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CONFORMALLY EUCLIDEAN METRICS ON Rn

WITH ARBITRARY TOTAL Q-CURVATURE

ALI HYDER

We study the existence of solution to the problem

(−1)n/2u = Qenu in Rn, κ :=

∫
Rn

Qenu dx <∞,

where Q≥ 0, κ ∈ (0,∞) and n≥ 3. Using ODE techniques, Martinazzi (for n = 6) and Huang and Ye
(for n = 4m + 2) proved the existence of a solution to the above problem with Q ≡ constant > 0 and
for every κ ∈ (0,∞). We extend these results in every dimension n ≥ 5, thus completely answering the
problem opened by Martinazzi. Our approach also extends to the case in which Q is nonconstant, and
under some decay assumptions on Q we can also treat the cases n = 3 and n = 4.

1. Introduction

For a function Q ∈ C0(Rn) we consider the problem

(−1)n/2u = Qenu in Rn, κ :=

∫
Rn

Qenu dx <∞, (1)

where for n odd the nonlocal operator (−1)n/2 is defined on page 639.
Geometrically if u is a smooth solution of (1) then the conformal metric gu := e2u

|dx |2 (here |dx |2 is
the Euclidean metric on Rn) has the Q-curvature Q, at least when n ≥ 2. Moreover, the total Q-curvature
of the metric gu is κ .

Solutions to (1) have been classified in terms of their asymptotic behavior at infinity. More precisely
we have the following:

Theorem A [Chen and Li 1991; Da Lio et al. 2015; Lin 1998; Martinazzi 2009a; Jin et al. 2015; Hyder
2015; Xu 2005]. Let n ≥ 1. Let u be a solution of

(−1)n/2u = (n− 1)!enu in Rn, κ := (n− 1)!
∫

Rn
enu dx <∞. (2)

Then

u(x)=
(n− 1)!
γn

∫
Rn

log
(
|y|
|x − y|

)
enu(y) dy+P(x)=−

2κ
31

log |x |+P(x)+o(log |x |) as |x |→∞, (3)
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where γn :=
1
2(n− 1)!|Sn

|, 31 := 2γn , o(log |x |)/ log |x | → 0 as |x | →∞, P is a polynomial of degree
at most n−1 and P is bounded from above. If n ∈ {3, 4} then κ ∈ (0,31] and κ =31 if and only if u is a
spherical solution, that is,

u(x)= uλ,x0(x) := log
2λ

1+ λ2|x − x0|2
(4)

for some x0 ∈ Rn and λ > 0. Moreover u is spherical if and only if P is constant (which is always the
case when n ∈ {1, 2}).

Chang and Chen [2001] showed the existence of nonspherical solutions to (2) in even dimension n ≥ 4
for every κ ∈ (0,31).

A partial converse to Theorem A has been proven in dimension 4 by Wei and Ye [2008] and extended
by Hyder and Martinazzi [2015] for n ≥ 4 even and Hyder [2016] for n ≥ 3.

Theorem B [Wei and Ye 2008; Hyder and Martinazzi 2015; Hyder 2016]. Let n ≥ 3. Then for every
κ ∈ (0,31) and for every polynomial P with

deg(P)≤ n− 1 and P(x) |x |→∞−−−→−∞,

there exists a solution u to (2) having the asymptotic behavior given by (3).

Although the assumption κ ∈ (0,31] is a necessary condition for the existence of a solution to (2)
for n = 3, 4, it is possible to have a solution for κ > 31 arbitrarily large in higher dimension, as shown
by Martinazzi [2013] for n = 6. Huang and Ye [2015] extended Martinazzi’s result in arbitrary even
dimension n of the form n = 4m + 2 for some m ≥ 1, proving that for every κ ∈ (0,∞) there exists a
solution to (2). The case n = 4m remained open.

The ideas in [Martinazzi 2013; Huang and Ye 2015] are based upon ODE theory. One considers only
radial solutions so that the equation in (2) becomes an ODE, and the result is obtained by choosing
suitable initial conditions and letting one of the parameters go to +∞ (or −∞). However, this technique
does not work if the dimension n is a multiple of 4, and things get even worse in odd dimension since
(−1)n/2 is nonlocal and ODE techniques cannot be used.

In this paper we extend the works of [Martinazzi 2013; Huang and Ye 2015] and completely solve the
cases left open; namely we prove that when n ≥ 5, problem (2) has a solution for every κ ∈ (0,∞). In fact
we do not need to assume that Q is constant, but only that it is radially symmetric with growth at infinity
suitably controlled, or not even radially symmetric. Moreover, we are able to prescribe the asymptotic
behavior of the solution u, as in (3), up to a polynomial of degree 4 which cannot be prescribed and in
particular cannot be required to vanish when κ ≥31. This in turn, together with Theorem A, is consistent
with the requirement n ≥ 5, because only when n ≥ 5 does the asymptotic expansion of u at infinity admit
polynomials of degree 4.

We prove the following two theorems.

Theorem 1.1. Let n ≥ 5 be an integer. Let P be a polynomial on Rn with degree at most n − 1. Let
Q ∈ C0(Rn) be such that Q(0)> 0, Q≥ 0, Qen P is radially symmetric and

sup
x∈Rn

Q(x)en P(x) <∞.
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Then for every κ > 0 there exists a solution u to (1) such that

u(x)=−
2κ
31

log |x | + P(x)+ c1|x |2− c2|x |4+C + o(1) as |x | →∞

for some c1, c2> 0 and C ∈R. In fact, there exists a radially symmetric function v on Rn and a constant cv
such that

v(x)=−
2κ
31

log |x | +
1

2n
1v(0)(|x |4− |x |2)+ o(1) as |x | →∞,

and
u = P + v+ cv − |x |4, x ∈ Rn.

Taking Q = (n− 1)! and P = 0 in Theorem 1.1 one has the following corollary.

Corollary 1.2. Let n≥ 5 and κ ∈ (0,∞). Then there exists a radially symmetric solution u to (2) such that

u(x)=−
2κ
31

log |x | + c1|x |2− c2|x |4+C + o(1) as |x | →∞

for some c1, c2 > 0 and C ∈ R.

Notice the polynomial part of the solution u in Theorem 1.1 is not exactly the prescribed polynomial P
(compare to [Wei and Ye 2008; Hyder and Martinazzi 2015; Hyder 2016]). In general, without perturbing
the polynomial part, it is not possible to find a solution for κ ≥31. For example, if P is nonincreasing
and nonconstant then there is no solution u to (2) with κ ≥31 such that u has the asymptotic behavior (3)
(see Lemma 3.6 below). This justifies the term c1|x |2 in Theorem 1.1. Then the additional term −c2|x |4

is also necessary to avoid that u(x)≥ 1
2 c1|x |2 for x large, which would contrast with the condition κ <∞,

at least if Q does not decay fast enough at infinity. In the latter case, the term −c2|x |4 can be avoided,
and one obtains an existence result also in dimensions 3 and 4.

Theorem 1.3. Let n ≥ 3. Let Q ∈ C0
rad(R

n) be such that Q≥ 0, Q(0)> 0 and∫
Rn

Q(x)eλ|x |
2

dx <∞ for every λ > 0,
∫

B1(x)

Q(y)
|x − y|n−1 dy |x |→∞−−−→ 0.

Then for every κ > 0 there exists a radially symmetric solution u to (1).

The decay assumption on Q in Theorem 1.3 is sharp in the sense that if Qeλ|x |
2
6∈ L1(Rn) for some

λ > 0, then problem (1) might not have a solution for every κ > 0. For instance, if Q = e−λ|x |
2

for some
λ > 0, then (1) with n = 3, 4 and κ > 31 has no solution (see Lemma 3.5 below).

The proof of Theorem 1.1 is based on the Schauder fixed point theorem, and the main difficulty is to
show that the “approximate solutions” are precompact (see in particular Lemma 2.2). We will do that
using blow up analysis (see for instance [Adimurthi et al. 2006; Martinazzi 2009b; Robert 2006]). In
general, if κ ≥31 one can expect blow up, but we will construct our approximate solutions carefully in a
way that this does not happen. For instance in [Wei and Ye 2008; Hyder and Martinazzi 2015] one looks
for solutions of the form u = P + v+ cv, where v satisfies the integral equation

v(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en P(y)en(v(y)+cv) dy,
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and cv is a constant such that ∫
Rn

Qen(P+v+cv) dx = κ.

With such a choice we would not be able to rule out blow up. Instead, by looking for solutions of the form

u = P + v+ Pv + cv,

where a posteriori Pv =−|x |4, v satisfies

v(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(P(y)+Pv(y)+v(y)+cv) dy+ 1

2n
(|x |2− |x |4)|1v(0)|, (5)

and cv is again a normalization constant, one can prove that the integral equation (5) enjoys sufficient
compactness, essentially due to the term 1

2n |x |
2
|1v(0)| on the right-hand side. Indeed a sequence of

(approximate) solutions vk blowing up (for simplicity) at the origin, up to rescaling, leads to a sequence (ηk)

of functions satisfying, for every R > 0,∫
BR

|1ηk − ck | dx ≤ C Rn−2
+ o(1)Rn+2, o(1) k→∞

−−−→ 0, ck > 0,

and converging to η∞, solving (for simplicity here we ignore some cases)

(−1)n/2η∞ = enη∞ in Rn,

∫
Rn

enη∞ dx <∞,

and ∫
BR

|1η∞− c∞| dx ≤ C Rn−2, c∞ ≥ 0, (6)

where c∞ = 0 corresponds to 1η∞(0)= 0 (see Subcase 1.1 in Lemma 2.2 with xk = 0).
The estimate on ‖1η∞‖L1(BR) in (6) shows that the polynomial part P∞ of η∞, as in (3), has degree at

most 2, and hence 1P∞ ≤ 0 as P∞ is bounded from above. Therefore, c∞= 0=1P∞, P∞ is constant,
and in particular η∞ is a spherical solution by Theorem A, that is, η∞ = uλ,x0 for some λ> 0 and x0 ∈Rn,
where uλ,x0 is given by (4). This leads to a contradiction as 1η∞(0)= 0 and 1uλ,x0 < 0 in Rn.

In this work we focus only on the case Q ≥ 0 because the negative case is relatively well understood.
For instance by a simple application of maximum principle, one can show that problem (1) has no solution
with Q≡ constant< 0, n= 2 and κ >−∞, but when Q is nonconstant, solutions do exist, as shown by
Chanillo and Kiessling [2000] under suitable assumptions. Martinazzi [2008] proved that in higher even
dimension n = 2m ≥ 4, problem (1) with Q ≡ constant < 0 has solutions for some κ , and it has been
shown in [Hyder and Martinazzi 2015] that actually for every κ ∈ (−∞, 0) and Q a negative constant,
(1) has a solution. The same result has been recently extended to odd dimension n ≥ 3 in [Hyder 2016].

2. Proof of Theorem 1.1

We consider the space

X := {v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞},
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where

‖v‖X := sup
x∈Rn

(∑
|α|≤3

(1+ |x |)|α|−4
|Dαv(x)| +

∑
3<|α|≤n−1

|Dαv(x)|
)
.

For v ∈ X we set

Av :=max
{

0, sup
|x |≥10

v(x)− v(0)
|x |4

}
, Pv(x) := −|x |4− Av|x |4.

Then
v(x)+ Pv(x)≤ v(0)− |x |4 for |x | ≥ 10.

Let cv be the constant determined by∫
Rn

K en(v+cv) dx = κ, K := Qen Pen Pv,

where the functions Q and P satisfy the hypotheses in Theorem 1.1. Since Q > 0 in a neighborhood of
the origin, by a dilation argument we can assume that Q > 0 on B3. More precisely, if u is a solution
to (1) then for any λ> 0, we know uλ(x) := u(λx)+ log λ is also a solution to (1) with Q replaced by Qλ,
where Qλ(x) := Q(λx). Now for a suitable choice of λ > 0, one has Qλ > 0 on B3.

The function u = P + Pv + v+ cv satisfies

(−1)n/2u = Qenu, κ =

∫
Rn

Qenu dx

if and only if v satisfies
(−1)n/2v = K en(v+cv).

For odd integer n, the operator (−1)n/2 is defined as follows:

Definition. Let n be an odd integer. Let f ∈ S ′(Rn). We say that u is a solution of

(−1)n/2u = f in Rn

if u ∈W n−1,1
loc (Rn) and 1(n−1)/2u ∈ L1/2(R

n) and for every test function ϕ ∈ S(Rn),∫
Rn
(−1)(n−1)/2 u(−1)1/2ϕ dx = 〈 f, ϕ〉.

Here S(Rn) is the Schwartz space and the space Ls(R
n) is defined by

Ls(R
n) :=

{
u ∈ L1

loc(R
n) : ‖u‖Ls(Rn) :=

∫
Rn

|u(x)|
1+ |x |n+2s dx <∞

}
, s > 0.

For more details on the fractional Laplacian we refer the reader to [Di Nezza et al. 2012].

We define an operator T : X→ X given by T (v)= v̄, where

v̄(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
K (y)en(v(y)+cv) dy+ 1

2n
(|x |2− |x |4)|1v(0)|.
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Lemma 2.1. Let v solve tT (v)= v for some 0< t ≤ 1. Then

v(x)= t
γn

∫
Rn

log
(

1
|x−y|

)
K (y)en(v(y)+cv) dy+ t

2n
(|x |2− |x |4)|1v(0)|, (7)

1v(0) < 0, and v(x)→−∞ as |x | →∞. Moreover,

sup
x∈Bc

1

v(x)= v(1)= inf
x∈B1

v(x),

and in particular Av = 0.

Proof. Since v satisfies tT (v)= v, equation (7) follows from the definition of T. Differentiating under
the integral sign and observing that 1 log(1/| · −y|) < 0, from (7) one gets

1v(x) < t
2n
|1v(0)|1(|x |2− |x |4), x ∈ Rn. (8)

Taking x = 0 in (8) we obtain 1v(0) < t |1v(0)|, which implies that 1v(0) < 0. Notice that the function

w(x) := v(x)+ t
2n
|1v(0)|(|x |4− |x |2)

is monotone decreasing as 1w < 0. This follows from (8) and the integral representation of radially
symmetric functions given by

f (ξ)− f (ξ̄ )=
∫ ξ

ξ̄

1
ωn−1rn−1

∫
Br

1 f (x) dx dr, 0≤ ξ̄ < ξ, ωn−1 := |Sn−1
|. (9)

The monotonicity of w implies that supx∈Bc
1
v(x) = v(1) = infx∈B1 v(x), and hence Av = 0. Finally,

together with |1v(0)|> 0, we conclude that lim|x |→∞ v(x)=−∞ as lim|x |→∞w(x)≤ w(1). �

Lemma 2.2. Let (v, t) ∈ X × (0, 1] satisfy v = tT (v). Then there exists C > 0 (independent of v and t)
such that

sup
B1/8

w ≤ C, w := v+ cv +
1
n

log t.

Proof. Let us assume by contradiction that the conclusion of the lemma is false. Then there exists a
sequence wk = vk + cvk +

1
n log tk such that maxB1/8

wk =: wk(θk)→∞.
If θk is a point of local maxima ofwk , we set xk=θk . Otherwise, we can choose xk ∈ B1/4\B1/8 such that

xk is a point of local maxima of wk and wk(xk)≥wk(x) for every x ∈ B|xk |. This follows from the fact that

inf
B1/4\B1/8

wk 6→∞,

which is a consequence of ∫
Rn

K enwk dx = tkκ ≤ κ, K > 0 on B3.

We set µk := e−wk(xk). We distinguish the following cases.

Case 1: Up to a subsequence, tkµ2
k |1vk(0)| → c0 ∈ [0,∞).

We set
ηk(x) := vk(xk +µk x)− vk(xk)= wk(xk +µk x)−wk(xk).
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Notice that by (7) we have, for some dimensional constant C1,

1ηk(x)=µ2
k1vk(xk+µk x)=C1

µ2
k

γn

∫
Rn

K (y)enwk(y)

|xk +µk x − y|2
dy+tkµ2

k

(
1−

4(n+ 2)
2n

|xk+µk x |2
)
|1vk(0)|,

so that∫
BR

∣∣∣∣1ηk(x)− tkµ2
k |1vk(0)|

(
1−

2(n+ 2)
n
|xk |

2
)∣∣∣∣ dx

≤
C1

γn

∫
Rn

K (y)enwk(y)
∫

BR

µ2
k dx

|xk +µk x − y|2
dy+Ctkµ2

k |1vk(0)|
∫

BR

(µk |xk · x | +µ2
k |x |

2) dx

≤
C1

γn
tkκ

∫
BR

1
|x |2

dx +Ctkµ2
k |1vk(0)|

∫
BR

(µk |x | +µ2
k |x |

2) dx

≤ Cκtk Rn−2
+Ctkµ2

k |1vk(0)|(µk Rn+1
+µ2

k Rn+2). (10)

The function ηk satisfies

(−1)n/2ηk(x)= K (xk +µk x)enηk(x) in Rn, ηk(0)= 0.

Moreover, ηk ≤ C(R) on BR . This follows easily if |xk | ≤
1
9 , as in that case ηk ≤ 0 on BR for k ≥ k0(R).

On the other hand, for 1
9 < |xk | ≤

1
4 one can use Lemma 2.4 (below). Therefore, by Lemma A.3 (and

Lemmas 2.6, 2.7 if n is odd), up to a subsequence, ηk→ η in Cn−1
loc (R

n), where η satisfies

(−1)n/2η = K (x∞)enη in Rn, K (x∞)
∫

Rn
enη dx ≤ t∞κ <∞, K (x∞) > 0,

where (up to a subsequence) tk → t∞ and xk → x∞. Notice that t∞ ∈ (0, 1], x∞ ∈ B1/4 and for every
R > 0, by (10) ∫

BR

|1η− c0c1| dx ≤ C Rn−2, c1 =: 1−
2(n+ 2)

n
|x∞|2 > 0. (11)

Hence by Theorem A we have

η(x)= P0(x)−α log |x | + o(log |x |) as |x | →∞,

where P0 is a polynomial of degree at most n−1, P0 is bounded from above and α is a positive constant.
In fact, by (11) ∫

BR

|1P0(x)− c0c1| dx ≤ C Rn−2 for every R > 0.

Since c0, c1≥ 0, it follows that P0 is a constant. This implies that η is a spherical solution and in particular
1η < 0 on Rn, and therefore, again by (11), we have c0 = 0.

We consider the following subcases.

Subcase 1.1: There exists M > 0 such that |xk |/µk ≤ M.
We set yk := −xk/µk . Then (up to a subsequence) yk→ y∞ ∈ BM+1. Therefore,

1η(y∞)= lim
k→∞

1ηk(yk)= lim
k→∞

µ2
k1vk(0)=

c0

t∞
= 0,

a contradiction as 1η < 0 on Rn.
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Subcase 1.2: Up to a subsequence, |xk |/µk→∞.
For any N ∈ N we can choose ξ1,k, . . . , ξN ,k ∈ Rn such that |ξi,k | = |xk | for all i = 1, . . . , N and

the balls B2µk (ξi,k) are disjoint for k large enough. Since the vk are radially symmetric, the functions
ηi,k := vk(ξi,k +µk x)− vk(ξi,k)→ ηi = η in Cn−1

loc (R
n). Therefore,

lim
k→∞

∫
B1

en(vk+cvk ) dx ≥ N lim
k→∞

∫
Bµk (ξ1,k)

en(vk+cvk ) dx = N
1

t∞

∫
B1

enη dx .

This contradicts the fact that ∫
B1

K en(vk+cvk ) dx ≤ κ, K > 0 on B3.

Case 2: Up to a subsequence, tkµ2
k |1vk(0)| →∞.

We choose ρk > 0 such that tkρ2
kµ

2
k |1vk(0)| = 1. We set

ψk(x)= vk(xk + ρkµk x)− vk(xk).

Then one can get (similar to (10))∫
BR

∣∣∣∣1ψk(x)−
(

1−
2(n+ 2)

n
|xk |

2
)∣∣∣∣ dx

≤ C1

∫
Rn

K (y)enwk(y)
∫

BR

ρ2
kµ

2
k

|xk +µkρk x − y|2
dx dy+C2µkρk

∫
BR

(|x | +µkρk |x |2) dx k→∞
−−−→ 0,

thanks to Lemma 2.5 (below). Moreover, together with Lemma 2.4, ψk satisfies

(−1)n/2ψk = o(1) in BR, ψk(0)= 0, ψk ≤ C(R) on BR.

Hence, by Lemma A.3 (and Lemma 2.6 if n is odd), up to a subsequence, ψk→ ψ in Cn−1
loc (R

n). Then
ψ must satisfy ∫

B1

|1ψ − c0| dx = 0, c0 := 1−
2(n+ 2)

n
|x∞|2 > 0,

where (up to a subsequence) xk→ x∞. This shows that 1ψ(0)= c0 > 0, which is a contradiction as

1ψ(0)= lim
k→∞

1ψk(0)= lim
k→∞

ρ2
kµ

2
k1vk(xk)≤ 0.

Here, 1vk(xk)≤ 0 follows from the fact that xk is a point of local maxima of vk . �

A consequence of the local uniform upper bounds of w are the following global uniform upper bounds:

Lemma 2.3. There exists a constant C > 0 such that for all (v, t) ∈ X × (0, 1] with v = tT (v) we have
|1v(0)| ≤ C and

v(x)+ cv +
1
n

log t ≤ C on Rn.

Proof. By Lemma 2.2 we have

sup
B1/8

w := sup
B1/8

(
v+ cv +

1
n

log t
)
≤ C.
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Differentiating under the integral sign from (7), and recalling that 1v(0) < 0, we obtain

|1v(0)| ≤ C
∫

B1/8

1
|y|2

K (y)enw(y) dy+C
∫

Bc
1/8

1
|y|2

K (y)enw(y) dy

≤ C sup
B1/8

K
∫

B1/8

1
|y|2

dy+C
∫

Bc
1/8

K enw dy ≤ C(κ, K ).

By (8) we get

1v(x)≤ t |1v(0)| ≤ C, x ∈ Rn,

and hence, together with (9)

v(x)= v(0)+
∫
|x |

0

1
ωn−1rn−1

∫
Br

1v(y) dy dr ≤ v(0)+C |x |2 ≤ C + v(0), x ∈ B2.

The lemma follows from Lemmas 2.1 and 2.2. �

Proof of Theorem 1.1. Let v ∈ X be a solution of v = tT (v) for some 0 < t ≤ 1. Then Av = 0 and
|1v(0)| ≤ C , thanks to Lemmas 2.1 and 2.3. Hence, for 0≤ |β| ≤ n− 1,

|Dβv(x)| ≤ C
∫

Rn

∣∣∣∣Dβ log
(

1
|x−y|

)∣∣∣∣K (y)en(v(y)+cv+(1/n) log t) dy+C |Dβ(|x |2− |x |4)|

≤ C
∫

Rn

∣∣∣∣Dβ log
(

1
|x−y|

)∣∣∣∣e−|y|4 dy+C |Dβ(|x |2− |x |4)|,

where in the second inequality we have used that

v(x)+ cv +
1
n

log t ≤ C, C is independent of v and t,

which follows from Lemma 2.3. Now as in Lemma 2.8 one can show that

‖v‖X ≤ M,

and therefore, by Lemma A.1, the operator T has a fixed point (say) v. Then

u = P + v+ cv − |x |4

is a solution to the problem (1) and u has the asymptotic behavior given by

u(x)= P(x)− 2κ
31

log |x | + 1
2n
1v(0)(|x |4− |x |2)− |x |4+ cv + o(1) as |x | →∞. �

Now we give a proof of the technical lemmas used in the proof of Lemma 2.2.

Lemma 2.4. Let ε > 0. Let (vk, tk) ∈ X × (0, 1] satisfy (7) or (14) for all k ∈ N. Let xk ∈ B1 \ Bε be a
point of maxima of vk on B |xk | and v′k(xk)= 0. Then

vk(xk + x)− vk(xk)≤ C(n, ε)|x |2 tk |1vk(0)|, x ∈ B1.
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Proof. If |xk + x | ≤ |xk | then vk(xk + x) − vk(xk) ≤ 0 as vk(xk) ≥ vk(y) for every y ∈ B|xk |. For
|xk |< |xk + x |, setting a = a(k, x) := xk + x , and together with (9) we obtain

vk(xk + x)− vk(xk)=

∫
|a|

|xk |

1
ωn−1rn−1

∫
Br\B|xk |

1vk(x) dx dr

≤

∫
|a|

|xk |

1
ωn−1rn−1

∫
B|a|\B|xk |

tk |1vk(0)| dx dρ

≤ C(n)tk |1vk(0)|(|B|a|| − |B|xk ||)

(
1

|xk |
n−2 −

1
|a|n−2

)
≤ C(n, ε)tk |x |2|1vk(0)|,

where in the first equality we have used that

0= v′k(xk)=
1

ωn−1|xk |
n−1

∫
B|xk |

1vk dx .

Hence we have the lemma. �

Lemma 2.5. Let (vk, tk) ∈ X × (0, 1] satisfy (7) for all k ∈ N. Let xk ∈ B1 be a point of maxima of vk

on B |xk | and v′k(xk) = 0. We set wk = vk + cvk +
1
n log tk and µk = e−wk(xk). Let ρk > 0 be such that

tkρ2
kµ

2
k |1vk(0)| ≤ C and ρkµk→ 0. Then for any R0 > 0,

lim
k→∞

∫
Rn

K (y)enwk(y)
∫

BR0

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy =: lim

k→∞
Ik = 0.

Proof. In order to prove the lemma we fix R > 0 (large). We split BR0 into

A1(R, y) :=
{

x ∈ BR0 : |xk + ρkµk x − y|> Rρkµk
}
, A2(R, y) := BR0\ A1(R, y).

Then we can write Ik = I1,k + I2,k , where

Ii,k :=

∫
Rn

K (y)enwk(y)
∫

Ai (R,y)

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy, i = 1, 2.

Changing the variable y 7→ xk + ρkµk y and by Fubini’s theorem, one gets

I2,k = ρ
n
k

∫
BR0

∫
Rn

K (xk + ρkµk y)enηk(y) 1
|x − y|2

χ|x−y|≤R dy dx

≤ ρn
k

∫
BR0

∫
BR+R0

K (xk + ρkµk y)enηk(y) 1
|x − y|2

dy dx

≤ C(n, ε)(supBR+R0+1
K enηk )(R+ R0)

n Rn−2
0 ρn

k ,

where ηk(y) :=wk(xk +ρkµk y)−wk(xk). If xk→ 0 then ηk ≤ 0 on BR+R0+1 for k large. Otherwise, for
k large, ρkµk y ∈ B1 for every y ∈ BR+R0+1 and hence, by Lemma 2.4

ηk(y)= vk(xk + ρkµk y)− vk(xk)≤ C |ρkµk y|2 tk |1vk(0)| ≤ C(R, R0).
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Therefore,

lim
k→∞

I2,k = 0.

Using the definition of cv we bound

I1,k ≤
|BR0 |

R2

∫
Rn

K (y)enwk(y) dy ≤ C(n, κ, R0)
1
R2 .

Since R > 0 is arbitrary, we conclude the lemma. �

We need the following two lemmas only for n odd.

Lemma 2.6. Let n ≥ 5. Let v be given by (7). For any r > 0 and ξ ∈ Rn we set

w(x)= v(r x + ξ), x ∈ Rn.

Then there exists C > 0 (independent of v, t, r, ξ ) such that for every multi-index α ∈Nn with |α| = n− 1
we have ‖Dαw‖L1/2(Rn) ≤ Ct (1+ r4

|1v(0)|). Moreover, for any ε > 0 there exists R > 0 (independent
of r , ξ and t) such that ∫

Bc
R

|Dαw(x)|
1+ |x |n+1 dx < εt (1+ r4

|1v(0)|), |α| = n− 1.

Proof. Differentiating under the integral sign we obtain

|Dαw(x)| ≤ Ct
∫

Rn

rn−1

|r x + ξ − y|n−1 f (y) dy+Ctr4
|1v(0)|, f (y) := K (y)en(v(y)+cv).

If n > 5 then the above inequality is true without the term Ctr4
|1v(0)|. Using a change of variable

y 7→ ξ + r y, we get∫
�

|Dαw(x)|
1+ |x |n+1 dx ≤ Ctrn

∫
Rn

f (ξ + r y)
∫
�

1
|x − y|n−1

1
1+ |x |n+1 dx dy+Ctr4

|1v(0)|
∫
�

dx
1+ |x |n+1 .

The lemma follows by taking �= Rn or Bc
R . �

Lemma 2.7. Let ηk→ η in Cn−1
loc (R

n). We assume that for every ε > 0 there exists R > 0 such that∫
Bc

R

|1(n−1)/2ηk(x)|
1+ |x |n+1 dx < ε for k = 1, 2, . . . . (12)

We further assume that

(−1)n/2ηk = K (xk +µk x)enηk in Rn,

∫
Rn
|K (xk +µk x)|enηk(x) dx ≤ C,

where xk→ x∞, µk→ 0, K is a continuous function and K (x∞) > 0. Then enη
∈ L1(Rn) and η satisfies

(−1)n/2η = K (x∞)enη in Rn.
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Proof. First notice that 1(n−1)/2ηk→1(n−1)/2η in L1/2(R
n), thanks to (12) and the convergence ηk→ η

in Cn−1
loc (R

n).
We claim that η satisfies (−1)n/2η = K (x∞)enη in Rn in the sense of distribution.
In order to prove the claim we let ϕ ∈ C∞c (R

n). Then

lim
k→∞

∫
Rn

K (xk +µk x)enηk(x)ϕ(x) dx =
∫

Rn
K (x∞)enη(x)ϕ(x) dx,

and

lim
k→∞

∫
Rn
(−1)(n−1)/2ηk(−1)

1/2ϕ dx =
∫

Rn
(−1)(n−1)/2η(−1)1/2ϕ dx .

We conclude the claim.
To complete the lemma first notice that enη

∈ L1(Rn), which follows from the fact that for any R > 0∫
BR

enη dx = lim
k→∞

∫
BR

enηk dx = lim
k→∞

∫
BR

K (xk +µk x)
K (x∞)

enηk(x) dx ≤
C

K (x∞)
.

We fix a function ψ ∈ C∞c (B2) such that ψ = 1 on B1. For ϕ ∈ S(Rn) we set ϕk(x)= ϕ(x)ψ(x/k). The
lemma follows by taking k→∞, thanks to the previous claim. �

Lemma 2.8. The operator T : X→ X is compact.

Proof. Let vk be a bounded sequence in X. Then (up to a subsequence) {vk(0)}, {1vk(0)}, {Avk } and {cvk }

are convergent sequences. Therefore, |1vk(0)|(|x |2−|x |4) converges to some function in X . To conclude
the lemma, it is sufficient to show that up to a subsequence { fk} converges in X , where fk is defined by

fk(x)=
∫

Rn
log

(
1
|x−y|

)
Q(y)en P(y)en Pvk (y)en(vk(y)+cvk ) dy.

Differentiating under the integral sign, for 0< |β| ≤ n− 1, one gets

|Dβ fk(x)| ≤ C
∫

Rn

1
|x − y||β|

Q(y)en P(y)en Pvk (y)en(vk(y)+cvk ) dy ≤ C
∫

Rn

1
|x − y||β|

e−|y|
4

dy ≤ C,

where the second inequality follows from the uniform bounds

|vk(0)| ≤ C, |cvk | ≤ C, Qen P
≤ C, and vk(x)+ Pvk (x)≤ vk(0)− |x |4. (13)

Indeed, for 0< |β| ≤ n− 1

lim
R→∞

sup
k

sup
x∈Bc

R

|Dβ fk(x)| = 0,

and for every 0< s < 1 we have ‖Dn−1 fk‖C0,s(BR) ≤ C(R, s). Finally, using (13) we have the bound

| fk(x)| ≤ C
∫

Rn

∣∣log |x − y|
∣∣e−|y|4 dy ≤ C log(2+ |x |).

Thus, by Ascoli’s theorem, up to a subsequence, fk→ f in Cn−1
loc (R

n) for some f ∈ Cn−1(Rn), and the
global uniform estimates of fk and Dβ fk would imply that fk→ f in X. �
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3. Proof of Theorem 1.3

We consider the space

X := {v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞},

where

‖v‖X := sup
x∈Rn

(∑
|α|≤1

(1+ |x |)|α|−2
|Dαv(x)| +

∑
1<|α|≤n−1

|Dαv(x)|
)
.

For v ∈ X , let cv be the constant determined by∫
Rn

Qen(v+cv) dy = κ,

where Q satisfies the hypothesis in Theorem 1.3. Again by a dilation argument we can assume Q>0 on B3.
We define an operator T : X→ X given by T (v)= v̄, where

v̄(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(v(y)+cv) dy+ 1

2n
|1v(0)||x |2.

As in Lemma 2.8 one can show that the operator T is compact.

The proofs of the following two lemmas are similar to those of Lemmas 2.1 and 2.5 respectively.

Lemma 3.1. Let v solve tT (v)= v for some 0< t ≤ 1. Then 1v(0) < 0, and

v(x)= t
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(v(y)+cv) dy+ t

2n
|1v(0)||x |2. (14)

Lemma 3.2. Let (vk, tk) ∈ X × (0, 1] satisfy (14) for all k ∈ N. Let xk ∈ B1 be a point of maxima of
vk on B |xk | and v′k(xk) = 0. We set wk = vk + cvk +

1
n log tk and µk = e−wk(xk). Let ρk > 0 be such that

ρ2
k tkµ2

k |1vk(0)| ≤ C and ρkµk→ 0. Then for any R0 > 0

lim
k→∞

∫
Rn

Q(y)enwk(y)
∫

BR0

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy = 0.

Now we prove similar local uniform upper bounds to those in Lemma 2.2.

Lemma 3.3. Let (v, t)∈ X×(0, 1] satisfy (14). Then there exists C > 0 (independent of v and t) such that

sup
B1/8

w ≤ C, w := v+ cv +
1
n

log t.

Proof. The proof is very similar to that of Lemma 2.2. Here we briefly sketch it.
We assume by contradiction that the conclusion of the lemma is false. Then there exists a sequence of

(vk, tk) and a sequence of points xk in B1/4 such that

wk(xk)→∞, wk ≤ wk(xk) on B|xk |, xk is a point of local maxima of vk .

We set µk := e−wk(xk) and we distinguish following cases.

Case 1: Up to a subsequence, tkµ2
k |1vk(0)| → c0 ∈ [0,∞).
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We set ηk(x) := vk(xk +µk x)− vk(xk). Then we have∫
BR

∣∣1ηk − tkµ2
k |1vk(0)|

∣∣ dx ≤ Ctk Rn−2.

Now one can proceed exactly as in Case 1 in Lemma 2.2.

Case 2: Up to a subsequence, tkµ2
k |1vk(0)| →∞.

We set ψk(x)= vk(xk + ρkµk x)− vk(xk), where ρk is determined by tkρ2
kµ

2
k |1vk(0)| = 1. Then by

Lemma 3.2 ∫
BR

|1ψk − 1| dx = o(1) as k→∞.

Similar to Case 2 in Lemma 2.2 one can get a contradiction. �

With the help of Lemma 3.3 we prove:

Lemma 3.4. There exists a constant M > 0 such that for all (v, t) ∈ X × (0, 1] satisfying (14) we have
‖v‖ ≤ M.

Proof. Let (v, t) ∈ X × (0, 1] satisfy (14). We set w := v+ cv + 1
n log t .

First we show that |1v(0)| ≤ C for some C > 0 independent of v and t . Indeed, differentiating under
the integral sign, from (14), and together with Lemma 3.3, we get

|1v(0)|(1+ t)≤ C
∫

Rn

1
|y|2

Q(y)enw(y) dy

= C
∫

B1/8

1
|y|2

Q(y)enw(y) dy+C
∫

Bc
1/8

1
|y|2

Q(y)enw(y) dy

≤ C
∫

B1/8

1
|y|2

Q(y) dy+Cκ ≤ C.

Hence |1v(0)| ≤ C .
We define a function ξ(x) := v(x)− (t/2n)|1v(0)||x |2. Then ξ is monotone decreasing on (0,∞),

which follows from the fact that 1ξ ≤ 0. Therefore,

w(x)= ξ(x)+ cv +
1
n

log t + t
2n
|1v(0)||x |2

≤ ξ
( 1

8

)
+ cv +

1
n

log t + t
2n
|1v(0)||x |2

≤ w
(1

8

)
+

t
2n
|1v(0)||x |2.

Hence, w(x)≤ λ(1+|x |2) on Rn for some λ> 0 independent of v and t . Using this in (14) one can show

|v(x)| ≤ C log(2+ |x |)+C |x |2,

and differentiating under the integral sign, from (14)

|Dβv(x)| ≤ C
∫

Rn

1
|x − y||β|

Q(y)eλ(1+|y|
2) dy+C

∣∣Dβ
|x |2

∣∣, 0< |β| ≤ n− 1.

The lemma follows easily. �
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Proof of Theorem 1.3. By the Schauder fixed point theorem (see Lemma A.1), the operator T has a fixed
point, thanks to Lemma 3.4. Let v be a fixed point of T. Then u = v+ cv is a solution of (1). �

Now we prove the nonexistence results stated in the Introduction.

Lemma 3.5. Let n ∈ {3, 4}. If Q(x)= e−λ|x |
2

for some λ > 0 then there is no solution to (1) with κ >31.
If Q ∈ C1

rad(R
n) is of the form Q = eξ and it satisfies

Q′ ≤ 0, |x · ∇Q(x)| ≤ C,
ξ(x)
|x |2

|x |→∞
−−−→ 0,

then there is no radially symmetric solution to (1) with κ > 31.

Proof. First we consider the case when Q = e−λ|x |
2
. Let u be a solution to (1) with Q = e−λ|x |

2
. Then the

function w(x) := u− (λ/n)|x |2 satisfies

(−1)n/2w = enw, κ =

∫
Rn

Qenu dx =
∫

Rn
enw dx <∞.

It follows from [Lin 1998; Jin et al. 2015] that κ ≤31.
In order to prove the lemma for Q = eξ, we assume by contradiction that there is a solution u to (1)

with κ > 31. We set

v(x) :=
1
γn

∫
Rn

log
(
|y|
|x − y|

)
Q(y)enu(y) dy, h := u− v.

Then v(x) = −(2κ/31) log |x | + o(log |x |) as |x | → ∞. Notice that h is radially symmetric and
(−1)n/2h = 0 on Rn. Therefore, h(x) = c1+ c2|x |2 for some c1, c2 ∈ R. This follows easily if n = 4.
For n = 3, first notice that 1h ∈ L1/2(R

3). Hence, by [Jin et al. 2015, Lemma 15] 1h ≡ constant. Now
radial symmetry of h implies that h(x)= c1+ c2|x |2.

From a Pohozaev-type identity in [Xu 2005, Theorem 2.1], we get

κ

γn

(
κ

γn
− 2
)
=

1
γn

∫
Rn
(x · ∇K (x))env(x) dx, K := Qenh. (15)

Since κ >31= 2γn , from (15) we deduce that x ·∇K (x) > 0 for some x ∈Rn. Using that Qenu
∈ L1(Rn)

and that ξ(x)= o(|x |2) at infinity, one has c2 ≤ 0. Therefore, x · ∇K (x)≤ 0 in Rn, a contradiction. �

The proof of the following lemma is similar to that of Lemma 3.5.

Lemma 3.6. Let κ ≥ 31. Let P be a nonconstant and nonincreasing radially symmetric polynomial
of degree at most n− 1. Then there is no solution u to (2) (with n ≥ 3) such that u has the asymptotic
behavior given by

u(x)=−
2κ
31

log |x | + P(x)+ o(log |x |) as |x | →∞.
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Appendix

Lemma A.1 [Gilbarg and Trudinger 1998, Theorem 11.3]. Let T be a compact mapping of a Banach
space X into itself , and suppose that there exists a constant M such that

‖x‖X < M

for all x ∈ X and t ∈ (0, 1] satisfying tT x = x. Then T has a fixed point.

The following identity (16) is due to Pizzetti [1909]. Simple proofs of (16) and (17) can be found in
Lemma 3 and Proposition 4, respectively, of [Martinazzi 2009a].

Lemma A.2 [Pizzetti 1909; Martinazzi 2009a]. Let 1mh = 0 in B4R ⊂ Rn. For any x ∈ BR and
0< r < R− |x | we have

1
|Br |

∫
Br (x)

h(z) dz =
m−1∑
i=0

cir2i1i h(x), (16)

where

c0 = 1, ci = c(i, n) > 0 for i ≥ 1.

Moreover, for every k ≥ 0 there exists C = C(k, R) > 0 such that

‖h‖Ck(BR) ≤ C‖h‖L1(B4R). (17)

Lemma A.3. Let R > 0 and BR ⊂ Rn. Let uk ∈ Cn−1,α(Rn) for some α ∈
(1

2 , 1
)

be such that

uk(0)= 0, ‖u+k ‖L∞(BR) ≤ C, ‖(−1)n/2uk‖L∞(BR) ≤ C,
∫

BR

|1uk | dx ≤ C.

If n is an odd integer, we also assume that ‖1(n−1)/2uk‖L1/2(Rn) ≤ C. Then (up to a subsequence) uk→ u
in Cn−1(BR/8).

Proof. First we prove the lemma for n even.
We write uk = wk + hk , where{

(−1)n/2wk = (−1)
n/2uk in BR,

1 jwk = 0 on ∂BR, j = 0, 1, . . . , 1
2(n− 2).

Then by standard elliptic estimates, the wk are uniformly bounded in Cn−1,β(BR). Therefore,

|hk(0)| ≤ C, ‖h+k ‖L∞(BR) ≤ C,
∫

BR

|1hk | dx ≤ C.

Since the hk are n
2 -harmonic, the 1hk are

( n
2−1

)
-harmonic in BR , and by (17) we obtain

‖1hk‖Cn(BR/4) ≤ C‖1hk‖L1(BR) ≤ C.
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Using the identity (16) we have the bound

1
|BR|

∫
BR(0)

h−k (z) dz =
1
|BR|

∫
BR(0)

h+k (z) dz−
1
|BR|

∫
BR(0)

hk(z) dz

=
1
|BR|

∫
BR(0)

h+k (z) dz− hk(0)−
n/2−1∑

i=1

ci R2i1i hk(0)≤ C,

and hence ∫
BR

|hk(z)| dz =
∫

BR

h+k (z) dz+
∫

BR

h−k (z) dz ≤ C.

Again by (17) we obtain

‖hk‖Cn(BR/4) ≤ C‖hk‖L1(BR) ≤ C.

Thus, the uk are uniformly bounded in Cn−1,β(BR/4) and (up to a subsequence) uk→ u in Cn−1(BR/4)

for some u ∈ Cn−1(BR/4).
It remains to prove the lemma for n odd.
If n is odd then 1

2(n− 1) is an integer. We split 1(n−1)/2uk = wk + hk , where{
(−1)1/2wk = (−1)

1/21(n−1)/2uk in BR,

wk = 0 in Bc
R.

Then by Lemmas A.4 and A.5 one has ‖1(n−1)/2uk‖C1/2(BR/2) ≤ C . Now one can proceed as in the case
of even integer. �

Lemma A.4 [Jin et al. 2015, Proposition 22]. Let u ∈ Lσ (Rn) for some σ ∈ (0, 1) and (−1)σu = 0
in B2R . Then for every k ∈ N,

‖∇
ku‖C0(BR) ≤ C(n, σ, k)

1
Rk

(
R2σ

∫
Rn\B2R

|u(x)|
|x |n+2σ dx +

‖u‖L1(B2R)

Rn

)
,

where α ∈ (0, 1) and k is a nonnegative integer.

Lemma A.5 [Ros-Oton and Serra 2014, Proposition 1.1]. Let σ ∈ (0, 1). Let u be a solution of{
(−1)σu = f in BR,

u = 0 in Bc
R.

Then

‖u‖Cσ (Rn) ≤ C(R, σ )‖ f ‖L∞(BR).
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