ANALYSIS & PDE

Volume 10

No. 3

2017

XUWEN CHEN AND JUSTIN HOLMER

FOCUSING QUANTUM MANY-BODY DYNAMICS, II:

THE RIGOROUS DERIVATION OF THE

1D FOCUSING CUBIC NONLINEAR SCHRÖDINGER EQUATION

FROM 3D

FOCUSING QUANTUM MANY-BODY DYNAMICS, II: THE RIGOROUS DERIVATION OF THE 1D FOCUSING CUBIC NONLINEAR SCHRÖDINGER EQUATION FROM 3D

XUWEN CHEN AND JUSTIN HOLMER

We consider the focusing 3D quantum many-body dynamic which models a dilute Bose gas strongly confined in two spatial directions. We assume that the microscopic pair interaction is attractive and given by $a^{3\beta-1}V(a^{\beta} \cdot)$, where $\int V \leq 0$ and a matches the Gross-Pitaevskii scaling condition. We carefully examine the effects of the fine interplay between the strength of the confining potential and the number of particles on the 3D N-body dynamic. We overcome the difficulties generated by the attractive interaction in 3D and establish new focusing energy estimates. We study the corresponding BBGKY hierarchy, which contains a diverging coefficient as the strength of the confining potential tends to ∞ . We prove that the limiting structure of the density matrices counterbalances this diverging coefficient. We establish the convergence of the BBGKY sequence and hence the propagation of chaos for the focusing quantum many-body system. We derive rigorously the 1D focusing cubic NLS as the mean-field limit of this 3D focusing quantum many-body dynamic and obtain the exact 3D-to-1D coupling constant.

1.	Introduction	589
2.	Proof of the main theorem	598
3.	Focusing energy estimate	603
4.	Compactness of the BBGKY sequence	618
5.	Limit points satisfy GP hierarchy	622
Appendix A. Basic operator facts and Sobolev-type lemmas		625
Appendix B. Deducing Theorem 1.1 from Theorem 1.2		628
Acl	cknowledgements	631
Ref	eferences	631

1. Introduction

Since the experimental achievement of Bose–Einstein condensates (BEC) was reported in [Anderson et al. 1995; Davis et al. 1995]—a feat for which Cornell, Wieman and Ketterle won the 2001 Nobel Prize in Physics—the investigation of this new state of matter has become one of the most active areas of contemporary research. A BEC, first predicted theoretically by Einstein for noninteracting particles in 1925, is a peculiar gaseous state at which particles of integer spin (bosons) occupy a macroscopic quantum state.

MSC2010: primary 35Q55, 35A02, 81V70; secondary 35A23, 35B45, 81Q05.

Keywords: 3D focusing many-body Schrödinger equation, 1D focusing nonlinear Schrödinger equation, BBGKY hierarchy, focusing Gross–Pitaevskii hierarchy.

Let $t \in \mathbb{R}$ be the time variable and $r_N = (r_1, r_2, \dots, r_N) \in \mathbb{R}^{nN}$ be the position vector of N particles in \mathbb{R}^n . Then, naively, BEC means that, up to a phase factor solely depending on t, the N-body wave function $\psi_N(t, r_N)$ satisfies

$$\psi_N(t, \mathbf{r}_N) \sim \prod_{j=1}^N \varphi(t, r_j)$$

for some one-particle state φ . That is, every particle takes the same quantum state. Equivalently, there is the Penrose–Onsager formulation of BEC: if we let $\gamma_N^{(k)}$ be the k-particle marginal densities associated with ψ_N by

$$\gamma_N^{(k)}(t, \mathbf{r}_k; \mathbf{r}_k') = \int \psi_N(t, \mathbf{r}_k, \mathbf{r}_{N-k}) \overline{\psi}_N(t, \mathbf{r}_k', \mathbf{r}_{N-k}) d\mathbf{r}_{N-k}, \quad \mathbf{r}_k, \mathbf{r}_k' \in \mathbb{R}^{nk}, \tag{1}$$

then BEC equivalently means

$$\gamma_N^{(k)}(t, \mathbf{r}_k; \mathbf{r}_k') \sim \prod_{j=1}^k \varphi(t, r_j) \bar{\varphi}(t, r_j'). \tag{2}$$

It is widely believed that the cubic nonlinear Schrödinger equation (NLS)

$$i\,\partial_t \phi = L\phi + \mu |\phi|^2 \phi,$$

where L is the Laplacian $-\Delta$ or the Hermite operator $-\Delta + \omega^2 |x|^2$, fully describes the one-particle state φ in (2), also called the condensate wave function since it characterizes the whole condensate. Such a belief is one of the main motivations for studying the cubic NLS. Here, the nonlinear term $\mu |\phi|^2 \phi$ represents a strong on-site interaction taken as a mean-field approximation of the pair interactions between the particles: a repelling interaction gives a positive μ , while an attractive interaction yields a $\mu < 0$. Gross and Pitaevskii proposed such a description of the many-body effect. Thus the cubic NLS is also called the Gross-Pitaevskii equation. Because the cubic NLS is a phenomenological equation of mean-field type, naturally, its validity has to be established rigorously from the many-body system which it is supposed to characterize.

In a series of works [Lieb et al. 2005; Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007; 2009; 2010; T. Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Benedikter et al. 2015; X. Chen and Holmer 2013; Grillakis and Machedon 2013; Sohinger 2015], it has been proven rigorously that, for a repelling interaction potential with suitable assumptions, relation (2) holds; moreover, the one-particle state φ solves the defocusing cubic NLS ($\mu > 0$).

It is then natural to ask if BEC happens (whether relation (2) holds) when we have attractive interparticle interactions and if the condensate wave function φ satisfies a focusing cubic NLS (μ < 0) if relation (2) does hold. In contemporary experiments, both positive [Khaykovich et al. 2002; Strecker et al. 2002] and negative [Cornish et al. 2000; Donley et al. 2001] results exist. To present the mathematical interpretations of the experiments, we adopt the notation

$$r_i = (x_i, z_i) \in \mathbb{R}^{2+1}$$

and investigate the procedure of laboratory experiments of BEC subject to attractive interactions according to [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002].

<u>Step A.</u> Confine a large number of bosons, whose interactions are originally *repelling*, inside a trap. Reduce the temperature of the system so that the many-body system reaches its ground state. It is expected that this ground state is a BEC state/factorized state. This step then corresponds to the following mathematical problem:

Problem 1. Show that if $\psi_{N,0}$ is the ground state of the N-body Hamiltonian $H_{N,0}$ defined by

$$H_{N,0} = \sum_{j=1}^{N} \left(-\Delta_{r_j} + \omega_{0,x}^2 |x_j|^2 + \omega_{0,z}^2 z_j^2 \right) + \sum_{1 \le i < j \le N} \frac{1}{a^{3\beta - 1}} V_0 \left(\frac{r_i - r_j}{a^\beta} \right), \tag{3}$$

where $V_0 \ge 0$, then the marginal densities $\{\gamma_{N,0}^{(k)}\}$ associated with $\psi_{N,0}$, defined in (1), satisfy relation (2).

Here, the quadratic potential $\omega^2 |\cdot|^2$ stands for the trapping since [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002] and many other experiments of BEC use the harmonic trap and measure the strength of the trap with ω . We use $\omega_{0,x}$ to denote the trapping strength in the x-direction and $\omega_{0,z}$ to denote the trapping strength in the z-direction, as we will explain later that in order to have a BEC with attractive interaction, either experimentally or mathematically, it is important to have $\omega_{0,x} \neq \omega_{0,z}$. Moreover, we define

$$\frac{1}{a}V_{0,a}(r) = \frac{1}{a^{3\beta-1}}V_0\left(\frac{r}{a^{\beta}}\right), \quad \beta > 0,$$

to be the interaction potential.¹ On the one hand, $V_{0,a}$ is an approximation of the identity as $a \to 0$ and hence matches the Gross–Pitaevskii description that the many-body effect should be modeled by an on-site strong self-interaction. On the other hand, the extra 1/a is to make sure that the Gross–Pitaevskii scaling condition is satisfied. This step is exactly the same as the preparation of the experiments with repelling interactions, and satisfactory answers to Problem 1 have been given in [Lieb et al. 2004].

Step B. Use the property of Feshbach resonance, strengthen the trap (increase $\omega_{0,x}$ or $\omega_{0,z}$) to make the interaction attractive and observe the evolution of the many-body system. This technique continuously controls the sign and the size of the interaction in a certain range.² The system is then time-dependent. In order to observe BEC, the factorized structure obtained in Step A must be preserved in time. Assuming this to be the case, we then reset the time so that t=0 represents the point at which this Feshbach-resonance phase is complete. The subsequent evolution should then be governed by a focusing time-dependent N-body Schrödinger equation with an attractive-pair interaction V subject to an asymptotically factorized initial datum. The confining strengths are different from Step A as well and we denote them by ω_x and ω_z . A mathematically precise statement is the following:

¹ From here on, we consider the $\beta > 0$ case solely. For $\beta = 0$ (the Hartree dynamic), see [Fröhlich et al. 2009; Erdős and Yau 2001; Knowles and Pickl 2010; Rodnianski and Schlein 2009; Michelangeli and Schlein 2012; Grillakis et al. 2010; 2011; X. Chen 2012b; Ammari and Nier 2011; 2008; L. Chen et al. 2011].

² See [Cornish et al. 2000, Figure 1; Khaykovich et al. 2002, Figure 2; Strecker et al. 2002, Figure 1] for graphs of the relationship between ω and V.

Problem 2. Let $\psi_N(t, x_N)$ be the solution to the N-body Schrödinger equation

$$i \,\partial_t \psi_N = \sum_{j=1}^N \left(-\triangle_{r_j} + \omega_x^2 |x_j|^2 + \omega_z^2 z_j^2 \right) \psi_N + \sum_{1 \le i < j \le N} \frac{1}{a^{3\beta - 1}} V\left(\frac{r_i - r_j}{a^\beta}\right) \psi_N, \tag{4}$$

where $V \leq 0$, with $\psi_{N,0}$ from Step A as initial datum. Prove that the marginal densities $\{\gamma_N^{(k)}(t)\}$ associated with $\psi_N(t, \mathbf{x}_N)$ satisfy relation (2).³

In the experiment [Cornish et al. 2000] by Cornell and Wieman's group (the JILA group), once the interaction is turned attractive, the condensate suddenly shrinks to below the resolution limit; then after ~ 5 ms, the many-body system blows up. That is, there is no BEC once the interaction becomes attractive. Moreover, there is no condensate wave function due to the absence of the condensate. Hence, the current NLS theory, which is about the condensate wave function when there is a condensate, cannot explain this 5 ms of time or the blow up. This is currently an open problem in the study of quantum many-body systems. The JILA group later conducted finer experiments and remarked in [Donley et al. 2001, p. 299] that these are simple systems with dramatic behavior, and this behavior provides puzzling results when mean-field theory is tested against them.

In [Khaykovich et al. 2002; Strecker et al. 2002], the particles are confined in a strongly anisotropic cigar-shape trap to simulate a 1D system. That is, $\omega_x \gg \omega_z$. In this case, the experiment is a success in the sense that one obtains a persistent BEC after the interaction is switched to attractive. Moreover, a soliton is observed in [Khaykovich et al. 2002] and a soliton train is observed in [Strecker et al. 2002]. The solitons in these two works have different motion patterns.

In [X. Chen and Holmer 2016b], we have studied the simplified 1D version of (4) as a model case and derived the 1D focusing cubic NLS from it. In the present paper, we consider the full 3D problem of (4), as in the experiments [Khaykovich et al. 2002; Strecker et al. 2002]: We take $\omega_z = 0$ and let $\omega_x \to \infty$ in (4). We derive rigorously the 1D cubic focusing NLS directly from a real 3D quantum many-body system. Here, "directly" means that we are not passing through any 3D cubic NLS. On the one hand, one infers from the experiment [Cornish et al. 2000] that not only it is very difficult to prove the 3D focusing NLS as the mean-field limit of a 3D focusing quantum many-body dynamic, but such a limit also may not be true. On the other hand, the route which first derives

$$i\,\partial_t \varphi = -\Delta_x + \omega^2 |x|^2 \varphi - \partial_z^2 \varphi - |\varphi|^2 \varphi \tag{5}$$

as an $N \to \infty$ limit, from the 3D N-body dynamic, and then considers the $\omega \to \infty$ limit of (5), corresponds to the iterated limit ($\lim_{\omega \to \infty} \lim_{N \to \infty}$) of the N-body dynamic; i.e., the 1D focusing cubic NLS coming from such a path approximates the 3D focusing N-body dynamic when ω is large and N is infinity (if not substantially larger than ω). In experiments, it is fully possible to have N and ω comparable to each other. In fact, N is about 10^4 and ω is about 10^3 in [Görlitz et al. 2001; Stock et al. 2005; Hadzibabic et al. 2006; Desbuquois et al. 2012]. Moreover, as seen in the experiment [Donley et al. 2001], even if ω_X is one digit larger than ω_Z , negative result persists if N is three digits larger than ω_X . Thus, in this

³ Since $\omega \neq \omega_0$, $V \neq V_0$, one could not expect that $\psi_{N,0}$, the ground state of (3), is close to the ground state of (4).

paper, we derive rigorously the 1D focusing cubic NLS as the double limit $(\lim_{N,\omega\to\infty})$ of a real focusing 3D quantum N-body dynamic directly, without passing through any 3D cubic NLS. Furthermore, the interaction between the two parameters N and ω plays a central role. To be specific, we establish the following theorem.

Theorem 1.1 (main theorem). Assume that the pair interaction V is an even Schwartz class function which has a nonpositive integral, i.e., $\int_{\mathbb{R}^3} V(r) dr \leq 0$, but may not be negative everywhere. Let $\psi_{N,\omega}(t, \mathbf{r}_N)$ be the N-body Hamiltonian evolution $e^{itH_{N,\omega}}\psi_{N,\omega}(0)$ with the focusing N-body Hamiltonian $H_{N,\omega}$ given by

$$H_{N,\omega} = \sum_{j=1}^{N} (-\Delta_{r_j} + \omega^2 |x_j|^2) + \sum_{1 \le i < j \le N} (N\omega)^{3\beta - 1} V((N\omega)^{\beta} (r_i - r_j))$$
 (6)

for some $\beta \in (0, \frac{3}{7})$. Let $\{\gamma_{N,\omega}^{(k)}\}$ be the family of marginal densities associated with $\psi_{N,\omega}$. Suppose that the initial datum $\psi_{N,\omega}(0)$ verifies the following conditions:

- (a) $\psi_{N,\omega}(0)$ is normalized; that is, $\|\psi_{N,\omega}(0)\|_{L^2} = 1$,
- (b) $\psi_{N,\omega}(0)$ is asymptotically factorized in the sense that

$$\lim_{N,\omega\to\infty} \operatorname{Tr} \left| \frac{1}{\omega} \gamma_{N,\omega}^{(1)} \left(0, \frac{x_1}{\sqrt{\omega}}, z_1; \frac{x_1'}{\sqrt{\omega}}, z_1' \right) - h(x_1) h(x_1') \phi_0(z_1) \overline{\phi}_0(z_1') \right| = 0 \tag{7}$$

for some one-particle state $\phi_0 \in H^1(\mathbb{R})$ and h is the normalized ground state for the 2D Hermite operator $-\Delta_x + |x|^2$, i.e., $h(x) = \pi^{-\frac{1}{2}} e^{-\frac{1}{2}|x|^2}$.

(c) Away from the x-directional ground-state energy, $\psi_{N,\omega}(0)$ has finite energy per particle:

$$\sup_{\omega \in N} \frac{1}{N} \langle \psi_{N,\omega}(0), (H_{N,\omega} - 2N\omega) \psi_{N,\omega}(0) \rangle \leqslant C.$$

Then there exist C_1 and C_2 which depend solely on V such that $\forall k \ge 1$, $t \ge 0$, and $\varepsilon > 0$, we have the convergence in trace norm (propagation of chaos)

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}} \operatorname{Tr} \left| \frac{1}{\omega^k} \gamma_{N,\omega}^{(k)} \left(t, \frac{x_k}{\sqrt{\omega}}, z_k; \frac{x_k'}{\sqrt{\omega}}, z_k' \right) - \prod_{j=1}^k h(x_j) h(x_j') \phi(t, z_j) \overline{\phi}(t, z_j') \right| = 0, \quad (8)$$

where $v_1(\beta)$ and $v_2(\beta)$ are defined by

$$v_1(\beta) = \frac{\beta}{1 - \beta},\tag{9}$$

$$v_2(\beta) = \min\left(\frac{1-\beta}{\beta}, \frac{\frac{3}{5}-\beta}{\beta - \frac{1}{5}} \mathbf{1}_{\beta \ge \frac{1}{5}} + \infty \cdot \mathbf{1}_{\beta < \frac{1}{5}}, \frac{2\beta}{1 - 2\beta} - \frac{\frac{7}{8}-\beta}{\beta}\right)$$
(10)

(see Figure 1) and $\phi(t,z)$ solves the 1D focusing cubic NLS with the 3D-to-1D coupling constant $b_0(\int |h(x)|^4 dx)$, that is,

$$i \partial_t \phi = -\partial_z^2 \phi - b_0 \left(\int |h(x)|^4 dx \right) |\phi|^2 \phi \quad \text{in } \mathbb{R}$$
 (11)

with initial condition $\phi(0, z) = \phi_0(z)$ and $b_0 = |\int V(r) dr|$.

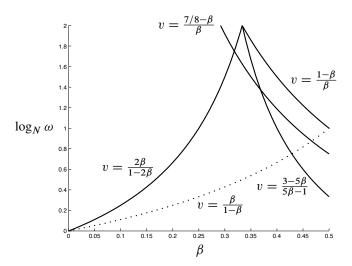


Figure 1. A graph of the various rational functions of β appearing in (9) and (10). In Theorems 1.1 and 1.2, the limit $(N,\omega) \to \infty$ is taken with $v_1(\beta) \le \log_N \omega \le v_2(\beta)$. The region of validity is above the dashed curve and below the solid curves. It is a nonempty region for $0 < \beta \le \frac{3}{7}$. As shown here, there are values of β for which $v_1(\beta) \le 1 \le v_2(\beta)$, which allows $N \sim \omega$, as in [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002; Görlitz et al. 2001; Stock et al. 2005; Hadzibabic et al. 2006; Desbuquois et al. 2012]. Moreover, our result includes part of the $\beta > \frac{1}{3}$ self-interaction region. We will explain why we call the $\beta > \frac{1}{3}$ case self-interaction later in Introduction. We remark that it is not a coincidence that three restrictions intersect at $\beta = \frac{1}{3}$.

Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (main theorem). Assume that the pair interaction V is an even Schwartz class function which has a nonpositive integral, i.e., $\int_{\mathbb{R}^3} V(r) dr \leq 0$, but may not be negative everywhere. Let $\psi_{N,\omega}(t, \mathbf{r}_N)$ be the N-body Hamiltonian evolution $e^{itH_{N,\omega}}\psi_{N,\omega}(0)$, where the focusing N-body Hamiltonian $H_{N,\omega}$ is given by (6) for some $\beta \in (0, \frac{3}{7})$. Let $\{\gamma_{N,\omega}^{(k)}\}$ be the family of marginal densities associated with $\psi_{N,\omega}$. Suppose that the initial datum $\psi_{N,\omega}(0)$ is normalized, asymptotically factorized in the sense of (a) and (b) of Theorem 1.1 and satisfies the energy condition that

(c') there is a C > 0 such that

$$\langle \psi_{N,\omega}(0), (H_{N,\omega} - 2N\omega)^k \psi_{N,\omega}(0) \rangle \leqslant C^k N^k, \quad \forall k \geqslant 1.$$
 (12)

Then there exist C_1 , C_2 which depend solely on V such that $\forall k \ge 1$, $\forall t \ge 0$, we have the convergence in trace norm (propagation of chaos)

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}} \operatorname{Tr} \left| \frac{1}{\omega^k} \gamma_{N,\omega}^{(k)} \left(t, \frac{\boldsymbol{x}_k}{\sqrt{\omega}}, \boldsymbol{z}_k; \frac{\boldsymbol{x}_k'}{\sqrt{\omega}}, \boldsymbol{z}_k' \right) - \prod_{j=1}^k h(x_j) h(x_j') \phi(t, z_j) \overline{\phi}(t, z_j') \right| = 0,$$

where $v_1(\beta)$ and $v_2(\beta)$ are given by (9) and (10) and $\phi(t,z)$ solves the 1D focusing cubic NLS (11).

We remark that the assumptions in Theorem 1.1 are reasonable assumptions on the initial datum coming from Step A. In [Lieb et al. 2004, (1.10)], a satisfying answer has been found by Lieb, Seiringer, and Yngvason for Step A (Problem 1) in the $\omega_{0,x} \gg \omega_{0,z}$ case. For convenience, set $\omega_{0,z} = 1$ in the defocusing N-body Hamiltonian (3) in Step A. Let $\operatorname{scat}(W)$ denote the 3D scattering length of the potential W. By [Erdős et al. 2007, Lemma A.1], for $0 < \beta \le 1$ and $a \ll 1$, we have

$$\operatorname{scat}\left(a \cdot \frac{1}{a^{3\beta}} V\left(\frac{r}{a^{\beta}}\right)\right) \sim \begin{cases} a/(8\pi) \int_{\mathbb{R}^3} V & \text{if } 0 < \beta < 1, \\ a \operatorname{scat}(V) & \text{if } \beta = 1. \end{cases}$$

Lieb et al. [2004, (1.10)] define the quantity $g = g(\omega_{0,x}, N, a)$ by

$$g := 8\pi a \omega_{0,x} \left(\int |h(x)|^4 dx \right).$$

Then if $Ng \sim 1$, they proved in Theorem 5.1 of the same work that BEC happens in Step A and the Gross-Pitaevskii limit holds.⁴ To be specific, they proved that

$$\lim_{N,\omega_{0,x}\to\infty} \operatorname{Tr} \left| \frac{1}{\omega_{0,x}} \gamma_{N,\omega_{0,x}}^{(1)} \left(0, \frac{x_1}{\sqrt{\omega_{0,x}}}, z_1; \frac{x_1'}{\sqrt{\omega_{0,x}}}, z_1' \right) - h(x_1) h(x_1') \phi_0(z_1) \overline{\phi}_0(z_1') \right| = 0$$

provided that ϕ_0 is the minimizer to the 1D defocusing NLS energy functional

$$E_{Ng} = \int_{\mathbb{R}} (|\partial_z \phi(z)|^2 + z^2 |\phi(z)|^2 + 4\pi Ng |\phi(z)|^4) dz$$
 (13)

subject to the constraint $\|\phi\|_{L^2(\mathbb{R})} = 1$. Hence, the assumptions in Theorem 1.1 are reasonable assumptions on the initial datum drawn from Step A. To be specific, we have chosen $a = (N\omega)^{-1}$ in the interaction so that $Ng \sim 1$ and assumptions (a), (b) and (c) are the conclusions of [Lieb et al. 2004, Theorem 5.1].⁵

The equivalence of Theorems 1.1 and 1.2 for asymptotically factorized initial data is well known. In the main part of this paper, we prove Theorem 1.2 in full detail. For completeness, we discuss briefly how to deduce Theorem 1.1 from Theorem 1.2 in Appendix B.

To our knowledge, Theorems 1.1 and 1.2 offer the first rigorous derivation of the 1D focusing cubic NLS (11) from the 3D focusing quantum N-body dynamic (6). Moreover, our result covers part of the $\beta > \frac{1}{3}$ self-interaction region in 3D. As pointed out in [Elgart et al. 2006], the study of Step B is of particular interest when $\beta \in \left(\frac{1}{3}, 1\right]$ in 3D. The reason is the following. The initial datum coming from Step A is the ground state of (3) with $\omega_{0,x}, \omega_{0,z} \neq 0$ and hence is localized in space. We can assume all N particles are in a box of length 1. Let the effective radius of the pair interaction V be R_0 , then the effective radius of $V((N\omega)^{\beta}(r_i-r_j))$ is about $R_0/(N\omega)^{\beta}$. Thus every particle in the box interacts with $(R_0/(N\omega)^{\beta})^3 \times N$ other particles. Thus, for $\beta > \frac{1}{3}$ and large N, every particle interacts with only itself. This exactly matches the Gross-Pitaevskii theory that the many-body effect should be modeled

⁴ This corresponds to Region 2 of [Lieb et al. 2004]. The other four regions are the ideal gas case, the 1D Thomas–Fermi case, the Lieb–Liniger case, and the Girardeau–Tonks case. As mentioned on page 388 of that work, BEC is not expected in the Lieb–Liniger and the Girardeau–Tonks cases, and is an open problem in the Thomas–Fermi case; we deal only with Region 2 in this paper.

⁵ We remark that the interaction potential $N^{3\beta-1}\omega^{3\beta}V((N\omega)^{\beta}(r_i-r_j))$, which looks like a "direct" extension of the interaction potential from the *n*D-to-*n*D work, does not satisfy $Ng \sim 1$ in the $N, \omega \to \infty$ process.

by a strong on-site self-interaction. Therefore, for the mathematical justification of the Gross-Pitaevskii theory, it is of particular interest to prove Theorems 1.1 and 1.2 for self-interaction $(\beta > \frac{1}{3})$.

A main tool used to prove Theorem 1.2 is the analysis of the BBGKY hierarchy of

$$\left\{ \tilde{\gamma}_{N,\omega}^{(k)}(t) = \frac{1}{\omega^k} \gamma_{N,\omega}^{(k)} \left(t, \frac{\boldsymbol{x}_k}{\sqrt{\omega}}, \boldsymbol{z}_k; \frac{\boldsymbol{x}_k'}{\sqrt{\omega}}, \boldsymbol{z}_k' \right) \right\}_{k=1}^{N}$$

as $N, \omega \to \infty$. In the classical setting, deriving equations of mean-field type by studying the limit of the BBGKY hierarchy was proposed by Kac and demonstrated by Lanford's work on the Boltzmann equation. In the quantum setting, the usage of the BBGKY hierarchy was suggested by Spohn [1980] and was proven successful by Elgart, Erdős, Schlein, and Yau in their fundamental papers [Elgart et al. 2006; Erdős et al. 2006; 2007; 2009; 2010],⁶ which rigorously derive the 3D cubic defocusing NLS from a 3D quantum many-body dynamic with repulsive-pair interactions and no trapping. The Elgart–Erdős–Schlein–Yau program⁷ consists of two principal parts: in one part, they consider the sequence of the marginal densities $\{\gamma_k^{(k)}\}$ associated with the Hamiltonian evolution $e^{itH_N}\psi_N(0)$, where

$$H_N = \sum_{j=1}^{N} -\Delta_{r_j} + \frac{1}{N} \sum_{1 \le i < j \le N} N^{3\beta} V(N^{\beta} (r_i - r_j)),$$

and prove that an appropriate limit, as $N \to \infty$, solves the 3D Gross-Pitaevskii hierarchy

$$i \,\partial_t \gamma^{(k)} + \sum_{j=1}^k [\Delta_{r_k}, \gamma^{(k)}] = b_0 \sum_{j=1}^k \operatorname{Tr}_{r_{k+1}} [\delta(r_j - r_{k+1}), \gamma^{(k+1)}] \quad \text{for all } k \geqslant 1.$$
 (14)

In another part, they show that hierarchy (14) has a unique solution which is therefore a completely factorized state. However, the uniqueness theory for hierarchy (14) is surprisingly delicate due to the fact that it is a system of infinitely many coupled equations over an unbounded number of variables. By assuming a space-time bound on the limit of $\{\gamma_N^{(k)}\}$, Klainerman and Machedon [2008] gave another uniqueness theorem regarding (14) through a collapsing estimate originating from the multilinear Strichartz estimates and a board game argument inspired by the Feynman graph argument in [Erdős et al. 2007].

The method by Klainerman and Machedon [2008] was taken up by Kirkpatrick, Schlein, and Staffilani [Kirkpatrick et al. 2011], who derived the 2D cubic defocusing NLS from the 2D quantum many-body dynamic; by T. Chen and Pavlović [2011], who considered the 1D and 2D three-body repelling interaction problem; by X. Chen [2012a; 2013], who investigated the defocusing problem with trapping in 2D and 3D; and by X. Chen and J. Homer [2013], who proved the effectiveness of the defocusing 3D to 2D reduction problem. Such a method has also inspired the study of the general existence theory of hierarchy (14); see [T. Chen et al. 2010; 2012; T. Chen and Pavlović 2010; Gressman et al. 2014; Sohinger and Staffilani 2015].

One main open problem in the uniqueness theory of Klainerman–Machedon type is the verification of the uniqueness condition in 3D, though it is fully solved in 1D and 2D using trace theorems in [Kirkpatrick et al. 2011]. For the 3D defocusing problem without traps, T. Chen and Pavlović [2014] showed that,

⁶ Around the same time, there was the 1D defocusing work [Adami et al. 2007].

⁷ See [Benedikter et al. 2015; Grillakis and Machedon 2013; Pickl 2011] for different approaches.

for $\beta \in (0, \frac{1}{4})$, the limit of the BBGKY sequence satisfies the uniqueness condition.⁸ X. Chen [2013] extended and simplified their method to study the 3D trapping problem for $\beta \in (0, \frac{2}{7}]$. The $\beta \in (0, \frac{2}{7}]$ result by X. Chen was then extended to $\beta \in (0, \frac{2}{3})$ using X_b spaces and Littlewood–Paley theory in [X. Chen and Holmer 2016c] and further to $\beta < 1$ in [X. Chen and Holmer 2016a] via correlation structures and many-body scattering process. The $\beta = 1$ case is still open.

Using a version of the quantum de Finetti theorem from [Lewin et al. 2014], T. Chen, Hainzl, Pavlović, and Seiringer provided an alternative proof to the uniqueness theorem in [Erdős et al. 2007] and showed that it is an unconditional uniqueness result in the sense of NLS theory. With this method, Sohinger [2015] derived the 3D defocusing cubic NLS in the periodic case. See also [X. Chen and Smith 2014; Hong et al. 2015].

Recently, the first step in the mass critical focusing case has been taken in [X. Chen and Holmer 2016d].

Organization of the paper. We first outline the proof of our main theorem, Theorem 1.2, in Section 2. The components of the proof are in Sections 3, 4, and 5.

The first main part is the proof of the needed focusing energy estimate, stated and proved as Theorem 3.1 in Section 3. The main difficulty in establishing the energy estimate is understanding the interplay between two parameters N and ω . On the one hand, as suggested by the experiments [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002], in order to have to a tensor product state (BEC) in this focusing setting, one has to explore "the 1D feature" of the 3D focusing N-body Hamiltonian (6), which comes from a large ω . At the same time, an N too large would allow the 3D effect to dominate, and one has to avoid this. This suggests that an inequality of the form $N^{v_1(\beta)} \le \omega$ is a natural requirement. On the other hand, according to the uncertainty principle, in 3D, as the x-component of the particles' position becomes more and more determined to be 0, the x-component of the momentum and thus the energy must blow up. Hence the energy of the system is dominated by its x-directional part, which is in fact infinity as $\omega \to \infty$. Since the particles are interacting via 3D potential, to avoid the excessive x-directional energy being transferred to the z-direction, during the $N, \omega \to \infty$ process, ω cannot be too large either. Such a problem is totally new and does not exist in the 1D model [X. Chen and Holmer 2016b]. It suggests that an inequality of the form $\omega \le N^{v_2(\beta)}$ is a natural requirement.

The second main part of the proof is the analysis of the focusing " $\infty - \infty$ " BBGKY hierarchy of

$$\left\{\tilde{\gamma}_{N,\omega}^{(k)}(t) = \frac{1}{\omega^k} \gamma_{N,\omega}^{(k)} \left(t, \frac{x_k}{\sqrt{\omega}}, z_k; \frac{x_k'}{\sqrt{\omega}}, z_k'\right)\right\}_{k=1}^{N}$$

as $N, \omega \to \infty$. With our definition, the sequence of the marginal densities $\{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N$ satisfies the BBGKY hierarchy

$$i \,\partial_t \tilde{\gamma}_{N,\omega}^{(k)} = \omega \sum_{j=1}^k [-\Delta_{x_j} + |x_j|^2, \, \tilde{\gamma}_{N,\omega}^{(k)}] + \sum_{j=1}^k [-\partial_{z_j}^2, \, \tilde{\gamma}_{N,\omega}^{(k)}]$$

$$+ \frac{1}{N} \sum_{1 \le i < j \le k} [V_{N,\omega}(r_i - r_j), \, \tilde{\gamma}_{N,\omega}^{(k)}] + \frac{N - k}{N} \sum_{j=1}^k \text{Tr}_{r_{k+1}} [V_{N,\omega}(r_j - r_{k+1}), \, \tilde{\gamma}_{N,\omega}^{(k+1)}],$$

⁸ See also [T. Chen and Taliaferro 2014].

where $V_{N,\omega}$ is defined in (17). We call it an " $\infty - \infty$ " BBGKY hierarchy because it is not clear whether the term

$$\omega[-\Delta_{x_j} + |x_j|^2, \, \tilde{\gamma}_{N,\omega}^{(k)}]$$

tends to a limit as $N, \omega \to \infty$. Since $\tilde{\gamma}_{N,\omega}^{(k)}$ is not a factorized state for t>0, one cannot expect the commutator to be zero; though it is zero if $\tilde{\gamma}_{N,\omega}^{(k)}$ is exactly the limit in (8). This is in strong contrast with the nD-to-nD work [Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007; 2009; 2010; T. Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Sohinger 2015] in which the formal limit of the corresponding BBGKY hierarchy is clear. With the aforementioned focusing energy estimate, we find that this diverging coefficient is counterbalanced by the limiting structure of the density matrices and establish the weak* compactness and convergence of this focusing BBGKY hierarchy in Sections 4 and 5.

2. Proof of the main theorem

We start by setting up some notation for the rest of the paper. Recall $h(x) = \pi^{-\frac{1}{2}} e^{-\frac{1}{2}|x|^2}$, which is the ground state for the 2D Hermite operator $-\Delta_x + |x|^2$; i.e., it solves $(-2 - \Delta_x + |x|^2)h = 0$. Then the normalized ground-state eigenfunction $h_{\omega}(x)$ of $-\Delta_x + \omega^2 |x|^2$ is given by $h_{\omega}(x) = \omega^{\frac{1}{2}} h(\omega^{\frac{1}{2}}x)$; i.e., it solves

$$(-2\omega - \Delta_x + \omega^2 |x|^2)h_{\omega} = 0.$$

In particular, $h_1 = h$. Noticing that both of the convergences (7) and (8) involve scaling, we introduce the rescaled solution

$$\tilde{\psi}_{N,\omega}(t, \mathbf{r}_N) := \frac{1}{\omega^{\frac{1}{2}N}} \psi_{N,\omega} \left(t, \frac{\mathbf{x}_N}{\sqrt{\omega}}, \mathbf{z}_N \right) \tag{15}$$

and the rescaled Hamiltonian

$$\widetilde{H}_{N,\omega} = \left[\sum_{j=1}^{N} -\partial_{z_{j}}^{2} + \omega(-\triangle_{x} + |x|^{2}) \right] + \frac{1}{N} \sum_{1 \le i < j \le N} V_{N,\omega}(r_{i} - r_{j}), \tag{16}$$

where

$$V_{N,\omega}(r) = N^{3\beta} \omega^{3\beta - 1} V\left(\frac{(N\omega)^{\beta}}{\sqrt{\omega}} x, (N\omega)^{\beta} z\right). \tag{17}$$

Then

$$(\widetilde{H}_{N,\omega}\widetilde{\psi}_{N,\omega})(t,x_N,z_N) = \frac{1}{\omega^{\frac{1}{2}N}}(H_{N,\omega}\psi_{N,\omega})\left(t,\frac{x_N}{\sqrt{\omega}},z_N\right),$$

and hence when $\psi_{N,\omega}(t)$ is the Hamiltonian evolution given by (6) and $\tilde{\psi}_{N,\omega}$ is defined by (15), we have

$$\tilde{\psi}_{N,\omega}(t,\mathbf{r}_N) = e^{it\tilde{H}_{N,\omega}}\tilde{\psi}(0,\mathbf{r}_N).$$

⁹ Here, "nD-to-nD" means "deriving the nD NLS equation from the nD many-body evolution".

If we let $\{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N$ be the marginal densities associated with $\tilde{\psi}_{N,\omega}$, then $\{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N$ satisfies the " $\infty-\infty$ " focusing BBGKY hierarchy

$$i \,\partial_t \tilde{\gamma}_{N,\omega}^{(k)} = \omega \sum_{j=1}^k \left[-\Delta_{x_j} + |x_j|^2, \ \tilde{\gamma}_{N,\omega}^{(k)} \right] + \sum_{j=1}^k \left[-\partial_{z_j}^2, \ \tilde{\gamma}_{N,\omega}^{(k)} \right]$$

$$+ \frac{1}{N} \sum_{1 \le i < j \le k} \left[V_{N,\omega}(r_i - r_j), \ \tilde{\gamma}_{N,\omega}^{(k)} \right] + \frac{N - k}{N} \sum_{j=1}^k \operatorname{Tr}_{r_{k+1}} \left[V_{N,\omega}(r_j - r_{k+1}), \ \tilde{\gamma}_{N,\omega}^{(k+1)} \right]. \tag{18}$$

We will always take $\omega \ge 1$. For the rescaled marginals $\{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^{N}$, we define

$$\widetilde{S}_j := \left[1 - \partial_{z_j}^2 + \omega(-\Delta_{x_j} + |x_j|^2 - 2)\right]^{\frac{1}{2}}.$$
(19)

Two immediate properties of \tilde{S}_j are the following. On the one hand,

$$\tilde{S}_{j}^{2}(h_{1}(x_{j})\phi(z_{j})) = h_{1}(x_{j})(1 - \partial_{z_{j}}^{2})\phi(z_{j})$$

and thus the diverging parameter ω has no consequence when \widetilde{S}_j is applied to a tensor product function $h_1(x_j)\phi(z_j)$ for which the x_j -component rests in the ground state. On the other hand, $\widetilde{S}_j \ge 0$ as an operator because $-\Delta_{x_j} + |x_j|^2 - 2 \ge 0$.

Now, noticing that the eigenvalues of $-\Delta_x + \omega^2 |x|^2$ in 2D are $\{2(l+1)\omega\}_{l=0}^{\infty}$, let $P_{l\omega}$ be the orthogonal projection onto the eigenspace associated with eigenvalue $2(l+1)\omega$. That is, $I = \sum_{l=0}^{\infty} P_{l\omega}$, where I is the identity operator on $L^2(\mathbb{R}^3)$. As a matter of notation for our multicoordinate problem, $P_{l\omega}^j$ will refer to the projection in x_j -coordinate at energy $2(l+1)\omega$; i.e.,

$$I = \prod_{j=1}^{k} \left(\sum_{l=0}^{\infty} P_{l\omega}^{j} \right). \tag{20}$$

In (20), I is the identity operator on $L^2(\mathbb{R}^{3k})$. In particular, when $\omega=1$, we use simply P_l . That is, P_0 denotes the orthogonal projection onto the ground state of $-\Delta_x + |x|^2$ and $P_{\geq 1}$ means the orthogonal projection onto all higher-energy modes of $-\Delta_x + |x|^2$ so that $I = P_0 + P_{\geq 1}$, where $I: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$. Since we will only use P_0 and $P_{\geq 1}$ for the $\omega=1$ case, we define \mathcal{P}_0^j and \mathcal{P}_1^j to be respectively P_0 and $P_{\geq 1}$ acting on the x_j -variable, and

$$\mathcal{P}_{\alpha} = \mathcal{P}_{\alpha_1}^1 \cdots \mathcal{P}_{\alpha_k}^k \tag{21}$$

for a k-tuple $\alpha = (\alpha_1, \dots, \alpha_k)$ with $\alpha_j \in \{0, 1\}$ and adopt the notation $|\alpha| = \alpha_1 + \dots + \alpha_k$. Then

$$I = \sum_{\alpha} \mathcal{P}_{\alpha},\tag{22}$$

where $I: L^2(\mathbb{R}^{3k}) \to L^2(\mathbb{R}^{3k})$.

We next introduce an appropriate topology on the density matrices, as was previously done in [Elgart et al. 2006; Erdős and Yau 2001; Erdős et al. 2006; 2007; 2009; 2010; Kirkpatrick et al. 2011; T. Chen and Pavlović 2011; X. Chen 2012a; 2013; X. Chen and Holmer 2013; 2016b; 2016c; Sohinger 2015].

Denote the spaces of compact operators and trace class operators on $L^2(\mathbb{R}^{3k})$ as \mathcal{K}_k and \mathcal{L}_k^1 , respectively. Then $(\mathcal{K}_k)' = \mathcal{L}_k^1$. By the fact that \mathcal{K}_k is separable, we pick a dense countable subset

$$\{J_i^{(k)}\}_{i\geqslant 1}\subset\mathcal{K}_k$$

in the unit ball of \mathcal{K}_k (so $||J_i^{(k)}||_{op} \le 1$, where $||\cdot||_{op}$ is the operator norm). For $\gamma_1^{(k)}, \gamma_2^{(k)} \in \mathcal{L}_k^1$, we then define a metric d_k on \mathcal{L}_k^1 by

$$d_k(\gamma_1^{(k)}, \gamma_2^{(k)}) = \sum_{i=1}^{\infty} 2^{-i} \left| \operatorname{Tr} J_i^{(k)} (\gamma_1^{(k)} - \gamma_2^{(k)}) \right|.$$

A uniformly bounded sequence $\tilde{\gamma}_{N,\omega}^{(k)} \in \mathcal{L}_k^1$ converges to $\tilde{\gamma}^{(k)} \in \mathcal{L}_k^1$ with respect to the weak* topology if and only if

$$\lim_{N,\omega\to\infty} d_k(\tilde{\gamma}_{N,\omega}^{(k)}, \tilde{\gamma}^{(k)}) = 0.$$

For fixed T > 0, let $C([0, T], \mathcal{L}_k^1)$ be the space of functions of $t \in [0, T]$ with values in \mathcal{L}_k^1 which are continuous with respect to the metric d_k . On $C([0, T], \mathcal{L}_k^1)$, we define the metric

$$\hat{d}_k(\gamma^{(k)}(\cdot), \tilde{\gamma}^{(k)}(\cdot)) = \sup_{t \in [0,T]} d_k(\gamma^{(k)}(t), \tilde{\gamma}^{(k)}(t)),$$

and denote by τ_{prod} the topology on the space $\bigoplus_{k \geq 1} C([0, T], \mathcal{L}_k^1)$ given by the product of topologies generated by the metrics \hat{d}_k on $C([0, T], \mathcal{L}_k^1)$.

With the above topology on the space of marginal densities, we prove Theorem 1.2. The proof is divided into five steps.

Step I (focusing energy estimate). We first establish, via an elaborate calculation in Theorem 3.1, that one can compensate for the negativity of the interaction in the focusing many-body Hamiltonian (6) by adding a product of N and some constant α depending on V, provided that $C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}$, where C_1 and C_2 depend solely on V. Henceforth, though $H_{N,\omega}$ is not positive-definite, we derive, from the energy condition (12), an H^1 -type energy bound:

$$\langle \psi_{N,\omega}, (\alpha + N^{-1}H_{N,\omega} - 2\omega)^k \psi_{N,\omega} \rangle \geqslant C^k \left\| \prod_{j=1}^k S_j \psi_{N,\omega} \right\|_{L^2(\mathbb{R}^{3N})}^2,$$

where

$$S_j := (1 - \Delta_{x_j} + \omega^2 |x_j|^2 - 2\omega - \partial_{z_j}^2)^{\frac{1}{2}}.$$

Since the quantity $\langle \psi_{N,\omega}, (H_{N,\omega} - 2N\omega)^k \psi_{N,\omega} \rangle$ is conserved by the evolution, via Corollary 3.2, we deduce the a priori bounds, crucial to the analysis of the " $\infty - \infty$ " BBGKY hierarchy (18), on the scaled marginal densities,

$$\sup_{t} \operatorname{Tr} \left(\prod_{j=1}^{k} \widetilde{S}_{j} \right) \widetilde{\gamma}_{N,\omega}^{(k)} \left(\prod_{j=1}^{k} \widetilde{S}_{j} \right) \leqslant C^{k}, \quad \sup_{t} \operatorname{Tr} \prod_{j=1}^{k} (1 - \triangle_{r_{j}}) \widetilde{\gamma}_{N,\omega}^{(k)} \leqslant C^{k},$$

$$\sup_{t} \operatorname{Tr} \mathcal{P}_{\alpha} \widetilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta} \leqslant C^{k} \omega^{-\frac{1}{2}|\alpha| - \frac{1}{2}|\beta|},$$

where \mathcal{P}_{α} and \mathcal{P}_{β} are defined as in (21). We remark that the quantity

$$\operatorname{Tr}(1-\Delta_{r_1})\tilde{\gamma}_{N,\omega}^{(1)}$$

is not the one-particle kinetic energy of the system; the one-particle kinetic energy of the system is $\text{Tr}(1-\omega\Delta_{x_1}-\partial_{z_1}^2)\tilde{\gamma}_{N\,\omega}^{(1)}$ and grows like ω . This is also in contrast to the *n*D-to-*n*D work,

Step II (compactness of BBGKY). We fix T>0 and work in the time interval $t\in[0,T]$. In Theorem 4.1, we establish the compactness of the BBGKY sequence $\{\Gamma_{N,\omega}(t)=\{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N\}\subset\bigoplus_{k\geqslant 1}C([0,T],\mathcal{L}_k^1)$ with respect to the product topology τ_{prod} even though hierarchy (18) contains attractive interactions and an indefinite $\infty-\infty$. Moreover, in Corollary 4.2, we prove that, to be compatible with the energy bound obtained in Step I, every limit point $\Gamma(t)=\{\tilde{\gamma}^{(k)}\}_{k=1}^\infty$ must take the form

$$\tilde{\gamma}^{(k)}(t,(x_k,z_k);(x_k',z_k')) = \left(\prod_{j=1}^k h_1(x_j)h_1(x_j')\right)\tilde{\gamma}_z^{(k)}(t,z_k;z_k'),$$

where $\tilde{\gamma}_z^{(k)} = \operatorname{Tr}_x \tilde{\gamma}^{(k)}$ is the z-component of $\tilde{\gamma}^{(k)}$.

Step III (limit points of BBGKY satisfy GP). In Theorem 5.1, we prove that if $\Gamma(t) = \{\tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ is a $C_1 N^{v_1(\beta)} \leq \omega \leq C_2 N^{v_2(\beta)}$ limit point of $\{\Gamma_{N,\omega}(t) = \{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^{N}\}$ with respect to the product topology τ_{prod} , then $\{\tilde{\gamma}_z^{(k)} = \text{Tr}_x \, \tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ is a solution to the focusing coupled Gross-Pitaevskii (GP) hierarchy subject to initial data $\tilde{\gamma}_z^{(k)}(0) = |\phi_0\rangle\langle\phi_0|^{\otimes k}$ with coupling constant $b_0 = |\int V(r) \, dr|$, which, written in differential form, is

$$i\,\partial_t \tilde{\gamma}_z^{(k)} = \sum_{j=1}^k [-\partial_{z_j}^2, \, \tilde{\gamma}_z^{(k)}] - b_0 \sum_{j=1}^k \mathrm{Tr}_{z_{k+1}} \, \mathrm{Tr}_x [\delta(r_j - r_{k+1}), \, \tilde{\gamma}^{(k+1)}]. \tag{23}$$

Together with the limiting structure concluded in Corollary 4.2, we can further deduce $\{\tilde{\gamma}_z^{(k)} = \operatorname{Tr}_x \tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ is a solution to the 1D focusing GP hierarchy subject to initial data $\tilde{\gamma}_z^{(k)}(0) = |\phi_0\rangle\langle\phi_0|^{\otimes k}$ with coupling constant $b_0(\int |h_1(x)|^4 dx)$, which, written in differential form, is

$$i\,\partial_t \tilde{\gamma}_z^{(k)} = \sum_{j=1}^k \left[-\partial_{z_j}^2, \, \tilde{\gamma}_z^{(k)} \right] - b_0 \left(\int |h_1(x)|^4 \, dx \right) \sum_{j=1}^k \operatorname{Tr}_{z_{k+1}} \left[\delta(z_j - z_{k+1}), \, \tilde{\gamma}_z^{(k+1)} \right]. \tag{24}$$

<u>Step IV</u> (GP has a unique solution). When $\tilde{\gamma}_z^{(k)}(0) = |\phi_0\rangle\langle\phi_0|^{\otimes k}$, we know one solution to the 1D focusing GP hierarchy (24), namely $|\phi\rangle\langle\phi|^{\otimes k}$ if ϕ solves the 1D focusing NLS (11). Since we have proven the a priori bound,

$$\sup_{t} \operatorname{Tr} \left(\prod_{j=1}^{k} \langle \partial_{z_{j}} \rangle \right) \tilde{\gamma}_{z}^{(k)} \left(\prod_{j=1}^{k} \langle \partial_{z_{j}} \rangle \right) \leqslant C^{k}.$$

A trace theorem then shows that $\{\tilde{\gamma}_z^{(k)}\}$ verifies the requirement of the following uniqueness theorem and hence we conclude that $\tilde{\gamma}_z^{(k)} = |\phi\rangle\langle\phi|^{\otimes k}$.

Theorem 2.1 [X. Chen and Holmer 2016b, Theorem 1.3]. ¹⁰Let

$$B_{j,k+1}\gamma_z^{(k+1)} = \text{Tr}_{z_{k+1}}[\delta(z_j - z_{k+1}), \, \gamma_z^{(k+1)}].$$

If $\{\gamma_z^{(k)}\}_{k=1}^{\infty}$ solves the 1D focusing GP hierarchy (24) subject to zero initial data and the space-time bound¹¹

$$\int_{0}^{T} \left\| \left(\prod_{j=1}^{k} \langle \partial_{z_{j}} \rangle^{\varepsilon} \langle \partial_{z_{j}'} \rangle^{\varepsilon} \right) B_{j,k+1} \gamma_{z}^{(k+1)}(t, \cdot; \cdot) \right\|_{L_{z,z'}^{2}} dt \leqslant C^{k}$$
(25)

for some ε , C > 0 and all $1 \le j \le k$, then $\forall k, t \in [0, T]$, we have $\gamma_z^{(k+1)} = 0$.

Thus the compact sequence $\{\Gamma_{N,\omega}(t) = \{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N\}$ has only one $C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}$ limit point, namely

$$\tilde{\gamma}^{(k)} = \prod_{j=1}^k h_1(x_j) h_1(x_j') \phi(t, z_j) \overline{\phi}(t, z_j').$$

We then infer from the definition of the topology that as trace class operators

$$\tilde{\gamma}_{N,\omega}^{(k)} \to \prod_{j=1}^k h_1(x_j)h_1(x_j')\phi(t,z_j)\overline{\phi}(t,z_j')$$
 weak*.

<u>Step V</u> (weak* convergence upgraded to strong). Since the limit concluded in Step IV is an orthogonal projection, the well-known argument in [Erdős et al. 2010] upgrades the weak* convergence to strong. In fact, testing the sequence against the compact observable

$$J^{(k)} = \prod_{j=1}^{k} h_1(x_j) h_1(x'_j) \phi(t, z_j) \overline{\phi}(t, z'_j),$$

and noticing the fact that $(\tilde{\gamma}_{N,\omega}^{(k)})^2 \leq \tilde{\gamma}_{N,\omega}^{(k)}$ since the initial data is normalized, we see that as Hilbert–Schmidt operators,

$$\tilde{\gamma}_{N,\omega}^{(k)} \to \prod_{j=1}^k h_1(x_j)h_1(x_j')\phi(t,z_j)\overline{\phi}(t,z_j')$$
 strongly.

Since $\operatorname{Tr} \tilde{\gamma}_{N,\omega}^{(k)} = \operatorname{Tr} \tilde{\gamma}^{(k)}$, we deduce the strong convergence

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}} \operatorname{Tr} \left| \tilde{\gamma}_{N,\omega}^{(k)}(t,\boldsymbol{x}_k,\boldsymbol{z}_k;\boldsymbol{x}_k',\boldsymbol{z}_k') - \prod_{j=1}^k h_1(x_j)h_1(x_j')\phi(t,z_j)\overline{\phi}(t,z_j') \right| = 0$$

via Grümm's convergence theorem [Simon 2005, Theorem 2.19]. 12

¹⁰ For other uniqueness theorems or related estimates regarding the GP hierarchies, see [Erdős et al. 2007; Klainerman and Machedon 2008; Kirkpatrick et al. 2011; Grillakis and Margetis 2008; X. Chen 2011; 2012a; Beckner 2014; Gressman et al. 2014; T. Chen et al. 2015; Hong et al. 2015; Sohinger 2015]

¹¹ Though the space-time bound (25) follows from a simple trace theorem here, verifying such a condition in 3D is highly nontrivial and is merely partially solved so far. See [T. Chen and Pavlović 2014; X. Chen 2013; X. Chen and Holmer 2016c].

¹² One can also use the argument in [X. Chen 2013, Appendix A] to conclude the convergence with general datum.

3. Focusing energy estimate

We find it more convenient to prove the energy estimate for $\psi_{N,\omega}$ and then convert it by scaling to an estimate for $\tilde{\psi}_{N,\omega}$; see (15). Note that, as an operator, we have the positivity

$$-\Delta_{x_j} + \omega^2 |x_j|^2 - 2\omega \geqslant 0.$$

Define

$$S_j := (1 - \Delta_{x_j} + \omega^2 |x_j|^2 - 2\omega - \partial_{z_j}^2)^{\frac{1}{2}} = (1 - 2\omega - \Delta_{r_j} + \omega^2 |x_j|^2)^{\frac{1}{2}},$$

and write

$$S^{(k)} = \prod_{j=1}^k S_j.$$

Theorem 3.1 (energy estimate). For $\beta \in (0, \frac{3}{7})$, let^{13}

$$v_{E}(\beta) = \min\left(\frac{1-\beta}{\beta}, \frac{\frac{3}{5}-\beta}{\beta-\frac{1}{5}} \mathbf{1}_{\beta \geqslant \frac{1}{5}} + \infty \cdot \mathbf{1}_{\beta < \frac{1}{5}}, \frac{\frac{7}{8}-\beta}{\beta}\right).$$
 (26)

There are constants¹⁴ $C_1 = C_1(\|V\|_{L^1}, \|V\|_{L^\infty})$, $C_2 = C_2(\|V\|_{L^1}, \|V\|_{L^\infty})$, and absolute constant C_3 , and for each $k \in \mathbb{N}$, there is an integer $N_0(k)$, such that for any $k \in \mathbb{N}$, $N \ge N_0(k)$ and ω which satisfy

$$C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_E(\beta)},\tag{27}$$

there holds

$$\left\langle (\alpha + N^{-1}H_{N,\omega} - 2\omega)^k \psi, \psi \right\rangle \geqslant \frac{1}{2^k} \left(\|S^{(k)}\psi\|_{L^2}^2 + N^{-1} \|S_1 S^{(k-1)}\psi\|_{L^2}^2 \right), \tag{28}$$

where

$$\alpha = C_3 \|V\|_{L^1}^2 + 1.$$

Proof. For smoothness of presentation, we postpone the proof to Section 3.

Recall the rescaled operator (19),

$$\widetilde{S}_j = \left[1 - \partial_{z_j}^2 + \omega(-\Delta_{x_j} + |x_j|^2 - 2)\right]^{\frac{1}{2}}.$$

We notice that

$$(S_i \psi)(t, \mathbf{x}_N, \mathbf{z}_N) = \omega^{N/2} (\widetilde{S}_i \widetilde{\psi})(t, \sqrt{\omega} \mathbf{x}_N, \mathbf{z}_N)$$

if $\tilde{\psi}_{N,\omega}$ is defined via (15). Thus we can convert the conclusion of Theorem 3.1 into statements about $\tilde{\psi}_{N,\omega}$, \tilde{S}_j , and $\tilde{\gamma}_{N,\omega}^{(k)}$, which we will utilize in the rest of the paper.

¹³ One notices that $v_E(\beta)$ is different from $v_2(\beta)$ in the sense that the term $2\beta/(1-2\beta)$ is missing. That restriction comes from Theorem 5.1.

¹⁴ By *absolute* constant we mean a constant independent of V, N, ω , etc. Formulas for C_1 , C_2 in terms of $||V||_{L^1}$, $||V||_{L^\infty}$ can, in principle, be extracted from the proof.

Corollary 3.2. Define

$$\widetilde{S}^{(k)} = \prod_{j=1}^{k} \widetilde{S}_{j}, \quad L^{(k)} = \prod_{j=1}^{k} \langle \nabla_{r_{j}} \rangle.$$

Assume $C_1 N^{v_1(\beta)} \leq \omega \leq C_2 N^{v_E(\beta)}$. Let $\tilde{\psi}_{N,\omega}(t) = e^{it\tilde{H}_{N,\omega}} \tilde{\psi}_{N,\omega}(0)$ and $\{\tilde{\gamma}_{N,\omega}^{(k)}(t)\}$ be the associated marginal densities. Then for all $\omega \geq 1$, $k \geq 0$, N large enough, we have the uniform-in-time bound

$$\operatorname{Tr} \widetilde{S}^{(k)} \widetilde{\gamma}_{N,\omega}^{(k)} \widetilde{S}^{(k)} = \| \widetilde{S}^{(k)} \widetilde{\psi}_{N,\omega}(t) \|_{L^{2}(\mathbb{R}^{3N})}^{2} \leq C^{k}. \tag{29}$$

Consequently,

$$\operatorname{Tr} L^{(k)} \tilde{\gamma}_{N,\omega}^{(k)} L^{(k)} = \| L^{(k)} \tilde{\psi}_{N,\omega}(t) \|_{L^2(\mathbb{R}^{3N})}^2 \leqslant C^k, \tag{30}$$

and

$$\|\mathcal{P}_{\alpha}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})} \leq C^{k}\omega^{-\frac{1}{2}|\alpha|}, \quad |\operatorname{Tr}\mathcal{P}_{\alpha}\tilde{\gamma}_{N,\omega}^{(k)}\mathcal{P}_{\beta}| \leq C^{k}\omega^{-\frac{1}{2}|\alpha|-\frac{1}{2}|\beta|}, \tag{31}$$

where \mathcal{P}_{α} and \mathcal{P}_{β} are defined as in (21).

Proof. Substituting (15) into estimate (28) and rescaling, we obtain

$$\|\widetilde{S}^{(k)}\widetilde{\psi}_{N,\omega}(t)\|_{L^2(\mathbb{R}^{3N})}^2 \leq C^k \langle \widetilde{\psi}_{N,\omega}(t), (\alpha + N^{-1}\widetilde{H}_{N,\omega} - 2\omega)^k \widetilde{\psi}_{N,\omega}(t) \rangle.$$

The quantity on the right-hand side is conserved; therefore

$$\|\widetilde{S}^{(k)}\widetilde{\psi}_{N,\omega}(t)\|_{L^2(\mathbb{R}^{3N})}^2 = C^k \langle \widetilde{\psi}_{N,\omega}(0), (\alpha + N^{-1}\widetilde{H}_{N,\omega} - 2\omega)^k \widetilde{\psi}_{N,\omega}(0) \rangle.$$

Applying the binomial theorem twice,

$$\|\widetilde{S}^{(k)}\widetilde{\psi}_{N,\omega}(t)\|_{L^{2}(\mathbb{R}^{3N})}^{2} \leq C^{k} \sum_{j=0}^{k} {k \choose j} \alpha^{j} \left(\widetilde{\psi}_{N,\omega}(0), (N^{-1}\widetilde{H}_{N,\omega} - 2\omega)^{k-j} \widetilde{\psi}_{N,\omega}(0)\right)$$
$$\leq C^{k} \sum_{j=0}^{k} {k \choose j} \alpha^{j} (C)^{k-j}$$
$$= C^{k} (\alpha + C)^{k} \leq \widetilde{C}^{k}.$$

where we used condition (12) in the second-to-last line. So we have proved (29). Putting (29) and (70) together, estimate (30) then follows.¹⁵ The first inequality of (31) follows from (29) and (72). By Lemma A.5,

$$\operatorname{Tr} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta} = \langle \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle,$$

so the second inequality of (31) follows by Cauchy-Schwarz.

¹⁵ We remark that, though $L^{(k)} \leq 3^k \widetilde{S}^{(k)}$, it is not true that $L^{(k)} \leq C^k S^{(k)}$ for any C independent of ω because of the ground-state case.

Proof of the focusing energy estimate. Note that

$$N^{-1}H_{N,\omega} - 2\omega = N^{-1} \sum_{i=1}^{N} (-\Delta_{r_i} + \omega^2 |x_i|^2 - 2\omega) + N^{-2} \omega^{-1} \sum_{1 \le i < j \le N} V_{N\omega}(r_i - r_j),$$

where we have used the notation 16

$$V_{N\omega}(r) = (N\omega)^{3\beta} V((N\omega)^{\beta} r).$$

Define

$$H_{Kij} = (\alpha - \Delta_{r_i} + \omega^2 |x_i|^2 - 2\omega) + (\alpha - \Delta_{r_i} + \omega^2 |x_i|^2 - 2\omega),$$

where the K stands for "kinetic" and

$$H_{Iij} = \omega^{-1} V_{N\omega ij} = \omega^{-1} V_{N\omega} (r_i - r_j),$$

where the I is for "interaction". If we write

$$H_{ij} = H_{Kij} + H_{Iij},$$

then

$$\alpha + N^{-1}H_{N,\omega} - 2\omega = \frac{1}{2}N^{-2}\sum_{1 \le i \ne j \le N} H_{ij} = N^{-2}\sum_{1 \le i < j \le N} H_{ij}.$$
 (32)

We will first prove Theorem 3.1 for k = 1 and k = 2. Then, by a two-step induction (result known for k implies result for k + 2), we establish the general case. Before we proceed, we prove some estimates regarding the Hermite operator.

Estimates needed to prove Theorem 3.1.

Lemma 3.3. Recall that $P_{l\omega}$ is the orthogonal projection onto the eigenspace of $-\Delta_x + \omega^2 |x|^2$ associated with eigenvalue $2(l+1)\omega$. There is a constant independent of l and ω such that

$$||P_{l\omega}f||_{L^{\infty}_{x}} \le C\omega^{\frac{1}{2}}||f||_{L^{2}_{x}}.$$
 (33)

Proof. This estimate has more than one proof. It is a special result in 2D. It does not follow from the Strichartz estimates. For a modern argument which proves the estimate for general, at most quadratic potentials, see [Koch and Tataru 2005, Corollary 2.2]. In the special case of the quantum harmonic oscillator, one can also use a special property of 2D Hermite projection kernels to yield a direct proof without using Littlewood–Paley theory — see [Thangavelu 1993, Lemma 3.2.2; X. Chen 2011, Remark 8].

Lemma 3.4. There is an absolute constant $C_3 > 0$ and a constant $C_1 = C(\|V\|_{L^1}, \|V\|_{L^\infty})$ such that if

$$\omega \geq C_1 N^{\frac{\beta}{1-\beta}}$$

¹⁶ We remind the reader that this $V_{N\omega}$ is different from $V_{N,\omega}$ defined in (17).

then

$$\frac{1}{\omega} \int |V_{N\omega}(r_1 - r_2)| |\psi(r_1, r_2)|^2 dr_1
\leq \frac{1}{100} \langle \psi(r_1, r_2), (-\Delta_{r_1} + \omega^2 |x_1|^2 - 2\omega) \psi(r_1, r_2) \rangle_{r_1} + C_3 ||V||_{L^1}^2 ||\psi(r_1, r_2)||_{L^2_{r_1}}^2.$$
(34)

The above estimate is performed in one coordinate only (taken to be r_1), and the other coordinate r_2 is effectively "frozen". In particular, let

$$f(r_2,\ldots,r_N) = \int |V_{N\omega}(r_1-r_2)| |\psi_1(r_1,\ldots,r_N)| |\psi_2(r_1,\ldots,r_N)| dr_1.$$

Then

$$f(r_2, \dots, r_N) \lesssim \omega \|S_1 \psi_1(r_1, \dots, r_N)\|_{L^2_{r_1}} \|S_1 \psi_2(r_1, \dots, r_N)\|_{L^2_{r_1}}.$$
 (35)

The implicit constant in the \lesssim is an absolute constant times $||V||_{L^1} + ||V||_{L^{\infty}}$.

Proof. By Cauchy–Schwarz,

$$\int |V_{N\omega_{12}}||\psi_{1}||\psi_{2}|\,dr_{1} \leq \left(\int |V_{N\omega_{12}}||\psi_{1}|^{2}\,dr_{1}\right)^{\frac{1}{2}} \left(\int |V_{N\omega_{12}}||\psi_{2}|^{2}\,dr_{1}\right)^{\frac{1}{2}}.$$

Thus, assuming (34) and using the facts

$$S_1^2 \ge 1$$
, $S_1^2 \ge (-\Delta_{r_1} + \omega^2 |x_1|^2 - 2\omega)$,

we obtain (35). So we only need to prove (34).

Taking $P_{l\omega}$ to be the projection onto the x_1 -component at the moment, we decompose ψ into ground state, middle energies, and high energies as follows:

$$\psi = P_{0\omega}\psi + \sum_{\ell=1}^{e-1} P_{l\omega}\psi + P_{\geqslant e\omega}\psi,$$

where e is an integer, and the optimal choice of e is determined below. It then suffices to bound

$$A_{\text{low}} := \frac{1}{\omega} \int |V_{N\omega}(r_1 - r_2)| |P_{0\omega}\psi(r_1, r_2)|^2 dr_1, \tag{36}$$

$$A_{\text{mid}} := \frac{1}{\omega} \int |V_{N\omega}(r_1 - r_2)| \left| \sum_{l=2}^{e-1} P_{l\omega} \psi(r_1, r_2) \right|^2 dr_1, \tag{37}$$

$$A_{\text{high}} := \frac{1}{\omega} \int |V_{N\omega}(r_1 - r_2)| |P_{\geqslant e\omega} \psi(r_1, r_2)|^2 dr_1.$$
 (38)

For each estimate, we will only work in the $r_1 = (x_1, z_1)$ component, and thus will not even write the r_2 -variable. First we consider (36):

$$A_{\text{low}} \leq \frac{1}{\omega} \|V_{N\omega}\|_{L^1} \|P_{0\omega}\psi\|_{L^{\infty}_x L^{\infty}_z}^2.$$

By the standard 1D Sobolev-type estimate,

$$A_{\text{low}} \lesssim \frac{1}{\omega} \|V\|_{L^{1}} \|P_{0\omega}\partial_{z}\psi\|_{L^{\infty}_{x}L^{2}_{z}} \|P_{0\omega}\psi\|_{L^{\infty}_{x}L^{2}_{z}}.$$

Then using the estimate (33), we get

$$\begin{split} A_{\text{low}} &\lesssim \|V\|_{L^{1}} \|P_{0\omega}\partial_{z}\psi\|_{L_{r}^{2}} \|P_{0\omega}\psi\|_{L_{r}^{2}} \\ &\lesssim \|V\|_{L^{1}} \|\partial_{z}\psi\|_{L^{2}} \|\psi\|_{L^{2}} \\ &\lesssim \epsilon \|\partial_{z}\psi\|_{L^{2}}^{2} + \frac{1}{\epsilon} \|V\|_{L^{1}}^{2} \|\psi\|_{L^{2}}^{2}. \end{split}$$

Since $(-\Delta_r + \omega^2 |x|^2 - 2\omega)$ is a sum of two positive operators, namely $-\Delta_x + \omega^2 |x|^2 - 2\omega$ and $-\partial_z^2$, we conclude the estimate for A_{low} .

Now consider the middle harmonic energies given by (37). We aim to estimate A_{mid} . For any $l \ge 1$, we have

$$\|P_{l\omega}\psi\|_{L_{z}^{\infty}L_{x}^{\infty}} \leq \|P_{l\omega}\partial_{z}\psi\|_{L_{z}^{2}L_{x}^{\infty}}^{\frac{1}{2}} \|P_{l\omega}\psi\|_{L_{z}^{2}L_{x}^{\infty}}^{\frac{1}{2}}.$$

By (33),

$$\begin{split} \|P_{l\omega}\psi\|_{L_{z}^{\infty}L_{x}^{\infty}} &\lesssim \omega^{\frac{1}{2}} \|P_{l\omega}\partial_{z}\psi\|_{L_{z}^{2}L_{x}^{2}}^{\frac{1}{2}} \|P_{l\omega}\psi\|_{L_{z}^{2}L_{x}^{2}}^{\frac{1}{2}} \\ &= \omega^{\frac{1}{4}} \|P_{l\omega}\partial_{z}\psi\|_{L^{2}}^{\frac{1}{2}} (\|P_{l\omega}\psi\|_{L^{2}}l^{\frac{1}{2}}\omega^{\frac{1}{2}})^{\frac{1}{2}} l^{-\frac{1}{4}} \\ &= \omega^{\frac{1}{4}} \|P_{l\omega}\partial_{z}\psi\|_{L_{x}^{2}}^{\frac{1}{2}} \|P_{l\omega}(-\Delta_{x}+\omega^{2}|x|^{2}-2\omega)^{\frac{1}{2}}\psi\|_{L^{2}}^{\frac{1}{2}} l^{-\frac{1}{4}}. \end{split}$$

Summing over $1 \le l \le e-1$, and using the Hölder inequality with exponents 4, 4, and 2, we get

$$\begin{split} \sum_{l=1}^{e-1} \|P_{l\omega}\psi\|_{L^{\infty}_{z}L^{\infty}_{x}} &\lesssim \omega^{\frac{1}{4}} \bigg(\sum_{\ell=1}^{e-1} \|P_{l\omega}\partial_{z}\psi\|_{L^{2}}^{2} \bigg)^{\frac{1}{4}} \bigg(\sum_{l=1}^{e-1} \|P_{l\omega}(-\Delta_{x}+\omega^{2}|x|^{2}-2\omega)^{\frac{1}{2}}\psi\|_{L^{2}}^{2} \bigg)^{\frac{1}{4}} \bigg(\sum_{l=1}^{e} l^{-\frac{1}{2}} \bigg)^{\frac{1}{2}} \\ &\lesssim \omega^{\frac{1}{4}} e^{\frac{1}{4}} \|\partial_{z}\psi\|_{L^{2}}^{\frac{1}{2}} \|(-\Delta_{x}+\omega^{2}|x|^{2}-2\omega)^{\frac{1}{2}}\psi\|_{L^{2}}^{\frac{1}{2}}. \end{split}$$

Applying this to estimate (37),

$$A_{\text{mid}} \lesssim \omega^{-\frac{1}{2}} e^{\frac{1}{2}} \|V\|_{L^{1}} \|\partial_{z}\psi\|_{L^{2}} \|(-\Delta_{x} + \omega^{2}|x|^{2} - 2\omega)^{\frac{1}{2}}\psi\|_{L^{2}}.$$

Take e to be the largest integer so that $\omega^{-\frac{1}{2}}e^{\frac{1}{2}}\|V\|_{L^1} \leq \epsilon$, i.e.,

$$e = \left\lfloor \frac{\epsilon^2}{\|V\|_{L^1}^2} \omega \right\rfloor,\tag{39}$$

and then we have

$$A_{\mathrm{mid}} \lesssim \epsilon \|\partial_z \psi\|_{L^2}^2 + \epsilon \|(-\Delta_x + \omega^2 |x|^2 - 2\omega)^{\frac{1}{2}} \psi\|_{L^2}^2.$$

For (38),

$$\begin{split} A_{\text{high}} &\lesssim \omega^{-1} \| V_{N\omega} \|_{L^{\infty}} \| P_{\geqslant e\omega} \psi \|_{L^{2}}^{2} \\ &\lesssim \omega^{-2} e^{-1} \| V_{N\omega} \|_{L^{\infty}} \left\| e^{\frac{1}{2}} \omega^{\frac{1}{2}} P_{\geqslant e\omega} \psi \right\|_{L^{2}}^{2} \\ &\lesssim \omega^{-2} e^{-1} (N\omega)^{3\beta} \| V \|_{L^{\infty}} \left\| (-\Delta_{x} + \omega^{2} |x|^{2} - 2\omega)^{\frac{1}{2}} \psi \right\|_{L^{2}}^{2}. \end{split}$$

We need

$$\omega^{-2}e^{-1}(N\omega)^{3\beta}\|V\|_{L^{\infty}} \leq \epsilon.$$

Substituting the specification of e given by (39), we obtain

$$\omega^{-2}(N\omega)^{3\beta} \leqslant \frac{e\epsilon}{\|V\|_{L^{\infty}}} \leqslant \frac{\epsilon^3}{\|V\|_{L^{\infty}} \|V\|_{L^1}^2} \omega,$$

which is

$$N^{3\beta}\omega^{3\beta-3} \leqslant \frac{\epsilon^3}{\|V\|_{L^1}^2 \|V\|_{L^\infty}}.$$

That is, $\omega \ge C_1 N^{\frac{\beta}{1-\beta}}$ as required in the statement of Lemma 3.4.

In the following lemma, we have excited-state estimates and ground-state estimates, and the ground-state estimates are weaker (they involve a loss of $\omega^{\frac{1}{2}}$).

Lemma 3.5. Taking $\psi = \psi(r)$, we have the "excited-state" estimate

$$\|\omega^{\frac{1}{2}}P_{\geq 1\omega}\psi\|_{L^{2}} + \|\omega|x|P_{\geq 1\omega}\psi\|_{L^{2}} + \|\nabla_{r}P_{\geq 1\omega}\psi\|_{L^{2}} \lesssim \|S\psi\|_{L^{2}},\tag{40}$$

and the "ground-state" estimate

$$\|\omega^{\frac{1}{2}} P_{0\omega}\psi\|_{L^{2}} + \|\omega|x|P_{0\omega}\psi\|_{L^{2}} + \|\nabla_{x} P_{0\omega}\psi\|_{L^{2}} \lesssim \omega^{\frac{1}{2}} \|\psi\|_{L^{2}}. \tag{41}$$

We are, however, spared from the $\omega^{\frac{1}{2}}$ loss when working only with the z-derivative:

$$\|\partial_z P_{0\omega}\psi\|_{L^2} \lesssim \|S\psi\|_{L^2}.\tag{42}$$

Putting the excited-state and ground-state estimates together gives

$$\|\omega^{\frac{1}{2}}\psi\|_{L^{2}} + \|\omega|x|\psi\|_{L^{2}} + \|\nabla_{r}\psi\|_{L^{2}} \lesssim \omega^{\frac{1}{2}}\|S\psi\|_{L^{2}}.$$
(43)

Proof. For the excited-state estimates, we note

$$0 \le \langle P_{\ge 1\omega} \psi, (-\Delta_x + \omega^2 |x|^2 - 4\omega) P_{\ge 1\omega} \psi \rangle$$

 $\text{Adding } \tfrac{3}{2} \|\partial_z P_{\geqslant 1\omega} \psi\|_{L^2}^2 + \tfrac{1}{2} \|\nabla_x P_{\geqslant 1\omega} \psi\|_{L^2}^2 + \tfrac{1}{2} \|\omega|x| P_{\geqslant 1\omega} \psi\|_{L^2}^2 + \|\omega^{\frac{1}{2}} P_{\geqslant 1\omega} \psi\|_{L^2}^2 \text{ to both sides, we get}$

$$\frac{3}{2} \|\partial_{z} P_{\geqslant 1\omega} \psi\|_{L^{2}}^{2} + \frac{1}{2} \|\nabla_{x} P_{\geqslant 1\omega} \psi\|_{L^{2}}^{2} + \frac{1}{2} \|\omega|x| P_{\geqslant 1\omega} \psi\|_{L^{2}}^{2} + \|\omega^{\frac{1}{2}} P_{\geqslant 1\omega} \psi\|_{L^{2}}^{2} \\
\leqslant \frac{3}{2} \langle P_{\geqslant 1\omega} \psi, (-\Delta_{r} + \omega^{2}|x|^{2} - 2\omega) P_{\geqslant 1\omega} \psi \rangle.$$

This proves (40).

For the ground-state estimate (41), it suffices to prove

$$\|\omega|x|P_{0\omega}\psi\|_{L^2} + \|\nabla_x P_{0\omega}\psi\|_{L^2} \lesssim C\omega^{\frac{1}{2}}\|\psi\|_{L^2},$$

because

$$\|\omega^{\frac{1}{2}}P_{0\omega}\psi\|_{L^{2}} = \omega^{\frac{1}{2}}\|P_{0\omega}\psi\|_{L^{2}} \leqslant \omega^{\frac{1}{2}}\|\psi\|_{L^{2}}.$$

We notice that

$$\|\omega|x|f\|_{L^2} + \|\nabla_x f\|_{L^2} \sim \|(-\Delta_x + \omega^2|x|^2)^{\frac{1}{2}}f\|_{L^2}.$$

This estimate has been proved by many authors (see, for example, [Thangavelu 1993]), but is usually known as a scattering space Σ estimate for PDE analysts. Then, since the eigenvalue for the ground-state Gaussian is exactly 2ω in 2D, we have

$$\|(-\triangle_x + \omega^2 |x|^2)^{\frac{1}{2}} P_{0\omega} \psi\|_{L^2} = \sqrt{2} \omega^{\frac{1}{2}} \|P_{0\omega} \psi\|_{L^2} \leqslant \sqrt{2} \omega^{\frac{1}{2}} \|\psi\|_{L^2}.$$

So we have proved (41).

For (42), we notice that

$$\|\partial_z P_{0\omega}\psi\|_{L^2} = \|P_{0\omega}(\partial_z\psi)\|_{L^2} \le \|\partial_z\psi\|_{L^2} \le \|S\psi\|_{L^2}.$$

Lemma 3.6. We have the estimates

$$\||V_{N\omega12}|^{\frac{1}{2}}S_1 P_{0\omega}^1 \psi_2\|_{L_{T_1}^2} \lesssim \omega^{\frac{1}{2}} N^{\frac{1}{4}} \|S_1 \psi_2\|_{L^2}^{\frac{1}{2}} (N^{-\frac{1}{4}} \|S_1^2 \psi_2\|_{L^2}^{\frac{1}{2}}), \tag{44}$$

$$\||V_{N\omega12}|^{\frac{1}{2}}S_1P_{\geq 1\omega}^1\psi_2\|_{L_{r_1}^2} \lesssim N^{\frac{1}{2}\beta + \frac{1}{2}}\omega^{\frac{1}{2}\beta} \left(N^{-\frac{1}{2}}\|S_1^2\psi_2\|_{L_{r_1}^2}\right). \tag{45}$$

In particular, if $\omega \geqslant C_1 N^{\frac{\beta}{1-\beta}}$ then

$$\int_{r_1} |V_{N\omega 12}| |\psi_1| |S_1 \psi_2| \, dr_1$$

$$\lesssim \omega N^{\frac{1}{4}} \|S_1 \psi_1\|_{L^2} \|S_1 \psi_2\|_{L^2}^{\frac{1}{2}} N^{-\frac{1}{4}} \|S_1^2 \psi_2\|_{L^2}^{\frac{1}{2}} + (N\omega)^{\frac{1}{2}\beta + \frac{1}{2}} \|S_1 \psi_1\|_{L^2} N^{-\frac{1}{2}} \|S_1^2 \psi_2\|_{L^2}. \tag{46}$$

Proof. To prove (46), substituting $\psi_2 = P_{0\omega}^1 \psi_2 + P_{\geqslant 1\omega}^1 \psi_2$, we obtain

$$\int_{r_1} |V_{N\omega 12}| |\psi_1| |S_1 \psi_2| \, dr_1 \lesssim F_1 + F_2,$$

where

$$\begin{split} F_1 &= \int_{r_1} |V_{N\omega 12}| |\psi_1| |P_{0\omega}^1 S_1 \psi_2| \, dr_1 \\ &\leq \left\| |V_{N\omega 12}|^{\frac{1}{2}} \psi_1 \right\|_{L_{r_1}^2} \left\| |V_{N\omega 12}|^{\frac{1}{2}} P_{0\omega}^1 S_1 \psi_2 \right\|_{L_{r_1}^2} \\ &\leq \omega^{\frac{1}{2}} \|S_1 \psi_1\|_{L_{r_1}^2} \left\| |V_{N\omega 12}|^{\frac{1}{2}} P_{0\omega}^1 S_1 \psi_2 \right\|_{L_{r_1}^2}, \end{split}$$

$$F_{2} = \int_{r_{1}} |V_{N\omega12}| |\psi_{1}| |P_{\geqslant 1\omega}^{1} S_{1} \psi_{2}| dr_{1}$$

$$\leq \omega^{\frac{1}{2}} ||S_{1} \psi_{1}||_{L_{r_{1}}^{2}} |||V_{N\omega12}|^{\frac{1}{2}} P_{\geqslant 1\omega}^{1} S_{1} \psi_{2}||_{L_{r_{1}}^{2}}$$

by Cauchy-Schwarz and estimate (35). Hence we only need to prove (44) and (45).

On the one hand, using the fact that $P_{0\omega}^1 S_1 = (1 - \partial_{z_1}^2)^{\frac{1}{2}} P_{0\omega}^1$

$$\begin{split} \big\| |V_{N\omega 12}|^{\frac{1}{2}} S_1 P_{0\omega}^1 \psi_2 \big\|_{L_{r_1}^2} &= \big\| |V_{N\omega 12}|^{\frac{1}{2}} (1 - \partial_{z_1}^2)^{\frac{1}{2}} P_{0\omega}^1 \psi_2 \big\|_{L_{r_1}^2} \\ &\leq \|V_{N\omega 12}\|_{L_{r_1}^1}^{\frac{1}{2}} \, \| (1 - \partial_{z_1}^2)^{\frac{1}{2}} P_{0\omega}^1 \psi_2 \big\|_{L_{r_1}^\infty}. \end{split}$$

By Sobolev in z_1 and the estimate (33) in x_1 ,

$$\||V_{N\omega_{12}}|^{\frac{1}{2}}S_{1}P_{0\omega}^{1}\psi_{2}\|_{L_{r_{1}}^{2}} \lesssim \omega^{\frac{1}{2}}\|(1-\partial_{z_{1}}^{2})^{\frac{1}{2}}\psi_{2}\|_{L_{r_{1}}^{2}}^{\frac{1}{2}}\|(1-\partial_{z_{1}}^{2})\psi_{2}\|_{L_{r_{1}}^{2}}^{\frac{1}{2}}.$$

That is, we get (44):

$$\||V_{N\omega12}|^{\frac{1}{2}}S_1P_{0\omega}^1\psi_2\|_{L^2_{r_1}} \lesssim \omega^{\frac{1}{2}}N^{\frac{1}{4}}\|S_1\psi_2\|_{L^2}^{\frac{1}{2}}(N^{-\frac{1}{4}}\|S_1^2\psi_2\|_{L^2}^{\frac{1}{2}}).$$

On the other hand,

$$\begin{split} \big\| |V_{N\omega12}|^{\frac{1}{2}} S_1 P^1_{\geqslant 1\omega} \psi_2 \big\|_{L^2_{r_1}} &\lesssim \big\| |V_{N\omega12}|^{\frac{1}{2}} \big\|_{L^3} \|P^1_{\geqslant 1\omega} S_1 \psi_2 \big\|_{L^6_{r_1}} \\ &\lesssim (N\omega)^{\frac{1}{2}\beta} \|S^2_1 \psi_2 \|_{L^2_{r_1}} \\ &= N^{\frac{1}{2}\beta + \frac{1}{2}} \omega^{\frac{1}{2}\beta} \big(N^{-\frac{1}{2}} \|S^2_1 \psi_2 \|_{L^2_{r_1}} \big), \end{split}$$

which is (45).

The k = 1 case. Recalling (32),

$$\langle \psi, (\alpha + N^{-1}H_{N,\omega} - 2\omega)\psi \rangle = \frac{1}{2}N^{-2} \sum_{1 \le i \ne j \le N} \langle H_{ij}\psi, \psi \rangle = \frac{1}{2}\langle H_{12}\psi, \psi \rangle,$$

where the second equality follows by symmetry. Hence we need to prove

$$\langle H_{12}\psi,\psi\rangle \geqslant \|S_1\psi\|_{L^2}^2. \tag{47}$$

We prove (47) with the following lemma.

Lemma 3.7. Recall $\alpha = C_3 \|V\|_{L^2}^2 + 1$. If $\omega \geqslant C_1 N^{\frac{\beta}{1-\beta}}$ and $\psi_j(r_1, r_2) = \psi_j(r_2, r_1)$ for j = 1, 2, then

$$\left| \langle H_{12} \psi_1, \psi_2 \rangle_{r_1 r_2} \right| \lesssim \|S_1 \psi_1\|_{L^2_{r_1 r_2}} \|S_1 \psi_2\|_{L^2_{r_1 r_2}}. \tag{48}$$

Moreover,

$$||S_1\psi||_{L^2}^2 \le \langle H_{12}\psi, \psi \rangle \le C||S_1\psi||_{L^2}^2. \tag{49}$$

Proof. By Cauchy–Schwarz and (34),

$$\begin{aligned} \left| \langle \psi_1, H_{I12} \psi_2 \rangle_{r_1 r_2} \right| &= \omega^{-1} \left| \langle V_{N\omega 12} \psi_1, \psi_2 \rangle \right| \\ &\lesssim \left(\omega^{-1} \int |V_{N\omega 12}| |\psi_1|^2 \right)^{\frac{1}{2}} \left(\omega^{-1} \int |V_{N\omega 12}| |\psi_2|^2 \right)^{\frac{1}{2}} \\ &\lesssim \|S_1 \psi_1\|_{L^2} \|S_1 \psi_2\|_{L^2}. \end{aligned}$$

Thus

$$\begin{aligned} \left| \langle H_{12} \psi_1, \psi_2 \rangle_{r_1 r_2} \right| &\leq \left| \langle H_{K12} \psi_1, \psi_2 \rangle_{r_1 r_2} \right| + \left| \langle H_{I12} \psi_1, \psi_2 \rangle_{r_1 r_2} \right| \\ &\lesssim \| S_1 \psi_1 \|_{L^2_{r_1 r_2}} \| S_1 \psi_2 \|_{L^2_{r_1 r_2}}, \end{aligned}$$

which is (48). It remains to prove the first inequality in (49).

On the one hand, by (34), we have the lower bound for the potential term,

$$-\frac{1}{100} \left\langle \psi, (-\Delta_{r_1} + \omega^2 |x_1|^2 - 2\omega) \psi \right\rangle_{r_1 r_2} - C_3 \|V\|_{L^1}^2 \|\psi\|_{L^2_{r_1 r_2}}^2 \leq \omega^{-1} \langle V_{N\omega 12} \psi, \psi \rangle_{r_1 r_2}.$$

Adding $\langle \psi, (\alpha - \Delta_{r_1} + \omega^2 | x_1 |^2 - 2\omega) \psi \rangle_{r_1 r_2}$ to both sides and noticing the trivial inequalities $\alpha - C_3 \|V\|_{L^2}^2 = 1 \ge \frac{1}{2}$ and $\frac{99}{100} \ge \frac{1}{2}$, we have

$$\frac{1}{2} \langle \psi, (1 - \Delta_{r_1} + \omega^2 | x_1 |^2 - 2\omega) \psi \rangle_{r_1 r_2} \leq \langle \psi, (\alpha - \Delta_{r_1} + \omega^2 | x_1 |^2 - 2\omega + \omega^{-1} V_{N\omega 12}) \psi \rangle_{r_1 r_2}.$$
 (50)

On the other hand, we trivially have

$$\frac{1}{2} \langle \psi, (1 - \Delta_{r_2} + \omega^2 | x_2 |^2 - 2\omega) \psi \rangle_{r_1 r_2} \le \langle \psi, (\alpha - \Delta_{r_2} + \omega^2 | x_2 |^2 - 2\omega) \psi \rangle_{r_1 r_2}$$
 (51)

because $\alpha > \frac{1}{2}$.

Adding estimates (50) and (51) together, we have

$$\frac{1}{2}\langle\psi,S_1^2\psi\rangle+\frac{1}{2}\langle\psi,S_2^2\psi\rangle\leqslant\langle H_{12}\psi,\psi\rangle.$$

By symmetry in r_1 and r_2 , this is precisely (49).

The k = 2 case. The k = 2 energy estimate is the lower bound

$$\frac{1}{4} (\langle S_1^2 S_2^2 \psi, \psi \rangle + N^{-1} \langle S_1^4 \psi, \psi \rangle) \leq ((\alpha + N^{-1} H - 2\omega)^2 \psi, \psi).$$

We will prove it under the hypothesis

$$N^{\frac{\beta}{1-\beta}} \le \omega \le N^{\min\left(\frac{1-\beta}{\beta},2\right)}$$

We substitute into (32) to obtain

$$\left\langle (\alpha + N^{-1}H - 2\omega)^2 \psi, \ \psi \right\rangle = \frac{1}{4}N^{-4} \sum_{\substack{1 \leq i_1 \neq j_1 \leq N \\ 1 \leq i_2 \neq j_2 \leq N}} \left\langle H_{i_1 j_1} H_{i_2 j_2} \psi, \ \psi \right\rangle = A_1 + A_2 + A_3,$$

where

- A_1 consists of those terms with $\{i_1, j_1\} \cap \{i_2, j_2\} = \emptyset$,
- A_2 consists of those terms with $|\{i_1, j_1\} \cap \{i_2, j_2\}| = 1$,
- A_3 consists of those terms with $|\{i_1, j_1\} \cap \{i_2, j_2\}| = 2$.

By symmetry, we have

$$A_{1} = \frac{1}{4} \langle H_{12} H_{34} \psi, \psi \rangle,$$

$$A_{2} = \frac{1}{2} N^{-1} \langle H_{12} H_{23} \psi, \psi \rangle,$$

$$A_{3} = \frac{1}{2} N^{-2} \langle H_{12} H_{12} \psi, \psi \rangle.$$

We discard A_3 since $A_3 \ge 0$. By the analysis used in the k = 1 case,

$$A_1 \geqslant \frac{1}{4} \| S_1 S_3 \psi \|_{L^2}^2.$$

The main piece of work in the k=2 case is to estimate A_2 . Substituting $H_{12}=H_{K12}+H_{I12}$ and $H_{23}=H_{K23}+H_{I23}$, we obtain the expansion

$$A_2 = B_0 + B_1 + B_2,$$

where

$$\begin{split} B_0 &= \frac{1}{2} N^{-1} \langle H_{K12} H_{K23} \psi, \psi \rangle, \\ B_1 &= \frac{1}{2} N^{-1} \langle H_{K12} H_{I23} \psi, \psi \rangle + \frac{1}{2} N^{-1} \langle H_{I12} H_{K23} \psi, \psi \rangle, \\ B_2 &= \frac{1}{2} N^{-1} \langle H_{I12} H_{I23} \psi, \psi \rangle. \end{split}$$

Let $\sigma = \alpha - 1 \ge 0$. First note that

$$B_0 = \frac{1}{2}N^{-1} \langle (S_1^2 + S_2^2 + 2\sigma)(S_2^2 + S_3^2 + 2\sigma)\psi, \psi \rangle.$$

Since S_1^2 , S_2^2 , S_3^2 all commute,

$$B_0 \geqslant \frac{1}{2} N^{-1} \langle S_2^4 \psi, \psi \rangle,$$

which is a component of the claimed lower bound.

Next, we consider B_1 . By symmetry

$$B_1 = N^{-1} \operatorname{Re} \langle H_{K12} H_{I23} \psi, \psi \rangle.$$

Since every term in B_1 is estimated, we do not drop the imaginary part. Decompose $I = P_{0\omega}^2 + P_{\geq 1\omega}^2$ in the right factor of ψ as

$$B_1 = B_{10} + B_{11} + B_{12}$$

where

$$B_{10} = (N\omega)^{-1} \langle [(2\alpha - 1) + S_1^2] V_{N\omega 23} \psi, \psi \rangle,$$

$$B_{11} = (N\omega)^{-1} \langle (-\Delta_{r_2} + \omega^2 |x_2|^2 - 2\omega) V_{N\omega 23} \psi, P_{0\omega}^2 \psi \rangle,$$

$$B_{12} = (N\omega)^{-1} \langle (-\Delta_{r_2} + \omega^2 |x_2|^2 - 2\omega) V_{N\omega 23} \psi, P_{\geqslant 1\omega}^2 \psi \rangle.$$

The term B_{10} is the simplest. In fact, by estimate (35) at the r_2 -coordinate, we have

$$|B_{10}| = |(N\omega)^{-1} \langle [(2\alpha - 1) + S_1^2] V_{N\omega 23} \psi, \psi \rangle |$$

$$\lesssim N^{-1} (||S_2 \psi||_{L^2}^2 + ||S_1 S_2 \psi||_{L^2}^2).$$

For B_{12} , we consider the four terms separately:

$$B_{12} = B_{121} + B_{122} + B_{123} + B_{124},$$

where

$$\begin{split} B_{121} &= (N\omega)^{\beta - 1} \big\langle (\nabla V)_{N\omega 23} \psi, \, \nabla_{r_2} P_{\geqslant 1\omega}^2 \psi \big\rangle, \\ B_{122} &= (N\omega)^{-1} \big\langle V_{N\omega 23} \nabla_{r_2} \psi, \, \nabla_{r_2} P_{\geqslant 1\omega}^2 \psi \big\rangle, \\ B_{123} &= (N\omega)^{-1} \big\langle V_{N\omega 23} \omega | x_2 | \psi, \, \omega | x_2 | P_{\geqslant 1\omega}^2 \psi \big\rangle, \\ B_{124} &= -2(N\omega)^{-1} \big\langle V_{N\omega 23} \omega^{\frac{1}{2}} \psi, \, \omega^{\frac{1}{2}} P_{\geqslant 1\omega}^2 \psi \big\rangle. \end{split}$$

By (35) applied with r_1 replaced by r_3 , we obtain

$$|B_{121}| \lesssim (N\omega)^{\beta-1} \omega ||S_3\psi||_{L^2} ||\nabla_{r_2} P_{\geqslant 1\omega}^2 S_3\psi||_{L^2}.$$

By (40),

$$|B_{121}| \lesssim (N\omega)^{\beta-1} \omega ||S_3\psi||_{L^2} ||S_2S_3\psi||_{L^2},$$

which yields the requirement $\omega \leq N^{\frac{1-\beta}{\beta}}$. By (35) applied with r_1 replaced by r_3 , we obtain

$$|B_{122}| \lesssim (N\omega)^{-1}\omega \|\nabla_{r_2}S_3\psi\|_{L^2} \|\nabla_{r_2}P_{\geqslant 1\omega}S_3\psi\|_{L^2}.$$

Utilizing (43) for the $\|\nabla_{r_2} S_3 \psi\|_{L^2}$ term and (40) for the $\|\nabla_{r_2} P_{\geq 1\omega} S_3 \psi\|_{L^2}$ term,

$$|B_{122}| \lesssim (N\omega)^{-1} \omega^{\frac{3}{2}} ||S_2 S_3||_{L^2}^2.$$

This requires $\omega \leq N^2$. The terms B_{123} and B_{124} are estimated in the same way as B_{122} , yielding the requirement $\omega \leq N^2$. This completes the treatment of B_{12} .

For B_{11} , we move the operator $(-\Delta_{r_2} + \omega^2 |x_2|^2 - 2\omega)$ over to the right, and use the fact that $(-\Delta_{r_2} + \omega^2 |x_2|^2 - 2\omega) P_{0\omega}^2 \psi = -\partial_{z_2}^2 P_{0\omega}^2 \psi$ to obtain

$$B_{11} = B_{111} + B_{112},$$

where

$$B_{111} = (N\omega)^{\beta - 1} \langle (\partial_z V)_{N\omega 23} \psi, \, \partial_{z_2} P_{0\omega}^2 \psi \rangle,$$

$$B_{112} = (N\omega)^{-1} \langle V_{N\omega 23} \partial_{z_2} \psi, \, \partial_{z_2} P_{0\omega}^2 \psi \rangle.$$

By (35) applied with r_1 replaced by r_3 , we obtain

$$|B_{111}| \lesssim (N\omega)^{\beta-1} \omega ||S_3\psi||_{L^2} ||\partial_{z_2} P_{0\omega}^2 S_3\psi||_{L^2}.$$

Using (42) for the $\|\partial_{z_2} P_{0\omega}^2 S_3 \psi\|_{L^2}$ term (which saves us from the $\omega^{\frac{1}{2}}$ loss),

$$|B_{111}| \lesssim (N\omega)^{\beta-1} \omega ||S_3\psi||_{L^2} ||S_2S_3\psi||_{L^2},$$

which again requires that $\omega \leq N^{\frac{1-\beta}{\beta}}$. By (35) applied with r_1 replaced by r_3 , we obtain

$$|B_{112}| \lesssim (N\omega)^{-1}\omega \|\partial_{z_2}S_3\psi\|_{L^2} \|\partial_{z_2}P_{0\omega}^2S_3\psi\|_{L^2}.$$

Using (42),

$$|B_{112}| \lesssim (N\omega)^{-1}\omega \|S_2 S_3 \psi\|_{L^2}^2$$

which has no requirement on ω . This completes the treatment of B_{11} , and hence also B_1 . Now let us consider B_2 :

$$B_{2} = N^{-1}\omega^{-2} \langle V_{N\omega_{12}}V_{N\omega_{23}}\psi, \psi \rangle,$$

$$|B_{2}| \leq N^{-1}\omega^{-2} \int |V_{N\omega_{23}}| \left(\int_{r_{1}} |V_{N\omega_{12}}| |\psi(r_{1}, \dots, r_{N})|^{2} dr_{1} \right) dr_{2} \cdots dr_{N}.$$

In the parentheses, apply estimate (35) in the r_1 -coordinate to obtain

$$|B_2| \lesssim N^{-1}\omega^{-2}\omega \int_{r_2,\dots,r_N} |V_{N\omega 23}| \|S_1\psi\|_{L^2_{r_1}}^2 dr_2 \cdots dr_N.$$

By Fubini, the right-hand side is equal to

$$N^{-1}\omega^{-2}\omega \int_{r_1} \left(\int_{r_2,\dots,r_N} |V_{N\omega 23}| |S_1\psi(r_1,\dots,r_N)|^2 dr_2 \cdots dr_N \right) dr_1.$$

In the parentheses, apply estimate (35) in the r_2 -coordinate to obtain

$$|B_2| \lesssim N^{-1} \omega^{-2} \omega^2 ||S_1 S_2 \psi||_{L^2}^2.$$

Hence B_2 is bounded without additional restriction on ω . Therefore we end the proof for the k=2 case.

The k case implies the k+2 case. We assume that (28) holds for k. Applying it with ψ replaced by $(\alpha + N^{-1}H_{N,\omega} - 2\omega)\psi$,

$$\frac{1}{2^k} \| S^{(k)}(\alpha + N^{-1}H_{N,\omega} - 2\omega) \psi \|_{L^2} \le \langle (\alpha + N^{-1}H_{N,\omega} - 2\omega)^{k+2} \psi, \psi \rangle.$$

Hence, to prove (28) in the case k + 2, it suffices to prove

$$\frac{1}{4} \left(\| S^{(k+2)} \psi \|_{L^2}^2 + N^{-1} \| S_1 S^{(k+1)} \psi \|_{L^2}^2 \right) \le \| S^{(k)} (\alpha + N^{-1} H_{N,\omega} - 2\omega) \psi \|_{L^2}^2. \tag{52}$$

To prove (52), we substitute (32) into

$$\langle S^{(k)}(\alpha+N^{-1}H_{N,\omega}-2\omega)\psi, S^{(k)}(\alpha+N^{-1}H_{N,\omega}-2\omega)\psi\rangle,$$

which gives

$$N^{-4} \sum_{\substack{1 \le i_1 < j_1 \le N \\ 1 \le i_2 < j_2 \le N}} \langle S^{(k)} H_{i_1 j_1} \psi, S^{(k)} H_{i_2 j_2} \psi \rangle.$$

We decompose into three terms

$$E_1 + E_2 + E_3$$

according to the location of i_1 and i_2 relative to k. We place no restriction on j_1 , j_2 (other than $i_1 < j_1$, $i_2 < j_2$):

- E_1 consists of those terms for which $i_1 \le k$ and $i_2 \le k$.
- E_2 consists of those terms for which both $i_1 > k$ and $i_2 > k$.
- E_3 consists of those terms for which either $(i_1 \le k \text{ and } i_2 > k)$ or $(i_1 > k \text{ and } i_2 < k)$.

We have $E_1 \ge 0$, and we discard this term. We extract the key lower bound from E_2 exactly as in the k=2 case. In fact, inside E_2 , we know $H_{i_1j_1}$ and $H_{i_2j_2}$ commute with $S^{(k)}$ because $j_1 > i_1 > k$ and $j_2 > i_2 > k$; hence we indeed face the k=2 case again. This leaves us with E_3 :

$$E_{3} = 2N^{-4} \sum_{\substack{1 \leq i_{1} < j_{1} \leq N \\ 1 \leq i_{2} < j_{2} \leq N \\ i_{1} \leq k, i_{2} > k}} \operatorname{Re}\langle S^{(k)} H_{i_{1}j_{1}} \psi, S^{(k)} H_{i_{2}j_{2}} \psi \rangle.$$

We decompose E_3 as

$$E_3 = D_1 + D_2 + D_3,$$

where, in each case we require $i_1 \le k$ and $i_2 > k$, but make the additional distinctions as follows:

- D_1 consists of those terms where $j_1 \le k$.
- D_2 consists of those terms where $j_1 > k$ and $j_1 \in \{i_2, j_2\}$.
- D_3 consists of those terms where $j_1 > k$ and $j_1 \notin \{i_2, j_2\}$.

By symmetry,

$$D_{1} = k^{2} N^{-2} \langle S_{1} \cdots S_{k} H_{12} \psi, S_{1} \cdots S_{k} H_{(k+1)(k+2)} \psi \rangle,$$

$$D_{2} = k N^{-2} \langle S_{1} \cdots S_{k} H_{1(k+1)} \psi, S_{1} \cdots S_{k} H_{(k+1)(k+2)} \psi \rangle,$$

$$D_{3} = N^{-1} \langle S_{1} \cdots S_{k} H_{1(k+1)} \psi, S_{1} \cdots S_{k} H_{(k+2)(k+3)} \psi \rangle.$$

We begin with estimates for the term D_1 . We decompose it as

$$D_1 = D_{11} + D_{12}$$
,

where

$$D_{11} = N^{-2} \langle H_{(k+1)(k+2)}[S_1 S_2, H_{12}] S_3 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{12} = N^{-2} \langle H_{(k+1)(k+2)} H_{12} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle.$$

By Lemmas 3.7 and A.3, D_{12} is positive because $H_{(k+1)(k+2)}$ and H_{12} commutes. Therefore we discard D_{12} . For D_{11} , we take $[V_{N\omega12}, S_1S_2] \sim (N\omega)^{2\beta}(\Delta V)_{N\omega12}$. This gives

$$|D_{11}| \lesssim N^{2\beta-2} \omega^{2\beta-1} \langle H_{(k+1)(k+2)}(\Delta V)_{N\omega_{12}} S_3 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle.$$

By using Lemma 3.7 in the r_{k+1} -coordinate to handle $H_{(k+1)(k+2)}$, we have

$$|D_{11}| \lesssim N^{2\beta-2}\omega^{2\beta-1} \| |(\Delta V)_{N\omega_{12}}|^{\frac{1}{2}} S_3 \cdots S_{k+1} \psi \|_{L^2} \| |(\Delta V)_{N\omega_{12}}|^{\frac{1}{2}} S_1 \cdots S_{k+1} \psi \|_{L^2}.$$

Using (35) in the first factor,

$$|D_{11}| \lesssim N^{2\beta-2} \omega^{2\beta-\frac{1}{2}} ||S_1 S_3 \cdots S_{k+1} \psi||_{L^2} |||(\Delta V)_{N\omega_{12}}|^{\frac{1}{2}} S_1 \cdots S_{k+1} \psi||_{L^2}.$$

Decomposing ψ in the second factor into $P^1_{0\omega}\psi+P^1_{\geqslant 1\omega}\psi$ gives

$$\begin{split} |D_{11}| &\lesssim N^{2\beta-2} \omega^{2\beta-\frac{1}{2}} \|S_1 S_3 \cdots S_{k+1} \psi\|_{L^2} \\ &\qquad \qquad \times \left(\||(\Delta V)_{N\omega 12}|^{\frac{1}{2}} S_1 \cdots S_{k+1} P_{0\omega}^1 \psi\|_{L^2} + \||(\Delta V)_{N\omega 12}|^{\frac{1}{2}} S_1 \cdots S_{k+1} P_{\geq 1\omega}^1 \psi\|_{L^2} \right). \end{split}$$

Applying Lemma 3.6,

$$\begin{split} |D_{11}| &\lesssim N^{2\beta-2} \omega^{2\beta-\frac{1}{2}} \|S_1 S_3 \cdots S_{k+1} \psi\|_{L^2} \omega^{\frac{1}{2}} N^{\frac{1}{4}} \|S_1 \cdots S_{k+1} \psi\|_{L^2}^{\frac{1}{2}} \left(N^{-\frac{1}{4}} \|S_1^2 \cdots S_{k+1} \psi\|_{L^2}^{\frac{1}{2}}\right) \\ &+ N^{2\beta-2} \omega^{2\beta-\frac{1}{2}} \|S_1 S_3 \cdots S_{k+1} \psi\|_{L^2} N^{\frac{\beta}{2}+\frac{1}{2}} \omega^{\frac{\beta}{2}} \left(N^{-\frac{1}{2}} \|S_1^2 \cdots S_{k+1} \psi\|_{L^2}\right). \end{split}$$

The coefficients simplify to $N^{2\beta-\frac{7}{4}}\omega^{2\beta}$ and $N^{\frac{5}{2}\beta-\frac{3}{2}}\omega^{\frac{5}{2}\beta-\frac{1}{2}}$. This gives the constraints

$$\omega \leqslant N^{\frac{7/4-2\beta}{2\beta}}$$
 and $\omega \leqslant N^{\frac{3/5-\beta}{\beta-1/5}}$.

The second one is the worst one. When combined with the lower bound $N^{\frac{\beta}{1-\beta}} \leq \omega$, it restricts us to $\beta \leq \frac{3}{7}$. Moreover, at $\beta = \frac{2}{5}$, the relation $\omega = N$ is within the allowable range.

We now find estimates for the term D_2 . We write

$$D_2 = D_{21} + D_{22}$$

where

$$D_{21} = N^{-2} \langle H_{(k+1)(k+2)}[S_1, H_{1(k+1)}] S_2 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{22} = N^{-2} \langle H_{(k+1)(k+2)} H_{1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle.$$

Let us begin with D_{21} . We use

$$[S_1, H_{1(k+1)}] \sim (N\omega)^{\beta} \omega^{-1} (\nabla V)_{N\omega 1(k+1)}$$

and

$$H_{(k+1)(k+2)} = 2\sigma + S_{k+1}^2 + S_{k+2}^2 + \omega^{-1} V_{N\omega(k+1)(k+2)}$$

to get

$$D_{21} = D_{210} + D_{211} + D_{212} + D_{213}$$

where

$$\begin{split} D_{210} &= 2\sigma N^{-1} (N\omega)^{\beta-1} \big\{ (\nabla V)_{N\omega 1(k+1)} S_2 \cdots S_k \psi, \ S_1 \cdots S_k \psi \big\}, \\ D_{211} &= N^{-1} (N\omega)^{\beta-1} \big\{ S_{k+1}^2 (\nabla V)_{N\omega 1(k+1)} S_2 \cdots S_k \psi, \ S_1 \cdots S_k \psi \big\}, \\ D_{212} &= N^{-1} (N\omega)^{\beta-1} \big\{ S_{k+2}^2 (\nabla V)_{N\omega 1(k+1)} S_2 \cdots S_k \psi, \ S_1 \cdots S_k \psi \big\}, \\ D_{213} &= N^{-2} (N\omega)^{\beta} \omega^{-2} \big\{ V_{N\omega(k+1)(k+2)} (\nabla V)_{N\omega 1(k+1)} S_2 \cdots S_k \psi, \ S_1 \cdots S_k \psi \big\}. \end{split}$$

For D_{211} ,

$$\begin{split} D_{211} &= N^{-1} (N\omega)^{\beta - 1} \big\langle [S_{k+1}, (\nabla V)_{Nw1(k+1)}] S_2 \cdots S_k \psi, \ S_1 \cdots S_k \psi \big\rangle \\ &\qquad \qquad + N^{-1} (N\omega)^{\beta - 1} \big\langle (\nabla V)_{Nw1(k+1)} S_2 \cdots S_k S_{k+1} \psi, \ S_1 \cdots S_k \psi \big\rangle. \end{split}$$

The first piece is estimated the same way as D_{11} . For the second term, using Lemma 3.6 in the r_1 -coordinate,

$$|\cdot| \lesssim N^{-1} (N\omega)^{\beta-1} \omega N^{\frac{1}{4}} \| S_1 \cdots S_{k+1} \psi \|_{L^2} \| S_1 \cdots S_k \psi \|_{L^2}^{\frac{1}{2}} (N^{-\frac{1}{4}} \| S_1 S_1 \cdots S_k \psi \|_{L^2})$$

$$+ N^{-1} (N\omega)^{\beta-1} (N\omega)^{\frac{1}{2}\beta+\frac{1}{2}} \| S_1 \cdots S_{k+1} \psi \|_{L^2} (N^{-\frac{1}{2}} \| S_1 S_1 \cdots S_k \psi \|_{L^2}),$$

which gives the conditions $\omega \leq N^{\frac{7/4-\beta}{\beta}}$ and $\omega \leq N^{\frac{3-3\beta}{3\beta-1}}$. Since this results in conditions better than those produced for D_{11} , we neglect them.

For D_{213} , we apply estimate (35) in the r_{k+2} -coordinate and again in the r_{k+1} -coordinate to obtain

$$|D_{213}| \lesssim N^{-2} (N\omega)^{\beta} \omega^{-2} \omega^{2} ||S_{2} \cdots S_{k+2} \psi||_{L^{2}} ||S_{1} \cdots S_{k+2} \psi||_{L^{2}}.$$

This gives the requirement $\omega \leq N^{\frac{2-\beta}{\beta}}$, which is clearly weaker than $\omega \leq N^{\frac{1-\beta}{\beta}}$, so we drop it. The terms D_{210} and D_{212} are estimated in the same way. In fact, utilizing estimate (35) in the r_{k+1} -coordinate yields

$$|D_{210}| \lesssim N^{-1} (N\omega)^{\beta - 1} \omega \|S_2 \cdots S_k \psi\|_{L^2} \|S_1 \cdots S_k \psi\|_{L^2},$$

$$|D_{212}| \lesssim N^{-1} (N\omega)^{\beta - 1} \omega \|S_2 \cdots S_{k+2} \psi\|_{L^2} \|S_1 \cdots S_{k+2} \psi\|_{L^2}.$$

They give the same weaker condition $\omega \leq N^{\frac{2-\beta}{\beta}}$.

We now turn to D_{22} . Since $H_{(k+1)(k+2)}$ and $H_{1(k+1)}$ do not commute, we cannot directly quote Lemma 3.7 and conclude it is positive. We estimate it. By the definition of H_{ij} , we only need to look at the terms

$$D_{220} = N^{-2}\omega^{-1} \langle \sigma V_{N\omega 1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{221} = N^{-2}\omega^{-1} \langle S_{k+1}^2 V_{N\omega 1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{222} = N^{-2}\omega^{-1} \langle S_{k+2}^2 V_{N\omega 1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{223} = N^{-2}\omega^{-2} \langle V_{N\omega (k+1)(k+2)} V_{N\omega 1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{224} = N^{-2}\omega^{-1} \langle \sigma V_{N\omega (k+1)(k+2)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{225} = N^{-2}\omega^{-1} \langle V_{N\omega (k+1)(k+2)} S_1^2 S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{226} = N^{-2}\omega^{-1} \langle V_{N\omega (k+1)(k+2)} S_{k+1}^2 S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

because all the other terms inside the expansion of D_{22} are positive. It is easy to tell the following: the terms D_{220} and D_{224} can be estimated in the same way as D_{210} , the terms D_{221} and D_{226} can be estimated in the same way as D_{211} , the terms D_{222} and D_{225} can be estimated in the same way as D_{212} , and the term D_{223} can be estimated in the same way as D_{213} . Moreover, all the D_{22} terms are better than the corresponding D_{21} terms since they do not have a $(N\omega)^{\beta}$ in front of them. Hence, we get no new restrictions from D_{22} and we conclude the estimate for D_{22} .

We now find estimates for the term D_3 . Commuting terms as usual,

$$D_3 = D_{31} + D_{32},$$

where

$$D_{31} = N^{-1} \langle H_{(k+2)(k+3)}[S_1, H_{1(k+1)}] S_2 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle,$$

$$D_{32} = N^{-1} \langle H_{(k+2)(k+3)} H_{1(k+1)} S_1 \cdots S_k \psi, S_1 \cdots S_k \psi \rangle.$$

Since $H_{(k+2)(k+3)}$ and $H_{1(k+1)}$ commute, D_{32} is positive due to Lemmas 3.7 and A.3. Thus we discard D_{32} . For D_{31} , we use that

$$[S_1, H_{1(k+1)}] \sim (N\omega)^{\beta} \omega^{-1} (\nabla V)_{N\omega_1(k+1)}$$

together with estimate (35) in the r_{k+1} -coordinate (to handle $[S_1, H_{1(k+1)}]$) and Lemma 3.7 in the r_{k+2} -coordinate (to handle $H_{(k+2)(k+3)}$):

$$|D_{31}| \lesssim N^{-1} (N\omega)^{\beta} \|S_2 \cdots S_{k+2} \psi\|_{L^2} \|S_1 \cdots S_{k+2} \psi\|_{L^2}.$$

This term again yields to the restriction

$$\omega \leq N^{\frac{1-\beta}{\beta}}$$
.

So far, we have proved that all the terms in E_3 can be absorbed into the key lower bound exacted from E_2 for all N large enough as long as $C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_E(\beta)}$. Hence we have finished the two-step induction argument and established Theorem 3.1.

4. Compactness of the BBGKY sequence

Theorem 4.1. Assume $C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}$. Then the sequence

$$\left\{\Gamma_{N,\omega}(t) = \left\{\tilde{\gamma}_{N,\omega}^{(k)}\right\}_{k=1}^{N}\right\} \subset \bigoplus_{k \ge 1} C([0,T], \mathcal{L}_{k}^{1}),$$

which satisfies the focusing " $\infty - \infty$ " BBGKY hierarchy (18), is compact with respect to the product topology τ_{prod} . For any limit point $\Gamma(t) = \{\tilde{\gamma}^{(k)}\}_{k=1}^N$, we have $\tilde{\gamma}^{(k)}$ is a symmetric nonnegative trace class operator with trace bounded by 1.

Proof. By the standard diagonalization argument, it suffices to show the compactness of $\tilde{\gamma}_{N,\omega}^{(k)}$ for fixed k with respect to the metric \hat{d}_k . By the Arzelà–Ascoli theorem, this is equivalent to the equicontinuity of $\tilde{\gamma}_{N,\omega}^{(k)}$. By [Erdős et al. 2010, Lemma 6.2], it suffices to prove that for every test function $J^{(k)}$ from a dense subset of $\mathcal{K}(L^2(\mathbb{R}^{3k}))$ and for every $\varepsilon > 0$, there exists $\delta(J^{(k)}, \varepsilon)$ such that for all $t_1, t_2 \in [0, T]$ with $|t_1 - t_2| \leq \delta$, we can write

$$\sup_{N,\omega} \left| \operatorname{Tr} J^{(k)} \tilde{\gamma}_{N,\omega}^{(k)}(t_1) - \operatorname{Tr} J^{(k)} \tilde{\gamma}_{N,\omega}^{(k)}(t_2) \right| \leq \varepsilon. \tag{53}$$

Here, we assume that our compact operators $J^{(k)}$ have been cut off in frequency as in Lemma A.6. Assume $t_1 \leq t_2$. Inserting the decomposition (22) on the left and right sides of $\gamma_{N,\omega}^{(k)}$, we obtain

$$\tilde{\gamma}_{N,\omega}^{(k)} = \sum_{\alpha,\beta} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta},$$

where the sum is taken over all k-tuples α and β of the type described in (22).

To establish (53) it suffices to prove that, for each α and β , we have

$$\sup_{N,\omega} \left| \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_1) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_2) \right| \leq \varepsilon.$$
 (54)

To this end, we establish the estimate

$$\left|\operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_{1}) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_{2})\right|$$

$$\lesssim C |t_{2} - t_{1}| \left(\mathbf{1}_{\alpha = 0 \text{ and } \beta = 0} + \max(1, \omega^{1 - \frac{1}{2}|a| - \frac{1}{2}|\beta|}) \mathbf{1}_{\alpha \neq 0 \text{ or } \beta \neq 0}\right). \tag{55}$$

At a glance, (55) seems not quite enough in the $|\alpha| = 0$ and $|\beta| = 1$ case (or vice versa) because it grows in ω . However, we can also prove the (comparatively simpler) bound

$$\left| \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_2) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_1) \right| \lesssim \omega^{-\frac{1}{2}|\alpha| - \frac{1}{2}|\beta|}, \tag{56}$$

which provides a better power of ω but no gain as $t_2 \to t_1$. Interpolating between (55) and (56) in the $|\alpha| = 0$ and $|\beta| = 1$ case (or vice versa), we acquire

$$\left|\operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\alpha}^{(k)} \mathcal{P}_{\beta}(t_2) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\alpha}^{(k)} \mathcal{P}_{\beta}(t_1)\right| \lesssim |t_2 - t_1|^{\frac{1}{2}},$$

which suffices to establish (54).

Below, we prove (55) and (56). We first prove (55). The BBGKY hierarchy (18) yields

$$\partial_t \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\alpha}^{(k)} \mathcal{P}_{\beta} = I + II + III + IV,$$
 (57)

where

$$I = -i\omega \sum_{j=1}^{k} \operatorname{Tr} J^{(k)} \left[-\Delta_{x_{j}} + |x_{j}|^{2}, \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta} \right],$$

$$II = -i\sum_{j=1}^{k} \operatorname{Tr} J^{(k)} \left[-\partial_{z_{j}}^{2}, \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta} \right],$$

$$III = \frac{-i}{N} \sum_{1 \leq i < j \leq k} \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \left[V_{N,\omega}(r_{i} - r_{j}), \tilde{\gamma}_{N,\omega}^{(k)} \right] \mathcal{P}_{\beta},$$

$$IV = -i\frac{N - k}{N} \sum_{j=1}^{k} \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \left[V_{N,\omega}(r_{j} - r_{k+1}), \tilde{\gamma}_{N,\omega}^{(k+1)} \right] \mathcal{P}_{\beta}.$$

We first consider I. When $\alpha = \beta = 0$,

$$I = -i\omega \sum_{j=1}^{k} \operatorname{Tr} J^{(k)} \left[-\Delta_{x_j} + |x_j|^2, \, \mathcal{P}_{\mathbf{0}} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\mathbf{0}} \right]$$
$$= -i\omega \sum_{j=1}^{k} \operatorname{Tr} J^{(k)} \left[-2 - \Delta_{x_j} + |x_j|^2, \, \mathcal{P}_{\mathbf{0}} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\mathbf{0}} \right] = 0,$$

since constants commute with everything. When $\alpha \neq 0$ or $\beta \neq 0$, we apply Lemma A.5 and integrate by parts to obtain

$$|I| \leq \omega \sum_{j=1}^{k} \left| \langle J^{(k)} H_{j} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle - \langle J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, H_{j} \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right|$$

$$\leq \omega \sum_{j=1}^{k} \left(\left| \langle J^{(k)} H_{j} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right| + \left| \langle H_{j} J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right| \right),$$

where $H_j = -\Delta_{x_j} + |x_j|^2$. Hence

$$|I| \lesssim \omega \sum_{j=1}^{k} (\|J^{(k)}H_{j}\|_{\text{op}} + \|H_{j}J^{(k)}\|_{\text{op}}) \|\mathcal{P}_{\alpha}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})} \|\mathcal{P}_{\beta}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})}.$$

By the energy estimate (31),

$$\begin{aligned} |\mathrm{I}| &= 0, & \text{if } \alpha = 0 \text{ and } \beta = 0, \\ |\mathrm{I}| &\lesssim C_{k,J^{(k)}} \omega^{1 - \frac{1}{2}|\alpha| - \frac{1}{2}|\beta|}, & \text{otherwise.} \end{aligned}$$
 (58)

Next, consider II. Proceeding as in I, we have

$$|\mathrm{II}| \leq \sum_{j=1}^{k} (\left| \langle J^{(k)} \partial_{z_{j}}^{2} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right| + \left| \langle \partial_{z_{j}}^{2} J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right|).$$

That is,

$$|\mathrm{II}| \leq \sum_{j=1}^{k} (\|J^{(k)}\partial_{z_{j}}^{2}\|_{\mathrm{op}} + \|\partial_{z_{j}}^{2}J^{(k)}\|_{\mathrm{op}}) \|\mathcal{P}_{\alpha}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})} \|\mathcal{P}_{\beta}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})} \leq C_{k,J^{(k)}}.$$
 (59)

Now, consider III:

$$\begin{split} |\mathrm{III}| &\leqslant N^{-1} \sum_{1 \leqslant i < j \leqslant k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} V_{N,\omega}(r_i - r_j) \tilde{\psi}_{N,\omega}, \, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right| \\ &+ N^{-1} \sum_{1 \leqslant i \leqslant j \leqslant k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \, \mathcal{P}_{\beta} V_{N,\omega}(r_i - r_j) \tilde{\psi}_{N,\omega} \rangle \right|. \end{split}$$

That is,

$$\begin{aligned} |\mathrm{III}| &\leqslant N^{-1} \sum_{1 \leqslant i < j \leqslant k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} L_{i} L_{j} W_{ij} L_{i} L_{j} \tilde{\psi}_{N,\omega}, \, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right| \\ &+ N^{-1} \sum_{1 \leqslant i < j \leqslant k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \, \mathcal{P}_{\beta} L_{i} L_{j} W_{ij} L_{i} L_{j} \tilde{\psi}_{N,\omega} \rangle \right| \end{aligned}$$

if we write $L_i = (1 - \Delta_{r_i})^{\frac{1}{2}}$ and

$$W_{ij} = L_i^{-1} L_j^{-1} V_{N,\omega} (r_i - r_j) L_i^{-1} L_j^{-1}.$$

Hence

$$|\mathrm{III}| \leq N^{-1} \sum_{1 \leq i < j \leq k} \|J^{(k)} L_i L_j\|_{\mathrm{op}} \|W_{ij}\|_{\mathrm{op}} \|L_i L_j \tilde{\psi}_{N,\omega}\|_{L^2(\mathbb{R}^{3N})} \|\mathcal{P}_{\beta} \tilde{\psi}_{N,\omega}\|_{L^2(\mathbb{R}^{3N})}$$

+
$$N^{-1} \sum_{1 \leq i < j \leq k} \|L_i L_j J^{(k)}\|_{\text{op}} \|W_{ij}\|_{\text{op}} \|L_i L_j \tilde{\psi}_{N,\omega}\|_{L^2(\mathbb{R}^{3N})} \|\mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}\|_{L^2(\mathbb{R}^{3N})}.$$

Since $||W_{ij}||_{\text{op}} \lesssim ||V_{N,\omega}||_{L^1} = ||V||_{L^1}$ (independent of N, ω) by Lemma A.1, the energy estimates (Corollary 3.2) imply that

$$|\mathrm{III}| \lesssim \frac{C_{k,J^{(k)}}}{N}.\tag{60}$$

Apply the same ideas to IV:

$$|IV| \leq \sum_{j=1}^{k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} L_{j} L_{k+1} W_{j(k+1)} L_{j} L_{k+1} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega} \rangle \right|$$

$$+ \sum_{j=1}^{k} \left| \langle J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}, \mathcal{P}_{\beta} L_{j} L_{k+1} W_{j(k+1)} L_{j} L_{k+1} \tilde{\psi}_{N,\omega} \rangle \right|.$$

Then, since $J^{(k)}L_{k+1} = L_{k+1}J^{(k)}$,

$$|IV| \leq \sum_{j=1}^{k} (\|J^{(k)}L_{j}\|_{op} + \|L_{j}J^{(k)}\|_{op}) \|W_{j(k+1)}\|_{op} \|L_{j}L_{k+1}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})} \|L_{j}\tilde{\psi}_{N,\omega}\|_{L^{2}(\mathbb{R}^{3N})}$$

$$\lesssim C_{k,J^{(k)}}.$$

$$(61)$$

Integrating (57) from t_1 to t_2 and applying the bounds obtained in (58)–(61), we obtain (55). Finally, we prove (56). By Lemma A.5,

$$\begin{split} \left| \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_{2}) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_{1}) \right| &\leq 2 \sup_{t} \left| \langle J^{(k)} \mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}(t), \mathcal{P}_{\beta} \tilde{\psi}_{N,\omega}(t) \rangle \right| \\ & \lesssim \|J^{(k)}\|_{\operatorname{op}} \|\mathcal{P}_{\alpha} \tilde{\psi}_{N,\omega}(t)\|_{L^{2}(\mathbb{R}^{3N})} \|\mathcal{P}_{\beta} \tilde{\psi}_{N,\omega}(t)\|_{L^{2}(\mathbb{R}^{3N})}; \end{split}$$

that is,

$$\left| \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_2) - \operatorname{Tr} J^{(k)} \mathcal{P}_{\alpha} \tilde{\gamma}_{N,\omega}^{(k)} \mathcal{P}_{\beta}(t_1) \right| \lesssim \omega^{-\frac{1}{2}|\alpha| - \frac{1}{2}|\beta|}$$

once we apply (31).

With Theorem 4.1, we can start talking about the limit points of $\{\Gamma_{N,\omega}(t) = \{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^{N}\}$. With the proofs of [X. Chen and Holmer 2013, Theorem 5 and Corollary 2], we arrive at the following corollary and theorem.

Corollary 4.2. Let $\Gamma(t) = {\{\tilde{\gamma}^{(k)}\}_{k=1}^{\infty}}$ be a limit point of $\{\Gamma_{N,\omega}(t) = {\{\tilde{\gamma}^{(k)}_{N,\omega}\}_{k=1}^{N}}\}$, with respect to the product topology τ_{prod} . Then $\tilde{\gamma}^{(k)}$ satisfies the a priori bound

$$\operatorname{Tr} L^{(k)} \tilde{\gamma}^{(k)} L^{(k)} \leqslant C^k \tag{62}$$

and takes the structure

$$\tilde{\gamma}^{(k)}(t, (\mathbf{x}_k, \mathbf{z}_k); (\mathbf{x}_k', \mathbf{z}_k')) = \left(\prod_{j=1}^k h_1(x_j) h_1(x_j')\right) \tilde{\gamma}_z^{(k)}(t, \mathbf{z}_k; \mathbf{z}_k'), \tag{63}$$

where $\tilde{\gamma}_z^{(k)} = \operatorname{Tr}_x \tilde{\gamma}^{(k)}$.

Theorem 4.3. Assume $C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}$. Then the sequence

$$\left\{\Gamma_{z,N,\omega}(t) = \{\tilde{\gamma}_{z,N,\omega}^{(k)} = \operatorname{Tr}_x \, \tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^N\right\} \subset \bigoplus_{k \geqslant 1} C\left([0,T], \mathcal{L}_k^1(\mathbb{R}^k)\right)$$

is compact with respect to the one-dimensional version of the product topology τ_{prod} used in Theorem 4.1.

5. Limit points satisfy GP hierarchy

Theorem 5.1. Let $\Gamma(t) = \{\tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ be a $C_1N^{v_1(\beta)} \leq \omega \leq C_2N^{v_2(\beta)}$ limit point of $\{\Gamma_{N,\omega}(t) = \{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^{N}\}$ with respect to the product topology τ_{prod} . Then $\{\tilde{\gamma}_z^{(k)} = \text{Tr}_x \, \tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ is a solution to the coupled focusing Gross–Pitaevskii hierarchy (23) subject to initial data $\tilde{\gamma}_z^{(k)}(0) = |\phi_0\rangle\langle\phi_0|^{\otimes k}$ with coupling constant $b_0 = |\int V(r) \, dr|$, which, rewritten in integral form, is

$$\tilde{\gamma}_{z}^{(k)} = U^{(k)}(t)\tilde{\gamma}_{z}^{(k)}(0) + ib_{0}\sum_{i=1}^{k} \int_{0}^{t} U^{(k)}(t-s)\operatorname{Tr}_{z_{k+1}}\operatorname{Tr}_{x}\left[\delta(r_{j} - r_{k+1}), \, \tilde{\gamma}^{(k+1)}(s)\right]ds, \tag{64}$$

where
$$U^{(k)}(t) = \prod_{j=1}^{k} e^{it\partial_{z_j}^2} e^{-it\partial_{z'_j}^2}$$
.

Remark. The proof of Theorem 5.1 is a bit special for the focusing case and is dimension- and scaling-dependent. So it does not follow from the 3D to 2D defocusing case [X. Chen and Holmer 2013, Theorem 4].

Proof. Passing to subsequences if necessary, we have

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leq\omega\leq C_2N^{v_2(\beta)}}} \sup_{t} \operatorname{Tr} J^{(k)} \left(\tilde{\gamma}_{N,\omega}^{(k)}(t) - \tilde{\gamma}^{(k)}(t)\right) = 0 \quad \forall J^{(k)} \in \mathcal{K}(L^2(\mathbb{R}^{3k})),$$

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leq\omega\leq C_2N^{v_2(\beta)}}} \sup_{t} \operatorname{Tr} J_z^{(k)} \left(\tilde{\gamma}_{z,N,\omega}^{(k)}(t) - \tilde{\gamma}_z^{(k)}(t)\right) = 0 \quad \forall J_z^{(k)} \in \mathcal{K}(L^2(\mathbb{R}^k))$$

$$C_1N^{v_1(\beta)}\leq\omega\leq C_2N^{v_2(\beta)}$$
(65)

via Theorems 4.1 and 4.3.

To establish (64), it suffices to test the limit point against the test functions $J_z^{(k)} \in \mathcal{K}(L^2(\mathbb{R}^k))$, as in the proof of Theorem 4.3. We will prove that the limit point satisfies

$$\operatorname{Tr} J_z^{(k)} \tilde{\gamma}_z^{(k)}(0) = \operatorname{Tr} J_z^{(k)} |\phi_0\rangle \langle \phi_0|^{\otimes k}$$
(66)

and

$$\operatorname{Tr} J_{z}^{(k)} \tilde{\gamma}_{z}^{(k)}(t) = \operatorname{Tr} J_{z}^{(k)} U^{(k)}(t) \tilde{\gamma}_{z}^{(k)}(0) + i b_{0} \sum_{j=1}^{k} \int_{0}^{t} \operatorname{Tr} J_{z}^{(k)} U^{(k)}(t-s) \left[\delta(r_{j} - r_{k+1}), \tilde{\gamma}^{(k+1)}(s) \right] ds.$$
(67)

To this end, we use the coupled focusing BBGKY hierarchy satisfied by $\tilde{\gamma}_{z,N,\omega}^{(k)}$, which, written in the form needed here, is

$$\operatorname{Tr} J_{z}^{(k)} \tilde{\gamma}_{z,N,\omega}^{(k)}(t) = A + \frac{i}{N} \sum_{i < j}^{k} B + i \left(1 - \frac{k}{N} \right) \sum_{j=1}^{k} D,$$

where

$$\begin{split} A &= \operatorname{Tr} J_z^{(k)} U^{(k)}(t) \tilde{\gamma}_{z,N,\omega}^{(k)}(0), \\ B &= \int_0^t \operatorname{Tr} J_z^{(k)} U^{(k)}(t-s) \big[-V_{N,\omega}(r_i-r_j), \ \tilde{\gamma}_{N,\omega}^{(k)}(s) \big] \, ds, \\ D &= \int_0^t \operatorname{Tr} J_z^{(k)} U^{(k)}(t-s) \big[-V_{N,\omega}(r_j-r_{k+1}), \ \tilde{\gamma}_{N,\omega}^{(k+1)}(s) \big] \, ds. \end{split}$$

By (65), we know

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}}\operatorname{Tr}J_z^{(k)}\tilde{\gamma}_{z,N,\omega}^{(k)}(t)=\operatorname{Tr}J_z^{(k)}\tilde{\gamma}_z^{(k)}(t),$$

$$\lim_{\substack{N,\omega\to\infty\\N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}}\operatorname{Tr}J_z^{(k)}U^{(k)}(t)\tilde{\gamma}_{z,N,\omega}^{(k)}(0)=\operatorname{Tr}J_z^{(k)}U^{(k)}(t)\tilde{\gamma}_z^{(k)}(0).$$

With the argument in [Lieb et al. 2005, p. 64], we infer, from assumption (b) of Theorem 1.1,

$$\tilde{\gamma}_{N,\omega}^{(1)}(0) \to |h_1 \otimes \phi_0\rangle\langle h_1 \otimes \phi_0|$$
 strongly in trace norm;

that is,

$$\tilde{\gamma}_{N,\omega}^{(k)}(0) \to |h_1 \otimes \phi_0\rangle \langle h_1 \otimes \phi_0|^{\otimes k}$$
 strongly in trace norm.

Thus we have checked (66), the left-hand side of (67), and the first term on the right-hand side of (67) for the limit point. We are left to prove that

$$\lim_{\substack{N,\omega \to \infty \\ C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}}} \frac{B}{N} = 0,$$

$$\lim_{\substack{N,\omega \to \infty \\ C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}}} \left(1 - \frac{k}{N}\right) D = b_0 \int_0^t J_x^{(k)} U^{(k)}(t - s) \left[\delta(r_j - r_{k+1}), \, \tilde{\gamma}^{(k+1)}(s)\right] ds.$$

We first use an argument similar to the estimates of II and III in the proof of Theorem 4.3 to prove that |B| and |D| are bounded for every finite time t. In fact, since $U^{(k)}$ is a unitary operator which commutes with Fourier multipliers, we have

$$\begin{split} |B| &\leqslant \int_{0}^{t} \left| \operatorname{Tr} J_{z}^{(k)} U^{(k)}(t-s) \left[V_{N,\omega}(r_{i}-r_{j}), \, \tilde{\gamma}_{N,\omega}^{(k)}(s) \right] \right| \, ds \\ &= \int_{0}^{t} \, ds \left| \operatorname{Tr} L_{i}^{-1} L_{j}^{-1} J_{z}^{(k)} L_{i} L_{j} U^{(k)}(t-s) W_{ij} L_{i} L_{j} \tilde{\gamma}_{N,\omega}^{(k)}(s) L_{i} L_{j} \\ &\qquad \qquad - \operatorname{Tr} L_{i} L_{j} J_{z}^{(k)} L_{i}^{-1} L_{j}^{-1} U^{(k)}(t-s) L_{i} L_{j} \tilde{\gamma}_{N,\omega}^{(k)}(s) L_{i} L_{j} W_{ij} \right| \\ &\leqslant \int_{0}^{t} \, ds \| L_{i}^{-1} L_{j}^{-1} J_{z}^{(k)} L_{i} L_{j} \|_{\operatorname{op}} \| U^{(k)} \|_{\operatorname{op}} \| W_{ij} \| \operatorname{Tr} L_{i} L_{j} \tilde{\gamma}_{N,\omega}^{(k)}(s) L_{i} L_{j} \\ &\qquad \qquad + \int_{0}^{t} \, ds \| L_{i} L_{j} J_{z}^{(k)} L_{i}^{-1} L_{j}^{-1} \|_{\operatorname{op}} \| U^{(k)} \|_{\operatorname{op}} \| W_{ij} \| \operatorname{Tr} L_{i} L_{j} \tilde{\gamma}_{N,\omega}^{(k)}(s) L_{i} L_{j} \\ &\leqslant C_{I} t. \end{split}$$

That is,

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leq\omega\leq C_2N^{v_2(\beta)}}}\frac{B}{N}=\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leq\omega\leq C_2N^{v_2(\beta)}}}\frac{kD}{N}=0.$$

We now use Lemma A.2 (stated and proved in Appendix A), which compares the δ -function and its approximation, to prove

$$\lim_{\substack{N,\omega \to \infty \\ C_1 N^{v_1(\beta)} \le \omega \le C_2 N^{v_2(\beta)}}} D = b_0 \int_0^t \text{Tr} J_z^{(k)} U^{(k)}(t-s) \left[\delta(r_j - r_{k+1}), \ \tilde{\gamma}^{(k+1)}(s) \right] ds. \tag{68}$$

Pick a probability measure $\rho \in L^1(\mathbb{R}^3)$ and define $\rho_{\alpha}(r) = \alpha^{-3}\rho(r/\alpha)$. Letting $M_{s-t}^{(k)} = J_z^{(k)}U^{(k)}(t-s)$, we have

$$\left| \operatorname{Tr} J_{z}^{(k)} U^{(k)}(t-s) \left(-V_{N,\omega}(r_{j}-r_{k+1}) \tilde{\gamma}_{N,\omega}^{(k+1)}(s) - b_{0} \delta(r_{j}-r_{k+1}) \tilde{\gamma}^{(k+1)}(s) \right) \right| = I + II + III + IV,$$

where

$$I = \left| \operatorname{Tr} M_{s-t}^{(k)} \left(-V_{N,\omega}(r_j - r_{k+1}) - b_0 \delta(r_j - r_{k+1}) \right) \tilde{\gamma}_{N,\omega}^{(k+1)}(s) \right|,$$

$$II = b_0 \left| \operatorname{Tr} M_{s-t}^{(k)} \left(\delta(r_j - r_{k+1}) - \rho_{\alpha}(r_j - r_{k+1}) \right) \tilde{\gamma}_{N,\omega}^{(k+1)}(s) \right|,$$

$$III = b_0 \left| \operatorname{Tr} M_{s-t}^{(k)} \rho_{\alpha}(r_j - r_{k+1}) \left(\tilde{\gamma}_{N,\omega}^{(k+1)}(s) - \tilde{\gamma}^{(k+1)}(s) \right) \right|,$$

$$IV = b_0 \left| \operatorname{Tr} M_{s-t}^{(k)} \left(\rho_{\alpha}(r_j - r_{k+1}) - \delta(r_j - r_{k+1}) \right) \tilde{\gamma}^{(k+1)}(s) \right|.$$

Consider I. Writing $V_{\omega}(r) = (1/\omega)V(x/\sqrt{\omega}, z)$, we have $V_{N,\omega} = (N\omega)^{3\beta}V_{\omega}((N\omega)^{\beta}r)$. Lemma A.2 then yields

$$I \leq \frac{Cb_{0}}{(N\omega)^{\beta\kappa}} \left(\int |V_{\omega}(r)| |r|^{\kappa} dr \right) \left(\|L_{j}J_{z}^{(k)}L_{j}^{-1}\|_{\text{op}} + \|L_{j}^{-1}J_{z}^{(k)}L_{j}\|_{\text{op}} \right) L_{j}L_{k+1} \tilde{\gamma}_{N,\omega}^{(k+1)}(s) L_{j}L_{k+1}$$

$$= C_{J} \frac{\left(\int |V_{\omega}(r)| |r|^{\kappa} dr \right)}{(N\omega)^{\beta\kappa}}.$$

Notice that $(\int |V_{\omega}(r)| |r|^{\kappa} dr)$ grows like $(\sqrt{\omega})^{\kappa}$, so

$$I \leqslant C_J \left(\frac{\sqrt{\omega}}{(N\omega)^{\beta}}\right)^{\kappa},$$

which converges to zero as $N, \omega \to \infty$ in the way in which $N \ge \omega^{\frac{1}{2\beta}-1+}$. So we have proved

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}}I=0.$$

Similarly, for II and IV, via Lemma A.2, we have

$$II \leq Cb_0\alpha^{\kappa} \left(\|L_j J_z^{(k)} L_j^{-1}\|_{\text{op}} + \|L_j^{-1} J_z^{(k)} L_j\|_{\text{op}} \right) \operatorname{Tr} L_j L_{k+1} \tilde{\gamma}_{N,\omega}^{(k+1)}(s) L_j L_{k+1} \leq Cb_0\alpha^{\kappa} C_{J_z^{(k)}} C^2,$$

where the second inequality follows from Corollary 3.2, and

$$IV \leq Cb_0\alpha^{\kappa} (\|L_j J_z^{(k)} L_j^{-1}\|_{op} + \|L_j^{-1} J_z^{(k)} L_j\|_{op}) \operatorname{Tr} L_j L_{k+1} \tilde{\gamma}^{(k+1)}(s) L_j L_{k+1} \leq Cb_0\alpha^{\kappa} C_{J_z^{(k)}} C^2,$$

where the second inequality follows from Corollary 4.2; that is,

$$II \leq C_J \alpha^{\kappa}$$
 and $IV \leq C_J \alpha^{\kappa}$,

due to the energy estimate (Corollary 4.2). Hence II and IV converge to 0 as $\alpha \to 0$, uniformly in N, ω . For III,

$$\begin{aligned} \text{III} &\leq b_0 \left| \text{Tr } J_{s-t}^{(k)} \rho_{\alpha}(r_j - r_{k+1}) \frac{1}{1 + \varepsilon L_{k+1}} \left(\tilde{\gamma}_{N,\omega}^{(k+1)}(s) - \tilde{\gamma}^{(k+1)}(s) \right) \right| \\ &+ b_0 \left| \text{Tr } J_{s-t}^{(k)} \rho_{\alpha}(r_j - r_{k+1}) \frac{\varepsilon L_{k+1}}{1 + \varepsilon L_{k+1}} \left(\tilde{\gamma}_{N,\omega}^{(k+1)}(s) - \tilde{\gamma}^{(k+1)}(s) \right) \right|. \end{aligned}$$

The first term in the above estimate goes to zero as $N, \omega \to \infty$ for every $\varepsilon > 0$, since we have assumed condition (65) and $J_{s-t}^{(k)} \rho_{\alpha}(r_j - r_{k+1}) (1 + \varepsilon L_{k+1})^{-1}$ is a compact operator. Due to the energy bounds on $\tilde{\gamma}_{N,\omega}^{(k+1)}$ and $\tilde{\gamma}^{(k+1)}$, the second term tends to zero as $\varepsilon \to 0$, uniformly in N and ω .

Putting together the estimates for I–IV, we have justified limit (68). Hence, we have obtained Theorem 5.1.

Combining Corollary 4.2 and Theorem 5.1, we see that $\tilde{\gamma}_z^{(k)}$ in fact solves the 1D focusing Gross–Pitaevskii hierarchy with the desired coupling constant $b_0(\int |h_1(x)|^4 dx)$.

Corollary 5.2. Let $\Gamma(t) = \{\tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ be a $N \ge \omega^{v(\beta)+\varepsilon}$ limit point of $\{\Gamma_{N,\omega}(t) = \{\tilde{\gamma}_{N,\omega}^{(k)}\}_{k=1}^{N}\}$ with respect to the product topology τ_{prod} . Then $\{\tilde{\gamma}_{z}^{(k)} = \operatorname{Tr}_{x} \tilde{\gamma}^{(k)}\}_{k=1}^{\infty}$ is a solution to the 1D Gross-Pitaevskii hierarchy (24) subject to initial data $\tilde{\gamma}_{z}^{(k)}(0) = |\phi_{0}\rangle\langle\phi_{0}|^{\otimes k}$ with coupling constant $b_{0}(\int |h_{1}(x)|^{4} dx)$, which, rewritten in integral form, is

$$\tilde{\gamma}_{z}^{(k)} = U^{(k)}(t)\tilde{\gamma}_{z}^{(k)}(0) + ib_{0}\left(\int |h_{1}(x)|^{4} dx\right) \sum_{i=1}^{k} \int_{0}^{t} U^{(k)}(t-s) \operatorname{Tr}_{z_{k+1}}\left[\delta(z_{j}-z_{k+1}), \, \tilde{\gamma}_{z}^{(k+1)}(s)\right] ds. \quad (69)$$

Proof. This is a direct computation by plugging (63) into (64).

Appendix A: Basic operator facts and Sobolev-type lemmas

Lemma A.1 [Erdős et al. 2007, Lemma A.3]. Let $L_j = (1 - \triangle_{r_j})^{\frac{1}{2}}$. Then we have

$$||L_i^{-1}L_j^{-1}V(r_i-r_j)L_i^{-1}L_j^{-1}||_{\text{op}} \le C||V||_{L^1}.$$

Lemma A.2. Let $f \in L^1(\mathbb{R}^3)$ be such that $\int_{\mathbb{R}^3} \langle r \rangle^{\frac{1}{2}} |f(r)| dr < \infty$ and $\int_{\mathbb{R}^3} f(r) dr = 1$ but we allow that f not be nonnegative everywhere. Define $f_{\alpha}(r) = \alpha^{-3} f(r/\alpha)$. Then, for every $\kappa \in (0, \frac{1}{2})$, there exists $C_{\kappa} > 0$ such that

$$\begin{split} \left| \operatorname{Tr} J^{(k)} \left(f_{\alpha}(r_{j} - r_{k+1}) - \delta(r_{j} - r_{k+1}) \right) \gamma^{(k+1)} \right| \\ & \leq C_{\kappa} \left(\int |f(r)| |r|^{\kappa} dr \right) \alpha^{\kappa} \left(\|L_{j} J^{(k)} L_{j}^{-1}\|_{\operatorname{op}} + \|L_{j}^{-1} J^{(k)} L_{j}\|_{\operatorname{op}} \right) \operatorname{Tr} L_{j} L_{k+1} \gamma^{(k+1)} L_{j} L_{k+1} \end{split}$$

for all nonnegative $\gamma^{(k+1)} \in \mathcal{L}^1(L^2(\mathbb{R}^{3k+3}))$.

Proof. This is the same as [X. Chen and Holmer 2016b, Lemma A.3; 2013, Lemma 2]. See [Kirkpatrick et al. 2011; T. Chen and Pavlović 2011; Erdős et al. 2007] for similar lemmas. □

Lemma A.3 (some standard operator inequalities).

- (1) Suppose that $A \ge 0$, $P_j = P_j^*$, and $I = P_0 + P_1$. Then $A \le 2P_0AP_0 + 2P_1AP_1$.
- (2) If $A \ge B \ge 0$, and AB = BA, then $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \ge 0$.
- (3) If $A_1 \ge A_2 \ge 0$, $B_1 \ge B_2 \ge 0$ and $A_i B_j = B_j A_i$ for all $1 \le i, j \le 2$, then $A_1 B_1 \ge A_2 B_2$.
- (4) If $A \ge 0$ and AB = BA, then $A^{\frac{1}{2}}B = BA^{\frac{1}{2}}$.

Proof. For (1), $||A^{\frac{1}{2}}f||^2 = ||A^{\frac{1}{2}}(P_0 + P_1)f||^2 \le 2||A^{\frac{1}{2}}P_0f||^2 + 2||A^{\frac{1}{2}}P_1f||^2$. For (3), $A_1B_1 \ge A_2B_1 = B_1A_2 \ge B_2A_2 = A_2B_2$. The rest, (2) and (4), are standard facts in operator theory. See, for example, [Reed and Simon 1978; Stein and Shakarchi 2005, Proposition 6.3].

Lemma A.4. Recall

$$\tilde{S} = (1 - \partial_z^2 + \omega(-2 - \Delta_x + |x|^2))^{\frac{1}{2}}.$$

We have

$$\tilde{S}^2 \gtrsim 1 - \Delta_r,\tag{70}$$

$$\widetilde{S}^2 P_{\geqslant 1} \gtrsim P_{\geqslant 1} (1 - \partial_z^2 - \omega \Delta_x + \omega |x|^2) P_{\geqslant 1}, \tag{71}$$

$$\tilde{S}^2 P_{\geq 1} \gtrsim \omega P_{\geq 1}. \tag{72}$$

Proof. Directly from the definition of \widetilde{S} , we have

$$\underbrace{P_{\geqslant 1}(1 - \partial_z^2 - \omega \Delta_x + \omega |x|^2) P_{\geqslant 1}}_{\text{all terms positive}} = 2\omega P_{\geqslant 1} + \widetilde{S}^2 P_{\geqslant 1}. \tag{73}$$

The eigenvalues of the 2D Hermite operator $-\Delta_x + |x|^2$ are $\{2k+2\}_{k=0}^{\infty}$. So

$$2\omega P_{\geqslant 1} \leqslant \omega(-2 - \Delta_x + |x|^2) P_{\geqslant 1} \leqslant \widetilde{S}^2 P_{\geqslant 1}. \tag{74}$$

Inequalities (71) and (72) immediately follow from (73) and (74).

We now establish (70) using (71). On the one hand, we have

$$\tilde{S}^2 \geqslant (1 - \partial_z^2). \tag{75}$$

On the other hand,

$$P_0(-\Delta_x)P_0 \lesssim 1 \leqslant \tilde{S}^2 \tag{76}$$

since P_0 is merely the projection onto the smooth function $Ce^{-\frac{1}{2}|x|^2}$. Moreover, by (71),

$$P_{\geqslant 1}(-\Delta_x)P_{\geqslant 1} \leqslant \tilde{S}^2P_{\geqslant 1} \leqslant \tilde{S}^2. \tag{77}$$

Thus Lemma A.3(1), (76) and (77) together imply,

$$-\Delta_x \lesssim \tilde{S}^2. \tag{78}$$

The claimed inequality (70) then follows from (75) and (78).

Lemma A.5. Suppose $\sigma: L^2(\mathbb{R}^{3k}) \to L^2(\mathbb{R}^{3k})$ has kernel

$$\sigma(\mathbf{r}_k, \mathbf{r}'_k) = \int \psi(\mathbf{r}_k, \mathbf{r}_{N-k}) \overline{\psi}(\mathbf{r}'_k, \mathbf{r}_{N-k}) d\mathbf{r}_{N-k}$$

for some $\psi \in L^2(\mathbb{R}^{3N})$, and let $A, B: L^2(\mathbb{R}^{3k}) \to L^2(\mathbb{R}^{3k})$. Then the composition $A \sigma B$ has kernel

$$(A\sigma B)(\mathbf{r}_k, \mathbf{r}'_k) = \int (A\psi)(\mathbf{r}_k, \mathbf{r}_{N-k})(\overline{B^*\psi})(\mathbf{r}'_k, \mathbf{r}_{N-k}) d\mathbf{r}_{N-k}.$$

It follows that

$$\operatorname{Tr} A\sigma B = \langle A\psi, B^*\psi \rangle.$$

Let \mathcal{K}_k denote the class of compact operators on $L^2(\mathbb{R}^{3k})$, let \mathcal{L}_k^1 denote the trace class operators on $L^2(\mathbb{R}^{3k})$, and let \mathcal{L}_k^2 denote the Hilbert–Schmidt operators on $L^2(\mathbb{R}^{3k})$. We have

$$\mathcal{L}_k^1 \subset \mathcal{L}_k^2 \subset \mathcal{K}_k$$
.

For an operator J on $L^2(\mathbb{R}^{3k})$, let $|J| = (J^*J)^{\frac{1}{2}}$ and denote by $J(r_k, r'_k)$ the kernel of J and by $|J|(r_k, r'_k)$ the kernel of |J|, which satisfies $|J|(r_k, r'_k) \ge 0$. Let

$$\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant 0$$

be the eigenvalues of |J| repeated according to multiplicity (the *singular values* of J). Then

$$||J||_{\mathcal{K}_{k}} = ||\mu_{n}||_{\ell_{n}^{\infty}} = \mu_{1} = ||J||_{\text{op}} = ||J||_{\text{op}},$$

$$||J||_{\mathcal{L}_{k}^{2}} = ||\mu_{n}||_{\ell_{n}^{2}} = ||J(\mathbf{r}_{k}, \mathbf{r}'_{k})||_{L^{2}(\mathbf{r}_{k}, \mathbf{r}'_{k})} = (\operatorname{Tr} J^{*}J)^{\frac{1}{2}},$$

$$||J||_{\mathcal{L}_{k}^{1}} = ||\mu_{n}||_{\ell_{n}^{1}} = ||J|(\mathbf{r}_{k}, \mathbf{r}_{k})||_{L^{1}(\mathbf{r}_{k})} = \operatorname{Tr}|J|.$$

The topology on \mathcal{K}_k coincides with the operator topology, and \mathcal{K}_k is a closed subspace of the space of bounded operators on $L^2(\mathbb{R}^{3k})$.

Lemma A.6. On the one hand, let χ be a smooth function on \mathbb{R}^3 such that $\chi(\xi) = 1$ for $|\xi| \le 1$ and $\chi(\xi) = 0$ for $|\xi| \ge 2$. Let

$$(Q_M f)(\mathbf{r}_k) = \int e^{i\mathbf{r}_k \cdot \boldsymbol{\xi}_k} \prod_{j=1}^k \chi(M^{-1}\boldsymbol{\xi}_j) \hat{f}(\boldsymbol{\xi}_k) d\boldsymbol{\xi}_k.$$

On the other hand, with respect to the spectral decomposition of $L^2(\mathbb{R}^2)$ corresponding to the operator $H_j = -\Delta_{x_j}^2 + |x_j|^2$, let X_M^j be the orthogonal projection onto the sum of the first M eigenspaces (in the x_j -variable only) and let

$$R_{\boldsymbol{M}} = \prod_{j=1}^{k} X_{\boldsymbol{M}}^{j}.$$

We then have the following:

- (1) Suppose that J is a compact operator. Then $J_M := R_M Q_M J Q_M R_M \to J$ in the operator norm.
- (2) $H_j J_M$, $J_M H_j$, $\Delta_{r_j} J_M$ and $J_M \Delta_{r_j}$ are all bounded.

- (3) There exists a countable dense subset $\{T_i\}$ of the closed unit ball in the space of bounded operators on $L^2(\mathbb{R}^{3k})$ such that each T_i is compact and in fact for each i there exists M (depending on i) and $Y_i \in \mathcal{K}_k$ with $\|Y_i\|_{op} \leq 1$ such that $T_i = R_M Q_M Y_i Q_M R_M$.
- *Proof.* (1) If $S_n \to S$ strongly and $J \in \mathcal{K}_k$, then $S_n J \to SJ$ in the operator norm and $JS_n \to JS$ in the operator norm.
- (2) This is straightforward.
- (3) Start with a subset $\{Y_n\}$ of the closed unit ball in the space of bounded operators on $L^2(\mathbb{R}^{3k})$ such that each Y_n is compact. Then let $\{T_i\}$ be an enumeration of the set $R_M Q_M Y_n Q_M R_M$, where M ranges over the dyadic integers. By (1) this collection will still be dense. The $\{Y_i\}$ in the statement of (3) is just a reindexing of $\{Y_n\}$.

Appendix B: Deducing Theorem 1.1 from Theorem 1.2

We first give the following lemma.

Lemma B.1. Assume $\tilde{\psi}_{N,\omega}(0)$ satisfies (a), (b) and (c) in Theorem 1.1. Let $\chi \in C_0^{\infty}(\mathbb{R})$ be a cut-off such that $0 \le \chi \le 1$, $\chi(s) = 1$ for $0 \le s \le 1$ and $\chi(s) = 0$ for $s \ge 2$. For $\kappa > 0$, we define an approximation of $\tilde{\psi}_{N,\omega}(0)$ by

$$\tilde{\psi}_{N,\omega}^{\kappa}(0) = \frac{\chi \left(\kappa (\tilde{H}_{N,\omega} - 2N\omega)/N\right) \tilde{\psi}_{N,\omega}(0)}{\|\chi \left(\kappa (\tilde{H}_{N,\omega} - 2N\omega)/N\right) \tilde{\psi}_{N,\omega}(0)\|}.$$

This approximation has the following properties:

(i) $\tilde{\psi}_{N,\omega}^{\kappa}(0)$ verifies the energy condition

$$\left\langle \tilde{\psi}_{N,\omega}^{\kappa}(0), (\tilde{H}_{N,\omega} - 2N\omega)^{k} \tilde{\psi}_{N,\omega}^{\kappa}(0) \right\rangle \leqslant \frac{2^{k} N^{k}}{\kappa^{k}}.$$

- (ii) $\sup_{N,\omega} \|\tilde{\psi}_{N,\omega}(0) \tilde{\psi}_{N,\omega}^{\kappa}(0)\|_{L^2} \leqslant C\kappa^{\frac{1}{2}}.$
- (iii) For small enough $\kappa > 0$, we have $\tilde{\psi}_{N,\omega}^{\kappa}(0)$ is asymptotically factorized as well:

$$\lim_{N,\omega\to\infty} \text{Tr} \big| \tilde{\gamma}_{N,\omega}^{\kappa,(1)}(0,x_1,z_1;x_1',z_1') - h(x_1)h(x_1')\phi_0(z_1)\overline{\phi}_0(z_1') \big| = 0,$$

where $\tilde{\gamma}_{N,\omega}^{\kappa,(1)}(0)$ is the one-particle marginal density associated with $\tilde{\psi}_{N,\omega}^{\kappa}(0)$, and ϕ_0 is the same as in assumption (b) in Theorem 1.1.

Proof. Let us write $\chi(\kappa(\widetilde{H}_{N,\omega}-2N\omega))$ as χ and $\widetilde{\psi}_{N,\omega}(0)$ as $\widetilde{\psi}_{N,\omega}$. This proof closely follows [Erdős et al. 2010, Proposition 8.1(i)–(ii); 2007, Proposition 5.1(iii)].

Property (i) follows by definition. In fact, denote the characteristic function of $[0, \lambda]$ by $\mathbf{1}(s \leq \lambda)$. We see that

$$\chi(\kappa(\widetilde{H}_{N,\omega}-2N\omega)/N)=\mathbf{1}(\widetilde{H}_{N,\omega}-2N\omega\leq 2N/\kappa)\chi(\kappa(\widetilde{H}_{N,\omega}-2N\omega)/N).$$

Thus

$$\begin{split} \left\langle \tilde{\psi}_{N,\omega}^{\kappa}(0), (\tilde{H}_{N,\omega} - 2N\omega)^{k} \tilde{\psi}_{N,\omega}^{\kappa}(0) \right\rangle &= \left\langle \frac{\chi \tilde{\psi}_{N,\omega}}{\|\chi \tilde{\psi}_{N,\omega}\|}, \mathbf{1} \big(\tilde{H}_{N,\omega} - 2N\omega \leqslant 2N/\kappa \big) (\tilde{H}_{N,\omega} - 2N\omega)^{k} \frac{\chi \tilde{\psi}_{N,\omega}}{\|\chi \tilde{\psi}_{N,\omega}\|} \right\rangle \\ &\leqslant \left\| \mathbf{1} \big(\tilde{H}_{N,\omega} - 2N\omega \leqslant 2N/\kappa \big) (\tilde{H}_{N,\omega} - 2N\omega)^{k} \right\|_{\text{op}} \\ &\leqslant \frac{2^{k} N^{k}}{\kappa^{k}}. \end{split}$$

We prove (ii) with a slightly modified proof of [Erdős et al. 2010, Proposition 8.1(ii)]. We still have

$$\begin{split} \|\tilde{\psi}_{N,\omega}^{\kappa} - \tilde{\psi}_{N,\omega}\|_{L^{2}} &\leq \|\chi\tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^{2}} + \left\|\frac{\chi\tilde{\psi}_{N,\omega}}{\|\chi\tilde{\psi}_{N,\omega}\|} - \chi\tilde{\psi}_{N,\omega}\right\|_{L^{2}} \\ &\leq \|\chi\tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^{2}} + \left|1 - \|\chi\tilde{\psi}_{N,\omega}\|\right| \\ &\leq 2\|\chi\tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^{2}}, \end{split}$$

where

$$\|\chi \tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^{2}}^{2} = \left\langle \psi_{N}, \left(1 - \chi \left(\frac{\kappa (\tilde{H}_{N,\omega} - 2N\omega)}{N}\right)\right)^{2} \psi_{N} \right\rangle$$
$$\leq \left\langle \psi_{N}, \mathbf{1} \left(\frac{\kappa (\tilde{H}_{N,\omega} - 2N\omega)}{N} \geqslant 1\right) \psi_{N} \right\rangle.$$

To continue estimating, we notice that if $C \ge 0$, then $\mathbf{1}(s \ge 1) \le \mathbf{1}(s + C \ge 1)$ for all s. So

$$\begin{split} \|\chi \tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^{2}}^{2} &\leq \left\langle \tilde{\psi}_{N,\omega}, \ \mathbf{1} \left(\frac{\kappa (\tilde{H}_{N,\omega} - 2N\omega)}{N} \geqslant 1 \right) \tilde{\psi}_{N,\omega} \right\rangle \\ &\leq \left\langle \tilde{\psi}_{N,\omega}, \ \mathbf{1} \left(\frac{\kappa (\tilde{H}_{N,\omega} - 2N\omega + N\alpha)}{N} \geqslant 1 \right) \tilde{\psi}_{N,\omega} \right\rangle. \end{split}$$

With the inequality $\mathbf{1}(s \ge 1) \le s$ for all $s \ge 0$ and the fact that

$$\tilde{H}_{N,\omega} - 2N\omega + N\alpha \geqslant 0$$
,

proved in Theorem 3.1, we arrive at

$$\begin{split} \|\chi \tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^2}^2 & \leq \frac{\kappa}{N} \big\langle \tilde{\psi}_{N,\omega}, \; (\tilde{H}_{N,\omega} - 2N\omega + N\alpha) \tilde{\psi}_{N,\omega} \big\rangle \\ & \leq \frac{\kappa}{N} \big\langle \tilde{\psi}_{N,\omega}, \; (\tilde{H}_{N,\omega} - 2N\omega) \tilde{\psi}_{N,\omega} \big\rangle + \alpha \kappa \langle \tilde{\psi}_{N,\omega}, \; \tilde{\psi}_{N,\omega} \rangle. \end{split}$$

Using (a) and (c) in the assumptions of Theorem 1.1, we deduce that

$$\|\chi \tilde{\psi}_{N,\omega} - \tilde{\psi}_{N,\omega}\|_{L^2}^2 \leqslant C\kappa,$$

which implies

$$\|\tilde{\psi}_{N,\omega}^{\kappa} - \tilde{\psi}_{N,\omega}\|_{L^2} \leqslant C\kappa^{\frac{1}{2}}.$$

Property (iii) does not follow from the proof of [Erdős et al. 2010, Proposition 8.1(iii)] in which the positivity of *V* is used. Instead (iii) follows from the proof of [Erdős et al. 2007, Proposition 5.1(iii)],

which does not require V to hold a definite sign. Lemma B.1 follows the same proof as [Erdős et al. 2007, Proposition 5.1(iii)] if one replaces H_N by $(\widetilde{H}_{N,\omega} - 2N\omega)$ and \widehat{H}_N by

$$\sum_{j \ge k+1}^{N} \left(-\partial_{z_j} + \omega(-2 - \Delta_{x_j} + |x_j|^2) \right) + \frac{1}{N} \sum_{k+1 < i < j \le N} V_{N,\omega}(r_i - r_j).$$

Notice that we are working with $V_{N,\omega} = (N\omega)^{3\beta} V_{\omega}((N\omega)^{\beta} r)$, where $V_{\omega}(r) = (1/\omega)V(x/\sqrt{\omega}, z)$; thus we get

 $(N\omega)^{\frac{3}{2}\beta} \|V_{\omega}\|_{L^{2}}^{2} \sim \frac{(N\omega)^{\frac{3}{2}\beta}}{\omega}$

instead of $N^{\frac{3}{2}\beta}$ in [Erdős et al. 2007, (5.20)] and hence we get $(N\omega)^{\frac{3}{2}\beta-1}$ in the estimate (5.18) of the same work, which tends to zero as $N,\omega\to\infty$ for $\beta\in\left(0,\frac{2}{3}\right)$.

Via (i) and (iii) of Lemma B.1, $\tilde{\psi}_{N,\omega}^{\kappa}(0)$ verifies the hypothesis of Theorem 1.2 for small enough $\kappa > 0$. Therefore, for $\tilde{\gamma}_{N,\omega}^{\kappa,(1)}(t)$, the marginal density associated with $e^{it\tilde{H}_{N,\omega}}\tilde{\psi}_{N,\omega}^{\kappa}(0)$, Theorem 1.2 gives the convergence

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}} \operatorname{Tr} \left| \widetilde{\gamma}_{N,\omega}^{\kappa,(k)}(t,\boldsymbol{x}_k,\boldsymbol{z}_k;\boldsymbol{x}_k',\boldsymbol{z}_k') - \prod_{j=1}^k h_1(x_j)h_1(x_j')\phi(t,z_j)\overline{\phi}(t,z_j') \right| = 0$$
 (79)

for all small enough $\kappa > 0$, all $k \ge 1$, and all $t \in \mathbb{R}$.

For $\tilde{\gamma}_{N,\omega}^{(k)}(t)$ in Theorem 1.1, we notice that, $\forall J^{(k)} \in \mathcal{K}_k$, $\forall t \in \mathbb{R}$, we have

$$\begin{split} \left| \operatorname{Tr} J^{(k)} \big(\tilde{\gamma}_{N,\omega}^{(k)}(t) - \left| h_1 \otimes \phi(t) \right\rangle \langle h_1 \otimes \phi(t) \right|^{\otimes k} \big) \right| \\ & \leq \left| \operatorname{Tr} J^{(k)} \big(\tilde{\gamma}_{N,\omega}^{(k)}(t) - \tilde{\gamma}_{N,\omega}^{\kappa,(k)}(t) \big) \right| + \left| \operatorname{Tr} J^{(k)} \big(\tilde{\gamma}_{N,\omega}^{\kappa,(k)}(t) - |h_1 \otimes \phi(t) \rangle \langle h_1 \otimes \phi(t)|^{\otimes k} \big) \right| \\ & - \operatorname{I} + \operatorname{II} \end{split}$$

Convergence (79) then takes care of II. To handle I, part (ii) of Lemma B.1 yields

$$\left\|e^{it\tilde{H}_{N,\omega}}\tilde{\psi}_{N,\omega}(0)-e^{it\tilde{H}_{N,\omega}}\tilde{\psi}_{N,\omega}^{\kappa}(0)\right\|_{L^{2}}=\left\|\tilde{\psi}_{N,\omega}(0)-\tilde{\psi}_{N,\omega}^{\kappa}(0)\right\|_{L^{2}}\leqslant C\kappa^{\frac{1}{2}},$$

which implies

$$I = \left| \text{Tr } J^{(k)} \left(\tilde{\gamma}_{N,\omega}^{(k)}(t) - \tilde{\gamma}_{N,\omega}^{\kappa,(k)}(t) \right) \right| \leqslant C \| J^{(k)} \|_{\text{op}} \kappa^{\frac{1}{2}}.$$

Since $\kappa > 0$ is arbitrary, we deduce that

$$\lim_{\substack{N,\omega\to\infty\\C_1N^{v_1(\beta)}\leqslant\omega\leqslant C_2N^{v_2(\beta)}}} \left|\operatorname{Tr} J^{(k)}\big(\tilde{\gamma}_{N,\omega}^{(k)}(t)-|h_1\otimes\phi(t)\rangle\langle h_1\otimes\phi(t)|^{\otimes k}\big)\right|=0;$$

i.e., as trace class operators

$$\tilde{\gamma}_{N,\omega}^{(k)}(t) \to |h_1 \otimes \phi(t)\rangle \langle h_1 \otimes \phi(t)|^{\otimes k} \quad \text{weak*}.$$

Then again, Grümm's convergence theorem upgrades the above weak* convergence to strong. Hence, we have concluded Theorem 1.1 via Theorem 1.2 and Lemma B.1.

Acknowledgements

Holmer was supported in part by NSF grant DMS-1200455. We thank the referee for the careful reading of the paper.

References

[Adami et al. 2007] R. Adami, F. Golse, and A. Teta, "Rigorous derivation of the cubic NLS in dimension one", *J. Stat. Phys.* **127**:6 (2007), 1193–1220. MR

[Ammari and Nier 2008] Z. Ammari and F. Nier, "Mean field limit for bosons and infinite dimensional phase-space analysis", *Ann. Henri Poincaré* **9**:8 (2008), 1503–1574. MR Zbl

[Ammari and Nier 2011] Z. Ammari and F. Nier, "Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states", *J. Math. Pures Appl.* (9) **95**:6 (2011), 585–626. MR Zbl

[Anderson et al. 1995] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose–Einstein condensation in a dilute atomic vapor", *Science* **269**:5221 (1995), 198–201.

[Beckner 2014] W. Beckner, "Multilinear embedding-convolution estimates on smooth submanifolds", *Proc. Amer. Math. Soc.* **142**:4 (2014), 1217–1228. MR Zbl

[Benedikter et al. 2015] N. Benedikter, G. de Oliveira, and B. Schlein, "Quantitative derivation of the Gross–Pitaevskii equation", Comm. Pure Appl. Math. 68:8 (2015), 1399–1482. MR Zbl

[Cornish et al. 2000] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, "Stable ⁸⁵Rb Bose–Einstein Condensates with Widely Turnable Interactions", *Phys. Rev. Lett.* **85**:9 (2000), 1795–1798.

[Davis et al. 1995] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose–Einstein condensation in a gas of sodium atoms", *Phys. Rev. Lett.* **75**:22 (1995), 3969–3973.

[Desbuquois et al. 2012] R. Desbuquois, L. Chomaz, T. Yefsah, J. Leonard, J. Beugnon, C. Weitenberg, and J. Dalibard, "Superfluid behaviour of a two-dimensional Bose gas", *Nat Phys* 8:9 (2012), 645–648.

[Donley et al. 2001] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, "Dynamics of collapsing and exploding Bose–Einstein condensates", *Nature* **412**:6844 (2001), 295–299.

[Elgart et al. 2006] A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau, "Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons", *Arch. Ration. Mech. Anal.* 179:2 (2006), 265–283. MR Zbl

[Erdős and Yau 2001] L. Erdős and H.-T. Yau, "Derivation of the nonlinear Schrödinger equation from a many body Coulomb system", Adv. Theor. Math. Phys. 5:6 (2001), 1169–1205. MR Zbl

[Erdős et al. 2006] L. Erdős, B. Schlein, and H.-T. Yau, "Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate", *Comm. Pure Appl. Math.* **59**:12 (2006), 1659–1741. MR Zbl

[Erdős et al. 2007] L. Erdős, B. Schlein, and H.-T. Yau, "Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems", *Invent. Math.* **167**:3 (2007), 515–614. MR Zbl

[Erdős et al. 2009] L. Erdős, B. Schlein, and H.-T. Yau, "Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential", *J. Amer. Math. Soc.* **22**:4 (2009), 1099–1156. MR Zbl

[Erdős et al. 2010] L. Erdős, B. Schlein, and H.-T. Yau, "Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate", *Ann. of Math.* (2) **172**:1 (2010), 291–370. MR Zbl

[Fröhlich et al. 2009] J. Fröhlich, A. Knowles, and S. Schwarz, "On the mean-field limit of bosons with Coulomb two-body interaction", *Comm. Math. Phys.* **288**:3 (2009), 1023–1059. MR Zbl

[Görlitz et al. 2001] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, "Realization of Bose–Einstein condensates in lower dimensions", *Phys. Rev. Lett.* 87:13 (2001), art. id. 130402, 4 pp.

[Gressman et al. 2014] P. Gressman, V. Sohinger, and G. Staffilani, "On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy", *J. Funct. Anal.* **266**:7 (2014), 4705–4764. MR Zbl

[Grillakis and Machedon 2013] M. Grillakis and M. Machedon, "Pair excitations and the mean field approximation of interacting bosons, I", *Comm. Math. Phys.* **324**:2 (2013), 601–636. MR Zbl

[Grillakis and Margetis 2008] M. G. Grillakis and D. Margetis, "A priori estimates for many-body Hamiltonian evolution of interacting boson system", *J. Hyperbolic Differ. Equ.* **5**:4 (2008), 857–883. MR Zbl

[Grillakis et al. 2010] M. G. Grillakis, M. Machedon, and D. Margetis, "Second-order corrections to mean field evolution of weakly interacting bosons, I', *Comm. Math. Phys.* **294**:1 (2010), 273–301. MR Zbl

[Grillakis et al. 2011] M. Grillakis, M. Machedon, and D. Margetis, "Second-order corrections to mean field evolution of weakly interacting bosons, II", *Adv. Math.* **228**:3 (2011), 1788–1815. MR Zbl

[Hadzibabic et al. 2006] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard, "Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas", *Nature* **441**:7097 (2006), 1118–1121.

[Hong et al. 2015] Y. Hong, K. Taliaferro, and Z. Xie, "Unconditional uniqueness of the cubic Gross–Pitaevskii hierarchy with low regularity", *SIAM J. Math. Anal.* **47**:5 (2015), 3314–3341. MR Zbl

[Khaykovich et al. 2002] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, "Formation of a matter-wave bright soliton", *Science* **296**:5571 (2002), 1290–1293.

[Kirkpatrick et al. 2011] K. Kirkpatrick, B. Schlein, and G. Staffilani, "Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics", *Amer. J. Math.* **133**:1 (2011), 91–130. MR Zbl

[Klainerman and Machedon 2008] S. Klainerman and M. Machedon, "On the uniqueness of solutions to the Gross–Pitaevskii hierarchy", *Comm. Math. Phys.* **279**:1 (2008), 169–185. MR Zbl

[Knowles and Pickl 2010] A. Knowles and P. Pickl, "Mean-field dynamics: singular potentials and rate of convergence", *Comm. Math. Phys.* **298**:1 (2010), 101–138. MR Zbl

[Koch and Tataru 2005] H. Koch and D. Tataru, " L^p eigenfunction bounds for the Hermite operator", Duke Math. J. 128:2 (2005), 369–392. MR Zbl

[L. Chen et al. 2011] L. Chen, J. O. Lee, and B. Schlein, "Rate of convergence towards Hartree dynamics", J. Stat. Phys. 144:4 (2011), 872–903. MR Zbl

[Lewin et al. 2014] M. Lewin, P. T. Nam, and N. Rougerie, "Derivation of Hartree's theory for generic mean-field Bose systems", *Adv. Math.* **254** (2014), 570–621. MR Zbl

[Lieb et al. 2004] E. H. Lieb, R. Seiringer, and J. Yngvason, "One-dimensional behavior of dilute, trapped Bose gases", *Comm. Math. Phys.* **244**:2 (2004), 347–393. MR Zbl

[Lieb et al. 2005] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, *The mathematics of the Bose gas and its condensation*, Oberwolfach Seminars **34**, Birkhäuser, Basel, 2005. MR Zbl

[Michelangeli and Schlein 2012] A. Michelangeli and B. Schlein, "Dynamical collapse of boson stars", *Comm. Math. Phys.* **311**:3 (2012), 645–687. MR Zbl

[Pickl 2011] P. Pickl, "A simple derivation of mean field limits for quantum systems", *Lett. Math. Phys.* **97**:2 (2011), 151–164. MR Zbl

[Reed and Simon 1978] M. Reed and B. Simon, Methods of modern mathematical physics, IV: Analysis of operators, Academic Press, New York, 1978. MR Zbl

[Rodnianski and Schlein 2009] I. Rodnianski and B. Schlein, "Quantum fluctuations and rate of convergence towards mean field dynamics", *Comm. Math. Phys.* **291**:1 (2009), 31–61. MR Zbl

[Simon 2005] B. Simon, *Trace ideals and their applications*, 2nd ed., Mathematical Surveys and Monographs **120**, American Mathematical Society, Providence, RI, 2005. MR Zbl

[Sohinger 2015] V. Sohinger, "A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \mathbb{T}^3 from the dynamics of many-body quantum systems", *Ann. Inst. H. Poincaré Anal. Non Linéaire* **32**:6 (2015), 1337–1365. MR Zbl

[Sohinger and Staffilani 2015] V. Sohinger and G. Staffilani, "Randomization and the Gross–Pitaevskii hierarchy", *Arch. Ration. Mech. Anal.* **218**:1 (2015), 417–485. MR Zbl

[Spohn 1980] H. Spohn, "Kinetic equations from Hamiltonian dynamics: Markovian limits", *Rev. Modern Phys.* **52**:3 (1980), 569–615. MR Zbl

[Stein and Shakarchi 2005] E. M. Stein and R. Shakarchi, *Real analysis: measure theory, integration, and Hilbert spaces*, Princeton Lectures in Analysis 3, Princeton University Press, 2005. MR Zbl

[Stock et al. 2005] S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard, "Observation of phase defects in quasi-two-dimensional Bose–Einstein condensates", *Phys. Rev. Lett.* **95** (2005), art. id. 190403, 4 pp.

- [Strecker et al. 2002] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, "Formation and propagation of matter-wave soliton trains", *Nature* **417**:6885 (2002), 150–153.
- [T. Chen and Pavlović 2010] T. Chen and N. Pavlović, "On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies", *Discrete Contin. Dyn. Syst.* 27:2 (2010), 715–739. MR Zbl
- [T. Chen and Pavlović 2011] T. Chen and N. Pavlović, "The quintic NLS as the mean field limit of a boson gas with three-body interactions", *J. Funct. Anal.* **260**:4 (2011), 959–997. MR Zbl
- [T. Chen and Pavlović 2014] T. Chen and N. Pavlović, "Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in d=3 based on spacetime norms", *Ann. Henri Poincaré* 15:3 (2014), 543–588. MR Zbl
- [T. Chen and Taliaferro 2014] T. Chen and K. Taliaferro, "Derivation in strong topology and global well-posedness of solutions to the Gross–Pitaevskii hierarchy", *Comm. Partial Differential Equations* **39**:9 (2014), 1658–1693. MR Zbl
- [T. Chen et al. 2010] T. Chen, N. Pavlović, and N. Tzirakis, "Energy conservation and blowup of solutions for focusing Gross-Pitaevskii hierarchies", *Ann. Inst. H. Poincaré Anal. Non Linéaire* 27:5 (2010), 1271–1290. MR Zbl
- [T. Chen et al. 2012] T. Chen, N. Pavlović, and N. Tzirakis, "Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy", pp. 39–62 in *Recent advances in harmonic analysis and partial differential equations*, edited by A. R. Nahmod et al., Contemp. Math. **581**, Amer. Math. Soc., Providence, RI, 2012. MR Zbl
- [T. Chen et al. 2015] T. Chen, C. Hainzl, N. Pavlović, and R. Seiringer, "Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti", *Comm. Pure Appl. Math.* **68**:10 (2015), 1845–1884. MR Zbl
- [Thangavelu 1993] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Princeton University Press, 1993. MR Zbl
- [X. Chen 2011] X. Chen, "Classical proofs of Kato type smoothing estimates for the Schrödinger equation with quadratic potential in \mathbb{R}^{n+1} with application", *Differential Integral Equations* 24:3–4 (2011), 209–230. MR Zbl
- [X. Chen 2012a] X. Chen, "Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps", *J. Math. Pures Appl.* (9) **98**:4 (2012), 450–478. MR Zbl
- [X. Chen 2012b] X. Chen, "Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions", *Arch. Ration. Mech. Anal.* **203**:2 (2012), 455–497. MR Zbl
- [X. Chen 2013] X. Chen, "On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap", *Arch. Ration. Mech. Anal.* **210**:2 (2013), 365–408. MR Zbl
- [X. Chen and Holmer 2013] X. Chen and J. Holmer, "On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics", *Arch. Ration. Mech. Anal.* **210**:3 (2013), 909–954. MR Zbl
- [X. Chen and Holmer 2016a] X. Chen and J. Holmer, "Correlation structures, many-body scattering processes, and the derivation of the Gross–Pitaevskii hierarchy", *Int. Math. Res. Not.* **2016**:10 (2016), 3051–3110. MR
- [X. Chen and Holmer 2016b] X. Chen and J. Holmer, "Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation", *Arch. Ration. Mech. Anal.* **221**:2 (2016), 631–676. MR Zbl
- [X. Chen and Holmer 2016c] X. Chen and J. Holmer, "On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction", *J. Eur. Math. Soc.* **18**:6 (2016), 1161–1200. MR Zbl
- [X. Chen and Holmer 2016d] X. Chen and J. Holmer, "The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution", *Int. Math. Res. Not.* **2016** (2016), [article id.] rnw113. Zbl
- [X. Chen and Smith 2014] X. Chen and P. Smith, "On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy", *Anal. PDE* 7:7 (2014), 1683–1712. MR Zbl

Received 12 Jun 2016. Revised 29 Sep 2016. Accepted 14 Jan 2017.

XUWEN CHEN: chenxuwen@math.brown.edu

Department of Mathematics, University of Rochester, Hylan Building, Rochester, NY 14627, United States

JUSTIN HOLMER: holmer@math.brown.edu

Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, United States

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard

patrick.gerard@math.u-psud.fr

Université Paris Sud XI

Orsay, France

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, Franc lebeau@unice.fr	e András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk		

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US \$265/year for the electronic version, and \$470/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by $\operatorname{EditFlow}^{\circledR}$ from MSP.

PUBLISHED BY

mathematical sciences publishers nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 10 No. 3 2017

The weak- A_{∞} property of harmonic and p -harmonic measures implies uniform rectifiability STEVE HOFMANN, PHI LE, JOSÉ MARÍA MARTELL and KAJ NYSTRÖM	513
The one-phase problem for harmonic measure in two-sided NTA domains JONAS AZZAM, MIHALIS MOURGOGLOU and XAVIER TOLSA	559
Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D XUWEN CHEN and JUSTIN HOLMER	589
Conformally Euclidean metrics on \mathbb{R}^n with arbitrary total Q -curvature ALI HYDER	635
Boundary estimates in elliptic homogenization ZHONGWEI SHEN	653
Convex integration for the Monge-Ampère equation in two dimensions MARTA LEWICKA and MOHAMMAD REZA PAKZAD	695
Kinetic formulation of vortex vector fields PIERRE BOCHARD and RADU IGNAT	729