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OPERATORS OF SUBPRINCIPAL TYPE

NILS DENCKER

In this paper we consider the solvability of pseudodifferential operators when the principal symbol vanishes
of at least second order at a nonradial involutive manifold 62. We shall assume that the subprincipal
symbol is of principal type with Hamilton vector field tangent to 62 at the characteristics, but transversal
to the symplectic leaves of 62. We shall also assume that the subprincipal symbol is essentially constant
on the leaves of 62 and does not satisfying the Nirenberg–Trèves condition (9) on 62. In the case when
the sign change is of infinite order, we also need a condition on the rate of vanishing of both the Hessian
of the principal symbol and the complex part of the gradient of the subprincipal symbol compared with
the subprincipal symbol. Under these conditions, we prove that P is not solvable.

1. Introduction

We will consider the solvability for a classical pseudodifferential operator P ∈9m
cl (M) on a C∞manifold M.

This means that P has an expansion pm + pm−1+ · · · , where pk ∈ Sk
hom is homogeneous of degree k for

all k, and pm = σ(P) is the principal symbol of the operator. A pseudodifferential operator is said to
be of principal type if the Hamilton vector field Hpm of the principal symbol does not have the radial
direction ξ · ∂ξ on p−1

m (0), in particular Hpm 6= 0. We shall consider the case when the principal symbol
vanishes of at least second order at an involutive manifold 62; then P is not of principal type.

P is locally solvable at a compact set K ⊆ M if the equation

Pu = v (1-1)

has a local solution u ∈D′(M) in a neighborhood of K for any v ∈C∞(M) in a set of finite codimension.
We can also define microlocal solvability of P at any compactly based cone K ⊂ T ∗M ; see Definition 2.6.

For pseudodifferential operators of principal type, it is known [Dencker 2006; Hörmander 1981] that
local solvability is equivalent to condition (9) on the principal symbol, which means that

Im apm does not change sign from − to + along the oriented bicharacteristics of Re apm (1-2)

for any 0 6= a ∈C∞(T ∗M). The oriented bicharacteristics are the positive flow-out of the Hamilton vector
field HRe apm 6= 0 on which Re apm = 0; these are also called semibicharacteristics of pm . Condition (1-2)
is invariant under multiplication of pm with nonvanishing factors, and symplectic changes of variables;
thus it is invariant under conjugation of P with elliptic Fourier integral operators. Observe that the sign
changes in (1-2) are reversed when taking adjoints, and that it suffices to check (1-2) for some a 6= 0 for
which HRe ap 6= 0, according to [Hörmander 1985b, Theorem 26.4.12].
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For operators which are not of principal type, the situation is more complicated and the solvability
may depend on the lower-order terms. When the set 62, where the principal symbol vanishes of second
order, is involutive, the subprincipal symbol σsub(P)= pm−1 is invariantly defined at 62. In fact, on 62

it is equal to the refined principal symbol; see [Hörmander 1985a, Theorem 18.1.33].
In the case where the principal symbol is real and vanishes of at least second order at the involutive

manifold, there are several results, mostly in the case when the principal symbol is a product of real
symbols of principal type. Then the operator is not solvable if the imaginary part of the subprincipal
symbol has a sign change of finite order on a bicharacteristic of one the factors of the principal symbol;
see [Egorov 1977; Popivanov 1974; Wenston 1977; 1978].

This necessary condition for solvability has been extended to some cases when the principal symbol is
real and vanishes of second order at the involutive manifold. The conditions for solvability then involve
the sign changes of the imaginary part of the subprincipal symbol on the limits of bicharacteristics from
outside the manifold, thus on the leaves of the symplectic foliation of the manifold; see [Mendoza and
Uhlmann 1983; 1984; Mendoza 1984; Yamasaki 1983]. This has been extended to more general limit
bicharacteristics of real principal symbols in [Dencker 2016].

When 62 is not involutive, there are examples where the operator is solvable for any lower-order
terms. For example when P is effectively hyperbolic, then even the Cauchy problem is solvable for any
lower-order term; see [Hörmander 1977; Nishitani 2004]. There are also results in the cases when the
principal symbol is a product of principal-type symbols not satisfying condition (9); see [Cardoso and
Trèves 1974; Gilioli and Trèves 1974; Goldman 1975; Trèves 1973; Yamasaki 1980].

In the present paper, we shall consider the case when the principal symbol (not necessarily real-
valued) vanishes of at least second order at a nonradial involutive manifold 62. We shall assume that
the subprincipal symbol is of principal type with Hamilton vector field tangent to 62 at the charac-
teristics, but transversal to the symplectic leaves of 62. We shall also assume that the subprincipal
symbol is essentially constant on the symplectic leaves of 62 by (2-8), and does not satisfy condition
(9); see Definition 2.4. In the case when the sign change is of infinite order, we will need a con-
dition on the rate of vanishing of both the Hessian of the principal symbol and the complex part of
the gradient of the subprincipal symbol on the semibicharacteristic of the subprincipal symbol; see
condition (2-11). Under these conditions, P is not solvable in a neighborhood of the semibichar-
acteristic; see Theorem 2.7, which is the main result of the paper. In this case P is an evolution
operator; see [Colombini et al. 2003; 2010] for some earlier results on the solvability of evolution
operators.

2. Statement of results

Let σ(P)= p ∈ Sm
hom be the homogeneous principal symbol. We shall assume that

σ(P) vanishes of at least second order at 62, (2-1)

where

62 is a nonradial involutive manifold. (2-2)
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Here nonradial means that the radial direction 〈ξ, ∂ξ 〉 is not in the span of the Hamilton vector fields
of the manifold, i.e., not equal to H f on 62 for some f ∈ C1 vanishing at 62. Then by a change of
homogeneous symplectic coordinates we may assume that

62 = {ξ
′
= 0}, ξ = (ξ ′, ξ ′′) ∈ Rk

×Rn−k (2-3)

for some k > 0; this can be achieved by conjugation by elliptic Fourier integral operators. If P is of
principal type near 62 then, since solvability is an open property, we find that a necessary condition for P
to be solvable at 62 is that condition (9) for the principal symbol is satisfied in some neighborhood of 62.
Naturally, this condition is empty on 62, where we instead need some conditions on the subprincipal
symbol

ps = pm−1+
i
2

∑
j

∂x j ∂ξ j p, (2-4)

which is equal to pm−1 on 62 and invariantly defined as a function on 62 under symplectic changes of
coordinates and conjugation with elliptic pseudodifferential operators. (In the Weyl quantization, the
subprincipal symbol is equal to pm−1.) When composing P with an elliptic pseudodifferential operator C ,
the value of the subprincipal symbol of CP is equal to cps+

1
2 i Hpc= cps at62, where c= σ(C). Observe

that the subprincipal symbol is complexly conjugated when taking the adjoint of the operator.
Let T6σ2 be the symplectic polar to T62, which spans the symplectic leaves of 62. If 62 = {ξ

′
= 0}

and x = (x ′, x ′′) ∈ Rk
×Rn−k , then the leaves are spanned by ∂x ′ . Let

T σ62 = T62/T6σ2 , (2-5)

which is a symplectic space over 62, which in these coordinates is given by

T σ62 =
{(
(x0, 0, ξ ′′0 ); (0, y′′, 0, η′′)

)
: (y′′, η′′) ∈ T ∗Rn−k}. (2-6)

Next, we are going to study the Hamilton vector field Hpm−1 at 62. If Hpm−1 ⊆ T62 at 62 then we find
that dps vanishes on T6σ2 so dps is well defined on T σ62. In fact, ps = pm−1 on 62 so if we choose
coordinates so that (2-3) holds, then Hpm−1 ⊆ T62 is equivalent to

Hpm−1ξ
′
=−∂x ′ pm−1 =−∂x ′ ps = 0 when ξ ′ = 0, (2-7)

which is invariant under multiplication with nonvanishing factors when ps = 0. Let Hps be the Hamilton
vector field of ps with respect the symplectic structure on the symplectic manifold T σ62. In the chosen
coordinates we have

Hps = ∂ξ ′′ ps∂x ′′ − ∂x ′′ ps∂ξ ′′

modulo ∂x ′ , which is nonvanishing if ∂x ′′ξ ′′ ps 6= 0. Since ps = pm−1 on 62, the difference between Hpm−1

and Hps is tangent to the leaves of 62. Actually, since the subprincipal symbol is only well defined on 62,
the vector field Hps is only well defined up to terms tangent to the leaves.

Because of that, we would need that the subprincipal symbol ps is constant on the leaves of 62, but
that condition is not invariant under multiplication with nonvanishing factors when ps 6= 0. Instead we
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shall use the invariant condition ∣∣dps |T L
∣∣≤ C0|ps | (2-8)

for any leaf L of 62. Then ps is constant on the leaves modulo nonvanishing factors, according to the
following lemma.

Lemma 2.1. If dps |T σ62 6= 0, then condition (2-8) is equivalent to the fact that ps is constant on the
leaves of 62 after multiplication with a smooth nonvanishing factor. Thus, if 62 = {ξ

′
= 0} then (2-8)

gives ps(x, 0, ξ ′′)= c(x, ξ ′′)q(x ′′, ξ ′′) with 0 6= c ∈ C∞.

Proof. Choose coordinates so that 62 = {ξ
′
= 0}. If ps 6= 0 at a point w0 ∈ 62 then (2-8) gives that

∂x ′ log ps is uniformly bounded near w0, where log ps is a branch of the complex logarithm. Thus, by
integrating with respect to x ′ in a simply connected neighborhood starting at x ′ = x ′0, we find that

ps(x, 0, ξ ′′)= c(x, ξ ′′)q(x ′′, ξ ′′), (2-9)

where q(x ′′, ξ ′′)= ps(x ′0, x ′′, 0, ξ ′′) ∈ C∞, so 0 6= c ∈ C∞ satisfies c(x ′0, x ′′, ξ ′′)= 1. When ps = 0 we
find that d Re zps |T σ62 6= 0 for some z ∈ C \ {0} by assumption. Thus we obtain locally that

ps(x, 0, ξ ′′)= c±(x, ξ ′′)q±(x ′′, ξ ′′) on S± = {±Re zps(x, 0, ξ ′′) > 0},

where q±(x ′′, ξ ′′) = ps(x ′0, x ′′, 0, ξ ′′), 0 6= c± ∈ C∞ and c±(x ′0, x ′′, ξ ′′) = 1 on S±. Then we find that
p−1

s (0) is independent of x ′ and

∂αx ′′∂
β

ξ ′′q±(x
′′, ξ ′′)= ∂αx ′′∂

β

ξ ′′ ps(x ′0, x ′′, 0, ξ ′′) ∀α, β, on S±,

so by taking the limit at S = {Re zps = 0}, we find that the functions q± extend to q ∈ C∞. Since
c+q = c−q = ps at S, we find that c+ = c− at S when q 6= 0. When q = 0 at S, we may differentiate
in the normal direction of S to obtain c−∂νq = c+∂νq, and since ∂νq 6= 0, the functions c± extend to a
continuous function c. By differentiating and taking the limit, we find that

∇c−q + c∇q =∇ps =∇c+q + c∇q at S,

which similarly gives that ∇c− = ∇c+ at S, so c ∈ C1. By repeatedly differentiating c±q, we find by
induction that c ∈ C∞, so we get smooth quotients c and q in (2-9). �

Now, a semibicharacteristic of ps will be a bicharacteristic of Re aps on T σ62, where C∞ 3 a 6= 0,
with the natural orientation. Observe that condition (2-7) is only invariant under multiplication with
nonvanishing factors when ps = 0.

Definition 2.2. We say that the operator P is of subprincipal type if, when ps = 0 on 62, the following
hold: Hpm−1 |62 ⊆ T62,

dps |T σ62 6= 0, (2-10)

and the corresponding Hamilton vector field Hps of (2-10) does not have the radial direction. We call
Hps the subprincipal Hamilton vector field and the (semi)bicharacteristics are called the subprincipal
(semi)bicharacteristics on 62.
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Clearly, if (2-3) holds, then the condition that the Hamilton vector field does not have the radial
direction means that ∂ξ ′′ ps 6= 0 or ∂x ′′ ps 6‖ ξ

′′ when ps = 0 on 62 = {ξ
′
= 0}.

In the case when the principal symbol p is real, a necessary condition for solvability of the operator
is that the imaginary part of the subprincipal symbol does not change sign from − to + when going in
the positive direction on a C∞ limit of normalized bicharacteristics of the principal symbol p at 62; see
[Dencker 2016]. When p vanishes of exactly second order on 62 = {ξ

′
= 0}, such limit bicharacteristics

are tangent to the leaves of 62. In fact, then Taylor’s formula gives Hp = 〈Bξ ′, ∂x ′〉+O(|ξ ′|2), where
B 6= 0, so the normalized Hamilton vector fields have limits that are tangent to the leaves. When the
principal symbol is proportional to a real-valued symbol, this gives examples of nonsolvability when the
subprincipal symbol is not constant on the leaves of 62. Thus condition (2-8) is natural if there are no
other conditions on the principal symbol.

Remark 2.3. If ps is real-valued, then by the proof of Lemma 2.1 it follows from (2-8) that ps has
constant sign on the leaves of 62, since then c > 0 in (2-9).

Definition 2.4. We say that P satisfies condition Sub(9) if Im aps does not change sign from − to +
when going in the positive direction on the subprincipal bicharacteristics of Re aps for any 0 6= a ∈ C∞.

Thus, condition Sub(9) is condition (9) given by (1-2) on the subprincipal symbol ps . Observe that
since ps is only defined on 62, the Hamilton vector field Hps is only well defined in T σ62 = T62/T6σ2 ;
thus it is well defined modulo ∂x ′ . But if (2-8) holds then we find that Sub(9) is a condition on ps

with respect to the symplectic structure of T σ62. In fact, by the invariance of condition (9) given by
[Hörmander 1985b, Lemma 26.4.10], condition Sub(9) holds for any a 6= 0 such that HRe aps 6= 0, so we
may assume by Lemma 2.1 that ps is constant on the leaves of 62.

Since condition Sub(9) is invariant under symplectic changes of variables and multiplication with
nonvanishing functions, it is invariant under conjugation of the operator by elliptic Fourier integral
operators. Observe that the sign change is reversed when taking the adjoint of the operator.

Recall that the Hessian of the principal symbol Hess p is the quadratic form given by ∂2 p at 62, which
is defined on the normal bundle N62 since it vanishes on T62. By the calculus, Hess p is invariant,
modulo nonvanishing smooth factors, under symplectic changes of variables and multiplication of P with
elliptic pseudodifferential operators.

Next, we assume that condition Sub(9) is not satisfied on a semibicharacteristic 0 of ps ; that is,
Im aps changes sign from − to + on the positive flow-out of HRe aps 6= 0 for some 0 6= a ∈ C∞. Now
if the sign change is not of finite order, we shall also need an extra condition on the rate of vanishing
of both the Hessian of the principal symbol and the complex part of the gradient of the subprincipal
symbol on the subprincipal semibicharacteristic. Then, we shall assume that there exists C > 0, ε > 0
and 0 6= a ∈ C∞ so that d Re aps |T62 6= 0 and

‖Hess p‖+ |dps ∧ d ps| ≤ C |ps |
ε when Re aps = 0 on 62 (2-11)

near 0. Since (2-11) also holds for smaller ε and larger C , it is no restriction to assume ε ≤ 1. The
motivation for (2-11) is to prevent the transport equation (6-1) from dispersing the support of the solution
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before the sign change of the imaginary part of the subprincipal symbol localizes it; see Remark 3.1. We
also find that ∇ ps is proportional to a real vector when ps = 0 since then dps ∧ d ps= 0.

Remark 2.5. Condition (2-11) is invariant under multiplication of P with elliptic pseudodifferential
operators, and symplectic changes of coordinates. If (2-8) also holds, then we obtain∥∥d Hess p|T L

∥∥≤ C1|ps |
ε/2 (2-12)

for any leaf L of 62 when Re aps = 0 near 0.

In fact, multiplication with an elliptic pseudodifferential operator with principal symbol c changes the
principal symbol into cp, the Hessian of the principal symbol into c Hess p and the subprincipal symbol
into

cps +
i
2

Hpc at 62,

where the last term vanishes at 62 and contains the factor Hess p, modulo terms vanishing of second
order at 62. Now we have

|dcps ∧ dcps| ≤ |c|2 |dps ∧ d ps| +C |ps |.

Thus we find that (2-11) holds with p replaced by cp, ps replaced by cps and a replaced with a/c.
If (2-8) also holds and we choose coordinates so that 62 = {ξ

′
= 0}, then we obtain from Lemma 2.1 that

|ps(x ′, x ′′, 0, ξ ′′)| ∼= |ps(x ′0, x ′′, 0, ξ ′′)| when |x ′− x ′0| ≤ c. Thus (2-11) gives

‖Hess p(x ′, x ′′, 0, ξ ′′)‖ ≤ C2|ps(x ′0, x ′′, 0, ξ ′′)|ε when |x ′− x ′0| ≤ c.

To show (2-12) it suffices to consider an element b jk(x ′, x ′′, 0, ξ ′′) of Hess p. Clearly |b jk | ≤ ‖Hess p‖,
so by adding C2|ps(x0, x ′′, 0, ξ ′′)|ε, we obtain

0≤ b jk(x ′, x ′′, 0, ξ ′′)≤ 2C2|ps(x0, x ′′, 0, ξ ′′)|ε when |x ′− x ′0| ≤ c.

Then we find that

|∂x ′b jk(x0, x ′′, 0, ξ ′′)| ≤ C
√

b jk(x0, x ′′, 0, ξ ′′)≤ C ′|ps(x0, x ′′, 0, ξ ′′)|ε/2

by [Hörmander 1983, Lemma 7.7.2].
We shall study the microlocal solvability of the operator, which is given by the following definition.

Recall that H loc
(s) (X) is the set of distributions that are locally in the L2 Sobolev space H(s)(X).

Definition 2.6. If K ⊂ S∗X is a compact set, then we say that P is microlocally solvable at K if there
exists an integer N so that for every f ∈ H loc

(N )(X) there exists u ∈D′(X) such that K ∩WF(Pu− f )=∅.

Observe that solvability at a compact set M ⊂ X is equivalent to solvability at S∗X |M by [Hörmander
1985b, Theorem 26.4.2], and that solvability at a set implies solvability at a subset. Also, by [Hörmander
1985b, Proposition 26.4.4] the microlocal solvability is invariant under conjugation by elliptic Fourier
integral operators and multiplication by elliptic pseudodifferential operators. We can now state the main
result of the paper.
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Theorem 2.7. Assume that P ∈ 9m
cl (X) has principal symbol that vanishes of at least second order at

a nonradial involutive manifold 62, is of subprincipal type, does not satisfy condition Sub(9) on the
subprincipal semibicharacteristic 0 ⊂ 62, and satisfies (2-8) near 0. In the case the sign change in
Sub(9) is of infinite order, we also assume condition (2-11) near 0. Then P is not locally solvable at 0.

Example 2.8. Let
P = D1 D2+ B(x, Dx) (2-13)

with B ∈ 91
cl. Then σ(B) is the subprincipal symbol on 62 = {ξ1 = ξ2 = 0}. Mendoza and Uhlmann

[1983] proved that P is not solvable if Im σ(B) changes sign as x1 or x2 increases on 62, and they proved
in [Mendoza and Uhlmann 1984] that P is solvable if Im σ(B) 6= 0 on 62. From this it is natural to
conjecture that the condition for solvability of P is that Im σ(B) does not change sign on the leaves of 6,
which are foliated by ∂x1 and ∂x2 . But the following is a counterexample to that conjecture. Let

P = D1 D2+ Dt + i f (t, x, Dx) (2-14)

with real and homogeneous f (t, x, ξ) ∈ S1
hom satisfying ∂x j f =O(| f |) for j = 1, 2. This operator is of

subprincipal type and satisfies (2-8). Then Theorem 2.7 gives that P is not solvable if t 7→ f (t, x, ξ)
changes sign of finite order from − to +, but observe that f has constant sign on the leaves of 62

by Remark 2.3. Thus the solvability of the operator P in (2-13) also depends on the real part of the
subprincipal symbol at 62. In fact, with the above conditions one can prove that D1 D2+ i f (t, x, Dx) is
solvable.

Example 2.9. The linearized Navier–Stokes equation

∂t u+
∑

j

a j (t, x)∂x j u+1x u = f, a j (x) ∈ C∞, (2-15)

is of subprincipal type. The symbol is

iτ + i
∑

j

a j (t, x)ξ j − |ξ |
2, (2-16)

so the subprincipal symbol is proportional to a real symbol on 62 = {ξ = 0}. Thus condition Sub(9) is
satisfied.

Now let S∗M ⊂ T ∗M be the cosphere bundle where |ξ | = 1, and let ‖u‖(k) be the L2 Sobolev norm of
order k, u ∈ C∞0 . In the following, P∗ will be the L2 adjoint of P. To prove Theorem 2.7 we shall use the
following result.

Remark 2.10. If P is microlocally solvable at 0 ⊂ S∗Rn, then [Hörmander 1985b, Lemma 26.4.5] gives
that for any Y b Rn such that 0 ⊂ S∗Y , there exists an integer ν and a pseudodifferential operator A so
that WF(A)∩0 =∅ and

‖u‖(−N ) ≤ C
(
‖P∗u‖(ν)+‖u‖(−N−n)+‖Au‖(0)

)
, u ∈ C∞0 (Y ), (2-17)

where N is given by Definition 2.6.
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We shall prove Theorem 2.7 in Section 8 by constructing localized approximate solutions to P∗u ∼= 0
and use (2-17) to show that P is not microlocally solvable at 0. We shall first find a normal form for the
adjoint operator.

3. The normal form

Assume that P∗ has the symbol expansion pm+ pm−1+· · · , where p j ∈ S j
hom is homogeneous of degree j .

By multiplying P∗ with an elliptic pseudodifferential operator, we may assume that m = 2. Choose local
symplectic coordinates (t, x, y, τ, ξ, η) so that 62 = {η = 0}, which is foliated by leaves spanned by ∂y .
Since p2 vanishes of at least second order at 62, we find that

p2(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk,

where B jk is homogeneous of degree 0 for all j, k.
The differential inequality (2-8) in these coordinates means that |∂y p1| ≤ C |p1| when η = 0, which by

Lemma 2.1 gives that

p1(t, x, y, τ, ξ, 0)= q(t, x, y, τ, ξ)r1(t, x, τ, ξ)

near 0, where q is a nonvanishing smooth homogeneous function. By multiplying with pseudodifferential
operators with principal symbol equal to q−1 on 62, we may assume that q ≡ 1 and that p1 is constant
on the leaves of 62. The Hamilton vector field of p1 is then tangent to 62 by (2-7).

We have assumed that P does not satisfy condition Sub(9) on a semibicharacteristic 0 of p1 on 62.
Since we are now considering the adjoint P∗ this means that Im ap1 changes sign from + to − on the
flow-out 0 of HRe ap1 on Re ap−1

1 (0) for some 0 6= a ∈ C∞. By the invariance of condition Sub(9) given
by [Hörmander 1985b, Lemma 26.4.10], it is no restriction to assume that a is homogeneous and constant
in y. By multiplication with an elliptic pseudodifferential operator having principal symbol a−1, we may
assume that a ≡ 1. Since Im p1 changes sign on 0, there is a maximal semibicharacteristic 0′ ⊂ 0 on
which Im p1 = 0. Here 0′ could be a point, which is always the case if the sign change is of finite order.

Since P is of subprincipal type, we find that ∂t,x,τ,ξ Re p1 6= 0 on 0′ by (2-10), so 0′ is transversal
to the leaves of 62. Since Im p1|0 has opposite signs near the boundary of 0′, we may shrink 0 so
that it is not a closed curve. Since HRe p1 is tangent to 62, we can complete τ = Re p1 to a symplectic
coordinate system in a convex neighborhood of 0′ so that η = 0 on 62, which preserves the leaves. In
fact, this is obtained by solving the equation Hτη = 0 with initial value on a submanifold transversal
to Hτ . The change of variables can be then done by conjugation with suitable elliptic Fourier integral
operators.

Now, using Malgrange’s preparation theorem in a neighborhood of 0′ in 62, we find that

p1(t, x, y, τ, ξ, 0)= q(t, x, τ, ξ)(τ + r(t, x, ξ)), q 6= 0,

near 0, since p1 is constant on the leaves of 62. In fact, on 0′ we have p1 = 0 and dp1 6= 0, so the
division can be done locally and by a partition of unity globally near 0 after possibly shrinking 0. Then
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using Taylor’s formula on p1, we find since q 6= 0 that

p1(t, x, y, τ, ξ, η)= q(t, x, τ, ξ)
(
τ + r(t, x, ξ)+ A(t, x, y, τ, ξ, η) · η

)
. (3-1)

By multiplying P with an elliptic pseudodifferential operator, we may again assume q ≡ 1. Since p2

vanishes of second order at 62, this only changes A with terms which have Hess p2 as a factor and terms
that vanish at 62.

We can write r = r1 + ir2 and A = A1 + i A2 with real-valued r j and A j , j = 1, 2. Now we may
complete

Re p1 = τ + r1(t, x, ξ)+ A1(t, x, y, τ, ξ, η) · η

to a symplectic coordinate system in a convex neighborhood of 0′. Since HRe p1 ∈ T62 at 62, we may
keep 62 = {η = 0}, which preserves the leaves of 62 on which p1 is constant. Thus, we find that

p1 = τ + i f (t, x, ξ)+ i A(t, x, y, τ, ξ, η) · η, (3-2)

where f = r2 and A = A2 are real-valued. We also find that

0 = {(t, x0, y0, 0, ξ0, 0)}, t ∈ I, (3-3)

where I is an interval in R. The symplectic change of coordinates can be made by conjugation with
elliptic Fourier integral operators, which only changes A with terms having Hess p2 as a factor and terms
that vanish at 62. Observe that A need not be real-valued after these changes.

We have assumed that condition Sub(9) is not satisfied for P on the subprincipal semibicharacteristic 0.
Thus the imaginary part of the subprincipal symbol of P∗ on 62

t 7→ f (t, x0, ξ0) (3-4)

changes sign from + to − as t increases on I ⊂ R. Similarly, we have f = 0 on 0′, where 0′ is given
by (3-3) with I replaced by I ′ ⊂ I. By reducing to minimal bicharacteristics on which t 7→ f (t, x, ξ)
changes sign as in [Hörmander 1981, p. 75], we may assume that f vanishes of infinite order on a
bicharacteristic 0′ arbitrarily close to the original bicharacteristic, if 0′ is not a point (see [Wittsten 2012,
Section 2] for a more refined analysis). If 0′ is not a point then it is a one-dimensional bicharacteristic
by [Hörmander 1981, Definition 3.5], which means that the Hamilton vector field on 0′ is proportional to
a real vector.

In fact, if f (a, x0, ξ0) > 0> f (b, x0, ξ0) for some a < b, then we can define

L(x, ξ)= inf
{
t − s : a < s < t < b such that f (s, x, ξ) > 0> f (t, x, ξ)

}
when (x, ξ) is close to (x0, ξ0), and we put L0 = lim inf(x,ξ)→(x0,ξ0) L(x, ξ). Then for every ε > 0 there
exists an open neighborhood Vε of (x0, ξ0) such that the diameter of Vε is less than ε and L(x, ξ)> L0−ε/2
when (x, ξ) ∈ Vε. By definition, there exists (xε, ξε) ∈ Vε and a < sε < tε < b so that tε − sε < L0+ ε/2
and f (sε, xε, ξε) > 0> f (tε, xε, ξε). Then it is easy to see that

∂αx ∂
β
ξ f (t, xε, ξε)= 0 ∀α, β when sε + ε < t < tε − ε (3-5)
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since else we would have a sign change in an interval with length less than L0 − ε/2 in Vε. We may
choose a sequence ε j → 0 so that sε j → s0 and tε j → t0. Then L0 = t0− s0 and (3-5) holds at (x0, ξ0) for
s0 < t < t0.

We also obtain the following condition from (2-11).

Remark 3.1. If the sign change of t 7→ f (t, x, ξ) is of infinite order on 0, then we find from assump-
tion (2-11) that

‖{B jk} jk‖+ |A| + |d f |. | f |ε near 0 on 62 (3-6)

for some ε > 0. Here a . b (and b & a) means that a ≤ Cb for some C > 0.

In fact, terms having Hess p2|62 = {B jk} jk as a factor can be estimated by (2-11), so we may assume
that (3-2) holds with real A. The subprincipal symbol is equal to ps = p1+ i

∑
jk ∂y j B jkηk modulo terms

that are O(|η|2), so ps = p1 on 62. By Remark 2.5 and (2-8), we can estimate the terms ∂y j B jkdηk in
dps by replacing ε with ε/2 in (2-11), so we may replace ps by p1 in the estimate. Let 0 6= a = a1+ ia2

with real-valued a j in (2-11) so that d Re ap1|T62 6= 0. We have dp1 = dτ + i(d f + Adη) on 62, so

|dp1 ∧ d p1| ∼= |d f | + |A| on 62.

Thus we find from (2-11) that |d f | + |A| = 0 on 0′. Since d Re ap1|T62 6= 0, we find that a1 6= 0 on 0′.
On 62 we have Re ap1 = a1τ − a2 f = 0 when τ = a2 f/a1. We obtain

Im ap1 = a2τ + a1 f = |a|2 f/a1 when Re ap1 = 0 on 62 near 0′,

which gives (3-6) from (2-11).
We obtain the following normal form for these operators of subprincipal type:

P∗ = Dt + F(t, x, y, Dt , Dx , Dy), (3-7)

where F ∼ F2+ F1+ · · · with homogeneous F j ∈ C∞(R, S j
hom). Here F2 vanishes of at least second

order on 62 = {η = 0}, so we find by Taylor’s formula that

F2(t, x, y, τ, ξ, η)= B(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk (3-8)

with homogeneous B jk . Then {B jk} jk |62 = Hess F2(t, x, y, τ, ξ, 0). Also we have that F1 vanishes on
the semibicharacteristic 0′ and

F1(t, x, y, τ, ξ, η)= i f (t, x, ξ)+ A(t, x, y, τ, ξ, η) · η. (3-9)

Here f is real and homogeneous of degree 1 and A|62= ∂ηF1|62 . We have that the principal symbol σ(P∗)
is equal to F2, and the subprincipal symbol σsub(P∗) is equal to τ+i f on62. Thus we obtain the following
result.

Proposition 3.2. Assume that P satisfies the conditions in Theorem 2.7. Then by conjugation with elliptic
Fourier integral operators and multiplication with an elliptic pseudodifferential operator, we may assume

P∗ = Dt + F(t, x, y, Dt , Dx , Dy) (3-10)
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microlocally near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I } ⊂62, where S2
cl 3 F ∼= F2+ F1+ · · · with F j ∈ S j

hom
is homogeneous of degree j and

F2(t, x, y, τ, ξ, η)=
∑

jk

B jk(t, x, y, τ, ξ, η)η jηk ∈ S2
hom

vanishes of second order on 62. We may also assume

F1(t, x, y, τ, ξ, η)= i f (t, x, ξ)+ A(t, x, y, τ, ξ, η) · η

is homogeneous of degree 1 and f is real-valued such that t 7→ f (t, x0, ξ0) changes sign from + to − as
t increases on I ⊂ R. If f (t, x0, ξ0)= 0 on a subinterval I ′ ⊆ I such that |I ′| 6= 0, then we may assume
that ∂k

t ∂
α
x ∂

β
ξ f (t, x0, ξ0)= 0 for all k, α, β, for t ∈ I ′. If the sign change of f is of infinite order then (3-6)

is satisfied near 0.

For the proof of Theorem 2.7, we shall modify the Moyer–Hörmander construction of approximate
solutions of the type

uλ(t, x, y)= eiλω(t,x,y)
∑
j≥0

φ j (t, x, y)λ− j/N, λ≥ 1, (3-11)

with N to be determined later. Here the phase function ω(t, x) will be complex-valued, but Imω ≥ 0 and
∂ Reω 6= 0 when Imω = 0. Letting z = (t, x, y), we therefore have the formal expansion

p(z, D)(exp(iλω)φ)∼ exp(iλω)
∑
α

∂αζ p(z, λ∂zω(z))Rα(ω, λ, D)φ(z)/α!, (3-12)

where Rα(ω, λ, D)φ(z)= Dα
w

(
exp(iλω̃(z, w))φ(w)

)∣∣
w=z and

ω̃(z, w)= ω(w)−ω(z)+ (z−w)∂ω(z).

Observe that the values of the symbol are given by an almost analytic extension; see Theorem 3.1 in
Chapter VI and Chapter X:4 in [Trèves 1980]. This gives

e−iλωP∗eiλωφ=
(
λ∂tω+λ

2 B(t, x, y,∂t,x,yω)+iλ f (t, x,∂xω)−λ∂
2
η B(t, x, y,∂t,x,yω)∂

2
yω/2

)
φ

+Dtφ+λ∂ηB(t, x, y,∂t,x,yω)Dyφ+∂
2
η B(t, x, y,∂t,x,yω)D2

yφ/2

+i∂ξ f (t, x,∂xω)Dxφ+A(t, x, y,∂t,x,yω)Dyφ+
∑
j≥0

λ− j R j (t, x, y,Dt,x,y)φ, (3-13)

where R0(t, x, y) = F0(t, x, y, ∂t,x,yω). Here the values of the symbols at (t, x, y, ∂t,x,yω) will be
replaced by finite Taylor expansions at (t, x, y, ∂t,x,y Reω). In fact, the almost analytic extensions are
determined by these Taylor expansions.

Because of the inhomogeneity coming from the terms of B, we shall use a phase function ω(t, x)
which is constant in y so that

uλ(t, x, y)= eiλω(t,x)
∑
j≥0

φ j (t, x, y)λ− j/N, λ≥ 1. (3-14)
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When ∂yω ≡ 0 the expansion (3-13) becomes

e−iλωP∗eiλωφ= λ(∂tω+i f (t, x,∂xω))φ+Dtφ+∂
2
η B(t, x, y,∂t,xω,0)D2

yφ/2

+A(t, x, y,∂t,xω,0)Dyφ+i∂ξ f (t, x,∂xω)Dxφ+
∑
j≥0

λ− j R j (t, x, y,Dt,x,y)φ, (3-15)

where R0(t, x, y) = F0(t, x, y, ∂t,xω, 0), and Rm(t, x, y, Dt,x,y) are differential operators of order j
in t , order k in x and order ` in y, where j + k + ` ≤ m + 2 for m > 0. In fact, this follows since
∂

j
τ ∂

α
ξ ∂

β
η Fk ∈ Sk− j−|α|−|β| by homogeneity.

4. The eikonal equation

We shall first solve the eikonal equation approximately, which is given by the highest-order term of (3-15)

∂tω+ i f (t, x, ∂xω)= 0, (4-1)

where t 7→ f (t, x, ξ) changes sign from + to − for some (x, ξ) as t increases in a neighborhood of
0={(t, x0, ξ0) : t ∈ I } on which f (t, x, ξ) vanishes. If |I | 6=0 then by reducing to minimal bicharacteristics
as in Section 3, we may assume that f vanishes of infinite order at 0. We shall choose the phase function
so that Imω ≥ 0 and ∂2

x Imω > 0 near the interval. By changing coordinates, it is no restriction to
assume 0 ∈ I. We shall use the approach by Hörmander [1981] in the principal-type case and use the
phase function to localize in t and x . Observe that since ω does not depend on y, the localization in the
y-variables will be done in the amplitude φ.

We shall take the Taylor expansion of ω in x :

ω(t, x)= w0(t)+〈x − x0(t), ξ0(t)〉+
∑

2≤|α|≤K

wα(t)(x − x0(t))α/α!. (4-2)

Here α = (α1, α2, . . . ), with α j ∈ N, α! =
∏

j α j ! and |α| = α1+α2+ · · · . Then we find that

∂tω(t, x)= w′0(t)−〈x
′

0(t), ξ0(t)〉+ 〈x − x0(t), ξ ′0(t)〉

+

∑
2≤|α|≤K

w′α(t)(x − x0(t))α/α! −
∑

1≤|α|≤K−1
k

wα+ek (t)(x − x0(t))αx ′0,k(t)/α!, (4-3)

where ek = (0, . . . , 0, 1, 0, . . . , 0) is the k-th unit vector. We also find

∂x jω(t, x)= ξ0 j (t)+
∑

1≤|α|≤K−1

wα+e j (t)(x − x0(t))α/α! = ξ0 j (t)+ σ j (t, x). (4-4)

Here ξ0(t)= (ξ0,1(t), . . . ) and σ = {σ j } j is a finite expansion in powers of 1x = x − x0. We define the
value of f (t, x, ∂xω) by the Taylor expansion

f (t, x, ∂xω)= f (t, x, ξ0+ σ)

= f (t, x, ξ0)+
∑

j

∂ξ j f (t, x, ξ0)σ j +
∑

jk

∂ξ j ∂ξk f (t, x, ξ0)σ jσk/2+ · · · . (4-5)
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Now the value at x = x0 of (4-1) is equal to w′0(t)−〈x
′

0(t), ξ0(t)〉+ i f (t, x0(t), ξ0(t)). This vanishes if{
Rew′0(t)= 〈x

′

0(t), ξ0(t)〉,

Imw′0(t)=− f (t, x0(t), ξ0(t)),
(4-6)

so by putting w0(0)= 0, this will determine w0 once we have (x0(t), ξ0(t)).
We shall simplify the notation and put wk = {wαk!/α!}|α|=k so that wk is a multilinear form. The

first-order terms in x − x0 of (4-1) vanish if

ξ ′0(t)−w2(t)x ′0(t)+ i
(
∂x f (t, x0(t), ξ0(t))+ ∂ξ f (t, x0(t), ξ0(t))w2(t)

)
= 0.

We find by taking real and imaginary parts that{
ξ ′0 = Rew2x ′0+ ∂ξ f (t, x0, ξ0) Imw2,

x ′0 = (Imw2)
−1(∂x f (t, x0, ξ0)+ ∂ξ f (t, x0, ξ0)Rew2)

(4-7)

with (x0(0), ξ0(0))= (x0, ξ0), which will determine x0(t) and ξ0(t) if | Imw2| 6= 0.
The second-order terms in x − x0 vanish if

w′2/2−w3 x ′0/2+ i
(
∂ξ fw3/2+ ∂2

x f/2+ ∂x∂ξ fw2+w2∂
2
ξ fw2/2

)
= 0,

which gives
w′2 = w3 x ′0− i

(
∂ξ fw3+ ∂

2
x f + 2∂x∂ξ fw2+w2∂

2
ξ fw2

)
(4-8)

with initial data w2(0) such that Imw2(0) > 0.
We find that the terms of order k > 2 vanish if

w′k −wk+1x ′0 = Fk(t, x0, ξ0, {w j }), (4-9)

where we may choose wk(0)= 0. Here Fk is a linear combination of the derivatives of f of order ≤ k
multiplied by polynomials in w j with 2≤ j ≤ k+1. When k= K we get w′K = FK (t, x0, ξ0, {w j }), where
j ≤ K . The equations (4-7)–(4-9) form a quasilinear system of differential equations, which can be solved
in a convex neighborhood of 0. In the case when |I | 6= 0, we have assumed that ∂αt,x,ξ f (t, x0, ξ0) ≡ 0
for all α, for t ∈ I. Then we find from (4-7)–(4-9) that x0, ξ0 and wk are constant in t ∈ I , so we may
solve (4-7)–(4-9) in a convex neighborhood of I . Observe that the higher-order terms cannot change the
condition that Im ∂2

xω ≥ c > 0 and Imω(t, x)≥ 0 if |x − x0(t)| � 1. Summing up, we have proved the
following result.

Proposition 4.1. Let 0 = {(t, x0, ξ0) : t ∈ I } and assume that ∂k
t ∂

α
x ∂

β
ξ f (t, x0, ξ0)= 0 for all t ∈ I in the

case |I | 6= 0. Then we may solve (4-1) with ω(t, x) given by (4-2) in a convex neighborhood � of 0
modulo O(|x − x0(t)|M) for any M such that (x0(t), ξ0(t))= (x0, ξ0) when t ∈ I and wk(t) ∈ C∞ such
that w0(t)= 0, Imw2(t) > 0 and wk(t)= 0, k > 2, when t ∈ I.

Then we obtain Imω(t, x) ≥ c|x − x0(t)|2 near 0, with c > 0, so the errors that are O(|x − x0|
M)

in the eikonal equation will give terms that are bounded by CMλ
−M/2. But we have to show that

t 7→ f (t, x0(t), ξ0(t)) also changes sign from + to − as t increases for some choice of (x0, ξ0). This
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problem will be studied in the next section, with a special emphasis on the finite vanishing case. By (4-6) we
then obtain that t 7→ Imw0(t) has a local minimum on I which can be equal to 0 by subtracting a constant.

5. The change of sign

We have assumed that condition Sub(9) for P is not satisfied near the subprincipal semibicharacteristic
0 = {(t, x0, ξ0) : t ∈ I }, so that t 7→ f (t, x, ξ) changes sign from + to − for some (x, ξ) as t increases
near 0. But after solving the eikonal equation, we have to know that t 7→ f (t, x0(t), ξ0(t)) has the
same sign change, possibly after changing the starting point (x0, ξ0). In order to do so, we shall use the
invariance of condition Sub(9), but note that condition (3-6) is only assumed when the change of sign is
of infinite order. Therefore we shall first consider the case when the sign change is of finite order and
show that this condition is preserved after solving the eikonal equation. Thus assume that

∂k
t f (t0, x0, ξ0) < 0 and ∂

j
t f (t0, x0, ξ0)= 0 for j < k (5-1)

for some odd integer k, where we may assume t0 = 0. Now, if the order of the zero is not constant in
a neighborhood of (x0, ξ0) then in any neighborhood the mapping t 7→ f (t, x, ξ) must have a zero of
odd order with sign change from + to −, and the order of vanishing is constant almost everywhere on
f −1(0). We obtain this because ∂k

t f 6= 0, t 7→ f (t, x, ξ) goes from + to − and the set where the order
of the zero changes is nowhere dense in f −1(0) since it is the union of boundaries of closed sets in the
relative topology. By possibly changing (t0, x0, ξ0), we may assume that (5-1) holds with t0 = 0, and that
the order of the zero is odd and constant near (x0, ξ0). Then the zeros form a smooth manifold by the
implicit function theorem. Using Taylor’s formula, we find that f (t, w) = a(t, w)(t − t0(w))k, where
k ≥ 1 is odd, w = (x, ξ), t0(w0)= 0 and a < 0 in a neighborhood of (0, w0)= (0, x0, ξ0). Then we find

∂w f = ∂wa(t − t0)k − ak(t − t0)k−1∂wt0, (5-2)

which vanishes of at least order k− 1 in t at f −1(0). Let w(t)= (x0(t), ξ0(t)). Then

f (t, w(t))= f (t, w0)+ ∂w f (t, w0)1w(t)+O(|1w(t)|2),

where 1w(t)=w(t)−w0. Now t 7→ f (t, w0) vanishes of order k in t at 0 and t 7→ ∂w f (t, w0) vanishes
of at least order k − 1, so if t 7→ 1w(t) vanishes of at least order k > 1 then by (5-2) we find that
t 7→ f (t, w(t)) vanishes of order k. Since (d/dt)1w(t)= w′(t), we will need the following result.

Lemma 5.1. Let (x0(t), ξ0(t)) be the solution to equation (4-7) with Imw2(0) 6= 0 and assume that
t 7→ ∂w f (t, x0, ξ0) vanishes of order r ≥ 1 at t = 0. Then (x ′0(t), ξ

′

0(t)) vanishes of order r and 1w(t)
vanishes of order r+1 at t = 0.

Proof. By (4-7) we have

w′(t)= (x ′0(t), ξ
′

0(t))= A(t)∂w f (t, w(t)), w(0)= w0. (5-3)

Here we have |A(0)| 6= 0 if Imw2(0) 6= 0; in fact w′(0)= 0 then gives ∂ξ f (0, w0)= 0 and ∂x f (0, w0)= 0
by (4-7).
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Now we define φ0(t)= ∂w f (t, w0) and φ1(t)= ∂w f (t, w(t)). Then we have w′(t)= A(t)φ1(t) and
the condition is that φ0(t) vanishes of order r ≥ 1 at 0. We shall proceed by induction, and first assume
that r = 1. Since w(0)= w0 we find φ1(0)= φ0(0)= 0 and thus w′(0)= 0.

Next, for r > 1 we assume by induction that w′(t) vanishes of order r−1 at 0 so w(k)(0)= 0 for k < r ,
and then we shall show that w(r)(0)= 0 so that w′ vanishes of order r . Using the chain rule we obtain

∂r
t (g(t, w(t)))=

∑
0≤ j≤r∑
i ri+ j=r

c j,α∂
j

t ∂
α
wg(t, w(t))

|α|∏
i=1

w(ri )(t) (5-4)

for any g(t, w) ∈ C∞. Thus, for g = ∂w f we find that

φ
(k)
1 (0)= φ(k)0 (0)+ ∂k−1

t ∂2
w f (0, x0, ξ0)w

′(0)+ · · ·+ ∂2
w f (0, x0, ξ0)w

(k)(0)= φ(k)0 (0)= 0

for k < r , since the other terms have some factor w( j)(0)= 0, j ≤ k, which implies that φ1(t) vanishes
of order r . Since w′ = Aφ1 we find that w′(t) vanishes of order r , which gives the induction step and
the proof. �

Now, if f (t, w0) vanishes of order k then ∂w f (t, w0) vanishes of order k − 1. Thus w′(t) vanishes
of order k− 1 by Lemma 5.1, and since w(0)= w0 we find that 1w(t) vanishes of order k. Thus, we
find that f (t, w(t))− f (t, w0) vanishes of order 2k− 1, so these terms vanish of same order if k > 1. In
the case k = 1, we shall use an argument of Hörmander [1981] for the principal-type case. We obtain
from (4-6) that ∂t( f (t, w(t)))=− Imw′′0(t); thus

Imw′′0(0)=−∂t f (0, w0)− ∂ξ f (0, w0) · ξ
′

0− ∂x f (0, w0) · x ′0, (5-5)

where ∂t f (0, w0)=−c < 0. We find from (4-7) that{
ξ ′0(0)= Rew2(0)x ′0(0)+ ∂ξ f (0, w0) Imw2(0),

x ′0(0)= (Imw2(0))−1(∂x f (0, w0)+ ∂ξ f (0, w0)Rew2(0)
)
.

(5-6)

If ∂ξ f (0, w0)= 0 then we find that x ′0(0)= (Imw2(0))−1∂x f (0, w0) and obtain

Imw′′0(0)= c− ∂x f (0, w0)(Imw2(0))−1∂x f (0, w0) > c/2> 0 (5-7)

by choosing Imw2(0)= κ Id with κ � 1. If ∂ξ f (0, w0) 6= 0 then we may choose Rew2(0) so that

∂x f (0, w0)+ ∂ξ f (0, w0)Rew2(0)= 0. (5-8)

Then we find x ′0(0)= 0 and we obtain

Imw′′0(0)= c− ∂ξ f (0, w0) Imw2(0)∂ξ f (0, w0) > c/2> 0 (5-9)

by choosing Imw2(0)= κ Id with 0<κ� 1. Thus in both cases we find that ∂t f (t, w(t))= Imw′0(t)< 0
at t = 0.
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We find that t 7→ f (t, w(t)) changes sign from + to − of order k as t increases at t = 0. We may then
rewrite the equation as

Imw′0(t)= tkc(t), (5-10)

where c(t) > 0 in a neighborhood of the origin. Since Imw2(0) > 0 we find that

eiλω(t,x)
≤ e−c0λ(tk+1

+|x−x0|
2), |x − x0| � 1, |t | � 1, c0 > 0. (5-11)

Thus the errors that are O(|x−x0|
M) in the eikonal equation will give terms that are bounded by CMλ

−M/2.
We shall also consider the case when t 7→ f (t, x, ξ) changes sign from + to − of infinite order near 0.

If 0 is not a point, then by reducing to a minimal bicharacteristic as in Section 3, we may assume that
f (t, x, ξ) vanishes of infinite order at 0. We then obtain an approximate solution to the eikonal equation
by solving (4-7)–(4-9) with initial data w = (x, ξ) and wk(0), k ≥ 2, which gives a change of coordinates
(t, w) 7→ (t, w(t)). If in any neighborhood of 0 = {(t, x0, ξ0) : t ∈ I } there exist points in f −1(0) where
∂t f < 0, then as before we can construct approximate solutions in any neighborhood of 0 satisfying (5-11)
with k= 1. If ∂t f ≥ 0 on f −1(0) in some neighborhood of 0, then by the invariance of condition (9) there
will still exist a change of sign of t 7→ f (t, w(t)) from + to − in any neighborhood of 0 after the change
of coordinates; see [Hörmander 1985b, Lemma 26.4.11]. (Recall that conditions (2-8) and (2-11) hold in
some neighborhood of 0.) Thus if F ′(t)=− Imw′0(t)= f (t, w(t)) then t 7→ F(t) has a local maximum
at some t = t0, and after subtraction the maximum can be assumed to be equal to 0. By choosing suitable
initial value (x0, ξ0) for (4-7) at t = t0, we obtain

eiλω(t,x)
≤ eλ(F(t)−c|x−x0|

2), |x − x0| � 1, (5-12)

where F ′(t)= f (t, w(t)) so that maxI F(t)= 0 with F(t) < 0 for some t /∈ I near ∂ I .

Proposition 5.2. Assume that t 7→ f (t, x0, ξ0) changes sign from + to − as t increases near I and that
∂k

t ∂
α
x ∂

β
ξ f (t, x0, ξ0) = 0 for all t ∈ I when |I | 6= 0. Then we may solve (4-1) in a neighborhood � of

0= {(t, x0, ξ0) : t ∈ I } modulo O(|x− x0(t)|M) for any M , with ω(t, x) given by (4-2) such that the curve
t 7→ (x0(t), ξ0(t)), t ∈ (t1, t2), is arbitrarily close to 0, wk(t) ∈ C∞, Imw2(t)≥ c > 0 when t ∈ (t1, t2),
min(t1,t2) Imw0(t)= 0 and Imw0(t j )= c > 0, j = 1, 2.

Observe that since Imw0 ≥ 0 we find that f (t0, x0(t0), ξ0(t0)) =− Imw′0(t) = 0 at a minimum t0 ∈
(t1, t2). As before, the errors that are O(|x−x0|

M) in the eikonal equation will give terms that are bounded
by CMλ

−M/2 for all M . Observe that cutting off where Imw0 > 0 will give errors that are O(λ−M) for
all M .

6. The transport equations

Next, we shall solve the transport equations given by the following terms in (3-15):

Dtφ+ ∂
2
η B(t, x, y, ∂t,xω, 0)D2

yφ/2+ A(t, x, y, ∂t,xω, 0)Dyφ

+ i∂ξ f (t, x, ∂xω)Dxφ+
∑
j≥0

λ− j R j (t, x, y, Dt,x,y)φ (6-1)
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near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I }. Here R0(t, x, y)= F0(t, x, y, ∂t,xω, 0) and when m > 0 we have
that Rm(t, x, y, Dt,x,y) are differential operators of order j in t , order k in x and order ` in y, where
j + k+ ` ≤ m+ 2. Assuming the conclusions in Proposition 5.2 hold, we shall choose suitable initial
values of the amplitude φ at t = t0, which is chosen so that Imw0(t0)= 0. Observe that the second-order
differential operator given by the first four terms in (6-1) need not be solvable in general. Instead, by
Lemma 6.1 we can treat the Dx and Dy terms as perturbations, using condition (3-6) in the infinite
vanishing case.

Since the phase function ω(t, x) is complex-valued, we will replace the values of the symbols at
(τ, ξ) = ∂t,xω(t, x) by finite Taylor expansions at (Rew′0(t), ξ0(t)). By (4-3) and (4-4) this will give
expansions in powers of x − x0(t) and Imw′0(t)=− f (t, x0(t), ξ0(t)). Then, we shall solve the transport
equations up to arbitrarily high powers of x− x0(t) and f . Since the imaginary part of the phase function
Imω ≥ 0 vanishes of second order at x = x0(t), we will obtain by Lemma 6.1 below that this will give a
solution modulo any negative power of λ.

We shall use the amplitude expansion

φ(t, x, y)=
∑
k≥0

%−kφk(t, x, y) (6-2)

and solve the transport equation recursively in k. Here φk depends on % but with uniform bounds in a
suitable symbol class, and % = λ1/N with N to be determined later. By doing the change of variables
(t, x, y) 7→ (t− t0, x− x0(t), y− y0), we find that Dt changes into Dt − x ′0(t)Dx , which does not change
the order of R j as differential operator. Thus we may assume t0 = 0, x0(t)≡ 0 and y0 = 0.

Next, we apply (6-1) on φ given by (6-2). Since % = λ1/N , we obtain the terms

Dtφ+ A0(t, x)Dxφ+ A1(t, x, y)Dyφ+ A2(t, x, y)D2
yφ+

∑
j≥0

%− j N R j (t, x, y, Dt,x,y)φ, (6-3)

where

A0(t, x)= i∂ξ f (t, x, ξ0(t)+ σ(t, x))− x ′0(t),

A1(t, x, y)= A
(
t, x, y, ∂tω(t, x), ξ0(t)+ σ(t, x), 0

)
, (6-4)

A2(t, x, y)= ∂2
η B2

(
t, x, y, ∂tω(t, x), ξ0(t)+ σ(t, x), 0

)
/2. (6-5)

Here σ(t, x) is given by (4-4) and ∂tω(t, x) by (4-3), where the expansion will be up to a sufficiently
high order in x . Observe that after the change of variables we have σ(t, 0)≡ 0. The values of the symbols
will as before be defined by finite Taylor expansions in the τ - and ξ -variables, which gives expansions in
powers of x and f (t, 0, ξ(t)).

We are going to construct solutions φk(t, x, y)= φk(t, x, %y) so that y 7→ φk(t, x, y) ∈ C∞0 uniformly
in %, which gives localization in |y|.%−1. Therefore we shall choose %y as new y-coordinates. Then (6-3)
becomes

Dtφ+ A0(t, x)Dxφ+ %A1(t, x, y/%)Dyφ+ %
2 A2(t, x, y/%)D2

yφ

+

∑
j≥0

%− j N R j (t, y/%, x, Dt , Dx , %Dy)φ. (6-6)
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By Proposition 5.2 the phase function eiλw(t,x) gives the cut-off in x , and we shall expand the symbols
in powers of x . Now the Taylor expansion of x 7→ %2 A2(t, x, y/%) will give terms that are O(%2x).
Therefore we take %2x as new x-coordinates, which gives

Dtφ+ %
2 A0(t, x/%2)Dxφ+ %A1(t, x/%2, y/%)Dyφ+ %

2 A2(t, x/%2, y/%)D2
yφ

+

∑
j≥0

%− j N R j (t, y/%, x/%2, Dt , %
2 Dx , %Dy)φ. (6-7)

Now the phase function eiλw(t,x) is O(e−c%N−4
|x |2) in the new coordinates. So if we take N > 4, it

suffices to solve the transport equation up to a sufficiently high order of x ; then we may cut off where
|x |. 1, which corresponds to |x |. %−2 in the original coordinates. Thus we expand in x :

φk(t, x, y)=
∑
k,α

φk,α(t, y)xα φk,α(t, y) ∈ C∞0 , (6-8)

A0(t, x/%2)Dx =
∑
α, j

A0,α, j (t)%−2|α|xαDx j ,

A j (t, x/%2, y/%)=
∑
α

A j,α(t, y/%)%−2|α|xα, j > 0,

Rk(t, x/%2, y/%, %Dy, %
2 Dx)=

∑
α,`,ν,µ

Rk,α,`,ν,µ(t, y/%)%−2|α|+2|ν|+|µ|xαD`
t Dν

x Dµ
y . (6-9)

Here `+ |ν| + |µ| ≤ k+ 2 so we have at most the factor %2|ν|+|µ|
≤ %2k+4 in (6-9). When k = 0 we have

`+ |ν| + |µ| = 0 and

R0(t, x/%2, y/%)=
∑
α

R0,α(t, y/%)%−2|α|xα.

Observe that the coefficients in the expansions are given by expansions in powers of f (t, 0, ξ(t)). After
cut-off in x we find in the original coordinates that φk(t, x, y) = ϕk(t, %2x, %y), where ϕk for any t is
uniformly bounded in C∞0 .

We shall first apply (6-7) on φ0 and expand in x . Then we find that the terms that are independent of x are

Dtφ0,0−i%2
∑

j

A0,0, j (t)φ0,e j+%A1,0(t,y/%)Dyφ0,0+%
2 A2,0(t,y/%)D2

yφ0,0+R0,0(t,y/%)φ0,0. (6-10)

We shall need the following result, which gives estimates on f and A j on the interval of integration. It will
be proved in the next section. In the following, we shall denote f (t)= f (t, 0, ξ0(t)) and F(t)=

∫ t
0 f (s) ds.

Observe that f (0)= 0 since Imw′0(0)= 0.

Lemma 6.1. Assume that the conclusions in Proposition 5.2 hold and that (3-6) holds if t 7→ f (t) vanishes
of infinite order at 0. Then there exists ε and C ≥ 1 with the property that if N ≥ C , % = λ1/N

≥ C and

| f (t)| +
∣∣∣∣∫ t

0
|A0(s, 0)| + |A1(s, 0, y/%)| + ‖A2(s, 0, y/%)‖ ds

∣∣∣∣≥ C/%3 (6-11)

holds for some |y| ≤ %/C , then λF(s)≤−λε/C for some s in the interval connecting 0 and t.
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Observe that if Lemma 6.1 holds for some ε and C , then it trivially holds for smaller ε and larger C .
We shall assume that ε < 1 and that both N and λ are large enough so that the conclusion in Lemma 6.1
holds. Since (6-11) does not hold when t = 0, we can choose the maximal interval I containing 0 such
that (6-11) does not hold in I ; thus

| f (t)| +
∣∣∣∣∫ t

0
|A0(s, 0)| + |A1(s, 0, y/%)| + ‖A2(s, 0, y/%)‖ ds

∣∣∣∣< C/%3, t ∈ I, (6-12)

when |y| ≤%/C . By definition we obtain that (6-11) holds for some |y| ≤%/C when t ∈ ∂ I , so Lemma 6.1
gives that λF . −λε at ∂ I0 for some open interval I0 ⊆ I that contains 0. This means that eiλω(t,0)

=

eλF(t)
≤CNλ

−N for any N at ∂ I0 when λ� 1. Since F ′ = f is uniformly bounded and the left-hand side
of (6-12) is Lipschitz continuous, we may cut off near I0 with χ(t) ∈ S(1, λ6/N dt2)⊂ S(1, λ2−2εdt2) for
N � 1 so that χ(0) 6= 0, λF(t).−λε in suppχ ′ and (6-12) holds with some C when t ∈ suppχ and
|y| ≤ %/C . Then as before, the cut-off errors can be absorbed by the exponential and the expansion in
powers of f (t, 0, ξ(0))= f (t) is justified. In fact, f (t)=O(%−3) in suppχ , which gives errors of any
negative power of % = λ1/N. The bound on the integral in (6-12) means that we can ignore the A j terms
in (6-10) in suppχ modulo lower-order terms in %. In the following we shall change the notation and let
I = suppχ . We need to measure the error terms in the following way.

Definition 6.2. For a(t) ∈ L∞(R) and κ > 0, we say that a(t) ∈ I (κ) if
∫ t

0 a(s) ds =O(κ) for all t ∈ I .

For example, f (t) ∈ I (%−3), and since the integral in (6-12) is O(%−3) in I , the integrand is in I (%−3).
Then according to (6-12) it suffices to solve

Dtφ0,0 =−R0,0φ0,0, t ∈ I, (6-13)

to obtain that the terms in (6-10) are in I (%−1); here R0,0(t, y/%) ∈ C∞ uniformly since % ≥ 1. Now we
can solve (6-13) with φ0,0(0, y)= φ(y) ∈ C∞0 uniformly with support where |y| � 1 such that φ(0)= 1.
In fact, the solution is φ0,0(t, y)= E(t, y)φ(y), where

E(t, y)= exp
(
−i
∫ t

0
R0,0(s, y/%) ds

)
, t ∈ I,

is uniformly bounded in C∞. Thus φ0,0(t, y) ∈ C∞ uniformly and by choosing φ(y) with sufficiently
small support, we obtain for any t ∈ I that φ0,0(t, · ) has support in a sufficiently small compact set in
which (6-12) holds.

The coefficients of the terms in (6-7) which are homogeneous of degree α 6= 0 in x are

Dtφ0,α+R0,0(t, y/%)φ0,α−i
∑
|β|=1

j

A0,β, j (t)(α j+1−β j )φ0,α+e j−β+

∑
|β|=1

A2,β(t, y/%)D2
yφ0,α−β (6-14)

modulo I (%−1). Letting 8k, j = {φk,α}|α|= j and 8k = {8k, j } j for k, j ≥ 0, we find that (6-14) vanishes
if 80 satisfies the system

Dt80,k = Sk
0,080,k + Sk

0,180,k−1, (6-15)
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where Sk
0,0(t) is a uniformly bounded matrix depending on t , and Sk

0,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 in y when |y|. %. Let E0,k(t) be the fundamental solution to
Dt E0,k = Sk

0,0 E0,k so that E0,k(0)= Id. Then letting

80,k(t, y)= E0,k(t)90,k(t, y),

the system (6-15) reduces to

Dt90,k(t, y)= E−1
0,k Sk

0,1 E0,k90,k−1(t, y).

This is a recursion equation which we can solve uniformly in I with 90,k(t, y) having initial values
90,k(0, y) ≡ 0 for 0 < k ≤ M . Observe that since the initial data 80,k(0, y) has compact support, we
find that 80,k(t, y) ∈ C∞ uniformly. For any t we find that 80,k(t, y) has support in a sufficiently small
compact set so that (6-12) holds for any t ∈ I .

We shall now apply (6-7) to φ given by the full expansion (6-8). We find that the coefficients of the
terms in (6-7) which are homogeneous of degree α 6= 0 in x are equal to

%−1
(

Dtφ1,α+R0,0(t, y/%)φ1,α−i
∑
|β|=1

j

A0,β, j (t)(α j+1−β j )φ1,α+e j−β+

∑
|β|=1

A2,β(t, y/%)D2
yφ1,α−β

+

∑
|β|=1

A1,β(t, y/%)D2
yφ0,α−β−i%3

∑
j

A0,0, j (t)(α j+1)φ0,α+e j+%
3 A2,0(t, y/%)D2

yφ0,α

)
(6-16)

modulo I (%−2). We find that (6-16) vanishes if 81 satisfies the system

Dt81,k = Sk
1,081,k + Sk

1,181,k−1+A0
180, (6-17)

where Sk
1,0(t) is a uniformly bounded matrix depending on t , Sk

1,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 when |y|. % and A0

1 is a differential operator in y of order 2
with coefficients in I (1) because of (6-12). By letting81,k = E1,k91,k with the fundamental solution E1,k

to Dt E1,k = Sk
1,0 E1,k , E1,k(0)= Id, this reduces to the equation

Dt91,k = E−1
1,k Sk

1,1 E1,k−191,k−1+ E−1
1,kA0

180.

Thus we can solve (6-17) in I recursively with uniformly bounded81,k having initial values81,k(0, y)≡0,
k ≥ 0. But observe that 81 is not in C∞ uniformly; instead we have D j

t 81 = O(%3) if j ≥ 1, since
|∂

j
t A0

1| ≤ C j%
3 for all j by (6-16). For that reason, we shall define S3

% ⊂ C∞ by

|∂
j

t ∂
α
y φ(t, y)| ≤ C j,α%

3 j
∀ j, α (6-18)

when φ ∈ S3
%. Observe that φ ∈ S3

% if and only if φ(t, y)= χ(%3t, y), where χ ∈ C∞ uniformly, and that
the operator %−3 Dt maps S3

% 7→ S3
%. Note that the expansion of the symbols also contains terms with

factors %3 f k, k ≥ 1, which are uniformly bounded in S3
% for t ∈ I by (6-12). Since

∫ t
0 A0

1 dt ∈ S3
% in I ,

we find that 81 ∈ S3
% in I .
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Recursively, the coefficients of the terms in (6-7) that are homogeneous in x of degree α are

%−k
(

Dtφk,α−i
∑
β 6=0

A0,β, j (t)(α j+1−β j )φk+2−2|β|,α+e j−β

+

∑
β 6=0

A1,β(t, y/%)Dyφk+1−2|β|,α−β+
∑
β 6=0

A2,β(t, y/%)D2
yφk+2−2|β|,α−β

−i%3
∑

j

A0,0, j (t)(α j+1)φk−1,α+e j+%
3 A1,0(t, y/%)Dyφk−2,α+%

3 A2,0(t, y/%)D2
yφk−1,α

+

∑
`+|ν|+|µ|≤ j+2

%− j N R j,β,`,ν,µ(t, y/%)cα,β,ν%−2|β|+2|ν|+|µ|+i+3`(%−3 Dt)
`Dµ

y φk−i,α+ν−β

)
(6-19)

modulo I (%−k−1). Here the last sum has `+|ν|+ |µ| = 0 when j = 0, (%−3 Dt)
`Dµ

y maps S3
% 7→ S3

% and
the values of the symbols are given by a finite expansion in powers of f (t).

Since φ j ∈ S3
% we obtain that the terms in (6-19) are in I (%−k−1) if

Dtφk,α − i
∑
β 6=0

A0,β, j (t)(α j + 1−β j )φk+2−2|β|,α+e j−β +

∑
β 6=0

A1,β(t, y/%)Dyφk+1−2|β|,α−β

+

∑
β 6=0

A2,β(t, y/%)D2
yφk+2−2|β|,α−β − i%3

∑
j

A0,0, j (t)(α j + 1)φk−1,α+e j

+ %3 A1,0(t, y/%)Dyφk−2,α + %
3 A2,0(t, y/%)D2

yφk−1,α

=−

∑
i+3`+2|ν|+|µ|= j N+2|β|

`+|ν|+|µ|≤ j+2

R j,β,`,ν,µ(t, y/%)cα,β,ν(%−3 Dt)
`Dµ

y φk−i,α+ν−β . (6-20)

When j = 0 we find that `+ |ν| + |µ| = 0, i = 2|β| and we only have an expansion in β in the last sum.
Now if j > 0, `+ |ν| + |µ| ≤ j + 2 and i + 3`+ 2|ν| + |µ| = j N + 2|β| then we find that

j N ≤ i + 3`+ 2|ν| + |µ|< i + 3( j + 2),

which gives i ≥ j (N − 3)− 6≥ N − 9≥ 1 if N ≥ 10. Thus we find that (6-20) can be written as

Dt8k = Ak
08k +Ak

18k−1+Ak
28k−2+ · · · , (6-21)

where
∫ t

0 Ak
j dt is a uniformly bounded differential operator on S3

% for t ∈ I and j > 0. We have

{Ak
08k} j = S j

k,08k, j + S j
k,18k, j−1,

where S j
k,0(t) is a uniformly bounded matrix depending on t , and S j

k,1(t, y/%, Dy) is a system of uniformly
bounded differential operators of order 2 when |y|. %. By letting 8k, j = Ek, j9k, j with the fundamental
solution Ek, j to Dt Ek, j = S j

k,0 Ek, j , Ek, j (0)= Id, (6-21) becomes a system of recursion equations in j
and k. Thus (6-21) can be solved in I with 8k ∈ S3

% having initial values 8k(0) ≡ 0, k > 0. We find
from (6-8) and the definition of S3

% that φk(t, x, y)= φk(%
3t, %2x, %y), where φk ∈ C∞ uniformly when

t ∈ I. Thus we can solve the transport equation (6-1) up to any negative power of λ. Observe that by
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cutting off in t and x , we may assume that φk ∈ C∞0 has fixed compact support in (x, y) and support
where |t |. %3. It follows that the support of φk can be chosen in an arbitrarily small neighborhood of 0
for large enough λ. Changing to the original coordinates, we obtain the following result.

Proposition 6.3. Assume that the conclusions in Proposition 5.2 hold, and that (3-6) is satisfied near 0
when the sign change of t 7→ f (t, x0, ξ0) is of infinite order. If % = λ1/N for sufficiently large N,
then for any K and M we can solve the transport equations (6-20) for k ≤ K and |α| ≤ M near
{(t, x0(t), y0) : t ∈ [t1, t2]}. By (6-8) this gives

φk(t, x, y)= φk
(
%3(t − t0), %2(x − x0(t)), %(y− y0)

)
, k ≤ K ,

where φk(t, x, y) ∈ C∞ uniformly, has support where |x | + |y|. 1 and |t |. %3, and φ0(0, 0, 0)= 1 for
some t0 ∈ (t1, t2) such that Imw0(t0)= 0.

7. The rate of change of sign

We have showed that t 7→ f (t, x, ξ) changes sign from + to − on an interval I . Then

F(t)=
∫ t

f (s, x0(s), ξ0(s)) ds =
∫ t

f (s) ds (7-1)

has a local maximum in the interval. By choosing that maximum as the starting point, we may assume it
is equal to 0 so that F(t)≤ 0. By changing t-coordinate, we may assume F(0)= 0. We shall study how
the size of the derivative f affects the size of the function F.

Lemma 7.1. Assume that 0≥ F(t) ∈ C∞ has local maximum at t = 0, and let It0 be the closed interval
joining 0 and t0 ∈ R. If

max
It0

|F ′(t)| = |F ′(t0)| = κ ≤ 1

with |t0| ≥ κ% for some % > 0, then we have minIt0
F(t)≤−C%κ1+%. The constant C% > 0 only depends

on % and the bounds on F in C∞.

Proof. Let f = F ′. Then since F(t)= F(0)+
∫ t

0 f (s) ds ≤
∫ t

0 f (s) ds, it is no restriction to assume the
maximum F(0)= 0. By switching t to −t , we may assume t0 ≤−κ% < 0. Let

g(t)= κ−1 f (t0+ tκ%). (7-2)

Then |g(0)| = 1, |g(t)| ≤ 1 for 0≤ t ≤ 1 and

|g(N )(t)| = κ%N−1
| f (N )(t0+ tκ%)| ≤ CN

when N ≥ 1/% for 0≤ t ≤ 1. Using the Taylor expansion at t = 0 for N ≥ 1/%, we find

g(t)= p(t)+ r(t), (7-3)

where p is the Taylor polynomial of order N − 1 of g at 0, and

r(t)= t N
∫ 1

0
g(N )(ts)(1− s)N−1 ds/(N − 1)! (7-4)
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is uniformly bounded in C∞ for 0 ≤ t ≤ 1 and r(0) = 0. Since g also is bounded on the interval, we
find that p(t) is uniformly bounded in 0 ≤ t ≤ 1. Since all norms on the finite-dimensional space of
polynomials of fixed degree are equivalent, we find that p(k)(0) = g(k)(0) are uniformly bounded for
0 ≤ k < N which implies that g(t) is uniformly bounded in C∞ for 0 ≤ t ≤ 1. Since |g(0)| = 1, there
exists a uniformly bounded δ−1

≥ 1 such that |g(t)| ≥ 1
2 when 0≤ t ≤ δ; thus g has the same sign in that

interval. Since g(s)= κ−1 f (t0+ sκ%), we find

δ/2≤
∣∣∣∣∫ δ

0
g(s) ds

∣∣∣∣= ∣∣∣∣κ−% ∫ t0+δκ%

t0
κ−1 f (t) dt

∣∣∣∣. (7-5)

Since t0+ δκ% ≤ 0, we find that the variation of F(t) on [t0, 0] is greater than δκ1+%/2 and since F ≤ 0,
we find that the minimum of F on It0 is smaller than −δκ1+%/2. �

Proof of Lemma 6.1. As before we let F(t) satisfy F(0)= 0 and F ′(t)= f (t), where f (t)= f (t, 0, ξ0(t))
satisfies f (0)= 0. We have assumed that the estimate (3-6) holds near 0 if f (t) vanishes of infinite order
at t = 0. Observe that the term x ′0(t) in A0 can be estimated by |∂w f (t, 0, ξ0(t))| by (4-7), which gives
that |A0(t, 0)|. |∂w f (t, 0, ξ0(t))|. We find from (4-3), (4-6) and (4-7) that

|∂tω(t, 0)|. | f (t)| + |∂w f (t, 0, ξ0(t))|.

Thus (6-11) follows if

| f (t)| +
∣∣∣∣∫ t

0
| f (s)| + A0(s, 0)+ A1(s, 0, y/%)+ A2(s, 0, y/%) ds

∣∣∣∣& %−3, (7-6)

where

A0(t)= |∂w f (t, 0, ξ0(t))|,

A1(t, y/%)= |A(t, 0, y/%, 0, ξ0(t), 0)|, (7-7)

A2(t, y/%)= ‖∂2
η B(t, 0, y/%, 0, ξ0(t), 0)‖. (7-8)

In the following we shall suppress the y-variables in (7-6); the results will be uniform when |y| ≤ c% for
some c> 0 since (3-6) holds near 0. Observe that if | f (s)| and A j (s) are� %−3 for 0≤ j ≤ 2 when s is
between 0 and t , then (7-6) does not hold.

We shall first consider the case when | f (t)| ∼= |t |m vanishes of finite order at t = 0. Then the order
must be odd so we find F(t)=

∫ t
0 f (s) ds ≤ 0 and c≤ |F(t)|/t2k

≤C < 0 for some k > 0. Thus we find

%−3 .

∣∣∣∣∫ t

0
| f (s)| + A0(s)+ A1(s)+ A2(s) ds

∣∣∣∣. |t |. |F(t)|1/2k (7-9)

implies that |F(t)|& %−6k. Since λ= %N , we then obtain λF(t).−%N−6k
≤−%= λ1/N if N > 6k. The

case when |t |2k−1 ∼= | f (t)|& %−3 gives that |t |& %−3/(2k−1) so λF(t).−%N−6k/(2k−1)
≤−% if N > 6.

Now one of these cases must hold if (6-11) holds, so we get the result in the finite vanishing case.
Next, we consider the infinite vanishing case. Then we have assumed that condition (3-6) holds, which

means that
2∑

j=0

A j (t). | f (t)|ε,
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which implies that A j (0)= 0 for all j . Now we assume that (7-6) holds at t ; by switching t and −t , we
may assume t > 0. Then we obtain for some s ∈ [0, t] that | f (s)| ≥ c%−3 or A j (s)≥ c%−3 for some c> 0
and j . Now we define t0 as the smallest t0 > 0 such that | f (t0)| = c%−3 or A j (t0) = c%−3 for some j ;
then t0 ≤ t . Then we obtain from condition (3-6) in the first case that c%−3

= | f (t0)|. | f (t0)|ε and in
the second case that

c%−3
= A j (t0). | f (t0)|ε. (7-10)

Since % = λ1/N , we find in both cases that

λ−3/εN
= κ ≤ c| f (t0)|, c > 0, (7-11)

where λ� 1 if and only if κ � 1. By taking the smallest t0 > 0 such that (7-11) is satisfied, we find that
| f (t)| ≤ | f (t0)| for 0≤ t ≤ t0. Since f (t) vanishes of infinite order at t = 0, we find using Taylor’s formula
that | f (t)| ≤ CM |t |M for any positive integer M. (Actually, it suffices to take M = 1.) Condition (7-11)
then gives

κ1/M . | f (t0)|1/M . |t0|, (7-12)

so using Lemma 7.1 with % = 1/M , we find that

min
0≤s≤t0

F(s).−κ1+1/M
=−λ−3(1+1/M)/εN , λ� 1. (7-13)

Thus we find that min0≤s≤t0 F(s).−λc−1 for some c>0 if 3(1+1/M)/εN<1, that is, N>3(1+1/M)/ε,
which gives Lemma 6.1. �

8. The proof of Theorem 2.7

We shall use the following modification of [Hörmander 1985b, Lemma 26.4.15]. Recall that ‖u‖(k) is the
L2 Sobolev norm of order k of u ∈ C∞0 and let D′0 = {u ∈ D

′
:WF(u)⊂ 0} for 0 ⊆ T ∗Rn.

Lemma 8.1. Let

uλ(x)= λ(n−1)δ/2 exp(iλω(x))
M∑

j=0

φ j (λ
δx)λ− j%, λ≥ 1, (8-1)

with % > 0, 0< δ < 1, ω ∈ C∞(Rn) satisfying Imω ≥ 0, |d Reω| ≥ c > 0, and φ j ∈ C∞0 (R
n). Here ω

and φ j may depend on λ but uniformly, and φ j has fixed compact support in all but one of the variables,
for which the support is bounded by Cλδ. Then for any integer N we have

‖uλ‖(−N ) ≤ Cλ−N , λ≥ 1. (8-2)

If φ0(x0) 6= 0 and Imω(x0)= 0 for some x0 then there exists c > 0 so that

‖uλ‖(−N ) ≥ cλ−N−n/2+(n−1)δ/2, λ≥ 1, ∀ N. (8-3)

Let 6 =
⋂
λ≥1

⋃
j suppφ j (λ

δ
· ) and let 0 be the cone generated by{

(x, ∂ω(x)) : x ∈6, Imω(x)= 0
}
. (8-4)
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Then for any k we find λkuλ→ 0 in D′0, so λk Auλ→ 0 in C∞ if A is a pseudodifferential operator such
that WF(A)∩0 =∅. The estimates are uniform if ω ∈ C∞ uniformly with fixed lower bound on |d Reω|,
and φ j ∈ C∞0 uniformly with the support condition.

In the expansion (8-1), we shall take % = 1/N and δ = 3/N with N > 3, and the cone 0 will be
generated by {(

t, x0(t), y0, 0, ξ0(t), 0
)
: t ∈ I

}
, (8-5)

where I = {t : Imw0(t) = 0}. Observe that the phase function in (4-2) will satisfy the conditions in
Lemma 8.1 near {(t, x0(t), y0) : t ∈ I } since ξ0(t) 6= 0 and Imω(t, x)≥ 0 by Proposition 5.2. Also, we
find from Proposition 6.3 that the functions φk will satisfy the conditions in Lemma 8.1 with δ = 3/N
after making the change of variables (t, x, y) 7→ (t − t0, x − x0(t), y− y0) since φ0(t0, x0(t0), y0) = 1.
Observe that the conclusions of Lemma 8.1 are invariant under uniform changes of coordinates.

Proof of Lemma 8.1. We shall modify the proof of [Hörmander 1985b, Lemma 26.4.15] to this case. We
have

ûλ(ξ)= λ(n−1)δ/2
M∑

j=0

λ− jδ
∫

eiλω(x)−i〈x,ξ〉φ j (λ
δx) dx . (8-6)

Let U be a neighborhood of the projection on the second component of the set in (8-4). When ξ/λ /∈U ,
for λ� 1 we find that ⋃

j

suppφ j (λ
δ
· ) 3 x 7→ (λω(x)−〈x, ξ〉)/(λ+ |ξ |)

is in a compact set of functions with nonnegative imaginary part with a fixed lower bound on the gradient
of the real part. Thus, by integrating by parts we find for any positive integer k that

|ûλ(ξ)| ≤ Ckλ
((n−1)/2+k)δ(λ+ |ξ |)−k, ξ/λ /∈U, λ� 1, (8-7)

which gives any negative power of λ for k large enough, since δ < 1. If V is bounded and 0 /∈ V then
since uλ is uniformly bounded in L2, we find∫

λV
|ûλ(ξ)|2(1+ |ξ |2)−N dξ ≤ CVλ

−2N, (8-8)

which together with (8-7) gives (8-2). If χ ∈ C∞0 then we may apply (8-7) to χuλ; thus we find for any
positive integer k that

|χ̂uλ(ξ)| ≤ Cλ((n−1)/2+k)δ(λ+ |ξ |)−k, ξ ∈W, λ� 1, (8-9)

if W is any closed cone with (suppχ ×W )∩0 =∅. Thus we find that λkuλ→ 0 in D′0 for every k. To
prove (8-3) we may assume that x0 = 0 and take ψ ∈C∞0 . If Imω(0)= 0 and φ0(0) 6= 0 then since δ < 1,
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we obtain

λn−(n−1)δ/2e−iλRew(0)
〈uλ, ψ(λ · )〉 =

∫
eiλ(w(x/λ)−Rew(0))ψ(x)

∑
j

φ j (λ
δ−1x)λ− jδ dx

→

∫
ei〈Re ∂xω(0),x〉ψ(x)φ0(0) dx, λ→∞, (8-10)

which is not equal to zero for some suitable ψ ∈ C∞0 . Since

‖ψ(λ · )‖(N ) ≤ CNλ
N−n/2, (8-11)

we obtain from (8-10) that 0< c ≤ λN+n/2−(n−1)δ/2
‖uλ‖(−N ), which gives (8-3) and the lemma. �

Proof of Theorem 2.7. By conjugating with elliptic Fourier integral operators and multiplying with
pseudodifferential operators, we obtain that P∗ ∈92

cl is of the form given by Proposition 3.2 microlocally
near 0 = {(t, x0, y0, 0, ξ0, 0) : t ∈ I }. Thus we may assume

P∗ = Dt + F(t, x, y, Dt , Dx , Dy)+ R, (8-12)

where R ∈92
cl satisfies WF(R)∩0 =∅.

Now we can construct approximate solutions uλ of the form (3-14) by using the expansion (3-15). By
reducing to minimal bicharacteristics, we may solve first the eikonal equation by using Proposition 5.2 and
then the transport equations (6-20) by using Proposition 6.3 with % = λ1/N for N > 3. Thus after making
the change of coordinates (t, x, y) 7→ (t − t0, x − x0(t), y− y0), we obtain approximate solutions uλ of
the form (8-1) in Lemma 8.1 with %= 1/N and δ = 3/N. For N large enough, we may choose K and M
in Proposition 6.3 so that |(Dt + F)uλ|. λ−k for any k. Now differentiation of (Dt + F)uλ can at most
give a factor λ since δ < 1, and a loss of a factor x − x0(t) gives at most a factor λ1/2. Because of the
bounds on the support of uλ, we may obtain

‖(Dt + F)uλ‖(ν) =O(λ−N−n) (8-13)

for any chosen ν. Since φ0(t0, x0(t0), y0)=1 by Proposition 6.3 and Imw(t0, x0(t0))=0 by Proposition 5.2,
we find by (8-2)–(8-3) that

λ−N−n/2
� λ−N−n/2+(n−1)δ/2 . ‖u‖(−N ) . λ

−N
∀ N, λ� 1. (8-14)

Since uλ has support in a fixed compact set that shrinks towards {(t, x0(t), y0) : t ∈ I } as λ→∞, we
find from Lemma 8.1 that ‖Ru‖(ν) and ‖Au‖(0) are O(λ−N−n) if WF(A) does not intersect 0. Thus
we find from (8-13) and (8-14) that (2-17) does not hold when λ→∞, so P is not solvable at 0 by
Remark 2.10. �
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