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Let � ⊂ Cn be a bounded domain with the hyperconvexity index α(�) > 0. Let % be the relative
extremal function of a fixed closed ball in �, and set µ := |%|(1+ |log|%||)−1 and ν := |%|(1+ |log|%||)n .
We obtain the following estimates for the Bergman kernel. (1) For every 0 < α < α(�) and 2 ≤
p < 2 + 2α(�)/(2n − α(�)), there exists a constant C > 0 such that

∫
�
|K�( · , w)/

√
K�(w)|

p
≤

C |µ(w)|−(p−2)n/α for all w ∈ �. (2) For every 0 < r < 1, there exists a constant C > 0 such that
|K�(z, w)|2/(K�(z)K�(w))≤ C(min{ν(z)/µ(w), ν(w)/µ(z)})r for all z, w ∈�. Various applications
of these estimates are given.

1. Introduction

A domain � ⊂ Cn is called hyperconvex if there exists a negative continuous plurisubharmonic (psh)
function ρ on � such that {ρ < c}b� for any c < 0. The class of hyperconvex domains is very wide;
e.g., every bounded pseudoconvex domain with Lipschitz boundary is hyperconvex [Demailly 1987].
Although hyperconvex domains already admit a rich function theory (see, e.g., [Ohsawa 1993; Błocki and
Pflug 1998; Herbort 1999; Poletsky and Stessin 2008]), it is not enough to get quantitative results unless
one imposes certain growth conditions on the bounded exhaustion function ρ (compare [Berndtsson and
Charpentier 2000; Błocki 2005; Diederich and Ohsawa 1995]).

A meaningful condition is −ρ ≤ Cδα for some constants α,C > 0, where δ denotes the boundary
distance. Let α(�) be the supremum of all α. We call it the hyperconvexity index of �. From the
fundamental work of Diederich and Fornaess [1977], we know that if� is a bounded pseudoconvex domain
with C2-boundary then there exists a continuous negative psh function ρ on� such that C−1δη≤−ρ≤Cδη

for some constants η,C > 0. The supremum η(�) of all η is called the Diederich–Fornaess index of �
(see, e.g., [Adachi and Brinkschulte 2015; Fu and Shaw 2016; Harrington 2008]). Clearly, α(�)≥ η(�).
Recently, Harrington [2008] showed that if� is a bounded pseudoconvex domain with Lipschitz boundary
then η(�) > 0.

On the other hand, there are plenty of domains with very irregular boundaries such that α(�)> 0, while
it is difficult to verify η(�) > 0. For instance, Koebe’s distortion theorem implies α(�)≥ 1

2 if �( C is a
simply connected domain [Carleson and Gamelin 1993, Chapter 1, Theorem 4.4]. Recently, Carleson
and Totik [2004] and Totik [2006] obtained various Wiener-type criteria for planar domains with positive
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hyperconvexity indices. In particular, if ∂� is uniformly perfect in the sense of Pommerenke [1979], then
α(�) > 0 [Carleson and Totik 2004, Theorem 1.7]. Moreover, for domains like �= C \ E , where E is
a compact set in R (e.g., Cantor-type sets), the connection between the metric properties of E and the
precise value of α(�) (especially the optimal case α(�)= 1

2 ) was studied in detail in [Carleson and Totik
2004; Totik 2006]. In the Appendix of this paper, we will provide more examples of higher-dimensional
domains with positive hyperconvexity indices. The Teichmüller space of a compact Riemann surface
with genus ≥ 2 which is boundedly embedded in C3g−3 probably has a positive hyperconvexity index.

For a domain �⊂ Cn , let % be the relative extremal function of a (fixed) closed ball B ⊂�; i.e.,

%(z) := %B(z) := sup{u(z) : u ∈ PSH−(�), u|B ≤−1},

where PSH−(�) denotes the set of negative psh functions on �. It is known that % is continuous on �
if � is a bounded hyperconvex domain [Błocki 2002, Proposition 3.1.3(vii)]. Furthermore, it is easy to
show that if α(�) > 0 then for every 0< α < α(�) there exists a constant C > 0 such that −% ≤ Cδα.

The goal of this paper is to present some off-diagonal estimates of the Bergman kernel on domains
with positive hyperconvexity indices, in terms of %. Usually, off-diagonal behavior of the Bergman kernel
is more sensitive to the geometry of a domain than on-diagonal behavior (compare to [Barrett 1992]).

Let K�(z, w) be the Bergman kernel of �. It is well-known that K�( · , w) ∈ L2(�) for all w ∈ �.
Thus, it is natural to ask the following:

Problem. For which � and p > 2 does one have K�( · , w) ∈ L p(�) for all w ∈�?

For the sake of convenience, we set

β(�)= sup{β ≥ 2 : K�( · , w) ∈ Lβ(�) for all w ∈�}.

We call it the integrability index of the Bergman kernel. From the well-known works of Kerzman, Catlin
and Bell, we know that β(�) =∞ if � is a bounded pseudoconvex domain of finite D’Angelo type.
On the other hand, it is not difficult to see from the work of Barrett [1992] that there exist unbounded
Diederich–Fornaess worm domains with β(�) arbitrarily close to 2 (see, e.g., [Krantz and Peloso 2008,
Lemma 7.5]). Thus, it is meaningful to show the following:

Theorem 1.1. If � ⊂ Cn is pseudoconvex, then β(�) ≥ 2+ 2α(�)/(2n− α(�)). Furthermore, if � is
a bounded domain with α(�) > 0, then for every 0 < α < α(�) and 2 ≤ p < 2+ 2α(�)/(2n− α(�)),
there exists a constant C > 0 such that∫

�

∣∣K�( · , w)/
√

K�(w)
∣∣p
≤ C |µ(w)|−(p−2)n/α, w ∈�, (1-1)

where K�(w)= K�(w,w) and µ := |%|(1+ |log|%||)−1.

The lower bound for β(�) can be improved substantially when n = 1:

Theorem 1.2. If � is a domain in C, then β(�)≥ 2+α(�)/(1−α(�)).

In particular, we obtain the known fact that if �( C is a simply connected domain then β(�)≥ 3. A
famous conjecture of Brennan [1978] suggests that the bound may be improved to β(�)≥ 4; an equivalent
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statement is that, if f :�→ D is a conformal mapping where D is the unit disc, then f ′ ∈ L p(�) for all
p < 4. There has been extensive research on this conjecture (see [Bertilsson 1998; Carleson and Jones
1992; Carleson and Makarov 1994; Pommerenke 1992], etc.).

Nevertheless, Theorem 1.2 is best understood in view of the following:

Proposition 1.3. Let E ⊂ C be a compact set satisfying Cap(E) > 0 and dimH (E) < 1, where Cap and
dimH denote the logarithmic capacity and the Hausdorff dimension, respectively. Set � := C \ E. Then
β(�)≤ 2+ dimH (E)/(1− dimH (E)).

Example. There exists a Cantor-type set E with dimH (E) = 0 and Cap(E) > 0 [Carleson 1967, §4,
Theorem 5]. Thus, β(C \ E)= 2 in view of Proposition 1.3.

Example. Andrievskii [2005] constructed a compact set E ⊂ R with dimH (E)= 1
2 and α(C \ E)= 1

2 . It
follows from Theorem 1.2 and Proposition 1.3 that β(C \ E)= 3.

Problem. Is there a bounded domain �⊂ C with β(�)= 2?

Theorems 1.1 and 1.2 shed some light on the study of the Bergman space

Ap(�)=

{
f ∈ O(�) :

∫
�

| f |p <∞
}

for domains with positive hyperconvexity indices. For instance, we can show that Ap(�)∩ A2(�) lies
dense in A2(�) for suitable p > 2 and the reproducing property of K�(z, w) holds in Ap(�) for suitable
p< 2 (see Section 4). A related problem is to study whether the Bergman projection can be extended to a
bounded projection L p(�)→ Ap(�) for all p in some nonempty open interval around 2. For flat Hartogs
triangles, a complete answer was recently given by Edholm and McNeal [2016]. For more information
on this matter, we refer the reader to the review article of Lanzani [2015] and the references therein.

Set
K�,p(z) := sup{| f (z)| : f ∈ Ap(�), ‖ f ‖L p(�) ≤ 1}.

Using f := (K�( · , z)/
√

K�(z))/‖K�( · , z)/
√

K�(z)‖L p(�) as a candidate, we conclude from estimate
(1-1):

Corollary 1.4. Let �⊂Cn be a bounded domain with α(�) > 0. For every p< 2+2α(�)/(2n−α(�)),

K�,p(z)≥ Cα,p
√

K�(z)|µ(z)|(p−2)n/(pα).

Remark. If � is a bounded pseudoconvex domain with C2-boundary, then K�(z)≥ Cδ(z)−2 in view of
the Ohsawa–Takegoshi extension theorem [1987]. On the other hand, Hopf’s lemma implies |%| ≥ Cδ.
Thus,

K�,p(z)≥ Cα,pδ(z)−(1−(p−2)n/(pα))
|log δ(z)|−(p−2)n/(pα)

as z→ ∂�. Notice also that (p− 2)n/(pα) < 1
2 if and only if p < 2+ 2α(�)/(2n−α(�)).

We would like to mention an interesting connection between the problem on page 1430 and the
regularity problem of biholomorphic maps. The starting point is the following:



1432 BO-YONG CHEN

Theorem 1.5 [Lempert 1986, Theorem 6.2]. Let �1 ⊂ Cn be a bounded domain with C2-boundary
such that its Bergman projection P�1 maps C∞0 (�1) into L p(�1) for some p > 2. Let �2 ⊂ Cn be a
bounded domain with real-analytic boundary. Then any biholomorphic map F :�1→�2 extends to a
Hölder-continuous map �1→�2.

Notice that if � is a domain with
∫
�
|K�( · , w)|

p locally uniformly bounded in w for some p ≥ 1,
then for any φ ∈ C∞0 (�),

|P�(φ)(z)|p ≤
∫
ζ∈suppφ

|K�(ζ, z)|p‖φ‖p
Lq (�), 1/p+ 1/q = 1,

so that ∫
z∈�
|P�(φ)(z)|p ≤ ‖φ‖

p
Lq (�)

∫
ζ∈suppφ

∫
z∈�
|K�(z, ζ )|p <∞, (1-2)

i.e., P� maps C∞0 (�) into L p(�). Thus, we have:

Corollary 1.6. Let�1⊂Cn be a bounded domain with C2-boundary such that the integral
∫
�
|K�( · , w)|

p

is locally uniformly bounded in w for some p > 2. Let �2 ⊂ Cn be a bounded domain with real-analytic
boundary. Then any biholomorphic map F :�1→�2 extends to a Hölder-continuous map �1→�2.

In particular, it follows from Corollary 1.6 and Theorem 1.1 that any biholomorphic map between a
bounded pseudoconvex domain with C2-boundary and a bounded domain with real-analytic boundary
extends to a Hölder-continuous map between their closures, which was first proved in [Diederich and
Fornaess 1979]. On the other hand, Barrett [1984] constructed a nonpseudoconvex bounded smooth
domain �⊂ C2 such that P� fails to map C∞0 (�) into L p(�) for any p > 2 so that

∫
�
|K�( · , w)|

p can
not be locally uniformly bounded in w. However, it is still expected that if � is a bounded domain with
real-analytic boundary then there exists p> 2 such that

∫
�
|K�( · , w)|

p is locally uniformly bounded in w.
With the help of an elegant technique due to Błocki [2005] (see also [Herbort 2000] for prior related

techniques) on estimating the pluricomplex Green function, we may prove the following:

Theorem 1.7. Let � ⊂ Cn be a bounded domain with α(�) > 0. For every 0 < r < 1, there exists a
constant C > 0 such that

B�(z, w) :=
|K�(z, w)|2

K�(z)K�(w)
≤ C

(
min

{
ν(z)
µ(w)

,
ν(w)

µ(z)

})r

, z, w ∈�, (1-3)

where µ := |%|/(1+ |log|%||) and ν := |%|(1+ |log|%||)n .

We call B�(z, w) the normalized Bergman kernel of �. There is a long list of papers about pointwise
estimates of the weighted normalized Bergman kernel B�,ϕ(z, w) := |K�,ϕ(z, w)|2/(K�,ϕ(z)K�,ϕ(w))

when � is Cn or a compact algebraic manifold, after a seminal paper of Christ [1991] (see [Delin 1998;
Lindholm 2001; Ma and Marinescu 2007; Christ 2013; Zelditch 2016], etc.). Quantitative measurements
of positivity of i∂∂ϕ play a crucial role in these works.

The basic difference between B�(z, w) and B�,ϕ(z, w) is that the former is always a biholomorphic
invariant. Skwarczyński [1980] showed that

dS(z, w) :=
(
1−

√
B�(z, w)

)1/2
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gives an invariant distance on a bounded domain �. The relationship between dS and the Bergman
distance dB is

dB(z, w)≥
√

2dS(z, w) (1-4)

(see, e.g., [Jarnicki and Pflug 1993, Corollary 6.4.7]). By Theorem 1.7 and (1-4), we may prove the
following:

Corollary 1.8. If � is a bounded domain with α(�) > 0, then for fixed z0 ∈ �, there exists a constant
C > 0 such that

dB(z0, z)≥ C
|log δ(z)|

log|log δ(z)|
, (1-5)

provided z sufficiently close to ∂�.

Błocki [2005] first proved (1-5) for any bounded domain which admits a continuous negative psh
function ρ with C1δ

α
≤−ρ ≤ C2δ

α for some constants C1,C2, α > 0 (e.g., � is a pseudoconvex domain
with Lipschitz boundary [Harrington 2008]). Diederich and Ohsawa [1995] proved earlier that the weaker
inequality

dB(z0, z)≥ C log|log δ(z)|

holds for more general bounded domains admitting a continuous negative psh function ρ with C1δ
1/α
≤

−ρ ≤ C2δ
α for some constants C1,C2, α > 0.

In order to study isometric embedding of Kähler manifolds, Calabi [1953] introduced the notion
“diastasis”. Marcel Berger [1996] wrote, “It seems to me that the notion of diastasis should make a
comeback [. . .]. For example, it would be interesting to compare the diastasis with the various types of
Kobayashi metrics (when they exist).”

Notice that the diastasis DB(z, w) with respect to the Bergman metric is − log B�(z, w).

Corollary 1.9. If � is a bounded domain with α(�) > 0, then for fixed z0 ∈ �, there exists a constant
C > 0 such that

DB(z0, z)≥ CdK (z0, z), (1-6)

where dK denotes the Kobayashi distance.

Problem. Does one have dB(z0, z)≥ CdK (z0, z) for bounded domains with α(�) > 0?

A domain �⊂Cn is called weighted circular if there exists an n-tuple (a1, . . . , an) of positive numbers
such that z ∈� implies (eia1θ z1, . . . , eianθ zn) ∈� for any θ ∈ R. As a final consequence of Theorem 1.7,
we obtain:

Corollary 1.10. Let �1 ⊂Cn be a bounded domain with α(�1) > 0. Let �2 ⊂Cn be a bounded weighted
circular domain which contains the origin. Let 0< α < α(�1) be given. Then for any biholomorphic map
F :�1→�2, there is a constant C > 0 such that

δ2(F(z))≤ Cδ1(z)α/(2n), z ∈�1. (1-7)

Here δ1 and δ2 denote the boundary distances of �1 and �2, respectively.
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Remark. Inequalities like (1-7) are crucial in the study of the regularity problem of biholomorphic maps
(see, e.g., [Diederich and Fornaess 1979; Lempert 1986]).

2. L2 boundary decay estimates of the Bergman kernel

Proposition 2.1. Let � ⊂ Cn be a pseudoconvex domain. Let ρ be a negative continuous psh function
on �. Set

�t = {z ∈� : −ρ(z) > t}, t > 0.

Let a > 0 be given. For every 0< r < 1, there exist constants εr ,Cr > 0 such that∫
−ρ≤ε

|K�( · , w)|
2
≤ Cr K�a (w)(ε/a)

r (2-1)

for all w ∈�a and ε ≤ εr a.

The proof of the proposition is essentially the same as for Proposition 6.1 in [Chen 2016]. For the sake
of completeness, we include a proof here. The key ingredient is the following weighted estimate of the
L2-minimal solution of the ∂-equation due to Berndtsson.

Theorem 2.2 [Chen 2016, Corollary 2.3]. Let � be a bounded pseudoconvex domain in Cn and ϕ ∈
PSH(�). Let ψ be a continuous psh function on � which satisfies ri∂∂ψ ≥ i∂ψ ∧ ∂ψ as currents
for some 0 < r < 1. Suppose v is a ∂-closed (0, 1)-form on � such that

∫
�
|v|2e−ϕ < ∞. Then the

L2(�, ϕ)-minimal solution of ∂u = v satisfies∫
�

|u|2e−ψ−ϕ ≤
1

1− r

∫
�

|v|2i∂∂ψe−ψ−ϕ. (2-2)

Here |v|2
i∂∂ψ

should be understood as the infimum of nonnegative locally bounded functions H satisfying
iv∧ v ≤ Hi∂∂ψ as currents.

Proof of Proposition 2.1. Assume first that � is bounded. Let κ : R→ [0, 1] be a smooth cut-off function
such that κ|(−∞,1] = 1, κ|[3/2,∞) = 0 and |κ ′| ≤ 2. We then have∫

−ρ≤ε

|K�( · , w)|
2
≤

∫
�

κ(−ρ/ε)|K�( · , w)|
2.

By the well-known property of the Bergman projection, we obtain∫
�

κ(−ρ/ε)K�( · , w) · K�( · , ζ )= κ(−ρ(ζ )/ε)K�(ζ, w)− u(ζ ), ζ ∈�,

where u is the L2(�)-minimal solution of the equation

∂u = ∂(κ(−ρ/ε)K�( · , w))=: v.

Since κ(−ρ(w)/ε)= 0 provided 3
2ε ≤ a (i.e., ε ≤ 2a/3),∫

−ρ≤ε

|K�( · , w)|
2
≤−u(w). (2-3)
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Set
ψ =−r log(−ρ), 0< r < 1.

Clearly, ψ is psh and satisfies ri∂∂ψ ≥ i∂ψ ∧ ∂ψ so that

iv∧ v ≤ C0r−1
|κ ′(−ρ/ε)|2|K�( · , w)|

2i∂∂ψ

for some numerical constant C0 > 0. Thus, by Theorem 2.2,∫
�

|u|2e−ψ ≤ Cr

∫
ε≤−ρ≤(3/2)ε

|K�( · , w)|
2e−ψ

≤ Crε
r
∫
−ρ≤(3/2)ε

|K�( · , w)|
2.

Since e−ψ ≥ ar on �a and u is holomorphic there, it follows that

|u(w)|2 ≤ K�a (w)

∫
�a

|u|2

≤ K�a (w)a
−r
∫
�

|u|2e−ψ

≤ Cr K�a (w)(ε/a)
r
∫
−ρ≤(3/2)ε

|K�( · , w)|
2.

Thus, by (2-3), ∫
−ρ≤ε

|K�( · , w)|
2
≤ Cr K�a (w)

1/2(ε/a)r/2
(∫
−ρ≤(3/2)ε

|K�( · , w)|
2
)1/2

.

Notice that ∫
−ρ≤(3/2)ε

|K�( · , w)|
2
≤

∫
�

|K�( · , w)|
2
= K�(w)≤ K�a (w)

provided 3
2ε ≤ a. Thus, ∫

−ρ≤ε

|K�( · , w)|
2
≤ Cr K�a (w)(ε/a)

r/2.

Replacing ε by 3
2ε in the argument above, we obtain∫

−ρ≤(3/2)ε
|K�( · , w)|

2
≤ Cr K�a (w)(3/2)

r/2(ε/a)r/2

provided (3
2)

2ε ≤ a. Thus, we may improve the upper bound by∫
−ρ≤ε

|K�( · , w)|
2
≤ Cr K�a (w)(ε/a)

r/2+r/4.

By induction, we conclude that, for every k ∈ Z+,∫
−ρ≤ε

|K�( · , w)|
2
≤ Cr,k K�a (w)(ε/a)

r/2+r/4+···+r/2k
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provided (3
2)

kε ≤ a. Since r/2+ r/4+· · ·+ r/2k
→ 1 as k→∞ and r→ 1, we get the desired estimate

under the assumption that � is bounded.
In general, � may be exhausted by an increasing sequence {� j } of bounded pseudoconvex domains.

From the argument above, we know that∫
� j∩{−ρ≤ε}

|K� j ( · , w)|
2
≤ Cr K� j∩�a (w)(ε/a)

r

holds for all j � 1. Since � j ↑�, it is well-known that K� j ( · , w)→ K�( · , w) locally uniformly in �
and K� j∩�a (w)→ K�a (w). It follows from Fatou’s lemma that∫

−ρ≤ε

|K�( · , w)|
2
= lim inf

j→∞

∫
� j∩{−ρ≤ε}

|K� j ( · , w)|
2

≤ Cr K�a (w)(ε/a)
r . �

Remark. One of the referees kindly suggested an alternative proof as follows. Berndtsson and Charpentier
[2000] showed that, if

∫
�
| f |2|ρ|−r <∞ for some 0< r < 1, then∫

�

|P�( f )|2|ρ|−r
≤ Cr

∫
�

| f |2|ρ|−r <∞

where P�( f )(z) :=
∫
�

K�(z, · ) f ( · ) is the Bergman projection. If one applies f = χ�a K�a ( · , w) where
χ�a denotes the characteristic function on �a , then K�(z, w)= P�( f )(z) and∫

�

|K�( · , w)|
2
|ρ|−r

≤ Cr

∫
�a

|K�a ( · , w)|
2
|ρ|−r ,

from which the estimate (2-1) immediately follows.

Let % be the relative extremal function of a (fixed) closed ball B ⊂�. We have:

Proposition 2.3. Let � ⊂ Cn be a bounded domain with α(�) > 0. For every 0 < r < 1, there exist
constants εr ,Cr > 0 such that∫

−%≤ε

|K�( · , w)|
2/K�(w)≤ Cr (ε/µ(w))

r (2-4)

for all ε ≤ εrµ(w), where µ= |%|(1+ |log|%||)−1.

In order to prove this proposition, we need an elementary estimate of the pluricomplex Green function.
Recall that the pluricomplex Green function g�(z, w) of a domain �⊂ Cn is defined as

g�(z, w)= sup{u(z) : u ∈ PSH−(�), u(z)≤ log|z−w| + O(1) near w}.

We first show the following quasi-Hölder-continuity of %.

Lemma 2.4. Let �⊂ Cn be a bounded domain with α(�) > 0. For every r > 1 and 0< α < α(�), there
exists a constant C > 0 such that

%(z2)≥ r%(z1)−C |z1− z2|
α, z1, z2 ∈�. (2-5)
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Proof. Choose ρ ∈ C(�)∩PSH−(�) with −ρ ≤ Cαδα. Clearly

%(z)≥
ρ(z)

infB |ρ|
≥ −Cαδα.

To get (2-5), we employ a well-known technique of Walsh [1968] as follows. Set ε := |z1 − z2|,
�′ :=�− (z1− z2) and

u(z)=
{

%(z) if z ∈� \�′,
max{%(z), r%(z+ z1− z2)−Cεα} if z ∈�∩�′.

We claim that u ∈ PSH−(�) provided C � 1. Indeed, if z ∈�∩ ∂�′, then δ(z)≤ ε so that

%(z)≥−Cαδ(z)α ≥−Cαεα ≥ r%(z+ z1− z2)−Cαεα.

Moreover, if ε ≤ εr � 1, then %(z + z1 − z2) ≤ −1/r for z ∈ B since % is continuous on �. Thus,
u|B ≤−1. Since z2 = z1− (z1− z2) ∈�∩�

′, it follows that

%(z2)≥ u(z2)≥ r%(z1)−Cαεα.

If ε = |z1− z2|> εr , then (2-5) trivially holds. �

Remark. It is not known whether % is Hölder-continuous on �. The answer is positive if n= 1 [Carleson
and Gamelin 1993, p. 138].

Proposition 2.5. Let�⊂Cn be a bounded domain with α(�)>0. There exists a constant C�1 such that

{g�( · , w) <−1} ⊂ {% <−C−1µ(w)}, w ∈�. (2-6)

Proof. Fix 0< α < α(�). We have −% ≤ Cαδα for some constant Cα > 0. Clearly, it suffices to consider
the case when |%(w)| ≤ 1

2 . Applying Lemma 2.4 with r = 3
2 , we see that if %(z)= %(w)/2 then

C1|z−w|α ≥ 3
2%(z)− %(w)=−

1
4%(w)

so that

log
|z−w|

R
≥

1
α

log|%(w)|/(4C1)− log R ≥ C2 log|%(w)|

for some constant C2� 1. It follows that

ψ(z) :=
{

log|z−w|/R if %(z)≤ %(w)/2,
max{log|z−w|/R, 2C2(%(w)

−1 log|%(w)|)%(z)} otherwise

is a well-defined negative psh function on � with a logarithmic pole at w, and if %(z)≥ %(w)/2, then

g�(z, w)≥ ψ(z)≥ 2C2(%(w)
−1 log|%(w)|)%(z). (2-7)

Thus,
{g�( · , w) <−1} ∩ {% ≥ %(w)/2} ⊂ {% <−C−1µ(w)}

provided C � 1. Since {% < %(w)/2} ⊂ {% <−C−1µ(w)} if C � 1, we conclude the proof. �
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Proof of Proposition 2.3. Set Aw := {g�( · , w) <−1}. It is known from [Herbort 1999] or [Chen 1999]
that

K Aw(w)≤ Cn K�(w). (2-8)

By Proposition 2.5,
Aw ⊂�a(w) := {% <−a(w)} (2-9)

where a(w) := C−1µ(w) with C � 1. If we choose ρ = % in Proposition 2.1, it follows that, for every
ε ≤ εr a(w), ∫

−%≤ε

|K�( · , w)|
2
≤ Cr K�a(w)(w)(ε/a(w))

r

≤ Cn,r K�(w)(ε/a(w))r (2-10)

in view of (2-8) and (2-9). �

3. L p-integrability of the Bergman kernel

Proof of Theorem 1.1. Without loss of generality, we may assume α(�) > 0. For every 0< α < α(�),
we may choose ρ ∈ PSH−(�) such that

−ρ ≤ Cαδα

for some constant Cα > 0. Let S be a compact set in �, and let w ∈ S. By virtue of Proposition 2.1, we
conclude that, for every 0< r < 1, ∫

−ρ≤ε

|K�( · , w)|
2
≤ Cεr

where C = C(n, r, α, S) > 0. Since {δ ≤ ε} ⊂ {−ρ ≤ Cαεα}, it follows that∫
δ≤ε

|K�( · , w)|
2
≤ Cεrα.

Since |δ(ζ )− δ(z)| ≤ |ζ−z|, we have B(z, δ(z))⊂ {δ ≤ 2δ(z)}. By the mean value inequality, we get

|K�(z, w)|2 ≤ Cnδ(z)−2n
∫
δ≤2δ(z)

|K�( · , w)|
2
≤ Cδ(z)rα−2n. (3-1)

Thus, for every τ > 0,∫
�

|K�( · , w)|
2+τ
=

∫
δ>1/2
|K�( · , w)|

2+τ
+

∞∑
k=1

∫
2−k−1<δ≤2−k

|K�( · , w)|
2+τ

≤ C2nτ
∫
�

|K�( · , w)|
2
+C

∞∑
k=1

2(k+1)τ (n−rα/2)
∫
δ≤2−k
|K�( · , w)|

2

≤ C +C2τ(n−rα/2)
∞∑

k=1

2−k(rα+τ(rα/2−n))

<∞
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provided τ < 2rα/(2n − rα). Since r and α can be arbitrarily close to 1 and α(�), respectively, we
conclude the proof of the first statement.

Since {δ ≤ ε} ⊂ {−% ≤ Cαεα}, it follows from Proposition 2.3 that∫
δ≤ε

|K�( · , w)|
2/K�(w)≤ Cα,r (εα/µ(w))r (3-2)

provided εα/µ(w)≤ εr � 1. For every z ∈�,

|K�(z, w)|2/K�(w)≤ K�(z)≤ Cnδ(z)−2n, (3-3)

and if (2δ(z))α ≤ εrµ(w),

|K�(z, w)|2 ≤ Cnδ(z)−2n
∫
δ≤2δ(z)

|K�( · , w)|
2

≤ Cα,r K�(w)µ(w)
−rδ(z)αr−2n. (3-4)

For every τ < 2rα/(2n− rα), we conclude from (3-3) that∫
2δ≥(εrµ(w))1/α

|K�( · , w)|
2+τ
≤ Cn K�(w)

τ/2
∫

2δ≥(εrµ(w))1/α
|K�( · , w)|

2δ−nτ

≤ Cα,r
K�(w)

τ/2

µ(w)nτ/α

∫
�

|K�( · , w)|
2

≤ Cα,r
K�(w)

1+τ/2

µ(w)nτ/α
. (3-5)

Now choose kw ∈ Z+ such that (εrµ(w))
1/α
∈ (2−kw−1, 2−kw ] (it suffices to consider the case when µ(w)

is sufficiently small). We then have∫
2δ<(εrµ(w))1/α

|K�( · , w)|
2+τ
≤

∞∑
k=kw

∫
2−k−1<δ≤2−k

|K�( · , w)|
2+τ

≤ Cα,r,τ
K�(w)

τ/2

µ(w)τr/2

∞∑
k=kw

2kτ(n−rα/2)
∫
δ≤2−k
|K�( · , w)|

2 (by (3-4))

≤ Cα,r,τ
K�(w)

1+τ/2

µ(w)r(1+τ/2)

∞∑
k=kw

2−k(rα+τ(rα/2−n)) (by (3-2))

≤ Cα,r,τ
K�(w)

1+τ/2

µ(w)r(1+τ/2)
µ(w)(rα+τ(rα/2−n))/α

≤ Cα,r,τ
K�(w)

1+τ/2

µ(w)τn/α .

(3-6)
By (3-5) and (3-6), (1-1) immediately follows. �

Proof of Theorem 1.2. It suffices to use the following lemma instead of (3-1) in the proof of the first
statement in Theorem 1.1. �
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Lemma 3.1. Let � be a domain in C. For every compact set S ⊂� and α < α(�), there exists a constant
C > 0 such that

|K�(z, w)| ≤ Cδ(z)α−1, z ∈�, w ∈ S.

Proof. Let g�(z, w) be the (negative) Green function on �. Let 1(c, r) be the disc with center c and
radius r . Fix w ∈ S and z ∈� for a moment. Clearly, it suffices to consider the case when δ(z)≤ δ(w)/4.
Since g�(ξ, ζ ) is harmonic in ξ ∈ 1(z, δ(z)) and ζ ∈ 1(w, δ(w)/2), respectively, we conclude from
Poisson’s formula that

g�(ξ, ζ )=
1

4π2

∫ 2π

0

∫ 2π

0
g�(z+ 1

2δ(z)e
iθ , w+ 1

2δ(w)e
iϑ)

×

1
4δ(z)

2
− |ξ−z|2∣∣1

2δ(z)e
iθ − (ξ−z)

∣∣2
1
4δ(w)

2
− |ζ−w|2∣∣1

2δ(w)e
iϑ − (ζ−w)

∣∣2 dθ dϑ

where ξ ∈1(z, δ(z)/4) and ζ ∈1(w, δ(w)/4). By the extremal property of g�, it is easy to verify that
−g� ≤ Cδ(z)α on ∂1(z, δ(z)/2)× ∂1(w, δ(w)/2). Thus,∣∣∣∣∂2g�(ξ, ζ )

∂ξ ∂ζ

∣∣∣∣≤ Cδ(z)α−1.

Using the formula K�(ξ, ζ )=
2
π

∂2g�(ξ, ζ )
∂ξ ∂ζ

from [Schiffer 1946], the assertion immediately follows. �

In order to prove Proposition 1.3, we need the following:

Theorem 3.2 [Carleson 1967, §6, Theorem 1]. Let �= C \ E where E ⊂ C is a compact set. Then

(1) A2(�) 6= {0} if and only if Cap(E) > 0, and

(2) Ap(�)={0} if32−q(E)<∞, 2< p<∞ and 1/p+1/q=1. Here3s(E) denotes the s-dimensional
Hausdorff measure of E.

Remark. Let �⊂C be a domain and E a closed polar set in �. It is well-known that E is removable for
negative harmonic functions so that g�\E(z, w)=g�(z, w) for z,w∈�\E . Thus, K�\E(z, w)=K�(z, w)
in view of Schiffer’s formula. By the reproducing property of the Bergman kernel, we immediately get
the known fact that A2(� \ E)= A2(�).

Proof of Proposition 1.3. Suppose on the contrary β(�) > 2+ dimH (E)/(1− dimH (E)). Fix

β(�) > p > 2+
dimH (E)

1− dimH (E)
,

and let q be the conjugate exponent of p, i.e., 1/p+1/q= 1. We then have K�( · , w)∈ Ap(�) for fixedw.
Since

dimH (E)= sup{s :3s(E)=∞}

and 2− q > dimH (E), it follows that 32−q(E) <∞ so that K�( · , w)= 0 in view of Theorem 3.2(2).
On the other hand, Cap(E) > 0, so K�( · , w) 6= 0 in view of Theorem 3.2(1), which is absurd. �
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Theorem 1.2 implies β(�)→∞ as α(�)→ 1 for planar domains (notice that α(�)= 1 when �⊂ C

is convex or ∂� is C1). It is also known that β(�)=∞ if � is a bounded smooth convex domain in Cn

[Boas and Straube 1991]. Thus, it is reasonable to make the following:

Conjecture 3.3. If �⊂ Cn is convex, then β(�)=∞.

4. Applications of L p-integrability of the Bergman kernel

We first study density of Ap(�)∩ A2(�) in A2(�).

Proposition 4.1. Let � be a pseudoconvex domain in Cn . For every 1 ≤ p < 2+ 2α(�)/(2n− α(�)),
Ap(�)∩ A2(�) lies dense in A2(�).

Proof. Choose a sequence of functions χ j ∈ C∞0 (�) such that 0 ≤ χ j ≤ 1 and the sequence of sets
{χ j = 1} exhausts �. Given f ∈ A2(�), we set f j = P�(χ j f ). Clearly, f j ∈ Ap(�)∩ A2(�) in view of
Theorem 1.1 and (1-2). Moreover,

‖ f j − f ‖L2(�) = ‖P�((χ j − 1) f )‖L2(�) ≤ ‖(χ j − 1) f ‖L2(�)→ 0. �

Similarly, we may prove the following:

Proposition 4.2. Let � be a domain in C. For every 1≤ p < 2+α(�)/(1−α(�)), Ap(�)∩ A2(�) lies
dense in A2(�).

Next we study the reproducing property of the Bergman kernel in Ap(�).

Proposition 4.3. Let � be a bounded domain in C with α(�) > 0. If p > 2−α(�), then f = P�( f ) for
all f ∈ Ap(�).

Proof. Suppose f ∈ Ap(�) with p > 2− α(�). Let q be the conjugate exponent of p. Since q <
2+ α(�)/(1− α(�)), the integral

∫
�

f ( · )K�(z, · ) is well-defined in view of Theorem 1.2. Clearly,
it suffices to consider the case p < 2. By Theorem 1 of [Hedberg 1972], we may find a sequence
f j ∈ O(�)⊂ A2(�)⊂ Ap(�) such that ‖ f j − f ‖L p(�)→ 0. It follows that, for every z ∈�,

f (z)= lim
j→∞

f j (z)= lim
j→∞

∫
�

f j ( · )K�(z, · )=
∫
�

f ( · )K�(z, · )

since K�(z, · ) ∈ Lq(�). �

For a bounded domain �⊂ Cn , the Berezin transform T� of � is defined as

T�( f )(z)=
∫
�

f ( · )
|K�( · , z)|2

K�(z)
, z ∈�, f ∈ L∞(�).

Clearly, one has f = T�( f ) for all f ∈ A∞(�).

Corollary 4.4. Let � be a bounded domain in C with α(�) > 0. If p > 2/α(�)− 1, then f = T�( f ) for
all f ∈ Ap(�).
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Proof. Set p′ = 2p/(p+ 1). It follows from Hölder’s inequality that∫
�

| f K�( · , z)|p
′

≤

(∫
�

| f |p
′/(2−p′)

)2−p′(∫
�

|K�( · , z)|p
′/(p′−1)

)p′−1

=

(∫
�

| f |p
)2−p′(∫

�

|K�( · , z)|p
′/(p′−1)

)p′−1

<∞

since p′ > 2−α(�) and p′/(p′− 1) < 2+α(�)/(1−α(�)). Thus, h := f K�( · , z)/K�(z) ∈ Ap′(�)

for fixed z ∈� so that

f (z)= h(z)=
∫
�

h( · )K�(z, · )=
∫
�

f ( · )
|K�( · , z)|2

K�(z)
. �

For higher-dimensional cases, we can only prove the following:

Proposition 4.5. Let � be a bounded pseudoconvex domain in Cn . Suppose there exists a negative psh
exhaustion function ρ on � such that, for suitable constants C, α > 0,

|ρ(z)− ρ(w)| ≤ C |z−w|α, z, w ∈�.

For every p > 4n/(2n+α), one has f = P�( f ) for all f ∈ Ap(�).

Proof. Set �t = {−ρ > t}, t ≥ 0, and ρt := ρ + t . For every z ∈ �t , we choose z∗ ∈ ∂�t such that
|z− z∗| = δt(z) := d(z, ∂�t). We then have

|ρt(z)| = |ρt(z)− ρt(z∗)| ≤ C |z− z∗|α = Cδt(z)α

where C is a constant independent of t . By a similar argument as the proof of Theorem 1.1, we may show
that, for fixed w ∈�, ∫

�t

|K�t ( · , w)|
q
≤ C = C(q, w) <∞

holds uniformly in t � 1 for every q < 2+ 2α/(2n−α). Let 2> p > 4n/(2n+α) and f ∈ Ap(�). Fix
z ∈� for a moment. For every t � 1, we have z ∈�t and

f (z)=
∫
�t

f ( · )K�t (z, · ). (4-1)

Notice that∣∣∣∣∫
�

f ( · )K�(z, · )−
∫
�t

f ( · )K�t (z, · )
∣∣∣∣

≤

∫
�t

| f ||K�(z, · )− K�t (z, · )| +
∫
�\�t

| f ||K�(z, · )|

≤ ‖ f ‖L p(�)‖K�(z, · )− K�t (z, · )‖Lq (�t )+‖ f ‖L p(�\�t )‖K�(z, · )‖Lq (�) (4-2)
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where 1/p+1/q = 1 (which implies q < 2+2α/(2n−α)). Take 0< γ � 1 so that (q−γ )/(1−γ /2) <
2+ 2α/(2n−α). We then have∫
�t

|K�(z, · )− K�t (z, · )|
q

=

∫
�t

|K�(z, · )− K�t (z, · )|
γ
|K�(z, · )− K�t (z, · )|

q−γ

≤

(∫
�t

|K�(z, · )− K�t (z, · )|
2
)γ /2(∫

�t

|K�(z, · )− K�t (z, · )|
(q−γ )/(1−γ /2)

)1−γ /2

in view of Hölder’s inequality. Since∫
�t

|K�(z, · )− K�t (z, · )|
2
=

∫
�t

|K�(z, · )|2+
∫
�t

|K�t (z, · )|
2
− 2 Re

∫
�t

K�(z, · )K�t ( · , z)

≤ K�t (z)− K�(z)

→ 0 (t→ 0)
and∫
�t

|K�(z, · )− K�t (z, · )|
(q−γ )/(1−γ /2)

≤ 2(q−γ )/(1−γ /2)
(∫

�

|K�(z, · )|(q−γ )/(1−γ /2)+
∫
�t

|K�t (z, · )|
(q−γ )/(1−γ /2)

)
≤ C,

it follows from (4-1) and (4-2) that f = P�( f ). �

Similarly, we have:

Corollary 4.6. If p > 2n/α, then f = T�( f ) for all f ∈ Ap(�).

5. Estimate of the pluricomplex Green function

The goal of this section is to show the following:

Proposition 5.1. Let�⊂Cn be a bounded domain with α(�)>0. There exists a constant C�1 such that

{g�( · , w) <−1} ⊂ {% >−Cν(w)}, w ∈�, (5-1)

where ν = |%|(1+ |log|%||)n .

We will follow the argument of Błocki [2005] with necessary modifications. The key observation is
the following:

Lemma 5.2 [Błocki 2005]. Let � ⊂ Cn be a bounded hyperconvex domain. Suppose ζ and w are two
points in � such that the closed balls B(ζ, ε), B(w, ε) ⊂ Cn and B(ζ, ε) ∩ B(w, ε) = ∅. Then there
exists ζ̃ ∈ B(ζ, ε) such that

|g�(ζ̃ , w)|n ≤ n! (log R/ε)n−1
|g�(w, ζ )| (5-2)

where R := diam(�).
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For the sake of completeness, we include a proof here, which relies heavily on the following fundamental
results.

Theorem 5.3 [Demailly 1987]. Let � be a bounded hyperconvex domain in Cn .

(1) For every w ∈�, one has (ddcg�( · , w))n = (2π)nδw, where δw denotes the Dirac measure at w.

(2) For every ζ ∈� and η > 0, one has
∫
�
(ddc max{g�( · , ζ ),−η})n = (2π)n .

Theorem 5.4 ([Błocki 1993]; see also [Błocki 2002]). Let � be a bounded domain in Cn . Assume that
u, v ∈ PSH− ∩ L∞(�) are nonpositive psh functions such that u = 0 on ∂�. Then∫

�

|u|n(ddcv)n ≤ n! ‖v‖n−1
∞

∫
�

|v|(ddcu)n. (5-3)

Proof of Lemma 5.2. Let η = log R/ε. Since g�(z, ζ )≥ log|z− ζ |/R, it follows that

{g�( · , ζ )=−η} ⊂ B(ζ, ε).

First applying Theorem 5.4 with u = max{g�( · , w),−t} and v = max{g�( · , ζ ),−η} and then letting
t→+∞, we obtain∫

�

|g�( · , w)|n(ddc max{g�( · , ζ ),−η})n ≤ n! (2π)nηn−1
|g�(w, ζ )|

in view of Theorem 5.3(1). Since B(ζ, ε)∩B(w, ε)=∅, it follows that g�( · , w) is continuous on B(ζ, ε)
so that there exists ζ̃ ∈ B(ζ, ε) such that

|g�(ζ̃ , w)| = min
B(ζ,ε)
|g�( · , w)|.

Since the measure (ddc max{g�( · , ζ ),−η})n is supported on {g�( · , ζ ) = −η} with total mass (2π)n ,
we immediately get (5-2). �

Proof of Proposition 5.1. Clearly, it suffices to consider the case when w is sufficiently close to ∂�.
Fix ζ ∈ � with %(ζ ) ≤ 2%(w) for a moment. Set ε := |%(w)|2/α. Since ε ≤ C2/α

α δ(w)2, we see that
B(w, ε)⊂� provided δ(w)≤ εα � 1. For every z ∈� with δ(z)≤ ε, we have

|%(z)| ≤ Cαδ(z)α ≤ Cαεα = Cα|%(w)|2 (≤ |%(w)|/2) (5-4)

provided δ(w)≤ εα � 1. It follows from (2-7) and (5-4) that for every τ > 0 there exists ετ � εα such
that

sup
δ≤ε

|g�( · , w)| ≤ τ (5-5)

provided δ(w)≤ ετ . Since

Cαδ(ζ )α ≥−%(ζ )≥−2%(w)= 2εα/2

and Lemma 2.4 yields

C1|ζ−w|
α
≥

3
2%(w)− %(ζ )≥−

1
2%(w)=

1
2ε
α/2,
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it follows that if δ(w)≤ ετ � 1 then B(ζ, ε)⊂� and

B(ζ, ε)∩ B(w, ε)=∅. (5-6)

By Lemma 5.2, there exists ζ̃ ∈ B(ζ, ε) such that (5-2) holds.
Now set

9(z) := sup{u(z) : u ∈ PSH−(�), u|B(w,ε) ≤−1}.

We claim that

g�(z, w)≥ log R/ε9(z), z ∈� \ B(w, ε), g�(z, w)≤ log δ(w)/ε9(z), z ∈�. (5-7)

To see this, first notice that

log
|z−w|

R
≤ g�(z, w)≤ log

|z−w|
δ(w)

, z ∈�. (5-8)

Since

u(z)=
{

log|z−w|/R if z ∈ B(w, ε),
max{log|z−w|/R, log R/ε9(z)} if z ∈� \ B(w, ε)

is a negative psh function on � with a logarithmic pole at w, it follows that

g�(z, w)≥ log R/ε9(z), z ∈� \ B(w, ε).

Since (5-8) implies g�( · , w)|B(w,ε) ≤ log ε/δ(w), we have

9(z)≥
g�(z, w)

log δ(w)/ε
, z ∈�.

By (5-5) and (5-7), we obtain

sup
δ≤ε

|9| ≤
τ

log δ(w)/ε
. (5-9)

Set �̃=�− (ζ̃ − ζ ) and

v(z)=
{

9(z) if z ∈� \ �̃,
max{9(z),9(z+ ζ̃ − ζ )− τ/(log δ(w)/ε)} if z ∈�∩ �̃.

Since �∩ ∂�̃⊂ {δ ≤ ε}, it follows from (5-9) that v ∈ PSH−(�). Since

9(z)≤
log|z−w|/δ(w)

log R/ε
, z ∈� \ B(w, ε),

in view of (5-8) and (5-7), and z+ ζ̃ −ζ ∈ B(w, 2ε) if z ∈ B(w, ε), it follows from the maximal principle
that

v|B(w,ε) ≤−
log δ(w)/(2ε)

log R/ε
.

Thus,

9(ζ̃ )−
τ

log δ(w)/ε
≤ v(ζ )≤

log δ(w)/(2ε)
log R/ε

9(ζ ).
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Combining with (5-6) and (5-7), we obtain

g�(ζ, w)≥
(log R/ε)2

log δ(w)/ε · log δ(w)/(2ε)
(g�(ζ̃ , w)− τ)≥ C3(g�(ζ̃ , w)− τ)

since δ(w)≥ |%(w)/Cα|1/α =
√
ε/C1/α

α . If we choose τ = 1/(2C3), then

g�(ζ, w)≥−C3(n!)1/n(log R/ε)1−1/n
|g�(w, ζ )|1/n

−
1
2 (by (5-2))

≥−C4|log|%(w)||1−1/n |%(w) log|%(ζ )||1/n

|%(ζ )|1/n −
1
2 (by (2-7))

≥−C5
|%(w)|1/n

|log|%(w)||
|%(ζ )|1/n −

1
2

since %(ζ )≤ 2%(w). Thus,

{g�( · , w) <−1} ∩ {% ≤ 2%(w)} ⊂ {% >−Cν(w)}

provided C � 1. Since {% > 2%(w)} ⊂ {% >−Cν(w)} if C � 1, we conclude the proof. �

6. Pointwise estimate of the normalized Bergman kernel and applications

Proof of Theorem 1.7. By Proposition 2.3, we know that for every 0 < r < 1 there exist constants
εr ,Cr > 0 such that ∫

−%≤ε

|K�( · , w)|
2/K�(w)≤ Cr (ε/µ(w))

r

for all ε ≤ εrµ(w). Fix z ∈ � with b(z) := Cν(z) ≤ εrµ(w) for a moment, where C is the constant in
(5-1). Let χ : R→ [0, 1] be a smooth function satisfying χ |(0,∞) = 0 and χ |(−∞,− log 2) = 1. We proceed
with the proof in a similar way as [Chen 1999]. Notice that g�( · , z) is a continuous negative psh function
on � \ {z} which satisfies

−i∂∂ log(−g�( · , z))≥ i∂ log(−g�( · , z))∧ ∂ log(−g�( · , z))

as currents. By virtue of the Donnelly–Fefferman estimate [1983] (see also [Berndtsson and Charpentier
2000]), there exists a solution of the equation

∂u = K�( · , w)∂χ(− log(−g�( · , z)))

such that∫
�

|u|2e−2ng�( · ,z) ≤ C0

∫
�

|K�( · , w)|
2
|∂χ(− log(−g�( · , z)))|2

−i∂∂ log(−g�( · ,z))
e−2ng�( · ,z)

≤ Cn

∫
%>−b(z)

|K�( · , w)|
2 (by (5-1))

≤ Cn,r K�(w)(ν(z)/µ(w))r .
Set

f := K�( · , w)χ(− log(−g�( · , z)))− u.
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Clearly, we have f ∈ O(�). Since g�(ζ, z) = log|ζ−z| + O(1) as ζ → z and u is holomorphic in a
neighborhood of z, it follows that u(z)= 0, i.e., f (z)= K�(z, w). Moreover,∫

�

| f |2 ≤ 2
∫
%>−b(z)

|K�( · , w)|
2
+ 2

∫
�

|u|2

≤ Cn,r K�(w)(ν(z)/µ(w))r

since g�( · , z) < 0. Thus, we get

K�(z)≥
| f (z)|2

‖ f ‖2L2(�)

≥ C−1
n,r
|K�(z, w)|2

K�(w)
(µ(w)/ν(z))r ,

and
B�(z, w)≤ Cn,r (ν(z)/µ(w))r .

If b(z) > εrµ(w), then the inequality above trivially holds since |K�(z, w)|2/(K�(z)K�(w)) ≤ 1. By
symmetry of B�, the assertion immediately follows. �

Remark. It would be interesting to get pointwise estimates for |S�(z, w)|2/(S�(z)S�(w)), where S� is
the Szegö kernel (compare to [Chen and Fu 2011]).

Proof of Corollary 1.8. Let z ∈� be an arbitrarily fixed point which is sufficiently close to ∂�. By the
Hopf–Rinow theorem, there exists a Bergman geodesic γ jointing z0 to z, for ds2

B is complete on �. We
may choose a finite number of points {zk}

m
k=1 ⊂ γ with the order

z0→ z1→ z2→ · · · → zm→ z,

where
|%(zk+1)|(1+ |log|%(zk+1)||)

n+2
= |%(zk)|

and
|%(z)|(1+ |log|%(z)||)n+2

≥ |%(zm)|.

Since
ν(zk+1)

µ(zk)
=
|%(zk+1)|

|%(zk)|
(1+ |log|%(zk+1)||)

n(1+ |log|%(zk)||)

≤
|%(zk+1)|

|%(zk)|
(1+ |log|%(zk+1)||)

n+1

= (1+ |log|%(zk+1)||)
−1,

it follows from Theorem 1.7 that there exists k0 ∈ Z+ such that B�(zk, zk+1)≤
1
4 for all k ≥ k0. By (1-4),

dB(zk, zk+1)≥ 1.

Notice that
|%(zk0)| = |%(zk0+1)||log|%(zk0+1)||

n+2

≤ |%(zk0+2)||log|%(zk0+2)||
2(n+2)

≤ · · · ≤ |%(zm)||log|%(zm)||
(m−k0)(n+2).
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Thus,

m− k0 ≥ const.
|log|%(zm)||

log|log|%(zm)||
≥ const.

|log|%(z)||
log|log|%(z)||

so that

dB(z, z0)≥

m−1∑
k=k0

dB(zk, zk+1)≥ m− k0− 1

≥ const.
|log|%(z)||
|log|log|%(z)|||

≥ const.
|log δ(z)|

log|log δ(z)|

since |%(z)| ≤ Cαδα for any α < α(�). �

Proof of Corollary 1.9. For every 0< α < α(�), we have −% ≤ Cαδα. Theorem 1.7 then yields

DB(z0, z)≥ α|log δ(z)|
as z→ ∂�. Thus, it suffices to show

dK (z, z0)≤ C |log δ(z)| (6-1)

as z→ ∂�. To see this, let FK be the Kobayashi–Royden metric. Since FK is decreasing under holomor-
phic mappings, we conclude that FK (z; X) is dominated by the KR metric of the ball B(z, δ(z)). Thus,
FK (z; X)≤ C |X |/δ(z), from which (6-1) immediately follows (compare to the proof of Proposition 7.3
in [Chen 2016]). �

In order to prove Corollary 1.10, we need the following elementary fact.

Lemma 6.1. If�⊂Cn is a bounded weighted circular domain which contains the origin, then K�(z, 0)=
K�(0) for any z ∈�.

Proof. For fixed θ ∈ R, we set Fθ (z) := (eia1θ z1, . . . , eianθ zn). By the transform formula of the Bergman
kernel,

K�(Fθ (z), 0)= K�(z, 0), z ∈�.

It follows that, for any n-tuple (m1, . . . ,mn) of nonnegative integers,

ei(a1m1+···+anmn)θ
∂m1+···+mn K�(z, 0)
∂zm1

1 · · · ∂zmn
n

∣∣∣∣
z=0
=
∂m1+···+mn K�(z, 0)
∂zm1

1 · · · ∂zmn
n

∣∣∣∣
z=0

for all θ ∈ R

so that ∂
m1+···+mn K�(z,0)
∂z

m1
1 ···∂zmn

n

∣∣
z=0 = 0 if not all m j are zero. Taylor’s expansion of K�(z, 0) at z = 0 and the

identity theorem of holomorphic functions yield K�(z, 0)= K�(0) for any z ∈�. �

Proof of Corollary 1.10. By Lemma 6.1,

B�2(F(z), 0)= K�2(0)K�2(F(z))
−1
≥ C−1δ2(F(z))2n.

On the other hand, Theorem 1.7 implies

B�1(z, F−1(0))≤ Cαδ1(z)α.

Since B�2(F(z), 0)=B�1(z, F−1(0)), we conclude the proof. �
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Appendix: Examples of domains with positive hyperconvexity indices

We start with the following almost trivial fact.

Proposition A.1. Let �1 and �2 be two bounded domains in Cn such that there exists a biholomorphic
map F :�1→�2 which extends to a Hölder-continuous map �1→�2. If α(�2) > 0, then α(�1) > 0.

Proof. Let δ1 and δ2 denote the boundary distances of�1 and�2, respectively. Choose ρ2∈PSH−∩C(�2)

such that −ρ2 ≤Cδα2 for some C, α > 0. Set ρ1 := ρ2 ◦F . Clearly, ρ1 ∈ PSH−∩C(�1). For fixed z ∈�1,
we choose z∗ ∈ ∂�1 so that |z− z∗| = δ1(z). Since F(z∗) ∈ ∂�2, it follows that

−ρ1(z)≤ Cδ2(F(z))α = C(δ2(F(z))− δ2(F(z∗)))α

≤ C |F(z)− F(z∗)|α ≤ C |z− z∗|γα

≤ Cδ1(z)γα,

where γ is the order of Hölder continuity of F on �1. �

Example. Let D ⊂ C be a bounded Jordan domain which admits a uniformly Hölder-continuous con-
formal map f onto the unit disc 1 (e.g., a quasidisc with a fractal boundary). Set F(z1, . . . , zn) :=

( f (z1), . . . , f (zn)). Clearly, F is a biholomorphic map between Dn and 1n which extends to a Hölder-
continuous map between their closures. Let

�2 := {z ∈ Cn
: |z1|

a1 + · · ·+ |zn|
an < 1},

where a j > 0. Clearly, we have α(�2) > 0. By Proposition A.1, we conclude that the domain �1 :=

F−1(�2) satisfies α(�1) > 0. Notice that some parts of ∂�1 might be highly irregular.

A domain � ⊂ Cn is called C-convex if �∩ L is a simply connected domain in L for every affine
complex line L . Clearly, every convex domain is C-convex.

Proposition A.2. If �⊂ Cn is a bounded C-convex domain, then α(�)≥ 1
2 .

Proof. Let w ∈ � be an arbitrarily fixed point. Let w∗ be a point on ∂� satisfying δ(w) = |w−w∗|.
Let L be the complex line determined by w and w∗. Since every C-convex domain is linearly convex
[Hörmander 1994, Theorem 4.6.8], it follows that there exists an affine complex hyperplane H ⊂ Cn

\�

with w∗ ∈ H . Since |w−w∗| = δ(w), H has to be orthogonal to L . Let πL denote the natural projection
Cn
→ L . Notice that πL(�) is a bounded simply connected domain in L in view of [Hörmander 1994,

Proposition 4.6.7]. By Proposition 7.3 in [Chen 2016], there exists a negative continuous function ρL

on πL(�) with
(δL/δL(z0

L))
2
≤−ρL ≤ (δL/δL(z0

L))
1/2,

where δL denotes the boundary distance of πL(�) and z0
L ∈ πL(�) satisfies δL(z0

L)= supπL (�)
δL . Fix a

point z0
∈�. We have

δL(z0
L)≥ δL(πL(z0))≥ δ(z0).

Set
%z0(z)= sup{u(z) : u ∈ PSH−(�), u(z0)≤−1}.
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Clearly, %z0 ∈PSH−(�). Since�⊂π−1
L (πL(�)), it follows that π∗L(ρL)∈PSH−(�). Since π∗L(δL)(w)=

δ(w) and
π∗L(ρL)(z0)= ρL(πL(z0))≤−(δL(πL(z0))/δL(z0

L))
2,

then
%z0(w)≥ (δL(z0

L)/δL(πL(z0)))2π∗L(ρL)(w)

≥−(δL(z0
L)

3/2/δL(πL(z0))2)δ(w)1/2

≥−(R3/2/δ(z0)2)δ(w)1/2,

where R = diam(�). Thus, α(�)≥ 1
2 . �

Remark. After the first version of this paper was finished, the author was kindly informed by Nikolai
Nikolov that Proposition A.2 follows also from Proposition 3(ii) of [Nikolov and Trybuła 2015].

Complex dynamics also provides interesting examples of domains with α(�)>0. Let q(z)=
∑d

j=0 a j z j

be a complex polynomial of degree d ≥ 2. Let qn denote the n-iterates of q. The attracting basin at∞
of q is defined by

F∞ := {z ∈ C : qn(z)→∞ as n→∞},

which is a domain in C with q(F∞)= F∞. The Julia set of q is defined by J := ∂F∞. It is known that J
is always uniformly perfect. Thus, α(F∞) > 0.

We say that q is hyperbolic if there exist constants C > 0 and γ > 1 such that

inf
J
|(qn)′| ≥ Cγ n for all n ≥ 1.

Consider a holomorphic family {qλ} of hyperbolic polynomials of constant degree d ≥ 2 over the unit
disc 1. Let Fλ

∞
denote the attracting basin at∞ of qλ, and let Jλ := ∂Fλ

∞
. Let �r denote the total space

of Fλ
∞

over the disc 1r := {z ∈ C : |z|< r}, where 0< r ≤ 1, that is

�r = {(λ,w) : λ ∈1r , w ∈ Fλ
∞
}.

Proposition A.3. For every 0< r < 1, �r is a bounded domain in C2 with α(�r ) > 0.

Proof. We first show that �r is a domain. Mañé, Sad and Sullivan [Mañé et al. 1983] showed that there
exists a family of maps { fλ}λ∈1 such that

(1) fλ : J0→ Jλ is a homeomorphism for each λ ∈1,

(2) f0 = id|J0 ,

(3) f (λ, z) := fλ(z) is holomorphic on 1 for each z ∈ J0 and

(4) qλ = fλ ◦ q0 ◦ f −1
λ on Jλ, for each λ ∈1.

In other words, properties (1)–(3) say that { fλ}λ∈1 gives a holomorphic motion of J0. By a result of
Slodkowski [1991], { fλ}λ∈1 may be extended to a holomorphic motion { f̃λ}λ∈1 of C such that

(a) f̃λ : C→ C is a quasiconformal map of dilatation ≤ (1+ |λ|)/(1− |λ|), for each λ ∈1,

(b) f̃λ : F0
∞
→ Fλ

∞
is a homeomorphism for each λ ∈1 and

(c) f̃ (λ, z) := f̃λ(z) is jointly Hölder-continuous in (λ, z).
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It follows immediately that �r is a domain in Cn for each r ≤ 1. Let δλ and δ denote the boundary
distances of Fλ

∞
and �1, respectively. We claim that for every 0< r < 1 there exists γ > 0 such that

δλ(w)≤ Cδ(λ,w)γ , λ ∈1r , w ∈ Fλ
∞
. (A-1)

To see this, choose (λ′, wλ′) where wλ′ ∈ Jλ′ , such that

δ(λ,w)=
√
|λ− λ′|2+ |w−wλ′ |2.

Write wλ′ = f̃ (λ′, z0) where z0 ∈ J0. Since f̃ (λ, z0) ∈ Jλ, it follows that

δλ(w)≤ |w− f̃ (λ, z0)| ≤ |w−wλ′ | + | f̃ (λ′, z0)− f̃ (λ, z0)|

≤ |w−wλ′ | +C |λ− λ′|γ

≤ δ(λ,w)+Cδ(λ,w)γ

≤ C ′δ(λ,w)γ ,

where γ is the order of Hölder continuity of f̃ on �r .
Recall that the Green function gλ(w) := gFλ∞(w,∞) at∞ of Fλ

∞
satisfies

gλ(w)= lim
n→∞

d−n log|qn
λ (w)|, w ∈ Fλ

∞
, (A-2)

where the convergence is uniform on compact subsets of Fλ
∞

[Ransford 1995, Corollary 6.5.4]. Actually
the proof of that result shows that the convergence is also uniform on compact subsets of �1. Since
log|qn

λ (w)| is psh in (λ,w), so is g(λ,w) := gλ(w). By (A-1) it suffices to verify that for every 0< r < 1
there are positive constants C and α such that −gλ(w) ≤ Cδλ(w)α for each λ ∈1r and w ∈ Fλ

∞
. This

can be verified similarly to the proof of Theorem 3.2 in [Carleson and Gamelin 1993]. �

Conjecture A.4. Let D ⊂C be a domain with α(D) > 0. Let { fλ}λ∈1 be a holomorphic motion of D. Let

�r := {(λ,w) : λ ∈1r , w ∈ fλ(D)}.

One has α(�r ) > 0 for each r < 1.
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