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ANALYSIS AND PDE
Vol. 10, No. 2, 2017

dx.doi.org/10.2140/apde.2017.10.253 msp

SOME ENERGY INEQUALITIES
INVOLVING FRACTIONAL GJMS OPERATORS

JEFFREY S. CASE

Under a spectral assumption on the Laplacian of a Poincaré–Einstein manifold, we establish an energy
inequality relating the energy of a fractional GJMS operator of order 2 2 .0; 2/ or 2 2 .2; 4/ and the
energy of the weighted conformal Laplacian or weighted Paneitz operator, respectively. This spectral
assumption is necessary and sufficient for such an inequality to hold. We prove the energy inequalities by
introducing conformally covariant boundary operators associated to the weighted conformal Laplacian
and weighted Paneitz operator which generalize the Robin operator. As an application, we establish a new
sharp weighted Sobolev trace inequality on the upper hemisphere.

1. Introduction

Fractional GJMS operators are conformally covariant pseudodifferential operators defined on the boundary
of a Poincaré–Einstein manifold via scattering theory which have principal symbol equal to that of the
fractional powers of the Laplacian [Graham and Zworski 2003]. Fractional GJMS operators can also be
understood as generalized Dirichlet-to-Neumann operators associated to weighted GJMS operators of a
suitable order defined in the interior [Branson and Gover 2001; Caffarelli and Silvestre 2007; Case and
Chang 2016; Chang and González 2011; Yang 2013]. In particular, one can identify the energy associated
to a fractional GJMS operator with the energy associated to a suitable weighted GJMS operator when
restricted to canonical extensions; see [Caffarelli and Silvestre 2007; Yang 2013] for the flat case and
[Case and Chang 2016; Chang and González 2011] for the curved case.

In this article, we are interested in obtaining, as a generalization of known results in the flat case
[Yang 2013], a general relationship between the energy associated to a fractional GJMS operator and
the energy associated to a suitable weighted GJMS operator for arbitrary extensions. One reason for
this interest is the role of such relationships in establishing sharp Sobolev trace inequalities (see [Ache
and Chang 2015; Escobar 1988]) and in studying the fractional Yamabe problem (see [Escobar 1992;
González and Qing 2013]). Indeed, this article is partly motivated by a subtle issue which arises in the
works of Escobar [1992; 1994] and González and Qing [2013] on the fractional Yamabe problem of
order  2 .0; 1/. In both works, one tries to find a metric on a compact manifold with boundary which
is scalar flat in the interior and for which the boundary has constant mean curvature (in a sense made
precise in Section 3) by minimizing an energy functional in the interior subject to a volume-normalization

MSC2010: primary 58J32; secondary 53A30, 58J40.
Keywords: fractional Laplacian, fractional GJMS operator, Poincaré–Einstein manifold, Robin operator, smooth metric measure

space.
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254 JEFFREY S. CASE

on the boundary. However, there is no guarantee that the energy functional is bounded below within this
class, an issue overlooked in [Escobar 1992; González and Qing 2013] and corrected in the special case
 D 1

2
in [Escobar 1994]. Proposition 5.1 corrects this issue by giving a spectral condition under which

the energy functional is bounded below.
The main results of this article are the following two theorems. These results establish, under spectral

assumptions on a Poincaré–Einstein manifold, energy inequalities on suitable compactifications of the
Poincaré–Einstein manifold which relate the energy of the weighted conformal Laplacian and the weighted
Paneitz operator to the energy of the fractional GJMS operators P2 in the cases  2 .0; 1/ and  2 .1; 2/,
respectively. That equality holds for the special extensions U was established in [Case and Chang 2016].

Theorem 1.1. Fix  2 .0; 1/ and set mD 1� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
satisfying �1.��gC/ >

1
4
n2 � 2. Let r be a geodesic defining function for M and let � be a defining

function such that, asymptotically near M,

�D r Cˆr1C2 C o.r1C2 /

for some ˆ 2 C1.M/. Fix f 2 C1.M/ and denote by D
f

the set of functions U 2 C1.X/\C 0.X/
such that, asymptotically near M,

U D f C �2 C o.�2 /

for some  2 C1.M/. Set g D �2gC and hD gjTM . ThenZ
X

�
jrU j2C

mCn�1

2
Jm� U

2

�
�m dvolg ��

2

d

�I
M

fP2f dvolh�
n�2

2
d

I
M

f̂ 2 dvolh

�
(1-1)

for all U 2 D
f

, where Jm� is the weighted scalar curvature of .X; g; �;m; 1/. Moreover, equality holds if
and only if Lm2;�U D 0.

Note that the left-hand side of (1-1) is the Dirichlet energy of the weighted conformal Laplacian Lm2;�
of .X; g; �;m; 1/. See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.1 holds for Poincaré–Einstein manifolds for which the
conformal infinity .M n; Œh�/ has nonnegative Yamabe constant [Lee 1995].

A key point is that the spectral assumption �1.��gC/ >
1
4
n2� 2 is necessary; see Proposition 5.1.

This corrects the aforementioned mistake in [González and Qing 2013]. Observe also that the left-hand
side of (1-1) involves the interior L2-norm of U. This contrasts with the sharp Sobolev trace inequalities of
Jin and Xiong [2013] which instead involve a boundary L2-norm of f DU jM : Given a Poincaré–Einstein
manifold .XnC1;M n; gC/, a constant  2 .0; 1/, and a defining function � as in Theorem 1.1, there is a
constant A such thatZ

X

jrU j2�1�2 dvolg CA
I
M

f 2 dvol� S.n; /
�I
M

jf j
2n
n�2

�n�2
n

(1-2)

for any U 2 D WD
S
f D

f
, where gD�2gC, f DU jM, and S.n; / is the corresponding constant in

the upper half space [González and Qing 2013; Jin and Xiong 2013]. Under the spectral assumption
�1.��gC/ >

1
4
n2�2, one can use the adapted defining function [Case and Chang 2016, Subsection 6.1]
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in Theorem 1.1 to eliminate the interior L2-norm of U ; indeed, combining this with (1-2) yields the sharp
fractional Sobolev inequalityI

M

fP2f CA

I
M

f 2 � �
d

2
S.n; /

�I
M

jf j
2n
n�2

�n�2
n

for all f 2 C1.M/ (see [Hebey and Vaugon 1996; Jin and Xiong 2013]).

Theorem 1.2. Fix  2 .1; 2/ and set mD 3� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
satisfying �1.��gC/>

1
4
n2�.2�/2. Let r be a geodesic defining function forM and let � be a defining

function such that, asymptotically near M,

�D r C �2r
3
Cˆr1C2 C o.r1C2 /

for some �2; ˆ 2C1.M/. Fix f 2C1.M/ and denote by D
f

the set of functions U2C1.X/\C 0.X/
such that, asymptotically near M,

U D f Cf2�
2
C �2 C o.�2 /

for some f2;  2 C1.M/. Set g D �2gC and hD gjTM . Then for any U 2 D
f

it holds thatZ
X

�
.��U/

2
� .4P � .n� 2 C 2/Jm� g/.rU;rU/C

n� 2

2
Qm� U

2

�
�
8. � 1/

d

�I
M

fP2f �
n� 2

2
d

I
M

f̂ 2
�
; (1-3)

where P is the Schouten tensor of g, Jm� and Qm� are the weighted scalar curvature and the weighted
Q-curvature, respectively, of .X; g; �;m; 1/, and integrals on X and M are evaluated with respect to
�m dvolg and dvolh, respectively. Moreover, equality holds if and only if Lm4;�U D 0.

Note that the left-hand side of (1-3) is the Dirichlet energy of the weighted Paneitz operator Lm4;�
of .X; g; �;m; 1/. See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.2 holds for Poincaré–Einstein manifolds for which the
conformal infinity .M n; Œh�/ has nonnegative Yamabe constant [Lee 1995].

The proofs of Theorem 1.1 and Theorem 1.2 rely on three observations. First, we introduce conformally
boundary-covariant operators associated to the weighted conformal Laplacian and the weighted Paneitz
operator in the same sense as the trace and Robin operators act as boundary operators associated to
the conformal Laplacian (cf. [Branson 1997; Branson and Gover 2001; Escobar 1990; 1992]). Second,
we show that our conformally covariant operators recover certain scattering operators when acting on
functions which lie in the kernel of the corresponding weighted GJMS operator on a Poincaré–Einstein
manifold; this yields another approach to defining the fractional GJMS operators via extensions (cf.
[Ache and Chang 2015; Case and Chang 2016; Chang and González 2011; Graham and Zworski 2003;
Guillarmou and Guillopé 2007]). Third, using conformal covariance, we characterize when the left-hand
sides of (1-1) and (1-3) are uniformly bounded below in terms of spectral data for the metric gC. When
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these spectral conditions are met, the left-hand sides of (1-1) and (1-3) can be minimized, and the
identification of the minimizers follows from our extension theorem.

The second step in the above outline is a refinement of previous work in [Case and Chang 2016].
In that work, it was shown that the fractional GJMS operators are generalized Dirichlet-to-Neumann
operators for the weighted GJMS operators. For example, under the assumptions of Theorem 1.1, it was
shown that if Lm2;�U D 0 and U jM D f, then

P2f D�
d

2
lim
�!0

�
�m�U � .n� 2/ˆU

�
I

see [Case and Chang 2016, Theorem 4.1]. In particular, equality holds in (1-1). The novelty introduced
in this article is to realize the right-hand side of the above display as the evaluation of a conformally
covariant boundary operator. This also allows us to establish the energy inequality of Theorem 1.1. A
similar comparison of our results to those in [Case and Chang 2016] holds in the case  2 .1; 2/.

As an application of our results, we establish a sharp Sobolev trace inequality on the standard upper
hemisphere

SnC1
C
WD
˚
xD.x0; : : : ; xnC1/ 2 RnC2

ˇ̌
xnC1>0; jxjD1

	
with the metric induced by the Euclidean metric. To that end, let  2 .1; 2/ and set

D WD
[

f 2C1.Sn/

D
f

for D
f

determined by the defining function xnC1 for Sn D @SnC1
C

as in Theorem 1.2.

Theorem 1.3. Fix  2 .1; 2/, choose 2 < n 2N, and let .SnC1
C

; d�2/ be the standard upper hemisphere.
Then

c.2/n;

�I
Sn
jf j

2n
n�2 dvol

�n�2
n

�

Z
S
nC1
C

�
.��U/

2
C
.nC 3� 2/2� 5

2
jrU j2C

�
�
1
2
.nC 8� 2/

�
�
�
1
2
.n� 2/

� U 2
�
x
3�2
nC1 dvol (1-4)

for all U 2 D, where f D U jSn and

c.2/n; D 8�
 �.2� /

�./

�
�
1
2
.nC 2/

�
�
�
1
2
.n� 2/

� ���12n�
�.n/

�2
n

:

Moreover, equality holds if and only if�
�� �

1
4
..nC 3� 2/2� 1/

��
�� �

1
4
..nC 3� 2/2� 9/

�
U D 0 (1-5)

and f .x/D c.1C a � x/�
n�2
2 for some c 2 R and a 2 RnC1 with jaj< 1.
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The corresponding result when  2 .0; 1/ is that

c.1/n;

�I
Sn
jf j

2n
n�2 dvol

�n�2
n

�

Z
S
nC1
C

�
jrU j2C

�
�
1
2
.nC 4� 2/

�
�
�
1
2
.n� 2/

� U 2
�
x
1�2
nC1 dvol

for all U 2 D with trace f D U jSn , where

c.1/n; D 2�
 �.1� /

�./

�
�
1
2
.nC 2/

�
�
�
1
2
.n� 2/

� ��.12n/
�.n/

�2
n

:

This follows easily from [González and Qing 2013, Corollary 5.3] and conformal covariance.
The key observation in the proof of Theorem 1.3 is that the right-hand side of (1-4) is the energy of

the weighted Paneitz operator on .SnC1
C

; d�2; xnC1; m; 1/. The relation to the L
2n
n�2 -norm of the trace

then follows from Theorem 1.2 and the sharp fractional Sobolev inequality [Beckner 1993; Cotsiolis and
Tavoularis 2004; Frank and Lieb 2012; Lieb 1983]. In fact, Theorem 1.3 can be extended to a much more
general class of functions U and a large class of conformally flat metrics on the upper hemisphere; see
Theorem 6.1.

This article is organized as follows:
In Section 2 we recall some facts about both the fractional GJMS operators as defined via scattering

theory [Graham and Zworski 2003] and smooth metric measure spaces as used to study fractional GJMS
operators via extensions [Case and Chang 2016].

In Section 3 we introduce conformally covariant boundary operators which, when coupled with the
weighted conformal Laplacian and weighted Paneitz operator, are formally self-adjoint.

In Section 4 we give formulae for our conformally covariant operators in terms of the asymptotics of
compactifications of Poincaré–Einstein manifolds and thereby obtain new interpretations of the fractional
GJMS operators via extensions.

In Section 5 we give characterizations for when the left-hand sides of (1-1) and (1-3) are uniformly
bounded below and also state and prove more refined versions of Theorem 1.1 and Theorem 1.2.

In Section 6 we prove the more general version of Theorem 1.3.
In the Appendix we prove a family of Sobolev trace theorems which are relevant to this article and

slightly different from the usual ones.

2. Background

Scattering theory. A Poincaré–Einstein manifold is a triple .XnC1;M n; gC/ consisting of a complete
Einstein manifold .XnC1; gC/ with Ric.gC/ D �ngC and n � 3 such that X is diffeomorphic to the
interior of a compact manifold X with boundary M D @X. We further require the existence of a defining
function for M ; i.e., a smooth nonnegative function � W X ! R such that ��1.0/ D M, the metric
g WD �2gC extends to a C n�1;˛ metric on X, and jd�j2g D 1 on M. If � is a defining function for M,
then so too is e�� for any � 2C1.X/, and hence only the conformal class ŒgjTM � on M is well-defined.
An element h 2 ŒgjTM � is a representative of the conformal boundary, and to each such representative
there is a defining function r , unique in a neighborhood of M and called the geodesic defining function,
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such that gC D r�2.dr2Chr/ near M for hr a one-parameter family of Riemannian metrics on M with

hr D hC h.2/r
2
C � � �Ch.n�1/r

n�1
C krnC o.rn/ if n is odd;

hr D hC h.2/r
2
C � � �Ch.n�2/r

n�2
C h.n/r

n log r C krnC o.rn/ if n is even;

where the terms h.`/ for `� n even are locally determined by h while the term k is nonlocal. For example,

h.2/ D�
1

n� 2

�
Rich�

1

2.n� 1/
Rhh

�
is the negative of the Schouten tensor of h. For further details, including a discussion of optimal regularity,
see [Chruściel et al. 2005] and the references therein.

Given a Poincaré–Einstein manifold .XnC1;M n; gC/, a representative h of the conformal boundary,
and a parameter  2

�
0; 1
2
n
�
nN such that 1

4
n2� 2 does not lie in the L2-spectrum of ��gC , we define

the fractional GJMS operator P2 as follows: Let s D 1
2
nC  . For any f 2 C1.M/, there exists a

unique solution v, denoted P
�
1
2
nC 

�
f, of the generalized eigenvalue problem

��gCv� s.n� s/v D 0 (2-1a)

such that, asymptotically near M,
v D F rn�sCGrs (2-1b)

for F;G 2 C1.X/ and F jM D f . Then

P2f WD dGjM for d D 22
�./

�.�/
: (2-2)

Among the key properties of the fractional GJMS operator P2 W C1.M/ ! C1.M/ are that it is
formally self-adjoint, that its principal symbol is that of .��/, and that it is conformally covariant;
indeed, if OhD e2�h is another representative of the conformal boundary, then

yP2 .f /D e
�
nC2
2

�P2 .e
n�2
2
�f /

for all f 2 C1.M/. In fact, this definition extends to the cases  2N by analytic continuation, and in
these cases the operators P2 recover the GJMS operators. For further details, see [Graham and Zworski
2003].

A useful fact about the solution v of (2-1) is that, up to order r
n
2 , the Taylor series expansion of F

(resp. G) is even in r and depends only on h and F jM (resp. GjM ). For example,

F D f C
1

4.1� /

�
��f C 1

2
.n� 2/Jf

�
r2C o.r2/; (2-3)

where J is the trace (with respect to h) of the Schouten tensor P and we adopt the convention that barred
operators are defined with respect to the boundary .M n; h/.

The fractional GJMS operators P2 can be interpreted as generalized Dirichlet-to-Neumann operators
associated to weighted GJMS operators. To state this precisely and in the widest generality in which we
are interested requires a discussion of smooth metric measure spaces.
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Smooth metric measure spaces. A smooth metric measure space is a five-tuple .XnC1; g; �;m; 1/ formed
from a smooth manifold XnC1 with (possibly empty) boundary M n D @X, a Riemannian metric g on X,
a nonnegative function � 2C1.X/ with ��1.0/DM, and a dimensional constant m2 .1�n;1/. Given
such a smooth metric measure space, we always denote by X the interior of X. Heuristically, the interior
of a smooth metric measure space represents the base of a warped product

.XnC1 �Sm; g˚ �2d�2/ (2-4)

for .Sm; d�2/ the m-sphere with a metric of constant sectional curvature one; this is the meaning of
the 1 as the fifth element of the five-tuple defining a smooth metric measure space. The choice of the
standard m-sphere allows us to partially compactify (2-4), though not necessarily smoothly, by adding
the boundary M of X. The model case is the upper half space .RC �Rn; dy2˚ dx2; y;m; 1/ for y the
coordinate on RC WD .0;1/; in this case the warped product (2-4) is the flat metric on RnCmC1 n f0g,
and the partial compactification obtained from Œ0;1/�Rn is the whole of RnCmC1.

The heuristic of passing through the warped product (2-4) is useful in that most geometric invariants
defined on a smooth metric measure space — and all which are considered in this article — can be formally
obtained by considering their Riemannian counterparts on (2-4) while restricting to the base X. More
precisely, when m 2 N, the warped product (2-4) makes sense and one can define invariants on X in
terms of Riemannian invariants on (2-4) by means of the canonical projection � WXnC1 �Sm!XnC1.
Invariants obtained in this way are polynomial in m, and can be extended to general m 2 .1�n;1/ by
treating m as a formal variable. This is illustrated by means of specific examples below.

The weighted Laplacian �� W C1.X/! C1.X/ is defined by

��U WD�U Cm�
�1
hr�;rU i:

This operator is formally self-adjoint with respect to the measure �m dvolg ; the notation �� is used for
consistency with the literature on smooth metric measure spaces, where one usually writes �m D e��

and allows m to become infinite. In terms of (2-4), one readily checks that ����U D�.��U/ for �
the Laplacian of (2-4). The weighted Schouten scalar Jm� and the weighted Schouten tensor Pm� are the
tensors

Jm� WD
1

2.mCn/

�
R� 2m��1���m.m� 1/��2.jr�j2� 1/

�
;

Pm� WD
1

mCn� 1

�
Ric�m��1r2��Jm�

�
:

Denoting byP the Schouten tensor of (2-4) and by J its trace, one readily checks that J D��Jm� and that
Pm� .Z;Z/DP.

QZ; QZ/ for allZ 2TX, where QZ is the horizontal lift ofZ toX�Sm. The weighted confor-
mal Laplacian Lm2;� W C

1.X/! C1.X/ and the weighted Paneitz operator Lm4;� W C
1.X/! C1.X/

are defined by

Lm2;�U WD ���U C
1
2
.mCn� 1/Jm� U;

Lm4;�U WD .���/
2U C ı�

�
.4Pm� � .mCn� 1/J

m
� g/.rU/

�
C
1
2
.mCn� 3/Qm� U;
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where ı�X D trg rX Cm��1hX;r�i is the negative of the formal adjoint of the gradient with respect
to �m dvol,

Qm� WD ���J
m
� � 2jP

m
� j
2
�
2

m
.Y m� /

2
C
mCn� 1

2
.Jm� /

2

is the weighted Q-curvature, and Y m� D J
m
� � trg Pm� . Observe that the weighted conformal Laplacian

and the weighted Paneitz operator are both formally self-adjoint with respect to �m dvol. These definitions
recover the conformal Laplacian and the Paneitz operator, respectively, of (2-4) when restricted to the base.

An important property of the weighted conformal Laplacian and the weighted Paneitz operator is
that they are both conformally covariant. Two smooth metric measure spaces .XnC1; g; �;m; 1/ and
.XnC1; Og; O�;m; 1/ are pointwise conformally equivalent if there is a function � 2 C1.X/ such that
Og D e2�g and O� D e��. This is equivalent to requiring that the respective warped products (2-4) are
pointwise conformally equivalent with conformal factor independent of Sm. Under this assumption, it
holds that

bLm2;�.U /D e�
mCnC3

2
�Lm2;�.e

mCn�1
2

�U/; (2-5)

bLm4;�.U /D e�
mCnC5

2
�Lm2;�.e

mCn�3
2

�U/ (2-6)

for all U 2 C1.X/.
As defined above, the weighted conformal Laplacian and the weighted Paneitz operator are defined

only in the interior of a smooth metric measure space. The purpose of this article is to introduce and study
boundary operators associated to the weighted conformal Laplacian and the Paneitz operator, respectively,
which share their conformal covariance and formal self-adjointness properties. To do this in such a way
as to meaningfully study Poincaré–Einstein manifolds and the fractional GJMS operators requires us to
allow weaker-than-C1 regularity for both the metric g and the function � at the boundary of our smooth
metric measure spaces. This requires some definitions.

Definition 2.1. Let .XnC1; g/ be a Riemannian manifold with nonempty boundary M D @X. Let
 2

�
0; n
2

�
nN and set k D bc and mD 1C 2k� 2 . The smooth metric measure space .X; g; r;m; 1/

is geodesic if jrr j2 D 1 in a neighborhood of M and if

g D dr2C

kX
jD0

h.2j /r
2j
C o.r2 / (2-7)

for sections h.0/; : : : ; h.2k/ of S2T �M.

The asymptotic expansion (2-7) is to be understood in the following way: Each point p 2M admits
an open neighborhood U �X and a constant " > 0 such that the map

Œ0; "/�V ! U; .t; q/ 7! q.t/; (2-8)

is a diffeomorphism with image U, where V WD U \M and q is the integral curve in the direction rr
originating at q. By shrinking U if necessary, we may assume that jrr j2D 1 in U, and hence r.q.t//D t ;
note that if M is compact, then we may take U to be a neighborhood of M. The composition of the
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canonical projection Œ0; "/�V ! V with the inverse of the diffeomorphism (2-8) gives a map � WU ! V .
We then consider covariant tensor fields on V as covariant tensor fields in U by pulling them back by � .
Finally, since jrr j2D1 in a neighborhood ofM, it is straightforward to check that there is a one-parameter
family hr of sections of S2T �M such that g D dr2C hr near M. The assumption (2-7) imposes the
additional requirement that hr is even in r to order o.r2 /. In particular, if  > 1

2
, then M is totally

geodesic with respect to g; if also  > 3
2

, then the scalar curvature R of g satisfies @rRD 0 along M.
Note that if r is a geodesic defining function for a Poincaré–Einstein manifold .XnC1;M n; gC/ and if

m;  are as in Definition 2.1, then .X; r2gC; r;m; 1/ is a geodesic smooth metric measure space.

Definition 2.2. Let XnC1 be a smooth manifold with boundary M D @X and let  2
�
0; n
2

�
nN. Set

k D bc and mD 1C2k�2 . A smooth metric measure space .XnC1; g; �;m; 1/ is  -admissible if it is
pointwise conformally equivalent to a geodesic smooth metric measure space .X; g0; r;m; 1/ such that

�

r
D

kX
jD0

�.2j /r
2j
Cˆr2 C o.r2 / (2-9)

for �.0/; : : : ; �.2k/; ˆ 2 C1.M/ and �.0/ D 1.

Note that if .X; g; �;m; 1/ is a  -admissible smooth metric measure space and there are two geodesic
smooth metric measure spaces .X; gi ; ri ; m; 1/, i 2 f1; 2g, as in Definition 2.2, then r2 D r1 near M (see
[Graham and Lee 1991, Lemma 5.2] or [Lee 1995, Lemma 5.1]); in particular, all asymptotic statements
about  -admissible smooth metric measure spaces (e.g., (2-9)) are independent of the choice of geodesic
smooth metric measure space in Definition 2.2. Combining the expansions (2-7) and (2-9), we see that if
.X; g; �;m; 1/ is a -admissible smooth metric measure space with  > 1

2
, then M is totally geodesic

(with respect to g); if also  > 3
2

, then @�RD 0 along M.
Given a Poincaré–Einstein manifold .XnC1;M n; gC/ and  2

�
0; n
2

�
nN, a defining function � is

-admissible if .X; �2gC; �;m; 1/, mD 1�2bc�2 , is a -admissible smooth metric measure space.
In particular, the extension theorems established in [Case and Chang 2016, Theorems 4.1 and 4.4] are all
stated in terms of -admissible smooth metric measure spaces. An important example of -admissible
smooth metric measure spaces which arise as compactifications of Poincaré–Einstein manifolds and for
which the function ˆ in (2-9) is not necessarily zero are obtained from the adapted defining function
[Case and Chang 2016, Section 6.1].

In light of both our weakened regularity hypotheses and the asymptotics of solutions to the Poisson
equation (2-1), it is natural to introduce the following function spaces.

Definition 2.3. Fix  2 .0; 1/, set m D 1 � 2 , and let .XnC1; g; �;m; 1/ be a -admissible smooth
metric measure space. Given f 2 C1.M/, denote by C

f
the set of all U 2 C1.X/\C 0.X/ such that,

asymptotically near M,
U D f C �2 C o.�2 / (2-10)

for some  2 C1.M/. Set
C WD

[
f 2C1.M/

C
f
: (2-11)
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The Sobolev spaces W 1;2
0 .X; �m dvol/ and W 1;2.X; �m dvol/ are the completions of C0 and C, respec-

tively, with respect to the norm

kU k2
W 1;2 WD

Z
X

.jrU j2CU 2/�m dvol:

For notational convenience, in the case  2 .0; 1/ we sometimes denote by D the space C and by
H the space W 1;2.X; �m dvol/.

When  2 .0; 1/, the Sobolev trace theorem (e.g., [Triebel 1978]) states that there is a surjective
bounded linear operator Tr W W 1;2.X; �m dvol/!H  .M/ such that TrU D f for every U 2 C

f
, where

H  .M/ denotes the completion of C1.M/ with respect to the norm obtained by pulling back

kf k2H .Rn/ WD

Z
Rn
f 2dxC

Z
Rn

Z
Rn

jf .x/�f .y/j2

jx�yjnC2
dx dy

to M via coordinate charts.

Definition 2.4. Fix  2 .1; 2/, setmD 3�2 , and let .XnC1; g; �;m; 1/ be a  -admissible smooth metric
measure space. Given f; 2 C1.M/, denote by C

f; 
the set of all U 2 C1.X/\C 0.X/ such that,

asymptotically near M,

U D f C �2�2Cf2�
2
C 2�

2
C o.�2 / (2-12)

for some f2;  2 2 C1.M/. Set

C WD
[

f; 2C1.M/

C
f; 
; (2-13)

D WD
[

f 2C1.M/

C
f;0
: (2-14)

The Sobolev spaces W 2;2
0 .X; �m dvol/, W 2;2.X; �m dvol/, and H are the completions of C0;0, C,

and D, respectively, with respect to the norm

kU k2
W 2;2 WD

Z
X

�ˇ̌
r
2U Cm��1.@�U/

2d�˝ d�
ˇ̌2
CjrU j2CU 2

�
�m dvol: (2-15)

The particular modification of the Hessian used in (2-15) ensures that the integral is finite for all U2 C.
Given U 2 C

f; 
, the weighted Bochner formula (see the Appendix) allows one to rewrite this Hessian

term in terms of the L2-norm of ��U, lower-order interior terms depending on curvature, and boundary
terms involving only f and  .

When  2 .1; 2/, the Sobolev trace theorem (see the Appendix) states that there is a surjective bounded
linear operator Tr W W 2;2.X; �m dvol/ ! H  .M/˚H 2� .M/ such that Tr.U / D .f;  / for every
U2 C

f; 
, where H  .M/ denotes the completion of C1.M/ with respect to the norm obtained by pulling

back

kf k2H .Rn/ WD

Z
Rn
.f 2Cjrf j2/ dxC

nX
jD1

Z
Rn

Z
Rn

j@jf .x/� @jf .y/j
2

jx�yjnC2�2
dx dy

to M via coordinate charts.
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We conclude with two useful observations. The first is the following relationship between a defining
function for a Poincaré–Einstein manifold and certain weighted geometric invariants of the induced
compactification.

Lemma 2.5 [Case and Chang 2016, Lemma 3.2]. Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and � be a defining function. Fixm>1�n. The smooth metric measure space .XnC1; g WD �2gC; �;m; 1/
has

J C ��1��D 1
2
.nC 1/��2.jr�j2� 1/; (2-16)

Jm� D J �
m

nC 1
.J C ��1��/; (2-17)

Pm� D P: (2-18)

Here P and J are the Schouten tensor of g and its trace, respectively.
The second is the following characterization of pointwise conformally equivalent  -admissible smooth

metric measure spaces in terms of the conformal factors.

Lemma 2.6. Fix  2 .0; 2/ n f1g and let .XnC1; g; �;m; 1/ be a -admissible smooth metric measure
space with m D 1C 2bc � 2 . Let � 2 C1.X/ \ C 0.X/ and set Og D e2�g and O� D e��. Then
.XnC1; Og; O�;m; 1/ is a  -admissible smooth metric measure space if and only if � 2 D.

Proof. Let .X; g0; r;m; 1/ and .X; Og0; Or;m; 1/ be geodesic smooth metric measure spaces associated to
.X; g; �;m; 1/ and .X; Og; Or;m; 1/, respectively, as in Definition 2.2. Suppose first that .X; Og; O�;m; 1/ is
 -admissible. We readily check that

e� D
O�

Or
�
Or

r
�
r

�
2 D;

whence � 2 D. Conversely, if � 2 D, we readily check that Or=r 2 D, whence .XnC1; Og; O�;m; 1/ is
 -admissible. �

For the remainder of this article, unless otherwise specified, the measure with respect to which an
integral is evaluated is specified by context: if a smooth metric measure space .XnC1; g; �;m; 1/ with
boundary M D @X is given, all integrals over X are evaluated with respect to �m dvolg and all integrals
over M are evaluated with respect to the Riemannian volume element of gjTM .

3. The conformally covariant boundary operators

In order to study boundary value problems associated to the weighted conformal Laplacian and the
weighted Paneitz operator — for instance, to study the fractional GJMS operators as in [Case and Chang
2016] — it is useful to find conformally covariant boundary operators associated to these respective
operators. In the case of the weighted conformal Laplacian Lm2;� with mD 1� 2 , this means finding
conformally covariant operators B20 and B22 such that .Lm2;�U; V /D .L

m
2;�V;U / for all U; V 2 kerB20

or for all U; V 2 kerB22 . That is, the boundary value problems .Lm2;� IB
2
0 / and .Lm2;� IB

2
2 / are formally

self-adjoint. In the case of the weighted Paneitz operator Lm4;� with m D 3� 2 , this means defining
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conformally covariant operators B20 , B22�2, B22 , B22 such that .Lm4;�U; V /D .L
m
4;�V;U / for all U; V

in the kernel of one of the pairs

B1 D .B
2
0 ; B

2
2 /; B2 D .B

2
0 ; B

2
2�2/; or B3 D .B

2
2�2; B

2
2 /:

That is, the boundary value problems .Lm4;� IBj / for j 2 f1; 2; 3g are all formally self-adjoint. These
boundary value problems are all elliptic, as is apparent from the definitions of the operators given below,
and our definitions are such that the formal self-adjointness follows from simple integration-by-parts
identities; see Theorem 3.2 for the case of the weighted conformal Laplacian and Theorem 3.4 and
Theorem 3.7 for the case of the weighted Paneitz operator.

The existence of such operators when mD 0 is already known: B D �C n�1
2n
H is a boundary operator

for the conformal Laplacian (see [Branson 1997; Escobar 1990]), while Branson and Gover [2001] have
constructed via the tractor calculus conformally covariant boundary operators associated to the noncritical
GJMS operators and Grant [2003] derived the third-order boundary operator associated to the Paneitz
operator (see also [Chang and Qing 1997; Juhl 2009] for the case of critical dimension). As is apparent
from Definition 3.1, B11 D B , while the operators B3

k
for k 2 f0; 1; 2; 3g give explicit formulae for the

boundary operators associated to the Paneitz operator in the case of manifolds with totally geodesic
boundary; see [Case 2015] for the general case.

The case  2 .0; 1/. The conformally covariant boundary operators associated to the weighted conformal
Laplacian are defined as follows.

Definition 3.1. Fix  2 .0; 1/ and set m D 1� 2 . Let .XnC1; g; �;m; 1/ be a -admissible smooth
metric measure space with boundary M D @X and let .X; g0; r;m; 1/ be the geodesic smooth metric
measure space as in Definition 2.2. Set �D��

r
rgr . As operators mapping C to C1.M/,

B
2
0 U WD U jM ; B

2
2U WD lim

�!0
�m
�
�U C

n� 2

2n
Uı�

�
:

where ı� WD trg rg�.

Note that � is the outward-pointing unit normal (with respect to g) vector field along the level sets
of r in a neighborhood of M. In particular, if  D 1

2
, then ı�jM DH is the mean curvature of M with

respect to g. For this reason, we call
H2 WD lim

�!0
�mı�

the  -mean curvature of M. Since .XnC1; g0; r;m; 1/ is uniquely determined near M by .X; g; �;m; 1/,
the asymptotic assumptions of Definition 3.1 guarantee that the  -mean curvature and the operators B20
and B22 are well-defined; indeed,

H2 D�2nˆ;

B
2
0 U D f;

B
2
2U D�2

�
 C 1

2
.n� 2/ f̂

�
;

where � and U satisfy (2-9) and (2-10), respectively, near M.
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That the operators B20 and B22 are the conformally covariant boundary operators associated to the
weighted conformal Laplacian is a consequence of the following result.

Theorem 3.2. Fix  2 .0; 1/ and set mD 1� 2 . Let .XnC1; g; �;m; 1/ and .XnC1; Og; O�;m; 1/ be two
pointwise conformally equivalent  -admissible smooth metric measure spaces with OgD e2�g and O�D e��.
Then for any U 2 C it holds that

yB
2
0 .U /D e�

n�2
2
� jMB

2
0 .e

n�2
2
�U/; (3-1)

yB
2
2 .U /D e

�
nC2
2

� jMB
2
2 .e

n�2
2
�U/: (3-2)

Moreover, given U; V 2 C, it holds thatZ
X

VLm2;�U C

I
M

B
2
0 .V /B

2
2 .U /DQ2 .U; V / (3-3)

for Q2 the symmetric bilinear form

Q2 .U; V /D
Z
X

�
hrU;rV iC

n� 2

2
Jm� UV

�
C
n� 2

2n

I
M

H2B
2
0 .U /B

2
0 .V /:

In particular, Q2 is conformally covariant.

Proof. Equation (3-1) follows immediately from the definition of B20 .
By Lemma 2.6, we have that � 2 C, and in particular �m�� is well-defined. On the other hand, if �

and O� are as in Definition 3.1, then O�D e���. Hence

O�m O�.e�
n�2
2
�U/D e�

nC2
2

��m
�
�U � 1

2
.n� 2/U��

�
;

O�m Oı O�D e�2��m.ı�Cn��/:

Combining these two equations yields (3-2).
Finally, integration by parts yields (3-3). Combining (3-1) and (3-2) with (3-3) yields the conformal

covariance of Q2 . �

The case  2 .1; 2/. The conformally covariant boundary operators associated to the weighted Paneitz
operator are defined as follows.

Definition 3.3. Fix  2 .1; 2/ and set m D 3� 2 . Let .XnC1; g; �;m; 1/ be a -admissible smooth
metric measure space with boundary M D @X and let � be as in Definition 3.1. As operators mapping
C to C1.M/,

B
2
0 U WD U;

B
2
2�2U WD �

m�U;

B
2
2 U WD �

2� 

 � 1
�U C .r2U.�; �/Cm��1@�U/C

n� 2

2
T
2
2 U;

B
2
2U WD ��

m���U �
1

 � 1
��m�U CS

2
2 �m�U C

n� 2

2
.�m�Jm� /U;
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where

T
2
2 WD

2�

�1
J�

�
P.�;�/�

3�2

nC1
.JC��1��CP.�;�//

�
; (3-4)

S
2
2 WD

�
n�2

2
C
nC2�4

2.�1/

�
JC

n�2�4

2
P.�;�/�

.3�2/.n�2C4/

2.nC1/
.JC��1��CP.�;�// (3-5)

and we understand the right-hand sides to all be evaluated in the limit �! 0.

Due to the length of the computations, we break the proof that the operators given in Definition 3.3 are
conformally covariant boundary operators associated to the weighted Paneitz operator on -admissible
smooth metric measure spaces into two parts. First, we show that they are conformally covariant of the
correct weight.

Theorem 3.4. Fix  2 .1; 2/ and set mD 3� 2 . Let .XnC1; g; �;m; 1/ and .XnC1; Og; O�;m; 1/ be two
pointwise conformally equivalent  -admissible smooth metric measure spaces with OgD e2�g and O�D e��.
Then for any U 2 C it holds that

yB
2
0 U D e�

n�2
2
� jMB

2
0 .e

n�2
2
�U/; (3-6)

yB
2
2�2U D e

�
nC2�4

2
� jMB

2
2�2.e

n�2
2
�U/; (3-7)

yB
2
2 U D e�

n�2C4
2

� jMB
2
2 .e

n�2
2
�U/; (3-8)

yB
2
2U D e

�
nC2
2

� jMB
2
2 .e

n�2
2
�U/: (3-9)

The proof of Theorem 3.4 is a somewhat lengthy computation. While such computations are routine in
conformal geometry (see [Branson 1985; Chang and Qing 1997]), they have not been carried out in this
form in the literature for smooth metric measure spaces, and so we sketch the details here.

Fix  2 .1; 2/. An operator T W C!C1.M/ defined on a  -admissible smooth metric measure space
.XnC1; g; �;m; 1/ with boundary M D @X is natural if it can be expressed as a polynomial involving
the Levi-Civita connection and the Riemann curvature tensor of g, powers of �, the outward-pointing
normal � along M D @X, and contractions thereof. A natural operator T is said to be homogeneous of
degree k 2 R if for any positive constant c 2 R, the operators T and yT defined on .XnC1; g; �;m; 1/ and
.XnC1; Og; O�;m; 1/, respectively, for Og D c2g and O�D c�, are related by

yT .U /D ckT .U /

for all U in the domain Dom.T / of T . Given a homogeneous operator T of degree k, a function � 2 D,
and a fixed weight w 2 R, we define

.T .U //0 WD
@

@t

ˇ̌̌̌
tD0

�
e�.wCk/t� jMTe2t�g.e

wt�U/
�
; (3-10)

where Te2�g denotes the operator T as defined with respect to the smooth metric measure space
.XnC1; e2�g; e��;m; 1/. One readily shows (see [Branson 1985, Corollary 1.14]) that, given a natural
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operator T which is homogeneous of degree k and a fixed weight w, it holds that

Te2�g.U /D e
.wCk/� jMT .e�w�U/

for all � 2 D and all U 2 Dom.T / if and only if .T .U //0 D 0 for all � 2 D and all U 2 Dom.T /.
To prove Theorem 3.4, it thus suffices to compute the linearizations (3-10) of the operators given

in Definition 3.3 — which are all natural and homogeneous — with the fixed weight w D �1
2
.n� 2/.

We accomplish this through a pair of lemmas. We first consider operators which are homogeneous of
degree �2.

Lemma 3.5. Fix  2 .1; 2/ and set mD 3� 2 . Let .XnC1; g; �;m; 1/ be a  -admissible smooth metric
measure space with boundary M D @X. Let � 2 D and let U 2 C. Fix a weight w 2 R. Then

.�U /0 D .nC 2w� 2/hrU;r�iCwU��;

.r2U.�; �/Cm��1@�U/
0
D .mC 1/hrU;r�iCwU.r2�.�; �/Cm��1@��/;

.JU /0 D�U��;

.UP.�; �//0 D�Ur2�.�; �/;

.��1U��/0 D .�� Cr2�.�; �/C .nC 1/��1@��/U:

Proof. Let Og D e2t�g. It is well-known that

yP D P � tr2� CO.t2/;

yr
2U Dr2U � t dU ˝ d� � t d� ˝ dU C thrU;r�igg;

and similarly for quantities defined in terms of the induced metric onM. The conclusion readily follows. �

We next consider operators which are homogeneous of degree �2 .

Lemma 3.6. Under the same hypotheses as Lemma 3.5, it holds that

.��m�U /0 D .2mCnC 2w� 4/hr�m�U;r�iC .mCw� 1/.�m�U /��;

.�m���U/
0
D .mCnC 2w� 1/hr�m�U;r�iCwU�m����

C
�
.mCnC 2w� 1/.r2�.�; �/�m��1@��/Cw���

�
�m�U;

.U�m�Jm� /
0
D�U�m����:

Proof. The first identity follows immediately from Lemma 3.5 and the homogeneity of �m�.
The conformal transformation formula for the weighted Laplacian [Case 2012] yields

.�m���U/
0
D �m�

�
.mCnC 2w� 1/hrU;r�iCwU���

�
:

A straightforward computation shows that

�m�.hrU;r�i/D hr�;r�m�U iC .r2�.�; �/�m��1@��/�
m�U;

from which the second identity follows.
Finally, the conformal transformation formula for the weighted scalar curvature (see [Case 2012,

Proposition 4.4]) yields the last identity. �
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Proof of Theorem 3.4. It is clear that (3-6) and (3-7) hold.
It follows immediately from Lemma 3.5 that the operator B2;w defined by

B2;wU WD ��U C
nC 2w� 2

mC 1
.r2U.�; �/Cm��1@�U/

�w

�
J �

nC 2w� 2

mC 1

�
P.�; �/�

m

nC 1
.J CP.�; �/C ��1��/

��
U

satisfies .B2;wU/0 D 0 for any w 2 R. This yields (3-8) upon observing that

B
2
2 D

2� 

 � 1
B
2;�n�2

2

:

It follows immediately from Lemma 3.5 and Lemma 3.6 that the operator B2;w defined by

B2;wU WD ��
m���U C

mCnC 2w� 1

2mCnC 2w� 4
��m�U CT2;w�

m�U �w.�m�Jm� /U;

T2;w WD

�
.mCw� 1/.mCnC 2w� 1/

2mCnC 2w� 4
�w

�
J � .mCnC 3w� 1/P.�; �/

�
m.mCnCw� 1/

nC 1
.J CP.�; �/C ��1��/

satisfies .B2;wU/0 D 0 for any w 2 R. This yields (3-9) upon observing that B22 D B2;�n�2
2

. �

We next show that the operators given in Definition 3.3 are boundary operators associated to the
weighted Paneitz operator, in the sense that the pairing

C � C 3 .U; V / 7! .Lm4;�U; V /C .B
2
2U;B

2
0 V /C .B

2
2 U;B

2
2�2V /

is a symmetric bilinear form. Indeed, this form can be written explicitly, and is the polarization of the
energy associated to the weighted Paneitz operator on a  -admissible smooth metric measure space with
boundary.

Theorem 3.7. Fix  2 .1; 2/ and set m D 3 � 2 . Let .XnC1; g; �;m; 1/ be a -admissible compact
smooth metric measure space with boundary M D @X. Given U; V 2 C, it holds thatZ

X

VLm4;�U C

I
M

�
B
2
0 .V /B

2
2 .U /CB

2
2�2.V /B

2
2 .U /

�
DQ2 .U; V / (3-11)

for Q2 the symmetric bilinear form

Q2 .U;V /

D

Z
X

�
.��U/.��V /�.4P�.n�2C2/J

m
� g/.rU;rV /C

n�2

2
Qm� UV

�
C

I
M

�
1

�1

�
hrB

2
0 .U /;rB

2
2�2.V /iChrB

2
0 .V /;rB

2
2�2.U /i

�
C
n�2

2
T
2
2

�
B
2
0 .U /B

2
2�2.V /CB

2
0 .V /B

2
2�2.U /

�
C
n�2

2
.�m�Jm� /B

2
0 .U /B

2
0 .V /

�
:

In particular, Q2 is conformally invariant.
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Proof. Equation (3-11) follows from a straightforward computation using integration by parts, the
consequences

J D J CP.�; �/;

P.�;rU/D P.�; �/�U
(3-12)

of the Gauss–Codazzi equations, and (2-17).
It follows immediately from Theorem 3.4 and (3-11) that Q2 is conformally invariant. �

4. Some asymptotic expansions

For Poincaré–Einstein manifolds, the fractional GJMS operator P1 can be interpreted as the Dirichlet-to-
Neumann operator for functions in the kernel of the conformal Laplacian [Chang and González 2011].
There is another conformally covariant operator defined on the boundary with the same principal symbol
as P1, namely f 7! B11U for U the unique extension of f in the kernel of the conformal Laplacian
[Branson 1997]. In fact, these two operators are the same [Guillarmou and Guillopé 2007].

The boundary operators introduced in Section 3 all give conformally covariant operators as follows: Fix
 2 .0; 2/ n f1g and set k D bcC 1 and mD 2k� 1� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold with n > 2 , let � be a  -admissible defining function, and consider .X; �2gC; �;m; 1/. Given
a function f 2C1.M/, let U be the unique extension of f in C

f;0
such that Lm

2k;�
U D 0. Then the map

B2 .f / WD B
2
2U is conformally covariant in the sense that

yB2 .f /D e�
nC2
2

� jMB2 .e
n�2
2
� jM f /

for all � 2D, where yB is defined in terms of .XnC1; Og; O�;m; 1/ for OgD e2�g and O�D e��. The fractional
GJMS operators can also be regarded as generalized Dirichlet-to-Neumann operators associated to the
kernel of the weighted conformal Laplacian and the weighted Paneitz operator in the cases  2 .0; 1/ and
 2 .1; 2/, respectively [Case and Chang 2016]. We show that, as in the case  D 1

2
, the operators B2

and P2 are the same.

The case  2 .0; 1/. A direct computation using the definition of B22 and [Case and Chang 2016,
Theorem 4.1] readily shows that the fractional GJMS operator P2 and the operator B2 defined above
are the same when  2 .0; 1/.

Proposition 4.1. Fix  2 .0; 1/ and setmD 1�2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2� 2 62 �pp.��gC/. Let � be a  -admissible defining function. Given f 2 C1.M/, let U

be the solution to the boundary value problem�
Lm2;�U D 0 in .XnC1; �2gC; �;m; 1/;

U D f on M:
(4-1)

Then

P2f D�
d

2
B
2
2U: (4-2)
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Proof. By conformal covariance, we may assume that �D r is the geodesic defining function associated
to gjTM . From [Case and Chang 2016, Theorem 4.1], we see that U D r�

n�2
2 P

�
1
2
nC

�
f . In particular,

U 2 C
f

and

P2f D�
d

2
lim
�!0

�m�U

for �D�@r the outward-pointing normal along M. It is straightforward to check that rmı�! 0 as r! 0,
and hence (4-2) holds. �

The case  2 .1; 2/. An argument similar to the one given in the proof of Proposition 4.1 shows that
B
2
2U is proportional to P2f if U2 C

f;0
satisfies Lm4;�U D 0. However, much more can be said. Indeed,

this statement remains true if U2 C
f; 

for any  2C1.M/! To make this more precise, we shall evaluate
the operators B2s for s 2 f0; 2�2; 2; 2g when acting on elements of the kernel of the weighted Paneitz
operator in terms of scattering operators.

We begin by investigating the asymptotic behavior of the summands which appear in the definitions of
the operatorsB2s . For our intended applications, it suffices to compute with respect to the compactification
of a Poincaré–Einstein manifold by a geodesic defining function. We first observe the following simple
asymptotic behavior of the interior scalar curvature.

Lemma 4.2. Fix  2 .1; 2/ and setmD 3�2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold and
let r be a geodesic defining function. Then, in terms of .X; r2gC; r;m; 1/, it holds that, asymptotically
near M,

J D J CO.r2/: (4-3)

Proof. A straightforward computation shows that

r�1�r D�J CO.r2/:

The conclusion now follows from (2-16). �

We next compute certain derivatives of elements of C.

Lemma 4.3. Fix  2 .1; 2/ and set mD 3� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and let r be a geodesic defining function. Let U 2 C have the expansion (2-12) asymptotically near M.
Then, in terms of .X; r2gC; r;m; 1/, it holds that

lim
r!0

Œrm�U �D 2.1� / ; (4-4)

lim
r!0

Œr2U.�; �/Cmr�1@rU �D 4.2� /f2; (4-5)

lim
r!0

Œ�rm���U �D 2. � 1/Œ4 2C� � 2. � 1/J �: (4-6)

Proof. Equation (4-4) is an immediate consequence of (2-12).
We next compute that

r�m@r.r
m@rU/D 4.2� /f2C 4 2r

2�2
C o.r2�2/;

from which (4-5) immediately follows.
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Finally,

��U D�f C 4.2� /f2C
�
4 2C� � 2. � 1/J 

�
r2�2C o.r2�2/:

Differentiating yields (4-6). �

Combining Lemmas 4.2 and 4.3 yields the following evaluations of the operators B2s in terms of the
asymptotic expansion (2-12).

Proposition 4.4. Fix  2 .1; 2/ and setmD 3�2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and let r be a geodesic defining function. Let U 2 C be such that (2-12) holds near M. In terms of
.X; r2gC; r;m; 1/, it holds that

B
2
0 U D f; (4-7)

B
2
2�2U D 2.1� / ; (4-8)

B
2
2 U D

2� 

 � 1

�
��f C 1

2
.n� 2/Jf

�
C 4.2� /f2; (4-9)

B
2
2U D 8. � 1/ 2� 2

�
�� C 1

2
.nC 2 � 4/J 

�
: (4-10)

Proof. Equation (4-7) is obvious, while (4-8) is (4-4). Combining (3-12) and (4-3) yields that P.�; �/D 0.
Hence, by (3-12) and Lemma 4.2,

T
2
2 D

2� 

 � 1
J : (4-11)

It then follows from (4-5) that (4-9) holds. Finally, Lemma 4.2 implies that

S
2
2 D

�
n� 2

2
C
nC 2 � 4

2. � 1/

�
J :

Combining this and Lemma 4.3 yields (4-10). �

Applying Proposition 4.4 to solutions of the Poisson equation (2-1) yields the following interpretation
of the operators B2s .

Corollary 4.5. Fix  2 .1; 2/ and set m D 3� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein man-
ifold such that 1

4
n2�2; 1

4
n2�.2�/2 62 �pp.��gC/. Let � be a -admissible defining function with

expansion (2-9) near M. Fix f; 2 C1.M/ and set u1 D P
�
1
2
nC 

�
f and u2 D P

�
1
2
nC 2� 

�
 . Set

U D ��
n�2
2 .u1Cu2/. In terms of .X; �2gC; �;m; 1/, it holds that

Lm4;�U D 0;

B
2
0 U D f;

B
2
2�2U D 2.1� / ;

B
2
2 U D

4.2� /

d2�
P4�2 ;

B
2
2U D

8. � 1/

d
P2f:
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Proof. By conformal covariance, we may assume that �D r is the geodesic defining function associated
to gjTM . That Lm4;�U D 0 follows from conformal covariance and the factorization

.Lm4;�/gC D
�
��gC �

1
4
n2C .2� /2

�
ı
�
��gC �

1
4
n2C 2

�
(4-12)

of the weighted Paneitz operator of .XnC1; gC; 1;m; 1/; see [Case and Chang 2016, Theorem 3.1].
Using the asymptotic expansion (2-3), we observe that

u1 Š r
n�2
2

�
f C

1

4.1� /

�
��f C

n� 2

2
Jf

�
r2C d�1 P2f r

2

�
;

u2 Š r
n�4C2

2

�
 C d�12�P4�2 . /r

4�2
C

1

4. � 1/

�
�� C

nC 2 � 4

2
J 

�
r2
�
;

where we write AŠB if A�BD o.r
nC2
2 /. Set Uj D r�

n�2
2 uj for j 2 f1; 2g. Applying Proposition 4.4

to U1 and U2 and using the linearity of the operators B2s for s 2 f0; 2 � 2; 2; 2g yields the result. �

By appealing to the uniqueness of solutions to Lm4;�U D 0 with suitable boundary conditions, we
obtain two extension theorems relating the fractional GJMS operator P2 to the operator B22 . The first
result is a reformulation of [Case and Chang 2016, Theorem 4.4].

Proposition 4.6. Fix  2 .1; 2/ and set m D 3 � 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2�2; 1

4
n2�.2�/2 62 �pp.��gC/. Let � be a -admissible defining function.

Given f 2 C1.M/, let U be the unique solution to the boundary value problem8̂̂<̂
:̂
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2
0 U D f on M,

B
2
2�2U D 0 on M:

(4-13)

Then

P2f D
d

8. � 1/
B
2
2U: (4-14)

Proof. Let u D P
�
1
2
nC 

�
f and set QU D ��

n�2
2 u. It follows from Proposition 4.4 and conformal

covariance that QU satisfies (4-13). Hence, by uniqueness of solutions of (4-13), it holds that U D QU.
Equation (4-14) now follows from Corollary 4.5. �

The second result is an analogous extension theorem formulated in terms of the iterated Dirichlet data
of a fourth-order boundary value problem.

Proposition 4.7. Fix  2 .1; 2/ and set m D 3 � 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2�2; 1

4
n2�.2�/2 62 �pp.��gC/. Let � be a -admissible defining function.

Given f 2 C1.M/, let U be the unique solution to the boundary value problem8̂̂<̂
:̂
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2
0 U D f on M,

B
2
2 U D 0 on M:

(4-15)
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Then

P2f D
d

8. � 1/
B
2
2U: (4-16)

Proof. Let u D P
�
1
2
nC 

�
f and set QU D ��

n�2
2 u. It follows from Proposition 4.4 and conformal

covariance that QU satisfies (4-15). Hence, by uniqueness of solutions of (4-15), it holds that U D QU.
Equation (4-16) now follows from Corollary 4.5. �

Surprisingly, the fractional GJMS operator P2 can be recovered from the boundary operator B22
without finding a unique extension.

Proposition 4.8. Fix  2 .1; 2/ and setmD 3�2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2�2; 1

4
n2�.2�/2 62 �pp.��gC/. Let � be a  -admissible defining function. Suppose that

U 2 C satisfies (
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2
0 U D f on M.

Then

P2f D
d

8. � 1/
B
2
2U: (4-17)

Proof. Set

 D
1

2.1� /
B
2
2�2U:

Let u1 D P
�
1
2
nC 

�
f and u2 D P

�
1
2
nC 2 � 

�
 and set QU D ��

n�2
2 .u1 C u2/. It follows from

Corollary 4.5 that QU satisfies 8̂̂<̂
:̂
Lm4;�

QU D 0 in X,

B
2
0
QU D f on M,

B
2
2�2

QU D 2.1� / on M:

(4-18)

By uniqueness of solutions of (4-18), we have U D QU. Equation (4-17) now follows from Corollary 4.5. �

5. The energy inequality

We are now ready to prove the energy inequalities stated in the Introduction. As throughout this article,
we consider the cases  2 .0; 1/ and  2 .1; 2/ separately. Nevertheless, the basic ideas are the same. We
start by considering the energy functional E2 W C  ! R given by E2 .U /DQ2 .U; U /, where Q2 is
as in Theorem 3.2 and Theorem 3.7. Concretely, if  2 .0; 1/, then

E2 .U /D
Z
X

�
jrU j2C

n� 2

2
Jm� U

2

�
C
n� 2

2n

I
M

H2 .B
2
0 U/2; (5-1)



274 JEFFREY S. CASE

while if  2 .1; 2/, then

E2 .U /D
Z
X

�
.��U/

2
� .4P � .n� 2 C 2/Jm� g/.rU;rU/C

n� 2

2
Qm� U

2

�
C

I
M

�
2

 � 1
hrB

2
0 .U /;rB

2
2�2.U /i

C .n� 2/T
2
2 B

2
0 .U /B

2
2�2.U /C

n� 2

2
.�m�Jm� /.B

2
0 U/2

�
: (5-2)

Using the fact that C
f; 
D U C C0;0 for some, and hence any, fixed U 2 C

f; 
, we obtain a necessary

and sufficient condition for E2 to be uniformly bounded below in C
f; 

in terms of the bottom of the
L2-spectrum of Lm

2k;�
for kDbcC1. When E2 is uniformly bounded below, we construct a minimizer

which necessarily solves (4-1) or (4-13). This construction together with Proposition 4.1 or Proposition 4.6,
respectively, yields the result.

The case  2 .0; 1/. Following the outline above, we start by characterizing when E2 is uniformly
bounded below on C

f
in terms of the bottom of the spectrum of ��gC on a Poincaré–Einstein manifold

.XnC1;M n; gC/. This result generalizes an observation of Escobar [1994] in the case  D 1
2

, and corrects
an error in the remark following the statement of [González and Qing 2013, Theorem 1.4].

Proposition 5.1. Fix  2 .0; 1/ and set m D 1 � 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2 � 2 62 �pp.��gC/. Let � be a -admissible defining function and consider

.X; �2gC; �;m; 1/. Fix f 2 C1.M/. Then

inf
U2C

f

E2 .U / > �1 (5-3)

if and only if
�1.��gC/ >

1
4
n2� 2: (5-4)

Proof. Fix U 2 C
f

, so that C
f
D U C C0. By definition,

�1.L
m
2;�/D inf

˚
E2 .V /

ˇ̌
V 2 C0 ;

R
X V

2 D 1
	
:

Since .Lm2;�/C D��gC �
1
4
n2C 2, we have that �1.Lm2;�/ > 0 if and only if (5-4) holds.

Next, given any V 2 C0 and t 2 R, we compute that

E2 .U C tV /D t2E2 .V /C 2tQ2 .U; V /C E2 .U /: (5-5)

If (5-4) does not hold, then there is a V 2 C0 such that E2 .V /< 0. In particular, inserting this V into (5-5)
and letting t !1 shows that (5-3) does not hold. If (5-4) holds, then Theorem 3.2 and (5-5) imply that

E2 .U CV /� �1.Lm2;�/
Z
X

V 2C 2

�Z
X

.Lm2;�U/
2

�1
2
�Z
X

V 2
�1
2

C E2 .U /

for any V 2 C0. An application of the Cauchy–Schwarz inequality yields a lower bound for E2 .U CV /
which depends only on U. In particular, (5-3) holds. �



SOME ENERGY INEQUALITIES INVOLVING FRACTIONAL GJMS OPERATORS 275

We next implement the minimization scheme described at the beginning of this section to prove
Theorem 1.1. For convenience, we restate the result here.

Theorem 5.2. Fix  2 .0; 1/ and set mD 1� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
which satisfies (5-4). Let � be a -admissible defining function with expansion (2-9) and consider
.X; �2gC; �;m; 1/. For any f 2 C1.M/, it holds thatZ
X

�
jrU j2C

mCn� 1

2
Jm� U

2

�
�m dvol� �

2

d

�I
M

fP2f dvol�
n� 2

2
d

I
M

f̂ 2 dvol
�

(5-6)

for all U 2W 1;2.X; �m dvol/ with TrU D f . Moreover, equality holds if and only if Lm2;�U D 0.

Proof. From (5-1) and Proposition 5.1 we observe that the left-hand side of (5-6) is uniformly bounded
below in C

f
. Let U 2W 1;2.X; �m dvol/ be a minimizer. Necessarily U solves (4-1). Theorem 3.2 and

Proposition 4.1 then imply that

E2 .U /D�
2

d

I
M

fP2f;

from which (5-6) immediately follows. �

The case  2 .1; 2/. We again start by finding a necessary and sufficient condition for the energy E2 to
be uniformly bounded below on C

f; 
.

Proposition 5.3. Fix  2 .1; 2/ and setmD 3�2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2�2; 1

4
n2�.2�/2 62 �pp.��gC/. Let � be a  -admissible defining function and consider

.X; �2gC; �;m; 1/. Fix f; 2 C1.M/. Then

inf
U2C

f; 

E .U / > �1 (5-7)

if and only if

�1.L
m
4;�/ > 0: (5-8)

Moreover, if �1.��gC/ >
1
4
n2� .2� /2, then (5-8) holds.

Proof. Arguing as in the proof of Proposition 5.1, but using Theorem 3.7 instead of Theorem 3.2, yields
the equivalence of (5-7) and (5-8).

Suppose now that �1.��gC/>
1
4
n2�.2�/2. It follows immediately from (4-12) that (5-8) holds. �

We next implement the minimization scheme to derive the following improvement of Theorem 1.2.

Theorem 5.4. Fix  2 .1; 2/ and set mD 3� 2 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
which satisfies (5-8). Let � be a -admissible defining function with expansion (2-9) and consider
.X; �2gC; �;m; 1/. For any f; 2 C1.M/, it holds that
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X

�
.��U/

2
� .4P � .n� 2 C 2/Jm� g/.rU;rU/C

n� 2

2
Qm� U

2

�
�
8. � 1/

d

�I
M

fP2f �
n� 2

2
d

I
M

f̂ 2
�
C

d

2. � 1/

I
M

 P4�2 

C 4

I
M

�
hrf;r iC

.n� 2/.2� /

2
.J C 4. � 1/�2/f  

�
(5-9)

for all U 2W 2;2.X; �m dvol/ with TrU D .f;  /. Moreover, equality holds if and only if Lm4;�U D 0.

Proof. From (4-8), (5-2) and Proposition 5.3, we observe that the left-hand side of (5-9) is uniformly
bounded below in C

f; 
. Let U 2W 2;2.X; �m dvol/ be a minimizer. Necessarily U solves (4-18). Note

that the factorization (4-12) and the assumption (5-8) together imply that 1
4
n2�2; 1

4
n2�.2�/2 62

�pp.��gC/. Therefore, by Theorem 3.7 and Corollary 4.5,

E2 .U /D
8. � 1/

d

I
M

fP2f C 8.1� /.2� / d
�1
2�

I
M

 P4�2 :

The conclusion follows from (2-2). �

6. A sharp Sobolev inequality

As an application of Theorem 5.4, we prove the following sharp Sobolev trace inequality for  -admissible
compactifications of hyperbolic space with  2 .1; 2/. This statement is more general than Theorem 1.3
in that it involves the full trace on C and it allows for arbitrary  -admissible compactifications.

Theorem 6.1. Fix  2 .1; 2/ and setmD3�2 . Choose n2N such that n>2 and let � be a  -admissible
defining function on hyperbolic space .HnC1; Sn; gC/. Then, in terms of .H; �2gC; �;m; 1/,

E2 .U /� c.2/n;

�I
Sn
jf j

2n
n�2

�n�2
n

C
1
4
c
.2/
n;2�

�I
Sn
j j

2n
n�4C2

�n�4C2
n

for all U 2 C, where f is the trace of U, ˆ is as in (2-9), and

c.2/n; D 8�
 �.2� /

�./

�
�
1
2
.nC 2/

�
�
�
1
2
.n� 2/

� ���12n�
�.n/

�2
n

:

Moreover, equality holds if and only if Lm4;�U D0 and both f
4

n�2 .�2gC/jTSn and 
4

n�4C2 .�2gC/jTSn

are Einstein with positive scalar curvature.

Proof. Since �1.��gC/D
1
4
n2, Theorem 5.4 implies that

E2 .U /�
8. � 1/

d

I
Sn
fP2f C

d

2. � 1/

I
Sn
 P4�2 (6-1)

for all U2 C, where f and  are as in (2-12). The conformal covariance of the fractional GJMS operators
and the sharp fractional Sobolev inequality [Beckner 1993; Cotsiolis and Tavoularis 2004; Frank and
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Lieb 2012; Lieb 1983] together imply thatI
Sn
fP2f � 2

2�
�
�
1
2
.nC 2/

��
1
2
.n� 2/

� ���12n�
�.n/

�2
n
�I

Sn
jf j

2n
n�2

�n�2
n

(6-2)

with equality if and only if f
4n
n�2 .�2gC/jTSn is Einstein with positive scalar curvature. Combining (6-1),

(6-2) and the corresponding result for P4�2 yields the desired result. �

Proof of Theorem 1.3. It is straightforward to check that .SnC1
C

; d�2; xnC1; m; 1/ satisfies

Lm4;� D
�
��� C

1
4
..mCn/2� 1/

��
��� C

1
4
..mCn/2� 9/

�
:

Since gCD x�2nC1d�
2 satisfies RicgC D�ngC, we see find that xnC1 is a  -admissible defining function

for hyperbolic space. Applying Theorem 6.1 then yields the desired conclusion. �

Appendix: Proof of the Sobolev trace theorem

The proof of Theorem 5.4 requires the Sobolev space W 2;2.XnC1; �m dvol/ and its trace onto H  .M/˚

H 2� .M/. Since our definitions of W 2;2.XnC1; �m dvol/ and the trace via the space C are nonstan-
dard — the usual approach is via completions of C1.X/ [Triebel 1978] — we prove the existence of the
trace map.

Theorem A.1. Fix  2 .1; 2/ and setmD 3�2 . Let .XnC1; g; �;m; 1/ be a  -admissible smooth metric
measure space with nonempty boundary M D @X. There is a unique bounded linear operator

Tr WW 2;2.X; �m dvol/!H  .M/˚H 2� .M/

such that Tr.U /D .f;  / for all U 2 C
f; 

. Moreover, there is a continuous mapping

E WH  .M/˚H 2� .M/!W 2;2.X; �m dvol/

such that Tr ıE is the identity map on H  .M/˚H 2� .M/.

The proof of Theorem A.1 involves two steps. First, we prove the corresponding result in upper half
space .RnC1

C
; dy2 ˚ dx2; y;m; 1/ for RnC1

C
D .0;1/ � Rn and y the standard coordinate on .0;1/.

Second, we use coordinate charts to pull the Euclidean result back to  -admissible smooth metric measure
spaces. Indeed, the second step is routine, and the proof will be omitted. The first step is carried
out via the extension theorems for the fractional Laplacian [Caffarelli and Silvestre 2007; Yang 2013].
To that end, define C

f; 
and C as in Section 2 using Schwartz functions to obtain the completion

W 2;2.RnC1
C

; ym dvol/, and recall that the H  - and H 2� -norms defined in Section 2 are equivalent to
the ones defined via Fourier transform.

Theorem A.2. Fix  2 .1; 2/ and set mD 3� 2 . There is a unique bounded linear operator

Tr WW 2;2.RnC1
C

; ym dvol/!H  .Rn/˚H 2� .Rn/ (A-1)
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such that Tr.U /D .f;  / for any U 2 C
f; 

. Moreover, there is a bounded linear operator

E WH  .Rn/˚H 2� .Rn/!W 2;2.RnC1
C

; ym dvol/ (A-2)

such that Tr ıE is the identity map on H  .Rn/˚H 2� .Rn/.

Proof. Combining Theorem 5.4 and the proof of [Yang 2013, Theorem 3.1], we find that for any U2 C
f; 

,
it holds thatZ

R
nC1
C

.��U/
2
�
8. � 1/

d
k.��/


2 f k22C 4

I
Rn
hrf;r iC

d

2. � 1/
k.��/

2�
2  k22 (A-3)

with equality if and only if U is the unique solution to8̂<̂
:
�2�U D 0 in .0;1/�Rn;

U.0; x/D f .x/ for all x 2 Rn;

limy!0 ym@yU.y; x/D 2. � 1/ for all x 2 Rn

(A-4)

with �� D�Cmy�1@y . Using integration by parts, it is straightforward to check thatZ
R
nC1
C

ˇ̌
r
2U Cmy�1.@yU/

2 dy˝ dy
ˇ̌2
D

Z
R
nC1
C

.��U/
2
� 4. � 1/

I
Rn
hrf;r i

for all U 2 C
f; 

. Combining this with (A-3) yieldsZ
R
nC1
C

ˇ̌
r
2U Cmy�1.@yU/

2 dy˝ dy
ˇ̌2
�
8. � 1/2

d
k.��/


2 f k22C

d

2
k.��/

2�
2  k22 (A-5)

with the same characterization of the equality case. It follows from (A-5) that Tr W C !H  ˚H 2� is
a bounded linear operator, and hence can be extended uniquely to a bounded linear operator as in (A-1).
Moreover, the map E.f; /DU obtained by solving (A-4) is linear and, by (A-5), bounded, whence can
be extended to a bounded linear operator as in (A-2). �
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EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV

PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized
control, for sufficiently small data, also in the presence of quasilinear perturbations, namely nonlinearities
containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use
a procedure of reduction to constant coefficients up to order zero (adapting a result of Baldi, Berti
and Montalto (2014)), the classical Ingham inequality and the Hilbert uniqueness method to prove the
controllability of the linearized operator. Then we prove and apply a modified version of the Nash–Moser
implicit function theorems by Hörmander (1976, 1985).
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1. Introduction

A question in control theory for PDEs regards the persistence of controllability under perturbations. In
this paper we study the effect of quasilinear perturbations (namely nonlinearities containing derivatives
of the highest order) on the controllability of the KdV equation. We consider equations of the form

ut + uxxx +N (x, u, ux , uxx , uxxx)= 0 (1-1)

on the circle x ∈ T := R/2πZ, with t ∈ R, where u = u(t, x) is real-valued, and N is a given real-valued
nonlinear function which is at least quadratic around u = 0. For solutions of small amplitude, (1-1) is a
quasilinear perturbation of the Airy equation ut + uxxx = 0, which is the linear part of KdV; then the
KdV nonlinear term uux can be included in N.

Motivated by a question, which was posed in [Kappeler and Pöschel 2003], about the possibility of
including the dependence on higher derivatives in nonlinear perturbations of KdV, equations of the form

MSC2010: 35Q53, 35Q93.
Keywords: control of PDEs, exact controllability, internal controllability, KdV equation, quasilinear PDEs, observability of

PDEs, HUM, Nash–Moser theorem.

281

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-2
http://dx.doi.org/10.2140/apde.2017.10.281
http://msp.org


282 PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

(1-1) have recently been studied in [Baldi, Berti, and Montalto 2014; 2016a; 2016b] in the context of
KAM theory. In this paper we study (1-1) from the point of view of control theory, proving its exact
controllability by means of an internal control, in arbitrary time, for sufficiently small data (Theorem 1.1).

Most of the known results about controllability of quasilinear PDEs deal with first-order quasilinear
hyperbolic systems of the form ut + A(u)ux = 0 (including quasilinear wave, shallow water, and Euler
equations); see, for example, [Li and Zhang 1998; Coron 2007, Chapter 6.2; Li and Rao 2003; Coron,
Glass, and Wang 2010; Alabau-Boussouira, Coron and Olive 2015]. Recent results for different kinds of
quasilinear PDEs are contained in [Alazard, Baldi, and Han-Kwan 2015] about the internal controllability
of 2-dimensional gravity-capillary water waves equations, and in [Alazard 2015] about the boundary
observability of 2- and 3-dimensional (fully nonlinear) gravity water waves. For a general introduction
to the theory of control for PDEs, see, for example, [Lions 1988; Micu and Zuazua 2005; Coron 2007],
while for important results in control for hyperbolic PDEs, see, for example, [Bardos, Lebeau, and Rauch
1992; Burq and Gérard 1997; Burq and Zworski 2012].

Regarding the KdV equation, the first controllability results are due to Zhang [1990] and Russell
[1991]. Among recent results, we mention the work by Laurent, Rosier and Zhang [2010] for large data.
A beautiful review on the literature on control for KdV can be found in [Rosier and Zhang 2009]. For
more on KdV, see the rich survey [Guan and Kuksin 2014], and the many references therein.

1A. Main result. We assume that the nonlinearity N (x, u, ux , uxx , uxxx) is at least quadratic around
u = 0; namely the real-valued function N : T×R4

→ R satisfies

|N (x, z0, z1, z2, z3)| ≤ C |z|2 ∀z = (z0, z1, z2, z3) ∈ R4, |z| ≤ 1. (1-2)

We assume that the dependence of N on uxx , uxxx is Hamiltonian, while no structure is required on its
dependence on u, ux . More precisely, we assume that

N (x, u, ux , uxx , uxxx)=N1(x, u, ux , uxx , uxxx)+N0(x, u, ux), (1-3)

where

N1(x, u, ux , uxx , uxxx)= ∂x{(∂uF )(x, u, ux)}− ∂xx{(∂uxF )(x, u, ux)}

for some function F : T×R2
→ R. (1-4)

Note that the case N=N1, N0=0 corresponds to the Hamiltonian equation ∂t u = ∂x∇H(u), where the
Hamiltonian is

H(u)= 1
2

∫
T

u2
x dx +

∫
T

F(x, u, ux) dx (1-5)

and ∇ denotes the L2(T)-gradient. The unperturbed KdV is the case F =− 1
6 u3.

Notation. For periodic functions u(x), x ∈T, we expand u(x)=
∑

n∈Z uneinx, and, for s ∈R, we consider
the standard Sobolev space of periodic functions

H s
x := H s(T,R) := {u : T→ R : ‖u‖s <∞}, ‖u‖2s :=

∑
n∈Z

|un|
2
〈n〉2s, (1-6)
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where 〈n〉 := (1+ n2)1/2. We consider the space C([0, T ], H s
x ) of functions u(t, x) that are continuous

in time with values in H s
x . We will use the following notation for the standard norm in C([0, T ], H s

x ):

‖u‖T,s := ‖u‖C([0,T ],H s
x )
:= sup

t∈[0,T ]
‖u(t)‖s . (1-7)

For continuous functions a : [0, T ] → R, we will define

|a|T := sup{|a(t)| : t ∈ [0, T ]}. (1-8)

Theorem 1.1 (exact controllability). Let T > 0, and let ω ⊂ T be a nonempty open set. There exist
positive universal constants r , s1 such that, if N in (1-1) is of class Cr in its arguments and satisfies (1-2),
(1-3), (1-4), then there exists a positive constant δ∗ depending on T, ω, N with the following property.

Let uin, uend ∈ H s1(T,R) with
‖uin‖s1 +‖uend‖s1 ≤ δ∗.

Then there exists a function f (t, x) satisfying

f (t, x)= 0 for all x /∈ ω, for all t ∈ [0, T ],

belonging to C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all s < s1, such that the Cauchy

problem {
ut + uxxx +N (x, u, ux , uxx , uxxx)= f ∀(t, x) ∈ [0, T ]×T,

u(0, x)= uin(x)
(1-9)

has a unique solution u(t, x) belonging to C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all

s < s1 which satisfies
u(T, x)= uend(x). (1-10)

Moreover, for all s < s1,

‖u, f ‖C([0,T ],H s
x )
+‖∂t u, ∂t f ‖C([0,T ],H s−3

x )+‖∂t t u, ∂t t f ‖C([0,T ],H s−6
x ) ≤ Cs(‖uin‖s1 +‖uend‖s1) (1-11)

for some Cs > 0 depending on s, T, ω, N.

Remark 1.2. In Theorem 1.1 there is an arbitrarily small loss of regularity: if the initial and final data
uin, uend have Sobolev regularity H s1

x , then the control f and the solution u are continuous in time with
values in H s

x for all s < s1. Such loss of regularity is in some sense fictitious: it is due to our choice
of working with standard Sobolev spaces, but it could be avoided by working with the (slightly “worse-
looking”) weak spaces E ′a introduced by Hörmander [1985] (see Appendix B). What we actually prove is
that, if the initial and final data are in the weak space (H s1

x )
′ (i.e., the weak version à la Hörmander [1985]

of the Sobolev space H s1
x ), then f and u are continuous in time with values in the same space (H s1

x )
′. �

Remark 1.3. Our proof of Theorem 1.1 does not use results of existence and uniqueness for the Cauchy
problem (1-9). On the contrary, our method directly proves local existence and uniqueness for (1-9)
(see Theorem 1.4). This situation occurs quite often in control problems (see Remark 4.12 of [Coron
2007]). �
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1B. Description of the proof. It would be natural to try to solve the control problem (1-9)–(1-10) using
a fixed point argument or the usual implicit function theorem. However, this seems to be impossible
because of the presence of three derivatives in the nonlinear term. A similar difficulty was overcome
in [Alazard, Baldi, and Han-Kwan 2015] by using a suitable nonlinear iteration scheme adapted to
quasilinear problems. Such a nonlinear scheme requires solving a linear control problem with variable
coefficients at each step of the iteration, with no loss of regularity with respect to the coefficients (i.e.,
the solution must have the same regularity as the coefficients). In [Alazard, Baldi, and Han-Kwan 2015]
this is achieved by means of paradifferential calculus, together with linear transformations, Ingham-type
inequalities and the Hilbert uniqueness method.

As an alternative method, in this paper we use a Nash–Moser implicit function theorem. The Nash–
Moser approach also demands the solving of a linear control problem with variable coefficients, but it has
the advantage of requiring weaker estimates, allowing losses of regularity. The proof of such weaker esti-
mates is easier to obtain, and it does not require the use of powerful techniques like paradifferential calculus.
In this sense our Nash–Moser method is alternative to the method in [Alazard, Baldi, and Han-Kwan 2015]
(for a discussion about pseudo- and paradifferential calculus in connection with the Nash–Moser theorem,
see, for example, [Hörmander 1990; Alinhac and Gérard 2007]). On the other hand, the result that we obtain
with the Nash–Moser method is slightly weaker than the one in [Alazard, Baldi, and Han-Kwan 2015]
regarding the regularity of the solution of the nonlinear control problem with respect to the regularity of the
data: the arbitrarily small loss of regularity in Theorem 1.1 is discussed in Remark 1.2, while Theorem 1.1
of [Alazard, Baldi, and Han-Kwan 2015] has no loss of regularity also in the standard Sobolev spaces.

Nash–Moser schemes in control problems for PDEs have been used in [Beauchard 2005; 2008;
Beauchard and Coron 2006; Alabau-Boussouira, Coron and Olive 2015]. A discussion about Nash–Moser
as a method to overcome the problem of the loss of derivatives in the context of controllability for PDEs
can be found in [Coron 2007, Section 4.2.2]. Beauchard and Laurent [2010] were able to avoid the use
of the Nash–Moser theorem in semilinear control problems thanks to a regularizing effect. We remark
that Theorem 1.1 could also be proved without Nash–Moser (for example, by adapting the method of
[Alazard, Baldi, and Han-Kwan 2015]).

Now we describe our method in more detail. Given a nonempty open set ω ⊂ T, we first fix a
C∞ function χω(x) with values in the interval [0, 1] which vanishes outside ω, and takes value χω = 1
on a nonempty open subset of ω. Thus, given initial and final data uin, uend, we look for u, f that solve

P(u)= χω f,
u(0)= uin,

u(T )= uend,

(1-12)

where
P(u) := ut + uxxx +N (x, u, ux , uxx , uxxx). (1-13)

We define

8(u, f ) :=

P(u)−χω f
u(0)
u(T )

 (1-14)
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so that problem (1-12) is written as

8(u, f )= (0, uin, uend).

The crucial assumption to verify in order to apply any Nash–Moser theorem is the existence of a right
inverse of the linearized operator. The linearized operator 8′(u, f )[h, ϕ] at the point (u, f ) in the
direction (h, ϕ) is

8′(u, f )[h, ϕ] :=

P ′(u)[h] −χωϕ
h(0)
h(T )

. (1-15)

Thus we have to prove that, given any (u, f ) and any g := (g1, g2, g3) in suitable function spaces, there
exists (h, ϕ) such that

8′(u, f )[h, ϕ] = g. (1-16)

Moreover we have to estimate (h, ϕ) in terms of u, f , g in a “tame” way (an estimate is said to be tame
when it is linear in the highest norms; see (B-13) and (4-41)).

Problem (1-16) is a linear control problem. We observe that the linearized operator P ′(u)[h] is a
differential operator having variable coefficients also at the highest order (which is a consequence of
linearizing a quasilinear PDE). Explicitly, it has the form

P ′(u)[h] = ∂t h+ (1+ a3(t, x)) ∂xxx h+ a2(t, x) ∂xx h+ a1(t, x) ∂x h+ a0(t, x)h.

We solve (1-16) in Theorem 4.5. Note that the choice of the function spaces is not given a priori: to fix a
suitable functional setting is part of the problem.

Theorem 4.5 is proved by adapting a procedure of reduction to constant coefficients developed in
[Baldi, Berti, and Montalto 2014; 2016a]. Such a procedure conjugates P ′(u) to an operator L5 (see
(2-57)) having constant coefficients up to a bounded remainder. This conjugation is achieved by means of
changes of the space variable, reparametrization of time, multiplication operators, and Fourier multipliers.
Using the Ingham inequality and a perturbation argument we prove the observability of L5. Then we
prove the observability of P ′(u), exploiting the explicit formulas of the transformations that conjugate
P ′(u) to L5. The linear control problem (1-16) is solved in L2

x by the HUM (Hilbert uniqueness method).
Then further regularity of the solution (h, ϕ) of (1-16) is proved by adapting an argument used by Dehman
and Lebeau [2009], Laurent [2010], and Alazard, Baldi, and Han-Kwan [2015].

To conclude the proof of Theorem 1.1 we apply Theorem B.1, which is a modified version of two
Nash–Moser implicit function theorems (Theorem 2.2.2 in [Hörmander 1976] and the main theorem
in [Hörmander 1985]; see also [Alinhac and Gérard 2007]). With respect to the abstract theorem in
[Hörmander 1985], our Theorem B.1 assumes slightly stronger hypotheses on the nonlinear operator, and
it removes two conditions that are assumed in [Hörmander 1985], which are the compact embeddings in
the codomain scale of Banach spaces and the continuity of the approximate right inverse of the linearized
operator with respect to the approximate linearization point. This improvement is obtained by adapting the
iteration scheme introduced in [Hörmander 1976]. On the other hand, the Nash–Moser implicit function
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theorem in that work holds for Hölder spaces with noninteger indices, and it does not apply to Sobolev
spaces (in particular, Theorem A.11 of [Hörmander 1976] does not hold for Sobolev spaces).

This method is not confined to KdV, and it could be applied to prove controllability of other quasilinear
evolution PDEs.

The use of Ingham-type inequalities and the HUM is classical in control theory (see, for example,
[Haraux 1989; Micu and Zuazua 2005; Komornik and Loreti 2005; Kahane 1962] for Ingham-type
inequalities and [Lions 1988; Micu and Zuazua 2005; Coron 2007; Komornik 1994] for the HUM).
As mentioned above, the Nash–Moser theorem has also been used in control theory (see, for example,
[Beauchard 2005; 2008; Beauchard and Coron 2006; Alabau-Boussouira, Coron and Olive 2015]). It
was first introduced by Nash [1956], and then several refinements were developed afterwards; see, for
example, [Moser 1961; Zehnder 1975; 1976; Hamilton 1982; Gromov 1972; Hörmander 1976; 1985;
1990; Berti, Bolle, and Procesi 2010; Berti, Corsi, and Procesi 2015; Ekeland 2011; Ekeland and Séré
2015]. For our problem, Hörmander’s versions [1976; 1985] seem to be the best ones concerning the loss
of regularity of the solution with respect to the regularity of the data (see also Remark 1.2). As already
said, the theorems in [Hörmander 1976; 1985] cannot be applied directly, but they can be adapted to our
goal. This is the content of Appendix B.

1C. Byproduct: a local existence and uniqueness result. As a byproduct, with the same technique and
no extra work, we have the following existence and uniqueness theorem for the Cauchy problem of the
quasilinear PDE (1-1).

Theorem 1.4 (local existence and uniqueness). There exist positive universal constants r , s0 such that, if
N in (1-1) is of class Cr in its arguments and satisfies (1-2), (1-3), (1-4), then the following property holds.
For all T > 0 there exists δ∗ > 0 such that for all uin ∈ H s0

x and f ∈ C([0, T ], H s0
x )∩C1([0, T ], H s0−6

x )

(possibly f = 0) satisfying
‖uin‖s0 +‖ f ‖T,s0 +‖∂t f ‖T,s0−6 ≤ δ∗, (1-17)

the Cauchy problem{
ut + uxxx +N (x, u, ux , uxx , uxxx)= f, (t, x) ∈ [0, T ]×T,

u(0, x)= uin(x)
(1-18)

has one and only one solution u ∈ C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all s < s0.

Moreover, for all s < s0,

‖u‖C([0,T ],H s
x )
+‖∂t u‖C([0,T ],H s−3

x )+‖∂t t u‖C([0,T ],H s−6
x )

≤ Cs
(
‖uin‖s0 +‖ f ‖C([0,T ],H s0

x )
+‖∂t f ‖

C([0,T ],H
s0−6
x )

)
(1-19)

for some Cs > 0 depending on s, T, N.

Remark 1.5. Theorem 1.4 is not sharp: we expect that better results for the Cauchy problem (1-18) can
be proved by using a paradifferential approach. �

Remark 1.6. The loss of regularity in Theorem 1.4 is of the same type as the one in Theorem 1.1; see
the discussion in Remark 1.2. �



EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV 287

1D. Organization of the paper. In Section 2 we describe the transformations that conjugate the linearized
operator P ′(u) to constant coefficients up to a bounded remainder, and we give quantitative estimates
on these transformations. In Section 3 we exploit these results to prove the observability of P ′(u). In
Section 4 we use observability to solve the linear control problem (1-16) via the HUM (Theorem 4.5) and
we fix suitable function spaces (4-36)–(4-37). In Section 5 we prove Theorems 1.1 and 1.4 by applying
Theorem B.1. In Appendix A we prove well-posedness with tame estimates for all the linear operators
involved in the reduction procedure. These well-posedness results are used many times in Sections 3,
4, and 5. In Appendix B we prove our Nash–Moser theorem, Theorem B.1. In Appendix C we recall
standard tame estimates that are used in the rest of the paper.

2. Reduction of the linearized operator to constant coefficients

In this section we consider some changes of variables that conjugate the linearized operator to constant
coefficients up to a bounded remainder. This reduction procedure closely follows the analysis in [Baldi,
Berti, and Montalto 2014; 2016a], with some adaptations.

The linearized operator P ′(u) is

P ′(u)[h] = ∂t h+ (1+ a3) ∂xxx h+ a2 ∂xx h+ a1 ∂x h+ a0h, (2-1)

where the coefficients ai =ai (t, x), i=0, . . . , 3, are real-valued functions of (t, x)∈[0, T ]×T, depending
on u by

ai = ai (u) := (∂ziN )(x, u, ux , uxx , uxxx), i = 0, . . . , 3 (2-2)

(recall the notation N =N (x, z0, z1, z2, z3)). Note that a2 = 2∂xa3 because of the Hamiltonian structure
of the component N1 of the nonlinearity; see (1-3)–(1-4).

Lemma 2.1. Let N ∈Cr (T×R4,R) satisfy (1-2). For all 1≤ s ≤ r−3, and for all u ∈C2([0, T ], H s+3
x )

such that ‖u, ∂t u, ∂t t u‖T,4 ≤ 1, the coefficients ai (u) satisfy

‖ai (u), ∂t ai (u), ∂t t ai (u)‖T,s ≤ C‖u, ∂t u, ∂t t u‖T,s+3, i = 0, 1, 2, 3. (2-3)

Proof. Apply standard tame estimates for composition of functions; see Lemma C.2. �

Now we apply the reduction procedure to any linear operator of the form (2-1) where

a2(t, x)= c ∂xa3(t, x) (2-4)

for some constant c ∈R (note that P ′(u) has c= 2 because of the Hamiltonian structure of N1). Regarding
the loss of regularity with respect to the space variable x , the estimates in the sequel will be not sharp. In
the whole section we consider T > 0 fixed, and, unless otherwise specified, all the constants may depend
on T.

Remark 2.2. Given a linear operator L0 of the form (2-1), define the operator L∗0 as

L∗0h := −∂t h− ∂xxx{(1+ a3)h}+ ∂xx(a2h)− ∂x(a1h)+ a0h. (2-5)
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Note that −L∗0 is still an operator of the form (2-1), namely

−L∗0 = ∂t + (1+ a∗3) ∂xxx + a∗2 ∂xx + a∗1 ∂x + a∗0 , (2-6)

with
a∗3 := a3, a∗2 := 3(a3)x − a2,

a∗1 := 3(a3)xx − 2(a2)x + a1, a∗0 := (a3)xxx − (a2)xx + (a1)x − a0.
(2-7)

It follows from (2-6), (2-7) that if L0 satisfies (2-4), then also−L∗0 satisfies (2-4) (with a different constant),
namely a∗2 = (3− c) ∂xa∗3 . In particular, if L0 satisfies (2-4) with c = 2 (which is the case if L0 = P ′(u)),
then −L∗0 satisfies (2-4) with c = 1. �

2A. Step 1: change of the space variable. We consider a t-dependent family of diffeomorphisms of the
circle T of the form

y = x +β(t, x), (2-8)

where β is a real-valued function, 2π periodic in x , defined for t ∈ [0, T ], with |βx(t, x)| ≤ 1
2 for all

(t, x) ∈ [0, T ]×T. We define the linear operator

(Ah)(t, x) := h(t, x +β(t, x)). (2-9)

The operator A is invertible, with inverse A−1, transpose AT (transpose with respect to the usual L2
x -scalar

product) and inverse transpose A−T given by

(A−1v)(t, y)= v(t, y+ β̃(t, y)),

(AT v)(t, y)= (1+ β̃y(t, y)) v(t, y+ β̃(t, y)),

(A−T h)(t, x)= (1+βx(t, x)) h(t, x +β(t, x)),

(2-10)

where y 7→ y+ β̃(t, y) is the inverse diffeomorphism of (2-8), namely

x = y+ β̃(t, y) ⇐⇒ y = x +β(t, x). (2-11)

Given the operator

L0 := ∂t + (1+ a3(t, x)) ∂xxx + a2(t, x) ∂xx + a1(t, x) ∂x + a0(t, x), (2-12)

with a2(t, x) = c ∂xa3(t, x), we calculate the conjugate A−1L0A. The conjugate A−1aA of any multi-
plication operator a : h(t, x) 7→ a(t, x)h(t, x) is the multiplication operator (A−1a) that maps v(t, y) to
(A−1a)(t, y) v(t, y). By conjugation, the differential operators become

A−1 ∂tA= ∂t + (A−1βt) ∂y, A−1 ∂xA= {A−1(1+βx)} ∂y .

Then A−1 ∂xxA= (A−1 ∂xA)(A−1 ∂xA), and similarly for the conjugate of ∂xxx . We calculate

L1 :=A−1L0A= ∂t + a4(t, y) ∂yyy + a5(t, y) ∂yy + a6(t, y) ∂y + a7(t, y), (2-13)

where
a4=A−1

{(1+a3)(1+βx)
3
}, a5=A−1

{a2(1+βx)
2
+3(1+a3)βxx(1+βx)},

a6=A−1
{βt+(1+a3)βxxx+a2βxx+a1(1+βx)}, a7=A−1a0.

(2-14)
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We look for β(t, x) such that the coefficient a4(t, y) of the highest-order derivative ∂yyy in (2-13) does
not depend on y; namely a4(t, y)= b(t) for some function b(t) of t only. This is equivalent to

(1+ a3(t, x))(1+βx(t, x))3 = b(t); (2-15)

namely

βx = ρ0, ρ0(t, x) := b(t)1/3(1+ a3(t, x))−1/3
− 1. (2-16)

Equation (2-16) has a solution β, periodic in x , if and only if
∫

T
ρ0(t, x) dx = 0 for all t . This condition

uniquely determines

b(t)=
(

1
2π

∫
T

(1+ a3(t, x))−1/3 dx
)−3

. (2-17)

Then we fix the solution (with zero average) of (2-16),

β(t, x) := (∂−1
x ρ0)(t, x), (2-18)

where ∂−1
x h is the primitive of h with zero average in x (defined in Fourier). We have conjugated L0 to

L1 =A−1L0A= ∂t + a4(t) ∂yyy + a5(t, y) ∂yy + a6(t, y) ∂y + a7(t, y), (2-19)

where a4(t) := b(t) is defined in (2-17).
We prove here some bounds that will be used later.

Lemma 2.3. There exist positive constants σ , δ∗ with the following properties. Let s ≥ 0, and let
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a2 = c ∂xa3 for some c ∈ R. Moreover, assume
∂t t a3, ∂t a3, a3, ∂t a1, a1, a0 ∈ C([0, T ], H s+σ

x ). Let

δ(µ) := ‖∂t t a3, ∂t a3, a3, ∂t a1, a1, a0‖T,µ+σ ∀µ ∈ [0, s]. (2-20)

If δ(0)≤ δ∗, then the operator A defined in (2-9), (2-18), (2-16), (2-17) belongs to C([0, T ],L(Hµ
x )) for

all µ ∈ [0, s] and satisfies

‖Ah‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-21)

for some positive Cµ depending on µ. The inverse operator A−1, the transpose AT and the inverse
transpose A−T all satisfy the same estimate (2-21) as A.

The functions a4(t)=b(t), a5(t, y), a6(t, y), a7(t, y), β(t, x), β̃(t, y) defined in (2-17), (2-16), (2-18),
(2-14), (2-11) belong to C([0, T ], Hµ

x ) for all µ ∈ [0, s] and satisfy

‖β, β̃, a5, ∂t a5, a6, ∂t a6, a7‖T,µ+ |a4− 1, a′4|T ≤ Cµδ(µ). (2-22)

Finally, the coefficient a5(t, y) satisfies∫
T

a5(t, y) dy = 0 ∀t ∈ [0, T ]. (2-23)
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Proof. The proof of (2-21) and (2-22) is a straightforward application of the standard tame estimates for
products, composition of functions and changes of variable; see Appendix C.

To prove (2-23), we use the definition of b(t) in (2-17), the equality a2 = c ∂xa3, and the change of
variables (2-11), and we compute∫

T

a5(t, y) dy =
∫

T

[
a2(1+βx)

2
+ 3(1+ a3)βxx(1+βx)

]
(1+βx) dx

= b(t)
{

c
∫

T

∂xa3(t, x)
1+ a3(t, x)

dx + 3
∫

T

βxx(t, x)
1+βx(t, x)

dx
}

= b(t)
{

c
∫

T

∂x log(1+ a3(t, x)) dx + 3
∫

T

∂x log(1+βx(t, x)) dx
}
= 0. �

2B. Step 2: time reparametrization. The goal of this section is to obtain a constant coefficient instead
of a4(t). We consider a diffeomorphism ψ : [0, T ] → [0, T ] which gives the change of the time variable

ψ(t)= τ ⇐⇒ t = ψ−1(τ ), (2-24)

with ψ(0)= 0 and ψ(T )= T. We define

(Bh)(t, y) := h(ψ(t), y), (B−1v)(τ, y) := v(ψ−1(τ ), y). (2-25)

By conjugation, the differential operators become

B−1 ∂tB = ρ(τ)∂τ , B−1 ∂yB = ∂y, ρ := B−1(ψ ′), (2-26)

and therefore (2-19) is conjugated to

B−1L1B = ρ ∂τ + (B−1a4) ∂yyy + (B−1a5) ∂yy + (B−1a6) ∂y + (B−1a7). (2-27)

We look for ψ such that the (variable) coefficients of the highest-order derivatives (∂τ and ∂yyy) are
proportional; namely

(B−1a4)(τ )= mρ(τ)= m(B−1(ψ ′))(τ ) (2-28)

for some constant m ∈ R. Since B is invertible, this is equivalent to requiring that

a4(t)= mψ ′(t). (2-29)

Integrating on [0, T ] determines the value of the constant m, and then we fix ψ :

m := 1
T

∫ T

0
a4(t) dt, ψ(t) := 1

m

∫ t

0
a4(s) ds. (2-30)

With this choice of ψ we get

B−1L1B = ρ L2, L2 := ∂τ +m∂yyy + a8(τ, y) ∂yy + a9(τ, y) ∂y + a10(τ, y), (2-31)
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where

a8(τ, y) :=
1

ρ(τ)
(B−1a5)(τ, y), a9(τ, y) :=

1
ρ(τ)

(B−1a6)(τ, y), a10(τ, y) :=
1

ρ(τ)
(B−1a7)(τ, y).

(2-32)
Note that for all τ ∈ [0, T ] one has∫

T

a8(τ, y) dy =
1

(B−1ψ ′)(τ )

∫
T

(B−1a5)(τ, y) dy =
1

ψ ′(t)

∫
T

a5(t, y) dy = 0. (2-33)

By straightforward calculations, we prove the following lemma.

Lemma 2.4. There exists δ∗ > 0 with the following properties. Let a4 ∈C([0, T ],R) with |a4(t)−1| ≤ δ∗
for all t ∈ [0, T ]. Then the operator B defined in (2-25), (2-30) is an invertible isometry of C([0, T ], H s

x )

for all s ≥ 0; namely,
‖Bh‖T,s = ‖h‖T,s ∀h ∈ C([0, T ], H s

x ), s ≥ 0. (2-34)

Moreover there exists a positive constant σ with the following property. Let a4 ∈ C1([0, T ],R), with
|a4(t)− 1| ≤ δ∗ and |a′4(t)| ≤ 1 for all t ∈ [0, T ]. Let s ≥ 0, and a5, ∂t a5, a6, ∂t a6, a7 ∈ C([0, T ], H s

x )

with
∫

T
a5(t, y) dy = 0 for all t ∈ [0, T ]. Then the functions a8(t, x), a9(t, x), a10(t, x), ψ(t), ρ(t) and

the constant m defined in (2-32), (2-30), (2-26) satisfy

|m− 1| + |ψ ′− 1, ρ− 1|T +‖a8, ∂τa8, a9, ∂τa9, a10‖T,s ≤ C‖a5, ∂t a5, a6, ∂t a6, a7‖T,s, (2-35)

where C is independent of s. Moreover one has∫
T

a8(τ, y) dy = 0 ∀τ ∈ [0, T ]. (2-36)

2C. Step 3: multiplication. In this section we eliminate the term a8(τ, y) ∂yy from the operator L2

defined in (2-31). To this end, we consider the multiplication operator M defined as

Mh(τ, y) := q(τ, y)h(τ, y), (2-37)

with q : [0, T ]×T→ R. We compute

M−1L2M= ∂τ +m ∂yyy + a11(τ, y) ∂yy + a12(τ, y) ∂y + a13(τ, y), (2-38)
with

a11 := a8+
3mqy

q
, a12 := a9+

2a8qy + 3mqyy

q
, a13 :=

L2q
q
. (2-39)

We want to choose q such that a11 = 0, which is equivalent to

3mqy + a8q = 0. (2-40)

Thanks to (2-36), equation (2-40) admits the space-periodic solution

q(τ, y) := exp
{
−

1
3m
(∂−1

y a8)(τ, y)
}
. (2-41)

As a consequence, we get

L3 :=M−1L2M= ∂τ +m ∂yyy + a12(τ, y) ∂y + a13(τ, y). (2-42)
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The proof of the following lemma is straightforward.

Lemma 2.5. Let s ≥ 0 and let a8 ∈ C([0, T ], H s
x ) with

∫
T

a8(τ, y) dy = 0 for all τ ∈ [0, T ]. Then for all
µ ∈ [0, s], the operator M defined in (2-37), (2-41) and its inverse M−1 belong to C([0, T ],L(Hµ

x )).
Note that M=MT.

Furthermore, there exist two positive constants δ∗, σ with the following properties. Assume that
a8, ∂t a8, a9, ∂t a9, a10 ∈ C([0, T ], H s+σ

x ) and let

δ(µ) := ‖a8, ∂t a8, a9, ∂t a9, a10‖T,µ+σ . (2-43)

Then if δ(0)≤ δ∗, for all µ ∈ [0, s] the operator M and its inverse M−1 satisfy

‖M±1h‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-44)

for some positive Cµ depending on µ. Moreover, the functions a12(τ, y), a13(τ, y), q(τ, y) defined in
(2-39), (2-41) satisfy

‖q − 1, a12, ∂t a12, a13‖T,µ ≤ Cµδ(µ). (2-45)

2D. Step 4: translation of the space variable. We consider the change of the space variable z= y+ p(τ )
and the operators

T h(τ, y) := h(τ, y+ p(τ )), T −1v(τ, z) := v(τ, z− p(τ )), (2-46)

where p is a function p : [0, T ] → R. The differential operators become T −1∂yT = ∂z and T −1∂τT
= ∂τ + p′(τ )∂z . This is a special, simple case of the transformation A of Section 2A. Thus

L4 := T −1L3T = ∂τ +m ∂zzz + a14(τ, z) ∂z + a15(τ, z), (2-47)

where

a14(τ, z) := p′(τ )+ (T −1a12)(τ, z), a15(τ, z) := (T −1a13)(τ, z). (2-48)

Now we look for p(τ ) such that a14 has zero space average. We fix

p(τ ) := −
1

2π

∫ τ

0

∫
T

a12(s, y) dy ds. (2-49)

With this choice of p, after renaming the space-time variables z = x and τ = t , we have

L4 = ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x),
∫

T

a14(t, x) dx = 0 ∀t ∈ [0, T ]. (2-50)

With direct calculations we prove the following estimates.

Lemma 2.6. Let a12 ∈ C([0, T ], L2
x). Then the operator T defined in (2-46) and (2-49) belongs to

C([0, T ],L(H s
x )) for all s ∈ [0,+∞). In fact T is an isometry, namely

‖T h‖T,s = ‖h‖T,s ∀h ∈ C([0, T ], H s
x ). (2-51)

Moreover, T is invertible and its transpose is T T
= T −1.
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Let s ≥ 0, and let a12, ∂t a12, a13 ∈ C([0, T ], H s+1
x ) with ‖a12‖T,0 ≤ 1. Then the functions a14, a15, p

defined in (2-48) and (2-49) satisfy

sup
t∈[0,T ]

|p(t)| + ‖a14, ∂t a14, a15‖T,s ≤ C‖a12, ∂t a12, a13‖T,s+1, (2-52)

where C is independent of s.

2E. Step 5: elimination of the order one. The goal of this section is to eliminate the term a14(t, x) ∂x .
Consider an operator S of the form

Sh := h+ γ (t, x) ∂−1
x h, (2-53)

where γ (t, x) is a function to be determined. Note ∂−1
x ∂x = ∂x∂

−1
x = π0, where π0 h := h− 1

2π

∫
T

h dx .
We directly calculate

L4S −S(∂t +m∂xxx)= a16 ∂x + a17+ a18 ∂
−1
x , (2-54)

where

a16 := 3mγx + a14, a17 := a15+ (3mγxx + a14γ )π0, a18 := γt +mγxxx + a14γx + a15γ. (2-55)

We fix γ as

γ := −
1

3m
∂−1

x a14, (2-56)

so that a16 = 0. By the following Lemma 2.7, S is invertible, and we obtain

L5 := S−1L4S = ∂t +m ∂xxx +R, R := S−1(a17+ a18 ∂
−1
x ). (2-57)

Lemma 2.7. There exist positive constants σ , δ∗ with the following properties. Let s ≥ 0, let a14, a15 be
two functions with a14, ∂t a14, a15 ∈ C([0, T ], H s+σ

x ) and
∫

T
a14(t, x) dx = 0. Let

δ(µ) := ‖a14, ∂t a14, a15‖T,µ+σ ∀µ ∈ [0, s]. (2-58)

If δ(0)≤ δ∗, then the operator S defined in (2-53), (2-56) belongs to C([0, T ],L(Hµ
x )) for all µ ∈ [0, s]

and satisfies

‖Sh‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-59)

for some positive Cµ depending on µ. The operator S is invertible, and its inverse S−1, its transpose ST

and its inverse transpose S−T all satisfy the same estimate (2-59) as S.
The operator R defined in (2-57) belongs to C([0, T ],L(Hµ

x )) for all µ ∈ [0, s] and it satisfies

‖Rh‖T,µ ≤ Cµ
(
δ(0)‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ). (2-60)

The transpose RT belongs to C([0, T ],L(Hµ
x )) and satisfies the same estimate (2-60) as R.

Proof. Estimate ‖γ ∂−1
x h‖T,µ by the usual tame estimates for the product of two functions (Lemma C.1),

then use Neumann series in its tame version. �
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3. Observability

In this section we prove the observability of linear operators of the form (2-12). Such an observability
property will be used in Section 4 in order to prove controllability of the linearized problem. We split the
proof into several simple lemmas, starting with a direct consequence of the Ingham inequality. Since we
actually need observability of a Cauchy problem flowing backwards in time (see Lemma 4.2) with datum
at time T, we will accordingly state our lemmas.

Lemma 3.1 (Ingham inequality for ∂t +m ∂xxx ). For every T > 0 there exists a positive constant C1(T )
such that, for all (wn)n∈Z ∈ `

2(Z,C), all m ≥ 1
2 ,∫ T

0

∣∣∣∣∑
n∈Z

wneimn3t
∣∣∣∣2 dt ≥ C1(T )

∑
n∈Z

|wn|
2.

Proof. See, for example, Theorem 4.3 in Section 4.1 of [Micu and Zuazua 2005]. The fact that the
constant C1(T ) does not depend on m is obtained by closely following the proof in the above-mentioned
work, and taking into account the lower bound for the distance between two different eigenvalues
|mn3
−mk3

| ≥ m ≥ 1
2 for all n, k ∈ Z, n 6= k. �

The following observability result is classical (see, e.g., [Russell and Zhang 1993] for a closely related
result); for completeness, we also give here its proof.

Lemma 3.2 (observability for ∂t +m ∂xxx ). Let T > 0, and let ω ⊂ T be an open set. Let vT ∈ L2(T),
m ≥ 1

2 , and let v satisfy

∂tv+m ∂xxxv = 0, v(T )= vT . (3-1)

Then ∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C2‖vT ‖
2
L2

x
, (3-2)

with C2 := C1(T )|ω|, where C1(T ) is the constant of Lemma 3.1, and |ω| is the Lebesgue measure of ω.

Proof. Let vT (x)=
∑

n∈Z aneinx , so that v(t, x)=
∑

n∈Zwn(x)eimn3t , where wn(x) := anei(nx−mn3T ). By
Lemma 3.1, for each x ∈ T we have∫ T

0

∣∣∣∣∑
n∈Z

wn(x)eimn3t
∣∣∣∣2 dt ≥ C1(T )

∑
n∈Z

|wn(x)|2 = C1(T )
∑
n∈Z

|an|
2
= C1(T )‖vT ‖

2
L2(T)

.

Then we integrate over x ∈ ω. �

Lemma 3.3 (observability of L5 := ∂t +m ∂xxx +R). Let T > 0, let ω⊂ T be an open set and let m ≥ 1
2 .

Let R ∈ C([0, T ],L(L2
x)), with ‖R(t)h‖0 ≤ r0‖h‖0 for all h ∈ L2

x , all t ∈ [0, T ], where r0 is a positive
constant. Let vT ∈ L2(T) and let v ∈ C([0, T ], L2

x) be the solution of the Cauchy problem

∂tv+m ∂xxxv+Rv = 0, v(T )= vT , (3-3)
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which is globally well-posed by Lemma A.2(iii). Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C3‖vT ‖
2
L2

x
,

with C3 :=
1
4C2, provided that r0 is small enough (more precisely, r0 is smaller than a constant depending

only on T , C2, where C2 is the constant in Lemma 3.2).

Proof. Let v1 be the solution of ∂tv1+m ∂xxxv1 = 0, v1(T )= vT , and let v2 := v− v1. Then v2 solves

(∂t +m ∂xxx +R)v2 =−Rv1, v2(T )= 0. (3-4)

By (A-10), applied for s= 0, α= 0, f=−Rv1, we get

‖v2‖T,0 ≤ 24T r04T ‖Rv1‖T,0 ≤ 24T r04T r0‖vT ‖0. (3-5)

Using the elementary inequality (a+ b)2 ≥ 1
2a2
− b2 for all a, b ∈ R,∫ T

0

∫
ω

|v|2 dx dt ≥ 1
2

∫ T

0

∫
ω

|v1|
2 dx dt −

∫ T

0

∫
ω

|v2|
2 dx dt.

The integral of |v1|
2 is estimated from below by (3-2). The integral of |v2|

2 is bounded by T ‖v2‖
2
T,0; then

use (3-5). �

Lemma 3.4 (observability of L4 := ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x), a14 with zero mean). There
exists a universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set.
Let m ≥ 1

2 and let a14(t, x), a15(t, x) be two functions, with a14, ∂t a14, a15 ∈ C([0, T ], Hσ
x ),∫

T

a14(t, x) dx = 0 ∀t ∈ [0, T ], ‖a14, ∂t a14, a15‖T,σ ≤ δ. (3-6)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L4v = 0, v(T )= vT , (3-7)

which is globally well-posed by Lemma A.3. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C4‖vT ‖
2
L2

x
,

with C4 :=
1
16C3, provided that δ is small enough (more precisely, δ is smaller than a constant depending

only on T, C3).

Proof. Following the procedure of Section 2E, we consider the transformation S in (2-53), (2-56), which
conjugates L4 to

L5 := S−1L4S = ∂t +m ∂xxx +R,

where the operator R is defined in (2-57), (2-55); it belongs to C([0, T ],L(L2
x)), and satisfies the bounds

in Lemma 2.7. Let v be the solution of (3-7), and define ṽ := S−1v. Then ṽ solves L5ṽ = 0, ṽ(T )= ṽT ,
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where ṽT := S−1(T )vT , and therefore Lemma 3.3 applies to ṽ if δ is sufficiently small. By Lemmas 2.7
and A.3 and Remark A.8 we get∫ T

0

∫
ω

|(S−1
− I )v|2 dx dt ≤ T ‖(S−1

− I )v‖2T,0 ≤ Cδ2
‖v‖2T,0 ≤ C ′δ2

‖vT ‖
2
0

for some constant C ′ depending on T. We split ṽ = v+ (S−1
− I )v, and we get∫ T

0

∫
ω

|ṽ|2 dx dt ≤ 2
∫ T

0

∫
ω

|v|2 dx dt + 2C ′δ2
‖vT ‖

2
0.

Moreover ‖vT ‖0 = ‖S(T )vT ‖0 ≤ 2‖ṽT ‖0, and the thesis follows for δ small enough. �

Lemma 3.5 (observability of L3 :=∂t+m ∂xxx+a12(t, x) ∂x+a13(t, x)). There exists a universal constant
σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set and let m ≥ 1

2 . Let a12(t, x),
a13(t, x) be two functions, with a12, ∂t a12, a13 ∈ C([0, T ], Hσ

x ),

‖a12, ∂t a12, a13‖T,σ ≤ δ. (3-8)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L3v = 0, v(T )= vT , (3-9)

which is globally well-posed by Lemma A.4. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C5‖vT ‖
2
L2

x
(3-10)

for some C5 > 0 depending on T, ω, provided that δ in (3-8) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C4).

Proof. Following the procedure of Section 2D, we consider the transformation T defined in (2-46), (2-49),
which conjugates L3 to

L4 := T −1L3T = ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x),

where a14, a15 are defined in (2-48), and
∫

T
a14(t, x) dx = 0. By (2-52), the function p defined in (2-49)

satisfies |p(t)| ≤Cδ for all t ∈ [0, T ]. Let v be the solution of the Cauchy problem (3-9). Then ṽ := T −1v

solves L4ṽ = 0, ṽ(T )= T −1(T )vT. Let ω1 = [α1, β1] be an interval contained in ω. For δ small enough,
one has

[α1− p(t), β1− p(t)] ⊆ [α1− δ, β1+ δ] ⊂ ω ∀t ∈ [0, T ].

The change of variable x − p(t)= y, dx = dy gives∫ T

0

∫
ω1

|ṽ(t, x)|2 dx dt =
∫ T

0

∫ β1−p(t)

α1−p(t)
|v(t, y)|2 dy dt ≤

∫ T

0

∫
ω

|v(t, y)|2 dy dt.

By (2-52), for δ small enough, Lemma 3.4 can be applied to ṽ on the interval ω1 and the thesis follows,
since ‖ṽ(T )‖0 = ‖T −1(T )vT ‖0 = ‖vT ‖0. �
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Lemma 3.6 (observability of L2 := ∂t +m ∂xxx + a8(t, x) ∂xx + a9(t, x) ∂x + a10(t, x)). There exists a
universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set and let
m ≥ 1

2 . Let a8(t, x), a9(t, x), a10(t, x) be three functions, with a8, ∂t a8, a9, ∂t a9, a10 ∈ C([0, T ], Hσ
x ),∫

T

a8(t, x) dx = 0 ∀t ∈ [0, T ], ‖a8, ∂t a8, a9, ∂t a9, a10‖T,σ ≤ δ. (3-11)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L2v = 0, v(T )= vT , (3-12)

which is globally well-posed by Lemma A.5. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C6‖vT ‖
2
L2

x
(3-13)

for some C6 > 0 depending on T, ω, provided that δ in (3-11) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω,C5).

Proof. Following the procedure of Section 2C, we consider the multiplication operator M defined in
(2-37), (2-41), which conjugates L2 to

M−1L2M= L3, L3 = ∂t +m ∂xxx + a12(t, x) ∂x + a13(t, x),

where a12, a13 are defined in (2-39). Let v be the solution of the Cauchy problem (3-12). Then ṽ :=M−1v

solves L3ṽ = 0, ṽ(T )=M−1(T )vT. Using (2-45), we have∫ T

0

∫
ω

|v(t, x)|2 dx dt =
∫ T

0

∫
ω

|ṽ|2 dx dt +
∫ T

0

∫
ω

|ṽ|2(|q|2− 1) dx dt ≥ (C5−Cδ)‖vT ‖
2
0.

The first of the two integrals has been estimated from below by applying Lemma 3.5 to L3 (by Lemma 2.5,
this can be done provided that δ is sufficiently small). The second integral has been estimated using
the bound (2-45), since |q(t) − 1| ≤ C‖q − 1‖T,1 ≤ C ′δ. Moreover, we have used the inequality
‖ṽ‖T,0 ≤ C‖ṽT ‖0 from Lemma A.4. The thesis follows with C6 :=

1
2C5 by choosing δ small enough. �

Lemma 3.7 (observability of L1 := ∂t + a4(t) ∂xxx + a5(t, x) ∂xx + a6(t, x) ∂x + a7(t, x)). There exists a
universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set. Let a4, a5,
a6, a7 be four functions, with a4 ∈ C1([0, T ],R) and a5, ∂t a5, a6, ∂t a6, a7 ∈ C([0, T ], Hσ

x ), satisfying∫
T

a5(t, x) dx = 0 ∀t ∈ [0, T ], ‖a5, ∂t a5, a6, ∂t a6, a7‖T,σ + |a4− 1, a′4|T ≤ δ. (3-14)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L1v = 0, v(T )= vT , (3-15)

which is globally well-posed by Lemma A.6. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C7‖vT ‖
2
L2

x
(3-16)
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for some C7 > 0 depending on T, ω, provided that δ in (3-14) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C6).

Proof. Following the procedure of Section 2B, we consider the reparametrization of time B defined in
(2-25), (2-30), which conjugates L1 to

B−1L1B = ρL2, L2 = ∂τ +m ∂xxx + a8(τ, x) ∂xx + a9(τ, x) ∂x + a10(τ, x),

where ρ, a8, a9, a10 are defined in (2-28), (2-32) and
∫

T
a8(τ, x) = 0 for all τ ∈ [0, T ]. Let v be the

solution of the Cauchy problem (3-15). Then ṽ := B−1v solves L2ṽ = 0, ṽ(T ) = B−1(T )vT. Using
(2-35), we have∫ T

0

∫
ω

|v(t, x)|2 dx dt =
∫ T

0

∫
ω

|ṽ(ψ(t), x)|2 dx dt

=

∫ T

0

∫
ω

|ṽ(ψ(t), x)|2[ψ ′(t)+ (1−ψ ′(t))] dx dt

=

∫ T

0

∫
ω

|ṽ(τ, x)|2 dx dτ +
∫ T

0

∫
ω

|ṽ(ψ(t), x)|2(1−ψ ′(t)) dx dt

≥ (C6−Cδ)‖vT ‖
2
0.

The first of the two integrals has been estimated from below by applying Lemma 3.6 to L2 (by Lemma 2.4,
this can be done provided that δ is sufficiently small). The second integral has been estimated using
the bound (2-35) for |ψ ′(t)− 1| and also the inequality ‖ṽ‖T,0 ≤ C‖ṽT ‖0 from Lemma A.5. The thesis
follows with C7 :=

1
2C6 by choosing δ small enough, since ‖ṽT ‖0 = ‖B−1(T )vT ‖0 = ‖vT ‖0. �

Lemma 3.8 (observability of L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0). There exists a universal
constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set. Let c ∈ R and
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a2 = c ∂xa3,

‖∂t t a3, ∂t a3, a3, ∂t a1, a1, a0‖T,σ ≤ δ. (3-17)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L0v = 0, v(T )= vT , (3-18)

which is globally well-posed by Lemma A.7. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C8‖vT ‖
2
L2

x
(3-19)

for some C8 > 0 depending on T, ω, provided that δ in (3-17) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C7).

Proof. Following the procedure of Section 2A, we consider the transformation A defined in (2-9), (2-16),
(2-17), (2-18), which conjugates L0 to

A−1L0A= L1 = ∂t + a4(t) ∂xxx + a5(t, x) ∂xx + a6(t, x) ∂x + a7(t, x)
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(see (2-19)), where a4, a5, a6, a7 are defined in (2-14) and
∫

T
a5(t, x) = 0 for all t ∈ [0, T ]. Let v

be the solution of the Cauchy problem (3-18). Then ṽ := A−1v solves L1ṽ = 0, ṽ(T ) = ṽT , where
ṽ0 := A−1(0)v0. Let ω1 = [α1, β1] ⊂ ω. By (2-22) in Lemma 2.3, for δ sufficiently small Lemma 3.7
applies to ṽ on ω1, and ∫ T

0

∫
ω1

|ṽ|2 dy dt ≥ C7‖ṽT ‖
2
0.

By Lemma 2.3, ‖vT ‖0 = ‖A(T )ṽT ‖0 ≤ C‖ṽT ‖0. The change of integration variable y = x + β(t, x),
dy = (1+βx(t, x))dx gives∫ T

0

∫
ω1

|ṽ|2 dy dt =
∫ T

0

∫
ω1

|(A−1v)(t, y)|2 dy dt

=

∫ T

0

∫
ω2(t)

|v(t, x)|2

1+βx(t, x)
dx dt ≤ 2

∫ T

0

∫
ω

|v(t, x)|2 dx dt,

where ω2(t) := {x : x +β(t, x) ∈ ω1}. We have used the fact that, for δ small enough, ω2(t)⊂ ω, and the
bound (2-22) for |βx(t, x)| ≤ C‖β‖T,2 ≤ C ′δ. �

4. Controllability

In this section we prove the controllability of the linearized operator L0, using its observability (Lemma 3.8),
by means of the HUM. We also prove higher regularity of the control.

Lemma 4.1 (controllability of L0). Let T > 0, and let ω ⊂ T be an open set. Let a3, a2, a1, a0 be four
functions of (t, x) with a2 = 2∂xa3 satisfying (3-17). Let L0 be the linear operator

L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0. (4-1)

(i) Existence. There exist constants δ0,C such that, if δ in (3-17) is smaller than δ0, then the following
property holds. Given any three functions g1(t, x), g2(x), g3(x), with g1 ∈ C([0, T ], L2

x) and g2, g3 ∈ L2
x ,

there exists a function ϕ ∈ C([0, T ], L2
x) such that the solution h of the Cauchy problem

L0h = g1+χωϕ, h(0)= g2 (4-2)

satisfies h(T )= g3. (Note that the Cauchy problem (4-2) is globally well-posed by Lemma A.7). Moreover

‖ϕ‖T,0 ≤ C(‖g1‖T,0+‖g2‖0+‖g3‖0). (4-3)

(ii) Uniqueness. Let L∗0 be the linear operator

L∗0ψ := −∂tψ − ∂xxx{(1+ a3)ψ}+ ∂xx(a2ψ)− ∂x(a1ψ)+ a0ψ. (4-4)

The control ϕ in (i) is the unique solution of the equation L∗0ϕ = 0 such that the solution h of the Cauchy
problem (4-2) satisfies h(T )= g3.

The proof of Lemma 4.1 is given below, and it is based on the following classical lemma. In this
section we use the standard notation 〈u, v〉 :=

∫
T

uv dx .



300 PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

Lemma 4.2. Let a3, a2, a1, a0 be functions satisfying (3-17) and a2 = 2∂xa3. Let L∗0 be the operator
defined in (4-4). For every (g1, g2, g3), with g1 ∈ C([0, T ], L2

x) and g2, g3 ∈ L2
x , there exists a unique

ϕ1 ∈ L2
x such that for all ψ1 ∈ L2

x , the solutions ϕ,ψ ∈ C([0, T ], L2
x) of the Cauchy problems{

L∗0ϕ = 0,
ϕ(T )= ϕ1

and
{
L∗0ψ = 0,
ψ(T )= ψ1

(4-5)

satisfy ∫ T

0
〈g1+χωϕ,ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉 = 0 (4-6)

(note that the global well-posedness of the Cauchy problems (4-5) follows by Lemma A.7 and Remark A.8).
Moreover ϕ satisfies (4-3).

Proof. Given ϕ1, ψ1 ∈ L2
x , let ϕ,ψ be the solutions of the Cauchy problems (4-5), and define

B(ϕ1, ψ1) :=

∫ T

0
〈χωϕ,ψ〉 dt, 3(ψ1) := 〈g3, ψ(T )〉− 〈g2, ψ(0)〉−

∫ T

0
〈g1, ψ〉 dt. (4-7)

The bilinear map B : L2
x×L2

x→R is well-defined and continuous because |χω(x)|≤ 1 and, by Lemma A.7
and Remark A.8, ‖ϕ‖T,0 ≤ C‖ϕ1‖0, and similarly for ψ . Moreover B is coercive by Lemma 3.8 and
Remark 2.2. The linear functional 3 is bounded, with

|3(ψ1)| ≤ C‖g‖T,0‖ψ1‖0 ∀ψ1 ∈ L2
x , ‖g‖T,0 := ‖g1‖T,0+‖g2‖0+‖g3‖0.

Thus, by Riesz representation theorem (or Lax–Milgram), there exists a unique ϕ1 ∈ L2
x such that

B(ϕ1, ψ1)=3(ψ1) ∀ψ1 ∈ L2
x . (4-8)

Moreover ‖ϕ1‖0 ≤ C‖3‖L(L2
x ,R)
≤ C ′‖g‖T,0. Since ‖ϕ‖T,0 ≤ C‖ϕ1‖0, we get (4-3). �

Proof of Lemma 4.1. (i) Let ϕ1 ∈ L2
x be the unique solution of (4-8) given by Lemma 4.2. Consider any

ψ1 ∈ L2
x , and let ϕ,ψ ∈ C([0, T ], L2

x) be the unique solutions of the Cauchy problems (4-5). Recalling
(4-6), (4-2) and integrating by parts, we have

0=
∫ T

0
〈g1+χωϕ,ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

=

∫ T

0
〈L0h, ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

= 〈h(T ), ψ(T )〉− 〈h(0), ψ(0)〉+
∫ T

0
〈h,L∗0ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

= 〈h(T ), ψ(T )〉− 〈g3, ψ(T )〉

= 〈h(T )− g3, ψ1〉,

from which it follows that h(T )= g3.
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(ii) Assume that ϕ̃ ∈ C([0, T ], L2
x) satisfies L∗0ϕ̃ = 0 and it has the property that the solution h of the

Cauchy problem (4-2) satisfies h(T )= g3. Let ϕ̃1 := ϕ̃(T ). The same integration by parts as above shows
that B(ϕ̃1, ψ1)=3(ψ1) for all ψ1 ∈ L2

x . By the uniqueness in Lemma 4.2, ϕ̃1 = ϕ1. �

Lemma 4.3 (higher regularity). Let T , ω, a3, a2, a1, a0, L0, g1, g2, g3 be as in Lemma 4.1. There exist
two positive constants δ∗, σ with the following property. Let s > 0 be given. Assume that a0, a1, a2, a3 ∈

C2([0, T ], H s+σ
x ). Let

δ(µ) :=
∑

k=0,1,2, i=0,1,2,3

‖∂k
t ai‖T,µ+σ , µ ∈ [0, s].

Let ‖g‖T,s := ‖g1‖T,s +‖g2‖s +‖g3‖s <∞. If δ(0)≤ δ∗, then the control ϕ constructed in Lemma 4.1
and the solution h of (4-2) satisfy

‖ϕ, h‖T,s ≤ Cs(‖g‖T,s + δ(s)‖g‖T,0) (4-9)

for some positive Cs depending on s, T, ω. Moreover, if g1 ∈ C1([0, T ], H s
x ), then

‖∂tϕ, ∂t h‖T,s+3+‖∂t tϕ, ∂t t h‖T,s ≤ Cs
{
‖g‖T,s+6+‖∂t g1‖T,s + δ(s)‖g‖T,6

}
. (4-10)

Proof. Let g1 ∈ C([0, T ], H s
x ) and g2, g3 ∈ H s

x . Let ϕ, h ∈ C([0, T ], L2
x) be the solution of the control

problem constructed in Lemma 4.1, namely

L∗0ϕ = 0, L0h = χωϕ+ g1, h(0)= g2, h(T )= g3. (4-11)

To prove that h, ϕ ∈ C([0, T ], H s
x ), it is convenient to use the transformations of Section 2, to prove

higher regularity for the solution h̃, ϕ̃ of the transformed control problem, and then to go back to h, ϕ
proving their higher regularity. Recall that

L0 =ABρMT SL5S−1T −1M−1B−1A−1, (4-12)

where L5 = ∂t +m ∂xxx +R and A, B, ρ, M, T , S are defined in Section 2. In particular,

• A is the change of the space variable (Ah)(t, x)= h(t, x +β(t, x)) (see (2-9)), where β is defined
in (2-18), (2-16), (2-17);

• B is the reparametrization of time (Bh)(t, x)= h(ψ(t), x) (see (2-25)), where ψ is defined in (2-30);

• ρ(t) is the function defined in (2-26);

• M is the multiplication operator (Mh)(t, x) = q(t, x)h(t, x) (see (2-37)), where q is defined in
(2-41);

• T is the translation of the space variable (T h)(t, x)= h(t, x+ p(t)) (see (2-46)), where p is defined
in (2-49);

• S is the pseudodifferential operator (Sh)(t, x)= h(t, x)+ γ (t, x)∂−1
x h(t, x) (see (2-53)), where γ

is defined in (2-56) and ∂−1
x h is the primitive of h with zero average in x (defined in Fourier);

• R is the bounded operator defined in (2-57).
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Let

L∗5 := −∂t −m ∂xxx +RT, (4-13)

where RT is the L2
x -adjoint of R. Let

h̃ := (ABMT S)−1h, g̃1 := (ABρMT S)−1g1,

g̃2 := (ABMT S)−1
|t=0 g2, g̃3 := (ABMT S)−1

|t=T g3,

ϕ̃ := ST T TMTB−1ATϕ, K ϕ̃ := (ABρMT S)−1(χω(ST T TMTB−1AT )−1ϕ̃).

(4-14)

Note that, except for S−1, S−T, the operator K is a multiplication operator; namely

K ϕ̃ = S−1(ζS−T ϕ̃), where ζ(t, x) := ρ−1T −1M−2B−1A−1
[(1+βx)χω]. (4-15)

Since h, ϕ ∈ C([0, T ], L2
x), and g1 ∈ C([0, T ], H s

x ) and g2, g3 ∈ H s
x , by (4-14) and the estimates for

A,B, ρ,M, T ,S in Section 2, one has

h̃, ϕ̃, K ϕ̃ ∈ C([0, T ], L2
x), g̃1 ∈ C([0, T ], H s

x ), g̃2, g̃3 ∈ H s
x .

Since h, ϕ satisfy (4-11), one proves that h̃, ϕ̃ satisfy

L∗5ϕ̃ = 0, L5h̃ = K ϕ̃+ g̃1, h̃(0)= g̃2, h̃(T )= g̃3. (4-16)

The last three equations in (4-16) are straightforward. To prove that L∗5ϕ̃ = 0, we start from the equality

〈ϕ(T ), v(T )〉− 〈ϕ(0), v(0)〉 =
∫ T

0
〈ϕ,L0v〉 dt ∀v ∈ C∞([0, T ]×T)

(which is a weak form of L∗0ϕ= 0), we recall (4-12), and apply all the changes of variables A,B,M, T ,S
in the integral. Thus h̃, ϕ̃ solve this control problem:

Given g̃1, g̃2, g̃3, find ϕ̃ such that the solution h̃ of the Cauchy problem
L5h̃ = K ϕ̃+ g̃1, h̃(0)= g̃2 satisfies h̃(T )= g̃3, and moreover ϕ̃ solves L∗5ϕ̃ = 0.

(4-17)

The function ϕ̃ is the unique solution of (4-17). To prove it, assume that ϕ̃bis ∈C([0, T ], L2
x) solves (4-17),

and let h̃bis be the solution of the corresponding Cauchy problem L5h̃bis = K ϕ̃bis + g̃1, h̃bis(0) = g̃2.
Define

hbis :=ABMT S h̃bis, ϕbis :=A−TBM−T T −TS−T ϕ̃bis.

Then hbis, ϕbis solve (4-11). By the uniqueness in Lemma 4.1(ii) it follows that ϕbis = ϕ, hbis = h.
Therefore ϕ̃bis = ϕ̃ and h̃bis = h̃.

Now we prove that h̃, ϕ̃ ∈ C([0, T ], H s
x ). We follow an argument used by Dehman and Lebeau [2009,

Lemma 4.2], Laurent [2010, Lemma 3.1], and Alazard, Baldi, and Han-Kwan [2015, Proposition 8.1].
First, we prove the thesis for g̃1 = 0, g̃3 = 0. Consider the map

S : L2
x → L2

x , Sϕ̃1 = h̃(0), (4-18)
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obtained by the composition ϕ̃1 7→ ϕ̃ 7→ h̃ 7→ h̃(0), where ϕ̃, h̃ are the solutions of the Cauchy problems{
L∗5ϕ̃ = 0,
ϕ̃(T )= ϕ̃1,

{
L5h̃ = K ϕ̃,
h̃(T )= 0.

(4-19)

From the existence and uniqueness of ϕ̃1 ∈ L2
x such that ϕ̃ solves (4-17), it follows that S is an isomorphism

of L2
x . The initial datum g̃2 is given, so we fix ϕ̃1 ∈ L2

x such that Sϕ̃1 = g̃2. We have to estimate
‖3s ϕ̃1‖0 ≤ C‖S3s ϕ̃1‖0, where 3s is the Fourier multiplier of symbol 〈ξ〉s := (1+ ξ 2)s/2, s > 0. To
study the commutator [S,3s

], we compare (3s ϕ̃, 3s h̃) with (ϕ̄, h̄) defined by{
L∗5ϕ̄ = 0,
ϕ̄(T )=3sϕ1,

{
L5h̄ = K ϕ̄,
h̄(T )= 0.

(4-20)

The difference 3s ϕ̃− ϕ̄ satisfies{
L∗5(3

s ϕ̃− ϕ̄)= F1,

(3s ϕ̃− ϕ̄)(T )= 0,
where F1 := [L∗5,3

s
]ϕ̃ = [RT ,3s

]ϕ̃. (4-21)

From Lemma A.2 and Remark A.8, ‖3s ϕ̃− ϕ̄‖T,0 ≤ C‖F1‖T,0. We recall the classical estimate for the
commutator of 3s and any multiplication operator h 7→ ah:

‖[3s, a]h‖0 ≤ Cs
(
‖a‖2‖h‖s−1+‖a‖s+1‖h‖0

)
. (4-22)

By (4-22) and formulas (2-53), (2-56), (2-57), the commutator F1 = [RT ,3s
]ϕ̃ satisfies

‖F1‖T,0 ≤ Cs
(
‖a14, a17, a18‖T,σ‖ϕ̃‖T,s−1+‖a14, a17, a18‖T,s+σ‖ϕ̃‖T,0

)
≤ Cs

(
δ(0)‖ϕ̃‖T,s−1+ δ(s)‖ϕ̃‖T,0

)
.

(4-23)

The difference 3s h̃− h̄ satisfies{
L5(3

s h̃− h̄)= K (3s ϕ̃− ϕ̄)+F2,

(3s h̃− h̄)(T )= 0,
where F2 := [RT ,3s

]h̃+ [3s, K ]ϕ̃. (4-24)

We have ‖K (3s ϕ̃− ϕ̄)‖T,0 ≤ C‖3s ϕ̃− ϕ̄‖T,0 ≤ C‖F1‖T,0, and therefore, by Lemma A.2,

‖3s h̃− h̄‖T,0 ≤ C
(
‖F1‖T,0+‖F2‖T,0

)
. (4-25)

Using (4-22) and (4-15), we get

‖F2‖T,0 ≤ Cs
(
‖h̃, ϕ̃‖T,s−1+ δ(s)‖h̃, ϕ̃‖T,0

)
. (4-26)

By (4-23), (4-25) and (4-26) we deduce that

‖3s h̃− h̄‖T,0 ≤ Cs
(
‖h̃, ϕ̃‖T,s−1+ δ(s)‖h̃, ϕ̃‖T,0

)
.

By (4-19), Lemma A.2 and Remark A.8,

‖h̃, ϕ̃‖T,µ ≤ Cµ
(
‖ϕ̃‖T,µ+ δ(µ)‖ϕ̃‖T,0

)
≤ Cµ

(
‖ϕ̃1‖µ+ δ(µ)‖ϕ̃1‖0

)
, µ≥ 0. (4-27)

Therefore
‖(3s h̃− h̄)(0)‖0 ≤ ‖3s h̃− h̄‖T,0 ≤ Cs

(
‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
. (4-28)
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Since Sϕ̃1 = h̃(0) = g̃2, we have 3s h̃(0) = 3s g2. Moreover, by the definition of S in (4-18)–(4-19),
h̄(0)= S3s ϕ̃1. Thus

‖S3s ϕ̃1‖0 ≤ ‖(3
s h̃− h̄)(0)‖0+‖3s h̃(0)‖0 ≤ Cs

(
‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
+‖g̃2‖s . (4-29)

Since S is an isomorphism of L2
x , we have ‖3s ϕ̃1‖0 ≤ C‖S3s ϕ̃1‖0, whence

‖ϕ̃1‖s ≤ Cs
(
‖g̃2‖s +‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
. (4-30)

Since ‖ϕ̃1‖0 ≤ C‖g̃2‖0, by induction we deduce that

‖ϕ̃1‖s ≤ Cs
(
‖g̃2‖s + δ(s)‖g̃2‖0

)
. (4-31)

By (4-27), we obtain
‖h̃, ϕ̃‖T,s ≤ Cs

(
‖g̃2‖s + δ(s)‖g̃2‖0

)
, (4-32)

which is the thesis in the case g̃1 = 0, g̃3 = 0.
Now we prove the higher regularity of h̃, ϕ̃ removing the assumption g̃1 = 0, g̃3 = 0. Let g̃1 ∈

C([0, T ], H s
x ) and g̃2, g̃3 ∈ H s

x , and let h̃, ϕ̃ be the solution of (4-17). Let w be the solution of the problem

L5w = g̃1, w(T )= g̃3.

By Lemma A.2, w ∈ C([0, T ], H s
x ), with

‖w‖T,s ≤ Cs
{
‖g̃1‖T,s +‖g̃3‖s + δ(s)(‖g̃1‖T,0+‖g̃3‖0)

}
. (4-33)

Let v := h̃−w. Then
L5v = K ϕ̃, v(0)= g̃2−w(0), v(T )= 0.

This means that v, ϕ̃ solve (4-17) where (g̃1, g̃2, g̃3) are replaced by (0, g̃2 −w(0), 0). Hence (4-32)
applies to v, ϕ̃, and we get

‖v, ϕ̃‖T,s ≤ Cs
(
‖g̃2−w(0)‖s + δ(s)‖g̃2−w(0)‖0

)
. (4-34)

We estimate ‖g̃2−w(0)‖s ≤ ‖g̃2‖s +‖w‖T,s ; we use (4-33) and ‖h̃‖T,s ≤ ‖v‖T,s +‖w‖T,s to conclude

‖h̃, ϕ̃‖T,s ≤ Cs
{
‖g̃‖T,s + δ(s)‖g̃‖T,0

}
, (4-35)

where we have denoted, in short, ‖g̃‖T,s := ‖g̃1‖T,s +‖g̃2‖s +‖g̃3‖s . This proves the higher regularity
for the transformed control problem (4-17). By the definitions in (4-14),

‖ϕ‖T,s ≤ Cs
(
‖ϕ̃‖T,s + δ(s)‖ϕ̃‖T,0

)
, ‖h‖T,s ≤ Cs

(
‖h̃‖T,s + δ(s)‖h̃‖T,0

)
,

‖g̃‖T,s ≤ Cs
(
‖g‖T,s + δ(s)‖g‖T,0

)
,

and the proof of (4-9) is complete.
The bound (4-10) is deduced in a classical way from the fact that h, ϕ solve the equations L∗0ϕ = 0,

L0h = χωϕ+ g1. �
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Remark 4.4. Another possible way to prove higher regularity for h, ϕ is to apply the argument of
[Dehman and Lebeau 2009; Laurent 2010; Alazard, Baldi, and Han-Kwan 2015] directly to the control
problem for L0, instead of passing to the transformed problem (4-17), applying that argument, and then
going back to h, ϕ. Such a more direct method adapted to the present case would require the construction
of two operators As , Bs such that

(1) C1‖v‖s ≤ ‖Asv‖0 ≤ C2‖v‖s (equivalent norm in H s),

(2) the commutator [L0, As] is an operator of order s− 1,

(3) the difference BsL∗0−L∗0 As is also of order s− 1.

The construction of such As, Bs is possible, but probably the proof given above is more straightforward,
and it fully exploits the advantages of conjugating L0 to L5 (Section 2). The main point is that the
commutator [L5,3

s
] is of order s− 1 (because L5 has constant coefficients up to a bounded remainder),

while [L0,3
s
] is of order s+ 2 (because L0, which was obtained by linearizing a quasilinear PDE, has

variable coefficients also at the highest order), so that a modified version As of 3s is needed. �

In view of the application of the Nash–Moser theorem in Section 5, we define the spaces

Es := Xs × Xs, Xs := C([0, T ], H s+6
x )∩C1([0, T ], H s+3

x )∩C2([0, T ], H s
x ), (4-36)

Fs :=
{
g = (g1, g2, g3) : g1 ∈ C([0, T ], H s+6

x )∩C1([0, T ], H s
x ), g2, g3 ∈ H s+6

x
}

(4-37)

equipped with the norms

‖u, f ‖Es := ‖u‖Xs +‖ f ‖Xs , ‖u‖Xs := ‖u‖T,s+6+‖∂t u‖T,s+3+‖∂t t u‖T,s, (4-38)

‖g‖Fs := ‖g1‖T,s+6+‖∂t g1‖T,s +‖g2, g3‖s+6. (4-39)

With this notation, we have proved the following linear inversion result.

Theorem 4.5 (right inverse of the linearized operator). Let T > 0 and ω ⊂ T be an open set. There exist
two universal constants τ, σ ≥ 3 and a positive constant δ∗ depending on T, ω with the following property.

Let s ∈ [0, r−τ ], where r is the regularity of the nonlinearity N (see Lemma 2.1). Let g= (g1, g2, g3)∈

Fs and let (u, f ) ∈ Es+σ , with ‖u‖Xσ ≤ δ∗. Then there exists (h, ϕ) :=9(u, f )[g] ∈ Es such that

P ′(u)[h] −χωϕ = g1, h(0)= g2, h(T )= g3, (4-40)
and

‖h, ϕ‖Es ≤ Cs
(
‖g‖Fs +‖u‖Xs+σ ‖g‖F0

)
, (4-41)

where Cs depends on s, T, ω.

5. Proofs

In this section we prove Theorems 1.1 and 1.4.

5A. Proof of Theorem 1.1. The spaces defined in (4-36)–(4-39), with s ≥ 0, form scales of Banach
spaces. We define smoothing operators Sθ in the following way. We fix a C∞ function ϕ : R→ R with
0≤ ϕ ≤ 1,

ϕ(ξ)= 1 ∀|ξ | ≤ 1 and ϕ(ξ)= 0 ∀|ξ | ≥ 2.
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For any real number θ ≥ 1, let Sθ be the Fourier multiplier with symbol ϕ(ξ/θ), namely

Sθu(x) :=
∑
k∈Z

ûk ϕ(k/θ) eikx , where u(x)=
∑
k∈Z

ûkeikx
∈ L2(T). (5-1)

The definition of Sθ extends to functions u(t, x) =
∑

k∈Z ûk(t) eikx depending on time in the obvious
way. Since Sθ and ∂t commute, the smoothing operators Sθ are defined on the spaces Es , Fs defined in
(4-36)–(4-37) by setting Sθ (u, f ) := (Sθu, Sθ f ) and similarly on g = (g1, g2, g3). One easily verifies
that Sθ satisfies (B-1)–(B-4) on Es and Fs . We define the spaces E ′a with norm ‖ · ‖′a and F ′b with ‖ · ‖′b
as constructed in Appendix B.

We observe that 8(u, f ) := (P(u)−χω f, u(0), u(T )) defined in (1-13)–(1-14) belongs to Fs when
(u, f ) ∈ Es+3, s ∈ [0, r − 6], with ‖u‖T,4 ≤ 1. Its second derivative is

8′′(u, f )[(h1, ϕ1), (h2, ϕ2)] =

P ′′(u)[h1, h2]

0
0

.
For u in a fixed ball ‖u‖X1 ≤ δ0, with δ0 small enough, we estimate

‖P ′′(u)[h, w]‖Fs ≤ Cs
(
‖h‖X1‖w‖Xs+3 +‖h‖Xs+3‖w‖X1 +‖u‖Xs+3‖h‖X1‖w‖X1

)
(5-2)

for all s ∈ [0, r − 6]. We fix V = {(u, f ) ∈ E3 : ‖(u, f )‖E3 ≤ δ0}, δ1 = δ∗,

a0 = 1, µ= 3, a1 = σ, α = β = 2σ, a2 ∈ (3σ, r − τ ], (5-3)

where δ∗, σ, τ are given by Theorem 4.5, and r is the regularity of N in Theorem 1.1. The right
inverse 9 in Theorem 4.5 satisfies the assumptions of Theorem B.1. Thus by Theorem B.1 we obtain
that, if g = (0, uin, uend) ∈ F ′β with ‖g‖′Fβ ≤ δ, then there exists a solution (u, f ) ∈ E ′α of the equation
8(u, f )= g, with ‖u, f ‖′Eα ≤ C‖g‖′Fβ (and recall that β = α). We fix s1 := α+ 6, and (1-11) is proved.
In fact, we have proved slightly more than (1-11), because ‖g‖′Fβ ≤ C‖g‖Fβ and ‖u, f ‖Ea ≤ Ca‖u, f ‖′Eα
for all a < α.

We have found a solution (u, f ) of the control problem (1-9)–(1-10). Now we prove that u is the
unique solution of the Cauchy problem (1-9), with that given f . Let u, v be two solutions of (1-9) in
Es−6 for all s < s1. We calculate

P(u)− P(v)=
∫ 1

0
P ′(v+ λ(u− v))[u− v] dλ=: L̃0[u− v],

where
L̃0 := ∂t + (1+ ã3(t, x))∂xxx + ã2(t, x)∂xx + ã1(t, x)∂x + ã0(t, x),

ãi (t, x) :=
∫ 1

0
ai (v+ λ(u− v))(t, x) dλ, i = 0, 1, 2, 3,

and ai (u) is defined in (2-2). Note that ã2 = 2∂x ã3 because a2(v + λ(u − v)) = 2∂xa3(v + λ(u − v))
for all λ ∈ [0, 1]. The difference u− v satisfies L̃0(u− v)= 0, (u− v)(0)= 0. Hence, by Lemma A.7,
u− v = 0. The proof of Theorem 1.1 is complete. �
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5B. Proof of Theorem 1.4. We define

Es := C([0, T ], H s+6
x )∩C1([0, T ], H s+3

x )∩C2([0, T ], H s
x ), (5-4)

Fs :=
{
g = (g1, g2) : g1 ∈ C([0, T ], H s+6

x )∩C1([0, T ], H s
x ), g2 ∈ H s+6

x
}

(5-5)

equipped with norms

‖u‖Es := ‖u‖T,s+6+‖∂t u‖T,s+3+‖∂t t u‖T,s, (5-6)

‖g‖Fs := ‖g1‖T,s+6+‖∂t g1‖T,s +‖g2‖s+6, (5-7)

and 8(u) := (P(u), u(0)). Given g := ( f, uin) ∈ Fs0 , the Cauchy problem (1-18) becomes 8(u) = g.
We fix V , δ1, a0, µ, a1, α, β, a2 as in (5-3), where the constants σ, δ∗ are now given in Lemma A.7 and
τ = σ +9 by Lemma 2.1 combined with Lemma A.7 and the definition of the spaces Es, Fs . Assumption
(B-13) about the right inverse of the linearized operator is satisfied by Lemmas A.7 and 2.1. We fix
s0 := α+ 6. Then Theorem B.1 applies, giving the existence part of Theorem 1.4. The uniqueness of the
solution is proved exactly as in the proof of Theorem 1.1. �

Appendix A: Well-posedness of linear operators

Lemma A.1. Let T > 0, m ∈R, s ∈R, f ∈ C([0, T ], H s
x ), with f (t, x)=

∑
n∈Z fn(t)einx. Let A be the

linear operator defined by A f := v, where v is the solution of{
∂tv+m∂xxxv = f ∀(t, x) ∈ [0, T ]×T,

v(0, x)= 0.
(A-1)

Then

A f (t, x)=
∑
n∈Z

(A f )n(t)einx, (A f )n(t)=
∫ t

0
eimn3(τ−t) fn(τ ) dτ, (A-2)

A f belongs to C([0, T ], H s
x )∩C1([0, T ], H s−3

x ), and

‖A f ‖T,s ≤ T ‖ f ‖T,s . (A-3)

Proof. Formula (A-2) simply comes from variation of constants. By Hölder’s inequality,

|(A f )n(t)| ≤
√

t
(∫ t

0
| fn(τ )|

2 dτ
)1/2

∀t ∈ [0, T ]

and therefore, for each t ∈ [0, T ],

‖A f (t)‖2H s
x
=

∑
n∈Z

|(A f )n(t)|2〈n〉2s
≤

∑
n∈Z

t
∫ t

0
| fn(τ )|

2 dτ 〈n〉2s

≤ t
∫ t

0

∑
n∈Z

| fn(τ )|
2
〈n〉2s dτ = t

∫ t

0
‖ f (τ )‖2H s

x
dτ ≤ t2

‖ f ‖2C([0,t],H s
x )
.

Taking the sup over t ∈ [0, T ] we get the thesis. �
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We remark that for s ≤ 3 the operator A is well-defined in the sense of distributions. We also recall
that L(H s

x ) is the space of linear bounded operators of H s
x into itself, with operator norm ‖L‖L(H s

x )
:=

sup{‖Lh‖s : h ∈ H s
x , ‖h‖s = 1}.

Lemma A.2. (i) (LWP). Let T > 0, s ∈ R, R ∈ C([0, T ],L(H s
x )), and let

rs := ‖R‖C([0,T ],L(H s
x ))
= sup

t∈[0,T ]
‖R(t)‖L(H s

x )
, L5 := ∂t +m∂xxx +R. (A-4)

Let α ∈ H s
x and f ∈ C([0, T ], H s

x ). If T rs ≤
1
2 , then the Cauchy problem{

L5u = f,
u(0, x)= α(x)

(A-5)

has a unique solution u ∈ C([0, T ], H s
x ). The solution u satisfies

‖u‖T,s ≤ (1+ 2T rs)‖α‖s + 2T ‖ f ‖T,s ≤ 2(‖α‖s + T ‖ f ‖T,s). (A-6)

(ii) (tame LWP). Let T > 0, s ∈R, s1 ∈R with s ≥ s1, and let R∈C([0, T ],L(H s
x )) ∩ C([0, T ],L(H s1

x )).
Assume that

‖R(t)h‖s ≤ c1‖h‖s + cs‖h‖s1, ‖R(t)h‖s1 ≤ c1‖h‖s1 ∀h ∈ H s
x , (A-7)

for all t ∈ [0, T ], where c1, cs are positive constants. Let α ∈ H s
x . If

T c1 ≤
1
2 , (A-8)

then the solution u ∈ C([0, T ], H s1
x ) of the Cauchy problem (A-5) given in (i) belongs to C([0, T ], H s

x ),
with

‖u‖T,s ≤ 2T ‖ f ‖T,s + (1+ 2T c1)‖α‖s + 4T cs(T ‖ f ‖T,s1 +‖α‖s1). (A-9)

(iii) (GWP). Let T > 0, s ∈ R, R ∈ C([0, T ],L(H s
x )), and let rs be defined in (A-4). Let α ∈ H s

x . Then
the Cauchy problem (A-5) has a unique global solution u ∈ C([0, T ], H s

x ), with

‖u‖T,s ≤ 24T rs (‖α‖s + 4T ‖ f ‖T,s). (A-10)

(iv) (tame GWP). Let T > 0, s ∈R, s1 ∈R with s ≥ s1, and let R∈C([0, T ],L(H s
x )) ∩ C([0, T ],L(H s1

x )).
Assume that (A-7) holds for all t ∈ [0, T ], where c1, cs are positive constants. Let α ∈ H s

x . Then the global
solution u ∈ C([0, T ], H s

x ) of the Cauchy problem (A-5) given in (iii) satisfies

‖u‖T,s ≤ 24T c1
(
‖α‖s + 4T cs‖α‖s1 + 2T ‖ f ‖T,s + 4T 2cs‖ f ‖T,s1

)
. (A-11)

Proof. (i) Write u = v+w, where v(t, x) is the solution of

∂tv+m ∂xxxv = 0, v(0, x)= α(x). (A-12)

Hence u solves (A-5) if and only if w(t, x) solves

∂tw+m ∂xxxw+Rw =−Rv+ f, w(0, x)= 0. (A-13)
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By Lemma A.1, (A-13) is the fixed point problem

w =9(w), (A-14)

where 9(w) := A[ f −R(v+w)]. Let Bρ :=
{
w ∈ C([0, T ], H s

x ) : ‖u‖T,s ≤ ρ
}
, ρ ≥ 0. Then

‖9(w)‖T,s ≤ T (‖ f ‖T,s + rs‖α‖s + rsρ), ‖9(w1)−9(w2)‖T,s ≤ T rs‖w1−w2‖T,s (A-15)

for all w,w1, w2 ∈ Bρ . By assumption, T rs ≤
1
2 . Therefore, for any ρ ≥ 2T (‖ f ‖T,s + rs‖α‖s), 9 is

a contraction in Bρ . In particular, we fix ρ = ρ0 := 2T (‖ f ‖T,s + rs‖α‖s). Hence there exists a fixed
point w ∈ Bρ0 of 9, with ‖w‖T,s ≤ ρ0 ≤ 2T ‖ f ‖T,s +‖α‖s . As a consequence, there exists a solution
u ∈ C([0, T ], H s

x ) of (A-5) with ‖u‖T,s ≤ 2(T ‖ f ‖T,s +‖α‖s). By the contraction lemma, the solution u
is unique in any ball Bρ , ρ ≥ ρ0, and therefore it is unique in C([0, T ], H s

x ).

(ii) By assumption, T c1 ≤
1
2 , and therefore, by (i), there exists a unique solution u ∈ C([0, T ], H s1

x ).
It remains to prove that u satisfies (A-9). By construction, u = v+w, where v ∈ C([0, T ], H s

x ) is the
solution of (A-12), with ‖v(t)‖s = ‖α‖s for all t ∈ [0, T ], and w ∈ C([0, T ], H s1

x ) solves (A-14). By
the iterative scheme of the contraction lemma, w is the limit in C([0, T ], H s1

x ) of the sequence (wn),
where w0 := 0, and wn+1 :=9(wn) for all n ∈N. By (A-7) and (A-3), 9 maps C([0, T ], H s

x ) into itself;
therefore wn ∈ C([0, T ], H s

x ) for all n ≥ 0. Let hn :=wn−wn−1, n ≥ 1, so that wn =
∑n

k=1 hk . One has
hn+1 =−ARhn for all n ≥ 1, and

‖hn+1‖T,s ≤ T c1‖hn‖T,s + T cs‖hn‖T,s1, ‖hn+1‖T,s1 ≤ T c1‖hn‖T,s1 ∀n ≥ 1.

Hence, by induction, for all n ≥ 1 we have

‖hn‖T,s ≤ (T c1)
n−1
‖h1‖T,s + (n− 1)(T c1)

n−2T cs‖h1‖T,s1, ‖hn‖T,s1 ≤ (T c1)
n−1
‖h1‖T,s1 . (A-16)

Also, ‖h1‖T,s ≤ T ‖ f ‖T,s + T c1‖α‖s + T cs‖α‖s1 and ‖h1‖T,s1 ≤ T ‖ f ‖T,s1 + T c1‖α‖s1 . Therefore

‖hn‖T,s ≤ (T c1)
n−1T ‖ f ‖T,s + (T c1)

n
‖α‖s + (n− 1)(T c1)

n−2T cs T ‖ f ‖T,s1

+ n(T c1)
n−1T cs‖α‖s1,

‖hn‖T,s1 ≤ (T c1)
n−1T ‖ f ‖T,s1 + (T c1)

n
‖α‖s1 ∀n ≥ 1.

(A-17)

Since T c1 ≤
1
2 , the sequence wn =

∑n
k=1 hk converges in C([0, T ], H s

x ) to some limit w̃ ∈C([0, T ], H s
x ).

Since wn converges to w in C([0, T ], H s1
x ), the two limits coincide, and w ∈ C([0, T ], H s

x ). Since
‖w‖T,s ≤

∑
∞

k=1 ‖hk‖T,s , we get

‖w‖T,s ≤ 2T (‖ f ‖T,s + c1‖α‖s)+ 4T cs(T ‖ f ‖T,s1 +‖α‖s1). (A-18)

Since u = v+w, we deduce (A-9).

(iii) If T rs ≤
1
2 , the result is given by (i). Let T rs >

1
2 , and fix N ∈ N such that 2T rs ≤ N ≤ 4T rs .

Let T0 := T/N , so that 1
4 ≤ T0rs ≤

1
2 . Divide the interval [0, T ] into the union I1 ∪ · · · ∪ IN , where

In := [(n− 1)T0, nT0]. Applying (i) on the time interval I1 = [0, T0] gives the solution u1 ∈ C(I1, H s
x ),

with ‖u1‖C(I1,H s
x )
≤ b‖α‖s + 2T0‖ f ‖T,s , where b := 1+ 2T0rs . Now consider the Cauchy problem on I2
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with initial datum u(T0)= u1(T0). Applying (i) on I2 gives the solution u2 ∈ C(I2, H s
x ), with

‖u2‖C(I2,H s
x )
≤ b‖u1(T0)‖s + 2T0‖ f ‖T,s ≤ b2

‖α‖s + (1+ b)2T0‖ f ‖T,s .

We iterate the procedure N times. At the last step, we find the solution uN defined on IN , with

‖uN‖C(IN ,H s
x )
≤ bN
‖α‖s + (bN

− 1)
1

b− 1
2T0‖ f ‖T,s .

We define u(t) := un(t) for t ∈ In , and the thesis follows, using that b ≤ 2.

(iv) If T c1 ≤
1
2 , the result is given by (ii). Let T c1 >

1
2 , and fix N ∈ N such that 2T c1 ≤ N ≤ 4T c1. Let

T0 := T/N , so that 1
4 ≤ T0 c1 ≤

1
2 . Split [0, T ] = I1∪ · · ·∪ IN , where In := [(n−1)T0, nT0]. Perform the

same procedure as above. Using (A-9), and 1+ 2T0 c1 ≤ 2, by induction we get

‖un‖C(In,H s
x )
≤ 2n
‖α‖s + (2n

− 1)2T0‖ f ‖T,s + n2n−14T0 cs‖α‖s1 + [2
n(n− 1)+ 1]4T0 cs T0‖ f ‖T,s1,

‖un‖C(In,H
s1
x )
≤ 2n
‖α‖s1 + (2

n
− 1)2T0‖ f ‖T,s1 .

This implies (A-11), recalling that T0 c1 ≤
1
2 and also N T0 = T, N ≥ 1. �

Lemma A.3. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0,
let m ≥ 1

2 , and let a14(t, x), a15(t, x) be two functions with a14, ∂t a14, a15 ∈ C([0, T ], H s+σ
x ) and∫

T
a14(t, x) dx = 0, and let L4 := ∂t +m ∂xxx + a14 ∂x + a15. Let

δ(µ) := ‖a14, ∂t a14, a15‖T,µ+σ ∀µ ∈ [0, s].

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L4u = f, u(0)= α (A-19)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-20)

Proof. Following the procedure given in Section 2E, we define S := I + γ (t, x)∂−1
x (see (2-53)) with

γ (t, x) := − 1
3m ∂
−1
x a14(t, x). We have that u solves (A-19) if and only if ũ := S−1u satisfies

L5ũ = f̃ , ũ(0)= α̃,

where f̃ := S−1 f , α̃ := S−1(0)α and L5 = ∂t +m ∂xxx +R, with

R= S−1{a15+ (a14γ − (a14)x)π0+ (L4γ ) ∂
−1
x
}
.

Then the thesis follows by Lemmas A.2 and 2.7. �

Lemma A.4. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0,
let m ≥ 1

2 , and let a12(t, x), a13(t, x) be two functions with a12, ∂t a12, a13 ∈ C([0, T ], H s+σ
x ), and let

L3 := ∂t +m ∂xxx + a12 ∂x + a13. Let

δ(µ) := ‖a12, ∂t a12, a13‖T,µ+σ ∀µ ∈ [0, s].
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Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L3u = f, u(0)= α (A-21)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-22)

Proof. Following the procedure given in Section 2D, we define T h(t, x) := h(t, x + p(t)) (see (2-46)),
with p(t) := − 1

2π

∫ t
0

∫
T

a12(s, x) dx ds. We have that u solves (A-21) if and only if ũ := T −1u satisfies

L4ũ = f̃ , ũ(0)= α

(note that T (0) is the identity), where f̃ := T −1 f , and L4 = ∂t +m ∂xxx + a14 ∂x + a15, with a14, a15

given by formula (2-48). Then the thesis follows by Lemmas A.3 and 2.6. �

Lemma A.5. There exist universal positive constants σ , δ∗ with the following properties. Let s ≥ 0, let
m≥ 1

2 , and let a8(t, x), a9(t, x), a10(t, x) be three functions with a8, ∂t a8, a9, ∂t a9, a10 ∈C([0, T ], H s+σ
x )

and
∫

T
a8(t, x) dx = 0, and let L2 := ∂t +m ∂xxx + a8 ∂xx + a9 ∂x + a10. Let

δ(µ) := ‖a8, ∂t a8, a9, ∂t a9, a10‖T,µ+σ ∀µ ∈ [0, s].

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L2u = f, u(0)= α (A-23)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-24)

Proof. Following the procedure given in Section 2C, we define Mh(t, x) := q(t, x)h(t, x) (see (2-37)),
with q(t, x) := exp{− 1

3m (∂
−1
x a8)(t, x)}. We have that u solves (A-23) if and only if ũ :=M−1u satisfies

L3ũ = f̃ , ũ(0)= α̃,

where f̃ :=M−1 f , α̃ :=M−1(0)α, and L3 = ∂t +m ∂xxx +a12 ∂x +a13, with a12, a13 given by formula
(2-39). Then the thesis follows by Lemmas A.4 and 2.5. �

Lemma A.6. There exist universal positive constants σ , δ∗ with the following properties. Let s ≥ 0 and
let a4(t), a5(t, x), a6(t, x), a7(t, x) be four functions with a4 ∈ C1([0, T ],R) and a5, ∂t a5, a6, ∂t a6, a7 ∈

C([0, T ], H s+σ
x ) and

∫
T

a5(t, x) dx = 0, and let L1 := ∂t + a4∂xxx + a5∂xx + a6∂x + a7. Let

δ(µ) := sup
t∈[0,T ]

|a4(t)− 1| + sup
t∈(0,T )

|a′4(t)| + ‖a5, ∂t a5, a6, ∂t a6, a7‖T,µ+σ ∀µ ∈ [0, s]. (A-25)

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L1u = f, u(0)= α (A-26)
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admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-27)

Proof. Following the procedure given in Section 2B, we define Bh(t, x) := h(ψ(t), x) (see (2-25)), with
ψ(t) := 1

m

∫ t
0 a4(s) ds, where m := 1

T

∫ T
0 a4(t) dt . We have that u solves (A-26) if and only if ũ := B−1u

satisfies

L2ũ = f̃ , ũ(0)= α

(note that B(0) is the identity), where f̃ := B−1 f , and L2 = ∂t +m ∂xxx + a8 ∂xx + a9 ∂x + a10, with a8,
a9, a10 given by formula (2-32) (see also (2-26)). Then the thesis follows by Lemma A.5 and 2.4. �

Lemma A.7. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0 and let
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a3, ∂t a3, ∂t t a3, a1, ∂t a1, a0 ∈ C([0, T ], H s+σ

x )

and a2 = c ∂xa3 for some c ∈ R. Let

δ(µ) := ‖a3, ∂t a3, ∂t t a3, a1, ∂t a1, a0‖T,µ+σ ∀µ ∈ [0, s]. (A-28)

Assume δ(0)≤ δ∗. Let L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x .
Then the Cauchy problem

L0u = f, u(0)= α (A-29)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-30)

Proof. Following the procedure given in Section 2A, we define (Ah)(t, x) := h(t, x+β(t, x)) (see (2-9)),
with β(t, x) := (∂−1

x ρ0)(t, x), where ρ0 is defined in (2-16)–(2-17). We have that u solves (A-29) if and
only if ũ :=A−1u satisfies

L1ũ = f̃ , ũ(0)= α̃,

where f̃ := A−1 f , α̃ := A−1(0)α, and L1 = ∂t + a4 ∂xxx + a5 ∂xx + a6 ∂x + a7, with a4 not depending
on the space variable x and with a4, a5, a6, a7 given by formula (2-14). Then the thesis follows by
Lemmas A.6 and 2.3. �

Remark A.8. Consider the operators L0, . . . ,L5 defined in Lemmas A.2–A.7. Define

L∗0h := −∂t h− ∂xxx [(1+ a3)h] + ∂xx(a2h)− ∂x(a1h)+ a0h,

L∗1h := −∂t h− a4∂xxx h+ ∂xx(a5h)− ∂x(a6h)+ a7h,

L∗2h := −∂t h−m∂xxx h+ ∂xx(a8h)− ∂x(a9h)+ a10h,

L∗3h := −∂t h−m∂xxx h− ∂x(a12h)+ a13h,

L∗4h := −∂t h−m∂xxx h− ∂x(a14h)+ a15h,

L∗5h := −∂t h−m∂xxx h+RT h.
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It is straightforward to check that Lemmas A.2–A.7 also hold when the operator Lk (k = 0, . . . , 5) is
replaced by L∗k . The crucial observation is that for all k = 0, . . . , 5 (see Remark 2.2 for the case k = 0)
the operator −L∗k has the same structure as Lk (one might need to worsen the constants σ since the
coefficients of −L∗k involve space derivatives of the coefficients of Lk). It is also immediate to verify that
the same estimates also hold for the backward Cauchy problems{

Lku = f,
u(T )= α,

{
L∗ku = f,
u(T )= α,

k = 0, . . . , 5. (A-31)

Appendix B: Nash–Moser theorem

In this section we prove a Nash–Moser implicit function theorem that is a modified version of the theorem
in [Hörmander 1985]. With respect to that paper, here (Theorem B.1) we assume slightly stronger
hypotheses on the nonlinear operator 8 and its second derivative. These hypotheses are naturally verified
in applications to PDEs. We use the iteration scheme of [Hörmander 1976] (called the discrete Nash
method by Hörmander), which is neither the Newton scheme with smoothings used in [Berti, Bolle,
and Procesi 2010; Berti, Corsi, and Procesi 2015; Baldi, Berti, and Montalto 2016a], nor the scheme in
[Hörmander 1985; Alinhac and Gérard 2007]. The scheme of [Hörmander 1976] is based on a telescoping
series like in [Hörmander 1985], but some corrections yn (see (B-15)) are also introduced. In this way the
scheme converges directly to a solution of the equation 8(u)=8(0)+ g, avoiding the intermediate step
in [Hörmander 1985] where the Leray–Schauder theorem is applied. This makes it possible to remove
two assumptions of Hörmander’s theorem [1985], which are the compact embeddings Fb ↪→ Fa in the
codomain scale of Banach spaces (Fa)a≥0, and the continuity of the approximate right inverse 9(v) with
respect to the approximate linearization point v. We point out that, unlike Theorem 2.2.2 of [Hörmander
1976], our Theorem B.1 also applies to the case of Sobolev spaces.

Let us begin with recalling the construction of “weak” spaces in [Hörmander 1985].

Let Ea , a ≥ 0, be a decreasing family of Banach spaces with injections Eb ↪→ Ea of norm ≤ 1 when
b ≥ a. Set E∞ =

⋂
a≥0 Ea with the weakest topology making the injections E∞ ↪→ Ea continuous.

Assume that Sθ : E0→ E∞ for θ ≥ 1 are linear operators such that, with constants C bounded when a
and b are bounded,

‖Sθu‖b ≤ C‖u‖a if b ≤ a, (B-1)

‖Sθu‖b ≤ Cθb−a
‖u‖a if a < b, (B-2)

‖u− Sθu‖b ≤ Cθb−a
‖u‖a if a > b, (B-3)∥∥∥∥ d

dθ
Sθu

∥∥∥∥
b
≤ Cθb−a−1

‖u‖a. (B-4)

From (B-2)–(B-3) one can obtain the logarithmic convexity of the norms

‖u‖λa+(1−λ)b ≤ C‖u‖λa‖u‖
1−λ
b if 0< λ < 1. (B-5)
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Consider the sequence {θj } j∈N, with 1 = θ0 < θ1 < · · · → ∞, such that θj+1/θj is bounded. Set
1 j := θj+1− θj and

R0u :=
Sθ1u
10

, Rj u :=
Sθj+1u− Sθj u

1 j
, j ≥ 1. (B-6)

By (B-3) we deduce that, if u ∈ Eb for some b > a, then

u =
∞∑
j=0

1 j Rj u (B-7)

with convergence in Ea . Moreover, (B-4) implies that, for all b,

‖Rj u‖b ≤ Ca,bθ
b−a−1
j ‖u‖a. (B-8)

Conversely, assume that a1 < a < a2, that u j ∈ Ea2 and that

‖u j‖b ≤ Mθb−a−1
j if b = a1 or b = a2. (B-9)

By (B-5) this remains true with a constant factor on the right-hand side if a1< b< a2, so that u=
∑
1 j u j

converges in Eb if b < a.
Let E ′a be the set of all sums u =

∑
1 j u j with u j satisfying (B-9) and introduce the norm ‖u‖′a as the

infimum of M over all such decompositions. It follows that ‖ · ‖′a is stronger than ‖ · ‖b if a > b, while
(B-7) and (B-8) show that ‖ · ‖′a is weaker than ‖ · ‖a . Moreover (i) the space E ′a and, up to equivalence,
its norm are independent of the choice of a1 and a2; (ii) E ′a is defined by (B-8) for any values of b to
the left and to the right of a; (iii) E ′a does not depend on the smoothing operators; (iv) in (B-3) we can
replace ‖u‖a by ‖u‖′a , namely,

‖u− Sθu‖b ≤ C ′a,bθ
b−a
‖u‖′a if a > b, (B-10)

if we take another constant C ′a,b, which may tend to∞ as b approaches a. These four statements (i)–(iv)
are proved in [Hörmander 1985].

Now let us suppose that we have another family Fa of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation also for the smoothing operators.
Unlike [Hörmander 1985], here we do not need to assume that the embedding Fb ↪→ Fa is compact for
b > a.

Theorem B.1. Let a1, a2, α, β, a0, µ be real numbers with

0≤ a0 ≤ µ≤ a1, a1+
1
2β ≤ α < a1+β ≤ a2, 2α < a1+ a2. (B-11)

Let V be a convex neighborhood of 0 in Eµ. Let 8 be a map from V to F0 such that 8 : V ∩ Ea+µ→ Fa

is of class C2 for all a ∈ [0, a2−µ], with

‖8′′(u)[v,w]‖a ≤ C
(
‖v‖a+µ‖w‖a0 +‖v‖a0‖w‖a+µ+‖u‖a+µ‖v‖a0‖w‖a0

)
(B-12)
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for all u ∈ V ∩ Ea+µ, v,w ∈ Ea+µ. Also assume that 8′(v) for v ∈ E∞ ∩ V belonging to some ball
‖v‖a1 ≤ δ1 has a right inverse 9(v) mapping F∞ to Ea2 , and that

‖9(v)g‖a ≤ C
(
‖g‖a+β−α +‖g‖0‖v‖a+β

)
∀a ∈ [a1, a2]. (B-13)

There exists δ > 0 such that, for every g ∈ F ′β in the ball ‖g‖′β ≤ δ, there exists u ∈ E ′α , with ‖u‖′α ≤C‖g‖′β ,
solving 8(u)=8(0)+ g.

Proof. We follow the proof in [Hörmander 1985] where possible, but we use a different iteration scheme.
Let θj := j + 1, so that 1 j = 1 for all j . Let g ∈ F ′β and g j := Rj g. Thus

g =
∞∑
j=0

g j , ‖g j‖b ≤ Cbθ
b−β−1
j ‖g‖′β ∀b ∈ [0,+∞). (B-14)

We claim that if ‖g‖′β is small enough, then we can define a sequence u j ∈ V ∩ Ea2 with u0 := 0 by the
recursion formula

u j+1 := u j + h j , vj := Sθj u j , h j :=9(vj )(g j + yj ) ∀ j ≥ 0, (B-15)

where y0 := 0,

y1 := −Sθ1e0, yj := −Sθj e j−1− R j−1

j−2∑
i=0

ei ∀ j ≥ 2, (B-16)

and ej := e′j + e′′j ,

e′j :=8(u j + h j )−8(u j )−8
′(u j )h j , e′′j := (8

′(u j )−8
′(vj ))h j . (B-17)

We prove that for all j ≥ 0,

‖h j‖a ≤ K1‖g‖′β θ
a−α−1
j ∀a ∈ [a1, a2], (B-18)

‖vj‖a ≤ K2‖g‖′β θ
a−α
j ∀a ∈ [a1+β, a2+β], (B-19)

‖u j − vj‖a ≤ K3‖g‖′β θ
a−α
j ∀a ∈ [0, a2]. (B-20)

For j = 0, (B-19) and (B-20) are trivially satisfied, and (B-18) follows from (B-14) because h0 =9(0)g0

and θ0 = 1.
Now assume that (B-18), (B-19), (B-20) hold for j = 0, . . . , k, for some k ≥ 0. First we prove (B-20)

for j = k+1. Since uk+1 =
∑k

j=0 h j , the definition of the norm of E ′α and (B-18) for j = 0, . . . , k imply
that ‖uk+1‖

′
α ≤ K1‖g‖′β . By (B-10) one has

‖uk+1− vk+1‖0 ≤ C K1‖g‖′βθ
−α
k+1, (B-21)

where the constant C depends on α. From now until the end of this proof we denote by C any constant
(possibly different from line to line) depending only on a1, a2, α, β, µ, a0, which are fixed parameters.
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From (B-18) with j = 0, . . . , k we get

‖uk+1‖a ≤ K1‖g‖′β

k∑
j=0

θa−α−1
j ∀a ∈ [a1, a2]. (B-22)

We note that
k∑

j=0

θ
p−1
j ≤

2
p
θ

p
k+1 ∀p > 0. (B-23)

For a = a2, by (B-1) one gets ‖vk+1‖a2 ≤ C‖uk+1‖a2 . Thus, using (B-23) at p = a2−α,

‖uk+1− vk+1‖a2 ≤ C‖uk+1‖a2 ≤ C K1‖g‖′βθ
a2−α
k+1 . (B-24)

Using (B-5) to interpolate between (B-21) and (B-24), we get (B-20) for j = k+ 1, for all a ∈ [0, a2],
provided that K3 ≥ C K1.

To prove (B-19) for j = k+ 1, we use (B-2), (B-22) and (B-23) and we get

‖vk+1‖a ≤ Cθa−a1−β

k+1 ‖uk+1‖a1+β ≤ Cθa−a1−β

k+1 K1‖g‖′β

k∑
j=0

θ
a1+β−α−1
j ≤ C K1‖g‖′β θ

a−α
k+1

for all a ∈ [a1+β, a2+β]. This gives (B-19) for j = k+ 1 provided that K2 ≥ C K1.
To prove (B-18) for j = k+ 1, we begin with proving that

‖yk+1‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-25)

Since u j , vj , u j + h j belong to V for all j = 0, . . . , k, we use Taylor’s formula and (B-12) to deduce that,
for j = 0, . . . , k and a ∈ [0, a2−µ],

‖ej‖a ≤ C
(
‖h j‖a0‖h j‖a+µ+‖u j‖a+µ‖h j‖

2
a0
+‖h j‖a0‖vj − u j‖a+µ

+‖h j‖a+µ‖vj − u j‖a0 +‖u j‖a+µ‖h j‖a0‖vj − u j‖a0

)
. (B-26)

Hence at j = k, using (B-2) and then (B-26), we have

‖Sθk+1ek‖a2+β−α ≤ Cθ p
k+1‖ek‖a2+β−α−p

≤ Cθ p
k+1

(
‖hk‖a0‖hk‖q +‖uk‖q‖hk‖

2
a0
+‖hk‖a0‖vk − uk‖q

+‖hk‖q‖vk − uk‖a0 +‖uk‖q‖hk‖a0‖vk − uk‖a0

)
, (B-27)

where p := max{0, β − α +µ} and q := a2 + β − α − p+µ. Note that a2 + β − α − p ≥ 0 because
a2 ≥ µ. Since q ≤ a2, using also (B-23) we have

‖uk‖q ≤ ‖uk‖a2 ≤

k−1∑
j=0

‖h j‖a2 ≤ K1‖g‖′β

k−1∑
j=0

θ
a2−α−1
j ≤ C K1‖g‖′βθ

a2−α
k . (B-28)

By (B-28), (B-18), (B-20), and since a0 ≤ a1, the bound (B-27) implies that

‖Sθk+1ek‖a2+β−α ≤ C K1(K1+ K3)‖g‖′2β θ
p

k+1(θ
a1+q−2α−1
k + θ

a2+2a1−3α−1
k )



EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV 317

provided that K1‖g‖′β ≤ 1. We assume that

K1‖g‖′β ≤ 1. (B-29)

Both the exponents a1+q−2α−1 and a2+2a1−3α−1 are ≤ a2−α−1− p because a1 < α and
a1+β +µ≤ 2α. Thus

‖Sθk+1ek‖a2+β−α ≤ C K1(K1+ K3)‖g‖′2β θ
a2−α−1
k+1 . (B-30)

Now we estimate ‖Sθk+1ek‖0. Since a0, µ≤ a1, by (B-1) and (B-26) we get

‖Sθk+1ek‖0 ≤ C‖ek‖0 ≤ C(1+‖uk‖µ)(‖hk‖
2
a1
+‖hk‖a1‖vk − uk‖a1). (B-31)

By (B-18) and (B-29),

‖uk‖µ ≤ ‖uk‖a1 ≤

k−1∑
j=0

‖h j‖a1 ≤ K1‖g‖′β

∞∑
j=0

θ
a1−α−1
j = C K1‖g‖′β ≤ C. (B-32)

We use (B-18), (B-20) and (B-32) in (B-31), and the bound θ2a1−2α−1
k+1 ≤ θ

−β−1
k+1 , to deduce that

‖Sθk+1ek‖0 ≤ C K1(K1+ K3)‖g‖′2β θ
−β−1
k+1 . (B-33)

Using (B-5) to interpolate between (B-30) and (B-33), we obtain

‖Sθk+1ek‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-34)

Now we estimate the other terms in yk+1 (see (B-16)). By (B-8), (B-26), (B-18), (B-20) and (B-23),

k−1∑
i=0

‖Rkei‖b ≤

k−1∑
i=0

Cθb−a2+µ−1
k ‖ei‖a2−µ

≤ C K1(K1+ K3)‖g‖′2β θ
b−a2+µ−1
k

k−1∑
i=0

θ
a1+a2−2α−1
i (B-35)

for all b ∈ [0, a2 + β − α]. Since a1 + a2 − 2α > 0, we apply (B-23) to the last sum in (B-35). Then,
recalling that θk/θk+1 ∈

[ 1
2 , 1

]
, and using the bound a1+β +µ≤ 2α, we deduce that

k−1∑
i=0

‖Rkei‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-36)

The sum of (B-34) and (B-36) completes the proof of (B-25).
Now we are ready to prove (B-18) at j = k+1. By (B-1) and (B-22) we have ‖vk+1‖a1 ≤C‖uk+1‖a1 ≤

C K1‖g‖′β , and we assume that C K1‖g‖′β ≤ δ1, so that 9(vk+1) is defined. By (B-15), (B-13), (B-14),
(B-25), (B-19) one has, for all a ∈ [a1, a2],

‖hk+1‖a ≤ C‖g‖′β
{
1+ (K1+ K3)K1‖g‖′β

}
θa−α−1

k+1 (B-37)

provided that K2‖g‖′β ≤ 1. Bound (B-37) implies (B-18) provided that C
{
1+ (K1+ K3)K1‖g‖′β

}
≤ K1.
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The induction proof of (B-18), (B-19), (B-20) is complete if K1, K2, K3, ‖g‖′β satisfy

K3 ≥ C0K1, K2 ≥ C0K1, C0K1‖g‖′β ≤ 1, K2‖g‖′β ≤ 1, C0
{
1+ (K1+ K3)K1‖g‖′β

}
≤ K1,

where C0 is the largest of the constants appearing above. First we fix K1 ≥ 2C0. Then we fix K2 and K3

larger than C0K1, and finally we fix δ0 > 0 such that the last three inequalities hold for all ‖g‖′β ≤ δ0.
This completes the proof of (B-18), (B-19), (B-20).

Bound (B-18) implies that the sequence (uk) converges in Ea for all a ∈ [0, α). We call u its limit.
Since u =

∑
∞

j=0 h j and each term h j satisfies (B-18), it follows that u ∈ E ′α and ‖u‖′α ≤ K1‖g‖′β by the
definition of the norm in E ′α.

Finally, we prove the convergence of the Nash–Moser scheme. By (B-16) and (B-6) one proves by
induction that

k∑
j=0

(ej + yj )= ek + rk, where rk := (I − Sθk )

k−1∑
j=0

ej , ∀k ≥ 1.

Hence, by (B-15) and (B-17), recalling that 8′(vj )9(vj ) is the identity map, one has

8(uk+1)−8(u0)=

k∑
j=0

[8(u j+1)−8(u j )] =

k∑
j=0

(ej + g j + yj )= Gk + ek + rk,

where Gk :=
∑k

j=0 g j . By (B-14), ‖Gk − g‖b→ 0 as k→∞ for all b ∈ [0, β). Let a ∈ [a1−µ, α−µ).
By (B-22) and (B-29) we get ‖u j‖a+µ ≤ C . By (B-26), (B-18) and (B-20) we deduce that

‖ej‖a ≤ C K1(K1+ K3)‖g‖′2β θ
a1+a+µ−2α−1
j . (B-38)

Hence ‖ek‖a→ 0 as k→∞ because a1+ a+µ− 2α < 0, and, moreover,
∑
∞

j=0 ‖ej‖a converges. By
(B-3) and (B-38), for all ρ ∈ [0, a) we have

‖rk‖ρ ≤

k−1∑
j=0

‖(I − Sθk )ej‖ρ ≤ C
k−1∑
j=0

θ
ρ−a
k ‖ej‖a ≤ Cθρ−a

k , (B-39)

so that ‖rk‖ρ→ 0 as k→∞. We have proved that ‖8(uk)−8(u0)− g‖ρ→ 0 as k→∞ for all ρ in
the interval 0≤ ρ <min{α−µ, β}. Since uk→ u in Ea for all a ∈ [0, α), it follows that 8(uk)→8(u)
in Fb for all b ∈ [0, α−µ). �

Appendix C: Tame estimates

In this appendix we recall classical tame estimates for products, compositions of functions and changes
of variables which are repeatedly used in the paper. Recall the notation (1-6) for functions u(x), x ∈ T,
in the Sobolev space H s

:= H s(T,R).

Lemma C.1. Let s0, s1, s2, s denote nonnegative real numbers, with s0 >
1
2 . There exist positive con-

stants Cs , s ≥ s0, with the following properties.
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• (embedding and algebra) For all u, v ∈ H s0,

‖u‖L∞ ≤ Cs0‖u‖s0, ‖uv‖s0 ≤ Cs0‖u‖s0‖v‖s0 . (C-1)

• (interpolation) For 0≤ s1 ≤ s ≤ s2 and s = λs1+ (1− λ)s2, for all u ∈ H s2,

‖u‖s ≤ ‖u‖λs1
‖u‖1−λs2

. (C-2)

• (tame product) For s ≥ s0, for all u, v ∈ H s,

‖uv‖s ≤ Cs0‖u‖s‖v‖s0 +Cs‖u‖s0‖v‖s, (C-3)

and for s ∈ [0, s0], for all u ∈ H s0 and v ∈ H s,

‖uv‖s ≤ Cs0‖u‖s0‖v‖s . (C-4)

Proof. The lemma can be proved by using Fourier series and the Hölder inequality. Otherwise, for
(C-2) see, e.g., [Alinhac and Gérard 2007, p. 82] or [Moser 1966, p. 269]; for (C-3) adapt [Berti,
Bolle, and Procesi 2010, Appendix] or [Alinhac and Gérard 2007, p. 84]. For (C-4) use the bound∑

j∈Z〈n〉
2s
〈 j〉−2s

〈n− j〉−2s0 ≤ Cs0 for all n ∈ Z, all 0≤ s ≤ s0, which can be proved by splitting the two
cases 2| j | ≤ |n| and 2| j |> |n|. �

A function f : T× B→ R, where B := {y ∈ Rp+1
: |y|< R}, induces the composition operator

f̃ (u)(x) := f
(
x, u(x), u′(x), u′′(x), . . . , u(p)(x)

)
, (C-5)

where u(k)(x) denotes the k-th derivative of u(x). Let Bp be a ball in W p,∞(T,R) such that, if u ∈ Bp,
then the vector

(
u(x), u′(x), . . . , u(p)(x)

)
belongs to B for all x ∈ T.

Lemma C.2 (composition of functions). Assume f ∈Cr (T× B). Then, for all u ∈ H s+p
∩ Bp, s ∈ [0, r ],

the composition operator (C-5) is well-defined and

‖ f̃ (u)‖s ≤ C‖ f ‖Cr (‖u‖s+p + 1),

where C depends on r , p. If , in addition, f ∈ Cr+2, then, for u, h ∈ H s+p with u, u+ h ∈ Bp, one has

‖ f̃ (u+ h)− f̃ (u)‖s ≤ C‖ f ‖Cr+1
(
‖h‖s+p +‖h‖W p,∞‖u‖s+p

)
,

‖ f̃ (u+ h)− f̃ (u)− f̃ ′(u)[h]‖s ≤ C‖ f ‖Cr+2 ‖h‖W p,∞
(
‖h‖s+p +‖h‖W p,∞‖u‖s+p

)
.

Proof. For s ∈ N see [Moser 1966, pp. 272–275] and [Rabinowitz 1967, Lemma 7, pp. 202–203]. For
s /∈ N see [Alinhac and Gérard 2007, Proposition 2.2, p. 87]. �

Lemma C.3 (change of variable). Let p ∈W s,∞(T,R), s ≥ 1, with ‖p‖W 1,∞ ≤
1
2 . Let f (x)= x + p(x).

Then f is invertible, its inverse is f −1(y)= g(y)= y+ q(y), where q is 2π-periodic, q ∈W s,∞(T,R),
and ‖q‖W s,∞ ≤ C‖p‖W s,∞ , where C depends on d, s.

Moreover, if u ∈ H s(T,R), then u ◦ f (x)= u(x + p(x)) also belongs to H s, and

‖u ◦ f ‖s +‖u ◦ g‖s ≤ C(‖u‖s +‖p‖W s,∞‖u‖1). (C-6)
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Proof. For s ∈ N see, e.g., [Baldi 2013, Lemma B.4], where this lemma is proved by adapting [Hamilton
1982, Lemma 2.3.6, p. 149]. For s /∈ N the lemma can be proved by studying the conjugate of the
pseudodifferential operator |Dx |

s by a change of variable, either by Egorov’s theorem, see [Taylor 1981,
Chapter VIII, Section 1, p. 150] and [Alazard, Baldi, and Han-Kwan 2015, Appendix C, Section C.1], or
by an asymptotic formula, see [Alinhac and Gérard 2007, Proposition 7.1, p. 37]. �

Remark C.4. For time-dependent functions u(t, x), u ∈ C([0, T ], H s(T,R)), all the estimates of the
present appendix hold with ‖u‖s replaced by ‖u‖T,s := supt∈[0,T ] ‖u(t)‖s . �
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OPERATORS OF SUBPRINCIPAL TYPE

NILS DENCKER

In this paper we consider the solvability of pseudodifferential operators when the principal symbol vanishes
of at least second order at a nonradial involutive manifold 62. We shall assume that the subprincipal
symbol is of principal type with Hamilton vector field tangent to 62 at the characteristics, but transversal
to the symplectic leaves of 62. We shall also assume that the subprincipal symbol is essentially constant
on the leaves of 62 and does not satisfying the Nirenberg–Trèves condition (9) on 62. In the case when
the sign change is of infinite order, we also need a condition on the rate of vanishing of both the Hessian
of the principal symbol and the complex part of the gradient of the subprincipal symbol compared with
the subprincipal symbol. Under these conditions, we prove that P is not solvable.

1. Introduction

We will consider the solvability for a classical pseudodifferential operator P ∈9m
cl (M) on a C∞manifold M.

This means that P has an expansion pm + pm−1+ · · · , where pk ∈ Sk
hom is homogeneous of degree k for

all k, and pm = σ(P) is the principal symbol of the operator. A pseudodifferential operator is said to
be of principal type if the Hamilton vector field Hpm of the principal symbol does not have the radial
direction ξ · ∂ξ on p−1

m (0), in particular Hpm 6= 0. We shall consider the case when the principal symbol
vanishes of at least second order at an involutive manifold 62; then P is not of principal type.

P is locally solvable at a compact set K ⊆ M if the equation

Pu = v (1-1)

has a local solution u ∈D′(M) in a neighborhood of K for any v ∈C∞(M) in a set of finite codimension.
We can also define microlocal solvability of P at any compactly based cone K ⊂ T ∗M ; see Definition 2.6.

For pseudodifferential operators of principal type, it is known [Dencker 2006; Hörmander 1981] that
local solvability is equivalent to condition (9) on the principal symbol, which means that

Im apm does not change sign from − to + along the oriented bicharacteristics of Re apm (1-2)

for any 0 6= a ∈C∞(T ∗M). The oriented bicharacteristics are the positive flow-out of the Hamilton vector
field HRe apm 6= 0 on which Re apm = 0; these are also called semibicharacteristics of pm . Condition (1-2)
is invariant under multiplication of pm with nonvanishing factors, and symplectic changes of variables;
thus it is invariant under conjugation of P with elliptic Fourier integral operators. Observe that the sign
changes in (1-2) are reversed when taking adjoints, and that it suffices to check (1-2) for some a 6= 0 for
which HRe ap 6= 0, according to [Hörmander 1985b, Theorem 26.4.12].

MSC2010: primary 35S05; secondary 35A01, 58J40, 47G30.
Keywords: solvability, pseudodifferential operator, subprincipal symbol.
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For operators which are not of principal type, the situation is more complicated and the solvability
may depend on the lower-order terms. When the set 62, where the principal symbol vanishes of second
order, is involutive, the subprincipal symbol σsub(P)= pm−1 is invariantly defined at 62. In fact, on 62

it is equal to the refined principal symbol; see [Hörmander 1985a, Theorem 18.1.33].
In the case where the principal symbol is real and vanishes of at least second order at the involutive

manifold, there are several results, mostly in the case when the principal symbol is a product of real
symbols of principal type. Then the operator is not solvable if the imaginary part of the subprincipal
symbol has a sign change of finite order on a bicharacteristic of one the factors of the principal symbol;
see [Egorov 1977; Popivanov 1974; Wenston 1977; 1978].

This necessary condition for solvability has been extended to some cases when the principal symbol is
real and vanishes of second order at the involutive manifold. The conditions for solvability then involve
the sign changes of the imaginary part of the subprincipal symbol on the limits of bicharacteristics from
outside the manifold, thus on the leaves of the symplectic foliation of the manifold; see [Mendoza and
Uhlmann 1983; 1984; Mendoza 1984; Yamasaki 1983]. This has been extended to more general limit
bicharacteristics of real principal symbols in [Dencker 2016].

When 62 is not involutive, there are examples where the operator is solvable for any lower-order
terms. For example when P is effectively hyperbolic, then even the Cauchy problem is solvable for any
lower-order term; see [Hörmander 1977; Nishitani 2004]. There are also results in the cases when the
principal symbol is a product of principal-type symbols not satisfying condition (9); see [Cardoso and
Trèves 1974; Gilioli and Trèves 1974; Goldman 1975; Trèves 1973; Yamasaki 1980].

In the present paper, we shall consider the case when the principal symbol (not necessarily real-
valued) vanishes of at least second order at a nonradial involutive manifold 62. We shall assume that
the subprincipal symbol is of principal type with Hamilton vector field tangent to 62 at the charac-
teristics, but transversal to the symplectic leaves of 62. We shall also assume that the subprincipal
symbol is essentially constant on the symplectic leaves of 62 by (2-8), and does not satisfy condition
(9); see Definition 2.4. In the case when the sign change is of infinite order, we will need a con-
dition on the rate of vanishing of both the Hessian of the principal symbol and the complex part of
the gradient of the subprincipal symbol on the semibicharacteristic of the subprincipal symbol; see
condition (2-11). Under these conditions, P is not solvable in a neighborhood of the semibichar-
acteristic; see Theorem 2.7, which is the main result of the paper. In this case P is an evolution
operator; see [Colombini et al. 2003; 2010] for some earlier results on the solvability of evolution
operators.

2. Statement of results

Let σ(P)= p ∈ Sm
hom be the homogeneous principal symbol. We shall assume that

σ(P) vanishes of at least second order at 62, (2-1)

where

62 is a nonradial involutive manifold. (2-2)
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Here nonradial means that the radial direction 〈ξ, ∂ξ 〉 is not in the span of the Hamilton vector fields
of the manifold, i.e., not equal to H f on 62 for some f ∈ C1 vanishing at 62. Then by a change of
homogeneous symplectic coordinates we may assume that

62 = {ξ
′
= 0}, ξ = (ξ ′, ξ ′′) ∈ Rk

×Rn−k (2-3)

for some k > 0; this can be achieved by conjugation by elliptic Fourier integral operators. If P is of
principal type near 62 then, since solvability is an open property, we find that a necessary condition for P
to be solvable at 62 is that condition (9) for the principal symbol is satisfied in some neighborhood of 62.
Naturally, this condition is empty on 62, where we instead need some conditions on the subprincipal
symbol

ps = pm−1+
i
2

∑
j

∂x j ∂ξ j p, (2-4)

which is equal to pm−1 on 62 and invariantly defined as a function on 62 under symplectic changes of
coordinates and conjugation with elliptic pseudodifferential operators. (In the Weyl quantization, the
subprincipal symbol is equal to pm−1.) When composing P with an elliptic pseudodifferential operator C ,
the value of the subprincipal symbol of CP is equal to cps+

1
2 i Hpc= cps at62, where c= σ(C). Observe

that the subprincipal symbol is complexly conjugated when taking the adjoint of the operator.
Let T6σ2 be the symplectic polar to T62, which spans the symplectic leaves of 62. If 62 = {ξ

′
= 0}

and x = (x ′, x ′′) ∈ Rk
×Rn−k , then the leaves are spanned by ∂x ′ . Let

T σ62 = T62/T6σ2 , (2-5)

which is a symplectic space over 62, which in these coordinates is given by

T σ62 =
{(
(x0, 0, ξ ′′0 ); (0, y′′, 0, η′′)

)
: (y′′, η′′) ∈ T ∗Rn−k}. (2-6)

Next, we are going to study the Hamilton vector field Hpm−1 at 62. If Hpm−1 ⊆ T62 at 62 then we find
that dps vanishes on T6σ2 so dps is well defined on T σ62. In fact, ps = pm−1 on 62 so if we choose
coordinates so that (2-3) holds, then Hpm−1 ⊆ T62 is equivalent to

Hpm−1ξ
′
=−∂x ′ pm−1 =−∂x ′ ps = 0 when ξ ′ = 0, (2-7)

which is invariant under multiplication with nonvanishing factors when ps = 0. Let Hps be the Hamilton
vector field of ps with respect the symplectic structure on the symplectic manifold T σ62. In the chosen
coordinates we have

Hps = ∂ξ ′′ ps∂x ′′ − ∂x ′′ ps∂ξ ′′

modulo ∂x ′ , which is nonvanishing if ∂x ′′ξ ′′ ps 6= 0. Since ps = pm−1 on 62, the difference between Hpm−1

and Hps is tangent to the leaves of 62. Actually, since the subprincipal symbol is only well defined on 62,
the vector field Hps is only well defined up to terms tangent to the leaves.

Because of that, we would need that the subprincipal symbol ps is constant on the leaves of 62, but
that condition is not invariant under multiplication with nonvanishing factors when ps 6= 0. Instead we
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shall use the invariant condition ∣∣dps |T L
∣∣≤ C0|ps | (2-8)

for any leaf L of 62. Then ps is constant on the leaves modulo nonvanishing factors, according to the
following lemma.

Lemma 2.1. If dps |T σ62 6= 0, then condition (2-8) is equivalent to the fact that ps is constant on the
leaves of 62 after multiplication with a smooth nonvanishing factor. Thus, if 62 = {ξ

′
= 0} then (2-8)

gives ps(x, 0, ξ ′′)= c(x, ξ ′′)q(x ′′, ξ ′′) with 0 6= c ∈ C∞.

Proof. Choose coordinates so that 62 = {ξ
′
= 0}. If ps 6= 0 at a point w0 ∈ 62 then (2-8) gives that

∂x ′ log ps is uniformly bounded near w0, where log ps is a branch of the complex logarithm. Thus, by
integrating with respect to x ′ in a simply connected neighborhood starting at x ′ = x ′0, we find that

ps(x, 0, ξ ′′)= c(x, ξ ′′)q(x ′′, ξ ′′), (2-9)

where q(x ′′, ξ ′′)= ps(x ′0, x ′′, 0, ξ ′′) ∈ C∞, so 0 6= c ∈ C∞ satisfies c(x ′0, x ′′, ξ ′′)= 1. When ps = 0 we
find that d Re zps |T σ62 6= 0 for some z ∈ C \ {0} by assumption. Thus we obtain locally that

ps(x, 0, ξ ′′)= c±(x, ξ ′′)q±(x ′′, ξ ′′) on S± = {±Re zps(x, 0, ξ ′′) > 0},

where q±(x ′′, ξ ′′) = ps(x ′0, x ′′, 0, ξ ′′), 0 6= c± ∈ C∞ and c±(x ′0, x ′′, ξ ′′) = 1 on S±. Then we find that
p−1

s (0) is independent of x ′ and

∂αx ′′∂
β

ξ ′′q±(x
′′, ξ ′′)= ∂αx ′′∂

β

ξ ′′ ps(x ′0, x ′′, 0, ξ ′′) ∀α, β, on S±,

so by taking the limit at S = {Re zps = 0}, we find that the functions q± extend to q ∈ C∞. Since
c+q = c−q = ps at S, we find that c+ = c− at S when q 6= 0. When q = 0 at S, we may differentiate
in the normal direction of S to obtain c−∂νq = c+∂νq, and since ∂νq 6= 0, the functions c± extend to a
continuous function c. By differentiating and taking the limit, we find that

∇c−q + c∇q =∇ps =∇c+q + c∇q at S,

which similarly gives that ∇c− = ∇c+ at S, so c ∈ C1. By repeatedly differentiating c±q, we find by
induction that c ∈ C∞, so we get smooth quotients c and q in (2-9). �

Now, a semibicharacteristic of ps will be a bicharacteristic of Re aps on T σ62, where C∞ 3 a 6= 0,
with the natural orientation. Observe that condition (2-7) is only invariant under multiplication with
nonvanishing factors when ps = 0.

Definition 2.2. We say that the operator P is of subprincipal type if, when ps = 0 on 62, the following
hold: Hpm−1 |62 ⊆ T62,

dps |T σ62 6= 0, (2-10)

and the corresponding Hamilton vector field Hps of (2-10) does not have the radial direction. We call
Hps the subprincipal Hamilton vector field and the (semi)bicharacteristics are called the subprincipal
(semi)bicharacteristics on 62.
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Clearly, if (2-3) holds, then the condition that the Hamilton vector field does not have the radial
direction means that ∂ξ ′′ ps 6= 0 or ∂x ′′ ps 6‖ ξ

′′ when ps = 0 on 62 = {ξ
′
= 0}.

In the case when the principal symbol p is real, a necessary condition for solvability of the operator
is that the imaginary part of the subprincipal symbol does not change sign from − to + when going in
the positive direction on a C∞ limit of normalized bicharacteristics of the principal symbol p at 62; see
[Dencker 2016]. When p vanishes of exactly second order on 62 = {ξ

′
= 0}, such limit bicharacteristics

are tangent to the leaves of 62. In fact, then Taylor’s formula gives Hp = 〈Bξ ′, ∂x ′〉+O(|ξ ′|2), where
B 6= 0, so the normalized Hamilton vector fields have limits that are tangent to the leaves. When the
principal symbol is proportional to a real-valued symbol, this gives examples of nonsolvability when the
subprincipal symbol is not constant on the leaves of 62. Thus condition (2-8) is natural if there are no
other conditions on the principal symbol.

Remark 2.3. If ps is real-valued, then by the proof of Lemma 2.1 it follows from (2-8) that ps has
constant sign on the leaves of 62, since then c > 0 in (2-9).

Definition 2.4. We say that P satisfies condition Sub(9) if Im aps does not change sign from − to +
when going in the positive direction on the subprincipal bicharacteristics of Re aps for any 0 6= a ∈ C∞.

Thus, condition Sub(9) is condition (9) given by (1-2) on the subprincipal symbol ps . Observe that
since ps is only defined on 62, the Hamilton vector field Hps is only well defined in T σ62 = T62/T6σ2 ;
thus it is well defined modulo ∂x ′ . But if (2-8) holds then we find that Sub(9) is a condition on ps

with respect to the symplectic structure of T σ62. In fact, by the invariance of condition (9) given by
[Hörmander 1985b, Lemma 26.4.10], condition Sub(9) holds for any a 6= 0 such that HRe aps 6= 0, so we
may assume by Lemma 2.1 that ps is constant on the leaves of 62.

Since condition Sub(9) is invariant under symplectic changes of variables and multiplication with
nonvanishing functions, it is invariant under conjugation of the operator by elliptic Fourier integral
operators. Observe that the sign change is reversed when taking the adjoint of the operator.

Recall that the Hessian of the principal symbol Hess p is the quadratic form given by ∂2 p at 62, which
is defined on the normal bundle N62 since it vanishes on T62. By the calculus, Hess p is invariant,
modulo nonvanishing smooth factors, under symplectic changes of variables and multiplication of P with
elliptic pseudodifferential operators.

Next, we assume that condition Sub(9) is not satisfied on a semibicharacteristic 0 of ps ; that is,
Im aps changes sign from − to + on the positive flow-out of HRe aps 6= 0 for some 0 6= a ∈ C∞. Now
if the sign change is not of finite order, we shall also need an extra condition on the rate of vanishing
of both the Hessian of the principal symbol and the complex part of the gradient of the subprincipal
symbol on the subprincipal semibicharacteristic. Then, we shall assume that there exists C > 0, ε > 0
and 0 6= a ∈ C∞ so that d Re aps |T62 6= 0 and

‖Hess p‖+ |dps ∧ d ps| ≤ C |ps |
ε when Re aps = 0 on 62 (2-11)

near 0. Since (2-11) also holds for smaller ε and larger C , it is no restriction to assume ε ≤ 1. The
motivation for (2-11) is to prevent the transport equation (6-1) from dispersing the support of the solution
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before the sign change of the imaginary part of the subprincipal symbol localizes it; see Remark 3.1. We
also find that ∇ ps is proportional to a real vector when ps = 0 since then dps ∧ d ps= 0.

Remark 2.5. Condition (2-11) is invariant under multiplication of P with elliptic pseudodifferential
operators, and symplectic changes of coordinates. If (2-8) also holds, then we obtain∥∥d Hess p|T L

∥∥≤ C1|ps |
ε/2 (2-12)

for any leaf L of 62 when Re aps = 0 near 0.

In fact, multiplication with an elliptic pseudodifferential operator with principal symbol c changes the
principal symbol into cp, the Hessian of the principal symbol into c Hess p and the subprincipal symbol
into

cps +
i
2

Hpc at 62,

where the last term vanishes at 62 and contains the factor Hess p, modulo terms vanishing of second
order at 62. Now we have

|dcps ∧ dcps| ≤ |c|2 |dps ∧ d ps| +C |ps |.

Thus we find that (2-11) holds with p replaced by cp, ps replaced by cps and a replaced with a/c.
If (2-8) also holds and we choose coordinates so that 62 = {ξ

′
= 0}, then we obtain from Lemma 2.1 that

|ps(x ′, x ′′, 0, ξ ′′)| ∼= |ps(x ′0, x ′′, 0, ξ ′′)| when |x ′− x ′0| ≤ c. Thus (2-11) gives

‖Hess p(x ′, x ′′, 0, ξ ′′)‖ ≤ C2|ps(x ′0, x ′′, 0, ξ ′′)|ε when |x ′− x ′0| ≤ c.

To show (2-12) it suffices to consider an element b jk(x ′, x ′′, 0, ξ ′′) of Hess p. Clearly |b jk | ≤ ‖Hess p‖,
so by adding C2|ps(x0, x ′′, 0, ξ ′′)|ε, we obtain

0≤ b jk(x ′, x ′′, 0, ξ ′′)≤ 2C2|ps(x0, x ′′, 0, ξ ′′)|ε when |x ′− x ′0| ≤ c.

Then we find that

|∂x ′b jk(x0, x ′′, 0, ξ ′′)| ≤ C
√

b jk(x0, x ′′, 0, ξ ′′)≤ C ′|ps(x0, x ′′, 0, ξ ′′)|ε/2

by [Hörmander 1983, Lemma 7.7.2].
We shall study the microlocal solvability of the operator, which is given by the following definition.

Recall that H loc
(s) (X) is the set of distributions that are locally in the L2 Sobolev space H(s)(X).

Definition 2.6. If K ⊂ S∗X is a compact set, then we say that P is microlocally solvable at K if there
exists an integer N so that for every f ∈ H loc

(N )(X) there exists u ∈D′(X) such that K ∩WF(Pu− f )=∅.

Observe that solvability at a compact set M ⊂ X is equivalent to solvability at S∗X |M by [Hörmander
1985b, Theorem 26.4.2], and that solvability at a set implies solvability at a subset. Also, by [Hörmander
1985b, Proposition 26.4.4] the microlocal solvability is invariant under conjugation by elliptic Fourier
integral operators and multiplication by elliptic pseudodifferential operators. We can now state the main
result of the paper.
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Theorem 2.7. Assume that P ∈ 9m
cl (X) has principal symbol that vanishes of at least second order at

a nonradial involutive manifold 62, is of subprincipal type, does not satisfy condition Sub(9) on the
subprincipal semibicharacteristic 0 ⊂ 62, and satisfies (2-8) near 0. In the case the sign change in
Sub(9) is of infinite order, we also assume condition (2-11) near 0. Then P is not locally solvable at 0.

Example 2.8. Let
P = D1 D2+ B(x, Dx) (2-13)

with B ∈ 91
cl. Then σ(B) is the subprincipal symbol on 62 = {ξ1 = ξ2 = 0}. Mendoza and Uhlmann

[1983] proved that P is not solvable if Im σ(B) changes sign as x1 or x2 increases on 62, and they proved
in [Mendoza and Uhlmann 1984] that P is solvable if Im σ(B) 6= 0 on 62. From this it is natural to
conjecture that the condition for solvability of P is that Im σ(B) does not change sign on the leaves of 6,
which are foliated by ∂x1 and ∂x2 . But the following is a counterexample to that conjecture. Let

P = D1 D2+ Dt + i f (t, x, Dx) (2-14)

with real and homogeneous f (t, x, ξ) ∈ S1
hom satisfying ∂x j f =O(| f |) for j = 1, 2. This operator is of

subprincipal type and satisfies (2-8). Then Theorem 2.7 gives that P is not solvable if t 7→ f (t, x, ξ)
changes sign of finite order from − to +, but observe that f has constant sign on the leaves of 62

by Remark 2.3. Thus the solvability of the operator P in (2-13) also depends on the real part of the
subprincipal symbol at 62. In fact, with the above conditions one can prove that D1 D2+ i f (t, x, Dx) is
solvable.

Example 2.9. The linearized Navier–Stokes equation

∂t u+
∑

j

a j (t, x)∂x j u+1x u = f, a j (x) ∈ C∞, (2-15)

is of subprincipal type. The symbol is

iτ + i
∑

j

a j (t, x)ξ j − |ξ |
2, (2-16)

so the subprincipal symbol is proportional to a real symbol on 62 = {ξ = 0}. Thus condition Sub(9) is
satisfied.

Now let S∗M ⊂ T ∗M be the cosphere bundle where |ξ | = 1, and let ‖u‖(k) be the L2 Sobolev norm of
order k, u ∈ C∞0 . In the following, P∗ will be the L2 adjoint of P. To prove Theorem 2.7 we shall use the
following result.

Remark 2.10. If P is microlocally solvable at 0 ⊂ S∗Rn, then [Hörmander 1985b, Lemma 26.4.5] gives
that for any Y b Rn such that 0 ⊂ S∗Y , there exists an integer ν and a pseudodifferential operator A so
that WF(A)∩0 =∅ and

‖u‖(−N ) ≤ C
(
‖P∗u‖(ν)+‖u‖(−N−n)+‖Au‖(0)

)
, u ∈ C∞0 (Y ), (2-17)

where N is given by Definition 2.6.
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We shall prove Theorem 2.7 in Section 8 by constructing localized approximate solutions to P∗u ∼= 0
and use (2-17) to show that P is not microlocally solvable at 0. We shall first find a normal form for the
adjoint operator.

3. The normal form

Assume that P∗ has the symbol expansion pm+ pm−1+· · · , where p j ∈ S j
hom is homogeneous of degree j .

By multiplying P∗ with an elliptic pseudodifferential operator, we may assume that m = 2. Choose local
symplectic coordinates (t, x, y, τ, ξ, η) so that 62 = {η = 0}, which is foliated by leaves spanned by ∂y .
Since p2 vanishes of at least second order at 62, we find that

p2(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk,

where B jk is homogeneous of degree 0 for all j, k.
The differential inequality (2-8) in these coordinates means that |∂y p1| ≤ C |p1| when η = 0, which by

Lemma 2.1 gives that

p1(t, x, y, τ, ξ, 0)= q(t, x, y, τ, ξ)r1(t, x, τ, ξ)

near 0, where q is a nonvanishing smooth homogeneous function. By multiplying with pseudodifferential
operators with principal symbol equal to q−1 on 62, we may assume that q ≡ 1 and that p1 is constant
on the leaves of 62. The Hamilton vector field of p1 is then tangent to 62 by (2-7).

We have assumed that P does not satisfy condition Sub(9) on a semibicharacteristic 0 of p1 on 62.
Since we are now considering the adjoint P∗ this means that Im ap1 changes sign from + to − on the
flow-out 0 of HRe ap1 on Re ap−1

1 (0) for some 0 6= a ∈ C∞. By the invariance of condition Sub(9) given
by [Hörmander 1985b, Lemma 26.4.10], it is no restriction to assume that a is homogeneous and constant
in y. By multiplication with an elliptic pseudodifferential operator having principal symbol a−1, we may
assume that a ≡ 1. Since Im p1 changes sign on 0, there is a maximal semibicharacteristic 0′ ⊂ 0 on
which Im p1 = 0. Here 0′ could be a point, which is always the case if the sign change is of finite order.

Since P is of subprincipal type, we find that ∂t,x,τ,ξ Re p1 6= 0 on 0′ by (2-10), so 0′ is transversal
to the leaves of 62. Since Im p1|0 has opposite signs near the boundary of 0′, we may shrink 0 so
that it is not a closed curve. Since HRe p1 is tangent to 62, we can complete τ = Re p1 to a symplectic
coordinate system in a convex neighborhood of 0′ so that η = 0 on 62, which preserves the leaves. In
fact, this is obtained by solving the equation Hτη = 0 with initial value on a submanifold transversal
to Hτ . The change of variables can be then done by conjugation with suitable elliptic Fourier integral
operators.

Now, using Malgrange’s preparation theorem in a neighborhood of 0′ in 62, we find that

p1(t, x, y, τ, ξ, 0)= q(t, x, τ, ξ)(τ + r(t, x, ξ)), q 6= 0,

near 0, since p1 is constant on the leaves of 62. In fact, on 0′ we have p1 = 0 and dp1 6= 0, so the
division can be done locally and by a partition of unity globally near 0 after possibly shrinking 0. Then
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using Taylor’s formula on p1, we find since q 6= 0 that

p1(t, x, y, τ, ξ, η)= q(t, x, τ, ξ)
(
τ + r(t, x, ξ)+ A(t, x, y, τ, ξ, η) · η

)
. (3-1)

By multiplying P with an elliptic pseudodifferential operator, we may again assume q ≡ 1. Since p2

vanishes of second order at 62, this only changes A with terms which have Hess p2 as a factor and terms
that vanish at 62.

We can write r = r1 + ir2 and A = A1 + i A2 with real-valued r j and A j , j = 1, 2. Now we may
complete

Re p1 = τ + r1(t, x, ξ)+ A1(t, x, y, τ, ξ, η) · η

to a symplectic coordinate system in a convex neighborhood of 0′. Since HRe p1 ∈ T62 at 62, we may
keep 62 = {η = 0}, which preserves the leaves of 62 on which p1 is constant. Thus, we find that

p1 = τ + i f (t, x, ξ)+ i A(t, x, y, τ, ξ, η) · η, (3-2)

where f = r2 and A = A2 are real-valued. We also find that

0 = {(t, x0, y0, 0, ξ0, 0)}, t ∈ I, (3-3)

where I is an interval in R. The symplectic change of coordinates can be made by conjugation with
elliptic Fourier integral operators, which only changes A with terms having Hess p2 as a factor and terms
that vanish at 62. Observe that A need not be real-valued after these changes.

We have assumed that condition Sub(9) is not satisfied for P on the subprincipal semibicharacteristic 0.
Thus the imaginary part of the subprincipal symbol of P∗ on 62

t 7→ f (t, x0, ξ0) (3-4)

changes sign from + to − as t increases on I ⊂ R. Similarly, we have f = 0 on 0′, where 0′ is given
by (3-3) with I replaced by I ′ ⊂ I. By reducing to minimal bicharacteristics on which t 7→ f (t, x, ξ)
changes sign as in [Hörmander 1981, p. 75], we may assume that f vanishes of infinite order on a
bicharacteristic 0′ arbitrarily close to the original bicharacteristic, if 0′ is not a point (see [Wittsten 2012,
Section 2] for a more refined analysis). If 0′ is not a point then it is a one-dimensional bicharacteristic
by [Hörmander 1981, Definition 3.5], which means that the Hamilton vector field on 0′ is proportional to
a real vector.

In fact, if f (a, x0, ξ0) > 0> f (b, x0, ξ0) for some a < b, then we can define

L(x, ξ)= inf
{
t − s : a < s < t < b such that f (s, x, ξ) > 0> f (t, x, ξ)

}
when (x, ξ) is close to (x0, ξ0), and we put L0 = lim inf(x,ξ)→(x0,ξ0) L(x, ξ). Then for every ε > 0 there
exists an open neighborhood Vε of (x0, ξ0) such that the diameter of Vε is less than ε and L(x, ξ)> L0−ε/2
when (x, ξ) ∈ Vε. By definition, there exists (xε, ξε) ∈ Vε and a < sε < tε < b so that tε − sε < L0+ ε/2
and f (sε, xε, ξε) > 0> f (tε, xε, ξε). Then it is easy to see that

∂αx ∂
β
ξ f (t, xε, ξε)= 0 ∀α, β when sε + ε < t < tε − ε (3-5)
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since else we would have a sign change in an interval with length less than L0 − ε/2 in Vε. We may
choose a sequence ε j → 0 so that sε j → s0 and tε j → t0. Then L0 = t0− s0 and (3-5) holds at (x0, ξ0) for
s0 < t < t0.

We also obtain the following condition from (2-11).

Remark 3.1. If the sign change of t 7→ f (t, x, ξ) is of infinite order on 0, then we find from assump-
tion (2-11) that

‖{B jk} jk‖+ |A| + |d f |. | f |ε near 0 on 62 (3-6)

for some ε > 0. Here a . b (and b & a) means that a ≤ Cb for some C > 0.

In fact, terms having Hess p2|62 = {B jk} jk as a factor can be estimated by (2-11), so we may assume
that (3-2) holds with real A. The subprincipal symbol is equal to ps = p1+ i

∑
jk ∂y j B jkηk modulo terms

that are O(|η|2), so ps = p1 on 62. By Remark 2.5 and (2-8), we can estimate the terms ∂y j B jkdηk in
dps by replacing ε with ε/2 in (2-11), so we may replace ps by p1 in the estimate. Let 0 6= a = a1+ ia2

with real-valued a j in (2-11) so that d Re ap1|T62 6= 0. We have dp1 = dτ + i(d f + Adη) on 62, so

|dp1 ∧ d p1| ∼= |d f | + |A| on 62.

Thus we find from (2-11) that |d f | + |A| = 0 on 0′. Since d Re ap1|T62 6= 0, we find that a1 6= 0 on 0′.
On 62 we have Re ap1 = a1τ − a2 f = 0 when τ = a2 f/a1. We obtain

Im ap1 = a2τ + a1 f = |a|2 f/a1 when Re ap1 = 0 on 62 near 0′,

which gives (3-6) from (2-11).
We obtain the following normal form for these operators of subprincipal type:

P∗ = Dt + F(t, x, y, Dt , Dx , Dy), (3-7)

where F ∼ F2+ F1+ · · · with homogeneous F j ∈ C∞(R, S j
hom). Here F2 vanishes of at least second

order on 62 = {η = 0}, so we find by Taylor’s formula that

F2(t, x, y, τ, ξ, η)= B(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk (3-8)

with homogeneous B jk . Then {B jk} jk |62 = Hess F2(t, x, y, τ, ξ, 0). Also we have that F1 vanishes on
the semibicharacteristic 0′ and

F1(t, x, y, τ, ξ, η)= i f (t, x, ξ)+ A(t, x, y, τ, ξ, η) · η. (3-9)

Here f is real and homogeneous of degree 1 and A|62= ∂ηF1|62 . We have that the principal symbol σ(P∗)
is equal to F2, and the subprincipal symbol σsub(P∗) is equal to τ+i f on62. Thus we obtain the following
result.

Proposition 3.2. Assume that P satisfies the conditions in Theorem 2.7. Then by conjugation with elliptic
Fourier integral operators and multiplication with an elliptic pseudodifferential operator, we may assume

P∗ = Dt + F(t, x, y, Dt , Dx , Dy) (3-10)
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microlocally near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I } ⊂62, where S2
cl 3 F ∼= F2+ F1+ · · · with F j ∈ S j

hom
is homogeneous of degree j and

F2(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk ∈ S2
hom

vanishes of second order on 62. We may also assume

F1(t, x, y, τ, ξ, η)= i f (t, x, ξ)+ A(t, x, y, τ, ξ, η) · η

is homogeneous of degree 1 and f is real-valued such that t 7→ f (t, x0, ξ0) changes sign from + to − as
t increases on I ⊂ R. If f (t, x0, ξ0)= 0 on a subinterval I ′ ⊆ I such that |I ′| 6= 0, then we may assume
that ∂k

t ∂
α
x ∂

β
ξ f (t, x0, ξ0)= 0 for all k, α, β, for t ∈ I ′. If the sign change of f is of infinite order then (3-6)

is satisfied near 0.

For the proof of Theorem 2.7, we shall modify the Moyer–Hörmander construction of approximate
solutions of the type

uλ(t, x, y)= eiλω(t,x,y)
∑
j≥0

φ j (t, x, y)λ− j/N, λ≥ 1, (3-11)

with N to be determined later. Here the phase function ω(t, x) will be complex-valued, but Imω ≥ 0 and
∂ Reω 6= 0 when Imω = 0. Letting z = (t, x, y), we therefore have the formal expansion

p(z, D)(exp(iλω)φ)∼ exp(iλω)
∑
α

∂αζ p(z, λ∂zω(z))Rα(ω, λ, D)φ(z)/α!, (3-12)

where Rα(ω, λ, D)φ(z)= Dα
w

(
exp(iλω̃(z, w))φ(w)

)∣∣
w=z and

ω̃(z, w)= ω(w)−ω(z)+ (z−w)∂ω(z).

Observe that the values of the symbol are given by an almost analytic extension; see Theorem 3.1 in
Chapter VI and Chapter X:4 in [Trèves 1980]. This gives

e−iλωP∗eiλωφ=
(
λ∂tω+λ

2 B(t, x, y,∂t,x,yω)+iλ f (t, x,∂xω)−λ∂
2
η B(t, x, y,∂t,x,yω)∂

2
yω/2

)
φ

+Dtφ+λ∂ηB(t, x, y,∂t,x,yω)Dyφ+∂
2
η B(t, x, y,∂t,x,yω)D2

yφ/2

+i∂ξ f (t, x,∂xω)Dxφ+A(t, x, y,∂t,x,yω)Dyφ+
∑
j≥0

λ− j R j (t, x, y,Dt,x,y)φ, (3-13)

where R0(t, x, y) = F0(t, x, y, ∂t,x,yω). Here the values of the symbols at (t, x, y, ∂t,x,yω) will be
replaced by finite Taylor expansions at (t, x, y, ∂t,x,y Reω). In fact, the almost analytic extensions are
determined by these Taylor expansions.

Because of the inhomogeneity coming from the terms of B, we shall use a phase function ω(t, x)
which is constant in y so that

uλ(t, x, y)= eiλω(t,x)
∑
j≥0

φ j (t, x, y)λ− j/N, λ≥ 1. (3-14)
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When ∂yω ≡ 0 the expansion (3-13) becomes

e−iλωP∗eiλωφ= λ(∂tω+i f (t, x,∂xω))φ+Dtφ+∂
2
η B(t, x, y,∂t,xω,0)D2

yφ/2

+A(t, x, y,∂t,xω,0)Dyφ+i∂ξ f (t, x,∂xω)Dxφ+
∑
j≥0

λ− j R j (t, x, y,Dt,x,y)φ, (3-15)

where R0(t, x, y) = F0(t, x, y, ∂t,xω, 0), and Rm(t, x, y, Dt,x,y) are differential operators of order j
in t , order k in x and order ` in y, where j + k + ` ≤ m + 2 for m > 0. In fact, this follows since
∂

j
τ ∂

α
ξ ∂

β
η Fk ∈ Sk− j−|α|−|β| by homogeneity.

4. The eikonal equation

We shall first solve the eikonal equation approximately, which is given by the highest-order term of (3-15)

∂tω+ i f (t, x, ∂xω)= 0, (4-1)

where t 7→ f (t, x, ξ) changes sign from + to − for some (x, ξ) as t increases in a neighborhood of
0={(t, x0, ξ0) : t ∈ I } on which f (t, x, ξ) vanishes. If |I | 6=0 then by reducing to minimal bicharacteristics
as in Section 3, we may assume that f vanishes of infinite order at 0. We shall choose the phase function
so that Imω ≥ 0 and ∂2

x Imω > 0 near the interval. By changing coordinates, it is no restriction to
assume 0 ∈ I. We shall use the approach by Hörmander [1981] in the principal-type case and use the
phase function to localize in t and x . Observe that since ω does not depend on y, the localization in the
y-variables will be done in the amplitude φ.

We shall take the Taylor expansion of ω in x :

ω(t, x)= w0(t)+〈x − x0(t), ξ0(t)〉+
∑

2≤|α|≤K

wα(t)(x − x0(t))α/α!. (4-2)

Here α = (α1, α2, . . . ), with α j ∈ N, α! =
∏

j α j ! and |α| = α1+α2+ · · · . Then we find that

∂tω(t, x)= w′0(t)−〈x
′

0(t), ξ0(t)〉+ 〈x − x0(t), ξ ′0(t)〉

+

∑
2≤|α|≤K

w′α(t)(x − x0(t))α/α! −
∑

1≤|α|≤K−1
k

wα+ek (t)(x − x0(t))αx ′0,k(t)/α!, (4-3)

where ek = (0, . . . , 0, 1, 0, . . . , 0) is the k-th unit vector. We also find

∂x jω(t, x)= ξ0 j (t)+
∑

1≤|α|≤K−1

wα+e j (t)(x − x0(t))α/α! = ξ0 j (t)+ σ j (t, x). (4-4)

Here ξ0(t)= (ξ0,1(t), . . . ) and σ = {σ j } j is a finite expansion in powers of 1x = x − x0. We define the
value of f (t, x, ∂xω) by the Taylor expansion

f (t, x, ∂xω)= f (t, x, ξ0+ σ)

= f (t, x, ξ0)+
∑

j

∂ξ j f (t, x, ξ0)σ j +
∑

jk

∂ξ j ∂ξk f (t, x, ξ0)σ jσk/2+ · · · . (4-5)
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Now the value at x = x0 of (4-1) is equal to w′0(t)−〈x
′

0(t), ξ0(t)〉+ i f (t, x0(t), ξ0(t)). This vanishes if{
Rew′0(t)= 〈x

′

0(t), ξ0(t)〉,

Imw′0(t)=− f (t, x0(t), ξ0(t)),
(4-6)

so by putting w0(0)= 0, this will determine w0 once we have (x0(t), ξ0(t)).
We shall simplify the notation and put wk = {wαk!/α!}|α|=k so that wk is a multilinear form. The

first-order terms in x − x0 of (4-1) vanish if

ξ ′0(t)−w2(t)x ′0(t)+ i
(
∂x f (t, x0(t), ξ0(t))+ ∂ξ f (t, x0(t), ξ0(t))w2(t)

)
= 0.

We find by taking real and imaginary parts that{
ξ ′0 = Rew2x ′0+ ∂ξ f (t, x0, ξ0) Imw2,

x ′0 = (Imw2)
−1(∂x f (t, x0, ξ0)+ ∂ξ f (t, x0, ξ0)Rew2)

(4-7)

with (x0(0), ξ0(0))= (x0, ξ0), which will determine x0(t) and ξ0(t) if | Imw2| 6= 0.
The second-order terms in x − x0 vanish if

w′2/2−w3 x ′0/2+ i
(
∂ξ fw3/2+ ∂2

x f/2+ ∂x∂ξ fw2+w2∂
2
ξ fw2/2

)
= 0,

which gives
w′2 = w3 x ′0− i

(
∂ξ fw3+ ∂

2
x f + 2∂x∂ξ fw2+w2∂

2
ξ fw2

)
(4-8)

with initial data w2(0) such that Imw2(0) > 0.
We find that the terms of order k > 2 vanish if

w′k −wk+1x ′0 = Fk(t, x0, ξ0, {w j }), (4-9)

where we may choose wk(0)= 0. Here Fk is a linear combination of the derivatives of f of order ≤ k
multiplied by polynomials in w j with 2≤ j ≤ k+1. When k= K we get w′K = FK (t, x0, ξ0, {w j }), where
j ≤ K . The equations (4-7)–(4-9) form a quasilinear system of differential equations, which can be solved
in a convex neighborhood of 0. In the case when |I | 6= 0, we have assumed that ∂αt,x,ξ f (t, x0, ξ0) ≡ 0
for all α, for t ∈ I. Then we find from (4-7)–(4-9) that x0, ξ0 and wk are constant in t ∈ I , so we may
solve (4-7)–(4-9) in a convex neighborhood of I . Observe that the higher-order terms cannot change the
condition that Im ∂2

xω ≥ c > 0 and Imω(t, x)≥ 0 if |x − x0(t)| � 1. Summing up, we have proved the
following result.

Proposition 4.1. Let 0 = {(t, x0, ξ0) : t ∈ I } and assume that ∂k
t ∂

α
x ∂

β
ξ f (t, x0, ξ0)= 0 for all t ∈ I in the

case |I | 6= 0. Then we may solve (4-1) with ω(t, x) given by (4-2) in a convex neighborhood � of 0
modulo O(|x − x0(t)|M) for any M such that (x0(t), ξ0(t))= (x0, ξ0) when t ∈ I and wk(t) ∈ C∞ such
that w0(t)= 0, Imw2(t) > 0 and wk(t)= 0, k > 2, when t ∈ I.

Then we obtain Imω(t, x) ≥ c|x − x0(t)|2 near 0, with c > 0, so the errors that are O(|x − x0|
M)

in the eikonal equation will give terms that are bounded by CMλ
−M/2. But we have to show that

t 7→ f (t, x0(t), ξ0(t)) also changes sign from + to − as t increases for some choice of (x0, ξ0). This
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problem will be studied in the next section, with a special emphasis on the finite vanishing case. By (4-6) we
then obtain that t 7→ Imw0(t) has a local minimum on I which can be equal to 0 by subtracting a constant.

5. The change of sign

We have assumed that condition Sub(9) for P is not satisfied near the subprincipal semibicharacteristic
0 = {(t, x0, ξ0) : t ∈ I }, so that t 7→ f (t, x, ξ) changes sign from + to − for some (x, ξ) as t increases
near 0. But after solving the eikonal equation, we have to know that t 7→ f (t, x0(t), ξ0(t)) has the
same sign change, possibly after changing the starting point (x0, ξ0). In order to do so, we shall use the
invariance of condition Sub(9), but note that condition (3-6) is only assumed when the change of sign is
of infinite order. Therefore we shall first consider the case when the sign change is of finite order and
show that this condition is preserved after solving the eikonal equation. Thus assume that

∂k
t f (t0, x0, ξ0) < 0 and ∂

j
t f (t0, x0, ξ0)= 0 for j < k (5-1)

for some odd integer k, where we may assume t0 = 0. Now, if the order of the zero is not constant in
a neighborhood of (x0, ξ0) then in any neighborhood the mapping t 7→ f (t, x, ξ) must have a zero of
odd order with sign change from + to −, and the order of vanishing is constant almost everywhere on
f −1(0). We obtain this because ∂k

t f 6= 0, t 7→ f (t, x, ξ) goes from + to − and the set where the order
of the zero changes is nowhere dense in f −1(0) since it is the union of boundaries of closed sets in the
relative topology. By possibly changing (t0, x0, ξ0), we may assume that (5-1) holds with t0 = 0, and that
the order of the zero is odd and constant near (x0, ξ0). Then the zeros form a smooth manifold by the
implicit function theorem. Using Taylor’s formula, we find that f (t, w) = a(t, w)(t − t0(w))k, where
k ≥ 1 is odd, w = (x, ξ), t0(w0)= 0 and a < 0 in a neighborhood of (0, w0)= (0, x0, ξ0). Then we find

∂w f = ∂wa(t − t0)k − ak(t − t0)k−1∂wt0, (5-2)

which vanishes of at least order k− 1 in t at f −1(0). Let w(t)= (x0(t), ξ0(t)). Then

f (t, w(t))= f (t, w0)+ ∂w f (t, w0)1w(t)+O(|1w(t)|2),

where 1w(t)=w(t)−w0. Now t 7→ f (t, w0) vanishes of order k in t at 0 and t 7→ ∂w f (t, w0) vanishes
of at least order k − 1, so if t 7→ 1w(t) vanishes of at least order k > 1 then by (5-2) we find that
t 7→ f (t, w(t)) vanishes of order k. Since (d/dt)1w(t)= w′(t), we will need the following result.

Lemma 5.1. Let (x0(t), ξ0(t)) be the solution to equation (4-7) with Imw2(0) 6= 0 and assume that
t 7→ ∂w f (t, x0, ξ0) vanishes of order r ≥ 1 at t = 0. Then (x ′0(t), ξ

′

0(t)) vanishes of order r and 1w(t)
vanishes of order r+1 at t = 0.

Proof. By (4-7) we have

w′(t)= (x ′0(t), ξ
′

0(t))= A(t)∂w f (t, w(t)), w(0)= w0. (5-3)

Here we have |A(0)| 6= 0 if Imw2(0) 6= 0; in fact w′(0)= 0 then gives ∂ξ f (0, w0)= 0 and ∂x f (0, w0)= 0
by (4-7).
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Now we define φ0(t)= ∂w f (t, w0) and φ1(t)= ∂w f (t, w(t)). Then we have w′(t)= A(t)φ1(t) and
the condition is that φ0(t) vanishes of order r ≥ 1 at 0. We shall proceed by induction, and first assume
that r = 1. Since w(0)= w0 we find φ1(0)= φ0(0)= 0 and thus w′(0)= 0.

Next, for r > 1 we assume by induction that w′(t) vanishes of order r−1 at 0 so w(k)(0)= 0 for k < r ,
and then we shall show that w(r)(0)= 0 so that w′ vanishes of order r . Using the chain rule we obtain

∂r
t (g(t, w(t)))=

∑
0≤ j≤r∑
i ri+ j=r

c j,α∂
j

t ∂
α
wg(t, w(t))

|α|∏
i=1

w(ri )(t) (5-4)

for any g(t, w) ∈ C∞. Thus, for g = ∂w f we find that

φ
(k)
1 (0)= φ(k)0 (0)+ ∂k−1

t ∂2
w f (0, x0, ξ0)w

′(0)+ · · ·+ ∂2
w f (0, x0, ξ0)w

(k)(0)= φ(k)0 (0)= 0

for k < r , since the other terms have some factor w( j)(0)= 0, j ≤ k, which implies that φ1(t) vanishes
of order r . Since w′ = Aφ1 we find that w′(t) vanishes of order r , which gives the induction step and
the proof. �

Now, if f (t, w0) vanishes of order k then ∂w f (t, w0) vanishes of order k − 1. Thus w′(t) vanishes
of order k− 1 by Lemma 5.1, and since w(0)= w0 we find that 1w(t) vanishes of order k. Thus, we
find that f (t, w(t))− f (t, w0) vanishes of order 2k− 1, so these terms vanish of same order if k > 1. In
the case k = 1, we shall use an argument of Hörmander [1981] for the principal-type case. We obtain
from (4-6) that ∂t( f (t, w(t)))=− Imw′′0(t); thus

Imw′′0(0)=−∂t f (0, w0)− ∂ξ f (0, w0) · ξ
′

0− ∂x f (0, w0) · x ′0, (5-5)

where ∂t f (0, w0)=−c < 0. We find from (4-7) that{
ξ ′0(0)= Rew2(0)x ′0(0)+ ∂ξ f (0, w0) Imw2(0),

x ′0(0)= (Imw2(0))−1(∂x f (0, w0)+ ∂ξ f (0, w0)Rew2(0)
)
.

(5-6)

If ∂ξ f (0, w0)= 0 then we find that x ′0(0)= (Imw2(0))−1∂x f (0, w0) and obtain

Imw′′0(0)= c− ∂x f (0, w0)(Imw2(0))−1∂x f (0, w0) > c/2> 0 (5-7)

by choosing Imw2(0)= κ Id with κ � 1. If ∂ξ f (0, w0) 6= 0 then we may choose Rew2(0) so that

∂x f (0, w0)+ ∂ξ f (0, w0)Rew2(0)= 0. (5-8)

Then we find x ′0(0)= 0 and we obtain

Imw′′0(0)= c− ∂ξ f (0, w0) Imw2(0)∂ξ f (0, w0) > c/2> 0 (5-9)

by choosing Imw2(0)= κ Id with 0<κ� 1. Thus in both cases we find that ∂t f (t, w(t))= Imw′0(t)< 0
at t = 0.
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We find that t 7→ f (t, w(t)) changes sign from + to − of order k as t increases at t = 0. We may then
rewrite the equation as

Imw′0(t)= tkc(t), (5-10)

where c(t) > 0 in a neighborhood of the origin. Since Imw2(0) > 0 we find that

eiλω(t,x)
≤ e−c0λ(tk+1

+|x−x0|
2), |x − x0| � 1, |t | � 1, c0 > 0. (5-11)

Thus the errors that are O(|x−x0|
M) in the eikonal equation will give terms that are bounded by CMλ

−M/2.
We shall also consider the case when t 7→ f (t, x, ξ) changes sign from + to − of infinite order near 0.

If 0 is not a point, then by reducing to a minimal bicharacteristic as in Section 3, we may assume that
f (t, x, ξ) vanishes of infinite order at 0. We then obtain an approximate solution to the eikonal equation
by solving (4-7)–(4-9) with initial data w = (x, ξ) and wk(0), k ≥ 2, which gives a change of coordinates
(t, w) 7→ (t, w(t)). If in any neighborhood of 0 = {(t, x0, ξ0) : t ∈ I } there exist points in f −1(0) where
∂t f < 0, then as before we can construct approximate solutions in any neighborhood of 0 satisfying (5-11)
with k= 1. If ∂t f ≥ 0 on f −1(0) in some neighborhood of 0, then by the invariance of condition (9) there
will still exist a change of sign of t 7→ f (t, w(t)) from + to − in any neighborhood of 0 after the change
of coordinates; see [Hörmander 1985b, Lemma 26.4.11]. (Recall that conditions (2-8) and (2-11) hold in
some neighborhood of 0.) Thus if F ′(t)=− Imw′0(t)= f (t, w(t)) then t 7→ F(t) has a local maximum
at some t = t0, and after subtraction the maximum can be assumed to be equal to 0. By choosing suitable
initial value (x0, ξ0) for (4-7) at t = t0, we obtain

eiλω(t,x)
≤ eλ(F(t)−c|x−x0|

2), |x − x0| � 1, (5-12)

where F ′(t)= f (t, w(t)) so that maxI F(t)= 0 with F(t) < 0 for some t /∈ I near ∂ I .

Proposition 5.2. Assume that t 7→ f (t, x0, ξ0) changes sign from + to − as t increases near I and that
∂k

t ∂
α
x ∂

β
ξ f (t, x0, ξ0) = 0 for all t ∈ I when |I | 6= 0. Then we may solve (4-1) in a neighborhood � of

0= {(t, x0, ξ0) : t ∈ I } modulo O(|x− x0(t)|M) for any M , with ω(t, x) given by (4-2) such that the curve
t 7→ (x0(t), ξ0(t)), t ∈ (t1, t2), is arbitrarily close to 0, wk(t) ∈ C∞, Imw2(t)≥ c > 0 when t ∈ (t1, t2),
min(t1,t2) Imw0(t)= 0 and Imw0(t j )= c > 0, j = 1, 2.

Observe that since Imw0 ≥ 0 we find that f (t0, x0(t0), ξ0(t0)) =− Imw′0(t) = 0 at a minimum t0 ∈
(t1, t2). As before, the errors that are O(|x−x0|

M) in the eikonal equation will give terms that are bounded
by CMλ

−M/2 for all M . Observe that cutting off where Imw0 > 0 will give errors that are O(λ−M) for
all M .

6. The transport equations

Next, we shall solve the transport equations given by the following terms in (3-15):

Dtφ+ ∂
2
η B(t, x, y, ∂t,xω, 0)D2

yφ/2+ A(t, x, y, ∂t,xω, 0)Dyφ

+ i∂ξ f (t, x, ∂xω)Dxφ+
∑
j≥0

λ− j R j (t, x, y, Dt,x,y)φ (6-1)
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near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I }. Here R0(t, x, y)= F0(t, x, y, ∂t,xω, 0) and when m > 0 we have
that Rm(t, x, y, Dt,x,y) are differential operators of order j in t , order k in x and order ` in y, where
j + k+ ` ≤ m+ 2. Assuming the conclusions in Proposition 5.2 hold, we shall choose suitable initial
values of the amplitude φ at t = t0, which is chosen so that Imw0(t0)= 0. Observe that the second-order
differential operator given by the first four terms in (6-1) need not be solvable in general. Instead, by
Lemma 6.1 we can treat the Dx and Dy terms as perturbations, using condition (3-6) in the infinite
vanishing case.

Since the phase function ω(t, x) is complex-valued, we will replace the values of the symbols at
(τ, ξ) = ∂t,xω(t, x) by finite Taylor expansions at (Rew′0(t), ξ0(t)). By (4-3) and (4-4) this will give
expansions in powers of x − x0(t) and Imw′0(t)=− f (t, x0(t), ξ0(t)). Then, we shall solve the transport
equations up to arbitrarily high powers of x− x0(t) and f . Since the imaginary part of the phase function
Imω ≥ 0 vanishes of second order at x = x0(t), we will obtain by Lemma 6.1 below that this will give a
solution modulo any negative power of λ.

We shall use the amplitude expansion

φ(t, x, y)=
∑
k≥0

%−kφk(t, x, y) (6-2)

and solve the transport equation recursively in k. Here φk depends on % but with uniform bounds in a
suitable symbol class, and % = λ1/N with N to be determined later. By doing the change of variables
(t, x, y) 7→ (t− t0, x− x0(t), y− y0), we find that Dt changes into Dt − x ′0(t)Dx , which does not change
the order of R j as differential operator. Thus we may assume t0 = 0, x0(t)≡ 0 and y0 = 0.

Next, we apply (6-1) on φ given by (6-2). Since % = λ1/N , we obtain the terms

Dtφ+ A0(t, x)Dxφ+ A1(t, x, y)Dyφ+ A2(t, x, y)D2
yφ+

∑
j≥0

%− j N R j (t, x, y, Dt,x,y)φ, (6-3)

where

A0(t, x)= i∂ξ f (t, x, ξ0(t)+ σ(t, x))− x ′0(t),

A1(t, x, y)= A
(
t, x, y, ∂tω(t, x), ξ0(t)+ σ(t, x), 0

)
, (6-4)

A2(t, x, y)= ∂2
η B2

(
t, x, y, ∂tω(t, x), ξ0(t)+ σ(t, x), 0

)
/2. (6-5)

Here σ(t, x) is given by (4-4) and ∂tω(t, x) by (4-3), where the expansion will be up to a sufficiently
high order in x . Observe that after the change of variables we have σ(t, 0)≡ 0. The values of the symbols
will as before be defined by finite Taylor expansions in the τ - and ξ -variables, which gives expansions in
powers of x and f (t, 0, ξ(t)).

We are going to construct solutions φk(t, x, y)= φk(t, x, %y) so that y 7→ φk(t, x, y) ∈ C∞0 uniformly
in %, which gives localization in |y|.%−1. Therefore we shall choose %y as new y-coordinates. Then (6-3)
becomes

Dtφ+ A0(t, x)Dxφ+ %A1(t, x, y/%)Dyφ+ %
2 A2(t, x, y/%)D2

yφ

+

∑
j≥0

%− j N R j (t, y/%, x, Dt , Dx , %Dy)φ. (6-6)
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By Proposition 5.2 the phase function eiλw(t,x) gives the cut-off in x , and we shall expand the symbols
in powers of x . Now the Taylor expansion of x 7→ %2 A2(t, x, y/%) will give terms that are O(%2x).
Therefore we take %2x as new x-coordinates, which gives

Dtφ+ %
2 A0(t, x/%2)Dxφ+ %A1(t, x/%2, y/%)Dyφ+ %

2 A2(t, x/%2, y/%)D2
yφ

+

∑
j≥0

%− j N R j (t, y/%, x/%2, Dt , %
2 Dx , %Dy)φ. (6-7)

Now the phase function eiλw(t,x) is O(e−c%N−4
|x |2) in the new coordinates. So if we take N > 4, it

suffices to solve the transport equation up to a sufficiently high order of x ; then we may cut off where
|x |. 1, which corresponds to |x |. %−2 in the original coordinates. Thus we expand in x :

φk(t, x, y)=
∑
k,α

φk,α(t, y)xα φk,α(t, y) ∈ C∞0 , (6-8)

A0(t, x/%2)Dx =
∑
α, j

A0,α, j (t)%−2|α|xαDx j ,

A j (t, x/%2, y/%)=
∑
α

A j,α(t, y/%)%−2|α|xα, j > 0,

Rk(t, x/%2, y/%, %Dy, %
2 Dx)=

∑
α,`,ν,µ

Rk,α,`,ν,µ(t, y/%)%−2|α|+2|ν|+|µ|xαD`
t Dν

x Dµ
y . (6-9)

Here `+ |ν| + |µ| ≤ k+ 2 so we have at most the factor %2|ν|+|µ|
≤ %2k+4 in (6-9). When k = 0 we have

`+ |ν| + |µ| = 0 and

R0(t, x/%2, y/%)=
∑
α

R0,α(t, y/%)%−2|α|xα.

Observe that the coefficients in the expansions are given by expansions in powers of f (t, 0, ξ(t)). After
cut-off in x we find in the original coordinates that φk(t, x, y) = ϕk(t, %2x, %y), where ϕk for any t is
uniformly bounded in C∞0 .

We shall first apply (6-7) on φ0 and expand in x . Then we find that the terms that are independent of x are

Dtφ0,0−i%2
∑

j

A0,0, j (t)φ0,e j+%A1,0(t,y/%)Dyφ0,0+%
2 A2,0(t,y/%)D2

yφ0,0+R0,0(t,y/%)φ0,0. (6-10)

We shall need the following result, which gives estimates on f and A j on the interval of integration. It will
be proved in the next section. In the following, we shall denote f (t)= f (t, 0, ξ0(t)) and F(t)=

∫ t
0 f (s) ds.

Observe that f (0)= 0 since Imw′0(0)= 0.

Lemma 6.1. Assume that the conclusions in Proposition 5.2 hold and that (3-6) holds if t 7→ f (t) vanishes
of infinite order at 0. Then there exists ε and C ≥ 1 with the property that if N ≥ C , % = λ1/N

≥ C and

| f (t)| +
∣∣∣∣∫ t

0
|A0(s, 0)| + |A1(s, 0, y/%)| + ‖A2(s, 0, y/%)‖ ds

∣∣∣∣≥ C/%3 (6-11)

holds for some |y| ≤ %/C , then λF(s)≤−λε/C for some s in the interval connecting 0 and t.
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Observe that if Lemma 6.1 holds for some ε and C , then it trivially holds for smaller ε and larger C .
We shall assume that ε < 1 and that both N and λ are large enough so that the conclusion in Lemma 6.1
holds. Since (6-11) does not hold when t = 0, we can choose the maximal interval I containing 0 such
that (6-11) does not hold in I ; thus

| f (t)| +
∣∣∣∣∫ t

0
|A0(s, 0)| + |A1(s, 0, y/%)| + ‖A2(s, 0, y/%)‖ ds

∣∣∣∣< C/%3, t ∈ I, (6-12)

when |y| ≤%/C . By definition we obtain that (6-11) holds for some |y| ≤%/C when t ∈ ∂ I , so Lemma 6.1
gives that λF . −λε at ∂ I0 for some open interval I0 ⊆ I that contains 0. This means that eiλω(t,0)

=

eλF(t)
≤CNλ

−N for any N at ∂ I0 when λ� 1. Since F ′ = f is uniformly bounded and the left-hand side
of (6-12) is Lipschitz continuous, we may cut off near I0 with χ(t) ∈ S(1, λ6/N dt2)⊂ S(1, λ2−2εdt2) for
N � 1 so that χ(0) 6= 0, λF(t).−λε in suppχ ′ and (6-12) holds with some C when t ∈ suppχ and
|y| ≤ %/C . Then as before, the cut-off errors can be absorbed by the exponential and the expansion in
powers of f (t, 0, ξ(0))= f (t) is justified. In fact, f (t)=O(%−3) in suppχ , which gives errors of any
negative power of % = λ1/N. The bound on the integral in (6-12) means that we can ignore the A j terms
in (6-10) in suppχ modulo lower-order terms in %. In the following we shall change the notation and let
I = suppχ . We need to measure the error terms in the following way.

Definition 6.2. For a(t) ∈ L∞(R) and κ > 0, we say that a(t) ∈ I (κ) if
∫ t

0 a(s) ds =O(κ) for all t ∈ I .

For example, f (t) ∈ I (%−3), and since the integral in (6-12) is O(%−3) in I , the integrand is in I (%−3).
Then according to (6-12) it suffices to solve

Dtφ0,0 =−R0,0φ0,0, t ∈ I, (6-13)

to obtain that the terms in (6-10) are in I (%−1); here R0,0(t, y/%) ∈ C∞ uniformly since % ≥ 1. Now we
can solve (6-13) with φ0,0(0, y)= φ(y) ∈ C∞0 uniformly with support where |y| � 1 such that φ(0)= 1.
In fact, the solution is φ0,0(t, y)= E(t, y)φ(y), where

E(t, y)= exp
(
−i
∫ t

0
R0,0(s, y/%) ds

)
, t ∈ I,

is uniformly bounded in C∞. Thus φ0,0(t, y) ∈ C∞ uniformly and by choosing φ(y) with sufficiently
small support, we obtain for any t ∈ I that φ0,0(t, · ) has support in a sufficiently small compact set in
which (6-12) holds.

The coefficients of the terms in (6-7) which are homogeneous of degree α 6= 0 in x are

Dtφ0,α+R0,0(t, y/%)φ0,α−i
∑
|β|=1

j

A0,β, j (t)(α j+1−β j )φ0,α+e j−β+

∑
|β|=1

A2,β(t, y/%)D2
yφ0,α−β (6-14)

modulo I (%−1). Letting 8k, j = {φk,α}|α|= j and 8k = {8k, j } j for k, j ≥ 0, we find that (6-14) vanishes
if 80 satisfies the system

Dt80,k = Sk
0,080,k + Sk

0,180,k−1, (6-15)
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where Sk
0,0(t) is a uniformly bounded matrix depending on t , and Sk

0,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 in y when |y|. %. Let E0,k(t) be the fundamental solution to
Dt E0,k = Sk

0,0 E0,k so that E0,k(0)= Id. Then letting

80,k(t, y)= E0,k(t)90,k(t, y),

the system (6-15) reduces to

Dt90,k(t, y)= E−1
0,k Sk

0,1 E0,k90,k−1(t, y).

This is a recursion equation which we can solve uniformly in I with 90,k(t, y) having initial values
90,k(0, y) ≡ 0 for 0 < k ≤ M . Observe that since the initial data 80,k(0, y) has compact support, we
find that 80,k(t, y) ∈ C∞ uniformly. For any t we find that 80,k(t, y) has support in a sufficiently small
compact set so that (6-12) holds for any t ∈ I .

We shall now apply (6-7) to φ given by the full expansion (6-8). We find that the coefficients of the
terms in (6-7) which are homogeneous of degree α 6= 0 in x are equal to

%−1
(

Dtφ1,α+R0,0(t, y/%)φ1,α−i
∑
|β|=1

j

A0,β, j (t)(α j+1−β j )φ1,α+e j−β+

∑
|β|=1

A2,β(t, y/%)D2
yφ1,α−β

+

∑
|β|=1

A1,β(t, y/%)D2
yφ0,α−β−i%3

∑
j

A0,0, j (t)(α j+1)φ0,α+e j+%
3 A2,0(t, y/%)D2

yφ0,α

)
(6-16)

modulo I (%−2). We find that (6-16) vanishes if 81 satisfies the system

Dt81,k = Sk
1,081,k + Sk

1,181,k−1+A0
180, (6-17)

where Sk
1,0(t) is a uniformly bounded matrix depending on t , Sk

1,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 when |y|. % and A0

1 is a differential operator in y of order 2
with coefficients in I (1) because of (6-12). By letting81,k = E1,k91,k with the fundamental solution E1,k

to Dt E1,k = Sk
1,0 E1,k , E1,k(0)= Id, this reduces to the equation

Dt91,k = E−1
1,k Sk

1,1 E1,k−191,k−1+ E−1
1,kA0

180.

Thus we can solve (6-17) in I recursively with uniformly bounded81,k having initial values81,k(0, y)≡0,
k ≥ 0. But observe that 81 is not in C∞ uniformly; instead we have D j

t 81 = O(%3) if j ≥ 1, since
|∂

j
t A0

1| ≤ C j%
3 for all j by (6-16). For that reason, we shall define S3

% ⊂ C∞ by

|∂
j

t ∂
α
y φ(t, y)| ≤ C j,α%

3 j
∀ j, α (6-18)

when φ ∈ S3
%. Observe that φ ∈ S3

% if and only if φ(t, y)= χ(%3t, y), where χ ∈ C∞ uniformly, and that
the operator %−3 Dt maps S3

% 7→ S3
%. Note that the expansion of the symbols also contains terms with

factors %3 f k, k ≥ 1, which are uniformly bounded in S3
% for t ∈ I by (6-12). Since

∫ t
0 A0

1 dt ∈ S3
% in I ,

we find that 81 ∈ S3
% in I .
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Recursively, the coefficients of the terms in (6-7) that are homogeneous in x of degree α are

%−k
(

Dtφk,α−i
∑
β 6=0

A0,β, j (t)(α j+1−β j )φk+2−2|β|,α+e j−β

+

∑
β 6=0

A1,β(t, y/%)Dyφk+1−2|β|,α−β+
∑
β 6=0

A2,β(t, y/%)D2
yφk+2−2|β|,α−β

−i%3
∑

j

A0,0, j (t)(α j+1)φk−1,α+e j+%
3 A1,0(t, y/%)Dyφk−2,α+%

3 A2,0(t, y/%)D2
yφk−1,α

+

∑
`+|ν|+|µ|≤ j+2

%− j N R j,β,`,ν,µ(t, y/%)cα,β,ν%−2|β|+2|ν|+|µ|+i+3`(%−3 Dt)
`Dµ

y φk−i,α+ν−β

)
(6-19)

modulo I (%−k−1). Here the last sum has `+|ν|+ |µ| = 0 when j = 0, (%−3 Dt)
`Dµ

y maps S3
% 7→ S3

% and
the values of the symbols are given by a finite expansion in powers of f (t).

Since φ j ∈ S3
% we obtain that the terms in (6-19) are in I (%−k−1) if

Dtφk,α − i
∑
β 6=0

A0,β, j (t)(α j + 1−β j )φk+2−2|β|,α+e j−β +

∑
β 6=0

A1,β(t, y/%)Dyφk+1−2|β|,α−β

+

∑
β 6=0

A2,β(t, y/%)D2
yφk+2−2|β|,α−β − i%3

∑
j

A0,0, j (t)(α j + 1)φk−1,α+e j

+ %3 A1,0(t, y/%)Dyφk−2,α + %
3 A2,0(t, y/%)D2

yφk−1,α

=−

∑
i+3`+2|ν|+|µ|= j N+2|β|

`+|ν|+|µ|≤ j+2

R j,β,`,ν,µ(t, y/%)cα,β,ν(%−3 Dt)
`Dµ

y φk−i,α+ν−β . (6-20)

When j = 0 we find that `+ |ν| + |µ| = 0, i = 2|β| and we only have an expansion in β in the last sum.
Now if j > 0, `+ |ν| + |µ| ≤ j + 2 and i + 3`+ 2|ν| + |µ| = j N + 2|β| then we find that

j N ≤ i + 3`+ 2|ν| + |µ|< i + 3( j + 2),

which gives i ≥ j (N − 3)− 6≥ N − 9≥ 1 if N ≥ 10. Thus we find that (6-20) can be written as

Dt8k = Ak
08k +Ak

18k−1+Ak
28k−2+ · · · , (6-21)

where
∫ t

0 Ak
j dt is a uniformly bounded differential operator on S3

% for t ∈ I and j > 0. We have

{Ak
08k} j = S j

k,08k, j + S j
k,18k, j−1,

where S j
k,0(t) is a uniformly bounded matrix depending on t , and S j

k,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 when |y|. %. By letting 8k, j = Ek, j9k, j with the fundamental
solution Ek, j to Dt Ek, j = S j

k,0 Ek, j , Ek, j (0)= Id, (6-21) becomes a system of recursion equations in j
and k. Thus (6-21) can be solved in I with 8k ∈ S3

% having initial values 8k(0) ≡ 0, k > 0. We find
from (6-8) and the definition of S3

% that φk(t, x, y)= φk(%
3t, %2x, %y), where φk ∈ C∞ uniformly when

t ∈ I. Thus we can solve the transport equation (6-1) up to any negative power of λ. Observe that by
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cutting off in t and x , we may assume that φk ∈ C∞0 has fixed compact support in (x, y) and support
where |t |. %3. It follows that the support of φk can be chosen in an arbitrarily small neighborhood of 0
for large enough λ. Changing to the original coordinates, we obtain the following result.

Proposition 6.3. Assume that the conclusions in Proposition 5.2 hold, and that (3-6) is satisfied near 0
when the sign change of t 7→ f (t, x0, ξ0) is of infinite order. If % = λ1/N for sufficiently large N,
then for any K and M we can solve the transport equations (6-20) for k ≤ K and |α| ≤ M near
{(t, x0(t), y0) : t ∈ [t1, t2]}. By (6-8) this gives

φk(t, x, y)= φk
(
%3(t − t0), %2(x − x0(t)), %(y− y0)

)
, k ≤ K ,

where φk(t, x, y) ∈ C∞ uniformly, has support where |x | + |y|. 1 and |t |. %3, and φ0(0, 0, 0)= 1 for
some t0 ∈ (t1, t2) such that Imw0(t0)= 0.

7. The rate of change of sign

We have showed that t 7→ f (t, x, ξ) changes sign from + to − on an interval I . Then

F(t)=
∫ t

f (s, x0(s), ξ0(s)) ds =
∫ t

f (s) ds (7-1)

has a local maximum in the interval. By choosing that maximum as the starting point, we may assume it
is equal to 0 so that F(t)≤ 0. By changing t-coordinate, we may assume F(0)= 0. We shall study how
the size of the derivative f affects the size of the function F.

Lemma 7.1. Assume that 0≥ F(t) ∈ C∞ has local maximum at t = 0, and let It0 be the closed interval
joining 0 and t0 ∈ R. If

max
It0

|F ′(t)| = |F ′(t0)| = κ ≤ 1

with |t0| ≥ κ% for some % > 0, then we have minIt0
F(t)≤−C%κ1+%. The constant C% > 0 only depends

on % and the bounds on F in C∞.

Proof. Let f = F ′. Then since F(t)= F(0)+
∫ t

0 f (s) ds ≤
∫ t

0 f (s) ds, it is no restriction to assume the
maximum F(0)= 0. By switching t to −t , we may assume t0 ≤−κ% < 0. Let

g(t)= κ−1 f (t0+ tκ%). (7-2)

Then |g(0)| = 1, |g(t)| ≤ 1 for 0≤ t ≤ 1 and

|g(N )(t)| = κ%N−1
| f (N )(t0+ tκ%)| ≤ CN

when N ≥ 1/% for 0≤ t ≤ 1. Using the Taylor expansion at t = 0 for N ≥ 1/%, we find

g(t)= p(t)+ r(t), (7-3)

where p is the Taylor polynomial of order N − 1 of g at 0, and

r(t)= t N
∫ 1

0
g(N )(ts)(1− s)N−1 ds/(N − 1)! (7-4)
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is uniformly bounded in C∞ for 0 ≤ t ≤ 1 and r(0) = 0. Since g also is bounded on the interval, we
find that p(t) is uniformly bounded in 0 ≤ t ≤ 1. Since all norms on the finite-dimensional space of
polynomials of fixed degree are equivalent, we find that p(k)(0) = g(k)(0) are uniformly bounded for
0 ≤ k < N which implies that g(t) is uniformly bounded in C∞ for 0 ≤ t ≤ 1. Since |g(0)| = 1, there
exists a uniformly bounded δ−1

≥ 1 such that |g(t)| ≥ 1
2 when 0≤ t ≤ δ; thus g has the same sign in that

interval. Since g(s)= κ−1 f (t0+ sκ%), we find

δ/2≤
∣∣∣∣∫ δ

0
g(s) ds

∣∣∣∣= ∣∣∣∣κ−% ∫ t0+δκ%

t0
κ−1 f (t) dt

∣∣∣∣. (7-5)

Since t0+ δκ% ≤ 0, we find that the variation of F(t) on [t0, 0] is greater than δκ1+%/2 and since F ≤ 0,
we find that the minimum of F on It0 is smaller than −δκ1+%/2. �

Proof of Lemma 6.1. As before we let F(t) satisfy F(0)= 0 and F ′(t)= f (t), where f (t)= f (t, 0, ξ0(t))
satisfies f (0)= 0. We have assumed that the estimate (3-6) holds near 0 if f (t) vanishes of infinite order
at t = 0. Observe that the term x ′0(t) in A0 can be estimated by |∂w f (t, 0, ξ0(t))| by (4-7), which gives
that |A0(t, 0)|. |∂w f (t, 0, ξ0(t))|. We find from (4-3), (4-6) and (4-7) that

|∂tω(t, 0)|. | f (t)| + |∂w f (t, 0, ξ0(t))|.

Thus (6-11) follows if

| f (t)| +
∣∣∣∣∫ t

0
| f (s)| + A0(s, 0)+ A1(s, 0, y/%)+ A2(s, 0, y/%) ds

∣∣∣∣& %−3, (7-6)

where

A0(t)= |∂w f (t, 0, ξ0(t))|,

A1(t, y/%)= |A(t, 0, y/%, 0, ξ0(t), 0)|, (7-7)

A2(t, y/%)= ‖∂2
η B(t, 0, y/%, 0, ξ0(t), 0)‖. (7-8)

In the following we shall suppress the y-variables in (7-6); the results will be uniform when |y| ≤ c% for
some c> 0 since (3-6) holds near 0. Observe that if | f (s)| and A j (s) are� %−3 for 0≤ j ≤ 2 when s is
between 0 and t , then (7-6) does not hold.

We shall first consider the case when | f (t)| ∼= |t |m vanishes of finite order at t = 0. Then the order
must be odd so we find F(t)=

∫ t
0 f (s) ds ≤ 0 and c≤ |F(t)|/t2k

≤C < 0 for some k > 0. Thus we find

%−3 .

∣∣∣∣∫ t

0
| f (s)| + A0(s)+ A1(s)+ A2(s) ds

∣∣∣∣. |t |. |F(t)|1/2k (7-9)

implies that |F(t)|& %−6k. Since λ= %N , we then obtain λF(t).−%N−6k
≤−%= λ1/N if N > 6k. The

case when |t |2k−1 ∼= | f (t)|& %−3 gives that |t |& %−3/(2k−1) so λF(t).−%N−6k/(2k−1)
≤−% if N > 6.

Now one of these cases must hold if (6-11) holds, so we get the result in the finite vanishing case.
Next, we consider the infinite vanishing case. Then we have assumed that condition (3-6) holds, which

means that
2∑

j=0

A j (t). | f (t)|ε,



346 NILS DENCKER

which implies that A j (0)= 0 for all j . Now we assume that (7-6) holds at t ; by switching t and −t , we
may assume t > 0. Then we obtain for some s ∈ [0, t] that | f (s)| ≥ c%−3 or A j (s)≥ c%−3 for some c> 0
and j . Now we define t0 as the smallest t0 > 0 such that | f (t0)| = c%−3 or A j (t0) = c%−3 for some j ;
then t0 ≤ t . Then we obtain from condition (3-6) in the first case that c%−3

= | f (t0)|. | f (t0)|ε and in
the second case that

c%−3
= A j (t0). | f (t0)|ε. (7-10)

Since % = λ1/N , we find in both cases that

λ−3/εN
= κ ≤ c| f (t0)|, c > 0, (7-11)

where λ� 1 if and only if κ � 1. By taking the smallest t0 > 0 such that (7-11) is satisfied, we find that
| f (t)| ≤ | f (t0)| for 0≤ t ≤ t0. Since f (t) vanishes of infinite order at t = 0, we find using Taylor’s formula
that | f (t)| ≤ CM |t |M for any positive integer M. (Actually, it suffices to take M = 1.) Condition (7-11)
then gives

κ1/M . | f (t0)|1/M . |t0|, (7-12)

so using Lemma 7.1 with % = 1/M , we find that

min
0≤s≤t0

F(s).−κ1+1/M
=−λ−3(1+1/M)/εN , λ� 1. (7-13)

Thus we find that min0≤s≤t0 F(s).−λc−1 for some c>0 if 3(1+1/M)/εN<1, that is, N>3(1+1/M)/ε,
which gives Lemma 6.1. �

8. The proof of Theorem 2.7

We shall use the following modification of [Hörmander 1985b, Lemma 26.4.15]. Recall that ‖u‖(k) is the
L2 Sobolev norm of order k of u ∈ C∞0 and let D′0 = {u ∈ D

′
:WF(u)⊂ 0} for 0 ⊆ T ∗Rn.

Lemma 8.1. Let

uλ(x)= λ(n−1)δ/2 exp(iλω(x))
M∑

j=0

φ j (λ
δx)λ− j%, λ≥ 1, (8-1)

with % > 0, 0< δ < 1, ω ∈ C∞(Rn) satisfying Imω ≥ 0, |d Reω| ≥ c > 0, and φ j ∈ C∞0 (R
n). Here ω

and φ j may depend on λ but uniformly, and φ j has fixed compact support in all but one of the variables,
for which the support is bounded by Cλδ. Then for any integer N we have

‖uλ‖(−N ) ≤ Cλ−N , λ≥ 1. (8-2)

If φ0(x0) 6= 0 and Imω(x0)= 0 for some x0 then there exists c > 0 so that

‖uλ‖(−N ) ≥ cλ−N−n/2+(n−1)δ/2, λ≥ 1, ∀ N. (8-3)

Let 6 =
⋂
λ≥1

⋃
j suppφ j (λ

δ
· ) and let 0 be the cone generated by{

(x, ∂ω(x)) : x ∈6, Imω(x)= 0
}
. (8-4)
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Then for any k we find λkuλ→ 0 in D′0, so λk Auλ→ 0 in C∞ if A is a pseudodifferential operator such
that WF(A)∩0 =∅. The estimates are uniform if ω ∈ C∞ uniformly with fixed lower bound on |d Reω|,
and φ j ∈ C∞0 uniformly with the support condition.

In the expansion (8-1), we shall take % = 1/N and δ = 3/N with N > 3, and the cone 0 will be
generated by {(

t, x0(t), y0, 0, ξ0(t), 0
)
: t ∈ I

}
, (8-5)

where I = {t : Imw0(t) = 0}. Observe that the phase function in (4-2) will satisfy the conditions in
Lemma 8.1 near {(t, x0(t), y0) : t ∈ I } since ξ0(t) 6= 0 and Imω(t, x)≥ 0 by Proposition 5.2. Also, we
find from Proposition 6.3 that the functions φk will satisfy the conditions in Lemma 8.1 with δ = 3/N
after making the change of variables (t, x, y) 7→ (t − t0, x − x0(t), y− y0) since φ0(t0, x0(t0), y0) = 1.
Observe that the conclusions of Lemma 8.1 are invariant under uniform changes of coordinates.

Proof of Lemma 8.1. We shall modify the proof of [Hörmander 1985b, Lemma 26.4.15] to this case. We
have

ûλ(ξ)= λ(n−1)δ/2
M∑

j=0

λ− jδ
∫

eiλω(x)−i〈x,ξ〉φ j (λ
δx) dx . (8-6)

Let U be a neighborhood of the projection on the second component of the set in (8-4). When ξ/λ /∈U ,
for λ� 1 we find that ⋃

j

suppφ j (λ
δ
· ) 3 x 7→ (λω(x)−〈x, ξ〉)/(λ+ |ξ |)

is in a compact set of functions with nonnegative imaginary part with a fixed lower bound on the gradient
of the real part. Thus, by integrating by parts we find for any positive integer k that

|ûλ(ξ)| ≤ Ckλ
((n−1)/2+k)δ(λ+ |ξ |)−k, ξ/λ /∈U, λ� 1, (8-7)

which gives any negative power of λ for k large enough, since δ < 1. If V is bounded and 0 /∈ V then
since uλ is uniformly bounded in L2, we find∫

λV
|ûλ(ξ)|2(1+ |ξ |2)−N dξ ≤ CVλ

−2N, (8-8)

which together with (8-7) gives (8-2). If χ ∈ C∞0 then we may apply (8-7) to χuλ; thus we find for any
positive integer k that

|χ̂uλ(ξ)| ≤ Cλ((n−1)/2+k)δ(λ+ |ξ |)−k, ξ ∈W, λ� 1, (8-9)

if W is any closed cone with (suppχ ×W )∩0 =∅. Thus we find that λkuλ→ 0 in D′0 for every k. To
prove (8-3) we may assume that x0 = 0 and take ψ ∈C∞0 . If Imω(0)= 0 and φ0(0) 6= 0 then since δ < 1,
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we obtain

λn−(n−1)δ/2e−iλRew(0)
〈uλ, ψ(λ · )〉 =

∫
eiλ(w(x/λ)−Rew(0))ψ(x)

∑
j

φ j (λ
δ−1x)λ− jδ dx

→

∫
ei〈Re ∂xω(0),x〉ψ(x)φ0(0) dx, λ→∞, (8-10)

which is not equal to zero for some suitable ψ ∈ C∞0 . Since

‖ψ(λ · )‖(N ) ≤ CNλ
N−n/2, (8-11)

we obtain from (8-10) that 0< c ≤ λN+n/2−(n−1)δ/2
‖uλ‖(−N ), which gives (8-3) and the lemma. �

Proof of Theorem 2.7. By conjugating with elliptic Fourier integral operators and multiplying with
pseudodifferential operators, we obtain that P∗ ∈92

cl is of the form given by Proposition 3.2 microlocally
near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I }. Thus we may assume

P∗ = Dt + F(t, x, y, Dt , Dx , Dy)+ R, (8-12)

where R ∈92
cl satisfies WF(R)∩0 =∅.

Now we can construct approximate solutions uλ of the form (3-14) by using the expansion (3-15). By
reducing to minimal bicharacteristics, we may solve first the eikonal equation by using Proposition 5.2 and
then the transport equations (6-20) by using Proposition 6.3 with % = λ1/N for N > 3. Thus after making
the change of coordinates (t, x, y) 7→ (t − t0, x − x0(t), y− y0), we obtain approximate solutions uλ of
the form (8-1) in Lemma 8.1 with %= 1/N and δ = 3/N. For N large enough, we may choose K and M
in Proposition 6.3 so that |(Dt + F)uλ|. λ−k for any k. Now differentiation of (Dt + F)uλ can at most
give a factor λ since δ < 1, and a loss of a factor x − x0(t) gives at most a factor λ1/2. Because of the
bounds on the support of uλ, we may obtain

‖(Dt + F)uλ‖(ν) =O(λ−N−n) (8-13)

for any chosen ν. Since φ0(t0, x0(t0), y0)=1 by Proposition 6.3 and Imw(t0, x0(t0))=0 by Proposition 5.2,
we find by (8-2)–(8-3) that

λ−N−n/2
� λ−N−n/2+(n−1)δ/2 . ‖u‖(−N ) . λ

−N
∀ N, λ� 1. (8-14)

Since uλ has support in a fixed compact set that shrinks towards {(t, x0(t), y0) : t ∈ I } as λ→∞, we
find from Lemma 8.1 that ‖Ru‖(ν) and ‖Au‖(0) are O(λ−N−n) if WF(A) does not intersect 0. Thus
we find from (8-13) and (8-14) that (2-17) does not hold when λ→∞, so P is not solvable at 0 by
Remark 2.10. �
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ANISOTROPIC ORNSTEIN NONINEQUALITIES

KRYSTIAN KAZANIECKI, DMITRIY M. STOLYAROV AND MICHAŁ WOJCIECHOWSKI

We investigate the existence of a priori estimates for differential operators in the L1 norm: for anisotropic
homogeneous differential operators T1, . . . , T`, we study the conditions under which the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true. Properties of homogeneous rank-one convex functions play the major role in the subject. We
generalize the notions of quasi- and rank-one convexity to fit the anisotropic situation. We also discuss a
similar problem for martingale transforms and provide various conjectures.

1. Introduction

In his seminal paper, Ornstein [1962] proved the following: let {Tj }
`
j=1 be homogeneous differential

operators of the same order in d variables (with constant coefficients); if the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj . Here

and in what follows “a . b” means “there exists a constant c such that a 6 cb uniformly”; the meaning
of the word “uniformly” will be clear from the context. For example, in the statement above, the constant
should be uniform with respect to all functions f . The aim of the present paper is to extend this theorem
to the case where the differential operators are anisotropic homogeneous; see also [Kazaniecki and
Wojciechowski 2014], where partial progress in this direction was obtained by a simple Riesz product
technique.

To formulate the results, we have to introduce a few notions. Each differential polynomial P(∂) in
d variables has a Newton diagram which matches a set of integral points in Rd to each such polynomial. The
monomial a∂m1

1 ∂
m2
2 · · · ∂

md
d corresponds to the point m = (m1,m2, . . . ,md); for an arbitrary polynomial,

its Newton diagram is the union of the Newton diagrams of its monomials.
Let 3 be an affine hyperplane in Rd that intersects all the positive semiaxes. We call such a plane

a pattern of homogeneity. We say that a differential polynomial is homogeneous with respect to 3 (or
simply 3-homogeneous) if its Newton diagram lies on 3.

Stolyarov was supported by RFBR grant no. 14-01-00198.
MSC2010: 26B35, 26B25.
Keywords: Ornstein noninequalities, Bellman function, martingale transform.
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Conjecture 1. Let3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be a collection of3-homogeneous

differential operators. If the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj .

This conjecture may seem to be a simple generalization of Ornstein’s theorem. We warn the reader that
sometimes the anisotropic character of homogeneity brings new difficulties to inequalities for differential
operators (the main one being the lack of geometric tools such as the isoperimetric inequality, or the
coarea formula, etc.). For example, the classical embedding

W 1
1 (R

d) ↪→ Ld/(d−1)

due to Gagliardo and Nirenberg was generalized to the anisotropic case only in [Solonnikov 1972] and
additionally considered in [Kolyada 1993]; if one deals with similar embeddings for vector fields, the
isotropic case was successfully considered in [Van Schaftingen 2013] (see also the survey [Van Schaftingen
2014]), but there is almost no progress for the anisotropic case (however, see [Kislyakov et al. 2013; 2015]).

The method we use to attack the conjecture differs from that of Ornstein (though there are some
similarities). However, it is not new. It was noticed in [Conti et al. 2005] that Ornstein’s theorem is
related to the behavior of certain rank-one convex functions (for some special operators this link had
already been known; see [Iwaniec 2002]). The case d = 2 was considered there. As for the general case
of Ornstein’s (isotropic) theorem, its proof via rank-one convexity was announced in [Kirchheim and
Kristensen 2011] (and the proof is now available in the very recent preprint [Kirchheim and Kristensen
2016]). In a sense, we follow the plan suggested in [Kirchheim and Kristensen 2011]. However, the
notions of quasiconvexity, rank-one convexity and others should be properly adjusted to the anisotropic
world; we have not seen such an adjustment anywhere. For all these notions in the classical setting
of the first gradient, their relationship with each other, properties, etc., we refer the reader to the book
[Dacorogna 2008]. There are certain problems in the general anisotropic case that are not present in the
classical setting. For example, the existence of the elementary laminate is not quite clear; at least, the
classical reasoning does not work. Quasiconvexity still implies the rank-one convexity, but this requires a
new proof. The approach of rank-one convexity reduces Conjecture 1 to a certain geometric problem about
separately convex functions (Theorem 14) that is covered by Theorem 1 in [Kirchheim and Kristensen
2011] (Theorem 1.1 in [Kirchheim and Kristensen 2016]). We give a simple proof of this fact, which
is the second advantage of our paper (though our proof does not give the more advanced Theorem 1 of
[Kirchheim and Kristensen 2011]). We did not know of the preprint [Kirchheim and Kristensen 2016]
until shortly before the publication of the present text, and did our work independently. Discussion with
the authors of this preprint has shown that though the spirit of our approach in the geometric part is
similar to theirs, the presentation and details appear to be different.

We will prove a particular case of Conjecture 1, which still seems to be rather general (in particular, it
covers the classical isotropic case).
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Theorem 2. Let 3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be 3-homogeneous differential

operators. Suppose all the monomials present in the Tj have the same parity of degree. If the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd ) (1)

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj .

We note that the differential operators here are not necessarily scalar; i.e., one can prove the same
theorem for the case where operators act on vector fields. It is one of the advantages of the general
rank-one convexity approach. However, to facilitate the notation, we work on the scalar case.

We outline the structure of the paper. We begin with restating inequality (1) as an extremal problem
described by a certain Bellman function (if inequality (1) holds, then the corresponding Bellman function
is nonnegative). We also study the properties of our Bellman function (they are gathered in Theorem 6),
the most important of which is the quasiconvexity. All this material constitutes Section 2. It turns out that
quasiconvexity leads to a softer, but easier to work with, property of rank-one convexity. The proof of
this fact is given in Section 3; see Theorem 9. So, the Bellman function in question is rank-one convex.
In Section 4, we prove that rank-one convex functions homogeneous of order one are nonnegative, which
gives us Theorem 2. In fact, it suffices to show a similar principle for separately convex functions on Rd,
which is formalized in Theorem 14. This theorem is purely convex geometric. Finally, we discuss related
questions in Section 5.

2. Bellman function and its properties

Inequality (1) can be rewritten as

inf
ϕ∈C∞0 ([0,1]

d )

(∑̀
j=2

‖Tjϕ‖L1(Rd )− c‖T1ϕ‖L1(Rd )

)
= 0, (2)

where c is a sufficiently small positive constant.

Definition 3. Suppose ∂α, α ∈ A, are all the partial derivatives that are present in the Tj (thus A is a
subset of 3∩Zd). Consider the Hilbert space E with an orthonormal basis eα indexed with the set A.
For each function ϕ and each point x , we have a mapping

[0, 1]d 3 x 7→ ·∇[ϕ](x)=
∑
α∈A

∂α[ϕ](x)eα ∈ E .

We call the function ·∇[ϕ] the generalized gradient of ϕ.

The operator ·∇[ · ] is an analogue of the usual gradient suitable for our problem.

Example 4. Let Tj = ∂x j for j = 1, . . . , d . In this case the generalized gradient turns out to be the usual
gradient on the Euclidean space Rd.
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Example 5. Let us take the differential operators

T1[ϕ] = ∂
(2,0,1)
[ϕ] − ∂(0,3,1)[ϕ], T2[ϕ] = ∂

(4,0,0)ϕ, T3[ϕ] = ∂
(0,6,0)
[ϕ], T4[ϕ] = ∂

(0,0,2)
[ϕ]. (3)

We can list all the partial derivatives present in the operators:

A =
{
∂(0,0,2), ∂(0,6,0), ∂(4,0,0), ∂(0,3,1), ∂(2,0,1)

}
.

All the operators Tj are 3-homogeneous, where 3 = {x ∈ R3
: 〈x, (3, 2, 6)〉 = 12}. In this case the

generalized gradient is of the form

·∇[ϕ] =
(
∂(0,0,2)[ϕ], ∂(0,6,0)[ϕ], ∂(4,0,0)[ϕ], ∂(0,3,1)[ϕ], ∂(2,0,1)[ϕ]

)
∈ R5.

We also consider the function V : E→ R given by the rule

V (e)=
(∑̀

j=2

|T̃j e| − c|T̃1e|
)
, (4)

where the T̃j are the linear functionals on E such that T̃j (e)=
∑

A cα,j eα if Tj =
∑

A cα, j∂
α. With this

bit of abstract linear algebra, we rewrite formula (2) as

inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V ( ·∇[ϕ](x)) dx = 0.

The main idea is to consider a perturbation of this extremal problem, i.e., the function B : E→ R given
by the formula

B(e)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx . (5)

Theorem 6. Suppose that inequality (2) holds true. Then, the function B possesses the properties listed
below.

(1) It satisfies the inequalities −‖e‖. B(e). ‖e‖ and B 6 V .

(2) It is one-homogeneous; i.e., B(λe)= |λ|B(e).

(3) It is a Lipschitz function.

(4) It is a generalized quasiconvex function; i.e., for any ϕ ∈ C∞0 ([0, 1]d) and any e ∈ E the inequality

B(e)6
∫
[0,1]d

B(e+ ·∇[ϕ](x)) dx (6)

holds true.

Proof. (1) We get the upper estimates on the function B by plugging ϕ ≡ 0 in the formula for it:

B(e)6
∫
[0,1]d

V (e+ ·∇[ϕ])= V (e). ‖e‖.
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We obtain the lower bounds on the function B from inequality (2) and the triangle inequality:∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−c|T̃1(e+ ·∇[ϕ])|
)
>
∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−c|T̃1( ·∇[ϕ])|−c|T̃1e|
)

>
∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−
∑̀
j=2

|T̃j ( ·∇[ϕ])|−c|T̃1e|
)

=

∫
[0,1]d

(∑̀
j=2

(
|T̃j (e+ ·∇[ϕ])|−|T̃j ( ·∇[ϕ])|

)
−c|T̃1e|

)

>−
∑̀
j=2

|T̃j e|−c|T̃1e|,

where ϕ ∈ C∞0 ([0, 1]d) is an arbitrary function. We take infimum of the above inequality over all
admissible ϕ:

−‖e‖.−
∑̀
j=2

|T̃j e| − c|T̃1e|6 B(e).

(2) Since V is a one-homogeneous function, the following equality holds for every λ 6= 0:

B(λe)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V (λe+ ·∇[ϕ])= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d
|λ|V (e+ ·∇[λ−1ϕ]).

We know that λ−1C∞0 ([0, 1]d)= C∞0 ([0, 1]d) for every λ 6= 0; therefore

B(λe)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d
|λ|V (e+ ·∇[λ−1ϕ])= |λ| inf

ϕ∈C∞0 ([0,1]
d )

∫
[0,1]d

V (e+ ·∇[ϕ])= |λ|B(e).

(3) In order to get the Lipschitz continuity of B, we rewrite the formula for it:

for all e ∈ E, B(e)= inf
ϕ∈C∞0 ([0,1]

d )
Vϕ(e),

where

Vϕ(e)=
∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx .

It follows from the Lipschitz continuity of V that every function Vϕ is a Lipschitz function with the
Lipschitz constant bounded by L , where L is the Lipschitz constant of the function V. For every two
points v1, v2 ∈ E , we can find a sequence of functions Vϕn such that B(v j )= infn∈N Vϕn (v j ) for j ∈ {1, 2}.
We define

fk(e)= min
n=1,2,...,k

Vϕn (e).

For every k ∈N the function fk is the Lipschitz function with the Lipschitz constant bounded by L . Hence

|B(v1)− B(v2)| = lim
k→∞
| fk(v1)− fk(v2)|6 L‖v1− v2‖.
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(4) Before we prove the generalized quasiconvexity of this function, we need to introduce some notation.
We know that all α ∈ A have common pattern of homogeneity 3; thus we can find a vector γ ∈Nd and a
number k ∈ N such that 〈α, γ 〉 = k for every α ∈ A.

For every λ ∈ R and x ∈ Rd, we define

xλ = (λγ1 x1, λ
γ2 x2, . . . , λ

γd xd).

For every λ ∈ N we define the partition of the unit cube [0, 1]d into small parallelepipeds:

Q y = y+
d∏

j=1

[0, λ−γ j ] for every y ∈ Y,

where

Y =
{

y ∈ [0, 1]d : y =
(
κ1

λγ1
,
κ2

λγ2
, . . . ,

κd

λγd

)
for κ j ∈ N∪ {0} and κ j < λ

γ j

}
.

Here Y is the set of “leftmost lowest” vertices of the parallelepipeds Q y . The parallelepipeds Q y are
disjoint up to sets of measure zero and

⋃
y∈Y Q y = [0, 1]d. Let us fix ϕ ∈ C∞0 ([0, 1]d). Since ·∇[ϕ] is

a uniformly continuous function on [0, 1]d and the diameter of the parallelepipeds Q y tends to zero
uniformly with the growth of λ, we can choose λ sufficiently large to obtain

for all y ∈ Y, for all z, v ∈ Q y,
∣∣ ·∇[ϕ](z)− ·∇[ϕ](v)∣∣6 ε

L
, (7)

where L is the Lipschitz constant of the function V. Let {ψy}y∈Y be a family of functions in C∞0 ([0, 1]d).
For these functions, we use the rescaling

ψy,λ(x)= λ−kψy((x − y)λ).

Let us observe that the rescaling (x − y)λ transforms the cube [0, 1]d into Q y; thus suppψy,λ ⊂ Q y .
Moreover, we know that

∂α[ψy,λ](x)= λ−kλ(
∑d

j=1 α jγ j)∂α[ψy]((x − y)λ)= ∂α[ψy]((x − y)λ)

for every α ∈ A. By (5), we have

B(e)6
∫
[0,1]d

V
(

e+
∑
y∈Y

·∇[ψy,λ](x)+ ·∇[ϕ](x)
)

dx =
∑
y∈Y

∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](x)

)
dx .

We assumed that (7) holds; therefore, for arbitrary vy ∈ Q y we have the estimate∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](x)

)
dx 6

∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](vy)

)
dx + ε|Q y|

=

∫
Q y

V
(
e+ ·∇[ψy]((x − y)λ)+ ·∇[ϕ](vy)

)
dx + ε|Q y|.

Since λ−(
∑d

j=1 γ j) = |Q y|, we have∫
Q y

V
(
e+ ·∇[ψy]((x − y)λ)+ ·∇[ϕ](vy)

)
dx = |Q y|

∫
[0,1]d

V
(
e+ ·∇[ψy](z)+ ·∇[ϕ](vy)

)
dz
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for z = (x − y)λ. Now for every y ∈ Y and vy ∈ Q y we can choose ψy such that∫
[0,1]d

V
(
e+ ·∇[ψy](z)+ ·∇[ϕ](vy)

)
dz 6 B(e+ ·∇[ϕ](vy))+ ε

(this choice depends on vy , however, we treat vy as of a fixed parameter). We obtain

B(e)6
∑
y∈Y

|Q y|B(e+ ·∇[ϕ](vy))+ 2ε

from the above inequalities. We take mean integrals of this inequality over each cube Q y with respect
to vy , which gives us

B(e)6
∑
y∈Y

∫
Q y

B(e+ ·∇[ϕ](vy)) dvy + 2ε =
∫
[0,1]d

B(e+ ·∇[ϕ](x)) dx + 2ε.

Since ε was an arbitrary positive number, we have proved the generalized quasiconvexity of B. �

The proof of the fourth point seems very similar to the standard Bellman induction step (see [Nazarov
et al. 2001; Osękowski 2012; Stolyarov and Zatitskiy 2016; Volberg 2011] or any other paper on the
Bellman function method in probability or harmonic analysis); moreover, the function B itself is, in a
sense, a Bellman function and inequality (6) is a Bellman inequality. We suspect that this “similarity”
should be more well-studied.

3. Rank-one convexity

Inequality (6) looks like a convexity inequality. Sometimes that is really the case.

Definition 7. We call a vector ex ∈ E a generalized rank-one vector if it is of the form∑
α∈A

i |α|+|α0|xαeα, x ∈ Rd, α0 ∈ A.

Remark 8. In Theorem 2, we only consider the case where every α ∈ A has the same parity as the other
elements of A. Therefore, i |α|+|α0| ∈ R for every α0, α ∈ A. Hence the coefficients of the generalized
rank-one vector are real.

Theorem 9. The function B is a generalized rank-one convex function; i.e., it is convex in the directions
of generalized rank-one vectors.

To prove the theorem, we need two auxiliary lemmas.

Lemma 10. For every x ∈ Rd and every ε, δ > 0, there exists a function lx,ε,δ ∈ C∞0 ([0, 1]d) and a set
B ⊂ [0, 1]d such that the following hold.

(1) ‖ ·∇[lx,ε,δ]‖6 ‖ex‖+ ε.

(2) |B|> 1− δ.
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(3) The function ·∇[lx,ε,δ]|B with respect to the measure µ = |B|−1 dx |B is equimeasurable with the
function cos(2π t)ex , t ∈[0, 1]; i.e.,

µ
(
{ ·∇[lx,ε,δ] ∈W }

)
=
∣∣{t ∈ [0, 1] : cos(2π t)ex ∈W

}∣∣
for every Borel set W in E.

Proof. For a given x ∈ Rd we take the same γ and k as in the proof of the fourth point of Theorem 6. We
consider the function

lx,ε,δ(ξ)= t−k cos
( d∑

j=1

tγ j x jξ j

)
8(ξ),

where 8 is the smooth hat function:

8(ξ)=


1, ξ ∈ [2δ′, 1− 2δ′]d,
0, ξ ∈ [0, 1]d\[δ′, 1− δ′]d,
Θ(ξ) ∈ [0, 1], otherwise

for δ′ sufficiently small (in particular, we need 2(2δ′)d < δ). Similarly to the fourth point of Theorem 6,
we define the set of proper parallelepipeds

Yt =

{
Q : Q = (k jv j ) j=1,...,d +

d∏
j=1

[0, w j ], k j ∈ {1} ∪
{

k j ∈ N : k j <
tγ j x j

2π
− 1

}}
,

where v j =w j = 2π t−γ j x−1
j if x j 6= 0 and v j = δ

′, w j = (1−2δ′) otherwise. For any δ′, we can choose t
to be so large that ∣∣∣∣ ⋃

Q∈Yt
Q⊂[2δ′,1−2δ′]d

Q
∣∣∣∣> 1− δ.

We put B to be this union, i.e., the union of the parallelepipeds Q from the family Yt that belong to
[2δ′, 1− 2δ′]d entirely.

If t is sufficiently large, then for every β ∈ Nd satisfying 06 〈β, γ 〉< k, we have

sup
ξ∈[0,1]d

|t−1∂β[8](ξ)|6 ε′. (8)

For any β ∈ Nd,

∂β
[

cos
( d∑

j=1

tγ j x jξ j

)]
=t 〈β,γ 〉xβ∂β[cos]

( d∑
j=1

tγ j x jξ j

)
.

Since all α ∈ A have the same parity, we either have ∂α[cos](ξ) = (−1)|α|/2 cos(ξ) for every α ∈ A
or ∂α[cos](x)= (−1)(|α|+1)/2 sin(ξ) for every α ∈ A. Without loss of generality we may assume 2

∣∣ |α|,
because the functions sine and cosine are equimeasurable on their periodic domains. Therefore, for every
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ξ ∈ [0, 1]d and α ∈ A we have

∂α[lξ,ε,δ](ξ)=8(ξ)∂α
[

t−k cos
( d∑

j=1

tγ j x jξ j

)]
+

∑
α′+β=α

β 6=(0,0,...,0)

cα′,β t−k∂α
′

[
cos
( d∑

j=1

tγ j x jξ j (x)
)]
∂β[8]

=8(ξ)xα∂α[cos]
( d∑

j=1

tγ j x jξ j

)
+

∑
α′+β=α

β 6=(0,0,...,0)

cα′,β t 〈α
′,γ 〉−k∂α

′

[cos]
( d∑

j=1

tγ j x jξ j (x)
)
∂β[8]

= (−1)|α|/2xα cos
( d∑

j=1

tγ j x jξ j

)
+ error, (9)

where the coefficients cα′,β come from the Leibniz formula. The error is O(ε′) in absolute value by (8) and
is equal to zero on the set [2δ′, 1− 2δ′]d (because the function 8 is constant there). For every ξ ∈ [0, 1]d

we have

·∇[lξ,ε,δ](ξ)=
∑
α∈A

∂α[lξ,ε,δ](ξ)eα =
∑
α∈A

(
(−1)|α|/2xα cos

( d∑
j=1

tγ j x jξ j

)
+ error

)
eα

= ex cos
( d∑

j=1

tγ j x jξ j

)
+ error.

Thus, for every ξ ∈ [0, 1]d and ε′ sufficiently small, we obtain

‖ ·∇[lξ,ε,δ](ξ)‖6 ‖ex‖+‖error‖6 ‖ex‖+ ε.

Since the error is equal to zero on the set [2δ′, 1− 2δ′]d, it follows from (9) that for every ξ ∈ B we have

·∇[lξ,ε,δ](ξ)= cos
( d∑

j=1

tγ j x j ξ j

)
ex .

We note that the function cos
(∑d

j=1 tγ j x jξ j
)
ex restricted to any Q ∈ Yt is equimeasurable (with respect

to the measure dx/|Q| on Q) with the function cos(2π t)ex , t ∈[0, 1] (one can verify this fact using an
appropriate dilation). Since B is a union of several parallelepipeds Q, the same holds with Q replaced
by B. �

Lemma 11. Suppose v : R→ R is a Lipschitz function such that

v(x)6
∫ 1

0
v(x + λ cos(2π t)) dt (10)

for any x, λ ∈ R. Then v is convex.

Proof. We are going to verify that v is convex as a distribution, or equivalently, that the distribution v′′

is nonnegative. For that, we multiply inequality (10) by a positive function ϕ ∈ C∞0 (R). Since v is a
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Lipschitz function, we can integrate it over R:∫
R

v(x)ϕ(x) dx 6
∫

R

∫ 1

0
v(x + λ cos(2π t))ϕ(x) dt dx =

∫
R

∫ 1

0
v(x)ϕ(x − λ cos(2π t)) dt dx

=

∫
R

v(x)
∫ 1

0

(
ϕ(x)− λ cos(2π t)ϕ

′

(x)+ 1
2λ

2 cos2(2π t)ϕ′′(x)+ o(λ2)
)

dt dx

=

∫
R

(
v(x)ϕ(x)+ v(x)ϕ′′(x) 1

2λ
2
(∫ 1

0
cos2(2π t)

)
+ o(λ2)

)
dx .

Therefore,

06 1
2

(∫ 1

0
cos2(2π t) dt

)∫
R

v(x)ϕ′′(x) dx +
o(λ2)

λ2 .

Letting λ→ 0, we show that v′′ as a distribution satisfies v′′(ϕ)> 0 for all ϕ ∈ C∞0 (R) and ϕ > 0. From
the Schwartz theorem it follows that v′′ is a nonnegative measure of locally finite variation. Thus v′ is an
increasing function and therefore v is convex. �

Proof of Theorem 9. The function B is a generalized quasiconvex function; hence it satisfies (6) for every
ϕ ∈ C∞0 ([0, 1]d). Let us fix x ∈ Rd, λ ∈ R. We plug λlx,ε,δ into (6). We get (for every e ∈ E)

B(e)6
∫
[0,1]d

B(e+ ·∇[λlx,ε,δ])=

∫
B

B(e+ ·∇[λlx,ε,δ])+

∫
[0,1]d\B

B(e+ ·∇[λlx,ε,δ])

6
∫

B
B(e+ ·∇[λlx,ε,δ])+ O

(
λ(‖e‖+‖ex‖+ ε)δ

)
by Lemma 10. Since ·∇[lx,ε,δ]|B is equimeasurable (B equipped with the measure dx/|B|) with cos(2π t)ex ,∫

B
B(e+ ·∇[λlx,ε,δ])

dx
|B|
=

∫
[0,1]

B(e+ λ cos(2π t)ex) dt.

Therefore,

B(e)6 |B|
∫
[0,1]

B(e+ λ cos(2π t)ex) dt + O
(
λ(‖e‖+‖ex‖+ ε)δ

)
.

Since for δ→ 0, we have |B| → 1, we get

B(e)6
∫
[0,1]

B(e+ λ cos(2π t)ex) dt. (11)

For a fixed e ∈ E , consider the function R 3 s 7→ B(e+ sex). By (11),

B(e+ sex)6
∫
[0,1]

B(e+ sex + λ cos(2π t)ex) dt.

Thus, by Lemma 11, the function R 3 s 7→ B(e+ sex) is convex (one simply applies the lemma to this
function). Since e ∈ E and x ∈ Rd, λ ∈ R were arbitrary, this proves the generalized rank-one convexity
of the function B. �
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4. Separately convex homogeneous functions and proof of Theorem 2

Lemma 12. Generalized rank-one vectors span E.

Proof. Since E is a finite-dimensional Hilbert space, every functional on E is of the form ϕ∗( · ) =〈∑
α∈A aαeα, ·

〉
. We get

ϕ∗(ex)=
∑
α∈A

aα xαi |α|+|α0|

for every x ∈ Rd. If E is not a span of generalized rank-one vectors, then there exists a nontrivial ϕ∗ such
that

0= ϕ∗(ex)=
∑
α∈A

aαxαi |α|+|α0|

for every x ∈ Rd. However, xα are linearly independent monomials. Therefore, aα = 0 for every α ∈ A.
Hence ϕ∗ ≡ 0 and the generalized rank-one vectors span E . �

We recall that our aim was to show that T1 is a linear combination of the other Tj . By comparing the
kernels of the T̃j , it is equivalent to the fact that V > 0 everywhere. By the evident inequality B 6 V, it
suffices to prove that B is nonnegative. By Lemma 12 and Theorem 9, this will follow from the theorem
below. Hence it suffices to prove Theorem 14 to get Theorem 2.

Definition 13. A function F : Rd
→ R is separately convex if it is convex with respect to each variable.

Theorem 14. A function F : Rd
→ R that is separately convex and homogeneous of order one is

nonnegative.

Before moving to the proof, we cite [Dacorogna 2008, Theorem 2.31], which says that a separately
convex function is continuous. This fact will be implicitly used several times in the reasoning below.

Proof. We proceed by induction. Suppose the statement of the theorem holds true for the dimension d−1.
We then prove it for the dimension d . Construct the function G : Rd−1

→ R by the formula

G(x)= F(x, 1), x ∈ Rd−1.

This function is separately convex and convex with respect to radius, i.e., for every x ∈ Rd−1 the function
R+ 3 t 7→G(t x) is a convex function. Indeed, the function F is one-homogeneous and separately convex;
thus for t, r > 0 and τ ∈ (0, 1) we have

τG(t x)+ (1− τ)G(r x)= τ F(t x, 1)+ (1− τ)F(r x, 1)

= (τ t + (1− τ)r)
(
τ t F

(
x, 1

t

)
+ (1− τ)r F

(
x, 1

r

)
τ t + (1− τ)r

)
> (τ t + (1− τ)r)F

(
x,

1
τ t + (1− τ)r

)
= F

(
(τ t + (1− τ)r)x, 1

)
= G

(
(τ t + (1− τ)r)x

)
.
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We claim that for each x ∈ Rd−1, the function R 3 t 7→ G(t x) is convex. Since the function G is
continuous, it suffices to prove that G(t x)+G(−t x)> G(0) for all t ∈ R. Consider another function V :

V (x)= lim
t→0+

G(t x)+G(−t x)− 2G(0)
t

, x ∈ Rd−1.

The limit exists due to the convexity with respect to radius. This function V is one-homogeneous and
separately convex. However, it may have attained the value −∞. Fortunately, this is not the case. If there
exists x ∈ Rd such that V (x)=−∞ then

2V (0, x2, . . . , xd)6 V (x1, . . . , xd)+ V (−x1, . . . , xd)=−∞.

Therefore V (0, x2, . . . , xd)=−∞. We repeat the above reasoning with x2, . . . , xd instead of x1 and we
get V (0)=−∞, but from the definition of V we know that

V (0)= lim
t→0+

G(0)+G(0)− 2G(0)
t

= 0.

Hence V (x) is finite for every x ∈ Rd−1. Thus, by the induction hypothesis, V is nonnegative. So,
R 3 t 7→ G(t x) is a convex function.

By symmetry, G(x)+G(−x)> 2F(x, 0). On the other hand, limt→±∞ G(t x)/t = F(x, 0). So, the
convexity of t 7→ G(t x) gives the inequality |G(x)−G(−x)|6 2F(x, 0). Adding these two inequalities,
we get F(x, 1)> 0. �

Proof of Theorem 2. Assume that inequality (1) holds. Then, by Theorem 6, the function B given by (5)
is Lipschitz, one-homogeneous, generalized quasiconvex, and satisfies the inequality B 6 V , where the
function V is given by formula (4). Then, by Theorem 9, B is a generalized rank-one convex function.

Let e ∈ E be an arbitrary point. By Lemma 12, e is a linear combination of generalized rank-one
vectors ex1, ex2, . . . , exk . We may assume that they are linearly independent. Consider the function
F : Rk

→ R given by the rule

F(z1, z2, . . . , zk)= B(z1ex1 + z2ex2 + · · ·+ zkexk ).

By the generalized rank-one convexity of B, we see that F is separately convex. It is also one-
homogeneous; thus F > 0 by Theorem 14. Therefore, B(e) is also nonnegative for arbitrary e ∈ E .

Since B > 0, we have V > 0. In such a case, it follows from formula (4) that Ker T̃1 ⊃
⋂`

j=2 Ker T̃j .
Therefore, T1 is a linear combination of the other Tj . �

5. Related questions

5.1. Towards Conjecture 1. The following statement plays the same role in view of Conjecture 1 as
Theorem 14 plays in the proof of Theorem 2.

Conjecture 15. Let F : R2d
→ R be a Lipschitz homogeneous function of order one. Suppose that for

any j = 1, 2, . . . , d the function F is subharmonic with respect to the variables (x j , x j+d). Then, F is
nonnegative.
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Indeed, plugging the cosine function into (6) as we did in the proof of Theorem 9 leads to “sub-
harmonicity”1 of the function B in the directions of projections of a generalized rank-one vector onto
subspaces generated by odd and even monomials in A correspondingly. Therefore, Conjecture 1 follows
from Conjecture 15.

We are not able to prove Conjecture 15. However, we know the following: in the case d = 1, the
function F is not only nonnegative, but, in fact, convex (i.e., a one-homogeneous subharmonic function is
convex). On the other hand, there is not much hope for simplifications: a subharmonic one-homogeneous
function in R3 (and thus in Rd, d > 3) can attain negative values; e.g., in R4 one may take the function

x2
1 + x2

2 + x2
3 − x2

4√
x2

1 + x2
2 + x2

3

.

There are also reasons that differ from the ones discussed in the present paper that may “break”
inequality (1). One of them is a certain geometric property of the spaces generated by the operators Tj .
Not stating any general theorem or conjecture, we treat an instructive example. Consider the noninequality

‖∂2
1∂2 f ‖L1 . ‖∂

4
1 f ‖L1 +‖∂

2
2 f ‖L1 . (12)

Conjecture 1 suggests that it cannot be true. We will disprove it on the torus T2 and leave to the reader
the rigorous formulation and proof of the corresponding transference principle, whose heuristic form is
“inequalities of the sort (1) are true or untrue simultaneously on the torus and the Euclidean space”. Consider
two anisotropic homogeneous Sobolev spaces W1 and W2, which are obtained from the set of trigonometric
polynomials by completion and factorization over the null-space with respect to the seminorms

‖ f ‖W1 = ‖∂
4
1 f ‖L1 +‖∂

2
2 f ‖L1, ‖ f ‖W2 = ‖∂

2
1∂2 f ‖L1 +‖∂

4
1 f ‖L1 +‖∂

2
2 f ‖L1 .

If inequality (12) holds true, then these two spaces are, in fact, equal (the identity operator is a Banach-
space isomorphism between these spaces). However, it follows from the results of [Pełczyński and
Wojciechowski 1992] (see [Wojciechowski 1991; 1993] as well) that W2 has a complemented translation-
invariant Hilbert subspace,2 whereas W1 does not, a contradiction.

Martingale transforms. Let S = {Sn}n , n ∈ {0} ∪N, be an increasing filtration of finite algebras on the
standard probability space. We suppose that it differentiates L1 (i.e., for any f ∈ L1(�) the sequence
E( f | Sn) tends to f almost surely). We will be working with martingales adapted to this filtration.

Definition 16. Let α = {αn}n be a bounded sequence. The linear operator

Tα[ f ] =
∞∑
j=1

α j−1( f j − f j−1), f = { fn}n is an L1 martingale,

is called a martingale transform.

1The “subharmonicity” means that D B > 0 as a distribution, where D is an elliptic symmetric differential operator of second
order (with constant real coefficients); one can then pass to usual subharmonicity by an appropriate change of variable.

2That means that there exists a subspace X ⊂ W2 such that g ∈ X whenever g( · + t) ∈ X , t ∈ T2, X is isomorphic to an
infinite-dimensional Hilbert space, and there exists a continuous projector P :W2→ X .
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Our definition is not as general as the usual one, and we refer the reader to the book [Osękowski 2012] for
the information about such operators. We only mention that martingale transforms serve as a probabilistic
analogue for the Calderón–Zygmund operators. Here is the probabilistic version of Conjecture 1.

Conjecture 17. Suppose α1, α2, . . . , α` are bounded sequences. Suppose that the algebras Sn uniformly
grow; i.e., there exists γ < 1 such that each atom a of Sn is split in Sn+1 into atoms of probability not
greater than γ |a| each. The inequality

‖Tα1 f ‖L1 .
∑̀
j=2

‖Tα j f ‖L1 (13)

holds for any martingale f adapted to {Sn}n if and only if α1 is a sum of a linear combination of the α j

and an `1 sequence.

We do not know whether the condition of uniform growth fits this conjecture. Anyway, it is clear that
one should require some condition of this sort (otherwise one may take Sn = Sn+1 = · · · = Sn+k very
often and lose all the control of the sequences α j on these time intervals). Again, we are not able to prove
the conjecture in the full generality, but will deal with an important particular case.

Theorem 18. Suppose α1, α2, . . . , α` to be bounded periodic sequences. The inequality

‖Tα1 f ‖L1 .
∑̀
j=2

‖Tα j f ‖L1

holds if and only if α1 is a linear combination of the other α j.

Proof. To avoid technicalities, we will be working with finite martingales (denote the class of such
martingales by M). The general case can be derived by stopping time. Assume that inequality (13) holds
true. Consider the Bellman function B : R`→ R given by the formula

B(x)= inf
f ∈M

(∑̀
j=2

∥∥x j + Tα j [ f ]
∥∥

L1
− c

∥∥x1+ Tα1[ f ]
∥∥

L1

)
.

It is easy to verify that this function is one-homogeneous and Lipschitz. Moreover, B is convex in the
direction of (α1

n, α
2
n, . . . , α

`
n) for each n (by the assumption of periodicity, there is only a finite number

of these vectors); the proof of this assertion is a simplification of Theorem 9 (here we do not have
to make additional approximations; however, see [Stolyarov and Zatitskiy 2016, Lemma 2.17] for a
very similar reasoning). Thus, by Theorem 14, B is nonnegative on the span of {(α1

n, α
2
n, . . . , α

`
n)}n .

Since B(x)6
∑

j>2 |x j | − c|x1|, the aforementioned span does not contain the x1-axis. Therefore, α1 is
a linear combination of the other α j. �

Case p > 1. Inequality (1) may become valid provided one replaces the L1 norm with the L p one,
1< p <∞. Let cp be the best possible constant in the inequality

‖T1 f ‖p
L p(Rd )

6 cp

∑̀
j=2

‖Tj f ‖p
L p(Rd )

. (14)
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It is interesting to compute the asymptotics of cp as p→ 1. Some particular cases have been considered
in [Berkson et al. 2001]; we also refer the reader there for a discussion of similar questions.

Conjecture 19. Let3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be a collection of3-homogeneous

differential operators. If T1 cannot be expressed as a linear combination of the other Tj , then cp &
1

p−1 .

The conjecture claims that if there is no continuity at the endpoint, then the inequality behaves at least
as if it had a weak type (1, 1) there (it is also interesting to study when there is a weak type (1, 1) indeed).
First, we note that this question is interesting even when there are only two polynomials. Second, this is
only a bound from below for cp. Even in the case of two polynomials, cp can be as big as (p− 1)1−d

(and thus the endpoint inequality may not be of weak type (1, 1), at least when d > 3); see [Berkson et al.
2001] for the example.

Conjecture 19 will follow from the corresponding geometric statement in the spirit of Theorem 14.

Conjecture 20. Let F :Rd
→R be a separately convex p-homogeneous function (i.e., F(λx)=|λ|p F(x)).

Suppose F(x)6 |x |p. Then, F(x)& (1− p)|x |p.

Conjecture 19 is derived from Conjecture 20 in the same way as Theorem 2 is derived from Theorem 14:
one considers the Bellman function (5) with the function V given by the formula

V (e)=
(

cp

∑̀
j=2

|T̃j e|p − |T̃1e|p
)
,

proves its generalized quasiconvexity, which leads to the generalized rank-one convexity, and then uses
Conjecture 20 to estimate cp from below.

It is not difficult to verify the case d = 2 of Conjecture 20. Therefore, there exists a C∞0 -function f p

such that
(p− 1)‖∂1∂2 f p‖L p(R2) &

(
‖∂2

1 f p‖L p(R2)+‖∂
2
2 f p‖L p(R2)

)
.
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A NOTE ON STABILITY SHIFTING FOR THE MUSKAT PROBLEM, II:
FROM STABLE TO UNSTABLE AND BACK TO STABLE

DIEGO CÓRDOBA, JAVIER GÓMEZ-SERRANO AND ANDREJ ZLATOŠ

In this note, we show that there exist solutions of the Muskat problem which shift stability regimes in
the following sense: they start stable, then become unstable, and finally return back to the stable regime.
This proves the existence of double stability shifting in the direction opposite to (as well as more difficult
and more surprising than) the one shown by Cordoba et al. (Philos. Trans. Roy. Soc. A 373:2050 (2015),
art. id. 20140278).

1. Introduction

In this paper, we study two incompressible fluids with the same viscosity but different densities, ρ+

and ρ−, evolving in a two-dimensional porous medium with constant permeability κ . The velocity v is
determined by Darcy’s law

µ
v

κ
=−∇ p− g

(
0
ρ

)
, (1-1)

where p is the pressure, µ > 0 viscosity, and g > 0 gravitational acceleration. In addition, v is incom-
pressible:

∇ · v = 0. (1-2)

By rescaling properly, we can assume κ = µ= g = 1. The fluids also satisfy the conservation of mass
equation

∂tρ+ v · ∇ρ = 0. (1-3)

This is known as the Muskat problem [1937]. We denote by �+ the region occupied by the fluid with
density ρ+ and by �− the region occupied by the fluid with density ρ− 6= ρ+. The point (0,∞) belongs
to �+, whereas the point (0,−∞) belongs to �−. All quantities with superindex ± will refer to �±

respectively. The interface between both fluids at any time t is a planar curve z( · , t). We will work in the
setting of horizontally periodic interfaces, although our results can be extended to the flat-at-infinity case.

A quantity that will play a major role in this paper is the Rayleigh–Taylor condition, which is defined as

RT(x, t)=−
[
∇ p−(z(x, t))−∇ p+(z(x, t))

]
· ∂⊥x z(x, t),

where we use the convention (u, v)⊥ = (−v, u). If RT(x, t) > 0 for all x ∈ R, then we say that the curve
is in the Rayleigh–Taylor stable regime at time t , and if RT(x, t)≤ 0 for some x ∈ R, then we say that
the curve is in the Rayleigh–Taylor unstable regime.

MSC2010: primary 35Q35; secondary 35R35, 65G30, 76B03.
Keywords: Muskat problem, interface, incompressible fluid, porous media, Rayleigh–Taylor, computer-assisted.
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One can rewrite the system (1-1)–(1-3) in terms of the curve z = (z1, z2), obtaining

∂t z(x, t)=
ρ−− ρ+

2π
P.V.

∫
R

z1(x, t)− z1(y, t)
|z(x, t)− z(y, t)|2

(∂x z(x, t)− ∂yz(y, t)) dy. (1-4)

In the horizontally periodic case with z(x + 2π, t)= z(x, t)+ (2π, 0), the formula

1
2

cot
y
2
=

1
y
+

∞∑
n=1

2y
y2− (2πn)2

can be used to show [Castro et al. 2012] that the velocity satisfies

∂t z(x, t)=
ρ−− ρ+

4π

∫
T

sin(z1(x, t)− z1(y, t))(∂x z(x, t)− ∂yz(y, t))
cosh(z2(x, t)− z2(y, t))− cos(z1(x, t)− z1(y, t))

dy. (1-5)

A simple calculation of the Rayleigh–Taylor condition in terms of z yields

RT(x, t)= (ρ−− ρ+)∂x z1(x, t).

When the interface is a graph, parametrized as z(x, t)= (x, f (x, t)), equation (1-4) becomes

∂t f (x, t)=
ρ−− ρ+

4π

∫
T

sin(x − y)(∂x f (x, t)− ∂y f (y, t))
cosh( f (x, t)− f (y, t))− cos(x − y)

dy (1-6)

and the Rayleigh–Taylor condition simplifies to

RT(x, t)= ρ−− ρ+.

The curve is now in the RT stable regime whenever ρ+ < ρ−; that is, the denser fluid is at the bottom.
From now on, we assume that ρ−− ρ+ = 4π , which can be done after an appropriate scaling in time.

The Muskat problem has been studied in many works. A proof of local existence of classical solutions in
the Rayleigh–Taylor stable regime in H 3 and ill-posedness in the unstable regime appears in [Córdoba and
Gancedo 2007]. See also [Constantin et al. 2016b] for an improvement on the regularity (to W 2,p spaces).
In the one-phase case (i.e., when one of the densities and permeabilities is zero) local existence in H 2

was proved in [Cheng et al. 2016].
A maximum principle for ‖∂x f ( · , t)‖L∞ can be found in [Córdoba and Gancedo 2009]. Moreover, the

authors showed in [Córdoba and Gancedo 2009] that if ‖∂x f0‖L∞ < 1, then ‖∂x f ( · , t)‖L∞ ≤ ‖∂x f0‖L∞

for all t > 0. Further work has shown existence of finite-time turning [Castro et al. 2012] (i.e., the curve
ceases to be a graph in finite time and the Rayleigh–Taylor condition changes sign to negative somewhere
along the curve). The gap between these two results (i.e., the question whether the constant 1 is sharp or
not for guaranteeing global existence) is still an open question, and there is numerical evidence of data
with ‖∂x f0‖L∞ = 50 which turns over [Córdoba et al. 2015].

As was demonstrated in [Castro et al. 2013], the curve may lose regularity after shifting from the stable
regime to the unstable regime. However, the possibility of it recoiling and returning to the stable regime
has not been excluded. The occurrence of this phenomenon is the main result of this note, Theorem 2.1.
(In Theorem 2.3 we also extend this to a proof of existence of the quadruple stability shift scenario
unstable→ stable→ unstable→ stable→ unstable.) In [Córdoba et al. 2015] we showed that there
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exist curves which undergo the unstable→ stable→ unstable transition, so this settles the question about
existence of double stability shift scenarios in both directions. We stress that existence of the stable→
unstable→ stable scenario is in fact by no means expected, as well as considerably more challenging to
establish than the unstable→ stable→ unstable one.

More general models, which take into account finite depth or nonconstant permeability, and which
also exhibit (single) turning were studied in [Berselli et al. 2014; Gómez-Serrano and Granero-Belinchón
2014]. The estimates in [Gómez-Serrano and Granero-Belinchón 2014] were carried out by rigorous
computer-assisted methods, as opposed to the traditional pencil and paper ones in [Berselli et al. 2014].

Concerning global existence, the first proof for small initial data was carried out in [Siegel et al. 2004] in
the case where the fluids have different viscosities and the same densities (see also [Córdoba and Gancedo
2007] for the setting of the present paper — different densities and the same viscosities — and also [Cheng
et al. 2016] for the general case). Global existence for medium-sized initial data was established in
[Constantin et al. 2013; 2016a]. In the case where surface tension is taken into account, global existence
was shown in [Escher and Matioc 2011; Friedman and Tao 2003]. Global existence for the confined case
was treated in [Granero-Belinchón 2014]. A blow-up criterion was found in [Constantin et al. 2016b].

Recent advances in computing power have made possible rigorous computer-assisted proofs. Of course,
floating-point operations can result in numerical errors, and we will employ interval arithmetics to deal
with this issue. Instead of working with arbitrary real numbers, we perform computations over intervals
which have representable numbers as endpoints. On these objects, an arithmetic is defined in such a way
that we are guaranteed that for every x ∈ X, y ∈ Y ,

x ? y ∈ X ? Y

for any operation ?. For example,

[x, x] + [y, y] = [x + y, x + y],

[x, x]× [y, y] =
[
min{x y, x y, x y, x y},max{x y, x y, x y, x y}

]
.

We can also define the interval version of a function f (X) as an interval I that satisfies that for every
x ∈ X , we have f (x) ∈ I . Rigorous computation of integrals has been theoretically developed since the
seminal works of Moore and many others (see [Berz and Makino 1999; Krämer and Wedner 1996; Lang
2001; Moore 1979; Tucker 2011] for just a small sample). For readability purposes, instead of writing
the intervals as, for instance, [123456, 123789], we will sometimes instead refer to them as 123456

789.
This note is organized as follows. In Section 2 we prove Theorems 2.1 and 2.3, and in Section 3

we provide technical details regarding the performance and implementation of the computations. The
appendix, found in an online supplement, contains a detailed derivation and enumeration of all the
necessary integrals which have to be rigorously computed, their enclosures, and the performance of the
computations.

2. The main result

The following theorem is the main result of this paper (see also Theorem 2.3 below).

http://msp.org/apde/2017/10-2/apde-v10-n2-x05-supplement.zip
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Figure 1. The curve zε(x, 0) from Lemma 2.2 with A(ε) = 1.08050. Inset: closeup
around x = 0. Thick curve: ε = 10−6, thin curve: ε = 0. We remark that both curves are
indistinguishable at the larger scale.

Theorem 2.1. There exist T > γ > 0 and a spatially analytic solution z to (1-5) on the time interval
[−T, T ] such that z( · , t) is a graph of a smooth function of x when |t | ∈ [T −γ, T ] (i.e., z is in the stable
regime near t =±T ) but z( · , t) is not a graph of a function of x when |t | ≤ γ (i.e., z is in the unstable
regime near t = 0).

The intuition behind this result comes from the numerical experiments which were started in [Córdoba
et al. 2015]. These suggested existence of curves which are (barely) in the unstable regime, and such that
the evolution both forward and backwards in time transports them into the stable regime. (We note that
neither the velocity nor any other quantity was observed to become degenerate in these experiments). We
remark that this behavior is purely nonlinear and thus nonlinear effects may dominate the linear ones
under certain conditions. The following lemma constructs a family of such curves (see Figure 1).

Lemma 2.2. Let ε ≥ 0 and consider the initial curve zε(x, 0)= (z1
ε(x, 0), z2

ε(x, 0)), with

z1
ε(x, 0)= x − sin(x)− ε sin(x) and z2

ε(x, 0)= A(ε) sin(2x).

(1) For any ε ∈ [0, 10−6
], there exists A(ε) ∈ (1.08050, 1.08055) such that if zε solves (1-5) with initial

data zε(x, 0), then
∂t∂x z1

ε(0, 0)= 0.

(2) There are T > 0 and C ≥ 1, independent of ε, such that for any ε ∈ [0, 10−6
] and A(ε) from (1),

there is a unique analytic solution zε of (1-5) on the time interval (−T, T ) with initial data zε(x, 0),
and it satisfies

∂t t∂x z1
ε(0, 0)≥ 30, (2-1)

as well as

|∂t∂x z1
ε(x, t)| + |∂t∂

3
x z1
ε(x, t)| + |∂2

t ∂
2
x z1
ε(x, t)| + |∂3

t ∂x z1
ε(x, t)| ≤ C (2-2)

for each (x, t) ∈ T× (−T, T ).

Proof. The proofs of (1) and (2-1) are computer-assisted, and the codes can be found in the online
supplement.

http://msp.org/apde/2017/10-2/apde-v10-n2-x05-supplement.zip
http://msp.org/apde/2017/10-2/apde-v10-n2-x05-supplement.zip
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Let us start with (1). Since ∂t∂x z1
ε(0, 0) (i.e., the spatial derivative of the first coordinate of the right-

hand side of (1-5) at (x, t)= (0, 0)) is a continuous function of A(ε), it suffices to show that the signs of
∂t∂x z1

ε(0, 0) for A(ε)= 1.08050 and for A(ε)= 1.08055 are different for each ε ∈ [0, 10−6
]. This holds

because for each such ε we obtain the bounds

∂t∂x z1
ε(0, 0) ∈ 0.00001

27 for A(ε)= 1.08050,

∂t∂x z1
ε(0, 0) ∈ −0.00028

02 for A(ε)= 1.08055.
(2-3)

Existence and uniqueness of the solution zε in (2) follows directly from the proof of Theorem 5.1 in
[Castro et al. 2012], which proves local well-posedness for (1-5) in the class of analytic functions of x .
The time T > 0 is then uniform in all small ε (and sup|t |<T ‖∂

k
x zε( · , t)‖L∞ is also uniformly bounded for

each k) because the same is true for all the estimates in that proof.
Then (2-1) follows by taking A(ε)= [1.08050, 1.08055] (the full interval, since we do not know A(ε)

explicitly) and propagating this interval in the relevant computations. Specifically, we obtain

∂t t∂x z1
ε(0, 0) ∈ [38.706, 48.787].

The proof of Theorem 5.1 in [Castro et al. 2012] shows that the chord-arc constant

sup
x,y∈T, y 6=0

|y|
|zε(x, t)− zε(x − y, t)|

(where T = [−π, π] with ±π identified) is bounded uniformly in all ε, t under consideration (provided
T > 0 is small enough). Thus there is D <∞ such that∣∣∣∣ 1

cosh(z2
ε(x, t)− z2

ε(x − y, t))− cos(z1
ε(x, t)− z1

ε(x − y, t))

∣∣∣∣≤ D
y2

for all these ε, t and all x, y ∈ T. This allows us to obtain (2-2) by brute force, differentiating and
estimating all the resulting terms separately. The most singular term in ∂t∂

j
x z1
ε(x, t) ( j = 1, 3) is∫

T

sin(z1
ε(x, t)− z1

ε(x − y, t))(∂ j+1
x z1

ε(x, t)− ∂ j+1
x z1

ε(x − y, t))
cosh(z2

ε(x, t)− z2
ε(x − y, t))− cos(z1

ε(x, t)− z1
ε(x − y, t))

dy ≤ 2πD‖∂ j+2
x z1

ε( · , t)‖L∞ ≤ C

for some C which is uniform in ε due to the above-mentioned uniform bounds on ‖∂k
x zε( · , t)‖L∞ .

Analogously, the most singular term in ∂2
t ∂

2
x z1
ε(x, t) is given by∫

T

sin(z1
ε(x, t)− z1

ε(x − y, 0))(∂t∂
3
x z1
ε(x, t)− ∂t∂

3
x z1
ε(x − y, t))

cosh(z2
ε(x, t)− z2

ε(x − y, t))− cos(z1
ε(x, t)− z1

ε(x − y, t))
dy ≤ 2πD‖∂t∂

4
x z1
ε( · , t)‖L∞,

and the last term can be bounded by a uniform C in the same way as ∂t∂
3
x z1
ε(x, t). Finally, the most

singular term in ∂3
t ∂x z1

ε(x, t) is∫
T

sin(z1
ε(x, t)− z1

ε(x − y, t))(∂2
t ∂

2
x z1
ε(x, t)− ∂2

t ∂
2
x z1
ε(x − y, t))

cosh(z2
ε(x, t)− z2

ε(x − y, t))− cos(z1
ε(x, t)− z1

ε(x − y, t))
dy ≤ 2πD‖∂2

t ∂
3
x z1
ε( · , t)‖L∞,

which is bounded by a uniform C in the same way as ∂2
t ∂

2
x z1
ε(x, t) (with the bound this time involving

the uniformly bounded quantity ‖∂7
x z1
ε( · , t)‖L∞). �
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Proof of Theorem 2.1. Let T,C be from Lemma 2.2. Then (2-2) shows that for any small enough ε > 0
and any |t | ≤

√
ε and |x | ∈ [2C1/2ε1/4, π] we have ∂x z1

ε(x, t) > 0. Indeed, this is because

1− (1+ ε) cos(2C1/2ε1/4)−C
√
ε > 0

when ε > 0 is small (since C is fixed).
Next let |t | ≤

√
ε and |x | ≤ 2C1/2ε1/4. Then there are |x]|, |x]]| ≤ |x | and |t]| ≤

√
ε such that

∂x z1
ε(x, t)=∂x z1

ε(x, 0)+ t∂t∂x z1
ε(x, 0)+ 1

2 t2∂2
t ∂x z1

ε(x, 0)+ 1
6 t3∂3

t ∂x z1
ε(x, t])

=− ε cos(x)+ [1− cos(x)] + t
[
∂t∂x z1

ε(0, 0)+ x∂t∂
2
x z1
ε(0, 0)+ 1

2 x2∂t∂
3
x z1
ε(x

], 0)
]

+
1
2 t2[∂2

t ∂x z1
ε(0, 0)+ x∂2

t ∂
2
x z1
ε(x

]], 0)
]
+

1
6 t3∂3

t ∂x z1
ε(x, t])

≥− ε+ x2( 1
4 −

1
2C |t |

)
+ t2(15− 1

2C |x | − 1
6C |t |

)
,

where we used the estimates from Lemma 2.2 and also that ∂t∂
2
x z1
ε(0, 0) = 0 by oddness of zε. Since

|t | ≤
√
ε and |x | ≤ 2C1/2ε1/4, taking small enough ε > 0 now yields ∂x z1

ε(x, t) ≥ 14t2
− ε > 0 for all

|t | ∈
[ 1

2
√
ε,
√
ε
]

and |x | ≤ 2C1/2ε1/4. The theorem then follows with z = zε, T =
√
ε, and γ = ε/(2C)

for such ε (here we also used (2-2) and ∂x z1
ε(0, 0)=−ε). �

We next show that our approach allows for the proof of existence of solutions which exhibit even more
complicated stability shifting. We will construct a solution with an unstable→ stable→ unstable→
stable→ unstable stability regime profile.

We start by noticing that it suffices to consider solutions to (1-4) with periodicity of the form

z(x + 8Nπ, t)= z(x, t)+ (8Nπ, 0)

for some integer N ≥ 1, because then z̃(x, t)= 1/(4N )z(4N x, 4Nt) also solves (1-4) and z̃(x+2π, t)=
z̃(x, t)+(2π, 0). Our initial data will be a perturbation of the 8Nπ -periodic extension of the odd function

z(x, 0)= z̄ A(0)(x)χ[0,Nπ ](|x |)+ z̄1.08055(x)χ(Nπ,3Nπ ](|x |)+ z̄1.08050(x)χ(3Nπ,4Nπ ](|x |), (2-4)

with z̄B(x)= (x − sin x, B sin(2x)) and A(0) ∈ (1.08050, 1.08055) from Lemma 2.2. If N is large, the
estimates from the lemma and its proof show that at time t = 0, the corresponding solution wants to make
the shifts stable→ unstable→ stable at x = 0, stable→ unstable at |x | = 2Nπ , and unstable→ stable
at |x | = 4Nπ . An appropriate perturbation of this initial data, which makes the unstable phase of the
first shift last a positive length of time, delays the second shift, and brings the third shift forward in time,
would then achieve our goal.

We will also need this perturbation to resolve some other issues. Specifically, the initial condition
must be analytic so that we can solve the PDE both forward and backward in time, and the solution must
remain stable near x = 2nπ for any integer n with |n| ∈ (0, 2N ) \ {N } (note that the tangent to z( · , 0) is
vertical at these points). For any large N we therefore let

BN,A(x)

=
[
A+(1.08055−A)φ(|x |−Nπ)

]
χ[0,3Nπ ](|x |)+

[
1.08050+0.00005φ(3Nπ+1−|x |)

]
χ(3Nπ,4Nπ ](|x |),
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1.08055

1.08052

1.0805

−4Nπ −2Nπ 0 2Nπ 4Nπ
x

Figure 2. BN,A(x) for A = 1.08052.

with A ∈ [1.08050, 1.08055] and 0≤ φ ≤ 1 smooth such that φ(y)= 0 for y ≤ 0 and φ(y)= 1 for y ≥ 1,
and we extend BN,A to R periodically (with period 8N ). See Figure 2 for a depiction of BN,A(x). Next
we let δy be the delta function at y ∈ R, and define the 8Nπ -periodic odd functions

z̄N,A(x)= (x − sin x, BN,A(x) sin(2x))

and
zN,A,r,a,c( · , 0)= Pr ∗ z̄N,A+ P1 ∗ (aβN,0+ cβN,2Nπ + cβN,−2Nπ + cβN,4Nπ , 0),

with

Pr (x)=
1
π

r
x2+ r2

the Poisson kernel for the half-plane (note that Pr ∗ IdR = IdR) and βN,y(x)= βN (x − y), where βN is
the (unique and 8Nπ -periodic) primitive of

1
8Nπ

−

∑
n∈Z

δ8Nπn

which has
∫ 4Nπ
−4Nπ βN (x) dx = 0. This and the smoothness of φ means zN,A,r,a,c( · , 0) can be extended

analytically to the strip Sr = R×[−r, r ] and this extension satisfies for each k ≥ 0,

sup
N≥1, A∈[1.08050,1.08055]

r,a,c∈[0,1/2], |ζ |≤r

‖∂k
x zN,A,r,a,c( · + iζ, 0)‖L∞ <∞.

Before we continue, let us discuss the different components of the function zN,A,r,a,c( · , 0). First, z̄N,A

is just a smooth version of the function from (2-4), and we convolve it with Pr because we need the
initial condition to be analytic. Since ∂x z̄1

N,A ≥ 0, this yields ∂x zN,A,r,a,c( · , 0) > 0 for any r > 0. That
would mean that for a short (positive and negative) time, the solution would remain stable everywhere —
in particular, near x = 2nπ for any integer n with |n| ∈ (0, 2N ) \ {N } as we want (see above). However,
we do not want this to be the case near x ∈ 2NπZ, which is where the term P1 ∗ (· · ·) comes in. It is
analytic and we will choose a, c to be close to the unique aN,r > 0 such that (2-9) and (2-10) below
hold. In fact, we will have a = aN,r − δ and c = aN,r − ε for some small 0 < δ ≈ 3ε/(8N − 1)� 1,
chosen so that ∂x z1

N,A,r,a,c(x, 0) > 0 for x ∈ 2NπZ \ 8NπZ and (2-12) holds. We will then finally
choose A = AN,r,δ,ε ∈ (1.08050, 1.08055) so that (2-11) also holds, and all this will ensure that zN,A,r,a,c
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undergoes the stability shifts described after (2-4). We note that we will first have to choose N large and
r > 0 small so that (2-5), (2-6), and (2-8) below hold for all a, c ≈ aN,r (which is small if r is). This will
then specify aN,r , after which sufficiently small ε, δ will be chosen and they will determine AN,r,δ,ε.

The proof of Theorem 5.1 in [Castro et al. 2012] shows that for each r > 0 there is Tr (depending only
on r) such that (1-4) has a unique analytic solution zN,A,r,a,c on the time interval (−Tr , Tr ) with initial
condition zN,A,r,a,c(·, 0) (moreover, ∂t zN,A,r,a,c is also analytic), and this satisfies for each k ≥ 0,

sup
N≥1, A∈[1.08050,1.08055]

r,a,c∈[0,1/2], |t |<Tr

(
‖∂k

x zN,A,r,a,c( · , t)‖L∞ +‖∂t∂
k
x zN,A,r,a,c( · , t)‖L∞

)
<∞.

Below we always consider A ∈ [1.08050, 1.08055] and r, a, c ∈
[
0, 1

2

]
.

This means that the bound (2-2) extends to each zN,A,r,a,c and (x, t) ∈ R× (−Tr , Tr ) (where T0 = 0),
with a uniform C . We also have

∂t∂x z1
N,A,r,a,c(4Nπ, 0)≥ 10−6 and ∂t∂x z1

N,A,r,a,c(±2Nπ, 0)≤−10−6, (2-5)

as well as

∂t∂x z1
N,1.08050,r,a,c(0, 0)≥ 10−6 and ∂t∂x z1

N,1.08055,r,a,c(0, 0)≤−10−6, (2-6)

both when N−1
+ r + a+ c is small enough. This follows from the bounds (2-3) and from

‖∂k
x zN,A,r,a,c( · , 0)− ∂k

x z̄N,A‖L∞(IN )→ 0 as N−1
+ r + a+ c→ 0 (2-7)

for each k, where IN =
⋃

n∈Z(2Nπn− N , 2Nπn+ N ). Similarly, (2-2) and (2-7) also prove

∂t t∂x z1
N,A,r,a,c(0, 0)≥ 20 (2-8)

for small enough N−1
+ r + a+ c. Fix now N so that (2-5), (2-6), and (2-8) hold for all small enough

r + a+ c.
We next notice that for each r > 0 we have ∂x z1

N,A,r,0,0(x)= 1− (Pr ∗ cos)(x), which is a 2π -periodic
function with a positive minimum at x = 0 (independent of N, A). Thus there is a unique aN,r > 0 (small
if r > 0 is small) such that

∂x z1
N,A,r,aN,r ,aN,r

(2Nπn, 0)= 0 (2-9)

for each n ∈ Z, and
∂x z1

N,A,r,aN,r ,aN,r
(x, 0) > 0 (2-10)

for x /∈ 2NπZ. Finally, for any δ, ε ∈ [0, aN,r ) let AN,r,δ,ε ∈ (1.08050, 1.08055) be such that

∂t∂x z1
N,AN,r,δ,ε,r,aN,r−δ,aN,r−ε

(0, 0)= 0, (2-11)

which exists due to (2-6) and the continuity of ∂t∂x z1
N,A,r,aN,r−δ,aN,r−ε

(0, 0) in A.
For the sake of simplicity of notation, define z = zN,AN,r,δ,ε,r,aN,r−δ,aN,r−ε. We now let r > 0 be small

enough, and then pick δ, ε ∈ (0, aN,r ) small enough (we will need ε� 10−6Tr , see below) such that

0<−∂x z1(0, 0)�
[ 1

C
min

n∈{−1,1,2}
∂x z1(2Nπn, 0)

]2
, (2-12)
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with C the constant from (2-2) for zN,A,r,a,c. (That is, ε > 0 is chosen small and δ slightly smaller than
the value that makes ∂x z1(0, 0)= 0 for this ε, which means that

δ =
3ε

8N − 1
− O

(
ε

N 2

)
;

moreover, then all three values inside the min are ≈ ε/π .) Then we claim that this z is the desired solution.
Indeed, ∂x z1(0, t) < 0 for all small enough |t | and the argument from the proof of Theorem 2.1 shows
that ∂x z1(x, t) > 0 for all x ∈ R when

|∂x z1(0, 0)|1/2� |t | �
ε

Cπ
.

Finally, (2-5) and a uniform bound on ∂2
t ∂x z1

N,A,r,a,c (obtained similarly to (2-2)) show that

∂x z1(4Nπ,−t) < 0 and ∂x z1(±2Nπ, t) < 0

for all t ≈ 106ε if ε� 10−6Tr is small enough (because ∂x z1(4Nπ, 0)≈ ε/π ≈ ∂x z1(±2Nπ, 0)).
We thus proved the following result.

Theorem 2.3. There exist T > T ′ > γ > 0 and a spatially analytic solution z to (1-5) on the time interval
[−T, T ] such that z( · , t) is a graph of a smooth function of x when |t | ∈ [T ′− γ, T ′+ γ ] but z( · , t) is
not a graph of a function of x when |t | ∈ [0, γ ] ∪ [T − γ, T ].

3. Technical details of the numerical implementation

In this section, we give some technical details of the implementation of the computer-assisted part of
the proof of Lemma 2.2. In order to perform the rigorous computations we used the C-XSC library
[Hofschuster and Krämer 2004]. We refer the reader to the appendices, found in the online supplement,
to see a detailed expression of the integral terms involved in the calculations. For the sake of readability,
we kept the same names for the integrals in the paper and in the code. The code can also be found in the
online supplement.

The implementation is split into several files, and many of the headers of the functions (such as the
integration methods) contain pointers to functions (the integrands) so that they can be reused for an
arbitrary number of integrals with minimal changes and easy and safe debugging. For the sake of clarity,
and at the cost of numerical performance and duplicity in the code, we decided to treat many simple
integrals instead of a single big one.

We start discussing the details of the first part of Lemma 2.2, corresponding to the one-dimensional
integrals. The three integrals can be found in Appendix A. We split them into two parts: a nonsingular
one over the interval [δ, π] and a singular one over the interval [0, δ]. The nonsingular part is calculated
using a Gauss–Legendre quadrature of order 2, given by∫ b

a
f (η) dη ∈

b− a
2

(
f
(

b− a
2

√
3

3
+

b+ a
2

)
+ f

(
−

b− a
2

√
3

3
+

b+ a
2

))
+

1
4320

(b− a)5 f 4([a, b]).

Moreover, the integration is done in an adaptive way. For each region, we accepted or rejected the result
depending on the width in an absolute and a relative way. It is important to notice that because of the

http://msp.org/apde/2017/10-2/apde-v10-n2-x05-supplement.zip
http://msp.org/apde/2017/10-2/apde-v10-n2-x05-supplement.zip
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uncertainty in ε and/or overestimation, division by zero might occur, even in small integration intervals.
We used δ = 2−9 and tolerances AbsTol and RelTol equal to 10−6.

In the singular region, the singularity around y = 0 is integrable; hence the integral is finite. We
performed a Taylor expansion around y = 0 in both the numerator and denominator (resp. of orders 2,
2 and 4 for A1, A2 and A3), simplified the powers of y and then integrated. Potentially this could fail
because the uncertainty in the parameters or overestimation could yield a Taylor series in which 0 belongs
to the coefficient of the first nonsimplified power of the denominator. Whenever this happens, we try to
integrate instead using a Gauss–Legendre quadrature of order 2.

The maximum number of subdivision levels was 18 (218 intervals) for the bounded region and 12
(212 intervals) for the singular one. The splitting of the intervals is done in an arithmetic way; i.e, we split
an integration interval [a, b] into

[
a, 1

2(a+ b)
]

and
[ 1

2(a+ b), b
]
.

In the second part of Lemma 2.2 we have to deal with 41 two-dimensional integrals (see Appendix B
for a detailed list of them and their derivation). The first step is to exploit the symmetry of the integrands
in (y, z)-variables to integrate only over the region [0, π]× [−π, π]. We will distinguish four different
regions labeled in the following way: nonsingular ([δ, π] × [δ, π]) ∪ ([δ, π] × [−π,−δ]), singular-
first-coordinate ([0, δ]× [δ, π])∪ ([0, δ]× [−π,−δ]), singular-second-coordinate [δ, π]× [−δ, δ] and
singular-center [0, δ]× [−δ, δ].

The nonsingular region was integrated as before, using a 2D Gauss–Legendre quadrature of order 2. The
singular-center region was integrated in the following way. Assuming sign(a)= sign(b), sign(c)= sign(d)
and that we expand up to orders num_y, den_y, num_z, den_z:∫ b

a

∫ d

c

Num(y, z)
Den(y, z)

dy dz ∈
∫ b

a

∫ d

c

1
num_y!num_z!∂

num_y
y ∂num_z

z Num(A, B)ynum_yznum_z

1
den_y!den_z!∂

den_y
y ∂

den_z
z Den(A, B)yden_yzden_z

dy dz

=
1

1+ num_y− den_y
1

1+ num_z− den_z
den_y!den_z!

num_y!num_z!

×
∂

num_y
y ∂num_z

z Num(A, B)

∂
den_y
y ∂

den_z
z Den(A, B)

y1+num_y−den_yz1+num_z−den_z
∣∣∣∣z=d

z=c

∣∣∣∣y=b

y=a
,

where A is the convex hull of {0, a, b} and B is the convex hull of {0, c, d}. For the singular-first-coordinate
and singular-second-coordinate regions the same procedure was applied taking num_z = den_z = 0,
B = [c, d] and num_y = den_y = 0, A = [a, b] respectively. A detailed list of the orders of each of the
integrals can be found in Table 1 in Appendix C. Whenever the Taylor-based formulas failed because of 0
being enclosed in the denominator terms, we tried to integrate using 2D Gauss–Legendre of order 2.

In this two-dimensional setting, we used a geometric splitting (in both coordinates) in the nonsingular
region, arithmetic in the singular-center and singular-first-coordinate and hybrid in the singular-second-
coordinate (see below). The geometric splitting consists in splitting by the geometric mean as opposed
to the arithmetic one (i.e., assuming a and b have the same sign and are nonzero, we split [a, b] into
[a,
√

ab sign(a)] and [
√

ab sign(a), b]). While the arithmetic division minimizes the length of the longest
piece after the division, the geometric one minimizes the piece with the biggest ratio between its endpoints.
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This can be particularly useful in many cases: for example in order to avoid divisions by zero for integrands
of the type 1/(y− A sin(y)), which is a simplified version of some of the denominators that appear in all
the terms. Detailed results of the breakdown by region and by term can be found in Table 2 of Appendix C.

We chose δ = 2−5, and AbsTol and RelTol equal to 10−4. We changed the number of maximum
subdivision levels depending on the region and (possibly) depending on the terms. For the nonsingular
region, the maximum number was 10 (220 intervals). In the singular-first-coordinate, the maximum
number of subdivisions was 8 (216 intervals), and that number was also used in the singular-center region.
The singular-second-coordinate region was treated differently: all terms other than B47 and B55 were
further split into three subregions: [δ, 0.65]×[−δ, δ], [0.65, 0.95]×[−δ, δ] and [0.95, π]×[−δ, δ] and
setting the maximum number of subdivisions to 9 in each subregion. The first and second subregions
were computed using arithmetic splitting, whereas the third one was split geometrically only in the first
coordinate, and arithmetically in the second.

The singular-second-coordinate regions of the terms B47 and B55 are highly singular because of
the cubic denominators and they required special precision. They were subdivided into six subre-
gions: namely [δ, 0.325]×[−δ, δ], [0.325, 0.65]×[−δ, δ], [0.65, 0.775]×[−δ, δ], [0.775, 0.95]×[−δ, δ],
[0.95, 1.5]×[−δ, δ] and [1.5, π]×[−δ, δ]. The maximum number of subdivisions was 10 in each subregion.
The last two subregions were split geometrically in the first coordinate, arithmetically in the second. The
other four subregions were split arithmetically in each of the coordinates.

The simulations were run on the NewComp cluster at Princeton University. Each of the programs was
run on a core of 2 Xeon X5680 CPUs (6 cores each, 12 in total) at 3.33 GHz and 8 GB of RAM. The total
runtime was about 3.5 min for the first part of Lemma 2.2. For the second part, the different runtimes are
summarized in Table 3 of Appendix C.

Acknowledgements

Córdoba and Gómez-Serrano were partially supported by the grant MTM2014-59488-P (Spain) and
ICMAT Severo Ochoa project SEV-2011-0087. Gómez-Serrano was partially supported by an AMS-
Simons Travel Grant. Zlatoš acknowledges partial support by NSF grants DMS-1652284 and DMS-
1656269. We thank Princeton University for computing facilities (NewComp cluster). We are also very
grateful to the anonymous referees for their valuable comments and suggestions.

References

[Berselli et al. 2014] L. C. Berselli, D. Córdoba, and R. Granero-Belinchón, “Local solvability and turning for the inhomogeneous
Muskat problem”, Interfaces Free Bound. 16:2 (2014), 175–213. MR Zbl

[Berz and Makino 1999] M. Berz and K. Makino, “New methods for high-dimensional verified quadrature”, Reliab. Comput. 5:1
(1999), 13–22. MR Zbl

[Castro et al. 2012] Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and M. López-Fernández, “Rayleigh–Taylor breakdown
for the Muskat problem with applications to water waves”, Ann. of Math. (2) 175:2 (2012), 909–948. MR Zbl

[Castro et al. 2013] Á. Castro, D. Córdoba, C. Fefferman, and F. Gancedo, “Breakdown of smoothness for the Muskat problem”,
Arch. Ration. Mech. Anal. 208:3 (2013), 805–909. MR Zbl

http://dx.doi.org/10.4171/IFB/317
http://dx.doi.org/10.4171/IFB/317
http://msp.org/idx/mr/3231970
http://msp.org/idx/zbl/1295.35385
http://dx.doi.org/10.1023/A:1026437523641
http://msp.org/idx/mr/1684663
http://msp.org/idx/zbl/0947.65026
http://dx.doi.org/10.4007/annals.2012.175.2.9
http://dx.doi.org/10.4007/annals.2012.175.2.9
http://msp.org/idx/mr/2993754
http://msp.org/idx/zbl/1267.76033
http://dx.doi.org/10.1007/s00205-013-0616-x
http://msp.org/idx/mr/3048596
http://msp.org/idx/zbl/1293.35234


378 DIEGO CÓRDOBA, JAVIER GÓMEZ-SERRANO AND ANDREJ ZLATOŠ

[Cheng et al. 2016] C. H. A. Cheng, R. Granero-Belinchón, and S. Shkoller, “Well-posedness of the Muskat problem with H2

initial data”, Adv. Math. 286 (2016), 32–104. MR Zbl

[Constantin et al. 2013] P. Constantin, D. Córdoba, F. Gancedo, and R. M. Strain, “On the global existence for the Muskat
problem”, J. Eur. Math. Soc. (JEMS) 15:1 (2013), 201–227. MR Zbl

[Constantin et al. 2016a] P. Constantin, D. Córdoba, F. Gancedo, L. Rodríguez-Piazza, and R. M. Strain, “On the Muskat
problem: global in time results in 2D and 3D”, Amer. J. Math. 138:6 (2016), 1455–1494.

[Constantin et al. 2016b] P. Constantin, F. Gancedo, R. Shvydkoy, and V. Vicol, “Global regularity for 2D Muskat equations
with finite slope”, Ann. Inst. H. Poincaré Anal. Non Linéaire (online publication September 2016).

[Córdoba and Gancedo 2007] D. Córdoba and F. Gancedo, “Contour dynamics of incompressible 3-D fluids in a porous medium
with different densities”, Commun. Math. Phys. 273:2 (2007), 445–471. MR Zbl

[Córdoba and Gancedo 2009] D. Córdoba and F. Gancedo, “A maximum principle for the Muskat problem for fluids with
different densities”, Comm. Math. Phys. 286:2 (2009), 681–696. MR Zbl

[Córdoba et al. 2015] D. Córdoba, J. Gómez-Serrano, and A. Zlatoš, “A note on stability shifting for the Muskat problem”,
Philos. Trans. Roy. Soc. A 373:2050 (2015), art. id. 20140278. MR Zbl

[Escher and Matioc 2011] J. Escher and B.-V. Matioc, “On the parabolicity of the Muskat problem: well-posedness, fingering,
and stability results”, Z. Anal. Anwend. 30:2 (2011), 193–218. MR Zbl

[Friedman and Tao 2003] A. Friedman and Y. Tao, “Nonlinear stability of the Muskat problem with capillary pressure at the free
boundary”, Nonlinear Anal. 53:1 (2003), 45–80. MR Zbl

[Gómez-Serrano and Granero-Belinchón 2014] J. Gómez-Serrano and R. Granero-Belinchón, “On turning waves for the
inhomogeneous Muskat problem: a computer-assisted proof”, Nonlinearity 27:6 (2014), 1471–1498. MR Zbl

[Granero-Belinchón 2014] R. Granero-Belinchón, “Global existence for the confined Muskat problem”, SIAM J. Math. Anal.
46:2 (2014), 1651–1680. MR Zbl

[Hofschuster and Krämer 2004] W. Hofschuster and W. Krämer, “C-XSC 2.0 — a C++ library for extended scientific computing”,
pp. 15–35 in Numerical software with result verification (Dagstuhl, Germany, 2003), edited by R. Alt et al., Springer, Berlin,
2004.

[Krämer and Wedner 1996] W. Krämer and S. Wedner, “Two adaptive Gauss–Legendre type algorithms for the verified
computation of definite integrals”, Reliab. Comput./Nadezhn. Vychisl. 2:3 (1996), 241–253. MR Zbl

[Lang 2001] B. Lang, “Derivative-based subdivision in multi-dimensional verified gaussian quadrature”, pp. 145–152 in Symbolic
algebraic methods and verification methods (Dagstuhl, Germany, 1999), edited by G. Alefeld et al., Springer, Vienna, 2001.
MR Zbl

[Moore 1979] R. Moore, Methods and applications of interval analysis, Studies in applied and numerical mathematics 2, SIAM,
Philadelphia, PA, 1979. MR Zbl

[Muskat 1937] M. Muskat, “The flow of fluids through porous media”, J. Appl. Phys. 8:4 (1937), 274–282. Zbl

[Siegel et al. 2004] M. Siegel, R. E. Caflisch, and S. Howison, “Global existence, singular solutions, and ill-posedness for the
Muskat problem”, Comm. Pure Appl. Math. 57:10 (2004), 1374–1411. MR Zbl

[Tucker 2011] W. Tucker, Validated numerics: a short introduction to rigorous computations, Princeton University Press, 2011.
MR Zbl

Received 27 Jan 2016. Revised 26 Oct 2016. Accepted 26 Dec 2016.

DIEGO CÓRDOBA: dcg@icmat.es
Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, c/ Nicolas Cabrera,
13-15 Campus Cantoblanco UAM, 28049 Madrid, Spain

JAVIER GÓMEZ-SERRANO: jg27@math.princeton.edu
Department of Mathematics, Princeton University, 610 Fine Hall, Washington Rd, Princeton, NJ 08544, United States

ANDREJ ZLATOŠ: zlatos@ucsd.edu
Department of Mathematics, University California San Diego, 9500 Gilman Dr. #0112, La Jolla, CA 92093, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.aim.2015.08.026
http://dx.doi.org/10.1016/j.aim.2015.08.026
http://msp.org/idx/mr/3415681
http://msp.org/idx/zbl/1331.35396
http://dx.doi.org/10.4171/JEMS/360
http://dx.doi.org/10.4171/JEMS/360
http://msp.org/idx/mr/2998834
http://msp.org/idx/zbl/1258.35002
http://dx.doi.org/10.1353/ajm.2016.0044
http://dx.doi.org/10.1353/ajm.2016.0044
http://dx.doi.org/10.1016/j.anihpc.2016.09.001
http://dx.doi.org/10.1016/j.anihpc.2016.09.001
http://dx.doi.org/10.1007/s00220-007-0246-y
http://dx.doi.org/10.1007/s00220-007-0246-y
http://msp.org/idx/mr/2318314
http://msp.org/idx/zbl/1120.76064
http://dx.doi.org/10.1007/s00220-008-0587-1
http://dx.doi.org/10.1007/s00220-008-0587-1
http://msp.org/idx/mr/2472040
http://msp.org/idx/zbl/1173.35637
http://dx.doi.org/10.1098/rsta.2014.0278
http://msp.org/idx/mr/3393318
http://msp.org/idx/zbl/1353.76084
http://dx.doi.org/10.4171/ZAA/1431
http://dx.doi.org/10.4171/ZAA/1431
http://msp.org/idx/mr/2793001
http://msp.org/idx/zbl/1223.35199
http://dx.doi.org/10.1016/S0362-546X(02)00286-9
http://dx.doi.org/10.1016/S0362-546X(02)00286-9
http://msp.org/idx/mr/1992404
http://msp.org/idx/zbl/1028.35123
http://dx.doi.org/10.1088/0951-7715/27/6/1471
http://dx.doi.org/10.1088/0951-7715/27/6/1471
http://msp.org/idx/mr/3215843
http://msp.org/idx/zbl/1298.76178
http://dx.doi.org/10.1137/130912529
http://msp.org/idx/mr/3196945
http://msp.org/idx/zbl/1298.35143
http://dx.doi.org/10.1007/b96498
http://dx.doi.org/10.1007/BF02391698
http://dx.doi.org/10.1007/BF02391698
http://msp.org/idx/mr/1403539
http://msp.org/idx/zbl/0858.65020
http://dx.doi.org/10.1007/978-3-7091-6280-4
http://msp.org/idx/mr/1832420
http://msp.org/idx/zbl/0982.65030
http://dx.doi.org/10.1137/1.9781611970906
http://msp.org/idx/mr/551212
http://msp.org/idx/zbl/0417.65022
http://dx.doi.org/10.1063/1.1710292
http://msp.org/idx/zbl/63.1368.03
http://dx.doi.org/10.1002/cpa.20040
http://dx.doi.org/10.1002/cpa.20040
http://msp.org/idx/mr/2070208
http://msp.org/idx/zbl/1062.35089
http://msp.org/idx/mr/2807595
http://msp.org/idx/zbl/1231.65077
mailto:dcg@icmat.es
mailto:jg27@math.princeton.edu
mailto:zlatos@ucsd.edu
http://msp.org


ANALYSIS AND PDE
Vol. 10, No. 2, 2017

dx.doi.org/10.2140/apde.2017.10.379 msp

DERIVATION OF AN EFFECTIVE EVOLUTION EQUATION
FOR A STRONGLY COUPLED POLARON

RUPERT L. FRANK AND ZHOU GANG

Fröhlich’s polaron Hamiltonian describes an electron coupled to the quantized phonon field of an ionic
crystal. We show that in the strong coupling limit the dynamics of the polaron are approximated by an
effective nonlinear partial differential equation due to Landau and Pekar, in which the phonon field is
treated as a classical field.

1. Introduction and main result

1A. Setting of the problem. In this paper we are interested in the dynamics of a strongly coupled polaron.
A polaron is a model of an electron in an ionic lattice interacting with its surrounding polarization field.
Fröhlich [1937] proposed a quantum-mechanical Hamiltonian, given in (1-1) below, in order to describe
the dynamics of a polaron. In this model the phonon field is treated as a quantum field. The Fröhlich
Hamiltonian depends on a single parameter ˛ > 0 which describes the strength of the coupling between
the electron and the phonon field. Landau and Pekar [1948] proposed a system of nonlinear PDEs, see
(1-8), (1-9) below, to describe the dynamics of a polaron and used this in their famous computation
of the effective polaron mass (see [Spohn 1987] for an alternative approach). They treat the phonons
as a classical field. The derivation of their equations is phenomenological and they do not comment
on the relation between their equations and the dynamics generated by Fröhlich’s Hamiltonian. Our
purpose in this paper is to establish a connection between the two dynamics and to rigorously derive the
Landau–Pekar equations from the Fröhlich dynamics in the strong coupling limit ˛!1 for a natural
class of initial conditions and on certain time scales.

In order to describe this result in detail, we recall that the Fröhlich Hamiltonian acts in L2.R3/˝F ,
where L2.R3/ corresponds to the electron and F D F.L2.R3//, the bosonic Fock space over L2.R3/,
corresponds to the phonon field. The Hamiltonian is given by

p2C
p
˛

Z
R3
Œe�ik�xakC e

ik�xa�k �
dk

jkj
C

Z
R3
a�kak dk; (1-1)

where p WD �irx and x are momentum and position of the electron and a
k

and a�
k

are annihilation and
creation operators in F satisfying the commutation relations

Œak; a
�
k0 �D ı.k� k

0/; Œak; ak0 �D 0; and Œa�k ; a
�
k0 �D 0: (1-2)
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As mentioned before, the scalar ˛ > 0 describes the strength of the coupling between the electron and the
phonon field and will be large in our study.

To facilitate later discussions we rescale the variables, as in [Frank and Schlein 2014],

x 7! ˛�1x; k 7! ˛k; (1-3)

and find that the Hamiltonian in (1-1) is unitarily equivalent to ˛2 zHF
˛ , where the new Hamiltonian zHF

˛ ,
acting again in L2.R3/˝F, is defined as

zHF
˛ WD p

2
C

Z
R3
Œe�ik�xbkC e

ik�xb�k �
dk

jkj
C

Z
R3
b�kbk dk: (1-4)

The new annihilation and creation operators b
k
WD ˛1=2a˛k and b�

k
WD ˛1=2a�

˛k
satisfy the commutation

relations
Œbk; b

�
k0 �D ˛

�2ı.k� k0/; Œbk; bk0 �D 0; and Œb�k ; b
�
k0 �D 0: (1-5)

We emphasize the ˛-dependence in (1-5).
We will discuss the dynamics generated by zHF

˛ for initial conditions of the product form

 0˝W.˛
2'0/�: (1-6)

Here, � denotes the vacuum in F and W.f / denotes the Weyl operator,

W.f / WD eb
�.f /�b.f /; (1-7)

so that W.˛2'/� is a coherent state. This particular choice of initial conditions is motivated by Pekar’s
approximation [1946; 1951] to the ground state energy, which uses exactly states of this form. Pekar’s
approximation was made mathematically rigorous by Donsker and Varadhan [1983] (see [Lieb and
Thomas 1997] for an alternative approach).

Clearly, the time-evolved state e�i zH
F
˛ t 0˝W.˛

2'0/� with t ¤ 0 will in general no longer have an
exact product structure. However, we will see that for large ˛ (and t of order one, or even larger) it can
be approximated, in a certain sense, by a state of the product form  t ˝W.˛

2't /�, where  t and 't
solve the Landau–Pekar equations

i@t t .x/D

�
��C

Z
R3

�
e�ik�x't .k/C e

ik�x't .k/
� dk
jkj

�
 t .x/; (1-8)

i˛2@t't .k/D 't .k/Cjkj
�1

Z
R3
j t .x/j

2eik�x dx (1-9)

with initial data  0 and '0. Using standard methods one can show that for any  02H1.R3/, '02L2.R3/
and ˛ > 0, the system (1-8), (1-9) has a global solution . t ; 't /, which satisfies

k tkL2.R3/ D k 0kL2.R3/ and E. t ; 't /D E. 0; '0/ for all t 2 R

with the energy

E. ; '/ WD
Z

R3
jr j2 dxC

Z
R3
j .x/j2

Z
R3

�
e�ik�x'.k/Ceik�x N'.k/

� dk
jkj

dxC

Z
R3
j'.k/j2 dk: (1-10)
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We refer to Lemma 2.1 and Proposition 2.2 for more details about the solution . t ; 't /. In the original
work of Landau and Pekar the equations are given in a different, but equivalent form, and we explain this
connection in Section 1D.

1B. Main result. In order to prove our main result we need the following regularity and decay assumptions
on the initial data. We denote by Hm.R3/ the Sobolev space of order m and by

L2.m/.R
3/ WD L2

�
R3; .1C k2/m dk

�
(1-11)

the weighted L2 space with norm

k'kL2
.m/
D

�Z
R3
.1C k2/mj'.k/j2 dk

�1
2

:

Our main result will be valid under the following:

Assumption 1.1. We assume  0 2H4.R3/ and '0 2 L2.3/.R
3/ with k 0kL2.R3/ D 1.

A first version of our main result concerns the approximation of the reduced density matrices of
e�i
zHF
˛ t 0˝W.˛

2'0/� in the trace norm.

Theorem 1.2. Assume  0 and '0 satisfy Assumption 1.1 and let . t ; 't / be the solution of (1-8), (1-9)
with initial condition . 0; '0/. Define


particle
t WD TrF

ˇ̌
e�i
zHF
˛ t 0˝W.˛

2'0/�
˛ ˝
e�i
zHF
˛ t 0˝W.˛

2'0/�
ˇ̌
;

field
t WD TrL2.R3/

ˇ̌
e�i
zHF
˛ t 0˝W.˛

2'0/�
˛ ˝
e�i
zHF
˛ t 0˝W.˛

2'0/�
ˇ̌
:

Then, for all ˛ � 1 and all t 2 Œ�˛; ˛�,

TrL2.R3/
ˇ̌


particle
t � j t ih t j

ˇ̌
� C˛�2.1C t2/;

TrF
ˇ̌
field
t � jW.˛2't /�ihW.˛

2't /�j
ˇ̌
� C˛�2.1C t2/:

Note that particle
t , field

t , j t ih t j and jW.˛2't /�ihW.˛2't /�j all have trace norm equal to one
(in fact, they are nonnegative operators with trace one) and therefore Theorem 1.2 gives a nontrivial
approximation up to times t D o.˛/. Already the approximation up to times of order one is significant
since this is the time scale on which  t changes. It is a bonus that the same approximation is in fact valid
for much longer times.

We emphasize that the Landau–Pekar approximation to the Fröhlich dynamics depends on ˛ (through
(1-9)). As we will explain in Section 1C, without allowing for an ˛-dependence one cannot approximate


particle
t with accuracy ˛�2 for times of order one.

We next present a more precise result which comes at the expense of a more complicated formulation.
We approximate the state e�i zH

F
˛ t 0 ˝ W.˛

2'0/� itself in L2.R3/ ˝ F, and not only its reduced
density matrices. However, it turns out that up to the desired order ˛�2 this is not possible in terms
of simple product states. Instead, we need to include an explicit nonproduct state of order ˛�1 which
takes correlations between the particle and the field into account. The key observation is that this term
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satisfies an almost orthogonality condition, so that it does not contribute to the reduced density matrices
to order ˛�1. For the statement we need the real scalar function ! defined as

!.t/ WD ˛2 Im.'t ; @t't /Ck'tk2L2.R3/: (1-12)

It will follow from Lemma 2.1 below that this function is uniformly bounded in t 2 R.
The following is our main result.

Theorem 1.3. Assume  0 and '0 satisfy Assumption 1.1 and let . t ; 't / be the solution of (1-8), (1-9)
with initial condition . 0; '0/. Then there is a decomposition

e�i
zHF
˛ t 0˝W.˛

2'0/�D e
�i

R t
0 !.s/ ds t ˝W.˛

2't /�CR.t/ (1-13)

and a constant C > 0 such that for all ˛ � 1 and all t 2 Œ�˛; ˛�,h�;W �.˛2't /R.t/iFL2.R3/ � C˛�2jt j.1Cjt j/; (1-14)h t ; W �.˛2't /R.t/iL2.R3/F � C˛�2jt j.1Cjt j/ (1-15)

and
kR.t/kL2.R3/˝F � C˛

�1.1Cjt j/: (1-16)

More precisely, (1-13) holds with R.t/DR1.t/CR2.t/ and with the boundsh�;W �.˛2't /R1.t/iFL2.R3/ � C˛�2t2; (1-17)h t ; W �.˛2't /R1.t/iL2.R3/F � C˛�2t2 (1-18)

and
kR2.t/kL2.R3/˝F � C˛

�2
jt j.1Cjt j/; kR1.t/kL2.R3/˝F � C˛

�1.1Cjt j/: (1-19)

Similarly as before, we note that for t D o.˛/ the term R.t/ is of lower order than the main term
e�i

R t
0 !.s/ ds t ˝W.˛

2't /�, which has constant norm equal to one.
The message of Theorem 1.3 is that, while R.t/ is in general not of order ˛�2 (for times of order

one), it can be split into a piece which is, namely R2.t/, and a piece which satisfies almost orthogonality
conditions, so that it does not contribute to the reduced particle or field density matrices at order ˛�1

either. The term R1.t/ is given explicitly in (2-16) below.
Theorem 1.3 implies Theorem 1.2 by a simple abstract argument, which we explain in Appendix D. In

the following we concentrate on proving Theorem 1.3.
In Section 1C we compare Theorem 1.3 with a similar approximation in [Frank and Schlein 2014] where

't is independent of t . In Lemma 1.4 we show that this simpler approximation does not yield the same
accuracy in terms of powers of ˛�1 as Theorem 1.3. In this sense Theorem 1.3 derives the Landau–Pekar
dynamics from the Fröhlich dynamics and answers an open question in [Frank and Schlein 2014].

While it is necessary to take the time dependence of 't into account, this dependence is still weak
for times of order ˛ as considered in our theorems. The field 't changes by order one only on times of
order ˛2, and it would be desirable to extend Theorems 1.2 and 1.3 to this time scale, at least for a certain
class of initial conditions. This remains an open problem.
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The key point in Theorem 1.3 and novel aspect of this work are the almost orthogonality relations
(1-14) and (1-15). As we will see in Section 1C, they will be crucial for deriving Theorem 1.2. Inequality
(1-16) is not sufficient for this purpose. Let us discuss the motivation behind the almost orthogonality
relations in more detail. We introduce the function

Q t WD e
�i

R t
0 !.s/ ds t (1-20)

and consider the problem of approximating e�i zH
F
˛ t 0˝W.˛

2'0/� by a function of the form Q t ˝
W.˛2't /�. (We do not assume at this point that Q t and 't satisfy an equation.) Since W.˛2't / is
unitary, this is the same as the problem of choosing Q t and 't so as to minimize the norm of the vector

W �.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�� Q t ˝�: (1-21)

Clearly, for given  0, '0 and 't , the optimal choice for Q t is

Q t D
˝
�;W �.˛2't /e

�i zHF
˛ t 0˝W.˛

2'0/�
˛
F : (1-22)

In order to determine 't we only solve the simpler problem of minimizing the norm of the projection of
(1-21) onto the subspace spanf Q tg˝F. This norm could be made zero if we could achieve

�D
˝
Q t ; W

�.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�

˛
L2 : (1-23)

While it may not be possible to have exact equalities in (1-22) and (1-23), we will see that the Landau–
Pekar equations yield almost equalities. In fact, the almost orthogonality relations (1-14) and (1-15) in
our main theorem state exactly that:

Q t �
˝
�;W �.˛2't /e

�i zHF
˛ t 0˝W.˛

2'0/�
˛
F D OL2

�
˛�2jt j.1Cjt j/

�
; (1-24)

��
˝
Q t ; W

�.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�

˛
L2 D OF

�
˛�2jt j.1Cjt j/

�
: (1-25)

1C. Comparison with earlier results. The problem of approximating the Fröhlich dynamics of a polaron
was studied before in [Frank and Schlein 2014]. There a different and simpler effective equation is
proposed in which only the particles move and the phonon field remains constant. In this subsection we
show that Theorem 1.2 is not valid for these effective dynamics from [Frank and Schlein 2014], in the
sense that the reduced phonon density matrix cannot be approximated to within an error ˛�2 for times
of order one. The fact that our Theorem 1.2 achieves an approximation at this accuracy is because the
phonon motion is taken into account in the Landau–Pekar equations. Technically this is reflected in the
orthogonality conditions (1-14) and (1-15).

To be more specific we recall that in [Frank and Schlein 2014] it was shown thate�i zHF
˛ t 0˝W.˛

2'0/�� e
�ik'0k

2
2t�t ˝W.˛

2'0/�

L2˝F � C˛

�1.eC jt j� 1/
1
2; (1-26)

where �t denotes the solution of the linear equation

i@t�t .x/D

�
��C

Z
R3

�
e�ikx'0.k/C e

ik�x'0.k/
� dk
jkj

�
�t .x/
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with initial condition  0. We stress again that in this approximation, '0 does not evolve in time. An
anonymous referee, to whom we are most grateful, has explained to us that the method of [Frank and
Schlein 2014] actually leads to the bounde�i zHF

˛ t 0˝W.˛
2'0/�� e

�ik'0k
2
2t�t ˝W.˛

2'0/�

L2˝F � C.e

C jt j=˛
� 1/

1
2 ; (1-27)

which provides an approximation even up to times of order o.˛/. With his/her kind permission we
reproduce the argument in Appendix E.

As an aside we note that we recover a similar bound as a simple consequence of Theorem 1.3. (In fact,
our new bound is better by a power of ˛�

1
2 for times t � 1.) Namely, (1-16) says thate�i zHF

˛ t 0˝W.˛
2'0/�� e

�i
R t
0 !.s/ ds t ˝W.˛

2't /�

L2˝F � C˛

�1.1Cjt j/: (1-28)

(In [Frank and Schlein 2014] weaker regularity and decay assumptions are imposed on  0 and '0, but
we emphasize that (1-16) is also valid under weaker assumptions than those in Assumption 1.1. In fact,
the latter assumption is needed to bound R2.t/, whereas for (1-16) one can avoid the use of Duhamel’s
principle in Proposition 2.3.)

For the reduced density matrices, inequalities (1-26) and (1-27) give, using (D-1) and possibly changing
the value of C ,

TrL2
ˇ̌


particle
t � j�t ih�t j

ˇ̌
� C min

˚
˛�1.eC jt j� 1/

1
2 ; .eC jt j=˛ � 1/

1
2

	
;

TrL2
ˇ̌
field
t � jW.˛2'0/�ihW.˛

2'0/�j
ˇ̌
� C min

˚
˛�1.eC jt j� 1/

1
2 ; .eC jt j=˛ � 1/

1
2

	
:

These bounds behave like ˛�1 for times of order one.
The next result shows that in this approximation of field

t by a time-independent '0 the order ˛�1 (for
times of order one) cannot be improved in general.

Lemma 1.4. In addition to Assumption 1.1 suppose that '0 6� �� 0 in the notation (2-2). Then there are
" > 0, C > 0 and c > 0 such that for all jt j 2 ŒC˛�1; "� and all ˛ � C=",

TrF
ˇ̌
field
t � jW.˛2'0/�ihW.˛

2'0/�j
ˇ̌
� c˛�1jt j:

This lemma should be contrasted with Theorem 1.2, which says that the time-dependent approximation
jW.˛2't /�ihW.˛

2't /�j is correct to order ˛�2 (for times of order one). This argument shows the
importance of the orthogonality conditions (1-14) and (1-15). Indeed, if we would only use (1-16),
we would arrive at (1-28) and this would again only give an approximation to order ˛�1 (for times of
order one).

Since Theorem 1.2 is a consequence of Theorem 1.3 and since we showed that one cannot replace 't
by '0 in Theorem 1.2, the same applies also to Theorem 1.3.

Let us consider our problem from a wider perspective. We have a composite quantum system H1˝H2
and a Hamiltonian which couples the two subsystems. Each system has an effective “Planck constant” and
the characteristic feature of the problem is that the Planck constant of one system goes to zero, whereas
that of the other system remains fixed. Thus, one of the systems becomes classical, whereas the other one
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remains quantum-mechanical, and Ginibre, Nironi and Velo [Ginibre et al. 2006] used the term “partially
classical limit” in a closely related context. (For us, the “Planck constant” of the phonons is ˛�2, as can
be seen from the commutation relations, whereas that of the electron is of order one.) A prime example
of such a problem is the Born–Oppenheimer approximation, where the inverse square root of the nuclear
mass plays the role of the small Planck constant.

Here, however, we consider the case where H1˝H2 has infinitely many degrees of freedom. As is
well known, our Hamiltonian is the Wick quantization of an energy functional on an infinite-dimensional
phase space and the notion of “Planck constant” has a well-defined meaning through the commutation
relations of the fields. (We emphasize that in our problem we can imagine that we have also a field ‰ for
the electrons, but that we only consider the sector of a single electron.)

Although there is an enormous literature concerning the classical limit, starting with Hepp’s work
[1974], and although we believe that the question of a partially classical limit is a very natural one which
appears in many models, we are only aware of the single work [Ginibre et al. 2006] prior to [Frank and
Schlein 2014] on this question, and it studies fluctuation dynamics. Closer to our focus here are the
works [Falconi 2013; Ammari and Falconi 2014] about the Nelson model with a cut-off where, however,
a classical limit on both systems is taken. On the level of results, one obtains equations similar to the
Landau–Pekar equations (without the factor ˛2 in (1-9)), but the proofs are completely different, as
[Ammari and Falconi 2014] relies on the Wigner measure approach from [Ammari and Nier 2008; 2009].

The polaron model, in contrast to the Nelson model, does not require a cut-off, although this is not
obvious since the operator

R
eik�xbkjkj

�1 dk and its adjoint are not bounded relative to the number
operator. Lieb and Yamazaki [1958] devised a method to deal with this problem in the stationary case,
but it is not clear to us how to apply their argument in a dynamical setting and we consider our solution of
this problem as a technical novelty in this paper. Our methods apply equally well to a partially classical
limit in the cut-off Nelson model and, in fact, the proofs in that case would be considerably shorter.

1D. An equivalent form of the Landau–Pekar equations. Often the Landau–Pekar equations are stated
in the form

i@t t D .��Cjxj
�1
�Pt / t ; (1-29)

˛4@2tPt D�Pt � .2�/
2
j t j

2 (1-30)

for a real-valued polarization field Pt ; see, e.g., [Landau and Pekar 1948; Devreese and Alexandrov
2009]. Let us show that this pair of equations is equivalent to the pair of equations that we discussed so
far. In fact, assume that  t and 't solve (1-8) and (1-9) and define

Pt .x/ WD .2�/
�1 Re

Z
R3
jkj't .k/e

�ik�x dk;

as well as the auxiliary function

Qt .x/ WD .2�/
�1 Im

Z
R3
jkj't .k/e

�ik�x dk:
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If we multiply (1-9) by jkj and integrate with respect to e�ik�x, we obtain

i˛2@t .Pt C iQt /D Pt C iQt C .2�/
2
j t j

2:

Since Pt and Qt are real, this equation is equivalent to the pair of equations

˛2@tPt DQt ; ˛2@tQt D�Pt � .2�/
2
j t j

2:

Here we can eliminate Qt by differentiating the first equation and arrive at (1-30).
Moreover, the inversion formula

't .k/D .2�/
�2
jkj�1

Z
R3
.Pt C iQt /e

ik�x dx

implies Z
R3

�
e�ik�x't .k/C e

ik�x't .k/
� dk
jkj
D jxj�1 �Pt ;

which yields (1-29).

2. Outline of the proof

2A. Well-posedness of the Landau–Pekar equations. We begin by discussing the well-posedness of the
equations for  t and 't in (1-8) and (1-9). We use the following abbreviations for the coupling terms in
these equations,

V'.x/ WD

Z
R3

�
e�ik�x'.k/C eik�x'.k/

� dk
jkj

(2-1)

and

� .k/ WD jkj
�1

Z
R3
j .x/j2eik�x dx: (2-2)

The following lemma, which is proved in Appendix C, states global well-posedness in the energy space
H1.R3/�L2.R3/.

Lemma 2.1. For any . 0; '0/ 2 H1.R3/�L2.R3/ there is a unique global solution . t ; 't / of (1-8),
(1-9). One has the conservation laws

k tkL2 D k 0kL2 and E. t ; 't /D E. 0; '0/ for all t 2 R:

Moreover, for all ˛ > 0 and all t 2 R,

k tkH1 . 1; k'tkL2 . 1 (2-3)

and

k@t'tkL2 . ˛�2; k't �'skL2 . ˛�2jt � sj; k� tkL2 . 1: (2-4)

In the proof of our main result we need to go beyond the energy space H1.R3/�L2.R3/. The following
proposition states that if the initial conditions have more regularity and decay then, at least for a certain
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(long) time interval, we have bounds on the solution in the corresponding spaces. We will also need some
bounds on the auxiliary functions gs;t W R3! C defined by

gs;t .x/ WD

Z
R3
Œ't .k/�'s.k/�e

ik�x dk

jkj
(2-5)

and gs W R3! C defined by

gs.x/ WD �@sgs;t .x/D

Z
R3
eik�x@s's.k/

dk

jkj
: (2-6)

The following proposition will also be proved in Appendix C.

Proposition 2.2. Let � > 0. If . 0; '0/ satisfies Assumption 1.1, then for all ˛ > 0 and for all t; s 2
Œ��˛2; �˛2� we have

k tkH4 .� 1; k'tkL2
.3/
.� 1: (2-7)

Moreover,
k@t tkH2 .� 1; k@t� tkL2 .� 1 (2-8)

and
kgs;tk1 .� ˛�2jt � sj; kgsk1 . ˛�2: (2-9)

2B. Decomposition of the solution. We now decompose the solution e�i
zHF
˛ t 0 ˝ W.˛2'0/� as

claimed in Theorem 1.3. In order to state this, we need to introduce some notations.
It will be convenient to work with the function Q t from (1-20). Clearly, the bounds from Lemma 2.1

and Proposition 2.2 hold for Q t as well. (For the bounds on @t Q t we use the fact that j!.t/j . 1 by
Lemma 2.1.) Moreover, we note that Q t and 't satisfy the modified equations

i@t Q t .x/D

�
��C

Z
R3

�
e�ik�x't .k/C e

ik�x
N't .k/

� dk
jkj
C!.t/

�
Q t .x/; (2-10)

i˛2@t't .k/D 't .k/Cjkj
�1

Z
R3
j Q t .x/j

2eik�x dx: (2-11)

Next, we define for  2 L2.R3/ with k k D 1 the orthogonal projections in L2.R3/,

P WD j ih j; P? WD 1�P D 1� j ih j:

The effective Schrödinger operator H' in L2.R3/ is defined by

H' WD ��CV' C

Z
R3
j'.k/j2 dk (2-12)

with V' from (2-1). Moreover, let us introduce the operator

zH' WDW
�.˛2'/ zHF

˛ W.˛
2'/ (2-13)

in L2.R3/˝F. Using the commutation relations (see Lemma A.1) we find that

zH' DH' C

Z
R3
Œeik�xb�k C e

�ik�xbk�
dk

jkj
C

Z
R3
Œ'.k/b�k C N'.k/bk� dkC

Z
R3
b�kbk dk: (2-14)
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Finally, we introduce the vector

Ft;s WD P
?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

(2-15)

and define

D0 WD

Z t

0

eiH't sFt;s ds

and

D1 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/eik�xb�ke

�iH't s1Ft;s
� dk
jkj

ds1 ds;

D2 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/e�ik�xbke

�iH't s1Ft;s
� dk
jkj

ds1 ds;

D3 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/'t .k/b

�
ke
�iH't s1Ft;s

�
dk ds1 ds;

D4 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/'t .k/bke

�iH't s1Ft;s
�
dk ds1 ds;

D5 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/b�kbke

�iH't s1Ft;s
�
dk ds1 ds:

While these definitions might seem formal, we will show in Theorem 2.5 that each ofD0; : : : ;D5 belongs
to L2.R3/˝F.

With these notations, the promised representation formula for the solution looks as follows.

Proposition 2.3. Assume that . Q t ; 't / satisfy (2-10), (2-11) with initial conditions . 0; '0/ where
k 0k

2 D 1. Then for any t 2 R one has the decomposition

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�CR1.t/CR2.t/

with
R1.t/ WD �iW.˛

2't /e
�iH't tD0

and
R2.t/ WD �W.˛

2't /e
�i zH't t .D1CD2CD3CD4CD5/:

Clearly, in terms of the original function  t , the term R1 is explicitly given by

R1.t/D

�iW.˛2't /

Z t

0

�
e�iH't .t�s/�i

R s
0 !.s1/ds1P? s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k s˝�

� dk
jkj

�
ds: (2-16)

The proof of Proposition 2.3 makes use of equations (2-10), (2-11) for . Q t ; 't / as well as the Duhamel
formula. We single out the use of the equations in the following lemma.

Lemma 2.4. Assume that . Q t ; 't / satisfy (2-10), (2-11) with initial conditions . 0; '0/ where k 0k2D 1.
Then for any t 2 R one has

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�� i

Z t

0

e�i
zHF
˛ .t�s/W.˛2't /Ft;s ds: (2-17)
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Proof of Lemma 2.4. Applying the operator ei zH
F
˛ t to both sides of (2-17) we see that we need to prove

 0˝W.˛
2'0/�D e

i zHF
˛ t Q t ˝W.˛

2't /�� i

Z t

0

ei
zHF
˛ sW.˛2't /Ft;s ds:

This is clearly true at t D 0 and therefore we only need to show that the time derivatives of both sides
coincide for all t ; that is, in view of definition (2-15) of Ft;s ,

0D ei
zHF
˛ t

�
i zHF

˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

� iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj

�
:

This is, of course, the same as

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj
; (2-18)

which is what we are going to show now.
We begin by rewriting the first term on the left side. Using (2-13) and (2-14) we obtain

i zHF
˛
Q t ˝W.˛

2't /�D iH't
Q t ˝W.˛

2't /�C Q tW.˛
2't /

�
ib�.'t /C i

Z
R3
eik�xb�k

dk

jkj

�
�:

In order to rewrite the third term on the left side of (2-18) we use the formula for @tW.˛2't / from (A-4)
below and find

Q t ˝ @tW.˛
2't /�D i˛

2.Im.'t ; @t't // Q t ˝W.˛2't /�C˛2 Q t ˝W.˛2't /b�.@t't /�:

Thus, recalling the definition of ! in (1-12), we have shown that

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D
�
@t C i.��CV't C!.t//

�
Q t ˝W.˛

2't /� (2-19)

CW.˛2't /

�
˛2b�.@t't /C ib

�.'t /C i

Z
R3
eik�xb�k

dk

jkj

�
. Q t ˝�/: (2-20)

At this point in the proof we use the equations for Q t and 't . It follows from (2-10) that line (2-19)
vanishes identically. For line (2-20) we use (2-11) to obtain

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D iW.˛2't /

�Z
R3

�
�

Z
R3
j Q t .y/j

2eik�y dyC eik�x
�
b�k
dk

jkj

�
. Q t ˝�/

D iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj
: (2-21)
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Here we used the fact that k Q tk D k 0k D 1 by assumption and Lemma 2.1, and therefore

P?
Q t
D 1� j Q t ih Q t j:

Equation (2-21) proves (2-18) and completes the proof. �

Having proved Lemma 2.4 we turn to the proof of Proposition 2.3.

Proof of Proposition 2.3. It follows from Lemma 2.4 and (2-13) that

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�� iW.˛

2't /

Z t

0

e�i
zH't .t�s/Ft;s ds:

In the time integral on the right side we use Duhamel’s principle and (2-14),

e�i
zH't .t�s/D e�iH't .t�s/�i

Z t�s

0

e�i
zH't .t�s�s1/

�Z
R3
Œeik�xb�kCe

�ik�xbk�
dk

jkj
C

Z
R3
b�kbk dk

C

Z
R3
Œ't .k/b

�
kC N't .k/bk�dk

�
e�iH't s1 ds1:

Proposition 2.3 now follows easily from the definition of D0; : : : ;D5. �

2C. Reduction of the proof of the main result. In the remainder of this paper we will prove the following.

Theorem 2.5. Assume that  0 and '0 satisfy Assumption 1.1, let . Q t ; 't / be the solution of (2-10), (2-11)
with initial condition . 0; '0/ and let D0; : : : ;D5 be as in Proposition 2.3. Then there is a constant
C > 0 such that for all ˛ � 1 and t 2 Œ0; ˛2�,

kD0kL2˝F � C˛
�1.1C t /; (2-22)

kD1kL2˝F � C˛
�2t .1C t /; (2-23)

kD2kL2˝F � ˛
�2t .1C t /.1C˛�1t /; (2-24)

kD3kL2˝F � C˛
�2t .1C t /.1C˛�1t /; (2-25)

kD4kL2˝F � C˛
�2t2.1C˛�1t /; (2-26)

kD5kL2˝F � C˛
�3t .1C t /.1C˛�2t2/; (2-27)h�; e�iH't tD0iFL2.R3/ � C˛�2t2; (2-28)h Q t ; e�iH't tD0iL2.R3/F � C˛�2t2.1C˛�2t2/: (2-29)

This theorem (and its analogue for t 2 Œ�˛2; 0�), together with the decomposition from Proposition 2.3
and the fact that the operators W.˛2't /, e�iH't t and e�i zH't t are unitary, implies Theorem 1.3. In fact,
(2-22) implies the second bound in (1-19), (2-23)–(2-27) imply the first bound in (1-19), (2-28) implies
(1-17) and (2-29) implies (1-18).

We emphasize that Theorem 2.5 is valid up to times ˛2. (In fact, since the proof only relies on
Proposition 2.2, it is valid up to times �˛2 for an arbitrary � > 0 with C depending on � .) Consequently,
the bounds in Theorem 1.3 are also valid up to times ˛2. However, since the evolved state and the main
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term in the approximation both have norm one, the bounds are only meaningful for times up to "˛ for
some small " > 0.

The basic intuition behind the bounds on Dk , k D 0; : : : ; 5, is that each annihilation or creation
operator is of order ˛�1 and therefore D0, which contains only one creation operator, is of order ˛�1,
D1;D2;D3;D4, which contain two creation or annihilation operators, are of order ˛�2 and D5, which
contains three creation or annihilation operators, is of order ˛�3. We illustrate this intuition in more detail
in Section 2E with the simplest possible terms.

While this basic principle is true, it is oversimplifying the situation considerably as it does not take the
slow-decaying terms jkj�1 into account. The operator

R
eik�xb�

k
jkj�1 dk and its adjoint are not bounded

relative to the number operator
R
b�
k
b
k
dx. In fact, the treatment of these operators is the major difficulty

that we have to overcome here.
At this point we have reduced the proof of Theorem 1.3 to the proof of Theorem 2.5, and the remainder

of the paper is concerned with this. We bound D0 in Section 3, D1 in Section 4 and D2 in Section 5.
The terms D3, D4 and D5, which are easier to bound than D1 and D2, are briefly discussed in Section 6.
Finally, the bounds (2-28) and (2-29) will be proved in Subsections 7A and 7B, respectively.

2D. A further decomposition. Using the fact that P?
Q t
D 1�j Q t ih Q t j (see the proof of Lemma 2.4), we

have the decomposition

Ft;s D F
.1/
t;s �F

.2/
t;s ;

where

F
.1/
t;s WD

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

and, with the notation � from (2-2),

F
.2/
t;s WD

Q s˝W
�.˛2't /W.˛

2's/b
�.� Q s /�:

Correspondingly, we define

Di DDi1�Di2 for i D 0; 1; 2; 3; 4; 5:

In general, the termsDi2 are easier to deal with than the termsDi1. The reason for this is that eik�xjkj�1 62
L2.R3/, whereas � Q t 2 L

2.R3/ by Lemma 2.1, so the operator
R
eik�xb�

k
jkj�1 dk in F .1/t;s is harder to

control than the operator b�.� Q s / in F .2/t;s .
For k D 1; : : : ; 5, both operators Di1 and Di2 involve an operator b�

k
, b
k

or b�
k
b
k

to the left of F .1/t;s
or F .2/t;s , which in turn involves an operator W �.˛2't /W.˛2's/. We now have the decomposition

Dij DDij1CDij2 for i D 1; 2; 3; 4; 5 and j D 1; 2;

whereDij1 denotes the expression with b
k
, b�
k

or b�
k
b
k

commuted through the operatorW �.˛2't /W.˛2's/
and Dij2 denotes the expression coming from the commutator. To be explicit, we display some exemplary
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cases,

D111D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1eik

0�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1ds; (2-30)

D121D

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1W �.˛2't /W.˛

2's/b
�
kb
�.� Q s /

Q s˝�
dk

jkj
ds1ds; (2-31)

D211D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1eik

0�x

�W �.˛2't /W.˛
2's/bkb

�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1ds; (2-32)

D221D

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1W �.˛2't /W.˛

2's/bkb
�.� Q s /

Q s˝�
dk

jkj
ds1ds: (2-33)

The commutator terms can be computed with the help of Corollary A.2. Recalling the definition of the
function gs;t in (2-5), we have, for instance,

D112 D�

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1eik�xb�k
Q s˝�

dk

jkj
ds1 ds; (2-34)

D122 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1b�.� Q s /
Q s˝�ds1 ds; (2-35)

D212 D�

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1eik�xb�k
Q s˝�

dk

jkj
ds1 ds; (2-36)

D222 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1b�.� Q s /
Q s˝�ds1 ds: (2-37)

2E. Some warm-up bounds. In order to prepare for the rather technical sections that follow, we will
first focus on the terms that do not include a term of the form jkj�1, that is, on the terms D02, D32, D42
and D52. We hope that this explains the underlying mechanism of our proof and the intuition that each
annihilation or creation operator is of size ˛�1.

Bound on D02. We recall that

D02 D

Z t

0

.eiH't s Q s/˝
�
W �.˛2't /W.˛

2's/b
�.� Q s /�

�
ds

and, therefore, by Lemma 2.1,

kD02kL2˝F �

Z t

0

k Q sk2kb
�.� Q s /�kF ds D ˛

�1

Z t

0

k� Q sk2 ds . ˛
�1t: (2-38)

Bound on D32. We have

D321 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b
�.'t /b

�.� Q s /�
�
ds1 ds
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and, according to Corollary A.2,

D322 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
.'t �'s; 't /W

�.˛2't /W.˛
2's/b

�.� Q s /�
�
ds1 ds:

By the bounds from Lemma 2.1 we haveb�.'t /b�.� Q s /�F D ˛�2�k'tk22k� Q sk22Cj.'t ; � Q s /j2� 12 . ˛�2;
and therefore, using also the conservation of the L2-norm of Q s ,

kD321kL2˝F . ˛�2t2:

On the other hand, the bounds from Lemma 2.1 imply

kb�.� Q s /�kF D ˛
�1
k� Q sk2 . ˛

�1; j.'t �'s; 't /j. ˛�2jt � sj;

and therefore, using again the conservation of the L2-norm of Q s ,

kD322kL2˝F . ˛�3t3:

Thus, we have shown that

kD32kL2˝F . ˛�2t2.1C˛�1t /: (2-39)

Bound on D42. We have

D421 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b.'t /b
�.� Q s /�

�
ds1 ds

and, according to Corollary A.2,

D422 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
.'t ; 't �'s/W

�.˛2't /W.˛
2's/b

�.� Q s /�
�
ds1 ds:

We commute once again and obtain

D421 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
˛�2.'t ; � Q s /W

�.˛2't /W.˛
2's/�

�
ds1 ds:

According to Lemma 2.1 we have j.'t ; � Q s /j. 1. This and computations similar to those in the bound of
D32 yield

kD421kL2˝F . ˛�2t2; kD422kL2˝F . ˛�3t3:

Thus, we have shown that

kD42kL2˝F . ˛�2t2.1C˛�1t /: (2-40)
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Bound on D52. To simplify the notation, let us introduce

N WD
Z

R3
b�kbk dk: (2-41)

We have

D521 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/N b�.� Q s /�
�
ds1 ds:

Moreover, by Corollary A.2,�
N ;W �.˛2't /W.˛2's/

�
D�W �.˛2't /W.˛

2's/.b.'t /�b.'s//

�W �.˛2't /W.˛
2's/.b

�.'t /�b
�.'s//CW

�.˛2't /W.˛
2's/k't�'2k

2
2;

so

D522 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/

˝

�
W �.˛2't /W.˛

2's/
�
�b.'t �'s/� b

�.'t �'s/Ck't �'2k
2
2

�
b�.� Q s /�

�
ds1 ds:

We use N b�.� Q s /D b
�.� Q s /N C˛

�2b�.� Q s / and obtain

D521 D ˛
�2

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b
�.� Q s /�

�
ds1 ds:

Therefore, much as before,

kD521kL2˝F . ˛�3t2:

For D522 we commute again to get

D522 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/

�
�
�˛�2.'t �'s; � Q s /�� b

�.'t �'s/b
�.� Q s /�Ck't �'2k

2
2 b
�.� Q s /�

��
ds1 ds:

For the second term on the right side we computeb�.'t �'s/b�.� Q s /�F D ˛�2�k't �'sk22k� Q sk22Cj.'t �'s; � Q s /j2� 12:
Using the bounds from Lemma 2.1 for k't �'sk2 we obtain that

kD522kL2˝F . ˛�4t3.1C˛�1t /:

Thus, we have shown that

kD52kL2˝F . ˛�3t2.1C˛�2t2/: (2-42)

3. Bound on D0

We have already controlled D02 in (2-38), so it remains to consider D01.
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Bound on D01. We recall that

D01 D

Z t

0

eiH't s
Z

R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds:

The main difficulty here, which we will encounter in various forms throughout this paper, is the unbound-
edness of the operator

R
eik�xb�

k
jkj�1 dk (for any fixed x 2 R3), since eik�xjkj�1 62 L2.R3/.

To overcome this difficulty we make use of the oscillatory behavior of eik�x via the formula

eik�x D
1� ik � rx

1Cjkj2
eik�x (3-1)

and aim at integrating by parts with respect to x. However, this integration by parts creates a new difficulty:
the resulting operator rx is unbounded and has to be controlled.

To overcome this new difficulty, it will be desirable to have an operator .��C 1/�1 somewhere in the
expression of D01 so that we can use it to control rx , since obviously rx.��C 1/�1 is bounded. It is
equivalent and technically more convenient to work with .H'tCM/�1, where M > 0 is a large constant
(independent of ˛ and t), instead of .��C 1/�1. In order to create this term we first integrate by parts
in s and make use of the identity

eiH't s D�i.H'tCM/�1e�iMs@sŒe
i.H'tCM/s�: (3-2)

We obtain, using the fact that H't commutes with W.˛2's/,

D01 D � ie
iH't t .H'tCM/�1

Z
R3
eik�xb�k

Q t ˝�
dk

jkj

C iW �.˛2't /W.˛
2'0/.H'tCM/�1

Z
R3
eik�xb�k

Q 0˝�
dk

jkj

CM

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�k

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�k@s

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /.@sW.˛
2's//.H'tCM/�1

Z
R3
eik�xb�k

Q s˝�
dk

jkj
ds

DD011CD012CD013CD014CD015;

where the terms D01k are defined in a natural way. We will prove the following lemma.

Lemma 3.1. For u 2H1.R3/ and f 2 L2.R3/,.��C 1/� 12 Z
R3
eik�xb�ku˝�

dk

jkj


L2˝F

. ˛�1kukH1

and .��C 1/� 12 Z
R3
eik�xb�.f /b�ku˝�

dk

jkj


L2˝F

. ˛�2kukH1kf k2:
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We defer the proof of this lemma to the end of this section and first show how to use it to control D01.
By Corollary B.2 and Lemma 2.1, we can choose M large enough so that .H'tCM/�

1
2 .��C 1/

1
2 is

bounded uniformly in t 2 R. Moreover, by Proposition 2.2, Q t and @t Q t belong to H 1.R3/ and have
uniformly bounded norms for t 2 Œ0; ˛2�; see also the remark at the beginning of Section 2B concerning the
bounds on @t Q t . These facts, together with the unitarity of eiH't s, W �.˛2't / and W.˛2's/, imply that

kD011kL2˝F . ˛�1; kD012kL2˝F . ˛�1

and
kD013kL2˝F . ˛�1t; kD014kL2˝F . ˛�1t:

In order to deal with the term D015 we make use of (A-4) and find

D015 D�

Z t

0

.Im.'s; ˛2@s's//eiH't sW �.˛2't /W.˛2's/.H'tCM/�1
Z

R3
eik�xb�k

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�.˛2@s's/b

�
k
Q s˝�

dk

jkj
ds

� i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb.˛2@s's/b

�
k
Q s˝�

dk

jkj
ds

DD0151CD0152CD0153:

From Lemma 2.1 we know that j.'s; ˛2@s's/j . 1 and k˛2@s'sk . 1. Thus, the first and the second
bounds in Lemma 3.1 imply, respectively,

kD0151kL2˝F . ˛�1t; kD0152kL2˝F . ˛�2t:

For D0153 we use the commutation relations to rewrite it as

D0153 D�i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1gs Q s˝�ds

with gs from (2-6). Therefore, Proposition 2.2 yields

kD0153kL2˝F . ˛�2t:

To summarize, we have shown that

kD01kL2˝F . ˛�1.1C t /: (3-3)

Proof of Lemma 3.1. For any  2 L2.R3/˝F and .ˆk/k2R3 � F , we use (3-1) to find�
;.��C1/�

1
2

Z
R3
eik�xu˝ˆk

dk

jkj

�
L2˝F

D

�
r.��C1/�

1
2 ;

Z
R3

ikeik�x

jkj.1Cjkj2/
u˝ˆk dk

�
L2˝F

C

�
.��C1/�

1
2 ;

Z
R3

ikeik�x

jkj.1Cjkj2/
.ru/˝ˆk dk

�
L2˝F

C

�
.��C1/�

1
2 ;

Z
R3

eik�x

jkj.1Cjkj2/
u˝ˆk dk

�
L2˝F

:
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Clearly,

kr.��C 1/�
1
2 kL2˝F � kkL2˝F and k.��C 1/�

1
2 kL2˝F � kkL2˝F ;

so.��C 1/� 12 Z
R3
eik�xu˝ˆk

dk

jkj


L2˝F

. kukH1 sup
x2Rd

�Z
R3

ikeik�x

jkj.1Cjkj2/
ˆk dk


F
C

Z
R3

eik�x

jkj.1Cjkj2/
ˆk dk


F

�
:

If ˆk D b�k�, we use the fact that

1

jkj.1Cjkj2/
;

k

jkj.1Cjkj2/
2 L2.R3/

to conclude that, uniformly in x 2 R3,Z
R3

ikeik�x

jkj.1Cjkj2/
b�k�dk


F
. ˛�1;

 Z
R3

eik�x

jkj.1Cjkj2/
b�k�dk


F
. ˛�1:

This proves the first bound in the lemma. If ˆk D b�.f /b�k�, one can similarly show thatZ
R3

ikeik�x

jkj.1Cjkj2/
b�.f /b�k�dk


F
.
kf k2

˛2
;

Z
R3

eik�x

jkj.1Cjkj2/
b�.f /b�k�dk


F
.
kf k2

˛2
:

This proves the second bound in the lemma. �

4. Bound on D1

Bound on D111. We recall equation (2-30) for D111. In this equation, we commute eik�x with e�iH't s.
Thus, if we introduce the operator

H'.k/ WD e
ik�xH'e

�ik�x
D .irxC k/

2
CV' C

Z
R3
j'.k/j2 dk; (4-1)

we obtain

D111 D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/e�iH't .k/s1ei.kCk

0/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds:

Controlling D111 is harder than controlling D01 because there are two slowly decaying terms jkj�1 and
jk0j�1. The beginning of the proof, however, is similar; namely, for a large constant M >0 to be specified,
independent of t and ˛, we integrate by parts in s using

ei
zH't s D�i. zH'tCM/�1e�iMsŒ@se

i. zH'tCM/s�:
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In this way we obtain

D111 D � i

Z t

0

Z
R3

Z
R3
ei
zH't t . zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2't�s1/b

�
kb
�
k0
Q t�s1˝�

dk0

jk0j

dk

jkj
ds1

C i

Z t

0

Z
R3

Z
R3
ei
zH't s1. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2'0/b

�
kb
�
k0
Q 0˝�

dk0

jk0j

dk

jkj
ds1

CM

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds

C i

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0 Œ@s

Q s�˝�
dk0

jk0j

dk

jkj
ds1 ds

C i

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /Œ@sW.˛
2's/�b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds:

We now use (2-13), which implies

. zH'tCM/�1W �.˛2't /W.˛
2's/DW

�.˛2't /. zH
F
˛ CM/�1W.˛2's/

DW �.˛2't /W.˛
2's/. zH'sCM/�1;

in order to commute . zH'tCM/�1 to the right throughW �.˛2't /W.˛2's/. Moreover, we use Lemma A.3
to compute @sW.˛2's/. In this way we obtain

D111 D � i

Z t

0

ei
zH't tW �.˛2't /W.˛

2's/Q1 ds

C i

Z t

0

ei
zH't s1W �.˛2't /W.˛

2'0/Q2 ds1

CM

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q3 ds1 ds

C i

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q4 ds1 ds

C i

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q5 ds1 ds

with

Q1 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q2 WD . zH'0 CM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0
Q 0˝�

dk0

jk0j

dk

jkj
;
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Q3 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q4 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0 Œ@s

Q s�˝�
dk0

jk0j

dk

jkj
;

Q5 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�x
�
b�.˛2@s's/� b.˛

2@s's/

C i Im.'s; ˛2@s's/
�
b�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

(Here, we suppress the dependence on t , s and s1 in the notation of the Qj .)
In the remainder of this section we shall show that, uniformly for 0� s; s1 � t � ˛2,

kQj kL2˝F . ˛�2 if j D 1; 2; 3; 4; 5: (4-2)

This will imply that
kD111kL2˝F . ˛�2t .1C t /: (4-3)

Since the operator . zH'sCM/�1.��CN CM/ is not bounded, bounding the Qj is rather involved.
(Here N was introduced in (2-41).) With the notation

Z' WD V' C

Z
R3
j'.x/j2 dkC

Z
R3
.e�ik�xbkC e

ik�xb�k /
dk

jkj
C b.'/C b�.'/;

we abbreviate (2-14) as
zH' D��CN CZ' :

Defining
zZ' WD .��CN CM/�

1
2Z'.��CN CM/�

1
2 ;

we have

. zH'CM/�1D .��CNCM/�
1
2 .1C zZ'/

�1.��CNCM/�
1
2

D .��CNCM/�1�.��CNCM/�
1
2 .1C zZ'/

�1.��CNCM/�
1
2Z'.��CNCM/�1:

It is not difficult to see that for every " > 0 and A > 0 there is an M such that

k zZ'kL2˝F 7!L2˝F � " (4-4)

for all ' with k'kL2 � A; for details of this argument we refer to [Frank and Schlein 2014]. Thus, using
the bound on k'skL2 from Lemma 2.1, we can choose M in such a way that

k zZ'skL2˝F 7!L2˝F �
1
2

for all s > 0:

Therefore, the operator 1C zZ's in the above formula for .H'sCM/�1 is invertible. We use this formula
to decompose

Q1D

�
1�.��CNCM/�

1
2 .1C zZ's /

�1.��CNCM/�
1
2

�
V'sC

Z
R3
j's.x/j

2dkCb.'s/Cb
�.'s/

��
Q10

�.��CNCM/�
1
2 .1C zZ's /

�1.Q11CQ12/ (4-5)
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with

Q10 WD .��CN CM/�1
Z

R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q11 WD .��CN CM/�
1
2

�Z
R3
e�ik

00�xbk00
dk00

jk00j

�
.��CN CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q12 WD .��CN CM/�
1
2

�Z
R3
eik
00�xb�k00

dk00

jk00j

�
.��CN CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

Using (4-4), the fact that .��CN CM/�
1
2 .b.'s/C b

�.'s// is bounded uniformly in s, as well as the
estimates kV'sk1 . 1 (from (C-1) and Proposition 2.2) and k'sk2 . 1 (from Lemma 2.1), we conclude
from (4-5) that

kQ1kL2˝F . kQ10kL2˝F CkQ11kL2˝F CkQ12kL2˝F :

We now bound the three terms on the right side separately.

Bound on Q10. To control Q10 we prove an analogue of Lemma 3.1 for the case of two singularities.

Lemma 4.1. For u 2H2.R3/, f 2 L2.R3/ and s 2 R,.��C 1/�1Z
R3

Z
R3
e�iH't .k/sei.kCk

0/�xb�kb
�
k0u˝�

dk0 dk

jk0jjkj


L2˝F

. ˛�2kukH2 :

Before proving this lemma we show how to use it to bound Q10. Note that, since Q10 involves only
b�
k
b�
k0
�, the operator .��CN CM/�1 in its definition can be replaced by .��C 2˛�2CM/�1. This

observation, together with Lemma 4.1 and the uniform boundedness of Q s in H2 for s 2 Œ0; ˛2� (see
Proposition 2.2), proves that

kQ10kL2˝F . ˛�2: (4-6)

Proof of Lemma 4.1. We shall show that for any  2 L2.R3/˝F ,ˇ̌̌̌�
; .��C 1/�1

Z
R3

Z
R3
e�iH't .k/sei.kCk

0/�xb�kb
�
k0u˝�

dk0 dk

jk0jjkj

�ˇ̌̌̌
. ˛�2kkL2˝FkukH2 :

We integrate by parts twice in x and use (3-1) with k replaced by kC k0. A typical term that is obtained
in this way in the inner product on the left side is�

eiH't .k/s@xi@xj .��C 1/
�1;

Z
R3

Z
R3
ei.kCk

0/�xb�kb
�
k0u˝�

.ki C k
0
i /.kj C k

0
j / dk

0 dk

jkjjk0j .1CjkC k0j2/2

�
:

Since @xi@xj .��C 1/
�1 is bounded and eiH't .k/s is unitary, the vector on the left side of the inner

product is bounded in norm by kkL2˝F . We now show that the vector on the right side of the inner
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product is bounded as well. We computeZ
R3

Z
R3
ei.kCk

0/�xb�kb
�
k0u˝�

.ki C k
0
i /.kj C k

0
j /

jkjjk0j .1CjkC k0j2/2
dk0 dk

2
L2˝F

D 2˛�4kuk22

Z
R3

Z
R3

.ki C k
0
i /
2.kj C k

0
j /
2

jkj2jk0j2.1CjkC k0j2/4
dk0 dk:

The desired bound now follows from the fact that the double integral on the right side is finite. Other
terms that arise in the integration by parts are controlled similarly and we omit the details. �

Bound on Q11. By considering the number of involved field particles, we can replace N in the definition
of Q11 by numbers and obtain

Q11 D .��C˛
�2
CM/�

1
2

�Z
R3
e�ik

00�xbk00
dk00

jk00j

�
.��C 2˛�2CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

Next, by commuting bk00 to the right,

Q11 D ˛
�2.��C˛�2CM/�

1
2

Z
R3

�
.ir � k0/2C 2˛�2CM

��1
�

Z
R3
e�ik

0�xe�iH't .k/.t�s/ei.k
0Ck/�xb�k

Q s˝�
dk0

jk0j2
dk

jkj

C˛�2.��C˛�2CM/�
1
2

Z
R3

�
.ir � k/2C 2˛�2CM

��1
�

Z
R3
e�ik�xe�iH't .k/.t�s/ei.k

0Ck/�xb�k0
Q s˝�

dk0

jk0j

dk

jkj2
:

It remains to compute the norm of this expression. Since this is considerably easier than for Q12, we
omit the details and only state the final result,

kQ11kL2˝F . ˛�3: (4-7)

Bound on Q12. In the same way as for Q11, we can replace N by a number, so that

Q12 D .��C 3˛
�2
CM/�

1
2

Z
R3
eik
00�xb�k00.��C 2˛

�2
CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�k0b
�
k
Q s˝�

dk0

jk0j

dk

jkj
:

Next, we commute eik
00�x and ei.k

0Ck/�x to the right and obtain

Q12 D

Z
R3

Z
R3

Z
R3
b�kb
�
k0b
�
k00e

i.kCk0Ck00/�x
�
.ir � k� k0� k00/2C 3˛�2CM

�� 1
2

�
�
.ir � k� k0/2C 2˛�2CM

��1
e�iH't .�k

0/.t�s/ Q s˝�
dk00

jk00j

dk0

jk0j

dk

jkj
:
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We now compute the norm of this expression. For the part of the norm over F , we use the fact that

˛6h�; bk1bk2bk3b
�
k4
b�k5b

�
k6
�i D ı.k1�k4/ı.k2�k5/ı.k3�k6/Cı.k1�k4/ı.k2�k6/ı.k3�k5/

Cı.k1�k5/ı.k2�k4/ı.k3�k6/Cı.k1�k5/ı.k2�k6/ı.k3�k4/

Cı.k1�k6/ı.k2�k4/ı.k3�k5/Cı.k1�k6/ı.k2�k4/ı.k3�k6/

to write
kQ12k

2
L2˝F D ˛

�6.X1C � � �CX6/; (4-8)

where, for instance,

X1 WD

Z
R3

Z
R3

Z
R3

D
e�iH't .�k

0/.t�s/ Q s;
�
.ir�k�k0�k00/2C3˛�2CM

��1
�
�
.ir�k�k0/2C2˛�2CM

��2
e�iH't .�k

0/.t�s/ Q s

E dk00
jk00j2

dk0

jk0j2
dk

jkj2

and

X2 WD

Z
R3

Z
R3

Z
R3

D
e�iH't .�k

00/.t�s/ Q s;
�
.ir�k�k0�k00/2C3˛�2CM

��1
�
�
.ir�k�k00/2C2˛�2CM

��1�
.ir�k�k0/2C2˛�2CM

��1
e�iH't .�k

0/.t�s/ Q s

E dk00
jk00j2

dk0

jk0j2
dk

jkj2
:

By the Schwarz inequality we have jX2j �X1 and, similarly,

jXj j �X1 for all j D 1; : : : ; 6: (4-9)

Thus it suffices to control X1.
We first perform the k00 integral and then the k integral. We make use of the following bounds.

Lemma 4.2. One has the operator inequalitiesZ
R3
..ir � k00/2C 1/�1

dk00

jk00j2
. 1; (4-10)Z

R3
..irx � k/

2
C 1/�2

dk

jkj2
. .��C 1/�1: (4-11)

Before proving the lemma, let us see that they provide the desired bounds on X1. First, conjugating
(4-10) with ei.kCk

0/�x and assuming that M C 3˛2 � 1, we obtain, uniformly in k; k0 2 R3,Z
R3

�
.ir � k� k0� k00/2C 3˛�2CM

��1 dk00
jk00j2

. 1: (4-12)

Similarly, conjugating (4-11) with eik
0�x, we obtain, uniformly in k0 2 R3,Z

R3

�
.irx � k� k

0/2C 2˛�2CM
��2 dk
jkj2
. ..ir � k0/2C 1/�1: (4-13)

Inserting (4-12) and (4-13) into the definition of X1, we obtain

X1 .
Z

R3

˝
e�iH't .�k

0/.t�s/ Q s; ..ir � k
0/2C 1/�1e�iH't .�k

0/.t�s/ Q s
˛ dk0
jk0j2

:
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Since .��C 1/�
1
2 .H'tCM/

1
2 is bounded, uniformly in t (by Corollary B.2 and Lemma 2.1), we also

know that ..ir � k0/2C 1/�
1
2 .H't .�k

0/CM/
1
2 is bounded, uniformly in t . Thus,

X1 .
Z

R3

˝
e�iH't .�k

0/.t�s/ Q s; .H't .�k
0/CM/�1e�iH't .�k

0/.t�s/ Q s
˛ dk0
jk0j2

D

Z
R3

˝
Q s; .H't .�k

0/CM/�1 Q s
˛ dk0
jk0j2

.
Z

R3

˝
Q s; ..ir � k

0/2CM/�1 Q s
˛ dk0
jk0j2

:

Applying (4-10) again, we see that the latter expression is bounded by a constant times k Q sk2L2 D 1 by
Lemma 2.1. This, together with (4-8) and (4-9), implies that

kQ12kL2˝F . ˛�3: (4-14)

Proof of Lemma 4.2. We only prove (4-11), since the proof of (4-10) is similar and simpler. By applying
a Fourier transform, we see that we need to proveZ

R3
..pC k/2C 1/�2

dk

jkj2
. .p2C 1/�1 for p 2 R3:

We split the integral into the regions 4jkj > jpj C 1 and 4jkj � jpj C 1. In the first region we bound
jkj�2 � 16=.jpjC 1/2 and note thatZ

f4jkj>jpjC1g

..pC k/2C 1/�2 dk �

Z
R3
..pC k/2C 1/�2 dk D

Z
R3
.k2C 1/�2 dk <1:

In the second region we distinguish the cases jpj< 1 and jpj � 1. In the first case we boundZ
f4jkj�jpjC1g

..pC k/2C 1/�2
dk

jkj2
�

Z
f4jkj�jpjC1g

dk

jkj2
�

Z
fjkj� 1

2
g

dk

jkj2
<1:

For jpj � 1 we note that in the second region we have 2jkj � jpj and therefore .pC k/2 � 1
4
p2 � k2.

Thus,

..pC k/2C 1/�2 �
�
1
4
p2C 1

��1
.k2C 1/�1:

Since .k2C 1/�1jkj�2 is integrable, we obtain again a bound of the required form. �

Bounds on Q2; : : : ; Q5. The terms Q2; : : : ;Q4 are controlled in exactly the same way as Q1. (For Q4
we use the fact that k@s Q skH2 . 1 for t � ˛2 by Proposition 2.2.) The argument for Q5 is also similar.
In fact, the term involving Im.'s; ˛2@s's/ is controlled as before. For the term involving b�.˛2@s's/
we have to prove a simple extension of Lemma 4.1 where we have operators b�.f /b�

k
b�
k0

with f 2 L2

(similarly as the second part in Lemma 3.1). Finally, the term involving b.˛2@s's/ can be commuted to
the right and therefore becomes a less singular term which can be controlled already with Lemma 3.1.
These arguments prove (4-2) and complete the proof of (4-3).
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Bound on D112. The termD112 in (2-34) contains only one factor jk0j�1 and can therefore be controlled
essentially by the same method as D01, based on Lemma 3.1. In order to create a factor of .H'tCM/�1,
we integrate by parts in s1. This, however, will create a factor of zH't in one of the terms. When dealing
withD211 we will explain how to remove this term by integrating by parts in s. Since kgs;tk1.˛�2jt�sj
and k@sgs;tk1Dkgsk1.˛�2 by Proposition 2.2, this factor behaves well in the bounds. When applying
Lemma 3.1 we also use k@s Q skH1 . 1 from Proposition 2.2; see also the remark at the beginning of
Section 2B concerning the bounds on @t Q t . Without going into details we state the final result,

kD112kL2˝F . ˛�3t2.1C t /: (4-15)

Bound on D121. Also the term D121 in (2-31) contains only one factor of jkj�1 and can be controlled
as just sketched for D112 and as explained in detail for D211. In order to control the terms that appear
when integrating by parts in s we make use of k@s� Q skL2 . 1 and k@s Q skH1 . 1 from Proposition 2.2 in
addition to the bounds from Lemma 2.1. Moreover, we need an obvious extension of Lemma 3.1 to the
case with b�.f1/b�.f2/b�k , which is proved in the same way. Combining all this, we end up with

kD121kL2˝F . ˛�2t .1C t /: (4-16)

Bound on D122. The term D122 contains no jkj�1 term. Using kgs;tk1 . ˛�2jt�sj for 0� s � t � ˛2

by Proposition 2.2 and kb.� Q s /�kF D ˛
�1k� Q sk2 . ˛

�1 by Lemma 2.1, we obtain immediately

kD122kL2˝F . ˛�3t3: (4-17)

5. Estimation on D2

Bound on D211. We recall equation (2-32) for D211. In this equation we commute e�ik�x through
e�iH't s1, which introduces again the operator H't .k/ from (4-1), and we commute b

k
with b�

k0
. In this

way, we obtain

D211 D ˛
�2

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/e�iH't .k/s1W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds1 ds:

The difficulty in controlling D211 comes again from the k-integral. It is not enough to bound the norm of
the integrand as it stands, since jkj�2 is not integrable. Thus, we need to gain some extra decay from
e�iH't .k/s1. To get this decay, we integrate by parts in s1 using

e�iH't .k/s1 D ieiMs1.H't .k/CM/�1@s1e
�iŒH't .k/CM�s1 (5-1)

with a large constant M > 0 independent of ˛ and t . We obtain

D211 D i˛
�2

Z t

0

Z
R3
ei
zH't t .H't .k/CM/�1e�iH't .k/.t�s/W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds

� i˛�2
Z t

0

Z
R3
ei
zH't s.H't .k/CM/�1W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds
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C˛�2M

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/ Q s˝�

dk

jkj2
ds1 ds

C˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/ zH't .H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/ Q s˝�

dk

jkj2
ds1 ds

DD2111CD2112CD2113CD2114;

where D211k , k D 1; : : : ; 4, are naturally defined.
We first show how to deal with the terms D2111, D2112 and D2113. The term D2114 is harder because

of the additional factor of zH't .
The following lemma quantifies in which sense the operator .H'tCM/�1 leads to additional decay in k.

Lemma 5.1. For u 2H2.R3/,Z
R3

.jir C kj2C 1/�1u
2

dk

jkj2
. kukH2 : (5-2)

Proof. By Fourier transform, we have.jir C kj2C 1/�1u2
2
D

Z
R3

1

.1CjpC kj2/2.1Cjpj2/2
.1Cjpj2/2 j Ou.p/j2 dp:

We now observe that
1

.1CjpC kj2/2.1Cjpj2/2
.

1

.1Cjkj2/2
:

This can be proved by considering separately the regions where jpj � 1
2
jkj and jpj � 1

2
jkj. Thus,

.jir C kj2C 1/�1u2
2
.

1

.1Cjkj2/2
kuk2H2 ;

and the claimed bound follows by integration over k. �

Let us return to the terms D2111, D2112 and D2113. It follows from Corollary B.2 by conjugating
with the unitary eik�x that there is an M > 0 such that the operator .H't .k/CM/�1.jir C kj2C 1/ is
uniformly bounded in ˛ and t . This, together with the boundedness of  s in H2 for s 2 Œ0; ˛2� from
Proposition 2.2, yields Z

R3

.H't .k/CM/�1 Q s

2

dk

jkj2
. 1;

and therefore

kD2111kL2˝F . ˛�2t; kD2112kL2˝F . ˛�2t; kD2113kL2˝F . ˛�2t2: (5-3)
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We now turn to the term D2114, which contains the operator zH't . The idea is to remove this operator
by integrating by parts in s using

zH't e
i zH't s D�i@se

i zH't s: (5-4)

This leads to

D2114D�i˛
�2

Z t

0

Z
R3
ei
zH't t .H't .k/CM/�1e�iH't .k/.t�s1/W �.˛2't /W.˛

2's1/
Q s1˝�

dk

jkj2
ds1

Ci˛�2
Z t

0

Z
R3
ei
zH't s1.H't .k/CM/�1e�iH't .k/s1W �.˛2't /W.˛

2'0/ Q 0˝�
dk

jkj2
ds1

Ci˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/@s Q s˝�

dk

jkj2
ds1ds

Ci˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /.@sW.˛
2's// Q s˝�

dk

jkj2
ds1ds:

The first three terms on the right side can be bounded by Lemma 5.1 together with the uniform
boundedness in H2 of Q s and @s Q s in Œ0; ˛2� from Proposition 2.2; see also the remark at the beginning of
Section 2B concerning the bounds on @t Q t . For the fourth term on the right side we use the formula (A-4)
for @sW.˛2's/. Then the term can be bounded by proceeding in the same way as for D015 and using
Lemma 5.1 together with the fact that ˛2@s's is uniformly bounded in L2 for all times by Lemma 2.1.
To summarize, we obtain

kD2114kL2˝F . ˛�2t .1C t /; (5-5)

and, because of (5-3),
kD211kL2˝F . ˛�2t .1C t /: (5-6)

Bound on D212. The term D212 involves a single difficult operator
R
b�
k0
eik
0�xjk0j�1 dk0 and can be

controlled using the technique from bounding D01. We first integrate by parts with respect to s1 using
(5-1) (with k D 0) to create a factor of .H'tCM/�1. Using this factor we can apply Lemma 3.1 as in the
bound of D01. In one of the terms, however, the integration by parts creates a factor zH't . We remove
this operator via (5-4) by integrating by parts in s. The factor gs;t and its derivative @sgs;t D �gs are
bounded by Proposition 2.2 and do not create any problems. Eventually, this shows that

kD212kL2˝F . ˛�3t2.1C t /: (5-7)

Bound on D221. The term D221 appears in (2-33). We use bkb�.� Q s /� D ˛�2� Q s .k/�. By the
Schwarz inequality, (C-2) and Lemma 2.1 we have

jkj�1� Q s .k/�1 . k� Q skL2.1/ . k sk2H1 . 1. From
this one easily concludes that

kD221kL2˝F . ˛�2t2:
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Bound on D222. The term D222 appears in (2-37). Using the bound on gs;t from Proposition 2.2 and
the fact that b.� Q s /� has norm of order ˛�1 by Lemma 2.1, one obtains

kD222kL2˝F . ˛�3t3:

6. Bounds on D3, D4 and D5

We recall that we have already controlled D32, D42 and D52 in (2-39), (2-40) and (2-42). The remaining
terms D31, D41 and D51 have at most a single term jkj�1 and can be bounded using the methods we
have already developed. Therefore we will be rather brief.

For each of the terms D311, D312, D412, D511 and D512 we first integrate by parts in s1 to generate
a factor of .H'tCM/�1, which allows us to apply Lemma 3.1. One of the terms, however, will
involve zH't , which we have to remove by integrating by parts in s. Using the bounds from Lemma 2.1
and Proposition 2.2 we obtain

kD311kL2˝F . ˛�2t .1C t /; kD312kL2˝F . ˛�3t2.1C t /; kD412kL2˝F . ˛�3t2.1C t /;

kD511kL2˝F . ˛�3t .1C t /; kD512kL2˝F . ˛�4t2.1C t C˛�1t2/:

The remaining term D411 can be immediately bounded by

kD411kL2˝F . ˛�2t2:

7. Proof of the almost orthogonality relations

7A. Proof of (2-28). We recall that

h�; e�iH't tD0iF D

�
�;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
F
:

We commute the operator b�
k

to the left and use bk�D0. For the commutator we obtain from Corollary A.2
(with the definition (2-5) of gs;t )

h�; e�iH't tD0iF D

�
�;

Z t

0

e�iH't .t�s/P?
Q s
gs;tW

�.˛2't /W.˛
2's/ Q s˝�ds

�
F

D

Z t

0

e�iH't .t�s/P?
Q s
gs;t Q s

˝
�;W �.˛2't /W.˛

2's/ �
˛
F ds:

Thus, h�; e�iH't tD0iFL2 � t sup
0�s�t

kgs;t k1k Q sk2:

Thus, by the bound on gs;t from Proposition 2.2 and the conservation of the L2 norm of Q s , we obtain
the claimed bound (2-28).
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7B. Proof of (2-29). For ˆ 2 F , let

‚ˆ.t/ WD
˝
Q t ˝ˆ; e

�iH't tD0
˛
L2˝F

D

�
Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
L2˝F

:

We shall show that

j‚ˆ.t/j. ˛�2t2.1C˛�2t2/kˆkF ; (7-1)

which by duality implies (2-29).
Our goal will be to derive an ordinary differential equation for ‚ˆ. We use the presence of the

operator P?
Q s

to obtain (with inner products in L2˝F)

@t‚ˆ D

�
@t Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
C

�
Q t ˝ˆ;

Z t

0

.@te
�iH't .t�s//P?

Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
C

�
Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�x.@tW

�.˛2't //W.˛
2's/b

�
k
Q s˝�

� dk
jkj

ds

�
:

For the first term we use equation (2-10) for @t Q t . In the second term, we compute, using Duhamel’s
formula,

@te
�iH't .t�s/ D�iH't e

�iH't .t�s/� i

Z t�s

0

e�iH't .t�s�s1/.@tH't /e
�iH't s1 ds1

D�i
�
H't C .t � s/@tk'tk

2
2

�
e�iH't .t�s/� i

Z t�s

0

e�iH't .t�s�s1/.@tV't /e
�iH't s1 ds1:

Note that the part involving H't will cancel the contribution from the first term, except for part of the
constant !.t/. Finally, for the third term we use Lemma A.3 and Lemma A.1 to obtain

@tW
�.˛2't /W.˛

2's/

D ˛2W �.˛2't /
�
b.@t't /� b

�.@t't /C i Im.'t ; @t't /
�
W.˛2's/

D ˛2W �.˛2't /W.˛
2's/

�
b.@t't /� b

�.@t't /C 2i Im.@t't ; 's/C i Im.'t ; @t't /
�

D ˛2W �.˛2't /W.˛
2's/

�
b.@t't /� b

�.@t't /C 2i Im.@t't ; 's �'t /C i Im.@t't ; 't /
�
:

Putting all this into the above formula, we obtain

@t‚ˆ DM1CM2CM3;

where the terms M1, M2 and M3 are defined, using the notation

ˆs;t WDW
�.˛2's/W.˛

2't /ˆ;
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by

M1.t/ WD�i

Z t

0

Z t�s

0

�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1P?

Q s

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
ds1ds;

M2.t/ WD˛
2

Z t

0

�
Q t˝ˆs;t ; e

�iH't .t�s/P?
Q s

Z
R3

�
eik�x.b.@t't /�b

�.@t't //b
�
k
Q s˝�

� dk
jkj

�
ds;

M3.t/ WD

Z t

0

m.s; t/

�
Q t˝ˆs;t ; e

�iH't .t�s/P?
Q s

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
ds

with

m.s; t/ WD �i.t � s/@tk'tk
2
2C 2i˛

2 Im.@t't ; 's �'t /:

Since ‚ˆ.0/D 0, we conclude that

‚ˆ.t/D

Z t

0

.M1.s/CM2.s/CM3.s// ds: (7-2)

Below we shall show that

jM1.t/j. ˛�3t2kˆkF ; jM2.t/j. ˛�2tkˆkF ; jM3.t/j. ˛�3t2kˆkF : (7-3)

Together with (7-2) this will prove (7-1) and therefore (2-29).

Bound on M1. Using the fact that P?
Q s
D 1 � j Q sih Q sj (see the proof of Lemma 2.4), we have the

decomposition

M1 DM11�M12;

where

M11.t/ WD�i

Z t

0

Z t�s

0

�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ds1ds

and, with � Q s from (2-2),

M12.t/ WD �i

Z t

0

Z t�s

0

˝
Q t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1 Q s

˛
L2
˝
ˆs;t ; b

�.� Q s /�
˛
F ds1 ds:

The second term is easy to control. In fact, the a priori bounds from Lemma 2.1 together with k@tV'tk1.
˛�2 from (C-8) imply ˇ̌˝

Q t ; e
�iH't .t�s�s1/.@tV't /e

�iH't s1 Q s
˛
L2
ˇ̌
. ˛�2

and ˇ̌˝
ˆs;t ; b

�.� Q s /�
˛
F

ˇ̌
. ˛�1kˆkF :

This yields a bound of the form (7-3).
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We now bound the integrand in M11. We haveˇ̌̌̌�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
�
.H'tCM/

1
2 Q t˝ˆs;t

.H'tCM/�
1
2 .@tV't /.H'tCM/

1
2

.H'tCM/�
1
2

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

:
By Corollary B.2 and an easy modification of its proof, for M sufficiently large (but independent of t
and ˛), the operators .H'tCM/˙

1
2 .��C 1/�

1
2 are both bounded uniformly in t . Therefore Lemma 3.1

and the a priori bounds from Lemma 2.1 yieldˇ̌̌̌�
Q t ˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
. ˛�1k Q tkH1kˆkF

.��C 1/� 12 .@tV't /.��C 1/ 12k skH1
. ˛�1kˆkF

.��C 1/� 12 .@tV't /.��C 1/ 12:
Finally, using the fact that kr@tV'tk1 . ˛�2 (see (C-8)), we obtain that the operator appearing in this
bound has norm . ˛�2. Thus, we finally obtainˇ̌̌̌�

Q t ˝ˆs;t ; e
�iH't .t�s�s1/.@tV't /e

�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
. ˛�3;

which, when integrated over s1 and s, leads to the bound in (7-3).

Bound on M2. As for M1, we use P?
Q s
D 1� j Q sih Q sj to get the decomposition

M2 DM21�M22

with

M21.t/ WD ˛
2

Z t

0

�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�x.b.@t't /� b

�.@t't //b
�
k
Q s˝�

� dk
jkj

�
ds

and, with � Q s from (2-2),

M22.t/ WD ˛
2

Z t

0

˝
Q t ; e

�iH't .t�s/ Q s
˛
L2
˝
ˆs;t ;

�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F ds:

Once again the bound on M22 is straightforward. Namely, we commute b�.� Q s / to the left through
b.@t't /� b

�.@t't / and obtain˝
ˆs;t ;

�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F D�

˝
ˆs;t ; b

�.� Q s /b
�.@t't /�

˛
F C˛

�2.@t't ; � Q s /hˆs;t ; �iF :

By similar computations as, for instance, in the bound onD32 and by the a priori bounds from Lemma 2.1,
we obtain ˇ̌˝

ˆs;t ;
�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F

ˇ̌
. ˛�2kˆkFk� Q skk@t'tk. ˛

�4
kˆkF :
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By the conservation of the L2 norm of Q t we conclude

jM22.t/j. ˛�2tkˆkF ;

which is of the form claimed in (7-3).
We now discuss M21. Again we commute b�

k
to the left through b.@t't /� b�.@t't / and obtain

M21 DM211CM212;

where

M211.t/ WD �˛
2

Z t

0

�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ds

and, with gs from (2-6),

M212.t/ WD

Z t

0

˝
Q t ; e

�iH't .t�s/gs Q s
˛
L2hˆs;t ; �iF ds:

Since kgsk1 . ˛�2 by Proposition 2.2, we obtain immediately

jM212.t/j. ˛�2tkˆkF :

To control M211 we boundˇ̌̌̌�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ˇ̌̌̌
�
.H'tCM/

1
2 Q t ˝ˆs;t

.H'tCM/�
1
2

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

:
As for M11, we use Lemma 2.1 and Corollary B.2 (and a simple extension of its proof) to choose M
large enough, but independent of t and ˛, so that .H'tCM/˙

1
2 .��C1/�

1
2 are both bounded uniformly

in t . Therefore Lemma 3.1 and the a priori bounds from Lemma 2.1 yieldˇ̌̌̌�
Q t˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ˇ̌̌̌
.˛�2k Q tkH1kˆkFk@t'tkL2k Q skH1

.˛�4kˆkF :

This, when integrated over s and multiplied by ˛2, leads to the bound in (7-3).

Bound on M3. The a priori bounds from Lemma 2.1 yield

jm.s; t/j. ˛�2jt � sj:

Moreover, applying Lemma 3.1 as in the bound onM21 we find that the absolute value of the inner product
in the integral defining M3 is bounded by a constant times ˛�1kˆkF . This yields the bound in (7-3).

This concludes the proof of (2-29).
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Appendix A: Some properties of the Weyl operators

In this appendix we collect some standard properties of the Weyl operators W.f / defined in (1-7) in
terms of b.f / and b�.f /. They are well known, but we provide proofs for the sake of completeness. We
recall that the commutation relations for b

k
and b�

k
involve a factor ˛�2.

Lemma A.1. The operators bk , b�
k

and W.f / satisfy the following relations,

bkW.f /DW.f /.bkC˛
�2f .k// and b�kW.f /DW.f /.b

�
k C˛

�2 Nf .k//: (A-1)

Proof. For t > 0 we consider the operators

Ft WDW.tf /D e
t.b�.f /�b.f //; (A-2)

which satisfy
@tFt D .b

�.f /� b.f //Ft ; F0 D Id:

Multiplying by bk and using the commutation relations, we obtain the following equation for bkFt :

@tbkFt D .b
�.f /� b.f //bkFt C˛

�2f .k/Ft ; bkF0 D bk :

Therefore, by Duhamel’s principle applied to the latter equation,

bkFt D e
t.b�.f /�b.f //bkC˛

�2f .k/

Z t

0

e.t�s/.b
�.f /�b.f //Fs ds:

Recalling the definition of Ft in (A-2), we can rewrite this as

bkFt D FtbkC t˛
�2f .k/Ft : (A-3)

At t D 1 we obtain the first identity in the lemma. The second one is proved similarly. �

By applying Lemma A.1 twice, we obtain:

Corollary A.2. Œb�k ; W
�.f /W.g/�D �˛�2. Nf .k/� Ng.k//W �.f /W.g/;

Œbk; W
�.f /W.g/�D �˛�2.f .k/�g.k// W �.f /W.g/:

Next, we’ll consider the case where f depends (differentiably) on a parameter.

Lemma A.3.

@tW.ft /D
1
2
˛�2

�
.ft ; @tft /� .@tft ; ft /

�
W.ft /CW.ft /

�
b�.@tft /� b.@tft /

�
; (A-4)

@tW.ft /D �
1
2
˛�2

�
.ft ; @tft /� .@tft ; ft /

�
W.ft /C

�
b�.@tft /� b.@tft /

�
W.ft /: (A-5)

Proof. For s > 0 we consider the operators

F.s; t/ WDW.sft /; (A-6)

which satisfy
@sF.s; t/D .b

�.ft /� b.ft //F.s; t/; F .0; t/D Id:
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We differentiate this equation with respect to t and obtain

@s@tF.s; t/D .b
�.ft /� b.ft //@tF.s; t/C .b

�.@tft /� b.@tft //F.s; t/;

@tF.0; t/D 0:

Therefore, by Duhamel’s principle,

@tF.s; t/D

Z s

0

e.b
�.ft /�b.ft //.s�s1/.b�.@tft /� b.@tft //F.s1; t / ds1

D

Z s

0

W..s� s1/ft /.b
�.@tft /� b.@tft //W.s1ft / ds1:

In order to simplify the integrand we now use Lemma A.1 and obtain

.b�.@tft /�b.@tft //W.s1ft /D˛
�2W.s1ft /s1..ft ; @tft /�.@tft ; ft //CW.s1ft /.b

�.@tft /�b.@tft //:

If we insert this into the above formula for @tF.s; t/, we obtain

@tF.s; t/D ˛
�2 1
2
s2W.sft /..ft ; @tft /� .@tft ; ft //C sW.sft /.b

�.@tft /� b.@tft //:

At s D 1, we obtain the first identity in the lemma. The second one is proved similarly. �

Lemma A.4. For any f; g 2 L2,

h�;W �.g/W.f /�i D ei˛
�2Im.g;f /�˛�2kf �gk2=2:

Proof. Let ft WD tf C .1 � t /g and F.t/ WD h�;W �.g/W.ft /�i. By Lemma A.3, using that
Im.ft ; @tft /D Im.ft ; f �g/D Im.g; f /,

@tF.t/D
˝
�;W �.g/W.ft /

�
b�.f �g/C i˛�2 Im.g; f /

�
�
˛
:

Next, by Corollary A.2, since .g�ft ; f �g/D�tkf �gk2,

W �.g/W.ft /b
�.f �g/D b�.f �g/W �.g/W.ft /C˛

�2.g�ft ; f �g/W
�.g/W.ft /;

so

@tF.t/D
�
�˛�2tkf �gk2C i˛�2 Im.g; f /

�
F.t/:

Since F.0/D 1, we conclude that

F.t/D e�˛
�2t2kf �gk2=2Ci˛�2t Im.g;f /;

which, at t D 1, gives the assertion. �

Appendix B: The effective Schrödinger operator

In this appendix we investigate the operator and form domains of the effective Schrödinger operator H'
from (2-12) with potential V' from (2-1).
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Lemma B.1. For every A>0 and " > 0 there is anM >0 such that if k'k�A, then for all  2H1.R3/,jV' j 12 � ".��CM/
1
2 


and for all  2H2.R3/,
kV' k � "k.��CM/ k:

Proof. As in [Frank and Schlein 2014, Section 2.1], the Hardy–Littlewood–Sobolev inequality implies

kV'k6 . k'k2: (B-1)

This implies, by the Hölder and Sobolev inequalities,Z
R3
jV' jj j

2 dx � kV'k6k k
2
12
5

. k'k2kr k
1
2

2 k k
3
2

2

and Z
R3
jV' j

2
j j2 dx � kV'k

2
6k k

2
3 . k'k

2
2k� k

1
2

2 k k
3
2

2 :

These bounds easily imply the assertions of the lemma. �

Corollary B.2. For everyA>0 there areM >0 and C >0 such that if k'k2�A then for all f 2L2.R3/

k.H' CM/�
1
2f k2 � Ck.��C 1/

� 1
2f k2

and

k.H' CM/�1f k2 � Ck.��C 1/
�1f k2:

Proof. To prove the first assertion, we write

.H' CM/�1 D .��CM/�
1
2

�
1C .��CM/�

1
2V'.��CM/�

1
2

��1
.��CM/�

1
2

and note that according to Lemma B.1 we can choose M such that k'k � A implies

k.��CM/�
1
2V'.��CM/�

1
2 k � "2:

Similarly, for the second assertion we write

.H' CM/�1 D
�
1C .��CM/�1V'

��1
.��CM/�1

and choose M such that k'k � A implies k.��CM/�1V'k � ". �

Appendix C: Well-posedness of the Landau–Pekar equations

In this appendix we prove Lemma 2.1 and Proposition 2.2. Recall that the weighted spaces L2
.m/
D

L2.R3I .1C k2/m dk/ were introduced in (1-11). We begin with some bounds on the coupling terms V'
and � introduced in (2-1) and (2-2).
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Lemma C.1. We have

k@ˇV'k1 . k'kL2
jˇjC1

for all ˇ 2 N30; (C-1)

k� kL2
.1/
. k k2H1 ; k� kL2.3/ . k k

2
H2 : (C-2)

Proof. By the Schwarz inequality,

j@ˇV'.x/j � 2

Z
R3
jkjjˇ j�1j'.k/j dk � 2k'kL2

jˇjC1

�Z
R3

jkj2.jˇ j�1/ dk

.1C k2/2.jˇ jC1/

�1
2

and the last integral is finite.
We have

k� k
2
2 D

 1jkj
Z

R3
j .x/j2eik�x dx

2
2

D 2�2
“

R3�R3

j .x/j2 j .y/j2

jx�yj
dx dy:

By the Hardy–Littlewood–Sobolev inequality, we know this is bounded by a constant times
j j226

5

D

k k412
5

, which, by the Sobolev embedding theorem, is bounded by a constant times k k4H1 . Moreover,
by Plancherel,

k� k
2
L2.jkj2m/ D

Z
R3
jkj2.m�1/

ˇ̌̌̌Z
R3
j j2eik�x dx

ˇ̌̌̌2
dk D .2�/3

�
j j2; .��/m�1j j2

�
:

In particular, for mD 1 we get k k44, which by Sobolev is controlled by k k2H1 . For mD 3, the claimed
bound follows easily using k k1 . k kH2 and again Sobolev. �

Proof of Lemma 2.1. Local well-posedness in H1 �L2 follows by a standard fixed-point argument and
one sees that k tk2 and E. t ; 't / are conserved. One can use (B-1) and the Sobolev inequality to show
that [Frank and Schlein 2014, Section 2.1],

E. ; '/� kr k22Ck'k
2
2�Ck'k2kr k

1
2

2 k k
3
2

2 (C-3)

for some universal constant C > 0. This, together with conservation of E. t ; 't /, yields global well-
posedness as well as the uniform bounds (2-3).

According to (C-2) and the first bound in (2-3), we have k� tk . k tk2H1 . 1, which is the third
bound in (2-4).

By equation (1-9) for 't we have

k˛2@t'tk2 � k'tk2Ck� tk2

and therefore, by the second bound in (2-3) and the third bound in (2-4), we obtain the first bound in (2-4).
Finally, 't �'s D

R t
s @s1's1 ds1, so for t > s, by the first bound in (2-4),

k't �'sk2 �

Z t

s

k@s1's1k2 ds1 . ˛
�2
jt � sj:

This proves the second bound in (2-4) and completes the proof of the lemma. �

Before dealing with H4 �L2
.3/

-regularity in Proposition 2.2, we need to establish H2 �L2
.1/

-regularity.
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Lemma C.2. If . 0; '0/ 2H2.R3/�L2
.1/
.R3/, then . t ; 't / 2H2.R3/�L2

.1/
.R3/ for all t 2 R and

k tkH2 . 1C˛�2jt j; k'tkL2
.1/
.R3/ . 1C˛

�2
jt j

with implicit constants depending only on the initial data. Moreover,

k@t tkL2 . 1C˛�2jt j; k@t� tkL2 . 1C˛�2jt j: (C-4)

If , in addition, '0 2 L2.m/.R
3/, mD 2; 3, then 't 2 L2.m/.R

3/ for all t 2 R and

k'tkL2
.m/
.R3/ . 1C˛

�6
jt j3:

Proof. By a standard fixed-point argument one can show local existence of solutions in H2 �L2
.1/

. In the
following we will construct a functional, which is equivalent to the H2 norm of  and which grows in a
controlled way as time increases. This will prove, in particular, that  t belongs to H2 for all times.

We claim that for every A > 0 there is a constant M > 0 such that

E.2/. ; '/ WD
.��CV' CM/ 

2
2

satisfies
1
2
k kH2 � .E

.2/. ; '//
1
2 �

3
2
k kH2 (C-5)

for all  2H2 and all ' satisfying k'k2 � A. In fact, much as in the proof of Corollary B.2, we haveˇ̌
k.��CV' CM/ k2�k.��CM/ k2

ˇ̌
� kV'.��CM/�1kk.��CM/ k2

and according to Lemma B.1 we can choose M such that the first factor on the right side is less than "
for k'k2 � A.

According to Lemma 2.1 there is an A > 0 (depending only on k 0kH1 and k'0kL2) such that
k'tkL2 � A for all t . We choose M corresponding to this value of A and compute, using the equation
for  t ,

@tE.2/. t ; 't /

D 2Re
�
.��CV't CM/ t ; .��CV't CM/@t t

�
C 2Re

�
.��CV't CM/ t ; .@tV't / t

�
D 2Re

�
.��CV't CM/ t ; .@tV't / t

�
:

By the Schwarz and the Hölder inequalities,

@tE.2/. t ; 't /� 2.E.2/. t ; 't //
1
2 k@tV'tk6k tk3:

By (B-1) and Lemma 2.1, k@tV'tk6 . k@t'tk2 . ˛�2, and by the Sobolev inequality and Lemma 2.1,
k tk3 . k tkH1 . 1. Thus,

@tE.2/. t ; 't /. ˛�2.E.2/. t ; 't //
1
2 ;

which implies .E.2/. t ;'t //
1
2 .1C˛�2jt j. According to (C-5), this implies the claimed bound on k tkH2 .

The remaining bounds are proved in a straightforward way. We have

k@t tk2 � k�� tk2CkV't tk2 � k tkH2 CkV'tk6k tk3:
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By the bound on k tkH2 together with (B-1) and the bounds from Lemma 2.1, we obtain the first bound
in (C-4). Moreover,

@t� t D 2jkj
�1

Z
R3

Re. t@t t /eik�x dx

and so, by the Hardy–Littlewood–Sobolev inequality as in (B-1),

k@t� tk2 . k t@t tk 6
5
� k tk3k@t tk2:

By the first bound in (C-4) and Lemma 2.1, we obtain the second bound in (C-4).
In order to deduce the bounds on 't , we use Duhamel’s formula:

't .k/D e
�it=˛2'0.k/� i˛

�2

Z t

0

e�i.t�s/=˛
2

� s .k/ ds: (C-6)

If '0 2 L2
.m/

, mD 1; 2; 3, we deduce that 't 2 L2
.m/

provided we can bound k� skL2
.m/

. This quantity
can by controlled by Sobolev norms of  s according to (C-2). �

Proof of Proposition 2.2. The basic strategy is the same as in the proof of Lemma C.2, except that
verifying the properties of the functional is more complicated in this case. Again we do not give the
details of the local existence via a fixed-point argument.

We claim that for every A > 0 there is a constant M > 0 such that

E.4/. ; '/ WD k.��CV' CM/2 k22

satisfies
1
2
k kH4 � .E

.4/. ; '//
1
2 �

3
2
k kH4 (C-7)

for all  2H4 and all ' satisfying k'kL2
.3/
� A. To show this, we first observe that, as in the proof of

Lemma C.2,ˇ̌
k.��CV' CM/2 k2�k.��CM/.��CV' CM/ k2

ˇ̌
� kV'.��CM/�1kk.��CM/.��CV' CM/ k2

and that kV'.��CM/�1k can be made arbitrarily small for k'kL2 bounded by choosing M large. Thus,
it suffices to show that k.��CM/.��CV'CM/ k2 is equivalent to k.��CM/2 k2. We computeˇ̌
k.��CM/.��CV' CM/ k2�k.��CV' CM/.��CM/ k2

ˇ̌
� k.2rV' � r C�V'/.��CM/�1kk.��CM/ k2:

According to (C-1), the first factor on the right side can be made arbitrarily small for k'kL2
.3/

bounded
by choosing M large. We conclude by applying the argument in Lemma C.2 again to compare
k.��CV' CM/.��CM/ k2 to k.��CM/2 k2. This proves the claim.

According to Lemma C.2, for every � > 0 there is an A > 0 (depending only on k 0kH2 , k'0kL2
.3/

and �) such that k'tkL2
.3/
� A for all jt j � �˛2. We choose M corresponding to this value of A and
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compute, using the equation for  t ,

@tE.4/. t ; 't /D 2Re
�
.��CV't CM/2 t ; .��CV't CM/2@t t

�
C 2Re

�
.��CV't CM/2 t ; .@tV't /.��CV't CM/ t

�
C 2Re

�
.��CV't CM/2 t ; .��CV't CM/.@tV't / t

�
D 4Re

�
.��CV't CM/2 t ; .@tV't /.��CV't CM/ t

�
� 2Re

�
.��CV't CM/2 t ; .2r@tV't � r C�@tV't / t

�
:

Therefore, by the Schwarz inequality,

@tE.4/. t ;'t /

� 2.E.4/. t ;'t //
1
2

�
2k@tV'tk1k.��CV'tCM/ tk2C2kr@tV'tk1kr tk2Ck�@tV'tk1k tk2

�
:

According to Lemma C.2 and (C-5), all terms involving  t here are bounded by a constant for jt j � �˛2.
Assume that we can prove that all terms involving 't here are bounded by a constant times ˛�2 for
jt j � �˛2. Then we will have shown that

@tE.4/. t ; 't /. ˛�2.E.4/. t ; 't //
1
2

for jt j � �˛2, which implies that .E.4/. t ; 't //
1
2 . 1C ˛�2jt j . 1 for jt j � �˛2. According to (C-7),

this proves that k tkH4 . 1 for jt j � �˛2.
Thus, it remains to prove that for all multi-indices ˇ with jˇj � 2,

k@ˇx@tV'tk1 . ˛
�2 for jt j � �˛�2: (C-8)

If we insert the equation of 't into the definition of V't , we find

@tV't .x/D�i˛
�2

Z
R3

�
e�ik�x't .k/� e

ik�x't .k/
� dk
jkj
: (C-9)

(Note that the contribution from � t cancels.) Using this formula, we obtain

k@ˇx@tV'tk1 . ˛
�2
k'tkL2

jˇjC1

in the same way as we obtained (C-1). This implies (C-8) in view of the bounds on 't from Lemma C.2.
It is straightforward to deduce the remaining bounds claimed in the proposition. The bound on k'tkL2

.3/

follows from Lemma C.2. Because of the equation for  t , we have

k@t tkH2 � k�� tkH2 CkV't tkH2 . k tkH4 C
X
jˇ j�2

k@ˇV'tk1k tkH2 :

Using the fact that k tkH4 . 1 and k'tkL2
.3/
. 1, which by (C-1) controls k@ˇV'tk1 for jˇj � 2, we

conclude that k@t tkH2 . 1. The second bound in (2-8) follows from Lemma C.2.
Finally, we need to prove the bounds on gs and gs;t . By the Schwarz inequality as in the proof of

(C-1) together with the equation for 's we find

kgsk1 . k@s'skL2
.1/
� ˛�2.k'skL2

.1/
Ck� skL2

.1/
/:
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According to (C-2) and Lemma 2.1 we have k� skL2
.1/
. k sk2H1 . 1. Moreover, if jt j; jsj � �˛2, then

Lemma C.2 implies k'skL2
.1/
. 1. Thus,

kgsk1 . ˛�2;

as claimed. Moreover, gs;t D
R t
s gs1 ds1, so for t > s

kgs;tk1 �

Z t

s

kgs1k1 ds1 . ˛
�2.t � s/:

This proves (2-9). �

Appendix D: Reduced density matrices

Here we show how the approximation of e�i zH
F
˛ t 0˝W.˛

2'0/� in Theorem 1.3 yields approximations
to its reduced density matrices in Theorem 1.2. The argument relies on the following abstract lemma.

Lemma D.1. Let H1 and H2 be Hilbert spaces; let ‰;ˆ 2H1˝H2 and f 2H1 and g 2H2 such that

‰ D f ˝gCˆ;

kf kH1 � C; kgkH2 � C; kˆkH1˝H2 � C";

khg;ˆiH2kH1 � C"
2; khf;ˆiH1kH2 � C"

2

for some C > 0 and " > 0. Define

1 D TrH2 j‰ih‰j; 2 D TrH1 j‰ih‰j:

Then

TrH1
ˇ̌
1�kgk

2
H2 jf ihf j

ˇ̌
� 3C 2"2; TrH2

ˇ̌
2�kf k

2
H1 jgihgj

ˇ̌
� 3C 2"2:

Before proving this lemma, let us use it to derive Theorem 1.2 from Theorem 1.3. We apply the lemma
with H1 D L2.R3/, H2 D F , f D e�i

R t
0 !.s/ ds t , g D�,

‰ DW �.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�; ˆDW �.˛2't /R.t/:

Then Theorem 1.3 implies that the assumptions of the lemma are satisfied with "D ˛�1.1C jt j/. We
have kf k2Dk tk2Dk 0k2D1, kgk2Dk�k2D1 and jf ihf jDj t ih t j. Moreover,

TrH2 j‰ih‰j D 
particle
t ; TrH1 j‰ih‰j DW

�.˛2't /
field
t W.˛2't /:

Thus, the conclusion of Theorem 1.2 follows from the lemma.
We now turn to the proof of the lemma. It relies on the bound

TrH1
ˇ̌
TrH2 j‰1ih‰2j

ˇ̌
� k‰1kH1˝H2k‰2kH1˝H2 (D-1)

valid for any vectors ‰1; ‰2 2H1˝H2. For the proof of (D-1) recall the variational characterization of
the trace norm,

TrH1 jKj D sup
.ej /;.e

0
j
/

Re
X
j

hej ; Ke
0
j iH1 ;
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where the supremum is over all orthonormal systems .ej / and .e0j / in H1. Thus, if .bk/ is an orthonormal
basis in H2, then

Re
X
j

˝
ej ;
�
TrH2 j‰1ih‰2j

�
e0j
˛
H1
D Re

X
j;k

hej ˝ bk; ‰1iH1˝H2h‰2; e
0
j ˝ bkiH1˝H2

�

�X
j;k

ˇ̌
hej ˝ bk; ‰1iH1˝H2

ˇ̌2�12�X
j;k

ˇ̌
h‰2; e

0
j ˝ bkiH1˝H2

ˇ̌2�12
� k‰1kH1˝H2k‰2kH1˝H2 ;

where the last inequality comes from the orthonormality of .ej ˝ bk/ and .e0j ˝ bk/. Therefore the
variational characterization of the trace norm yields (D-1).

Proof. Since TrH2 jf ˝gihˆj D jf ihhg;ˆiH2 j, we have

1�kgk
2
H2 jf ihf j D jf ihhg;ˆiH2 jC jhˆ; giH2ihf jCTr2 jˆihˆj:

By (D-1) and the assumptions the trace norm, each one of the three operators on the right side is bounded
by C 2"2. This proves the first inequality in the lemma. The second one is proved similarly. �

Finally, we show that the ˛�2 error bound in Theorem 1.2 (for times of order one) is due to the fact
that 't is time-dependent. The proof makes use of the fact that for arbitrary normalized vectors a and b
in a Hilbert space H one has

TrH
ˇ̌
jaihaj � jbihbj

ˇ̌
D 2.1� jha; bij2/

1
2 ; (D-2)

as is easily verified.

Proof of Lemma 1.4. Because of Theorem 1.2, it suffices to prove that there are " > 0 and c > 0 such that
for all jt j � " and all ˛ � 1,

TrF
ˇ̌
jW.˛2't /�ihW.˛

2't /�j � jW.˛
2'0/�ihW.˛

2'0/�j
ˇ̌
� c˛�1jt j:

According to Lemma A.4 and (D-2), this is equivalent to

1� e�˛
2k't�'0k

2
2 D 1�

ˇ̌˝
�;W �.˛2'0/W.˛

2't /�
˛ˇ̌2
�
1
4
c2˛�2t2:

Since k't �'0k2 . ˛�2jt j by Lemma 2.1, it suffices to prove that there are " > 0 and c0 > 0 such that
for all jt j � " and all ˛ � 1,

k't �'0k2 � c
0˛�2jt j:

Since '0C � 0 6� 0, this will clearly follow if we can prove that for all jt j � ˛2 and ˛ � 1,'t �'0C i˛�2t .'0C � 0/2 � C˛�2t2: (D-3)

To prove this, we use equation (1-8) for 't to write

't �'0 D

Z t

0

@s's ds D�i˛
�2

Z t

0

.'sC � s / ds D�i˛
�2t .'0C � 0/C rt
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with

rt WD �i˛
�2

Z t

0

Z s

0

.@s1's1 C @s1� s1 / ds1 ds:

By Lemma 2.1 and Proposition 2.2, the L2-norm of the integrand of rt is bounded by a constant uniformly
in js1j � ˛2 and ˛ � 1. This yields (D-3) and completes the proof. �

Appendix E: Improving the result of [Frank and Schlein 2014]

We now show how the techniques from [Frank and Schlein 2014] can be extended to times jt jD o.˛/. This
argument is due to an anonymous referee, whom we thank for kind permission to include it in our paper.

Proposition E.1. Let ' 2 L2.R3/ and ˛0 > 0. Assume that ‰ 2 L2.R3/˝F satisfies

k.p2CN C 1/
1
2‰k �M; k.p2C 1/

1
2N‰k �M˛�2:

Then for all ˛ � ˛0 and all t 2 R,e�i zHF
˛tW.˛2'/‰� e�iH' tW.˛2'/‰

2 �M 2.1C 2˛�1/.eC jt j=.2˛/� 1/;

where C depends only on ˛0 and an upper bound on k'kL2 .

Note that this result can be applied, in particular, to ‰D  ˝� with k kH1 �M. We also recall that
the effective Schrödinger operator H' was defined in (2-12).

Proof. Let A.t/ WD
e�i zH F

˛tW.˛2'/‰ � e�iH' tW.˛2'/‰
2. It is shown in [Frank and Schlein 2014,

Proposition 9] that A0.t/D f .t/Cg.t/ with

f .t/� CM˛�1A.t/
1
2 ;

Z T

0

g.t/ dt � CM 2˛�2T;

where C depends only on ˛0 and an upper bound on k'kL2 . We bound f .t/� 1
2
C˛�1.A.t/CM 2/ and

therefore

A.T /�

Z T

0

f .t/ dt C

Z T

0

g.t/ dt � 1
2
C˛�1

Z T

0

A.t/ dt C 1
2
CM 2˛�1.1C 2˛�1/T:

Thus,

A.T /CM 2.1C 2˛�1/�M 2.1C 2˛�1/C 1
2
C˛�1

Z T

0

�
A.t/CM 2.1C 2˛�1/

�
dt

and, by Gronwall’s inequality, for all t � 0

A.t/CM 2.1C 2˛�1/�M 2.1C 2˛�1/eCt=.2˛/: �

Acknowledgements

The authors are grateful to J. Fröhlich, M. Lewin, B. Schlein and R. Seiringer for their helpful remarks at
various stages of this project, as well as to the anonymous referees who helped improve this paper. Support
through NSF grants PHY–1347399 and DMS–1363432 (R.L.F.) and DMS–1308985 and DMS–1443225
(Z.G.) is acknowledged.



422 RUPERT L. FRANK AND ZHOU GANG

Note added in proof

After this work was accepted for publication, the preprint by M. Griesemer [2016] appeared on the
arXiv. This preprint studies the dynamics generated by the initial conditions given by the minimizing pair
. �; '�/ of the energy functional E. ; '/ under the constraint k k D 1 up to times of order o.˛2/.
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TIME-WEIGHTED ESTIMATES IN LORENTZ SPACES AND
SELF-SIMILARITY FOR WAVE EQUATIONS WITH SINGULAR POTENTIALS

MARCELO F. DE ALMEIDA AND LUCAS C. F. FERREIRA

We show time-weighted estimates in Lorentz spaces for the linear wave equation with singular potential.
As a consequence, assuming radial symmetry on initial data and potentials, we obtain well-posedness of
global solutions in critical weak-Lp spaces for semilinear wave equations. In particular, we can consider
the Hardy potential V .x/D cjxj�2 for small jcj. Self-similar solutions are obtained for potentials and
initial data with the right homogeneity. Our approach relies on performing estimates in the predual of
weak-Lp , i.e., the Lorentz space L.p

0;1/.

1. Introduction

We are concerned with the linear wave equation with potential�
�uCV uD f .x; t/; .x; t/ 2 Rn �R;

Eu.0/D .u.0;x/; @tu.0;x//D .0; 0/; x 2 Rn;
(1-1)

and the semilinear wave equation�
�uCV uD �jujp�1u; .x; t/ 2 Rn �R;

Eu.0/D .u0;u1/; x 2 Rn;
(1-2)

where�D@2
t��x , n�5 odd, �2fC1;�1g (focusing or defocusing case) and p>.n2Cn�4/=.n.n�3//.

The problems (1-1) and (1-2) are addressed in the radial setting.
The semilinear wave equation (1-2) with V D 0 has three notions of critical nonlinearity, namely the

Strauss critical power p D pstr, conformal critical power p D pconf and energy critical power p D pe.
The former pstr is the positive root of

.n� 1/p2
� .nC 1/p� 2D 0:

Strauss [1981] conjectured about the existence for p > pstr or nonexistence for 1 < p � pstr of global
solutions for (1-2) with small compact support initial data. The conjecture of Strauss has a nice history
(see, e.g., [Wang and Yu 2012]) and was completed by [Yordanov and Zhang 2006; Zhou 2007] (see also
[Lai and Zhou 2014]). The conformal power pconf is linked to the conformal symmetry map

u.x; t/ 7! uconf.x; t/D .t
2
� jxj2/�

n�1
2 u

�
x

t2� jxj2
;

t

t2� jxj2

�
for jxj< jt j:
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MSC2010: primary 35L05, 35L71, 35L15, 35A01, 35B06; secondary 35C06, 42B35.
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More precisely, uconf solves (1-2) with V D 0 if u does and p D pconf D .nC 3/=.n� 1/ for n� 2. The
power pe D .nC 2/=.n� 2/ (pe D1 if nD 2) is connected to the scaling invariance of the conserved
energy. In fact, for p D pe and V D 0, the conserved energy

E.u; @tu/D
1

2

Z
Rn

jrxuj2 dxC
1

2

Z
Rn

j@tuj
2 dxC

�

pC 1

Z
Rn

jujpC1 dx

is invariant by the scaling map

u.x; t/ 7! u .x; t/ WD 
2

p�1 u.x;  t/;  > 0; (1-3)

namely
E.u ; @tu /D 

4
p�1
C2�nE.u; @tu/DE.u; @tu/:

We refer the reader to the classical papers [Grillakis 1990; 1992; Shatah and Struwe 1993; Struwe 1999]
for results about solutions with finite energy.

A solution is called self-similar when it is invariant by (1-3), that is, u.x; t/ D u .x; t/. For a
homogeneous function V of degree �2, equation (1-2) presents the same scaling as in the case V D 0.
Taking t D 0, the map (1-3) induces the scaling for the initial data:

.u0.x/;u1.x// 7!
�


2
p�1 u0.x/; 

pC1
p�1 u1.x/

�
: (1-4)

In other words, self-similar solutions of (1-2) are associated to initial data u0 and u1 homogeneous of
degrees � 2

p�1
and �pC1

p�1
, respectively, that is, homogeneous functions of the form

u0.x/D "c1jxj
� 2

p�1 and u1.x/D "c2jxj
�

pC1
p�1 ; (1-5)

where c1; c2 2 R and " > 0.
For V D 0, there are a number of results about self-similar solutions in different frameworks. The

first work is due to Kavian and Weissler [1990], where the authors proved the nonexistence of radially
symmetric self-similar solutions with finite energy E.u; @tu/ for n� 3 and pe � p <1. Working in the
infinite energy space of all Bochner-measurable functions u W .0;1/!Lr .Rn/ such that

sup
t>0

tˇku. � ; t/kLr .Rn/ <1; (1-6)

Pecher [2000a] showed the existence of self-similar solutions for " > 0 in (1-5) sufficiently small by
considering nD 3 and p1 < p � pconf, where p1 is the larger positive root of

.n2
� n/p2

� .n2
C 3n� 2/pC 2D 0:

The parameters ˇ > 0 and r > 2 are taken in such a way that the norm (1-6) is scaling invariant. The
approach in [Pecher 2000a] is based on Lq �Lr dispersive estimates for the wave group

!.t/D .��/�
1
2 sin.t.��/

1
2 /: (1-7)

In fact, the case of nonradial homogeneous data also was considered in [Pecher 2000a]. Moreover,
replacing Lr by suitable homogeneous Sobolev spaces PH k;l with k > 0, the upper condition p � pconf
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was removed by him. Still for nD 3, Pecher [2000b] obtained self-similar solutions (not necessarily radial)
in the range pstr < p < pconf and showed that the lower bound pstr is sharp in the sense that in general no
nontrivial self-similar solution exists even in the radial case when p � pstr. Unlike [Pecher 2000a], the
paper [Pecher 2000b] developed pointwise estimates related to the weights jxj ˙ t and a norm due to
F. John and did not employ Lp, Sobolev or Besov spaces. Hidano [2002] complemented these results by
showing scattering and existence of self-similar solutions for (1-2) when nD 2; 3 and pstr < p < pconf.
The result of [Pecher 2000a] was proved to be true for n D 2; 3; 4; 5 by Ribaud and Youssfi [2002],
recovering in particular n D 2; 3. Moreover, for n � 6 they considered p 2 .p1;pconf� [ Œ2;1/ or
p 2 .p1;pconf�[ .p2;1/, where p2 is the larger positive root of

2.nC 1/p2
� .n2

C 3nC 4/pC .n2
C 5nC 2/D 0:

Note that pstr < p1 < pconf < p2 for all dimensions in which these parameters are defined.
The weighted Strichartz estimate in L.r;1/.R1Cn

C /ˇ̌t2
� jxj2

ˇ̌a
u


L.r;1/.R
1Cn
C

/
� C

ˇ̌t2
� jxj2

ˇ̌b
f


L.r
0;1/.R

1Cn
C

/
(1-8)

was obtained by Kato and Ozawa [2003] for f radially symmetric in x-variables, 2< r < 2.nC1/=.n�1/

and suitable powers a; b. By using (1-8) and assuming n� 3 odd, they proved existence and uniqueness
of radially symmetric self-similar solutions for (1-2) with initial data (1-5) provided that pstr < p < pconf

and " > 0 is small enough. In [Kato and Ozawa 2004], they extended their results to the case n� 2 even.
By employing spherical harmonics and Sobolev spaces over the unit sphere, the condition of radial
symmetry on u and f was removed in [Kato et al. 2007] for 2� n� 5. In the case p 2N, p>pconf and
V D 0, Planchon [2000] showed global well-posedness and existence of self-similar solutions for (1-2) in
L1..0;1/I PB

sp

2;1
/ for small data .u0;u1/ 2 PB

sp

2;1
� PB

sp�1

2;1
with sp D

n
2
�

2
p�1

. Notice that the above
results do not contradict the nonexistence result in [Kavian and Weissler 1990] because the obtained
self-similar solutions have infinite energy.

Wave equations with singular potential arise in the study of stability of stationary solutions for a number
of systems of PDEs, for example, wave-Schrödinger and Maxwell–Schrödinger ones (see, e.g., [D’ancona
and Pierfelice 2005]). Unlike the case p > pstr and V D 0, where no blow-up occurs for (1-2), Strauss
and Tsutaya [1997] proved blow-up of solutions when nD 3, p> 1 and V 2C 1.R3/\L1.R3/ decays
like c=jxj.2�"/ as jxj !1 for 0< " < 2. Also, they showed global existence for "< 0, p>pstr and.1Cjxj/2�" X

j˛j�2

j@˛xV .x/j


L1

small enough. Still considering small, smooth and rapidly decaying potentials, Yajima [1995] obtained
Lp �Lq dispersive estimates for the linear wave equation (1-1). The borderline case "D 0 corresponds
to V homogeneous of degree � D�2. In this case, the perturbation V u has the same scaling of �u and
cannot be dealt with as a simple perturbation of lower order because it does not belong to the Kato class

KD
�

V 2L1
loc W kV kK D sup

x2Rn

Z
Rn

jx�yj2�n
jV .y/j dy <1; n� 3

�
; (1-9)



426 MARCELO F. DE ALMEIDA AND LUCAS C. F. FERREIRA

where k � kK is called the global Kato norm. Taking nD 3, Eu.0/D .0;u1/ and f D 0 in (1-1), Georgiev
and Visciglia [2003] proved the dispersive estimate

ku. � ; t/kL1.Rn/ � C t�
n�1

2 ku1k PB1
1;1
.Rn/

(1-10)

for potentials V that are Hölder continuous in R3nf0g satisfying

0� V .x/�
C

jxj2�"Cjxj2C"
for all x 2 R3:

D’ancona and Pierfelice [2005] improved the class of potentials to nonresonant V 2 K and obtained,
in particular, the estimate (1-10) for V 2 L

n
2
�ı
\L

n
2
Cı
� L.

n
2
;1/
� K with small ı > 0. Planchon

et al. [2003a] proved (1-10) in the radial case for the critical potential V .x/D c=jxj2 with c � 0. In the
same work, they also proved a modified version of (1-10) for negative potentials �..n� 2/=2/2 < c < 0.
Moreover, they showed that the classical L1�L1 estimate

ku. � ; t/kL1.Rn/ � C t�
n�1

2 k.��/
n�1

4 u1kL1.Rn/

does not hold when c < 0 and V .x/D c=jxj2. In particular, this estimate is false for general V 2L.
n
2
;1/.

Burq et al. [2003] considered Strichartz estimates for (1-1) and showed

k.��/�ukLp
t L

q
x
� C.ku0k PH  Cku1k PH �1/ (1-11)

for � , p, q,  satisfying suitable conditions. See also [Planchon et al. 2003b] for the radial case and [Burq
et al. 2004] for a more general class of potentials satisfying V 2C 1.Rnnf0g/ and supx2Rn jxj2 jV .x/j<1,
among some other conditions. Using (1-11), for n� 2, p�pconf, spD

n
2
�

2
p�1

ands
cC

.n� 2/2

4
>

n� 2

2
�

2

p� 1
Cmax

�
1

2p
;

2

.nC 1/.p� 1/

�
;

the authors of [Burq et al. 2003] also showed global well-posedness of (1-2) provided that .u0;u1/ 2

H sp �H sp�1 is small enough. This result has been extended to the range

1C
4n

.n� 1/.nC 1/
< p < pconf

in [Miao et al. 2013] for n� 3 and small radial initial data.
In this paper we obtain estimates for solutions of (1-1) in weak-Lr (L.r;1/) spaces for the case of

small radial singular potentials V 2L.
n
2
;1/. Examples of those are Hardy potentials V D cjxj�2 with jcj

small enough (see Remark 3.2(II)). More precisely, for certain conditions on r; s, we prove the estimate

kukL1.RIL.r;1// �
K

1�KC0kV kL.n=2;1/

kf kL1.RIL.s;1//; (1-12)

where C0 and K are positive constants and V; f and u are radially symmetric in the x-variable. In our
results, the potential V can have indefinite sign. Notice that taking V D 0 in (1-12), one also obtains, in
particular, an estimate for the linear wave equation �uD f . The estimate (1-12) can be regarded as an
endpoint-inhomogeneous Strichartz-type estimate in weak-Lp spaces, specifically, from L

l1

t L
.l2;1/
x to
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L
m1

t L
.m2;1/
x in the case .l1;m1/D .1;1/, which is important because it corresponds to the natural

persistence space in existence results. Even when V D 0, notice that (1-12) cannot be obtained as a
consequence of the inhomogeneous Strichartz estimates by Keel and Tao [1998] and Taggart [2010].

In order to obtain (1-12), we need to show a time-weighted estimate for the wave group (1-7) in the
predual of L.r;1/, i.e., the Lorentz space L.r

0;1/, which is of its own interest (see Lemma 4.1). As will
be seen below, this estimate will lead us to global well-posedness results for (1-2) in critical spaces. We
denote the solution of the Cauchy problem for the linear homogeneous wave equation by

LEu.0/.t/D !.t/u1C P!.t/u0; where P!.t/D @t!.t/; (1-13)

and consider the space of initial data

Irad D
˚
.u0;u1/ 2 S 0rad �S 0rad WLEu.0/.t/ 2L1.RIL

.r0;1/
rad .Rn//

	
; (1-14)

where r0 D
n.p�1/

2
and the subindex “rad” means space of radial distributions. The norm k � kIrad is

defined as
k.u0;u1/kIrad D sup

t2R

kLEu.0/.t/kL.r0;1/

rad
: (1-15)

Applying the estimate (1-12), we obtain global well-posedness for (1-2) in the scaling-invariant space
E D L1.RIL

.r0;1/
rad .Rn// provided that n � 5 odd, p > .n2 C n � 4/=.n.n � 3// and k.u0;u1/kIrad

is small enough (see Theorem 3.3(I)). The continuous inclusion . PBsp

2;1
� PB

sp�1

2;1
/rad � Irad holds true

and so, in the radial case, our result extends the initial data class in [Planchon 2000]. In fact, we have
PB

sp

2;1
�L.

n.p�1/
2

;1/ (see Remark 3.4(I)) and

sup
t2R

kLEu.0/.t/k
L
.n.p�1/

2
;1/ � C sup

t2R

kLEu.0/.t/k PBsp

2;1

� Ck.u0;u1/k PBsp

2;1
� PB

sp�1

2;1

; (1-16)

where the second inequality in (1-16) can be found in [Planchon 2000, estimate (29), p. 815]. Also, we
have K  L.

n
2
;1/ and then our class of potentials is larger than the Kato one in the radial setting (see

Remark 3.4(II)). Note that

pstr < pconf < pe <
n2C n� 4

n.n� 3/

and our range of admissible powers p differs from those of [Kato and Ozawa 2003; 2004; Planchon
2000; Ribaud and Youssfi 2002]. Finally, as a byproduct, we obtain the existence of radially symmetric
self-similar solutions when u0;u1 and V are homogeneous of degrees � 2

p�1
, �pC1

p�1
and �2, respectively

(see Theorem 3.3(II)).
This paper is organized as follows. In Section 2, we recall the definition of Lorentz spaces and some

of their properties. Our results are stated in Section 3 and proved in Section 4.

2. Lorentz spaces

We start by recalling the decreasing rearrangement of a measurable function f W Rn! R,

f �.t/D inffs > 0 W df .s/� tg for t > 0;
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where df .s/ D
ˇ̌
fx 2 Rn W jf .x/j > sg

ˇ̌
is the distribution function of f . The Lorentz space L.p;z/ D

L.p;z/.Rn/ is the vector space of all measurable functions f W Rn! R such that

kf k�.p;z/ D

8̂<̂
:
�R1

0

�
t

1
p Œf �.t/�

�z dt
t

� 1
z <1 for 0< p �1; 1� z <1;

sup
t>0

t
1
p Œf �.t/� <1 for 0< p �1; z D1:

(2-1)

The space L.1;z/ is trivial for 1� z<1. Also, L.p;p/ is the Lebesgue space Lp with kf k�
.p;p/

Dk � kLp

and L.p;1/ is the so-called weak-Lp. The quantity kf k�
.p;z/

defines a complete quasinorm on L.p;z/

that in general is not a norm. Considering the double rearrangement

f ��.t/D
1

t

Z t

0

f �.s/ ds;

one can define the norm kf k.p;z/ on L.p;z/ by replacing f � by f �� in (2-1). For 1< p �1, we have
the inequality

k � k
�
.p;z/ � k � k.p;z/ �

p

p� 1
k � k
�
.p;z/;

and then k �k.p;z/ and k �k�.p;z/ are topologically equivalent. The pair .L.p;z/; k �k.p;z// is a Banach space.
From now on, we consider L.p;z/ endowed with k � k.p;z/ and k � k�

.p;z/
when 1< p �1 and 0< p � 1,

respectively. The continuous inclusions

L.p;1/ �L.p;z1/ �Lp
�L.p;z2/ �L.p;1/ (2-2)

hold true for 1� z1 � p � z2 �1 and 1� p �1. Lorentz spaces have the same scaling as Lp-spaces,
namely

kıc.f /k.p;z/ D c�
n
p kf k.p;z/;

where ı� stands for the operator ıc.f /.x/D f .cx/.
Let 0 < � < 1 and 1 � z � 1. Consider the interpolation functor . � ; � /�;z constructed via the

K�;z-method and defined on the categories of quasinormed and normed spaces. For 0< p1 < p2 �1,
1
p
D

1��
p1
C

�
p2

and 1� z1; z2 �1, we have (see [Bergh and Löfström 1976, Theorems 5.3.1 and 5.3.2])

.L.p1;z1/;L.p2;z2//�;z DL.p;z/: (2-3)

Moreover, . � ; � /�;z is exact of exponent � .
The pointwise product operator works well in Lorentz spaces; i.e., Hölder inequality is verified in this

setting (see [Hunt 1966; O’Neil 1963]). Let 1 < p1;p2;p3 �1 and 1 � z1; z2; z3 �1 be such that
1

p3
D

1
p1
C

1
p2

and 1
z1
C

1
z2
�

1
z3

. Then

kfgk.p3;z3/ � Ckf k.p1;z1/kgk.p2;z2/; (2-4)

where the constant C > 0 is independent of f and g.
Finally, we recall that the dual space of L.p;z/ is L.p

0;z0/ for 1�p; z <1 (see [Grafakos 2004, p. 52]).
Taking z D 1, we have .L.p;1//

0

DL.p
0;1/ for 1� p <1.
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3. Main results

Throughout the paper, the subindex “rad” means space of radial functions or distributions. For instance,

L
.r;z/
rad D fu 2L.r;z/ W u is radially symmetricg: (3-1)

We define the open triangles �P1P2P3
and �P2P4P5

whose vertices Pi are

P1 D

�
1

2
C

1

nC1
;
1

2
�

1

nC1

�
; P2 D

�
1

2
�

1

n�1
;
1

2
�

1

n�1

�
;

P3 D

�
1

2
C

1

n�1
;
1

2
C

1

n�1

�
; P4 D

�
1;

n�1

2n

�
and P5 D .1; 1/

(3-2)

(see Figure 1). The vertices P2 and P3 are defined as .0; 0/ and .1; 1/, respectively, when nD 1; 2.
Our first result consists in linear estimates in weak-Lp for the linear wave equation with singular

potential.

Theorem 3.1. Let n� 5 be odd and �P2P4P5
be the open triangle defined by the points P2, P4 and P5

in (3-2). If

1< r 0; s0 <
2.n� 1/

n� 3
with

�
1�

1

r
; 1�

1

s

�
2�P2P4P5

and 1

s
�

1

r
D

2

n
; (3-3)

then there are K;C0 > 0 such that the solution u of (1-1) satisfies

sup
t2R

ku. � ; t/k.r;1/ �
K

1�C0KkV k.n
2
;1/

sup
t2R

kf . � ; t/k.s;1/ (3-4)

for all f 2L1.RIL
.s;1/
rad .Rn//, provided that V 2L

.n
2
;1/

rad and C0KkV k.n
2
;1/ < 1. The supremum in

(3-4) is taken in the essential sense.

Some comments on Theorem 3.1 are in order.

Remark 3.2. (I) Let us point out that the range in Theorem 3.1 is not empty. In order to see this, set
w D 1� 1

r
and hD 1

s
�

1
r

. Now notice that
�
1� 1

r
; 1� 1

s

�
2�P2P4P5

is equivalent to�
1�

1

r
; 1�

1

s

�
D .w;w� h/ 2�P2P4P5

: (3-5)

In turn, for (3-5) we need only that 0< h< nC1
2n

holds true when hD 2
n

and n� 5.

(II) The critical Hardy potential V .x/ D c0jxj
�2 2 L

.n
2
;1/

rad .Rn/ is covered by Theorem 3.1 with
jc0j<

�
C0K

jxj�2

.n

2
;1/

��1. The constant C0 in (3-4) is that of the Hölder inequality

kV uk.s;1/ � C0kV k.n
2
;1/kuk.r;1/ with 1

s
D

2

n
C

1

r
:

(III) Taking V D 0, Theorem 3.1 also provides an estimate for the linear wave equation �uD f .

Let f!.t/gt2R be the wave group !.t/D .��/�
1
2 sin.t.��/

1
2 / and define �.f / by

�.f /.x; t/D

Z t

0

!.t � s/f .s/ ds: (3-6)
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Formally, the IVP (1-2) is equivalent to the integral equation

uDLEu.0/.t/CN .u/C T .u/; (3-7)

where
N .u/D ��.jujp�1u/ and T .u/D��.V u/:

Solutions of (3-7) are called mild solutions for the Cauchy problem (1-2).
We will look for solutions of (3-7) in the Banach space E DL1.RIL

.r0;1/
rad / whose norm is

kukE D sup
t2R

ku. � ; t/k.r0;1/: (3-8)

The supremum in (3-8) is taken in the essential sense. This space is invariant by the scaling (1-3) and
allows the existence of self-similar solutions (i.e., uD u ).

Consider

A1 D

�
nC 1

2.n� 1/
;

nC 1

2.n� 1/
�

2

n

�
and A2 D

�
1;

n� 2

n

�
:

Let �A1;A2Œ be the open segment line. Notice that �A1;A2Œ 2�P2P4P5
n�P1P2P3

for all n� 4.

P1

P2

P3

P4

P5

A1

A2

1
p

1
q

Figure 1. �A1;A2Œ 2�P2P4P5
n�P1P2P3

.

Observe that p > .n2C n� 4/=.n.n� 3// is equivalent to�
1�

2

n.p� 1/
; 1�

2p

n.p� 1/

�
2 �A1;A2Œ: (3-9)

Our well-posedness and self-similarity results for (1-2) are stated below.
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Theorem 3.3. Let n� 5 be odd, p>.n2Cn�4/=.n.n�3// and r0Dn.p�1/=2. Suppose .u0;u1/2Irad

and V 2L
.n

2
;1/

rad .

(I) (Global well-posedness) There are ";C1 > 0 such that if k.u0;u1/kIrad � ", then the IVP (1-2) has a
unique mild solution u 2L1.RIL

.r0;1/
rad / satisfying

sup
t2R

ku. � ; t/k.r0;1/ �
2"

1� �

provided that �DC1kV k.n
2
;1/ < 1. Moreover, the solution u depends continuously on data .u0;u1/

and potential V .

(II) (Self-similarity) Under the hypotheses of item (I), the solution u is self-similar provided that
u0, u1, V are homogeneous of degrees � 2

p�1
;�pC1

p�1
and �2, respectively.

In what follows, we make some comments on Theorem 3.3.

Remark 3.4. (I) Taking V D 0, Theorem 3.3 provides a well-posedness result for semilinear wave
equations in odd dimensions n � 5. Moreover, we have the continuous inclusions (see [Bergh and
Löfström 1976, p. 154])

PH s
r1
,! PBs

r1;1
,!L.r2;1/; (3-10)

where 1
r1
�

s
n
D

1
r2

and r2 � r1. In particular, for sp D
n
2
�

2
p�1

we obtain PH sp ,! PB
sp

2;1
,!L.

n.p�1/
2

;1/.
In fact, the inclusions in (3-10) are strict and then the space L.

n.p�1/
2

;1/ is larger than PBsp

2;1
, i.e., the

one considered by Planchon [2000]. So, Theorem 3.3 extends the existence result of [Planchon 2000] in
the case of radial solutions and n� 5 odd.

(II) Let K be the Kato class of potentials defined in (1-9). In view of the continuous strict inclusions

L
n
2
�ı
\L

n
2
Cı ,!L.

n
2
;1/ ,! K ,!L.

n
2
;1/; ı > 0; (3-11)

our class for V is larger than K in the radial setting. For L.
n
2
;1/ ,!K, we can use Hölder inequality (2-4)

to obtain

kV kK � C

 1

jx�yj.n�2/


. n

n�2
;1/
kV k.n

2
;1/ �LkV k.n

2
;1/;

where
LD C

jx�yj�.n�2/

. n

n�2
;1/

is a positive constant. Next recall that f 2L.p;1/ if and only if there is a constant C > 0 such that

jEj
1
p
�1

Z
E

jf .y/j dy � C (3-12)

for every Borel set E. The supremum of the left-hand side of (3-12) over all Borel sets gives an equivalent
norm in L.p;1/. It follows from (3-12) that K ,! L.

n
2
;1/. In fact, it is sufficient to check (3-12) for

every open ball E D Br .x/D fy 2 Rn W jy �xj< rg. For that, we estimateZ
Br .x/

jV .y/j dy �

Z
Br .x/

rn�2

jx�yjn�2
jV .y/j dy � CkV kKjBr .x/j

1� 2
n;

where jBr .x/j D
�
�

n
2 =�

�
n
2
C 1

��
rn is the volume of Br .x/.
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4. Proofs

Collecting estimates in [Brenner 1975; Peral 1980; Strichartz 1970], we have that the wave group
f!.t/gt2R is bounded from Ll1 to Ll2 at t D 1, i.e.,

k!.1/hkl2
�M1khkl1

; (4-1)

provided that
�

1
l1
; 1

l2

�
2�P1P2P3

, where X stands for the closure of X. It follows from scaling properties
of !.t/ and Lp-spaces that

k!.t/hkl2
�M1jt j

�n. 1
l1
� 1

l2
/C1
khk

l1
: (4-2)

Interpolating the estimate (4-2) (see, e.g., [Bergh and Löfström 1976]), we get

k!.t/hk.l2;z/ �M2jt j
�n. 1

l1
� 1

l2
/C1
khk.l1;z/; (4-3)

where 1� z �1. Assuming radial symmetry for h, the authors of [Ebert et al. 2016] extended the range
of (4-2) to the closed triangle �P2P4P5

except for the semiopen segment line �P1;P4� (see Figure 1).
Thus, again by interpolation, for

�
1
l1
; 1

l2

�
belonging to the open triangle �P2P4P5

and 1 � z �1, we
obtain the estimate

k!.t/hk.l2;z/ �M3jt j
�n. 1

l1
� 1

l2
/C1
khk.l1;z/ (4-4)

for all h 2L
.l1;z/
rad .Rn/.

Yamazaki [2000] dealt with Navier–Stokes equations and Stokes and heat semigroups in weak-Lp

spaces. The next estimate could be seen as a version of the Yamazaki estimate [2000, Corollary 2.3] for the
wave group f!.t/gt2R. Notice that it consists in a time-weighted estimate in preduals of weak-Lp spaces.

Lemma 4.1. Let f be radially symmetric, n� 3 odd, and let �P2P4P5
be the open triangle defined by

the points P2;P4;P5 in (3-2). If 1< d1; d2 < 2.n� 1/=.n� 3/ .1 if nD 3/ with
�

1
d1
; 1

d2

�
2�P2P4P5

then jt jn.
1

d1
� 1

d2
/�2

!.t/f 2L1.RIL.d2;1/.Rn// and there is C > 0 such thatZ
R

jt j
n

d1
� n

d2
�2
k!.t/f k.d2;1/ dt � Ckf k.d1;1/ (4-5)

for all f 2L
.d1;1/
rad .Rn/.

Proof. Let p1 and p2 be such that p1< d1<p2, 1
d1
�

1
p2
< 1

n
and�

1

pj
;

1

d2

�
2�P2P4P5

for j D 1; 2:

Using the estimate (4-4) with .l1; l2; z/D .p1; d2; 1/ and .l1; l2; z/D .p2; d2; 1/, we obtain

k!.t/f k.d2;1/ � Ck jt j
1C n

d2
� n

pk kf k.pk ;1/ for k D 1; 2: (4-6)

Next consider the sublinear operator „ as a map from L
.p1;1/
rad \L

.p2;1/
rad to a function „.f /.t/ in R

defined by
„.f /.t/D jt j

n
d1
� n

d2
�2
k!.t/f k.d2;1/:
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In view of (4-6), we can estimate

„.f /.t/� Ck jt j
n

d1
� n

d2
�2
jt j

1C n
d2
� n

pk kf k.pk ;1/ D Ck jt j
n

d1
� n

pk
�1
kf k.pk ;1/ for k D 1; 2: (4-7)

Hence, the operator „ is bounded from L
.pk ;1/
rad .Rn/ to L.sk ;1/.R/, where 1

sk
D 1�

�
n

d1
�

n
pk

�
. Indeed,

it follows from (4-7) that

k„.f /.t/kL.sk ;1/.R/ � Ck

jt j� 1
sk


L.sk ;1/.R/

kf k.pk ;1/ �Lkkf k.pk ;1/; (4-8)

where Lk D Ck

jt j�1=sk


L.sk ;1/.R/
, k D 1; 2.

Take now � 2 .0; 1/ such that 1
d1
D

1��
p1
C

�
p2

. So, we have 1��
s1
C

�
s2
D 1 and 0 < s1 < 1 < s2. By

interpolation, it follows that

L
.d1;1/
rad D .L

.p1;1/
rad ;L

.p2;1/
rad /�;1 and L1.R/D

�
L.s1;1/.R/;L.s2;1/.R/

�
�;1

and then

k„.f /.t/kL1.R/ � m1��
1 m�

2 kf k.d1;1/

�L1��
1 L�2kf k.d1;1/;

where mk D k„.f /kL
.pk ;1/

rad !L.sk ;1/
�Lk . This gives us the estimate (4-5). �

Proof of Theorem 3.1. Let us rewrite �.f / in (3-6) as

�.f /.x; t/D

Z 1
�1

Z
Rn

W .x�y; t � s/f .y; s/ dy ds;

where the kernel W is given by

cW .�; t � s/D

�
sin..t � s/j�j/=j�j; 0< s < t;

0; otherwise:

Given a suitable function � 2 C1.Rn/, we set

h�.f /; �i D

Z
Rn

�.f /.x; t/�.x/ dx:

Here all functions are considered to be radially symmetric. Using Tonelli’s theorem and the Hölder
inequality (2-4), we obtain

jh�.f /; �ij �

Z 1
�1

˝
jf . � ; �/j; j!.t � �/�j

˛
d�

� C

Z 1
�1

kf . � ; �/k.s;1/k!.t � �/�k.s0;1/ d�: (4-9)

In (4-9) we have proceeded somewhat formally but we are going to see that its right-hand side is indeed
finite, which justifies the above computations. Take .d1; d2/D .r

0; s0/ and note that
n

d1

�
n

d2

� 2D
n

r 0
�

n

s0
� 2D 0:
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Using duality in L.p;z/, the inequality (4-9) and Lemma 4.1 with .d1; d2/D .s
0; r 0/, it follows that

k�.f /. � ; t/k.r;1/ D sup
k�k.r 0;1/D1

jh�.f /; �ij

� C sup
t2R

kf . � ; t/k.s;1/ sup
k�k.r 0;1/D1

Z 1
�1

k!.t � �/�k.s0;1/ d�

�K sup
t2R

kf . � ; t/k.s;1/ sup
k�k.r 0;1/D1

fk�k.r 0;1/g

�K sup
t2R

kf . � ; t/k.s;1/ (4-10)

for a.e. t 2 R. Next let Qf D f CV u and uD �. Qf / be the mild solution of (1-1). Since 1
s
D

1
n=2
C

1
r

, the
Hölder inequality (2-4) gives

kV uk.s;1/ � C0kV k.n
2
;1/ku. � ; t/k.r;1/: (4-11)

Thus, in view of (4-10), we get

sup
t2R

ku. � ; t/k.r;1/ �K sup
t2R

k Qf . � ; t/k.s;1/

�K sup
t2R

kf . � ; t/k.s;1/CKC0kV k.n
2
;1/ sup

t2R

ku. � ; t/k.r;1/;

which implies the desired estimate because KC0kV k.n
2
;1/ < 1. �

Proof of Theorem 3.3. Part (I). (Well-posedness) Take r D r0 D
n.p�1/

2
and s D r0

p
, and note that

1

s
�

1

r
D .p� 1/

1

r0
D

2

n
:

In view of (3-9), we have
�
1� 1

r
; 1� 1

s

�
2�P2P4P5

and then we can employ Theorem 3.1 with V D 0 in
order to obtain

k�.f /kE �Kkf k
L1.RIL

.r0=p;1/

rad /
: (4-12)

Since 2
n
C

1
r0
D

p
r0

, it follows from (4-12) and the Hölder inequality (2-4) that

kT .u/� T .v/kE D kT .u� v/kE D sup
t2R

k�.V .u� v//. � ; t/k.r0;1/

�K sup
t2R

kV .u� v/. � ; t/k. r0
p
;1/

�KC0kV k.n
2
;1/ sup

t2R

ku. � ; t/� v. � ; t/k.r0;1/

� �ku� vkE ; (4-13)

where � D C1kV k.n
2
;1/, C1 D KC0, and C0 is the constant in the Hölder inequality kV hk. r0

p
;1/ �

C0kV k.n
2
;1/khk.r0;1/. Next recall the inequalityˇ̌

jujp�1u� jvjp�1v
ˇ̌
� C ju� vj.jujp�1

Cjvjp�1/
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and let p
r0
D

1
r0
C

p�1
r0

. Using the Hölder inequality (2-4), we can estimatejujp�1u� jvjp�1v

. r0

p
;1/ � C

ju� vj.jujp�1
Cjvjp�1/


. r0

p
;1/

� Cku� vk.r0;1/

.jujp�1
Cjvjp�1/


. r0

p�1
;1/

� Cku� vk.r0;1/

�
kuk

p�1

.r0;1/
Ckvk

p�1

.r0;1/

�
: (4-14)

Estimates (4-12) and (4-14) yield

kN .u/�N .v/kE D
�.jujp�1u� jvjp�1v/. � ; t/


E

�K
.jujp�1u� jvjp�1v/. � ; t/


L1.RIL

.r0=p;1/

rad /

� C2ku� vkE.kuk
p�1
E
Ckvk

p�1
E

/: (4-15)

Let ‰.u/D LEu.0/.t/CN .u/C T .u/ be defined in the closed ball B" D fu 2E W kukE � 2"=.1� �/g,
where " > 0 and �D C1kV k.n=2;1/ < 1. We are going to show that ‰ is a contraction in B" for " small
enough. For u; v 2 B", we have

k‰.u/�‰.v/kE � kN .u/�N .v/kE CkT u� T vkE

� C2ku� vkE.kuk
p�1
E
Ckvk

p�1
E

/C �ku� vkE

� ku� vkE

�
C2

�
2"

1� �

�p�1

CC2

�
2"

1� �

�p�1

C �

�
�

�
C2

2p"p�1

.1� �/p�1
C �

�
ku� vkE : (4-16)

Choose " > 0 in such a way that �
C2

2p"p�1

.1� �/p�1
C �

�
< 1: (4-17)

Moreover, taking v D 0 in (4-16), we arrive at

k‰.u/kE � kLEu.0/kE Ck‰.u/�‰.0/kE � "C

�
C2

2p�1"p�1

.1� �/p�1
C �

�
2"

1� �
<

2"

1� �

for all u 2 B". Hence, the map ‰ W B"! B" is a contraction in E. It follows that its fixed point in B" is
the unique solution for (3-7) such that

kukE �
2"

1� �
:

The continuous dependence follows naturally from the above estimates and fixed point argument. We
include its proof for the sake of completeness. Let u; v 2 B" be the unique mild solutions associated
to data .u0;u1;V / and .v0; v1;U /, respectively. Then, defining LEu.0/.t/ D !.t/u1 C P!.t/u0 and
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LEv.0/.t/D !.t/v1C P!.t/v0, we have

ku� vkE � kLEu.0/�LEv.0/kE CkN .u/�N .v/kE CkT .u/� T .v/kE
D kLEu.0/�LEv.0/kE CkN .u/�N .v/kE C

��.V �U /vCV .u� v/
�

E

� kLEu.0/�LEv.0/kE CC2

2p"p�1

.1� �/p�1
ku� vkE CKC0kV �U k.n

2
;1/kvkE C �ku� vkE

� k.u0� v0;u1� v1/kIrad C

�
C2

2p"p�1

.1� �/p�1
C �

�
ku� vkE C

2KC0"

1� �
kV �U k.n

2
;1/;

which yields the desired continuity because of (4-17).

Part (II). (Self-similarity) First note that the homogeneous pair .u0;u1/ is in Irad. Due to the fixed point
argument, the solution u in item (I) is the limit in E DL1.RIL

.r0;1/
rad / of the sequence

u.1/ DLEu.0/.t/ and u.kC1/
DLEu.0/.t/CN .u.k//C T .u.k// for k 2 N: (4-18)

Using the homogeneity properties of u0;u1 and V , one can show that u.k/ is invariant by (1-3), that is,

u.k/ D .u.k// WD 
2

p�1 u.k/.x;  t/:

Now, since .E; k � kE/ is invariant by (1-3), a change of variable gives

k.u.k// � .u/kE D k.u
.k/
�u/kE D ku

.k/
�ukE! 0; as k!1: (4-19)

Since .u.k// D u.k/, it follows that u.k/ also converges to .u/ . Then, u � .u/ for each  > 0, as
required. �
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OPTIMAL WELL-POSEDNESS FOR
THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER–STOKES SYSTEM

WITH GENERAL VISCOSITY

COSMIN BURTEA

In this paper we obtain new well-posedness results concerning a linear inhomogeneous Stokes-like
system. These results are used to establish local well-posedness in the critical spaces for initial density �0

and velocity u0 such that �0 � � 2 PB
3=p
p;1 .R

3/, u0 2
PB

3=p�1
p;1 .R3/, p 2

�
6
5
; 4
�

for the inhomogeneous
incompressible Navier–Stokes system with variable viscosity. To the best of our knowledge, regarding the
3-dimensional case, this is the first result in a truly critical framework for which one does not assume any
smallness condition on the density.

1. Introduction

In this paper we deal with the well-posedness of the inhomogeneous, incompressible Navier–Stokes
system 8̂̂̂<̂

ˆ̂:
@t�C div.�u/D 0;

@t .�u/C div.�u˝u/� div.�.�/D.u//CrP D 0;

div uD 0;

ujtD0 D u0.

(1-1)

In the above, � > 0 stands for the density of the fluid, u 2 Rn is the fluid’s velocity field, while P is the
pressure. The viscosity coefficient � is assumed to be a smooth, strictly positive function of the density,
while

D.u/DruCDu

is the deformation tensor. This system is used to study fluids obtained as a mixture of two (or more) incom-
pressible fluids that have different densities: fluids containing a melted substance, polluted air/water etc.

There is a very rich literature devoted to the study of the well-posedness of (1-1). Briefly, the question of
existence of weak solutions with finite energy was first considered by Kažihov [1974] (see also [Antontsev
et al. 1990]) in the case of constant viscosity. The case with a general viscosity law was treated in [Lions
1996]. Weak solutions for more regular data were considered in [Desjardins 1997]. Recently, weak
solutions were investigated by Huang, Paicu and Zhang in [Huang et al. 2013c].

This work was partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS -
UEFISCDI, project number PN-II-RU-TE-2014-4-0320.
MSC2010: 35Q30, 76D05.
Keywords: inhomogeneous Navier–Stokes system, critical regularity, Lagrangian coordinates.
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The unique solvability of (1-1) was first addressed in the seminal work of Ladyzhenskaya and Solonnikov
[1975]. More precisely, considering u0 2W 2�2=p;p.�/, with p > 2, a divergence-free vector field that
vanishes on @� and �0 2 C 1.�/ bounded away from zero, they construct a global strong solution in
the 2-dimensional case and a local solution in the 3-dimensional case. Moreover, if u0 is small in
W 2�2=p;p.�/ then global well-posedness holds true.

The question of weak-strong uniqueness was addressed in [Choe and Kim 2003] for the case of
sufficiently smooth data with vanishing viscosity.

Over the last thirteen years, efforts were made to obtain well-posedness results in the so-called critical
spaces, i.e., the spaces which have the same invariance with respect to time and space dilation as the
system itself, namely�

.�0.x/;u0.x//! .�0.lx/; lu0.lx//;

.�.t;x/;u.t;x//!
�
�.l2t; lx/; lu.l2t; lx/; l2P .l2t; lx/

�
:

For more details and explanations for this classical approach we refer to [Danchin 2003] or [Danchin and
Mucha 2015]. In the Besov space context, which includes in particular the more classical Sobolev spaces,
these are

�0� N� 2 PB
n=p1
p1;r1

and u0 2
PBn=p2�1
p2;r2

; (1-2)

where N� is some constant density state and n is the space dimension. Working with densities close (in
some appropriate norm) to a constant has led to a rich literature. In [Danchin 2003] local and global
existence results are obtained for the case of constant viscosity and by taking the initial data

�0� N� 2L1\ PB
n=2
2;1

and u0 2
PB

n=2�1
2;1

and under the assumption that k�0� N�kL1\ PBn=2

2;1

is sufficiently small. The case with variable viscosity

and for initial data
�0� N� 2 PB

n=p
p;1

and u0 2
PB

n=p�1
p;1

;

p 2 Œ1; 2n/, is treated in [Abidi 2007]. However, uniqueness is guaranteed once p 2 Œ1; n/. These results
were further extended by H. Abidi and M. Paicu [2007] by noticing that �0� N� can be taken in a larger
Besov space. B. Haspot [2012] established results in the same spirit as those mentioned above (however,
the results are obtained in the nonhomogeneous framework and thus do not fall into the critical framework)
in the case where the velocity field is not Lipschitz. Using the Lagrangian formulation, R. Danchin
and P. B. Mucha [2012], established local and global results for (1-1) with constant viscosity when
�0� N� 2M. PB

n=p�1
p;1

/, u0 2
PB

n=p�1
p;1

and under the smallness condition

k�0� N�kM. PB
n=p�1

p;1
/
� 1;

where M. PB
n=p�1
p;1

/ stands for the multiplier space of PBn=p�1
p;1

. In particular, functions with small jumps
enter this framework. Moreover, as a consequence of their approach, the range of Lebesgue exponents
for which uniqueness of solutions holds is extended to p 2 Œ1; 2n/. In [Paicu and Zhang 2012; Huang
et al. 2013a; 2013b; 2013c] the authors improve the smallness assumptions used in order to obtain global
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existence. To summarize, all the previous well-posedness results in critical spaces were established
assuming the density is close in some sense to a constant state.

When the latter assumption is removed, one must impose more regularity on the data. For the case
of constant viscosity, R. Danchin [2004] obtained local well-posedness and global well-posedness in
dimension nD 2 for data drawn from the nonhomogeneous Sobolev spaces:

.�0� N�;u0/ 2H n=2C˛
�H n=2�1Cˇ

with ˛; ˇ > 0. The same result for the case of the general viscosity law is established in [Abidi 2007].
For data with non-Lipschitz velocity results were established in [Haspot 2012]. Concerning rougher
densities, considering �0 2L1.Rd / bounded from below and u0 2H 2.Rd /, Danchin and Mucha [2013]
constructed a unique local solution. Again, supposing the density is close to some constant state, they
proved global well-posedness. These results are generalized in [Paicu et al. 2013]. Taking the density
as above, the authors construct a global unique solution provided that u0 2 H s.R2/ for any s > 0 in
the 2-dimensional case and a local unique solution in the 3-dimensional case considering u0 2H 1.R3/.
Moreover, assuming u0 is suitably small, the solution constructed is global even in the 3-dimensional case.

In critical spaces of the Navier–Stokes system, i.e., (1-2) there are few well-posedness results. Very
recently, in the 2-dimensional case and allowing variable viscosity, H. Xu, Y. Li and X. Zhai [2016]
constructed a unique local solution to (1-1) provided that the initial data satisfy �0� N� 2 PB

2=p
p;1

.R2/ and
u0 2

PB
2=p�1
p;1

.R2/. Moreover, if �0� N� 2Lp \ PB
2=p
p;1

.R2/ and the viscosity is supposed constant, their
solution becomes global. In the 3-dimensional situation, to the best of our knowledge, the results that are
closest to the critical regularity are those presented in [Abidi et al. 2012; 2013] (for a similar result in the
periodic case one can consult [Poulon 2015]). More precisely, in three dimensions, assuming

�0� N� 2L2
\ PB

3=2
2;1

and u0 2
PB

1=2
2;1

and taking constant viscosity, H. Abidi, G. Gui and P. Zhang [Abidi et al. 2012] show the local well-
posedness of system (1-1). Moreover, if the initial velocity is small then global well-posedness holds true.
In [Abidi et al. 2013] they establish the same kind of result for initial data

�0� N� 2L�\ PB
3=�

�;1
and u0 2

PB
3=p�1
p;1

;

where � 2 Œ1; 2�, p 2 Œ3; 4� are such that 1
�
C

1
p
> 5

6
and 1

�
�

1
p
�

1
3

.
One of the goals of the present paper is to establish local well-posedness in the critical spaces

�0� N� 2 PB
3=p
p;1

.R3/; u0 2
PB

3=p�1
p;1

.R3/; p 2
�

6
5
; 4
�

for system (1-1)

� with general smooth variable viscosity law,

� without any smallness assumption on the density,

� without any extra low frequencies assumption. In particular, we generalize the local existence and
uniqueness result of [Abidi et al. 2012], thus achieving the critical regularity.
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As in [Danchin and Mucha 2012], we will not work directly with system (1-1); instead we will use its
Lagrangian formulation. By proceeding so, we are naturally led to consider the following Stokes problem
with time-independent, nonconstant coefficients:8<:

@tu� a div.bD.u//C arP D f;

div uD div R,
ujtD0 D u0:

(1-3)

We establish global well-posedness results for system (1-3). This can be viewed as a first step towards
generalizing the results of Danchin and Mucha [2015, Chapter 4] for the case of general viscosity and
without assuming the density is close to a constant state. Let us mention that the estimates we obtain
for system (1-3) have a wider range of applications: in a forthcoming paper we will investigate the
well-posedness issue of the Navier–Stokes–Korteweg system under optimal regularity assumptions.

To summarize all the above, our main result reads:

Theorem 1.1. Consider p 2
�

6
5
; 4
�
. Assume that there exist positive constants . N�; �?; �?/ such that

�0 � N� 2 PB
3=p
p;1

.R3/ and 0 < �? < �0 < �
?. Furthermore, consider u0 a divergence-free vector field

with coefficients in PB3=p�1
p;1

.R3/. Then, there exists a time T > 0 and a unique solution .�;u;rP / of
system (1-1) with

�� N�2CT . PB
3=p
p;1

.R3//\L1T .
PB

3=p
p;1

.R3//; u2CT . PB
3=p�1
p;1

.R3//; .@tu;r
2u;rP /2L1

T .
PB

3=p�1
p;1

.R3//:

One salutary feature of the Lagrangian formulation is that the density becomes independent of time.
More precisely, considering .�;u;rP / a solution of (1-1) and denoting by X the flow associated to the
vector field u,

X.t;y/D yC

Z t

0

u.�;X.�;y// dy:

We introduce the new Lagrangian variables

N�.t;y/D �.t;X.t;y//; Nu.t;y/D u.t;X.t;y// and P .t;y/D P .t;X.t;y//:

Then, using the chain rule and Proposition 3.23 we gather that N�.t; � /D �0 and8<:
�0@t Nu� div.�.�0/A NuDA Nu. Nu//CAT

Nu rP D 0;

div.A Nu Nu/D 0;

NujtD0 D u0;

(1-4)

where A Nu is the inverse of the differential of X , and

DA. Nu/DD NuA NuCAT
Nu r Nu:

Note that we can give a meaning to (1-4) independently of the Eulerian formulation by stating

X.t;y/D yC

Z t

0

Nu.�;y/ d�:

Theorem 1.1 will be a consequence of the following result:
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Theorem 1.2. Consider p 2
�

6
5
; 4
�
. Assume there exists positive . N�; �?; �?/ such that �0� N� 2 PB

3=p
p;1

.R3/

and 0 < �? < �0 < �?. Furthermore, consider u0 a divergence-free vector field with coefficients in
PB

3=p�1
p;1

.R3/. Then, there exists a time T > 0 and a unique solution . Nu;rP / of system (1-4) with

Nu 2 CT . PB
3=p�1
p;1

.R3// and .@t Nu;r
2
Nu;rP / 2L1

T .
PB

3=p�1
p;1

.R3//:

Moreover, there exists a positive constant C D C.�0/ such that

kuk
L1

T
. PB

3=p�1

p;1
/
Ck.r2u;rP /k

L1
T
. PB

3=p�1

p;1
/
� ku0k PB3=p�1

p;1

exp.C.T C 1//:

The study of system (1-4) naturally leads to the Stokes-like system (1-3). In Section 2 we establish the
global well-posedness of system (1-3). More precisely, we prove:

Theorem 1.3. Consider n 2 f2; 3g and p 2 .1; 4/ if n D 2 or p 2
�

6
5
; 4
�

if n D 3. Assume there
exist positive constants .a?; b?; a?; b?; Na; Nb/ such that a� Na 2 PB

n=p
p;1

.Rn/, b� Nb 2 PB
n=p
p;1

.Rn/ and

0< a? � a� a?; 0< b? � b � b?:

Furthermore, consider the vector fields u0 and f with coefficients in PBn=p�1
p;1

.Rn/ and L1
loc.
PB

n=p�1
p;1

.Rn//

respectively. Also, consider the vector field R 2 .S 0.Rn//n with1

QR 2 C
�
Œ0;1/I PB

n=p�1
p;1

.Rn/
�

and .@tR;r div R/ 2L1
loc.
PB

n=p�1
p;1

.Rn//

such that

div u0 D div R.0; � /:

Then, system (1-3) has a unique global solution .u;rP / with

u 2 C
�
Œ0;1/; PB

n=p�1
p;1

.Rn/
�

and @tu;r
2u;rP 2L1

loc.
PB

n=p�1
p;1

.Rn//:

Moreover, there exists a constant C D C.a; b/ such that

kuk
L1t .

PB
n=p�1

p;1
/
Ck.@tu;r

2u;rP /k
L1

t .
PB

n=p�1

p;1
/

�
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�1

p;1
/

�
exp.C.t C 1// (1-5)

for all t 2 Œ0;1/.

The difficulty in establishing such a result comes from the fact that the pressure and velocity are
“strongly” coupled as opposed to the case where � is close to a constant; see Remark 2.11 below. The key
idea is to use the high-low frequency splitting technique first introduced in [Danchin 2007] combined
with the particular structure of the divergence-free part of arP , i.e.,

P.arP /D P..a� Na/rP /D P..a� Na/rP /� .a� Na/P.rP /

WD ŒP; a� Na�rP;

1P is the Leray projector over divergence-free vector fields, QD Id�P .
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which is, loosely speaking, more regular than rP. Let us mention that a similar principle holds for u,
which is divergence free:2 whenever we estimate some term of the form Q.bM.D/u/, where b lies in an
appropriate Besov space and M.D/ is some pseudodifferential operator, we may write it as

Q.bM.D/u/D ŒQ; b�M.D/u

and use the fact that the latter expression is more regular than M.D/u; see Proposition 3.21.
The proof of Theorem 1.3 in the 3-dimensional case is more subtle. Loosely speaking, in order to close

the estimates for system (1-3) one should work in a space on which the solution operator corresponding
to the elliptic equation div.arP / D divf is continuous. It is for this reason that we first prove a
more restrictive result by demanding extra low-frequency information on the initial data. Then, using a
perturbative version of Danchin and Mucha’s results [2015] we arrive at constructing a solution with the
optimal regularity. Uniqueness is obtained by a duality method.

Once the estimates of Theorem 1.3 are established, we proceed with the proof of Theorem 1.2, which
is the object of Section 3. Finally, we show the equivalence between system (1-4) and system (1-1) thus
achieving the proof of Theorem 1.1. We end this paper with an Appendix where results of Littlewood–Paley
theory used through the text are gathered.

We end this section with some observations regarding the global existence issue. As opposed to the case
when � is supposed to be a small perturbation of a constant state, when considering the linearized system of
the Lagrangian formulation, i.e., system (1-3), we obtain the estimates (1-5), which have a time-dependent
right-hand side term. This in particular prevents us from adapting the arguments from [Danchin and
Mucha 2012] to our situation and obtaining a global solution for system (1-4) and consequently for the
system (1-1). In fact, even if we were able to construct such a solution for system (1-4), it is not clear how
we could go back into the original formulation as passing from the Eulerian formulation to the Lagrangian
one needs some smallness condition on the k � k

L1
t .
PB

n=p

p;1
/
-norm of the velocity.

2. The Stokes system with nonconstant coefficients

Pressure estimates. Before handling system (1-3) we shall study the elliptic equation

div.arP /D divf: (2-1)

For the reader’s convenience let us cite the following classical result, a proof of which can be found, for
instance, in [Danchin 2010]:

Proposition 2.1. Consider a 2L1.Rn/ and a constant a? such that

a� a? > 0:

For all vector fields f with coefficients in L2.Rn/, there exists a tempered distribution P unique up to
constant functions such that rP 2L2.Rn/ and equation (2-1) is satisfied. In addition, we have

a?krPkL2 � kQf kL2 :

2and thus QuD 0.
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Recently, regarding the 2-dimensional case, Xu et al. [2016], studied the elliptic equation (2-1) with the
data .a� Na; f / in Besov spaces. Using a different approach, we obtain estimates in both 2-dimensional
and 3-dimensional situations. Let us also mention that our method allows to obtain a wider range of
indices than the one of [Xu et al. 2016, Proposition 3.1(i)]. We choose to focus on the 3-dimensional
case. We aim at establishing the following result:

Proposition 2.2. Consider p 2
�

6
5
; 2
�

and q 2 Œ1;1/ such that 1
p
�

1
q
�

1
2

. Assume there exist positive
constants . Na; a?; a?/ such that a� Na 2 PB

3=q
q;1
.R3/ and 0 < a? � a � a?. Furthermore, consider f 2

PB
3=p�3=2
p;2

.R3/. Then there exists a tempered distribution P unique up to constant functions such that
rP 2 PB

3=p�3=2
p;2

.R3/ and equation (2-1) is satisfied. Moreover, the following estimate holds true:

krPk PB3=p�3=2

p;2

.
�

1

Na
C

1

a
�

1

Na


PB

3=q

q;1

��
1C

1

a?
ka� Nak PB3=q

q;1

�
kQf k PB3=p�3=2

p;2

: (2-2)

Remark 2.3. Working in Besov spaces with third index r D 2 is enough in view of the applications
that we have in mind. However, similar estimates do hold true when the third index is chosen in the
interval Œ1; 2�.

Proof. Because p< 2, Proposition 3.7 ensures that PB3=p�3=2
p;2

,!L2D PB0
2;2

and owing to Proposition 2.1,
we get the existence of P 2 S 0.R3/ with rP 2L2 and

a?krPkL2 � kQf kL2 : (2-3)

Moreover, as Q is a continuous operator on L2, we deduce from (2-1) that

Q.arP /DQf: (2-4)

Using the Bony decomposition (see Definition 3.14 and the remark that follows) and the fact that
P.rP /D 0, we write

P.arP /D P. PT 0
rP .a� Na//C ŒP; PTa�Na�rP:

Using Proposition 3.16 along with Proposition 3.7 and relation (2-3), we get

kP. PT 0
rP .a� Na//k PB3=p�3=2

p;2

. krPkL2 ka� Nak PB3=p�3=2

p?;2

. 1

a?
kQf kL2 ka� Nak PB3=q

q;1

; (2-5)

where
1

p
D

1

2
C

1

p?
:

Next, proceeding as in Proposition 3.20 we getŒP; PTa�Na�rP

PB

3=p�3=2

p;2

. krak PB3=p�5=2

p?;2

krPkL2 . 1

a?
kQf kL2ka� Nak PB3=q

q;1

: (2-6)

Putting together relations (2-5) and (2-6) we get

kP.arP /k PB3=p�3=2

p;2

. 1

a?
kQf kL2ka� Nak PB3=q

q;1

:
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Combining this with (2-4) and Proposition 3.7, we find

karPk PB3=p�3=2

p;2

.
�
1C

1

a?
ka� Nak PB3=q

q;1

�
kQf k PB3=p�3=2

p;2

:

Of course, writing

rP D
1

a
arP;

using product rules one gets

krPk PB3=p�3=2

p;2

.
�

1

Na
C

1

a
�

1

Na


PB

3=q

q;1

��
1C

1

a?
ka� Nak PB3=q

q;1

�
kQf k PB3=p�3=2

p;2

(2-7)

This concludes the proof. �

Applying the same technique as above leads to the 2-dimensional estimate:

Proposition 2.4. Consider p 2 .1; 2/ and q 2 Œ1;1/ such that 1
p
�

1
q
�

1
2

. Assume there exists positive
constants . Na; a?; a?/ such that a� Na 2 PB

2=q
q;1
.R2/ and 0 < a? � a � a?. Furthermore, consider f 2

PB
2=p�1
p;2

.R2/. Then there exists a tempered distribution P unique up to constant functions such that
rP 2 PB

2=p�1
p;2

.R2/ and equation (2-1) is satisfied. Moreover, the following estimate holds true:

krPk PB2=p�1

p;2

.
�

1

Na
C

1

a
�

1

Na


PB

2=q

q;1

��
1C

1

a?
ka� Nak PB2=q

q;1

�
kQf k PB2=p�1

p;2

: (2-8)

Let us point out that the restriction p > 6
5

comes from the fact that we need 3
p
�

5
2
< 0 in relation (2-6).

In two dimensions, instead of 3
p
�

5
2

we will have 2
p
� 2, which is negative provided p > 1.

The next result covers the range of integrability indices larger than 2:

Proposition 2.5. Consider p 2 .2; 6/ and q 2 Œ1;1/ such that 1
p
C

1
q
�

1
2

. Assume there exist positive
constants . Na; a?; a?/ such that a � Na 2 PB

3=q
q;1
.R3/ and 0 < a? � a � a?. Furthermore, consider f 2

PB
3=p�3=2
p;2

.R3/ and a tempered distribution P with rP 2 PB
3=p�3=2
p;2

.R3/ such that equation (2-1) is
satisfied. Then, the following estimate holds true:

krPk PB3=p�3=2

p;2

.
�

1

Na
C

1

a
�

1

Na


PB

3=q

q;1

��
1C

1

a?
ka� Nak PB3=q

q;1

�
kQf k PB3=p�3=2

p;2

: (2-9)

Proof. Notice that p0, the conjugate Lebesgue exponent of p, satisfies p0 2
�

6
5
; 2
�

and 1
p0
�

1
q
�

1
2

. Thus,
by Proposition 2.2, for any g belonging to the unit ball of S\ PB3=p0�3=2

p0;2
there exists a Pg 2 S 0.R3/ with

rPg 2 S\ PB
3=p0�3=2
p0;2

such that
div.arPg/D div g

and
krPgk PB3=p0�3=2

p0;2

.
�

1

Na
C

1

a
�

1

Na


PB

3=q

q;1

��
1C

1

a?
ka� Nak PB3=q

q;1

�
:

We write
hrP;gi D �hP; div gi D �hP; div.arPg/i

D �hdivQf;Pgi D hQf;rPgi;
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and consequently

jhrP;gij. kQf k PB3=p�3=2

p;2

krPgk PB3=p0�3=2

p0;2

.
�

1

Na
C

1

a
�

1

Na


PB

3=q

q;1

��
1C

1

a?
ka� Nak PB3=q

q;1

�
kQf k PB3=p�3=2

p;2

:

Using Proposition 3.8, we get that relation (2-9) holds true. �

As in the previous situation, by applying the same technique we get a similar result in two dimensions:

Proposition 2.6. Consider p 2 .2;1/ and q 2 Œ1;1/ such that 1
p
C

1
q
�

1
2

. Assume there exist positive
constants . Na; a?; a?/ such that a � Na 2 PB

2=q
q;1
.R2/ and 0 < a? � a � a?. Furthermore, consider f 2

PB
2=p�1
p;2

.R2/ and a tempered distribution P with rP 2 PB
2=p�1
p;2

.R2/ such that equation (2-1) is satisfied.
Then, following estimate holds true:

krPk PB2=p�1

p;2

.
�

1

Na
C

1

a
�

1

Na


PB

2=q

q;1

��
1C

1

a?
ka� Nak PB2=q

q;1

�
kQf k PB2=p�1

p;2

: (2-10)

Some preliminary results. In this section we derive estimates for a Stokes-like problem with time-
independent, nonconstant coefficients. Before proceeding to the actual proof, for the reader’s convenience,
let us cite the following results which were established by Danchin and Mucha [2009; 2015]. These
results correspond to the case where a and b are constants:

Proposition 2.7. Consider u0 2
PB

n=p�1
p;1

and .f; @tR;r div R/2L1
T
. PB

n=p�1
p;1

/ with QR2CT . PB
n=p�1
p;1

/

such that
div u0 D div R.0; � /:

Then, the system 8<:
@tu� Na Nb�uC NarP D f;

div uD div R;

ujtD0 D u0

has a unique solution .u;rP / with

u 2 C
�
Œ0;T /I PB

n=p�1
p;1

�
and @tu;r

2u;rP 2L1
T .
PB

n=p�1
p;1

/

and the following estimate is valid:

kuk
L1

T
. PB

n=p�1

p;1
/
Ck.@tu; Na Nbr

2u; NarP /k
L1

T
. PB

n=p�1

p;1
/
.ku0k PBn=p�1

p;1

Ck.f; @tR; Na Nbr div R/k
L1

T
. PB

n=p�1

p;1
/
:

As a consequence of the previous result, one can establish via a perturbation argument:

Proposition 2.8. Consider u0 2
PB

n=p�1
p;1

and .f; @tR;r div R/2L1
T
. PB

n=p�1
p;1

/ with QR2CT . PB
n=p�1
p;1

/

such that
div u0 D div R.0; � /:

Then, there exists an �D �. Na/ small enough such that for all c 2 PB
n=p
p;1

with

kck PBn=p

p;1

� �;
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the system 8<:
@tu� Na Nb�uC . NaC c/rP D f;

div uD div R;

ujtD0 D u0

has a unique solution .u;rP / with

u 2 C
�
Œ0;T /I PB

n=p�1
p;1

�
and @tu;r

2u;rP 2L1
T .
PB

n=p�1
p;1

/

and the following estimate is valid:

kuk
L1

T
. PB

n=p�1

p;1
/
Ck.@tu; Na Nbr

2u; NarP /k
L1

T
. PB

n=p�1

p;1
/
.ku0k PBn=p�1

p;1

Ck.f; @tR; Na Nbr div R/k
L1

T
. PB

n=p�1

p;1
/
:

In all that follows we denote by Eloc the space of .u;rP / such that

u 2 C
�
Œ0;1/I PB

n=p�1
p;1

�
and .r2u;rP / 2L1

loc.
PB

n=p�1
p;1

/�L1
loc.
PB

n=p�n=2
p;2

\ PB
n=p�1
p;1

/:

Additionally, we introduce the space ET of u 2 CT . PB
n=p�1
p;1

/ with r2u 2 L1
T
. PB

n=p�1
p;1

/ and rP 2

L1
T
. PB

n=p�n=2
p;2

\ PB
n=p�1
p;1

/ such that

k.u;rP /kET
D kuk

L1
T
. PB

n=p�1

p;1
/
Ckr

2uk
L1

T
. PB

n=p�1

p;1
/
CkrPk

L1
T
. PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/
<1:

The first ingredient in proving Theorem 1.3 is the following:

Proposition 2.9. Consider n 2 f2; 3g and p 2 .1; 4/ if nD 2 or p 2
�

6
5
; 4
�

if nD 3. Assume there exist
positive constants .a?; b?; a?; b?; Na; Nb/ such that a� Na 2 PB

n=p
p;1

.Rn/, b� Nb 2 PB
n=p
p;1

.Rn/ and

0< a? � a� a?; 0< b? � b � b?:

Furthermore, consider u0; f vector fields with coefficients in PBn=p�1
p;1

.Rn/ and L1
loc.
PB

n=p�n=2
p;2

.Rn/\

PB
n=p�1
p;1

.Rn// respectively and a vector field R 2 .S 0.Rn//n with

.@tR;r div R/ 2L1
loc
�
PB

n=p�n=2
p;2

.Rn/\ PB
n=p�1
p;1

.Rn/
�

and QR 2 C
�
Œ0;1/I PB

n=p�1
p;1

.Rn/
�

such that

div u0 D div R.0; � /:

Then, there exists a constant Cab depending on a and b such that any solution .u;rP / 2ET of the Stokes
system (1-3) will satisfy

kuk
L1t .

PB
n=p�1

p;1
/
Ckr

2uk
L1

t .
PB

n=p�1

p;1
/
CkrPk

L1
t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cab.t C 1// (2-11)

for all t 2 .0;T �.

Before proceeding with the proof, a few remarks are in order:
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Remark 2.10. Proposition 2.9 is different from Theorem 1.3 when nD 3. Indeed, in the 3-dimensional
case the theory is more subtle and thus, as a first step we construct a unique solution for the case of more
regular initial data.

Remark 2.11. The difficulty when dealing with the Stokes system with nonconstant coefficients lies in the
fact that the pressure and the velocity u are coupled. Indeed, in the constant coefficients case, in view of

div uD div R;

one can apply the divergence operator in the first equation of (1-3) in order to obtain the following elliptic
equation verified by the pressure:

a�P D div.f � @tRC 2abr div R/: (2-12)

From (2-12) we can construct the pressure. Having built the pressure, the velocity satisfies a classical
heat equation. In the nonconstant coefficient case, proceeding as above we find that

div.arP /D div
�
f � @tRC a div.bD.u//

�
: (2-13)

Therefore the strategy used in the previous case is not well-adapted. We will establish a priori estimates
and use a continuity argument like in [Danchin 2014]. In order to be able to close the estimates on u,
we have to bound karPk

L1
t .
PB

n=p�1

p;1
/

in terms of

kuk
ˇ

L1t .
PB

n=p�1

p;1
/
kr

2uk
1�ˇ

L1
t .
PB

n=p�1

p;1
/

for some ˇ 2 .0; 1/. Thus, the difficulty is to find estimates for the pressure which do not feature the time
derivative of the velocity.

In view of Proposition 2.7, consider .uL;rPL/, the unique solution of the system8<:
@tu� Na div. NbD.u//C NarP D f;

div uD div R;

ujtD0 D u0;

(2-14)

with
uL 2 C

�
Œ0;1/I PB

n=p�1
p;1

�
and .@tuL;r

2uL;rPL/ 2L1
loc.
PB

n=p�1
p;1

/:

Recall that for any t 2 Œ0;1/ we have

kuLkL1t .
PB

n=p�1

p;1
/
Ck.@tuL; Na Nbr

2uL; NarPL/kL1
t .
PB

n=p�1

p;1
/

� C
�
ku0k PBn=p�1

p;1

Ck.f; @tR; Na Nbr div R/k
L1

t .
PB

n=p�1

p;1
/

�
: (2-15)

In what follows, we will use the notation

QuD u�uL; reP DrP �rPL: (2-16)

Obviously, we have
div QuD 0: (2-17)
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Thus, the system (1-3) is recast into8<:
@t Qu� a div.bD. Qu//C areP D Qf ;
div QuD 0;

QujtD0 D 0;

(2-18)

where
Qf D a div.bD.uL//� Na div. NbD.uL//� .a� Na/rPL:

Using the last equality along with Proposition 3.17, we infer

k Qf k PBn=p�1

p;1

�
adiv.bD.uL//�Nadiv. NbD.uL//


PB

n=p�1

p;1

Ck.a�Na/rPLk PBn=p�1

p;1

. . NaCka�Nak PBn=p

p;1

/. NbCkb�Nbk PBn=p

p;1

/kruLk PBn=p

p;1

Cka�Nak PBn=p

p;1

krPLk PBn=p�1

p;1

: (2-19)

Let us estimate the pressure areP. First, we write

karePk PBn=p�1

p;1

� kQ.areP /k PBn=p�1

p;1

CkP.areP /k PBn=p�1

p;1

:

Applying the Q operator in the first equation of (2-18) we get

Q.areP /DQ Qf CQ.a div.bD. Qu///:

Thus, we get

kQ.areP /k PBn=p�1

p;1

� kQ Qf k PBn=p�1

p;1

CkQ.a div.bD. Qu///k PBn=p�1

p;1

: (2-20)

Let

Q
�
a div.bD. Qu//

�
DQ

�
D. Qu/ PSm.arb/

�
CQ

�
PSm.ab� Na Nb/� Qu

�
(2-21)

CQ
�
D. Qu/.Id� PSm/.arb/

�
(2-22)

CQ
�
.Id� PSm/.ab� Na Nb/� Qu

�
; (2-23)

where m 2 N will be chosen later. According to Proposition 3.17 we haveQ�D. Qu/ PSm.arb/
�
PB

n=p�1

p;1

. k PSm.arb/k PBn=p�1=2

p;1

kr Quk PBn=p�1=2

p;1

: (2-24)

Owing to the fact that Qu is divergence free we can write

Q. PSm.ab� Na Nb/� Qu/D ŒQ; PSm.ab� Na Nb/�� Qu; (2-25)

such that applying Proposition 3.21 we getQ� PSm.ab� Na Nb/� Qu
�
PB

n=p�1

p;1

.
� PSm.arb/; PSm.bra/

�
PB

n=p�1=2

p;1

k� Quk PBn=p�3=2

p;1

.
� PSm.arb/; PSm.bra/

�
PB

n=p�1=2

p;1

kr Quk PBn=p�1=2

p;1

: (2-26)
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The last two terms of (2-21)–(2-23) are estimated as follows:Q�.Id� PSm/.arb/D. Qu/
�
CQ

�
.Id� PSm/.ab� Na Nb/� Qu

�
PB

n=p�1

p;1

(2-27)

.
�
k.Id� PSm/.arb/k PBn=p�1

p;1

Ck.Id� PSm/.ab� Na Nb/k PBn=p

p;1

�
kr Quk PBn=p

p;1

: (2-28)

Thus, putting together relations (2-20)–(2-28) we get

kQ.areP /k PBn=p�1

p;1

. kQ Qf k PBn=p�1

p;1

C
� PSm.arb/; PSm.bra/

�
PB

n=p�1=2

p;1

kr Quk PBn=p�1=2

p;1

Ckr Quk PBn=p

p;1

�
k.Id� PSm/.arb;bra/k PBn=p�1

p;1

Ck.Id� PSm/.ab�Na Nb/k PBn=p

p;1

�
: (2-29)

Next, we turn our attention towards P.areP /. The 2-dimensional case and the 3-dimensional case have
to be treated differently.

The 3-dimensional case. Noticing that

P.areP /D P
�
.Id� PSm/.a� Na/reP �C ŒP; PSm.a� Na/�reP ;

and using again Proposition 3.21 combined with Propositions 2.2 and 2.5 we get

krePk PB3=p�3=2

p;2

CkP.areP /k PB3=p�1

p;1

. krePk PB3=p�3=2

p;2

CkP..Id� PSm/.a� Na/reP /k PB3=p�1

p;1

CkŒP; PSm.a� Na/�rePk PB3=p�1

p;1

(2-30)

. k.Id� PSm/.a� Na/k PB3=p

p;1

krePk PB3=p�1

p;1

C .1Ck PSmrak PB3=p�1=2

p;2

/krePk PB3=p�3=2

p;2

(2-31)

. k.Id� PSm/.a� Na/k PB3=p

p;1

�
1

Na
C

1

a
�

1

Na


PB

3=p

p;1

�
karePk PB3=p�1

p;1

(2-32)

C eC .a/�1Ck PSmrak PB3=p�1=2

p;2

��
k Qf k PB3=p�3=2

p;2

Cka div.bD. Qu//k PB3=p�3=2

p;2

�
; (2-33)

where eC .a/D � 1

Na
C

1

a
�

1

Na


PB

3=p

p;1

��
1C

1

a?
ka� Nak PB3=p

p;1

�
:

We observe that

ka div.bD. Qu//k PB3=p�3=2

p;2

. . NaCka� Nak PB3=p

p;1

/. NbCkb� Nbk PB3=p

p;1

/kr Quk PB3=p�1=2

p;1

: (2-34)

Putting together (2-30)–(2-33) along with (2-34) we get

krePk PB3=p�3=2

p;2

CkP.areP /k PB3=p�1

p;1

. k.Id� PSm/.a� Na/k PB3=p

p;1

�
1

Na
C

1

a
�

1

Na


PB

3=p

p;1

�
karePk PB3=p�1

p;1

C eC .a/.1Ck PSmrak PB3=p�1=2

p;2

/

�
�
k Qf k PB3=p�3=2

p;2

C . NaCka� Nak PB3=p

p;1

/. NbCkb� Nbk PB3=p

p;1

/kr Quk PB3=p�1=2

p;1

�
: (2-35)
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Combining (2-29) with (2-35) yields

krePk PB3=p�3=2

p;2

CkarePk PB3=p�1

p;1

. T 1
m.a; b/kar

ePk PB3=p�1

p;1

CT 2
m.a; b/k

Qf k PB3=p�3=2

p;2
\ PB

3=p�1

p;1

CT 3
m.a; b/kr Quk PB3=p�1=2

p;1

CT 4
m.a; b/kr Quk PB3=p

p;1

;

where

T 1
m.a; b/D k.Id� PSm/.a� Na/k PB3=p

p;1

�
1

Na
Ck

1

a
�

1

Na
k PB3=p

p;1

�
;

T 2
m.a; b/D

eC .a/.1Ck PSmrak PB3=p�1=2

p;2

/;

T 3
m.a; b/D k.

PSm.arb/; PSm.bra//k PB3=p�1=2

p;1

C eC .a/.1Ck PSmrak PB3=p�1=2

p;2

/. NaCka� Nak PB3=p

p;1

/. NbCkb� Nbk PB3=p

p;1

/;

T 4
m.a; b/D k.Id� PSm/.arb; bra/k PB3=p�1

p;1

Ck.Id� PSm/.ab� Na Nb/k PB3=p

p;1

:

Observe that m could be chosen large enough such that T 1
m.a; b/ and T 4

m.a; b/ can be made arbitrarily
small. Thus, there exists a constant Cab depending on a and b such that

krePk PB3=p�3=2

p;2
\ PB

3=p�1

p;1

� Cab

�
k Qf k PB3=p�3=2

p;2
\ PB

3=p�1

p;1

Ckr Quk PB3=p�1=2

p;1

�
C �kr Quk PB3=p

p;1

; (2-36)

where � can be made arbitrarily small (of course, with the price of increasing the constant Cab). Let us
take a look at the PB3=p�3=2

p;2
-norm of Qf ; we get

k Qf k PB3=p�3=2

p;2

�
adiv.bD.uL//�Nadiv. NbD.uL//


PB

3=p�3=2

p;2

Ck.a�Na/rPLk PB3=p�3=2

p;2

. . NaCka�Nak PB3=p

p;1

/. NbCkb�Nbk PB3=p

p;1

/kruLk PB3=p�1=2

p;1

Cka�Nak PB3=p

p;1

krPLk PB3=p�3=2

p;2

: (2-37)

As uL 2 C
�
Œ0;1/; PB

3=p�1
p;1

�
\L1

�
Œ0;1/; PB

3=pC1
p;1

�
and Q is a continuous operator on homogeneous

Besov spaces from

div.uL�R/D 0;

we deduce

P.uL�R/D uL�R;

which implies

QuL DQR:

By applying the operator Q in the first equation of system (2-14) we get

NarPL DQf �Q@tuLC Na NbQ�uLC Na Nbr div R

DQf �Q@tRC 2 Na Nbr div R

and thus

krPLk PB3=p�3=2

p;2

�
1

Na
kQf k PB3=p�3=2

p;2

C
1

Na
k@tQRk PB3=p�3=2

p;2

C 2 Nbkr div Rk PB3=p�3=2

p;2

:
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In view of (2-36), (2-19), (2-37) and interpolation we gather that there exists a constant Cab such that

krePk PB3=p�3=2

p;2
\ PB

3=p�1

p;1

�Cab

�
kruLk PB3=p�1=2

p;1

CkrPLk PB3=p�3=2

p;2

Ck.r2uL;rPL/k PB3=p�1

p;1

Ckr Quk PB3=p�1=2

p;1

�
C�kr Quk PB3=p

p;1

(2-38)

�Cabk.Qf;@tQR;r divR/k PB3=p�3=2

p;2

CCabkuLk PB3=p�1

p;1

(2-39)

CCabk.r
2uL;rPL/k PB3=p�1

p;1

CCabk Quk PB3=p�1

p;1

C2�kr Quk PB3=p

p;1

; (2-40)

where, again, at the price of increasing Cab , we can make � arbitrarily small.

The 2-dimensional case. In this case, using again Proposition 3.21 combined with Propositions 2.4 and 2.6
we get

krePk PB2=p�1

p;2

CkP.areP /k PB2=p�1

p;1

. krePk PB2=p�1

p;2

Ck.Id� PSm/.a�Na/k PB2=p

p;1

krePk PB2=p�1

p;1

CkŒP; PSm.a�Na/�rePk PB2=p�1

p;1

. k.Id� PSm/.a�Na/k PB2=p

p;1

krePk PB2=p�1

p;1

C.1Ckr PSmak PB2=p

p;2

/krePk PB2=p�1

p;2

. k.Id� PSm/.a�Na/k PB2=p

p;1

krePk PB2=p�1

p;1

CeC .a/.1Ckr PSmak PB2=p

p;2

/
�
k Qf k PB2=p�1

2;2

CkQ.adiv.bD. Qu///k PB2=p�1

p;2

�
where, as before eC .a/D � 1

Na
C

1

a
�

1

Na


PB

2=p

p;1

��
1C

1

a?
ka� Nak PB2=p

p;1

�
:

As we have already estimated kQ.a div.bD. Qu///k PB2=p�1

p;2

in (2-29), we gather

krePk PB2=p�1

p;2

CkarePk PB2=p

p;1

.T 1
m.a;b/kar

ePk PB2=p�1

p;1

CT 2
m.a;b/k

Qf k PB2=p�1

p;1

CT 3
m;M .a;b/kr Quk PB2=p�1=2

p;1

CT 4
m;M .a;b/kr Quk PB2=p

p;1

; (2-41)

where

T 1
m.a;b/Dk.Id� PSm/.a�Na/k PB2=p

p;1

�
1

Na
C

1

a
�

1

Na


PB

2=p

p;1

�
;

T 2
m.a;b/D

eC .a/.1Ckr PSmak PB2=p

p;2

/;

T 3
m;M .a;b/Dk. PSm.arb/; PSm.bra//k PB2=p

p;1

CeC .a/.1Ckr PSmak PB2=p

p;2

/k. PSM .arb/; PSM .bra//k PB2=p

p;1

;

T 4
m;M .a;b/Dk.Id� PSm/.arb/k PB2=p�1

p;1

Ck.Id� PSm/.ab�Na Nb/k PB2=p

p;1

CeC .a/.1Ckr PSmak PB2=p

p;2

/
�
k.Id� PSM /.arb/k PB2=p�1

p;1

Ck.Id� PSM /.ab�Na Nb/k PB2=p�1

p;1

�
:

First, we fix an � > 0. Let us fix an m 2 N such that T 1
m.a; b/kar

ePk PB2=p�1

p;1

can be “absorbed” by the
left-hand side of (2-41) and such that

k.Id� PSm/.arb/k PB2=p�1

p;1

Ck.Id� PSm/.ab� Na Nb/k PB2=p

p;1

�
1
2
�:
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Next, we see that by choosing M large enough we have

T 4
m;M .a; b/� �:

Thus, using interpolation we can write

krePk PB2=p�1

p;2

CkarePk PB2=p�1

p;1

�Cab

�
k.r2uL;rPL/k PB2=p�1

2;1

CkQuk PB2=p�1

p;1

�
C2�kr2

Quk PB2=p�1

p;1

: (2-42)

End of the proof of Proposition 2.9. Obviously, combining the two estimates (2-38)–(2-40) and (2-42)
we can continue in a unified manner the rest of the proof of Proposition 2.9. First, choose m 2 N large
enough such that

Na NbC PSm.ab� Na Nb/� 1
2
a?b?:

We apply P�j to (2-18) and we write

@t Quj�div
�
. Na NbC PSm.ab�Na Nb//r Quj

�
D Qfj�

P�j .areP /C P�j div
�
.Id� PSm/.ab�Na Nb/r Qu

�
CdivŒ P�j ; PSm.ab�Na Nb/�r Qu

C P�j .D Qu PSm.bra//C P�j

�
D Qu.Id� PSm/.bra/

�
C P�j .r Qu PSm.arb//C P�j

�
r Qu.Id� PSm/.arb/

�
:

Multiplying the last relation by j Quj j
p�1 sgn Quj , integrating and using Lemma 8 from Appendix B of

[Danchin 2010], we get

k QujkLpCa?b?22j C

Z t

0

k QujkLp .
Z t

0

k QfjkLpC

Z t

0

k P�j .areP /kLpC

Z t

0

divŒ P�j ; PSm.ab�Na Nb/�r Qu


Lp

C

Z t

0

 P�j div
�
.Id� PSm/.ab�Na Nb/r Qu

�
Lp

C

Z t

0

k P�j .D Qu PSm.bra//kLpC

Z t

0

 P�j

�
D Qu.Id� PSm/.bra/

�
Lp

C

Z t

0

k P�j .r Qu PSm.arb//kLpC

Z t

0

 P�j

�
r Qu.Id� PSm/.arb/

�
Lp :

Multiplying the last relation by 2j.n=p�1/, performing an `1.Z/-summation and using Proposition 3.19
to deal with

divŒ P�j ; PSm.ab � Na Nb/�r Qu

PB

n=p�1

p;1

along with (2-38)–(2-40) and (2-41) to deal with the
pressure, we get

k Quk
L1t .

PB
n=p�1

p;1
/
Ca?b?Ckr2 Quk

L1
t .
PB

n=p�1

p;1
/

. k Qf k
L1

t .
PB

n=p�1

p;1
/
CC

Z t

0

karePk PBn=p�1

p;1

C

Z t

0

k. PSm.bra/; PSm.arb//k PBn=p

p;1

kr Quk PBn=p�1

p;1

CTm.a;b/kr
2
Quk

L1
t .
PB

n=p�1

p;1
/

�Cab.1Ct/
�
ku0k PBn=p�1

p;1

Ck.f;@tR;r divR/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
CCab

Z t

0

k Quk PBn=p�1

p;1

C.Tm.a;b/C�/kr
2
Quk

L1
t .
PB

n=p�1

p;1
/

(2-43)

where

Tm.a; b/Dk.Id� PSm/.bra/k PBn=p�1

p;1

Ck.Id� PSm/.arb/k PBn=p�1

p;1

Ck.Id� PSm/.ab�Na Nb/k PBn=p�1

p;1

: (2-44)
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Assuming m is large enough and � is small enough, we can “absorb” .Tm.a; b/C �/kr
2uk

L1
t .
PB

n=p�1

p;1
/

into the left-hand side of (2-43). Thus, we end up with

k Quk
L1t .

PB
n=p�1

p;1
/
C a?b?

1
2
Ckr2

Quk
L1

t .
PB

n=p�1

p;1
/

� Cab.1C t/
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
CCab

Z t

0

k Quk PBn=p�1

p;1

such that using Grönwall’s lemma, (2-15) and the classical inequality

1C t˛ � C˛ exp.t/

yields

k Quk
L1t .

PB
n=p�1

p;1
/
C a?b?

1
2
Ckr2

Quk
L1

t .
PB

n=p�1

p;1
/

� Cab

�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cabt/: (2-45)

Using the fact that uD uLC Qu along with (2-15) and (2-45) gives us

kuk
L1t .

PB
n=p�1

p;1
/
C a?b?

1
2
Ckr2uk

L1
t .
PB

n=p�1

p;1
/

� Cab

�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cabt/: (2-46)

Next, using (2-38)–(2-40) and (2-42) combined with (2-15), we infer

krPk
L1

t ..
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

� CakarPLkL1
t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/
CCakarePkL1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

(2-47)

� Cab

�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cabt/: (2-48)

Combining (2-48) with (2-46) we finally get

kuk
L1t .

PB
n=p�1

p;1
/
Ckr

2uk
L1

t .
PB

n=p�1

p;1
/
CkrPk

L1
t ..
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cab.t C 1//: (2-49)

Obviously, by obtaining the last estimate we conclude the proof of Proposition 2.9.
Next, let us deal with the existence part of the Stokes problem with the coefficients having regularity

as in Proposition 2.9. More precisely, we have:

Proposition 2.12. Consider .a; b;u0; f;R/ as in the statement of Proposition 2.9. Then, there exists
a unique solution .u;rP / 2 Eloc of the Stokes system (1-3). Furthermore, there exists a constant Cab

depending on a and b such that

kuk
L1t .

PB
n=p�1

p;1
/
Ckr

2uk
L1

t .
PB

n=p�1

p;1
/
CkrPk

L1
t ..
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.Cab.t C 1// (2-50)

for all t > 0.
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Proof. The uniqueness property is a direct consequence of the estimates of Proposition 2.9. The proof of
existence relies on Proposition 2.9 combined with a continuity argument as used in [Danchin 2014]; see
also [Krylov 2008]. Let us introduce

.a� ; b� /D .1� �/. Na; Nb/C �.a; b/

and consider the Stokes system8<:
@tu� a� .div.b�D.u//�rP /D f;

div uD div R;

ujtD0 D u0:

(S� )

First of all, a more detailed analysis of the estimates established in Proposition 2.9 enables us to conclude
that the constant Ca�b� appearing in (2-49) is uniformly bounded with respect to � 2 Œ0; 1� by a constant
c D cab . Indeed, repeating the estimation process carried out in Proposition 2.9 with .a� ; b� / instead
of .a; b/ amounts to replacing .a� Na/ and .b � Nb/ with �.a� Na/ and �.b � Nb/. Taking into account
Proposition 3.12 and the remark that follows we get that there exists

c WD sup
�2Œ0;1�

Ca�b� <1:

Let us take T > 0 and consider ET , the set of those � 2 Œ0; 1� such that for any .u0; f;R/ as in the
statement of Proposition 2.9 problem (S� ) admits a unique solution .u;rP / 2ET which satisfies

kuk
L1t .

PB
n=p�1

p;1
/
Ckr

2uk
L1

t .
PB

n=p�1

p;1
/
CkrPk

L1
t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
�
ku0k PBn=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.c.t C 1// (2-51)

for all t 2 Œ0;T �. According to Proposition 2.7, 0 2 ET .
Suppose � 2 ET . First we denote by .u� ;rP� /2ET the unique solution of (S� ). We consider the space

ET;div D f. Qw;r eQ/ 2ET W div Qw D 0g

and let S�� 0 be the operator which associates to . Qw;r eQ/ 2ET;div, the unique solution . Qu;reP / of8<:
@t Qu� a� .div.b�D. Qu//�reP /D g�� 0.u� ;rP� /Cg�� 0. Qw;r eQ/;
div uD 0;

ujtD0 D 0;

(2-52)

where
g�� 0.u;rP /D .a� � a� 0/rP C a� 0 div.b� 0D.u//� a� div.b�D.u//: (2-53)

Obviously, S�� 0 maps ET;div into ET;div. We claim that there exists a positive quantity " D ".T / > 0

such that if j� �� 0j � ".T / then S�� 0 has a fixed point . Qu?;reP ?
/ in a suitable ball centered at the origin

of the space ET;div. Obviously,
. Qu?Cu� ;reP ?

CrP� /

will solve .S� 0/ in ET .
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First, we note that, as a consequence of Proposition 2.9, we have

k. Qu;reP /kET

�
�
kg�� 0.u� ;rP� /kL1

T
. PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/
Ckg�� 0. Qw;r eQ/kL1

T
. PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/

�
exp.c.TC1//: (2-54)

Observe that

k.a� � a� 0/rPk
L1

T
. PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/
� j� � � 0jka� Nak PBn=p

p;1

krPk
L1

T
. PB

n=p�n=2

p;2
\ PB

n=p�1

p;1
/
: (2-55)

Next, we write

a� 0 div.b� 0D.u//� a� div.b�D.u//D .a� 0 � a� / div.b� 0D.u//C a� div..b� 0 � b� /D.u//:

The first term of the last identity is estimated as follows:

k.a� 0 � a� / div.b� 0D.u//kL1
T
. PB

n=p�1

p;1
/
� j� � � 0jka� Nak PBn=p

p;1

. NbCkb� Nbk PBn=p

p;1

/kD.u/k
L1

T
. PB

n=p

p;1
/
:

Regarding the second term, we have

ka� div..b� 0 � b� /D.u//kL1
T
. PB

n=p�1

p;1
/
� j� � � 0jkb� Nbk PBn=p

p;1

. NaCka� Nak PBn=p

p;1

/kD.u/k
L1

T
. PB

n=p

p;1
/

and thusa� 0 div.b� 0D.u//� a� div.b�D.u//


L1
T
. PB

n=p�1

p;1
/

� j� � � 0j. NaCka� Nak PBn=p

p;1

/. NbCkb� Nbk PBn=p

p;1

/kDuk
L1

T
. PB

n=p

p;1
/
: (2-56)

The only thing left is to treat the L1
t .
PB

3=p�3=2
p;2

/-norm of a� 0 div.b� 0D.u//� a� div.b�D.u// in the case
where nD 3. Using the fact that ru 2L

4=3
T
. PB

3=p�1=2
p;1

/, we can write

k.a� 0 � a� / div.b� 0D.u//kL1
T
. PB

3=p�3=2

p;2
/

� j� � � 0jka� Nak PB3=p

p;1

k div.b� 0D.u//kL1
T
. PB

3=p�3=2

p;1
/

� j� � � 0jka� Nak PB3=p

p;1

. NbCkb� Nbk PB3=p

p;1

/kDuk
L1

T
. PB

3=p�1=2

p;1
/

(2-57)

� j� � � 0jka� Nak PB3=p

p;1

. NbCkb� Nbk PB3=p

p;1

/T 1=4
kuk

1=4

L1
T
. PB

3=p�1

p;1
/
kuk

3=4

L1
T
. PB

3=pC1

p;1
/

(2-58)

� j� � � 0jC.T; a; b/
�
kuk

L1
T
. PB

3=p�1

p;1
/
Ckr

2uk
L1

T
. PB

3=p�1

p;1
/

�
(2-59)

and, proceeding in a similar manner, we can estimate
a� div

�
.b� 0 � b� /D.u/

�
L1

T
. PB

3=p�3=2

p;2
/
.

Combining (2-55), (2-56) along with (2-59) we get

kg�� 0.u;rP /k
L1

T
. PB

3=p�3=2

p;2
\ PB

3=p�1

p;1
/

� j� � � 0jC.T; a; b/
�
kuk

L1
T
. PB

3=p�1

p;1
/
Ckr

2uk
L1

T
. PB

3=pC1

p;1
/
CkrPk

L1
T
. PB

3=p�3=2

p;2
\ PB

3=p�1

p;1
/

�
: (2-60)

Substituting this into (2-54), we get

k. Qu;reP /kET
� j� � � 0jC.T; a; b/

�
k.u� ;rP� /kET

Ck. Qw;r eQ/kET

�
;
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and by linearity. Qu1
� Qu2;reP 1

�reP 2
/


ET
� j��� 0jC.T; a; b/

. Qw1
� Qw2;r eQ1

�r eQ2
/


ET
;

where for k D 1; 2,
. Qui ;reP i

/D S�� 0.. Qw
i ;r eQi

//:

Thus one can choose ".T / small enough such that j� � � 0j � ".T / gives us a fixed point of the solution
operator S�� 0 in BET;div.0; 2k.u� ;rP� /kET

/.
Thus, for all T >0, we have ET D Œ0; 1� and owing to the uniqueness property and to Proposition 2.9, we

can construct a unique solution .u;rP /2Eloc to (1-3) such that for all t >0 the estimate (2-11) is valid. �

The proof of Theorem 1.3 in the case n D 3. As discussed earlier, in dimension nD 3, Proposition 2.9
is weaker than Theorem 1.3, as one requires additional low-frequency information on the data

.f; @tR;r div R/ 2L1
t .
PB

3=p�3=2
p;2

/:

Thus, we have to bring an extra argument in order to conclude the validity of Theorem 1.3. This is the
object of interest of this section.

Existence. We begin by taking m 2 N large enough and owing to Proposition 2.8 we can consider
.u1;rP1/, the unique solution with u1 2 C.RCI PB3=p�1

p;1
/ and .@tu

1;r2u1;rP1/ 2 L1
loc.
PB

3=p�1
p;1

/ of
the system 8<:

@tu� Na Nb div D.u/C . NaC PS�m.a� Na//rP D f;

div uD div R;

ujtD0 D u0;

which also satisfies

ku1
k

L1
T
. PB

3=p�1

p;1
/
Ck.@tu

1; Na Nbr2u1; NarP1/k
L1

T
. PB

3=p�1

p;1
/

� C
�
ku0k PB3=p�1

p;1

Ck.f; @tR; Na Nbr div R/k
L1

T
. PB

3=p�1

p;1
/

�
for all T > 0. Let us consider

G.u1;rP1/D a div.bD.u1//� Na div. NbD.u1//� ..Id� PS�m/.a� Na//rP1:

We claim G.u1;rP1/ 2L1
loc.
PB

3=p�3=2
p;2

\ PB
3=p�1
p;1

/. Indeed

a div.bD.u1//� Na div. NbD.u1//D .a� Na/ div.bD.u1//C Na div..b� Nb/D.u1//

and proceeding as in (2-56) and (2-58) we geta div.bD.u1//� Na div. NbD.u1//


L1
t .
PB

3=p�3=2

p;2
\ PB

3=p�1

p;1
/

� Cab.1C t1=4/
�
ku1
k

L1t .
PB

3=p�1

p;1
/
Cku1

k
L1

t .
PB

3=pC1

p;1
/

�
� exp.Cab.t C 1//

�
ku0k PB3=p�1

p;1

Ck.f; @tR;r div R/k
L1

T
. PB

3=p�1

p;1
/

�
: (2-61)
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Next, we obviously have�.Id� PS�m/.a� Na/
�
rP1


L1

t .
PB

3=p�1

p;1
/
� Ck.a� Na/k PB3=p

p;1

krP1
k

L1
t .
PB

3=p�1

p;1
/
: (2-62)

Using the fact that the product maps PB3=p�1=2
p;1

� PB
3=p�1
p;1

! PB
3=p�3=2
p;2

, we get�.Id� PS�m/.a� Na/
�
rP1


L1

t .
PB

3=p�3=2

p;2
/
� Ck.Id� PS�m/.a� Na/k PB3=p�1=2

p;1

krP1
k

L1
t .
PB

3=p�1

p;1
/
: (2-63)

Of course

k.Id� PS�m/.a�Na/k PB3=p�1=2

p;1

�C
X

j��m

2j.3=p�1=2/
k P�j .a�Na/kL2 �C 2m=2

X
j��m

23=pj
k P�j .a�Na/kL2 :

�C 2m=2
ka�Nak PB3=p

p;1

so that the first term on the right-hand side of (2-63) is finite. We thus gather from (2-61), (2-62) and (2-63)
that G.u1;rP1/ 2L1

loc.
PB

3=p�3=2
p;2

\ PB
3=p�1
p;1

/ and that for all t > 0 there exists a constant Cab such that

kG.u1;rP1/k
L1

t .
PB

3=p�3=2

p;2
\ PB

3=p�1

p;1
/
� .ku0k PB3=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

3=p�1

p;1
/
/ exp.Cab.t C 1//:

According to Proposition 2.12, there exists a unique solution .u2;rP2/ 2Eloc of the system8<:
@tu� a div.bD.u//C arP DG.u1;rP1/;

div uD 0;

ujtD0 D 0;

which satisfies the estimate

ku2k
L1t .

PB
3=p�1

p;1
/
Ck.r2u2;rP2/k

L1
t .
PB

3=p�1

p;1
/

� kG.u1;rP1/k
L1

t .
PB

3=p�3=2

p;2
\ PB

3=p�1

p;1
/

exp.Cab.t C 1//

�
�
ku0k PB3=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

3=p�1

p;1
/

�
exp.Cab.t C 1//:

We observe that
.u;rP / WD .u1

Cu2;rP1
CrP2/

is a solution of (1-3) which satisfies

kuk
L1t .

PB
3=p�1

p;1
/
Ck.r2u;rP /k

L1
t .
PB

3=p�1

p;1
/

�
�
ku0k PB3=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

3=p�1

p;1
/

�
exp.Cab.t C 1//: (2-64)

Of course, using again the first equation of (1-3) we get

k@tukL1
t .
PB

3=p�1

p;1
/
� Cabk.f;r

2u;rP /k
L1

t .
PB

3=p�1

p;1
/

and thus, we get the estimate

kuk
L1t .

PB
3=p�1

p;1
/
Ck.@tu;r

2u;rP /k
L1

t .
PB

3=p�1

p;1
/

�
�
ku0k PB3=p�1

p;1

Ck.f; @tR;r div R/k
L1

t .
PB

3=p�1

p;1
/

�
exp.Cab.t C 1//: (2-65)
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Uniqueness. Next, let us prove the uniqueness property. Let us suppose there exists a T > 0 and a pair
.u;rP / that solves 8<:

@tu� a div.bD.u//C arP D 0;

div uD 0;

ujtD0 D 0;

(2-66)

with
u 2 CT . PB

3=p�1
p;1

/ and .@tu;r
2u;rP / 2L1

T .
PB

3=p�1
p;1

/:

Observe that we cannot directly conclude to the uniqueness property by appealing to Proposition 2.12
because the pressure does not belong (a priori) to L1

T
. PB

3=p�3=2
p;2

/. Recovering this low-frequency
information is done in the following lines. Suppose 3 < p < 4. Applying the operator Q in the first
equation of (2-66) we can write

Q
�
. NaC PS�m.a� Na//rP

�
DQ

�
a div.bD.u//

�
�Q

�
.Id� PS�m/.a� Na/rP

�
;

where m 2 N will be fixed later. We observe thatQ�. NaC PS�m.a� Na//rP
�

L1
T
. PB

3=p�3=2

p;1
/

.
Q�a div.bD.u//

�
L1

T
. PB

3=p�3=2

p;1
/
C
Q�.Id� PS�m/.a� Na/rP

�
L1

T
. PB

3=p�3=2

p;1
/

. T 1=4. NaCka� Nak PB3=p

p;1

/. NbCkb� Nbk PB3=p

p;1

/kruk
L

4=3

T
. PB

3=p�1=2

p;1
/

Ck.Id� PS�m/.a� Na/k PB3=p�1=2

p;1

krPk
L1

T
. PB

3=p�1

p;1
/
:

Consequently, we get
Q
�
. NaC PS�m.a� Na//rP

�
2L1

T .
PB

3=p�3=2
p;1

/: (2-67)

Let us observe that the condition p 2 .3; 4/ ensures that PB3=p
p;1

is contained in the multiplier space of
PB
�3=pC1
p0;2

D PB
3=p0�2
p0;2

. More precisely, we get:

Proposition 2.13. Consider p 2 .3; 4/ and .u; v/ 2 PB3=p
p;1
� PB
�3=pC1
p0;2

. Then uv 2 PB
�3=pC1
p0;2

and

kuvk PB�3=pC1

p0;2

. kuk PB3=p

p;1

kvk PB�3=pC1

p0;2

:

Proof. Indeed, considering .u; v/ 2 PB3=p
p;1
� PB
�3=pC1
p0;2

and using the Bony decomposition we get

k PTuvk PB�3=pC1

p0;2

. kukL1kvk PB�3=pC1

p0;2

:

Next, considering
1

p0
D

1

2
C

1

p?
;

we see

2j.�3=pC1/
k P�j
PT 0vukLp0 .

X
`�j�3

2.�3=pC1/.j�`/2.�3=pC1/`
kS`C1vkL2k P�`ukLp?

D

X
`�j�3

2.�3=pC1/.j�`/2�1=2`
kS`C1vkL223=p?`

k P�`ukLp?
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such that, with the help of Proposition 3.10, we get

k PT 0vuk PB�3=pC1

p0;2

. kvk PH�1=2kuk PB3=p?

p?;1

. kvk PB�3=pC1

p0;2

kuk PB3=p

p;1

: �

Proposition 2.14. Consider p 2 .3; 4/. Furthermore, consider a constant Nc > 0 and c 2 PB
3=p
p;1

. Then
there exists a universal constant � > 0 such that if

kck PB3=p

p;1

� �;

then for any  2 PB3=p0�3=2
p0;2

\ PB
3=p0�2
p0;2

there exists a unique solution rP 2 PB
3=p0�3=2
p0;2

\ PB
3=p0�2
p0;2

of the
elliptic equation

div.. NcC c/rP /D div :

Moreover, the following estimate holds true:

krPk PB3=p0��

p0;2

. kQ k PB3=p0��

p0;2

;

where � 2
˚

3
2
; 2
	
.

Proof. The proof is standard. Under some smallness condition on c 2 PB
3=p
p;1

, the operator

rR!rP D
1

Nc
Q. � crR/

has a fixed point in a suitable chosen ball of the space PB3=p0�3=2
p0;2

\ PB
3=p0�2
p0;2

. �

Choose m 2N such that k PS�m.a� Na/k PB3=p

p;1

is small enough that we can apply Proposition 2.14 with Na
and PS�m.a � Na/ instead of Nc and c, and we consider  a vector field with coefficients in S. As the
Schwartz class is included in PB3=p0�3=2

p0;2
\ PB

3=p0�2
p0;2

, let us consider rP 2 PB
3=p0�3=2
p0;2

\ PB
3=p0�2
p0;2

, the
solution of the equation

div
�
. NaC PS�m.a� Na//rP 

�
D div ;

the existence of which is granted by Proposition 2.14. Then, using Propositions 3.8 and 3.9, we can write3

hrP;  iS0�S

D

X
j

h P�jrP; Q�j i D
X

j

�h P�j P; Q�j div i (2-68)

D

X
j

�
˝
P�j P; Q�j div

�
. NaC PS�m.a� Na//rP 

�˛
D

X
j

˝
P�jrP; Q�j

�
. NaC PS�m.a� Na//rP 

�˛
(2-69)

D

X
j

˝
P�j

�
NaC PS�m.a� Na/

�
rP; Q�jrP 

˛
D

X
j

˝
P�jQ

�
. NaC PS�m.a� Na//rP

�
; Q�jrP 

˛
(2-70)

.
Q�. NaC PS�m.a� Na//rP

�
PB

3=p�3=2

p;2

krP k PB3=p0�3=2

p0;1

(2-71)

.
Q�. NaC PS�m.a� Na//rP

�
PB

3=p�3=2

p;2

k k PB3=p0�3=2

p0;1

: (2-72)

3We define Q�j WD
P�j�1C

P�j C
P�jC1.
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Taking the supremum over all  2 S with k k PB3=p0�3=2

p0;2

� 1, by (2-67) and Proposition 3.8, it follows
that rP 2L1

T
. PB

3=p�3=2
p;2

/ and that

krPk
L1

T
. PB

3=p�3=2

p;2
/
.
Q�. NaC PS�m.a� Na//rP

�
L1

T
. PB

3=p�3=2

p;2
/
:

According to the uniqueness property of Proposition 2.12 we conclude that .u;rP /D .0; 0/.
Observe that in the case p 2

�
6
5
; 3
�
, owing to the fact that PB3=p�1

p;1
,! PB

3=q�1
q;1

for any q 2 .3; 4/

and u 2 CT . PB
3=p�1
p;1

/ along with .@tu;r
2u;rP / 2 L1

T
. PB

3=p�1
p;1

/, we get u 2 CT . PB
3=q�1
q;1

/ along with
.@tu;r

2u;rP / 2L1
T
. PB

3=q�1
q;1

/. Thus, by the uniqueness property for the case q 2 .3; 4/, we conclude
that .u;rP / is identically null for p 2

�
6
5
; 3
�
.

3. Proof of Theorem 1.2

In the rest of the paper we aim to prove Theorem 1.2. Thus, from now on we will work in a 3-dimensional
framework.

The linear theory. Let us fix some notation. The space eFT consists of . Qw;r eQ/ with Qw 2 CT . PB
3=p�1
p;1

/

and .@t Qw;r
2 Qw;r eQ/ 2L1

T
. PB

3=p�1
p;1

/ with the norm

k. Qw;r eQ/keF T

D k Qwk
L1

T
. PB

3=p�1

p;1
/
Ck.@t Qw;r

2
Qw;r eQ/k

L1
T
. PB

3=p�1

p;1
/
: (3-1)

For any time-dependent vector field Nv we define

X Nv.t;x/D xC

Z t

0

Nv.�;x/ d�;

and A Nv D .DX Nv/
�1. Also, let us denote by adj.DX Nv/ the adjugate matrix (i.e., the transpose of the

cofactor matrix) of DX Nv and J Nv D det.DX Nv/.
Before attacking the well-posedness of (1-4), we first have to solve the linear system8<:

�0@t Nu� div
�
�.�0/A NvDA Nv . Nu/

�
CAT

Nv rP D 0;

div.adj.DX Nv/ Nu/D 0;

NujtD0 D u0;

(3-2)

where Nv 2 CT . PB
3=p�1
p;1

/ with r Nv 2L1
T
. PB

3=p
p;1

/\L2
T
. PB

3=p�1
p;1

/ is such that

kr Nvk
L2

T
. PB

3=p�1

p;1
/
Ckr Nvk

L1
T
. PB

3=p

p;1
/
� 2˛ (3-3)

for a suitably small ˛. Obviously, this will be achieved using the estimates of the Stokes system established
in the previous section; see Theorem 1.3. Let us write (3-2) in the form8̂<̂

:
@t Nu�

1
�0

div
�
�.�0/D. Nu/

�
C

1
�0
rP D 1

�0
F Nv. Nu;rP /;

div NuD div
�
.Id� adj.DX Nv// Nu

�
;

NutD0 D u0;
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with

F Nv. Nw;rQ/ WD div
�
�.�0/A NvDA Nv . Nw/��.�0/D. Nw/

�
C .Id�AT

Nv /rQ:

Consider .uL;rPL/ with uL 2 C.RC; PB3=p�1
p;1

/ and .@tuL;r
2uL;rPL/ 2 L1

loc.
PB

3=p�1
p;1

/, the unique
solution of 8̂<̂

:
@tuL�

1
�0

div
�
�.�0/D.uL/

�
C

1
�0
rPL D 0;

div uL D 0;

uLjtD0 D u0;

(3-4)

for which we know that

k.uL;rPL/kET
� ku0k PB3=p�1

p;1

exp.C�0
.T C 1//:

Moreover, T can be chosen small enough such that

kruLkL2
T
. PB

3=p�1

p;1
/
Ck.@tuL;r

2uL;rPL/kL1
T
. PB

3=p�1

p;1
/
� ˛: (3-5)

Following the idea in [Danchin and Mucha 2012], and owing to Theorem 1.3, we consider the operator

ˆ. Qw;r eQ/D . Qu;reP /; (3-6)

which associates to . Qw;r eQ/ 2 eFT the unique solution . Qu;reP / 2 eFT of8̂<̂
:
@t Qu�

1
�0

div
�
�.�0/D. Qu/

�
C

1
�0
reP D 1

�0
F Nv.uLC Qw;rPLCr

eQ/;
div QuD div

�
.Id� adj.DX Nv//.uLC Qw/

�
;

QujtD0 D 0:

We will show in the following that for any R> 0 there exists a sufficiently small T > 0 such that there
exists a fixed point for ˆ in the ball of radius R centered at the origin of eFT . More precisely, according
to Theorem 1.3 we get

kˆ. Qw;r eQ/keF T

�

 1

�0
F Nv.uLC Qw;rPLCr

eQ/
L1

T
. PB

3=p�1

p;1
/

Ck@t .Id� adj.DX Nv//.uLC Qw/kL1
T
. PB

3=p�1

p;1
/

C
r div

�
.Id� adj.DX Nv//.uLC Qw/

�
L1

T
. PB

3=p�1

p;1
/
: (3-7)

We begin by treating the first term: 1

�0
F Nv.uLC Qw;rPLCr

eQ/
L1

T
. PB

3=p�1

p;1
/

.
�

1

N�
C

 1

�0
�

1

N�


PB

3=p

p;1

�F Nv.uLC Qw;rPLCr
eQ/

L1
T
. PB

3=p�1

p;1
/
: (3-8)
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We write

T1D div
�
�.�0/A NvDA Nv .uLC Qw/

�
�div

�
�.�0/D.uLC Qw/

�
D div

�
�.�0/.A Nv�Id/DA Nv .uLC Qw/

�
Cdiv

�
�.�0/DA Nv�Id.uLC Qw/

�
D div

�
�.�0/.A Nv�Id/DA Nv�Id.uLC Qw/

�
Cdiv

�
�.�0/.A Nv�Id/D.uLC Qw/

�
Cdiv

�
�.�0/DA Nv�Id.uLC Qw/

�
:

Thus, using (3-22) of Proposition 3.27 along with product laws in Besov spaces (see Proposition 3.17)
we get the following bound for T1:

kT1kL1
T
. PB

3=p�1

p;1
/
.C�0

kA Nv�Idk
L1

T
. PB

3=p

p;1
/

�
1CkA Nv�Idk

L1
T
. PB

3=p

p;1
/

��
kruLkL1

T
. PB

3=p

p;1
/
Ckr Qwk

L1
T
. PB

3=p

p;1
/

�
.C�0

kr Nvk
L1

T
. PB

3=p

p;1
/

�
1Ckr Nvk

L1
T
. PB

3=p

p;1
/

��
kruLkL1

T
. PB

3=p

p;1
/
Ckr Qwk

L1
T
. PB

3=p

p;1
/

�
.C�0

˛
�
˛Ck. Qw;r eQ/kFT

�
: (3-9)

The second term is estimated as

k.Id�AT
Nv /.rPLCr

eQ/k
L1

T
. PB

3=p�1

p;1
/
. kr Nvk

L1
T
. PB

3=p

p;1
/

�
krPLkL1

T
. PB

3=p�1

p;1
/
Ckr eQk

L1
T
. PB

3=p�1

p;1
/

�
. ˛.˛Ck. Qw;r eQ/kFT

/ (3-10)

so that combining (3-8), (3-9) and (3-10) we get 1

�0
F Nv.uLC Qw;rPLCr

eQ/
L1

T
. PB

3=p�1

p;1
/
. C�0

˛.˛Ck. Qw;r eQ/kFT
/: (3-11)

In order to treat the second term of (3-7) we use the estimates (3-23) and (3-24) of Proposition 3.27 along
with Hölder’s inequality in order to obtain

k@t .Id�adj.DX Nv//.uLC Qw/kL1
T
. PB

3=p�1

p;1
/

. k.uLC Qw/@t adj.DX Nv/kL1
T
. PB

3=p�1

p;1
/
Ck.Id�adj.DX Nv//.@tuLC@t Qw/kL1

T
. PB

3=p�1

p;1
/

(3-12)

. k@t adj.DX Nv/kL2
T
. PB

3=p�1

p;1
/
kuLC QwkL2

T
. PB

3=p

p;1
/
CkId�adj.DX Nv/kL1

T
. PB

3=p

p;1
/
k@tuLC@t QwkL1

T
. PB

3=p�1

p;1
/

. kr Nvk
L2

T
. PB

3=p�1

p;1
/

�
˛Ck. Qw;r eQ/kFT

�
C˛.˛Ck. Qw;r eQ/kFT

/

.˛.˛Ck. Qw;r eQ/kFT
/: (3-13)

Treating the last term of (3-7) is done with the aid of Corollary 3.24:

div..Id� adj.DX Nv//.uLC Qw//D .DuLCD Qw/ W .Id�J NvA Nv/

D J Nv.DuLCD Qw/ W .Id�A Nv/C .1�J Nv/.div uLC div Qw/:
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Thus, using the estimates (3-22) and (3-26) of Proposition 3.27, we may writer div
�
.Id� adj.DX Nv//.uLC Qw/

�
L1

T
. PB

3=p�1

p;1
/

.
J Nv.DuLCD Qw/ W .Id�A Nv/


L1

T
. PB

3=p

p;1
/
C
.1�J Nv/.div uLC div Qw/


L1

T
. PB

3=p

p;1
/

.
�
1CkJ Nv � 1k

L1
T
. PB

3=p

p;1
/

�
kId�A NvkL1

T
. PB

3=p

p;1
/
kDuLCD Qwk

L1
T
. PB

3=p

p;1
/

Ck.J Nv � 1/k
L1

T
. PB

3=p

p;1
/
k div uLC div Qwk

L1
T
. PB

3=p

p;1
/

. ˛.1C˛/.˛Ck. Qw;r eQ/kFT
/: (3-14)

Combining the estimates (3-11), (3-13) and (3-14) we get

kˆ. Qw;r eQ/keF T

. ˛.˛Ck. Qw;r eQ/kFT
/: (3-15)

Thus, for a suitably small ˛ the operator ˆ maps the ball of radius R centered at the origin of eFT

into itself. Due to the linearity of ˆ, one can repeat the above arguments in order to show that ˆ is a
contraction for small values of ˛. This concludes the existence of a fixed point ofˆ, say . Qu?;reP ?

/2 eFT .
Of course,

. Nu;rP /D . Qu?;reP ?
/C .uL;rPL/

is a solution of (3-2).

Proof of Theorem 1.2. Consider T small enough such that .uL;rPL/, the solution of (3-4), satisfies

kruLkL2
T
. PB

3=p�1

p;1
/
CkruLkL1

T
. PB

3=p

p;1
/
� ˛;

and consider the closed seteFT .˛/D
˚
. Qv;r eQ/ 2 FT W QvjtD0D0; k. Qv;r eQ/kFT

�R˛
	

with R sufficiently small such that

kr Qvk
L2

T
. PB

3=p�1

p;1
/
Ckr Qvk

L1
T
. PB

3=p

p;1
/
� ˛: (3-16)

Let us consider the operator S which associates to . Qv;r eQ/ 2 eFT .˛/, the solution of8̂<̂
:
@t Qu�

1
�0

div
�
�.�0/D. Qu/

�
C

1
�0
reP D 1

�0
F.uLCQv/.uLC Qu;rPLCr

eP /;
div
�
adj.DXuLCQv/.uLC Qu/

�
D 0;

QujtD0 D 0

constructed in the previous section. We will show that for suitably small T and ˛, the operator S maps
the closed set eFT .˛/ into itself and that S is a contraction. First of all, recalling that . Qu;reP / is in fact
the fixed point of the operator ˆ defined in (3-6) and using the estimates established in the last section,
we conclude that

k. Qu;reP /keF T

D kS. Qv;r eQ/kFT
�R˛ (3-17)

for some small enough T .



466 COSMIN BURTEA

Next, we will deal with the stability estimates. For i D 1; 2, let us consider . Qvi ;r eQi/ 2
eFT .˛/ and

. Qui ;reP i/D S. Qvi ;r eQi/ 2
eFT .˛/. Defining

.ı Qv;rıeQ/D . Qv1� Qv2;r eQ1�r
eQ2/;

.ı Qu;rıeP /D . Qu1� Qu2;reP1�r
eP2/;

we see 8̂<̂
:
@tı Qu�

1
�0

div
�
�.�0/D.ı Qu/

�
C

1
�0
rıeP D 1

�0

eF ;
div ı QuD div eG;
ı QujtD0 D 0;

where

eF D F1.ı Qv;uLC Qu1/CF1.uLC Qv2; ı Qu/CF2.ı Qv;rPLCr
eP1/CF2.uLC Qv2;rıeP /;eG D��adj.DX.uLCQv1//� Id

�
ı Qu�

�
adj.DX.uLCQv1//� adj.DX.uLCQv2//

�
.uLC Qu2/ WD eG1C

eG2;

and

F1. Nv; Nw/D div
�
�.�0/A NvDA Nv . Nw/��.�0/D. Nw/

�
;

F2. Nv;rQ/D .Id�AT
Nv /rQ:

According to Theorem 1.3 we get

k.ı Qu;rıeP /keF T

. C�0

�
keFk

L1
T
. PB

3=p�1

p;1
/
Ckr div eGk

L1
T
. PB

3=p�1

p;1
/
Ck@t

eGk
L1

T
. PB

3=p�1

p;1
/

�
: (3-18)

Proceeding as in relations (3-8) and (3-9) we get

keFk
L1

T
. PB

3=p�1

p;1
/
. krı Qvk

L1
T
. PB

3=p

p;1
/
kruLCr Qu1kL1

T
. PB

3=p

p;1
/
CkruLCr Qv2kL1

T
. PB

3=p

p;1
/
krı Quk

L1
T
. PB

3=p

p;1
/

Ckrı Qvk
L1

T
. PB

3=p

p;1
/
krPLCr

eP1kL1
T
. PB

3=p�1

p;1
/

CkruLCr Qv2kL1
T
. PB

3=p

p;1
/
krıePk

L1
T
. PB

3=p�1

p;1
/

.˛k.rı Qv;rıeQ/k
L1

T
. PB

3=p

p;1
/
C˛k.ı Qu;rıeP /keF T

: (3-19)

Of course, we will use the smallness of ˛ to absorb ˛k.rı Qu;rıeP /k
L1

T
. PB

3=p

p;1
/

into the left-hand side
of (3-18).

Next, we treat kr div eGk
L1

T
. PB

3=p�1

p;1
/
. Using Proposition 3.23, we can write

�diveG2D div
��

adj.DX.uLCQv1//�adj.DX.uLCQv2//
�
.uLCQu2/

�
D div

�
adj.DX.uLCQv1//.uLCQu2/

�
�div

�
adj.DX.uLCQv2//.uLCQu2/

�
DJuLCQv1

D.uLCQu2/ WA.uLCQv1/�J.uLCQv2/D.uLCQu2/ WA.uLCQv2/

D .JuLCQv1
�J.uLCQv2//D.uLCQu2/ WA.uLCQv1/CJ.uLCQv2/D.uLCQu2/ W .A.uLCQv1/�A.uLCQv2//;



OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER–STOKES SYSTEM 467

and thus, using Propositions 3.27 and 3.28 we get

kr div eG2kL1
T
. PB

3=p�1

p;1
/

. k.JuLCQv1
�J.uLCQv2//kL1

T
. PB

3=p

p;1
/
k.DuL;D Qu2/kL1

T
. PB

3=p

p;1
/
.1CkId�A.uLCQv1/kL1

T
. PB

3=p

p;1
/
/

C .1Ck.JuLCQv2
� 1/k

L1
T
. PB

3=p

p;1
/
/k.DuL;D Qu2/kL1

T
. PB

3=p

p;1
/
kA.uLCQv1/�A.uLCQv2/kL1

T
. PB

3=p

p;1
/

. ˛krı Qvk
L1

T
. PB

3=p

p;1
/
:

(3-20)
Next, using again Proposition 3.23 we see

� div eG1 D div
�
.adj.DX.uLCQv1//� Id/ı Qu

�
DDı Qu W .JuLCQv1

A.uLCQv1/� Id/

D JuLCQv1
Dı Qu W .A.uLCQv1/� Id/C .JuLCQv1

� 1/ div ı Qu

and consequently

kr diveG1kL1
T
. PB

3=p�1

p;1
/

.
JuLCQv1

Dı Qu W .A.uLCQv1/�Id/


L1
T
. PB

3=p

p;1
/
C
.JuLCQv1

�1/divı Qu


L1
T
. PB

3=p

p;1
/

.
�
1CkJuLCQv1

�1k
L1

T
. PB

3=p

p;1
/

�
kDı Qu W .A.uLCQv1/�Id/k

L1
T
. PB

3=p

p;1
/
CkJuLCQv1

�1k
L1

T
. PB

3=p

p;1
/
kdivı Quk

L1
T
. PB

3=p

p;1
/

.˛k.ı Qu;rıP /keF T

: (3-21)

Combining (3-20) with (3-21) yields

kr div eGk
L1

T
. PB

3=p�1

p;1
/
. ˛krı Qvk

L1
T
. PB

3=p

p;1
/
C˛k.ı Qu;rıP /keF T

: (3-22)

Again, we will use the smallness of ˛ to absorb ˛k.rı Qu;rıeP /k
L1

T
. PB

3=p

p;1
/

into the left-hand side of (3-22).

Finally, we write

@t

��
adj.DX.uLCQv1//� adj.DX.uLCQv2//

�
.uLC Qu2/

�
D
�
@t adj.DX.uLCQv1//� @t adj.DX.uLCQv2//

�
.uLC Qu2/

C adj.DX.uLCQv1//� adj.DX.uLCQv2//.@tuLC @t Qu2/:

Using Proposition 3.28 gives us@t

�
.adj.DX.uLCQv1//�adj.DX.uLCQv2///.uLCQu2/

�
L1

T
. PB

3=p�1

p;1
/

.
@t adj.DX.uLCQv1//�@t adj.DX.uLCQv2//


L2

T
. PB

3=p�1

p;1
/
kuLkL2

T
. PB

3=p

p;1
/

C
@t adj.DX.uLCQv1//�@t adj.DX.uLCQv2//


L1

T
. PB

3=p

p;1
/
k Qu2kL1

T
. PB

3=p�1

p;1
/

C
adj.DX.uLCQv1//�adj.DX.uLCQv2//


L1

T
. PB

3=p

p;1
/
k@tuLC@t Qu2kL1

T
. PB

3=p�1

p;1
/

.˛kı Qvk
L2

T
. PB

3=p

p;1
/
:

The conclusion is
k@t

eGk
L1

T
. PB

3=p�1

p;1
/
. ˛kı Qvk

L2
T
. PB

3=p

p;1
/
: (3-23)
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Combining (3-19), (3-22) and (3-23) we get if ˛ is chosen sufficiently small then

k..ı Qu;rıeP //keF T

�
1
2
k..ı Qv;rıeQ//kFT

(3-24)

and the operator S is also a contraction over eFT .˛/. Thus, according to Banach’s theorem there exists a
fixed point . Nu?;rP?/ of S . Obviously,

. Nu;rP /D .uL;rPL/C . Nu
?;rP?/

is a solution of 8<:
�0@t Nu� div

�
�.�0/A NuDA Nu. Nu/

�
CAT

Nu rP D 0;

div.adj.DX Nu/ Nu/D 0;

NujtD0 D u0:

(3-25)

In view of Proposition 3.26 we also get J Nu D 1. Thus, the second equation of (3-25) becomes

div.A Nu Nu/D 0:

The only thing left to prove is the uniqueness property. Consider . Nu1;rP1/, . Nu2;rP 2/ 2 FT , two
solutions of (3-25) with the same initial data u0 2

PB
3=p�1
p;1

. With .uL;rPL/ defined above, we let

. Qui ;reP i
/D . Nui ;rP i/� .uL;rPL/ for i D 1; 2

such that the system verified by . Qui;reP i
/ is8̂̂<̂

:̂
@t Qu

i �
1
�0

div
�
�.�0/D. Qu

i/
�
C

1
�0
reP i

D
1
�0

F.uLCQui /.uLC Qu
i ;rPLCr

eP i
/;

div
�
A.uLCQui /.uLC Qu

i/
�
D 0;

QujtD0 D 0:

We are now in the position of performing exactly the same computations as above so that we obtain a
time T

0

sufficiently small such that

. Nu1;rP1/D . Nu2;rP2/ on Œ0;T 0�:

It is classical that the above local uniqueness property extends to all of Œ0;T �. �

Proof of Theorem 1.1. Considering .�0;u0/ 2 PB
3=p
p;1
� PB

3=p�1
p;1

and applying Theorem 1.2, there exists
a positive T > 0 such that we may construct a solution . Nu;rP / to the system (1-4) in FT . Then,
working with a smaller T if needed and considering X Nu, the “flow” of Nu defined by (3-17), by using
Proposition 3.26 from the Appendix, one obtains that X Nu is a measure preserving C 1-diffeomorphism
over Rn for all t 2 Œ0;T �. Thus we may introduce the Eulerian variable:

�.t;x/D �0.X
�1
Nu .t;x//; u.t;x/D Nu.t;X�1

Nu .t;x// and P .t;x/D P .t;X�1
Nu .t;x//:

Then, Proposition 3.23 ensures that .�;u;rP / is a solution of (1-1). As DX Nu� Id belongs to PB3=p
p;1

, using
Proposition 3.22, we may conclude that .�;u;rP / has the announced regularity.

The uniqueness property comes from the fact that considering two solutions .�i ;ui;rP i/ of (1-1),
i D 1; 2, and considering Yui , the flow of ui , we find that

�
ui.t;Yui .t;y//;rP i.t;Yui .t;y//

�
are solutions

of the system (1-4) with the same data. Thus, they are equal according to the uniqueness property
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announced in Theorem 1.2. Thus, on some nontrivial interval Œ0;T 0�� Œ0;T � (chosen such that condition
(3-19) holds), the solutions .�i ;ui;rP i/ are equal. This local uniqueness property obviously entails
uniqueness on all of Œ0;T �. �

Appendix

We present here a few results of Fourier analysis used through the text. The full proofs along with other
complementary results can be found in [Bahouri et al. 2011, Chapter 2].

Let us introduce the dyadic partition of the space:

Proposition A.1. Let C be the annulus
˚
� 2 Rn W

3
4
� j�j � 8

3

	
. There exists a radial function ' 2 D.C/

valued in the interval Œ0; 1� such that

for all � 2 Rn
nf0g;

X
j2Z

'.2�j�/D 1; (A-1)

2� jj � j 0j ) Supp.'.2�j
� //\Supp.'.2�j 0

� //D∅: (A-2)

Also, the following inequality holds:

for all � 2 Rn
nf0g;

1

2
�

X
j2Z

'2.2�j�/� 1: (A-3)

From now on we fix functions � and ' satisfying the assertions of the above proposition and denote by
Qh and h their Fourier inverses.

The homogeneous dyadic blocks P�j and the homogeneous low-frequency cut-off operators PSj are

P�j uD '.2�j D/uD 2jn

Z
Rn

h.2j y/u.x�y/ dy;

PSj uD �.2�j D/uD 2jn

Z
Rn

Qh.2j y/u.x�y/ dy

for all j 2 Z.

Definition A.2. We denote by S 0
h

the space of tempered distributions such that

lim
j!�1

k PSj ukL1 D 0:

Let us now define the homogeneous Besov spaces:

Definition A.3. Let s be a real number and .p; r/ 2 Œ1;1�. The homogeneous Besov space PBs
p;r is the

subset of tempered distributions u 2 S 0
h

such that

kuk PBs
p;r
WD
.2js

k P�j ukL2/j2Z


`r .Z/

<1:

The next propositions gather some basic properties of Besov spaces.

Proposition A.4. Let us consider s 2 R and p; r 2 Œ1;1� such that

s <
n

p
or s D

n

p
and r D 1: (A-4)

Then . PBs
p;r ; k � k PBs

p;r
/ is a Banach space.
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Proposition 3.5. A tempered distribution u2S 0
h

belongs to PBs
p;r .R

n/ if and only if there exists a sequence
.cj /j such that .2jscj /j 2 `

r .Z/ with norm 1 and a constant C D C.u/ > 0 such that for any j 2 Z we
have

k P�j ukLp � Ccj :

Proposition 3.6. Consider s1 and s2 two real numbers such that s1 < s2 and � 2 .0; 1/. Then, there exists
a constant C > 0 such that for all r 2 Œ1;1� we have

kuk
PB
�s1C.1��/s2
p;r

� kuk�
PB

s1
p;r

kuk1��
PB

s2
p;r

;

kuk
PB
�s1C.1��/s2
p;1

�
C

s2� s1

�
1

�
C

1

1� �

�
kuk�

PB
s1
p;1

kuk1��
PB

s2
p;1

:

Proposition 3.7. (1) Let 1 � p1 � p2 � 1 and 1 � r1 � r2 � 1. Then, for any real number s, the
space PBs

p1;r1
is continuously embedded in PBs�n.1=p1�1=p2/

p2;r2
.

(2) Let 1� p <1. Then, PBn=p
p;1

is continuously embedded in .C0.R
n/; k � kL1/, the space of continuous

functions vanishing at infinity.

Proposition 3.8. For all 1� p; r �1 and s 2 R,(
PBs
p;r �

PB�s
p0;r 0 ! R;

.u; v/!
P

j h
P�j u; Q�jvi;

(3-5)

where Q�j WD
P�j�1C

P�j C
P�jC1, defines a continuous bilinear functional on PBs

p;r �
PB�s
p0;r 0 . Denote by

Q�s
p0;r 0 the set of functions ' 2 S\ PB�s

p0;r 0 such that k'k PB�s
p0;r 0
� 1. If u 2 S 0

h
, then we have

kuk PBs
p;r
. sup
'2Q�s

p0;r 0

hu; 'iS0�S :

Proposition 3.9. Consider 1 < p; r < 1 and s 2 R. Furthermore, let u 2 PBs
p;r , v 2 PB�s

p0;r 0 and
� 2L1\M. PBs

p;r /\M. PB�s
p0;r 0/. Then, we have

.�u; v/D
X

j

X
j

h P�j u; Q�j .�v/i D .u; �v/: (3-6)

The proof of Proposition 3.9 follows from a density argument. Relation (3-6) clearly holds for functions
from the Schwartz class: then we may writeZ

Rn

�uv D .�u; v/D .u; �v/:

The conditions 1< p; r <1 and s 2 R ensure that u and v may be approximated by Schwartz functions.
An important feature of Besov spaces with negative index of regularity is the following:

Proposition 3.10. Let s < 0 and 1� p; r �1. Let u be a distribution in S 0
h
. Then, u belongs to PBs

p;r if
and only if

.2js
k PSj ukLp /j2Z 2 `

r .Z/:
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Moreover, there exists a constant C depending only on the dimension n such that

C�jsjC1
kuk PBs

p;r
�
.2js

k PSj ukLp /j2Z


`r .Z/

� C
�
1C

1

jsj

�
kuk PBs

p;r
:

The next proposition tells us how certain multipliers act on Besov spaces.

Proposition 3.11. Consider A a smooth function on Rnnf0g which is homogeneous of degree m. Then,
for any .s;p; r/ 2 R�Œ1;1�2 such that

s�m<
n

p
or s�mD

n

p
and r D 1;

the operator4 A.D/ maps PBs
p;r continuously into PBs�m

p;r .

The next proposition describes how smooth functions act on homogeneous Besov spaces.

Proposition 3.12. Let f be a smooth function on R which vanishes at 0. Consider .s;p; r/ 2 R�Œ1;1�2

such that

0< s <
n

p
or s D

n

p
and r D 1:

Then for any real-valued function u 2 PBs
p;r \L1, the function f ıu is in PBs

p;r \L1 and we have

kf ıuk PBs
p;r
� C.f 0; kukL1/kuk PBs

p;r
:

Remark 3.13. The constant C.f 0; kukL1/ appearing above can be taken to be

sup
i21;Œs�C1

kf .i/kL1.jŒ�MkukL1 ;�MkukL1 �/
;

where M is a constant depending only on the dimension n.

Commutator and product estimates. Next, we want to see how the product acts in Besov spaces. The
Bony decomposition, introduced in [Bony 1981], offers a mathematical framework to obtain estimates of
the product of two distributions, when the latter is defined.

Definition 3.14. Given two tempered distributions u; v 2 S 0
h
, the homogeneous paraproduct of v by u is

defined as
PTuv D

X
j2Z

PSj�1u P�jv: (3-7)

The homogeneous remainder of u and v is defined by

PR.u; v/D
X
j2Z

P�j u P�0jv; (3-8)

where
P�0j D

P�j�1C
P�j C

P�jC1:

4A.D/w D F�1.AFw/.
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Remark 3.15. Notice that at a formal level, one has the following decomposition of the product of two
(sufficiently well-behaved) distributions:

uv D PTuvC PTvuC PR.u; v/D PTuvC PT
0
vu:

The next result describes how the paraproduct and remainder behave.

Proposition 3.16. (1) Assume .s;p;p1;p2; r/ 2 R�Œ1;1�4 such that

1

p
D

1

p1
C

1

p2
; s <

n

p
or s D

n

p
and r D 1:

Then, the paraproduct maps Lp1 � PBs
p2;r

into PBs
p;r and the following estimate holds:

k PTf gk PBs
p;r
. kf kLp1kgk PBs

p2;r
:

(2) Assume .s;p;p1;p2; r; r1; r2/ 2 R�Œ1;1�6 and � > 0 such that

1

p
D

1

p1
C

1

p2
;

1

r
D

1

r1
C

1

r2

and
s <

n

p
� � or s D

n

p
� � and r D 1:

Then, the paraproduct maps PB��p1;r1
� PBsC�

p2;r2
into PBs

p;r and the following estimate holds:

k PTf gk PBs
p;r
. kf k PB��p1;r1

kgk PBsC�
p2;r2

:

(3) Consider .s1; s2;p;p1;p2; r; r1; r2/ 2 R2 � Œ1;1�6 such that

0< s1C s2 <
n

p
or s1C s2 D

n

p
and r D 1:

Then, the remainder maps PBs1
p1;r1
� PB

s2
p2;r2

into PBs1Cs2
p;r and

k PR.f;g/k
PB

s1Cs2
p;r

� kf k PB
s1
p1;r1

kgk PBs2
p2;r2

:

As a consequence we obtain the following product rules in Besov space:

Proposition 3.17. Consider p 2 Œ1;1� and the real numbers �1 � 0 and �2 � 0 with

�1C �2 <
n

p
Cmin

�
n

p
;

n

p0

�
:

Then, the following estimate holds:

kfgk
PB

n=p��1��2
p;1

. kf k
PB

n=p��1
p;1

kgk
PB

n=p��2
p;1

:

Proposition 3.18. Consider � a C1 function on Rn such that .1C j � j/ O� 2 L1. Let us also consider
p; q 2 Œ1;1� such that

1

r
WD

1

p
C

1

q
� 1:
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Then, there exists a constant C such that for any Lipschitz function a with gradient in Lp, any function
b 2Lq and any positive �, Œ�.��1D/; a�b


Lr � C��1

krakLpkbkLq :

In particular, when � D ' and �D 2j we getŒ P�j ; a�b


Lr � C 2�j
krakLpkbkLq :

Proposition 3.19. Assume s; � and p 2 Œ1;1� are such that

0� � �
n

p
and � 1�min

�
n

p
;

n

p0

�
< s �

n

p
� �:

Then, there exists a constant C depending only on s; �;p and n such that for all l 2 1; n we have for some
sequence .cj /j2Z with k.cj /j2Zk`1.Z/ D 1,@l Œa; P�j �w


Lp � Ccj 2�js

krak PBn=p��

p;1

kwk PBsC�
p;1

for all j 2 Z.

For a proof of the above results we refer the reader to the Appendix of [Danchin 2014, Lemmas A.5
and A.6].

Proposition 3.20. Consider a homogeneous function A W Rnnf0g ! R of degree 0. Let us consider s 2 R,
0<�� 1 and p; r; r1; r2 2 Œ1;1� such that

1

r
D

1

r1
C

1

r2
and

s <
n

p
� � or s D

n

p
� � and r2 D 1: (3-9)

Moreover, assume w 2 PBsC�
p;r2

and a 2L1 with ra 2 PB��1;r1
. Then, the following estimate holds:ŒA.D/; PTa�w


PB

sC1
p;r
. krak PB��1;r1

kwk PBsC�
p;r2

: (3-10)

As this result is of great importance in the analysis of the pressure term, we present a sketched proof
below (see also [Bahouri et al. 2011, Chapter 2, Lemma 2.99]).

Proof. The fact that a 2 L1, along with relation (3-9), guarantees that A.D/w 2 PBsC�
p;r and that the

paraproducts PTaw and PTaA.D/w are well-defined. We observe that there exists a function Q' supported
in some annulus which equals 1 on the support of ' such that one may write (of course it is here that we
use the homogeneity of A)

ŒA.D/; PTa�w D
X

j

�
.A Q'/.2�j D/; PSj�1a

�
P�jw:

But according to Proposition 3.18 we have

2j.sC1/
�.A Q'/.2�j D/; PSj�1a

�
P�jw


Lp . 2�j�

kr PSj�1akL12j.sC�/
k P�jwkLp :

The last relation obviously implies (3-10). �
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As a consequence of the above proposition and Proposition 3.16 we get the following:

Proposition 3.21. Let us consider a homogeneous function A WRnnf0g!R of degree 0, s 2R, 0<��1

and p; r; r1; r2 2 Œ1;1� such that
1

r
D

1

r1
C

1

r2

and

�1�min
�

n

p
;

n

p0

�
< s <

n

p
� � or s D

n

p
� � and r D r2 D 1: (3-11)

assume w 2 PBsC�
p;r2

and a 2L1 with ra 2 PB��1;r1
. Then, the following estimate holds:ŒA.D/; a�w PBsC1

p;r
. krak PBn=p��

p;r1

kwk PBsC�
p;r2

:

Properties of Lagrangian coordinates. The following results are gathered from [Danchin 2014] and
[Danchin and Mucha 2012]. More precisely, proofs of Propositions 3.22, 3.23, the estimate (3-26) of
Proposition 3.27 and the estimate (3-31) of Proposition 3.28 can be found in [Danchin 2014, pp. 782–786].
Propositions 3.27 and 3.28 can be found in the Appendix of [Danchin and Mucha 2012]. Proposition 3.26
is inspired by [Danchin and Mucha 2012].

Proposition 3.22. Let X be a globally defined bi-Lipschitz diffeomorphism of R3 and � 3
p0
< s� 3

p
. Then

a! a ıX is a self-map over PBs
p;1

whenever

(1) s 2 .0; 1/;

(2) s � 1 and .DX � Id/ 2 PB3=p
p;1

.

The following result interferes in a crucial manner in the proof of the well-posedness result for the
inhomogeneous incompressible Navier–Stokes system.

Proposition 3.23. Let m be a C 1 scalar function over R3 and u 2 R3 a C 1 vector field. Let X be a C 1

diffeomorphism and we define J WD det.DX /. Suppose J > 0. Then, the following relations hold:

.rm/ ıX D J�1 div.adj.DX /m ıX /; (3-12)

. div u/ ıX D J�1 div.adj.DX /u ıX /: (3-13)

Corollary 3.24. Let m be a C 1 scalar function over R3 and u 2 R3 be a C 1 vector field. Let X be a C 1

diffeomorphism and J WD det.DX /. Suppose J > 0. Then, we have

J�1 div.adj.DX /u/DDu W .DX /�1; (3-14)

J�1 div.adj.DX /m/D Œ.DX /�1�Trm: (3-15)

Proof. In order to ease reading, we define Fjx WD F.x/. Writing u as u ıX ıX�1, using the chain rule
and Einstein convention over repeated index, we write

.div u/jx D @k.u
i
ıX /jX�1.x/@i.X

�1/k
jx

DD.u ıX /jX�1.x/ WD.X
�1/jx

DD.u ıX /jX�1.x/ W .DX /�1
jX�1.x/

;
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and thus, we get
.div u/ ıX DD.u ıX / W .DX /�1: (3-16)

Then, using (3-13) and (3-16) we get

J�1 div.adj.DX /u/D J�1 div
�
adj.DX /u ıX�1

ıX
�
D .div u ıX�1/ ıX

DD.u ıX�1
ıX / W .DX /�1

DDu W .DX /�1:

In a similar manner we prove (3-15). �

For any Nv a time-dependent vector field we set

X Nv.t;x/D xC

Z t

0

Nv.�;x/ d� (3-17)

and we define
A Nv D .DX Nv/

�1: (3-18)

It is crucial to know (in order to pass back in Eulerian coordinates, for instance) when X Nv is a global
diffeomorphism. In order to achieve this, we will use the following theorem due to Hadamard:

Theorem 3.25 (Hadamard). Let X W Rn! Rn a function of class C 1. Then, the following are equivalent:

(1) X is a local diffeomorphism and limjxj!1jX.x/j D1.

(2) X is a global C 1-diffeomorphism over Rn.

For a proof of this result one can consult, for instance, [Katriel 1994].

Proposition 3.26. Let us consider Nv 2 Cb

�
Œ0;T �; PB

3=p�1
p;1

�
with @t Nv, r2 Nv 2 L1

T
. PB

3=p�1
p;1

/. Then, there
exists a positive ˛ such that if

kr Nvk
L1

T
. PB

3=p

p;1
/
� ˛; (3-19)

then, for any t 2 Œ0;T �, we have X Nv.t; � / introduced in (3-17) is a global C 1-diffeomorphism over R3 and
det.DX Nv/ > 0. Moreover, if

div.adj.DX Nv/ Nv/D 0 (3-20)

then, X Nv is measure-preserving, i.e.,
det DX Nv D 1: (3-21)

Proof. Differentiating X Nv, we obtain

DX Nv.t; � /D IdC
Z t

0

D Nv.�; � / d�

and because of the embedding of PB3=p
p;1

into the space of continuous functions, see Proposition 3.7, we
conclude X Nv 2 C 1.Œ0;T ��R3/. We observe that

kDX Nv.t; � /� IdkL1.R3/ �

Z t

0

kD Nv.�; � /kL1 d�

� Ckr Nvk
L1

t .
PB

3=p

p;1
/
� ˛C:
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Thus choosing ˛ sufficiently small ensures that X Nv.t; � / is a local C 1-diffeomorphism over R3. The second
condition of Hadamard’s theorem is verified in the following lines. Using the triangle inequality we get

jX Nv.t;x/j � jxj �

Z t

0

j Nv.�;x/jd� � jxj �

Z t

0

k Nv.�; � /kL1d�

� jxj �C

Z t

0

k Nv.�; � /k PB3=p

p;1

d�

� jxj �C
p

tk Nvk
L2

t .
PB

3=p

p;1
/
:

The conclusion is that X Nv.t; � / is a global C 1-diffeomorphism over R3. Let us define J Nv WD det DX Nv 6D 0.
Using Jacobi’s formula we get

J Nv.t;x/D 1C

Z t

0

tr
�
D Nv.�;x/ adj.DX Nv/.�;x/

�
d�:

Recall that according to [Danchin and Mucha 2012, Lemma A.4] we may write

Id� adj.DX Nv/D

Z t

0

.D Nv� div Nv Id/ d� CP2

�Z t

0

D Nv d�

�
;

where the coefficients of the matrix P2 WMn.R/!Mn.R/ are at least quadratic polynomial functions of
degree n�1. Using this identity combined with the embedding L1 ,! PB

3=p
p;1

and the smallness condition
(3-19) we get J Nv > 0. In order to prove the second part of the proposition, let us define

v.t;x/ WD Nv.t;X�1
Nv .t;x//:

Using relation (3-20) combined with (3-13) we get

0D J�1
Nv div.adj.DX Nv/ Nv/D div. Nv ıX�1

Nv / ıX Nv;

which implies
div v D div. Nv ıX�1

Nv /D 0:

Since X Nv can be viewed as being the flow of v, using Jacobi’s formula we can conclude the validity of
(3-21). Indeed, we have

X Nv.t;x/D xC

Z t

0

Nv.�;x/d�

D xC

Z t

0

Nv.�;X�1
Nv .�;X Nv.�;x/// d�

D xC

Z t

0

v.�;X Nv.�;x// d�:

Then, Jacobi’s formula implies

det.DX Nv/.t;x/D exp
�Z t

0

.div v/.�;X Nv.�;x//
�
D 1: �
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Proposition 3.27. Consider Nv 2 Cb

�
Œ0;T �; PB

3=p�1
p;1

�
with @t Nv, r2 Nv 2L1

T
. PB

3=p�1
p;1

/ satisfying the small-
ness condition (3-3). Let X Nv be defined by (3-17) and J Nv D det DX Nv. Then for all t 2 Œ0;T �,

kId�A Nv.t/k PB3=p

p;1

. kr Nvk
L1

t .
PB

3=p

p;1
/
; (3-22)

kId� adj.DX Nv/.t/k PB3=p

p;1

. kr Nvk
L1

t .
PB

3=p

p;1
/
; (3-23)

k@t adj.DX Nv/.t/k PB3=p�1

p;1

. kr Nv.t/k PB3=p�1

p;1

; if p < 6; (3-24)

k@t adj.DX Nv/.t/k PB3=p

p;1

. kr Nv.t/k PB3=p

p;1

; (3-25)

kJ˙Nv .t/� 1k PB3=p

p;1

. kr Nvk
L1

t .
PB

3=p

p;1
/
: (3-26)

In order to establish stability estimates we use the following:

Proposition 3.28. Let Nv1; Nv2 2 Cb

�
Œ0;T �; PB

3=p�1
p;1

�
with @t Nv1; @t Nv2, r2 Nv1;r

2 Nv2 2 L1
T
. PB

3=p�1
p;1

/, both
satisfying the smallness condition (3-19) and ıv D Nv2� Nv1. Then we have

kA Nv1
�A Nv2

k
L1

T
. PB

3=p

p;1
/
. krıvk

L1
T
. PB

3=p

p;1
/
; (3-27)

k adj.DX Nv1
/� adj.DX Nv2

/k
L1

T
. PB

3=p

p;1
/
. krıvk

L1
T
. PB

3=p

p;1
/
; (3-28)

k@t adj.DX Nv1
/� @t adj.DX Nv2

/k
L1

T
. PB

3=p

p;1
/
. krıvk

L1
T
. PB

3=p

p;1
/
; (3-29)

k@t adj.DX Nv1
/� @t adj.DX Nv2

/k
L2

T
. PB

3=p�1

p;1
/
. krıvk

L2
T
. PB

3=p�1

p;1
/
; if p < 6; (3-30)

kJ˙Nv1
.t/�J˙Nv2

.t/k PB3=p

p;1

. krıvk
L1

t .
PB

3=p

p;1
/
: (3-31)
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GLOBAL DYNAMICS BELOW THE STANDING WAVES
FOR THE FOCUSING SEMILINEAR SCHRÖDINGER EQUATION

WITH A REPULSIVE DIRAC DELTA POTENTIAL

MASAHIRO IKEDA AND TAKAHISA INUI

We consider the focusing mass-supercritical semilinear Schrödinger equation with a repulsive Dirac delta
potential on the real line R:(

i@tuC
1
2
@2xuC ı0uCjuj

p�1uD 0; .t; x/ 2 R�R;

u.0; x/D u0.x/ 2H
1.R/;

where  � 0, ı0 denotes the Dirac delta with the mass at the origin, and p > 5. By a result of Fukuizumi,
Ohta, and Ozawa (2008), it is known that the system above is locally well-posed in the energy spaceH 1.R/

and there exist standing wave solutions ei!tQ!; .x/ when ! > 1
2
2, where Q!; is a unique radial

positive solution to�1
2
@2xQC!Q�ı0QDjQj

p�1Q. Our aim in the present paper is to find a necessary
and sufficient condition on the data below the standing wave ei!tQ!;0 to determine the global behavior
of the solution. The similar result for NLS without potential ( D 0) was obtained by Akahori and Nawa
(2013); the scattering result was also extended by Fang, Xie, and Cazenave (2011). Our proof of the
scattering result is based on the argument of Banica and Visciglia (2016), who proved all solutions scatter
in the defocusing and repulsive case ( < 0) by the Kenig–Merle method (2006). However, the method
of Banica and Visciglia cannot be applicable to our problem because the energy may be negative in the
focusing case. To overcome this difficulty, we use the variational argument based on the work of Ibrahim,
Masmoudi, and Nakanishi (2011). Our proof of the blow-up result is based on the method of Du, Wu, and
Zhang (2016). Moreover, we determine the global dynamics of the radial solution whose mass-energy is
larger than that of the standing wave ei!tQ!;0. The difference comes from the existence of the potential.

1. Introduction 481
2. Minimizing problems and variational structure 486
3. Proof of the scattering part 495
4. Proof of the blow-up part 508
Appendix: Rewriting the main theorem into a version independent of the frequency 510
Acknowledgments 511
References 511

1. Introduction

1A. Background. We consider the focusing mass-supercritical semilinear Schrödinger equation with a
repulsive Dirac delta potential on the real line R:

MSC2010: 35P25, 35Q55, 47J35.
Keywords: global dynamics, standing waves, nonlinear Schrödinger equation, Dirac delta potential.

481

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-2
http://dx.doi.org/10.2140/apde.2017.10.481
http://msp.org


482 MASAHIRO IKEDA AND TAKAHISA INUI�
i@tuC

1
2
@2xuC ı0uCjuj

p�1uD 0; .t; x/ 2 R�R;

u.0; x/D u0.x/ 2H
1.R/;

(ıNLS)

where  � 0, ı0 denotes the Dirac delta with the mass at the origin, and p > 5. The system (ıNLS)
appears in a wide variety of physical models with a point defect on the line; see [Goodman et al. 2004]
and the references therein. We define the Schrödinger operator H as the formulation of a formal
expression �1

2
@2x � ı0:

H' WD �
1
2
@2x'; ' 2 D.H /;

D.H / WD
˚
'2H 1.R/\H 2.R nf0g/ W @x'.0C/� @x'.0�/D � 2'.0/

	
:

H is a nonnegative self-adjoint operator on L2.R/ (see [Albeverio et al. 2005] for more details), which
implies that (ıNLS) is locally well-posed in the energy space H 1.R/.

Proposition 1.1 [Fukuizumi et al. 2008, Section 2; Cazenave 2003, Theorem 3.7.1]. For any u0 2H 1.R/,
there exist T˙ D T˙.ku0kH1/ > 0 and a unique solution

u 2 C
�
.�T�; TC/IH

1.R/
�
\C 1

�
.�T�; TC/IH

�1.R/
�

of (ıNLS). Moreover, the following statements hold:

� (blow-up criterion) T˙ D1, or T˙ <1 and limt!˙T˙
k@xu.t/kL2 D1, where the double-sign

corresponds.

� (conservation laws) The energy E and the mass M are conserved by the flow; i.e.,

E.u.t//DE.u0/; M.u.t//DM.u0/ for any t 2 .�T�; TC/;

where for ' 2H 1.R/, we define E and M as

E.'/DE .'/ WD
1
4
k@x'k

2
L2
�
1
2
 j'.0/j2�

1

pC1
k'k

pC1

LpC1
; (1-1)

M.'/W D 1
2
k'k2

L2
: (1-2)

We investigate the global behaviors of the solution. By the choice of the initial data, (ıNLS) has various
solutions, for example, scattering solutions, blow-up solutions, and so on. Let us recall the definitions of
scattering and blow-up. Let u be a solution to (ıNLS) on the maximal existence time interval .�T�; TC/.

Definition 1.1 (scattering). We say that the solution u to (ıNLS) scatters if and only if T˙ D1 and
there exist u˙ 2H 1.R/ such that

ku.t/� e�itHu˙kH1 ! 0 as t !˙1;

where fe�itH g denotes the evolution group of i@tu�HuD 0.

Definition 1.2 (blow-up). We say that the solution u to (ıNLS) blows up in positive time (resp. negative
time) if and only if TC <1 (resp. T� <1).
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Since a pioneer work by Kenig and Merle [2006], the global dynamics without assuming smallness
for focusing nonlinear Schrödinger equations have been studied. For the focusing cubic semilinear
Schrödinger equation in three dimensions, Holmer and Roudenko [2008] proved that ku0kL2kru0kL2 <
kQkL2krQkL2 implies scattering and, on the other hand, ku0kL2kru0kL2 > kQkL2krQkL2 implies
finite-time blow-up if the initial data u0 2H 1.R3/ is radially symmetric and satisfies the mass-energy
condition M.u0/E.u0/ <M.Q/E.Q/, where Q is the ground state. For nonradial solutions, Duyckaerts,
Holmer, and Roudenko [Duyckaerts et al. 2008] proved the scattering part and Holmer and Roudenko
[2010] proved the solutions in the above blow-up region blow up in finite time or grow up in infinite
time. Fang, Xie, and Cazenave [Fang et al. 2011] extended the scattering result and Akahori and Nawa
[2013] extended both the scattering and the blow-up result to mass-supercritical and energy-subcritical
Schrödinger equations in general dimensions.

Recently, Banica and Visciglia [2016] proved all solutions scatter in the defocusing case. On the other
hand, in the focusing case, (ıNLS) has blow-up solutions and nonscattering global solutions. Thus, their
method cannot be applicable to our problem.

1B. Main results. To state our main result, we introduce several notations.
Let ! be a positive parameter that denotes the frequency. We define action S! and a functional P as

S!.'/D S!; .'/ WDE.'/C!M.'/D
1
4
k@x'k

2
L2
�
1
2
 j'.0/j2C 1

2
!k'k2

L2
�

1

pC1
k'k

pC1

LpC1
; (1-3)

P.'/D P .'/ WD
1
2
k@x'k

2
L2
�
1
2
 j'.0/j2�

p� 1

2.pC 1/
k'k

pC1

LpC1
; (1-4)

where P appears in the virial identity (see [Le Coz et al. 2008]).
We often omit the index . We sometimes insert 0 into , such as S!;0 and P0.
We consider the three minimizing problems

n! WD inf
˚
S!.'/ W '2H

1.R/nf0g; P.'/D0
	
; (1-5)

r! WD inf
˚
S!.'/ W '2H

1
rad.R/nf0g; P.'/D0

	
; (1-6)

l! WD inf
˚
S!;0.'/ W '2H

1.R/nf0g; P0.'/D0
	
; (1-7)

where H 1
rad.R/ WD f' 2H

1.R/ W '.x/D'.�x/g.
Equation (1-7) is nothing but the minimizing problem for the nonlinear Schrödinger equation without

a potential, and l! is positive and is attained by

Q!;0.x/ WD

�
.pC 1/!

2
sech2

�
.p� 1/

p
!

p
2

jxj

�� 1
p�1

;

which is a unique positive solution of

�
1
2
@2xQC!QD jQj

p�1Q: (1-8)

For n! and r! , we prove the following statements, some of which were proved by Fukuizumi and
Jeanjean [2008].
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Proposition 1.2. Let  be strictly negative. Then the following statements are true:

(1) n! D l! and n! is not attained.

(2) n! < r! and �
r! D 2l! if 0 < ! � 1

2
2;

r! < 2l! if ! > 1
2
2:

(3) If ! > 1
2
2, then r! is attained by

Q!.x/DQ!; .x/ WD

�
.pC 1/!

2
sech2

�
.p� 1/

p
!

p
2

jxjC tanh�1
�


p
2!

��� 1
p�1

;

which is a unique positive solution of �1
2
@2xQC!Q�ı0QD jQj

p�1Q. On the other hand, r! is
not attained if 0 < ! � 1

2
2.

The function ei!tQ! with ! > 1
2
2 is a global nonscattering solution to (ıNLS), which is called the

standing wave. The fact that n! ¤ r! comes from the existence of the potential, which means that the
following main result in the radial case does not follow from that in the nonradial case.

By using the minimizing problems, we define subsets in H 1.R/ for ! > 0 as follows:

N C! WD f'2H
1.R/ W S!.'/<n! ; P.'/�0g;

N �! WD f'2H
1.R/ W S!.'/<n! ; P.'/<0g;

and
RC! WD f'2H

1
rad.R/ W S!.'/<r! ; P.'/�0g;

R�! WD f'2H
1
rad.R/ W S!.'/<r! ; P.'/<0g:

We state one of our main results, which treats the nonradial case. We classify the global behavior of
the solution whose action is less than n! .

Theorem 1.3 (nonradial case). Let ! > 0. Let u be a solution to (ıNLS) on .�T�; TC/ with the initial
data u0 2H 1.R/.

(1) If the initial data u0 belongs to N C! , then the solution u scatters.

(2) If the initial data u0 belongs to N �! , then one of the following four cases holds:

(a) The solution u blows up in both time directions.

(b) The solution u blows up in a positive time, and u is global toward negative time and

lim sup
t!�1

k@xu.t/kL2 D1:

(c) The solution u blows up in a negative time, and u is global toward positive time and

lim sup
t!1

k@xu.t/kL2 D1:

(d) The solution u is global in both time directions and

lim sup
t!˙1

k@xu.t/kL2 D1:
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Proposition 1.2 and a direct calculation give n! D l! D !
pC3
2.p�1/S1;0.Q1;0/. By these relations, we

can rewrite the main theorem in the nonradial case into a version independent of the frequency !.

Corollary 1.4. We define the subsets N ˙ in H 1.R/ as

N CW D
˚
'2H 1.R/ WE.'/M.'/�<E0.Q1;0/M.Q1;0/

� ; P.'/�0
	
;

N �W D
˚
'2H 1.R/ WE.'/M.'/�<E0.Q1;0/M.Q1;0/

� ; P.'/<0
	
;

where � WD .pC3/=.p�5/. Let u be a solution to (ıNLS) on .�T�; TC/ with the initial data u0 2H 1.R/.
Then, we can prove the same conclusion as in Theorem 1.3, where N ˙! is replaced by N ˙, respective of
the sign.

The equivalency is proved in the Appendix.
Next, we state the other main result for radial solutions. If we restrict solutions to (ıNLS) to radial

solutions, then we can classify the global behavior of the radial solutions whose action is larger than n!
and less than r! .

Theorem 1.5 (radial case). Let ! > 0 and u be a solution to (ıNLS) with the initial data u0 2H 1
rad.R/.

Then, we can prove the same conclusion as in Theorem 1.3, where N ˙! is replaced by R˙! , respective of
the sign.

Remark 1.1. Even if solutions to (ıNLS) are restricted to radial ones, the possibility that (b)–(d) (grow-
up) occurs cannot be excluded since we consider one spatial dimension. In [Le Coz et al. 2008], it was
proved that if the initial data satisfies xu0 2 L2 and P.u0/ < 0, then the solution blows up in a finite
time in both time directions.

1C. Difficulties and idea for the proofs. Our proof of the scattering part is based on the argument of
Banica and Visciglia [2016], where they proved all solutions scatter in the defocusing case. We also use a
concentration compactness argument (see Sections 3C–3E) and a rigidity argument (see Section 3E). In
the focusing case, it is not clear that each profile has positive energy when we use profile decomposition.
To prove this with  D 0, the orthogonality property of the functional P0 was used in [Fang et al. 2011;
Akahori and Nawa 2013]. However, it is not easy to prove the orthogonality of the functional P because
of the presence of the Dirac delta potential ( ¤ 0). To overcome this difficulty, we use the Nehari
functional I!; (see (2-7) for the definition) instead of P . Then we can prove that the subsets for the
data defined by I! instead of P are the same as the subsets N ˙! (see Proposition 2.15) using an argument
similar to that of [Ibrahim et al. 2011].

Theorem 1.5 (radial case) does not follow from Theorem 1.3 (nonradial case) since we treat solutions
whose action is larger than or equal to n! in Theorem 1.5. Recently, Killip, Murphy, Visan, and Zheng
[Killip et al. 2016] also considered a similar problem and extended the region to classify solutions under
radial assumption for NLS with the inverse-square potential. They used the radial Sobolev inequality, which
is only effective in higher dimensions, to prove a translation parameter in the linear profile decomposition
is bounded. However, this method cannot be applied to our problem. In the one-dimensional case, it is
not clear whether the translation parameter is bounded or not. To avoid this difficulty, we use the fact that
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the translation parameter �xn appears in the profile decomposition if xn appears (see Theorem 3.5 for
more detail).

Next, we explain the blow-up results. Holmer and Roudenko [2010] proved a blow-up result for the
cubic Schrödinger equation without potentials in three dimensions by applying the Kenig–Merle method
[2006]. Recently, Du, Wu, and Zhang [Du et al. 2016] gave a simpler proof for blow-up, in which they
only used the localized virial identity. We apply their method to the equation with a potential.

1D. Construction of the paper. In Section 2, we consider the minimizing problems from the viewpoint
of variational argument. We prove the existence and nonexistence of a minimizer for r! and n! , and that
the subsets for the data defined by I! instead of P are the same as the subsets in H 1.R/ defined by P in
this section. In Section 3, we prove the scattering results by a concentration compactness argument and a
rigidity argument. We explain the necessity of the Nehari functional I! instead of P. In Section 4, we
prove the blow-up results, based on the argument of Du et al. [2016].

2. Minimizing problems and variational structure

2A. Minimizing problems. Let .˛; ˇ/ satisfy the conditions

˛ > 0; 2˛�ˇ � 0; 2˛Cˇ � 0; .˛; ˇ/¤ .0; 0/: (2-1)

We set

� WDmaxf2˛�ˇ; 2˛Cˇg; � WDminf2˛�ˇ; 2˛Cˇg:

We define a scaling transformation and a derivative of functional as

'
˛;ˇ

�
.x/ WD e˛�'.e�ˇ�x/; (2-2)

L˛;ˇ
�0
S.'/ WD @�S.'

˛;ˇ

�
/j�D�0 ; (2-3)

L˛;ˇS.'/ WD L˛;ˇ0 S.'/ (2-4)

for any function ' and any functional S WH 1.R/! R. We define functionals K˛;ˇ! by

K˛;ˇ! .'/DK˛;ˇ!; .'/

WD L˛;ˇS!.'/

D @�S!.e
˛�'.e�ˇ� � //j�D0

D
1
4
.2˛�ˇ/k@x'k

2
L2
C
1
2
!.2˛Cˇ/k'k2

L2
� ˛j'.0/j2�

.pC 1/˛Cˇ

pC 1
k'k

pC1

LpC1
: (2-5)

We especially use the following functionals:

P.'/D P .'/ WDK
1
2
;�1

! .'/D 1
2
k@x'k

2
L2
�
1
2
 j'.0/j2�

p� 1

2.pC 1/
k'k

pC1

LpC1
; (2-6)

I!.'/D I!; .'/ WDK
1;0
! .'/D 1

2
k@x'k

2
L2
�  j'.0/j2C!k'k2

L2
�k'k

pC1

LpC1
: (2-7)
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Remark 2.1. Both the functionalP, which appears in the virial identity (3-2), and the Nehari functional I!
are used to prove the scattering results. It is proved in Proposition 2.15 that P and I! have same sign under
a condition for the action. To prove this, we introduce the parameter .˛; ˇ/ based on [Ibrahim et al. 2011].

We also use J ˛;ˇ! defined by

J ˛;ˇ! .'/D J ˛;ˇ!; .'/ WD S!.'/�
K
˛;ˇ
! .'/

�
: (2-8)

Lemma 2.1. We have the relations

.L˛;ˇ ��/k@x'k2L2 D
�
0 if ˇ � 0;
�2ˇk@x'k

2
L2

if ˇ > 0;

.L˛;ˇ ��/k'k2
L2
D

�
2ˇk'k2

L2
if ˇ � 0;

0 if ˇ > 0;

.L˛;ˇ ��/j'.0/j2 D
�
ˇj'.0/j2 if ˇ � 0;
�ˇj'.0/j2 if ˇ > 0;

.L˛;ˇ ��/k'kpC1
LpC1

D

�
..p� 1/˛C 2ˇ/k'k

pC1

LpC1
if ˇ � 0;

.p� 1/˛k'k
pC1

LpC1
if ˇ > 0:

In particular,

�J ˛;ˇ! D .��L˛;ˇ /S!.'/� jˇjmin
˚
1
2
k@x'k

2
L2
; !k'k2

L2

	
�
1
2
 jˇjj'.0/j2C

.p� 5/˛

pC 1
k'k

pC1

LpC1
:

Moreover, we have

�.L˛;ˇ ��/.L˛;ˇ ��/S!.'/D .L˛;ˇ ��/.L˛;ˇ ��/
�
1
2
 j'.0/j2C

k'k
pC1

LpC1

pC 1

�
� �

1
2
 jˇj2 j'.0/j2C

.p� 5/˛

pC 1
L˛;ˇk'kpC1

LpC1
�
.p� 5/˛�

pC 1
k'k

pC1

LpC1
:

Proof. These relations are obtained by simple calculations. We only note that

.p� 1/˛C 2ˇ D .p� 5/˛C 2.2˛Cˇ/� .p� 5/˛: �

By this lemma and p > 5, we find that J ˛;ˇ! .'/ � 0 for any ' 2H 1.R/. Next, we see that K˛;ˇ! is
positive near the origin in H 1.R/.

Lemma 2.2. Let f'ngn2N�H
1.R/nf0g be bounded in L2.R/ such that k@x'nkL2! 0 as n!1. Then

K
˛;ˇ
! .'n/ > 0 for large n 2 N.

Proof. By  < 0, p > 5, and the Gagliardo–Nirenberg inequality, we have

K˛;ˇ! .'n/�
1
4
.2˛�ˇ/k@x'nk

2
L2
�
.pC 1/˛Cˇ

pC 1
Ck@x'nk

1
2
.p�1/

L2
k'nk

1
2
.pC3/

L2
> 0

for sufficiently large n 2 N, where C is a positive constant. �
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We define the following minimizing problems for ! > 0 and .˛; ˇ/ satisfying (2-1):

n˛;ˇ! WD inf
˚
S!.'/ W '2H

1.R/nf0g; K˛;ˇ! .'/D0
	
; (2-9)

r˛;ˇ! WD inf
˚
S!.'/ W '2H

1
rad.R/nf0g; K

˛;ˇ
! .'/D0

	
; (2-10)

l˛;ˇ! WD inf
˚
S!;0.'/ W '2H

1.R/nf0g; K
˛;ˇ
!;0 .'/D0

	
: (2-11)

If .˛; ˇ/D
�
1
2
;�1

�
, these are nothing but n! , r! , and l! . We prove that these minimizing problems

are independent of .˛; ˇ/ and Proposition 1.2 holds in the following subsections.

2B. Radial minimizing problem. First, we consider the radial minimizing problem r
˛;ˇ
! . For  � 0,

S! WH
1
rad.R/! R satisfies the following mountain pass structure:

(1) S!.0/D 0.

(2) There exist ı; � > 0 such that S!.'/ > ı for all ' with k'kH1 D �.

(3) There exists  2H 1
rad.R/ such that S!. / < 0 and k kH1 > �.

Indeed, (1) is trivial, (2) can be proved by the Gagliardo–Nirenberg inequality, and (3) is obtained by a
scaling argument.

Let
C WD

˚
c 2 C

�
Œ0; 1� WH 1

rad.R/
�
W c.0/D0; S!.c.1//<0

	
;

b WD inf
c2C

max
t2Œ0;1�

S!.c.t//:

Lemma 2.3. The identity b D r˛;ˇ! holds.

Proof. First, we prove b � r˛;ˇ! . To see this, it is sufficient to prove the existence of fcng � C such that
maxt2Œ0;1�S!.cn.t//! r

˛;ˇ
! as n!1. We take a minimizing sequence f'ng for r˛;ˇ! , namely,

S!.'n/! r˛;ˇ! as n!1 and K˛;ˇ! .'n/D 0 for all n 2 N:

We set Qcn.�/ WD L˛;ˇ
�
'n for � 2 R. Then, we see that S!. Qcn.�// < 0 for large �. Moreover,

max
�2R

S!. Qcn.�//D S!. Qcn.0//D S!.'n/! r˛;ˇ! as n!1

since K˛;ˇ! .'n/D 0 for all n 2 N. We define Cn.t/ for t 2 Œ�L;L� such that

Cn.t/ WD

(
Qcn.t/ if � 1

2
L� t � L;�

2
L
.t CL/

�M
Qcn
�
�
L
2

�
if �L� t < �1

2
L:

C is continuous in H 1.R/ and we have S!.Cn.L// < 0 and maxt2Œ�L;L� S!.Cn.t//D S!.'n/! r
˛;ˇ
!

when L> 0 and M DM.n/ are sufficiently large. By changing variables, we obtain a desired sequence
cn 2 C. Next, we prove b � r˛;ˇ! . It is sufficient to prove

c.Œ0; 1�/\
˚
'2H 1

rad.R/nf0g WK
˛;ˇ
! .'/D0

	
¤∅ for all c 2 C:
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We take an arbitrary c 2 C. Now, c.0/ D 0 and S!.c.1// < 0. Therefore, K˛;ˇ! .c.t// > 0 for some
t 2 .0; 1/ by Lemma 2.2 and K˛;ˇ! .c.1// � ..pC 1/˛C ˇ/S!.c.1// < 0. By continuity, there exists
t0 2 .0; 1/ such that K˛;ˇ! .c.t0//D 0. Thus, we get b D r˛;ˇ! . �

Next, we prove the existence and nonexistence of a minimizer for the minimizing problem r
˛;ˇ
! .

See [Fukuizumi and Jeanjean 2008, Lemmas 15, 19, 20, 21, and 25] for the proofs of the following
Lemmas 2.4, 2.5, 2.6, 2.7, and 2.8, respectively.

The following lemma means that it is sufficient to find a nonnegative minimizer.

Lemma 2.4. If ' 2H 1.R/ is a minimizer of r˛;ˇ! , then j'j 2H 1.R/ is also a minimizer.

Definition 2.1 (Palais–Smale sequence). We say that f'ngn2N �H
1.R/ is a Palais–Smale sequence for

S! at the level c if and only if the sequence f'ngn2N satisfies

S!.'n/! c and S 0!.'n/! 0 in H�1.R/ as n!1:

By the mountain pass theorem, we obtain a Palais–Smale sequence at the level b D r˛;ˇ! . We may
assume that the sequence is bounded.

Lemma 2.5. Any Palais–Smale sequence of S! considered on H 1
rad.R/ is also a Palais–Smale sequence

of S! considered on H 1.R/. In particular, a critical point of S! considered on H 1
rad.R/ is also a critical

point of S! considered on H 1.R/.

Lemma 2.6. Let f'ngn2N�H
1.R/ be a bounded Palais–Smale sequence at the level c for S! . Then there

exists a subsequence still denoted by f'ng for which the following holds: there exist a critical point '0
of S! , an integer k � 0, for j D 1; : : : ; k, a sequence of points fxjng � R, and nontrivial solutions �j .x/
of the equation (1-8) satisfying

'n*'0 weakly in H 1.R/;

S!.'n/! c D S!.'0/C

kX
jD1

S!;0.�
j /;

'n�

�
'0C

kX
jD1

�j .x� xjn/

�
! 0 strongly in H 1.R/;

jxjn j !1; jx
j
n � x

i
nj !1 for 1� j ¤ i � k

as n!1, where we agree that in the case k D 0, the above holds without �j and xjn .

Lemma 2.7. Assume that
r˛;ˇ! < 2l˛;ˇ! :

Then the bounded Palais–Smale sequence at the level r˛;ˇ! admits a strongly convergent subsequence.

Lemma 2.8. If ' 2H 1.R/nf0g is a critical point of S! , that is, ' satisfies

�
1
2
@2x'C!' � ı0' D j'j

p�1' (2-12)



490 MASAHIRO IKEDA AND TAKAHISA INUI

in the distribution sense, then it satisfies

' 2 C j .R nf0g/\C.R/; j D 1; 2;

�
1
2
@2x'C!' D j'j

p�1'; x ¤ 0;

@x'.0C/� @x'.0�/D�2'.0/;

@x'.x/; '.x/! 0 as jxj !1:

Lemma 2.9. There exists a unique positive classical solution ' of (2-12) if and only if ! > 1
2
2. It is

nothing but Q! . If 0 < ! � 1
2
2, then the classical solution does not exist.

Proof. We have a unique positive classical solution Q!;0 of (1-8). If ! > 1
2
2, then we get a classical

solution ' of (2-12) by the translation of Q!;0. See [Fukuizumi and Jeanjean 2008] for more detail. �

Lemma 2.10. The inequality r˛;ˇ! < 2l
˛;ˇ
! holds when ! > 1

2
2.

Proof. When ! > 1
2
2, we know Q! is well defined. We find that Q! satisfies K˛;ˇ! .Q!/ D 0 and

S!.Q!/ < 2l
˛;ˇ
! by direct calculations. �

By Lemmas 2.7 and 2.10, we find that when ! > 1
2
2, the function Q! attains r˛;ˇ! .

Lemma 2.11. If 0 < ! � 1
2
2, then r˛;ˇ! D 2l

˛;ˇ
! holds.

Proof. Suppose that r˛;ˇ! < 2l
˛;ˇ
! . By Lemmas 2.7 and 2.8, we have a unique positive classical solution

of (2-12), which contradicts Lemma 2.9. Thus, it suffices to show r
˛;ˇ
! � 2l

˛;ˇ
! for all ! > 0. Let

'n.x/ WDQ!;0.x�n/CQ!;0.xCn/:

Then, S!.'n/ ! 2l! and K˛;ˇ! .'n/ ! 0 as n ! 1. Thus, there exists a sequence f�ng such that
K
˛;ˇ
! .�n'n/ D 0 and �n ! 1 as n ! 1. Therefore, we have S!.�n'n/ ! 2l! as n ! 1 and

K
˛;ˇ
! .�n'n/D 0 for all n 2 N. This means that r˛;ˇ! � 2l

˛;ˇ
! . �

Remark 2.2. The rearrangement argument implies

l˛;ˇ! D inf
˚
S!;0.'/ W '2H

1
rad.R/nf0g; K

˛;ˇ
!;0 .'/D0

	
:

Therefore, the arguments in Section 2B do work for l˛;ˇ! .

2C. Nonradial minimizing problem. In this subsection, we prove n˛;ˇ! D l
˛;ˇ
! and n˛;ˇ! is not attained.

Lemma 2.12. We have

l˛;ˇ! D j ˛;ˇ! WD inf
˚
J
˛;ˇ
!;0 .'/ W '2H

1.R/nf0g; K
˛;ˇ
!;0 .'/�0

	
:

Proof. First, we prove j ˛;ˇ! � l
˛;ˇ
! :

j ˛;ˇ! � inf
˚
J
˛;ˇ
!;0 .'/ W '2H

1.R/nf0g; K
˛;ˇ
!;0 .'/D0

	
D inf

˚
S!;0.'/ W '2H

1.R/nf0g; K
˛;ˇ
!;0 .'/D0

	
D l˛;ˇ! :
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Next, we prove l˛;ˇ! � j
˛;ˇ
! . We take ' 2H 1.R/nf0g such that K˛;ˇ!;0 .'/� 0. If K˛;ˇ!;0 .'/D 0, then

l˛;ˇ! � S!;0.'/D J
˛;ˇ
!;0 .'/:

If K˛;ˇ!;0 .'/ < 0, then there exists �� 2 .0; 1/ such that K˛;ˇ!;0 .��'/ D 0. Indeed, this follows from
continuity and the fact that K˛;ˇ!;0 .�'/ > 0 holds for small � 2 .0; 1/ by Lemma 2.2. By �� < 1,

l˛;ˇ! � S!;0.��'/D J
˛;ˇ
!;0 .��'/� J

˛;ˇ
!;0 .'/:

Therefore, we have l˛;ˇ! � J
˛;ˇ
!;0 .'/ for any ' 2 H 1.R/n f0g such that K˛;ˇ!;0 .'/ � 0. This implies

l
˛;ˇ
! � j

˛;ˇ
! . Hence, we get l˛;ˇ! D j

˛;ˇ
! . �

Let �y'.x/ WD '.x�y/ throughout this paper.

Proposition 2.13. The identity n˛;ˇ! D l
˛;ˇ
! holds.

Proof. First, we prove n˛;ˇ! � l
˛;ˇ
! . We take an arbitrary ' 2H 1.R/nf0g such that K˛;ˇ! .'/D 0. Since

K
˛;ˇ
!;0 .'/�K

˛;ˇ
! .'/D 0 due to  � 0, by Lemma 2.12, we then have

l˛;ˇ! � J
˛;ˇ
!;0 .'/� J

˛;ˇ
! .'/;

which implies
l˛;ˇ! � inf

˚
J ˛;ˇ! .'/ W '2H 1.R/nf0g; K˛;ˇ! .'/D0

	
D inf

˚
S!.'/ W '2H

1.R/nf0g; K˛;ˇ! .'/D0
	
D n˛;ˇ! :

Next, we prove n˛;ˇ! � l
˛;ˇ
! . We note that Q!;0 attains l˛;ˇ! . Then, there exists a sequence fyngn2N with

yn!1 as n!1 such that S!.�ynQ!;0/! S!;0.Q!;0/D l
˛;ˇ
! as n!1. For this fyng,

K˛;ˇ! .�ynQ!;0/�K
˛;ˇ
!;0 .�ynQ!;0/DK

˛;ˇ
!;0 .Q!;0/D 0

holds for all n 2 N. Since K˛;ˇ! .��ynQ!;0/ < 0 for large � > 1 and K˛;ˇ! .�ynQ!;0/ > 0, there exists
�n >1 such that K˛;ˇ! .�n�ynQ!;0/D 0 by continuity. For this f�ng, we have �n! 1 as n!1. Indeed,
since

0DK˛;ˇ! .�n�ynQ!;0/

D �2n
�
1
4
.2˛�ˇ/k@x�ynQ!;0k

2
L2
C
1
2
!.2˛Cˇ/k�ynQ!;0k

2
L2
� ˛j�ynQ!;0.0/j

2
�

��pC1n

.pC 1/˛Cˇ

pC 1
k�ynQ!;0k

pC1

LpC1
;

and K˛;ˇ!;0 .�ynQ!;0/D 0, we have

0D 1
4
.2˛�ˇ/k@x�ynQ!;0k

2
L2
C
1
2
!.2˛Cˇ/k�ynQ!;0k

2
L2
� ˛j�ynQ!;0.0/j

2

��p�1n

.pC 1/˛Cˇ

pC 1
k�ynQ!;0k

pC1

LpC1

D .1��p�1n /
.pC 1/˛Cˇ

pC 1
k�ynQ!;0k

pC1

LpC1
� ˛j�ynQ!;0.0/j

2

D .1��p�1n /
.pC 1/˛Cˇ

pC 1
kQ!;0k

pC1

LpC1
� ˛j�ynQ!;0.0/j

2:
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Therefore, �n! 1, since j�ynQ!;0.0/j ! 0 as n!1. Hence, S!.�n�ynQ!;0/! S!;0.Q!;0/D l
˛;ˇ
!

as n!1 and K˛;ˇ! .�n�ynQ!;0/D 0 for all n 2 N. This implies n˛;ˇ! � l
˛;ˇ
! . �

Proposition 2.14. For any ! > 0, the minimizing problem n
˛;ˇ
! is not attained; namely, there does not

exist ' 2H 1.R/ such that K˛;ˇ! .'/D 0 and S!.'/D n
˛;ˇ
! .

Proof. We assume that ' attains n˛;ˇ! . If '.0/D 0, then S!;0.'/D S!.'/D n
˛;ˇ
! D l

˛;ˇ
! and K˛;ˇ!;0 .'/D

K
˛;ˇ
! .'/D 0 holds; that is, ' also attains l˛;ˇ! . By the uniqueness of the ground state for l˛;ˇ! , we know

' DQ!;0. However, Q!;0.0/¤ 0. Therefore, '.0/¤ 0. Now, j'.x/j ! 0 as x!1 since ' 2H 1.R/.
Hence, j'.0/j> j'.y/j for sufficiently large jyj. Thus,

K˛;ˇ! .�y'/ < K
˛;ˇ
! .'/D 0:

Since K˛;ˇ! .��y'/ > 0 for small � 2 .0; 1/ by Lemma 2.2 and K˛;ˇ! .�y'/� 0, there exists �� 2 .0; 1/
such that K˛;ˇ! .���y'/D 0 by continuity. By the definition of n˛;ˇ! ,

n˛;ˇ! � J ˛;ˇ! .���y'/ < J
˛;ˇ
! .�y'/ < J

˛;ˇ
! .'/� n˛;ˇ! :

This is a contradiction. �

Since S!;0.Q!;0/D l
˛;ˇ
! Dn

˛;ˇ
! and S!; .Q!; /D r

˛;ˇ
! if !> 1

2
2, and 2l˛;ˇ! D r

˛;ˇ
! if !� 1

2
2 hold,

we find that r˛;ˇ! , l˛;ˇ! and n˛;ˇ! are independent of .˛; ˇ/ and so we denote r˛;ˇ! , l˛;ˇ! and n˛;ˇ! by r! ,
l! and n! respectively and obtain Proposition 1.2.

2D. Variational structure. We define subsets N ˛;ˇ;˙
! and R˛;ˇ;˙! in H 1.R/ such that

N ˛;ˇ;C
! WD

˚
'2H 1.R/ W S!.'/<n! ; K

˛;ˇ
! .'/�0

	
;

N ˛;ˇ;�
! WD

˚
'2H 1.R/ W S!.'/<n! ; K

˛;ˇ
! .'/<0

	
;

R˛;ˇ;C! WD
˚
'2H 1

rad.R/ W S!.'/<r! ; K
˛;ˇ
! .'/�0

	
;

R˛;ˇ;�! WD
˚
'2H 1

rad.R/ W S!.'/<r! ; K
˛;ˇ
! .'/<0

	
:

We note that N ˙! D N
1
2
;�1;˙

! and R˙! D R
1
2
;�1;˙
! . From now on, let .m! ;M

˛;ˇ;˙
! / denote either

.n! ;N
˛;ˇ;˙
! / or .r! ;R

˛;ˇ;˙
! /. The following proposition implies that P and I! have same sign if

S! <m! .

Proposition 2.15. For any .˛; ˇ/ satisfying (2-1), M˙! DM˛;ˇ;˙
! .

Proof. It is easy to check that M˛;ˇ;˙
! are open subsets in H 1.R/ because of Lemma 2.2. Moreover,

we have 0 2M˛;ˇ;C
! and M˛;ˇ;C

! [M˛;ˇ;�
! is independent of .˛; ˇ/. And M˛;ˇ;C

! are connected if
� > 0 by the scaling contraction argument (see the proof of Lemma 2.9 in [Ibrahim et al. 2011]). Then
M˛;ˇ;C
! DM˛0;ˇ 0;C

! for .˛; ˇ/¤ .˛0; ˇ0/ such that 2˛�ˇ>0, 2˛Cˇ>0 and 2˛0�ˇ0>0, 2˛0Cˇ0>0.
Of course, then M˛;ˇ;�

! DM˛0;ˇ 0;�
! .
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We take f.˛n; ˇn/g satisfying 2˛n�ˇn > 0 and 2˛nCˇn > 0 for all n 2N and .˛n; ˇn/ converges to
some .˛; ˇ/ such that �D 0. Then K˛n;ˇn! !K

˛;ˇ
! , and so

M˛;ˇ;˙
! �

[
n2N

M˛n;ˇn;˙
! :

Since each set in the right-hand side is independent of .˛; ˇ/, so is the left. �

Let k'k2H WD
1
4
k@x'k

2
L2
C
1
2
!k'k2

L2
�
1
2
 j'.0/j2.

Lemma 2.16. If P.'/� 0, then

S!.'/�k'k
2
H �

p� 1

p� 5
S!.'/;

which means that S!.'/ is equivalent to k'k2
H1 .

Proof. The left inequality is trivial. We consider the right inequality:

0� 2P.'/

� k@x'k
2
L2
�  j'.0/j2�

p� 1

pC 1
k'k

pC1

LpC1

D�
1
4
.p� 5/k@x'k

2
L2
C
1
2
..p� 3//j'.0/j2C .p� 1/E.'/

� �
1
4
.p� 5/k@x'k

2
L2
C
1
2
..p� 5//j'.0/j2C .p� 1/E.'/:

Therefore, we have
1
4
.p� 5/k@x'k

2
L2
�
1
2
.p� 5/j'.0/j2C 1

2
.p� 5/!k'k2

L2
� .p� 1/E.'/C .p� 5/!M.'/

� .p� 1/.E.'/C!M.'//:

Hence, we obtain

k'k2H �
p� 1

p� 5
S!.'/: �

Lemma 2.17. If u0 2 MC! , then the corresponding solution u stays in MC! for all t 2 .�T�; TC/.
Moreover, if u0 2M�! , then the corresponding solution u stays in M�! for all t 2 .�T�; TC/.

Proof. Let u02MC! . Since the energy and the mass are conserved, u.t/2MC![M�! for all t 2 .�T�; TC/.
We assume that there exists t�� > 0 such that u.t��/ 2M�! . By continuity, there exists t� 2 .0; t��/ such
that P.u.t�//D 0 and P.u.t// < 0 for t 2 .t�; t���. By the definition of m! , if u.t�/¤ 0, then

m! >E.u0/C!M.u0/DE.u.t�//C!M.u.t�//�m! :

This is a contradiction. Thus, u.t�/D 0. By the uniqueness of solution, uD 0 for all time. This contradicts
u.t��/ 2M�! . By the same argument, the second statement can be proved. �

Lemmas 2.16 and 2.17 imply that all the solutions in MC! are global in both time directions.

Proposition 2.18 (uniform bounds onP ). There exists ı>0 such that for any '2H 1.R/with S!.'/<m! ,
we have

P.'/�minf2.m! �S!.'/; ık'k2Hg or P.'/� �2.m! �S!.'//:
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Proof. We may assume '¤ 0. Now s.�/ WDS!.'�/ and n.�/ WD k'�kpC1
LpC1

, where '�.x/ WD e
1
2
�'.e�x/

for � 2 R. Then s.0/D S!.'/ and s0.0/D P.'/, and we have

s.�/D 1
4
e2�k@x'k

2
L2
C
1
2
!k'k2

L2
�
1
2
e�j'.0/j2�

e
p�1
2
�

pC1
k'k

pC1

LpC1
; n.�/De

p�1
2
�
k'k

pC1

LpC1
;

s0.�/D 1
2
e2�k@x'k

2
L2
�
1
2
e�j'.0/j2�

e
p�1
2
�.p�1/

2.pC1/
k'k

pC1

LpC1
; n0.�/D 1

2
e
p�1
2
�.p�1/k'k

pC1

LpC1
;

s00.�/De2�k@x'k
2
L2
�
1
2
e�j'.0/j2�

e
p�1
2
�.p�1/2

4.pC1/
k'k

pC1

LpC1
; n00.�/D 1

4
e
p�1
2
�.p�1/2k'k

pC1

LpC1
:

By an easy calculation, we have

s00 D 2s0C 1
2
 j'.0/j2�

p� 5

2.pC 1/
n0 � 2s0�

p� 5

2.pC 1/
n0 � 2s0:

First, we consider P < 0. We have s0.�/ > 0 for sufficiently small � < 0. Therefore, by continuity, there
exists �0 < 0 such that s0.�/ < 0 for �0 < �� 0 and s0.�0/D 0. Integrating the inequality on Œ�0; 0�, we
have

s0.0/� s0.�0/� 2.s.0/� s.�0//:

Therefore, we obtain

P.'/� �2.m! �S!.'//:

Next, we consider P � 0. If

4P.'/�
p� 5

2.pC 1/
L
1
2
;�1
k'k

pC1

LpC1
;

then, by adding
p� 5

2
P.'/�

p� 5

2
k'k2H�

p� 5

2.pC 1/
L
1
2
;�1
k'k

pC1

LpC1

to both sides, we get ˚
4C 1

2
.p� 5/

	
P.'/� 1

2
.p� 5/k'k2H:

Thus, we get P.'/� ık'k2H. If

4P.'/ <
p� 5

2.pC 1/
L
1
2
;�1
k'k

pC1

LpC1
;

then

0 < 4s0 <
p� 5

2.pC 1/
n0 (2-13)

at �D 0. Moreover,

s00 � 4s0� 2s0�
p� 5

2.pC 1/
n0 < �2s0
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holds at �D 0. Now let � increase. As long as (2-13) holds and s0>0, we have s00<0 and so s0 decreases
and s increases. Since p > 5, we also have

n00 � 2n0 � 4n > 0

for all � � 0 Hence, (2-13) is preserved until s0 reaches 0, which it does at finite �1 > 0. Integrating
s00 < �2s0 on Œ0; �1�, we obtain

s0.�1/� s
0.0/ < �2.s.�1/� s.0//:

Therefore, by the definition of m! ,

P.'/ > 2.m! �S!.'//: �

3. Proof of the scattering part

3A. Strichartz estimates and small data scattering. We recall the Strichartz estimates and a small data
scattering result in this subsection. See [Banica and Visciglia 2016, Sections 3.1 and 3.2] for the proofs.
We define the exponents r , a, and b as

r D pC 1; a WD
2.p� 1/.pC 1/

pC 3
; b WD

2.p� 1/.pC 1/

.p� 1/2� .p� 1/� 4
:

Then we have the following estimates.

Lemma 3.1 (Strichartz estimates). We have

ke�itH'kLat L
r
x
. k'kH1 ;

ke�itH'k
L
p�1
t L1x

. k'kH1 ;Z t

0

e�i.t�s/HF.s/ ds


Lat L

r
x

. kF k
Lb
0

t L
r0
x
;

Z t

0

e�i.t�s/HF.s/ ds


L
p�1
t L1x

. kF k
Lb
0

t L
r0
x
;

where b0 denotes the Hölder conjugate of b, namely, 1=b0C 1=b D 1.

Proposition 3.2. Let the solution u 2 C.R W H 1.R// to (ıNLS) satisfy u 2 Lat .R W L
r
x.R//. Then the

solution u scatters.

For the proof of Proposition 3.2, see [Banica and Visciglia 2016, Proposition 3.1].
The analogous statement to Proposition 3.2 for the following semilinear Schrödinger equation without

potentials is well known: �
i@tuC

1
2
@2xuCjuj

p�1uD 0; .t; x/ 2 R�R;

u.0; x/D u0.x/ 2H
1.R/;

(NLS)

where p > 5.
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Proposition 3.3 (small data scattering). Let ' 2H 1.R/ and u, v denote the solutions to (ıNLS), (NLS),
respectively, with the initial data '. Then, there exist " > 0 and C > 0 independent of " such that u and v
are global and they satisfy kukLat Lrx.R/ < Ck'kH1 and kvkLat Lrx.R/ < Ck'kH1 , if k'kH1 < ".

For the proof of Proposition 3.3, see [Banica and Visciglia 2016, Proposition 3.2].

3B. Linear profile decomposition and its radial version. To prove the scattering results, we introduce the
linear profile decomposition theorems. The linear profile decomposition for nonradial data, Proposition 3.4,
is obtained in [Banica and Visciglia 2016].

Proposition 3.4 (linear profile decomposition). Let f'ngn2N be a bounded sequence in H 1.R/. Then, up
to subsequence, we can write

'n D

JX
jD1

eit
j
nH �

x
j
n
 j CW J

n 8J 2 N;

where tjn 2 R, xjn 2 R,  j 2H 1.R/, and the following hold:

� For any fixed j , we have

either tjn D 0 for any n 2 N; or tjn !˙1 as n!1;

either xjn D 0 for any n 2 N; or xjn !˙1 as n!1:

� Orthogonality of the parameters:

jtjn � t
k
n jC jx

j
n � x

k
n j !1 as n!1; 8j ¤ k:

� Smallness of the reminder:

8" > 0; 9J D J."/ 2 N such that lim sup
n!1

ke�itHW J
n kL1t L

1
x
< ":

� Orthogonality in norms: for any J 2 N,

k'nk
2
L2
D

JX
jD1

k j k2
L2
CkW J

n k
2
L2
C on.1/; k'nk

2
H D

JX
jD1

k�
x
j
n
 j k2H CkW

J
n k

2
H C on.1/;

where kvk2H WD
1
2
k@xvk

2
L2
�  jv.0/j2. Moreover, we have

k'nk
q
Lq D

JX
jD1

keit
j
nH �

x
j
n
 j k

q
Lq CkW

J
n k

q
Lq C on.1/; q 2 .2;1/; 8J 2 N;

and in particular, for any J 2 N,

S!.'n/D

JX
jD1

S!.e
it
j
nH �

x
j
n
 j /CS!.W

J
n /C on.1/;

I!.'n/D

JX
jD1

I!.e
it
j
nH �

x
j
n
 j /C I!.W

J
n /C on.1/:
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Proof. See [Banica and Visciglia 2016, Theorem 2.1 and Section 2.2]. �

Remark 3.1. It is not clear whether

P.'n/D

JX
jD1

P.eit
j
nH �

x
j
n
 j /CP.W J

n /C on.1/ 8J 2 N

holds or not. That is why we use the Nehari functional I! to prove the scattering results.

We introduce the reflection operator R such that R'.x/ WD '.�x/.
Proposition 3.4 is insufficient to prove the scattering result for radial data. We need the following

linear profile decomposition for radial solutions, which is a key ingredient.

Theorem 3.5 (linear profile decomposition for radial data). Let f'ngn2N be a bounded sequence in
H 1

rad.R/. Then, up to subsequence, we can write

'n D
1

2

JX
jD1

�
eit

j
nH �

x
j
n
 j C eit

j
nH �

�x
j
n
R j

�
C
1

2
.W J

n CRW J
n / 8J 2 N; (3-1)

where tjn2R, xjn2R,  j2H 1.R/, and the following hold:

� For any fixed j , we have

either tjn D 0 for any n 2 N; or tjn !˙1 as n!1;

either xjn D 0 for any n 2 N; or xjn !˙1 as n!1:

� Orthogonality of the parameters:

jtjn � t
k
n j !1; or jxjn � x

k
n j !1 and jxjn C x

k
n j !1 as n!1; 8j ¤ k:

� Smallness of the reminder:

8" > 0; 9J D J."/ 2 N such that lim sup
n!1

ke�itHW J
n kL1t L

1
x
< ":

� Orthogonality in norms: for any J 2 N,

k'nk
2
L2
D

JX
jD1

1
2
.�
x
j
n
 j C �

�x
j
n
R j /

2
L2
C
1
2
.W J

n CRW J
n /
2
L2
C on.1/;

k'nk
2
H D

JX
jD1

1
2
.�
x
j
n
 j C �

�x
j
n
R j /

2
H
C
1
2
.W J

n CRW J
n /
2
H
C on.1/:

Moreover, for any q 2 .2;1/, we have

k'nk
q
Lq D

JX
jD1

1
2
eit

j
nH .�

x
j
n
 j C �

�x
j
n
R j /

q
Lq
C
1
2
.W J

n CRW J
n /
q
Lq
C on.1/ 8J 2 N;
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and in particular, for any J 2 N,

S!.'n/D

JX
jD1

S!
�
1
2
eit

j
nH .�

x
j
n
 j C �

�x
j
n
R j /

�
CS!

�
1
2
.W J

n CRW J
n /
�
C on.1/;

I!.'n/D

JX
jD1

I!
�
1
2
eit

j
nH .�

x
j
n
 j C �

�x
j
n
R j /

�
C I!

�
1
2
.W J

n CRW J
n /
�
C on.1/:

Proof. Since f'ng is bounded in H 1.R/, we can apply the linear profile decomposition without the
radial assumption, Proposition 3.4, and obtain the following: for any J 2 N and j 2 f1; 2; : : : ; J g, up to
subsequence, there exist ftjn gn2N, fxjngn2N, and  j 2H 1.R/ such that we can write

'n D

JX
jD1

eit
j
nH �

x
j
n
 j CW J

n :

Since 'n is radial,

2'n.x/D 'n.x/C'n.x/D 'n.x/C'n.�x/D 'n.x/CR'n.x/:

By combining the identities, we get

2'n.x/D

JX
jD1

eit
j
nH �

x
j
n
 j CW J

n CR
� JX
jD1

eit
j
nH �

x
j
n
 j CW J

n

�

D

JX
jD1

�
eit

j
nH �

x
j
n
 j C eit

j
nH �

�x
j
n
R j

�
CW J

n CRW J
n ;

where we have used Reit
j
nH D eit

j
nHR and R�y D ��yR, which gives (3-1).

We only prove the orthogonality of the parameters. If xjnCxkn! Nx 2R and tjn D tkn for j < k, then we
replace  j C �� NxR k by  j and 0 by  k and regard the remainder terms as W J

n . By this replacement,
we have jxjn � xkn j ! 1 and jxjn C xkn j ! 1 as n!1 when tjn D tkn . The orthogonality in norms
follows from the orthogonality of the parameters by a standard argument. �

Lemma 3.6. Let k be a nonnegative integer and, for l 2 f0; 1; 2; : : : ; kg, we have 'l 2 H 1.R/ (or
'l 2H

1
rad.R/) satisfying

S!

� kX
lD0

'l

�
�m! � ı; S!

� kX
lD0

'l

�
�

kX
lD0

S!.'l/� ";

I!

� kX
lD0

'l

�
� �"; I!

� kX
lD0

'l

�
�

kX
lD0

I!.'l/C "

for ı, " satisfying 2" < ı. Then 'l 2MC! for all l 2 f0; 1; 2; : : : ; kg. Namely, we have 0� S!.'l/ < m!
and I!.'l/� 0 for all l 2 f0; 1; 2; : : : ; kg.
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Proof. We assume there exists an l 2 f0; 1; 2; : : : ; kg such that I!.'l/ < 0. Then, we have J 1;0! .'l/�m! .
Indeed, there exists �� 2 .0; 1/ such that I!.��'l/ D 0 since I!.'l/ < 0 and I!.�'l/ > 0 for small
� 2 .0; 1/ by Lemma 2.2. Thus, we obtain

m! � S!.��'l/D J
1;0
! .��'l/� J

1;0
! .'l/:

By the positivity of J! D J
1;0
! and the assumptions, we obtain

m! � J!.'l/�

kX
lD0

J!.'l/

D

kX
lD0

�
S!.'l/�

1

2
I!.'l/

�

D

kX
lD0

S!.'l/�
1

2

kX
lD0

I!.'l/

� S!

� kX
lD0

'l

�
C "�

1

2

�
I!

� kX
lD0

'l

�
� "

�
�m! � ıC "C " < m! :

This is a contradiction. So, I!.'l/� 0 for all l 2 f0; 1; 2; : : : ; kg. Moreover, for any l 2 f0; 1; 2; : : : ; kg,
we have

S!.'l/D J!.'l/C
1
2
I!.'l/� 0;

and

S!.'l/�

kX
lD0

S!.'l/� S!

� kX
lD0

'l

�
C "�m! � ıC " < m! :

Therefore, we get 'l 2MC! for all l 2 f0; 1; 2; : : : ; kg. �

3C. Perturbation lemma and nonlinear profile decomposition. We use a perturbation lemma and lem-
mas for nonlinear profiles. The proofs of these results are the same as in the defocusing case (see [Banica
and Visciglia 2016]).

Lemma 3.7. For any M > 0, there exist " D ".M/ > 0 and C D C.M/ > 0 such that the following
occurs. Let v 2 C.R WH 1.R//\Lat .R W L

r
x.R// be a solution of the integral equation with source term e:

v.t/D e�itH'C i

Z t

0

e�i.t�s/H
�
jv.s/jp�1v.s/

�
dsC e.t/

with kvkLat Lrx <M and kekLat Lrx < ". Moreover assume '0 2H 1.R/ is such that ke�itH'0kLat Lrx < ".
Then the solution u.t; x/ to (ıNLS) with initial condition 'C'0,

u.t/D e�itH .'C'0/C i

Z t

0

e�i.t�s/H
�
ju.s/jp�1u.s/

�
ds;

satisfies u 2 LatL
r
x and moreover ku� vkLat Lrx < C".
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See [Fang et al. 2011, Proposition 4.7] and [Banica and Visciglia 2016, Proposition 3.3] for the proof.
Following Lemmas 3.8, 3.9, and 3.10 can be proved in the same manner as [Banica and Visciglia 2016,

Propositions 3.4, 3.5, and 3.6], respectively.

Lemma 3.8. Let fxngn2N be a sequence of real numbers such that jxnj !1 as n!1, u0 2H 1.R/

and U 2 C.R WH 1.R//\Lat .R W L
r
x.R// be a solution of (NLS) with the initial data u0. Then we have

Un.t/D e
�itH �xnu0C i

Z t

0

e�i.t�s/H
�
jUn.s/j

p�1Un.s/
�
dsCgn.t/;

where Un.t; x/D U.t; x� xn/ and kgnkLat Lrx ! 0 as n!1.

Lemma 3.9. Let ' 2 H 1.R/. Then there exist solutions W˙ 2 C.R˙ W H 1.R//\Lat .R˙ W L
r
x.R// to

(ıNLS) such that
kW˙.t; � /� e

�itH'kH1 ! 0 as t !˙1:

Moreover, if ftngn2N is such that tn!�1 as n!1 and W˙ is global, then

W˙;n.t/D e
�itH'nC i

Z t

0

e�i.t�s/H
�
jW˙;n.s/j

p�1W˙;n.s/
�
dsCf˙;n.t/;

where 'nDeitnH', W˙;n.t; x/DW˙.t � tn; x/, kf˙;nkLat Lrx ! 0 as n ! 1, and the double-sign
corresponds.

Lemma 3.10. Let ftngn2N, fxngn2N be sequences of real numbers such that tn!�1 and jxnj !1
as n!1, ' 2H 1.R/ and V˙ 2 C.R˙ WH 1.R//\Lat .R˙ W L

r
x.R// be solutions of (NLS) such that

kV˙.t; � /� e
�itH0'kH1 ! 0 as t !˙1:

Then we have

V˙;n.t; x/D e
�itH'nC i

Z t

0

e�i.t�s/H
�
jV˙;n.s/j

p�1V˙;n.s/
�
dsC e˙;n.t; x/;

where 'nDeitnH �xn', V˙;n.t; x/DV˙.t�tn; x�xn/, ke˙;nkLat Lrx!0 as n!1, and the double-sign
corresponds.

3D. Construction of a critical element. We define the critical action level Sc! for fixed ! as

Sc! WD sup
˚
S W S!.'/ < S for any ' 2MC! implies u 2 LatL

r
x

	
:

By the small data scattering result Proposition 3.3, we obtain Sc! >0. We prove Sc!Dm! by contradiction.
We assume Sc! < m! . By this assumption, we can take a sequence f'ngn2N � MC! such that

S!.'n/! Sc! as n!1, and kunkLat Lrx.R/ D1 for all n 2 N, where un is a global solution to (ıNLS)
with the initial data 'n. Then, we obtain the following lemma.

Lemma 3.11 (critical element). We assume Sc! <m! . Then we find a global solution uc 2C.R WH 1.R//

of (ıNLS) which satisfies uc.t/ 2MC! for any t 2 R and

S!.u
c/D Sc! ; ku

c
kLat L

r
x.R/ D1:
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This uc is called a critical element.

Proof. First, we consider the nonradial case.

Case 1: nonradial data. By 'n 2N C! and Lemma 2.16, we have

k'nk
2
H1 . k'nk2H .E.'n/C!M.'n/ < n!

for all n 2 N. Since f'ng is a bounded sequence in H 1.R/, we apply the linear profile decomposition,
Proposition 3.4, and then obtain

'n D

JX
jD1

eit
j
nH �

x
j
n
 j CW J

n 8J 2 N:

By the orthogonality of the functionals in Proposition 3.4, we have

S!.'n/D

JX
jD1

S!.e
it
j
nH �

x
j
n
 j /CS!.W

J
n /C on.1/;

I!.'n/D

JX
jD1

I!.e
it
j
nH �

x
j
n
 j /C I!.W

J
n /C on.1/;

where on.1/! 0 as n!1.
By these decompositions and S!.'n/ < n! , we can find ı; " > 0 satisfying 2" < ı and

S!.'n/� n! � ı; S!.'n/�

JX
jD0

S!.e
it
j
nH �

x
j
n
 j /CS!.W

J
n /� ";

I!.'n/� �"; I!.'n/�

JX
jD0

I!.e
it
j
nH �

x
j
n
 j /C I!.W

J
n /C "

for large n. Therefore, by Lemma 3.6, we see that

eit
j
nH �

x
j
n
 j 2N C! and W J

n 2N
C
! for large n;

which means that, by Lemma 2.16,

S!.e
it
j
nH �

x
j
n
 j /� 0 and S!.W

J
n /� 0 for large n:

So, we have

Sc! D lim sup
n!1

S!.'n/� lim sup
n!1

JX
jD1

S!.e
it
j
nH �

x
j
n
 j /

for any J. We prove Sc! D lim supn!1 S!.e
it
j
nH �

x
j
n
 j / for some j. We may assume j D 1 by

reordering. If this is proved, then we find that J D 1 and W J
n ! 0 in L1t H

1
x as n ! 1. Indeed,

lim supn!1 S!.W
1
n /D 0 holds and thus lim supn!1 kW

1
n kH1 D 0 holds by kW 1

n kH1 Ð S!.W 1
n / since

W 1
n belongs to N C! for large n 2N. On the contrary, we assume Sc! D lim supn!1 S!.e

�it
j
nH �

x
j
n
 j /
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fails for all j . Then, for all j , there exists ı D ıj > 0 such that

lim sup
n!1

S!.e
it
j
nH �

x
j
n
 j / < Sc! � ı:

By reordering, we can choose 0� J1 � J2 � J3 � J4 � J5 � J such that

1� j � J1 W t
j
n D 0 8n; x

j
n D 0 8n;

J1C 1� j � J2 W t
j
n D 0 8n; lim

n!1
jxjn j D1;

J2C 1� j � J3 W lim
n!1

tjn DC1; x
j
n D 0 8n;

J3C 1� j � J4 W lim
n!1

tjn D�1; x
j
n D 0 8n;

J4C 1� j � J5 W lim
n!1

tjn DC1; lim
n!1

jxjn j D1;

J5C 1� j � J W lim
n!1

tjn D�1; lim
n!1

jxjn j D1:

Above we are assuming that if a > b, then there is no j such that a � j � b. Notice that J1 2 f0; 1g by
the orthogonality of the parameters. We may treat only the case J1 D 1 here. The case J1 D 0 is easier.
We have 0 < S!. 1/ < Sc! � ı by .tjn ; x

j
n/D .0; 0/ and the assumption. Hence, by the definition of Sc! ,

we can find N 2 C.R WH 1.R//\Lat .R W L
r
x.R// such that

N.t; x/D e�itH 1C i

Z t

0

e�i.t�s/H .jN.s/jp�1N.s// ds:

For every j such that J1C1� j � J2, let U j be the solution of (NLS) with the initial data  j . Since
we have �

x
j
n
 j 2N C! , we know  j satisfies

S!;0. 
j /� S!.�xjn

 j /� Sc! < n! D l!

and P0. j /� 0. (since 0 > P0. j /D limn!1 P.�xjn 
j /� 0 if we assume P0. j / < 0.) Therefore,

we see that the solution U j scatters by [Fang et al. 2011; Akahori and Nawa 2013]; that is, U j .t; x/ 2
C.R WH 1.R//\Lat .R W L

r
x.R//. We set U jn .t; x/ WD U j .t; x� x

j
n/.

For every j such that J2C 1� j � J3, we associate with profile  j the function

W j
� .t; x/ 2 C.R� WH

1.R//\Lat .R� W L
r
x.R//

by Lemma 3.9. We claim that W j
� .t; x/ 2 C.R WH

1.R//\Lat .R W L
r
x.R//. Indeed, by the assumption,

we see that S!.W j
� /D limn!1 S!.eit

j
nH j / < Sc! , since eit

j
nH j !W j

� in H 1.R/ with tjn !1
as n!1. Therefore, by the definition of Sc! , we obtain W j

� .t; x/ 2 C.R WH
1.R//\Lat .R W L

r
x.R//.

We set W j
�;n.t; x/ WDW

j
� .t � t

j
n ; x/.

For every j such that J3C 1� j � J4, we associate with profile  j the function

W
j
C
.t; x/ 2 C.RC WH

1.R//\Lat .RC W L
r
x.R//

by Lemma 3.9. And the same argument as above gives us thatW j
C
.t; x/2C.R WH 1.R//\Lat .R WL

r
x.R//.

We set W j
C;n.t; x/ WDW

j
C
.t � t

j
n ; x/.
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For every j such that J4C 1� j � J5, we associate with profile  j the function

V j� .t; x/ 2 C.R� WH
1.R//\Lat .R� W L

r
x.R//

by Lemma 3.10. We will prove V j� .t; x/ 2 C.R WH
1.R//\Lat .R W L

r
x.R//. Now,

lim sup
n!1

S!.e
it
j
nH �

x
j
n
 j / < Sc! � ı

holds by the assumption. Here, since e�itH is unitary in L2.R/ and conserves the linear energy, and
 � 0, we have

S!.e
it
j
nH �

x
j
n
 j /DE.eit

j
nH �

x
j
n
 j /C!M.eit

j
nH �

x
j
n
 j /

D k�
x
j
n
 j k2H�

1

pC1
keit

j
nH �

x
j
n
 j k

pC1

LpC1

�
1
4
k@x.�xjn

 j /k2
L2
C
1
2
!k�

x
j
n
 j k2

L2
�

1

pC1
keit

j
nH �

x
j
n
 j k

pC1

LpC1

D
1
4
k@x 

j
k
2
L2
C
1
2
!k j k2

L2
�

1

pC1
keit

j
nH �

x
j
n
 j k

pC1

LpC1
:

Since tjn !1, we have keit
j
nH �

x
j
n
 j k

pC1

LpC1
! 0 as n!1 by [Banica and Visciglia 2016, Section 2,

(2.4)]. Therefore, we obtain
1
4
k@x 

j
k
2
L2
C
1
2
!k j k2

L2
� Sc! � ı:

Since  j is the final state of V j� , we have

S!;0.V
j
� /D

1
4
k@x 

j
k
2
L2
C
1
2
!k j k2

L2
� Sc! � ı < n! D l! :

By [Fang et al. 2011; Akahori and Nawa 2013], we have V j� .t; x/ 2C.R WH
1.R//\Lat .R WL

r
x.R//. We

set V j�;n.t; x/ WD V j� .t � t
j
n ; x� x

j
n/.

For every j such that J5C 1� j � J, we associate with profile  j the function

V
j
C
.t; x/ 2 C.RC WH

1.R//\Lat .RC W L
r
x.R//

by Lemma 3.10. And the same argument as above gives us that V j
C
.t; x/2C.R WH 1.R//\Lat .R WL

r
x.R//.

We set V j
C;n.t; x/ WD V

j
C
.t � t

j
n ; x� x

j
n/.

We define the nonlinear profile as

ZJn WDN C

J2X
jDJ1C1

U jn C

J3X
jDJ2C1

W j
�;nC

J4X
jDJ3C1

W
j
C;nC

J5X
jDJ4C1

V j�;nC

J6X
jDJ5C1

V
j
C;n:

By Lemmas 3.8, 3.9, and 3.10, we have

ZJn D e
�itH .'n�W

J
n /C iz

J
n C r

J
n ;
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where krJn kLat Lrx ! 0 as n!1 and

zJn .t/ WD

Z t

0

e�i.t�s/H
�
jN.s/jp�1N.s/

�
ds

C

J2X
jDJ1C1

Z t

0

e�i.t�s/H
�
jU jn .s/j

p�1U jn .s/
�
ds

C

J3X
jDJ2C1

Z t

0

e�i.t�s/H
�
jW j
�;n.s/j

p�1W j
�;n.s/

�
ds

C

J4X
jDJ3C1

Z t

0

e�i.t�s/H
�
jW

j
C;n.s/j

p�1W
j
C;n.s/

�
ds

C

J5X
jDJ4C1

Z t

0

e�i.t�s/H
�
jV j�;n.s/j

p�1V j�;n.s/
�
ds

C

JX
jDJ5C1

Z t

0

e�i.t�s/H
�
jV
j
C;n.s/j

p�1V
j
C;n.s/

�
ds:

We also have zJn � Z t

o

e�i.t�s/H
�
jZJn .s/j

p�1ZJn .s/
�
ds


Lat L

r
x

! 0 as n!1:

Therefore, we get

ZJn D e
�itH .'n�W

J
n /C i

Z t

o

e�i.t�s/H
�
jZJn .s/j

p�1ZJn .s/
�
dsC sJn ;

with ksJn kLat Lrx ! 0 as n!1. In order to apply the perturbation lemma, Lemma 3.7, we need a bound
on supJ .lim supn!1 kZ

J
n kLat L

r
x
/. We have

lim sup
n!1

.kZJn kLat L
r
x
/p � 2kN k

p

Lat L
r
x
C 2

J2X
jDJ1C1

kU j k
p

Lat L
r
x
C 2

J3X
jDJ2C1

kW j
� k

p

Lat L
r
x

C2

J4X
jDJ3C1

kW
j
C
k
p

Lat L
r
x
C 2

J5X
jDJ4C1

kV j� k
p

Lat L
r
x
C 2

JX
jDJ5C1

kV
j
C
k
p

Lat L
r
x
;

where we have used Corollary A.2 in [Banica and Visciglia 2016]. For simplicity, ajn denotes 2kN kp
Lat L

r
x

if 1 � j � J1, 2kU jn k
p

Lat L
r
x
D 2kU j k

p

Lat L
r
x

if J1C 1 � j � J2, and so on. Then, the above inequality
means

lim sup
n!1

.kZJn kLat L
r
x
/p �

JX
jD1

ajn:

There exists a finite set J such that k j kH1 < "0 for any j 62 J , where "0 is the universal constant in
the small data scattering result, Proposition 3.3. By Proposition 3.3 and the orthogonalities in H -norm
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and L2-norm,

lim sup
n!1

.kZJn kLat L
r
x
/p � lim sup

n!1

JX
jD1

ajn D lim sup
n!1

X
j2J

ajnC lim sup
n!1

X
j 62J

ajn

. lim sup
n!1

X
j2J

ajnC lim sup
n!1

X
j 62J

keit
j
nH �

x
j
n
 j kH

. lim sup
n!1

X
j2J

ajnC lim sup
n!1

k'nkH

. lim sup
n!1

X
j2J

ajnCn! .
X
j2J

aj Cn! �M;

where M is independent of J.
By Lemma 3.7 and Proposition 3.4, we can choose J large enough in such a way that

lim sup
n!1

ke�itHW J
n kLat L

r
x
< ";

where "D ".M/>0. Then, we get the fact that un scatters for large n, and this contradicts kunkLat Lrx D1.
Therefore, we obtain J D 1 and

'n D e
it1nH �x1n 

1
CW 1

n ; Sc! D lim sup
n!1

S!.e
it1nH �x1n 

1/; W 1
n ! 0 in L1t H

1
x :

By the same argument as [Banica and Visciglia 2016], we get x1n D 0. Let uc be the nonlinear profile
associated with  1. Then, Sc! D S!.u

s/ and the global solution uc does not scatter by a contradiction
argument and the perturbation lemma (see the proof of Proposition 6.1 in [Fang et al. 2011] for more detail).

Case 2: radial data. We only focus on the difference of the proof between the radial case and the nonradial
case, which is in the profiles. By the linear profile decomposition for the radial data Theorem 3.5, we have

'n D
1

2

JX
jD1

�
eit

j
nH �

x
j
n
 j C eit

j
nH �

�x
j
n
R j

�
C
1

2
.W J

n CRW J
n / 8J 2 N:

For every j such that J1C 1 � j � J2, let U j be the solution to (NLS) with the initial data 1
2
 j.

Since we have
1
2
�
x
j
n
 j C 1

2
�
�x

j
n
R j 2RC! ;

 j satisfies S!;0
�
1
2
 j
�
< l! and P0

�
1
2
 j
�
� 0. Indeed, if we assume S!;0

�
1
2
 j
�
� l! , then by

Theorem 3.5 and  � 0,

r! > S
c
! � lim sup

n!1
S!.'n/� lim sup

n!1

�
S!
�
�
x
j
n

1
2
 j
�
CS!.��xjn

R1
2
 j /

�
� lim sup

n!1

�
S!;0

�
�
x
j
n

1
2
 j
�
CS!;0

�
�
�x

j
n
R1
2
 j
��

D S!;0
�
1
2
 j
�
CS!;0

�
1
2
 j
�
� 2l! :
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This contradicts r! � 2l! . Moreover, we see that

2P0
�
1
2
 j
�
D lim sup

n!1

�
P0
�
�
x
j
n

1
2
 j
�
CP0

�
�
�x

j
n
R1
2
 j
��
D lim sup

n!1
P
�
�
x
j
n

1
2
 j C �

�x
j
n
R1
2
 j
�
� 0:

Therefore, by [Fang et al. 2011; Akahori and Nawa 2013], we have

U j .t; x/ 2 C.R WH 1.R//\Lat .R W L
r
x.R//:

We set U jn .t; x/ WD U j .t; x� x
j
n/.

For every j such that J4C 1� j � J5, we associate with profile  j the function

V j� .t; x/ 2 C.R� WH
1.R//\Lat .R� W L

r
x.R//

by Lemma 3.10. We prove V j� .t; x/ 2C.R WH
1.R//\Lat .R WL

r
x.R//. Now, by the assumption, we have

lim sup
n!1

2S!
�
1
2
eit

j
nH �

x
j
n
 j
�
D lim sup

n!1

˚
S!.e

it
j
nH �

x
j
n

1
2
 j /CS!

�
Reit

j
nH �

x
j
n

1
2
 j
�	
< Sc! � ı:

In the same argument as that for V j� in the nonradial case, we obtain

1
4

@x 121 j2L2 C 1
2
!
1
2
 j
2
L2
�
1
2
.Sc! � ı/:

Now, since  j is the final state of V j� , we have

S!;0.V
j
� /D

1
4

@x 12 j2L2 C 1
2
!
1
2
 j
2
L2
�
1
2
.Sc! � ı/ <

1
2
r! � l! :

By [Fang et al. 2011; Akahori and Nawa 2013], we have V j� .t; x/ 2 C.R W H
1.R//\Lat .R W L

r
x.R//.

We set V j�;n.t; x/ WD V j� .t � t
j
n ; x� x

j
n/.

Other statements are the same as in the nonradial case. �

3E. Extinction of the critical element. We assume that kuckLat ..0;1/WLrx/D1, where such uc is called
a forward critical element, and we prove uc D 0. In the case of kuckLat ..�1;0/WLrx/ D 1, the same
argument as below does work.

Lemma 3.12. Let u be a forward critical element. Then the orbit of u, fu.t; x/ W t > 0g, is precompact in
H 1.R/. And then, for any " > 0, there exists R > 0 such thatZ

jxj>R

j@xu.t; x/j
2 dxC

Z
jxj>R

ju.t; x/j2 dxC

Z
jxj>R

ju.t; x/jpC1 dx < " for any t 2 RC:

This lemma is obtained in the same way as the defocusing case (see [Banica and Visciglia 2016]).
Now, we prove uD 0 by the localized virial identity and contradiction. Let u¤ 0. For ' W RC! R,

we define a function I by

I.t/ WD

Z
R

'.jxj/ju.t; x/j2 dx:
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Then, by a direct calculation and using (ıNLS), we have

I 0.t/D Im
Z

R

@x.'.jxj//u.t; x/@xu.t; x/ dx;

I 00.t/D Re
Z

R

@2x.'.jxj//j@xu.t; x/j
2 dx� @2x.'.jxj//jxD0ju.t; 0/j

2

�
p� 1

pC 1
Re
Z

R

@2x.'.jxj//ju.t; x/j
pC1 dx�

1

4
Re
Z

R

@4x.'.jxj//ju.t; x/j
2 dx

� 2 Ref@x.'.jxj//jxD0u.t; 0/@xu.t; 0/g:

Taking ' D '.r/ such that, for R > 0,

0� ' � r2; j'0j. r; j'00j � 2; j'.4/j �
4

R2
;

and

'.r/D

�
r2; 0� r �R;

0; r � 2R;

we obtain

I 00.t/D 4P.u.t//CRe
Z

R

.@2x.'.jxj//�2/j@xu.t;x/j
2dx�

p�1

pC1
Re
Z

R

.@2x.'.jxj//�2/ju.t;x/j
pC1dx

�
1
4

Re
Z

R

@4x.'.jxj//ju.t;x/j
2dxD 4P.u.t//CR1CR2CR3; (3-2)

where

R1 WD Re
Z

R

.@2x.'.jxj//� 2/j@xu.t; x/j
2 dx;

R2 WD �
p� 1

pC 1
Re
Z

R

.@2x.'.jxj//� 2/ju.t; x/j
pC1 dx;

R3 WD �
1
4

Re
Z

R

@4x.'.jxj//ju.t; x/j
2 dx:

By the property of ', we have

jR1j D

ˇ̌̌̌
Re
Z

R

f@2x.'.jxj//� 2gj@xu.t; x/j
2 dx

ˇ̌̌̌
� C

Z
jxj>R

j@xu.t; x/j
2 dx;

jR2j D

ˇ̌̌̌
p� 1

pC 1
Re
Z

R

f@2x.'.jxj//� 2gju.t; x/j
pC1 dx

ˇ̌̌̌
� C

Z
jxj>R

ju.t; x/jpC1 dx;

jR3j D

ˇ̌̌̌
1
4

Re
Z

R

@4x.'.jxj//ju.t; x/j
2 dx

ˇ̌̌̌
� C

Z
jxj>R

ju.t; x/j2 dx:

Therefore, we obtain

I 00.t/D 4P.u.t//�C

�Z
jxj>R

j@xu.t; x/j
2 dxC

Z
jxj>R

ju.t; x/j2 dxC

Z
jxj>R

ju.t; x/jpC1 dx

�
:
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We note that there exists ı > 0 independent of t such that P.u.t// > ı by Proposition 2.18 since u belongs
to MC! . Therefore, by Lemma 3.12, if we take " 2 .0; 3ı/, then there exists R> 0 such that I 00.t/� ı for
any t 2 RC. On the other hand, the mass conservation law gives I.t/ � R2ku.t/k2

L2
< C , where C is

independent of t , for any t 2 RC. Hence, we obtain a contradiction.

4. Proof of the blow-up part

To prove the blow-up results, we use the method of Du et al. [2016]. On the contrary, we assume that the
solution u to (ıNLS) with u0 2M�! is global in the positive time direction and supt2RC

k@xu.t/k
2
L2
<

C0 <1. Then, we have supt2RC
ku.t/kLq <1 for any q > pC 1 by energy conservation and the

Sobolev embedding.
For R > 0, we take ' such that

'.r/D

�
0; 0 < r < 1

2
R;

1; r �R;

0� ' � 1; '0 �
4

R
:

By the fundamental formula and the Hölder inequality, we have

I.t/D I.0/C

Z t

0

I 0.s/ ds � I.0/C

Z t

0

jI 0.s/j ds

� I.0/C tk'0kL1ku.t/k
2
L2
k@xu.t/k

2
L2

� I.0/C
8M.u/C0t

R
:

Here, we note that I.0/�
R
jxj>R=2 ju.0; x/j

2 dx D oR.1/ and
R
jxj>R ju.t; x/j

2 dx � I.t/. Therefore,
we obtain the following lemma.

Lemma 4.1. Let �0 > 0 be fixed. Then, for any t � �0R=.8M.u/C0/, we haveZ
jxj>R

ju.t; x/j2 dx � oR.1/C �0:

We take another ' such that

0� ' � r2; j'0j. r; j'00j � 2; j'.4/j �
4

R2
;

and

'.r/D

�
r2; 0� r �R;

0; r � 2R:

Then we have the following lemma.

Lemma 4.2. There exist two constants C D C.p;M.u/; C0/ > 0 and �q > 0 such that

I 00.t/� 4P.u.t//CCkuk
�q

L2.jxj>R/
CCR�2kuk2

L2.jxj>R/
:
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Proof. By (3-2), we have

I 00.t/D 4P.u.t//CR1CR2CR3:

First, we prove R1 � 0. By the definition of ', we see that

R1 D Re
Z

R

.@2x.'.jxj//� 2/j@xu.t; x/j
2 dx D Re

Z
R

.'00.jxj/� 2/j@xu.t; x/j
2 dx � 0:

Next, we consider R2. By the Hölder inequality, we have

R2 D�
p� 1

pC 1
Re
Z

R

.@2x.'.jxj//� 2/ju.t; x/j
pC1 dx

� C

Z
jxj>R

ju.t; x/jpC1 dx

� Ckuk
1��q
Lq.jxj>R/

kuk
�q

L2.jxj>R/

� Ckuk
�q

L2.jxj>R/
;

where q > pC 1 and 0 < �q � 1, since supt2RC
ku.t/kLq <1. Finally, we consider R3:

R3 D�
1
4

Re
Z

R

@4x.'.jxj//ju.t; x/j
2 dx � CR�2

Z
jxj>R

ju.t; x/j2 dx D CR�2kuk2
L2.jxj>R/

: �

Proof of Theorem 1.3(2) (and Theorem 1.5(2)). Since u.t/ belongs to M�! , there exists ı > 0 independent
of t such that P.u.t// < �ı for all t 2 RC by Proposition 2.18. Therefore, we obtain

I 00.t/� �4ıCCkuk
�q

L2.jxj>R/
CCR�2kuk2

L2.jxj>R/
:

We take �0 > 0 such that C��q0 CC�
2
0 < ı. By Lemma 4.1, for t 2 Œ0; �0R=.8M.u/C0/�, we have

I 00.t/� �3ıC oR.1/:

Let T WD �0R=.8M.u/C0/. Integrating the above inequality from 0 to T, we get

I.T /� I.0/C I 0.0/T C 1
2
.�3ıC oR.1//T

2:

For sufficiently large R > 0, we have �3ıC oR.1/ < �2ı. Thus, we get

I.T /� I.0/C I 0.0/�0R=.8M.u/C0/�˛0R
2;

where ˛0 WD ı�20=.8M.u/C0/
2 > 0, and we can prove I.0/D oR.1/R2 and I 0.0/D oR.1/R. Indeed,

I.0/�

Z
jxj<
p
R

jxj2 ju0.x/j
2 dxC

Z
p
R<jxj<2R

jxj2 ju0.x/j
2 dx

.M.u/RCR2
Z
p
R<jxj

ju0.x/j
2 dx

D oR.1/R
2;
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and

I 0.0/�

Z
jxj<
p
R

j'0.jxj/jju0.x/jj@xu0.x/j dxC

Z
p
R<jxj<2R

j'0.jxj/jju0.x/jj@xu0.x/j dx

�

Z
jxj<
p
R

jxjju0.x/jj@xu0.x/j dxC

Z
p
R<jxj<2R

jxjju0.x/jj@xu0.x/j dx

. ku0k2H1

p
RCR

Z
p
R<jxj

ju0.x/jj@xu0.x/j dx

D oR.1/R:

Therefore, we see that
I.T /� oR.1/R

2
�˛0R

2:

For sufficiently large R > 0, we have oR.1/�˛0 < 0. However, this contradicts

I.T /D

Z
R

'.jxj/ju.T; x/j2 dx > 0:

This argument can be applied in the negative time direction. �

Appendix: Rewriting the main theorem into a version independent of the frequency

We prove Corollary 1.4. To see this, it is sufficient to prove the following lemma.

Lemma A.1. Let ' 2H 1.R/. The following statements are equivalent:

(1) There exists ! > 0 such that S!.'/ < l! D n! .

(2) ' satisfies E.'/M.'/� <E0.Q1;0/M.Q1;0/�.

Proof. If ' D 0, the statement holds. Let ' 2 H 1.R/n f0g be fixed. We define f .!/ WD l! � S!.'/.
Then, (1) is true if and only if sup!>0 f .!/ > 0. Noting that l! D !

pC3
2.p�1/S1;0.Q1;0/, we know f has a

maximum at ! D !0, where

!0 WD

�
M.'/

pC3
2.p�1/

S1;0.Q1;0/

�� 2.p�1/
p�5

> 0:

Therefore, (1) is equivalent to f .!0/ > 0. Now, since

f .!0/D

�
M.'/

pC3
2.p�1/

S1;0.Q1;0/

��pC3
p�5

S1;0.Q1;0/�

�
M.'/

pC3
2.p�1/

S1;0.Q1;0/

�� 2.p�1/
p�5

M.'/�E.'/

D

� pC3
2.p�1/

S1;0.Q1;0/
� 2.p�1/
p�5

M.'/
pC3
p�5

�E.'/ > 0;

we have �
pC 3

2.p� 1/
S1;0.Q1;0/

�2.p�1/
p�5

>E.'/M.'/
pC3
p�5:
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Noting Q1;0 satisfies

kQ1;0k
2
L2
D

pC 3

2.p� 1/
k@xQ1;0k

2
L2
D

pC 3

2.pC 1/
kQ1;0k

pC1

LpC1
;

we have �
pC 3

2.p� 1/
S1;0.Q1;0/

�2.p�1/
p�5

DE0.Q1;0/M.Q1;0/
pC3
p�5: �
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