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BILINEAR RESTRICTION ESTIMATES
FOR SURFACES OF CODIMENSION BIGGER THAN 1

JONG-GUK BAK, JUNGJIN LEE AND SANGHYUK LEE

In connection with the restriction problem in Rn for hypersurfaces including the sphere and paraboloid,
the bilinear (adjoint) restriction estimates have been extensively studied. However, not much is known
about such estimates for surfaces with codimension (and dimension) larger than 1. In this paper we show
sharp bilinear L2 �L2! Lq restriction estimates for general surfaces of higher codimension. In some
special cases, we can apply these results to obtain the corresponding linear estimates.

1. Introduction and statement of results

For a smooth hypersurface S such as the sphere or paraboloid in Rn, n� 3, the Lp-Lq boundedness of
the (adjoint) restriction operator (or the extension operator) bf d� has been extensively studied since the
late 1960s. Here d� denotes the induced Lebesgue measure on S. Specifically, when S is the sphere,
it was conjectured by E. M. Stein [1993] that bf d� should map Lp.S/ boundedly to Lq.Rn/, precisely
when q �p0.nC1/=.n�1/ and q > 2n=.n�1/. Since then, a large amount of literature has been devoted
to this problem. Over the last couple of decades, the bilinear and multilinear approaches have proven to
be quite effective, and through them substantial progress has been made. We refer the reader to [Bennett
et al. 2006; Bourgain and Guth 2011; Guth 2016] for the most recent developments.

On the other hand, when the dimension of the manifold is 1, namely, when the associated surface is a
curve, the restriction estimate is by now fairly well understood [Bak et al. 2002; 2009; 2013; Stovall 2016].

However, not much is known about the intermediate cases, namely, when the codimension k of the
manifold is between 1 and n� 1. The restriction problem for quadratic surfaces of codimension k � 2
was first studied by Christ [1982] and Mockenhaupt [1996]. They also considered the problem in a more
general setting and found some necessary conditions on the curvature and codimension of the surface.
For some surfaces they also established the optimal L2!Lq linear estimates, which may be regarded as
generalizations of the Stein–Tomas restriction theorem; see also [Banner 2002]. Although there are some
known cases in which the Lp-Lq boundedness is completely characterized, see for example [Bak and
Ham 2014; Bak and Lee 2004; Oberlin 2005], for most surfaces with codimension bigger than 1, the
current state of the restriction problem is hardly beyond that of the Stein–Tomas theorem.
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In this paper, we are concerned with restriction estimates for surfaces of codimension k � 2. To be
more specific, let us set k � 1 and I D Œ�1; 1�. Let ˆ W Id ! Rk be a smooth function given by

ˆ.�/D .'1.�/; '2.�/; : : : ; 'k.�//:

The adjoint restriction operator (the extension operator) E DEˆ for the surface .�;ˆ.�// 2 Rd �Rk is
defined by

Ef .x; t/D

Z
Id
e2�i.x��Ct �ˆ.�//f .�/ d�; .x; t/ 2 Rd �Rk:

Specific examples of such operators with 2� k � d � 2 can be found in [Bak and Ham 2014; Bak and
Lee 2004; Christ 1982; Mockenhaupt 1996; Oberlin 2005]. (Also, see Section 5.)

There are some classes of surfaces for which the optimal L2-Lq boundedness of E is well understood.
In fact, using a Knapp-type example it is easy to see that E may be bounded from Lp to Lq only if
.d C 2k/=q � d.1� 1=p/. Hence, the best possible L2-Lq bound is that for q D 2.d C 2k/=d . Christ
[1982] and Mockenhaupt [1996] showed that this is true for a class of surfaces satisfying a suitable
curvature condition. In particular, letM be a linear map from Rk to the space of d�d symmetric matrices
and suppose that

R
Sk�1 j detM.t/j� d�.t/ <1 for  D k=d . Then it was proven in [Mockenhaupt

1996] that the extension operator E defined by ˆD � tM.t/� is bounded from L2 to L2.dC2k/=d.
In order to obtain estimates for some q < 2.d C 2k/=d and p > 2, it seems necessary to consider

methods other than the T T � argument, which solely relies on the decay estimate for the Fourier transform
of the surface measure. For this reason we wish to consider the bilinear restriction estimates for surfaces
of codimension greater than 1 and try to obtain the best possible estimates.

Let S1, S2 be closed cubes contained in Id and define

Eif .x; t/D

Z
Si

e2�i.x��Ct �ˆ.�//f .�/ d�; i D 1; 2:

Let us consider the estimate

kE1f E2gkLq.RdCk/ � Ckf kLp.Rd /kgkLp.Rd /: (1-1)

For the elliptic surfaces, bilinear estimates can be thought of as a generalization of linear estimates,
since a linear restriction estimate follows from the corresponding bilinear one by an argument involving a
Whitney decomposition; see, e.g., [Tao et al. 1998]. The advantage of the bilinear estimates is that a wider
rage of boundedness is possible than for the linear estimate, provided that a separation condition holds
between the supports of the functions f , g. For surfaces with codimension 1, the sharp bilinear (adjoint)
restriction estimate for the cone was obtained by Wolff [2001], and for the paraboloid the corresponding
estimate was proved by Tao [2003]. The bilinear approach has also been applied to the restriction problem
for hyperbolic surfaces: Vargas [2005] used it for the saddle surface in R3 and, independently, Lee [2006]
proved the bilinear estimate by extending Tao’s method.1 From these bilinear restriction estimates the
corresponding linear ones have been obtained as well.

1For more general negatively curved surfaces in R3 and higher dimensions, Lee [2006] showed the bilinear restriction
estimates. However, in higher dimensions the linear estimate could not be deduced from the bilinear one, because the separation
condition needed to prove the bilinear estimate for hyperbolic surfaces was more complex than that for the elliptic surfaces.
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In order to state our results, we first introduce some notation. For �1, �2 2 Id, we define the k � d
matrix D.�1; �2/ by

D.�1; �2/D

0B@r'1.�2/�r'1.�1/:::

r'k.�2/�r'k.�1/

1CA :
Here r'j is a row vector. Let H' denote the Hessian of ' and Dt .�1; �2/ be the transpose of D.�1; �2/.
The following is our main theorem.

Theorem 1.1. Let t D .t1; : : : ; tk/, k � 1. Suppose that, for � 2 S1[S2 and jt j D 1,

det
� kX
iD1

tiH'i .�/

�
¤ 0 (1-2)

and, for �1 2 S1, �2 2 S2, jt j D 1 and for � D �1; �2,

det
�
D.�1; �2/

� kX
jD1

tjH'j .�/

��1
Dt .�1; �2/

�
¤ 0: (1-3)

Then, for

q >
d C 3k

d C k
and

1

p
C
d C 3k

d C k

1

2q
< 1;

the estimate (1-1) holds.

As special cases of Theorem 1.1, one can deduce the known bilinear restriction theorems for the elliptic
surfaces in [Tao 2003] and the negatively curved ones in [Vargas 2005; Lee 2006].

Let us set

M .t; �1; �2; �/ WD

 
0 D.�1; �2/

Dt .�1; �2/
Pk
iD1 tiH'i .�/

!
:

Assuming the condition (1-2), it is easy to see that (1-3) is equivalent to

det M .t; �1; �2; �/¤ 0 (1-4)

for �1 2 S1, �2 2 S2, jt j D 1 and for � D �1; �2.
�
One can use the block matrix formula det

�
A
C
B
D

�
D

det.D/ det.A�BD�1C/:
�

The condition (1-4) may seem rather complicated, but such a condition appears
naturally when one considers the bilinear L2 �L2! L2 estimate. When k D 1, it is closely related to
the “rotational curvature”; see [Lee 2006] for more details. The necessity of the condition (1-4) will
become clear in the course of the proof of Proposition 1.3 below.

From the condition (1-3) it follows that D.�1; �2/ has rank k. So, the vectors

fr'i .�2/�r'i .�1/ W i D 1; : : : ; kg

are linearly independent. This means d � k. If d D k, then (1-4) implies (1-3), but otherwise (1-4) may
hold without (1-3) being satisfied.
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In fact, it is possible to obtain a local version (Theorem 1.2 below) of Theorem 1.1, which holds
under a weaker assumption. Let n1; : : :nd�k be orthonormal vectors (seen as row vectors), which are
perpendicular to the span of fr'i .�2/�r'i .�1/ W i D 1; : : : ; kg and set

N .�2; �1/D

0B@ n1
:::

nd�k

1CA :
Then we can replace the condition (1-4) with

det
�
N .�2; �1/

� kX
iD1

tiH'i .�/

�
N t .�2; �1/

�
¤ 0 (1-5)

whenever �1 2 S1, �2 2 S2, jt j D 1 and � D �1; �2. It is easy to see that the value of this determinant is
independent of the particular choice of orthonormal vectors n1; : : : ;nd�k , and that the condition (1-5) is
equivalent to (1-4) under the assumption (1-2).2 If we have (1-5) instead of (1-3), then we don’t need
(1-2) to get (1-6) for any ˛ > 0. More precisely, we have

Theorem 1.2. Suppose that, for any �1 2 S1, �2 2 S2, the vectors r'i .�2/�r'i .�1/, i D 1; : : : ; k, are
linearly independent and that (1-5) holds for �1 2 S1, �2 2 S2, jt j D 1 and for � D �1; �2. Then, for any
˛ > 0, there is a constant C˛ such that

kE1f E2gkL.dC3k/=.dCk/.QR/ � C˛R
˛
kf k2 kgk2; (1-6)

where QR is a cube of side length R� 1.

However, to obtain the global estimates L2�L2!Lq , for q > .d C3k/=.d Ck/, we need to impose
a decay condition on the Fourier transform of the surface measure, since it is needed to apply the epsilon
removal lemma [Bourgain and Guth 2011]. Under the condition (1-2) such a decay estimate follows from
the stationary phase method.

For q� 2, the estimate (1-1) is relatively easier to prove under the conditions (1-2), (1-3). The following
may be thought of as a generalization of Theorem 2.3 in [Tao et al. 1998], which is concerned with elliptic
hypersurfaces; see also Theorem 4.2 in [Moyua et al. 1999]. A generalization to general hypersurfaces
had already been observed in [Lee 2006]. As a byproduct this gives estimates for the endpoint cases of
.p; q/ satisfying

1

p
C
d C 3k

d C k

1

2q
D 1; q � 2:

Proposition 1.3. Suppose the condition (1-4) holds for �1 2 S1, �2 2 S2 and jt j D 1. Then, for q � 2 and

1

p
C
d C 3k

d C k

1

2q
� 1;

the estimate (1-1) holds.
2Indeed, if H, N and D are matrices of sizes d�d , .d�k/�d and k�d , respectively, such that NDt D 0, detH ¤ 0

and rank.N t Dt / D d , then det.NHN t / ¤ 0 if and only if det.DH�1Dt / ¤ 0 because
�NH
D

�
.N t Dt / D

�NHN t
0

NHDt

DDt

�
and

� N
DH�1

�
.N t Dt /D

� NN t

DH�1N t
0

DH�1Dt

�
.
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Remark 1.4. In the proof of the above results we may assume that the aforementioned conditions hold
uniformly, by breaking up the extension operator by decomposing S1, S2 into sufficiently small pieces.
That is to say, there is a constant c > 0 such that for � 2 S1[S2 and jt j D 1,ˇ̌̌̌

det
� kX
iD1

tiH'i .�/

�ˇ̌̌̌
� c (1-7)

and, for �1; �01 2 S1, �2; �02 2 S2, jt j � 1 and for � 2 S1[S2,ˇ̌̌̌
det
�
D.�1; �2/

� kX
jD1

tjH'j .�/

��1
Dt .�01; �

0
2/

�ˇ̌̌̌
� c: (1-8)

The same holds also for the conditions (1-4) and (1-5).

Necessary conditions for (1-1). By modifying the examples in [Tao and Vargas 2000] with some specific
surfaces we see that (1-1) cannot hold in general, unless

q �
d C k

d
; (1-9)

1

p
C
d C 3k

d C k

1

2q
� 1; (1-10)

2.d � k/

p
C
d C 3k

q
� 2d: (1-11)

In fact,

(i) (1-9) is necessary for (1-1) to hold under (1-2), and

(ii) so is (1-10) under the assumption that the matrix D.�1; �2/ has rank k for �j 2 Sj , j D 1; 2.

However, in general, (1-11) is not necessarily required for (1-1), but as is well known there are various ˆ
satisfying (1-2) and (1-3) for which (1-1) fails if

2.d � k/

p
C
d C 3k

q
> 2d:

We show (i) and (ii) in the following paragraphs.

(i) By making use of the stationary phase method together with the condition (1-2) it is not difficult to see
that, with suitable choice of x0, there is a cube Q of side length R� 1 such that jE1.e�2�ix0�� /j �
jE2 .x/j �R

�d=2 on Q provided that supports of  1,  2 are small enough. We insert these into (1-1)
to see R�d=2R�d=2R.dCk/=q . 1; from which we get (1-9) by letting R!1. (This can also be shown
by making use of a wave packet decomposition, see Lemma 4.2, and randomization.)

(ii) For j D 1; 2, let †j be the surface f.�;ˆ.�// W � 2 Sj g, and denote by d�j the induced Lebesgue
measure on †j . To see (1-9) it is more convenient to consider f !1f d�j , instead of dealing with the
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operator Ej . Also, let �j be the center of cube Sj and let �j D .�j ; ˆ.�j // 2†j , j D 1; 2. The normal
space Nj to †j at �j is spanned by

nj;i D .�r'i .�j /; ei /; i D 1; 2; : : : ; k;

where ei 2 Rk is the usual unit vector with its i-th entry being equal to 1. Clearly, these vectors are
linearly independent because D.�1; �2/ has rank k. Let pn, nD 1; : : : ; d � k, be an orthonormal basis
of the orthogonal complement of spanfnj;i W i D 1; 2; : : : ; k; j D 1; 2g. Let us set, for j D 1; 2,

ƒj D
˚
� 2†j W j.� � �j / �n3�j;i j � ı; j.� � �j / �pnj � ı

1
2 ; i D 1; : : : ; k; nD 1; : : : ; d � k

	
:

Now, we set fj D �ƒj , j D 1; 2. Then it is easy to see j2fj d�j .x; t/j& ı.dCk/=2, j D 1; 2, provided that

j.x; t/ �n`;i j � cı
�1; j.x; t/ �pnj � cı

� 1
2; i D 1; : : : ; k; `D 1; 2; nD 1; : : : ; d � k

with sufficiently small c > 0. (For example, see the proof Lemma 4.2.) Since (1-1) implies

k2f1 d�12f2 d�2kq . kf1kp kf2kp;
we get ıdCk�.dC3k/=.2q/ � Cı.dCk/=p and (1-10) by letting ı! 0.

Restriction to complex surfaces. Using the above theorem we can obtain a bilinear restriction estimate
for complex quadratic surfaces. To define the (Fourier) extension operator for a complex surface we first
distinguish the dot product and the inner product for complex variables, and define an auxiliary productˇ.
For z; w 2 Cm, we define z �w, hz; wi, zˇw by

z �w D

mX
jD1

zjwj ; hz; wi D

mX
jD1

zj Nwj ; zˇw D Rehz; wi:

Hence, if z D xC iy and w D uC iv for x; y; u; v 2 Rm, then zˇw D x �uCy � v. If we identify Cm

with R2m in the usual way, then zˇw is just the inner product on R2m.
Let n� 1 be an integer and let D be a real symmetric invertible matrix. Then we define the complex

quadratic surface  � CnC1 by

.z/D
�
z; 1
2
ztDz

�
; z 2 Cn: (1-12)

Now we define the extension operator Ef by

Ef .w/D

Z
Cn
e2�iŒwˇ.z/�f .z/ dz; w 2 CnC1;

where we have written dz for dx dy, zD xC iy. The operator Ef is an extension operator for surfaces
of codimension 2 in R2n, which is given by

�
x; y; 1

2
Re.x C iy/tD.x C iy/; 1

2
=.x C iy/tD.x C iy/

�
,

x; y 2 Rn. From Theorem 1.1 we can establish the following.

Corollary 1.5. Let S1, S2 be closed cubes in Cn. Suppose that, for any z1 2 S1 and z2 2 S2,

j.z2� z1/
tD.z2� z1/j ¤ 0: (1-13)
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Then, whenever f , g are supported on S1, S2, respectively, for

q >
nC 3

nC 1
and

1

p
C
nC 3

nC 1

1

2q
< 1;

there is a constant C such that

kEf EgkLq.CnC1/ � Ckf kLp.Cn/kgkLp.Cn/:

This theorem can also be stated without using the complex number notation, but its use makes it
easier to derive the linear estimates from the bilinear one. The condition (1-13) in C2 can be contrasted
with that in R2. If S1; S2 � R2 and the eigenvalues of D have the same sign, then the condition
(1-13) is always valid if dist.S1; S2/ ¤ 0. But, when S1; S2 � C2, the condition (1-13) may fail even
if the separation condition is satisfied. For instance, if D is the 2 � 2 identity matrix, the condition
(1-13) becomes j.v1 �w1/2C .v2 �w2/2j & 1 with z1 D .v1; v2/ and z2 D .w1; w2/. Since we may
factor .v1 �w1/2 C .v2 �w2/2 as Œ.v1 �w1/C i.v2 �w2/�Œ.v1 �w1/� i.v2 �w2/�, the expression
j.v1�w1/

2C .v2�w2/
2j may vanish even if dist.S1; S2/& 1. When D has eigenvalues with different

signs, this phenomenon may occur even when S1; S2 �R2; for instance, if D is the 2�2 diagonal matrix
with diagonal entries 1 and �1, then we have

x �Dx D x21 � x
2
2 D .x1C x2/.x1� x2/:

This real-variable case was studied by Lee [2006] and Vargas [2005]. In the special case that the surface
is two-dimensional they could deduce a linear estimate from the bilinear one.

By adapting their argument, we can obtain the following linear estimate.

Theorem 1.6. Let nD 2 and  be given by (1-12) with a nonsingular real symmetric matrix D. Then, for
q > 10

3
and 1

p
C
2
q
< 1,

kEf kLq.C3/ � Ckf kLp.C2/ (1-14)

whenever f is supported in a bounded set.

By analogy with the corresponding problem for the paraboloid (elliptic or hyperbolic) in R3, it may be
conjectured that (1-14) holds if and only if q > 3 and 1

p
C
2
q
� 1. Theorem 1.6 extends the known .p; q/

range for the operator Ef whenD is a nonsingular real symmetric matrix. This result is an analog of the
adjoint Fourier restriction estimates for the hyperbolic paraboloid in R3, which is known to hold for the
same range of p, q. As a special case of the results by Christ [1982, Lemma 4.3] and Mockenhaupt [1996,
Theorem 2.11], it was previously known that Ef maps L2.R4/ boundedly to L4.R6/. Also, the slightly
stronger Lorentz space estimate kEf kL4;2.R6/ � Ckf kL2.R4/ can be deduced by applying Theorem 1.1
in [Bak and Seeger 2011]. It is quite likely that the multilinear approach will yield further progress on
these problems. We hope to return to this problem in the near future.

Notation. We adopt the usual convention to let C or c represent strictly positive constants, whose value
may vary from line to line. But these constants will always be independent of f , for instance. We write
A. B or B & A to mean A� CB , and A� B means both A. B and B . A.
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2. L
4.dCk/
3dCk �L

4.dCk/
3dCk !L2 estimates and proof of Proposition 1.3

In this section we show Proposition 1.3. Our proof here is different from that in [Tao et al. 1998]. Instead
of making use of the boundedness of the averaging operator, we directly exploit the oscillatory decay
estimate which is concealed in the averaging operator. For this we need the following lemma.

Lemma 2.1 [Greenleaf and Seeger 2002, Section 1.1]. Let a 2 C1c .R
d �Rd �RN / and set

T�f .x/D

Z
Rd

Z
RN

ei��.x;y;�/a.x; y; �/ d� f .y/ dy;

where � is a smooth function on the support of a. Suppose

det

 
�00
��

�00
x�

�00
y�

�00xy

!
¤ 0

on the support of a whenever �0
�
D 0. Then, kT�f k2 . ��.dCN/=2kf k2.

Proof of Proposition 1.3. By interpolation with the trivial L1 �L1! L1 estimate, it suffices to show

kE1f1E2f2k2 . kf1k 4.dCk/
3dCk

kf2k 4.dCk/
3dCk

:

For fixed �2, set
ˆ�2.�1; �1/Dˆ.�1/Cˆ.�2/�ˆ.�1/�ˆ.�1C �2� �1/

and

I �2.f1; Nf1/D

“
ı.ˆ�2.�1; �1// f1.�1/ Nf1.�1/ d�1 d�1;

where ı is the delta function. Its composition is well defined, since the vectors r'i .�2/ � r'i .�1/,
i D 1; : : : ; k, are linearly independent.

By Plancherel’s theorem

kE1f1E2f2k
2
2 D

““
ı
�
�1C �2� �1� �2; ˆ.�1/Cˆ.�2/�ˆ.�1/�ˆ.�2/

�
� f1.�1/ f2.�2/ Nf1.�1/ Nf2.�2/ d�1 d�2 d�1 d�2

D

•
ı.ˆ�2.�1; �1// f1.�1/ Nf1.�1/ f2.�2/ Nf2.�1C �2� �1/ d�1 d�2 d�1;

where f1, f2 are assumed to be supported in S1, S2, respectively. We claim that

kE1f1E2f2k
2
2 . kf1kp;1 kf2k1 k Nf1kp;1 k Nf2k1; (2-1)

where p D .d C k/=d: Here kf kr;s denotes the norm of Lorentz space Lr;s. For this we may obviously
assume that the functions f1; Nf1; f2; Nf2 are nonnegative. In order to show (2-1) it suffices to prove

jI �2.f; g/j. kf kp;1 k Ngkp;1: (2-2)

Let  be a smooth function with compact Fourier support contained in B.0; 1/ such that O D 1

on B
�
0; 1
2

�
. Since h.0/ D limj!1 2jk

R
Rk
 .2jx/ h.x/ dx for any Schwartz function h, we have
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ı D limj!1 2jk .2jx/: So, we may write

ı D

1X
jD�1

Œ2.jC1/k .2jC1x/� 2jk .2jx/�D

1X
jD�1

2jk�.2jx/;

where �.x/ WD 2k .2x/� .x/. By the choice of  we see that the Fourier support of � is contained in˚
� W 1

2
< j�j � 2

	
. We decompose I �2.f; g/ by making use of the above decomposition of ı to get

I �2.f; g/D

1X
jD�1

Ij .f; g/;

where

Ij .f; g/ WD 2
kj

“
�.2jˆ�2.�1; �1// f .�1/ g.�1/ d�1 d�1:

It should be noted that we are assuming that f , g are supported on S1 and �1C �2� �1 2 S2. Using the
Fourier transform we write Ij .f1; Nf2/ as

Ij .f; g/D 2
kj

Z �“
O�.�/ e2

j � �ˆ�2 .�1;�1/ d� f .�1/ d�1

�
g.�1/ d�1:

Now, we will apply Lemma 2.1 to the double integral inside the parentheses. If we set �.�1; �1; �/D
� �ˆ�2.�1; �1/, thenˇ̌̌̌

ˇdet

 
�00�� �00

��1

�00�1� �
00
�1�1

!ˇ̌̌̌
ˇD

ˇ̌̌̌
ˇdet

 
0 D.�1; �1C �2� �1/

D.�1; �1C �2� �1/
t

Pk
jD1 �jH'j .�1; �1C �2� �1/

!ˇ̌̌̌
ˇ:

So, by the condition (1-4) the last expression does not vanish since j� j � 1. Hence, by Lemma 2.1 it
follows that

jIj .f; g/j. 2�j
d�k
2 kf k2 kgk2:

On the other hand, we have the trivial bound jIj .f; g/j. 2kj kf k1 kgk1. Now we may use a summation
method (usually called Bourgain’s summation trick) to obtain (2-2).

Considering .f1; Nf1; f2; Nf2/!kEf1Ef2k22 as a quadrilinear mapping (replacing Nf1, Nf2 on the left-
hand side by Nf3 and Nf4, respectively), we apply Christ’s multilinear trick [1985]. By symmetry and
interpolation we get the estimatesˇ̌̌̌“

Ef1Ef2Ef3Ef4 dx dt

ˇ̌̌̌
.

4Y
jD1

kfj kpj ;1

for
�
1
p1
; 1
p2
; 1
p3
; 1
p4

�
contained in the convex hull of the four points

v1 D
�
1

p
;
1

p
; 1; 0

�
; v2 D

�
1

p
;
1

p
; 0; 1

�
; v3 D

�
1; 0;

1

p
;
1

p

�
; v4 D

�
0; 1;

1

p
;
1

p

�
which is contained in the 3-plane …D

˚
u1Cu2Cu3Cu4 D 1C

2
p

	
. The convex hull has a nonempty

interior in …, because det.v1; v2; v3; v4/ ¤ 0 as long as 1
p
¤

1
2

. Hence we may apply the multilinear
trick to get

kEf1Ef2k
2
2 . kf1k 4.dCk/

3dCk
;4
kf2k 4.dCk/

3dCk
;4
k Nf1k 4.dCk/

3dCk
;4
k Nf2k 4.dCk/

3dCk
;4
: �
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3. Transversality and the curvature conditions

In this section we prove several lemmas that will play crucial roles in proving Theorem 1.1. These lemmas
are related to the curvature conditions.

For R� 1 and � 2 S1[S2, we set

�� D

�
.x; t/ W

ˇ̌̌̌
xC

� kX
jD1

tjr'j .�/

�ˇ̌̌̌
�R

1
2

�
; Rı�� D �� CO.R

1
2
Cı/:

Here, for any set A� RdCk and � > 0, we have ACO.�/D fu 2RdCk W dist.u; A/� C�g.

Lemma 3.1. Suppose that the vectors r'j .�2/�r'j .�1/, 1� j � k, are linearly independent for all
�1 2 S1 and �2 2 S2. Then, there is a constant C such that

��1 \��2 � B.0; CR
1
2 /:

Proof. Since the set fr'j .�2/�r'j .�1/gkjD1 is linearly independent for all �1 2 S1 and �2 2 S2, the
map .t1; : : : ; tk/! .t1; : : : ; tk/

tD.�1; �2/ is injective. So, by continuity and compactness it follows that
there is a constant C such that, for all �1 2 S1 and �2 2 S2,

j.t1; : : : ; tk/
tD.�1; �2/j � C j.t1; : : : ; tk/j:

If .x; t/ 2 ��1 \��2 , then
ˇ̌
xC

�Pk
jD1 tjr'j .�i /

�ˇ̌
�R

1
2 for i D 1; 2. This gives

j.t1; : : : ; tk/
tD.�1; �2/j � 2R

1
2 :

Hence, the above inequality yields j.t1; : : : ; tk/j � CR
1
2 . So, we also get jxj � CR

1
2 . �

As was already shown in [Lee 2006; Vargas 2005], a simple transversality condition between the two
wave packets is not enough to obtain a bilinear estimate beyond the range of the linear L2!Lq estimate.
So, we need to consider the Fourier supports of the wave packets to put a restriction on the permissible
wave packets. This makes the geometry of the associated wave packets more favorable.

For given �1 2 S1 and �02 2 S2 we define …�1;�
0
2

1 by

…�1;�
0
2

1 D
˚
�01 2 S1 W �

0
1C �

0
2� �1 2 S2; ˆ.�1/Cˆ.�

0
1C �

0
2� �1/Dˆ.�

0
1/Cˆ.�

0
2/
	
: (3-1)

Since fr'j .�2/�r'j .�1/gkjD1 are linearly independent, by the implicit function theorem we may assume
that …�1;�

0
2

1 is a smooth (d�k)-dimensional surface.3 We now set

��1;�
0
2

1 .R/D
[

�012…
�1;�
0
2

1

Rı��01
;

which is an O.R
1
2
Cı/ neighborhood of the conical set with k null directions. The transversality between

��1;�
0
2

1 and the opposite plates ��2 is important. Such a transversality is made precise in the following
(see Figure 1).

3 We may need to assume that S1 and S2 are small enough.
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��1;�
0
2

1 .R/

��2

Figure 1. Transversality when k D 1 and d D 2.

Lemma 3.2. Let 0 < ı� 1, u 2 RdCk and set

z��1;�
0
2

1 .R;Rı/D
˚
.x; t/ 2 ��1;�

0
2

1 .R/ WR1�ı � j.x; t/j � CR
	
:

Suppose that the conditions (1-2) and (1-3) hold. Then, if S1 and S2 are sufficiently small, there exist a
constant C, independent of �1; �02, R, and a vector u 2 RdCk such that for some u0 2 RdCk,

z��1;�
0
2

1 .R;Rı/\ .Rı��2 Cu/� B.u
0; CR

1
2
CCı/:

Note that the set z��1;�
0
2

1 .R;Rı/ can be represented as an O.R
1
2
Cı/ neighborhood of a surface. Let

us define the map ˆ�1;�
0
2

1 W…�1;�
0
2

1 �Rk! RdCk by

ˆ�1;�
0
2

1 .�; t/D

�
�

kX
jD1

tjr'j .�/; t

�
:

Then it is easy to see that

z��1;�
0
2

1 .R;Rı/�
˚
ˆ�1;�

0
2

1 .�; t/ W � 2…�1;�
0
2

1 ; cR1�ı � jt j � CR
	
CO.R

1
2
Cı/:

Proof. After scaling it is sufficient to show that the intersection of the two sets

�1 D
˚
ˆ�1;�

0
2

1 .�; t/ W � 2…�1;�
0
2

1 ; R�ı � jt j � C
	
CO.R�

1
2
Cı/

and

C2.R
� 1
2
Cı/D

��
�

kX
jD1

tjr'j .�2/; t

�
W jt j � C

�
C QuCO.R�

1
2
Cı/

is contained in a ball of radius CR�
1
2
CCı. For j � �C, let us set

�
j
1 .R

� 1
2
Cı/D

˚
ˆ�1;�

0
2

1 .�; t/ W � 2…�1;�
0
2

1 ; 2�j�1 � jt j � 2�j
	
CO.R�

1
2
Cı/:

Using homogeneity and a dyadic decomposition in t for �1, the matter can be reduced to the case
2�1 � jt j � 1. That is to say,

�01 .R
� 1
2
Cı/\C2.R

� 1
2
Cı/� B.u; C0R

� 1
2
Cı/ (3-2)

for some u and C0 > 0. In fact, applying the scaling change of variables .x; t/! 2�j .x; t/, followed
by (3-2) and the reverse change of variables, we see that �j1 .R

� 1
2
Cı/\C2.R

� 1
2
Cı/ is contained in a
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ball of radius C0R�
1
2
Cı. Since �1 �

S
2�1R�ı�2j�C �

j
1 , we know �1\C2.R

� 1
2
Cı/ is contained in the

union of as many as � logR such balls of radius C0R�
1
2
Cı. This union of balls is obviously contained

in a ball of radius CR�
1
2
CCı since the set �1\C2.R

� 1
2
Cı/ is connected.

Since we may assume that S1 and S2 are sufficiently small, in order to show (3-2) it is enough
to show that the tangent spaces of the surfaces ˆ�1;�

0
2

1 W …�1;�
0
2

1 � f2�1 � jt j � 1g ! RdCk and˚�Pk
jD1 tjr'j .�2/; t

�
W jt j � C

	
are uniformly transversal to each other. In fact, since all the underlying

sets are compact, by continuity it is enough to check this at each point.
Let u0 D ˆ�1;�

0
2

1 .�0; t0/ for �0 2 …�1;�
0
2

1 and 2�1 � jt0j � 1. Let v1; : : : ; vd�k be orthonormal
vectors spanning the tangent space T�0…

�1;�
0
2

1 . Then the tangent space of the parametrized surface
ˆ�1;�

0
2

1 W…�1;�
0
2

1 � f2�1 � jt j � 1g ! RdCk at u0 is spanned by the vectors

.r'1.�0/;�1; 0; : : : ; 0/; .r'2.�0/; 0;�1; 0; : : : ; 0/; : : : ; .r'k.�0/; 0; : : : ; 0;�1/ (3-3)

and �
vi

� kX
jD1

t0;jH'j .�0/

�
; 0; : : : ; 0

�
; i D 1; : : : ; d � k: (3-4)

On the other hand, the k-dimensional plane
˚�
�
Pk
jD1 tjr'j .�2/; t

�
W jt j � C

	
is spanned by

.r'1.�2/;�1; 0; : : : ; 0/; .r'2.�2/; 0;�1; 0; : : : ; 0/; : : : ; .r'k.�2/; 0; : : : ; 0;�1/: (3-5)

Hence it suffices to show that these dCk vectors are linearly independent, or equivalently that the
determinant of the matrix with these vectors as row vectors is nonzero. After Gaussian elimination it is
enough to show

det

 
V
�Pk

jD1 t0;jH'j .�0/
�

D.�0; �2/

!
¤ 0; (3-6)

where V is the .d �k/�d matrix having v1; : : : ; vd�k as its row vectors. Now by (3-1) we note that the
vectors v1; : : : ; vd�k are orthogonal to the span of the vectors

r'j .�0C �
0
2� �1/�r'j .�0/; j D 1; : : : ; k:

Assuming S2 is small enough, we may replace D.�0;�2/ by D.�0; �0C�
0
2��1/. For simplicity we set Q�2D

�0C�
0
2��1.

�
We may assume there is a c >0 such that

ˇ̌
det
�
N .�2;�1/

�Pk
iD1 tiH'i .�/

�
N t .�2;�1/

�ˇ̌
>c

for �1 2 S2 and �2 2 S2; see Remark 1.4.
�

Since
�Pk

jD1 t0;jH'j .�0/
�

is invertible, we need only show

det A ¤ 0; where A D

 
V

D.�0; Q�2/
�Pk

jD1 t0;jH'j .�0/
��1! :

Since VDt .�0; Q�2/D 0, we note that the matrix A
�
V t Dt .�0; Q�2/

�
equals 

Id�k 0

D.�0; Q�2/
�Pk

jD1 t0;jH'j .�0/
��1

V t D.�0; Q�2/
�Pk

jD1 t0;jH'j .�0/
��1

Dt .�0; Q�2/

!
:

This matrix is clearly invertible thanks to (1-3). Hence, so is the matrix A. �
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Below we show that the following version of Lemma 3.2 holds, where we assume (1-5) instead of
(1-3), dropping the condition (1-2).

Lemma 3.3. Suppose that, for any �1 2 S1, �2 2 S2, r'i .�2/�r'i .�1/, i D 1; : : : ; k are linearly
independent and (1-5) holds for �1 2 S1, �2 2 S2, jt j D 1 and for �D �1; �2. If S1 and S2 are sufficiently
small, there is a constant C, independent of �1; �02, R, and u such that, for some u0 2 RdC1,

z��1;�
0
2

1 .R;Rı/\ .Rı��2 Cu/� B.u
0; CR

1
2
CCı/:

Proof. It is sufficient to show that (3-6) holds. As before, under the assumption that S2 is small enough,
we can replace D.�0; �2/ with D.�0; Q�2/, where Q�2 D �0C �02� �1. We need only show that

det

 
V
�Pk

jD1 t0;jH'j .�0/
�

D.�0; Q�2/

!
¤ 0:

Since vectors v1; : : : ; vd�k are orthogonal to the row vectors of D.�0; Q�2/, by multiplying the nonsingular
matrix .V t Dt .�0; Q�2// by the matrix inside the determinant from the right, we see that the above is
equivalent to

det

 
V
�Pk

jD1 t0;jH'j .�0/
�
V t V

�Pk
jD1 t0;jH'j .�0/

�
Dt .�0; Q�2/

0 D.�0; Q�2/D
t .�0; Q�2/

!
¤ 0:

Since the matrix D.�0; Q�2/Dt .�0; Q�2/ is nonsingular, it is clear that the above is equivalent to

det
�
V

� kX
jD1

t0;jH'j .�0/

�
V t

�
¤ 0;

which is the condition (1-5). �

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Our proof is similar to that in [Lee 2006]; also see [Tao 2003].
To prove Theorem 1.1, we need only show that, for p > .d C 3k/=.d C k/,

kE1f E2gkp � Ckf k2 kgk2

since we can obtain the desired conclusion by interpolating this estimate with the trivial estimate
kE1f E2gk1�kf k1 kgk1: By an �-removal argument [Tao and Vargas 2000; Bourgain and Guth 2011],
it is sufficient to show that (1-6) holds for any ˛ > 0. In fact, by the assumption that

Pk
jD1 tjH'j .�/ is

nonsingular for � 2 suppf [ suppg as long as jt j D 1, it follows that

jE�.a�/.x; t/j. .jxjC jt j/�
d
2 ; � D 1; 2;

where a1, a2 are smooth bump functions which vanish on the supports of f and g, respectively. This can
be shown by the stationary phase method. Hence, the arguments in the papers mentioned above work
here without modification.
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Proposition 4.1. Let 0 < ı� 1. If (1-6) holds, then for any � > 0

kE1f E2gkL.dC3k/=.dCk/.QR/ � C�R
max.˛.1�ı/;Cı/C�

kf k2 kgk2; (4-1)

with C independent of ı.

By iterating finitely many times the implication in Proposition 4.1, we can easily obtain the estimate
(1-6) for any ˛ > 0.

Wave packet decomposition. In this section we decompose the function Ef into wave packets. Let
R� 1. We define

LD L.R/ WDR
1
2Zd ; V D V.R/ WDR�

1
2Zd:

Let  be a nonnegative Schwartz function such that O is supported on B.0; 1/ and
P
k2Zd  . � �k/D 1.

Also, let � be a smooth function supported on B.0; 1/ and
P
k2Zd �. � � k/D 1.

For ` 2 L, � 2 V we set  `.x/ WD ..x� `/=R
1
2 /, ��.�/DW �.R

1
2 .���//; and for a given function f ,

we define f`;� by
f`;� D F. `F�1.��f //;

where F , F�1 denote the Fourier transform and the inverse Fourier transform, respectively. Then, it
follows that f D

P
�2V

P
`2L f`;� : Hence we may write

Ef D
X
�2V

X
`2L

Ef`;� : (4-2)

Lemma 4.2. If jt j.R, then

jEf`;�.x; t/j � CN

�
1CR�

1
2

ˇ̌̌̌
x� `C

kX
jD1

tjr'j .�/

ˇ̌̌̌��N
M.F�1.��f //.`/ (4-3)

for all N � 0. Here, Mf is the Hardy–Littlewood maximal function of f .

Proof. Since f`;� is supported in B.�; 3R�
1
2 /, multiplying by a harmless smooth bump function Q�

supported in B.0; 5/ and satisfying Q�D 1 on B.0; 3/, we may write

Ef`;�.x; t/D

Z
K.x� z; t/ `.z/F�1f�.z/ dz;

where K.x; t/D
R
e2�i.x��Ct �ˆ.�//�.R

1
2 .� � �// d�: Changing variables �!R�

1
2 �C �,

K.x; t/DR�
d
2 e2�ix��

Z
e2�i.R

�1=2x��Ct �ˆ.R�1=2�C�//�.�/ d�:

Since jt j . R, we know r�.R�
1
2x � � C t �ˆ.R�

1
2 � C �//D R�

1
2

�
xC

Pk
jD1 tjr'j .�/

�
CO.1/: This

follows by Taylor’s expansion. Hence, by repeated integration by parts we get

jK.x; t/j � CNR
�d
2

�
1CR�

1
2

ˇ̌̌̌
xC

kX
jD1

tjr'j .�/

ˇ̌̌̌��N
:

Once this is established, (4-3) follows by a standard argument. See [Lee 2006] for the details. �
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From the above lemma we see that Ef`;� is essentially supported on

�`;� D �� C .`; 0/: (4-4)

If � D �`;� , we define �.�/D �, which may be considered as the (generalized) direction of � .

The following is the main lemma of this section.

Lemma 4.3. Let R� 1. Then, Ef can be rewritten as

Ef .x; t/D
X

.`;�/2L�V

c`;�P`;�.x; t/ (4-5)

and c`;� , P`;� satisfy the following:

(i) F.P`;�. � ; t // is supported in the disc D.�; CR�
1
2 /.

(ii) If jt j.R, then for any N � 0

jP`;�.x; t/j � CNR
�d
4

�
1CR�

1
2

ˇ̌̌̌
x� `C

� kX
jD1

tjr'j .�/

�ˇ̌̌̌��N
:

(iii)
�P

.`;�/2L�V jc`;� j
2
� 1
2 . kf k2.

(iv) If jt j.R, then
P

.`;�/2W P`;�. � ; t /
2
2
. #W for any W � L�V .

Proof. We define c`;� and P`;� by

c`;� DR
d
4M.F�1f�/.`/; P`;�.x; t/D c

�1
`;�Ef`;�.x; t/;

where M denotes the Hardy–Littlewood maximal function. Then we have (4-5) from (4-2). Since
Ef`;�. � ; y/ D F�1.e2�iyˆf`;�/, we know Ef`;�. � ; y/ has Fourier support contained in suppf`;� ,
which is in turn contained in D.�; CR�

1
2 /. Thus (i) follows and so does (ii) from Lemma 4.2.

In order to show (iii), note thatX
.`;�/2L�V

jcT j
2
DR

d
2

X
.`;�/2L�V

M.F�1.��f //.`/2: (4-6)

Since ��f is supported on B.�; CR
1
2 /, we haveM.F�1.��f //.x/�M.F�1.��f //.x0/ if jx�x0j.R 1

2 .
Hence, from the Hardy–Littlewood maximal theorem and Plancherel’s theorem we have that, for each �,

R
d
2

X
.`;�/2L�V

jM.F�1.��f //.`/j2 .
Z
jM.F�1.��f //.x/j2 dx . k��f k22:

Combining this and (4-6) we obtain
P
.`;�/2L�V jc`;� j

2 .
P
�2V k��f k

2
2 . kf k

2
2; and (iii).

Finally, we consider (iv). Since
P
`W.`;�/2W P`;�. � ; t / is Fourier-supported in D.�; CR�

1
2 /, which

has bounded overlap as � varies over V , by Plancherel’s theorem, X
.`;�/2W

P`;�. � ; t /

2
2

.
X
�2V

 X
`W.`;�/2W

P`;�. � ; t /

2
2

:
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From (ii) it is easy to see that
P

`W.`;�/2W P`;�. � ; t /
2
2
. #f` W .`; �/ 2Wg. Hence, combining this with

the above gives (iv). �

Dyadic pigeonholing and reduction. In the remainder of this section we will prove Proposition 4.1. For
simplicity we set

p0 D
d C 3k

d C k
:

By translation invariance we may assume that QR is centered at the origin. Let

Wi �
˚
.`; �/ 2 L�V W � 2 Si CO.R�

1
2 /
	
; i D 1; 2:

By Lemma 4.3 and the standard reduction with pigeonholing, which may only cause a loss of .logR/C,
see [Lee 2006; Tao 2003], the matter is reduced to showing X

!12W1

P!1

X
!22W2

P!2


Lp0 .QR/

/ .R.1�ı/˛CRCı/.#W1#W2/
1
2

whenever P!1 , P!2 satisfy (i), (ii), (iv) in Lemma 4.3. Here A/ B means A� C�R�B for any � > 0.
By a further pigeonholing argument we specify the associated quantities in dyadic scales. Let Q be a

collection of almost disjoint cubes of the same side length � R
1
2 which cover QR. For each q 2 Q

we define

Wj .q/D f!j 2Wj W �!j \R
ıq ¤∅g:

For dyadic numbers �1; �2 with 1� �1; �2 �R100d, we define

Q.�1; �2/D fq 2Q W �j � #Wj .q/ < 2�j ; j D 1; 2g: (4-7)

For ! 2W1[W2, we set

�.!I �1; �2/D #fq 2Q.�1; �2/ W �! \Rıq ¤∅g:

For a dyadic number 1� ��R100d, we define

Wj Œ�I �1; �2�D f!j 2Wj W �� �.!j I �1; �2/ < 2�g; j D 1; 2: (4-8)

By a standard pigeonhole argument, it is sufficient to show� X
q2Q.�1;�2/

 X
!12W1Œ�1I�1;�2�

P!1

X
!22W2Œ�2I�1;�2�

P!2

p0
Lp0 .q/

� 1
p0

/ .R.1�ı/˛CRCı/.#W1 #W2/
1
2 : (4-9)

For the rest of the proof we assume that q 2Q.�1; �2/, !1 2W1Œ�1I �1; �2� and !2 2W2Œ�1I �1; �2� if
it is not mentioned otherwise. So, the above sums are denoted simply by

P
q ,
P
!1

, and
P
!2

, respectively.
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Induction argument. For brevity let us put

�D
[

q2Q.�1;�2/

q:

Let fBg be a collection of almost disjoint cubes of the same side length R1�ı, which cover QR. Then

the left-hand side of (4-9)�
X
B

X
!1

P!1

X
!2

P!2


Lp0 .�\B/

: (4-10)

We define a relation � between !1 (or !2) and the cubes in fBg. For each ! 2 W1Œ�1I �1; �2� [

W2Œ�2I �1; �2�, we define B�.!/ 2 fBg to be the cube which maximizes the quantity

#
˚
q 2Q.�1; �2/ W �! \Rıq ¤∅; q\B ¤∅

	
: (4-11)

Then the relation � is defined as

! � B if B \ 10B�.!/¤∅:

Here 10B�.!/ is the cube which has the same center as B�.!/ and side length 10 times as large as that
of B�.!/. Using this relation we divide the sum into three parts to getX
B

X
!1

P!1

X
!2

P!2


Lp0 .�\B/

�

X
B

X
!1W
!1�B

P!1

X
!2W
!2�B

P!2


Lp0 .�\B/

C

X
B

X
!1W
!1�B

P!1

X
!2W
!2œB

P!2


Lp0 .�\B/

C

X
B

X
!1W
!1œB

P!1

X
!2

P!2


Lp0 .�\B/

:

We will first show thatX
B

 X
!1W
!1�B

P!1

X
!2W
!2�B

P!2


Lp0 .�\B/

.R.1�ı/˛.#W1#W2/
1
2 : (4-12)

By applying the hypothesis (1-6), (iv) in Lemma 4.3, and the Cauchy–Schwarz inequality,

X
B

 X
!1W
!1�B

P!1

X
!2W
!2�B

P!2


Lp0 .�\B/

� CR.1�ı/˛
2Y

jD1

�X
B

#f!j W !j � Bg
�1
2

:

From the definition of the relation � it is clear that #fB W !j � Bg � C . Hence, for j D 1; 2X
B

#f!j W !j � Bg D
X
!j

#fB W !j � Bg.Wj :

By inserting this into the previous inequality, we get (4-12).



1978 JONG-GUK BAK, JUNGJIN LEE AND SANGHYUK LEE

Now, to prove (4-9) it is enough to show X
!1W
!1�B

P!1

X
!2W
!2œB

P!2


Lp0 .�\B/

/RCı.#W1 #W2/
1
2

and  X
!1W
!1œB

P!1

X
!2

P!2


Lp0 .�\B/

/RCı.#W1 #W2/
1
2 : (4-13)

The proofs of these two estimates are similar. So, we will only prove (4-13). By Plancherel’s theorem,
kEf . � ; t /k2 � kf k2 for all t 2 Rk. Integration in t gives kEf kL2.QR/ .R

k=2kf k2. By the Schwarz
inequality it follows that

kE1fE2gkL1.QR/ .R
k
kf k2 kgk2:

Combining this with (iv) in Lemma 4.3 yields X
!1W
!1œB

P!1

X
!2

P!2


L1.�\B/

.Rk.#W1#W2/
1
2 : (4-14)

Hence, the (4-13) follows from interpolation between (4-14) and X
!1W
!1œB

P!1

X
!2

P!2


L2.�\B/

/RCıR�
d�k
4 .#W1#W2/

1
2 : (4-15)

Now it remains to show the L2-estimate (4-15).

L2 estimate. To prove (4-15) it suffices to showX
q2Q.�1;�2/
q�2B

 X
!1W
!1œB

P!1

X
!2

P!2

2
L2.q/

/RCıR�
d�k
2 #W1#W2: (4-16)

For j D 1; 2, let us set

Wj .q/D f!j 2Wi Œ�j I �1; �2� W !j \R
ıq ¤∅g; WœB

j .q/D f!j 2Wj .q/ W !j œ Bg:

Then by (ii) in Lemma 4.3 we may discard some harmless terms, whose contributions are O.R�Cı/.
Hence, it suffices to showX

q2Q.�1;�2/
q�2B

 X
!12WœB

1 .q/

P!1

X
!2.q/

P!2

2
2

/RCıR�
d�k
2 #W1 #W2: (4-17)

By using Plancherel’s theorem we write X
!12WœB

1 .q/

P!1

X
!22W2.q/

P!2

2
2

D

X
!12WœB

1 .q/

X
!022W2.q/

X
!012W

œB
1 .q/

X
!22W2.q/

h yP!1 �
yP!2 ;
yP!01
� yP!02

i:
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Let us write!j D . j̀ ; �j /, !0j D .`
0
j ; �
0
j /, j D1; 2. For any �12S1, �022S2, we define WœB

1 .qI �1; �
0
2/ by

WœB
1 .qI �1; �

0
2/D

˚
!01D.`

0
1; �
0
1/ 2W

œB
1 .q/ W �01 2…

�1;�
0
2

1 CO.R�
1
2 /
	
:

Then yP!1 � yP!2 is supported on the O.R�
1
2 /-neighborhood of the point .�1C �2; ˆ.�1/Cˆ.�2//. So

the inner product h yP!1 � yP!2 ; yP!01 �
yP!02
i vanishes unless

�1C �2 D �
0
1C �

0
2CO.R

� 1
2 /; ˆ.�1/Cˆ.�2/Dˆ.�

0
1/Cˆ.�

0
2/CO.R

� 1
2 /:

Thus, for given �1 and �02, we see that �01 is contained in an O.R�
1
2 /-neighborhood of …�1;�

0
2

1 , which is
defined by (3-1). Once �1, �01 and �02 are given, then there are only O.1/ many �2, since �2 should be in
an O.R�

1
2 /-neighborhood of the point �1C �01� �

0
2. Therefore, X

!12WœB
1 .q/

P!1

X
!22W2.q/

P!2

2
2

.R�
d�k
2

X
!12WœB

1 .q/

X
!022W2.q/

#WœB
1 .qI �1; �

0
2/;

where we also used

jhP!1 P!2 ; P!01
P!02
ij.R�

d�k
2 :

This follows from (ii) in Lemma 4.3 and the transversality between �!1 (�!01) and �!2 (�!02), respectively.
Hence, (4-17) follows if we show

max
q�2B; �1;�

0
2

#WœB
1 .qI �1; �

0
2/

X
q2Q.�1;�2/
q�2B

#WœB
1 .q/#W2.q/.RCı#W1 #W2: (4-18)

We will prove (4-18), assuming for the moment that

max
q�2B; �1;�

0
2

#WœB
1 .qI �1; �

0
2/.R

Cı #W2

�1�2
: (4-19)

To this end it is enough to show X
q2Q.�1;�2/
q�2B

#WœB
1 .q/#W2.q/. �1�2#W1:

Recalling #W2.q/. �2, we see that the left-hand side is bounded by

C�2
X

q2Q.�1;�2/

#W1.q/:

Changing the order of summation, we see this in turn is bounded byC�2
P
!1

#fq2Q.�1; �2/ W�w1\Rıqg.
Since

#fq 2Q.�1; �2/ W �w1 \R
ıqg. �1;

the desired inequality (4-18) follows.
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Proof of (4-19). Fix q � 2B , �1 2 S1 and �02 2 S2. Let us consider the set

S WD
˚
. Qq; !1; !2/ 2Q.�1; �2/�WœB

1 .qI �1; �
0
2/�W2

W �!1 \R
ı
Qq ¤∅; �!2 \R

ı
Qq ¤∅; dist. Qq; q/�R1�ı

	
:

To prove (4-19) it suffices to show

R�Cı�1�2#WœB
1 .qI �1; �

0
2//. #S .RCı#W2: (4-20)

For the lower bound it is enough to show that, for each !1 2WœB
1 .qI �1; �

0
2/,

#
˚
. Qq; !2/ 2Q.�1; �2/�W2 W �!1 \R

ı
Qq ¤∅; �!2 \R

ı
Qq ¤∅; dist. Qq; q/�R1�ı

	
�R�Cı�1�2:

By (4-8), !1 contains as many as O.�1/ cubes Qq in Q.�1; �2/. (Recall that we are assume assuming
q 2 Q.�1; �2/, !1 2 W1Œ�1I �1; �2� and !2 2 W2Œ�1I �1; �2�.) Let B�.!1/ 2 Q be the cube which
maximizes the quantity given by (4-11) with ! D !1. Since !1 œ B , it follows from the definition of the
relation � that dist.B�.!1/; B/&R1�ı. Since �!1 CO.R

1
2
Cı/ can be covered by RCı cubes B, by a

simple pigeonholing argument we get

#
˚
Qq 2Q.�1; �2/ W �!1 \R

ı
Qq ¤∅; dist. Qq; q/�R1�ı

	
&R�Cı�1:

Next, for the upper bound it suffices to show that, for any !2 2W2,

#
˚
. Qq; !1/ 2Q.�1; �2/�WœB

1 .qI �1; �
0
2/

W �!1 \R
ı
Qq ¤∅; �!2 \R

ı
Qq ¤∅; dist. Qq; q/&R1�ı

	
.RCı : (4-21)

Let z0 be the center of q. Then, by the definition of WœB
1 .q0I �1; �

0
2/, it follows that[

!12WœB
1 .qI�1;�

0
2/

�!1 � �
�1;�
0
2

1 .CR
1
2
Cı/C z0:

If !2 2W2, then it follows from Lemma 3.2 that the intersection

�!2 \

� [
!12WœB

1 .qI�1;�
0
2/

�!1

�

is contained in a cube of side length O.R
1
2
Cı/. Thus, there are at most O.RCı/ choices of balls Qq 2

Q.�1; �2/ such that . Qq; !1/ is contained in the set in (4-21). On the other hand, since dist. Qq; q/&R1�Cı,
we have

#
˚
w1 2WœB

1 .qI �1; �
0
2/ W �!1 \R

ı
Qq ¤∅; �!1 \R

ıq ¤∅
	
.RCı: (4-22)

To see this, by scaling it is enough to check that the map S1 3 � 7!
Pk
iD1 tjr'i .�/ is one-to-one whenever

jt j D 1. But this follows from the condition (1-2) if we take S1 to be small enough. Thus we obtain the
claim (4-21). Hence, we also have (4-9), which finishes the proof of Proposition 4.1. This completes the
proof of Theorem 1.1. �
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Proof of Theorem 1.2. Thanks to Lemma 3.3, the line of argument in the proof of Theorem 1.1 works
without modification except that we need to show (4-22). However, to prove (4-22) we don’t need to show
S1 3 � 7!

Pk
iD1 tjr'i .�/ is one-to-one. Instead, as is clear after rescaling, it is enough to show that

…�1;�
0
2 3 � 7!

Pk
iD1 tjr'i .�/ is one-to-one. Let t1; : : : ; td�k be a set of vectors spanning the tangent

space of …�1;�
0
2 at �0. Then the above follows if we show that the matrix

.tt1; : : : ; t
t
d�k/

� kX
iD1

tjH'i .�0/

�
has rank d � k for jt j D 1. In fact, t1; : : : ; td�k are almost normal to the span of fr'i .�2/�r'i .�1/ W
i D 1; : : : ; kg. These vectors are close to n1; : : : ;nd�k . Hence, assuming that S1 and S2 are small
enough, the above follows if we show N .�2; �1/

Pk
iD1tjH'i .�0/ has rank d � k. This clearly follows

from (1-5). �

5. Restriction estimates for complex surfaces

In this section we provide the proofs of Corollary 1.5 and Theorem 1.6. In what follows we set k D 2,
d D 2n.

Proof of Corollary 1.5. Let '1, '2 be given by 1
2
ztDz D '1C i'2 so that

'1.x; y/D .x
tDx�ytDy/; '2.x; y/D x

tDy; .x; y/ 2 Rn �Rn:

In order to prove Corollary 1.5 we need only to show that the condition (1-13) implies the assumptions in
Theorem 1.1.

Let us set zj D xj C iyj 2 Cn for j D 1; 2, ıx D x2 � x1, and ıy D y2 � y1. Then a computation
shows that the associated matrix M .t; z1; z2; z/ is given by

M .t; z1; z2; z/D

0BB@
0 0 ıtxD �ı

t
yD

0 0 ıtyD ıtxD

Dıx Dıy t1D t2D

�Dıy Dıx t2D �t1D

1CCA :
Note that

2X
jD1

tjH'j D

�
t1D t2D

t2D �t1D

�
:

Then, it is easy to see that the inverse of
P2
jD1 tjH'j is

.t21 C t
2
2 /
�1

�
t1D
�1 t2D

�1

t2D
�1 �t1D

�1

�
:

So, the assumption (1-2) holds. Hence, it suffices to show that (1-13) implies (1-3). By the block matrix
formula we only need to check

det
��
ıtxD �ı

t
yD

ıtyD ıtxD

��
t1D
�1 t2D

�1

t2D
�1 �t1D

�1

��
Dıx Dıy
�Dıy Dıx

��
¤ 0:
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By a direct computation it is not difficult to see that the left-hand side equals4

�.t21 C t
2
2 /
�
.ıtxDıx � ı

t
yDıy/

2
C 4.ıtxDıy/

2
�
:

Since .z2� z1/tD.z2� z1/D ıtxDıx � ı
t
yDıy C 2iı

t
xDıy , it is now clear that (1-13) implies (1-3). �

Proof of Theorem 1.6. From the bilinear estimate we can get the linear estimate by adapting the arguments
in [Tao et al. 1998; Vargas 2005; Lee 2006]. Since D is nonsingular and symmetric, by making use of
linear transforms we may assume that

D D

�
1 0

0 ˙1

�
;

and so we have eitherˆ.z1; z2/Dz21Cz
2
2D .z1Ciz2/.z1�iz2/ orˆ.z1; z2/Dz21�z

2
2D .z1Cz2/.z1�z2/.

By a linear change of variables the problem can be further reduced to showing Theorem 1.6 when
ˆ.z1; z2/D z1z2.

The following is an immediate consequence of Theorem 1.1 and the translation invariance of the
bilinear estimate.

Lemma 5.1. Let ˆ.z1; z2/D z1z2 and Q1;Q2 � C2 be closed cubes. Assume that

24 � jz1�w1j � 2
�1 and 24 � jz2�w2j � 2

�1

whenever .z1; z2/ 2Q1 and .w1; w2/ 2Q2. If supp.f /�Q1 and supp.g/�Q2, then for q > 10
3

and
1
p
C

5
3q
< 1,

kEf Egkq
2
� Cp;q kf kp kgkp:

In the next lemma the hypothesis of “nonvanishing rotational curvature” is weakened to the usual
separation condition. But then, for the conclusion to hold, the pair

�
1
p
; 1
q

�
needs to satisfy a more restrictive

condition. This lemma is an analog of Proposition 4.1 in [Lee 2006].

Lemma 5.2. Let Q1, Q2 be closed cubes in C2 such that dist.Q1;Q2/ � 1. If supp.f / � Q1 and
supp.g/�Q2, then there is a constant Cp;q such that

kEf Egkq
2
� Cp;q kf kp kgkp if 1

p
C
2
q
< 1; q > 10

3
;

or
kE�F E�Gkq

2
. kf kp;1 kgkp;1 if 1

p
C
2
q
D 1; q > 10

3
:

By translation it is clear that in Lemmas 5.1 and 5.2 the same estimate holds with Q1, Q2 replaced
by Q1 C a, Q2 C a, respectively, for any a 2 C2. It is possible to prove the strong-type estimate
kE�F E�Gkq=2 . kf kp kgkp for 1

p
C
2
q
D 1, q > 10

3
by making use of the asymmetric estimates which

are obtained in the course of proof of Proposition 1.3 and the bilinear interpolation; see, e.g., [Bergh and
Löfström 1976, Section 3.13, 5(b)]. However, we have decided not to include the details here, because it
does not seem to have any consequences for linear estimates.

4In fact, the product of the three matrices is equal to
� t1
t2

�t2
t1

�� ıtxDıx�ıtyDıy
2ıtxDıy

2ıtxDıy

ıtyDıy�ı
t
xDıx

�
.
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Proof of Lemma 5.2. By interpolation it suffices to consider the case 10
3
< q � 4 and p � q. By

decomposition of the domains, followed by translation and scaling, we may assume that Q1 DH1 �K
and Q2 DH2 �K, where dist.H1;H2/� 2�1 and K is the unit cube in C, centered at the origin.

By a Whitney decomposition, we get

.K �K/ nD D
[
j>1

[
.k;k0/W

I
j

k
�I

j

k0

I
j

k
� I

j

k0

where D D f.z2; w2/ W z2 D w2g, and fI j
k
gk are the dyadic cubes in C of side length 2�j, and as usual

the notation I j
k
� I

j

k0
means that the parent cubes of I j

k
and I j

k0
are adjacent, while I j

k
and I j

k0
are not.

Let us set

f
j

k
.z1; z2/D �Ij

k

.z2/f .z1; z2/; g
j

k
.w1; w2/D �Ij

k

.w2/g.w1; w2/:

Then, since the cubes I j
k
� I

j

k0
are almost disjoint, we may write

Ef Eg D
X
j

X
.k;k0/W

I
j

k
�I

j

k0

E.f
j

k
/E.g

j

k0
/:

Since q > 10
3

, we get

kEf Egkq
2
�

X
j

 X
I
j

k
�I

j

k0

E.f
j

k
/E.g

j

k0
/


q
2

.
X
j

� X
I
j

k
�I

j

k0

kE.f
j

k
/E.g

j

k0
/k
q
2
q
2

�2
q

;

where the last inequality follows from Lemma 6.1 in [Tao et al. 1998]. Here, we used the fact that for
each fixed j the supports of the Fourier transforms of E.f j

k
/E.g

j

k0
/ have uniformly bounded overlap as

.k; k0/ varies, provided that I j
k
� I

j

k0
. This is a consequence of the Whitney decomposition. We now

claim that if I j
k
� I

j

k0
, then

kE.f
j

k
/E.g

j

k0
/kq
2
. 24j.

1
p
C 2
q
�1/
kf

j

k
kp kg

j

k0
kp (5-1)

when 1
p
C

5
3q
< 1, q > 10

3
. This is an easy consequence of a translated version of Lemma 5.1. Assuming

this for the moment, we will finish the proof. Since q � p, for 1
p
C

5
3q
< 1, 4 > q > 10

3
, we have

kEf Egkq
2
�

X
j

24j.
1
p
C 2
q
�1/

� X
I
j

k
�I

j

k0

kf
j

k
k

q
2
p kg

j

k0
k

q
2
p

�2
q

.
X
j

24j.
1
p
C 2
q
�1/

�X
Ij

kf
j

k
k
p
p

�1
p
�X
J j

kg
j

k0
k
p
p

�1
p

.
X
j

24j.
1
p
C 2
q
�1/
kf kp kgkp:

Now take f D �F and g D �G for measurable sets F , G contained in V1, V2, respectively. Fix p, q
with 4 > q > 10

3
, 1
p
C
2
q
D 1, and choose p1 and p2 such that 1

pj
C

5
3q
< 1, j D 1; 2, and

1
p1
C
2
q
� 1D �; 1

p2
C
2
q
� 1D��
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for some small � > 0. Then by applying the last estimate for p D p1 and p D p2, we obtain

kE�F E�Gkq
2
.
X
j

min
˚
24j�jF j�C1�

2
q jGj�C1�

2
q ; 2�4j�jF j��C1�

2
q jGj��C1�

2
q
	

. jF j1�
2
q jGj1�

2
q D jF j1=pjGj

1
p:

This shows the estimate kE�F E�Gkq=2 . kf kp;1 kgkp;1 for 1
p
C
2
q
D 1, 4 > q > 10

3
.

Now it remains to show (5-1). Clearly, I j
k

and I j
k0

are contained in a ball of radius 22�j and
dist.I j

k
; I
j

k0
/� 2�1�j. Hence, by a change of variables,

E.f
j

k
/.w/D 2�2j E.f

j

k
. � ; 2�j � //.w1; 2

�jw2; 2
�jw3/;

E.g
j

k0
/.w/D 2�2j E.g

j

k0
. � ; 2�j � //.w1; 2

�jw2; 2
�jw3/:

Then we see that suppf j
k
. � ; 2�j � /�H1� QI1 and gj

k0
. � ; 2�j � /�H2� QI2 if dist. QI1; QI2/�2�1 and QI1; QI2

are contained in a ball of radius � 23. The assumption of Lemma 5.1 is satisfied with f D f j
k
. � ; 2�j � /

and g D gj
k0
. � ; 2�j � /. Hence we may apply it to E.f j

k
. � ; 2�j � //E.f

j

k
. � ; 2�j � // and get (5-1). �

Once Lemma 5.2 is established, the usual argument in [Tao et al. 1998], used to deduce linear estimates
from bilinear ones, works without modification. We omit the details. �

Acknowledgements

We thank Andreas Seeger for bringing the reference [Alvarez 1997] to our attention. We would also like
to thank the anonymous referee for the reference [Banner 2002].

References

[Alvarez 1997] D. Alvarez, Bounds for some Kakeya-type maximal functions, Ph.D. thesis, University of California, Berkeley,
1997, available at https://search.proquest.com/docview/304343467. MR

[Bak and Ham 2014] J.-G. Bak and S. Ham, “Restriction of the Fourier transform to some complex curves”, J. Math. Anal. Appl.
409:2 (2014), 1107–1127. MR Zbl

[Bak and Lee 2004] J.-G. Bak and S. Lee, “Restriction of the Fourier transform to a quadratic surface in Rn”, Math. Z. 247:2
(2004), 409–422. MR Zbl

[Bak and Seeger 2011] J.-G. Bak and A. Seeger, “Extensions of the Stein–Tomas theorem”, Math. Res. Lett. 18:4 (2011),
767–781. MR Zbl

[Bak et al. 2002] J.-G. Bak, D. M. Oberlin, and A. Seeger, “Two endpoint bounds for generalized Radon transforms in the
plane”, Rev. Mat. Iberoamericana 18:1 (2002), 231–247. MR Zbl

[Bak et al. 2009] J.-G. Bak, D. M. Oberlin, and A. Seeger, “Restriction of Fourier transforms to curves and related oscillatory
integrals”, Amer. J. Math. 131:2 (2009), 277–311. MR Zbl

[Bak et al. 2013] J.-G. Bak, D. M. Oberlin, and A. Seeger, “Restriction of Fourier transforms to curves: an endpoint estimate
with affine arclength measure”, J. Reine Angew. Math. 682 (2013), 167–205. MR Zbl

[Banner 2002] A. D. Banner, Restriction of the Fourier transform to quadratic submanifolds, Ph.D. thesis, Princeton University,
2002, available at https://search.proquest.com/docview/305532402. MR

[Bennett et al. 2006] J. Bennett, A. Carbery, and T. Tao, “On the multilinear restriction and Kakeya conjectures”, Acta Math.
196:2 (2006), 261–302. MR Zbl

https://search.proquest.com/docview/304343467
http://msp.org/idx/mr/2696274
http://dx.doi.org/10.1016/j.jmaa.2013.07.073
http://msp.org/idx/mr/3103222
http://msp.org/idx/zbl/1308.42005
http://dx.doi.org/10.1007/s00209-003-0626-8
http://msp.org/idx/mr/2064058
http://msp.org/idx/zbl/1073.42006
http://dx.doi.org/10.4310/MRL.2011.v18.n4.a14
http://msp.org/idx/mr/2831841
http://msp.org/idx/zbl/1271.42014
http://dx.doi.org/10.4171/RMI/317
http://dx.doi.org/10.4171/RMI/317
http://msp.org/idx/mr/1924693
http://msp.org/idx/zbl/1015.42007
http://dx.doi.org/10.1353/ajm.0.0044
http://dx.doi.org/10.1353/ajm.0.0044
http://msp.org/idx/mr/2503984
http://msp.org/idx/zbl/1166.42006
http://dx.doi.org/10.1515/crelle-2012-0042
http://dx.doi.org/10.1515/crelle-2012-0042
http://msp.org/idx/mr/3181503
http://msp.org/idx/zbl/1290.42024
https://search.proquest.com/docview/305532402
http://msp.org/idx/mr/2703306
http://dx.doi.org/10.1007/s11511-006-0006-4
http://msp.org/idx/mr/2275834
http://msp.org/idx/zbl/1203.42019


BILINEAR RESTRICTION ESTIMATES FOR SURFACES OF CODIMENSION BIGGER THAN 1 1985

[Bergh and Löfström 1976] J. Bergh and J. Löfström, Interpolation spaces: an introduction, Grundlehren der Mathematischen
Wissenschaften 223, Springer, 1976. MR Zbl

[Bourgain and Guth 2011] J. Bourgain and L. Guth, “Bounds on oscillatory integral operators based on multilinear estimates”,
Geom. Funct. Anal. 21:6 (2011), 1239–1295. MR Zbl

[Christ 1982] M. Christ, Restriction of the Fourier transform to submanifolds of low codimension, Ph.D. thesis, The University
of Chicago, 1982, available at https://search.proquest.com/docview/303090254. MR

[Christ 1985] M. Christ, “On the restriction of the Fourier transform to curves: endpoint results and the degenerate case”, Trans.
Amer. Math. Soc. 287:1 (1985), 223–238. MR Zbl

[Greenleaf and Seeger 2002] A. Greenleaf and A. Seeger, “Oscillatory and Fourier integral operators with degenerate canonical
relations”, Publ. Mat. extra volume (2002), 93–141. MR Zbl

[Guth 2016] L. Guth, “A restriction estimate using polynomial partitioning”, J. Amer. Math. Soc. 29:2 (2016), 371–413. MR
Zbl

[Lee 2006] S. Lee, “Bilinear restriction estimates for surfaces with curvatures of different signs”, Trans. Amer. Math. Soc. 358:8
(2006), 3511–3533. MR Zbl

[Mockenhaupt 1996] G. Mockenhaupt, Bounds in Lebesgue spaces of oscillatory integral operators, Habilitation thesis,
Universität Siegen, 1996, available at https://tinyurl.com/Mockenhaupt-thesis. Zbl

[Moyua et al. 1999] A. Moyua, A. Vargas, and L. Vega, “Restriction theorems and maximal operators related to oscillatory
integrals in R3”, Duke Math. J. 96:3 (1999), 547–574. MR Zbl

[Oberlin 2005] D. M. Oberlin, “A restriction theorem for a k-surface in Rn”, Canad. Math. Bull. 48:2 (2005), 260–266. MR
Zbl

[Stein 1993] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Mathematical Series 43, Princeton University Press, 1993. MR Zbl

[Stovall 2016] B. Stovall, “Uniform estimates for Fourier restriction to polynomial curves in Rd ”, Amer. J. Math. 138:2 (2016),
449–471. MR Zbl

[Tao 2003] T. Tao, “A sharp bilinear restrictions estimate for paraboloids”, Geom. Funct. Anal. 13:6 (2003), 1359–1384. MR
Zbl

[Tao and Vargas 2000] T. Tao and A. Vargas, “A bilinear approach to cone multipliers, I: Restriction estimates”, Geom. Funct.
Anal. 10:1 (2000), 185–215. MR Zbl

[Tao et al. 1998] T. Tao, A. Vargas, and L. Vega, “A bilinear approach to the restriction and Kakeya conjectures”, J. Amer. Math.
Soc. 11:4 (1998), 967–1000. MR Zbl

[Vargas 2005] A. Vargas, “Restriction theorems for a surface with negative curvature”, Math. Z. 249:1 (2005), 97–111. MR Zbl

[Wolff 2001] T. Wolff, “A sharp bilinear cone restriction estimate”, Ann. of Math. .2/ 153:3 (2001), 661–698. MR Zbl

Received 23 Jan 2017. Revised 2 Jun 2017. Accepted 12 Jul 2017.

JONG-GUK BAK: bak@postech.ac.kr
Department of Mathematics, Pohang University of Science and Technology, Pohang, South Korea

JUNGJIN LEE: jungjinlee@unist.ac.kr
Department of Mathematical Sciences, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan,
South Korea

SANGHYUK LEE: shklee@snu.ac.kr
Department of Mathematical Sciences, Seoul National University, Seoul, South Korea

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-3-642-66451-9
http://msp.org/idx/mr/0482275
http://msp.org/idx/zbl/0344.46071
http://dx.doi.org/10.1007/s00039-011-0140-9
http://msp.org/idx/mr/2860188
http://msp.org/idx/zbl/1237.42010
https://search.proquest.com/docview/303090254
http://msp.org/idx/mr/2611817
http://dx.doi.org/10.2307/2000407
http://msp.org/idx/mr/766216
http://msp.org/idx/zbl/0563.42010
http://dx.doi.org/10.5565/PUBLMAT_Esco02_05
http://dx.doi.org/10.5565/PUBLMAT_Esco02_05
http://msp.org/idx/mr/1964817
http://msp.org/idx/zbl/1024.42006
http://dx.doi.org/10.1090/jams827
http://msp.org/idx/mr/3454378
http://msp.org/idx/zbl/1342.42010
http://dx.doi.org/10.1090/S0002-9947-05-03796-7
http://msp.org/idx/mr/2218987
http://msp.org/idx/zbl/1092.42003
https://tinyurl.com/Mockenhaupt-thesis
http://msp.org/idx/zbl/0916.42009
http://dx.doi.org/10.1215/S0012-7094-99-09617-5
http://dx.doi.org/10.1215/S0012-7094-99-09617-5
http://msp.org/idx/mr/1671214
http://msp.org/idx/zbl/0946.42011
http://dx.doi.org/10.4153/CMB-2005-024-9
http://msp.org/idx/mr/2137104
http://msp.org/idx/zbl/1083.42007
http://msp.org/idx/mr/1232192
http://msp.org/idx/zbl/0821.42001
http://dx.doi.org/10.1353/ajm.2016.0021
http://msp.org/idx/mr/3483472
http://msp.org/idx/zbl/1341.42022
http://dx.doi.org/10.1007/s00039-003-0449-0
http://msp.org/idx/mr/2033842
http://msp.org/idx/zbl/1068.42011
http://dx.doi.org/10.1007/s000390050006
http://msp.org/idx/mr/1748920
http://msp.org/idx/zbl/0949.42012
http://dx.doi.org/10.1090/S0894-0347-98-00278-1
http://msp.org/idx/mr/1625056
http://msp.org/idx/zbl/0924.42008
http://dx.doi.org/10.1007/s00209-004-0691-7
http://msp.org/idx/mr/2106972
http://msp.org/idx/zbl/1071.42009
http://dx.doi.org/10.2307/2661365
http://msp.org/idx/mr/1836285
http://msp.org/idx/zbl/1125.42302
mailto:bak@postech.ac.kr
mailto:jungjinlee@unist.ac.kr
mailto:shklee@snu.ac.kr
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US $265/year for the electronic version, and $470/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 10 No. 8 2017

1793Koszul complexes, Birkhoff normal form and the magnetic Dirac operator
NIKHIL SAVALE

1845Incompressible immiscible multiphase flows in porous media: a variational approach
CLÉMENT CANCÈS, THOMAS O. GALLOUËT and LÉONARD MONSAINGEON

1877Resonances for symmetric tensors on asymptotically hyperbolic spaces
CHARLES HADFIELD

1923Construction of two-bubble solutions for the energy-critical NLS
JACEK JENDREJ

1961Bilinear restriction estimates for surfaces of codimension bigger than 1
JONG-GUK BAK, JUNGJIN LEE and SANGHYUK LEE

1987Complete embedded complex curves in the ball of C2 can have any topology
ANTONIO ALARCÓN and JOSIP GLOBEVNIK

2001Finite-time degeneration of hyperbolicity without blowup for quasilinear wave equations
JARED SPECK

2031Dimension of the minimum set for the real and complex Monge–Ampère equations in critical
Sobolev spaces

TRISTAN C. COLLINS and CONNOR MOONEY

A
N

A
LY

SIS
&

PD
E

Vol.10,
N

o.8
2017


	1. Introduction and statement of results
	2. L*L -> L^2 estimates and proof of Proposition 1.3
	3. Transversality and the curvature conditions
	4. Proof of Theorem 1.1
	Wave packet decomposition
	Dyadic pigeonholing and reduction
	Induction argument
	L^2 estimate
	Proof of (4-19)

	5. Restriction estimates for complex surfaces
	Acknowledgements
	References
	
	

