
ANALYSIS & PDE

msp

Volume 10 No. 6 2017

RACHEL GREENFELD AND NIR LEV

FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX
POLYTOPES



ANALYSIS AND PDE
Vol. 10, No. 6, 2017

dx.doi.org/10.2140/apde.2017.10.1497 msp

FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX POLYTOPES

RACHEL GREENFELD AND NIR LEV

Let � be a convex polytope in Rd. We say that � is spectral if the space L2(�) admits an orthogonal
basis consisting of exponential functions. There is a conjecture, which goes back to Fuglede (1974), that
� is spectral if and only if it can tile the space by translations. It is known that if � tiles then it is spectral,
but the converse was proved only in dimension d = 2, by Iosevich, Katz and Tao.

By a result due to Kolountzakis, if a convex polytope � ⊂ Rd is spectral, then it must be centrally
symmetric. We prove that also all the facets of � are centrally symmetric. These conditions are necessary
for � to tile by translations.

We also develop an approach which allows us to prove that in dimension d = 3, any spectral convex
polytope � indeed tiles by translations. Thus we obtain that Fuglede’s conjecture is true for convex
polytopes in R3.

1. Introduction

1A. Let �⊂ Rd be a bounded, measurable set of positive Lebesgue measure. A countable set 3⊂ Rd is
called a spectrum for � if the system of exponential functions

E(3)= {eλ}λ∈3, eλ(x)= e2π i〈λ,x〉, (1-1)

constitutes an orthogonal basis in L2(�), that is, the system is orthogonal and complete in the space. A
set � which admits a spectrum 3 is called a spectral set.

The classical example of such a situation is when� is the unit cube in Rd, and3 is the integer lattice Zd.
Which other sets � are spectral? The study of this problem was initiated by Fuglede [1974]. For example,
in that paper it was shown that a triangle and a disk in the plane are not spectral sets.

The set� is said to tile the space by translations along a countable set3⊂Rd if the family of sets�+λ,
λ ∈3, constitutes a partition of Rd up to measure zero. In this case we will say that �+3 is a tiling.
Fuglede [1974] observed the following connection between the concepts of spectrality and tiling:

Let 3 be a lattice. If �+3 is a tiling, then the dual lattice 3∗ is a spectrum for �, and also the
converse is true.

Here, by a lattice we mean the image of Zd under some invertible linear transformation, and the dual
lattice is the set of all vectors λ∗ such that 〈λ, λ∗〉 ∈ Z, λ ∈3.

Fuglede conjectured that the spectral sets could be characterized in geometric terms using the concept
of tiling in the following way: the set � is spectral if and only if it can tile the space by translations. This
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conjecture inspired extensive research over the years, and a number of interesting results supporting the
conjecture were obtained. See, for example, the survey given in [Kolountzakis 2004, Section 3].

On the other hand, it turned out that there also exist counterexamples to Fuglede’s conjecture. Tao
[2004] constructed in dimensions 5 and higher an example of a set � which is spectral, but cannot tile by
translations. Subsequently, also examples of nonspectral sets which can tile by translations were found,
and eventually the dimension in these examples was reduced up to d > 3; see [Kolountzakis and Matolcsi
2010, Section 4]. In all these examples the set � is the union of a finite number of unit cubes centered at
points of the integer lattice Zd.

1B. It is nevertheless believed that Fuglede’s conjecture should be true if the set� is assumed to be convex.
There is a well-known characterization due to Venkov [1954], which was rediscovered by McMullen
[1980; 1981], of the convex bodies (compact convex sets with nonempty interior) that can tile the space
by translations:

Let � be a convex body in Rd. Then � tiles by translations if and only if the following four conditions
are satisfied:

(i) � is a polytope.

(ii) � is centrally symmetric.

(iii) All the facets of � are centrally symmetric.

(iv) Each “belt” of � consists of exactly 4 or 6 facets.

By a belt of a convex polytope �⊂ Rd with centrally symmetric facets one means the collection of its
facets which contain a translate of a given subfacet, that is, a (d−2)-dimensional face, of �.

It was also proved in [Venkov 1954; McMullen 1980] that if a convex polytope� can tile by translations,
then it admits a face-to-face tiling by translates along a certain lattice. Hence, combined with Fuglede’s
theorem above this yields the following result:

Let �⊂ Rd be a convex body. If � tiles by translations, then � is spectral.
The converse to this result, however, is known only in dimension d = 2. It is due to Iosevich, Katz and

Tao [Iosevich et al. 2003], who showed that a spectral convex body in R2 must be either a parallelogram
or a centrally symmetric hexagon, and hence it tiles by translations.

The situation in dimensions d > 3 is much less understood. It is known that the ball is not a spectral
set [Iosevich et al. 1999; Fuglede 2001], nor any convex body with a smooth boundary [Iosevich et al.
2001]. We established in [Greenfeld and Lev 2016] that if � is a cylindric convex body whose base has a
smooth boundary, then it can neither be spectral.

Kolountzakis [2000] proved the following result:
Let � be a convex body in Rd. If � is spectral, then it must be centrally symmetric.

1C. In this paper we will focus on the case when � is a convex polytope. Our first result shows that in
this case, not only the central symmetry of �, but also the central symmetry of all the facets of �, is a
necessary condition for spectrality:
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Theorem 1.1. Let � be a convex polytope in Rd. If � is a spectral set, then all the facets of � must be
centrally symmetric.

Our proof of this result is inspired by the paper [Kolountzakis and Papadimitrakis 2002].
Together with the result from [Kolountzakis 2000] we thus obtain that a spectral convex polytope

�⊂Rd must satisfy the conditions (ii) and (iii) in the Venkov–McMullen theorem above. So this supports
the conjecture that any such � can tile by translations.

Our next theorem, which is the main result of this paper, confirms that this is indeed the case in
dimension d = 3:

Theorem 1.2. Let � be a convex polytope in R3. If � is a spectral set, then it can tile by translations.

Combined with the above-mentioned results, we thus obtain that Fuglede’s conjecture is true for convex
polytopes �⊂ R3.

1D. In two dimensions, the convex polygons which can tile by translations are precisely the parallelograms
and the centrally symmetric hexagons. The three-dimensional convex polytopes which can tile by
translations were classified by Fedorov [1885] into five distinct combinatorial types: the parallelepiped,
the hexagonal prism, the rhombic dodecahedron, the elongated dodecahedron and the truncated octahedron
(see, for example, [Gruber 2007, Figure 32.4] for a graphical illustration of these types). Thus, for a
convex polytope � ⊂ R3 to tile by translations, it is necessary and sufficient that it belongs to one of
these five types, and that �, as well as all its facets, are centrally symmetric. A detailed exposition of this
result can be found in [Alexandrov 2005, Section 8.1].

Theorem 1.2 therefore yields that these conditions are also necessary and sufficient for a convex
polytope �⊂ R3 to be spectral.

(The requirement that � is centrally symmetric is in fact redundant in this characterization: it is known
[Alexandrov 1933] that if all the facets of a convex polytope � ⊂ Rd, d > 3, are centrally symmetric,
then � itself must also be centrally symmetric.)

1E. As mentioned above, the Venkov–McMullen and Fuglede results imply not only that a convex
polytope �⊂ Rd which can tile by translations is necessarily spectral, but also that � admits a lattice
spectrum. Our approach allows us to establish that for certain convex polytopes, this spectrum is the
unique one, up to translation.

First we have the following result in two dimensions:

Theorem 1.3. Let � be a centrally symmetric hexagon in R2. Then � has a unique spectrum up to
translation.

This result is essentially contained in [Iosevich et al. 2003], although it was not stated explicitly in that
paper.

The three-dimensional version of the result is the following:

Theorem 1.4. Let � be a convex polytope in R3 which is spectral (and hence it can tile by translations),
but which is neither a parallelepiped nor a hexagonal prism. Then � has a unique spectrum up to
translation.
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Remark that it is necessary in these results to exclude the parallelograms in R2, and the parallelepipeds
and the centrally symmetric hexagonal prisms in R3. Indeed, these convex polytopes admit infinitely
many non translation-equivalent spectra (see [Jorgensen and Pedersen 1999, Section 2]).

1F. The paper is organized as follows.
In Section 2 we present some preliminary background.
In Section 3 we give a proof of the fact that a spectral convex polytope � ⊂ Rd must be centrally

symmetric. The proof given is based on the argument from [Kolountzakis and Papadimitrakis 2002].
In Section 4 we prove that also all the facets of such an � are centrally symmetric (Theorem 1.1).
In Sections 5–7 we develop an approach to show that a spectral convex polytope �⊂ Rd can tile by

translations. In Section 8 we give a proof, based on this approach, of the result that a spectral convex
polygon �⊂ R2 can tile by translations.

The proof of the three-dimensional Theorem 1.2 is given through Sections 9–15.
In Section 16 the results concerning the uniqueness of the spectrum up to translation are deduced

(Theorems 1.3 and 1.4).
In Section 17 we give additional remarks and discuss some open problems.

2. Preliminaries

2A. Notation. We fix some notation that will be used throughout the paper.
We shall denote by Ee1, . . . , Eed the standard basis vectors in Rd.
As usual, 〈 · , · 〉 and | · | are the Euclidean scalar product and norm in Rd.
For a set A ⊂ Rd and a vector x ∈ Rd, we use 〈A, x〉 to denote the set {〈a, x〉 : a ∈ A}.
We denote by |�| the Lebesgue measure of a measurable set �⊂ Rd.
The Fourier transform in Rd will be normalized as

f̂ (ξ)=
∫

Rd
f (x) e−2π i〈ξ,x〉 dx .

2B. Properties of spectra. We recall some basic properties of spectra that will be used in the paper.
Let �⊂ Rd be a bounded, measurable set of positive measure. A countable set 3⊂ Rd is a spectrum

for � if the system of exponential functions E(3) defined by (1-1) is an orthogonal basis in the space
L2(�). Since we have

〈eλ, eλ′〉L2(�) =

∫
�

e−2π i〈λ′−λ,x〉 dx = 1̂�(λ
′
− λ),

it follows that the orthogonality of E(3) in L2(�) is equivalent to the condition

3−3⊂ {1̂� = 0} ∪ {0}. (2-1)

A set 3⊂Rd is said to be uniformly discrete if there is δ > 0 such that |λ′−λ|> δ for any two distinct
points λ, λ′ in 3. The maximal constant δ with this property is called the separation constant of 3, and
will be denoted by δ(3).
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The condition (2-1) implies that if 3 is a spectrum for � then it is a uniformly discrete set, with
separation constant δ(3) not smaller than

χ(�) :=min
{
|ξ | : ξ ∈ Rd, 1̂�(ξ)= 0

}
> 0. (2-2)

It is easy to verify that the property of 3 being a spectrum for � is invariant under translations of
both � and 3. It is also easy to check that if 3 is a spectrum for �, and if A is an invertible d×d matrix,
then the set (A−1)>(3) is a spectrum for A(�).

2C. Limits of spectra. Let 3n be a sequence of uniformly discrete sets in Rd such that δ(3n)> δ > 0.
The sequence 3n is said to converge weakly to a set 3 if for every ε > 0 and every R there is N such that

3n ∩ BR ⊂3+ Bε and 3∩ BR ⊂3n + Bε

for all n > N , where by Br we denote the open ball of radius r centered at the origin. In this case, the
weak limit 3 is also uniformly discrete, and moreover, δ(3)> δ.

By a standard diagonalization argument one can show that given any sequence 3n satisfying δ(3n)>
δ > 0, there is a subsequence 3n j which converges weakly to some (possibly empty) set 3.

It is known that if for each n the set 3n is a spectrum for �, and if 3n converges weakly to a limit 3,
then also 3 is a spectrum for �. See, for example, [Greenfeld and Lev 2016, Section 3], where a simple
proof of this fact can be found.

The latter fact easily implies that any spectrum 3 of � must be a relatively dense set in Rd ; namely,
there is R > 0 such that every ball of radius R intersects 3. Moreover, the constant R = R(�) does not
depend on the spectrum 3. Indeed, if this was not true then there would exist a sequence 3n of spectra
for � which converges weakly to the empty set, which contradicts the fact that the weak limit must also
be a spectrum for �.

2D. Fourier expansion with respect to a spectrum. If 3 is a spectrum for �, then each f ∈ L2(�)

admits a Fourier expansion with respect to the orthogonal basis E(3). If we extend such a function f to
the whole Rd by defining it to be zero outside of �, then we have 〈 f, eλ〉L2(�) = f̂ (λ); hence the Fourier
expansion of f has the form

f =
1
|�|

∑
λ∈3

f̂ (λ)eλ, (2-3)

and the series converges in L2(�). Furthermore, Parseval’s equality holds; namely,

‖ f ‖2L2(�)
=

1
|�|

∑
λ∈3

| f̂ (λ)|2.

The following fact will be useful for us:

Lemma 2.1. For each function f ∈ L2(�) (extended to be zero outside of �) the series (2-3) converges
unconditionally in L2 on any bounded set to some measurable function f̃ defined a.e. on the whole Rd,
and f coincides with f̃ a.e. on �.
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This is a simple consequence of the following:

Lemma 2.2. Let 3⊂ Rd be a uniformly discrete set and {c(λ)} be a sequence in `2(3). Then the series∑
λ∈3

c(λ)eλ (2-4)

converges unconditionally in L2(S) for every bounded set S ⊂ Rd.

The latter fact is well known; see, for instance, [Young 2001, Section 4.3, Theorem 4], where it is
proved in dimension one. For the reader’s convenience we provide a self-contained proof in arbitrary
dimension d .

Proof of Lemma 2.2. First we show that if S is a bounded set then there is a constant C = C(3, S) such
that for every sequence {c(λ)} with only finitely many nonzero terms we have∥∥∥∥∑

λ∈3

c(λ)eλ

∥∥∥∥2

L2(S)
6 C

∑
λ∈3

|c(λ)|2. (2-5)

Indeed, let δ > 0 denote the separation constant of 3, and choose a smooth function ϕ supported on a
ball of radius δ/2 around the origin such that

∫
|ϕ(t)|2 dt = 1 and

η := inf
x∈S
|ϕ̂(x)|> 0.

Then the left-hand side of (2-5) is not greater than 1/η2 times∫
Rd

∣∣∣∣ϕ̂(x)∑
λ∈3

c(λ)eλ(x)
∣∣∣∣2 dx =

∫
Rd

∣∣∣∣∑
λ∈3

c(λ)ϕ(t + λ)
∣∣∣∣2 dt =

∑
λ∈3

|c(λ)|2;

hence (2-5) holds with C = 1/η2.
Now it follows from (2-5) that given an arbitrary sequence {c(λ)} in `2(3), the partial sums of the

series (2-4) constitute a Cauchy sequence in L2(S) for every arrangement of the terms of the series,
and the limit in L2(S) of these partial sums is the same for every such arrangement. This confirms the
assertion of the lemma. �

2E. Convex polytopes. By a convex polytope � in Rd we mean a compact set which is the convex hull
of a finite number of points. By a facet of � we refer to a (d−1)-dimensional face of �, while a subfacet
is a (d−2)-dimensional face.

If G is a k-dimensional face of � (06 k 6 d), then |G| denotes the k-dimensional volume of G. For a
facet F of � we denote by σF the surface measure on F.

The interior of � will be denoted by int(�).
We say that� is centrally symmetric if there is a point x ∈Rd (the center) such that�−x=−�+x . The

following theorem, due to Minkowski, gives a criterion for the central symmetry of a convex polytope �
in terms of the areas of its facets:

Theorem 2.3 (Minkowski). A convex polytope � is centrally symmetric if and only if for each facet F
of � there is a parallel facet F ′ such that |F | = |F ′|.
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This is a consequence of the classical Minkowski’s uniqueness theorem; see, for example, [Gruber
2007, Section 18.2].

We shall need some well-known facts about Fourier transforms related to convex polytopes in Rd

(actually, in some of these results the convexity is not necessary). Since the proofs are not difficult, they
are included for completeness.

Lemma 2.4. Let � be a convex polytope in Rd (d > 1). For each facet F of �, let nF denote the outward
unit normal to � on F. Then

−2π iξ 1̂�(ξ)=
∑

nF σ̂F (ξ), ξ ∈ Rd, (2-6)

where the sum is over all the facets F of �.

Proof. Fix two vectors ξ and u in Rd, and let

8(x) := ue−2π i〈ξ,x〉, x ∈ Rd.

Then we have

div8(x)=−2π i〈ξ, u〉e−2π i〈ξ,x〉.

By the divergence theorem, ∫
�

div8(x) dx =
∫
∂�

〈8(x), n(x)〉 dσ(x),

where σ denotes the surface measure on the boundary ∂�, and n(x) := nF if x belongs to the relative
interior of a facet F of �. This means that

−2π i〈ξ, u〉1̂�(ξ)=
∑
〈nF , u〉σ̂F (ξ),

where the sum is over all the facets F of �. But since ξ and u were arbitrary vectors in Rd, this
implies (2-6). �

Corollary 2.5. If � is a convex polytope in Rd (d > 1), then

|1̂�(ξ)|6
|∂�|

2π
· |ξ |−1,

where |∂�| denotes the total surface area of �.

This follows from Lemma 2.4 using that the right-hand side of (2-6) is bounded in norm by |∂�|.

Lemma 2.6. Let � be a convex polytope in Rd (d > 2), andF be a facet of �. Let θ(ξ, F) denote the
angle between a nonzero vector ξ ∈ Rd and the outward normal vector to � on F. Then

|σ̂F (ξ)|6
|∂F |
2π
·
|ξ |−1

| sin θ(ξ, F)|
,

where |∂F | is the (d−2)-dimensional volume of the relative boundary of F.



1504 RACHEL GREENFELD AND NIR LEV

Proof. By applying a rotation and a translation, we may assume F is contained in the hyperplane {x1 = 0},
and that the outward unit normal to � on F is Ee1. Hence

σ̂F (ξ)= ϕF (ξ2, ξ3, . . . , ξd),

where ϕF denotes the Fourier transform of the indicator function of the polytope in Rd−1 obtained by
projecting the facet F on the (x2, x3, . . . , xd)-coordinates. Using Corollary 2.5, this implies

|σ̂F (ξ)|6
|∂F |
2π

( d∑
j=2

ξ 2
j

)−1/2

.

However, since we have
ξ1 = 〈ξ, Ee1〉 = |ξ | cos θ(ξ, F),

it follows that
d∑

j=2

ξ 2
j = |ξ |

2
− ξ 2

1 = |ξ |
2(1− cos2 θ(ξ, F))= |ξ |2 sin2 θ(ξ, F),

so this proves the claim. �

The previous lemmas imply the following result, which will be used in the next sections:

Lemma 2.7. Let � be a convex polytope in Rd (d > 2). Assume that A and B are two parallel facets
of �, and that the outward unit normals to � on A and B are respectively the vectors Ee1 and −Ee1 (we
also allow A to be a facet which does not have a parallel facet, in which case we understand B to be the
empty set). Then there is α = α(�) > 0 such that

−2π iξ11̂�(ξ)= σ̂A(ξ)− σ̂B(ξ)+ O(|ξ1|
−1), |ξ1| →∞, (2-7)

in the cone
K (α) :=

{
ξ ∈ Rd

: |ξj |6 α|ξ1| (26 j 6 d)
}
. (2-8)

Proof. By Lemma 2.4 we have

−2π iξ1 1̂�(ξ)= σ̂A(ξ)− σ̂B(ξ)+
∑
〈nF , Ee1〉 σ̂F (ξ), (2-9)

where the sum is over all the facets F of � other than A and B. If α is sufficiently small, then the angle
between any vector in K (α) and the outward normal to � on any facet F other than A and B is bounded
away from 0 and π . Hence by Lemma 2.6, the sum on the right-hand side of (2-9) is O(|ξ |−1) as |ξ |→∞
in the cone K (α). But since the ratio |ξ1|/|ξ | is bounded from below in K (α), this implies (2-7). �

3. Spectral convex polytopes are symmetric

3A. In this section we give a proof of the following result:

Theorem 3.1 [Kolountzakis 2000]. Let � be a convex polytope in Rd (d > 2). If � is spectral then � is
centrally symmetric.
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In fact, it was proved in [Kolountzakis 2000] that any convex body (not assumed to be a polytope) which
is spectral must be centrally symmetric. This supports the conjecture that a spectral convex body� can tile
by translations, as the central symmetry is a necessary condition for � to tile, by the Venkov–McMullen
theorem.

There is another approach to prove Theorem 3.1, which was introduced in [Kolountzakis and Papadim-
itrakis 2002]. This approach is specific for polytopes, but on the other hand it does not require � to be
convex. The main result in that paper gives a certain condition on a polytope �⊂ Rd that is necessary
for its spectrality. If the polytope � is convex, then this condition coincides with the requirement that �
is centrally symmetric.

For the completeness of our exposition, below we give a proof of Theorem 3.1 based on the argument
in [Kolountzakis and Papadimitrakis 2002]. See also [Kolountzakis 2004, pp. 184–185]. The proof may
also serve as a preparation for the next section, where the argument will be further developed.

3B. Proof of Theorem 3.1. By Minkowski’s theorem, Theorem 2.3, it would be enough to show that
for each facet A of � there is a parallel facet B such that |A| = |B|. If this is not true, then there is a
facet A of � whose parallel facet B satisfies |A|> |B|, where we understand B to be the empty set if A
is a facet of � with no parallel facet.

By applying an affine transformation, we may assume that A is contained in the hyperplane {x1 = 0},
that B is contained in the hyperplane {x1 =−1}, and that the outward unit normals to � on A and B are
respectively the vectors Ee1 and −Ee1. It follows that

σ̂A(ξ)= ϕA(ξ2, ξ3, . . . , ξd), (3-1)

σ̂B(ξ)= e2π i ξ1ϕB(ξ2, ξ3, . . . , ξd), (3-2)

where ϕA, ϕB are respectively the Fourier transforms of the indicator functions of the polytopes in Rd−1

obtained by projecting the facets A, B on the (x2, x3, . . . , xd)-coordinates. In particular, ϕA and ϕB are
continuous functions, and

ϕA(0)= |A|, ϕB(0)= |B|. (3-3)

For any r > 0 we denote by S(r) the cylinder of radius r along the x1-axis; namely

S(r) := {t Ee1+w : t ∈ R, w ∈ Rd, |w|< r}.

Notice that

S(r)− S(r)= S(2r). (3-4)

By assumption, we have |A|> |B|. Choose a number η such that

0< η < |A| − |B|.

It follows from (3-1), (3-2) and (3-3) that there is ε > 0 such that

|σ̂A(ξ)− σ̂B(ξ)|> |σ̂A(ξ)| − |σ̂B(ξ)|> η, ξ ∈ S(2ε).
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By Lemma 2.7 we have

−2π iξ11̂�(ξ)= σ̂A(ξ)− σ̂B(ξ)+ O(|ξ1|
−1), |ξ1| →∞,

in the cylinder S(2ε). It follows that there is R > 0 such that

1̂�(ξ) 6= 0, ξ ∈ S(2ε) \ BR, (3-5)

where BR denotes the ball of radius R centered at the origin.
Now let 3 be a spectrum for �. We claim that for any τ ∈Rd, if λ, λ′ are two points in 3∩ (S(ε)+τ),

then |λ′− λ|6 R. Indeed, if not then using (3-4) we get

λ′− λ ∈ S(2ε) \ BR,

but due to (3-5) this implies 1̂�(λ′− λ) 6= 0, a contradiction.
Since 3 is a uniformly discrete set, it follows that 3 ∩ (S(ε)+ τ) is a finite set for every τ ∈ Rd.

Since 3 is a relatively dense set, there is M > 0 such that every ball of radius M intersects 3. The
cylinder S(M) may be covered by a finite number of cylinders S(ε)+ τj (16 j 6 N ); hence 3∩ S(M)
is also a finite set. But this implies that S(M) must contain a ball of radius M free from points of 3, a
contradiction. This completes the proof of Theorem 3.1. �

4. Spectral convex polytopes have symmetric facets

4A. The result in Section 3 shows that the central symmetry is a necessary condition for a convex
polytope �⊂ Rd to be spectral. In the present section we prove that also the central symmetry of all the
facets of � is necessary for spectrality:

Theorem 4.1. Let � be a convex, centrally symmetric polytope in Rd (d > 3). If � is spectral then all
the facets of � are also centrally symmetric.

Recall that by the Venkov–McMullen theorem, the central symmetry of the facets is also a necessary
condition for � to tile by translations. Hence this result further supports the conjecture that any spectral
convex polytope � can tile by translations.

Notice that the conclusion cannot be further improved by showing that also all the k-dimensional faces
of �, for some 26 k 6 d − 2, are centrally symmetric. Indeed, this would imply [McMullen 1970] that
all the faces of � of every dimension are centrally symmetric. However, the 24-cell in R4 is a well-known
example of a convex polytope which tiles by translations, and hence is spectral, but which does not satisfy
this property.

The rest of this section is devoted to the proof of Theorem 4.1. The proof is based on a development
of the argument in [Kolountzakis and Papadimitrakis 2002].

4B. Let F be one of the facets of �. As before, to prove that F is centrally symmetric it would be enough,
by Minkowski’s theorem, Theorem 2.3, to show that for each subfacet A of F there is a parallel subfacet B
of F such that |A| = |B|. So, again, suppose to the contrary that A, B are two parallel subfacets of F
such that |A|> |B|, with the agreement that B is empty if A has no parallel subfacet of F.
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By applying an affine transformation, we may assume

�=−�; (4-1)

namely, � is symmetric about the origin,

F ⊂
{

x1 =
1
2

}
(4-2)

and the outward unit normal to � on F is Ee1,

A ⊂
{

x1 =
1
2 , x2 = 0

}
, (4-3)

B ⊂
{

x1 =
1
2 , x2 =−1

}
, (4-4)

and the outward unit normals to F on A and B are respectively Ee2 and −Ee2.

4C. Let ϕF (respectively, ϕA and ϕB) denote the Fourier transform of the indicator function of the polytope
in Rd−1 (respectively, Rd−2) obtained by projecting the facet F on the (x2, x3, . . . , xd)-coordinates
(respectively, the subfacets A and B on the (x3, . . . , xd)-coordinates). Define

ψ(ξ) := Re
[
e−π iξ1

(
ϕA(ξ3, . . . , ξd)− e2π i ξ2ϕB(ξ3, . . . , ξd)

)]
, ξ ∈ Rd. (4-5)

Also, for any three positive real numbers L , δ and α, we let

K (L , δ, α) :=
{
ξ ∈ Rd

: L 6 |ξ2|6 δ|ξ1|, |ξj |6 α|ξ2| (36 j 6 d)
}
.

Lemma 4.2. There is α > 0 such that given any η > 0 one can find δ > 0 and L such that∣∣2π2ξ1ξ2 1̂�(ξ)+ψ(ξ)
∣∣< η, ξ ∈ K (L , δ, α). (4-6)

Proof. Due to (4-1), the facet of � parallel to F is −F. If 0 < δ 6 α < 1, then the set K (L , δ, α) is
contained in the cone {

|ξj |6 α|ξ1|, 26 j 6 d
}
. (4-7)

Hence by Lemma 2.7, if α is sufficiently small then

−2π iξ1 1̂�(ξ)= σ̂F (ξ)− σ̂−F (ξ)+ O(|ξ1|
−1), |ξ1| →∞, (4-8)

in the cone (4-7). Observe that by (4-2) we have

σ̂F (ξ)− σ̂−F (ξ)= 2i Im[σ̂F (ξ)] = 2i Im
[
e−π i ξ1ϕF (ξ2, ξ3, . . . , ξd)

]
. (4-9)

Now if ξ ∈ K (L , δ, α) then the vector (ξ2, ξ3, . . . , ξd) belongs to the cone{
|ξj |6 α|ξ2|, 36 j 6 d

}
⊂ Rd−1, (4-10)

so again by Lemma 2.7 and by (4-3), (4-4) it follows that if α is sufficiently small then

−2π iξ2ϕF (ξ2, ξ3, . . . , ξd)= ϕA(ξ3, . . . , ξd)− e2π i ξ2ϕB(ξ3, . . . , ξd)+ O(|ξ2|
−1), |ξ2| →∞, (4-11)
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in the cone (4-10). Combining (4-8), (4-9) and (4-11) shows that there is α > 0 and a positive constant C
such that for any 0< δ 6 α and any L > 0 we have∣∣2π2ξ1ξ2 1̂�(ξ)+ψ(ξ)

∣∣6 C
(
|ξ2/ξ1| + |1/ξ2|

)
, ξ ∈ K (L , δ, α).

But for ξ ∈ K (L , δ, α) we have |ξ2/ξ1| 6 δ and |1/ξ2| 6 L−1. Hence given any η > 0, by choosing δ
sufficiently small and L sufficiently large, we obtain (4-6). �

4D. Recall that, by assumption, we have |A|> |B|. Choose a number η such that

0< 2η < |A| − |B|.

Use Lemma 4.2 to find L , δ and α such that (4-6) holds. Define the vector

vδ := 2Ee1+ δEe2 = (2, δ, 0, 0, . . . , 0). (4-12)

For any r > 0 we denote by E(r, δ) the union of balls of radius r centered at the integral multiples of
the vector vδ; that is,

E(r, δ) := {kvδ +w : k ∈ Z, w ∈ Rd, |w|< r}. (4-13)

Notice that
E(r, δ)− E(r, δ)= E(2r, δ). (4-14)

Since ϕA, ϕB are continuous functions satisfying

ϕA(0)= |A|, ϕB(0)= |B|,

it follows from (4-5), (4-12) and (4-13) that there is ε > 0 such that∣∣ψ(ξ)−Re
[
|A| − e2π i ξ2 |B|

]∣∣< η, ξ ∈ E(2ε, δ).

In particular, this implies

|ψ(ξ)|> |A| − |B| − η > η, ξ ∈ E(2ε, δ). (4-15)

4E. Lemma 4.3. There is R > 0 such that

E(2ε, δ) \ BR ⊂ K (L , δ, α), (4-16)

where BR denotes the ball of radius R centered at the origin.

This can be verified easily, so we skip the proof.

4F. Now suppose that 3 is a spectrum for �. Use Lemma 4.3 to choose R such that (4-16) holds. We
claim that for any τ ∈ Rd, if λ, λ′ are two points in 3∩ (E(ε, δ)+ τ), then |λ′− λ|6 R. Indeed, if not
then using (4-14) we get

λ′− λ ∈ E(2ε, δ) \ BR ⊂ K (L , δ, α).

It thus follows from (4-6) and (4-15) that 1̂�(λ′− λ) 6= 0, a contradiction.
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Since 3 is a uniformly discrete set, it follows that 3∩ (E(ε, δ)+ τ) is a finite set for every τ ∈ Rd.
Since3 is a relatively dense set, there is M > 0 such that every ball of radius M intersects3. Let S(M, δ)
denote the cylinder of radius M along the vector vδ,

S(M, δ) := {tvδ +w : t ∈ R, w ∈ Rd, |w|< M}.

Then S(M, δ) may be covered by a finite number of sets E(ε, δ)+ τj (16 j 6 N ); hence 3∩ S(M, δ) is
also a finite set. It follows that S(M, δ) contains a ball of radius M free from points of 3, a contradiction.
This completes the proof of Theorem 4.1. �

5. Covering and packing

It was shown in Sections 3 and 4 that if a convex polytope �⊂ Rd is spectral, then it must be centrally
symmetric and have centrally symmetric facets. In order to prove that� tiles by translations, a conceivable
strategy may therefore be to try and show that every belt of � must consist of either 4 or 6 facets. Indeed,
this would imply that � tiles, by the Venkov–McMullen theorem.

Our approach, however, will not be based on such a strategy. Instead, we will use another condition,
given in terms of the spectrum 3, which implies that � tiles by translations. In this section, we prove the
sufficiency of this condition (Corollary 5.3).

5A. Let �⊂ Rd be a convex polytope, which is centrally symmetric and has centrally symmetric facets.
If F is any facet of �, then by the central symmetry, the opposite facet F ′ is a translate of F. We shall
denote by τF the translation vector in Rd which carries F ′ onto F.

Following [Venkov 1954; McMullen 1980], we consider the set

T = T (�)=
{∑

F

kF τF : kF ∈ Z

}
; (5-1)

that is, T is the set of all linear combinations with integer coefficients of the vectors τF , where F goes
through all the facets of �. The set T is a countable subgroup of Rd.

Theorem 5.1 [Venkov 1954; McMullen 1980]. �+ T is a covering; that is, each point in Rd belongs to
at least one of the sets �+ τ , τ ∈ T.

This is a part of the Venkov–McMullen theorem, which characterizes the convex bodies that tile by
translations by the four conditions (i)–(iv) mentioned in Section 1B. In the sufficiency part of the theorem
it is shown that these four conditions imply that �+ T is a tiling. However the last condition, namely the
requirement (iv) that each belt consists of exactly 4 or 6 facets, is not used in that part of the proof where
it is shown that �+ T is a covering; see [McMullen 1980, pp. 115–116], where the latter fact is also
mentioned explicitly. Hence the proof yields that the first three conditions (i)–(iii) are enough to conclude
that �+ T is a covering, as stated in Theorem 5.1.

Observe that Theorem 5.1 implies that T is a relatively dense set in Rd.
It also follows from this theorem that, in order to prove that � tiles by translations, it would be enough

to show that �+ T is a packing, which means that the sets �+ τ , τ ∈ T, are disjoint up to measure zero.
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Indeed, in such a case �+ T is simultaneously a covering and a packing; hence � tiles by translations
along the set T.

Notice that if �+ T is a packing (and hence a tiling), then T must be a uniformly discrete set in Rd.
So in this case T is a subgroup of Rd which is both uniformly discrete and relatively dense, and it follows
that T must be a lattice. As mentioned in [McMullen 1980], the tiling by translations of � along the
lattice T constitutes a face-to-face tiling.

5B. The next lemma gives a sufficient condition for �+ T to be a packing:

Lemma 5.2. Suppose that 3⊂ Rd is a set satisfying the condition

〈3−3, τF 〉 ⊂ Z (5-2)

for every facet F of �. If the system of exponentials E(3) is complete in L2(�), then �+ T is a packing.

Proof. By translating 3 we may assume that it contains the origin; hence 〈3, τF 〉 ⊂ Z for every facet F.
It follows that the exponential functions eλ (λ ∈3) are periodic with respect to T ; namely

eλ(x + τ)= eλ(x)

for every τ ∈ T. If �+ T is not a packing then there exist distinct vectors τ ′, τ ′′ ∈ T such that the set
(�+ τ ′)∩ (�+ τ ′′) has positive measure. Thus the set E defined by

E :=�∩ (�− τ), τ := τ ′′− τ ′,

is a set of positive measure, and E , E + τ are both contained in �. Hence the function f := 1E −1E+τ

is supported by �, and since τ 6= 0, the function f does not vanish identically a.e. On the other hand, for
every λ ∈3 we have

〈eλ, f 〉L2(�) =

∫
E

eλ(x) dx −
∫

E+τ
eλ(x) dx = 0,

due to the periodicity of eλ. Hence f is orthogonal in L2(�) to all the exponentials {eλ}, λ ∈3, which
contradicts the completeness of the system E(3) in the space L2(�). �

5C. Combining Theorem 5.1 and Lemma 5.2 we obtain the following:

Corollary 5.3. Let�⊂Rd be a convex polytope which is centrally symmetric and has centrally symmetric
facets. Suppose that � admits a spectrum 3 satisfying (5-2) for every facet F of �. Then �+ T is a
tiling, and so � can tile by translations.

Moreover, in this case the set T defined by (5-1) is a lattice in Rd, and� tiles face-to-face by translations
along the lattice T.

Remark. The formulation of Corollary 5.3 is inspired by [Iosevich et al. 2003, p. 568], where the
assertion was proved in dimension d = 2 by directly showing that � must be either a parallelogram or a
centrally symmetric hexagon. The proof in arbitrary dimension that we have given above is based on
different considerations than the one in that paper.
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6. Structure of spectrum, I

We obtained in Section 5 a sufficient condition for a spectral convex polytope� in Rd to tile by translations.
This condition (Corollary 5.3) requires the existence of a spectrum 3 admitting a certain structure. In the
present section we start to develop an approach to analyze the structure of a given spectrum 3.

6A. Let �⊂ Rd be a convex polytope which is centrally symmetric and has centrally symmetric facets.
We will assume �=−�; that is, � is symmetric about the origin. Let F be one of the facets of �, and
assume that F ⊂

{
x1 =

1
2

}
, and that the center of F is the point

( 1
2 , 0, 0, . . . , 0

)
.

These assumptions are made merely for convenience. Later on, we will reduce the general situation to
this more specific one by applying an affine transformation.

The assumptions imply that
F =

{1
2

}
×6,

where 6 is a convex polytope in Rd−1 such that

6 =−6.

The facet opposite to F is therefore
−F =

{
−

1
2

}
×6.

6B. For α > 0 we consider the cone

K (α) :=
{
ξ ∈ Rd

: |ξj |6 α|ξ1| (26 j 6 d)
}
. (6-1)

Lemma 6.1. There is α = α(�) > 0 such that

πξ1 1̂�(ξ)= sinπξ1 · 1̂6(ξ2, ξ3, . . . , ξd)+ O(|ξ1|
−1), |ξ1| →∞, (6-2)

in the cone K (α).

Proof. By Lemma 2.7, if α is sufficiently small then

−2π iξ1 1̂�(ξ)= σ̂F (ξ)− σ̂−F (ξ)+ O(|ξ1|
−1), |ξ1| →∞,

in K (α). But we have

σ̂F (ξ)= e−π iξ1 1̂6(ξ2, ξ3, . . . , ξd) and σ̂−F (ξ)= eπ iξ1 1̂6(ξ2, ξ3, . . . , ξd),

which yields the conclusion of the lemma. �

6C. Assume now that we are given a set 3 ⊂ Rd which is a spectrum for �. To this spectrum 3 we
associate a set 5⊂ Rd−1 defined as follows: 5 is the set of all points s ∈ Rd−1 such that for every open
ball B containing s, the cylinder R× B contains infinitely many points of 3.

If we denote a point in Rd as (t, s) ∈ R×Rd−1, then one can check that a point s ∈ Rd−1 belongs to 5
if and only if there is a sequence (tn, sn) ∈3 such that

|tn| →∞, sn→ s (n→∞). (6-3)
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It is also not difficult to verify that 5 is a closed subset of Rd−1.
The motivation for introducing the set 5 is the following observation:

Lemma 6.2. For each s ∈5 there is a (unique) number 06 θ(s) < 1 such that

3∩ (R× (s+U6))⊂ (Z+ θ(s))×Rd−1,

where

U6 := {1̂6 6= 0}.

In other words, if (t ′, s ′) ∈3 and if 1̂6(s ′− s) 6= 0, then t ′ ∈ Z+ θ(s).

Proof. It would be enough to show that if (t ′, s ′) and (t ′′, s ′′) are two points in 3∩ (R× (s+U6)), then
t ′′ − t ′ ∈ Z. Since s ∈ 5, there is a sequence (tn, sn) ∈ 3 such that |tn| → ∞, sn → s. The vectors
(t ′− tn, s ′− sn) and (t ′′− tn, s ′′− sn) belong to the set (3−3) \ {0} for all large enough n; hence they
lie in the zero set of 1̂�. Using Lemma 6.1 it follows that

sinπ(t ′− tn) · 1̂6(s ′− sn)→ 0, sinπ(t ′′− tn) · 1̂6(s ′′− sn)→ 0

as n→∞. Recall that s ′−s and s ′′−s are not in the zero set of 1̂6 . Hence |1̂6(s ′−sn)| and |1̂6(s ′′−sn)|

remain bounded away from zero as n→∞. We conclude that

sinπ(t ′− tn), sinπ(t ′′− tn)

both tend to zero as n→∞, or equivalently,

dist(t ′− tn,Z), dist(t ′′− tn,Z)

both tend to zero. But

dist(t ′′− t ′,Z)6 dist(t ′− tn,Z)+ dist(t ′′− tn,Z),

which implies t ′′− t ′ ∈ Z. �

Corollary 6.3. Let s ′, s ′′ ∈5. If θ(s ′) 6= θ(s ′′), then 1̂6(s ′′− s ′)= 0.

Proof. Let (tn, sn) ∈ 3 be a sequence such that |tn| →∞, sn → s ′′. If 1̂6(s ′′− s ′) 6= 0, then for large
enough n we would have 1̂6(sn − s ′) 6= 0. By Lemma 6.2 it follows that tn ∈ Z+ θ(s ′). On the other
hand, for all large enough n we also have 1̂6(sn − s ′′) 6= 0, since

1̂6(0)= |6|> 0.

Hence, again by Lemma 6.2, we have tn ∈ Z+ θ(s ′′). So we must have θ(s ′)= θ(s ′′). �
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6D. Lemma 6.2 allows us to define an equivalence relation on 5 by saying that s ′ ∼ s ′′ if θ(s ′)= θ(s ′′).
It follows from Corollary 6.3 that if 5′ and 5′′ are two distinct equivalence classes, then

5′′−5′ ⊂ {1̂6 = 0}.

The set {1̂6 = 0} is disjoint from the open ball of radius χ(6) > 0 centered at the origin; see (2-2).
It follows that each equivalence class is a closed set, and that there can be at most countably many
equivalence classes. So we may enumerate them as 50,51,52, . . . (finitely or infinitely many), and we
denote by θ0, θ1, θ2, . . . respectively the values of the function θ(s) on these equivalence classes.

6E. To illustrate the construction above, let us consider two representative examples.

Example 6.4. Assume that � tiles face-to-face along a lattice T of translation vectors, which in this case
is given by (5-1). Since the facet F has the form F =

{ 1
2

}
×6, we have τF = (1, 0, 0, . . . , 0) ∈ T. Let 3

be a spectrum of � given by the dual lattice; that is, 3= T ∗. Then 〈3, τ 〉 ⊂ Z for any τ ∈ T. In particular
this is true for τ = τF ; hence

3⊂ Z×Rd−1.

It follows that θ(s)= 0 for all s ∈5. Thus in this case the set 5 consists of a single equivalence class,
namely 5=50, and we have θ0 = 0.

Example 6.5. Assume that �= I ×6, where I denotes the interval
[
−

1
2 ,

1
2

]
. Then � is a prism with

base 6. Suppose that 6 is a spectral set, and let 0 ⊂ Rd−1 be a spectrum for 6. For each γ ∈ 0, let θ(γ )
be an arbitrary real number, 06 θ(γ ) < 1, and define

3 :=
⋃
γ∈0

(Z+ θ(γ ))×{γ }.

It is known, see [Jorgensen and Pedersen 1999, Theorem 4], that 3 is a spectrum for �. In this case we
clearly have 5= 0, and the numbers θ(γ ) coincide with the ones given by Lemma 6.2. The equivalence
classes 5j depend on the specific choice of the numbers θ(γ ), but in the case when all the θ(γ ) are
distinct, the sets 5j are singletons. Observe that we have

5j −5k ⊂ {1̂6 = 0} (k 6= j)

since 0 is a spectrum for 6. This is in accordance with Corollary 6.3.

7. Structure of spectrum, II

In this section we continue to work under the same assumptions as in Section 6. Namely, we assume
�⊂ Rd is a convex polytope which is centrally symmetric, �=−� and has centrally symmetric facets,
F is one of the facets of �, and F =

{ 1
2

}
×6, where 6 is a convex polytope in Rd−1 such that 6 =−6.

We also assume 3 is a spectrum for �, and to this spectrum 3 we associate the set 5 ⊂ Rd−1 that
was defined in Section 6.
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7A. From the given spectrum 3 one can construct a new spectrum 3′ for � in the following way.
Consider the sequence of translates of 3 given by

3− k · (1, 0, 0, . . . , 0), k = 1, 2, 3, . . . .

Each one of these sets is a spectrum for �, and they are uniformly discrete with the same separation
constant. Hence one may extract from this sequence a subsequence

3− kn · (1, 0, 0, . . . , 0), kn→∞,

which converges weakly to some set 3′, which is also a spectrum for � (see Section 2C). Notice that we
do not make any claim concerning the uniqueness of the weak limit 3′, which in general may depend on
the particular subsequence that was selected.

Lemma 7.1. We have
3′ ⊂

⋃
j>0

(Z+ θj )×5j . (7-1)

We remind that by θj ( j > 0) we denote the distinct values attained by the function θ(s) defined on 5,
given in Lemma 6.2, and

5j = {s ∈5 : θ(s)= θj }. (7-2)

Recall also that according to Corollary 6.3 we have

5k −5j ⊂ {1̂6 = 0} ( j 6= k); (7-3)

hence Lemma 7.1 reveals a certain structure satisfied by the new spectrum 3′.

Proof of Lemma 7.1. The claim is equivalent to the statement that for every (t ′, s ′)∈3′ we have s ′ ∈5 and
t ′ ∈Z+θ(s ′). Let therefore (t ′, s ′)∈3′. Since3′ is the weak limit of the sequence3−kn ·(1, 0, 0, . . . , 0),
there exist (tn, sn) ∈3 such that

(tn − kn, sn)→ (t ′, s ′), n→∞.

Hence sn→ s ′, and tn→∞ since kn→∞. This implies s ′ ∈5. For all sufficiently large n we have

1̂6(sn − s ′) 6= 0;

thus by Lemma 6.2 we have tn ∈ Z+ θ(s ′). Since tn − kn→ t ′ and the kn are integers, this implies that
also t ′ ∈ Z+ θ(s ′). �

7B. Given a point (t0, s0) in R×Rd−1, we associate with it a function f defined by

f (x, y) := 1I (x)e2π i t0x 16(y)e2π i〈s0,y〉, (x, y) ∈ R×Rd−1, (7-4)

where I denotes again the interval
[
−

1
2 ,

1
2

]
. Notice that the function f is supported by the prism I ×6.

This prism is contained in � since
{ 1

2

}
×6 and

{
−

1
2

}
×6 are facets of � and � is convex. Hence f is

also supported by �.
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It follows from the definition (7-4) of f that its Fourier transform is given by

f̂ (t, s)= 1̂I (t − t0)1̂6(s− s0), (t, s) ∈ R×Rd−1. (7-5)

Using the function f thus defined, we can prove a result similar to Lemma 7.1 but which is concerned
with the originally given spectrum 3. However, the conclusion is somewhat weaker, as the right-hand
side of (7-1) is replaced by a larger set:

Lemma 7.2. We have
3⊂

⋃
j>0

(Z+ θj )× (5j +U6),

where, as before, we let
U6 = {1̂6 6= 0}.

Proof. By Lemma 6.2 we have

3∩ (R× (5j +U6))⊂ (Z+ θj )× (5j +U6)

for every j . Hence, to prove the claim it would be enough to show that the sets 5j +U6 cover the whole
Rd−1. Suppose to the contrary that there is a point s0 ∈ Rd−1 which lies outside all the sets 5j +U6 .
Since U6 =−U6 , this means that

1̂6(s− s0)= 0, s ∈5.

Let t0 be an arbitrary real number, and consider the function f defined by (7-4). Then f is supported
by �, and by (7-5) its Fourier transform f̂ vanishes on R×5. In particular we have f̂ (λ) = 0 for all
λ ∈3′, due to Lemma 7.1. That is,

〈 f, eλ〉L2(�) = f̂ (λ)= 0, λ ∈3′.

Hence f is orthogonal in L2(�) to all the exponentials {eλ}, λ ∈3′, which contradicts the completeness
of the system E(3′ ) in the space L2(�). �

Corollary 7.3. Assume that the function θ(s) is constant on 5. Then

3−3⊂ Z×Rd−1. (7-6)

Proof. It is assumed that 5=50 and θ(s)= θ0 for all s ∈5. Hence by Lemma 7.2, the set3 is contained
in (Z+ θ0)× (50+U6), which implies (7-6). �

7C. Corollary 7.3 is an important point in our approach to the proof that � can tile by translations. Let
us clarify its role. Recall that a sufficient condition for � to tile was given by Corollary 5.3; namely, it
is enough to know that the spectrum 3 satisfies condition (5-2) for every facet F of �. For the facet
F =

{ 1
2

}
×6 we have τF = (1, 0, 0, . . . , 0); hence for this facet the condition (5-2) is the same as (7-6).

It thus follows from Corollary 7.3 that in order to establish (5-2) for the facet F =
{1

2

}
×6, it would be

sufficient to prove that the function θ(s) is constant on 5.
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8. Spectral convex polygons tile the plane

8A. In this section we will demonstrate how the tools developed so far can be useful in our problem by
showing that at this point they already enable us to give an alternative proof of the following result in
dimension d = 2:

Theorem 8.1 [Iosevich et al. 2003]. Let � be a convex polygon in R2. If � is spectral, then � tiles by
translations.

We remark that the paper [Iosevich et al. 2003] actually contains a proof of a more general result,
which yields the same conclusion for any convex body �⊂ R2 (not assumed a priori to be a polygon).

8B. In order to prove Theorem 8.1, we now restrict ourselves to dimension d = 2. Let � be a convex
polygon in R2. Assume that � is spectral, and let 3 be a spectrum for �. We must prove that � tiles
by translations. This is obvious if � is a parallelogram, so in what follows we will assume � is not a
parallelogram.

By Theorem 3.1 the polygon � is centrally symmetric, and since the facets of � are line segments,
then automatically also all the facets of � are centrally symmetric.

Lemma 8.2. Let � be a convex, centrally symmetric polygon in R2, and assume � is not a parallelogram.
If 3 is a spectrum of �, then

〈3−3, τF 〉 ⊂ Z (8-1)

for every facet F of �.

Theorem 8.1 follows immediately from a combination of Lemma 8.2 and Corollary 5.3. Hence, it only
remains to prove the lemma.

Lemma 8.2 was proved in [Iosevich et al. 2003, Proposition 3.1], and was also used there to deduce
that � tiles by translations. However, both our proof of Lemma 8.2, and the argument we use to deduce
Theorem 8.1 from Lemma 8.2, are different from theirs.

8C. Now we give our proof of Lemma 8.2.

Proof of Lemma 8.2. Let F be a facet of �. We must show that if 3 is a spectrum of �, then it satisfies
condition (8-1). By applying an affine transformation we may assume � is symmetric about the origin,
�=−�, and that F =

{ 1
2

}
× I, where I is the interval

[
−

1
2 ,

1
2

]
. Hence we have 6 = I, τF = (1, 0), and

condition (8-1) becomes
3−3⊂ Z×R. (8-2)

Let 5⊂ R be the set associated to the spectrum 3 defined as in Section 6, and θ(s) be the function on 5
given by Lemma 6.2. By Corollary 7.3, to establish (8-2) it would be enough to show that θ(s) is constant
on 5.

Let us first consider the case when
5−5⊂ Z. (8-3)



FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX POLYTOPES 1517

We will show that in this case we must have �= I × I, that is, � is the unit cube, which is not possible
as we have assumed that � is not a parallelogram. Indeed, suppose that (8-3) holds, and let 3′ be the
spectrum constructed from 3 in Section 7. Fix a point λ0 = (t0, s0) ∈3

′. It follows from Lemma 7.1 and
(8-3) that if λ′ = (t ′, s ′) is any point in 3′ other than λ0, then at least one of the numbers t ′− t0 and s ′− s0

must be in Z\{0}. Now consider the function f defined by (7-4). This function is supported by �, and by
(7-5) its Fourier transform f̂ vanishes on all the points of 3′ except for λ0, since 1̂I vanishes on Z \ {0}.
Hence f is orthogonal in L2(�) to all the exponentials {eλ}, λ ∈3′ \ {λ0}. Since the system E(3′) is
orthogonal and complete in L2(�), this implies that f must coincide a.e. on � with a constant (nonzero)
multiple of eλ0 . In particular, f cannot vanish on any subset of � of positive measure. On the other hand,
by the definition of f it does vanish on � \ (I × I ). This is possible only if �= I × I.

We thus conclude that (8-3) is not possible, so we must have

5−5 6⊂ Z. (8-4)

Let us then show that θ(s) is a constant function on 5. Indeed, due to (8-4) there exist s ′, s ′′ ∈5 such
that s ′′ − s ′ /∈ Z. Since {1̂I=0} = Z \ {0}, Corollary 6.3 implies θ(s ′) = θ(s ′′). Observe that for any
s ∈5 we must have s− s ′ /∈ Z or s− s ′′ /∈ Z, and in either case we obtain, again by Corollary 6.3, that
θ(s)= θ(s ′)= θ(s ′′). This shows that θ(s) must be a constant function on 5. �

9. Prisms and cylindric sets

9A. The proof presented in Section 8 that a spectral convex polygon in the plane R2 can tile by translations
eventually relied on showing that the function θ(s) is constant on the set 5. In order to show this we
had to exclude the case when � is a parallelogram, but since a parallelogram automatically tiles by
translations, this loss of generality was innocuous in the proof.

In dimension d = 3, however, the situation is more complicated. Even if we exclude the case when �
is a parallelepiped, one still cannot expect to be able to prove that θ(s) is a constant function on 5.
Indeed, we have seen in Example 6.5 above that if � is a prism whose base is a spectral set, then the
function θ(s) may attain countably many arbitrary distinct values. Hence, the role of the parallelogram in
dimension d = 2 will be played not by the parallelepiped, but by the prism, in dimension d = 3.

We remind the reader that by a prism in Rd one means a polytope � which can be expressed as the
Minkowski sum of a (d−1)-dimensional polytope and a line segment.

Notice, however, that while a parallelogram in R2 automatically tiles by translations, this is not so for
a prism in R3. Hence it is yet required to prove — necessarily by a different method — that a spectral
convex prism in R3 can tile by translations.

Let us formulate this result explicitly:

Theorem 9.1. Let � be a convex prism in R3. If � is spectral, then it tiles by translations.

9B. A bounded, measurable set �⊂Rd (d > 2) will be called a cylindric set if it has the form �= I ×6,
where I is an interval in R, and 6 is a measurable set in Rd−1. In this case, the set 6 will be called the
base of the cylindric set �.
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If the base 6 is a convex polytope in Rd−1, then the set �= I ×6 is a convex prism. Conversely, any
convex prism in Rd is the affine image of some set of the form I ×6, where I is an interval and 6 is a
convex polytope in Rd−1.

We will deduce Theorem 9.1 from the following result, proved in our paper [Greenfeld and Lev 2016].
The result is valid in all dimensions d > 2 (not just d = 3).

Theorem 9.2 [Greenfeld and Lev 2016]. A cylindric set �= I ×6 is spectral (as a set in Rd ) if and only
if its base 6 is a spectral set (as a set in Rd−1).

This result thus provides a characterization of the cylindric spectral sets � in terms of the spectrality
of their base 6.

The “if” part of Theorem 9.2 is obvious. Suppose for simplicity that I =
[
−

1
2 ,

1
2

]
. If 0 ⊂ Rd−1 is a

spectrum for 6, then it is easy to check that Z×0 is a spectrum for �; hence � is spectral.
On the other hand, the converse, “only if” part of the theorem (which is what we shall need for our

present goal), is nontrivial. Roughly speaking, the difficulty lies in that knowing � to have a spectrum 3

in no way implies that 3 has a product structure as Z×0. In particular, we do not have any obvious
candidate for a set 0 ⊂ Rd−1 that might serve as a spectrum for 6.

Remark. In [Greenfeld and Lev 2016] we also gave a similar characterization of the cylindric sets �
in Rd which can tile the space by translations. Namely, it was proved there that a cylindric set �= I ×6
tiles if and only if its base 6 tiles.

9C. Theorem 9.1 can now be obtained by a combination of Theorem 9.2 and the result from [Iosevich
et al. 2003] that a spectral convex polygon in R2 can tile by translations, namely, Theorem 8.1 (for which
we have provided an independent proof in Section 8).

Proof of Theorem 9.1. By applying an affine transformation we can assume �= I ×6, where I is the
interval

[
−

1
2 ,

1
2

]
and 6 is a convex polygon in R2. Since � is spectral, it follows by Theorem 9.2 that

also 6 is spectral. Hence by Theorem 8.1, 6 tiles by translations, so there is a set 0 ⊂ R2 such that
6+0 is a tiling of R2. It is then clear that � tiles R3 with the translation set Z×0. �

10. Prisms and zonotopes

In Section 9 we explained why the case when the convex polytope �⊂ R3 is a prism requires a special
treatment in our approach. In this case we obtained a complete solution to our problem; namely, it was
proved that if a convex prism in R3 is a spectral set, then it tiles by translations (Theorem 9.1). Hence, in
what follows we will be mainly interested in the case when � is not a prism. The goal of the present
section is to point out some geometric properties of such an � that will be useful in the analysis of the
spectrum later on.

10A. Let �⊂ R3 be a convex polytope, centrally symmetric and with centrally symmetric facets. Let F
be a facet of �, and F ′ be the opposite facet. Recall that by the central symmetry, F ′ is a translate of F,
and that we have denoted by τF the translation vector in R3 which carries F ′ onto F , that is, F = F ′+ τF.
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Suppose now that A is a subfacet of F. Then A is the image under the translation by τF of a subfacet A′

of F ′, that is, A = A′+ τF. We denote by HF,A the hyperplane which contains the subfacets A and A′.

Lemma 10.1. If � is not a prism, then for any facet F of � there is a subfacet A such that int(�)
intersects each one of the two open half-spaces bounded by HF,A.

Proof. Let F be a facet of �. By applying an affine transformation we may assume

�=−�, F =
{ 1

2

}
×6, F ′ =

{
−

1
2

}
×6,

where 6 is a convex polygon in R2 such that 6 =−6. Suppose to the contrary that for any subfacet A
of F, int(�) entirely lies within one of the open half-spaces bounded by HF,A. The intersection of the
closures of all these half-spaces with the set I ×R2, where I =

[
−

1
2 ,

1
2

]
, is equal to I ×6. Hence � is

contained in I ×6. But � also contains I ×6, since I ×6 is the convex hull of the facets F and F ′. We
conclude that �= I ×6, which is not possible unless � is a prism. This contradiction ends the proof. �

10B. By a zonotope in Rd one means a polytope which can be represented as the Minkowski sum of a
finite number of line segments. A zonotope is a convex, centrally symmetric polytope, and all its facets
are also zonotopes. In particular, all the facets of a zonotope are also centrally symmetric.

It is known, see, e.g., [Schneider 1993, Theorem 3.5.1], that in dimension d = 3, a convex polytope
which has centrally symmetric facets must be a zonotope.

Remark, by the way, that this is not true in dimensions d > 4. A well-known example is the 24-cell
in R4, a convex polytope which tiles by translations, and hence is centrally symmetric and has centrally
symmetric facets, but which is not a zonotope.

10C. Let again �⊂ R3 be a convex polytope, centrally symmetric and with centrally symmetric facets
(and hence a zonotope). Let F be a facet of �, and A, B be two parallel subfacets of F. Let F ′ and
A′, B ′ be the facet and its two subfacets which are carried onto F and A, B respectively by the translation
vector τF. We denote by SF,A,B the closed slab which lies between the two parallel hyperplanes HF,A

and HF,B .

Lemma 10.2. Assume that the intersection of � and SF,A,B coincides with the convex hull of the facets F
and F ′. Then � is a prism.

Proof. By applying an affine transformation we may assume

�=−�, F ⊂
{

x1 =
1
2

}
,

F is symmetric about the point
( 1

2 , 0, 0
)
, and

A =
{ 1

2

}
×
{1

2

}
× I, B =

{ 1
2

}
×
{
−

1
2

}
× I,

where I denotes as usual the interval
[
−

1
2 ,

1
2

]
. Hence F =

{1
2

}
×6, where 6 is a convex polygon in R2

such that 6 =−6, and such that
{ 1

2

}
× I,

{
−

1
2

}
× I are facets of 6.

The assumption in the lemma thus means that

�∩ (R× I ×R)= I ×6. (10-1)
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Since� is a zonotope, it can be represented as the Minkowski sum of several line segments S1, S2, . . . , Sn .
Thus we have�= S1+S2+· · ·+Sn . As� is symmetric about the origin, we can assume that the same is true
for each line segment Sj ; that is, Sj =−Sj . We can also assume that no two of the segments Sj are parallel.

Now we consider two distinct cases separately. Let us first consider the case when 6 is not the cube
I× I. In this case there must exist at least one vertex v of6 which belongs to int(I×R). Hence I×{v} is a
subfacet of I×6. By (10-1) it follows that I×{v} is also a subfacet of�. Each subfacet of� is a translate
of one of the Sj ’s (see, for example, [McMullen 1971]). Hence one of the line segments, say S1, must be
equal to I ×{0}× {0}. It then follows that all the other line segments S2, . . . , Sn must lie in {0}×R×R.
Indeed, if this is not true for some Sj , then S1+ Sj is not contained in I ×R×R. But S1+ Sj is contained
in �, and � is contained in I ×R×R, so this is not possible. Hence all the segments S2, . . . , Sn lie in
{0}×R×R. It follows that S2+· · ·+ Sn = {0}×6, and �= I ×6. This shows that � must be a prism.

Now we consider the remaining case, namely, when 6 = I × I. In this case, the assumption (10-1)
becomes

�∩ (R× I ×R)= I × I × I. (10-2)

Hence R×R×
{1

2

}
and R×R×

{
−

1
2

}
are supporting hyperplanes of�, and thus�⊂R×R× I. Since A={1

2

}
×
{ 1

2

}
×I is a subfacet of�, then as before, one of the line segments, say again S1, must be equal to {0}×

{0}×I. It then follows that all the other line segments S2, . . . , Sn must lie in R×R×{0}, since if not, then as
before, this would contradict the fact that�⊂R×R× I. Hence S2+· · ·+Sn= P×{0} for a certain convex
polygon P ⊂ R2, and �= P × I. Again we obtain that � must be a prism, so this proves the lemma. �

11. Structure of spectrum, III

In this section our goal is to relate the geometric observations made in Section 10 to the spectrality
problem for convex polytopes in dimension d = 3. More specifically, we will see how one can use the
assumption that � is not a prism in order to obtain new information on the structure of the spectrum 3.

11A. Let�⊂R3 be a convex polytope, centrally symmetric and with centrally symmetric facets. Assume,
as before, that �=−�; that is, � is symmetric about the origin, F is a facet of � contained in

{
x1 =

1
2

}
,

and the center of F is the point
( 1

2 , 0, 0
)
. Hence F =

{ 1
2

}
×6, where 6 is a convex polygon in R2 such

that 6 =−6.
Suppose also that 3 is a spectrum for �. Let 5⊂ R2 be the set associated to the spectrum 3 defined

as in Section 6 and θ(s) be the function on 5 given by Lemma 6.2. We also let 3′ be the new spectrum
constructed from 3 in Section 7.

Recall that to each point (t0, s0) ∈R×R2 we have associated a function f , supported by �, defined by
(7-4). As an element of L2(�), this function f admits a Fourier expansion with respect to the spectrum3′,
given by

f =
1
|�|

∑
λ∈3′

f̂ (λ)eλ. (11-1)

By Lemma 2.1 the series on the right-hand side of (11-1) converges in L2 on any bounded set to a
measurable function f̃ on R3, and f coincides with f̃ a.e. on �.
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We now observe that for certain values of (t0, s0), the Fourier expansion of f with respect to the
spectrum 3′ consists of exceptionally few terms:

Lemma 11.1. Let (t0, s0) be a point belonging to (Z+ θj )×5j for some j , and let f be the function
defined by (7-4). Then the Fourier expansion (11-1) of f with respect to the spectrum 3′ consists only of
terms corresponding to λ ∈3′ ∩ ({t0}×5j ).

In other words, all the coefficients f̂ (λ) in the expansion (11-1) must vanish except for possibly those
which correspond to λ= (t, s) ∈3′ such that t = t0 and s ∈5j .

Proof of Lemma 11.1. If (t, s) ∈ 3′, then by Lemma 7.1 there is k such that t ∈ Z+ θk and s ∈5k . If
k 6= j then 1̂6(s− s0)= 0 due to (7-3), and it follows from (7-5) that f̂ (t, s)= 0. If k = j then both t0
and t belong to Z+ θj ; hence t − t0 is an integer. Since 1̂I vanishes on Z \ {0}, it follows again by (7-5)
that f̂ (t, s) = 0 unless t = t0. This shows that in the series (11-1) the nonzero coefficients can only
correspond to λ= (t, s) such that t = t0 and s ∈5j . �

Remark. It may be interesting to notice that Lemma 11.1 implies that 3′ must contain points from each
one of the sets {t0}×5j , where t0 goes through the elements of Z+ θj .

11B. Now suppose that� is not a prism. Then by Lemma 10.1 there is a subfacet A of F such that int(�)
intersects each one of the two open half-spaces bounded by the hyperplane HF,A. Let us assume, for
simplicity, that this subfacet is A=

{1
2

}
×
{1

2

}
× I, where I =

[
−

1
2 ,

1
2

]
(later on, the general situation will be

reduced to this case by applying an affine transformation). Thus
{1

2

}
× I is a facet of the convex polygon6.

We can now use Lemma 11.1 to obtain some additional information on the structure of the components
5j of the set 5.

Lemma 11.2. For each j we have
5j −5j 6⊂ Z×R. (11-2)

Proof. Suppose that (11-2) is not true for some j . By translating the spectrum 3 we can assume 5j

contains the origin, and hence
5j ⊂ Z×R. (11-3)

Choose a point (t0, s0) ∈ (Z+ θj )×5j , and let f be the function associated to this point defined by
(7-4). By Lemma 11.1 and due to (11-3), the Fourier expansion of f with respect to 3′ consists only of
exponentials eλ such that λ ∈3′ ∩ (R×Z×R). It follows (Lemma 2.1) that the right-hand side of (11-1)
is a function f̃ on R3 which is periodic with respect to the vector (0, 1, 0), and f coincides with f̃ a.e.
on �.

Recall that we have chosen the subfacet A of F (using Lemma 10.1) such that int(�) intersects each one
of the two open half-spaces bounded by the hyperplane HF,A. Since it was assumed that A=

{ 1
2

}
×
{ 1

2

}
× I,

this means that HF,A =
{

x2 =
1
2

}
, and hence

� 6⊂
{

x2 6
1
2

}
. (11-4)

Recall also that F =
{1

2

}
×6, where 6 is a convex polygon in R2, 6 =−6, and

{1
2

}
× I is a face

of 6. By convexity, 6 contains the unit square I × I, and hence I ×6 contains the unit cube I × I × I.
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Thus | f̃ | = | f | = 1 a.e. on I × I × I. By the periodicity of f̃ this implies | f̃ | = 1 a.e. on I ×R× I. In
particular, | f̃ | = 1 a.e. on the set

�∩ (I × (R \ I )× I ). (11-5)

On the other hand, the set (11-5) is disjoint from I ×6; hence | f | = 0 on this set. It follows that the set
(11-5) cannot have positive measure, and therefore

�∩ (I ×R× I )= I × I × I.

This implies that
{

x2 =
1
2

}
is a supporting hyperplane of �, which contradicts (11-4). �

Lemma 11.3. For each j we have
5j −5j 6⊂ R×Z. (11-6)

Proof. We argue in a way similar to the proof of the previous lemma. If (11-6) is violated for some j ,
then by translating 3 we can assume

5j ⊂ R×Z. (11-7)

Hence, choosing a point (t0, s0) ∈ (Z+ θj )×5j , the corresponding function f defined by (7-4) coincides
a.e. on � with a function f̃ on R3, which by (11-7) and Lemma 11.1 is periodic with respect to the vector
(0, 0, 1).

Since we have | f̃ | = | f | = 1 a.e. on I × I × I, the periodicity of f̃ implies | f̃ | = 1 a.e. on I × I ×R.
In particular, | f̃ | = 1 a.e. on the set

�∩ (I × ((I ×R) \6)). (11-8)

But since this set is disjoint from I ×6, we have | f | = 0 on the set (11-8). So the set (11-8) cannot have
positive measure, and therefore

�∩ (I × I ×R)= I ×6.

By Lemma 10.2 this is possible only if � is a prism, so this concludes the proof. �

Lemma 11.4. Let X be a subset of an abelian group G, and let H1 and H2 be two subgroups of G.
Assume that

X − X ⊂ H1 ∪ H2. (11-9)

Then X − X ⊂ H1 or X − X ⊂ H2.

Proof. Suppose that X − X 6⊂ H1, so there exist x, y ∈ X such that x − y 6∈ H1. Then by (11-9) we
have x − y ∈ H2. The property x − y 6∈ H1 implies that for each z ∈ X we must have z − x /∈ H1 or
z − y /∈ H1. But in either case, it follows from (11-9) that z ∈ x + H2 = y + H2, so we conclude that
X ⊂ x + H2 = y+ H2. Thus X − X ⊂ H2. �

Corollary 11.5. For each j we have

5j −5j 6⊂ (Z×R)∪ (R×Z). (11-10)

This is an immediate consequence of Lemmas 11.2, 11.3 and 11.4.
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12. Structure of spectrum, IV

In the present section, we continue to analyze the structure of the spectrum of a convex polytope � in
dimension d = 3. Although we are mainly interested in the case when � is not a prism, we will not need
to assume this in the present section.

12A. Let� be a convex polytope in R3, centrally symmetric and with centrally symmetric facets. Assume
that � is in our “standard position”; namely, �=−�, F is a facet of � contained in

{
x1 =

1
2

}
, and F

is symmetric about the point
( 1

2 , 0, 0
)
. Assume also that A =

{ 1
2

}
×
{ 1

2

}
× I is a subfacet of F , where

I =
[
−

1
2 ,

1
2

]
. Hence F =

{ 1
2

}
×6, where 6 is a convex polygon in R2, 6 =−6, and

{ 1
2

}
× I is a facet

of 6.
Suppose that 3 is a spectrum for �. Let 5⊂ R2 be the set associated to the spectrum 3 defined in

Section 6 and θ(s) be the function on 5 given by Lemma 6.2. Recall that in Section 7 a new spectrum 3′

was constructed from the given spectrum 3 by taking the weak limit of a sequence of translates of 3.
The new spectrum 3′ was shown (Lemma 7.1) to enjoy a particular structure, namely

3′ ⊂
⋃
j>0

(Z+ θj )×5j , (12-1)

where 5j are the components of the set 5, and θj are respectively the values of the function θ(s) on
these components. The sets 5j were shown (Corollary 6.3) to satisfy

5k −5j ⊂ {1̂6 = 0} ( j 6= k). (12-2)

When we want to further analyze the structure of the spectrum in dimension d = 3, a new complication
arises that was not present in the case d = 2. Namely, the zero set {1̂6 = 0} is not known explicitly,
except in the special case when 6 is the cube I × I. In order to address this difficulty, a further limiting
procedure will now be performed on the spectrum 3′, yielding a third spectrum 3′′ of �.

12B. The new spectrum 3′′ is constructed as follows. Consider the sequence of translates of the
spectrum 3′ given by

3′− r · (0, 1, 0), r = 1, 2, 3, . . . .

As in Section 7 we may extract from this sequence a subsequence

3′− rn · (0, 1, 0), rn→∞, (12-3)

which converges weakly to some set 3′′, which is again a spectrum of �.
According to (12-1) we may form a partition of the spectrum 3′ into sets defined by

3′j :=3
′
∩ ((Z+ θj )×5j ). (12-4)

It would be convenient for us to know that for each j , the sequence of translates

3′j − rn · (0, 1, 0) (12-5)
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of each component 3′j has a weak limit as n→∞. This does not follow automatically from the weak
convergence of the sequence (12-3), though, since we have not excluded the possibility that there may be
infinitely many θj and that they may have accumulation points. Nevertheless, we can assume that (12-5)
has a weak limit as n→∞ for each j , simply by selecting a further subsequence if necessary.

We shall denote by 3′′j the weak limit of (12-5). Observe that a point (t, u, v) ∈ R3 belongs to 3′′j if
and only if there is a sequence (tn, un, vn) ∈3

′

j such that

(tn, un − rn, vn)→ (t, u, v), n→∞.

Remark that while by Lemma 11.1 none of the components 3′j may be empty, this is not true for the
sets 3′′j that we cannot exclude some of which to be empty.

It follows from (12-4) that

3′′j ⊂3
′′
∩ ((Z+ θj )×R2); (12-6)

hence the sets 3′′j are disjoint subsets of 3′′. Remark, however, that these sets do not necessarily form a
partition of 3′′; namely, their union need not be equal to the whole 3′′. Again, this may happen only if
there are infinitely many θj . An example of such a situation can be obtained if � is a prism whose base
is a spectral set. Indeed, we have seen in Example 6.5 that in such a case the function θ(s) may attain
countably many arbitrary distinct values, and that the components 5j of the set 5 may be singletons.
This implies that every 3′′j is empty, while 3′′ certainly cannot be empty being a spectrum for �.

This makes it necessary for us in general to consider also the subset of 3′′ defined by

3′′
∞
:=3′′

∖⋃
j>0

3′′j .

Lemma 12.1. Let (t, u, v) ∈ R3. Then (t, u, v) belongs to 3′′
∞

if and only if there is a sequence kn→∞,
and for each n there is a point (tn, un, vn) ∈3

′

kn
such that

(tn, un − rn, vn)→ (t, u, v), n→∞.

Proof. Suppose first that (t, u, v) is a point in 3′′
∞

. Then (t, u, v) ∈3′′, and since 3′′ is the weak limit of
(12-3), there exist (tn, un, vn) ∈3

′ such that (tn, un − rn, vn)→ (t, u, v). Due to (12-1) and (12-4), for
each n there is kn > 0 such that (tn, un, vn) ∈3

′

kn
. If kn 6→∞, then kn admits infinitely often a certain

value, say kn = j , for infinitely many n. But this implies that (t, u, v) must belong to the weak limit of
(12-5), and hence (t, u, v) ∈3′′j , so it cannot lie in 3′′

∞
. Hence we must have kn→∞.

Conversely, suppose that the point (t, u, v) satisfies the condition in the lemma. The condition implies
that (t, u, v) belongs to the weak limit of (12-3); hence (t, u, v) ∈3′′. If (t, u, v) is not in 3′′

∞
, then it

belongs to one of the sets 3′′j . But then we must have kn = j for all sufficiently large n, so kn 6→∞, a
contradiction. Hence (t, u, v) ∈3′′

∞
. �

We also point out that the inclusion (12-6) is not necessarily an equality, as the right-hand side of
(12-6) may contain elements of 3′′

∞
.
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12C. Now we establish some properties satisfied by the new spectrum 3′′ and its components 3′′k
(06 k 6∞). The first property is derived from the condition (12-2).

Lemma 12.2. For each 06 j, k 6∞, j 6= k, we have

3′′k −3
′′

j ⊂ R×{1̂6 = 0}. (12-7)

Proof. By symmetry we may assume 06 j < k 6∞. Let (t, u, v) ∈3′′j and (t ′, u′, v′) ∈3′′k . Then there
exist two sequences

(tn, un, vn) ∈3
′

j , (tn, un − rn, vn)→ (t, u, v),

and

(t ′n, u′n, v
′

n) ∈3
′

kn
, (t ′n, u′n − rn, v

′

n)→ (t ′, u′, v′),

where kn = k in the case when k is finite and kn →∞ if k =∞ (Lemma 12.1). In any case we have
kn 6= j for all sufficiently large n. Since by (12-4) we have

(un, vn) ∈5j , (u′n, v
′

n) ∈5kn ,

it follows from (12-2) that

(t ′n, u′n − rn, v
′

n)− (tn, un − rn, vn)= (t ′n − tn, u′n − un, v
′

n − vn) ∈ R×{1̂6 = 0}.

Letting n→∞ we obtain

(t ′, u′, v′)− (t, u, v) ∈ R×{1̂6 = 0},

which confirms (12-7). �

Lemma 12.2 shows that the structure (12-2) is basically preserved in the new spectrum 3′′ and its
components 3′′k (06 k 6∞). However, our motivation for introducing this new spectrum is due to the
following lemma:

Lemma 12.3. Let 06 j <∞, 06 k 6∞, k 6= j . Then

3′′k −R×5j ⊂ (R×Z×R)∪ (R×R× (Z \ {0})). (12-8)

In other words, if (u0, v0) ∈5j and if (t, u, v) ∈3′′k , then u− u0 ∈ Z or v− v0 ∈ Z \ {0}.

This lemma is similar in spirit to Lemma 6.2. To see the resemblance between the two lemmas, recall
that

{1
2

}
× I is a facet of the polygon 6, and {1̂I = 0} = Z \ {0}. The assertion of (12-8) is equivalent to

the statement that if (u0, v0) ∈5j , (t, u, v) ∈3′′k , and if 1̂I (v− v0) 6= 0, then u ∈ Z+ u0. The proof is
also similar to that of Lemma 6.2.

Proof of Lemma 12.3. Let (u0, v0) ∈5j and (t, u, v) ∈3′′k . Regardless of whether k is finite or not, there
is a sequence kn and there are points (tn, un, vn) ∈3

′

kn
such that

(tn, un − rn, vn)→ (t, u, v), n→∞. (12-9)
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Indeed, if 06 k <∞ then kn = k for all n, while if k =∞ then kn→∞ (Lemma 12.1). In any case, we
have kn 6= j for all sufficiently large n. Since (tn, un, vn) ∈3

′

kn
we have (un, vn) ∈5kn by (12-4). Hence

by (12-2) this implies

1̂6(un − u0, vn − v0)= 0 (12-10)

for all sufficiently large n.
Observe that since rn → ∞, (12-9) implies that also un → ∞. Hence using Lemma 6.1 for the

polygon 6 and its facet
{1

2

}
× I, it follows from (12-10) that

sinπ(un − u0) · 1̂I (vn − v0)→ 0, n→∞.

Indeed, the polygon 6 is centrally symmetric and it has centrally symmetric facets, as the facets of 6 are
line segments; hence all the conditions of Lemma 6.1 are satisfied.

Now suppose that v − v0 6∈ Z \ {0}. Then v − v0 is not contained in the zero set of 1̂I, and hence
|1̂I (vn − v0)| remains bounded away from zero as n→∞. So we must have sinπ(un − u0)→ 0, or
equivalently, dist(un−u0,Z)→ 0. But since rn is an integer, (12-9) implies that also dist(un−u,Z)→ 0.
It follows that

dist(u− u0,Z)6 dist(un − u0,Z)+ dist(un − u,Z)→ 0.

We conclude that u− u0 ∈ Z as required. �

From the previous lemma it is easy to deduce the next one:

Lemma 12.4. For each 06 j, k 6∞, j 6= k, we have

3′′k −3
′′

j ⊂ (R×Z×R)∪ (R×R× (Z \ {0})). (12-11)

Actually we will not use Lemma 12.4 in what follows. We state it merely to demonstrate an essential
advantage of the newly constructed spectrum 3′′. On one hand, according to (12-7) it basically inherits
the structure of the previously constructed spectrum 3′, while on the other hand, condition (12-11) reveals
an extra structure in 3′′.

Since the proof of Lemma 12.4 is quite short, we include it for completeness.

Proof of Lemma 12.4. By symmetry we may assume 0 6 j < k 6∞. Let (t, u, v) ∈ 3′′k . Then by
Lemma 12.3 the set R×5j must be contained in

(R× (u+Z)×R)∪ (R×R× (v+ (Z \ {0}))). (12-12)

Due to (12-4) we have 3′j ⊂ R×5j ; hence also the set 3′j is contained in (12-12). Since the set (12-12)
is invariant under translations by vectors in {0} × Z× {0}, it follows that all the sets (12-5) are also
contained in (12-12), and hence the same is true for their weak limit 3′′j . This implies that 3′′j − (t, u, v)
is contained in the set on the right-hand side of (12-11). As (t, u, v) was an arbitrary element of 3′′k , this
establishes (12-11). �
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13. Auxiliary lemmas

In this section we establish some specific facts about the spectrum of a convex polytope � that will be
used later on. These facts are true in arbitrary dimension, so in the present section we do not restrict the
discussion to three dimensions.

13A. Let�⊂Rd be a convex polytope. Let F and F ′ be two parallel facets of�, and assume F⊂
{

x1=
1
2

}
,

F ′ ⊂
{

x1 =−
1
2

}
, and that F is the image of F ′ under translation by the vector Ee1. These assumptions

imply that
F =

{1
2

}
×6, F ′ =

{
−

1
2

}
×6,

where 6 is a convex polytope in Rd−1.
Assume also that � is spectral, and let 3 be a spectrum for �.

Lemma 13.1. If � is not a prism, then 3 cannot contain any set of the form

(Z+ θ)×{s}, (13-1)

where θ ∈ R and s ∈ Rd−1.

Proof. Suppose to the contrary that 3 does contain a set of the form (13-1). This implies that the set
3−3 contains Z×{0}. On the other hand, since 3 is a spectrum for �, the set 3−3 must be contained
in {1̂� = 0} ∪ {0}. We conclude that

1̂�(k, 0)= 0, k ∈ Z \ {0}. (13-2)

For each x ∈ R denote by �x the (d−1)-dimensional polytope obtained by the intersection of � with
the hyperplane {x}×Rd−1, and let ϕ(x) be the (d−1)-dimensional volume of �x . Then the function ϕ
vanishes off the interval I =

[
−

1
2 ,

1
2

]
, it is continuous on I, and ϕ

( 1
2

)
= ϕ

(
−

1
2

)
= |6|. Notice that, by

convexity, �x contains {x}×6 for every x ∈ I. In particular this implies ϕ(x)> |6|, x ∈ I.
It follows from the definition of the function ϕ that its Fourier transform is given by

ϕ̂(t)= 1̂�(t, 0), t ∈ R.

Combining this with (13-2) we obtain that ϕ̂ vanishes on Z \ {0}. Since ϕ is supported on I, this implies
that ϕ is orthogonal in L2(I ) to all the exponentials {ek}, k ∈Z\{0}. But as the system E(Z) is orthogonal
and complete in L2(I ), this is possible only if ϕ is constant on I. Hence ϕ(x)= |6| for all x ∈ I. In turn,
this implies �x = {x}×6, x ∈ I. We conclude that �= I ×6, and so � is a prism, a contradiction. �

Remark. One can see from the proof that the only property of the set (13-1) that was actually used was
that its difference set contains Z×{0}. Hence the lemma remains true if (13-1) is replaced by any other
set for which the latter property is satisfied.

13B. Denote by Q = I d−1 the unit cube in Rd−1. As usual, I is the interval
[
−

1
2 ,

1
2

]
.

Lemma 13.2. Assume that 6 contains Q. If � is not a prism, then 3 cannot be covered by the union of
two translates of Zd.
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Proof. Suppose to the contrary that 3 is contained in the union of two translates of Zd. By translating 3
we may assume

3⊂ Zd
∪ (Zd

+ τ) (13-3)

for some τ ∈ Rd. According to Lemma 13.1, the spectrum 3 cannot contain the whole set Z×{0}. This
implies that by further translating 3 by a certain vector in Z×{0}, we may additionally assume 3 does
not contain the origin.

Since 6 is assumed to contain Q, and since by convexity � contains I ×6, it follows that � must
contain I ×Q, the unit cube in Rd. Hence the function f = 1I×Q is supported by �. Consider the Fourier
expansion (2-3) of this function f . Since f̂ vanishes on all the points of Zd except the origin, and since
the origin does not belong to3, it follows from (13-3) that only exponentials eλ such that λ∈3∩(Zd

+τ)

may have a nonzero coefficient in the expansion (2-3). Hence by Lemma 2.1 the right-hand side of (2-3)
represents a function f̃ of the form

f̃ (x)= e2π i〈τ,x〉g(x), x ∈ Rd,

where g is some Zd -periodic function, and f coincides with f̃ a.e. on �. Notice that |g| = | f̃ | = | f | = 1
a.e. on I × Q. By the periodicity of g this implies |g| = 1 a.e. on Rd. Hence | f | = | f̃ | = |g| = 1 a.e.
on �. In particular, f cannot vanish on any subset of � of positive measure. On the other hand, by the
definition of f it does vanish on � \ (I × Q). This is possible only if �= I × Q; namely, � is the unit
cube in Rd. But this contradicts the assumption that � is not a prism, so the proof is complete. �

14. Structure of spectrum, V

In this section we complete the analysis of the spectrum in dimension d = 3.

14A. Our assumptions will be the following.
Let �⊂R3 be a convex polytope, centrally symmetric and with centrally symmetric facets. We assume

� is not a prism. Suppose that � is in the “standard position”; namely, � = −�, F is a facet of �
contained in

{
x1 =

1
2

}
, and F is symmetric about the point

( 1
2 , 0, 0

)
. Hence F =

{1
2

}
×6, where 6 is

a convex polygon in R2 such that 6 = −6. We assume A =
{1

2

}
×
{1

2

}
× I is a subfacet of F, where

I =
[
−

1
2 ,

1
2

]
, and therefore

{1
2

}
× I is a facet of 6. We also suppose that int(�) intersects each one of

the two open half-spaces
{

x2 <
1
2

}
and

{
x2 >

1
2

}
.

Suppose now that 3 is a spectrum for �. Let 5 be the set constructed from 3 in Section 6, and θ(s)
be the function on 5 given by Lemma 6.2. Let 3′ be the spectrum for � constructed from 3 in Section 7,
and 3′′ be the spectrum constructed from 3′ in Section 12. We shall continue to use the notations 5j , θj ,
3′j , 3

′′

j and 3′′
∞

with the same meaning as in the previous sections.
Our goal in the present section is to prove that, under the assumptions above, the function θ(s) is

necessarily constant on 5.

14B. It will be convenient to introduce the following notation. Let

G := (Z×R)∪ (R×Z) (14-1)
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and

G0 := (Z×R)∪ (R× (Z \ {0})). (14-2)

Lemma 14.1. Let 5j (06 j <∞) be one of the components of 5, and let 06 k 6∞, k 6= j . Then we
have

3′′k ⊂ R×
⋂

s∈5j

(s+G0). (14-3)

Also, if the set 3′′k is not empty, then we have

5j ⊂
⋂

(t,s)∈3′′k

(s+G0). (14-4)

In fact, each one of (14-3) and (14-4) is just a reformulation of condition (12-8). Hence Lemma 14.1
is a consequence of Lemma 12.3.

14C. Lemma 14.2. If for some 06 k 6∞, the set 3′′k is not empty, then

3′′k −3
′′

k 6⊂ R×G. (14-5)

Proof. The proof is very similar to that of Corollary 11.5, and therefore it will only be outlined. The proof
involves several steps.

Step 1. Let (t0, s0) be a point in3′′k , and let f be the function defined by (7-4). Then the Fourier expansion

f =
1
|�|

∑
λ∈3′′

f̂ (λ)eλ (14-6)

of f with respect to the spectrum 3′′ consists only of terms corresponding to λ ∈3′′k . This follows from
Lemma 12.2 and the expression (7-5) for the Fourier transform of f .

Step 2. We have

3′′k −3
′′

k 6⊂ R×Z×R. (14-7)

Indeed, if this is not true then by translating 3 we may assume 3′′k ⊂ R×Z×R. Hence from the Fourier
expansion (14-6) it follows (Lemma 2.1) that f coincides a.e. on � with a function f̃ on R3 which is
periodic with respect to the vector (0, 1, 0). As in the proof of Lemma 11.2, this leads to a contradiction
to the assumption that int(�) intersects both half-spaces

{
x2 <

1
2

}
and

{
x2 >

1
2

}
.

Step 3. We have

3′′k −3
′′

k 6⊂ R×R×Z. (14-8)

In the same way, if this does not hold then by translating 3 we can assume 3′′k ⊂R×R×Z. As in Step 2
this implies that f coincides a.e. on � with a function f̃ on R3 which is periodic with respect to the
vector (0, 0, 1). As in the proof of Lemma 11.3, this together with Lemma 10.2 implies that � must be a
prism, a contradiction.
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Step 4. We have
3′′k −3

′′

k 6⊂ R×G.

This follows by combining (14-7), (14-8) and Lemma 11.4. �

14D. Lemma 14.3. Let s, s ′, s ′′ be three points in R2, and

X = (s+G)∩ (s ′+G)∩ (s ′′+G). (14-9)

If the points s, s ′, s ′′ are distinct modulo Z2, then X − X ⊂ G.

This is not difficult to verify, and we omit the details.

Lemma 14.4. Suppose that there is a component 5j of the set 5 (0 6 j < ∞) such that for any
06 k 6∞, k 6= j , the set 3′′k is empty. Then 5=5j ; namely 5j is the unique component of 5, and so
the function θ(s) is constant on 5.

Proof. The assumption means that 3′′ =3′′j . By (12-6) we therefore have

3′′ ⊂ (Z+ θj )×R2.

Consider the set of all points s ∈ R2 for which there is t ∈ Z+ θj such that (t, s) ∈3′′. We claim that
this set must contain at least three points which are distinct modulo Z2. Indeed, if this is not true then the
spectrum 3′′ is contained in a union of two sets of the form

(Z+ θj )× (Z
2
+ s), s ∈ R2.

But this would imply that 3′′ can be covered by the union of two translates of Z3, which is not possible
according to Lemma 13.2 since � is not a prism (notice that 6 contains the cube I × I, so we may use
Lemma 13.2). Hence there must exist three points (t, s), (t ′, s ′), (t ′′, s ′′) in the spectrum 3′′ such that
s, s ′, s ′′ are distinct modulo Z2.

Let 5k , 06 k <∞, be any one of the components of 5 other than 5j . Then by applying (14-4) (with
j, k interchanged) we obtain

5k ⊂ (s+G)∩ (s ′+G)∩ (s ′′+G).

Using Lemma 14.3 this implies 5k −5k ⊂ G, which is impossible due to Corollary 11.5. It follows
that 5j must be the unique component of 5. This means that θ(s)= θj for all s ∈5; thus θ(s) is constant
on 5. �

14E. At this point it will be useful to introduce the following:

Definition 14.5. Let (s0, s ′0) be a pair of points in R2 such that s ′0− s0 6∈ G. If (s1, s ′1) is another pair of
points in R2, then we say that (s1, s ′1) is dual to (s0, s ′0) if the following conditions are satisfied:

(i) s1− s ′0 and s ′1− s0 are both in Z×R.

(ii) s1− s0 and s ′1− s ′0 are both in R×Z.
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For example, consider the pair (s0, s ′0) given by s0 = (0, 0), s ′0 = (α, β), where α, β are two real
numbers which are both not in Z. Then the pair (s1, s ′1) given by s1= (α, 0), s ′1= (0, β) is dual to (s0, s ′0).

It is not difficult to check that the duality relation just defined satisfies the following properties:

1. If (s1, s ′1) is dual to (s0, s ′0) then, since it was assumed that s ′0−s0 6∈G, it follows that also s ′1−s1 6∈G.

2. The duality relation is symmetric; that is, if (s1, s ′1) is dual to (s0, s ′0), then also (s0, s ′0) is dual to
(s1, s ′1).

3. Whether two given pairs are dual to each other or not depends only on the congruence classes of the
points modulo Z2. In other words, if (s1, s ′1) and (s2, s ′2) are two pairs such that s2− s1 and s ′2− s ′1
are both in Z2, and if (s1, s ′1) is dual to a certain pair (s0, s ′0), then also (s2, s ′2) is dual to (s0, s ′0).

4. For every pair (s0, s ′0) such that s ′0 − s0 6∈ G there exists a dual pair (s1, s ′1), and this dual pair is
unique modulo Z2.

The reason for introducing the duality relation above is the following:

Lemma 14.6. Let (s0, s ′0) be a pair of points in R2 such that s ′0− s0 6∈ G. Then

(s0+G)∩ (s ′0+G)= Z2
+{s1, s ′1}, (14-10)

where (s1, s ′1) is any pair which is dual to (s0, s ′0).

This can be checked easily. It is also easy to see that Lemma 14.6 implies:

Lemma 14.7. Let (s0, s ′0) and (s1, s ′1) be two pairs of points in R2 such that s ′0− s0 and s ′1− s1 are both
not in G. If the pairs (s0, s ′0) and (s1, s ′1) are not dual to each other, then the set

Y = (s0+G)∩ (s ′0+G)∩ (Z2
+{s1, s ′1}) (14-11)

is contained in a translate of Z2.

14F. Lemma 14.8. Suppose that the set 5 can be covered by the union of two translates of Z2. Then the
function θ(s) is constant on 5.

Proof. By the assumption of the lemma there exist two points s0, s ′0 ∈ R2 such that

5⊂ Z2
+{s0, s ′0}. (14-12)

Due to (12-1) we have 3′ ⊂ R×5, and together with (14-12) this implies that 3′ is contained in the set

R× (Z2
+{s0, s ′0}). (14-13)

Hence all the sets in (12-3), as well as their weak limit 3′′, are also contained in (14-13).
The set 5 has at least one component 50. Since by Corollary 11.5 we have 50−50 6⊂ G, we may

assume that s0, s ′0 both belong to 50 and that s ′0− s0 6∈ G. Hence using (14-3) for j = 0 we conclude that

3′′k ⊂ R× ((s0+G)∩ (s ′0+G))

for every 16 k 6∞. In turn, by Lemma 14.6 this implies that 3′′k is contained in a set of the form

R× (Z2
+{s1, s ′1}), (14-14)
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where (s1, s ′1) is a pair which is dual to (s0, s ′0).
We conclude that for every 16 k 6∞, the set 3′′k is contained in both (14-13) and (14-14); hence 3′′k

must be the empty set. Now Lemma 14.4 allows us to deduce that 50 is the unique component of 5, and
that θ(s) is a constant function on 5. �

Lemma 14.9. Suppose that one of the components 5j of 5 cannot be covered by the union of two
translates of Z2. Then the function θ(s) is constant on 5.

Proof. The assumption means that the component 5j contains three points s, s ′, s ′′ which are distinct
modulo Z2. Hence by Lemma 14.3 the set X defined by (14-9) satisfies X − X ⊂ G. By (14-3), for any
06 k 6∞, k 6= j , we have 3′′k ⊂ R× X , so it follows that

3′′k −3
′′

k ⊂ R×G.

But according to Lemma 14.2 this is possible only if 3′′k is empty. We conclude that all the sets 3′′k such
that 06 k 6∞, k 6= j , are empty. By Lemma 14.4 this implies that 5j is the unique component of 5,
and θ(s) is constant on 5, as we had to show. �

14G. Lemma 14.10. Suppose the function θ(s) is not constant on 5. Then there exist two components
5j0 and 5j1 ( j0 6= j1) of the set 5, and there are points s0, s ′0 ∈5j0 and s1, s ′1 ∈5j1 such that

(i) 5j0 is contained in the set
X0 := Z2

+{s0, s ′0}, (14-15)

while 5j1 is contained in
X1 := Z2

+{s1, s ′1}; (14-16)

(ii) 3′′j0 ⊂ (Z+ θj0)× X0 and 3′′j1 ⊂ (Z+ θj1)× X1;

(iii) the two pairs (s0, s ′0) and (s1, s ′1) are dual to each other;

(iv) 3′′k is empty for every 06 k 6∞, k 6= j1, k 6= j2.

Proof. Assume that the function θ(s) is not constant on 5. Let 5j0 be one of the components of 5. By
Corollary 11.5 we have 5j0 −5j0 6⊂ G; hence there exist two points s0, s ′0 in 5j0 such that s ′0− s0 6∈ G.
Observe that by Lemma 14.9 the component 5j0 must be contained in the union of two translates of Z2,
which are necessarily given by Z2

+ s0 and Z2
+ s ′0. That is,

5j0 ⊂ Z2
+{s0, s ′0}. (14-17)

By Lemma 14.8, the set 5 cannot be covered by the union of two translates of Z2. Hence the set 5
must contain some point s1 which is distinct modulo Z2 from both s0 and s ′0. According to (14-17), the
new point s1 cannot belong to 5j0 ; hence it belongs to some other component 5j1 .

Using (14-3) it follows that for every 06 k 6∞, k 6= j0, k 6= j1, we have

3′′k ⊂ R×
(
(s0+G)∩ (s ′0+G)∩ (s1+G)

)
.

But then Lemma 14.3 implies that 3′′k −3
′′

k ⊂ R×G. According to Lemma 14.2 this is not possible
unless 3′′k is empty. We conclude that all the sets 3′′k , where 06 k 6∞, k 6= j0, k 6= j1, are empty.
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Due to Corollary 11.5, the component 5j1 cannot be contained in the set Z2
+s1; hence there is another

point s ′1 in 5j1 which is not congruent to s1 modulo Z2. It then follows from Lemma 14.9 that

5j1 ⊂ Z2
+{s1, s ′1}. (14-18)

In turns, this implies that we must have s ′1− s1 6∈ G, again by Corollary 11.5.
Recalling the definition of the sets 3′′j0 and 3′′j1 , the conditions (14-17) and (14-18) now imply that the

property (ii) in the lemma is satisfied.
It remains to show that the pairs (s0, s ′0) and (s1, s ′1) are dual to each other. If this is not the case, then by

Lemma 14.7 the set Y defined by (14-11) is contained in a translate of Z2. But we have3′′j1 ⊂ (Z+θj1)×Y,
due to (14-3) and property (ii). This implies 3′′j1 −3

′′

j1 ⊂ Z×Z2, and consequently 3′′j1 must be empty by
Lemma 14.2. In a completely similar way we can also deduce that 3′′j0 must be empty. But this yields
that all the sets 3′′k , for every 06 k 6∞, are empty, which is impossible since 3′′ cannot be empty being
a spectrum for �. This contradiction confirms that (s0, s ′0) and (s1, s ′1) must be dual to each other, and
concludes the proof. �

14H. Lemma 14.11. The function θ(s) is necessarily constant on 5.

Proof. Suppose to the contrary that this is not the case. Then by Lemma 14.10 there are two components5j0

and5j1 ( j0 6= j1) of the set5, and there are points s0, s ′0 ∈5j0 and s1, s ′1 ∈5j1 satisfying properties (i)–(iv)
of that lemma.

By translating the spectrum3 by a vector in {0}×R2 we may assume s0= (0, 0). Since s ′0−s0 /∈G, we
have s ′0 = (α, β) for certain real numbers α, β none of which is an integer. Since the pair (s1, s ′1) is dual
to (s0, s ′0), it follows that s1 and s ′1 are congruent modulo Z2 to the points (α, 0) and (0, β) respectively.
In other words, we have s1 ∈ Z2

+ (α, 0) and s ′1 ∈ Z2
+ (0, β).

By further translating 3 by a vector in R×{(0, 0)} we may also assume θj0 = 0. It will be convenient
to denote θ := θj1 (notice that we then have 0< θ < 1, since θj0 and θj1 are different numbers).

According to Lemma 13.1, the spectrum 3′′ cannot contain the whole set Z×{(0, 0)}. This implies
that by translating 3 once more by some vector in Z×{(0, 0)} we may additionally assume that 3′′ does
not contain the origin (0, 0, 0).

By property (ii) from Lemma 14.10 we have

3′′j0 ⊂ Z×
(
Z2
+{(0, 0), (α, β)}

)
. (14-19)

Hence each point in 3′′j0 belongs to one of two possible types:

1. Points of the form (k, n,m), where k, n,m are integers, not all of which are zero (that k, n,m cannot
all be zero follows from the assumption that 3′′ does not contain the origin).

2. Points of the form (k, n+α,m+β), where k, n,m are integers.

By the same property (ii) from Lemma 14.10, we also have

3′′j1 ⊂ (Z+ θ)×
(
Z2
+{(α, 0), (0, β)}

)
. (14-20)
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Notice that so far, we have always used (14-3) and (14-4) with the set G0 on the right-hand side actually
replaced by G (which is valid since G0 is a subset of G). However, at this point the fact that G0, and
not just G, appears on the right-hand side of (14-3) will be important. We apply (14-3) with j = j0 and
k = j1, and use the assumption that (0, 0)= s0 ∈5j0 , to conclude that

3′′j1 ⊂ R×G0. (14-21)

It then follows from (14-20) and (14-21) that also each point in 3′′j1 belongs to one of two possible
types:

3. Points of the form (k+ θ, n+α,m), where k, n,m are integers, and m is nonzero (that m cannot be
zero follows from (14-21) and the fact that α is not an integer).

4. Points of the form (k+ θ, n,m+β), where k, n,m are integers.

By property (iv) of Lemma 14.10, the spectrum 3′′ is the union of the two disjoint sets 3′′j0 and 3′′j1 .
We conclude that each point of 3′′ belongs to one of the four types 1, 2, 3 and 4 described above.

Now consider the function

f (x, y, z) := 1I (x)1I (y)1I (z), (x, y, z) ∈ R3,

where I =
[
−

1
2 ,

1
2

]
; namely, f is the indicator function of the unit cube in R3. Then f is supported by �.

Consider the Fourier expansion

f =
1
|�|

∑
λ∈3′′

f̂ (λ)eλ (14-22)

of f with respect to the spectrum 3′′. Since we have

f̂ (t, u, v)= 1̂I (t)1̂I (u)1̂I (v), (t, u, v) ∈ R3,

it follows that f̂ (t, u, v) = 0 whenever at least one of t, u, v is a nonzero integer. This implies that f̂
vanishes on all the points of 3′′ which belong to types 1 and 3. Hence only exponentials eλ such that λ is
of type 2 or 4 may have a nonzero coefficient in the expansion (14-22).

It follows (Lemma 2.1) that the right-hand side of (14-22) is a function f̃ of the form

f̃ (x, y, z)= e2π i(αy+βz)g(x, y, z)+ e2π i(θx+βz)h(x, y, z), (x, y, z) ∈ R3, (14-23)

where g and h are Z3-periodic functions, and f coincides with f̃ a.e. on �. Notice that it follows from
(14-23) that the function | f̃ | is periodic with respect to the vector (0, 0, 1). Since we have | f̃ | = | f | = 1
a.e. on I × I × I, the periodicity of | f̃ | implies | f̃ | = 1 a.e. on I × I ×R. Hence | f | = | f̃ | = 1 a.e. on
the set �∩ (I × I ×R). On the other hand, by its definition f vanishes on the set

�∩ (I × I × (R \ I )),

so the latter set must have measure zero. We conclude that

�∩ (I × I ×R)= I × I × I. (14-24)
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Since � contains the prism I ×6, and since
{1

2

}
× I and

{
−

1
2

}
× I are facets of 6, it follows from

(14-24) that 6 = I × I. Moreover, we obtain that the intersection of � and the slab R× I ×R coincides
with I ×6. However, by Lemma 10.2 this contradicts our assumption that � is not a prism. �

15. Spectral convex polytopes in R3 tile by translations

Based on the results obtained in the previous sections, we can now deduce:

Theorem 15.1. Let � be a convex polytope in R3. If � is spectral, then it tiles by translations.

15A. By Theorems 3.1 and 4.1, the polytope�must be centrally symmetric and have centrally symmetric
facets. Since Theorem 15.1 was already proved in the case when � is a prism (Theorem 9.1), it remains
to consider the case when � is not a prism.

Lemma 15.2. Let � be a convex polytope in R3, centrally symmetric and with centrally symmetric facets,
which is not a prism. If 3 is a spectrum of �, then

〈3−3, τF 〉 ⊂ Z (15-1)

for every facet F of �.

This result is the three-dimensional analog of Lemma 8.2. By combining Lemma 15.2 with Corollary 5.3
we immediately obtain that � tiles by translations; hence it only remains to prove the lemma.

15B. Lemma 15.2 is a direct consequence of our previous results:

Proof of Lemma 15.2 . Let F be a facet of �. We must show that if 3 is a spectrum of �, then it satisfies
condition (15-1). Since � is not a prism, we may use Lemma 10.1 to select a subfacet A of F such that
int(�) intersects each one of the two open half-spaces bounded by the hyperplane HF,A.

By applying an affine transformation we may suppose that � is in our “standard position”; namely,
�=−�, F =

{ 1
2

}
×6, where 6 is a convex polygon in R2, 6 =−6, and A =

{ 1
2

}
×
{ 1

2

}
× I, where

I =
[
−

1
2 ,

1
2

]
. The hyperplane HF,A is therefore given by

{
x2 =

1
2

}
, and hence int(�) intersects both

half-spaces
{

x2 <
1
2

}
and

{
x2 >

1
2

}
. We also have τF = (1, 0, 0), so that condition (15-1) becomes

3−3⊂ Z×R2. (15-2)

Let 5 be the set constructed from 3 in Section 6, and θ(s) be the function on 5 given by Lemma 6.2.
Since all the assumptions of Section 14 are satisfied, we may apply Lemma 14.11, which yields that the
function θ(s) is constant on 5. By Corollary 7.3 this implies that (15-2) holds, which concludes the
proof. �

16. Uniqueness of the spectrum

The approach that was used above to prove that in dimensions d = 2, 3 any spectral convex polytope �
can tile by translations also allows us to establish that, except in the case when � is a prism, the spectrum
is unique up to translation.
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16A. To prove this we use the following lemma, which is valid in any dimension d (not just d = 2, 3).

Lemma 16.1. Let �⊂ Rd be a convex polytope, centrally symmetric and with centrally symmetric facets.
Suppose that � has a spectrum 3 satisfying (5-2) for every facet F of �. Then 3 is a translate of the
lattice T ∗, the dual of the lattice T given by (5-1).

Proof. By Corollary 5.3, the set T given by (5-1) is a lattice, and �+ T is a tiling. Hence by Fuglede’s
theorem the dual lattice T ∗ is a spectrum for �. By translating 3 we may assume that it contains the
origin. So (5-2) implies

〈3, τ 〉 ⊂ Z, τ ∈ T.

This means that 3 is a subset of T ∗. But since no proper subset of a spectrum can also be a spectrum, we
must therefore have 3= T ∗. �

From this lemma we immediately obtain the following sufficient condition for a spectral convex
polytope to admit a unique spectrum up to translation:

Corollary 16.2. Let � ⊂ Rd be a convex polytope, centrally symmetric and with centrally symmetric
facets. Assume that � is spectral, and that condition (5-2) is satisfied for every spectrum 3 of � and
every facet F of �. Then � has a unique spectrum up to translation. More specifically, every spectrum 3

of � is a translate of the lattice T ∗.

16B. The criterion just proved can now be applied to the following situations:

Theorem 16.3. Let � be a spectral convex polygon in R2 which is not a parallelogram. Then � admits a
unique spectrum up to translation.

Theorem 16.4. Let � be a spectral convex polytope in R3 which is not a prism. Then � admits a unique
spectrum up to translation.

Indeed, by Theorems 3.1 and 4.1, the polytope � must be centrally symmetric and have centrally
symmetric facets. Hence Theorem 16.3 follows from Lemma 8.2 and Corollary 16.2, while Theorem 16.4
is a consequence of Lemma 15.2 and Corollary 16.2.

Remark that the assumptions that � is not a parallelogram in R2 and that it is not a prism in R3 are
necessary in these results. Indeed, we have seen in Example 6.5 that if � is a prism, then it admits
infinitely many non translation-equivalent spectra.

17. Remarks and open problems

17A. It would be interesting to extend Theorem 1.2 to dimensions d > 4.

Problem 17.1. Let � be a convex polytope in Rd (d > 4). Prove that if � is spectral, then it can tile the
space by translations.

We know (Theorems 3.1 and 4.1) that such an � must be centrally symmetric and have centrally
symmetric facets.
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Using our previous results, the assertion in Problem 17.1 can be verified for the class of four-dimensional
convex prisms (the polytopes�⊂R4 which can be expressed as the Minkowski sum of a three-dimensional
convex polytope and a line segment):

Theorem 17.2. Let � be a convex prism in R4. If � is spectral, then it can tile by translations.

Indeed, this follows from a combination of Theorems 9.2 and 15.1 in the same way as we have deduced
Theorem 9.1 from Theorems 8.1 and 9.2.

17B. It is conceivable that Problem 17.1 could be solved in the general case by an appropriate development
of our approach. However, there are certain difficulties which should be addressed in extending our proof
to higher dimensions.

One problem is to identify the class of polytopes that would play the role of the parallelograms in
two dimensions, and of the prisms in three dimensions. The spectral polytopes in these classes do not
have a unique spectrum up to translation, and it was therefore necessary to exclude them in Lemmas 8.2
and 15.2, and, for d = 3, to prove by a different method that they can tile by translations (Theorem 9.1).

Another problem in higher dimensions might be to obtain an analog of Lemma 12.3. In that lemma
we have used the fact that in three dimensions, all the subfacets of � are line segments, and hence in
particular they are also centrally symmetric. However, a spectral convex polytope � in Rd (d > 4) need
not have centrally symmetric k-dimensional faces for any 26 k 6 d − 2 (see Section 4A).

The latter problem disappears, though, if we impose the extra assumption that the convex polytope �
is a zonotope. Thus we propose the following restricted version of Problem 17.1.

Problem 17.3. Let � be a zonotope in Rd (d > 4). Prove that if � is spectral, then it tiles by translations.

17C. It would also be interesting to know whether the conclusion of Theorem 1.2 is true for any convex
body � (not assumed a priori to be a polytope). The paper [Iosevich et al. 2003] contains a proof that, in
two dimensions, a spectral convex body � must be a polygon. As far as we know, no such a result has
been proved in dimensions d > 3.

Problem 17.4. Let � be a convex body in Rd. Prove that if � is a spectral set, then it must be a polytope.

It is known [Iosevich et al. 2001] that� cannot have a smooth boundary. Using the results in [Greenfeld
and Lev 2016] it follows that the assertion is also true if � is a cylindric convex body whose base has a
smooth boundary.
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