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We study the minimizers of an energy functional with a self-consistent magnetic field, which describes a
quantum gas of almost-bosonic anyons in the average-field approximation. For the homogeneous gas we
prove the existence of the thermodynamic limit of the energy at fixed effective statistics parameter, and
the independence of such a limit from the shape of the domain. This result is then used in a local density
approximation to derive an effective Thomas–Fermi-like model for the trapped anyon gas in the limit of a
large effective statistics parameter (i.e., “less-bosonic” anyons).
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1. Introduction

A convenient description of two-dimensional particles with exotic quantum statistics (different from
Bose–Einstein and Fermi–Dirac) is via effective magnetic interactions. We are interested in a mean-field
model for such particles, known as anyons. Indeed, in a certain scaling limit (“almost-bosonic anyons”, see
[Lundholm and Rougerie 2015]), a suitable magnetic nonlinear Schrödinger theory becomes appropriate.
The corresponding energy functional is given by

E af
β [u] :=

∫
R2

(∣∣(−i∇ +βA[|u|2]
)
u
∣∣2+ V |u|2

)
, (1-1)

acting on functions u ∈ H 1(R2). Here V : R2
→ R+ is a trapping potential confining the particles, and

the vector potential A[|u|2] : R2
→ R2 is defined through

A[%] := ∇⊥w0 ∗ %, w0(x) := log |x|, (1-2)

for % = |u|2 ∈ L1(R2) and x⊥ = (x, y)⊥ := (−y, x). Thus, the self-consistent magnetic field, given by

curl A[%](x)=1w0 ∗ %(x)= 2π%(x),
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is proportional to the particles’ density. The parameter β ∈ R then regulates the strength of the magnetic
self-interactions and, for reasons explained below, we will call it the scaled statistics parameter. By
symmetry of (1-1) under complex conjugation u 7→ ū we may and shall assume

β > 0

in the following. We will study the ground-state problem for (1-1), namely the minimization under the
mass constraint ∫

R2
|u|2 = 1. (1-3)

The functional E af bears some similarity with other mean-field models such as the Gross–Pitaevskii
energy functional

EGP
[u] :=

∫
R2

(
|−i∇u+ Au|2+ V |u|2+ g|u|4

)
, (1-4)

with fixed vector potential A. The above describes a gas of interacting bosons in a certain mean-field
regime [Lieb et al. 2005; Lieb and Seiringer 2006; Nam et al. 2016; Rougerie 2014; 2015]: the quartic
term originates from short-range pair interactions. The crucial difference between (1-1) and (1-4) is that,
while the interactions of EGP are scalar (with interaction strength g ∈R), those of E af are purely magnetic
and therefore involve mainly the phase of the function u. There is extensive literature dealing with (1-4)
(see [Aftalion 2007; Correggi et al. 2011; 2012; Correggi and Rougerie 2013]) and with the related
Ginzburg–Landau model of superconductivity [Bethuel et al. 1994; Fournais and Helffer 2010; Sandier
and Serfaty 2007; Sigal 2015]. That the interactions are via the magnetic field in (1-1) poses however
quite a few new difficulties in the asymptotic analysis of minimizers we initiate here. Note indeed (see the
variational equation in Lemma A.2) that the nonlinearity consists in a quintic nonlocal semilinear term
and a cubic quasilinear term (also nonlocal), both being critical when compared to the usual Laplacian.

The functional E af arises in a mean-field description1 of a gas of particles whose many-body quantum
wave function can change under particle exchange by a phase factor eiαπ (with α ∈ R known as the
statistics parameter). This is a generalization of the usual types of particles: bosons have α= 0 (symmetric
wave functions) and their mean-field description is via models of the form (1-4), and fermions have α = 1
(antisymmetric wave functions) and appropriate models for them are Hartree–Fock functionals (see [Bach
1992; Lieb and Simon 1977; Lions 1987; 1988; Fournais et al. 2015]). For general α one speaks of anyons
[Khare 2005; Myrheim 1999; Ouvry 2009; Wilczek 1990], which are believed to emerge as quasiparticle
excitations of certain condensed-matter systems [Arovas et al. 1984; Haldane 1983; Halperin 1984; Zhang
et al. 2014; Cooper and Simon 2015; Lundholm and Rougerie 2016].

Anyons can be modeled as bosons (respectively, fermions) but with a many-body magnetic interaction
of coupling strength α (respectively, α− 1). It was shown in [Lundholm and Rougerie 2015] that the
ground-state energy per particle of such a system is correctly described by the minimum of (1-1) (and the
ground states by the corresponding minimizers) in a limit where, as the number of particles N goes to∞,
one takes α = β/N→ 0. We refer to this limit as that of almost-bosonic anyons, with β determining how
far we are from usual bosons.

1Usually referred to as an average-field description in this context.
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In the following we treat the anyon gas as fully described by a one-body wave function u ∈ H 1(R2)

minimizing (1-1) under the mass constraint (1-3). We shall consider asymptotic regimes for this mini-
mization problem. The limit β→ 0 is trivial and leads to a linear theory for noninteracting bosons (see
[Lundholm and Rougerie 2015, Appendix A]). The limit β→∞ is more interesting and more physically
relevant: in a physical situation, the statistics parameter α is fixed and finite and N large, so that taking
β→∞ is the relevant regime, at least if one is allowed to exchange the two limits.

In an approximation that has been used frequently in the physics literature [Chitra and Sen 1992; Iengo
and Lechner 1992; Li et al. 1992; Trugenberger 1992a; 1992b; Wen and Zee 1990; Westerberg 1993], the
ground-state energy per particle of the N -particle anyon gas with statistics parameter α is given by

E0(N )
N
≈

∫
R2
(2π |α|N%2

+ V%). (1-5)

This relies on assuming that each particle sees the others by their approximately constant average magnetic
field B(x)≈ 2παN%(x), with %(x)> 0 the local particle density (normalized to

∫
R2 %= 1). In the ground

state of this magnetic field (the lowest Landau level) this leads to a magnetic energy |B| ≈ 2π |α|N% per
particle.2

In this work we prove that, for large β, the behavior of the functional (1-1) is captured at leading
order by a Thomas–Fermi-type [Catto et al. 1998; Lieb 1981] energy functional of a form similar to the
right-hand side of (1-5) with |α|N = β. The coupling constant appearing in this functional is defined via
the large-volume limit of the homogeneous anyon gas energy (i.e., the infimum of (1-1) confined to a
bounded domain with V = 0). In particular we prove that this limit exists and is bounded from below by
the value 2π predicted by (1-5). We do not know the exact value, but there are good reasons to believe
that it is not equal to 2π , thus refining the simple approximations leading to (1-5).

We state our main theorems in Section 2 and present their proofs in Sections 3 and 4. The Appendix
recalls a few facts concerning the minimizers of (1-1). In particular, although we do not need it for the
proof of our main results, we derive the associated variational equation.

2. Main results

We now proceed to state our main theorems. We first discuss the large-volume limit for the homogeneous
gas in Section 2A and then state our results about the trapped anyons functional (1-1) in Section 2B.

2A. Thermodynamic limit for the homogeneous gas. Let � ⊂ R2 be a fixed bounded domain in R2,
with the associated energy for almost-bosonic anyons confined to it:

E af
� [u] = E af

�,β[u] :=
∫
�

∣∣(−i∇ +βA[|u|2]
)
u
∣∣2, (2-1)

with
A[|u|2](x)=

∫
�

∇
⊥w0(x− y)|u( y)|2 d y. (2-2)

2Because of the periodicity of the exchange phase eiαπ, it is known that such an approximation can only be valid for certain
values of α and %. See [Larson and Lundholm 2016; Lundholm 2016; Trugenberger 1992b] for further discussion.
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We define two energies, with homogeneous Dirichlet boundary conditions

E0(�, β,M) := inf
{
E af
�,β[u] : u ∈ H 1

0 (�),
∫
�
|u|2 = M

}
, (2-3)

and without boundary conditions,

E(�, β,M) := inf
{
E af
�,β[u] : u ∈ H 1(�),

∫
�
|u|2 = M

}
. (2-4)

Of course, the last minimization leads to a magnetic Neumann boundary condition for the solutions. We
are interested in the thermodynamic limit of these quantities, i.e., the scaling limit in which the size of
the domain tends to∞ with fixed density ρ := M/|�| and the normalization changes accordingly.

Theorem 2.1 (Thermodynamic limit for the homogeneous anyon gas).
Let �⊂ R2 be a bounded simply connected domain with Lipschitz boundary, and let β > 0 and ρ > 0 be
fixed parameters. Then, the limits

e(β, ρ) := lim
L→∞

E(L�,β, ρL2
|�|)

L2|�|
= lim

L→∞

E0(L�,β, ρL2
|�|)

L2|�|
(2-5)

exist, coincide and are independent of �. Moreover,

e(β, ρ)= βρ2e(1, 1). (2-6)

Remark 2.2 (Error estimate).
A close inspection of the proof reveals that we also have an estimate of the error appearing in (2-5), which
coincides with the error appearing in the estimate of the difference between the Neumann and Dirichlet
energies in a box (Lemma 3.8). Such a quantity is expected to be of the order of the box’s side length
L , which is subleading if compared to the total energy of order L2. Our error estimate O(L12/7+ε) (see
(3-26)) is however much larger and far from being optimal. �

The above result defines the thermodynamic energy per unit area at scaled statistics parameter β and
density ρ, denoted e(β, ρ), and shows that it has a nice scaling property. The latter is responsible for the
occurrence of a Thomas–Fermi-type functional in the trapped anyons case. The fact that e(β, ρ) does not
depend on boundary conditions is a crucial technical ingredient in our study of the trapped case. This
is very different from the usual Schrödinger energy in a fixed external magnetic field, for example, a
constant one, for which the type of boundary conditions do matter (see, e.g., [Fournais and Helffer 2010,
Chapter 5]).

The constant e(1, 1) will be used to define a corresponding coupling parameter below. One may
observe that (see Lemma 3.7)

e(1, 1)> 2π, (2-7)

and we conjecture that this inequality is actually strict, contrary to what might be expected when comparing
to the coupling constant of the conventional (constant-field) average-field approximation (1-5). The reason
for this is that the self-interaction encoded by the functional E af has not been fully incorporated in (1-5).
In fact, the lower bound (2-7) is based on a magnetic L4-bound (Lemma 3.2) which is saturated only for
constant functions, and hence for constant densities, which certainly is compatible with (1-5) in the case



LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS 1173

of homogeneous traps. On the other hand, in order to minimize the magnetic energy in (2-1) for large β,
the function has to have a large phase circulation and therefore also a large vorticity. This suggests the
formation of an approximately homogeneous vortex lattice, in some analogy to the Abrikosov lattice that
arises in superconductivity and in rotating bosonic gases [Aftalion 2007; Correggi and Yngvason 2008;
Sandier and Serfaty 2007]. Such a picture has already been hinted at in [Chen et al. 1989, p. 1012] for
the almost-bosonic gas. However the implication that the actual coupling constant may then be larger
than the one expected from (1-5) seems not to have been observed in the literature before.

One should note here that there is a certain abuse of language in using the term “thermodynamic limit”.
Indeed, we consider the large-volume behavior of a mean-field energy functional, and there is no guarantee
that this rigorously approximates the true thermodynamic energy of the underlying many-body system.

2B. Local density approximation for the trapped gas. We now return to (1-1) and discuss the ground
state problem

Eaf
β :=min

{
E af
β [u] : u ∈ H 1(R2), V |u|2 ∈ L1(R2),

∫
R2 |u|2 = 1

}
. (2-8)

We denote by uaf any associated minimizer. We refer to the Appendix (see also [Lundholm and Rougerie
2015, Appendix A]) for a discussion of the minimization domain as well as the existence of a minimizer.
In the limit β→∞, the simpler Thomas–Fermi-like functional

E TF
[%] = E TF

β [%] :=

∫
R2
(βe(1, 1)%2

+ V%) (2-9)

emerges, whose ground-state energy we denote by

ETF
β :=min

{
E TF
β [%] : % ∈ L2(R2

;R+), V% ∈ L1(R2),
∫

R2 % = 1
}
, (2-10)

with associated (unique) minimizer %TF
β . Here e(1, 1) is the fixed, universal constant defined by Theorem 2.1.

A typical potential one could have in mind for physical relevance is a harmonic trap, V (x)= c|x|2, or
an asymmetric trap, V (x, y)= c1x2

+ c2 y2. We shall work under the assumption that V is homogeneous
of degree s and smooth:

V (λx)= λs V (x), V ∈ C∞(R2). (2-11)

These conditions can be relaxed significantly; in particular we could extend the approach to asymptotically
homogeneous potentials as defined in [Lieb et al. 2001, Definition 1.1]. We refrain from doing so to avoid
lengthy technical discussions in the proofs. We shall always impose that V is trapping in the sense that it
grows superlinearly at infinity, i.e., s > 1 and

min
|x|>R

V (x)→∞ as R→∞. (2-12)

The Thomas–Fermi (TF) problem (2-10) has the merit of being exactly soluble. We obtain by scaling

ETF
β = β

s/(s+2)ETF
1 , %TF

β (x)= β
−2/(2+s)%TF

1 (β
−1/(s+2)x), (2-13)
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and by an explicit computation

%TF
1 (x)=

1
2e(1, 1)

(λTF
1 − V (x))+, (2-14)

with the chemical potential

λTF
1 = ETF

1 + e(1, 1)
∫

R2
(%TF

1 )
2. (2-15)

Clearly the above considerations imply

supp(%TF
β )⊂ BCβ1/(2+s)(0), (2-16)

where BR(x) stands for a ball (disk) of radius R centered at x, and the estimates

‖%TF
β ‖L∞(R2) 6 Cβ−2/(2+s), ‖∇%TF

β ‖L∞(R2) 6 Cβ−3/(2+s) (2-17)

for some fixed constant C > 0. Noticing that %TF
1 vanishes along a level curve of the smooth homogeneous

potential V, we also have the nondegeneracy

|∂nV | 6= 0 a.e. on ∂ supp(%TF
1 ), (2-18)

where n denotes the (say outward) normal vector to ∂ supp(%TF
1 ).

We have the following result showing the accuracy of TF theory to determine the leading order of the
minimization problem (2-8):

Theorem 2.3 (Local density approximation for the anyon gas).
Let V satisfy (2-11) and (2-12). In the limit β→∞ we have the energy convergence

lim
β→+∞

Eaf
β

ETF
β

= 1. (2-19)

Moreover, for any function uaf achieving the infimum (2-8), with %af
:= |uaf

|
2, we have for any R > 0∥∥β2/(2+s)%af(β1/(2+s)

· )− %TF
1

∥∥
W−1,1(BR(0))

→ 0 as β→ 0, (2-20)

where W−1,1(BR(0)) is the dual space of Lipschitz functions on the ball BR(0).

Remark 2.4 (Extension to more general potentials).
The result can be straightforwardly extended to asymptotically homogeneous potentials, i.e., functions
V (x) that satisfy the following property [Lieb et al. 2001, Definition 1.1]: there exists another function Ṽ,
nonvanishing for x 6= 0, such that, for some s > 0,

lim
λ→∞

λ−s V (λx)− Ṽ (x)

1+ |Ṽ (x)|
= 0 (2-21)

uniformly in x ∈ R2. The function Ṽ is necessarily homogeneous of degree s > 0 and, if we denote by Ẽβ
the TF functional (2-9) with Ṽ in place of V, we have

ETF
β = (1+o(1))Ẽ TF

β and Ẽ TF
β =β

s/(s+2) Ẽ TF
1 as β→∞. �
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Remark 2.5 (Density approximation on finer length scales).
We conjecture that the estimate (2-20) can be improved to show that %af is close to %TF

β on finer scales.
Namely (2-20) implies that they are close on length scales of order β1/(2+s), which is the extent of the
support of %TF

β , but we expect them to be close on scales � β−s/(2(s+2)), which is the smallest length
scale appearing in our proofs. We however believe that the density convergence cannot hold on scales
smaller than β−s/(2(s+2)), for we expect the latter to be the length scale of a vortex lattice developed by
minimizers. �

Remark 2.6 (Large β limit for the homogeneous gas on bounded domains).
We can think of the homogeneous gas by formally taking the limit s→∞ of the homogeneous potentials
we have considered so far, which naturally leads to the restriction of the functional E af in (1-1) to bounded
domains � with V = 0 and Dirichlet boundary conditions, that is, (2-1)–(2-3). In fact, we have by the
scaling laws discussed in Section 3B,

lim
β→+∞

E(�, β, 1)
β

= lim
β→+∞

E0(�, β, 1)
β

= |�|−1e(1, 1) (2-22)

for any bounded and simply connected � with Lipschitz boundary. Convergence of the density to the TF
minimizer %TF

1 holds true in the same form as in (2-20). In this case %TF
1 is simply the constant function

on the domain (confirming that the gas is indeed homogeneous). The shortest length scale on which we
expect (but cannot prove) the density convergence is β−1/2, which should be the typical length scale of
the vortex structure. �

3. Proofs for the homogeneous gas

The basic ingredient of the proof for the inhomogeneous case is the understanding of the thermodynamic
limit of the model where the trap is replaced by a finite domain with sharp walls. We discuss this here,
proving Theorem 2.1 and defining the constant e(1, 1) appearing in the TF functional (2-9). For the sake
of concreteness we first set

e(β, ρ) := lim inf
L→∞

E0(L�,β, ρL2
|�|)

L2|�|
(3-1)

for � equal to a unit square and observe that such a quantity certainly exists and is nonnegative. At this
stage it might as well be infinite but we are going to prove that actually the limit exists, is finite, and
furthermore is independent of the domain shape.

We briefly outline here the plan for the proof: Section 3A contains basic technical estimates that we
are going to use throughout the paper. Section 3B contains the proof of a crucial scaling property of the
energy in the homogeneous case. In Section 3C we prove the existence of the thermodynamic limit for
the case of squares, and then extend the result to general domains.

3A. Toolbox. Let us gather a few lemmas that will be used repeatedly in the sequel. We start with a
variational a priori upper bound confirming that the energy scales like the area. The idea of the proof,
relying deeply on the magnetic nature of the interaction, will be employed again several times.
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Lemma 3.1 (Trial upper bound).
For any fixed bounded domain �, and β, ρ > 0, there exists a constant C > 0 such that

E(L�,β, ρL2
|�|)

L2 6
E0(L�,β, ρL2

|�|)

L2 6 C, for all L > 1.

Proof. Since H 1
0 (�)⊆ H 1(�), it is trivial that the Dirichlet energy is an upper bound to the Neumann

energy. Let us then prove the second inequality.
We fill the domain L� with N ∼ L2 subdomains on which we use fixed trial states with Dirichlet

boundary conditions. The crucial observation is that the magnetic interactions between subdomains can
be canceled by a suitable choice of phase (local gauge transformation). For concreteness we here take
disks as our subdomains.

Let f ∈ C∞c (B1(0);R+) be a radial function with
∫

B1(0)
| f |2 = 1, and let

u j (x) :=
√
ωN f (x− xj ) ∈ C∞c (Bj ), ωN := ρL2

|�|/N.

Here the points xj , j = 1, . . . ,N, are distributed in L� in such a way that the disks Bj := B1(xj ) are
contained in L� and disjoint, with N ∼ c|L�| as L→∞ for some c > 0. Hence

lim
N→∞

ωN = ρ/c.

Take then the trial state

u(x) :=
N∑

j=1

u j (x)e−iβωN
∑

k 6= j arg(x−xk) ∈ C∞c (L�).

Note that its phase is smooth on each piece Bj of its support and that

|u(x)|2 =
N∑

j=1

|u j (x)|2 =
{
|u j (x)|2 for x ∈ Bj ,

0 otherwise,

and hence ∫
L�
|u|2 = NωN = ρL2

|�|.

Then

E af
�,β[u] =

N∑
j=1

∫
Bj

∣∣(−i∇ +β
∑N

k=1 A[|uk |
2
]
)
e−iβωN

∑
k 6= j arg(x−xk)u j (x)

∣∣2 dx

=

N∑
j=1

∫
Bj

∣∣(−i∇ +βA[|u j |
2
] +

∑
k 6= j

(
βA[|uk |

2
] −βωN∇ arg(x− xk)

))
u j (x)

∣∣2 dx

=

N∑
j=1

∫
Bj

∣∣(−i∇ +βA[|u j |
2
]
)
u j
∣∣2 = NωN

∫
B1(0)

∣∣(−i∇ +βωN A[| f |2]
)

f
∣∣2,

where we used that by Newton’s theorem [Lieb and Loss 2001, Theorem 9.7]

A[|uk |
2
](x)=∇⊥

∫
Bk

ln |x− y||uk( y)|2 d y =∇⊥ ln |x− xk |

∫
Bk

|uk |
2 d y = ωN∇ arg(x− xk)
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for x /∈ Bk . It then follows that

E0(L�,β, ρL2
|�|)6 E af

�,β[u]6 NωN
(
‖∇ f ‖L2 +βωN

∥∥A[| f |2] f
∥∥

L2

)2
6 C L2

for some large enough constant C > 0 independent of N or L (but possibly depending on β, ρ and �). �

The following well-known inequalities provide useful a priori bounds on the functional’s minimizers:

Lemma 3.2 (Elementary magnetic inequalities).
Diamagnetic inequality: for any β ∈ R and u ∈ H 1(�),∫

�

∣∣(∇ + iβA[|u|2]
)
u
∣∣2 > ∫

�

∣∣∇|u|∣∣2. (3-2)

Magnetic L4 bound: for any β ∈ R and u ∈ H 1
0 (�),∫

�

∣∣(∇ + iβA[|u|2]
)
u
∣∣2 > 2π |β|

∫
�

|u|4. (3-3)

Proof. The diamagnetic inequality is, e.g., given in [Lieb and Loss 2001, Theorem 7.21], while the
L4 bound follows immediately from the well-known inequality∫

�

∣∣(∇ + i A)u
∣∣2 >± ∫

�

curl A |u|2, u ∈ H 1
0 (�); (3-4)

see, e.g., [Fournais and Helffer 2010, Lemma 1.4.1].
A proof of (3-4) is to integrate the identity

|(∇ + i A)u|2 =
∣∣((∂1+ i A1)± i(∂2+ i A2))u

∣∣2± curl J[u] ± A · ∇⊥|u|2,

with
J[u] := i

2
(u∇ū− ū∇u).

Thanks to the Dirichlet boundary conditions, the integral of the next-to-last term vanishes, while the last
one can be integrated by parts yielding

∓

∫
�

curl A |u|2.

Again, no boundary terms are present because of the vanishing of u on ∂�. Dirichlet boundary conditions
are necessary since the bound (3-4) (resp. (3-3)) is otherwise invalid as A→ 0 (resp. β→ 0), as can be
seen by taking the trial state u ≡ 1. �

In order to perform energy localizations we shall also need an IMS-type inequality,3 i.e., a suitable
generalization of the well-known localization formula [Cycon et al. 1987, Theorem 3.2]:

|∇u|2 = |∇(χu)|2+ |∇(ηu)|2−
(
|∇χ |2+ |∇η|2

)
|u|2, (3-5)

where χ2, η2 form a partition of unity.

3The initials IMS may refer either to Israel Michael Sigal or to Ismagilov–Morgan–Simon.
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Lemma 3.3 (IMS formula).
Let � ⊆ R2 be a domain with Lipschitz boundary and χ2

+ η2
= 1 be a partition of unity such that

χ ∈ C∞c (�) and suppχ is simply connected. Then, for any u ∈ H 1(�) and β ∈ R,

E af
�,β[u] =

∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2+ ∫
�

∣∣(∇ + iβA[|u|2]
)
(ηu)

∣∣2− ∫
�

(
|∇χ |2+ |∇η|2

)
|u|2, (3-6)

where ∫
�

∣∣(∇ + iβA[|u|2]
)
(ηu)

∣∣2 > ∫
�

∣∣∇|ηu|
∣∣2 (3-7)

and

∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2 >


∫
�

∣∣∇|χu|
∣∣2,

2π |β|
∫
�

χ2
|u|4,

(1− ε)E af
�,β[ψ] − (ε

−1
− 1)β2

∫
�

∣∣A[|ηu|21K
]∣∣2 |χu|2,

(3-8)

with ε ∈ (0, 1) arbitrary, K := suppχ ∩ supp η, and ψ = eiβφχu ∈ H 1
0 (suppχ) for some harmonic

function φ ∈ C2(suppχ).

Proof. We expand

E af
�,β[u] =

∫
�

|∇u|2+ 2β
∫
�

A[|u|2] · J[u] +β2
∫
�

∣∣A[|u|2]∣∣2 |u|2.
For the first term we use the standard IMS formula (3-5), while for the term involving J we have

2
i
(

J[χu] + J[ηu]
)
= uχ∇(χ ū)+ uη∇(ηū)− ūχ∇(χu)− ūη∇(ηu)

= u(χ2
+ η2)∇ū− ū(χ2

+ η2)∇u = 2
i

J[u].

We can then recollect the terms to obtain (3-6). Equation (3-7) and the first version of (3-8) follow from
the diamagnetic inequality (3-2), while the second version of (3-8) follows from the magnetic bound (3-3)
with Dirichlet boundary conditions. For the third version we write∫
�

∣∣(∇+iβA[|u|2]
)
(χu)

∣∣2=∫
�

∣∣(∇+iβA[|χu|2]+iβA[|ηu|2 1K ]+iβ
(

A[|ηu|2 1K c ]−∇φ
))
(eiβφχu)

∣∣2,
where the last magnetic term vanishes by taking the gauge choice

φ(x) :=
∫

K c
arg(x− y)|ηu( y)|2 d y, x ∈ suppχ.

Thus, noting that |χu|2 = |ψ |2,∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2 = ∫
�

∣∣(∇ + iβA[|ψ |2]
)
ψ + iβA[|ηu|2 1K ]ψ

∣∣2,
and we can conclude by expanding the square and bounding the cross-term using Cauchy–Schwarz. �
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3B. Scaling laws. In fact the large β and large volume limits are equivalent, as follows from the simple
observation:

Lemma 3.4 (Scaling laws for the homogeneous gas).
For any domain �⊂ R2 and λ,µ > 0 we have

E(�, β,M)=
1
λ2 E

(
µ�, x

β

λ2µ2 , λ
2µ2 M

)
, (3-9)

and an identical scaling relation holds true for E0(�, β,M).

Proof. Given any u ∈ H 1(�) we may set

uλ,µ(x) := λu(x/µ), (3-10)

and observe that uλ,µ ∈ H 1(µ�),∫
µ�

|uλ,µ|2 = λ2µ2
∫
�

|u|2 and E af
µ�,β[uλ,µ] = λ

2E af
�,βλ2µ2[u].

Namely, using ∇⊥w0(x)= x−⊥ := x⊥/|x|2 and

Aµ�[|uλ,µ|2](x)=
∫
µ�

(x− y)−⊥|uλ,µ( y)|2 d y = λ2
∫
µ�

(x− y)−⊥|u( y/µ)|2 d y

= λ2µ

∫
�

(x/µ− z)−⊥|u(z)|2 dz = λ2µA�[|u|2](x/µ),

we have

E af
µ�,β[uλ,µ] =

∫
µ�

∣∣∇uλ,µ(x)+ iβAµ�[|uλ,µ|2](x)uλ,µ(x)
∣∣2 dx

=

∫
µ�

∣∣λµ−1(∇u)(x/µ)+ iβλ3µA�[|u|2](x/µ)u(x/µ)
∣∣2 dx

= λ2µ−2
∫
µ�

∣∣(∇u)(x/µ)+ iβλ2µ2 A�[|u|2](x/µ)u(x/µ)
∣∣2 dx

= λ2
∫
�

∣∣∇u(z)+ iβλ2µ2 A�[|u|2](z)u(z)
∣∣2 dz = λ2E af

�,βλ2µ2[u].

Hence, we may take as a trial state for E af
µ�,βλ−2µ−2 the function uλ,µ, where u is the minimizer (or

minimizing sequence) of E af
�,β , and vice versa. Moreover, if u ∈ H 1

0 then so is uλ,µ. �

It follows immediately from the above that the thermodynamic energy has a very simple dependence
on its parameters, which justifies (2-6) and the way it appears in (2-9).

Corollary 3.5 (Scaling laws for e(β, ρ)).
For any ρ > 0 and bounded �⊂ R2, with e(β, ρ) defined as in (3-1), we have

e(1, ρ)= |�| lim inf
β→∞

E0(�, β, ρ)

β
, (3-11)

and for any β, ρ > 0,
e(β, ρ)= βρ2e(1, 1). (3-12)
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Remark 3.6. At the moment each shape of the domain � may give rise to a different limit e(β, ρ) in
(3-1), and this corollary and proof apply in such a situation. However, it will be shown below in the case
of Lipschitz regular domains that the limit is independent of the shape, and one may therefore without
loss of generality take the unit square �= Q as a reference domain.

Proof. A first consequence of the scaling property (3-9) is that taking the thermodynamic limit as described
in (2-5) or (3-1) is equivalent to taking the limit β→∞ at a fixed size of the domain, i.e.,

e(c, ρ)= lim inf
L→∞

E0(L�, c, ρ|�|L2)

L2|�|
= lim inf

L→∞

E0(�, cL2
|�|, ρ)

L2 ,

where we have applied (3-9) with µ = L , λ = |�|1/2 and M = ρ. Now if, for any c > 0, we set
β = cL2

|�| →∞, the above expression becomes

e(c, ρ)= c|�| lim inf
β→∞

E0(�, β, ρ)

β
, (3-13)

which proves the first claim, and also implies

e(c, ρ)= c e(1, ρ). (3-14)

Next we take µ= 1 in (3-9) and obtain

E0(�, β,M)= λ−2 E0(�, βλ
−2, λ2 M).

Taking M = |�|, dividing by |�| and taking the limit |�| →∞, we deduce

e(β, 1)= λ−2e(βλ−2, λ2)= λ−4e(β, λ2),

where we used (3-14) in the last equality. This yields

e(β, ρ)= ρ2e(β, 1) (3-15)

for all β, ρ > 0. Combining (3-14) and (3-15) yields the result (3-12). �

3C. Proof of Theorem 2.1. We split the proof in three lemmas:

Lemma 3.7 (Thermodynamic limit for the Dirichlet energy in a square).
Let Q be a unit square, and ρ > 0 and β > 0 be fixed constants. The limit

e(β, ρ)= lim
L→+∞

E0(L Q, β, ρL2)

L2

exists, is finite, and satisfies e(β, ρ)> 2πβρ2.

Lemma 3.8 (Neumann–Dirichlet comparison).
Let � be a bounded simply connected domain with Lipschitz boundary. Then for any fixed ρ and β
positive, as L→∞

E0(L�,β, ρL2
|�|)

L2|�|
>

E(L�,β, ρL2
|�|)

L2|�|
>

E0(L�,β, ρL2
|�|)

L2|�|
− o(1).
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Lm Q

Ln Q1 · · ·

Ln Q j Ln Qq2
nm

u0

u j knm

Figure 1. Filling the square Lm Q with smaller squares Ln Q j .

Lemma 3.9 (Thermodynamic limit for the Dirichlet energy in a general domain).
Let �⊂ R2 be a bounded simply connected domain with Lipschitz boundary, then

lim
L→+∞

E0(L�,β, ρL2
|�|)

L2|�|
= e(β, ρ). (3-16)

Theorem 2.1 immediately follows from these three results: combining Lemma 3.7 with Lemma 3.8
one obtains the existence of the thermodynamic limit for squares. In order to derive the result for general
domains, one then uses Lemma 3.9 together with Lemma 3.8. Notice that the proof of Lemma 3.9 requires
only Lemmas 3.7 and 3.8 for squares as key ingredients.

Proof of Lemma 3.7. From Lemma 3.1 we know that the sequence of energies per unit area has both an
upper and lower limit. We denote by (Ln)n∈N and (Lm)m∈N two increasing sequences of positive real
numbers such that Ln→∞, Lm→∞ and

E0(Ln Q, β, ρL2
n)

L2
n

→ lim inf
L→∞

E0(L Q, β, ρL2)

L2 as n→∞,

E0(Lm Q, β, ρL2
m)

L2
m

→ lim sup
L→∞

E0(L Q, β, ρL2)

L2 as m→∞.

For each n, there must exist a sequence of integers

qnm→+∞ as m→∞

such that, for m large enough, e.g., m� n,

Lm = qnm Ln + knm, 06 knm < Ln.

We then build a trial state for E0(Lm Q, β, ρL2
m) as follows (see Figure 1). The square Lm Q must contain

q2
nm disjoint squares of side length Ln that we denote by Ln Q j , j = 1, . . . , q2

nm . Then we pick u j a
minimizer of E0(Ln Q j , β, ρL2

n) and remark that by definition,

q2
nm∑

k=1,k 6= j

curl A[|uk |
2
] = 0 in Ln Q j .
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Thus there exists a gauge phase φj on the simply connected domain Ln Q j such that

q2
nm∑

k=1,k 6= j

A[|uk |
2
] = ∇φj in Ln Q j .

Similarly, there exists φ0 on the remaining part of the domain (which can be arranged to be simply
connected as well, as in Figure 1) such that

q2
nm∑

k=1

A[|uk |
2
] = ∇φ0 on Lm Q \

q2
nm⋃

j=1

Ln Q j .

We define the trial state as (see the proof of Lemma 3.1)

u :=
q2

nm∑
j=1

u j e−iβφj + u0e−iβφ0,

where u0 is a function with compact support in Lm Q \
⋃q2

nm
j=1 Ln Q j satisfying∫

Lm Q
|u0|

2
= ρL2

m − q2
nmρL2

n.

By Lemma 3.1, we can construct u0 such that∫
Lm Q

∣∣(∇ + iβA[|u0|
2
]
)
u0
∣∣2 6 C(L2

m − q2
nm L2

n)6 2C Lmknm

(where C > 0 may depend on β and ρ). The function u is an admissible trial state on Lm Q because it is
in H 1 on each subdomain, and continuous across boundaries due to the Dirichlet boundary conditions
satisfied by each u j . Computing the energy, we have

E af
Lm Q,β[u] =

q2
nm∑

j=0

∫
Lm Q

∣∣e−iφj
(
∇ + iβA[|u|2] − iβ∇φj

)
u j
∣∣2 = q2

nm∑
j=0

∫
Lm Q

∣∣(∇ + iβA[|u j |
2
]
)
u j
∣∣2

=

q2
nm∑

j=1

E af
Ln Q,β[u j ] +

∫
Lm Q

∣∣(∇ + iβA[|u0|
2
]
)
u0
∣∣2 = q2

nm E0(Ln Q, β, ρL2
n)+ O(Lmknm),

with

q2
nm =

L2
m

L2
n

(
1−

knm

Lm

)2

.

Since u has by definition mass ρL2
m , it follows from the variational principle that

E0(Lm Q, β, ρL2
m)

L2
m

6
E0(Ln Q, β, ρL2

n)

L2
n

(
1+ O

(
knm

Lm

))
+ O

(
knm

Lm

)
.
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λ

h

`

χ=1

Figure 2. Localizing on thin shells for the square LQ.

Passing to the limit m→∞ first and then n→∞ yields

lim sup
L→∞

E0(L Q, β, ρL2)

L2 6 lim inf
L→∞

E0(L Q, β, ρL2)

L2 ,

and thus the limit exists.
Additionally, we have by the bound (3-3),

1
L2 E

af
LQ,β[u]>

2πβ
L2

∫
LQ
|u|4 >

2πβ
L4

(∫
LQ
|u|2

)2

for any u ∈ H 1
0 (LQ), proving that e(β, ρ)> 2πβρ2. �

Proof of Lemma 3.8. Since H 1
0 (�)⊆ H 1(�), we obviously have

E0(�, β,M)> E(�, β,M).

Only the second inequality in the statement requires some work. Let u ∈ H 1(L�) denote the minimizer
of E af

L�,β[u] (see Proposition A.1 of the Appendix) with mass∫
L�
|u|2 = ρL2

|�|

and no further constraint (thus satisfying Neumann boundary conditions). In the sequel we take β = 1
and |�| = 1 to simplify the notation.

We will need to make an IMS localization on a small enough region, and therefore consider a division
of L� into a bulk region surrounded by thin shells close to the boundary, where we will be using several
different length scales L−1/3 . λ� 1� L and L−1

� `� h� L (see Figure 2 for the case of �= Q a
square).

We shall use Lemma 3.3 a first time at distance λ from the boundary to deduce some useful a priori
bounds. Next, using a mean-value argument we show that, within a window of thickness h further from
the boundary, there must exist one particular shell of thickness ` where we have a good control on the mass
and energy. Finally we perform a second IMS localization with the truncation located in this particular
shell. This yields a lower bound in terms of the Dirichlet energy in the bulk region, plus error terms that
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we can control using the a priori bounds and in particular the good control on mass and energy in the
second localization shell.

Step 1: a priori bounds. Let δ�(x) := dist(x, ∂(L�)) denote the distance function to the boundary, which
is Lipschitz and satisfies |∇δ�|6 1 a.e. We make a first partition of unity

χ̃2
+ η̃2
= 1

such that χ̃ varies smoothly from 1 to 0 on a shell Kλ of width λ closest to the boundary of L�, i.e.,
Kλ := {x ∈ L� : δ�(x) < λ}. One may note that it is possible to construct these functions so as to satisfy

|∇χ̃ |6 cλ−1χ̃1−µ, |∇η̃|6 cλ−1χ̃1−µ

for some arbitrarily small µ > 0, independent of λ, e.g., by taking χ̃ = f a and η̃ =
√

1− χ̃2 in
supp χ̃ ∩ supp η̃ for a large and some smooth function 06 f 6 1 varying on the right length scale and
reflection symmetric. Then, by Lemmas 3.1 and 3.3,

C L2 > E af
L�,1[u]>

∫
L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2− (|∇χ̃ |2+ |∇η̃|2)|u|2)
>
∫

L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2−Cλ−21Kλ
χ̃2−2µ

|u|2
)
. (3-17)

We bound the unwanted negative term as follows:

λ−2
∫

L�
1Kλ

χ̃2−2µ
|u|2 6 λ−2

(∫
Kλ

χ̃2−4µ
)1/2(∫

Kλ

χ̃2
|u|4

)1/2

6 Cλ−3/2L1/2
(∫

Kλ

χ̃2
|u|4

)1/2

6 CδLλ−3
+Cδ−1

∫
L�
χ̃2
|u|4,

with δ a fixed, large enough, constant. Combining with (3-17) we deduce∫
L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2)6 C L2
+C Lλ−3 6 C L2 (3-18)

since we have chosen λ& L−1/3. We note that this bound implies for the mass in a shell K` of thickness `
in L� \ Kλ ∫

K`

|u|2 6 |K`|
1/2
(∫

K`

χ̃2
|u|4

)1/2

. `1/2L3/2. (3-19)

Step 2: finding a good shell. We now select a region where the bounds (3-18) and (3-19) can be improved.
Consider dividing L� \ Kλ into shells of thickness ` that form a layer closest to the shell Kλ of total
thickness h ∼ L1−ε

� ` (again, see Figure 2). Hence, we have

Ns := h/`� 1

such shells in the layer. Denote by NM the number of such shells K` with
∫

K`
|u|4 > M. If NM < Ns ,

there must exist a shell K` with
∫

K`
|u|46M. But, using (3-18) and the fact that all the shells are included
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in the region where χ̃ = 1, we have

M NM 6
∫

L�
χ̃2
|u|4 6 C L2.

We can thus ensure that NM < Ns by setting

Ns = h/`∼ L1−ε`−1
∼ L2/M,

i.e., taking M ∼ `L1+ε. Hence we have found a shell K` with∫
K`

|u|4 6 C`L1+ε, (3-20)

and thus ∫
K`

|u|2 6 C(`L)1/2(`L1+ε)1/2 = C`L1+ε/2, (3-21)

improving (3-19).

Step 3: IMS localization in the good shell. We now perform a new magnetic localization on this K`. We
pick a partition χ2

+ η2
= 1, such that χ varies smoothly from 1 to 0 outwards on K`, so that χ = 1

(resp. η = 1) on the inner (resp. outer) component of K c
` . Then, using Lemma 3.3, we have

E af
L�,1[u]> (1− δ)E

af
L�,1[ψ] − (δ

−1
− 1)

∫
L�

∣∣A[|ηu|21K ]
∣∣2 |χu|2−

∫
K`

(|∇χ |2+ |∇η|2)|u|2 (3-22)

for any δ ∈ (0, 1), where we let ψ = χeiφu and K = suppχ ∩ supp η ⊆ K`. Since ψ is compactly
supported in L�, we have for the first term

E af
L�,1[ψ]> E0(L�, 1, ‖ψ‖2L2(L�))= E0(L�, 1, ‖χu‖2L2(L�)).

Recalling the scaling relation (3-9) (taking µ= λ−1
= L̃/L) and defining

M =
∫

L�
χ2
|u|2, L̃ =

√
M/ρ,

we have
E0(L�, 1,M)=

M
ρL2 E0(L̃�, 1, ρ L̃2). (3-23)

We need to estimate the deviation of the mass M of χ2
|u|2 from ρL2

=
∫

L� |u|
2:∣∣∣∣ρL2

−

∫
L�
χ2
|u|2

∣∣∣∣= ∫
L�
η2
|u|2 =

∫
L�
η̃2
|u|2+

∫
L�
χ̃2η2
|u|2

6 Cλ2
∫

Kλ

∣∣∇|η̃u|
∣∣2+(∫

L�
η2χ̃2

)1/2(∫
L�
χ̃2
|u|4

)1/2

6 Cλ2L2
+Ch1/2L3/2

� L2. (3-24)

Here we have used a Poincaré inequality to control the η̃2
|u|2 term, making use of the fact that this

function vanishes at the inner boundary of Kλ. It is not difficult (see the proof methods of [Evans 1998,
Theorems 1 and 2 in Section 5.8.1] and [Lieb and Loss 2001, Theorem 8.11]) to realize that the constant
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involved in this inequality applied on the set Kλ can be taken to be proportional to λ2. Note that L̃→∞,
if L→∞, thanks to (3-24). Hence, inserting the above estimate in (3-23), we get

E af
L�,1[ψ]

L2 >
E0(L�, 1,M)

L2 =
M2

(ρL2)2

E0(L̃�, 1, ρ L̃2)

L̃2
= (1+ o(1))

E0(L̃�, 1, ρ L̃2)

L̃2
. (3-25)

Then, there only remains to control the error terms in (3-22): Using the Hölder and generalized Young
inequalities (‖ · ‖p,w denotes the weak-L p norm [Lieb and Loss 2001, Theorem 4.3, Remarks]),∫

L�

∣∣A[|ηu|21K ]
∣∣2 |χu|2 6

∥∥∇w0 ∗ |ηu|21K
∥∥2

2p ‖χu‖22q 6 c‖∇w0‖
2
2,w ‖ηu1K‖

4
2r ‖χu‖22q

6 C
(∫

K`

|ηu|4q/(2q−1)
)(2q−1)/q(∫

L�
|χu|2q

)1/q

,

where
1
p
+

1
q
= 1 and 1+ 1

2p
=

1
2
+

1
r
,

that is,

r =
2q

2q − 1
∈ (1, 2) with q ∈ (1,∞).

We can take q = 2 and insert (3-18)–(3-20) to obtain(∫
K`

|ηu|8/3
)3/2(∫

L�
|χu|4

)1/2

6|K`|
1/2
∫

K`

|ηu|4
(∫

L�
|χu|4

)1/2

.(`L)1/2`L1+ε(L2)1/2=`3/2L5/2+ε.

The last term in (3-22) is, using (3-21), bounded by

c`−2
∫

K`

|u|2 . `−1L1+ε/2.

There only remains to optimize the error terms in (3-22):

δE0(L�, 1, ‖ψ‖2L2(L�))+ c1(δ
−1
− 1)`3/2L5/2+ε

+ c2`
−1L1+ε/2 6 c3δL2

+ c4δ
−2/5L8/5+7ε/10,

where we have picked `= L−3/5−ε/5δ2/5, assuming that δ� 1, as it will be. Thus, optimizing now over δ,
i.e., taking δ ∼ L−2/7+ε/2, we have the bounds

E0(L�, 1, ρL2)

L2 >
E(L�, 1, ρL2)

L2 >
E0(L�, 1, ‖ψ‖2L2(L�))

L2 − cL−2/7+ε/2. (3-26)

Combining with (3-25) and passing to the liminf completes the proof. �

Proof of Lemma 3.9. The result is proven as usual by comparing suitable upper and lower bounds to the
energy.

Step 1: upper bound. We first cover L� with squares Q j , j = 1, . . . , N`, of side length `= Lη, 0<η< 1,
retaining only the squares Q j completely contained in L�. One can estimate the area not covered by
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such squares as ∣∣∣∣� \( N⋃̀
j=1

Q j

)∣∣∣∣6 C`L = o(L2). (3-27)

Then we define the trial state

u(x) :=
N∑̀
j=1

u j e−iβφj , (3-28)

where
u j (x) := u0(x− xj )1Q j , (3-29)

with u0 a minimizer of the Dirichlet problem with mass ρL2
|�|/N` in a square Q with side length `

centered at the origin, and xj the center point of Q j . The phases φj are chosen in such a way that (see the
proof of Lemma 3.1 again)

N∑̀
k=1,k 6= j

A[|uk |
2
] = ∇φj in Q j .

The existence of such phases is indeed guaranteed by the fact that

N∑̀
k=1,k 6= j

curl A[|uk |
2
] = 0 in Q j .

Hence

E af
L�,β[u] =

N∑̀
j=1

E af
Q j ,β
[u j ] =

N∑̀
j=1

E0(`Q, β, ρL2
|�|N−1

` ),

which implies

E0(L�,β, ρL2)

L2|�|
6

1
L2|�|

N∑̀
j=1

E0(`Q, β, ρL2
|�|N−1

` )

=
`2

L2|�|

N∑̀
j=1

E0(`Q, β, (1+ o(1))ρ`2)/`2
= (1+ o(1))e(β, ρ), (3-30)

where we have estimated

N` =

∣∣⋃
j Q j

∣∣
|Q j |

=
(1+ o(1))L2

|�|

`2 , (3-31)

and used Lemma 3.7. Notice that, thanks to the assumption on η, we have `→∞, which is crucial in
order to apply Lemma 3.7.

Step 2: lower bound. We again cover L� with squares Q j , j = 1, . . . , N`, this time keeping the full
covering but still having `2 N`/|L�|→ 1 as L→∞. We pick a minimizer uaf

= uaf
L ∈ H 1

0 (L�) of E af
L�,β ,

with mass ρL2
|�|, and set

uaf
j := uaf1Q j , ρj := −

∫
Q j

|uaf(x)|2 dx. (3-32)
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The idea of the proof is reminiscent of that in the upper bound part: we gauge away the magnetic
interaction between the cells, and this leads to a lower bound in terms of the Neumann energy of the cells.

Note that uaf
j ∈ H 1(Q j ) for each j , and

N∑̀
j=1

ρj`
2
= ρL2

|�|.

Before estimating the energy, we need to distinguish between squares with sufficient mass and squares
which will not contribute to the energy to leading order. We thus set

QL :=
{

Q j , j ∈ {1, . . . , N`} : ρj > L−2η+δ} (3-33)

for some 0< δ < 2η. Note that the mass concentrated outside cells QL is relatively small:∑
Q j /∈QL

ρj`
2 6 C`2 N`L−2η+δ

= o(L2). (3-34)

We can now estimate, using the gauge covariance of the functional on each Q j ,

E0(L�,β, ρL2
|�|)= E af

L�,β[u
af
]>

N∑̀
j=1

∫
Q j

∣∣(−i∇ +βA[|uaf
|
2
]
)
uaf∣∣2

=

N∑̀
j=1

∫
Q j

∣∣(−i∇ +βA[|uaf
j eiβφj |

2
]
)
uaf

j eiβφj
∣∣2

>
N∑̀
j=1

ρj`
2 E(`Q, β, ρj`

2)

ρj`2 >
∑

j :Q j∈QL

ρ2
j `

2
E(`j Q, β, `2

j )

`2
j

, (3-35)

where φj satisfies (observe that the left-hand side is curl-free on Q j )

N∑̀
k=1,k 6= j

A[|uaf
k |

2
] = ∇φj in Q j ,

and in the last step we used the scaling law (3-9) with µ= 1/λ=√ρj . Also,

`j :=
√
ρj`> Lδ/2→+∞ as L→∞

uniformly in j for cells Q j ∈QL , and we thus conclude by Lemmas 3.7 and 3.8 that

1
L2|�|

E0(L�,β, ρL2
|�|)> (1− o(1))

e(β, 1)
L2|�|

∑
j :Q j∈QL

ρ2
j `

2
= (1− o(1))

e(β, 1)
L2|�|

∫
Q
%̄2, (3-36)

where we consider here the step function %̄ :=
∑

j :Q j∈QL
ρj 1Q j and denote by Q the union of the cells QL .

It remains then to observe that the constrained minimum

B =min
{∫

Q
%2
: 06 % ∈ L2(Q),

∫
Q
% = (1− o(1))ρL2

|�|

}
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is achieved by % constant and thus∫
Q
%̄2 > B =

(
(1− o(1))ρL2

|�|
)2
|Q|−1 > (1− o(1))ρ2L2

|�|.

Inserting this in (3-36) and using ρ2e(β, 1)= e(β, ρ) leads to the desired energy lower bound. �

4. Proofs for the trapped gas

4A. Local density approximation: energy upper bound. Here we prove the upper bound corresponding
to (2-19):

Eaf
β 6 ETF

β (1+ o(1)) as β→∞. (4-1)

We start by covering the support of %TF
β with squares Q j , j = 1, . . . , Nβ , centered at points xj and of

side length L with

L = βη, −
s

2(s+ 2)
< η <

1
s+ 2

. (4-2)

We choose the tiling in such a way that for any j = 1, . . . , Nβ , we have Q j ∩ supp(%TF
β ) 6=∅. The upper

bound on L indicates that the length scale of the tiling is much smaller than the size of the TF support.
The lower bound ensures that it is much larger than the scale on which we expect the fine structure of the
minimizer to live.

Our trial state is defined much as in the proof of Lemma 3.9:

utest
:=

Nβ∑
j=1

u j e−iβφj, (4-3)

where u j realizes the Dirichlet infimum

E0(Q j , β,Mj ) :=min
{
E af

j [u] : u ∈ H 1
0 (Q j ),

∫
Q j
|u|2 = Mj

}
,

where of course

E af
j [u] = E af

Q j ,β
[u] =

∫
Q j

∣∣(−i∇ +βA[|u|2]
)
u
∣∣2

and we set

Mj =

∫
Q j

|u j |
2
:=

∫
Q j

%TF
β , ρj := Mj/L2

=−

∫
Q j

%TF
β . (4-4)

The phase factors in (4-3) are again defined so as to gauge away the interaction between cells, i.e.,

Nβ∑
k=1,k 6= j

A[|uk |
2
] = ∇φj in Q j .
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This construction yields an admissible trial state since utest is locally in H 1, continuous across cells by
being zero on the boundaries, and clearly∫

R2
|utest
|
2
=

Nβ∑
j=1

∫
Q j

|u j |
2
=

Nβ∑
j=1

∫
Q j

%TF
β = 1.

Much as in the proofs of Lemmas 3.1 and 3.9 we thus obtain

Eaf
β 6 E af

β [u
test
] =

Nβ∑
j=1

E af
j [u j ] +

∫
R2

V |utest
|
2
=

Nβ∑
j=1

E0(Q j , β,Mj )+

∫
R2

V |utest
|
2. (4-5)

Our task is then to estimate the right-hand side.
We denote, for some ε > 0 small enough

Sε =
{

x ∈ supp(%TF
β ) : %

TF
β (x)> β

−2/(s+2)−ε}
and split the above sum into two parts, distinguishing between cells fully included in Sε and the others.
Using (2-13), it is clear that ∣∣supp(%TF

β ) \ Sε
∣∣6 Cβ1/(s+2)

·β1/(s+2)−ε,

where the first factor comes from the dilation transforming %TF
1 into %TF

β and the second one is an estimate
of the thickness of Sε based on (2-16)–(2-18).

By a simple estimate of the potential V in the vicinity of Sε, we obtain∑
j :Q j*Sε

∫
Q j

V |u j |
2 6 Cβs/(s+2)

·β2/(s+2)−ε
·β−2/(s+2)−ε

= Cβs/(s+2)−2ε
� ETF

β ,

where the factor βs/(s+2) accounts for the supremum of V, the factor β2/(s+2)−ε for the volume of the
integration domain and the factor β−2/(s+2)−ε for the typical value of |u j |

2 on this domain. Also, using in
addition Lemmas 3.4 and 3.1, we deduce∑

j :Q j*Sε

E0(Q j , β,Mj )=
∑

j :Q j*Sε

E0(β
ηQ, β, β2ηρj )� ETF

β .

For the main part of the sum in (4-5) we use the scaling law (take λ=√ρj and µ=
√
βρj in Lemma 3.4)

to write
E0(Q j , β,Mj )= ρj E0(L

√
βρj Q, 1, L2βρj ),

with Q the unit square. Then∑
j :Q j⊆Sε

E0(Q j , β,Mj )=
∑

j :Q j⊆Sε

L2βρ2
j e(1, 1)+

∑
j :Q j⊆Sε

L2βρ2
j

(E0(L j Q, 1, L2
j )

L2
j

− e(1, 1)
)

with, provided ε is suitably small and in view of the lower bound in (4-2) and the fact that we sum over
squares included in Sε,

L j := L
√
βρj > β

η+s/(2(s+2))−ε/2
→+∞, uniformly with respect to j = 1, . . . , Nβ .
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We thus obtain (recall the definition of the thermodynamic energy in (2-5))

E0(L j Q, 1, L2
j )

L2
j

→ e(1, 1) as L j →∞

uniformly in j , and deduce that∑
j :Q j⊂Sε

E0(Q j , β,Mj )= (1+ o(1))βe(1, 1)
∑

j :Q j⊂Sε

ρ2
j L2.

Recalling that

ρj =−

∫
Q j

%TF
β (x) dx,

we recognize a Riemann sum in the above. Using (2-17) and the upper bound in (4-2) we may approximate
%TF
β by a constant in each square (this is most easily seen by rescaling to %TF

1 and observing that the size
of squares then tends to zero), and bound the part of the integral located in the complement of Sε in the
same way as above to conclude that∑

j :Q j⊂Sε

E0(Q j , β,Mj )= (1+ o(1))βe(1, 1)
∫

R2
(%TF
β )

2.

Using (2-11) and (2-16) we obtain

|∇V (x)|6 Cβ(s−1)/(s+2)

for any x ∈ Sε. Combining with (4-2) we deduce as above that∑
j :Q j⊂Sε

∫
Q j

V |u j |
2
= (1+ o(1))

∫
R2

V%TF
β

and this completes the proof of (4-1).

4B. Local density approximation: energy lower bound. Let us now complement (4-1) by proving the
lower bound

Eaf
β > ETF

β (1+ o(1)), (4-6)

thus completing the proof of (2-19). We again tile the plane with squares Q j , j = 1, . . . , Nβ , of side
length

L = βη

satisfying (4-2), and taken to cover the finite disk Bβ t (0) with

t := 1
2+s
+ ε

for some ε > 0 to be chosen small enough. We also define

Qβ :=
{

Q j ⊂ Bβ t (0) : L
√
ρjβ > β

µ
}
, (4-7)
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where uaf
= uaf

β is a minimizer for E af
β with unit mass and

ρj := −

∫
Q j

|uaf(x)|2 dx.

Define the piecewise constant function

%̄af(x) :=
∑

Q j∈Qβ

ρj 1Q j (x). (4-8)

We claim that one may find some µ > 0 in (4-7) such that

M :=
∫

R2
%̄af
→ 1 as β→∞. (4-9)

Indeed, using (2-11) and (2-12) we get that for any x ∈ Bc
β t (0)

V (x)> Cβst min
Bc

1(0)
V > Cβst

for β large enough. Thus, using the energy upper bound (4-1) and dropping some positive terms we
obtain

βst
∫

Bc
βt (0)
|uaf
|
2 6

∫
R2

V |uaf
|
2 6 E af

β [u
af
]6 Cβs/(s+2)

and thus ∫
Bc
βt (0)
|uaf
|
2 6 Cβ−sε. (4-10)

On the other hand, by the definition of Qβ ,∑
Q j /∈Qβ

∫
Q j

|uaf
|
2 6 Nββ2µ−1,

where Nβ is the total number of squares needed to tile Bβ t (0). Clearly, we may estimate Nβ 6Cβ2t L−2
=

Cβ2(t−η) and then ∑
Q j /∈Qβ

∫
Q j

|uaf
|
2 6 Cβ2t−2η+2µ−1

� 1 (4-11)

because of (4-2), which implies −s/(s+ 2)− 2η < 0, and provided we take ε and µ positive and small
enough, e.g. (recall that L = βη is the side length of the tiling squares),

0< ε 6
1
4

(
s

s+ 2
+ 2η

)
, 0< µ6 ε. (4-12)

Combining (4-10) and (4-11) and recalling that uaf is L2-normalized proves (4-9).
With this in hand we turn to the energy lower bound per se. Let us again set

uaf
j = uaf1Q j , Mj = ρj L2

=

∫
Q j

|uaf
|
2.
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Dropping some positive terms we get

Eaf
β = E af

β [u
af
]>

∑
Q j∈Qβ

∫
Q j

{∣∣(−i∇ +βA[|uaf
|
2
]
)
uaf∣∣2+ V |uaf

|
2}

=

∑
Q j∈Qβ

∫
Q j

{∣∣(−i∇ +βA[|uaf
j eiβφj |

2
]
)
uaf

j eiβφj
∣∣2+ V |uaf

j |
2}

>
∑

Q j∈Qβ

{
E(Q j , β,Mj )+

∫
Q j

V |uaf
j |

2
}

>
∑

Q j∈Qβ

{
ρj E

(
L
√
βρj Q, 1, (L

√
βρj )

2)
+

∫
Q j

V |uaf
j |

2
}
, (4-13)

where the local gauge phase factors are defined as in previous arguments by demanding that (this is again
possible because the left-hand side is curl-free in the simply connected domain Q j )

Nβ∑
k=1,k 6= j

A[|uaf
k |

2
] = ∇φj in Q j .

The minimum (Neumann) energy E(Q j , β,Mj ) in the square Q j is defined as in (2-4) and we used the
scaling laws following from Lemma 3.4 as previously to obtain

E(Q j , β,Mj )= ρj E
(
L
√
βρj Q, 1, (L

√
βρj )

2),
with Q the unit square. Next, we note that (4-2) and (4-7) imply, using (4-12),

L j = L
√
βρj > β

µ
→∞

uniformly in j for all j such that Q j ∈Qβ . Then, by Theorem 2.1,∑
Q j∈Qβ

ρj E
(
L
√
βρj Q, 1, (L

√
βρj )

2)
=

∑
Q j∈Qβ

βL2ρ2
j E(L j Q, 1, L2

j )/L2
j

= (1+ o(1))βe(1, 1)
∑

Q j∈Qβ

L2ρ2
j = (1+ o(1))βe(1, 1)

∫
R2
(%̄af)2.

On the other hand, it follows from (2-11) that, on all the squares of Qβ ,

|∇V |6 Cβ(s−1)/(s+2)+ε(s−1),

and thus if

Ṽ (x) :=
∑

Q j∈Qβ

V (xj )1Q j (x), (4-14)

we have

|V (x)− Ṽ (x)|6 C Lβ(s−1)/(s+2)+ε(s−1)
= o(ETF

β ) for any x ∈Qβ .
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Recalling (4-8) and (4-9) we then have∑
Q j∈Qβ

∫
Q j

V |uaf
j |

2
=

∫
R2

Ṽ %̄af
+ O(Lβ(s−1)/(s+2)+ε(s−1))=

∫
R2

Ṽ %̄af
+ o(ETF

β ). (4-15)

The last assertion follows from (2-13) and (4-2), provided we take ε small enough; e.g., for s > 1 (recall
that the tiling squares have side length L = βη),

ε 6
1

2(s− 1)

(
s− 1
s+ 2

+ η

)
. (4-16)

In the very same way however we can put back V in place of Ṽ, obtaining∑
Q j∈Qβ

∫
Q j

V |uaf
j |

2
=

∫
R2

Ṽ %̄af
+ o(ETF

β )=

∫
R2

V %̄af
+ o(ETF

β ). (4-17)

Combining (4-13), (4-15) and (4-17) yields

Eaf
β >

∫
R2

V %̄af
+ (1+ o(1))βe(1, 1)

∫
R2
(%̄af)2+ o(ETF

β )

> (1+ o(1))E TF
β [%̄

af
] + o(ETF

β )> (1+ o(1))ETF
β (M)+ o(ETF

β ), (4-18)

where the latter energy denotes the ground state energy of the TF functional (2-9) minimized under the
constraint that the L1-norm be equal to M. Inserting (4-9) and using explicit expressions as in (2-13)
and (2-14), one obtains

ETF
β (M)= (1+ o(1))ETF

β

in the limit β→∞, thus completing the proof of (4-6).

4C. Density convergence. The lower bound in (4-6) together with the energy upper bound (4-1) implies
that %̄af, the piecewise constant approximation of %af on scale L = βη, is close in strong L2 sense to %TF

β .
We will deduce (2-20) from the following.

Lemma 4.1 (Convergence of the piecewise approximation).
Let %̄af be defined as in (4-8) and %TF

β be the minimizer of (2-9). Then

‖%̄af
− %TF

β ‖L2(R2) = o(β−1/(s+2)) (4-19)

in the limit β→∞.

Proof. Combining (4-1) and (4-18) we have

E TF
β [%̄

af
]6 Eaf

β + o(1)βs/(s+2) 6 ETF
β + o(1)βs/(s+2). (4-20)

The variational equation for %TF
β takes the form

2βe(1, 1)%TF
β + V = λTF

β = ETF
β +βe(1, 1)

∫
R2
(%TF
β )

2
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on the support of %TF
β (recall (2-14) and (2-15)). Thus,∫

R2
(%̄af
− %TF

β )
2
=

∫
R2

(
(%̄af)2+ (%TF

β )
2)
− 2

∫
R2
%̄af%TF

β

=

∫
R2
(%̄af)2+

∫
R2
(%TF
β )

2
−

1
βe(1, 1)

∫
R2
%̄af(λTF

β − V )+

6
1

βe(1, 1)

[
E TF
β [%̄

af
] − λTF

β +βe(1, 1)
∫

R2
(%TF
β )

2
]

=
1

βe(1, 1)
[E TF
β [%̄

af
] − ETF

β ] = o(β−2/(s+2)),

where we used (4-20) in the last step. �

By the definition (4-8) of %̄af we also have, for any Lipschitz function φ with compact support,∫
R2
φ(β−1/(s+2)x)%̄af(x) dx =

Nβ∑
j=1

∫
Q j

φ(β−1/(s+2)x) %̄af(x) dx

=

Nβ∑
j=1

φ(β−1/(s+2)xj )

∫
Q j

%af(x) dx+ O(βη−1/(s+2)
‖φ‖Lip)

=

∫
R2
φ(β−1/(s+2)x) %af(x) dx+ O(βη−1/(s+2)

‖φ‖Lip),

using the normalization of %af. Furthermore, by Cauchy–Schwarz and Lemma 4.1 we obtain∫
R2
φ(β−1/(s+2)x)

(
%̄af(x)− %TF

β (x)
)

dx = o(1)‖φ‖L2(R2).

Since the above estimates are uniform with respect to the Lipschitz norm of φ, we can take η < 1/(s+2),
change scales in the above and recall (2-13) to deduce

sup
φ∈C0(BR(0))
‖φ‖Lip61

∣∣∣∣∫
R2
φ(x)

(
β2/(s+2)%af(β1/(s+2)x)− %TF

1 (x)
)

dx
∣∣∣∣= o(1), β→∞,

for fixed R > 0, and hence (2-20).

Appendix: Properties of minimizers

In this appendix we recall a few fundamental properties of the average-field functional (1-1) in a trap V,
respectively (2-1) on a domain �, as well as their minimizers.

As discussed in [Lundholm and Rougerie 2015, Appendix], the natural, maximal domain of E af is

Daf
:=
{
u ∈ H 1(�) :

∫
R2 V |u|2 <∞

}
,

and one may also use that the space C∞c (R
2) is dense in this form domain with respect to E af. Furthermore,

[Lundholm and Rougerie 2015, Appendix: Proposition 3.7] ensures the existence of a minimizer uaf
∈Daf



1196 MICHELE CORREGGI, DOUGLAS LUNDHOLM AND NICOLAS ROUGERIE

of E af
β for any value of β ∈ R for confining potentials V, and by a similar proof and the compactness of

the embedding H 1
0 (�)⊂ H 1(�) ↪→ L p(�), 16 p<∞, the same holds for E af

� for any bounded � with
Lipschitz boundary:

Proposition A.1 (Existence of minimizers).
Let β ∈ R be arbitrary. Given any V : R2

→ R+ such that −1+ V has compact resolvent, there exists
uaf
∈Daf with

∫
R2 |uaf

|
2
= 1 and E af

β [u
af
]= Eaf. Moreover, if M > 0 and�⊂R2 is bounded with Lipschitz

boundary then there exists uaf
∈ H 1

(0)(�) with
∫
�
|uaf
|
2
= M and E af

�,β[u
af
] = E(0)(�, β,M).

Proof. The first part is [Lundholm and Rougerie 2015, Appendix: Proposition 3.7]. For �⊂ R2 we have
by the Hölder, weak Young, and Sobolev inequalities, as well as Lemma 3.2, that∥∥A[|u|2]u

∥∥
L2(�)

6
∥∥A[|u|2]

∥∥
L4(�)
‖u‖L4(�)

6 C
∥∥|u|2∥∥L4/3(�)

‖∇w0‖L2,w(R2)‖u‖L4(�) 6 C ′
∥∥|u|∥∥3

H1(�)
6 C ′(M + E af

� [u])
3/2,

and therefore

‖∇u‖L2(�) =
∥∥∇u+ iβA[|u|2]u− iβA[|u|2]u

∥∥
L2(�)

6 E af
[u]1/2+C ′|β|(M + E af

� [u])
3/2.

Hence, given a minimizing sequence

(un)n→∞ ⊂ H 1
(0)(�), ‖un‖

2
L2(�)
= M, lim

n→∞
E af
� [un] = E(0)(�, β,M),

by uniform boundedness and the Rellich–Kondrachov theorem (see, for example, [Lieb and Loss 2001,
Theorem 8.9]) there exists a convergent subsequence (again denoted un) and a limit uaf

∈ H 1
(0)(�) such that

un→ uaf in L p(�), 16 p <∞, ∇un ⇀ ∇uaf in L2(�).

Furthermore, by estimating∥∥A[|un|
2
]un − A[|uaf

|
2
]uaf∥∥

2 6
∥∥A[|un|

2
− |uaf

|
2
]un
∥∥

2+
∥∥A[|uaf

|
2
](un − u)

∥∥
2

as above and using the strong convergence in L p(�) for any 16 p <∞, we have

A[|un|
2
]un→ A[|uaf

|
2
]uaf in L2(�).

Hence,∥∥(∇ + iβA[|uaf
|
2
]
)
uaf∥∥

2 = sup
‖v‖=1

∣∣〈∇uaf
+ iβA[|uaf

|
2
]uaf, v〉

∣∣= sup
‖v‖=1

lim
n→∞

∣∣〈∇un + iβA[|un|
2
]un, v〉

∣∣
6 lim inf

n→∞
sup
‖v‖=1

∣∣〈∇un + iβA[|un|
2
]un, v〉

∣∣= lim inf
n→∞

∥∥(∇ + iβA[|un|
2
]
)
un
∥∥

2,

that is, E(0)(�, β,M) 6 E af
� [u

af
] 6 lim infn→∞ E af

� [un] = E(0)(�, β,M), and furthermore
∫
�
|uaf
|
2
=

limn→∞
∫
�
|un|

2
= M. �

For completeness, we finish with a derivation of the variational equation associated to the minimization
of the energy functional (1-1). Let us define

J[u] := i
2
(u∇ū− ū∇u)
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and for two vector functions F, G : R2
→ R2, their convolution

F * G(x) :=
∫

R2
F(x− y) · G( y) d y.

Lemma A.2 (Variational equation).
Let u = uaf be a solution to (2-8). Then[(

−i∇ +βA[|u|2]
)2
+ V − 2β∇⊥w0 *

(
βA[|u|2]|u|2+ J[u]

)]
u = λu, (A-1)

where

λ= E af
[u] +

∫
R2

(
2βA[|u|2] · J[u] + 2β2∣∣A[|u|2]∣∣2 |u|2)

=

∫
R2

(
1(|∇u|2+ V |u|2)+ 2 · 2βA[|u|2] · J[u] + 3β2∣∣A[|u|2]∣∣2|u|2). (A-2)

(Note that the factors 1, 2, and 3 correspond to the total degree of |u|2 in each term.)

Proof. Let

F[u, ū, λ] := E af
[u, ū] + λ(1−

∫
|u|2)

=

∫ (
|∇u|2+ (V − λ)|u|2+β2∣∣A[|u|2]∣∣2 |u|2+ 2βA[|u|2] · J[u]

)
+ λ,

E1[u, ū] :=
∫
|A[uū]|2uū =

∫∫∫
∇
⊥w0(x− y) · ∇⊥w0(x− z) uū(x) uū( y) uū(z) dx d y dz,

E2[u, ū] :=
∫

A[uū] · i(u∇ū− ū∇u)=
∫∫
∇
⊥w0(x− y) uū( y) · i(u∇ū− ū∇u)(x) dx d y.

We have

E1[u, ū+εv] = E1[u, ū]+ε
∫∫∫ (

∇
⊥w0(x− y)·∇⊥w0(x−z)

(
v(x)u(x)|u( y)|2 |u(z)|2

+|u(x)|2u( y)v( y)|u(z)|2+|u(x)|2 |u( y)|2u(z)v(z)
))

dx d y dz+O(ε2).

Hence at O(ε),∫
x
v(x)u(x)A[|u|2]2 dx−

∫
y
v( y)u( y)

∫
x
∇
⊥w0( y− x)|u(x)|2 ·

∫
z
∇
⊥w0(x− z)|u(z)|2 dz dx d y

−

∫
z
v(z)u(z)

∫
x
∇
⊥w0(z− x)|u(x)|2 ·

∫
y
∇
⊥w0(x− y)|u( y)|2 d y dx dz

=

∫
vu A[|u|2]2− 2

∫
vu∇⊥w0 * |u|2 A[|u|2].

Also

E2[u, ū+εv] = E2[u, ū]+ε
∫∫ (
∇
⊥w0(x− y)u( y)v( y)·i(u∇ū−ū∇u)(x)

+∇
⊥w0(x− y)|u( y)|2 ·i

(
u(x)∇v(x)−v(x)∇u(x)

))
dx d y+O(ε2),
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hence at O(ε) and using ∇ · A= 0,

−

∫
y
v( y)u( y)

∫
x
∇
⊥w0( y− x) · 2 J[u](x) dx d y− i

∫
v(x)∇u(x) · A[|u|2](x) dx

+ i
∫

u(x)A[|u|2](x) · ∇v(x) dx︸ ︷︷ ︸
={P I }=−i

∫
∇u·Av−i

∫
u(∇·A)v

=−2
∫
vu∇⊥w0 * J[u] − 2i

∫
v∇u · A[|u|2].

Thus

F[u, ū+ εv, λ] = F[u, ū, λ] + ε
∫
v
[
(−1+ V − λ)u+β2∣∣A[|u|2]∣∣2u− 2β2

∇
⊥w0 * |u|2 A[|u|2]u

− 2β∇⊥w0 * J[u]u− 2iβA[|u|2] · ∇u
]
+ O(ε2),

and using (
−i∇ +βA[|u|2]

)2u =−1u− 2iβA[|u|2] · ∇u+β2 A[|u|2]2u,

we arrive at (A-1).
For (A-2) we use

∫
|u|2 = 1 by multiplying (A-1) with ū and integrating:

λ= E af
[u] − 2β

∫
|u|2∇⊥w0 *

(
βA[|u|2]|u|2+ J[u]

)
.

We then use that∫
|u|2∇⊥w0 * A[|u|2]|u|2 =

∫∫∫
|u(x)|2∇⊥w0(x− y) · ∇⊥w0( y− z)|u(z)|2 |u( y)|2 dx d y dz

=−

∫∫∫
∇
⊥w0( y− x) · ∇⊥w0( y− z)|u(x)|2 |u(z)|2 |u( y)|2 dx dz d y

=−

∫
A[|u|2]2 |u|2

and

2
∫
|u|2∇⊥w0 * J[u] =

∫∫
|u(x)|2∇⊥w0(x− y) · i

(
u( y)∇ū( y)− ū( y)∇u( y)

)
dx d y

=−

∫
y

i(u∇ū− ū∇u)( y) ·
∫

x
∇
⊥w0( y− x)|u(x)|2 dx d y =−2

∫
J[u] · A[|u|2]

to arrive at (A-2). �
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