ANALYSIS & PDE Volume 10 No. 6 2017

BO-YONG CHEN

BERGMAN KERNEL AND HYPERCONVEXITY INDEX

BERGMAN KERNEL AND HYPERCONVEXITY INDEX

BO-YONG CHEN

Dedicated to Professor John Erik Fornaess on the occasion of his 70th birthday

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with the hyperconvexity index $\alpha(\Omega) > 0$. Let ϱ be the relative extremal function of a fixed closed ball in Ω , and set $\mu := |\varrho|(1 + |\log|\varrho||)^{-1}$ and $\nu := |\varrho|(1 + |\log|\varrho||)^n$. We obtain the following estimates for the Bergman kernel. (1) For every $0 < \alpha < \alpha(\Omega)$ and $2 \le p < 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$, there exists a constant C > 0 such that $\int_{\Omega} |K_{\Omega}(\cdot, w)/\sqrt{K_{\Omega}(w)}|^p \le C |\mu(w)|^{-(p-2)n/\alpha}$ for all $w \in \Omega$. (2) For every 0 < r < 1, there exists a constant C > 0 such that $|K_{\Omega}(z, w)|^2/(K_{\Omega}(z)K_{\Omega}(w)) \le C(\min\{\nu(z)/\mu(w), \nu(w)/\mu(z)\})^r$ for all $z, w \in \Omega$. Various applications of these estimates are given.

1. Introduction

A domain $\Omega \subset \mathbb{C}^n$ is called *hyperconvex* if there exists a negative continuous plurisubharmonic (psh) function ρ on Ω such that { $\rho < c$ } $\in \Omega$ for any c < 0. The class of hyperconvex domains is very wide; e.g., every bounded pseudoconvex domain with Lipschitz boundary is hyperconvex [Demailly 1987]. Although hyperconvex domains already admit a rich function theory (see, e.g., [Ohsawa 1993; Błocki and Pflug 1998; Herbort 1999; Poletsky and Stessin 2008]), it is not enough to get quantitative results unless one imposes certain growth conditions on the bounded exhaustion function ρ (compare [Berndtsson and Charpentier 2000; Błocki 2005; Diederich and Ohsawa 1995]).

A meaningful condition is $-\rho \leq C\delta^{\alpha}$ for some constants α , C > 0, where δ denotes the boundary distance. Let $\alpha(\Omega)$ be the supremum of all α . We call it the *hyperconvexity index* of Ω . From the fundamental work of Diederich and Fornaess [1977], we know that if Ω is a bounded pseudoconvex domain with C^2 -boundary then there exists a continuous negative psh function ρ on Ω such that $C^{-1}\delta^{\eta} \leq -\rho \leq C\delta^{\eta}$ for some constants η , C > 0. The supremum $\eta(\Omega)$ of all η is called the *Diederich–Fornaess index* of Ω (see, e.g., [Adachi and Brinkschulte 2015; Fu and Shaw 2016; Harrington 2008]). Clearly, $\alpha(\Omega) \geq \eta(\Omega)$. Recently, Harrington [2008] showed that if Ω is a bounded pseudoconvex domain with Lipschitz boundary then $\eta(\Omega) > 0$.

On the other hand, there are plenty of domains with very irregular boundaries such that $\alpha(\Omega) > 0$, while it is difficult to verify $\eta(\Omega) > 0$. For instance, Koebe's distortion theorem implies $\alpha(\Omega) \ge \frac{1}{2}$ if $\Omega \subsetneq \mathbb{C}$ is a simply connected domain [Carleson and Gamelin 1993, Chapter 1, Theorem 4.4]. Recently, Carleson and Totik [2004] and Totik [2006] obtained various Wiener-type criteria for planar domains with positive

Chen was supported by Grant IDH1411041 from Fudan University.

MSC2010: primary 32A25; secondary 32U35.

Keywords: Bergman kernel, hyperconvexity index.

hyperconvexity indices. In particular, if $\partial \Omega$ is uniformly perfect in the sense of Pommerenke [1979], then $\alpha(\Omega) > 0$ [Carleson and Totik 2004, Theorem 1.7]. Moreover, for domains like $\Omega = \mathbb{C} \setminus E$, where *E* is a compact set in \mathbb{R} (e.g., Cantor-type sets), the connection between the metric properties of *E* and the precise value of $\alpha(\Omega)$ (especially the optimal case $\alpha(\Omega) = \frac{1}{2}$) was studied in detail in [Carleson and Totik 2004; Totik 2006]. In the Appendix of this paper, we will provide more examples of higher-dimensional domains with positive hyperconvexity indices. The Teichmüller space of a compact Riemann surface with genus ≥ 2 which is boundedly embedded in \mathbb{C}^{3g-3} probably has a positive hyperconvexity index.

For a domain $\Omega \subset \mathbb{C}^n$, let ϱ be the *relative extremal function* of a (fixed) closed ball $\overline{B} \subset \Omega$; i.e.,

$$\varrho(z) := \varrho_{\bar{B}}(z) := \sup\{u(z) : u \in \mathrm{PSH}^{-}(\Omega), \ u|_{\bar{B}} \le -1\}$$

where $PSH^{-}(\Omega)$ denotes the set of negative psh functions on Ω . It is known that ρ is continuous on $\overline{\Omega}$ if Ω is a bounded hyperconvex domain [Błocki 2002, Proposition 3.1.3(vii)]. Furthermore, it is easy to show that if $\alpha(\Omega) > 0$ then for every $0 < \alpha < \alpha(\Omega)$ there exists a constant C > 0 such that $-\rho \le C\delta^{\alpha}$.

The goal of this paper is to present some off-diagonal estimates of the Bergman kernel on domains with positive hyperconvexity indices, in terms of ρ . Usually, off-diagonal behavior of the Bergman kernel is more sensitive to the geometry of a domain than on-diagonal behavior (compare to [Barrett 1992]).

Let $K_{\Omega}(z, w)$ be the Bergman kernel of Ω . It is well-known that $K_{\Omega}(\cdot, w) \in L^{2}(\Omega)$ for all $w \in \Omega$. Thus, it is natural to ask the following:

Problem. For which Ω and p > 2 does one have $K_{\Omega}(\cdot, w) \in L^{p}(\Omega)$ for all $w \in \Omega$?

For the sake of convenience, we set

$$\beta(\Omega) = \sup\{\beta \ge 2 : K_{\Omega}(\cdot, w) \in L^{\beta}(\Omega) \text{ for all } w \in \Omega\}.$$

We call it the *integrability index* of the Bergman kernel. From the well-known works of Kerzman, Catlin and Bell, we know that $\beta(\Omega) = \infty$ if Ω is a bounded pseudoconvex domain of finite D'Angelo type. On the other hand, it is not difficult to see from the work of Barrett [1992] that there exist unbounded Diederich–Fornaess worm domains with $\beta(\Omega)$ arbitrarily close to 2 (see, e.g., [Krantz and Peloso 2008, Lemma 7.5]). Thus, it is meaningful to show the following:

Theorem 1.1. If $\Omega \subset \mathbb{C}^n$ is pseudoconvex, then $\beta(\Omega) \ge 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$. Furthermore, if Ω is a bounded domain with $\alpha(\Omega) > 0$, then for every $0 < \alpha < \alpha(\Omega)$ and $2 \le p < 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$, there exists a constant C > 0 such that

$$\int_{\Omega} \left| K_{\Omega}(\cdot, w) / \sqrt{K_{\Omega}(w)} \right|^{p} \le C |\mu(w)|^{-(p-2)n/\alpha}, \quad w \in \Omega,$$
(1-1)

where $K_{\Omega}(w) = K_{\Omega}(w, w)$ and $\mu := |\varrho|(1 + |\log|\varrho||)^{-1}$.

The lower bound for $\beta(\Omega)$ can be improved substantially when n = 1:

Theorem 1.2. If Ω is a domain in \mathbb{C} , then $\beta(\Omega) \ge 2 + \alpha(\Omega)/(1 - \alpha(\Omega))$.

In particular, we obtain the known fact that if $\Omega \subseteq \mathbb{C}$ is a simply connected domain then $\beta(\Omega) \ge 3$. A famous conjecture of Brennan [1978] suggests that the bound may be improved to $\beta(\Omega) \ge 4$; an equivalent

statement is that, if $f : \Omega \to \mathbb{D}$ is a conformal mapping where \mathbb{D} is the unit disc, then $f' \in L^p(\Omega)$ for all p < 4. There has been extensive research on this conjecture (see [Bertilsson 1998; Carleson and Jones 1992; Carleson and Makarov 1994; Pommerenke 1992], etc.).

Nevertheless, Theorem 1.2 is best understood in view of the following:

Proposition 1.3. Let $E \subset \mathbb{C}$ be a compact set satisfying $\operatorname{Cap}(E) > 0$ and $\dim_H(E) < 1$, where Cap and \dim_H denote the logarithmic capacity and the Hausdorff dimension, respectively. Set $\Omega := \mathbb{C} \setminus E$. Then $\beta(\Omega) \le 2 + \dim_H(E)/(1 - \dim_H(E))$.

Example. There exists a Cantor-type set *E* with $\dim_H(E) = 0$ and $\operatorname{Cap}(E) > 0$ [Carleson 1967, §4, Theorem 5]. Thus, $\beta(\mathbb{C} \setminus E) = 2$ in view of Proposition 1.3.

Example. Andrievskii [2005] constructed a compact set $E \subset \mathbb{R}$ with $\dim_H(E) = \frac{1}{2}$ and $\alpha(\mathbb{C} \setminus E) = \frac{1}{2}$. It follows from Theorem 1.2 and Proposition 1.3 that $\beta(\mathbb{C} \setminus E) = 3$.

Problem. Is there a bounded domain $\Omega \subset \mathbb{C}$ with $\beta(\Omega) = 2$?

Theorems 1.1 and 1.2 shed some light on the study of the Bergman space

$$A^{p}(\Omega) = \left\{ f \in \mathbb{O}(\Omega) : \int_{\Omega} |f|^{p} < \infty \right\}$$

for domains with positive hyperconvexity indices. For instance, we can show that $A^p(\Omega) \cap A^2(\Omega)$ lies dense in $A^2(\Omega)$ for suitable p > 2 and the reproducing property of $K_{\Omega}(z, w)$ holds in $A^p(\Omega)$ for suitable p < 2 (see Section 4). A related problem is to study whether the Bergman projection can be extended to a bounded projection $L^p(\Omega) \to A^p(\Omega)$ for all p in some nonempty open interval around 2. For flat Hartogs triangles, a complete answer was recently given by Edholm and McNeal [2016]. For more information on this matter, we refer the reader to the review article of Lanzani [2015] and the references therein.

Set

$$K_{\Omega,p}(z) := \sup\{|f(z)| : f \in A^p(\Omega), \|f\|_{L^p(\Omega)} \le 1\}.$$

Using $f := (K_{\Omega}(\cdot, z)/\sqrt{K_{\Omega}(z)})/||K_{\Omega}(\cdot, z)/\sqrt{K_{\Omega}(z)}||_{L^{p}(\Omega)}$ as a candidate, we conclude from estimate (1-1):

Corollary 1.4. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. For every $p < 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$,

$$K_{\Omega,p}(z) \ge C_{\alpha,p}\sqrt{K_{\Omega}(z)}|\mu(z)|^{(p-2)n/(p\alpha)}.$$

Remark. If Ω is a bounded pseudoconvex domain with C^2 -boundary, then $K_{\Omega}(z) \ge C\delta(z)^{-2}$ in view of the Ohsawa–Takegoshi extension theorem [1987]. On the other hand, Hopf's lemma implies $|\varrho| \ge C\delta$. Thus,

$$K_{\Omega,p}(z) \ge C_{\alpha,p} \delta(z)^{-(1-(p-2)n/(p\alpha))} |\log \delta(z)|^{-(p-2)n/(p\alpha)}$$

as $z \to \partial \Omega$. Notice also that $(p-2)n/(p\alpha) < \frac{1}{2}$ if and only if $p < 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$.

We would like to mention an interesting connection between the problem on page 1430 and the regularity problem of biholomorphic maps. The starting point is the following:

Theorem 1.5 [Lempert 1986, Theorem 6.2]. Let $\Omega_1 \subset \mathbb{C}^n$ be a bounded domain with C^2 -boundary such that its Bergman projection P_{Ω_1} maps $C_0^{\infty}(\Omega_1)$ into $L^p(\Omega_1)$ for some p > 2. Let $\Omega_2 \subset \mathbb{C}^n$ be a bounded domain with real-analytic boundary. Then any biholomorphic map $F : \Omega_1 \to \Omega_2$ extends to a Hölder-continuous map $\overline{\Omega}_1 \to \overline{\Omega}_2$.

Notice that if Ω is a domain with $\int_{\Omega} |K_{\Omega}(\cdot, w)|^p$ locally uniformly bounded in w for some $p \ge 1$, then for any $\phi \in C_0^{\infty}(\Omega)$,

$$|P_{\Omega}(\phi)(z)|^{p} \leq \int_{\zeta \in \operatorname{supp} \phi} |K_{\Omega}(\zeta, z)|^{p} \|\phi\|_{L^{q}(\Omega)}^{p}, \quad 1/p + 1/q = 1,$$

so that

$$\int_{z\in\Omega} |P_{\Omega}(\phi)(z)|^{p} \le \|\phi\|_{L^{q}(\Omega)}^{p} \int_{\zeta\in\operatorname{supp}\phi} \int_{z\in\Omega} |K_{\Omega}(z,\zeta)|^{p} < \infty,$$
(1-2)

i.e., P_{Ω} maps $C_0^{\infty}(\Omega)$ into $L^p(\Omega)$. Thus, we have:

Corollary 1.6. Let $\Omega_1 \subset \mathbb{C}^n$ be a bounded domain with C^2 -boundary such that the integral $\int_{\Omega} |K_{\Omega}(\cdot, w)|^p$ is locally uniformly bounded in w for some p > 2. Let $\Omega_2 \subset \mathbb{C}^n$ be a bounded domain with real-analytic boundary. Then any biholomorphic map $F : \Omega_1 \to \Omega_2$ extends to a Hölder-continuous map $\overline{\Omega}_1 \to \overline{\Omega}_2$.

In particular, it follows from Corollary 1.6 and Theorem 1.1 that any biholomorphic map between a bounded *pseudoconvex* domain with C^2 -boundary and a bounded domain with real-analytic boundary extends to a Hölder-continuous map between their closures, which was first proved in [Diederich and Fornaess 1979]. On the other hand, Barrett [1984] constructed a *nonpseudoconvex* bounded smooth domain $\Omega \subset \mathbb{C}^2$ such that P_{Ω} fails to map $C_0^{\infty}(\Omega)$ into $L^p(\Omega)$ for any p > 2 so that $\int_{\Omega} |K_{\Omega}(\cdot, w)|^p$ can not be locally uniformly bounded in w. However, it is still expected that if Ω is a bounded domain with *real-analytic* boundary then there exists p > 2 such that $\int_{\Omega} |K_{\Omega}(\cdot, w)|^p$ is locally uniformly bounded in w.

With the help of an elegant technique due to Błocki [2005] (see also [Herbort 2000] for prior related techniques) on estimating the pluricomplex Green function, we may prove the following:

Theorem 1.7. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. For every 0 < r < 1, there exists a constant C > 0 such that

$$\mathfrak{B}_{\Omega}(z,w) := \frac{|K_{\Omega}(z,w)|^2}{K_{\Omega}(z)K_{\Omega}(w)} \le C\left(\min\left\{\frac{\nu(z)}{\mu(w)},\frac{\nu(w)}{\mu(z)}\right\}\right)^r, \quad z,w\in\Omega,$$
(1-3)

where $\mu := |\varrho|/(1 + |\log|\varrho||)$ and $\nu := |\varrho|(1 + |\log|\varrho||)^n$.

We call $\Re_{\Omega}(z, w)$ the normalized Bergman kernel of Ω . There is a long list of papers about pointwise estimates of the *weighted* normalized Bergman kernel $\Re_{\Omega,\varphi}(z, w) := |K_{\Omega,\varphi}(z, w)|^2/(K_{\Omega,\varphi}(z)K_{\Omega,\varphi}(w))$ when Ω is \mathbb{C}^n or a compact algebraic manifold, after a seminal paper of Christ [1991] (see [Delin 1998; Lindholm 2001; Ma and Marinescu 2007; Christ 2013; Zelditch 2016], etc.). Quantitative measurements of positivity of $i\partial\bar{\partial}\varphi$ play a crucial role in these works.

The basic difference between $\mathcal{B}_{\Omega}(z, w)$ and $\mathcal{B}_{\Omega,\varphi}(z, w)$ is that the former is always a *biholomorphic invariant*. Skwarczyński [1980] showed that

$$d_{S}(z,w) := \left(1 - \sqrt{\mathcal{B}_{\Omega}(z,w)}\right)^{1/2}$$

gives an invariant distance on a bounded domain Ω . The relationship between d_S and the Bergman distance d_B is

$$d_B(z,w) \ge \sqrt{2}d_S(z,w) \tag{1-4}$$

(see, e.g., [Jarnicki and Pflug 1993, Corollary 6.4.7]). By Theorem 1.7 and (1-4), we may prove the following:

Corollary 1.8. If Ω is a bounded domain with $\alpha(\Omega) > 0$, then for fixed $z_0 \in \Omega$, there exists a constant C > 0 such that

$$d_B(z_0, z) \ge C \frac{|\log \delta(z)|}{\log |\log \delta(z)|},\tag{1-5}$$

provided z sufficiently close to $\partial \Omega$.

Błocki [2005] first proved (1-5) for any bounded domain which admits a continuous negative psh function ρ with $C_1\delta^{\alpha} \leq -\rho \leq C_2\delta^{\alpha}$ for some constants C_1 , C_2 , $\alpha > 0$ (e.g., Ω is a pseudoconvex domain with Lipschitz boundary [Harrington 2008]). Diederich and Ohsawa [1995] proved earlier that the weaker inequality

$$d_B(z_0, z) \ge C \log|\log \delta(z)|$$

holds for more general bounded domains admitting a continuous negative psh function ρ with $C_1 \delta^{1/\alpha} \le -\rho \le C_2 \delta^{\alpha}$ for some constants $C_1, C_2, \alpha > 0$.

In order to study isometric embedding of Kähler manifolds, Calabi [1953] introduced the notion "diastasis". Marcel Berger [1996] wrote, "It seems to me that the notion of diastasis should make a comeback [...]. For example, it would be interesting to compare the diastasis with the various types of Kobayashi metrics (when they exist)."

Notice that the diastasis $D_B(z, w)$ with respect to the Bergman metric is $-\log \mathfrak{B}_{\Omega}(z, w)$.

Corollary 1.9. If Ω is a bounded domain with $\alpha(\Omega) > 0$, then for fixed $z_0 \in \Omega$, there exists a constant C > 0 such that

$$D_B(z_0, z) \ge C d_K(z_0, z),$$
 (1-6)

where d_K denotes the Kobayashi distance.

Problem. Does one have $d_B(z_0, z) \ge C d_K(z_0, z)$ for bounded domains with $\alpha(\Omega) > 0$?

A domain $\Omega \subset \mathbb{C}^n$ is called *weighted circular* if there exists an *n*-tuple (a_1, \ldots, a_n) of positive numbers such that $z \in \Omega$ implies $(e^{ia_1\theta}z_1, \ldots, e^{ia_n\theta}z_n) \in \Omega$ for any $\theta \in \mathbb{R}$. As a final consequence of Theorem 1.7, we obtain:

Corollary 1.10. Let $\Omega_1 \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega_1) > 0$. Let $\Omega_2 \subset \mathbb{C}^n$ be a bounded weighted circular domain which contains the origin. Let $0 < \alpha < \alpha(\Omega_1)$ be given. Then for any biholomorphic map $F : \Omega_1 \to \Omega_2$, there is a constant C > 0 such that

$$\delta_2(F(z)) \le C\delta_1(z)^{\alpha/(2n)}, \quad z \in \Omega_1.$$
(1-7)

Here δ_1 *and* δ_2 *denote the boundary distances of* Ω_1 *and* Ω_2 *, respectively.*

Remark. Inequalities like (1-7) are crucial in the study of the regularity problem of biholomorphic maps (see, e.g., [Diederich and Fornaess 1979; Lempert 1986]).

2. L^2 boundary decay estimates of the Bergman kernel

Proposition 2.1. Let $\Omega \subset \mathbb{C}^n$ be a pseudoconvex domain. Let ρ be a negative continuous psh function on Ω . Set

$$\Omega_t = \{ z \in \Omega : -\rho(z) > t \}, \quad t > 0$$

Let a > 0 be given. For every 0 < r < 1, there exist constants ε_r , $C_r > 0$ such that

$$\int_{-\rho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 \le C_r K_{\Omega_a}(w) (\varepsilon/a)^r$$
(2-1)

for all $w \in \Omega_a$ and $\varepsilon \leq \varepsilon_r a$.

The proof of the proposition is essentially the same as for Proposition 6.1 in [Chen 2016]. For the sake of completeness, we include a proof here. The key ingredient is the following weighted estimate of the L^2 -minimal solution of the $\bar{\partial}$ -equation due to Berndtsson.

Theorem 2.2 [Chen 2016, Corollary 2.3]. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $\varphi \in PSH(\Omega)$. Let ψ be a continuous psh function on Ω which satisfies $ri\partial\bar{\partial}\psi \geq i\partial\psi \wedge \bar{\partial}\psi$ as currents for some 0 < r < 1. Suppose v is a $\bar{\partial}$ -closed (0, 1)-form on Ω such that $\int_{\Omega} |v|^2 e^{-\varphi} < \infty$. Then the $L^2(\Omega, \varphi)$ -minimal solution of $\bar{\partial}u = v$ satisfies

$$\int_{\Omega} |u|^2 e^{-\psi - \varphi} \le \frac{1}{1 - r} \int_{\Omega} |v|_{i\partial\bar{\partial}\psi}^2 e^{-\psi - \varphi}.$$
(2-2)

Here $|v|_{i\partial\bar{\partial}\psi}^2$ should be understood as the infimum of nonnegative locally bounded functions H satisfying $i\bar{v} \wedge v \leq Hi\partial\bar{\partial}\psi$ as currents.

Proof of Proposition 2.1. Assume first that Ω is bounded. Let $\kappa : \mathbb{R} \to [0, 1]$ be a smooth cut-off function such that $\kappa|_{(-\infty,1]} = 1$, $\kappa|_{[3/2,\infty)} = 0$ and $|\kappa'| \le 2$. We then have

$$\int_{-\rho\leq\varepsilon} |K_{\Omega}(\,\cdot\,,w)|^2 \leq \int_{\Omega} \kappa(-\rho/\varepsilon) |K_{\Omega}(\,\cdot\,,w)|^2.$$

By the well-known property of the Bergman projection, we obtain

$$\int_{\Omega} \kappa(-\rho/\varepsilon) K_{\Omega}(\cdot, w) \cdot \overline{K_{\Omega}(\cdot, \zeta)} = \kappa(-\rho(\zeta)/\varepsilon) K_{\Omega}(\zeta, w) - u(\zeta), \quad \zeta \in \Omega,$$

where *u* is the $L^2(\Omega)$ -minimal solution of the equation

$$\bar{\partial} u = \bar{\partial} (\kappa (-\rho/\varepsilon) K_{\Omega}(\cdot, w)) =: v.$$

Since $\kappa(-\rho(w)/\varepsilon) = 0$ provided $\frac{3}{2}\varepsilon \le a$ (i.e., $\varepsilon \le 2a/3$),

$$\int_{-\rho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 \le -u(w).$$
(2-3)

Set

$$\psi = -r \log(-\rho), \quad 0 < r < 1.$$

Clearly, ψ is psh and satisfies $ri\partial \bar{\partial} \psi \ge i\partial \psi \wedge \bar{\partial} \psi$ so that

$$i\bar{v}\wedge v\leq C_0r^{-1}|\kappa'(-\rho/\varepsilon)|^2|K_{\Omega}(\,\cdot\,,w)|^2i\partial\bar{\partial}\psi$$

for some numerical constant $C_0 > 0$. Thus, by Theorem 2.2,

$$\begin{split} \int_{\Omega} |u|^2 e^{-\psi} &\leq C_r \int_{\varepsilon \leq -\rho \leq (3/2)\varepsilon} |K_{\Omega}(\,\cdot\,,\,w)|^2 e^{-\psi} \\ &\leq C_r \varepsilon^r \int_{-\rho \leq (3/2)\varepsilon} |K_{\Omega}(\,\cdot\,,\,w)|^2. \end{split}$$

Since $e^{-\psi} \ge a^r$ on Ω_a and u is holomorphic there, it follows that

$$\begin{aligned} |u(w)|^{2} &\leq K_{\Omega_{a}}(w) \int_{\Omega_{a}} |u|^{2} \\ &\leq K_{\Omega_{a}}(w) a^{-r} \int_{\Omega} |u|^{2} e^{-\psi} \\ &\leq C_{r} K_{\Omega_{a}}(w) (\varepsilon/a)^{r} \int_{-\rho \leq (3/2)\varepsilon} |K_{\Omega}(\cdot, w)|^{2}. \end{aligned}$$

Thus, by (2-3),

$$\int_{-\rho \leq \varepsilon} |K_{\Omega}(\cdot, w)|^2 \leq C_r K_{\Omega_a}(w)^{1/2} (\varepsilon/a)^{r/2} \left(\int_{-\rho \leq (3/2)\varepsilon} |K_{\Omega}(\cdot, w)|^2 \right)^{1/2}$$

Notice that

$$\int_{-\rho \le (3/2)\varepsilon} |K_{\Omega}(\cdot, w)|^2 \le \int_{\Omega} |K_{\Omega}(\cdot, w)|^2 = K_{\Omega}(w) \le K_{\Omega_a}(w)$$

provided $\frac{3}{2}\varepsilon \leq a$. Thus,

$$\int_{-\rho\leq\varepsilon} |K_{\Omega}(\cdot,w)|^2 \leq C_r K_{\Omega_a}(w) (\varepsilon/a)^{r/2}.$$

Replacing ε by $\frac{3}{2}\varepsilon$ in the argument above, we obtain

$$\int_{-\rho \le (3/2)\varepsilon} |K_{\Omega}(\cdot, w)|^2 \le C_r K_{\Omega_a}(w) (3/2)^{r/2} (\varepsilon/a)^{r/2}$$

provided $(\frac{3}{2})^2 \varepsilon \leq a$. Thus, we may improve the upper bound by

$$\int_{-\rho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 \le C_r K_{\Omega_a}(w) (\varepsilon/a)^{r/2 + r/4}$$

By induction, we conclude that, for every $k \in \mathbb{Z}^+$,

$$\int_{-\rho \leq \varepsilon} |K_{\Omega}(\cdot, w)|^2 \leq C_{r,k} K_{\Omega_a}(w) (\varepsilon/a)^{r/2 + r/4 + \dots + r/2^k}$$

provided $(\frac{3}{2})^k \varepsilon \le a$. Since $r/2 + r/4 + \cdots + r/2^k \to 1$ as $k \to \infty$ and $r \to 1$, we get the desired estimate under the assumption that Ω is bounded.

In general, Ω may be exhausted by an increasing sequence $\{\Omega_j\}$ of bounded pseudoconvex domains. From the argument above, we know that

$$\int_{\Omega_j \cap \{-\rho \le \varepsilon\}} |K_{\Omega_j}(\cdot, w)|^2 \le C_r K_{\Omega_j \cap \Omega_a}(w) (\varepsilon/a)'$$

holds for all $j \gg 1$. Since $\Omega_j \uparrow \Omega$, it is well-known that $K_{\Omega_j}(\cdot, w) \to K_{\Omega}(\cdot, w)$ locally uniformly in Ω and $K_{\Omega_j \cap \Omega_a}(w) \to K_{\Omega_a}(w)$. It follows from Fatou's lemma that

$$\int_{-\rho \le \varepsilon} |K_{\Omega}(\cdot, w)|^{2} = \liminf_{j \to \infty} \int_{\Omega_{j} \cap \{-\rho \le \varepsilon\}} |K_{\Omega_{j}}(\cdot, w)|^{2}$$
$$\le C_{r} K_{\Omega_{a}}(w) (\varepsilon/a)^{r}.$$

Remark. One of the referees kindly suggested an alternative proof as follows. Berndtsson and Charpentier [2000] showed that, if $\int_{\Omega} |f|^2 |\rho|^{-r} < \infty$ for some 0 < r < 1, then

$$\int_{\Omega} |P_{\Omega}(f)|^2 |\rho|^{-r} \le C_r \int_{\Omega} |f|^2 |\rho|^{-r} < \infty$$

where $P_{\Omega}(f)(z) := \int_{\Omega} K_{\Omega}(z, \cdot) f(\cdot)$ is the Bergman projection. If one applies $f = \chi_{\Omega_a} K_{\Omega_a}(\cdot, w)$ where χ_{Ω_a} denotes the characteristic function on Ω_a , then $K_{\Omega}(z, w) = P_{\Omega}(f)(z)$ and

$$\int_{\Omega} |K_{\Omega}(\cdot, w)|^2 |\rho|^{-r} \le C_r \int_{\Omega_a} |K_{\Omega_a}(\cdot, w)|^2 |\rho|^{-r}$$

from which the estimate (2-1) immediately follows.

Let ρ be the relative extremal function of a (fixed) closed ball $\overline{B} \subset \Omega$. We have:

Proposition 2.3. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. For every 0 < r < 1, there exist constants ε_r , $C_r > 0$ such that

$$\int_{-\varrho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 / K_{\Omega}(w) \le C_r (\varepsilon/\mu(w))^r$$
(2-4)

for all $\varepsilon \leq \varepsilon_r \mu(w)$, where $\mu = |\varrho|(1 + |\log|\varrho||)^{-1}$.

In order to prove this proposition, we need an elementary estimate of the pluricomplex Green function. Recall that the *pluricomplex Green function* $g_{\Omega}(z, w)$ of a domain $\Omega \subset \mathbb{C}^n$ is defined as

$$g_{\Omega}(z, w) = \sup\{u(z) : u \in PSH^{-}(\Omega), u(z) \le \log|z - w| + O(1) \text{ near } w\}.$$

We first show the following quasi-Hölder-continuity of ρ .

Lemma 2.4. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. For every r > 1 and $0 < \alpha < \alpha(\Omega)$, there exists a constant C > 0 such that

$$\varrho(z_2) \ge r \varrho(z_1) - C |z_1 - z_2|^{\alpha}, \quad z_1, z_2 \in \Omega.$$
(2-5)

Proof. Choose $\rho \in C(\Omega) \cap PSH^{-}(\Omega)$ with $-\rho \leq C_{\alpha}\delta^{\alpha}$. Clearly

$$\varrho(z) \ge \frac{\rho(z)}{\inf_{\bar{B}}|\rho|} \ge -C_{\alpha}\delta^{\alpha}$$

To get (2-5), we employ a well-known technique of Walsh [1968] as follows. Set $\varepsilon := |z_1 - z_2|$, $\Omega' := \Omega - (z_1 - z_2)$ and

$$u(z) = \begin{cases} \varrho(z) & \text{if } z \in \Omega \setminus \Omega', \\ \max\{\varrho(z), r\varrho(z+z_1-z_2) - C\varepsilon^{\alpha}\} & \text{if } z \in \Omega \cap \Omega'. \end{cases}$$

We claim that $u \in PSH^{-}(\Omega)$ provided $C \gg 1$. Indeed, if $z \in \Omega \cap \partial \Omega'$, then $\delta(z) \leq \varepsilon$ so that

$$\varrho(z) \ge -C_{\alpha}\delta(z)^{\alpha} \ge -C_{\alpha}\varepsilon^{\alpha} \ge r\varrho(z+z_1-z_2) - C_{\alpha}\varepsilon^{\alpha}.$$

Moreover, if $\varepsilon \leq \varepsilon_r \ll 1$, then $\varrho(z + z_1 - z_2) \leq -1/r$ for $z \in \overline{B}$ since ϱ is continuous on $\overline{\Omega}$. Thus, $u|_{\overline{B}} \leq -1$. Since $z_2 = z_1 - (z_1 - z_2) \in \Omega \cap \Omega'$, it follows that

$$\varrho(z_2) \ge u(z_2) \ge r \varrho(z_1) - C_{\alpha} \varepsilon^{\alpha}.$$

If $\varepsilon = |z_1 - z_2| > \varepsilon_r$, then (2-5) trivially holds.

Remark. It is not known whether ρ is Hölder-continuous on $\overline{\Omega}$. The answer is positive if n = 1 [Carleson and Gamelin 1993, p. 138].

Proposition 2.5. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. There exists a constant $C \gg 1$ such that

$$\{g_{\Omega}(\cdot, w) < -1\} \subset \{\varrho < -C^{-1}\mu(w)\}, \quad w \in \Omega.$$
(2-6)

Proof. Fix $0 < \alpha < \alpha(\Omega)$. We have $-\varrho \le C_{\alpha}\delta^{\alpha}$ for some constant $C_{\alpha} > 0$. Clearly, it suffices to consider the case when $|\varrho(w)| \le \frac{1}{2}$. Applying Lemma 2.4 with $r = \frac{3}{2}$, we see that if $\varrho(z) = \varrho(w)/2$ then

$$C_1|z-w|^{\alpha} \ge \frac{3}{2}\varrho(z) - \varrho(w) = -\frac{1}{4}\varrho(w)$$

so that

$$\log \frac{|z-w|}{R} \ge \frac{1}{\alpha} \log|\varrho(w)|/(4C_1) - \log R \ge C_2 \log|\varrho(w)|$$

for some constant $C_2 \gg 1$. It follows that

$$\psi(z) := \begin{cases} \log|z - w|/R & \text{if } \varrho(z) \le \varrho(w)/2, \\ \max\{\log|z - w|/R, 2C_2(\varrho(w)^{-1}\log|\varrho(w)|)\varrho(z)\} & \text{otherwise} \end{cases}$$

is a well-defined negative psh function on Ω with a logarithmic pole at w, and if $\varrho(z) \ge \varrho(w)/2$, then

$$g_{\Omega}(z,w) \ge \psi(z) \ge 2C_2(\varrho(w)^{-1}\log|\varrho(w)|)\varrho(z).$$
(2-7)

Thus,

$$\{g_{\Omega}(\cdot, w) < -1\} \cap \{\varrho \ge \varrho(w)/2\} \subset \{\varrho < -C^{-1}\mu(w)\}$$

provided $C \gg 1$. Since $\{ \rho < \rho(w)/2 \} \subset \{ \rho < -C^{-1}\mu(w) \}$ if $C \gg 1$, we conclude the proof.

Proof of Proposition 2.3. Set $A_w := \{g_{\Omega}(\cdot, w) < -1\}$. It is known from [Herbort 1999] or [Chen 1999] that

$$K_{A_w}(w) \le C_n K_{\Omega}(w). \tag{2-8}$$

By Proposition 2.5,

$$A_w \subset \Omega_{a(w)} := \{ \varrho < -a(w) \}$$

$$(2-9)$$

where $a(w) := C^{-1}\mu(w)$ with $C \gg 1$. If we choose $\rho = \rho$ in Proposition 2.1, it follows that, for every $\varepsilon \le \varepsilon_r a(w)$,

$$\int_{-\varrho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 \le C_r K_{\Omega_{a(w)}}(w) (\varepsilon/a(w))^r \le C_{n,r} K_{\Omega}(w) (\varepsilon/a(w))^r$$
(2-10)

in view of (2-8) and (2-9).

3. L^p-integrability of the Bergman kernel

Proof of Theorem 1.1. Without loss of generality, we may assume $\alpha(\Omega) > 0$. For every $0 < \alpha < \alpha(\Omega)$, we may choose $\rho \in PSH^{-}(\Omega)$ such that

$$-\rho \le C_{\alpha}\delta^{\alpha}$$

for some constant $C_{\alpha} > 0$. Let *S* be a compact set in Ω , and let $w \in S$. By virtue of Proposition 2.1, we conclude that, for every 0 < r < 1,

$$\int_{-\rho \le \varepsilon} |K_{\Omega}(\,\cdot\,,w)|^2 \le C\varepsilon^r$$

where $C = C(n, r, \alpha, S) > 0$. Since $\{\delta \le \varepsilon\} \subset \{-\rho \le C_{\alpha}\varepsilon^{\alpha}\}$, it follows that

$$\int_{\delta \leq \varepsilon} |K_{\Omega}(\cdot, w)|^2 \leq C \varepsilon^{r\alpha}.$$

Since $|\delta(\zeta) - \delta(z)| \le |\zeta - z|$, we have $B(z, \delta(z)) \subset \{\delta \le 2\delta(z)\}$. By the mean value inequality, we get

$$|K_{\Omega}(z,w)|^{2} \leq C_{n}\delta(z)^{-2n} \int_{\delta \leq 2\delta(z)} |K_{\Omega}(\cdot,w)|^{2} \leq C\delta(z)^{r\alpha-2n}.$$
(3-1)

Thus, for every $\tau > 0$,

$$\begin{split} \int_{\Omega} |K_{\Omega}(\cdot, w)|^{2+\tau} &= \int_{\delta > 1/2} |K_{\Omega}(\cdot, w)|^{2+\tau} + \sum_{k=1}^{\infty} \int_{2^{-k-1} < \delta \le 2^{-k}} |K_{\Omega}(\cdot, w)|^{2+\tau} \\ &\le C 2^{n\tau} \int_{\Omega} |K_{\Omega}(\cdot, w)|^{2} + C \sum_{k=1}^{\infty} 2^{(k+1)\tau(n-r\alpha/2)} \int_{\delta \le 2^{-k}} |K_{\Omega}(\cdot, w)|^{2} \\ &\le C + C 2^{\tau(n-r\alpha/2)} \sum_{k=1}^{\infty} 2^{-k(r\alpha+\tau(r\alpha/2-n))} \\ &< \infty \end{split}$$

provided $\tau < 2r\alpha/(2n - r\alpha)$. Since *r* and α can be arbitrarily close to 1 and $\alpha(\Omega)$, respectively, we conclude the proof of the first statement.

Since $\{\delta \leq \varepsilon\} \subset \{-\varrho \leq C_{\alpha}\varepsilon^{\alpha}\}$, it follows from Proposition 2.3 that

$$\int_{\delta \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 / K_{\Omega}(w) \le C_{\alpha, r} (\varepsilon^{\alpha} / \mu(w))^r$$
(3-2)

provided $\varepsilon^{\alpha}/\mu(w) \leq \varepsilon_r \ll 1$. For every $z \in \Omega$,

$$|K_{\Omega}(z,w)|^2/K_{\Omega}(w) \le K_{\Omega}(z) \le C_n \delta(z)^{-2n},$$
(3-3)

and if $(2\delta(z))^{\alpha} \leq \varepsilon_r \mu(w)$,

$$|K_{\Omega}(z,w)|^{2} \leq C_{n}\delta(z)^{-2n} \int_{\delta \leq 2\delta(z)} |K_{\Omega}(\cdot,w)|^{2}$$
$$\leq C_{\alpha,r}K_{\Omega}(w)\mu(w)^{-r}\delta(z)^{\alpha r-2n}.$$
(3-4)

For every $\tau < 2r\alpha/(2n - r\alpha)$, we conclude from (3-3) that

$$\int_{2\delta \ge (\varepsilon_r \mu(w))^{1/\alpha}} |K_{\Omega}(\cdot, w)|^{2+\tau} \le C_n K_{\Omega}(w)^{\tau/2} \int_{2\delta \ge (\varepsilon_r \mu(w))^{1/\alpha}} |K_{\Omega}(\cdot, w)|^2 \delta^{-n\tau}$$
$$\le C_{\alpha, r} \frac{K_{\Omega}(w)^{\tau/2}}{\mu(w)^{n\tau/\alpha}} \int_{\Omega} |K_{\Omega}(\cdot, w)|^2$$
$$\le C_{\alpha, r} \frac{K_{\Omega}(w)^{1+\tau/2}}{\mu(w)^{n\tau/\alpha}}.$$
(3-5)

Now choose $k_w \in \mathbb{Z}^+$ such that $(\varepsilon_r \mu(w))^{1/\alpha} \in (2^{-k_w-1}, 2^{-k_w}]$ (it suffices to consider the case when $\mu(w)$ is sufficiently small). We then have

$$\begin{split} \int_{2\delta < (\varepsilon_{r}\mu(w))^{1/\alpha}} |K_{\Omega}(\cdot,w)|^{2+\tau} &\leq \sum_{k=k_{w}}^{\infty} \int_{2^{-k-1} < \delta \leq 2^{-k}} |K_{\Omega}(\cdot,w)|^{2+\tau} \\ &\leq C_{\alpha,r,\tau} \frac{K_{\Omega}(w)^{\tau/2}}{\mu(w)^{\tau r/2}} \sum_{k=k_{w}}^{\infty} 2^{k\tau(n-r\alpha/2)} \int_{\delta \leq 2^{-k}} |K_{\Omega}(\cdot,w)|^{2} \quad (by \ (3-4)) \\ &\leq C_{\alpha,r,\tau} \frac{K_{\Omega}(w)^{1+\tau/2}}{\mu(w)^{r(1+\tau/2)}} \sum_{k=k_{w}}^{\infty} 2^{-k(r\alpha+\tau(r\alpha/2-n))} \qquad (by \ (3-2)) \\ &\leq C_{\alpha,r,\tau} \frac{K_{\Omega}(w)^{1+\tau/2}}{\mu(w)^{r(1+\tau/2)}} \mu(w)^{(r\alpha+\tau(r\alpha/2-n))/\alpha} \\ &\leq C_{\alpha,r,\tau} \frac{K_{\Omega}(w)^{1+\tau/2}}{\mu(w)^{\tau n/\alpha}}. \end{split}$$
(3-6)

By (3-5) and (3-6), (1-1) immediately follows.

Proof of Theorem 1.2. It suffices to use the following lemma instead of (3-1) in the proof of the first statement in Theorem 1.1.

Lemma 3.1. Let Ω be a domain in \mathbb{C} . For every compact set $S \subset \Omega$ and $\alpha < \alpha(\Omega)$, there exists a constant C > 0 such that

$$|K_{\Omega}(z, w)| \le C\delta(z)^{\alpha-1}, \quad z \in \Omega, \ w \in S.$$

Proof. Let $g_{\Omega}(z, w)$ be the (negative) Green function on Ω . Let $\Delta(c, r)$ be the disc with center c and radius r. Fix $w \in S$ and $z \in \Omega$ for a moment. Clearly, it suffices to consider the case when $\delta(z) \leq \delta(w)/4$. Since $g_{\Omega}(\xi, \zeta)$ is harmonic in $\xi \in \Delta(z, \delta(z))$ and $\zeta \in \Delta(w, \delta(w)/2)$, respectively, we conclude from Poisson's formula that

$$g_{\Omega}(\xi,\zeta) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} g_{\Omega}(z + \frac{1}{2}\delta(z)e^{i\theta}, w + \frac{1}{2}\delta(w)e^{i\vartheta}) \\ \times \frac{\frac{1}{4}\delta(z)^2 - |\xi-z|^2}{\left|\frac{1}{2}\delta(z)e^{i\theta} - (\xi-z)\right|^2} \frac{\frac{1}{4}\delta(w)^2 - |\zeta-w|^2}{\left|\frac{1}{2}\delta(w)e^{i\vartheta} - (\zeta-w)\right|^2} \, d\theta \, d\vartheta$$

where $\xi \in \Delta(z, \delta(z)/4)$ and $\zeta \in \Delta(w, \delta(w)/4)$. By the extremal property of g_{Ω} , it is easy to verify that $-g_{\Omega} \leq C\delta(z)^{\alpha}$ on $\partial\Delta(z, \delta(z)/2) \times \partial\Delta(w, \delta(w)/2)$. Thus,

$$\left|\frac{\partial^2 g_{\Omega}(\xi,\zeta)}{\partial \xi \, \partial \bar{\zeta}}\right| \leq C \delta(z)^{\alpha-1}.$$

Using the formula $K_{\Omega}(\xi, \zeta) = \frac{2}{\pi} \frac{\partial^2 g_{\Omega}(\xi, \zeta)}{\partial \xi \partial \overline{\zeta}}$ from [Schiffer 1946], the assertion immediately follows. \Box

In order to prove Proposition 1.3, we need the following:

Theorem 3.2 [Carleson 1967, §6, Theorem 1]. Let $\Omega = \mathbb{C} \setminus E$ where $E \subset \mathbb{C}$ is a compact set. Then

- (1) $A^2(\Omega) \neq \{0\}$ if and only if $\operatorname{Cap}(E) > 0$, and
- (2) $A^{p}(\Omega) = \{0\}$ if $\Lambda_{2-q}(E) < \infty$, 2 and <math>1/p + 1/q = 1. Here $\Lambda_{s}(E)$ denotes the s-dimensional Hausdorff measure of E.

Remark. Let $\Omega \subset \mathbb{C}$ be a domain and *E* a closed polar set in Ω . It is well-known that *E* is removable for negative harmonic functions so that $g_{\Omega \setminus E}(z, w) = g_{\Omega}(z, w)$ for $z, w \in \Omega \setminus E$. Thus, $K_{\Omega \setminus E}(z, w) = K_{\Omega}(z, w)$ in view of Schiffer's formula. By the reproducing property of the Bergman kernel, we immediately get the known fact that $A^2(\Omega \setminus E) = A^2(\Omega)$.

Proof of Proposition 1.3. Suppose on the contrary $\beta(\Omega) > 2 + \dim_H(E)/(1 - \dim_H(E))$. Fix

$$\beta(\Omega) > p > 2 + \frac{\dim_H(E)}{1 - \dim_H(E)},$$

and let q be the conjugate exponent of p, i.e., 1/p+1/q = 1. We then have $K_{\Omega}(\cdot, w) \in A^{p}(\Omega)$ for fixed w. Since

$$\dim_H(E) = \sup\{s : \Lambda_s(E) = \infty\}$$

and $2-q > \dim_H(E)$, it follows that $\Lambda_{2-q}(E) < \infty$ so that $K_{\Omega}(\cdot, w) = 0$ in view of Theorem 3.2(2). On the other hand, $\operatorname{Cap}(E) > 0$, so $K_{\Omega}(\cdot, w) \neq 0$ in view of Theorem 3.2(1), which is absurd. Theorem 1.2 implies $\beta(\Omega) \to \infty$ as $\alpha(\Omega) \to 1$ for planar domains (notice that $\alpha(\Omega) = 1$ when $\Omega \subset \mathbb{C}$ is convex or $\partial\Omega$ is C^1). It is also known that $\beta(\Omega) = \infty$ if Ω is a bounded smooth convex domain in \mathbb{C}^n [Boas and Straube 1991]. Thus, it is reasonable to make the following:

Conjecture 3.3. If $\Omega \subset \mathbb{C}^n$ is convex, then $\beta(\Omega) = \infty$.

4. Applications of L^{p} -integrability of the Bergman kernel

We first study density of $A^p(\Omega) \cap A^2(\Omega)$ in $A^2(\Omega)$.

Proposition 4.1. Let Ω be a pseudoconvex domain in \mathbb{C}^n . For every $1 \le p < 2 + 2\alpha(\Omega)/(2n - \alpha(\Omega))$, $A^p(\Omega) \cap A^2(\Omega)$ lies dense in $A^2(\Omega)$.

Proof. Choose a sequence of functions $\chi_j \in C_0^{\infty}(\Omega)$ such that $0 \le \chi_j \le 1$ and the sequence of sets $\{\chi_j = 1\}$ exhausts Ω . Given $f \in A^2(\Omega)$, we set $f_j = P_{\Omega}(\chi_j f)$. Clearly, $f_j \in A^p(\Omega) \cap A^2(\Omega)$ in view of Theorem 1.1 and (1-2). Moreover,

$$\|f_j - f\|_{L^2(\Omega)} = \|P_{\Omega}((\chi_j - 1)f)\|_{L^2(\Omega)} \le \|(\chi_j - 1)f\|_{L^2(\Omega)} \to 0.$$

Similarly, we may prove the following:

Proposition 4.2. Let Ω be a domain in \mathbb{C} . For every $1 \le p < 2 + \alpha(\Omega)/(1 - \alpha(\Omega))$, $A^p(\Omega) \cap A^2(\Omega)$ lies *dense in* $A^2(\Omega)$.

Next we study the reproducing property of the Bergman kernel in $A^p(\Omega)$.

Proposition 4.3. Let Ω be a bounded domain in \mathbb{C} with $\alpha(\Omega) > 0$. If $p > 2 - \alpha(\Omega)$, then $f = P_{\Omega}(f)$ for all $f \in A^{p}(\Omega)$.

Proof. Suppose $f \in A^p(\Omega)$ with $p > 2 - \alpha(\Omega)$. Let q be the conjugate exponent of p. Since $q < 2 + \alpha(\Omega)/(1 - \alpha(\Omega))$, the integral $\int_{\Omega} f(\cdot)K_{\Omega}(z, \cdot)$ is well-defined in view of Theorem 1.2. Clearly, it suffices to consider the case p < 2. By Theorem 1 of [Hedberg 1972], we may find a sequence $f_j \in \mathbb{O}(\overline{\Omega}) \subset A^2(\Omega) \subset A^p(\Omega)$ such that $||f_j - f||_{L^p(\Omega)} \to 0$. It follows that, for every $z \in \Omega$,

$$f(z) = \lim_{j \to \infty} f_j(z) = \lim_{j \to \infty} \int_{\Omega} f_j(\cdot) K_{\Omega}(z, \cdot) = \int_{\Omega} f(\cdot) K_{\Omega}(z, \cdot)$$

since $K_{\Omega}(z, \cdot) \in L^{q}(\Omega)$.

For a bounded domain $\Omega \subset \mathbb{C}^n$, the *Berezin transform* T_Ω of Ω is defined as

$$T_{\Omega}(f)(z) = \int_{\Omega} f(\cdot) \frac{|K_{\Omega}(\cdot, z)|^2}{K_{\Omega}(z)}, \quad z \in \Omega, \ f \in L^{\infty}(\Omega).$$

Clearly, one has $f = T_{\Omega}(f)$ for all $f \in A^{\infty}(\Omega)$.

Corollary 4.4. Let Ω be a bounded domain in \mathbb{C} with $\alpha(\Omega) > 0$. If $p > 2/\alpha(\Omega) - 1$, then $f = T_{\Omega}(f)$ for all $f \in A^{p}(\Omega)$.

Proof. Set p' = 2p/(p+1). It follows from Hölder's inequality that

$$\begin{split} \int_{\Omega} |fK_{\Omega}(\cdot,z)|^{p'} &\leq \left(\int_{\Omega} |f|^{p'/(2-p')} \right)^{2-p'} \left(\int_{\Omega} |K_{\Omega}(\cdot,z)|^{p'/(p'-1)} \right)^{p'-1} \\ &= \left(\int_{\Omega} |f|^{p} \right)^{2-p'} \left(\int_{\Omega} |K_{\Omega}(\cdot,z)|^{p'/(p'-1)} \right)^{p'-1} \\ &< \infty \end{split}$$

since $p' > 2 - \alpha(\Omega)$ and $p'/(p'-1) < 2 + \alpha(\Omega)/(1 - \alpha(\Omega))$. Thus, $h := f K_{\Omega}(\cdot, z)/K_{\Omega}(z) \in A^{p'}(\Omega)$ for fixed $z \in \Omega$ so that

$$f(z) = h(z) = \int_{\Omega} h(\cdot) K_{\Omega}(z, \cdot) = \int_{\Omega} f(\cdot) \frac{|K_{\Omega}(\cdot, z)|^2}{K_{\Omega}(z)}.$$

For higher-dimensional cases, we can only prove the following:

Proposition 4.5. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n . Suppose there exists a negative psh exhaustion function ρ on Ω such that, for suitable constants $C, \alpha > 0$,

$$|\rho(z) - \rho(w)| \le C|z - w|^{\alpha}, \quad z, w \in \Omega.$$

For every $p > 4n/(2n + \alpha)$, one has $f = P_{\Omega}(f)$ for all $f \in A^p(\Omega)$.

Proof. Set $\Omega_t = \{-\rho > t\}, t \ge 0$, and $\rho_t := \rho + t$. For every $z \in \Omega_t$, we choose $z^* \in \partial \Omega_t$ such that $|z - z^*| = \delta_t(z) := d(z, \partial \Omega_t)$. We then have

$$|\rho_t(z)| = |\rho_t(z) - \rho_t(z^*)| \le C|z - z^*|^{\alpha} = C\delta_t(z)^{\alpha}$$

where C is a constant independent of t. By a similar argument as the proof of Theorem 1.1, we may show that, for fixed $w \in \Omega$,

$$\int_{\Omega_t} |K_{\Omega_t}(\cdot, w)|^q \le C = C(q, w) < \infty$$

holds uniformly in $t \ll 1$ for every $q < 2 + 2\alpha/(2n - \alpha)$. Let $2 > p > 4n/(2n + \alpha)$ and $f \in A^p(\Omega)$. Fix $z \in \Omega$ for a moment. For every $t \ll 1$, we have $z \in \Omega_t$ and

$$f(z) = \int_{\Omega_t} f(\cdot) K_{\Omega_t}(z, \cdot).$$
(4-1)

Notice that

$$\begin{aligned} \left| \int_{\Omega} f(\cdot) K_{\Omega}(z, \cdot) - \int_{\Omega_{t}} f(\cdot) K_{\Omega_{t}}(z, \cdot) \right| \\ & \leq \int_{\Omega_{t}} |f| |K_{\Omega}(z, \cdot) - K_{\Omega_{t}}(z, \cdot)| + \int_{\Omega \setminus \Omega_{t}} |f| |K_{\Omega}(z, \cdot)| \\ & \leq \|f\|_{L^{p}(\Omega)} \|K_{\Omega}(z, \cdot) - K_{\Omega_{t}}(z, \cdot)\|_{L^{q}(\Omega_{t})} + \|f\|_{L^{p}(\Omega \setminus \Omega_{t})} \|K_{\Omega}(z, \cdot)\|_{L^{q}(\Omega)} \quad (4-2) \end{aligned}$$

where 1/p + 1/q = 1 (which implies $q < 2 + 2\alpha/(2n - \alpha)$). Take $0 < \gamma \ll 1$ so that $(q - \gamma)/(1 - \gamma/2) < 2 + 2\alpha/(2n - \alpha)$. We then have

$$\begin{split} \int_{\Omega_t} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^q \\ &= \int_{\Omega_t} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^{\gamma} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^{q-\gamma} \\ &\leq \left(\int_{\Omega_t} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^2 \right)^{\gamma/2} \left(\int_{\Omega_t} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^{(q-\gamma)/(1-\gamma/2)} \right)^{1-\gamma/2} \end{split}$$

in view of Hölder's inequality. Since

$$\int_{\Omega_t} |K_{\Omega}(z, \cdot) - K_{\Omega_t}(z, \cdot)|^2 = \int_{\Omega_t} |K_{\Omega}(z, \cdot)|^2 + \int_{\Omega_t} |K_{\Omega_t}(z, \cdot)|^2 - 2\operatorname{Re} \int_{\Omega_t} K_{\Omega}(z, \cdot) K_{\Omega_t}(\cdot, z)$$

$$\leq K_{\Omega_t}(z) - K_{\Omega}(z)$$

$$\to 0 \quad (t \to 0)$$

and

$$\begin{split} \int_{\Omega_t} |K_{\Omega}(z,\cdot) - K_{\Omega_t}(z,\cdot)|^{(q-\gamma)/(1-\gamma/2)} \\ &\leq 2^{(q-\gamma)/(1-\gamma/2)} \left(\int_{\Omega} |K_{\Omega}(z,\cdot)|^{(q-\gamma)/(1-\gamma/2)} + \int_{\Omega_t} |K_{\Omega_t}(z,\cdot)|^{(q-\gamma)/(1-\gamma/2)} \right) \\ &\leq C, \end{split}$$

it follows from (4-1) and (4-2) that $f = P_{\Omega}(f)$.

Similarly, we have:

Corollary 4.6. If $p > 2n/\alpha$, then $f = T_{\Omega}(f)$ for all $f \in A^p(\Omega)$.

5. Estimate of the pluricomplex Green function

The goal of this section is to show the following:

Proposition 5.1. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with $\alpha(\Omega) > 0$. There exists a constant $C \gg 1$ such that

$$\{g_{\Omega}(\cdot, w) < -1\} \subset \{\varrho > -C\nu(w)\}, \quad w \in \Omega,$$
(5-1)

where $v = |\varrho|(1 + |\log|\varrho||)^n$.

We will follow the argument of Błocki [2005] with necessary modifications. The key observation is the following:

Lemma 5.2 [Błocki 2005]. Let $\Omega \subset \mathbb{C}^n$ be a bounded hyperconvex domain. Suppose ζ and w are two points in Ω such that the closed balls $\overline{B}(\zeta, \varepsilon)$, $\overline{B}(w, \varepsilon) \subset \mathbb{C}^n$ and $\overline{B}(\zeta, \varepsilon) \cap \overline{B}(w, \varepsilon) = \emptyset$. Then there exists $\tilde{\zeta} \in \overline{B}(\zeta, \varepsilon)$ such that

$$|g_{\Omega}(\tilde{\zeta}, w)|^{n} \le n! \left(\log R/\varepsilon\right)^{n-1} |g_{\Omega}(w, \zeta)|$$
(5-2)

where $R := \operatorname{diam}(\Omega)$.

For the sake of completeness, we include a proof here, which relies heavily on the following fundamental results.

Theorem 5.3 [Demailly 1987]. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n .

- (1) For every $w \in \Omega$, one has $(dd^c g_{\Omega}(\cdot, w))^n = (2\pi)^n \delta_w$, where δ_w denotes the Dirac measure at w.
- (2) For every $\zeta \in \Omega$ and $\eta > 0$, one has $\int_{\Omega} (dd^c \max\{g_{\Omega}(\cdot, \zeta), -\eta\})^n = (2\pi)^n$.

Theorem 5.4 ([Błocki 1993]; see also [Błocki 2002]). Let Ω be a bounded domain in \mathbb{C}^n . Assume that $u, v \in PSH^- \cap L^{\infty}(\Omega)$ are nonpositive psh functions such that u = 0 on $\partial \Omega$. Then

$$\int_{\Omega} |u|^{n} (dd^{c}v)^{n} \le n! \, \|v\|_{\infty}^{n-1} \int_{\Omega} |v| (dd^{c}u)^{n}.$$
(5-3)

Proof of Lemma 5.2. Let $\eta = \log R/\varepsilon$. Since $g_{\Omega}(z, \zeta) \ge \log |z - \zeta|/R$, it follows that

$$\{g_{\Omega}(\cdot,\zeta)=-\eta\}\subset \overline{B}(\zeta,\varepsilon).$$

First applying Theorem 5.4 with $u = \max\{g_{\Omega}(\cdot, w), -t\}$ and $v = \max\{g_{\Omega}(\cdot, \zeta), -\eta\}$ and then letting $t \to +\infty$, we obtain

$$\int_{\Omega} |g_{\Omega}(\cdot, w)|^n (dd^c \max\{g_{\Omega}(\cdot, \zeta), -\eta\})^n \le n! (2\pi)^n \eta^{n-1} |g_{\Omega}(w, \zeta)|$$

in view of Theorem 5.3(1). Since $\overline{B}(\zeta, \varepsilon) \cap \overline{B}(w, \varepsilon) = \emptyset$, it follows that $g_{\Omega}(\cdot, w)$ is continuous on $\overline{B}(\zeta, \varepsilon)$ so that there exists $\tilde{\zeta} \in \overline{B}(\zeta, \varepsilon)$ such that

$$|g_{\Omega}(\tilde{\zeta}, w)| = \min_{\bar{B}(\zeta, \varepsilon)} |g_{\Omega}(\cdot, w)|.$$

Since the measure $(dd^c \max\{g_{\Omega}(\cdot, \zeta), -\eta\})^n$ is supported on $\{g_{\Omega}(\cdot, \zeta) = -\eta\}$ with total mass $(2\pi)^n$, we immediately get (5-2).

Proof of Proposition 5.1. Clearly, it suffices to consider the case when w is sufficiently close to $\partial\Omega$. Fix $\zeta \in \Omega$ with $\varrho(\zeta) \leq 2\varrho(w)$ for a moment. Set $\varepsilon := |\varrho(w)|^{2/\alpha}$. Since $\varepsilon \leq C_{\alpha}^{2/\alpha} \delta(w)^2$, we see that $\overline{B}(w, \varepsilon) \subset \Omega$ provided $\delta(w) \leq \varepsilon_{\alpha} \ll 1$. For every $z \in \Omega$ with $\delta(z) \leq \varepsilon$, we have

$$|\varrho(z)| \le C_{\alpha}\delta(z)^{\alpha} \le C_{\alpha}\varepsilon^{\alpha} = C_{\alpha}|\varrho(w)|^{2} \quad (\le |\varrho(w)|/2)$$
(5-4)

provided $\delta(w) \le \varepsilon_{\alpha} \ll 1$. It follows from (2-7) and (5-4) that for every $\tau > 0$ there exists $\varepsilon_{\tau} \ll \varepsilon_{\alpha}$ such that

$$\sup_{\delta \le \varepsilon} |g_{\Omega}(\cdot, w)| \le \tau \tag{5-5}$$

provided $\delta(w) \leq \varepsilon_{\tau}$. Since

$$C_{\alpha}\delta(\zeta)^{\alpha} \ge -\varrho(\zeta) \ge -2\varrho(w) = 2\varepsilon^{\alpha/2}$$

and Lemma 2.4 yields

$$C_1|\zeta - w|^{\alpha} \ge \frac{3}{2}\varrho(w) - \varrho(\zeta) \ge -\frac{1}{2}\varrho(w) = \frac{1}{2}\varepsilon^{\alpha/2},$$

it follows that if $\delta(w) \leq \varepsilon_{\tau} \ll 1$ then $\overline{B}(\zeta, \varepsilon) \subset \Omega$ and

$$\overline{B}(\zeta,\varepsilon) \cap \overline{B}(w,\varepsilon) = \varnothing.$$
(5-6)

By Lemma 5.2, there exists $\tilde{\zeta} \in \overline{B}(\zeta, \varepsilon)$ such that (5-2) holds.

Now set

$$\Psi(z) := \sup\{u(z) : u \in \mathsf{PSH}^{-}(\Omega), \ u|_{\bar{B}(w,\varepsilon)} \le -1\}.$$

We claim that

$$g_{\Omega}(z,w) \ge \log R/\varepsilon \Psi(z), \quad z \in \Omega \setminus B(w,\varepsilon), \qquad g_{\Omega}(z,w) \le \log \delta(w)/\varepsilon \Psi(z), \quad z \in \Omega.$$
 (5-7)

To see this, first notice that

$$\log \frac{|z-w|}{R} \le g_{\Omega}(z,w) \le \log \frac{|z-w|}{\delta(w)}, \quad z \in \Omega.$$
(5-8)

Since

$$u(z) = \begin{cases} \log|z - w|/R & \text{if } z \in B(w, \varepsilon), \\ \max\{\log|z - w|/R, \log R/\varepsilon \Psi(z)\} & \text{if } z \in \Omega \setminus B(w, \varepsilon) \end{cases}$$

is a negative psh function on Ω with a logarithmic pole at w, it follows that

$$g_{\Omega}(z, w) \ge \log R / \varepsilon \Psi(z), \quad z \in \Omega \setminus B(w, \varepsilon).$$

Since (5-8) implies $g_{\Omega}(\,\cdot\,,w)|_{\bar{B}(w,\varepsilon)} \leq \log \varepsilon / \delta(w)$, we have

$$\Psi(z) \ge \frac{g_{\Omega}(z, w)}{\log \delta(w)/\varepsilon}, \quad z \in \Omega.$$

By (5-5) and (5-7), we obtain

$$\sup_{\delta \le \varepsilon} |\Psi| \le \frac{\tau}{\log \delta(w)/\varepsilon}.$$
(5-9)

Set $\widetilde{\Omega} = \Omega - (\tilde{\zeta} - \zeta)$ and

$$v(z) = \begin{cases} \Psi(z) & \text{if } z \in \Omega \setminus \widetilde{\Omega}, \\ \max\{\Psi(z), \Psi(z + \widetilde{\zeta} - \zeta) - \tau/(\log \delta(w)/\varepsilon)\} & \text{if } z \in \Omega \cap \widetilde{\Omega}. \end{cases}$$

Since $\Omega \cap \partial \widetilde{\Omega} \subset \{\delta \le \varepsilon\}$, it follows from (5-9) that $v \in PSH^{-}(\Omega)$. Since

$$\Psi(z) \leq \frac{\log |z - w| / \delta(w)}{\log R/\varepsilon}, \quad z \in \Omega \setminus B(w, \varepsilon),$$

in view of (5-8) and (5-7), and $z + \tilde{\zeta} - \zeta \in \overline{B}(w, 2\varepsilon)$ if $z \in \overline{B}(w, \varepsilon)$, it follows from the maximal principle that

$$v|_{\bar{B}(w,\varepsilon)} \leq -\frac{\log \delta(w)/(2\varepsilon)}{\log R/\varepsilon}.$$

Thus,

$$\Psi(\tilde{\zeta}) - \frac{\tau}{\log \delta(w)/\varepsilon} \le v(\zeta) \le \frac{\log \delta(w)/(2\varepsilon)}{\log R/\varepsilon} \Psi(\zeta).$$

Combining with (5-6) and (5-7), we obtain

$$g_{\Omega}(\zeta, w) \ge \frac{(\log R/\varepsilon)^2}{\log \delta(w)/\varepsilon \cdot \log \delta(w)/(2\varepsilon)} (g_{\Omega}(\tilde{\zeta}, w) - \tau) \ge C_3(g_{\Omega}(\tilde{\zeta}, w) - \tau)$$

since $\delta(w) \ge |\varrho(w)/C_{\alpha}|^{1/\alpha} = \sqrt{\varepsilon}/C_{\alpha}^{1/\alpha}$. If we choose $\tau = 1/(2C_3)$, then

$$g_{\Omega}(\zeta, w) \ge -C_{3}(n!)^{1/n} (\log R/\varepsilon)^{1-1/n} |g_{\Omega}(w, \zeta)|^{1/n} - \frac{1}{2} \quad (by (5-2))$$
$$\ge -C_{4} |\log|\varrho(w)||^{1-1/n} \frac{|\varrho(w)\log|\varrho(\zeta)||^{1/n}}{|\varrho(\zeta)|^{1/n}} - \frac{1}{2} \quad (by (2-7))$$
$$\ge -C_{5} \frac{|\varrho(w)|^{1/n} |\log|\varrho(w)||}{|\varrho(\zeta)|^{1/n}} - \frac{1}{2}$$

since $\rho(\zeta) \leq 2\rho(w)$. Thus,

$$\{g_{\Omega}(\,\cdot\,,w)<-1\}\cap\{\varrho\leq 2\varrho(w)\}\subset\{\varrho>-C\nu(w)\}$$

provided $C \gg 1$. Since $\{\varrho > 2\varrho(w)\} \subset \{\varrho > -C\nu(w)\}$ if $C \gg 1$, we conclude the proof.

6. Pointwise estimate of the normalized Bergman kernel and applications

Proof of Theorem 1.7. By Proposition 2.3, we know that for every 0 < r < 1 there exist constants ε_r , $C_r > 0$ such that

$$\int_{-\varrho \le \varepsilon} |K_{\Omega}(\cdot, w)|^2 / K_{\Omega}(w) \le C_r(\varepsilon/\mu(w))^r$$

for all $\varepsilon \leq \varepsilon_r \mu(w)$. Fix $z \in \Omega$ with $b(z) := C\nu(z) \leq \varepsilon_r \mu(w)$ for a moment, where *C* is the constant in (5-1). Let $\chi : \mathbb{R} \to [0, 1]$ be a smooth function satisfying $\chi|_{(0,\infty)} = 0$ and $\chi|_{(-\infty, -\log 2)} = 1$. We proceed with the proof in a similar way as [Chen 1999]. Notice that $g_{\Omega}(\cdot, z)$ is a continuous negative psh function on $\Omega \setminus \{z\}$ which satisfies

$$-i\partial\bar{\partial}\log(-g_{\Omega}(\cdot,z)) \ge i\partial\log(-g_{\Omega}(\cdot,z)) \wedge \bar{\partial}\log(-g_{\Omega}(\cdot,z))$$

as currents. By virtue of the Donnelly–Fefferman estimate [1983] (see also [Berndtsson and Charpentier 2000]), there exists a solution of the equation

$$\bar{\partial}u = K_{\Omega}(\cdot, w)\bar{\partial}\chi(-\log(-g_{\Omega}(\cdot, z)))$$

such that

$$\begin{split} \int_{\Omega} |u|^2 e^{-2ng_{\Omega}(\cdot,z)} &\leq C_0 \int_{\Omega} |K_{\Omega}(\cdot,w)|^2 |\bar{\partial}\chi(-\log(-g_{\Omega}(\cdot,z)))|^2_{-i\partial\bar{\partial}\log(-g_{\Omega}(\cdot,z))} e^{-2ng_{\Omega}(\cdot,z)} \\ &\leq C_n \int_{\varrho > -b(z)} |K_{\Omega}(\cdot,w)|^2 \quad (\text{by (5-1)}) \\ &\leq C_{n,r} K_{\Omega}(w) (\nu(z)/\mu(w))^r. \end{split}$$

Set

$$f := K_{\Omega}(\cdot, w)\chi(-\log(-g_{\Omega}(\cdot, z))) - u$$

Clearly, we have $f \in \mathbb{O}(\Omega)$. Since $g_{\Omega}(\zeta, z) = \log|\zeta - z| + O(1)$ as $\zeta \to z$ and u is holomorphic in a neighborhood of z, it follows that u(z) = 0, i.e., $f(z) = K_{\Omega}(z, w)$. Moreover,

$$\int_{\Omega} |f|^2 \leq 2 \int_{\varrho > -b(z)} |K_{\Omega}(\cdot, w)|^2 + 2 \int_{\Omega} |u|^2$$
$$\leq C_{n,r} K_{\Omega}(w) (\nu(z)/\mu(w))^r$$

since $g_{\Omega}(\cdot, z) < 0$. Thus, we get

$$K_{\Omega}(z) \ge \frac{|f(z)|^2}{\|f\|_{L^2(\Omega)}^2} \ge C_{n,r}^{-1} \frac{|K_{\Omega}(z,w)|^2}{K_{\Omega}(w)} (\mu(w)/\nu(z))^r,$$

and

$$\mathfrak{B}_{\Omega}(z,w) \leq C_{n,r}(\nu(z)/\mu(w))^r$$

If $b(z) > \varepsilon_r \mu(w)$, then the inequality above trivially holds since $|K_{\Omega}(z, w)|^2 / (K_{\Omega}(z)K_{\Omega}(w)) \le 1$. By symmetry of \Re_{Ω} , the assertion immediately follows.

Remark. It would be interesting to get pointwise estimates for $|S_{\Omega}(z, w)|^2/(S_{\Omega}(z)S_{\Omega}(w))$, where S_{Ω} is the Szegö kernel (compare to [Chen and Fu 2011]).

Proof of Corollary 1.8. Let $z \in \Omega$ be an arbitrarily fixed point which is sufficiently close to $\partial \Omega$. By the Hopf–Rinow theorem, there exists a Bergman geodesic γ jointing z_0 to z, for ds_B^2 is complete on Ω . We may choose a finite number of points $\{z_k\}_{k=1}^m \subset \gamma$ with the order

$$z_0 \to z_1 \to z_2 \to \cdots \to z_m \to z,$$

where

$$|\varrho(z_{k+1})|(1+|\log|\varrho(z_{k+1})||)^{n+2} = |\varrho(z_k)|$$

and

$$|\varrho(z)|(1+|\log|\varrho(z)||)^{n+2} \ge |\varrho(z_m)|.$$

Since

$$\frac{\nu(z_{k+1})}{\mu(z_k)} = \frac{|\varrho(z_{k+1})|}{|\varrho(z_k)|} (1 + |\log|\varrho(z_{k+1})||)^n (1 + |\log|\varrho(z_k)||)$$
$$\leq \frac{|\varrho(z_{k+1})|}{|\varrho(z_k)|} (1 + |\log|\varrho(z_{k+1})||)^{n+1}$$
$$= (1 + |\log|\varrho(z_{k+1})||)^{-1},$$

it follows from Theorem 1.7 that there exists $k_0 \in \mathbb{Z}^+$ such that $\mathfrak{B}_{\Omega}(z_k, z_{k+1}) \leq \frac{1}{4}$ for all $k \geq k_0$. By (1-4),

 $d_B(z_k, z_{k+1}) \ge 1.$

Notice that

$$\begin{aligned} |\varrho(z_{k_0})| &= |\varrho(z_{k_0+1})| |\log|\varrho(z_{k_0+1})||^{n+2} \\ &\leq |\varrho(z_{k_0+2})| |\log|\varrho(z_{k_0+2})||^{2(n+2)} \\ &\leq \cdots \leq |\varrho(z_m)| |\log|\varrho(z_m)||^{(m-k_0)(n+2)}. \end{aligned}$$

Thus,

$$m - k_0 \ge \text{const.} \frac{|\log|\varrho(z_m)||}{\log|\log|\varrho(z_m)||} \ge \text{const.} \frac{|\log|\varrho(z)||}{\log|\log|\varrho(z)||}$$

so that

$$d_B(z, z_0) \ge \sum_{k=k_0}^{m-1} d_B(z_k, z_{k+1}) \ge m - k_0 - 1$$

$$\ge \operatorname{const.} \frac{|\log|\varrho(z)||}{|\log|\log|\varrho(z)|||}$$

$$\ge \operatorname{const.} \frac{|\log \delta(z)|}{\log|\log \delta(z)|}$$

since $|\varrho(z)| \leq C_{\alpha} \delta^{\alpha}$ for any $\alpha < \alpha(\Omega)$.

Proof of Corollary 1.9. For every $0 < \alpha < \alpha(\Omega)$, we have $-\rho \leq C_{\alpha}\delta^{\alpha}$. Theorem 1.7 then yields

$$D_B(z_0, z) \ge \alpha |\log \delta(z)|$$

as $z \to \partial \Omega$. Thus, it suffices to show

$$d_K(z, z_0) \le C |\log \delta(z)| \tag{6-1}$$

as $z \to \partial \Omega$. To see this, let F_K be the Kobayashi–Royden metric. Since F_K is decreasing under holomorphic mappings, we conclude that $F_K(z; X)$ is dominated by the KR metric of the ball $B(z, \delta(z))$. Thus, $F_K(z; X) \leq C|X|/\delta(z)$, from which (6-1) immediately follows (compare to the proof of Proposition 7.3 in [Chen 2016]).

In order to prove Corollary 1.10, we need the following elementary fact.

Lemma 6.1. If $\Omega \subset \mathbb{C}^n$ is a bounded weighted circular domain which contains the origin, then $K_{\Omega}(z, 0) = K_{\Omega}(0)$ for any $z \in \Omega$.

Proof. For fixed $\theta \in \mathbb{R}$, we set $F_{\theta}(z) := (e^{ia_1\theta}z_1, \dots, e^{ia_n\theta}z_n)$. By the transform formula of the Bergman kernel,

$$K_{\Omega}(F_{\theta}(z), 0) = K_{\Omega}(z, 0), \quad z \in \Omega.$$

It follows that, for any *n*-tuple (m_1, \ldots, m_n) of nonnegative integers,

$$\frac{\partial^{i(a_1m_1+\dots+a_nm_n)\theta}}{\partial z_1^{m_1}\cdots\partial z_n^{m_n}} \Big|_{z=0} = \frac{\partial^{m_1+\dots+m_n}K_{\Omega}(z,0)}{\partial z_1^{m_1}\cdots\partial z_n^{m_n}} \Big|_{z=0} \quad \text{for all } \theta \in \mathbb{R}$$

so that $\frac{\partial^{m_1+\dots+m_n}K_{\Omega}(z,0)}{\partial z_1^{m_1}\dots\partial z_n^{m_n}}\Big|_{z=0} = 0$ if not all m_j are zero. Taylor's expansion of $K_{\Omega}(z,0)$ at z=0 and the identity theorem of holomorphic functions yield $K_{\Omega}(z,0) = K_{\Omega}(0)$ for any $z \in \Omega$.

Proof of Corollary 1.10. By Lemma 6.1,

$$\mathscr{B}_{\Omega_2}(F(z),0) = K_{\Omega_2}(0)K_{\Omega_2}(F(z))^{-1} \ge C^{-1}\delta_2(F(z))^{2n}.$$

On the other hand, Theorem 1.7 implies

$$\mathscr{R}_{\Omega_1}(z, F^{-1}(0)) \le C_\alpha \delta_1(z)^\alpha.$$

Since $\Re_{\Omega_2}(F(z), 0) = \Re_{\Omega_1}(z, F^{-1}(0))$, we conclude the proof.

1448

Appendix: Examples of domains with positive hyperconvexity indices

We start with the following almost trivial fact.

Proposition A.1. Let Ω_1 and Ω_2 be two bounded domains in \mathbb{C}^n such that there exists a biholomorphic map $F : \Omega_1 \to \Omega_2$ which extends to a Hölder-continuous map $\overline{\Omega}_1 \to \overline{\Omega}_2$. If $\alpha(\Omega_2) > 0$, then $\alpha(\Omega_1) > 0$.

Proof. Let δ_1 and δ_2 denote the boundary distances of Ω_1 and Ω_2 , respectively. Choose $\rho_2 \in PSH^- \cap C(\Omega_2)$ such that $-\rho_2 \leq C\delta_2^{\alpha}$ for some $C, \alpha > 0$. Set $\rho_1 := \rho_2 \circ F$. Clearly, $\rho_1 \in PSH^- \cap C(\Omega_1)$. For fixed $z \in \Omega_1$, we choose $z^* \in \partial \Omega_1$ so that $|z - z^*| = \delta_1(z)$. Since $F(z^*) \in \partial \Omega_2$, it follows that

$$-\rho_1(z) \le C\delta_2(F(z))^{\alpha} = C(\delta_2(F(z)) - \delta_2(F(z^*)))^{\alpha}$$
$$\le C|F(z) - F(z^*)|^{\alpha} \le C|z - z^*|^{\gamma\alpha}$$
$$\le C\delta_1(z)^{\gamma\alpha}.$$

where γ is the order of Hölder continuity of *F* on $\overline{\Omega}_1$.

Example. Let $D \subset \mathbb{C}$ be a bounded Jordan domain which admits a uniformly Hölder-continuous conformal map f onto the unit disc Δ (e.g., a quasidisc with a fractal boundary). Set $F(z_1, \ldots, z_n) :=$ $(f(z_1), \ldots, f(z_n))$. Clearly, F is a biholomorphic map between D^n and Δ^n which extends to a Höldercontinuous map between their closures. Let

$$\Omega_2 := \{ z \in \mathbb{C}^n : |z_1|^{a_1} + \dots + |z_n|^{a_n} < 1 \},\$$

where $a_j > 0$. Clearly, we have $\alpha(\Omega_2) > 0$. By Proposition A.1, we conclude that the domain $\Omega_1 := F^{-1}(\Omega_2)$ satisfies $\alpha(\Omega_1) > 0$. Notice that some parts of $\partial \Omega_1$ might be highly irregular.

A domain $\Omega \subset \mathbb{C}^n$ is called \mathbb{C} -convex if $\Omega \cap L$ is a simply connected domain in L for every affine complex line L. Clearly, every convex domain is \mathbb{C} -convex.

Proposition A.2. If $\Omega \subset \mathbb{C}^n$ is a bounded \mathbb{C} -convex domain, then $\alpha(\Omega) \geq \frac{1}{2}$.

Proof. Let $w \in \Omega$ be an arbitrarily fixed point. Let w^* be a point on $\partial\Omega$ satisfying $\delta(w) = |w - w^*|$. Let *L* be the complex line determined by *w* and *w*^{*}. Since every \mathbb{C} -convex domain is linearly convex [Hörmander 1994, Theorem 4.6.8], it follows that there exists an affine complex hyperplane $H \subset \mathbb{C}^n \setminus \Omega$ with $w^* \in H$. Since $|w - w^*| = \delta(w)$, *H* has to be *orthogonal* to *L*. Let π_L denote the natural projection $\mathbb{C}^n \to L$. Notice that $\pi_L(\Omega)$ is a bounded simply connected domain in *L* in view of [Hörmander 1994, Proposition 4.6.7]. By Proposition 7.3 in [Chen 2016], there exists a negative continuous function ρ_L on $\pi_L(\Omega)$ with

$$(\delta_L/\delta_L(z_L^0))^2 \le -\rho_L \le (\delta_L/\delta_L(z_L^0))^{1/2}$$

where δ_L denotes the boundary distance of $\pi_L(\Omega)$ and $z_L^0 \in \pi_L(\Omega)$ satisfies $\delta_L(z_L^0) = \sup_{\pi_L(\Omega)} \delta_L$. Fix a point $z^0 \in \Omega$. We have

$$\delta_L(z_L^0) \ge \delta_L(\pi_L(z^0)) \ge \delta(z^0).$$

Set

$$\varrho_{z_0}(z) = \sup\{u(z) : u \in \text{PSH}^-(\Omega), \ u(z^0) \le -1\}$$

Clearly, $\rho_{z_0} \in \text{PSH}^-(\Omega)$. Since $\Omega \subset \pi_L^{-1}(\pi_L(\Omega))$, it follows that $\pi_L^*(\rho_L) \in \text{PSH}^-(\Omega)$. Since $\pi_L^*(\delta_L)(w) = \delta(w)$ and

$$\pi_L^*(\rho_L)(z^0) = \rho_L(\pi_L(z^0)) \le -(\delta_L(\pi_L(z^0))/\delta_L(z_L^0))^2,$$

then

$$\begin{split} \varrho_{z_0}(w) &\geq (\delta_L(z_L^0)/\delta_L(\pi_L(z^0)))^2 \pi_L^*(\rho_L)(w) \\ &\geq -(\delta_L(z_L^0)^{3/2}/\delta_L(\pi_L(z^0))^2)\delta(w)^{1/2} \\ &\geq -(R^{3/2}/\delta(z^0)^2)\delta(w)^{1/2}, \end{split}$$

where $R = \operatorname{diam}(\Omega)$. Thus, $\alpha(\Omega) \ge \frac{1}{2}$.

Remark. After the first version of this paper was finished, the author was kindly informed by Nikolai Nikolov that Proposition A.2 follows also from Proposition 3(ii) of [Nikolov and Trybuła 2015].

Complex dynamics also provides interesting examples of domains with $\alpha(\Omega) > 0$. Let $q(z) = \sum_{j=0}^{d} a_j z^j$ be a complex polynomial of degree $d \ge 2$. Let q^n denote the *n*-iterates of *q*. The attracting basin at ∞ of *q* is defined by

$$F_{\infty} := \{ z \in \overline{\mathbb{C}} : q^n(z) \to \infty \text{ as } n \to \infty \},\$$

which is a domain in $\overline{\mathbb{C}}$ with $q(F_{\infty}) = F_{\infty}$. The Julia set of q is defined by $J := \partial F_{\infty}$. It is known that J is always uniformly perfect. Thus, $\alpha(F_{\infty}) > 0$.

We say that q is *hyperbolic* if there exist constants C > 0 and $\gamma > 1$ such that

$$\inf_{I} |(q^n)'| \ge C\gamma^n \quad \text{for all } n \ge 1$$

Consider a holomorphic family $\{q_{\lambda}\}$ of hyperbolic polynomials of constant degree $d \ge 2$ over the unit disc Δ . Let F_{∞}^{λ} denote the attracting basin at ∞ of q_{λ} , and let $J_{\lambda} := \partial F_{\infty}^{\lambda}$. Let Ω_r denote the total space of F_{∞}^{λ} over the disc $\Delta_r := \{z \in \mathbb{C} : |z| < r\}$, where $0 < r \le 1$, that is

$$\Omega_r = \{ (\lambda, w) : \lambda \in \Delta_r, \ w \in F_{\infty}^{\lambda} \}.$$

Proposition A.3. For every 0 < r < 1, Ω_r is a bounded domain in \mathbb{C}^2 with $\alpha(\Omega_r) > 0$.

Proof. We first show that Ω_r is a domain. Mañé, Sad and Sullivan [Mañé et al. 1983] showed that there exists a family of maps $\{f_{\lambda}\}_{\lambda \in \Delta}$ such that

- (1) $f_{\lambda}: J_0 \to J_{\lambda}$ is a homeomorphism for each $\lambda \in \Delta$,
- (2) $f_0 = \mathrm{id}|_{J_0}$,
- (3) $f(\lambda, z) := f_{\lambda}(z)$ is holomorphic on Δ for each $z \in J_0$ and
- (4) $q_{\lambda} = f_{\lambda} \circ q_0 \circ f_{\lambda}^{-1}$ on J_{λ} , for each $\lambda \in \Delta$.

In other words, properties (1)–(3) say that $\{f_{\lambda}\}_{\lambda \in \Delta}$ gives a *holomorphic motion* of J_0 . By a result of Slodkowski [1991], $\{f_{\lambda}\}_{\lambda \in \Delta}$ may be extended to a holomorphic motion $\{\tilde{f}_{\lambda}\}_{\lambda \in \Delta}$ of $\overline{\mathbb{C}}$ such that

- (a) $\tilde{f}_{\lambda}: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a quasiconformal map of dilatation $\leq (1 + |\lambda|)/(1 |\lambda|)$, for each $\lambda \in \Delta$,
- (b) $\tilde{f}_{\lambda}: F_{\infty}^{0} \to F_{\infty}^{\lambda}$ is a homeomorphism for each $\lambda \in \Delta$ and
- (c) $\tilde{f}(\lambda, z) := \tilde{f}_{\lambda}(z)$ is jointly Hölder-continuous in (λ, z) .

1450

It follows immediately that Ω_r is a domain in \mathbb{C}^n for each $r \leq 1$. Let δ_{λ} and δ denote the boundary distances of F_{∞}^{λ} and Ω_1 , respectively. We claim that for every 0 < r < 1 there exists $\gamma > 0$ such that

$$\delta_{\lambda}(w) \le C\delta(\lambda, w)^{\gamma}, \quad \lambda \in \Delta_r, \ w \in F_{\infty}^{\lambda}.$$
 (A-1)

To see this, choose $(\lambda', w_{\lambda'})$ where $w_{\lambda'} \in J_{\lambda'}$, such that

$$\delta(\lambda, w) = \sqrt{|\lambda - \lambda'|^2 + |w - w_{\lambda'}|^2}.$$

Write $w_{\lambda'} = \tilde{f}(\lambda', z_0)$ where $z_0 \in J_0$. Since $\tilde{f}(\lambda, z_0) \in J_{\lambda}$, it follows that

$$\begin{split} \delta_{\lambda}(w) &\leq |w - \tilde{f}(\lambda, z_0)| \leq |w - w_{\lambda'}| + |\tilde{f}(\lambda', z_0) - \tilde{f}(\lambda, z_0)| \\ &\leq |w - w_{\lambda'}| + C|\lambda - \lambda'|^{\gamma} \\ &\leq \delta(\lambda, w) + C\delta(\lambda, w)^{\gamma} \\ &\leq C'\delta(\lambda, w)^{\gamma}, \end{split}$$

where γ is the order of Hölder continuity of \tilde{f} on Ω_r .

Recall that the Green function $g_{\lambda}(w) := g_{F_{\infty}^{\lambda}}(w, \infty)$ at ∞ of F_{∞}^{λ} satisfies

$$g_{\lambda}(w) = \lim_{n \to \infty} d^{-n} \log |q_{\lambda}^{n}(w)|, \quad w \in F_{\infty}^{\lambda},$$
(A-2)

where the convergence is uniform on compact subsets of F_{∞}^{λ} [Ransford 1995, Corollary 6.5.4]. Actually the proof of that result shows that the convergence is also uniform on compact subsets of Ω_1 . Since $\log |q_{\lambda}^n(w)|$ is psh in (λ, w) , so is $g(\lambda, w) := g_{\lambda}(w)$. By (A-1) it suffices to verify that for every 0 < r < 1there are positive constants *C* and α such that $-g_{\lambda}(w) \leq C\delta_{\lambda}(w)^{\alpha}$ for each $\lambda \in \Delta_r$ and $w \in F_{\infty}^{\lambda}$. This can be verified similarly to the proof of Theorem 3.2 in [Carleson and Gamelin 1993].

Conjecture A.4. Let $D \subset \mathbb{C}$ be a domain with $\alpha(D) > 0$. Let $\{f_{\lambda}\}_{\lambda \in \Delta}$ be a holomorphic motion of D. Let

$$\Omega_r := \{ (\lambda, w) : \lambda \in \Delta_r, w \in f_{\lambda}(D) \}.$$

One has $\alpha(\Omega_r) > 0$ for each r < 1.

Acknowledgements

It is my pleasure to thank the valuable comments from the referees, Professor Nikolai Nikolov and Dr. Xieping Wang.

References

[[]Adachi and Brinkschulte 2015] M. Adachi and J. Brinkschulte, "A global estimate for the Diederich–Fornaess index of weakly pseudoconvex domains", *Nagoya Math. J.* **220** (2015), 67–80.

[[]Andrievskii 2005] V. V. Andrievskii, "On sparse sets with Green function of the highest smoothness", *Comput. Methods Funct. Theory* **5**:2 (2005), 301–322.

[[]Barrett 1984] D. E. Barrett, "Irregularity of the Bergman projection on a smooth bounded domain in \mathbb{C}^2 ", Ann. of Math. (2) **119**:2 (1984), 431–436.

- [Barrett 1992] D. E. Barrett, "Behavior of the Bergman projection on the Diederich–Fornæss worm", *Acta Math.* **168**:1–2 (1992), 1–10.
- [Berger 1996] M. Berger, "Encounter with a geometer: Eugenio Calabi", pp. 20–60 in *Manifolds and geometry* (Pisa, 1993), edited by P. de Bartolomeis et al., Sympos. Math. **36**, Cambridge University, 1996.
- [Berndtsson and Charpentier 2000] B. Berndtsson and P. Charpentier, "A Sobolev mapping property of the Bergman kernel", *Math. Z.* 235:1 (2000), 1–10.
- [Bertilsson 1998] D. Bertilsson, "Coefficient estimates for negative powers of the derivative of univalent functions", *Ark. Mat.* **36**:2 (1998), 255–273.
- [Błocki 1993] Z. Błocki, "Estimates for the complex Monge–Ampère operator", *Bull. Polish Acad. Sci. Math.* **41**:2 (1993), 151–157.
- [Błocki 2002] Z. Błocki, "The complex Monge–Ampère operator in pluripotential theory", lecture notes, Jagiellonian University, Kraków, 2002, Available at http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf.
- [Błocki 2005] Z. Błocki, "The Bergman metric and the pluricomplex Green function", *Trans. Amer. Math. Soc.* **357**:7 (2005), 2613–2625.
- [Błocki and Pflug 1998] Z. Błocki and P. Pflug, "Hyperconvexity and Bergman completeness", *Nagoya Math. J.* **151** (1998), 221–225.
- [Boas and Straube 1991] H. P. Boas and E. J. Straube, "Sobolev estimates for the $\bar{\partial}$ -Neumann operator on domains in \mathbb{C}^n admitting a defining function that is plurisubharmonic on the boundary", *Math. Z.* **206**:1 (1991), 81–88.
- [Brennan 1978] J. E. Brennan, "The integrability of the derivative in conformal mapping", *J. London Math. Soc.* (2) **18**:2 (1978), 261–272.
- [Calabi 1953] E. Calabi, "Isometric imbedding of complex manifolds", Ann. of Math. (2) 58 (1953), 1–23.
- [Carleson 1967] L. Carleson, *Selected problems on exceptional sets*, Van Nostrand Math. Stud. **13**, Van Nostrand, Princeton, 1967.
- [Carleson and Gamelin 1993] L. Carleson and T. W. Gamelin, Complex dynamics, Springer, New York, 1993.
- [Carleson and Jones 1992] L. Carleson and P. W. Jones, "On coefficient problems for univalent functions and conformal dimension", *Duke Math. J.* **66**:2 (1992), 169–206.
- [Carleson and Makarov 1994] L. Carleson and N. G. Makarov, "Some results connected with Brennan's conjecture", *Ark. Mat.* **32**:1 (1994), 33–62.
- [Carleson and Totik 2004] L. Carleson and V. Totik, "Hölder continuity of Green's functions", *Acta Sci. Math. (Szeged)* **70**:3–4 (2004), 557–608.
- [Chen 1999] B.-Y. Chen, "Completeness of the Bergman metric on non-smooth pseudoconvex domains", *Ann. Polon. Math.* **71**:3 (1999), 241–251.
- [Chen 2016] B.-Y. Chen, "Parameter dependence of the Bergman kernels", Adv. Math. 299 (2016), 108–138.
- [Chen and Fu 2011] B.-Y. Chen and S. Fu, "Comparison of the Bergman and Szegö kernels", Adv. Math. 228:4 (2011), 2366–2384.
- [Christ 1991] M. Christ, "On the $\bar{\partial}$ equation in weighted L^2 norms in \mathbb{C}^{1} ", J. Geom. Anal. 1:3 (1991), 193–230.
- [Christ 2013] M. Christ, "Upper bounds for Bergman kernels associated to positive line bundles with smooth Hermitian metrics", preprint, 2013. arXiv
- [Delin 1998] H. Delin, "Pointwise estimates for the weighted Bergman projection kernel in \mathbb{C}^n , using a weighted L^2 estimate for the $\bar{\partial}$ equation", *Ann. Inst. Fourier (Grenoble)* **48**:4 (1998), 967–997.
- [Demailly 1987] J.-P. Demailly, "Mesures de Monge-Ampère et mesures pluriharmoniques", Math. Z. 194:4 (1987), 519-564.
- [Diederich and Fornaess 1977] K. Diederich and J. E. Fornaess, "Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions", *Invent. Math.* **39**:2 (1977), 129–141.
- [Diederich and Fornaess 1979] K. Diederich and J. E. Fornaess, "Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary", *Ann. of Math.* (2) **110**:3 (1979), 575–592.

- [Diederich and Ohsawa 1995] K. Diederich and T. Ohsawa, "An estimate for the Bergman distance on pseudoconvex domains", *Ann. of Math.* (2) **141**:1 (1995), 181–190.
- [Donnelly and Fefferman 1983] H. Donnelly and C. Fefferman, " L^2 -cohomology and index theorem for the Bergman metric", *Ann. of Math.* (2) **118**:3 (1983), 593–618.
- [Edholm and McNeal 2016] L. D. Edholm and J. D. McNeal, "The Bergman projection on fat Hartogs triangles: L^p boundedness", Proc. Amer. Math. Soc. 144:5 (2016), 2185–2196.
- [Fu and Shaw 2016] S. Fu and M.-C. Shaw, "The Diederich–Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries", *J. Geom. Anal.* **26**:1 (2016), 220–230.
- [Harrington 2008] P. S. Harrington, "The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries", *Math. Res. Lett.* **15**:3 (2008), 485–490.
- [Hedberg 1972] L. I. Hedberg, "Approximation in the mean by analytic functions", Trans. Amer. Math. Soc. 163 (1972), 157–171.
- [Herbort 1999] G. Herbort, "The Bergman metric on hyperconvex domains", Math. Z. 232:1 (1999), 183–196.
- [Herbort 2000] G. Herbort, "The pluricomplex Green function on pseudoconvex domains with a smooth boundary", *Internat. J. Math.* **11**:4 (2000), 509–522.
- [Hörmander 1994] L. Hörmander, Notions of convexity, Progr. Math. 127, Birkhäuser, Boston, 1994.
- [Jarnicki and Pflug 1993] M. Jarnicki and P. Pflug, *Invariant distances and metrics in complex analysis*, De Gruyter Expos. Math. **9**, De Gruyter, Berlin, 1993.
- [Krantz and Peloso 2008] S. G. Krantz and M. M. Peloso, "Analysis and geometry on worm domains", *J. Geom. Anal.* **18**:2 (2008), 478–510.
- [Lanzani 2015] L. Lanzani, "Harmonic analysis techniques in several complex variables", reprint, 2015. arXiv
- [Lempert 1986] L. Lempert, "On the boundary behavior of holomorphic mappings", pp. 193–215 in *Contributions to several complex variables*, edited by A. Howard and P.-M. Wong, Asp. Math. **E9**, Vieweg, Braunschweig, 1986.
- [Lindholm 2001] N. Lindholm, "Sampling in weighted L^p spaces of entire functions in \mathbb{C}^n and estimates of the Bergman kernel", *J. Funct. Anal.* 182:2 (2001), 390–426.
- [Ma and Marinescu 2007] X. Ma and G. Marinescu, *Holomorphic Morse inequalities and Bergman kernels*, Progr. Math. **254**, Birkhäuser, Basel, 2007.
- [Mañé et al. 1983] R. Mañé, P. Sad, and D. Sullivan, "On the dynamics of rational maps", *Ann. Sci. École Norm. Sup.* (4) **16**:2 (1983), 193–217.
- [Nikolov and Trybuła 2015] N. Nikolov and M. Trybuła, "The Kobayashi balls of (C-)convex domains", *Monatsh. Math.* **177**:4 (2015), 627–635.
- [Ohsawa 1993] T. Ohsawa, "On the Bergman kernel of hyperconvex domains", Nagoya Math. J. 129 (1993), 43-52.
- [Ohsawa and Takegoshi 1987] T. Ohsawa and K. Takegoshi, "On the extension of L^2 holomorphic functions", *Math. Z.* 195:2 (1987), 197–204.
- [Poletsky and Stessin 2008] E. A. Poletsky and M. I. Stessin, "Hardy and Bergman spaces on hyperconvex domains and their composition operators", *Indiana Univ. Math. J.* **57**:5 (2008), 2153–2201.
- [Pommerenke 1979] C. Pommerenke, "Uniformly perfect sets and the Poincaré metric", Arch. Math. (Basel) 32:2 (1979), 192–199.
- [Pommerenke 1992] C. Pommerenke, *Boundary behaviour of conformal maps*, Grundlehren math. Wissenschaften **299**, Springer, Berlin, 1992.
- [Ransford 1995] T. Ransford, *Potential theory in the complex plane*, London Math. Soc. Student Texts **28**, Cambridge University, 1995.
- [Schiffer 1946] M. Schiffer, "The kernel function of an orthonormal system", Duke Math. J. 13 (1946), 529-540.
- [Skwarczyński 1980] M. Skwarczyński, *Biholomorphic invariants related to the Bergman function*, Dissertationes Math. (Rozprawy Mat.) **173**, Instytut Matematyczny Polskiej Akademii Nauk, Warsaw, 1980.
- [Slodkowski 1991] Z. Slodkowski, "Holomorphic motions and polynomial hulls", Proc. Amer. Math. Soc. 111:2 (1991), 347–355.

[Totik 2006] V. Totik, Metric properties of harmonic measures, Mem. Amer. Math. Soc. 867, 2006.

[Walsh 1968] J. B. Walsh, "Continuity of envelopes of plurisubharmonic functions", *J. Math. Mech.* **18** (1968), 143–148. [Zelditch 2016] S. Zelditch, "Off-diagonal decay of toric Bergman kernels", *Lett. Math. Phys.* **106**:12 (2016), 1849–1864.

Received 11 Nov 2016. Revised 27 Feb 2017. Accepted 24 Apr 2017.

BO-YONG CHEN: boychen@fudan.edu.cn School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard patrick.gerard@math.u-psud.fr Université Paris Sud XI Orsay, France

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	e András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US \$265/year for the electronic version, and \$470/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY

nonprofit scientific publishing

http://msp.org/ © 2017 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 10 No. 6 2017

Local energy decay and smoothing effect for the damped Schrödinger equation MOEZ KHENISSI and JULIEN ROYER	1285
A class of unstable free boundary problems SERENA DIPIERRO, ARAM KARAKHANYAN and ENRICO VALDINOCI	1317
Global well-posedness of the MHD equations in a homogeneous magnetic field DONGYI WEI and ZHIFEI ZHANG	1361
Nonnegative kernels and 1-rectifiability in the Heisenberg group VASILEIOS CHOUSIONIS and SEAN LI	1407
Bergman kernel and hyperconvexity index BO-YONG CHEN	1429
Structure of sets which are well approximated by zero sets of harmonic polynomials MATTHEW BADGER, MAX ENGELSTEIN and TATIANA TORO	1455
Fuglede's spectral set conjecture for convex polytopes RACHEL GREENEELD and NIR LEV	1497

