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THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES
IMPLIES UNIFORM RECTIFIABILITY

STEVE HOFMANN, PHI LE, JOSÉ MARÍA MARTELL AND KAJ NYSTRÖM

Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors–David regular set of dimension n. We show that the weak-A∞
property of harmonic measure, for the open set � := Rn+1

\ E , implies uniform rectifiability of E . More
generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the
p-Laplace operator, 1< p <∞.
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1. Introduction

In this paper we prove quantitative, scale invariant results of free boundary type, for harmonic measure and,
more generally, for p-harmonic measure. More precisely, let �⊂ Rn+1 be an open set (not necessarily
connected nor bounded) satisfying an interior corkscrew condition, whose boundary is n-dimensional
Ahlfors–David regular (ADR) (see Definition 2.1). Given these background hypotheses we prove that
if ω, the harmonic measure for �, is absolutely continuous with respect to σ , and if the Poisson kernel
k = dω/dσ verifies an appropriate scale invariant higher integrability estimate (in particular, if ω belongs
to weak-A∞ with respect to σ ), then ∂� is uniformly rectifiable in the sense of [David and Semmes 1991;
1993]; see Theorem 1.1 and Corollary 1.5 below. In particular, our background hypotheses hold in the
case that � := Rn+1

\ E is the complement of an ADR set of codimension 1, as in that case it is well
known that the corkscrew condition is verified automatically in �, i.e., in every ball B = B(x, r) centered
on E , there is some component of �∩ B that contains a point Y with dist(Y, E)≈ r . Furthermore, our
argument is general enough to allow us to establish a nonlinear version of Theorem 1.1 (see Theorem 1.12
below) involving the p-Laplace operator, p-harmonic functions, and p-harmonic measure.

Hofmann was supported by NSF grant DMS-1361701. Martell was supported by ICMAT Severo Ochoa project SEV-2015-0554.
He also acknowledges that the research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC agreement no. 615112 HAPDEGMT.
MSC2010: primary 31B05, 31B25, 35J08, 42B25, 42B37; secondary 28A75, 28A78.
Keywords: harmonic measure and p-harmonic measure, Poisson kernel, uniform rectifiability, Carleson measures, Green

function, weak-A∞.
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To briefly outline previous work, in [Hofmann et al. 2014] the first and third authors, together with
I. Uriarte-Tuero, proved the same result (cf. Theorem 1.1 and Corollary 1.5) under the additional strong
hypothesis that � is a connected domain, satisfying an interior Harnack chain condition. In hindsight,
under that extra assumption, one obtains the stronger conclusion that the exterior domain Rn+1

\� in
fact also satisfies a corkscrew condition, and hence that � is an NTA domain in the sense of [Jerison and
Kenig 1982]; see [Azzam et al. 2014] for the details. Compared to [Hofmann et al. 2014] the main new
advances in the present paper are two. First, we remove any connectivity hypothesis; in particular, we
avoid the Harnack chain condition. Second, we are able to establish a version of our results also in the
nonlinear case 1 < p <∞. Our main results — Theorem 1.1, Corollary 1.5, and Theorem 1.12 — are
new even in the linear case p = 2.

Our approach is decidedly influenced by prior work of Lewis and Vogel [2006; 2007]. In particular, a
version of Theorem 1.12 and Theorem 1.1 was proved in [Lewis and Vogel 2007], under the stronger
hypothesis that p-harmonic measure µ itself is an Ahlfors–David regular measure, which in the linear
case p = 2 implies that the Poisson kernel is a bounded, accretive function, i.e., k ≈ 1. However, to
weaken the hypotheses on ω and µ, as we have done here, requires further considerations, which we
discuss below in Section 1B.

To provide some additional context, we mention that out results here may be viewed as “large constant”
analogues of results of Kenig and Toro [2003] in the linear case p = 2, and of J. Lewis and Nyström
[2012], in the general p-harmonic case 1 < p < ∞. These authors show that in the presence of a
Reifenberg flatness condition and Ahlfors–David regularity, log k ∈ VMO implies that the unit normal
ν to the boundary belongs to VMO, where k is either the Poisson kernel with pole at some fixed point
or the density of p-harmonic Riesz measure associated to a particular ball B(x, r). Moreover, under
the same background hypotheses, the condition ν ∈ VMO is equivalent to a uniform rectifiability (UR)
condition with vanishing trace. Thus log k ∈VMO=⇒ vanishing UR, given sufficient Reifenberg flatness.
On the other hand, our large constant version “almost” says “log k ∈ BMO=⇒ UR”. Indeed, it is well
known that the A∞ condition, i.e., weak-A∞ plus the doubling property, implies that log k ∈ BMO,
while if log k ∈ BMO with small norm, then k ∈ A∞. We further note that, in turn, the results of
[Kenig and Toro 2003] may be viewed as an “endpoint” version of the free boundary results of [Alt
and Caffarelli 1981; Jerison 1990], which establish, again in the presence of Reifenberg flatness, that
Hölder continuity of log k implies that of the unit normal ν (and indeed, that ∂� is of class C1,α for
some α > 0).

1A. Statement of main results. Given an open set �⊂ Rn+1, and a Euclidean ball B = B(x, r)⊂ Rn+1

centered on ∂�, we let 1=1(x, r) := B ∩ ∂� denote the corresponding surface ball. For X ∈�, let ωX

be harmonic measure for �, with pole at X . As mentioned above, all other terminology and notation will
be defined below.

Concerning the Laplace operator and harmonic measure we prove the following results.

Theorem 1.1. Let�⊂Rn+1, n≥ 2, be an open set whose boundary is Ahlfors–David regular of dimension
n (see Definition 2.1). Suppose that there are positive constants C0 and c0, and an exponent q > 1, such



THE WEAK-A∞ PROPERTY OF ( p-)HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY 515

that for every surface ball1=1(x, r), with x ∈ ∂� and 0< r < diam(∂�), there exists X1 ∈ B(x, r)∩�,
with dist(X1, ∂�)≥ c0r , satisfying

(?) scale-invariant higher integrability: ωX1 � σ in 21, and k X1 := dωX1/dσ satisfies∫
21

k X1(y)q dσ(y)≤ C0σ(1)
1−q . (1.2)

Then ∂� is uniformly rectifiable and moreover the “UR character” (see Definition 2.4) depends only on n,
the ADR constants, q , c0, and C0.

The point X1 in Theorem 1.1 is a “corkscrew point” for �, relative to 1. An open set � for which
there is such a point relative to every surface ball 1(x, r), x ∈ ∂�, 0< r < diam(∂�), with a uniform
constant c0, is said to satisfy the “corkscrew condition” (see Definition 2.5 below).

Remark 1.3. We note that, in lieu of absolute continuity and (?), only the following apparently weaker
condition is actually used in the proof of Theorem 1.1:

(??) local nondegeneracy: there exist uniform constants η, β >0 such that if A⊂1 is Borel measurable,
then

σ(A)≥ (1− η)σ (1) =⇒ ωX1(A)≥ βωX1(1).1 (1.4)

Here1=1(x, r) for x ∈ ∂� and 0<r <diam(∂�), and X1∈ B(x, r/2)∩�with dist(X1, ∂�)≥ c0r/2.2

We observe that there turns out to be some flexibility in the choice of X1 (see the discussion at the
beginning of Section 4), and consequently it is not hard to see that (?) implies (??); see Lemma 4.3.

We also have the following easy corollary of Theorem 1.1 (we shall give the short proof of the corollary
in Section 5D).

Corollary 1.5. Let �⊂ Rn+1, n ≥ 2, be an open set satisfying the corkscrew condition, whose boundary
is Ahlfors–David regular of dimension n. Suppose further that for every ball B = B(x, r) with x ∈ ∂� and
0 < r < diam(∂�), and every Y ∈ � \ B(x, 2r), harmonic measure ωY belongs to weak-A∞(1(x, r)),
i.e., there is a constant C0 ≥ 1 and an exponent q > 1, each of which is uniform with respect to x , r , and
Y , such that ωY

� σ in 1(x, r), and kY
= dωY /dσ satisfies(

−

∫
1′

kY(z)q dσ(z)
)1/q

≤ C0 −

∫
21′

kY(z) dσ(z) (1.6)

for every surface ball centered on the boundary 1′ = B ′ ∩ ∂� with 2B ′ ⊂ B(x, r). Then ∂� is uniformly
rectifiable, and moreover, the “UR character” (see Definition 2.4) depends only on n, the ADR constant
of ∂�, q, C0, and the corkscrew constant.

Remark 1.7. As mentioned above, the corkscrew condition is automatically satisfied in the case that E is
an n-dimensional ADR set (hence closed, see Definition 2.1 below), and �=Rn+1

\ E is its complement,
with the corkscrew constant for � depending only on n and the ADR constant of E . Thus, in particular,

1This formulation is adapted from [Mourgoglou and Tolsa 2015]; see the discussion in Section 1D.
2For aesthetic reasons, and for convenience in the sequel, in contrast to condition (?), we prefer to state condition (??) in

terms of 1 rather than 21, and with X1 ∈ B(x, r/2) rather than B(x, r).
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Corollary 1.5 applies in that setting, so in the presence of the weak reverse Hölder condition (1.6), we
deduce that E is uniformly rectifiable.

Combining Theorem 1.1 with the results in [Bortz and Hofmann 2015], we obtain as an immediate
consequence a “big pieces” characterization of uniformly rectifiable sets of codimension 1, in terms of
harmonic measure. Here and in the sequel, given an ADR set E , Q denotes a “dyadic cube” on E in
the sense of [David and Semmes 1991; 1993; Christ 1990], and D(E) denotes the collection of all such
cubes; see Lemma 2.6 below.

Theorem 1.8. Let E ⊂ Rn+1, n ≥ 2, be an n-dimensional ADR set. Let � := Rn+1
\ E. Then E is

uniformly rectifiable if and only if it has “big pieces of good harmonic measure estimates” in the following
sense: for each Q ∈D(E) there exists an open set �̃= �̃Q with the following properties, with uniform
control of the various implicit constants:

• ∂�̃ is ADR;

• the interior corkscrew condition holds in �̃;

• ∂�̃ has a “big pieces” overlap with E , in the sense that σ(Q ∩ ∂�̃)& σ(Q);

• for each surface ball 1 = 1(x, r) := B(x, r) ∩ ∂�̃ with x ∈ ∂�̃ and r ∈ (0, diam(�̃)), there is
an interior corkscrew point X1 ∈ �̃ such that ωX1

�̃
, the harmonic measure for �̃ with pole at X1,

satisfies ωX1
�̃
(1)& 1, and belongs to weak-A∞(1).

The “only if” direction is proved in [Bortz and Hofmann 2015], and the open sets �̃ constructed
in [Bortz and Hofmann 2015] even satisfy a 2-sided corkscrew condition, and moreover, �̃ ⊂ � with
diam(�̃) ≈ diam(Q). To obtain the converse direction, we simply observe that by Theorem 1.1, the
subdomains �̃ have uniformly rectifiable boundaries, with uniform control of the “UR character” of
each ∂�̃, and thus, by [David and Semmes 1993], E is uniformly rectifiable.

To formulate our main result in the nonlinear setting we first need to introduce some notation. If
O ⊂Rn+1 is an open set and 1≤ p ≤∞, then by W 1,p(O) we denote the space of equivalence classes of
functions f with distributional gradient ∇ f = ( fx1, . . . , fxn+1), both of which are q-th power integrable
on O . Let ‖ f ‖1,p = ‖ f ‖p +‖|∇ f |‖p be the norm in W 1,p(O), where ‖ · ‖q denotes the usual Lebesgue
p norm in O . Next, let C∞0 (O) be the set of infinitely differentiable functions with compact support in O ,
and let W 1,p

0 (O) be the closure of C∞0 (O) in the norm of W 1,p(O). We let W 1,p
loc (O) be the set of all

functions u such that u2 ∈W 1,p
0 (O) whenever 2 ∈ C∞0 (O).

Given an open set O and 1< p <∞, we say that u is p-harmonic in O provided u ∈W 1,p
loc (O) and∫∫

Rn+1
|∇u|p−2

∇u · ∇2 dX = 0, ∀2 ∈ C∞0 (O). (1.9)

Observe that if u is smooth and ∇u 6= 0 in O , then

∇ · (|∇u|p−2
∇u)≡ 0 in O, (1.10)

and u is a classical solution in O to the p-Laplace partial differential equation. Here, as in the sequel, ∇·
is the divergence operator.
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Let � ⊂ Rn+1 be an open set, not necessarily connected, with n-dimensional ADR boundary. Let
p ∈ (1,∞). Given x ∈ ∂� and 0 < r < diam(∂�), let u be a nonnegative p-harmonic function in
� ∩ B(x, r) which vanishes continuously on 1(x, r) := B(x, r) ∩ ∂�. Extend u to all of B(x, r) by
putting u ≡ 0 on B(x, r) \�. Then there exists a unique nonnegative finite Borel measure µ on Rn+1,
with support contained in 1(x, r), such that

−

∫∫
Rn+1
|∇u|p−2

∇u · ∇φ dX =
∫
∂�

φ dµ, ∀φ ∈ C∞0 (B(x, r)); (1.11)

see [Heinonen et al. 2006, Chapter 21] and Lemma 3.43 below. We refer to µ as the p-harmonic measure
associated to u. In the case p = 2, and if u is the Green function for � with pole at X ∈ �, then the
measure µ coincides with harmonic measure at X , ω = ωX.

Concerning the p-Laplace operator, p-harmonic functions, and p-harmonic measure, we prove the
following theorem.

Theorem 1.12. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p < ∞, be given. Let C be a sufficiently large constant (to be specified),
depending only on n and the ADR constant, and suppose that there exist q > 1 and a positive constant
C0 for which the following holds: for each x ∈ ∂� and each 0 < r < diam(∂�), there is a nontrivial,
nonnegative p-harmonic function u = ux,r in �∩ B(x,Cr), and corresponding p-harmonic measure
µ= µx,r , such that µ� σ in 1(x,Cr), and such that k := dµ/dσ satisfies(

−

∫
1(x,Cr)

k(y)q dσ(y)
)1/q

≤ C0
µ(1(x, r))
σ (1(x, r))

. (1.13)

Then ∂� is uniformly rectifiable, and moreover the “UR character” (see Definition 2.4) depends only
on n, the ADR constant, p, q , and C0.

Some remarks are in order concerning the hypotheses of Theorem 1.12. Let us observe that, in
particular, Ahlfors–David regularity and (1.13) imply that

µ(1(x,Cr))≤ C1µ(1(x, r)), (1.14)

with C1 ≈ C0. In the linear case, the latter estimate follows automatically, with µ = ωY for some
Y ∈ B(x, r) such that dist(Y, E) ≈ r , and with C1 depending only on n and the ADR constant, by
Bourgain’s Lemma 3.1 below, even though ωY need not be a doubling measure (i.e., (1.14) says nothing
about points other than x nor about scales other than r ). In the nonlinear case, it seems that we must impose
condition (1.14) by hypothesis. We also observe that (1.13) holds in particular ifµ∈weak-A∞(1(x, 2Cr))
and satisfies (1.14) (with radius 2C in place of C). Of course, (1.14) holds trivially if µ is a doubling
measure, but we do not assume doubling.

Remark 1.15. We note that, as in Remark 1.3, the proof of Theorem 1.12 will in fact use, in lieu of
absolute continuity and (1.13), only the apparently weaker condition that there exist uniform constants
η, β ∈ (0, 1) such that for all 1=1(x, r), and for all Borel sets A ⊂1,

σ(A)≥ (1− η)σ (1) =⇒ µ(A)≥ βµ(1). (1.16)
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1B. Brief outline of the proofs of the main results. As mentioned, the approach in the present paper is
strongly influenced by prior work due to Lewis and Vogel [2006; 2007], who in the latter paper proved a
version of Theorem 1.12, and Theorem 1.1, under the stronger hypothesis that p-harmonic measure µ
itself is an Ahlfors–David regular measure. In the linear case p = 2, this implies that the Poisson kernel
is a bounded, accretive function, i.e., k ≈ 1. Assuming that p-harmonic measure µ is an Ahlfors–David
regular measure, Lewis and Vogel were able to show that E satisfies the so-called weak exterior convexity
(WEC) condition, which characterizes uniform rectifiability [David and Semmes 1993]. To weaken the
hypotheses on ω and µ, as we have done here, requires two further considerations. The first is quite
natural in this context: a stopping time argument, in the spirit of the proofs of the Kato square root
conjecture [Hofmann and McIntosh 2002; Hofmann et al. 2002; Auscher et al. 2002a] (and of local Tb
theorems [Christ 1990; Auscher et al. 2002b; Hofmann 2006]), by means of which we extract ample
dyadic sawtooth regimes on which averages of harmonic measure and p-harmonic measure are bounded
and accretive; see Lemma 4.12 below. This allows us to use the arguments of [Lewis and Vogel 2007]
within these good sawtooth regions. The second new consideration is necessitated by the fact that in
our setting, the doubling property may fail for harmonic and p-harmonic measure. In the absence of
doubling, we are unable to obtain the WEC condition directly. Nonetheless, we are able to follow the
arguments of [Lewis and Vogel 2007] very closely up to a point, to obtain a condition on ∂� which we
call the “weak half space approximation” (WHSA) property (see Definition 2.19). Indeed, extracting the
essence of the argument of [Lewis and Vogel 2007], while dispensing with the doubling property, one
realizes that the WHSA is precisely what one obtains. In the sequel, we present the argument of [Lewis
and Vogel 2007] as Lemma 5.10. Finally, having obtained that ∂� satisfies the WHSA property, we are
able to prove the following proposition stating that WHSA implies uniform rectifiability.

Proposition 1.17. An n-dimensional ADR set E ⊂ Rn+1 is uniformly rectifiable if and only if it satisfies
the WHSA property.

While the WHSA condition, per se, is new, our proof of Proposition 1.17 is based on a modified version
of part of the argument in [Lewis and Vogel 2007].

1C. Organization of the paper. The paper is organized as follows. In Section 2, we state several
definitions, including definitions of ADR, UR, and dyadic grids, and introduce further notions and
notation. In Section 3, we state, and either prove or give references for, the PDE estimates needed in
the proofs of our main results. In Section 4, we begin the (simultaneous) proofs of Theorem 1.1 and
Theorem 1.12 by giving some preliminary arguments. In Section 5, following [Lewis and Vogel 2006;
2007], we complete the proofs of Theorem 1.1 and Theorem 1.12, modulo Proposition 1.17. At the end
of Section 5 we also give the (very short) proof of Corollary 1.5. In Section 6, we give the proof of
Proposition 1.17, i.e., the proof of the fact that the WHSA condition implies uniform rectifiability.

1D. Discussion of recent related work. We note that some related work has recently appeared, or been
carried out, while this manuscript was in preparation. In the setting of uniform domains with lower
ADR boundary with locally finite n-dimensional Hausdorff measure, Mourgoglou [2015] has shown that
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rectifiability of the boundary implies absolute continuity of surface measure with respect to harmonic
measure (for the Laplacian). Akman, Badger, Hofmann, and Martell [Akman et al. 2015], in the setting of
uniform domains with ADR boundary, have characterized the rectifiability of the boundary in terms of the
absolute continuity of harmonic measure and some elliptic measures and surface measure or in terms of
some qualitative A∞ condition. Also, Azzam, Mourgoglou, and Tolsa [Azzam et al. 2015] have obtained
that absolute continuity of harmonic measure with respect to surface measure on an H n-finite piece of
the boundary implies that harmonic measure is rectifiable in that piece. The setting is very general as
they only assume a “porosity” (i.e., corkscrew) condition in the complement of ∂�. In [Hofmann et al.
2015], Hofmann, Martell, Mayboroda, Tolsa, and Volberg prove the same result removing the porosity
assumption. Both [Azzam et al. 2015] and the follow-up version [Hofmann et al. 2015] (which will be
combined in the forthcoming paper [Azzam et al. 2016]) rely on recent deep results of [Nazarov et al.
2014a; 2014b], concerning connections between rectifiability and the behavior of Riesz transforms.

Finally, we discuss two closely related papers treating the case p = 2. First, we mention that a
preliminary version of our results, treating only the linear harmonic case (i.e., Theorem 1.1 of the present
paper) under hypothesis (?), appeared earlier in the unpublished preprint [Hofmann and Martell 2015].
That result, again in the case p = 2, was then essentially reproved, by a different method, in [Mourgoglou
and Tolsa 2015], but assuming condition (??) in place of (?). While the present paper was in preparation,
we learned of the work in [Mourgoglou and Tolsa 2015], and we realized that our arguments (and those of
[Hofmann and Martell 2015]), almost unchanged, also allow (?) to be replaced by (??) or its p-harmonic
equivalent. The current version of this manuscript incorporates this observation.3 Let us mention also that
the approach in [Mourgoglou and Tolsa 2015] is based on showing that (??) for harmonic measure implies
L2-boundedness of the Riesz transforms, and thus it is a quantitative version of the method of [Azzam
et al. 2016]. An interesting feature of the proof in [Mourgoglou and Tolsa 2015] is that it works even
without the lower bound in the Ahlfors–David condition; in that case, one may deduce rectifiability, as
opposed to uniform rectifiability, of the underlying measure on ∂�. On the other hand, it seems difficult
to generalize the approach of [Mourgoglou and Tolsa 2015] to the p-Laplace setting, since it is based on
Riesz transforms, which are tied to the linear harmonic case.

2. ADR, UR, and dyadic grids

Definition 2.1 (Ahlfors–David regular (ADR)). We say that a set E ⊂ Rn+1, of Hausdorff dimension n,
is ADR if it is closed and if there is some uniform constant C such that

C−1rn
≤ σ(1(x, r))≤ Crn, ∀r ∈ (0, diam(E)), x ∈ E, (2.2)

where diam(E) may be infinite. Here, 1(x, r) := E ∩ B(x, r) is the “surface ball” of radius r , and
σ := H n

|E is the “surface measure” on E , where H n denotes n-dimensional Hausdorff measure.

Definition 2.3 (uniformly rectifiable (UR)). An n-dimensional ADR (hence closed) set E ⊂ Rn+1 is UR
if and only if it contains “big pieces of Lipschitz images” of Rn (BPLI). This means that there are positive

3We thank Mourgoglou and Tolsa for making their preprint available to us while our manuscript was in preparation.
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constants θ and M0, such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping
ρ = ρx,r : R

n
→ Rn+1, with Lipschitz constant no larger than M0, such that

H n(E ∩ B(x, r)∩ ρ({z ∈ Rn
: |z|< r})

)
≥ θrn.

We recall that n-dimensional rectifiable sets are characterized by the property that they can be covered,
up to a set of H n measure 0, by a countable union of Lipschitz images of Rn; we observe that BPLI is a
quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely those for which
all “sufficiently nice” singular integrals are L2-bounded [David and Semmes 1991]. In fact, for n-
dimensional ADR sets in Rn+1, the L2-boundedness of certain special singular integral operators (the
“Riesz transforms”) suffices to characterize uniform rectifiability (see [Mattila et al. 1996] for the case
n = 1, and [Nazarov et al. 2014a] in general). We further remark that there exist sets that are ADR (and
that even form the boundary of a domain satisfying interior corkscrew and Harnack chain conditions), but
that are totally nonrectifiable (e.g., see the construction of Garnett’s “4-corners Cantor set” in [David and
Semmes 1993, Chapter1]). Finally, we mention that there are numerous other characterizations of UR
sets (many of which remain valid in higher codimensions); see [David and Semmes 1991; 1993], and
in particular Theorem 2.14 below. In this paper, we also present a new characterization of UR sets of
codimension 1 (see Proposition 1.17 below), which will be very useful in the proof of Theorem 1.1.

Definition 2.4 (UR character). Given a UR set E ⊂ Rn+1, its “UR character” is just the pair of constants
(θ,M0) involved in the definition of uniform rectifiability, along with the ADR constant; or equivalently,
the quantitative bounds involved in any particular characterization of uniform rectifiability.

Definition 2.5 (corkscrew condition). Following [Jerison and Kenig 1982], we say that an open set
�⊂ Rn+1 satisfies the “corkscrew condition” if for some uniform constant c0 > 0 and for every surface
ball 1 := 1(x, r), with x ∈ ∂� and 0 < r < diam(∂�), there is a point X1 ∈ B(x, r) ∩� such that
dist(X1, ∂�)≥ c0r . The point X1 ⊂� is called a “corkscrew point” relative to 1.

Lemma 2.6 (existence and properties of the “dyadic grid” [David and Semmes 1991; 1993; Christ 1990]).
Suppose that E ⊂ Rn+1 is a closed n-dimensional ADR set. Then there exist constants a0 > 0, γ > 0, and
C∗ <∞, depending only on n and the ADR constant, such that for each k ∈ Z, there is a collection

Dk := {Qk
j ⊂ E : j ∈ Ik}

of Borel sets (“cubes”), where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E =
⋃

j Qk
j for each k ∈ Z;

(ii) if m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j =∅;

(iii) for each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i ;

(iv) diam(Qk
j )≤ C∗2−k ;

(v) each Qk
j contains some “surface ball” 1(xk

j , a02−k) := B(xk
j , a02−k)∩ E ;

(vi) H n
(
{x ∈ Qk

j : dist(x, E \ Qk
j )≤ % 2−k

}
)
≤ C∗%γ H n(Qk

j ) for all k, j and for all % ∈ (0, a0).
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Let us make a few remarks concerning this lemma, and discuss some related notation and terminology.

• In the setting of a general space of homogeneous type, this lemma has been proved by Christ [1990],
with the dyadic parameter 1

2 replaced by some constant δ ∈ (0, 1). In fact, one may always take
δ = 1

2 (cf. [Hofmann et al. 2017, Proof of Proposition 2.12]). In the presence of the Ahlfors–David
property (2.2), the result already appears in [David and Semmes 1991; 1993].

• For our purposes, we may ignore those k ∈ Z such that 2−k & diam(E), in the case that the latter is
finite.

• We denote by D= D(E) the collection of all relevant Qk
j , i.e.,

D :=
⋃
k

Dk,

where, if diam(E) is finite, the union runs over those k such that 2−k . diam(E).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk , there is a point xQ ∈ E , a Euclidean ball
B(xQ, r), and a surface ball 1(xQ, r) := B(xQ, r)∩ E such that r ≈ 2−k

≈ diam(Q) and

1(xQ, r)⊂ Q ⊂1(xQ,Cr) (2.7)

for some uniform constant C . We denote this ball and surface ball by

BQ := B(xQ, r), 1Q :=1(xQ, r), (2.8)

and we refer to the point xQ as the “center” of Q.

• Given a dyadic cube Q ∈ D, we define its “κ-dilate” by

κQ := E ∩ B(xQ, κ diam(Q)). (2.9)

• For a dyadic cube Q ∈ Dk , we set `(Q)= 2−k , and we refer to this quantity as the “length” of Q.
Clearly, `(Q)≈ diam(Q).

• For a dyadic cube Q ∈D, we let k(Q) denote the “dyadic generation” to which Q belongs, i.e., we
set k = k(Q) if Q ∈ Dk ; thus, `(Q)= 2−k(Q).

• For any Q ∈ D(E), we set DQ := {Q′ ∈ D : Q′ ⊂ Q}.

• Given Q0 ∈ D(E) and a family F = {Q j } ⊂ D of pairwise disjoint cubes, we set

DF,Q0 := {Q ∈ DQ0 : Q is not contained in any Q j ∈ F} = DQ0 \
( ⋃

Q j∈F
DQ j

)
. (2.10)

Definition 2.11 (ε-local BAUP). Given ε > 0, we say that Q ∈D(E) satisfies the ε-local BAUP condition
if there is a family P of hyperplanes (depending on Q) such that every point in 10Q is at a distance at
most ε`(Q) from

⋃
P∈P P , and every point in

(⋃
P∈P P

)
∩ B(xQ, 10 diam(Q)) is at a distance at most

ε`(Q) from E .

Definition 2.12 (BAUP). We say that an n-dimensional ADR set E ⊂ Rn+1 satisfies the condition of
bilateral approximation by unions of planes (BAUP) if for some ε0 > 0, and for every positive ε < ε0,
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there is a constant Cε such that the set B of bad cubes in D(E), for which the ε-local BAUP condition
fails, satisfies the packing condition∑

Q′⊂Q, Q′∈B

σ(Q′)≤ Cεσ(Q), ∀Q ∈ D(E). (2.13)

For future reference, we recall the following result of David and Semmes.

Theorem 2.14 [David and Semmes 1993, Theorem I.2.18, p. 36]. Let E ⊂ Rn+1 be an n-dimensional
ADR set. Then E is uniformly rectifiable if and only if it satisfies BAUP.

We remark that the definition of BAUP in [David and Semmes 1993] is slightly different in superficial
appearance, but it is not hard to verify that the dyadic version stated here is equivalent to their condition.
We note that we shall not need the full strength of this equivalence here, but only the fact that our version
of BAUP implies the version in [David and Semmes 1993], and hence implies UR.

We also require a new characterization of UR sets of codimension 1, which is related to the BAUP and
its variants. For a sufficiently large constant K0 to be chosen (see Lemma 4.24 below), we set

B∗Q := B(xQ, K 2
0`(Q)), 1∗Q := B∗Q ∩ E . (2.15)

Given a small positive number ε, which we typically assume to be much smaller than K−6
0 , we also set

B∗∗Q = B∗∗Q (ε) := B(xQ, ε
−2`(Q)), B∗∗∗Q = B∗∗∗Q (ε) := B(xQ, ε

−5`(Q)). (2.16)

Definition 2.17 (ε-local WHSA). Given ε > 0, we say that Q ∈ D(E) satisfies the ε-local WHSA
condition (or more precisely, the “ε-local WHSA with parameter K0”) if there is a half-space H = H(Q),
a hyperplane P = P(Q)= ∂H, and a fixed positive number K0 satisfying

(1) dist(Z , E)≤ ε`(Q) for every Z ∈ P ∩ B∗∗Q (ε),

(2) dist(Q, P)≤ K 3/2
0 `(Q), and

(3) H ∩ B∗∗Q (ε)∩ E =∅.

Note that part (2) of the previous definition says that the hyperplane P has an “ample” intersection
with the ball B∗∗Q (ε). Indeed,

dist(xQ, P). K 3/2
0 `(Q)� ε−2`(Q). (2.18)

Definition 2.19 (WHSA). We say that an n-dimensional ADR set E ⊂Rn+1 satisfies the weak half-space
approximation property (WHSA) if for some pair of positive constants ε0 and K0, and for every positive
ε < ε0, there is a constant Cε such that the set B of bad cubes in D(E), for which the ε-local WHSA
condition with parameter K0 fails, satisfies the packing condition∑

Q⊂Q0, Q∈B

σ(Q)≤ Cεσ(Q0), ∀Q0 ∈ D(E). (2.20)

Next, we develop some further notation and terminology. Given a closed set E , set δE(Y ) := dist(Y, E),
simply writing δ(Y ) when the set has been fixed.
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Let W =W(�) denote a collection of (closed) dyadic Whitney cubes of �, so that the cubes in W
form a covering of � with nonoverlapping interiors, and which satisfy

4 diam(I )≤ dist(4I, ∂�)≤ dist(I, ∂�)≤ 40 diam(I ) (2.21)

and

diam(I1)≈ diam(I2), whenever I1 and I2 touch. (2.22)

Assuming that E = ∂� is ADR and given Q ∈ D(E), for the same constant K0 as in (2.15) we set

WQ := {I ∈W : K−1
0 `(Q)≤ `(I )≤ K0`(Q), and dist(I, Q)≤ K0 `(Q)} . (2.23)

Fix a small, positive parameter τ , to be chosen momentarily, and given I ∈W , let

I ∗ = I ∗(τ ) := (1+ τ)I (2.24)

denote the corresponding “fattened” Whitney cube. We now choose τ sufficiently small that the cubes I ∗

retain the usual properties of Whitney cubes, in particular that

diam(I )≈ diam(I ∗)≈ dist(I ∗, E)≈ dist(I, E).

We then define Whitney regions with respect to Q by setting

UQ :=
⋃

I∈WQ

I ∗. (2.25)

We observe that these Whitney regions may have more than one connected component, but that the number
of distinct components is uniformly bounded, depending only upon K0 and dimension. We enumerate the
components of UQ as {U i

Q}i . Moreover, we enlarge the Whitney regions as follows.

Definition 2.26. For ε > 0, and given Q ∈ D(E), we write X ≈ε,Q Y if X may be connected to Y by
a chain of at most ε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q) ≤ δ(Yk) ≤ ε

−3`(Q). Given a
sufficiently small parameter ε > 0, we then set

Ũ i
Q := {X ∈ Rn+1

\ E : X ≈ε,Q Y, for some Y ∈U i
Q}. (2.27)

Remark 2.28. Since Ũ i
Q is an enlarged version of UQ , it may be that there are some i 6= j for which Ũ i

Q
meets Ũ j

Q . This overlap will be harmless.

3. PDE estimates

In this section we recall several estimates for harmonic measure and harmonic functions, and also for
p-harmonic measure and p-harmonic functions. Although some of the PDE results in the harmonic case
p = 2 can be subsumed into the general p-harmonic theory, we choose to present some aspects of the
harmonic theory separately, in part for the convenience of those readers who are more familiar with the
case p = 2, and in part because the presence of the Green function is unique to that case.
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3A. PDE estimates: the harmonic case. Next, we recall several facts concerning harmonic measure and
Green’s functions. Let� be an open set, not necessarily connected, and set δ(X)= δ∂�(X)= dist(X, ∂�).

Lemma 3.1 [Bourgain 1987]. Suppose that ∂� is n-dimensional ADR. Then there are uniform constants
c ∈ (0, 1) and C ∈ (1,∞), depending only on n and ADR, such that for every x ∈ ∂� and every
r ∈ (0, diam(∂�)), if Y ∈�∩ B(x, cr) then

ωY(1(x, r))≥ 1
C
> 0. (3.2)

We refer the reader to [Bourgain 1987, Lemma 1] for the proof. We note for future reference that in
particular, given X ∈ �, if x̂ ∈ ∂� satisfies |X − x̂ | = δ(X) and 1X := ∂�∩ B(x̂, 10δ(X)), then for a
slightly different uniform constant C > 0,

ωX (1X )≥
1
C
. (3.3)

Indeed, the latter bound follows immediately from (3.2), and the fact that we can form a Harnack chain
connecting X to a point Y that lies on the line segment from X to x̂ and satisfies |Y − x̂ | = cδ(X).

A proof of the next lemma may be found, e.g., in [Hofmann et al. ≥ 2017]. We note that, in particular,
the ADR hypothesis implies that ∂� is Wiener regular at every point (see Lemma 3.27 below).

Lemma 3.4. Let � be an open set with n-dimensional ADR boundary. There exist positive, finite
constants C , depending only on dimension, and cθ , depending on dimension and θ ∈ (0, 1), such that the
Green function satisfies

G(X, Y )≤ C |X − Y |1−n
; (3.5)

cθ |X − Y |1−n
≤ G(X, Y ), if |X − Y | ≤ θδ(X), θ ∈ (0, 1); (3.6)

G(X, · ) ∈ C(� \ {X}) and G(X, · )|∂� ≡ 0, ∀X ∈�; (3.7)

G(X, Y )≥ 0, ∀X, Y ∈�, X 6= Y ; (3.8)

G(X, Y )= G(Y, X), ∀X, Y ∈�, X 6= Y ; (3.9)

and for every 8 ∈ C∞0 (R
n+1),∫

∂�

8 dωX
−8(X)=−

∫∫
�

∇Y G(Y, X) · ∇8(Y ) dY, ∀X ∈�. (3.10)

Next we present a version of one of the estimates obtained by Caffarelli, Fabes, Mortola, and Salsa in
[Caffarelli et al. 1981], which remains true even in the absence of connectivity.

Lemma 3.11 (“CFMS” estimates). Suppose that ∂� is n-dimensional ADR. For every Y ∈� and X ∈�
such that |X − Y | ≥ δ(Y )/2, we have

G(Y, X)
δ(Y )

≤ C
ωX (1Y )

σ (1Y )
, (3.12)

where 1Y = B(ŷ, 10δ(Y ))∩ E , with ŷ ∈ ∂� such that |Y − ŷ| = δ(Y ).
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For future use, we note that as a consequence of (3.12), it follows directly that for every Q ∈D(∂�),
if Y ∈ B(xQ,C`(Q)) with δ(Y )≥ c`(Q), then there exists κ = κ(C, c) such that

G(Y, X)
`(Q)

.
ωX (κQ)
σ (Q)

. κn
(
−

∫
Q
(MωX )1/2 dσ

)2

, ∀X /∈ B(xQ, κ`(Q)), (3.13)

where κQ is defined in (2.9), and M is the usual Hardy–Littlewood maximal operator on ∂�.

Proof of Lemma 3.11. We follow the well known argument of [Caffarelli et al. 1981] (see also [Kenig
1994, Lemma 1.3.3]). Fix Y ∈� and write BY

= B(Y, δ(Y )/2). Consider the open set �̂=� \ BY for
which clearly ∂�̂= ∂�∪ ∂BY . Set

u(X) := G(Y, X)/δ(Y ), v(X) := ωX (1Y )/σ (1Y ),

for every X ∈ �̂. Note that both u and v are nonnegative harmonic functions in �̂. If X ∈ ∂� then
u(X) = 0 ≤ v(X). Take now X ∈ ∂BY , so that u(X) . δ(Y )−n by (3.5). On the other hand, if we fix
X0 ∈ ∂BY with X0 on the line segment that joints Y and ŷ, then 21X0 =1Y , so that v(X0) & δ(Y )−n ,
by (3.3). By Harnack’s inequality, we then obtain v(X)& δ(Y )−n for all X ∈ ∂BY . Thus, u . v in ∂�̂
and by the maximum principle this immediately extends to �̂ as desired. �

Lemma 3.14. Let ∂� be n-dimensional ADR. Let B = B(x, r) with x ∈ ∂� and 0< r < diam(∂�), and
set 1 = B ∩ ∂�. There exist constants κ0 > 2, C > 1, and M1 > 1, depending only on n and the ADR
constant of ∂�, such that for X ∈� \ B(x, κ0r), we have

sup
1
2 B

G( · , X).
1
|B|

∫∫
B

G(Y, X) dY ≤ Cr
ωX (1(x,M1r))

σ (1)
. (3.15)

Moreover, for each γ ∈ (0, 1],

1
|B|

∫∫
B∩{Y :δ(Y )<γ r}

G(Y, X) dY ≤ Cγ 2r
ωX (1(x,M1r))

σ (1)
, (3.16)

where C depends on n and the ADR constant of ∂�.

We note that in the previous estimates it is implicitly understood that G( · , X) is extended to be 0
outside of �.

Proof. Extending G( · , X) to be 0 outside of �, we obtain a subharmonic function in B. The first
inequality in (3.15) follows immediately. The second inequality in (3.15) is just the special case γ = 1
of (3.16), so it suffices to prove the latter. Set 6γ = {I ∈W : I ∩ B 6= ∅, dist(I, ∂�) < γ r}, and note
that if I ∈6γ then by (2.21),

40−1 dist(I, ∂�)≤ diam(I )≤ dist(I, ∂�) < γ r ≤ r, dist(I, x)≤ r.

In particular, I ⊂ B(x, 2r). Furthermore, we can find κ0, depending only on dimension, such that
dist(X, 4I ) ≥ 4r for every I ∈ 6γ and X ∈ � \ B(x, κ0r). Let Q I ∈ D be such that `(Q I ) = `(I ) and
dist(I, ∂�)= dist(I, Q I ). Then `(Q I )≤ γ r , and Y (I ), the center of I , satisfies Y (I ) ∈ B(xQ I ,C`(Q I ))
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and δ(Y (I ))≈ `(I )= `(Q I ). Hence we can invoke (3.13) (taking κ0 larger if needed) and obtain that for
every Y ∈ I ,

G(Y, X)≈ G(Y (I ), X). `(I )
ωX (κQ I )

σ (Q I )
,

where the first estimate uses Harnack’s inequality in 2I ⊂�. Hence,∫∫
B∩{Y :δ(Y )<γ r}

G(Y, X) dY ≤
∑
I∈6γ

∫∫
I
G(Y, X) dY .

∑
I∈6γ

`(I )2ωX (κQ I )

≤

∑
k:2−k.γ r

2−2 k
∑

I∈6γ :`(I )=2−k

ωX (κQ I ). (γ r)2ωX (1(x,M1r)),

where in the last step we have used that for each fixed k, the cubes κQ I with `(I )= 2−k have uniformly
bounded overlaps, and are all contained in 1(x,M1r) for M1 large enough. Dividing by |B| ≈ rn+1 and
using the ADR property, we obtain the desired estimate. �

3B. PDE estimates: the p-harmonic case. We now recall several fundamental estimates for p-harmonic
functions and p-harmonic measure, some of which generalize certain of the preceding estimates that we
have stated in the harmonic case. We ask the reader to forgive a moderate amount of redundancy. Given a
closed set E , as above we set δ(Y ) := dist(Y, E).

Lemma 3.17. Let p, 1< p <∞, be given. Let u be a positive p-harmonic function in B(X, 2r). Then(
1

|B(X, r/2)|

∫∫
B(X,r/2)

|∇u|p dy
)1/p

≤
C
r

max
B(X,r)

u, (3.18)

max
B(X,r)

u ≤ C min
B(X,r)

u. (3.19)

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if Y, Y ′ ∈ B(X, r), then

|u(Y )− u(Y ′)| ≤ C
(
|Y − Y ′|

r

)α
max

B(X,2r)
u. (3.20)

Proof. The inequality (3.18) is a standard energy estimate, (3.19) is the well known Harnack inequality
for positive solutions to the p-Laplace operator, and (3.20) is a well known interior Hölder continuity
estimate for solutions to equations of p-Laplace type. We refer to [Serrin 1964] for these results. �

Definition 3.21. Let O ⊂ Rn+1 be open and let K be a compact subset of O . Given p, 1< p <∞, we
let

Capp(K , O)= inf
{∫∫

O
|∇φ|p dY : φ ∈ C∞0 (O), φ ≥ 1 in K

}
.

Capp(K , O) is referred to as the p-capacity of K relative to O . The p-capacity of an arbitrary set E ⊂ O
is defined by

Capp(E, O)= inf
E⊂G⊂O
G open

sup
K⊂G

K compact

Capp(K , O). (3.22)
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Definition 3.23. Let E ⊂ Rn+1 be a closed set and let x ∈ E , 0 < r < diam(E). Given p, 1 < p <∞,
we say that E ∩ B(x, 4r) is p-thick if for every x ∈ E ∩ B(x, 4r) there exists rx > 0 such that∫ rx

0

[Capp(E ∩ B(x, ρ), B(x, 2ρ))

Capp(B(x, ρ), B(x, 2ρ))

]1/(p−1) dρ
ρ
=∞.

We note that this definition is just the Wiener criterion in the p-harmonic case. As it can be seen in
[Heinonen et al. 2006, Chapter 6], p-thickness implies that all points on E ∩ B(x, 4r) are regular for the
continuous Dirichlet problem for ∇ · (|∇u|p−2

∇u)= 0.

Definition 3.24. Let E ⊂ Rn+1 be a closed set and let x ∈ E , 0 < r < diam(E). Given p, 1 < p <∞,
and η > 0 we say that E ∩ B(x, 4r) is uniformly p-thick with constant η if

Capp(E ∩ B(x̂, r̂), B(x̂, 2r̂))

Capp(B(x̂, r̂), B(x̂, 2r̂))
≥ η (3.25)

whenever x̂ ∈ E ∩ B(x, 4r) and B(x̂, 2r̂)⊂ B(x, 4r).

Remark 3.26. In the case p= 2, the condition defined in Definition 3.24 is sometimes called the capacity
density condition (CDC); see for instance [Aikawa 2004]. Note that uniform p-thickness is a strong
quantitative version of the p-thickness defined above and hence of the Wiener regularity for the Laplace
and the p-Laplace operator.

Lemma 3.27. Let E ⊂ Rn+1, n ≥ 2, be Ahlfors–David regular of dimension n. Let p, 1 < p <∞, be
given. Then E ∩ B(x, 4r) is uniformly p-thick for some constant η, depending only on p, n, and the ADR
constant, whenever x ∈ E , 0< r < 1

4 diam E.

Proof. We first observe that since the ADR condition is scale-invariant we may translate and rescale
to prove (3.25) only for x̂ = 0 and r̂ = 1 (we would also need to rescale E , but abusing the notation
we still call it E). Write B = B(0, 1) and observe that, for every 1 < p <∞, [Heinonen et al. 2006,
Example 2.12] gives

Capp(B, 2B)= C(n, p). (3.28)

The desired bound from below follows at once if p > n+ 1 from the estimate in [Heinonen et al. 2006,
Example 2.12]:

Capp(E ∩ B, 2B)≥ Capp({0}, 2B)= C(n, p)′.

Let us now consider the case 1< p ≤ n+ 1. Write K = E ∩ 1
2 B. Combining [Heinonen et al. 2006,

Theorem 2.38; Adams and Hedberg 1999, Theorems 2.2.7 and 4.5.2] we have that

Capp(E ∩ B, 2B)& C̃app(K )& sup
µ

(
µ(K )

‖Wp(µ)‖
1/p′

L1(µ)

)p

. (3.29)

In the previous expression the implicit constants depend only on p and n; C̃app stands for the inhomoge-
neous p-capacity, that is,

C̃app(K )= inf
{∫∫

Rn+1
(|φ|p + |∇φ|p) dY : φ ∈ C∞0 (R), φ ≥ 1 in K

}
;
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the sup runs over all Radon positive measures supported on K ; and

Wp(µ)(y) :=
∫ 1

0

(
µ(B(y, t))

tn+1−p

)p′−1 dt
t
, x ∈ suppµ.

We choose µ = H n
|K and observe that, if y ∈ suppµ ⊂ K ⊂ E and 0 < t < 1, then, by ADR,

µ(B(y, t)) = σ(B(y, t)∩ B
(
0, 1

2

)
. tn . This easily gives Wp(µ)(y) . 1 for every y ∈ suppµ and, by

ADR, ∫
K

Wp(µ)(y) dµ(y)≤ µ(K )≤ σ(B). 1.

We can now use (3.29) and ADR again to conclude that

Capp(E ∩ B, 2B)& µ(K )≥ σ
(
B
(
0, 1

2

))p
& 1.

Combining this with (3.28) we readily obtain (3.25). �

Lemma 3.30. Let E ⊂ Rn+1, n ≥ 2, be Ahlfors–David regular of dimension n. Let p, 1 < p < ∞,
be given. Let x ∈ E and 0 < r < diam(E). Then, given f ∈ W 1,p(B(x, 4r)) there exists a unique
p-harmonic function u ∈ W 1,p(B(x, 4r) \ E) such that u − f ∈ W 1,p

0 (B(x, 4r) \ E). Furthermore, let
u, v∈W 1,p

loc (B(x, 4r)\E) be a p-superharmonic function and a p-subharmonic function in�, respectively.
If inf{u−v, 0} ∈W 1,p

0 (B(x, 4r)\E), then u≥ v a.e. in B(x, 4r)\E. Finally, every point x̂ ∈ E∩B(x, 4r)
is regular for the continuous Dirichlet problem for ∇ · (|∇u|p−2

∇u)= 0.

Proof. The first part of the lemma is a standard maximum principle. The fact that every x̂ ∈ E∩B(x, 4r) is
regular in the continuous Dirichlet problem for ∇·(|∇u|p−2

∇u)= 0 follows from the fact that Lemma 3.27
implies that E ∩ B(x, 4r) is uniformly p-thick for every 1< p<∞, and hence we can invoke [Heinonen
et al. 2006, Chapter 6]. �

Lemma 3.31. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p <∞, be given. Let x ∈ ∂� and consider 0 < r < diam(∂�). Assume also
that u is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, and that u = 0 on
∂�∩ B(x, 4r). Then, extending u to be 0 in B(x, 4r) \�, we have(

1
|B(x, r/2)|

∫∫
B(x,r/2)

|∇u|p dy
)1/p

≤
C
r

(
1

|B(x, r)|

∫∫
B(x,r)

u p−1
)1/(p−1)

. (3.32)

Furthermore, there exists α ∈ (0, 1), depending only on p, n, and the ADR constant, such that if
Y, Y ′ ∈ B(x, r), then

|u(Y )− u(Y ′)| ≤ C
(
|Y − Y ′|

r

)α
max

B(x,2r)
u. (3.33)

Proof. Since u, extended as above to all of B(x, 4r), is a nonnegative p-subsolution in B(x, 4r), (3.32) is
just a standard energy or Caccioppoli estimate plus a standard interior estimate. Thus, we only prove (3.33).
Since E ∩ B(x, 4r) is uniformly p-thick as seen in Lemma 3.27, we can invoke [Heinonen et al. 2006,
Theorem 6.38] to obtain that there exist C ≥ 1 and α = α ∈ (0, 1), depending only on n, p, and the ADR
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constant, such that

max
B(x,ρ)

u ≤ C
(
ρ

r

)α
max
B(x,r)

u, whenever 0< ρ ≤ r . (3.34)

This, the triangle inequality, and elementary arguments give (3.33). �

Lemma 3.35. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p <∞, be given. Let x ∈ ∂� and consider 0 < r < diam(∂�). Assume also
that u is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, and that u = 0 on
∂�∩ B(x, 4r). Then, extending u to be 0 in B(x, 4r) \�, there exists α > 0 such that

u(Y )≤ C
(
δ(Y )

r

)α( 1
|B(x, 2r)|

∫∫
B(x,2r)

u p−1(Z) dZ
)1/(p−1)

(3.36)

for all Y ∈ B(x, r), where the constants C and α depend only on n, p, and the ADR constant of ∂�.

Proof. This follows from Lemma 3.31 and standard estimates for p-subsolutions. Let us note that in the
linear case (i.e, p = 2) one can give an alternative proof based on Bourgain’s Lemma 3.1 and an iteration
argument (see [Hofmann et al. ≥ 2017] for details). �

Lemma 3.37. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1< p<∞, be given. Let x ∈ ∂� and consider 0< r < diam(∂�). Assume also that u
is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, that u= 0 on ∂�∩B(x, 4r),
and that u is extended to be 0 in B(x, 4r) \�. Then u has a representative in W 1,p(B(x, 4r)) with
Hölder continuous partial derivatives in B(x, 4r) \ ∂�. Furthermore, there exists β ∈ (0, 1] such that if
Y, Y ′ ∈ B(X, r̂/2), with B(X, 4r̂)⊂ B(x, 4r) \ ∂�, then

|∇u(Y )−∇u(Y ′)|.
(
|Y − Y ′|

r̂

)β
max

B(X,r̂)
|∇u|.

1
r̂

(
|Y − Y ′|

r̂

)β
max

B(X,2r̂)
u , (3.38)

where β and the implicit constants depend only on p and n. Furthermore, if

u(Y )
δ(Y )

≈ |∇u(Y )|, Y ∈ B(X, 3r̂), (3.39)

then u has continuous second derivatives in B(X, 3r̂), and there exists C ≥ 1, depending only on n, p,
and the implicit constants in (3.39), such that

max
B(X,r̂/2)

|∇
2u| ≤ C

(
1

|B(X, r̂)|

∫∫
B(X,r̂)

|∇
2u(Y )|2 dY

)1/2

≤ C2 u(X)
δ(X)2

. (3.40)

Proof. For (3.38) we refer, for example, to [Tolksdorf 1984]; (3.40) is a consequence of (3.38), (3.39),
and Schauder type estimates, see [Gilbarg and Trudinger 1983]. For a more detailed proof of (3.40), see
[Lewis and Vogel 2006, Lemma 2.4(d)] for example. �

Remark 3.41. We note that the second inequality in (3.38) and (3.19) give

|∇u(Y )|.
u(Y )
δ(Y )

, Y ∈ B(x, 2r) \ ∂�. (3.42)
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Lemma 3.43. Let � ⊂ Rn+1, n ≥ 2, be an open set and assume that ∂� is Ahlfors–David regular
of dimension n. Let p, 1 < p < ∞, be given. Let x ∈ ∂�, 0 < r < diam(∂�), and suppose that u
is nonnegative and p-harmonic in B(x, 4r) ∩�, vanishing continuously on B(x, 4r) ∩� (hence u is
continuous in B(x, 4r) after being extended by 0 in B(x, 4r) \�). There exists a unique finite positive
Borel measure µ on Rn+1, with support in ∂�∩ B(x, 4r), such that

−

∫∫
Rn+1
|∇u|p−2

∇u · ∇φ dY =
∫
φ dµ (3.44)

whenever φ ∈ C∞0 (B(x, 4r)). Furthermore, there exists C <∞, depending only on p, n, and the ADR
constant, such that (maxB(x,r) u

r

)p−1
≤ C

µ(1(x, 2r))
σ (1(x, 2r))

. (3.45)

Note that (3.45) is the p-harmonic analogue of Lemma 3.11.

Proof. For the proof of (3.44), see [Heinonen et al. 2006, Chapter 21]. Using Lemma 3.27 and Lemma 3.31,
(3.45) follows directly from [Kilpeläinen and Zhong 2003, Lemma 3.1]; see also [Eremenko and Lewis
1991]. �

The following lemma generalizes Lemma 3.14 to the case 1< p <∞.

Lemma 3.46. Let � ⊂ Rn+1, n ≥ 2, be an open set and assume that ∂� is Ahlfors–David regular of
dimension n. Let p, 1< p <∞, be given. Let x ∈ ∂�, 0< r < diam(∂�), and suppose that u and µ are
as in Lemma 3.43. Then there exist constants C and M1, depending only on n and the ADR constant, such
that if B(y,M1s)⊂ B(x, 2r) with y ∈ ∂�, then

max
B(y,s/2)

u p−1 .
1

|B(y, s)|

∫∫
B(y,s)

u p−1(Z) dZ ≤ Cs p−1µ(1(y,M1s))
σ (1(y, s))

.

Moreover, for all γ ∈ (0, 1],

1
|B(y, s)|

∫∫
B(y,s)∩{Y :δ(Y )≤γ s}

u p−1(Z) dZ ≤ Cγ ps p−1µ(1(y,M1s))
σ (1(y, s))

.

We note that in the previous estimates it is implicitly understood that u is extended to be 0 on
B(x, 4r) \�.

Proof. Using (3.45), the proof of Lemma 3.46 is the same mutatis mutandi as that of Lemma 3.14. We
omit further details. �

4. Proofs of Theorem 1.1 and Theorem 1.12: preliminary arguments

We start the proofs of Theorem 1.1 and Theorem 1.12 by giving some preliminary arguments. We first
show that (1.2) implies (1.4). To this end, we claim that, without loss of generality, we may suppose that
for a surface ball 1=1(x, r), the point X1 in the statement of Theorem 1.1 satisfies (3.2), i.e., there is
some c1 = c1(n,ADR) > 0 such that

ωX1(1)≥ c1. (4.1)
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The only price to be paid is that the constants c0,C0 may now be slightly different (depending only on n
and ADR), and that (1.2) now holds with 1 in place of 21, i.e., for the (possibly) new point X1, we have∫

1

k X1(y)q dσ(y)≤ C0σ(1)
1−q . (4.2)

Indeed, set 1′ :=1(x, r/2), and let X ′ := X1′ ∈ B(x, r/2)∩� be the point such that (1.2) holds for 1′.
Fix x̂ ∈ ∂� such that δ(X ′) = |X ′ − x̂ |. Suppose first that δ(X ′) ≤ r/4, in which case 1(x̂, r/4) ⊂ 1.
Thus, if in addition δ(X ′) < cr/4, where c ∈ (0, 1) is the constant in Lemma 3.1, then we set X1 := X ′,
and (4.1) holds by Lemma 3.1. On the other hand, if cr/4≤ δ(X1)≤ r/4, we select X1 along the line
segment joining X ′ to x̂ , such that δ(X1)= |X1− x̂ | = cr/8, and (4.1) holds exactly as before. Moreover,
(4.2) holds for this new X1, in the first case, immediately by (1.2) applied to X ′ = X1′ , and in the second
case, by moving from X ′ to X1 via Harnack’s inequality (which may be used within the touching ball
B(X ′, δ(X ′))). Let us finally consider the case δ(X ′) > r/4. Then we can use Harnack within the ball
B(X ′, r/4) to pass to a point X ′′ on the line segment joining X ′ to x such that |X ′ − X ′′| = r/8, and
consequently δ(X ′′)≤ |X ′′−x |< 3r/8 (since X ′ ∈ B(x, r/2)). Hence (1.2) holds (with different constant)
for1′ with X ′′ in place of X1′ . Now take x̂ ∈ ∂� such that δ(X ′′)= |X ′′− x̂ | and note that1(x̂, r/4)⊂1.
We can now repeat the previous argument with X ′′ in place of X ′. Details are left to the interested reader.

Similarly, if (1.4) holds for1=1(x, r), with X1 ∈ B(x, r/2)∩�, then again without loss of generality
we may suppose that (4.1) holds, possibly for a new X1 ∈ B(x, r)∩�. Indeed if we let X ′ ∈ B(x, r/2)∩�
be the original point X1 for which (1.4) holds, we may then follow the argument in the previous paragraph,
mutatis mutandi. We choose x̂ ∈ ∂� such that δ(X ′)= |X ′− x̂ | and suppose first that δ(X ′)≤ r/4, so that
1(x̂, r/4)⊂1. Considering the same two cases as before we pick X1 and in either case (4.1) holds by
Lemma 3.1 applied to the surface ball 1(x̂, r/4). Note that in the second case, (1.4) continues to hold for
X1, with a different but still uniform β, using Harnack’s inequality within the touching ball B(X ′, δ(X ′)) to
move from X ′ to X1. When r/4<δ(X ′) we choose X ′′ as before, and by Harnack’s inequality, (1.4) holds
with X ′′ in place of X ′, for a different but still uniform β. Again, if we let x̂ ∈ ∂� with δ(X ′′)= |X ′′− x̂ |,
then 1(x̂, r/4)⊂1, and we may now repeat the previous argument with X ′′ in place of X ′.

We are now ready to show that (1.2) implies (1.4).

Lemma 4.3. Let �⊂ Rn+1 be an open set with n-dimensional ADR boundary, and let 1=1(x, r) be
a surface ball on ∂�. Let µ be a measure on ∂� such that µ|1 � σ , and such that for some q > 1
and 3<∞,

−

∫
1

kq dσ ≤3, (4.4)

where k := dµ/dσ on 1. Suppose also that
µ(1)

σ(1)
≥ 1. (4.5)

Then there are constants η, β ∈ (0, 1), depending only on n, q, 3, and ADR, such that for any Borel set
A ⊂1,

σ(A)≥ (1− η)σ (1) =⇒ µ(A)≥ βµ(1). (4.6)
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Remark 4.7. Let k be a normalized version of harmonic measure: k = c−1
1 σ(1)k X1 , with X1 a point

for which (4.1) and (4.2) hold. Then clearly (4.4) and (4.5) hold for k, and the conclusion (4.6) is just a
reformulation of (1.4). We note that in the sequel, we actually use only (4.6) or (1.4), rather than condition
(4.4) or (4.2). Thus, Theorem 1.1 could just as well have been stated with condition (??) (see Remark 1.3)
in place of (?).

Proof of Lemma 4.3. Set F :=1 \ A, so σ(F)≤ ησ(1). Then

µ(F)=
∫

F
k dσ ≤ σ(F)1/q

′

(∫
1

kqdσ
)1/q

≤31/qσ(F)1/q
′

σ(1)1/q ≤31/qη1/q ′σ(1)≤31/qη1/q ′µ(1),

where in the last step we have used (4.5). Thus,

µ(A)≥
(
1−31/qη1/q ′)µ(1)≥ 1

2µ(1)

for η small enough. This completes the proof. �

Fix Q0 ∈ D(∂�). As in (2.8), we set BQ0 = B(xQ0, r0), with r0 := rQ0 ≈ `(Q0), so that 1Q0 =

BQ0 ∩ ∂�⊂ Q0.
Proceeding first in the setting of Theorem 1.1, let X0 := X1Q0

be the point relative to 1=1Q0 such
that (4.1) and (4.2) hold. Note that (4.1) trivially implies that

ωX0(Q0)≥ c1.

With the pole X0 fixed, we define the normalized harmonic measure and the normalized Green’s function,
respectively, by

µ :=
1
c1
σ(Q0)ω

X0, u(Y ) := 1
c1
σ(Q0)G(X0, Y ). (4.8)

Then under this normalization, setting ‖µ‖ = µ(∂�), we have

1≤
µ(Q0)

σ (Q0)
≤
‖µ‖

σ(Q0)
≤ C1, (4.9)

with C1 = 1/c1. Furthermore, we may apply Lemma 4.3 (using (4.1) and with 3≈ C0/c1) to obtain (4.6)
for µ, with 1=1Q0 . In turn, the latter bound, in conjunction with (4.1) and ADR, clearly implies an
analogous estimate for Q0, namely that there are constants that we again call η, β ∈ (0, 1) such that for
any Borel set A ⊂ Q0,

σ(A)≥ (1− η)σ (Q0) =⇒ µ(A)≥ βµ(Q0). (4.10)

Here, of course, we may have different values of the parameters η and β, but these have the same
dependence as the original values, so for convenience we maintain the same notation.

In the p-harmonic case, proceeding under the setup of Theorem 1.12, we let u and µ be the p-harmonic
function and its associated p-harmonic measure, corresponding to the point x = xQ0 and the radius
r = Cr0 := CrQ0 , satisfying the hypotheses of Theorem 1.12, where we choose the constant C depending
only on n and ADR, such that Q0⊂1(xQ0,Cr0) (thus, in particular, µ is defined on Q0). Since we assume
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that u is nontrivial and nonnegative, we can apply Lemma 3.43 in B(xQ0,Cr0) and use (1.14) to conclude
that µ(1Q0) > 0. We can therefore normalize u and µ (abusing the notation we call the normalizations
u and µ) so that µ(1Q0)/σ (Q0) = 1, and since 1Q0 ⊂ Q0 ⊂ 1(xQ0,Cr0) by (1.14), we also have
µ(1(xQ0,Cr0))/σ (1(xQ0,Cr0))≈µ(Q0)/σ (Q0)≈ 1. Set k := dµ/dσ . As above, by (1.13) and (1.14),
we may then use Lemma 4.3 to see that again µ satisfies both (4.9), now with ‖µ‖ := µ(1(xQ0,Cr0)),
and (4.10). The constants C1, η, and β depend on C , n, the ADR constant, C0, and q.

Remark 4.11. Under the assumptions of Theorems 1.1 and 1.12 and throughout this section and Section 6,
for Q0 ∈ D(E) fixed, u and µ will continue to denote the normalized Green function and harmonic
measure or the normalized nonnegative p-harmonic solution and p-harmonic Riesz measure, as defined
above. In particular, (4.9) and (4.10) hold for all 1< p <∞.

As above, let M denote the usual Hardy–Littlewood maximal operator on ∂� and recall the definition
of DF,Q0 in (2.10).

Lemma 4.12. Let Q0 ∈D, and suppose that µ satisfies (4.9) and (4.10). Then there is a pairwise disjoint
family F = {Q j } j≥1 ⊂ DQ0 such that

σ
(
Q0 \

(⋃
j

Q j
))
≥

1
C
σ(Q0) (4.13)

and
β

2
≤
µ(Q)
σ (Q)

≤

(
−

∫
Q
(Mµ)1/2 dσ

)2

≤ C, ∀Q ∈ DF,Q0, (4.14)

where C > 1 depends only on η, β, C1, n, and ADR.

Proof. The proof is based on a stopping time argument similar to those used in the proof of the Kato
square root conjecture [Hofmann and McIntosh 2002; Hofmann et al. 2002; Auscher et al. 2002a], and in
local Tb theorems. We begin by noting that

‖Mµ‖L1,∞(σ ) := sup
λ>0

λσ {Mµ > λ}. ‖µ‖. σ(Q0) (4.15)

by the Hardy–Littlewood theorem and (4.9). Consequently, by Kolmogorov’s criterion,

−

∫
Q0

(Mµ)1/2 dσ ≤ C = C(n,ADR,C1). (4.16)

We now perform a stopping time argument to extract a family F = {Q j } of dyadic subcubes of Q0 that
are maximal with respect to the property that either

µ(Q j )

σ (Q j )
<
β

2
(4.17)

and/or

−

∫
Q j

(Mµ)1/2 dσ > K , (4.18)
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where K ≥ 1 is a sufficiently large number to be chosen momentarily. Note that Q0 /∈ F , by (4.9) and
(4.16). We say that Q j is of “type I” if (4.17) holds, and of “type II” if (4.18) holds but (4.17) does not.
Set A := Q0 \

(⋃
j Q j

)
, and F :=

⋃
Q j type II Q j . Then by (4.9),

σ(Q0)≤ µ(Q0)=
∑

Q j type I

µ(Q j )+µ(F)+µ(A). (4.19)

By definition of the type I cubes,∑
Q j type I

µ(Q j )≤
β

2

∑
j

σ(Q j )≤
β

2
σ(Q0). (4.20)

To handle the remaining terms, observe that

σ(F)=
∑

Q j type II

σ(Q j )≤
1
K

∑
j

∫
Q j

(Mµ)1/2 dσ

≤
1
K

∫
Q0

(Mµ)1/2 dσ ≤ ησ(Q0), (4.21)

by the definition of the type II cubes, (4.16), and the choice of K =Cη−1. By (4.10) and complementation,
we therefore find that

µ(F)≤ (1−β)µ(Q0). (4.22)

Next, if x ∈ A, then every Q ∈ DQ0 that contains x must satisfy the opposite inequality to (4.18), and
therefore, by Lebesgue’s differentiation theorem,

Mµ(x)≤ K 2, for σ -a.e. x ∈ A.

Thus µ|A� σ , with dµ|A/dσ ≤ K 2, and thus,

µ(A)≤ K 2σ(A).

Combining the latter estimate with (4.19), (4.20), and (4.22), we obtain

βµ(Q0)≤
β

2
σ(Q0)+ K 2σ(A).

Using (4.9), we then find that

βσ(Q0)≤ βµ(Q0)≤
β

2
σ(Q0)+ K 2σ(A).

The conclusion of the lemma now follows readily. �

For future reference, let us note an easy consequence of the last inequality in (4.14) and the ADR
property: for all Q ∈ DF,Q0 , and for any constant b > 1, we have

µ
(
1(xQ, b diam(Q))

)
. bnσ(Q)

(
−

∫
Q
(Mµ)1/2 dσ

)2

. bnσ(Q). (4.23)

Recall that the ball B∗Q and surface ball 1∗Q are defined in (2.15).
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Lemma 4.24. Let u, µ be as in Remark 4.11. If the constant K0 in (2.15) and (2.23) is chosen sufficiently
large, then for each Q ∈ DF,Q0 with `(Q)≤ K−1

0 `(Q0), there exists YQ ∈UQ with

δ(YQ)≤ |YQ − xQ |. `(Q),

where the implicit constant is independent of K0, such that

µ(Q)
σ (Q)

≤ C |∇u(YQ)|
p−1, (4.25)

where C depends on K0 and the implicit constants in the hypotheses of Theorems 1.1 and 1.12.

Remark 4.26. Recalling the construction at the beginning of Section 4, and the fact that we have defined
X0 := X1Q0

, we see that `(Q0)≈ δ(X0) ≥ K−1/2
0 `(Q0), for K0 chosen large enough. We note further

that the point YQ whose existence is guaranteed by Lemma 4.24 is essentially a corkscrew point relative
to Q. Indeed, δ(YQ)& K−1

0 `(Q) (since Y ∈UQ), and also |YQ− xQ |. `(Q) (with constant independent
of K0). With a slight abuse of terminology, we shall refer to YQ as a corkscrew point relative to Q, with
corkscrew constant depending on K0.

Proof of Lemma 4.24. Fix Q ∈DF,Q0 , with `(Q)≤ K−1
0 `(Q0), where, as in Remark 4.26, we have chosen

K0 large enough that `(Q0) ≈ δ(X0) ≥ K−1/2
0 `(Q0). Recall (2.7) and (2.8), and set B̂Q = B(xQ, r̂Q),

1̂Q = B̂Q ∩ ∂�, with r̂Q ≈ `(Q) and Q ⊂ 1̂Q . Let 0 ≤ φQ ∈ C∞0 (2B̂Q), such that φQ ≡ 1 in B̂Q and
‖∇φQ‖. `(Q)−1. Note that

K 1/2
0 `(Q)≤ K−1/2

0 `(Q0)≤ δ(X0)≤ |X0− xQ |,

which implies that X0 /∈ 4B̂Q provided K0 is large enough. Thus, by (3.10) in the linear case, or (3.44) in
general,

`(Q)µ(Q)≤ `(Q)
∫
∂�

φQ dµ.
∫∫

B̂Q∩�

|∇u(Y )|p−1 dY (4.27)

≤

∫∫
B̂Q∩UQ

|∇u(Y )|p−1 dY +
∫∫

(B̂Q∩�)\UQ

|∇u(Y )|p−1 dY

=: I + II.

Notice that by construction,

(B̂Q ∩�) \UQ ⊂ {Y ∈ B̂Q : δ(Y )≤ C K−1
0 `(Q)}.

We may therefore cover the latter region by a family of balls {Bk}k , centered on ∂�, of radius C K−1
0 `(Q),

such that their doubles {2Bk} have bounded overlaps and satisfy⋃
k

2Bk ⊂ {Y ∈ 2B̂Q : δ(Y )≤ 2C K−1
0 `(Q)} =:6(K0).
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By the boundary Cacciopoli estimate in Lemma 3.31, plus Hölder’s inequality, we obtain

II ≤
∑

k

∫∫
Bk

|∇u(Y )|p−1 dY .
(

K0

`(Q)

)p−1∑
k

∫∫
2Bk

|u(Y )|p−1 dY

.

(
K0

`(Q)

)p−1∫∫
6(K0)

|u(Y )|p−1 dY

.

(
K0

`(Q)

)p−1

K−p
0 `(Q)pµ(1(xQ, 2M1r̂Q))

. K−1
0 `(Q)σ (Q)≤ 1

2
`(Q)µ(Q) ,

where in the last three steps we have used (3.16) (when p = 2) or Lemma 3.46 (1< p <∞), (4.23), and
finally the choice of K0 large enough. We can then hide this term on the left-hand side of (4.27), so that

`(Q)µ(Q). I =
∫∫

B̂Q∩UQ

|∇u(Y )|p−1 dY =
∑

i

∫∫
B̂Q∩U i

Q

|∇u(Y )|p−1 dY

. `(Q)n+1 max
i

sup
Y∈B̂Q∩U i

Q

|∇u(Y )|p−1

≈ `(Q)σ (Q)max
i

sup
Y∈B̂Q∩U i

Q

|∇u(Y )|p−1,

and we recall that {U i
Q}i is an enumeration of the connected components of UQ , and that the number

of these components is uniformly bounded. Thus, for some i , there is a point YQ ∈ B̂Q ∩U i
Q such

that µ(Q)/σ (Q) . |∇u(YQ)|
p−1. To complete the proof, we simply observe that by construction,

δ(YQ)≤ |YQ − xQ | ≤ r̂Q . `(Q). �

5. Proof of Theorem 1.1, Corollary 1.5, and Theorem 1.12

In this section we complete the proofs of Theorem 1.1 and Theorem 1.12 by proving that E := ∂�
satisfies WHSA, and hence, by Proposition 1.17, E is UR. The proof of Corollary 1.5 follows almost
immediately from Theorem 1.1 and we supply the proof at the end of the section. Our approach to the
proofs of Theorems 1.1 and 1.12 is a refinement and extension of the arguments in [Lewis and Vogel
2007], who, as mentioned in the introduction, treated the special case that k ≈ 1.

We fix Q0 ∈ D(E) and we let u and µ be as in Remark 4.11. We recall that by (4.9),

µ(Q0)

σ (Q0)
≈ 1. (5.1)

Let F = {Q j } j be the family of maximal stopping time cubes constructed in Lemma 4.12. Combining
(4.25) and (4.14), we see that

|∇u(YQ)|& 1, ∀Q ∈ D∗F,Q0
:= {Q ∈ DF,Q0 : `(Q)≤ K−1

0 `(Q0)}, (5.2)

where YQ ∈ UQ is the point constructed in Lemma 4.24. We recall that the Whitney region UQ has a
uniformly bounded number of connected components, which we have enumerated as {U i

Q}i . We now fix
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the particular i such that YQ ∈U i
Q ⊂ Ũ i

Q , where the latter is the enlarged Whitney region constructed in
Definition 2.26.

For a suitably small ε0, say ε0 � K−6
0 , we fix an arbitrary positive ε < ε0, and we fix also a large

positive number M to be chosen. For each point Y ∈�, we set

BY := B(Y, (1− ε2M/α)δ(Y )), B̃Y := B(Y, δ(Y )), (5.3)

where 0< α < 1 is the exponent appearing in Lemma 3.35. For Q ∈ DF,Q0 , we consider three cases.

Case 0: Q ∈ DF,Q0 , with `(Q) > ε10`(Q0).

Case 1: Q ∈ DF,Q0 , with `(Q)≤ ε10`(Q0) and

sup
X∈Ũ i

Q

sup
Z∈BX

|∇u(Z)−∇u(YQ)|> ε
2M . (5.4)

Case 2: Q ∈ DF,Q0 , with `(Q)≤ ε10`(Q0) and

sup
X∈Ũ i

Q

sup
Z∈BX

|∇u(Z)−∇u(YQ)| ≤ ε
2M . (5.5)

We trivially see that the cubes in Case 0 satisfy a packing condition:∑
Q∈DF,Q0

Case 0 holds

σ(Q) ≤
∑

Q∈DQ0
`(Q)>ε10`(Q0)

σ(Q). (log ε−1)σ (Q0). (5.6)

Note that in Case 1 and Case 2 we have Q ∈D∗F,Q0
(see (5.2)). Furthermore, if `(Q)≤ ε10`(Q0), then

by (5.2), (3.42), and either (3.13) (which we apply in the case p = 2, with X = X0, since `(Q)� `(Q0))

or (3.45) (for general p, 1< p <∞), and (4.14), we have

1. |∇u(YQ)|.
u(YQ)

δ(YQ)
. 1. (5.7)

Regarding Case 1 we obtain the following packing condition.

Lemma 5.8. Under the previous assumptions, the following packing condition holds:

1
σ(Q0)

∑
Q∈DF,Q0

Case 1 holds

σ(Q)≤ C(ε, K0,M, η). (5.9)

On the other hand, we show that the cubes in Case 2 satisfy the ε-local WHSA property. Given ε > 0,
recall that B∗∗∗Q (ε)= B(xQ, ε

−5`(Q)) (see (2.16)). We also introduce

Bbig
Q = Bbig

Q (ε) := B(xQ, ε
−8`(Q)), 1

big
Q := Bbig

Q ∩ E .

Lemma 5.10. Fix ε ∈ (0, K−6
0 ), and let 1< p <∞. Suppose that u is nonnegative and p-harmonic in

�Q :=�∩ Bbig
Q , u ∈ C(�Q), u ≡ 0 on 1big

Q . Suppose also that for some i , there exists a point YQ ∈U i
Q

such that
|∇u(YQ)| ≈ 1, (5.11)
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and furthermore, that
sup
B∗∗∗Q

u . ε−5`(Q) (5.12)

and

sup
X,Y∈Ũ i

Q

sup
Z1∈BY , Z2∈BX

|∇u(Z1)−∇u(Z2)| ≤ 2ε2M . (5.13)

Then Q satisfies the ε-local WHSA, provided that M is large enough, depending only on dimension and
on the implicit constants in the stated hypotheses.

Assuming these results momentarily, we can complete the proofs of Theorem 1.1 and Theorem 1.12
as follows. First we see that we can apply Lemma 5.10 to the cubes in Case 2. Indeed, let Q be a cube
such that Q ∈ DF,Q0 , `(Q)≤ ε10`(Q0), and (5.5) holds. Hence (5.11) follows by virtue of (5.7), while
(5.12) holds by Lemma 3.14 applied with B = 2B∗∗∗Q (or Lemma 3.46, with B(y, s)= 2B∗∗∗Q ), and (4.23).
Moreover, (5.13) follows trivially from (5.5). Thus, the hypotheses of Lemma 5.10 are all verified and
hence Q satisfies the ε-local WHSA condition. In particular, the cubes Q ∈ DF,Q0 , which belong to the
bad collection B of cubes in D(E) for which the ε-local WHSA condition fails, must be as in Case 0 or
Case 1. By (5.6) and (5.9) these cubes satisfy the packing estimate∑

Q∈B∩DF,Q0

σ(Q)≤ Cεσ(Q0). (5.14)

For each Q0 ∈ D(E), there is a family F ⊂ DQ0 for which (5.14), and also the “ampleness” condition
(4.13), hold uniformly. We may therefore invoke a well known lemma of John–Nirenberg type to deduce
that (2.20) holds for all ε ∈ (0, ε0), and therefore to conclude that E satisfies the WHSA condition,
Definition 2.19. Hence E is UR by Proposition 1.17.

The rest of the section is devoted to the proof of Lemmas 5.8 and 5.10. We shall first prove Lemma 5.8
in the relatively simpler linear case p = 2 (see Section 5A). The proof of Lemma 5.8 in the general case
1< p <∞ is a bit more delicate and given in Section 5B. Lemma 5.10 is proved in Section 5C. Finally,
the proof of Corollary 1.5 is given in Section 5D.

Before passing to the subsections we first introduce some additional notation to be used in the sequel.
We augment Ũ i

Q as follows. Set

W i,∗
Q :=

{
I ∈W : I ∗ meets BY for some Y ∈

( ⋃
X∈Ũ i

Q

BX

)}
(5.15)

(and define W j,∗
Q analogously for all other Ũ j

Q), and set

U i,∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗, U∗Q :=
⋃

j

U j,∗
Q , (5.16)

where I ∗∗ = (1+ 2τ)I is a suitably fattened Whitney cube, with τ fixed as above. By construction,

Ũ i
Q ⊂

⋃
X∈Ũ i

Q

BX ⊂
⋃

Y∈
⋃

X∈Ũ i
Q

BX

BY ⊂U i,∗
Q ,
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and for all Y ∈U i,∗
Q , we have that δ(Y )≈ `(Q) (depending of course on ε). Moreover, also by construction,

there is a Harnack path connecting any pair of points in U i,∗
Q (depending again on ε), and furthermore,

for every I ∈W i,∗
Q (or for that matter for every I ∈W j,∗

Q , j 6= i),

εs`(Q). `(I ). ε−3`(Q), dist(I, Q). ε−4`(Q),

where 0< s = s(M, α). Thus, by Harnack’s inequality and (5.7),

C−1δ(Y )≤ u(Y )≤ Cδ(Y ), ∀Y ∈U i,∗
Q , (5.17)

with C = C(K0, ε,M). Moreover, for future reference, we note that the upper bound for u holds in all of
U∗Q , i.e.,

u(Y )≤ Cδ(Y ), ∀Y ∈U∗Q, (5.18)

by (3.12) or (3.45) and (4.14), where again C = C(K0, ε,M).

5A. Proof of Lemma 5.8 in the linear case ( p = 2). Here we complete the proof of estimate (5.9) in
the relatively simpler linear case p= 2. To start the proof of (5.9), we fix Q ∈DF,Q0 so that Case 1 holds.
We see that if we choose Z as in (5.4), and use the mean value property of harmonic functions, then

ε2M
≤ Cε(`(Q))−(n+1)

∫∫
BZ∪BYQ

|∇u(Y )− Eβ| dY,

where Eβ is a constant vector at our disposal. By Poincaré’s inequality (see, e.g., [Hofmann and Martell
2014, Section 4] in this context), we obtain that

σ(Q).
∫∫

U i,∗
Q

|∇
2u(Y )|2δ(Y ) dY .

∫∫
U i,∗

Q

|∇
2u(Y )|2u(Y ) dY,

where the implicit constants depend on ε, and in the last step we have used (5.17). Consequently,∑
Q∈DF,Q0

Case 1 holds

σ(Q) .
∑

Q∈DF,Q0
`(Q)≤ε10`(Q0)

∫∫
U∗Q

|∇
2u(Y )|2u(Y ) dY .

∫∫
�∗F,Q0

|∇
2u(Y )|2u(Y ) dY, (5.19)

where

�∗F,Q0
:= int

( ⋃
Q∈DF,Q0

`(Q)≤ε10`(Q0)

U∗Q

)
, (5.20)

and where we have used that the enlarged Whitney regions U∗Q have bounded overlaps.
Take an arbitrary N > 1/ε (eventually N →∞), and augment F by adding to it all subcubes Q ⊂ Q0

with `(Q) ≤ 2−N`(Q0). Let FN ⊂ DQ0 denote the collection of maximal cubes of this augmented
family. Thus, Q ∈ DFN ,Q0 if and only if Q ∈ DF,Q0 and `(Q) > 2−N`(Q0). Clearly, DFN ,Q0⊂ DFN ′ ,Q0

if N ≤ N ′, and therefore �∗FN ,Q0
⊂�∗FN ′ ,Q0

(where �∗FN ,Q0
is defined as in (5.20) with FN replacing F).
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By monotone convergence and (5.19), we have that∑
Q∈DF,Q0

Case 1 holds

σ(Q). lim sup
N→∞

∫∫
�∗FN ,Q0

|∇
2u(Y )|2u(Y ) dY. (5.21)

It therefore suffices to establish bounds for the latter integral that are uniform in N , with N large.
Let us then fix N > 1/ε. Since �∗FN ,Q0

is a finite union of fattened Whitney boxes, we may now
integrate by parts, using the identity 2|∇∂ku|2 = div∇(∂ku)2 for harmonic functions, to obtain that∫∫

�∗FN ,Q0

|∇
2u(Y )|2u(Y ) dY .

∫
∂�∗FN ,Q0

(|∇2u||∇u|u+ |∇u|3) dH n
≤ CεH n(∂�∗FN ,Q0

), (5.22)

where in the second inequality we have used the standard estimates

δ(Y )|∇2u(Y )|, |∇u(Y )|.
u(Y )
δ(Y )

,

along with (5.18). We observe that �∗FN ,Q0
is a sawtooth domain in the sense of [Hofmann et al. 2016],

or to be more precise, it is a union of a bounded number, depending on ε, of such sawtooths, one for each
maximal subcube of Q0 with length on the order of ε10`(Q0). By [Hofmann et al. 2016, Appendix A]
each of the previous sawtooth domains is ADR uniformly in N . Hence, its union is upper ADR uniformly
in N with constant depending on the number of sawtooth domains in the union, which ultimately depends
on ε. Therefore,

H n(∂�∗FN ,Q0
)≤ Cε(diam(∂�∗FN ,Q0

))n ≤ Cεσ(Q0).

Combining the latter estimate with (5.21) and (5.22), we obtain (5.9), as desired, in the case p = 2.

5B. Proof of Lemma 5.8 in the general case (1< p<∞). Here we prove (5.9) for general p, 1< p<∞,
by proceeding along the lines of the proof of Lemma 2.5 in [Lewis and Vogel 2006]. We fix Q ∈ DF,Q0

so that Case 1, and hence (5.4), holds. Let us recall that we have verified estimates (5.7), (5.17), and
(5.18) for all p, 1< p <∞.

Recall that if X ∈ Ũ i
Q , then by definition X can be connected to some Ỹ ∈U i

Q , and then to YQ ∈U i
Q ,

by a chain of at most Cε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q)≤ δ(Yk)≤ ε
−3`(Q). Note that

using the triangle inequality and the definition of Ũ i
Q , we may suppose that Yk+1 ∈ B(Yk, 3δ(Yk)/4)⊂ BYk ;

otherwise we increase the chain by introducing some intermediate points and the new chain will have
essentially the same length. Fix now Q, a cube in Case 1, and by (5.4) we can pick X ∈ Ũ i

Q so that

sup
Y∈BX

|∇u(Y )−∇u(YQ)|> ε
2M.

As observed previously, we can form a Harnack chain connecting X and YQ so that Y1 = YQ and Yl = X
and l ≤ Cε−1. Then the previous expression can be written as

sup
Y∈BYl

|∇u(Y )−∇u(Y1)|> ε
2M. (5.23)



THE WEAK-A∞ PROPERTY OF ( p-)HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY 541

Obviously we may assume that

sup
Y∈BY j

|∇u(Y )−∇u(Y1)| ≤ ε
2M (5.24)

whenever 1< j ≤ l − 1, and l > 1, since otherwise we shorten the chain (and work with the first Y j for
which (5.23) holds). This and the fact that Y j+1 ∈ BY j for every 1≤ j ≤ l − 1 imply that

|∇u(Y j )| ≥ |∇u(Y1)| − ε
2M , for 1≤ j ≤ l. (5.25)

Furthermore, using the triangle inequality,

ε2M
≤ sup

Y∈BYl

|∇u(Y )−∇u(Yl)| +

l−1∑
j=1

|∇u(Y j+1)−∇u(Y j )|. (5.26)

Hence, using this and the fact that l . ε−1 we have that either

(i) sup
Y∈BYl

|∇u(Y )−∇u(Yl)| ≥ ε
2M+2, or

(ii) |∇u(Y j+1)−∇u(Y j )| ≥ ε
2M+2, for some 1≤ j ≤ l − 1.

(5.27)

By (5.18) and (3.42) we have
|∇u(Y )| ≤ Cε, ∀Y ∈U∗Q . (5.28)

In scenario (i) of (5.27) we take Y , a point where the sup is attained. This choice, (5.28), and the first
inequality in (3.38) imply that |Y − Yl | ≈ε `(Q). We then construct 00(Q) a (possibly rotated) rectangle
as follows. The base and the top are two n-dimensional cubes of side length cε`(Q), with cε chosen
sufficiently small, centered respectively at the points Y and Yl , and lying in the two parallel hyperplanes
passing through the points Y and Yl and perpendicular to the vector joining these two points. Note that
for this rectangle, all side lengths are of the order of `(Q) with implicit constants possibly depending
on ε. In scenario (ii) of (5.27) we do the same construction with Y j+1 and Y j in place of Y and Yl and
define 00(Q) which verifies the same properties. Note that in either case, (5.28) and the first inequality in
(3.38) give the property that

|∇u(Y )−∇u(W )| ≥ ε2M+4 (5.29)

whenever W and Y are in the base and top of the parallelepiped, respectively. By construction, at least
the top, which we denote by t (Q), is centered on Y j , for some 1≤ j ≤ l. We observe that by (5.25) and
(5.7), since Y1 := YQ , and since ε is very small, we have for each Y j , 1≤ j ≤ l,

|∇u(Y j )| ≥ a, (5.30)

for some uniform constant a independent of ε. Therefore, by (3.38), we also have

|∇u(Y )| ≥ a
2
, ∀Y ∈ t (Q), (5.31)

provided that we take cε small enough, since diam(t (Q))≈ cε`(Q). Moving downward, that is, from top
to base, through 00(Q) along slices parallel to t (Q), we stop the first time that we reach a slice b(Q)
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which contains a point Z with |∇u(Z)| ≤ a/4. If there is such a slice, we form a new rectangle 0(Q)
with base b(Q) and top t (Q); otherwise, we set 0(Q) := 00(Q), and let b(Q) denote the base in this
case as well. In either case, dist(b(Q), t (Q))≈ `(Q), with implicit constants possibly depending on ε,
by (3.38) and (5.31). Note that by construction and the continuity of ∇u,

|∇u(Y )| ≥ a
4
, ∀Y ∈ 0(Q), (5.32)

and that |0(Q)| ≈ `(Q)n+1, again with implicit constants which may depend on ε. Furthermore, if
0(Q)=00(Q), then (5.29) holds for all W ∈ b(Q) and Y ∈ t (Q). Otherwise, if 0(Q) is strictly contained
in 00(Q), then, since diam(b(Q)) ≈ cε`(Q) with cε small, and since by construction b(Q) contains a
point Z with |∇u(Z)| = a/4, it follows that |∇u(W )| ≤ 3a/8 for all W ∈ b(Q), by (3.38). Hence, in
either situation, since a/8� ε2M+4, we have

|∇u(Y )−∇u(W )| ≥ ε2M+4, ∀W ∈ b(Q), Y ∈ t (Q). (5.33)

We let γ = a/8 and set
Fγ (|∇u|) :=max(|∇u|2− γ 2, 0).

Then by (5.32) we see that

Fγ (|∇u|)≥ a2

64
, ∀Y ∈ 0(Q). (5.34)

Furthermore, by (5.33), the fundamental theorem of calculus, (5.17), (5.32), and (5.34), we have

`(Q)n .
∫∫

0(Q)
u|∇2u|2 dX .

∫∫
0(Q)

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY,

where the implicit constants depend on ε. In particular, since 0(Q)⊂U i,∗
Q ⊂U∗Q , by ADR we obtain

σ(Q).
∫∫

U∗Q

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY,

where the implicit constants still depend on ε, and this estimate holds for all cubes Q ∈ DF,Q0 , so that
Case 1 holds. Hence, ∑

Q∈DF,Q0
Case 1 holds

σ(Q).
∫∫

�∗F,Q0

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY, (5.35)

where �∗F,Q0
was defined in (5.20) and where we have used that the enlarged Whitney regions U∗Q have

bounded overlaps. To prove (5.9) in the general case 1 < p <∞, it therefore suffices to establish the
local square function bound∫∫

�∗F,Q0

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY . σ(Q0), (5.36)

where, as we recall, u is a nonnegative p-harmonic function in the open set �0 := �∩ B(xQ0,CrQ0),
vanishing on 1(xQ0,CrQ0).
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To start the proof of (5.36), for each Q ∈ D(E), we define a further fattening of U∗Q as follows. Set

U i,∗∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗∗, U∗∗Q :=
⋃

i

U i,∗∗
Q ,

U i,∗∗∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗∗∗, U∗∗∗Q :=

⋃
i

U i,∗∗∗
Q ,

where I ∗∗∗ = (1+ 3τ)I and I ∗∗∗∗ = (1+ 4τ)I are fattened Whitney regions, for some fixed small τ as
above; see (5.15)–(5.16). Notice that I ∗∗ ⊂ I ∗∗∗ ⊂ I ∗∗∗∗. We observe that the fattened Whitney regions
U∗∗∗Q have bounded overlaps, say ∑

Q∈D(E)

1U∗∗∗Q
(Y )≤ M0, (5.37)

where M0 <∞ is a uniform constant depending on K0, ε, τ , and n. Next, let {ηQ}Q be a partition of
unity adapted to U∗∗Q . That is,

(1)
∑

Q ηQ(Y )≡ 1 whenever Y ∈�,

(2) supp ηQ ⊂U∗∗Q , and

(3) ηQ ∈ C∞0 (R
n+1) with 0≤ ηQ ≤ 1, ηQ ≥ c on U∗Q , and |∇ηQ | ≤ C`(Q)−1.

Set
DF,Q0,ε := {Q ∈ DF,Q0 : `(Q)≤ ε

10`(Q0)},

and recall from (5.20) that

�∗F,Q0
:= int

( ⋃
Q∈DF,Q0,ε

U∗Q

)
.

Given a large number N � ε−10, set

3=3(N )= {Q ∈ D(E) :U∗∗Q ∩�
∗

F,Q0
6=∅ and `(Q)≥ N−1`(Q0)}.

Eventually, we shall let N →∞. Let

I1(N ) :=
∑

Q∈3(N )

∫∫
uFγ (|∇u|)

( n+1∑
i, j=1

u2
yi y j

)
ηQ dY

and note, by positivity of u and the properties of ηQ , that we then have∫∫
�∗F,Q0

uFγ (|∇u|)|∇2u|2 dY . lim
N→∞

I1(N ).

We now fix N . We intend to perform integration by parts and in this argument, we exploit that |∇u|2 is a
subsolution to a certain linear PDE defined based on u. To describe this in detail, let Q ∈3(N ) be such
that Fγ (|∇u(Y )|) 6= 0 for some Y ∈U∗∗Q . Then |∇u(Y )| ≥ γ and there exists C = C(γ )≥ 1 such that

C−1
≤ |∇u(X)|. 1 whenever X ∈ B(Y, δ(Y )/C), (5.38)
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and where the upper bound follows from (5.18) and the lower bound uses also (3.38). Let ζ =∇u · ξ , for
some ξ ∈ Rn+1. Then ζ satisfies, at X ∈ B(Y, δ(Y )/C), the partial differential equation

Lζ =∇ ·
[
(p− 2)|∇u|p−4 (∇u · ∇ζ )∇u+ |∇u|p−2

∇ζ
]
= 0, (5.39)

as is seen by a straightforward calculation from differentiating the p-Laplace partial differential equation
for u with respect to ξ . Note that (5.39) can be written in the form

Lζ =
n+1∑

i, j=1

∂

∂yi
[bi j ( · )ζy j ( · )] = 0, (5.40)

where

bi j (Y )= |∇u|p−4
[(p− 2)u yi u y j + δi j |∇u|2](Y ), 1≤ i, j ≤ n+ 1, (5.41)

and δi j is the Kronecker δ. Clearly we also have

Lu(Y )= (p− 1)∇ · [|∇u|p−2
∇u](Y )= 0. (5.42)

In particular, u and (∇u · ξ ) for each ξ ∈ Rn+1 all satisfy the divergence form partial differential
equation (5.40).

It is easy to see that (bi j )i j satisfies the following degenerate ellipticity condition: for every ξ ∈ Rn+1

one has

n+1∑
i, j=1

bi jξiξ j = (p− 2)|∇u|p−4
n+1∑

i, j=1

ui u jξiξ j + |∇u|p−2
n+1∑

i, j=1

δi jξiξ j

= (p− 2)|∇u|p−4(∇u · ξ)2+ |∇u|p−2
|ξ |2 ≥min{1, p− 1}|∇u|p−2

|ξ |2, (5.43)

where the last inequality is immediate when p ≥ 2 and uses the Cauchy–Schwarz inequality when
1< p< 2. Hence, |∇u|2 is a subsolution to the PDE defined in (5.40), (5.41), as seen from the calculation

L(|∇u|2)= 2
n+1∑

i, j,k=1

bi j u yi yk u y j yk & |∇u|p−2
( n+1∑

i, j=1

u2
yi y j

)
. (5.44)

Now, using (5.44) and the fact that (5.38) holds for every Y such that Fγ (|∇u(Y )|) 6= 0, we see that
I1(N ). J1(N ), where

J1(N ) :=
∑

Q∈3(N )

∫∫
uFγ (|∇u|)L(|∇u|2)ηQ dY.

Hence it suffices to establish bounds for the integral J1 := J1(N ) that are uniform in N , with N large.
In the following we let v = Fγ (|∇u|) and note that ∇v = ∇(|∇u|2) whenever v > 0. Using this and
integration by parts we see that

J1 =−J2− J3− J4,
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where

J2 =
∑

Q∈3(N )

∫∫
v

n+1∑
i, j=1

bi j u yivy jηQ dY,

J3 =
∑

Q∈3(N )

∫∫
u

n+1∑
i, j=1

bi jvyivy jηQ dY,

J4 =
∑

Q∈3(N )

∫∫
uv

n+1∑
i, j=1

bi jvy j (ηQ)yi dY.

We estimate J4 first. Set 31 =311 ∪312, where

311 := {Q ∈3 :U∗∗Q meets � \�F,Q0},

and

312 := {Q ∈3 :U∗∗Q meets U∗∗Q′ such that `(Q′) < N−1`(Q0)}.

From the definition of ηQ , we obtain

|J4|.
∑

Q∈311

∫∫
uv

n+1∑
i, j=1

|ui j ||ui ||(ηQ) j | dY +
∑

Q∈311

∫∫
uv

n+1∑
i, j=1

|ui j ||ui ||(ηQ) j | dY =: J51+ J52.

Notice that, equivalently, 311 is the subcollection of Q ∈ 31 such that U∗∗Q meets ∂�∗F,Q0
. We start

with J51. Note that by (3.38), (5.18), and Harnack’s inequality,

δ(Y )|∇u(Y )|. u(Y ). δ(Y )≈ `(Q) (5.45)

whenever Y ∈U∗∗∗Q . Furthermore, if v 6= 0 for some Y ∈U∗∗∗Q , then using (5.38) and (3.40), we also have

(δ(Y ))2 |∇2u(Y )|. u(Y ). δ(Y )≈ `(Q). (5.46)

In particular, u|∇ηQ |. 1 by construction of ηQ , |∇u(Y )|. 1 whenever Y ∈U∗∗∗Q , and δ(Y )|∇2u(Y )|. 1
whenever Y ∈U∗∗∗Q and v 6= 0. Thus,

J51 .
∑

Q∈311

`(Q)n .
∑

Q∈311

H n(U∗∗∗Q ∩ ∂�
∗

F,Q0
).

∑
Q∈311

H n(∂�∗F,Q0
). σ(Q0),

where we have used that ∂�∗F,Q0
is ADR (see [Hofmann et al. 2016]), and the bounded overlap property

(5.37). To estimate J52, observe that for each Q ∈ 312, we have `(Q) ≈ N−1`(Q0) by properties of
Whitney regions. Hence, by a slightly simpler version of the argument used for J51, we obtain

J52 .
∑

Q∈312

σ(Q). σ(Q0).

Therefore, |J4|. J51+ J52 . σ(Q0).
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To handle J2 we use the fact that u is a solution to (5.40). Indeed, by integration by parts, using the
identity 2vvy j = (v

2)y j we see that

2J2 =
∑

Q∈3(N )

∫∫ n+1∑
i, j=1

bi j u yi (v
2)y jηQ dY =−

∑
Q∈3(N )

∫∫ n+1∑
i, j=1

bi j u yiv
2(ηQ)y j dY,

and by the same argument as in the estimate of J4 we obtain |J2|. σ(Q0).
To conclude, we collect the estimates for J2 and J4, and use the fact that J3 is nonnegative by (5.43)

to obtain J1(N ) . σ(Q0), with constants independent of N . The proof of (5.9) in the general case
1< p <∞ is then complete.

5C. Proof of Lemma 5.10. To prove Lemma 5.10, we follow the corresponding argument in [Lewis and
Vogel 2007] closely, but with some modifications due to the fact that in contrast to the situation in that
paper, our solution u need not be Lipschitz up to the boundary, and our harmonic/p-harmonic measures
need not be doubling. It is the latter obstacle that has forced us to introduce the WHSA condition, rather
than to work with the weak exterior convexity condition used by Lewis and Vogel. Lemma 5.10 is
essentially a distillation of the main argument of the corresponding part of [Lewis and Vogel 2007], but
with the doubling hypothesis removed.

In the remainder of this section, for convenience we use the notational convention that implicit and
generic constants are allowed to depend upon K0, but not on ε or M . Dependence on the latter is stated
explicitly. We first prove the following lemma. Recall that the balls BY and B̃Y are defined in (5.3).

Lemma 5.47. Let Y ∈U i
Q , X ∈ Ũ i

Q . Suppose first that w ∈ ∂ B̃Y ∩ E , and let W be the radial projection
of w onto ∂BY . Then

u(W ). ε2M−5δ(Y ). (5.48)

If w ∈ ∂ B̃X ∩ E , and W now is the radial projection of w onto ∂BX , then

u(W ). ε2M−5`(Q). (5.49)

Proof. Since K−1
0 `(Q). δ(Y ). K0`(Q) for Y ∈U i

Q , it is enough to prove (5.49). To prove (5.49), we
first note that

|W −w| = ε2M/αδ(X). ε2M/αε−3`(Q),

by definition of BX , B̃X and the fact that by construction of Ũ i
Q ,

ε3`(Q). δ(X). ε−3`(Q), ∀X ∈ Ũ i
Q . (5.50)

In addition, again by construction of Ũ i
Q ,

diam(Ũ i
Q). ε

−4`(Q). (5.51)

Consequently, W ∈ 1
2 B∗∗∗Q = B

(
xQ,

1
2ε
−5`(Q)

)
, so by Lemma 3.35 and (5.12),

u(W ).

(
ε2M/αε−3`(Q)
ε−5`(Q)

)α 1
|B∗∗∗Q |

∫∫
B∗∗∗Q

u . ε2M+2α−5`(Q)≤ ε2M−5`(Q). �
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Claim 5.52. Let Y ∈U i
Q . For all W ∈ BY ,

|u(W )− u(Y )−∇u(Y ) · (W − Y )|. ε2Mδ(Y ). (5.53)

Proof of Claim 5.52. Let W ∈ BY . Then for some W̃ ∈ BY ,

u(W )− u(Y )=∇u(W̃ ) · (W − Y ).

We may then invoke (5.13), with X = Y , Z1 = W̃ , and Z2 = Y , to obtain (5.53). �

Claim 5.54. Let Y ∈U i
Q . Suppose that w ∈ ∂ B̃Y ∩ E. Then

|u(Y )−∇u(Y ) · (Y −w)| = |u(w)− u(Y )−∇u(Y ) · (w− Y )|. ε2M−5δ(Y ). (5.55)

Proof of Claim 5.54. Given w ∈ ∂ B̃Y ∩ E , let W be the radial projection of w onto ∂BY , so that
|W −w| = ε2M/αδ(Y ). Since u(w)= 0, by (5.48) we have

|u(W )− u(w)| = u(W ). ε2M−5δ(Y ).

Since (5.53) holds for W , we obtain (5.55) by (5.11) and (5.13). �

To simplify notation, we now set Y := YQ , the point in U i
Q satisfying (5.11). By (5.11) and (5.13), for

ε < 1
2 , and M chosen large enough, we have that

|∇u(Z)| ≈ 1, ∀Z ∈ Ũ i
Q . (5.56)

By translation and rotation, we assume that 0 ∈ ∂ B̃Y ∩ E and that Y = δ(Y )en+1, where as usual
en+1 := (0, . . . , 0, 1).

Claim 5.57. We claim that ∣∣∇u(Y ) · en+1− |∇u(Y )|
∣∣. ε2M−5. (5.58)

Proof of Claim 5.57. We apply (5.55), with w = 0, to obtain

|u(Y )−∇u(Y ) · Y |. ε2M−5δ(Y ).

Combining the latter bound with (5.53), we find that

|u(W )−∇u(Y ) ·W | = |u(W )−∇u(Y ) · Y −∇u(Y ) · (W − Y )|. ε2M−5δ(Y ), ∀W ∈ BY . (5.59)

Fix W ∈ ∂BY so that ∇u(Y ) · W−Y
|W−Y |

= −|∇u(Y )|. Since |W −Y | = (1− ε2M/α)δ(Y ), and since u ≥ 0,
we have

0≤ |∇u(Y )| −∇u(Y ) · en+1 ≤ |∇u(Y )| −∇u(Y ) · en+1+
u(W )

δ(Y )

≤
1

δ(Y )

(
−∇u(Y ) ·

(W − Y )
1− ε2M/α −∇u(Y ) · Y + u(W )

)
. (ε2M−5

+ ε2M/α)≈ ε2M−5, (5.60)

by (5.59) and (5.11). �
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Claim 5.61. Suppose that M > 5. Then∣∣|∇u(Y )|en+1−∇u(Y )
∣∣. εM−3. (5.62)

Proof of Claim 5.61. By Claim 5.57,∣∣|∇u(Y )|en+1− (∇u(Y ) · en+1)en+1
∣∣. ε2M−5.

Therefore, it is enough to consider ∇‖u := ∇u− (∇u(Y ) · en+1)en+1. Observe that

|∇‖u(Y )|2 = |∇u(Y )|2− (∇u(Y ) · en+1)
2

= (|∇u(Y )| −∇u(Y ) · en+1)(|∇u(Y )| +∇u(Y ) · en+1). ε
2M−5,

by (5.58) and (5.11). �

Now for Y = δ(Y )en+1 ∈U i
Q fixed as above, we consider another point X ∈ Ũ i

Q . By definition of Ũ i
Q ,

there is a polygonal path in Ũ i
Q , joining Y to X , with vertices

Y0 := Y, Y1, Y2, . . . , YN := X, N . ε−4,

such that Yk+1 ∈ BYk ∩ B(Yk, `(Q)), 0 ≤ k ≤ N − 1, and such that the distance between consecutive
vertices is at most C`(Q). Indeed, by definition of Ũ i

Q , we may connect Y to X by a polygonal path
connecting the centers of at most ε−1 balls, such that the distance between consecutive vertices is between
ε3`(Q)/2 and ε−3`(Q)/2. If any such distance is greater than `(Q), we take at most Cε−3 intermediate
vertices with distances on the order of `(Q). The total length of the path is thus on the order of N`(Q)
with N . ε−4. Furthermore, by (5.13) and (5.62),∣∣∇u(W )− |∇u(Y )|en+1

∣∣≤ |∇u(W )−∇u(Y )| +
∣∣∇u(Y )− |∇u(Y )|en+1

∣∣
. ε2M

+ εM−3 . εM−3, ∀W ∈ BZ , ∀Z ∈ Ũ i
Q . (5.63)

Claim 5.64. Assume M > 7. Then for each k = 1, 2, . . . , N ,∣∣u(Yk)− |∇u(Y )|Yk · en+1
∣∣. kεM−3`(Q). (5.65)

Moreover, ∣∣u(W )− |∇u(Y )|Wn+1
∣∣. εM−7`(Q), ∀W ∈ BX , ∀X ∈ Ũ i

Q . (5.66)

Proof of Claim 5.64. By (5.59) and (5.62), we have∣∣u(W )− |∇u(Y )|Wn+1
∣∣. |u(W )−∇u(Y ) ·W | +

∣∣(∇u(Y )− |∇u(Y )|en+1) ·W
∣∣

. ε2M−5δ(Y )+ εM−3
|W |. εM−3`(Q), ∀W ∈ BY , (5.67)

since δ(Z) ≈ `(Q), for all Z ∈ U i
Q (so in particular, for Z = Y ), and since |W | ≤ 2δ(Y ) . `(Q), for

all W ∈ BY . Thus, (5.65) holds with k = 1, since Y1 ∈ BY , by construction. Now suppose that (5.65)
holds for all 1 ≤ i ≤ k, with k ≤ N . Let W ∈ BYk , so that W may be joined to Yk by a line segment of
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length less than δ(Yk). ε−3`(Q) (the latter bound holds by (5.50)). We note also that if k ≤ N − 1, and
if W = Yk+1, then this line segment has length at most `(Q), by construction. Then∣∣u(W )− |∇u(Y )|Wn+1

∣∣≤ ∣∣u(W )− u(Yk)+ |∇u(Y )|(Yk −W ) · en+1
∣∣+ ∣∣u(Yk)− |∇u(Y )|Yk · en+1

∣∣
=
∣∣(W − Yk) · ∇u(W1)+ |∇u(Y )|(Yk −W ) · en+1

∣∣+ O(kεM−3`(Q)),

where W1 is an appropriate point on the line segment joining W and Yk , and where we have used that Yk

satisfies (5.65). By (5.63), applied to W1, we find in turn that∣∣u(W )− |∇u(Y )|Wn+1
∣∣. εM−3

|W − Yk | + kεM−3`(Q), (5.68)

which, by our previous observations, is bounded by C(k + 1)εM−3`(Q) if W = Yk+1, or by (εM−6
+

kεM−3)`(Q) in general. In the former case, we find that (5.65) holds for all k = 1, 2, . . . , N , and in the
latter case, taking k = N . ε−4, we obtain (5.66). �

Claim 5.69. Let X ∈ Ũ i
Q , and let w ∈ E ∩ ∂ B̃X . Then

|∇u(Y )||wn+1|. ε
M/2`(Q). (5.70)

Proof of Claim 5.69. Let W be the radial projection of w onto ∂BX , so that

|W −w| = ε2M/αδ(X). ε(2M/α)−3`(Q), (5.71)

by (5.50). We write

|∇u(Y )||wn+1| ≤ |∇u(Y )||W −w| +
∣∣u(W )− |∇u(Y )|Wn+1

∣∣+ u(W )=: I + I I + u(W ).

Note that I . ε(2M/α)−3`(Q) by (5.71) and (5.11) (recall that Y = YQ), and that I I . εM−7`(Q) by
(5.66). Furthermore, u(W ). ε2M−5`(Q), by (5.49). For M chosen large enough, we obtain (5.70). �

We note that since we have fixed Y = YQ , it then follows from (5.70) and (5.11) that

|wn+1|. ε
M/2`(Q), ∀w ∈ E ∩ ∂ B̃X , ∀X ∈ Ũ i

Q . (5.72)

Recall that xQ denotes the “center” of Q (see (2.7)–(2.8)). Set

O := B(xQ, 2ε−2`(Q))∩ {W :Wn+1 > ε
2`(Q)}. (5.73)

Claim 5.74. For every point X ∈ O , we have X ≈ε,Q Y (see Definition 2.26). Thus, in particular, O ⊂ Ũ i
Q .

Proof of Claim 5.74. Let X ∈ O . We need to show that X may be connected to Y by a chain of at most
ε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q)≤ δ(Yk)≤ ε

−3`(Q) (for convenience, we shall refer
to such balls as “admissible”). We first observe that if X = ten+1, with ε3`(Q) ≤ t ≤ ε−3`(Q), then
by an iteration argument using (5.72) (with M chosen large enough), we may join X to Y by at most
C log(1/ε) admissible balls. The point (2ε)−3`(Q)en+1 may then be joined to any point of the form
(X ′, (2ε)−3`(Q)) by a chain of at most C admissible balls, whenever X ′ ∈ Rn with |X ′| ≤ ε−3`(Q). In
turn, the latter point may then be joined to (X ′, ε3`(Q)) by at most C log(1/ε) admissible balls. �
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We note that Claim 5.74 implies that
E ∩ O =∅. (5.75)

Indeed, O ⊂ Ũ i
Q ⊂�. Let P0 denote the hyperplane

P0 := {Z : Zn+1 = 0}.

Claim 5.76. If Z ∈ P0, with |Z − xQ | ≤
3
2 ε
−2`(Q), then

δ(Z)= dist(Z , E)≤ 16ε2`(Q). (5.77)

Proof of Claim 5.76. Observe that B(Z , 2ε2`(Q)) meets O . Then by Claim 5.74, there is a point
X ∈ Ũ i

Q ∩ B(Z , 2ε2`(Q)). Suppose that (5.77) is false, which in particular implies that δ(X)≥ 14ε2`(Q).
Then B(Z , 4ε2`(Q))⊂ BX , so by (5.66), we have∣∣u(W )− |∇u(Y )|Wn+1

∣∣≤ CεM−7`(Q), ∀W ∈ B(Z , 4ε2`(Q)). (5.78)

In particular, since Zn+1 = 0, we may choose W such that Wn+1 =−ε
2`(Q), to obtain that

|∇u(Y )|ε2`(Q)≤ CεM−7`(Q),

since u ≥ 0. But for ε < 1
2 , and M large enough, this is a contradiction, by (5.11) (recall that we have

fixed Y = YQ). �

It now follows by Definition 2.17 that Q satisfies the ε-local WHSA condition, with

P = P(Q) := {Z : Zn+1 = ε
2`(Q)}, H = H(Q) := {Z : Zn+1 > ε

2`(Q)}.

This concludes the proof of Lemma 5.10.

5D. Proof of Corollary 1.5. Now Corollary 1.5 follows almost immediately from Theorem 1.1. Let
B = B(x, r) and 1= B ∩ ∂�, with x ∈ ∂� and 0< r < diam(∂�). Let c be the constant in Lemma 3.1.
By hypothesis, there is a point X1 ∈ B ∩� which is a corkscrew point relative to 1, that is, there is a
uniform constant c0 > 0 such that δ(X1) ≥ c0r . Thus, to apply Theorem 1.1, it remains only to verify
hypothesis (?). For a sufficiently large constant C1, set 1fat

= 1(x,C1r). Cover 1fat by a collection
of surface balls {1i }

N
i=1 with 1i = Bi ∩ ∂� and Bi := B(xi , c0r/4), where xi ∈ 1

fat and where N is
uniformly bounded, depending only on n, c0, C1, and ADR. By construction, X1 ∈ � \ 4Bi , so by
hypothesis, ωX1 ∈ weak-A∞(21i ). Hence, ωX1 � σ in 21i , and (1.6) holds with Y = X1, and with
1′ =1i . Consequently, ωX1 � σ in 1fat, and if we write k X1 = dωX1/dσ , we obtain∫

1fat
k X1(z)q dσ(z)≤

N∑
i=1

∫
1i

k X1(z)q dσ(z).
N∑

i=1

σ(1i )

(
−

∫
21i

k X1(z) dσ(z)
)q

.
N∑

i=1

σ(21i )
1−qωX1(21i ). σ(1

fat )1−q ,

where in the last estimate we have used the ADR property, the uniform boundedness of N , and the fact
that ωX1(21i )≤ 1. By Theorem 1.1, it then follows that ∂� is UR as desired. �
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6. Proof of Proposition 1.17

Here we prove Proposition 1.17. We first observe that if E is UR then it satisfies the so-called “bilateral
weak geometric lemma” (BWGL); see [David and Semmes 1991, Theorem I.2.4, p. 32]. In turn, in [David
and Semmes 1991, Section II.2.1, p. 97], one can find a dyadic formulation of the BWGL as follows.
Given ε small enough and k > 1 large to be chosen, D(E) can be split in two collections, one of “bad
cubes” and another of “good cubes”, so that the “bad cubes” satisfy a packing condition and each “good
cube” Q verifies the following: there is a hyperplane P = P(Q) such that dist(Z , E)≤ ε`(Q) for every
Z ∈ P ∩ B(xQ, k`(Q)), and dist(Z , P)≤ ε`(Q) for every Z ∈ B(xQ, k`(Q))∩ E . In turn, this implies
that B(xQ, k`(Q))∩ E is sandwiched between two planes parallel to P at distance ε`(Q). Hence, at
that scale, we have a half-space (indeed we have two) free of E , and clearly the 2ε-local WHSA holds
provided K is taken of the order of ε−2 or larger. Further details are left to the interested reader. Thus we
obtain the easy implication UR =⇒WHSA.

The main part of the proof is to establish the opposite implication. To this end, we assume that E
satisfies the WHSA property and show that E is UR. Given a positive ε < ε0� K−6

0 , we let B0 denote
the collection of bad cubes for which ε-local WHSA fails. By Definition 2.19, B0 satisfies the Carleson
packing condition (2.20). We now introduce a variant of the packing measure for B0. We recall that
B∗Q = B(xQ, K 2

0`(Q)), and given Q ∈ D(E), we set

Dε(Q) := {Q′ ∈ D(E) : ε3/2`(Q)≤ `(Q′)≤ `(Q), Q′ meets B∗Q}. (6.1)

Set

αQ :=

{
σ(Q) if B0 ∩Dε(Q) 6=∅,
0 otherwise,

(6.2)

and define

m(D′) :=
∑
Q∈D′

αQ, D′ ⊂ D(E). (6.3)

Then m is a discrete Carleson measure, with

m(DQ0)=
∑

Q⊂Q0

αQ ≤ Cεσ(Q0), Q0 ∈ D(E). (6.4)

Indeed, note that for any Q′, the cardinality of {Q : Q′ ∈Dε(Q)} is uniformly bounded, depending on n,
ε, and ADR, and that σ(Q)≤ Cεσ(Q′) if Q′ ∈ Dε(Q). Then given any Q0 ∈ D(E),

m(DQ0)=
∑

Q⊂Q0:B0∩Dε(Q)6=∅

σ(Q) ≤
∑

Q′∈B0

∑
Q⊂Q0:Q′∈Dε(Q)

σ(Q)

≤ Cε
∑

Q′∈B0: Q′⊂2B∗Q0

σ(Q′)≤ Cεσ(Q0),

by (2.20) and ADR.
To prove Proposition 1.17, we are required to show that the collection B of bad cubes for which the
√
ε-local BAUP condition fails satisfies a packing condition. That is, we establish the discrete Carleson
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measure estimate

m̃(DQ0) =
∑

Q⊂Q0:Q∈B

σ(Q)≤ Cεσ(Q0), Q0 ∈ D(E). (6.5)

To this end, by (6.4), it suffices to show that if Q ∈ B, then αQ 6= 0 (and thus αQ = σ(Q), by definition).
In fact, we prove the contrapositive statement.

Claim 6.6. Suppose that αQ = 0. Then the
√
ε-local BAUP condition holds for Q.

Proof of Claim 6.6. We first note that since αQ = 0, then by definition of αQ ,

B0 ∩Dε(Q)=∅. (6.7)

Thus, the ε-local WHSA condition (Definition 2.17) holds for every Q′ ∈ Dε(Q) (in particular, for Q
itself). By rotation and translation, we may suppose that the hyperplane P = P(Q) in Definition 2.17 is

P = {Z ∈ Rn+1
: Zn+1 = 0},

and that the half-space H = H(Q) is the upper half-space Rn+1
+ = {Z : Zn+1 > 0}. We recall that by

Definition 2.17, P and H satisfy

dist(Z , E)≤ ε`(Q), ∀Z ∈ P ∩ B∗∗Q (ε), (6.8)

dist(P, Q)≤ K 3/2
0 `(Q), (6.9)

and
H ∩ B∗∗Q (ε)∩ E =∅. (6.10)

The proof now follows by a construction similar to that in [Lewis and Vogel 2007], used to establish the
weak exterior convexity condition. By (6.10), there are two cases.

Case 1: 10Q ⊂ {Z : −
√
ε`(Q)≤ Zn+1 ≤ 0}. In this case, the

√
ε-local BAUP condition holds trivially

for Q, with P = {P}.

Case 2: There is a point x ∈ 10Q such that xn+1 < −
√
ε`(Q). In this case, we choose Q′ 3 x with

ε3/4`(Q)≤ `(Q′) < 2ε3/4`(Q). Thus,

Q′ ⊂
{

Z : Zn+1 ≤−
1
2

√
ε`(Q)

}
. (6.11)

Moreover, Q′ ∈ Dε(Q), so by (6.7), Q′ /∈ B0, i.e., Q′ satisfies the ε-local WHSA. Let P ′ = P(Q′) and
H ′ = H(Q′) denote the hyperplane and half-space corresponding to Q′ in Definition 2.17, so that

dist(Z , E)≤ ε`(Q′)≤ 2ε7/4`(Q), ∀Z ∈ P ′ ∩ B∗∗Q′(ε), (6.12)

dist(P ′, Q′)≤ K 3/2
0 `(Q′)≈ K 3/2

0 ε3/4`(Q)� ε1/2`(Q) (6.13)

(where the last inequality holds since ε� K−6
0 ), and

H ′ ∩ B∗∗Q′(ε)∩ E =∅, (6.14)
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where we recall that B∗∗Q′(ε) := B(xQ′, ε
−2`(Q′)) (see (2.16)). We note that

B∗Q ⊂ B̃Q(ε) := B(xQ, ε
−1`(Q))⊂ B∗∗Q′(ε)∩ B∗∗Q (ε), (6.15)

by construction, since ε� K−6
0 . Let ν ′ denote the unit normal vector to P ′, pointing into H ′. Note that

by (6.10), (6.12), and the definition of H ,

P ′ ∩ B̃Q(ε)∩ {Z : Zn+1 > 2ε7/4`(Q)} =∅. (6.16)

Moreover, ν ′ points “downward”, i.e., ν ′ · en+1 < 0, as otherwise, H ′ ∩ B̃Q(ε) would meet E by (6.8),
(6.11), and (6.13). More precisely, we have the following.

Claim 6.17. The angle θ between ν ′ and −en+1 satisfies 0≤ θ ≈ sin θ . ε.

Indeed, since Q′ meets 10Q, (6.9) and (6.13) imply that dist(P, P ′). K 3/2
0 `(Q), and that the latter

estimate is attained near Q. By (6.16) and a trigonometric argument, one then obtains Claim 6.17 (more
precisely, one obtains θ . K 3/2

0 ε, but in this section, we continue to use the notational convention that
implicit constants may depend upon K0, but K0 is fixed, and ε� K−6

0 ). The interested reader could
probably supply the remaining details of the argument that we have just sketched, but for the sake of
completeness, we give the full proof at the end of this section.

We therefore take Claim 6.17 for granted, and proceed with the argument. We note first that every
point in (P ∪ P ′)∩ B∗Q is at a distance at most ε`(Q) from E by (6.8), (6.12), and (6.15). To complete
the proof of Claim 6.6, it therefore remains only to verify the following. As with the previous claim, we
provide a condensed proof immediately, and present a more detailed argument at the end of the section.

Claim 6.18. Every point in 10Q lies within
√
ε`(Q) of a point in P ∪ P ′.

Suppose not. We could then repeat the previous argument, to construct a cube Q′′, a hyperplane P ′′,
a unit vector ν ′′ forming a small angle with −en+1, and a half-space H ′′ with boundary P ′′, with the
same properties as Q′, P ′, ν ′, and H ′. In particular, we have the respective analogues of (6.13) and (6.14),
namely

dist(P ′′, Q′′)≤ K 3/2
0 `(Q′)≈ K 3/2

0 ε3/4`(Q)� ε1/2`(Q) (6.19)

and
H ′′ ∩ B∗∗Q′′(ε)∩ E =∅, (6.20)

Also, we have the analogue of (6.11), with Q′′, P ′ in place of Q′, P . Thus

dist(Q′′, P ′)≥ 1
2

√
ε`(Q) and Q′′ ∩ H ′ =∅. (6.21)

In addition, as in (6.15), we also have B∗Q ⊂ B∗∗Q′′(ε). On the other hand, the angle between ν ′ and ν ′′ is
very small. Thus, combining (6.12), (6.19), and (6.21), we see that H ′′ ∩ B∗Q captures points in E , which
contradicts (6.20).

Claim 6.6 therefore holds (in fact, with a union of at most 2 planes), and thus we obtain the conclusion
of Proposition 1.17. �

We now provide detailed proofs of Claims 6.17 and 6.18.
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Proof of Claim 6.17. By (6.13) we can pick x ′ ∈ Q′, y′ ∈ P ′ such that |y′− x ′| � ε1/2`(Q), and therefore
y′ ∈ 11Q. Also, from (6.9) and (6.10) we can find x̄ ∈ Q such that −K 3/2

0 `(Q) < x̄n+1 ≤ 0. This and
(6.11) yield

−2K 3/2
0 `(Q) < y′n+1 <−

1
4

√
ε`(Q). (6.22)

Let π be the orthogonal projection onto P . Let Z ∈ P (i.e., Zn+1=0) be such that |Z−π(y′)|≤ K 3/2
0 `(Q).

Then Z ∈ B(xQ, 4K 3/2
0 `(Q)) ⊂ B∗Q . Hence Z ∈ P ∩ B∗∗Q (ε) and by (6.8), dist(Z , E) ≤ ε`(Q). Then

there exists xZ ∈ E with |Z − xZ | ≤ ε`(Q), which in turn implies that |(xZ )n+1| ≤ ε`(Q). Note that
xZ ∈ B(xQ, 5K 3/2

0 `(Q))⊂ B∗Q and by (6.15), xZ ∈ E ∩ B∗∗Q (ε)∩ B∗∗Q′(ε). This, (6.10), and (6.14) imply
that xZ 6∈ H ∪ H ′. Hence, (xZ )n+1 ≤ 0 and (xZ − y′) · ν ′ ≤ 0, since y′ ∈ P ′ and ν ′ denote the unit normal
vector to P ′ pointing into H ′. Using (6.22) we observe that

1
8

√
ε`(Q) <−ε`(Q)+ 1

4

√
ε`(Q) < (xZ − y′)n+1 < 2K 3/2

0 `(Q), (6.23)

and that

(xZ − y′)n+1ν
′

n+1 ≤−π(xZ − y′) ·π(ν ′)

≤ |xZ − z| −π(Z − y′) ·π(ν ′)≤ ε`(Q)−π(Z − y′) ·π(ν ′). (6.24)

We prove that ν ′n+1 <−
1
8 < 0 by considering two cases.

Case 1: |π(ν ′)| ≥ 1
2 . We pick

Z1 = π(y′)+ K 3/2
0 `(Q)

π(ν ′)

|π(ν ′)|
.

By construction, Z1 ∈ P and |Z1−π(y′)| ≤ K 3/2
0 `(Q). Hence, we can use (6.24) with Z1:

(xZ1 − y′)n+1 ν
′

n+1 ≤ ε`(Q)−π(Z1− y′) ·π(ν ′)

= ε`(Q)− K 3/2
0 `(Q)|π(ν ′)| ≤ − 1

4 K 3/2
0 `(Q).

This together with (6.23) give that ν ′n+1 <−
1
8 < 0.

Case 2: |π(ν ′)|< 1
2 . This case is much simpler. Note first that |ν ′n+1|

2
= 1−|π(ν ′)|2 > 3

4 , and thus either
ν ′n+1 <−

1
2

√
3 or ν ′n+1 >

1
2

√
3. We see that the second scenario leads to a contradiction. Assume then

that ν ′n+1 >
1
2

√
3. We take Z2 = π(y′) ∈ P , which clearly satisfies |Z2 − π(y′)| ≤ K 3/2

0 `(Q). Again
(6.24) and (6.23) are applicable with Z2:

1
8
√
ε`(Q)

√
3

2
< (xZ2 − y′)n+1ν

′

n+1 ≤ ε`(Q)�
√
ε`(Q),

and we get a contradiction. Hence necessarily ν ′n+1 ≤−
1
2

√
3<− 1

8 < 0.

Having proved that ν ′n+1 < −
1
8 < 0, we estimate θ , the angle between ν ′ and −en+1. Note first

cos θ = −ν ′n+1 >
1
8 . If cos θ = 1 (which occurs if ν ′ = −en+1), then θ = sin θ = 0 and the proof is

complete. Assume then that cos θ 6= 1, in which case 1
8 <−ν

′

n+1 < 1 and hence |π(ν ′)| 6= 0. Pick

Z3 = y′+
`(Q)

2ε
ν̂ ′, ν̂ ′ =

en+1− ν
′

n+1ν
′

|π(ν ′)|
.
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Then ν̂ ′ · ν ′ = 0 and hence Z3 ∈ P ′ as y′ ∈ P ′. Also, |ν̂ ′| = 1 and therefore |Z3− y′| = `(Q)/(2ε). This
in turn gives that Z3 ∈ B̃Q(ε). We have obtained that Z3 ∈ P ′ ∩ B̃Q(ε), and hence (Z3)n+1 ≤ 2ε7/4`(Q)
by (6.16). This and (6.23) applied to Z3 easily give

4K 3/2
0 `(Q)≥ 2ε7/4`(Q)≥ (Z3)n+1 = y′n+1+

`(Q)
2ε

1− (ν ′n+1)
2

|π(ν ′)|

= y′n+1+
`(Q)

2ε
|π(ν ′)| ≥ −2 K 3/2

0 `(Q)+
`(Q)

2ε
|π(ν ′)|.

This readily yields |sin θ | = |π(ν ′)| ≤ 8K 3/2
0 ε, and the proof is complete. �

Proof of Claim 6.18. We want to prove that every point in 10Q lies within
√
ε`(Q) of a point in P ∪ P ′.

We argue by contradiction and hence we assume that there exists x ′ ∈ 10Q with dist(x ′, P∪P ′)>
√
ε`(Q).

In particular, x ′n+1<−
√
ε`(Q), and as observed above, we may repeat the previous argument to construct

a cube Q′′, a hyperplane P ′′, a unit vector ν ′′ forming a small angle with −en+1, and a half-space H ′′ with
boundary P ′′, with the same properties as Q′, P ′, ν ′, and H ′, namely (6.19), (6.21), and (6.20). Also,

√
ε`(Q)≤ dist(x ′, P ′)≤ diam(Q′′)+ dist(Q′′, P ′)≤ 1

2

√
ε`(Q)+ dist(Q′′, P ′),

and, in addition, as in (6.15), we have B∗Q ⊂ B∗∗Q′′(ε).
By (6.19) there is y′′ ∈ Q′′ and z′′ ∈ P ′′ such that |y′′− z′′|� ε1/2`(Q). By (6.20) y′′ 6∈ H ′. Write π ′ to

denote the orthogonal projection onto P ′ and note that (6.21) gives dist(y′′, P ′)=|y′′−π ′(y′′)|≥ 1
2
√
ε`(Q).

Note also that

|y′′−π ′(y′′)| = dist(y′′, P ′)

≤ |y′′− x ′| + |x ′− x | + diam(Q′)+ dist(Q′, P ′)≤ 11 diam(Q)

and that

|π ′(y′′)− xQ | ≤ |π
′(y′′)− y′′| + |y′′− x ′| + |x ′− xQ |< 22 diam(Q) < K 2

0`(Q).

Hence π ′(y′′) ∈ B∗Q ⊂ B̃Q(ε), and since π ′(y′′) ∈ P ′, (6.12) gives ỹ ∈ E with |π ′(y′′)− ỹ| ≤ 2ε7/4`(Q).
Then ỹ ∈ 23Q ⊂ B∗Q ∩ E and |ỹ− z′′|< 12 diam(Q). To complete our proof we just need to show that
ỹ ∈ H ′′, which contradicts (6.20).

Write ν ′′ to denote the unit normal vector to P ′′ pointing into H ′′, and let us momentarily assume that

|ν ′− ν ′′| ≤ 16
√

2 K 2/3
0 ε. (6.25)

Recalling that y′′ 6∈ H ′, we then obtain that

1
2

√
ε`(Q)≤ |y′′−π ′(y′′)| = (π ′(y′′)− y′′) · ν ′

≤ |π ′(y′′)− ỹ| + |ỹ− z′′||ν ′− ν ′′| + (ỹ− z′′) · ν ′′+ |z′′− y′′|

< 1
4

√
ε`(Q)+ (ỹ− z′′) · ν ′′.
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This immediately gives that (ỹ−z′′) ·ν ′′> 1
4
√
ε`(Q)> 0, and hence ỹ ∈ H ′′ as desired. Thus, to complete

the proof we have to prove (6.25). We first note that if |α|< π
4 , then

1− cosα = 1−
√

1− sin2 α ≤ sin2 α.

In particular, we can apply this to θ (resp. θ ′), which is the angle between ν ′ (resp. ν ′′) and −en+1, and as
we showed that |sin θ |, |sin θ ′| ≤ 8K 3/2

0 ε, we see that
√

1− cos θ +
√

1− cos θ ′ ≤ 16K 3/2
0 ε.

Using the trivial formula

|a− b|2 = 2(1− aḃ), ∀a, b ∈ Rn+1, |a| = |b| = 1,

we conclude that

|ν ′− ν ′′| ≤ |ν ′− (−en+1)| + |(−en+1)− ν
′′
|

=
√

2(1+ ν ′ en+1)+
√

2(1+ ν ′′en+1)

=

√
2(1− cos θ)+

√
2(1− cos θ ′)≤ 16

√
2K 3/2

0 ε.

This proves (6.25), and hence the proof of Claim 6.18 is complete. �
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THE ONE-PHASE PROBLEM
FOR HARMONIC MEASURE IN TWO-SIDED NTA DOMAINS

JONAS AZZAM, MIHALIS MOURGOGLOU AND XAVIER TOLSA

We show that if �⊂ R3 is a two-sided NTA domain with AD-regular boundary such that the logarithm of
the Poisson kernel belongs to VMO(σ ), where σ is the surface measure of �, then the outer unit normal
to ∂� belongs to VMO(σ ) too. The analogous result fails for dimensions larger than 3. This answers a
question posed by Kenig and Toro and also by Bortz and Hofmann.

1. Introduction

In this paper we study a one-phase free boundary problem in connection with the Poisson kernel. The study
of this type of problems was initiated in the pioneering work [Alt and Caffarelli 1981], where they showed
that for a Reifenberg flat domain with n-AD-regular boundary in Rn+1, if the logarithm of the Poisson
kernel is in Cα for some α > 0, then the domain is of class C1,β for some β > 0. Later on, Jerison [1990]
showed that, in fact, one can take β = α. Kenig and Toro [1997; 1999; 2003] considered the endpoint case
of the logarithm of the Poisson kernel being in VMO, and they obtained the following remarkable result:

Theorem A [Kenig and Toro 2003]. Suppose �⊂ Rn+1 is a δ-Reifenberg flat chord-arc domain for some
δ > 0 small enough. Denote by σ the surface measure of � and by h the Poisson kernel with a pole in �
if � is bounded or with the pole at infinity if � is unbounded. Then log h ∈ VMO(σ ) if and only if the
outer unit normal En to ∂� is in VMO(σ ).

A domain � ⊂ Rn+1 is called chord-arc if it is an NTA domain with n-AD-regular boundary. Its
Poisson kernel with pole at p ∈� equals h = dωp/dσ , where ωp stands for the harmonic measure of �
with pole at p. For the definitions of Reifenberg flatness, NTA, and VMO, we refer the reader to Section 2.

We also remark that, in fact, Kenig and Toro [2003] proved a slightly weaker statement than the one
in Theorem A. Indeed, instead of showing that when log h ∈ VMO(σ ), the outer unit normal En to ∂�
is in VMO(σ ), they proved that En belongs to VMOloc(σ ) (which coincides with VMO(σ ) when � is
bounded). However, as we explain in Remark 9.1, a minor modification of their arguments in [Kenig and
Toro 2003] proves the full statement above in Theorem A.

Without the Reifenberg flatness assumption and just assuming the NTA condition, the conclusion of the
theorem above need not hold: Kenig and Toro [1999, Proposition 3.1] showed that for the Kowalski–Preiss
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cone �= {(x, y, z, w) : x2
+ y2
+ z2 >w2

} ⊂ R4, the harmonic measure with pole at infinity coincides
with the surface measure modulo a constant factor, and thus has log h ∈ VMO(σ ), even though the outer
unit normal is not in VMO(σ ). In fact, a similar conical example in R3 was shown previously by Alt and
Caffarelli [1981, Section 2.7].

It was conjectured by Kenig and Toro [2006] and Bortz and Hofmann [2016] that, instead of the
Reifenberg flatness assumption, being a two-sided chord-arc domain should be enough for the implication
log h∈VMO(σ ) =⇒ En∈VMO(σ ). By a two-sided chord-arc domain we mean a chord-arc domain such
that its exterior is also connected and chord-arc. Kenig and Toro showed that this holds under the
additional assumption that the logarithm of the Poisson kernel of the exterior domain is also in VMO(σ ).
Their precise result reads as follows:

Theorem B [Kenig and Toro 2006, Corollary 5.2]. Let � be a two-sided chord-arc domain in Rn+1.
Assume further that log(dω/dσ), log(dωext/dσ) ∈ VMOloc(σ ). Then En ∈ VMOloc(σ ).

Bortz and Hofmann [2016] showed that this same result holds under the assumption that ∂� is uniformly
n-rectifiable, so that the measure theoretic boundary has full surface measure, instead of the two-sided
chord-arc condition above. The boundary of any two-sided chord-arc domain is always uniformly
n-rectifiable by results due to David and Jerison [1990], and thus this is more general than Theorem B.
We also note that, by Proposition 4.10 in [Hofmann et al. 2010], such domains with En ∈ VMOloc(σ ) are
also vanishing Reifenberg flat. It is also worth mentioning that the arguments in [Bortz and Hofmann
2016] are very different from the ones in [Kenig and Toro 2006]: while the latter uses blow-up techniques,
the former relies on the relationship between the Riesz transform and harmonic measure and exploit the
jump relations for the gradient of the single layer potential.

In this paper we resolve the conjecture mentioned above:

Theorem 1.1. Let �⊂ R3 be a two-sided chord-arc domain. Denote by σ the surface measure of � and
by h the Poisson kernel with a pole in � if � is bounded or with the pole at infinity if � is unbounded. If
log h ∈ VMO(σ ), then the outer unit normal of � also belongs to VMO(σ ).

On the other hand, for d ≥ 4, there are two-sided chord-arc domains �⊂Rd satisfying h ≡ 1 and such
that the outer unit normal of � does not belong to VMO(σ ).

Most of the paper is devoted to proving the positive result stated in the theorem for R3. Our arguments
use the powerful blow-up techniques developed by Kenig and Toro [2003]. Indeed, by arguments
analogous to the ones of Kenig and Toro, we reduce our problem to the study of the case when �∞ is an
unbounded two-sided chord-arc domain such that its Poisson kernel with pole at infinity is constantly equal
to 1. By combining a monotonicity formula due to Weiss [1998] and some topological arguments inspired
by a work from Caffarelli, Jerison and Kenig [Caffarelli et al. 2004], we then show that for such domains
all blow-downs are flat. This is probably one of the main novelties in our paper. Then an application
of a variant of a well-known theorem of Alt and Caffarelli [1981] shows that �∞ must be a half-space.

The aforementioned reduction of the problem to the case when the Poisson kernel with pole at infinity
is constantly equal to 1 requires estimating from above the gradient of the Green function. This estimate
is obtained in [Kenig and Toro 2003] under the assumption that the domain � is Reifenberg flat, and this



THE ONE-PHASE PROBLEM FOR HARMONIC MEASURE IN TWO-SIDED NTA DOMAINS 561

is one of the main technical difficulties of that paper. In [Kenig and Toro 2006] it is shown how these
estimates can be extended to the case when � is not Reifenberg flat. In our present paper we provide some
alternative arguments to estimate the gradient of the Green function. The main difference with respect to
the ones in [Kenig and Toro 2003; 2006] is that in the present paper we use the jump relations for the
gradient of single layer potentials, instead of the (perhaps) less standard approach in the aforementioned
works. We think that our approach has some independent interest (especially because of the connection
between harmonic measure with pole at infinity and the Riesz transform that we describe in Section 3).

Concerning the negative result for dimensions d ≥ 4 in Theorem 1.1, basically we recall in the last
section of the paper an example of a conical domain in R4 by Guanghao Hong1[2015] such that the
harmonic measure with pole at infinity coincides with surface measure, and so that the outer unit normal
does not belong to VMO(σ ). One can check easily that such domain is two-sided NTA. Probably, this
example was unnoticed in some recent works in this area.

2. Preliminaries

For a, b ≥ 0, we will write a . b if there is C > 0 so that a ≤ Cb and a .t b if the constant C depends
on the parameter t . We write a ≈ b to mean a . b . a and define a ≈t b similarly.

Definition 2.1. Given a closed set E , x ∈ Rd, r > 0, and P a d-plane, we set

2E(x, r, P)= r−1 max
{
supy∈E∩B(x,r) dist(y, P), supy∈P∩B(x,r) dist(y, E)

}
.

Also define
2E(x, r)= inf

P
2E(x, r, P),

where the infimum is over all d-planes P. A set E is δ-Reifenberg flat if 2E(x, r) < δ for all x ∈ E and
r > 0, and is vanishing Reifenberg flat if

lim
r→0

sup
x∈E

2E(x, r)= 0.

Definition 2.2. Let � ⊂ Rn+1 be an open set, and let 0 < δ < 1
2 . We say that � is a δ-Reifenberg flat

domain if it satisfies the following conditions:

(a) ∂� is δ-Reifenberg flat.

(b) For every x ∈ ∂� and r > 0, denote by P(x, r) an n-plane that minimizes 2E(x, r). Then one of
the connected components of

B(x, r)∩ {x ∈ Rn+1
: dist(x,P(x, r))≥ 2δr}

is contained in � and the other is contained in Rn+1
\�.

If, additionally, ∂� is vanishing Reifenberg flat, then � is said to be vanishing Reifenberg flat, too.

Definition 2.3. Let�⊂Rn+1. We say that� satisfies the Harnack chain condition if there is a uniform con-
stant C such that for every ρ>0, 3≥1, and every pair of points x, y∈�with dist(x, ∂�), dist(y, ∂�)≥ρ
and |x − y| < 3ρ, there is a chain of open balls B1, . . . , BN ⊂ �, N ≤ C(3), with x ∈ B1, y ∈ BN ,

1 So the statement in the theorem referring to the case d ≥ 4 should not be attributed to us.
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Bk ∩ Bk+1 6=∅ and C−1 diam(Bk)≤ dist(Bk, ∂�)≤ C diam(Bk). The chain of balls is called a Harnack
chain. Note that if such a chain exists, then

u(x)≈N u(y).

For C ≥ 2, the set � is a C-corkscrew domain if for all ξ ∈ ∂� and r > 0 there are two balls of radius
r/C contained in B(ξ, r)∩� and B(ξ, r)\� respectively. If

B(x, r/C)⊆ B(ξ, r)∩�,

we call x a corkscrew point for the ball B(ξ, r). Finally, we say � is C-nontangentially accessible (or
C-NTA, or just NTA) if it satisfies the Harnack chain condition and is a C-corkscrew domain. We say �
is two-sided C-NTA if both � and �ext := (�)

c are C-NTA. Finally, it is chord-arc if, additionally, ∂� is
n-AD-regular, meaning there is C > 0 so that, if σ denotes surface measure, then

C−1rn < σ(B(x, r)) < Crn for all x ∈ ∂�, 0<r≤ diam(�).

Any measure σ that satisfies the preceding estimate for all x ∈ supp σ and 0< r ≤ diam(supp σ) is
called n-AD-regular.

Definition 2.4. Let σ be an n-AD-regular measure in Rn and f a locally integrable function with respect
to σ . We say f ∈ VMO(σ ) if

lim
r→0

sup
x∈supp σ

−

∫
B(x,r)

∣∣∣∣ f − −
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0. (2-1)

We say f ∈ VMOloc(σ ) if, for any compact set K ,

lim
r→0

sup
x∈supp σ∩K

−

∫
B(x,r)

∣∣∣∣ f − −
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0.

It is well known that the space VMO coincides with the closure of the set of bounded uniformly
continuous functions on supp σ in the BMO norm.

We also remark that one can find slightly different definitions of VMO in the literature. For example,
in some references besides (2-1) the additional condition that

lim
r→∞

sup
x∈supp σ

−

∫
B(x,r)

∣∣∣∣ f −−
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0

is required. In this case, it turns out that VMO coincides with the closure of the set of compactly supported
continuous functions on supp σ in the BMO norm. However, the definition we will use in our paper is
Definition 2.4 (as in other works like [Kenig and Toro 1999; 2003]).

3. The Riesz transform of the harmonic measure with pole at infinity

Readers that are familiar with the results in [Kenig and Toro 2003; 2006] may skip this section, as well as
Sections 4 and 5, and go directly to Section 6 without much harm. In fact, in Sections 3–5 we provide the
alternative arguments to estimate the gradient of the Green function that we mentioned in the Introduction.
Our approach uses the jump relations for the gradient of the single layer potential (derived by Hofmann,
Mitrea, and Taylor [Hofmann et al. 2010] in the case of chord-arc domains and somewhat more general
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settings). Modulo these standard relations, our arguments are reasonably self-contained and shorter than
the ones in [Kenig and Toro 2003; 2006].

Recall from [Kenig and Toro 1999, Lemma 3.7] that if �⊂ Rn+1 is an unbounded NTA domain, then
there exist a function u ∈ C(�) and a measure ω in ∂� such that

1u = 0 in �, u = 0 in ∂�, u > 0 in �, (3-1)

and ∫
�

u1φ dm =
∫
∂�

φ dω for all φ ∈ C∞c (R
n+1). (3-2)

The function u and the measure ω are unique modulo constant factors, and u is the so-called Green
function with pole at infinity and ω the harmonic measure with pole at infinity.

From now on, we will assume that u is also defined in Rn+1
\� and vanishes identically here, so that

u ∈ C(Rn+1).
Given a Radon measure µ in Rn+1, its n-dimensional Riesz transform is defined by

Rµ(x)= cn

∫
x − y
|x − y|n+1 dµ(y),

whenever the integral makes sense. We assume that the constant cn is chosen so that

K (x) := cn
x
|x |n+1

coincides with the gradient of the fundamental solution of the Laplacian.

The main result of this section is the following.

Proposition 3.1. Let � ⊂ Rn+1 be an unbounded NTA domain, and let u and ω be the Green function
and the associated harmonic measure with pole at infinity, respectively. Suppose that for all x ∈ ∂� there
exist some constants 0< δ < 1 and C > 0 (both possibly depending on x) such that

ω(B(x, r))≤ C rn+δ for all r ≥ 1. (3-3)

Then we have

Rω(x)−Rω(y)=∇u(y)−∇u(x) for all x, y ∈ Rn+1
\∂�. (3-4)

Some remarks are in order. First, it is easy to check that if the condition (3-3) holds for all x ∈ ∂�,
then it also holds for all x ∈ Rn+1 (with some constants C, δ depending also on x). For the identity (3-4)
to be true, it is important to define the Riesz transform so that its kernel is the gradient of the fundamental
solution of the Laplacian, as we did above. On the other hand, the function Rω is defined modulo a
constant term (i.e., in a BMO sense). So for all x, y ∈ Rn+1

\∂�, by definition we write

Rω(x)−Rω(y)=
∫ (

K (x − z)− K (y− z)
)

dω(z).
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Then it turns out that the integral on the right-hand side above is absolutely convergent. Indeed, defining
d =max(2|x − y|, 1), we have∫
|x−z|≥d

∣∣K (x−z)−K (y−z)
∣∣dω(z). ∫

|x−z|≥d

|x−y|
|x−z|n+1 dω(z)

.
∑
k≥0

|x−y|
(2kd)n+1 ω(B(x,2

kd)).x

∑
k≥0

|x−y|
(2kd)n+1 (2

kd)k(n+δ)<∞,

(3-5)
which implies ∫ ∣∣K (x − z)− K (y− z)

∣∣ dω(z) <∞,

since x, y 6∈ suppω = ∂�.

Before proceeding with the proof of Proposition 3.1, we recall a few lemmas about NTA domains.
These lemmas were originally shown in [Jerison and Kenig 1982] for bounded NTA domains, but as the
arguments for these results are purely local, they also hold for unbounded NTA domains.

Lemma 3.2 [Jerison and Kenig 1982, Lemma 4.4]. Let �⊆ Rn+1 be NTA and B a ball centered on ∂�
with 0< r(B) < diam ∂�. Let xB be a corkscrew point for B in � and let g be the Green function for �.
Then

ωz(B)≈ g(xB, z)r1−n for all z ∈�\2B. (3-6)

Lemma 3.3 [Jerison and Kenig 1982, Lemma 4.10]. Let � ⊆ Rn+1 be an NTA domain and B a ball
centered on ∂� with 0< Mr(B) < diam ∂�, where M depends on the NTA character of �. Suppose u, v
are two positive harmonic functions in � vanishing continuously on MB ∩ ∂� and let xB be a corkscrew
point for B in �. Then

u(z)
v(z)
≈

u(xB)

v(xB)
for all z ∈ B ∩�. (3-7)

Proof of Proposition 3.1. As shown in [Kenig and Toro 1999, Section 3], the Green function u and the
harmonic measure ω with pole at infinity can be constructed as follows. Given a fixed point a ∈� and a
sequence of points pj ∈� such that pj →∞, we consider the function

u j (x)=
{

g(x, pj )/g(a, pj ) if x ∈�,
0 if x 6∈�,

and the measure
ωj =

1
g(a, pj )

ωpj.

Passing to a subsequence and relabeling if necessary, we may assume that u j is locally uniformly
convergent and that ωj is weakly convergent. Then it turns out that u is the weak limit of the sequence u j

and ω is the weak limit of ωj . For simplicity, we choose points pj such that |pj−a| ≈ dist(pj , ∂�)→∞.
Observe that by (3-6) and our definitions of u and ω, it follows that for all balls B centered on ∂�, if xB

is a corkscrew point for B in �, then

ω(B)r1−n
≈ u(xB). (3-8)
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It is well known that the Green function g( · , · ) equals

g(x, p)= E(x − p)−
∫

E(x − z) dωp(z) for x, p ∈�,

where E stands for the fundamental solution of the Laplacian. On the other hand, the right-hand side
above vanishes if x ∈Rn+1

\�, p ∈�. So we deduce that for all x 6∈ ∂�,

∇u j (x)=
1

g(a, pj )
K (x − pj )−Rωj (x).

Thus, for all x, y 6∈ ∂�,

∇u j (y)−∇u j (x)=
1

g(a, pj )

(
K (y− pj )− K (x − pj )

)
+Rωj (x)−Rωj (y).

Since u j is harmonic outside of ∂� and u j converges locally uniformly to u, it turns out that ∇u j converges
also locally uniformly to ∇u outside of ∂�. Hence, to prove the proposition, it suffices to show that

lim
j→∞

1
g(a, pj )

(
K (y− pj )− K (x − pj )

)
= 0, (3-9)

lim
j→∞

(
Rωj (x)−Rωj (y)

)
=Rω(x)−Rω(y). (3-10)

To prove the above identities, first we will estimate g(a, pj ) in terms of u and ω. To this end, we will
apply the boundary Harnack principle.

Let ξj ∈∂� be such that |ξj−pj |=dist(pj , ∂�), and consider the ball B(pj )= B(ξj , |ξj−pj |). Suppose
that |ξj− pj |�dist(a, ∂�). Consider a corkscrew point p̃j ∈

1
2 B(pj )∩�, so that dist( p̃j , ∂�)≈ r(B(pj )).

Since u and g( · , pj ) are harmonic in �∩ B(pj ) and vanish identically in ∂�, we deduce from (3-7) that

g( p̃j , pj )

g(a, pj )
≈

u( p̃j )

u(a)
,

since a belongs to CB(pj ) for some fixed constant C , and dist(a, ∂�)� r(B(pj )) by assumption. Taking
into account that by (3-8)

u( p̃j )≈ u(pj )≈ ω(B(pj )) |pj − ξj |
1−n
≈ ω(B(pj )) |pj − a|1−n

and
g( p̃j , pj )≈

1
| p̃j − pj |

n−1 ≈
1

|pj − a|n−1 ,

we infer that
g(a, pj )≈

u(a)
ω(B(pj ))

. (3-11)

With (3-11) at hand, we are ready to prove (3-9):

1
g(a, pj )

∣∣K (y− pj )− K (x − pj )
∣∣. ω(B(pj ))

u(a)
|x − y|
|x − pj |

n+1 .

For j big enough, we have r(B(pj ))≈ |x − pj |, and then we derive

ω(B(pj ))

|x − pj |
n+1 .x

|x − pj |
n+δ

|x − pj |
n+1 =

1
|x − pj |

1−δ ,
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and thus

1
g(a, pj )

∣∣K (y− pj )− K (x − pj )
∣∣.x
|x − y|
u(a)

1
|x − pj |

1−δ → 0 as j→∞.

We turn our attention to the identity (3-10) now. Take an auxiliary radial C∞ function φ : Rn+1
→ R

such that χB(0,1) ≤ φ ≤ χB(0,2) and define φε(z)= φ(z/ε). For ε > 0, we define

Kε = (1−φε) K and K̃ε = φε K .

Notice that Kε and K̃ε are standard Calderón–Zygmund kernels. We denote by Rε and R̃ε the respective
associated operators, so that, at least formally, R̃ε tends to R as ε→∞. Then we write∣∣(Rωj (x)−Rωj (y)

)
−
(
Rω(x)−Rω(y)

)∣∣
≤
∣∣(R̃εωj (x)−R̃εωj (y)

)
−
(
R̃εω(x)−R̃εω(y)

)∣∣+∣∣Rεωj (x)−Rεωj (y)
∣∣+∣∣Rεω(x)−Rεω(y)

∣∣. (3-12)

Since the function K̃ε(x − · )− K̃ε(y− · ) is continuous on ∂� (recall that x, y ∈ Rn+1
\∂�) and has

compact support, we infer that∣∣(R̃εωj (x)− R̃εωj (y)
)
−
(
R̃εω(x)− R̃εω(y)

)∣∣→ 0 as j→∞, (3-13)

by the weak convergence of ωj to ω.
Concerning the second term on the right-hand side of (3-12), we will show below that∣∣Rεωj (x)−Rεωj (y)

∣∣.x
|x − y|
u(a)

(
1
ε1−δ +

1
|x − pj |

1−δ

)
. (3-14)

The last term in (3-12) is estimated as in (3-5). Indeed, for ε� |x − y|,∣∣Rεω(x)−Rεω(y)
∣∣. ∫ ∣∣Kε(x − z)− Kε(y− z)

∣∣ dω(z).
∫
|x−z|≥ε/2

|x − y|
|x − z|n+1 dω(z)

.
∑
k≥0

|x − y|
(2kε)n+1 ω(B(x, 2kε)).x

∑
k≥0

|x − y|
(2kε)n+1 (2

kε)n+δ ≈
|x − y|
ε1−δ . (3-15)

From (3-12), (3-13), (3-14) and (3-15) we deduce that

lim sup
j→∞

∣∣(Rωj (x)−Rωj (y)
)
−
(
Rω(x)−Rω(y)

)∣∣.x
|x − y|

u(a) ε1−δ +
|x − y|
ε1−δ .

Since this holds for any arbitrarily big ε > 0, the limit vanishes and this concludes the proof of (3-4).
Finally we deal with the estimate (3-14). Arguing as in (3-15), with ω replaced by ωj , we obtain∣∣Rεωj (x)−Rεωj (y)

∣∣.∑
k≥0

|x − y|
(2kε)n+1 ωj (B(x, 2kε)).

We split the last sum according to whether 2kε ≤ |pj − x | or not, so that∣∣Rεωj (x)−Rεωj (y)
∣∣≤ S1+ S2,
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where

S1 =
∑
k≥0

2kε≤|pj−x |

|x − y|
(2kε)n+1 ωj (B(x, 2kε)) and S2 =

∑
k≥0

2kε>|pj−x |

|x − y|
(2kε)n+1 ωj (B(x, 2kε)).

To estimate S1 we use the fact that, for 2kε ≤ |pj − x |,

ωj (B(x, 2kε))=
1

g(a, pj )
ωpj (B(x, 2kε))≈

1
g(a, pj )

ω(B(x, 2kε))

ω(B(pj ))
.

Hence, by (3-11),

ωj (B(x, 2kε))≈
ω(B(x, 2kε))

u(a)
,

and so

S1 .
∑
k≥0

|x − y|
(2kε)n+1

ω(B(x, 2kε))

u(a)
.x

∑
k≥0

|x − y|
(2kε)n+1

(2kε)n+δ

u(a)
.
|x − y|

u(a) ε1−δ .

To estimate S2 we use the trivial estimate

ωj (B(x, 2kε))=
1

g(a, pj )
ωpj (B(x, 2kε))≤

1
g(a, pj )

≈
ω(B(pj ))

u(a)
.

Therefore,

S2 ≈
∑
k≥0

2kε>|pj−x |

|x − y|
(2kε)n+1

ω(B(pj ))

u(a)
.
|x − y|
|pj − x |n+1

ω(B(pj ))

u(a)
.

Assuming that |pj − x | ≥ 1, we have

ω(B(pj )).x r(B(pj ))
n+δ
≈ |pj − x |n+δ,

and thus

S2 .x
|x − y|
|pj − x |1−δ

ω(B(pj ))

u(a)
.

From this estimate and the one for S1, we obtain (3-14), as wished. �

We recall now the following version of the jump equations for the gradient of the single layer potential
due to Hofmann, Mitrea and Taylor [Hofmann et al. 2010]:

Proposition 3.4 [Hofmann et al. 2010, Proposition 3.30]. Let � ⊂ Rn+1 be a domain in Rn+1 with
uniformly rectifiable boundary such that σ(∂�\∂∗�)= 0, where ∂∗� stands for the measure theoretic
boundary and σ for the surface measure of �. Let f ∈ L p(σ |∂�) for 1≤ p<∞. Then, for σ -a.e. x ∈ ∂�,

lim
0−(x)3z→x

R( f σ)(z)=− 1
2 En(x) f (x)+ pvR( f σ)(x), (3-16)

and
lim

0+(x)3z→x
R( f σ)(z)= 1

2 En(x) f (x)+ pvR( f σ)(x), (3-17)
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where 0+(x) is a nontangential cone at x relative to �, (that is,

0+(x)= {y ∈� : dist(y, �c) > t |y− x |}

for some t > 0), 0−(x) is a nontangential cone at x relative to Rn+1
\�, and En(x) is the outer normal to

� at x.

In particular, if � is a chord-arc domain in Rn+1, then ∂� is uniformly rectifiable (see [David and
Jerison 1990]) and σ(∂�\∂∗�)= 0; thus the preceding proposition can be applied.

Proposition 3.5. Let �⊂ Rn+1 be a chord-arc domain in Rn+1. Let ω and u be the harmonic measure
and the Green function with a pole either at infinity or at some point p ∈�. Suppose that for each x ∈ ∂�
there exist some constants 0< δ < 1 and C > 0 such that

ω(B(x, r))≤ C rn+δ for all r ≥ 1. (3-18)

Suppose h := dω/dσ ∈ L p
loc(σ ) for some p ≥ 1. Then lim0+(x)3z→x ∇u(z) exists for σ -a.e. x ∈ ∂� and

lim
0+(x)3z→x

∇u(z)=−h(x) En(x). (3-19)

Proof. Assume that the pole for ω and u is at infinity (the arguments for the case when the pole is finite
are analogous). Let B be a ball centered at ∂�. By Proposition 3.4, for σ -a.e. x ∈ B,

lim
0−(x)3z→x

R(χ2Bω)(z)=− 1
2 En(x) h(x)+ pvR(χ2Bω),

and

lim
0+(x)3z→x

R(χ2Bω)(z)= 1
2 En(x) h(x)+ pvR(χ2Bω)

In particular,

lim
0+(x)3z→x

R(χ2Bω)(z)− lim
0−(x)3z→x

R(χ2Bω)(z)= En(x)h(x).

Using the condition (3-18), by estimates analogous to the ones in (3-5), it is immediate to check that

lim
0+(x)3z→x

R(χ2Bω)(z)− lim
0−(x)3z→x

R(χ2Bω)(z)= lim
0+(x)3z→x

Rω(z)− lim
0−(x)3z→x

Rω(z).

Then, by Proposition 3.1 we infer that

lim
0−(x)3z→x

∇u(z)− lim
0+(x)3z→x

∇u(z)= En(x)h(x).

Since u ≡ 0 in Rn+1
\�, we have lim0−(x)3z→x ∇u(z)= 0 and so

− lim
0+(x)3z→x

∇u(z)= En(x)h(x) for σ -a.e. x ∈ ∂�∩ B. �
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4. Some technical lemmas

From now on, given a domain �⊂ Rn+1 and x ∈ Rn+1, we define

d�(x)= dist(x, �c).

The following is a well-known result. See, for example, [Jerison and Kenig 1982, Section 4].

Lemma 4.1. Let � ⊂ Rn+1 be an NTA domain and let B be a ball centered at ∂�. There exist some
constants C, α > 0 depending on the NTA character of � such that the following holds. If u is a
nonnegative harmonic function on �∩ 2B which vanishes continuously on ∂�∩ 2B, then

u(x)≤ C
(

d�(x)
r(B)

)α
sup

y∈∂(2B)∩�
u(y) for all x ∈ B ∩�.

If xB is a corkscrew point for B, then

sup
y∈B∩�

u(y)≤ Cu(xB).

We will also need the next auxiliary result.

Lemma 4.2. Let �⊂ Rn+1 be an NTA domain. There exist some constants C, α > 0 depending on the
NTA character of � such that the Green function of � satisfies

g(x, y)≤ C
1

|x − y|n−1

(
min

(
d�(x), d�(y)

)
|x − y|

)α
for all x, y ∈�. (4-1)

Proof. It is enough to show that, for some C, α′ > 0,

g(x, y)≤ C
1

|x − y|n−1

(
d�(x)
|x − y|

)α
for all x, y ∈�, (4-2)

because then the analogous inequality interchanging x by y also holds, by symmetry.
Because of the trivial estimate g(x, y). 1/|x−y|n−1, to prove (4-2) we may assume |x−y|> 10 d�(x).

Let ξx ∈ ∂� be such that |ξx − x | = d�(x) and consider the ball B := B(ξx , |x− y|/8). Clearly x ∈ B, as

|x − ξx | = d�(x)≤ 1
10 |x − y| = 8

10r(B).

Note also that, for all z ∈ ∂(2B),

|y− z| ≥ |x − y| − |x − z| ≥ 8 r(B)− 4 r(B)= 4 r(B)≈ |x − y|.

Hence g(z, y) . 1/|y − z|n−1 . 1/|x − y|n−1 for all z ∈ ∂(2B). Thus, (4-2) follows from Lemma 4.1
applied to the function g( · , y). �

The following rather standard result is shown in [Kenig and Toro 2003, Theorem 2.1].
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Lemma 4.3. Let � ⊂ Rn+1 be a chord-arc domain, f ∈VMO(σ ), and h = e f . Then, for all x ∈ ∂�,
0< r ≤ diam(�) and 1< p <∞,(

−

∫
B(x,r)

h p dσ
)1/p

≤ C p −

∫
B(x,r)

h dσ and
(
−

∫
B(x,r)

h−p dσ
)1/p

≤ C p−

∫
B(x,r)

h−1 dσ.

The next lemma is proven in [Jerison and Kenig 1982, Lemma 4.11]:

Lemma 4.4. Let � be an NTA domain, B a ball centered on ∂� with 0 < r(B) < diam ∂�, and let
E ⊆ B ∩ ∂� be Borel. If xB is a corkscrew point for B in �, then

ωz(E)
ωz(B)

≈ ωxB (E) for z ∈�\2B. (4-3)

Note that this implies that if ω is the harmonic measure with pole at infinity, we also have

ω(E)
ω(B)

≈ ωxB (E). (4-4)

The next corollary is an easy consequence of the preceding lemma, as shown in [Kenig and Toro 2003,
Corollary 2.4].

Corollary 4.5. Let � ⊂ Rn+1 be a chord-arc domain. If the harmonic measure ω in � is such that
dω/dσ ∈ VMO(σ ), then, for all ε > 0, x ∈ ∂�, 0< r ≤ diam(�) and E ⊂ B(x, r)∩ ∂�,

C(ε)−1
(

σ(E)
σ (B(x, r))

)1+ε

≤
ω(E)

ω(B(x, r))
≤ C(ε)

(
σ(E)

σ (B(x, r))

)1−ε

.

Let us remark that the pole of harmonic measure above can be either a point p ∈� (in which case the
constants also depend on p) or infinity in the case � is unbounded.

Another easy consequence of Lemma 4.3 is the following.

Corollary 4.6. Let �⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ω in � with
pole at infinity is such that log(dω/dσ) ∈ VMO(σ ). For z ∈�, let Kz = dωz/dσ (i.e., Kz is the Poisson
kernel). For 1< p <∞, if x ∈ ∂�, 0< r ≤ diam(�), and z ∈�\B(x, 2r), then(

−

∫
B(x,r)

(Kz)
p dσ

)1/p

≤ C(p)−
∫

B(x,r)
Kz dσ.

For this corollary to hold we assume either the pole of ω is at∞ if � is unbounded, or it is in �.

Proof. Since z ∈ �\B(x, 2r), if z0 is a corkscrew point for B(x, r), then whenever B(y, s) ⊂ B(x, r)
and all 0< s < r/10, by (4-3) and (4-4),

ω(B(y, s))
ω(B(x, r))

≈ ωz0(B(y, s))≈
ωz(B(y, s))
ωz(B(x, r))

.

Hence, by the Lebesgue differentiation theorem, if we define h = dω/dσ for σ -a.e. y ∈ B(x, r)∩ ∂�,

Kz(y)=
dωz

dσ
(y)= lim

s→0

ωz(B(y, s))
σ (B(y, s))

≈
ωz(B(x, r))
ω(B(x, r))

lim
s→0

ω(B(y, s))
σ (B(y, s))

=
ωz(B(x, r))
ω(B(x, r))

h(y).
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Therefore, by Lemma 4.3, since log h ∈ VMO(σ ),(
−

∫
B(x,r)

Kz(y)p dσ(y)
)1/p

≈
ωz(B(x, r))
ω(B(x, r))

(
−

∫
B(x,r)

h(y)p dσ(y)
)1/p

.
ωz(B(x, r))
ω(B(x, r))

−

∫
B(x,r)

h(y) dσ(y)≈ −
∫

B(x,r)
Kz(y) dσ(y). �

Lemma 4.7. Let � ⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ω in � with
pole either at infinity or at some fixed point p ∈� is such that log(dω/dσ) ∈ VMO(σ ). Denote by u the
associated Green function. Then, for σ -a.e. x ∈ ∂�, we have ∇u(z) converges to −En(x)(dω/dσ)(x) as
� 3 z→ x nontangentially, where En is the outer unit normal of �.

This lemma is proved in [Kenig and Toro 2003] under the additional assumption that � is Reifenberg
flat. In [Kenig and Toro 2006] it is shown how to prove this without the Reifenberg flatness assumption.
The delicate arguments involved in [Kenig and Toro 2003; 2006] do not use the connection between
harmonic measure and the Riesz transform and instead are of a more geometric nature.

Proof. This is an immediate consequence of Proposition 3.5 and Corollary 4.5. Indeed, this corollary,
implies that for all x ∈ ∂� and all 0< r0 ≤ r ≤ diam(�),(

σ(B(x, r0))

σ (B(x, r))

)1+ε

≤ C(ε)
ω(B(x, r0))

ω(B(x, r))
.

Hence, using also the AD-regularity of σ we get

ω(B(x, r))≤ C(ε) ω(B(x, r0))

(
σ(B(x, r))
σ (B(x, r0))

)1+ε

≈
ω(B(x, r0))

σ (B(x, r0))1+ε
rn(1+ε).

Therefore, choosing ε = 1/(2n),

ω(B(x, r))≤ C(x) rn+1/2 for r ≥ r0.

So the assumption (3-18) in Proposition 3.5 holds and thus

lim
0+(x)3z→x

∇u(z)=−
dω
dσ
(x) En(x) for σ -a.e. x ∈ ∂�. �

The next result is an auxiliary calculation which will be used several times in the next section. The
arguments for the proof are quite standard. Similar calculations appear, for example, in the proofs of
Lemma 5.2 of [Kenig and Toro 2006], Lemma 3.3 of [Kenig and Toro 2003] or Lemma 3.30 of [Hofmann
and Martell 2014].

Lemma 4.8. Let �⊂ Rn+1 be a chord-arc domain, and let ω be the harmonic measure in � with pole
either at infinity or at some fixed point p ∈�. Let B ⊂ Rn+1 be a ball centered at ∂� such that p 6∈ 10B.
Then for any constant ε > 0,∫

B∩�

(
d�(y)
r(B)

)ε
ω(B(y, 2d�(y)))

d�(y)n+1 dy ≤ C(ε) ω(B).
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Proof. We write∫
B∩�

(
d�(y)
r(B)

)ε
ω(B(y,2d�(y)))

d�(y)n+1 dy.
∑
j≥0

2− jε
∫

y∈B∩�
2− j−1r(B)<d�(y)≤2− j r(B)

ω(B(y,2− j+1r(B)))
(2− jr(B))n+1 dy. (4-5)

We define Aj := {y ∈ B ∩� : 2− j−1r(B) < d�(y)≤ 2− jr(B)}. For each y ∈ Aj consider a ball B j
y with

radius 2− j+1r(B) centered at a point ξy ∈ ∂� such that |y− ξy| = d�(y). Clearly y ∈ B j
y for each y ∈ Aj ,

and thus we can extract a subfamily of pairwise disjoint balls {B j
k }k ⊂ {B

j
y }y∈Aj so that

Aj ⊂
⋃

k

3B j
k .

Notice that for each y ∈ B j
k , since ω is doubling,

ω(B(y, 2− j+1r(B)))≤ ω(6B j
k ). ω(B

j
k ).

Therefore, taking also into account that the balls B j
k are contained in 6B,∫

y∈B∩�:
2− j−1r(B)<d�(y)≤2− j r(B)

ω(B(y, 2− j+1r(B)))
(2− jr(B))n+1 dy .

∑
k

∫
B j

k

ω(B j
k )

(2− jr(B))n+1 dy

= C
∑

k

ω(B j
k ). ω(6B). ω(B).

Plugging this estimate into (4-5), the lemma follows. �

5. Estimates for the gradient of Green’s function

The reader should compare the arguments in this section to the ones in Section 3 of [Kenig and Toro
2003] and Section 2 of [Kenig and Toro 2006], which in turn rely on the results in the Appendices A1
and A2 of [Kenig and Toro 2003].

Lemma 5.1. Let �⊂ Rn+1 be an unbounded chord-arc domain. Suppose that the harmonic measure ω
in � with pole at infinity satisfies log(dω/dσ) ∈ VMO(σ ). Denote by u the associated Green function.
Then

|∇u(x)| ≤
∫
∂�

dω
dσ
(y) dωx(y) for all x ∈�. (5-1)

The proof of this lemma would be quite immediate if the function dω/dσ inside the integral in (5-1)
were compactly supported, taking into account that ∇u is harmonic. However, this is not the case and so
the arguments are more delicate. The next auxiliary lemma will be used to take care of this question by a
localization of singularities technique.

Lemma 5.2. Under the assumptions of Lemma 5.1, suppose that 0 ∈ ∂�. Fix R > 1 large and let
φR ∈ C∞c (R

n+1) such that χB(0,R)≤φR ≤χB(0,2R), |∇ jφR|. 1/R j for j = 1, 2. For x ∈�, define

wR(x)=
∫
�

g(x, y)1[φR∇u](y) dy.
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Then wR ∈ Cα/2(�) for some α > 0, wR|∂� ≡ 0, and the following estimates hold for x ∈�:

(a) |wR(x)|.
ω(B(0, R))

Rn

(
d�(x)

R

)α/2
if |x | ≤ 4R.

(b) |wR(x)|.
ω(B(0, R))

|x |n−1+α/2 R1−α/2

(
d�(x)
|x |

)α/2
if |x |> 4R.

Proof. By the relationship between Green’s function and harmonic measure, for all y ∈� we have

u(y)≈
1

d�(y)n−1 ω(B(y, 2d�(y))),

and by standard estimates for positive harmonic functions we derive

|∇u(y)|.
u(y)

d�(y)
≈
ω(B(y, 2d�(y)))

d�(y)n
and |∇

2u(y)|.
u(y)

d�(y)2
≈
ω(B(y, 2d�(y)))

d�(y)n+1 .

Thus,

|wR(x)| =
∣∣∣∣∫
�

g(x, y)
(
1φR(y)∇u(y)+ 2∇φR(y) · ∇2u(y)

)
dy
∣∣∣∣

.
∫

A(0,R,2R)∩�
g(x, y)

(
ω(B(y, 2d�(y)))

R2 d�(y)n
+
ω(B(y, 2d�(y)))

R d�(y)n+1

)
dy

.
∫

B(0,2R)∩�
g(x, y)

ω(B(y, 2d�(y)))
R d�(y)n+1 dy. (5-2)

Case 1: |x | ≤ 4R.
We split the integral on the right-hand side of (5-2) as follows:

|wR(x)|.
∫
|y−x |≤d�(x)/2

g(x, y)
ω(B(y, 2d�(y)))

R d�(y)n+1 dy+
∫

y∈B(0,2R)∩�
|y−x |>d�(x)/2

g(x, y)
ω(B(y, 2d�(y)))

R d�(y)n+1 dy

=: I1+ I2. (5-3)

First we will deal with I1. In the domain of integration of I1 we have d�(y) ≈ d�(x). Taking into
account that ω is doubling, in this case we derive ω(B(y, 2d�(y)))≈ ω(B(x, 2d�(x))). Then using also
the trivial estimate g(x, y). 1/|x − y|n−1, we get

I1 .
∫
|y−x |≤d�(x)/2

1
|x − y|n−1

ω(B(x, 2d�(x))
R d�(x)n+1 dy ≈

ω(B(x, 2d�(x))
R d�(x)n−1 .

Notice that, by Lemma 4.1,

u(x).
(

d�(x)
R

)α
sup

y∈∂B(0,8R)∩�
u(y).

(
d�(x)

R

)α
u(xR), (5-4)

where xR is a corkscrew point for B(0, R). That is, xR ∈ B(0, R)∩� and d�(xR)≈ R. Hence using that
ω(B(z, 2d�(z)))≈ u(z) d�(z)n−1 both for z = x and z = xR , we deduce that

I1 .
ω(B(x, 2d�(x)))

R d�(x)n−1 .

(
d�(x)

R

)α
ω(B(xR, 2d�(xR)))

R d�(xR)n−1 ≈

(
d�(x)

R

)α
ω(B(0, R))

Rn . (5-5)
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We consider now the integral I2 in (5-3). To estimate this we use the inequality

g(x, y).
1

|x − y|n−1

(
d�(x)
|x − y|

)α/2( d�(y)
|x − y|

)α/2
, (5-6)

which is an immediate consequence of (4-1). To shorten notation, for each integer j ≥ 0 we write
rj := 2 j d�(x). Denote by jmax the least integer such that B(0, 2R)⊂ B(x, r jmax), so that r jmax ≈ R. Then
plugging the estimate (5-6) into I2 and splitting, we obtain

I2 .
∑

0≤ j≤ jmax

1

R rn−1
j

(
d�(x)

rj

)α/2∫
y∈�
r j−1<|y−x |≤rj

(
d�(y)

rj

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy.

Let ξx ∈ ∂� be such that |x − ξx | = d�(x). It is immediate to check that if |y− x | ≤ rj = 2 j d�(x), then
y ∈ B(ξx , 2rj ). So the last integral is bounded above by∫

�∩B(ξx ,2rj )

(
d�(y)

rj

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy,

and then, by Lemma 4.8, this does not exceed C ω(B(ξx , rj )). Hence,

I2 .
∑

0≤ j≤ jmax

1

R rn−1
j

(
d�(x)

rj

)α/2
ω(B(ξx , rj )). (5-7)

To estimate the right-hand side in the inequality above, we argue as in (5-4). We consider a corkscrew
point x j in each ball B(ξx , rj ), and then since dist(x j , ∂�)≈ rj , we deduce

u(x j ).

(
rj

R

)α
u(xR)

(recall that xR is a corkscrew point for B(0, R)). Thus,

ω(B(ξx , rj ))

rn−1
j

.

(
rj

R

)α
ω(B(0, R))

Rn−1 .

Plugging this estimate into (5-7) we obtain

I2 .
∑

0≤ j≤ jmax

(
d�(x)

rj

)α/2(rj

R

)α
ω(B(0, R))

Rn =
d�(x)α/2

Rα
ω(B(0, R))

Rn

∑
0≤ j≤ jmax

rα/2j .

Since the last sum is geometric, it turns out that∑
0≤ j≤ jmax

rα/2j ≈ rα/2jmax
≈ Rα/2.

Therefore,

I2 .
d�(x)α/2

Rα/2
ω(B(0, R))

Rn .

Together with the estimate for I1 in (5-5), this yields the inequality (a) in the lemma.



THE ONE-PHASE PROBLEM FOR HARMONIC MEASURE IN TWO-SIDED NTA DOMAINS 575

Case 2: |x |> 4R.
To estimate the integral on the right-hand side of (5-2) we use the fact that, for y ∈ B(0, 2R), by (4-1),

g(x, y).
1
|x |n−1

(
d�(x)
|x |

)α/2(d�(y)
|x |

)α/2
,

taking into account that |x − y| ≈ |x |. Then we get

|wR(x)|.
1
|x |n−1

(
d�(x)
|x |

)α/2 ∫
B(0,2R)∩�

(
d�(y)
|x |

)α/2
ω(B(y, 2d�(y)))

R d�(y)n+1 dy

=
1

R|x |n−1

(
d�(x)
|x |

)α/2( R
|x |

)α/2 ∫
B(0,2R)∩�

(
d�(y)

R

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy.

By Lemma 4.8, the last integral above does not exceed Cω(B(0, R)), and so we deduce that

|wR(x)|.
1

R|x |n−1

(
d�(x)
|x |

)α/2( R
|x |

)α/2
ω(B(0, R)),

which gives the inequality (b) in the lemma. �

Proof of Lemma 5.1. The arguments are similar to the ones for [Kenig and Toro 2003, Theorem 3.1]. For
the reader’s convenience, we show the details below.

Suppose that 0 ∈ ∂� and, for R ≥ 1, let φR and wR be the functions introduced in Lemma 5.2. For
x ∈�, we define

h R(x)= φR(x)∇u(x)−wR(x).

Since 1wR =1[φR∇u] in �, it turns out that h R is harmonic in �. Further, the estimates (a) and (b) in
Lemma 5.2, in particular, ensure that wR vanishes continuously at ∂�. Thus h R vanishes on ∂�\B(0, 2R).

By Lemma 4.7 it follows that ∇u(z) converges nontangentially to −(dω/dσ)(y)En(y) as � 3 z→ y
for σ -a.e. y ∈ ∂�. Also, as mentioned above, wR(z)→ 0 as z→ y. Therefore, if we define

h(y)=
dω
dσ
(y),

we have

lim
0+(y)3z→y

h R(z)=−φR(y) h(y) En(y) for σ -a.e. y ∈ ∂�.

We claim that for all x ∈�,

h R(x)=−
∫
φR(y) h(y) En(y) dωx(y). (5-8)

To prove this, recalling that h R vanishes at∞, by Theorem 5.8 and Lemma 8.3 in [Jerison and Kenig
1982] it suffices to show that N1h R ∈ L1(ωx) for all x ∈�, where N1 stands for the operator defined by

N1h R(y)= sup
z∈0+1 (y)

h R(z),
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with 0+1 (y)= 0
+(y)∩ B(y, 1). By Lemma 5.2, wR is bounded, and thus N1wR ∈ L1(ωx). Hence it is

enough to prove that N1(φR∇u) ∈ L1(ωx). To this end, notice that if z ∈ 0+1 (y), then

|∇u(z)|.
u(z)

d�(z)
≈
ω(B(y, d�(z)))

d�(z)n
.

Thus,

N1(φR∇u)(y). sup
0<r≤1

ω(B(y, r))
rn = sup

0<r≤1

1
rn

∫
B(y,r)
|h| dσ =:M1h(y).

Also, N1(φR∇u)(y) vanishes outside of B ′ := B(0, 2R+ 1) because in this case φR(z) = 0 whenever
z ∈ 0+1 (y). Therefore,∫

N1(φR∇u) dωx
=

∫
B ′
N1(φR∇u) Kx dσ .

(∫
B ′
|M1h|2 dσ

)1/2(∫
B ′
(Kx)

2 dσ
)1/2

.

By the L2(σ )-boundedness of M1, it follows that∫
B ′
|M1h|2 dσ =

∫
B ′
|M1(χB ′′h)|2 dσ <∞,

where B ′′ = B(0, 2R+ 2). Also, by Corollary 4.6,∫
B ′
(Kx)

2 dσ <∞,

and so N1(φR∇u) ∈ L1(ωx) and (5-8) holds.
From the definition of h R and (5-8) we deduce that

φR(x)∇u(x)=−
∫
φR(y) h(y) En(y) dωx(y)+wR(x). (5-9)

Hence, letting R→∞,

|∇u(x)| ≤
∫
|h(y)| dωx(y)+ lim inf

R→∞
|wR(x)|.

By Lemma 5.2(a) and Corollary 4.5 (with ε small enough), we deduce easily that wR(x)→ 0 as R→∞,
for any fixed x ∈�, and then the lemma follows. �

Now we wish to obtain a variant of Lemma 5.1 suitable for the case when the pole for harmonic
measure is finite. This is what we do in the next lemma.

Lemma 5.3. Let � ⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ωp in � with
pole at p ∈� satisfies log(dωp/dσ) ∈ VMO(σ ). Then, for all x ∈� such that d�(x)≤ d�(p)/8 and all
qx ∈ ∂� such that |x − qx | ≤ d�(p)/8,

|∇g(x, p)| ≤
∫
∂�

K p(y) dωx(y)+C
ωp(B(qx , d�(p)))

d�(p)n

(
d�(x)
d�(p)

)α/2
. (5-10)
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Proof. Let ξ ∈ ∂� and take a C∞ function φ compactly supported in B(ξ, d�(p)/4) which is identically 1
on B(ξ, d�(p)/8), so that |∇ jφ| . 1/d�(p) j for j = 1, 2. Note that, in particular, φ vanishes on
B(p, d�(p)/4). We consider the function

w0(x)=
∫
�

g(x, y)1[φ ∇g( · , p)](y) dy for x ∈�.

We claim that

|w0(x)|.
ω(B(ξ, d�(p)/8))

d�(p)n

(
d�(x)
d�(p)

)α/2
if |x − ξ | ≤

d�(p)
4

. (5-11)

The arguments to prove (5-11) are quite similar to the ones in Lemma 5.2. By the relationship between
Green’s function and harmonic measure and by standard estimates for positive harmonic functions, for all
y ∈ B(ξ, d�(p)/4)∩� we have

|∇g(y, p)|.
g(y, p)
d�(y)

≈
ωp(B(ξ, d�(p)/4))

d�(y)n
and |∇

2g(y, p)|.
g(y, p)
d�(y)2

≈
ωp(B(ξ, d�(p)/4))

d�(y)n+1 .

Thus,

|w0(x)| =
∣∣∣∣∫
�

g(x, y)
(
1φ(y)∇g(y, p)+ 2∇φ(y) · ∇2g(y, p)

)
dy
∣∣∣∣

.
∫

A(ξ,d�(p)/8,d�(p)/4)∩�
g(x, y)

(
ωp(B(ξ, d�(p)/4))

d�(p)2 d�(y)n
+
ωp(B(ξ, d�(p)/4))

d�(p) d�(y)n+1

)
dy

.
∫

B(ξ,d�(p)/4)∩�
g(x, y)

ωp(B(ξ, d�(p)/4))
d�(p) d�(y)n+1 dy.

Notice that the integral on the right-hand side above is very similar to the one on the right-hand side of
(5-2). The reader can check that exactly the same arguments and estimates used to prove Lemma 5.2(a)
yield (5-11), with ξ instead of 0, d�(p)/8 instead of R, ωp instead of ω, and g(y, p) instead of u(y).
We leave the details for the reader.

From (5-11) it follows that w0 ∈ Cα/2(�) and it vanishes at ∂�. Further, the function defined by

h0(x)= φ(x)∇g(x, p)−w0(x), x ∈�,

is harmonic in �, because 1w0 = φ ∇g( · , p). Hence, arguing as in (5-9), we derive

φ(x)∇g(x, p)=−
∫
φ(y) K p(y) En(y) dωx(y)+w0(x).

If |x − ξ | ≤ d�(p)/8, then φ(x)= 1 and from the last identity and the inequality (5-11) with ξ = qx , we
deduce (5-10). �

6. The pseudo-blow-up of harmonic measure is surface measure

Let �⊂ Rn+1 be a chord-arc domain. We recall that harmonic measure with either a finite pole p ∈� or
pole at infinity is in the A∞(σ ) class of weights by [David and Jerison 1990] or [Semmes 1990] and thus, the
Poisson kernel dω/dσ exists and is positive and finite. We denote by u either the Green’s function with pole
at p ∈� or with pole at infinity and by h the corresponding Poisson kernel (see (3-2) for pole at infinity).
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6A. Pseudo-blow-ups of chord-arc domains. Here we introduce the notion of pseudo-blow-ups from
[Kenig and Toro 2003], but with a slight modification. Let xi ∈ ∂� and let {ri }i≥1 be a sequence of
positive numbers so that limi→∞ ri = 0. Consider now the domains

�i =
1
ri
(�− xi ),

so that ∂�i = (1/ri )(∂�− xi ), and the functions ui in �i defined by

ui (x)=
g(ri x + xi , pi )

ri ωpi (B(xi , ri ))
σ (B(xi , ri )),

where either pi =∞ or pi ∈�\{xi } satisfies

pi − xi

ri
→∞ as i→∞.

Note that ui vanishes at ∂�i and is harmonic in �i \{(pi − xi )/ri }. We denote by dωi = hi dσi the
harmonic measure of�i with pole at infinity or (pi−xi )/ri depending on the pole of u, where σi =Hn

|∂�i .
Moreover, the corresponding Poisson kernel2 hi satisfies

hi (x)=
h(ri x + xi )

ωpi (B(xi , ri ))
σ (B(xi , ri )).

Theorem 6.1 [Kenig and Toro 2003, Theorem 4.1]. If �⊂ Rn+1 is a chord-arc domain, then there exists
a subsequence satisfying

�i →�∞ in the Hausdorff metric, uniformly on compact sets,

∂�i → ∂�∞ in the Hausdorff metric, uniformly on compact sets,

where �∞ is a chord-arc domain. Moreover, there exists u∞ ∈ C(�∞) such that ui → u∞ uniformly on
compact sets which satisfies (3-1) for �=�∞. Furthermore, ωi → ω∞ weakly as Radon measures and
ω∞ is the harmonic measure of �∞ with pole at infinity (corresponding to u∞).

This was originally shown in [Kenig and Toro 2003] under the assumption that pi is a fixed point and
xi converges to some point in ∂�. However, the same proof gives the result above.

Theorem 6.2. If �∞ ⊂ Rn+1 and u∞ are as in Theorem 6.1, then

sup
z∈�∞
|∇u∞(z)| ≤ 1. (6-1)

Theorem 6.3. If �∞ ⊂ Rn+1 and u∞ and ω∞ are as in Theorem 6.1, then

dω∞
dσ∞

≥ 1, Hn-a.e. on ∂�∞, (6-2)

where σ∞ =Hn
|∂�∞ .

2In fact, this is the Poisson kernel of �i with pole at pi modulo a constant factor.
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Both theorems were proved in [Kenig and Toro 2003, Theorems 4.2 and 4.3] for Reifenberg flat domains
with n-AD regular boundary, although, an inspection of the proofs shows that the same arguments, with
very minor changes, work also for NTA domains with n-AD regular boundary, i.e., for chord-arc domains.

Corollary 6.4. If �∞ ⊂ Rn+1 and u∞ and ω∞ are as in Theorem 6.1, then

|∇u∞| =
dω∞
dσ∞

= 1 Hn-a.e. on ∂�∞. (6-3)

Proof. Combining (3-19) and (6-1) we get that dω∞/dσ∞ ≤ 1 for Hn-a.e. on ∂�∞. Then (6-3) follows
from (6-2). �

Lemma 6.5. The subsequence introduced in Theorem 6.1 satisfies σi ⇀σ∞ weakly as Radon measures.

Proof. This was essentially proved in Theorem 4.4 in [Kenig and Toro 2003]. The only difference is that
instead of invoking [Kenig and Toro 2003, Theorem 2] in the proof, which is particular to the Reifenberg
flat case, we just use Corollary 6.4. �

6B. Blow-downs of unbounded chord-arc domains. In the course of proving our main result we will
need to construct the blow-down domain with respect to a fixed point x0 ∈ ∂� of an unbounded chord-arc
domain � such that dω/dσ = 1 σ -a.e. on ∂� (i.e., ω = σ ). To do so, we let xi = x0 for all i ≥ 1 and a
sequence of positive numbers ri such that limi→∞ ri =∞. Now we take �i and ui as in the construction
of pseudo-blow-ups in Section 6A and p = pi =∞. Then similar (but easier) arguments show that there
exists a chord-arc domain �̃ such that

�i → �̃ in the Hausdorff metric, uniformly on compact sets,

∂�i → ∂�̃ in the Hausdorff metric, uniformly on compact sets.

Moreover, there exists ũ ∈ C(�̃) such that ui → u0 uniformly on compact sets which satisfies

1ũ = 0 in �̃, ũ > 0 in �̃, ũ = 0 in ∂�̃.

7. Application of the monotonicity formula of Weiss: blow-downs are planes in R3

We first introduce the notion of a variational solution of the one-phase free boundary problem in an open
ball B ⊂ Rn+1, 

u ≥ 0 in B,
1u = 0 in B+(u) := B ∩ {u > 0},
|∇u| = 1 on F(u) := ∂B+(u)∩ B.

(7-1)

Definition 7.1. We define u ∈W 1,2
loc (B) to be a variational solution of (7-1) if

(1) u ∈ C(B)∩C2(B+(u)),

(2) χ{u>0} ∈ L1
loc(B) and

(3) the first variation with respect to the functional

F(v) :=
∫

B
(|∇v|2+χ{v>0}) dm (7-2)
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vanishes at v = u; i.e.,

0=−
d
dε

F(u(x + εφ(x)))|ε=0 =

∫
B

[
(|∇u|2+χ{u>0}) divφ− 2∇u Dφ (∇u)T

]
dm (7-3)

for any φ ∈ C∞c (B;R
n+1).

Definition 7.2. We say that u is a weak solution of 1u = Hn(∂{u > 0} ∩ · ) in B if the following are
satisfied:

(1) u ∈W 1,2
loc (B)∩C(B+(u)), u ≥ 0 in B, and u is harmonic in the open set {u > 0}.

(2) Nondegeneracy and regularity: for any open D b B there exist 0< cD ≤ CD <∞ such that for any
B(x, r)⊂ D satisfying x ∈ ∂{u > 0} we have

cD ≤ r−n−1
∫
∂B(x,r)

u dHn
≤ CD. (7-4)

(3) {u > 0} is locally in B a set of finite perimeter and

−

∫
∇u · ∇ζ dm =

∫
∂∗{u>0}

ζ dHn (7-5)

for any ζ ∈ C∞c (B), where ∂∗{u > 0} stands for the reduced boundary of {u > 0}.

Let us now record a useful lemma whose proof is contained in the one of [Weiss 1998, Theorem 5.1].

Lemma 7.3. If u is a weak solution of 1u =Hn(∂{u > 0}∩ · ) in a ball B in the sense of Definition 7.2,
then it is also a variational solution in the ball B in the sense of Definition 7.1.

Lemma 7.4. Assume that �∞ is the blow-up domain and u∞ is the blow-up Green’s function constructed
in Theorem 6.1. If B is a ball centered on ∂{u∞ > 0} = ∂�∞, then the extension by zero of u∞ outside
{u∞ > 0} is a weak solution of 1u =Hn(∂{u > 0} ∩ · ) in B.

Proof. By construction, �∞ = {u∞ > 0}, u∞ > 0 in �∞, u∞ = 0 in ∂�∞, u∞ is harmonic in �∞,
u∞ ∈ C(�∞), and |∇u∞| ≤ 1 in �∞. Therefore, it is trivial to see that its extension by zero in the
complement of �∞ satisfies the condition (1) in Definition 7.2 for the ball B. Notice also that by
Harnack’s inequality at the boundary, if xr is a corkscrew point in B(x, r)∩�∞, it holds that

max
z∈∂B(x,r)∩�∞

u∞(z)= max
z∈B(x,r)∩�∞

u∞(z)≈ u∞(xr ).

Therefore, we have that by (3-8) and Corollary 6.4,

r−n−1
∫
∂B(x,r)

u∞ dHn
≈

Hn(∂B(x, r))
rn+1 u∞(xr )≈

ω∞(B(x, r))
σ∞(B(x, r))

= 1.

Since ∂�∞ is n-AD regular, we have that Hn
|∂�∞ is locally finite, and thus�∞ is of locally finite perimeter

in Rn+1. By the generalized Gauss–Green formula for sets of locally finite perimeter, we infer that∫
∂�∞

ζ dHn
=

∫
∂�∞

ζ dω∞ =
∫
�∞

u∞1ζ dm

=

∫
�∞

div(u∞∇ζ ) dm−
∫
�∞

∇u∞ · ∇ζ dm = 0−
∫
�∞

∇u∞ · ∇ζ dm
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for any ζ ∈ C∞c (R
n). Note that Hn(∂�∞\∂

∗�∞) = 0 in any NTA domain and thus, condition (3) in
Definition 7.2 is satisfied. �

We state without proof a lemma from [Jerison and Kamburov 2016] which allows us to conclude that
any blow-down domain of �∞ is in fact a cone.

Lemma 7.5 [Jerison and Kamburov 2016, Lemma 5.2]. Let u be a variational solution of (7-1) in Rn+1

which is globally Lipschitz. Assume that 0 ∈ F(u) and consider a sequence R j →∞. If the sequence

vj (x)= R−1
j u(Rj x)

converges uniformly on compact sets as j →∞, its limit is Lipschitz continuous and homogeneous of
degree 1.

Lemma 7.6. Assume that �∞ ⊂ Rn+1 is the blow-up domain and u∞ is the blow-up Green’s function
constructed in Theorem 6.1. If x ∈ ∂�∞, then any blow-down domain of �∞ at x is a cone.

By a cone we mean a set F ⊂ Rn+1 such that if x ∈ F, then λx ∈ F for all λ > 0. A conical domain is
a domain which is a cone.

Proof. It follows from Lemmas 7.3, 7.4 and 7.5 in view of Section 6B. �

Lemma 7.7. If �0 ⊂ R3 is a conical two-sided NTA domain in R3 with 2-AD-regular boundary such that
dω0/dσ0 = 1 σ0-a.e. in ∂�0, then �0 is a half-space.

Proof. Since �0 is a conical two-sided NTA domain, the intersection of �0 with the sphere S2 is an
open connected subset of S2, and the interior of its complement should be another open connected set
of S2. Further, as shown in [Caffarelli et al. 2004, Remark 2 and p. 92] by studying the mean curvature of
∂�0 ∩ S2, one deduces that ∂�0 ∩ S2 is a convex curve and �c

0 is a convex cone. One can check that a
convex cone in R3 is a Lipschitz domain, and also its exterior domain. Hence, by the results of Farina
and Valdinoci [2010] (or by arguments analogous to the ones in [Caffarelli et al. 2004, p. 92]), �0 is a
half-space. �

Corollary 7.8. Suppose that �0 is a two-sided NTA domain in R3 with 2-AD-regular boundary such that
dω0/dσ0 = 1 σ0-a.e. in ∂�0. Then, for any x ∈ ∂�0,

lim
r→∞

2∂�0(x, r)= 0.

Proof. This is an immediate consequence of Lemmas 7.6 and 7.7. �

8. The Alt–Caffarelli theorem

The objective of this section is to explain how to prove the following lemma.

Lemma 8.1. Let �0 be an NTA domain in Rn+1 with n-AD-regular boundary with constant C0. Suppose
0 ∈ ∂�0 and

dω0

dσ0
≡ 1 σ0-a.e. in ∂�0. (8-1)
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There exists δ0>0 small enough depending on n, the NTA character of �0, and C0 such that if B= B(0, 1)
satisfies

2∂�0(λB)≤ δ0 for all λ > 1, (8-2)

then �0 is a half-space.

Before turning to the proof of this lemma, notice that an immediate consequence of this and Corollary 7.8
is the following.

Corollary 8.2. Suppose that �0 is a two-sided chord-arc in R3 such that dω0/dσ0 = 1 σ0-a.e. in ∂�0.
Then, �0 is a half-space.

Lemma 8.1 is essentially proven in [Kenig and Toro 2004], which assumes that the domain is Reifenberg
flat. This is a variant of some of the results by Alt and Caffarelli [1981]. In [Kenig and Toro 2004] the
authors also assume in the statement of their theorem that

|∇u0| ≤ χ�, (8-3)

where u0 is its Green function with pole at infinity. However, this estimate is an immediate consequence
of the assumptions of Lemma 8.1, especially (8-1), and Lemma 5.1. Thus, we will only explain how to
read and adjust the proof in [Kenig and Toro 2004] in order to obtain the lemma, adding details where
necessary.

Lemma 8.3. Let � ⊂ Rn+1 be a two-sided C-corkscrew domain so that �ext is also connected. Then
whenever ξ ∈ ∂�, r > 0, and β∂�(ξ, r, P)< 1/(2C) for some n-plane P,

2∂�(ξ, r/2, P)≤ 2β∂�(ξ, r, P) (8-4)

and there are half-spaces H± such that

H+ ∪ H− =
{

y : dist(y, P) > β∂�(ξ, r, P)
}
,

H+ ∩ B(ξ, r)⊂� and H− ∩ B(ξ, r)⊂�ext.

In particular, if πP is the projection onto P, then πP(∂�∩ B(ξ, r))⊇ πP(B(ξ, r/2)).

Proof. Without loss of generality, we assume ξ =0, r=1, so B(ξ, r)=B= B(0, 1). Let ε= β∂�(ξ, r, P).
If (H+ ∪ H−)∩B⊂�, then

�ext ∩B⊂ {y : dist(y, P)≤ ε},

but since � has exterior corkscrews, there must be

B(y, 1/C)⊂ B∩�ext ⊂ {y : dist(y, P)≤ ε},

which is a contradiction for ε < 1/(2C). We also get a contradiction if (H+ ∪ H−)∩B⊂�ext, and so
H± ∩B must be in two different components. Assume H+ ∩B⊂� and H− ⊂�ext. The last part of the
lemma now follows from this, since for any y ∈ πP(B(ξ, r)), the line π−1

P (y) must pass through both
H+ and H−, and thus it must intersect ∂�.
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To prove (8-4) it suffices to show that if x ∈ 1
2 B∩P , then dist(x, ∂�)≤ 2ε. Suppose there is x ∈ 1

2 B∩P
so that B(x, 2ε)⊂ (∂�)c. Then the set

U = B∩ B(x, 2ε)c ∩ {y : dist(y, P) > ε}

is a connected open subset of (∂�)c, and hence U ⊂� or U ⊂�ext. Without loss of generality, we can
assume the former case. Then

�ext ∩B⊂ {y : dist(y, P)≤ ε} ∪ B(x, 2ε).

But by the exterior corkscrew condition, B(y, 1/C)⊂ B∩�ext, which is impossible if ε < 1/(2C). �

The following definition comes from [Kenig and Toro 2004], and it is a variant of one that appears in
[Alt and Caffarelli 1981].

Definition 8.4. Let �⊂ Rn+1 be an NTA domain. Let x0 ∈ ∂�, ρ > 0, σ+, σ ∈ (0, 1), ν ∈Sn, and v be
the Green function with pole at infinity. We say v ∈ F(σ+, σ ) in B(x0, ρ) in the direction ν ∈ Sn if, for
all x ∈ B(x0, ρ),

v(x)= 0 if (x − x0) · ν ≥ σ+ρ (8-5)

and
v(x)≥−(x − x0) · ν− σρ if (x − x0) · ν ≤−σρ. (8-6)

Observe that v ≡ 0 exactly on �c and v > 0 exactly on �, and so

v ∈ F(σ, σ ) in direction ν in B(x0, ρ) implies β∂�(x0, ρ)≤ σ . (8-7)

Indeed, assume x0 = 0, ρ = 1, and note that by (8-5), since v = 0 only when �c, we have that for
x ∈ B(x0, ρ),

{x ∈ B : x · ν ≥ σ } ⊆�c.

By (8-6), if x · ν <−σρ, then
v(x)≥−x · ν− σ > 0

and since v(x) > 0 only when x ∈�,

{x ∈ B : x · ν <−σ } ⊆�.

Since v is continuous, we thus have
β∂�(0, 1) < σ.

Lemma 8.5. Let� be a two-sided NTA domain and v the Green function with pole at infinity. Let x0 ∈ ∂�,
ρ, σ > 0, and ν ∈ Sn. If v ∈ F(σ, 1) in B(x0, ρ) in the direction ν, then v ∈ F(2σ,Cσ) in B(x0, ρ/2) in
the same direction, where C = C(n).

Proof. The proof is exactly the same as in Lemma 0.4 in [Kenig and Toro 2004]. Its proof and that of
Lemma 0.3 in the same paper, upon which it depends, do not require the Reifenberg flat assumption and
the proofs are identical. �
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Lemma 8.6. Let � be a two-sided NTA domain and v the Green function with pole at infinity. There is
some ε0 small enough so that the following holds. Let x0 ∈ ∂�, ρ > 0, and ν ∈ Sn. Given θ ∈ (0, 1),
there is σθ > 0 and η ∈ (0, 1) so that if 0 < σ < σθ and v ∈ F(σ, σ ) in B(x0, ρ) in the direction ν and
β∂�(x0, 2ρ) < ε0, then v ∈ F(θσ, 1) in B(x0, ηρ) in some direction ν ′ such that |ν− ν ′|< Cσ .

Proof. Again, the proof is exactly the same as that of Lemma 0.5 in [Kenig and Toro 2004]. The only time
Kenig and Toro use the Reifenberg flatness assumption is to show that the intersection of a cylinder C
with the boundary (with axis passing through Q0) has projection in the direction of the cylinder equal to
the base of the cylinder (i.e., a ball); see right below equation (0.69) in [Kenig and Toro 2004]. However,
we can just replace this with the assumption that β∂�(x0, 2ρ) < ε0 is small and then apply Lemma 8.3. �

Proof of Lemma 8.1. Let θ ′ ∈ (0, 1/2) and δ0 ∈ (0, σn,θ ′/(8+2C)). Note that (8-2) implies that for r > 1,
there is a plane Pr so that

β∂�(0, r, Pr )≤2∂�(0, r, Pr )≤ δ0. (8-8)

Let Lr = P2r −πP2r (0) and let νr ∈ Sn be a unit vector orthogonal to Lr so that rνr/2 ∈�c. Then

{x ∈ B(0, r) : x · νr>δ0r} ⊆ {x ∈ B(0, r) : dist(x, Lr )>δ0r} ⊆ (∂�)c.

Since {x ∈ B(0, r) : x ·νr > δ0r} and �c are connected and rνr/2 is in their intersection, we actually have

{x ∈ B(0, r) : x · νr > δ0r} ⊆�c.

Hence, v(x)= 0 for x ∈ B(0, r) such that x · ν > δ0r . Furthermore, we trivially have

{x ∈ B(0, r) : x · νr > r} =∅

and thus v∈ F(δ0, 1). Lemma 8.5 implies v∈ F(2δ0,Cδ0) in 1
2rB in the same direction, and so v∈ F(δ, δ)

in 1
2rB, where δ =max{2,C}. Let θ ′ ∈ (0, 1). By Lemma 8.6 and (8-8), there is η′ ∈ (0, 1) (depending

only on θ ′) so that v ∈ F(θ ′δ, 1) in 1
2(η
′r)B. Again, by Lemma 8.5, we have v ∈ F(2θ ′δ,Cθ ′δ) in

1
4(η
′r)B, and hence v ∈ F(θδ, θδ) in ηrB, where θ =max{2θ ′,Cθ ′} and η= 1

4η
′ in the direction of some

vector ν ∈ Sn. By (8-7), we have
β∂�(0, ηr) < θδ.

Iterating, we get that for all m ∈ N,

v ∈ F(θmδ, θmδ) in ηmrB (8-9)

and
2∂�(0, ηmr/2)≤ 2β∂�(0, ηmr)≤ θmδ.

Let 1< s� r and pick m so that ηm+1r ≤ s < ηmr . Then this implies

2∂�(0, s/2)≤ 22∂�(0, ηmr/2)≤ 2θmδ = 2ηlog θ/log ηmδ ≤ 2(η−1sr−1)log θ/log ηδ.

Thus, by sending r→∞, we get 2∂�(0, s/2)= 0. Since this holds for every s > 1, we have that ∂� is
equal to an n-plane, and since � is connected, it must be a half-space. �
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9. The proof of Theorem 1.1

Our arguments are very similar to the ones in [Kenig and Toro 2003]. The only difference is that in our
pseudo-blow-ups we allow the points xi to escape to∞. In this way, we are able to show that the outer
unit normal En belongs to VMO(σ ), not only to VMOloc(σ ). For the reader’s convenience, we replicate
the arguments of [Kenig and Toro 2003] here.

Let
`= lim

r→0
sup

x∈∂�
‖En‖∗(B(x, r)).

We will show `= 0. Let xi ∈ ∂� and ri ↓ 0 be such that

lim
i→∞

(
−

∫
B(xi ,ri )

|En− EnB(xi ,ri )|
2 dσ

)1/2

= `.

Let�i = (1/ri )(�−xi ) and u pi
i , ωpi

i be as in Theorem 6.1. By this theorem, we can pass to a subsequence
so that all these quantities converge to some �∞, u∞, and ω∞. By Lemma 6.5, σi also converges to
σ∞=Hn

|∂�∞ . By Lemma 7.7, �∞ is a half-space (suppose it is Rn+1
+ ) and ω∞=Hn

|Rn . For φ a smooth,
nonnegative, and compactly supported function with φ ≥ χB, and Eni the outer unit normal to ∂�i , we
thus have

lim
i→∞

∫
∂�i∩B

|Eni + en+1|
2 dσi ≤ lim

i→∞

∫
∂�i

φ |Eni + en+1|
2 dσi

= lim
i→∞

(
2
∫
∂�i

φ dσi + 2
∫
∂�i

φ Eni · en+1 dσi

)
= 2

∫
Rn
φ dσ∞+ 2 lim

i→∞

∫
�i

div(φ en+1) dm

= 2
∫

Rn
φ dσ∞+ 2

∫
Rn+1
+

div(φ en+1) dm

= 2
∫

Rn
φ dσ∞− 2

∫
Rn
φ en+1 · en+1 dσ∞ = 0

and hence

`= lim
i→∞

(
−

∫
B(xi ,ri )

|En− EnB(xi ,ri )|
2dσ

)1/2

≤ 2 lim
i→∞

(
−

∫
B(xi ,ri )

|En+ en+1|
2dσ

)1/2

= 0. �

Remark 9.1. The same arguments as above show that Theorem A by Kenig and Toro is valid as stated in
the Introduction. That is, under the assumptions of Theorem A, one deduces that En ∈ VMO(σ ), instead
of the weaker statement En ∈ VMOloc(σ ) proven in [Kenig and Toro 2003].

10. Counterexample for Rd, d ≥ 4

In this section we show that, for all d ≥ 4, there exists a two-sided chord-arc unbounded domain �⊂ Rd

for which the Poisson kernel with pole at infinity is constant and such that the outer unit normal is not
in VMO(σ ). Indeed, Hong [2015, Example 1] constructed u ∈ C(R4) such that u ≥ 0; u(r x)= ru(x),
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r > 0; 1u= 0 in 0={u> 0}; ∂0\{0} is smooth; ∂u/∂ En =−1, where En is the outward unit normal on 0
and u is singular, i.e., u 6= x+1 (modulo rotations). We describe his example in some detail below.

Since u is homogeneous of degree 1, it is determined by its values on the unit sphere S3
⊂ R4. Further,

u solves the following overdetermined first eigenvalue problem on Sd−1 for d = 4:
1Sd−1u+ (d − 1)u = 0 and u > 0 in � := 0 ∩Sd−1,

∂u
∂ En
=−1 and u = 0 in ∂� := ∂0 ∩Sd−1,

u ≡ 0 in �c.

(10-1)

To be more precise, let us consider in S3
⊂ R4 the coordinates

x1 = cos θ cosφ, x2 = cos θ sinφ,

x3 = sin θ cosψ, x4 = sin θ sinψ,
(10-2)

where θ ∈ [0, π/2] and φ,ψ ∈ [0, 2π ]. Let u(θ, φ, ψ)= τ f (θ), where τ > 0 and f is a sufficiently nice
function. To find u that satisfies (10-1), it is enough to solve the ODE{

(sin θ cos θ f ′)′+ sin θ cos θ f = 0, θ ∈ (0, π/2),
f (0)= 1, f ′(0)= 0.

Then it is shown in [Hong 2015] that there exists θ0 ∈ (0, π/2) such that f (θ0) = 0, f ′(θ0) < 0 and
f ′(θ) > 0 for all θ ∈ (0, θ0). If u is defined on S3 by u(θ, φ, ψ)= (−1/ f ′(θ0)) f (θ) for all θ ∈ [0, θ0)

and u ≡ 0 in [θ0, π/2], then v(x)= v(rξ)= ru(ξ), for r > 0 and ξ ∈ S3, is the solution to the one-phase
free boundary problem we are after.

The above-mentioned construction provides us with a domain for which Theorem 1.1 does not hold.
Indeed, let

� :=
{

x ∈ R4
: x = rξ for some ξ ∈ S3 satisfying (10-2) for θ ∈ [0, θ0)

}
= {v > 0},

whose boundary is given by all points x ∈R4 so that x = r ξ for some r > 0 and ξ ∈S3 that satisfies (10-2)
for θ = θ0. Remark here that as v is a homogeneous, degree-1 function and v 6≡ x+1 (under rotation), � is
a cone in R4 but not a half-space. Thus, � is not a Reifenberg flat domain with vanishing constant, which
infers that the outward unit normal En is not in VMO(∂�). Moreover, as the Poisson kernel h=−∂u/∂ En=1,
it is clear that log h ∈ VMO. Therefore, it is enough to show that � is a two-sided chord-arc domain.

To this end, notice that every x ∈ ∂� satisfies the equation x2
1 + x2

2 = cos2 θ0 x2
3 + x2

4 = sin2 θ0 while,
for x ∈�,

x2
1 + x2

2 = cos2 θ > cos2 θ0 and x2
3 + x2

4 = sin2 θ < sin2 θ0.

So � coincides with the set of those points x ∈ R4 such that

x2
1 + x2

2 > (x
2
3 + x2

4) cot2 θ0. (10-3)

Therefore, � is bi-Lipschitz equivalent to the domain {x ∈R4
: x2

1+ x2
2 > x2

3+ x2
4}, which is a well-known

two-sided chord-arc domain. The AD-regularity is easier to see as the boundary is locally a Lipschitz
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graph away from the origin by the implicit function theorem, so it is locally AD-regular, and the fact that
it is a cone easily gives that it is globally Ahlfors regular. Hence, � is also a two-sided chord-arc domain,
which finishes our proof in R4.

If we set D :=�⊗Rd−4
⊂ Rd, where �⊂ R4 is the domain just constructed, then D is a two-sided

chord-arc domain in Rd for which the Poisson kernel is constant and such that the outer unit normal is
not in VMO(σ ).
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FOCUSING QUANTUM MANY-BODY DYNAMICS, II:
THE RIGOROUS DERIVATION OF THE

1D FOCUSING CUBIC NONLINEAR SCHRÖDINGER EQUATION FROM 3D

XUWEN CHEN AND JUSTIN HOLMER

We consider the focusing 3D quantum many-body dynamic which models a dilute Bose gas strongly
confined in two spatial directions. We assume that the microscopic pair interaction is attractive and given
by a3ˇ�1V.aˇ � /, where

R
V 6 0 and a matches the Gross–Pitaevskii scaling condition. We carefully

examine the effects of the fine interplay between the strength of the confining potential and the number of
particles on the 3D N -body dynamic. We overcome the difficulties generated by the attractive interaction
in 3D and establish new focusing energy estimates. We study the corresponding BBGKY hierarchy,
which contains a diverging coefficient as the strength of the confining potential tends to1. We prove
that the limiting structure of the density matrices counterbalances this diverging coefficient. We establish
the convergence of the BBGKY sequence and hence the propagation of chaos for the focusing quantum
many-body system. We derive rigorously the 1D focusing cubic NLS as the mean-field limit of this
3D focusing quantum many-body dynamic and obtain the exact 3D-to-1D coupling constant.
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1. Introduction

Since the experimental achievement of Bose–Einstein condensates (BEC) was reported in [Anderson
et al. 1995; Davis et al. 1995] — a feat for which Cornell, Wieman and Ketterle won the 2001 Nobel
Prize in Physics — the investigation of this new state of matter has become one of the most active areas
of contemporary research. A BEC, first predicted theoretically by Einstein for noninteracting particles
in 1925, is a peculiar gaseous state at which particles of integer spin (bosons) occupy a macroscopic
quantum state.

MSC2010: primary 35Q55, 35A02, 81V70; secondary 35A23, 35B45, 81Q05.
Keywords: 3D focusing many-body Schrödinger equation, 1D focusing nonlinear Schrödinger equation, BBGKY hierarchy,

focusing Gross–Pitaevskii hierarchy.
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Let t 2 R be the time variable and rN D .r1; r2; : : : ; rN / 2 RnN be the position vector of N particles
in Rn. Then, naively, BEC means that, up to a phase factor solely depending on t , the N -body wave
function  N .t; rN / satisfies

 N .t; rN /�

NY
jD1

'.t; rj /

for some one-particle state '. That is, every particle takes the same quantum state. Equivalently, there is
the Penrose–Onsager formulation of BEC: if we let 
 .k/N be the k-particle marginal densities associated
with  N by



.k/
N .t; rkI r

0
k/D

Z
 N .t; rk; rN�k/ N .t; r

0
k; rN�k/ drN�k; rk; r

0
k 2 Rnk; (1)

then BEC equivalently means



.k/
N .t; rkI r

0
k/�

kY
jD1

'.t; rj / N'.t; r
0
j /: (2)

It is widely believed that the cubic nonlinear Schrödinger equation (NLS)

i@t� D L�C�j�j
2�;

whereL is the Laplacian�4 or the Hermite operator�4C!2jxj2, fully describes the one-particle state '
in (2), also called the condensate wave function since it characterizes the whole condensate. Such a belief
is one of the main motivations for studying the cubic NLS. Here, the nonlinear term �j�j2� represents
a strong on-site interaction taken as a mean-field approximation of the pair interactions between the
particles: a repelling interaction gives a positive �, while an attractive interaction yields a �<0. Gross and
Pitaevskii proposed such a description of the many-body effect. Thus the cubic NLS is also called the Gross–
Pitaevskii equation. Because the cubic NLS is a phenomenological equation of mean-field type, naturally,
its validity has to be established rigorously from the many-body system which it is supposed to characterize.

In a series of works [Lieb et al. 2005; Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007;
2009; 2010; T. Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Benedikter et al. 2015; X. Chen
and Holmer 2013; Grillakis and Machedon 2013; Sohinger 2015], it has been proven rigorously that, for
a repelling interaction potential with suitable assumptions, relation (2) holds; moreover, the one-particle
state ' solves the defocusing cubic NLS (� > 0).

It is then natural to ask if BEC happens (whether relation (2) holds) when we have attractive interparticle
interactions and if the condensate wave function ' satisfies a focusing cubic NLS (� < 0) if relation (2)
does hold. In contemporary experiments, both positive [Khaykovich et al. 2002; Strecker et al. 2002] and
negative [Cornish et al. 2000; Donley et al. 2001] results exist. To present the mathematical interpretations
of the experiments, we adopt the notation

ri D .xi ; zi / 2 R2C1

and investigate the procedure of laboratory experiments of BEC subject to attractive interactions according
to [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002].
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Step A. Confine a large number of bosons, whose interactions are originally repelling, inside a trap.
Reduce the temperature of the system so that the many-body system reaches its ground state. It is
expected that this ground state is a BEC state/factorized state. This step then corresponds to the following
mathematical problem:

Problem 1. Show that if  N;0 is the ground state of the N-body Hamiltonian HN;0 defined by

HN;0 D

NX
jD1

�
�4rj C!

2
0;xjxj j

2
C!20;zz

2
j

�
C

X
16i<j6N

1

a3ˇ�1
V0

�
ri � rj

aˇ

�
; (3)

where V0 > 0, then the marginal densities f
 .k/N;0g associated with  N;0, defined in (1), satisfy relation (2).

Here, the quadratic potential !2j � j2 stands for the trapping since [Cornish et al. 2000; Donley et al.
2001; Khaykovich et al. 2002; Strecker et al. 2002] and many other experiments of BEC use the harmonic
trap and measure the strength of the trap with !. We use !0;x to denote the trapping strength in the
x-direction and !0;z to denote the trapping strength in the z-direction, as we will explain later that in
order to have a BEC with attractive interaction, either experimentally or mathematically, it is important to
have !0;x ¤ !0;z . Moreover, we define

1

a
V0;a.r/D

1

a3ˇ�1
V0

�
r

aˇ

�
; ˇ > 0;

to be the interaction potential.1 On the one hand, V0;a is an approximation of the identity as a! 0

and hence matches the Gross–Pitaevskii description that the many-body effect should be modeled by an
on-site strong self-interaction. On the other hand, the extra 1=a is to make sure that the Gross–Pitaevskii
scaling condition is satisfied. This step is exactly the same as the preparation of the experiments with
repelling interactions, and satisfactory answers to Problem 1 have been given in [Lieb et al. 2004].

Step B. Use the property of Feshbach resonance, strengthen the trap (increase !0;x or !0;z) to make the
interaction attractive and observe the evolution of the many-body system. This technique continuously
controls the sign and the size of the interaction in a certain range.2 The system is then time-dependent. In
order to observe BEC, the factorized structure obtained in Step A must be preserved in time. Assuming this
to be the case, we then reset the time so that t D 0 represents the point at which this Feshbach-resonance
phase is complete. The subsequent evolution should then be governed by a focusing time-dependent
N -body Schrödinger equation with an attractive-pair interaction V subject to an asymptotically factorized
initial datum. The confining strengths are different from Step A as well and we denote them by !x and !z .
A mathematically precise statement is the following:

1 From here on, we consider the ˇ > 0 case solely. For ˇ D 0 (the Hartree dynamic), see [Fröhlich et al. 2009; Erdős and
Yau 2001; Knowles and Pickl 2010; Rodnianski and Schlein 2009; Michelangeli and Schlein 2012; Grillakis et al. 2010; 2011;
X. Chen 2012b; Ammari and Nier 2011; 2008; L. Chen et al. 2011].

2 See [Cornish et al. 2000, Figure 1; Khaykovich et al. 2002, Figure 2; Strecker et al. 2002, Figure 1] for graphs of the
relationship between ! and V .
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Problem 2. Let  N .t;xN / be the solution to the N -body Schrödinger equation

i@t N D

NX
jD1

�
�4rj C!

2
xjxj j

2
C!2zz

2
j

�
 N C

X
16i<j6N

1

a3ˇ�1
V

�
ri � rj

aˇ

�
 N ; (4)

where V 6 0, with  N;0 from Step A as initial datum. Prove that the marginal densities f
 .k/N .t/g

associated with  N .t;xN / satisfy relation (2).3

In the experiment [Cornish et al. 2000] by Cornell and Wieman’s group (the JILA group), once
the interaction is turned attractive, the condensate suddenly shrinks to below the resolution limit; then
after � 5ms, the many-body system blows up. That is, there is no BEC once the interaction becomes
attractive. Moreover, there is no condensate wave function due to the absence of the condensate. Hence,
the current NLS theory, which is about the condensate wave function when there is a condensate, cannot
explain this 5ms of time or the blow up. This is currently an open problem in the study of quantum
many-body systems. The JILA group later conducted finer experiments and remarked in [Donley et al.
2001, p. 299] that these are simple systems with dramatic behavior, and this behavior provides puzzling
results when mean-field theory is tested against them.

In [Khaykovich et al. 2002; Strecker et al. 2002], the particles are confined in a strongly anisotropic
cigar-shape trap to simulate a 1D system. That is, !x� !z . In this case, the experiment is a success in
the sense that one obtains a persistent BEC after the interaction is switched to attractive. Moreover, a
soliton is observed in [Khaykovich et al. 2002] and a soliton train is observed in [Strecker et al. 2002].
The solitons in these two works have different motion patterns.

In [X. Chen and Holmer 2016b], we have studied the simplified 1D version of (4) as a model case and
derived the 1D focusing cubic NLS from it. In the present paper, we consider the full 3D problem of (4),
as in the experiments [Khaykovich et al. 2002; Strecker et al. 2002]: We take !z D 0 and let !x!1
in (4). We derive rigorously the 1D cubic focusing NLS directly from a real 3D quantum many-body
system. Here, “directly” means that we are not passing through any 3D cubic NLS. On the one hand, one
infers from the experiment [Cornish et al. 2000] that not only it is very difficult to prove the 3D focusing
NLS as the mean-field limit of a 3D focusing quantum many-body dynamic, but such a limit also may
not be true. On the other hand, the route which first derives

i@t' D�4xC!
2
jxj2' � @2z' � j'j

2' (5)

as anN!1 limit, from the 3DN -body dynamic, and then considers the !!1 limit of (5), corresponds
to the iterated limit (lim!!1 limN!1) of the N -body dynamic; i.e., the 1D focusing cubic NLS coming
from such a path approximates the 3D focusing N -body dynamic when ! is large and N is infinity (if
not substantially larger than !). In experiments, it is fully possible to have N and ! comparable to each
other. In fact, N is about 104 and ! is about 103 in [Görlitz et al. 2001; Stock et al. 2005; Hadzibabic
et al. 2006; Desbuquois et al. 2012]. Moreover, as seen in the experiment [Donley et al. 2001], even if
!x is one digit larger than !z , negative result persists if N is three digits larger than !x . Thus, in this

3 Since ! ¤ !0, V ¤ V0, one could not expect that  N;0, the ground state of (3), is close to the ground state of (4).
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paper, we derive rigorously the 1D focusing cubic NLS as the double limit (limN;!!1) of a real focusing
3D quantum N -body dynamic directly, without passing through any 3D cubic NLS. Furthermore, the
interaction between the two parameters N and ! plays a central role. To be specific, we establish the
following theorem.

Theorem 1.1 (main theorem). Assume that the pair interaction V is an even Schwartz class function which
has a nonpositive integral, i.e.,

R
R3
V.r/ dr 6 0, but may not be negative everywhere. Let  N;!.t; rN /

be the N -body Hamiltonian evolution eitHN;! N;!.0/ with the focusing N -body Hamiltonian HN;!
given by

HN;! D

NX
jD1

.�4rj C!
2
jxj j

2/C
X

16i<j6N

.N!/3ˇ�1V..N!/ˇ .ri � rj // (6)

for some ˇ 2
�
0; 3
7

�
. Let f
 .k/N;!g be the family of marginal densities associated with  N;! . Suppose that

the initial datum  N;!.0/ verifies the following conditions:

(a)  N;!.0/ is normalized; that is, k N;!.0/kL2 D 1,

(b)  N;!.0/ is asymptotically factorized in the sense that

lim
N;!!1

Tr
ˇ̌̌̌
1

!


.1/
N;!

�
0;
x1
p
!
; z1I

x01
p
!
; z01

�
� h.x1/h.x

0
1/�0.z1/�0.z

0
1/

ˇ̌̌̌
D 0 (7)

for some one-particle state �0 2H 1.R/ and h is the normalized ground state for the 2D Hermite
operator �4xCjxj2, i.e., h.x/D ��

1
2 e�

1
2
jxj2.

(c) Away from the x-directional ground-state energy,  N;!.0/ has finite energy per particle:

sup
!;N

1

N

˝
 N;!.0/; .HN;! � 2N!/ N;!.0/

˛
6 C:

Then there exist C1 and C2 which depend solely on V such that 8k > 1, t > 0, and " > 0, we have the
convergence in trace norm (propagation of chaos)

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

�
�

kY
jD1

h.xj /h.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0; (8)

where v1.ˇ/ and v2.ˇ/ are defined by

v1.ˇ/D
ˇ

1�ˇ
; (9)

v2.ˇ/Dmin
�
1�ˇ

ˇ
;

3
5
�ˇ

ˇ� 1
5

1ˇ> 1
5
C1� 1ˇ< 1

5
;

2ˇ

1� 2ˇ
�;

7
8
�ˇ

ˇ

�
(10)

(see Figure 1) and �.t; z/ solves the 1D focusing cubic NLS with the 3D-to-1D coupling constant
b0
�R
jh.x/j4 dx

�
, that is,

i@t� D�@
2
z� � b0

�Z
jh.x/j4 dx

�
j�j2� in R (11)

with initial condition �.0; z/D �0.z/ and b0 D
ˇ̌R
V.r/ dr

ˇ̌
.
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Figure 1. A graph of the various rational functions of ˇ appearing in (9) and (10). In
Theorems 1.1 and 1.2, the limit .N; !/!1 is taken with v1.ˇ/6 logN ! 6 v2.ˇ/. The
region of validity is above the dashed curve and below the solid curves. It is a nonempty
region for 0 < ˇ 6 3

7
. As shown here, there are values of ˇ for which v1.ˇ/6 16 v2.ˇ/,

which allows N � !, as in [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al.
2002; Strecker et al. 2002; Görlitz et al. 2001; Stock et al. 2005; Hadzibabic et al. 2006;
Desbuquois et al. 2012]. Moreover, our result includes part of the ˇ > 1

3
self-interaction

region. We will explain why we call the ˇ > 1
3

case self-interaction later in Introduction.
We remark that it is not a coincidence that three restrictions intersect at ˇ D 1

3
.

Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (main theorem). Assume that the pair interaction V is an even Schwartz class function which
has a nonpositive integral, i.e.,

R
R3
V.r/ dr 6 0, but may not be negative everywhere. Let  N;!.t; rN / be

the N -body Hamiltonian evolution eitHN;! N;!.0/, where the focusing N -body Hamiltonian HN;! is
given by (6) for some ˇ 2

�
0; 3
7

�
. Let f
 .k/N;!g be the family of marginal densities associated with  N;! .

Suppose that the initial datum  N;!.0/ is normalized, asymptotically factorized in the sense of (a) and (b)
of Theorem 1.1 and satisfies the energy condition that

(c0) there is a C > 0 such that˝
 N;!.0/; .HN;! � 2N!/

k N;!.0/
˛
6 C kN k; 8k > 1: (12)

Then there exist C1, C2 which depend solely on V such that 8k > 1, 8t > 0, we have the convergence in
trace norm (propagation of chaos)

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

�
�

kY
jD1

h.xj /h.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0;

where v1.ˇ/ and v2.ˇ/ are given by (9) and (10) and �.t; z/ solves the 1D focusing cubic NLS (11).
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We remark that the assumptions in Theorem 1.1 are reasonable assumptions on the initial datum coming
from Step A. In [Lieb et al. 2004, (1.10)], a satisfying answer has been found by Lieb, Seiringer, and
Yngvason for Step A (Problem 1) in the !0;x�!0;z case. For convenience, set !0;zD 1 in the defocusing
N -body Hamiltonian (3) in Step A. Let scat.W / denote the 3D scattering length of the potential W . By
[Erdős et al. 2007, Lemma A.1], for 0 < ˇ 6 1 and a� 1, we have

scat
�
a �

1

a3ˇ
V

�
r

aˇ

��
�

�
a=.8�/

R
R3
V if 0 < ˇ < 1;

a scat.V / if ˇ D 1:

Lieb et al. [2004, (1.10)] define the quantity g D g.!0;x; N; a/ by

g WD 8�a!0;x

�Z
jh.x/j4 dx

�
:

Then if Ng � 1, they proved in Theorem 5.1 of the same work that BEC happens in Step A and the
Gross–Pitaevskii limit holds.4 To be specific, they proved that

lim
N;!0;x!1

Tr
ˇ̌̌̌
1

!0;x


.1/
N;!0;x

�
0;

x1
p
!0;x

; z1I
x01
p
!0;x

; z01

�
� h.x1/h.x

0
1/�0.z1/�0.z

0
1/

ˇ̌̌̌
D 0

provided that �0 is the minimizer to the 1D defocusing NLS energy functional

ENg D

Z
R

�
j@z�.z/j

2
C z2j�.z/j2C 4�Ngj�.z/j4

�
dz (13)

subject to the constraint k�kL2.R/D1. Hence, the assumptions in Theorem 1.1 are reasonable assumptions
on the initial datum drawn from Step A. To be specific, we have chosen aD .N!/�1 in the interaction
so that Ng � 1 and assumptions (a), (b) and (c) are the conclusions of [Lieb et al. 2004, Theorem 5.1].5

The equivalence of Theorems 1.1 and 1.2 for asymptotically factorized initial data is well known. In
the main part of this paper, we prove Theorem 1.2 in full detail. For completeness, we discuss briefly
how to deduce Theorem 1.1 from Theorem 1.2 in Appendix B.

To our knowledge, Theorems 1.1 and 1.2 offer the first rigorous derivation of the 1D focusing cubic
NLS (11) from the 3D focusing quantum N -body dynamic (6). Moreover, our result covers part of the
ˇ > 1

3
self-interaction region in 3D. As pointed out in [Elgart et al. 2006], the study of Step B is of

particular interest when ˇ 2
�
1
3
; 1
�

in 3D. The reason is the following. The initial datum coming from
Step A is the ground state of (3) with !0;x; !0;z ¤ 0 and hence is localized in space. We can assume
all N particles are in a box of length 1. Let the effective radius of the pair interaction V be R0, then
the effective radius of V..N!/ˇ .ri � rj // is about R0=.N!/ˇ. Thus every particle in the box interacts
with .R0=.N!/ˇ /3 �N other particles. Thus, for ˇ > 1

3
and large N, every particle interacts with only

itself. This exactly matches the Gross–Pitaevskii theory that the many-body effect should be modeled

4 This corresponds to Region 2 of [Lieb et al. 2004]. The other four regions are the ideal gas case, the 1D Thomas–Fermi
case, the Lieb–Liniger case, and the Girardeau–Tonks case. As mentioned on page 388 of that work, BEC is not expected in the
Lieb–Liniger and the Girardeau–Tonks cases, and is an open problem in the Thomas–Fermi case; we deal only with Region 2 in
this paper.

5 We remark that the interaction potential N 3ˇ�1!3ˇV..N!/ˇ .ri � rj //, which looks like a “direct” extension of the
interaction potential from the nD-to-nD work, does not satisfy Ng � 1 in the N;!!1 process.
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by a strong on-site self-interaction. Therefore, for the mathematical justification of the Gross–Pitaevskii
theory, it is of particular interest to prove Theorems 1.1 and 1.2 for self-interaction

�
ˇ > 1

3

�
.

A main tool used to prove Theorem 1.2 is the analysis of the BBGKY hierarchy of�
Q

.k/
N;!.t/D

1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

��N
kD1

as N;! !1. In the classical setting, deriving equations of mean-field type by studying the limit of
the BBGKY hierarchy was proposed by Kac and demonstrated by Lanford’s work on the Boltzmann
equation. In the quantum setting, the usage of the BBGKY hierarchy was suggested by Spohn [1980] and
was proven successful by Elgart, Erdős, Schlein, and Yau in their fundamental papers [Elgart et al. 2006;
Erdős et al. 2006; 2007; 2009; 2010],6 which rigorously derive the 3D cubic defocusing NLS from a
3D quantum many-body dynamic with repulsive-pair interactions and no trapping. The Elgart–Erdös–
Schlein–Yau program7 consists of two principal parts: in one part, they consider the sequence of the
marginal densities f
 .k/N g associated with the Hamiltonian evolution eitHN N .0/, where

HN D

NX
jD1

�4rj C
1

N

X
16i<j6N

N 3ˇV.N ˇ .ri � rj //;

and prove that an appropriate limit, as N !1, solves the 3D Gross–Pitaevskii hierarchy

i@t

.k/
C

kX
jD1

Œ4rk ; 

.k/�D b0

kX
jD1

TrrkC1 Œı.rj � rkC1/; 

.kC1/� for all k > 1: (14)

In another part, they show that hierarchy (14) has a unique solution which is therefore a completely
factorized state. However, the uniqueness theory for hierarchy (14) is surprisingly delicate due to the
fact that it is a system of infinitely many coupled equations over an unbounded number of variables.
By assuming a space-time bound on the limit of f
 .k/N g, Klainerman and Machedon [2008] gave another
uniqueness theorem regarding (14) through a collapsing estimate originating from the multilinear Strichartz
estimates and a board game argument inspired by the Feynman graph argument in [Erdős et al. 2007].

The method by Klainerman and Machedon [2008] was taken up by Kirkpatrick, Schlein, and Staffilani
[Kirkpatrick et al. 2011], who derived the 2D cubic defocusing NLS from the 2D quantum many-body
dynamic; by T. Chen and Pavlović [2011], who considered the 1D and 2D three-body repelling interaction
problem; by X. Chen [2012a; 2013], who investigated the defocusing problem with trapping in 2D and 3D;
and by X. Chen and J. Homer [2013], who proved the effectiveness of the defocusing 3D to 2D reduction
problem. Such a method has also inspired the study of the general existence theory of hierarchy (14); see [T.
Chen et al. 2010; 2012; T. Chen and Pavlović 2010; Gressman et al. 2014; Sohinger and Staffilani 2015].

One main open problem in the uniqueness theory of Klainerman–Machedon type is the verification of
the uniqueness condition in 3D, though it is fully solved in 1D and 2D using trace theorems in [Kirkpatrick
et al. 2011]. For the 3D defocusing problem without traps, T. Chen and Pavlović [2014] showed that,

6 Around the same time, there was the 1D defocusing work [Adami et al. 2007].
7 See [Benedikter et al. 2015; Grillakis and Machedon 2013; Pickl 2011] for different approaches.
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for ˇ 2
�
0; 1
4

�
, the limit of the BBGKY sequence satisfies the uniqueness condition.8 X. Chen [2013]

extended and simplified their method to study the 3D trapping problem for ˇ 2
�
0; 2
7

�
. The ˇ 2

�
0; 2
7

�
result by X. Chen was then extended to ˇ 2

�
0; 2
3

�
using Xb spaces and Littlewood–Paley theory in

[X. Chen and Holmer 2016c] and further to ˇ < 1 in [X. Chen and Holmer 2016a] via correlation
structures and many-body scattering process. The ˇ D 1 case is still open.

Using a version of the quantum de Finetti theorem from [Lewin et al. 2014], T. Chen, Hainzl, Pavlović,
and Seiringer provided an alternative proof to the uniqueness theorem in [Erdős et al. 2007] and showed
that it is an unconditional uniqueness result in the sense of NLS theory. With this method, Sohinger
[2015] derived the 3D defocusing cubic NLS in the periodic case. See also [X. Chen and Smith 2014;
Hong et al. 2015].

Recently, the first step in the mass critical focusing case has been taken in [X. Chen and Holmer 2016d].

Organization of the paper. We first outline the proof of our main theorem, Theorem 1.2, in Section 2.
The components of the proof are in Sections 3, 4, and 5.

The first main part is the proof of the needed focusing energy estimate, stated and proved as Theorem 3.1
in Section 3. The main difficulty in establishing the energy estimate is understanding the interplay between
two parameters N and !. On the one hand, as suggested by the experiments [Cornish et al. 2000; Donley
et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002], in order to have to a tensor product state (BEC)
in this focusing setting, one has to explore “the 1D feature” of the 3D focusing N -body Hamiltonian (6),
which comes from a large !. At the same time, an N too large would allow the 3D effect to dominate, and
one has to avoid this. This suggests that an inequality of the form N v1.ˇ/ 6 ! is a natural requirement.
On the other hand, according to the uncertainty principle, in 3D, as the x-component of the particles’
position becomes more and more determined to be 0, the x-component of the momentum and thus the
energy must blow up. Hence the energy of the system is dominated by its x-directional part, which is
in fact infinity as ! !1. Since the particles are interacting via 3D potential, to avoid the excessive
x-directional energy being transferred to the z-direction, during the N;!!1 process, ! cannot be too
large either. Such a problem is totally new and does not exist in the 1D model [X. Chen and Holmer
2016b]. It suggests that an inequality of the form ! 6N �2.ˇ/ is a natural requirement.

The second main part of the proof is the analysis of the focusing “1�1” BBGKY hierarchy of�
Q

.k/
N;!.t/D

1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

��N
kD1

asN;!!1. With our definition, the sequence of the marginal densities f Q
 .k/N;!g
N
kD1

satisfies the BBGKY
hierarchy

i@t Q

.k/
N;! D !

kX
jD1

Œ��xj Cjxj j
2; Q


.k/
N;! �C

kX
jD1

Œ�@2zj ; Q

.k/
N;! �

C
1

N

X
16i<j6k

ŒVN;!.ri � rj /; Q

.k/
N;! �C

N � k

N

kX
jD1

TrrkC1 ŒVN;!.rj � rkC1/; Q

.kC1/
N;! �;

8 See also [T. Chen and Taliaferro 2014].
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where VN;! is defined in (17). We call it an “1�1” BBGKY hierarchy because it is not clear whether
the term

!Œ��xj Cjxj j
2; Q


.k/
N;! �

tends to a limit as N;! !1. Since Q
 .k/N;! is not a factorized state for t > 0, one cannot expect the
commutator to be zero; though it is zero if Q
 .k/N;! is exactly the limit in (8). This is in strong contrast
with the nD-to-nD work9 [Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007; 2009; 2010; T.
Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Sohinger 2015] in which the formal limit of the
corresponding BBGKY hierarchy is clear. With the aforementioned focusing energy estimate, we find
that this diverging coefficient is counterbalanced by the limiting structure of the density matrices and
establish the weak* compactness and convergence of this focusing BBGKY hierarchy in Sections 4 and 5.

2. Proof of the main theorem

We start by setting up some notation for the rest of the paper. Recall h.x/D ��
1
2 e�

1
2
jxj2 , which is the

ground state for the 2D Hermite operator �4xCjxj2; i.e., it solves .�2��xCjxj2/hD 0. Then the nor-
malized ground-state eigenfunction h!.x/ of�4xC!2jxj2 is given by h!.x/D!

1
2h.!

1
2x/; i.e., it solves

.�2! �4xC!
2
jxj2/h! D 0:

In particular, h1 D h. Noticing that both of the convergences (7) and (8) involve scaling, we introduce
the rescaled solution

Q N;!.t; rN / WD
1

!
1
2
N
 N;!

�
t;
xN
p
!
; zN

�
(15)

and the rescaled Hamiltonian

zHN;! D

� NX
jD1

�@2zj C!.�4xCjxj
2/

�
C
1

N

X
16i<j6N

VN;!.ri � rj /; (16)

where

VN;!.r/DN
3ˇ!3ˇ�1V

�
.N!/ˇ
p
!

x; .N!/ˇz

�
: (17)

Then

. zHN;! Q N;!/.t;xN ; zN /D
1

!
1
2
N
.HN;! N;!/

�
t;
xN
p
!
; zN

�
;

and hence when  N;!.t/ is the Hamiltonian evolution given by (6) and Q N;! is defined by (15), we have

Q N;!.t; rN /D e
it zHN;! Q .0; rN /:

9 Here, “nD-to-nD” means “deriving the nD NLS equation from the nD many-body evolution”.
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If we let f Q
 .k/N;!g
N
kD1

be the marginal densities associated with Q N;! , then f Q
 .k/N;!g
N
kD1

satisfies the “1�1”
focusing BBGKY hierarchy

i@t Q

.k/
N;! D !

kX
jD1

Œ��xj Cjxj j
2; Q


.k/
N;! �C

kX
jD1

Œ�@2zj ; Q

.k/
N;! �

C
1

N

X
16i<j6k

ŒVN;!.ri � rj /; Q

.k/
N;! �C

N � k

N

kX
jD1

TrrkC1 ŒVN;!.rj � rkC1/; Q

.kC1/
N;! �: (18)

We will always take ! > 1. For the rescaled marginals f Q
 .k/N;!g
N
kD1

, we define

zSj WD
�
1� @2zj C!.��xj Cjxj j

2
� 2/

� 1
2 : (19)

Two immediate properties of zSj are the following. On the one hand,

zS2j
�
h1.xj /�.zj /

�
D h1.xj /.1� @

2
zj
/�.zj /

and thus the diverging parameter ! has no consequence when zSj is applied to a tensor product function
h1.xj /�.zj / for which the xj -component rests in the ground state. On the other hand, zSj > 0 as an
operator because ��xj Cjxj j

2� 2> 0.
Now, noticing that the eigenvalues of �4x C !2jxj2 in 2D are f2.l C 1/!g1

lD0
, let Pl! be the

orthogonal projection onto the eigenspace associated with eigenvalue 2.lC 1/!. That is, I D
P1
lD0 Pl! ,

where I is the identity operator on L2.R3/. As a matter of notation for our multicoordinate problem,
P
j

l!
will refer to the projection in xj -coordinate at energy 2.l C 1/!; i.e.,

I D

kY
jD1

� 1X
lD0

P
j

l!

�
: (20)

In (20), I is the identity operator on L2.R3k/. In particular, when ! D 1, we use simply Pl . That is, P0
denotes the orthogonal projection onto the ground state of ��xCjxj2 and P>1 means the orthogonal
projection onto all higher-energy modes of��xCjxj2 so that I DP0CP>1, where I WL2.R3/!L2.R3/.
Since we will only use P0 and P>1 for the ! D 1 case, we define Pj0 and Pj1 to be respectively P0 and
P>1 acting on the xj -variable, and

P˛ D P1˛1 � � � P
k
˛k

(21)

for a k-tuple ˛ D .˛1; : : : ; ˛k/ with j̨ 2 f0; 1g and adopt the notation j˛j D ˛1C � � �C˛k . Then

I D
X
˛

P˛; (22)

where I W L2.R3k/! L2.R3k/.
We next introduce an appropriate topology on the density matrices, as was previously done in [Elgart

et al. 2006; Erdős and Yau 2001; Erdős et al. 2006; 2007; 2009; 2010; Kirkpatrick et al. 2011; T. Chen
and Pavlović 2011; X. Chen 2012a; 2013; X. Chen and Holmer 2013; 2016b; 2016c; Sohinger 2015].



600 XUWEN CHEN AND JUSTIN HOLMER

Denote the spaces of compact operators and trace class operators on L2.R3k/ as Kk and L1
k

, respectively.
Then .Kk/0 D L1

k
. By the fact that Kk is separable, we pick a dense countable subset

fJ
.k/
i gi>1 � Kk

in the unit ball of Kk (so kJ .k/i kop 6 1, where k � kop is the operator norm). For 
 .k/1 ; 

.k/
2 2 L

1
k

, we then
define a metric dk on L1

k
by

dk.

.k/
1 ; 


.k/
2 /D

1X
iD1

2�i
ˇ̌
TrJ .k/i .


.k/
1 � 


.k/
2 /

ˇ̌
:

A uniformly bounded sequence Q
 .k/N;! 2 L
1
k

converges to Q
 .k/ 2 L1
k

with respect to the weak* topology if
and only if

lim
N;!!1

dk. Q

.k/
N;! ; Q


.k//D 0:

For fixed T > 0, let C.Œ0; T �;L1
k
/ be the space of functions of t 2 Œ0; T � with values in L1

k
which are

continuous with respect to the metric dk . On C.Œ0; T �;L1
k
/, we define the metric

Odk.

.k/. � /; Q
 .k/. � //D sup

t2Œ0;T �

dk.

.k/.t/; Q
 .k/.t//;

and denote by �prod the topology on the space
L
k>1 C.Œ0; T �;L

1
k
/ given by the product of topologies

generated by the metrics Odk on C.Œ0; T �;L1
k
/.

With the above topology on the space of marginal densities, we prove Theorem 1.2. The proof is
divided into five steps.

Step I (focusing energy estimate). We first establish, via an elaborate calculation in Theorem 3.1, that
one can compensate for the negativity of the interaction in the focusing many-body Hamiltonian (6) by
adding a product of N and some constant ˛ depending on V , provided that C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/,
where C1 and C2 depend solely on V . Henceforth, though HN;! is not positive-definite, we derive, from
the energy condition (12), an H 1-type energy bound:

˝
 N;! ; .˛CN

�1HN;! � 2!/
k N;!

˛
> C k





 kY
jD1

Sj N;!





2
L2.R3N /

;

where
Sj WD

�
1��xj C!

2
jxj j

2
� 2! � @2zj

� 1
2:

Since the quantity
˝
 N;! ; .HN;! � 2N!/

k N;!
˛

is conserved by the evolution, via Corollary 3.2, we
deduce the a priori bounds, crucial to the analysis of the “1�1” BBGKY hierarchy (18), on the scaled
marginal densities,

sup
t

Tr
� kY
jD1

zSj

�
Q

.k/
N;!

� kY
jD1

zSj

�
6 C k; sup

t
Tr

kY
jD1

.1�4rj / Q

.k/
N;! 6 C

k;

sup
t

TrP˛ Q

.k/
N;!Pˇ 6 C

k!�
1
2
j˛j� 1

2
jˇ j;
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where P˛ and Pˇ are defined as in (21). We remark that the quantity

Tr.1�4r1/ Q

.1/
N;!

is not the one-particle kinetic energy of the system; the one-particle kinetic energy of the system is
Tr.1�!4x1 � @

2
z1
/ Q

.1/
N;! and grows like !. This is also in contrast to the nD-to-nD work,

Step II (compactness of BBGKY). We fix T > 0 and work in the time interval t 2 Œ0; T �. In Theorem 4.1,
we establish the compactness of the BBGKY sequence

˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
�
L
k>1 C.Œ0; T �;L

1
k
/

with respect to the product topology �prod even though hierarchy (18) contains attractive interactions and
an indefinite1�1. Moreover, in Corollary 4.2, we prove that, to be compatible with the energy bound
obtained in Step I, every limit point �.t/D f Q
 .k/g1

kD1
must take the form

Q
 .k/
�
t; .xk; zk/I .x

0
k; z
0
k/
�
D

� kY
jD1

h1.xj /h1.x
0
j /

�
Q
 .k/z .t; zkI z

0
k/;

where Q
 .k/z D Trx Q
 .k/ is the z-component of Q
 .k/.

Step III (limit points of BBGKY satisfy GP). In Theorem 5.1, we prove that if �.t/ D f Q
 .k/g1
kD1

is a C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
with respect to the product

topology �prod, then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to the focusing coupled Gross–Pitaevskii (GP)
hierarchy subject to initial data Q
 .k/z .0/D j�0ih�0j

˝k with coupling constant b0 D
ˇ̌R
V.r/ dr

ˇ̌
, which,

written in differential form, is

i@t Q

.k/
z D

kX
jD1

Œ�@2zj ; Q

.k/
z �� b0

kX
jD1

TrzkC1 TrxŒı.rj � rkC1/; Q

.kC1/�: (23)

Together with the limiting structure concluded in Corollary 4.2, we can further deduce f Q
 .k/z DTrx Q
 .k/g1kD1
is a solution to the 1D focusing GP hierarchy subject to initial data Q
 .k/z .0/D j�0ih�0j

˝k with coupling
constant b0

�R
jh1.x/j

4 dx
�
, which, written in differential form, is

i@t Q

.k/
z D

kX
jD1

Œ�@2zj ; Q

.k/
z �� b0

�Z
jh1.x/j

4 dx

� kX
jD1

TrzkC1 Œı.zj � zkC1/; Q

.kC1/
z �: (24)

Step IV (GP has a unique solution). When Q
 .k/z .0/ D j�0ih�0j
˝k, we know one solution to the 1D

focusing GP hierarchy (24), namely j�ih�j˝k if � solves the 1D focusing NLS (11). Since we have
proven the a priori bound,

sup
t

Tr
� kY
jD1

h@zj i

�
Q
 .k/z

� kY
jD1

h@zj i

�
6 C k:

A trace theorem then shows that f Q
 .k/z g verifies the requirement of the following uniqueness theorem and
hence we conclude that Q
 .k/z D j�ih�j

˝k.
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Theorem 2.1 [X. Chen and Holmer 2016b, Theorem 1.3]. 10Let

Bj;kC1

.kC1/
z D TrzkC1 Œı.zj � zkC1/; 


.kC1/
z �:

If f
 .k/z g
1
kD1

solves the 1D focusing GP hierarchy (24) subject to zero initial data and the space-time
bound11 Z T

0





� kY
jD1

h@zj i
"
h@z0

j
i
"

�
Bj;kC1


.kC1/
z .t; � I � /






L2

z;z0

dt 6 C k (25)

for some "; C > 0 and all 16 j 6 k, then 8k; t 2 Œ0; T �, we have 
 .kC1/z D 0.

Thus the compact sequence
˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
has only one C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit

point, namely

Q
 .k/ D

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /:

We then infer from the definition of the topology that as trace class operators

Q

.k/
N;!!

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j / weak*.

Step V (weak* convergence upgraded to strong). Since the limit concluded in Step IV is an orthogonal
projection, the well-known argument in [Erdős et al. 2010] upgrades the weak* convergence to strong. In
fact, testing the sequence against the compact observable

J .k/ D

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /;

and noticing the fact that . Q
 .k/N;!/
2 6 Q
 .k/N;! since the initial data is normalized, we see that as Hilbert–

Schmidt operators,

Q

.k/
N;!!

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j / strongly.

Since Tr Q
 .k/N;! D Tr Q
 .k/, we deduce the strong convergence

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
Q

.k/
N;!.t;xk; zkIx

0
k; z
0
k/�

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0

via Grümm’s convergence theorem [Simon 2005, Theorem 2.19].12

10 For other uniqueness theorems or related estimates regarding the GP hierarchies, see [Erdős et al. 2007; Klainerman and
Machedon 2008; Kirkpatrick et al. 2011; Grillakis and Margetis 2008; X. Chen 2011; 2012a; Beckner 2014; Gressman et al.
2014; T. Chen et al. 2015; Hong et al. 2015; Sohinger 2015]

11 Though the space-time bound (25) follows from a simple trace theorem here, verifying such a condition in 3D is highly
nontrivial and is merely partially solved so far. See [T. Chen and Pavlović 2014; X. Chen 2013; X. Chen and Holmer 2016c].

12 One can also use the argument in [X. Chen 2013, Appendix A] to conclude the convergence with general datum.
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3. Focusing energy estimate

We find it more convenient to prove the energy estimate for  N;! and then convert it by scaling to an
estimate for Q N;! ; see (15). Note that, as an operator, we have the positivity

��xj C!
2
jxj j

2
� 2! > 0:

Define

Sj WD
�
1��xj C!

2
jxj j

2
� 2! � @2zj

� 1
2 D

�
1� 2! ��rj C!

2
jxj j

2
� 1
2;

and write

S .k/ D

kY
jD1

Sj :

Theorem 3.1 (energy estimate). For ˇ 2
�
0; 3
7

�
, let13

vE .ˇ/Dmin
�
1�ˇ

ˇ
;

3
5
�ˇ

ˇ� 1
5

1ˇ> 1
5
C1� 1ˇ< 1

5
;

7
8
�ˇ

ˇ

�
: (26)

There are constants14 C1 D C1.kV kL1 ; kV kL1/, C2 D C2.kV kL1 ; kV kL1/, and absolute constant C3,
and for each k 2 N, there is an integer N0.k/, such that for any k 2 N, N >N0.k/ and ! which satisfy

C1N
v1.ˇ/ 6 ! 6 C2N vE.ˇ/; (27)

there holds ˝
.˛CN�1HN;! � 2!/

k ;  
˛
>
1

2k

�
kS .k/ k2

L2
CN�1kS1S

.k�1/ k2
L2

�
; (28)

where

˛ D C3kV k
2
L1
C 1:

Proof. For smoothness of presentation, we postpone the proof to Section 3. �

Recall the rescaled operator (19),

zSj D
�
1� @2zj C!.��xj Cjxj j

2
� 2/

� 1
2 :

We notice that

.Sj /.t;xN ; zN /D !
N=2. zSj Q /.t;

p
!xN ; zN /

if Q N;! is defined via (15). Thus we can convert the conclusion of Theorem 3.1 into statements about
Q N;! , zSj , and Q
 .k/N;! , which we will utilize in the rest of the paper.

13 One notices that vE .ˇ/ is different from v2.ˇ/ in the sense that the term 2ˇ=.1� 2ˇ/� is missing. That restriction comes
from Theorem 5.1.

14 By absolute constant we mean a constant independent of V , N , !, etc. Formulas for C1, C2 in terms of kV kL1 , kV kL1
can, in principle, be extracted from the proof.



604 XUWEN CHEN AND JUSTIN HOLMER

Corollary 3.2. Define

zS .k/ D

kY
jD1

zSj ; L.k/ D

kY
jD1

hrrj i:

Assume C1N v1.ˇ/ 6 ! 6 C2N vE.ˇ/. Let Q N;!.t/D eit
zHN;! Q N;!.0/ and f Q
 .k/N;!.t/g be the associated

marginal densities. Then for all ! > 1, k > 0, N large enough, we have the uniform-in-time bound

Tr zS .k/ Q
 .k/N;!
zS .k/ D k zS .k/ Q N;!.t/k

2
L2.R3N /

6 C k: (29)

Consequently,

TrL.k/ Q
 .k/N;!L
.k/
D kL.k/ Q N;!.t/k

2
L2.R3N /

6 C k; (30)

and

kP˛ Q N;!kL2.R3N / 6 C k!�
1
2
j˛j; jTrP˛ Q


.k/
N;!Pˇ j6 C

k!�
1
2
j˛j� 1

2
jˇ j; (31)

where P˛ and Pˇ are defined as in (21).

Proof. Substituting (15) into estimate (28) and rescaling, we obtain

k zS .k/ Q N;!.t/k
2
L2.R3N /

6 C k
˝
Q N;!.t/; .˛CN

�1 zHN;! � 2!/
k Q N;!.t/

˛
:

The quantity on the right-hand side is conserved; therefore

k zS .k/ Q N;!.t/k
2
L2.R3N /

D C k
˝
Q N;!.0/; .˛CN

�1 zHN;! � 2!/
k Q N;!.0/

˛
:

Applying the binomial theorem twice,

k zS .k/ Q N;!.t/k
2
L2.R3N /

6 C k
kX

jD0

�k
j

�
˛j
˝
Q N;!.0/; .N

�1 zHN;! � 2!/
k�j Q N;!.0/

˛
6 C k

kX
jD0

�k
j

�
˛j .C /k�j

D C k.˛CC/k 6 zC k;

where we used condition (12) in the second-to-last line. So we have proved (29). Putting (29) and
(70) together, estimate (30) then follows.15 The first inequality of (31) follows from (29) and (72). By
Lemma A.5,

TrP˛ Q

.k/
N;!Pˇ D hP˛ Q N;! ;Pˇ Q N;!i;

so the second inequality of (31) follows by Cauchy–Schwarz. �

15 We remark that, though L.k/ 6 3k zS .k/, it is not true that L.k/ 6 C kS .k/ for any C independent of ! because of the
ground-state case.
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Proof of the focusing energy estimate. Note that

N�1HN;! � 2! DN
�1

NX
iD1

.��ri C!
2
jxi j

2
� 2!/CN�2!�1

X
16i<j6N

VN!.ri � rj /;

where we have used the notation16

VN!.r/D .N!/
3ˇV..N!/ˇ r/:

Define

HKij D .˛��ri C!
2
jxi j

2
� 2!/C .˛��rj C!

2
jxj j

2
� 2!/;

where the K stands for “kinetic” and

HI ij D !
�1VN!ij D !

�1VN!.ri � rj /;

where the I is for “interaction”. If we write

Hij DHKij CHI ij ;

then

˛CN�1HN;! � 2! D
1
2
N�2

X
16i¤j6N

Hij DN
�2

X
16i<j6N

Hij : (32)

We will first prove Theorem 3.1 for k D 1 and k D 2. Then, by a two-step induction (result known for k
implies result for kC 2), we establish the general case. Before we proceed, we prove some estimates
regarding the Hermite operator.

Estimates needed to prove Theorem 3.1.

Lemma 3.3. Recall that Pl! is the orthogonal projection onto the eigenspace of �4xC!2jxj2 associ-
ated with eigenvalue 2.l C 1/!. There is a constant independent of l and ! such that

kPl!f kL1x 6 C!
1
2 kf kL2x : (33)

Proof. This estimate has more than one proof. It is a special result in 2D. It does not follow from the
Strichartz estimates. For a modern argument which proves the estimate for general, at most quadratic
potentials, see [Koch and Tataru 2005, Corollary 2.2]. In the special case of the quantum harmonic
oscillator, one can also use a special property of 2D Hermite projection kernels to yield a direct proof
without using Littlewood–Paley theory — see [Thangavelu 1993, Lemma 3.2.2; X. Chen 2011, Remark 8].

�

Lemma 3.4. There is an absolute constant C3 > 0 and a constant C1 D C.kV kL1 ; kV kL1/ such that if

! > C1N
ˇ
1�ˇ

16 We remind the reader that this VN! is different from VN;! defined in (17).
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then

1

!

Z
jVN!.r1� r2/jj .r1; r2/j

2 dr1

6 1
100

˝
 .r1; r2/; .��r1 C!

2
jx1j

2
� 2!/ .r1; r2/

˛
r1
CC3kV k

2
L1
k .r1; r2/k

2
L2r1
: (34)

The above estimate is performed in one coordinate only (taken to be r1), and the other coordinate r2 is
effectively “frozen”. In particular, let

f .r2; : : : ; rN /D

Z
jVN!.r1� r2/jj 1.r1; : : : ; rN /jj 2.r1; : : : ; rN /j dr1:

Then

f .r2; : : : ; rN /. !kS1 1.r1; : : : ; rN /kL2r1kS1 2.r1; : : : ; rN /kL2r1 : (35)

The implicit constant in the . is an absolute constant times kV kL1 CkV kL1 .

Proof. By Cauchy–Schwarz,Z
jVN!12jj 1jj 2j dr1 6

�Z
jVN!12jj 1j

2 dr1

�1
2
�Z
jVN!12jj 2j

2 dr1

�1
2

:

Thus, assuming (34) and using the facts

S21 > 1; S21 > .��r1 C!
2
jx1j

2
� 2!/;

we obtain (35). So we only need to prove (34).
Taking Pl! to be the projection onto the x1-component at the moment, we decompose  into ground

state, middle energies, and high energies as follows:

 D P0! C

e�1X
`D1

Pl! CP>e! ;

where e is an integer, and the optimal choice of e is determined below. It then suffices to bound

Alow WD
1

!

Z
jVN!.r1� r2/jjP0! .r1; r2/j

2 dr1; (36)

Amid WD
1

!

Z
jVN!.r1� r2/j

ˇ̌̌̌e�1X
lD2

Pl! .r1; r2/

ˇ̌̌̌2
dr1; (37)

Ahigh WD
1

!

Z
jVN!.r1� r2/jjP>e! .r1; r2/j

2 dr1: (38)

For each estimate, we will only work in the r1 D .x1; z1/ component, and thus will not even write the
r2-variable. First we consider (36):

Alow 6
1

!
kVN!kL1 kP0! k

2
L1x L

1
z
:
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By the standard 1D Sobolev-type estimate,

Alow .
1

!
kV kL1 kP0!@z kL1x L2z kP0! kL1x L2z :

Then using the estimate (33), we get

Alow . kV kL1 kP0!@z kL2r kP0! kL2r
. kV kL1 k@z kL2 k kL2

. �k@z k2L2 C
1

�
kV k2

L1
k k2

L2
:

Since .��r C!2jxj2� 2!/ is a sum of two positive operators, namely ��xC!2jxj2� 2! and �@2z ,
we conclude the estimate for Alow.

Now consider the middle harmonic energies given by (37). We aim to estimate Amid. For any l > 1,
we have

kPl! kL1z L1x 6 kPl!@z k
1
2

L2zL
1
x

kPl! k
1
2

L2zL
1
x

:

By (33),

kPl! kL1z L1x . !
1
2 kPl!@z k

1
2

L2zL
2
x

kPl! k
1
2

L2zL
2
x

D !
1
4 kPl!@z k

1
2

L2

�
kPl! kL2l

1
2!

1
2

� 1
2 l�

1
4

D !
1
4 kPl!@z k

1
2

L2r



Pl!.��xC!2jxj2� 2!/ 12 

 12L2 l� 14 :
Summing over 16 l 6 e� 1, and using the Hölder inequality with exponents 4, 4, and 2, we get

e�1X
lD1

kPl! kL1z L1x . !
1
4

�e�1X
`D1

kPl!@z k
2
L2

�1
4
�e�1X
lD1



Pl!.��xC!2jxj2�2!/ 12 

2L2�14� eX
lD1

l�
1
2

� 1
2

. !
1
4 e

1
4 k@z k

1
2

L2



.��xC!2jxj2�2!/ 12 

 12L2 :
Applying this to estimate (37),

Amid . !�
1
2 e

1
2 kV kL1 k@z kL2



.��xC!2jxj2� 2!/ 12 

L2 :
Take e to be the largest integer so that !�

1
2 e

1
2 kV kL1 6 �, i.e.,

e D

�
�2

kV k2
L1

!

�
; (39)

and then we have

Amid . �k@z k2L2 C �


.��xC!2jxj2� 2!/ 12 

2L2 :
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For (38),
Ahigh . !�1kVN!kL1 kP>e! k

2
L2

. !�2e�1kVN!kL1


e 12! 1

2P>e! 


2
L2

. !�2e�1.N!/3ˇkV kL1


.��xC!2jxj2� 2!/ 12 

2L2 :

We need
!�2e�1.N!/3ˇkV kL1 6 �:

Substituting the specification of e given by (39), we obtain

!�2.N!/3ˇ 6
e�

kV kL1
6

�3

kV kL1 kV k
2
L1

!;

which is

N 3ˇ!3ˇ�3 6
�3

kV k2
L1
kV kL1

:

That is, ! > C1N
ˇ
1�ˇ as required in the statement of Lemma 3.4. �

In the following lemma, we have excited-state estimates and ground-state estimates, and the ground-state
estimates are weaker (they involve a loss of !

1
2 ).

Lemma 3.5. Taking  D  .r/, we have the “excited-state” estimate

k!
1
2P>1! kL2 C



!jxjP>1! 



L2
CkrrP>1! kL2 . kS kL2 ; (40)

and the “ground-state” estimate

k!
1
2P0! kL2 C



!jxjP0! 

L2 CkrxP0! kL2 . ! 1
2 k kL2 : (41)

We are, however, spared from the !
1
2 loss when working only with the z-derivative:

k@zP0! kL2 . kS kL2 : (42)

Putting the excited-state and ground-state estimates together gives

k!
1
2 kL2 C



!jxj 


L2
Ckrr kL2 . !

1
2 kS kL2 : (43)

Proof. For the excited-state estimates, we note

06
˝
P>1! ; .��xC!

2
jxj2� 4!/P>1! 

˛
:

Adding 3
2
k@zP>1! k

2
L2
C
1
2
krxP>1! k

2
L2
C
1
2



!jxjP>1! 


2
L2
Ck!

1
2P>1! k

2
L2

to both sides, we get

3
2
k@zP>1! k

2
L2
C
1
2
krxP>1! k

2
L2
C
1
2



!jxjP>1! 


2
L2
Ck!

1
2P>1! k

2
L2

6 3
2

˝
P>1! ; .��r C!

2
jxj2� 2!/P>1! 

˛
:

This proves (40).



FOCUSING QUANTUM MANY-BODY DYNAMICS, II 609

For the ground-state estimate (41), it suffices to prove

!jxjP0! 

L2 CkrxP0! kL2 . C! 1
2 k kL2 ;

because
k!

1
2P0! kL2 D !

1
2 kP0! kL2 6 !

1
2 k kL2 :

We notice that 

!jxjf 


L2
Ckrxf kL2 �



.�4xC!2jxj2/ 12f 

L2 :
This estimate has been proved by many authors (see, for example, [Thangavelu 1993]), but is usually
known as a scattering space † estimate for PDE analysts. Then, since the eigenvalue for the ground-state
Gaussian is exactly 2! in 2D, we have

.�4xC!2jxj2/ 12P0! 

L2 Dp2! 1

2 kP0! kL2 6
p
2!

1
2 k kL2 :

So we have proved (41).
For (42), we notice that

k@zP0! kL2 D kP0!.@z /kL2 6 k@z kL2 . kS kL2 : �

Lemma 3.6. We have the estimates

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2N

1
4 kS1 2k

1
2

L2

�
N�

1
4 kS21 2k

1
2

L2

�
; (44)

jVN!12j 12S1P 1>1! 2

L2r1 .N 1

2
ˇC 1

2!
1
2
ˇ
�
N�

1
2 kS21 2kL2r1

�
: (45)

In particular, if ! > C1N
ˇ
1�ˇ thenZ

r1

jVN!12jj 1jjS1 2j dr1

. !N
1
4 kS1 1kL2 kS1 2k

1
2

L2
N�

1
4 kS21 2k

1
2

L2
C .N!/

1
2
ˇC 1

2 kS1 1kL2N
� 1
2 kS21 2kL2 : (46)

Proof. To prove (46), substituting  2 D P 10! 2CP
1
>1! 2, we obtainZ

r1

jVN!12jj 1jjS1 2j dr1 . F1CF2;

where
F1 D

Z
r1

jVN!12jj 1jjP
1
0!S1 2j dr1

6


jVN!12j 12 1

L2r1

jVN!12j 12P 10!S1 2

L2r1
6 !

1
2 kS1 1kL2r1



jVN!12j 12P 10!S1 2

L2r1 ;
F2 D

Z
r1

jVN!12jj 1jjP
1
>1!S1 2j dr1

6 !
1
2 kS1 1kL2r1



jVN!12j 12P 1>1!S1 2

L2r1
by Cauchy–Schwarz and estimate (35). Hence we only need to prove (44) and (45).
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On the one hand, using the fact that P 10!S1 D .1� @
2
z1
/
1
2P 10! ,

jVN!12j 12S1P 10! 2

L2r1 D 

jVN!12j 12 .1� @2z1/ 12P 10! 2

L2r1

6 kVN!12k
1
2

L1r1
k.1� @2z1/

1
2P 10! 2kL1r1

:

By Sobolev in z1 and the estimate (33) in x1,

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2 k.1� @2z1/

1
2 2k

1
2

L2r1
k.1� @2z1/ 2k

1
2

L2r1
:

That is, we get (44):

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2N

1
4 kS1 2k

1
2

L2

�
N�

1
4 kS21 2k

1
2

L2

�
:

On the other hand,

jVN!12j 12S1P 1>1! 2

L2r1 . 

jVN!12j 12

L3 kP 1>1!S1 2kL6r1
. .N!/

1
2
ˇ
kS21 2kL2r1

DN
1
2
ˇC 1

2!
1
2
ˇ
�
N�

1
2 kS21 2kL2r1

�
;

which is (45). �

The k D 1 case. Recalling (32),˝
 ; .˛CN�1HN;! � 2!/ 

˛
D

1
2
N�2

X
16i¤j6N

hHij ; i D
1
2
hH12 ; i;

where the second equality follows by symmetry. Hence we need to prove

hH12 ; i> kS1 k2L2 : (47)

We prove (47) with the following lemma.

Lemma 3.7. Recall ˛D C3kV k2L2C1. If ! > C1N
ˇ
1�ˇ and  j .r1; r2/D j .r2; r1/ for j D 1; 2, thenˇ̌

hH12 1;  2ir1r2
ˇ̌
. kS1 1kL2r1r2 kS1 2kL2r1r2 : (48)

Moreover,

kS1 k
2
L2
6 hH12 ; i6 CkS1 k2L2 : (49)

Proof. By Cauchy–Schwarz and (34),ˇ̌
h 1;HI12 2ir1r2

ˇ̌
D !�1

ˇ̌
hVN!12 1;  2i

ˇ̌
.
�
!�1

Z
jVN!12jj 1j

2

�1
2
�
!�1

Z
jVN!12jj 2j

2

�1
2

. kS1 1kL2 kS1 2kL2 :
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Thus ˇ̌
hH12 1;  2ir1r2

ˇ̌
6
ˇ̌
hHK12 1;  2ir1r2

ˇ̌
C
ˇ̌
hHI12 1;  2ir1r2

ˇ̌
. kS1 1kL2r1r2 kS1 2kL2r1r2 ;

which is (48). It remains to prove the first inequality in (49).
On the one hand, by (34), we have the lower bound for the potential term,

�
1
100

˝
 ; .��r1 C!

2
jx1j

2
� 2!/ 

˛
r1r2
�C3kV k

2
L1
k k2

L2r1r2
6 !�1hVN!12 ; ir1r2 :

Adding
˝
 ; .˛��r1C!

2jx1j
2�2!/ 

˛
r1r2

to both sides and noticing the trivial inequalities ˛�C3kV k2L2D
1> 1

2
and 99

100
> 1
2

, we have

1
2

˝
 ; .1��r1 C!

2
jx1j

2
� 2!/ 

˛
r1r2
6
˝
 ;
�
˛��r1 C!

2
jx1j

2
� 2!C!�1VN!12

�
 
˛
r1r2

: (50)

On the other hand, we trivially have

1
2

˝
 ; .1��r2 C!

2
jx2j

2
� 2!/ 

˛
r1r2
6
˝
 ; .˛��r2 C!

2
jx2j

2
� 2!/ 

˛
r1r2

(51)

because ˛ > 1
2

.
Adding estimates (50) and (51) together, we have

1
2
h ; S21 iC

1
2
h ; S22 i6 hH12 ; i:

By symmetry in r1 and r2, this is precisely (49). �

The k D 2 case. The k D 2 energy estimate is the lower bound

1
4

�
hS21S

2
2 ; iCN

�1
hS41 ; i

�
6
˝
.˛CN�1H � 2!/2 ;  

˛
:

We will prove it under the hypothesis

N
ˇ
1�ˇ 6 ! 6Nmin . 1�ˇ

ˇ
;2/:

We substitute into (32) to obtain˝
.˛CN�1H � 2!/2 ;  

˛
D

1
4
N�4

X
16i1¤j16N
16i2¤j26N

hHi1j1Hi2j2 ;  i D A1CA2CA3;

where

� A1 consists of those terms with fi1; j1g\ fi2; j2g D¿,

� A2 consists of those terms with
ˇ̌
fi1; j1g\ fi2; j2g

ˇ̌
D 1,

� A3 consists of those terms with
ˇ̌
fi1; j1g\ fi2; j2g

ˇ̌
D 2.

By symmetry, we have
A1 D

1
4
hH12H34 ; i;

A2 D
1
2
N�1hH12H23 ; i;

A3 D
1
2
N�2hH12H12 ; i:
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We discard A3 since A3 > 0. By the analysis used in the k D 1 case,

A1 > 1
4
kS1S3 k

2
L2
:

The main piece of work in the k D 2 case is to estimate A2. Substituting H12 D HK12 CHI12 and
H23 DHK23CHI23, we obtain the expansion

A2 D B0CB1CB2;

where
B0 D

1
2
N�1hHK12HK23 ; i;

B1 D
1
2
N�1hHK12HI23 ; iC

1
2
N�1hHI12HK23 ; i;

B2 D
1
2
N�1hHI12HI23 ; i:

Let � D ˛� 1> 0. First note that

B0 D
1
2
N�1

˝
.S21 CS

2
2 C 2�/.S

2
2 CS

2
3 C 2�/ ;  

˛
:

Since S21 , S22 , S23 all commute,

B0 > 1
2
N�1hS42 ; i;

which is a component of the claimed lower bound.
Next, we consider B1. By symmetry

B1 DN
�1 RehHK12HI23 ; i:

Since every term in B1 is estimated, we do not drop the imaginary part. Decompose I D P 20!CP
2
>1! in

the right factor of  as

B1 D B10CB11CB12;

where
B10 D .N!/

�1
˝
Œ.2˛� 1/CS21 �VN!23 ;  

˛
;

B11 D .N!/
�1
˝
.��r2 C!

2
jx2j

2
� 2!/VN!23 ; P

2
0! 

˛
;

B12 D .N!/
�1
˝
.��r2 C!

2
jx2j

2
� 2!/VN!23 ; P

2
>1! 

˛
:

The term B10 is the simplest. In fact, by estimate (35) at the r2-coordinate, we have

jB10j D
ˇ̌
.N!/�1

˝
Œ.2˛� 1/CS21 �VN!23 ;  

˛ˇ̌
.N�1

�
kS2 k

2
L2
CkS1S2 k

2
L2

�
:

For B12, we consider the four terms separately:

B12 D B121CB122CB123CB124;
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where
B121 D .N!/

ˇ�1
˝
.rV /N!23 ; rr2P

2
>1! 

˛
;

B122 D .N!/
�1
˝
VN!23rr2 ; rr2P

2
>1! 

˛
;

B123 D .N!/
�1
˝
VN!23!jx2j ; !jx2jP

2
>1! 

˛
;

B124 D�2.N!/
�1
˝
VN!23!

1
2 ; !

1
2P 2>1! 

˛
:

By (35) applied with r1 replaced by r3, we obtain

jB121j. .N!/ˇ�1!kS3 kL2


rr2P 2>1!S3 

L2 :

By (40),

jB121j. .N!/ˇ�1!kS3 kL2 kS2S3 kL2 ;

which yields the requirement ! 6N
1�ˇ
ˇ . By (35) applied with r1 replaced by r3, we obtain

jB122j. .N!/�1!krr2S3 kL2


rr2P>1!S3 




L2
:

Utilizing (43) for the krr2S3 kL2 term and (40) for the krr2P>1!S3 kL2 term,

jB122j. .N!/�1!
3
2 kS2S3k

2
L2
:

This requires ! 6 N 2. The terms B123 and B124 are estimated in the same way as B122, yielding the
requirement ! 6N 2. This completes the treatment of B12.

For B11, we move the operator .��r2 C !
2jx2j

2 � 2!/ over to the right, and use the fact that
.��r2 C!

2jx2j
2� 2!/P 20! D�@

2
z2
P 20! to obtain

B11 D B111CB112;

where
B111 D .N!/

ˇ�1
˝
.@zV /N!23 ; @z2P

2
0! 

˛
;

B112 D .N!/
�1
˝
VN!23@z2 ; @z2P

2
0! 

˛
:

By (35) applied with r1 replaced by r3, we obtain

jB111j. .N!/ˇ�1!kS3 kL2 k@z2P
2
0!S3 kL2 :

Using (42) for the k@z2P
2
0!S3 kL2 term (which saves us from the !

1
2 loss),

jB111j. .N!/ˇ�1!kS3 kL2 kS2S3 kL2 ;

which again requires that ! 6N
1�ˇ
ˇ . By (35) applied with r1 replaced by r3, we obtain

jB112j. .N!/�1!k@z2S3 kL2 k@z2P
2
0!S3 kL2 :

Using (42),

jB112j. .N!/�1!kS2S3 k2L2 ;
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which has no requirement on !. This completes the treatment of B11, and hence also B1. Now let us
consider B2:

B2 DN
�1!�2hVN!12VN!23 ;  i;

jB2j6N�1!�2
Z
jVN!23j

�Z
r1

jVN!12jj .r1; : : : ; rN /j
2 dr1

�
dr2 � � � drN :

In the parentheses, apply estimate (35) in the r1-coordinate to obtain

jB2j.N�1!�2!
Z
r2;:::;rN

jVN!23jkS1 k
2
L2r1

dr2 � � � drN :

By Fubini, the right-hand side is equal to

N�1!�2!

Z
r1

�Z
r2;:::;rN

jVN!23jjS1 .r1; : : : ; rN /j
2 dr2 � � � drN

�
dr1:

In the parentheses, apply estimate (35) in the r2-coordinate to obtain

jB2j.N�1!�2!2kS1S2 k2L2 :

Hence B2 is bounded without additional restriction on !. Therefore we end the proof for the k D 2 case.

The k case implies the kC 2 case. We assume that (28) holds for k. Applying it with  replaced by
.˛CN�1HN;! � 2!/ ,

1

2k



S .k/.˛CN�1HN;! � 2!/ 

L2 6 ˝.˛CN�1HN;! � 2!/kC2 ;  ˛:
Hence, to prove (28) in the case kC 2, it suffices to prove

1
4

�
kS .kC2/ k2

L2
CN�1kS1S

.kC1/ k2
L2

�
6


S .k/.˛CN�1HN;! � 2!/ 

2L2 : (52)

To prove (52), we substitute (32) into˝
S .k/.˛CN�1HN;! � 2!/ ; S

.k/.˛CN�1HN;! � 2!/ 
˛
;

which gives
N�4

X
16i1<j16N
16i2<j26N

hS .k/Hi1j1 ; S
.k/Hi2j2 i:

We decompose into three terms
E1CE2CE3

according to the location of i1 and i2 relative to k. We place no restriction on j1, j2 (other than i1 < j1,
i2 < j2):

� E1 consists of those terms for which i1 6 k and i2 6 k.

� E2 consists of those terms for which both i1 > k and i2 > k.

� E3 consists of those terms for which either (i1 6 k and i2 > k) or (i1 > k and i2 < k).
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We have E1 > 0, and we discard this term. We extract the key lower bound from E2 exactly as in the
k D 2 case. In fact, inside E2, we know Hi1j1 and Hi2j2 commute with S .k/ because j1 > i1 > k and
j2 > i2 > k; hence we indeed face the k D 2 case again. This leaves us with E3:

E3 D 2N
�4

X
16i1<j16N
16i2<j26N
i16k;i2>k

RehS .k/Hi1j1 ; S
.k/Hi2j2 i:

We decompose E3 as
E3 DD1CD2CD3;

where, in each case we require i1 6 k and i2 > k, but make the additional distinctions as follows:

� D1 consists of those terms where j1 6 k.

� D2 consists of those terms where j1 > k and j1 2 fi2; j2g.

� D3 consists of those terms where j1 > k and j1 … fi2; j2g.

By symmetry,

D1 D k
2N�2

˝
S1 � � �SkH12 ; S1 � � �SkH.kC1/.kC2/ 

˛
;

D2 D kN
�2
˝
S1 � � �SkH1.kC1/ ; S1 � � �SkH.kC1/.kC2/ 

˛
;

D3 DN
�1
˝
S1 � � �SkH1.kC1/ ; S1 � � �SkH.kC2/.kC3/ 

˛
:

We begin with estimates for the term D1. We decompose it as

D1 DD11CD12;

where
D11 DN

�2
˝
H.kC1/.kC2/ŒS1S2;H12�S3 � � �Sk ; S1 � � �Sk 

˛
;

D12 DN
�2
˝
H.kC1/.kC2/H12S1 � � �Sk ; S1 � � �Sk 

˛
:

By Lemmas 3.7 and A.3, D12 is positive because H.kC1/.kC2/ and H12 commutes. Therefore we
discard D12. For D11, we take ŒVN!12; S1S2�� .N!/2ˇ .�V /N!12. This gives

jD11j.N 2ˇ�2!2ˇ�1
˝
H.kC1/.kC2/.�V /N!12S3 � � �Sk ; S1 � � �Sk 

˛
:

By using Lemma 3.7 in the rkC1-coordinate to handle H.kC1/.kC2/, we have

jD11j.N 2ˇ�2!2ˇ�1


j.�V /N!12j 12S3 � � �SkC1 

L2 

j.�V /N!12j 12S1 � � �SkC1 

L2 :

Using (35) in the first factor,

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2



j.�V /N!12j 12S1 � � �SkC1 

L2 :
Decomposing  in the second factor into P 10! CP

1
>1! gives

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2

�
�

j.�V /N!12j 12S1 � � �SkC1P 10! 

L2 C 

j.�V /N!12j 12S1 � � �SkC1P 1>1! 

L2�:
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Applying Lemma 3.6,

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2!

1
2N

1
4 kS1 � � �SkC1 k

1
2

L2

�
N�

1
4 kS21 � � �SkC1 k

1
2

L2

�
CN 2ˇ�2!2ˇ�

1
2 kS1S3 � � �SkC1 kL2N

ˇ
2
C 1
2!

ˇ
2

�
N�

1
2 kS21 � � �SkC1 kL2

�
:

The coefficients simplify to N 2ˇ� 7
4!2ˇ and N

5
2
ˇ� 3

2!
5
2
ˇ� 1

2 . This gives the constraints

! 6N
7=4�2ˇ
2ˇ and ! 6N

3=5�ˇ
ˇ�1=5 :

The second one is the worst one. When combined with the lower bound N
ˇ
1�ˇ 6 !, it restricts us to

ˇ 6 3
7

. Moreover, at ˇ D 2
5

, the relation ! DN is within the allowable range.
We now find estimates for the term D2. We write

D2 DD21CD22;

where
D21 DN

�2
hH.kC1/.kC2/ŒS1;H1.kC1/�S2 � � �Sk ; S1 � � �Sk i;

D22 DN
�2
hH.kC1/.kC2/H1.kC1/S1 � � �Sk ; S1 � � �Sk i:

Let us begin with D21. We use

ŒS1;H1.kC1/�� .N!/
ˇ!�1.rV /N!1.kC1/

and
H.kC1/.kC2/ D 2� CS

2
kC1CS

2
kC2C!

�1VN!.kC1/.kC2/

to get
D21 DD210CD211CD212CD213;

where

D210 D 2�N
�1.N!/ˇ�1

˝
.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D211 DN
�1.N!/ˇ�1

˝
S2kC1.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D212 DN
�1.N!/ˇ�1

˝
S2kC2.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D213 DN
�2.N!/ˇ!�2

˝
VN!.kC1/.kC2/.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
:

For D211,

D211 DN
�1.N!/ˇ�1

˝
ŒSkC1; .rV /Nw1.kC1/�S2 � � �Sk ; S1 � � �Sk 

˛
CN�1.N!/ˇ�1

˝
.rV /Nw1.kC1/S2 � � �SkSkC1 ; S1 � � �Sk 

˛
:

The first piece is estimated the same way as D11. For the second term, using Lemma 3.6 in the r1-
coordinate,

j � j.N�1.N!/ˇ�1!N
1
4 kS1 � � �SkC1 kL2 kS1 � � �Sk k

1
2

L2

�
N�

1
4 kS1S1 � � �Sk kL2

�
CN�1.N!/ˇ�1.N!/

1
2
ˇC 1

2 kS1 � � �SkC1 kL2
�
N�

1
2 kS1S1 � � �Sk kL2

�
;
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which gives the conditions ! 6N
7=4�ˇ

ˇ and ! 6N
3�3ˇ

3ˇ�1. Since this results in conditions better than those
produced for D11, we neglect them.

For D213, we apply estimate (35) in the rkC2-coordinate and again in the rkC1-coordinate to obtain

jD213j.N�2.N!/ˇ!�2!2kS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

This gives the requirement ! 6N
2�ˇ
ˇ , which is clearly weaker than ! 6N

1�ˇ
ˇ , so we drop it. The terms

D210 and D212 are estimated in the same way. In fact, utilizing estimate (35) in the rkC1-coordinate
yields

jD210j.N�1.N!/ˇ�1!kS2 � � �Sk kL2 kS1 � � �Sk kL2 ;

jD212j.N�1.N!/ˇ�1!kS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

They give the same weaker condition ! 6N
2�ˇ
ˇ .

We now turn to D22. Since H.kC1/.kC2/ and H1.kC1/ do not commute, we cannot directly quote
Lemma 3.7 and conclude it is positive. We estimate it. By the definition of Hij , we only need to look at
the terms

D220 DN
�2!�1

˝
�VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D221 DN
�2!�1

˝
S2kC1VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D222 DN
�2!�1

˝
S2kC2VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D223 DN
�2!�2

˝
VN!.kC1/.kC2/VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D224 DN
�2!�1

˝
�VN!.kC1/.kC2/S1 � � �Sk ; S1 � � �Sk 

˛
;

D225 DN
�2!�1

˝
VN!.kC1/.kC2/S

2
1S1 � � �Sk ; S1 � � �Sk 

˛
;

D226 DN
�2!�1

˝
VN!.kC1/.kC2/S

2
kC1S1 � � �Sk ; S1 � � �Sk 

˛
because all the other terms inside the expansion of D22 are positive. It is easy to tell the following:
the terms D220 and D224 can be estimated in the same way as D210, the terms D221 and D226 can be
estimated in the same way as D211, the terms D222 and D225 can be estimated in the same way as D212,
and the term D223 can be estimated in the same way as D213. Moreover, all the D22 terms are better
than the corresponding D21 terms since they do not have a .N!/ˇ in front of them. Hence, we get no
new restrictions from D22 and we conclude the estimate for D22.

We now find estimates for the term D3. Commuting terms as usual,

D3 DD31CD32;

where
D31 DN

�1
˝
H.kC2/.kC3/ŒS1;H1.kC1/�S2 � � �Sk ; S1 � � �Sk 

˛
;

D32 DN
�1
˝
H.kC2/.kC3/H1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
:

Since H.kC2/.kC3/ and H1.kC1/ commute, D32 is positive due to Lemmas 3.7 and A.3. Thus we
discard D32. For D31, we use that

ŒS1;H1.kC1/�� .N!/
ˇ!�1.rV /N!1.kC1/
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together with estimate (35) in the rkC1-coordinate (to handle ŒS1;H1.kC1/�) and Lemma 3.7 in the
rkC2-coordinate (to handle H.kC2/.kC3/):

jD31j.N�1.N!/ˇkS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

This term again yields to the restriction

! 6N
1�ˇ
ˇ :

So far, we have proved that all the terms in E3 can be absorbed into the key lower bound exacted from
E2 for all N large enough as long as C1N v1.ˇ/ 6 ! 6 C2N vE.ˇ/. Hence we have finished the two-step
induction argument and established Theorem 3.1.

4. Compactness of the BBGKY sequence

Theorem 4.1. Assume C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/. Then the sequence˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
�

M
k>1

C.Œ0; T �;L1k/;

which satisfies the focusing “1�1” BBGKY hierarchy (18), is compact with respect to the product
topology �prod. For any limit point �.t/D f Q
 .k/gN

kD1
, we have Q
 .k/ is a symmetric nonnegative trace class

operator with trace bounded by 1.

Proof. By the standard diagonalization argument, it suffices to show the compactness of Q
 .k/N;! for fixed k
with respect to the metric Odk . By the Arzelà–Ascoli theorem, this is equivalent to the equicontinuity
of Q
 .k/N;! . By [Erdős et al. 2010, Lemma 6.2], it suffices to prove that for every test function J .k/ from a
dense subset of K.L2.R3k// and for every " > 0, there exists ı.J .k/; "/ such that for all t1; t2 2 Œ0; T �
with jt1� t2j6 ı, we can write

sup
N;!

ˇ̌
TrJ .k/ Q
 .k/N;!.t1/�TrJ .k/ Q
 .k/N;!.t2/

ˇ̌
6 ": (53)

Here, we assume that our compact operators J .k/ have been cut off in frequency as in Lemma A.6.
Assume t1 6 t2. Inserting the decomposition (22) on the left and right sides of 
 .k/N;! , we obtain

Q

.k/
N;! D

X
˛;ˇ

P˛ Q

.k/
N;!Pˇ ;

where the sum is taken over all k-tuples ˛ and ˇ of the type described in (22).
To establish (53) it suffices to prove that, for each ˛ and ˇ, we have

sup
N;!

ˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/

ˇ̌
6 ": (54)

To this end, we establish the estimateˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/

ˇ̌
. C jt2� t1j

�
1˛D0 and ˇD0Cmax.1; !1�

1
2
jaj� 1

2
jˇ j/1˛¤0 or ˇ¤0

�
: (55)
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At a glance, (55) seems not quite enough in the j˛j D 0 and jˇj D 1 case (or vice versa) because it grows
in !. However, we can also prove the (comparatively simpler) boundˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. !�

1
2
j˛j� 1

2
jˇ j; (56)

which provides a better power of ! but no gain as t2! t1. Interpolating between (55) and (56) in the
j˛j D 0 and jˇj D 1 case (or vice versa), we acquireˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. jt2� t1j

1
2 ;

which suffices to establish (54).
Below, we prove (55) and (56). We first prove (55). The BBGKY hierarchy (18) yields

@t TrJ .k/P˛ Q

.k/
N;!Pˇ D IC IIC IIIC IV, (57)

where

ID�i!
kX

jD1

TrJ .k/
�
��xj Cjxj j

2; P˛ Q

.k/
N;!Pˇ

�
;

IID�i
kX

jD1

TrJ .k/
�
�@2zj ; P˛ Q


.k/
N;!Pˇ

�
;

IIID
�i

N

X
16i<j6k

TrJ .k/P˛
�
VN;!.ri � rj /; Q


.k/
N;!

�
Pˇ ;

IVD�i
N � k

N

kX
jD1

TrJ .k/P˛
�
VN;!.rj � rkC1/; Q


.kC1/
N;!

�
Pˇ :

We first consider I. When ˛ D ˇ D 0,

ID�i!
kX

jD1

TrJ .k/
�
��xjCjxj j

2; P0 Q

.k/
N;!P0

�
D�i!

kX
jD1

TrJ .k/
�
�2��xjCjxj j

2; P0 Q

.k/
N;!P0

�
D 0;

since constants commute with everything. When ˛ ¤ 0 or ˇ ¤ 0, we apply Lemma A.5 and integrate by
parts to obtain

jIj6 !
kX

jD1

ˇ̌
hJ .k/HjP˛ Q N;! ;Pˇ Q N;!i � hJ .k/P˛ Q N;! ; HjPˇ Q N;!i

ˇ̌

6 !
kX

jD1

�ˇ̌
hJ .k/HjP˛ Q N;! ; Pˇ Q N;!i

ˇ̌
C
ˇ̌
hHjJ

.k/P˛ Q N;! ; Pˇ Q N;!i
ˇ̌�
;
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where Hj D��xj Cjxj j
2. Hence

jIj. !
kX

jD1

�
kJ .k/Hj kopCkHjJ

.k/
kop
�
kP˛ Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N /:

By the energy estimate (31),

jIj D 0; if ˛ D 0 and ˇ D 0;

jIj. Ck;J .k/!1�
1
2
j˛j� 1

2
jˇ j; otherwise:

(58)

Next, consider II. Proceeding as in I, we have

jIIj6
kX

jD1

�ˇ̌
hJ .k/@2zjP˛ Q N;! ; Pˇ Q N;!i

ˇ̌
C
ˇ̌
h@2zj J

.k/P˛ Q N;! ; Pˇ Q N;!i
ˇ̌�
:

That is,

jIIj6
kX

jD1

�
kJ .k/@2zj kopCk@

2
zj
J .k/kop

�
kP˛ Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N / 6 Ck;J .k/ : (59)

Now, consider III:

jIIIj6N�1
X

16i<j6k

ˇ̌
hJ .k/P˛VN;!.ri � rj / Q N;! ; Pˇ Q N;!i

ˇ̌
CN�1

X
16i<j6k

ˇ̌
hJ .k/P˛ Q N;! ; PˇVN;!.ri � rj / Q N;!i

ˇ̌
:

That is,

jIIIj6N�1
X

16i<j6k

ˇ̌
hJ .k/P˛LiLjWijLiLj Q N;! ; Pˇ Q N;!i

ˇ̌
CN�1

X
16i<j6k

ˇ̌
hJ .k/P˛ Q N;! ; PˇLiLjWijLiLj Q N;!i

ˇ̌
if we write Li D .1��ri /

1
2 and

Wij D L
�1
i L�1j VN;!.ri � rj /L

�1
i L�1j :

Hence

jIIIj6N�1
X

16i<j6k

kJ .k/LiLj kopkWij kopkLiLj Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N /

CN�1
X

16i<j6k

kLiLjJ
.k/
kopkWij kopkLiLj Q N;!kL2.R3N /kP˛ Q N;!kL2.R3N /:

Since kWij kop . kVN;!kL1 D kV kL1 (independent of N, !) by Lemma A.1, the energy estimates
(Corollary 3.2) imply that

jIIIj.
Ck;J .k/

N
: (60)
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Apply the same ideas to IV:

jIVj6
kX

jD1

ˇ̌
hJ .k/P˛LjLkC1Wj.kC1/LjLkC1 Q N;! ; Pˇ Q N;!ij

C

kX
jD1

ˇ̌
hJ .k/P˛ Q N;! ; PˇLjLkC1Wj.kC1/LjLkC1 Q N;!i

ˇ̌
:

Then, since J .k/LkC1 D LkC1J .k/,

jIVj6
kX

jD1

�
kJ .k/Lj kopCkLjJ

.k/
kop
�
kWj.kC1/kopkLjLkC1 Q N;!kL2.R3N /kLj Q N;!kL2.R3N /

. Ck;J .k/ : (61)

Integrating (57) from t1 to t2 and applying the bounds obtained in (58)–(61), we obtain (55).
Finally, we prove (56). By Lemma A.5,ˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
6 2sup

t

ˇ̌
hJ .k/P˛ Q N;!.t/; Pˇ Q N;!.t/i

ˇ̌
. kJ .k/kopkP˛ Q N;!.t/kL2.R3N /kPˇ Q N;!.t/kL2.R3N /I

that is, ˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. !�

1
2
j˛j� 1

2
jˇ j

once we apply (31). �

With Theorem 4.1, we can start talking about the limit points of
˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
. With the

proofs of [X. Chen and Holmer 2013, Theorem 5 and Corollary 2], we arrive at the following corollary
and theorem.

Corollary 4.2. Let �.t/ D f Q
 .k/g1
kD1

be a limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
, with respect to the

product topology �prod. Then Q
 .k/ satisfies the a priori bound

TrL.k/ Q
 .k/L.k/ 6 C k (62)

and takes the structure

Q
 .k/
�
t; .xk; zk/I .x

0
k; z
0
k/
�
D

� kY
jD1

h1.xj /h1.x
0
j /

�
Q
 .k/z .t; zkI z

0
k/; (63)

where Q
 .k/z D Trx Q
 .k/.

Theorem 4.3. Assume C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/. Then the sequence˚
�z;N;!.t/D f Q


.k/
z;N;! D Trx Q


.k/
N;!g

N
kD1

	
�

M
k>1

C
�
Œ0; T �;L1k.R

k/
�

is compact with respect to the one-dimensional version of the product topology �prod used in Theorem 4.1.
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5. Limit points satisfy GP hierarchy

Theorem 5.1. Let �.t/ D f Q
 .k/g1
kD1

be a C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit point of
˚
�N;!.t/ D

f Q

.k/
N;!g

N
kD1

	
with respect to the product topology �prod. Then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to

the coupled focusing Gross–Pitaevskii hierarchy (23) subject to initial data Q
 .k/z .0/D j�0ih�0j
˝k with

coupling constant b0 D j
R
V.r/ dr j, which, rewritten in integral form, is

Q
 .k/z D U
.k/.t/ Q
 .k/z .0/C ib0

kX
jD1

Z t

0

U .k/.t � s/TrzkC1 Trx
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds; (64)

where U .k/.t/D
kQ

jD1

e
it@2zj e

�it@2
z0
j .

Remark. The proof of Theorem 5.1 is a bit special for the focusing case and is dimension- and scaling-
dependent. So it does not follow from the 3D to 2D defocusing case [X. Chen and Holmer 2013,
Theorem 4].

Proof. Passing to subsequences if necessary, we have

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

sup
t

TrJ .k/
�
Q

.k/
N;!.t/� Q


.k/.t/
�
D 0 8J .k/ 2 K.L2.R3k//;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

sup
t

TrJ .k/z

�
Q

.k/
z;N;!.t/� Q


.k/
z .t/

�
D 0 8J .k/z 2 K.L2.Rk//

(65)

via Theorems 4.1 and 4.3.
To establish (64), it suffices to test the limit point against the test functions J .k/z 2 K.L2.Rk//, as in

the proof of Theorem 4.3. We will prove that the limit point satisfies

TrJ .k/z Q
 .k/z .0/D TrJ .k/z j�0ih�0j
˝k (66)

and

TrJ .k/z Q
 .k/z .t/D TrJ .k/z U .k/.t/ Q
 .k/z .0/C ib0

kX
jD1

Z t

0

TrJ .k/z U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds:

(67)
To this end, we use the coupled focusing BBGKY hierarchy satisfied by Q
 .k/z;N;! , which, written in the
form needed here, is

TrJ .k/z Q

.k/
z;N;!.t/D AC

i

N

kX
i<j

BC i

�
1�

k

N

� kX
jD1

D;

where
AD TrJ .k/z U .k/.t/ Q


.k/
z;N;!.0/;

B D

Z t

0

TrJ .k/z U .k/.t � s/
�
�VN;!.ri � rj /; Q


.k/
N;!.s/

�
ds;

D D

Z t

0

TrJ .k/z U .k/.t � s/
�
�VN;!.rj � rkC1/; Q


.kC1/
N;! .s/

�
ds:
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By (65), we know

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

TrJ .k/z Q

.k/
z;N;!.t/D TrJ .k/z Q
 .k/z .t/;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

TrJ .k/z U .k/.t/ Q

.k/
z;N;!.0/D TrJ .k/z U .k/.t/ Q
 .k/z .0/:

With the argument in [Lieb et al. 2005, p. 64], we infer, from assumption (b) of Theorem 1.1,

Q

.1/
N;!.0/! jh1˝�0ihh1˝�0j strongly in trace norm;

that is,

Q

.k/
N;!.0/! jh1˝�0ihh1˝�0j

˝k strongly in trace norm.

Thus we have checked (66), the left-hand side of (67), and the first term on the right-hand side of (67) for
the limit point. We are left to prove that

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

B

N
D 0;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

�
1�

k

N

�
D D b0

Z t

0

J .k/x U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds:

We first use an argument similar to the estimates of II and III in the proof of Theorem 4.3 to prove that
jBj and jDj are bounded for every finite time t . In fact, since U .k/ is a unitary operator which commutes
with Fourier multipliers, we have

jBj6
Z t

0

ˇ̌
TrJ .k/z U .k/.t � s/

�
VN;!.ri � rj /; Q


.k/
N;!.s/

�ˇ̌
ds

D

Z t

0

dsjTrL�1i L�1j J .k/z LiLjU
.k/.t � s/WijLiLj Q


.k/
N;!.s/LiLj

�TrLiLjJ .k/z L�1i L�1j U .k/.t � s/LiLj Q

.k/
N;!.s/LiLjWij j

6
Z t

0

dskL�1i L�1j J .k/z LiLj kopkU
.k/
kopkWij kTrLiLj Q


.k/
N;!.s/LiLj

C

Z t

0

dskLiLjJ
.k/
z L�1i L�1j kopkU

.k/
kopkWij kTrLiLj Q


.k/
N;!.s/LiLj

6 CJ t:

That is,

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

B

N
D lim

N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

kD

N
D 0:
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We now use Lemma A.2 (stated and proved in Appendix A), which compares the ı-function and its
approximation, to prove

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

D D b0

Z t

0

TrJ .k/z U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds: (68)

Pick a probability measure � 2L1.R3/ and define �˛.r/D ˛�3�.r=˛/. Letting M .k/
s�t D J

.k/
z U .k/.t � s/,

we haveˇ̌
TrJ .k/z U .k/.t � s/

�
�VN;!.rj � rkC1/ Q


.kC1/
N;! .s/� b0ı.rj � rkC1/ Q


.kC1/.s/
�ˇ̌
D IC IIC IIIC IV;

where

ID
ˇ̌
TrM .k/

s�t

�
�VN;!.rj � rkC1/� b0ı.rj � rkC1/

�
Q

.kC1/
N;! .s/

ˇ̌
;

IID b0
ˇ̌
TrM .k/

s�t

�
ı.rj � rkC1/� �˛.rj � rkC1/

�
Q

.kC1/
N;! .s/

ˇ̌
;

IIID b0
ˇ̌
TrM .k/

s�t�˛.rj � rkC1/
�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌
;

IVD b0
ˇ̌
TrM .k/

s�t

�
�˛.rj � rkC1/� ı.rj � rkC1/

�
Q
 .kC1/.s/

ˇ̌
:

Consider I. Writing V!.r/D .1=!/V.x=
p
!; z/, we have VN;! D .N!/3ˇV!..N!/ˇ r/. Lemma A.2

then yields

I6
Cb0

.N!/ˇ�

�Z
jV!.r/jjr j

� dr

��
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
LjLkC1 Q


.kC1/
N;! .s/LjLkC1

D CJ

�R
jV!.r/jjr j

� dr

�
.N!/ˇ�

:

Notice that
�R
jV!.r/jjr j

� dr
�

grows like .
p
!/�, so

I 6 CJ
� p

!

.N!/ˇ

��
;

which converges to zero as N;!!1 in the way in which N > !
1
2ˇ
�1C. So we have proved

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

I D 0:

Similarly, for II and IV, via Lemma A.2, we have

II6 Cb0˛�
�
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
TrLjLkC1 Q


.kC1/
N;! .s/LjLkC1 6 Cb0˛�CJ .k/z

C 2;

where the second inequality follows from Corollary 3.2, and

IV6 Cb0˛�
�
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
TrLjLkC1 Q


.kC1/.s/LjLkC1 6 Cb0˛�CJ .k/z
C 2;
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where the second inequality follows from Corollary 4.2; that is,

II6 CJ˛� and IV6 CJ˛�;

due to the energy estimate (Corollary 4.2). Hence II and IV converge to 0 as ˛! 0, uniformly in N, !.
For III,

III6 b0
ˇ̌̌̌
TrJ .k/s�t�˛.rj � rkC1/

1

1C "LkC1

�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌̌̌
C b0

ˇ̌̌̌
TrJ .k/s�t�˛.rj � rkC1/

"LkC1

1C "LkC1

�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌̌̌
:

The first term in the above estimate goes to zero as N;!!1 for every " > 0, since we have assumed
condition (65) and J .k/s�t�˛.rj � rkC1/.1C "LkC1/

�1 is a compact operator. Due to the energy bounds
on Q
 .kC1/N;! and Q
 .kC1/, the second term tends to zero as "! 0, uniformly in N and !.

Putting together the estimates for I–IV, we have justified limit (68). Hence, we have obtained
Theorem 5.1. �

Combining Corollary 4.2 and Theorem 5.1, we see that Q
 .k/z in fact solves the 1D focusing Gross–
Pitaevskii hierarchy with the desired coupling constant b0

�R
jh1.x/j

4 dx
�
.

Corollary 5.2. Let �.t/ D f Q
 .k/g1
kD1

be a N > !v.ˇ/C" limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
with

respect to the product topology �prod. Then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to the 1D Gross–Pitaevskii
hierarchy (24) subject to initial data Q
 .k/z .0/ D j�0ih�0j

˝k with coupling constant b0
�R
jh1.x/j

4 dx
�
,

which, rewritten in integral form, is

Q
 .k/z D U
.k/.t/ Q
 .k/z .0/

C ib0

�Z
jh1.x/j

4 dx

� kX
jD1

Z t

0

U .k/.t � s/TrzkC1
�
ı.zj � zkC1/; Q


.kC1/
z .s/

�
ds: (69)

Proof. This is a direct computation by plugging (63) into (64). �

Appendix A: Basic operator facts and Sobolev-type lemmas

Lemma A.1 [Erdős et al. 2007, Lemma A.3]. Let Lj D .1�4rj /
1
2 . Then we have

L�1i L�1j V.ri � rj /L

�1
i L�1j




op 6 CkV kL1 :

Lemma A.2. Let f 2 L1.R3/ be such that
R

R3
hri

1
2 jf .r/j dr <1 and

R
R3
f .r/ dr D 1 but we allow

that f not be nonnegative everywhere. Define f˛.r/ D ˛�3f .r=˛/. Then, for every � 2
�
0; 1
2

�
, there

exists C� > 0 such thatˇ̌
TrJ .k/

�
f˛.rj � rkC1/� ı.rj � rkC1/

�

 .kC1/

ˇ̌
6 C�

�Z
jf .r/jjr j� dr

�
˛�
�
kLjJ

.k/L�1j kopCkL
�1
j J .k/Lj kop

�
TrLjLkC1


.kC1/LjLkC1

for all nonnegative 
 .kC1/ 2 L1.L2.R3kC3//.
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Proof. This is the same as [X. Chen and Holmer 2016b, Lemma A.3; 2013, Lemma 2]. See [Kirkpatrick
et al. 2011; T. Chen and Pavlović 2011; Erdős et al. 2007] for similar lemmas. �

Lemma A.3 (some standard operator inequalities).

(1) Suppose that A> 0, Pj D P �j , and I D P0CP1. Then A6 2P0AP0C 2P1AP1.

(2) If A> B > 0, and AB D BA, then A˛ > B˛ for any ˛ > 0.

(3) If A1 > A2 > 0, B1 > B2 > 0 and AiBj D BjAi for all 16 i; j 6 2, then A1B1 > A2B2.

(4) If A> 0 and AB D BA, then A
1
2B D BA

1
2 .

Proof. For (1), kA
1
2f k2DkA

1
2 .P0CP1/f k

26 2kA 1
2P0f k

2C2kA
1
2P1f k

2. For (3), A1B1>A2B1D
B1A2 > B2A2 D A2B2. The rest, (2) and (4), are standard facts in operator theory. See, for example,
[Reed and Simon 1978; Stein and Shakarchi 2005, Proposition 6.3]. �

Lemma A.4. Recall
zS D .1� @2zC!.�2�4xCjxj

2//
1
2 :

We have

zS2 & 1��r ; (70)

zS2P>1 & P>1.1� @
2
z �!4xC!jxj

2/P>1; (71)

zS2P>1 & !P>1: (72)

Proof. Directly from the definition of zS , we have

P>1.1� @
2
z �!4xC!jxj

2/P>1„ ƒ‚ …
all terms positive

D 2!P>1C zS
2P>1: (73)

The eigenvalues of the 2D Hermite operator ��xCjxj2 are f2kC 2g1
kD0

. So

2!P>1 6 !.�2�4xCjxj2/P>1 6 zS2P>1: (74)

Inequalities (71) and (72) immediately follow from (73) and (74).
We now establish (70) using (71). On the one hand, we have

zS2 > .1� @2z/: (75)

On the other hand,
P0.�4x/P0 . 16 zS2 (76)

since P0 is merely the projection onto the smooth function Ce�
1
2
jxj2. Moreover, by (71),

P>1.�4x/P>1 6 zS2P>1 6 zS2: (77)

Thus Lemma A.3(1), (76) and (77) together imply,

�4x . zS2: (78)

The claimed inequality (70) then follows from (75) and (78). �
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Lemma A.5. Suppose � W L2.R3k/! L2.R3k/ has kernel

�.rk; r
0
k/D

Z
 .rk; rN�k/ .r

0
k; rN�k/ drN�k

for some  2 L2.R3N /, and let A;B W L2.R3k/! L2.R3k/. Then the composition A�B has kernel

.A�B/.rk; r
0
k/D

Z
.A /.rk; rN�k/.B

� /.r 0k; rN�k/ drN�k :

It follows that
TrA�B D hA ;B� i:

Let Kk denote the class of compact operators on L2.R3k/, let L1
k

denote the trace class operators on
L2.R3k/, and let L2

k
denote the Hilbert–Schmidt operators on L2.R3k/. We have

L1k � L2k � Kk :

For an operator J on L2.R3k/, let jJ j D .J �J /
1
2 and denote by J.rk; r 0k/ the kernel of J and by

jJ j.rk; r
0
k
/ the kernel of jJ j, which satisfies jJ j.rk; r 0k/> 0. Let

�1 > �2 > � � �> 0

be the eigenvalues of jJ j repeated according to multiplicity (the singular values of J ). Then

kJ kKk D k�nk`1n D �1 D k jJ j kop D kJ kop;

kJ kL2
k
D k�nk`2n D kJ.rk; r

0
k/kL2.rk ;r 0k/

D .TrJ �J /
1
2 ;

kJ kL1
k
D k�nk`1n D kjJ j.rk; rk/kL1.rk/ D Tr jJ j:

The topology on Kk coincides with the operator topology, and Kk is a closed subspace of the space of
bounded operators on L2.R3k/.

Lemma A.6. On the one hand, let � be a smooth function on R3 such that �.�/ D 1 for j�j 6 1 and
�.�/D 0 for j�j> 2. Let

.QMf /.rk/D

Z
eirk ��k

kY
jD1

�.M�1�j / Of .�k/ d�k :

On the other hand, with respect to the spectral decomposition of L2.R2/ corresponding to the operator
Hj D�4

2
xj
Cjxj j

2, let XjM be the orthogonal projection onto the sum of the first M eigenspaces (in the
xj -variable only) and let

RM D

kY
jD1

X
j
M :

We then have the following:

(1) Suppose that J is a compact operator. Then JM WDRMQMJQMRM ! J in the operator norm.

(2) HjJM , JMHj , �rj JM and JM�rj are all bounded.
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(3) There exists a countable dense subset fTig of the closed unit ball in the space of bounded operators
on L2.R3k/ such that each Ti is compact and in fact for each i there exists M (depending on i ) and
Yi 2 Kk with kYikop 6 1 such that Ti DRMQMYiQMRM .

Proof. (1) If Sn! S strongly and J 2 Kk , then SnJ ! SJ in the operator norm and JSn! JS in the
operator norm.

(2) This is straightforward.

(3) Start with a subset fYng of the closed unit ball in the space of bounded operators on L2.R3k/ such
that each Yn is compact. Then let fTig be an enumeration of the set RMQMYnQMRM , where M ranges
over the dyadic integers. By (1) this collection will still be dense. The fYig in the statement of (3) is just
a reindexing of fYng. �

Appendix B: Deducing Theorem 1.1 from Theorem 1.2

We first give the following lemma.

Lemma B.1. Assume Q N;!.0/ satisfies (a), (b) and (c) in Theorem 1.1. Let � 2 C10 .R/ be a cut-off such
that 06 �6 1, �.s/D 1 for 06 s 6 1 and �.s/D 0 for s > 2. For � > 0, we define an approximation of
Q N;!.0/ by

Q �N;!.0/D
�
�
�. zHN;! � 2N!/=N

�
Q N;!.0/

���. zHN;! � 2N!/=N � Q N;!.0/

 :

This approximation has the following properties:

(i) Q �N;!.0/ verifies the energy condition

˝
Q �N;!.0/; .

zHN;! � 2N!/
k Q �N;!.0/

˛
6
2kN k

�k
:

(ii) supN;!


 Q N;!.0/� Q �N;!.0/

L2 6 C� 12 .

(iii) For small enough � > 0, we have Q �N;!.0/ is asymptotically factorized as well:

lim
N;!!1

Tr
ˇ̌
Q

�;.1/
N;! .0; x1; z1I x

0
1; z
0
1/� h.x1/h.x

0
1/�0.z1/�0.z

0
1/
ˇ̌
D 0;

where Q
�;.1/N;! .0/ is the one-particle marginal density associated with Q �N;!.0/, and �0 is the same as
in assumption (b) in Theorem 1.1.

Proof. Let us write �.�. zHN;! � 2N!// as � and Q N;!.0/ as Q N;! . This proof closely follows [Erdős
et al. 2010, Proposition 8.1(i)–(ii); 2007, Proposition 5.1(iii)].

Property (i) follows by definition. In fact, denote the characteristic function of Œ0; �� by 1.s 6 �/. We
see that

�
�
�. zHN;! � 2N!/=N

�
D 1

�
zHN;! � 2N! 6 2N=�

�
�
�
�. zHN;! � 2N!/=N

�
:
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Thus˝
Q �N;!.0/; .

zHN;!�2N!/
k Q �N;!.0/

˛
D

�
� Q N;!

k� Q N;!k
; 1
�
zHN;!�2N!6 2N=�

�
. zHN;!�2N!/

k � Q N;!

k� Q N;!k

�
6


1
�
zHN;!�2N!6 2N=�

�
. zHN;!�2N!/

k




op

6
2kN k

�k
:

We prove (ii) with a slightly modified proof of [Erdős et al. 2010, Proposition 8.1(ii)]. We still have

k Q �N;! �
Q N;!kL2 6 k� Q N;! � Q N;!kL2 C





 � Q N;!

k� Q N;!k
�� Q N;!






L2

6 k� Q N;! � Q N;!kL2 C
ˇ̌
1�k� Q N;!k

ˇ̌
6 2k� Q N;! � Q N;!kL2 ;

where

k� Q N;! � Q N;!k
2
L2
D

�
 N ;

�
1��

�
�. zHN;! � 2N!/

N

��2
 N

�
6
�
 N ; 1

��. zHN;! � 2N!/
N

> 1
�
 N

�
:

To continue estimating, we notice that if C > 0, then 1.s>1/6 1.sCC >1/ for all s. So

k� Q N;! � Q N;!k
2
L2
6
�
Q N;! ; 1

�
�. zHN;! � 2N!/

N
> 1
�
Q N;!

�
6
�
Q N;! ; 1

�
�. zHN;! � 2N!CN˛/

N
> 1
�
Q N;!

�
:

With the inequality 1.s>1/6 s for all s > 0 and the fact that

zHN;! � 2N!CN˛ > 0;

proved in Theorem 3.1, we arrive at

k� Q N;! � Q N;!k
2
L2
6
�

N

˝
Q N;! ; . zHN;! � 2N!CN˛/ Q N;!

˛
6
�

N

˝
Q N;! ; . zHN;! � 2N!/ Q N;!

˛
C˛�h Q N;! ; Q N;!i:

Using (a) and (c) in the assumptions of Theorem 1.1, we deduce that

k� Q N;! � Q N;!k
2
L2
6 C�;

which implies

k Q �N;! �
Q N;!kL2 6 C�

1
2 :

Property (iii) does not follow from the proof of [Erdős et al. 2010, Proposition 8.1(iii)] in which the
positivity of V is used. Instead (iii) follows from the proof of [Erdős et al. 2007, Proposition 5.1(iii)],
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which does not require V to hold a definite sign. Lemma B.1 follows the same proof as [Erdős et al.
2007, Proposition 5.1(iii)] if one replaces HN by . zHN;! � 2N!/ and yHN by

NX
j>kC1

�
�@zj C!.�2��xj Cjxj j

2/
�
C
1

N

X
kC1<i<j6N

VN;!.ri � rj /:

Notice that we are working with VN;! D .N!/3ˇV!..N!/ˇ r/, where V!.r/D .1=!/V.x=
p
!; z/; thus

we get

.N!/
3
2
ˇ
kV!k

2
L2
�
.N!/

3
2
ˇ

!

instead of N
3
2
ˇ in [Erdős et al. 2007, (5.20)] and hence we get .N!/

3
2
ˇ�1 in the estimate (5.18) of the

same work, which tends to zero as N;!!1 for ˇ 2
�
0; 2
3

�
. �

Via (i) and (iii) of Lemma B.1, Q �N;!.0/ verifies the hypothesis of Theorem 1.2 for small enough � > 0.
Therefore, for Q
�;.1/N;! .t/, the marginal density associated with eit zHN;! Q �N;!.0/, Theorem 1.2 gives the
convergence

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
Q

�;.k/
N;! .t;xk; zkIx

0
k; z
0
k/�

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0 (79)

for all small enough � > 0, all k > 1, and all t 2 R.
For Q
 .k/N;!.t/ in Theorem 1.1, we notice that, 8J .k/ 2 Kk , 8t 2 R, we haveˇ̌

TrJ .k/
�
Q

.k/
N;!.t/�

ˇ̌
h1˝�.t/ihh1˝�.t/

ˇ̌˝k�ˇ̌
6
ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� Q


�;.k/
N;! .t/

�ˇ̌
C
ˇ̌
TrJ .k/

�
Q

�;.k/
N;! .t/� jh1˝�.t/ihh1˝�.t/j

˝k
�ˇ̌

D IC II:

Convergence (79) then takes care of II. To handle I, part (ii) of Lemma B.1 yields

eit zHN;! Q N;!.0/� eit zHN;! Q �N;!.0/

L2 D 

 Q N;!.0/� Q �N;!.0/

L2 6 C� 12 ;
which implies

I D
ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� Q


�;.k/
N;! .t/

�ˇ̌
6 CkJ .k/kop�

1
2 :

Since � > 0 is arbitrary, we deduce that

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� jh1˝�.t/ihh1˝�.t/j

˝k
�ˇ̌
D 0I

i.e., as trace class operators

Q

.k/
N;!.t/! jh1˝�.t/ihh1˝�.t/j

˝k weak*.

Then again, Grümm’s convergence theorem upgrades the above weak* convergence to strong. Hence, we
have concluded Theorem 1.1 via Theorem 1.2 and Lemma B.1.
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CONFORMALLY EUCLIDEAN METRICS ON Rn

WITH ARBITRARY TOTAL Q-CURVATURE

ALI HYDER

We study the existence of solution to the problem

(−1)n/2u = Qenu in Rn, κ :=

∫
Rn

Qenu dx <∞,

where Q≥ 0, κ ∈ (0,∞) and n≥ 3. Using ODE techniques, Martinazzi (for n = 6) and Huang and Ye
(for n = 4m + 2) proved the existence of a solution to the above problem with Q ≡ constant > 0 and
for every κ ∈ (0,∞). We extend these results in every dimension n ≥ 5, thus completely answering the
problem opened by Martinazzi. Our approach also extends to the case in which Q is nonconstant, and
under some decay assumptions on Q we can also treat the cases n = 3 and n = 4.

1. Introduction

For a function Q ∈ C0(Rn) we consider the problem

(−1)n/2u = Qenu in Rn, κ :=

∫
Rn

Qenu dx <∞, (1)

where for n odd the nonlocal operator (−1)n/2 is defined on page 639.
Geometrically if u is a smooth solution of (1) then the conformal metric gu := e2u

|dx |2 (here |dx |2 is
the Euclidean metric on Rn) has the Q-curvature Q, at least when n ≥ 2. Moreover, the total Q-curvature
of the metric gu is κ .

Solutions to (1) have been classified in terms of their asymptotic behavior at infinity. More precisely
we have the following:

Theorem A [Chen and Li 1991; Da Lio et al. 2015; Lin 1998; Martinazzi 2009a; Jin et al. 2015; Hyder
2015; Xu 2005]. Let n ≥ 1. Let u be a solution of

(−1)n/2u = (n− 1)!enu in Rn, κ := (n− 1)!
∫

Rn
enu dx <∞. (2)

Then

u(x)=
(n− 1)!
γn

∫
Rn

log
(
|y|
|x − y|

)
enu(y) dy+P(x)=−

2κ
31

log |x |+P(x)+o(log |x |) as |x |→∞, (3)
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where γn :=
1
2(n− 1)!|Sn

|, 31 := 2γn , o(log |x |)/ log |x | → 0 as |x | →∞, P is a polynomial of degree
at most n−1 and P is bounded from above. If n ∈ {3, 4} then κ ∈ (0,31] and κ =31 if and only if u is a
spherical solution, that is,

u(x)= uλ,x0(x) := log
2λ

1+ λ2|x − x0|2
(4)

for some x0 ∈ Rn and λ > 0. Moreover u is spherical if and only if P is constant (which is always the
case when n ∈ {1, 2}).

Chang and Chen [2001] showed the existence of nonspherical solutions to (2) in even dimension n ≥ 4
for every κ ∈ (0,31).

A partial converse to Theorem A has been proven in dimension 4 by Wei and Ye [2008] and extended
by Hyder and Martinazzi [2015] for n ≥ 4 even and Hyder [2016] for n ≥ 3.

Theorem B [Wei and Ye 2008; Hyder and Martinazzi 2015; Hyder 2016]. Let n ≥ 3. Then for every
κ ∈ (0,31) and for every polynomial P with

deg(P)≤ n− 1 and P(x) |x |→∞−−−→−∞,

there exists a solution u to (2) having the asymptotic behavior given by (3).

Although the assumption κ ∈ (0,31] is a necessary condition for the existence of a solution to (2)
for n = 3, 4, it is possible to have a solution for κ > 31 arbitrarily large in higher dimension, as shown
by Martinazzi [2013] for n = 6. Huang and Ye [2015] extended Martinazzi’s result in arbitrary even
dimension n of the form n = 4m + 2 for some m ≥ 1, proving that for every κ ∈ (0,∞) there exists a
solution to (2). The case n = 4m remained open.

The ideas in [Martinazzi 2013; Huang and Ye 2015] are based upon ODE theory. One considers only
radial solutions so that the equation in (2) becomes an ODE, and the result is obtained by choosing
suitable initial conditions and letting one of the parameters go to +∞ (or −∞). However, this technique
does not work if the dimension n is a multiple of 4, and things get even worse in odd dimension since
(−1)n/2 is nonlocal and ODE techniques cannot be used.

In this paper we extend the works of [Martinazzi 2013; Huang and Ye 2015] and completely solve the
cases left open; namely we prove that when n ≥ 5, problem (2) has a solution for every κ ∈ (0,∞). In fact
we do not need to assume that Q is constant, but only that it is radially symmetric with growth at infinity
suitably controlled, or not even radially symmetric. Moreover, we are able to prescribe the asymptotic
behavior of the solution u, as in (3), up to a polynomial of degree 4 which cannot be prescribed and in
particular cannot be required to vanish when κ ≥31. This in turn, together with Theorem A, is consistent
with the requirement n ≥ 5, because only when n ≥ 5 does the asymptotic expansion of u at infinity admit
polynomials of degree 4.

We prove the following two theorems.

Theorem 1.1. Let n ≥ 5 be an integer. Let P be a polynomial on Rn with degree at most n − 1. Let
Q ∈ C0(Rn) be such that Q(0)> 0, Q≥ 0, Qen P is radially symmetric and

sup
x∈Rn

Q(x)en P(x) <∞.
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Then for every κ > 0 there exists a solution u to (1) such that

u(x)=−
2κ
31

log |x | + P(x)+ c1|x |2− c2|x |4+C + o(1) as |x | →∞

for some c1, c2> 0 and C ∈R. In fact, there exists a radially symmetric function v on Rn and a constant cv
such that

v(x)=−
2κ
31

log |x | +
1

2n
1v(0)(|x |4− |x |2)+ o(1) as |x | →∞,

and
u = P + v+ cv − |x |4, x ∈ Rn.

Taking Q = (n− 1)! and P = 0 in Theorem 1.1 one has the following corollary.

Corollary 1.2. Let n≥ 5 and κ ∈ (0,∞). Then there exists a radially symmetric solution u to (2) such that

u(x)=−
2κ
31

log |x | + c1|x |2− c2|x |4+C + o(1) as |x | →∞

for some c1, c2 > 0 and C ∈ R.

Notice the polynomial part of the solution u in Theorem 1.1 is not exactly the prescribed polynomial P
(compare to [Wei and Ye 2008; Hyder and Martinazzi 2015; Hyder 2016]). In general, without perturbing
the polynomial part, it is not possible to find a solution for κ ≥31. For example, if P is nonincreasing
and nonconstant then there is no solution u to (2) with κ ≥31 such that u has the asymptotic behavior (3)
(see Lemma 3.6 below). This justifies the term c1|x |2 in Theorem 1.1. Then the additional term −c2|x |4

is also necessary to avoid that u(x)≥ 1
2 c1|x |2 for x large, which would contrast with the condition κ <∞,

at least if Q does not decay fast enough at infinity. In the latter case, the term −c2|x |4 can be avoided,
and one obtains an existence result also in dimensions 3 and 4.

Theorem 1.3. Let n ≥ 3. Let Q ∈ C0
rad(R

n) be such that Q≥ 0, Q(0)> 0 and∫
Rn

Q(x)eλ|x |
2

dx <∞ for every λ > 0,
∫

B1(x)

Q(y)
|x − y|n−1 dy |x |→∞−−−→ 0.

Then for every κ > 0 there exists a radially symmetric solution u to (1).

The decay assumption on Q in Theorem 1.3 is sharp in the sense that if Qeλ|x |
2
6∈ L1(Rn) for some

λ > 0, then problem (1) might not have a solution for every κ > 0. For instance, if Q = e−λ|x |
2

for some
λ > 0, then (1) with n = 3, 4 and κ > 31 has no solution (see Lemma 3.5 below).

The proof of Theorem 1.1 is based on the Schauder fixed point theorem, and the main difficulty is to
show that the “approximate solutions” are precompact (see in particular Lemma 2.2). We will do that
using blow up analysis (see for instance [Adimurthi et al. 2006; Martinazzi 2009b; Robert 2006]). In
general, if κ ≥31 one can expect blow up, but we will construct our approximate solutions carefully in a
way that this does not happen. For instance in [Wei and Ye 2008; Hyder and Martinazzi 2015] one looks
for solutions of the form u = P + v+ cv, where v satisfies the integral equation

v(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en P(y)en(v(y)+cv) dy,
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and cv is a constant such that ∫
Rn

Qen(P+v+cv) dx = κ.

With such a choice we would not be able to rule out blow up. Instead, by looking for solutions of the form

u = P + v+ Pv + cv,

where a posteriori Pv =−|x |4, v satisfies

v(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(P(y)+Pv(y)+v(y)+cv) dy+ 1

2n
(|x |2− |x |4)|1v(0)|, (5)

and cv is again a normalization constant, one can prove that the integral equation (5) enjoys sufficient
compactness, essentially due to the term 1

2n |x |
2
|1v(0)| on the right-hand side. Indeed a sequence of

(approximate) solutions vk blowing up (for simplicity) at the origin, up to rescaling, leads to a sequence (ηk)

of functions satisfying, for every R > 0,∫
BR

|1ηk − ck | dx ≤ C Rn−2
+ o(1)Rn+2, o(1) k→∞

−−−→ 0, ck > 0,

and converging to η∞, solving (for simplicity here we ignore some cases)

(−1)n/2η∞ = enη∞ in Rn,

∫
Rn

enη∞ dx <∞,

and ∫
BR

|1η∞− c∞| dx ≤ C Rn−2, c∞ ≥ 0, (6)

where c∞ = 0 corresponds to 1η∞(0)= 0 (see Subcase 1.1 in Lemma 2.2 with xk = 0).
The estimate on ‖1η∞‖L1(BR) in (6) shows that the polynomial part P∞ of η∞, as in (3), has degree at

most 2, and hence 1P∞ ≤ 0 as P∞ is bounded from above. Therefore, c∞= 0=1P∞, P∞ is constant,
and in particular η∞ is a spherical solution by Theorem A, that is, η∞ = uλ,x0 for some λ> 0 and x0 ∈Rn,
where uλ,x0 is given by (4). This leads to a contradiction as 1η∞(0)= 0 and 1uλ,x0 < 0 in Rn.

In this work we focus only on the case Q ≥ 0 because the negative case is relatively well understood.
For instance by a simple application of maximum principle, one can show that problem (1) has no solution
with Q≡ constant< 0, n= 2 and κ >−∞, but when Q is nonconstant, solutions do exist, as shown by
Chanillo and Kiessling [2000] under suitable assumptions. Martinazzi [2008] proved that in higher even
dimension n = 2m ≥ 4, problem (1) with Q ≡ constant < 0 has solutions for some κ , and it has been
shown in [Hyder and Martinazzi 2015] that actually for every κ ∈ (−∞, 0) and Q a negative constant,
(1) has a solution. The same result has been recently extended to odd dimension n ≥ 3 in [Hyder 2016].

2. Proof of Theorem 1.1

We consider the space

X := {v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞},
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where

‖v‖X := sup
x∈Rn

(∑
|α|≤3

(1+ |x |)|α|−4
|Dαv(x)| +

∑
3<|α|≤n−1

|Dαv(x)|
)
.

For v ∈ X we set

Av :=max
{

0, sup
|x |≥10

v(x)− v(0)
|x |4

}
, Pv(x) := −|x |4− Av|x |4.

Then
v(x)+ Pv(x)≤ v(0)− |x |4 for |x | ≥ 10.

Let cv be the constant determined by∫
Rn

K en(v+cv) dx = κ, K := Qen Pen Pv,

where the functions Q and P satisfy the hypotheses in Theorem 1.1. Since Q > 0 in a neighborhood of
the origin, by a dilation argument we can assume that Q > 0 on B3. More precisely, if u is a solution
to (1) then for any λ> 0, we know uλ(x) := u(λx)+ log λ is also a solution to (1) with Q replaced by Qλ,
where Qλ(x) := Q(λx). Now for a suitable choice of λ > 0, one has Qλ > 0 on B3.

The function u = P + Pv + v+ cv satisfies

(−1)n/2u = Qenu, κ =

∫
Rn

Qenu dx

if and only if v satisfies
(−1)n/2v = K en(v+cv).

For odd integer n, the operator (−1)n/2 is defined as follows:

Definition. Let n be an odd integer. Let f ∈ S ′(Rn). We say that u is a solution of

(−1)n/2u = f in Rn

if u ∈W n−1,1
loc (Rn) and 1(n−1)/2u ∈ L1/2(R

n) and for every test function ϕ ∈ S(Rn),∫
Rn
(−1)(n−1)/2 u(−1)1/2ϕ dx = 〈 f, ϕ〉.

Here S(Rn) is the Schwartz space and the space Ls(R
n) is defined by

Ls(R
n) :=

{
u ∈ L1

loc(R
n) : ‖u‖Ls(Rn) :=

∫
Rn

|u(x)|
1+ |x |n+2s dx <∞

}
, s > 0.

For more details on the fractional Laplacian we refer the reader to [Di Nezza et al. 2012].

We define an operator T : X→ X given by T (v)= v̄, where

v̄(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
K (y)en(v(y)+cv) dy+ 1

2n
(|x |2− |x |4)|1v(0)|.
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Lemma 2.1. Let v solve tT (v)= v for some 0< t ≤ 1. Then

v(x)= t
γn

∫
Rn

log
(

1
|x−y|

)
K (y)en(v(y)+cv) dy+ t

2n
(|x |2− |x |4)|1v(0)|, (7)

1v(0) < 0, and v(x)→−∞ as |x | →∞. Moreover,

sup
x∈Bc

1

v(x)= v(1)= inf
x∈B1

v(x),

and in particular Av = 0.

Proof. Since v satisfies tT (v)= v, equation (7) follows from the definition of T. Differentiating under
the integral sign and observing that 1 log(1/| · −y|) < 0, from (7) one gets

1v(x) < t
2n
|1v(0)|1(|x |2− |x |4), x ∈ Rn. (8)

Taking x = 0 in (8) we obtain 1v(0) < t |1v(0)|, which implies that 1v(0) < 0. Notice that the function

w(x) := v(x)+ t
2n
|1v(0)|(|x |4− |x |2)

is monotone decreasing as 1w < 0. This follows from (8) and the integral representation of radially
symmetric functions given by

f (ξ)− f (ξ̄ )=
∫ ξ

ξ̄

1
ωn−1rn−1

∫
Br

1 f (x) dx dr, 0≤ ξ̄ < ξ, ωn−1 := |Sn−1
|. (9)

The monotonicity of w implies that supx∈Bc
1
v(x) = v(1) = infx∈B1 v(x), and hence Av = 0. Finally,

together with |1v(0)|> 0, we conclude that lim|x |→∞ v(x)=−∞ as lim|x |→∞w(x)≤ w(1). �

Lemma 2.2. Let (v, t) ∈ X × (0, 1] satisfy v = tT (v). Then there exists C > 0 (independent of v and t)
such that

sup
B1/8

w ≤ C, w := v+ cv +
1
n

log t.

Proof. Let us assume by contradiction that the conclusion of the lemma is false. Then there exists a
sequence wk = vk + cvk +

1
n log tk such that maxB1/8

wk =: wk(θk)→∞.
If θk is a point of local maxima ofwk , we set xk=θk . Otherwise, we can choose xk ∈ B1/4\B1/8 such that

xk is a point of local maxima of wk and wk(xk)≥wk(x) for every x ∈ B|xk |. This follows from the fact that

inf
B1/4\B1/8

wk 6→∞,

which is a consequence of ∫
Rn

K enwk dx = tkκ ≤ κ, K > 0 on B3.

We set µk := e−wk(xk). We distinguish the following cases.

Case 1: Up to a subsequence, tkµ2
k |1vk(0)| → c0 ∈ [0,∞).

We set
ηk(x) := vk(xk +µk x)− vk(xk)= wk(xk +µk x)−wk(xk).
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Notice that by (7) we have, for some dimensional constant C1,

1ηk(x)=µ2
k1vk(xk+µk x)=C1

µ2
k

γn

∫
Rn

K (y)enwk(y)

|xk +µk x − y|2
dy+tkµ2

k

(
1−

4(n+ 2)
2n

|xk+µk x |2
)
|1vk(0)|,

so that∫
BR

∣∣∣∣1ηk(x)− tkµ2
k |1vk(0)|

(
1−

2(n+ 2)
n
|xk |

2
)∣∣∣∣ dx

≤
C1

γn

∫
Rn

K (y)enwk(y)
∫

BR

µ2
k dx

|xk +µk x − y|2
dy+Ctkµ2

k |1vk(0)|
∫

BR

(µk |xk · x | +µ2
k |x |

2) dx

≤
C1

γn
tkκ

∫
BR

1
|x |2

dx +Ctkµ2
k |1vk(0)|

∫
BR

(µk |x | +µ2
k |x |

2) dx

≤ Cκtk Rn−2
+Ctkµ2

k |1vk(0)|(µk Rn+1
+µ2

k Rn+2). (10)

The function ηk satisfies

(−1)n/2ηk(x)= K (xk +µk x)enηk(x) in Rn, ηk(0)= 0.

Moreover, ηk ≤ C(R) on BR . This follows easily if |xk | ≤
1
9 , as in that case ηk ≤ 0 on BR for k ≥ k0(R).

On the other hand, for 1
9 < |xk | ≤

1
4 one can use Lemma 2.4 (below). Therefore, by Lemma A.3 (and

Lemmas 2.6, 2.7 if n is odd), up to a subsequence, ηk→ η in Cn−1
loc (R

n), where η satisfies

(−1)n/2η = K (x∞)enη in Rn, K (x∞)
∫

Rn
enη dx ≤ t∞κ <∞, K (x∞) > 0,

where (up to a subsequence) tk → t∞ and xk → x∞. Notice that t∞ ∈ (0, 1], x∞ ∈ B1/4 and for every
R > 0, by (10) ∫

BR

|1η− c0c1| dx ≤ C Rn−2, c1 =: 1−
2(n+ 2)

n
|x∞|2 > 0. (11)

Hence by Theorem A we have

η(x)= P0(x)−α log |x | + o(log |x |) as |x | →∞,

where P0 is a polynomial of degree at most n−1, P0 is bounded from above and α is a positive constant.
In fact, by (11) ∫

BR

|1P0(x)− c0c1| dx ≤ C Rn−2 for every R > 0.

Since c0, c1≥ 0, it follows that P0 is a constant. This implies that η is a spherical solution and in particular
1η < 0 on Rn, and therefore, again by (11), we have c0 = 0.

We consider the following subcases.

Subcase 1.1: There exists M > 0 such that |xk |/µk ≤ M.
We set yk := −xk/µk . Then (up to a subsequence) yk→ y∞ ∈ BM+1. Therefore,

1η(y∞)= lim
k→∞

1ηk(yk)= lim
k→∞

µ2
k1vk(0)=

c0

t∞
= 0,

a contradiction as 1η < 0 on Rn.
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Subcase 1.2: Up to a subsequence, |xk |/µk→∞.
For any N ∈ N we can choose ξ1,k, . . . , ξN ,k ∈ Rn such that |ξi,k | = |xk | for all i = 1, . . . , N and

the balls B2µk (ξi,k) are disjoint for k large enough. Since the vk are radially symmetric, the functions
ηi,k := vk(ξi,k +µk x)− vk(ξi,k)→ ηi = η in Cn−1

loc (R
n). Therefore,

lim
k→∞

∫
B1

en(vk+cvk ) dx ≥ N lim
k→∞

∫
Bµk (ξ1,k)

en(vk+cvk ) dx = N
1

t∞

∫
B1

enη dx .

This contradicts the fact that ∫
B1

K en(vk+cvk ) dx ≤ κ, K > 0 on B3.

Case 2: Up to a subsequence, tkµ2
k |1vk(0)| →∞.

We choose ρk > 0 such that tkρ2
kµ

2
k |1vk(0)| = 1. We set

ψk(x)= vk(xk + ρkµk x)− vk(xk).

Then one can get (similar to (10))∫
BR

∣∣∣∣1ψk(x)−
(

1−
2(n+ 2)

n
|xk |

2
)∣∣∣∣ dx

≤ C1

∫
Rn

K (y)enwk(y)
∫

BR

ρ2
kµ

2
k

|xk +µkρk x − y|2
dx dy+C2µkρk

∫
BR

(|x | +µkρk |x |2) dx k→∞
−−−→ 0,

thanks to Lemma 2.5 (below). Moreover, together with Lemma 2.4, ψk satisfies

(−1)n/2ψk = o(1) in BR, ψk(0)= 0, ψk ≤ C(R) on BR.

Hence, by Lemma A.3 (and Lemma 2.6 if n is odd), up to a subsequence, ψk→ ψ in Cn−1
loc (R

n). Then
ψ must satisfy ∫

B1

|1ψ − c0| dx = 0, c0 := 1−
2(n+ 2)

n
|x∞|2 > 0,

where (up to a subsequence) xk→ x∞. This shows that 1ψ(0)= c0 > 0, which is a contradiction as

1ψ(0)= lim
k→∞

1ψk(0)= lim
k→∞

ρ2
kµ

2
k1vk(xk)≤ 0.

Here, 1vk(xk)≤ 0 follows from the fact that xk is a point of local maxima of vk . �

A consequence of the local uniform upper bounds of w are the following global uniform upper bounds:

Lemma 2.3. There exists a constant C > 0 such that for all (v, t) ∈ X × (0, 1] with v = tT (v) we have
|1v(0)| ≤ C and

v(x)+ cv +
1
n

log t ≤ C on Rn.

Proof. By Lemma 2.2 we have

sup
B1/8

w := sup
B1/8

(
v+ cv +

1
n

log t
)
≤ C.
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Differentiating under the integral sign from (7), and recalling that 1v(0) < 0, we obtain

|1v(0)| ≤ C
∫

B1/8

1
|y|2

K (y)enw(y) dy+C
∫

Bc
1/8

1
|y|2

K (y)enw(y) dy

≤ C sup
B1/8

K
∫

B1/8

1
|y|2

dy+C
∫

Bc
1/8

K enw dy ≤ C(κ, K ).

By (8) we get

1v(x)≤ t |1v(0)| ≤ C, x ∈ Rn,

and hence, together with (9)

v(x)= v(0)+
∫
|x |

0

1
ωn−1rn−1

∫
Br

1v(y) dy dr ≤ v(0)+C |x |2 ≤ C + v(0), x ∈ B2.

The lemma follows from Lemmas 2.1 and 2.2. �

Proof of Theorem 1.1. Let v ∈ X be a solution of v = tT (v) for some 0 < t ≤ 1. Then Av = 0 and
|1v(0)| ≤ C , thanks to Lemmas 2.1 and 2.3. Hence, for 0≤ |β| ≤ n− 1,

|Dβv(x)| ≤ C
∫

Rn

∣∣∣∣Dβ log
(

1
|x−y|

)∣∣∣∣K (y)en(v(y)+cv+(1/n) log t) dy+C |Dβ(|x |2− |x |4)|

≤ C
∫

Rn

∣∣∣∣Dβ log
(

1
|x−y|

)∣∣∣∣e−|y|4 dy+C |Dβ(|x |2− |x |4)|,

where in the second inequality we have used that

v(x)+ cv +
1
n

log t ≤ C, C is independent of v and t,

which follows from Lemma 2.3. Now as in Lemma 2.8 one can show that

‖v‖X ≤ M,

and therefore, by Lemma A.1, the operator T has a fixed point (say) v. Then

u = P + v+ cv − |x |4

is a solution to the problem (1) and u has the asymptotic behavior given by

u(x)= P(x)− 2κ
31

log |x | + 1
2n
1v(0)(|x |4− |x |2)− |x |4+ cv + o(1) as |x | →∞. �

Now we give a proof of the technical lemmas used in the proof of Lemma 2.2.

Lemma 2.4. Let ε > 0. Let (vk, tk) ∈ X × (0, 1] satisfy (7) or (14) for all k ∈ N. Let xk ∈ B1 \ Bε be a
point of maxima of vk on B |xk | and v′k(xk)= 0. Then

vk(xk + x)− vk(xk)≤ C(n, ε)|x |2 tk |1vk(0)|, x ∈ B1.
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Proof. If |xk + x | ≤ |xk | then vk(xk + x) − vk(xk) ≤ 0 as vk(xk) ≥ vk(y) for every y ∈ B|xk |. For
|xk |< |xk + x |, setting a = a(k, x) := xk + x , and together with (9) we obtain

vk(xk + x)− vk(xk)=

∫
|a|

|xk |

1
ωn−1rn−1

∫
Br\B|xk |

1vk(x) dx dr

≤

∫
|a|

|xk |

1
ωn−1rn−1

∫
B|a|\B|xk |

tk |1vk(0)| dx dρ

≤ C(n)tk |1vk(0)|(|B|a|| − |B|xk ||)

(
1

|xk |
n−2 −

1
|a|n−2

)
≤ C(n, ε)tk |x |2|1vk(0)|,

where in the first equality we have used that

0= v′k(xk)=
1

ωn−1|xk |
n−1

∫
B|xk |

1vk dx .

Hence we have the lemma. �

Lemma 2.5. Let (vk, tk) ∈ X × (0, 1] satisfy (7) for all k ∈ N. Let xk ∈ B1 be a point of maxima of vk

on B |xk | and v′k(xk) = 0. We set wk = vk + cvk +
1
n log tk and µk = e−wk(xk). Let ρk > 0 be such that

tkρ2
kµ

2
k |1vk(0)| ≤ C and ρkµk→ 0. Then for any R0 > 0,

lim
k→∞

∫
Rn

K (y)enwk(y)
∫

BR0

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy =: lim

k→∞
Ik = 0.

Proof. In order to prove the lemma we fix R > 0 (large). We split BR0 into

A1(R, y) :=
{

x ∈ BR0 : |xk + ρkµk x − y|> Rρkµk
}
, A2(R, y) := BR0\ A1(R, y).

Then we can write Ik = I1,k + I2,k , where

Ii,k :=

∫
Rn

K (y)enwk(y)
∫

Ai (R,y)

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy, i = 1, 2.

Changing the variable y 7→ xk + ρkµk y and by Fubini’s theorem, one gets

I2,k = ρ
n
k

∫
BR0

∫
Rn

K (xk + ρkµk y)enηk(y) 1
|x − y|2

χ|x−y|≤R dy dx

≤ ρn
k

∫
BR0

∫
BR+R0

K (xk + ρkµk y)enηk(y) 1
|x − y|2

dy dx

≤ C(n, ε)(supBR+R0+1
K enηk )(R+ R0)

n Rn−2
0 ρn

k ,

where ηk(y) :=wk(xk +ρkµk y)−wk(xk). If xk→ 0 then ηk ≤ 0 on BR+R0+1 for k large. Otherwise, for
k large, ρkµk y ∈ B1 for every y ∈ BR+R0+1 and hence, by Lemma 2.4

ηk(y)= vk(xk + ρkµk y)− vk(xk)≤ C |ρkµk y|2 tk |1vk(0)| ≤ C(R, R0).
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Therefore,

lim
k→∞

I2,k = 0.

Using the definition of cv we bound

I1,k ≤
|BR0 |

R2

∫
Rn

K (y)enwk(y) dy ≤ C(n, κ, R0)
1
R2 .

Since R > 0 is arbitrary, we conclude the lemma. �

We need the following two lemmas only for n odd.

Lemma 2.6. Let n ≥ 5. Let v be given by (7). For any r > 0 and ξ ∈ Rn we set

w(x)= v(r x + ξ), x ∈ Rn.

Then there exists C > 0 (independent of v, t, r, ξ ) such that for every multi-index α ∈Nn with |α| = n− 1
we have ‖Dαw‖L1/2(Rn) ≤ Ct (1+ r4

|1v(0)|). Moreover, for any ε > 0 there exists R > 0 (independent
of r , ξ and t) such that ∫

Bc
R

|Dαw(x)|
1+ |x |n+1 dx < εt (1+ r4

|1v(0)|), |α| = n− 1.

Proof. Differentiating under the integral sign we obtain

|Dαw(x)| ≤ Ct
∫

Rn

rn−1

|r x + ξ − y|n−1 f (y) dy+Ctr4
|1v(0)|, f (y) := K (y)en(v(y)+cv).

If n > 5 then the above inequality is true without the term Ctr4
|1v(0)|. Using a change of variable

y 7→ ξ + r y, we get∫
�

|Dαw(x)|
1+ |x |n+1 dx ≤ Ctrn

∫
Rn

f (ξ + r y)
∫
�

1
|x − y|n−1

1
1+ |x |n+1 dx dy+Ctr4

|1v(0)|
∫
�

dx
1+ |x |n+1 .

The lemma follows by taking �= Rn or Bc
R . �

Lemma 2.7. Let ηk→ η in Cn−1
loc (R

n). We assume that for every ε > 0 there exists R > 0 such that∫
Bc

R

|1(n−1)/2ηk(x)|
1+ |x |n+1 dx < ε for k = 1, 2, . . . . (12)

We further assume that

(−1)n/2ηk = K (xk +µk x)enηk in Rn,

∫
Rn
|K (xk +µk x)|enηk(x) dx ≤ C,

where xk→ x∞, µk→ 0, K is a continuous function and K (x∞) > 0. Then enη
∈ L1(Rn) and η satisfies

(−1)n/2η = K (x∞)enη in Rn.
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Proof. First notice that 1(n−1)/2ηk→1(n−1)/2η in L1/2(R
n), thanks to (12) and the convergence ηk→ η

in Cn−1
loc (R

n).
We claim that η satisfies (−1)n/2η = K (x∞)enη in Rn in the sense of distribution.
In order to prove the claim we let ϕ ∈ C∞c (R

n). Then

lim
k→∞

∫
Rn

K (xk +µk x)enηk(x)ϕ(x) dx =
∫

Rn
K (x∞)enη(x)ϕ(x) dx,

and

lim
k→∞

∫
Rn
(−1)(n−1)/2ηk(−1)

1/2ϕ dx =
∫

Rn
(−1)(n−1)/2η(−1)1/2ϕ dx .

We conclude the claim.
To complete the lemma first notice that enη

∈ L1(Rn), which follows from the fact that for any R > 0∫
BR

enη dx = lim
k→∞

∫
BR

enηk dx = lim
k→∞

∫
BR

K (xk +µk x)
K (x∞)

enηk(x) dx ≤
C

K (x∞)
.

We fix a function ψ ∈ C∞c (B2) such that ψ = 1 on B1. For ϕ ∈ S(Rn) we set ϕk(x)= ϕ(x)ψ(x/k). The
lemma follows by taking k→∞, thanks to the previous claim. �

Lemma 2.8. The operator T : X→ X is compact.

Proof. Let vk be a bounded sequence in X. Then (up to a subsequence) {vk(0)}, {1vk(0)}, {Avk } and {cvk }

are convergent sequences. Therefore, |1vk(0)|(|x |2−|x |4) converges to some function in X . To conclude
the lemma, it is sufficient to show that up to a subsequence { fk} converges in X , where fk is defined by

fk(x)=
∫

Rn
log

(
1
|x−y|

)
Q(y)en P(y)en Pvk (y)en(vk(y)+cvk ) dy.

Differentiating under the integral sign, for 0< |β| ≤ n− 1, one gets

|Dβ fk(x)| ≤ C
∫

Rn

1
|x − y||β|

Q(y)en P(y)en Pvk (y)en(vk(y)+cvk ) dy ≤ C
∫

Rn

1
|x − y||β|

e−|y|
4

dy ≤ C,

where the second inequality follows from the uniform bounds

|vk(0)| ≤ C, |cvk | ≤ C, Qen P
≤ C, and vk(x)+ Pvk (x)≤ vk(0)− |x |4. (13)

Indeed, for 0< |β| ≤ n− 1

lim
R→∞

sup
k

sup
x∈Bc

R

|Dβ fk(x)| = 0,

and for every 0< s < 1 we have ‖Dn−1 fk‖C0,s(BR) ≤ C(R, s). Finally, using (13) we have the bound

| fk(x)| ≤ C
∫

Rn

∣∣log |x − y|
∣∣e−|y|4 dy ≤ C log(2+ |x |).

Thus, by Ascoli’s theorem, up to a subsequence, fk→ f in Cn−1
loc (R

n) for some f ∈ Cn−1(Rn), and the
global uniform estimates of fk and Dβ fk would imply that fk→ f in X. �
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3. Proof of Theorem 1.3

We consider the space

X := {v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞},

where

‖v‖X := sup
x∈Rn

(∑
|α|≤1

(1+ |x |)|α|−2
|Dαv(x)| +

∑
1<|α|≤n−1

|Dαv(x)|
)
.

For v ∈ X , let cv be the constant determined by∫
Rn

Qen(v+cv) dy = κ,

where Q satisfies the hypothesis in Theorem 1.3. Again by a dilation argument we can assume Q>0 on B3.
We define an operator T : X→ X given by T (v)= v̄, where

v̄(x)= 1
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(v(y)+cv) dy+ 1

2n
|1v(0)||x |2.

As in Lemma 2.8 one can show that the operator T is compact.

The proofs of the following two lemmas are similar to those of Lemmas 2.1 and 2.5 respectively.

Lemma 3.1. Let v solve tT (v)= v for some 0< t ≤ 1. Then 1v(0) < 0, and

v(x)= t
γn

∫
Rn

log
(

1
|x−y|

)
Q(y)en(v(y)+cv) dy+ t

2n
|1v(0)||x |2. (14)

Lemma 3.2. Let (vk, tk) ∈ X × (0, 1] satisfy (14) for all k ∈ N. Let xk ∈ B1 be a point of maxima of
vk on B |xk | and v′k(xk) = 0. We set wk = vk + cvk +

1
n log tk and µk = e−wk(xk). Let ρk > 0 be such that

ρ2
k tkµ2

k |1vk(0)| ≤ C and ρkµk→ 0. Then for any R0 > 0

lim
k→∞

∫
Rn

Q(y)enwk(y)
∫

BR0

ρ2
kµ

2
k

|xk + ρkµk x − y|2
dx dy = 0.

Now we prove similar local uniform upper bounds to those in Lemma 2.2.

Lemma 3.3. Let (v, t)∈ X×(0, 1] satisfy (14). Then there exists C > 0 (independent of v and t) such that

sup
B1/8

w ≤ C, w := v+ cv +
1
n

log t.

Proof. The proof is very similar to that of Lemma 2.2. Here we briefly sketch it.
We assume by contradiction that the conclusion of the lemma is false. Then there exists a sequence of

(vk, tk) and a sequence of points xk in B1/4 such that

wk(xk)→∞, wk ≤ wk(xk) on B|xk |, xk is a point of local maxima of vk .

We set µk := e−wk(xk) and we distinguish following cases.

Case 1: Up to a subsequence, tkµ2
k |1vk(0)| → c0 ∈ [0,∞).
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We set ηk(x) := vk(xk +µk x)− vk(xk). Then we have∫
BR

∣∣1ηk − tkµ2
k |1vk(0)|

∣∣ dx ≤ Ctk Rn−2.

Now one can proceed exactly as in Case 1 in Lemma 2.2.

Case 2: Up to a subsequence, tkµ2
k |1vk(0)| →∞.

We set ψk(x)= vk(xk + ρkµk x)− vk(xk), where ρk is determined by tkρ2
kµ

2
k |1vk(0)| = 1. Then by

Lemma 3.2 ∫
BR

|1ψk − 1| dx = o(1) as k→∞.

Similar to Case 2 in Lemma 2.2 one can get a contradiction. �

With the help of Lemma 3.3 we prove:

Lemma 3.4. There exists a constant M > 0 such that for all (v, t) ∈ X × (0, 1] satisfying (14) we have
‖v‖ ≤ M.

Proof. Let (v, t) ∈ X × (0, 1] satisfy (14). We set w := v+ cv + 1
n log t .

First we show that |1v(0)| ≤ C for some C > 0 independent of v and t . Indeed, differentiating under
the integral sign, from (14), and together with Lemma 3.3, we get

|1v(0)|(1+ t)≤ C
∫

Rn

1
|y|2

Q(y)enw(y) dy

= C
∫

B1/8

1
|y|2

Q(y)enw(y) dy+C
∫

Bc
1/8

1
|y|2

Q(y)enw(y) dy

≤ C
∫

B1/8

1
|y|2

Q(y) dy+Cκ ≤ C.

Hence |1v(0)| ≤ C .
We define a function ξ(x) := v(x)− (t/2n)|1v(0)||x |2. Then ξ is monotone decreasing on (0,∞),

which follows from the fact that 1ξ ≤ 0. Therefore,

w(x)= ξ(x)+ cv +
1
n

log t + t
2n
|1v(0)||x |2

≤ ξ
( 1

8

)
+ cv +

1
n

log t + t
2n
|1v(0)||x |2

≤ w
(1

8

)
+

t
2n
|1v(0)||x |2.

Hence, w(x)≤ λ(1+|x |2) on Rn for some λ> 0 independent of v and t . Using this in (14) one can show

|v(x)| ≤ C log(2+ |x |)+C |x |2,

and differentiating under the integral sign, from (14)

|Dβv(x)| ≤ C
∫

Rn

1
|x − y||β|

Q(y)eλ(1+|y|
2) dy+C

∣∣Dβ
|x |2

∣∣, 0< |β| ≤ n− 1.

The lemma follows easily. �
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Proof of Theorem 1.3. By the Schauder fixed point theorem (see Lemma A.1), the operator T has a fixed
point, thanks to Lemma 3.4. Let v be a fixed point of T. Then u = v+ cv is a solution of (1). �

Now we prove the nonexistence results stated in the Introduction.

Lemma 3.5. Let n ∈ {3, 4}. If Q(x)= e−λ|x |
2

for some λ > 0 then there is no solution to (1) with κ >31.
If Q ∈ C1

rad(R
n) is of the form Q = eξ and it satisfies

Q′ ≤ 0, |x · ∇Q(x)| ≤ C,
ξ(x)
|x |2

|x |→∞
−−−→ 0,

then there is no radially symmetric solution to (1) with κ > 31.

Proof. First we consider the case when Q = e−λ|x |
2
. Let u be a solution to (1) with Q = e−λ|x |

2
. Then the

function w(x) := u− (λ/n)|x |2 satisfies

(−1)n/2w = enw, κ =

∫
Rn

Qenu dx =
∫

Rn
enw dx <∞.

It follows from [Lin 1998; Jin et al. 2015] that κ ≤31.
In order to prove the lemma for Q = eξ, we assume by contradiction that there is a solution u to (1)

with κ > 31. We set

v(x) :=
1
γn

∫
Rn

log
(
|y|
|x − y|

)
Q(y)enu(y) dy, h := u− v.

Then v(x) = −(2κ/31) log |x | + o(log |x |) as |x | → ∞. Notice that h is radially symmetric and
(−1)n/2h = 0 on Rn. Therefore, h(x) = c1+ c2|x |2 for some c1, c2 ∈ R. This follows easily if n = 4.
For n = 3, first notice that 1h ∈ L1/2(R

3). Hence, by [Jin et al. 2015, Lemma 15] 1h ≡ constant. Now
radial symmetry of h implies that h(x)= c1+ c2|x |2.

From a Pohozaev-type identity in [Xu 2005, Theorem 2.1], we get

κ

γn

(
κ

γn
− 2
)
=

1
γn

∫
Rn
(x · ∇K (x))env(x) dx, K := Qenh. (15)

Since κ >31= 2γn , from (15) we deduce that x ·∇K (x) > 0 for some x ∈Rn. Using that Qenu
∈ L1(Rn)

and that ξ(x)= o(|x |2) at infinity, one has c2 ≤ 0. Therefore, x · ∇K (x)≤ 0 in Rn, a contradiction. �

The proof of the following lemma is similar to that of Lemma 3.5.

Lemma 3.6. Let κ ≥ 31. Let P be a nonconstant and nonincreasing radially symmetric polynomial
of degree at most n− 1. Then there is no solution u to (2) (with n ≥ 3) such that u has the asymptotic
behavior given by

u(x)=−
2κ
31

log |x | + P(x)+ o(log |x |) as |x | →∞.
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Appendix

Lemma A.1 [Gilbarg and Trudinger 1998, Theorem 11.3]. Let T be a compact mapping of a Banach
space X into itself , and suppose that there exists a constant M such that

‖x‖X < M

for all x ∈ X and t ∈ (0, 1] satisfying tT x = x. Then T has a fixed point.

The following identity (16) is due to Pizzetti [1909]. Simple proofs of (16) and (17) can be found in
Lemma 3 and Proposition 4, respectively, of [Martinazzi 2009a].

Lemma A.2 [Pizzetti 1909; Martinazzi 2009a]. Let 1mh = 0 in B4R ⊂ Rn. For any x ∈ BR and
0< r < R− |x | we have

1
|Br |

∫
Br (x)

h(z) dz =
m−1∑
i=0

cir2i1i h(x), (16)

where

c0 = 1, ci = c(i, n) > 0 for i ≥ 1.

Moreover, for every k ≥ 0 there exists C = C(k, R) > 0 such that

‖h‖Ck(BR) ≤ C‖h‖L1(B4R). (17)

Lemma A.3. Let R > 0 and BR ⊂ Rn. Let uk ∈ Cn−1,α(Rn) for some α ∈
( 1

2 , 1
)

be such that

uk(0)= 0, ‖u+k ‖L∞(BR) ≤ C, ‖(−1)n/2uk‖L∞(BR) ≤ C,
∫

BR

|1uk | dx ≤ C.

If n is an odd integer, we also assume that ‖1(n−1)/2uk‖L1/2(Rn) ≤ C. Then (up to a subsequence) uk→ u
in Cn−1(BR/8).

Proof. First we prove the lemma for n even.
We write uk = wk + hk , where{

(−1)n/2wk = (−1)
n/2uk in BR,

1 jwk = 0 on ∂BR, j = 0, 1, . . . , 1
2(n− 2).

Then by standard elliptic estimates, the wk are uniformly bounded in Cn−1,β(BR). Therefore,

|hk(0)| ≤ C, ‖h+k ‖L∞(BR) ≤ C,
∫

BR

|1hk | dx ≤ C.

Since the hk are n
2 -harmonic, the 1hk are

( n
2−1

)
-harmonic in BR , and by (17) we obtain

‖1hk‖Cn(BR/4) ≤ C‖1hk‖L1(BR) ≤ C.
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Using the identity (16) we have the bound

1
|BR|

∫
BR(0)

h−k (z) dz =
1
|BR|

∫
BR(0)

h+k (z) dz−
1
|BR|

∫
BR(0)

hk(z) dz

=
1
|BR|

∫
BR(0)

h+k (z) dz− hk(0)−
n/2−1∑

i=1

ci R2i1i hk(0)≤ C,

and hence ∫
BR

|hk(z)| dz =
∫

BR

h+k (z) dz+
∫

BR

h−k (z) dz ≤ C.

Again by (17) we obtain

‖hk‖Cn(BR/4) ≤ C‖hk‖L1(BR) ≤ C.

Thus, the uk are uniformly bounded in Cn−1,β(BR/4) and (up to a subsequence) uk→ u in Cn−1(BR/4)

for some u ∈ Cn−1(BR/4).
It remains to prove the lemma for n odd.
If n is odd then 1

2(n− 1) is an integer. We split 1(n−1)/2uk = wk + hk , where{
(−1)1/2wk = (−1)

1/21(n−1)/2uk in BR,

wk = 0 in Bc
R.

Then by Lemmas A.4 and A.5 one has ‖1(n−1)/2uk‖C1/2(BR/2) ≤ C . Now one can proceed as in the case
of even integer. �

Lemma A.4 [Jin et al. 2015, Proposition 22]. Let u ∈ Lσ (Rn) for some σ ∈ (0, 1) and (−1)σu = 0
in B2R . Then for every k ∈ N,

‖∇
ku‖C0(BR) ≤ C(n, σ, k)

1
Rk

(
R2σ

∫
Rn\B2R

|u(x)|
|x |n+2σ dx +

‖u‖L1(B2R)

Rn

)
,

where α ∈ (0, 1) and k is a nonnegative integer.

Lemma A.5 [Ros-Oton and Serra 2014, Proposition 1.1]. Let σ ∈ (0, 1). Let u be a solution of{
(−1)σu = f in BR,

u = 0 in Bc
R.

Then

‖u‖Cσ (Rn) ≤ C(R, σ )‖ f ‖L∞(BR).
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For a family of systems of linear elasticity with rapidly oscillating periodic coefficients, we establish
sharp boundary estimates with either Dirichlet or Neumann conditions, uniform down to the microscopic
scale, without smoothness assumptions on the coefficients. Under additional smoothness conditions,
these estimates, combined with the corresponding local estimates, lead to the full Rellich-type estimates
in Lipschitz domains and Lipschitz estimates in C1,α domains. The Cα, W 1,p, and L p estimates in
C1 domains for systems with VMO coefficients are also studied. The approach is based on certain
estimates on convergence rates. As a biproduct, we obtain sharp O(ε) error estimates in Lq(�) for
q = 2d/(d − 1) and a Lipschitz domain �, with no smoothness assumption on the coefficients.
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1. Introduction

The purpose of this paper is to establish sharp boundary estimates with either Dirichlet or Neumann
conditions, uniform down to the microscopic scale, for a family of second-order elliptic systems in
divergence form with rapidly oscillating coefficients, without any smoothness assumption on the coeffi-
cients. Under additional smoothness conditions, these estimates, combined with the corresponding local
estimates, lead to the full Rellich-type estimates in Lipschitz domains and Lipschitz estimates in C1,α

domains. The Cα, W 1,p, and L p estimates in C1 domains for systems with VMO coefficients are also
investigated. To fix the idea we shall consider the systems of linear elasticity with periodic coefficients
in this paper. However, the same results, without the complications introduced by rigid displacements,
hold for general second-order elliptic systems with periodic coefficients satisfying the stronger ellipticity

This work was supported in part by NSF grant DMS-1161154 .
MSC2010: primary 35B27, 35J55; secondary 74B05.
Keywords: homogenization, systems of elasticity, convergence rates, Rellich estimates, Lipschitz estimates.
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condition (1-11) (the symmetry condition is also needed for Rellich estimates in Lipschitz domains). We
further point out that although we restrict ourselves to the periodic case, our approach, which is based on
certain estimates on convergence rates in H 1 and L2, extends to nonperiodic settings, provided that the
interior correctors or approximate correctors satisfy certain L2 conditions. The compactness methods,
which were introduced to the study of homogenization in [Avellaneda and Lin 1987] and have played
an important role in establishing regularity results in the periodic setting (see, e.g., [Avellaneda and Lin
1987; 1989; Kenig et al. 2013; Kenig and Prange 2015]), are not used in this paper. As a biproduct of our
new approach, we also obtain sharp O(ε) error estimates in Lq(�) for q = 2d/(d − 1) and a Lipschitz
domain �, with no smoothness assumption on the coefficients.

More precisely, consider the systems of linear elasticity,

Lε =− div(A(x/ε)∇)=−
∂

∂xi

[
aαβi j (x/ε)

∂

∂x j

]
, ε > 0. (1-1)

We will assume that A(y)= (aαβi j (y)) with 1≤ i, j, α, β ≤ d is real, bounded measurable, and satisfies
the elasticity condition

aαβi j (y)= aβαj i (y)= aiβ
α j (y),

κ1|ξ |
2
≤ aαβi j (y)ξ

α
i ξ

β

j ≤ κ2|ξ |
2

(1-2)

for a.e. y ∈Rd and for any symmetric matrix ξ = (ξαi )∈Rd×d, where κ1, κ2> 0 (the summation convention
is used throughout the paper). We will also assume that A(y) is 1-periodic; i.e.,

A(y+ z)= A(y) for a.e. y ∈ Rd and z ∈ Zd. (1-3)

Theorem 1.1. Suppose that A satisfies conditions (1-2)–(1-3). Let � be a bounded Lipschitz domain
in Rd. Let uε ∈ H 1(�;Rd) be the weak solution to the Dirichlet problem

Lε(uε)= F in � and uε = f on ∂�, (1-4)

where F ∈ L p(�;Rd) for p = 2d/(d + 1) and f ∈ H 1(∂�;Rd). Then, for ε ≤ r < diam(�),{
1
r

∫
�r

|∇uε|2
}1/2

≤ C
{
‖F‖L p(�)+‖ f ‖H1(∂�)

}
, (1-5)

where �r = {x ∈ � : dist(x, ∂�)<r}. The constant C depends only on d, κ1, κ2, and the Lipschitz
character of �.

Let R denote the space of rigid displacements,

R=
{

Mx + q : MT
= −M ∈ Rd×d and q ∈ Rd}, (1-6)

where (Mx)α = Mα
i xi and MT denotes the transpose of matrix M. By u ⊥ R we mean u ⊥ R in

L2(�;Rd), i.e.,
∫
�

u ·φ = 0 for any φ ∈R . We will use ∂uε/∂νε to denote the conormal derivative of uε
associated with Lε.
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Theorem 1.2. Suppose that A and � satisfy the same conditions as in Theorem 1.1. Let uε ∈ H 1(�;Rd)

be a weak solution to the Neumann problem

Lε(uε)= F in � and
∂uε
∂νε
= g on ∂�, (1-7)

where F ∈ L p(�;Rd) for p = 2d/(d + 1), g ∈ L2(∂�;Rd) and
∫
�

F ·φ+
∫
∂�

g ·φ = 0 for any φ ∈R .
Also assume that uε ⊥R . Then, for ε ≤ r < diam(�),{

1
r

∫
�r

|∇uε|2
}1/2

≤ C
{
‖F‖L p(�)+‖g‖L2(∂�)

}
, (1-8)

where C depends only on d, κ1, κ2, and the Lipschitz character of �.

Estimates (1-5) and (1-8), which are scaling-invariant, may be regarded as the Rellich estimates,
uniform down to the scale ε, in Lipschitz domains for the elasticity operators Lε. Indeed, if the coefficient
matrix A is constant, then (1-5) and (1-8) hold for any 0 < r < diam(�). Suppose that F = 0 and
uε ∈ C1(�;Rd). By letting r→ 0, one recovers the full Rellich estimates in Lipschitz domains,

‖∇uε‖L2(∂�) ≤ C‖uε‖H1(∂�) and ‖∇uε‖L2(∂�) ≤ C
∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂�)

, (1-9)

which were proved in [Fabes et al. 1988; Dahlberg et al. 1988] for second-order elliptic systems with
constant coefficients, using integration by parts (see [Kenig 1994] for references on related work on
boundary value problems in Lipschitz domains). We should note that our proof of Theorems 1.1 and 1.2
uses the nontangential maximal function estimates in [Dahlberg et al. 1988]. On the other hand, under
certain smoothness conditions on A, the Rellich estimates hold for the operator L1 on Lipschitz domains
with diam(�)≤ 1. By a blow-up argument as well as some localization procedures, this implies

‖∇uε‖L2(∂�) ≤ C
{
‖∇tanuε‖L2(∂�)+ ε

−1/2
‖∇uε‖L2(�ε)

}
,

‖∇uε‖L2(∂�) ≤ C
{∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂�)

+ ε−1/2
‖∇uε‖L2(�ε)

}
,

(1-10)

where ∇tanuε denotes the tangential derivative of uε on ∂�. We emphasize that the estimates (1-10) are
local and structure conditions such as periodicity are not needed. However, with the additional periodicity
condition, one may combine the local estimates (1-10) with the estimates in Theorems 1.1 and 1.2 to
obtain the full Rellich estimate (1-9), uniform in ε, for operators Lε (see Remark 3.1). Thus we have
been able to completely separate the large-scale regularity due to homogenization from the small-scale
regularity due to smoothness of the coefficients.

Under the periodicity condition and the Hölder continuity condition on A, the uniform Rellich estimates
(1-9) were proved in [Kenig and Shen 2011a; 2011b] for a family of elliptic operators {Lε}, where Lε =
− div(A(x/ε)∇) and A(y)= (aαβi j (y)) with 1≤ i, j ≤ d and 1≤α, β≤m satisfies the ellipticity condition

µ|ξ |2 ≤ aαβi j (y)ξ
α
i ξ

β

j ≤
1
µ
|ξ |2 (1-11)

for y ∈ Rd and ξ = (ξαi ) ∈ Rd×m as well as the symmetry condition A∗ = A, i.e., aαβi j = aβαj i . The results
were used to establish the uniform solvability of the L2 Dirichlet, regularity, and Neumann problems for
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the system Lε(uε)= 0 in Lipschitz domains. It is worth pointing out that the Rellich estimates (1-9) are
not accessible by compactness methods. One of the key steps in [Kenig and Shen 2011a; 2011b] uses
integration by parts and relies on the observation that L1(Q)= Q(L1), where

Q(u)(x ′, xd)= u(x ′, xd + 1)− u(x ′, xd).

As a result, the approach does not seem to apply if the coefficients are not periodic. We mention that even
with periodic coefficients, the direct extension of the methods used in [Kenig and Shen 2011a; 2011b] is
problematic for the system of elasticity, due to the weaker ellipticity condition and the lack of (uniform)
Korn inequalities on boundary layers.

In this paper we develop a new approach to uniform boundary regularity in quantitative homogenization
of elliptic equations and systems. Let u0 denote the solution of the boundary value problem for the
homogenized system with the same data. The basic idea is to consider the function

wε = uε − u0− εχ
β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)
(1-12)

in �, where χ = (χβj ) denotes the matrix of correctors, K 2
ε = Kε ◦Kε with Kε being a smoothing operator

at scale ε, and ηε ∈C∞0 (�) is a cut-off function with support in {x ∈� : dist(x, ∂�)≥ 3ε}. Using energy
estimates for the operator Lε as well as sharp boundary regularity estimates for u0, we are able to bound

ε−1/2
‖wε‖H1(�)

by the right-hand sides of estimates (1-5) and (1-8), respectively. This, together with sharp estimates
for u0, yields the desired estimates for

r−1/2
‖∇uε‖L2(�r )

for ε ≤ r < diam(�). We mention that since L0 has constant coefficients, the sharp boundary estimates in
Lipschitz domains in terms of nontangential maximal functions are known [Fabes et al. 1988; Dahlberg
et al. 1988]. Also, because of the use of the smoothing operator Kε, which is motivated by [Pastukhova
2006; Suslina 2013a] (also see [Griso 2004; Onofrei and Vernescu 2007; Kenig et al. 2012; Suslina
2013b]), we only need to assume that

sup
x∈Rd

∫
B(x,1)

(
|χ(y)|2+ |∇χ(y)|2

)
dy <∞,

and that a similar estimate holds for a dual corrector φ = (φαβki j ) (see (2-5) for its definition). As such, it is
possible to extend the approach to the almost-periodic or other nonperiodic settings. We plan to carry out
this study in a separate work.

As we mentioned before, the estimates in Theorems 1.1 and 1.2 may be used to establish uniform
solvability of L2 boundary value problems for Lε in Lipschitz domains [Kenig and Shen 2011a; 2011b].
They can also be used to obtain sharp O(ε) error estimates in Lq(�) for q = 2d/(d − 1) and a Lipschitz
domain �, with no smoothness assumption on the coefficients.
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Theorem 1.3. Suppose that A and � satisfy the same conditions as in Theorem 1.1. Let uε be a weak
solution to (1-4) or (1-7), and u0 the weak solution of the homogenized system with the same data. Suppose
that u0 ∈ H 2(�;Rd). In the case of the Neumann problem (1-7) we further assume that uε, u0⊥R . Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (1-13)

where q = p′ = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.

We remark that if � is C2 and uε = 0 or ∂uε/∂νε = 0 on ∂�, the O(ε) estimate

‖uε − u0‖L2(�) ≤ Cε‖F‖L2(�) (1-14)

was proved in [Suslina 2013a; 2013b] for a broader class of elliptic operators with measurable periodic
coefficients, which contains the systems of elasticity considered here (also see [Griso 2004; Onofrei and
Vernescu 2007; Kenig et al. 2012; 2014] and their references for related work on convergence rates).
Note that q = 2d/(d − 1) > 2 and ‖u0‖H2(�) ≤ C‖F‖L2(�) if � is C2 and L0(u0)= F in � with u0 = 0
or ∂u0/∂ν0 = 0 on ∂�. Thus our estimate (1-13) is stronger than (1-14). In the case of scalar elliptic
equations with Dirichlet condition uε = 0 on ∂�, it is known that ‖uε − u0‖Lq (�) ≤ Cε‖F‖L p(�), where
1< p< d and 1/q = 1/p−1/d (see [Kenig et al. 2014, p. 1234]). Although the exponent q = 2d/(d−1)
may not be sharp, Theorem 1.3 seems to be the first result on the sharp O(ε) estimate of uε−u0 in Lq(�)

with q > 2 for elliptic systems with bounded measurable periodic coefficients.
As we indicated above, the proof of Theorems 1.1 and 1.2 only uses the energy estimates in L2 for

Lε and thus requires no smoothness assumptions on the coefficients. In the second part of this paper we
apply the similar ideas in the L p setting for 1< p <∞. To do this we first establish the W 1,p estimates
for the systems

Lε(uε)= div(h) in �, (1-15)

where h = (hαi ) ∈ L p(�;Rd×d), with either the Dirichlet or Neumann boundary conditions, under the
additional assumptions that � is C1 and A = A(y) belongs to VMO(Rd). As a result, the L p analogues
of estimates (1-5) and (1-8) are proved under these additional conditions, which are more or less sharp.
Consequently, by combining the L p estimates on the boundary layer �ε with local estimates for L1,
which hold for Hölder continuous coefficients, we may obtain the uniform Rellich estimates in L p for
solutions of Lε(uε)= 0 in C1 domains under the assumptions that A is Hölder continuous and satisfies
(1-2)–(1-3). By the method of layer potentials, this will lead to the uniform solvability of the L p Dirichlet,
regularity, and Neumann problems in C1 domains (details will be provided in a separate work). Previously,
these results in L p are known only in C1,α domains for operators Lε with Hölder continuous coefficients
satisfying (1-11) and A∗ = A [Kenig et al. 2013]. We remark that the W 1,p estimates (local or global) for
operators with nonsmooth coefficients in nonsmooth domains are of interest in their own rights and have
been studied extensively in recent years (see [Caffarelli and Peral 1998; Auscher and Qafsaoui 2002;
Wang 2003; Byun and Wang 2004; 2005; Shen 2005; 2008; Krylov 2007; Dong and Kim 2010; Kenig
et al. 2013; Geng 2012; Geng et al. 2012] and their references). Our approach to the W 1,p estimates is
based on a real-variable argument, which originated in [Caffarelli and Peral 1998] and further developed
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in [Wang 2003; Shen 2005; 2007]. The required (weak) reverse Hölder estimates at the boundary are
proved by combining the interior Lipschitz estimates down to the scale ε with boundary Cα estimates.

Theorems 1.1 and 1.2 as well as their L p analogues, given in Section 7, are the main contributions
of this paper. For a comprehensive study in the boundary regularity for Lε, in Sections 8 and 9, we
investigate the boundary Lipschitz estimates, uniform down to the scale ε, for solutions in C1,α domains
with the Dirichlet or Neumann conditions. Let

Dr =
{
(x ′, xd) ∈ Rd

: |x ′|< r and ψ(x ′) < xd <ψ(x ′)+ r
}
,

1r =
{
(x ′, xd) ∈ Rd

: |x ′|< r and xd = ψ(x ′)
}
,

(1-16)

where ψ : Rd−1
→ R is a C1,α function for some α > 0 with ψ(0)= 0 and ‖∇ψ‖Cα(Rd−1) ≤ M.

Theorem 1.4. Suppose that A satisfies conditions (1-2)–(1-3). Let uε ∈ H 1(D1;R
d) be a weak solution to

Lε(uε)= F in D1 and uε = f on 11. (1-17)

Then, for ε ≤ r < 1,(
−

∫
Dr

|∇uε|2
)1/2

≤ C
{(
−

∫
D1

|∇uε|2
)1/2

+‖ f ‖C1,σ (11)+‖F‖L p(D1)

}
, (1-18)

where p > d and σ ∈ (0, α). The constant C depends only on d, κ1, κ2, p, σ , and (α,M).

Theorem 1.5. Suppose that A satisfies (1-2)–(1-3). Let uε ∈ H 1(D1;R
d) be a weak solution to

Lε(uε)= F in D1 and
∂uε
∂νε
= g on 11. (1-19)

Then, for ε ≤ r < 1,(
−

∫
Dr

|∇uε|2
)1/2

≤ C
{(
−

∫
D1

|∇uε|2
)1/2

+‖g‖Cσ (11)+‖F‖L p(D1)

}
, (1-20)

where p > d and σ ∈ (0, α). The constant C depends only on d, κ1, κ2, p, σ , and (α,M).

As in the case of Rellich estimates, under additional smoothness conditions on A, using local Lipschitz
estimates for L1 and a blow-up argument, one may derive from Theorems 1.4 and 1.5 the full boundary
Lipschitz estimates

‖∇uε‖L∞(D1/2) ≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖ f ‖C1,σ (11)+‖F‖L p(D1)

}
(1-21)

for solutions of (1-17), and

‖∇uε‖L∞(D1/2) ≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖g‖Cσ (11)+‖F‖L p(D1)

}
(1-22)

for solutions of (1-19). We remark that for elliptic systems satisfying the ellipticity condition (1-11),
the periodicity condition (1-3) and the Hölder continuity condition, the estimate (1-21) was proved in
[Avellaneda and Lin 1987], while (1-22) was established in [Kenig et al. 2013] under the additional
symmetry condition A∗ = A. This symmetry condition was removed recently in [Armstrong and Shen
2016]. However, our estimates in Theorems 1.4 and 1.5 are new for the system of elasticity.
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Our proof of Theorems 1.4 and 1.5 also uses the function wε, given by (1-12). As a consequence of its
estimates in L2, for each r ∈

(
ε, 1

4

)
, we are able to construct a function v such that L0(v)= F in Dr with

the same (Dirichlet or Neumann) data on 1r as uε, and(
−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ terms involving given data
}
.

This allows us to use a general scheme for establishing Lipschitz estimates down to the scale ε, which
was formulated recently in [Armstrong and Smart 2016] and used for interior estimates in stochastic
homogenization with random coefficients (also see [Armstrong and Mourrat 2016] as well as related work
in [Gloria and Otto 2011; 2012; Gloria et al. 2014; 2015]). Our argument is similar to (and somewhat
simpler and more transparent than) that in [Armstrong and Shen 2016], where the scheme was adapted to
prove the full boundary Lipschitz estimates for second-order elliptic systems with almost-periodic and
Hölder continuous coefficients. As indicated earlier, we have been able to completely avoid the use of
compactness methods (even in the case of Cα estimates). Although it is possible to prove the interior
Lipschitz estimates as well as the boundary Cα estimates, down to the scale ε without smoothness, by the
compactness methods, as demonstrated in [Avellaneda and Lin 1987; Gu and Shen 2015], the compactness
methods for boundary Lipschitz estimates require the same estimates for boundary correctors, which are
not easy to establish [Avellaneda and Lin 1987; Kenig et al. 2013].

The paper is organized as follows. In Section 2 we establish some key convergence results in H 1. These
results are used in Section 3 to prove Theorems 1.1 and 1.2. In Section 4 we study the convergence rates
in Lq for q = 2d/(d − 1) and give the proof of Theorem 1.3, which uses the estimates in Theorems 1.1
and 1.2 as well as a duality argument. In Sections 5 and 6 we obtain the boundary Cα and W 1,p estimates,
respectively, in C1 domains for operators with VMO coefficients. These estimates are used in Section 7 to
establish the L p analogues of (1-5) and (1-8) in C1 domains. Finally, Theorem 1.4 is proved in Section 8,
and Section 9 contains the proof of Theorem 1.5.

Throughout the paper we use −
∫

E u = (1/|E |)
∫

E u to denote the average of u over the set E . We will
use C and c to denote constants that may depend on d , κ1, κ2, A and �, but never on ε.

2. Convergence rates in H1

In this section we establish certain results on convergence rates in H 1, which will play a crucial role in
the proof of our main results. Throughout the section we assume that A = A(y) satisfies (1-2)–(1-3) and
� is a bounded Lipschitz domain in Rd.

Let χ = (χβj (y))= (χ
αβ

j (y)) denote the matrix of correctors for Lε, where 1≤ j, α, β ≤ d . This means
that χβj ∈ H 1

loc(R
d
;Rd) is 1-periodic,

∫
Y χ

β

j = 0, and

L1(χ
β

j )=−L1(P
β

j ) in Rd, (2-1)

where Y = [0, 1)d and Pβj = y j (0, . . . , 1, . . . , 0) with 1 in the β-th position. The homogenized operator is
given by L0 =− div( Â∇), where Â = (âαβi j ) is the matrix of effective coefficients with

âαβi j = −

∫
Y

{
aαβi j + aαγik

∂

∂yk
(χ

γβ

j )

}
. (2-2)
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It is known that the constant matrix Â satisfies the elasticity condition (1-2) [Oleı̆nik et al. 1992; Jikov
et al. 1994]. Define

bαβi j (y)= aαβi j + aαγik
∂

∂yk
(χ

γβ

j )− âαβi j . (2-3)

By the definition of Â and (2-1), ∫
Y

bαβi j = 0 and
∂

∂yi
(bαβi j )= 0. (2-4)

It follows that there exist φαβki j ∈ H 1
loc(R

d) such that φαβki j is 1-periodic,

bαβi j =
∂

∂yk
(φ
αβ

ki j ) and φ
αβ

ki j =−φ
αβ

ik j (2-5)

(see, e.g., [Jikov et al. 1994; Kenig et al. 2012]).
Fix ϕ ∈ C∞0

(
B
(
0, 1

4

))
such that ϕ ≥ 0 and

∫
Rd ϕ = 1. Define

Kε( f )(x)= f ∗ϕε(x)=
∫

Rd
f (x − y)ϕε(y) dy, (2-6)

where ϕε(y)= ε−dϕ(y/ε).

Lemma 2.1. Let f ∈ L p(Rd) for some 1≤ p <∞. Then for any g ∈ L p
loc(R

d),

‖g(x/ε)Kε( f )‖L p(Rd ) ≤ C sup
x∈Rd

(
−

∫
B(x,1)

|g|p
)1/p

‖ f ‖L p(Rd ), (2-7)

where C depends only on d.

Proof. By Hölder’s inequality,

|Kε( f )(x)|p ≤
C

|B(0, ε)|

∫
Rd
| f (y)|pχB(x,ε)(y) dy,

from which the estimate (2-7) follows readily by Fubini’s theorem. �

It follows from (2-7) that if g ∈ L p
loc(R

d) and is 1-periodic, then

‖g(x/ε)Kε( f )‖L p(Rd ) ≤ C‖g‖L p(Y )‖ f ‖L p(Rd ). (2-8)

Lemma 2.2. Let f ∈W 1,q(Rd) for some 1< q <∞. Then

‖Kε( f )− f ‖Lq (Rd ) ≤ Cε‖∇ f ‖Lq (Rd ). (2-9)

Moreover, if p = 2d/(d + 1),

‖Kε( f )‖L2(Rd ) ≤ Cε−1/2
‖ f ‖L p(Rd ),

‖ f − Kε( f )‖L2(Rd ) ≤ Cε1/2
‖∇ f ‖L p(Rd ).

(2-10)

The constant C depends only on d.
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Proof. To see (2-9), we note that

‖ f ( · − y)− f ( · )‖Lq (Rd ) ≤ |y|‖∇ f ‖Lq (Rd )

for any y ∈ Rd. Thus, by Minkowski’s inequality,

‖Kε( f )− f ‖Lq (Rd ) ≤

∫
Rd
ϕε(y)‖ f ( · − y)− f ( · )‖Lq (Rd ) dy

≤

∫
Rd
ϕε(y)|y| dy ‖∇ f ‖Lq (Rd )

= Cε‖∇ f ‖Lq (Rd ).

Next, by Parseval’s theorem and Hölder’s inequality,∫
Rd
|Kε( f )|2 dx =

∫
Rd
|ϕ̂(εξ)|2 | f̂ (ξ)|2 dξ

≤

(∫
Rd
|ϕ̂(εξ)|2d dξ

)1/d

‖ f̂ ‖2L p′ (Rd )

≤ Cε−1
‖ f ‖2L p(Rd )

,

where f̂ denotes the Fourier transform of f , and we have used the Hausdorff–Young inequality ‖ f̂ ‖L p′(Rd )≤

‖ f ‖L p(Rd ). This gives the first inequality in (2-10). To see the second inequality, we note that ϕ̂(0) =∫
Rd ϕ = 1. It follows that

‖ f − Kε( f )‖L2(Rd ) ≤ C
{∫

Rd
|ϕ̂(εξ)− ϕ̂(0)|2d

|ξ |−2d dξ
}1/(2d)

‖∇̂ f ‖L p′ (Rd )

≤ Cε1/2
‖∇ f ‖L p(Rd ),

where we have used |ϕ̂(ξ)− ϕ̂(0)| ≤ C |ξ | for the last step. �

Lemma 2.3. Let uε, u0 ∈ H 1(�;Rd). Suppose that Lε(uε) = L0(u0) in � and either uε = u0 or
∂uε/∂νε = ∂u0/∂ν0 on ∂�. Let

wαε = uαε − uα0 − εχ
αβ

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)
,

where K 2
ε = Kε◦Kε, ηε ∈C∞0 (�) and supp(ηε)⊂ {x ∈� : dist(x, ∂�)≥ 3ε}. Then∫
�

A(x/ε)∇wε · ∇wε dx =
∫
�

[ Â− A(x/ε)][∇u0− K 2
ε ((∇u0)ηε)] · ∇wε dx

−

∫
�

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx

− ε

∫
�

A(x/ε)χ(x/ε)∇K 2
ε ((∇u0)ηε) · ∇wε dx, (2-11)

where B(y)= (bαβi j (y)) is defined in (2-3).
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Proof. We first note that if uε = u0 on ∂�, then wε ∈ H 1
0 (�;R

d), as K 2
ε ((∇u0)ηε) ∈ C∞0 (�). Since

Lε(uε)= L0(u0) in �, it follows that∫
�

A(x/ε)∇uε · ∇wε dx =
∫
�

Â∇u0 · ∇wε dx . (2-12)

In the case of the Neumann condition ∂uε/∂ε = ∂u0/∂ν0 on ∂�, equation (2-12) continues to hold. This
is because wε ∈ H 1(�;Rd) and both sides of (2-12) are equal to

〈L0(u0), wε〉(H1(�))′×H1(�)+

〈
∂u0

∂ν0
, wε

〉
H−1/2(∂�)×H1/2(∂�)

.

Using (2-12), we obtain∫
�

A(x/ε)∇wε · ∇wε dx =
∫
�

[ Â− A(x/ε)]∇u0 · ∇wε dx

−

∫
�

A(x/ε)∇χ(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx

− ε

∫
�

A(x/ε)χ(x/ε)∇K 2
ε ((∇u0)ηε) · ∇wε dx,

from which the formal (2-11) follows by the definition of B(y). �

Lemma 2.4. Let φ(y)= (φαβki j (y)) be defined by (2-5). Then∫
�

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx =−ε

∫
�

φ
αβ

ki j (x/ε)
∂wαε

∂xi
·
∂

∂xk
K 2
ε

(
∂uβ0
∂x j

ηε

)
dx . (2-13)

Proof. Using (2-5), we see that

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε = bαβi j (x/ε)K

2
ε

(
∂uβ0
∂x j

ηε

)
·
∂wαε

∂xi

= ε
∂

∂xk

(
φ
αβ

ki j (x/ε)
)

K 2
ε

(
∂uβ0
∂x j

ηε

)
·
∂wαε

∂xi

= ε
∂

∂xk

{
φ
αβ

ki j (x/ε)
∂wαε

∂xi

}
K 2
ε

(
∂uβ0
∂x j

ηε

)
,

from which equation (2-13) follows readily. �

Lemma 2.5. Let uε (ε ≥ 0) be a solution to the Dirichlet problem (1-4) or the Neumann problem (1-7).
Let wε be defined as in Lemma 2.3 with ηε satisfying

ηε ∈ C∞0 (�), 0≤ η ≤ 1,
supp(ηε)⊂ {x ∈� : dist(x, ∂�)≥ 3ε},
ηε = 1 on {x ∈� : dist(x, ∂�)≥ 4ε},
|∇ηε| ≤ Cε−1.

(2-14)
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Then∣∣∣∣∫
�

A(x/ε)∇wε · ∇wε dx
∣∣∣∣

≤ C‖∇wε‖L2(�)

{
‖∇u0‖L2(�4ε)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)+ ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-15)

Proof. It follows from Lemmas 2.3 and 2.4 by the Cauchy inequality that∣∣∣∣∫
�

A(x/ε)∇wε·∇wε dx
∣∣∣∣≤C‖∇wε‖L2(�)

{
‖∇u0−K 2

ε ((∇u0)ηε)‖L2(�)+ε‖χ(x/ε)∇K 2
ε ((∇u0)ηε)‖L2(�)

+ε‖φ(x/ε)∇K 2
ε ((∇u0)ηε)‖L2(�)

}
≤C‖∇wε‖L2(�)

{
‖∇u0−K 2

ε ((∇u0)ηε)‖L2(�)+ε‖∇Kε((∇u0)ηε)‖L2(�)

}
,

where we have used Lemma 2.1 as well as the fact that χ, φ ∈ L2
loc(R

d) and are 1-periodic for the last
inequality. Observe that

‖∇u0− K 2
ε ((∇u0)ηε)‖L2(�) ≤ ‖(∇u0)(1− ηε)‖L2(�)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)

+
∥∥Kε

(
(u0)ηε − Kε((∇u0)ηε)

)∥∥
L2(�)

≤ ‖∇u0‖L2(�4ε)+C‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�).

Also,
ε‖∇Kε((∇u0)ηε)‖L2(�) ≤ ε‖Kε((∇

2u0)ηε)‖L2(�)+ ε‖Kε((∇u0)(∇ηε))‖L2(�)

≤ ε‖Kε((∇
2u0)ηε)‖L2(�)+C‖∇u0‖L2(�4ε). �

Finally, we are in a position to state and prove the main result of this section.

Theorem 2.6. Suppose that A(y) satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain. Let uε
(ε ≥ 0) be the solutions to the Dirichlet problem (1-4) in � with f ∈ H 1(∂�;Rd) and F ∈ L p(�;Rd),
where p = 2d/(d + 1). Then∥∥∥∥uε − u0− εχ

β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)∥∥∥∥
H1

0 (�)

≤ Cε1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-16)

where ηε ∈ C∞0 (�) satisfies (2-14). The constant C depends only on d , κ1, κ2, and the Lipschitz character
of �.

Proof. Let wε denote the function on the left-hand side of (2-16). Since wε ∈ H 1
0 (�;R

d), it follows from
(2-15) by the first Korn inequality [Oleı̆nik et al. 1992] that

‖wε‖H1
0 (�)
≤ C

{
‖∇u0‖L2(�4ε)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)+ ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-17)

To bound the right-hand side of (2-17), we write u0 = v+ h, where

v(x)=
∫
�

00(x − y)F(y) dy

and 00(x) denotes the matrix of fundamental solutions for the homogenized operator L0 in Rd, with pole
at the origin. Note that L0(v)= F in �, and by the well known singular integral and fractional integral
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estimates,

‖∇
2v‖L p(Rd )+‖∇v‖L p′ (Rd ) ≤ C p‖F‖L p(�), (2-18)

where we have used the observation 1/p′ = 1/p− 1/d. Let e= (e1, . . . , ed) ∈ C1
0(R

d
;Rd) be a vector

field such that 〈e, n〉 ≥ c0 > 0 on ∂� and |∇e| ≤ Cr−1
0 , where r0 = diam(�) and n denotes the outward

unit normal to ∂�. It follows from the divergence theorem that

c0

∫
∂�

|∇v|2 dσ ≤
∫
∂�

|∇v|2〈e, n〉 dσ

=

∫
�

|∇v|2 div(e) dx +
∫
�

ei
∂

∂xi
∇v · ∇v dx

≤ C
{

r−1
0

∫
�

|∇v|2 dx +
∫
�

|∇v||∇2v| dx
}

≤ C
{
r−1

0 ‖∇v‖
2
L2(�)
+‖∇v‖L p′ (�)‖∇

2v‖L p(�)

}
≤ C‖F‖2L p(�), (2-19)

where we have used (2-18) for the last step. Note that the same argument also gives ‖∇v‖L2(St ) ≤

C‖F‖L p(�), where St = {x ∈ Rd
: dist(x, ∂�)= t} for 0< t < cr0. Consequently, by the coarea formula,

we obtain {
1
r

∫
�̃r

|∇v|2 dx
}1/2

≤ C‖F‖L p(�), (2-20)

where 0< r < diam(�) and �̃r = {x ∈ Rd
: dist(x, ∂�) < r}.

Next, we observe that L0(h)= 0 in � and

‖h‖H1(∂�) ≤ ‖ f ‖H1(∂�)+‖v‖H1(∂�)

≤ ‖ f ‖H1(∂�)+C‖F‖L p(�),

where we have used (2-19) for the last inequality. It follows from the estimates for solutions of the L2 reg-
ularity problem in Lipschitz domains for the operator L0 in [Dahlberg et al. 1988; Verchota 1986] that

‖(∇h)∗‖L2(∂�) ≤ C
{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-21)

where (∇h)∗ denotes the nontangential maximal function of ∇h. This, together with (2-20), gives

‖∇u0‖L2(�r ) ≤ Cr1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
(2-22)

for any 0 < r < diam(�). As a result, the first term on the right-hand side of (2-17) is bounded by
Cε1/2

{‖ f ‖H1(∂�)+‖F‖L p(�)}.
To handle the third term on the right-hand side of (2-17), we use Lemma 2.2 to obtain

ε‖Kε((∇
2u0)ηε)‖L2(�) ≤ ε‖Kε((∇

2v)ηε)‖L2(�)+ ε‖Kε((∇
2h)ηε)‖L2(�)

≤ Cε1/2
‖(∇2v)ηε‖L p(�)+Cε‖(∇2h)ηε‖L2(�)

≤ Cε1/2
‖F‖L p(�)+Cε‖∇2h‖L2(�\�3ε). (2-23)
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Since L0(∇h)= 0 in �, we may use the interior estimate for L0,

|∇
2h(x)| ≤

C
δ(x)

(
−

∫
B(x,δ(x)/8)

|∇h|2
)1/2

,

where δ(x)= dist(x, ∂�), to show that

‖∇
2h‖L2(�\�3ε) ≤ C‖(∇h)[δ(x)]−1

‖L2(�\�ε)

≤ Cε−1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-24)

where the last inequality follows from (2-21). This, together with (2-23), gives

ε‖Kε((∇
2u0)ηε)‖L2(�) ≤ Cε1/2{

‖ f ‖H1(∂�)+‖F‖L p(�)

}
. (2-25)

Finally, to bound the second term on the right-hand side of (2-17), we again write u0 = v+h as before.
Note that by Lemma 2.2,

‖(∇v)ηε−Kε((∇v)ηε)‖L2(�)≤‖∇v−Kε(∇v)‖L2(Rd )+‖(∇v)(1−ηε)‖L2(�)+‖Kε((∇v)(1−ηε))‖L2(�)

≤Cε1/2
‖∇

2v‖L p(Rd )+C‖∇v‖L2(�̃8ε)

≤Cε1/2
‖F‖L p(�),

where we have used (2-18) and (2-20) for the last inequality. Also, by Lemma 2.2,

‖(∇h)ηε − Kε((∇h)ηε)‖L2(�) ≤ Cε‖∇((∇h)ηε)‖L2(�)

≤ C
{
ε‖∇2h‖L2(�\�3ε)+‖∇h‖L2(�4ε)

}
≤ Cε1/2{

‖ f ‖H1(∂�)+‖F‖L p(�)

}
.

Consequently, the second term on the right-hand side of (2-17) is dominated by the right-hand side of
(2-16). This completes the proof of Theorem 2.6. �

The next theorem is an analogue of Theorem 2.6 for the Neumann boundary conditions.

Theorem 2.7. Suppose that A= A(y) satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain. Let uε
(ε ≥ 0) be the solutions to the Neumann problem (1-7) in � with g ∈ L2(∂�;Rd) and F ∈ L p(�;Rd),
where p = 2d/(d + 1). Also assume that uε, u0 ⊥R . Then∥∥∥∥uε − u0− εχ

β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)∥∥∥∥
H1(�)

≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L p(�)

}
, (2-26)

where ηε ∈ C∞0 (�) satisfies (2-14). The constant C depends only on d , κ1, κ2, and the Lipschitz character
of �.

Proof. The proof, which uses the estimate in Lemma 2.5, is similar to that of Theorem 2.6. We will only
point out the differences and leave the details to the reader.

Let wε denote the function on the left-hand side of (2-26). Let{
ϕ j : j = 1, . . . , J = 1

2 d(d + 1)
}
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be an orthonormal basis of R, as a subspace of L2(�;Rd). By the second Korn inequality [Oleı̆nik et al.
1992],

‖wε‖H1(�) ≤ C
∣∣∣∣∫
�

A(x/ε)∇wε · ∇wε dx
∣∣∣∣+C

J∑
j=1

∣∣∣∣∫
�

wε ·ϕ j dx
∣∣∣∣. (2-27)

Since uε, u0 ⊥R, it follows that∣∣∣∣ ∫
�

wε ·ϕ j dx
∣∣∣∣≤ Cε‖χ(x/ε)K 2

ε ((∇u0)ηε)‖L2(�)

≤ Cε‖∇u0‖L2(�).

This, together with (2-27) and Lemma 2.5, shows that

‖wε‖H1(�)

≤C
{
‖∇u0‖L2(�4ε)+ε‖∇u0‖L2(�)+‖(∇u0)ηε−Kε((∇u0)ηε)‖L2(�)+ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-28)

To bound the right-hand side of (2-28), we write u0 = v+ h, where v is the same as in the proof of
Theorem 2.6. Since L0(h)= 0 in � and∥∥∥∥ ∂h

∂ν0

∥∥∥∥
L2(∂�)

≤

∥∥∥∥∂u0

∂ν0

∥∥∥∥
L2(∂�)

+

∥∥∥∥ ∂v∂ν0

∥∥∥∥
L2(∂�)

≤ C
{
‖g‖L2(∂�)+‖F‖L p(�)

}
,

we may use the estimates in [Dahlberg et al. 1988; Verchota 1986] for solutions of the L2 Neumann
problem for L0 in Lipschitz domains to obtain

‖(∇h)∗‖L2(∂�) ≤ C
{
‖g‖L2(∂�)+‖F‖L p(�)+

J∑
j=1

∣∣∣∣∫
�

h ·ϕ j

∣∣∣∣}
≤ C

{
‖g‖L2(∂�)+‖F‖L p(�)

}
, (2-29)

where we have used the assumption u0 ⊥R . With the nontangential maximal function estimate (2-29) at
our disposal, the rest of the proof is exactly the same as that of Theorem 2.6. �

Remark 2.8. Since
‖χ(x/ε)K 2

ε ((∇u0)ηε)‖L2(�) ≤ C‖∇u0‖L2(�),

it follows from the estimate (2-16) that

‖uε − u0‖L2(�) ≤ Cε1/2{
‖ f ‖H1(∂�)+‖F‖L2(�)

}
, (2-30)

where Lε(uε)= L0(u0)= F in � and uε = u0 = f on ∂�. Similarly, the estimate (2-26) implies

‖uε − u0‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
, (2-31)

where uε, u0 are given in Theorem 2.7. These O(ε1/2) estimates in L2 are not sharp (see Section 4), but
they will be sufficient for us to establish the boundary Cα and Lipschitz estimates.
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3. Proof of Theorems 1.1 and 1.2

Theorems 1.1 and 1.2 are consequences of Theorems 2.6 and 2.7, respectively. We give the proof of
Theorem 1.1. Theorem 1.2 follows from Theorem 2.7 in the same manner.

Without loss of generality we may assume that

‖ f ‖H1(∂�)+‖F‖L p(�) = 1.

Let wε denote the function on the left-hand side of (2-16). By Theorem 2.6, for ε ≤ r < diam(�),

‖∇uε‖L2(�r ) ≤ ‖∇u0‖L2(�r )+‖∇wε‖L2(�)+ ε
∥∥∇{χ(x/ε)K 2

ε ((∇u0)ηε)
∥∥

L2(�r )

≤ Cr1/2
+
∥∥∇χ(x/ε)K 2

ε ((∇u0)ηε)
∥∥

L2(�r )
+ ε

∥∥χ(x/ε)∇K 2
ε ((∇u0)ηε)

∥∥
L2(�r )

≤ Cr1/2
+C‖Kε((∇u0)ηε)‖L2(�2r )+Cε‖∇Kε((∇u0)ηε)‖L2(�2r ),

where we have used (2-22) and Lemma 2.1 as well as the fact that the operator Kε is a convolution with a
kernel supported in B(0, ε/4). Note that by (2-22) and (2-25),

‖Kε((∇u0)ηε)‖L2(�2r ) ≤ C‖∇u0‖L2(�3r ) ≤ Cr1/2,

and
ε‖∇Kε((∇u0)ηε)‖L2(�2r ) ≤ ε‖Kε((∇

2u0)ηε)‖L2(�2r )+ ε‖Kε((∇u0)(∇ηε))‖L2(�2r )

≤ ε‖Kε((∇
2u0)ηε)‖L2(�2r )+C‖∇u0‖L2(�3r )

≤ Cr1/2.

The proof of Theorem 1.1 is complete.

Remark 3.1. Under certain smoothness conditions on A, it is possible to extend the Rellich estimates in
[Dahlberg et al. 1988] for the Lamé systems with constant coefficients to the operator L1 with variable
coefficients satisfying the condition (1-2). We refer the reader to [Kenig and Shen 2011b], where this is
done in the case that the coefficients satisfy the ellipticity condition (1-11). It follows that if L1(u)= 0
in D2, where Dr is defined by (1-16) with ψ(0)= 0 and ‖∇ψ‖∞ ≤ M, then

∫
∂Dr

|∇u|2 dσ ≤ C
∫
∂Dr

∣∣∣∣∂u
∂ν

∣∣∣∣2 dσ +C
∫

Dr

|∇u|2 dx,∫
∂Dr

|∇u|2 dσ ≤ C
∫
∂Dr

|∇tanu|2 dσ +C
∫

Dr

|∇u|2 dx
(3-1)

for any r ∈
(
1, 3

2

)
, where C depends only on d , A, and M. By integrating both sides of the inequalities in

(3-1) with respect to r over
(
1, 3

2

)
, we obtain

∫
11

|∇u|2 dσ ≤ C
∫
12

∣∣∣∣∂u
∂ν

∣∣∣∣2 dσ +C
∫

D2

|∇u|2 dx,∫
11

|∇u|2 dσ ≤ C
∫
12

|∇tanu|2 dσ +C
∫

D2

|∇u|2 dx,
(3-2)



668 ZHONGWEI SHEN

where 1r = {(x ′, ψ(x ′)) ∈ Rd
: |x ′|<r and xd=ψ(x ′)}. We now take advantage of the fact that the

dependence of C on ψ is only through M. Since Lε(uε)= 0 implies L1{uε(εx)} = 0, one may deduce
from (3-2) that if Lε(uε)= 0 in D2ε, then

∫
1ε

|∇uε|2 dσ ≤ C
∫
12ε

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ + C
ε

∫
D2ε

|∇uε|2 dx,∫
1ε

|∇uε|2 dσ ≤ C
∫
12ε

|∇tanuε|2 dσ + C
ε

∫
D2ε

|∇uε|2 dx .
(3-3)

Now, suppose that uε ∈ H 1(�;Rd) and Lε(uε)= 0 in �, where � is a bounded Lipschitz domain in Rd.
By covering ∂� with a finite number of suitable balls of size cε, it follows from (3-3) that

∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ + C
ε

∫
�cε

|∇uε|2 dx,∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

|∇tanuε|2 dσ + C
ε

∫
�cε

|∇uε|2 dx .
(3-4)

Notice that up to this point, we have only used the smoothness condition of A, not the periodicity of A.
With the additional periodicity condition we may invoke the estimates in Theorems 1.1 and 1.2 to bound
the volume integrals of |∇uε|2 over the boundary layer �cε. This yields the full Rellich estimates,∫

∂�

|∇uε|2 dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ (3-5)

if uε ⊥R, and ∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

|∇tanuε|2 dσ +Cr−2
0

∫
∂�

|uε|2 dσ. (3-6)

It is well known that estimates (3-5)–(3-6) may be used to solve the L2 boundary value problems in
Lipschitz domains by the method of layer potentials. We refer the reader to [Kenig and Shen 2011b] for
the case where A(y) satisfies (1-11). The details for the system of linear elasticity have been carried out
in a separate work [Geng et al. 2017].

4. Convergence rates in Lq for q = 2d/(d− 1)

We now establish sharp O(ε) estimates for ‖uε − u0‖Lq (�) with q = 2d/(d − 1), using Theorems 1.1
and 1.2 and a duality argument. Throughout this section we will assume that � is a bounded Lipschitz
domain and A = A(y) satisfies (1-2)–(1-3).

We start with the Dirichlet boundary condition.

Lemma 4.1. Let uε (ε ≥ 0) be the solution of (1-4). Suppose that u0 ∈ H 2(�;Rd). Then∥∥∥∥uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε

∥∥∥∥
H1

0 (�)

≤ Cε‖∇2ũ0‖L2(Rd ), (4-1)
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where ũ0 ∈ H 2(Rd
;Rd) is an extension of u0 and vε ∈ H 1(�;Rd) is the weak solution to

Lε(vε)= 0 in � and vε =−εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
on ∂�. (4-2)

Proof. Let

wε = uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε.

Using Lε(uε)= L0(u0) and Lε(vε)= 0 in �, a direct computation shows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

∂uβ0
∂x j

}
−Lε

{
εχk(x/ε)Kε

(
∂ ũ0

∂xk

)}

=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂ ũβ0
∂x j

)]}
+

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)}
, (4-3)

where bαβi j is defined by (2-3). Using (2-5), we see that

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
= ε

∂

∂xi

{
φ
αβ

ik j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)}
. (4-4)

Indeed, the left-hand side of (4-4) equals

bαβi j (x/ε)Kε

(
∂2ũβ0
∂xi∂x j

)
,

while the right-hand side equals

bαβk j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
+φ

αβ

ik j (x/ε)
∂2

∂xi∂xk
Kε

(
∂ ũβ0
∂x j

)
and the second term is zero due to the skew-symmetry φαβki j =−φ

αβ

ik j .
It follows from (4-3) and (4-4) by Lemmas 2.1 and 2.2 that

‖Lε(wε)‖H−1(�) ≤ Cε‖∇2ũ0‖L2(Rd ),

where C depends only on d, κ1, κ2, and �. Since wε ∈ H 1
0 (�;R

d), this gives the estimate (4-1) by the
energy estimate. �

The following theorem establishes the sharp O(ε) estimate in Lq with q = 2d/(d−1) for the Dirichlet
boundary condition.

Theorem 4.2. Suppose that A satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain in Rd. Let uε
(ε ≥ 0) be the weak solution to Dirichlet problem (1-4). Assume that u0 ∈ H 2(�;Rd). Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (4-5)

where q = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.
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Proof. We begin by choosing ũ0 ∈ H 2(Rd
;Rd) such that ũ0 = u0 in � and ‖ũ0‖H2(Rd ) ≤ C‖u0‖H2(�),

where C depends only on �. Since � is Lipschitz, this is possible by an extension theorem due to
A. Calderón [Stein 1970, Theorem 5, p. 181]. Next, since H 1

0 (�)⊂ Lq(�) and∥∥∥∥χk(x/ε)Kε

(
∂ ũ0

∂xk

)∥∥∥∥
Lq (�)

≤ C‖∇ũ0‖Lq (Rd ) ≤ C‖u0‖H2(�),

in view of Lemma 4.1, it suffices to show that

‖vε‖Lq (�) ≤ Cε‖u0‖H2(�), (4-6)

where vε is given by (4-2).
To this end we fix G ∈ L p(�;Rd), where p = q ′ = 2d/(d + 1), and let hε ∈ H 1

0 (�;R
d) be the weak

solution to

Lε(hε)= G in � and hε = 0 on ∂�. (4-7)

It follows from (4-2), (4-7), and the divergence theorem that∫
�

vε ·G dx =−
∫
∂�

vε ·
∂hε
∂νε

dσ

= ε

∫
∂�

χk(x/ε)Kε

(
∂ ũ0

∂xk

)
·
∂hε
∂νε

(ηε − 1) dσ

=

∫
�

∂χ
αγ

k

∂xi
(x/ε)Kε

(
∂ ũγ0
∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

(ηε − 1) dx

+ ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂2ũγ0
∂xi∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

(ηε − 1) dx

− ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂ ũγ0
∂xk

)
Gα(ηε − 1) dx

+ ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂ ũγ0
∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

∂ηε

∂xi
dx,

where ηε ∈ C∞0 (�) satisfies (2-14). This implies∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ C

∫
�

|∇χ(x/ε)||Kε(∇ũ0)||∇hε||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇
2ũ0)||∇hε||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇ũ0)||G||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇ũ0)||∇hε||∇ηε| dx . (4-8)
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Note that by Cauchy’s inequality and (2-14), the first and fourth terms on the right-hand side of (4-8) are
bounded by

C
(∫

�4ε

∣∣(|∇χ(x/ε)| + |χ(x/ε)|)Kε(∇ũ0)
∣∣2 dx

)1/2(∫
�4ε

|∇hε|2 dx
)1/2

≤ C
(∫

�̃5ε

|∇ũ0|
2 dx

)1/2(∫
�4ε

|∇hε|2 dx
)1/2

,

where �r = {x ∈� : dist(x, ∂�)<r}, �̃r = {x ∈ Rd
: dist(x, ∂�)<r}, and we have used Lemma 2.1 for

the last inequality. Using the divergence theorem, as in (2-19), one may prove that

‖∇ũ0‖L2(Sr ) ≤ C‖ũ0‖
1/2
H1(Rd )

‖ũ0‖
1/2
H2(Rd )

,

where Sr = {x ∈ Rd
: dist(x, ∂�)=r}. It follows by the coarea formula that

‖∇ũ0‖L2(�̃r )
≤ Cr1/2

‖ũ0‖
1/2
H1(Rd )

‖ũ0‖
1/2
H2(Rd )

. (4-9)

This, together with the estimate in Theorem 1.1 for hε, shows that the first and fourth terms on the
right-hand side of (4-8) are bounded by

Cε‖u0‖H2(�)‖G‖L p(�),

where p = q ′ = 2d/(d + 1). Finally, we note that the second and third terms on the right-hand side of
(4-8) are bounded by

Cε‖∇2ũ0‖L2(Rd )‖∇hε‖L2(�)+Cε‖∇ũ0‖Lq (Rd )‖G‖L p(�) ≤ Cε‖u0‖H2(�)‖G‖L p(�).

As a result, we have proved that∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ Cε‖u0‖H2(�)‖G‖L p(�),

which, by duality, gives the estimate (4-6) and completes the proof. �

Next we consider the solutions with the Neumann boundary conditions.

Lemma 4.3. Let uε (ε ≥ 0) be the solutions of (1-7) such that uε ⊥ R . Suppose that u0 ∈ H 2(�;Rd).
Then ∥∥∥∥uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε

∥∥∥∥
H1(�)

≤ Cε
{
‖∇

2ũ0‖L2(Rd )+‖∇ũ0‖L2(Rd )

}
, (4-10)

where ũ0 is an extension of u0 and vε ∈ H 1(�;Rd) is the weak solution to
Lε(vε)= 0 in �,

∂vε

∂νε
=
ε

2

(
nk

∂

∂xi
− ni

∂

∂xk

){
φki j (x/ε)Kε

(
∂ ũ0

∂x j

)}
on ∂�,

vε ⊥R.

(4-11)
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Proof. Let

wε = uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε.

Using ∂uε/∂νε = ∂u0/∂ν0 on ∂�, a direct computation shows that

∂wε

∂νε
=
∂u0

∂ν0
−
∂u0

∂νε
−

∂

∂νε

{
εχk(x/ε)Kε

(
∂ ũ0

∂xk

)}
−
∂vε

∂νε

= ni [â
αβ

i j − aαβi j (x/ε)]
[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

)]
− ni b

αβ

i j (x/ε)Kε

(
∂uβ0
∂x j

)
− ni a

αβ

i j (x/ε) · εχ
βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)
−
∂vε

∂νε
. (4-12)

Using (2-5), we also see that

ni b
αβ

i j (x/ε)Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε
= εni

∂

∂xk
[φ
αβ

ki j (x/ε)]Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε

=
ε

2

(
ni

∂

∂xk
− nk

∂

∂xi

)
[φ
αβ

ki j (x/ε)]Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε

=−εniφ
αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
. (4-13)

As a result, we obtain

∂wε

∂νε
= ni [â

αβ

i j − aαβi j (x/ε)]
[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

)]
+ εniφ

αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
− ni a

αβ

i j (x/ε) · εχ
βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)
. (4-14)

Next, we note that as in the proof of Lemma 4.1,

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂ ũβ0
∂x j

)]}
− ε

∂

∂xi

{
φ
αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)}
. (4-15)

Thus, by (1-2) and the energy estimate,

‖∇wε+(∇wε)
T
‖L2(�)

≤ C‖∇wε‖L2(�)

{
‖∇u0−Kε(∇ũ0)‖L2(�)+ε‖φ(x/ε)Kε(∇

2ũ0)‖L2(�)+ε‖χ(x/ε)Kε(∇
2u0)‖L2(�)

}
≤ Cε‖∇wε‖L2(�)‖∇

2ũ0‖L2(Rd ),
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where we have used Lemmas 2.1 and 2.2 for the last step. By the second Korn inequality, this implies

‖wε‖H1(�) ≤ Cε‖∇2ũ0‖L2(Rd )+C
J∑

j=1

∣∣∣∣∫
�

wε ·ϕ j dx
∣∣∣∣

≤ Cε‖∇2ũ0‖L2(Rd )+Cε‖χ(x/ε)Kε(∇ũ0)‖L2(�) ≤ Cε
{
‖∇

2ũ0‖L2(Rd )+‖∇ũ0‖L2(Rd )

}
,

where {ϕ j : j = 1, . . . , J } forms an orthonormal basis of R, as a subspace of L2(�;Rd). �

The next theorem is an analogue of Theorem 4.2 for the Neumann boundary conditions.

Theorem 4.4. Suppose that A satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain in Rd. Let
uε (ε ≥ 0) be the weak solutions to the Neumann problem (1-7) with the property uε ⊥R . Assume that
u0 ∈ H 2(�;Rd). Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (4-16)

where q = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.

Proof. As in the proof of Theorem 4.2, it suffices to show that

‖vε‖Lq (�) ≤ Cε‖u0‖H2(�), (4-17)

where vε is given by (4-11). To this end we fix G ∈ L p(�;Rd) with G ⊥R and let hε ∈ H 1(�;Rd) be
the weak solution to

Lε(hε)= G in � and
∂hε
∂νε
= 0 on ∂�, (4-18)

with the property hε ⊥R . It follows from (4-18), (4-11), and Green’s formula that∫
�

vε ·G dx =
∫
�

A(x/ε)∇vε · ∇hε dx =
∫
∂�

∂vε

∂νε
· hε dσ

=
ε

2

∫
∂�

(
nk

∂

∂xi
− ni

∂

∂xk

){
φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
· hαε dσ

=−
ε

2

∫
∂�

φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)
·

(
nk

∂

∂xi
− ni

∂

∂xk

)
hαε · (1− ηε) dσ

=−ε

∫
�

∂

∂xk

{
φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)
(1− ηε)

}
·
∂hαε
∂xi

dx,

where ηε ∈ C∞0 (�) satisfies (2-14) and we have used the divergence theorem as well as (2-5) for the last
inequality. This leads to∣∣∣∣∫

�

vε ·G dx
∣∣∣∣≤ C

∫
�4ε

|∇φ(x/ε)||Kε(∇ũ0)||∇hε| dx

+Cε
∫
�4ε

|φ(x/ε)||Kε(∇
2ũ0)||∇hε| dx

+Cε
∫
�4ε

|φ(x/ε)||Kε(∇ũ0)||∇ηε||∇hε| dx . (4-19)
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Note that by the Cauchy inequality, the first and third term on the right-hand side of (4-19) are bounded by

C
∥∥(|∇φ(x/ε)| + |φ(x/ε)|)Kε(∇ũ0)

∥∥
L2(�4ε)

‖∇hε‖L2(�4ε) ≤ C‖∇ũ0‖L2(�̃5ε)
‖∇hε‖L2(�4ε)

≤ Cε‖u0‖H2(�)‖G‖L p(�),

where we have used Lemma 2.2 for the first inequality and Theorem 1.2 as well as estimate (4-9) for
the second. Also, the second term on the right-hand side of (4-19) is bounded by

Cε‖φ(x/ε)Kε(∇
2ũ0)‖L2(�)‖∇hε‖L2(�) ≤ Cε‖u0‖H2(�)‖G‖L p(�).

Hence we have proved that for any G ∈ L p(�;Rd) with the property G ⊥A,∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ Cε‖u0‖H2(�)‖G‖L p(�).

Since vε ⊥A, this gives the estimate (4-17) by duality and completes the proof. �

Note that by combining Theorems 4.2 and 4.4, one obtains Theorem 1.3.

5. Cα estimates in C1 domains

In this section we investigate uniform boundary Cα estimates in C1 domains. The results will be used in
the next section to establish uniform boundary W 1,p estimates in C1 domains. Throughout the section we
will assume that the defining function ψ in Dr and 1r is C1 and ψ(0)= 0. To quantify the C1 condition
we further assume that

sup
{
|∇ψ(x ′)−∇ψ(y′)| : x ′, y′ ∈ Rd−1 and |x ′− y′| ≤ t

}
≤ τ(t), (5-1)

where τ(t)→ 0 as t→ 0+.
The rescaling argument is used frequently in this paper. Suppose that Lε(uε)= F in D2r and uε = f

on 12r . Let w(x)= uε(r x). Then

Lε/r (w)= G in D̃2 and w = g on 1̃2,

where G(x)= r2 F(r x), g(x)= f (r x), and

D̃2 =
{
(x ′, xd) ∈ Rd

: |x ′|<2 and ψr (x ′)<xd<ψr (x ′)+ 2
}
,

1̃2 =
{
(x ′, xd) ∈ Rd

: |x ′|<2 and xd=ψr (x ′)
}
,

with ψr (x ′) = r−1ψ(r x ′). Note that ψr (0) = 0 and ‖∇ψr‖∞ = ‖∇ψ‖∞. Moreover, if ψ is C1 and
satisfies (5-1), then ψr satisfies (5-1) uniformly in r for 0< r ≤ 1.

Lemma 5.1. Let 0 < ε ≤ r ≤ 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = 0 in D2r with

uε = 0 on 12r . Then there exists v ∈ H 1(Dr ;R
d) such that L0(v)= 0 in Dr , v = 0 on 1r , and(

−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

, (5-2)

where ‖∇ψ‖∞ ≤ M, and C depends only on d, κ1, κ2, and M.
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Proof. By rescaling we may assume r = 1. By Caccioppoli’s inequality,(
−

∫
D3/2

|∇uε|2
)1/2

≤ C
(
−

∫
D2

|uε|2
)1/2

. (5-3)

It follows from (5-3) and the coarea formula that there exists t ∈
[ 5

4 ,
3
2

]
such that

‖∇uε‖L2(∂Dt\12)+‖uε‖L2(∂Dt\D2) ≤ C‖uε‖L2(D2). (5-4)

Let v be the solution to the Dirichlet problem: L0(v) = 0 in Dt and v = uε on ∂Dt . Note that v = 0
on 11, and by Remark 2.8,

‖uε − v‖L2(Dt ) ≤ Cε1/2
‖uε‖H1(∂Dt ). (5-5)

This, together with (5-4), gives

‖uε − v‖L2(D1) ≤ ‖uε − v‖L2(Dt ) ≤ Cε1/2
‖uε‖L2(D2). �

Theorem 5.2. Suppose that A = A(y) satisfies (1-2)–(1-3). Let uε be a weak solution of Lε(uε)= 0 in
D1 with uε = 0 on 11, where the defining function ψ in D1 and 11 is C1. Then, for any α ∈ (0, 1) and
ε ≤ r ≤ 1

2 , (
−

∫
Dr

|∇uε|2
)1/2

≤ Cαrα−1
(
−

∫
D1

|uε|2
)1/2

, (5-6)

where Cα depends only on d, α, κ1, κ2, and the function τ(t) in (5-1).

Proof. Fix β ∈ (α, 1). For each r ∈
[
ε, 1

2

]
, let v = vr be the function given by Lemma 5.1. By the

boundary Cβ estimates in C1 domains for the operator L0 (see, e.g., [Auscher and Qafsaoui 2002; Byun
and Wang 2004]), (

−

∫
Dθr

|v|2
)1/2

≤ C0θ
β

(
−

∫
Dr

|v|2
)1/2

for any θ ∈ (0, 1), where C0 depends only on d , κ1, κ2, β and τ(t). It follows that(
−

∫
Dθr

|uε|2
)1/2

≤

(
−

∫
Dθr

|v|2
)1/2

+C
(
−

∫
Dθr

|uε − v|2
)1/2

≤ Cθβ
(
−

∫
Dr

|v|2
)1/2

+Cθ−d/2
(
−

∫
Dr

|uε − v|2
)1/2

≤ C1θ
β

(
−

∫
Dr

|uε|2
)1/2

+C1θ
−d/2(ε/r)1/2

(
−

∫
D2r

|uε|2
)1/2

for any ε ≤ r ≤ 1
2 . We now choose θ ∈

(
0, 1

4

)
so small that C1θ

β−α < 1
4 . With θ fixed, choose N > 1

large so that
C12αθ−d/2−αN−1/2

≤
1
4 .

It follows that if r ≥ Nε,
φ(θr)≤ 1

4{φ(r)+φ(2r)}, (5-7)
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where

φ(r)= r−α
(
−

∫
Dr

|uε|2
)1/2

.

By integration we may deduce from (5-7) that∫ θ/2

θa
φ(r)

dr
r
≤

1
4

∫ 1/2

a
φ(r)

dr
r
+

1
4

∫ 1

2a
φ(r)

dr
r
,

where Nε ≤ a < 1
2 . This implies∫ 1

θa
φ(r)

dr
r
≤ C

∫ 1

θ/2
φ(r)

dr
r
≤ Cφ(1).

Hence, φ(r)≤Cφ(1) for any r ∈ [ε, 1], and the estimate (5-6) now follows by Caccioppoli’s inequality. �

Remark 5.3. Under the stronger assumption that the defining function φ for D1 is C1,σ for some σ > 0,
we will show in Section 8 that the estimate (5-6) holds for α = 1. In particular, it follows from the
argument in Section 7 that if Lε(uε)= 0 in B(0, 1), then(

−

∫
B(0,r)
|∇uε|2

)1/2

≤ C
(
−

∫
B(0,1)

|∇uε|2
)1/2

(5-8)

for any ε ≤ r < 1. This is the interior Lipschitz estimate down to the scale ε.

A function A is said to belong to VMO(Rd) if the left-hand side of (5-9) goes to zero as t→ 0+. To
quantify this assumption we assume that

sup
x∈Rd

0<r<t

−

∫
B(x,r)

∣∣∣∣A(y)− −∫
B(x,r)

A
∣∣∣∣ dy ≤ ρ(t), (5-9)

where ρ(t)→ 0 as t→ 0+.
The following corollary was essentially proved in [Avellaneda and Lin 1987] by a compactness method.

Corollary 5.4. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let uε ∈
H 1(D1;R

d) be a weak solution of Lε(uε) = 0 in D1 with uε = 0 on 11. Then, for any α ∈ (0, 1),

‖uε‖Cα(D1/2) ≤ Cα

(
−

∫
D1

|uε|2
)1/2

, (5-10)

where Cα depends only on d, κ1, κ2, α, and the functions τ(t), ρ(t).

Proof. We may assume 0< ε < 1
2 , as the case of ε ≥ 1

2 is local. Since L1(uε(εx))= 0, it follows from the
boundary Cα estimates in C1 domains (see, e.g., [Auscher and Qafsaoui 2002; Byun and Wang 2004])
for the operator L1 by rescaling that if α ∈ (0, 1) and 0< r < ε,(

−

∫
Dr

|∇uε|2
)1/2

≤ C(r/ε)α−1
(
−

∫
Dε

|∇uε|2
)1/2

,
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where C depends only on d, κ1, κ2, α, τ(t) and ρ(t). This, together with Theorem 5.2, shows that the
estimate (5-6) holds for any 0< r < 1

2 . By combining (5-6) with a similar interior estimate, we obtain

rα−1
(
−

∫
B(x,r)∩D1/2

|∇uε|2
)1/2

≤ C‖uε‖L2(D1) (5-11)

for any 0< r < c and x ∈ D1/2. The estimate (5-10) follows from (5-11) by Campanato’s characterization
of Hölder spaces. �

The rest of this section is devoted to the boundary Cα estimates for solutions with the Neumann
boundary conditions.

Lemma 5.5. Let 0 < ε ≤ r ≤ 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = 0 in D2r with

∂uε/∂νε = 0 on 12r . Then there exists a function w ∈ H 1(Dr ;R
d) such that L0(w) = 0, ∂w/∂ν0 = 0

in 1r , and (
−

∫
Dr

|uε −w|2
)1/2

≤ C(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

, (5-12)

where ‖∇ψ‖∞ ≤ M, and C depends only on d, κ1, κ2, and M.

Proof. By rescaling we may assume r = 1. As in the proof of Lemma 5.1, there exists t ∈
[ 5

4 ,
3
2

]
such that

‖uε‖L2(∂Dt\12)+‖∇uε‖L2(∂Dt\12) ≤ C‖uε‖L2(D2).

Let φε be a function in R such that uε −φε ⊥R in L2(Dt ;R
d). Let v be the solution to the Neumann

problem: L0(v)= 0 in Dt and ∂v/∂ν0 = ∂uε/∂νε on ∂Dt , with v ⊥R . It follows from Remark 2.8 that

‖uε −φε − v‖L2(D1) ≤ ‖uε −φε − v‖L2(Dt )

≤ Cε1/2
∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂Dt )

≤ Cε1/2
‖uε‖L2(D2).

It is easy to see that the function w = v+φε satisfies the desired conditions. �

Theorem 5.6. Suppose that A = A(y) satisfies (1-2)–(1-3). Let uε be a weak solution of Lε(uε)= 0 in
D1 with ∂uε/∂νε = 0 on 11, where the defining function ψ in D1 and 11 is C1. Then, for any α ∈ (0, 1)
and ε ≤ r ≤ 1, (

−

∫
Dr

|∇uε|2
)1/2

≤ Cαrα−1
(
−

∫
D1

|∇uε|2
)1/2

, (5-13)

where C depends only on d, α, κ1, κ2, and the function τ(t).

Proof. Fix β ∈ (α, 1). For each r ∈
[
ε, 1

2

]
, let w = wr be the function given by Lemma 5.5. By the

boundary Cβ estimates in C1 domains for the operator L0,

inf
q∈Rd

(
−

∫
Dθr

|w− q|2
)1/2

≤ C0θ
β inf

q∈Rd

(
−

∫
Dr

|w− q|2
)1/2

,
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where C0 depends only on d , β, κ1, κ2, and τ(t). This, together with Lemma 5.5, gives

inf
q∈Rd

(
−

∫
Dθr

|uε − q|2
)1/2

≤ C inf
q∈Rd

(
−

∫
Dθr

|w− q|2
)1/2

+

(
−

∫
Dθr

|uε −w|2
)1/2

≤ Cθβ inf
q∈Rd

(
−

∫
Dr

|w− q|2
)1/2

+C0θ
−d/2

(
−

∫
Dr

|uε −w|2
)1/2

≤ Cθβ inf
q∈Rd

(
−

∫
Dr

|uε − q|2
)1/2

+Cθ−d/2(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

.

By replacing uε with uε − q, we obtain

φ(θr)≤ Cθβ−αφ(r)+Cθ−α−d/2(ε/r)1/2φ(2r)

for any r ∈
[
ε, 1

2

]
, where

φ(r)= r−α inf
q∈Rd

(
−

∫
Dr

|uε − q|2
)1/2

.

By the integration argument used in the proof of Theorem 5.2, we may conclude that φ(r)≤ Cφ(1) for
r ∈

[
ε, 1

2

]
, which yields (5-13) by Caccioppoli’s inequality. �

Remark 5.7. Under the stronger condition that the defining function for D1 and 11 is C1,σ for some
σ > 0, we will show in Section 9 that the estimate (5-13) holds for α = 1.

The following corollary was essentially proved in [Kenig et al. 2013] by a compactness method.

Corollary 5.8. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let uε ∈
H 1(D1;R

d) be a weak solution of Lε(uε)= 0 in D1 with ∂uε/∂νε = 0 on 11. Then, for any α ∈ (0, 1),

‖uε‖Cα(D1/2) ≤ Cα

(
−

∫
D1

|uε|2
)1/2

, (5-14)

where Cα depends only on d, κ1, κ2, α, and the functions τ(t), ρ(t).

Proof. As in the case of the Dirichlet boundary condition, the additional smoothness assumption A ∈
VMO(Rd) ensures that the estimate (5-13) holds for any r ∈

(
0, 1

2

)
(see, e.g., [Byun and Wang 2005]

for estimates for L1). This, together with the interior estimates, gives the estimate (5-14) by the use of
Campanato’s characterization of Hölder spaces. �

6. W1, p estimates in C1 domains

In this section we study the uniform W 1,p estimates in C1 domains. Throughout the section we will
assume that A = A(y) satisfies (1-2)–(1-3), A ∈ VMO(Rd), and � is C1. Our goal is to prove the
following two theorems.

Theorem 6.1. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let 1 < p <∞
and � be a bounded C1 domain in Rd. Let uε ∈W 1,p(�;Rd) be a weak solution to the Dirichlet problem

Lε(uε)= div( f ) in � and uε = 0 on ∂�, (6-1)
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where f = ( f αi ) ∈ L p(�;Rd×d). Then

‖uε‖W 1,p(�) ≤ C p‖ f ‖L p(�), (6-2)

where C p depends only on d, p, A, and �.

Theorem 6.2. Suppose that A satisfies the same conditions as in Theorem 6.1. Let 1< p <∞ and � be
a bounded C1 domain in Rd. Let uε ∈W 1,p(�;Rd) be a weak solution to the Neumann problem

Lε(uε)= div( f ) in � and
∂uε
∂νε
=−n · f on ∂�, (6-3)

where f = ( f αi ) ∈ L p(�;Rd×d). Assume that uε ⊥R . Then

‖uε‖W 1,p(�) ≤ C p‖ f ‖L p(�), (6-4)

where C p depends only on d, p, A, and �.

Recall that a function uε is called a weak solution of (6-1) if uε ∈W 1,p
0 (�;Rd) and∫

�

aαβi j (x/ε)
∂uβε
∂x j
·
∂ϕα

∂xi
dx =−

∫
�

f αi ·
∂ϕα

∂xi
dx (6-5)

for any ϕ = (ϕα) ∈ C∞0 (�;R
d). Similarly, uε is called a weak solution of (6-3) if uε ∈W 1,p(�;Rd) and

(6-5) holds for any ϕ = (ϕα) ∈ C∞0 (R
d
;Rd). Under the assumptions that A ∈ VMO(Rd) and � is C1,

the existence and uniqueness of solutions of (6-1) and (6-3) are more or less well known (see [Auscher
and Qafsaoui 2002; Byun and Wang 2004; 2005] for references). The main interest here is that the
constants C in the W 1,p estimates (6-2) and (6-4) are independent of ε. We mention that for Lε with
coefficients satisfying (1-3), (1-11) and the Hölder continuity condition, estimates (6-2) and (6-4) were
established in [Avellaneda and Lin 1987; 1991; Shen 2008; Kenig et al. 2013]. The results were extended
to the case of almost-periodic coefficients in [Armstrong and Shen 2016]. Also, for Lε with coefficients
satisfying (1-2)–(1-3) in Lipschitz domains, some partial results may be found in [Geng et al. 2012].

Theorems 6.1 and 6.2 are proved by a real-variable argument. The required weak reverse Hölder
inequalities (6-6) and (6-2) for p > 2 are established by combining local estimates for L1 and boundary
Hölder estimates in Section 4 with the interior Lipschitz estimates, up to the scale ε.

Lemma 6.3. Let uε ∈ H 1(B(x0, 2r);Rd) be a weak solution to Lε(uε)= 0 in B(x0, 2r) for some x0 ∈Rd

and r > 0. Then, for any 2< p <∞,(
−

∫
B(x0,r)

|∇uε|p
)1/p

≤ C p

(
−

∫
B(x0,2r)

|∇uε|2
)1/2

, (6-6)

where C p depends only on d, p, κ1, κ2, and the function ρ(t) in (5-9).

Proof. By translation and dilation we may assume that x0 = 0 and r = 1. We may also assume that
0 < ε < 1

4 . The case ε ≥ 1
4 for B(0, 1) is local, since A(x/ε) satisfies the smoothness condition (5-9)
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uniformly in ε. For each y ∈ B(0, 1), we use the local W 1,p estimates for the operator L1 (see, e.g.,
[Auscher and Qafsaoui 2002; Byun and Wang 2004]) and a simple blow-up argument to show that(

−

∫
B(y,ε/2)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,ε)

|∇uε|2
)1/2

. (6-7)

By the interior Lipschitz estimate, up to the scale ε, we have(
−

∫
B(y,ε)

|∇uε|2
)1/2

≤ C
(
−

∫
B(y,1)

|∇uε|2
)1/2

. (6-8)

We point out that the estimate (6-8) will be proved in Section 8 with no smoothness assumption on A
(see Theorem 8.6). Hence, for any y ∈ B(0, 1),(

−

∫
B(y,ε/2)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,1)

|∇uε|2
)1/2

≤ C‖∇uε‖L2(B(0,2)). (6-9)

By covering B(0, 1) with balls of radius ε/2, we may deduce (6-6) readily from (6-9). �

Lemma 6.4. Let uε ∈ H 1(D2r ;R
d) be a weak solution to Lε(uε) = 0 in D2r with either uε = 0 or

∂uε/∂νε = 0 in 12r , where 0< r ≤ 1. Then, for any 2< p <∞,(
−

∫
Dr

|∇uε|p
)1/p

≤ C p

(
−

∫
D2r

|∇uε|2
)1/2

, (6-10)

where C depends only on d, p, κ1, κ2, τ(t) in (5-1), and ρ(t) in (5-9).

Proof. Note that the function r−1ψ(r x ′) satisfies the condition (5-1) uniformly for 0< r ≤ 1. Thus, by
rescaling, it suffices to prove the lemma for r = 1. Using Lemma 6.3, Theorem 5.2 and Theorem 5.6, we
obtain (

−

∫
B(y,δ(y)/8)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,δ(y)/4)

|∇uε|2
)1/2

≤ Cα[δ(y)]α−1
‖∇uε‖L2(D2) (6-11)

for any α ∈ (0, 1), where y ∈ D1 and δ(y)= dist(y, ∂D2). We now fix α ∈
(
1− 1

p , 1
)
. It follows from

(6-11) that ∫
D1

(
−

∫
B(y,δ(y)/8)

|∇uε|p dx
)

dy ≤ C‖∇uε‖
p
L2(D2)

. (6-12)

Using the fact that δ(x)≈ δ(y) if y ∈ D1 and |y− x |< 1
8δ(y), it is not hard to verify that (6-12) implies

(6-10). �

Proof of Theorems 6.1 and 6.2. By duality and a density argument it suffices to consider the case where
p > 2 and f = ( f αi ) ∈ C1

0(�;R
d×d). Furthermore, by a real-variable argument, which originated in

[Caffarelli and Peral 1998] and further developed in [Shen 2005; 2007], one only needs to establish weak
reverse Hölder inequalities for solutions of Lε(uε)= 0 in B(x0, r)∩� with either uε = 0 or ∂uε/∂νε = 0
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on B(x0, r)∩ ∂�, where x0 ∈� and 0< r < c0 diam(�). These inequalities are exactly those given by
Lemmas 6.3 and 6.4. We omit the details and refer the reader to [Shen 2005; 2008; Geng 2012] for details
in the case of scalar elliptic equations. �

Remark 6.5. Suppose that A and � satisfy the same conditions as in Theorem 6.1. By some fairly
standard extension and duality arguments (see, e.g., [Kenig et al. 2013]), one may deduce from Theorem 6.1
that the solution of the Dirichlet problem

Lε(uε)= div(h)+ F in � and uε = f on ∂�

satisfies

‖uε‖W 1,p(�) ≤ C p
{
‖h‖L p(�)+‖F‖L p(�)+‖ f ‖W 1/p,p(∂�)

}
for any 1 < p <∞, where W α,p(∂�) denotes the Sobolev space on ∂� of order α with exponent p.
Similarly, the solutions of the Neumann problem

Lε(uε)= div(h)+ F in � and
∂uε
∂νε
=−n · h+ g on ∂�

with uε ⊥R satisfies

‖uε‖W 1,p(�) ≤ C p
{
‖h‖L p(�)+‖F‖L p(�)+‖g‖W−1/p,p(∂�)

}
,

where W−1/p,p(∂�) is the dual of W 1/p,p′(∂�).

7. L p estimates in C1 domains

The W 1,p estimates in the last section allow us to establish the Rellich-type estimates in L p, down to the
scale ε, in C1 domains under the additional assumption that A belongs to VMO(Rd).

Theorem 7.1. Suppose that A = A(y) satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let
1 < p <∞ and � be a bounded C1 domain in Rd. Let uε ∈ W 1,p(�;Rd) be a weak solution to the
Dirichlet problem

Lε(uε)= F in � and uε = f in ∂�, (7-1)

where F ∈ L p(�;Rd) and f ∈W 1,p(∂�;Rd). Then, for any ε ≤ r < diam(�),{
1
r

∫
�r

|∇uε|p
}1/p

≤ C p
{
‖F‖L p(�)+‖ f ‖W 1,p(∂�)

}
, (7-2)

where �r = {x ∈ Rd
: dist(x, ∂�)<r}. The constant C p depends only on d, p, A and �.

Theorem 7.2. Suppose that A and � satisfy the same conditions as in Theorem 7.1. Let 1< p <∞. Let
uε ∈W 1,p(�;Rd) be a weak solution to the Neumann problem

Lε(uε)= F in � and
∂uε
∂νε
= g in ∂�, (7-3)
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where F ∈ L p(�;Rd), g ∈ L p(∂�;Rd) and
∫
�

F +
∫
∂�

g = 0. Also assume that uε ⊥R . Then, for any
ε ≤ r < diam(�), {

1
r

∫
�r

|∇uε|p
}1/p

≤ C p
{
‖F‖L p(�)+‖g‖L p(∂�)

}
, (7-4)

where C p depends only on d, p, A and �.

The proof of Theorems 7.1 and 7.2 follows a similar line of argument as for Theorems 1.1 and 1.2 by
considering

wε = uε − u0− εχ
β

j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)
, (7-5)

where u0 is the solution of the homogenized problem, Kε is a smoothing operator defined by (2-6), and
ηε ∈ C∞0 (�) is a cut-off function satisfying (2-14).

Throughout this section we will assume that � is C1 and A satisfies (1-2)–(1-3) and (5-9).

Lemma 7.3. Let uε (ε ≥ 0) be the solutions of the Dirichlet problems (7-1). Let wε be defined by (7-5).
Then

‖wε‖W 1,p(�) ≤ C pε
1/p{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
, (7-6)

where C p depends only on d, p, A and �.

Proof. A direct computation shows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

ηε

)]}
+

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂

∂x j

(
Kε

(
∂uγ0
∂xk

ηε

))}
,

where bαβi j (y) is defined by (2-3). Using (2-5), we obtain

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)}
=−ε

∂

∂xi

{
φ
αβ

ki j (x/ε)
∂

∂xk

(
Kε

(
∂uβ0
∂x j

ηε

))}
.

It follows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

ηε

)]}
− ε

∂

∂xi

{
φ
αβ

ki j (x/ε)
∂

∂xk

(
Kε

(
∂uβ0
∂x j

ηε

))}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂

∂x j

(
Kε

(
∂uγ0
∂xk

ηε

))}
. (7-7)
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Since wε = 0 on ∂�, we may apply the W 1,p estimate in Theorem 6.1 to obtain

‖wε‖W 1,p(�) ≤ C
{
‖∇u0− Kε((∇u0)ηε)‖L p(�)+ ε‖φ(x/ε)∇Kε((∇u0)ηε)‖L p(�)

+ ε‖χ(x/ε)∇Kε((∇u0)ηε)‖L p(�)

}
≤ C

{
‖∇u0− Kε((∇u0)ηε)‖L p(�)+ ε‖∇((∇u0)ηε)‖L p(�)

}
≤ C

{
‖∇u0‖L p(�4ε)+ ε‖(∇

2u0)ηε‖L2(�)

}
, (7-8)

where we have used Lemmas 2.1 and 2.2 for the second and third inequalities.
We now write u0 = v+w, where

v(x)=
∫
�

00(x − y)F(y) dy (7-9)

and 00(x − y) denotes the matrix of fundamental solutions for the operator L0 in Rd, with pole at the
origin. Note that ‖v‖W 2,p(Rd ) ≤ C p‖F‖L p(�) and

‖∇v‖L p(St ) ≤ C p‖F‖L p(�),

where St = {x ∈ Rd
: dist(x, ∂�)=t} for t small (see the proof of Theorem 2.6). It follows that

‖∇v‖L p(�4ε)+ ε‖∇
2v‖L p(�) ≤ Cε1/p

‖F‖L p(�). (7-10)

Finally, we observe that L0(w)= 0 in � and

‖w‖W 1,p(∂�) ≤ ‖ f ‖W 1,p(∂�)+‖v‖W 1,p(∂�) ≤ C
{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

It follows from the solvability of the L p regularity problem for the operator L0 in C1 domain �, which
follows from [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015], that

‖(∇w)∗‖L p(∂�) ≤ C
{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

Also, using the interior estimate

|∇
2w(x)| ≤

C
δ(x)

(
−

∫
B(x,δ(x)/8)

|∇w|p
)1/p

,

where δ(x)= dist(x, ∂�), we may show that∫
�\�3ε

|∇
2w|p dx ≤ C

∫
�\�2ε

|∇w(x)|p[δ(x)]−p dx

≤ Cε1−p
‖(∇w)∗‖

p
L p(∂�) ≤ Cε1−p{

‖ f ‖p
W 1,p(∂�)

+‖F‖p
L p(�)

}
.

As a result, we obtain

‖∇w‖L p(�4ε)+ ε‖(∇
2w)ηε‖L p(�) ≤ Cε1/p{

‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

This, together with the estimate (7-10) for v, gives

‖∇u0‖L p(�4ε)+ ε‖(∇
2u0)ηε‖L p(�) ≤ Cε1/p{

‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
, (7-11)

which, in view of (7-8), completes the proof. �
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Proof of Theorem 7.1. Without loss of generality we may assume that

‖ f ‖W 1,p(∂�)+‖F‖L p(�) = 1.

Let ε ≤ r < diam(�). It follows from Lemma 7.3 that

‖∇uε‖L p(�r )

≤ ‖∇u0‖L p(�r )+C‖∇χ(x/ε)Kε((∇u0)ηε)‖L p(�r )+Cε‖χ(x/ε)∇Kε((∇u0)ηε)‖L p(�r )+Cε1/p

≤ C‖∇u0‖L p(�2r )+Cε‖∇((∇u0)ηε)‖L p(�)+Cε1/p

≤ C‖∇u0‖L p(�2r )+Cε1/p, (7-12)

where we have used Lemma 2.1 for the second inequality and (7-11) for the third. An inspection of the
proof of Lemma 7.3 shows that

‖∇u0‖L p(�2r ) ≤ Cr1/p,

which, in view of (7-12), gives
‖∇uε‖L p(�r ) ≤ Cr1/p. �

To prove Theorem 7.2, we need the following lemma.

Lemma 7.4. Let uε (ε ≥ 0) be solutions of the Neumann problem (7-3). Also assume that uε, u0 ⊥ R .
Let wε be defined by (7-5). Then

‖wε‖W 1,p(�) ≤ C pε
1/p{
‖g‖L p(∂�)+‖F‖L p(�)

}
, (7-13)

where C p depends only on d, p, A and �.

Proof. The proof is similar to that of Lemma 7.3. Let φε be a function in R such that wε − φε ⊥R in
L2(�;Rd). It follows from the formula (7-7) and the W 1,p estimates in Theorem 6.2 that

‖wε −φε‖W 1,p(�) ≤ C
{
‖∇u0‖L p(�4ε)+ ε‖(∇

2u0)ηε‖L2(�)

}
. (7-14)

To estimate the right-hand side of (7-14), we proceed as in the proof of Lemma 7.3, but use the nontangential
maximal function estimate [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015]

‖(∇w)∗‖L p(∂�) ≤ C
∥∥∥∥ ∂w∂ν0

∥∥∥∥
L p(∂�)

,

where L0(w)= 0 in � and w ⊥R in L2(�;Rd). As a result, we obtain

‖wε −φε‖W 1,p(�) ≤ Cε1/p{
‖g‖L p(∂�)+‖F‖L p(�)

}
. (7-15)

Finally, note that since uε − u0 ⊥R,

‖φε‖W 1,p(�) ≤ Cε‖χ(x/ε)Kε((∇u0)ηε)‖L p(�)

≤ Cε‖∇u0‖L p(�).

This, together with (7-15), yields the estimate (7-13). �
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Proof of Theorem 7.2. The estimate (7-4) follows from (7-13), as in the case of the Dirichlet conditions.
We omit the details. �

Remark 7.5. Under certain smoothness condition on A, such as Hölder continuity, it is possible to solve
the L p Dirichlet, regularity, and Neumann problems for L1(u)= 0 in C1 domains for any 1< p <∞.
By the same localization procedure and blow-up argument as in Remark 3.1, this implies

∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣p

dσ +
C
ε

∫
�cε

|∇uε|p dx,∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

|∇tanuε|p dσ +
C
ε

∫
�cε

|∇uε|p dx,
(7-16)

where Lε(uε)= 0 in �. It then follows from Theorems 7.1 and 7.2 that∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣p

dσ (7-17)

if uε ⊥R, and ∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

|∇tanuε|p dσ +C
∫
∂�

|uε|p dσ. (7-18)

As in the case p = 2, by the method of layer potentials, estimates (7-17)–(7-18) lead to the uniform
solvability of the L p Dirichlet, regularity, and Neumann problems in C1 domains. The details will be
given elsewhere.

8. Lipschitz estimates in C1,α domains, part I

In this section we investigate the Lipschitz estimates, down to the scale ε, in C1,α domains with Dirichlet
boundary conditions and give the proof of Theorem 1.4. The Neumann boundary conditions will be treated
in the next section. The proof of Theorems 1.4 and 1.5 is based on a general scheme for establishing
Lipschitz estimates at large scales in homogenization, recently formulated in [Armstrong and Smart 2016]
for interior estimates. Our approach to the boundary Lipschitz estimates in C1,α domains is similar to
that used in [Armstrong and Shen 2016] for elliptic systems with almost-periodic coefficients. We remark
that Lemma 8.5, which is a continuous version of Lemma 3.1 in [Armstrong and Shen 2016] and whose
proof is simpler, makes the argument more transparent.

Let Dr and 1r be defined by (1-16) with ψ(0)= 0 and ‖∇ψ‖∞ ≤ M.

Lemma 8.1. Let uε ∈ H 1(D2;R
d) be a weak solution of Lε(uε) = F in D2 with uε = f on 12. Then

there exists v ∈ H 1(D1;R
d) such that L0(v)= F in D1, v = f on 11, and

‖uε − v‖L2(D1) ≤ Cε1/2{
‖uε‖L2(D2)+‖F‖L2(D2)+‖ f ‖L∞(12)+‖∇tan f ‖L∞(12)

}
, (8-1)

where C depends only on d, κ1, κ2, and M.

Proof. By Caccioppoli’s inequality,∫
D3/2

|∇uε|2 ≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖ f ‖2L∞(12)
+‖∇tan f ‖2L∞(12)

}
.
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By the coarea formula this implies that there exists some t ∈
[ 5

4 ,
3
2

]
such that∫

∂Dt\12

(|∇uε|2+ |uε|2)≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖ f ‖2L∞(12)
+‖∇tan f ‖2L∞(12)

}
.

Let v be the weak solution to the Dirichlet problem,

L0(v)= F in Dt and v = uε on ∂Dt .

It follows from Remark 2.8 that

‖uε − v‖L2(D1) ≤ ‖uε − v‖L2(Dt )

≤ Cε1/2{
‖uε‖H1(∂Dt )+‖F‖L2(Dt )

}
≤ Cε1/2{

‖uε‖L2(D2)+‖F‖L2(D2)+‖ f ‖L∞(12)+‖∇tan f ‖L∞(12)

}
,

where C depends only on d , κ1, κ2, and M. �

Lemma 8.2. Let ε ≤ r < 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε)= F in D2r with uε = f

on 12r . Then there exists v ∈ H 1(Dr ;R
d) such that L0(v)= F in Dr , v = f on 1r , and(

−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+‖ f ‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
, (8-2)

where C depends only on d, κ1, κ2, and M.

Proof. This follows from Lemma 8.1 by rescaling. �

In the rest of this section we will assume that the defining function ψ in the definition of Dr and 1r is
C1,α for some α ∈ (0, 1) with ψ(0)= 0 and ‖∇ψ‖Cα(Rd−1) ≤ M.

Lemma 8.3. Let v be a solution of L0(v)= F in Dr with v = f on 1r . For 0< t ≤ r , define

G(t; v)= 1
t

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dt

|v−Mx − q|2
)1/2

+ t2
(
−

∫
Dt

|F |p
)1/p

+‖ f −Mx − q‖L∞(1t )

+ t‖∇tan( f −Mx − q)‖L∞(1t )+ t1+σ
‖∇tan( f −Mx − q)‖C0,σ (1t )

}
, (8-3)

where p > d and σ ∈ (0, α). Then there exists θ ∈
(
0, 1

4

)
, depending only on d, p, κ1, κ2, σ , α and M,

such that

G(θr; v)≤ 1
2 G(r; v). (8-4)

Proof. The lemma follows from the boundary C1,α estimates for elasticity systems with constant
coefficients. We refer the reader to [Armstrong and Shen 2016, Lemma 7.1] for the case L0(v)= 0. The
argument for the general case F ∈ L p with p > d is the same. �
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Lemma 8.4. Let 0< ε < 1
2 . Let uε be a solution of Lε(uε)= F in D1 with uε = f on 11. Define

H(r)= 1
r

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dr

|uε −Mx − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+‖ f −Mx − q‖L∞(1r )

+ r‖∇tan( f −Mx − q)‖L∞(1r )+ r1+σ
‖∇tan( f −Mx − q)‖C0,σ (1r )

}
(8-5)

and

8(r)= 1
r

inf
q∈Rd

{(
−

∫
D2r

|uε− q|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+‖ f − q‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
, (8-6)

where p > d and σ ∈ (0, α). Then

H(θr)≤ 1
2 H(r)+C

(
ε

r

)1/2
8(2r) (8-7)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
is given by Lemma 8.3.

Proof. Fix r ∈
[
ε, 1

2

]
. Let v be a solution of L0(v)= F in Dr with v = f on 1r . Observe that

H(θr)≤ 1
θr

(
−

∫
Dθr

|uε − v|2
)1/2

+G(θr; v)

≤
1
θr

(
−

∫
Dθr

|uε − v|2
)1/2

+
1
2 G(r; v)

≤
C
r

(
−

∫
Dr

|uε − v|2
)1/2

+
1
2 H(r),

where we have used Lemma 8.3 for the second inequality. This, together with Lemma 8.2, gives

H(θr)≤ 1
2 H(r)+C

(
ε

r

)1/2 1
r

{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+‖ f ‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
.

Since H(r) remains invariant if we subtract a constant from uε, the inequality (8-7) follows. �

Lemma 8.5. Let H(r) and h(r) be two nonnegative continuous functions on the interval (0, 1]. Let
0< ε < 1

4 . Suppose that there exists a constant C0 such that max
r≤t≤2r

H(t)≤ C0 H(2r),

max
r≤t,s≤2r

|h(t)− h(s)| ≤ C0 H(2r)
(8-8)

for any r ∈
[
ε, 1

2

]
. We further assume that

H(θr)≤ 1
2 H(r)+C0ω(ε/r){H(2r)+ h(2r)} (8-9)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
and ω is a nonnegative increasing function [0, 1] such that ω(0)= 0

and ∫ 1

0

ω(t)
t

dt <∞. (8-10)
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Then
max
ε≤r≤1
{H(r)+ h(r)} ≤ C{H(1)+ h(1)}, (8-11)

where C depends only on C0, θ , and ω.

Proof. It follows from (8-8) that
h(r)≤ h(2r)+C0 H(2r)

for any ε ≤ r ≤ 1
2 . Hence,∫ 1/2

a

h(r)
r

dr ≤
∫ 1/2

a

h(2r)
r

dr +C0

∫ 1/2

a

H(2r)
r

dr

=

∫ 1

2a

h(r)
r

dr +C0

∫ 1

2a

H(r)
r

dr,

where ε ≤ a ≤ 1
4 . This implies∫ 2a

a

h(r)
r

dr ≤
∫ 1

1/2

h(r)
r

dr +C
∫ 1

2a

H(r)
r

dr

≤ C{h(1)+ H(1)}+C
∫ 1

2a

H(r)
r

dr,

which, by (8-8), gives

h(a)≤ C
{

H(2a)+ h(1)+ H(1)+
∫ 1

2a

H(r)
r

dr
}

≤ C
{

h(1)+ H(1)+
∫ 1

a

H(r)
r

dr
}

(8-12)

for any a ∈
[
ε, 1

4

]
.

Next, we use (8-9) and (8-12) to obtain

H(θr)≤ 1
2 H(r)+Cω(ε/r){h(1)+ H(1)}+Cω(ε/r)

∫ 1

r

H(r)
r

dr.

It follows that∫ θ

αθε

H(r)
r

dr ≤ 1
2

∫ 1

αε

H(r)
r

dr +Cα{h(1)+ H(1)}+C
∫ 1

αε

ω(ε/r)
{∫ 1

r

H(t)
t

dt
}

dr
r
,

where α > 1 and we have used the condition (8-10). Using (8-10) and the observation that∫ 1

αε

ω(ε/r)
{∫ 1

r

H(t)
t

dt
}

dr
r
=

∫ 1

αε

H(t)
{∫ 1/α

ε/t

ω(s)
s

ds
}

dt
t
≤ (4C)−1

∫ 1

αε

H(t)
dt
t

if α > α0(ω), we see that∫ θ

αθε

H(r)
r

dr ≤ 1
2

∫ 1

αε

H(r)
r

dr +Cα{h(1)+ H(1)}+ 1
4

∫ 1

αε

H(r)
r

dr.
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It follows that ∫ 1

ε

H(r)
r

dr ≤ C{h(1)+ H(1)}, (8-13)

which, together with (8-8) and (8-12), yields the estimate (8-11). �

Proof of Theorem 1.4. We may assume that 0< ε < 1
4 . Let uε be a solution of Lε(uε)= F in D1 with

uε = f on 11, where F ∈ L p(D1) for some p> d and f ∈C1,σ (11) for some σ ∈ (0, α). For r ∈ (0, 1),
we define the function H(r) by (8-5). It is easy to see that H(t)≤ C H(2r) if t ∈ (r, 2r).

Next, we let h(r)= |Mr |, where Mr is the d × d matrix such that

H(r)= 1
r

inf
q∈Rd

{(
−

∫
Dr

|uε −Mr x − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+‖ f −Mr x − q‖L∞(1r )

+ r‖∇tan( f −Mr x − q)‖L∞(1r )+ r1+σ
‖∇tan( f −Mr x − q)‖C0,σ (1r )

}
.

Let t, s ∈ [r, 2r ]. Using

|Mt −Ms | ≤
C
r

inf
q∈Rd

(
−

∫
Dr

|(Mt −Ms)x − q|2
)1/2

≤
C
t

inf
q∈Rd

(
−

∫
Dt

|uε −Mt x − q|2
)1/2

+
C
s

inf
q∈Rd

(
−

∫
Ds

|uε −Ms x − q|2
)1/2

≤ C{H(t)+ H(s)}

≤ C H(2r),
we obtain

max
r≤t,s≤2r

|h(t)− h(s)| ≤ C H(2r).

Furthermore, if 8 is defined by (8-6), then

8(r)≤ H(2r)+ h(2r).

In view of Lemma 8.4 this gives

H(θr)≤ 1
2 H(r)+Cω(ε/r){H(2r)+ h(2r)}

for r ∈
[
ε, 1

2

]
, where ω(t) = t1/2. Thus the functions H(r) and h(r) satisfy the conditions (8-8), (8-9)

and (8-10) in Lemma 8.5. Consequently, we obtain that for r ∈
[
ε, 1

2

]
,

inf
q∈Rd

1
r

(
−

∫
Dr

|uε − q|2
)1/2

≤ C{H(r)+ h(r)}

≤ C{H(1)+ h(1)}

≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖F‖L p(D1)+‖ f ‖C1,σ (11)

}
,

which, together with Caccioppoli’s inequality, gives the estimate (1-18). �
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The argument used in this section may be used to prove the interior Lipschitz estimates, down to the
scale ε.

Theorem 8.6. Suppose that A satisfies (1-2)–(1-3). Let uε ∈ H 1(B(x0, R);Rd) be a weak solution of
Lε(uε)= F in B(x0, R) for some x0 ∈Rd and R> 0, where F ∈ L p(B(x0, R);Rd) for some p> d. Then,
for ε ≤ r < R, (

−

∫
B(x0,r)

|∇uε|2
)1/2

≤ C
{(
−

∫
B(x0,R)

|∇uε|2
)1/2

+ R
(
−

∫
B(x0,R)

|F |p
)1/p}

, (8-14)

where C depends only on d, κ1, κ2, and p.

9. Lipschitz estimates in C1,α domains, part II

In this section we study the Lipschitz estimate, down to the scale ε, with Neumann boundary conditions,
and give the proof of Theorem 1.5. Throughout this section we will assume that the defining function ψ
in Dr and 1r is C1,α for some α ∈ (0, 1) and ‖∇ψ‖Cα(Rd−1) ≤ M.

Lemma 9.1. Let � be a bounded Lipschitz domain. Let uε ∈ H 1(�;Rd) be a weak solution to the
Neumann problem: Lε(uε) = F in � and ∂uε/∂νε = g on ∂�. Then there exists w ∈ H 1(�;Rd) such
that L0(w)= F in �, ∂w/∂ν0 = g on ∂�, and

‖uε −w‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
. (9-1)

Proof. Choose φε ∈R such that uε−φε ⊥R in L2(�;Rd). Let u0 be the weak solution to the Neumann
problem: L0(u0)= F in� and ∂u0/∂ν0= g on ∂� with the property u0⊥R . It follows from Remark 2.8
that

‖uε −φε − u0‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
.

By letting w = u0+φε this gives (9-1). �

Lemma 9.2. Let ε ≤ r < 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = F in D2r with

∂uε/∂νε = g on 12r . Then there exists w ∈ H 1(Dr ;R
d) such that L0(w)= F in Dr , ∂w/∂ν0 = g on 1r ,

and (
−

∫
Dr

|uε −w|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+ r‖g‖L∞(12r )

}
, (9-2)

where C depends only on d, κ1, κ2, and M.

Proof. By rescaling we may assume r = 1. As in the case of Dirichlet conditions in Lemma 8.2, the
desired estimate follows from Lemma 9.1 by using the coarea formula and the Caccioppoli inequality∫

D3/2

|∇uε|2 ≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖g‖2L∞(12)

}
, (9-3)

where Lε(uε)= F in D2 and ∂uε/∂νε = g on 12. �
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Lemma 9.3. Let w be a solution of L0(w)= F in Dr with ∂w/∂ν0 = g on 1r . For 0< t ≤ r , define

I (t;w)= 1
t

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dt

|w−Mx − q|2
)1/2

+ t2
(
−

∫
Dt

|F |p
)1/p

+ t
∥∥∥∥ ∂

∂ν0
(w−Mx)

∥∥∥∥
L∞(1t )

+ t1+σ
∥∥∥∥ ∂

∂ν0
(w−Mx)

∥∥∥∥
C0,σ (1t )

}
, (9-4)

where p > d and σ ∈ (0, α). Then there exists θ ∈
(
0, 1

4

)
, depending only on d, p, κ1, κ2, σ , α and M,

such that
I (θr;w)≤ 1

2 I (r;w). (9-5)

Proof. By rescaling we may assume r = 1. The lemma then follows from the boundary C1,σ estimates
with Neumann boundary conditions in C1,α domains for elasticity systems with constant coefficients. �

Lemma 9.4. Let 0 < ε < 1
2 . Let uε be a solution of Lε(uε) = F in D1 with ∂uε/∂νε = g on 11, where

F ∈ L p(D1;R
d) for some p > d and g ∈ Cσ (11;R

d) for some σ ∈ (0, α). Define

J (r)= 1
r

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dr

|uε −Mx − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+ r
∥∥∥∥g−

∂

∂ν0
(Mx)

∥∥∥∥
L∞(1r )

+ r1+σ
∥∥∥∥g−

∂

∂ν0
(Mx)

∥∥∥∥
C0,σ (1r )

}
(9-6)

and

9(r)= 1
r

inf
q∈Rd

{(
−

∫
D2r

|uε − q|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+ r‖g‖L∞(12r )

}
. (9-7)

Then
J (θr)≤ 1

2 J (r)+C(ε/r)1/29(2r) (9-8)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
is given by Lemma 9.3.

Proof. Fix r ∈
[
ε, 1

2

]
. Let w be the function in H 1(Dr ;R

d) given by Lemma 9.2. Then

J (θr)≤ I (θr;w)+ 1
θr

(
−

∫
Dθr

|uε −w|2
)1/2

≤
1
2 I (r;w)+ 1

θr

(
−

∫
Dθr

|uε −w|2
)1/2

≤
1
2 J (r)+ C

r

(
−

∫
Dr

|uε −w|2
)1/2

,

where we have used Lemma 9.3 for the second inequality. In view of Lemma 9.2, this gives

J (θr)≤ 1
2 J (r)+ C

r

{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+ r‖g‖L∞(12r )

}
,

from which the estimate (9-8) follows, as the function J (r) is invariant if we replace uε by uε−q for any
q ∈ Rd. �
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Proof of Theorem 1.5. With Lemma 9.4 at our disposal, Theorem 1.5 follows from Lemma 8.5, as in the
case of Dirichlet boundary conditions. We omit the details. �

As we indicate in the Introduction, under additional smoothness conditions, the full Lipschitz estimates,
uniform in ε, follow from Theorem 1.4, Theorem 1.5, and local Lipschitz estimates by a blow-up argument.

Corollary 9.5. Suppose that A satisfies (1-2)–(1-3). Also assume that A is Hölder continuous. Let
uε ∈ H 1(B(0, 1);Rd) be a weak solution of Lε(uε)= F in B(0, 1), where F ∈ L p(B(0, 1);Rd) for some
p > d. Then

‖∇uε‖L∞(B(0,1/2)) ≤ C p
{
‖uε‖L2(B(0,1))+‖F‖L p(B(0,1))

}
, (9-9)

where C p depends only on d, p and A.

Corollary 9.6. Suppose that A satisfies (1-2)–(1-3). Also assume that A is Hölder continuous. Let
uε ∈ H 1(D1;R

d) be a weak solution of L(uε) = F in D1 with uε = f on 11, where the defining
function ψ in D1 and 11 is C1,α with ‖∇ψ‖Cα(Rd−1) ≤ M for some α > 0. Then

‖∇uε‖L∞(D1/2) ≤ C
{
‖uε‖L2(D1)+‖F‖L p(D1)+‖ f ‖C1,σ (11)

}
, (9-10)

where p > d, σ ∈ (0, α), and C depends only on d, p, σ , A, α and M.

Corollary 9.7. Suppose that A, D1 and 11 satisfy the same conditions as in Corollary 9.6. Let uε ∈
H 1(D1;R

d) be a weak solution of L(uε)= F in D1 with ∂uε/∂νε = g on 11. Then

‖∇uε‖L∞(D1/2) ≤ C
{
‖uε‖L2(D1)+‖F‖L p(D1)+‖g‖Cσ (11)

}
, (9-11)

where p > d, σ ∈ (0, α), and C depends only on d, p, σ , A, α and M.

As we mentioned in Introduction, for Lε with coefficients satisfying (1-11), (1-3) and the Hölder
continuity condition, estimates (9-9) and (9-10) were proved in [Avellaneda and Lin 1987], while (9-11)
was established in [Kenig et al. 2013; Armstrong and Shen 2016].
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CONVEX INTEGRATION FOR THE MONGE–AMPÈRE EQUATION
IN TWO DIMENSIONS

MARTA LEWICKA AND MOHAMMAD REZA PAKZAD

This paper concerns the questions of flexibility and rigidity of solutions to the Monge–Ampère equation,
which arises as a natural geometrical constraint in prestrained nonlinear elasticity. In particular, we
focus on degenerate, i.e., “flexible”, weak solutions that can be constructed through methods of convex
integration à la Nash and Kuiper and establish the related h-principle for the Monge–Ampère equation in
two dimensions.
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1. Introduction

In this paper we study the C1,α solutions to the Monge–Ampère equation in two dimensions,

Det∇2v := − 1
2 curl curl(∇v⊗∇v)= f in �⊂ R2. (1-1)

Our results concern the dichotomy of “rigidity vs. flexibility”, in the spirit of the analogous results and
techniques appearing in the contexts of the low codimension isometric immersion problem [Nash 1954;
Kuiper 1955a; 1955b; Borisov 1959; 2004; Conti et al. 2012] and Onsager’s conjecture for Euler equations
[Székelyhidi 2013; De Lellis and Székelyhidi 2009; 2013; Constantin et al. 1994; Eyink 1994].

In the first, main part of the paper we show that below the regularity threshold α < 1
7 , the very

weak C1,α(�) solutions to (1-1), as defined below, are dense in the set of all continuous functions
(see Theorems 1.1 and 1.2). These flexibility statements are a consequence of the convex integration
h-principle, which is a method proposed in [Gromov 1986] for solving certain partial differential relations
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and which turns out to be applicable to our setting of the Monge–Ampère equation as well. Here, we
directly adapt the iteration method of Nash [1954] and Kuiper [1955a; 1955b] in order to construct the
oscillatory solutions to (1-1).1

In the second part of the paper we prove that the same class of very weak solutions fails the above
flexibility in the regularity regime α > 2

3 . Our results are parallel with those concerning isometric
immersions [Borisov 1959; Conti et al. 2012; Pakzad 2004], Euler equations [Constantin et al. 1994;
Eyink 1994], the Perona–Malik equation [Kim and Yan 2015a; 2015b], the active scalar equation [Isett
and Vicol 2015], and should also be compared with results on the regularity of Sobolev solutions to
the Monge–Ampère equation [Pakzad 2004; Šverák 1991; Lewicka et al. 2017; Jerrard and Pakzad
2017], whose study is important in the context of nonlinear elasticity, and with the rigidity results for the
Monge–Ampère functions [Jerrard 2008; 2010].

The weak determinant Hessian. Let �⊂ R2 be an open set. Given a function v ∈W 1,2
loc (�), we define

its very weak Hessian (denoted by H∗2 in [Iwaniec 2001; Fonseca and Malý 2005]) as

Det∇2v =− 1
2 curl curl(∇v⊗∇v),

understood in the sense of distributions. A straightforward approximation argument shows that if
v ∈ W 2,2

loc then L1
loc(�) 3 Det∇2v = det∇2v a.e. in �, where ∇2v stands for the Hessian matrix field

of v. We also remark that this notion of the very weak Hessian is distinct from the distributional Hessian
Det∇2v = Det∇(∇v) (denoted by Hu in [Iwaniec 2001; Fonseca and Malý 2005]), which is defined
through the distributional determinant Det,

Det∇ψ =− div(ψ2 ∇
⊥ψ1)= ∂2(ψ2 ∂1ψ1)− ∂1(ψ2 ∂2ψ1) for ψ = (ψ1, ψ2) ∈W 1,4/3(�,R2).

Contrary to the distributional Hessian, the very weak Hessian is not continuous with respect to the weak
topology. Indeed, an example of a sequence vn ∈ W 1,2(�) is constructed in [Iwaniec 2001], where
Det∇2v =−1 while vn converges weakly to 0. One consequence of the proof of our Theorem 1.1 below
is that Det∇2 is actually weakly discontinuous everywhere in W 1,2(�) (see Corollary 6.2).

Here is our first main result:

Theorem 1.1. Let f ∈ L7/6(�) on an open, bounded, simply connected �⊂ R2. Fix an exponent

α < 1
7 .

Then the set of C1,α(�) solutions to (1-1) is dense in the space C0(�). More precisely, for every v0 ∈C0(�)

there exists a sequence vn ∈ C1,α(�), converging uniformly to v0 and satisfying

Det∇2vn = f in �. (1-2)

When f ∈ L p(�) and p ∈
(
1, 7

6

)
, the same result is true for any α < 1− 1

p .

1We remark that the recent work of De Lellis, Inauen and Székelyhidi [De Lellis et al. 2015] showed that the flexibility
exponent 1

7 can be improved to 1
5 in the case of the isometric immersion problem in two dimensions. We expect similar

improvement to be possible also in the present case of equation (1-1); this will be investigated in our future work.
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In order to better understand Theorem 1.1, we point out a connection between the solutions to (1-1) and
the isometric immersions of Riemannian metrics, motivated by a study of nonlinear elastic plates. Since
on a simply connected domain �, the kernel of the differential operator curl curl consists of the fields of
the form sym∇w, a solution to (1-1) with the vanishing right-hand side f ≡ 0 can be characterized by
the criterion

∃w :�→ R2 such that 1
2∇v⊗∇v+ sym∇w = 0 in �. (1-3)

The equation in (1-3) can be seen as an equivalent condition for the one-parameter family of deformations

φε = id+ εve3+ ε
2w :�→ R3,

given through the out-of-plane displacement v and the in-plane displacement w (albeit with different
orders of magnitude ε and ε2), to form a second-order infinitesimal isometry (bending), i.e., to induce the
change of metric on the plate � whose second-order terms in ε disappear:

(∇φε)
T
∇φε − Id2 = o(ε2).

In this context, we take the cue about Theorem 1.1 from the celebrated work of Nash [1954] and
Kuiper [1955a; 1955b], where they show the density of codimension-one C1 isometric immersions of
Riemannian manifolds in the set of short mappings. Since we are now dealing with the second-order
infinitesimal isometries rather than the exact isometries, the classical metric pull-back equation

y∗ge = h

for a mapping y from (�, h) into R3 equipped with the standard Euclidean metric ge is replaced by the
compatibility equation of the tensor T (v,w)= 1

2∇v⊗∇v+ sym∇w with a matrix field A0 that satisfies
− curl curl A0 = f :

T (v,w)= A0. (1-4)

Note that there are many potential choices for A0; for example, one may take A0(x) = λ(x)Id2 with
1λ=− f in �. Again, equation (1-4) states precisely that the metric (∇φε)T∇φε agrees with the given
metric h = Id2+ 2ε2 A0 on �, up to terms of order ε2. The Gauss curvature κ of the metric h satisfies

κ(h)= κ(Id2+ 2ε2 A0)=−ε
2 curl curl A0+ o(ε2),

while κ((∇φε)T∇φε) = −ε2 curl curl
( 1

2∇v ⊗∇v + symw
)
+ o(ε2), so the problem (1-1) can also be

interpreted as seeking all appropriately regular out-of-plane displacements v that can be matched, by a
higher order in-plane displacement perturbation w, to achieve the prescribed Gauss curvature f of �, at
its highest-order term.

In this paper, similar to the isometric immersion case, we show that solutions to (1-4) are ample. We
design a scheme inspired by the work of Nash and Kuiper, which pushes a “short infinitesimal isometry”,
i.e., a couple (v0, w0) such that T (v0, w0) < A0, towards an exact solution to (1-4) in successive small
steps. Note that both y∗ge = (∇ y)T∇ y and the term ∇v⊗∇v in T (v,w) have a quadratic structure,
which is crucial in the analysis of [Nash 1954; Kuiper 1955a; 1955b] and also of this paper. Here, not only
does the presence of the linear term sym∇w in T (u, w) not destroy the adaptation of the Nash–Kuiper
scheme, but it actually allows for this construction to work.
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Convex integration for the Monge–Ampère equation in two dimensions. As we will see in Section 4,
Theorem 1.1 follows easily from the statement of our next main result:

Theorem 1.2. Let � ⊂ R2 be an open and bounded domain. Let v0 ∈ C1(�), w0 ∈ C1(�,R2) and
A0 ∈ C 0,β(�,R2×2

sym ), for some β ∈ (0, 1), be such that

∃c0 > 0 such that A0−
( 1

2∇v0⊗∇v0+ sym∇w0
)
> c0 Id2 in �. (1-5)

Then, for every exponent α in the range

0< α <min
{ 1

7 ,
1
2β
}
,

there exist sequences vn ∈ C1,α(�) and wn ∈ C1,α(�,R2) which converge uniformly to v0 and w0,
respectively, and which satisfy

A0 =
1
2∇vn ⊗∇vn + sym∇wn in �. (1-6)

The above result is the Monge–Ampère analogue of [Conti et al. 2012, Theorem 1], where the authors
improved on the Nash–Kuiper method to obtain higher regularity within the flexibility regime. In our
paper, we adapt similar methods to the system (1-6).

The term convex integration usually refers to a collection of approaches that allow for constructing
anomalous solutions to nonlinear PDEs; in particular, flexibility-type results for the isometric immersion
problem were obtained via the above-mentioned iteration scheme of Nash and Kuiper. From a geometric
perspective, they are special cases of h-principle, a notion which was developed by Gromov [1986]
for studying partial differential relations; see also [Eliashberg and Mishachev 2002]. From another
perspective, one seeks weak solutions of a differential inclusion Lu(x) ∈ K in � by investigating certain
classes of subsolutions, e.g., functions u that satisfy Lu(x) ∈ conv K , where the original constraint set K
is replaced by its convex hull conv K [Tartar 1979; Dacorogna and Marcellini 1997; Müller and Šverák
2003]. This approach leads to the density of very weak solutions, satisfying Lu ∈ L∞(�), in the set of
subsolutions. When K is a continuum, the regularity may be improved to Lu ∈ C 0(�) by applying the
correcting iterations.

Recently, similar techniques were advanced in the context of fluid dynamics and yielded many interesting
results for the Euler equations. De Lellis and Székelyhidi [2009] proved the existence of weak solutions
with bounded velocity and pressure, their nonuniqueness and the existence of energy-decreasing solutions.
In [De Lellis and Székelyhidi 2013], using iteration methods à la Nash and Kuiper, they proved the
existence of continuous periodic solutions of the three-dimensional incompressible Euler equations,
which dissipate the total kinetic energy. These results are to be contrasted with [Constantin et al. 1994;
Eyink 1994], where it was shown that C 0,α solutions of the Euler equations are energy conservative
if α > 1

3 . There have been several improvements of [De Lellis and Székelyhidi 2009; 2013] recently,
towards a proof of Onsager’s conjecture, which puts the Hölder regularity threshold for the energy
conservation of the weak solutions to the Euler equations at C 0,1/3 [Isett 2012; 2013; 2016; Buckmaster
et al. 2013; 2015; 2016; Choffrut and Székelyhidi 2014]. The stationary incompressible Euler equation
has been studied in [Choffrut and Székelyhidi 2014], where the existence of bounded anomalous solutions
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has been proved. The authors indicate that in two dimensions, the relaxation set corresponding to the
appropriate subsolutions is smaller than in the case of the evolutionary equations. In this context, we
noticed a connection between our reformulation of the Monge–Ampère equation and the steady-state
Euler equation, which lead to our modest Corollary 4.1.

In this paper we use a direct iteration method to construct exact solutions of (1-1). The recasting of the
statement and the proof in the language of convex integration might shed more light on the structure of
the Monge–Ampère equation, but it would not improve the results and therefore we do not address this
task. We note, however, that constructing Lipschitz continuous piecewise affine approximating solutions
to (1-6) for A0 ≡ 0 is quite straightforward and could be used to prove a convex integration density result
via the Baire category method, as was done in [De Lellis and Székelyhidi 2009] for the Euler equations
(see also Figure 1 and the corresponding explanation).

Rigidity versus flexibility. The flexibility results obtained in view of the h-principle are usually coupled
with the rigidity results for more regular solutions. Rigidity of isometric immersions of elliptic metrics for
C1,α isometries [Borisov 1959; De Lellis and Székelyhidi 2009] with α > 2

3 , or the energy conservation
of weak solutions of the Euler equations for C 0,α solutions with α > 1

3 , are results of this type. For the
Monge–Ampère equations, we recall two recent statements regarding solutions with Sobolev regularity:
Following the well-known unpublished work by Šverák [1991], we proved in [Lewicka et al. 2017] that
if v ∈ W 2,2(�) is a solution to (1-1) with f ∈ L1(�) and f ≥ c > 0 in �, then in fact v must be C1

and globally convex (or concave). On the other hand, if f = 0 then likewise v ∈ C1(�) and v must be
developable [Pakzad 2004] (see also [Jerrard 2008; 2010; Jerrard and Pakzad 2017]). A clear statement
of rigidity is still lacking for the general f , as is the case for isometric immersions, where rigidity results
are usually formulated only for elliptic [Conti et al. 2012] or Euclidean metrics [Pakzad 2004; Liu and
Pakzad 2015; Jerrard and Pakzad 2017].

In this paper, we prove the rigidity properties of solutions to (1-1) in the Hölder regularity context
when f ≡ 0. Namely, we prove:

Theorem 1.3. Let �⊂ R2 be an open, bounded domain and let

2
3 < α < 1.

If v ∈ C1,α(�) is a solution to Det∇2v = 0 in �, then v must be developable. More precisely, for all
x ∈� either v is affine in a neighbourhood of x , or there exists a segment lx joining ∂� on its both ends
such that ∇v is constant on lx .

We also announce the following parallel rigidity result for f ≥ c > 0, which will be the subject of the
forthcoming paper [Lewicka and Pakzad ≥ 2017]:

Theorem 1.4. Let �⊂ R2 be an open, bounded domain and let

2
3 < α < 1.

If v ∈ C1,α(�) is a solution to Det∇2v = f in �, where f is a positive Dini continuous function, then v
is convex. In fact, it is also an Alexandrov solution to det∇2v = f in �.
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In proving Theorem 1.3, we use a commutator estimate for deriving a degree formula in Proposition 7.1.
Similar commutator estimates are used in [Constantin et al. 1994] for the Euler equations and in [Conti
et al. 2012] for the isometric immersion problem; this is not surprising, since the presence of a quadratic
term plays a major role in all three cases, allowing for the efficiency of the convex integration and
iteration methods. Let us also mention that it is still unknown which value of α is the critical value for
the rigidity-flexibility dichotomy, but it is conjectured to be 1

3 ,
1
2 or 2

3 .

Notation. By R2×2
sym we denote the space of symmetric 2× 2 matrices, and by R2×2

sym,> we denote the cone
of symmetric, positive definite 2×2 matrices. The space of Hölder continuous functions Ck,α(�) consists
of restrictions of functions f ∈ Ck,α(R2) to �⊂R2. Then, the Ck(�) norm of such a restriction is denoted
by ‖ f ‖k , while its Hölder norm Ck,α(�) is ‖ f ‖k,α. By C > 0 we denote a universal constant which is
independent of all parameters, unless indicated otherwise.

2. The C1 approximations: preliminary results

In this and the next section we prove a weaker version of the result in Theorem 1.2. Namely:

Theorem 2.1. Let � ⊂ R2 be an open and bounded domain. Let v0 ∈ C∞(�), w0 ∈ C∞(�,R2) and
A0 ∈ C∞(�,R2×2

sym ) be such that

∃c0 > 0 such that A0−
( 1

2∇v0⊗∇v0+ sym∇w0
)
> c0 Id2 in �. (2-1)

Then there exist sequences vn ∈ C1(�) and wn ∈ C1(�,R2) which converge uniformly to v0 and w0

respectively, and which satisfy

A0 =
1
2∇vn ⊗∇vn + sym∇wn in �. (2-2)

We start with a series of preliminary lemmas whose details we provide for the sake of completeness.
The first is an observation in convex integration, pertaining to solving an appropriate differential inclusion
to be used for constructing the one-dimensional oscillatory perturbations in vn and wn . As always, C > 0
is a universal constant, independent of all parameters, in particular independent of the function a below.

Lemma 2.2. Let a ∈ C∞(�) be a nonnegative function on an open and bounded set�⊂R2. There exists a
smooth 1-periodic field 0= (01, 02)∈ C∞(�×R,R2) such that the following holds for all (x, t)∈�×R:

0(x, t + 1)= 0(x, t),
1
2 |∂t01(x, t)|2+ ∂t02(x, t)= a(x)2,

(2-3)

together with the uniform bounds

|01(x, t)| + |∂t01(x, t)| ≤ Ca(x), |∇x01(x, t)| ≤ C |∇a(x)|,

|02(x, t)| + |∂t02(x, t)| ≤ Ca(x)2, |∇x02(x, t)| ≤ C |a(x)||∇a(x)|.
(2-4)

Proof. Firstly, note that there exists a smooth 1-periodic function γ ∈ C∞(R,R2) such that for all t ∈ R,

γ (t + 1)= γ (t),
∫ 1

0
γ (t) dt = (0, 0), γ (t) ∈ P :=

{
(s1, s2) ∈ R2

:
1
2 s2

1 + s2 = 1, |s1| ≤ 2
}
.



CONVEX INTEGRATION FOR THE MONGE–AMPÈRE EQUATION IN TWO DIMENSIONS 701

b

s2

s1

P =
{
s2=1− 1

2
s21
}

bb
bbb
−1−1−1

b

b

Figure 1. The parabola P in the one-dimensional convex integration problem of Lemma 2.2.

The existence of γ is a consequence of the fundamental lemma of convex integration, since the intended
average (0, 0) lies in the convex hull of the parabola P (see Figure 1). Indeed, one can take

γ (t)=
(
2 cos(2π t),− cos(4π t)

)
∈ P.

It is now enough to ensure that ∂t01 = a(x)γ1(x) and ∂t02 = a(x)2γ2(x) to obtain (2-3). Namely

01(x, t)=
a(x)
π

sin(2π t), 02(x, t)=−
a(x)2

4π
sin(4π t).

We see directly that the bounds in (2-4) hold. �

To compare with the problem of isometric immersions, note that in that context, a one-dimensional
convex integration lemma is similarly proved in [Székelyhidi 2013, Figure 2, p. 11], where instead of a
parabola, the constraint set consists of a full circle.

We will also need a special case of [Conti et al. 2012, Lemma 3] about decomposition of positive
definite symmetric matrices into rank-one matrices.

Lemma 2.3. There exists a sufficiently small constant r0 > 0 such that the following holds. For every
positive definite symmetric matrix G0 ∈ R2×2

sym,>, there are three unit vectors {ξk ∈ R3
}

3
k=1 and three linear

functions {8k : R
2×2
sym → R}3k=1 such that for any G ∈ R2×2

sym we have

∀G ∈ R2×2
sym , G =

3∑
k=1

8k(G)ξk ⊗ ξk, (2-5)

and each 8k is strictly positive on the ball B(G0, r(G0))⊂ R2×2
sym with radius r(G0)= r0/|G0

−1/2
|
2.

Proof. (1) First, assume that G0 = Id2. Set

ζ1 =
1
√

12
(2+
√

2,−2+
√

2), ζ2 =
1
√

12
(−2+

√
2, 2+

√
2), ζ3 =

1
√

2
(1, 1).

In order to check that the matrices

ζ1⊗ ζ1 =
1

12

[
6+4
√

2 −2
−2 6−4

√
2

]
, ζ2⊗ ζ2 =

1
12

[
6−4
√

2 −2
−2 6+4

√
2

]
, ζ3⊗ ζ3 =

1
2

[
1 1
1 1

]
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form a basis of the three-dimensional space R2×2
sym , we validate that

det

 1
12

6+4
√

2 6−4
√

2 6
−2 −2 6

6−4
√

2 6+4
√

2 6

 6= 0.

Consequently, there exist linear mappings {9k : R
2×2
sym → R}3k=1 yielding the unique decomposition

∀G ∈ R2×2
sym , G =

3∑
k=1

9k(G)ζk ⊗ ζk . (2-6)

Now, since Id2 =
3
4ζ1⊗ ζ1+

3
4ζ2⊗ ζ2+

1
2ζ3⊗ ζ3, the continuity of each function 9k implies its positivity

in a neighbourhood of Id2 of some appropriate radius r0.

(2) For an arbitrary G0 ∈ R2×2
sym,> we set

∀k = 1, . . . , 3, ξk =
1

|G1/2
0 ζk |

G1/2
0 ζk and 8k(G)= |G

1/2
0 ζk |

29k(G
−1/2
0 GG−1/2

0 ).

Then, in view of (2-6) we obtain (2-5):

∀G ∈ R2×2
sym , G = G−1/2

0

( 3∑
k=1

9k(G
−1/2
0 GG−1/2

0 )ζk ⊗ ζk

)
G1/2

0 =

3∑
k=1

8k(G)ξk ⊗ ξk .

Finally, if |G−G0|<r(G0) then
∣∣G−1/2

0 GG−1/2
0 −Id2

∣∣≤|G−1/2
0 |

2
|G−G0|<r0, and so indeed8k(G)>0,

since 9k(G
−1/2
0 GG−1/2

0 ) > 0. �

The above result can be localized in the following manner, similar to [Székelyhidi 2013, Lemma 3.3]:

Lemma 2.4. There exist sequences of unit vectors {ηk ∈ R2
}
∞

k=1 and nonnegative smooth functions
{φk ∈ C∞c (R2×2

sym,>)}
∞

k=1 such that

∀G ∈ R2×2
sym,>, G =

∞∑
k=1

φk(G)2ηk ⊗ ηk (2-7)

and such that:

(i) For all G ∈R2×2
sym,>, at most N0 terms of the sum in (2-7) are nonzero. The constant N0 is independent

of G.

(ii) For every compact K ⊂ R2×2
sym,>, there exists a finite set of indices J (K )⊂N such that φk(G)= 0 for

all k 6∈ J (K ) and G ∈ K.

Proof. (1) Let r0 be as in Lemma 2.3 and additionally ensure that

r0 <
1
8 . (2-8)

Recall that for each G ∈R2×2
sym,> we have defined r(G)= r0/|G−1/2

|
2 and that B(G, r(G))⊂R2×2

sym,>. We
first construct a locally finite covering of R2×2

sym,> with properties corresponding to (i) and (ii).
Since the set R2×2

sym,> is a cone, we have

R2×2
sym,> =

⋃
k∈Z

2kC0, where C0 =
{
G ∈ R2×2

sym,> :
1
2 ≤ |G| ≤ 1

}
. (2-9)
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The collection {B(G, r(G))}G∈C0 covers the sector C0 by balls that have uniformly bounded radii r(G)≤
r0|G|/

√
2≤r0. Hence, by the Besicovitch covering theorem, it has a countable subcovering G0=

⋃σ0
σ=1 Gσ0 ,

consisting of σ0 ∈ N countable families {Gσ0 }
σ0
σ=1 of pairwise disjoint balls.

Note that for all c> 0 one has r(cG)= cr(G) and so B(cG, r(cG))= cB(G, r(G)). Consequently, the
collections Gσk ={2k B : B ∈Gσ0 } each consist of countably many pairwise disjoint balls, and Gk =

⋃σ0
σ=1 Gσk

is a covering of the dilated sector 2kC0 for every k ∈ Z. Define

∀σ = 1, . . . , σ0, Gσeven =
⋃
2|k

Gσk and Gσodd =
⋃

2|(k+1)

Gσk . (2-10)

Clearly, in view of (2-9), the 2σ0 families in (2-10) form a covering of R2×2
sym,>, namely

G =
σ0⋃
σ=1

Gσeven ∪

σ0⋃
σ=1

Gσodd.

We now prove that each of the families in G consists of pairwise disjoint balls. We argue by contradiction.
Assume that

∃G ∈ B(G1, r(G1))∩ B(G2, r(G2)) for some B(G1, r(G1)) ∈ Gσ2k1
, B(G2, r(G2)) ∈ Gσ2k2

.

Without loss of generality we may take k1 = 0 and k2 = k ≥ 1, so that

1
2 ≤ |G1| ≤ 1 and 22k−1

≤ |G2| ≤ 22k.

This yields a contradiction with (2-8), in view of

22k−1
− 1≤ |G2| − |G1| ≤ |G2−G1| ≤ |G2−G| + |G−G1|

≤ r(G2)+ r(G1)= r0

(
1

|G−1/2
2 |2

+
1

|G−1/2
1 |2

)
≤

r0
√

2
(|G2| + |G1|)≤ r0(22k

+ 1).

(2) Note that G can be assumed locally finite, by paracompactness. We write G = {Bi=B(Gi , r(Gi ))}
∞

i=1
and let {θi ∈ C∞c (Bi )}

∞

i=1 be a partition of unity subordinated to G. For each i ∈ N, let {ξk,Gi }
3
k=1 and

{8k,Gi }
3
k=1 be the unit vectors and the linear functions as in Lemma 2.3. Then

∀G ∈ R2×2
sym,>, G =

∑
i∈N

θi (G)G =
∑
i∈N

3∑
k=1

θi (G)8k,Gi (G)ξk,Gi ⊗ ξk,Gi ,

and we see that (2-7) holds by taking

ηi,k = ξk,Gi and φi,k = (θi8k,Gi ).

Since supp φi,k ⊂Bi and since each G belongs to at most 2σ0 balls Bi , we see that (i) holds with N0= 6σ0.
On the other hand, condition (ii) follows by the local finiteness of G. �

3. The C1 approximations: a proof of Theorem 2.1

The first result in the approximating sequence construction is what corresponds to a “step” in the
terminology of Nash and Kuiper.
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Proposition 3.1. Let � ⊂ R2 be an open and bounded set. Given are functions v ∈ C∞(�) and w ∈
C∞(�,R2), a nonnegative function a ∈ C∞(�), and a unit vector η ∈ R2. Then, for every λ > 1 there
exist approximations ṽλ ∈ C∞(�) and w̃λ ∈ C∞(�,R2) satisfying the bounds∥∥( 1

2∇ṽλ⊗∇ṽλ+ sym∇w̃λ
)
−
( 1

2∇v⊗∇v+ sym∇w+ a2η⊗ η
)∥∥

0

≤
C
λ
‖a‖0(‖∇a‖0+‖∇2v‖0)+

C
λ2 ‖∇a‖20, (3-1)

‖ṽλ− v‖0 ≤
C
λ
‖a‖0 and ‖w̃λ−w‖0 ≤

C
λ
‖a‖0(‖a‖0+‖∇v‖0), (3-2)

and for all x ∈�,

|∇ṽλ(x)−∇v(x)| ≤ Ca(x)+ C
λ
‖∇a‖0,

|∇w̃λ(x)−∇w(x)| ≤ Ca(x)(‖a‖0+‖∇v‖0)+
C
λ

(
‖a‖0(‖∇a‖0+‖∇2v‖0)+‖∇a‖0‖∇v‖0

)
.

(3-3)

Proof. Using the 1-periodic functions 0i from Lemma 2.2, we define ṽλ and w̃λ as λ-periodic perturbations
of v, w in the direction η:

ṽλ(x)= v(x)+
1
λ
01(x, λx · η),

w̃λ(x)= w(x)−
1
λ
01(x, λx · η)∇v(x)+ 1

λ
02(x, λx · η)η.

(3-4)

The error estimates in (3-2) follow immediately from (2-4). The pointwise error estimates (3-3) follow
from (2-4) in view of

∇ṽλ(x)= ∇v(x)+
1
λ
∇x01(x, λx ·η)+∂t01(x, λx ·η)η,

∇w̃λ(x)= ∇w(x)−
1
λ
∇v(x)⊗∇x01(x, λx ·η)−∂t01(x, λx ·η)η⊗∇v(x)− 1

λ
01(x, λx ·η)∇2v(x)

+
1
λ
η⊗∇x02(x, λx ·η)+∂t02(x, λx ·η)η⊗η.

Finally, we compute

1
2∇ṽλ(x)⊗∇ṽλ(x)−

1
2∇v(x)⊗∇v(x)

=
1
λ

sym
(
∇v(x)⊗∇x01(x, λx ·η)

)
+∂t01(x, λx ·η) sym(∇v(x)⊗η) + 1

2 |∂t01(x, λx ·η)|2η⊗η

+
1
λ
∂t01(x, λx ·η) sym

(
η⊗∇x01(x, λx ·η)

)
+

1
2λ2∇x01(x, λx ·η)⊗∇x01(x, λx ·η),

and

sym∇w̃λ(x)−sym∇w(x)= −1
λ

sym
(
∇v(x)⊗∇x01(x,λx ·η)

)
−∂t01(x,λx ·η)sym(∇v(x)⊗η)

−
1
λ
01(x,λx ·η)∇2v(x)+1

λ
sym

(
η⊗∇x02(x,λx ·η)

)
+ ∂t02(x,λx ·η)η⊗η .
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We see that the terms in boxes cancel out, while the terms in double boxes add up to a(x)2η⊗ η by (2-3).
Consequently,( 1

2∇ṽλ(x)⊗∇ṽλ(x)+sym∇w̃λ(x)
)
−
(1

2∇v(x)⊗∇v(x)+sym∇w(x)+a(x)2η⊗η
)

=
1
λ

(
∂t01(x, λx ·η) sym

(
η⊗∇x01(x, λx ·η)

)
−01(x, λx ·η)∇2v(x)+sym

(
η⊗∇x02(x, λx ·η)

))
+

1
2λ2∇x01(x, λx ·η)⊗∇x01(x, λx ·η),

which implies (3-1) in view of the bounds in (2-4). �

We now complete the “stage” in the approximating sequence construction.

Proposition 3.2. Let � ⊂ R2 be an open and bounded domain. Let v ∈ C∞(�), w ∈ C∞(�,R2) and
A ∈ C∞(�,R2×2

sym ) be such that the deficit function D defined below is positive definite in �:

∃c > 0 such that D = A−
(1

2∇v⊗∇v+ sym∇w
)
> c Id2 in �. (3-5)

Fix ε > 0. Then there exist ṽ ∈ C∞(�) and w̃ ∈ C∞(�,R2) such that the new deficit D̃ is still positive
definite, and bounded by ε together with the error in the approximations ṽ, w̃; namely,

∃ c̃ > 0 such that D̃ = A−
( 1

2∇ṽ⊗∇ṽ+ sym∇w̃
)
> c̃ Id2 in �, (3-6)

‖D̃‖0 < ε and ‖ṽ− v‖0+‖w̃−w‖0 < ε. (3-7)

Moreover, we have the uniform gradient error bounds

‖∇ṽ−∇v‖0 ≤ C N 1/2
0 ‖D‖

1/2
0

‖∇w̃−∇w‖0 ≤ C N0(‖∇v‖0+‖D‖1/20 )‖D‖1/20 ,
(3-8)

where the constant N0 ∈ N is as in Lemma 2.4.

Proof. (1) Note that the image D(�) is a compact subset of R2×2
sym,>. By Lemma 2.4 and rearranging the

indices, if needed, so that J (D(�))= {1, . . . , N } in (ii), we get

∀x ∈�, D(x)=
N∑

k=1

bk(x)2ηk ⊗ ηk, where bk = φk ◦D ∈ C∞(�). (3-9)

Let now ak = (1− δ)1/2bk , with δ > 0 so small that

D−
N∑

k=1

a2
kηk ⊗ ηk = δD and δ‖D‖0 < 1

2ε. (3-10)

We set v1 = v, w1 = w. For k = 1, . . . , N we inductively define vk+1 ∈ C∞(�) and wk+1 ∈ C∞(�,R2),
by means of Proposition 3.1 applied to vk , wk , ak , ηk and with λk > 1 sufficiently large, as indicated
below. We then finally set ṽ = vN+1 and w̃ = wN+1.
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(2) To prove the estimates (3-6)–(3-8), we start by observing that since by Lemma 2.4(i) at most N0 terms
in the expansion (3-9) are nonzero, we have

N∑
k=1

ak(x)≤
N∑

k=1

bk(x)≤ N 1/2
0

( N∑
k=1

bk(x)2
)1/2

= N 1/2
0 (TraceD(x))1/2

≤ N 1/2
0 (
√

2 |D(x)|)1/2 ≤ C N 1/2
0 ‖D‖

1/2
0 . (3-11)

Further, by (3-1) and (3-10),

D̃=D−
((1

2∇ṽ⊗∇ṽ+sym∇w̃
)
−
( 1

2∇v⊗∇v+sym∇w
))

=D−
N∑

k=1

((1
2∇vk+1⊗∇vk+1+sym∇wk+1

)
−
(1

2∇vk⊗∇vk+sym∇wk
))

=

(
D−

N∑
k=1

a2
kηk⊗ηk

)
−

N∑
k=1

((1
2∇vk+1⊗∇vk+1+sym∇wk+1

)
−
(1

2∇vk⊗∇vk+sym∇wk+a2
kηk⊗ηk

))
= δD+

N∑
k=1

O
( 1
λk

(
‖ak‖0‖∇ak‖0+‖∇ak‖

2
0+‖ak‖0‖∇

2vk‖0
))
.

Choosing at each step λk sufficiently large with respect to the given ak and the already generated vk , we
may ensure the smallness of the error term in the right-hand side above and hence the positive definiteness
of D̃ in (3-6), because of the uniform positive definiteness of δD > cδ Id2 in �. Likewise, the first
inequality in (3-7) follows already when the error is smaller than 1

2ε.
The same reasoning proves the error bounds on ṽ− v and w̃−w in (3-7), in view of (3-2):

ṽ(x)− v(x)=
N∑

k=1

(vk+1(x)− vk(x))=
N∑

k=1

O
( 1
λk
‖ak‖0

)
,

w̃(x)−w(x)=
N∑

k=1

(wk+1(x)−wk(x))=
N∑

k=1

O
( 1
λk

(
‖ak‖

2
0+‖∇ak‖0‖∇vk‖0

))
.

(3) To obtain the first error bound in (3-8), use (3-3) and (3-11):

|∇ṽ(x)−∇v(x)| ≤
N∑

k=1

|∇vk+1(x)−∇vk(x)| ≤ C
N∑

k=1

ak(x)+
N∑

k=1

O
( 1
λk
‖ak‖

2
0

)
≤ C N 1/2

0 ‖D‖
1/2
0 ,

where again, by adjusting λk at each step, we ensure the controllability of the error term with respect to
the nonnegative quantity N 1/2

0 ‖D‖
1/2
0 . Likewise,

∀k = 1, . . . , N , |∇vk(x)| ≤ |∇v(x)| +
k−1∑
i=1

|∇vi+1(x)−∇vi (x)| ≤ ‖∇v‖0+C N 1/2
0 ‖D‖

1/2
0 ,

and obviously by (3-11),

ak(x)≤
k−1∑
i=1

ai (x)≤ C N 1/2
0 ‖D‖

1/2
0 ,
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which by (3-11) yield
N∑

k=1

ak(x)(‖ak‖0+‖∇vk‖0)≤ C(‖∇v‖0+ N 1/2
0 ‖D‖

1/2
0 )

N∑
k=1

ak(x)≤ C N0(‖∇v‖0+‖D‖1/20 )‖D‖1/20 .

Consequently and by (3-3), we get the last gradient error bound in (3-8):

|∇w̃(x)−∇w(x)|

≤

N∑
k=1

|∇wk+1(x)−∇wk(x)|

≤ C
N∑

k=1

ak(x)(‖ak‖0+‖∇vk‖0)+

N∑
k=1

O
( 1
λk

(
‖ak‖0 ‖∇ak‖0+‖ak‖0 ‖∇

2vk‖0+‖∇ak‖0 ‖∇vk‖0
))

≤ C N0(‖∇v‖0+‖D‖1/20 )‖D‖1/20 .

This concludes the proof of the stage approximation construction. �

We now finally give:

Proof of Theorem 2.1. (1) Fix ε > 0. It suffices to construct v ∈ C1(�) and w ∈ C1(�,R2) such that

A0 =
1
2∇v⊗∇v+ sym∇w in � (3-12)

and

‖v− v0‖0+‖w−w0‖0 < ε. (3-13)

The exact solution (v,w) of (3-12) will be obtained as the C1 limit of sequences of successive approxima-
tions {vk ∈ C∞(�),wk ∈ C∞(�,R2)}∞k=0, where v0 and w0 are given in the statement of the theorem and
satisfy (2-1), while vk+1 and wk+1 are defined inductively by means of Proposition 3.2 applied to vk , wk

and εk > 0, under the requirement
∞∑

k=1

εk < ε and
∞∑

k=1

ε
1/2
k < 1. (3-14)

In agreement with our notation convention, we introduce the k-th deficit Dk , which is positive definite
by (3-6):

∀k ≥ 0, Dk := A0−
( 1

2∇vk ⊗∇vk + sym∇wk
)
∈ C∞(�,R2×2

sym,>).

By (3-7) it follows that

‖vk − v‖0+‖wk −w‖0 ≤

k−1∑
i=0

‖vi+1− vi‖0+

k−1∑
i=0

‖wi+1−wi‖0 <

k−1∑
i=1

εi <

∞∑
i=1

εi .

Thus, {vk}
∞

k=0 and {wk}
∞

k=0 converge uniformly in �, respectively, to v and w which satisfy (3-13) in view
of (3-14).
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(2) We now show that this convergence is in C1. Indeed, by (3-7) ‖Dk‖0 < εk , so by (3-8)

‖∇vk+m −∇vk‖0 ≤

m−1∑
i=k

‖∇vi+1−∇vi‖0 ≤ C N 1/2
0

m−1∑
i=k

‖Di‖
1/2
0 ≤ C N 1/2

0

m−1∑
i=k

ε
1/2
i . (3-15)

In particular, in view of (3-14) the sequence {‖∇vk‖0}
∞

k=0 is bounded, so we further have

‖∇wk+m−∇wk‖0≤

m−1∑
i=k

‖∇wi+1−∇wi‖0≤C N0

m−1∑
i=k

(‖∇vi‖0+‖Di‖
1/2
0 )‖Di‖

1/2
0 ≤C̃ N0

m−1∑
i=k

ε
1/2
i , (3-16)

where the constant C̃ is independent of k and m. Through the above assertions (3-15) and (3-16), in
view of the second condition in (3-14), we conclude that {vk}

∞

k=1 and {wk}
∞

k=0 are Cauchy sequences that
converge in C1(�) to v ∈ C1(�) and w ∈ C1(�,R2), respectively. Finally,∥∥A0−

( 1
2∇v⊗∇v+ sym∇w

)∥∥
0 = lim

k→∞
‖Dk‖0 ≤ lim

k→∞
εk = 0

implies (3-12) and completes the proof of Theorem 2.1. �

Remark 3.3. In addition to the uniform convergence postulated in Theorem 2.1, one also has

∀n, ‖∇vn‖0 ≤ ‖∇v0‖0+C N 1/2
0 .

Using notation as in the proof above and recalling (3-15) and (3-14), this bound follows by

‖∇v−∇v0‖0 = lim
k→∞
‖∇vk −∇v0‖0 ≤ lim

k→∞

(
C N 1/2

0

k−1∑
i=0

ε
1/2
i

)
≤ C N 1/2

0 .

4. The C1,α approximations: a proof of Theorem 1.1, preliminary results
and some heuristics towards the proof of Theorem 1.2

Theorem 1.1 follows easily from Theorem 1.2, which will be proved in the next section.

Proof of Theorem 1.1. Since C1(�) is dense in C 0(�), we may without loss of generality assume that
v0 ∈ C1(�). Set w0 = 0 and A0 = (λ+ c)Id ∈ C 0,β(�,R2×2

sym ), where c is a constant and λ is constructed
as follows.

Extend the function f to f ∈ L p(�ε) defined on an open smooth set �ε ⊃� and solve

−1λ= f in �ε, λ= 0 on ∂�ε.

Since λ ∈W 2,p(�ε), Morrey’s theorem implies that λ ∈ C 0,β(�) for every β ∈ (0, 1) when p ≥ 2, and
for β = 2− 2

p when p ∈ (1, 2). Also, for c large enough, condition (1-5) on the positive definiteness of
the defect is satisfied. On the other hand,

− curl curl A0 =−1(λ+ c)= f,

so the result follows directly from Theorem 1.2, since 1
2

(
2− 2

p

)
≥

1
7 is equivalent to p ≥ 7

6 . �
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Our next simple corollary concerns the steady-state Euler equations with the exchanged roles of the
given pressure q and the unknown forcing term ∇⊥g.

Corollary 4.1. Let � ⊂ R2 be an open and bounded domain. Let q ∈ C 0,β(�) for some β ∈ (0, 1)
and fix ε > 0. Then for every exponent α in the range 0 < α < min

{ 1
7 ,

1
2β
}
, there exist sequences

{un ∈ C 0,α(�,R2)}∞n=1 and {gn ∈ C 0,α(�)}∞n=1 solving in � the system

div(un ⊗ un)−∇q =∇⊥gn, div un = 0, (4-1)

and such that un = ∇
⊥vn and gn = curlwn , where each vn ∈ C1,α(�) and wn ∈ C1(�,R2), while the

sequence {vn}
∞

n=1 is dense in C 0(�) and ‖wn‖0 < ε for every n ≥ 1.

Proof. As before, since C1(�) is dense in C 0(�), it is enough to take v0 ∈ C1(�) and approximate it by a
sequence {vn ∈ C1,α(�)}∞n=1 with the properties as in the statement of the corollary. Let w0 = 0 and let
c> 0 be a sufficiently large constant, so that (q+ c)Id2−∇v0⊗∇v0 is strictly positive definite in �. By
Theorem 1.2, there exist sequences vn ∈ C1,α(�) and wn ∈ C1,α(�,R2) which converge uniformly to v0

and w0 and which satisfy

(q + c)Id2 =∇vn ⊗∇vn + 2 sym∇wn in �.

Taking the cofactor of both sides in the above matrix identity, we get

(q + c)Id2 =∇
⊥vn ⊗∇

⊥vn + 2 cof(sym∇wn).

Taking the row-wise divergence, we obtain (4-1) with un =∇
⊥vn and gn = curlwn , since div cof∇wn = 0,

while (div cof(∇wn)
T )⊥ =−∇(curlwn). �

Towards a proof of Theorem 1.2 we will derive a sequence of approximation results, and then combine
them with Theorem 2.1 in Section 6. For completeness, we first prove a simple, useful result:

Lemma 4.2. Let � ⊂ R2 be an open and bounded domain. Given are functions f ∈ CN (�,Rn) and
ψ ∈ C∞(Rn,Rm). Then

∀k = 0, . . . , N , ‖ψ ◦ f ‖k ≤ M‖ f ‖k,

where the constant M > 0 depends on the dimensions n, m, the differentiability order N, the domain�, the
norm ‖ψ‖N on the compact set f (�) and the norm ‖ f ‖0, but it does not depend on the higher norms of f .

Proof. The statement is obvious for k = 0. Fix k ∈ {1, . . . , N } and let m = (m1, . . . ,mk) be any k-tuple
of nonnegative integers such that

∑k
i=1 imi = k. Defining |m| =

∑k
i=1 mi and using the interpolation

inequality [Adams and Fournier 2003]

∀i = 1, . . . , k, ‖ f ‖i ≤ M0‖ f ‖1−i/k
0 ‖ f ‖i/k

k ,

valid with a constant M0 > 0 depending on n, N and �, we get

k∏
i=1

‖∇
i f ‖mi

0 ≤ M |m|0

k∏
i=1

‖ f ‖mi−imi/k
0 ‖ f ‖imi/k

k = M |m|0 ‖ f ‖|m|−1
0 ‖ f ‖k,
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with |m| := m1+ · · ·+m j . Calculating the partial derivatives in ∇k(ψ ◦ f ) by the Faà di Bruno formula
gives hence the desired estimate

‖∇
k(ψ ◦ f )‖0 ≤ M

∑
m

k∏
i=1

‖∇
i f ‖mi

0 ≤ M‖ f ‖k .

Above, the summation extends over all multiindices m = (m1, . . . ,mk) with the properties listed at the
beginning of the proof. �

We recall the following estimates which have been proved in [Conti et al. 2012]:

Lemma 4.3. Let ϕ ∈ C∞c (B(0, 1),R) be a standard mollifier supported on the ball B(0, 1)⊂ Rn, that is,
a nonnegative, smooth and radially symmetric function such that

∫
Rn ϕ = 1. Denote

∀l ∈ (0, 1), ϕl(x)=
1
ln ϕ

(
x
l

)
.

Then, for every f, g ∈ C 0(Rn) we have

∀k, j ≥ 0, ‖ f ∗ϕl‖k+ j ≤
C
lk ‖ f ‖ j , (4-2)

∀k ≥ 0, ‖ f ∗ϕl − f ‖k ≤
C

lk−2 ‖ f ‖2, (4-3)

∀α ∈ (0, 1], ‖ f ∗ϕl − f ‖0 ≤ Clα‖ f ‖0,α, (4-4)

∀α ∈ (0, 1], ‖ f ∗ϕl‖1 ≤
C

l1−α ‖ f ‖0,α, (4-5)

∀k ≥ 0, ∀α ∈ (0, 1],
∥∥( f g) ∗ϕl − ( f ∗ϕl)(g ∗ϕl)

∥∥
k ≤

C
lk−2α ‖ f ‖0,α ‖g‖0,α, (4-6)

with the uniform constants C > 0 depending only on the smoothness exponents k, j , α.

Proof. The estimate (4-2) follows directly from the definition of convolution. To prove (4-3), note that for
every x ∈ Rn,∣∣∇k( f ∗ϕl− f )(x)

∣∣= ∣∣∣∣∫
Rn
ϕl(y)

(
∇

k f (x− y)−∇k f (x)
)

dy
∣∣∣∣

=

∣∣∣∣∫
Rn
∇

kϕl(y)
(

f (x− y)− f (x)
)

dy
∣∣∣∣= 1

lk

∣∣∣∣∫
Rn

1
ln∇

kϕ

(
y
l

)(
∇ f (x)· y+rx(y)

)
dy
∣∣∣∣

=
1
lk

∣∣∣∣∫
Rn

1
ln∇

kϕ

(
y
l

)
rx(y) dy

∣∣∣∣≤ C
lk sup

x∈Rn,|y|<l
|rx(y)| ≤

C
lk−2 ‖ f ‖2,

where we integrated by parts, discarded the contribution with the symmetric term ∇ f (x) · y, which
integrates to 0, and estimated the Taylor’s formula remainder term

rx(y)= f (x − y)− f (x)−∇ f (x) · y = ‖ f ‖2O(|y|2).
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The proof of (4-4) follows similarly by∣∣∇k( f ∗ϕl − f )(x)
∣∣= ∣∣∣∣∫

Rn
ϕl(y)|y|α

f (x − y)− f (x)
|y|α

dy
∣∣∣∣≤ Clα‖ f ‖0,α

∫
Rn
ϕl(y) dy ≤ Clα‖ f ‖0,α,

while for (4-5) we write∣∣∇( f ∗ϕl)(x)
∣∣= ∣∣∣∣∫

Rn
f (x − y)

1
ln+1∇ϕl

(
y
l

)
dy
∣∣∣∣= 1

l

∣∣∣∣∫
Rn

f (x − y)− f (x)
|y|α

|y|α

l
1
ln∇ϕl

(
y
l

)
dy
∣∣∣∣

≤ Clα−1
‖ f ‖0,α

∫
Rn

1
ln

∣∣∣∣∇ϕl

(
y
l

)∣∣∣∣ dy ≤
C

l1−α ‖ f ‖0,α.

Finally, for the crucial commutator estimate (4-6) we refer to [Conti et al. 2012, Lemma 1]. �

A heuristic overview of the next two sections. Let us attempt to follow the construction in Sections 2
and 3, but with the goal of controlling the higher Hölder norms of the iterations, and hence also quantifying
the growth of the C2 norms of v,w. Let A ∈ C∞(�,R2×2

sym ) be the target matrix field and let v1 ∈ C∞(�),
w1 ∈ C∞(�,R2) be given at an input of a “stage”. As in Proposition 3.2, we decompose the defect
D = A−

( 1
2∇v1⊗∇v1+ sym∇w1

)
into a linear combination

∑N
k=1 a2

kηk ⊗ ηk of rank-one symmetric
matrices with smooth coefficients given by Lemma 2.4. We define

vk+1(x)= vk(x)+
1
λ
01(x, λx · ηk), wk+1(x)= wk(x)−

1
λ
01(x, λx · ηk)∇vk(x)+

1
λ
02(x, λx · ηk)ηk .

This yields, by applying Lemma 4.2 to ψ(x)= x2 and f = ak ,

∀m = 0, . . . , 3, ‖∇mvk+1−∇
mvk‖0 ≤ C

∑
i+ j=m

0≤i, j≤m

‖ak‖iλ
j−1,

∀m = 0, . . . , 2, ‖∇mwk+1−∇
mwk‖0 ≤ C

∑
i+ j=m

0≤i, j≤m

‖ak‖i λ
j−1
+C

∑
i+ j+s=m
0≤i, j,s≤m

‖ak‖i λ
j−1
‖∇

s+1vk‖0,

On the other hand, applying Lemma 4.2 to ψ = φk defined in Lemma 2.4 and to f = D, we get

∀k = 1, . . . , N , ‖ak‖2 ≤ C(‖v1‖
2
3+‖w1‖3+‖A‖2).

Now, in order to control the C1,α norm of vN+1 through interpolation, we need to control the norm
‖vN+1‖2, which in turn depends on ‖ak‖2. The above estimate shows that at the end of each stage, the
C2 norm of ak is determined by the C3 norms of the given v1 and w1 of the previous stage. Further, the
C2 norm of wN+1 is only controlled by the C3 norm of v0 and also of all the ak . One might hope to
control ‖ak‖3 if the deficit D is small enough, but the dependence of ‖wN+1‖2 on ‖v0‖3 cannot be easily
bypassed. Recalling that we need infinitely many stages in the construction, this implies that a direct
estimate cannot be obtained in this manner, unless we deal with analytic data similarly to [Borisov 2004].
We thus need to modify the previous simplistic approach.

The appropriate modification is achieved by introducing a mollification before each stage. This
technique was first introduced in [Conti et al. 2012] for the isometric immersion problem, in order to
control the loss of regularity through the stages and to improve on results in [Borisov 2004]. Indeed, we
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note that the loss of derivatives in the above estimates is accompanied by a similar gain in the powers
of λ, in a manner such that the total order of derivatives, plus the order of powers needed to control
‖vN+1‖2 and ‖wN+1‖2 is constant. If we replace v1 and w1 by their mollifications on the scale l ∼ λ−1,
each derivative loss can be estimated by one power of λ, and ‖v0‖2 and ‖w0‖2 will control ‖vN+1‖2 and
‖wN+1‖2. One problem still remains to be taken care of: does the deficit D decrease at the end of each
stage? As the calculation below will show, a mollification of order λ−1 does not suffice to this end, and
we need to mollify at a larger scale of l > λ−1.

This is indeed how we want proceed. In practice, we let the mollification scale be l = δ/M and we
treat ∇v “like a”, controlling its j-th norm by δl− j. We then “sacrifice” one l in order to gain one δ;
instead of ‖∇(v ∗ϕl)‖ j ≤C‖v‖1l− j, we use ‖∇(v ∗ϕl)‖ j ≤C(‖v‖2l)l− j, choosing l such that l‖v‖2 < δ
and obtaining the desired bound (5-2).

Finally, note that the loss of N powers of λl > 1 in the control of the C2 norms at the end of each stage
is the main reason why the described scheme does not deliver better than C1,1/7 estimates, even for the
optimal N = 3 from the decomposition in Lemma 2.3.

5. The C1,α approximations: a “step” and a “stage” in a proof of Theorem 1.2

In this section, we develop the approximation technique that will be used for a proof of Theorem 1.2 in
the next section. The first result is a variant of Proposition 3.1 in which we accomplish the “step” of the
Nash–Kuiper construction with extra estimates on the higher derivatives.

Proposition 5.1. Let �⊂ R2 be an open, bounded set. Given are functions v ∈ C3(�), w ∈ C2(�,R2), a
nonnegative function a ∈ C3(�) and a unit vector η ∈ R2. Let δ, l ∈ (0, 1) be two parameter constants
such that

‖a‖m ≤
δ

lm ∀m = 0, . . . , 3, and ‖∇v‖m ≤
δ

lm ∀m = 1, 2. (5-1)

Then for every λ > 1/ l there exist approximating functions ṽλ ∈ C3(�) and w̃λ ∈ C2(�,R2) satisfying the
following bounds, with a universal constant C > 0 independent of all parameters:∥∥( 1

2∇ṽλ⊗∇ṽλ+ sym∇w̃λ
)
−
( 1

2∇v⊗∇v+ sym∇w+ a2η⊗ η
)∥∥

0 ≤ C
δ2

λl
, (5-2)

‖ṽλ− v‖m ≤ Cδλm−1
∀m = 0, . . . , 3, (5-3)

‖w̃λ−w‖m ≤ Cδλm−1(1+‖∇v‖0) ∀m = 0, . . . , 2. (5-4)

Proof. We define ṽλ, w̃λ as in the proof of Proposition 3.1:

ṽλ(x)= v(x)+
1
λ
01(x, λx · η), w̃λ(x)= w(x)−

1
λ
01(x, λx · η)∇v(x)+ 1

λ
02(x, λx · η)η.

Firstly, (5-2) follows immediately from (3-1) in view of (5-1), because λl > 1:

1
λ
‖a‖0 (‖∇a‖0+‖∇2v‖0)+

1
λ2 ‖∇a‖20 ≤ 2

δ

λ

δ

l
+

1
λ2

δ2

l2 ≤ 3
δ2

λl
.



CONVEX INTEGRATION FOR THE MONGE–AMPÈRE EQUATION IN TWO DIMENSIONS 713

To check (5-3), we compute directly as in Lemma 2.2:

∇
m(ṽλ− v)‖0 ≤

C
λ
‖∇

m01(x, λx · η)‖0 ≤
C
λ

∑
i+ j=m

0≤i, j≤m

‖a‖ jλ
j
≤

C
λ

m∑
i=0

δ

l i λ
m−i
≤ Cδλm−1

by (5-1) and noting again λl > 1. Similarly,

‖∇
m(w̃λ−w)‖0 ≤

C
λ

(
‖∇

m02(x, λx · η)‖0+‖∇m01(x, λx · η)∇v‖0
)

≤
C
λ

( ∑
i+ j=m

0≤i, j≤m

‖a2
‖i λ

j
+

∑
i+ j+s=m
0≤i, j,s≤m

‖a‖i λ j
‖∇v‖s

)

≤
C
λ

( m∑
i=1

δ

l i λ
m−i
+

∑
0≤i+s≤m
0≤i,s≤m

δ

l i λ
m−(i+s) δ

ls +
∑

i+ j=m
0≤i, j≤m

δ

l i λ
j
‖∇v‖0

)

≤
C
λ

( m∑
i=1

δ

l i λ
m−i

)
(1+ 1+‖∇v‖0)≤ Cδλm−1(1+‖∇v‖0),

where we applied Lemma 4.2 to ψ(x) = x2 and f = a in view of (5-1) yielding ‖a‖0 ≤ 1, so that
‖a2
‖i ≤ C‖a‖i ≤ Cδ/ l i. This achieves (5-4) and completes the proof of the proposition. �

We now accomplish the “stage” in the Hölder regular approximation construction.

Proposition 5.2. Let � ⊂ R2 be an open, bounded domain. Let v ∈ C2(�), w ∈ C2(�,R2) and A ∈
C 0,β(�,R2×2

sym ) for some β ∈ (0, 1) be such that the deficit D is appropriately small:

D = A−
( 1

2∇v⊗∇v+ sym∇w
)
, 0< ‖D‖0 < δ0� 1. (5-5)

Then, for every two parameter constants M, σ satisfying

M >max{‖v‖2, ‖w‖2, 1} and σ > 1, (5-6)

there exist ṽ ∈ C2(�) and w̃ ∈ C2(�,R2) such that the following error bounds hold for ṽ, w̃ and the new
deficit D̃ = A−

( 1
2∇ṽ⊗∇ṽ+ sym∇w̃

)
:

‖D̃‖0 ≤ C
(
‖A‖0,β

Mβ
‖D‖β/20 +

1
σ
‖D‖0

)
, (5-7)

‖ṽ− v‖1 ≤ C‖D‖1/20 and ‖w̃−w‖1 ≤ C(1+‖∇v‖0)‖D‖1/20 , (5-8)

‖ṽ‖2 ≤ C Mσ 3 and ‖w̃‖2 ≤ C(1+‖∇v‖0)Mσ 3. (5-9)

The constant C > 0 is universal and independent of all parameters.

Proof. Analogously to [Conti et al. 2012, Proposition 4], the proof is split into three parts.
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Part 1: mollification. Let ϕ ∈ C∞c (B(0, 1)) be the standard mollifier in two dimensions, as in Lemma 4.3.
Since v, w and A can be extended on the whole R2, with all their relevant norms increased at most C times
(C depends here on the curvature of the boundary ∂�), we may define

v= v ∗ϕl, w := w ∗ϕl, A := A ∗ϕl with l =
‖D‖1/20

M
< 1.

Applying Lemma 4.3 and noting (5-6), we immediately get the following uniform error bounds for v, w,
A and for the induced deficit D= A−

( 1
2∇v⊗∇v+ sym∇w

)
:

‖v− v‖1+‖w−w‖1 ≤ Cl(‖v‖2+‖w‖2)≤ C‖D‖1/20 ,

‖A− A‖0 ≤ Clβ‖A‖0,β,

‖D‖m ≤ ‖D ∗ϕl‖m +
∥∥(∇v ∗ϕl)⊗ (∇v ∗ϕl)− (∇v⊗∇v) ∗ϕl

∥∥
m

≤
C
lm ‖D‖+

C
lm−2 ‖v‖

2
2 ≤

C
lm ‖D‖0 ∀m = 0, . . . , 3.

(5-10)

In the proof of the last inequality above, we used (4-6) with the Hölder exponent α = 1.
We note that so far we have simply exchanged the lower regularity fields v, w, A with their smooth

approximations, at the expense of the error that, as we shall see below, is compatible with the that
postulated in (5-7)–(5-9). The following estimate, however, reflects the advantage of averaging through
mollification that results in the control of the C3 norm of v by the C2 norm:

∀m = 1, 2, ‖∇v‖m ≤ ‖v‖m+1 ≤
C

lm−1 ‖v‖2 ≤
C
lm ‖D‖

1/2
0 , (5-11)

where again we used Lemma 4.3 and (5-6). Note that the scaling bound (5-11) is consistent with the
second requirement in (5-1) of Proposition 5.1. We also record the simple bound

‖w‖2 ≤ C‖w‖2 ≤ C M. (5-12)

Part 2: modification and positive definiteness. Contrary to the “stage” construction in the proof of
Proposition 3.2, we do not know whether the original defect D (and hence the induced defect D)
is positive definite, so that Lemma 2.4 could be used. In any case, we need to keep the number of terms
in the decomposition (3-9) into rank-one matrices as small as possible.

We now further modify w in order to use the optimal decomposition in (2-5). Let r0 be as in Lemma 2.3
and define

w′ =w− 2
(‖D‖0+‖D‖0)

r0
id2, D′ = A−

( 1
2∇v⊗∇v+ sym∇w′

)
.

Clearly, by (5-10) we get

‖w′−w‖2 ≤ C(‖D‖0+‖D‖0)≤ C‖D‖0. (5-13)

Note now that

D′(x)= 2
(‖D‖0+‖D‖0)

r0
Id2+D(x)= 2

(‖D‖0+‖D‖0)
r0

(
Id2+

r0

2(‖D‖0+‖D‖0)
D

)
∀x ∈�.
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By Lemma 2.3 we may apply (2-5) to the scaled defect

G = Id2+
r0

2(‖D‖0+‖D‖0)
D

and arrive at

D′(x)=
3∑

k=1

2
(‖D‖0+‖D‖0)

r0
8k(G(x))ξk ⊗ ξk =

3∑
k=1

a2
k (x)ξk ⊗ ξk ∀x ∈�, (5-14)

where {
ak =

(
2
(‖D‖0+‖D‖0)

r0
8k ◦G

)1/2}3

k=1

are positive smooth functions on �. We claim that

∀k = 1, . . . , 3, ∀m = 0, . . . , 3, ‖ak‖m ≤
C
lm ‖D‖

1/2
0 . (5-15)

Indeed, for m= 0 this inequality follows directly by ‖D‖0≤C‖D‖0. For m= 1, . . . , 3 we use Lemma 4.2
on each ψ =81/2

k and f = G, where noting that ‖G‖0 ≤ C and recalling (5-10) yields

‖ak‖m ≤

(
2
(‖D‖0+‖D‖0)

r0

)1/2

C‖G‖m

≤ C(‖D‖0+‖D‖0)1/2
(

C +
r0

2(‖D‖0+‖D‖0)
‖D‖m

)
≤ C

(
(‖D‖0+‖D‖0)1/2+

1
(‖D‖0+‖D‖0)1/2

1
lm ‖D‖0

)
≤ C

(
‖D‖1/20 +

1
lm ‖D‖

1/2
0

)
(5-16)

and hence achieves (5-15). Note that the scaling bound (5-15) is consistent with the first requirement in
(5-1) of Proposition 5.1.

Part 3: iterating the one-dimensional oscillations. We set v1 = v, w1 =w and inductively define vk+1 ∈

C3(�) and wk+1 ∈ C2(�,R2) for k= 1, 2, 3 by means of Proposition 5.1 applied to vk , wk , the function ak

and the unit vector ξk appearing in (5-14), with the parameters

lk =
l

σ k−1 < 1, λk =
σ

lk
=

1
lk+1

>
1
lk
,

and with the remaining three parameters

δ3 ≥ δ2 ≥ δ1 = max
m=1,2
{lm
‖∇v‖m}+ max

m=0,...,3
k=1,...,3

{lm
‖ak‖m} (5-17)

as indicated below. We then finally set ṽ = v4 and w̃ = w4.
We start by checking that the assumptions of Proposition 5.1 are satisfied. Namely, we claim that

δk, lk ∈ (0, 1), together with

‖ak‖m ≤
δk

lm
k
∀m = 0, . . . , 3 and ‖∇vk‖m ≤

δk

lm
k
∀m = 1, 2, (5-18)

at each iteration step k = 1, 2, 3, if only the constant δ0 in (5-5) is appropriately small.
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Indeed, δ1 ≤ C‖D‖1/20 in view of (5-11) and (5-15), so δ1 < 1 if only δ0� 1. Further, by the definition
(5-17) it follows that

‖ak‖m =
1
lm lm
‖ak‖m ≤

δ1

lm ≤
δk

lm
k
,

so the first assertion in (5-18) holds. For the second assertion, we see directly that it holds when k = 1, as

‖∇v1‖m =
1
lm lm
‖∇v‖m ≤

δ1

lm .

On the other hand, using induction on k and exploiting (5-3), we get

‖∇vk+1‖m ≤ ‖∇vk‖m +‖∇vk+1−∇vk‖m ≤
δk

lm
k
+Cδkλ

m
k

≤ δk

(
1

lm
k+1
+

C
lm
k+1

)
= C

δk

lm
k+1
≤
δk+1

lm
k+1

∀m = 1, 2, ∀k = 1, 2.

The proof of (5-18) is now complete for the choice δk+1=Cδk , where C > 1 is, as always, an appropriately
large universal constant. Consequently, δ2, δ3 ≤ C‖D‖1/20 < 1 if only δ0� 1.

(4) We now directly verify the concluding estimates of Proposition 5.2. We have, in view of the definition
of D′ and (5-14),

D̃ = A−A+D′+
( 1

2∇v1⊗∇v1+ sym∇w1
)
−
( 1

2∇v4⊗∇v4+ sym∇w4
)

= A−A−

3∑
k=1

((1
2∇vk+1⊗∇vk+1+ sym∇wk+1

)
−
( 1

2∇vk ⊗∇vk + sym∇wk + akξk ⊗ ξk
))
,

and thus by (5-10), (5-2) and the definition of l, (5-7) follows:

‖D̃‖0 ≤ ‖A−A‖0+C
3∑

k=1

δ2
k

λklk
≤ C

(
lβ‖A‖0,β + δ2

3

3∑
k=1

1
λklk

)

≤ C
(
‖D‖β/20

Mβ
‖A‖0,β + 3

δ2
3

σ

)
≤ C

(
‖D‖β/20

Mβ
‖A‖0,β +

1
σ
‖D‖0

)
.

We now check (5-8), using (5-10), (5-13) and (5-4):

‖ṽ− v‖1 ≤ ‖v− v‖1+

3∑
k=1

‖vk+1− vk‖1 ≤ C‖D‖1/20 +C
3∑

k=1

δk ≤ C‖D‖1/20 ,

‖w̃−w‖1 ≤ ‖w−w‖1+‖w
′
−w‖1+

3∑
k=1

‖wk+1−wk‖1

≤ C
(
‖D‖1/20 +‖D‖0+

3∑
k=1

δk(1+‖∇vk‖0)

)
≤ C‖D‖1/20

(
1+

3∑
k=1

‖∇vk‖0

)
≤ C‖D‖1/20

(
1+‖∇v‖0+‖v− v‖1+

2∑
k=1

‖vk+1− vk‖1

)
≤ C‖D‖1/20 (1+‖∇v‖0+‖D‖1/20 )≤ C‖D‖1/20 (1+‖∇v‖0).

(5-19)
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Finally, the first bound in (5-9) follows by (5-11) and (5-3),

‖ṽ‖2 ≤ ‖v‖2+

3∑
k=1

‖vk+1− vk‖2 ≤
C
l
‖D‖1/20 +C

3∑
k=1

δkλk

≤
C
l
‖D‖1/20 +Cδ3

3∑
k=1

σ k

l
≤

C
l
‖D‖1/20 (1+ σ 3)≤ C Mσ 3,

while the second bound is obtained by

‖w̃‖2 ≤ ‖w‖2+‖w
′
−w‖2+

3∑
k=1

‖wk+1−wk‖2 ≤ C
(

M +‖D‖0+
3∑

k=1

δkλk(1+‖∇vk‖0)

)

≤ C
(

M + δ3

3∑
k=1

σ 3

l
(1+‖∇vk‖0)

)
≤ C M

(
1+ σ 3

+ σ 3
3∑

k=1

‖∇vk‖0

)

≤ C Mσ 3
(

1+
3∑

k=1

‖∇vk‖0

)
≤ C Mσ 3(1+‖∇v‖0)

in view of (5-12), (5-13) and reasoning as in (5-19). �

6. The C1,α approximations: a proof of Theorem 1.2

We are now in a position to state the final intermediary approximation result, parallel to [Conti et al. 2012,
Theorem 1].

Theorem 6.1. Assume that � ⊂ R2 is an open, bounded domain. Given are functions v ∈ C2(�),
w ∈ C2(�,R2) and A ∈ C 0,β(�,R2×2

sym ) for some β ∈ (0, 1), such that the deficit D below is appropriately
small:

D = A−
( 1

2∇v⊗∇v+ sym∇w
)
, 0< ‖D‖0 < δ0� 1. (6-1)

Fix the exponent

0< α <min
{1

7 ,
1
2β
}
. (6-2)

Then, there exist v̄ ∈ C1,α(�) and w̄ ∈ C1,α(�,R2) such that

1
2∇v̄⊗∇v̄+ sym∇w̄ = A, (6-3)

‖v̄− v‖1 ≤ C‖D‖1/20 and ‖w̄−w‖1 ≤ C(1+‖∇ṽ‖0)‖D‖1/20 , (6-4)

where C > 0 is a constant depending on α but independent of all other parameters.

Proof. The exact solution to (6-3) will be obtained as the C1,α limit of sequences of successive approxi-
mations {vk ∈ C2(�),wk ∈ C2(�,R2)}∞k=1.

Part 1: induction on stages. We set v0 = v and w0 = w. Given vk and wk , define vk+1 and wk+1 by
applying Proposition 5.2 with parameters σ and Mk that will be appropriately chosen below and that
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satisfy

Mk >max{‖vk‖2, ‖wk‖2, 1} and σ > 1. (6-5)

Following our notational convention, we define the k-th deficit Dk = A−
( 1

2∇vk ⊗∇vk + sym∇wk
)
. In

view of Proposition 5.2, we get

‖Dk+1‖0 ≤ C
(
‖A‖0,β

Mβ

k

‖Dk‖
β/2
0 +

1
σ
‖Dk‖0

)
, (6-6)

‖vk+1− vk‖1 ≤ C‖Dk‖
1/2
0 and ‖wk+1−wk‖1 ≤ C(1+‖∇vn‖0)‖Dk‖

1/2
0 , (6-7)

‖vk+1‖2 ≤ C Mkσ
3 and ‖wk+1‖2 ≤ C(1+‖∇vk‖0)Mkσ

3, (6-8)

provided that (5-5) holds for each Dk . We shall now validate this requirement, with the parameters

Mk =
(
C(1+‖∇v0‖0)σ

3)k M0. (6-9)

In fact, we will inductively prove that one can have

‖Dk‖0 ≤
1
σ sk ‖D‖0 with any 0< s <min

{
1,

6β
2−β

}
. (6-10)

Fix s as indicated in (6-10). Clearly, (6-10) and (6-5) hold for k = 0. By (6-6) and the induction
assumption we obtain the bound

σ s(k+1) ‖Dk+1‖0

‖D‖0
≤

C‖A‖0,β ‖D‖β/2−1
0 σ s

Mβ

0

1
Ckβ

(
σ (1−β/2)(s−6β/(2−β))

(1+‖∇v0‖0)β

)k

+Cσ s−1. (6-11)

We see that in view of the condition on s in (6-10), both σ s−1 and σ (1−β/2)(s−6β/(2−β)) are smaller than 1.
Further, it is possible to choose σ > 1 so that the second term in (6-11) is smaller than 1

2 and so that the
quotient term in parentheses above is also smaller than 1. Then, choose M0 so that (6-5) holds for k = 0
together with

C‖A‖0,β ‖D‖β/2−1
0 σ s

Mβ

0

<
1
2
.

This results in the first term in (6-11) being smaller than 1
2 if C ≥ 1. Consequently, we get that

σ s(k+1)
‖Dk+1‖0/‖D‖0 ≤ 1 as needed in (6-10).

Observe now that by (6-7) and by the established (6-10),

∀k ≥ 0, ‖∇vk‖0 ≤ ‖∇v0‖0+

k−1∑
i=0

‖vi+1− vi‖1 ≤ ‖∇v0‖0+C
k−1∑
i=0

‖Di‖
1/2
0

≤ ‖∇v0‖0+C
( ∞∑

i=0

1
σ si/2

)
‖D‖1/20 = ‖∇v0‖0+

C
1− σ−s/2 ‖D‖

1/2
0

≤ ‖∇v0‖0+C‖D‖1/20 (6-12)
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if only, say, σ s > 4, which can be easily achieved through the choice of σ . Now, by (6-8) and (6-12),

‖vk+1‖2

Mk+1
≤

1
C

C
(1+‖∇v0‖0)

,

‖wk+1‖2

Mk+1
≤

1
C

C(1+‖∇vk‖0)

(1+‖∇v0‖0)
≤

1
C

C(1+‖∇v0‖0+‖D‖1/20 )

(1+‖∇v0‖0)
.

Hence, taking the constant C� 1 large enough, we see that both quantities above can be made smaller
than 1, proving therefore the required (6-5).

Part 2: C1,α control of the approximating sequences vn and wn . Let now α be an exponent as in (6-2).
Choose s satisfying (6-10) and

α(6+ s)− s < 0. (6-13)

It is an easy calculation that s satisfying (6-10) and (6-13) exists if and only if the exponent α is in the
range (6-2). Indeed, (6-13) is equivalent to α < s/(6+ s), while (6-10) is equivalent to

0<
s

6+ s
<min

{1
7 ,

1
2β
}
.

We will prove that the sequences {vk, wk}
∞

k=0 are Cauchy in C1,α(�). Firstly, by (6-7), (6-12), (6-10),

‖vk+1− vk‖1 ≤ C‖Dk‖
1/2
0 ≤

C
σ sk/2 ‖D‖

1/2
0 ,

‖wk+1−wk‖1 ≤ C(1+‖∇vk‖0)‖Dk‖
1/2
0 ≤

C
σ sk/2 (1+‖∇v0‖0+‖D‖1/20 )‖D‖1/20 ,

(6-14)

so we see right away that they are Cauchy in C1(�). On the other hand, by (6-8), (6-12), (6-10),

‖vk+1−vk‖2+‖wk+1−wk‖2≤C(1+‖∇vk‖0)Mkσ
3
≤C(1+‖∇v0‖0+‖D‖1/20 )

(
C(1+‖∇v0‖0)σ

3)k M0,

so the sequences have the tendency to diverge in C2(�). Interpolating now the C1,α norm by [Adams and
Fournier 2003],

‖ f ‖0,α ≤ ‖ f ‖α1 ‖ f ‖1−α0 ,

we obtain

‖∇(vk+1− vk)‖0,α +‖∇(wk+1−wk)‖0,α ≤ Cα
0 (C0σ

3)kαMα
0 ·C

1−α
0

1
σ sk(1−α)/2

= C0 Mα
0 (C

α
0 )

h(σ
1
2 (α(6+s)−s))k, (6-15)

where by C0 we denoted an upper bound of all quantities involving C , v0, D. It is clear that choosing
σ sufficiently large (so that C0σ

3−s/2 < 1), the resulting bound (6-15) implies that {∇vk,∇wk}
∞

k=0 are
Cauchy in C 0,α(�), provided that (6-13) holds. We see that the choice of exponent range in (6-2) so that
the above construction technique works, is optimal.

Part 3: Concluding, we see that {vk, wk}
∞

k=0 converge to some v̄ ∈ C1,α(�) and w̄ ∈ C1,α(�,R2). Since
the defects in the approximating sequence obeys limk→∞ ‖Dk‖0 = 0 by (6-10), we immediately get (6-3).
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Additionally, by (6-14),

‖v̄− v‖1 ≤

∞∑
k=0

‖vk+1− vk‖1 ≤ C
( ∞∑

k=0

1
σ sk/2

)
‖D‖1/20 =

C
1− σ−s/2 ‖D‖

1/2
0 ≤ C‖D‖1/20 ,

‖w̄−w‖1 ≤

∞∑
k=0

‖wk+1−wk‖1 ≤ C
( ∞∑

k=0

1
σ sk/2

)
(1+‖∇v‖0)‖D‖1/20 ≤ C(1+‖∇v‖0)‖D‖1/20 ,

completing the proof of (6-4). �

We are now ready to give:

Proof of Theorem 1.2. Fix a sufficiently small ε > 0. We will construct v̄ ∈ C1,α(�) and w̄ ∈ C1,α(�,R2)

such that
A0 =

1
2∇v̄⊗∇v̄+ sym∇w̄ in � (6-16)

and
‖v̄− v0‖0+‖w̄−w0‖0 < ε. (6-17)

In order to apply Theorem 6.1, we need to decrease the deficit A0−
( 1

2∇v0⊗∇v0+ sym∇w0
)

so that it
obeys (6-1). This will be done in three steps.

First, let ṽ0 ∈ C∞(�), w̃0 ∈ C∞(�,R2) and Ã0 ∈ C∞(�,R2×2
sym ) be such that

‖ṽ0− v0‖1+‖w̃0−w0‖1+‖ Ã0− A0‖0 < ε
2,

∃ c̃0 > 0 such that A0−
( 1

2∇ṽ0⊗∇ṽ0+ sym∇w̃0) > c̃0 Id2 in �.
(6-18)

Second, by Theorem 2.1 and Remark 3.3, there exist v ∈ C1(�) and w ∈ C1(�,R2) such that

Ã0 =
1
2∇v⊗∇v+ sym∇w in �,

‖v− ṽ0‖0+‖w− w̃0‖0 < ε
2 and ‖∇v−∇ṽ0‖0 ≤ C.

(6-19)

Third, let ṽ ∈ C2(�) and w̃ ∈ C2(�,R2) be such that

‖v− ṽ‖1+‖w− w̃‖1 < ε
2. (6-20)

By (6-19), (6-20) and (6-18), we get∥∥A0−
( 1

2∇ṽ⊗∇ṽ+ sym∇w̃
)∥∥

0

≤ ‖A0− Ã0‖0+
∥∥( 1

2∇ṽ⊗∇ṽ+ sym∇w̃
)
−
( 1

2∇v⊗∇v+ sym∇w
)∥∥

0

≤ ‖A0− Ã0‖0+ (‖∇v‖0+‖∇ṽ‖0)‖∇v−∇ṽ‖0+‖∇w−∇w̃‖0

≤ ε2
+ (2‖∇v0‖0+ 2ε2

+C)ε2
+ ε2 < δ0, (6-21)

as required in Theorem 6.1, if only ε is small enough. We now apply Theorem 6.1 to ṽ, w̃ and the original
field A0, and get v̄ ∈ C1,α(�) and w̄ ∈ C1,α(�,R2) satisfying (6-16) and such that

‖v̄− v0‖0+‖w̄−w0‖0 ≤ C(1+‖∇ṽ‖0)
∥∥A0−

( 1
2∇ṽ⊗∇ṽ+ sym∇w̃

)∥∥
0+ 3ε2

≤ C(1+ ε2
+‖∇v0‖0)

2ε2
+ 3ε2

by (6-4), (6-21), (6-20), (6-19) and (6-18). Clearly (6-17) follows, if ε is small enough. �
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The following corollary is of independent interest:

Corollary 6.2. Let�, f , p, α be as in the statement of Theorem 1.1. Let q≥2. Then, for all v0∈W 1,q(�),
there exists a sequence vn ∈ C1,α(�) weakly converging to v0 in W 1,q(�), and such that Det∇2vn = f
in �.

Proof. Let v̄n ∈ C1(�) converge to v0 in W 1,q(�). For every v̄n , consider the approximating sequence
{vn,k ∈ C1,α(�)}∞k=1 as in Theorem 1.1, converging uniformly to v̄n . Define now {vn} to be an appropriate
diagonal sequence, so that it converges to v0 in Lq(�). We will check that {vn} is bounded in W 1,q.

The boundedness of ‖vn‖Lq is clear from the convergence statement. On the other hand, the proof of
Theorem 1.2 gives, by (6-4), (6-18), (6-19), (6-20) and (6-21),

|∇vn(x)| ≤ |∇v̄n(x)| + 2ε2
+C +Cδ1/2

0 ≤ |∇v̄n(x)| +C ∀x ∈�.

Consequently, ‖∇vn‖Lq ≤ ‖∇v̄n‖Lq +C ≤ C , which concludes the proof. �

7. Rigidity results for α > 2
3 : a proof of Theorem 1.3

The crucial element in the proof of the rigidity Theorems 1.3 and 1.4 is the following result, which is the
“small slope analogue” of [Conti et al. 2012, Proposition 6]:

Proposition 7.1. Let � ⊂ R2 be an open, bounded, simply connected domain. Assume that for some
α ∈

( 2
3 , 1

)
, the function v ∈ C1,α(�) is a solution to

Det∇2v = f in �,

where f ∈ L p(�) and p > 1. Then the following degree formula holds true for every open subset U
compactly contained in � and every g ∈ L∞(R2) with supp g ⊂ R2

\∇v(∂U ):∫
U
(g ◦∇v) f =

∫
R2

g(y) deg(∇v,U, y) dy. (7-1)

Above, deg(ψ,U, y) denotes the Brouwer degree of a continuous function ψ : U → R2 at a point
y ∈ R2

\ψ(∂U ).

Proof. (1) Fix U and g as in the statement of the proposition. We refer to [Lloyd 1978] for the definition
and properties of the Brouwer degree; recall first that deg(∇v,U, · ) is well defined on the open set
R2
\∇v(∂U ). In fact, this function is constant on each connected component {Ui }

∞

i=0 of R2
\ ∇v(∂U )

and it equals 0 on the only unbounded component U0 ⊂ R2
\∇v(U ). Thus, without loss of generality, we

may assume that g is compactly supported and that supp g ⊂
⋃
∞

k=1 Uk . By compactness, there must be
supp g⊂

⋃N
k=1 Uk for some N, and consequently the integral in the right-hand side of (7-1) is well defined.

Let now
{
gi ∈C∞c

(⋃N
k=1 Uk

)}∞
i=1 be a sequence pointwise converging to g and such that ‖gi‖0≤‖g‖L∞

for all i . It is sufficient to prove the formula (7-1) for each gi and pass to the limit by the dominated
convergence theorem. To simplify the notation, we drop the index i , and so in what follows we assume
that g ∈ C∞c (R2

\∇v(∂U )).
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As in the proof of Theorem 1.1, let A ∈W 2,p(�)∩ C 0,β(�) be such that curl curl A =− f . Here, we
take β =min

{
2− 2

p , α
}
∈ (0, 1). Consequently, in view of the simple connectedness of �, there exists

w ∈ C1,β(�,R2) such that
A = 1

2∇v⊗∇v+ sym∇w.

For a standard 2-dimensional mollifier ϕ ∈ C∞c (B(0, 1)) as in Lemma 4.3, define

∀l ∈ (0, 1), vl = v ∗ϕl, wl = w ∗ϕl, Al = A ∗ϕl,

and apply the degree formula (change of variable formula [Evans and Gariepy 1992; Ambrosio et al. 2000])
to the smooth functions g and ∇vl , noting that for sufficiently small l, we have g ∈ C∞c (R2

\∇vl(∂U )):∫
U
(g ◦∇vl) det∇2vl =

∫
R2

g(y) deg(∇vl,U, y) dy. (7-2)

We see that ∇vl converge uniformly to ∇v, so by [Kavian 1993, Proposition 2.1] we obtain that for l
sufficiently small, and for all y ∈ supp g, we have deg(∇v,U, y)= deg(∇vl,U, y). Thus

lim
l→0

∫
R2

g(y) deg(∇vl,U, y) dy =
∫

R2
g(y) deg(∇v,U, y) dy.

Another proof of integrability of the Brouwer degree, in a more general context, can be found in
[Olbermann 2015]. Now, to conclude the proof in view of (7-2), it suffices to show that

lim
l→0

∫
U
(g ◦∇vl) det∇2vl =

∫
U
(g ◦∇v) f. (7-3)

(2) Following [Conti et al. 2012; Constantin et al. 1994] we use a commutator estimate to get (7-3). As
f =− curl curl A, we have∣∣∣∣∫

U
(g◦∇vl)det∇2vl−(g◦∇v) f

∣∣∣∣≤ ∣∣∣∣∫
U
(g◦∇vl)(det∇2vl+curlcurl Al)

∣∣∣∣
+

∣∣∣∣∫
U
(g◦∇vl)curlcurl(Al−A)

∣∣∣∣+∣∣∣∣∫
U
((g◦∇vl)−(g◦∇v)) f

∣∣∣∣. (7-4)

The second term above is bounded by C
∫

U |∇
2 Al −∇

2 A| ≤ C‖Al − A‖W 2,p(�), hence it converges to 0.
The third term also converges to 0 by the dominated convergence theorem, since g◦∇vl converges to g◦∇v.
In order to deal with the first term in (7-4), observe that det∇2vl =− curl curl

( 1
2∇vl ⊗∇vl + sym∇wl

)
and integrate by parts, in view of g ◦∇vl = 0 on ∂U :∣∣∣∣∫

U
(g ◦∇vl)(det∇2vl + curl curl Al)

∣∣∣∣= ∣∣∣∣∫
U

〈
∇
⊥(g ◦∇vl), curl

( 1
2∇vl ⊗∇vl + sym∇wl − Al

)〉∣∣∣∣
≤ C‖∇g‖0 ‖∇2vl‖0

∥∥∇vl ⊗∇vl − (∇v⊗∇v) ∗ϕl
∥∥

1

≤ C
1

l1−α ‖∇v‖0,α ·
1

l1−2α ‖∇v‖
2
0,α = C

1
l2−3α ‖∇v‖

3
0,α, (7-5)

where we used Lemma 4.3. Clearly, for α > 2
3 the right-hand side in (7-5) converges to 0 as l→ 0. By

(7-4), this implies (7-3) and concludes the proof. �
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Below, we present all the details of the proof of Theorem 1.3. The proof of Theorem 1.4 will be
postponed to [Lewicka and Pakzad ≥ 2017].

Proof of Theorem 1.3. (1) By Proposition 7.1 it follows that for all open sets U ⊂U ⊂�,

deg(∇v,U, y)= 0 ∀y ∈ R2
\∇v(∂U ). (7-6)

We would like to conclude [Pogorelov 1956; 1973] that the image set ∇v(U ) is of measure 0. This will
result in the developability of v, by the main statement of [Korobkov 2007]. However, we note that
(Malý, personal communication, 2016) for each α ∈ (0, 1), there exists a map in C0,α(�,R2) whose local
degree vanishes everywhere, but whose image is onto the unit square. This example can be constructed
through a similar approach to that in [Malý and Martio 1995, Section 5]. Therefore, we will additionally
exploit the gradient structure of ∇v, using ideas of [Kirchheim 2001, Chapter 2], in combination with the
commutator estimate technique of the proof of Proposition 7.1.

Let vl = v ∗ϕl be as in the proof of Proposition 7.1 and for every δ > 0 define

ul,δ(x1, x2)=∇vl(x1, x2)+ δ(−x2, x1), uδ(x1, x2)=∇v(x1, x2)+ δ(−x2, x1).

Fix an open set U with smooth boundary and compactly contained in �. Let g ∈ C∞c (R2
\∇v(∂U )), and

use the change of variable formula to g and ul,δ:∫
U
(g ◦ ul,δ)(det∇2vl + δ

2)=

∫
R2

g(y) deg(ul,δ,U, y) dy, (7-7)

where we noted that det∇ul,δ = det∇2vl + δ
2. The integral in the right-hand side of (7-7) is well defined

for sufficiently small l and δ, because then y ∈ supp g implies y 6∈ ul,δ(∂U ).
Passing to the limit, we immediately obtain

lim
l→0

∫
R2

g(y) deg(ul,δ,U, y) dy =
∫

R2
g(y) deg(uδ,U, y) dy, (7-8)

while to the left hand side of (7-7) we apply the estimate∣∣∣∣∫
U
(g ◦ ul,δ)(det∇2vl + δ

2)− (g ◦ uδ)δ2
∣∣∣∣≤ ∣∣∣∣∫

U
(g ◦ ul,δ) det∇2vl

∣∣∣∣+ ∣∣∣∣∫
U
(g ◦ ul,δ − g ◦ uδ)δ2

∣∣∣∣.
The second term above clearly converges to 0 as l→ 0, because ul,δ converge to uδ. The first term also
converges to 0 as α > 2

3 , where we reason exactly as in (7-4) and (7-5), keeping in mind that f = 0. We
hence conclude

lim
l→0

∫
U
(g ◦ ul,δ)(det∇2vl + δ

2)=

∫
U
(g ◦ uδ)δ2.

In view of (7-8) and (7-7) this implies

∀0< δ� 1,
∫

U
(g ◦ uδ)δ2

=

∫
R2

g(y) deg(uδ,U, y) dy.

Consequently,
∀0< δ� 1, ∀y ∈ uδ(U ) \ uδ(∂U ), deg(uδ,U, y)≥ 1. (7-9)
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(2) We now claim that
∇v(U )⊂∇v(∂U ). (7-10)

To prove (7-10) we argue by contradiction, assuming that for some x0 ∈ U there is y0 = ∇v(x0) ∈

∇v(U ) \∇v(∂U ). Note that for δ small enough, we have y0 /∈ uδ(∂U ), because uδ converges uniformly
to ∇v as δ→ 0. We distinguish two cases:

(i) There exist sequences {xk ∈U }∞k=1 and δk→ 0+ as k→∞ such that y0 = uδk (xk) for all k. In view
of (7-9) we get deg(uδk ,U, y0)≥ 1, contradicting (7-6).

(ii) For all δ small enough, y0 6∈ uδ(U ). In this case, we must have deg(uδ,U, y0) = 0. But on the
other hand, there exists a ball B(y0, 2r) ⊂ R2

\∇v(∂U ), so also B(y0, r) ⊂ R2
\ uδ(∂U ) for all

small δ. Consequently, continuity of the degree yields that deg(uδ,U, z)= 0 for every z ∈ B(y0, r).
In particular, deg(uδ,U, uδ(x0))= 0, because limδ→0 uδ(x0)=∇v(x0)= y0. This finally contradicts
(7-9), as uδ(x0) ∈ uδ(U ) \ uδ(∂U ).

Our claim (7-10) is now established. Since the set ∇v(∂U ) is the image of a Hausdorff one-dimensional
set ∂U under a C 0,α, α> 1

2 , deformation ∇v, it has Lebesgue measure 0 (see [Conti et al. 2012, Lemma 4]).
Thus ∇v(U ) must have measure 0 for every smooth U compactly contained in �. The same then must
be true for the entire set �, i.e., |∇v(�)| = 0, and we consequently obtain

Int(∇v(�))=∅. (7-11)

(3) By [Korobkov 2009, Corollary 1.1.2], condition (7-11) implies that every point y ∈� has a convex
open neighbourhood �y such that for every point x ∈ �y there is a line L x passing through x so that
∇v is constant on L x ∩�y . The same result in the present dimensionality has been first established in
[Korobkov 2007]; see also the footnote on p. 875 in [Korobkov 2009] for an explanation.

We now prove that v is developable. Fix x0 ∈� and let [y, z] ⊂� be the maximal segment passing
through x0 on which ∇v =∇v(x0) is constant. Assume that [y, z] does not extend to the boundary ∂�,
i.e., y ∈�. We will prove that then ∇v must be constant in an open neighbourhood of x0. In fact, we will
show that

V = Int
(
(∇v)−1(∇v(x0))

)
⊃ (y, z). (7-12)

Let (p, q) = L y ∩�y . By the maximality of [y, z], the segment (p, q) is not an extension of (is not
parallel to) [y, z]. Also, ∇v = ∇v(x0) on (p, q). Take any y1 ∈ (y, z)∩�y and define the open triangle
T = Int(span{p, q, y1}). It is easy to notice that every line passing through any point x ∈ T must intersect
at least one of the segments (p, q) or (y, y1). Since T ⊂�y , it follows that ∇v(x)=∇v(x0). Hence

(y, y1)⊂ T ⊂ V

and, in particular, the set V in (7-12) is nonempty.
To prove (7-12) assume, by contradiction, that there exists y2 ∈ [y1, z) so that

(y, y2)⊂ V but (y, y3) 6⊂ V ∀y3 ∈ (y2, z). (7-13)
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Now, the intersection �y2 ∩ V contains an open arc C crossing the segment (y, y2)∩�y2 . As above, we
argue that every point in a sufficiently small open neighbourhood of the segment I = (y, z)∩�y2 must
have the property that every line passing through it intersects C or I, where ∇v =∇v(x0). Consequently
I ⊂ V, contradicting (7-13) and establishing (7-12). �
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KINETIC FORMULATION OF VORTEX VECTOR FIELDS

PIERRE BOCHARD AND RADU IGNAT

This article focuses on gradient vector fields of unit Euclidean norm in RN. The stream functions associated
to such vector fields solve the eikonal equation and the prototype is given by the distance function to a
closed set. We introduce a kinetic formulation that characterizes stream functions whose level sets are
either spheres or hyperplanes in dimension N ≥ 3. Our main result proves that the kinetic formulation is a
selection principle for the vortex vector field whose stream function is the distance function to a point.

1. Introduction

In this article, we analyze the following type of vortex vector field:

u? : RN
→ RN, u?(x)=

x
|x |

for every x ∈ RN
\{0}

in dimension N ≥ 2, where | · | is the Euclidean norm in RN. This structure arises in many physical
models such as micromagnetics, liquid crystals, superconductivity, elasticity. Clearly, u? is smooth away
from the origin: in fact, 0 is a topological singularity of degree 1 since the jacobian is det∇u? = VN δ0,
where δ0 is the Dirac measure at the origin and VN is the volume of the unit ball in RN. Also, u? is a
curl-free unit-length vector field; i.e.,

|u?| = 1 and ∇ × u? = 0 in RN
\{0}. (1)

Moreover, there is a stream function ψ? : RN
→ R associated to u? by the equation

u? =∇ψ?;

indeed, one may consider ψ? as the distance function at the origin, i.e., ψ?(x)= |x | for x ∈ RN , and ψ?

represents the viscosity solution of the eikonal equation

|∇ψ?| = 1

under an appropriate boundary condition at infinity (e.g., lim|x |→∞(ψ?(x)− |x |)= 0).
Note that conversely, these properties characterize the vortex vector field: if u : RN

→ RN is a
nonconstant vector field that is smooth away from the origin and satisfies (1) then u =±u? in RN. Indeed,
this classically follows by the method of characteristics: the flow associated to u by

∂t X (t, x)= u(X (t, x)) (2)
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Keywords: vortex, eikonal equation, characteristics, kinetic formulation, level sets.
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with the initial condition X (0, x)= x for x 6=0 yields straight lines {X (t, x)}t given by X (t, x)= x+tu(x)
along which u is constant, i.e., u(X (t, x)) = u(x). Since u is nonconstant and two characteristics can
intersect only at the origin (which is the prescribed point-singularity of u), every characteristic passes
through the origin1 and therefore, u coincides with u? or −u?. Caffarelli and Crandall [2010] proved this
result under a weaker regularity hypothesis for the vector field u = ∇ψ : if ψ is assumed only pointwise
differentiable away from a set S of vanishing Hausdorff H1-measure (i.e., H1(S) = 0) and |∇ψ | = 1
in RN

\S, then ψ =±ψ? (up to a translation and an additive constant). We also refer to [DiPerna and
Lions 1989] for weaker regularity assumptions on u in the framework of Sobolev spaces.

Our aim is to prove a kinetic characterization of the vortex vector field that does not assume any
initial regularity on u. This kinetic formulation will characterize stream functions whose level sets are
totally umbilical hypersurfaces in dimension N ≥ 3, i.e., either pieces of spheres or hyperplanes. In
order to introduce the kinetic formulation of the vortex vector field, we start by presenting the case of
dimension N = 2 and then we extend it to dimensions N ≥ 3.

1.1. Kinetic formulation in dimension N = 2. Let � ⊂ R2 be an open set and u : � → R2 be a
Lebesgue-measurable vector field that satisfies

|u| = 1 a.e. in � and ∇ × u = 0 distributionally in �. (3)

The main feature of the kinetic formulation relies on the concept of weak characteristic for a nonsmooth
vector field u. We start by noting that (2) has a proper meaning only if some notion of trace of u can be
defined on curves {X (t, x)}t , which in general is a consequence of the regularity assumption on u (see
[DiPerna and Lions 1989]). To overcome this difficulty, the following notion of “weak characteristic”
is introduced for measurable vector fields u (see, e.g., [Lions, Perthame, and Tadmor 1994; Jabin and
Perthame 2001]): for every direction ξ ∈ S1, one defines the function χ( · , ξ) :�→ {0, 1} by

χ(x, ξ)=
{

1 for u(x) · ξ > 0,
0 for u(x) · ξ ≤ 0.

(4)

In the case of a smooth vector field u in a neighborhood of a point x0 ∈ �, then χ( · , ξ) mimics the
characteristic of u of normal direction ξ = (ξ1, ξ2) (see Figure 1); formally, if ξ⊥ = (−ξ2, ξ1)=±u(x0),
then either ∇χ( · , ξ) locally vanishes (if u is constant in a neighborhood of x0), or ∇χ( · , ξ) is a measure
concentrated on the characteristic {X (t, x0)}t given by (2) with constant measure density ±ξ . In other
words, we have the following “kinetic formulation” of the problem (see, e.g., [DeSimone, Müller, Kohn
and Otto 2001; Jabin and Perthame 2001]):

Proposition 1 (kinetic formulation in dimension N = 2). Let �⊂ R2 be an open set and u :�→ R2 be
a smooth vector field. If u satisfies (3) then

ξ⊥ · ∇xχ( · , ξ)= 0 distributionally in � for every ξ ∈ S1. (5)

1This argument is clear in dimension N = 2; for dimensions N ≥ 3, one needs an additional argument showing that two
characteristics are coplanar, as we will see later in the proof of Theorem 8.
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χ = 1
u(x0)

x0

χ = 0
{X (t, x0)}t

ξ
ξ⊥

Figure 1. Characteristics of u.

We mention that the kinetic formulation (5) holds under the weaker Sobolev regularity W 1/p,p for
p ∈ [1, 3] (see [Ignat 2011; 2012a; 2012b; De Lellis and Ignat 2015]). Note that the knowledge of χ( · , ξ)
in every direction ξ ∈S1 determines completely a vector field u with |u| = 1 due to the averaging formula

u(x)= 1
2

∫
S1
ξχ(x, ξ) dH1(ξ) for a.e. x ∈�. (6)

Thanks to (6), we deduce that the kinetic formulation (5) incorporates the fact that ∇ × u = 0 (see
Proposition 5 below). Therefore, the curl-free condition will be no longer mentioned in the following
statements whenever (5) is assumed to hold true for unit-length vector fields u.

The main question is whether the kinetic formulation (5) characterizes the vortex vector field in R2.
First of all, (5) induces a regularizing effect for Lebesgue-measurable unit-length vector fields u. Indeed,
the classical “kinetic averaging lemma” (see, e.g., [Golse, Lions, Perthame, and Sentis 1988]) shows that
a measurable vector field u :�→S1 satisfying (5) belongs to H 1/2

loc (�) due to the averaging formula (6).2

Moreover, Jabin, Otto, and Perthame [2002] improved the regularizing effect by showing that u is locally
Lipschitz away from vortex point-singularities3 and u coincides with the vortex vector field around these
singularities:

Theorem 2 [Jabin, Otto, and Perthame 2002]. Let �⊂ R2 be an open set and u :�→ R2 be a Lebesgue-
measurable vector field satisfying |u| = 1 a.e. in � together with the kinetic formulation (5). Then u is
locally Lipschitz continuous inside � except at a locally finite number of singular points. Moreover, every
singular point P of u corresponds to a vortex singularity of topological degree 1 of u; i.e., there exists a
sign γ =±1 such that

u(x)= γ u?(x − P) for every x 6= P in any convex neighborhood of P in �.

In particular, if �= R2 and u is nonconstant, then u coincides with u? or −u? (up to a translation).

This result leads to the following interpretation of the kinetic formulation in dimension N = 2:
equation (5) is a selection principle for the viscosity solutions of the eikonal equation |∇ψ | = 1 in the
sense that the solutions ψ are smooth (more precisely, they belong to the Sobolev space W 2,∞

loc ) away from

2For the improved regularizing effect for scalar conservation laws, see [Otto 2009; Golse and Perthame 2013].
3This regularity is optimal; see, e.g., Proposition 1 in [Ignat 2012b].
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point-singularities. Clearly, these solutions are induced by the viscosity solutions of the eikonal equation
under some appropriate boundary condition. Conversely, in the spirit of [Caffarelli and Crandall 2010],
it was shown by Ignat [2012b] and De Lellis and Ignat [2015] that for any vector field u satisfying (3)
together with an initial Sobolev regularity W 1/p,p, p ∈ [1, 3] (i.e., excluding jump line-singularities), the
kinetic formulation (5) holds true and therefore, one obtains the regularizing effect in Theorem 2.

Remark 3. The result of Jabin, Otto, and Perthame [2002] was motivated by the study of zero-energy
states in a line-energy Ginzburg–Landau model in dimension 2. More precisely, one considers the energy
functional Eε : H 1(�,R2)→ R+ defined for ε > 0 as

Eε(uε)= ε
∫
�

|∇uε|2 dx + 1
ε

∫
�

(1− |uε|2)2 dx + 1
ε
‖∇ × uε‖2H−1(�)

, uε ∈ H 1(�,R2), (7)

where � is a domain in R2 and H−1(�) is the dual of the Sobolev space H 1
0 (�). (We refer to [Ambrosio,

De Lellis, and Mantegazza 1999; Aviles and Giga 1999; DeSimone, Müller, Kohn and Otto 2001; Jabin,
Otto, and Perthame 2002; Jabin and Perthame 2001; Jin and Kohn 2000; Rivière and Serfaty 2001] for
the analysis of this model.) A vector field u :�→ R2 is called zero-energy state if there exists a family
{uε ∈ H 1(�,R2)}ε→0 satisfying

uε→ u in L1(�) and Eε(uε)→ 0 as ε→ 0.

Obviously, a zero-energy state u satisfies (3). The result of Jabin, Otto, and Perthame [2002] shows that
every zero-energy state u satisfies (5) and therefore, u shares the structure stated in Theorem 2.

1.2. Kinetic formulation in dimension N≥3. Our main interest consists in defining a kinetic formulation
for the vortex vector field in dimension N ≥ 3. Let�⊂RN be an open set and u :�→RN be a Lebesgue-
measurable vector field. For every direction ξ ∈ SN−1, we consider the characteristic function χ( · , ξ)
defined at (4) and we denote the orthogonal hyperplane to ξ by

ξ⊥ := {v ∈ RN
: v · ξ = 0}.

Definition 4 (kinetic formulation). We say that a measurable vector field u satisfies the kinetic formulation
if the following equation holds true:

v · ∇xχ( · , ξ)= 0 distributionally in � for every ξ ∈ SN−1 and v ∈ ξ⊥. (8)

Roughly speaking, (8) means that ∇xχ( · , ξ) is a distribution pointing in direction ±ξ . Note that the
kinetic formulation (8) only carries out the information of the direction of the vector field u (i.e., it gives
no information about the Euclidean norm of u). Imposing the unit-length constraint, u will satisfy a
similar averaging formula (6) which justifies that the curl-free constraint ∇ × u = 0 is incorporated in the
kinetic formulation (8).

Proposition 5. Let N ≥ 2, �⊂RN be an open set and u :�→ RN be Lebesgue measurable with |u| = 1
a.e. in �. Then

u(x)= 1
VN−1

∫
SN−1

ξχ(x, ξ) dHN−1(ξ) for a.e. x ∈�, (9)
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where VN−1 is the volume of the unit ball in RN−1. Moreover, if u satisfies the kinetic formulation (8)
then ∇ × u = 0 distributionally in �.

Remark 6. We highlight that Proposition 1 is false in dimension N ≥ 3; i.e., there are smooth curl-free
vector fields with values into the unit sphere SN−1 that do not satisfy the kinetic formulation (8). For
example, in dimension N = 3, considering the vortex-line vector field

u0(x)=
(x1, x2, 0)√

x2
1 + x2

2

in �= {x=(x1, x2, x3) ∈ R3
: x2 > 1},

then u0 is smooth in � and satisfies (3). However, (8) fails. Indeed, let ξ = 1
√

2
(1, 0, 1). Then u0(x) ·ξ = 0

for x ∈� is equivalent to x1 = 0 and therefore,

∇xχ( · , ξ)= e1H2 x {x ∈� : x1= 0},

where e1 = (1, 0, 0). Now, taking v= 1
√

2
(−1, 0, 1), we have v ·ξ = 0 (i.e., v ∈ ξ⊥) and v ·∇xχ( · , ξ) 6= 0

in D ′(�).

As Remark 6 has already revealed, the kinetic equation (8) in dimension N ≥ 3 plays a different role
than in dimension N = 2 because the gradient ∇χ( · , ξ) is expected to concentrate on hypersurfaces (not
on the line characteristics of u). In fact, the geometric interpretation of (8) can be regarded in terms of the
stream function ψ of a nonconstant vector field u = ∇ψ : the level sets of ψ are expected to be pieces of
spheres of codimension 1 where the characteristics of u represent the normal directions to these spheres.

Theorem 7. Let N ≥ 3, �⊂RN be an open set and ψ :�→ R be a smooth stream function such that
u =∇ψ satisfies the kinetic formulation (8). Assume |u| never vanishes on a level set {x ∈� : ψ(x)= α}
for some α ∈ R and let S be a connected component of {ψ = α}. Then S is locally a totally umbilical
hypersurface, that is, either a piece of an (N−1)-sphere or a piece of a hyperplane.

Note that Theorem 7 fails in dimension N = 2: a level set of a smooth stream function ψ of u =∇ψ
satisfying (3) (and therefore, u satisfies the kinetic formulation (5) by Proposition 1) does not have, in
general, constant curvature.4

2. Main results

Our main result shows that the kinetic formulation (8) is a characterization of the vortex vector field u? in
dimension N ≥ 3.

Theorem 8. Let N ≥ 3, �⊂RN be a connected open set and u :�→ RN be a nonconstant Lebesgue-
measurable vector field satisfying |u| = 1 a.e. in� together with the kinetic equation (8). Then u coincides
with the vortex vector field u? or −u? up to a translation.

Note that in dimension N = 2, this result is true for the domain � = R2, but it is in general false
for other domains � where there exist nonconstant smooth vector fields u in � different than vortex

4If 0 ⊂ R2 is a smooth curve of nonconstant curvature, then one takes ψ to be the distance function to 0 in a small
neighborhood� of 0 (with the convention that 0 is withdrawn from that neighborhood, i.e., 0∩�=∅, so that ψ is smooth in�).
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vector fields that satisfy (3) and thus, (5) (by Proposition 1). The main difference in dimension N ≥ 3
is the following: if u is a smooth vector field with (3) that is neither constant nor a vortex vector field,
then the kinetic formulation (8) doesn’t hold for u (see Remark 6). Hence, in dimension N ≥ 3, the
zero-energy states of Eε defined in (7) do not satisfy in general the kinetic equation (8). Therefore, the
kinetic formulation (8) is more rigid in dimension N ≥ 3 since it selects only the vortex vector fields, as
they correspond to smooth solutions of the eikonal equation with level sets of constant sectional curvature
(by Theorem 7).

Let us explain the strategy of the proof of Theorem 8. The key point relies on a relation of order of the
level sets of the stream function associated to u: for every two Lebesgue points x, y ∈� of u such that
the segment [x, y] lies in � and for every direction ξ ∈ SN−1 orthogonal to x − y, one has

u(x) · ξ > 0 =⇒ u(y) · ξ ≥ 0.

The next step consists in defining the trace of u on each segment 6 ⊂�; more precisely, similar to the
procedure of [Jabin, Otto, and Perthame 2002], there exists a trace ũ ∈ L∞(6,SN−1) of u such that
u(P) = ũ(P) for each Lebesgue point P ∈ 6 of u. Moreover, if the trace ũ of u is collinear with the
segment 6 at some Lebesgue point, then ũ is H1-almost everywhere collinear with 6 (which coincides
with the classical principle of characteristics for smooth vector fields u). The final step consists in proving
that every two characteristics are coplanar. Then one concludes by the following geometrical fact specific
to dimension N ≥ 3:

Proposition 9. Let N ≥ 3 and D be a set of lines in RN such that every two lines of D are coplanar,
but D is not planar (i.e., there is no 2-dimensional plane containing D). Then either all lines of D are
collinear, or all lines of D pass through a same point (that is a vortex point).

In view of Theorem 8, it is natural to ask if one can characterize other types of unit-length curl-free
vector fields u by weakening the kinetic formulation (8), in particular, vector fields having a vortex-line
singularity. In dimension N ≥ 3, the prototype of a vortex-line vector field is given by

u0(x ′, xN )=∇|x ′|,

where x=(x ′, xN ) and x ′=(x1, . . . , xN−1); clearly, u0 is smooth away from the vortex-line {x∈RN
: x ′=0}

where (3) holds true. Defining

E := {ξ ∈ SN−1
: ξN= 0} = SN−2

×{0},

using the notation (4), we have that u0 satisfies the following kinetic formulation in �= RN :

∀ξ ∈ E, ∀v ∈ ξ⊥, v · ∇xχ( · , ξ)= 0 in D ′(�). (10)

Note that (10) is a weakened form of (8): the quantity v · ∇xχ( · , ξ) vanishes for directions ξ ∈ E (and
v ∈ ξ⊥) and fails to vanish for HN−1-a.e. direction ξ ∈ SN−1. As opposed to (8) (in view of (9)), the
kinetic formulation (10) does not force a unit-length vector field u to be curl-free; it only implies that

∇
′
×

u′

|u′|
= 0 in {|u′| 6=0} = {u 6= ± eN },
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where eN = (0, . . . , 0, 1), u′ = (u1, . . . , uN−1) and ∇ ′ = (∂1, . . . , ∂N−1). Since we are looking for a
characterization of vortex-line vector fields (that are in particular curl-free), we will impose that

∂kuN = ∂N uk in � for k = 1, . . . , N − 1. (11)

We will prove the following result:

Theorem 10. Let N ≥ 4, �⊂RN be an open set and u :�→ RN be a Lebesgue-measurable vector field
satisfying |u|=1 a.e. on� together with (10) and (11). Then in every ball included in {x ∈� :u(x) 6=±eN },
there exists a stream function ψ = ψ(α, β) solving the eikonal equation in dimension 2 such that

u(x)=∇x [ψ(α, β)],

where

(1) either α = |x ′− P ′| and β = xN for some point P ′ ∈ RN−1;

(2) or α = w′ · x ′ and β = xN for some vector w′ ∈ SN−2.

Therefore, the weakened kinetic formulation (10), together with (11), is not enough to select vortex-
line vector fields which correspond to the stream function ψ(α, β) = ±α in case (1) of Theorem 10.
Similar results to Theorem 10 hold for similar kinetic formulations corresponding to vector fields having
vortex-sheet singularities of dimension k in RN with N ≥ k+ 3.

The outline of this paper is as follows: in Section 3, we characterize the level sets of smooth stream
functions associated to vector fields that satisfy the kinetic formulation (8). In particular, we prove
Proposition 1 and Theorem 7. Section 4 is devoted to proving fine properties of Lebesgue points of u needed
in Section 5, where the notion of the trace on lines for a vector field u satisfying (8) is defined. Section 6
is the core of this paper: using this notion of trace and the geometric arguments of Proposition 9, we prove
our main result in Theorem 8. Section 7 deals with the study of the weakened kinetic formulation (10).

3. Level sets of the stream function

This section is devoted to the study of the level sets of smooth stream functions ψ associated to vector
fields u =∇ψ satisfying (8). We start by proving that |∇ψ | is locally constant on each level set of ψ .

Lemma 11. Let N ≥ 2, �⊂RN be an open set and ψ :�→ R be a smooth stream function such that
u =∇ψ satisfies the kinetic formulation (8). Assume |u| never vanishes on a level set {x ∈� : ψ(x)= α}
for some α∈R and let S be a connected component of {ψ=α}. Then |u| is constant on S. Moreover, there
exists a neighborhood ω of S, a smooth solution ψ̃ : ω→R of the eikonal equation and a diffeomorphism
t 7→ F(t) such that ψ = F(ψ̃) in ω (in particular, ∇ψ̃ satisfies (8)).

Proof. Since |u| 6= 0 on S and u is smooth in �, we can define

v =
u
|u|

in a neighborhood of S.

For simplicity of notation, we suppose that � is this neighborhood, i.e., |u| 6= 0 in �. Then v satisfies
(8) because u satisfies it, too; since v is smooth in �, Proposition 5 implies ∇ × v = 0 in �. (The proof



736 PIERRE BOCHARD AND RADU IGNAT

of Proposition 5 is independent of Lemma 11; we will admit it here and prove it later in Section 4.) As
a consequence, in any simply connected domain ω ⊂�, the Poincaré lemma yields the existence of a
smooth function ψ̃ such that v = u/|u| = ∇ψ̃ in ω, i.e.,

∇ψ = u = |u|v = |u|∇ψ̃ in ω.

Therefore, ψ and ψ̃ have the same level sets in ω. Without loss of generality, we may assume that ψ̃ = 0
on ω∩S. Now, for every P ′ ∈ ω∩S, we consider the flow associated to v,{

Ẋ(P ′, t)=∇ψ̃(X (P ′, t)),
X (P ′, 0)= P ′.

(12)

Call IP ′ the maximal interval where the solution X (P ′, · ) exists. Obviously, the flow is unique and
smooth, satisfying

Ẍ(P ′, t)=∇2ψ̃(X) · Ẋ =∇2ψ̃(X) · ∇ψ̃(X)= 0 in IP ′

because ∇2ψ̃ is a symmetric matrix and |∇ψ̃ | = 1 in ω. Consequently, Ẋ(P ′, · ) is constant in IP ′ so that

∇ψ̃(X (P ′, t))=∇ψ̃(P ′), d
dt
[ψ̃(X (P ′, t))] = 1, X (P ′, t)= P ′+ t∇ψ̃(P ′).

Therefore, since ψ̃ = 0 on ω∩S, we have

ψ̃(X (P ′, t))= t for all P ′∈ ω∩S and t ∈ IP ′ .

Identifying the level sets of ψ̃ (and of ψ , too) using the flow, i.e., {ψ̃=t} = {X (P ′, t) : P ′∈ ω∩S}, we
can define

F(t) := ψ(X (P ′, t)) for P ′∈ ω∩S, t ∈ IP ′ .

The function F is a diffeomorphism: F is smooth (because ψ and X are smooth) and we have

d
dt

F(t)=∇ψ(X (P ′, t)) · Ẋ(P ′, t)
(12)
= ∇ψ(X (P ′, t)) ·

∇ψ

|∇ψ |
(X (P ′, t))= |u|(X (P ′, t)) 6= 0.

In particular, |u| is constant on {ψ̃= 0} = {ψ=F(0)} =ω∩S. Since ω was arbitrarily chosen, we deduce
that |u| is locally constant on S; because S is connected, it follows that |u| is constant on S. Since the
flow {X (P ′, t) : P ′∈ S, t ∈ IP ′} covers a neighborhood of S, the last statement of the lemma follows. �

3.1. The case of dimension N = 2. In the special case of dimension N = 2, we start by proving that
every smooth curl-free vector field of unit length satisfies the kinetic formulation (5). This result can be
found already in [DeSimone, Müller, Kohn and Otto 2001; Jabin and Perthame 2001]. For completeness,
we will present two easy and self-contained proofs. The first one is based on the geometry of the flow (2)
(as heuristically described in Section 1), while the second proof is based on the concept of entropy
introduced in [DeSimone, Müller, Kohn and Otto 2001].

Proof of Proposition 1: first method. We can assume that ξ = e1 and ξ⊥ = e2 (otherwise, one considers
a rotation R ∈ SO(2) such that e1 = Rξ and ũ(x) := Ru(R−1x) in a neighborhood of a point x ∈ �).
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Naturally, � can be written as a countable union of squares whose edges are parallel with e1 and e2.
Therefore, using a partition of unity, it is enough to prove the statement for �= (−1, 1)2:

∀ϕ ∈ C∞c (�), 0=
∫
�

ϕ ξ⊥ · ∇xχ(x, ξ) dx
ξ=e1
=

∫
�

ϕ ∂2χ(x, e1) dx =−
∫
�∩{u1>0}

∂2ϕ dx .

For that, we consider the flow (2) and by the proof of Lemma 11, we have, for every x ∈�, that {X (t, x)}t
is a straight line given by X (t, x)= x + tu(x) and u(X (t, x))= u(x) for all t . Since u is smooth, there
is no crossing between two characteristics in �. We claim that

�∩ {u1 > 0} =
⊔
k∈K

Ak,

where {Ak}k∈K is a (at most) countable set of pairwise disjoint rectangles of type (ak, bk)× (−1, 1)⊂
�= (−1, 1)2. Note first that �∩ {u1 = 0} is the intersection of � by vertical lines. Indeed, if u1(x)= 0,
then u(x)‖ e2. By the characteristic method, for all t , we have u1(x + tu(x)) = 0 and u1 vanishes on
the vertical line passing through x . Now {x1 ∈ (−1, 1) : u1(x1, 0) = 0}c is an open set in (−1, 1) and
therefore, we can write {

x1∈(−1, 1) : u1(x1, 0)= 0
}c
=

⊔
k∈K̃

(ak, bk),

where K̃ is at most countable. For k ∈ K̃ , we define Ak := (ak, bk)× (−1, 1). By continuity, u1 is
either positive or negative on Ak . Defining K := {k ∈ K̃ : u1 > 0 on Ak}, the claim is proved. Now, for
ϕ ∈ C∞c (�), ∫

�∩{u1>0}
∂2ϕ =

∑
k

∫
Ak

∂2ϕ =
∑

k

∫ bk

ak

∫ 1

−1
∂2ϕ = 0,

because ∂2ϕ can be seen as a signed Radon measure for ϕ ∈ C∞c (�) and the proposition is proved. �

Proof of Proposition 1: second method. The following proof links the kinetic formulation (5) with the
theory of entropy solutions for scalar conservation laws (see, e.g., [DeSimone, Müller, Kohn and Otto
2001]). Indeed, if u is a smooth vector field satisfying (3), then formally, u1 =−h(u2) := ±

√
1− u2

2 so
that ∇ × u = 0 can be rewritten as

∂1u2+ ∂2[h(u2)] = 0; (13)

thus, u2 can be formally interpreted as a solution of the above scalar conservation law in the variables
(time, space)= (x1, x2). Based on the concept of entropy solution of (13) introduced via the pairs (entropy,
entropy-flux), the following applications (called “elementary entropies”) were used in [DeSimone, Müller,
Kohn and Otto 2001]. More precisely, for every ξ ∈ S1, the map 8ξ : S1

→ R2 is defined as

for z ∈ S1, 8ξ (z)=
{
ξ⊥ for z · ξ > 0,
0 for z · ξ ≤ 0.

Then the kinetic formulation (5) can be written as

∇ ·
[
8ξ (u)

]
= 0 distributionally in�. (14)
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In order to prove (14), we will approximate 8ξ by a sequence of smooth maps {8k : S
1
→ R2

} such
that {8k} is uniformly bounded, limk 8k(z)=8ξ (z) for every z ∈ S1 and 8k satisfies (14) for every k.
Following the ideas in [DeSimone, Müller, Kohn and Otto 2001] (see also [Ignat and Merlet 2012]), this
smoothing result comes from the following observation: there exists a (unique) 2π-periodic piecewise
C1 function ϕ : R→ R associated to 8ξ via the equation

8ξ (z)=−ϕ′(θ)z+ϕ(θ)z⊥ for every z = eiθ
∈ S1. (15)

In fact, ϕ is given by

ϕ(θ)=8ξ (z) · z⊥ = ξ · z1{z·ξ>0} = cos(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for z = eiθ, θ ∈ (−π + θ0, π + θ0),

where ξ = eiθ0 ∈ S1 with θ0 ∈ (−π, π]. In (15), the distributional derivative ϕ′ is given by

ϕ′(θ)=− sin(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for θ ∈ (−π + θ0, π + θ0).

Now, one regularizes ϕ by 2π-periodic functions ϕk ∈ C∞(R) that are uniformly bounded in W 1,∞(R)

with limk ϕk(θ) = ϕ(θ) and limk ϕ
′

k(θ) = ϕ
′(θ) for every θ ∈ R. Then we define 8k as in (15) for the

functions ϕk :

8k(z)=−ϕ′k(θ)z+ϕk(θ)z⊥ for z = eiθ
∈ S1.

Let us now check that {8k}k are indeed the desired (smooth) approximating maps of 8ξ. For that, first,
note that differentiating the above equation defining 8k , one obtains

∂8k

∂θ
(z) · z⊥ = 0 for every z = eiθ

∈ S1. (16)

Next, we prove that 8k satisfies (14). Indeed, we can locally write u = ei2 in every ball B ⊂� for some
smooth lifting 2 : B→ R that satisfies

∇2 · u =∇ × u = 0 in B.

This means that ∇2= λu⊥ in B for some smooth function λ : B→ R. Therefore, it follows that

∇ · [8k(u)] =
∂8k

∂θ
(ei2) · ∇2= λ

∂8k

∂θ
(u) · u⊥

(16)
= 0 in B.

Passing to limit k→∞, the dominated convergence theorem yields∫
B
8ξ (u) · ∇ζ dx = 0 for every ζ ∈ C∞c (B).

The conclusion is now straightforward. �

Note that another interest of this second method is that it can be adapted to vector fields u ∈W 1/p,p

for p ∈ [1, 3]. For such vector fields, there is a priori no trace of u on a segment, so the flow (2) does not
have a proper meaning anymore; see [Ignat 2012b; De Lellis and Ignat 2015] for more details.
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3.2. The case of dimension N ≥ 3. The aim of this subsection is to prove Theorem 7. We divide the
proof in several steps, each being stated as a lemma.

Lemma 12. Let�⊂RN be an open set and u :�→RN be a smooth vector field satisfying (8). We define

�̃ :=

{
x ∈� : u(x) 6= 0, ∇

(
u
|u|

)
(x) 6= 0

}
and for every x ∈ �̃,

Sx := u(x)⊥ ∩SN−1
=
{
ξ ∈ SN−1

: u(x) · ξ = 0
}
≈ SN−2.

Then we have for all x ∈ �̃ and for HN−2-a.e. ξ ∈ Sx that the set

{y ∈ �̃ : u(y) · ξ = 0} = �̃∩ ∂{u · ξ > 0}

is a hyperplane around x that is oriented by the normal vector ξ . Moreover,

∇xχ( · , ξ)=±ξHN−1 x ∂{u · ξ > 0} locally around x . (17)

Proof. As in the proof of Lemma 11, we set v = u/|u| on �̃. Then v is a smooth unit-length vector field
in �̃ that satisfies (8) (because u satisfies it, too) and by Proposition 5, we have that v is curl-free in �̃. Let
x ∈ �̃; in particular, ∇v(x) 6= 0. First, we show that {y ∈ �̃ : u(y) · ξ = 0} is a smooth (N−1)-manifold
around x . Since v is curl-free, we know that ∇v(x)= (∂jvi (x))i, j is symmetric. By differentiating the
relation |v(x)| = 1, it follows that

∇v(x)T v(x)=∇v(x)v(x)= 0,

which means v(x) ∈ Ker∇v(x). We will prove that

HN−2(Sx ∩Ker∇v(x))= 0.

Assume by contradiction that Sx ∩Ker∇v(x) has positive HN−2-measure. Since Ker∇v(x) is a linear
space, we have Sx ⊂ Ker∇v(x), that is, ∇v(x)ξ = 0 for all ξ ∈ Sx . Moreover, since v(x) ∈ Ker∇v(x)
and Sx ⊂ v(x)⊥, it follows that ∇v(x) = 0, which is a contradiction with the assumption ∇v(x) 6= 0.
Therefore, ∇v(x)ξ 6= 0 for HN−2-a.e. ξ ∈ Sx and {y ∈ �̃ : v(y) · ξ = 0} = {y ∈ �̃ : u(y) · ξ = 0} is a
smooth (N−1)-manifold around x .

It remains to prove that this manifold is a piece of hyperplane oriented by ξ where (17) holds true. For
that, let ϕ ∈ C∞c (�̃,RN ) be supported in a ball B ⊂ �̃ centered at x . By the Gauss theorem, we have

−
〈
∇xχ( · , ξ), ϕ

〉
=

∫
B
∇ ·ϕ(y)χ(y, ξ) dy =

∫
{y∈B:u(y)·ξ>0}

∇ ·ϕ dy =
∫

B∩∂{u·ξ>0}
ϕ · ν dHN−1(y),

where ν is the unit outer normal vector to the (N−1)-manifold ∂{u(y) · ξ > 0}. This proves that locally
around x , we have

∇xχ(x, ξ)=−νHN−1 x
(
B ∩ ∂{u · ξ > 0}

)
.

Because of (8), we know that ∇xχ(x, ξ) and ξ are collinear. Since ν is smooth on B ∩ ∂{u · ξ > 0}, this
implies ν = ξ or ν =−ξ on B ∩ ∂{u · ξ > 0}. The conclusion is now straightforward. �
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We now state the following result, which is the key point in proving Theorem 7.

Lemma 13. Under the hypotheses of Theorem 7, every point x ∈ S is an umbilical point; i.e., there exists
λ(x) ∈ R such that

Du(x)= λ(x)Id : TxS→ RN−1,

where u is proportional to the Gauss map on S, TxS is the tangent plane to the hypersurface S at x and
Id is the identity matrix.

Proof. Recall that |u| is constant on S by Lemma 11 so that u/|u| is the normal vector (i.e., the Gauss
map) at the hypersurface S. Therefore,

D
(

u
|u|

∣∣∣∣
S

)
=

1
|u|

D(u|S) in S,

where D(u|S) is the differential of u restricted to S as a map with values into the sphere SN−1 (up to
the multiplicative constant |u|). As in the proofs of Lemmas 11 and 12, we may assume that u never
vanishes in � and set v = u/|u| in �. Then v is a smooth unit-length vector field in � that satisfies (8)
and by Proposition 5, v is curl-free so that locally v = ∇ψ̃ for a smooth stream function ψ̃ . Since
∇ψ = u = |u|∇ψ̃ , we know that ψ and ψ̃ have the same level sets; in particular, S is a level set of ψ̃ .
Therefore, replacing u by v, we may assume in the following that

|u| = 1 in �.

Let x ∈ S. We want to show that x is an umbilical point of S. This is clear if ∇u(x)= 0. Therefore, we
assume in the following that x ∈ �̃∩S, as defined in Lemma 12; i.e.,

∇u(x) 6= 0.

Since (9) holds for the unit-length vector field u, by differentiating (9), we obtain

∇u(x)= 1
VN−1

∫
SN−1

ξ ⊗∇xχ(x, ξ),

where VN−1 is the volume of the unit ball in RN−1. The above integrand is to be understood as an
absolutely continuous measure with respect to the Hausdorff HN−2 measure concentrated on the set Sx

(defined at Lemma 12). For that, we check first that the support of the integrand lies on Sx . Indeed, if
ξ ∈ SN−1 with u(x) · ξ 6= 0, then ∇xχ( · , ξ) = 0 in the open set {u · ξ 6= 0} around x . Therefore, the
integrand has support on the set ξ ∈Sx , where (17) holds true for HN−2-a.e. ξ ∈Sx and the density of the
measure is equal to ±ξ ⊗ ξHN−2 xSx . Since Sx ⊂ u(x)⊥ = TxS, the density ξ ⊗ ξ with ξ ∈ Sx already
identifies ∇u(x)≡ Du(x). Next we compute this quantity by exploring the sign of the density ±ξ ⊗ ξ :

Case N = 3. We show that there are at most two nonzero vectors ±ξ0 ∈ Sx ≈ S1 such that ∇u(x)ξ0 = 0.
Assume by contradiction that there are more than two vectors as above; i.e., there exists another nonzero
vector ξ̃0 6=±ξ0 in Sx such that∇u(x)ξ0=∇u(x)ξ̃0=0. Because of |u|=1, we know that∇u(x)u(x)=0.
Since the set {u(x), ξ0, ξ̃0} spans R3, we have ∇u(x) = 0, which contradicts the hypothesis x ∈ �̃.
Therefore, ∇u(x)ξ 6= 0 for every ξ ∈Sx\{±ξ0} (or for every ξ ∈Sx if ξ0 does not exist) and by Lemma 12,
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∂{u(y)·ξ > 0} is a smooth surface around x oriented by ξ . Let C1 and C2 be the two connected components
of Sx\ {±ξ0} (with the convention that C1 = C2 = Sx in the case ∇u(x)ξ 6= 0 for every ξ ∈ Sx ). For
j = 1, 2, we associate to a point ξ ∈ Cj the unit outer normal vector field ν(ξ) ∈ {±ξ} to the plane
∂{u · ξ > 0} around x . Since the map ξ ∈ Cj → ν(ξ) is smooth (by the implicit function theorem) and Cj

is connected, we deduce that ν is constant on Cj . Thus it follows that

π∇u(x)= γ1

∫
C1

ξ ⊗ ξ dξ + γ2

∫
C2

ξ ⊗ ξ dξ,

with V2 = π and γ1,2 ∈ {±1} (with the convention that γ1 = γ2 =±1/2 if C1 = C2 = Sx ). It remains to
show that

∫
Cj
ξ ⊗ ξ dξ is proportional to the identity matrix Id, j = 1, 2. Up to a rotation, we can suppose

that u(x)= e3 and C1 = {ξ ∈ S1
×{0} : ξ2 > 0} ≈ {(cos θ, sin θ) : θ ∈ (0, π)}. We have∫

C1

ξ ⊗ ξ dξ ≈
∫ π

0

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
dθ = π

2
Id

(the conclusion follows similarly if C1 = C2 = Sx ).

Case N > 3. Let C = Ker∇u(x)∩Sx . We know that u(x) ∈ Ker∇u(x) and u(x) is orthogonal to Sx ,
which is isomorphic to SN−2. Since ∇u(x) 6= 0 (i.e., the dimension of Ker∇u(x) is at most N − 1), we
have two situations (as in the case N = 3):

• Situation 1: dim Ker∇u(x)= N − 1, which leads to C isomorphic to SN−3. In this situation, Sx\C is
the partition of two connected sets C1 and C2 that are isomorphic to the half-sphere

SN−2
+
= {ξ=(ξ1, . . . , ξN−1) ∈ SN−2

: ξ1 > 0}.

The same argument as in the case N = 3 shows that the sign of the unit outer normal field ν(ξ) ∈ {±ξ} to
the hyperplane ∂{u · ξ > 0} is constant when ξ covers Cj , j = 1, 2, so that

VN−1∇u(x)= γ1

∫
C1

ξ ⊗ ξ dξ + γ2

∫
C2

ξ ⊗ ξ dξ,

with γ1, γ2 ∈ {±1}.

• Situation 2: dim Ker∇u(x) ≤ N − 2, which leads to the manifold C of dimension ≤ N − 4. In other
words, Sx\C is connected and covers a.e. point of Sx . The above formula holds for C1 = C2 = Sx and
γ1 = γ2 =±1/2.

We now compute ∇u(x). For that, we may assume (up to a rotation) that u(x)= eN and C1 = SN−2
+ .

Since SN−2
+ is invariant under the change of coordinate ξd 7→ −ξd for some 2≤ d ≤ N − 1, we have for

every 1≤ j ≤ N − 1 with j 6= d ,∫
SN−2
+

ξjξd dξ =−
∫

SN−2
+

ξjξd dξ = 0,

leading to ∫
SN−2
+

ξ ⊗ ξ dξ =
∫

SN−2
+

ξ 2
1 0
. . .

0 ξ 2
N−1

 dξ =
HN−2(SN−2)

2(N − 1)
Id. �
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Proof of Theorem 7. By Lemma 13, every point in S is an umbilical point. Such a hypersurface is called
totally umbilical. A classical result in differential geometry states that a totally umbilical hypersurface
is either a piece of an (N−1)-sphere or a piece of a hyperplane (see, e.g., [Hicks 1965, Chapter 2,
page 36]). �

We have the following consequence of Lemma 11 and Theorem 8 (whose proof is independent of this
section):

Corollary 14. Under the hypotheses of Theorem 7, there exists a neighborhood ω of S and a diffeomor-
phism t→ F(t) such that either ψ = F(|x − P|) for every x ∈ ω for a point P ∈ RN, or ψ = F(x · ξ) for
every x ∈ ω for a vector ξ ∈ SN−1.

4. Several properties on the set of Lebesgue points

Let � ⊂ RN be an open set and u ∈ L1
loc(�,RN ). Recall that x0 ∈ � is a Lebesgue point of u if there

exists a vector u0 ∈ RN such that

lim
r→0
−

∫
Br (x0)

|u(x)− u0| dx = 0. (18)

In this case, we write u(x0)= u0, which is the limit of the average −
∫

of u on the ball Br (x0) as r→ 0.
We denote by Leb⊂� the set of Lebesgue points of u. It is well known that HN (� \Leb)= 0 and one
can replace the ball Br (x0) by the cube x0+ (−r, r)N in the definition (18) to recover the same set of
Lebesgue points.

Proof of Proposition 5. We start by proving (9) for a fixed vector u(x) ∈ SN−1. By rotating the axes if
necessary, we may assume that u(x)= eN . Then we compute∫

SN−1
ξχ(x, ξ) dHN−1(ξ)=

∫
SN−1∩{ξN>0}

ξ dHN−1(ξ)=

(∫
SN−1∩{ξN>0}

ξN dHN−1(ξ)

)
eN

because the integrand is odd in the variables ξj for j = 1, . . . , N − 1. Defining ξ ′ := (ξ1, . . . , ξN−1), the
half-sphere SN−1

∩ {ξN > 0} is the graph of the map

ξ ′ ∈ B N−1
7→ ξN =

√
1− |ξ ′|2

so that we have∫
SN−1∩{ξN>0}

ξN dHN−1(ξ)=

∫
B N−1

√
1− |ξ ′|2

dξ ′√
1− |ξ ′|2

=HN−1(B N−1)= VN−1.

The second statement naturally reduces (by a slicing argument) to the case of dimension N = 2. In that
case, for any ϕ ∈ C∞c (�), we have ∇ × u = ∂1u2− ∂2u1 and∫

�

ϕ∇ × u dx = −
∫
�

∇
⊥ϕ · u dx

(6)
=

1
2

∫
�

∫
S1
∇ϕ · ξ⊥χ(x, ξ) dH1(ξ) dx = 1

2

∫
S1

dH1(ξ)

∫
�

∇ϕ · ξ⊥χ(x, ξ) dx
(5)
= 0. �
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The following lemma yields the relation between the Lebesgue points of u and Lebesgue points of the
functions {χ( · , ξ)}ξ∈SN−1 defined in (4).

Lemma 15. Let �⊂ RN be an open set and u ∈ L1
loc(�,RN ).

(i) If |u| = 1 a.e. in � and x0 is a Lebesgue point of χ( · , ξ) for almost every ξ ∈ SN−1, then x0 is a
Lebesgue point of u and (9) holds at x0.

(ii) Let x0 be a Lebesgue point of u and ξ ∈SN−1. If u(x0)·ξ 6= 0, then x0 is a Lebesgue point of χ( · , ξ).
Conversely, if x0 is a Lebesgue point of χ( · , ξ) with χ(x0, ξ) = 1 (resp. = 0), then u(x0) · ξ ≥ 0
(resp. ≤ 0).

Proof. To prove (i), we apply Proposition 5. Indeed, if x0 is a Lebesgue point of χ( · , ξ) for a.e. ξ ∈SN−1,
then Fubini’s theorem implies

−

∫
Br (x0)

∣∣∣∣u(x)− 1
VN−1

∫
SN−1

ξχ(x0, ξ) dHN−1(ξ)

∣∣∣∣ dx

(9)
≤

1
VN−1

−

∫
Br (x0)

∫
SN−1

∣∣ξ(χ(x, ξ)−χ(x0, ξ)
)∣∣ dHN−1(ξ) dx

≤
1

VN−1

∫
SN−1

(
−

∫
Br (x0)

|χ(x, ξ)−χ(x0, ξ)| dx
)

dHN−1(ξ) r→0
−−→ 0,

where we used the dominated convergence theorem.
Next we prove (ii). We treat the case u(x0) · ξ > 0. For that, we have∫

Br (x0)

∣∣χ(x,ξ)−1
∣∣dx =

1
u(x0)·ξ

∫
Br (x0)∩{u·ξ≤0}

u(x0)·ξ dx

≤
1

u(x0)·ξ

∫
Br (x0)∩{u·ξ≤0}

(u(x0)·ξ−u(x)·ξ)︸ ︷︷ ︸
≥u(x0)·ξ>0

dx ≤
1

u(x0)·ξ

∫
Br (x0)

|u(x)−u(x0)|dx .

Since x0 is a Lebesgue point of u, it follows that x0 is a Lebesgue point for χ( · , ξ) with χ(x0, ξ)= 1.
The case u(x0) · ξ < 0 can be shown similarly and we obtain χ(x0, ξ)= 0. The last statement is a direct
consequence of the above lines (using a contradiction argument). �

Remark 16. (a) Note that the condition u(x0)·ξ 6= 0 is essential in Lemma 15(ii). Indeed, if one considers
the vortex vector field u(x)= x/|x | for x ∈ RN

\{0}, then for every ξ ∈ SN−1, any point x0 ∈ ξ
⊥
\{0} is a

Lebesgue point of u (because u is smooth around x0) and satisfies

u(x0) · ξ = 0,

but x0 is not a Lebesgue point of χ( · , ξ) because

−

∫
Br (x0)

∣∣∣∣χ(x, ξ)− −∫
Br (x0)

χ( · , ξ)

∣∣∣∣ dx = −
∫

Br (x0)

1
2 dx 9 0 as r→ 0,

where we used that

−

∫
Br (x0)

χ(x, ξ) dx =
HN

(
{x ∈ Br (x0) : x · ξ > 0}

)
HN (Br (x0))

x=y+x0
=

HN
(
{y ∈ Br (0) : y · ξ > 0}

)
HN (Br (0))

=
1
2
.
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(b) Note that in Lemma 15(ii), one cannot conclude in general that u(x0) ·ξ > 0 provided that χ(x0, ξ)= 1.
Indeed, consider for example ξ = eN , u(x) · ξ = uN (x) := |x | for x ∈RN and set x0= 0; then χ( · , ξ)= 1
in RN

\{x0}, x0 is a Lebesgue point of uN and χ( · , ξ) with χ(x0, ξ)= 1, but uN (x0)= 0.

We now prove one of the key tools in the proof of Theorem 8, which mimics the relation of the ordering
of level sets of a stream function when (8) holds true. It is a generalization of Proposition 3.1 in [Jabin,
Otto, and Perthame 2002] to the case of dimension N :

Proposition 17 (ordering). Let N ≥ 2, �⊂RN be an open set and u ∈ L1
loc(�,RN ) satisfy the kinetic

formulation (8). Assume that y, z ∈ Leb are two different Lebesgue points of u such that the closed
segment [yz] is included in �. Then for every direction ξ ∈ SN−1 with ξ ∈ (z− y)⊥, we have

u(y) · ξ > 0 (resp. < 0) =⇒ u(z) · ξ ≥ 0 (resp. ≤ 0); (19)

moreover, y and z are Lebesgue points of χ( · , ξ) and χ(y, ξ)= χ(z, ξ). As a consequence, if u 6= 0 a.e.
in �, then for a.e. y ∈�, HN−1-a.e. ξ ∈SN−1 and HN−1-a.e. v∈ ξ⊥ with the segment [y, y+v] included
in �, we have that y and y+ v are Lebesgue points of u and

χ(y, ξ)= χ(y+ v, ξ). (20)

Proof. First, we consider the case u(y) · ξ > 0. By Lemma 15(ii), y is a Lebesgue point of χ( · , ξ) and
χ(y, ξ)= 1. Let {

ρε( · )=
1
εN ρ

(
·

ε

)}
ε>0

be a standard family of mollifiers, where ρ is a nonnegative radial smooth function having as support the
unit ball supp ρ = B1 ⊂ RN and

∫
B1
ρ dx = 1. Set the convoluted function

χε := ρε ∗χ( · , ξ)

in a neighborhood ω ⊂� of the segment [yz] for ε > 0 sufficiently small. Then χε is smooth in ω and
for every Lebesgue point x ∈ ω of χ( · , ξ) we have χε(x)→ χ(x, ξ) as ε→ 0 because

|χε(x)−χ(x, ξ)| =
∣∣∣∣∫

Bε(0)

(
χ(x − x̃, ξ)−χ(x, ξ)

)
ρε(x̃) dx̃

∣∣∣∣
≤

sup ρ
εN

∫
Bε(0)

∣∣χ(x − x̃, ξ)−χ(x, ξ)
∣∣ dx̃

≤ C −
∫

Bε(x)

∣∣χ(ỹ, ξ)−χ(x, ξ)∣∣ d ỹ ε→0
−−→ 0.

In particular, limε→0 χε(y)= χ(y, ξ)= 1. Let v = z− y. We will show that χ(y+ v, ξ)= 1. For that,
we have v ∈ ξ⊥ and

v · ∇xχε = v · ∇xχ( · , ξ) ∗ ρε
(8)
= 0 in ω.

Then

χε(y+ v)−χε(y)=
∫ 1

0
v · ∇xχε(y+ tv) dt = 0
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so that

lim
ε→0

χε(z)= lim
ε→0

χε(y)= χ(y, ξ)= 1.

This implies that u(z) ·ξ ≥ 0. Assume by contradiction that u(z) ·ξ < 0. By Lemma 15(ii), z is a Lebesgue
point of χ( · , ξ) with χ(z, ξ)= 0 so that

lim
ε→0

χε(z)= χ(z, ξ)= 0,

which contradicts the above statement. We prove now the following:

Claim. If χε(z)→ 1 as ε→ 0, then z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 1.

Proof of Claim. Let {εk} be a sequence converging to 0 as k →∞. For k large enough, we define
fk : B1→{0, 1} by fk(x)= χ(z−εk x, ξ) for every x ∈ B1. Then the sequence { fk} is bounded in L2(B1)

and up to a subsequence, fk ⇀ f weakly in L2(B1), where the limit f : B1→ R takes values in [0, 1].
Therefore, we have for our smooth mollifier ρ ∈ L2(B1) that∫

B1

ρ fk dx→
∫

B1

ρ f dx as k→∞.

Note now that by the change of variable x̃ = z− εk x we obtain by our assumption:∫
B1

ρ(x) fk(x) dx =
∫

Bεk (z)
ρεk (z− x̃)χ(x̃, ξ) dx̃ = χεk (z)→ 1 as k→∞;

therefore,
∫

B1
ρ f dx = 1. Since 1 is the maximal value of f and ρ is nonnegative with the integral on B1

equal to 1, we deduce that f = 1 in supp ρ = B1. It follows by the change of variable x̃ = z− εk x that

−

∫
Bεk (z)
|χ(x̃, ξ)− 1| dx̃ = 1− −

∫
B1(0)

fk(x) dx→ 0 as k→∞,

because fk ⇀ 1 weakly in L2(B1). Since the limit is unique for every subsequence εk→ 0, we conclude
that z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 1, which proves the claim. �

For the case u(y) · ξ < 0, i.e., χ(y, ξ) = 0 by Lemma 15(ii), one applies the above argument by
replacing ξ with −ξ and obtains that z is a Lebesgue point of χ( · ,−ξ) with χ(z,−ξ)= 1. It follows
that z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 0 because

−

∫
Br (z)
|χ(x, ξ)| dx ≤

HN
(
{x ∈ Br (z) : u(x) · ξ ≥ 0}

)
HN (Br (z))

= 1− −
∫

Br (z)
χ(x,−ξ) dx→ 0

as r→ 0. One also concludes that u(z) · ξ ≤ 0 by Lemma 15(ii).
For the last statement, we have for a.e. y ∈� that y is a Lebesgue point of u with u(y) 6= 0. Then for

HN−1-a.e. direction ξ ∈SN−1, we have that u(y) · ξ 6= 0 and y+v is a Lebesgue point of u for HN−1-a.e.
v ∈ ξ⊥ with the segment [y, y+ v] ⊂�. By the above argument, we get (20). �
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5. Notion of the trace on lines

The H 1/2-regularity for N -dimensional unit-length vector fields u satisfying the kinetic formulation (8)
(see [Golse, Lions, Perthame, and Sentis 1988]) is a priori not enough to define the notion of the trace of u
on 1-dimensional lines. However, using the ideas in [Jabin, Otto, and Perthame 2002] for dimension 2, we
will define a notion of the trace of u on segments (in the sense of Lebesgue points) in any dimension N ≥ 2.

Proposition 18 (trace). Let N ≥2, �⊂RN be an open set and u :�→SN−1 be a Lebesgue-measurable
vector field satisfying the kinetic formulation (8). Assume that the segment

L := {0}N−1
×[−1, 1] is included in �.

Then there exists a Lebesgue-measurable function ũ : (−1, 1)→ RN such that

lim
r→0
−

∫
(−r,r)N−1

∫ 1

−1
|u(x ′, xN )− ũ(xN )| dxN dx ′ = 0, (21)

where x = (x ′, xN ), x ′= (x1, . . . , xN−1). Moreover, for H1-a.e. xN ∈ (−1, 1),

ũ(xN )= lim
r→0
−

∫
(−r,r)N−1

u(x ′, xN ) dx ′ and |ũ(xN )| = 1. (22)

Finally, every Lebesgue point x ∈ Leb of u lying inside L is a Lebesgue point of ũ and u(x) = ũ(xN ).
The vector field ũ is called the trace of u on the segment L.

Proof. To simplify the writing, we assume that �= RN. We divide the proof into several steps:

Step 1: defining the 1-dimensional function χ̃( · , ξ) for suitable directions ξ ∈ SN−1. Let D be the set of
directions ξ ∈ SN−1 such that ξN 6= 0 and (20) holds true for the triple (y, y+ v, ξ) for a.e. y ∈� and
HN−1-a.e. v ∈ ξ⊥ (with the segment [y, y+ v] ⊂�, where y and y+ v are Lebesgue points of u). By
Proposition 17, we know that D covers SN−1 up to a set of zero HN−1-measure. For such a direction
ξ ∈ D, we can choose a point yξ ∈ � (in a neighborhood of L) such that the map ξ ∈ D 7→ yξ ∈ �
is Lebesgue measurable, the point yξ + tξ ∈ � is a Lebesgue point of χ( · , ξ) for H1-a.e. t ∈ R, the
function t 7→ χ(yξ + tξ, ξ) is H1-measurable (by Fubini’s theorem) and (20) holds true for the triple
(yξ + tξ, yξ + tξ+v, ξ) for HN−1-a.e. v ∈ ξ⊥ and H1-a.e. t . Define the 1-dimensional function

s 7→ χ̃(s, ξ) := χ
(
yξ + (s− yξ · ξ)ξ, ξ

)
∈ {0, 1}.

Then we have that for a.e. x ∈� in a neighborhood of L ,

χ̃(x · ξ, ξ)= χ
(
yξ − yξ · ξξ + x · ξξ, ξ

) (20)
= χ(x, ξ), (23)

because

v = yξ − yξ · ξξ + x · ξξ − x ∈ ξ⊥.
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Step 2: for ξ ∈ D and for every Lebesgue point P = (0, . . . , 0, PN ) ∈ L of χ( · , ξ) with PN ∈ (−1, 1),
the point P · ξ is a Lebesgue point of χ̃( · , ξ) and χ̃(PN ξN , ξ)= χ(P, ξ). Indeed, since ξN 6= 0, we have

−

∫ PN ξN+r |ξN |

PN ξN−r |ξN |

∣∣χ̃(t,ξ)−χ(P,ξ)∣∣dt

= −

∫
(−r,r)N−1

dx ′−
∫ PN+r

PN−r

∣∣χ̃(x̃N ξN ,ξ)−χ(P,ξ)
∣∣dx̃N (since t = x̃N ξN )

= −

∫
(−r,r)N−1

dx ′−
∫ PN−x ′·ξ ′/ξN+r

PN−x ′·ξ ′/ξN−r

∣∣χ̃(x ′·ξ ′+xN ξN ,ξ)︸ ︷︷ ︸
(23)
= χ(x,ξ)

−χ(P,ξ)
∣∣dxN (since x ′·ξ ′+xN ξN = x̃N ξN )

≤ −

∫
(−r,r)N−1

dx ′ 1
2r

∫ PN+r̃

PN−r̃

∣∣χ(x,ξ)−χ(P,ξ)∣∣dxN

≤C−
∫

P+(−r̃ ,r̃)N

∣∣χ(x,ξ)−χ(P,ξ)∣∣dx→ 0 as r→ 0,

where we used that |x ′ · ξ ′| ≤ r
√

N − 1 for x ′ ∈ (−r, r)N−1 and r̃ = (
√

N − 1/|ξN |+1)r . Thus, PN ξN is
a Lebesgue point of χ̃( · , ξ). In particular, we have by Fubini’s theorem, for every α > 0,

−

∫ αr

−αr
dt̃−
∫ PN ξN+r |ξN |+t̃

PN ξN−r |ξN |+t̃

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt

=
1

4α|ξN |r2

∫ αr

−αr

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣1(PN ξN−r |ξN |+t̃,PN ξN+r |ξN |+t̃ )(t)dt dt̃

=
1

4α|ξN |r2

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt

∫ αr

−αr
1(−PN ξN−r |ξN |+t,−PN ξN+r |ξN |+t)(t̃ )dt̃

≤
1

2|ξN |r

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt → 0 as r→ 0. (24)

Step 3: proof of (21). For ξ ∈ D, we have, for small r > 0,

−

∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

(23)
= −

∫
(−r,r)N−1

∫ 1

−1

∣∣χ̃(x ′ · ξ ′+ xN ξN , ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

≤
1
|ξN |

sup
|t̃ |≤r
√

N−1

∫
|ξN |

−|ξN |

∣∣χ̃(t + t̃, ξ)− χ̃(t, ξ)
∣∣ dt (since t = xN ξN )

because |x ′ ·ξ ′| ≤ r
√

N − 1. Since the 1-dimensional function t 7→ χ̃(t, ξ) belongs to L∞, its L1-modulus
of continuity present in the above right-hand side tends to 0 as r→ 0, which leads to

lim
r→0
−

∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN = 0.
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This formula can be interpreted as the notion of the trace of χ( · , ξ) on the segment L and yields (21).
Indeed, due to (9), we define for a.e. xN ∈ (−1, 1),

ũ(xN )=
1

VN−1

∫
SN−1

ξ χ̃(xN ξN , ξ) dHN−1(ξ)

and we obtain, by Fubini’s theorem,∫
(−r,r)N−1

∫ 1

−1

∣∣u(x ′, xN )− ũ(xN )
∣∣ dx ′ dxN

(9)
≤

1
VN−1

∫
SN−1

(∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

)
dHN−1(ξ) r→0

−−→ 0,

where we used the dominated convergence theorem.

Step 4: proof of (22). By Step 3, we deduce that

−

∫
(−r,r)N−1

u(x ′, · ) dx ′ r→0
−−→ ũ in L1((−1, 1));

therefore, the first statement in (22) follows immediately. Moreover,

−

∫ 1

−1

∣∣|ũ(xN )| − 1
∣∣ dxN =−

∫
(−r,r)N−1

∫ 1

−1

∣∣|ũ(xN )| − |u(x ′, xN )|
∣∣ dx ′ dxN

≤−

∫
(−r,r)N−1

∫ 1

−1

∣∣ũ(xN )− u(x ′, xN )
∣∣ dx ′ dxN

(21)
−→ 0 as r→ 0;

thus, |ũ(xN )| = 1 for H1-a.e. xN ∈ (−1, 1).

Step 5: conclusion. Let P = (0, . . . , 0, PN ) ∈ Leb be a Lebesgue point of u with PN ∈ (−1, 1). We want
to show that PN is a Lebesgue point of ũ and ũ(PN )= u(P). For that, we know by Lemma 15 that P is a
Lebesgue point of χ( · , ξ) for every direction ξ ∈ SN−1 with u(P) · ξ 6= 0. If in addition ξ ∈D, we know
by Step 2 that P · ξ is also a Lebesgue point of χ̃( · , ξ). By the same argument as in Step 3, we have

−

∫
P+(−r,r)N

|u(x ′, xN )− ũ(xN )| dx ′ dxN

≤
1

VN−1

∫
SN−1
−

∫
P+(−r,r)N

∣∣ χ(x, ξ)︸ ︷︷ ︸
(23)
= χ̃(x ′·ξ ′+xN ξN ,ξ)

−χ̃(xN ξN , ξ)
∣∣ dx ′ dxN dHN−1(ξ)

≤
1

VN−1

∫
SN−1

dHN−1(ξ)

[
−

∫
P+(−r,r)N

∣∣χ̃(x ′ · ξ ′+ xN ξN , ξ)− χ̃(PN ξN , ξ)
∣∣ dx

+ −

∫ PN+r

PN−r

∣∣χ̃(xN ξN , ξ)− χ̃(PN ξN , ξ)
∣∣ dxN

]
≤

1
VN−1

∫
SN−1

dHN−1(ξ)−

∫
(−r,r)N−1

dx ′−
∫ PN ξN+r |ξN |+x ′·ξ ′

PN ξN−r |ξN |+x ′·ξ ′

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

+
1

VN−1

∫
SN−1

dHN−1(ξ)−

∫ PN ξN+r |ξN |

PN ξN−r |ξN |

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt.
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Using the dominated convergence theorem twice, we conclude that the above right-hand side vanishes as
r→ 0. Indeed, the second integrand converges to 0 as r→ 0 by Step 2 for a.e. ξ ∈ SN−1. For the first
integrand, we proceed as follows: for HN−1-a.e. direction ξ , we may assume that |ξ ′|> 0 and ξN 6= 0 so
that there exists a rotation R′ ∈ SO(N − 1) with R′ξ ′ = |ξ ′|e1 and we have by the change of variables
x̃ ′ = R′x ′ and r̂ = r

√
N − 1,

−

∫
(−r,r)N−1

dx ′−
∫ PN ξN+r |ξN |+x ′·ξ ′

PN ξN−r |ξN |+x ′·ξ ′

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

≤ C −
∫
{|x̃ ′|<r̂}

dx̃ ′−
∫ PN ξN+r |ξN |+x̃1|ξ

′
|

PN ξN−r |ξN |+x̃1|ξ ′|

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

≤ C −
∫
|ξ ′|r̂

−|ξ ′|r̂
−

∫ PN ξN+r |ξN |+t̃

PN ξN−r |ξN |+t̃

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt dt̃ (24)

−→ 0 as r→ 0. �

6. Proof of Theorem 8

We start by showing some preliminary results that reveal the geometric consequences of the kinetic
formulation (8). The following lemma is the first step in proving that u is constant along the characteristics
and is reminiscent of the ideas presented in [Jabin, Otto, and Perthame 2002]:

Lemma 19. Let � ⊂ RN be an open set such that L = {0}N−1
× [−1, 1] ⊂ � and u : � → SN−1

be a Lebesgue-measurable vector field satisfying the kinetic formulation (8). Assume that the origin
O ∈�∩Leb is a Lebesgue point of u and u(O)= eN . Then for every Lebesgue point xN ∈ (−1, 1) of ũ,
we have

ũ(xN )=±eN ,

where ũ is the trace of u on L defined at Proposition 18.

Proof. Without loss of generality we assume that� is a convex open neighborhood of L . By Proposition 18,
we know that O is also a Lebesgue point of ũ and ũ(0) = eN ; moreover, |ũ| = 1 a.e. in (−1, 1). Let
xN ∈ (−1, 1) \ {0} be a Lebesgue point of ũ such that HN−1-a.e. z ∈ �∩ (xN eN + e⊥N ) is a Lebesgue
point of u and such that the following holds true (see Proposition 18):

lim
r→0
−

∫
(−r,r)N−1

∣∣u(x ′, xN )− ũ(xN )
∣∣ dx ′ = 0. (25)

Our goal is to prove that the component ũi (xN ) of ũ(xN ) in direction ei vanishes for every i =1, . . . , N−1.
For that, we follow the ideas in [Jabin, Otto, and Perthame 2002]. Let ε > 0 be small and define the
following subsets E−i and E+i (depending on ε) of the hyperplane (xN eN + e⊥N ) for 1≤ i ≤ N − 1:

E±i =
{
z ∈�∩Leb : zN = xN , ε|xN | ≥ ±zi > 0

}
.

By our assumption, the sets E±i contain many points (e.g., for i = 1, the set E+1 covers the (N−1)-
parallelepiped (0, r)× (−r, r)N−2

×{xN } up to a set of zero HN−1-measure for r < ε). For z ∈ E+i , we
set y = −zi eN + xN ei if xN > 0 and y = zi eN − xN ei if xN < 0. Obviously, z · y = 0; that is, y ∈ z⊥.
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By the convexity of �, the segment [Oz] lies in � so that by Proposition 17 we have if xN > 0 (resp.
xN < 0), then u(O) · y =−zi < 0 (resp. u(O) · y = zi > 0) so that u(z) · y ≤ 0 (resp. ≥ 0). It follows that

ui (z)≤
zi

xN
uN (z)≤ ε

(
resp. ui (z)≥

−zi

|xN |
uN (z)≥−ε

)
,

because |uN (z)| ≤ 1. Similarly, for z ∈ E−i , one uses y = zi eN − xN ei if xN > 0 and y =−zi eN + xN ei if
xN < 0 and deduces that ui (z)≥−ε if xN > 0 and ui (z)≤ ε if xN < 0. We conclude that ũi (xN )∈ [−ε, ε].
Indeed, let us set i = 1 for simplicity of notation; by (25), we have

ũ1(xN )= lim
r→0
−

∫
(0,r)×(−r,r)N−2

u1(x ′, xN ) dx ′ ≤ ε if xN > 0 (resp. ≥−ε if xN < 0)

and also,

ũ1(xN )= lim
r→0
−

∫
(−r,0)×(−r,r)N−2

u1(x ′, xN ) dx ′ ≥−ε if xN > 0 (resp. ≤ ε if xN < 0).

Passing to the limit ε→ 0, we conclude that ũi (xN )= 0 for i = 1 (similarly, for every 1≤ i ≤ N − 1).
Obviously, H1-a.e. xN ∈ (−1, 1) satisfies this property. As a consequence, if PN ∈ (−1, 1) is a Lebesgue
point of ũ then for every 1≤ i ≤ N − 1,

ũi (PN )= lim
r→0
−

∫ PN+r

PN−r
ũi (xN ) dxN = 0.

Since |ũ(PN )| = 1, we deduce that ũN (PN )=±1, that is, ũ(PN )=±eN . �

We now prove the main result:

Proof of Theorem 8. We first treat the case where � is a ball and then the general case of a connected
open set.

Case I: � is a ball. Since u is not a constant vector field, there exist two Lebesgue points P0, P1 ∈�∩Leb
of u such that

u(P0) 6= u(P1).

Let D0 (resp. D1) be the line directed by u(P0) (resp. u(P1)) that passes through P0 (resp. P1).

Step 1: we show that D0 and D1 are coplanar. Assume by contradiction that D0 and D1 are not coplanar;
in particular |u(P0) · u(P1)|< 1. Set A ∈ D0 and B ∈ D1 such that

0< |A− B| = min
x∈D0,y∈D1

|x − y|.

Obviously, the segment [AB] is orthogonal to D0 and D1. Let O be the middle point of the segment
[AB] (see Figure 2). Let

w1 = u(P0), w2 =

−→
O A

|
−→
O A|

and w3 = αu(P0)+βu(P1),



KINETIC FORMULATION OF VORTEX VECTOR FIELDS 751

D0

D1

A

O

B

P0 u(P0)

P1 u(P1)

Figure 2. Two noncoplanar lines D0 and D1.

where

α =
−u(P0) · u(P1)√

1−
(
u(P0) · u(P1)

)2
and β =

1√
1−

(
u(P0) · u(P1)

)2
> 0. (26)

The choice of α and β is done in order to ensure that w1 ·w3 = 0 and |w3|
2
= 1, which finally yields

the orthonormal basis w1, w2 and w3. Note now that the vectors u(P0) and u(P1) have the following
components in the basis (w1, w2, w3):

u(P0)= (1, 0, 0) and u(P1)=

(
−
α

β
, 0,

1
β

)
.

We want to find the expression of
−−→
P0 P1 in that basis, too. For that, we have
−−→
P0 P1 =

−−→
P0 A+

−→
AB+

−−→
B P1,

which implies the existence of three real numbers λ, λ̃, λ̂ ∈ R with λ̃ 6= 0 such that

−−→
P0 P1 = λw1+ λ̃w2+ λ̂u(P1)= λw1+ λ̃w2+ λ̂

(
1
β
w3−

α

β
w1

)
.

Thus,
−−→
P0 P1 has the following components in the basis (w1, w2, w3):

−−→
P0 P1 =

(
λ−

α

β
λ̂, λ̃,

λ̂

β

)
.

Define the vector ξ := (1, s,−β) 6= 0, written in our basis where

s :=
λ̂(α+β)

βλ̃
−
λ

λ̃
.

Then [P0 P1] ⊂� (since � is a ball) and
−−→
P0 P1 · ξ = 0, i.e., ξ ∈ P0 P⊥1 ,

u(P0) · ξ = 1> 0, u(P1) · ξ = u(P0)u(P1)− 1< 0,

which contradicts Proposition 17. Thus, D0 and D1 are coplanar.
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D0

D1

u(P1) P1

ξ

ξ

u(P0)P0

Figure 3. Two parallel lines D0 and D1.

Step 2: we show that D0 and D1 must intersect (D0 might coincide with D1). Assume by contradiction
that D0 and D1 are parallel and D0 6= D1. This means that u(P0) = −u(P1) (because of our choice
u(P0) 6= u(P1)). Set (w1, w2) to be an orthonormal basis in the 2-dimensional plane 5 determined by D0

and D1 with w1 = u(P0). In the basis (w1, w2), we write
−−→
P0 P1 = (λ, λ̃), where λ̃ 6= 0 (since D0 6= D1),

and set ξ = (−λ̃, λ) to be an orthogonal vector to
−−→
P0 P1 in 5 (see Figure 3). Then one checks that

u(P0) · ξ =−λ̃ and u(P1) · ξ = λ̃ have different signs, which again contradicts Proposition 17.

Step 3: there exists a point O ∈ D0 with O 6= P0, P1 and a sign γ ∈ {±1} such that

u(Pi )= γ

−−→
O Pi

|
−−→
O Pi |

, i = 0, 1.

If D0 = D1, then u(P0) = −u(P1), so any point O ∈ D0 located between P0 and P1 leads to the
conclusion. Otherwise, D0 6= D1 and we define {O} = D0 ∩ D1. First, we prove that O 6= P0, P1.
Assume by contradiction that O = P0 ∈ D0 ∩ D1. Then by Proposition 18 we know that P0 and P1 are
Lebesgue points of the trace ũ of u on the segment D1 ∩� (directed by u(P1)) with ũ(P0) = u(P0)

and ũ(P1) = u(P1) so that by Lemma 19, we should have u(P0) is parallel with u(P1), which is a
contradiction with D0 6= D1. So, O 6= P0, P1. Next, note that for any orthogonal vector ξ to

−−→
P0 P1 in the

plane determined by D0 and D1, we have by Proposition 17 that u(P0) · ξ and u(P1) · ξ have the same
sign, i.e.,

(u(P0) · ξ) · (u(P1) · ξ)≥ 0. (27)

Write now
−−→
O P0 = λu(P0) and

−−→
O P1 = λ̃u(P1)

with λ, λ̃ nonzero real numbers. The conclusion of Step 3 is equivalent to proving that λ and λ̃ have the
same sign. For that, as in Step 1, we choose the orthonormal basis w1= u(P0) and w2= αu(P0)+βu(P1)

with α ∈ R and β > 0 given in (26) (recall that |u(P0) · u(P1)|< 1 because of the assumption D0 6= D1).
Since

−−→
P0 P1 =

−−→
O P1−

−−→
O P0 = λ̃u(P1)− λu(P0), we write, in the basis (w1, w2),

u(P0)= (1, 0), u(P1)=

(
−
α

β
,

1
β

)
,
−−→
P0 P1 =

(
−λ−

α

β
λ̃,
λ̃

β

)
.

Then for the orthogonal vector ξ = (λ̃, λβ +αλ̃) 6= 0 to
−−→
P0 P1, we have by (27) that

0≤ (u(P0) · ξ) · (u(P1) · ξ)= λ̃ · λ.



KINETIC FORMULATION OF VORTEX VECTOR FIELDS 753

Step 4: conclusion. For every Lebesgue point P ∈Leb∩� of u, we consider the line D passing through P
and directed by u(P). Call D the set of these lines. Obviously, D covers HN -almost all of the ball �
(since HN (� \Leb)= 0); in particular, D is not planar. By Step 1, we know that every two lines in D
are coplanar. Then Proposition 9 (whose proof is presented below) implies that either all these lines are
parallel, or they pass through the same point O. Since u is nonconstant, we deduce by Step 2 that only
the last situation holds true. By Step 3, we conclude that u = γ u?( · − O) a.e. in �.

Case II: � is a connected open set. By Case I, we know that in every open ball B ⊂� around a Lebesgue
point of u, the vector field u is either a vortex-type vector field in B, or u is constant in B. Since u is
nonconstant in �, there exists a Lebesgue point P0 of u and a ball B0 ⊂ � around P0 such that u is a
vortex-type vector field in B0; say for simplicity u = u?. Let P 6= P0 be any other Lebesgue point of u.
Since � is path-connected, there exists a path 0 ⊂ � from P0 to P. Then we can cover the path 0 by
a finite number of open balls {Bj }0≤ j≤n such that P ∈ Bn , Bj∩B j+1 6=∅ for 0≤ j ≤n−1 and u is either
constant or a vortex-type vector field in any Bj . Since u = u? in B0 and B0 ∩ B1 is a nonempty open set,
the analysis in Case I yields u= u? in B1 and by induction, u= u? in Bn , which is a neighborhood of P. �

Let us now present the proof of the geometric result in Proposition 9, which is independent of the
previous results:

Proof of Proposition 9. Assume that there are two lines D0, D1 ∈ D that are not collinear. Since D0 and
D1 are coplanar, they intersect at a point P. Call 5 the plane determined by D0 and D1. We show that
all the lines in D pass through P. Let D2 ∈D be any line not included in 5 (such a line exists because D
is not planar). We know that D2 is coplanar with D0 and D1, respectively. Then D2 cannot be parallel
with D0 (otherwise, D2 ‖ D0 and D2 ∩ D1 6= ∅ imply that D2 ⊂ 5, which is a contradiction with our
assumption). Similarly, D2 cannot be parallel with D1. Therefore, D2 intersects both D0 and D1. Since
D2 is not included in 5, the intersection points coincide with P. Let now D3 ∈ D be any line included
in 5 (different than D0 and D1). Then D3 is not included in the plane determined by D1 and D2. The
previous argument leads again to P ∈ D3, which concludes our proof. �

7. Vector fields of vortex-line type

We will prove the characterization of the weakened kinetic formulation (10) in Theorem 10. This result is
in the spirit of Corollary 14 and leads to vector fields that have vortex-line singularities.

Proof of Theorem 10. For x ∈ RN, recall the notation x = (x ′, xN ) with x ′ = (x1, . . . , xN−1) ∈ RN−1. As
the result is local in the set {uN 6=±1}, we will assume that ω= B ′×(−1, 1) is included in that set, where
B ′ is the unit ball in RN−1. Let ξ ′ ∈ SN−2 and ξ = (ξ ′, 0) ∈ E . Since eN ∈ ξ

⊥, we deduce by (10) that

eN · ∇xχ( · , ξ)= ∂Nχ( · , ξ)= 0 in D ′(ω). (28)

We know that the point (x ′, t) is a Lebesgue point of χ( · , ξ) for HN−1-a.e. x ′ ∈ B ′ and H1-a.e. t ∈ (−1, 1)
and the convolution argument in the proof of Proposition 17 yields

χ(x, ξ)= χ(x + teN , ξ) for HN -a.e. x ∈ ω and H1-a.e. t .
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Then one can define the measurable function χ̃( · , ξ ′) : B ′→ {0, 1} by

χ̃(x ′, ξ ′) := χ(x, ξ)= 1{x∈ω:u′(x)·ξ ′>0} for HN -a.e. x = (x ′, t) ∈ ω.

Set

ũ(x ′)=
1

VN−2

∫
SN−2

ξ ′χ̃(x ′, ξ ′) dHN−2(ξ ′), x ′ ∈ B ′.

Thanks to (9),

ũ(x ′)=
u′(x)
|u′(x)|

for HN -a.e. x = (x ′, t) ∈ ω ⊂ {|u′|> 0}.

In particular, χ̃(x ′, ξ ′)= 1{x ′∈B ′:ũ(x ′)·ξ ′>0} in B ′ for every ξ ′ ∈ SN−2. Therefore, we deduce by (10) that
ũ : B ′→ SN−2 satisfies

∀ξ ′ ∈ SN−2, ∀v′ ∈ (ξ ′)⊥, v′ · ∇ ′x ′ χ̃(x
′, ξ ′)= 0 in B ′,

where ∇ ′x ′ = (∂1, . . . , ∂N−1). As N − 1≥ 3, Theorem 8 yields either ũ(x ′)=w′ for almost every x ′ ∈ B ′,
where w′ ∈ SN−2 is a constant vector, or ũ(x ′)= γ (x ′− P ′)/|x ′− P ′| for almost every x ′ ∈ B ′, where
γ ∈ {±1} and P ′ ∈ RN−1 is some point. This means that for a.e. x ∈ ω,

either u′(x)= |u′(x)|w′ or u′(x)= γ |u′(x)|
x ′− P ′

|x ′− P ′|
.

Case 1. Let u′(x)= |u′(x)|w′ for a.e. x ∈ ω. By (11), we have for k ∈ {1, . . . , N − 1},

∂kuN = ∂N uk = wk∂N (|u′|) in ω, (29)

which yields, for all k, j ∈ {1, . . . , N − 1},

wj∂kuN = wk∂j uN in ω.

Therefore, uN (x)= g(α, xN ) in ω for some 2-dimensional function g with the new variable α := α(x)=
x ′ ·w′. Moreover, by (29), the function g satisfies the following: since wk 6= 0 for some k ∈ {1, . . . , N−1}
(because w ∈ SN−1), the equation |u′|2+ u2

N = 1 a.e. in ω implies

wk∂αg = ∂kuN
(29)
= wk∂N (|u′|)= wk∂N (

√
1− g2).

The Poincaré lemma yields the existence of a stream function ψ(α, xN ) such that g= ∂Nψ and
√

1− g2=

∂αψ so that u(x)=∇x [ψ(α, xN )] and therefore, ψ satisfies the 2-dimensional eikonal equation

(∂αψ)
2
+ (∂Nψ)

2
= 1.

Case 2. Let u′(x)= γ |u′(x)|(x ′− P ′)/|x ′− P ′| for a.e. x ∈ω. As above, we have, for k ∈ {1, . . . , N−1},

∂kuN = ∂N uk = γ
xk − Pk

|x ′− P ′|
∂N (|u′|) in ω (30)

and we deduce that, for all k, j ∈ {1, . . . , N − 1},

(x j − Pj )∂kuN = (xk − Pk)∂j uN in ω.
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Therefore, uN (x)=g(α, xN ) inω for some 2-dimensional function g with the new variable α :=α(x)=|x ′|.
By (30), we conclude as above that there exists a stream function ψ solving the eikonal equation in the
variables (α, xN ) such that

u(x)=∇x [ψ(α, xN )]. �

Acknowledgment

R. Ignat acknowledges partial support by the ANR project ANR-14-CE25-0009-01.

References

[Ambrosio, De Lellis, and Mantegazza 1999] L. Ambrosio, C. De Lellis, and C. Mantegazza, “Line energies for gradient vector
fields in the plane”, Calc. Var. Partial Differential Equations 9:4 (1999), 327–355. MR Zbl

[Aviles and Giga 1999] P. Aviles and Y. Giga, “On lower semicontinuity of a defect energy obtained by a singular limit of the
Ginzburg–Landau type energy for gradient fields”, Proc. Roy. Soc. Edinburgh Sect. A 129:1 (1999), 1–17. MR Zbl

[Caffarelli and Crandall 2010] L. A. Caffarelli and M. G. Crandall, “Distance functions and almost global solutions of eikonal
equations”, Comm. Partial Differential Equations 35:3 (2010), 391–414. MR Zbl

[De Lellis and Ignat 2015] C. De Lellis and R. Ignat, “A regularizing property of the 2D-eikonal equation”, Comm. Partial
Differential Equations 40:8 (2015), 1543–1557. MR Zbl

[DeSimone, Müller, Kohn and Otto 2001] A. DeSimone, S. Müller, R. V. Kohn, and F. Otto, “A compactness result in the
gradient theory of phase transitions”, Proc. Roy. Soc. Edinburgh Sect. A 131:4 (2001), 833–844. MR Zbl

[DiPerna and Lions 1989] R. J. DiPerna and P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”,
Invent. Math. 98:3 (1989), 511–547. MR Zbl

[Golse and Perthame 2013] F. Golse and B. Perthame, “Optimal regularizing effect for scalar conservation laws”, Rev. Mat.
Iberoam. 29:4 (2013), 1477–1504. MR Zbl

[Golse, Lions, Perthame, and Sentis 1988] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis, “Regularity of the moments of the
solution of a transport equation”, J. Funct. Anal. 76:1 (1988), 110–125. MR Zbl

[Hicks 1965] N. J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies 3, D. Van Nostrand Co., Princeton,
NJ, 1965. MR Zbl

[Ignat 2011] R. Ignat, “Gradient vector fields with values into S1”, C. R. Math. Acad. Sci. Paris 349:15–16 (2011), 883–887.
MR Zbl

[Ignat 2012a] R. Ignat, “Singularities of divergence-free vector fields with values into S1 or S2: applications to micromagnetics”,
Confluentes Math. 4:3 (2012), art. id. 1230001, 80 pp. MR Zbl

[Ignat 2012b] R. Ignat, “Two-dimensional unit-length vector fields of vanishing divergence”, J. Funct. Anal. 262:8 (2012),
3465–3494. MR Zbl

[Ignat and Merlet 2012] R. Ignat and B. Merlet, “Entropy method for line-energies”, Calc. Var. Partial Differential Equations
44:3–4 (2012), 375–418. MR Zbl

[Jabin and Perthame 2001] P.-E. Jabin and B. Perthame, “Compactness in Ginzburg–Landau energy by kinetic averaging”,
Comm. Pure Appl. Math. 54:9 (2001), 1096–1109. MR Zbl

[Jabin, Otto, and Perthame 2002] P.-E. Jabin, F. Otto, and B. Perthame, “Line-energy Ginzburg–Landau models: zero-energy
states”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1:1 (2002), 187–202. MR Zbl

[Jin and Kohn 2000] W. Jin and R. V. Kohn, “Singular perturbation and the energy of folds”, J. Nonlinear Sci. 10:3 (2000),
355–390. MR Zbl

[Lions, Perthame, and Tadmor 1994] P.-L. Lions, B. Perthame, and E. Tadmor, “A kinetic formulation of multidimensional
scalar conservation laws and related equations”, J. Amer. Math. Soc. 7:1 (1994), 169–191. MR Zbl

http://dx.doi.org/10.1007/s005260050144
http://dx.doi.org/10.1007/s005260050144
http://msp.org/idx/mr/1731470
http://msp.org/idx/zbl/0960.49013
http://dx.doi.org/10.1017/S0308210500027438
http://dx.doi.org/10.1017/S0308210500027438
http://msp.org/idx/mr/1669225
http://msp.org/idx/zbl/0923.49008
http://dx.doi.org/10.1080/03605300903253927
http://dx.doi.org/10.1080/03605300903253927
http://msp.org/idx/mr/2748630
http://msp.org/idx/zbl/1187.35024
http://dx.doi.org/10.1080/03605302.2014.999939
http://msp.org/idx/mr/3355503
http://msp.org/idx/zbl/1327.35062
http://dx.doi.org/10.1017/S030821050000113X
http://dx.doi.org/10.1017/S030821050000113X
http://msp.org/idx/mr/1854999
http://msp.org/idx/zbl/0986.49009
http://dx.doi.org/10.1007/BF01393835
http://msp.org/idx/mr/1022305
http://msp.org/idx/zbl/0696.34049
http://dx.doi.org/10.4171/RMI/765
http://msp.org/idx/mr/3148612
http://msp.org/idx/zbl/1288.35343
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://msp.org/idx/mr/923047
http://msp.org/idx/zbl/0652.47031
http://msp.org/idx/mr/0179691
http://msp.org/idx/zbl/0132.15104
http://dx.doi.org/10.1016/j.crma.2011.07.024
http://msp.org/idx/mr/2835896
http://msp.org/idx/zbl/1225.35052
http://dx.doi.org/10.1142/S1793744212300012
http://msp.org/idx/mr/3011660
http://msp.org/idx/zbl/1262.35194
http://dx.doi.org/10.1016/j.jfa.2012.01.014
http://msp.org/idx/mr/2889164
http://msp.org/idx/zbl/1246.46031
http://dx.doi.org/10.1007/s00526-011-0438-3
http://msp.org/idx/mr/2915327
http://msp.org/idx/zbl/1241.49010
http://dx.doi.org/10.1002/cpa.3005
http://msp.org/idx/mr/1835383
http://msp.org/idx/zbl/1124.35312
http://www.numdam.org/item?id=ASNSP_2002_5_1_1_187_0
http://www.numdam.org/item?id=ASNSP_2002_5_1_1_187_0
http://msp.org/idx/mr/1994807
http://msp.org/idx/zbl/1072.35051
http://dx.doi.org/10.1007/s003329910014
http://msp.org/idx/mr/1752602
http://msp.org/idx/zbl/0973.49009
http://dx.doi.org/10.2307/2152725
http://dx.doi.org/10.2307/2152725
http://msp.org/idx/mr/1201239
http://msp.org/idx/zbl/0820.35094


756 PIERRE BOCHARD AND RADU IGNAT

[Otto 2009] F. Otto, “Optimal bounds on the Kuramoto–Sivashinsky equation”, J. Funct. Anal. 257:7 (2009), 2188–2245. MR
Zbl

[Rivière and Serfaty 2001] T. Rivière and S. Serfaty, “Limiting domain wall energy for a problem related to micromagnetics”,
Comm. Pure Appl. Math. 54:3 (2001), 294–338. MR Zbl

Received 3 Oct 2016. Revised 17 Jan 2017. Accepted 20 Feb 2017.

PIERRE BOCHARD: pierre.bochard@math.u-psud.fr
Département de Mathématiques, Université Paris-Sud 11, 91405 Orsay, France

RADU IGNAT: radu.ignat@math.univ-toulouse.fr
Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse, France

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.jfa.2009.01.034
http://msp.org/idx/mr/2548034
http://msp.org/idx/zbl/1194.35082
http://dx.doi.org/10.1002/1097-0312(200103)54:3<294::AID-CPA2>3.0.CO;2-S
http://msp.org/idx/mr/1809740
http://msp.org/idx/zbl/1031.35142
mailto:pierre.bochard@math.u-psud.fr
mailto:radu.ignat@math.univ-toulouse.fr
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission
page at msp.org/apde.

Originality. Submission of a manuscript acknowledges that the manu-
script is original and and is not, in whole or in part, published or under
consideration for publication elsewhere. It is understood also that the
manuscript will not be submitted elsewhere while under consideration
for publication in this journal.

Language. Articles in APDE are usually in English, but articles written
in other languages are welcome.

Required items. A brief abstract of about 150 words or less must be
included. It should be self-contained and not make any reference to the
bibliography. If the article is not in English, two versions of the abstract
must be included, one in the language of the article and one in English.
Also required are keywords and subject classifications for the article,
and, for each author, postal address, affiliation (if appropriate), and email
address.

Format. Authors are encouraged to use LATEX but submissions in other
varieties of TEX, and exceptionally in other formats, are acceptable. Ini-
tial uploads should be in PDF format; after the refereeing process we will
ask you to submit all source material.

References. Bibliographical references should be complete, including
article titles and page ranges. All references in the bibliography should
be cited in the text. The use of BibTEX is preferred but not required. Tags
will be converted to the house format, however, for submission you may
use the format of your choice. Links will be provided to all literature
with known web locations and authors are encouraged to provide their
own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you
will need to submit the original source files in vector graphics format for
all diagrams in your manuscript: vector EPS or vector PDF files are the
most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator,
Corel Draw, MATLAB, etc.) allow the user to save files in one of these
formats. Make sure that what you are saving is vector graphics and not a
bitmap. If you need help, please write to graphics@msp.org with details
about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in
the document. There is no point in your trying to optimize line and page
breaks in the original manuscript. The manuscript will be reformatted to
use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the des-
ignated corresponding author) at a Web site in PDF format. Failure to
acknowledge the receipt of proofs or to return corrections within the re-
quested deadline may cause publication to be postponed.

http://msp.org/apde
mailto:graphics@msp.org


ANALYSIS & PDE
Volume 10 No. 3 2017

513The weak-A∞ property of harmonic and p-harmonic measures implies uniform rectifiability
STEVE HOFMANN, PHI LE, JOSÉ MARÍA MARTELL and KAJ NYSTRÖM

559The one-phase problem for harmonic measure in two-sided NTA domains
JONAS AZZAM, MIHALIS MOURGOGLOU and XAVIER TOLSA

589Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D focusing cubic
nonlinear Schrödinger equation from 3D

XUWEN CHEN and JUSTIN HOLMER

635Conformally Euclidean metrics on Rn with arbitrary total Q-curvature
ALI HYDER

653Boundary estimates in elliptic homogenization
ZHONGWEI SHEN

695Convex integration for the Monge–Ampère equation in two dimensions
MARTA LEWICKA and MOHAMMAD REZA PAKZAD

729Kinetic formulation of vortex vector fields
PIERRE BOCHARD and RADU IGNAT

A
N

A
LY

SIS
&

PD
E

Vol.10,
N

o.3
2017


	 vol. 10, no. 3, 2017
	Masthead and Copyright
	01
	1. Introduction
	1A. Statement of main results
	1B. Brief outline of the proofs of the main results
	1C. Organization of the paper
	1D. Discussion of recent related work

	2. ADR, UR, and dyadic grids
	3. PDE estimates
	3A. PDE estimates: the harmonic case
	3B. PDE estimates: the p-harmonic case

	4. Proofs of 0=equation.41=Theorem 1.1 and 0=equation.191=Theorem 1.12: preliminary arguments
	5. Proof of 0=equation.41=1.1, 0=equation.121=1.5, and 0=equation.191=1.12
	5A. Proof of 0=equation.1571=Lemma 5.8 in the linear case (p=2)
	5B. Proof of 0=equation.1571=Lemma 5.8 in the general case (1<p<)
	5C. Proof of 0=equation.1591=Lemma 5.10
	5D. Proof of 0=equation.121=Corollary 1.5

	6. Proof of 0=equation.251=Proposition 1.17
	References

	02
	1. Introduction
	2. Preliminaries
	3. The Riesz transform of the harmonic measure with pole at infinity
	4. Some technical lemmas
	5. Estimates for the gradient of Green's function
	6. The pseudo-blow-up of harmonic measure is surface measure
	6A. Pseudo-blow-ups of chord-arc domains
	6B. Blow-downs of unbounded chord-arc domains

	7. Application of the monotonicity formula of Weiss: blow-downs are planes in R^3
	8. The Alt–Caffarelli theorem
	9. The proof of Theorem 1.1
	10. Counterexample for R^d, d>=4
	Acknowledgement
	References

	03
	1. Introduction
	Organization of the paper

	2. Proof of the main theorem
	3. Focusing energy estimate
	Proof of the focusing energy estimate
	Estimates needed to prove Theorem 3.1
	The k=1 case
	The k=2 case
	The k case implies the k+2 case


	4. Compactness of the BBGKY sequence
	5. Limit points satisfy GP hierarchy
	Appendix A. Basic operator facts and Sobolev-type lemmas
	Appendix B. Deducing Theorem 1.1 from Theorem 1.2
	Acknowledgements
	References

	04
	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.3
	Appendix
	Acknowledgements
	References

	05
	1. Introduction
	2. Convergence rates in H^1
	3. Proof of Theorems 1.1 and 1.2
	4. Convergence rates in L^q for q=2d/(d-1)
	5. C^alpha estimates in C^1 domains
	6. W^(1,p) estimates in C^1 domains
	7. L^p estimates in C^1 domains
	8. Lipschitz estimates in C^(1, alpha) domains, part I
	9. Lipschitz estimates in C^(1, alpha) domains, part II
	Acknowledgements
	References

	06
	1. Introduction
	2. The C^1 approximations: preliminary results
	3. The C^1 approximations: a proof of Theorem 2.1
	4. The C^{1,alpha} approximations: a proof of Theorem 1.1, preliminary results and some heuristics towards the proof of Theorem 1.2
	5. The C^{1,alpha} approximations: a ``step'' and a ``stage'' in a proof of Theorem 1.2
	6. The C ^{1,alpha} approximations: a proof of Theorem 1.2
	7. Rigidity results for alpha > 2/3: a proof of Theorem 1.3
	Acknowledgments
	References

	07
	1. Introduction
	1.1. Kinetic formulation in dimension N=2
	1.2. Kinetic formulation in dimension N >= 3

	2. Main results
	3. Level sets of the stream function
	3.1. The case of dimension N=2
	3.2. The case of dimension N >= 3

	4. Several properties on the set of Lebesgue points
	5. Notion of the trace on lines
	6. Proof of Theorem 8
	7. Vector fields of vortex-line type
	Acknowledgment
	References

	Guidelines for Authors
	Table of Contents

