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THE FUGLEDE CONJECTURE HOLDS IN Z p × Z p

ALEX IOSEVICH, AZITA MAYELI AND JONATHAN PAKIANATHAN

In this paper we study subsets E of Zd
p such that any function f : E → C can be written as a linear

combination of characters orthogonal with respect to E. We shall refer to such sets as spectral. In this
context, we prove the Fuglede conjecture in Z2

p, which says in this context that E ⊂ Z2
p is spectral if and

only if E tiles Z2
p by translation. Arithmetic properties of the finite field Fourier transform, elementary

Galois theory and combinatorial geometric properties of direction sets play the key role in the proof. The
proof relies to a significant extent on the analysis of direction sets of Iosevich et al. (Integers 11 (2011),
art. id. A39) and the tiling results of Haessig et al. (2011).

1. Introduction

Let E ⊂ Zd
p, where Zp, p prime, is the cyclic group of size p and Zd

p is the d-dimensional vector space
over Zp. We say that L2(E) has an orthogonal basis of exponentials (indexed by A) if the following
conditions hold:

• (completeness) There exists A ⊂ Zd
p such that for every function f : E → C there exist complex

numbers {ca}a∈A, A ⊂ Zd
p, such that

f (x)=
∑
a∈A

χ(x · a)ca

for all x ∈ E where χ(u)= e2π iu/p. We shall refer to A as a spectrum of E. The expansion above can
be applied to functions f : Zd

p→ C by restricting them to E but the equality holds only for x ∈ E.

• (orthogonality) The relation ∑
x∈E

χ(x · (a− a′))= 0

holds for every a, a′ ∈ A, a 6= a′.
If these conditions hold, we refer to E ⊂ Zd

p as a spectral set.

Definition 1.1 (spectral pair). A spectral pair (E, A) in V = Zd
p is a spectral set E with an orthogonal

basis of exponentials indexed by A.

Definition 1.2 (tiling pair). A tiling pair (E ′, A′) consists of E ′, A′ ⊂ Zd
p such that every element v ∈ V

can be written uniquely as a sum v = e′ + a′, e′ ∈ E ′, a′ ∈ A′. Equivalently, (E ′, A′) is a tiling pair if
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a′∈A′ E ′(x − a′)≡ 1 for every x ∈ V. We say that E ′ tiles V by translation if there exists A′ ⊂ V such

that (E ′, V ′) is a tiling pair. Here and throughout E(x) is the indicator function of E.

The study of the relationship between exponential bases and tiling has its roots in the celebrated Fuglede
conjecture in Rd, which says that if E ⊂ Rd is of positive Lebesgue measure, then L2(E) possesses an
orthogonal basis of exponentials if and only if E tiles Rd by translation. Fuglede [1974] proved this
conjecture in the case when either the tiling set or the spectrum is a lattice. Katz, Tao and the first author
[Iosevich et al. 2003] proved that the Fuglede conjecture holds for convex planar domains.

Terry Tao [2004] disproved the Fuglede conjecture by exhibiting a spectral set in R12 which does not
tile. The first step in his argument is the construction of a spectral subset of Z5

3 of size 6. It is easy to see
that this set does not tile because 6 does not divide 35. As a by-product, this shows that spectral sets in
Zd

p do not necessarily tile. See [Kolountzakis and Matolcsi 2006], where the authors also disprove the
reverse implication of the Fuglede conjecture. Tao’s example raises the natural question of whether and
when spectral sets in a variety of settings necessarily tile by translation and vice versa. In this paper we
see that the Fuglede conjecture holds in two-dimensional vector spaces over prime fields.

Our main result is the following.

Theorem 1.3. Let E be a subset of Zd
p, p an odd prime.

(i) (density) The space L2(E) has an orthogonal basis of exponentials indexed by A if and only if
|E | = |A| and Ê(a− a′)= 0 for all distinct a, a′ ∈ A.

(ii) If E ⊂ Zd
p is spectral and |E |> pd−1 then E = A = Zd

p.

(iii) (divisibility) If E ⊂ Zd
p is spectral, then |E | is 1 or a multiple of p.

(iv) (Fuglede conjecture in Z2
p) A set E ⊂ Z2

p is a spectral set if and only if E tiles Z2
p by translation.

We note that the Fuglede conjecture holds trivially also in Z1
p, as a tiling set E must have |E | divide p

and thus must be a point or the whole space, and hence is also a spectral set. Conversely, a spectral set E
must have size 1 or a multiple of p by the divisibility condition of the theorem above, and so also is either
a point or the whole space, and hence is a tiling set. We also note the results of the theorem above also
hold for p = 2 but we choose to focus on the odd prime case in the rest of the paper. Parts (i)–(iii) extend
with no difficulty and indeed imply |E | ∈ {1, 2, 4} if E is either a spectral set or a tiling set. As sets of
size 2 are lines, which are both tiling sets and spectral sets, (iv) follows also.

2. Basic properties of spectra

Lemma 2.1. Suppose that L2(E) has an orthogonal basis of exponentials and

f : Zd
p→ C.

Then the coefficients are given by

ca( f )= |E |−1
∑
x∈E

χ(−x · a) f (x).
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To prove this, observe that if f (x)=
∑

a∈A χ(x · a)ca for x ∈ E, then

|E |−1
∑
x∈E

χ(−x · a) f (x)= |E |−1
∑
x∈E

∑
b∈A

χ(−x · (a− b))cb( f )

= |E |−1
∑
b∈A

∑
x∈E

χ(−x · (a− b))cb( f )= ca( f )

and the proof is complete.

Lemma 2.2 (delta function). Suppose that L2(E) has an orthogonal basis of exponentials with the
spectrum A. Let δ0(x)= 1 if x = E0 and 0 otherwise and suppose E0 ∈ E. Then

δ0(x)= |E |−1
∑
a∈A

χ(x · a).

To prove the lemma, observe that if f (x)= δ0(x), then

ca( f )= |E |−1
∑
x∈E

χ(−x · a)δ0(x)= |E |−1.

The conclusion follows from Lemma 2.1.

Lemma 2.3 (Parseval). Suppose that L2(E) has an orthogonal basis of exponentials and f is any function
on Zd

p with values in C. Then ∑
a∈A

|ca( f )|2 = |E |−1
∑
x∈E

| f (x)|2.

Lemma 2.4 (density). Suppose that L2(E) has an orthogonal basis of exponentials with the spectrum A.
Then |E | = |A|.

The set of functions {χ(x ·a) :a∈ A} is, by completeness, a spanning set for L2(E) and, by orthogonality,
a linearly independent set for L2(E) and hence is a basis for L2(E). Thus the cardinality of this set,
which is |A|, is equal to the dimension of L2(E), which is |E |.

3. Proof of Theorem 1.3

Part (i) of Theorem 1.3 follows easily, as we have seen that if (E, A) is a spectral pair then |E | = |A|
and since the orthogonality property can be easily rewritten as Ê(a − a′) = 0 for all a 6= a′, with
a, a′ ∈ A. Conversely if (E, A) has the last two properties, it is a spectral pair, as orthogonality implies
{χ(x · a) : a ∈ A} is linearly independent in L2(E) and |A| = |E | ensures it is a basis and hence that
completeness is satisfied.

Definition 3.1 [Iosevich et al. 2011]. We say that two vectors x and x ′ in Zd
p point in the same direction

if there exists t ∈ F∗q such that x ′ = t x . Here F∗q denotes the multiplicative group of Zp. Writing this
equivalence as x ∼ x ′, we define the set of directions as the quotient

D(Zd
p)= Zd

p/∼ . (3-1)
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Similarly, we can define the set of directions determined by E ⊂ Zd
p by

D(E)= E − E/∼, (3-2)

where
E − E = {x − y : x, y ∈ E},

with the same equivalence relation ∼ as in (3-1) above.

The following result, which is one of the two key tools in the proof of our main result, was previously
established in [Iosevich et al. 2011].

Theorem 3.2. A set E does not determine all directions if and only if there is a hyperplane H and S ⊆ H
such that E is the graph of a function f : S→Zp over H, which means that relative to some decomposition
Zd

p = H ⊕Zp, we have E = {(x, f (x)) : x ∈ S}. In particular, if |E |> pd−1, every possible direction is
determined by E.

The second main tool in our proof is the following result.

Theorem 3.3 [Haessig et al. 2015, Proposition 3.2]. Let E ⊂ Zd
p. Then Ê(m)= 0 implies that Ê(rm)= 0

for all r ∈ Z∗p. Furthermore Ê(m)= 0 for m 6= 0 if and only if E is equidistributed on the p hyperplanes
Ht = {x : x ·m = t} for t ∈ Zp in the sense that∑

x ·m=t

E(x)= |E ∩ Ht |,

viewed as a function of t , is constant.

Note this last theorem is a fact about rational-valued functions over prime fields that is not true for
complex-valued functions in general or over other fields. We give the proof of Theorem 3.3 at the end of
the paper for the sake of completeness.

The proof of part (ii) of Theorem 1.3 follows fairly easily from combining Theorems 3.2 and 3.3.
Indeed, suppose that L2(E) has an orthogonal basis of exponentials and |E | > pd−1. By Lemma 2.4,
|E | = |A|> pd−1. By Theorem 3.2, D(A)= D(Zd

p). Combining this with Theorem 3.3 implies that Ê
vanishes on Zd

p \
E0. It follows that E = Zd

p, as claimed.
Part (iii) of Theorem 1.3 is contained in the following result. A spectral pair is called trivial if

(E, A) = (point, another point) or (E, A) = (Zd
p,Zd

p) or (E, A) = (∅,∅). All other spectral pairs are
called nontrivial.

Proposition 3.4. Let p be an odd prime and (E, A) be a nontrivial spectral pair in Zd
p. Then |E | = |A| =

mp, where m ∈ {1, 2, 3, . . . , pd−2
}.

To prove Proposition 3.4, let (E, A) be a nontrivial spectral pair in Zd
p. Then part (i) of Theorem 1.3

shows that |E | = |A| and Ê(a− a′)= 0 for distinct a, a′ ∈ A. Since the spectral pair (E, A) is nontrivial,
2 ≤ |E | = |A| ≤ pd−1 also. Thus taking two distinct elements a, a′ ∈ A shows that Ê(α) = 0 for
α = a− a′ 6= 0. Thus E is equidistributed on the p parallel hyperplanes

Ht = {x : x ·α = t},
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t ∈ Zp, by Theorem 3.3. Thus if E has m ≥ 1 elements per hyperplane we have |E | = |A| = mp. Then
1≤ m ≤ pd−2 since 0< |E | ≤ pd−1. This proves part (iii) of Theorem 1.3.

Observe that if d = 2 and (E, A) is a nontrivial spectral pair, then |E | = |A| = mp implies |E | ≥ p,
while |E | ≤ p by part (ii) of Theorem 1.3 and so |E | = |A| = p. Furthermore, by Theorem 3.2 above, A
is a graph of a function Zp→ Zp since |A| = p and it does not determine all directions. Finally, since E
is equidistributed on a family of p parallel lines and |E | = p, we see that E is also a graph of a function
Zp→Zp with respect to some system of axes. The following is an immediate corollary of Proposition 3.4.

Corollary 3.5. If E is a spectral set in Z2
p, p an odd prime, then E is either a point, a graph set of order p

or the whole space and hence tiles Z2
p in all cases.

This corollary follows from Proposition 3.4 immediately once one notes that any graph set

E = {(x, f (x)) : x ∈ Zp}

for a function f , with respect to some coordinate systems, tiles Z2
p using the tiling partner

A = {(0, t) : t ∈ Zp}.

To complete the proof of the Fuglede conjecture in two dimensions over prime fields, which is the
content of part (iv) of Theorem 1.3, it remains to show that any tiling set is spectral since we have just
shown that any spectral set tiles.

Proposition 3.6 (sets which tile by translation are spectral). Let p be an odd prime, and let E ⊆ Z2
p.

Suppose that E tiles Z2
p by translation. Then E is a spectral set.

We shall need the following result. We shall prove it at the end of the paper for the sake of completeness.

Theorem 3.7 [Haessig et al. 2015, Theorem 1.7]. Let E be a set that tiles Z2
p. Then |E | = 1, p or p2 and

E is a graph if |E | = p.

We include a proof of Theorem 3.7 at the end of this paper for completeness.
The cases |E | = 1, p2 are trivially spectral sets so we may reduce to the case that E is a graph, i.e.,

E = {xe1+ f (x)e2 : x ∈ Zp},

where e1, e2 is a basis for Z2
p and f : Zp→ Zp is a function. By changing the function if necessary we

can assume e2 is orthogonal to e1 as long as e1 · e1 6= 0, i.e., e1 does not generate an isotropic line. This is
always the case if p ≡ 3 mod 4. In the case when p ≡ 1 mod 4, it is possible that e1 generates one of the
two isotropic lines

{(t, i t) : t ∈ Zp},

where i is one of the two distinct solutions of the equation x2
+1=0. The reason this case needs to be treated

separately is that (t1, i t1)·(t2, i t2)= 0 for all t1, t2 ∈Zp. To deal with this, we note that the other solution of
the equation x2

+1= 0 is given by−i and we take e2 to be on the other isotropic line in the plane, given by

{(t,−i t) : t ∈ Zp},

with e2 normalized so that e1 · e2 = 1.
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There are two situations to consider.

Case 1: e1 and e2 are orthogonal. Then we will take A= {xe1 : x ∈ Zp}. To show that (E, A) is a spectral
pair, we need only show that the set {χ(ae1 · x) : a ∈ Zp} is orthogonal in L2(E). By Theorem 3.3 this
happens if and only if Ê((a − a′)e1) = 0 for all distinct a, a′ ∈ Zp, which happens if and only if E
equidistributes on the p parallel lines normal to e1, i.e., on the p parallel lines of constant e1-coordinate
in the (e1, e2)-grid. This is clearly the case as E is a graph over the e1-coordinate and hence has exactly
one element on each of these parallel lines, so this case is proven.

Case 2: e1 and e2 generate the two isotropic lines in Z2
p, p = 1 mod 4. In this case e1 · e2 6= 0 but

e1 · e1 = e2 · e2 = 0. Since E is equidistributed along the p parallel lines of constant e1-coordinate, it is
easy to see that these are the same family of lines as Ht = {x : x · e2 = t}, t ∈Zp. Thus in this case using
A = {ae2 : a ∈ Zp} we find that Ê((a− a′)e2)= 0 for distinct a, a′ ∈ Zp and so (E, A) is a spectral pair.
Thus E is still spectral in this case and the theorem is proven in all cases.

4. Proof of Theorem 3.3

We include the proof of Theorem 3.3 for the sake of completeness. We have

Ê(m)= p−d
∑
x∈Zd

p

χ(−x ·m)E(x)= 0

for some m 6= (0, . . . , 0). Let ξ = χ(−1) = e−2π i/p. Note that ξ is a primitive p-th root of unity. It
follows that

0=
∑
x∈Zd

p

ξ x ·m E(x)=
∑
t∈Zp

ξ t
∑

x ·m=t

E(x).

Let
n(t)=

∑
x ·m=t

E(x) ∈Q,

so ∑
t∈Zp

ξ t n(t)= 0.

This means that ξ is a root of the rational polynomial

P(u)=
p−1∑
t=0

n(t)ut.

The minimal polynomial of ξ , over Q, is

Q(u)= 1+ u+ · · ·+ u p−1,

so by elementary Galois theory, P(u) is a constant multiple of Q(u) since ξ is a root of the rational
polynomial P and Q is the minimal polynomial of ξ . It follows that the coefficients of n(t) are independent
of t . This proves the second assertion of Theorem 3.3, namely that E is equidistributed on the hyperplanes
Ht = {x ∈ Zd

p : x ·m = t}.
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Let us now prove that if Ê(m)= 0 for some m 6= (0, . . . , 0), then Ê(rm)= 0 for all r 6= 0. We have∑
x∈Zd

p

χ(−x · rm)E(x)=
∑
t∈Zp

ξ t
∑

x ·rm=t

E(x)=
∑
t∈Zp

ξ t
∑

x ·m=tr−1

E(x)=
∑
t∈Zp

ξ t n(r−1t).

For a fixed r , it follows from above that n(r−1t) is independent of t . Therefore∑
t∈Zp

ξ t n(r−1t)=
∑
t∈Zp

ξ t n(t)= 0

and the proof of the claim follows. This completes the proof of Theorem 3.3.
Note the proof above generalizes to rational-valued functions but not to real- or complex-valued

functions. The reason is that over R or C, a polynomial that ξ is a root of need not be a multiple of
1+ x + x2

+ · · ·+ x p−1; for example, P(x)= x − ξ or P(x)= (x − ξ)(x − ξ̄ )= x2
− 2 cos(2π/p)+ 1.

5. Proof of Theorem 3.7

Let A denote the set that tiles E. Note that |E ||A|= p2, so |E |=1, p or p2. If |E |=1 then E is a point and
we are done. If |E |= p2 then E is the whole plane and we are done, so without loss of generality let |E |= p.

If Ê(m) never vanishes then E is a point and we are done. On the other hand if Ê(m)= 0 for some
nonzero m, then it vanishes on L , the line passing through the origin and m 6= E0 . Thus if we set L⊥ to be
the line through the origin, perpendicular to m, we see that

L̂⊥(s)Ê(s)= 0

for all nonzero s. This is because by a straightforward calculation

L̂⊥(s)= q−(d−1)L(s).

Since |L⊥| = p = |E | we then see that E tiles F2
p by L⊥.

Since Ê(m) = 0 for some nonzero vector m, we see that E is equidistributed on the set of p lines
Ht = {x : x ·m= t}, t ∈Fp. Since |E | = p this means there is exactly one point of E on each of these lines.

We will now choose a coordinate system in which E will be represented as a graph of a function. The
coordinate system will either be an orthogonal system or an isotropic system depending on the nature of
the vector m. There are two cases to consider.

Case 1: m ·m 6= 0: We may set e1 = m and e2 a vector orthogonal to m. Now {e1, e2} is an orthogonal
basis because e2 does not lie on the line through m, as this line is not isotropic. If we take a general vector
hx = x1e1+ x2e2 we see that hx ·m = x1(m ·m) and so the lines Ht , t ∈ Fp, are the same as the lines of
constant x1-coordinate with respect to this orthogonal basis {e1, e2}. Thus there is a unique value of x2

for any given value of x1 so that x1e1+ x2e2 ∈ E. Thus E = {x1e1+ f (x1)e2 : x1 ∈ Zp} = Graph( f ) for
some function f : Fp→ Zp.

Case 2: m ·m = 0: We may set e1 =m. In this case any vector orthogonal to e1 lies on the line generated
by e1 and so cannot be part of a basis with e1. Instead we select e2 off the line generated by e1 and scale
it so that e1 · e2 = 1. Then by subtracting a suitable multiple of e1 from e2 one can also ensure e2 · e2 = 0.
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Thus {e1, e2} is a basis consisting of two linearly independent isotropic vectors. With respect to this basis,
the dot product is represented by the matrix

A =

[
0 1
1 0

]
,

which exhibits the plane as the hyperbolic plane. This case can only occur when p = 1 mod 4.

Note when we express a general vector x = x1e1+ x2e2 with respect to this basis we have x ·m = x2;
thus the lines {Ht : t ∈ Zp} are the same as the lines of constant x2-coordinate with respect to this basis
and E has a unique point on each of these lines. Thus E = { f (x2)e1+ x2e2 : x2 ∈ Zp} = Graph( f ) is a
graph with respect to this isotropic coordinate system.

Finally we note any function f : Zp→ Fp is given by a polynomial of degree at most p− 1, explicitly
expressed in the form

f (x)=
∑
k∈Zp

f (k)
5 j 6=k(x − j)
5 j 6=k(k− j)

.
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