ANALYSIS & PDEVolume 10No. 52017

YI HUANG

CONICAL MAXIMAL REGULARITY FOR ELLIPTIC OPERATORS VIA HARDY SPACES

CONICAL MAXIMAL REGULARITY FOR ELLIPTIC OPERATORS VIA HARDY SPACES

YI HUANG

We give a technically simple approach to the maximal regularity problem in parabolic tent spaces for second-order, divergence-form, complex-valued elliptic operators. By using the associated Hardy space theory combined with certain L^2 - L^2 off-diagonal estimates, we reduce the tent space boundedness in the upper half-space to the reverse Riesz inequalities in the boundary space. This way, we also improve recent results obtained by P. Auscher et al.

1.	Introduction	1081
2.	Elliptic operators and Hardy spaces	1083
3.	Proof of Theorem 1.1	1084
Acknowledgements		1087
References		1087

1. Introduction

Let \mathbb{R}^{1+n}_+ be the upper half-space $\mathbb{R}_+ \times \mathbb{R}^n$ with $\mathbb{R}_+ = (0, \infty)$ and $n \in \mathbb{N}_+ = \{1, 2, ...\}$. Define the tent space T_{par}^p , $n/(n+1) , as the space of all locally square-integrable functions on <math>\mathbb{R}^{1+n}_+$ such that

$$\|F\|_{T^{p}_{\text{par}}} := \left(\int_{\mathbb{R}^{n}} \left(\iint_{\mathbb{R}^{1+n}_{+}} \frac{\mathbf{1}_{B(x, t^{1/2})}(y)}{t^{n/2}} |F(t, y)|^{2} dt \, dy \right)^{p/2} dx \right)^{1/p} < \infty.$$
(1)

The scale T_{par}^{p} , n/(n+1) , is a parabolic analogue of the tent spaces introduced by R. R. Coifman, Y. Meyer and E. M. Stein [Coifman et al. 1985].

Let A = A(x) be an $n \times n$ matrix of complex L^{∞} coefficients, defined on \mathbb{R}^n , and satisfying the ellipticity (or "accretivity") condition

$$\lambda |\xi|^2 \le \operatorname{Re} A\xi \cdot \overline{\xi} \quad \text{and} \quad |A\xi \cdot \overline{\zeta}| \le \Lambda |\xi| |\zeta|$$

$$\tag{2}$$

for $\xi, \zeta \in \mathbb{C}^n$ and for some λ and Λ such that $0 < \lambda \leq \Lambda < \infty$. Let

$$L := -\operatorname{div} A \nabla$$

MSC2010: primary 42B37; secondary 47D06, 42B35, 42B20.

Keywords: maximal regularity operators, tent spaces, elliptic operators, Hardy spaces, off-diagonal decay, maximal L^p -regularity.

(its precise definition will be recalled in next section). Consider the associated forward maximal regularity operator M_L^+ given by

$$M_L^+(F)_t := \int_0^t L e^{-(t-s)L} F_s \, ds, \tag{3}$$

originally defined on $F \in L^2(\mathbb{R}_+; D(L))$. Here D(L) is the domain of L in $L^2(\mathbb{R}^n)$ and $F_s = F(s, \cdot)$. By a classical result of L. de Simon [1964], M_L^+ extends to a bounded operator on $L^2(\mathbb{R}_+; L^2(\mathbb{R}^n))$. By Fubini's theorem,

$$T_{\rm par}^2(\mathbb{R}^{1+n}_+) \simeq L^2(\mathbb{R}^n; L^2(\mathbb{R}_+)).$$
 (4)

For *p* different from 2, the analogous equivalence of (4) between $T_{par}^{p}(\mathbb{R}^{1+n}_{+})$ and $L^{p}(\mathbb{R}^{n}; L^{2}(\mathbb{R}_{+}))$ breaks down. We shall refer to the maximal regularity (namely, the boundedness of M_{L}^{+}) in T_{par}^{p} as *conical* maximal regularity for the reason that (parabolic) *cones* are involved in defining tent spaces in (1).

The maximal regularity operator M_L^+ is a typical example of singular integral operators with operatorvalued kernels. Let $1 \le p \le 2$. Let

$$dist(E, E') := \inf\{|x - y| : x \in E, y \in E'\}.$$

We shall say that a class of uniformly $L^2 = L^2(\mathbb{R}^n)$ bounded kernels $\{T(t)\}_{t>0}$ satisfies the $L^p - L^2$ off-diagonal decay with some order $M \in \mathbb{N}_+$ if we have

$$\|\mathbf{1}_{E'}T(t)\mathbf{1}_{E}f\|_{L^{2}} \lesssim t^{-(n/2)(1/p-1/2)} \left(1 + \frac{\operatorname{dist}(E, E')^{2}}{t}\right)^{-M} \|\mathbf{1}_{E}f\|_{L^{p}}$$
(5)

for all Borel sets $E, E' \subset \mathbb{R}^n$, all t > 0 and all $f \in L^p \cap L^2$. We shall say $\{T(t)\}_{t>0}$ satisfies the $L^p - L^2$ off-diagonal decay if it satisfies the $L^p - L^2$ off-diagonal decay with any order $M \in \mathbb{N}_+$. Denote by $p_- = p_-(L)$ the infimum of p for which the heat semigroup $\{e^{-tL}\}_{t>0}$ satisfies the $L^p - L^2$ off-diagonal decay. Define the index

$$(p_{-})_{*} := \frac{np_{-}}{n+p_{-}}.$$
 (6)

For $L = -\Delta = -\operatorname{div} \nabla$, one has $p_- = 1$ and $1_* = n/(n+1)$.

Our main result in this letter reads as follows.

Theorem 1.1. Let $L = -\operatorname{div} A\nabla$ with A satisfying (2) and p_- defined as in (6). Then for $p \in ((p_-)_*, 2]$, the maximal regularity operator M_L^+ defined as in (3) extends to a bounded operator on T_{par}^p .

We end the introduction with several remarks.

Remark 1.2. Under the assumption $(p_{-})_* < 1$, Theorem 1.1 was first proved by Auscher et al. [2012a, Theorem 3.1] (with m = 2, $\beta = 0$ and q close to p_{-} in their statement). Indeed, we note that $(p_{-})_* < 1$ is equivalent to $(p_{-})' > n$, where $(p_{-})'$ is the dual exponent of p_{-} . A threshold condition essentially the same as $(p_{-})' > n$ is used in [Auscher et al. 2012a].

A general framework of singular integral operators on tent spaces is also presented by Auscher et al. [2012a]. Their method is heavily based on the L^p - L^2 off-diagonal decay of the family $\{tLe^{-tL}\}_{t>0}$

1082

for $p \in (p_-, 2)$. Note that they already improved the previous result in [Auscher et al. 2012b], the T_{par}^p -boundedness of M_L^+ for $p \in (2_*, 2]$, which assumes $L^2 - L^2$ off-diagonal decay only.

Here we shall give a technically simple approach to Theorem 1.1 by using the well-established *L*-associated Hardy space theory combined (mainly) with L^2-L^2 off-diagonal decay of $\{tLe^{-tL}\}_{t>0}$.

Remark 1.3. The motivation of the reduction scheme

(operator theory on tent spaces) \rightarrow (Hardy space theory),

which is involved in our proof of Theorem 1.1, comes from the study of conical maximal regularity (in elliptic tent spaces) for first-order perturbed Dirac operators [Huang 2015, Chapter 5]. Furthermore, the motivation of considering such conical (elliptic) maximal regularity estimates is suggested by their applications to boundary-value elliptic problems (see [Auscher and Axelsson 2011] for example). In the parabolic case, the conical maximal regularity results have already proven to be useful in various settings (see for example [Auscher et al. 2014; Auscher and Frey 2015]).

Remark 1.4. Though the singularity of the integral operator M_L^+ is at s = t, the most involved part turns out to be the estimation of tent space norms when $s \to 0$. For more explanations concerning the "singularity" pertaining to singular integral operators and maximal regularity operators on tent spaces, see [Auscher et al. 2012a, Remark 3.6; Auscher and Frey 2015, Remark 5.23].

Remark 1.5. Theorem 1.1 also extends to higher order elliptic operators. Then one changes correspondingly the homogeneity of tent spaces and off-diagonal decay in (5). We leave this issue to the interested reader.

2. Elliptic operators and Hardy spaces

We give some preliminary materials needed in the proof of Theorem 1.1.

Let A satisfy (2). We define the divergence-form elliptic operator

$$Lf := -\operatorname{div}(A\nabla f),$$

which we interpret in the sense of maximal-accretive operators via a sesquilinear form. That is, D(L) is the largest subspace contained in $W^{1,2}$ for which

$$\left| \int_{\mathbb{R}^n} A \nabla f \cdot \nabla g \right| \le C \|g\|_2$$

for all $g \in W^{1,2}$, and we set Lf by

$$\langle Lf,g\rangle = \int_{\mathbb{R}^n} A\nabla f \cdot \overline{\nabla g}$$

for $f \in D(L)$ and $g \in W^{1,2}$. Thus defined, L is a maximal-accretive operator on L^2 and D(L) is dense in $W^{1,2}$. Furthermore, L has a square root, denoted by $L^{1/2}$ and defined as the unique maximal-accretive operator such that

$$L^{1/2}L^{1/2} = L \tag{7}$$

as unbounded operators [Kato 1976, p. 281].

For *L* as formulated above, the development of an *L*-associated Hardy space theory was taken in [Hofmann and Mayboroda 2009] (and independently in [Auscher et al. 2008] in a different geometric setting), in which the authors considered the model case $H_L^1(\mathbb{R}^n)$. In presence of pointwise heat kernel bounds, see [Duong and Yan 2005]. The definition of H_L^1 given in [Hofmann and Mayboroda 2009; Auscher et al. 2008] can be extended immediately to n/(n + 1) [Hofmann et al. 2011]. To this end, consider the (conical) square function associated with the heat semigroup generated by*L*

$$S_L(f)(x) := \left(\iint_{\Gamma(x)} |t^2 L e^{-t^2 L} f(y)|^2 \frac{dt \, dy}{t^{1+n}} \right)^{1/2}, \quad x \in \mathbb{R}^n$$

where, as usual,

$$\Gamma(x) = \{(t, y) \in \mathbb{R}^{1+n}_+ : |x - y| < t\}$$

is a nontangential cone with vertex at $x \in \mathbb{R}^n$. As in [Hofmann and Mayboroda 2009; Hofmann et al. 2011], we define $H_L^p(\mathbb{R}^n)$ for n/(n+1) as the completion of

$$\{f \in L^2(\mathbb{R}^n) : S_L(f) \in L^p(\mathbb{R}^n)\}$$

in the quasinorm

$$||f||_{H^{p}_{I}(\mathbb{R}^{n})} := ||S_{L}(f)||_{L^{p}(\mathbb{R}^{n})}$$

We will not get into the dual side (p > 2) of the Hardy space theory.

For L^2 - L^2 off-diagonal decay related to $\{e^{-sL}, sLe^{-sL}, \sqrt{s}\nabla e^{-sL}\}_{s>0}$, and other holomorphic functions of L (for example $(I - e^{-sL})^{\sigma}$ with $\sigma > 0$), we refer to Chapter 2 of the memoir [Auscher 2007].

3. Proof of Theorem 1.1

Note that the extension of M_L^+ will be divided into two steps: first from $F \in L^2(\mathbb{R}_+; D(L))$ to T_{par}^2 and then for $n/(n+1) from <math>T_{\text{par}}^2 \cap T_{\text{par}}^p$ to T_{par}^p .

First we split the operator M_L^+ : for $\ell \in \mathbb{N}_+$ large, set

$$\boldsymbol{R}_{L}^{\ell} := \boldsymbol{M}_{L}^{+} - \boldsymbol{V}_{L}^{\ell}, \tag{8}$$

where for $F \in L^2(\mathbb{R}_+; \boldsymbol{D}(L))$ the singular part \boldsymbol{R}_L^{ℓ} is given formally by

$$\mathbf{R}_{L}^{\ell}(F)_{t} = \int_{0}^{t} L e^{-(t-s)L} (I - e^{-2sL})^{\ell} F_{s} \, ds \tag{9}$$

and the regular part is defined by

$$V_L^{\ell} = \sum_{k=1}^{\ell} {\ell \choose k} V_{L,k}$$

with

$$V_{L,k}(F)_t := \int_0^t L e^{-(t+(2k-1)s)L} F_s \, ds, \quad t \in \mathbb{R}_+.$$

For the above binomial sum V_L^{ℓ} , it suffices to consider $V_L := V_{L,1}$.

Let $2\mathbb{N}_+ = \{2, 4, \dots\}$. We make the following observation.

1084

Lemma 3.1. For $\ell \in 2\mathbb{N}_+$ and $\frac{1}{2}\ell > \frac{1}{2} + \frac{1}{4}n$, the operator \mathbf{R}_L^ℓ , as given in (9) through (8), extends to a bounded operator on T_{par}^p for any n/(n+1) .

Proof. The T_{par}^2 -boundedness is de Simon's theorem plus the uniform L^2 -boundedness of $\{(I - e^{-2sL})^\ell\}_{s>0}$. By interpolation it suffices to consider n/(n+1) , and this follows from Lemmata 3.4 and 3.5 of [Auscher et al. 2012a] in the particular case <math>m = 2, $\beta = 0$ and q = 2.¹ Indeed, first we can decompose the operator \mathbf{R}_L^ℓ as in [Auscher et al. 2012a] in the way

$$\mathbf{R}_{L}^{\ell}(F)_{t} = \int_{t/2}^{t} Le^{-(t-s)L} (I - e^{-2sL})^{\ell} F_{s} \, ds + \int_{0}^{t/2} Le^{-(t-s)L} (I - e^{-2sL})^{\ell} F_{s} \, ds =: I + II.$$

Here we view $\mathcal{T}_1 = \{(I - e^{-2sL})^\ell\}_{s>0}$ as an operator on T_{par}^p given by

$$\mathcal{T}_1: F \mapsto \mathcal{T}_1(F)_s := (I - e^{-2sL})^\ell F_s$$

with the similar interpretation for $\mathcal{T}_2 = \{(I - e^{-2sL})^{\ell} / (sL)^{\ell/2}\}_{s>0}$ in

$$Le^{-(t-s)L}(I-e^{-2sL})^{\ell} = \left(\frac{s}{t-s}\right)^{\ell/2} L((t-s)L)^{\ell/2} e^{-(t-s)L} \frac{(I-e^{-2sL})^{\ell}}{(sL)^{\ell/2}}$$

Note that $t - s \sim t$ when s < t/2. Therefore, to obtain the T_{par}^{p} -boundedness of \mathbf{R}_{L}^{ℓ} for $n/(n+1) , we can use Lemma 3.4 of [Auscher et al. 2012a] together with the <math>T_{par}^{p}$ -boundedness of \mathcal{T}_{1} to estimate I and use Lemma 3.5 of [Auscher et al. 2012a] together with the T_{par}^{p} -boundedness of \mathcal{T}_{2} to estimate II. The latter tent space boundedness results on \mathcal{T}_{i} , i = 1, 2, are implied by their $L^{2}-L^{2}$ off-diagonal decay with order at least $\frac{1}{2}\ell$, which satisfies the condition

$$\frac{\ell}{2} > \frac{1}{2} + \frac{n}{4} = \frac{n}{2} \left(\frac{1}{n/(n+1)} - \frac{1}{2} \right).$$

This implication can be easily verified via the extrapolation method on tent spaces through atomic decompositions. Note that we also need the condition $\frac{1}{2}\ell > \frac{1}{2} + \frac{1}{4}n$ in $(s/(t-s))^{\ell/2} \sim (s/t)^{\ell/2}$ when applying Lemma 3.5 of [Auscher et al. 2012a].

Next we rewrite the operator V_L in the following way:

$$V_L(F)_t = -\widetilde{V}_L(F)_t + I_L(F)_t, \quad t \in \mathbb{R}_+,$$
(10)

where for $F \in L^2(\mathbb{R}_+; \boldsymbol{D}(L))$ the backward part \widetilde{V}_L is defined by

$$\widetilde{V}_L(F)_t := \int_t^\infty L e^{-(t+s)L} F_s \, ds, \quad t \in \mathbb{R}_+, \tag{11}$$

and the trace part I_L is defined by

$$I_L(F)_t := \int_0^\infty L e^{-(t+s)L} F_s \, ds = \sqrt{L} e^{-tL} \int_0^\infty \sqrt{L} e^{-sL} F_s \, ds.$$

We used the square root property $\sqrt{L}\sqrt{L} = L$ recalled in (7).

¹We point out that one can also prove this lemma by adapting directly the arguments for Lemma 3.4 of [Auscher et al. 2012a] (see [Huang 2015] for details).

Lemma 3.2. The integral operator \widetilde{V}_L as given in (11) extends to a bounded operator on T_{par}^p for any n/(n+1)

Proof. This is a consequence of a more general claim by Auscher et al. [2012a, Proposition 3.7], again corresponding to the case m = 2, $\beta = 0$ and q = 2. Indeed, [Auscher et al. 2012a, Proposition 3.7] deals with a counterpart to M_L^+ , namely the backward maximal regularity operator

$$\boldsymbol{M}_{L}^{-}(F)_{t} := \int_{t}^{\infty} L e^{-(s-t)L} F_{s} \, ds,$$

where $F \in L^2(\mathbb{R}_+; \boldsymbol{D}(L))$, and they use the splitting

$$M_L^{-}(F)_t = \int_t^{2t} Le^{-(s-t)L} F_s \, ds + \int_{2t}^{\infty} Le^{-(s-t)L} F_s \, ds =: \text{III} + \text{IV}.$$

We only need to use those arguments in proving [Auscher et al. 2012a, Proposition 3.7] with IV involved since $s - t \sim s$ when s > 2t, which is equivalent to $s + t \sim s$ when s > t in our setting. We omit the details.

Now we use the *L*-associated Hardy spaces, which we recalled in Section 2, to treat the trace part I_L . First, from the conical square function estimates [Hofmann et al. 2011, Proposition 4.9], one has, for n/(n+1) ,

$$\left\|\sqrt{L}e^{-tL}\int_0^\infty \sqrt{L}e^{-sL}F_s\,ds\right\|_{T_{\text{par}}^p} \lesssim \left\|\int_0^\infty \sqrt{L}e^{-sL}F_s\,ds\right\|_{H_L^p}$$

for $F \in L^2(\mathbb{R}_+; D(L))$. Next, from the reverse Riesz inequalities [Hofmann et al. 2011, Proposition 5.17], one has, for $p \in ((p_-)_*, 2]$,

$$\|\sqrt{L}f\|_{H^p_L} \lesssim \|\nabla f\|_{H^p}$$

for $f \in L^2$; hence, one further has, for $p \in ((p_-)_*, 2]$,

$$\left\|\int_0^\infty \sqrt{L}e^{-sL}F_s\,ds\right\|_{H^p_L}\lesssim \left\|\int_0^\infty \nabla e^{-sL}F_s\,ds\right\|_{H^p}.$$

Here, as usual, we use the convention $H^p = L^p$ for $p > 1.^3$

For $F \in T_{par}^2$, consider the sweeping operator

$$\pi_L(F) := \int_0^\infty \nabla e^{-sL} F_s \, ds$$

An equivalent formulation of the Kato square root estimate for L^* [Auscher et al. 2002] is the square function estimate

$$\iint_{\mathbb{R}^{1+n}_+} |e^{-tL^*} \operatorname{div} \vec{F}(y)|^2 \, dt \, dy \lesssim \|\vec{F}\|_2^2$$

²As we will see in the proof, the lemma also holds for any 0 . But that does not help in proving Theorem 1.1.

³We remark that in [Auscher and Frey 2015, Lemma 5.21] a variant of I_L is treated in a similar way, with informative connections to the Hardy space theory associated with the first-order perturbed Dirac operators as alluded to in Remark 1.3.

for all $\vec{F} \in L^2(\mathbb{R}^n; \mathbb{C}^n)$; hence, the mapping given by

$$\mathbb{Q}_{L^*}: \vec{F} \mapsto \mathbb{Q}_{L^*}(\vec{F})(t, y) := (e^{-tL^*} \operatorname{div} \vec{F})(y)$$

is bounded from $L^2(\mathbb{R}^n; \mathbb{C}^n)$ to T^2_{par} . Thereby, we see that $\pi_L : T^2_{\text{par}} \to L^2$ is a bounded operator by duality with \mathbb{Q}_{L^*} .

Recall that a T_{par}^{p} -atom A supported in the parabolic Carleson cylinder

$$\operatorname{Cyl}(B) := (0, r_B^2) \times B$$

for some ball $B \subset \mathbb{R}^n$ (with radius r_B) satisfies the size estimate

$$\|A\|_{T^2_{\text{par}}} \le |B|^{-(1/p-1/2)}.$$
(12)

We have the following result on π_L .

Lemma 3.3. For any $n/(n+1) and any <math>T_{par}^p$ -atom A with supp $A \subset Cyl(B)$ for some ball $B \subset \mathbb{R}^n$ (with radius r_B),

$$m := \pi_L(A) = \int_0^{r_B^2} \nabla e^{-sL} A_s \, ds$$

satisfies the uniform estimate

 $\|m\|_{H^p} \lesssim 1. \tag{13}$

Hence, π_L *extends to a bounded operator from* T_{par}^p *to* H^p *for* n/(n+1) .

Proof. For $m = \pi_L(A)$ with A being T_{par}^p -atoms, $n/(n+1) , and by adapting [Coifman et al. 1983, Théorème 3; 1985, Theorem 6], (13) follows from the <math>L^2 - L^2$ off-diagonal decay for the heat semigroup $\{e^{-sL}\}_{s>0}$ and the gradient family $\{\sqrt{s}\nabla e^{-sL}\}_{s>0}$, the size estimate (12) and the Coifman–Weiss molecular theory for H^p . Then for $n/(n+1) , <math>\pi_L$ extends to a bounded operator from T_{par}^p to H^p for n/(n+1) .

With the splittings (8) and (10), together with the conditions $\ell \in 2\mathbb{N}_+$ and $\frac{1}{2}\ell > \frac{1}{2} + \frac{1}{4}n$, and using Lemmata 3.1, 3.2 and 3.3 in order, the proof of Theorem 1.1 (with $p \in ((p_-)_*, 2])$ is then concluded.

Acknowledgements

This research is supported in part by the Agence Nationale de la Recherche project "Harmonic Analysis at its Boundaries", ANR-12-BS01-0013-01. I am indebted to my Ph.D. advisor Pascal Auscher, who motivated me to work on this subject.

References

[[]Auscher 2007] P. Auscher, On necessary and sufficient conditions for L^p -estimates of Riesz transforms associated to elliptic operators on \mathbb{R}^n and related estimates, Mem. Amer. Math. Soc. 871, Amer. Math. Soc., Providence, RI, 2007.

[[]Auscher and Axelsson 2011] P. Auscher and A. Axelsson, "Weighted maximal regularity estimates and solvability of non-smooth elliptic systems, I", *Invent. Math.* **184**:1 (2011), 47–115.

- [Auscher and Frey 2015] P. Auscher and D. Frey, "On the well-posedness of parabolic equations of Navier–Stokes type with BMO^{-1} data", J. Inst. Math. Jussieu (online publication April 2015).
- [Auscher et al. 2002] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and Ph. Tchamitchian, "The solution of the Kato square root problem for second order elliptic operators on \mathbb{R}^n ", Ann. of Math. (2) **156**:2 (2002), 633–654.
- [Auscher et al. 2008] P. Auscher, A. McIntosh, and E. Russ, "Hardy spaces of differential forms on Riemannian manifolds", J. *Geom. Anal.* **18**:1 (2008), 192–248.
- [Auscher et al. 2012a] P. Auscher, C. Kriegler, S. Monniaux, and P. Portal, "Singular integral operators on tent spaces", *J. Evol. Equ.* **12**:4 (2012), 741–765.
- [Auscher et al. 2012b] P. Auscher, S. Monniaux, and P. Portal, "The maximal regularity operator on tent spaces", *Commun. Pure Appl. Anal.* **11**:6 (2012), 2213–2219.
- [Auscher et al. 2014] P. Auscher, J. van Neerven, and P. Portal, "Conical stochastic maximal L^p -regularity for $1 \le p < \infty$ ", *Math. Ann.* **359**:3–4 (2014), 863–889.
- [Coifman et al. 1983] R. R. Coifman, Y. Meyer, and E. M. Stein, "Un nouvel éspace fonctionnel adapté à l'étude des opérateurs définis par des intégrales singulières", pp. 1–15 in *Harmonic analysis* (Cortona, 1982), edited by F. Ricci and G. Weiss, Lecture Notes in Math. **992**, Springer, Berlin, 1983.
- [Coifman et al. 1985] R. R. Coifman, Y. Meyer, and E. M. Stein, "Some new function spaces and their applications to harmonic analysis", *J. Funct. Anal.* **62**:2 (1985), 304–335.
- [Duong and Yan 2005] X. T. Duong and L. Yan, "Duality of Hardy and BMO spaces associated with operators with heat kernel bounds", *J. Amer. Math. Soc.* **18**:4 (2005), 943–973.
- [Hofmann and Mayboroda 2009] S. Hofmann and S. Mayboroda, "Hardy and BMO spaces associated to divergence form elliptic operators", *Math. Ann.* **344**:1 (2009), 37–116.
- [Hofmann et al. 2011] S. Hofmann, S. Mayboroda, and A. McIntosh, "Second order elliptic operators with complex bounded measurable coefficients in L^p , Sobolev and Hardy spaces", *Ann. Sci. Éc. Norm. Supér.* (4) **44**:5 (2011), 723–800.
- [Huang 2015] Y. Huang, *Operator theory on tent spaces*, Ph.D. thesis, Université Paris-Sud, Orsay, 2015, Available at https:// tel.archives-ouvertes.fr/tel-01350629.
- [Kato 1976] T. Kato, *Perturbation theory for linear operators*, 2nd ed., Grundlehren der math. Wissenschaften **132**, Springer, Berlin, 1976.
- [de Simon 1964] L. de Simon, "Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine", *Rend. Sem. Mat. Univ. Padova* **34** (1964), 205–223.

Received 14 Apr 2016. Accepted 3 Apr 2017.

YI HUANG: yi.huang@njnu.edu.cn

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay, France

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard

patrick.gerard@math.u-psud.fr

Université Paris Sud XI

Orsay, France

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, Fran lebeau@unice.fr	ce András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Clément Mouhot	Cambridge University, UK c mouhot@dpmms cam ac uk		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US \$265/year for the electronic version, and \$470/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/

© 2017 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 10 No. 5 2017

Hardy-singular boundary mass and Sobolev-critical variational problems NASSIF GHOUSSOUB and FRÉDÉRIC ROBERT	1017
Conical maximal regularity for elliptic operators via Hardy spaces YI HUANG	1081
Local exponential stabilization for a class of Korteweg–de Vries equations by means of time- varying feedback laws JEAN-MICHEL CORON, IVONNE RIVAS and SHENGQUAN XIANG	1089
On the growth of Sobolev norms for NLS on 2- and 3-dimensional manifolds FABRICE PLANCHON, NIKOLAY TZVETKOV and NICOLA VISCIGLIA	1123
A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation NORIYOSHI FUKAYA, MASAYUKI HAYASHI and TAKAHISA INUI	1149
Local density approximation for the almost-bosonic anyon gas MICHELE CORREGGI, DOUGLAS LUNDHOLM and NICOLAS ROUGERIE	1169
Regularity of velocity averages for transport equations on random discrete velocity grids NATHALIE AYI and THIERRY GOUDON	1201
Perron's method for nonlocal fully nonlinear equations CHENCHEN MOU	1227
A sparse domination principle for rough singular integrals JOSÉ M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO and YUMENG OU	1255