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DERIVATION OF AN EFFECTIVE EVOLUTION EQUATION
FOR A STRONGLY COUPLED POLARON

RUPERT L. FRANK AND ZHOU GANG

Fröhlich’s polaron Hamiltonian describes an electron coupled to the quantized phonon field of an ionic
crystal. We show that in the strong coupling limit the dynamics of the polaron are approximated by an
effective nonlinear partial differential equation due to Landau and Pekar, in which the phonon field is
treated as a classical field.

1. Introduction and main result

1A. Setting of the problem. In this paper we are interested in the dynamics of a strongly coupled polaron.
A polaron is a model of an electron in an ionic lattice interacting with its surrounding polarization field.
Fröhlich [1937] proposed a quantum-mechanical Hamiltonian, given in (1-1) below, in order to describe
the dynamics of a polaron. In this model the phonon field is treated as a quantum field. The Fröhlich
Hamiltonian depends on a single parameter ˛ > 0 which describes the strength of the coupling between
the electron and the phonon field. Landau and Pekar [1948] proposed a system of nonlinear PDEs, see
(1-8), (1-9) below, to describe the dynamics of a polaron and used this in their famous computation
of the effective polaron mass (see [Spohn 1987] for an alternative approach). They treat the phonons
as a classical field. The derivation of their equations is phenomenological and they do not comment
on the relation between their equations and the dynamics generated by Fröhlich’s Hamiltonian. Our
purpose in this paper is to establish a connection between the two dynamics and to rigorously derive the
Landau–Pekar equations from the Fröhlich dynamics in the strong coupling limit ˛!1 for a natural
class of initial conditions and on certain time scales.

In order to describe this result in detail, we recall that the Fröhlich Hamiltonian acts in L2.R3/˝F ,
where L2.R3/ corresponds to the electron and F D F.L2.R3//, the bosonic Fock space over L2.R3/,
corresponds to the phonon field. The Hamiltonian is given by

p2C
p
˛

Z
R3
Œe�ik�xakC e

ik�xa�k �
dk

jkj
C

Z
R3
a�kak dk; (1-1)

where p WD �irx and x are momentum and position of the electron and a
k

and a�
k

are annihilation and
creation operators in F satisfying the commutation relations

Œak; a
�
k0 �D ı.k� k

0/; Œak; ak0 �D 0; and Œa�k ; a
�
k0 �D 0: (1-2)
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As mentioned before, the scalar ˛ > 0 describes the strength of the coupling between the electron and the
phonon field and will be large in our study.

To facilitate later discussions we rescale the variables, as in [Frank and Schlein 2014],

x 7! ˛�1x; k 7! ˛k; (1-3)

and find that the Hamiltonian in (1-1) is unitarily equivalent to ˛2 zHF
˛ , where the new Hamiltonian zHF

˛ ,
acting again in L2.R3/˝F, is defined as

zHF
˛ WD p

2
C

Z
R3
Œe�ik�xbkC e

ik�xb�k �
dk

jkj
C

Z
R3
b�kbk dk: (1-4)

The new annihilation and creation operators b
k
WD ˛1=2a˛k and b�

k
WD ˛1=2a�

˛k
satisfy the commutation

relations
Œbk; b

�
k0 �D ˛

�2ı.k� k0/; Œbk; bk0 �D 0; and Œb�k ; b
�
k0 �D 0: (1-5)

We emphasize the ˛-dependence in (1-5).
We will discuss the dynamics generated by zHF

˛ for initial conditions of the product form

 0˝W.˛
2'0/�: (1-6)

Here, � denotes the vacuum in F and W.f / denotes the Weyl operator,

W.f / WD eb
�.f /�b.f /; (1-7)

so that W.˛2'/� is a coherent state. This particular choice of initial conditions is motivated by Pekar’s
approximation [1946; 1951] to the ground state energy, which uses exactly states of this form. Pekar’s
approximation was made mathematically rigorous by Donsker and Varadhan [1983] (see [Lieb and
Thomas 1997] for an alternative approach).

Clearly, the time-evolved state e�i zH
F
˛ t 0˝W.˛

2'0/� with t ¤ 0 will in general no longer have an
exact product structure. However, we will see that for large ˛ (and t of order one, or even larger) it can
be approximated, in a certain sense, by a state of the product form  t ˝W.˛

2't /�, where  t and 't
solve the Landau–Pekar equations

i@t t .x/D

�
��C

Z
R3

�
e�ik�x't .k/C e

ik�x't .k/
� dk
jkj

�
 t .x/; (1-8)

i˛2@t't .k/D 't .k/Cjkj
�1

Z
R3
j t .x/j

2eik�x dx (1-9)

with initial data  0 and '0. Using standard methods one can show that for any  02H1.R3/, '02L2.R3/
and ˛ > 0, the system (1-8), (1-9) has a global solution . t ; 't /, which satisfies

k tkL2.R3/ D k 0kL2.R3/ and E. t ; 't /D E. 0; '0/ for all t 2 R

with the energy

E. ; '/ WD
Z

R3
jr j2 dxC

Z
R3
j .x/j2

Z
R3

�
e�ik�x'.k/Ceik�x N'.k/

� dk
jkj

dxC

Z
R3
j'.k/j2 dk: (1-10)
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We refer to Lemma 2.1 and Proposition 2.2 for more details about the solution . t ; 't /. In the original
work of Landau and Pekar the equations are given in a different, but equivalent form, and we explain this
connection in Section 1D.

1B. Main result. In order to prove our main result we need the following regularity and decay assumptions
on the initial data. We denote by Hm.R3/ the Sobolev space of order m and by

L2.m/.R
3/ WD L2

�
R3; .1C k2/m dk

�
(1-11)

the weighted L2 space with norm

k'kL2
.m/
D

�Z
R3
.1C k2/mj'.k/j2 dk

�1
2

:

Our main result will be valid under the following:

Assumption 1.1. We assume  0 2H4.R3/ and '0 2 L2.3/.R
3/ with k 0kL2.R3/ D 1.

A first version of our main result concerns the approximation of the reduced density matrices of
e�i
zHF
˛ t 0˝W.˛

2'0/� in the trace norm.

Theorem 1.2. Assume  0 and '0 satisfy Assumption 1.1 and let . t ; 't / be the solution of (1-8), (1-9)
with initial condition . 0; '0/. Define


particle
t WD TrF

ˇ̌
e�i
zHF
˛ t 0˝W.˛

2'0/�
˛ ˝
e�i
zHF
˛ t 0˝W.˛

2'0/�
ˇ̌
;

field
t WD TrL2.R3/

ˇ̌
e�i
zHF
˛ t 0˝W.˛

2'0/�
˛ ˝
e�i
zHF
˛ t 0˝W.˛

2'0/�
ˇ̌
:

Then, for all ˛ � 1 and all t 2 Œ�˛; ˛�,

TrL2.R3/
ˇ̌


particle
t � j t ih t j

ˇ̌
� C˛�2.1C t2/;

TrF
ˇ̌
field
t � jW.˛2't /�ihW.˛

2't /�j
ˇ̌
� C˛�2.1C t2/:

Note that particle
t , field

t , j t ih t j and jW.˛2't /�ihW.˛2't /�j all have trace norm equal to one
(in fact, they are nonnegative operators with trace one) and therefore Theorem 1.2 gives a nontrivial
approximation up to times t D o.˛/. Already the approximation up to times of order one is significant
since this is the time scale on which  t changes. It is a bonus that the same approximation is in fact valid
for much longer times.

We emphasize that the Landau–Pekar approximation to the Fröhlich dynamics depends on ˛ (through
(1-9)). As we will explain in Section 1C, without allowing for an ˛-dependence one cannot approximate


particle
t with accuracy ˛�2 for times of order one.

We next present a more precise result which comes at the expense of a more complicated formulation.
We approximate the state e�i zH

F
˛ t 0 ˝ W.˛

2'0/� itself in L2.R3/ ˝ F, and not only its reduced
density matrices. However, it turns out that up to the desired order ˛�2 this is not possible in terms
of simple product states. Instead, we need to include an explicit nonproduct state of order ˛�1 which
takes correlations between the particle and the field into account. The key observation is that this term
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satisfies an almost orthogonality condition, so that it does not contribute to the reduced density matrices
to order ˛�1. For the statement we need the real scalar function ! defined as

!.t/ WD ˛2 Im.'t ; @t't /Ck'tk2L2.R3/: (1-12)

It will follow from Lemma 2.1 below that this function is uniformly bounded in t 2 R.
The following is our main result.

Theorem 1.3. Assume  0 and '0 satisfy Assumption 1.1 and let . t ; 't / be the solution of (1-8), (1-9)
with initial condition . 0; '0/. Then there is a decomposition

e�i
zHF
˛ t 0˝W.˛

2'0/�D e
�i

R t
0 !.s/ ds t ˝W.˛

2't /�CR.t/ (1-13)

and a constant C > 0 such that for all ˛ � 1 and all t 2 Œ�˛; ˛�,h�;W �.˛2't /R.t/iFL2.R3/ � C˛�2jt j.1Cjt j/; (1-14)h t ; W �.˛2't /R.t/iL2.R3/F � C˛�2jt j.1Cjt j/ (1-15)

and
kR.t/kL2.R3/˝F � C˛

�1.1Cjt j/: (1-16)

More precisely, (1-13) holds with R.t/DR1.t/CR2.t/ and with the boundsh�;W �.˛2't /R1.t/iFL2.R3/ � C˛�2t2; (1-17)h t ; W �.˛2't /R1.t/iL2.R3/F � C˛�2t2 (1-18)

and
kR2.t/kL2.R3/˝F � C˛

�2
jt j.1Cjt j/; kR1.t/kL2.R3/˝F � C˛

�1.1Cjt j/: (1-19)

Similarly as before, we note that for t D o.˛/ the term R.t/ is of lower order than the main term
e�i

R t
0 !.s/ ds t ˝W.˛

2't /�, which has constant norm equal to one.
The message of Theorem 1.3 is that, while R.t/ is in general not of order ˛�2 (for times of order

one), it can be split into a piece which is, namely R2.t/, and a piece which satisfies almost orthogonality
conditions, so that it does not contribute to the reduced particle or field density matrices at order ˛�1

either. The term R1.t/ is given explicitly in (2-16) below.
Theorem 1.3 implies Theorem 1.2 by a simple abstract argument, which we explain in Appendix D. In

the following we concentrate on proving Theorem 1.3.
In Section 1C we compare Theorem 1.3 with a similar approximation in [Frank and Schlein 2014] where

't is independent of t . In Lemma 1.4 we show that this simpler approximation does not yield the same
accuracy in terms of powers of ˛�1 as Theorem 1.3. In this sense Theorem 1.3 derives the Landau–Pekar
dynamics from the Fröhlich dynamics and answers an open question in [Frank and Schlein 2014].

While it is necessary to take the time dependence of 't into account, this dependence is still weak
for times of order ˛ as considered in our theorems. The field 't changes by order one only on times of
order ˛2, and it would be desirable to extend Theorems 1.2 and 1.3 to this time scale, at least for a certain
class of initial conditions. This remains an open problem.
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The key point in Theorem 1.3 and novel aspect of this work are the almost orthogonality relations
(1-14) and (1-15). As we will see in Section 1C, they will be crucial for deriving Theorem 1.2. Inequality
(1-16) is not sufficient for this purpose. Let us discuss the motivation behind the almost orthogonality
relations in more detail. We introduce the function

Q t WD e
�i

R t
0 !.s/ ds t (1-20)

and consider the problem of approximating e�i zH
F
˛ t 0˝W.˛

2'0/� by a function of the form Q t ˝
W.˛2't /�. (We do not assume at this point that Q t and 't satisfy an equation.) Since W.˛2't / is
unitary, this is the same as the problem of choosing Q t and 't so as to minimize the norm of the vector

W �.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�� Q t ˝�: (1-21)

Clearly, for given  0, '0 and 't , the optimal choice for Q t is

Q t D
˝
�;W �.˛2't /e

�i zHF
˛ t 0˝W.˛

2'0/�
˛
F : (1-22)

In order to determine 't we only solve the simpler problem of minimizing the norm of the projection of
(1-21) onto the subspace spanf Q tg˝F. This norm could be made zero if we could achieve

�D
˝
Q t ; W

�.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�

˛
L2 : (1-23)

While it may not be possible to have exact equalities in (1-22) and (1-23), we will see that the Landau–
Pekar equations yield almost equalities. In fact, the almost orthogonality relations (1-14) and (1-15) in
our main theorem state exactly that:

Q t �
˝
�;W �.˛2't /e

�i zHF
˛ t 0˝W.˛

2'0/�
˛
F D OL2

�
˛�2jt j.1Cjt j/

�
; (1-24)

��
˝
Q t ; W

�.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�

˛
L2 D OF

�
˛�2jt j.1Cjt j/

�
: (1-25)

1C. Comparison with earlier results. The problem of approximating the Fröhlich dynamics of a polaron
was studied before in [Frank and Schlein 2014]. There a different and simpler effective equation is
proposed in which only the particles move and the phonon field remains constant. In this subsection we
show that Theorem 1.2 is not valid for these effective dynamics from [Frank and Schlein 2014], in the
sense that the reduced phonon density matrix cannot be approximated to within an error ˛�2 for times
of order one. The fact that our Theorem 1.2 achieves an approximation at this accuracy is because the
phonon motion is taken into account in the Landau–Pekar equations. Technically this is reflected in the
orthogonality conditions (1-14) and (1-15).

To be more specific we recall that in [Frank and Schlein 2014] it was shown thate�i zHF
˛ t 0˝W.˛

2'0/�� e
�ik'0k

2
2t�t ˝W.˛

2'0/�

L2˝F � C˛

�1.eC jt j� 1/
1
2; (1-26)

where �t denotes the solution of the linear equation

i@t�t .x/D

�
��C

Z
R3

�
e�ikx'0.k/C e

ik�x'0.k/
� dk
jkj

�
�t .x/
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with initial condition  0. We stress again that in this approximation, '0 does not evolve in time. An
anonymous referee, to whom we are most grateful, has explained to us that the method of [Frank and
Schlein 2014] actually leads to the bounde�i zHF

˛ t 0˝W.˛
2'0/�� e

�ik'0k
2
2t�t ˝W.˛

2'0/�

L2˝F � C.e

C jt j=˛
� 1/

1
2 ; (1-27)

which provides an approximation even up to times of order o.˛/. With his/her kind permission we
reproduce the argument in Appendix E.

As an aside we note that we recover a similar bound as a simple consequence of Theorem 1.3. (In fact,
our new bound is better by a power of ˛�

1
2 for times t � 1.) Namely, (1-16) says thate�i zHF

˛ t 0˝W.˛
2'0/�� e

�i
R t
0 !.s/ ds t ˝W.˛

2't /�

L2˝F � C˛

�1.1Cjt j/: (1-28)

(In [Frank and Schlein 2014] weaker regularity and decay assumptions are imposed on  0 and '0, but
we emphasize that (1-16) is also valid under weaker assumptions than those in Assumption 1.1. In fact,
the latter assumption is needed to bound R2.t/, whereas for (1-16) one can avoid the use of Duhamel’s
principle in Proposition 2.3.)

For the reduced density matrices, inequalities (1-26) and (1-27) give, using (D-1) and possibly changing
the value of C ,

TrL2
ˇ̌


particle
t � j�t ih�t j

ˇ̌
� C min

˚
˛�1.eC jt j� 1/

1
2 ; .eC jt j=˛ � 1/

1
2

	
;

TrL2
ˇ̌
field
t � jW.˛2'0/�ihW.˛

2'0/�j
ˇ̌
� C min

˚
˛�1.eC jt j� 1/

1
2 ; .eC jt j=˛ � 1/

1
2

	
:

These bounds behave like ˛�1 for times of order one.
The next result shows that in this approximation of field

t by a time-independent '0 the order ˛�1 (for
times of order one) cannot be improved in general.

Lemma 1.4. In addition to Assumption 1.1 suppose that '0 6� �� 0 in the notation (2-2). Then there are
" > 0, C > 0 and c > 0 such that for all jt j 2 ŒC˛�1; "� and all ˛ � C=",

TrF
ˇ̌
field
t � jW.˛2'0/�ihW.˛

2'0/�j
ˇ̌
� c˛�1jt j:

This lemma should be contrasted with Theorem 1.2, which says that the time-dependent approximation
jW.˛2't /�ihW.˛

2't /�j is correct to order ˛�2 (for times of order one). This argument shows the
importance of the orthogonality conditions (1-14) and (1-15). Indeed, if we would only use (1-16),
we would arrive at (1-28) and this would again only give an approximation to order ˛�1 (for times of
order one).

Since Theorem 1.2 is a consequence of Theorem 1.3 and since we showed that one cannot replace 't
by '0 in Theorem 1.2, the same applies also to Theorem 1.3.

Let us consider our problem from a wider perspective. We have a composite quantum system H1˝H2
and a Hamiltonian which couples the two subsystems. Each system has an effective “Planck constant” and
the characteristic feature of the problem is that the Planck constant of one system goes to zero, whereas
that of the other system remains fixed. Thus, one of the systems becomes classical, whereas the other one
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remains quantum-mechanical, and Ginibre, Nironi and Velo [Ginibre et al. 2006] used the term “partially
classical limit” in a closely related context. (For us, the “Planck constant” of the phonons is ˛�2, as can
be seen from the commutation relations, whereas that of the electron is of order one.) A prime example
of such a problem is the Born–Oppenheimer approximation, where the inverse square root of the nuclear
mass plays the role of the small Planck constant.

Here, however, we consider the case where H1˝H2 has infinitely many degrees of freedom. As is
well known, our Hamiltonian is the Wick quantization of an energy functional on an infinite-dimensional
phase space and the notion of “Planck constant” has a well-defined meaning through the commutation
relations of the fields. (We emphasize that in our problem we can imagine that we have also a field ‰ for
the electrons, but that we only consider the sector of a single electron.)

Although there is an enormous literature concerning the classical limit, starting with Hepp’s work
[1974], and although we believe that the question of a partially classical limit is a very natural one which
appears in many models, we are only aware of the single work [Ginibre et al. 2006] prior to [Frank and
Schlein 2014] on this question, and it studies fluctuation dynamics. Closer to our focus here are the
works [Falconi 2013; Ammari and Falconi 2014] about the Nelson model with a cut-off where, however,
a classical limit on both systems is taken. On the level of results, one obtains equations similar to the
Landau–Pekar equations (without the factor ˛2 in (1-9)), but the proofs are completely different, as
[Ammari and Falconi 2014] relies on the Wigner measure approach from [Ammari and Nier 2008; 2009].

The polaron model, in contrast to the Nelson model, does not require a cut-off, although this is not
obvious since the operator

R
eik�xbkjkj

�1 dk and its adjoint are not bounded relative to the number
operator. Lieb and Yamazaki [1958] devised a method to deal with this problem in the stationary case,
but it is not clear to us how to apply their argument in a dynamical setting and we consider our solution of
this problem as a technical novelty in this paper. Our methods apply equally well to a partially classical
limit in the cut-off Nelson model and, in fact, the proofs in that case would be considerably shorter.

1D. An equivalent form of the Landau–Pekar equations. Often the Landau–Pekar equations are stated
in the form

i@t t D .��Cjxj
�1
�Pt / t ; (1-29)

˛4@2tPt D�Pt � .2�/
2
j t j

2 (1-30)

for a real-valued polarization field Pt ; see, e.g., [Landau and Pekar 1948; Devreese and Alexandrov
2009]. Let us show that this pair of equations is equivalent to the pair of equations that we discussed so
far. In fact, assume that  t and 't solve (1-8) and (1-9) and define

Pt .x/ WD .2�/
�1 Re

Z
R3
jkj't .k/e

�ik�x dk;

as well as the auxiliary function

Qt .x/ WD .2�/
�1 Im

Z
R3
jkj't .k/e

�ik�x dk:
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If we multiply (1-9) by jkj and integrate with respect to e�ik�x, we obtain

i˛2@t .Pt C iQt /D Pt C iQt C .2�/
2
j t j

2:

Since Pt and Qt are real, this equation is equivalent to the pair of equations

˛2@tPt DQt ; ˛2@tQt D�Pt � .2�/
2
j t j

2:

Here we can eliminate Qt by differentiating the first equation and arrive at (1-30).
Moreover, the inversion formula

't .k/D .2�/
�2
jkj�1

Z
R3
.Pt C iQt /e

ik�x dx

implies Z
R3

�
e�ik�x't .k/C e

ik�x't .k/
� dk
jkj
D jxj�1 �Pt ;

which yields (1-29).

2. Outline of the proof

2A. Well-posedness of the Landau–Pekar equations. We begin by discussing the well-posedness of the
equations for  t and 't in (1-8) and (1-9). We use the following abbreviations for the coupling terms in
these equations,

V'.x/ WD

Z
R3

�
e�ik�x'.k/C eik�x'.k/

� dk
jkj

(2-1)

and

� .k/ WD jkj
�1

Z
R3
j .x/j2eik�x dx: (2-2)

The following lemma, which is proved in Appendix C, states global well-posedness in the energy space
H1.R3/�L2.R3/.

Lemma 2.1. For any . 0; '0/ 2 H1.R3/�L2.R3/ there is a unique global solution . t ; 't / of (1-8),
(1-9). One has the conservation laws

k tkL2 D k 0kL2 and E. t ; 't /D E. 0; '0/ for all t 2 R:

Moreover, for all ˛ > 0 and all t 2 R,

k tkH1 . 1; k'tkL2 . 1 (2-3)

and

k@t'tkL2 . ˛�2; k't �'skL2 . ˛�2jt � sj; k� tkL2 . 1: (2-4)

In the proof of our main result we need to go beyond the energy space H1.R3/�L2.R3/. The following
proposition states that if the initial conditions have more regularity and decay then, at least for a certain
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(long) time interval, we have bounds on the solution in the corresponding spaces. We will also need some
bounds on the auxiliary functions gs;t W R3! C defined by

gs;t .x/ WD

Z
R3
Œ't .k/�'s.k/�e

ik�x dk

jkj
(2-5)

and gs W R3! C defined by

gs.x/ WD �@sgs;t .x/D

Z
R3
eik�x@s's.k/

dk

jkj
: (2-6)

The following proposition will also be proved in Appendix C.

Proposition 2.2. Let � > 0. If . 0; '0/ satisfies Assumption 1.1, then for all ˛ > 0 and for all t; s 2
Œ��˛2; �˛2� we have

k tkH4 .� 1; k'tkL2
.3/
.� 1: (2-7)

Moreover,
k@t tkH2 .� 1; k@t� tkL2 .� 1 (2-8)

and
kgs;tk1 .� ˛�2jt � sj; kgsk1 . ˛�2: (2-9)

2B. Decomposition of the solution. We now decompose the solution e�i
zHF
˛ t 0 ˝ W.˛2'0/� as

claimed in Theorem 1.3. In order to state this, we need to introduce some notations.
It will be convenient to work with the function Q t from (1-20). Clearly, the bounds from Lemma 2.1

and Proposition 2.2 hold for Q t as well. (For the bounds on @t Q t we use the fact that j!.t/j . 1 by
Lemma 2.1.) Moreover, we note that Q t and 't satisfy the modified equations

i@t Q t .x/D

�
��C

Z
R3

�
e�ik�x't .k/C e

ik�x
N't .k/

� dk
jkj
C!.t/

�
Q t .x/; (2-10)

i˛2@t't .k/D 't .k/Cjkj
�1

Z
R3
j Q t .x/j

2eik�x dx: (2-11)

Next, we define for  2 L2.R3/ with k k D 1 the orthogonal projections in L2.R3/,

P WD j ih j; P? WD 1�P D 1� j ih j:

The effective Schrödinger operator H' in L2.R3/ is defined by

H' WD ��CV' C

Z
R3
j'.k/j2 dk (2-12)

with V' from (2-1). Moreover, let us introduce the operator

zH' WDW
�.˛2'/ zHF

˛ W.˛
2'/ (2-13)

in L2.R3/˝F. Using the commutation relations (see Lemma A.1) we find that

zH' DH' C

Z
R3
Œeik�xb�k C e

�ik�xbk�
dk

jkj
C

Z
R3
Œ'.k/b�k C N'.k/bk� dkC

Z
R3
b�kbk dk: (2-14)
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Finally, we introduce the vector

Ft;s WD P
?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

(2-15)

and define

D0 WD

Z t

0

eiH't sFt;s ds

and

D1 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/eik�xb�ke

�iH't s1Ft;s
� dk
jkj

ds1 ds;

D2 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/e�ik�xbke

�iH't s1Ft;s
� dk
jkj

ds1 ds;

D3 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/'t .k/b

�
ke
�iH't s1Ft;s

�
dk ds1 ds;

D4 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/'t .k/bke

�iH't s1Ft;s
�
dk ds1 ds;

D5 WD

Z t

0

Z t�s

0

Z
R3

�
ei
zH't .sCs1/b�kbke

�iH't s1Ft;s
�
dk ds1 ds:

While these definitions might seem formal, we will show in Theorem 2.5 that each ofD0; : : : ;D5 belongs
to L2.R3/˝F.

With these notations, the promised representation formula for the solution looks as follows.

Proposition 2.3. Assume that . Q t ; 't / satisfy (2-10), (2-11) with initial conditions . 0; '0/ where
k 0k

2 D 1. Then for any t 2 R one has the decomposition

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�CR1.t/CR2.t/

with
R1.t/ WD �iW.˛

2't /e
�iH't tD0

and
R2.t/ WD �W.˛

2't /e
�i zH't t .D1CD2CD3CD4CD5/:

Clearly, in terms of the original function  t , the term R1 is explicitly given by

R1.t/D

�iW.˛2't /

Z t

0

�
e�iH't .t�s/�i

R s
0 !.s1/ds1P? s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k s˝�

� dk
jkj

�
ds: (2-16)

The proof of Proposition 2.3 makes use of equations (2-10), (2-11) for . Q t ; 't / as well as the Duhamel
formula. We single out the use of the equations in the following lemma.

Lemma 2.4. Assume that . Q t ; 't / satisfy (2-10), (2-11) with initial conditions . 0; '0/ where k 0k2D 1.
Then for any t 2 R one has

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�� i

Z t

0

e�i
zHF
˛ .t�s/W.˛2't /Ft;s ds: (2-17)
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Proof of Lemma 2.4. Applying the operator ei zH
F
˛ t to both sides of (2-17) we see that we need to prove

 0˝W.˛
2'0/�D e

i zHF
˛ t Q t ˝W.˛

2't /�� i

Z t

0

ei
zHF
˛ sW.˛2't /Ft;s ds:

This is clearly true at t D 0 and therefore we only need to show that the time derivatives of both sides
coincide for all t ; that is, in view of definition (2-15) of Ft;s ,

0D ei
zHF
˛ t

�
i zHF

˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

� iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj

�
:

This is, of course, the same as

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj
; (2-18)

which is what we are going to show now.
We begin by rewriting the first term on the left side. Using (2-13) and (2-14) we obtain

i zHF
˛
Q t ˝W.˛

2't /�D iH't
Q t ˝W.˛

2't /�C Q tW.˛
2't /

�
ib�.'t /C i

Z
R3
eik�xb�k

dk

jkj

�
�:

In order to rewrite the third term on the left side of (2-18) we use the formula for @tW.˛2't / from (A-4)
below and find

Q t ˝ @tW.˛
2't /�D i˛

2.Im.'t ; @t't // Q t ˝W.˛2't /�C˛2 Q t ˝W.˛2't /b�.@t't /�:

Thus, recalling the definition of ! in (1-12), we have shown that

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D
�
@t C i.��CV't C!.t//

�
Q t ˝W.˛

2't /� (2-19)

CW.˛2't /

�
˛2b�.@t't /C ib

�.'t /C i

Z
R3
eik�xb�k

dk

jkj

�
. Q t ˝�/: (2-20)

At this point in the proof we use the equations for Q t and 't . It follows from (2-10) that line (2-19)
vanishes identically. For line (2-20) we use (2-11) to obtain

i zHF
˛
Q t ˝W.˛

2't /�C @t Q t ˝W.˛
2't /�C Q t ˝ @tW.˛

2't /�

D iW.˛2't /

�Z
R3

�
�

Z
R3
j Q t .y/j

2eik�y dyC eik�x
�
b�k
dk

jkj

�
. Q t ˝�/

D iW.˛2't /P
?
Q t

Z
R3
.eik�xb�k

Q t ˝�/
dk

jkj
: (2-21)
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Here we used the fact that k Q tk D k 0k D 1 by assumption and Lemma 2.1, and therefore

P?
Q t
D 1� j Q t ih Q t j:

Equation (2-21) proves (2-18) and completes the proof. �

Having proved Lemma 2.4 we turn to the proof of Proposition 2.3.

Proof of Proposition 2.3. It follows from Lemma 2.4 and (2-13) that

e�i
zHF
˛ t 0˝W.˛

2'0/�D Q t ˝W.˛
2't /�� iW.˛

2't /

Z t

0

e�i
zH't .t�s/Ft;s ds:

In the time integral on the right side we use Duhamel’s principle and (2-14),

e�i
zH't .t�s/D e�iH't .t�s/�i

Z t�s

0

e�i
zH't .t�s�s1/

�Z
R3
Œeik�xb�kCe

�ik�xbk�
dk

jkj
C

Z
R3
b�kbk dk

C

Z
R3
Œ't .k/b

�
kC N't .k/bk�dk

�
e�iH't s1 ds1:

Proposition 2.3 now follows easily from the definition of D0; : : : ;D5. �

2C. Reduction of the proof of the main result. In the remainder of this paper we will prove the following.

Theorem 2.5. Assume that  0 and '0 satisfy Assumption 1.1, let . Q t ; 't / be the solution of (2-10), (2-11)
with initial condition . 0; '0/ and let D0; : : : ;D5 be as in Proposition 2.3. Then there is a constant
C > 0 such that for all ˛ � 1 and t 2 Œ0; ˛2�,

kD0kL2˝F � C˛
�1.1C t /; (2-22)

kD1kL2˝F � C˛
�2t .1C t /; (2-23)

kD2kL2˝F � ˛
�2t .1C t /.1C˛�1t /; (2-24)

kD3kL2˝F � C˛
�2t .1C t /.1C˛�1t /; (2-25)

kD4kL2˝F � C˛
�2t2.1C˛�1t /; (2-26)

kD5kL2˝F � C˛
�3t .1C t /.1C˛�2t2/; (2-27)h�; e�iH't tD0iFL2.R3/ � C˛�2t2; (2-28)h Q t ; e�iH't tD0iL2.R3/F � C˛�2t2.1C˛�2t2/: (2-29)

This theorem (and its analogue for t 2 Œ�˛2; 0�), together with the decomposition from Proposition 2.3
and the fact that the operators W.˛2't /, e�iH't t and e�i zH't t are unitary, implies Theorem 1.3. In fact,
(2-22) implies the second bound in (1-19), (2-23)–(2-27) imply the first bound in (1-19), (2-28) implies
(1-17) and (2-29) implies (1-18).

We emphasize that Theorem 2.5 is valid up to times ˛2. (In fact, since the proof only relies on
Proposition 2.2, it is valid up to times �˛2 for an arbitrary � > 0 with C depending on � .) Consequently,
the bounds in Theorem 1.3 are also valid up to times ˛2. However, since the evolved state and the main
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term in the approximation both have norm one, the bounds are only meaningful for times up to "˛ for
some small " > 0.

The basic intuition behind the bounds on Dk , k D 0; : : : ; 5, is that each annihilation or creation
operator is of order ˛�1 and therefore D0, which contains only one creation operator, is of order ˛�1,
D1;D2;D3;D4, which contain two creation or annihilation operators, are of order ˛�2 and D5, which
contains three creation or annihilation operators, is of order ˛�3. We illustrate this intuition in more detail
in Section 2E with the simplest possible terms.

While this basic principle is true, it is oversimplifying the situation considerably as it does not take the
slow-decaying terms jkj�1 into account. The operator

R
eik�xb�

k
jkj�1 dk and its adjoint are not bounded

relative to the number operator
R
b�
k
b
k
dx. In fact, the treatment of these operators is the major difficulty

that we have to overcome here.
At this point we have reduced the proof of Theorem 1.3 to the proof of Theorem 2.5, and the remainder

of the paper is concerned with this. We bound D0 in Section 3, D1 in Section 4 and D2 in Section 5.
The terms D3, D4 and D5, which are easier to bound than D1 and D2, are briefly discussed in Section 6.
Finally, the bounds (2-28) and (2-29) will be proved in Subsections 7A and 7B, respectively.

2D. A further decomposition. Using the fact that P?
Q t
D 1�j Q t ih Q t j (see the proof of Lemma 2.4), we

have the decomposition

Ft;s D F
.1/
t;s �F

.2/
t;s ;

where

F
.1/
t;s WD

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

and, with the notation � from (2-2),

F
.2/
t;s WD

Q s˝W
�.˛2't /W.˛

2's/b
�.� Q s /�:

Correspondingly, we define

Di DDi1�Di2 for i D 0; 1; 2; 3; 4; 5:

In general, the termsDi2 are easier to deal with than the termsDi1. The reason for this is that eik�xjkj�1 62
L2.R3/, whereas � Q t 2 L

2.R3/ by Lemma 2.1, so the operator
R
eik�xb�

k
jkj�1 dk in F .1/t;s is harder to

control than the operator b�.� Q s / in F .2/t;s .
For k D 1; : : : ; 5, both operators Di1 and Di2 involve an operator b�

k
, b
k

or b�
k
b
k

to the left of F .1/t;s
or F .2/t;s , which in turn involves an operator W �.˛2't /W.˛2's/. We now have the decomposition

Dij DDij1CDij2 for i D 1; 2; 3; 4; 5 and j D 1; 2;

whereDij1 denotes the expression with b
k
, b�
k

or b�
k
b
k

commuted through the operatorW �.˛2't /W.˛2's/
and Dij2 denotes the expression coming from the commutator. To be explicit, we display some exemplary
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cases,

D111D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1eik

0�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1ds; (2-30)

D121D

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1W �.˛2't /W.˛

2's/b
�
kb
�.� Q s /

Q s˝�
dk

jkj
ds1ds; (2-31)

D211D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1eik

0�x

�W �.˛2't /W.˛
2's/bkb

�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1ds; (2-32)

D221D

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/eik�xe�iH't s1W �.˛2't /W.˛

2's/bkb
�.� Q s /

Q s˝�
dk

jkj
ds1ds: (2-33)

The commutator terms can be computed with the help of Corollary A.2. Recalling the definition of the
function gs;t in (2-5), we have, for instance,

D112 D�

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1eik�xb�k
Q s˝�

dk

jkj
ds1 ds; (2-34)

D122 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1b�.� Q s /
Q s˝�ds1 ds; (2-35)

D212 D�

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1eik�xb�k
Q s˝�

dk

jkj
ds1 ds; (2-36)

D222 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/gs;tW

�.˛2't /W.˛
2's/e

�iH't s1b�.� Q s /
Q s˝�ds1 ds: (2-37)

2E. Some warm-up bounds. In order to prepare for the rather technical sections that follow, we will
first focus on the terms that do not include a term of the form jkj�1, that is, on the terms D02, D32, D42
and D52. We hope that this explains the underlying mechanism of our proof and the intuition that each
annihilation or creation operator is of size ˛�1.

Bound on D02. We recall that

D02 D

Z t

0

.eiH't s Q s/˝
�
W �.˛2't /W.˛

2's/b
�.� Q s /�

�
ds

and, therefore, by Lemma 2.1,

kD02kL2˝F �

Z t

0

k Q sk2kb
�.� Q s /�kF ds D ˛

�1

Z t

0

k� Q sk2 ds . ˛
�1t: (2-38)

Bound on D32. We have

D321 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b
�.'t /b

�.� Q s /�
�
ds1 ds
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and, according to Corollary A.2,

D322 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
.'t �'s; 't /W

�.˛2't /W.˛
2's/b

�.� Q s /�
�
ds1 ds:

By the bounds from Lemma 2.1 we haveb�.'t /b�.� Q s /�F D ˛�2�k'tk22k� Q sk22Cj.'t ; � Q s /j2� 12 . ˛�2;
and therefore, using also the conservation of the L2-norm of Q s ,

kD321kL2˝F . ˛�2t2:

On the other hand, the bounds from Lemma 2.1 imply

kb�.� Q s /�kF D ˛
�1
k� Q sk2 . ˛

�1; j.'t �'s; 't /j. ˛�2jt � sj;

and therefore, using again the conservation of the L2-norm of Q s ,

kD322kL2˝F . ˛�3t3:

Thus, we have shown that

kD32kL2˝F . ˛�2t2.1C˛�1t /: (2-39)

Bound on D42. We have

D421 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b.'t /b
�.� Q s /�

�
ds1 ds

and, according to Corollary A.2,

D422 D�

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
.'t ; 't �'s/W

�.˛2't /W.˛
2's/b

�.� Q s /�
�
ds1 ds:

We commute once again and obtain

D421 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
˛�2.'t ; � Q s /W

�.˛2't /W.˛
2's/�

�
ds1 ds:

According to Lemma 2.1 we have j.'t ; � Q s /j. 1. This and computations similar to those in the bound of
D32 yield

kD421kL2˝F . ˛�2t2; kD422kL2˝F . ˛�3t3:

Thus, we have shown that

kD42kL2˝F . ˛�2t2.1C˛�1t /: (2-40)
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Bound on D52. To simplify the notation, let us introduce

N WD
Z

R3
b�kbk dk: (2-41)

We have

D521 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/N b�.� Q s /�
�
ds1 ds:

Moreover, by Corollary A.2,�
N ;W �.˛2't /W.˛2's/

�
D�W �.˛2't /W.˛

2's/.b.'t /�b.'s//

�W �.˛2't /W.˛
2's/.b

�.'t /�b
�.'s//CW

�.˛2't /W.˛
2's/k't�'2k

2
2;

so

D522 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/

˝

�
W �.˛2't /W.˛

2's/
�
�b.'t �'s/� b

�.'t �'s/Ck't �'2k
2
2

�
b�.� Q s /�

�
ds1 ds:

We use N b�.� Q s /D b
�.� Q s /N C˛

�2b�.� Q s / and obtain

D521 D ˛
�2

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/b
�.� Q s /�

�
ds1 ds:

Therefore, much as before,

kD521kL2˝F . ˛�3t2:

For D522 we commute again to get

D522 D

Z t

0

Z t�s

0

ei
zH't .sCs1/.e�iH't s1 Q s/˝

�
W �.˛2't /W.˛

2's/

�
�
�˛�2.'t �'s; � Q s /�� b

�.'t �'s/b
�.� Q s /�Ck't �'2k

2
2 b
�.� Q s /�

��
ds1 ds:

For the second term on the right side we computeb�.'t �'s/b�.� Q s /�F D ˛�2�k't �'sk22k� Q sk22Cj.'t �'s; � Q s /j2� 12:
Using the bounds from Lemma 2.1 for k't �'sk2 we obtain that

kD522kL2˝F . ˛�4t3.1C˛�1t /:

Thus, we have shown that

kD52kL2˝F . ˛�3t2.1C˛�2t2/: (2-42)

3. Bound on D0

We have already controlled D02 in (2-38), so it remains to consider D01.
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Bound on D01. We recall that

D01 D

Z t

0

eiH't s
Z

R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds:

The main difficulty here, which we will encounter in various forms throughout this paper, is the unbound-
edness of the operator

R
eik�xb�

k
jkj�1 dk (for any fixed x 2 R3), since eik�xjkj�1 62 L2.R3/.

To overcome this difficulty we make use of the oscillatory behavior of eik�x via the formula

eik�x D
1� ik � rx

1Cjkj2
eik�x (3-1)

and aim at integrating by parts with respect to x. However, this integration by parts creates a new difficulty:
the resulting operator rx is unbounded and has to be controlled.

To overcome this new difficulty, it will be desirable to have an operator .��C 1/�1 somewhere in the
expression of D01 so that we can use it to control rx , since obviously rx.��C 1/�1 is bounded. It is
equivalent and technically more convenient to work with .H'tCM/�1, where M > 0 is a large constant
(independent of ˛ and t), instead of .��C 1/�1. In order to create this term we first integrate by parts
in s and make use of the identity

eiH't s D�i.H'tCM/�1e�iMs@sŒe
i.H'tCM/s�: (3-2)

We obtain, using the fact that H't commutes with W.˛2's/,

D01 D � ie
iH't t .H'tCM/�1

Z
R3
eik�xb�k

Q t ˝�
dk

jkj

C iW �.˛2't /W.˛
2'0/.H'tCM/�1

Z
R3
eik�xb�k

Q 0˝�
dk

jkj

CM

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�k

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�k@s

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /.@sW.˛
2's//.H'tCM/�1

Z
R3
eik�xb�k

Q s˝�
dk

jkj
ds

DD011CD012CD013CD014CD015;

where the terms D01k are defined in a natural way. We will prove the following lemma.

Lemma 3.1. For u 2H1.R3/ and f 2 L2.R3/,.��C 1/� 12 Z
R3
eik�xb�ku˝�

dk

jkj


L2˝F

. ˛�1kukH1

and .��C 1/� 12 Z
R3
eik�xb�.f /b�ku˝�

dk

jkj


L2˝F

. ˛�2kukH1kf k2:
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We defer the proof of this lemma to the end of this section and first show how to use it to control D01.
By Corollary B.2 and Lemma 2.1, we can choose M large enough so that .H'tCM/�

1
2 .��C 1/

1
2 is

bounded uniformly in t 2 R. Moreover, by Proposition 2.2, Q t and @t Q t belong to H 1.R3/ and have
uniformly bounded norms for t 2 Œ0; ˛2�; see also the remark at the beginning of Section 2B concerning the
bounds on @t Q t . These facts, together with the unitarity of eiH't s, W �.˛2't / and W.˛2's/, imply that

kD011kL2˝F . ˛�1; kD012kL2˝F . ˛�1

and
kD013kL2˝F . ˛�1t; kD014kL2˝F . ˛�1t:

In order to deal with the term D015 we make use of (A-4) and find

D015 D�

Z t

0

.Im.'s; ˛2@s's//eiH't sW �.˛2't /W.˛2's/.H'tCM/�1
Z

R3
eik�xb�k

Q s˝�
dk

jkj
ds

C i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb�.˛2@s's/b

�
k
Q s˝�

dk

jkj
ds

� i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1

Z
R3
eik�xb.˛2@s's/b

�
k
Q s˝�

dk

jkj
ds

DD0151CD0152CD0153:

From Lemma 2.1 we know that j.'s; ˛2@s's/j . 1 and k˛2@s'sk . 1. Thus, the first and the second
bounds in Lemma 3.1 imply, respectively,

kD0151kL2˝F . ˛�1t; kD0152kL2˝F . ˛�2t:

For D0153 we use the commutation relations to rewrite it as

D0153 D�i

Z t

0

eiH't sW �.˛2't /W.˛
2's/.H'tCM/�1gs Q s˝�ds

with gs from (2-6). Therefore, Proposition 2.2 yields

kD0153kL2˝F . ˛�2t:

To summarize, we have shown that

kD01kL2˝F . ˛�1.1C t /: (3-3)

Proof of Lemma 3.1. For any  2 L2.R3/˝F and .ˆk/k2R3 � F , we use (3-1) to find�
;.��C1/�

1
2

Z
R3
eik�xu˝ˆk

dk

jkj

�
L2˝F

D

�
r.��C1/�

1
2 ;

Z
R3

ikeik�x

jkj.1Cjkj2/
u˝ˆk dk

�
L2˝F

C

�
.��C1/�

1
2 ;

Z
R3

ikeik�x

jkj.1Cjkj2/
.ru/˝ˆk dk

�
L2˝F

C

�
.��C1/�

1
2 ;

Z
R3

eik�x

jkj.1Cjkj2/
u˝ˆk dk

�
L2˝F

:
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Clearly,

kr.��C 1/�
1
2 kL2˝F � kkL2˝F and k.��C 1/�

1
2 kL2˝F � kkL2˝F ;

so.��C 1/� 12 Z
R3
eik�xu˝ˆk

dk

jkj


L2˝F

. kukH1 sup
x2Rd

�Z
R3

ikeik�x

jkj.1Cjkj2/
ˆk dk


F
C

Z
R3

eik�x

jkj.1Cjkj2/
ˆk dk


F

�
:

If ˆk D b�k�, we use the fact that

1

jkj.1Cjkj2/
;

k

jkj.1Cjkj2/
2 L2.R3/

to conclude that, uniformly in x 2 R3,Z
R3

ikeik�x

jkj.1Cjkj2/
b�k�dk


F
. ˛�1;

 Z
R3

eik�x

jkj.1Cjkj2/
b�k�dk


F
. ˛�1:

This proves the first bound in the lemma. If ˆk D b�.f /b�k�, one can similarly show thatZ
R3

ikeik�x

jkj.1Cjkj2/
b�.f /b�k�dk


F
.
kf k2

˛2
;

Z
R3

eik�x

jkj.1Cjkj2/
b�.f /b�k�dk


F
.
kf k2

˛2
:

This proves the second bound in the lemma. �

4. Bound on D1

Bound on D111. We recall equation (2-30) for D111. In this equation, we commute eik�x with e�iH't s.
Thus, if we introduce the operator

H'.k/ WD e
ik�xH'e

�ik�x
D .irxC k/

2
CV' C

Z
R3
j'.k/j2 dk; (4-1)

we obtain

D111 D

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/e�iH't .k/s1ei.kCk

0/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds:

Controlling D111 is harder than controlling D01 because there are two slowly decaying terms jkj�1 and
jk0j�1. The beginning of the proof, however, is similar; namely, for a large constant M >0 to be specified,
independent of t and ˛, we integrate by parts in s using

ei
zH't s D�i. zH'tCM/�1e�iMsŒ@se

i. zH'tCM/s�:
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In this way we obtain

D111 D � i

Z t

0

Z
R3

Z
R3
ei
zH't t . zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2't�s1/b

�
kb
�
k0
Q t�s1˝�

dk0

jk0j

dk

jkj
ds1

C i

Z t

0

Z
R3

Z
R3
ei
zH't s1. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2'0/b

�
kb
�
k0
Q 0˝�

dk0

jk0j

dk

jkj
ds1

CM

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds

C i

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /W.˛
2's/b

�
kb
�
k0 Œ@s

Q s�˝�
dk0

jk0j

dk

jkj
ds1 ds

C i

Z t

0

Z t�s

0

Z
R3

Z
R3
ei
zH't .sCs1/. zH'tCM/�1e�iH't .k/s1ei.k

0Ck/�x

�W �.˛2't /Œ@sW.˛
2's/�b

�
kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
ds1 ds:

We now use (2-13), which implies

. zH'tCM/�1W �.˛2't /W.˛
2's/DW

�.˛2't /. zH
F
˛ CM/�1W.˛2's/

DW �.˛2't /W.˛
2's/. zH'sCM/�1;

in order to commute . zH'tCM/�1 to the right throughW �.˛2't /W.˛2's/. Moreover, we use Lemma A.3
to compute @sW.˛2's/. In this way we obtain

D111 D � i

Z t

0

ei
zH't tW �.˛2't /W.˛

2's/Q1 ds

C i

Z t

0

ei
zH't s1W �.˛2't /W.˛

2'0/Q2 ds1

CM

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q3 ds1 ds

C i

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q4 ds1 ds

C i

Z t

0

Z t�s

0

ei
zH't .sCs1/W �.˛2't /W.˛

2's/Q5 ds1 ds

with

Q1 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q2 WD . zH'0 CM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0
Q 0˝�

dk0

jk0j

dk

jkj
;
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Q3 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q4 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�xb�kb
�
k0 Œ@s

Q s�˝�
dk0

jk0j

dk

jkj
;

Q5 WD . zH'sCM/�1
Z

R3

Z
R3
e�iH't .k/s1ei.k

0Ck/�x
�
b�.˛2@s's/� b.˛

2@s's/

C i Im.'s; ˛2@s's/
�
b�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

(Here, we suppress the dependence on t , s and s1 in the notation of the Qj .)
In the remainder of this section we shall show that, uniformly for 0� s; s1 � t � ˛2,

kQj kL2˝F . ˛�2 if j D 1; 2; 3; 4; 5: (4-2)

This will imply that
kD111kL2˝F . ˛�2t .1C t /: (4-3)

Since the operator . zH'sCM/�1.��CN CM/ is not bounded, bounding the Qj is rather involved.
(Here N was introduced in (2-41).) With the notation

Z' WD V' C

Z
R3
j'.x/j2 dkC

Z
R3
.e�ik�xbkC e

ik�xb�k /
dk

jkj
C b.'/C b�.'/;

we abbreviate (2-14) as
zH' D��CN CZ' :

Defining
zZ' WD .��CN CM/�

1
2Z'.��CN CM/�

1
2 ;

we have

. zH'CM/�1D .��CNCM/�
1
2 .1C zZ'/

�1.��CNCM/�
1
2

D .��CNCM/�1�.��CNCM/�
1
2 .1C zZ'/

�1.��CNCM/�
1
2Z'.��CNCM/�1:

It is not difficult to see that for every " > 0 and A > 0 there is an M such that

k zZ'kL2˝F 7!L2˝F � " (4-4)

for all ' with k'kL2 � A; for details of this argument we refer to [Frank and Schlein 2014]. Thus, using
the bound on k'skL2 from Lemma 2.1, we can choose M in such a way that

k zZ'skL2˝F 7!L2˝F �
1
2

for all s > 0:

Therefore, the operator 1C zZ's in the above formula for .H'sCM/�1 is invertible. We use this formula
to decompose

Q1D

�
1�.��CNCM/�

1
2 .1C zZ's /

�1.��CNCM/�
1
2

�
V'sC

Z
R3
j's.x/j

2dkCb.'s/Cb
�.'s/

��
Q10

�.��CNCM/�
1
2 .1C zZ's /

�1.Q11CQ12/ (4-5)
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with

Q10 WD .��CN CM/�1
Z

R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q11 WD .��CN CM/�
1
2

�Z
R3
e�ik

00�xbk00
dk00

jk00j

�
.��CN CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
;

Q12 WD .��CN CM/�
1
2

�Z
R3
eik
00�xb�k00

dk00

jk00j

�
.��CN CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

Using (4-4), the fact that .��CN CM/�
1
2 .b.'s/C b

�.'s// is bounded uniformly in s, as well as the
estimates kV'sk1 . 1 (from (C-1) and Proposition 2.2) and k'sk2 . 1 (from Lemma 2.1), we conclude
from (4-5) that

kQ1kL2˝F . kQ10kL2˝F CkQ11kL2˝F CkQ12kL2˝F :

We now bound the three terms on the right side separately.

Bound on Q10. To control Q10 we prove an analogue of Lemma 3.1 for the case of two singularities.

Lemma 4.1. For u 2H2.R3/, f 2 L2.R3/ and s 2 R,.��C 1/�1Z
R3

Z
R3
e�iH't .k/sei.kCk

0/�xb�kb
�
k0u˝�

dk0 dk

jk0jjkj


L2˝F

. ˛�2kukH2 :

Before proving this lemma we show how to use it to bound Q10. Note that, since Q10 involves only
b�
k
b�
k0
�, the operator .��CN CM/�1 in its definition can be replaced by .��C 2˛�2CM/�1. This

observation, together with Lemma 4.1 and the uniform boundedness of Q s in H2 for s 2 Œ0; ˛2� (see
Proposition 2.2), proves that

kQ10kL2˝F . ˛�2: (4-6)

Proof of Lemma 4.1. We shall show that for any  2 L2.R3/˝F ,ˇ̌̌̌�
; .��C 1/�1

Z
R3

Z
R3
e�iH't .k/sei.kCk

0/�xb�kb
�
k0u˝�

dk0 dk

jk0jjkj

�ˇ̌̌̌
. ˛�2kkL2˝FkukH2 :

We integrate by parts twice in x and use (3-1) with k replaced by kC k0. A typical term that is obtained
in this way in the inner product on the left side is�

eiH't .k/s@xi@xj .��C 1/
�1;

Z
R3

Z
R3
ei.kCk

0/�xb�kb
�
k0u˝�

.ki C k
0
i /.kj C k

0
j / dk

0 dk

jkjjk0j .1CjkC k0j2/2

�
:

Since @xi@xj .��C 1/
�1 is bounded and eiH't .k/s is unitary, the vector on the left side of the inner

product is bounded in norm by kkL2˝F . We now show that the vector on the right side of the inner
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product is bounded as well. We computeZ
R3

Z
R3
ei.kCk

0/�xb�kb
�
k0u˝�

.ki C k
0
i /.kj C k

0
j /

jkjjk0j .1CjkC k0j2/2
dk0 dk

2
L2˝F

D 2˛�4kuk22

Z
R3

Z
R3

.ki C k
0
i /
2.kj C k

0
j /
2

jkj2jk0j2.1CjkC k0j2/4
dk0 dk:

The desired bound now follows from the fact that the double integral on the right side is finite. Other
terms that arise in the integration by parts are controlled similarly and we omit the details. �

Bound on Q11. By considering the number of involved field particles, we can replace N in the definition
of Q11 by numbers and obtain

Q11 D .��C˛
�2
CM/�

1
2

�Z
R3
e�ik

00�xbk00
dk00

jk00j

�
.��C 2˛�2CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�kb
�
k0
Q s˝�

dk0

jk0j

dk

jkj
:

Next, by commuting bk00 to the right,

Q11 D ˛
�2.��C˛�2CM/�

1
2

Z
R3

�
.ir � k0/2C 2˛�2CM

��1
�

Z
R3
e�ik

0�xe�iH't .k/.t�s/ei.k
0Ck/�xb�k

Q s˝�
dk0

jk0j2
dk

jkj

C˛�2.��C˛�2CM/�
1
2

Z
R3

�
.ir � k/2C 2˛�2CM

��1
�

Z
R3
e�ik�xe�iH't .k/.t�s/ei.k

0Ck/�xb�k0
Q s˝�

dk0

jk0j

dk

jkj2
:

It remains to compute the norm of this expression. Since this is considerably easier than for Q12, we
omit the details and only state the final result,

kQ11kL2˝F . ˛�3: (4-7)

Bound on Q12. In the same way as for Q11, we can replace N by a number, so that

Q12 D .��C 3˛
�2
CM/�

1
2

Z
R3
eik
00�xb�k00.��C 2˛

�2
CM/�1

�

Z
R3

Z
R3
e�iH't .k/.t�s/ei.k

0Ck/�xb�k0b
�
k
Q s˝�

dk0

jk0j

dk

jkj
:

Next, we commute eik
00�x and ei.k

0Ck/�x to the right and obtain

Q12 D

Z
R3

Z
R3

Z
R3
b�kb
�
k0b
�
k00e

i.kCk0Ck00/�x
�
.ir � k� k0� k00/2C 3˛�2CM

�� 1
2

�
�
.ir � k� k0/2C 2˛�2CM

��1
e�iH't .�k

0/.t�s/ Q s˝�
dk00

jk00j

dk0

jk0j

dk

jkj
:
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We now compute the norm of this expression. For the part of the norm over F , we use the fact that

˛6h�; bk1bk2bk3b
�
k4
b�k5b

�
k6
�i D ı.k1�k4/ı.k2�k5/ı.k3�k6/Cı.k1�k4/ı.k2�k6/ı.k3�k5/

Cı.k1�k5/ı.k2�k4/ı.k3�k6/Cı.k1�k5/ı.k2�k6/ı.k3�k4/

Cı.k1�k6/ı.k2�k4/ı.k3�k5/Cı.k1�k6/ı.k2�k4/ı.k3�k6/

to write
kQ12k

2
L2˝F D ˛

�6.X1C � � �CX6/; (4-8)

where, for instance,

X1 WD

Z
R3

Z
R3

Z
R3

D
e�iH't .�k

0/.t�s/ Q s;
�
.ir�k�k0�k00/2C3˛�2CM

��1
�
�
.ir�k�k0/2C2˛�2CM

��2
e�iH't .�k

0/.t�s/ Q s

E dk00
jk00j2

dk0

jk0j2
dk

jkj2

and

X2 WD

Z
R3

Z
R3

Z
R3

D
e�iH't .�k

00/.t�s/ Q s;
�
.ir�k�k0�k00/2C3˛�2CM

��1
�
�
.ir�k�k00/2C2˛�2CM

��1�
.ir�k�k0/2C2˛�2CM

��1
e�iH't .�k

0/.t�s/ Q s

E dk00
jk00j2

dk0

jk0j2
dk

jkj2
:

By the Schwarz inequality we have jX2j �X1 and, similarly,

jXj j �X1 for all j D 1; : : : ; 6: (4-9)

Thus it suffices to control X1.
We first perform the k00 integral and then the k integral. We make use of the following bounds.

Lemma 4.2. One has the operator inequalitiesZ
R3
..ir � k00/2C 1/�1

dk00

jk00j2
. 1; (4-10)Z

R3
..irx � k/

2
C 1/�2

dk

jkj2
. .��C 1/�1: (4-11)

Before proving the lemma, let us see that they provide the desired bounds on X1. First, conjugating
(4-10) with ei.kCk

0/�x and assuming that M C 3˛2 � 1, we obtain, uniformly in k; k0 2 R3,Z
R3

�
.ir � k� k0� k00/2C 3˛�2CM

��1 dk00
jk00j2

. 1: (4-12)

Similarly, conjugating (4-11) with eik
0�x, we obtain, uniformly in k0 2 R3,Z

R3

�
.irx � k� k

0/2C 2˛�2CM
��2 dk
jkj2
. ..ir � k0/2C 1/�1: (4-13)

Inserting (4-12) and (4-13) into the definition of X1, we obtain

X1 .
Z

R3

˝
e�iH't .�k

0/.t�s/ Q s; ..ir � k
0/2C 1/�1e�iH't .�k

0/.t�s/ Q s
˛ dk0
jk0j2

:
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Since .��C 1/�
1
2 .H'tCM/

1
2 is bounded, uniformly in t (by Corollary B.2 and Lemma 2.1), we also

know that ..ir � k0/2C 1/�
1
2 .H't .�k

0/CM/
1
2 is bounded, uniformly in t . Thus,

X1 .
Z

R3

˝
e�iH't .�k

0/.t�s/ Q s; .H't .�k
0/CM/�1e�iH't .�k

0/.t�s/ Q s
˛ dk0
jk0j2

D

Z
R3

˝
Q s; .H't .�k

0/CM/�1 Q s
˛ dk0
jk0j2

.
Z

R3

˝
Q s; ..ir � k

0/2CM/�1 Q s
˛ dk0
jk0j2

:

Applying (4-10) again, we see that the latter expression is bounded by a constant times k Q sk2L2 D 1 by
Lemma 2.1. This, together with (4-8) and (4-9), implies that

kQ12kL2˝F . ˛�3: (4-14)

Proof of Lemma 4.2. We only prove (4-11), since the proof of (4-10) is similar and simpler. By applying
a Fourier transform, we see that we need to proveZ

R3
..pC k/2C 1/�2

dk

jkj2
. .p2C 1/�1 for p 2 R3:

We split the integral into the regions 4jkj > jpj C 1 and 4jkj � jpj C 1. In the first region we bound
jkj�2 � 16=.jpjC 1/2 and note thatZ

f4jkj>jpjC1g

..pC k/2C 1/�2 dk �

Z
R3
..pC k/2C 1/�2 dk D

Z
R3
.k2C 1/�2 dk <1:

In the second region we distinguish the cases jpj< 1 and jpj � 1. In the first case we boundZ
f4jkj�jpjC1g

..pC k/2C 1/�2
dk

jkj2
�

Z
f4jkj�jpjC1g

dk

jkj2
�

Z
fjkj� 1

2
g

dk

jkj2
<1:

For jpj � 1 we note that in the second region we have 2jkj � jpj and therefore .pC k/2 � 1
4
p2 � k2.

Thus,

..pC k/2C 1/�2 �
�
1
4
p2C 1

��1
.k2C 1/�1:

Since .k2C 1/�1jkj�2 is integrable, we obtain again a bound of the required form. �

Bounds on Q2; : : : ; Q5. The terms Q2; : : : ;Q4 are controlled in exactly the same way as Q1. (For Q4
we use the fact that k@s Q skH2 . 1 for t � ˛2 by Proposition 2.2.) The argument for Q5 is also similar.
In fact, the term involving Im.'s; ˛2@s's/ is controlled as before. For the term involving b�.˛2@s's/
we have to prove a simple extension of Lemma 4.1 where we have operators b�.f /b�

k
b�
k0

with f 2 L2

(similarly as the second part in Lemma 3.1). Finally, the term involving b.˛2@s's/ can be commuted to
the right and therefore becomes a less singular term which can be controlled already with Lemma 3.1.
These arguments prove (4-2) and complete the proof of (4-3).
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Bound on D112. The termD112 in (2-34) contains only one factor jk0j�1 and can therefore be controlled
essentially by the same method as D01, based on Lemma 3.1. In order to create a factor of .H'tCM/�1,
we integrate by parts in s1. This, however, will create a factor of zH't in one of the terms. When dealing
withD211 we will explain how to remove this term by integrating by parts in s. Since kgs;tk1.˛�2jt�sj
and k@sgs;tk1Dkgsk1.˛�2 by Proposition 2.2, this factor behaves well in the bounds. When applying
Lemma 3.1 we also use k@s Q skH1 . 1 from Proposition 2.2; see also the remark at the beginning of
Section 2B concerning the bounds on @t Q t . Without going into details we state the final result,

kD112kL2˝F . ˛�3t2.1C t /: (4-15)

Bound on D121. Also the term D121 in (2-31) contains only one factor of jkj�1 and can be controlled
as just sketched for D112 and as explained in detail for D211. In order to control the terms that appear
when integrating by parts in s we make use of k@s� Q skL2 . 1 and k@s Q skH1 . 1 from Proposition 2.2 in
addition to the bounds from Lemma 2.1. Moreover, we need an obvious extension of Lemma 3.1 to the
case with b�.f1/b�.f2/b�k , which is proved in the same way. Combining all this, we end up with

kD121kL2˝F . ˛�2t .1C t /: (4-16)

Bound on D122. The term D122 contains no jkj�1 term. Using kgs;tk1 . ˛�2jt�sj for 0� s � t � ˛2

by Proposition 2.2 and kb.� Q s /�kF D ˛
�1k� Q sk2 . ˛

�1 by Lemma 2.1, we obtain immediately

kD122kL2˝F . ˛�3t3: (4-17)

5. Estimation on D2

Bound on D211. We recall equation (2-32) for D211. In this equation we commute e�ik�x through
e�iH't s1, which introduces again the operator H't .k/ from (4-1), and we commute b

k
with b�

k0
. In this

way, we obtain

D211 D ˛
�2

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/e�iH't .k/s1W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds1 ds:

The difficulty in controlling D211 comes again from the k-integral. It is not enough to bound the norm of
the integrand as it stands, since jkj�2 is not integrable. Thus, we need to gain some extra decay from
e�iH't .k/s1. To get this decay, we integrate by parts in s1 using

e�iH't .k/s1 D ieiMs1.H't .k/CM/�1@s1e
�iŒH't .k/CM�s1 (5-1)

with a large constant M > 0 independent of ˛ and t . We obtain

D211 D i˛
�2

Z t

0

Z
R3
ei
zH't t .H't .k/CM/�1e�iH't .k/.t�s/W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds

� i˛�2
Z t

0

Z
R3
ei
zH't s.H't .k/CM/�1W �.˛2't /W.˛

2's/ Q s˝�
dk

jkj2
ds
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C˛�2M

Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/ Q s˝�

dk

jkj2
ds1 ds

C˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/ zH't .H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/ Q s˝�

dk

jkj2
ds1 ds

DD2111CD2112CD2113CD2114;

where D211k , k D 1; : : : ; 4, are naturally defined.
We first show how to deal with the terms D2111, D2112 and D2113. The term D2114 is harder because

of the additional factor of zH't .
The following lemma quantifies in which sense the operator .H'tCM/�1 leads to additional decay in k.

Lemma 5.1. For u 2H2.R3/,Z
R3

.jir C kj2C 1/�1u
2

dk

jkj2
. kukH2 : (5-2)

Proof. By Fourier transform, we have.jir C kj2C 1/�1u2
2
D

Z
R3

1

.1CjpC kj2/2.1Cjpj2/2
.1Cjpj2/2 j Ou.p/j2 dp:

We now observe that
1

.1CjpC kj2/2.1Cjpj2/2
.

1

.1Cjkj2/2
:

This can be proved by considering separately the regions where jpj � 1
2
jkj and jpj � 1

2
jkj. Thus,

.jir C kj2C 1/�1u2
2
.

1

.1Cjkj2/2
kuk2H2 ;

and the claimed bound follows by integration over k. �

Let us return to the terms D2111, D2112 and D2113. It follows from Corollary B.2 by conjugating
with the unitary eik�x that there is an M > 0 such that the operator .H't .k/CM/�1.jir C kj2C 1/ is
uniformly bounded in ˛ and t . This, together with the boundedness of  s in H2 for s 2 Œ0; ˛2� from
Proposition 2.2, yields Z

R3

.H't .k/CM/�1 Q s

2

dk

jkj2
. 1;

and therefore

kD2111kL2˝F . ˛�2t; kD2112kL2˝F . ˛�2t; kD2113kL2˝F . ˛�2t2: (5-3)
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We now turn to the term D2114, which contains the operator zH't . The idea is to remove this operator
by integrating by parts in s using

zH't e
i zH't s D�i@se

i zH't s: (5-4)

This leads to

D2114D�i˛
�2

Z t

0

Z
R3
ei
zH't t .H't .k/CM/�1e�iH't .k/.t�s1/W �.˛2't /W.˛

2's1/
Q s1˝�

dk

jkj2
ds1

Ci˛�2
Z t

0

Z
R3
ei
zH't s1.H't .k/CM/�1e�iH't .k/s1W �.˛2't /W.˛

2'0/ Q 0˝�
dk

jkj2
ds1

Ci˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /W.˛
2's/@s Q s˝�

dk

jkj2
ds1ds

Ci˛�2
Z t

0

Z t�s

0

Z
R3
ei
zH't .sCs1/.H't .k/CM/�1e�iH't .k/s1

�W �.˛2't /.@sW.˛
2's// Q s˝�

dk

jkj2
ds1ds:

The first three terms on the right side can be bounded by Lemma 5.1 together with the uniform
boundedness in H2 of Q s and @s Q s in Œ0; ˛2� from Proposition 2.2; see also the remark at the beginning of
Section 2B concerning the bounds on @t Q t . For the fourth term on the right side we use the formula (A-4)
for @sW.˛2's/. Then the term can be bounded by proceeding in the same way as for D015 and using
Lemma 5.1 together with the fact that ˛2@s's is uniformly bounded in L2 for all times by Lemma 2.1.
To summarize, we obtain

kD2114kL2˝F . ˛�2t .1C t /; (5-5)

and, because of (5-3),
kD211kL2˝F . ˛�2t .1C t /: (5-6)

Bound on D212. The term D212 involves a single difficult operator
R
b�
k0
eik
0�xjk0j�1 dk0 and can be

controlled using the technique from bounding D01. We first integrate by parts with respect to s1 using
(5-1) (with k D 0) to create a factor of .H'tCM/�1. Using this factor we can apply Lemma 3.1 as in the
bound of D01. In one of the terms, however, the integration by parts creates a factor zH't . We remove
this operator via (5-4) by integrating by parts in s. The factor gs;t and its derivative @sgs;t D �gs are
bounded by Proposition 2.2 and do not create any problems. Eventually, this shows that

kD212kL2˝F . ˛�3t2.1C t /: (5-7)

Bound on D221. The term D221 appears in (2-33). We use bkb�.� Q s /� D ˛�2� Q s .k/�. By the
Schwarz inequality, (C-2) and Lemma 2.1 we have

jkj�1� Q s .k/�1 . k� Q skL2.1/ . k sk2H1 . 1. From
this one easily concludes that

kD221kL2˝F . ˛�2t2:
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Bound on D222. The term D222 appears in (2-37). Using the bound on gs;t from Proposition 2.2 and
the fact that b.� Q s /� has norm of order ˛�1 by Lemma 2.1, one obtains

kD222kL2˝F . ˛�3t3:

6. Bounds on D3, D4 and D5

We recall that we have already controlled D32, D42 and D52 in (2-39), (2-40) and (2-42). The remaining
terms D31, D41 and D51 have at most a single term jkj�1 and can be bounded using the methods we
have already developed. Therefore we will be rather brief.

For each of the terms D311, D312, D412, D511 and D512 we first integrate by parts in s1 to generate
a factor of .H'tCM/�1, which allows us to apply Lemma 3.1. One of the terms, however, will
involve zH't , which we have to remove by integrating by parts in s. Using the bounds from Lemma 2.1
and Proposition 2.2 we obtain

kD311kL2˝F . ˛�2t .1C t /; kD312kL2˝F . ˛�3t2.1C t /; kD412kL2˝F . ˛�3t2.1C t /;

kD511kL2˝F . ˛�3t .1C t /; kD512kL2˝F . ˛�4t2.1C t C˛�1t2/:

The remaining term D411 can be immediately bounded by

kD411kL2˝F . ˛�2t2:

7. Proof of the almost orthogonality relations

7A. Proof of (2-28). We recall that

h�; e�iH't tD0iF D

�
�;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
F
:

We commute the operator b�
k

to the left and use bk�D0. For the commutator we obtain from Corollary A.2
(with the definition (2-5) of gs;t )

h�; e�iH't tD0iF D

�
�;

Z t

0

e�iH't .t�s/P?
Q s
gs;tW

�.˛2't /W.˛
2's/ Q s˝�ds

�
F

D

Z t

0

e�iH't .t�s/P?
Q s
gs;t Q s

˝
�;W �.˛2't /W.˛

2's/ �
˛
F ds:

Thus, h�; e�iH't tD0iFL2 � t sup
0�s�t

kgs;t k1k Q sk2:

Thus, by the bound on gs;t from Proposition 2.2 and the conservation of the L2 norm of Q s , we obtain
the claimed bound (2-28).
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7B. Proof of (2-29). For ˆ 2 F , let

‚ˆ.t/ WD
˝
Q t ˝ˆ; e

�iH't tD0
˛
L2˝F

D

�
Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
L2˝F

:

We shall show that

j‚ˆ.t/j. ˛�2t2.1C˛�2t2/kˆkF ; (7-1)

which by duality implies (2-29).
Our goal will be to derive an ordinary differential equation for ‚ˆ. We use the presence of the

operator P?
Q s

to obtain (with inner products in L2˝F)

@t‚ˆ D

�
@t Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
C

�
Q t ˝ˆ;

Z t

0

.@te
�iH't .t�s//P?

Q s

Z
R3

�
eik�xW �.˛2't /W.˛

2's/b
�
k
Q s˝�

� dk
jkj

ds

�
C

�
Q t ˝ˆ;

Z t

0

e�iH't .t�s/P?
Q s

Z
R3

�
eik�x.@tW

�.˛2't //W.˛
2's/b

�
k
Q s˝�

� dk
jkj

ds

�
:

For the first term we use equation (2-10) for @t Q t . In the second term, we compute, using Duhamel’s
formula,

@te
�iH't .t�s/ D�iH't e

�iH't .t�s/� i

Z t�s

0

e�iH't .t�s�s1/.@tH't /e
�iH't s1 ds1

D�i
�
H't C .t � s/@tk'tk

2
2

�
e�iH't .t�s/� i

Z t�s

0

e�iH't .t�s�s1/.@tV't /e
�iH't s1 ds1:

Note that the part involving H't will cancel the contribution from the first term, except for part of the
constant !.t/. Finally, for the third term we use Lemma A.3 and Lemma A.1 to obtain

@tW
�.˛2't /W.˛

2's/

D ˛2W �.˛2't /
�
b.@t't /� b

�.@t't /C i Im.'t ; @t't /
�
W.˛2's/

D ˛2W �.˛2't /W.˛
2's/

�
b.@t't /� b

�.@t't /C 2i Im.@t't ; 's/C i Im.'t ; @t't /
�

D ˛2W �.˛2't /W.˛
2's/

�
b.@t't /� b

�.@t't /C 2i Im.@t't ; 's �'t /C i Im.@t't ; 't /
�
:

Putting all this into the above formula, we obtain

@t‚ˆ DM1CM2CM3;

where the terms M1, M2 and M3 are defined, using the notation

ˆs;t WDW
�.˛2's/W.˛

2't /ˆ;
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by

M1.t/ WD�i

Z t

0

Z t�s

0

�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1P?

Q s

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
ds1ds;

M2.t/ WD˛
2

Z t

0

�
Q t˝ˆs;t ; e

�iH't .t�s/P?
Q s

Z
R3

�
eik�x.b.@t't /�b

�.@t't //b
�
k
Q s˝�

� dk
jkj

�
ds;

M3.t/ WD

Z t

0

m.s; t/

�
Q t˝ˆs;t ; e

�iH't .t�s/P?
Q s

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
ds

with

m.s; t/ WD �i.t � s/@tk'tk
2
2C 2i˛

2 Im.@t't ; 's �'t /:

Since ‚ˆ.0/D 0, we conclude that

‚ˆ.t/D

Z t

0

.M1.s/CM2.s/CM3.s// ds: (7-2)

Below we shall show that

jM1.t/j. ˛�3t2kˆkF ; jM2.t/j. ˛�2tkˆkF ; jM3.t/j. ˛�3t2kˆkF : (7-3)

Together with (7-2) this will prove (7-1) and therefore (2-29).

Bound on M1. Using the fact that P?
Q s
D 1 � j Q sih Q sj (see the proof of Lemma 2.4), we have the

decomposition

M1 DM11�M12;

where

M11.t/ WD�i

Z t

0

Z t�s

0

�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ds1ds

and, with � Q s from (2-2),

M12.t/ WD �i

Z t

0

Z t�s

0

˝
Q t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1 Q s

˛
L2
˝
ˆs;t ; b

�.� Q s /�
˛
F ds1 ds:

The second term is easy to control. In fact, the a priori bounds from Lemma 2.1 together with k@tV'tk1.
˛�2 from (C-8) imply ˇ̌˝

Q t ; e
�iH't .t�s�s1/.@tV't /e

�iH't s1 Q s
˛
L2
ˇ̌
. ˛�2

and ˇ̌˝
ˆs;t ; b

�.� Q s /�
˛
F

ˇ̌
. ˛�1kˆkF :

This yields a bound of the form (7-3).
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We now bound the integrand in M11. We haveˇ̌̌̌�
Q t˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
�
.H'tCM/

1
2 Q t˝ˆs;t

.H'tCM/�
1
2 .@tV't /.H'tCM/

1
2

.H'tCM/�
1
2

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

:
By Corollary B.2 and an easy modification of its proof, for M sufficiently large (but independent of t
and ˛), the operators .H'tCM/˙

1
2 .��C 1/�

1
2 are both bounded uniformly in t . Therefore Lemma 3.1

and the a priori bounds from Lemma 2.1 yieldˇ̌̌̌�
Q t ˝ˆs;t ; e

�iH't .t�s�s1/.@tV't /e
�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
. ˛�1k Q tkH1kˆkF

.��C 1/� 12 .@tV't /.��C 1/ 12k skH1
. ˛�1kˆkF

.��C 1/� 12 .@tV't /.��C 1/ 12:
Finally, using the fact that kr@tV'tk1 . ˛�2 (see (C-8)), we obtain that the operator appearing in this
bound has norm . ˛�2. Thus, we finally obtainˇ̌̌̌�

Q t ˝ˆs;t ; e
�iH't .t�s�s1/.@tV't /e

�iH't s1

Z
R3
.eik�xb�k

Q s˝�/
dk

jkj

�
L2˝F

ˇ̌̌̌
. ˛�3;

which, when integrated over s1 and s, leads to the bound in (7-3).

Bound on M2. As for M1, we use P?
Q s
D 1� j Q sih Q sj to get the decomposition

M2 DM21�M22

with

M21.t/ WD ˛
2

Z t

0

�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�x.b.@t't /� b

�.@t't //b
�
k
Q s˝�

� dk
jkj

�
ds

and, with � Q s from (2-2),

M22.t/ WD ˛
2

Z t

0

˝
Q t ; e

�iH't .t�s/ Q s
˛
L2
˝
ˆs;t ;

�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F ds:

Once again the bound on M22 is straightforward. Namely, we commute b�.� Q s / to the left through
b.@t't /� b

�.@t't / and obtain˝
ˆs;t ;

�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F D�

˝
ˆs;t ; b

�.� Q s /b
�.@t't /�

˛
F C˛

�2.@t't ; � Q s /hˆs;t ; �iF :

By similar computations as, for instance, in the bound onD32 and by the a priori bounds from Lemma 2.1,
we obtain ˇ̌˝

ˆs;t ;
�
b.@t't /� b

�.@t't /
�
b�.� Q s /�

˛
F

ˇ̌
. ˛�2kˆkFk� Q skk@t'tk. ˛

�4
kˆkF :
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By the conservation of the L2 norm of Q t we conclude

jM22.t/j. ˛�2tkˆkF ;

which is of the form claimed in (7-3).
We now discuss M21. Again we commute b�

k
to the left through b.@t't /� b�.@t't / and obtain

M21 DM211CM212;

where

M211.t/ WD �˛
2

Z t

0

�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ds

and, with gs from (2-6),

M212.t/ WD

Z t

0

˝
Q t ; e

�iH't .t�s/gs Q s
˛
L2hˆs;t ; �iF ds:

Since kgsk1 . ˛�2 by Proposition 2.2, we obtain immediately

jM212.t/j. ˛�2tkˆkF :

To control M211 we boundˇ̌̌̌�
Q t ˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ˇ̌̌̌
�
.H'tCM/

1
2 Q t ˝ˆs;t

.H'tCM/�
1
2

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

:
As for M11, we use Lemma 2.1 and Corollary B.2 (and a simple extension of its proof) to choose M
large enough, but independent of t and ˛, so that .H'tCM/˙

1
2 .��C1/�

1
2 are both bounded uniformly

in t . Therefore Lemma 3.1 and the a priori bounds from Lemma 2.1 yieldˇ̌̌̌�
Q t˝ˆs;t ; e

�iH't .t�s/

Z
R3

�
eik�xb�kb

�.@t't / Q s˝�
� dk
jkj

�
L2˝F

ˇ̌̌̌
.˛�2k Q tkH1kˆkFk@t'tkL2k Q skH1

.˛�4kˆkF :

This, when integrated over s and multiplied by ˛2, leads to the bound in (7-3).

Bound on M3. The a priori bounds from Lemma 2.1 yield

jm.s; t/j. ˛�2jt � sj:

Moreover, applying Lemma 3.1 as in the bound onM21 we find that the absolute value of the inner product
in the integral defining M3 is bounded by a constant times ˛�1kˆkF . This yields the bound in (7-3).

This concludes the proof of (2-29).
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Appendix A: Some properties of the Weyl operators

In this appendix we collect some standard properties of the Weyl operators W.f / defined in (1-7) in
terms of b.f / and b�.f /. They are well known, but we provide proofs for the sake of completeness. We
recall that the commutation relations for b

k
and b�

k
involve a factor ˛�2.

Lemma A.1. The operators bk , b�
k

and W.f / satisfy the following relations,

bkW.f /DW.f /.bkC˛
�2f .k// and b�kW.f /DW.f /.b

�
k C˛

�2 Nf .k//: (A-1)

Proof. For t > 0 we consider the operators

Ft WDW.tf /D e
t.b�.f /�b.f //; (A-2)

which satisfy
@tFt D .b

�.f /� b.f //Ft ; F0 D Id:

Multiplying by bk and using the commutation relations, we obtain the following equation for bkFt :

@tbkFt D .b
�.f /� b.f //bkFt C˛

�2f .k/Ft ; bkF0 D bk :

Therefore, by Duhamel’s principle applied to the latter equation,

bkFt D e
t.b�.f /�b.f //bkC˛

�2f .k/

Z t

0

e.t�s/.b
�.f /�b.f //Fs ds:

Recalling the definition of Ft in (A-2), we can rewrite this as

bkFt D FtbkC t˛
�2f .k/Ft : (A-3)

At t D 1 we obtain the first identity in the lemma. The second one is proved similarly. �

By applying Lemma A.1 twice, we obtain:

Corollary A.2. Œb�k ; W
�.f /W.g/�D �˛�2. Nf .k/� Ng.k//W �.f /W.g/;

Œbk; W
�.f /W.g/�D �˛�2.f .k/�g.k// W �.f /W.g/:

Next, we’ll consider the case where f depends (differentiably) on a parameter.

Lemma A.3.

@tW.ft /D
1
2
˛�2

�
.ft ; @tft /� .@tft ; ft /

�
W.ft /CW.ft /

�
b�.@tft /� b.@tft /

�
; (A-4)

@tW.ft /D �
1
2
˛�2

�
.ft ; @tft /� .@tft ; ft /

�
W.ft /C

�
b�.@tft /� b.@tft /

�
W.ft /: (A-5)

Proof. For s > 0 we consider the operators

F.s; t/ WDW.sft /; (A-6)

which satisfy
@sF.s; t/D .b

�.ft /� b.ft //F.s; t/; F .0; t/D Id:
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We differentiate this equation with respect to t and obtain

@s@tF.s; t/D .b
�.ft /� b.ft //@tF.s; t/C .b

�.@tft /� b.@tft //F.s; t/;

@tF.0; t/D 0:

Therefore, by Duhamel’s principle,

@tF.s; t/D

Z s

0

e.b
�.ft /�b.ft //.s�s1/.b�.@tft /� b.@tft //F.s1; t / ds1

D

Z s

0

W..s� s1/ft /.b
�.@tft /� b.@tft //W.s1ft / ds1:

In order to simplify the integrand we now use Lemma A.1 and obtain

.b�.@tft /�b.@tft //W.s1ft /D˛
�2W.s1ft /s1..ft ; @tft /�.@tft ; ft //CW.s1ft /.b

�.@tft /�b.@tft //:

If we insert this into the above formula for @tF.s; t/, we obtain

@tF.s; t/D ˛
�2 1
2
s2W.sft /..ft ; @tft /� .@tft ; ft //C sW.sft /.b

�.@tft /� b.@tft //:

At s D 1, we obtain the first identity in the lemma. The second one is proved similarly. �

Lemma A.4. For any f; g 2 L2,

h�;W �.g/W.f /�i D ei˛
�2Im.g;f /�˛�2kf �gk2=2:

Proof. Let ft WD tf C .1 � t /g and F.t/ WD h�;W �.g/W.ft /�i. By Lemma A.3, using that
Im.ft ; @tft /D Im.ft ; f �g/D Im.g; f /,

@tF.t/D
˝
�;W �.g/W.ft /

�
b�.f �g/C i˛�2 Im.g; f /

�
�
˛
:

Next, by Corollary A.2, since .g�ft ; f �g/D�tkf �gk2,

W �.g/W.ft /b
�.f �g/D b�.f �g/W �.g/W.ft /C˛

�2.g�ft ; f �g/W
�.g/W.ft /;

so

@tF.t/D
�
�˛�2tkf �gk2C i˛�2 Im.g; f /

�
F.t/:

Since F.0/D 1, we conclude that

F.t/D e�˛
�2t2kf �gk2=2Ci˛�2t Im.g;f /;

which, at t D 1, gives the assertion. �

Appendix B: The effective Schrödinger operator

In this appendix we investigate the operator and form domains of the effective Schrödinger operator H'
from (2-12) with potential V' from (2-1).
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Lemma B.1. For every A>0 and " > 0 there is anM >0 such that if k'k�A, then for all  2H1.R3/,jV' j 12 � ".��CM/
1
2 


and for all  2H2.R3/,
kV' k � "k.��CM/ k:

Proof. As in [Frank and Schlein 2014, Section 2.1], the Hardy–Littlewood–Sobolev inequality implies

kV'k6 . k'k2: (B-1)

This implies, by the Hölder and Sobolev inequalities,Z
R3
jV' jj j

2 dx � kV'k6k k
2
12
5

. k'k2kr k
1
2

2 k k
3
2

2

and Z
R3
jV' j

2
j j2 dx � kV'k

2
6k k

2
3 . k'k

2
2k� k

1
2

2 k k
3
2

2 :

These bounds easily imply the assertions of the lemma. �

Corollary B.2. For everyA>0 there areM >0 and C >0 such that if k'k2�A then for all f 2L2.R3/

k.H' CM/�
1
2f k2 � Ck.��C 1/

� 1
2f k2

and

k.H' CM/�1f k2 � Ck.��C 1/
�1f k2:

Proof. To prove the first assertion, we write

.H' CM/�1 D .��CM/�
1
2

�
1C .��CM/�

1
2V'.��CM/�

1
2

��1
.��CM/�

1
2

and note that according to Lemma B.1 we can choose M such that k'k � A implies

k.��CM/�
1
2V'.��CM/�

1
2 k � "2:

Similarly, for the second assertion we write

.H' CM/�1 D
�
1C .��CM/�1V'

��1
.��CM/�1

and choose M such that k'k � A implies k.��CM/�1V'k � ". �

Appendix C: Well-posedness of the Landau–Pekar equations

In this appendix we prove Lemma 2.1 and Proposition 2.2. Recall that the weighted spaces L2
.m/
D

L2.R3I .1C k2/m dk/ were introduced in (1-11). We begin with some bounds on the coupling terms V'
and � introduced in (2-1) and (2-2).
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Lemma C.1. We have

k@ˇV'k1 . k'kL2
jˇjC1

for all ˇ 2 N30; (C-1)

k� kL2
.1/
. k k2H1 ; k� kL2.3/ . k k

2
H2 : (C-2)

Proof. By the Schwarz inequality,

j@ˇV'.x/j � 2

Z
R3
jkjjˇ j�1j'.k/j dk � 2k'kL2

jˇjC1

�Z
R3

jkj2.jˇ j�1/ dk

.1C k2/2.jˇ jC1/

�1
2

and the last integral is finite.
We have

k� k
2
2 D

 1jkj
Z

R3
j .x/j2eik�x dx

2
2

D 2�2
“

R3�R3

j .x/j2 j .y/j2

jx�yj
dx dy:

By the Hardy–Littlewood–Sobolev inequality, we know this is bounded by a constant times
j j226

5

D

k k412
5

, which, by the Sobolev embedding theorem, is bounded by a constant times k k4H1 . Moreover,
by Plancherel,

k� k
2
L2.jkj2m/ D

Z
R3
jkj2.m�1/

ˇ̌̌̌Z
R3
j j2eik�x dx

ˇ̌̌̌2
dk D .2�/3

�
j j2; .��/m�1j j2

�
:

In particular, for mD 1 we get k k44, which by Sobolev is controlled by k k2H1 . For mD 3, the claimed
bound follows easily using k k1 . k kH2 and again Sobolev. �

Proof of Lemma 2.1. Local well-posedness in H1 �L2 follows by a standard fixed-point argument and
one sees that k tk2 and E. t ; 't / are conserved. One can use (B-1) and the Sobolev inequality to show
that [Frank and Schlein 2014, Section 2.1],

E. ; '/� kr k22Ck'k
2
2�Ck'k2kr k

1
2

2 k k
3
2

2 (C-3)

for some universal constant C > 0. This, together with conservation of E. t ; 't /, yields global well-
posedness as well as the uniform bounds (2-3).

According to (C-2) and the first bound in (2-3), we have k� tk . k tk2H1 . 1, which is the third
bound in (2-4).

By equation (1-9) for 't we have

k˛2@t'tk2 � k'tk2Ck� tk2

and therefore, by the second bound in (2-3) and the third bound in (2-4), we obtain the first bound in (2-4).
Finally, 't �'s D

R t
s @s1's1 ds1, so for t > s, by the first bound in (2-4),

k't �'sk2 �

Z t

s

k@s1's1k2 ds1 . ˛
�2
jt � sj:

This proves the second bound in (2-4) and completes the proof of the lemma. �

Before dealing with H4 �L2
.3/

-regularity in Proposition 2.2, we need to establish H2 �L2
.1/

-regularity.
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Lemma C.2. If . 0; '0/ 2H2.R3/�L2
.1/
.R3/, then . t ; 't / 2H2.R3/�L2

.1/
.R3/ for all t 2 R and

k tkH2 . 1C˛�2jt j; k'tkL2
.1/
.R3/ . 1C˛

�2
jt j

with implicit constants depending only on the initial data. Moreover,

k@t tkL2 . 1C˛�2jt j; k@t� tkL2 . 1C˛�2jt j: (C-4)

If , in addition, '0 2 L2.m/.R
3/, mD 2; 3, then 't 2 L2.m/.R

3/ for all t 2 R and

k'tkL2
.m/
.R3/ . 1C˛

�6
jt j3:

Proof. By a standard fixed-point argument one can show local existence of solutions in H2 �L2
.1/

. In the
following we will construct a functional, which is equivalent to the H2 norm of  and which grows in a
controlled way as time increases. This will prove, in particular, that  t belongs to H2 for all times.

We claim that for every A > 0 there is a constant M > 0 such that

E.2/. ; '/ WD
.��CV' CM/ 

2
2

satisfies
1
2
k kH2 � .E

.2/. ; '//
1
2 �

3
2
k kH2 (C-5)

for all  2H2 and all ' satisfying k'k2 � A. In fact, much as in the proof of Corollary B.2, we haveˇ̌
k.��CV' CM/ k2�k.��CM/ k2

ˇ̌
� kV'.��CM/�1kk.��CM/ k2

and according to Lemma B.1 we can choose M such that the first factor on the right side is less than "
for k'k2 � A.

According to Lemma 2.1 there is an A > 0 (depending only on k 0kH1 and k'0kL2) such that
k'tkL2 � A for all t . We choose M corresponding to this value of A and compute, using the equation
for  t ,

@tE.2/. t ; 't /

D 2Re
�
.��CV't CM/ t ; .��CV't CM/@t t

�
C 2Re

�
.��CV't CM/ t ; .@tV't / t

�
D 2Re

�
.��CV't CM/ t ; .@tV't / t

�
:

By the Schwarz and the Hölder inequalities,

@tE.2/. t ; 't /� 2.E.2/. t ; 't //
1
2 k@tV'tk6k tk3:

By (B-1) and Lemma 2.1, k@tV'tk6 . k@t'tk2 . ˛�2, and by the Sobolev inequality and Lemma 2.1,
k tk3 . k tkH1 . 1. Thus,

@tE.2/. t ; 't /. ˛�2.E.2/. t ; 't //
1
2 ;

which implies .E.2/. t ;'t //
1
2 .1C˛�2jt j. According to (C-5), this implies the claimed bound on k tkH2 .

The remaining bounds are proved in a straightforward way. We have

k@t tk2 � k�� tk2CkV't tk2 � k tkH2 CkV'tk6k tk3:
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By the bound on k tkH2 together with (B-1) and the bounds from Lemma 2.1, we obtain the first bound
in (C-4). Moreover,

@t� t D 2jkj
�1

Z
R3

Re. t@t t /eik�x dx

and so, by the Hardy–Littlewood–Sobolev inequality as in (B-1),

k@t� tk2 . k t@t tk 6
5
� k tk3k@t tk2:

By the first bound in (C-4) and Lemma 2.1, we obtain the second bound in (C-4).
In order to deduce the bounds on 't , we use Duhamel’s formula:

't .k/D e
�it=˛2'0.k/� i˛

�2

Z t

0

e�i.t�s/=˛
2

� s .k/ ds: (C-6)

If '0 2 L2
.m/

, mD 1; 2; 3, we deduce that 't 2 L2
.m/

provided we can bound k� skL2
.m/

. This quantity
can by controlled by Sobolev norms of  s according to (C-2). �

Proof of Proposition 2.2. The basic strategy is the same as in the proof of Lemma C.2, except that
verifying the properties of the functional is more complicated in this case. Again we do not give the
details of the local existence via a fixed-point argument.

We claim that for every A > 0 there is a constant M > 0 such that

E.4/. ; '/ WD k.��CV' CM/2 k22

satisfies
1
2
k kH4 � .E

.4/. ; '//
1
2 �

3
2
k kH4 (C-7)

for all  2H4 and all ' satisfying k'kL2
.3/
� A. To show this, we first observe that, as in the proof of

Lemma C.2,ˇ̌
k.��CV' CM/2 k2�k.��CM/.��CV' CM/ k2

ˇ̌
� kV'.��CM/�1kk.��CM/.��CV' CM/ k2

and that kV'.��CM/�1k can be made arbitrarily small for k'kL2 bounded by choosing M large. Thus,
it suffices to show that k.��CM/.��CV'CM/ k2 is equivalent to k.��CM/2 k2. We computeˇ̌
k.��CM/.��CV' CM/ k2�k.��CV' CM/.��CM/ k2

ˇ̌
� k.2rV' � r C�V'/.��CM/�1kk.��CM/ k2:

According to (C-1), the first factor on the right side can be made arbitrarily small for k'kL2
.3/

bounded
by choosing M large. We conclude by applying the argument in Lemma C.2 again to compare
k.��CV' CM/.��CM/ k2 to k.��CM/2 k2. This proves the claim.

According to Lemma C.2, for every � > 0 there is an A > 0 (depending only on k 0kH2 , k'0kL2
.3/

and �) such that k'tkL2
.3/
� A for all jt j � �˛2. We choose M corresponding to this value of A and
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compute, using the equation for  t ,

@tE.4/. t ; 't /D 2Re
�
.��CV't CM/2 t ; .��CV't CM/2@t t

�
C 2Re

�
.��CV't CM/2 t ; .@tV't /.��CV't CM/ t

�
C 2Re

�
.��CV't CM/2 t ; .��CV't CM/.@tV't / t

�
D 4Re

�
.��CV't CM/2 t ; .@tV't /.��CV't CM/ t

�
� 2Re

�
.��CV't CM/2 t ; .2r@tV't � r C�@tV't / t

�
:

Therefore, by the Schwarz inequality,

@tE.4/. t ;'t /

� 2.E.4/. t ;'t //
1
2

�
2k@tV'tk1k.��CV'tCM/ tk2C2kr@tV'tk1kr tk2Ck�@tV'tk1k tk2

�
:

According to Lemma C.2 and (C-5), all terms involving  t here are bounded by a constant for jt j � �˛2.
Assume that we can prove that all terms involving 't here are bounded by a constant times ˛�2 for
jt j � �˛2. Then we will have shown that

@tE.4/. t ; 't /. ˛�2.E.4/. t ; 't //
1
2

for jt j � �˛2, which implies that .E.4/. t ; 't //
1
2 . 1C ˛�2jt j . 1 for jt j � �˛2. According to (C-7),

this proves that k tkH4 . 1 for jt j � �˛2.
Thus, it remains to prove that for all multi-indices ˇ with jˇj � 2,

k@ˇx@tV'tk1 . ˛
�2 for jt j � �˛�2: (C-8)

If we insert the equation of 't into the definition of V't , we find

@tV't .x/D�i˛
�2

Z
R3

�
e�ik�x't .k/� e

ik�x't .k/
� dk
jkj
: (C-9)

(Note that the contribution from � t cancels.) Using this formula, we obtain

k@ˇx@tV'tk1 . ˛
�2
k'tkL2

jˇjC1

in the same way as we obtained (C-1). This implies (C-8) in view of the bounds on 't from Lemma C.2.
It is straightforward to deduce the remaining bounds claimed in the proposition. The bound on k'tkL2

.3/

follows from Lemma C.2. Because of the equation for  t , we have

k@t tkH2 � k�� tkH2 CkV't tkH2 . k tkH4 C
X
jˇ j�2

k@ˇV'tk1k tkH2 :

Using the fact that k tkH4 . 1 and k'tkL2
.3/
. 1, which by (C-1) controls k@ˇV'tk1 for jˇj � 2, we

conclude that k@t tkH2 . 1. The second bound in (2-8) follows from Lemma C.2.
Finally, we need to prove the bounds on gs and gs;t . By the Schwarz inequality as in the proof of

(C-1) together with the equation for 's we find

kgsk1 . k@s'skL2
.1/
� ˛�2.k'skL2

.1/
Ck� skL2

.1/
/:
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According to (C-2) and Lemma 2.1 we have k� skL2
.1/
. k sk2H1 . 1. Moreover, if jt j; jsj � �˛2, then

Lemma C.2 implies k'skL2
.1/
. 1. Thus,

kgsk1 . ˛�2;

as claimed. Moreover, gs;t D
R t
s gs1 ds1, so for t > s

kgs;tk1 �

Z t

s

kgs1k1 ds1 . ˛
�2.t � s/:

This proves (2-9). �

Appendix D: Reduced density matrices

Here we show how the approximation of e�i zH
F
˛ t 0˝W.˛

2'0/� in Theorem 1.3 yields approximations
to its reduced density matrices in Theorem 1.2. The argument relies on the following abstract lemma.

Lemma D.1. Let H1 and H2 be Hilbert spaces; let ‰;ˆ 2H1˝H2 and f 2H1 and g 2H2 such that

‰ D f ˝gCˆ;

kf kH1 � C; kgkH2 � C; kˆkH1˝H2 � C";

khg;ˆiH2kH1 � C"
2; khf;ˆiH1kH2 � C"

2

for some C > 0 and " > 0. Define

1 D TrH2 j‰ih‰j; 2 D TrH1 j‰ih‰j:

Then

TrH1
ˇ̌
1�kgk

2
H2 jf ihf j

ˇ̌
� 3C 2"2; TrH2

ˇ̌
2�kf k

2
H1 jgihgj

ˇ̌
� 3C 2"2:

Before proving this lemma, let us use it to derive Theorem 1.2 from Theorem 1.3. We apply the lemma
with H1 D L2.R3/, H2 D F , f D e�i

R t
0 !.s/ ds t , g D�,

‰ DW �.˛2't /e
�i zHF

˛ t 0˝W.˛
2'0/�; ˆDW �.˛2't /R.t/:

Then Theorem 1.3 implies that the assumptions of the lemma are satisfied with "D ˛�1.1C jt j/. We
have kf k2Dk tk2Dk 0k2D1, kgk2Dk�k2D1 and jf ihf jDj t ih t j. Moreover,

TrH2 j‰ih‰j D 
particle
t ; TrH1 j‰ih‰j DW

�.˛2't /
field
t W.˛2't /:

Thus, the conclusion of Theorem 1.2 follows from the lemma.
We now turn to the proof of the lemma. It relies on the bound

TrH1
ˇ̌
TrH2 j‰1ih‰2j

ˇ̌
� k‰1kH1˝H2k‰2kH1˝H2 (D-1)

valid for any vectors ‰1; ‰2 2H1˝H2. For the proof of (D-1) recall the variational characterization of
the trace norm,

TrH1 jKj D sup
.ej /;.e

0
j
/

Re
X
j

hej ; Ke
0
j iH1 ;
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where the supremum is over all orthonormal systems .ej / and .e0j / in H1. Thus, if .bk/ is an orthonormal
basis in H2, then

Re
X
j

˝
ej ;
�
TrH2 j‰1ih‰2j

�
e0j
˛
H1
D Re

X
j;k

hej ˝ bk; ‰1iH1˝H2h‰2; e
0
j ˝ bkiH1˝H2

�

�X
j;k

ˇ̌
hej ˝ bk; ‰1iH1˝H2

ˇ̌2�12�X
j;k

ˇ̌
h‰2; e

0
j ˝ bkiH1˝H2

ˇ̌2�12
� k‰1kH1˝H2k‰2kH1˝H2 ;

where the last inequality comes from the orthonormality of .ej ˝ bk/ and .e0j ˝ bk/. Therefore the
variational characterization of the trace norm yields (D-1).

Proof. Since TrH2 jf ˝gihˆj D jf ihhg;ˆiH2 j, we have

1�kgk
2
H2 jf ihf j D jf ihhg;ˆiH2 jC jhˆ; giH2ihf jCTr2 jˆihˆj:

By (D-1) and the assumptions the trace norm, each one of the three operators on the right side is bounded
by C 2"2. This proves the first inequality in the lemma. The second one is proved similarly. �

Finally, we show that the ˛�2 error bound in Theorem 1.2 (for times of order one) is due to the fact
that 't is time-dependent. The proof makes use of the fact that for arbitrary normalized vectors a and b
in a Hilbert space H one has

TrH
ˇ̌
jaihaj � jbihbj

ˇ̌
D 2.1� jha; bij2/

1
2 ; (D-2)

as is easily verified.

Proof of Lemma 1.4. Because of Theorem 1.2, it suffices to prove that there are " > 0 and c > 0 such that
for all jt j � " and all ˛ � 1,

TrF
ˇ̌
jW.˛2't /�ihW.˛

2't /�j � jW.˛
2'0/�ihW.˛

2'0/�j
ˇ̌
� c˛�1jt j:

According to Lemma A.4 and (D-2), this is equivalent to

1� e�˛
2k't�'0k

2
2 D 1�

ˇ̌˝
�;W �.˛2'0/W.˛

2't /�
˛ˇ̌2
�
1
4
c2˛�2t2:

Since k't �'0k2 . ˛�2jt j by Lemma 2.1, it suffices to prove that there are " > 0 and c0 > 0 such that
for all jt j � " and all ˛ � 1,

k't �'0k2 � c
0˛�2jt j:

Since '0C � 0 6� 0, this will clearly follow if we can prove that for all jt j � ˛2 and ˛ � 1,'t �'0C i˛�2t .'0C � 0/2 � C˛�2t2: (D-3)

To prove this, we use equation (1-8) for 't to write

't �'0 D

Z t

0

@s's ds D�i˛
�2

Z t

0

.'sC � s / ds D�i˛
�2t .'0C � 0/C rt



DERIVATION OF AN EFFECTIVE EVOLUTION EQUATION FOR A STRONGLY COUPLED POLARON 421

with

rt WD �i˛
�2

Z t

0

Z s

0

.@s1's1 C @s1� s1 / ds1 ds:

By Lemma 2.1 and Proposition 2.2, the L2-norm of the integrand of rt is bounded by a constant uniformly
in js1j � ˛2 and ˛ � 1. This yields (D-3) and completes the proof. �

Appendix E: Improving the result of [Frank and Schlein 2014]

We now show how the techniques from [Frank and Schlein 2014] can be extended to times jt jD o.˛/. This
argument is due to an anonymous referee, whom we thank for kind permission to include it in our paper.

Proposition E.1. Let ' 2 L2.R3/ and ˛0 > 0. Assume that ‰ 2 L2.R3/˝F satisfies

k.p2CN C 1/
1
2‰k �M; k.p2C 1/

1
2N‰k �M˛�2:

Then for all ˛ � ˛0 and all t 2 R,e�i zHF
˛tW.˛2'/‰� e�iH' tW.˛2'/‰

2 �M 2.1C 2˛�1/.eC jt j=.2˛/� 1/;

where C depends only on ˛0 and an upper bound on k'kL2 .

Note that this result can be applied, in particular, to ‰D  ˝� with k kH1 �M. We also recall that
the effective Schrödinger operator H' was defined in (2-12).

Proof. Let A.t/ WD
e�i zH F

˛tW.˛2'/‰ � e�iH' tW.˛2'/‰
2. It is shown in [Frank and Schlein 2014,

Proposition 9] that A0.t/D f .t/Cg.t/ with

f .t/� CM˛�1A.t/
1
2 ;

Z T

0

g.t/ dt � CM 2˛�2T;

where C depends only on ˛0 and an upper bound on k'kL2 . We bound f .t/� 1
2
C˛�1.A.t/CM 2/ and

therefore

A.T /�

Z T

0

f .t/ dt C

Z T

0

g.t/ dt � 1
2
C˛�1

Z T

0

A.t/ dt C 1
2
CM 2˛�1.1C 2˛�1/T:

Thus,

A.T /CM 2.1C 2˛�1/�M 2.1C 2˛�1/C 1
2
C˛�1

Z T

0

�
A.t/CM 2.1C 2˛�1/

�
dt

and, by Gronwall’s inequality, for all t � 0

A.t/CM 2.1C 2˛�1/�M 2.1C 2˛�1/eCt=.2˛/: �

Acknowledgements

The authors are grateful to J. Fröhlich, M. Lewin, B. Schlein and R. Seiringer for their helpful remarks at
various stages of this project, as well as to the anonymous referees who helped improve this paper. Support
through NSF grants PHY–1347399 and DMS–1363432 (R.L.F.) and DMS–1308985 and DMS–1443225
(Z.G.) is acknowledged.



422 RUPERT L. FRANK AND ZHOU GANG

Note added in proof

After this work was accepted for publication, the preprint by M. Griesemer [2016] appeared on the
arXiv. This preprint studies the dynamics generated by the initial conditions given by the minimizing pair
. �; '�/ of the energy functional E. ; '/ under the constraint k k D 1 up to times of order o.˛2/.
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