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REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS
ON RANDOM DISCRETE VELOCITY GRIDS

NATHALIE AYI AND THIERRY GOUDON

We go back to the question of the regularity of the “velocity average”
∫

f (x, v)ψ(v) dµ(v) when f and
v · ∇x f both belong to L2, and the variable v lies in a discrete subset of RD. First of all, we provide a rate,
depending on the number of velocities, for the defect of H 1/2 regularity which is reached when v ranges
over a continuous set. Second of all, we show that the H 1/2 regularity holds in expectation when the set
of velocities is chosen randomly. We apply this statement to investigate the consistency with the diffusion
asymptotics of a Monte Carlo-like discrete velocity model.

1. Introduction

The averaging lemma is now a classical tool for the analysis of kinetic equations. Roughly speaking it can
be explained as follows. Let V ⊂ RD, endowed with a measure dµ. We consider a sequence of functions
fn : R

D
×V → R. We assume that

(a) ( fn)n∈N is bounded in L2(RD
×V ),

(b) (v · ∇x fn)n∈N is bounded in L2(RD
×V ).

Given ψ ∈ C∞c (R
D), we are interested in the velocity average

ρn[ψ](x)=
∫

V

fn(x, v)ψ(v) dµ(v).

Of course, (a) already tells us that (ρn[ψ])n∈N is bounded in L2(RD). We wish to obtain further regularity
or compactness properties, as a consequence of the additional assumption (b), and the fact that we
are averaging with respect to the variable v. The first result in that direction dates back to [Bardos
et al. 1988] (see also [Agoshkov 1984]); it asserts that (ρn[ψ])n∈N is bounded in the Sobolev space
H 1/2(RD) and it is thus relatively compact in L2

loc(R
D), by virtue of the standard Rellich’s theorem.

This basic result has been improved in many directions: L2 can be replaced by the L p framework, at
least with 1 < p <∞, and we can relax (b) by allowing derivatives with respect to v and certain loss
of regularity with respect to x ; see, among others, [DiPerna et al. 1991; Golse et al. 1988; Perthame
and Souganidis 1998]. Time-derivative or force terms can be considered as well; see, in addition to the
above-mentioned references, [Berthelin and Junca 2010]. Such an argument plays a crucial role in the
stunning theory of “renormalized solutions” of the Boltzmann equation [DiPerna and Lions 1989b], and
more generally in proving the existence of solutions to nonlinear kinetic models like in [DiPerna and
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Lions 1989a]. It is equally a crucial ingredient for the analysis of hydrodynamic regimes, which establish
the connection between microscopic models and fluid mechanics systems, and for the asymptotic of the
Boltzmann equation to the incompressible Navier–Stokes system, which needs a suitable L1 version of
the average lemma [Golse and Saint-Raymond 2002]; we refer the reader to [Golse and Saint-Raymond
2004; Saint-Raymond 2009; Villani 2002]. Finally, it is worth pointing out that the averaging lemma can
be used to investigate the regularizing effects of certain PDEs (convection-diffusion and elliptic equations,
nonlinear conservation laws, etc.) [Tadmor and Tao 2007].

In order to illustrate our purpose, let us consider the following simple model which can be motivated
from radiative transfer theory:

ε ∂t fε + v · ∇x fε =
1
ε
σ (ρε)(ρε − fε), (1-1)

where

ρε(t, x)=
∫

V

fε(t, x, v) dµ(v),

and σ : [0,∞)→ [0,∞) is a given smooth function. The parameter 0< ε� 1 is defined from physical
quantities. As it tends to 0, both fε(t, x, v) and ρε(t, x) converge to ρ(t, x), which satisfies the nonlinear
diffusion equation

∂tρ =∇x · (A∇x F(ρ)), A =
∫

V

v⊗ v dµ(v), F(ρ)=
∫ ρ

0

dz
σ(z)

. (1-2)

The averaging lemma is an efficient tool to deal with the nonlinearity of such a problem, as discussed in
[Bardos et al. 1988].

However the discussion above hides the fact that we need some assumptions on the measured set
of velocities (V, dµ) in order to obtain the regularization property of the velocity averaging. Roughly
speaking, we need “enough” directions v when we consider the derivatives in (b). More technically, the
compactness statement holds provided for any 0< R <∞ we can find CR > 0, δ0> 0, γ > 0 such that
for 0< δ < δ0 and ξ ∈ SN−1, we have

meas
(
{v ∈ V ∩ B(0, R) : |v · ξ | ≤ δ}

)
≤ CRδ

γ.

This assumption appears in many statements about regularity of the velocity averages; when we are only
interested in the compactness issue, it can be replaced by a more intuitive assumption (see, e.g., [Golse
2000, Theorem 1 in Lecture 3]): for any ξ ∈ SN−1 we have

meas
(
{v ∈ V ∩ B(0, R) : v · ξ= 0}

)
= 0. (1-3)

Clearly these assumptions are satisfied when the measure dµ is absolutely continuous with respect to
the Lebesgue measure (with, for the sake of concreteness, V = RD or V = SD−1). However, they fail
for models based on a discrete set of velocities. For instance let V = {v1, . . . , vN }, with vj ∈ RD, and
dµ(v)= 1

N

∑N
j=1 δ(v=vj ); it suffices to pick ξ ∈ SN−1 orthogonal to one of the vj to contradict (1-3).

(Note that alternative proofs based on compensated compactness techniques have been proposed to justify
the asymptotic regime from (1-1) to (1-2) that apply to certain discrete velocity models; see [Degond et al.
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2000; Goudon and Poupaud 2001; Lions and Toscani 1997].) Nevertheless, when the discrete velocities
come from a discretization grid of the whole space, the averaging lemma can be recovered asymptotically
letting the mesh step go to 0, as shown in [Mischler 1997], motivated by the convergence analysis of
numerical schemes for the Boltzmann equation.

This paper aims at investigating further these issues. To be more specific, in Section 2 we revisit the
averaging lemma for discrete velocities in two directions. First of all, we make more precise the analysis
of [Mischler 1997], obtaining a rate on the defect to the H 1/2 regularity of the velocity average, depending
on the mesh size. Second of all, we establish a stochastic version of the averaging lemma. We are still
working with a finite number of velocities on bounded sets; however, choosing the velocities randomly,
the “compactifying” property of assumption (b) can be restored by dealing with the expectation of ρn[ψ].
This is a natural way to involve “enough velocities”, by looking at a large set of realizations of the discrete
velocity grid. The analysis is completed in Section 3 by going back to the asymptotic problem ε→ 0 in
(1-1), with a random discretization of the velocity variable, in the spirit of the Monte Carlo approach.

2. Discrete velocity averaging lemmas

Deterministic case: evaluation of the defect. As mentioned above, it is a well-known fact that, in the
deterministic context, the averaging lemma fails for discrete velocity models. However, as established by
S. Mischler [1997], the compactness of velocity averages is recovered asymptotically when we refine a
velocity grid in order to recover a continuous velocity model. Here, we wish to quantify the defect of
compactness when the number of velocities is finite and fixed. This is the aim of the following claim
which shows that the macroscopic density ρ[ψ] “belongs to H 1/2(RD)+ O(1/

√
N )L2(RD)”.

Proposition 2.1. Let N ∈ N \ {0} and define

AN =

( 1
N

Z
)D
∩ [−0.5, 0.5]D.

Let f, g ∈ L2(RD
× AN ) satisfy, for all k ∈ ZD,

vk · ∇x f (x, vk)= g(x, vk). (2-1)

We suppose that the L2 norm of f and g is bounded uniformly with respect to N. Then, for allψ ∈C∞c (R
D),

the macroscopic quantity

ρ[ψ](x)=
1

(N + 1)D

∑
k

f (x, vk)ψ(vk)

can be split as ρ[ψ](x)=2[ψ](x)+ (1/
√

N )1̃[ψ](x), where 2[ψ] and 1̃[ψ] are bounded uniformly
with respect to N in H 1/2(RD) and L2(RD) respectively.

Remark 2.2. Note that in this statement N is the number of grid points per axis. Accordingly, there
are N = (N + 1)D velocities in the set AN . Therefore the defect of H 1/2 regularity decays like N 1/2D ,
depending on the dimension.
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Proof. As usual, we start by applying the Fourier transform to (2-1). Then for all k ∈Z and ξ ∈RD, we get

ξ · vk f̂ (ξ, vk)= (−i)ĝ(ξ, vk).

Let us set

F(ξ) :=
(

1
(N + 1)D

∑
k

| f̂ (ξ, vk)|
2
)1/2

, G(ξ) :=
(

1
(N + 1)D

∑
k

|ĝ(ξ, vk)|
2
)1/2

.

By assumption, we have F,G ∈ L2
ξ . Still following the standard arguments, we pick δ > 0 and we split

ρ̂[ψ](ξ)=
1

(N + 1)D

∑
k

f̂ (ξ, vk)ψ(vk)

=
1

(N + 1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ, vk)ψ(vk)+
1

(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk).

The Cauchy–Schwarz inequality permits us to dominate the first term:∣∣∣∣ 1
(N+1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ,vk)ψ(vk)

∣∣∣∣≤‖ψ‖∞( 1
(N+1)D

∑
k

| f̂ (ξ,vk)|
2
)1/2( 1

(N+1)D

∑
|ξ ·vk |<δ|ξ |

1
)1/2

. (2-2)

For the second term, we use the information in (2-1); it yields∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣
=

∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

(−i)ĝ(ξ, vk)

ξ · vk
ψ(vk)

∣∣∣∣
≤ ‖ψ‖∞

(
1

(N + 1)D

∑
k

|ĝ(ξ, vk)|
2
)1/2( 1

(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2

)1/2

. (2-3)

From now on we assume ξ 6=0. Let (e1, . . . , eD) stand for the canonical basis of RD so that ξ =
∑D

j=1 αj ej

with αj ∈ R. We distinguish the following two cases:

(i) ξ is aligned with an axis, that is, all but one the αj vanish, or

(ii) ξ is generated by at least two vectors of the basis.

We start with the case (i), assuming for instance ξ = αe1. Then ξ · vk = αv
1
k , where v1

k is the first
component of the vector vk .

We refer the reader to Figure 1 to complete the discussion. On each horizontal line we find 2bδNc+ 1
velocities such that |ξ · vk | < δ|ξ |, where bsc stands for the integer part of s. Thus, since there are
(N + 1)D−1 such lines on the domain AN , we obtain∑

|ξ ·vk |<δ|ξ |

1= (2bδNc+ 1)(N + 1)D−1
= 2

(
δ+

1
N

)
(N + 1)D.
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(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 1. The delimited area corresponds to |ξ · vk |< δ|ξ | for ξ collinear to e1.

Coming back to (2-2), we arrive at∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣≤ C F(ξ)

√
δ+

1
N
,

where C > 0 is a generic constant which does not depend on N and ξ .
Next, we cover the set of velocities such that |vk · ξ | ≥ δ|ξ | by strips of width δ; see Figure 2 in

dimension D = 2. We denote by Sp the p-th strip delimited by the straight lines x = pδ and x = (p+1)δ.
Each velocity on the strip Sp satisfies pδ ≤ v1

k ≤ (p+ 1)δ. Moreover, given a strip Sp, we cannot find
more than bδNc+ 1 abscissae in the strip and there are (N + 1)D−1 lines in the domain. It follows that∑
|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2 =
∑

|ξ ·vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ |.vk |

2

≤
1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
(δN + 1)(N + 1)D−1

≤
1
|ξ |2

2
(∑

p≥1

1
p2

)
1
δ

(
1+ 1

δN

)
(N + 1)D.

(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 2. Splitting of the velocity space in strips of width δ. Since this space is symmetric,
we only deal with the part corresponding to positive abscissae.
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(0.5, 0.5)
•

5ξ
5θ

5(0.5, 0.5)
•

5θ

5ξ

Figure 3. Representation of ξ ∈ R2 with θ ∈
]
0, π4

]
and θ ∈

]
π
4 ,

π
2

]
with cos θ |ξ | = ξ · e1.

Thus, we deduce from (2-3) that∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣≤ CG(ξ)
1

|ξ |
√
δ

(
1+ 1

δN

)1/2
.

We conclude that

∣∣ρ̂[ψ](ξ)∣∣≤ C
(

F(ξ)

√
δ+

1
N
+G(ξ)

1

|ξ |
√
δ

(
1+ 1

δN

)1/2)
(2-4)

holds when ξ is aligned with the axis.
We turn to the general case (ii). As illustrated in Figure 3, we can assume that the angle θ between ξ

and one of the axes (say e1) lies in
]
0, π4

[
, the other cases follow by a symmetry argument.

The reasoning still consists in counting velocities in strips appropriately defined. As said above, without
loss of generality we can assume that θ ∈

]
0, π4

[
, where we have set cos θ |ξ | = ξ ·e1. We set `1 := δ/cos θ .

On a given strip, we can find at most (b`1 Nc+ 1)× (N + 1)D−1 velocities; see Figure 5.

(−0.5,−0.5)
•

(0.5, 0.5)
•

ξ

Figure 4. The area corresponding to |ξ · vk | ≤ δ|ξ | is delimited as previously. The
complementary set is split into strips of width δ.
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(0.5, 0.5)
•

`1

δ

ξ

Figure 5. Representation of the parameter `1.

Therefore, bearing in mind that 0< θ < π
4 , we obtain∑

|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2 =
∑

|ξ ·vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ | · vk |

2 ≤
1
|ξ |2

2
∑
p≥1

1
(pδ)2

(
δ

cos θ
N + 1

)
(N + 1)D−1

≤
1
|ξ |2

2
∑
p≥1

1
(pδ)2

1
δ cos θ

(
1+ 1

δN

)
(N + 1)D

≤ 2
√

2
1
|ξ |2

1
δ

(
1+ 1

δN

)
(N + 1)D

and ∑
|ξ ·vk |<δ|ξ |

1= (2b`1 Nc+ 1)(N + 1)D−1
≤ 2

(
δ

cos θ
N + 1

)
(N + 1)D−1

≤ 2
√

2
(
δ+

1
N

)
(N + 1)D.

Thus, we deduce exactly like in case (i) that (2-4) holds for any ξ 6= 0.
Therefore, we have established that for all ξ 6= 0, we get (2-4) for all δ > 0. We take

δ =
1
|ξ |

1{N≥|ξ |}+
1
N

1{N<|ξ |}
and we define

2N (ξ) := ρ̂[ψ](ξ)1{N≥|ξ |}, 1N (ξ) := ρ̂[ψ](ξ)1{N<|ξ |}.
Then, we have

2N (ξ)≤ C
(

F(ξ)

√
1
|ξ |
+

1
N
+G(ξ)

1

|ξ |
√

1/|ξ |

(
1+

1
N/|ξ |

)1/2)
1{N≥|ξ |} ≤ C(F(ξ)+G(ξ))

1
√
|ξ |
.

It implies that
|ξ |2N (ξ)

2
≤ C(G2(ξ)+ F2(ξ)),

which equally holds true for ξ = 0. Then by the assumption on f and g, we deduce that 2N ∈ H 1/2(RD).
Finally, we evaluate the remainder:

1N (ξ)≤ C
(

F(ξ)

√
2
N
+G(ξ)

1

|ξ |
√

1/N

(
1+

1
(1/N )N

))
1{N<|ξ |} ≤

C
√

N
(F(ξ)+G(ξ)).

We conclude that
12

N (ξ)≤
C
N
(F2(ξ)+G2(ξ)),

which is also satisfied when ξ = 0. Thus, by the assumption on f and g, we know ‖1N‖L2 is dominated
by 1/

√
N , an observation which finishes the proof. �
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A stochastic discrete velocity averaging lemma. Dealing with random discrete velocities we can expect
to make the defect vanish when taking the expectation of the velocity averages. This is indeed the case as
shown in the following statement.

Theorem 2.3. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on [−0.5, 0.5]D. We set

dµ= 1
N

N∑
k=1

δ(v=Vk).

Let f, g ∈ L2(RD
×RD

×�, dx dµ(v) dP) satisfy, for all x ∈ RD, ω ∈�, and k ∈ {1, . . . ,N },

Vk · ∇x f (x, Vk)= g(x, Vk). (2-5)

Then, for all ψ ∈ C∞c (R
D), the macroscopic quantity

ρ[ψ](x) := 1
N

N∑
k=1

f (x, Vk)ψ(Vk)= RD f (x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H 1/2(RD) (and it is bounded in this space if the L2 norm of f and g is bounded
uniformly with respect to N ).

Remark 2.4. We point out that this statement has a different nature from the stochastic averaging lemma
devised in [Debussche et al. 2015; 2016], where the velocity set still satisfies an assumption like (1-3) but
the equation for v · ∇x fn involves a stochastic term. Our analysis is closer in spirit to the results in [Lions
et al. 2013], where the velocity variable is deterministic but is multiplied by a Brownian motion.

Proof. We apply the Fourier transform to (2-5). Then, for all k, we get

ξ · Vk f̂ (ξ, Vk)= (−i)ĝ(ξ, Vk).

We set

F(ξ) :=
(

1
N

E
∑

k

| f̂ (ξ, Vk)|
2
)1/2

, G(ξ) :=
(

1
N

E
∑

k

|ĝ(ξ, Vk)|
2
)1/2

.

Let us split

Eρ̂[ψ](ξ)= E

[
1

N

∑
k

f̂ (ξ, Vk)ψ(Vk)

]
= E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]
+ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]
for δ > 0. The Cauchy–Schwarz inequality leads to the following estimates: on the one hand,∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ ‖ψ‖∞( 1
N

E
∑

k

| f̂ (ξ, Vk)|
2
)1/2(

1
N

E
∑

|ξ ·Vk |<δ|ξ |

1
)1/2

,
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and, on the other hand,∣∣∣∣ E

[
1

N

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣= ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

(−i)ĝ(ξ, Vk)

ξ · Vk
ψ(Vk)

]∣∣∣∣
≤ ‖ψ‖∞

(
1

N
E
∑

k

|ĝ(ξ, Vk)|
2
)1/2( 1

N
E
∑

|ξ ·vk |≥δ|ξ |

1
|ξ · Vk |

2

)1/2

.

We only detail the case where ξ =αe1, α ∈R, the other cases being deduced by adapting the reasoning
of the proof of Proposition 2.1. We have

E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ · Vk |

2

]
= E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ | · Vk |

2

]
≤ E

[
1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
Mp

]
,

where Mp is the number of velocities in the p-th strip (see Figure 2). We bear in mind that Mp is a
random variable: since the Vi are distributed according to the uniform law, we have

P(Vi ∈ Sp)= δ

and, since the variables V1, . . . , VN are independent, Mp follows a binomial distribution of parameters N

and δ. Therefore, we are led to

E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ · Vk |

2

]
≤

1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
E[Mp] ≤ C

1
|ξ |2δ

N , (2-6)

which yields ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ CG(ξ)
1

|ξ |
√
δ
.

By the same token, we get

E

[ ∑
|ξ ·Vk |<δ|ξ |

1
]
= 2δN (2-7)

so that ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ C F(ξ)
√
δ.

Finally, we arrive at ∣∣Eρ̂[ψ](ξ)∣∣≤ C
(

F(ξ)
√
δ+

G(ξ)

|ξ |
√
δ

)
.

We apply this inequality with δ = G(ξ)/(|ξ |F(ξ)), which leads to∣∣Eρ̂[ψ](ξ)∣∣≤ C
√

F(ξ)G(ξ)
1
√
|ξ |
.

This concludes the proof by using the assumptions on f and g. �
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Remark 2.5. We can readily extend the result to nonuniform laws: we assume that the Vi are identically
and independently distributed in RD according to a continuous and bounded density of probability 8.
The number Mp of velocities in the strip Sp still follows a binomial law but now the expectation value
depends on 8 and Mp can be shown to be dominated by N ‖8‖∞δ.

For certain applications, the variable v lies on the sphere. This is the case for the kinetic models arising
in radiative transfer theory, where v represents the direction of flight of photons, which, of course, all
travel with the speed of light. We can adapt the stochastic averaging lemma to this situation.

Theorem 2.6. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on SD−1. We set

dµ= 1
N

N∑
k=1

δ(v=Vk).

Let f, g ∈ L2(RD
×RD

×�, dx dµ(v) dP) satisfy, for all x ∈RD, ω∈�, and k ∈ {1, . . . ,N },

Vk · ∇x f (x, Vk)= g(x, Vk).

Then, for all ψ ∈ C∞c (S
D−1), the macroscopic quantity

ρ[ψ](x) := 1
N

N∑
k=1

f (x, Vk)ψ(Vk)= RD f (x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H 1/2(RD).

Proof. The proof follows the same arguments as those for Theorem 2.3; we only indicate the main changes.
The proof still relies on counting the velocities produced by the random sampling in the domain

Sp =
{
v ∈ SD−1

: δp|ξ | ≤ |v · ξ | ≤ δ(p+ 1)|ξ |
}

for given ξ ∈RD
\{0}, δ > 0 and p ∈Z. We define θ ∈ [0, 2π ] such that

v · ξ |ξ | = cos θ ∈ [−1,+1].

Considering the random vectors Vk , the associated variable θk is randomly distributed on [0, 2π ]. For
symmetry reasons, P(Vk ∈ Sp) is thus proportional to

P
(
δ|p| ≤ cos θk ≤ δ(|p| + 1)

)
.

We start with the specific case of dimension D = 2, and we refer the reader to Figure 6. In this case,
θ is uniformly distributed on [0, 2π ]. Therefore, for any p ∈ N, we know P(δp ≤ cos θ ≤ δ(p+ 1)) is
proportional to

5δ,p = arccos(δ(p+ 1))arccos(δp) dθ = arccos(δp)− arccos(δ(p+ 1))
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δp δ(p+1)

Sp

Figure 6. Velocities on the sphere S1, with domain Sp.

and Mp = #{Vk ∈ Sp} is driven by the binomial law with parameters N and α5δ,p for a certain constant
α > 0. Hence, the analog of (2-7) is dominated, up to some constant, by

N 5δ,0 =N
( 1

2π − arccos δ
)
=N δ

dx
√

1− x2
≤ CN δ

as far as 0< δ ≤ δ0 < 1. Similarly, the analog of (2-6) involves the sum∑
p≥1

N

δ2 p25δ,p,

which we split into

I=
∑

1≤p≤1/2δ

N

δ2 p25δ,p, II=
∑

1/2δ<p≤1/δ

N

δ2 p25δ,p.

For I, we can still use the fact that x 7→ 1/
√

1− x2 is nonincreasing and bounded far away from x = 1
and we are led to the estimate

I=
∑

1≤p≤1/2δ

N

δ2 p2

∫ δp

δ(p+1)

dx
√

1− x2
≤

∑
1≤p≤1/2δ

N

δ2 p2

δ√
1− δ2(p+ 1)2

≤ C
N

δ
.

For II, we use a summation by parts which yields

II=
∑

1/2δ<p≤1/δ

N arccos(δp)
δ2

(
1

(p− 1)2
−

1
p2

)

≤

∑
1/2δ<p≤1/δ

N arccos(δp)
δ2

2
p(p− 1)2

≤
4δ
δ2 πN

∑
p≥1

1
p2 ≤ C

N

δ
.

Having these estimates at hand, we can repeat the same arguments as in the proof of Theorem 2.3.
For higher dimensions, the situation is actually simpler since θ is now distributed on

[
0, π2

]
according

to the law with density (sin θ)D−2 dθ . Thus (with the simple estimate 0≤ (sin θ)D−2
≤ sin θ ) we obtain

directly the analog of estimates (2-6) and (2-7). �
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The result can be extended to the L p cases for 1< p <∞ by using an interpolation argument as in
[Golse et al. 1988, Theorem 2].

Corollary 2.7. In Theorems 2.3 and 2.6, we assume that f and g belong to L p(RD
×V ×�, dx dµ(v) dP)

for some 1< p <∞, with V either RD or SD−1. Then Eρ[ψ] lies in the Sobolev space W s,p(RD) with
0< s <min(1/p, 1− 1/p) < 1.

Proof. We readily adapt the interpolation argument in [Golse et al. 1988]. Let T be the operator

T : h 7→ E

∫
f (x, v)ψ(v) dµ(v),

where
f (x, Vk)+ Vk · ∇x f (x, Vk)= h(x, Vk).

Clearly T maps continuously Lr (RD
×V ×�, dx dµ(v) dP) into Lr (RD) for any 1< r <∞. Moreover,

Theorems 2.3 and 2.6 tell us that T is a continuous operator from L2(RD
×V ×�, dx dµ(v) dP) to

H 1/2(RD). We conclude by interpreting the Sobolev space W s,p by interpolation, as being an intermediate
space between Lr

=W 0,r and H 1/2
=W 1/2,2 [Bergh and Löfström 1976, Theorem 6.4.5, relation (7)],

and L p as being interpolated between Lr and L2. �

We can equally extend the compactness statement to the L1 framework by following [Golse and
Saint-Raymond 2002].

Corollary 2.8. We consider a random set of velocities defined as in Theorem 2.3 orTheorem 2.6. Let
( fn)n∈N and (gn)n∈N be two sequences of functions defined on RD

×V ×� such that

(i) { fn : n ∈ N} is a relatively weakly compact set in L1(RD
×V ×�, dx dµ(v) dP),

(ii) {gn : n ∈ N} is bounded in L1(RD
×V ×�, dx dµ(v) dP),

(iii) we have Vk · ∇x fn(x, Vk)= gn(x, Vk).

Then Eρn[ψ](x) = E
∫

fn(x, v)ψ(v) dµ(v) lies in a relatively compact set of L1(B(0, R)) for any
0< R <∞ (for the strong topology).

Proof. The proof follows closely [Golse and Saint-Raymond 2002]; we sketch the arguments for the sake
of completeness. For ψ ∈ C∞c (V ), we denote by A the operator

A : f 7→ E

∫
f (x, v)ψ(v) dµ(v).

For λ > 0, we also introduce the operator

Rλ : h 7→
∫
∞

0
e−λt h(x − vt, v) dt,

which returns the solution f =Rλh of (λ+v·∇x) f =h. It is a continuous operator on L p(RD
×V, dx dµ(v))

spaces and we have

‖Rλh‖L p ≤
‖h‖L p

λ
. (2-8)
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Let us temporarily assume that the compactness statement holds for A Rλgn , for any λ > 0, when (i)–(ii)
is strengthened to

(ii′) {gn : n ∈ N} is a relatively weakly compact set in L1(RD
×V ×�, dx dµ(v) dP).

Therefore, writing (λ+ v · ∇x)Rλ fn = fn , we deduce from (i) that (A Rλ fn)n∈N is relatively compact
in L1(B(0, R)) for any λ > 0 and 0 < R <∞. Next, we write fn = λRλ fn + Rλ(v · ∇x fn) so that,
owing to (2-8), A fn = λA Rλ fn+A Rλ(v · ∇x fn) appears as the sum of a sequence which is compact in
L1(B(0, R)) and a sequence whose norm is dominated by 1/λ, uniformly with respect to n. Consequently,
(A fn)b∈N is relatively compact in L1(B(0, R)).

We are thus left with the task of justifying the gain of compactness for A Rλgn when (i)–(ii) is replaced
by (ii′); see [Golse et al. 1988, Proposition 3]. To this end, for λ,M > 0 we set Rλgn = γn and we split

γn = γn,M + γ
M

n ,

where
(λ+ Vk · ∇x)γn,M(x, Vk)= gn(x, Vk)1gn(x,Vk)≤M ,

(λ+ Vk · ∇x)γ
M

n (x, Vk)= gn(x, Vk)1gn(x,Vk)>M .

Since for any fixed M > 0, the set {gn1hn≤M : n ∈ N} is bounded in L1
∩ L∞ ⊂ L2, we can apply

Theorem 2.3 or Theorem 2.6, which imply that (A γn,M)n∈N is compact in L1(B(0, R)) for any finite R.
We can conclude by showing that γ M

n can be made arbitrarily small, in L1 norm, uniformly with respect
to n ∈ N, for a suitable choice of M > 0. This is indeed the case because (ii′) implies

lim
M→∞

{
sup

n

∫
|gn|1gn>M dµ(v) dx dP(ω)

}
= 0

by virtue of the Dunford–Pettis theorem; see [Goudon 2011, §7.3.2]. Going back to (2-8) finishes the
proof. �

3. Application to the Rosseland approximation

Let us go back to the asymptotic behavior of the solutions of (1-1). The problem (1-1) is completed with
the initial condition

fε|t=0 = f 0
ε .

It satisfies f 0
ε ≥ 0 and f 0

ε ∈ L1(RD
×V ), as it is physically relevant, fε being a particle density. For the

set (V, dµ), in what follows we suppose at least that V is a bounded subset in RD and∫
V

dµ(v)= 1,
∫

V

v dµ(v)= 0.

These assumptions are crucial for the analysis of the diffusion regime. Then, the connection to (1-2) can
be established as follows.
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Theorem 3.1. We assume that (1-3) is fulfilled. Let σ be a function such that σ(ρ)= ργ6(ρ) with |γ |< 1
and 0< σ∗ ≤6(ρ)≤ σ ∗ <∞. Let ( f 0

ε )ε>0 satisfy

sup
ε>0

(∫
Rd

∫
V

(
1+ϕ(x)+ | ln f 0

ε | f
0
ε

)
dµ(v) dx +‖ f 0

ε ‖L∞(Rd×V )

)
= M0 <+∞

for a certain weight function such that lim|x |→+∞ ϕ(x)=+∞. Then (up to a subsequence) the solution fε
of (1-1) and ρε converge to ρ(t, x) in L p((0, T )×Rd

× V ) and L p((0, T )×Rd) respectively, for any
1≤ p<∞, 0< T <∞, where ρ is a solution to (1-2) with the initial data ρ|t=0 given by the weak limit
in L p(Rd) of

∫
V f 0

ε dµ(v) as ε→ 0.

For instance this statement holds with V = SD−1 endowed with the Lebesgue measure. We refer the
reader to [Bardos et al. 1988] for a detailed proof, where the velocity averaging lemma is used to manage
the passage to the limit in the nonlinearity. Assumption (1-3) can be replaced by

for any ξ 6= 0, meas
(
{v ∈ V ∩ B(0, R) : v · ξ 6= 0}

)
> 0,

which allows us to deal with certain discrete velocity models. Then, the asymptotic regime can be
analyzed with a compensated compactness argument, which relies on the structure of the system satisfied
by the zeroth and first moments of fε, as pointed out in [Degond et al. 2000; Goudon and Poupaud 2001;
Lions and Toscani 1997]; see also [Marcati and Milani 1990]. The question of the relation between the
diffusion equation that corresponds to a discretization of the velocity set (discrete ordinate equation) and
the diffusion equation that corresponds to the continuous model can be addressed. For the simple collision
operator in (1-1), velocity grids, which differ from the simplest uniform mesh, can be constructed that
lead to the exact diffusion coefficient, namely

1
N

N∑
k=1

vk ⊗ vk =

∫
SD−1

v⊗ v dv = 1
D

I;

we refer the reader to [Buet et al. 2002; Golse et al. 1999; Jin and Levermore 1991] for further discussion
on this issue. However, for more general collision operators, it might happen that the equilibrium
functions that make the collision operator vanish or the diffusion coefficient are not explicitly known; see
[Bonnaillie-Noël et al. 2016; Degond et al. 2000].

We wish to revisit this question by means of a Monte Carlo approach: instead of the discrete ordinate
viewpoint where a discrete velocity grid is adopted once and for all, we deal with a random set of velocities
and we wonder whether it can provide, in expectation, a consistent approximation of the diffusion regime.
The consistency analysis we propose uses Theorem 2.3 or Theorem 2.6 to justify the following claim.

Theorem 3.2. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables distributed
according to the continuous uniform law on V . Then, we obtain a set VN of 2N velocities in V by setting
VN + j =−Vj for all j ∈ {1, . . . ,N }. We denote the associated discrete measure on V by

dµN (v)=
1

2N

2N∑
k=1

δ(v=Vk).
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Let fε|t=0 = f 0
ε ≥ 0 satisfy

sup
ε>0, N ∈N

(
E

∫
RD

∫
V

(
1+ϕ(x)+ | ln f 0

ε |
)

f 0
ε dµN (v) dx +‖ f 0

ε ‖L∞(�×Rd×V )

)
= M0 <+∞. (3-1)

Let fε be a solution of the equation

∂t fε(t, x, Vj )+
1
ε

Vj · ∇x fε(t, x, Vj )=
1
ε2σ(ρε,N )[ρε,N (t, x)− fε(t, x, Vj )], (3-2)

with

ρε,N (t, x) :=
1

2N

2N∑
i=1

fε(t, x, Vj ).

We suppose that ρ ∈ [0,∞) 7→ σ(ρ) is a nonnegative function such that for any 0< R <∞, there exists
σ?(R) > 0 satisfying 0< 1/σ?(R)≤ σ(ρ)≤ σ?(R) and |σ ′(ρ)| ≤ σ?(R) for any 0≤ ρ ≤ R. Then Eρε,N

converges to EρN in L2((0, T )×RD) as ε goes to 0 with 0< T <∞, where EρN is solution of

∂t EρN + div(JN )= 0, σ (EρN )JN =−EAN ∇x EρN + O
(

1
√

N

)
,

with AN the D× D matrix with random components defined by

AN :=
1

2N

2N∑
j=1

Vj ⊗ Vj ,

and EρN |t=0 is the weak limit of
∫

E f 0
ε dµ(v).

Note that the construction of the set VN ensures that the null flux condition
∫
v dµN (v)= 0 is fulfilled,

but the elements of VN are not independent. Nevertheless, the stochastic averaging lemma still applies to
this situation, with a straightforward adaptation of the proof. It is likely that the assumptions on σ can
be substantially weakened, but it not our aim here to seek refinements in this direction. We will make
precise in the proof in which sense the consistency error O(1/

√
N ) should be understood.

Entropy estimates. In order to prove Theorem 3.2, the first step consists in establishing some a priori
estimates, uniform with respect to the parameters ε and N . We will then deduce the compactness needed to
obtain the result. These estimates are quite classical; the proof that we sketch for the sake of completeness
follows directly from [Bardos et al. 1988; Goudon and Poupaud 2001; Lions and Toscani 1997].

Proposition 3.3. Let f 0
ε satisfy (3-1) with ϕ(x)= (1+ x2)β, 0<β < 1. Let 0< T <∞. There exists a

constant C(T ) which only depends on T such that

sup
ε>0,N ∈N

{
sup

0≤t≤T
E

∫
RD

∫
V

(
1+ϕ(x)+| ln fε|

)
fε dµN (v)dx+‖ fε‖L∞(�×(0,T )×RD×V )

}
=C(T )<+∞

(3-3)
and, furthermore,

sup
ε>0,N ∈N

E

∫ T

0

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln
(

fε
ρε,N

)
dµN (v) dx dt ≤ C(T ). (3-4)
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Proof. As said above we crucially use the fact that∫
V

dµN (v)= 1,
∫

V

v dµN (v)= 0.

As a matter of fact, the collision operator is mass-conserving in the sense that∫
V

σ(ρ)( f − ρ) dµN (v)= 0.

Accordingly, integrating immediately leads to

d
dt

E

∫
RD

∫
V

fε dµN (v) dx = 0. (3-5)

More generally, let G : [0,∞)→ R be a convex function. We get

d
dt

E

∫
RD

∫
V

G( fε) dµN (v) dx =−
1
ε2 E

∫
RD

∫
V

σ(ρε,N )(ρε,N − fε)(G ′(ρε,N )−G ′( fε)) dµN (v) dx ≤ 0.

With G(z) = z p, p ≥ 1, it gives an estimate on the L p norm of the solution. Similarly, with G(z) =
[z−‖ f 0

ε ‖∞]
2
+

, we conclude that

‖ fε‖L∞(�×(0,T )×RD×V ) ≤ ‖ f 0
ε ‖∞.

Finally, with G(z)= z ln(z) we have

d
dt

E

∫
RD

∫
V

fε ln fε dµN (v) dx =−
1
ε2 E

∫
RD

∫
V

σ(ρε,N )[ρε,N − fε] ln
(

fε
ρε,N

)
dµN (v) dx ≤ 0. (3-6)

Let us focus on the following quantity obtained by multiplying (3-2) by ϕ and integrating

d
dt

E

∫
RD

∫
V

ϕ(x) fε dµN (v) dx =−
1
ε

E

∫
RD

∫
V

ϕ(x)v · ∇x fε dµN (v) dx

=
1
ε

E

∫
RD

∫
V

fεv · ∇xϕ(x) dµN (v) dx

= E

∫
RD

∫
V

v · ∇xϕ(x)
fε − ρε,N

ε
dµN (v) dx .

Note that we have used
∫
v dN (v)= 0. By the Cauchy–Schwarz inequality, we know that

|
√

b−
√

a|2 =
∣∣∣∣∫ b

a

ds
2
√

s

∣∣∣∣2 ≤ ∣∣∣∣∫ b

a

ds
4s

∣∣∣∣∣∣∣∣∫ b

a
ds
∣∣∣∣= 1

4(b− a) ln(b/a).

Thus, we get∫
V

| fε − ρε,N | dµN (v)=

∫
V

(
√

fε +
√
ρε,N )

∣∣√ fε −
√
ρε,N

∣∣ dµN (v)

≤

(∫
V

(
√

fε +
√
ρε,N )2 dµN (v)

)1/2(∫
V

(
√

fε −
√
ρε,N )2 dµN (v)

)1/2

≤ C
√
ρε,N

(∫
V

( fε − ρε,N ) ln( fε/ρε,N ) dµN (v)

)1/2

,



REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS 1217

and we finally obtain the bound

d
dt

E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ ‖v‖L∞(�×S) E

∫
RD

∫
V

|∇xϕ
| fε − ρε,N |

ε
dµN (v) dx

≤ C E

∫
RD
|∇xϕ|

√
ρε,N

σ(ρε,N )

(∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v)

)1/2

dx

≤ C E

(∫
RD
|∇xϕ|

2 ρε,N

σ(ρε,N )
dx
)1/2(

E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx
)1/2

.

By assumption, 1/σ(ρε,N ) is uniformly bounded. It follows that

E

∫
RD
|∇xϕ|

2 ρε,N

σ(ρε,N )
dx ≤ C

(
E

∫
RD
|∇xϕ|

2q dx
)1/q(

E

∫
RD
ρ

p
ε,N dx

)1/p

≤ C
(

E

∫
RD
|∇xϕ|

2q dx
)1/q(

E

∫
RD

∫
V

| fε|p dµN (v) dx
)1/p

≤ C

holds provided the Hölder conjugate q of p ≥ 1 satisfies β ≤ 1/2− D/(4q).
The Young inequality

ab ≤
a2

4θ
+ θb2

yields

d
dt

E

∫
RD

∫
V

ϕ(x) fε(t, x, v) dµN (v) dx ≤ C + 1
2

E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx .

Let us set

Dε := E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx ≥ 0.

Coming back to (3-6), we get

E

∫
RD

∫
V

fε(t, x, v) ln fε(t, x, v) dµN (v) dx + E

∫
RD

∫
V

ϕ(x) fε(t, x, v) dµN (v) dx + 1
2

∫ t

0
Dε(s) ds

≤ Ct + E

∫
RD

∫
V

f ω,0ε (x, v) ln f ω,0ε (x, v) dµN (v) dx + E

∫
RD

∫
V

ϕ(x) f ω,0ε (x, v) dµN (v) dx .

Since z| ln z| = z ln z− 2z ln z 1{0≤z≤1}, we have

0≤−
∫

0≤ f≤1
f ln f dy =−

∫
0≤ f≤e−ϕ

f ln f dy−
∫

e−ϕ≤ f≤1
f ln f dy ≤

∫
ϕ f dy+

∫
e−ϕ/2 dy.
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Then, we are led to

E

∫
RD

∫
V

fε| ln fε| dµN (v) dx + 1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

= E

∫
RD

∫
V

fε ln fε dµN (v) dx − 2E

∫
RD

∫
V

fε ln fε1{0≤ fε≤1} dµN (v) dx

+
1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ E

∫
RD

∫
V

fε ln fε dµN (v) dx + 2E

∫
RD

∫
V

ϕ

4
fε dµN (v) dx

+ 2E

∫
RD

∫
V

e−ϕ/8 dµN (v) dx + 1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ C(T ). �

Moreover, we can deduce from above that fε behaves like its macroscopic part ρε,N for small ε.

Corollary 3.4. We set gε,N := ( fε − ρε,N )/ε. Then, we have

sup
ε>0, N

E

∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2 dx dt ≤ C(T ).

Proof. We write

E

∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2dx dt = E

∫ T

0

∫
RD

(∫
V

| fε−ρε,N |
ε

dµN (v)

)2

dx dt

≤C E

∫ T

0

∫
RD
ρε,N

∫
V

( fε−ρε,N ) ln( fε/ρε,N )dµN (v)dx dt

≤C E

∫ T

0

∫
RD

ρε,N

σ(ρε,N )

∫
V

σ(ρε,N )( fε−ρε,N ) ln( fε/ρε,N )dµN (v)dx dt.

Since by the assumption on σ we know that z 7→ z/σ(z) is bounded on bounded sets and since ρε,N is
bounded in L∞(�× (0, T )×RD), we can conclude by using (3-4). �

Diffusive limit. We can now discuss how to pass to the limit ε→ 0.

Proof of Theorem 3.2. Applying the Dunford–Pettis theorem (see [Goudon 2011, §7.3.2]) we deduce
from Proposition 3.3 that, possibly at the price of extracting a subsequence,

fε⇀ fN weakly in L1(�× (0, T )×RD
×VN ).

Consequently, we also have

ρε,N =

∫
V

fε dµN (v) ⇀ ρN =

∫
V

fN dµN (v) weakly in L1(�× (0, T )×RD)

and
Eρε,N ⇀ EρN weakly in L1((0, T )×RD).
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Next, we consider the equations satisfied by the moments of fε. To this end, let us set

Jε,N (t, x) := 1
2N

2N∑
i=1

Vi

ε
fε(t, x, Vi ), Pε,N (t, x) := 1

2N

2N∑
i=1

Vi ⊗ Vi fε(t, x, Vi ).

Integrating (3-2) with respect to the velocity variable v yields

∂tρε,N + div(Jε,N )= 0. (3-7)

Similarly, multiplying (3-2) by v and integrating leads to

ε2∂t Jε,N + div(Pε,N )=−σ(ρε,N )Jε,N . (3-8)

Lemma 3.5. The sequence (Jε,N )ε>0 is bounded in L2(�× (0, T )× RD) and we can write Pε,N =

AN ρε,N + εKε,N with AN =
1

2N

∑2N
j=1 Vj ⊗ Vj and the components of (Kε,N )ε>0 are bounded in

L2(�× (0, T )×RD).

Proof. The proof is based on the fact that fε = ρε,N + εgε,N . Since
∑2N

j=1 Vj = 0, it allows us to write

Jε,N =
∫
vgε,N dµN (v),

and we deduce the bound on Jε,N from Corollary 3.4 since ‖v‖L∞(�×S) ≤ C . In addition, we have

Pε,N =

∫
v⊗ v dµN (v)ρε,N + ε

∫
v⊗ vgε,N dµN (v).

We set

Kε,N (t, x) :=
∫
v⊗ vgε,N (t, x, v) dµN (v).

We conclude by using the estimates in Corollary 3.4 again. �

Owing to Lemma 3.5, (3-8) can be recast as

ε
(
ε∂t Jε,N + div(Kε,N )

)
+ AN ∇xρε,N =−νε,N ,

with νε,N := σ(ρε,N )Jε,N . Passing to the limit, up to subsequences, we are led to{
∂tρN + div(JN )= 0,
AN ∇ρN =−νN ,

(3-9)

where νN is the weak limit as ε→ 0 of νε,N , which is a bounded sequence in L2(�× (0, T )×RD).
It remains to establish a relation between νN , ρN and JN , or more precisely the expectation of these
quantities. To this end, we are going to use the strong compactness of Eρε,N by using the averaging
lemma. Indeed, we know that Eρε,N belongs to a bounded set in L2(0, T ; H 1/2(RD)); the proof follows
exactly the same argument as for Theorem 2.3, taking the Fourier transform with respect to both the time
and space variables t, x . However, because of the ε in front of the time derivative, we cannot expect a
gain of regularity with respect to the time variable. Then, we need to combine this estimate with another
argument as follows:
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(i) By using the Weil–Kolmogorov–Fréchet theorem, see [Goudon 2011, Théorème 7.56], we deduce
from the averaging lemma that

lim
|h|→0

(
sup
ε

∫ T

0

∫
RD

∣∣Eρε,N (t, x + h)− Eρε,N (t, x)
∣∣2 dx dt

)
= 0.

(ii) Going back to (3-7), Lemma 3.5 tells us that ∂t Eρε,N =−div(EJε,N ) is bounded, uniformly with
respect to ε, in L2(0, T ; H−1(RD)).

Then, this is enough to deduce that Eρε,N strongly converges to EρN in L2((0, T )× RD) (see, e.g.,
[Alonso et al. 2017, Appendix B] for a detailed proof).

Then, we rewrite

EJε,N = E

(
νε,N

σ(ρε,N )

)
=

Eνε,N

σ(Eρε,N )
+ Erε,N , rε,N =

[
νε,N

(
1

σ(ρε,N )
−

1
σ(Eρε,N )

)]
. (3-10)

From the previous discussion, extracting further subsequences if necessary, we know that Eνε,N converges
weakly to EνN in L2((0, T )×RD), while Eρε,N converges strongly in L2((0, T )×RD) and a.e. to EρN .
Since σ is continuous and bounded from below, 1/σ(Eρε,N ) converges to 1/σ(EρN ) a.e. too, and it is
bounded in L∞((0, T )×RD). We deduce that

Eνε,N

σ(Eρε,N )
⇀

EνN

σ(EρN )
weakly in L2((0, T )×RD).

We are left with the task of proving that the last term in the right hand side of (3-10) tends to 0 as N →∞,
uniformly with respect to ε. The Cauchy–Schwarz inequality yields

|E rε,N | ≤ (E[(νε,N )2])1/2
(

E

[(
1

σ(ρε,N )
−

1
σ(Eρε,N )

)2])1/2

≤ (E [(νε,N )
2
])1/2

(
E

[(∫ ρε,N

Eρε,N

d
dz

[
1
σ(z)

]
dz
)]2)1/2

≤ (E [(νε,N )
2
])1/2

(
E [(ρε,N − Eρ2

ε,N ])
)1/2

≤ (E [(νε,N )
2
])1/2

(
E

[(
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

)2])1/2

. (3-11)

We remind the reader that the 2N velocities are constructed by symmetry from V1, . . . , VN , which are
i.i.d. velocities in [−0.5, 0.5]D , and we write

E

[
12N

2N∑
i=1

fε(Vi )− Eρε,N

]2

= E

[
1

4N 2

N∑
i, j=1

{(
fε(Vi )+ fε(−Vi )− 2Eρε,N

)(
fε(Vj )+ fε(−Vj )− 2Eρε,N

)}]
. (3-12)
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When i 6= j , we know Vi and Vj are independent, which implies

E
[
( fε(Vi )+ fε(−Vi )− 2Eρε,N )( fε(Vj )+ fε(−Vj )− 2Eρε,N )

]
= E

[
fε(Vi )+ fε(−Vi )− 2Eρε,N

]
E
[

fε(Vj )+ fε(−Vj )− 2Eρε,N
]
.

Now, we use the fact that the Vi are identically distributed so that

2Eρε,N = 2E

(
1

2N

2N∑
k=1

fε(Vk)

)
= E

(
1

N

N∑
k=1

(
fε(Vk)+ fε(−Vk)

))

=
1

N

N∑
k=1

(
E fε(Vk)+ E fε(−Vk)

)
= E fε(Vj )+ E fε(−Vj )

for any j ∈ {1, . . . ,N }. It follows that

E
[

fε(Vi )+ fε(−Vi )− 2Eρε,N )( fε(Vj )+ fε(−Vj )− 2Eρε,N )
]
= 0 when i 6= j .

Going back to (3-12), we obtain

E

[
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

]2

= E

[
1

4N 2

N∑
i=1

(
fε(Vi )+ fε(−Vi )− 2Eρε,N

)2
]
.

Since fε and ρε,N are uniformly bounded, we conclude that the estimate

E

[
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

]2

≤
C
N

holds. Inserting this information in (3-11), we arrive at∫ T

0

∫
RD
|Erε,N |2 dx dt ≤

C
N

E

∫ T

0

∫
RD
ν2
ε,N dx dt,

which is thus of order O(1/N ), uniformly with respect to ε.
Therefore, we can let ε run to 0 in (3-10) and, for a suitable subsequence, we are led to

EJε,N ⇀ EJN =
EνN

σ(EρN )
+ rN weakly in L2((0, T )×RD) with ‖rN ‖L2((0,T )×RD) ≤

C
√

N
.

Finally, we take the expectation in (3-9) and we get

E(AN ∇xρN )=−EνN =−σ(EρN )EJN + σ(EρN )rN .

Note that the last term is still of order O(1/
√

N ) in the L2((0, T )×RD) norm. By reasoning similar to
that above, we check that, for any i, j ∈ {1, . . . , D},√

E
[(
[AN ]i j − E[AN ]i j

)2]
= O

(
1
√

N

)
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(this is the standard result about Monte Carlo integration). It implies that we can find a constant C > 0,
which only depends on the dimension D, such that for any ξ ∈ RD,

E
[∣∣AN ξ − E[AN ξ ]

∣∣2]≤ C |ξ |2

N
.

Then we get

E(AN ∇xρN )= EAN ∇x EρN + sN , sN = E
[
(AN − EAN )∇xρN

]
.

The remainder term should be analyzed in a weak sense, due to a lack of a priori regularity of ∇xρN (we
only know that the product AN ∇xρN lies in L2, but the invertibility of AN is not guaranteed). We have,
for any ϕ ∈ C∞c ((0, T )×RD),∣∣〈EsN |ϕ〉

∣∣= ∣∣∣∣−E

∫ T

0

∫
RD
ρN (AN − EAN )∇xϕ dx dt

∣∣∣∣
≤

(
E

∫ T

0

∫
RD
ρ2

N dx dt
)1/2(∫ T

0

∫
RD
|∇xϕ|

2 dx dt
)1/2 C
√

N
.

Owing to the estimates (3-3) in Proposition 3.3, it means that sN is therefore of order O(1/
√

N ) in the
L2(0, T ; H−1(RD))-norm. �

Remark 3.6. The random matrix AN might be singular. However EAN is invertible. Indeed for any
ξ 6= 0, we have

EAN ξ · ξ =
1

2N

2N∑
j=1

E[|Vj · ξ |
2
] ≥ 0.

This quantity is actually positive since P(v · ξ = 0)= 0 for the continuous laws we are dealing with.

4. Comments and perspectives

The Monte Carlo procedure is widely used to numerically evaluate multidimensional integrals, precisely
because, evaluating the numerical effort by the number N of quadrature points, it provides a result with
an accuracy of order O(1/

√
N ), independently of the space dimension, in contrast to the deterministic

quadrature methods where the error is O(N −k/D), k being the order of the method; see [Caflisch 1998;
Lapeyre et al. 1998, Chapitre 1]. Application of such stochastic quadrature approaches to the numerical
treatment of kinetic models for neutron transport dates back to the Manhattan project [Metropolis and
Ulam 1949]. For applications to radiative transfer computations we refer the reader, e.g., to [Campbell
1967] and for a more recent overview to [Whitney 2011]. After the pioneering works by K. Nanbu
[1980] and G. A. Bird [1970], Monte Carlo techniques are at the basis of the simulation of the Boltzmann
equation for rarefied gases. (By the way, note that the construction of a suitable deterministic quadrature
formula for approximating the Boltzmann operator can be a bit tricky, with unexpected connections to
subtle number theory arguments [Michel and Schneider 2000].) Very comprehensive introductions can
be found in [Graham and Méléard 1999; Pareschi 2005; Pareschi and Russo 1999] and in the textbook
[Lapeyre et al. 1998]. The method can naturally be presented as a particulate method; roughly speaking,
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it works according to a splitting approach [Lapeyre et al. 1998, Chapter 3]: first, particles (which, here,
are “test” particles intended to actually represent a set of real particles) are displaced according to free
transport over the time step 1t , and, second, the effects of the interaction between particles during the
time step are evaluated by using a random sampling. Convergence of the method for the Boltzmann
equation as the number of particles tends to∞ is analyzed in [Graham and Méléard 1997; Pulvirenti et al.
1994; Wagner 1992; 2004]. However, the performance of Monte Carlo algorithms is known to degrade in
near-continuum regimes, where the number of collision events per time unit increases; see [Caflisch 1998,
§7; Lapeyre et al. 1998, §3.7.1 and §4.5]. This observation has motivated the development of hybrid
methods [Dimarco and Pareschi 2008; Pareschi 2005].

As pointed out in the Introduction, the average lemma plays a central role in the analysis of nonlinear
kinetic models and their hydrodynamic limits, with fundamental obstructions in extending to discrete
velocity models. We expect that the stochastic average lemma established here might help in analyzing
stochastic algorithms for kinetic models. Our first attempt remains at the level of space-time continuous
models for the simplest radiative transfer equation: it is just a consistency result with the diffusion
approximation. It is remarkable that the consistency error preserves the typical feature of the Monte Carlo
error estimate in O(1/

√
N ), independently of the space dimension. A next step, likely inspired by the

“time-discretized” version of the averaging lemma in [Bouchut and Desvillettes 1999; Horsin et al. 2003],
would be to consider time-discretized models, where the random velocity grid is reconstructed at each
time step.
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