDY ®O (y/y]) and g =37, x g™ O (lyDY * O (y/1y))
and both sums involve finitely many nonzero terms. Therefore, without loss of generality, we will assume
that f and g are each located on only one spherical harmonic: f = f %y (0k) and g = g Ky (".K)
for f (k) and g k) simple admissible of degrees (n, ¢) and (n’, ¢’) in the sense of Definition 2.7. The

general result will follow by a finite summation.

(i) Now y > £k (|y|) is smooth outside the origin since f is smooth, and y > ¥ k) (3 /|y|) is also
smooth outside the origin; hence f is smooth outside the origin. The Laplacian on spherical harmonics is

(81 £ = 87 (£OR (o (1)) = (a®y F 0y .

where —A™ = —§,, — @Br +n(d +n—2). From the expansion of f k) in (2-15), (~AM)i £ (k)
is bounded at the origin for each i € N. Therefore (—A)’ f is bounded at the origin for each i and f is
smooth at the origin by elliptic regularity.

(ii) We treat the case where n + n’ is even, and the case n + n’ odd can be treated with exactly the same
arguments. As the product of the two spherical harmonics y (k) y (k") decomposes onto spherical
harmonics of degree less than n + n’ with the same parity as n + n’, the product fg can be written as

fg= Z o kf(nk) n’ k’)Y(nk)
n n,k’,n

0<n §n~+n’
7 even, 1<k<k(n)
with Ay jent ki e SOME fixed coefficients. Now fix 7i and k in the sum; one has n +n’ =1 + 2i for some
i € N. Using the Leibniz rule, as Bj 7@k = 0@r977) and 8Jg(” *) = 07y at infinity, we get that
8{ (f k) g K)y — O(r4+4' =7 as y — +o0, which proves that f k) g("" k") satisfies the asymptotic
at infinity (2-16) of a simple admissible function of degree (71,q + ¢’). Close to the origin, the two
expansions (2-15) for f k) and g% starting at r" and 7’ respectively, imply the same expansion
(2-15) starting at y" "’ for the product f K g k) A4+ n’ =71 +2i, we know f#:K) gk satisfies
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the expansion at the origin (2-15) of a simple admissible function of degree (7,q + ¢’). Therefore
(k) o (k) i simple admissible of degree (71, ¢ +¢’) and thus fg is simple admissible of degree g + ¢’

(i) We treat the case where n is even, and the case n odd can be treated with exactly the same reasoning.
Let 1 <i <d; we just have to prove that dy, f is admissible of degree g — 1 and the result for higher-order
derivatives will follow by induction. We recall that Y %) s the restriction of a homogeneous harmonic
polynomial of degree n to the sphere. We will still denote by y () (y) this polynomial extended to
the whole space R? and they are related by ¥ %) (y) = |y|?Y %) (y/|y|). This homogeneity implies
y. V(Y k) (y) = ny k) (y) and leads to the identity

o | PR (2]
[yl

= (8rf(”’k)(|y|)—HM)ﬁY(””‘)(l) + f(|y|)ain(”’k)(l). 2-27)
Iyl /Iyl |yl |y |y

One has now to prove that the two terms on the right-hand side are admissible of degree ¢ — 1. We only

show it for the last term, the proof being the same for the first one. As 9y, Y (k) (y /1y]) is a homogeneous
polynomial of degree n — 1 restricted to the sphere, it can be written as a finite sum of spherical harmonics
of odd degrees (because n is even) less than n — 1 and this gives

S y S (Y
mayiy(”’k) e Z ai,n,k,n/,k/_Y(n K=

] t<n/mnt ¥l [yl
n’ odd, 1<k<k(n’)
for some coefficients a; ,, x n/k’- Now fix n’, k" in the sum. At infinity a; ,, k' %’ f(1¥])/|y]| satisfies the
asymptotic behavior (2-16) of a simple admissible function of degree (n’, g — 1). Close to the origin, one
has from (2-15), the fact that n’ +2j = n — 1 for some j € N, that for any i € N,
f0) 5 - i - 42
ai,n,k,n’,k’ — Z Elrn—l-i-Zl + O(rn—1+21+2) — Z élrn +2j+421 + O(rl’l +2]+21+2)’
’ 1=0 1=0

which is the asymptotic behavior (2-15) of a simple admissible function of degree (n’, g — 1) close to
the origin. Therefore, a; , x.n.k f(r)/r is a simple admissible function of degree (n’,q — 1). Thus
(f/1y])0y, Y @K (3 /|y]) is an admissible function of degree (¢ — 1). The same reasoning works for the
first term on the right-hand side of (2-27), and therefore dy, [ f @B |y Y @K (3 /1y])] is admissible of
degree g — 1.

(iv) We just showed in the last step that 3" f is admissible of degree g — || for all ;1 € N¢; we then only

have to prove (iv) for the case i = (0, ...,0). This can be showed via the brute force bound for |y| > 1
Y
= | @O ypy @ (m) < [Y @O oo fPO Iy D] < €Lyl
by (2-16) since f is a simple admissible function of degree (n, q). O

The next lemma extends Lemma 2.9 to admissible functions. We do not give a proof, as it is a direct
consequence of the latter.
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Lemma 2.13 (action of H on admissible functions). Let f be an admissible function in the sense of
Definition 2.11 written as f(y) = Zn,k F@R(y)Y @R (y /| y)), of degree q, with g > yp — d. Assume
that for all n € N such that there exists k, 1 <k <k(n) with f @) 0, we have q satisfies —q—yn—2 &2N.
Then for all integers i € N, recalling that H™! f is defined by (2-25):

() H' f is admissible of degree q —2i.
(i) H7 f is admissible of degree q + 2i.

2E. Homogeneous functions. The approximate blow-up profile we will build in the following subsection
will look like O + b 7% for some coefficients 5% (T**) being defined in (2-26)). The
nonlinearity in the semilinear heat equation (1-1) will then produce terms that will be products of the
profiles Tl( %) and coefficients b( %) Such nonlinear terms are admissible functions multiplied by
monomials of the coefficients b(" k) The set of triples (n, k, i) for which we will make a perturbation

along T(n k) is Z, defined in (1-39). Hence the vector b representing the perturbation will be

b= " N piyer = G1"0bfDb{D LD ek ek ol 2.28)

We will then represent a monomial in the coefficients bl.(n’k) by a tuple of #7 integers
K 0,1 0,1 1,1 1,1 K K
J =N aseiyer = 00 gD gD gD ggrekeed JL(’;?) (0))y

through the formula
_](0 ) (n() k(ng))

(b(o 1)) (b(no k(no))) Lng ] (2-29)

We associate three different lengths to J for the analysis. The first one, |J|:=}_ J; (k)
number of parameters b(n k) that are multiplied in the above formula, counted with multiplicity, i.e., the

standard degree of 5”. In the analysis, the coefficients b( will have the size |b(" k)l < |b(0 1) | 3 y,, +,

The second length,
[Tl2:=>" (% + i)Jl.("’k),

n,k,i

, represents the

is tailor-made to produce the following identity if these latter bounds hold:

7] 5 By,

i.e., |J |2 encodes the “size” of the real number b”. For the construction of the approximate blow-up
profile, we will invert several times some elliptic equations, and the i -th inversion will be related to the
third length

L
PR S A R S ¥ A A S R WA
i=1 1<i<L; (n.k,i)eT
1<k=d 2<n

To track information about the nonlinear terms generated by the semilinear heat equation (1-1) we
eventually introduce the class of homogeneous functions.
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Definition 2.14 (homogeneous functions). Let b denote a #Z-tuple under the form (2-28), m € N and
g € R. We recall that | J |, and |J |3 are defined by (1-41) (1-42) and b7 is given by (2-29). We say that a
function S : RT x R — R is homogeneous of degree (m, ¢) if it can be written as a finite sum

Sb.y)=Y_b'S;(y).

Jeg

#J < +o00, where for each tuple J € 7, one has that |/ |3 = m and that the function Sy is admissible of
degree 2|J |2 + ¢ in the sense of Definition 2.11.

As a direct consequence of Lemma 2.12, and so we do not write here the proof, we obtain the following
properties for homogeneous functions.

Lemma 2.15 (calculus on homogeneous functions). Let S and S’ be two homogeneous functions of
degrees (m,q) and (m',q’) in the sense of Definition 2.14, and . € N?. Then:

(1) o*S is homogeneous of degree (m,q — |iu|).
(ii) S8’ is homogeneous of degree (m +m’,q + q’).

(iii) If, writing S = Zjejb donk S(n By @0 one has 2|J|2+q >yYn—d and =2|J |2—q—yn—2&2N
forall n, J such that there exists k 1 <k <k(n) with S 75 0, then foralli e N, H™'(S) (given
by (2-25)) is homogeneous of degree (m, q + 2i).

3. The approximate blow-up profile

3A. Construction. We first summarize the content and ideas of this section. We construct an approximate
blow-up profile relying on a finite number of parameters close to the set of functions (zz(Q2)) 10, zerd -
It is built on the generalized kernel of H, Span((T(” )),, ieN, 1<k<k(n)) defined by (2-26), and can
therefore be seen as a part of a center manifold. The profile is built on the whole space R? for the moment
and will be localized later.

In Proposition 3.1 we construct a first approximate blow-up profile. The procedure generates an error
term v, and by inverting elliptic equations, i.e., adding the term H ~1 to our approximate blow-up
profile, one can always convert this error term into a new error term that is localized far away from the
origin. We apply this procedure several times to produce an error term that is very small close to the
origin. Then, in Proposition 3.3 we localize the approximate blow-up profile to eliminate the error terms
that are far away from the origin. We will cut in the zone |y| ~ By = BSJ”’, where n < 1 is a very small
parameter. In this zone, the perturbation in the approximate blow-up profile has the same size as AQ,
being the reference function for scale change. It will correspond to the self-similar zone |x| ~ ~/T —t
for the true blow-up function, where T will be the blow-up time.

The blow-up profile is described by a finite number of parameters whose evolution is given by the
explicit dynamical system (3-58). In Lemma 3.4 we show the existence of special solutions describing
a type II blow up with explicit blow-up speed. The linear stability of these solutions is investigated in
Lemma 3.5.
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There is a natural renormalized flow linked to the invariances of the semilinear heat equations (1-1).
For u a solution of (1-1), A : [0, T'(ug)) — R and z : [0, T'(uo)) — R4 two C! functions, if one defines
for 59 € R the renormalized time

t 1 ,
S(Z) I:S0+/() Wdt (3-1)

and the renormalized function
(s, -) = (T—zu(t. ),
then from a direct computation, v is a solution of the renormalized equation

A z
asv—TsAv—Ts.Vv—F(v) =0. (3-2)

Our first approximate blow-up profile is adapted to this new flow and is a special perturbation of Q.
Proposition 3.1 (first approximate blow-up profile). Let L € N, L > 1, and let b = (b( )(n k,i)eT

denote a #I-tuple of real numbers with b(O D'~ 0. There exists a #I-dimensional manifold of C*°
Sfunctions (Qb)beRiXR#I—l such that

. n. i)y 0
F(Qp) = bV A0y +5{0.V0s + Y (=i —an)b*Vb" M + b k))a 9 __y, (33

i+1 b(n’k)
(n,k,i)eT i
where b( ") denotes the d- tuple of real numbers (b(1 1) .,bgl’d)), where we used the convention

bg’ f_)l = 0, and where Vrp, is an error term. Let By be deﬁned by (1-38). If the parameters satisfy the size

conahtlons6 b(O D« 1and |b(n k)| < |b(0 1)| R forall (n,k,i) € I, then Y, enjoys the following
bounds:

(i) Global” bounds. For 0 < j <sj.,

|H wbl|L2(|y|<2B ) < C(L)(b(o 1))2(J —mo)+2(1—80)+g’ C(L)ﬂ (3-4)

v/ wbl|L2(|y|<2B = C(L)(b(o 1))2(L—m0)+2(1 So)+g’ C(L)ﬂ (3-5)

where C(L) is a constant depending on L only.
(i1) Local bounds.

Vj=0,VB > 1, / Vi g2 dy < C(j. L)BCUD (p@D)2L+6, (3-6)
|ly|<B

where C(L, j) is a constant depending on L and j only.

®This means that under the bounds |b(" k)| <K |b(0 1)| 2"+ for some K > 0, there exists b*(K) such that the estimates
that follow hold if b(0 D < b*(K) with constants depending on K. In what follows, K will be fixed independently of the other
important constants.

7The zone y < Bj is called global because in the next proposition we will cut the profile Q p in the zone |y| ~
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The profile Qy is of the form

L+2
Opi=0+ap. api= > b"OTHO LN, (3-7)
(n,k,i)eT i=2

where Tl.(n’k) is as in (2-26), and the profiles S; are homogeneous functions in the sense of Definition 2.14
with
deg(Si) = (i,—y —¢') (3-8)

and with the property that for all 2 < j < L + 2, we have aSj/abl.("’k) =0ifj <iforn=0,1andif
j<i+1forn=>2.

Remark 3.2. The previous proposition is to be understood in the following way. We have a special
function depending on some parameters b close to Q, that is to say, at scale 1 and with concentration
point 0 for the moment. Equation (3-3) means that the force term (i.e., when applying F') generated by
(NLH) makes it concentrate at speed bgo’l) and translate at speed bil") , while the time evolution of the
parameters is an explicit dynamical system given by the third term. These approximations involve an
error for which we have some explicit bounds (3-4) and (3-6).

The size of this approximate profile is directly related to the size of the perturbation along Tl(o’l), the
first term in the generalized kernel of H responsible for scale variation. Indeed we ask for |bl-("’k)| <
|b§0’1) | = *i, and the size of the error is measured via b%o’l); see (3-4), (3-5) and (3-6). Therefore b§0’1)
will be the universal order of magnitude in our problem.

Because of the shape of this approximate blow-up profile (3-7), when including the time evolution of
the parameters in (3-3) we get

05(Qp) — F(Qp) + 5"V A0, + b .V 0y = Mod(s) + v, (3-9)
where®
(n.,k) 0.1 (k) _ ()| (k) & dS;
s . 0,1 s s s )
Mod(s) = Z [bifv + (2i —ap)by bl-n _biil ]|:Tl” + Z W] (3-10)
(n.k,i)eT j=i+148,=2 99

Forall 2 < j <L +2,as S; is homogeneous of degree (j, —y — g’) in the sense of Definition 2.14 from
(3-8), and from the fact that BSj/Bbl.("’k) =0if j <iforn=0,1andif j <i+ 1 forn > 2, one has
that for all j, n, k, i, we have 8Sj/8bl.(0’1) is either O or is homogeneous of degree (a,b) witha > 1,
meaning that it never contains nontrivial constant functions independent of the parameters ». Hence,
if the bounds ["*)| < [pV|*=

2"+ hold, since |b§0’1)| < 1 and —y, > —y from (1-18), one has in
particular that on compact sets forany 2 < j < L +2 and (n,k,i) € Z,

95; (0.1)
= 0(lby™ ). (3-11)
ap{mH) :

Proof of Proposition 3.1. Step 1: computation of 1. We first find an appropriate reformulation for the
error vy, given by (3-3) when Qp has the form (3-7).

8Here 8n>2 = 1if n > 2, and is zero otherwise.
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Rewriting of F(Qyp) in (3-3). We start by computing

—F(Qp) = H(ap)—(f(Qp)— f(Q)—ap 1(Q))

L+2
k k
= Y b"PHTTOLI HSH—(f(0)—F(Q)—ap f'(0))
(n,k,i)eT i=2
L+2
0,1 1, k k
=-b\*PA0-b{" vo— Y bMPTOLY HSH(£(Q5)-£(Q) e £1(Q)),
(n,k,i)ez i=2
(3-12)
where we used the definition of the profiles Tl.("’k) from (2-26), and the convention bl(j:’i)l = 0. For
i =2,...,L, weregroup the terms that involve the multiplication of i parameters bj(."’k) in the nonlinear
term —(f(Qp) — f(Q) —ap f/(Q)). Since p is an odd integer,
p
(f(2p)=/(@)=ap f'(Q) = D CL 0P Fay
k=2

[
M~

L+2
_ k (n.k) k (n.k) J;
ctor [ X e I oo ar o st
|J|1=k (n,k,i)ez i=2
(3-13)

where J = (JI(O’I), - Jlfno’k(n())), Ja....,Jp+2) represents a (#Z+ L+ 1)-tuple of integers. Anticipating
no
that the profile S; will be a homogeneous profile of degree (i, y — g’), we define for such tuples J,

k=2

L L+2
=Y+ > e N sy (3-14)

i=1 1<i<Li,1<k<d (n,k,i)eZ,2<n i=2

We reorder the sum in the previous equation, (3-13), partitioning the (#Z + L + 1)-tuples J according
to their length |J |3 instead of their length J;:

L+2

(f(Qp) = (@) —apf'(Q) = D P +R.
j=2
P; captures the terms with polynomials of the parameters bl.(n’k) of length |J|3 = j:

V4 L+2
— (n.k) (n.k) .
Pi=) CkQ” k( oo JT @@ T SiJ’). (3-15)
k=2

J1=k,|J13=j (n,k,i)eT i=2

The remainder contains only terms involving polynomials of the parameters bl.("’k) of length | - |3 greater
than or equal to L + 3:
L+2

R=(f(Q») - f( @)~ f'(Q)— ) Pi. (3-16)

=2
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From (3-12) we end up with the final decomposition

L+2
> ) k k
—F(Qp) =-b"VA0 0" vo - S pnPT )+ZH(SZ)— Z Pi—R.  (3-17)
(n,k,i)eT
Rewriting of the other terms in (3-3). From the form of Oy in (3-7), one has
L+2
bOVAQ, =bOPA0+ S OV IATI 1N p DA, (3-18)
(n,k,i)eT i=2
d ' ‘ r L+42 )
bV, =6 vo+ 3 YT b TR 4 3 b a,, S,-), (3-19)
=1 \n,k,i)eT i=2
0.1, (k) | (k) 90
Z (—@i —am)by 5" + bl )8b("’k)
(n,k,i)eT i
O. k) | @0 (k) =08
= Y (=Qi—anb Vb + b (T, +y (n’k)). (3-20)
(n.ki)eT j=2 0b

Expression of the error term . Using (2-21), we define

k
6795 = 6y 0 (L),

From (3-17)—(3-20), ¥ given by (3-3) is a sum of terms that are polynomials in b, and, denoting a
monomial by b7, we rearrange them according to the value |J |3

L+2
Up =Y [® + H(S)] +b"VASL o+ Zb“ Doy St4a
i=2 j=1

N
+ Y (@i —anb®Vp P L p) D R 321)

(n,k)
(n,k,i)ezT 3b
where the profiles ®; are given by the formulas

d

0,1 0,1 0,1 1,k 1,k

= "V)2eP) + 3 p"Vp{P el
k=1

d d
4 Z(b?,])b%O,l)axj Tl(O,l) n Z b§1’1)b§1’k)8xj T1(1,k))
j=1 k=1

d
Y (bgo,l)b(()n,k)G(()n,k) £y BRI To(n,k)) P (322)
(n,k,0)eZ, n>2 j=1
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and fori =3,...,L+1,

d
. (0,1)4 (0,1) ~,(0,1) (0,1) ;. (1,k) o (1,k)
i i=by b2 0,2 + Z by b2 0,

k=1,(1,k,i—1)ez
d

d
' ), (1k k
+ Z (b?’j)bi(g,ll)axj Tl(i)’ll) + Z bgl’j)bi(i’l )8xj Tl(l, ))
j=1 k=1,(1,k,i—1)eT

d
bX (el 4 Y b b, 1)
(n,k,i—2)EL, n>2 j=1

d
+bOVAS L+ Y by, Si

m=1
. k ) 08—
+ Y (-@j—anb PO 4 p D) — = — P, (3-23)
(n.k,j)eT db;

d
Opioi=bVAS 1+ Y b, S

0SL+1

m=1

. 0,1 k k
+ Y (~@j —anb®Vb" >+b;11>)ab(n’k)
J

(n.k,j)eL

—Prya. (324

Step 2: definition of the profiles (S;)2<;<r.+2 and simplification of ;. We define by induction a
sequence of couples of profiles (S;)2<;<r+2 by
{ Sy :=—H"!(®2)

3-25
Si:=—H"Y(d;) for3<i<L+2, with® defined by (3-22), (3-23), (3-24), (3-25)

where H ! is defined by (2-25). In the next step we prove that there is no problem in this construction.
Since the S; are defined in this way, by (3-21) we get the final expression for the error

) 8SL-|-2

d
_1(0,1) 1./) : 0,1) (n,k) | 4 (n,k)
Yp=by ASL+2+E b; J aijL+2—|- E (—(21—an)b1 bin +bi11 ab,(”’k)
i

Jj=1 (n.k,i)ez

—R. (3-26)

Step 3: properties of the profiles S;. We prove by inductiononi =2, ..., L+2 that S; is homogeneous of
degree (i, —y —g’) in the sense of Definition 2.14, and that for all 2 < j < L +2, we have as,-/ab}””‘) =0
if j <iforn=0,1landif j <i+1forn>2.

Initialization. We now prove that S, is homogeneous of degree (2, —y — g’), and that 955/ Bbl.("’k) =0
if2<iforn=0,1andif 1 <i for n > 2. We claim that ®, is homogeneous of degree (2, —y — g’ —2)
and that 8(1)2/8bl.("’k) =0if2<iforn=0,1andif 1 <i for n > 2. To prove this, we prove that these
two properties are true for every term on the right-hand side of (3-22).

From Lemma 2.10, ®§0,1) is simple admissible of degree (0, —y +2—g’) in the sense of Definition 2.11.
We also know (bgo’l))2 can be written under the form J 1(0’1) =2and Ji(n’k) = 0 otherwise and one has
|J|2 =2and |J |3 = 2. Therefore, (b§°’1))2®§°’1) is homogeneous of degree (|J |3, —y +2—g'—2|J|2) =
(2,—y — g’ —2). The same reasoning applies for bgo’l)bgl’k)(@gl’k) forl <k <d.
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For 1 < j <d, we know T( D is admissible of degree (0, )/ +2) by Lemma 2.12, so 0 T( D i ad-
missible of degree (—y + 1) by Lemma 2.10. We also know b (1.7 b(O D can be written in the form b’ w1th
J(O D= J(l’])—landJ("’ ) = 0 otherwise; therefore|J|3—2and|J|2=1+y L+ 1=2+%1by
(1-18). Thus b(l’J)b(O 1)8 T(0 Dis homogeneous of degree (|J |3, —yl +1=2|J]2) =(2,—y — 2 a).
As g’ <, itis then homogeneous of degree (2, —y — g’ —2). The same reasoning applies for 1 < j, k <d
to the term bil’j)bgl’k)axj Tl(l’k).

We now examine for (n, k, 0) € T the profile

d
POV 4 3 Iy )
j=1

Ok p O )

is simple admissible of degree (1, —y, —g’) by Lemma 2.10, and can be written in the
forme for J(0 D— 1, J(n k) — 1 and J(n K — 0 otherwise. Onethenhas |J|3=2and |J|, =1+15 y”

Therefore, b(o l)b(n k)®(" k) s homogeneous of degree (|J|3,—yn — g —2|J|2) = 2,—y — ¢’ — 2).
Similarly the terms in the sum in the above identity are homogeneous of degree (2,—y — g’ —2).

We now look at the nonlinear term P,. Since, for 2 <i < L + 2, the profile S; involves polynomials
of b in the form b7 with |J |3 = i, from its definition (3-15) P, does not depend on the profiles S; for
2 <i < L + 2 and can be written as

_cor? (bio’l)Tl(o’l) n i PRI T 3 b(()n,k)TO(n’k))z
k=1 (n,k,0)ez

for a constant C. We have to prove that all the mixed terms that are produced by this formula are
homogeneous of degree (2,y — g’ —2). We write it only for one term, and apply the same rea-
soning to the others. For all ((n,k,0), (n’,k’,0)) € 72, by Lemmas 2.10 and 2.15 and (2-1), the
profile b(()”’k)b((,n/’k/) QP2 To("’k)TO("/’k/) is homogeneous of degree (2, —y —2 — &) and then of degree
(2,—y —2—g’). As we said, similar considerations yield that all the other terms are homogeneous of
degree (2, y — g’ —2). This implies that P, is homogeneous of degree (2, —y — g’ —2).

We have examined all terms in (3-22) and consequently proved that ®, is homogeneous of degree
(2,—y —2—¢’). By a direct check of all the terms on the right-hand side of (3-22), with P, given by the
above identity, one has that 8<I>2/8bl.(n’k) =0if2<iforn=0,1andif 1 <i for n > 2. We now check
that we can apply Lemma 2.15(iii) to invert ¥, and to propagate the homogeneity. For all #Z-tuples J
with |J |3 = 2, one has indeed for all integers n that 2|J |, —y, —2—g" > y, —d as the sequence (Yp)nen
is decreasing and d — 2y — 2 > 0. For the second condition required by the lemma, we notice that g’
is not a “fixed” constant in our problem, as its definition (1-21) involves a parameter . The purpose of
the parameter ¢ is the following: by choosing it appropriately, we can suppose that for every 0 <n <ng

and #Z-tuple J with |J |3 = 2 we have
=2|J2+y+g —yn 2N

This allows us to apply Lemma 2.15(iii): S, is homogeneous of degree (2, —y — g’). We also get that
BSz/Bbl-("’k) =0if2 <iforn=0,1andif | <i for n > 2 as this is true for ®,. This proves the
initialization of our induction.
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Heredity. Suppose 3 <i < L + 1, and that S,/ is homogeneous of degree (i’, —y — g’) for 2 <i’ <i, and
that 8Sl.//8bj(-n’k) =0ifi’ < jforn=0,1andifi’"—1 < j for n > 2. We claim that ®; is homogeneous
of degree (i, —y — g’ —2) and that 8d>i/8bj(.n’k) =0ifi <jforn=0,1andifi —1<j forn >2. We
prove it by looking at all the terms on the right-hand side of (3-23). With the same reasoning we used
for the initialization, we prove that
d
FOVEODOOD 4 3T IR
k=1,(1,k,i—1)eT
d d
£ (o0Pa T+ S e, 1)
J=1 k=1,(1,k,i—1)€z

d
D S (e S S eI

(n,k,i—2)eT,n>2 j=1

is homogeneous of degree (i, y — g’ —2). From the induction hypothesis, bgo’l)ASi_l is homogeneous of
degree (i, —y — g’ —2). From Lemma 2.12, for 1 < j < d, we know dy; S;—1 is homogeneous of degree
(i—1,—y—g’—1),sothat bfl’f)axj Si—1 is homogeneous of degree (i, —y — g’ —2—«); since « is positive,
it is then homogeneous of degree (i, —y — g’ —2). Still from the induction hypothesis, for all (n, k,i’) € Z,
0S;—1

y 0,1); (n,k) (n,k)
(=@ —an)b ™ D0 b7 o
l/

i’+1

is homogeneous of degree (i, —y — g’ —2). The last term to be considered is P;. Since, for2 < j < L +2,
the profile S; involves polynomials of b of the form b’ with |J|3 = i, from its definition (3-15) P; does
not depend on the profiles S; fori < j < L + 2 and can be written as

p i—1
- )y g o)y g0 Jj
r=yaort( Y o [T et ar i T s ),
k=2

|J|=k,|J|3=i (n.k,i)eT J=2

Let k be an integer 2 < k < p; let J be a #Z + L-tuple with |J|3 = i. Then from the induction hypothesis,

i—1
- l—[ NN AL k ﬂn-k>1—[ Jj
QP k (bl(n ))Jl (Tk(n ))J, Sjj

(n,k,i)ez j=2

is homogeneous of degree (i, —y—-2—(k—Da-—g’ Zj_:lz Jj). As k > 2 and a > g/, it is homogeneous
of degree (i,y —2—g¢’).

We just proved that ®; is homogeneous of degree (i, —y —2 — g’). By a direct check of all the terms
on the right-hand side of (3-23), with P; given by the above formula, one has that d®; / abj(."’k) =0if
i <jforn=0,1andifi —1 < j for n > 2. We now check that we can apply Lemma 2.15(iii) to get the
desired properties for S; = —H ~!®;. For all #Z-tuples J with |J |3 =i and integers 7, the first condition
|J|2—y—2—g" > yn,—d is fulfilled since —2y, —d > —2y —d > 2. For the second condition, again
as in the initialization, as g’ is not a “fixed” constant in our problem (its definition (1-21) involves a
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parameter &), we can choose it such that for every 0 <n < ng and #Z-tuple J with |J |3 =1,
2|2 +y+g —yn €2N.

We thus can apply Lemma 2.15(iii): S; is homogeneous of degree (i, —y — g’). One also obtains that
aS,-/abj(."’k) =0ifi <jforn=0,1andifi —1 < j for n > 2, as this is true for ®;. This proves the
heredity in our induction.

The last step, that it is the heredity from L + 1 to L + 2, can be proved exactly the same way and we
do not write it here.

Step 4: bounds for the error term. In Step 2 we computed the expression (3-26) of the error term .
In Step 3 we proved that the profiles S; were well defined and homogeneous of degree (i, —y — g’). We
can now prove the bounds on ¥ claimed in the proposition. In the sequel we always assume the bounds

y—

679 < OV FH and 16| « 1.

Homogeneity of Y. We claim that ¥, is a finite sum of homogeneous functions of degree (i, —y — g’ —2)
for i > L + 3. For this we consider all terms on the right-hand side of (3-26). As Sz 4+ is homogeneous
of degree (L +2,—y — g’) from Step 3, the function biO’I)ASL+2 is homogeneous of degree (L + 3,
—y—g’'—2) by Lemma 2.15. Similarly for 1 < j <d, we know bﬁl’”ax}. S1+2 is homogeneous of degree
(L+3,—y—g'—2—a) (and then homogeneous of degree (L +3, —y—g’—2) as « > 0), and for (n,k,i) €Z,

0SL+2
op" )

H > ak 7k

(—(2i —an)bODpTR) 4 Ry
is homogeneous of degree (L + 3, —y — g’ —2). From its definition (3-16), and since S; is homogeneous
of degree (i,—y — g’) for 2 <i < L + 2, we have R is a finite sum of homogeneous profiles of degree
(i,—y —a—2) with i > L + 3. All this implies that 1 is a finite sum of homogeneous functions of
degree (i,—y — g’ —2) fori > L + 3.
Proof of an intermediate estimate. We claim that there exists an integer A > L + 3 such that for u a
d-tuple of integers, j € N and B > 1 we have

/ |3“Wb|2_ dy < C(L) i |b§0,1)|2iBmax (4i+4(mo—%)+4(80—1)—2g’,0)_ (3-27)
yi<B 1+1y[¥ i=L+3

We now prove this bound. We proved earlier that v, is a finite sum of homogeneous functions of
degree (i,—y — g’ —2) for i > L + 3. Consequently, it suffices to prove this bound for a homogeneous
function b’ f(y) of degree (|J|3.—y — g —2) with [J|3 > L + 3. As f is admissible of degree
(2|J|2 —y — g’ —2), one then computes

J 2 B
|b a’J“f|_ < C(f)|b(0’1)|2u|2 (1 +r)4|J|2—2y—2g’—4—2j—2|;L|rd—l dr
2] 1
lyl<B 1+ |y 0

< C(f)|b§0’l)|2u|2 Bmax (4|J\2+4(m0+%)4_4(50_1)_2&,/,0)

(we avoid the logarithmic case in the integral by changing a bit the value of g’ defined in (1-21), by
changing a bit the value of ¢). This concludes the proof of (3-27).
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Proof of the local bounds for the error. Let j be an integer, and u € N? with |u| = j. From (3-27),
5| « 1 and B > 1, we obtain, by (3-27),

/ 18"y |2 dy < C(L)|b§0,l)|2L+6Bmax (4A+4(m0—%)+4(80—1)—2g’,0)’
lyl=

which gives the desired bound (3-6).

Proof of the global bounds for the error. Let j <2sy., and i € N9 with |u| = j. Using (3-27), we notice
that for L +3 <i < A one has

max(4i +4(m0— l'u|2+J ) +4(80 — 1)—2g/,0) =4i —|—4(m0— |M|2+j ) +4(8—1)—2g".

This implies

A .
|0 yp|? 0,1) 2 pi+4(mo—5EL) +4(5o—1)-2¢’
[ Ty =l > VP By (mo= B3 w46
|y|<B1 y i=L+3

< C(L) [V 2(F=m0)+2(1-80)+5'~C(L)n

which is the desired bound (3-5). Let j be an integer, j < s;. Now, as H = —A + V, where V' is a
smooth potential satisfying |04V | < C(w)(1 + |y|)~2"#l, by (2-2) one obtains

/ a7
y\<Bl 1+|y|21

< C(L) Z Z |b§0 1)|21 ;Ilax(4i+4(m0—j)+4(80_1)_2g/’0)
J/+lu|=2ji=L+3
< C(L)[p(OVRU—mo)+2(1=b0)+¢'~C(L)n

/ 5 g2 dy < C(L)
=B J +|u| =2j

using (3-27) (because again 4i +4(mo—j) +4(8o—1)—2g’ >0asi > L+ 3 and j < 7). This proves
the last estimate (3-4). O

We now localize the perturbation built in Proposition 3.1 in the zone |y| < Bj and estimate error
generated by the cut. We also include the time-dependence of the parameters following Remark 3.2. We
recall that sz, is defined by (1-24).

Proposition 3.3 (localization of the perturbation). The function y is a cut-off defined by (1-43). We keep
the notations from Proposition 3.1. 1 = (s, s1) is an interval, and

K
b:I ->R% s (bl-(n )(S))(n,k,i)er

is a C function with the a priori bounds®

b < pOVIEHL 0 <™ <1 %Y < bV (3-28)

9This means that under the bounds |b(n k)| <K |b(0 1)| 2"+ for some K > 0, there exists b*(K) such that the estimates
that follow hold if b(O D < b*(K) with constants depending on K. In what follows, K will be fixed independently of the other
important constants.
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We define the profile Qb as
Op:=Q+ay=0+ B 0:=]5 0. (3-29)
Then one has the identity (Mod(s) being defined by (3-10))
050 — F(0p) + 51"V A D + b1 .V 0y = iy + x5, Mod(s) (3-30)
with, for 0 < n < 1 small enough, an error term \ry, satisfying the following bounds:
(1) Global bounds. For any integer j with 1 < j <s; — 1 we have
/ CNHTPp P dy < C(L)|py" D PUTm 208G (3-31)
R
For any real number s, < j <2sy —2,
/ VTR dy = C(L)|p{O DR 20-R0=C, (3-32)
R
and for j = sy, one has the improved bound
/ HSE [ dy < C(L)|py D PR A0 20075, (3-33)
R
(2) Local bounds. One has that (\y, being defined by (3-3))

VIyl < Bi. ¥p(y) =¥, (3-34)

and forany1 < B < Bjand j €N,
/| - V9|2 dy < C(L, j)BEED bV 2L, (3-35)
Y=

Proof. First, we compute the expression of the new error term by rewriting the left-hand side of (3-30)
using (3-9) and the fact that F(Q) = 0:

Vb = x5, Vb + 05 (18, — [F(Q + xB, @) — F(Q) — x5, (F(Q +p) — F(0Q))]
+bOV(AQ — x5, A0) + bV (A(xp, @) — 15, Aatp)
+b51).(VQ = x8,V0) + 5"V (V (x5, @) — x5, Vatp). (3-36)

Local bounds. In the previous identity, one clearly sees that all the terms, except x g, ¥, have their
support in By <|y|. Thus, for B < By, the bound (3-35) is a direct consequence of the local bound (3-6)

for vrp.

Global bounds. Let m + 1 < j <s7. We will prove the bounds (3-31) and (3-33) by proving that this
estimate holds for all terms on the right-hand side of (3-36). The reasoning to prove the estimates will be
similar from one term to another. For this reason, we shall go quickly whenever an argument has already
been used earlier.
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The x,¥p term. As H = —A + V for V a smooth potential with 3%V < (1 + |y[)~271*! by (2-2), and
as (Blr‘()(Bl))(r) = Bl_kalr‘)((r/Bl), we have the identity

J
}1J(X31¢b)::XB1}1]¢5'+ 2{: fﬁ8”¢%,
MeNd
0<lul=2j-1

where for each u € N¥, with 0 < || < j — 1, we have Ju has its support in By < |x| < 2By and satisfies
| fl < C(L)By® 7D Using (3-4) and (3-5) we obtain

|1 Gua P a
R4
J
5C(L)|b§071)|2(j—mo)+2(1—50)+g/—C(L)77_|_ Z Bl—(4j—Z\Ml)bf(%—mo+2(1—50)+g’—C(L)'7)

MENd
0<|u|<2j-1

< C(L)|b§°’1)|2(f‘m0)+2(1‘30)+g"C(“". (3-37)
Similarly, one obtains, for any integer j’ with 0 < j’ < 2s; —2,
/ V7 (e ) < C(L) |V P (5 o) #2000 ' =Clon (3-38)
R4

Using interpolation, this estimate remains true for any real number j’ with 0 < j' < 2s; —2.

The 05(x B, )ap term. We first split using (3-7):

L+2
as(xBl)ab=as(xBl)( > b,'(n’k)Ti(n’k)+ZSi)- (3-39)
(n,k,i)eT i=2

We compute
0.1)y—1, 0,1 || y
05 (xm) = 01 B =@ m) 5 )-
’ Bl B1
We first treat the S; terms. As we already explained in the study of the x g, ¥ term, one has

HY(0s(x)S) = Y. fud"Si
WEN?, |ul<2j
with £, a smooth function, with support in By < |x| <2B; and satisfying | f;,| < C(L)bgO’I)Bl_(ZJ_'“'l)
(because |b§?s’1)| < |b§0’1)|2 by (3-28)). As S; is homogeneous of degree (i, —y — g’) in the sense of

Y—¥n +i

Definition 2.14, from (3-8) and |bi(n,k)| < |b§0’1)| -

we get

/ |HY (35 (x8,)S)|? dy < C(L)[pOV PU=m0)+2(1=b0)+¢'~C(L)n (3-40)
IRd
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)

using Lemma 2.15. Now we treat the Ti("’k terms in the identity (3-39). Let (i,n, k) € Z. Then again

one has the decomposition

B OO b T s

l
weNe, |u|<2j

with f;, a smooth function, with support in By < |y| < 2B, and satisfying | f,| < C(L)bgo’l)Bl_(zj_l’”).
As Ti(n’k) is an admissible profile of degree (—y, + 2i) in the sense of Definition 2.11 by (2-26) and
Lemma 2.10, d* Tl" K is admissible of degree (—yn + 2i — |pt|) by Lemma 2.12 and we compute

p=2vnt4i=2luli . d—1 g,

C(L)|b§0’1) |)’—)/n +2i42 /231

(n,k) whk 2
[0 g ay < et

B

< C(L)|p{OD U =mo)+2(1=80)+7(2)j ~2i=28u=2mn)

As (i,n,k) € Z, we know i < L, soif j = s one has 2j —2i — 268, —2m, > 2 — 28,. Therefore we
have proved the bound (we recall that 86 = maXo<n<ng 6n € (0, 1))

0,1 j— —80)— . .
[ 187 Gu0m T dy < CL)pPPUTmT2(780"CWn if g +1 < j < sz,
1Y i =
R4

C(L)|b§0’1) |2L+2+2(1—80)+7](1—5(’)) if j =sp.
(3-41)
From the decomposition (3-39), the bounds (3-40) and (3-41), we deduce the bound
[ 187 @uem s ay
R4
C(L)|b§0’1)|2(j_m0)+2(1_80)_C(L)n if 0 < ] <L,
= (0,1) 2L+2+2(1-80) (17,0, 1) |2 (1-8}) O, g/—C(L)n\ ¢ ; _ (3-42)
C(L)|by | (16;771 o)+ b7 ) if j=sL.
Using verbatim the same arguments, one gets that for any integer 0 < j’ < 2s; —2,
[ 197 Gatm s P ay = bV ) +20-s0-clbon, (3-43)
R

which remains true for any real number j’ with 0 < j’ < 2s; — 2 by interpolation.

The F(Q + yB,ap) — F(Q) — xB,(F(Q +ap) — F(Q)) term. It can be written as

F(Q + xB,ap) — F(Q)— xB,(F(Q +ap)— F(Q))
= A(xB,op) — 1B, Aap + (O + xB,@p)? — 0P — x3,((Q +ap)? — QF). (3-44)

We now prove the bound for the two terms that have appeared. From the identity
A(xB,op) — xBy Ay = A(xB )y +2V xB, .V,

as x is radial and as (8’,‘ (xB)(r) = B kdk y(r/By), one sees that this term can be treated exactly the

;
same way we treated the previous term: d5(x B, )op. This is why we claim the following estimates that
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can be proved using exactly the same arguments:

|, 117 a0) = 13, 8 dy

C(L)[p{* D20 —mo)+2(1=80)~C(L)n if mo+1<j <sg,

, , 3-45
C(L)lbg(),l)|2L+2+2(1—80)(|b§0a1)|2n(1—80) 4+ |b§071)|g —C(L)n) lf] =sy. ( )

We now turn to the other term in (3-44), which can be rewritten as

V4
(0 + x8,0p)” — 0P — x5, ((Q +0p)? — QP) = > CLO” * yp, (x5, = Derj.
k=2

All the terms are localized in the zone By < |y| < 2B;p. From the definition (3-7) of «p, (3-8), (2-1) and
Lemma 2.15, for each 2 <k < p one has that Q7 —k a’g is a finite sum of homogeneous profiles of degree
(i,—y —a—2) fori >k, yielding

j 2
| V7@ + 28,0 = 07 = 1, (@ +)” = Q7)) dy

< C(L)|b§0’l)|2(j—m0)+2(1_80)+06—c(lf)71. (3-46)
From the decomposition (3-44) and the estimates (3-45) and (3-46) one gets

/R HI(F(Q + tm@5) = F(Q) = 3, (F(Q +a5) — F(Q))*dy

|b§0,1)|2(j—mo)+2(1—80)—C(L)n ifmo+1<j<sg,

=C(L) |b§0,1)|2L+2+2(1—80)(|b§091)|2n(1—86) + |b§0,1)|a—C(L)n)

(3-47)

if j =s1.
The same methods used for the two previous terms yield the analogue estimate for

VI [F(Q + xB,ap) — F(Q) — x8, (F(Q +ap) — F(Q))]

for any integer 0 < j’ <2s7 —2, and by interpolation, we obtain, for any real number j’ with 0 < j' <
281, — 2,

97 (F @+ xm,0) = F(Q) =, (F(Q )~ Q) dy
5C(L)|b§°’1)|2(%—m0)+2(1—30)—c(”’7, (3-48)

The b\"(AQ — y,AQ) term. As 3*(AQ) < C(u)(1 + |yl for all u € N¥ by (2-7) and
HAQ =0, one computes

j 2B, )
/Rd |HI b (AQ — x5, AQ))|" dy < C(j)|b§°’1)|2/B —2y—4j d—1 g,
1

< C(j)|b£0’1) |2(j—mo)+2(1—30)+217(j—m0—30) (3-49)
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with s, —mg—38p = L +1—38y > 1—6¢ for j = sz. For any integer j' with E[s.] < j' < 2s; —2,
similar reasoning yields the estimate

i’ 1 (0,1 . 0,1 i S N_C(i!
Ad V7' 6OV (AQ — x5, AO)) dy < C(j)|p'O V2T —m0) +2(1=80)=C G,
By interpolation, one has for any real number j" with E[s.] < j' <2sp —2,

/ V7' BV (AQ — x5, AN dy < C (O P(5 —mo)+2(=50)~C( o, (3-50)
R4

The bgo’l)(A()(Blozb) — xB, Aay) term. First we write this term as

0,1 0,1
bV (A(xs,ap) — 18, Aoy = bV (v.V s, )atp.
Now, we notice that

(0.1) .Yl Iy
by (y.VxB,) =by B_l(arX)(B_l
is very similar to

)y—1,0.1) Y] y
B (m) = 010D @) (-
1 1

in the sense that it enjoys the same estimates, as |b§?s’1) | < (bgo’l))2 by (3-28). Thus, we can get exactly
the same estimates for the term bgo’l)(A( XB,%p) — xB, Aap) that we obtained previously for the term

ds(x B, )op with the exact same methodology, yielding

/Rd |[HT (01 (A (s, o) — 3, Aey)) | dy

C(L)|b§031)|2(j—m0)+2(1—30)—C(L)77 if0<j<sp,

/ / 3-51
C(L)|b§0’1)|2L+2+2(1_80)(|b§0’1)|2n(1_80) + |b§071)|g —C(L)n) ifj =57, ( )

and for any integer j’' with 0 < j’ < 2s7 — 2,

/ IV OV (A ) — 13 Aap)) 2 dy < C(L)[pOD T —mo)+20-80-CLin (3.5
Rd

The bgl").(VQ — xB, V Q) term. First we rewrite

d
bV — x5, V) = by (1= x5y, ©. (3-53)

i=1

Now let i be an integer, 1 <i < d. From the asymptotic (2-1) of the ground state

1040 < C()(1 + [y|)~ 7o Iul
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and the fact that Hdy; Q = 0, we deduce

. . 2B, .
/R HI 01 = 83y, 0)) [ dy = COHIB* VP2 /B pmI =l gy
1
< C(j)|b§0’1)|2(j_m°)_2(1_80)+2"(j_m1_8')

withs;, —m;—61 =L +mog—my+1—68; >1—6; for j =s7. So we finally get, putting together the
two previous equations,

400
; . 2 . Coy—4 d—
/d\H’(b?’).(VQ—xBIVQ))I dyscu>|b§°’”|2/ Y gy
R B

< C(j)lbgo’l)|2(j_m0)_2(1_80)+277(1—51)' (3-54)

Now, for any integer j’ with E[s.] < j’ <2s; —2, as E[s¢] > s¢ — 1, similar reasoning yields the estimate
v . 2 . i e N_ (!
/Rd\w OV = x5, V)| dy = C(j )bV PLs mmo) #2080 =€

By interpolation, one has for any real number j’ with E[s.] < j' < 2sp —2,

/ V7' 65").(VQ — x5, VO)[* dy < C(j) iV L5 —m)+20-80)=Cn, (3-55)
R4

The 19§0’1).(V()(Bl op) — xB, Vap) term. We first rewrite
d
1 1,i
bV (Y (xm o) — x5, Vap) = D 6500y, (x5,
i=1

Let i be an integer, 1 <i <d. Forall u € N9, we know 0" (xB,) < C(M)Bl_ml. From (3-7) and (3-8),
oy is a sum of homogeneous profiles of degree (i, —y). Using Lemma 2.15, one computes

i (1, 2 0,1)2(j— - -
[V @800, ) dy < CLylp{0 VR0 20 te-Cwn
With the two previous equations, one has proved that
; 2 - - -
/R NHT BV (emias) = xm, Vap)) [P dy < C(L) iV PUTmo 2050 temCn - (3.56)

Using exactly the same arguments, one can prove that for any integer 0 < j’' < 257 — 2, the analogue
estimate for V/ /(bgo’l) .(V(xB,2p) — xB, Varp)) holds. By interpolation, it gives that for any real number
0 < j’ <2sp —2 we have

L1970V ) i, Ve dy = €l DR ) 200 kaClln, - 57)
R4

End of the proof. For the estimate concerning the operator H (resp. the operator V), we have estimated
all terms on the right-hand side of (3-36) in (3-37), (3-42), (3-47), (3-49), (3-51), (3-54) and (3-56) (resp.
the right-hand side of (3-36) in (3-38), (3-43), (3-48), (3-50), (3-52), (3-55) and (3-57)). Adding all these
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estimates, as 0 < b§0’1) « 1 is a very small parameter, one sees that there exists 79 := 1o(L) such that
for 0 < 1 < Ry, the bounds (3-31) and (3-33) hold (resp. the bound (3-32) holds). O

3B. Study of the approximate dynamics for the parameters. In Proposition 3.3 we stated the existence
of a profile Q p such that the force term F (Q~ ») generated by (NLH) has an almost explicit formulation
in terms of the parameters b = (bl.(n’k))(n,k’i)ez up to an error term . Suppose that for some time,
the solution that started at Q b(0) stays close to this family of approximate solutions, up to scaling and
translation invariances, meaning that it can be written approximately as t, (t)(Q b(t),1/A(t))- Then Q b(s)
is almost a solution of the renormalized flow (3-2) associated to the functions of time A(¢) and z(¢),
meaning that

~ A~ Zg _~ ~
95(0p) ~ 5 A Qp = 5.V 0y — F(0) ~ 0.

Using the identity (3-30), this means

A ~ . =
—(b§0’1)+TS)AQb—(bgl’)‘*’ZA_S)'VQb_}—XBl Mod(s) & 0.

From the very definition (3-10) of the modulation term Mod(s), projecting the previous relation onto the
different modes that appeared!® yields

As

( 71)
T = _blo ,
zZ a1,) _

by = =i —an)b{* Vb £ b1 V(. ki) €T

1

with the convention bl(j:i)l = 0. The understanding of a solution starting at Q~ b(0) then relies on the

understanding of the solutions of the finite-dimensional dynamical system (3-58) driving the evolution
of the parameters bl.(n’k). First we derive some explicit solutions such that A(¢) touches 0 in finite time,
signifying concentration in finite time.

Lemma 3.4 (special solutions for the dynamical system of the parameters). We recall that the renormalized
time s is defined by (3-1). Let £ < L be an integer such that 2. < £. We define the functions

151.(0’1)(s)=c—§ for 1 <i <U{,
s
OV =0  fort<i<lL, (3-59)
p(nk) _ ; -
b; =0 for (n,k,i) €T withn > 1,
with (¢;)1<i<¢ being L constants defined by induction as

_ £ J o a(l—i)
U —q« an G+ = 20—«

c1 ¢i forl1<i<A{—1. (3-60)

10This will be done rigorously in the next section.
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Then b = (l;l-(n’k))(n,k,i)ez is a solution of the last equation in (3-58). Moreover, the solutions A(s)
and z(s) of the first two equations in (3-58) starting at A(0) = 1 and z(0) = 0, taken in original time

variable t, are z(t) = 0 and
¢ ¢
. o o (20 —a) )\
Alt) = ((2€—a)s0) ( ” S0 z) . (3-61)

Proof. It is a direct computation that can safely be left to the reader. O

As 59 > 0 and 2¢ > «, (3-61) can be interpreted as: there exists T > 0 with A(¢) ~ (T — ;)5 ast —>T.
Now, given %a < £ < L, we want to know the exact number of instabilities of the particular solution b.
In addition, in Propositions 3.1 and 3.3, we needed the a priori bounds

Y—¥n +i

bR < p(0D) 5

to show sufficient estimates for the errors ¥ and ¥,. Around the solution b defined by (3-59), bgo’l) is

of order s, and so the a priori bounds we need become!!

bl(n’k) s s yn2—1’ —i ‘

Therefore, by “stability” of b we mean stability with respect to this size and introduce the following
renormalization for a solution of (3-58) close to b:
_ U(nrk)
pR) = k) i (3-62)
s

V—Zyn +i *
It defines a #Z-tuple of real numbers U = (Ul.("’k) )(n.k,i)ez» and we order the parameters as in (2-28) by

U=, o ot oD gk g ko), (3-63)

Ln()
In the next lemma we state the linear stability result for the renormalized perturbation (Ul-(" ’k))(n, k,i)eT

Lemma 3.5 (linear stability of special solutions). Suppose b is a solution of the last equation in (3-58).
Define U = (Ui(n’k))(n,k,i)ez by (3-62) and order it as in (3-63).

(i) Linearized dynamics. The time evolution of U is given by

00 = Lau + o(@), (3-64)
where A is the block diagonal matrix
Ag (0)
a=| M
(0) Ang

1 One notices that this bound holds for 151.("”()‘
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The matrix Ay is defined by

£—1
—2-a)ataz—,; 1 \
. Ll
—(2i —a)ci oy el (0)
—(2¢ —a)cy 0 1
Ag = 0 —ast— 1 . (3-65)
—{
0 —oy—— 1
(0)
: - 1
o L=H
0 Ry
The matrix Ay is a block diagonal matrix constituted of d matrices 12171
G
2€ —a
All (0) =9zl 1 ( )
A = . A= Y jry ) (3-66)
© A4 c
(0) 1
(—eslop
K o 2%—0[ :

For2 <n < ng the matrix Ay is a block diagonal matrix constituted of k(n) times the matrix Av;,

(o5

24— a
~, .. . .. . (0)
n o (0 -y
A’ _ . X/ _ LRy v 1 -6
(0) A, 0 -
. 1
( ) e_ V—Zyn _Ln
o 20—« )

(ii) Diagonalization, stability and instability. A is diagonalizable because A, and Ay for1 <n <ng are.
Ay is diagonalizable into the matrix

di | 2 i La -1 {—L
iag| —1, , .
£ 20—« 2 —« 2W—a 20—« 20—«

We denote the eigenvector of A associated to the eigenvalue —1 by vy and the eigenvectors associated to
the unstable modes 20./({ — &), ..., La/({ —a) of A by va,...,vg. They are a linear combination of the
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L first components only. That is to say, there exists a #7 x #I matrix coding a change of variables:

P, 0
N _
Py (O Id#z—e)’ (3-68)
with PK, an invertible £ x £ matrix and Idyz_y the (#Z — ) x (#Z — £) identity matrix such that
VAR ()
Aq
PAP; ! = . : (3-69)
(0) Ano
( -1 , q1 \
Tioa 0) o
. e : (O)
o
— qe¢
A = R (3-70)
20—«
0
0) |
{—L
¥

with (qi)1<i<t € R being some fixed coefficients. zzlv’l has max(E[i1], 0) nonnegative eigenvalues and
L1 —max(E[i1], 0) strictly negative eigenvalues (i, being defined by (1-29)). For 2 <n < ngy, we know
/'121 has max(E[in] + 1,0) nonnegative eigenvalues and L, + 1 — max(E[in] + 1,0) strictly negative

eigenvalues.

Proof. (i) As b and b are solutions of (3-58), we compute (with the convention El(ji{?l =0and U IE’;J]:)l =0)
1 — . . - : - —vn 4

Uk = - [(% +i— (20— an)b§0’l)s) U™ — 20 —ap)b™ P F iy 0D

0,1 k k
~(2k —an) U PU"P U )}.

As 550’1) ={/(2¢ — a), we obtain
{— V_zyn —i
20—«
We then get (3-65) by noticing that pOV = 0 for i > { + 1 and because by definition y = yo. We get

1

(3-66) and (3-67) by noticing that 5" = 0 for i > 1.

P i- i —an)b™) =a

(i) A, for1 <n <ngis diagonalizable because it is upper triangular. Their eigenvalues are then the
values on the diagonal, and the last statement in (ii), about the stability and instability directions comes
from the very definition (1-29) of the real number i, for 1 < n < ng. It remains to prove that Ay is
diagonalizable. We will do it by calculating its characteristic polynomial.
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Computation of the characteristic polynomial for the top left corner matrix. We let A/E be the £ x £ matrix

—(2—a)cl+a2i;_la 1 \

: S (0)

Al = —(2i ‘—oz)ci azee;_’a 1 )
: (0) ol
\-@L-a)e; 0

We recall that as o > 2, we have £ > 2 so A% has at least 2 rows and 2 columns. We let
Pe(X) = det(Az — X 1d).

We compute this determinant by expanding with respect to the last row and iterating by doing that again
for the subdeterminant appearing in the process. Eventually we obtain an expression of the form

Pe= (=" @L-a)e; + (—X)[(—l)“l(zﬂ—z—a)ce—l * (Ma_a —X )

[(—1)‘(216—4—a)ce_2+( 2 —X)[---]H. (3-71)
2l —«

We define the polynomials (4;)1<j<¢ and (B;)1<j<¢ and (Ci)1<j<¢—1 as

Ai = (D4 220 —)epp

} o
B; :z(z—l)%_a—X, (3-72)
. 20 —
Cii= (DT (XU =20 —a)ep + ).
i
This way, the determinant P, given by (3-71) can be rewritten as
73(=A1+Bl(A2+Bz[A3+B3['-']]). (3-73)

We notice by a direct computation from (3-72) that
A1+ B142 = (.
Moreover, this identity propagates by induction and we claim that for 1 <j <{—2,
Ci+ B1B2Aj > = Bi12Ci1. (3-74)
Indeed, from (3-60) one has

20—«
i+1

Co—i = —0UCL—j—1,
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and from (3-72)

. 20—
BitsCiy1—Ci = (i + e = X | (=) [ X2 =20 —2—@)eq iy + ——cp
20—« i+1

. 20 —
_(—1)“1_’ (X(2£—2i —a)cp_i + ; ac1g_,-+1)

= (_I)Z—i (((i + 1)% — X) (X(ZZ —2i—2—a)cp_j_1— a(:g_i_l)

|+ 1 |+ 1
- X2l -2i —a)x s Co_i1 +0? Lt CZ—i—l)
o

20—« 24 —
. 41
=(_1)f—’ce_i_lx(a2’£+ (20—2i —2—a)+a—X(20—2i —2—a)
—a
20 —-2i—a (i +1)
5o o0
— () e XQl—2i —2—a)[ 2 —x
20—«
= Aj4+2B1B;.
From the above identity we can rewrite Py given by (3-73) as
Py = A1+ B142 + B1B2A3 + B1 Ba B3 (A4 + Ba(--+))
= C1+ B1B2A43 + B1B2B3(As + Ba(-++))
= B3(C2 + B1B2(A4 + Ba(--+))) = B3B4(C3 + B1B2(As + Bs(-+-)))

= B3+ By(Cy—1 + B1B2).
(3-75)
The last polynomial that appeared is, by (3-72),

Cort+BiBr=XC2—a)er + % x (=% _x) = (x+ 1) x =
(-1 o2 = BT 2U—a - 2U—a

and so we end up from (3-75) with the final identity for Py:

¢ io
Pez(x+1)i:]_[2(2£_a—x).

This means that A, is diagonalizable with eigenvalues (1, —2a/(2¢ —a), ..., £/(2{ — a)): there exists
an invertible £ x £ matrix P, such that P; Ay ﬁ[l = diag(—1,2/2¢ —a),...,L/(2¢ —a)). We denote

by P, the matrix
Py
P):= )
¢ ( IdL_g)
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Then, from (3-65), there exists £ real numbers (g;)1<i<n € R such that

—-2- a)cl+o¢2€e;_1a 1

Pyt = | T e !

: (0) ol
—(2L— ) 0
This implies that Ay can be diagonalized and that its eigenvalues are of simple multiplicity given by
(—1, 20/ 20 —a),...,al/20 —a),—a/2L —),...,—al — £/(2¢ — a)), and that the eigenvectors
associated to the eigenvalues —1, and 20/ (2¢ — ), ..., @l /(2{ — «) are linear combinations of the £ first

components only. This concludes the proof of the lemma. O

4. Main proposition and proof of Theorem 1.1

We recall that the approximate blow-up profile rZ(Q b1/ ;) was designed for a blow up on the whole
space R4, In this section, we state in the main proposition of this paper, Proposition 4.6, the existence of
solutions staying in a trapped regime (defined in Definition 4.4) close to the cut approximate blow-up
profile )(‘[Z(Q b1/ 1)- We then end the proof of Theorem 1.1 by proving that such a solution will blow up
as described in the theorem.

4A. The trapped regime and the main proposition.

4A1. Projection of the solution on the manifold of approximate blow-up profiles. The following reasoning
is made for a blow up on the whole space RZ. As in this case our blow-up solution should stay
close to the manifold of approximate blow-up profiles (tZ(Q b.A))b,z,2» WE want to decompose it as a
sum TZ(Q b.a 1+ €,) for some parameters b, z, A such that ¢ has “minimal” size. The tangent space of
(2(0p,2))b,2, at the point Q is Span(T;"F)), & 1)e7U{(0,1,0),(1,1,0),....(1,d,0)}- One could then think
of an orthogonal projection at the linear level, i.e., (Tl-(”’k), g) = 0. The profiles Tl-(”’k) are, however, not
decaying quickly enough at infinity so that this duality bracket would make sense in the functional space
where ¢ lies. For these grounds we will approximate such orthogonality conditions by smooth profiles
that are compactly supported.

Definition 4.1 (generators of orthogonality conditions). For a very large scale M > 1, for n <ng and
1 <k <k(n) we define

L, Ly
k j k j
@4 =3 cionm (HY G Ty =3 i (HOY G Ty 0 @)
i=0 i=0

(L and T being defined by (1-28) and (2-26)), where

. . & k
Yih i (—H) aa TE0). 1)

con,m =1 and c¢jppm=— 4-2)
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Lemma 4.2 (generation of orthogonality conditions). Forn <ng, 1 <k <k(n), 0<i <L,, j €N,
n’ € Nand 1 <k’ <k(n’), the following holds for ¢ > 0:

“+o0
. ,k /,k/
(—H) o5 1 )>=5(n,k,i),(nzk/,j)/0 am | TP 2ré 1
~ e M o e - (4-3)

Proof. The scalar product is zero if (n,k) # (n’,k’) because by construction CDI(G’k) (resp. Tl.(n/’k/))
lives on the spherical harmonic ¥ %) (resp. ¥ k")) We now suppose (1, k) = (n’, k') and compute
using (4-1):

Ly
. ,k ,k .
(—E) o 1) =3 ¢y (16" s, (—H ) ).
=0
If j > i forall [, then (H®)/+ T = 0 and (—H)/ ®%%) 7)) = 0. If j =i then only the first
term in the sum is not zero since (—H ™) T(") T(" k) and
L,
D ctam{To" aa. (~HO)HIT) = (167 qag o) ~ e 40
=0

from the asymptotic behavior (2-7) of TO("). If j <i then

Ly
Z cl,n,M(T()(n)XM, (_H(n))l-i-J Tzn>
=0 _j—

= cijmm (T 1. Tg™) + Z st T yna (—H™)YHIT™M) = ¢

from the definition (4-2) of the constant ¢;_; , . O

4A2. Geometrical decomposition First we describe here how we decompose a solution of (1-1) on the unit
ball B9 (1) onto the set (‘L’Z(Q b)) bilzl<t.0<A<gl of concentrated ground states, using the orthogonality
conditions provided by Lemma 4.2. This pr0V1des a decomposition for any domain containing B4 (1). Let
0 <k < 1 to be fixed later on. We study the set of functions close to (‘L’Z(Qb l))b lzl<d.0<a<ghs such
that the projection onto the first element in the generalized kernel dominates:!

u:3(A,%) € (0 ,8M)><Bd( ) such that

and || (z—zu); —Qll oo (s 3ary) < ((T-3u);— 0, HOSY V). (4-4)

K
u—g oo <
=0z LllLeose 1)) g

Lemma 4.3 (decomposition). There exist k, K > 0 such that for any solution u € C*([0, T), xB4 (1)) of
(1-1) satisfying (4-4) for all t € [0, T), there exists a unique choice of the parameters A : [0, T) — ((), ﬁ)

12Note that (t—zu)j is defined on f(Bd (1) — 2), which contains B4 (TM) as |Z| < 8 and 0 < |A| < M ; thus the second
estimate makes sense.
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0,1
2:00,T) — B4 (3) and b : [0, T) - RT such that bV > 0 and

~ k
u=(0p+v):2 onB). > B+ 10l oo (1 s 01)— o) = KK
(n,k,i)ez

withv = (t—zu)) — Q p satisfying the orthogonality conditions
(0, HOWRY =0 for0<n<ng, 1<k <k(n), 0<i<L,.
Moreover, A, b and z are C' functions.
Proof. It is a direct consequence of Lemma E.2 from the appendix. O

Decomposition and adapted norms for the remainder inside a bounded domain. Let u be a solution
of (NLH) in C1([0, T'), ©2) with Dirichlet boundary condition such that the restriction! of u to 8% (1)
satisfies the conditions of Lemma 4.3. Then from this lemma, for all # € [0, T') we can decompose u
according to

ui=yez(Qp 1) +w. (4-5)
cutting the approximate blow-up profile in the zone 1 < |x| <2, and w is a remainder term satisfying

wppe =0 as B4 (7) C  and ujpe = 0. To study w inside and outside the blow-up zone, we decompose
it according to

Wing 1= Y3W, Wext:=(1—x3)w, &:= (T—z(t)wint))l(t), (4-6)
where win; and wex; are the remainder cut in the zone 3 < |x| < 6, ¢ is the renormalized remainder at
the blow-up area, and is adapted to the renormalized flow. We notice that the support of weys does not
intersect the support of the approximate blow-up profile y7;(Q, 1 ), that the supports of Wiy and Wex¢

overlap, and that (wex)|g = 0. From Lemma 4.3 and its definition, & is compactly supported and satisfies
the orthogonality conditions (4-11). We measure ¢ through the following norms:

(i) High-order Sobolev norm adapted to the linearized flow. We define
Exs, 1= / |HSL g% (4-7)
R4

This norm controls the L? norms of all smaller-order derivatives with appropriate weight from
Lemma C.3 since ¢ satisfies the orthogonality conditions (4-11), and the standard H 2L Sobolev
norm

|0ke?
B 2C 3 [ i+ Cleln,
lul<2sp

(ii) Low-order slightly supercritical Sobolev norm. Let o be a slightly supercritical regularity:
0<o—sc < 1. (4-8)

13We recall that 2 contains B¢ ).



176 CHARLES COLLOT

We then define the following second norm for the remainder:
£ = llell o (4-9)

Existence of a solution staying in a trapped regime close to the approximate blow-up solution. From now
on we focus on solutions that are close to an approximate blow-up profile in the sense of the following
definition.

Definition 4.4 (solutions in the trapped regime). We say that a solution u of (1-1) in C1([0, T), Q) is
trapped on [0, T') if it satisfies all of the following. First, it satisfies the condition (4-4) and then can be
decomposed via Lemma 4.3 according to (4-5) and (4-6):

U= XTZ(Qb,%) +W, Win 1= Y3W, Wex:=(1—x3)w, e&:= (T—z(t)wint))l(t) (4-10)
with ¢ satisfying the orthogonality conditions

(e, HOWK) =0 for0<n<ng, 1 <k <k(n), 0<i <Ly 4-11)

To the scale A given by this decomposition, we associate the renormalized time s defined by (3-1) with
so > 0. The #Z-tuple of parameters b is represented as a perturbation of the solution b of the dynamical
system (3-58) given by (3-59):
(n.,k)
- U. )
b (s) = bR (5) + L ), (4-12)

SV*ZVn +i
Welet U := (Ui(n’k))(n,k’i)ez. To use the eigenvectors of the linearized dynamics, Lemma 3.5, we define
Vi=(PU); forl<ic<d, (4-13)

where Py is defined by (3-68). All these parameters must satisfy the following estimates, where 0 <7 < 1,
0< 8§n’k) < 1 for (n,k,i)eT with (n,k,i) ¢{1,...,£} x{0} x{1}; Ky and K, will be fixed later on.

Initial conditions. At time ¢t = 0 (or equivalently s = s9):

(i) Control of the unstable modes on the radial component:

[V:(0)| <so" for2<i<{. (4-14)
(i) Control of the unstable modes on the other spherical harmonics:
U™ 0)) <™ for (n,k,i)eT with 1 <nand0<i <iy. (4-15)
1 1
(ii1) Control of the stable modes:
1 1 8(0’1)
noy<—:, U0 <i— fort+i<i<L, (4-16)
50 50
. LK)
U0 0)] < “— for (n.k,i) €T with 1 <nandiy <i < Ln, (4-17)
S0
(n.k)

PR 0) < S for (n,k,i)eT with 1 <nandi=i (4-18)
i =10 ' - -
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(iv) Smallness of the remainder:
1

2L (2sp—se)
S0

lwl?,2s, < (4-19)

(v) Compatibility conditions at the border:1#

o 1= w(0) € HL(RQ),

1 := 3, w(0) = Aw(0) + w(0)? € HJ (RQ),

Wy := 7w (0) = A%w(0) + A(w(0)?) + pw(0)”~ (Aw(0) + w(0)?) € Hy(R),  (4-20)

Wy, -1 1= O3 w(0) € HL(RQ).
(vi) Initial scale and initial blow-up point:
.t
A0)=5,>"% and z(0)=0. (4-21)
Pointwise in time estimates. The following bounds hold on (0, T):

(i) Parameters on the first spherical harmonics:

Vi) <s™" for1<i<t, |UOD(s)<e®Vs™ fort+1<i<L. (4-22)
(ii) Parameters on the other spherical harmonics: for (n,k,i) € Z withn > 1,
(WP ) <1 if0<i<in, (4-23)
k e k k
U0 (5)) < S ifig<i<L, and U (5)] < ™0 if i = (4-24)
s
(iii) Control of the remainder:
K2 Kl
5SL (S) E S2L+2(1_80)+2(1_86)n3 ga(s) S S2(U—S0)ﬁ )
X . (4-25)
2
”wext”HZSL = 222sL—s¢) g2L+2(1=80)+2(1=83)n Iwexcllzro = K-
(iv) Estimates on the scale and the blow-up point:
A<2s7w and 7] < . (4-26)

Remark 4.5. For a trapped solution one has the above estimates on the parameters from (3-59), (4-12),
(4-13), (4-22), (4-23) and (4-24),

(n.k) C on_ ¢t 1 ~1-7 .
|b; |5_S%+r = ey O 2D

14We make an abuse of notations here. The identities given for the time derivatives of w are only true close to the border
of 2, but which is enough as the required conditions are trace-type conditions; see [Evans 2010].
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for C independent of the other constants. The bounds (4-25) on the remainders for the solution described

by Proposition 4.6, because of the coercivity estimate Lemma C.3 implies that
C(Ky, Kz, M)

AZSL—S(,SL-i—l—é’o-i-n(l—é’(’)) '

lwllgo@) = CK1. wllg2s. () < (4-28)

A trapped solution must first satisfy the condition (4-4) in order to apply the decomposition in Lemma E.1,
and then the variables of this decomposition must satisfy suitable bounds. However, these additional
bounds in turn provide a much stronger estimate than (4-4). Indeed, one has, from (4-10), (3-29), (3-7),
(4-27), (D-2),

) ~ 2
inf AP~ lu=Q; 1llzeosa (1))

(L2)e(0,557)x57 (}) %%

2
<A Tu=0Q; 1llpeea )

= ||Qb+8_Q||Loo(%(8d(0,1)—{z})) = “XBlab+8I|Loo(%(Bd(0’1)_{z}))

C
= x| oo @y HllelLoo@mey = —+— 5 <.
4§72

s

C
[(z—2)ur—0QllLoo e 3mry) = 106 | Loo (3 3ary) Tl Loo (82 (301)) = PR (4-29)

Using (4-10), (4-11), (3-29), (3-7), (4-27), (4-3) and (2-7) one gets
(t2)uz — Q. HOWV) = (0. HOY)
_ bgo,l)(To(o,l)’ )(MT(fO’l)) +O(72) ~ g _ Cs_chd—zy +0(s72)
for some ¢ > 0, which, combined with the above estimate gives

0,1
I(t—2)up — Qll pooqsa 3y < (=2 up — 0, HOYP)

for M large enough as d — 2y > 0. Therefore, a solution cannot exit the trapped regime because the
condition (4-4) fails: the estimates on the parameters and the remainder have to be violated first. We thus
forget about this condition in the following.

The key result of this paper is the existence of solutions that are trapped on their whole lifespan.

Proposition 4.6 (existence of fully trapped solutions). There exists a choice of universal constants for the

analysis'>

L=L{,d,p)>1, O0<n=nd,p,L)y<K1l, M=MUd,p,L)>1,
o=o(L.d,.p), Ki=Ki(d,p.L)>»1, Ky=Ky(d,p,L)>1,

0<e®V =V d)y<1 forl+1<i<L, 0<e=e(L,d)<1, (4-30)

0<e™® =L d)y <1 for (n,k,i)eT withl<n, in+1<i<Ly,

0<i=i L,d,pn) <1l and so=so(l,d,p,L,M, Ky, Kz, e i) >1

15The interdependence of the constants is written here so that the reader knows, for example, that sq is chosen after all the
other constants.
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such that the following fact holds close to )(Q B(s0).1/A(s0)" where b is given by (3-59) and A(sq) satisfies
(4-21). Given a perturbation along the stable directions, represented by w(sgy), decomposed in (4-5),
satisfying (4-19) and (4-11), and Vi(s0). (U (s0).... UL D (50)). (U (50)) ez, no1, ini
satisfying (4-16), (4-17) and ((iii)), there exists a correction along the unstable directions represented
by (Va(s0), ..., Vi(50)) and (U™ (50))wk.irez.1<n, i<i, Satisfying (4-14) and (4-15) such that the

solution u(t) of (1-1) with initial datum u(0) = ¥ Qp(s),1/A(s0) T W(S0) With

(n,k)

- U; ™" (s0)

b(so) = (bi(n’k) + IMH (4-31)
So ° (n.k,i)eT

is trapped until its maximal time of existence in the sense of Definition 4.4.

Proof. The proof is relegated to Section 5. O

4B. End of the proof of Theorem 1.1 using Proposition 4.6. In this subsection we end the proof of the
main theorem, Theorem 1.1, by proving that the solutions given by Proposition 4.6 lead to a finite-time
blow up with the properties described in Theorem 1.1. The proof of Theorem 1.1 is a direct consequence
of Proposition 4.6 and Lemmas 4.8, 4.9 and 4.10. Until the end of this subsection, # will denote a
solution that is trapped in the sense of Definition 4.4 on its maximal interval of existence. First, we
describe the time evolution equation for ¢. It then allows us to compute how the time evolution law for
the parameters A and z related to the decomposition (4-5) depends on the other parameters. The bounds
on the parameters and the remainder for a trapped solution then imply that A goes to zero with explicit
asymptotic in finite time, that z converges, and that the solution undergoes blow up by concentration with
a control on the asymptotic behavior for Sobolev norms.

4B1. Time evolution for the error. Let u be a trapped solution. From the decomposition (4-5) we compute
that the time evolution of the remainder is

| . ) P ~ k. k
we = =75 xe=(Mod(1) . + V1) + Aw +kX_:1 Ce (X205 1) w

+A(Tz Q1 +2Vy. Ve 0y + szQi(Xp_l —1) (4-32)

with the new modulation term being defined as

Zs

—_— A ~
Mod(¢) := x, Mod() — (—S + bi‘“))AQb - (A

- + b§1")).vQ”b. (4-33)

From (4-32) and (4-6), as the support of wey is outside B¢ (2) and as rz(é b,2) 1s cut in the zone
1 <|x| <2, the time evolution of wWex; is
0t Wext = AWexe + Ayzw 42V x3.Vw + (1 — y3)w?.

The excitation of the solitary wave 7,(&p,1,4) has support in the zone |x — z| < 2A By and from (4-26),
|z| + AB1 < 1, so it does not see the cut by y of the approximate blow-up profile. From this, (4-32) and
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(4-6), the time evolution of wyy, is therefore given by

1 —_— - - o~ o~
0¢ Wine + HZ,%wim =T (Mod(t)% + Wb,%) + L(Wint) + NL(win)) + L+NL+ R,  (4-34)

where H; 1/, NL(Wint), L(wint) are the linearized operator, the nonlinear term and the small linear term
resulting from the interaction between wiy and a noncut approximate blow-up profile 7 (Q, 1 ):

H, 1 ==A=p(w(Q)™ Hy,1:=~A=p(:(0, )" (4-35)
NL(Wint) := F(Tz(éb,%) + Wint) — F(Tz(éb,%)) + Hb’%(wint)v (4-36)

D 1
L(win) := H, ywin— Hy ;1 wim = 5572 (15, CARIE (4-37)

The last terms in (4-34) are the corrective terms induced by the cut of the approximate blow-up profile

and the cut of the error term:1©
L:=—Ap3w—2Vy3.Vw+ pr; Q27 (P~ = y3)w, (4-38)
A
NL := ZC"rZQ” o = Y pauk, (4-39)
k=2
R:= A){‘L’ZQ%+2VXVTZQ%+XTZQI:(XP_1_1)’ (4-40)
x

and one notices that their support is in the zone 1 < |x| < 6. Using the definition of the renormalized flow
(3-2) and the decomposition (4-5) we compute, using (4-32),
A - - ~ o~ —
ass—TsAs—ZA—s.Ve—i—He =—x(Ay+2)(Mod(s)+¥p)+NL(g)+ L(e) +A*[t_, (L+R+NL)];. (4-41)
with the purely nonlinear term and the small linear term in adapted renormalized variables being defined
as
NL(¢) := F(Qp +¢)— F(Qp) + Hp(e), L(¢):= He— Hpe, (4-42)

where Hp := —A — pQ b P~1 s the linearized operator near Q b One notices that the extra terms induced
by the cut, A2[r_, (L + R + NL)];, have support in the zone M <yl = /71 (by(4-26)).

4B2. Modulation equanons We now quantify how the evolution of one parameter b(" k) , A or z depends
on all the parameters (b( )(n k,i)ez and the remainder ¢.

Lemma 4.7 (modulation). Let all the constants of the analysis described in Proposition 4.6 be fixed
except sg. Then for so large enough, for any solution u that is trapped on [sg,s’) in the sense of
Definition 4.4 the following holds for so < s <s':

A z )
NS Ts+b§1’ )'+ S 1 @i—an)b Vb +p )|
(n,k,i)eZL,i#Ly,

)
_C(@L,M) C(L M)

e sy, (4-43)

16 Again, the excitation of the solitary wave (@p,1/2) is not present here as its support is in the zone |x| < 1; see (4-26).
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C(M,L
> B i—anpPh" ] < %JFC (M,L)y/&s,. (4-44)
(n,k,i)€T,i=L, S

Proof. We let

Zs

—+b§1")'+ S % 4 @i —anb®PVI 0 b (4-45)

As (0,1)
—+by 3 i+1
(n,k,i)eT

D(s) = 5

+

with the convention bl(j:i)l =0. Taking the scalar product of (4-41) with (— H )’ CDX;’k), using (4-3), gives!’

(Mod(s). (—H)' @§") = (~He. (~H) 0 ™) = (Jp. (= H) }7*)

As Zg
S Ae+ 28
+ < ) e+ 1
Now we look closely at each one of the terms of this identity.
The modulation term. From the expression (3-29) of Q b, the bound (3-11) on 95 / Bbl-(n’k), and the bounds
(4-27) on the parameters, one has

Ve +NL(e) + L(e), (—H)' @5";”">. (4-46)

~ 8S
Op=0+ypap=0+0G"" and w—nfk) =0(s~") on B40,2M).
i
From (3-10), (4-33) and (4-45), the modulation term can then be rewritten as
k k (n,k pa, N
_ (n,k) ; (0,1) (n,k) (n,k) k) J
MOd(S) = XB, Z [bl:ls, + (21 —Oln)bl bin _biil ]|:Tl " + Z W}
(n,k,i)eT J=i+1+8,=0 i
A ~ z . ~
- (TS + b§°’”)AQb - (TS +b" )).VQb

(n,k,i)eT ;5 D)
—~ (;S +b§°’1))AQ - (Z—s + bgl")).vg + 0( SS) )

A
where the O(|D(s)|/s) is valid in the zone |y| < 2M . From the orthogonality relations (4-3), we then get

<1\T&1(s),(—H)id>§\’}”‘)>+0(—'Ds(s)')

~C(xmAQ.AQ) (A 4+b6"D) for (n,k,i) = (0,1,0),
= —C'(xmV0.VO) (Z2+b{"P) for (n,i)=(1,0), I<k<d, (4-47)
G Ty 1) (07 + 21 —on)b V00— ) otherwise,

where C and C’ are two positive renormalization constants.

17We do not see the extra terms L, R and NL because their support is in the zone ﬁ <|y| (from (4-26)) which is very far

)

away from the support of @%’k , in the zone |y| <2M (so being chosen large enough so that this statement holds).
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The main linear term. The coercivity estimate (C-16) and the Holder inequality imply

[ el dy < C(M) /Eay.
|y|l<2M

Hence, from the orthogonality (4-11) for &, we obtain, for 0 <n <ng, 1 <k <k(n),

|(H8 HiQJ(n’k))‘ )0 for i < Ly, (4-48)
) M }(e, (_H)i+1q)§(},k))‘ = 0(\/&y,) fori=Ly.
The error term. Using the local bound (3-35) for ¥, and (4-27),
= i < (n,k C(L,M)
|<Wb,qu>§G ))| = I (4-49)

The extra terms. From (4-27), the coercivity estimate (C-16), the bound (4-25) on &5, and (4-45), one
obtains

< C(LS’ M)\/E-I- |D(s)|

SL+1—80+n(1—86) '

As Zs i - (n,k)
'<TA8+7.V8, H'®y;

Now, as QP 1 — Qg_l = O(s™!) on the set |y| <2M from (3-7) and (4-27), using the estimate (D-2)
on ||&||zeo, from the definition (4-42) of NL(e) and L(e) and the coercivity (C-16), one gets, for s¢ large
enough,

[(NL(e) + L(e), H' 09| < C(L, M)&as, + C(L, M)—ESZSL =C(L.M) ?SL :

Putting together the last two estimates yields

EC(L,Als),/SZSL + C(L,M)|D(S)| (4_50)

As Zs i g (k)
'<—A8+—.V8+NL(8)+L(8),H @, L 1—So+n(1—5))

A A

Final bound on |D(s)|. Summing the previous estimates we performed on each term of (4-46) in
(4-47)—(4-50) yields

C(L, M)

D= C(L M) Ve, + =75

We now come back to (4-46), combine again (4-47) with the above bound on |D|, (4-48), (4-49) and
(4-50), yielding the desired bounds (4-43) and (4-44) of the lemma. O

4B3. Finite-time blow up. We now reintegrate in time the time evolution of A and z we found in
Lemma 4.7 to obtain their behavior and show the blow up.

Lemma 4.8 (concentration and asymptotic of the blow-up point). Let u be a solution that is trapped on
its maximal interval of existence. Then it blows up in finite time T > 0 with s(t) — +ocoast — T and we
have the following:

(1) Concentration speed. We have A T CuO)(T — t)g, with C(u(0)) > 0.
t—
(2) Behavior of the blow-up point. There exists zo such that lim;_,7 z(t) = z¢ and for all times s > s,

2(s)] = O(sy ™). (4-51)
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Proof. From the Cauchy theory in L°°, (3-1) and (4-26), if T € (0, +00] denotes the maximal time
of existence of u, one necessarily has limg_,7 s(f) = 4+00. From the estimate (4-27) on bgo’l), the
modulation (4-43) and (4-25), one has

As

(6] —1—7
2=y o).
n . + O(s )

We reintegrate using (4-21) (we recall that ¢y = £/(2¢ — ) from (3-59)):

—1
A= w, (4-52)

§20—a
which is valid as long as the solution u is trapped. In addition, if the solution is trapped on its maximal
interval of existence, then the function represented by O(-) admits a limit as s — 4o00. In turn, from

% = %2 we obtain

ozs(fZL_“ t 5 , -2
s=so(1-5 [a+ougar)
Hence there exists 7 > 0 with
s ~ CuO)T - )~ (4-53)

Injecting this identity in (4-52) then gives A ~ C(u(0))(T — ;)ﬁ ast — T. Now we turn to the asymptotic
behavior of the point of concentration z. From (4-43), using bgl’i) = O(s_aTH) from (4-23) for 1 <i <d,
one gets

21 = O™ =*5) = (s 718 (7)), (4-54)

As o > 0, this implies the convergence and the estimate of z claimed in the lemma. a

4B4. Behavior of Sobolev norms near blow-up time. From Lemma 4.8, the L.°° bound on the error (D-2)
and the bounds on the parameters (4-27), any solution that is trapped on its maximal interval of existence
indeed blows up at the time 7' given by Lemma 4.8 because lim; .7 ||u#|| Lo = 4+00. The behavior of the
Sobolev norms is the following.

Lemma 4.9 (asymptotic behavior for subcritical norms). Let u be a solution that is trapped for all times
s > so and T be its finite maximal lifespan.'® Then

(1) Behavior of subcritical norms.

limsup [[u|| gm @) < +oo  for 0 <m <.
t—>T

(i1) Behavior of the critical norm.
[l e () = C(d. p)VeTog(T —[(1 +o(1)).

187 is finite by Lemma 4.8.
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(iii) Boundedness of the perturbation in slightly supercritical norms.

limsup [[u — x7z(Q 1)|[am(@) < +oo  forsc <m <o. (4-55)

t—>T

Proof. The trapped solution u can be written as

u=yt:(0p 1) +w=y1z(Q1) + (G 1) + .

We first look at the second term 7,(p,1/,), being the excitation of the ground state. It has compact
support in the zone |x| <2B1A. From (1-38) and (4-52), one gets 2B1A < 1 as so > 1, so that 7 (@p,1 /1)
has compact support inside B¢ (1). This implies that

=, Dl @ < Cle=@, )l oy,

the latter norm being easier to compute. Indeed by renormalizing one has

”TZ(&b,%)”[-']a(Rd) = mlldbllga(w).

L+2
~ k k
= X W01 Y )

(n,k,i)ez i=2

from (3-29) and (3-7), the bounds (4-27) on the parameters bl.(n ’k), together with the asymptotic at infinity
of the profiles Tl-("’k) and S; described in Lemma 2.10 and Proposition 3.3 imply that ||&p | 7, < C/s.
Hence

~ C
=G, Pl < oz — 0

1— L(o—sc)
KY 20—«

ast —>T aso—s, < 1.

Now, following the second paragraph of Remark 4.5, we get that ||w| o < CK; is uniformly bounded
until the blow-up time. Combined with what was just said about the boundedness of 7, (@p,1/1), we get
that (iii) holds for all 0 <m < 0. This, together with the asymptotic of the ground state (2-1) then gives
(1) and (ii). o

4B5. The blow-up set. We recall that x € Q is a blow-up point of u if there exists (¢, x,) — (T, x) such
that |u(t,, xn)| — +o0. For trapped solutions one has the following result.

Lemma 4.10 (description of the blow-up set). Let u be a solution that is trapped for all times s > so and
T be its finite maximal lifespan.'® Then zq given by Lemma 4.8 is a blow-up point of u, and it is the only
one.

Proof. From the L°° bound (4-29) and the fact that lim,_, 7 s(¢) = +00 from Lemma 4.8, u(s, z(s)) ~
2

A(s) P~TQ(0) as s - +o00. From Lemma 4.8, this implies that u(¢,z(¢)) — 400 as t — T and that

zg = lim;_7 z(¢) is indeed a blow-up point.

197 is finite by Lemma 4.8.
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Now take another point x € Q, x # zg. From (4-55), the asymptotic of Q (Lemma 2.1), and Lemma 4.8,
there exists R > 0 such that

sup ([u(@)ll go s (x.ry)y < +00-
0<t<T

This local boundedness, by Sobolev embedding and Holder, implies that

@] <t 2d - 2d J p—1
su u / o0, = = .
oorer e B4 R)) 1= 05220 d+2-2s. “p+1

The above inequality, after applying Lemma 4.11 several times and using Sobolev embedding, implies
that there exists r > 0 such that

sup [[u@)ll oo (e (x.ry) < +00.
0<t<T

Therefore, x is not a blow-up point of u. O
In the proof of the previous lemma, we used the following result.

Lemma 4.11 (parabolic bootstrap). Let R > 0 and x € Q2 such that B(x, R) C Q. Let qo > ’I;—_T_id . There

exists k(qo) > 0 such that for any q > qo, if u € C([O, T), WI’OO(Q)) is a solution of (1-1) satisfying

sup [[u()llw1.a(pd x,R)) < +00 (4-56)
0<t<T
then
sup [u (@)l 1.q0+0 (g (x,&)) < +00- (4-57)
o<t<T 2

Proof. The proof relies on a classical use of estimates for the heat kernel. Without loss of generality we
assume go < d. If u solves (1-1) and satisfies (4-56) then the localisation v = y g /,u solves

v = Av—2V.X§.Vu—AX§u+X§|u|p_1u

and using the Duhamel formula can then be written as

t
v(t) = K; % v(0) —i—/ K;_g* [—2V.X§.Vu —Aygu+ X§|u|p_1u] ds,
0

2
where the heat kernel is K;(x) = (471[)_% ¢~ . One then has the formula

t

Vv(t):VK,*v(0)+/ VKI_S*[—ZV.X%Vu—Axgu] ds
0

t
+/ Kt_s*[V)(§|u|p_1u+X§Vu|u|p_l]ds. (4-58)
0
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We estimate the last term using the Holder, Sobolev and Young inequalities:2°

t t
H/ Kt_s*[)(§Vu|u|p_1]ds 5/ HK,_S*[XgVu|M|P_1]”Lq(1+K) ds
0 0

La(+k)

t
< | K- 1| Vulul P! i d
~ /0 || t S||L(1+q(15_k)_(w_%)) 1 ” u|u| ”L(w"!‘%) 1 S

t
S| IKe=sll 1[I Vullza [lul?~ ] o1 ds
/0 2 (o= Git) | |1
t

< LVl var as < [ —
~J m” ullLe || u”qu NI o (Z—S)W’

where

_(d—=qo)(p—1) _(d—q0)(p—1) kd
w=—"—-"——" and 0O(k,q)=
dqo 240 2q(1 +«)
(note 6 > 0 as go < d). For k > 0 and 5—I_id <gq <d, if k is fixed, 0 is strictly decreasing with respect
to g, and if ¢ is fixed, @ is strictly increasing with respect to k. As 6(0, go) < 1 since g¢ > Z—_T_}d, this
implies that there exists x(gg) > 0 such that for all g0 < g <d, and 0 < k < «k(qop), we have 0(k,q) < 1.

The above inequality then implies that in that range,

< +00.

t
f Ki_s*[xrVulu|P~1ds
0 2 La(1+)

We claim that this term was the “worst” to be estimated in (4-58) and that using the very same techniques,
one can estimate similarly all the other terms on the right-hand side in the same range 0 < x < k(qo)
leading to

sup ”vv(t)”L(1+K)q < 400,
0<t<T

which implies that supy, <7 [|v(?) || 1.a+04 < +00 by Sobolev embedding and the Holder inequality.
This concludes the proof, as v = u on B(x, %) O

5. Proof of Proposition 4.6

This section is devoted to the proof of this latter proposition, which will then end the proof of the main
theorem. For all trapped solutions u in the sense of Definition 4.4, we let s* = s*(u(0)) be the exit time
from the trapped regime:

s* = sup{s > 5o such that (4-22), (4-23), (4-24), (4-25) and (4-26) hold on s, s)}. (5-1)

If s < 400, after s*, one of the bounds (4-22), (4-23), (4-24), (4-25) or (4-26) must then be violated. The
result of the first part of this section is a refinement of this exit condition. In Lemma 5.1 and Propositions 5.3,
5.5, 5.6 and 5.8 we quantify accurately the time evolution of the parameters and the remainder in the
trapped regime. Combined with the modulation equations of Lemma 4.7, this allows us to show that in

2045 >qo > g—:d, p> %, and d > 11 all the computations below are rigorous.
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the trapped regime, all the components of the solution along the stable directions of perturbation are under
control; see Lemma 5.9. Moreover, from (4-52), (4-26) is always fulfilled as long as the other bounds hold.
Asa consequence, the exit time of the trapped regime is in fact characterized by the following condition:
just after s*, one of the bounds in (4-22) and (4-23) regarding the unstable parameters is violated.

We prove Proposition 4.6 by contradiction. Suppose that glven a stable perturbation of y Q B(s0).1/A(s0)
as described in Proposition 4.6, the solution starting from )(Q b(so),1/A(so) T W(s0) leaves the trapped
regime in finite time for all initial corrections (V2 (so), ..., Ve(so)) and (Ul( k)(SO))(n,k,z)eI,lgn, i<in
along the unstable directions. This means from the previous paragraph that the trajectory of

k
(Va(s), ..., Ve(), U)o ieiyera<n, i<iy)

{21 Bﬁg L) x Bfo(l) in finite time. But at the leading order, the dynamics of this trajectory

leaves the se
are linear repulsive. In Lemma 5.10 we show how the fact that all the trajectories leave this ball is a
contradiction to Brouwer’s fixed point theorem.

5A. Improved modulation for the last parameters b(” ©) In Lemma 4. 7, the modulation estimates
(4-43) for the first parameters are better than the ones for the last parameters b(n oK) , (4-44). When looking
at the proof of Lemma 4.7, we see that this is a consequence of the fact that the pI‘OJeCtIOIl of the linearized
dynamics onto the profile generating the orthogonality conditions, (He, H' CID(n k)) cancels only for
i < L,. However, as we explained in the introduction of Lemma 4.2, H* <I>(” k) has to be thought as an
approximation of T( k) , and in that case the previous term would cancel also for i = L. It is therefore
natural to look for a better modulation estimate for b( %) In the next lemma we find a better bound by,
roughly speaking, integrating by parts in time the prOJectlon of € onto T(n k) in the self-similar zone.

Lemma 5.1 (improved modulation equation for bg:k)). Suppose all the constants in Proposition 4.6 are
fixed except so. Then for sg large enough, for any solution that is trapped on [sgy,s’), for 0 < n < ny,
1 <k < k(n), the following holds for s € [sg,s’):

k
)b(o l)b(n k) i[(HLn(g—ZL-I—Z Sl) XBOT(” )):H

k
ds <XBOT0(n’ )’T()n’k>

b 4 2Ly —

C(L. M) /Sy, L ca.Mm

7 - (52
s8n L5 +8,—80+1

Remark 5.2. From (5-19), we see that the denominator is not zero. From (5-19) and (5-20), one has the
following bound for the new quantity that appeared when comparing this new modulation estimate to the
former one (4-44):

(HL”(S ZL+2 Si). XBOT(n,k))

(n.k) .k < C(L,M)s~E=5+8070n 4 (L, M, Kp)s~EH0=8ntn(1=8),
(XB[) Ton s T(;l’ )

(5-3)

2lHere K is the number of directions of instabilities on the spherical harmonics of degree greater than 0, that is, K =
d(E[i1] = 8iyen) + X a<n<ng KM)(E[in] + 1= 8;, en), and BE, (r) is the ball of radius r of R? for the usual | - |oo norm.
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This is a better bound compared to the required bound (4-24) on b](f;’k) in the trapped regime, that is,

|b§ln,k)| < Cs—y_zy” —Lp _ CS_L_S" +50'
n

Proof of Lemma 5.1. First, from the fact that H To("’k) = 0, the asymptotic (2-7) of To("’k) and (4-27), we
obtain

K K C(L)
supp[H ™" (x8, Ty )] C {Bo <y <2Bo} and |H™" (g, T" ) = e (5-4)
§2 Thn
Step 1: computation of a first identity. We will now prove the identity
d K K 0.1), (n.k k k
I ((HL”8 B OT(n ))) (b(n )+(2L O‘n)bi s )bg;: ))(To(n, )7XBOT0(n’ ))
d L+2
L, .k
+g( Z(SJ,H (xBo Ty )))) (5-5)
i=2

+ O B 4 0 ).

gLH1+%5—80—8,—2my
From the evolution equation (4-41) and the fact that H is self-adjoint we obtain

d

k .k
—((H e x50 Ty")) = e, HE" sz Ty)

—
+ ( —Mod(s) — 1y + S*Ae + Zk—s.vg — He +NL(e) + L(e), H- (1, T(f””‘))>. (5-6)

The terms created by the cut of the solitary wave A2t_,[(L + R+ NI) 2] do not appear because they
have their support in the zone 55 < |y|, which is far away from the zone |y| < 2By as By << in the
trapped regime by (4-52). We now look at all the terms in the above equation.

The d5(xB,) term. From the modulation equation (4-43) and the bound (4-25), one has |b(0 1)| <(Cs 2.
Hence, using the asymptotic (2-7) of To(n’k) and the fact that H Tén k) — 0 and (4-27), we get that
HEn (9 XBo TO(" ’k)) has support in By < |y| < 2By and satisfies the bound

C(L)

L, (n,k)
|H (asXBoTO )| < Sy7"+Ln+1'

Using the coercivity estimate (C-16), we obtain
’k n n
(e, HE7 35 080Ty )| < C(L) /gy s> 0. (5-7)

The error term. For |y| < 2By, one has lﬂb = Y, by (3-34). As ¥ is a finite sum of homogeneous profiles
of degree (i, —y —2— g’) for some i € N (which was proved in Step 4 of the proof of Proposition 3.1),
the bounds on the parameters (4-27) imply that |y (y)| < C (L)s_y+§+g for By <|y| <2By. Combined
with (5-4), this yields

_ C(L
|(Fp, HE (8, )| < € (1) BTV 2En—r=8"22 < (@) (5-8)
LA+ —80—8,—2m,
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The remainder’s contribution. Using (5-4), the bounds |%| < Cs~ ! and |5 =<C s (which are
consequences of the modulation estimate (4-43) and (4-25)) and the coercivity estimate Lemma C.3,
one gets

< C(L) /&, s Hon, (5-9)

A
‘<TSA8 + Zk—s.Vs —He, HL» ()(BOTO("’k))>

The small linear term can be written as L(g) = (pQP~! — péf _1); hence from the form of Qb, see
(3-29), one has [(pQP~ 1 —p Q5_1)| < C(L)s_l_%. Its contribution is then of smaller order using (5-4):

(L), HE (o T | < C(L) /Eag, 52005, (5-10)

The nonlinear term can be written as NL(g) = Zl?:z C If gk Qi K From the coercivity estimate
Lemma C.3, we get

2
2s _M_L
/ g, W S C(L, M)Eas, s™E7 2700,
Bo<ly|<2Bo V]

Using the bootstrap bounds (4-25) and (4-27), one computes

_ 1—-8()
/ 25— —L Sp+2m,— (152 + 120 Sn+2m
EZSLS L 2 HSKZS” n ( T > )EBOn n

for s large enough (because y > 2). For 2 < k < p, we know |k 2 Qll; _k| < C is bounded by (D-2), so
using the two previous equations and (5-4), one gets

[(NL(e), HE (3, T))| < /gy 2+ (5-11)

for so large enough. Combining (5-9), (5-10) and (5-11), we have the following upper bound for the

remainder’s contribution:

A
<TSA8 + i—s.ve — He+NL(e) + L(e), HE (x5, To("’k))>‘ < C(L, M) /&5, 52 H0n (5.12)

The modulation term. For (n’,k’,i) € I, one has

7k n 7k —_ n 9k 7k —_
(TR H I (g, Ty = (HE TRy g, TRy = 0

if (n’,k’',i) # (n,k,Ly). Indeed, if (n’,k") # (n,k) then the two functions are located on different
spherical harmonics and their scalar product is 0. If i # L, theni < L, and HI» Tl-("’k) = 0. This
implies the identity from (4-33) since B; > Bo:
T k
(Mod(s), HE (x5, Tg"™))

k , k k k
= (b0 + @Ln—am)b Vb NI, g, T )

,8

L+2

(') | ©.1), @ k[ 95 L, (k)

+E E (bifv +(2i —ap)by b, )<8b(”/’k/)’H (xBo Ty )>
j=2 (' ,k’,i)€T i

As

~ z . ~
—(7+b§1’°))<AQb,HL"(XBOTé”’k’)>—<(f+b§1’)).VQb,HL"(XBOTé””‘))>. (5-13)
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For2 <j <L+2and (n',k',i) € Z, as S; is homogeneous of degree (i, —y — g’), using (4-27) and
(5-4), we have

k[0S k C(L,M)
2i — , b(O,l)b.(ﬂ k') J ,HL” T(n’ ) < ’ )
(2 —an)by b, 3bi(n/,k’) (8o To™ ) )1 = GL—80—8,+2m,+1+%

(5-14)

Using the modulation bound (4-43), the asymptotics (2-1) and (2-7) of Q and AQ, (4-27) and (5-4), we find

A ~
‘(—S + b?"”) (A Dy, HE (15, Ty — <(Z—

- - +b§1")).VQb,HL"(XBOT()("’]‘))>‘

C(L, M)
T g2L+33%—2m, 5y

(5-15)
is very small as L > 1. Moreover for 2 < j < L + 2, one has

k)| 9S; J d J k
> b >< e B (e T3 ’)>=d—(<sj,HLn(xB0Té” D)=, HE (35 28, Ty ).
(' k' i)eT db;™ s

From similar arguments we used to derive (5-14), one has the similar bound for the last term, yielding
/,k/ aS i " k
Z bl(’fv )< (n/jk/) ’ HL ( (n ))>
X ' ab;"
(n/,k/,l)EI 1

d
_ d—((SijLn (XBoTo(n’k)))) + O(S—L+80+8n+2mn—1—*) (5-16)
K

Coming back to the decomposition (5-13), and applying (5-14) and (5-16) gives
(Mod(s), HE" (13, Tg" ™)) = (b%) +@La—an)b{" Vb O VT ™, 15, T8

L+2

+d_( Z (Sj,HLn (XBOTO(n’k))))+O(S_L+80+8n+2mn_1_g2). (5-17)
s\ 15

In the decomposition (5-6), we examined each term in (5-7), (5-8), (5-12) and (5-17), yielding the
identity (5-5) we claimed in this first step.
Step 2: end of the proof. From (5-5) one obtains

d (((HL"(e—ZL“ i), xBo T ")>))

T k k
ds (BT T3

e N
k k L+14+5-—80—8n—2mp
_b(n )+(2Ln ozn)b(o Db(n )+ (n,k) s(n k) —
(xBo Ty " Ty )
L+2 ) d 1
HL"( Z S,) Bo Ty > ( ) (5-18)
k k
< ds (XB()TO(n )’TO(n ))

The size of the denominator is, from the asymptotic (2-7) of To(n’k) and (4-27),

(8o Ty "0 Tg") ~ es?mnt2in (5-19)
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for some constant ¢ > 0. As the denominator just depends on b%o’l), using the bound |b§?§1)| <Cs?
and the asymptotics (2-7) of TO(" ’k), we obtain

ds \ (xp, T30, 18") )|

Also, using again the coercivity estimate Lemma C.3, (5-4) and the fact that for 2 < j < L + 2, we know

C(L.M)
$2mu+28,+1°

S; is homogeneous of degree (j, —y — g’), we obtain

L+2 X
e )

i=2

< C(L, M)( /5ZSLs2mn+8n + S_L_%+80+8n+2mn). (5_20)

Hence, plugging the three previous identities in (5-18) gives the identity (5-3) claimed in the lemma. [

5B. Lyapunov monotonicity for low regularity norms of the remainder. The key estimate concerning
the remainder w is the bound on the high regularity adapted Sobolev norm at the blow-up area: £y, .
However, the nonlinearity can transfer energy from low to high frequencies, and consequently to control
&>5; we need to control the low frequencies. This is the purpose of Propositions 5.3 and 5.5, where we
find an upper bound for the time evolution of || win|| Ho(ra)y and |Wext || 7o ()-

Proposition 5.3 (Lyapunov monotonicity for the low Sobolev norm of the remainder in the blow-up zone).
Suppose all the constants involved in Proposition 4.6 are fixed except so and 1. Then for sg large enough
and 1 small enough, for any solution u that is trapped on [sq, s’) the following holds for 0 <t < t(s'):

d Ey Vs k—1
E{ AZ(O‘ sc)} (o— v¢)£+1 S4L |: + Z( o— ?p) :|’ (5'21)

A{Z(O’ Sc)+2S 27—

where the norm Eq is defined in (4-9).

Remark 5.4. Equation (5-21) should be interpreted as follows. The term

Vs

A2(0—s0)+2 ¢ GG +1

is from (4-25) and (4-52) of order ; ‘;i (as 7 ds =172). The 1 / siL then represents a gain: it gives that

the right-hand side of (5-21) is of order (1/ s1+4L)d—“;, which when reintegrated in time is convergent

and arbitrarily small for s¢ large enough. The third term shows that one needs to have /&, <s~ 2 to

control the nonlinear terms, which holds because of the bootstrap bound (4-25).

Proof of Proposition 5.3. To show this result, we compute the left-hand side of (5-21) and we bound it
above it using all the bounds that hold in the trapped regime. The time evolution wjy given by (4-34) yields

d Es d
E{m} dl{/w Wine| }

1 —_— - ~ o~ o~
= / VO Win. V? (—Hz’iwim—ﬁ)(fz (MOd(f)i+Wbi)+NL(wint)+L(wint)+L+NL+R)- (5-22)
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We now give an upper bound for each term in (5-22). As all the terms involve functions that are compactly
supported in €2 since wjy is, all integrations by parts are legitimate and all computations and integrations

are performed in R? (e.g., L? denotes L2(RY)).
Step 1: inside the blow-up zone (all terms except the three last ones in (5-22)).

The linear term. By (4-35) using dissipation, we first compute

/Vowint-vg(_HZ,)ltwint) = / VUwint-va(Awint'i‘p(""Z(Q%))p_lwint)

< / V"wim.V“(p(rz(Q%))p_lwim),

which becomes after an integration by parts and using the Cauchy—Schwarz inequality

/Vawint-v(7 (P(TZ(Q%))p_lwint) = ||va+2wim||L2 ” VU_Z(P(TZ(Q%))p_Iwim) HL2‘

Using interpolation, the coercivity estimate (C-16) and the bounds of the trapped regime (4-25) on &, one

has for the first term (performing a change of variables to go back to renormalized variables)

1
Jora=s |

C
< —_
- /\0+2—s

v0+2

IV 2 windl 2 = ellz2

2 2
Ve || e
L2 H2SL

C(L.M 1-
e

C(L.M, K, K>)

<

A0+2— scs(orzebca)l—i— (L+1 —8o+n(1-8})— (02[5%)6

_ C(L,M, Ky, K>)
/\04—2 se oGP 14 o (Itge)

257 —0

As QP71 = O((1 + |y|)~2) from (2-2), using the Hardy inequality (B-7) we get for the second term

after a change of variables

[V72(p(2(0 )P 0) | 12 = o V92070 s
o _ C
< o IVl = 7= Vo

Combining the four above identities we obtain

C(L,M, Ky, K>)\VEs

VULU‘ t.V”(—H 1 Wi t) <
/ " E T p20—so+2 GRQ I SO (E )

(5-23)
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The modulation term. To treat the error induced by the cut separately, we decompose as follows, going
back to renormalized variables using Cauchy—Schwarz:

‘/Vaw.va(;—zXTz(Moa(t)i))'
/ Vow. Ve (%(1 + (- 1))rz(Moll(t)i))‘

1 —
EkZ(cr—sc)+2 €0|:

For the first term in the above equation, using (4-33) and the modulation estimates (4-43) and (4-44), we get

L+2

(n.k) . 0,1), (0,k) 5 (n,k) (n.k) 9S;

= ) BT+ @i—anb b = b ‘VU(XBI (Ti 2 ab(n,k)))
(n,k,i)eT j=2 i

A ~ z . ~
T AoV Ay + | T by )‘MV"“(QI,)an
ol

A
Under the trapped regime bound (4-25), one has /&2, + s7L=3 < g=L=1+80—n(1=80) Moreover, from
the asymptotics of Q, AQ, Tl.("’k) and §; ((2-1), (2-7), Lemma 2.10 and (3-8)), and the bounds on the
parameters (4-27), one has

=

‘V"Moa(s)lle + ‘ Ve (A—lz(x — l)fz(m(t))ll)) ” ] (5-24)
L2

Vo Mod(s)|| .2

L2

+

< C(L,M)(y/&25, + s—L—3)[||V°<AQ“b)||Lz + VI Op) 2
L+2

k
+ Y Vs T e+ Y

(n,k,i)eT j=2

3S;
.0
ob™

IVO(AOp)ll2 <C. VI (Op)ll2 <C,

L+2
Vo (;(B1 95 )
8bi(n,k)

k
Y Ve T+
(n.k,i)eT j=2
<C(L)< C(L)SL+SUP05n5n0 8n—80—5— (O_ZSC) +C(L)n+C(L)sL+Sup05"S"0 8,,—80—%—7(0_2"") +C(L)r]—%‘

L2

All these bounds then imply that for the modulation term that is located at the blow-up zone in (5-24),
we have
a_ (0=sc)
~ C(L.M)JE gLAsupo<n<ng Sn—8o—5 -7 +C(L)n
s Ve VMol < B ,
A2(0—=sc)+2 A2(0—sp)+2 ¢L+1-80+(1-8()n
C(L,M)/&s

< .
- /\2(0'—35)-}-2 s1+(%_5‘1p05n§n0 8,,)4-%—6‘(1,)77

We now turn to the second term in (5-24). The blow-up point z is arbitrarily close to 0 by (4-51)
and from the expression of the modulation term (4-33), all the terms except rz([% + bgo’l)]AQ +
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[bgl,') + Z)TS]'VQ)l/A have support in the zone {|x —z| < 2B1A} C B(0, %) because B1A < 1. This
means that from the modulation estimates (4-43)

1 . 1 A
HVU(A—Z()(—I)IZ(Mod(z)i)) = HVU(A—Z()(—D‘EZ([A +b° 1)}AQ+[Z)(1 Dyl ]VQ) ))

Cllg+o™|+3+5)]_c
— 22 — \2gL+1°

L2

We insert the two previous equations into the expression (5-24), yielding
‘ / vawim.V”(ixrz(Moa(t)l)) < O Mo .
A2 x 12(0—s0)+2 1+ (§=supozp=ng 8n)+ 73 =C(L)n
The error term. As |z| < 1 by (4-51) and B1A < 1 by (4-27) and (4-52), from the expression of
the error term (3-36), all the terms except 1 (bgo’l)AQ + bgl") .V0)1/, have support in the zone
{lx —z| <2B1A} C B(O l). Therefore, making the following decomposition and coming back to

)
renormalized variables, using the estimates (3-32) and (4-43), one computes

1 -
/ Vo Win. V? (A—ZXTZ(%Q)

IVoellz ( IV P2 -
= 12(0—s0)+2 + ” VG((X - l)fz(‘/fb%)) ”Lz

(5-25)

- Aa—s¢-+2
C(L)Vé&s Vel 12 (0,1) (1)

T 200-s)+2 g1+ 5 +FE—C(L)n | A0—Sc+2 [VOO=D (w77 AQ b1V Q) 1) 12
C(L)Vés L C [VoellL2 (lb(0,1)|Aa+a—sc+|b(1,')|kl+o—sc)

T )\ 2(0—sc)+2 SH—%-FU_ZSC —C(L)n 22(0=sc)+2 V71 1
C(L)VE&s

= 1200—s) 21+ 5+ C—C(L)n (5-26)

The nonlinear term. First, coming back to renormalized variables, as NL(g) = Zk - C P Qp —k gk , and
performing an integration by parts we write

VU+2—(k—1)(a—sc)8H “Vo 2+ (k— 1)(a—sc)(QP —k k)HLz

p
‘/V(’winbvo(NL(wint)) S C Z ” Az(a_sc)'i'z
k=2
(5-27)
We fix k, 2 <k < p, and focus on the k-th term in the sum. The first term is estimated using interpolation,

the coercivity estimate (C-16) and the bound (4-25):

—2=tk—D(o=sc) 2—(k—=1)(c—s¢)
25y —0 ”VZSL{;‘” 5 257, —0
L

|vot2=k=Dl=se)g) 5 < IV, ,

1_2—(k—1)(0—Sc) 2—(k—1)(o—=sc)

S C(L,M) /go- 2s7,—0 \/SZSL 257, —0
C(L,M.K,,K>)

- S(OZ ic;x)K_H k— 1)(0 sc)+ +0(\0 scl+Inl

(5-28)
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For the second term in (5-27), as Op = O((1 + |y])~2) by (3-29) and (4-27), we first use the Hardy
inequality (B-7):

2(p=k)

SCHvO’—Z-F(k—I)(O’—S(y)'F p—1 (Sk)”L2 (5_29)

” Vc—2+(k—1)(o—sc)(Q'Iz;—kgk) HL2

We write

0—2+(k—1)(0—sc)+% =o(n,k)+ 8. k),

where o (n, k) := E[G 24+ (k—1)(o—sc) + 2(” k)] e Nand 0 <§(n, k) < 1. Developing the entire
part of the derivative yields

” yO—2+ k=1 (0—sc)+ 2L ()] 2 < Z (5-30)

(wi)1<i <k €NK9

i lwil=o(n.k)

L2

k
Vb’(cr,k)( BEZ 8)
i=1

Fix (1i)1<i<k € Nk satisfying Z{;l |ui| = o(n, k) in the above sum. We define the following family
of Lebesgue exponents (that are well defined since o < i):

2
é::%_#, pil{:: %_0—|/Li|d—5((7,k) for 1 <i <k.
One has p; > 2 and a direct computation shows that
1 11
p_j i#j E 2

We now recall the commutator estimate

IV3 uv) e < CIVoulpei [v]|lLr2 + CIVI 0] 0 |lu]

Lp] | LP/2
for
1 1 1 1 1

- T

pr p2 Py Py 4
provided 1 <gq, p1, p} <+ocand 1 < p,, p} < +o0. This estimate, combined with the Holder inequality
allows us to compute by iteration:

k
i@ ( IEZ e)

e

L2

8(o,k
< Cl|a"1 @R ¢ -1+ ClMeLm

L \=i=27P;

k
vi (@) ( IEZ 8)

=2
k
, 1_[ M ¢
2
i=3 L
k
vb’(a,k)( BEZ 8)

=3

k
1_[ otig
i=2

—1
LG-)

k1)t
i=3 Pj

k
8(o.k i 8(o.k
< Clla*+0@Re| o [T I8 sllprs + Cl13* el o 34200,
=2

+ C 9" el o1 1972¢]| Lo —1

Tz
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k
8o,k i 8(o,k :
< Clla"+0@Rg| L [T N0 sllprs +C 13427 o [T 186l Lm
i=2 i#2

k
vS(o,k)( EZ 8)
i=3

+ Cll0" e|| Lo [|0"2¢] Lr2 (L)
L\2 pP1 P2

k k
S48 ,k .
<CY 94+ o TT 18"l

i=1 =1, j#i
From Sobolev embedding, one has on the other hand that
|91 H5@Oe|| 4 8% e Lo < Vel L2 = C VEs.
Therefore (the strategy was designed to obtain this),

k
H Y8 ( EZ 8)

i=1

k
S gg .
L2

Plugging this estimate in (5-29) using (5-30) gives

H Vo—2+(k—1)(0—56)(ég_k8k) HL2 <C \/Zk'

Injecting this bound and the bound (5-28) in the decomposition (5-27) yields

C(L.M.Ky,K2)/Ey k-1
'/Vﬂwint.VU(NL(wim))‘f P2 s G OB 2 e ) - (3D

The small linear term. One has L(s) = —p(QP~! — 0P ). The potential here admits the asymptotic
0P~ — QP=1 <|y|~2~* at infinity, which is better than the asymptotic of the potential appearing in the
linear term Q?~! ~ |y|~2 we used previously to estimate it. Hence using exactly the same techniques
one can prove the same estimate

/ \Ad Wint-

End of Step 1. We come back to the first identity we derived, (5-22), and insert the bounds we found for
each term in (5-23), (5-25), (5-26), (5-31) and (5-32) to obtain

C(L,M. Ky, Kr)\/E
T A200-s0)+2 ¢GRS o (=)

(5-32)

1 — ~
’/ Ve wint-va (_Hzgiwint_ﬁxfz (MOd(Z)% +Wb)1\)+NL(wint)+L(wint)) ‘

B Ve [C(L,M, K1,K>) C(L,M,K>)
A200—s0)+2 g G+ | ST HO(ET) T g+ (g _SUPO§n<n08n)_C(L)77
C(L) C(L,M,K1,K») & k-1
sTGERE A -CW S ro(TEe) ( = ) ] 639
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Step 2: the last three terms outside the blow-up zone in (5-22). By a change of variables, we see that
the extra error term (4-40) is bounded:

IV R p2(gey < C.
Then, the extra linear term in (5-22) is estimated directly via interpolation using the bound (4-28):

|V (=AxB©,3w—2V B3 -Yw+ ptz Q’j_l(xf;(_ofl) — XB(0,3)W) HLZ(Rd)

1 1

T 257 —0 257 —0
< wllgo+1 = ||w||H o wll o,
< C(K\ K 1 257, —0
= C(K1. K2) A251—0 gL+1=80+1(1-8))
2
1 25 —0 C(K1, K

SC(Kth)( /) T= i : (72—)s F

AZSL—GSL+1—80+VI(1—80) 12S1+i+0(+)

because 1/A25.79 sLH1=80+n(1-80) 5 1 in the trapped regime. For the last nonlinear in (5-22), one has,
using (D-4) and (4-28),

”(p—l)(%+0—sc—0)/(2u—0)

INLl|go < Cllwllge|w]?7) H25L

< C(Ky)lw

d+cfv_

1
stL—sCSL-i-l—SO-H)(l—S())

1
24145 +0(T=H1)

2
35 =o
SC(KLKz)( ) - <C(K1,K>)
A

The three previous estimates imply that for the terms created by the cut in (5-22), we have the estimate
s¢)

(we recall that A975¢ /s = + O(sy ") from (4-52))

\/50 C(L,M’ Kl, KZ)
A20—s)+25 ST+ T HO(HETE)

(5-34)

'/ VO win. VO (L + E+1\Ti)‘

Step 3: conclusion. We now come back to the first identity we derived, (5-22), and insert the bounds
(5-33) and (5-34), yielding

E A2(0—s¢)

< \/E |:C(L7MaK17K2) C(L’M’K2)
22(0— SC)+2S((;£.S((‘X)€+1 SﬁJrO(w) S_%-"(%_SUPOSnsnO 82)—C(L)n
C(L) C(L,M,K1,Kz) & k=1
s (U—Ac)lx_l_o[ C(L)T’] Sﬁ_i_o(nq%zfsc) ( o— s( ) :|

As the constants never depend on sg or on 7, as L >> 1 is an arbitrary large integer, 0 < 0 — s, < 1,

5 —SUPg<p<n o 8n > 0, we see that for 5o sufficiently large and 7 sufficiently small, the terms on the

right-hand side of the previous equation can be as small as we want, and (5-21) is obtained. O
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Proposition 5.5 (Lyapunov monotonicity for the low Sobolev norm of the remainder outside the blow-up
area). Suppose all the constants involved in Proposition 4.6 are fixed except sg and n. Then for sg
large enough and n small enough, for any solution u that is trapped on [sg, s") the following holds for
t €]0,2(s")):

C(K1, K>3)
2 1< o. 5-35
It [HUJeXt”H ] = s O(n—Hz_sc))LZ |wexell ( )

Proof. From the evolution equation of wey, given in Section 4B1, we deduce

d
ar “wextH)zL[rr(Q) < Cllwexll o () H Awext + Ayzw +2Vy3.Vuw + (1 - x3)w? ”HU(Q)- (5-36)
For the linear terms, using interpolation and the bounds (4-25) and (4-28) one finds

||Awext + A){3w + 2VX3.Vw||HO'(Q)

< Cllwextll go+2(q) + Clwllgo+1(q)

2 2 1
< Cllwenilgoy " llw ext||;;§;"m,+0||w||mi§) "l 5 e
<C KK 1 ZSL—O' 1 257, —0
= C(K1. K2) 285L—Sc gL+1=80+1(1-80) + A25L—sc gL+1-80+n(1—58()
<C(Ki, K ! 2SLZ_J<CK K !
- ( L 2) AZSL—SCSL+1—50+T](1—56) - ( 1 2) 2s1+%+0(W+GL_M)

because 1/ A2sL=se gL+1=80+n(1=80) 5, 1 in the trapped regime from (4-52). For the nonlinear term,
using (D-4), interpolation and then the bootstrap bound (4-28),

1A= x3)w?llzo < Cllw?| o @) < C”w”HU(Q)”w“p

4 5 to—sc (Q)
(p—1 )% 23L o C(Kl’ KZ)
SC(Kl)”w”HZYL(Q) C(Kl)”w”HZvL(Q) = 1+L+0("+U_SC)/\2‘
2L L
Injecting the two above estimates in (5-36) yields the desired identity (5-35). O

5C. Lyapunov monotonicity for high regularity norms of the remainder. We derive Lyapunov-type
monotonicity formulas for the high regularity norms of the remainder inside and outside the blow-up
zone, x5, and || Wex|| gr2s, , in Propositions 5.6 and 5.8. In our general strategy, we have to find a way to
say that w is of smaller order compared to the excitation y7;(&p,1/) and does not affect the blow-up
dynamics induced by the latter. This is why we study the quantity &g, : it controls the usual Sobolev
norm H 2L and any local norm of lower-order derivative, which is useful for estimates, and is it adapted
to the linear dynamics as it undergoes dissipation. Finally, for this norm one sees that the error ‘ﬁb is of
smaller order compared to the main dynamics of )(rz(Q bt ) (this is the n(1 —§;) gain in (3-33)).

Proposition 5.6 (Lyapunov monotonicity for the high regularity adapted Sobolev norm of the remainder
inside the blow-up area). Suppose all the constants of Proposition 4.6 are fixed, except so and 1. Then
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there exists a constant § > 0 such that for any constant N > 1, for so large enough and n small enough,
for any solution u that is trapped on [sg, s), the following holds for 0 <t < t(s’):

d( &y 1 1
E{ 22(2s—L—s0) +0w,m) 22Cs1—s0) gL+ 1=80+n(1-8)) 523L+SL+1—80+77(1—8(3)
1 [ cL.M C(L.M) /€5, L CL.M)

<
= 22@se—se)+2g | 2L+2—280+2(1-8) ' (L+1-80+n(1—8}) N26

SZSL

1
e i(£1+O(L))k—l C(L,M,K;,K>) C(L,M.K1,K3)\/Es,
o ol U sEHO(ETe) (L1804 (1-80)+ 57 +0(T=F+)

where O p(f) denotes a function depending on time such that |Op p(f)(t)| < C(L,M) f for a
constant C(L, M) > 0, and where E; and &5, are defined in (4-9) and (4-7).

j| , (5-37)

Remark 5.7. Equation (5-37) has to be understood the following way. The O(-) in the time derivative
is a corrective term coming from the refinement of the last modulation equations; see (4-44) and (5-2).
It is of smaller order for our purpose so one can “forget” it. On the right-hand side of (5-37), the first
two terms come from the error 1, made in the approximate dynamics. The third one results from the
competition of the dissipative linear dynamics and the lower-order linear terms that are of smaller order
(the motion of the potential in the operator H; j,, involved in &5, , and the difference between the
potentials 7, ( Q b1/2)° ~land 7,(0Q; /)P ~1). The penultimate represents the effect of the main nonlinear
term, and shows that one needs &, smaller than s~ to control the energy transfer from low to high
frequencies. The last one results from the cut of w at the border of the blow-up zone.

Proof of Proposition 5.6. From (4-41) one has the identity

d SZSL _ d S 2
Z(AZ(ZSL_SC)) - E(/ |HZ’%w11’1t|

1 P
= —2/ H;,L% wintH;’L;_lwint + / H;LL wintH;Ll (ﬁXTZ (_MOd(t)i))

) )
1

sL o, SL
+2 HZ,)l\wmt|:HZ,)ll|:)L2

3 d

Xlz (_wbi) + NL(wint) + L(wint) + _(HSLl)wint
X dt Z.x

+2 / H'™' winH, %(Z +NL + R). (5-38)
Iy 2

The proof is organized as follows. For the terms appearing in this identity: for some (those on the second
line), we find direct upper bounds (Step 1), then we integrate by parts in time some modulation terms
that are problematic to treat the second term on the right-hand side (Step 2), and eventually we prove
that the terms created by the cut of the solitary wave (the last line) are harmless and use a dissipation
property at the linear level (produced by the first term on the right-hand side) to improve the result (Step 3).
Throughout the proof, the estimates are performed on R?, as wiy has compact support inside €2, and we
omit it in the notations.
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Step 1: brute force upper bounds. We claim that the nonlinear term, the error term, the small linear term
and the term involving the time derivative of the linearized operator in (5-38) can be directly bounded
above, yielding

1 . d
SL . _ . SL .
” Hz,% |:NL(U)mt) P Xtz (Y 1) + L(wmt)} +— (st%)wmt

L2

: E (Ve TN O MKy Ky)
fm[muz( )
k=2

N T

1
C(L) |H5Lg|? \2
SL+1_80+7I(1_80)/ + C(L, M)( 1 + |y|28_ (5-39)

for some constant § > 0. We now analyse these four terms separately.

The error term. We decompose between the main terms and the terms created by the cut. The cut induced
by ¥ := x(Ay +z) only sees the terms bgo’l)AQ + bgl").V O because all the other terms in the expression
(3-36) of ¥, have support inside B4 (2B;) and because |z| < 1 by (4-51) and By < % by (4-52). For the
main term we use the estimate (3-33), and for the second the bound on the parameters (4-27) and the
asymptotics (2-7) and (2-1) of AQ and 00,

1 G 1 1 i
Sr SI sL. B
‘ HZ,% (ﬁ){fz‘ﬁb,;) L2 = CHHZ:i(A_ZTZ%’i) L2 +CHHZJ (ﬁ(l X)Tzwb,i) .
| HSE |2 1 1) L) 5
< i +12(ZSL_SC)+4/\HsL[(l_X)(bl AQ +5) v 0|
C(L) C)\2(@=-1) C
= 2 —set2 gL+2—8orn(1=5) s e
C(L
= @ (5-40)

= )2sL—sc+2gL+2=80+n(1-87)

since o > 1; hence
AZ(a—l) 1

+
s

<1,

since 1/A252=se+2gL+2-80+n1(1=8y) 5, | in the trapped regime from (4-52).

The nonlinear term. We begin by coming back to renormalized variables:

5p—k

_IHE N2 _ 2”: IH*=(0y " ")l

- A@sL—so+2 — h A @2sL—sc)+2
=2

(5-41)

”HZS’L% (NL(wint))||L2

because NL(g) = Z/f:z C]f Qf “kek We fix k with 2 < k < p and study the corresponding term
in the above sum. One has H = —A — pQ?~!, and Q is a smooth profile satisfying the estimate
2
O = O((1+y|)” »—T1), which propagates to its derivatives from (2-1). Similarly, from (4-27) and (3-29),
~ 2
one has Qp = O((1 + |y|)” »—1) and it propagates to the derivatives. The Leibniz rule for derivation
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then yields
Apr—k |8”(ek)|2
IJHE QP 2, < ey Y e
neNd L N I
0=<|u|=2st
k 5
=Cw) 1l e (54
(Mi)1<i<k€de 1 + |y| =l tasL— Zi:l lisil
Y lwil<2s,
We fix u; € i

Nk with > |mil1 <2sp and focus on the corresponding term in the above equation. Without
loss of generality we order by increasing length: || <
Case 1: |ur|+ 2(1’ k)

< | |. We now distinguish between two cases
+2s1 — 21—1 |ii| < 2sp. As one has

(r—
ih + 278 oy Zluz|1>o
P i=1
because the |u; ] are increasing and ) |u;|1 < 2sr, using (D-1)
g2 Slul—luli =220 25) —o—F Iuj 1+l + 2220
/ 4(p=k) =CM)&s e & B
1+ |y| p—1 +4SL 2Zz—l |Ml|1

SL

As the coefficients are in increasing order and L is arbitrarily very large, for 1 < j < k we have
|wil + % < 2sy7,. We then recall the L*° estimate (D-3)

2sp—luili—

10" ¢ellLoe < VE  *ET°

Il +7—U
The two previous estimates imply that

2-win=$ o1 )\/_ T 0().

k : —
Miiloe? G [T el
4(p— )+4SL 22 |:U' |1 4(p7k)+4sL_2Z/'< |M'|1 & Loo
L+ |y[ 7= = L4yl 7=1 = =

2(k—1)sy —(k— 1) ) 2[) 1 (k— 1)7_k0+23L+2p 1
<g 287 —0 +O(L2)5 287 —0 +0(L2)
= ¢o 2

SL
gk_1+_2+(§:1411(¢(;_sc>+0(ﬁ) 1+2—(k—1)(0—Sc)
— to

£ 25y —0 +0(ﬁ)
2s7,

1
e PO INST LM Ky k)
EgZSL —o—sc
S

2

—. (5-43)
G+ E+O(IEr=setLly
Case 2: |ur|+ 2(p k) + 251, — 21—1 |pi| > 2sg,. This means 2(1’ k)

1—1 |/,Ll| > 0. Hence, there
are two subcases: the subcase |pu;| =0for 1 <i <k —1 and the subcase |r—1| = 1 (because the u;
are ordered by increasing size |u;|). If ;| = 0 for 1 <i <k — 1, then, using the weighted L°° estimate
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(D-2), the coercivity estimate (C-16) and the bound (4-25), we obtain

k . —
/ [T 104 ef? _ / i
1_|_|y|4(,f7 1)+4sL 22, 1 il 1+|y|4(,f’ 1)+4sL —2| k]
€ 2(k—2
< ” e
L+ Iyl

1
_ 5;+0(L) k=1 (L, M, Ky, K2)Es,
s (0—s¢)

) g+ Eo(rEempEt)’

If |g—1| = 1, then, using the weighted L°° estimate (D-2) for Ve, the coercivity estimate (C-16) and
the bound (4-25), we obtain

k . _
/ [Ti= [0"ie)? :/ |gHe—1g|2|e|2(k=2)
Ly ot =2 X bl L [y| ot Tese =2l _p
a/“l'k—lg 2(k—2
< o lel 7€y,
L+ |y| 7= —10L
1+0(4)

- (80 - )"‘1 C(L, M, Ky, K2)&s,
s—(0—=sc) SH_%_,_O(W)
In both subcases, we have
k . 1+0(4) gk
[ [Tizy [0"e]? - (Ea (L))" P C(L M Ky K2)Ey, (5-44)
|4 |y P s 2 Xl \ s7O075) GLHEro(rtesetL=ly

Now we come back to (5-41), which we reformulated in (5-42) where we estimated the terms appearing in
the sum in (5-43) and (5-44), obtaining the following bound for the nonlinear term’s contribution in (5-38):

” H;Ll (NL(winy)) ”L2

S (\/S—H-O( ))k L' C(L, M, K1, K) (5-45)

= pemy: — —-
A @2sL—s )+2 c S1+%+0(n+<r s£+L )

The small linear term and the term involving the time derivative of the linearized operator. We claim that
there exists a constant § := §(d, L, p) > 0 such that

s 2 %
C(L,M) (/ |H5Lg] ) . (5.46)

d
S . SL .
HHzai(L(wlm)Hdz(Hz,i)w“" =i\ T 2

L2
We now prove this estimate. The small linear term is in renormalized variables by (4-36) and (4-37):

2

J 1t o = e [ (@77 =6 e
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For v € N, one has the following asymptotic behavior for the potential that appeared, from the bounds
on the parameters (4-27) and the expression of Q » (3-29):

1 C(n) 1 Cw
s1+ |y|a—C(L)n+|u| 514+ |y|8+lul

-1_ Ap-1
907~ = 0| =
for 1 small enough, because o > 2, and for some constant § that can be chosen small enough so that

0<s«kl1l, withd< sup §, and § < %d - %J/n0+1 —SL. (5-47)

0<n<ngo

(This technical condition is useful to apply a coercivity estimate for the next equation; all the terms
appearing are indeed strictly positive by (1-25).) We recall that H = —A — pQP~!, where Q is a smooth
potential satisfying

C(w)
|8MQ|§TW-
L |y[7=r T
Using the Leibniz rule, this implies
[erer - gg ey’
C(L M1 g|gM2 C(L H5Lg|?
JCw g uellpe ) e
52 1+|y|4sL+28—2m1|—2|M2\ 52 1+|y|28

lwil<2sp,i=1,2

where we used for the last line the weighted coercivity estimate (C-16), which we could apply because
6 satisfies the technical condition (5-47). We now turn to the term involving the time derivative of the
linearized operator in (5-38). Going back to renormalized variables, it can be written as

d SL 2_ pZ(p_l)Z < i—1 p—ZZS AS p—2 Sp—i g
/‘EHZ,iwim — AZ(ZSL—SC)+4;/(H (Q TVQ-FTQ AQ H L o .

For u € N4, one has the following asymptotic behavior for the two potentials that appeared (from the
asymptotic (2-1) and (2-7) of Q and AQ):

C(n)

_ _ C(w)
Q)|Sm for 1 <i <d, and 104(QP2AQ)] <

(P2, _—
|0 (Q Vi =1+ |y[2te

Therefore, as H = —A — pQP~!, where Q is a smooth potential satisfying

C(w)

040 < ——F——,
1+|y|%+|ﬂu|l
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using the Leibniz rule and the two above identities,

2 2
d C(L)( As Z %) |941 | |012¢|
SL o0y SL . A A
'/ Hz,%wmtdt (Hz,% Wint| =< A’Z(ZSL_SC)J'—“ Zd / 1+|y|4SL+2—2|M1|—2|M2|
i €N
[ 4] 152&,1—1 2
C(L) |H5Le|?
= 22@2sL—sc)+4 2 Z / 1+|y|28 (5-49)

|Mi|1<2SL,l—12

for § < «, 1 being deﬁned by (5- 47), where we used the weighted coercivity estimate (C-16) and the
fact that |)i—s| ~ s 1and ‘ ‘ ~s"
proved, (5-48) and (5-49), to obtain the estimate (5-46) we claimed.

End of the proof of Step 1. We now gather the brute force upper bounds we have found for the terms we
had to treat in (5-40), (5-45) and (5-46), yielding the bound (5-39) we claimed in this first step.

Step 2: integration by parts in time to treat the modulation term. We now focus on the modulation term in
(5-38) which requires a careful treatment. Indeed, the brute force upper bounds on the modulation (4-43)
are not sufficient and we need to make an integration by parts in time to treat the problematic term bl(j,l?
We do this in two steps. First we define a radiation term. Next we use it to prove a modified energy estimate.

Definition of the radiation. We recall that ap = Z(n,k,i)EI bl-(n’k) Tl-(n’k) + ZL+2 S;, where T(n k)4
defined by (2-26) and S; is homogeneous of degree (i, —y — g’) in the sense of Definition 2.14; see (3- 8).
We want to split o, in two parts to distinguish the problematic terms involving the parameters bg;’k). For

i =2,...,L+2, as S; is homogeneous of degree (i, —y — g’), it is a finite sum
(n.k)
S bl withn! = [T ") (5-50)
Jeg() (n,k,i)eT

where 7 (i) is a finite subset of N*Z and for all J € J(i), |J|3 =i and f is admissible of degree
(2|J ]2 —y — &’) in the sense of Definition 2.11. We then define the following partition of 7 (i):

JiG) = {J € 7G). I =0 forall 0<n <no, 1 <k <k(n)}.
Jo(i):={J € 7(0). || =2 and A(n.k, Lp) € T, I > 1},
J3(i) := T O\[T1() U F20)],

Yo bl fr Sii= ) b,

JeT (i) JeTgs(i)

(5-51)

and the following radiation term:

L+2 L+2
= HL (XBI[ S a4 Z s D + 3 H(x5,8) - xp H:Si.  (5-52)
0< =2
1<kn<<krz;)z) l
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From (5-51), for all J € J3(i) there exists n with 0 < n < ng such that J]E":’k) >1land |J|>3. As
dp’ > 0, this implies

VJ e J3(i), |J|la>L+2—40. (5-53)
Using this fact, (2-7), the fact that H*L T(" k) = 0since s;, > L, forall 0 <n <ny, (5-51) and (4-27),
the radiation satisfies

C(L,M) C(L,M)

I&llz2 = (LA1-80+n(1=8))" I1HEl2 = (L+2-80+n(2—8))" (3-54)
C(L,M) C(L,M)

< < -
IVEllL2 = gL+3=80+n(3-8;)" IAgllL> = gL+1=80+n(1=8) " (5-55)

We eventually introduce the remainders

L+2
._ (n.,k) . (1), (0.1) _ )y (1.0 dS;
Ry = HSL()(B1 E (bi:; +(21—o¢n)bin b; bl'_z_l (Tln + E b(" k)))
(n,k,i)eT,i#Ly

A - , ~
- (TS + bio’l))H“AQb - (i—s + byt )).HSLVQb

(k) 1 (0,1) [ (n k) 5~ 98]
n, ) n, J
+ HSL (XBI Z (2Lp —an)by " by (TL,, T Z p k) ))

(nskaLn)GI .]=2 a L
L+2 s s
(n.k) ; (0.1) s dS; s 0S)
+ ) QLa—an)b b} ( > H (18, W) — g H" 20
(nak:Lﬂ)EI ]=2 Ln Ln
(nk) i, 0.0y (N 03
e ) 0,1 J
Ry = Z (b mK) 4 2L, a”)bL'; bl )( Z XBlHSL ab(n,k))’
(n5k7Ln)€I ]=2 Ln
k 0
Ry:= 30 bt
(n.k.i)€Z,i#Ln b
so that they produce, by (5-52) and (4-33), the identity
HS: (Mod(s)) = 05€ + Ry + R2 + Rs. (5-56)
The remainder R; enjoys the following bounds by (4-43), (2-22), (3-8), (5-51), (5-53) and (4-27):
C(L,M) C(L,M)&,
IRz = T s a—spm 2 (5-57)
From the definition (5-51) of S; and the construction (3-25) of S}, one has
L+2
YoHS == > bOVOAT — L, —a T = 3 b ) VAT

(n,k,Ln)€T (n,k,Ln,)€T

+p(p—1)QP—2( Z b(';k)T(nk))( Z bi(n’,k’)Ti(n’,k’))'

(n,k,Ly)eT (n' k' i)ez
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As HSL T(" k) — 0 since sg, > L, for all 0 <n <ny, using the commutator identity (2-24), the asymptotic
(2-22) of T(” ©) (4-27) and (2-2) (as & > 2), one has

L+2 4 2
35, C(L)
1 4428 gL+ j - ’
a2 >ot) =5
j=2 0bp,

where § is defined by (5-47), from which we deduce, using (4-44),
C(L,M) . C(L, M) /&,
S .

GL+a

|+ yD*HP HRy | < (5-58)

Finally for the last remainder, from (5-52), (4-43), (4-27), (4-25), (2-22) and (5-51), for s¢ large enough

one has the estimate
C(L,M)
GL+2—80+n(1-5))

IR3]lz> = (5-59)

Modified energy estimate. We now prove the modified energy estimate (compared to (5-38))

d . 1
i [zt a7
1 |: C(L M) i C(L,M)\/EZSL +C(L M)\/E( |HSL8|2)

/\Z(ZSL—SL)-FZS (2L+2-280+2(1—8)) ' gL+1-80+n(1—5—0)) 1+|y[28

0(4)\k—1

Ve tolL C(L.M.K{.K>

+&25, § ( . ( ) _Z/H;LlwintHZSL1+lwint
X

% s%+0(7l+i—sc)

k=2 §

A
+2 / HZSL% wimHZsL% (L+R+NL). (5-60)

From the time evolution (5-56), (4-32) of § and w and because the support of 7 (£;,,) is disjoint from
the one of L, R, and NL, one gets the following expression for the left-hand side of (5-60):

d s,
[

2 2
+1 +1
:_2/H;,L)1LwintHZS,L)1L wint_m/HZS,L){wimTZ(Rz,i)_)LZ_SL/TZ(S}\)HZS’L)]L Wint

w2 [ |t ey )][ (L) =557 G DN )+ L)

d S 1 As AS zs
+E(HZ,%)wim_/\2+—2sl_Tz ((R1+R3+TAE+2SLTS_TVS)}L):|

2 S
i / v (€T (R, 1)+2 / 'y winH Y (LANLAR). (5-61)

We now analyse all the terms in this identity, except the first one and the last one, which we will study
in the next step. Using the estimate (5-58) on the remainder R, going back in renormalized variables
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and using the coercivity (C-16), one gets for the second term in (5-61)

H e
C [ s IR,

<C(L,M),/5ZSL (( |5t e|? )%+ 1 )

= 22@sL—sc)+2g 1+|y|28 sL+3

2 s
s | M (Ra )] <

Going back to renormalized variables, integrating by parts and using the estimate (5-54) on H ¢ gives
for the third term in (5-61)

C(L,M) Vs,

A2(2sL—sc)+2 SL+2—80+71 2-6)°

+1
[ e i <

‘AZSL

To bound the fourth and the fifth terms in (5-61) from above, we go back to renormalized variables and
use the bound (5-39) on the error, the nonlinear term, the small linear term and the term involving the
time derivative of the linearized operator we derived in Step 1, together with the bounds (5-54) and (5-55)
on &, A€, V& and the fact that

A

= <Cs™ ' and 'i—s sz_l_aT_l

in the trapped regime, and the bound (5-57) and (5-59) on the remainders Ry and R3, yielding

‘ / [H Wine+ Al tz(51 )H H’" (NL(wmt) zz(¢b1+(x 1)Mod(?) 1 )—I—L(wmt))

1 As z 2
+E(stfi)w—/,\2+—2urz((R1+R3+7AE+2SLTSE—7S.V§)I)] MSLH/IZ(;; )ez(R; 1)
A

1 |: C(L.M) C(L,M) /&, Lo M)\/T( |HSL8|2)

<
T A2@sL—sc) 25| (2L+2-280+2(1-8;) L4180+ (1-6—-0") 1+|x|28

p 1+0(+) k-1
+52sLZ(\/g ) C(L’M’KI’KZ):|‘

R

k=2

We finish the proof of the bound (5-60) by inserting into the identity (5-61) the three previous bounds
we proved on the second, third, fourth and fifth terms.

Step 3: use of dissipation. We find an upper bound for the last terms in (5-60) and improve the energy
estimate using the coercivity of the quantity — [ H sttlgHsLg,

The dissipation estimate. We recall that H = —A — pQP~1, the potential —p QP~! being the Hardy
potential

po1_ (=22 45(p)

pQ
4]y|?
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for some constant §(p) > 0 by (2-5). Hence, using the standard Hardy inequality one gets for the linear term
/ H’ %wintHz,%HZSL% Wint

— S S
- )Lz(zs L sL)—i-Z/H teHH™e

1 _
:—AZ(ZS—L—SC)-FZ (—/'VHSL8|2+/pQP 1|HSL8|2)

1 d-22-18(p)  8(p) . N
= A2@2s—L—sc)+2 (|: (d_2)22 +2(d_2)2:|/|VH 5|2+/PQP 1|H 8|2)

_72_1 SL o2
Az(zs—L—sc)—kz 4 |y|2 2(d _2)2
+ (d —2)*>—$(p) / IH“‘LSIZ)
y[2
5(p) |Hel? §(p) 2
_8/\2(2s—L—sc)+2 |y|2 - 2(d _2)2}2(2s—L—s0)+2 f |VHSL8| : (5-62)

Bounds for the terms created by the cut. We study the last terms in (5-60). From its definition (4-40), and
as A+ |z| <« 1 by (4-52) and (4-51), the remainder R is bounded by a constant independent of the others:

|H5 Rllz2 < C. (5-63)

For the nonlinear term, for any very small « > 0, by (D-4), (4-39) and (4-28),

1H NL|,-<C Z [wF | s,

k=2
p
k-1
<Cllwlgas. Y lwllahzic
k=2
V4 d/2+Kk—0o d/2+Kk—0o
(k—1)(1—452+E (k—1) (452t~
<Clwllgzs. Y lwllgo T wll s, T
k=2
1 1+(p-)4eHce
<
_C(KI’KZ)(AZSL—SC SL+1—50+'7(1—56))
1 1+(p 1)2/(1) ly) oo_sc-i-lc
=C(K1, K
C(K1, 2)(A2s1‘ se gL+ 180+ 1(1-5, ))
1 1+2vL o
<(C(Ki, K
_C( 1, 2) )LZSL_SCSL+1_80+77(1_86))

_ C(K1.K>) (5-64)
2281 —sc+2 gL+2=80+n(1=8))+ 5% +0(T=4+1)
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because 1/ AZSL=Se gL+1=8o+n(1-8;) 5, | by (4-52), if k has been chosen small enough. For the extra
linear term in (5-60), performing an integration by parts, using Young’s inequality for any & > 0, (4-25)
and (4-28) give

‘/H;LIU)intH;LIZ‘ = ‘/H;LlwimH;Ll [—Ax3w—2V 3. Vu+pr 05 ()7 —p3)w]
Iy Iy Y i) A

C
<CIH" windlp2 |wl s, +CellVH wiml|iz+; [ windl1 725,
!A ’)\,
C(K1,K>.¢)
12(2s2.—sc) SL+1—80+7](1—5(’))

C C(Ky, Ko,
© /|VHSL8|2+ (K1 K3.€) (5-65)

<
— \2@2s—L—sc)+2 22@sp—se)+2gL+2—80+n(1-6))+ 5255

= CSHVH;L% wint“iz"'

because in the trapped regime A2s ~ s by (4-52).
Conclusion. We insert into the modified energy estimate (5-60) the bounds (5-62), (5-63), (5-64) and
(5-65), yielding

d — 1 2
E Z,%wim—i_AZ_SLTZ(g%)

SL |2 %
1 [ C(L, M) C(L,M)/E, +C(L’M)@( |H e|)

<
= A2@se—so)+2g | (2L+2-280+2(1-5)) ' gL+1-80+n(1-5-0") 1+|y|28

D k—1 2
VE C(L,M, K, K 1 HSL é
523L§ :( o ) ( ’ 1 2)_S ép)/| 8| § (p) /lVHSL€|2
S

_o—sc S%+0(n+oL—3c) [v]? _2(d—2)2

C(Kviz’M’ L) V 52SL i| (5—66)

GLA1=80+n(1=8))+ % +0(T=£+1)

k=2

+C8S/ |VHSLg|? 4

For any N > 1, using Young’s inequality and splitting the weighted integrals in the zone |y| < N2 and
|y| > N? gives for & small enough and sq large enough,

HSLg|? 2 sé(p)—sCe H5L
C(L.M) ’_EzsL( | | ) B (1!?)8 /I

1+]y|? |y
SL |2 SL o|2
S C(LvM)SQ,SL +C(L,M)N28/ |H 8| - Sg(p) |H 8| S C(LsM)gzsL
N2 =2 L+ [y?5 16 BE N?28

Finally, from the bound (5-54) on the size of £, one has
d s 1 2
E{ / (Hzfiwﬂm G (gi)) %
d Easy d 2 1 5
=E{m +to szSL HZ’L%WTz(E%)‘f‘H_SL(Tz(%))

d( &y d 1 1
—E{,\z(zs—L—sc) 0 Cwm 32251 —s5¢) gL+ 1-80+1(1-5;) V€2SL+SL+1—80+17(1—8(’)) ’
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where Op, p(-) denotes the usual O(-) for a constant in the upper bound that depends only on L and M.
Plugging the two previous identities into the modified energy estimate (5-66) yields the bound (5-37)
we claimed in this proposition. O

Proposition 5.8 (Lyapunov monotonicity for the high regularity Sobolev norm of the remainder outside
the blow-up zone). Suppose all the constants of Proposition 4.6 are fixed except so. Then for sg large
enough, for any solution u that is trapped on [sg, s) the following holds for 0 <t < t(s’):

! C(K1,K>)
2 SL 2 ’ /
Ieslyee, < 10w @ s+ [ o
n /t C(K], Kz)”BiL wext(t/)”L2 dt’
0 A25L—Sc+2gL+2+1=80+n(1-80)+ 2 +0 (5= )
C(K1, K

+ ( : 22{( —1)(o—s¢) o—sc+ ° (5_67)

22251 —sc) g2L+2-280+2n(1-8))+ < B 05 ) + 0 (=1-+1)

Proof. From the time evolution of wex, given in Section 4B1, we get

I e = A wer + (1= x3)0% (W?) + Ay3d*w + 2V y3. Vo w. (5-68)

We make an energy estimate for ;" wex, and propagate this bound via elliptic regularity by iterations,
which is standard in the study of parabolic problems. All computations, unless mentioned, are performed
on €2, and we omit this in the notation for simplicity.

Step 1: estimate on the force terms. We first prove some estimates on the force terms on the right-hand
side of (5-68). From the decomposition (4-10) and the evolution (4-32) of w, in the exterior zone Q\Bd (2),
8]t‘w can be written as

1+j(p—1)

k
Fw=> " Y"cw [] w (5-69)
j=0

i=1

for some constants C(u), where the inner sum is over u = (4i)1<i<i+j(p—1) € N2k(P=1) with
Zl-lilj(p_l) |wili = 2(k — j). Fix k < sp, an integer j with 0 < j < k, and a sequence of d-tuples
(i) 1<i<14k(p—1) € NFP™D satisfying Z,'l;rlj(p_l)
Wi are ordered by decreasing length: |p1| > |u2| > ---.

|ii| = 2(k — j). One can assume that the d-tuples

The case k = s;. We want to estimate the above term in the zone 2\ B¢ (2).

Subcase 1: |;1]| = 0. Using Holder, Sobolev embedding (since in that case w; < 2sy, — % for2<i <
1+ j(p— 1)), interpolation and (4-28), for « > 0 small enough,

1+/(p-1) 1+j(p-1)
I1 a“fw“ sl9wlz [T 19%w]ee
i=1 L2 i=2

1+/(p—-1)

<lwlguy [T Twlgarzrerm
i=2
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g l—o+5 2PV i 1+d /2400

1 257 —0
= C(K1. K2) (A2SL—SL-SL+1—8O+7’(1—86)
1 1= U= 1)2 D(o—sc—kK)
Sy, —0
= C(Kl, KZ)(AZSL_SCSL+1_80+77(1_8(/)))
C(K1, K>) (5-70)
— p2sL—sc gL+1=80+n(1-8))"
as 1/A25L =5 gL+1-80+n(1-8¢) 5, | py (4-52).
Subcase 2: |i1| < 0. Then u; <o forall 1 <i < j(p—1) and 0* w € LPi with p; given by
11 o—|ul
pi 2 d
by Sobolev embedding. We define i( as the mteger 2 <ipg <1+ j(p—1)such that Zio_ 11 27 <12 L and
Zi"_l pl > 2. We know iq exists because E < 1 and leflj(p D 1 > 3. We define Plo > 2
by = 5o = 1 Zio_ll 1} and § > o as the regularity glvmg the Sobolev embeddlng H¥ WHiol s [ Pio:
0

io d
5= ul+ o~ (5 ~o).
i=1

This implies that 1—[§021 o w e L? with the estimate (from Holder inequality)

iop—1 io—1 _S§—0o
257 —0
H =l owl o, [T 10 wlzn < lwlgs [T lwlae < CEOIEE,.
i=1 i=1 i=1

where we used interpolation and (4-25). Therefore, for k > 0 small enough, using Sobolev embedding,
the above estimate, interpolation and (4-25),

1+j(p—1)

io 1+j(p—1)
[ #w ]_[ame | O Iy
i=1 i=1 L2 i=ig+1
5—o  1+j(p—1) _d/2+k+lugl—o d/2+k+lu;l—o
257 — 257 — 257 —
<CKpllwl 5" T1 Iwlge 757wl ="
i=ip+1
251 —o—j(p—D)(o—sc)+U(p—D—ig+Dx
1 257 —0
<
= C(Ki, Kz)(AZSL—sC gL+1=80+n(1-8()
1
< C(K1,K>) (5-71)

A25L—5c SL+1—50+77(1—56)

as 1/A25L=Se gL+1=b0+n(1-80) 5 | by (4-52).
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End of substep 1. Inserting (5-70) and (5-71) into the identity we obtain

C(K;, K
107" wll L2(@\5¢ 2)) < (K1, K2) .
AZSL—S(; SL+1_80+77(1_80)

(5-72)

Estimate for the nonlinear term in (5-68). With the very same arguments used in the first substep, one
obtains the bound

C(K1,K>)
Nt w? < ) 5-73
197wl @\se ) = A252—Sc+2 gL+2=8o+n(1=8))+ $+0(2=5+1) 673
The case k < sy . Again, for 0 < k < sy, the same method yields
C(K1,K>)
k 1 < -
107 wll g2z —1-0 @\ 5 (2)) = o se LBt n (165t 2a 1O(1) (5-74)
C(K1,K>)
vk sy —1— < , 5-75
IVOrwlor-t-o@ston = o S st antn 10() 572)
C(Ky, K>7)
WP yais, —1— < . 5-76
197 WPl 210 (@\pa 2)) = A251—s50 gLH1=SoF+n(1=80)+ BT 10 (=5En) (5-76)
Step 2: energy estimate for 035 wey. We claim that for 0 < ¢ < ¢/,
P gy t
‘ C(K1, K>)
SL 2 S 2 1, K2 ,
135 werdlZ < 105 we O], + fo ey O
! C(K1, Ky)||3F t
+/ (K1, K2)|| t Wext( )HL2 — dt’ (5-77)
0 )25L—sc+2 gL+24+1-80+n(1-8))+ 7 +0(TF7=<)

and we now prove this estimate. From (5-68) one has the identity
07 (/107" wext 17 2)
= —2/ |Vt Wext| + 4/ 3T wexe V x3.VOTE w + 2/ 07 Wext 7 (1 = x3)w? + Aysw) (5-78)

and we are now going to study the right-hand side of this equation.

Use of dissipation. We study all the terms except the nonlinear one in (5-78). After an integration by
parts, using Cauchy—Schwarz, Young’s and Poincare’s inequalities,

l/8fLwextV)(3.V8fLw+/3“§Lwext8§L(AX3w)‘

= ‘—[AX38“:Lw8fLwext—V)(3.V8§Lwext8}uw—|—/BiLwextaiL(A)(gw)

< C[IA = x2)3" wll 2 193" wexell 2 + (1= x2)87" wll L2 V0" Wexdll 2]
< CEN = x2)d" w2 + e VI wlF,
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for any ¢ > 0. Adding the dissipation term in (5-78), taking ¢ small enough and using the bound (5-72)
on the force term ;- w gives

—/ |VaiLwext|2+4/VX3-V8§Lwa§Lwext+/aiLwextaiL(AXB(OJ)w)

C(K1, K?)
32(2s1—sc) g2L+2-280+21(1-5;)

< Cll(1 = x2)d" wlZ> < Cl3 wlz> <

C(K1, K>3)
< ’
T A2@sL—sc)+2 S2L+3—280+2n(1—80)+—2;‘_a

(5-79)

because in the trapped regime, A2s ~ 52w,

Estimate for the nonlinear term. We now turn to the nonlinear term in (5-78), and use the estimate (5-73)
for 33X w? we found in the first step, yielding

- C(K1, K2)||8§L Wext|| 1.2
©A2sL—Sc+2 SL+2+1—30+77(1—86)+%+0(W) )

‘/ 97" Wextdy" (1= x3)w?

(5-80)

End of Step 2. We collect the estimates (5-79) and (5-80) found in the previous substeps, which gives the
desired bound (5-77) we claimed in this step.

Step 3: iteration of elliptic regularity. We claim that fori =0, ..., sz,

; ! C(K1.K>)
1 2 < S 2 1, 2
”alweXtHHz(SL—’) = 19" wext (0172 +/0 \2(2sp—sc)+2 2L+3-280+2n(1-80)+ 555

n /t C(K1, K2)||3‘;L wext(t/)”L2 dt’
0 )251—Sc+2 gL+2+1=80+n(1=8))+ 5 +0(1E5=5<)
C(K1. K>2)
32(2s150) S2L+2—280+2n(1—8())+“(”27212(_";)5‘” +0(e=sctn)”

dt’

+

(5-81)

We are going to show this estimate by induction. This is true for i = sy from the result (5-77) of the
last step, and because of the compatibility conditions (4-20) at the border. Now suppose it is true for i,
with 1 <i < s;. Then as ai_lwext solves (5-68), from elliptic regularity one gets (again because of
the compatibility conditions (4-20) at the border), from the induction hypothesis and the bounds (5-76),
(5-76) and (5-76) on the force terms

||3é_1wext||22(%—i)+z < (1= xB0.4) 3 (WP) + Axp.ad 'w
+ ZVXB(OA).VB’t_lw||§12(SL_l~) + ||altwext||i12(sL—i)
! C(K1, K»)
=< “8§Lwext(0)“iz +/ _ A W
0 A2Q@sp—sc)+2 g2L+3-280+2n(1-80)+ %5
n /t C(Kq, KZ)”aiL wext(t/)HL2 dt’
0 )25—sc+2 gL+2+1=80+n(1-8))+ 5 +0(1E5=5¢)
C(K1, K3)
A’Z(ZSL_SC) S2L+2_280+27](1_56)+‘1(1’2—(212(700;&)+O(U—A‘LL‘+YI) '

dt’

+
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This shows that the inequality (5-81) is true for i — 1. Hence, by iterations, the inequality (5-81) is true
for i = 0, which gives the estimate (5-67) we had to prove. O

5D. End of the proof of Proposition 4.6. Proposition 4.6 states that, once the constants involved in
the analysis, which are listed at its beginning, are well chosen, given an initial data of (1-1) that is a
perturbation of the approximate blow-up profile along the stable directions of perturbation, there is a way
to perturb it along the unstable directions of perturbation to produce a solution that stays trapped for all
time in the sense of Definition 4.4. The strategy of the proof is the following. We argue by contradiction
and suppose that for all perturbations along the unstable directions, the corresponding solution will
eventually escape from the trapped regime. First, we characterize the exit of the trapped regime through a
condition on the size of the unstable parameters, and then we show that arguing by contradiction would
amount to go against Brouwer’s fixed point theorem.

We fix A(sg) satisfying (4-21), w(sg) decomposed in (4-5) satisfying (4-19) and (4-11), V1(s0),
WP s0). ... ULV (s0)) and (U (50)) ki) with 12m, in<i satistying (4-16), (4-17) and ((iii)).
For any (V2(so), ..., V¢(so)) and (Ul.(n’k) (50)) (n,k,i)eT,1<n, i <i, satisfying (4-14) and (4-15), let u denote
the solution of (1-1) with initial datum u(0) = Xéb(so),l /A(s0) + W (so) with b(so) given by (4-31). We
define the renormalized exit time s* = s*((V2(s0). . . .. V¢(s0)). (Ui(n’k)(so))(n,k,,-)ez,lgn, i<iy):

*

st = sup{s > 50, u is trapped in the sense of Definition 4.4 on [so, s)}. (5-82)

By a continuity argument, one always has s* > sq.

Lemma 5.9 (characterization of the exit of the trapped regime). For L and M large enough and o close
enough to s., there exists a choice of the other constants in (4-30), except so and 1, such that for any sg
large enough and 1 small enough, if s* < +00, at least one of the following two scenarios hold:

(1) Exit via instabilities on the first spherical harmonics.
Vi(s*) = (s*)7 forsome 1 <i <{.
(i1) Exit via instabilities on the other spherical harmonics.
U(n’k)(s*) =1 forsome (n,k,i)e€T, withl<nandi <i
i - ERAR) ’ — n-

Proof. A solution u is trapped if the parameters and the error involved in its decomposition (4-10) satisfy
the bounds (4-22), (4-23), (4-24), (4-25) and (4-52). At time s*, the bound (4-52) is strict by (4-51) and
(4-52), and we are going to prove that (4-25) is strict in Step 1 and that (4-24) is strict in Step 2. Thus,
(4-22) or (4-23) must be violated at the time s* and the lemma is proved.

Step 1: improved bounds for the remainder w. We will now prove the estimates

K1 KZ

— . &, (s < )
2(S*)% SL( ) 2(S*)2L+2—280+2n(1—86)

50(5*) =

K, (5-83)

2L42(1=80)+2n(1—8()

Ky
”wext(s*)”lzqcr =< _2 and ||wext(5*)”§_125L =<
212(2sL—sc)s
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Bound on &;. Let K1 and K5 be any strictly positive real numbers. Then from Proposition 5.3, for sg
and n large enough, we have

d Ey VEs k-1
E{ )LZ(U_SC)} = (0—sc)l LL 1+ Z T_o—sc sc .

A2(0=sc)+2 g"50—q Tl

On [sg, s*], one has

Q/gg _alo=sc¢)
—o=se = Kys™ 42
s 2

by (4-25); hence for s¢ large enough,
d { & % Vs 1

dt | \2(0—sc) 22(0— Sc)+2S(02gS(a)£+l SZ%L'

e s s
One has A = (£2)2%= (1 + O(s, ")) by (4-52) and we assume that |O(s,")| < 4. We reintegrate the
above equation using (4-25) and (4-19):
1 3 20—S¢ 22(0 ?L) 22(0 sc)+3L
o= = ((3) e g V).
s*) 20—0

8L
OlSO

Therefore, once L is fixed we choose o close enough to s, so that
L 24(0 —s¢)
8L 20—«

and then for sg large enough one has

20(c—s¢) 22(0_5(,')+3 L
20—

SO T < 1.
as
For any choice of the constants K; > 10, we then have
1 3 20—S¢
o (S*) = 20(c—sc) ((E) + ) 2@(0 sc) " (5-84)
(s*) 2= 2(s*) 20=0

Bound on &35, . Let K1 and K3 be any strictly positive real numbers. By Proposition 5.6, for any N > 1
the following holds for s¢ and 7 large enough:

d 52SL 0 1 15 1
dt | 12Gs—L=s0) + Ow.m) 22(2s1—s0) gL+1-80+n(1-5}) 25, + GL+1-80+n(1-8))

1 C(L, M) C(L.M) /S5, L CL.M)
= Az(zsL so)+2g | 2L+2-280+2(1—8)) ' (L+1-8o+n(1— 80) N28 L

P \/gl+0(f) k—1 C(L,M, Kl’ KZ) C(L,M, Kl, KZ)\/ EZSL
+52sL Z .

= s— 736 gFo(rtg=se) GLA1=80+n(1=8))+ 5 +0(T=£+1)
In the trapped regime, from (4-25) one has
«/5 _a(o=s¢)
s < K5~ 4
K 2
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Consequently, for N and s¢ large enough the previous identity becomes

d Easy o 1 = 1
a1 | p2@s—L—so T O\ Soas S Triserna—sy \ V25 T T isse a5y
_ 1 C(L,M) C(L.M) /&, I,
= A2@se—se) 25 | 2L+2-280+2(1-5) + sL+1=80+n(1-5-0") T N?28 2se |-

Since from (4-52) we have
4
20— ~
A= (SS_O) (14+0(sy ™),

when reintegrating in time the previous equation using the trapped regime bounds (4-25) and (4-19), one
gets

a5, (%) < A(s™*)2(sL.75¢) |:0(L,M)( ! (VK1 + 1))

A’(s*)Z(ZSL—SC) (S*)2L+2—280+2n(1—8(’))

1 1
+&25.(50) + OL.m (SL+1—80+71(1—8(’)) ( €251, (s0) + (LA1=S0+n(1-8) ))
0 0

*

§ 1 K>
+ | e (VR CLn + —Nzg)}

0

1
<
- (S*)ZL +2—280+21(1-6()

1
<
- K> (S*)2L+2—280+2n(1—56)

[C(L, M)(1+ VKz) + C(L)%}

(5-85)

if N and K; have been chosen large enough.

Bound on ||Wex || o . We recall the estimate (5-35):

d C(K1. Ka)
dt sHEEH0(Eg=e)

[”wext”iw] = 2”wext”HU-

For any choice of the constants of the analysis in Proposition 4.6 such that all the previous propositions
and lemmas hold, for s¢ large enough,

1
_ 2 <
dt [”wext”HU] = Sﬁ/\z ”wextHH”-

We reintegrate this equation in the bootstrap regime, by applying the bounds (4-25) and (4-19) on

| wexcl| 7o (using the relation % = ,%2)
C(L) C K,
[Wext (™) |go < vV K2 —5— + —53 <— (5-86)
so- S(%ei—a(ZSL —se) T 2

for K, chosen large enough.



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 217

Bound on ||Wext|| gr2s;, . We recall the estimate (5-67):

f C(K1. K>)
2 SL 2 1, A2
<
”wext”HZSL —||at wCXt(O)HIZ /(; A’2(25‘11 Sc) 2s2L 3 280 277(1 8(’)) 2[01_0‘

+/l C(K1, K2)[|9" wex (') 12
0 A2sL—sc+2SL+2—80+77(1—86)+%+0(W)
C(K1, K>2)
22@s1—se) $2L+2-280+2m(1-80)+ X RO o (=)

dt’

dt’

+

One has wext = (1 — y3)w, so B}VL Wext = (1 — )(3)8}% w. Recall that we proved the bound (5-72) in the
trapped regime for 9;-w(¢) outside the blow-up zone in the proof of Proposition 5.8. The same proof
gives for so large enough, taking in account the bound (4-19) on w at initial time,

HaiL wext(o) ||L2 < 1.

Inserting this estimate and (5-72) into the previous identity gives, for so large enough,

” ”2 <1 ! dt’ 1
w + +
extiig2sy 0 A2Q@sL—sc)+2 2L+3-280+2n(1-80) ~ 3 2(2sp—sc) g2L+2-280+2n(1-5;)

_ 2 N /’ cdr’
= 22(2s1—sc) g2L+2-260+27(1-57) o S_i“mél_“’)“] §2L+3-280+2n(1-8))

2{—uo
- 2 N C(L)
= 22@sz—sc) g2L+2-280+2n(1-5)) s—m%ff—;m 2L+2-250+21(1-8))
- 2 N C(L)
T )2@sp—sc) g2L+2-280+2n(1=85) ) 2(2sp—sc) g2L+2-280+2n(1-5p)
K>

z 2)2@s1—sc) g2L+2-280+21(1-8})” (5-87)

where we used the equivalence A ~ s~2=a from (4-52), and where the last line holds for K, large
enough.

End of step 1. We have proven (5-84), (5-85), (5-86) and (5-87), yielding the estimate we claimed, (5-83).

Step 2: improved bounds for the stable parameters. We claim that once L, M, n, K1 and K5 have been
chosen so that the result of Step 1 holds, there exist 7 > 0 and strictly positive constants (81(0’1)) l+1<i<L>

’k -
(8,@ ))(n,k,i)eI, 1<n, i,<i such that

©.1)

Vi(s™)| < 2(3*)_77’ |Ul-(°’1)(S*)| < 28(ls*)ﬁ for{+1<i<L, (5-88)
and for (n,k,i)eZ,n>1,
U0 ()| < 5 if iy < TR ()| < e if iy =i (5-89)
’ = 2(s*)7 S i -2 "
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bR ),

@ k)

We now prove all these improved bounds: first we prove the one for , then the one for the

i # Ly, and finally the one for V7. For technical reasons, we introduce for (n k,i) € Z the function g;
a solution of the ODE
(n.k) £Qi—an)

g .
d;(; 5= Qi—anb™, glso) =5 . (5-90)
i

As bgo’l) = S(zf_a) + O(s~1~7), for 7 small enough and s¢ large enough one has

gl.(n’k)(s) _ e 1+ O(Saﬁ)) with |0(s;’7)| <1 (5-91)

Improved bound for b(n k) First we notice that since L is chosen after £, one can assume that for all
0 <n <nyp, we have i, < L. We rewrite the improved modulation equatlon (5-2) for b(" k) , using the
estimate (5-3) for the extra term in the time derivative and the function g > ) (satlsfylng (5-90) and
(5-91)), yielding
‘ j [ (i) 4 OL’M’KZ(S—L—n(1—86)+80—8n+u22L[’__0f"”):|‘
Ky H

< C(L, M, Kp)s~\~Ln(1=50) 508+ L5
as n(1-6p) < % g for 1 small enough (g’ being fixed). The notation Of, ps Kz( ) is the usual 0( ) notation
with a constant dependlng on L, M and K». One has 2L, —a, =2L —% —28 +2myg + —=—. Hence for
L large enough, the quantity —L —n(1 —§&,) + o — 6, + mL”—a”)
Therefore, reintegrating in time the previous identity ylelds, us1ng (4-16) and (4-17),

is strlctly positive for all 0 <n <ny.

2Lp— =~
LCLn—an) | §,48,—ij

| k)( )| C(L’M» K2) 1 SO §SL+80_8n+ﬁ|b(n’k)(S )|
Ln - ( *)L+T](1—86)+80—8n SL+80_8n+ﬁ (S*)%_L_&)_i_gn_ﬁ 2 0 Ln 0
k
C(L, M, K>) 3¢y 1
- (s*)L+n(1—86)+80—8n 2() (s*)L+80—8n+ﬁ'
Therefore, if 7) < n(1 — &), for any 0 < 8(" k) - 1, for so large enough, we have
n<n y g g
) (n k)
n, * Ln
Ibr, " (T = 2(s*)LH60=8u+il " (5-92)

Improved bound for bl.(" , Iy <i < Lp. Using the same methodology we used to study the parameter b( k),

we take the modulation equation (4-43), we integrate it in time, applying the bounds (4-22), (4-23), (4 24)
and (4-25), yielding

The condition i, <i ensures that 5 L’ = 2i—an)—

3 (+]1C)S25 5 (2i —ay) - —f—1

2

+C(L,M,Ky)s™ —L—14+80—n(1-8))+ 575 (2i —0n)

Y—Vn
2

in time the previous equation, the first term on the right-hand side giving then a divergent integral. Then
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k)

applying the bound (5-91) on g(" and the initial bound (4-17) on b(" k) , one obtains

J
|b(n’k)(s*)| - 1 81(” ) N C(L)S(n k)

i = (s%) YV 447 20 i

$* .
g T )
(s%) 2rmat T2
(n,k)
Fo)
< S o2
2(s*) 2
(n,k)

if 59 1s large enough and ¢;7’;” is small enough, because L — 80 > y_y” +1i.

Improved bound for bl.("’k) ifin =i and 1 < n. In that case - (2i —ay) = ¥5 4-i. Hence one has

? 2€
(n,k)
1_8& " _3

2 —_ Y—Vn +i — 2 *

Integrating the modulation equation and making the same manipulations we made for i,, < i then yields
(n,k) (n,k)
06 = e (P W+ S ) < S 9w
(s*)T'H 20 ! L—60— n_j 2(S*) 24

So

if g(n k)

i is small enough and s is large enough.

Improved bound for V1. We recall that from (4-13), V; denotes the stable direction of perturbation for the
dynamical system (3-58) contained in Span((Ul.(O’l))lfl-fg). From the quasidiagonalization (3-69) of the
linearized matrix Ay, under the bootstrap bounds (4-22), (4-23), (4-24) and (4-25), its time evolution is
given by

Vi Vi)i<i<el®

(0,1

_hn 1 —L—t | fet1

=—5 7 O(Slm TS T )

which when reintegrated in time gives, if 88111) is small enough, s¢ is large enough, and using (4-16),
(0,1)
V C(L,M.Ky) C(L)e 1
ViGs*) <2 I(SO) (LMK Gl < (5-95)
(s%)21 (s*)7 257

End of Step 2. We choose the constants of smallness in the following order so that all the improved
bounds we proved, (5-92), (5-93), (5-94), (5-95), hold together. For any choice of Ki, Ky, L, M, n

in their ranges, there exists 7 > 0 such that 7j < n(1 —§;) and 5" +i + 7 < 2@ — (2i —ay) for all
(n,k,i) € T with i, <i. First choose the constant ségrll) small enough so that the improved bound (5-95)

for V1 holds for sg large enough. Next choose 81(5 _;2) such that the improved bound (5-93) for 6(211 )

holds for sg large enough. By iteration we then choose sg +13), .. (0 Y to make all the bounds (5-93)
hold until the one for U, (0 1) . Then the final one, (5-92), for U 0.1 holds for s¢ large enough without any
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(
1

spherical harmonics of higher degree (1 <n < ng). We have proved (5-88). O

conditions on £ for ¢ + 1 <i < L —1. The same reasoning applies for the stable parameters on the

We fix all the constants of the analysis so that Lemma 5.9 holds, and we will just possibly increase the
initial renormalized time 5o, which does not change its validity. The number of instability directions is

m=L—1+d(Elil]=8yen)+ Y k@)(Efin] +1—8i,en).
2<n<ng

To prove Proposition 4.6, we have to prove that there exists an additional perturbation along the unstable
directions of perturbations such that the solution stays forever trapped. We prove it via a topological
argument, by looking at all the solutions associated to the possible perturbations along the unstable
directions of perturbation. For this purpose, we introduce the set

B:={(Va(s0), - .., Ve(s0), (UM (50)1) n kiyer. 1<n.i<iy ) € R™ 1 |Vi(s0)| <sp”" for 2<i <,
U0 (s0)i] <& for (n.k.i) €T. 1 <n.i <in},

which represents all the possible values of the unstable parameters so that the solution to (1-1) with initial
data given by (4-5) and (4-31) starts in the trapped regime. We then define the following application
f :D(f) C B— 0B that gives the last value taken by the unstable parameters before the solution leaves
the trapped regime (when it does):

k
1 (Va(so). ..., Ve(so), (Ui(" ))(n,k,i)eI, \<n,i<iy)

(S*)ﬁ * (S*)ﬁ * n, *
= (5207 R U 6 N nkirez, i< ) (596

So
The domain D( f) of the application f is the set of the m-tuples of real numbers

K
(Va(s0). - - Ve(s0), (U,-(n ))(n,k,i)eI, \<n, i<iy)

in B such that the solution starting initially with a decomposition given by (4-5) and (4-31) leaves the

trapped regime in finite time s*. The following lemma describes the topological properties of f.

Lemma 5.10 (topological properties of the exit application). There exists a choice of smallness constants
(el(n’k))(n,k,,-)g’ 1<n,i<i,+1 such that the following properties hold for so large enough:
(1) D(f) is nonempty and open, and the inclusion 0B C D(f) holds.

(i) f is continuous and is the identity on the boundary 0B.

Proof. Step 1: the outgoing flux property. We prove in this step that one can choose the smallness constants
& & .
(8,@ ))(n,k,i)GI, 1<n, i<ip+1 such that for any (V2(so)..... Ve(s0), (U,-(n ))(n,k,i)eI, \<n, i<i,) in B
such that the solution starting initially with the decomposition given by (4-5) and (4-31) is in the trapped

regime on [so, 5] and satisfies at time s

()7 ()7 ,
(—,7 Va(s), ..., o) Ve(s), (Ui(n k)(s))(n,k,i)eI, \<n,i<iy | € 0B,
So
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the exit time from the trapped regime is s. To prove this we compute the time derivative of the unstable
parameters when they are on 013, and show that it points toward the exterior. Indeed from the modulation
equation (4-43) and (3-69) (where we injected the bounds of the trapped regime (4-22), (4-23), (4-24)
and (4-29)),

. (0,1) (0,1)
I/is: o E-{—O |(V1(S)a---’VZ(S))|2 UE+1 +0( L+f)_ io Vl+0 s_l 2n+86+1
T 2U—a s S S 2—a s 147
mdo _ Lk U(n % A gk
n n i+1 n— n i+ —1-7
—U 0 =a——U""+0 n).
i»s 2l—a)s P0G = YGt—ays i T ( s 8 )
Therefore, as i < iy, by iterations (i.e., by choosing first s( n.k) , then s(n k) , and so on until choosing

sgfi_l)) we can choose all the smallness constants and sg large enough so that

i« (1)) ey
T —a 157 +O( —1- 2"—1— EH ) >0 (resp. <0) if j =0 (resp. j = 1),
in—i ok el
cxn—(—l)fs(n’ )10 fitr1 +s7 L) >0 (resp. <0) if j =0 (resp. j = 1).
24 —a)s !
Consequently, any solution that is trapped until s such that at time s,
()" (s)" K
(—V2< o (o VO U O nkier. 12n, i, | € 08
So

leaves the trapped regime after s.

Step 2: end of the proof of the lemma. Step 1 directly implies that D( ) contains dB, and that f is the
identity on dB. If a solution u leaves at time s*, it also implies that it never hit the boundary before s*.
Consequently, as the trapped regime is characterized by nonstrict inequalities, and because everything in
the dynamics of (1-1) is continuous with respect to variation on these unstable parameters, we get that
D(f) is open, and that the exit time s* and f are continuous on D( f). |

We can now end the proof of Proposition 4.6.

Proof of Proposition 4.6. We argue by contradiction. If for any choice of initial perturbation along
the unstable directions of perturbation, the solution leaves the trapped regime, then it means that the
domain of the exit application f defined by (5-96) is D( f) = B. But then from Lemma 5.10, f would
be a continuous application from B towards its boundary, being the identity on the boundary, which is
impossible thanks to Brouwer’s theorem, and the contradiction is obtained. |

Appendix A: Properties of the zeros of H

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. The proof relies solely on ODE techniques (in the same spirit as [Gui et al. 1992;
Li 1992]) and is as follows. First, we describe the asymptotics of the equation H () f =0 at the origin
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and at infinity in Lemma A.1. Then we construct the special zeroes To(") and T'® in these asymptotic
regimes using a perturbative argument and obtain their asymptotic behavior in Lemma A.2. Finally we
show that they are not equal via global invariance properties of the ODE in the phase space ( f, 9, f) in
Lemma A.3, yielding that they form indeed a basis of the set of solutions.

Let f : (0, +00) be smooth such that H™ f = 0. First we make the change of variables f(r) = w(t)
with ¢ = In(r) € (—o0, +00). Then w solves

w” + (d —=2)w' —[e*V(e") +n(d +n—2)Jw =0, (A-1)

where V is defined by (1-31) and satisfies e’ V(ef) = O(e?) — 0 as t — —oo, and e?' V(e!) =
—pcgo_1 + O(e7 ') as t — +o00, by (2-2). Hence (A-1) is similar to the following ODEs as t — Zo0:

w” +(d —2)w' + (peZ ' —n(d +n—2)w =0, (A-2)
w’ +(d—-2)w' —n(d +n—-2)w =0. (A-3)
The first step in the proof of Lemma 2.3 is to describe their solutions.

Lemma A.1. Span(e~ !, e~7n!) (resp. Span(e™, e"=4+Dt)) is the set of solutions of (A-2) (resp.
(A-3)), where yy is defined in (1-18) and

d—24JA
Vi = fn (A-4)
where Ay, > 0 is defined in (1-18). These numbers satisfy
2 2 ,  (d=2)
o=y, y1=——++1 and Yn=>2, ypn<——", Vo> , (A-5)
p—1 p—1 2

where y is defined in (1-9).

Proof. From the standard theory of second-order differential equations with constant coefficients, the set
of solutions of (A-2) (resp. (A-3)) is Span(e~¥?, e~ ¥a') (resp. Span(e™, e="=4+2)) where y, and
y,, are defined by (1-18) and (A-4). For any n € N, one computes from its definition in (1-18) that the
number A, used in the definitions (1-18) and (A-4) of y, and y;, is strictly positive: A, > 0. Indeed,
Ay > Ag by (1-18), and Ag > 0 if and only if p > pjr, where pyy is defined in (1-6), and the present
paper is concerned with the case p > pyr.

From the formula (1-18), one computes that yo = y and y; = % + 1, where y is defined in (1-9).
For all n € N, from the definition (A-4) of y;, and since A, > 0, one gets that y,, > % Eventually we
compute from (1-18) that

4 \? 4 \?
A1=(d—4——), A2=(d—4——) +4d +4,
p—1 p—1

which implies in particular that

4 16
AZ—AI—4\/A1—4:4d+4—4(d—4——1)—4: 16+ —— >0,
p— p—



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 223

giving /Ay > 4/ A1 + 2. This, by (1-18), implies

d—2—Dy d—-2—A1 -2 2 2
< —Vl—l——+1 1= T

2= 2 2 1 —1
This implies v, < for all n > 2 because the sequence (v, )nen is decreasing by its definition (1-18). [J
Lemma A.2. There exist wgn), wg’), u)gn) and w(n) solving (A-1) such that
Yz) = ZC e +201 O(e(n+2q+2)t) wg') o 516(—n—d+2)t, (A-6)
i=0
w = GHe M 4 0 and w  ~ GVt = 0T, (A-7)
t—>—+o00 t—>—+o00

with constants ¢1,C1, C2, 3 7 0. Moreover the asymptotics hold for the derivatives.

Proof. Step 1: existence of wi ") Forn = 0, we take the explicit solution wgo) = AQ(e"), which satisfies

(A-6) by (2-1). Now let n > 1. Using the Duhamel formula for solutions of (A-1), the fundamental set
of solutions for the constant coefficient ODE (A-3) begin provided by Lemma A.1, a solution of (A-1)
satisfying the condition on the left in (A-6) with cg = 1 can be written as

(n) ot n(t—t') _ ,(—n—d+2)(t—1) (n) 2t

t T E— t 4 dr’. A-8
=4 2/ (e i (e V(e (A-8)
We now use a standard contraction argument. For 7y € R we endow the space

X = {u € C((=00, 10l R): 3 u()]e™" < +00
t<tp
with the norm

lullx := sup [u(t)le” "D, (A-9)

t<to

For u € X we define the function ®u : (—o0, 9] — R by

l t 4 4 /7 /7 4
(CI)M)(Z) = m / (e"(t_t ) €(_n_d+2)(t_t ))[ent + U(t,)]€2t V(et )d[/. (A—IO)
—00

® maps X into itself. Indeed as the potential V' is bounded from (2-2), a brute force bound on the above
equation yields that
(@) ()] < C[IV oo (e’ + [Jullxe e+,

and therefore | ®u|x < C||V ||z (e’ + |lu|lxe>™). The same brute force bound for the difference of
two images under ® of two elements gives

|(@u) (1) — (Dv)(1)| < CIIV | oo [[u—v]|x e+ D",

Hence | ®u— ®v||x < C||V||rce?"|lu—v]||x and ® is a contraction for fy < 0 small enough. Therefore,
@ admits a fixed point in X, denoted by u ;. From the Duhamel formula (A-8) and the definition (A-10)

of ®, we know w(") e"" +u (1) is then a solution of (A-1) on (—o0, fp], which, from the definition
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(A-9) of X, satisfies
wgn) =M 4 O(e(n+1)t) as { — —oo. (A-11)

We extend it to a solution of (A-1) on R ((A-1) being linear with smooth coefficients), still naming it w(()n).

Step 2: asymptotics of wln). At present, we will refine the asymptotics (A-11). We reason by induction.
We claim that if for kK € N and (¢;)o<i<k € R*+1 one has

k
U)Yl) — Zcie(n+2i)t + O(e(n+2k+2)t) as t — —0o (A—12)
i=0
then there exists cx 41 € R such that
k+1

wgn) — Z c;e 20t | O(e(n+2k+4)t) as f — —oo. (A-13)
i=0

We now prove this fact. Fix k > 1 and assume that wi") satisfies (A-12). As V is a smooth radial profile,
one has that 83‘1“ V(0) = 0 for any ¢ € N, implying that there exists (d;);en € RN such that

k

V(e =Y die? + 0 ) a5 1 oo, (A-19)
i=0

We insert this and (A-12) into (A-8) and integrate to find

; ko
() _ b —t")_,@—n—d)(t—t' +2i42)1 +2k+4)t’
wln —e”t+2n+d_2 /_oo(e"(t 1) _e2—n=d)t t))[i;)jgocj'di_je(" ! )t+0(e(” )t )} dt’

k e(n+2i+2)t 1 1

i
nt _
—¢ +i=0 2n+d—2 (2i+2 2n—|—d—i—2i)j

¢ di—j + 0(6(2+2k+4)t).
0

This asymptotic has to be coherent with the assumption (A-12); hence for all 0 <i <k — 1 one has

1 1 ' ocidi—;
— - )Y S~
204+2 2n4+d+2i j=02n—|—d—2

The above identity is then the formula (A-13) one has to prove.

Thus, one has proven that the asymptotic on the left of (A-6) holds for w§n). It remains to show that it

also holds for the derivatives. Differentiating (A-8) gives

1

)/ nt
1) = -
(") (1) =ne +2n+d—2

t
/ [ne"(t_t/) +(n+d-— Z)e(z_”_d)(t_’/)]wi")em/V.
—OoQ

We use the same reasoning we did for wgn): we insert the asymptotic (A-12) at any order for w§") we

just showed and (A-14) into the above formula, integrate in time and match the coefficients we find with
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(A-12), yielding that
k
(wﬁ”))’(z) _ Z(” + 2i)c,-e("+2i)’ + O(e("+2k+2)’)
i=0
for any k € N. Therefore, one has proven that the asymptotic on the left of (A-6) holds for wgn) and
(win))’. As wgn) solves (A-1), its second derivative is given by

i) = —(d =2 W) + [ V(") +n(d +n—2w".
and therefore by (A-14) the expansion also holds for (w§"))’ !
(n) o )y
1 » (wl )
By iterating this procedure we obtain the expansion on the left of (A-6) for all derivatives of wgn).

Step 3: existence and asymptotics of wén). Let tp € R. We use the Duhamel formula for (A-1), the

. Differentiating the above equation, using

again (A-14) and the expansions for w and (wgn))/ ', one obtains the expansion for (wgn))’ ",

solutions of the underlying constant coefficient ODE (A-3) being provided by Lemma A.1. For ¢ < ¢,
the solution of (A-1) starting from wé")(to) = ¢(@—d-no (wé"))’(to) =2 —d —n)e®=4=Mm1 can be
written as

o
®) _ (2—d— 1 ' 2-n—d)(t—1' N2t (n)
w = e n)t_—2n+d—2/t (en=1) _ o@mn= =1y ()2 I (1) dt. (A-15)

We claim that for 79 < 0 small enough, we have

o(2—d—n)
2

for all # < 9. To show that, let 7 be the set of times ¢ < 7y such that this inequality holds. 7 is closed via

a continuity argument, and is nonempty as it contains #zg. For 1 € 7 we compute by brute force on the

gl) . e(2—d—n)l| <

lw (A-16)

above identity:
|w§n) _ e(2—d—n)t| <C ” V”Looe(Z—n—d)teth

én) — e(@—d—n)t

Hence, for 79 < 0 small enough, |w | <e@ =t /3 implying that T is open. Therefore,

T = (—o0, tp] by a connectedness argument and wé") satisfies (A-16) for all ¢ < ty. We insert (A-16)
into (A-15) to refine the asymptotics (the constant in the O(-) depends on ||V ||p):

t
wén) _ p—d-n) +/ 0(€n(t—t’)_e(2—d—n)(t—t’))0(6(4—n—d)(t—t’))dt/
t

t t
— e(Z—d—n)t +ent / 0 O(e(4—2n—d)t/) dt/+e(2—n—d)t / 0 O(eZt/) dt/

t t

=e(2—d—n)t+0(6(4—n—d)t)+e(2—n—d)t(/t0 O(eZ")dt’_/t 0 dt/)

—00 —00

1
:e(Z—d—n)t(l+/0 0 dt/)+0(e(4—n—d)t)

(e.¢]

— 51€(Z_d_n)t + 0(6’(4_”_d)t)

with ¢ # 0 if 9 < 0 is chosen small enough. We just showed the asymptotic on the right of (A-6).
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(n) (n

Step 4: existence and asymptotics of wy ~ and w, ) Using exactly the same techniques we used at —

to construct wg 0 (m)

constant coefficients ODE (A-3), we can construct two solutions of (A-1), w,

wi ~ e w{ ~Ge ast - o0 (A-17)

and w, ~ as perturbatlons of the solutions described by Lemma A.1 of the asymptotic

n) (n)

and w, -, satisfying

with &, &3 # 0, as perturbations of the solutions e~¥7* and e~"! of the asymptotic ODE (A-2) at 4oc.
We leave safely the proof of this fact to the reader. We now show why the second term in the asymptotic
of w(n) is O(e(_V" —8&)1) where g is defined in (1-21). Using Duhamel’s formula for (A-1), with the set of

fundamental solutions of the asymptotic equation (A-2) described in Lemma A.1, w( ™) can be written as

wgn):ale_yﬂt+ble_yi/1t W/ ( —yn(t— t)_e—)/n(t t’))€2t (V(e )+pcp 1 —2t )w(n)([/)dt/
—Vn .

for a; and by two coefficients. We use the bounds V(e'') + pcZs 'e™2 = 0(e=*') from (2-2) and
(A-17) to find

t
1+ : / (e~ =) _ g=7i(t=1)) O (o rn—e)t’).
—Vn Vn 0

After few computations, we obtain two new coefficients @; and a, such that

wgn)(t) —are "t £ he Vnt —

As —y, < —y, by (1-18), the asymptotic (A-17) implies d; = ¢» # 0. From the definition (1-21) of g,
this parameter is tailor-made to produce —yy — g > —)/6 (by (1-9) and (1-18)). By (1-18), one then has
—VYn—8+Vn = —Yo— g+ vy >0. As g satisfies also g < «, the above identity then yields

(”)([)_026 Ynt +O(e( Yn— g)l)

Using exactly the same methods we use to propagate the asymptotic of w( n)

to its derivatives in Step 2,
the above identity propagates to the derivatives of w("). O

(n)

Lemma A.3. The solutions w; "~ and w gzven by Lemma A.2 are not collinear. Moreover, w1 ™ pas

constant sign.

Proof. We formulate (ODE,,) as a planar dynamical system:

d (wh) 0 1 w!
dt (wz) - (n(d +n—2)+e? V(e —(d—2)) (wz)’

with w! = w and w? = w’. By their asymptotics from Lemma A.1,

(n)
( w(l ) v ) =ce™ (1) + 0" ") as 1 - —oo,
(wi”) (1) "

(n)
( ( )(z) ) ~ 53e—%’zt ( 1/) as t — —o0,
(wy") (1) ~Vn
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and we may take c1, ¢3 > 0 without loss of generality. Thus, close to —oco, we know (wi")(z‘), (w§n))’(t))

is in the top right corner of the plane. It cannot cross the ray {0} x (0, +00) because there the vector field
2

(—(d22)w2) points toward the right. Neither can it go below the ray (x, — %452 ) >o-

compute the scalar product between the vector field and a vector that is orthogonal to this ray and that

To see that, we

points toward north at any time ¢ € R:

0 1 1 d=2\  (d-2)?
((n(d +n=2)+e* V() —(d—z)) (—%))( i )‘ eV +n-2>0

because e2!V(e!) > %, where the potential —V is below the Hardy potential (see (2-5)). Hence
(wgn)(t), (w§n))/(t)) stays in the top right zone whose border is

d—2
2 x)xZO'

{0} x (0, 400) U (x, —

(n)
1

In particular, w;"” > 0 for all times, which proves the positivity of wln). Since the trajectory (wi")(t),

(w‘(tn))/ (1)) is asymptotically collinear to the vector (_;, ), which does not belong to this zone (from

n
Lemma A.1) nor its opposite, one obtains that wgn) and w‘(‘") are not collinear. O

We now end the proof of Lemma 2.3. The fundamental set of solutions of (A-1) is provided by

Lemma A.2. As wgn) is not collinear to win), there exists a1 # 0 and a, such that win) =a, wgn) +as w‘(ln).

(n)

From the asymptotics (A-7) and the positivity of wln shown in Lemma A.3, one then has

w§n) — be—ynt + O(e(_yn_g)t) as t — +OO, b > 0.

gn) in the original space variable r: T (r) = wgn)(ln(r)), which

We call T the profile associated to w
solves H (”)TO(") = 0. The above identity means 7] = ayr~"" + O(rC"=8) as r — +00, and (A-6)
implies 73 (r) = Y.7_, br" 2L + O(r"T2%24) as r — 0, for some coefficients (b;);en € RY, for any
q € N. These asymptotics propagate to the derivatives. This is the identity (2-7) we had to prove.

Let us denote by w another solution of (A-1) that is not collinear to wgn) and wi"). Now (A-6)
and (A-7) imply that w ~ ce@ =D a5 ¢ > —o0 and w = de ! + O(eCV"~8)") as t — 400 with
¢.d # 0. These asymptotics propagate to higher derivatives. The solution of H™T' ™ = 0 given by
'™ (r) = w(ln(r)) then satisfies the desired asymptotics (2-7). Eventually, the Laplacian on spherical

harmonics of degree n is (for f radial)
d—1 nd+n-2
A(f Yn,k) = ((8” + r dr — ( 72 ))f)Yn,k,

meaning, by the asymptotics (2-7), that for any j € N, we know A/ (T3 (|1x )Yy g (x/]x])) is a continuous

function near the origin. Therefore, T{J'Y), x is smooth close to the origin by elliptic regularity. It is
also smooth outside as a product of smooth functions, and thus smooth everywhere, ending the proof of
Lemma 2.3. O
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Appendix B: Hardy- and Rellich-type inequalities

We recall in this section the Hardy and Rellich estimates, to make this paper self-contained. They are
used throughout the paper, and especially to derive a fundamental coercivity property of the adapted high
Sobolev norm in Appendix C. We now state a useful and very general Hardy inequality with possibly
fractional weights and derivatives. A proof can be found in [Merle et al. 2015, Lemma B.2].

Lemma B.1 (Hardy-type inequalities). Let § > 0, g > 0 satisfy }q — (% — l){ >§andu:[1,+00) > R
be smooth and satisfy

400 |8yu|2 d—1 400 u2 d—1
/1 —yzq y dy +/1 —y2‘1+2y dy < 4o0.

() If g > % — 1+, then

C(d,3) / “—zyd‘ldy—C’(d,S)uz(l)s / Myd‘ldy. (B-1)
y>1 y2q+2 y>1 y2q

(i) If g <4 —1-38, then

cw 8)/ e vdy / B a1 g, (B-2)
Proof. Let R > 1. The fundamental theorem of calculus gives

u?(R) 2 R udyu R y2

The integrability of u2/y29+3=4 over [1, +00) implies that u2(R, )/qu-"2 —d

radii R, — +o00. Passing to the limit through this sequence we get

2g+2— d) _ —uz(l)—2 +°°u8—yud
q 2q+2 —d dy o 1 y2q+2—d Y-

We apply the Cauchy—Schwarz and Young inequalities to find
+o0 uayu ol <o +o00 u2 J % +o00 |ayu|2 J %
y2a+2—d Y= . y2a+3d Y Y Y
400 2 400 2
u 1 [0yul
= 8/1 y2q+3—d dy + g/l y2q+3—d dy
for any ¢ > 0. If g > % — 1+ 4, then the two above identities give

+o00 2 2 +o00 2 +o00 2
u u=(1 £ U 1 dyu
/ o= 4V = ()+—/ —_dder—/ ly—|_ddY-
1 y2at? 28 28 )1 y2a+3 28e ), y2a+3

— 0 along a sequence of
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Taking & = §, one gets

+o00 u2 J <u2(1) 1 400 |ayu|2 J
. y2a+2d ) Y Y

N . . . d .
which is precisely the identity (B-1) we had to prove. If ¢ < 5 —1— 4 then one obtains

+o00 2 2 +o00 2 +o00 2
u u=(1 € U 1 oyu
/ 2ara V=73 N / 273 a YV / |2y+3|—d dy.
1 y=4 2(5 1 q) 26 1 y=4 28¢ 1 y=4

Taking ¢ = §, one gets
400 2 1 too |5 2
/ 2M2ddy5_2/ |2yu|ddy’
1yt §2 )1yt

which is precisely the second identity (B-2) we had to prove.

Lemma B.2 (Rellich-type inequalities). For any u € H2(R%),

d —4)d\? 2 d? Vul|?
(g) / u—4dx§/ autax, ! ”l dng | Au|? dx.
4 Rd |X| R 4 Jra |x| Rd

If g=>0andu: R — R is a smooth function satisfying

/‘ | Aul? 4 [Vu|? . u? dx < +
X o0,
ra \ 1+ |x[24 1+ |x]294+2 14 |x|2q+4

then

|0%ul? / / u? / | Aul?
cd, —————-dx—C'(d, ————dx < ———dx.
.9) Z [Rd 1 + |x|?9+4=2u * (d.49) rd 14 |x|29+4 * ra 1+ |x|24 *
I<|ul=2

229

(B-3)

(B-4)

Proof. The inequality (B-3) is standard and we omit its proof. To prove (B-4) we reason with smooth and

compactly supported functions, and then conclude by a density argument.

Step 1: control of the first derivatives. Using integration by parts we compute

ulAu |Vul|? 1/ ) 1
i == | Aty | A ) dx.
/Rd 1+ |x|2a+2 X /Rd 1+ |x|24+2 x+2 Rd“ 1 x2at2 X

We then use the Cauchy—Schwarz and Young inequalities to obtain

cf Vul* c// 2( A ! ! d
—— adX — u — X
rd 1+ |x|29+2 Rd 14 |x|?a+2 (14 [x]?29+2)(1 + |x|)?

/ |Aul?
=< dx.
re (1+]x[29+2)(1 4 [x])~2

Noticing that (1 + |x|?972)(1 + |x|)™! ~ (1 4 |x|??) and that

C
<
T 14 |x|?at4

1 1
A —
‘ (1 + IXIZ"”) (14 [x[24F2)(1 4 |x])?
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leads to the estimate

| Aul?

d. _ _* _aur
Cl )/ 1+| |2q+2d C(dq)/d1+| |2q+4dx</u@dl+|x|2‘1

Step 2: control of the second order derivatives. Again using integrations by parts one finds

| Au|? / |V2ul|? - 1
2 N g uVau Y ——— ) — Auvu V([ ——
/Rd T+ x27 ~ Jpa 1+ x| +l; VO T e )~ 2

)

(B-5)

in which by using the Cauchy—Schwarz and Young inequalities, for any € > 0, we can control the last two

terms by

1
/Rdzaxluvaxlu V( |x|2q)—AuvuV(m)'

|[Vul?

/ |V2u|? C
<Ce¢| ——dx+— _—
ra 1+ |x|24 e Jpa 1+ |x|241+2

Therefore for & small enough the two above identities yield

/ |V2ul? dx <C / | Aul? 4 |Vu|? n u? J
——dx x ).
R4 1+ |X|2q - R4 1+ |X|2q 1+ |X|2q+2 1+ |X|2q+4

Combining this identity and (B-5), one obtains the desired identity (B-4).

Lemma B.3 (weighted and fractional Hardy inequality). Let
O<v<l, keN and 0 < p satisfying u+v+k < %d,

and let f be a smooth function satisfying the decay estimates

)

T fore eNG i =i i =01 k1.

0 F (o) = 5

Then for e € H* 5+ wwe have ¢ f € HY ¢ with
IVY R ef )2 < CC(f), v ks, d) [ VETEF V]| 5.

If f is smooth and radial then (B-6) is equivalent to

Cc(f)

R i=0,1,....k+1.
r

010 =

(B-6)

(B-7)

(B-8)

Proof. Step 1: the case k = 0. A proof of the case k = 0 can be found in [Merle et al. 2015], for example.

Step 2: the case k > 1. Let f, ¢, i, v and k satisfy the conditions of the lemma, with k > 1. Using the

Leibniz rule for the entire part of the derivation,

IV ENZ, <C > VU (@< fII3..

(k,§)eN2d
k|1 +k|1=k

(B-9)
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We can now apply the result obtained for k = 0 to the norms || VY (8 £d¥« f ||i2 in (B-9). We have indeed
that 3¢ € H*F*k2+V and that 9 f satisfies the appropriate decay condition by (B-6). It implies that for
all (k, %) € N24 with |k|; + |&|1 =k,

IV (3% ed%k f|2, < C||VVTHtRe|2,

which implies the result: |V (¢f)[|2, < C(C(f).v.d. k. a) | V' THFEg|2,.

Step 3: equivalence between the decay properties. We want to show that (B-6) and (B-8) are equivalent
for radial smooth functions. Suppose that f is smooth, radial, and satisfies (B-6). Then one has

; 0
50 = 2 (e,

where e; stands for the unit vector (1, ..., 0) of R4. From this formula, we see that the condition (B-6) on
(af/ 8&1 )(|y|e1) implies the radial condition (B-8). We now suppose that f is a smooth radial function
satisfying the radial condition (B-8). Then there exists a smooth radial function ¢ such that

f) =9¢0G>).

With a proof by induction that can be left to the reader, one has that the decay property (B-8) for f
implies the following decay property for ¢:

c(f)

-, 1=0,1,....k+1.
1+y%+z

18,6 ()] <

Now the standard derivatives of f are easier to compute with ¢p. We claim that for all k € N4 there exists
a finite number of polynomials P;(x) := C;x;' ---xild , for 1 <i <I(k), such that

1(6) ,
2 fx) = PP ().

i=1

with 2¢g (i) — Zj-izl ij = |k|1 for all i. The proof by induction of this fact can also be left to the reader.
The decay property for ¢ then implies

C _ C
+yet2a@O-Xioi; 14 yatlkh

[x]

P (1x)] <
1
which in turn implies the property (B-6). O

Appendix C: Coercivity of the adapted norms

Here we prove coercivity estimates for the operator H under suitable orthogonality conditions, following
the techniques of [Raphaél and Rodnianski 2012]. We recall that the profiles used as orthogonality
directions, @%’k), are defined by (4-1). To perform an analysis on each spherical harmonic and to be
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able to track the constants, we will not study directly A and A*, but the asymptotically equivalent
operators

1
yd—l

A s o+ WDy, AD* oy y (y4 =) + WMy, (C-1)

where

W = (C-2)
y

By the definition (1-18) of y;,, they factorize the operator

p—1
. —3yy—d_13y— PCo +n(d +n-2)

> > = A 4™, (C-3)
y y y

The strategy is the following. First we derive subcoercivity estimates for A* L) ang H™, A
summation yields subcoercivity for —A — pcgo_l/ |x|2, and hence for H as they are asymptotically
equivalent. Roughly, this subcoercivity implies that minimizing sequences of the functional /(u) =
[ uHSu are “almost compact” on the unit ball of HN (Span(CDX;’k)))J-. In particular if the infimum of /
on this set was 0, it would be attained, which is impossible from the orthogonality conditions, yielding

. s . .
the coercivity [uH*u 2 |lu||% = via homogeneity.

2
12,

Lemma C.1. Let n be an integer, g > 0 and u : [1, +00) — R be smooth satisfying

TR [T g (C-4)
A e R '

(i) There exist two constants ¢, ¢’ > 0 independent of n and q such that

too 2 1 L +o0 |A'(n)*u|2 Je1
0/1 y2’1+2y dy —c'u=(1) 5/1 yTy dy. (C-5)

(ii) Let 6 > 0 and suppose }q — (% —1- yn) ‘ > §. Then there exist two constants c(8), ¢’ (8) > 0 depending
only on & such that

too 2 3 400 X(n)uz 3
0(5)[1 W)’d ldy—cl(5)u2(1)§/1 lyT'yd Ydy. (C-6)

Proof. Coercivity for AM* We first compute

+o00 A"'(n)* 2 +o0 19 g _1— 2
[T i gy [ Bt
1 1

d—1
V24 V24 y dy.

We make the change of variable u = vy¥»+1=4 By (C-4), v2/y22—2vntd+1 gpq |0y v|?/ y2d—2Vn +d-1
are integrable on [1, +00). As g + % —Yn = % —y >1by (1-9) and (1-18), we can apply (B-2) to the
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above identity and obtain (C-5) via

oo |1‘h1'(n)*”|2 d-1 4, _ oo |8yv|2 -1,
. y24 Y Y= . y2q—2yn+2d—2y Y

+ 2
>C Oov—yd_ldy—C/vz(l)
= . y24—2yn+2d—2

_o [T gy cneq
= : WY y—Cu=(1).

Coercivity for A®™  This time the integral we have to estimate is

/+oo |g(n)u|2yd_1 dy _ /+oo |ayu +y_1)/nu|
1 y24 1 y2p

yd—l dy

We make the change of variable u = vy ™", By (C-4), v2/y2P+2vn—d+1 apd |8yv|2/y21’+2V”+3_d are
integrable on [1, +00). As !q — (% —1- yn)‘ > §, one can apply (B-1) or (B-2) to the above identity:
there exists ¢ = ¢(8) and ¢’ = ¢/(8) such that

+o00 |121“(n)u|2 d—ld B +o00 |ayv|2 de1
. v2a Y Y=, yzatem

2
>c +oov— =1 gy — 'v3(1)
- 1 y2q+2)/n+2y Yy
=c +0°—u2 =14 —cu?(1)
=), Y Y ’

which is precisely the identity (C-6). O

Lemma C.2 (coercivity of H under suitable orthogonality conditions). Let § > 0 and q > 0 such that*?
‘q—(%—2—yn) ‘ >4 foralln eN. Let ng € NU{—1} be the lowest number such that q—(%—Z—yno.H) <0.
Then there exists a constant ¢(8) > 0 such that for all u € HI%)C (R?) satisfying the integrability condition

/ | Au|? N |Vu|? +/ u? -y
00
re 1+]x|24 14 |x|?9+2 1+ |x|29+4

and the orthogonality conditions®> (@%’k) being defined in (4-1))

(u, @29 =0 for0<n<ng, 1 <k <k(n), (C-7)
one has the inequality

@) / A [Vul® v </ |Hul” (C-8)
C D EE——— -
re 1+ [x|24 ° |x|2(14[x[29)  |x|*(14|x]29) ) = Jpa 14 |x]%4

22We recall that y,, — —oo; hence for § small enough many ¢ satisfy this condition.
23With the convention that there are no orthogonality conditions required if ng = —1.
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Proof. In what follows, C(8) and C’(§) denote strictly positive constants that may vary but only depend

on §, d and p.
Step 1: We claim the following subcoercivity estimate for H := —A — pcé’o_1 /1x|?:
| Hu|? u? , 5 5
dx > C(8) ——— dx—=C'(§)(|lujga—1 () |I7 2+ (VU)sa—1 (1) I72), (C-9)
/Rd\zsd(l) |x[24 R\BY (1) |¥[24F* (st e stoliz)

where f|sa—1(1) denotes the restriction of f to the sphere. We now prove this inequality. We start with
the decomposition

u@ = ‘”")<le)Y("")(|x|)

n,1<k<k(n)

We recall the link between u and its decomposition (I-I () being defined by (C-3)):

[:i 2 400 H(n) (n,k) 2
/I\Q | M| dx — Z / | | d—l dy, (C—IO)

a\gd (1) |x|*4 e N

/ 2 Z +oo |y, k)|2 d—1
————dx = f ) . (C-11)
2q+4 yra+s
Re\Bd (1) |x]%4 n, 1<k <k(n) !

As H® = Am* 1) 3pq ’q — (% —2— )/n)‘ > § for all n € N, we apply (C-5) and (C-6) to obtain for
eachn € N,

+o0 H(n) (n,k) 2
/ | | d—1 dy
1

y24

+o0 |,,(n,k)|2 ~
>C(8)/ Ju 2q+l Y4 dy — '@ (™2 (1) + A™ @™2(1)). (C-12)

We now sum this identity over n and k. The second term on the right-hand side is

2
Z (u(n,k))Z(l) — [Sd—l( Z M(n’k)(l)Y(n’k)(X)) dx = Ld_l MZ(X) dx

n,1<k<k(n) n,1<k<k(n)

because (Y(n’k))n,lskgn is an orthonormal basis of L2(S¢~1). From (C-1), and as y, ~ —n as n — +00
by (1-18), the last term on the right-hand side of (C-12) is

SO AMPRM < Y A+ PP+ 0,uP)?
n,1<k<n n,1<k<k(n)
2 =12
= C(||”|sd—1(1)||H1 + | Vusa—1y '”||Lz)
< C(lusa—1ll7 2 + 1 Vuysa—1yll72)-



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 235

We insert the two above equations into (C-12) and obtain

+o00 H(n) (n, k)|2

Z / d—l dy
n,1<k<n
oo |u(n’k)|2 d—1 ’ 2 2
> C() Z —agra V. Ay =C &) (Il ga=1 1172 + IV ga=1(1)172).-
n,1<k<n 1 Y

In turn, we insert this identity into (C-10) using (C-11) to obtain the desired estimate (C-9).

Step 2: subcoercivity for H. We will prove the estimate
H 2
/ Hul
Rra 1+4|x|24

| Au|? / |Vu|? [ u?
>C($ —d ——d ——d
= ()(/Rd e P oo kPP X L Qe

u2

—C/(S)(||u|sd—1(1)||i2+||(vu)|sd—1(1)||iz+/Rd W—i_”unzl([gd—l(l)))- (C-13)

Away from the origin, the Cauchy—Schwarz and Young inequalities, the bound V + pcgo_1 |x|72 =
O(|x|727%) from (2-2) and (C-9) give (for C > 0)

/ | Hul? dx:/ [Hu+(V + pebs Pl
Ra\gd (1) |x|%4 RA\B4 (1) |x |24
>C/ |Huf? dx—C// —|u|2 dx
T Jra\gaqr) |x[%4 Rd\pd (1) |x|2qT4+2¢
M2
> C(6)

Ra\pgd (1) 1 + |x|24+4
2
— G Nuysa-snyPa + (Vi) a1y 22 + / W)
L L Ra\gd(1y | + |x[24T4+20

Close to the origin, using Rellich’s inequality (B-3),

1
/ |Hu|2dsz/ |Au|?dx — = lu|? dx
B4(1) B4 (1) C Jpa)

lu|? 1
>C / —dx — ||u|| 1(gd—1(1))-
sy X H1(B4-1(1))

Combining the two previous estimates we obtain the intermediate identity

/ U ez c) L 125+ (V) 12
re 143477 =7 Jpa [el# (14 |x[27) sz el

u2 d 2
+ pa Lt |xPa+a+2a XHlullzr 1 ga-11y) |-
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Now, as H = —A + V with V = O((1 + |x|)™2), using Young’s inequality, the above identity and (B-4),
for ¢ > 0 small enough (depending on &) one has

/ |Hul|?
——dx
R4 1+|X|2p
Hul? Hul?
:(1—8)/ ldx|Hu|2dx+8/ la’x
a 14 |x|2P re 1+ |x|2P
2
> 1_8c5/ v
1=9CO J b+ v &
2
2 2 u
= C®)(Isorn B + 100 B+ [ 5T 4+ il i)
Aul? Vul?
2 R4 1+|X|2q R4 1+|x|211
2

u
z (1=6)C0) /R S e 4
2

u
—C'(8) (||u|sd—1(1) 172 + (Vi) sa—101y 17 2 +/ me dx + ||u||H1(Bd—1(1)))

|9Fu |
+C(Q)_1<;<2/d de—eC (Q)[d de
u? C(q)s [0Hu|?
>C(S _—
st ( ) Rd |x|4(1+|X|2q) 1<|X|:<2/d 1+|x|2q+4—2,u

2
/ 2 2 u
—C'(3) (||u|sd—1(1)||L2 + (Vi) sa—1pyllz2 + /Rd T3 xpatataa dx + ”u”Hl(Bd—](l)))’
which is the identity (C-13) we claimed.

Step 3: coercivity for H. We now argue by contradiction. Suppose that (C-8) does not hold. Up to a
renormalization, this means that there exists a sequence of functions (1), en such that, for all n,

2 2 2 2
n
[ | H up| 0 / | Auy| n [Vuy| n |tn| 1 (C-14)
s = 1. -
re 14 |x|24 T e TR IXP4 X214 x[29) x4 (1 + [x[?9)

Up to a subsequence, we can suppose that u, — Uy € Hl%c (R%), the local convergence in L? being
strong for (U, )nen and (Vuy)nen, and weak for (Vzun)neN. Then (C-14) implies

2 2
2 |un| 2 ool
||un||H1(Bd—l(1)) + Ad 1 + |x|2q+4+a - ||u00”H1(Bd—1(1)) + /;‘{d 1 + |x|2q+4+a .

Now u,, converges strongly to s in H* (8% (0, 1)) for any 0 < s < 2. The trace theorem for Sobolev
spaces ensures that

) sa—1 1y l17 2 + 1 (Vn)sa—1y 172 = (o) jsa—11)[172 + 1(Vitoo) | sa—1(1y 17 -
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We insert the three previous identities into the subcoercivity estimate (C-13) yielding

|uoo|2
1(to0)sa-1(1y 172 + (Vo) sa—1(1)ll72 + /Rd T |xpavata + ||uoo||12q|(3d(1)) # 0,
which means that o, 7 0. On the other hand, the lower semicontinuity of norms for the weak topology
and (C-14) imply
Huoo == 0.

Hence u is a nontrivial function in the kernel of H, and is smooth from elliptic regularity. It satisfies
the integrability condition (still from lower semicontinuity)

|A7/‘oo|2 |Vuoo|2 / |uoo|2
d d ———dx < .
/Rdl—l—|x|2‘1 x+1—|—|x|2‘1+2 X+ x <400

We now decompose U« into spherical harmonics, Uoo =, 1<k < k(n) ugé’k) Y (4 k)» and will show that for
(k) J1<k=<

each n, k one must have ug,"~ = 0, which will give a contradiction. For each n, k, the nullity Hueo =0
implies H®ul® where H® is defined in (1-36). By Lemma 2.3 this means oo = aT ™ + T
(n,k).

for a and b two real numbers. The previous equation implies the following integrability for u o

By (2-7), as re y_d %2 does not satisfy this integrability at the origin whereas TO(") is regular, one
must have » = 0. Then, if n > ng + 1,

|T(n)|2
0 d—1 __ ,,—2yn—2q—5+d
1+ y2q+4y y ’

From the assumption on n¢ and (1-18), one has
2w —2q—5+d =—=1-2(q+ 24 Yngt1— %) +2(Vnp+1—¥a) > —1,

implying that |T0(") 12/(1 + y24+4)y9=1 is not integrable on [0, +00); hence a = 0. If n < ng then the
orthogonality condition (C-7) goes to the limit as CIDg,;’k) is compactly supported and implies
(u®, o9y = o,
which, in spherical harmonics, can be rewritten as
0= @R, %Py = (1, & (k).
However, from (4-3) this in turn implies @ = 0. We have proven that for all n, k ugé’k) =0; hence Uy =0,

which is the desired contradiction, as we proved earlier that 1, is nontrivial. The coercivity (C-8) must
then be true. o

If one adds analogous orthogonality conditions for the derivatives of u and uses a bit more the structure
of the Laplacian, one gets that the weighted norm || H? /(1 4 |x|?)u|| ;> controls all derivatives of lower
order with corresponding weights.
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Lemma C.3 (coercivity of the iterates of H). Let i be an integer with 2i > o such that for alln € N
satisfying my + 8, <i one has 8§, # 0. Let no be the lowest integer such that mpy4+1 + 8py+1 > i. Let
u e H2 0 HO(RY) satisfy (where ®0X) is defined in (4-1))

(u, H Ky =0 for0<n<ng, 0<j<i—my—1, 1<k <k(n). (C-15)
Then there exists a constant § > 0 such that for all 0 < §’ <6,
|92 ? / |H'u|?
C(8,i . dx < — dx, C-16
( )m%/ U 22 = o T o 1

which in particular implies that

]l =i EC(5,i)(/ |Hiu|2dx) . (C-17)
R4
Proof. Step 1: equivalence of weighted norms. We claim that for all integers j,
Hiu=(8Yut+ ), fjud'u (C-18)
[n|<2j-2

for some smooth functions f;, having the decay [0 f; .| < C(1 4 |x|?>/~I#I+IK')=1 This identity is
true for j = 1 because Hu = —Au + Vu with the potential V' being smooth and having the required
decay by (2-2). If the aforementioned identity holds true for j > 1 then

H/H = (—A+ V)((—A)ju + > f},ﬂaﬂu)
[u]|<2j-2

=N T+ VEA U+ YD (A V().
[nl<2j-2

and hence it is true for j 4+ 1 since V' is smooth and satisfies the decay (2-2). By induction it is true for
all j € N and (C-18) is proven. Then (C-18) implies that

|H'u |2 / | 9|
<C . dx. C-19
/Rd 1+ |x|25 | % al+ |x|4l—2lu|+23’ X ( )
w i

Step 2: weighted integrability in H2 N H°. We claim that for all functions u € H2 N H° (R%) and §' > 0,

Iy |2
Z / |9u| dx < +o00. (C-20)

al4 |x|4z—2|,u|+28’
ul=2i

Indeed, let u be a ||-tuple with || < 2i. We split into two cases. First if || <o, as 0 < % and 2i > o,
the Hardy inequality B.3 yields

|9/ ? |94 |2 R
—_— < f
[Rd 1 |x[4i=2lpl28 d = pa 1+ [x[2@—Iu) dx = Cllully, <+oo
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and we are done. If 0 < j1 < 2i then by interpolation v € H!*/(R?) and then

U< [ o
ot T e [F2ll 2y x < [ |0*u|*dx < +o0.

Thus (C-20) holds, which together with (C-19), implies, for all §’ > 0,

! HuP? VE TP ol
Z g 14 |x |44 28 X+ | + [x[4HT—4]+2+25 X < +00. (C-2D)
Jj=0
Step 3: intermediate coercivity. Let § = min(50, ooy Bng+1s %) if §04+1#0and § = min(&), ey Ongs %)

if 8,0+1 = 0. The conditions on the §, of the lemma imply § > 0. We claim that for all integers 1 </ <i,

Hl—l 2 VHI—I 2 Hl 2
Vel T )
R

C@) Rd 1+|x|4i—4(l—1)+28’ +C0) rd 1+ |x|4i—4l+2+28’ = Jra 1+ |x|4i—4l+28/'

We now prove this estimate. We want to apply Lemma C.2 to the function H'~1u with weight ¢ =
8" 4+ 2(i —1). To use it, we have to check the orthogonality and integrability conditions that are required,
and the conditions on the weight.

Integrability condition. It is true because of (C-21).

Condition on the weight. For the case n > ng + 1, by (1-23) one computes
|5,+2(i—1)—(%—)/n—2)} =8'=28n+1—2(Mng+1—1)—2(1=1)=2(Mpn+8n—mMng+1—8no+1)|. (C-23)

One has 2(I —1) >0as > 1 and 2(my + 6, —Mpy4+1—0ny+1) = 0 because (m, + 6,)n is an increasing
sequence from (1-22) and (1-18). For the subcase 6,,4+1 = 0, as mu,+1 > i and mp,41 is an integer,
2(mpg+1—1) > 2. Therefore —2(mpy4+1—1i) —2(1 —1) —2(mp + 8p —Mpy4+1—6ny+1) = —a fora > 2,
and inserting it into the above identity as 0 < §’ < 1 gives

|8 +2G =)= (§—ym=2)| =18 —a| =8 =6.

For the subcase §,y+1 # 0, we have 8’ — 28,041 <8 —2849+1 < —0Ono+1 < —8. Moreover, mp,+1 > i
and —2(mp41—1i) —2(1 = 1) =2(mp + 8n — Mng+1 — dnp+1) < 0, implying

8" = 28pg+1—2(mpgr1 —1) =2(1 = 1) = 2(mp + 8p —Mpg+1 = 8ng+1) < 8" —28p4+1 < =6,
and therefore by (C-23) this yields in that case
16" +2( = 1) — (% —yn —2)| = 6.
In both subcases one has |8’ +2(i —1) — (4 —yu— 2)| = 8. For the case n < n,
18/ +2G —1) = (4 —yn—2)| = |8/ =280 +2G =1 + 1 —mp)|.

In the above identity, 2(i —[ + 1 —my,) is an even integer, and §' — 28, is a number satisfying §' — 28, <
§—28, <—§& and we recall that § < 1, and 8’ —26,, > —28,, > —1. Therefore |8’ =26, +2(i — +1—my)| >,
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yielding
16/ +2G —1)— (4 —yu—2)| > 6.

Therefore, for each n € N, we have |§' +2(i —1) — (4 —y» —2)| = 8.
Orthogonality conditions. Let ny = ng(I) € NU {—1} be the lowest number such that

By construction one has ng < ng. If nj = —1 then we are done because no orthogonality condition is
required. If ny # —1, let n be an integer, 0 < n < ng. By the definition of ng,

20 =1+ 1)+ 8 —2(mp +8,) > 0,

which implies 0 </ —1<i—m, —1 as §' — 28, <8 — 268, < —8, < 0. The orthogonality condition
(C-15) then gives, for any 1 <k < k(n),

(u, H'71o0R)y — o,
We have then proved that for all 0 <n < ng, 1<k <k(n),
(H' 1, @0Ky — 0,

which are the required orthogonality conditions.

Conclusion. One can apply Lemma C.2 to H =1y with weight ¢ = 2i — 21 + §', giving the desired
coercivity estimate (C-22).

Step 4: iterations of coercivity estimates. We show the following bound by induction on / =0, ...,
|Hlu|2 / |9#u|?
>c(6,i E . dx. C-24
/Rd 1+ |x|23’ ( )o<| L 1+ |x|4l—2u+28’ ( )

This property is naturally true for / = 0. We now suppose it is true for / — 1 with0 </ —1 <i — 1. From
the formula (C-18) relating Al to H!, we see that (using the Cauchy—Schwarz and Young inequalities)

H? A |9 ul?
wa |+ |x[4G-D+28 = (@) gt 14 |x[AG-D+28 D Ra 1+ [x[H—2Iul+28

0<|u|<21—2
Al 2 Hiul?
> () Ll ——y L
rd 14 |x|4@=D+2 rd 1+ |x|?

where we used the induction hypothesis (C-24) for [ — 1 for the second line. We now use (C-24) and
(B-4) to recover a control over all derivatives:
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Aly|? g Al=1y,2 . Al=1,2
>C(@i) E ok
Rd 1+ |x[4E=D+28" = ¢ (L S T D2 - ga |+ [x|4G-D+4
<|ul<

Al—lap, 2 Hl—l 2
> C(i) Z/ | . ”l_ —C'(8,1) ol

4G—-(1-1 2 287
o, Jra T x A= 0=D) =20 e 1+ x|

|1 AL=2gHy |2
>C(i) Z Z [d 1 + |x[4G—U=D)+4-2|u|-2|w|
0<|ul=21=|w|=2

_C,(i) |Al_2u|2 _C’((g i) |Hl_1u|2

Rd 1+ |x[40=D+8 © 0 ma 14 X2
> |Al—28uu|2 |Hl 1u|2
(i) Z Ra 1+ [x[2PHAG—0—2) =21 ) ra 1+ [x2

0=l <4

a,uu|2 Hl 1u|2
> C(7) Z /d 1+ |x[2p+4= 2M+25/_C @, )/d 1+|x|25’
0<|u|=<2l

Inserting this last equation into the previous one we obtain

Hl 2 Al_2 a2 Hl—l 2
/ A u] >C6.0) Y / AT s gy [ M
R

¢ 14 |x|4G-D+28 = o<y Jra TF |x|2PHa=2u rd 14 |x[28’

This, together with (C-22), gives that (C-24) is true for /. Hence by induction it is true for i, which is
precisely the estimate (C-16) we had to show and ends the proof of the lemma. O

Appendix D: Specific bounds for the analysis

This section is dedicated to the statement and the proof of several estimates used in the analysis.

Lemma D.1 (specific bounds for the error in the trapped regime). Let ¢ be a function satisfying (4-25)
and (4-11). We recall that E; and &5, are defined by (4-9) and (4-7). Then the following bounds hold:

(i) Interpolated Hardy-type inequality. For 1 € N? and q > 0 satisfying o < || +q < 2s1

|8M8|2 2SL2—(|U«|+(1) |/.£|+q—rr
Sy, —0 Sy —0
[ T @ =cons T e ®-1
(ii) Weighted L bound for low order derivative. For 0 <a <2 and u € N% with |u| < 1,
e 1+0(-%) 1
<C(Ki, Ky, M)\/& L —. (D-2
H T [y | oo = CK1 K2 MDVES (G-t G rarmarro(ze) O
(iii) L bound for high order derivative. For u € N? with || < sz,
BLSHIZIR 0 M o)
[0%e]7eo < C(M)E; =T L, ot 2, (D-3)



242 CHARLES COLLOT
Proof. (1) We first recall that from the coercivity estimate (C-16) one has
IVoel}> =&, IVPFel}s < CM)|[H ¢||7, = C(M)Ezs, .

If the weight satisfies g < %, then the inequality (D-1) claimed in the lemma is a consequence of the
standard Hardy inequality, followed by an interpolation:

2SL2—(|M|1+Q) 2qull-i-q—cr
2 S, —0O 2 S, —0
S CIVHI e, <CIVell, =57 IV2el ™

L

oHe
1+ |x|4

2sy —(uly+q) |l +g9—0o

fC(M)go- 257, —0 5 2s7,—0 ]

287,

If the potential satisfies ¢ = 257, — ||, then the inequality (D-1) claimed in the lemma is a consequence
of the coercivity estimate (C-16):
2

=< C(M)€ZSL .
L2

e
1+ |x[4

For a weight that is in-between, i.e., % < gq < 2s;, — |u|1, the inequality (D-1) is then obtained by
interpolating the two previous ones, as

c=b b—a
lef? ( lef? )—( lef? )—
1—|—|x|2b 1—1—|x|2“ 1_|_|x|2c :

(ii) As the dimension is d > 11 and L > 1 is big, one has d*¢/(1 + |x|?%) € L*° with the following
L2

bound (using the bound (i) we just derived):
7 Iz Iz
2] e[ )] (),
Loo 1+|X|a 1+|X|a L2
< C)(IVEHHatlihg) o Vo +atithtzg )
2sp —(a+luly+d/2—2)  a+luly+d/2—z—0  2sp—(a+lul +d/24+2)  atlul +d/2+z—0

14|x|@
< C(M, Z)(gg 257, —0 £ 257 —0 +50 257 —0 £ 257 —0 )

28y, 25y

for z > 0 small enough. We then let z; be so close to 0 (of order L~1) that its impact when using the
bootstrap bounds (4-25) is of order sTIZ (since the constant C(M, z1) explodes as z; approaches 0, we
cannot take z; = 0, but z; very close to %

(4-25) then yields the desired result (D-2).

is enough for our purpose). Inserting the bootstrap bounds

(iii) It can be proved exactly the same way we did for (ii). O

Lemma D.2 (a nonlinear estimate). Letd € N, a > 0 and b > % Let Q@ C R? be a smooth bounded
domain. There exists a constant C > 0 such that for any u, v € H™*@0)((y) 24

hevllac) < C (lullga@ vllae ) + el mo @) vl Haw)- (D-4)

24 - B (O - d
The product uv indeed belongs to H%(2) as H max(a )(R) is an algebra since b > 5.
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. . d d 1
Proof. Without loss of generality one assumes 5 <b < 5 + 7,
b:=% 48, with0o<8<1. (D-5)

Indeed, if (D-4) holds for all b € (% % + %] then for any b’ > % + %, applying (D-4) to the pair of
parameters (a, < + 1) and using the fact that £ | grarz+1/aey < If Lz () for any f € Hb(Q) gives

that (D-4) holds for the pair of parameters (a, b’).
Step 1: a scalar inequality. We claim that for all (vi,vp) € [0,1]® with vy + v, > 1 and for all
(A1, A2, A3, A1) € [0, +00) satisfying A1 < Ay and A3 < A4,
AVATVIARALT < AqAa 4 Aads. (D-6)
We now prove this estimate. Since 1 —v; —v; <0and 0 <1—v, <1, one has
V(x,z) €[l,+00) x [0, +00), xlvimva v < Jl=va oy o

Let (A1,A2,13,44) € [0, +00) satisfying 0 < A; < Ay and 0 < A3 < A4. We apply the above estimate
tox = % >1and z = i;ﬁ;‘, and multiply both sides by A,A3, yielding the desired estimate (D-6)
after simplifications. If A; = 0 or A3 = 0, (D-6) always holds. Consequently, (D-6) holds for all

(A1, A2,A3,A4) €]0, +00) satisfying 0 < A1 <A and 0 < A3 < A4.

Step 2: proof in the case @ = R? and a > b. We claim that for u, v € H*(R%),

vl gagay < C (1ull gragay 10| o gay + 1l o gay 10| gra gay) - (D-7)

We now show the above estimate. Let u, v € H*2 (Rd ). First, one obtains an L? bound using Holder and
Sobolev embedding (as b> %)

luvllL2gay < lullL2@e) V] Loo@a) < Cllull gagay 10| o ga)- (D-8)

Secondly, one decomposes a = A + §,, where A := E[a] € N is the entire part of @ and 0 < §, < 1.
Using the Leibniz rule one has the identity

1990 2oy € 3 IV @ 110%20) 2 . (D-9)
(w1,u2)eN?
i1 |+Ipal=4

We fix (ju1, 2) € N2? with |p1| + |2 = A in the sum and aim at estimating the corresponding term.
We recall the commutator estimate

V3% @1 ud"2v) |2 < IIVEHFSay || oy 0420 Loy + | VI#21T8a ]| s (|07 0| oo (D-10)

for %+é = pi,+p% = %, provided 2 < p1, p» < +ooand 2 < g1, g» < +00. We now chose appropriate
1 2.
exponents p; and p; in several cases.

Case 1. |p2| = 0. Then |p1| + 84 = a and using Sobolev embedding (as b > %),

19114802 gy 18720l oo gty < C 1l gga ey 190 g7 gy (D-11)



244 CHARLES COLLOT

Case 2. 1 < |uz2| <a— % and |u1| + 84 < b. Then b < |uz| + % < a by (D-5) and using Sobolev
embedding, one computes

VB30 2ay 19420 ]| oo ray < Cllull o ey 10 | ra ey (D-12)

Case 3. 1<|u2|<a—d andb<|u1|+8 Thenb<|u2|+d <aby (D-5) and b < |u1|+6a <a We
let x := mm(‘g2 ,a—|pt2] —£) > 0. Using Sobolev embedding, interpolation and (D-6) (since b > 4 + x
and 1] + |p2| + 82 = a), one computes

1
VIS o ay 10720 oo ay < C N1l s 480 ey [V piicatbarasx gy

a—|uyl—éa Iy l+8a—>b a—lupl—d/2—x lupl+d/2+x—b
<Clull ity 1l gty Wl 1l asy
< C(lull gaga)llvll s ey + el go @y 10| ragay)- (D-13)

Case 4. a—% <|m2| <a.Letx:= %min(a— |itl2, 6p) > 0. We define p1, g1 and s by

1.1 a-x—lpf 1 _1_ 1 . _d
g1 2 d o 2 qa a1
One has 1|+ 8, +5 = % + x < b, and, using Sobolev embedding,
IVt +8ay || o (10420 Loy < C llull ey 1a-+5 10 [ ra— < Cllull go l|v]| e (D-14)

1 1 _1

and o~ + - =3, p1# +oo.
Case 5. |u2| = a. Then |p1| 4 8, = 0 and using Sobolev embedding (as b > %),

IVP 5 u | oo gy 1920l L2ty = Cllull o @y 19 ]| . (D-15)
Conclusion. In all possible cases, by (D-11)—(D-15) there always exist p1, 41, p2,q2 € [2, +00) with
Pl,pz#-i-OO,%-l-qu:%and
IV 5| oy gy 19720 Lt ey + IV | Loz [| V20|
= C||“||Hb(Rd)||U||Ha(Rd) + C”“”H“(Rd)”v”Hb(Rd)’

where the estimate for the second term on the left-hand side of the above equation comes from symmetric
reasoning. We now come back to (D-9), and apply (D-10) and the above identity to obtain

IV*@u)li2@ay < Clullge ey IV gagay + Clull gaga)y 1V go @a)-

The above estimate and (D-8) imply the desired estimate (D-7) by interpolation.

Step 3: proof in the case Q2 = R? and a < b. The proof is similar and simpler and we do not write it
here. Therefore, (D-7) holds for all ¢ > 0 and b > i

Step 4: proof in the case of a smooth bounded domain 2. There exists C > 0 such that for any
f € H™x@.b)(Q)) there exists an extension f e H™x(@D)(R4) with compact support, satisfying f f
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on €2 and :
E”f”HC([Rd) <Ifllae@) =CIlflge@ey, ¢=a,b;

see [Adams and Fournier 2003]. Let u, v € H™*(@.0)(Q2) and denote by i and 7 their respective extensions.
Using (D-7) and the above estimate then yields

[uvllga@) < 1U0] gaga)
= C(||ﬂ||Ha(Rd)||5||Hb(Rd) + ||ﬁ||Hb(Rd)||5||Ha(Rd))
< CC*(lullaa@ vl ao@) + lullms@)llviiza@)

and (D-4) is obtained. O

Appendix E: Geometrical decomposition

This section is devoted to the proof of Lemma 4.3.
Lemma E.1. Let X denote the functional space
0,1
X = {ue L®B0,4M)): (u— 0, HO\") > |u— Qll poosa 0,30y} - (E-1)

There exists i, K > 0 such that for all u € X N{|[u — Q|| .o (5d (0,a0m))) < K} there exists a unique choice
of parameters b € R* with b§0’1) >0, A >0and z € R such that the function v := (t_ju) — Qb satisfies

(v, HHOUF) =0 for0<n<ng, 1<k <k(n), 0<i <L, (E-2)
and such that
A—1+zl+ Y P <k (E-3)
(n,k,i)eT

Moreover, b, A and z are Fréchet differentiable® and satisfy
k
A=1l+lzl+ D0 15"01 < Kllu = Qllsoseo.3m)- (E-4)
(n,k,i)eT
Proof. We first define the application £ as
£: L®(BY(0.3M)) x (0, +00) x R T# — RIHHHT,

- - . E-5
(u, A, 2,b) —~ (((TEM)L—Q—(XI;, H’CDI(‘Z’k))), where 1 <k <k(n), 0<n<ng, 0<i < L,. (E-5)
x

Then & is C°°. From the definition (3-7) of «, and the orthogonality conditions (4-3), the differential of &
with respect to the second variable at the point (0, 1,0,...,0) is the diagonal matrix
(TO(O)’ M To(o)> Idz +1
DWPEQ,1,0,...,0)=— , (E-6)
(T8 e T") 1,

25For the ambient Banach space L°°(Bd (0,3M)).
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where Idy, is the L, x L, identity matrix. D®@E(Q,1,0,...,0) is invertible for M large by (4-3).
Consequently, from the implicit functions theorem, there exist «, K > 0, such that for all
ue X N {llu—0Ollpoosaosmy <k}

there exists a choice of the parameters A= )Nt(u), Z =1Z(u) and b= E(u) such that

T 5 = 7 (n.k
E A2 b) =0, [A-1+2+ Y 150 < Kllu— Ol aany (E-7)
(n,k,i)eT

and it is the unique solution of & (u, X2, I;) = 0 in the range
A—1+1E+ > B9 < k.
(n,k,i)eT
Moreover, they are Fréchet differentiable, again from the implicit function theorem. Now, defining
A =1/A, b =b and z = —Z, this means by (E-5) that the function w := (t—;u)) — Q — o, satisfies
(w, H'oW*y =0, for0<n<ng, 1<k <k(n), 0<i <Ly

Finally, still from the implicit function theorem, from the identity for the differential (E-6), the definition
(E-1) of X and (4-3),
bV = —[DPg(0.1.0.....0]7 (1. 1.0.....0) + o(||u — Oll oo (s 311
u—Q. H' oY
= (oQ) © o0 ') >0
(TO » XM T() )

where the o(-) is as k — 0, and the strict positivity is then for x small enough. Consequently, in that

case Q~b =0+ X (pO-Dy=1+m /29 is well defined, and one has (b§0’1))_% > 2M for k small enough.
1 ~
Thus, for v := (1—;u)) — Op,

(v, H®WR) = (5, H ®WH) =0 for0<n <ng, 1 <k <k(n), 0<i <Ly

because the support of v — 7 is outside B4 (0,2M ). One has found a choice of the parameters A, b and z
such that bio’l) > 0 and (E-2) and (E-3) hold. This choice is unique in the range (E-3) and the parameters
are Fréchet differentiable since under (E-3), they are equal to the parameters given by the above inversion
of &. |

Lemma E.2. There exist k*, K > 0 such that the following holds for all 0 < k < k™. Let O be the open set of
L%°(B2(0, 1)) of functions u satisfying (4-4). For eachu € O there exists a unique choice of the parameters
A€ (O, ﬁ), zeBd ((), %) and b € RT such thatbgo’l) >0andv=(1—;u),—0p € L“(%(Bd (0, 1)—{2}))
satisfies>®

(v, HHOWF) =0 for0<n<ng, 1<k <k(n), 0<i <L, (E-8)

26The following assertions make sense as v is defined on %(Bd (0, 1) —{z}), which indeed contains B4 (0,2M) since
0<A< W and |z] < %, and as CIDI(\Z’k) is compactly supported in B4 (0,2M) by (4-1).
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and

(n,k) =
Z |bl' | + ”v”LOO(%(Bd(O,I)—{z})) < Kk. (E-9)
(n,k,i)eT

Moreover, the functions A, z and b defined this way are Fréchet differentiable on O.
Proof. Let K and k¢ be the numbers associated to Lemma E.1.
Step 1: existence. Let
(A, 2) € (0, gi7) x BY(0, 1) (E-10)

be such that

K
u— = oo < s
[ QZ,% Iz (B4(1)) i%

0,1
|—zu); = Qll oo annyy < ((—zw); — Q. HEY "),
which exists by (4-4). We define w := (t_zu)3. It is defined on the set (1/ i)(B(l) — Z), which contains
BL(IM)as0< A < ﬁ and |z| < %. From this fact and the above estimates, w satisfies
0,1
[w—QllLeBamy <k, |w—0llpeomiamy < (w—0, H‘D](w ). (E-11)

Thus for x small enough, one can apply Lemma E.1: there exists a choice of the parameters z’, b’ and A/
such that v/ = (t—yw) — Q p satisfies (E-8) and bl(o’l) > 0. This choice is unique in the range

W1+ + > P <k (E-12)
(n.k,i)eT

Moreover, the estimate

k
W =1+ 121+ > B < Kllw = Qll o s 0,30y < KK
(n,k,i)eT

holds. Now we define
b=b/, z=:+xz, A=A\ (E-13)

and v = v’. One has then bgo’l) > 0, and from (E-10) and the above estimate,

> M<Kk, lzl<t 0<i<
(n,k,i)eT

for k small enough. From the definitions of w, v’ and v one has the identity
u=(u+ Qb)z L, with v satisfying (E-8).
From (3-7), (3-29) and the above estimate,
2 ~
1ol oo (13 (1)—zy) = A7l =72(Qp 1)l oo e 1))

2 2 ~
<AP T |u _TE(Q%)”LOO(B‘J(I)) + AP ||T2(Q%) —2(Qp DllLeo@ery = CKk
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for some constant C > 1 independent of the others. Therefore, one takes K =CK , and the choice of
parameters A, z and b that we just found provides the decomposition claimed by the lemma and the
existence is proven.

Step 2: differentiability. We claim that the parameters A, b and z found in Step 1 are unique; this will be
proven in the next step. Therefore, from their construction using the auxiliary variables A and Z in Step 1,
and since the parameters A/, z’ and b’ provided by Lemma E.1 are Fréchet differentiable, A, b and z are
Fréchet differentiable.

Step 3: uniqueness. Let b, A, 2 be another choice of parameters with 550’1) >0,0<A< ﬁ and |z| < %
such that (E-8) and (E-9) hold for 0 = (t_zu) i Op. The function (_zu) 5> Where A and  were defined
in (E-10) in the first step, then satisfies the bound

[(z—zu)5 — OllLoB3M)) <Ko

for k small enough by (E-11), and admits two decompositions

(t—zu); = (Qp + V)1, = (05 + )z

X

ol

such that v and v’ satisfy (E-8). By (E-12), the first parameters satisfy
W =1+121+ > 15" < Ko

(n,k,i)eT
We claim that the second parameters satisfy
A 2% R
7—1‘+ Y 1B < Ko, (E-14)
A (n,k,i)er

which will be proven hereafter. Then, as such parameters are unique under the above bound by Lemma E.1,
one obtains .
A1 z-2 ,

AN

implying that A=A, 2=zand b =b, where A, z and b are the choice of the parameters given by the
first step defined by (E-13). The uniqueness is obtained.

Proof of (E-14). From the assumptions on l;, A and Z, the definition of Q~ p (3-29) and (E-9), for « small
enough we have

CKk
lu—0; 1llpeeaqy = 7=
z, 5 ILee(B4(1) /\%
From (E-10) one also has
K
lu—0s 1llpecsaqy) = 2
zZ, 5 ILoo (B4 (1) /\%
From the two above estimates, one deduces that
K CKk

(E-15)

s 1— 0= oo =< .
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Assume that A < A. Then, since Q is radially symmetric and attains its maximum at the origin, and
2 e B4(0,1) because |2| < %, the above inequality at x = Z implies

1 1
0 ———)=0:1(2)—-0;1(Z
Q()(ipz_l k) 0:1()=0:1 )
<0:1()-0:10)
=10: 1)~ 0: 1 ()]
~ 1 1
ECKK(~ 2 +T)’
AT AT
which gives
1 1 ~ 1 1
P ) SCKK(~ 2 +T)'
Ap=T  Ap-T Ap=T  Ap-T

The symmetric reasoning works in the case A > X and one obtains that in both cases

~ 1 1
SCKK(~ —+—— )
P =

Basic computations show that for ¥ small enough the above identity implies

1 1

A~ 2 ~
Ap—T AT

1—K <CKrk or A=1(1+0()),

obtaining the first bound in (E-14) for « small enough. We insert the above estimate into (E-15), yielding

CKx
oo (Il + ||Q2,% - QQ,%”LOO(Bd(l))” <=
A P—1

_Q2

||Q2,% =05 tllpeoay = 19z,

1 1 1
%3 X '3

which implies in renormalized variables (as |2| < % and A < 8LM)’

||Q - 7232 QllLoo(Bd(O,ZM)) < CEK

As Q is smooth, radially symmetric and radially decreasing this implies

z—2Z

<CKk or 2=Z2+M10()

and the second bound in (E-14) is obtained. O
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