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A CLASS OF UNSTABLE FREE BOUNDARY PROBLEMS

SERENA DIPIERRO, ARAM KARAKHANYAN AND ENRICO VALDINOCI

We consider the free boundary problem arising from an energy functional which is the sum of a Dirichlet
energy and a nonlinear function of either the classical or the fractional perimeter.

The main difference with the existing literature is that the total energy is here a nonlinear superposition
of the either local or nonlocal surface tension effect with the elastic energy.

In sharp contrast with the linear case, the problem considered in this paper is unstable; namely a
minimizer in a given domain is not necessarily a minimizer in a smaller domain.

We provide an explicit example for this instability. We also give a free boundary condition, which
emphasizes the role played by the domain in the geometry of the free boundary. In addition, we provide
density estimates for the free boundary and regularity results for the minimal solution.

As far as we know, this is the first case in which a nonlinear function of the perimeter is studied in
this type of problem. Also, the results obtained in this nonlinear setting are new even in the case of the
local perimeter, and indeed the instability feature is not a consequence of the possible nonlocality of the
problem, but it is due to the nonlinear character of the energy functional.

1. Introduction

In this paper we consider a free boundary problem given by the superposition of a Dirichlet energy and an
either classical or nonlocal perimeter functional. Differently from the existing literature, here we take into
account the possibility that this energy superposition occurs in a nonlinear way; that is, the total energy
functional is the sum of the Dirichlet energy plus a nonlinear function of the either local or nonlocal
perimeter of the interface.

Unlike the cases already present in the literature, the nonlinear problem that we study may present
a structural instability induced by the domain; namely a minimizer in a large domain may fail to be
a minimizer in a small domain. This fact prevents the use of scaling arguments, which are frequently
exploited in classical free boundary problems.

In this paper, after providing an explicit example of this type of structural instability, we describe
the free boundary equation, which also underlines the striking role played by the total (either local or
nonlocal) perimeter of the minimizing set in the domain, as modulated by the nonlinearity, in the local
geometry of the interface. Then, we will present results concerning the Hölder regularity of the minimal
solutions and the density of the interfaces in the one-phase problem.
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The mathematical setting in which we work is the following. Given an (open, Lipschitz and bounded)
domain � ⊂ Rn and σ ∈ (0, 1], we use the notation Perσ (E, �) for the classical perimeter of E in �
when σ = 1 (which will be often denoted as Per(E, �), see, e.g., [Ambrosio et al. 2000; Maggi 2012])
and the fractional perimeter of E in � when σ ∈ (0, 1) (see [Caffarelli et al. 2010]). More explicitly,
if σ ∈ (0, 1), we have

Perσ (E, �) := L(E ∩�, Ec)+ L(Ec
∩�, E ∩�c), (1-1)

where, for any measurable subsets A, B ⊆ Rn with A∩ B of measure zero, we set

L(A, B) :=
∫∫

A×B

dx dy
|x − y|n+σ

.

As customary, we are using here the superscript c for complementary set; i.e., Ec
:= Rn

\ E .
The notation used for Perσ when σ = 1 is inspired by the fact that Perσ , suitably rescaled, approaches

the classical perimeter as s↗ 1; see, e.g., [Bourgain et al. 2001; Dávila 2002; Caffarelli and Valdinoci
2011; Ambrosio et al. 2011].

In our framework, the role played by the fractional perimeter is to allow long-range interaction to
contribute to the energy arising from surface tension and phase segregation.

As a matter of fact, the fractional perimeter Perσ naturally arises when one considers phase transition
models with long-range particle interactions (see, e.g., [Savin and Valdinoci 2014]): roughly speaking, in
this type of model, the remote interactions of the particles are sufficiently strong to persist even at a large
scale, by possibly modifying the behavior of the phase separation.

The fractional perimeter Perσ has also natural applications in motion by nonlocal mean curvatures,
which in turn arises naturally in the study of cellular automata and in image digitization procedures (see,
e.g., [Imbert 2009]).

It is also convenient1 to fix ϒ ∈
(
0, 1

100

]
and set

�ϒ :=
⋃
p∈�

Bϒ(p) and Per?σ (E, �)=
{

Per(E, �ϒ) if σ = 1,
Perσ (E, �) if σ ∈ (0, 1).

(1-2)

We consider a monotone nondecreasing and lower semicontinuous function8 : [0,+∞)→[0,+∞), with

lim
t→+∞

8(t)=+∞. (1-3)

1The explicit value of ϒ plays no major role, since it can be fixed by an “initial scaling” of the problem, but we decided to
require it to be less than 1

100 to emphasize, from the psychological point of view, that �ϒ can be thought as a small enlargement
of �.

The reason we introduced such an ϒ is that, in the classical case, the interfaces inside � do not see the contributions that
may come along ∂�, since � is taken to be open (conversely, in the nonlocal case, these contributions are always counted). By
enlarging the domain � by a small quantity ϒ, we are able to count also the contributions on ∂� and this, roughly speaking,
boils down to computing the classical perimeter in the closure of �.
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For any measurable function u : Rn
→ R such that |∇u| ∈ L2(�) and any measurable subset E ⊆ Rn

such that u > 0 a.e. in E and u 6 0 a.e. in Ec, we consider the energy functional

E�(u, E) :=
∫
�

|∇u(x)|2 dx +8(Per?σ (E, �)). (1-4)

As usual, the notation ∇u stands for the distributional gradient.
When 8 is the identity, the functional in (1-4) provides a typical problem for (either local or nonlocal)

free boundary problems; see [Athanasopoulos et al. 2001; Caffarelli et al. 2015].
The goal of this paper is to study the minimizers of the functional in (1-4). For this, we say that (u, E)

is an admissible pair if

• u : Rn
→ R is a measurable function such that u ∈ H 1(�),

• E ⊆ Rn is a measurable set with Per?σ (E, �) <+∞, and

• u > 0 a.e. in E and u 6 0 a.e. in Ec.

Then, we say that (u, E) is a minimal pair in � if

• (u, E) is an admissible pair,

• E�(u, E) <+∞, and

• for any admissible pair (v, F) such that v− u ∈ H 1
0 (�) and F \�= E \� up to sets of measure

zero, we have
E�(u, E)6 E�(v, F).

The existence2 of minimal pairs for fixed domains and fixed conditions outside the domain follows from
the direct methods in the calculus of variations (see Lemma 2.3 below for details).

A natural question in this framework is whether or not this minimization procedure is “stable” with
respect to the choice of the domain, i.e., whether or not a minimal pair in a domain� is also a minimal pair
in any subdomain �′ ⊂�. This stability property is indeed typical for “linear” free boundary problems,
i.e., when 8 is the identity, see [Athanasopoulos et al. 2001; Caffarelli et al. 2015], and it often plays a
crucial role in many arguments based on scaling and blow-up analysis.

In the “nonlinear” case, i.e., when 8 is not the identity, this stability property is lost, and we will
provide a concrete example for that. In further detail, we consider the planar case of R2, we take
coordinates X := (x, y) ∈ R2 and we set

ũ(x, y) := xy (1-5)

and
Ẽ := {(x, y) ∈ R2

: xy > 0}

= {(x, y) ∈ R2
: x > 0 and y > 0} ∪ {(x, y) ∈ R2

: x < 0 and y < 0}. (1-6)

2As a technical remark, we point out that the definition in (1-2) is useful to make sense of nontrivial versions of this
minimization problem when σ =1 and u>0. Indeed, in this case, the setting in (1-2) “forces” the sets to interact with the boundary
data. This expedient is not necessary when σ = 0 since, in this case, the nonlocal effect produces the nontrivial interactions.
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In this setting, we show that:

Theorem 1.1 (an explicit counterexample). There exists Ko > 2 such that the following statement is true.
Let n = 2. Assume

8(t)= tγ for any t ∈ [0, 1]

for some

γ ∈
(

0, 4
2−σ

)
,

and
8(t)= 1 for any t ∈ [2, Ko]. (1-7)

Then, there exist Ro > ro > 0 such that (ũ, Ẽ) is a minimal pair in BRo and is not a minimal pair in Br for
any r ∈ (0, ro].

The heuristic idea underlying Theorem 1.1 is, roughly speaking, that the nonlinear energy term 8

weights differently the fractional perimeter with respect to the Dirichlet energy in different energy regimes,
so it may favor a minimal pair (u, E) to be either “close to a harmonic function” in the u or “close to a
fractional minimal surface” in the E , depending on the minimal energy level reached in a given domain.

It is worth stressing that, in other circumstances, rather surprising instability features in interface
problems arise as a consequence of the fractional behavior of the energy; see, for instance, [Dipierro et al.
2017]. Differently from these cases, the unstable free boundaries presented in Theorem 1.1 are not caused
by the existence of possibly nonlocal features, and indeed Theorem 1.1 holds true (and is new) even in
the case of the local perimeter.

The instability phenomenon pointed out by Theorem 1.1 in a concrete case is also quite general, as it can
be understood also in the light of the associated equation on the free boundary. Indeed, the free boundary
equation takes into account a “global” term of the type 8′(Per?σ (E, �)), which varies in dependence of
the domain �. To clarify this point, we denote by H E

σ the (either classical or fractional) mean curvature
of ∂E (see [Caffarelli et al. 2010; Abatangelo and Valdinoci 2014] for the case σ ∈ (0, 1)). Namely,
if σ = 1 the above notation stands for the classical mean curvature, while for σ ∈ (0, 1), if x ∈ ∂E , we set

H E
σ (x) := lim sup

δ→0

∫
Rn\Bδ(x)

χEc(y)−χE(y)
|x − y|n+σ

dy.

In this setting, we have:

Theorem 1.2 (free boundary equation). Let 8 ∈ C1,α(0,+∞) for some α ∈ (0, 1). Assume (u, E) is a
minimal pair in �. Assume

(∂E)∩� is of class C1,τ with τ ∈ (σ, 1) when σ ∈ (0, 1) and of class C2 when σ = 1. (1-8)

Suppose also
u > 0 in the interior of E ∩�, u < 0 in the interior of Ec

∩�, (1-9)

and
u ∈ C1({u > 0} ∩�)∩C1({u < 0} ∩�). (1-10)
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Let also ν be the exterior normal of E , and for any x ∈ (∂E)∩� let

∂+ν u(x) := lim
t→0

u(x − tν)− u(x)
t

and ∂−ν u(x) := lim
t→0

u(x + tν)− u(x)
t

. (1-11)

Then, for any x ∈ (∂E)∩�, we have

(∂+ν u(x))2− (∂−ν u(x))2 = H E
σ (x)8

′(Per?σ (E, �)). (1-12)

We remark that (1-12) has a simple geometric consequence when8′> 0 and we consider the one-phase
problem in which u > 0: indeed, in this case, we have ∂−ν u = 0 and therefore formula (1-12) reduces to

(∂+ν u(x))2 = H E
σ (x)8

′(Per?σ (E, �)).

In particular, we get that H E
σ > 0; namely, in this case, the (either classical or fractional) mean curvature

of the free boundary is nonnegative.

In order to better understand the structure of the solution and of the free boundary points, we now
focus, for the sake of simplicity, on the one-phase case; i.e., we suppose that u > 0 to start with. In this
setting, we investigate the Hölder regularity of the function u by obtaining uniform bounds and uniform
growth conditions from the free boundary. For this, it is also convenient to introduce the auxiliary set

U0 :=
{

x ∈� : there exists a sequence xk ∈� : xk→ x with u(xk)→ 0 as k→+∞
}
. (1-13)

Notice that {u = 0} lies in U0 (just taking a constant sequence in the definition above). Also, if u > 0,
then ∂E lies in U0 (since in this case u must vanish in the complement of E).

Of course, when u is continuous, such a set lies in the zero level set of u, but since we do not have this
information a priori, it is useful to consider explicitly this set, and prove the following result:

Theorem 1.3 (growth from the free boundary). Let Ro, Q > 0. Assume

8 is Lipschitz continuous in [0, Q], with Lipschitz constant bounded by L Q . (1-14)

Assume (u, E) is a minimal pair in �, with BRo b�,

0 ∈ U0 (1-15)

and u > 0 in Rn
\�. Suppose R ∈ (0, Ro] and

Per?σ (E, �)+ Rn−σ Perσ (B1,Rn)6 Q. (1-16)

Then, there exists C > 0, possibly depending on Ro, n and σ such that, for any x ∈ BR/2,

u(x)6 C
√

L Q |x |1−σ/2.

We observe that condition (1-14) is always satisfied if 8 is globally Lipschitz, but the statement
of Theorem 1.3 is more general, since it may take into account a locally Lipschitz 8, provided that
the domain is small enough to satisfy (1-16) (indeed, small domains satisfy this condition for locally
Lipschitz 8, as remarked in the forthcoming Lemma 2.8).
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We also point out that (1-16) may be equivalently written

Per?σ (E, �)+Perσ (BR,Rn)6 Q. (1-17)

One natural way to interpret (1-16), or (1-17), is that once Per?σ (E, �) is strictly less than Q (i.e., strictly
less than the size of the interval in which 8 is Lipschitz), then (1-16), and thus (1-17), holds true as long
as R is sufficiently small.

The growth result in Theorem 1.3 implies, as a byproduct, an interior Hölder regularity result:

Corollary 1.4. Let Q > 0 and assume 8 is Lipschitz continuous in [0, Q], with Lipschitz constant
bounded by L Q .

Assume (u, E) is a minimal pair in �, with BR b� and u > 0 in Rn
\�.

Suppose that Per?σ (E, �)+ Rn−σ Perσ (B1,Rn)6 Q and that u 6 M on ∂�.
Then u ∈ C1−σ/2(BR/4), with

‖u‖C1−σ/2(BR/4) 6 C
(
√

L Q +
M

R1−σ/2

)
,

for some C > 0, possibly depending on n and σ .

When 8 is linear, the result in Corollary 1.4 was obtained in Theorem 3.1 of [Athanasopoulos et al.
2001] if σ = 1 and in Theorem 1.1 of [Caffarelli et al. 2015] if σ ∈ (0, 1). Differently than in our
framework, in both papers mentioned above, scaling arguments are available, since scaling is compatible
with the minimization procedure.

Now we investigate the structure of the free boundary points in terms of local densities of the phases.
Indeed, we show that the free boundary points always have uniform density from outside E , according to
the following result:

Theorem 1.5 (density estimate from the null side). Assume (u, E) is a minimal pair in �, with BR ⊆�,
0 ∈ ∂E and u > 0 in Rn

\�. Set

P = P(E, �, R) := Per?σ (E, �)+ Rn−σ Perσ (B1,Rn) (1-18)

and assume

8 is strictly increasing in the interval (0, P). (1-19)

Then there exists δ > 0, possibly depending on n and σ such that, for any r ∈
(
0, 1

2 R
)
,

|Br \ E |> δrn.

We point out that condition (1-19) is always satisfied if8 is strictly increasing in the whole of [0,+∞),
but Theorem 1.5 is also general enough to take into consideration the case in which8 is strictly increasing
only in a subinterval, provided that the energy domain is sufficiently small to make the perimeter values lie
in the strict monotonicity interval of 8 (as a matter of fact, the perimeter contributions in small domains
are small, as we will point out in the forthcoming Lemma 2.8).
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The investigation of the density properties of the free boundary is also completed by the following
counterpart of Theorem 1.5, which proves the positive density of the set E :

Theorem 1.6 (density estimate from the positive side). Let Q > 0 and assume

8 is Lipschitz continuous in [0, Q], with Lipschitz constant bounded by L Q , (1-20)

and
8′ > co a.e. in [0, Q] (1-21)

for some co > 0.
Assume (u, E) is a minimal pair in �, with BR b�, 0 ∈ ∂E and u > 0 in Rn

\�. Suppose

Per?σ (E, �)+ Rn−σ Perσ (B1,Rn)6 Q. (1-22)

Then there exists δ∗ > 0, possibly depending on n, σ , co and L Q , such that, for any r ∈
(
0, 1

2 R
)
,

|Br ∩ E |> δ∗rn.

More explicitly, such δ∗ can be taken to be of the form

δ∗ := δo min
{

1,
(

co

L Q

)n/σ}
(1-23)

for some δo > 0, possibly depending on n and σ .

We remark that the results obtained in this paper are new even in the local case in which σ = 1.
Also, we think it is an interesting point of this paper that all the cases σ ∈ (0, 1) and σ = 1 are treated
simultaneously in a unified fashion. The methods presented are also general enough to treat the case σ = 0,
which would correspond to a volume term (see, e.g., [Maz’ya and Shaposhnikova 2002; Dipierro et al.
2013]). This case is in fact rich in results and so we will discuss it in detail in a forthcoming paper.

The rest of the paper is organized as follows. In Section 2 we show some preliminary properties of the
minimal pair, such as existence, harmonicity and subharmonicity properties, and a comparison principle.
We also prove a “locality” property for the (either classical or fractional) perimeter and provide a uniform
bound on the (classical or fractional) perimeter of the set in the minimal pair.

Section 3 is devoted to the construction of the counterexample in Theorem 1.1. In Section 4 we provide
the free boundary equation and prove Theorem 1.2.

Then we deal with the regularity of the function u in the minimal pair in the one-phase case, and
we prove Theorem 1.3 and Corollary 1.4 in Sections 5 and 6, respectively. Finally, Sections 7 and 8
are devoted to the proofs of the density estimates from both sides provided by Theorems 1.5 and 1.6,
respectively.

Since we hope that the paper may be of interest for different communities (such as scientists working
in free boundary problems, variational methods, partial differential equations, geometric measure theory
and fractional problems), we made an effort to give the details of the arguments involved in the proofs in
a clear and widely accessible way.
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2. Preliminaries

We start with a useful observation about the positivity sets of sequences of admissible pairs:

Lemma 2.1. Let (u j , E j ) be a sequence of admissible pairs. Assume u j → u a.e. in Rn and χE j → χE

a.e. in Rn for some u and E. Then u > 0 a.e. in E and u 6 0 a.e. in Ec.

Proof. We show that u > 0 a.e. in E (the other claim being analogous). For this, we write Rn
= X ∪ Z ,

with |Z | = 0 and such that for any x ∈ X we have

lim
j→+∞

u j (x)= u(x) and lim
j→+∞

χE j (x)= χE(x).

Let now x ∈ E ∩ X . Then
lim

j→+∞
χE j (x)= χE(x)= 1,

and so there exists jx ∈ N such that χE j (x) >
1
2 for any j > jx . Since the image of a characteristic

function lies in {0, 1}, this implies χE j (x) = 1 for any j > jx , and therefore u j (x) > 0 for any j > jx .
Taking the limit, we obtain u(x)> 0. Since this is valid for any x ∈ E ∩ X and E ∩ X c

⊆ Z , which has
null measure, we have obtained the desired result. �

Now we recall a useful auxiliary identity for the (classical or fractional) perimeter:

Lemma 2.2 (“clean cut” lemma). Let �′ b �. Assume Perσ (E, �) < +∞ and Perσ (F, �) < +∞.
Suppose also that

E \�′ = F \�′. (2-1)

Then
Perσ (E, �)−Perσ (F, �)= Perσ (E, �′)−Perσ (F, �′). (2-2)

If in addition Per?σ (E, �) <+∞ and Per?σ (F, �) <+∞, then

Per?σ (E, �)−Per?σ (F, �)= Perσ (E, �′)−Perσ (F, �′). (2-3)

Proof. For completeness, we distinguish the cases σ = 1 and σ ∈ (0, 1). If σ = 1, we write the perimeter
of E in term of the Gauss–Green measure µE (see Remark 12.2 in [Maggi 2012]); namely

Per(E, �)= |µE |(�).

So we define
U :=� \�′. (2-4)

We remark that U is open and �=�′ ∪U, with disjoint union. Thus we obtain

Per(E, �)−Per(F, �)−Per(E, �′)+Per(F, �′)

= |µE |(�)− |µF |(�)− |µE |(�
′)+ |µF |(�

′)

= |µE |(�
′
∪U )− |µF |(�

′
∪U )− |µE |(�

′)+ |µF |(�
′)

= |µE |(�
′)+ |µE |(U )− |µF |(�

′)− |µF |(U )− |µE |(�
′)+ |µF |(�

′)

= |µE |(U )− |µF |(U )= Per(E,U )−Per(F,U ). (2-5)
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Now we observe that

E ∩U = E ∩ (� \�′)= E ∩�∩ (�′)c = (E \�′)∩�,

and a similar set identity holds for F. Thus, by (2-1), it follows that E ∩U = F ∩U. Therefore, by the
locality of the classical perimeter (see, e.g., Proposition 3.38(c) in [Ambrosio et al. 2000]), we obtain

Per(E,U )= Per(F,U ).

If one inserts this into (2-5), then one obtains (2-2) when σ = 1.
Now we deal with the case σ ∈ (0, 1). For this we use (1-1) and (2-4) and we get

Perσ (E, �)−Perσ (E, �′)= L(E ∩�, Ec)+ L(Ec
∩�, E \�)− L(E ∩�′, Ec)− L(Ec

∩�′, E \�′)

= L(E ∩�′, Ec)+ L(E ∩U, Ec)+ L(Ec
∩�′, E \�)+ L(Ec

∩U, E \�)
− L(E ∩�′, Ec)− L(Ec

∩�′, E \�)− L(Ec
∩�′, E ∩U )

= L(E ∩U, Ec)+ L(Ec
∩U, E \�)− L(Ec

∩�′, E ∩U )

= L(E ∩U, Ec
\�′)+ L(Ec

∩U, E \�),

and a similar formula holds for F replacing E . Now, from (2-1), we see that

E ∩U = F ∩U, Ec
∩U = Fc

∩U, Ec
\�′ = Fc

\�′ and E \�= F \�;

thus we obtain (2-2) when σ ∈ (0, 1).
Now, to prove (2-3), we can focus on the case σ = 1 (since Per?σ = Perσ when σ ∈ (0, 1), in this

case we return simply to (2-2)). To this end, we observe that �′ b�ϒ (recall formula (1-2)), so we can
apply (2-2) to the sets �′ and �ϒ and obtain, when σ = 1,

Per?σ (E, �)−Per?σ (F, �)= Per(E, �ϒ)−Per(F, �ϒ)= Per(E, �′)−Per(F, �′).

This completes the proof of (2-3). �

Now we state the basic existence result for the minimizers of the functional in (1-4):

Lemma 2.3 (existence of minimal pairs). Fix an admissible pair (uo, Eo) such that E�(uo, Eo) <+∞.
Then there exists a minimal pair (u, E) in � such that u− uo ∈ H 1

0 (�) and E \� coincides with Eo \�

up to sets of measure zero.

Proof. Let (u j , E j ) be a minimizing sequence, namely

lim
j→+∞

E�(u j , E j )= inf
X�(uo,Eo)

E�, (2-6)

where X�(uo, Eo) denotes the family of all admissible pairs (v, F) in � such that v − uo ∈ H 1
0 (�)

and F \� coincides with Eo \� up to sets of measure zero.
We stress that

sup
j∈N

8(Per?σ (E j , �)) <+∞,
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thanks to (2-6). By this and (1-3), we obtain

sup
j∈N

Perσ (E j , �) <+∞.

Using this and (2-6), by compactness (see, e.g., Corollary 3.49 in [Ambrosio et al. 2000] for the case σ = 1
or Theorem 7.1 in [Di Nezza et al. 2012] for the case σ ∈ (0, 1)), we obtain that, up to subsequences, u j

converges to some u weakly in H 1(�) and strongly in L2(�), and χE j converges to some χE strongly
in L1(�) as j→+∞. By Lemma 2.1, we have that (u, E) is an admissible pair, and so by construction

(u, E) ∈ X�(uo, Eo). (2-7)

Also, by the lower semicontinuity (or Fatou’s lemma; see, e.g., Proposition 3.38(b) in [Ambrosio et al.
2000] for the case σ = 1) we have

lim inf
j→+∞

∫
�

|∇u j (x)|2 dx >
∫
�

|∇u(x)|2 dx and lim inf
j→+∞

Per?σ (E j , �)> Per?σ (E, �),

and so, using also the monotonicity and the lower semicontinuity of 8,

lim inf
j→+∞

8(Per?σ (E j , �))>8
(
lim inf
j→+∞

Per?σ (E j , �)
)
>8(Per?σ (E, �)).

These inequalities and (2-6) give that

E�(u, E)6 inf
X�(uo,Eo)

E�,

and then equality holds in the formula above, thanks to (2-7). �

As it often happens in free boundary problems (see, e.g., [Alt and Caffarelli 1981; Athanasopoulos
et al. 2001; Caffarelli et al. 2015]), the solutions are harmonic in the positivity or negativity sets. This
happens also in our case, as clarified by the following observation:

Lemma 2.4. Let (u, E) be a minimal pair in �. Let U be an open set. Assume that either infU u > 0
or supU u < 0. Then u is harmonic in U.

Proof. The proof is standard, but we give the details to assist the reader. We suppose

inf
U

u > 0, (2-8)

the other case being similar. Let xo ∈ U. Since U is open, there exists r > 0 such that Br (xo) ⊂ U.
Let ψ ∈ C∞0 (Br/2(xo)). Let also uε := u+ εψ and

m := inf
Br/2(xo)

u.

By (2-8), we know m>0. Thus, if ε∈R, with |ε|<(1+‖ψ‖L∞(Rn))
−1m, we have uε>u−ε‖ψ‖L∞(Rn)>0

in Br/2(xo). This and the fact that ψ vanishes outside Br/2(xo) give that (uε, E) is an admissible pair.
Thus, the minimality of (u, E) gives

06 E�(uε, E)− E�(u, E)=
∫
�

(
|∇u(x)+ ε∇ψ(x)|2− |∇u(x)|2

)
dx,

from which the desired result easily follows. �
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As often happens in free boundary problems, the minimizers satisfy the following subharmonicity
property:

Lemma 2.5. Let (u, E) be a minimal pair in � and u+ :=max{u, 0} and u− := u+− u =−min{u, 0}.
Then both u+ and u− are subharmonic in � in the sense that∫

�

∇u±(x) · ∇ψ(x) dx 6 0

for any ψ ∈ H 1
0 (�), with ψ > 0 a.e. in �.

Proof. The proof is a modification of the one in Lemma 2.7 in [Athanasopoulos et al. 2001], where
this result was proved for the case in which 8 is the identity and σ = 1. We give the details to assist
the reader. We argue for u+, since a similar reasoning works for u−. We define v? to be the harmonic
replacement of u+ in � which vanishes in Ec, that is, the minimizer of the Dirichlet energy in � among
all the functions v in H 1(�) such that v− u+ ∈ H 1

0 (�) and v = 0 a.e. in Ec. For the existence and the
uniqueness of the harmonic replacement, see, e.g., Section 2 in [Athanasopoulos et al. 2001] or Lemma 2.1
in [Dipierro and Valdinoci 2015]. In particular, the uniqueness result gives that

if v in H 1(�) is such that v− u+ ∈ H 1
0 (�), v = 0 a.e. in Ec

and
∫
�

|∇v(x)|2 dx 6
∫
�

|∇v?(x)|2 dx, then v = v? a.e. in Rn. (2-9)

Moreover, by Lemma 2.3 in [Athanasopoulos et al. 2001], we have

v? is subharmonic. (2-10)

We also notice that v? > 0 by the classical maximum principle and therefore (v?, E) is an admissible pair.
Then, the minimality of (u, E) implies

0> E�(u, E)− E�(v?, E)=
∫
�

|∇u(x)|2 dx −
∫
�

|∇v?(x)|2 dx >
∫
�

|∇u+(x)|2 dx −
∫
�

|∇v?(x)|2 dx .

This implies that u+ coincides with v?, thanks to (2-9), and so it is subharmonic, in light of (2-10). �

Remark 2.6. In light of Lemma 2.5, we have (see, e.g., Proposition 2.2 in [Giaquinta 1983]) that the map

R→
1
|BR|

∫
BR(p)

u+(x) dx

is monotone nondecreasing; therefore, up to changing u+ in a set of measure zero, we can (and implicitly
do from now on) suppose

u(p)= lim
ε↘0

1
|Bε |

∫
Bε(p)

u+(x) dx .

Another simple and interesting property of the solution is given by the following maximum principle:

Lemma 2.7. Assume
8(0) < 8(t) for any t > 0. (2-11)

Let (u, E) be a minimal pair in � and let a ∈ R. If u 6 a in �c, then u 6 a in the whole of Rn.
Similarly, if u > a in �c, then u > a in the whole of Rn.
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Proof. We suppose
u > a in �c, (2-12)

the other case being analogous.
We need to distinguish the cases a 6 0 and a > 0.
If a 6 0, we take u? :=max{u, a}. Notice that (u?, E) is an admissible pair: indeed, a.e. in E we have

0 6 u 6 u?, while a.e. in Ec we have u 6 0 and so u? 6 0. Also, by (2-12), we have u > a in �c, and
so u? = u in �c. As a consequence, the minimality of (u, E) gives

06 E�(u?, E)− E�(u, E)=
∫
�

(
|∇u?(x)|2− |∇u(x)|2

)
dx =−

∫
�∩{u<a}

|∇u(x)|2 dx,

which implies u > a, as desired.
Now suppose a > 0. We take u] to be the minimizer of the Dirichlet energy in � with trace datum u

along ∂� (and thus we set u] := u outside �); then we have

0 :=

∫
�

|∇u(x)|2 dx −
∫
�

|∇u](x)|2 dx > 0. (2-13)

Moreover, by (2-12) and the classical maximum principle, we know

u] > a in the whole of Rn. (2-14)

Thus, u] > 0 and so (u],Rn) is an admissible pair. Accordingly, the minimality of (u, E) and (2-13) give

06 E�(u],Rn)− E�(u, E)

=

∫
�

|∇u](x)|2 dx +8(0)−
∫
�

|∇u(x)|2 dx −8(Per?σ (E, �))

=−0+8(0)−8(Per?σ (E, �)). (2-15)

As a consequence,
8(Per?σ (E, �))6−0+8(0)68(0);

hence, exploiting (2-11), we see that Per?σ (E, �)= 0. Plugging this information into (2-15), we obtain
that 06−0 and thus, recalling (2-13), we conclude that 0= 0. By the uniqueness of the minimizer of the
Dirichlet energy, this implies that u] coincides with u. In light of this and of (2-14), we have u = u] > a,
as desired. �

Now we give a uniform bound on the (classical or fractional) perimeter of the sets in the minimal pairs:

Lemma 2.8. Suppose � is strictly star-shaped, i.e., t�⊆� for any t ∈ (0, 1), and that

8 is strictly monotone. (2-16)

Let (u, E) be a minimal pair in �. Assume u > 0. Then, for any �′ ⊆ �, with �′ open, Lipschitz and
bounded, we have

Perσ (E, �′)6 2 Perσ (�′,Rn). (2-17)
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In particular, if �⊇ BR , then, for any r ∈ (0, R],

Perσ (E, Br )6 Crn−σ (2-18)

for some C > 0 possibly depending on n and σ .

Proof. We observe that (2-18) follows from (2-17) by taking �′ := Br , so we focus on the proof of (2-17).
For this, first we suppose that �′ b� (the general case in which �′ ⊆� will be considered at the end of
the proof, by a limit procedure). Let F := E ∪�′. Notice that F \�′ = E ∪�′ ∩ (�′)c = E \�′. Thus,
by formula (2-3) in Lemma 2.2, we get

Per?σ (E, �)−Per?σ (F, �)= Perσ (E, �′)−Perσ (F, �′). (2-19)

Now, let v be the minimizer of the Dirichlet energy in �′ with trace datum u along ∂�′ (then take v := u
outside�′). Since u> 0, so is v. Hence, the pair (v, F) is admissible. Therefore, the minimality of (u, E)
implies

06 E�(v, F)− E�(u, E)

=

∫
�′
|∇v(x)|2 dx −

∫
�′
|∇u(x)|2 dx +8(Per?σ (F, �))−8(Per?σ (E, �))

6 0+8(Per?σ (F, �))−8(Per?σ (E, �)).

Hence, by (2-16), we have Per?σ (E, �)6 Per?σ (F, �) and so, by (2-19),

Perσ (E, �′)−Perσ (F, �′)= Per?σ (E, �)−Per?σ (F, �)6 0. (2-20)

In addition, we have
Perσ (F, �′)= Perσ (E ∪�′, �′)6 2 Perσ (�′,Rn),

where the last formula follows using (1-1) if σ ∈ (0, 1) and, for instance, formula (16.12) in [Maggi 2012]
when σ = 1.

The latter inequality and (2-20) give

Perσ (E, �′)6 Perσ (E, �′)6 Perσ (F, �′)6 2 Perσ (�′,Rn).

This proves the desired result when �′ b �. Let us now deal with the case �′ ⊆ �. For this, we
set �′ε := (1− ε)�

′. Since � is strictly star-shaped, we have �′ε = (1− ε)�
′
⊆ (1− ε)� ⊆ � for

any ε ∈ (0, 1), so we can use the result already proved and we get

Perσ (E, �′ε)6 2 Perσ (�′ε,Rn). (2-21)

Moreover,
Perσ (�′ε,Rn)= (1− ε)n−σ Perσ (�′,Rn). (2-22)

Also, we claim that
lim
ε↘0

Perσ (E, �′ε)= Perσ (E, �′). (2-23)

To prove it, we distinguish the cases σ = 1 and σ ∈ (0, 1). If σ = 1, we use the representation of the
perimeter of E in term of the Gauss–Green measure µE (see Remark 12.2 in [Maggi 2012]) and the



1330 SERENA DIPIERRO, ARAM KARAKHANYAN AND ENRICO VALDINOCI

monotone convergence theorem (applied to the monotone sequence of sets �′ε , see, e.g., Theorem 1.26(a)
in [Yeh 2006]): in this way, we have

lim
ε↘0

Per(E, �′ε)= lim
ε↘0
|µE |(�

′

ε)= |µE |(�
′)= Per(E, �′).

This proves (2-23) when σ = 1. If instead σ ∈ (0, 1), we first observe that Perσ (E, �′ε)6 Perσ (E, �′)
and then

lim sup
ε↘0

Perσ (E, �′ε)6 Perσ (E, �′). (2-24)

Conversely, we use (1-1) to write

Perσ (E, �′ε)= L(E ∩�′ε, Ec)+ L(Ec
∩�′ε, E ∩ (�′ε)

c)

> L(E ∩�′ε, Ec)+ L(Ec
∩�′ε, E ∩ (�′)c).

Consequently, by taking the limit of the inequality above and using Fatou’s lemma,

lim inf
ε↘0

Perσ (E, �′ε)> L(E ∩�′, Ec)+ L(Ec
∩�′, E ∩ (�′)c)= Perσ (E, �′).

This, together with (2-24), establishes (2-23).
Now, combining (2-21)–(2-23), we obtain (2-17) by taking a limit in ε. �

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. The idea of the proof is that, on the one hand, for large balls, we obtain
a large contribution of the perimeter, which makes the energy functional simply the Dirichlet energy
plus a constant, due to the special form of 8. On the other hand, for small balls, both the Dirichlet
energy and the perimeter give a small contribution, and in this range the contribution of the perimeter
becomes predominant. This dichotomy of the energy behavior makes the minimal pair change accordingly;
namely, in large balls, harmonic functions are favored, somehow independently of their level sets, while,
conversely, for small balls the sets which minimize the perimeter are favored, somehow independently on
the Dirichlet energy of the function that they support. That is, in the end, the core of the counterexample
is, roughly speaking, that being a minimal surface is something rather different than being the level set of
a harmonic function.

Of course, some computations are needed to justify the above heuristic arguments and we present now
all the details of the proof.

Estimates on Perσ (E, BR) from below. Here we obtain bounds from below for the (either classical or
fractional) perimeter of a set E in BR , once E is “suitably fixed” outside3 the ball BR ⊂ R2. For this
scope, we recall the notation in (1-5) and (1-6), and we have:

3For simplicity, we state and prove all the results of this part only in R2, though some of the arguments would also be valid in
higher dimensions.
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Lemma 3.1. Let co > 0. Let (u, E) be an admissible pair in R2. Assume u− ũ ∈ H 1
0 (B1) and∫

B1

|∇u(X)|2 d X 6 co.

Then there exists c > 0, possibly depending on co, such that

Perσ (E, B1)> c. (3-1)

Proof. We argue by contradiction. If the thesis in (3-1) were false, there would exist a sequence of
admissible pairs (u j , E j ) such that u j − ũ ∈ H 1

0 (B1),∫
B1

|∇u j (X)|2 d X 6 co

and
Perσ (E j , B1)6

1
j
. (3-2)

Thus, by compactness, (see, e.g., Corollary 3.49 in [Ambrosio et al. 2000] for the case σ =1 or Theorem 7.1
in [Di Nezza et al. 2012] for the case σ ∈ (0, 1)), we conclude that, up to subsequences, u j converges to
some u∞ weakly in H 1(B1) and strongly in L2(B1), with

u∞− ũ ∈ H 1
0 (B1), (3-3)

and χE j converges to some χE∞ strongly in L1(B1) as j→+∞. Accordingly, by the lower semicontinuity
of the (either classical or fractional) perimeter (or by Fatou’s lemma; see, e.g., Proposition 3.38(b) in
[Ambrosio et al. 2000] for the case σ = 1) we deduce from (3-2) that

Perσ (E∞, B1)= 0.

Hence, from the relative isoperimetric inequality (see, e.g., Lemma 2.5 in [Di Castro et al. 2015]
when σ ∈ (0, 1) and formula (12.46) in [Maggi 2012] when σ = 1),

min
{
|B1 ∩ E∞|(2−σ)/2, |B1 \ E∞|(2−σ)/2

}
6 Ĉ Perσ (E∞, B1)= 0

for some Ĉ > 0. Thus, we can suppose

|B1 ∩ E∞| = 0, (3-4)

the case |B1\E∞|=0 being similar. Also, by virtue of Lemma 2.1, we have u∞>0 a.e. in E∞ and u∞60
a.e. in Ec

∞
. Thus, by (3-4), we obtain that u∞ 6 0 a.e. in B1. Looking at a neighborhood of ∂B1 in the

first quadrant, we obtain that this is in contradiction with (3-3), thus proving the desired result. �

By scaling Lemma 3.1, we obtain:

Lemma 3.2. Let co > 0 and R > 0. Let (u, E) be an admissible pair in R2. Assume u− ũ ∈ H 1
0 (BR) and∫

BR

|∇u(X)|2 d X 6 co R4. (3-5)

Then there exists c > 0, possibly depending on co, such that

Perσ (E, BR)> cR2−σ.
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Proof. We set

u∗(X) := R−2 u(R X) and E∗ :=
E
R
:=

{
X
R
: X ∈ E

}
.

Notice that R−2 ũ(R X) = R−2(Rx)(Ry) = ũ(X); therefore u∗ − ũ ∈ H 1
0 (B1). Also, (u∗, E∗) is an

admissible pair. In addition,∫
B1

|∇u∗(X)|2 d X = R−2
∫

B1

|∇u(R X)|2 d X = R−4
∫

BR

|∇u(Y )|2 dY 6 co,

thanks to (3-5). As a consequence, we are in a position to apply Lemma 3.1 to the pair (u∗, E∗) and thus
we obtain

c 6 Perσ (E∗, B1)= Perσ

(
E
R
,

BR

R

)
=

1
R2−σ Perσ (E, BR),

as desired. �

Analysis of minimizers in large balls. Now we give a concrete example of a minimizer in BR ⊂ R2

for R large enough. To this end, we consider a monotone nondecreasing and lower semicontinuous
function 8̃ : [0,+∞)→ [0,+∞), with

8̃(t)= 1 for any t ∈ [2,+∞). (3-6)

We let
Ẽ�(u, E) :=

∫
�

|∇u(X)|2 d X + 8̃(Per?σ (E, �)).

We remark that, in principle, the minimization procedure in Lemma 2.3 fails for this functional, since the
coercivity assumption (1-3) is not satisfied by 8̃. Nevertheless, we will be able to construct explicitly a
minimizer for large balls of Ẽ . Then, we will modify 8̃ at infinity and we will obtain from it a minimizer
for a functional of the type in (1-4), with a coercive 8. The details are as follows.

Proposition 3.3. Let n = 2. Let ũ and Ẽ be as in (1-5) and (1-6).
Then, there exists Ro > 0, only depending on n and σ , such that if R > Ro then

Ẽ BR (ũ, Ẽ)6 Ẽ BR (v, F) (3-7)

for any admissible pair (v, F) such that v− ũ ∈ H 1
0 (BR) and F \ BR = Ẽ \ BR , up to sets of measure zero.

Proof. We observe that ∇ũ(x, y)= (y, x), and so∫
BR

|∇ũ(X)|2 d X =
∫

BR

|X |2 d X 6 C1 R4 (3-8)

for some C1 > 0. Moreover, since Ẽ is a cone, we have Ẽ = RẼ ; thus

Perσ (Ẽ, BR)= Perσ (RẼ, RB1)= C2 R2−σ

for some C2 > 0. In particular, if R > (2/C2)
1/(2−σ), we have

Per?σ (Ẽ, BR)> Perσ (Ẽ, BR)> 2,
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and then, by (3-6),

8̃(Per?σ (Ẽ, BR))= 1. (3-9)

This and (3-8) imply that

Ẽ BR (ũ, Ẽ)6 C1 R4
+ 16 2C1 R4 (3-10)

if R is large enough.
Now suppose, by contradiction, that (3-7) is violated, i.e.,

Ẽ BR (ũ, Ẽ) > Ẽ BR (v, F) (3-11)

for some competitor (v, F). In particular, by (3-10),∫
BR

|∇v(X)|2 d X 6 Ẽ BR (v, F)6 Ẽ BR (ũ, Ẽ)6 2C1 R4. (3-12)

This says that formula (3-5) is satisfied by the pair (v, F) with co := 2C1, and so Lemma 3.2 gives

Per?σ (F, BR)> Perσ (F, BR)> cR2−σ

for some c > 0. In particular, for large R, we have

8̃(Per?σ (F, BR))= 1

and therefore

Ẽ BR (v, F)=
∫

BR

|∇v(X)|2 d X + 1. (3-13)

On the other hand, since ũ is harmonic,∫
BR

|∇v(X)|2 d X >
∫

BR

|∇ũ(X)|2 d X;

hence (3-13) and (3-9) give

Ẽ BR (v, F)>
∫

BR

|∇ũ(X)|2 d X + 1= Ẽ BR (ũ, Ẽ).

This is in contradiction with (3-11) and so the desired result is established. �

Corollary 3.4. Let n = 2. Let ũ and Ẽ be as in (1-5) and (1-6). There exists Ko > 2 such that the
following statement is true. Assume

8(t)= 1 for any t ∈ [2, Ko]. (3-14)

Then, there exists Ro > 0 such that (ũ, Ẽ) is a minimal pair in BRo .

Proof. We define

8̃(t) :=
{
8(t) if t ∈ [0, 2],
1 if t ∈ (2,+∞).



1334 SERENA DIPIERRO, ARAM KARAKHANYAN AND ENRICO VALDINOCI

Then we are in the setting of Proposition 3.3 and we obtain that there exists Ro > 0, only depending on n
and σ , such that (ũ, Ẽ) is a minimal pair for Ẽ BRo

. So we define

Ko := Per?σ (Ẽ, BRo)+ 3.

Notice that Ko only depends on n and σ , since does Ro also, and ũ and Ẽ are fixed.
To complete the proof of the desired claim, we need to show that (ũ, Ẽ) is a minimal pair for EBRo

,
as long as (3-14) is satisfied. For this, we remark that, since 8 is monotone, we have 8(t)>8(2)= 1
for any t > 2. As a consequence, we get 8(t)> 8̃(t) for any t > 0. Therefore, if (v, F) is a competitor
for (ũ, Ẽ), we deduce from (3-7) that

Ẽ BRo
(ũ, Ẽ)6 Ẽ BRo

(v, F)6 EBRo
(v, F). (3-15)

On the other hand,

Per?σ (Ẽ, BRo)6 Ko. (3-16)

Moreover, we have 8̃(t)= 1=8(t) if t ∈ (2, Ko]. Therefore, we get 8̃=8 in [0, Ko] and thus, by (3-16),

8̃(Per?σ (Ẽ, BRo))=8(Per?σ (Ẽ, BRo)).

By plugging this into (3-15), we conclude that

EBRo
(ũ, Ẽ)= Ẽ BRo

(ũ, Ẽ)6 EBRo
(v, F),

as desired. �

Estimates in small balls. Here, we show that the minimal pair constructed in Corollary 3.4 in large balls
does not remain minimal in small balls.

Proposition 3.5. Let n = 2. Assume

8(t)= tγ for any t ∈ [0, 1] (3-17)

for some

γ ∈
(

0, 4
2−σ

)
. (3-18)

Let ũ and Ẽ be as in (1-5) and (1-6).
Then there exists ro > 0 such that if r ∈ (0, ro] then the pair (ũ, Ẽ) is not minimal in Br .

Proof. We suppose, by contradiction, that (ũ, Ẽ) is minimal in Br , with r sufficiently small.
We observe that Ẽ is not a minimizer of the perimeter in B1/2 (see [Savin and Valdinoci 2013] for the

case σ ∈ (0, 1)). Therefore there exists a perturbation E] of Ẽ inside B1/2 for which

Perσ (E], B1/2)6 Perσ (Ẽ, B1/2)− a

for some (small, but fixed) a > 0. As a consequence, recalling Lemma 2.2,

Perσ (E], B1)−Perσ (Ẽ, B1)= Perσ (E], B1/2)−Perσ (Ẽ, B1/2)6−a. (3-19)
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Now we take ψ ∈ C∞(R2, [0, 1]) such that ψ(X)= 0 for any X ∈ B3/4 and ψ(X)= 1 for any X ∈ Bc
9/10.

We define
u](X)= u](x, y) := ũ(X)ψ(X)= xy ψ(x, y).

We claim that
u] > 0 a.e. in E] and u] 6 0 a.e. in Ec

]. (3-20)

To check this, we observe that u] = 0 in B3/4, so it is enough to prove (3-20) for points outside B3/4.
Then, we also remark that E] \ B3/4 = Ẽ \ B3/4, and, as a consequence, we get that ũ > 0 a.e. in E] \ B3/4

and ũ 6 0 a.e. in Ec
] \ B3/4. Hence, since ψ > 0, we obtain that u] > 0 a.e. in E] \ B3/4 and u] 6 0 a.e.

in Ec
] \ B3/4. These observations complete the proof of (3-20).

Now we define
ur (X) := r2u]

( X
r

)
= xy ψ

( X
r

)
= ũ(X) ψ

( X
r

)
and

Er := r E].

From (3-20), we obtain that ur > 0 a.e. in Er and ur 6 0 a.e. in Ec
r, and thus (ur , Er ) is an admissible pair.

Now we check that the data of (ur , Er ) coincide with (ũ, Ẽ) outside Br . First of all, we have that ψ = 1
in Bc

9/10; thus, if X ∈ Bc
9r/10 we have ur (X)= ũ(X). This shows that

ur − ũ ∈ H 1
0 (Br ). (3-21)

Moreover,

Er \ Br = {X∈Bc
r : r

−1 X∈E]} = {X=rY : Y ∈E] \ B1} = {X=rY : Y ∈ Ẽ \ B1}.

Now, since Ẽ is a cone, we have Y ∈ Ẽ if and only if rY ∈ Ẽ , and so, as a consequence,

Er \ Br = {X=rY ∈ Ẽ : Y ∈Bc
1} = Ẽ \ Br .

Using this and (3-21), we obtain that, if (ũ, Ẽ) is minimal in Br , then

EBr (ũ, Ẽ)6 EBr (ur , Er ). (3-22)

Now we remark that, since Ẽ is a cone,

Perσ (Ẽ, Br )= Perσ (r Ẽ, r B1)= r2−σ Perσ (Ẽ, B1). (3-23)

Now we define

ϑ :=

{
4ϒ if σ = 1,
0 if σ ∈ (0, 1),

and we claim that
Per?σ (Ẽ, Br )= r2−σ Perσ (Ẽ, B1)+ϑ. (3-24)

Indeed, if σ ∈ (0, 1), then (3-24) boils down to (3-23). If instead σ = 1, we use (3-23) in the following
computation:

Per?σ (Ẽ, Br )= Per(Ẽ, Br+ϒ)= Per(Ẽ, Br )+Per(Ẽ, Br+ϒ \ Br )= r2−σ Perσ (Ẽ, B1)+ 4ϒ.

This proves (3-24).
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From (3-24) we obtain that

EBr (ũ, Ẽ)>8
(
r2−σ Perσ (Ẽ, B1)+ϑ

)
. (3-25)

On the other hand, recalling (3-19), we have

Perσ (Er , Br )= Perσ (r E], Br )= r2−σ Perσ (E], B1)6 r2−σ (Perσ (Ẽ, B1)− a). (3-26)

Now we claim that
Per?σ (Er , Br )6 r2−σ (Perσ (Ẽ, B1)− a)+ϑ. (3-27)

Indeed, if σ ∈ (0, 1) then (3-27) reduces to (3-26). If instead σ = 1, we use the fact that Er coincides
with Ẽ outside Br and (3-26) to see that

Per?σ (Er , Br )= Per(Er , Br+ϒ)= Per(Er , Br )+Per(Er , Br+ϒ \ Br )6 r2−σ (Perσ (Ẽ, B1)− a)+ 4ϒ.

This establishes (3-27).
Then, the monotonicity of 8 and (3-27) give

8(Per?σ (Er , Br ))68
(
r2−σ (Perσ (Ẽ, B1)− a)+ϑ

)
(3-28)

Now we remark that

|∇ur (X)|6 |∇ũ(X) ψ(X/r)| + r−1
|ũ(X)∇ψ(X/r)|6 |X | +Cr−1

|X |2,

for some C > 0. As a consequence of this, and possibly renaming C > 0, we obtain∫
Br

|∇ur (X)|2 d X 6 C
∫

Br

(
|X |2+ r−2

|X |4
)

d X 6 Cr4.

This and (3-28) give

EBr (ur , Er )6 Cr4
+8

(
r2−σ (Perσ (Ẽ, B1)− a)+ϑ

)
.

Putting together this, (3-22) and (3-25), we conclude that

8
(
r2−σ Perσ (Ẽ, B1)+ϑ

)
6 Cr4

+8
(
r2−σ (Perσ (Ẽ, B1)− a)+ϑ

)
.

Thus, if r2−σ Perσ (Ẽ, B1)6
1
2 , and so Perσ (Ẽ, B1)+ϑ 6 1, we can use (3-17) and obtain[

r2−σ Perσ (Ẽ, B1)+ϑ
]γ
6 Cr4

+
[
r2−σ (Perσ (Ẽ, B1)− a)+ϑ

]γ
. (3-29)

Now we distinguish the cases σ ∈ (0, 1) and σ = 1. When σ ∈ (0, 1), we have ϑ = 0 and so (3-29) becomes

r (2−σ)γ (Perσ (Ẽ, B1))
γ 6 Cr4

+ r (2−σ)γ (Perσ (Ẽ, B1)− a)γ.

So we multiply by r (σ−2)γ and we get

a∗ := (Perσ (Ẽ, B1))
γ
− (Perσ (Ẽ, B1)− a)γ 6 Cr4+(σ−2)γ.

Notice that a∗ > 0 since a > 0, and therefore the latter inequality gives a contradiction if r is small
enough, thanks to (3-18). This concludes the case in which σ ∈ (0, 1).

If instead σ = 1, then we have ϑ > 0 and so, for small t , we have

(t +ϑ)γ = ϑγ + γϑγ−1t + O(t2).

Therefore, we infer from (3-29) that

ϑγ + γϑγ−1r2−σ Perσ (Ẽ, B1)6 ϑ
γ
+ γϑγ−1r2−σ (Perσ (Ẽ, B1)− a)+ O(r4−2σ ).



A CLASS OF UNSTABLE FREE BOUNDARY PROBLEMS 1337

Hence we simplify some terms and we divide by r2−σ to obtain

a 6 O(r2−σ ),

which gives a contradiction for small r > 0. This completes the case σ = 1. �

Completion of the proof of Theorem 1.1. The claim in Theorem 1.1 now follows plainly by combining
Corollary 3.4 and Proposition 3.5.

4. Proof of Theorem 1.2

The argument is a combination of a classical domain variation (see, e.g., [Alt and Caffarelli 1981]) with
an expansion of the (classical or fractional) perimeter. Some similar perturbative methods appear, in
the classical case, for instance, in [Garofalo and Lin 1986; Caffarelli et al. 2009]. Since the arguments
involved here use both standard and nonstandard observations, we give all the details to assist the reader.
First, we observe that

the function 4 := (∂+ν u(x))2− (∂−ν u(x))2− H E
σ (x)8

′(Per?σ (E, �)) belongs to C(∂E ∩�), (4-1)

thanks to (1-8), (1-10) and Proposition 6.3 in [Figalli et al. 2015] (to be used when σ ∈ (0, 1)).
Also, given a vector field V ∈ C∞(Rn,Rn) such that

V (x)= 0 for any x ∈�c, (4-2)

for small t ∈ R we consider the ODE flow y = y(t; x) given by the Cauchy problem{
∂t y(t; x)= V (y(t; x)),
y(0; x)= x .

(4-3)

We remark that, for small t ∈ R,

y(t; x)= x + tV (y(t; x))+ o(t)= x + tV (x)+ o(t). (4-4)

Accordingly,
Dx y(t; x)= I + t DV (x)+ o(t)= I + t DV (y(t; x))+ o(t), (4-5)

where I denotes the n-dimensional identity matrix.
Also, the map Rn

3 x 7→ y(t; x) is invertible for small t ; i.e., we can consider the inverse diffeomor-
phism x(t; y). In this way,

x(t; y(t; x))= x and y(t; x(t; x))= y. (4-6)

By (4-4), we know

x(t; y)= y(t; x(t; y))− tV (y(t; x(t; y)))+ o(t)= y− tV (y)+ o(t), (4-7)

and therefore
Dy x(t; y)= I − t DV (y)+ o(t).
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In particular,
det Dy x(t; y)= 1− t div V (y)+ o(t). (4-8)

Now, given a minimal pair (u, E) as in the statement of Theorem 1.2, we define

ut(y) := u(x(t; y)).

We remark that the subscript t above does not represent a time derivative. By (4-6), we can write u(x)=
ut(y(t; x)) and thus, recalling (4-5),

∇u(x)= Dx y(t; x)∇ut(y(t; x))=∇ut(y(t; x))+ t DV (y(t; x))∇ut(y(t; x))+ o(t). (4-9)

Also, we consider the image of the set E under the diffeomorphism y(t; · ); i.e., we define

Et := y(t; E).

We claim that
the pair (ut , Et) is admissible. (4-10)

To check this, let y ∈ Et (resp., y ∈ Ec
t ). Then there exists

x ∈ E (resp. x ∈ Ec) (4-11)

such that y = y(t; x). Then, by (4-6), we have

x(t; y)= x(t; y(t; x))= x .

This identity and (4-11) imply

06 u(x)= u(x(t; y))= ut(y) (resp. 0> ut(y)).

From this, we obtain (4-10).
In addition, we recall that

y(t; x)= x for any x ∈�c, (4-12)

thanks to (4-2) and (4-3). Therefore, we have

y(t;�)=�. (4-13)

Moreover, as a consequence of (4-12) and of (4-10), and using the minimality of (u, E), we have

06 E�(ut , Et)− E�(u, E). (4-14)

Now we compute the first order in t of the right-hand side of (4-14). For this scope, using, for instance,
formula (6.3) (when σ = 1) or formula (6.12) (when σ ∈ (0, 1)) in [Figalli et al. 2015], and recalling
that V vanishes outside �, one obtains that

Per?σ (Et , �)= Per?σ (E, �)+ t
∫
(∂E)∩�

H E
σ (x) V (x) · ν(x) dHn−1(x)+ o(t). (4-15)

Above, we denote by ν the exterior normal of E and by Hn−1 the (n−1)-dimensional Hausdorff measure.
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From (4-15), we obtain that

8(Per?σ (Et ,�))=8

(
Per?σ (E,�)+t

∫
(∂E)∩�

H E
σ (x)V (x)·ν(x)dHn−1(x)+o(t)

)
=8(Per?σ (E,�))+t8′(Per?σ (E,�))

∫
(∂E)∩�

H E
σ (x)V (x)·ν(x)dHn−1(x)+o(t). (4-16)

Moreover, by (4-9),

|∇u(x)|2 = |∇ut(y(t; x))|2+ 2t ∇ut(y(t; x)) ·
(
DV (y(t; x))∇ut(y(t; x))

)
+ o(t).

Now we integrate this equation in x over � and we use the change of variable y := y(t; x). In this way,
recalling (4-8) and (4-13), we see that∫

�

|∇u(x)|2 dx =
∫
�

[
|∇ut(y(t; x))|2+ 2t ∇ut(y(t; x)) ·

(
DV (y(t; x))∇ut(y(t; x))

)]
dx + o(t)

=

∫
�

[
|∇ut(y)|2+ 2t ∇ut(y) · (DV (y)∇ut(y))

]
| det Dy x(t; y)| dy+ o(t)

=

∫
�

[
|∇ut(y)|2+ 2t ∇ut(y) · (DV (y)∇ut(y))

]
[1− t div V (y)] dy+ o(t)

=

∫
�

[
|∇ut(y)|2+ 2t ∇ut(y) · (DV (y)∇ut(y))− t |∇ut(y)|2 div V (y)

]
dy+ o(t).

We write this formula as∫
�

|∇ut(y)|2 dy

=

∫
�

|∇u(x)|2 dx + t
∫
�

[
|∇ut(y)|2 div V (y)− 2∇ut(y) · (DV (y)∇ut(y))

]
dy+ o(t). (4-17)

Also, by (4-9),
∇u(x)=∇ut(y(t; x))+ O(t),

and so, evaluating this expression at x := x(t; y) and using (4-7), we get

∇ut(y)=∇ut(y(t; x(t; y)))=∇u(x(t; y))+ O(t)=∇u(y)+ O(t).

We can substitute this into (4-17), thus obtaining∫
�

|∇ut(y)|2 dy

=

∫
�

|∇u(x)|2 dx + t
∫
�

[
|∇u(y)|2 div V (y)− 2∇u(y) · (DV (y)∇u(y))

]
dy+ o(t). (4-18)

Now we define �1 :=�∩ {u > 0} and �2 :=�∩ {u < 0}. Notice that 1u = 0 in �1 and in �2, thanks
to Lemma 2.4. Accordingly, in both �1 and �2 we have

div(|∇u|2 V )= |∇u|2 div V + 2V · (D2u ∇u) (4-19)
and

div((V · ∇u)∇u)=∇(V · ∇u) · ∇u =∇u · (DV∇u)+ V · (D2u ∇u). (4-20)
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So, we take the quantity in (4-19) and we subtract twice the quantity in (4-20); in this way we see that, in
both �1 and �2,

div(|∇u|2 V )− 2 div((V · ∇u)∇u)= |∇u|2 div V + 2V · (D2u ∇u)− 2
[
∇u · (DV∇u)+ V · (D2u ∇u)

]
= |∇u|2 div V − 2∇u · (DV∇u).

We remark that the last expression is exactly the quantity appearing in one integrand of (4-18); therefore
we can write (4-18) as∫
�

|∇ut(y)|2 dy

=

∫
�

|∇u(x)|2 dx+t
∑

i∈{1,2}

∫
�i

[
div
(
|∇u(y)|2 V (y)

)
−2div

(
(V (y)·∇u(y))∇u(y)

)]
dy+o(t). (4-21)

Now we recall (1-9) and we notice that the exterior normal ν1 of �1 coincides with ν, while the exterior
normal ν2 of �2 coincides with −ν. Furthermore, by (1-11), we see that ν1 =−∇u/|∇u| = −∇u/|∂+ν u|
coming from�1 and ν2=∇u/|∇u|=∇u/|∂−ν u| coming from�2. Accordingly, coming from�1, we have

∂ν1u = ν1 · ∇u =−
∇u
|∇u|
· ∇u =−|∂+ν u|.

Similarly, coming from �2,

∂ν2u = ν2 · ∇u =
∇u
|∇u|
· ∇u = |∂−ν u|.

Therefore, coming from �1,

∇u ∂ν1u =−|∇u| ∂ν1u ν1 = |∂
+

ν u|2 ν,

and coming from �2,

∇u ∂ν2u = |∇u| ∂ν2u ν2 =−|∂
−

ν u|2 ν.

Consequently, coming from �1 we have

|∇u|2 V · ν1− 2(V · ∇u)∂ν1u = |∂+ν u|2V · ν− 2(V · ν) |∂+ν u|2 =−|∂+ν u|2V · ν,

while, coming from �2,

|∇u|2 V · ν2− 2(V · ∇u)∂ν2u =−|∂−ν u|2V · ν+ 2(V · ν) |∂−ν u|2 = |∂−ν u|2V · ν.

Hence, if we apply the divergence theorem in (4-21), we obtain∫
�

|∇ut(y)|2 dy−
∫
�

|∇u(x)|2 dx

= t
∑

i∈{1,2}

∫
∂�i

[
|∇u(y)|2 V (y)·νi (y)−2(V (y)·∇u(y))∂νi u(y)

]
dHn−1(y)+o(t)

=−t
∫
(∂E)∩�

|∂+ν u(y)|2 V (y)·ν(y)dHn−1(y)+t
∫
(∂E)∩�

|∂−ν u(y)|2 V (y)·ν(y)dHn−1(y)+o(t). (4-22)
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Using this and (4-16), and also recalling the definition in (4-1), we conclude that

E�(ut , Et)− E�(u, E)=
∫
�

|∇ut(y)|2 dy−
∫
�

|∇u(x)|2 dx +8(Per?σ (Et , �))−8(Per?σ (E, �))

= t
∫
(∂E)∩�

(
|∂−ν u(y)|2− |∂+ν u(y)|2

)
V (y) · ν(y) dHn−1(y)

+ t8′(Per?σ (E, �))
∫
(∂E)∩�

H E
σ (x)V (x) · ν(x) dHn−1(x)+ o(t)

=−t
∫
(∂E)∩�

4(x)V (x) · ν(x) dHn−1(x)+ o(t).

This and (4-14) imply ∫
(∂E)∩�

4(x)V (x) · ν(x) dHn−1(x)= 0.

Since V is arbitrary, the latter identity and (4-1) imply that 4 vanishes in the whole of ∂E ∩�, which
completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Energy of the harmonic replacement of a minimal solution. We start with a computation on the har-
monic replacement:

Lemma 5.1. Assume that (1-14) holds true. Let (u, E) be a minimal pair in �, with u > 0 a.e. in �c

and BRo b�. Let R ∈ (0, Ro] and u R be the function minimizing the Dirichlet energy in BR among all
the functions v such that v− u ∈ H 1

0 (BR). Then∫
BR

|∇u(x)−∇u R(x)|2 dx 6 C L Q Rn−σ

for some C > 0, possibly depending on Ro, n and σ , and L Q is the one introduced in (1-14).

Proof. We observe that u > 0 a.e. in Rn, thanks to Lemma 2.7. Hence u R > 0 a.e., by the classical
maximum principle, and therefore, taking u R := u in Bc

R , we see that (u R, E ∪ BR) is an admissible pair,
and an admissible competitor against (u, E). Therefore, by the minimality of (u, E),

06 E�(u R, E ∪ BR)− E�(u, E)

=

∫
BR

(
|∇u R(x)|2− |∇u(x)|2

)
dx +8(Per?σ (E ∪ BR, �))−8(Per?σ (E, �)). (5-1)

Now we use the subadditivity of the (either classical or fractional) perimeter (see, e.g., Proposition 3.38(d)
in [Ambrosio et al. 2000] when σ = 1 and formula (3.1) in [Dipierro et al. 2013] when σ ∈ (0, 1)) and
we remark that

Per?σ (E ∪ BR, �)6 Per?σ (E, �)+Per?σ (BR, �)6 Per?σ (E, �)+Perσ (BR,Rn)

= Per?σ (E, �)+ Rn−σ Perσ (B1,Rn)6 Q, (5-2)

in light of (1-16).
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Now we claim that

8(Per?σ (E ∪ BR, �))−8(Per?σ (E, �))6 C L Q Rn−σ. (5-3)

To prove it, we observe that if Per?σ (E ∪ BR, �) 6 Per?σ (E, �) then, by the monotonicity of 8 it
follows that 8(Per?σ (E ∪ BR, �)) 6 8(Per?σ (E, �)), which implies (5-3). Therefore, we can assume
that Per?σ (E ∪ BR, �) > Per?σ (E, �). Then, by (1-14), which can be utilized here in view of (5-2), and
using again the subadditivity of the (either classical or fractional) perimeter,

8(Per?σ (E ∪ BR, �))−8(Per?σ (E, �))6 L Q
∣∣Per?σ (E ∪ BR, �)−Per?σ (E, �)

∣∣
6 L Q Per?σ (BR, �)6 L Q Perσ (BR,Rn)6 C L Q Rn−σ.

This proves (5-3).
By (5-3) and (5-1) we obtain

C L Q Rn−σ >
∫

BR

(
|∇u(x)|2− |∇u R(x)|2

)
dx

=

∫
BR

(∇u(x)+∇u R(x)) · (∇u(x)−∇u R(x)) dx

=

∫
BR

(
∇u(x)−∇u R(x)+ 2∇u R(x)

)
· (∇u(x)−∇u R(x)) dx

=

∫
BR

|∇u(x)−∇u R(x)|2 dx + 2
∫

BR

∇u R(x) · (∇u(x)−∇u R(x)) dx

=

∫
BR

|∇u(x)−∇u R(x)|2 dx,

where the last equality follows from the fact that u R is harmonic in BR . The desired result is thus
established. �

Remark 5.2. From Lemma 5.1 it follows that the gradient of the minimizers locally belongs to the
Campanato space Lp,λ, with p := 2 and λ := n− σ , and thus to the Morrey space L2,n−σ. This and the
Poincaré inequality would give that the minimizers belong to the Campanato space L2,n+2−σ, and thus to
the Hölder space of continuous functions with exponents 1

2((n+ 2− σ)− n)= 1− 1
2σ . In any case, in

the forthcoming Section 6 we will provide an alternate approach to continuity results.

Estimate on the average of minimal solutions. Now we estimate the average in balls for minimal
solutions:

Lemma 5.3. Assume that (1-14) holds true. Let (u, E) be a minimal pair in �, with u > 0 a.e. in �c

and BRo(p)b�. Assume R ∈ (0, Ro] and p ∈ U0. Then

1
|BR(p)|

∫
BR(p)

u(x) dx 6 C
√

L Q R1−σ/2

for some C > 0, possibly depending on Ro, n and σ , and L Q is the one introduced in (1-14).
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Proof. By (1-13), we can take a sequence pk with

lim
k→+∞

u(pk)= 0. (5-4)

For any r ∈ (0, R] and for any k ∈ N, we define

ψ(r) := r−n
∫

Br (p)
u(x) dx and ψk(r) := r−n

∫
Br (pk)

u(x) dx .

We observe that
lim

k→+∞
ψk(r)= ψ(r). (5-5)

To check this, we let R > Ro, with BR(p) b � and we consider a continuous approximation of u
in L1(BR(p)). That is, we take continuous functions uε such that

lim
ε↘0

∫
BR(p)
|u(x)− uε(x)| dx = 0. (5-6)

For large k, we have Br (pk)⊆ BR(p), and so

rn
|ψk(r)−ψ(r)| =

∣∣∣∣∫
Br (pk)

u(x) dx −
∫

Br (p)
u(x) dx

∣∣∣∣
6

∣∣∣∣∫
Br (pk)

uε(x) dx −
∫

Br (p)
uε(x) dx

∣∣∣∣+ 2
∫

BR(p)
|u(x)− uε(x)| dx

=

∣∣∣∣∫
Br

(
uε(x + pk)− uε(x + p)

)
dx
∣∣∣∣+ 2

∫
BR(p)
|u(x)− uε(x)| dx .

Hence, taking the limit in k and using the dominated convergence theorem, we get

lim
k→+∞

rn
|ψk(r)−ψ(r)|6 2

∫
BR(p)
|u(x)− uε(x)| dx .

Then, we take the limit in ε and we obtain (5-5) from (5-6), as desired.
Now, we recall that u > 0 a.e. in Rn, thanks to Lemma 2.7. Thus, by Remark 2.6,

ψk(0) := lim
r↘0

ψk(r)= u(pk). (5-7)

Furthermore, using polar coordinates,

ψ ′k(r)=
d
dr

∫
B1

u(pk + r y) dy =
∫

B1

∇u(pk + r y) · y dy

=

∫ 1

0

[
tn
∫

Sn−1
∇u(pk + r tω) ·ω dHn−1(ω)

]
dt =

∫ 1

0

[
tn
∫
∂B1

∂νu(pk + r tω) dHn−1(ω)

]
dt,

(5-8)
where ν is the exterior normal of B1.

Now, for a fixed k∈N, we use the notation of Lemma 5.1 for the harmonic replacement ur in Br (pk)b�.
For ρ ∈ (0, r ], we define vr (x) := ur (pk + ρx) and we observe that, for any x ∈ B1, we have 1vr (x)=
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ρ21ur (pk + ρx)= 0, and so

0=
∫

B1

1vr (x) dx =
∫
∂B1

∂νvr (ω) dHn−1(ω)= ρ

∫
∂B1

∂νur (pk + ρω) dHn−1(ω).

We take ρ := r t and we insert this into (5-8). In this way, we obtain

ψ ′k(r)=
∫ 1

0

[
tn
∫
∂B1

(
∂νu(pk + r tω)− ∂νur (pk + r tω)

)
dHn−1(ω)

]
dt.

That is, switching from polar to Cartesian coordinates and making the change of variable y := pk + r x ,

ψ ′k(r)=
∫

B1

x ·
(
∇u(pk + r x)−∇ur (pk + r x)

)
dx = r−(n+1)

∫
Br (pk)

(y− pk) · (∇u(y)−∇ur (y)) dy.

Hence, using the Hölder inequality and Lemma 5.1,

ψ ′k(r)6 r−n
∫

Br (pk)

|∇u(y)−∇ur (y)| dy 6 C r−n/2
(∫

Br (pk)

|∇u(y)−∇ur (y)|2 dy
)1/2

6 C
√

L Q r−σ/2

for some C > 0. This and (5-7) give

ψk(R)− u(pk)= ψk(R)−ψk(0)=
∫ R

0
ψ ′k(r) dr 6 C

√
L Q

∫ R

0
r−σ/2 6 C

√
L Q R1−σ/2,

up to renaming constants. Hence, making use of (5-4) and (5-5), we find that

ψ(R)6 C
√

L Q R1−σ/2,

which is the desired claim. �

Completion of the proof of Theorem 1.3. We recall that u > 0 a.e. in Rn, thanks to Lemma 2.7. In
particular, u is subharmonic, thanks to Lemma 2.5, and thus

1
|Bρ |

∫
Bρ(x)

u(y) dy > u(x) (5-9)

for small ρ > 0. Now we take x ∈�, with |x | suitably small, and we define R := |x |. Notice that BR(x)⊆
B2R and therefore, since u > 0, ∫

BR(x)
u(y) dy 6

∫
B2R

u(y) dy. (5-10)

In addition, by applying Lemma 5.3 in B2R , we find that

1
Rn

∫
B2R

u(y) dy 6 C
√

L Q R1−σ/2.

As a result, exploiting (5-9) and (5-10),

u(x)6
C
Rn

∫
BR(x)

u(y) dy 6
C
Rn

∫
B2R

u(y) dy 6 C
√

L Q R1−σ/2
= C
√

L Q |x |1−σ/2,

up to renaming constants. This proves Theorem 1.3.
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6. Proof of Corollary 1.4

To prove Corollary 1.4, it is useful to point out a strengthening of Lemma 2.4 in which one replaces the
condition on the infimum with a pointwise condition (this refinement is possible by virtue of Theorem 1.3):

Lemma 6.1. Let the assumptions of Corollary 1.4 hold true. Let (u, E) be a minimal pair in�, with u> 0.
Let U b� be an open set with u > 0 in U. Then u is harmonic in U.

Proof. Let U ′ bU be open. The claim is proved if we show that u is harmonic in U ′. To this aim, we
claim that

inf
U ′

u > 0. (6-1)

We argue for a contradiction, assuming that this infimum is equal to 0. Then, recalling (1-13), we have
that there exists x? ∈U ′ ∩U0. In particular, since x? ∈U ′ ⊂U, we know that

u(x?) > 0. (6-2)

On the other hand, by Theorem 1.3, for small y,

u(x?+ y)6 C
√

L Q |y|1−σ/2.

As a result, recalling Remark 2.6,

u(x?)= u+(x?)= lim
ε↘0

1
|Bε |

∫
Bε

u+(x?+ y) dy 6 C
√

L Q lim
ε↘0

1
|Bε |

∫
Bε
|y|1−σ/2 dy = 0.

This is in contradiction with (6-2) and so we have proved (6-1).
Then, in light of (6-1), we fall under the assumptions of Lemma 2.4, which in turn implies the desired

claim. �

First we recall that u > 0 a.e. in Rn, thanks to Lemma 2.7. Also we know that u is subharmonic in �
(recall Lemma 2.5) and therefore, by the classical maximum principle,

u(x)6 M (6-3)

for any x ∈�. Also, we may suppose that

there exists qo ∈ B3R/10 such that u(qo)= 0. (6-4)

Indeed, if this does not hold, then u is harmonic in B3R/10, due to Lemma 6.1, and thus

sup
BR/4

|∇u|6
C
R

sup
B3R/10

u 6
C M

R

for some C > 0, where we also used (6-3) in the latter inequality. This implies

|u(x)− u(y)|6
C M

R
|x − y|6

C M
R1−σ/2 |x − y|1−σ/2,

which gives the desired result in this case.
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Hence, from now on, we can suppose that (6-4) holds true. We fix x 6= y ∈ BR/4 and we define d(x)
to be the distance from x to the set {u = 0}; we define d(y) analogously. By (6-4), we know that d(x),
d(y) ∈

[
0, 3

5 R
]
. We distinguish two cases:

Case 1: |x − y|> 1
2 max{d(x), d(y)}.

Case 2: |x − y|< 1
2 max{d(x), d(y)}.

First, we deal with Case 1. In this case, we use Theorem 1.3 and we have

|u(x)|6 C
√

L Q (d(x))1−σ/2 and |u(y)|6 C
√

L Q (d(y))1−σ/2.

As a consequence,

|u(x)− u(y)|6 |u(x)| + |u(y)|6 C
√

L Q
(
(d(x))1−σ/2+ (d(y))1−σ/2

)
.

Then, the assumption of Case 1 implies

|u(x)− u(y)|6 C
√

L Q |x − y|1−σ/2,

up to renaming constants, which gives the desired result in this case.
Now we consider Case 2. In this case, up to exchanging x and y, we have

06 2|x − y|< d(x)=max{d(x), d(y)} (6-5)

and u > 0 in Bd(x)(x). Then, by Lemma 6.1, we know that u is harmonic in Bd(x)(x) and thus

sup
B9d(x)/10(x)

|∇u|6
C

d(x)
sup

Bd(x)(x)
u (6-6)

for some C > 0.
Now, we prove

sup
Bd(x)(x)

u 6 C
√

L Q (d(x))1−σ/2 (6-7)

for some C > 0. For this, take η ∈ Bd(x)(x). By construction, there exists ζ ∈ Bd(x)(x) such that u(ζ )= 0.
Accordingly, we have |η− ζ |6 |η− x | + |x − ζ |6 2d(x), and then, by Theorem 1.3,

u(η)6 C
√

L Q |η− ζ |
1−σ/2 6 C

√
L Q (d(x))1−σ/2,

up to renaming C > 0, and this establishes (6-7).
Thus, exploiting (6-6) and (6-7), and possibly renaming constants, we obtain that

sup
B9d(x)/10(x)

|∇u|6 C
√

L Q (d(x))−σ/2.

Notice now that y ∈ Bd(x)/2(x)⊂ B9d(x)/10(x), thanks to (6-5); therefore

|u(x)− u(y)|6 C
√

L Q (d(x))−σ/2 |x − y|6 C
√

L Q |x − y|1−σ/2,

up to renaming constants. This establishes the desired result also in Case 2 and so the proof of Corollary 1.4
is now completed.
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7. Proof of Theorem 1.5

The proof is based on a measure theoretic argument that was used, in different forms, in [Caffarelli et al.
2015; Dipierro and Valdinoci 2016], but unlike the proof in the existing literature, we cannot use here the
scaling properties of the functional: namely, the existing proofs can always reduce to the unit ball, since
the rescaled minimal pair is a minimal pair for the rescaled functional, whereas this procedure fails in our
case (as stressed for instance by Theorem 1.1). For this reason, we need to perform a measure-theoretic
argument which works at every scale. To this end, for any r ∈ (0, R) we define

V (r) := |Br \ E | and a(r) :=Hn−1((∂Br ) \ E)
and we observe that

V (r)=
∫ r

0
a(t) dt; (7-1)

see, e.g., formula (13.3) in [Maggi 2012].
The proof of Theorem 1.5 is by contradiction: we suppose that, for some ro ∈

(
0, 1

2 R
)
, we have

V (ro)= |Bro \ E |6 δrn
o (7-2)

and we derive a contradiction if δ > 0 is sufficiently small. We recall that u > 0 a.e. in Rn, due to
Lemma 2.7, and we define

A := Br \ E .

We observe that (u, E ∪ A) is admissible, since (E ∪ A)c = Ec
∩ Ac

⊆ Ec. Then, by the minimality
of (u, E), we obtain

06 E�(u, E ∪ A)− E�(u, E)=8(Per?σ (E ∪ A, �))−8(Per?σ (E, �)). (7-3)

Now, by the subadditivity of the (either classical or fractional) perimeter (see, e.g., Proposition 3.38(d) in
[Ambrosio et al. 2000] when σ = 1 and formula (3.1) in [Dipierro et al. 2013] when σ ∈ (0, 1)), we have

Per?σ (E ∪ A, �)= Per?σ (E ∪ Br , �)6 Per?σ (E, �)+Per?σ (Br , �)

6 Per?σ (E, �)+Perσ (Br ,Rn)6 Per?σ (E, �)+ Rn−σ Perσ (B1,Rn).

Then, both Per?σ (E, �) and Per?σ (E ∪ A, �) are bounded by P, as defined in (1-18), and so they lie in the
invertibility range of 8, as prescribed by (1-19). This observation and (7-3) imply

Per?σ (E, �)6 Per?σ (E ∪ A, �). (7-4)
Now we claim that

Perσ (E, �)6 Perσ (E ∪ A, �). (7-5)

Indeed, if σ ∈ (0, 1), then (7-5) is simply (7-4). If instead σ = 1, we notice that E \ Br = (E ∪ A) \ Br

and so we use (2-2), (2-3) and (7-4) to obtain

06 Per?σ (E ∪ A, �)−Per?σ (E, �)

= Perσ (E ∪ A, Br )−Perσ (E, Br )= Perσ (E ∪ A, �)−Perσ (E, �),

which establishes (7-5).
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Now we use the (either classical or fractional) isoperimetric inequality in the whole of Rn (see, e.g.,
Theorem 3.46 in [Ambrosio et al. 2000] when σ = 1, and [Frank et al. 2008], or Corollary 25 in [Caffarelli
and Valdinoci 2011] when σ ∈ (0, 1)); in this way, we have

(V (r))(n−σ)/n
= |Br \ E |(n−σ)/n

= |A|(n−σ)/n 6 C Perσ (A,Rn) (7-6)

for some C > 0.
Now we claim that, for a.e. r ∈ (0, R),

Perσ (A,Rn)6

{
C a(r) if σ = 1,
C
∫ r

0 a(ρ)(r − ρ)−σ dρ if σ ∈ (0, 1)
(7-7)

for some C > 0 (up to renaming C). First we prove (7-7) when σ = 1. For this, we write the perimeter
of E in term of the Gauss–Green measure µE (see Remark 12.2 in [Maggi 2012]), we use the additivity
of the measures on disjoint sets and we obtain

Per(E, Br )+Per(E, � \ Br )= |µE |(Br )+ |µE |(� \ Br )

6 |µE |(Br )+ |µE |(� \ Br )= |µE |(�)= Per(E, �). (7-8)

Now we prove that, for a.e. r ∈ (0, R), we have

Hn−1((∂Br ) \ E)= Per(Br \ E, �)−Per(E, Br ). (7-9)

For this scope, we make use of the property of the Gauss–Green measure with respect to the intersection
with balls (see formula (15.14) in Lemma 15.12 of [Maggi 2012], applied here to the complement of E).
In this way, we see

Hn−1((∂Br ) \ E)=Hn−1((∂Br )∩ Ec
∩�)=Hn−1∣∣

Ec∩(∂Br )
(�)

= |µEc∩Br |(�)− |µEc |
∣∣

Br
(�)

= Per(Ec
∩ Br , �)− |µEc |(Br ∩�)

= Per(Ec
∩ Br , �)− |µEc |(Br )

= Per(Ec
∩ Br , �)−Per(Ec, Br ).

From this and the fact that Per(Ec, Br )= Per(E, Br ) (see, for instance, Proposition 3.38(d) in [Ambrosio
et al. 2000]), we obtain that (7-9) holds true.

Now we claim that, for a.e. r ∈ (0, R), we have

Per(E ∪ Br , Br )=Hn−1((∂Br ) \ E). (7-10)

Since it is not easy to find a complete reference for such formula in the literature, we try to give here an
exhaustive proof. To this end, given a set F and t ∈ [0, 1], we denote by F (t) the set of points of density t
of F (see, e.g., Example 5.17 in [Maggi 2012]), that is,

F (t) :=
{

x ∈ Rn
: lim

r→0

|F ∩ Br (x)|
|Br |

= t
}
.
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With this notation, we observe that B(0)r = Rn
\ Br , and thus

B(0)r ∩ Br =∅. (7-11)

We denote by ∂∗ the reduced boundary of a set of locally finite perimeter (see, e.g., formula (15.1) in
[Maggi 2012]); we recall that for any x ∈ ∂∗E one can define the measure-theoretic outer unit normal to E ,
which we denote by νE . We also recall that, by De Giorgi’s structure theorem (see, e.g., formula (15.10)
in [Maggi 2012]),

|µE | =Hn−1∣∣
∂∗E . (7-12)

We also set

Nr := {x ∈ (∂∗E)∩ (∂Br ) : νE = νBr }.

We claim that, for a.e. r ∈ (0, R),

Hn−1(Nr )= 0. (7-13)

To check this, for any k ∈ N we define

βk :=

{
r ∈ (0, R) :Hn−1(Nr )>

1
k

}
.

Then, if r ∈ βk , by (7-12) we have

|µE |(∂Br )=Hn−1∣∣
∂∗E(∂Br )=Hn−1((∂∗E)∩ (∂Br ))>Hn−1(Nr )>

1
k
.

As a consequence, if r1, . . . , rj ∈ βk and r ∈ (0, R), we obtain

Per(E, BR)= |µE |(BR)> |µE |

( j⋃
i=1

(∂Bri )

)
=

j∑
i=1

|µE |(∂Bri )>
j
k
,

that is, j 6 k Per(E, BR).
This says that βk has a finite (indeed less than k Per(E, BR)) number of elements. Thus the following

set is countable (and so is of measure zero):

+∞⋃
k=1

βk = {r ∈ (0, R) :Hn−1(Nr ) > 0} = {r ∈ (0, R) : (7-13) does not hold}.

This proves (7-13).
Now we use the known formula about the perimeter of the union. For instance, exploiting for-

mula (16.12) of [Maggi 2012] (used here with F = Br and G := Br ) we have

Per(E ∪ Br , Br )= Per(E, B(0)r ∩ Br )+Per(Br , E (0) ∩ Br )+Hn−1(Nr ∩ Br ).

In particular, using (7-11) and (7-13), we obtain

Per(E ∪ Br , Br )= Per(Br , E (0) ∩ Br ) (7-14)
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for a.e. r ∈ (0, R). On the other hand, Br is a smooth set and so (see, e.g., Example 12.6 in [Maggi 2012])
we have

Per(Br , E (0) ∩ Br )=Hn−1(E (0) ∩ Br ∩ (∂Br ))=Hn−1(E (0) ∩ (∂Br )),

and so (7-14) becomes
Per(E ∪ Br , Br )=Hn−1(E (0) ∩ (∂Br )). (7-15)

Now we set
S := (E (0) \ Ec)∪ (Ec

\ E (0))

and we remark that |S| = 0 (see, e.g., formula (5.19) in [Maggi 2012]). Then, also |S∩ Br | = 0. Therefore
(see, e.g., Remark 12.4 in [Maggi 2012]) we get that Per(S,Rn) = 0 = Per(S ∩ Br ,Rn) and then (see,
e.g., formula (15.15) in [Maggi 2012]) for a.e. r ∈ (0, R) we obtain

Hn−1(S ∩ (∂Br ))= Per(S ∩ Br ,Rn)−Per(S, Br )= 0,

and so, as a consequence,
Hn−1(E (0) ∩ (∂Br ))=Hn−1(Ec

∩ (∂Br )).

Now we combine this and (7-15) and we finally complete the proof of (7-10).
Now we show that, for a.e. r ∈ (0, R),

Per(E ∪ Br , �)−Per(E, � \ Br )= Per(Br \ E, �)−Per(E, Br ). (7-16)

To prove this, we notice that (E ∪ Br ) \ Br = E \ Br , and so we use Lemma 2.2 to see

Per(E ∪ Br , �)−Per(E, �)= Per(E ∪ Br , Br )−Per(E, Br ).

As a consequence,

Per(E ∪ Br , �)−Per(E, � \ Br )= Per(E ∪ Br , Br )−Per(E, Br )+Per(E, �)−Per(E, � \ Br )

= Per(E ∪ Br , Br )− |µE |(Br )+ |µE |(�)− |µE |(� \ Br )

= Per(E ∪ Br , Br ),

thanks to the additivity of the Gauss–Green measure µE . Then, we use (7-10) and we obtain

Per(E ∪ Br , �)−Per(E, � \ Br )=Hn−1((∂Br ) \ E).

Then, we exploit (7-9) and we complete the proof of (7-16).
Now we observe that, using (7-9) and (7-16), we obtain, for a.e. r ∈ (0, R),

Per(E ∪ Br , �)= Per(E, � \ Br )+Hn−1((∂Br ) \ E). (7-17)

Now, putting together (7-8) and (7-17), and noticing that E ∪ Br = E ∪ A, we have

Per(E, Br )6 Per(E, �)−Per(E, � \ Br )

= Per(E, �)−Per(E ∪ Br , �)+Hn−1((∂Br ) \ E)

= Per(E, �)−Per(E ∪ A, �)+Hn−1((∂Br ) \ E).
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Therefore, recalling (7-5) (used here with σ = 1), we conclude that

Per(E, Br )6Hn−1((∂Br ) \ E). (7-18)

Now we take r ′ ∈ (r, R) and we observe that Br b Br ′ b �. Also, we see that A \ Br ′ = ∅; thus, by
Lemma 2.2 (applied here with F :=∅),

Per(A,Rn)= Per(A, Br ′)6 Per(A, �)= Per(Br \ E, �).

As a consequence of this and of (7-16), we obtain

Per(A,Rn)6 Per(E ∪ Br , �)−Per(E, � \ Br )+Per(E, Br ).

Hence, in light of (7-17) and (7-18),

Per(A,Rn)6 2Hn−1((∂Br ) \ E)= 2a(r).

This completes the proof of (7-7) when σ = 1.
When σ ∈ (0, 1), to prove (7-7) we use a modification of the argument contained in formulas (5.8)–(5.12)

in [Dipierro and Valdinoci 2016]. We first observe that

Perσ (E, �)−Perσ (E ∪ A, �)= L(A, E)− L(A, (E ∪ A)c).

As a consequence,

Perσ (A,Rn)= L(A, Ac)= L(A, E)+ L(A, (E ∪ A)c)

= 2L(A, (E ∪ A)c)+Perσ (E, �)−Perσ (E ∪ A, �).

This and (7-5) give
Perσ (A,Rn)6 2L(A, (E ∪ A)c)6 2L(A, Bc

r ). (7-19)

Now we recall that A ⊆ Br and so, using the change of coordinates ζ := x − y, we obtain

L(A, Bc
r )=

∫
A×Bc

r

dx dy
|x − y|n+σ

6
∫
{(x,ζ )∈A×Rn :|ζ |>r−|x |}

dx dζ
|ζ |n+σ

6 C
∫

A

[∫
+∞

r−|x |

ρn−1 dρ
ρn+σ

]
dx 6 C

∫
A

dx
(r − |x |)σ

. (7-20)

Now we use the coarea formula (see, e.g., Theorem 2 on page 117 of [Evans and Gariepy 1992], applied
here in codimension 1 to the functions f (x)= |x | and g(x) := χA(x)/(r − |x |)σ ), and we deduce that∫

A

dx
(r − |x |)σ

=

∫
R

[∫
∂Bt

χA(x)
(r − |x |)σ

dHn−1(x)
]

dt

=

∫ r

0

[∫
∂Bt

χEc(x)
(r − t)σ

dHn−1(x)
]

dt =
∫ r

0

Hn−1(Ec
∩ (∂Bt))

(r − t)σ
dt =

∫ r

0

a(t)
(r − t)σ

dt.

This and (7-20) imply

L(A, Bc
r )6 C

∫ r

0

a(t)
(r − t)σ

dt.
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Inserting this into (7-19) we get

Perσ (A,Rn)6 C
∫ r

0

a(t)
(r − t)σ

dt,

which gives the desired claim in (7-7) when σ ∈ (0, 1).
Using (7-6) and (7-7), and possibly renaming constants, we conclude that, for a.e. r ∈ (0, R),

(V (r))(n−σ)/n 6

{
C a(r) if σ = 1,
C
∫ r

0 a(ρ)(r − ρ)−σ dρ if σ ∈ (0, 1).
(7-21)

Our next goal is to show that, for any t ∈
[ 1

4 ,
1
2

]
, we have∫ tro

ro/4
(V (r))(n−σ)/n dr 6 Ct1−σ r1−σ

o V (tro) (7-22)

for some C > 0. To prove this, we integrate (7-21) in r ∈
[ 1

4ro, tro
]
. Then, when σ = 1, we obtain (7-22)

directly from (7-1). If instead σ ∈ (0, 1), we obtain∫ tro

ro/4
(V (r))(n−σ)/n dr 6 C

∫ tro

ro/4

[∫ r

0
a(ρ)(r − ρ)−σ dρ

]
dr

6 C
∫ tro

0

[∫ tro

ρ

a(ρ)(r − ρ)−σ dr
]

dρ =
C

1− σ

∫ tro

0
a(ρ)(tro− ρ)

1−σ dρ

6
C

1− σ

∫ tro

0
a(ρ)(tro)

1−σ dρ =
C (tro)

1−σ

1− σ
V (tro),

where we used (7-1) in the last identity. This completes the proof of (7-22), up to renaming the constants.
Now we define tk := 1

4 +
1
2k for any k > 2. Let also wk := r−n

o V (tkro). Notice that tk+1 >
1
4 . Then we

use (7-22) with t := tk and we obtain

Ct1−σ
k r1−σ

o V (tkro)>
∫ tkro

ro/4
(V (r))(n−σ)/n dr >

∫ tkro

tk+1ro

(V (r))(n−σ)/n dr.

Thus, since V ( · ) is monotone,

Ct1−σ
k r1−σ

o V (tkro)> (tkro− tk+1ro)(V (tk+1ro))
(n−σ)/n

=
ro

2k+1 (V (tk+1ro))
(n−σ)/n.

This can be written as

w
(n−σ)/n
k+1 = rσ−n

o (V (tk+1ro))
(n−σ)/n 6 2k+1 C t1−σ

k r−n
o V (tkro)= 2k+1 C t1−σ

k wk .

Consequently, using that tk 6 1 and possibly renaming C > 0, we obtain

w
(n−σ)/n
k+1 6 Ckwk . (7-23)

Also, we have t2 = 1
2 and thus

w2 = r−n
o V

( 1
2ro
)
6 r−n

o V (ro)6 δ,
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in view of (7-2). Then, if δ > 0 is sufficiently small, we have wk→ 0 as k→+∞ (see, e.g., formula (8.18)
in [Dipierro et al. 2014] for explicit bounds). This and the fact that tk > 1

4 say that

0= lim
k→+∞

r−n
o V (tkro)= lim

k→+∞
r−n

o |Btkro \ E |> r−n
o |Bro/4 \ E |.

Hence, we have |Bro/4\E | = 0, in contradiction with the assumption that 0∈ ∂E (in the measure-theoretic
sense). The proof of Theorem 1.5 is thus complete.

8. Proof of Theorem 1.6

By Lemma 2.7, we have

u > 0 a.e. in Rn. (8-1)

For any r ∈ (0, R) we define

V (r) := |Br ∩ E | and a(r) :=Hn−1((∂Br )∩ E),

and we observe that

V (r)=
∫ r

0
a(t) dt; (8-2)

see, e.g., formula (13.3) in [Maggi 2012].
The proof of Theorem 1.6 is obtained by a contradiction argument. Namely, we suppose that, for

some ro ∈
(
0, 1

2 R
)

we have

V (ro)= |Bro ∩ E |6 δ∗rn
o , (8-3)

and we derive a contradiction if δ∗ > 0 is sufficiently small.
We let A := Br ∩ E . Let also ṽ be the minimizer of the Dirichlet energy in Bro among all the possible

candidates v : Rn
→ R such that v = u outside Bro , v− u ∈ H 1

0 (Bro) and v = 0 a.e. in Ec
∪ A (for the

existence and the uniqueness of such harmonic replacement see, e.g., page 481 in [Athanasopoulos et al.
2001]). By (8-1) and Lemma 2.3 in [Athanasopoulos et al. 2001] we have

ṽ > 0 a.e. in Rn. (8-4)

Now we set F := E \ A. We observe that ṽ = 0 a.e. in Fc
= Ec

∪ A by construction. This and (8-4) give
that (ṽ, F) is an admissible pair, and recall also that ṽ− u ∈ H 1

0 (Bro)⊆ H 1
0 (�). Hence, the minimality

of (u, E) gives

06 E�(ṽ, F)− E�(u, E)=
∫
�

|∇ṽ(x)|2 dx −
∫
�

|∇u(x)|2 dx +8(Per?σ (F, �))−8(Per?σ (E, �)).

Using this and the fact that ṽ and u coincide outside Bro , we obtain

8(Per?σ (E, �))−8(Per?σ (F, �))6
∫

Bro

|∇ṽ(x)|2 dx −
∫

Bro

|∇u(x)|2 dx . (8-5)
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Now we take w̃ to be the minimizer of the Dirichlet energy in Bro among all the functions w : Rn
→ R

such that w = u outside Bro , w− u ∈ H 1
0 (Bro) and w = 0 a.e. in Ec. We remark that u is a competitor

with such w̃ and therefore ∫
Bro

|∇w̃(x)|2 dx 6
∫

Bro

|∇u(x)|2 dx .

Plugging this into (8-5), we deduce that

8(Per?σ (E, �))−8(Per?σ (F, �))6
∫

Bro

|∇ṽ(x)|2 dx −
∫

Bro

|∇w̃(x)|2 dx .

This and Lemma 2.3 in [Caffarelli et al. 2015] imply

8(Per?σ (E, �))−8(Per?σ (F, �))6 C ro
−2
|A|‖w̃‖2L∞(Bro )

. (8-6)

Since, by Lemma 2.3 in [Athanasopoulos et al. 2001], we know that w̃ > 0 a.e. in Rn and is subharmonic,
we have that w in Bro takes its maximum along ∂Bro , where it coincides with u. Hence

‖w̃‖L∞(Bro )
6 sup
∂Bro

u. (8-7)

Now we observe that condition (1-20) allows us to use Theorem 1.3, which gives

sup
∂Bro

u 6 C
√

L Q r1−σ/2
o

for some C > 0. Hence (8-7) gives

‖w̃‖L∞(Bro )
6 C
√

L Q ro
1−σ/2.

Thus, recalling (8-6), and possibly renaming constants, we conclude that

8(Per?σ (E, �))−8(Per?σ (F, �))6 C ro
−σ
|A|L Q . (8-8)

Now we claim that

Perσ (E, �)−Perσ (F, �)6 C c−1
o ro

−σ
|A|L Q, (8-9)

where co > 0 is the one introduced in (1-21). To check this, we may suppose that λ1 := Perσ (E, �) >
Perσ (F, �)=: λ2, otherwise we are done. Then, by (1-22), both λ1 and λ2 belong to [0, Q]; therefore we
can make use of (1-21) and obtain

8(Per?σ (E, �))−8(Per?σ (F, �))=8(λ1)−8(λ2)

=

∫ λ1

λ2

8′(t) dt > co(λ1− λ2)= co
(
Per?σ (E, �)−Per?σ (F, �)

)
,

and then it follows from (8-8) that

Per?σ (E, �)−Per?σ (F, �)6 C c−1
o ro

−σ
|A|L Q . (8-10)
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Now we observe that E \ Br = F \ Br ; therefore, using (2-2) and (2-3), we see that

Per?σ (E, �)−Per?σ (F, �)= Perσ (E, Br )−Perσ (F, Br )= Perσ (E, �)−Perσ (F, �).

Putting together this and (8-10) we obtain (8-9).
Now we show that, for a.e. r ∈ (0, ro),

Perσ (A,Rn)6

{
C
(
a(r)+ c−1

o ro
−σ
|A|L Q

)
if σ = 1,

C
(∫ r

0 a(ρ)(r − ρ)−σ dρ+ c−1
o ro

−σ
|A|L Q

)
if σ ∈ (0, 1).

(8-11)

To prove (8-11) we distinguish the cases σ = 1 and σ ∈ (0, 1). If σ = 1, we notice that A \ Br =

(Br ∩ E) \ Br =∅; hence, by Lemma 2.2, we have

Per(A,Rn)= Per(A, Br )= Per(E ∩ Br , Br ).

Hence we use the formula for the perimeter associated with the intersection with balls (see, e.g., (15.14)
in Lemma 15.12 of [Maggi 2012]) and we obtain

Per(A,Rn)= |µE∩Br |(Br )=Hn−1∣∣
E∩(∂Br )

(Br )+ |µE |
∣∣

Br
(Br )

=Hn−1(E ∩ (∂Br )∩ Br )+Per(E, Br ∩ Br )

=Hn−1(E ∩ (∂Br ))+Per(E, Br ). (8-12)

On the other hand, we have (E \ Br )
c
= Ec

∪ Br ; hence (see, e.g., formula (16.11) in [Maggi 2012]) we
obtain that Per(E \ Br , Br )= Per(Ec

∪ Br , Br ) for a.e. r ∈ (0, ro). Hence, by Lemma 2.2,

Per(E, �)−Per(F, �)= Per(E, Br )−Per(F, Br )

= Per(E, Br )−Per(E \ Br , Br )= Per(E, Br )−Per(Ec
∪ Br , Br ) (8-13)

for a.e. r ∈ (0, ro). Moreover (see, e.g., formula (7-10), applied here to the complementary set), we have

Per(Ec
∪ Br , Br )=Hn−1((∂Br )∩ E),

so we can write (8-13) as

Per(E, �)−Per(F, �)= Per(E, Br )−Hn−1((∂Br )∩ E).

In particular

Per(E, Br )6 Per(E, Br )= Per(E, �)−Per(F, �)+Hn−1((∂Br )∩ E).

Then we insert this information into (8-12) and we obtain

Per(A,Rn)6 2Hn−1(E ∩ (∂Br ))+Per(E, �)−Per(F, �).

Now we recall (8-9), which completes the proof of (8-11) when σ = 1, and focus on the case σ ∈ (0, 1).
For this, we use (1-1) and we see that

Perσ (E, �)−Perσ (F, �)= Perσ (E, �)−Perσ (E \ A, �)= L(A, Ec)− L(A, E \ A).
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Therefore

Perσ (A,Rn)= L(A, Ac)= L(A,Ec)+L(A,E\A)=Perσ (E,�)−Perσ (F,�)+2L(A,E\A). (8-14)

Now we use the fact that A ⊆ Br and the change of coordinates ζ := x − y to write

L(A, E \ A)6 L(A, Bc
r )=

∫
A×Bc

r

dx dy
|x − y|n+σ

6
∫
{(x,ζ )∈A×Rn :|ζ |>r−|x |}

dx dζ
|ζ |n+σ

6 C
∫

A

[∫
+∞

r−|x |

ρn−1 dρ
ρn+σ

]
dx 6 C

∫
A

dx
(r − |x |)σ

. (8-15)

Now we observe that, by the coarea formula (see, e.g., Theorem 2 on page 117 of [Evans and Gariepy
1992], applied here in codimension 1 to the functions f (x)= |x | and g(x) := χA(x)/(r − |x |)σ ),∫

A

dx
(r − |x |)σ

=

∫
R

[∫
∂Bt

χA(x)
(r − |x |)σ

dHn−1(x)
]

dt

=

∫ r

0

[∫
∂Bt

χE(x)
(r − t)σ

dHn−1(x)
]

dt =
∫ r

0

Hn−1(E ∩ (∂Bt))

(r − t)σ
dt =

∫ r

0

a(t)
(r − t)σ

dt.

This and (8-15) give

L(A, E \ A)6 C
∫ r

0

a(t)
(r − t)σ

dt.

So we substitute this and (8-9) into (8-14) and we complete the proof of (8-11) when σ ∈ (0, 1).
Now we recall that |A| = V (r) and we use the (either classical or fractional) isoperimetric inequality in

the whole of Rn (see, e.g., Theorem 3.46 in [Ambrosio et al. 2000] when σ = 1, and [Frank et al. 2008],
or Corollary 25 in [Caffarelli and Valdinoci 2011] when σ ∈ (0, 1)) and we deduce from (8-11) that, for
a.e. r ∈ (0, ro),

(V (r))(n−σ)/n
= |A|(n−σ)/n 6

{
C
(
a(r)+ c−1

o ro
−σ V (r)L Q

)
if σ = 1,

C
(∫ r

0 a(ρ)(r − ρ)−σ dρ+ c−1
o ro

−σ V (r)L Q
)

if σ ∈ (0, 1),
(8-16)

up to renaming C > 0. Now we recall (8-3) and we notice that, if r ∈ (0, ro),

c−1
o ro

−σ V (r)L Q 6 c−1
o ro

−σ (V (r))(n−σ)/n (V (ro))
σ/n L Q 6 δ

σ/n
∗

c−1
o (V (r))(n−σ)/n L Q .

This means that, if δ∗ > 0 is small enough, or more precisely if

δσ/n
∗

c−1
o L Q 6

1
2C
, (8-17)

we can reabsorb4 one term in the left-hand side of (8-16): in this way, possibly renaming constants, we
obtain that, for a.e. r ∈ (0, ro),

(V (r))(n−σ)/n 6

{
C a(r) if σ = 1,
C
∫ r

0 a(ρ)(r − ρ)−σ dρ if σ ∈ (0, 1).

4It is interesting to point out that the possibility of absorbing the term C c−1
o ro

−σ V (r)L Q into the left-hand side of (8-16)
crucially depends on the fact that the power produced by the (either classical or fractional) isoperimetric inequality and the one
given by the growth result in Theorem 1.3 match together in the appropriate way.
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This implies that, for any t ∈
[1

4 ,
1
2

]
, we have∫ tro

ro/4
(V (r))(n−σ)/n dr 6 Ct1−σ r1−σ

o V (tro) (8-18)

for some C>0. Indeed, the proof of (8-18) is obtained in the same way as that of (7-22) (the only difference
is that here one has to use (8-2) in lieu of (7-1)). Then, one defines tk := 1

4 +
1
2k and wk := r−n

o V (tkro)

and observes that
w
(n−σ)/n
k+1 6 Ckwk . (8-19)

Indeed, (8-19) can be obtained as in the proof of (7-23) (but using here (8-18) instead of (7-22)).
Furthermore

w2 = r−n
o V

( 1
2ro
)
6 δ∗,

thanks to (8-3). This says that

if δ∗ > 0 is sufficiently small (with respect to a universal constant), (8-20)

then wk→ 0 as k→+∞ (see formula (8.18) in [Dipierro et al. 2014] for explicit bounds). Thus

0= lim
k→+∞

r−n
o V (tkro)= lim

k→+∞
r−n

o |Btkro ∩ E |> r−n
o |Bro/4 ∩ E |.

This is in contradiction with the assumption that 0 ∈ ∂E (in the measure-theoretic sense) and so the proof
of Theorem 1.6 is finished. We stress that the explicit condition in (1-23) comes from (8-17) and (8-20).
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