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NONRADIAL TYPE II BLOW UP FOR
THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION

CHARLES COLLOT

We consider the semilinear heat equation in large dimension d � 11

@tuD�uCjuj
p�1u; p D 2qC 1; q 2 N;

on a smooth bounded domain � � Rd with Dirichlet boundary condition. In the supercritical range
p � p.d/ > 1C 4

d�2
, we prove the existence of a countable family .u`/`2N of solutions blowing up at

time T > 0 with type II blow up:
ku`.t/kL1 � C.T � t /

�c`

with blow-up speed c` > 1
p�1

. The blow up is caused by the concentration of a profile Q which is a
radially symmetric stationary solution:

u.x; t/�
1

�.t/
2
p�1

Q

�
x� x0

�.t/

�
; �� C.un/.T � t /

c`.p�1/

2 ;

at some point x0 2�. The result generalizes previous works on the existence of type II blow-up solutions,
which only existed in the radial setting. The present proof uses robust nonlinear analysis tools instead,
based on energy methods and modulation techniques. This is the first nonradial construction of a solution
blowing up by concentration of a stationary state in the supercritical regime, and it provides a general
strategy to prove similar results for dispersive equations or parabolic systems and to extend it to multiple
blow ups.
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1. Introduction

1A. The semilinear heat equation. We study solutions of the semilinear heat equation (NLH)�
@tuD�uCjuj

p�1;

u.0/D u0; uD 0 on @�;
(1-1)

where u is real-valued, p is such that the nonlinearity is analytic, that is p D 2qC 1, q 2N, and �� Rd

is a smooth bounded open domain. For smooth enough initial data u0 satisfying some compatibility
conditions at the border @�, the Cauchy problem is well posed and there exists a unique maximal solution
u 2 C

�
.0; T /; L1.�/

�
. If T <C1, the solution is said to blow up and necessarily

lim
t!T
ku.t/kL1.�/ DC1:

This paper addresses the general issue of the asymptotic behavior as t ! T . In the case �D Rd, there is
a natural scale invariance, namely if u is a solution then so is

u�.�
2t; x/ WD �

2
p�1u.�2t; �x/: (1-2)

The Sobolev space that has an invariant norm for this scale change is

PH sc .Rd / WD

�
u W

Z
Rd
j�j2sc j Ouj2 d� <C1

�
; sc WD

d

2
�

2

p�1
; (1-3)

where Ou stands for the Fourier transform of u. Two particular solutions arise, the constant-in-space
blow-up solution

u.t; x/D˙
�.p/

.T � t /
1
p�1

; �.p/ WD
�
1

p�1

� 1
p�1
; (1-4)

and the unique (up to translation and scale change) radially decaying stationary solution Q (see [Li 1992]
and references therein) solving the stationary elliptic equation

�QCQp D 0: (1-5)

1B. Blow-up for .NLH/. Being one of the model nonlinear evolution equations, blow-up dynamics
has attracted a great amount of work (see [Quittner and Souplet 2007] for a review). In particular, one
is interested in the description of the solution near the set of blow-up points, that is, the points x for
which there exists .tn; xn/! .T; x/ such that ju.tn; xn/j ! C1. A comparison argument with the
constant-in-space blow-up solution (1-4) implies the lower bound

lim sup
t!T

ku.t/kL1.T � t /
1
p�1 � �.p/

and leads to the following distinction between type I and type II blow up [Matano and Merle 2004]:

u blows up with type I if lim sup
t!T

ku.t/kL1.T � t /
1
p�1 <C1;

u blows up with type II if lim sup
t!T

ku.t/kL1.T � t /
1
p�1 DC1:
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The ODE blow up (1-4) does not see the dissipative term in (1-1) whereas type II blow up involves an
interplay between dissipation and nonlinearity, and therefore its existence and properties may change
according to d and p. In the series of works [Giga 1986; Giga and Kohn 1985; 1987; 1989; Giga et al.
2004; Merle and Zaag 1998; 2000], the authors show that in the energy subcritical range 1 < p < dC2

d�2
,

all blow-up solutions are of type I and match the constant-in-space solution (1-4):

lim sup
t!T

ku.t/kL1.T � t /
1
p�1 D �.p/:

In the energy critical case p D dC2
d�2

, d D 4, Schweyer [2012] constructed a radial type II blow-up
solution, following the analysis of critical problems [Merle and Raphaël 2005a; 2005b; 2006; Raphaël
and Schweyer 2013; 2014; Raphaël and Rodnianski 2012; Merle et al. 2013]; see also [Filippas et al.
2000]. In that case, the scale invariance (1-2) implies that there exists a one-dimensional continuum of
ground states �

1

�
2
p�1

Q

�
x

�

��
�>0

:

The properties of the ground state (1-5) then allow the existence of a solution u that stays close to this
manifold,

uD
1

�.t/
2
p�1

Q

�
x

�.t/

�
C "; k"k� 1;

such that �.t/! 0 for some time T > 0, which makes the solution blow up. This blow-up scenario is not
always possible as it heavily relies on the asymptotic behavior of the ground state, and is impossible in
dimension d � 7 [Collot et al. 2016].

In the radial energy-supercritical case p > dC2
d�2

, the Joseph–Lundgren exponent [1973]

pJL WD

(
C1 if d � 10;

1C 4

d�4�2
p
d�1

if d � 11
(1-6)

dictates the existence of type II blow-up solutions. For dC2
d�2

< p < pJL, type II blow-up solutions do not
exist [Matano and Merle 2004; Mizoguchi 2011b]. For p >pJL, type II blow-up solutions are completely
classified. In [Herrero and Velázquez 1994] the authors predicted the existence of a countable family of
solutions u` such that

ku.t/kL1 � C.un.0//.T � t /
`

˛.d;p/
2
p�1 ; ` 2 N; ` > 1

2
˛;

(˛ is defined in (1-10)), which are the same speeds as in the present paper. The rigorous proof was first made
in an unpublished paper [Herrero and Velázquez] and then in [Mizoguchi 2004]. In the series of works
[Matano 2007; Matano and Merle 2009; Mizoguchi 2007; 2011a] any type II blow-up solution was proved
to have one of the above blow-up rates. These works have the powerful advantage that they deal with large
solutions, but strongly rely on comparison principles that are only available for radial parabolic problems.
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1C. Outlook on blow up for other problems. Many model nonlinear equations share similar features
with (NLH). The construction of solutions concentrating a stationary state for the energy-supercritical
Schrödinger and wave equations has been done in [Collot 2014; Merle et al. 2015], and recently for
the harmonic heat flow in [Biernat and Seki 2016]. These concentration scenarios happen on a central
manifold near the continuum of ground states�

1

�
2
p�1

Q

�
x

�

��
�>0

;

whose topological and dynamical properties have been a popular subject of studies [Schlag 2009; Krieger
et al. 2015]. The possibility of various blow-up speeds is linked to the regularity of the solutions, and this
is why parabolic problems are more rigid, thanks to the regularizing effect, than dispersive problems, for
which a wider range of concentration scenarios exists [Krieger et al. 2008].

A major goal is the study of blow up for general data, where nonradial stationary states can appear
as blow-up profiles [Duyckaerts et al. 2012]. The solution may also not be a small perturbation of it.
One thus needs robust tools for the perturbative study of special nonlinear profiles as well as a better
understanding of the set of stationary solutions. The present work is a step toward this general aim.

1D. Statement of the result. We revisit the result of [Herrero and Velázquez 1994; Mizoguchi 2004;
2005] with the techniques employed in [Raphaël and Rodnianski 2012] to address the nonradial setting.
From [Li 1992], for p > pJL (defined in (1-6)) the radially decaying ground state Q, solution of (1-5),
admits the asymptotic

Q.x/D
c1

jxj
2
p�1

C
a1

jxj
C o.jxj� / as jxj !C1; a1 ¤ 0; (1-7)

with

c1 WD
h
2

p�1

�
d � 2�

2

p�1

�i 1
p�1
; (1-8)

 WD 1
2
.d � 2�

p
4/; 4 WD .d � 2/2� 4pcp�11 .4> 0() p > pJL/; (1-9)

and we define
˛ WD  �

2

p�1
: (1-10)

For n 2 N we define the following numbers (4n > 0 if p > pJL):

�n WD
�.d � 2/C

p
4n

2
; 4n WD .d � 2/

2
� 4pc1C 4n.d Cn� 2/:

The above numbers are directly linked with the existence and the number of instability directions of
type II blow-up solutions concentrating Q. Our result is the existence and precise description of some
localized type II blow-up solutions in any domain with smooth boundary.

Theorem 1.1 (existence of nonradial type II blow up for the energy-supercritical heat equation). Let
d � 11, pD2qC 1>pJL, q2N, where pJL is given by (1-6). Let Q,  , ˛, n and sc be given by (1-7),
(1-9), (1-10), (1-18) and (1-3) and " > 0. Let �� Rd be a smooth open bounded domain. For x0 2�
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let �.x0/ be a smooth cut-off function around x0 with support in �. Pick ` 2 N satisfying 2` > ˛. Then,
there exists a large enough regularity exponent

sC D sC.`/ 2 2N; sC� 1;

such that under the nondegeneracy condition�
1
2
d � n

�
… 2N for all n 2 N such that d � 2n � 4sC; (1-11)

there exists a solution u 2 C
�
Œ0; T /; L1.�/

�
of (1-1) with u0 2H sC.�/ (which can be chosen smooth

and compactly supported) blowing up in finite time 0 < T <C1 by concentration of the ground state at
a point x00 2� with jx00� x0j � ". It is given by

u.t; x/D �x0.x/
1

�.t/
2
p�1

Q

�
x� x00
�.t/

�
C v; (1-12)

where:

(i) x00 is the only blow-up point of u.

(ii) Blow-up speed:

kukL1.�/ D c.u0/.T � t /
� 2`
˛.p�1/ .1C o.1// as t ! T; c.u0/ > 0; (1-13)

�.t/D c0.u0/.1C o.1//.T � t /
`
˛ as t ! T; c0.u0/ > 0: (1-14)

(iii) Asymptotic stability above scaling in renormalized variables:

lim
t!T

�.t/ 2
p�1 v.t; x0C�.t/x/


H s.�.t/�1.��fx0g//

D 0 for all sc < s � sC: (1-15)

(iv) Boundedness below scaling:

lim sup
t!T

ku.t/kH s.�/ <C1 for all 0� s < sc : (1-16)

(v) Asymptotic of the critical norm:

ku.t/kH sc .�/ D c.d; p/
p
`
p
j log.T � t /j.1C o.1// as t ! T; c.d; p/ > 0: (1-17)

Comments on Theorem 1.1:

(1) On the assumptions. First, the assumption p > pJL is not just technical as radial type II blow up is
impossible for dC2

d�2
< p < pJL [Matano and Merle 2004; Mizoguchi 2011b]. Nonradial type II blow

up solutions in this latter range, if they exist, must have a very different dynamical description. Next, if
p is not an odd integer, then the nonlinearity x 7! jxjp�1x is singular at the origin, yielding regularity
issues. In that case the techniques used in the present paper could only be applied for a certain range of
integers `. Eventually, the condition (1-11) is purely technical, as it avoids the presence of logarithmic
corrections in some inequalities that we use. It could be removed since the analysis relies on gains that
are polynomial and not logarithmic, but would weigh down the already long proof. Note that a large
number of couples .p; `/ satisfy this condition. Indeed, only finitely many integers n are concerned by
(1-20), and the value of n is very rarely a rational number by (1-18).
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(2) Blow-up by concentration at any point and manifold of type II blow-up solutions. For any x0 2�,
Theorem 1.1 provides a solution that concentrates at a point that can be arbitrarily close to x0. In fact
there exists a solution that concentrates exactly at x0, meaning that this blow up can happen at any point
of �. To show that, one needs an additional continuity argument, in addition to the information contained
in the proof, to be able to reason as in [Planchon and Raphaël 2007; Merle 1992], for example. This
continuity property amounts to proving that the set of type II blow-up solutions that we construct is a
Lipschitz manifold with exact codimension in a suitable functional space. This was proved in the radial
setting in [Collot 2014] and the analysis could be adapted here using the nonradial analysis provided in
the present paper. However a precise and rigorous proof of this fact would be too lengthy to be inserted
in this paper. Let us stress that the solutions built here possess an explicit number of linear nonradial
instabilities. An interesting question is then whether or not these new instabilities can be used, with the
help of resonances through the nonlinear term, to produce new type II blow-up mechanisms around Q in
the nonradial setting.

(3) Multiple blow ups and continuation after blow up. As in our analysis we are able to cut and localize
the approximate blow-up profile, there should be no problems in constructing a solution blowing up with
this mechanism at several points simultaneously, as in [Merle 1992]. Cases where the blow-up bubbles
really interact can lead to very different dynamics; see [Martel and Raphaël 2015; Jendrej 2016] for recent
results. From the construction, as t ! T, we have u admits a strong limit in H sc

loc.�nfx0g/. One could
investigate the properties of this limit in order to continue the solution u beyond blow-up time, which is
a relevant question for blow-up issues [Matano and Merle 2009], especially for hamiltonian equations
where a subcritical norm is under control.

1E. Notation. In the analysis, C will stand for a constant which may vary from one line to another,
whose value just depends on d and p. The notation a . b means that a � Cb for such a constant C, and
aDO.b/ means jaj. b.

Supercritical numerology. For d � 11 the condition p >pJL, where pJL is defined by (1-6), is equivalent
to 2C

p
d � 1 < sc <

1
2
d . We define the sequences of numbers describing the asymptotic of particular

zeros of H (defined in (1-30)) for n 2 N:

�n WD
�.d � 2/C

p
4n

2
; 4n WD .d � 2/

2
� 4cp1C 4n.d Cn� 2/; (1-18)

˛n WD n�
2

p�1
; (1-19)

where 4n > 0 for p > pJL. We will use the following facts in the sequel:

0 D ; 1 D
2

p�1
C 1; n <

2

p�1
for n� 2 and n ��nI (1-20)

see Lemma A.1 (where  is defined in (1-9)). In particular ˛0D˛, ˛1D 1 and ˛n<0 for n � 2. A
computation yields the bound

2 < ˛ < 1
2
d � 1
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(see [Merle et al. 2015]). We let

g WDmin.˛;4/� "; g0 WD 1
2

min.g; 1; ı0� "/; (1-21)

where 0 < "� 1 is a very small constant just here to avoid keeping track of some logarithmic terms later
on. For n 2 N we define1

mn WDE
�
1
2

�
1
2
d � n

��
(1-22)

and denote by ın the positive real number 0� ın < 1 such that

d D 2nC 4mnC 4ın: (1-23)

For 1� L a very large integer, we define the Sobolev exponent

sL WDm0CLC 1: (1-24)

In this paper we assume the technical condition (1-11) for sC D sL, which means

0 < ın < 1 (1-25)

for all integers n such that d � 2n � 4sL (there is only a finite number of such integers by (1-20)). We
let n0 be the last integer to satisfy the condition

d � 2n0 � 4sL and d � 2n0C1 > 4sL (1-26)

and we define
ı00 WD max

0�n�n0
ın 2 .0; 1/: (1-27)

For all integers n� n0 we define the integers

Ln WD sL�mn� 1 (1-28)

and in particular L0 D L. Given an integer ` > 1
2
˛ (that will be fixed in the analysis later on), for

0� n� n0 we define the real numbers

in D `�
 � n

2
: (1-29)

Notations for the analysis. For R � 0, the euclidean sphere and ball are denoted by

Sd�1.R/ WD
�
x 2 Rd;

dX
iD1

x2i DR
2

�
and Bd .R/ WD

�
x 2 Rd;

dX
iD1

x2i �R
2

�
:

We use the Kronecker delta notation:

ıi;j WD

�
0 if i ¤ j;
1 if i D j

1EŒx� stands for the entire part: x� 1 < EŒx�� x.
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for i; j 2 N. We let
F.u/ WD�uCf .u/; f .u/ WD jujp�1u

so that (1-1) can be written as
@tuD F.u/:

When using the binomial expansion for the nonlinearity, we use the constants

f .uC v/D

pX
lD0

C
p

l
ulvp�l ; C

p

l
WD

�p
l

�
:

The linearized operator close to Q (defined in (1-5)) is

Hu WD ��u�pQp�1u (1-30)

so that F.QC "/��H". We introduce the potential

V WD �pQp�1 (1-31)

so that H D��CV . Given a strictly positive real number � > 0 and function u W Rd ! R, we define
the rescaled function

u�.x/D �
2
p�1u.�x/: (1-32)

This semigroup has the infinitesimal generator

ƒu WD
@

@�
.u�/j�D1 D

2

p� 1
uC x:ru:

The action of the scaling on (1-1) is given by the formula

F.u�/ WD �
2.F.u//�:

For z 2 Rd and u W Rd ! R, the translation of vector z of u is denoted by

�zu.x/ WD u.x� z/: (1-33)

This group has the infinitesimal generator�
@

@z
.�zu/

�
jzD0

D�ru:

The original space variable will be denoted by x 2� and the renormalized one by y, related through
x D zC�y. The number of spherical harmonics of degree n is

k.0/ WD 1; k.1/ WD d; k.n/ WD
2nCp� 2

n

�nCp�3
n�1

�
for n� 2:

The Laplace–Beltrami operator on the sphere Sd�1.1/ is self-adjoint with compact resolvent and its
spectrum is fn.dCn�2/ W n2Ng. For n2N the eigenvalue n.dC2�n/ has geometric multiplicity k.n/,
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and we denote by .Y .n;k//n2N; 1�k�k.n/ an associated orthonormal Hilbert basis of L2.Sd /:

L2.Sd�1.1//D
C1M?

nD0

Span
�
Y .n;k/; 1� k � k.n/

�
;

�Sd�1.1/Y
.n;k/
D n.d Cn� 2/Y .n;k/;

Z
Sd�1.1/

Y .n;k/Y .n
0;k0/
D ı.n;k/;.n0;k0/; (1-34)

with the special choices
Y .0;1/.x/D C0; Y 1;k.x/D�C1xk; (1-35)

where C0 and C1 are two renormalization constants. The action of H on each spherical harmonic is
described by the family of operators on radial functions

H .n/
WD �@rr �

d � 1

r
@r C

n.d Cn� 2/

r2
�pQp�1 (1-36)

for n 2 N, as for any radial function f they produce the identity

H

�
x 7! f .jxj/Y .n;k/

�
x

jxj

��
D x 7! .H .n/.f //.jxj/Y .n;k/

�
x

jxj

�
: (1-37)

For two strictly positive real numbers b.0;1/1 > 0 and � > 0 we define the scales

M � 1; B0 D jb
.0;1/
1 j

� 1
2 ; B1 D B

1C�
0 : (1-38)

The blow-up profile of this paper is an excitation of several directions of stability and instability around
the soliton Q. Each one of these directions of perturbation, denoted by T .n;k/i , will be associated to a
triple .n; k; i/, meaning that it is the i -th perturbation located on the spherical harmonics of degree .n; k/.
For each .n; k/ with n � n0, there will be LnC 1 such perturbations for i D 0; : : : ; Ln except for the
cases n D 0, k D 1, and n D 1, k D 1; : : : ; d , where there will be Ln perturbations for i D 1; : : : ; Ln
(nD 1; 2). Hence the set of triples .n; k; i/ used in the analysis is

I WD
˚
.n; k; i/ 2 N3 W 0� n� n0; 1� k � k.n/; 0� i � Ln

	
n
�
f.0; 1; 0/g[ f.1; 1; 0/; : : : ; .1; d; 0/g

�
(1-39)

with cardinal

#I WD
n0X
nD0

k.n/.LnC 1/� d � 1: (1-40)

For j 2 N and an n-tuple of integers �D .�i /1�i�j , the usual length is denoted by

j�j WD

jX
iD1

�i :

If j D d and h is a smooth function on Rd then we use the following notation for the differentiation:

@�h WD
@j�j

@
�1
x1 � � � @

�d
xd

h:
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For J an #I-tuple of integers, we introduce two other weighted lengths

jJ j2 D
X
n;k;i

�
 � n

2
C i

�
J
.n;k/
i ; (1-41)

jJ j3 D

LX
iD1

iJ
.0;1/
i C

X
1�i�L1
1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I
2�n

.i C 1/J
.n;k/
i : (1-42)

To localize some objects we will use a radial cut-off function � 2 C1.Rd /:

0� �� 1; �.jxj/D 1 for jxj � 1; �.jxj/D 0 for jxj � 2; (1-43)

and for B > 0, we let �B denote the cut-off around Bd .0; B/:

�B.x/ WD �

�
x

B

�
:

1F. Strategy of the proof. We now describe the main ideas behind the proof of Theorem 1.1. Without
loss of generality, via scale change and translation in space one can assume that x0 D 0 and Bd .7/��.

(i) Linear analysis and tail computations. The linearized operator near Q is H D���pQp�1 and its
generalized kernel is

ff W 9j 2 N such that H jfD0g D Span.T .n;k/i /.n;i/2N2; 1�k�k.n/;

where

T
.n;k/
i .x/D T

.n/
i .jxj/Y .n;k/

�
x

jxj

�
;

T
.n/
i being radial, is located on the spherical harmonics of degree .n; k/, with

T
.0;1/
0 DƒQ; T

.1;k/
0 D @xkQ; HT

.n;k/
0 D 0; HT

.n;k/
iC1 D�T

.n;k/
i : (1-44)

For any L 2N, defining sL, n0.L/ and Ln.L/ by (1-24), (1-26) and (1-28), H sL is coercive for functions
that are not in the suitably truncated generalized kernel:Z

"H sL"& krsL"k2
L2
Ck"k2loc if " 2 Span.T .n;k/i /?0�n�n0; 1�k�k.n/; 0�i�Ln ; (1-45)

where k"k2loc means any norm of " on a compact set involving derivatives up to order 2sL. A scale change
for these profiles produces the identity

@

@�
.T
.n;k/
i /j�D1.x/DƒT

.n;k/
i .x/� .2i �˛n/T

.n;k/
i .x/ as jxj !C1: (1-46)

(ii) The renormalized flow. For u a solution, � W .0; T / ! R and z W .0; T / ! Rd, we define the
renormalized time

ds

dt
D

1

�2
; s.0/D s0: (1-47)
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Then v D .��zu/� solves the renormalized equation

@sv�
�s

�
ƒv�

zs

�
:rv�F.v/D 0: (1-48)

(iii) The dynamical system for the coordinates on the center manifold. Let I be defined by (1-39). For an
approximate solution of (1-1) under the form

uD

�
QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i

�
z; 1
�

(1-49)

described by some parameters b.n;k/i 2 R, one has the identity from (1-44) and (1-45):

�zt :ru�
�t

�
ƒuC

� X
.n;k;i/2I

b
.n;k/
i;t T

.n;k/
i

�
z; 1
�

D @tu� F.u/

D
b
.1;� /
1

�
:ruC

b
.0;1/
1

�2
ƒuC

� X
.n;k;i/2I

b
.n;k/
iC1 � .2i �˛n/b

.1;0/
1 b

.n;k/
i

�2
T
.n;k/
i

�
z; 1
�

C ; (1-50)

where b.1;� /1 D .b
.1;1/
1 ; : : : ; b

.1;d/
1 / and with the convention b.n;k/LnC1

D 0. The error term  is negligible
under a size assumption on the parameters. Identifying the terms in the above identity yields the finite-
dimensional dynamical system28̂̂<̂

:̂
�t D�

b
.0;1/
1

�
; zt D�

b
.1;� /
1

�
;

b
.n;k/
i;t D�

1

�2
.2i �˛n/b

.0;1/
1 b

.n;k/
i C

1

�2
b
.n;k/
iC1 8.n; k; i/ 2 I:

(1-51)

(iv) The approximate blow-up profile. Equation (1-51) admits for any `2N with 2`>˛ an explicit special
solution . N�; Nz; Nb.n;k/i / such that Nz D 0 and N� � .T � t /

`
˛ for some T > 0. Moreover, when linearizing

(1-51) around this solution, one finds an explicit number m of directions of linear instability and #I �m
directions of stability. In addition, for the renormalized time s associated to N�, one has

lim
t!T

s.t/DC1; j Nb
.i;n/

k
.s/j. s�

�n
2
�i : (1-52)

Our approximate blow-up profile is then given by�
QC

X
.n;k;i/2I

Nb
.n;k/
i .t/T

.n;k/
i

�
Nz.t/; 1

N�.t/

:

(v) The blow-up ansatz. Following (iv), we study solutions of the form

uD �

�
QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i

�
z; 1
�

Cw (1-53)

2Again, with the convention b.n;k/
LnC1

D 0.
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and decompose the remainder w according to

wint WD �3w; wext WD .1��3/w; " WD .��zwint/�; (1-54)

where wext is the remainder outside the blow-up zone, wint the remainder inside the blow-up zone, and "
is the renormalization of the remainder inside the blow-up zone corresponding to the scale and central
point of the ground state Qz;1=�. Now w is orthogonal to the suitably truncated center manifold

" 2 Span.T .n;k/i /?0�n�n0; 1�k�k.n/; 0�i�Ln ; (1-55)

which fixes in a unique way the value of the parameters b.n;k/i , � and z. We then define the renormalized
time s associated to � via (1-47). We take b, � and z to be perturbations of Nb, N� and Nz for the renormalized
time:

b
.n;k/
i .s/D Nb

.n;k/
i .s/C b

0.n;k
i .s/; �.s/D N�.s/C�0.s/; z.s/D Nz.s/C z0.s/: (1-56)

We define four norms for the remainder in (1-53) and (1-54):

E� WD kr�"k2L2.Rd /; E2sL WD
Z

Rd
jH sL"j2; kwextkH� .�/ and kwextkH sL .�/;

where � is a slightly supercritical regularity exponent

0 < � � sc� 1: (1-57)

One has that E2sL & kr2sL"kL2 from (1-45).

Interpretation: We decompose a solution near the set of localized and concentrated ground states �.Qz;1=�/
according to (1-53). A part, �

�P
.n;k;i/2I b

.n;k/
i T

.n;k/
i

�
z;1=�

, is located on the truncated center manifold;
it decays slowly, see (1-52), while interacting with the ground state, see (1-51), and is responsible for the
blow up by concentration, and one has an explicit behavior of the coordinates, (1-51). The other part, w,
is orthogonal to the truncated center manifold (1-55); it is expected to decay faster as H is more coercive,
see (1-45), on this set, and not to perturb the blow-up dynamics. The change of variables (1-47) and
(1-48) transforms the blow-up problem into a long-time asymptotic problem by (1-52).

Bootstrap method in a trapped regime: We study solutions that are close to the approximate blow-up
profile for the renormalized time, i.e., that satisfy

E� Ckwextk
2
H� .�/ . 1; E2sL CkwextkH sL .�/ .

1

�2.2sL�sc/ sLC.1�ı0/C�
; (1-58)

jb
0.n;k/
i j. s�

�n
2
�i; j�jC jzj � 1: (1-59)

The size of the excitation is
1

�2.2sL�sc/sLC.1�ı
0
0/

so �
�P

.n;k;i/2I b
.n;k/
i T

.n;k/
i

�
z;1=�

and � > 0 in (1-58) quantifies the fact that the remainder w is smaller
than the excitation.
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(v) The bootstrap regime. From (1-1) and (1-50), the evolution of the solution under the decomposition
(1-53) and (1-54) has the form

@twext D�wextC��3wC 2r�3:rwC .1��3/w
p; (1-60)

@twint D�Hz; 1
�
wintC� CNL

C�

��
b
.1;� /
1

�2
C
zt

�

�
:r.QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i /

�
z; 1
�

C�

��
b
.0;1/
1

�2
C
�t

�

�
ƒ.QC

X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i /

�
z; 1
�

C�

� X
.n;k;i/2I

�
�b

.n;k/
i;t �

.2i �˛n/b
.0;1/
1 b

.n;k/
1 C b

.n;k/
iC1

�2

�
T
.n;k/
i

�
z; 1
�

; (1-61)

where Hz;� D���pQ
p�1

z;1=�
and NL stands for the purely nonlinear term.

Modulation: The evolution of the parameters is computed using the orthogonality directions related to
the decomposition, i.e., by taking the scalar product between (1-61) and .T .n;k/i /z;1=� for 0 � n � n0,
1� k � k.n/ and 0� i � Ln, yielding in renormalized time an estimate of the form3ˇ̌̌̌
�s

�
Cb

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
Cb

.1;� /
1

ˇ̌̌̌
C

X
.n;k;i/2I

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.n;k/
i b

.0;1/
1 Cb

.n;k/
iC1

ˇ̌
.
p
E2sLCs

�L�3: (1-62)

These estimates hold because the error produced by the approximate dynamics is very small (s�L�3) on
compact sets, and on the other hand the remainder " is also very small on compact sets and located far
away from the origin by (1-58) and the coercivity (1-45).

Lyapunov monotonicity for the remainder: From the evolution equations (1-60) and (1-61), in the boot-
strap regime (1-58) one performs energy estimates of the form

d

dt

�
1

�2.��sc/
E� CkwextkH� .�/

�
.

1

�2s1C�
0 C

1

�.��sc/

p
E�kr� kL2 ; (1-63)

d

dt

�
1

�2.2sL�sc/
E2sL CkwextkH2sL .�/

�
.

1

�2.2sL�sc/C2sLC2�ı0C�C�
C

1

�2sL�sc

p
E2sLkH

sL

z; 1
�

 kL2 ;

(1-64)

where � > 0 represents a gain. The key properties yielding these estimates are the following. The control
of a slightly supercritical norm (1-57) and another high regularity norm allows us to control precisely
the energy transfer between low and high frequencies and to control the nonlinear term. The dissipation
in (1-60) and (1-61) (for the second equation it is a consequence of the coercivity (1-45)) erases the
border terms and smaller-order local interactions. Finally, the approximate blow-up profile is in fact a
refinement of (1-49), where the error in the approximate dynamics is well localized in the self-similar

3With the convention b.n;k/
LnC1

D 0.
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zone jx � zj �
p
T � t , by the addition of suitable corrections via inverting elliptic equations and by

precise cuts.

(vi) Existence via a topological argument. In the bootstrap regime close to the approximate blow-up
profile described by (1-58) and (1-59), one has precise bounds for the error term  . Reintegrating the
energy estimates (1-63) and (1-64) then leads to the bounds

E� Ckwextk
2
H� .�/� 1; E2sL CkwextkH sL .�/�

1

�2.2sL�sc/ sLC.1�ı0/C�
;

which are an improvement of (1-58). Therefore, a solution ceases to be in the bootstrap regime if
and only if the bound (1-59) describing the proximity of the parameters with respect to the special
blow-up parameters . Nb; N�; Nz/ is violated. From (iv), the parameters admit . N�; Nz; Nb/ as a hyperbolic orbit
with m directions of instability and #I �m of instability. From the modulation equations (1-62), the
remainder w perturbs these dynamics only at lower order. Therefore, an application of the Brouwer fixed
point theorem yields the persistence of an orbit similar to . N�; Nz; Nb/ for the full nonlinear equation, i.e.,
with a perturbation along the parameters that stays small for all time. This gives the existence of a true
solution of (1-1) that stays close to the approximate blow-up profile for all renormalized times, implying
blow up by concentration of Q with a precise asymptotic.

The paper is organized as follows. In Section 2 we recall the known properties of the ground state
in Lemma 2.1 and describe the kernel of the linearized operator H in Lemma 2.3. This provides a
formula to invert elliptic equations of the form Hu D f , stated in Definition 2.6, and allows us to
describe the generalized kernel of H in Lemma 2.10. The blow-up profile is built on functions depending
polynomially on some parameters and with explicit asymptotic at infinity, and we introduce the concept
of homogeneous functions in Definition 2.14 and Lemma 2.15 to track this information easily. With these
tools, in Section 3 we construct a first approximate blow-up profile for which the error is localized at
infinity in Proposition 3.1 and we cut it in the self-similar zone in Proposition 3.3. The evolution of
the parameters describing the approximate blow-up profile is an explicit dynamical system with special
solutions given in Lemma 3.4 for which the linear stability is investigated in Lemma 3.5. In Section 4
we define a bootstrap regime for solutions of the full equation close to the approximate blow-up profile.
We give a suitable decomposition for such solutions, using orthogonality conditions that are provided
by Definition 4.1 and Lemma 4.2, in Lemma 4.3. They must satisfy in addition some size assumption,
and all the conditions describing the bootstrap regime are given in Definition 4.4. The main result of
the paper is Proposition 4.6, stating the existence of a solution staying for all times in the bootstrap
regime, whose proof is relegated to the next section. With this result we end the proof of Theorem 1.1 in
Section 4B. To do this, the modulation equations are computed in Lemma 4.7, yielding that solutions
staying in the bootstrap regime must concentrate in Lemma 4.8 with an explicit asymptotic for Sobolev
norm in Lemma 4.9. In Section 5 we prove the main proposition, Proposition 4.6. For solutions in the
bootstrap regime, an improved modulation equation is established in Lemma 5.1, and Lyapunov-type
monotonicity formulas are established in Propositions 5.3 and 5.5 for the low regularity Sobolev norms
of the remainder, and in Propositions 5.6 and 5.8 for the high regularity norms. With this analysis one



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 141

can characterize the conditions under which a solution leaves the bootstrap regime in Lemma 5.9, and
with a topological argument provided in Lemma 5.10, one ends the proof of Proposition 4.6.

The appendix is organized as follows. In Appendix A we give the proof of Lemma 2.3, describing the
kernel of H . In Appendix B we recall some Hardy and Rellich-type estimates, among which the most
useful is given in Lemma B.3. In Appendix C we investigate the coercivity of H in Lemmas C.2 and C.3.
In Appendix D we prove some bounds for solutions in the bootstrap regime. In Appendix E we give the
proof of the decomposition Lemma 4.3.

2. Preliminaries on Q and H

We first summarize the content and ideas of this section. The instabilities near Q underlying the blow up
that we study result from the excitement of modes in the generalized kernel of H. We first describe this
set. Since H is radial, we use a decomposition into spherical harmonics, restricted to spherical harmonics
of degree n, see (1-37), it becomes the operator H .n/ on radial functions defined by (1-36). Using ODE
techniques, the kernel is described in Lemma 2.3 and the inversion of H .n/ is given by Definition 2.6 and
Lemma 2.13. By inverting successively the elements in the kernel of H .n/, one obtains the generators of
the generalized kernel

S
j Ker..H .n//j / of this operator in Lemma 2.10.

To track the asymptotic behavior and the dependence in some parameters of various profiles during
the construction of the approximate blow-up profile in the next section, we introduce the framework of
“homogeneous” functions in Definition 2.14 and Lemma 2.15.

2A. Properties of the ground state and the potential. Any positive smooth radially symmetric solution to

��� ��p D 0

is a dilate of a given normalized ground state profile Q:

� DQ�; � > 0;

�
��Q�Qp D 0;

Q.0/D 1:

See [Li 1992] and references therein. The following lemma describes the asymptotic behavior of Q. We
refer to [Ding and Ni 1985] for earlier work.

Lemma 2.1 (asymptotics of the ground state [Li 1992, Lemma 4.3; Karageorgis and Strauss 2007,
Lemma 5.4]). Let p > pJL (defined in (1-6)). We recall that g > 0, c1 and  are defined in (1-9) and
(1-21). One has the asymptotics

QD
c1

r
2
p�1

C
a1

r
CO

�
1

rCg

�
as r!C1; a1 ¤ 0; (2-1)

V D�
pc

p�1
1

r2
CO

�
1

r2C˛

�
as r!C1; (2-2)

d

d�
Œ.Q�/

p�1�j�D1 DO

�
1

r2C˛

�
as r!C1; (2-3)
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and these identities propagate to the derivatives. There exists ı.p/ > 0 such that the following pointwise
bounds hold for all y 2 Rd :

0 <Q.y/ <
c1

jyj
2
p�1

; (2-4)

�
.d � 2/2

4jyj2
C
ı.p/

jyj2
� V.y/ < 0: (2-5)

Remark 2.2. The standard Hardy inequalityZ
Rd
jruj2 �

.d � 2/2

4

Z
Rd

u2

jyj2
dy

and (2-4) then imply the positivity of H on PH 1.Rd /:Z
Rd
uHudy �

Z
Rd

ı.p/u2

jyj2
dy: (2-6)

It is worth mentioning that the aforementioned expansion (2-1) is false for p � pJL. This asymptotic
at infinity of Q is decisive for type II blow up via perturbation of it, as from [Matano and Merle 2004;
Mizoguchi 2011b] it cannot occur for dC2

d�2
< p < pJL.

2B. Kernel of H .

Lemma 2.3 (kernel of H .n/). We recall that the numbers .n/n2N and g are defined in (1-18). Let n 2N.
There exist T .n/0 ; �.n/ W .0;C1/! R two smooth functions such that if f W .0;C1/! R is smooth and
satisfies H .n/f D 0, then f 2 Span.T .n/0 ; �.n//. They enjoy the asymptotics8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

T
.n/
0 .r/ D

r!0

lX
jD0

c
.n/
j rnC2j CO.rnC2C2l/ 8l 2 N; c

.n/
0 ¤ 0;

T
.n/
0 �

r!C1
Cnr

�n CO.r�n�g/; Cn ¤ 0;

�.n/ �
r!0

c0n

rd�2Cn
and �.n/ �

r!C1
Qc0nr
�n ; c0n; Qc

0
n ¤ 0:

(2-7)

Moreover, T .n/0 is strictly positive, and for 1 � k � k.n/ the functions y 7! T
.n/
0 .jyj/Yn;k.jyj=y/ are

smooth on Rd. The first two regular and strictly positive zeros are explicit:

T
.0/
0 D

1

C0
ƒQ and T

.1/
0 D�

1

C1
@yQ; (2-8)

where C0 and C1 are the renormalized constants defined by (1-35).

Proof. The proof of this lemma is done in Appendix A. �

Remark 2.4. The renormalized constants in (2-8) are here to produce the identities T .0/0 Y .0;0/ DƒQ

and T .1/0 Y .1;k/ D @xkQ by (1-35). For each n 2 N, only one zero, T .n/0 , is regular at the origin. We
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insist on the fact that �n > 0 is a positive number4 for n large by (1-20), making these profiles grow as
r!C1.

2C. Inversion of H .n/. We start by a useful factorization formula for H .n/. Let n 2N and W .n/ denote
the potential

W .n/
WD @r.log.T .n/0 //; (2-9)

where T .n/0 is defined in (2-7) and define the first-order operators on radial functions

A.n/ W u 7! �@ruCW
.n/u; A.n/� W u 7!

1

rd�1
@r.r

d�1u/CW .n/u: (2-10)

Lemma 2.5 (factorization of H .n/). The factorization

H .n/
D A.n/�A.n/ (2-11)

holds. Moreover one has the adjunction formula for smooth functions with enough decayZ C1
0

.A.n/u/vrd�1 dr D

Z C1
0

u.A.n/�v/rd�1 dr:

Proof. As T .n/0 >0 by (2-7), W .n/ is well defined. This factorization is a standard property of Schrödinger
operators with a nonvanishing zero. We start by computing

A.n/�A.n/uD�@rru�
d � 1

r
@ruC

�
d � 1

r
W .n/

C @rW
.n/
C .W .n//2

�
u:

As W .n/ D @rT
.n/
0 =T

.n/
0 , the potential that appears is nothing but

d � 1

r
W .n/

C @rW
.n/
C .W .n//2 D

@rrT
.n/
0 C

d�1
r
T
.n/
0

T
.n/
0

D
�H .n/T

.n/
0 C

�n.dCn�2/
r2

CV
�
T
.n/
0

T
.n/
0

D
n.d Cn� 2/

r2
CV

as H .n/T
.n/
0 D 0, which proves the factorization formula (2-11). The adjunction formula comes from a

direct computation using integration by parts. �

From the asymptotic behavior (2-7) of T .n/0 at the origin and at infinity, we deduce the asymptotic
behavior of W .n/:

W .n/
D

(
n
r
CO.1/ as r! 0;
�n
r
CO

�
1

r1CgCj

�
as r!C1;

(2-12)

which propagates to the derivatives. Using the factorization (2-11), to define the inverse of H .n/ we
proceed in two steps: first we invert A.n/�, then A.n/.

4This notation seems unnatural but matches the standard notation in the literature.
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Definition 2.6 (inverse of H .n/). Let f W .0;C1/! R be smooth with f .r/D O.rn/ as r ! 0. We
define5 the inverses .A.n/�/�1f and .H .n//�1f by

.A.n/�/�1f .r/D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1ds; (2-13)

.H .n//�1f .r/D

(
T
.n/
0

RC1
r .A.n/�/�1f=T

.n/
0 ds if .A.n/�/�1f=T .n/0 is integrable on .0;C1/;

�T
.n/
0

R r
0 .A

.n/�/�1f=T
.n/
0 ds if .A.n/�/�1f=T .n/0 is not integrable on .0;C1/:

(2-14)

Direct computations give indeed H .n/ ı .H .n//�1 D A.n/� ı .A.n/�/�1 D Id, and A.n/ ı .H .n//�1 D

.A.n/�/�1. As we do not have uniqueness for the equationHuDf , one may wonder if this definition is the
“right” one. The answer is yes because this inverse has the good asymptotic behavior; namely, if f � rq as
r!C1, one would expect u� rqC2 as r!C1, which will be proven in Lemma 2.9. To keep track of
the asymptotic behaviors at the origin and at infinity, we now introduce the notion of admissible functions.

Definition 2.7 (simple admissible functions). Let n be an integer, q be a real number and f W .0;C1/!R

be smooth. We say that f is a simple admissible function of degree .n; q/ if it enjoys the asymptotic
behaviors

f D

lX
jD0

cj r
nC2j

CO.rnC2lC2/ 8l 2 N (2-15)

at the origin for a sequence of numbers .cl/l2N 2 RN, and at infinity

f DO.rq/ as r!C1; (2-16)

and if the two asymptotics propagate to the derivatives of f .

Remark 2.8. Let f W .0;C1/ be smooth. We define the sequence of n-adapted derivatives of f by
induction:

fŒn;0� WD f and for j 2 N; fŒn;jC1� WD

�
A.n/fŒn;j � for j even;
A.n/�fŒn;j � for j odd:

(2-17)

From the definition (2-10) of A.n/ and A.n/�, and the asymptotic behavior (2-12) of the potential W .n/,
one notices that the condition (2-16) on the asymptotic at infinity for a simple admissible function of
degree .n; q/ and its derivatives is equivalent to the following condition for all j 2 N:

fŒn;j � DO.r
q�j / as r!C1; (2-18)

where the adapted derivatives .fŒn;j �/j2N are defined by (2-17). We will use this fact many times in the
rest of this subsection, as it is more adapted to our problem.

The operators H .n/ and .H .n//�1 leave this class of functions invariant, and the asymptotic at infinity
is increased by �2 and 2 under some conditions (that will always hold in the sequel) on the coefficient q
to avoid logarithmic corrections.

5We know u is well defined because from the decay of f at the origin one deduces .A.n/�/�1f DO.rnC1/ as y! 0 and
so u0=T n0 is integrable at the origin from the asymptotic behavior (2-7).
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Lemma 2.9 (actions ofH .n/ and .H .n//�1 on simple admissible functions). Let n2N and f be a simple
admissible function of degree .n; q/ in the sense of Definition 2.7, with q > n�d and �n�2�q 62 2N.
Then for all integer i 2 N:

(i) .H .n//if is simple admissible of degree .n; q� 2i/.

(ii) .H .n//�if is simple admissible of degree .n; qC 2i/.

Proof. Step 1: action of H .n/. For all integers i and j one has ..H .n//if /Œn;j � D fŒn;jC2i� by (2-17)
and (2-11). Using the equivalent formulation (2-18), the asymptotic at infinity (2-16) for H if is then a
straightforward consequence of the asymptotic at infinity (2-16) for f . Close to the origin, one notices
that H .n/ D ��.n/C V with �.n/ D @rr C d�1

r
@r � n.d C n� 2/. If f satisfies (2-15) at the origin,

then so does .�.n//if by a direction computation. As V is smooth at the origin, .H .n//if also satisfies
(2-15). Hence .H .n//if is a simple admissible function of degree q� 2i .

Step 2: action of .H .n//�1. We will prove the property for .H .n//�1f , and the general result will follow
by induction on i . Let u denote the inverse by H .n/, that is, uD .H .n//�1f .

Asymptotic at infinity. We will prove the equivalent formulation (2-18) of the asymptotic at infinity (2-16).
From (2-17), (2-13), (2-14) and (2-11), uŒn;j � D fŒn;j�2� for j � 2 so the asymptotic behavior (2-18) at
infinity for the n-adapted derivatives of u are true for j �2. Therefore it remains to prove them for j D0; 1.

Case j D 1. From the definition of the inverse (2-14) and of the adapted derivatives (2-17), one has

uŒn;1� D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1 ds:

From the asymptotic behaviors (2-16) and (2-7) for f and T .n/0 at infinity and the condition q > n� d ,
the integral diverges and we get

uŒn;1�.r/DO.r
qC1/ as r!C1; (2-19)

which is the desired asymptotic (2-18) for uŒn;1�.

Case j D 0. Suppose .A.n/�/�1f=T .n/0 D uŒn;1�=T
.n/
0 is integrable on .0;C1/. In that case

uD T
.n/
0

Z C1
r

uŒn;1�

T
.n/
0

ds:

If q >�n�2, then by the integrability of the integrand and (2-7), we get the desired asymptotic uŒn;0�D
uDO.r�n/DO.rqC2/. If q <�n�2 then from (2-19) we have uŒn;1�=T

.n/
0 DO.rqC1Cn/ and thenRC1

r uŒn;1�=T
.n/
0 ds D O.rqC2Cn/, from which we get the desired asymptotic u D O.rqC2/. Now

suppose uŒn;1�=T
.n/
0 is not integrable. Then we must have q > �nC 2 by (2-19), and u is given by

uD�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

ds;

and the integral has asymptotic O.rqC2Cn/. We hence get uDO.rqC2/ at infinity using (2-7).

Conclusion. In both cases, we have proven that the asymptotic at infinity (2-18) holds for u.
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Asymptotic at the origin. We have

uD�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

dsC aT
.n/
0 ;

where aD 0 if uŒn;1�=T
.n/
0 is not integrable, and aD

RC1
0 uŒn;1�=T

.n/
0 ds if it is. By (2-7), T .n/0 satisfies

(2-15). Thus it remains to prove (2-15) for �T .n/0

R r
0 uŒn;1�=T

.n/
0 ds. We proceed in two steps. First,

from (2-15) for f we obtain that for all integers j, p,

uŒn;1� D
1

rd�1T
.n/
0

Z r

0

f T
.n/
0 sd�1 ds D

lX
jD0

Qcj r
nC1C2j

C zRl ;

where @kr zRl D O.r
max.nC2lC3�k;0// as r ! 0 for some coefficients Qcj depending on the cj and the

asymptotic at the origin of T n0 . It then follows that

�T
.n/
0

Z r

0

uŒn;1�

T
.n/
0

ds D

lX
jD0

Ocj r
nC2C2j

C yRl ; where @kr yRl D
r!0

O.rmax.nC2lC4�k;0//;

for some coefficients Ocl . This implies that u satisfies (2-15) at the origin. �

We can now invert the elements in the kernel of H .n/ and construct the generalized kernel of this
operator.

Lemma 2.10 (generators of the generalized kernel of H .n/). Let n 2 N, n, g0, .H .n//�1 and T .n/0 be
defined by (1-18), (1-21), Definition 2.6 and Lemma 2.3. We denote by .T .n/i /i2N the sequence of profiles
given by

T
.n/
iC1 WD �.H

.n//�1T
.n/
i ; i 2 N: (2-20)

Let .‚.n/i /i2N be the associated sequence of profiles defined by

‚
.n/
i WDƒT

.n/
i �

�
2i C

2

p� 1
� n

�
T
.n/
i ; i 2 N: (2-21)

Then for each i 2 N,

T
.n/
i is simple admissible of degree .n;�nC 2i/; (2-22)

‚
.n/
i is simple admissible of degree .n;�nC 2i �g0/; (2-23)

where simple admissibility is defined in Definition 2.7.

Proof. Step 1: admissibility of T .n/i . From the asymptotic behaviors (2-7) at infinity and at the origin,
T
.n/
0 is simple admissible of degree .n;�n/ in the sense of Definition 2.7. Additionally, �n > n� d

since �2nC d � �20C d D 2C
p
4 > 0 by (1-9) and since .n/n2N is decreasing by (1-18). One

has also �n� 2� .�n/D�2 … 2N. Therefore one can apply Lemma 2.9: for all i 2 N, T .n/i given by
(2-20) is an admissible profile of degree .n;�nC 2i/.
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Step 2: admissibility of ‚.n/i . We start by computing the following commutator relations using (1-36),
(2-9) and (2-10):

A.n/ƒDƒA.n/CA.n/� .W .n/
Cy@yW

.n//;

H .n/ƒDƒH .n/
C 2H .n/

� .2V Cy:rV /:
(2-24)

We now proceed by induction. From the previous equation, and the asymptotic behaviors (2-7), (2-2) and
(2-12) of the functions T .n/0 , V and W .n/, we get that ‚.n/0 is simple admissible of degree .n;�n�g0/.
Now let i � 1 and suppose that the property in (2-23) is true for i � 1. Using the previous formula and
(2-21) we obtain

H .n/‚ni D�‚
.n/
i�1� .2V Cy:rV /T

.n/
i :

The asymptotic at infinity (2-2) of V yields the decay 2V C y:rV D .y�2�˛/. As T .n/i is simple
admissible of degree .n; 2i � n/ and from the induction hypothesis, we have that H .n/‚

.n/
i is simple

admissible of degree .n; 2i � 2� n�g0/ because g0 < ˛ by (1-21). One has 2i � 2� n�g0 > n� d
because

2i � 2� 2n�g
0
C d � �20�g

0
C d D 2C

p
4�g0 > 0

as 0<g0<1, i�1, and .n/n2N is decreasing by (1-18) and (1-9). Similarly

�n� 2� .2i � 2� n�g
0/D�2i Cg0 … 2N:

Therefore we can apply Lemma 2.9 and obtain that .H .n//�1H .n/‚
.n/
i is of degree .n; 2i � n � g0/.

From Lemma 2.3 one has .H .n//�1H .n/‚
.n/
i D ‚

.n/
i C aT

.n/
0 C b�.n/, for two integration constants

a; b 2 R. At the origin �.n/ is singular by (2-7); hence b D 0. As T .n/0 is of degree .n;�n/ with
�nC 2i �g

0 > �n (because i � 1), we get that ‚.n/i is of degree .n; 2i � n�g0/. �

2D. Inversion of H on nonradial functions. The definition of the inverse of H .n/, Definition 2.6,
naturally extends to give an inverse of H by separately inverting the components onto each spherical
harmonic. There will be no problem when summing, as for the purpose of the present paper one can
restrict to the following class of functions that are located on a finite number of spherical harmonics.

Definition 2.11 (admissible functions). Let f W Rd ! R be a smooth function, with decomposition
f .y/D

P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/, and q be a real number. We say that f is admissible of degree q
if there is only a finite number of couples .n; k/ such that f .n;k/ ¤ 0, and that for every such couple,
f .n;k/ is a simple admissible function of degree .n; q/ in the sense of Definition 2.7.

For f D
P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/ an admissible function, we define its inverse by H by

.H .�1/f /.y/ WD
X
n;k

Œ.H .n//�1f .n;k/.jyj/�Y .n;k/
�
y

jyj

�
(2-25)

(the sum being finite), where .H .n//�1 is defined by Definition 2.6. For n, k and i three integers with
1� k � k.n/, we define the profile T .n;k/i W Rd ! R as

T
.n;k/
i .y/D T

.n/
i .jyj/Y .n;k/

�
y

jyj

�
; (2-26)



148 CHARLES COLLOT

where the radial function T .n/i is defined by (2-20). From Lemma 2.10, T .n;k/i is an admissible function
of degree .�nC2i/ in the sense of Definition 2.11. The class of admissible functions has some structural
properties: it is stable under summation, multiplication and differentiation, and its elements are smooth
with an explicit decay at infinity. This is the subject of the next lemma.

Lemma 2.12 (properties of admissible functions). Let f and g be two admissible functions of degrees q
and q0 in the sense of Definition 2.11, and � 2 Nd. Then:

(i) f is smooth.

(ii) fg is admissible of degree qC q0.

(iii) @�f is admissible of degree q� j�j.

(iv) There exists a constant C.f; �/ such that for all y with jyj � 1,

j@�f .y/j � C.f; �/jyjq�j�j:

Proof. From Definition 2.11, f D
P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/ and gD
P
n;k g

.n;k/.jyj/Y .n;k/.y=jyj/

and both sums involve finitely many nonzero terms. Therefore, without loss of generality, we will assume
that f and g are each located on only one spherical harmonic: f D f .n;k/Y .n;k/ and gD g.n

0;k0/Y .n
0;k0/,

for f .n;k/ and g.n
0;k0/ simple admissible of degrees .n; q/ and .n0; q0/ in the sense of Definition 2.7. The

general result will follow by a finite summation.

(i) Now y 7! f .n;k/.jyj/ is smooth outside the origin since f is smooth, and y 7! Y .n;k/.y=jyj/ is also
smooth outside the origin; hence f is smooth outside the origin. The Laplacian on spherical harmonics is

.��/if D .��/i
�
f .n;k/.jyj/Y .n;k/

�
y

jyj

��
D ..��.n//if .n;k//.jyj/Y .n;k/;

where ��.n/ D�@rr � d�1r @rCn.d Cn�2/. From the expansion of f .n;k/ in (2-15), .��.n//if .n;k/

is bounded at the origin for each i 2 N. Therefore .��/if is bounded at the origin for each i and f is
smooth at the origin by elliptic regularity.

(ii) We treat the case where nCn0 is even, and the case nCn0 odd can be treated with exactly the same
arguments. As the product of the two spherical harmonics Y .n;k/Y .n

0;k0/ decomposes onto spherical
harmonics of degree less than nCn0 with the same parity as nCn0, the product fg can be written as

fg D
X

0�Qn�nCn0

Qn even; 1�Qk�k.Qn/

a
n;k;n0;k0;Qn; Qk

f .n;k/g.n
0;k0/Y .Qn;

Qk/

with a
n;k;n0;k0;Qn; Qk

some fixed coefficients. Now fix Qn and Qk in the sum; one has nCn0D QnC2i for some
i 2 N. Using the Leibniz rule, as @jr f .n;k/ DO.rq�j / and @jr g.n;k/ DO.rq

0�j / at infinity, we get that
@
j
r .f

.n;k/g.n
0;k0//DO.rqCq

0�j / as y!C1, which proves that f .n;k/g.n
0;k0/ satisfies the asymptotic

at infinity (2-16) of a simple admissible function of degree . Qn; q C q0/. Close to the origin, the two
expansions (2-15) for f .n;k/ and g.n

0;k0/, starting at rn and rn
0

respectively, imply the same expansion
(2-15) starting at ynCn

0

for the product f .n;k/g.n
0;k0/. As nCn0D QnC2i , we know f .n;k/g.n;k/ satisfies
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the expansion at the origin (2-15) of a simple admissible function of degree . Qn; q C q0/. Therefore
f .n;k/g.n;k/ is simple admissible of degree . Qn; qCq0/ and thus fg is simple admissible of degree qCq0.

(iii) We treat the case where n is even, and the case n odd can be treated with exactly the same reasoning.
Let 1� i � d ; we just have to prove that @yif is admissible of degree q�1 and the result for higher-order
derivatives will follow by induction. We recall that Y .n;k/ is the restriction of a homogeneous harmonic
polynomial of degree n to the sphere. We will still denote by Y .n;k/.y/ this polynomial extended to
the whole space Rd and they are related by Y .n;k/.y/D jyjnY .n;k/.y=jyj/. This homogeneity implies
y:r.Y .n;k//.y/D nY .n;k/.y/ and leads to the identity

@yi

�
f .n;k/.jyj/Y .n;k/

�
y

jyj

��
D

�
@rf

.n;k/.jyj/�n
f .jyj/

jyj

�
yi

jyj
Y .n;k/

�
y

jyj

�
C
f .jyj/

jyj
@yiY

.n;k/

�
y

jyj

�
: (2-27)

One has now to prove that the two terms on the right-hand side are admissible of degree q� 1. We only
show it for the last term, the proof being the same for the first one. As @yiY

.n;k/.y=jyj/ is a homogeneous
polynomial of degree n�1 restricted to the sphere, it can be written as a finite sum of spherical harmonics
of odd degrees (because n is even) less than n� 1 and this gives

f

jyj
@yiY

.n;k/

�
y

jyj

�
D

X
1�n0�n�1

n0 odd; 1�k�k.n0/

ai;n;k;n0;k0
f

jyj
Y .n

0;k0/

�
y

jyj

�

for some coefficients ai;n;k;n0;k0 . Now fix n0; k0 in the sum. At infinity ai;n;k;n0;k0f .jyj/=jyj satisfies the
asymptotic behavior (2-16) of a simple admissible function of degree .n0; q� 1/. Close to the origin, one
has from (2-15), the fact that n0C 2j D n� 1 for some j 2 N, that for any i 2 N,

ai;n;k;n0;k0
f .r/

r
D

iX
lD0

Qclr
n�1C2l

CO.rn�1C2iC2/D

iX
lD0

Oclr
n0C2jC2l

CO.rn
0C2jC2iC2/;

which is the asymptotic behavior (2-15) of a simple admissible function of degree .n0; q � 1/ close to
the origin. Therefore, ai;n;k;n0;k0f .r/=r is a simple admissible function of degree .n0; q � 1/. Thus
.f =jyj/@yiY

.n;k/.y=jyj/ is an admissible function of degree .q� 1/. The same reasoning works for the
first term on the right-hand side of (2-27), and therefore @yi Œf

.n;k/.jyj/Y .n;k/.y=jyj/� is admissible of
degree q� 1.

(iv) We just showed in the last step that @�f is admissible of degree q�j�j for all � 2Nd; we then only
have to prove (iv) for the case �D .0; : : : ; 0/. This can be showed via the brute force bound for jyj � 1

jf .y/j D

ˇ̌̌̌
f .n;k/.jyj/Y .n;k/

�
y

jyj

�ˇ̌̌̌
� kY .n;k/kL1 jf

.n;k/.jyj/j � C jyjq

by (2-16) since f is a simple admissible function of degree .n; q/. �

The next lemma extends Lemma 2.9 to admissible functions. We do not give a proof, as it is a direct
consequence of the latter.
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Lemma 2.13 (action of H on admissible functions). Let f be an admissible function in the sense of
Definition 2.11 written as f .y/D

P
n;k f

.n;k/.jyj/Y .n;k/.y=jyj/, of degree q, with q > n�d . Assume
that for all n2N such that there exists k, 1�k�k.n/ with f .n;k/¤0, we have q satisfies�q�n�2 622N.
Then for all integers i 2 N, recalling that H�1f is defined by (2-25):

(i) H if is admissible of degree q� 2i .

(ii) H�if is admissible of degree qC 2i .

2E. Homogeneous functions. The approximate blow-up profile we will build in the following subsection
will look like QC

P
b
.n;k/
i T

.n;k/
i for some coefficients b.n;k/i (T .n;k/i being defined in (2-26)). The

nonlinearity in the semilinear heat equation (1-1) will then produce terms that will be products of the
profiles T .n;k/i and coefficients b.n;k/i . Such nonlinear terms are admissible functions multiplied by
monomials of the coefficients b.n;k/i . The set of triples .n; k; i/ for which we will make a perturbation
along T .n;k/i is I, defined in (1-39). Hence the vector b representing the perturbation will be

b D .b
.n;k/
i /.n;k;i/2I D .b

.0;1/
1 ; : : : ; b

.0;1/
L ; b

.1;1/
1 ; : : : ; b

.1;1/
L1

; : : : ; b
.n0;k.n0//
0 ; : : : ; b

.n0;k.n0//
Ln0

/: (2-28)

We will then represent a monomial in the coefficients b.n;k/i by a tuple of #I integers

J D .J
.n;k/
i /.n;k;i/2I D .J

.0;1/
1 ; : : : ; J

.0;1/
L ; J

.1;1/
1 ; : : : ; J

.1;1/
L1

; : : : ; J
.n0;k.n0//
0 ; : : : ; J

.n0;k.n0//
Ln0

/

through the formula

bJ WD .b
.0;1/
1 /J

.0;1/
1 � � � � � .b

.n0;k.n0//
Ln0

/
J
.n0;k.n0//

Ln0 : (2-29)

We associate three different lengths to J for the analysis. The first one, jJ j WD
P
J
.n;k/
i , represents the

number of parameters b.n;k/i that are multiplied in the above formula, counted with multiplicity, i.e., the
standard degree of bJ. In the analysis, the coefficients b.nk/i will have the size jb.n;k/i j. jb.0;1/1 j

�n
2
Ci.

The second length,

jJ j2 WD
X
n;k;i

�
 � n

2
C i

�
J
.n;k/
i ;

is tailor-made to produce the following identity if these latter bounds hold:

jbJ j. .b.0;1/1 /jJ j2 I

i.e., jJ j2 encodes the “size” of the real number bJ. For the construction of the approximate blow-up
profile, we will invert several times some elliptic equations, and the i-th inversion will be related to the
third length

jJ j3 WD

LX
iD1

iJ
.0;1/
i C

X
1�i�L1
1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I
2�n

.i C 1/J
.n;k/
i :

To track information about the nonlinear terms generated by the semilinear heat equation (1-1) we
eventually introduce the class of homogeneous functions.
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Definition 2.14 (homogeneous functions). Let b denote a #I-tuple under the form (2-28), m 2 N and
q 2 R. We recall that jJ j2 and jJ j3 are defined by (1-41) (1-42) and bJ is given by (2-29). We say that a
function S W RI �Rd ! R is homogeneous of degree .m; q/ if it can be written as a finite sum

S.b; y/D
X
J2J

bJSJ .y/;

#J <C1, where for each tuple J 2 J , one has that jJ j3 Dm and that the function SJ is admissible of
degree 2jJ j2C q in the sense of Definition 2.11.

As a direct consequence of Lemma 2.12, and so we do not write here the proof, we obtain the following
properties for homogeneous functions.

Lemma 2.15 (calculus on homogeneous functions). Let S and S 0 be two homogeneous functions of
degrees .m; q/ and .m0; q0/ in the sense of Definition 2.14, and � 2 Nd . Then:

(i) @�S is homogeneous of degree .m; q� j�j/.

(ii) SS 0 is homogeneous of degree .mCm0; qC q0/.

(iii) If , writing SD
P
J2J b

J
P
n;k S

.n;k/
J Y .n;k/, one has 2jJ j2Cq>n�d and�2jJ j2�q�n�2 622N

for all n; J such that there exists k, 1� k � k.n/ with S .n;k/J ¤ 0, then for all i 2N, H�i .S/ (given
by (2-25)) is homogeneous of degree .m; qC 2i/.

3. The approximate blow-up profile

3A. Construction. We first summarize the content and ideas of this section. We construct an approximate
blow-up profile relying on a finite number of parameters close to the set of functions .�z.Q�//�>0; z2Rd .
It is built on the generalized kernel of H , Span..T .n;k/i /n;i2N; 1�k�k.n// defined by (2-26), and can
therefore be seen as a part of a center manifold. The profile is built on the whole space Rd for the moment
and will be localized later.

In Proposition 3.1 we construct a first approximate blow-up profile. The procedure generates an error
term  , and by inverting elliptic equations, i.e., adding the term H�1 to our approximate blow-up
profile, one can always convert this error term into a new error term that is localized far away from the
origin. We apply this procedure several times to produce an error term that is very small close to the
origin. Then, in Proposition 3.3 we localize the approximate blow-up profile to eliminate the error terms
that are far away from the origin. We will cut in the zone jyj �B1 DB

1C�
0 , where �� 1 is a very small

parameter. In this zone, the perturbation in the approximate blow-up profile has the same size as ƒQ,
being the reference function for scale change. It will correspond to the self-similar zone jxj �

p
T � t

for the true blow-up function, where T will be the blow-up time.
The blow-up profile is described by a finite number of parameters whose evolution is given by the

explicit dynamical system (3-58). In Lemma 3.4 we show the existence of special solutions describing
a type II blow up with explicit blow-up speed. The linear stability of these solutions is investigated in
Lemma 3.5.
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There is a natural renormalized flow linked to the invariances of the semilinear heat equations (1-1).
For u a solution of (1-1), � W Œ0; T .u0//! R�

C
and z W Œ0; T .u0//! Rd two C 1 functions, if one defines

for s0 2 R the renormalized time

s.t/ WD s0C

Z t

0

1

�.t 0/2
dt 0 (3-1)

and the renormalized function

v.s; � / WD .��zu.t; � //�;

then from a direct computation, v is a solution of the renormalized equation

@sv�
�s

�
ƒv�

zs

�
:rv�F.v/D 0: (3-2)

Our first approximate blow-up profile is adapted to this new flow and is a special perturbation of Q.

Proposition 3.1 (first approximate blow-up profile). Let L 2 N, L� 1, and let b D .b.n;k/i /.n;k;i/2I
denote a #I-tuple of real numbers with b.0;1/1 > 0. There exists a #I-dimensional manifold of C1

functions .Qb/b2R�
C
�R#I�1 such that

F.Qb/D b
.0;1/
1 ƒQbC b

.1;� /
1 :rQbC

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

� @Qb
@b
.n;k/
i

� b; (3-3)

where b.1;� /1 denotes the d -tuple of real numbers .b.1;1/1 ; : : : ; b
.1;d/
1 /, where we used the convention

b
.n;k/
LnC1

D 0, and where  b is an error term. Let B1 be defined by (1-38). If the parameters satisfy the size
conditions6 b.0;1/1 � 1 and jb.n;k/i j . jb.0;1/1 j

�n
2
Ci for all .n; k; i/ 2 I, then  b enjoys the following

bounds:

(i) Global7 bounds. For 0� j � sL,

kH j bk
2
L2.jyj�2B1/

� C.L/.b
.0;1/
1 /2.j�m0/C2.1�ı0/Cg

0�C.L/�; (3-4)

kr
j bk

2
L2.jyj�2B1/

� C.L/.b
.0;1/
1 /2.

j
2
�m0/C2.1�ı0/Cg 0�C.L/�; (3-5)

where C.L/ is a constant depending on L only.

(ii) Local bounds.

8j � 0; 8B > 1;

Z
jyj�B

jr
j bj

2 dy � C.j;L/BC.j;L/.b
.0;1/
1 /2LC6: (3-6)

where C.L; j / is a constant depending on L and j only.

6This means that under the bounds jb.n;k/i j �Kjb
.0;1/
1 j

�n
2 Ci for some K > 0, there exists b�.K/ such that the estimates

that follow hold if b.0;1/1 � b�.K/ with constants depending on K. In what follows, K will be fixed independently of the other
important constants.

7The zone y � B1 is called global because in the next proposition we will cut the profile Qb in the zone jyj � B1.
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The profile Qb is of the form

Qb WDQC˛b; ˛b WD
X

.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si ; (3-7)

where T .n;k/i is as in (2-26), and the profiles Si are homogeneous functions in the sense of Definition 2.14
with

deg.Si /D .i;� �g0/ (3-8)

and with the property that for all 2 � j � LC 2, we have @Sj =@b
.n;k/
i D 0 if j � i for nD 0; 1 and if

j � i C 1 for n� 2.

Remark 3.2. The previous proposition is to be understood in the following way. We have a special
function depending on some parameters b close to Q, that is to say, at scale 1 and with concentration
point 0 for the moment. Equation (3-3) means that the force term (i.e., when applying F ) generated by
(NLH) makes it concentrate at speed b.0;1/1 and translate at speed b.1;� /1 , while the time evolution of the
parameters is an explicit dynamical system given by the third term. These approximations involve an
error for which we have some explicit bounds (3-4) and (3-6).

The size of this approximate profile is directly related to the size of the perturbation along T .0;1/1 , the
first term in the generalized kernel of H responsible for scale variation. Indeed we ask for jb.n;k/i j .
jb
.0;1/
1 j

�n
2
Ci, and the size of the error is measured via b.0;1/1 ; see (3-4), (3-5) and (3-6). Therefore b.0;1/1

will be the universal order of magnitude in our problem.
Because of the shape of this approximate blow-up profile (3-7), when including the time evolution of

the parameters in (3-3) we get

@s.Qb/�F.Qb/C b
.0;1/
1 ƒQbC b

.1;� /
1 :rQb DMod.s/C b; (3-9)

where8

Mod.s/D
X

.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jDiC1Cın�2

@Sj

@b
.n;k/
i

�
: (3-10)

For all 2� j � LC 2, as Sj is homogeneous of degree .j;� �g0/ in the sense of Definition 2.14 from
(3-8), and from the fact that @Sj =@b

.n;k/
i D 0 if j � i for nD 0; 1 and if j � i C 1 for n � 2, one has

that for all j , n, k, i , we have @Sj =@b
.0;1/
i is either 0 or is homogeneous of degree .a; b/ with a � 1,

meaning that it never contains nontrivial constant functions independent of the parameters b. Hence,
if the bounds jb.n;k/i j . jb.0;1/1 j

�n
2
Ci hold, since jb.0;1/1 j . 1 and �n � � from (1-18), one has in

particular that on compact sets for any 2� j � LC 2 and .n; k; i/ 2 I,
@Sj

@b
.n;k/
i

DO.jb
.0;1/
1 j/: (3-11)

Proof of Proposition 3.1. Step 1: computation of  b . We first find an appropriate reformulation for the
error  b given by (3-3) when Qb has the form (3-7).

8Here ın�2 D 1 if n� 2, and is zero otherwise.
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Rewriting of F.Qb/ in (3-3). We start by computing

�F.Qb/DH.˛b/�.f .Qb/�f .Q/�˛bf
0.Q//

D

X
.n;k;i/2I

b
.n;k/
i HT

.n;k/
i C

LC2X
iD2

H.Si /�.f .Qb/�f .Q/�˛bf
0.Q//

D�b
.0;1/
1 ƒQ�b

.1;�/
1 :rQ�

X
.n;k;i/2I

b
.n;k/
iC1 T

.n;k/
i C

LC2X
iD2

H.Si /�.f .Qb/�f .Q/�˛bf
0.Q//;

(3-12)
where we used the definition of the profiles T .n;k/i from (2-26), and the convention b.n;k/LnC1

D 0. For
i D 2; : : : ; L, we regroup the terms that involve the multiplication of i parameters b.n;k/j in the nonlinear
term �.f .Qb/�f .Q/�˛bf 0.Q//. Since p is an odd integer,

�
f .Qb/�f .Q/�˛bf

0.Q/
�
D

pX
kD2

C
p

k
Qp�k˛kb

D

pX
kD2

C
p

k
Qp�k

� X
jJ j1Dk

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

LC2Y
iD2

S
Ji
i

�
;

(3-13)
where J D .J .0;1/1 ; : : : ; J

.n0;k.n0//
Ln0

; J2; : : : ; JLC2/ represents a .#ICLC1/-tuple of integers. Anticipating
that the profile Si will be a homogeneous profile of degree .i;  �g0/, we define for such tuples J ,

jJ j3 D

LX
iD1

iJ
.0;1/
i C

X
1�i�L1; 1�k�d

iJ
.1;k/
i C

X
.n;k;i/2I; 2�n

.i C 1/J
.n;k/
i C

LC2X
iD2

iJi : (3-14)

We reorder the sum in the previous equation, (3-13), partitioning the .#ICLC 1/-tuples J according
to their length jJ j3 instead of their length J1:

�
f .Qb/�f .Q/�˛bf

0.Q/
�
D

LC2X
jD2

Pj CR:

Pj captures the terms with polynomials of the parameters b.n;k/i of length jJ j3 D j :

Pj D

pX
kD2

CkQ
p�k

� X
jJ jDk;jJ j3Dj

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

LC2Y
iD2

S
Ji
i

�
: (3-15)

The remainder contains only terms involving polynomials of the parameters b.n;k/i of length j � j3 greater
than or equal to LC 3:

RD
�
f .Qb/�f .Q/�˛bf

0.Q/
�
�

LC2X
iD2

Pi : (3-16)
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From (3-12) we end up with the final decomposition

�F.Qb/D�b
.0;1/
1 ƒQ� b

.1;� /
1 :rQ�

X
.n;k;i/2I

b
.n;k/
iC1 T

.n;k/
i C

LX
iD2

H.Si /�

LC2X
iD2

Pi �R: (3-17)

Rewriting of the other terms in (3-3). From the form of Qb in (3-7), one has

b
.0;1/
1 ƒQb D b

.0;1/
1 ƒQC

X
.n;k;i/2I

b
.0;1/
1 b

.n;k/
i ƒT

.n;k/
i C

LC2X
iD2

b
.0;1/
1 ƒSi ; (3-18)

b
.1;� /
1 :rQb D b

.1;� /
1 :rQC

dX
jD1

� X
.n;k;i/2I

b
.1;j /
1 b

.n;k/
i @xj T

.n;k/
i C

LC2X
iD2

b
.1;j /
1 @xjSi

�
; (3-19)

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

� @Qb
@b
.n;k/
i

D

X
.n;k;i/2I

�
�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jD2

@Sj

@b
.n;k/
i

�
: (3-20)

Expression of the error term  b . Using (2-21), we define

‚
.n;k/
i .y/ WD‚

.n/
i .jyj/Y .n;k/

�
y

jyj

�
:

From (3-17)–(3-20),  b given by (3-3) is a sum of terms that are polynomials in b, and, denoting a
monomial by bJ, we rearrange them according to the value jJ j3:

 b D

LC2X
iD2

Œˆi CH.Si /�C b
.0;1/
1 ƒSLC2C

dX
jD1

b
.1;j /
1 @xjSLC2

C

X
.n;k;i/2I

.�.2i �˛n/b
.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 /

@SLC2

@b
.n;k/
i

�R; (3-21)

where the profiles ˆi are given by the formulas

ˆ2 WD .b
.0;1/
1 /2‚

.0;1/
1 C

dX
kD1

b
.0;1/
1 b

.1;k/
1 ‚

.1;k/
1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
1 @xj T

.0;1/
1 C

dX
kD1

b
.1;j /
1 b

.1;k/
1 @xj T

.1;k/
1

�

C

X
.n;k;0/2I; n�2

�
b
.0;1/
1 b

.n;k/
0 ‚

.n;k/
0 C

dX
jD1

b
.1;j /
1 b

.n;k/
0 @xj T

.n;k/
0

�
�P2; (3-22)
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and for i D 3; : : : ; LC 1,

ˆi WD b
.0;1/
1 b

.0;1/
i�1 ‚

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.0;1/
1 b

.1;k/
i�1 ‚

.1;k/
i�1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
i�1 @xj T

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.1;j /
1 b

.1;k/
i�1 @xj T

.1;k/
1

�

C

X
.n;k;i�2/2I; n�2

�
b
.0;1/
1 b

.n;k/
i�2 ‚

.n;k/
i�2 C

dX
jD1

b
.1;j /
1 b

.n;k/
i�2 @xj T

.n;k/
i�2

�

C b
.0;1/
1 ƒSi�1C

dX
mD1

b
.1;m/
1 @xmSi�1

C

X
.n;k;j /2I

�
�.2j �˛n/b

.0;1/
1 b

.n;k/
j C b

.n;k/
jC1

� @Si�1
@b
.n;k/
j

�Pi ; (3-23)

ˆLC2 WD b
.0;1/
1 ƒSLC1C

dX
mD1

b
.1;m/
1 @xmSLC1

C

X
.n;k;j /2I

�
�.2j �˛n/b

.0;1/
1 b

.n;k/
j C b

.n;k/
jC1

� @SLC1
@b
.n;k/
j

�PLC2: (3-24)

Step 2: definition of the profiles .Si /2�i�LC2 and simplification of  b . We define by induction a
sequence of couples of profiles .Si /2�i�LC2 by�

S2 WD �H
�1.ˆ2/

Si WD �H
�1.ˆi / for 3� i � LC 2; with ˆi defined by (3-22), (3-23), (3-24);

(3-25)

where H�1 is defined by (2-25). In the next step we prove that there is no problem in this construction.
Since the Si are defined in this way, by (3-21) we get the final expression for the error

 bDb
.0;1/
1 ƒSLC2C

dX
jD1

b
.1;j /
1 @xjSLC2C

X
.n;k;i/2I

�
�.2i�˛n/b

.0;1/
1 b

.n;k/
i Cb

.n;k/
iC1

� @SLC2
@b
.n;k/
i

�R: (3-26)

Step 3: properties of the profiles Si . We prove by induction on i D 2; : : : ; LC2 that Si is homogeneous of
degree .i;��g0/ in the sense of Definition 2.14, and that for all 2� j �LC2, we have @Sj =@b

.n;k/
i D 0

if j � i for nD 0; 1 and if j � i C 1 for n� 2.

Initialization. We now prove that S2 is homogeneous of degree .2;� �g0/, and that @S2=@b
.n;k/
i D 0

if 2� i for nD 0; 1 and if 1� i for n� 2. We claim that ˆ2 is homogeneous of degree .2;� �g0� 2/
and that @ˆ2=@b

.n;k/
i D 0 if 2� i for nD 0; 1 and if 1� i for n� 2. To prove this, we prove that these

two properties are true for every term on the right-hand side of (3-22).
From Lemma 2.10,‚.0;1/1 is simple admissible of degree .0;�C2�g0/ in the sense of Definition 2.11.

We also know .b
.0;1/
1 /2 can be written under the form J

.0;1/
1 D 2 and J .n;k/i D 0 otherwise and one has

jJ j2D2 and jJ j3D2. Therefore, .b.0;1/1 /2‚
.0;1/
1 is homogeneous of degree .jJ j3;�C2�g0�2jJ j2/D

.2;� �g0� 2/. The same reasoning applies for b.0;1/1 b
.1;k/
1 ‚

.1;k/
1 for 1� k � d .
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For 1� j � d , we know T
.0;1/
1 is admissible of degree .0;�C2/ by Lemma 2.12, so @xj T

.0;1/
1 is ad-

missible of degree .�C1/ by Lemma 2.10. We also know b.1;j /1 b
.0;1/
1 can be written in the form bJ with

J
.0;1/
1 D 1, J .1;j /1 D 1 and J .n;k/i D 0 otherwise; therefore jJ j3D 2 and jJ j2D 1C

�1
2
C1D 2C ˛�1

2
by

(1-18). Thus b.1;j /1 b
.0;1/
1 @xj T

.0;1/
1 is homogeneous of degree .jJ j3;�1C1�2jJ j2/D .2;� �2�˛/.

As g0<˛, it is then homogeneous of degree .2;��g0�2/. The same reasoning applies for 1� j; k� d
to the term b

.1;j /
1 b

.1;k/
1 @xj T

.1;k/
1 .

We now examine for .n; k; 0/ 2 I the profile

b
.0;1/
1 b

.n;k/
0 ‚

.n;k/
0 C

dX
jD1

b
.1;j /
1 b

.n;k/
0 @xj T

.n;k/
0 :

‚
.n;k/
0 is simple admissible of degree .n;�n�g0/ by Lemma 2.10, and b.0;1/1 b

.n;k/
0 can be written in the

form bJ for J .0;1/1 D1, J .n;k/0 D1 and J .n
0;k0/

i D0 otherwise. One then has jJ j3D2 and jJ j2D1C
�n
2

.
Therefore, b.0;1/1 b

.n;k/
0 ‚

.n;k/
0 is homogeneous of degree .jJ j3;�n � g0 � 2jJ j2/ D .2;� � g0 � 2/.

Similarly the terms in the sum in the above identity are homogeneous of degree .2;� �g0� 2/.
We now look at the nonlinear term P2. Since, for 2� i � LC 2, the profile Si involves polynomials

of b in the form bJ with jJ j3 D i , from its definition (3-15) P2 does not depend on the profiles Si for
2� i � LC 2 and can be written as

P2 D CQ
p�2

�
b
.0;1/
1 T

.0;1/
1 C

dX
kD1

b
.1;k/
1 T

.1;k/
1 C

X
.n;k;0/2I

b
.n;k/
0 T

.n;k/
0

�2
for a constant C . We have to prove that all the mixed terms that are produced by this formula are
homogeneous of degree .2;  � g0 � 2/. We write it only for one term, and apply the same rea-
soning to the others. For all ..n; k; 0/; .n0; k0; 0// 2 I2, by Lemmas 2.10 and 2.15 and (2-1), the
profile b.n;k/0 b

.n0;k0/
0 Qp�2T

.n;k/
0 T

.n0;k0/
0 is homogeneous of degree .2;� � 2�˛/ and then of degree

.2;� � 2� g0/. As we said, similar considerations yield that all the other terms are homogeneous of
degree .2;  �g0� 2/. This implies that P2 is homogeneous of degree .2;� �g0� 2/.

We have examined all terms in (3-22) and consequently proved that ˆ2 is homogeneous of degree
.2;� � 2�g0/. By a direct check of all the terms on the right-hand side of (3-22), with P2 given by the
above identity, one has that @ˆ2=@b

.n;k/
i D 0 if 2� i for nD 0; 1 and if 1� i for n� 2. We now check

that we can apply Lemma 2.15(iii) to invert ˆ2 and to propagate the homogeneity. For all #I-tuples J
with jJ j3D 2, one has indeed for all integers n that 2jJ j2�n�2�g0 > n�d as the sequence .n/n2N

is decreasing and d � 2 � 2 > 0. For the second condition required by the lemma, we notice that g0

is not a “fixed” constant in our problem, as its definition (1-21) involves a parameter ". The purpose of
the parameter " is the following: by choosing it appropriately, we can suppose that for every 0� n� n0
and #I-tuple J with jJ j3 D 2 we have

�2jJ j2C  Cg
0
� n … 2N:

This allows us to apply Lemma 2.15(iii): S2 is homogeneous of degree .2;� � g0/. We also get that
@S2=@b

.n;k/
i D 0 if 2 � i for n D 0; 1 and if 1 � i for n � 2 as this is true for ˆ2. This proves the

initialization of our induction.
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Heredity. Suppose 3� i �LC1, and that Si 0 is homogeneous of degree .i 0;� �g0/ for 2� i 0 � i , and
that @S 0i=@b

.n;k/
j D 0 if i 0 � j for nD 0; 1 and if i 0�1� j for n� 2. We claim that ˆi is homogeneous

of degree .i;� �g0� 2/ and that @ˆi=@b
.n;k/
j D 0 if i � j for nD 0; 1 and if i � 1� j for n� 2. We

prove it by looking at all the terms on the right-hand side of (3-23). With the same reasoning we used
for the initialization, we prove that

b
.0;1/
1 b

.0;1/
i�1 ‚

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.0;1/
1 b

.1;k/
i�1 ‚

.1;k/
i�1

C

dX
jD1

�
b
.1;j /
1 b

.0;1/
i�1 @xj T

.0;1/
i�1 C

dX
kD1; .1;k;i�1/2I

b
.1;j /
1 b

.1;k/
i�1 @xj T

.1;k/
1

�

C

X
.n;k;i�2/2I; n�2

�
b
.0;1/
1 b

.n;k/
i�2 ‚

.n;k/
i�2 C

dX
jD1

b
.1;j /
1 b

.n;k/
i�2 @xj T

.n;k/
i�2

�
is homogeneous of degree .i; �g0�2/. From the induction hypothesis, b.0;1/1 ƒSi�1 is homogeneous of
degree .i;� �g0� 2/. From Lemma 2.12, for 1� j � d , we know @xjSi�1 is homogeneous of degree
.i�1;��g0�1/, so that b.1;j /1 @xjSi�1 is homogeneous of degree .i;��g0�2�˛/; since ˛ is positive,
it is then homogeneous of degree .i;��g0�2/. Still from the induction hypothesis, for all .n; k; i 0/2 I,�

�.2i 0�˛n/b
.0;1/
1 b

.n;k/
i 0 C b

.n;k/
i 0C1

� @Si�1
@b
.n;k/
i 0

is homogeneous of degree .i;��g0�2/. The last term to be considered is Pi . Since, for 2� j �LC2,
the profile Sj involves polynomials of b of the form bJ with jJ j3 D i , from its definition (3-15) Pi does
not depend on the profiles Sj for i � j � LC 2 and can be written as

Pi D

pX
kD2

CkQ
p�k

� X
jJ jDk; jJ j3Di

CJ
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

i�1Y
jD2

S
Jj
j

�
:

Let k be an integer 2� k �p; let J be a #ICL-tuple with jJ j3D i . Then from the induction hypothesis,

Qp�k
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i .T
.n;k/

k
/J
.n;k/

i

i�1Y
jD2

S
Jj
j

is homogeneous of degree
�
i;� �2� .k�1/˛�g0

Pi�1
jD2 Jj

�
. As k � 2 and ˛ > g0, it is homogeneous

of degree .i;  � 2�g0/.
We just proved that ˆi is homogeneous of degree .i;� � 2�g0/. By a direct check of all the terms

on the right-hand side of (3-23), with Pi given by the above formula, one has that @ˆi=@b
.n;k/
j D 0 if

i � j for nD 0; 1 and if i �1� j for n� 2. We now check that we can apply Lemma 2.15(iii) to get the
desired properties for Si D�H�1ˆi . For all #I-tuples J with jJ j3D i and integers n, the first condition
jJ j2�  � 2�g

0 > n� d is fulfilled since �2n� d � �2 � d > 2. For the second condition, again
as in the initialization, as g0 is not a “fixed” constant in our problem (its definition (1-21) involves a
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parameter "), we can choose it such that for every 0� n� n0 and #I-tuple J with jJ j3 D i ,

�2jJ j2C  Cg
0
� n … 2N:

We thus can apply Lemma 2.15(iii): Si is homogeneous of degree .i;� � g0/. One also obtains that
@Si=@b

.n;k/
j D 0 if i � j for nD 0; 1 and if i � 1 � j for n � 2, as this is true for ˆi . This proves the

heredity in our induction.
The last step, that it is the heredity from LC 1 to LC 2, can be proved exactly the same way and we

do not write it here.

Step 4: bounds for the error term. In Step 2 we computed the expression (3-26) of the error term  b .
In Step 3 we proved that the profiles Si were well defined and homogeneous of degree .i;� �g0/. We
can now prove the bounds on  b claimed in the proposition. In the sequel we always assume the bounds
jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci and jb.0;1/1 j � 1.

Homogeneity of  b . We claim that  b is a finite sum of homogeneous functions of degree .i;��g0�2/
for i � LC 3. For this we consider all terms on the right-hand side of (3-26). As SLC2 is homogeneous
of degree .LC 2;� � g0/ from Step 3, the function b.0;1/1 ƒSLC2 is homogeneous of degree .LC 3;
��g0�2/ by Lemma 2.15. Similarly for 1� j �d , we know b.1;j /1 @xjSLC2 is homogeneous of degree
.LC3;��g0�2�˛/ (and then homogeneous of degree .LC3;��g0�2/ as ˛>0), and for .n; k; i/2I,

.�.2i �˛n/b
.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 /

@SLC2

@b
.n;k/
i

is homogeneous of degree .LC 3;� �g0� 2/. From its definition (3-16), and since Si is homogeneous
of degree .i;� �g0/ for 2� i � LC 2, we have R is a finite sum of homogeneous profiles of degree
.i;� � ˛ � 2/ with i � LC 3. All this implies that  b is a finite sum of homogeneous functions of
degree .i;� �g0� 2/ for i � LC 3.

Proof of an intermediate estimate. We claim that there exists an integer A � LC 3 such that for � a
d -tuple of integers, j 2 N and B > 1 we haveZ

jyj�B

j@� bj
2

1Cjyj2j
dy � C.L/

AX
iDLC3

jb
.0;1/
1 j

2iBmax .4iC4.m0� j�jCj2 /C4.ı0�1/�2g 0;0/: (3-27)

We now prove this bound. We proved earlier that  b is a finite sum of homogeneous functions of
degree .i;� �g0� 2/ for i � LC 3. Consequently, it suffices to prove this bound for a homogeneous
function bJf .y/ of degree .jJ j3;� � g0 � 2/ with jJ j3 � L C 3. As f is admissible of degree
.2jJ j2�  �g

0� 2/, one then computesZ
jyj�B

jbJ @�f j2

1Cjyj2j
� C.f /jb

.0;1/
1 j

2jJ j2

Z B

0

.1C r/4jJ j2�2�2g
0�4�2j�2j�jrd�1 dr

� C.f /jb
.0;1/
1 j

2jJ j2Bmax .4jJ j2C4.m0C jCj�j2
/C4.ı0�1/�2g 0;0/

(we avoid the logarithmic case in the integral by changing a bit the value of g0 defined in (1-21), by
changing a bit the value of "). This concludes the proof of (3-27).
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Proof of the local bounds for the error. Let j be an integer, and � 2 Nd with j�j D j . From (3-27),
jb
.0;1/
1 j � 1 and B > 1, we obtain, by (3-27),Z

jyj�B

j@� bj
2 dy � C.L/jb

.0;1/
1 j

2LC6Bmax .4AC4.m0� j�jCj2 /C4.ı0�1/�2g 0;0/;

which gives the desired bound (3-6).

Proof of the global bounds for the error. Let j � 2sL, and � 2Nd with j�j D j . Using (3-27), we notice
that for LC 3� i � A one has

max
�
4i C 4

�
m0�

j�jC j

2

�
C 4.ı0� 1/� 2g

0; 0

�
D 4i C 4

�
m0�

j�jC j

2

�
C 4.ı0� 1/� 2g

0:

This implies Z
jyj�B1

j@� bj
2

1Cjyj2j
dy � C.L/

AX
iDLC3

jb
.0;1/
1 j

2iB
4iC4.m0� j�jCj2 /C4.ı0�1/�2g 0

1

� C.L/jb
.0;1/
1 j

2. j
2
�m0/C2.1�ı0/Cg 0�C.L/�;

which is the desired bound (3-5). Let j be an integer, j � sL. Now, as H D ��C V , where V is a
smooth potential satisfying j@�V j � C.�/.1Cjyj/�2�j�j, by (2-2) one obtainsZ

jyj�B1

jH j bj
2 dy � C.L/

X
j 0Cj�j1D2j

Z
jyj�B1

j@� bj
2

1Cjyj2j
0 dy

� C.L/
X

j 0Cj�jD2j

AX
iDLC3

jb
.0;1/
1 j

2iB
max.4iC4.m0�j /C4.ı0�1/�2g 0;0/
1

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�

using (3-27) (because again 4iC4.m0�j /C4.ı0�1/�2g0 > 0 as i �LC3 and j � sL). This proves
the last estimate (3-4). �

We now localize the perturbation built in Proposition 3.1 in the zone jyj � B1 and estimate error
generated by the cut. We also include the time-dependence of the parameters following Remark 3.2. We
recall that sL is defined by (1-24).

Proposition 3.3 (localization of the perturbation). The function � is a cut-off defined by (1-43). We keep
the notations from Proposition 3.1. I D .s0; s1/ is an interval, and

b W I ! R#I ; s 7! .b
.n;k/
i .s//.n;k;i/2I ;

is a C 1 function with the a priori bounds9

jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci ; 0 < b

.0;1/
1 � 1; jb

.0;1/
1;s j. jb

.0;1/
1 j

2: (3-28)

9This means that under the bounds jb.n;k/i j �Kjb
.0;1/
1 j

�n
2 Ci for some K > 0, there exists b�.K/ such that the estimates

that follow hold if b.0;1/1 � b�.K/ with constants depending on K. In what follows, K will be fixed independently of the other
important constants.
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We define the profile zQb as

zQb WDQC Q̨b DQC�B1˛b; Q̨b WD �B1˛b: (3-29)

Then one has the identity (Mod.s/ being defined by (3-10))

@s zQb �F. zQb/C b
.0;1/
1 ƒ zQbC b

.1;� /
1 :r zQb D Q bC�B1 Mod.s/ (3-30)

with, for 0 < �� 1 small enough, an error term Q b satisfying the following bounds:

(1) Global bounds. For any integer j with 1� j � sL� 1 we haveZ
Rd
jH j Q bj

2 dy � C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/�Cj�: (3-31)

For any real number sc � j < 2sL� 2,Z
Rd
jr
j Q bj

2 dy � C.L/jb
.0;1/
1 j

2. j
2
�m0/C2.1�ı0/�Cj�; (3-32)

and for j D sL, one has the improved boundZ
Rd
jH sL Q bj

2 dy � C.L/jb
.0;1/
1 j

2LC2C2.1�ı0/C2�.1�ı
0
0/: (3-33)

(2) Local bounds. One has that ( b being defined by (3-3))

8jyj< B1; Q b.y/D  b; (3-34)

and for any 1� B � B1 and j 2 N,Z
jyj�B

jr
j Q bj

2 dy � C.L; j /BC.L;j /jb
.0;1/
1 j

2LC6: (3-35)

Proof. First, we compute the expression of the new error term by rewriting the left-hand side of (3-30)
using (3-9) and the fact that F.Q/D 0:

Q b D �B1 bC @s.�B1/ Q̨b �
�
F.QC�B1˛b/�F.Q/��B1

�
F.QC˛b/�F.Q/

��
C b

.0;1/
1 .ƒQ��B1ƒQ/C b

.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/

C b
.1;� /
1 :.rQ��B1rQ/C b

.0;1/
1 :.r.�B1˛b/��B1r˛b/: (3-36)

Local bounds. In the previous identity, one clearly sees that all the terms, except �B1 b , have their
support in B1 � jyj. Thus, for B � B1, the bound (3-35) is a direct consequence of the local bound (3-6)
for  b .

Global bounds. Let m1C 1� j � sL. We will prove the bounds (3-31) and (3-33) by proving that this
estimate holds for all terms on the right-hand side of (3-36). The reasoning to prove the estimates will be
similar from one term to another. For this reason, we shall go quickly whenever an argument has already
been used earlier.
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The �B1 b term. As H D��CV for V a smooth potential with @�V . .1Cjyj/�2�j�j by (2-2), and
as .@kr .�B1//.r/D B

�k
1 @kr �.r=B1/, we have the identity

H j .�B1 b/D �B1H
j bC

jX
�2Nd

0�j�j�2j�1

f�@
� b;

where for each � 2Nd, with 0� j�j � j �1, we have f� has its support in B1 � jxj � 2B1 and satisfies
jf�j � C.L/B

�.2j�j�j/
1 . Using (3-4) and (3-5) we obtainZ

Rd
jH j .�B1 b/j

2dy

�C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�

C

jX
�2Nd

0�j�j�2j�1

B
�.4j�2j�j/
1 b

2. j�j
2
�m0C2.1�ı0/Cg

0�C.L/�/
1

�C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/�: (3-37)

Similarly, one obtains, for any integer j 0 with 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.�B1 b/j

2
� C.L/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/Cg 0�C.L/�: (3-38)

Using interpolation, this estimate remains true for any real number j 0 with 0� j 0 � 2sL� 2.

The @s.�B1/˛b term. We first split using (3-7):

@s.�B1/˛b D @s.�B1/

� X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si

�
: (3-39)

We compute

@s.�B1/D .b
.0;1/
1 /�1b

.0;1/
1;s

jyj

B1
.@r�B1/

�
y

B1

�
:

We first treat the Si terms. As we already explained in the study of the �B1 b term, one has

H j .@s.�B1/Si /D
X

�2Nd ; j�j�2j

f�@
�Si

with f� a smooth function, with support in B1 � jxj � 2B1 and satisfying jf�j �C.L/b
.0;1/
1 B

�.2j�j�j1/
1

(because jb.0;1/1;s j . jb
.0;1/
1 j2 by (3-28)). As Si is homogeneous of degree .i;� � g0/ in the sense of

Definition 2.14, from (3-8) and jb.n;k/i j. jb.0;1/1 j
�n
2
Ci we getZ

Rd
jH j .@s.�B1/Si /j

2 dy � C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/Cg
0�C.L/� (3-40)
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using Lemma 2.15. Now we treat the T .n;k/i terms in the identity (3-39). Let .i; n; k/ 2 I. Then again
one has the decomposition

H j Œ@s.�B1/b
.n;k/
i T

.n;k/
i �D b

.n;k/
i

X
�2Nd ; j�j�2j

f�@
�T

n;k
i

with f� a smooth function, with support in B1 � jyj � 2B1 and satisfying jf�j � C.L/b
.0;1/
1 B

�.2j�j�j/
1 .

As T .n;k/i is an admissible profile of degree .�nC 2i/ in the sense of Definition 2.11 by (2-26) and
Lemma 2.10, @�T n;ki is admissible of degree .�nC 2i � j�j/ by Lemma 2.12 and we computeZ

Rd
jb
.n;k/
i f�@

�T
n;k
i j

2 dy �
C.L/jb

.0;1/
1 j�nC2iC2

B
2.2j�j�j1/

1

Z 2B1

B1

r�2nC4i�2j�j1rd�1 dr

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C�.2j�2i�2ın�2mn/:

As .i; n; k/ 2 I, we know i � Ln so if j D sL one has 2j � 2i � 2ın � 2mn � 2� 2ın. Therefore we
have proved the bound (we recall that ı00 Dmax0�n�n0 ın 2 .0; 1/)Z

Rd
jH j .@s.�B1/b

.n;k/
i T

.n;k/
i /j2 dy �

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/C�.1�ı

0
0/ if j D sL:

(3-41)
From the decomposition (3-39), the bounds (3-40) and (3-41), we deduce the boundZ

Rd
jH j .@s.�B1/˛bj

2 dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if 0� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL:
(3-42)

Using verbatim the same arguments, one gets that for any integer 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.@s.�B1/˛bj

2 dy � C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�; (3-43)

which remains true for any real number j 0 with 0� j 0 � 2sL� 2 by interpolation.

The F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q// term. It can be written as

F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

D�.�B1˛b/��B1�˛bC .QC�B1˛b/
p
�Qp ��B1..QC˛b/

p
�Qp/: (3-44)

We now prove the bound for the two terms that have appeared. From the identity

�.�B1˛b/��B1�˛b D�.�B1/˛bC 2r�B1 :r˛b;

as � is radial and as .@kr .�B1//.r/D B
�k
1 @kr �.r=B1/, one sees that this term can be treated exactly the

same way we treated the previous term: @s.�B1/˛b . This is why we claim the following estimates that
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can be proved using exactly the same arguments:Z
Rd
jH j .�.�B1˛b/��B1�˛b/j

2 dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL:
(3-45)

We now turn to the other term in (3-44), which can be rewritten as

.QC�B1˛b/
p
�Qp ��B1..QC˛b/

p
�Qp/D

pX
kD2

C
p

k
Qp�k�B1.�

k�1
B1
� 1/˛kb :

All the terms are localized in the zone B1 � jyj � 2B1. From the definition (3-7) of ˛b , (3-8), (2-1) and
Lemma 2.15, for each 2� k � p one has that Qp�k˛k

b
is a finite sum of homogeneous profiles of degree

.i;� �˛� 2/ for i � k, yieldingZ
Rd

ˇ̌
H j

�
.QC�B1˛b/

p
�Qp ��B1..QC˛b/

p
�Qp/

�ˇ̌2
dy

� C.L/jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�: (3-46)

From the decomposition (3-44) and the estimates (3-45) and (3-46) one getsZ
Rd

ˇ̌
H j

�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�ˇ̌2
dy

� C.L/

(
jb
.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if m0C 1� j < sL;

jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 j˛�C.L/�

�
if j D sL:

(3-47)

The same methods used for the two previous terms yield the analogue estimate for

r
j 0
�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�
for any integer 0� j 0 � 2sL� 2, and by interpolation, we obtain, for any real number j 0 with 0� j 0 �
2sL� 2,Z

Rd

ˇ̌
r
j 0
�
F.QC�B1˛b/�F.Q/��B1.F.QC˛b/�F.Q//

�ˇ̌2
dy

� C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�: (3-48)

The b.0;1/1 .ƒQ � �B1ƒQ/ term. As @�.ƒQ/ � C.�/.1 C jyj/��j�j for all � 2 Nd by (2-7) and
HƒQD 0, one computesZ

Rd

ˇ̌
H j .b

.0;1/
1 .ƒQ��B1ƒQ//

ˇ̌2
dy � C.j /jb

.0;1/
1 j

2

Z 2B1

B1

r�2�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/C2.1�ı0/C2�.j�m0�ı0/ (3-49)
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with sL �m0 � ı0 D LC 1� ı0 > 1� ı0 for j D sL. For any integer j 0 with EŒsc� � j 0 � 2sL � 2,
similar reasoning yields the estimateZ

Rd
jr
j 0.b

.0;1/
1 .ƒQ��B1ƒQ//j

2 dy � C.j 0/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�:

By interpolation, one has for any real number j 0 with EŒsc�� j 0 � 2sL� 2,Z
Rd

ˇ̌
r
j 0.b

.0;1/
1 .ƒQ��B1ƒQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�: (3-50)

The b.0;1/1 .ƒ.�B1˛b/��B1ƒ˛b/ term. First we write this term as

b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b D b

.0;1/
1 .y:r�B1/˛b:

Now, we notice that

b
.0;1/
1 .y:r�B1/D b

.0;1/
1

jyj

B1
.@r�/

�
jyj

B1

�
is very similar to

@s.�B1/D .b
.0;1/
1 /�1b

.0;1/
1;s

jyj

B1
.@r�B1/

�
y

B1

�
in the sense that it enjoys the same estimates, as jb.0;1/1;s j. .b

.0;1/
1 /2 by (3-28). Thus, we can get exactly

the same estimates for the term b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/ that we obtained previously for the term

@s.�B1/˛b with the exact same methodology, yieldingZ
Rd

ˇ̌
H j

�
b
.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b/

�ˇ̌2
dy

�

(
C.L/jb

.0;1/
1 j2.j�m0/C2.1�ı0/�C.L/� if 0� j < sL;

C.L/jb
.0;1/
1 j2LC2C2.1�ı0/

�
jb
.0;1/
1 j2�.1�ı

0
0/Cjb

.0;1/
1 jg

0�C.L/�
�

if j D sL;
(3-51)

and for any integer j 0 with 0� j 0 � 2sL� 2,Z
Rd
jr
j 0.b

.0;1/
1 .ƒ.�B1˛b/��B1ƒ˛b//j

2 dy � C.L/jb
.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.L/�: (3-52)

The b.1;� /1 :.rQ��B1rQ/ term. First we rewrite

b
.1;� /
1 :.rQ��B1rQ/D

dX
iD1

b
.1;i/
1 .1��B1/@yiQ: (3-53)

Now let i be an integer, 1� i � d . From the asymptotic (2-1) of the ground state

j@�Qj � C.�/.1Cjyj/�
2
p�1
�j�j
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and the fact that H@xiQD 0, we deduceZ
Rd

ˇ̌
H j

�
b
.1;i/
1 ..1��B1/@yiQ/

�ˇ̌2
dy � C.j /jb

.0;1/
1 j

�1C2

Z 2B1

B1

r�21�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/�2.1�ı0/C2�.j�m1�ı1/

with sL�m1� ı1 D LCm0�m1C 1� ı1 > 1� ı1 for j D sL. So we finally get, putting together the
two previous equations,Z

Rd

ˇ̌
H j

�
b
.1;� /
1 :.rQ��B1rQ/

�ˇ̌2
dy � C.j /jb

.0;1/
1 j

2

Z C1
B1

r�2�4j rd�1 dr

� C.j /jb
.0;1/
1 j

2.j�m0/�2.1�ı0/C2�.1�ı1/: (3-54)

Now, for any integer j 0 with EŒsc�� j 0� 2sL�2, as EŒsc� > sc�1, similar reasoning yields the estimateZ
Rd

ˇ̌
r
j 0.b

.1;� /
1 :.rQ��B1rQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�:

By interpolation, one has for any real number j 0 with EŒsc�� j 0 � 2sL� 2,Z
Rd

ˇ̌
r
j 0.b

.1;� /
1 :.rQ��B1rQ//

ˇ̌2
dy � C.j 0/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/�C.j 0/�: (3-55)

The b.0;1/1 :.r.�B1˛b/��B1r˛b/ term. We first rewrite

b
.0;1/
1 :.r.�B1˛b/��B1r˛b/D

dX
iD1

b
.1;i/
1 @yi .�B1/˛b:

Let i be an integer, 1� i � d . For all � 2 Nd , we know @�.�B1/� C.�/B
�j�j
1 . From (3-7) and (3-8),

˛b is a sum of homogeneous profiles of degree .i;�/. Using Lemma 2.15, one computesZ
Rd

ˇ̌
H j .b

.1;i/
1 @yi .�B1/˛b/

ˇ̌2
dy � C.L/jb

.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�:

With the two previous equations, one has proved thatZ
Rd

ˇ̌
H j

�
b
.0;1/
1 :.r.�B1˛b/��B1r˛b/

�ˇ̌2
dy � C.L/jb

.0;1/
1 j

2.j�m0/C2.1�ı0/C˛�C.L/�: (3-56)

Using exactly the same arguments, one can prove that for any integer 0 � j 0 � 2sL � 2, the analogue
estimate for rj

0

.b
.0;1/
1 :.r.�B1˛b/��B1r˛b// holds. By interpolation, it gives that for any real number

0� j 0 � 2sL� 2 we haveZ
Rd

ˇ̌
r
j 0
�
b
.0;1/
1 :.r.�B1˛b/��B1r˛b/

�ˇ̌2
dy � C.L/jb

.0;1/
1 j

2. j
0

2
�m0/C2.1�ı0/C˛�C.L/�: (3-57)

End of the proof. For the estimate concerning the operator H (resp. the operator r), we have estimated
all terms on the right-hand side of (3-36) in (3-37), (3-42), (3-47), (3-49), (3-51), (3-54) and (3-56) (resp.
the right-hand side of (3-36) in (3-38), (3-43), (3-48), (3-50), (3-52), (3-55) and (3-57)). Adding all these
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estimates, as 0 < b.0;1/1 � 1 is a very small parameter, one sees that there exists �0 WD �0.L/ such that
for 0 < � < �0, the bounds (3-31) and (3-33) hold (resp. the bound (3-32) holds). �

3B. Study of the approximate dynamics for the parameters. In Proposition 3.3 we stated the existence
of a profile zQb such that the force term F. zQb/ generated by (NLH) has an almost explicit formulation
in terms of the parameters b D .b.n;k/i /.n;k;i/2I up to an error term Q b . Suppose that for some time,
the solution that started at zQb.0/ stays close to this family of approximate solutions, up to scaling and
translation invariances, meaning that it can be written approximately as �z.t/. zQb.t/;1=�.t//. Then zQb.s/
is almost a solution of the renormalized flow (3-2) associated to the functions of time �.t/ and z.t/,
meaning that

@s. zQb/�
�s

�
ƒ zQb �

zs

�
:r zQb �F. zQb/� 0:

Using the identity (3-30), this means

�

�
b
.0;1/
1 C

�s

�

�
ƒ zQb �

�
b
.1;� /
1 C

zs

�

�
:r zQbC�B1 Mod.s/� 0:

From the very definition (3-10) of the modulation term Mod.s/, projecting the previous relation onto the
different modes that appeared10 yields8̂̂̂̂

<̂̂
ˆ̂̂̂:

�s

�
D�b

.0;1/
1 ;

zs

�
D�b

.1;� /
1 ;

b
.n;k/
i;s D�.2i �˛n/b

.0;1/
1 b

.n;k/
i C b

.n;k/
iC1 8.n; k; i/ 2 I

(3-58)

with the convention b.n;k/LnC1
D 0. The understanding of a solution starting at zQb.0/ then relies on the

understanding of the solutions of the finite-dimensional dynamical system (3-58) driving the evolution
of the parameters b.n;k/i . First we derive some explicit solutions such that �.t/ touches 0 in finite time,
signifying concentration in finite time.

Lemma 3.4 (special solutions for the dynamical system of the parameters). We recall that the renormalized
time s is defined by (3-1). Let `� L be an integer such that 2˛ < `. We define the functions8̂̂̂<̂

ˆ̂:
Nb
.0;1/
i .s/D

ci

si
for 1� i � `;

Nb
.0;1/
i D 0 for ` < i � L;

Nb
.n;k/
i D 0 for .n; k; i/ 2 I with n� 1;

(3-59)

with .ci /1�i�` being ` constants defined by induction as

c1 D
`

2`�˛
and ciC1 D�

˛.`� i/

2`�˛
ci for 1� i � `� 1: (3-60)

10This will be done rigorously in the next section.
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Then Nb D . Nb
.n;k/
i /.n;k;i/2I is a solution of the last equation in (3-58). Moreover, the solutions �.s/

and z.s/ of the first two equations in (3-58) starting at �.0/ D 1 and z.0/ D 0, taken in original time
variable t , are z.t/D 0 and

�.t/D

�
˛

.2`�˛/s0

�`
˛
�
.2`�˛/

˛
s0� t

�`
˛

: (3-61)

Proof. It is a direct computation that can safely be left to the reader. �

As s0 > 0 and 2` > ˛, (3-61) can be interpreted as: there exists T > 0 with �.t/� .T � t /
`
˛ as t! T .

Now, given 1
2
˛ < `� L, we want to know the exact number of instabilities of the particular solution Nb.

In addition, in Propositions 3.1 and 3.3, we needed the a priori bounds

jb
.n;k/
i j. jb.0;1/1 j

�n
2
Ci

to show sufficient estimates for the errors  b and Q b . Around the solution Nb defined by (3-59), b.0;1/1 is
of order s�1, and so the a priori bounds we need become11

b
.n;k/
i . s

n�
2
�i :

Therefore, by “stability” of Nb we mean stability with respect to this size and introduce the following
renormalization for a solution of (3-58) close to Nb:

b
.n;k/
i D Nb

.n;k/
i C

U
.n;k/
i

s
�n
2
Ci
: (3-62)

It defines a #I-tuple of real numbers U D .U .n;k/i /.n;k;i/2I , and we order the parameters as in (2-28) by

U D
�
U
.0;1/
1 ; : : : ; U

.0;1/
L ; U

.1;1/
1 ; : : : ; U

.1;1/
L1

; : : : ; U
.n0;k.n0//
0 ; : : : ; U

.n0;k.n0//
Ln0

�
: (3-63)

In the next lemma we state the linear stability result for the renormalized perturbation .U .n;k/i /.n;k;i/2I .

Lemma 3.5 (linear stability of special solutions). Suppose b is a solution of the last equation in (3-58).
Define U D .U .n;k/i /.n;k;i/2I by (3-62) and order it as in (3-63).

(i) Linearized dynamics. The time evolution of U is given by

@sU D
1

s
AU CO

�
jU j2

s

�
; (3-64)

where A is the block diagonal matrix

AD

0BBB@
A` .0/
zA1

: : :

.0/ zAn0

1CCCA:
11One notices that this bound holds for Nb.n;k/i .
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The matrix A` is defined by

A` D

0BBBBBBBBBBBBBBBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : :

�.2i �˛/ci ˛ `�i
2`�˛

1 .0/
:::

: : :
: : :

�.2`�˛/c` 0 1

0 �˛ 1
2`�˛

1
:::

: : :
: : :

0 �˛ i�`
2`�˛

1
::: .0/

: : :
: : :

:::
: : : 1

0 �˛ .L�`/
2`�˛

1CCCCCCCCCCCCCCCCCCCCCA

: (3-65)

The matrix zA1 is a block diagonal matrix constituted of d matrices zA01:

zA1 D

0B@ zA
0
1 .0/
: : :

.0/ zA01

1CA; zA01 D

0BBBBBBBBBB@

˛
`�˛�1

2
�1

2`�˛
1
: : :

: : : .0/

˛
`�˛�1

2
�i

2`�˛
1
: : :

: : :

.0/
: : : 1

˛
`�˛�1

2
�L1

2`�˛

1CCCCCCCCCCA
: (3-66)

For 2� n� n0 the matrix zAn is a block diagonal matrix constituted of k.n/ times the matrix zA0n:

zAn D

0B@ zA
0
n .0/
: : :

.0/ zA0n

1CA; zA0n D

0BBBBBBBBBBB@

˛
`��n

2

2`�˛
1
: : :

: : : .0/

˛
`��n

2
�i

2`�˛
1
: : :

: : :

.0/
: : : 1

˛
`��n

2
�Ln

2`�˛

1CCCCCCCCCCCA
: (3-67)

(ii) Diagonalization, stability and instability. A is diagonalizable because A` and zAn for 1� n� n0 are.
A` is diagonalizable into the matrix

diag
�
�1;

2˛

2`�˛
; : : : ;

i˛

2`�˛
; : : : ;

`˛

2`�˛
;
�1

2`�˛
; : : : ;

`�L

2`�˛

�
:

We denote the eigenvector of A associated to the eigenvalue �1 by v1 and the eigenvectors associated to
the unstable modes 2˛=.`�˛/; : : : ; `˛=.`�˛/ of A by v2; : : : ; v`. They are a linear combination of the
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` first components only. That is to say, there exists a #I � #I matrix coding a change of variables:

P` WD

�
P 0
`

0

0 Id#I�`

�
; (3-68)

with P 0
`

an invertible `� ` matrix and Id#I�` the .#I � `/� .#I � `/ identity matrix such that

P`AP
�1
` D

0BBB@
A0
`

.0/
zA1

: : :

.0/ zAn0

1CCCA; (3-69)

A0` D

0BBBBBBBBBBBBB@

�1 q1
2˛
2`�˛

.0/ q2
: : :

::: .0/
`˛
2`�˛

q`
�˛
2`�˛

1
: : :

: : :
.0/ : : : 1

˛ `�L
2`�˛

1CCCCCCCCCCCCCA
(3-70)

with .qi /1�i�` 2 R` being some fixed coefficients. zA01 has max.EŒi1�; 0/ nonnegative eigenvalues and
L1�max.EŒi1�; 0/ strictly negative eigenvalues (in being defined by (1-29)). For 2� n� n0, we know
zA0n has max.EŒin�C 1; 0/ nonnegative eigenvalues and Ln C 1 �max.EŒin�C 1; 0/ strictly negative

eigenvalues.

Proof. (i) As b and Nb are solutions of (3-58), we compute (with the convention Nb.n;k/LnC1
D 0 and U .n;k/LnC1

D 0)

U
.n;k/
i;s D

1

s

��
 � n

2
C i � .2i �˛n/ Nb

.0;1/
1 s

�
U
.n;k/
i � .2i �˛n/ Nb

.n;k/
i s

�n
2
CiU

.0;1/
1

�.2k�˛n/U
.0;1/
1 U

.n;k/
i CU

.n;k/
iC1

�
:

As Nb.0;1/1 D `=.2`�˛/, we obtain

 � n

2
C i � .2i �˛n/ Nb

.0;1/
1 D ˛

`� �n
2
� i

2`�˛
:

We then get (3-65) by noticing that Nb.0;1/i D 0 for i � `C 1 and because by definition  D 0. We get
(3-66) and (3-67) by noticing that Nb.n;k/i D 0 for i � 1.

(ii) zAn for 1 � n � n0 is diagonalizable because it is upper triangular. Their eigenvalues are then the
values on the diagonal, and the last statement in (ii), about the stability and instability directions comes
from the very definition (1-29) of the real number in for 1 � n � n0. It remains to prove that A` is
diagonalizable. We will do it by calculating its characteristic polynomial.
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Computation of the characteristic polynomial for the top left corner matrix. We let A0
`

be the `� ` matrix

A0` D

0BBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : : .0/

�.2i �˛/ci ˛ `�i
2`�˛

1
:::

: : :
: : :

::: .0/
: : : 1

�.2`�˛/cl 0

1CCCCCCCCA
:

We recall that as ˛ > 2, we have `� 2 so A0
`

has at least 2 rows and 2 columns. We let

P`.X/D det.A0`�X Id/:

We compute this determinant by expanding with respect to the last row and iterating by doing that again
for the subdeterminant appearing in the process. Eventually we obtain an expression of the form

P` D .�1/`.2`�˛/c`C .�X/

"
.�1/`C1.2`� 2�˛/c`�1C

�
˛

2`�˛
�X

�
�
.�1/`.2`� 4�˛/c`�2C

�
2˛

2`�˛
�X

�
Œ � � � �

�#
: (3-71)

We define the polynomials .Ai /1�i�` and .Bi /1�i�` and .Ci /1�i�`�1 as

Ai WD .�1/
`�iC1.2`C 2� 2i �˛/c`C1�i ;

Bi WD .i � 1/
˛

2`�˛
�X;

Ci WD .�1/
`C1�i .X.2`� 2i �˛/c`�i C

2`�˛

i
c`�iC1/:

(3-72)

This way, the determinant P` given by (3-71) can be rewritten as

P` D A1CB1
�
A2CB2ŒA3CB3Œ � � � ��

�
: (3-73)

We notice by a direct computation from (3-72) that

A1CB1A2 D C1:

Moreover, this identity propagates by induction and we claim that for 1� i � `� 2,

Ci CB1B2AiC2 D BiC2CiC1: (3-74)

Indeed, from (3-60) one has
2`�˛

i C 1
c`�i D�˛c`�i�1;
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and from (3-72)

BiC2CiC1�Ci D

�
.i C 1/

˛

2`�˛
�X

�
.�1/`�i

�
X.2`� 2i � 2�˛/c`�i�1C

2`�˛

i C 1
c`�i

�
� .�1/`C1�i

�
X.2`� 2i �˛/c`�i C

2`�˛

i
c`�iC1

�
D .�1/`�i

 �
.i C 1/

˛

2`�˛
�X

��
X.2`� 2i � 2�˛/c`�i�1�˛c`�i�1

�
�X.2`� 2i �˛/˛

i C 1

2`�˛
c`�i�1C˛

2 i C 1

2`�˛
c`�i�1

!

D .�1/`�ic`�i�1X

�
˛
i C 1

2`�˛
.2`� 2i � 2�˛/C˛�X.2`� 2i � 2�˛/

�
2`� 2i �˛

2`�˛
˛.i C 1/

�
D .�1/`�ic`�i�1X.2`� 2i � 2�˛/

�
˛

2`�˛
�X

�
D AiC2B1Bi :

From the above identity we can rewrite P` given by (3-73) as

P` D A1CB1A2CB1B2A3CB1B2B3.A4CB4. � � � //

D C1CB1B2A3CB1B2B3.A4CB4. � � � //

D B3
�
C2CB1B2.A4CB4. � � � //

�
D B3B4

�
C3CB1B2.A5CB5. � � � //

�
:::

D B3 � � �B`.C`�1CB1B2/:

(3-75)
The last polynomial that appeared is, by (3-72),

C`�1CB1B2 DX.2�˛/c1C
2`�˛

`� 1
c2�X

�
˛

2`�˛
�X

�
D .X C 1/

�
X �

˛`

2`�˛

�
and so we end up from (3-75) with the final identity for P`:

P` D .X C 1/
Ỳ
iD2

�
i˛

2`�˛
�X

�
:

This means that A0
`

is diagonalizable with eigenvalues .1;�2˛=.2`�˛/; : : : ; `=.2`�˛//: there exists
an invertible `� ` matrix zP` such that zP`A` zP�1` D diag.�1; 2=.2`� ˛/; : : : ; `=.2`� ˛//. We denote
by P 0

`
the matrix

P 0` WD

�
zP`

IdL�`

�
:
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Then, from (3-65), there exists ` real numbers .qi /1�i�n 2 R` such that

P 0`A`.P
0

`/
�1
D

0BBBBBBBB@

�.2�˛/c1C˛
`�1
2`�˛

1
:::

: : :
: : : .0/

�.2i �˛/ci ˛ `�i
2`�˛

1
:::

: : :
: : :

::: .0/
: : : 1

�.2`�˛/cl 0

1CCCCCCCCA
:

This implies that A` can be diagonalized and that its eigenvalues are of simple multiplicity given by�
�1; 2˛=.2` � ˛/; : : : ; ˛`=.2` � ˛/;�˛=.2` � ˛/; : : : ;�˛L � `=.2` � ˛/

�
, and that the eigenvectors

associated to the eigenvalues �1, and 2˛=.2`�˛/; : : : ; ˛`=.2`�˛/ are linear combinations of the ` first
components only. This concludes the proof of the lemma. �

4. Main proposition and proof of Theorem 1.1

We recall that the approximate blow-up profile �z. zQ Nb;1=�/ was designed for a blow up on the whole
space Rd. In this section, we state in the main proposition of this paper, Proposition 4.6, the existence of
solutions staying in a trapped regime (defined in Definition 4.4) close to the cut approximate blow-up
profile ��z. zQ Nb;1=�/. We then end the proof of Theorem 1.1 by proving that such a solution will blow up
as described in the theorem.

4A. The trapped regime and the main proposition.

4A1. Projection of the solution on the manifold of approximate blow-up profiles. The following reasoning
is made for a blow up on the whole space Rd. As in this case our blow-up solution should stay
close to the manifold of approximate blow-up profiles .�z. zQb;�//b;z;�, we want to decompose it as a
sum �z. zQb;�C "�/ for some parameters b; z; � such that " has “minimal” size. The tangent space of
.�z. zQb;�//b;z;� at the point Q is Span.T .n;k/i /.n;k;i/2I[f.0;1;0/;.1;1;0/;:::;.1;d;0/g. One could then think
of an orthogonal projection at the linear level, i.e., hT .n;k/i ; "i D 0. The profiles T .n;k/i are, however, not
decaying quickly enough at infinity so that this duality bracket would make sense in the functional space
where " lies. For these grounds we will approximate such orthogonality conditions by smooth profiles
that are compactly supported.

Definition 4.1 (generators of orthogonality conditions). For a very large scale M � 1, for n� n0 and
1� k � k.n/ we define

ˆ
.n;k/
M D

LnX
iD0

ci;n;M .�H/
i .�MT

.n;k/
0 /D

LnX
iD0

ci;n;M .�H
.n//i .�MT

.n/
0 /Y .n;k/ (4-1)

(Ln and T .n;k/0 being defined by (1-28) and (2-26)), where

c0;n;M D 1 and ci;n;M D�

Pi�1
jD0 cj;n;M

˝
.�H/j .�MT

.n;k/
0 /; T

.n;k/
i

˛
h�MT

.n/
0 ; T

.n/
0 i

: (4-2)
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Lemma 4.2 (generation of orthogonality conditions). For n � n0, 1 � k � k.n/, 0 � i � Ln, j 2 N,
n0 2 N and 1� k0 � k.n0/, the following holds for c > 0:

h.�H/jˆ
.n;k/
M ; T

.n0;k0/
i i D ı.n;k;i/;.n0;k0;j /

Z C1
0

�M jT
.n/
0 j

2rd�1

� cM 4mnC4ını.n;k;i/;.n0;k0;j /: (4-3)

Proof. The scalar product is zero if .n; k/ ¤ .n0; k0/ because by construction ˆ.n;k/M (resp. T .n
0;k0/

i )
lives on the spherical harmonic Y .n;k/ (resp. Y .n

0;k0/). We now suppose .n; k/D .n0; k0/ and compute
using (4-1): ˝

.�H/jˆ
.n;k/
M ; T

.n;k/
i

˛
D

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
:

If j > i for all l , then .H .n//lCjT
.n/
i D 0 and

˝
.�H/jˆ

.n;k/
M ; T

.n;k/
i

˛
D 0. If j D i then only the first

term in the sum is not zero since .�H .n//iT
.n/
i D T

.n;k/
0 and

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
D hT

.n/
0 �M ; T

.n/
0 i � cM

4mnC4ın

from the asymptotic behavior (2-7) of T .n/0 . If j < i then

LnX
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT ni
˛

D ci�j;n;M hT
.n/
0 �M ; T

.n/
0 iC

i�j�1X
lD0

cl;n;M
˝
T
.n/
0 �M ; .�H

.n//lCjT
.n/
i

˛
D 0

from the definition (4-2) of the constant ci�j;n;M . �

4A2. Geometrical decomposition. First we describe here how we decompose a solution of (1-1) on the unit
ball Bd .1/ onto the set .�z. zQb;�//b;jzj� 1

8
;0<�< 1

8M
of concentrated ground states, using the orthogonality

conditions provided by Lemma 4.2. This provides a decomposition for any domain containing Bd .1/. Let
0 < �� 1 to be fixed later on. We study the set of functions close to .�z. zQb;�//b;jzj� 1

8
;0<�< 1

8M
such

that the projection onto the first element in the generalized kernel dominates:12

u W 9. Q�; Qz/2
�
0; 1
8M

�
�Bd

�
1
8

�
such that

ku�Q
Qz; 1
Q�

kL1.Bd .1//<
�

Q�
2
p�1

and k.��Qzu/Q��QkL1.Bd .3M//<
˝
.��Qzu/Q��Q;Hˆ

.0;1/
M

˛
: (4-4)

Lemma 4.3 (decomposition). There exist �;K > 0 such that for any solution u 2 C1.Œ0; T /;�Bd .1// of
(1-1) satisfying (4-4) for all t 2 Œ0; T /, there exists a unique choice of the parameters � W Œ0; T /!

�
0; 1
4M

�
,

12Note that .��Qzu/Q� is defined on 1
Q�
.Bd .1/� Qz/, which contains Bd .7M/ as j Qzj < 1

8 and 0 < j Q�j < 1
8M

; thus the second
estimate makes sense.
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z W Œ0; T /! Bd
�
1
4

�
and b W Œ0; T /! RI such that b.0;1/1 > 0 and

uD . zQbC v/z;� on Bd .1/;
X

.n;k;i/2I

jb
.n;k/
i jC kvk

L1. 1
�
.Bd .0;1/�fzg// �K�

with v D .��zu/�� zQb satisfying the orthogonality conditions

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln:

Moreover, �, b and z are C1 functions.

Proof. It is a direct consequence of Lemma E.2 from the appendix. �

Decomposition and adapted norms for the remainder inside a bounded domain. Let u be a solution
of (NLH) in C 1.Œ0; T /;�/ with Dirichlet boundary condition such that the restriction13 of u to Bd .1/
satisfies the conditions of Lemma 4.3. Then from this lemma, for all t 2 Œ0; T / we can decompose u
according to

u WD ��z. zQb; 1
�
/Cw; (4-5)

cutting the approximate blow-up profile in the zone 1 � jxj � 2, and w is a remainder term satisfying
wj@� D 0 as Bd .7/�� and uj@� D 0. To study w inside and outside the blow-up zone, we decompose
it according to

wint WD �3w; wext WD .1��3/w; " WD .��z.t/wint/�.t/; (4-6)

where wint and wext are the remainder cut in the zone 3 � jxj � 6, " is the renormalized remainder at
the blow-up area, and is adapted to the renormalized flow. We notice that the support of wext does not
intersect the support of the approximate blow-up profile ��z. zQb; 1

�
/, that the supports of wint and wext

overlap, and that .wext/j@�D 0. From Lemma 4.3 and its definition, " is compactly supported and satisfies
the orthogonality conditions (4-11). We measure " through the following norms:

(i) High-order Sobolev norm adapted to the linearized flow. We define

E2sL WD
Z

Rd
jH sL"j2: (4-7)

This norm controls the L2 norms of all smaller-order derivatives with appropriate weight from
Lemma C.3 since " satisfies the orthogonality conditions (4-11), and the standard PH 2sL Sobolev
norm

E2sL � C
X
j�j�2sL

Z
Rd

j@�"j2

1Cjxj4i�2�C
CCk"k2

PH2sL
:

(ii) Low-order slightly supercritical Sobolev norm. Let � be a slightly supercritical regularity:

0 < � � sc� 1: (4-8)

13We recall that � contains Bd .7/.
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We then define the following second norm for the remainder:

E� WD k"k2PH�
: (4-9)

Existence of a solution staying in a trapped regime close to the approximate blow-up solution. From now
on we focus on solutions that are close to an approximate blow-up profile in the sense of the following
definition.

Definition 4.4 (solutions in the trapped regime). We say that a solution u of (1-1) in C 1.Œ0; T /;�/ is
trapped on Œ0; T / if it satisfies all of the following. First, it satisfies the condition (4-4) and then can be
decomposed via Lemma 4.3 according to (4-5) and (4-6):

u WD ��z. zQb; 1
�
/Cw; wint WD �3w; wext WD .1��3/w; " WD .��z.t/wint/�.t/ (4-10)

with " satisfying the orthogonality conditions

h";H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln: (4-11)

To the scale � given by this decomposition, we associate the renormalized time s defined by (3-1) with
s0 > 0. The #I-tuple of parameters b is represented as a perturbation of the solution Nb of the dynamical
system (3-58) given by (3-59):

b
.n;k/
i .s/D Nb

.n;k/
i .s/C

U
.n;k/
i .s/

s
�n
2
Ci
: (4-12)

We let U WD .U .n;k/i /.n;k;i/2I . To use the eigenvectors of the linearized dynamics, Lemma 3.5, we define

Vi WD .P`U/i for 1� i � `; (4-13)

where P` is defined by (3-68). All these parameters must satisfy the following estimates, where 0< Q�� 1,
0 < "

.n;k/
i � 1 for .n; k; i/ 2 I with .n; k; i/ … f1; : : : ; `g � f0g � f1g; K1 and K2 will be fixed later on.

Initial conditions. At time t D 0 (or equivalently s D s0):

(i) Control of the unstable modes on the radial component:

jVi .0/j � s
�Q�
0 for 2� i � `: (4-14)

(ii) Control of the unstable modes on the other spherical harmonics:

j.U
.n;k/
i .0//j � "

.n;k/
i for .n; k; i/ 2 I with 1� n and 0� i < in: (4-15)

(iii) Control of the stable modes:

V1.0/�
1

10s
Q�
0

; jU
.0;1/
i .0/j �

"
.0;1/
i

10s
Q�
0

for `C 1� i � L; (4-16)

jU
.n;k/
i .0/j �

"
.n;k/
i

10s
Q�
0

for .n; k; i/ 2 I with 1� n and in < i � Ln; (4-17)

jU
.n;k/
i .0/j �

"
.n;k/
i

10
for .n; k; i/ 2 I with 1� n and i D in: (4-18)
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(iv) Smallness of the remainder:

kwk2
H2sL

<
1

s
2`
2`�˛

.2sL�sc/

0

: (4-19)

(v) Compatibility conditions at the border:148̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Qw0 WD w.0/ 2H
1
0 .�/;

Qw1 WD @tw.0/D�w.0/Cw.0/
p
2H 1

0 .�/;

Qw2 WD @
2
tw.0/D�

2w.0/C�.w.0/p/Cpw.0/p�1.�w.0/Cw.0/p/ 2H 1
0 .�/;

:::

QwsL�1 WD @
sL�1
t w.0/ 2H 1

0 .�/:

(4-20)

(vi) Initial scale and initial blow-up point:

�.0/D s
� `
2`�˛

0 and z.0/D 0: (4-21)

Pointwise in time estimates. The following bounds hold on .0; T /:

(i) Parameters on the first spherical harmonics:

jVi .s/j � s
�Q� for 1� i � `; jU

.0;1/
i .s/j � "

.0;1/
i s�Q� for `C 1� i � L: (4-22)

(ii) Parameters on the other spherical harmonics: for .n; k; i/ 2 I with n� 1,

j.U
.n;k/
i .s//j � 1 if 0� i < in; (4-23)

jU
.n;k/
i .s/j �

"
.n;k/
i

s Q�
if in < i � Ln and jU

.n;k/
i .s/j � "

.n;k/
i if i D in: (4-24)

(iii) Control of the remainder:

EsL.s/�
K2

s2LC2.1�ı0/C2.1�ı
0
0/�
; E� .s/�

K1

s2.��sc/
`

2`�˛

;

kwextk
2
H2sL

�
K2

�2.2sL�sc/s2LC2.1�ı0/C2.1�ı
0
0/�
; kwextk

2
H� �K1:

(4-25)

(iv) Estimates on the scale and the blow-up point:

�� 2s�
`

2`�˛ and jzj � 1
10
: (4-26)

Remark 4.5. For a trapped solution one has the above estimates on the parameters from (3-59), (4-12),
(4-13), (4-22), (4-23) and (4-24),

jb
.n;k/
i j �

C

s
�n
2
Ci
; b

.0;1/
1 D

`

2`�˛

1

s
CO.s�1�Q�/ (4-27)

14We make an abuse of notations here. The identities given for the time derivatives of w are only true close to the border
of �, but which is enough as the required conditions are trace-type conditions; see [Evans 2010].
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for C independent of the other constants. The bounds (4-25) on the remainders for the solution described
by Proposition 4.6, because of the coercivity estimate Lemma C.3 implies that

kwkH� .�/ � CK1; kwkH2sL .�/�
C.K1; K2;M/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
: (4-28)

A trapped solution must first satisfy the condition (4-4) in order to apply the decomposition in Lemma E.1,
and then the variables of this decomposition must satisfy suitable bounds. However, these additional
bounds in turn provide a much stronger estimate than (4-4). Indeed, one has, from (4-10), (3-29), (3-7),
(4-27), (D-2),

inf
.Q�;Qz/2.0; 1

8M
/�Bd. 1

8
/

Q�
2
p�1 ku�Q

Qz; 1
Q�

kL1.Bd .1//

��
2
p�1 ku�Qz; 1

�
kL1.Bd .1//

Dk zQbC"�QkL1. 1
�
.Bd .0;1/�fzg//Dk�B1˛bC"kL1. 1

�
.Bd .0;1/�fzg//

�k�B1˛bkL1.Rd /Ck"kL1.Rd /�
C

s
C

C

s
d
4
��
2

� �;

k.��z/u��QkL1.Bd .3M//�k˛bkL1.Bd .3M//Ck"kL1.Bd .3M//�
C

s
C
C

s2
: (4-29)

Using (4-10), (4-11), (3-29), (3-7), (4-27), (4-3) and (2-7) one gets

h.��z/u��Q;Hˆ
.0;1/
M i D h˛b;Hˆ

.0;1/
M i

D b
.0;1/
1 hT

.0;1/
0 ; �MT

.0;1/
0 iCO.s�2/�

c

s
D
c1

s
cM d�2

CO.s�2/

for some c > 0, which, combined with the above estimate gives

k.��z/u��QkL1.Bd .3M//�
˝
.��z/u��Q;Hˆ

.0;1/
M

˛
for M large enough as d � 2 > 0. Therefore, a solution cannot exit the trapped regime because the
condition (4-4) fails: the estimates on the parameters and the remainder have to be violated first. We thus
forget about this condition in the following.

The key result of this paper is the existence of solutions that are trapped on their whole lifespan.

Proposition 4.6 (existence of fully trapped solutions). There exists a choice of universal constants for the
analysis15

LD L.`; d; p/� 1; 0 < �D �.d; p;L/� 1; M DM.d; p;L/� 1;

� D �.L; d; p/; K1 DK1.d; p;L/� 1; K2 DK2.d; p;L/� 1;

0 < "
.0;1/
i D "

.0;1/
i .L; d/� 1 for `C 1� i � L; 0 < "1 D "1.L; d/� 1;

0 < "
.n;k/
i D "

.n;k/
i .L; d/� 1 for .n; k; i/ 2 I with 1� n; inC 1� i � Ln;

0 < Q�D Q�.`; L; d; p; �/� 1 and s0 D s0.`; d; p;L;M;K1; K2; "
.n;k/
i ; Q�/� 1

(4-30)

15The interdependence of the constants is written here so that the reader knows, for example, that s0 is chosen after all the
other constants.
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such that the following fact holds close to � zQ Nb.s0/;1=�.s0/, where Nb is given by (3-59) and �.s0/ satisfies
(4-21). Given a perturbation along the stable directions, represented by w.s0/, decomposed in (4-5),
satisfying (4-19) and (4-11), and V1.s0/, .U

.0;1/

`C1
.s0/; : : : ; U

.0;1/
L .s0//, .U

.n;k/
i .s0//.n;k;i/2I; n�1; in�i

satisfying (4-16), (4-17) and ((iii)), there exists a correction along the unstable directions represented
by .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in satisfying (4-14) and (4-15) such that the
solution u.t/ of (1-1) with initial datum u.0/D � zQb.s0/;1=�.s0/Cw.s0/ with

b.s0/D

 
Nb
.n;k/
i C

U
.n;k/
i .s0/

s
�n
2
Ci

0

!
.n;k;i/2I

(4-31)

is trapped until its maximal time of existence in the sense of Definition 4.4.

Proof. The proof is relegated to Section 5. �

4B. End of the proof of Theorem 1.1 using Proposition 4.6. In this subsection we end the proof of the
main theorem, Theorem 1.1, by proving that the solutions given by Proposition 4.6 lead to a finite-time
blow up with the properties described in Theorem 1.1. The proof of Theorem 1.1 is a direct consequence
of Proposition 4.6 and Lemmas 4.8, 4.9 and 4.10. Until the end of this subsection, u will denote a
solution that is trapped in the sense of Definition 4.4 on its maximal interval of existence. First, we
describe the time evolution equation for ". It then allows us to compute how the time evolution law for
the parameters � and z related to the decomposition (4-5) depends on the other parameters. The bounds
on the parameters and the remainder for a trapped solution then imply that � goes to zero with explicit
asymptotic in finite time, that z converges, and that the solution undergoes blow up by concentration with
a control on the asymptotic behavior for Sobolev norms.

4B1. Time evolution for the error. Let u be a trapped solution. From the decomposition (4-5) we compute
that the time evolution of the remainder is

wt D�
1

�2
��z.eMod.t/ 1

�
C Q b; 1

�
/C�wC

pX
kD1

C
p

k
.��z zQb; 1

�
/p�kwk

C���zQ 1
�
C 2r�:r�zQ 1

�
C��zQ

p
1
�

.�p�1� 1/ (4-32)

with the new modulation term being defined as

eMod.t/ WD �B1 Mod.t/�
�
�s

�
C b

.0;1/
1

�
ƒ zQb �

�
zs

�
C b

.1;� /
1

�
:r zQb: (4-33)

From (4-32) and (4-6), as the support of wext is outside Bd .2/ and as �z. zQb;�/ is cut in the zone
1� jxj � 2, the time evolution of wext is

@twext D�wextC��3wC 2r�3:rwC .1��3/w
p:

The excitation of the solitary wave �z. Q̨b;1=�/ has support in the zone jx� zj � 2�B1 and from (4-26),
jzjC�B1� 1, so it does not see the cut by � of the approximate blow-up profile. From this, (4-32) and
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(4-6), the time evolution of wint is therefore given by

@twintCHz; 1
�
wint D�

1

�2
��z.BMod.t/ 1

�
C Q b; 1

�
/CL.wint/CNL.wint/C zLCfNLC zR; (4-34)

where Hz;1=�, NL.wint/, L.wint/ are the linearized operator, the nonlinear term and the small linear term
resulting from the interaction between wint and a noncut approximate blow-up profile �z. zQb; 1

�
/:

Hz; 1
�
WD ���p.�z. zQ 1

�
//p�1; Hb;z; 1

�
WD ���p.�z. zQb; 1

�
//p�1 (4-35)

NL.wint/ WD F.�z. zQb; 1
�
/Cwint/�F.�z. zQb; 1

�
//CHb; 1

�
.wint/; (4-36)

L.wint/ WDHz; 1
�
wint�Hb;z; 1

�
wint D

p

�2
�z.�

p�1
B1

˛
p�1

b
/ 1
�
: (4-37)

The last terms in (4-34) are the corrective terms induced by the cut of the approximate blow-up profile
and the cut of the error term:16

zL WD ���3w� 2r�3:rwCp�zQ
p�1
1
�

.�p�1��3/w; (4-38)

fNL WD
pX
kD2

C
p

k
�zQ

p�k
1
�

.�p�k ��k�13 /�3w
k; (4-39)

zR WD���zQ 1
�
C 2r�r�zQ 1

�
C��zQ

p
1
�

.�p�1� 1/; (4-40)

and one notices that their support is in the zone 1� jxj � 6. Using the definition of the renormalized flow
(3-2) and the decomposition (4-5) we compute, using (4-32),

@s"�
�s

�
ƒ"�

zs

�
:r"CH"D��.�yCz/. QMod.s/C Q b/CNL."/CL."/C�2Œ��z.zLC zRCfNL/��; (4-41)

with the purely nonlinear term and the small linear term in adapted renormalized variables being defined
as

NL."/ WD F. zQbC "/�F. zQb/CHb."/; L."/ WDH"�Hb"; (4-42)

whereHb WD ���p zQ
p�1

b
is the linearized operator near zQb . One notices that the extra terms induced

by the cut, �2Œ��z.zLC zRCfNL/��, have support in the zone 1
2�
� jyj � 7

�
(by(4-26)).

4B2. Modulation equations. We now quantify how the evolution of one parameter b.n;k/i , � or z depends
on all the parameters .b.n;k/i /.n;k;i/2I and the remainder ".

Lemma 4.7 (modulation). Let all the constants of the analysis described in Proposition 4.6 be fixed
except s0. Then for s0 large enough, for any solution u that is trapped on Œs0; s0/ in the sense of
Definition 4.4 the following holds for s0 � s < s0:ˇ̌̌̌
�s

�
Cb

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
Cb

.1;�/
1

ˇ̌̌̌
C

X
.n;k;i/2I; i¤Ln

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i Cb

.n;k/
iC1

ˇ̌
�
C.L;M/

sLC3
C
C.L;M/

s

p
E2sL ; (4-43)

16Again, the excitation of the solitary wave �z. Q̨b;1=�/ is not present here as its support is in the zone jxj � 1; see (4-26).
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X
.n;k;i/2I; iDLn

ˇ̌
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i

ˇ̌
�
C.M;L/

sLC3
CC.M;L/

p
E2sL : (4-44)

Proof. We let

D.s/D

ˇ̌̌̌
�s

�
C b

.0;1/
1

ˇ̌̌̌
C

ˇ̌̌̌
zs

�
C b

.1;� /
1

ˇ̌̌̌
C

X
.n;k;i/2I

ˇ̌
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

ˇ̌
(4-45)

with the convention b.n;k/LnC1
D0. Taking the scalar product of (4-41) with .�H/iˆ.n;k/M , using (4-3), gives17

heMod.s/; .�H/iˆ.n;k/M i D h�H"; .�H/iˆ
.n;k/
M i � h Q b; .�H/

iˆ
.n;k/
M i

C

�
�s

�
ƒ"C

zs

�
:r"CNL."/CL."/; .�H/iˆ.n;k/M

�
: (4-46)

Now we look closely at each one of the terms of this identity.

The modulation term. From the expression (3-29) of zQb , the bound (3-11) on @Sj =@b
.n;k/
i , and the bounds

(4-27) on the parameters, one has

zQb DQC�B1˛b DQCO.s
�1/ and

@Sj

@b
.n;k/
i

DO.s�1/ on Bd .0; 2M/:

From (3-10), (4-33) and (4-45), the modulation term can then be rewritten as

Mod.s/D �B1
X

.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jDiC1Cın�2

@Sj

@b
.n;k/
i

�

�

�
�s

�
C b

.0;1/
1

�
ƒ zQb �

�
zs

�
C b

.1;� /
1

�
:r zQb

D �B1

X
.n;k;i/2I

�
b
.n;k/
i;s C .2i �˛n/b

.0;1/
1 b

.n;k/
i � b

.n;k/
iC1

�
T
.n;k/
i

�

�
�s

a
C b

.0;1/
1

�
ƒQ�

�
zs

�
C b

.1;� /
1

�
:rQCO

�
jD.s/j

s

�
;

where the O.jD.s/j=s/ is valid in the zone jyj � 2M . From the orthogonality relations (4-3), we then get

heMod.s/; .�H/iˆ.n;k/M iCO

�
jD.s/j

s

�

D

8̂̂̂<̂
ˆ̂:
�C h�MƒQ;ƒQi

�
�s
�
Cb

.0;1/
1

�
for .n;k; i/D .0;1;0/;

�C 0h�MrQ;rQi
�zj;s
�
Cb

.1;k/
1

�
for .n; i/D .1;0/; 1� k� d;

h�MT
.n;k/
0 ;T

.n;k/
0 i

�
b
.n;k/
i;s C.2i�˛n/b

.0;1/
1 b

.n;k/
i �b

.n;k/
iC1

�
otherwise;

(4-47)

where C and C 0 are two positive renormalization constants.

17We do not see the extra terms zL, zR andfNL because their support is in the zone 1
2�
� jyj (from (4-26)) which is very far

away from the support of ˆ.n;k/
M

, in the zone jyj � 2M (s0 being chosen large enough so that this statement holds).
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The main linear term. The coercivity estimate (C-16) and the Hölder inequality implyZ
jyj�2M

j"j dy . C.M/
p
E2sL :

Hence, from the orthogonality (4-11) for ", we obtain, for 0� n� n0, 1� k � k.n/,ˇ̌
hH";H iˆ

.n;k/
M i

ˇ̌
D

(
0 for i < Ln;ˇ̌
h"; .�H/iC1ˆ

.n;k/
M i

ˇ̌
DO.

p
E2sL/ for i D Ln:

(4-48)

The error term. Using the local bound (3-35) for Q b and (4-27),ˇ̌
h Q b;H

iˆ
.n;k/
M i

ˇ̌
�
C.L;M/

sLC3
: (4-49)

The extra terms. From (4-27), the coercivity estimate (C-16), the bound (4-25) on E2sL and (4-45), one
obtains ˇ̌̌̌�

�s

�
ƒ"C

zs

�
:r";H iˆ

.n;k/
M

�ˇ̌̌̌
�
C.L;M/

s

p
E2sL C

jD.s/j

sLC1�ı0C�.1�ı
0
0/
:

Now, as Qp�1� zQp�1
b
DO.s�1/ on the set jyj � 2M from (3-7) and (4-27), using the estimate (D-2)

on k"kL1 , from the definition (4-42) of NL."/ and L."/ and the coercivity (C-16), one gets, for s0 large
enough, ˇ̌

hNL."/CL."/;H iˆ
.n;k/
M i

ˇ̌
� C.L;M/E2sL CC.L;M/

p
E2sL
s
� C.L;M/

p
E2sL
s

:

Putting together the last two estimates yieldsˇ̌̌̌�
�s

�
ƒ"C

zs

�
:r"CNL."/CL."/;H iˆ

.n;k/
M

�ˇ̌̌̌
�
C.L;M/

p
E2sL

s
C

C.L;M/jD.s/j

sLC1�ı0C�.1�ı
0
0/
: (4-50)

Final bound on jD.s/j. Summing the previous estimates we performed on each term of (4-46) in
(4-47)–(4-50) yields

jD.s/j � C.L;M/
p
EsL C

C.L;M/

sLC3
:

We now come back to (4-46), combine again (4-47) with the above bound on jDj, (4-48), (4-49) and
(4-50), yielding the desired bounds (4-43) and (4-44) of the lemma. �

4B3. Finite-time blow up. We now reintegrate in time the time evolution of � and z we found in
Lemma 4.7 to obtain their behavior and show the blow up.

Lemma 4.8 (concentration and asymptotic of the blow-up point). Let u be a solution that is trapped on
its maximal interval of existence. Then it blows up in finite time T > 0 with s.t/!C1 as t! T and we
have the following:

(1) Concentration speed. We have � �
t!T

C.u.0//.T � t /
`
˛ , with C.u.0// > 0.

(2) Behavior of the blow-up point. There exists z0 such that limt!T z.t/D z0 and for all times s � s0,

jz.s/j DO.s
�Q�
0 /: (4-51)
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Proof. From the Cauchy theory in L1, (3-1) and (4-26), if T 2 .0;C1� denotes the maximal time
of existence of u, one necessarily has lims!T s.t/ D C1. From the estimate (4-27) on b.0;1/1 , the
modulation (4-43) and (4-25), one has

�s

�
D�

c1

s
CO.s�1�Q�/:

We reintegrate using (4-21) (we recall that c1 D `=.2`�˛/ from (3-59)):

�D
.1CO.s

�Q�
0 //

s
`

2`�˛

; (4-52)

which is valid as long as the solution u is trapped. In addition, if the solution is trapped on its maximal
interval of existence, then the function represented by O. � / admits a limit as s!C1. In turn, from
ds
dt
D

1
�2

we obtain

s D s0

�
1�

˛s
˛

2`�˛

0

2`�˛

Z t

0

.1CO.s
�Q�
0 // dt 0

�� 2`�˛
˛

:

Hence there exists T > 0 with

s �
t!T

C.u.0//.T � t /�
2`�˛
˛ : (4-53)

Injecting this identity in (4-52) then gives ��C.u.0//.T � t /
`
˛ as t! T . Now we turn to the asymptotic

behavior of the point of concentration z. From (4-43), using b.1;i/1 DO.s�
˛C1
2 / from (4-23) for 1� i � d ,

one gets

jzi;sj DO.s
�c1�

˛C1
2 /DO.s�1�

˛
2
.1C 1

2`�˛
//: (4-54)

As ˛ > 0, this implies the convergence and the estimate of z claimed in the lemma. �

4B4. Behavior of Sobolev norms near blow-up time. From Lemma 4.8, the L1 bound on the error (D-2)
and the bounds on the parameters (4-27), any solution that is trapped on its maximal interval of existence
indeed blows up at the time T given by Lemma 4.8 because limt!T kukL1 DC1. The behavior of the
Sobolev norms is the following.

Lemma 4.9 (asymptotic behavior for subcritical norms). Let u be a solution that is trapped for all times
s � s0 and T be its finite maximal lifespan.18 Then

(i) Behavior of subcritical norms.

lim sup
t!T

kukHm.�/ <C1 for 0�m< sc :

(ii) Behavior of the critical norm.

kukH sc .�/ D
t!T

C.d; p/
p
`
p
j log.T � t /j.1C o.1//:

18T is finite by Lemma 4.8.
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(iii) Boundedness of the perturbation in slightly supercritical norms.

lim sup
t!T

ku���z.Q 1
�
/kHm.�/ <C1 for sc <m� �: (4-55)

Proof. The trapped solution u can be written as

uD ��z. zQb; 1
�
/Cw D ��z.Q 1

�
/C �z. Q̨b; 1

�
/Cw:

We first look at the second term �z. Q̨b;1=�/, being the excitation of the ground state. It has compact
support in the zone jxj � 2B1�. From (1-38) and (4-52), one gets 2B1�� 1 as s0� 1, so that �z. Q̨b;1=�/
has compact support inside Bd .1/. This implies that

k�z. Q̨b; 1
�
/kH� .�/ � Ck�z. Q̨b; 1

�
/k PH� .Rd /

;

the latter norm being easier to compute. Indeed by renormalizing one has

k�z. Q̨b; 1
�
/k PH� .Rd /

D
1

���sc
k Q̨bk PH� .Rd /

:

As

Q̨b D �B1

� X
.n;k;i/2I

b
.n;k/
i T

.n;k/
i C

LC2X
iD2

Si

�
from (3-29) and (3-7), the bounds (4-27) on the parameters b.n;k/i , together with the asymptotic at infinity
of the profiles T .n;k/i and Si described in Lemma 2.10 and Proposition 3.3 imply that k Q̨bk PH� � C=s.
Hence

k�z. Q̨b; 1
�
/kH� �

C

s1�
`.��sc/
2`�˛

! 0

as t ! T as � � sc� 1.
Now, following the second paragraph of Remark 4.5, we get that kwkH� �CK1 is uniformly bounded

until the blow-up time. Combined with what was just said about the boundedness of �z. Q̨b;1=�/, we get
that (iii) holds for all 0�m� � . This, together with the asymptotic of the ground state (2-1) then gives
(i) and (ii). �

4B5. The blow-up set. We recall that x 2� is a blow-up point of u if there exists .tn; xn/! .T; x/ such
that ju.tn; xn/j !C1. For trapped solutions one has the following result.

Lemma 4.10 (description of the blow-up set). Let u be a solution that is trapped for all times s � s0 and
T be its finite maximal lifespan.19 Then z0 given by Lemma 4.8 is a blow-up point of u, and it is the only
one.

Proof. From the L1 bound (4-29) and the fact that limt!T s.t/DC1 from Lemma 4.8, u.s; z.s//�
�.s/�

2
p�1Q.0/ as s!C1. From Lemma 4.8, this implies that u.t; z.t//!C1 as t ! T and that

z0 D limt!T z.t/ is indeed a blow-up point.

19T is finite by Lemma 4.8.
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Now take another point x 2�, x¤ z0. From (4-55), the asymptotic ofQ (Lemma 2.1), and Lemma 4.8,
there exists R > 0 such that

sup
0�t<T

ku.t/kH� .Bd .x;R// <C1:

This local boundedness, by Sobolev embedding and Hölder, implies that

sup
0�t<T

ku.t/kW 1;q.Bd .x;R// <C1; q D
2d

d C 2� 2�
>

2d

d C 2� 2sc
D d

p� 1

pC 1
:

The above inequality, after applying Lemma 4.11 several times and using Sobolev embedding, implies
that there exists r > 0 such that

sup
0�t<T

ku.t/kL1.Bd .x;r// <C1:

Therefore, x is not a blow-up point of u. �

In the proof of the previous lemma, we used the following result.

Lemma 4.11 (parabolic bootstrap). Let R > 0 and x 2� such that B.x;R/��. Let q0 >
p�1
pC1

d . There
exists �.q0/ > 0 such that for any q > q0, if u 2 C

�
Œ0; T /;W 1;1.�/

�
is a solution of (1-1) satisfying

sup
0�t<T

ku.t/kW 1;q.Bd .x;R// <C1 (4-56)

then

sup
0�t<T

ku.t/k
W 1;q.1C�/.Bd.x;R

2
// <C1: (4-57)

Proof. The proof relies on a classical use of estimates for the heat kernel. Without loss of generality we
assume q0 < d . If u solves (1-1) and satisfies (4-56) then the localisation v D �R=2u solves

vt D�v� 2r:�R
2
:ru���R

2
uC�R

2
jujp�1u

and using the Duhamel formula can then be written as

v.t/DKt � v.0/C

Z t

0

Kt�s �
�
�2r:�R

2
:ru���R

2
uC�R

2
jujp�1u

�
ds;

where the heat kernel is Kt .x/D .4�t/�
d
2 e�

jxj2

4t . One then has the formula

rv.t/DrKt � v.0/C

Z t

0

rKt�s � Œ�2r:�R
2
:ru���R

2
u� ds

C

Z t

0

Kt�s �
�
r�R

2
jujp�1uC�R

2
rujujp�1

�
ds: (4-58)
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We estimate the last term using the Hölder, Sobolev and Young inequalities:20Z t

0

Kt�s � Œ�R
2
rujujp�1� ds


Lq.1C�/

�

Z t

0

Kt�s � Œ�R
2
rujujp�1�


Lq.1C�/

ds

.
Z t

0

kKt�sk
L
.1C 1

q.1Ck/
�.!� 1q //

�1

rujujp�1
L
.!C 1q /

�1 ds

.
Z t

0

kKt�sk
L
.1�!� �

q.1C�/
/
�1krukLq

jujp�1
L!
�1 ds

.
Z t

0

1

.t � s/�.�;q/
krukLq kruk

p�1
Lq0

ds .
Z T

0

ds

.t � s/�.�;q/
;

where

! D
.d � q0/.p� 1/

dq0
and �.�; q/D

.d � q0/.p� 1/

2q0
C

�d

2q.1C �/

(note � � 0 as q0 < d ). For � � 0 and p�1
pC1

d � q � d , if � is fixed, � is strictly decreasing with respect
to q, and if q is fixed, � is strictly increasing with respect to �. As �.0; q0/ < 1 since q0 >

p�1
pC1

d , this
implies that there exists �.q0/ > 0 such that for all q0 � q � d , and 0 < � � �.q0/, we have �.�; q/ < 1.
The above inequality then implies that in that range,Z t

0

Kt�s � Œ�R
2
rujujp�1� ds


Lq.1C�/

<C1:

We claim that this term was the “worst” to be estimated in (4-58) and that using the very same techniques,
one can estimate similarly all the other terms on the right-hand side in the same range 0 < � � �.q0/
leading to

sup
0�t<T

krv.t/kL.1C�/q <C1;

which implies that sup0�t<T kv.t/kW 1;.1C�/q <C1 by Sobolev embedding and the Hölder inequality.
This concludes the proof, as v D u on B

�
x; R

2

�
. �

5. Proof of Proposition 4.6

This section is devoted to the proof of this latter proposition, which will then end the proof of the main
theorem. For all trapped solutions u in the sense of Definition 4.4, we let s� D s�.u.0// be the exit time
from the trapped regime:

s� D sup
˚
s � s0 such that (4-22), (4-23), (4-24), (4-25) and (4-26) hold on Œs0; s/

	
: (5-1)

If s�<C1, after s�, one of the bounds (4-22), (4-23), (4-24), (4-25) or (4-26) must then be violated. The
result of the first part of this section is a refinement of this exit condition. In Lemma 5.1 and Propositions 5.3,
5.5, 5.6 and 5.8 we quantify accurately the time evolution of the parameters and the remainder in the
trapped regime. Combined with the modulation equations of Lemma 4.7, this allows us to show that in

20As q � q0 >
p�1
pC1d , p > dC2

d�2
, and d � 11 all the computations below are rigorous.
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the trapped regime, all the components of the solution along the stable directions of perturbation are under
control; see Lemma 5.9. Moreover, from (4-52), (4-26) is always fulfilled as long as the other bounds hold.
As a consequence, the exit time of the trapped regime is in fact characterized by the following condition:
just after s�, one of the bounds in (4-22) and (4-23) regarding the unstable parameters is violated.

We prove Proposition 4.6 by contradiction. Suppose that given a stable perturbation of � zQ Nb.s0/;1=�.s0/
as described in Proposition 4.6, the solution starting from � zQb.s0/;1=�.s0/Cw.s0/ leaves the trapped
regime in finite time for all initial corrections .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in
along the unstable directions. This means from the previous paragraph that the trajectory of�

V2.s/; : : : ; V`.s/; .U
.n;k/
i .s//.n;k;i/2I;1�n; i<in

�
leaves the set21 B`�11 .s�Q�/�BK1.1/ in finite time. But at the leading order, the dynamics of this trajectory
are linear repulsive. In Lemma 5.10 we show how the fact that all the trajectories leave this ball is a
contradiction to Brouwer’s fixed point theorem.

5A. Improved modulation for the last parameters b
.n;k/

Ln
. In Lemma 4.7, the modulation estimates

(4-43) for the first parameters are better than the ones for the last parameters b.n;k/Ln
, (4-44). When looking

at the proof of Lemma 4.7, we see that this is a consequence of the fact that the projection of the linearized
dynamics onto the profile generating the orthogonality conditions, hH";H iˆ

.n;k/
M i, cancels only for

i < Ln. However, as we explained in the introduction of Lemma 4.2, H iˆ
.n;k/
M has to be thought as an

approximation of T .n;k/i , and in that case the previous term would cancel also for i D Ln. It is therefore
natural to look for a better modulation estimate for b.n;k/Ln

. In the next lemma we find a better bound by,
roughly speaking, integrating by parts in time the projection of " onto T .n;k/Ln

in the self-similar zone.

Lemma 5.1 (improved modulation equation for b.n;k/Ln
). Suppose all the constants in Proposition 4.6 are

fixed except s0. Then for s0 large enough, for any solution that is trapped on Œs0; s0/, for 0 � n � n0,
1� k � k.n/, the following holds for s 2 Œs0; s0/:ˇ̌̌̌
b
.n;k/
Ln;s

C .2Ln�˛n/b
.0;1/
1 b

.n;k/
Ln

�
d

ds

�˝
HLn."�

PLC2
iD2 Si /; �B0T

.n;k/
0

˛
h�B0T

.n;k/
0 ; T

n;k
0 i

�ˇ̌̌̌

�
C.L;M/

p
E2sL

sın
C

C.L;M/

sLC
g0

2
Cın�ı0C1

: (5-2)

Remark 5.2. From (5-19), we see that the denominator is not zero. From (5-19) and (5-20), one has the
following bound for the new quantity that appeared when comparing this new modulation estimate to the
former one (4-44):ˇ̌̌̌ ˝

HLn."�
PLC2
iD2 Si /; �B0T

.n;k/
0

˛
h�B0T

.n;k/
0 ; T

n;k
0 i

ˇ̌̌̌
� C.L;M/s�L�

g0

2
Cı0�ın CC.L;M;K2/s

�LCı0�ınC�.1�ı
0
0/:

(5-3)

21Here K is the number of directions of instabilities on the spherical harmonics of degree greater than 0, that is, K D
d.EŒi1�� ıi12N/C

P
2�n�n0

k.n/.EŒin�C 1� ıin2N/, and Ba1.r/ is the ball of radius r of Ra for the usual j � j1 norm.
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This is a better bound compared to the required bound (4-24) on b.n;k/Ln
in the trapped regime, that is,

jb
.n;k/
Ln
j � Cs�

�n
2
�Ln D Cs�L�ınCı0 .

Proof of Lemma 5.1. First, from the fact that HT .n;k/0 D 0, the asymptotic (2-7) of T .n;k/0 and (4-27), we
obtain

suppŒHLn.�B0T
.n;k/
0 /�� fB0 � jyj � 2B0g and jHLn.�B0T

.n;k/
0 /j �

C.L/

s
n
2
CLn

: (5-4)

Step 1: computation of a first identity. We will now prove the identity

d

ds

�
hHLn"; �B0T

.n;k/
0 i

�
D
�
b
.n;k/
Ln;s

C .2Ln�˛n/b
.0;1/
1 b

.n;k/
Ln

�
hT
.n;k/
0 ; �B0T

.n;k/
0 i

C
d

ds

�LC2X
jD2

˝
Sj ;H

Ln.�B0T
.n;k/
0 /

˛�

CO.
p
E2sLB

4mnC2ın
0 /CO

�
C.L/

sLC1C
g0

2
�ı0�ın�2mn

�
:

(5-5)

From the evolution equation (4-41) and the fact that H is self-adjoint we obtain

d

ds

�
hHLn"; �B0T

.n;k/
0 i

�
D h";HLn.@s�B0T

.n;k/
0 /i

C

D
� eMod.s/� Q bC

�s

�
ƒ"C

zs

�
:r"�H"CNL."/CL."/;HLn.�B0T

.n;k/
0 /

E
: (5-6)

The terms created by the cut of the solitary wave �2��zŒ. QLC zRCfNL/�� do not appear because they
have their support in the zone 1

2�
� jyj, which is far away from the zone jyj � 2B0 as B0� 1

�
in the

trapped regime by (4-52). We now look at all the terms in the above equation.

The @s.�B0/ term. From the modulation equation (4-43) and the bound (4-25), one has jb.0;1/1;s j � Cs
�2.

Hence, using the asymptotic (2-7) of T .n;k/0 and the fact that HT .n;k/0 D 0 and (4-27), we get that
HLn.@s�B0T

.n;k/
0 / has support in B0 � jyj � 2B0 and satisfies the bound

jHLn.@s�B0T
.n;k/
0 /j �

C.L/

s
n
2
CLnC1

:

Using the coercivity estimate (C-16), we obtainˇ̌
h";HLn.@s�B0T

.n;k/
0 /i

ˇ̌
� C.L/

p
E2sLs

2mnCın : (5-7)

The error term. For jyj � 2B0, one has Q b D b by (3-34). As  b is a finite sum of homogeneous profiles
of degree .i;� � 2�g0/ for some i 2 N (which was proved in Step 4 of the proof of Proposition 3.1),
the bounds on the parameters (4-27) imply that j b.y/j �C.L/s�

C2Cg
2 for B0 � jyj � 2B0. Combined

with (5-4), this yieldsˇ̌
h Q b;H

Ln.�B0T
.n;k/
0 /i

ˇ̌
� C.L/B

d�n�2Ln��g
0�2

0 �
C.L/

sLC1C
g0

2
�ı0�ın�2mn

: (5-8)
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The remainder’s contribution. Using (5-4), the bounds j�s
�
j � Cs�1 and jzs

�
j � Cs�

˛C1
2 (which are

consequences of the modulation estimate (4-43) and (4-25)) and the coercivity estimate Lemma C.3,
one gets ˇ̌̌̌�

�s

�
ƒ"C

zs

�
:r"�H";HLn.�B0T

.n;k/
0 /

�ˇ̌̌̌
� C.L/

p
E2sLs

2mnCın : (5-9)

The small linear term can be written as L."/ D .pQp�1 �p zQp�1
b

/; hence from the form of zQb , see
(3-29), one has j.pQp�1�p zQp�1

b
/j �C.L/s�1�

˛
2 . Its contribution is then of smaller order using (5-4):

ˇ̌
hL."/;HLn.�B0T

.n;k/
0 /i

ˇ̌
� C.L/

p
E2sLs

2mnCın�
˛
2 : (5-10)

The nonlinear term can be written as NL."/ D
Pp

kD2
C
p

k
"k zQ

p�k

b
. From the coercivity estimate

Lemma C.3, we get Z
B0�jyj�2B0

"2
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dy � C.L;M/E2sLs

2sL�
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2
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Using the bootstrap bounds (4-25) and (4-27), one computesp
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for s0 large enough (because  > 2). For 2� k � p, we know j"k�2 zQp�k
b
j � C is bounded by (D-2), so

using the two previous equations and (5-4), one getsˇ̌
hNL."/;HLn.�B0T
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0 /i

ˇ̌
�
p
E2sLs

2mnCın (5-11)

for s0 large enough. Combining (5-9), (5-10) and (5-11), we have the following upper bound for the
remainder’s contribution:ˇ̌̌̌�
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The modulation term. For .n0; k0; i/ 2 I, one has
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i ;HLn.�B0T
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0 /i D hHLnT
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i ; �B0T

.n;k/
0 i D 0

if .n0; k0; i/ ¤ .n; k; Ln/. Indeed, if .n0; k0/ ¤ .n; k/ then the two functions are located on different
spherical harmonics and their scalar product is 0. If i ¤ Ln then i < Ln and HLnT

.n;k/
i D 0. This

implies the identity from (4-33) since B1� B0:
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For 2 � j � LC 2 and .n0; k0; i/ 2 I, as Si is homogeneous of degree .i;� � g0/, using (4-27) and
(5-4), we haveˇ̌̌̌

.2i �˛n0/b
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1 b
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: (5-14)

Using the modulation bound (4-43), the asymptotics (2-1) and (2-7) ofQ andƒQ, (4-27) and (5-4), we findˇ̌̌̌�
�s

�
C b

.1;0/
1

�
hƒ zQb;H

Ln.�B0T
.n;k/
0 /i �

��
zs

�
C b

.1;� /
1

�
:r zQb;H

Ln.�B0T
.n;k/
0 /

�ˇ̌̌̌
�

C.L;M/

s2LC
3�˛
2
�2mn�ın

(5-15)

is very small as L� 1. Moreover for 2� j � LC 2, one hasX
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From similar arguments we used to derive (5-14), one has the similar bound for the last term, yieldingX
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Coming back to the decomposition (5-13), and applying (5-14) and (5-16) gives
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In the decomposition (5-6), we examined each term in (5-7), (5-8), (5-12) and (5-17), yielding the
identity (5-5) we claimed in this first step.

Step 2: end of the proof. From (5-5) one obtains
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: (5-18)

The size of the denominator is, from the asymptotic (2-7) of T .n;k/0 and (4-27),

h�B0T
.n;k/
0 ; T

.n;k/
0 i � cs2mnC2ın (5-19)
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for some constant c > 0. As the denominator just depends on b.0;1/1 , using the bound jb.0;1/1;s j � Cs
�2

and the asymptotics (2-7) of T .n;k/0 , we obtainˇ̌̌̌
ˇ dds
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!ˇ̌̌̌
ˇ� C.L;M/

s2mnC2ınC1
:

Also, using again the coercivity estimate Lemma C.3, (5-4) and the fact that for 2� j �LC 2, we know
Sj is homogeneous of degree .j;� �g0/, we obtainˇ̌̌̌�
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: (5-20)

Hence, plugging the three previous identities in (5-18) gives the identity (5-3) claimed in the lemma. �

5B. Lyapunov monotonicity for low regularity norms of the remainder. The key estimate concerning
the remainder w is the bound on the high regularity adapted Sobolev norm at the blow-up area: E2sL .
However, the nonlinearity can transfer energy from low to high frequencies, and consequently to control
E2sL we need to control the low frequencies. This is the purpose of Propositions 5.3 and 5.5, where we
find an upper bound for the time evolution of kwintk PH� .Rd /

and kwextkH� .�/.

Proposition 5.3 (Lyapunov monotonicity for the low Sobolev norm of the remainder in the blow-up zone).
Suppose all the constants involved in Proposition 4.6 are fixed except s0 and �. Then for s0 large enough
and � small enough, for any solution u that is trapped on Œs0; s0/ the following holds for 0� t < t.s0/:

d

dt

�
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�k�1�
; (5-21)

where the norm E� is defined in (4-9).

Remark 5.4. Equation (5-21) should be interpreted as follows. The term
p
E�

�2.��sc/C2 s
.��sc/`
2`�˛

C1

is from (4-25) and (4-52) of order 1
s
ds
dt

(as ds
dt
D ��2). The 1=s

˛
4L then represents a gain: it gives that

the right-hand side of (5-21) is of order .1=s1C
˛
4L /ds

dt
, which when reintegrated in time is convergent

and arbitrarily small for s0 large enough. The third term shows that one needs to have
p
E� . s�

��sc
2 to

control the nonlinear terms, which holds because of the bootstrap bound (4-25).

Proof of Proposition 5.3. To show this result, we compute the left-hand side of (5-21) and we bound it
above it using all the bounds that hold in the trapped regime. The time evolutionwint given by (4-34) yields
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We now give an upper bound for each term in (5-22). As all the terms involve functions that are compactly
supported in � since wint is, all integrations by parts are legitimate and all computations and integrations
are performed in Rd (e.g., L2 denotes L2.Rd /).

Step 1: inside the blow-up zone (all terms except the three last ones in (5-22)).

The linear term. By (4-35) using dissipation, we first computeZ
r
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Z
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which becomes after an integration by parts and using the Cauchy–Schwarz inequalityZ
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�
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:

Using interpolation, the coercivity estimate (C-16) and the bounds of the trapped regime (4-25) on ", one
has for the first term (performing a change of variables to go back to renormalized variables)
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As Qp�1 D O..1C jyj/�2/ from (2-2), using the Hardy inequality (B-7) we get for the second term
after a change of variablesr��2�p.�z.Q 1
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Combining the four above identities we obtainZ
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The modulation term. To treat the error induced by the cut separately, we decompose as follows, going
back to renormalized variables using Cauchy–Schwarz:ˇ̌̌̌Z
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For the first term in the above equation, using (4-33) and the modulation estimates (4-43) and (4-44), we get
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Under the trapped regime bound (4-25), one has
p
E2sL C s�L�3 � s�L�1Cı0��.1�ı

0
0/. Moreover, from

the asymptotics of Q, ƒQ, T .n;k/i and Sj ((2-1), (2-7), Lemma 2.10 and (3-8)), and the bounds on the
parameters (4-27), one has
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All these bounds then imply that for the modulation term that is located at the blow-up zone in (5-24),
we have
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We now turn to the second term in (5-24). The blow-up point z is arbitrarily close to 0 by (4-51)
and from the expression of the modulation term (4-33), all the terms except �z
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We insert the two previous equations into the expression (5-24), yieldingˇ̌̌̌Z
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The error term. As jzj � 1 by (4-51) and B1� � 1 by (4-27) and (4-52), from the expression of
the error term (3-36), all the terms except �z.b
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The nonlinear term. First, coming back to renormalized variables, as NL."/D
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performing an integration by parts we writeˇ̌̌̌Z
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(5-27)
We fix k, 2� k � p, and focus on the k-th term in the sum. The first term is estimated using interpolation,
the coercivity estimate (C-16) and the bound (4-25):
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For the second term in (5-27), as QQb D O..1C jyj/�2/ by (3-29) and (4-27), we first use the Hardy
inequality (B-7):r��2C.k�1/.��sc/. zQp�k
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Fix .�i /1�i�k 2 Nkd satisfying
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We now recall the commutator estimate
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� Ck@�1Cı.�;k/"k
L
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1
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k@�i "kLpi CCk@
�2Cı.�;k/"k
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iD3

@�i "

�
L
. 1
2
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:::

� C

kX
iD1

k@�iCı.�;k/"k
L
p0
i

kY
jD1; j¤i

k@�i "kLpj :

From Sobolev embedding, one has on the other hand that

k@�iCı.�;k/"k
L
p0
i
Ck@�i "kLpi � Ckr

�"kL2 D C
p
E� :

Therefore (the strategy was designed to obtain this),rı.�;k/� kY
iD1

@�i "

�
L2
�
p
E�
k
:

Plugging this estimate in (5-29) using (5-30) givesr��2C.k�1/.��sc/. zQp�k
b

"k/

L2
� C

p
E�
k
:

Injecting this bound and the bound (5-28) in the decomposition (5-27) yieldsˇ̌̌̌Z
r
�wint:r

� .NL.wint//

ˇ̌̌̌
�
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p
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2`�˛

C1C ˛
2L
CO. j�jCj��sc j

L
/

pX
kD2

� p
E�

s�
��sc
2

�k�1
: (5-31)

The small linear term. One has L."/D�p.Qp�1� zQp�1/". The potential here admits the asymptotic
Qp�1� zQp�1 . jyj�2�˛ at infinity, which is better than the asymptotic of the potential appearing in the
linear term Qp�1 � jyj�2 we used previously to estimate it. Hence using exactly the same techniques
one can prove the same estimateˇ̌̌̌Z

r
�wint:r

� .L.wint//
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L
/
: (5-32)

End of Step 1. We come back to the first identity we derived, (5-22), and insert the bounds we found for
each term in (5-23), (5-25), (5-26), (5-31) and (5-32) to obtainˇ̌̌̌Z

r
�wint:r
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�
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�
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C Q b 1
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C1
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s
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2L
CO.�C��sc
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C
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s
�
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2`�˛

C.˛
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�sup0�n�n0 ın/�C.L/�

C
C.L/
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2
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C
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s
˛
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CO.�C��sc

L
/

pX
kD2

� p
E�

s�
��sc
2

�k�1�
: (5-33)
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Step 2: the last three terms outside the blow-up zone in (5-22). By a change of variables, we see that
the extra error term (4-40) is bounded:

kr
� zRkL2.Rd / � C:

Then, the extra linear term in (5-22) is estimated directly via interpolation using the bound (4-28):r�����B.0;3/w� 2r�B.0;3/:rwCp�zQp�11
�

.�
p�1

B.0;1/
��B.0;3//w

�
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� kwkH�C1 � kwk
1� 1
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H� kwk
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�
1

�2sL��sLC1�ı0C�.1�ı
0
0/

� 1
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� C.K1; K2/

�
1

�2sL��sLC1�ı0C�.1�ı
0
0/

� 2
2sL��

D
C.K1; K2/

�2s1C
˛
2L
CO.��scC�

L
/

because 1=�2sL��sLC1�ı0C�.1�ı
0
0/� 1 in the trapped regime. For the last nonlinear in (5-22), one has,

using (D-4) and (4-28),

kfNLkH� � CkwkH�kwk
p�1

H
d
2
C��sc

� C.K1/kwk
.p�1/.d

2
C��sc��/=.2sL��/

H2sL

� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

� 2
2sL��

� C.K1; K2/
1

�2s1C
˛
2L
CO.��scC�

L
/
:

The three previous estimates imply that for the terms created by the cut in (5-22), we have the estimate
(we recall that ���sc=s

`.��sc/
2`�˛ D 1CO.s

�Q�
0 / from (4-52))ˇ̌̌̌Z

r
�wint:r

� . QLC zRCfNL/
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s
˛
2L
CO.�C��sc

L
/
: (5-34)

Step 3: conclusion. We now come back to the first identity we derived, (5-22), and insert the bounds
(5-33) and (5-34), yielding

d
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�2.��sc/C2s
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s
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CO.�C��sc

L
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kD2

� p
E�

s�
��sc
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�k�1i
:

As the constants never depend on s0 or on �, as L� 1 is an arbitrary large integer, 0 < � � sc � 1,
˛
2
� sup0�n�n0 ın > 0, we see that for s0 sufficiently large and � sufficiently small, the terms on the

right-hand side of the previous equation can be as small as we want, and (5-21) is obtained. �
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Proposition 5.5 (Lyapunov monotonicity for the low Sobolev norm of the remainder outside the blow-up
area). Suppose all the constants involved in Proposition 4.6 are fixed except s0 and �. Then for s0
large enough and � small enough, for any solution u that is trapped on Œs0; s0/ the following holds for
t 2 Œ0; t.s0//:

d

dt

�
kwextk

2
H�

�
�

C.K1; K2/

s1C
˛
2L
CO.�C��sc

L
/�2
kwextkH� : (5-35)

Proof. From the evolution equation of wext, given in Section 4B1, we deduce

d

dt
kwextk

2
H� .�/ � CkwextkH� .�/

�wextC��3wC 2r�3:rwC .1��3/w
p

H� .�/

: (5-36)

For the linear terms, using interpolation and the bounds (4-25) and (4-28) one finds

k�wextC��3wC 2r�3:rwkH� .�/

� CkwextkH�C2.�/CCkwkH�C1.�/
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�
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�2sL�sc sLC1�ı0C�.1�ı
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�
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0
0/

� 2
2sL��

� C.K1; K2/
1

�2s1C
˛
2L
CO.�C��sc

L
/

because 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/ � 1 in the trapped regime from (4-52). For the nonlinear term,

using (D-4), interpolation and then the bootstrap bound (4-28),

k.1��3/w
p
kH� � CkwpkH� .�/ � CkwkH� .�/kwk

p�1

H
d
2
C��sc .�/

� C.K1/kwk
.p�1/

d
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C��sc��

2sL��

H2sL .�/
� C.K1/kwk

2
2sL��

H2sL .�/
�

C.K1; K2/

s1C
˛
2L
CO.�C��sc

L
/�2

:

Injecting the two above estimates in (5-36) yields the desired identity (5-35). �

5C. Lyapunov monotonicity for high regularity norms of the remainder. We derive Lyapunov-type
monotonicity formulas for the high regularity norms of the remainder inside and outside the blow-up
zone, E2sL and kwextkH2sL , in Propositions 5.6 and 5.8. In our general strategy, we have to find a way to
say that w is of smaller order compared to the excitation ��z. Q̨b;1=�/ and does not affect the blow-up
dynamics induced by the latter. This is why we study the quantity E2sL : it controls the usual Sobolev
norm H 2sL and any local norm of lower-order derivative, which is useful for estimates, and is it adapted
to the linear dynamics as it undergoes dissipation. Finally, for this norm one sees that the error Q b is of
smaller order compared to the main dynamics of ��z. zQb; 1

�
/ (this is the �.1� ı00/ gain in (3-33)).

Proposition 5.6 (Lyapunov monotonicity for the high regularity adapted Sobolev norm of the remainder
inside the blow-up area). Suppose all the constants of Proposition 4.6 are fixed, except s0 and �. Then
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there exists a constant ı > 0 such that for any constant N � 1, for s0 large enough and � small enough,
for any solution u that is trapped on Œs0; s0/, the following holds for 0� t < t.s0/:

d

dt

�
E2sL

�2.2s�L�sc/
CO.L;M/

�
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�2.2sL�sc/sLC1�ı0C�.1�ı
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L
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s
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0/C
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CO.��scC�

L
/

#
; (5-37)

where OL;M .f / denotes a function depending on time such that jOL;M .f /.t/j � C.L;M/f for a
constant C.L;M/ > 0, and where E� and E2sL are defined in (4-9) and (4-7).

Remark 5.7. Equation (5-37) has to be understood the following way. The O. � / in the time derivative
is a corrective term coming from the refinement of the last modulation equations; see (4-44) and (5-2).
It is of smaller order for our purpose so one can “forget” it. On the right-hand side of (5-37), the first
two terms come from the error Q b made in the approximate dynamics. The third one results from the
competition of the dissipative linear dynamics and the lower-order linear terms that are of smaller order
(the motion of the potential in the operator Hz;1=� involved in E2sL , and the difference between the
potentials �z. zQb;1=�/p�1 and �z.Q1=�/p�1). The penultimate represents the effect of the main nonlinear
term, and shows that one needs E� smaller than ssc�� to control the energy transfer from low to high
frequencies. The last one results from the cut of w at the border of the blow-up zone.

Proof of Proposition 5.6. From (4-41) one has the identity

d
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�2
��z.� Q b 1

�
/CNL.wint/CL.wint/

�
C
d

dt
.H

sL

z; 1
�

/wint

�
C 2

Z
H
sL

z; 1
�

wintHz; 1
�
. QLCfNLC zR/: (5-38)

The proof is organized as follows. For the terms appearing in this identity: for some (those on the second
line), we find direct upper bounds (Step 1), then we integrate by parts in time some modulation terms
that are problematic to treat the second term on the right-hand side (Step 2), and eventually we prove
that the terms created by the cut of the solitary wave (the last line) are harmless and use a dissipation
property at the linear level (produced by the first term on the right-hand side) to improve the result (Step 3).
Throughout the proof, the estimates are performed on Rd , as wint has compact support inside �, and we
omit it in the notations.
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Step 1: brute force upper bounds. We claim that the nonlinear term, the error term, the small linear term
and the term involving the time derivative of the linearized operator in (5-38) can be directly bounded
above, yieldingH sL

z; 1
�

�
NL.wint/�

1

�2
��z. Q b; 1

�
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(5-39)

for some constant ı > 0. We now analyse these four terms separately.

The error term. We decompose between the main terms and the terms created by the cut. The cut induced
by Q� WD�.�yCz/ only sees the terms b.0;1/1 ƒQCb

.1;� /
1 :rQ because all the other terms in the expression

(3-36) of Q b have support inside Bd .2B1/ and because jzj � 1 by (4-51) and B1� 1
�

by (4-52). For the
main term we use the estimate (3-33), and for the second the bound on the parameters (4-27) and the
asymptotics (2-7) and (2-1) of ƒQ and @Q,H sL
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�
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since ˛ > 1; hence
�2.˛�1/

s
C

1

s
˛C1
2

� 1;

since 1=�2sL�scC2sLC2�ı0C�.1�ı
0
0/� 1 in the trapped regime from (4-52).

The nonlinear term. We begin by coming back to renormalized variables:
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.NL.wint//kL2 �
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because NL."/ D
Pp

kD2
C
p

k
zQ
p�k

b
"k. We fix k with 2 � k � p and study the corresponding term

in the above sum. One has H D �� � pQp�1, and Q is a smooth profile satisfying the estimate
QDO..1Cjyj/�

2
p�1 /, which propagates to its derivatives from (2-1). Similarly, from (4-27) and (3-29),

one has zQb D O..1C jyj/
� 2
p�1 / and it propagates to the derivatives. The Leibniz rule for derivation
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then yields

kH sL. zQ
p�k

b
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We fix �i 2Nkd with
P
j�i j1� 2sL and focus on the corresponding term in the above equation. Without

loss of generality we order by increasing length: j�1j � � � � � j�kj. We now distinguish between two cases.

Case 1: j�kjC
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:

As the coefficients are in increasing order and L is arbitrarily very large, for 1 � j < k we have
j�i jC

d
2
� 2sL. We then recall the L1 estimate (D-3):
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The two previous estimates imply thatZ Qk
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Case 2: j�kj C
2.p�k/
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C 2sL �
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iD1 j�i j > 2sL. This means 2.p�k/

p�1
�
Pk�1
iD1 j�i j > 0. Hence, there

are two subcases: the subcase j�i j D 0 for 1 � i � k � 1 and the subcase j�k�1j D 1 (because the �i
are ordered by increasing size j�i j). If j�i j D 0 for 1� i � k� 1, then, using the weighted L1 estimate
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(D-2), the coercivity estimate (C-16) and the bound (4-25), we obtainZ Qk
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If j�k�1j D 1, then, using the weighted L1 estimate (D-2) for r", the coercivity estimate (C-16) and
the bound (4-25), we obtainZ Qk

iD1 j@
�i "j2

1Cjyj
4.p�k/
p�1

C4sL�2
Pk
iD1 j�i j

D

Z
j@�k�1"j2j"j2.k�2/

1Cjyj
4.p�k/
p�1

C4sL�2j�k j� 2

�

 @�k�1"

1Cjyj
2.p�k/
p�1 � 1

2
L1
k"k

2.k�2/
L1 EsL

�

�
E1CO.

1
L
/

�

s�.��sc/

�k�1 C.L;M;K1; K2/EsL
s1C

˛
L
CO.�C��scCL

�1

L
/
:

In both subcases, we haveZ Qk
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Now we come back to (5-41), which we reformulated in (5-42) where we estimated the terms appearing in
the sum in (5-43) and (5-44), obtaining the following bound for the nonlinear term’s contribution in (5-38):

kH
sL

z; 1
�

.NL.wint//kL2 �

p
E2sL

�.2sL�sc/C2

pX
kD2

�p
E�
1CO. 1

L
/

s�
��sc
2

�k�1 C.L;M;K1; K2/

s1C
˛
L
CO.�C��scCL

�1

L
/
: (5-45)

The small linear term and the term involving the time derivative of the linearized operator. We claim that
there exists a constant ı WD ı.d; L; p/ > 0 such thatH sL

z; 1
�

.L.wint//C
d

dt
.H

sL

z; 1
�

/wint


L2
�

C.L;M/

�2sL�scC2s

�Z
jH sL"j2

1Cjyj2ı

�1
2

: (5-46)

We now prove this estimate. The small linear term is in renormalized variables by (4-36) and (4-37):Z ˇ̌
H
sL

z; 1
�

.L.wint//
ˇ̌2
D

p2

�2.2sL�sc/C4

Z �
H sL..Qp�1� zQ

p�1

b
/"/
�2
:
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For � 2Ns , one has the following asymptotic behavior for the potential that appeared, from the bounds
on the parameters (4-27) and the expression of zQb (3-29):

ˇ̌
@�.Qp�1� zQ

p�1

b
/
ˇ̌
�
1

s

C.�/

1Cjyj˛�C.L/�Cj�j
�
1

s

C.�/

1CjyjıCj�j

for � small enough, because ˛ > 2, and for some constant ı that can be chosen small enough so that

0 < ı� 1; with ı < sup
0�n�n0

ın and ı < 1
4
d � 1

2
n0C1� sL: (5-47)

(This technical condition is useful to apply a coercivity estimate for the next equation; all the terms
appearing are indeed strictly positive by (1-25).) We recall that H D���pQp�1, where Q is a smooth
potential satisfying

j@�Qj �
C.�/

1Cjyj
2
p�1
Cj�j

:

Using the Leibniz rule, this impliesZ �
H sL..Qp�1� zQ

p�1

b
/"/
�2

�
C.L/

s2

X
�i2Nd

j�i j�2sL; iD1;2

Z
j@�1"jj@�2"j

1Cjyj4sLC2ı�2j�1j�2j�2j
�
C.L/

s2

Z
jH sL"j2

1Cjyj2ı
; (5-48)

where we used for the last line the weighted coercivity estimate (C-16), which we could apply because
ı satisfies the technical condition (5-47). We now turn to the term involving the time derivative of the
linearized operator in (5-38). Going back to renormalized variables, it can be written as

Z ˇ̌̌̌
d

dt
H
sL

z; 1
�

wint

ˇ̌̌̌2
D

p2.p� 1/2

�2.2sL�sc/C4

sLX
iD1

Z �
H i�1

��
Qp�2

zs

�
:rQC

�s

�
Qp�2ƒQ

�
H sL�i"

��2
:

For � 2 Nd, one has the following asymptotic behavior for the two potentials that appeared (from the
asymptotic (2-1) and (2-7) of Q and ƒQ):

j@�.Qp�2@yiQ/j �
C.�/

1Cjyj2C1Cj�j
for 1� i � d; and j@�.Qp�2ƒQ/j �

C.�/

1Cjyj2C˛
:

Therefore, as H D���pQp�1, where Q is a smooth potential satisfying

j@�Qj �
C.�/

1Cjyj
2
p�1
Cj�j1

;
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using the Leibniz rule and the two above identities,ˇ̌̌̌Z
H
sL

z; 1
�

wint
d

dt
.H

sL

z; 1
�

/wint

ˇ̌̌̌
�
C.L/

�ˇ̌
�s
�

ˇ̌2
C
ˇ̌
zs
�

ˇ̌2�
�2.2sL�sc/C4

X
�i2Nd

j�i j1�2sL; iD1;2

Z
j@�1"jj@�2"j

1Cjyj4sLC2�2j�1j�2j�2j

�
C.L/

�2.2sL�sc/C4 s2

X
�i2Nd

j�i j1�2sL; iD1;2

Z
jH sL"j2

1Cjyj2ı
(5-49)

for ı < ˛; 1 being defined by (5-47), where we used the weighted coercivity estimate (C-16) and the
fact that

ˇ̌
�s
�

ˇ̌
� s�1 and

ˇ̌
zs
�

ˇ̌
� s�1�

˛�1
2 by (4-43) and (4-27). We now combine the estimates we have

proved, (5-48) and (5-49), to obtain the estimate (5-46) we claimed.

End of the proof of Step 1. We now gather the brute force upper bounds we have found for the terms we
had to treat in (5-40), (5-45) and (5-46), yielding the bound (5-39) we claimed in this first step.

Step 2: integration by parts in time to treat the modulation term. We now focus on the modulation term in
(5-38) which requires a careful treatment. Indeed, the brute force upper bounds on the modulation (4-43)
are not sufficient and we need to make an integration by parts in time to treat the problematic term b

.n;k/
Ln;s

.
We do this in two steps. First we define a radiation term. Next we use it to prove a modified energy estimate.

Definition of the radiation. We recall that ˛b D
P
.n;k;i/2I b

.n;k/
i T

.n;k/
i C

PLC2
iD2 Si , where T .n;k/i is

defined by (2-26) and Si is homogeneous of degree .i;� �g0/ in the sense of Definition 2.14; see (3-8).
We want to split ˛b in two parts to distinguish the problematic terms involving the parameters b.n;k/Ln

. For
i D 2; : : : ; LC 2, as Si is homogeneous of degree .i;� �g0/, it is a finite sum

Si D
X

J2J .i/

bJfJ ; with bJ D
Y

.n;k;i/2I

.b
.n;k/
i /J

.n;k/

i ; (5-50)

where J .i/ is a finite subset of N#I and for all J 2 J .i/, jJ j3 D i and fJ is admissible of degree
.2jJ j2�  �g

0/ in the sense of Definition 2.11. We then define the following partition of J .i/:

J1.i/ WD
˚
J 2 J .i/; J .n;k/Ln

D 0 for all 0� n� n0; 1� k � k.n/
	
;

J2.i/ WD
˚
J 2 J .i/; jJ j D 2 and 9.n; k; Ln/ 2 I; J

.n;k/
Ln

� 1
	
;

J3.i/ WD J .i/nŒJ1.i/[J2.i/�;

S i WD
X

J2J2.i/

bJfJ ; S 0i WD
X

J2J3.i/

bJfJ ;

(5-51)

and the following radiation term:

� WDH sL

�
�B1

� X
0�n�n0
1�k�k.n/

b
.n;k/
Ln

T
.n;k/
Ln

C

LC2X
iD2

S 0i

��
C

LC2X
iD2

H sL.�B1S i /��B1H
sLS i : (5-52)
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From (5-51), for all J 2 J3.i/ there exists n with 0 � n � n0 such that J .n;k/Ln
� 1 and jJ j � 3. As

ın0 > 0, this implies
8J 2 J3.i/; jJ j2 >LC 2� ı0: (5-53)

Using this fact, (2-7), the fact that H sLT
.n;k/
Ln

D 0 since sL >Ln for all 0� n� n0, (5-51) and (4-27),
the radiation satisfies

k�kL2 �
C.L;M/

sLC1�ı0C�.1�ı
0
0/
; kH�kL2 �

C.L;M/

sLC2�ı0C�.2�ı
0
0/
; (5-54)

kr�kL2 �
C.L;M/

sLC
3
2
�ı0C�. 32�ı

0
0/
; kƒ�kL2 �

C.L;M/

sLC1�ı0C�.1�ı
0
0/
: (5-55)

We eventually introduce the remainders

R1 WDH
sL

�
�B1

X
.n;k;i/2I; i¤Ln

�
b
.n;k/
i;s C .2i �˛n/b

.n;k/
i b

.0;1/
1 � b

.n;k/
iC1

��
T
.n;k/
i C

LC2X
jD2

@Sj

@b
.n;k/
i

��

�

�
�s

�
C b

.0;1/
1

�
H sLƒ QQb �

�
zs

�
C b

.1;� /
1

�
:H sLr zQb

CH sL

�
�B1

X
.n;k;Ln/2I

.2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

�
T
.n;k/
Ln

C

LC2X
jD2

@S 0j

@b
.n;k/
Ln

��

C

X
.n;k;Ln/2I

.2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

�LC2X
jD2

H sL.�B1
@Sj

@b
.n;k/
Ln

/��B1H
sL

@Sj

@b
.n;k/
Ln

�

R2 WD
X

.n;k;Ln/2I

�
b
.n;k/
Ln;s

C .2Ln�˛n/b
.n;k/
Ln

b
.0;1/
1

��LC2X
jD2

�B1H
sL

@Sj

@b
.n;k/
Ln

�
;

R3 WD
X

.n;k;i/2I; i¤Ln

b
.n;k/
i;s

@

@
b
.n;k/

i

�;

so that they produce, by (5-52) and (4-33), the identity

H sL.eMod.s//D @s�CR1CR2CR3: (5-56)

The remainder R1 enjoys the following bounds by (4-43), (2-22), (3-8), (5-51), (5-53) and (4-27):

kR1kL2 �
C.L;M/

sLC2�ı0C.1�ı
0
0/�
C
C.L;M/E2sL

s2
: (5-57)

From the definition (5-51) of Sj and the construction (3-25) of Sj , one has

LC2X
jD2

HSj D�
X

.n;k;Ln/2I

b
.0;1/
1 b

.n;k/
Ln

�
ƒT

.n;k/
Ln

� .2Ln�˛n/T
.n;k/
Ln

�
�

X
.n;k;Ln/2I

b
.n;k/
Ln

b
.1;� /
1 :rƒT

.n;k/
Ln

Cp.p� 1/Qp�2
� X
.n;k;Ln/2I

b
.n;k/
Ln

T
.n;k/
Ln

�� X
.n0;k0;i/2I

b
.n0;k0/
i T

.n0;k0/
i

�
:
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As H sLT
.n;k/
Ln

D 0 since sL>Ln for all 0� n� n0, using the commutator identity (2-24), the asymptotic
(2-22) of T .n;k/i , (4-27) and (2-2) (as ˛ > 2), one hasZ

.1Cjyj4C2ı/

�
�B1H

sLC1
LC2X
jD2

@Sj

@
b
.n;k/
Ln

�2
�
C.L/

s
;

where ı is defined by (5-47), from which we deduce, using (4-44),

.1Cjyj/2CıHR2L2 � C.L;M/

sLC4
C
C.L;M/

p
E2sL

s
: (5-58)

Finally for the last remainder, from (5-52), (4-43), (4-27), (4-25), (2-22) and (5-51), for s0 large enough
one has the estimate

kR3kL2 �
C.L;M/

sLC2�ı0C�.1�ı
0
0/
: (5-59)

Modified energy estimate. We now prove the modified energy estimate (compared to (5-38))

d

dt

�Z
.H

sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
//2
�

�
1

�2.2sL�sc/C2s

�
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
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p
E2sL

�Z
jH sL"j2

1Cjyj2ı
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2

CE2sL
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kD2

�p
E�
1CO. 1

L
/

s�
��sc
2

�k�1C.L;M;K1;K2/
s
˛
L
CO.�C��sc

L
/

�
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Z
H
sL

z; 1
�

wintH
sLC1

z; 1
�

wint

C2

Z
H
sL

z; 1
�

wintH
sL

z; 1
�

.zLC zRCfNL/: (5-60)

From the time evolution (5-56), (4-32) of � and w and because the support of �z.�1=�/ is disjoint from
the one of zL, zR, and fNL, one gets the following expression for the left-hand side of (5-60):

d
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sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
/

�2�
D�2

Z
H
sL

z; 1
�

wintH
sLC1

z; 1
�

wint�
2

�2sLC2

Z
H
sL

z; 1
�

wint�z.R2; 1
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Z
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�
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H
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�
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1
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�
/
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H
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�
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1

�2
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�
/CL.wint/

�

C
d
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.H
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�

/wint�
1

�2C2sL
�z

��
R1CR3C

�s

�
ƒ�C2sL

�s

�
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zs

�
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�
1
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�
2

�4sLC2

Z
�z.� 1

�
/�z.R2; 1

�
/C2

Z
H
sL

z; 1
�

wintH
sL

z; 1
�

. QLCfNLC zR/: (5-61)

We now analyse all the terms in this identity, except the first one and the last one, which we will study
in the next step. Using the estimate (5-58) on the remainder R2, going back in renormalized variables
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and using the coercivity (C-16), one gets for the second term in (5-61)ˇ̌̌̌
2

�2sLC2

Z
H
sL

z; 1
�

wint�z.R2; 1
�
/

ˇ̌̌̌
� C

Z
jH sL�1"j

1Cjyj2Cı
.1Cjyj2Cı/jHR2j
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p
E2sL

�2.2sL�sc/C2s

��Z
jH sL"j2

1Cjyj2ı

�1
2

C
1

sLC3

�
:

Going back to renormalized variables, integrating by parts and using the estimate (5-54) on H� gives
for the third term in (5-61)ˇ̌̌̌

2

�2sL

Z
�z.� 1

�
/H

sLC1
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�
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ˇ̌̌̌
�

C.L;M/

�2.2sL�sc/C2

p
E2sL

sLC2�ı0C�.2�ı
0
0/
:

To bound the fourth and the fifth terms in (5-61) from above, we go back to renormalized variables and
use the bound (5-39) on the error, the nonlinear term, the small linear term and the term involving the
time derivative of the linearized operator we derived in Step 1, together with the bounds (5-54) and (5-55)
on �, ƒ�, r� and the fact that ˇ̌̌̌

�s

�

ˇ̌̌̌
� Cs�1 and

ˇ̌̌̌
zs

�

ˇ̌̌̌
� Cs�1�

˛�1
2

in the trapped regime, and the bound (5-57) and (5-59) on the remainders R1 and R3, yieldingˇ̌̌̌Z �
H
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�
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�
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�
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C
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p
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p
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1CO. 1

L
/
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2
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s
˛
L
CO.�C��sc

L
/

�
:

We finish the proof of the bound (5-60) by inserting into the identity (5-61) the three previous bounds
we proved on the second, third, fourth and fifth terms.

Step 3: use of dissipation. We find an upper bound for the last terms in (5-60) and improve the energy
estimate using the coercivity of the quantity �

R
H sLC1"H sL".

The dissipation estimate. We recall that H D ��� pQp�1, the potential �pQp�1 being the Hardy
potential

pQp�1 <
.d � 2/2� 4ı.p/

4jyj2
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for some constant ı.p/>0 by (2-5). Hence, using the standard Hardy inequality one gets for the linear term

�

Z
H
sL

z; 1
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wintHz; 1
�
H
sL

z; 1
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D�
1

�2.2s�L�sc/C2

Z
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�2.2s�L�sc/C2

�
�

Z
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.d � 2/2� 1

2
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C
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� Z
jrH sL"j2C

Z
pQp�1jH sL"j2

�
�

1
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�
�
.d � 2/2� 1

2
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4

Z
jH sL"j2

jyj2
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2.d � 2/2

Z
jrH sL"j2

C
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4

Z
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Z
jH sL"j2
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�

ı.p/

2.d � 2/2�2.2s�L�sc/C2

Z
jrH sL"j2: (5-62)

Bounds for the terms created by the cut. We study the last terms in (5-60). From its definition (4-40), and
as �Cjzj� 1 by (4-52) and (4-51), the remainder zR is bounded by a constant independent of the others:

kH
sL

z; 1
�

zRkL2 � C: (5-63)

For the nonlinear term, for any very small � > 0, by (D-4), (4-39) and (4-28),
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˛
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CO.��scC�

L
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(5-64)
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because 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52), if � has been chosen small enough. For the extra

linear term in (5-60), performing an integration by parts, using Young’s inequality for any " > 0, (4-25)
and (4-28) giveˇ̌̌̌Z
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˛
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(5-65)

because in the trapped regime �2s � s�
˛

2`�˛ by (4-52).

Conclusion. We insert into the modified energy estimate (5-60) the bounds (5-62), (5-63), (5-64) and
(5-65), yielding

d

dt

�Z �
H
sL

z; 1
�

wintC
1

�2sL
�z.� 1

�
/

�2�
�

1

�2.2sL�sc/C2s

"
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
CC.L;M/

p
E2sL

�Z
jH sL"j2

1Cjyj2ı

�1
2

CE2sL
pX
kD2

� p
E�

s�
��sc
2

�k�1C.L;M;K1; K2/
s
˛
L
CO.�C��sc

L
/
�
sı.p/

8

Z
jH sL"j2

jyj2
�

sı.p/

2.d�2/2

Z
jrH sL"j2

CC"s

Z
jrH sL"j2C

C.K1; K2;M;L/
p
E2sL

sLC1�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/

#
: (5-66)

For any N � 1, using Young’s inequality and splitting the weighted integrals in the zone jyj �N 2 and
jyj �N 2 gives for " small enough and s0 large enough,

C.L;M/
p
E2sL

�Z
jH sL"j2

1Cjyj2ı

�1
2

�
sı.p/� sC"

8

Z
jH sL

jyj2

�
C.L;M/E2sL

N 2ı
CC.L;M/N 2ı

Z
jyj�N 2

jH sL"j2

1Cjyj2ı
�
sı.p/

16

Z
jH sL"j2

jyj2
�
C.L;M/E2sL

N 2ı
:

Finally, from the bound (5-54) on the size of � , one has

d

dt

�Z �
H
sL

z; 1
�

wC
1

�2sL
�z.� 1

�
/

�2�
D
d

dt

�
E2sL

�2.2s�L�sc/

�
C
d

dt

�Z
2

�2sL
H
sL

z; 1
�

w�z.� 1
�
/C

1

�4sL
.�z.� 1

�
//2
�

D
d

dt

�
E2sL

�2.2s�L�sc/

�
C
d

dt

�
O.L;M/

�
1

�2.2sL�sc/sLC1�ı0C�.1�ı
0
0/

�p
E2sLC

1

sLC1�ı0C�.1�ı
0
0/

���
;
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where OL;M . � / denotes the usual O. � / for a constant in the upper bound that depends only on L and M .
Plugging the two previous identities into the modified energy estimate (5-66) yields the bound (5-37)
we claimed in this proposition. �

Proposition 5.8 (Lyapunov monotonicity for the high regularity Sobolev norm of the remainder outside
the blow-up zone). Suppose all the constants of Proposition 4.6 are fixed except s0. Then for s0 large
enough, for any solution u that is trapped on Œs0; s0/ the following holds for 0� t < t.s0/:

kwextk
2
H2sL

� k@
sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0

C
C.K1; K2/

�2.2sL�sc/s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-67)

Proof. From the time evolution of wext, given in Section 4B1, we get

@kC1t wext D�@
k
t wextC .1��3/@

k
t .w

p/C��3@
k
t wC 2r�3:r@

k
t w: (5-68)

We make an energy estimate for @sLt wext and propagate this bound via elliptic regularity by iterations,
which is standard in the study of parabolic problems. All computations, unless mentioned, are performed
on �, and we omit this in the notation for simplicity.

Step 1: estimate on the force terms. We first prove some estimates on the force terms on the right-hand
side of (5-68). From the decomposition (4-10) and the evolution (4-32) ofw, in the exterior zone�nBd .2/,
@kt w can be written as

@kt w D

kX
jD0

X
C.�/

1Cj.p�1/Y
iD1

@�iw (5-69)

for some constants C.�/, where the inner sum is over � D .�i /1�i�1Cj.p�1/ 2 Ndk.p�1/ withP1Cj.p�1/
iD1 j�i j1 D 2.k � j /. Fix k � sL, an integer j with 0 � j � k, and a sequence of d -tuples

.�i /1�i�1Ck.p�1/ 2Ndk.p�1/ satisfying
P1Cj.p�1/
iD1 j�i j D 2.k�j /. One can assume that the d -tuples

�i are ordered by decreasing length: j�1j � j�2j � � � � .

The case k D sL. We want to estimate the above term in the zone �nBd .2/.

Subcase 1: j�1j � � . Using Hölder, Sobolev embedding
�
since in that case �i < 2sL � d

2
for 2 � i �

1C j.p� 1/
�
, interpolation and (4-28), for � > 0 small enough,1Cj.p�1/Y

iD1

@�iw


L2
� k@�1wkL2

1Cj.p�1/Y
iD2

k@�iwkL1

� kwkH j�1j

1Cj.p�1/Y
iD2

kwkHd=2C�Cj�i j
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� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�j�1j��CP1Cj.p�1/iD2
j�i jCd=2C���

2sL��

D C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�1� .j.p�1/�1/.��sc��/
2sL��

�
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
; (5-70)

as 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52).

Subcase 2: j�1j< � . Then �i < � for all 1� i � j.p� 1/ and @�iw 2 Lpi with pi given by

1

pi
D
1

2
�
� � j�i j

d

by Sobolev embedding. We define i0 as the integer 2� i0 � 1C j.p� 1/ such that
Pi0�1
iD1

1
pi
< 1
2

andPi0
iD1

1
pi
�

1
2

. We know i0 exists because 1
p1
< 1

2
and

P1Cj.p�1/
iD1

1
pi
�

1
2

. We define Qpi0 > 2

by 1
Qpi0
D

1
2
�
Pi0�1
iD1

1
pi

and Qs � � as the regularity giving the Sobolev embedding H Qs�j�i0 j! L Qpi0 :

Qs D

i0X
iD1

j�i jC .i0� 1/

�
d

2
� �

�
:

This implies that
Qi0
iD1 @

�iw 2 L2 with the estimate (from Hölder inequality)

 i0Y
iD1

@�iw


L2
� Ck@�i0wk

L
Qpi0

i0�1Y
iD1

k@�iwkLpi � kwkH Qs

i0�1Y
iD1

kwkH� � C.K1/kwk
Qs��
2sL��

H2sL
;

where we used interpolation and (4-25). Therefore, for � > 0 small enough, using Sobolev embedding,
the above estimate, interpolation and (4-25),1Cj.p�1/Y

iD1

@�iw


L2
�

 i0Y
iD1

@�iw


L2

1Cj.p�1/Y
iDi0C1

kwk
H
d
2
C�Cj�i j

� C.K1/kwk
Qs��
2sL��

H2sL

1Cj.p�1/Y
iDi0C1

kwk
1�

d=2C�Cj�i j��

2sL��

H� kwk

d=2C�Cj�i j��

2sL��

H2sL

� C.K1; K2/

�
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

�2sL���j.p�1/.��sc/C.j.p�1/�i0C1/�
2sL��

� C.K1; K2/
1

�2sL�sc sLC1�ı0C�.1�ı
0
0/

(5-71)

as 1=�2sL�sc sLC1�ı0C�.1�ı
0
0/� 1 by (4-52).
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End of substep 1. Inserting (5-70) and (5-71) into the identity we obtain

k@
sL
t wkL2.�nBd .2// �

C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/
: (5-72)

Estimate for the nonlinear term in (5-68). With the very same arguments used in the first substep, one
obtains the bound

k@
sL
t w

p
kL2.�nBd .2// �

C.K1; K2/

�2sL�scC2 sLC2�ı0C�.1�ı
0
0/C

˛
2L
CO.��scC�

L
/
: (5-73)

The case k < sL. Again, for 0� k < sL, the same method yields

k@kt wkH2.sL�1�k/.�nBd .2// �
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛
2`�˛

CO. 1
L
/
; (5-74)

kr@kt wkH2.sL�1�k/.�nBd .2// �
C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛
2.2`�˛/

CO. 1
L
/
; (5-75)

k@kt w
p
kH2.sL�1�k/.�nBd .2// �

C.K1; K2/

�2sL�sc sLC1�ı0C�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-76)

Step 2: energy estimate for @sLt wext. We claim that for 0� t < t 0,

k@
sL
t wextk

2
L2
� k@

sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C
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dt 0

C
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0
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t wext.t

0/kL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0 (5-77)

and we now prove this estimate. From (5-68) one has the identity

@t .k@
sL
t wextk

2
L2
/

D�2

Z
jr@

sL
t wextj
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C 4

Z
@
sL
t wextr�3:r@

sL
t wC 2

Z
@
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t wext@

sL
t ..1��3/w

p
C��3w/ (5-78)

and we are now going to study the right-hand side of this equation.

Use of dissipation. We study all the terms except the nonlinear one in (5-78). After an integration by
parts, using Cauchy–Schwarz, Young’s and Poincare’s inequalities,ˇ̌̌̌Z

@
sL
t wextr�3:r@

sL
t wC

Z
@
sL
t wext@
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t wkL2 C "kr@

sL
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NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 213

for any " > 0. Adding the dissipation term in (5-78), taking " small enough and using the bound (5-72)
on the force term @

sL
t w gives

�

Z
jr@

sL
t wextj

2
C 4

Z
r�3:r@

sL
t w@

sL
t wextC

Z
@
sL
t wext@

sL
t .��B.0;3/w/

� Ck.1��2/@
sL
t wk

2
L2
� Ck@

sL
t wk

2
L2
�

C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/

�
C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

(5-79)

because in the trapped regime, �2s � s�
˛

2`�˛ .

Estimate for the nonlinear term. We now turn to the nonlinear term in (5-78), and use the estimate (5-73)
for @sLt w

p we found in the first step, yieldingˇ̌̌̌Z
@
sL
t wext@

sL
t ..1��3/w

p

ˇ̌̌̌
�

C.K1; K2/k@
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t wextkL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
: (5-80)

End of Step 2. We collect the estimates (5-79) and (5-80) found in the previous substeps, which gives the
desired bound (5-77) we claimed in this step.

Step 3: iteration of elliptic regularity. We claim that for i D 0; : : : ; sL,

k@itwextk
2
H2.sL�i/

� k@
sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0
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0

C.K1; K2/k@
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t wext.t

0/kL2

�2sL�scC2 sLC2C1�ı0C�.1�ı
0
0/C
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2L
CO.�C��sc
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/
dt 0
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C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
: (5-81)

We are going to show this estimate by induction. This is true for i D sL from the result (5-77) of the
last step, and because of the compatibility conditions (4-20) at the border. Now suppose it is true for i ,
with 1 � i � sL. Then as @i�1t wext solves (5-68), from elliptic regularity one gets (again because of
the compatibility conditions (4-20) at the border), from the induction hypothesis and the bounds (5-76),
(5-76) and (5-76) on the force terms

k@i�1t wextk
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H2.sL�i/C2
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C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
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This shows that the inequality (5-81) is true for i � 1. Hence, by iterations, the inequality (5-81) is true
for i D 0, which gives the estimate (5-67) we had to prove. �

5D. End of the proof of Proposition 4.6. Proposition 4.6 states that, once the constants involved in
the analysis, which are listed at its beginning, are well chosen, given an initial data of (1-1) that is a
perturbation of the approximate blow-up profile along the stable directions of perturbation, there is a way
to perturb it along the unstable directions of perturbation to produce a solution that stays trapped for all
time in the sense of Definition 4.4. The strategy of the proof is the following. We argue by contradiction
and suppose that for all perturbations along the unstable directions, the corresponding solution will
eventually escape from the trapped regime. First, we characterize the exit of the trapped regime through a
condition on the size of the unstable parameters, and then we show that arguing by contradiction would
amount to go against Brouwer’s fixed point theorem.

We fix �.s0/ satisfying (4-21), w.s0/ decomposed in (4-5) satisfying (4-19) and (4-11), V1.s0/,
.U

.0;1/

`C1
.s0/; : : : ; U

.0;1/
L .s0// and .U .n;k/i .s0//.n;k;i/2I with 1�n; in�i satisfying (4-16), (4-17) and ((iii)).

For any .V2.s0/; : : : ; V`.s0// and .U .n;k/i .s0//.n;k;i/2I;1�n; i<in satisfying (4-14) and (4-15), let u denote
the solution of (1-1) with initial datum u.0/D � zQb.s0/;1=�.s0/Cw.s0/ with b.s0/ given by (4-31). We
define the renormalized exit time s� D s�

�
.V2.s0/; : : : ; V`.s0//; .U

.n;k/
i .s0//.n;k;i/2I;1�n; i<in

�
:

s� WD sup
˚
s � s0; u is trapped in the sense of Definition 4.4 on Œs0; s/

	
: (5-82)

By a continuity argument, one always has s� > s0.

Lemma 5.9 (characterization of the exit of the trapped regime). For L and M large enough and � close
enough to sc , there exists a choice of the other constants in (4-30), except s0 and �, such that for any s0
large enough and � small enough, if s� <C1, at least one of the following two scenarios hold:

(i) Exit via instabilities on the first spherical harmonics.

Vi .s
�/D .s�/�Q� for some 1� i � `:

(ii) Exit via instabilities on the other spherical harmonics.

U
.n;k/
i .s�/D 1 for some .n; k; i/ 2 I; with 1� n and i < in:

Proof. A solution u is trapped if the parameters and the error involved in its decomposition (4-10) satisfy
the bounds (4-22), (4-23), (4-24), (4-25) and (4-52). At time s�, the bound (4-52) is strict by (4-51) and
(4-52), and we are going to prove that (4-25) is strict in Step 1 and that (4-24) is strict in Step 2. Thus,
(4-22) or (4-23) must be violated at the time s� and the lemma is proved.

Step 1: improved bounds for the remainder w. We will now prove the estimates

E� .s�/�
K1

2.s�/
2.��sc/`
2`�˛

; E2sL.s
�/�

K2

2.s�/2LC2�2ı0C2�.1�ı
0
0/
;

kwext.s
�/k2H� �

K1

2
and kwext.s

�/k2
H2sL

�
K2

2�2.2sL�sc/ s
2LC2.1�ı0/C2�.1�ı

0
0
/
:

(5-83)
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Bound on E� . Let K1 and K2 be any strictly positive real numbers. Then from Proposition 5.3, for s0
and � large enough, we have

d

dt

�
E�

�2.��sc/

�
�

p
E�

�2.��sc/C2 s
.��sc/`
2`�˛
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1

s
˛
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�
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kD2

� p
E�
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��sc
2

�k�1�
:

On Œs0; s��, one has p
E�

s�
��sc
2

�K1s
�
˛.��sc/
4`�2˛

by (4-25); hence for s0 large enough,

d

dt
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�2.��sc/

�
�

p
E�

�2.��sc/C2 s
.��sc/`
2`�˛

C1

1

s
˛
8L

:

One has � D
�
s0
s

� `
2`�˛ .1CO.s

�Q�
0 // by (4-52) and we assume that jO.s�Q�0 /j � 1

2
. We reintegrate the

above equation using (4-25) and (4-19):

E� .s�/�
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2`.��sc/
2`��
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3

2

�2��sc
C s

2`.��sc/
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0

22.��sc/C3L

˛s
˛
8L

0

p
K1

�
:

Therefore, once L is fixed we choose � close enough to sc so that

˛

8L
>
2`.� � sc/

2`�˛

and then for s0 large enough one has

s
2`.��sc/
2`�˛

0

22.��sc/C3L

˛s
˛
8L

0

� 1:

For any choice of the constants K1 > 10, we then have
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2`.��sc/
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2

�2��sc
C
p
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�
�
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2.s�/
2`.��sc/
2`��

: (5-84)

Bound on E2sL . Let K1 and K2 be any strictly positive real numbers. By Proposition 5.6, for any N � 1

the following holds for s0 and � large enough:
d

dt

�
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In the trapped regime, from (4-25) one has
p
E�

s�
��sc
2

�K1s
�
˛.��sc/
4`�2˛ :
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Consequently, for N and s0 large enough the previous identity becomes

d

dt

�
E2sL

�2.2s�L�sc/
CO.L;M/

�
1

�2.2sL�sc/sLC1�ı0C�.1�ı
0
0/

�p
E2sL C

1

sLC1�ı0C�.1�ı
0
0/

���

�
1

�2.2sL�sc/C2s

�
C.L;M/

s2LC2�2ı0C2.1�ı
0
0/
C

C.L;M/
p
E2sL

sLC1�ı0C�.1�ı�0
0/
C

1

N 2ı
E2sL

�
:

Since from (4-52) we have

�D

�
s0

s

� `
2`�˛

.1CO.s
�Q�
0 //;

when reintegrating in time the previous equation using the trapped regime bounds (4-25) and (4-19), one
gets

E2sL.s
�/� �.s�/2.2sL�sc/

"
O.L;M/

�
1

�.s�/2.2sL�sc/.s�/2LC2�2ı0C2�.1�ı
0
0/
.
p
K1C 1/

�
C E2sL.s0/COL;M

�
1

s
LC1�ı0C�.1�ı

0
0/

0

�p
E2sL.s0/C

1

s
LC1�ı0C�.1�ı

0
0/

0

��
C

Z s�

s0

1

�2.2sL�sc/ s2LC3�2ı0C�.1�ı
0
0/

�
C.L;M/

p
K2CC.L;M/C

K2

N 2ı

�#

�
1

.s�/2LC2�2ı0C2�.1�ı
0
0/

�
C.L;M/.1C

p
K2/CC.L/

K2

N 2ı

�
�

1

K2.s�/
2LC2�2ı0C2�.1�ı

0
0/

(5-85)

if N and K1 have been chosen large enough.

Bound on kwextkH� . We recall the estimate (5-35):

d

dt

�
kwextk

2
H�

�
�

C.K1; K2/

s1C
˛
2L
CO.�C��sc

L
/�2
kwextkH� :

For any choice of the constants of the analysis in Proposition 4.6 such that all the previous propositions
and lemmas hold, for s0 large enough,

d

dt

�
kwextk

2
H�

�
�

1

s
˛
4L�2

kwextkH� :

We reintegrate this equation in the bootstrap regime, by applying the bounds (4-25) and (4-19) on
kwextkH�

�
using the relation ds

dt
D

1
�2

�
:

kwext.s
�/kH� �

p
K2

C.L/

s
˛
4L

0

C
C

s
2`
2`�˛

.2sL�sc/

0

�
K2

2
(5-86)

for K2 chosen large enough.
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Bound on kwextkH2sL . We recall the estimate (5-67):

kwextk
2
H2sL

� k@
sL
t wext.0/k

2
L2
C

Z t

0

C.K1; K2/

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/C

˛
2`�˛

dt 0

C

Z t

0

C.K1; K2/k@
sL
t wext.t

0/kL2

�2sL�scC2 sLC2�ı0C�.1�ı
0
0/C

˛
2L
CO.�C��sc

L
/
dt 0

C
C.K1; K2/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/C

˛.p�1/.��sc/
2.2`�˛/

CO.��scC�
L

/
:

One has wext D .1��3/w, so @sLt wext D .1��3/@
sL
t w. Recall that we proved the bound (5-72) in the

trapped regime for @sLt w.t/ outside the blow-up zone in the proof of Proposition 5.8. The same proof
gives for s0 large enough, taking in account the bound (4-19) on w at initial time,

k@
sL
t wext.0/kL2 � 1:

Inserting this estimate and (5-72) into the previous identity gives, for s0 large enough,

kwextk
2
H2sL

� 1C

Z t

0

dt 0

�2.2sL�sc/C2 s2LC3�2ı0C2�.1�ı
0
0/
C

1

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/

�
2

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/
C

Z t

0

Cdt 0

s�
`Œ2.2sL�sc/C2�

2`�˛ s2LC3�2ı0C2�.1�ı
0
0/

�
2

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/
C

C.L/

s�
`2.2sL�sc/

2`�˛ s2LC2�2ı0C2�.1�ı
0
0/

�
2

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/
C

C.L/

�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/

�
K2

2�2.2sL�sc/ s2LC2�2ı0C2�.1�ı
0
0/
; (5-87)

where we used the equivalence � � s�
`

2`�˛ from (4-52), and where the last line holds for K2 large
enough.

End of step 1. We have proven (5-84), (5-85), (5-86) and (5-87), yielding the estimate we claimed, (5-83).

Step 2: improved bounds for the stable parameters. We claim that once L, M , �, K1 and K2 have been
chosen so that the result of Step 1 holds, there exist Q� > 0 and strictly positive constants .".0;1/i /`C1�i�L,
."
.n;k/
i /.n;k;i/2I; 1�n; in�i such that

jV1.s
�/j �

1

2.s�/�Q�
; jU

.0;1/
i .s�/j �

"
.0;1/
i

2.s�/ Q�
for `C 1� i � L; (5-88)

and for .n; k; i/ 2 I, n� 1,

jU
.n;k/
i .s�/j �

"
.n;k/
i

2.s�/ Q�
if in < i; jU

.n;k/
i .s�/j �

"
.n;k/
i

2
if in D i: (5-89)



218 CHARLES COLLOT

We now prove all these improved bounds: first we prove the one for b.n;k/Ln
, then the one for the U .n;k/i ,

i ¤Ln, and finally the one for V1. For technical reasons, we introduce for .n; k; i/2 I the function g.n;k/i ,
a solution of the ODE

d
ds
g
.n;k/
i

g
.n;k/
i

D .2i �˛n/b
.0;1/
1 ; g.s0/D s

`.2i�˛n/
2`�˛

0 : (5-90)

As b.0;1/1 D
`

s.2`�˛/
CO.s�1�Q�/, for Q� small enough and s0 large enough one has

g
.n;k/
i .s/D s

`.2i�˛n/
2`�˛ .1CO.s

�Q�
0 // with jO.s�Q�0 /j � 1

2
: (5-91)

Improved bound for b.n;k/Ln
. First we notice that since L is chosen after `, one can assume that for all

0 � n � n0, we have in < L. We rewrite the improved modulation equation (5-2) for b.n;k/Ln
, using the

estimate (5-3) for the extra term in the time derivative and the function g.n;k/Ln
(satisfying (5-90) and

(5-91)), yieldingˇ̌̌̌
d

ds

�
g
.n;k/
Ln

b
.n;k/
Ln

COL;M;K2.s
�L��.1�ı 00/Cı0�ınC

`.2Ln�˛n/
2`�˛ /

�ˇ̌̌̌
� C.L;M;K2/s

�1�L��.1�ı 00/Cı0�ınC
`.2Ln�˛n/
2`�˛

as �.1�ı00/<
g 0

2
for � small enough (g0 being fixed). The notationOL;M;K2. � / is the usualO. � / notation

with a constant depending on L, M and K2. One has 2Ln�˛nD 2L� d2 �2ınC2m0C
2
p�1

. Hence for
L large enough, the quantity �L��.1� ı00/C ı0� ınC

`.2Ln�˛n/
2`�˛

is strictly positive for all 0� n� n0.
Therefore, reintegrating in time the previous identity yields, using (4-16) and (4-17),

jb
.n;k/
Ln

.s�/j �
C.L;M;K2/

.s�/LC�.1�ı
0
0/Cı0�ın

C
1

sLCı0�ınCQ�

s
`.2Ln�˛n/
2`�˛

�L�ı0Cın�Q�

0

.s�/
`.2Ln�˛n/
2`�˛

�L�ı0Cın�Q�

3

2
s
LCı0�ınCQ�
0 jb

.n;k/
Ln

.s0/j

�
C.L;M;K2/

.s�/LC�.1�ı
0
0/Cı0�ın

C
3"
.n;k/
Ln

20

1

.s�/LCı0�ınCQ�
:

Therefore, if Q� < �.1� ı00/, for any 0 < ".n;k/Ln
< 1, for s0 large enough, we have

jb
.n;k/
Ln

.s�/j �
"
.n;k/
Ln

2.s�/LCı0�ınCQ�
: (5-92)

Improved bound for b.n;k/i , in<i <Ln. Using the same methodology we used to study the parameter b.n;k/Ln
,

we take the modulation equation (4-43), we integrate it in time, applying the bounds (4-22), (4-23), (4-24)
and (4-25), yieldingˇ̌̌̌
d

ds
.g
.n;k/
i b

.n;k/
i /

ˇ̌̌̌
�
3"
.n;k/
iC1 s

`
2`�˛

.2i�˛n/�
�n
2
�i�Q��1

2
CC.L;M;K1/s

�L�1Cı0��.1�ı
0
0/C

`
2`�˛

.2i�˛n/:

The condition in< i ensures that `
2`�˛

.2i�˛n/�
�n
2
�i > 0. For Q� small enough, we can then integrate

in time the previous equation, the first term on the right-hand side giving then a divergent integral. Then
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applying the bound (5-91) on g.n;k/i and the initial bound (4-17) on b.n;k/i , one obtains

jb
.n;k/
i .s�/j �

1

.s�/
�n
2
CiCQ�

�
3"
.n;k/
i

20
CC.L/"

.n;k/
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C
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`.2i�˛n/
2`�˛

�
�n
2
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Z s�
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s�L�1Cı0��.1�ı
0
0/C

`.2i�˛/
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�

�
"
.n;k/
i

2.s�/
�n
2
Ci

(5-93)

if s0 is large enough and ".n;k/iC1 is small enough, because L� ı0 >
�n
2
C i .

Improved bound for b.n;k/i if in D i and 1� n. In that case, `
2`�˛

.2i �˛n/D
�n
2
C i: Hence one has

1

2
�

g
.n;k/
i

s
�n
2
Ci
�
3

2
:

Integrating the modulation equation and making the same manipulations we made for in < i then yields

jb
.n;k/
i .s�/j �

1

.s�/
�n
2
Ci

�
3"
.n;k/
i

20
CC.L/"

.n;k/
iC1 C

C.L;M/
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L�ı0�

�n
2
�i

0

�
�

"
.n;k/
i

2.s�/
�n
2 C i

(5-94)

if ".n;k/iC1 is small enough and s0 is large enough.

Improved bound for V1. We recall that from (4-13), V1 denotes the stable direction of perturbation for the
dynamical system (3-58) contained in Span..U .0;1/i /1�i�`/. From the quasidiagonalization (3-69) of the
linearized matrix A`, under the bootstrap bounds (4-22), (4-23), (4-24) and (4-25), its time evolution is
given by

V1;s D�
V1

s
CO

�
j.Vi /1�i�`j

2

s

�
CO.C.L;M;K2/s

�L�`/C
q1

s
U
.0;1/
iC1

D�
V1

s
CO

�
1

s1C2 Q�
C s�L�`C

"
.0;1/

`C1

s1CQ�

�
;

which when reintegrated in time gives, if ".0;1/
`C1

is small enough, s0 is large enough, and using (4-16),

jV1.s
�/j �

s0V1.s0/

s�
C
C.L;M;K1/

.s�/2 Q�
C
C.L/"

.0;1/

`C1

.s�/ Q�
�

1

2s Q�
: (5-95)

End of Step 2. We choose the constants of smallness in the following order so that all the improved
bounds we proved, (5-92), (5-93), (5-94), (5-95), hold together. For any choice of K1, K2, L, M , �
in their ranges, there exists Q� > 0 such that Q� < �.1� ı00/ and �n

2
C i C Q� < `

2`�˛
.2i � ˛n/ for all

.n; k; i/ 2 I with in < i . First choose the constant ".0;1/`C1 small enough so that the improved bound (5-95)
for V1 holds for s0 large enough. Next choose ".0;1/`C2 such that the improved bound (5-93) for U .0;1/`C1

holds for s0 large enough. By iteration we then choose ".0;1/`C3 ; : : : ; "
.0;1/
L to make all the bounds (5-93)

hold until the one for U .0;1/L�1 . Then the final one, (5-92), for U .0;1/L , holds for s0 large enough without any
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conditions on ".0;1/i for `C 1� i � L� 1. The same reasoning applies for the stable parameters on the
spherical harmonics of higher degree (1� n� n0). We have proved (5-88). �

We fix all the constants of the analysis so that Lemma 5.9 holds, and we will just possibly increase the
initial renormalized time s0, which does not change its validity. The number of instability directions is

mD `� 1C d.EŒi1�� ıi12N/C
X

2�n�n0

k.n/.EŒin�C 1� ıin2N/:

To prove Proposition 4.6, we have to prove that there exists an additional perturbation along the unstable
directions of perturbations such that the solution stays forever trapped. We prove it via a topological
argument, by looking at all the solutions associated to the possible perturbations along the unstable
directions of perturbation. For this purpose, we introduce the set

B WD
˚�
V2.s0/; : : : ; V`.s0/; .U

.n;k/.s0/i /.n;k;i/2I; 1�n; i<in
�
2 Rm W jVi .s0/j � s

�Q�
0 for 2� i � `;

jU .n;k/.s0/i j � "
.n;k/
i for .n; k; i/ 2 I; 1� n; i < in

	
;

which represents all the possible values of the unstable parameters so that the solution to (1-1) with initial
data given by (4-5) and (4-31) starts in the trapped regime. We then define the following application
f W D.f /� B! @B that gives the last value taken by the unstable parameters before the solution leaves
the trapped regime (when it does):

f
�
V2.s0/; : : : ; V`.s0/; .U

.n;k/
i /.n;k;i/2I; 1�n; i<in

�
D

�
.s�/ Q�

s
Q�
0

V2.s
�/; : : : ;

.s�/ Q�

.s0/ Q�
V`.s

�/; .U
.n;k/
i .s�//.n;k;i/2I; 1�n; i<in

�
: (5-96)

The domain D.f / of the application f is the set of the m-tuples of real numbers�
V2.s0/; : : : ; V`.s0/; .U

.n;k/
i /.n;k;i/2I; 1�n; i<in

�
in B such that the solution starting initially with a decomposition given by (4-5) and (4-31) leaves the
trapped regime in finite time s�. The following lemma describes the topological properties of f .

Lemma 5.10 (topological properties of the exit application). There exists a choice of smallness constants
."
.n;k/
i /.n;k;i/2I; 1�n; i<inC1 such that the following properties hold for s0 large enough:

(i) D.f / is nonempty and open, and the inclusion @B � D.f / holds.

(ii) f is continuous and is the identity on the boundary @B.

Proof. Step 1: the outgoing flux property. We prove in this step that one can choose the smallness constants
."
.n;k/
i /.n;k;i/2I; 1�n; i<inC1 such that for any

�
V2.s0/; : : : ; V`.s0/; .U

.n;k/
i /.n;k;i/2I; 1�n; i<in

�
in B

such that the solution starting initially with the decomposition given by (4-5) and (4-31) is in the trapped
regime on Œs0; s� and satisfies at time s�

.s/ Q�

s
Q�
0

V2.s/; : : : ;
.s/ Q�

.s0/ Q�
V`.s/; .U

.n;k/
i .s//.n;k;i/2I; 1�n; i<in

�
2 @B;
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the exit time from the trapped regime is s. To prove this we compute the time derivative of the unstable
parameters when they are on @B, and show that it points toward the exterior. Indeed from the modulation
equation (4-43) and (3-69) (where we injected the bounds of the trapped regime (4-22), (4-23), (4-24)
and (4-25)),

Vi;sD
i˛

2`�˛

Vi

s
CO

�
j.V1.s/; : : : ;V`.s//j

2

s

�
C
qiU
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s�1�2 Q�C

"
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�
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U
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i;s D˛

`��n
2
�i

.2`�˛/s
U
.n;k/
i C

U
.n;k/
iC1

s
CO.s�1�Q�/D˛

in�i

.2`�˛/s
U
.n;k/
i CO

�
"
.n;k/
iC1

s
Cs�1�Q�

�
:

Therefore, as i < in, by iterations (i.e., by choosing first ".n;k/0 , then ".n;k/1 , and so on until choosing
"
.n;k/

`C1
) we can choose all the smallness constants and s0 large enough so that

i˛

2`�˛

.�1/j

s1CQ�
CO

�
s�1�2 Q�C

"
.0;1/

`C1

s1CQ�

�
> 0 .resp. < 0/ if j D 0 .resp. j D 1/;

˛
in� i

.2`�˛/s
.�1/j "

.n;k/
i CO

�
"
.n;k/
iC1

s
C s�LC`

�
> 0 .resp. < 0/ if j D 0 .resp. j D 1/:

Consequently, any solution that is trapped until s such that at time s,�
.s/ Q�

s
Q�
0

V2.s/; : : : ;
.s/ Q�

.s0/ Q�
V`.s/; .U

.n;k/
i .s//.n;k;i/2I; 1�n; i<in

�
2 @B

leaves the trapped regime after s.

Step 2: end of the proof of the lemma. Step 1 directly implies that D.f / contains @B, and that f is the
identity on @B. If a solution u leaves at time s�, it also implies that it never hit the boundary before s�.
Consequently, as the trapped regime is characterized by nonstrict inequalities, and because everything in
the dynamics of (1-1) is continuous with respect to variation on these unstable parameters, we get that
D.f / is open, and that the exit time s� and f are continuous on D.f /. �

We can now end the proof of Proposition 4.6.

Proof of Proposition 4.6. We argue by contradiction. If for any choice of initial perturbation along
the unstable directions of perturbation, the solution leaves the trapped regime, then it means that the
domain of the exit application f defined by (5-96) is D.f /D B. But then from Lemma 5.10, f would
be a continuous application from B towards its boundary, being the identity on the boundary, which is
impossible thanks to Brouwer’s theorem, and the contradiction is obtained. �

Appendix A: Properties of the zeros of H

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. The proof relies solely on ODE techniques (in the same spirit as [Gui et al. 1992;
Li 1992]) and is as follows. First, we describe the asymptotics of the equation H .n/f D 0 at the origin
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and at infinity in Lemma A.1. Then we construct the special zeroes T .n/0 and �.n/ in these asymptotic
regimes using a perturbative argument and obtain their asymptotic behavior in Lemma A.2. Finally we
show that they are not equal via global invariance properties of the ODE in the phase space .f; @rf / in
Lemma A.3, yielding that they form indeed a basis of the set of solutions.

Let f W .0;C1/ be smooth such that H .n/f D 0. First we make the change of variables f .r/Dw.t/
with t D ln.r/ 2 .�1;C1/. Then w solves

w00C .d � 2/w0� Œe2tV.et /Cn.d Cn� 2/�w D 0; (A-1)

where V is defined by (1-31) and satisfies e2tV.et / D O.e2t / ! 0 as t ! �1, and e2tV.et / D
�pc

p�1
1 CO.e�t˛/ as t !C1, by (2-2). Hence (A-1) is similar to the following ODEs as t !˙1:

w00C .d � 2/w0C .pcp�11 �n.d Cn� 2//w D 0; (A-2)

w00C .d � 2/w0�n.d Cn� 2/w D 0: (A-3)

The first step in the proof of Lemma 2.3 is to describe their solutions.

Lemma A.1. Span.e�nt ; e�
0
nt / (resp. Span.ent; e.�n�dC2/t /) is the set of solutions of (A-2) (resp.

(A-3)), where n is defined in (1-18) and

 0n WD
d � 2C

p
4n

2
; (A-4)

where4n > 0 is defined in (1-18). These numbers satisfy

0 D ; 1 D
2

p� 1
C 1 and 8n� 2; n <

2

p� 1
;  0n >

.d � 2/

2
; (A-5)

where  is defined in (1-9).

Proof. From the standard theory of second-order differential equations with constant coefficients, the set
of solutions of (A-2) (resp. (A-3)) is Span.e�nt ; e�

0
nt / (resp. Span.ent ; e.�n�dC2/t /), where n and

 0n are defined by (1-18) and (A-4). For any n 2 N, one computes from its definition in (1-18) that the
number 4n used in the definitions (1-18) and (A-4) of n and  0n is strictly positive: 4n > 0. Indeed,
4n �40 by (1-18), and 40 > 0 if and only if p > pJL, where pJL is defined in (1-6), and the present
paper is concerned with the case p > pJL.

From the formula (1-18), one computes that 0 D  and 1 D 2
p�1
C 1, where  is defined in (1-9).

For all n 2 N, from the definition (A-4) of  0n and since 4n > 0, one gets that  0n >
d�2
2

. Eventually we
compute from (1-18) that

41 D

�
d � 4�

4

p� 1

�2
; 42 D

�
d � 4�

4

p� 1

�2
C 4d C 4;

which implies in particular that

42�41� 4
p
41� 4D 4d C 4� 4

�
d � 4�

4

p� 1

�
� 4D 16C

16

p� 1
> 0;
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giving
p
42 >

p
41C 2. This, by (1-18), implies

2 D
d � 2�

p
42

2
<
d � 2�

p
41� 2

2
D 1� 1D

2

p� 1
C 1� 1D

2

p� 1
:

This implies n< 2
p�1

for all n� 2 because the sequence .n/n2N is decreasing by its definition (1-18). �

Lemma A.2. There exist w.n/1 , w.n/2 , w.n/3 and w.n/4 solving (A-1) such that

w
.n/
1 D

t!�1

qX
iD0

cie
.nC2i/t

CO.e.nC2qC2/t /; w
.n/
2 �

t!�1
Qc1e

.�n�dC2/t ; (A-6)

w
.n/
3 D

t!C1
Qc2e
�nt CO.e.�n�g/t / and w

.n/
4 �

t!C1
Qc3e
� 0nt DO.e.�n�g/t /; (A-7)

with constants c1; Qc1; Qc2; Qc3 ¤ 0. Moreover the asymptotics hold for the derivatives.

Proof. Step 1: existence of w.n/1 . For nD 0, we take the explicit solution w.0/1 DƒQ.e
t /, which satisfies

(A-6) by (2-1). Now let n� 1. Using the Duhamel formula for solutions of (A-1), the fundamental set
of solutions for the constant coefficient ODE (A-3) begin provided by Lemma A.1, a solution of (A-1)
satisfying the condition on the left in (A-6) with c0 D 1 can be written as

w
.n/
1 .t/D ent C

1

2nC d � 2

Z t

�1

.en.t�t
0/
� e.�n�dC2/.t�t

0//w
.n/
1 .t 0/e2t

0

V.et
0

/ dt 0: (A-8)

We now use a standard contraction argument. For t0 2 R we endow the space

X WD

�
u 2 C..�1; t0�;R/ W

X
t�t0

ju.t/je�t <C1

�
with the norm

kukX WD sup
t�t0

ju.t/je�.nC1/t: (A-9)

For u 2X we define the function ˆu W .�1; t0�! R by

.ˆu/.t/ WD
1

2nC d � 2

Z t

�1

.en.t�t
0/
� e.�n�dC2/.t�t

0//Œent
0

Cu.t 0/�e2t
0

V.et
0

/ dt 0: (A-10)

ˆ maps X into itself. Indeed as the potential V is bounded from (2-2), a brute force bound on the above
equation yields that

j.ˆu/.t/j � CkV kL1.e
t
CkukXe

2t /e.nC1/t;

and therefore kˆukX � CkV kL1.et0 CkukXe2t0/. The same brute force bound for the difference of
two images under ˆ of two elements givesˇ̌

.ˆu/.t/� .ˆv/.t/
ˇ̌
� CkV kL1e

2t
ku� vkXe

.nC1/t:

Hence kˆu�ˆvkX �CkV kL1e2t0ku�vkX and ˆ is a contraction for t0� 0 small enough. Therefore,
ˆ admits a fixed point in X , denoted by u1. From the Duhamel formula (A-8) and the definition (A-10)
of ˆ, we know w

.n/
1 WD e

nt Cu1.t/ is then a solution of (A-1) on .�1; t0�, which, from the definition
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(A-9) of X , satisfies

w
.n/
1 D e

nt
CO.e.nC1/t / as t !�1: (A-11)

We extend it to a solution of (A-1) on R ((A-1) being linear with smooth coefficients), still naming it w.n/0 .
Step 2: asymptotics of w.n/1 . At present, we will refine the asymptotics (A-11). We reason by induction.
We claim that if for k 2 N and .ci /0�i�k 2 RkC1 one has

w
.n/
1 D

kX
iD0

cie
.nC2i/t

CO.e.nC2kC2/t / as t !�1 (A-12)

then there exists ckC1 2 R such that

w
.n/
1 D

kC1X
iD0

cie
.nC2i/t

CO.e.nC2kC4/t / as t !�1: (A-13)

We now prove this fact. Fix k � 1 and assume that w.n/1 satisfies (A-12). As V is a smooth radial profile,
one has that @2qC1r V.0/D 0 for any q 2 N, implying that there exists .di /i2N 2 RN such that

V.et /D

kX
iD0

die
2it
CO.e.2kC2/t / as t !�1: (A-14)

We insert this and (A-12) into (A-8) and integrate to find

w
.n/
1 D e

nt
C

1

2nCd�2

Z t

�1

�
en.t�t

0/
�e.2�n�d/.t�t

0/
�� kX
iD0

iX
jD0

cjdi�j e
.nC2iC2/t 0

CO.e.nC2kC4/t
0

/

�
dt 0

D entC

kX
iD0

e.nC2iC2/t

2nCd�2

�
1

2iC2
�

1

2nCdC2i

� iX
jD0

cjdi�jCO.e
.2C2kC4/t /:

This asymptotic has to be coherent with the assumption (A-12); hence for all 0� i � k� 1 one has�
1

2i C 2
�

1

2nC d C 2i

� iX
jD0

cjdi�j

2nC d � 2
D ciC1:

The above identity is then the formula (A-13) one has to prove.
Thus, one has proven that the asymptotic on the left of (A-6) holds for w.n/1 . It remains to show that it

also holds for the derivatives. Differentiating (A-8) gives

.w
.n/
1 /0.t/D nent C

1

2nC d � 2

Z t

�1

�
nen.t�t

0/
C .nC d � 2/e.2�n�d/.t�t

0/
�
w
.n/
1 e2t

0

V:

We use the same reasoning we did for w.n/1 : we insert the asymptotic (A-12) at any order for w.n/1 we
just showed and (A-14) into the above formula, integrate in time and match the coefficients we find with
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(A-12), yielding that

.w
.n/
1 /0.t/D

kX
iD0

.nC 2i/cie
.nC2i/t

CO.e.nC2kC2/t /

for any k 2 N. Therefore, one has proven that the asymptotic on the left of (A-6) holds for w.n/1 and
.w
.n/
1 /0. As w.n/1 solves (A-1), its second derivative is given by

.w
.n/
1 /00 D�.d � 2/.w

.n/
1 /0C Œe2tV.et /Cn.d Cn� 2/�w

.n/
1 ;

and therefore by (A-14) the expansion also holds for .w.n/1 /00. Differentiating the above equation, using
again (A-14) and the expansions for w.n/1 , .w.n/1 /0 and .w.n/1 /00, one obtains the expansion for .w.n/1 /000.
By iterating this procedure we obtain the expansion on the left of (A-6) for all derivatives of w.n/1 .

Step 3: existence and asymptotics of w.n/2 . Let t0 2 R. We use the Duhamel formula for (A-1), the
solutions of the underlying constant coefficient ODE (A-3) being provided by Lemma A.1. For t � t0,
the solution of (A-1) starting from w

.n/
2 .t0/D e

.2�d�n/t0 , .w.n/2 /0.t0/D .2� d � n/e
.2�d�n/t0 can be

written as

w
.n/
2 D e

.2�d�n/t
�

1

2nC d � 2

Z t0

t

.en.t�t
0/
� e.2�n�d/.t�t

0//V .et
0

/e2t
0

w
.n/
2 .t 0/ dt 0: (A-15)

We claim that for t0� 0 small enough, we have

jw
.n/
2 � e

.2�d�n/t
j �

e.2�d�n/

2
(A-16)

for all t � t0. To show that, let T be the set of times t � t0 such that this inequality holds. T is closed via
a continuity argument, and is nonempty as it contains t0. For t 2 T we compute by brute force on the
above identity:

jw
.n/
2 � e

.2�d�n/t
j � CkV kL1e

.2�n�d/te2t0:

Hence, for t0� 0 small enough, jw.n/2 � e
.2�d�n/t j � e.2�n�d/t=3, implying that T is open. Therefore,

T D .�1; t0� by a connectedness argument and w.n/2 satisfies (A-16) for all t � t0. We insert (A-16)
into (A-15) to refine the asymptotics (the constant in the O. � / depends on kV kL1):

w
.n/
2 D e

.2�d�n/t
C

Z t0

t

.en.t�t
0/
� e.2�d�n/.t�t

0//O.e.4�n�d/.t�t
0// dt 0

D e.2�d�n/t C ent
Z t0

t

O.e.4�2n�d/t
0

/ dt 0C e.2�n�d/t
Z t0

t

O.e2t
0

/ dt 0

D e.2�d�n/t CO.e.4�n�d/t /C e.2�n�d/t
�Z t0

�1

O.e2t
0

/ dt 0�

Z t

�1

O.e2t
0

/ dt 0
�

D e.2�d�n/t
�
1C

Z t0

�1

O.e2t
0

/ dt 0
�
CO.e.4�n�d/t /

D Qc1e
.2�d�n/t

CO.e.4�n�d/t /

with Qc1 ¤ 0 if t0� 0 is chosen small enough. We just showed the asymptotic on the right of (A-6).
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Step 4: existence and asymptotics of w.n/3 and w.n/4 . Using exactly the same techniques we used at �1
to construct w.n/1 and w.n/2 as perturbations of the solutions described by Lemma A.1 of the asymptotic
constant coefficients ODE (A-3), we can construct two solutions of (A-1), w.n/3 and w.n/4 , satisfying

w
.n/
3 � Qc2e

�nt ; w
.n/
4 � Qc3e

� 0nt as t !C1 (A-17)

with Qc2; Qc3 ¤ 0, as perturbations of the solutions e�nt and e�
0
nt of the asymptotic ODE (A-2) at C1.

We leave safely the proof of this fact to the reader. We now show why the second term in the asymptotic
of w.n/3 is O.e.�n�g/t /, where g is defined in (1-21). Using Duhamel’s formula for (A-1), with the set of
fundamental solutions of the asymptotic equation (A-2) described in Lemma A.1, w.n/3 can be written as

w
.n/
3 D a1e

�ntCb1e
� 0nt�

1

�nC 0n

Z t

0

.e�n.t�t
0/
�e�

0
n.t�t

0//e2t
0

.V .et
0

/Cpcp�11 e�2t
0

/w
.n/
3 .t 0/dt 0

for a1 and b1 two coefficients. We use the bounds V.et
0

/C pc
p�1
1 e�2t

0

D O.e�˛t
0

/ from (2-2) and
(A-17) to find

w
.n/
3 .t/D a1e

�nt C b1e
� 0nt �

1

�nC  0n

Z t

0

.e�n.t�t
0/
� e�

0
n.t�t

0//O.e.�n�˛/t
0

/:

After few computations, we obtain two new coefficients Qa1 and Qa2 such that

w
.n/
3 .t/D Qa1e

�nt C Qb1e
� 0nt CO.e.�n�˛/t /:

As � 0n < �n by (1-18), the asymptotic (A-17) implies Qa1 D Qc2 ¤ 0. From the definition (1-21) of g,
this parameter is tailor-made to produce �0�g > � 00 (by (1-9) and (1-18)). By (1-18), one then has
�n�gC 

0
n � �0�gC 

0
0 > 0. As g satisfies also g < ˛, the above identity then yields

w
.n/
3 .t/D Qc2e

�nt CO.e.�n�g/t /:

Using exactly the same methods we use to propagate the asymptotic of w.n/1 to its derivatives in Step 2,
the above identity propagates to the derivatives of w.n/3 . �

Lemma A.3. The solutions w.n/1 and w.n/4 given by Lemma A.2 are not collinear. Moreover, w.n/1 has
constant sign.

Proof. We formulate (ODEn) as a planar dynamical system:

d

dt

�
w1

w2

�
D

�
0 1

n.dCn�2/Ce2tV.et / �.d�2/

��
w1

w2

�
;

with w1 D w and w2 D w0. By their asymptotics from Lemma A.1, 
w
.n/
1 .t/

.w
.n/
1 /0.t/

!
D c1e

nt

�
1

n

�
CO.e.nC2/t / as t !�1;

 
w
.n/
4 .t/

.w
.n/
4 /0.t/

!
� Qc3e

� 0nt

�
1

� 0n

�
as t !�1;



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 227

and we may take c1; Qc3 > 0 without loss of generality. Thus, close to �1, we know .w
.n/
1 .t/; .w

.n/
1 /0.t//

is in the top right corner of the plane. It cannot cross the ray f0g� .0;C1/ because there the vector field�
w2

�.d�2/w2

�
points toward the right. Neither can it go below the ray

�
x;�d�2

2
x
�
x�0

. To see that, we
compute the scalar product between the vector field and a vector that is orthogonal to this ray and that
points toward north at any time t 2 R:��

0 1

n.dCn�2/Ce2tV.et / �.d�2/

��
1

�
d�2
2

��
�

�
d�2
2

1

�
D
.d � 2/2

4
C e2tV.et /Cn.d Cn� 2/ > 0

because e2tV.et / > .d�2/2

4
, where the potential �V is below the Hardy potential (see (2-5)). Hence

.w
.n/
1 .t/; .w

.n/
1 /0.t// stays in the top right zone whose border is

f0g � .0;C1/[
�
x;�

d � 2

2
x
�
x�0

:

In particular, w.n/1 > 0 for all times, which proves the positivity of w.n/1 . Since the trajectory .w.n/4 .t/;

.w
.n/
4 /0.t// is asymptotically collinear to the vector

�
1
� 0n

�
, which does not belong to this zone (from

Lemma A.1) nor its opposite, one obtains that w.n/1 and w.n/4 are not collinear. �

We now end the proof of Lemma 2.3. The fundamental set of solutions of (A-1) is provided by
Lemma A.2. Asw.n/1 is not collinear tow.n/4 , there exists a1¤ 0 and a2 such thatw.n/1 Da1w

.n/
3 Ca2w

.n/
4 .

From the asymptotics (A-7) and the positivity of w.n/1 shown in Lemma A.3, one then has

w
.n/
1 D be

�nt CO.e.�n�g/t / as t !C1; b > 0:

We call T n0 the profile associated to w.n/1 in the original space variable r : T n0 .r/D w
.n/
1 .ln.r//, which

solves H .n/T
.n/
0 D 0. The above identity means T n0 D a1r

�n CO.r.�n�g/ as r !C1, and (A-6)
implies T n0 .r/D

Pq
iD0 b

n
i r
nC2l CO.rnC2C2q/ as r ! 0, for some coefficients .bi /i2N 2 RN, for any

q 2 N. These asymptotics propagate to the derivatives. This is the identity (2-7) we had to prove.
Let us denote by w another solution of (A-1) that is not collinear to w.n/1 and w.n/4 . Now (A-6)

and (A-7) imply that w � ce.2�n�d/t as t !�1 and w D de�nt CO.e.�n�g/t / as t !C1 with
c; d ¤ 0. These asymptotics propagate to higher derivatives. The solution of H .n/�.n/ D 0 given by
�.n/.r/D w.ln.r// then satisfies the desired asymptotics (2-7). Eventually, the Laplacian on spherical
harmonics of degree n is (for f radial)

�.f Yn;k/D

��
@rr C

d � 1

r
@r �

n.d Cn� 2/

r2

�
f

�
Yn;k;

meaning, by the asymptotics (2-7), that for any j 2N, we know �j .T n0 .jxj/Yn;k.x=jxj// is a continuous
function near the origin. Therefore, T n0 Yn;k is smooth close to the origin by elliptic regularity. It is
also smooth outside as a product of smooth functions, and thus smooth everywhere, ending the proof of
Lemma 2.3. �
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Appendix B: Hardy- and Rellich-type inequalities

We recall in this section the Hardy and Rellich estimates, to make this paper self-contained. They are
used throughout the paper, and especially to derive a fundamental coercivity property of the adapted high
Sobolev norm in Appendix C. We now state a useful and very general Hardy inequality with possibly
fractional weights and derivatives. A proof can be found in [Merle et al. 2015, Lemma B.2].

Lemma B.1 (Hardy-type inequalities). Let ı > 0, q � 0 satisfy
ˇ̌
q�

�
d
2
� 1

�ˇ̌
� ı and u W Œ1;C1/! R

be smooth and satisfy Z C1
1

j@yuj
2

y2q
yd�1 dyC

Z C1
1

u2

y2qC2
yd�1 dy <C1:

(i) If q > d
2
� 1C ı, then

C.d; ı/

Z
y�1

u2

y2qC2
yd�1 dy �C 0.d; ı/u2.1/�

Z
y�1

j@yuj
2

y2q
yd�1 dy: (B-1)

(ii) If q < d
2
� 1� ı, then

C.d; ı/

Z
y�1

u2

y2qC2
yd�1 dy �

Z
y�1

j@yuj
2

y2q
yd�1 dy: (B-2)

Proof. Let R > 1. The fundamental theorem of calculus gives

u2.R/

R2qC2�d
�u2.1/D 2

Z R

1

u@yu

y2qC2�d
dy � .2qC 2� d/

Z R

1

u2

y2qC2�d
dy:

The integrability of u2=y2qC3�d over Œ1;C1/ implies that u2.Rn/=R
2qC2�d
n ! 0 along a sequence of

radii Rn!C1. Passing to the limit through this sequence we get

.2qC 2� d/

Z C1
1

u2

y2qC2�d
dy �u2.1/D 2

Z C1
1

u@yu

y2qC2�d
dy:

We apply the Cauchy–Schwarz and Young inequalities to findˇ̌̌̌
2

Z C1
1

u@yu

y2qC2�d
dy

ˇ̌̌̌
� 2

�Z C1
1

u2

y2qC3�d
dy

�1
2
�Z C1

1

j@yuj
2

y2qC1�d
dy

�1
2

� "

Z C1
1

u2

y2qC3�d
dyC

1

"

Z C1
1

j@yuj
2

y2qC3�d
dy

for any " > 0. If q > d
2
� 1C ı, then the two above identities giveZ C1

1

u2

y2qC2�d
dy �

u2.1/

2ı
C
"

2ı

Z C1
1

u2

y2qC3�d
dyC

1

2ı"

Z C1
1

j@yuj
2

y2qC3�d
dy:
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Taking "D ı, one gets Z C1
1

u2

y2qC2�d
dy �

u2.1/

ı
C
1

ı2

Z C1
1

j@yuj
2

y2qC3�d
dy;

which is precisely the identity (B-1) we had to prove. If q < d
2
� 1� ı then one obtainsZ C1

1

u2

y2qC2�d
dy � �

u2.1/

2
�
d
2
� 1� q

� C "

2ı

Z C1
1

u2

y2qC3�d
dyC

1

2ı"

Z C1
1

j@yuj
2

y2qC3�d
dy:

Taking "D ı, one gets Z C1
1

u2

y2qC2�d
dy �

1

ı2

Z C1
1

j@yuj
2

y2qC3�d
dy;

which is precisely the second identity (B-2) we had to prove. �

Lemma B.2 (Rellich-type inequalities). For any u 2H 2.Rd /,�
.d � 4/d

4

�2 Z
Rd

u2

jxj4
dx �

Z
Rd
j�uj2 dx;

d2

4

Z
Rd

jruj2

jxj2
dx �

Z
Rd
j�uj2 dx: (B-3)

If q � 0 and u W Rd ! R is a smooth function satisfyingZ
Rd

�
j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

u2

1Cjxj2qC4

�
dx <C1;

then

C.d; q/
X

1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�
dx�C 0.d; q/

Z
Rd

u2

1Cjxj2qC4
dx �

Z
Rd

j�uj2

1Cjxj2q
dx: (B-4)

Proof. The inequality (B-3) is standard and we omit its proof. To prove (B-4) we reason with smooth and
compactly supported functions, and then conclude by a density argument.

Step 1: control of the first derivatives. Using integration by parts we computeZ
Rd

u�u

1Cjxj2qC2
dx D�

Z
Rd

jruj2

1Cjxj2qC2
dxC

1

2

Z
Rd
u2�

�
1

1Cjxj2qC2

�
dx:

We then use the Cauchy–Schwarz and Young inequalities to obtain

C

Z
Rd

jruj2

1Cjxj2qC2
dx�C 0

Z
Rd
u2
�
�

�
1

1Cjxj2qC2

�
�

1

.1Cjxj2qC2/.1Cjxj/2

�
dx

�

Z
Rd

j�uj2

.1Cjxj2qC2/.1Cjxj/�2
dx:

Noticing that .1Cjxj2qC2/.1Cjxj/�1 � .1Cjxj2q/ and thatˇ̌̌̌
�

�
1

1Cjxj2qC2

�
�

1

.1Cjxj2qC2/.1Cjxj/2

ˇ̌̌̌
�

C

1Cjxj2qC4
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leads to the estimate

C.d; p/

Z
Rd

jruj2

1Cjxj2qC2
dx�C 0.d; q/

Z
Rd

u2

1Cjxj2qC4
dx �

Z
Rd

j�uj2

1Cjxj2q
dx: (B-5)

Step 2: control of the second order derivatives. Again using integrations by parts one findsZ
Rd

j�uj2

1Cjxj2q
D

Z
Rd

jr2uj2

1Cjxj2q
C

nX
iD1

@xiur@xiu:r

�
1

1Cjxj2q

�
��uru:r

�
1

1Cjxj2q

�
;

in which by using the Cauchy–Schwarz and Young inequalities, for any " > 0, we can control the last two
terms byˇ̌̌̌Z

Rd

nX
iD1

@xiur@xiu:r

�
1

1Cjxj2q

�
��uru:r

�
1

1Cjxj2q

�ˇ̌̌̌

� C"

Z
Rd

jr2uj2

1Cjxj2q
dxC

C

"

Z
Rd

jruj2

1Cjxj2qC2
dx:

Therefore for " small enough the two above identities yieldZ
Rd

jr2uj2

1Cjxj2q
dx � C

�Z
Rd

�
j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

u2

1Cjxj2qC4

�
dx

�
:

Combining this identity and (B-5), one obtains the desired identity (B-4). �

Lemma B.3 (weighted and fractional Hardy inequality). Let

0 < � < 1; k 2 N and 0 < � satisfying �C �C k < 1
2
d;

and let f be a smooth function satisfying the decay estimates

j@�f .x/j �
C.f /

1Cjxj�Ci
for � 2 Nd; j�j1 D i; i D 0; 1; : : : ; kC 1: (B-6)

Then for " 2 PH�CkC�, we have "f 2 PH �Ck with

kr
�Ck."f /kL2 � C.C.f /; �; k; �; d/kr

�CkC�"kL2 : (B-7)

If f is smooth and radial then (B-6) is equivalent to

j@irf .r/j �
C.f /

1C r�Ci
; i D 0; 1; : : : ; kC 1: (B-8)

Proof. Step 1: the case kD 0. A proof of the case kD 0 can be found in [Merle et al. 2015], for example.

Step 2: the case k � 1. Let f , ", �, � and k satisfy the conditions of the lemma, with k � 1. Using the
Leibniz rule for the entire part of the derivation,

kr
�Ck."f /k2

L2
� C

X
.�;Q�/2N2d

j�j1CjQ�j1Dk

kr
�.@�"@Q�f k2

L2
: (B-9)
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We can now apply the result obtained for kD 0 to the norms kr�.@�k"@Q�kf k2
L2

in (B-9). We have indeed
that @�" 2 PH�Ck2C�, and that @Q�f satisfies the appropriate decay condition by (B-6). It implies that for
all .�; Q�/ 2 N2d with j�j1CjQ�j1 D k,

kr
�.@�k"@Q�kf k2

L2
� Ckr�C�Ck"k2

L2

which implies the result: kr�Ck."f /k2
L2
� C.C.f /; �; d; k; ˛/kr�C�Ck"k2

L2
.

Step 3: equivalence between the decay properties. We want to show that (B-6) and (B-8) are equivalent
for radial smooth functions. Suppose that f is smooth, radial, and satisfies (B-6). Then one has

@iyf .y/D
@f

@ix1
.jyje1/;

where e1 stands for the unit vector .1; : : : ; 0/ of Rd. From this formula, we see that the condition (B-6) on
.@f=@ix1/.jyje1/ implies the radial condition (B-8). We now suppose that f is a smooth radial function
satisfying the radial condition (B-8). Then there exists a smooth radial function � such that

f .y/D �.y2/:

With a proof by induction that can be left to the reader, one has that the decay property (B-8) for f
implies the following decay property for �:

j@iy�.y/j �
C.f /

1Cy
�
2
Ci
; i D 0; 1; : : : ; kC 1:

Now the standard derivatives of f are easier to compute with �. We claim that for all � 2Nd there exists
a finite number of polynomials Pi .x/ WD Cix

i1
1 � � � x

id
d

, for 1� i � l.�/, such that

@�f .x/D

l.�/X
iD1

Pi .x/@
q.i/

jxj
�.jxj2/;

with 2q.i/�
Pd
jD1 ij D j�j1 for all i . The proof by induction of this fact can also be left to the reader.

The decay property for � then impliesˇ̌
Pi .x/@

q.i/

jxj
�.jxj2/

ˇ̌
�

C

1Cy˛C2q.i/�
Pd
jD1 ij

D
C

1Cy˛Cj�j1
;

which in turn implies the property (B-6). �

Appendix C: Coercivity of the adapted norms

Here we prove coercivity estimates for the operator H under suitable orthogonality conditions, following
the techniques of [Raphaël and Rodnianski 2012]. We recall that the profiles used as orthogonality
directions, ˆ.n;k/M , are defined by (4-1). To perform an analysis on each spherical harmonic and to be
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able to track the constants, we will not study directly A.n/ and A.n/�, but the asymptotically equivalent
operators

zA.n/ W u 7! �@yuC eW .n/u; A.n/� W u 7!
1

yd�1
@y.y

d�1u/C eW .n/u; (C-1)

where eW .n/
D�

n

y
: (C-2)

By the definition (1-18) of n, they factorize the operator

zH .n/
WD �@yy �

d � 1

y
@y �

pc
p�1
1

y2
C
n.d Cn� 2/

y2
D zA.n/� zA.n/: (C-3)

The strategy is the following. First we derive subcoercivity estimates for zA.n/�, zA.n/ and H .n/. A
summation yields subcoercivity for �� � pcp�11 =jxj2, and hence for H as they are asymptotically
equivalent. Roughly, this subcoercivity implies that minimizing sequences of the functional I.u/ DR
uH su are “almost compact” on the unit ball of PH s\.Span.ˆ.n;k/M //?. In particular if the infimum of I

on this set was 0, it would be attained, which is impossible from the orthogonality conditions, yielding
the coercivity

R
uH su& kuk2

PH s
via homogeneity.

Lemma C.1. Let n be an integer, q � 0 and u W Œ1;C1/! R be smooth satisfyingZ C1
1

j@yuj
2

y2q
yd�1 dyC

Z C1
1

u2

y2qC2
yd�1 dy <C1: (C-4)

(i) There exist two constants c; c0 > 0 independent of n and q such that

c

Z C1
1

u2

y2qC2
yd�1 dy � c0u2.1/�

Z C1
1

j zA.n/�uj2

y2q
yd�1 dy: (C-5)

(ii) Let ı >0 and suppose
ˇ̌
q�

�
d
2
�1�n

�ˇ̌
>ı. Then there exist two constants c.ı/; c0.ı/>0 depending

only on ı such that

c.ı/

Z C1
1

u2

y2qC2
yd�1 dy � c0.ı/u2.1/�

Z C1
1

j zA.n/uj2

y2q
yd�1 dy: (C-6)

Proof. Coercivity for zA.n/�. We first computeZ C1
1

j zA.n/�uj2

y2q
yd�1 dy D

Z C1
1

j@yuCy
�1.d � 1� n/uj

2

y2q
yd�1 dy:

We make the change of variable uD vynC1�d. By (C-4), v2=y2q�2nCdC1 and j@yvj2=y2q�2nCd�1

are integrable on Œ1;C1/. As qC d
2
� n �

d
2
�  > 1 by (1-9) and (1-18), we can apply (B-2) to the
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above identity and obtain (C-5) viaZ C1
1

j zA.n/�uj2

y2q
yd�1 dy D

Z C1
1

j@yvj
2

y2q�2nC2d�2
yd�1 dy

� C

Z C1
1

v2

y2q�2nC2d�2
yd�1 dy �C 0v2.1/

D C

Z C1
1

u2

y2qC2
yd�1 dy �C 0u2.1/:

Coercivity for zA.n/. This time the integral we have to estimate isZ C1
1

j zA.n/uj2

y2q
yd�1 dy D

Z C1
1

j@yuCy
�1nuj

y2p
yd�1 dy:

We make the change of variable uD vy�n. By (C-4), v2=y2pC2n�dC1 and j@yvj2=y2pC2nC3�d are
integrable on Œ1;C1/. As

ˇ̌
q �

�
d
2
� 1� n

�ˇ̌
> ı, one can apply (B-1) or (B-2) to the above identity:

there exists c D c.ı/ and c0 D c0.ı/ such thatZ C1
1

j zA.n/uj2

y2q
yd�1 dy D

Z C1
1

j@yvj
2

y2qC2n
yd�1

� c

Z C1
1

v2

y2qC2nC2
yd�1 dy � c0v2.1/

D c

Z C1
1

u2

y2qC2
yd�1 dy � c0u2.1/;

which is precisely the identity (C-6). �

Lemma C.2 (coercivity of H under suitable orthogonality conditions). Let ı > 0 and q � 0 such that22ˇ̌
q�
�
d
2
�2�n

�ˇ̌
�ı for all n2N. Let n02N[f�1g be the lowest number such that q�

�
d
2
�2�n0C1

�
<0.

Then there exists a constant c.ı/ > 0 such that for all u 2H 2
loc.R

d / satisfying the integrability conditionZ
Rd

j�uj2

1Cjxj2q
C

jruj2

1Cjxj2qC2
C

Z
u2

1Cjxj2qC4
<C1

and the orthogonality conditions23 (ˆ.n;k/M being defined in (4-1))

hu;ˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; (C-7)

one has the inequality

c.ı/

�Z
Rd

j�uj2

1Cjxj2q
C

jruj2

jxj2.1Cjxj2q/
C

u2

jxj4.1Cjxj2q/

�
�

Z
Rd

jHuj2

1Cjxj2q
: (C-8)

22We recall that n!�1; hence for ı small enough many q satisfy this condition.
23With the convention that there are no orthogonality conditions required if n0 D�1.
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Proof. In what follows, C.ı/ and C 0.ı/ denote strictly positive constants that may vary but only depend
on ı, d and p.

Step 1: We claim the following subcoercivity estimate for zH WD ���pcp�11 =jxj2:Z
RdnBd .1/

j zHuj2

jxj2q
dx � C.ı/

Z
RdnBd .1/

u2

jxj2qC4
dx�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2

�
; (C-9)

where fjSd�1.1/ denotes the restriction of f to the sphere. We now prove this inequality. We start with
the decomposition

u.x/D
X

n; 1�k�k.n/

u.n;k/.jxj/Y .n;k/
�
x

jxj

�
:

We recall the link between u and its decomposition ( zH .n/ being defined by (C-3)):Z
RdnBd .1/

j zHuj2

jxj2q
dx D

X
n; 1�k�k.n/

Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy; (C-10)

Z
RdnBd .1/

u2

jxj2qC4
dx D

X
n; 1�k�k.n/

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy: (C-11)

As zH .n/ D zA.n/� zA.n/ and
ˇ̌
q�

�
d
2
� 2� n

�ˇ̌
> ı for all n 2 N, we apply (C-5) and (C-6) to obtain for

each n 2 N,Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy

� C.ı/

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy �C 0.ı/

�
.u.n;k//2.1/C zA.n/.u.n;k//2.1/

�
: (C-12)

We now sum this identity over n and k. The second term on the right-hand side is

X
n;1�k�k.n/

.u.n;k//2.1/D

Z
Sd�1

� X
n; 1�k�k.n/

u.n;k/.1/Y .n;k/.x/

�2
dx D

Z
Sd�1

u2.x/ dx

because .Y .n;k//n;1�k�n is an orthonormal basis of L2.Sd�1/. From (C-1), and as n��n as n!C1
by (1-18), the last term on the right-hand side of (C-12) isX

n; 1�k�n

j zA.n/u.n;k/j2.1/� C
X

n; 1�k�k.n/

.1Cn2/ju.n;k/j2.1/Cj@yu
.n;k/
j
2

� C
�
kujSd�1.1/k

2
H1 CkrujSd�1.1/ � Enk

2
L2

�
� C

�
kujSd�1k

2
L2
CkrujSd�1.1/k

2
L2

�
:
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We insert the two above equations into (C-12) and obtain

X
n; 1�k�n

Z C1
1

j zH .n/u.n;k/j2

y2q
yd�1 dy

� C.ı/
X

n; 1�k�n

Z C1
1

ju.n;k/j2

y2qC4
yd�1 dy �C 0.ı/

�
kujSd�1k

2
L2
CkrujSd�1.1/k

2
L2

�
:

In turn, we insert this identity into (C-10) using (C-11) to obtain the desired estimate (C-9).

Step 2: subcoercivity for H . We will prove the estimateZ
Rd

jHuj2

1Cjxj2q
dx

�C.ı/

�Z
Rd

j�uj2

1Cjxj2q
dxC

Z
Rd

jruj2

jxj2.1Cjxj2q/
dxC

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�
�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C˛
Ckuk2

H1.Bd�1.1//

�
: (C-13)

Away from the origin, the Cauchy–Schwarz and Young inequalities, the bound V C pcp�11 jxj�2 D

O.jxj�2�˛/ from (2-2) and (C-9) give (for C > 0)Z
RdnBd .1/

jHuj2

jxj2q
dx D

Z
RdnBd .1/

j zHuC .V Cpc
p�1
1 jxj�2/uj2

jxj2q
dx

� C

Z
RdnBd .1/

j zHuj2

jxj2q
dx�C 0

Z
RdnBd .1/

juj2

jxj2qC4C2˛
dx

� C.ı/

Z
RdnBd .1/

u2

1Cjxj2qC4

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
RdnBd .1/

juj2

1Cjxj2qC4C2˛

�
:

Close to the origin, using Rellich’s inequality (B-3),Z
Bd .1/

jHuj2 dx � C

Z
Bd .1/

j�uj2 dx�
1

C

Z
Bd .1/

juj2 dx

� C

Z
Bd .1/

juj2

jxj4
dx�

1

C
kukH1.Bd�1.1//:

Combining the two previous estimates we obtain the intermediate identityZ
Rd

jHuj2

1Cjxj2q
dx�C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2

C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkuk2

H1.Bd�1.1//

�
:
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Now, as H D��CV with V DO..1Cjxj/�2/, using Young’s inequality, the above identity and (B-4),
for " > 0 small enough (depending on ı) one hasZ

Rd

jHuj2

1Cjxj2p
dx

D .1� "/

Z
Rd

jHuj2

1Cjxj2p
dxjHuj2dxC "

Z
Rd

jHuj2

1Cjxj2p
dx

� .1� "/C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
C
"

2

Z
Rd

j�uj2

1Cjxj2q
dx� "

Z
Rd

jV uj2

1Cjxj2q
dx

� .1� "/C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
dx

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
CC.q/

"

2

X
1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�
dx� "C 0.q/

Z
Rd

u2

1Cjxj2qC4
dx

� C.ı/

Z
Rd

u2

jxj4.1Cjxj2q/
C
C.q/"

2

X
1�j�j�2

Z
Rd

j@�uj2

1Cjxj2qC4�2�

�C 0.ı/

�
kujSd�1.1/k

2
L2
Ck.ru/jSd�1.1/k

2
L2
C

Z
Rd

u2

1Cjxj2qC4C2˛
dxCkukH1.Bd�1.1//

�
;

which is the identity (C-13) we claimed.

Step 3: coercivity for H . We now argue by contradiction. Suppose that (C-8) does not hold. Up to a
renormalization, this means that there exists a sequence of functions .un/n2N such that, for all n,Z

Rd

jHunj
2

1Cjxj2q
! 0;

Z
Rd

j�unj
2

1Cjxj2q
C

jrunj
2

jxj2.1Cjxj2q/
C

junj
2

jxj4.1Cjxj2q/
D 1: (C-14)

Up to a subsequence, we can suppose that un ! u1 2 H
2
loc.R

d /, the local convergence in L2 being
strong for .un/n2N and .run/n2N, and weak for .r2un/n2N. Then (C-14) implies

kunk
2
H1.Bd�1.1//C

Z
Rd

junj
2

1Cjxj2qC4C˛
!ku1k

2
H1.Bd�1.1//C

Z
Rd

ju1j
2

1Cjxj2qC4C˛
:

Now un converges strongly to u1 in H s.Bd .0; 1// for any 0 � s < 2. The trace theorem for Sobolev
spaces ensures that

k.un/jSd�1.1/k
2
L2
Ck.run/jSd�1.1/k

2
L2
!k.u1/jSd�1.1/k

2
L2
Ck.ru1/jSd�1.1/k

2
L2
:
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We insert the three previous identities into the subcoercivity estimate (C-13) yielding

k.u1/jSd�1.1/k
2
L2
Ck.ru1/jSd�1.1/k

2
L2
C

Z
Rd

ju1j
2

1Cjxj2qC4C˛
Cku1k

2
H1.Bd .1// ¤ 0;

which means that u1 ¤ 0. On the other hand, the lower semicontinuity of norms for the weak topology
and (C-14) imply

Hu1 D 0:

Hence u1 is a nontrivial function in the kernel of H, and is smooth from elliptic regularity. It satisfies
the integrability condition (still from lower semicontinuity)Z

Rd

j�u1j
2

1Cjxj2q
dxC

jru1j
2

1Cjxj2qC2
dxC

Z
ju1j

2

1Cjxj2qC4
dx <C1:

We now decompose u1 into spherical harmonics, u1D
P
n; 1�k�k.n/ u

.n;k/
1 Y.n;k/, and will show that for

each n; k one must have u.n;k/1 D 0, which will give a contradiction. For each n; k, the nullity Hu1 D 0
implies H .n/u

.n;k/
1 , where H .n/ is defined in (1-36). By Lemma 2.3 this means u1 D aT

.n/
0 C b�.n/

for a and b two real numbers. The previous equation implies the following integrability for u.n;k/1 :Z
ju
.n;k/
1 j2

1Cy2qC4
yd�1 dy <C1:

By (2-7), as �.n/ � y�d�nC2 does not satisfy this integrability at the origin whereas T .n/0 is regular, one
must have b D 0. Then, if n� n0C 1,

jT
.n/
0 j

2

1Cy2qC4
yd�1 � y�2n�2q�5Cd:

From the assumption on n0 and (1-18), one has

�2n� 2q� 5C d D�1� 2
�
qC 2C n0C1�

d
2

�
C 2.n0C1� n/ > �1;

implying that jT .n/0 j
2=.1Cy2qC4/yd�1 is not integrable on Œ0;C1/; hence aD 0. If n� n0 then the

orthogonality condition (C-7) goes to the limit as ˆ.n;k/M is compactly supported and implies

hu1; ˆ
.n;k/
M i D 0;

which, in spherical harmonics, can be rewritten as

0D hu.n;k/1 ; ˆ
.n;k/
M i D ahT

.n/
0 ; ˆ

.n;k/
M i:

However, from (4-3) this in turn implies aD 0. We have proven that for all n; k u.n;k/1 D 0; hence u1D 0,
which is the desired contradiction, as we proved earlier that u1 is nontrivial. The coercivity (C-8) must
then be true. �

If one adds analogous orthogonality conditions for the derivatives of u and uses a bit more the structure
of the Laplacian, one gets that the weighted norm kH i=.1Cjxjp/ukL2 controls all derivatives of lower
order with corresponding weights.
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Lemma C.3 (coercivity of the iterates of H ). Let i be an integer with 2i > � such that for all n 2 N

satisfying mnC ın � i one has ın ¤ 0. Let n0 be the lowest integer such that mn0C1C ın0C1 > i . Let
u 2 PH 2i \ PH� .Rd / satisfy (where ˆ.n;k/M is defined in (4-1))

hu;H jˆ
n;k
M i D 0 for 0� n� n0; 0� j � i �mn� 1; 1� k � k.n/: (C-15)

Then there exists a constant ı > 0 such that for all 0� ı0 � ı,

C.ı; i/
X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2�C2ı
0
dx �

Z
Rd

jH iuj2

1Cjxj2ı
0
dx; (C-16)

which in particular implies that

kuk PH2i � C.ı; i/

�Z
Rd
jH iuj2 dx

�1
2

: (C-17)

Proof. Step 1: equivalence of weighted norms. We claim that for all integers j ,

H juD .��/juC
X

j�j�2j�2

fj;�@
�u (C-18)

for some smooth functions f� having the decay j@�
0

fj;�j � C.1C jxj
2j�j�jCj�0j/�1. This identity is

true for j D 1 because HuD ��uC V u with the potential V being smooth and having the required
decay by (2-2). If the aforementioned identity holds true for j � 1 then

H jC1uD .��CV /

�
.��/juC

X
j�j�2j�2

fj;�@
�u

�
D .��/jC1uCV.��/juC

X
j�j�2j�2

.��CV /.fj;�@
�u/;

and hence it is true for j C 1 since V is smooth and satisfies the decay (2-2). By induction it is true for
all j 2 N and (C-18) is proven. Then (C-18) implies thatZ

Rd

jH iuj2

1Cjxj2ı
dx � C

X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx: (C-19)

Step 2: weighted integrability in PH 2i\ PH�. We claim that for all functions u2 PH 2i\ PH� .Rd / and ı0>0,X
j�j�2i

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx <C1: (C-20)

Indeed, let � be a j�j-tuple with j�j � 2i . We split into two cases. First if j�j � � , as � < d
2

and 2i > � ,
the Hardy inequality B.3 yieldsZ

Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx �

Z
Rd

j@�uj2

1Cjxj2.��j�j/
dx � Ckuk2

PH�
<C1
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and we are done. If � < �� 2i then by interpolation u 2 PH j�j.Rd / and thenZ
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0
dx �

Z
j@�uj2 dx <C1:

Thus (C-20) holds, which together with (C-19), implies, for all ı0 � 0,

iX
jD0

Z
Rd

jH juj2

1Cjxj4i�4jC2ı
0
dxC

jrH j�1uj2

1Cjxj4i�4jC2C2ı
0
dx <C1: (C-21)

Step 3: intermediate coercivity. Let ıDmin
�
ı0; : : : ; ın0C1;

1
2

�
if ın0C1¤ 0 and ıDmin

�
ı0; : : : ; ın0 ;

1
2

�
if ın0C1D 0. The conditions on the ın of the lemma imply ı > 0. We claim that for all integers 1� l � i ,

C.ı/

Z
Rd

jH l�1uj2

1Cjxj4i�4.l�1/C2ı
0
CC.ı/

Z
Rd

jrH l�1uj2

1Cjxj4i�4lC2C2ı
0
�

Z
Rd

jH luj2

1Cjxj4i�4lC2ı
0
: (C-22)

We now prove this estimate. We want to apply Lemma C.2 to the function H l�1u with weight q D
ı0C 2.i � l/. To use it, we have to check the orthogonality and integrability conditions that are required,
and the conditions on the weight.

Integrability condition. It is true because of (C-21).

Condition on the weight. For the case n� n0C 1, by (1-23) one computesˇ̌
ı0C2.i�l/�

�
d
2
�n�2

�ˇ̌
D
ˇ̌
ı0�2ın0C1�2.mn0C1�i/�2.l�1/�2.mnCın�mn0C1�ın0C1/

ˇ̌
: (C-23)

One has 2.l �1/� 0 as l � 1 and 2.mnC ın�mn0C1� ın0C1/� 0 because .mnC ın/n is an increasing
sequence from (1-22) and (1-18). For the subcase ın0C1 D 0, as mn0C1 > i and mn0C1 is an integer,
2.mn0C1� i/ > 2. Therefore �2.mn0C1� i/�2.l �1/�2.mnC ın�mn0C1� ın0C1/D�a for a� 2,
and inserting it into the above identity as 0 < ı0 < 1 givesˇ̌

ı0C 2.i � l/�
�
d
2
� n� 2

�ˇ̌
D jı0� aj � ı0 � ı:

For the subcase ın0C1 ¤ 0, we have ı0� 2ın0C1 � ı� 2ın0C1 � �ın0C1 � �ı. Moreover, mn0C1 � i
and �2.mn0C1� i/� 2.l � 1/� 2.mnC ın�mn0C1� ın0C1/� 0, implying

ı0� 2ın0C1� 2.mn0C1� i/� 2.l � 1/� 2.mnC ın�mn0C1� ın0C1/� ı
0
� 2ın0C1 � �ı;

and therefore by (C-23) this yields in that caseˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı:

In both subcases one has
ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı. For the case n� n0,ˇ̌

ı0C 2.i � l/�
�
d
2
� n� 2

�ˇ̌
D
ˇ̌
ı0� 2ınC 2.i � l C 1�mn/

ˇ̌
:

In the above identity, 2.i � lC 1�mn/ is an even integer, and ı0� 2ın is a number satisfying ı0� 2ın �
ı�2ın��ı and we recall that ı<1, and ı0�2ın��2ın��1. Therefore jı0�2ınC2.i�lC1�mn/j� ı,
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yielding ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı:

Therefore, for each n 2 N, we have
ˇ̌
ı0C 2.i � l/�

�
d
2
� n� 2

�ˇ̌
� ı.

Orthogonality conditions. Let n00 D n
0
0.l/ 2 N[f�1g be the lowest number such that

2.i � l C 1/C ı0� 2.mn00C1
C ın00C1

/ < 0:

By construction one has n00 � n0. If n00 D�1 then we are done because no orthogonality condition is
required. If n00 ¤�1, let n be an integer, 0� n� n00. By the definition of n00,

2.i � l C 1/C ı0� 2.mnC ın/ > 0;

which implies 0 � l � 1 � i �mn � 1 as ı0 � 2ın � ı � 2ın � �ın � 0. The orthogonality condition
(C-15) then gives, for any 1� k � k.n/,

hu;H l�1ˆ
.n;k/
M i D 0:

We have then proved that for all 0� n� n00, 1� k � k.n/,

hH l�1u;ˆ
.n;/k
M i D 0;

which are the required orthogonality conditions.

Conclusion. One can apply Lemma C.2 to H l�1u with weight q D 2i � 2l C ı0, giving the desired
coercivity estimate (C-22).

Step 4: iterations of coercivity estimates. We show the following bound by induction on l D 0; : : : ; i :Z
Rd

jH luj2

1Cjxj2ı
0
dx � c.ı; i/

X
0�j�j�2l

Z
Rd

j@�uj2

1Cjxj4i�2�C2ı
0
dx: (C-24)

This property is naturally true for l D 0. We now suppose it is true for l � 1 with 0� l � 1� i � 1. From
the formula (C-18) relating �l to H l , we see that (using the Cauchy–Schwarz and Young inequalities)Z

Rd

jH luj2

1Cjxj4.i�l/C2ı
0
� C.i/

Z
Rd

j�luj2

1Cjxj4.i�l/C2ı
0
�C 0.i/

X
0�j�j�2l�2

Z
Rd

j@�uj2

1Cjxj4i�2j�jC2ı
0

� C.i/

Z
Rd

j�luj2

1Cjxj4.i�l/C2ı
0
�C 0.i/

Z
Rd

jH iuj2

1Cjxj2ı
0
;

where we used the induction hypothesis (C-24) for l � 1 for the second line. We now use (C-24) and
(B-4) to recover a control over all derivatives:
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Rd

j�luj2

1Cjxj4.i�l/C2ı
0
� C.i/

X
1�j�j�2

Z
Rd

j@��l�1uj2

1Cjxj4.i�l/C4�2j�j
�C 0.i/

Z
Rd

j�l�1uj2

1Cjxj4.i�l/C4

� C.i/
X

0�j�j�2

Z
Rd

j�l�1@�uj2

1Cjxj4.i�.l�1//�2j�j
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

� C.i/
X

0�j�j�2

X
1�j�0j�2

Z
Rd

j@�
0

�l�2@�uj2

1Cjxj4.i�.l�1//C4�2j�j�2j�
0j

�C 0.i/

Z
Rd

j�l�2uj2

1Cjxj4.i�l/C8
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

� C.i/
X

0�j�j�4

Z
Rd

j�l�2@�uj2

1Cjxj2pC4.i�.l�2//�2�
�C 0.i; ı/

Z
Rd

jH l�1uj2

1Cjxj2ı
0

:::

� C.i/
X

0�j�j�2l

Z
Rd

j@�uj2

1Cjxj2pC4�2�C2ı
0
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0
:

Inserting this last equation into the previous one we obtainZ
Rd

jH luj2

1Cjxj4.i�l/C2ı
0
� C.ı; i/

X
0�j�j�2l

Z
Rd

j�l�2@�uj2

1Cjxj2pC4�2�
�C 0.ı; i/

Z
Rd

jH l�1uj2

1Cjxj2ı
0
:

This, together with (C-22), gives that (C-24) is true for l . Hence by induction it is true for i , which is
precisely the estimate (C-16) we had to show and ends the proof of the lemma. �

Appendix D: Specific bounds for the analysis

This section is dedicated to the statement and the proof of several estimates used in the analysis.

Lemma D.1 (specific bounds for the error in the trapped regime). Let " be a function satisfying (4-25)
and (4-11). We recall that E� and E2sL are defined by (4-9) and (4-7). Then the following bounds hold:

(i) Interpolated Hardy-type inequality. For � 2 Nd and q > 0 satisfying � � j�jC q � 2sLZ
j@�"j2

1Cjyj2q
dy � C.M/E

2sL�.j�jCq/

2sL��

� E
j�jCq��
2sL��

2sL
: (D-1)

(ii) Weighted L1 bound for low order derivative. For 0� a � 2 and � 2 Nd with j�j � 1, @�"

1Cjyja


L1
� C.K1; K2;M/

p
E�
1CO. 1

L2
/ 1

saCj�j1C.
d
2
��/C. 2

p�1
CaCj�j1/˛=LCO.��scL /

: (D-2)

(iii) L1 bound for high order derivative. For � 2 Nd with j�j � sL,

k@�"k2L1 � C.M/E
2sL�j�j1�d=2

2sL��
CO. 1

L2
/

� E
j�j1Cd=2��

2sL��
CO. 1

L2
/

2sL
: (D-3)
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Proof. (i) We first recall that from the coercivity estimate (C-16) one has

kr
�"k2

L2
D E� ; kr2sL"k2L2 � C.M/kH sL"k2

L2
D C.M/E2sL :

If the weight satisfies q < d
2

, then the inequality (D-1) claimed in the lemma is a consequence of the
standard Hardy inequality, followed by an interpolation: @�"

1Cjxjq

2
L2
� Ckr j�j1Cq"k2

L2
� Ckr�"k

2
2sL�.j�j1Cq/

2sL��

L2
kr

2sL"k
2
j�j1Cq��

2sL��

L2

� C.M/E
2sL�.j�j1Cq/

2sL��

� E
j�j1Cq��

2sL��

2sL
:

If the potential satisfies q D 2sL� j�j, then the inequality (D-1) claimed in the lemma is a consequence
of the coercivity estimate (C-16):  @�"

1Cjxjq

2
L2
� C.M/E2sL :

For a weight that is in-between, i.e., d
2
� q < 2sL � j�j1, the inequality (D-1) is then obtained by

interpolating the two previous ones, as

j"j2

1Cjxj2b
�

�
j"j2

1Cjxj2a

�c�b
c�a

�
j"j2

1Cjxj2c

�b�a
c�a

:

(ii) As the dimension is d � 11 and L� 1 is big, one has @�"=.1C jxja/ 2 L1 with the following
bound (using the bound (i) we just derived): @�"

1Cjxja


L1
�C.z/

�r d2�z� @�"

1Cjxja

�
L2
C

r d2Cz� @�"

1Cjxja

�
L2

�
�C.z/

�
kr

d
2
�zCaCj�j1"kL2Ckr

d
2
CaCj�j1Cz"kL2

�
�C.M;z/

�
E
2sL�.aCj�j1Cd=2�z/

2sL��

� E
aCj�j1Cd=2�z��

2sL��

2sL
CE

2sL�.aCj�j1Cd=2Cz/

2sL��

� E
aCj�j1Cd=2Cz��

2sL��

2sL

�
for z > 0 small enough. We then let z1 be so close to 0 (of order L�1) that its impact when using the
bootstrap bounds (4-25) is of order s�

1

L2 (since the constant C.M; z1/ explodes as z1 approaches 0, we
cannot take z1 D 0, but z1 very close to d

2
is enough for our purpose). Inserting the bootstrap bounds

(4-25) then yields the desired result (D-2).

(iii) It can be proved exactly the same way we did for (ii). �

Lemma D.2 (a nonlinear estimate). Let d 2 N, a � 0 and b > d
2

. Let � � Rd be a smooth bounded
domain. There exists a constant C > 0 such that for any u; v 2Hmax.a;b/.�/,24

kuvkHa.�/ � C
�
kukHa.�/kvkHb.�/CkukHb.�/kvkHa.�/

�
: (D-4)

24The product uv indeed belongs to Ha.�/ as Hmax.a;b/.�/ is an algebra since b > d
2 .
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Proof. Without loss of generality one assumes d
2
< b � d

2
C
1
4

,

b WD d
2
C ıb; with 0 < ıb � 1

4
: (D-5)

Indeed, if (D-4) holds for all b 2
�
d
2
; d
2
C
1
4

�
then for any b0 > d

2
C
1
4

, applying (D-4) to the pair of
parameters

�
a; d

2
C
1
4

�
and using the fact that kf kHd=2C1=4.�/ � kf kHb.�/ for any f 2H b.�/ gives

that (D-4) holds for the pair of parameters .a; b0/.

Step 1: a scalar inequality. We claim that for all .�1; �2/ 2 Œ0; 1�2 with �1 C �2 � 1 and for all
.�1; �2; �3; �4/ 2 Œ0;C1/ satisfying �1 � �2 and �3 � �4,

�
�1
1 �

1��1
2 �

�2
3 �

1��2
4 � �1�4C�2�3: (D-6)

We now prove this estimate. Since 1� �1� �2 � 0 and 0� 1� �2 � 1, one has

8.x; z/ 2 Œ1;C1/� Œ0;C1/; x1��1��2z1��2 � z1��2 � 1C z:

Let .�1; �2; �3; �4/ 2 Œ0;C1/ satisfying 0 < �1 � �2 and 0 < �3 � �4. We apply the above estimate
to x D �2

�1
� 1 and z D �1�4

�2�3
, and multiply both sides by �2�3, yielding the desired estimate (D-6)

after simplifications. If �1 D 0 or �3 D 0, (D-6) always holds. Consequently, (D-6) holds for all
.�1; �2; �3; �4/ 2 Œ0;C1/ satisfying 0 < �1 � �2 and 0 < �3 � �4.

Step 2: proof in the case �D Rd and a � b. We claim that for u; v 2Ha.Rd /,

kuvkHa.Rd / � C
�
kukHa.Rd /kvkHb.Rd /CkukHb.Rd /kvkHa.Rd /

�
: (D-7)

We now show the above estimate. Let u; v 2H s2.Rd /. First, one obtains an L2 bound using Hölder and
Sobolev embedding

�
as b > d

2

�
:

kuvkL2.Rd / � kukL2.Rd /kvkL1.Rd / � CkukHa.Rd /kvkHb.Rd /: (D-8)

Secondly, one decomposes a D AC ıa, where A WD EŒa� 2 N is the entire part of a and 0 � ıa < 1.
Using the Leibniz rule one has the identity

kr
a.uv/k2

L2.Rd /
� C

X
.�1;�2/2N2d

j�1jCj�2jDA

kr
ıa.@�1u@�2v/k2

L2.Rd /
: (D-9)

We fix .�1; �2/ 2 N2d with j�1jC j�2j D A in the sum and aim at estimating the corresponding term.
We recall the commutator estimate

kr
ıa.@�1u@�2v/kL2 . kr j�1jCıaukLp1k@�2vkLq1 Ckr j�2jCıavkLp2k@�1ukLq2 (D-10)

for 1
p1
C

1
p2
D

1
p01
C

1
p02
D
1
2

, provided 2�p1; p2<C1 and 2� q1; q2�C1. We now chose appropriate
exponents p1 and p2 in several cases.

Case 1. j�2j D 0. Then j�1jC ıa D a and using Sobolev embedding
�
as b > d

2

�
,

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd / � CkukHa.Rd /kvkHb.Rd /: (D-11)
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Case 2. 1 � j�2j < a � d
2

and j�1j C ıa < b. Then b < j�2j C d
2
< a by (D-5) and using Sobolev

embedding, one computes

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd / � CkukHb.Rd /kvkHa.Rd /: (D-12)

Case 3. 1� j�2j<a� d2 and b � j�1jCıa. Then b < j�2jC d
2
<a by (D-5) and b � j�1jCıa � a. We

let x WDmin
�
ıb
2
; a�j�2j�

d
2

�
> 0. Using Sobolev embedding, interpolation and (D-6)

�
since b > d

2
Cx

and j�1jC j�2jC ıa D a
�
, one computes

kr
j�1jCıaukL2.Rd /k@

�2vkL1.Rd /�CkukH j�1jCıa .Rd /kvkH j�2jCd=2Cx.Rd /

�Ckuk
a�j�1j�ıa

a�b

Hb.Rd /
kuk

j�1jCıa�b

a�b

Ha.Rd /
kvk

a�j�2j�d=2�x

a�b

Hb.Rd /
kvk

j�2jCd=2Cx�b

a�b

Ha.Rd /

�C
�
kukHa.Rd /kvkHb.Rd /CkukHb.Rd /kvkHa.Rd /

�
: (D-13)

Case 4. a� d
2
� j�2j< a. Let x WD 1

2
min.a� j�j2; ıb/ > 0. We define p1, q1 and s by

1

q1
WD

1

2
�
a� x� j�2j

d
;

1

p1
D
1

2
�
1

q1
and s D

d

q1
:

One has j�1jC ıaC s D d
2
C x < b, and, using Sobolev embedding,

kr
j�1jCıaukLp1k@

�2vkLq1 � CkukH j�1jCıaCskvkHa�x � CkukHbkvkHa (D-14)

and 1
p1
C

1
q1
D

1
2

, p1 ¤C1.

Case 5. j�2j D a. Then j�1jC ıa D 0 and using Sobolev embedding
�
as b > d

2

�
,

kr
j�1jCıaukL1.Rd /k@

�2vkL2.Rd / � CkukHb.Rd /kvkHa.Rd /: (D-15)

Conclusion. In all possible cases, by (D-11)–(D-15) there always exist p1; q1; p2; q2 2 Œ2;C1/ with
p1; p2 ¤C1, 1

p1
C

1
q1
D

1
2

and

kr
j�1jCıaukLp1 .Rd /k@

�2vkLq1 .Rd /Ckr
j�1jukLq2vkr

j�2jCıavk
Lp2.R

d /

� CkukHb.Rd /kvkHa.Rd /CCkukHa.Rd /kvkHb.Rd /;

where the estimate for the second term on the left-hand side of the above equation comes from symmetric
reasoning. We now come back to (D-9), and apply (D-10) and the above identity to obtain

kr
a.uv/kL2.Rd / � CkukHb.Rd /kvkHa.Rd /CCkukHa.Rd /kvkHb.Rd /:

The above estimate and (D-8) imply the desired estimate (D-7) by interpolation.

Step 3: proof in the case �D Rd and a � b. The proof is similar and simpler and we do not write it
here. Therefore, (D-7) holds for all a � 0 and b > d

2
.

Step 4: proof in the case of a smooth bounded domain �. There exists zC > 0 such that for any
f 2Hmax.a;b/.�/ there exists an extension Qf 2Hmax.a;b/.Rd / with compact support, satisfying Qf D f
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on � and
1

zC
k Qf kHc.Rd / � kf kHc.�/ �

zCk Qf kHc.Rd /; c D a; bI

see [Adams and Fournier 2003]. Let u; v2Hmax.a;b/.�/ and denote by Qu and Qv their respective extensions.
Using (D-7) and the above estimate then yields

kuvkHa.�/ � k Qu QvkHa.Rd /

� C
�
k QukHa.Rd /k QvkHb.Rd /Ck QukHb.Rd /k QvkHa.Rd /

�
� C zC 2

�
kukHa.�/kvkHb.�/CkukHb.�/kvkHa.�/

�
and (D-4) is obtained. �

Appendix E: Geometrical decomposition

This section is devoted to the proof of Lemma 4.3.

Lemma E.1. Let X denote the functional space

X WD
˚
u 2 L1.Bd .0; 4M// W hu�Q;Hˆ

.0;1/
M i> ku�QkL1.Bd .0;3M//

	
: (E-1)

There exists �;K > 0 such that for all u 2X \fku�QkL1.Bd .0;4M/// < �g, there exists a unique choice
of parameters b 2RI with b.0;1/1 >0, �> 0 and z 2Rd such that the function v WD .��zu/�� zQb satisfies

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln (E-2)

and such that
j�� 1jC jzjC

X
.n;k;i/2I

jb
.n;k/
i j �K: (E-3)

Moreover, b, � and z are Fréchet differentiable25 and satisfy

j�� 1jC jzjC
X

.n;k;i/2I

jb
.n;k/
i j �Kku�QkL1.Bd .0;3M//: (E-4)

Proof. We first define the application � as

� W L1.Bd .0; 3M//� .0;C1/�RdC#I
! R1CdC#I ;

.u; Q�; Qz; Qb/ 7!
�
h.�Qzu/ 1

Q�

�Q�˛ Qb;H
iˆ
.n;k/
M i

�
; where 1� k � k.n/; 0� n� n0; 0� i �Ln:

(E-5)

Then � is C1. From the definition (3-7) of ˛b , and the orthogonality conditions (4-3), the differential of �
with respect to the second variable at the point .Q; 1; 0; : : : ; 0/ is the diagonal matrix

D.2/�.Q; 1; 0; : : : ; 0/D�

0BB@
hT
.0/
0 ; �MT

.0/
0 i IdLC1

: : :

hT
.n0/
0 ; �MT

.n0/
0 i IdLn0

1CCA; (E-6)

25For the ambient Banach space L1.Bd .0; 3M//.
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where IdLn is the Ln � Ln identity matrix. D.2/�.Q; 1; 0; : : : ; 0/ is invertible for M large by (4-3).
Consequently, from the implicit functions theorem, there exist �;K > 0, such that for all

u 2X \
˚
ku�QkL1.Bd .0;3M// < �

	
;

there exists a choice of the parameters Q�D Q�.u/, Qz D Qz.u/ and Qb D Qb.u/ such that

�.u; Q�; Qz; Qb/D 0; j Q�� 1jC jQzjC
X

.n;k;i/2I

j Qb
.n;k/
i j �Kku�QkL1.Bd .3M// (E-7)

and it is the unique solution of �.u; Q�; Qz; Qb/D 0 in the range

j Q�� 1jC jQzjC
X

.n;k;i/2I

j Qb
.n;k/
i j �K:

Moreover, they are Fréchet differentiable, again from the implicit function theorem. Now, defining
�D 1= Q�, b D Qb and z D�Qz, this means by (E-5) that the function w WD .��zu/��Q�˛b satisfies

hw;H iˆ
.n;k/
M i D 0; for 0� n� n0; 1� k � k.n/; 0� i � Ln:

Finally, still from the implicit function theorem, from the identity for the differential (E-6), the definition
(E-1) of X and (4-3),

b
.0;1/
1 D�ŒD.2/�.Q; 1; 0; : : : ; 0/��1.�.u; 1; 0; : : : ; 0//C o.ku�QkL1.Bd .3M///

D
hu�Q;H 1ˆ

.0;1/
M i

hT
.0/
0 ; �MT

.0/
0 i

C o
�
hu�Q;H 1ˆ

.0;1/
M i

�
> 0;

where the o. � / is as �! 0, and the strict positivity is then for � small enough. Consequently, in that
case zQb DQC�.b.0;1/1 /�.1C�/=2

˛b is well defined, and one has .b.0;1/1 /�
1C�
2 � 2M for � small enough.

Thus, for v WD .��zu/�� zQb ,

hv;H iˆ
.n;k/
M i D h Qv;H iˆ

.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln

because the support of v� Qv is outside Bd .0; 2M/. One has found a choice of the parameters �, b and z
such that b.0;1/1 > 0 and (E-2) and (E-3) hold. This choice is unique in the range (E-3) and the parameters
are Fréchet differentiable since under (E-3), they are equal to the parameters given by the above inversion
of �. �

Lemma E.2. There exist ��; zK>0 such that the following holds for all 0<�<��. Let O be the open set of
L1.Bd .0; 1// of functions u satisfying (4-4). For each u2O there exists a unique choice of the parameters
�2

�
0; 1
4M

�
, z2Bd

�
0; 1
4

�
and b2RI such that b.0;1/1 >0 and vD .��zu/�� zQb 2L1

�
1
�
.Bd .0; 1/�fzg/

�
satisfies26

hv;H iˆ
.n;k/
M i D 0 for 0� n� n0; 1� k � k.n/; 0� i � Ln (E-8)

26The following assertions make sense as v is defined on 1
�
.Bd .0; 1/�fzg/, which indeed contains Bd .0; 2M/ since

0 < � < 1
4M

and jzj � 1
4 , and as ˆ.n;k/

M
is compactly supported in Bd .0; 2M/ by (4-1).
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and X
.n;k;i/2I

jb
.n;k/
i jC kvk

L1. 1
�
.Bd .0;1/�fzg// �

zK�: (E-9)

Moreover, the functions �, z and b defined this way are Fréchet differentiable on O.

Proof. Let K and �0 be the numbers associated to Lemma E.1.

Step 1: existence. Let
. Q�; Qz/ 2

�
0; 1
8M

�
�Bd

�
0; 1
8

�
(E-10)

be such that

ku�Q
Qz; 1
Q�

kL1.Bd .1// <
�

Q�
2
p�1

;

k.��Qzu/Q��QkL1.Bd .4M// < h.��Qzu/Q��Q;Hˆ
.0;1/
M i;

which exists by (4-4). We define w WD .��Qzu/Q�. It is defined on the set .1= Q�/.B.1/� Qz/, which contains
Bd .7M/ as 0 < Q� < 1

8M
and jzj � 1

8
. From this fact and the above estimates, w satisfies

kw�QkL1.B.7M// < �; kw�QkL1.Bd .3M// < hw�Q;Hˆ
.0;1/
M i: (E-11)

Thus for � small enough, one can apply Lemma E.1: there exists a choice of the parameters z0, b0 and �0

such that v0 D .��z0w/�0 � zQb0 satisfies (E-8) and b
0.0;1/
1 > 0. This choice is unique in the range

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �K: (E-12)

Moreover, the estimate

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �Kkw�QkL1.Bd .0;3M/// �K�:

holds. Now we define
b D b0; z D QzC Q�z0; �D Q��0 (E-13)

and v D v0. One has then b.0;1/1 > 0, and from (E-10) and the above estimate,X
.n;k;i/2I

jb
.n;k/
i j �K�; jzj � 1

4
; 0 < � <

1

4M

for � small enough. From the definitions of w, v0 and v one has the identity

uD .vC zQb/z; 1
�
; with v satisfying (E-8):

From (3-7), (3-29) and the above estimate,

kvk
L1. 1

�
.Bd .1/�z// D �

2
p�1 ku� �z. zQb; 1

�
/kL1.Bd .1//

� �
2
p�1 ku� �Qz.Q 1

Q�

/kL1.Bd .1//C�
2
p�1 k�Qz.Q 1

Q�

/� �z. zQb; 1
�
/kL1.Bd .1// � CK�
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for some constant C > 1 independent of the others. Therefore, one takes zK D CK, and the choice of
parameters �, z and b that we just found provides the decomposition claimed by the lemma and the
existence is proven.

Step 2: differentiability. We claim that the parameters �, b and z found in Step 1 are unique; this will be
proven in the next step. Therefore, from their construction using the auxiliary variables Q� and Qz in Step 1,
and since the parameters �0, z0 and b0 provided by Lemma E.1 are Fréchet differentiable, �, b and z are
Fréchet differentiable.

Step 3: uniqueness. Let Ob, O�, Oz be another choice of parameters with Ob.0;1/1 > 0, 0 < �< 1
4M

and jzj � 1
4

such that (E-8) and (E-9) hold for OvD .��Ozu/ O��
zQb . The function .��Qzu/Q�, where Q� and Qz were defined

in (E-10) in the first step, then satisfies the bound

k.��Qzu/Q��QkL1.B.3M// < �0

for � small enough by (E-11), and admits two decompositions

.��Qzu/Q� D .
zQb0 C v

0/z0; 1
�0
D . zQ ObC Ov/ Oz�Qz

Q�
;
Q�
O�

such that v and v0 satisfy (E-8). By (E-12), the first parameters satisfy

j�0� 1jC jz0jC
X

.n;k;i/2I

jb
0.n;k/
i j �K�0:

We claim that the second parameters satisfyˇ̌̌̌
Q�

O�
� 1

ˇ̌̌̌
C

ˇ̌̌̌
Oz� Qz

Q�

ˇ̌̌̌
C

X
.n;k;i/2I

j Ob
.n;k/
i j �K�0; (E-14)

which will be proven hereafter. Then, as such parameters are unique under the above bound by Lemma E.1,
one obtains

Q�

O�
D
1

�0
;
Oz� Qz

Q�
D z0; Ob D b0;

implying that O�D �, Oz D z and Ob D b, where �, z and b are the choice of the parameters given by the
first step defined by (E-13). The uniqueness is obtained.

Proof of (E-14). From the assumptions on Ob, O� and Oz, the definition of zQb (3-29) and (E-9), for � small
enough we have

ku�Q
Oz; 1
O�

kL1.Bd .1// �
C zK�

O�
2
p�1

:

From (E-10) one also has
ku�Q

Qz; 1
Q�

kL1.Bd .1// �
�

Q�
2
p�1

:

From the two above estimates, one deduces that

kQ
Oz; 1
O�

�Q
Qz; 1
Q�

kL1.Bd .1// �
�

Q�
2
p�1

C
C zK�

O�
2
p�1

: (E-15)
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Assume that O� � Q�. Then, since Q is radially symmetric and attains its maximum at the origin, and
Oz 2 Bd .0; 1/ because j Ozj � 1

4
, the above inequality at x D Oz implies

Q.0/

�
1

O�
2
p�1

�
1

Q�
2
p�1

�
DQ

Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Qz/

�Q
Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Oz/

D jQ
Oz; 1
O�

. Oz/�Q
Qz; 1
Q�

. Oz/j

� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
;

which gives ˇ̌̌̌
1

O�
2
p�1

�
1

Q�
2
p�1

ˇ̌̌̌
� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
:

The symmetric reasoning works in the case O�� Q� and one obtains that in both casesˇ̌̌̌
1

O�
2
p�1

�
1

Q�
2
p�1

ˇ̌̌̌
� C zK�

�
1

Q�
2
p�1

C
1

O�
2
p�1

�
:

Basic computations show that for � small enough the above identity impliesˇ̌̌̌
1�
O�

Q�

ˇ̌̌̌
� C zK� or O�D Q�.1CO.�//;

obtaining the first bound in (E-14) for � small enough. We insert the above estimate into (E-15), yielding

kQ
Oz; 1
Q�

�Q
Qz; 1
Q�

kL1.Bd .1// � kQ Oz; 1
Q�

�Q
Oz; 1
O�

kL1.Bd .1//kCkQ Oz; 1
O�

�Q
Oz; 1
O�

kL1.Bd .1//k �
C zK�

Q�
2
p�1

;

which implies in renormalized variables
�
as j Ozj � 1

8
and Q�� 1

8M

�
,

kQ� � Oz�Qz
Q�

QkL1.Bd .0;2M// � C
zK�:

As Q is smooth, radially symmetric and radially decreasing this impliesˇ̌̌̌
Oz� Qz

Q�

ˇ̌̌̌
� C zK� or Oz D QzC Q�O.�/

and the second bound in (E-14) is obtained. �
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