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COMPLETE EMBEDDED COMPLEX CURVES IN THE BALL OF C2

CAN HAVE ANY TOPOLOGY

ANTONIO ALARCÓN AND JOSIP GLOBEVNIK

In this paper we prove that the unit ball B of C2 admits complete properly embedded complex curves of any
given topological type. Moreover, we provide examples containing any given closed discrete subset of B.

1. Introduction

Yang [1977a; 1977b] raised the question of whether there exist complete bounded complex submanifolds
of a complex Euclidean space CN (N > 1). Recall that an immersed k-dimensional complex submanifold
ψ :Mk

→CN (1≤ k< N ) is said to be complete if the Riemannian metric induced on M by the Euclidean
metric in CN via ψ is complete in the classical sense, or equivalently, if the image by ψ of any divergent
path on M has infinite Euclidean length.

The case of main interest to us in this paper is when k = 1 and N = 2, i.e., complex curves in the
complex Euclidean plane C2. There are many known examples of complete bounded immersed complex
curves in C2, which have been obtained by different methods; see the works of Jones [1979] for discs,
Martín, Umehara, and Yamada [Martín et al. 2009] for some finite topologies, Alarcón and López [2013a]
for examples with arbitrary topology, and Alarcón and Forstnerič [2013] and Alarcón, Drinovec Drnovšek,
Forstnerič, and López [Alarcón et al. 2015] for examples normalized by any given bordered Riemann
surface. Furthermore, the curves in [Alarcón and López 2013a; Alarcón and Forstnerič 2013; Alarcón
et al. 2015] can be chosen to be proper in any given convex domain of C2, in particular, in the open unit
Euclidean ball, which throughout this paper will be denoted by B.

On the other hand, using the techniques developed in the cited sources and taking into account that
the general position of complex curves in CN is embedded for all N ≥ 3, it is not very hard to construct
complete bounded embedded complex curves in CN for any such N ; see again [Alarcón and Forstnerič
2013; Alarcón et al. 2015]. For submanifolds of higher dimension, Alarcón and Forstnerič [2013] provided
examples of complete bounded embedded k-dimensional complex submanifolds of C3k for any k ∈N,
whereas Drinovec Drnovšek [2015] proved that every bounded, strictly pseudoconvex, smoothly bounded
domain of Ck admits a complete proper holomorphic embedding into the unit ball of CN provided that
the codimension N − k is sufficiently large.

However, constructing complete bounded embedded complex curves in C2 (and, more generally,
complete bounded embedded complex hypersurfaces of CN for N > 1) is a much more arduous task; the

MSC2010: 32H02, 32B15, 32C22.
Keywords: complex curves, holomorphic embeddings, complete bounded submanifolds.

1987

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-8
http://dx.doi.org/10.2140/apde.2017.10.1987
http://msp.org


1988 ANTONIO ALARCÓN AND JOSIP GLOBEVNIK

main reason why is that self-intersections of complex curves in C2 are stable under small deformations.
It is therefore not surprising that the first known examples of such curves were only found almost four
decades after Yang posed his question; they were given in [Alarcón and López 2016]. Their method,
which in fact furnishes complete properly embedded complex curves in any convex domain of C2, is rather
involved and relies, among other things, on a subtle self-intersection removal procedure that does not
allow for the inference of any information on the topological type of the examples. A little later Globevnik
[2015; 2016b], using a different technique, extended the results in [Alarcón and López 2016] by proving
the existence of complete properly embedded complex hypersurfaces in any pseudoconvex domain D
of CN for any N > 1; this settles the embedded Yang problem in an optimal way in all dimensions. His
examples are given as level sets of highly oscillating holomorphic functions D→C, and hence, again, no
information on their topology is provided. In light of the above, the following questions naturally appear;
see [Alarcón and López 2016, Question 1.5; Globevnik 2015, Questions 13.1 and 13.2]:

Problem 1.1. Is there any restriction on the topology of a complete bounded embedded complex hyper-
surface of CN ? What if N = 2? For instance, do there exist complete proper holomorphic embeddings of
the unit disk D⊂ C into the unit ball B⊂ C2?

The first approach to this problem was recently made in [Alarcón et al. 2016] by Alarcón, Globevnik,
and López, who, with a conceptually new method based on the use of holomorphic automorphisms
of CN, constructed complete closed complex hypersurfaces in the unit ball of CN for any N > 1 with
certain restrictions on their topology. In particular, for N = 2, they showed that the unit ball of C2 admits
complete properly embedded complex curves with arbitrary finite topology, see Corollary 1.2 of that paper,
thereby affirmatively answering the third question in Problem 1.1. Going further in this line, Globevnik
[2016a] proved the existence of complete proper holomorphic embeddings D ↪→B whose image contains
any given closed discrete subset of B. This is reminiscent of an old result by Forstnerič, Globevnik, and
Stensønes [Forstnerič et al. 1996] asserting that, given a pseudoconvex Runge domain D ⊂ CN (N > 1)
and a closed discrete subset 3 ⊂ D, there is a proper holomorphic embedding D ↪→ D whose image
contains 3. It is nevertheless true that these embeddings are not ensured to be complete in any case.

The aim of this paper is to settle Problem 1.1 for N = 2 by proving the existence of complete properly
embedded complex curves in B with arbitrary topology (possibly infinite). This completely solves the
problem and, in particular, generalizes the existence result [Alarcón et al. 2016, Corollary 1.2], which
only deals with finite topological types. Moreover, we provide examples of such curves which contain
any given closed discrete subset of B, thereby extending the above-mentioned hitting result by Globevnik
[2016a, Theorem 1.1].

The main theorem of this paper can be stated as follows.

Theorem 1.2. Let 3 be a closed discrete subset of the unit ball B ⊂ C2. On each open connected
orientable smooth surface M there exists a complex structure such that the open Riemann surface M
admits a complete proper holomorphic embedding M ↪→ B whose image contains 3.

It is perhaps worth mentioning that, choosing any closed discrete subset 3 ⊂ B such that 3̄ \3 =
bB= {ζ ∈ C2

: |ζ |=1}, Theorem 1.2 trivially implies the following:
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Corollary 1.3. The unit ball B ⊂ C2 contains complete properly embedded complex curves with any
given topology and whose limit set equals bB.

Although it is not explicitly stated there, Corollary 1.3 in the simply connected case straightforwardly
follows from the results by Globevnik [2016a].

Our method of proof exploits some ideas from both [Alarcón et al. 2016] and [Globevnik 2016a]
(in particular, our construction technique is based on the use of holomorphic automorphisms of C2),
but also from [Alarcón and López 2013b], where the authors constructed properly embedded complex
curves in C2 with arbitrary topology. The latter contributes to the so-called embedding problem for
open Riemann surfaces in C2, a long-standing open question in Riemann surface theory asking whether
every open Riemann surface properly embeds in C2 as a complex curve [Bell and Narasimhan 1990,
Conjecture 3.7, page 20]; for recent advances and a history of this classical problem we refer to [Forstnerič
and Wold 2009; 2013]. It is shown in [Forstnerič and Wold 2009] that given a compact bordered Riemann
surface M = M ∪ bM admitting a smooth embedding f : M ↪→ C2 which is holomorphic in M, there is
a proper holomorphic embedding f̃ : M ↪→ C2 which is as close as desired to f uniformly on a given
compact subset of M. (A compact bordered Riemann surface M is a compact Riemann surface with
boundary ∅ 6= bM ⊂ M consisting of finitely many pairwise disjoint smooth Jordan curves; its interior
M = M \ bM is called a bordered Riemann surface.) This fact and the arguments in its proof were key in
the construction method in [Alarcón and López 2013b], which will be used in the proof of Theorem 1.2.

We strongly expect that the new construction techniques developed in this paper may be adapted to
prove the statement of Theorem 1.2 but replacing the ball B by any convex domain of C2. The following
questions, concerning pseudoconvex domains, remain open and seem to be much more challenging.

Problem 1.4. Let D ⊂ C2 be a pseudoconvex Runge domain. Does there exist a complete proper
holomorphic embedding D ↪→ D? Given a closed discrete subset 3⊂ D, do there exist complete properly
embedded complex curves in D containing 3?

As we have already mentioned, every bordered Riemann surface M admits a complete proper holomor-
phic immersion M→ B [Alarcón and Forstnerič 2013], and if in addition there is a smooth embedding
M→ C2 that is holomorphic in M, then M properly holomorphically embeds into C2 [Forstnerič and
Wold 2009]. It is however an open question, likely very difficult, whether every bordered Riemann
surface admits a holomorphic embedding in C2 (even without requiring the embedding to have any global
condition such as completeness or properness); see, e.g., the introduction of [Forstnerič and Wold 2009]
or Section 8.9 in the monograph [Forstnerič 2011] for more information. Thus, one is also led to ask:

Problem 1.5. Let M =M∪bM be a compact bordered Riemann surface and assume that there is a smooth
embedding M ↪→ C2 which is holomorphic in M. Does M admit complete holomorphic embeddings
M ↪→ C2 with bounded image?

We hope to return to these interesting questions in a future work.

Organization of the paper. In Section 2 we set the notation that will be used throughout the paper and,
with the aim of making it self-contained, state some already known results which will be used in the
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proof of Theorem 1.2. In Section 3 we prove an approximation result by properly embedded complex
curves in the unit ball B⊂ C2 (see Theorem 3.1) from which Theorem 1.2 will be easily derived.

2. Preliminaries

We denote by | · | and B= {ζ ∈ C2
: |ζ |< 1} the Euclidean norm and the unit Euclidean ball in C2. For a

subset C ⊂C2 we denote by C , C̊ , and bC =C \C̊ the topological closure, interior, and frontier of C in C2,
respectively. Also, given a point ξ ∈C2 and a number r ∈R+=[0,+∞[we write ξ+rC={ξ+rζ : ζ ∈C}.

Let A be a smoothly bounded compact domain in an open Riemann surface and let k∈Z+={0, 1, 2, . . . }.
We denote by A k(A) the space of functions A→C of class C k(A) which are holomorphic on the interior
Å = A \ bA. If N ∈ N we will simply write A k(A) instead of

A k(A)N
= A k(A)×

N times
· · · ×A k(A)

when there is no place for ambiguity. Given an immersion ψ : A→ CN (N > 1) of class C 1(A), we
denote by distψ : A× A→ R+ the Riemannian distance in A induced by the Euclidean metric of CN

via ψ ; that is,

distψ(p, q) := inf{length(ψ(γ )) : γ ⊂ A path connecting p and q}, p, q ∈ A,

where length( · ) denotes the Euclidean length in CN.

Tangent balls. Given a point ζ ∈C2
\ {0} and a number r > 0, we denote by T (ζ, r) the closed ball with

center ζ and radius r in the real affine hyperplane Hζ tangent to the sphere b(|ζ |B) at the point ζ ; that is,

T (ζ, r) := {ξ ∈ Hζ : |ξ − ζ | ≤ r} ⊂ C2.

According to [Alarcón et al. 2016, Definition 1.3], the set T (ζ, r) above is called the tangent ball of
center ζ and radius r . A collection F= {T (ζ j , rj )}j∈J of tangent balls in B⊂ C2 will be called tidy, see
Definition 1.4 of the same paper, if it satisfies the following requirements:

• T (ζ j , rj )⊂ B for all j ∈ J and the tangent balls in F are pairwise disjoint.

• t B intersects finitely many tangent balls in the family F for all 0< t < 1.

• If T (ζ, r), T (ζ ′, r ′) ∈ F and |ζ | = |ζ ′|, then r = r ′.

• If T (ζ, r), T (ζ ′, r ′) ∈ F and |ζ |< |ζ ′|, then T (ζ, r)⊂ |ζ ′|B.

Notice that a tidy collection F= {T (ζ j , rj )}j∈J of tangent balls in B consists of countably many elements;
and so we may assume that J ⊂ N= {1, 2, 3, . . . }. We denote by

|F| :=
⋃
j∈J

T (ζ j , rj )

the union of all the tangent balls in a tidy collection. Note that if J is finite then |F| is compact, whereas
if J is infinite then |F| is a proper subset of B.

The following two results, involving tidy collections of tangent balls, are proved in [Alarcón et al.
2016], and will be invoked in our argumentation.
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Lemma 2.1 [Alarcón et al. 2016, Lemma 2.4]. Given numbers 0 < r < r ′ < 1 and ` > 0 there is
a finite tidy collection F of tangent balls in B such that |F| ⊂ r ′B \ rB and the length of any path
γ : [0, 1] → r ′B \ ((rB)∪ |F|) with |γ (0)| = r and |γ (1)| = r ′ is at least `.

The next result is not explicitly stated in [Alarcón et al. 2016] but straightforwardly follows from an
inspection of the proof of Theorem 1.6 of that paper as a standard finite recursive application of their
Lemma 3.1.

Lemma 2.2. Let 0< r < r ′ < 1 be numbers and let F be a finite tidy collection of tangent balls in B with
|F| ⊂ r ′B \ rB. Then, given a properly embedded complex curve Z ⊂ C2 and a number ε > 0, there is a
holomorphic automorphism 8 : C2

→ C2 satisfying the following properties:

(i) 8(Z)∩ |F| =∅.

(ii) |8(ζ)− ζ |< ε for all ζ ∈ rB.

Hitting and approximation lemmas. In this subsection we state two results which will also be used in
our construction. The first one, due to Globevnik, will be key in order to achieve the hitting condition in
the statement of Theorem 1.2.

Lemma 2.3 [Globevnik 2016a, Lemma 7.2]. Given a finite subset 3⊂ B there exist numbers η > 0 and
µ > 0 such that the following holds. Given a number 0< δ < η and a map ϕ :3→ C2 such that

|ϕ(ζ )− ζ |< δ for all ζ ∈3,

there exists a holomorphic automorphism 9 : C2
→ C2 satisfying the following conditions:

(i) 9(ϕ(ζ ))= ζ for all ζ ∈3,

(ii) |9(ζ)− ζ |< µδ for all ζ ∈ B.

The second result, which will help us to increase the topology in the recursive construction, is a
particular case of [Alarcón and López 2013b, Theorem 4.5]; it also easily follows from the results in
[Forstnerič and Wold 2009].

Lemma 2.4. Let M = M ∪ bM be a compact bordered Riemann surface and let K ⊂ M be a connected,
smoothly bounded, Runge compact domain which is a strong deformation retract of M. Let φ : K ↪→ C2

be an embedding of class A 1(K ) and assume that there exists a number s > 0 such that

φ(bK )∩ sB=∅.

Then, given ε > 0, there are an open domain �⊂ M and a proper holomorphic embedding φ̃ :� ↪→ C2

such that:

(i) K ⊂� and � is a deformation retract of M and homeomorphic to M.

(ii) |φ̃(p)−φ(p)|< ε for all p ∈ K.

(iii) φ̃(� \ K̊ )∩ sB=∅.
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Recall that a compact subset K of an open Riemann surface M is said to be Runge or holomorphically
convex if every continuous function K →C, holomorphic in K̊, may be approximated uniformly on K by
holomorphic functions M→ C. The classical Mergelyan theorem ensures that K ⊂ M is Runge if and
only if M \ K has no relatively compact connected components in M ; see [Bishop 1958; Runge 1885;
Mergelyan 1951].

3. Proof of the main theorem

In this section we prove the following more precise version of Theorem 1.2.

Theorem 3.1. Let M be an open connected Riemann surface, let K ⊂ M be a connected, smoothly
bounded, Runge compact domain, let 0< s < r < 1 be numbers, and assume that there is an embedding
ψ : K → C2 of class A 1(K ) such that

ψ(bK )⊂ rB \ sB. (3-1)

Let 3⊂ B be a closed discrete subset such that

3∩ rB⊂ ψ(K̊ )∩ sB. (3-2)

Then, given ε > 0, there are a domain D⊂ M and a complete proper holomorphic embedding ψ̃ : D ↪→B

satisfying the following properties:

(i) K ⊂ D and D is a deformation retract of M (and hence homeomorphic to M).

(ii) |ψ̃(ζ )−ψ(ζ )|< ε for all ζ ∈ K.

(iii) 3⊂ ψ̃(D).

(iv) ψ̃(D \ K )∩ sB=∅.

Proof. Pick a number s < s ′0 < r such that

ψ(bK )⊂ rB \ s ′0B. (3-3)

Such an s ′0 exists in view of (3-1) by compactness of ψ(bK ). Without loss of generality we assume that
3 is infinite, and hence, since it is closed in B and discrete, 3 is in bijection with N and for any ordering
3= {pi }i∈N of 3 we have limi→∞ |pi | = 1. Thus, there are sequences of numbers {rj }j∈N, with r1 = r ,
{r ′j }j∈N, {sj }j∈N, and {s ′j }j∈N, satisfying the following properties:

(a) s ′j−1 < rj < r ′j < sj < s ′j for all j ∈ N.

(b) limj→∞ rj = 1.

(c) 3⊂ sB∪
(⋃

j∈N(s
′

j B \ sj B)
)
, taking into account (3-2).

Write 30 :=3∩ sB =3∩ s ′0B and 3j =3∩ (s ′j B \ sj B), j ∈ N, and observe that 3j is finite for all
j ∈ Z+. We also assume without loss of generality that 3j 6=∅ for all j ∈ Z+. By (a) and (c) we have

3=
⋃

j∈Z+

3j , 3i ∩3j =∅ for all i, j ∈ Z+, i 6= j . (3-4)
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Let {εj }j∈N↘ 0 be a decreasing sequence of positive numbers such that∑
j∈N

εj < ε. (3-5)

The precise values of the numbers εj , j ∈ N, will be specified later.
Write M0 := K and let

M0 b M1 b M2 b · · ·b M =
⋃

j∈Z+

Mj (3-6)

be an exhaustion of M by connected, smoothly bounded, Runge compact domains such that the Euler
characteristic satisfies χ(Mj \M̊j−1)∈{0,−1} for all j ∈N. Such an exhaustion exists by basic topological
arguments; see, e.g., [Alarcón and López 2013b, Lemma 4.2] for a simple proof.

Write D0 := M0 = K and set ψ0 := ψ. Fix a point p0 ∈ K̊. We shall recursively construct a sequence
4j = {Dj , ψj }, j ∈ N, where Dj is a connected, smoothly bounded, Runge compact domain in M and
ψj : Dj ↪→ C2 is an embedding of class A 1(Dj ) such that the following hold for all j ∈ N:

(1j ) Dj−1 b Dj b Mj and Dj is a strong deformation retract of Mj .

(2j ) |ψj (p)−ψj−1(p)|< εj for all p ∈ Dj−1.

(3j ) distψj (p0, bDj ) > j .

(4j ) ψj (bDj )⊂ rj+1B \ s ′j B.

(5j ) ψj (Dj \ D̊j−1)∩ s ′j−1B=∅.

(6j ) 3i ⊂ ψj (D̊i ) for all i ∈ {0, . . . , j}.

Assume for a moment that we have already constructed a sequence {4j }j∈N enjoying the above
conditions. By (1j ) and (3-6), we obtain that

D :=
⋃

j∈Z+

Dj

is a domain in M satisfying property (i) in the statement of the theorem. We claim that, if the number
εj > 0 is chosen small enough at each step in the recursive construction, the sequence {ψj }j∈Z+ converges
uniformly on compacta in D to a limit map

ψ̃ = lim
j→∞

ψj : D→ C2

satisfying the conclusion of the theorem. Indeed, by (2j ) and (3-5) the limit map ψ̃ exists and satisfies (ii);
recall that K = D0. Since each map ψj is an embedding of class A 1(Dj ), choosing the number εj > 0
sufficiently small at each step in the recursive construction, we have ψ̃ :D→C2 is an injective holomorphic
immersion. Moreover, (3j ) ensures that ψ̃ is complete, whereas (5j ), (a), and (b) guarantee (iv) and the
facts that ψ̃(D)⊂ B and that ψ̃ : D→B is a proper map; recall that s< s ′0 and observe that limj→∞ s ′j = 1.
Thus, ψ̃ :D ↪→B is a proper embedding. Finally, (6j ) and (3-4) imply that3⊂ ψ̃(D), thereby proving (iii).

To conclude the proof, it therefore suffices to construct a sequence 4j = {Dj , ψj }, j ∈N, satisfying
properties (1j )–(6j ) above. We proceed by induction. The basis is given by the compact domain D0
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and the map ψ0; observe that (30) holds since p0 ∈ D̊0 and ψ0 is an immersion, (40)= (3-3) (recall that
r1 = r ), (60) is implied by (c) and (3-2), and (20), (50), and the first part of (10) are vacuous conditions.
Finally, the second part of (10) is obvious since D0 = M0.

For the inductive step, assume that we have 4j−1 = {Dj−1, ψj−1} enjoying the desired properties for
some j ∈ N and let us construct 4j = {Dj , ψj }. We distinguish two cases.

Case 1: Assume that χ(Mj \ M̊j−1)= 0. In this case Mj−1 is a strong deformation retract of Mj .
Write 3′ =

⋃ j
i=03i and let η > 0 and µ> 0 be the numbers given by Lemma 2.3 applied to the finite

subset 3′ ⊂ B.
By (3j−1) and (4j−1) there is another number η′ > 0 with the following property:

(A1) If φ : Dj−1 → C2 is an immersion of class A 1(Dj−1) such that |φ(p)− ψj−1(p)| < η′ for all
p ∈ Dj−1, then distφ(p0, bDj−1) > j − 1 and φ(bDj−1)⊂ rj B \ s ′j−1B.

On the other hand, Lemma 2.1 gives a finite tidy collection F of tangent balls in B satisfying the
following conditions:

(A2) |F| ⊂ r ′j B \ rj B.

(A3) The length of any path γ : [0, 1]→r ′j B\((rj B)∪|F|)with |γ (0)|=rj and |γ (1)|=r ′j is greater than 2.

Thus, there is a third number η′′ > 0 enjoying the following property:

(A4) If α : [0, 1]→ r ′j B\rj B is a path satisfying that there is another path γ : [0, 1]→ r ′j B\((rj B)∪|F|)

such that |γ (0)| = rj , |γ (1)| = r ′j , and |γ (x)− α(x)| < η′′ for all x ∈ [0, 1], then the length of α
is greater than 1.

Next, pick a number t such that s ′j−1 < t < rj and

ψj−1(bDj−1)⊂ rj B \ t B; (3-7)

the existence of such number t is ensured by (a) and (4j−1). Finally, choose a number

0< δ <min
{
η,

η′

µ+ 1
,
η′′

µ+ 1
,
εj

µ+ 1
,

t − s ′j−1

µ
,

rj+1− s ′j
2µ

}
. (3-8)

Also fix a number τ1 > 0 which will be specified later.
Taking into account (3-7), Lemma 2.4 furnishes an open domain �b M̊j and a proper holomorphic

embedding φ1 :� ↪→ C2 such that the following hold:

(B1) Dj−1⊂� and� is a deformation retract of M̊j and is homeomorphic to M̊j . In particular, the second
part of (1j−1) and the fact that Mj−1 is a strong deformation retract of Mj ensure that � \ Dj−1

consists of a finite collection of pairwise disjoint open annuli.

(B2) |φ1(p)−ψj−1(p)|< τ1 for all p ∈ Dj−1.

(B3) φ1(� \ D̊j−1)∩ t B=∅.

In view of (3-7) and (B2), and choosing τ1 > 0 small enough, we also have:

(B4) φ1(bDj−1)⊂ rj B \ t B.
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Now, given a number τ2 > 0 which will be specified later and taking into account (A2), Lemma 2.2
provides a holomorphic automorphism 8 : C2

→ C2 such that

(C1) 8(φ1(�))∩ |F| =∅.

(C2) |8(ζ)− ζ |< τ2 for all ζ ∈ rj B.

Write
φ2 :=8 ◦φ1 :� ↪→ C2. (3-9)

By (B1), (B3), (B4), (C2), and (a), and choosing τ2 > 0 sufficiently small, we have:

(D1) φ2(bDj−1)⊂ rj B \ t B.

(D2) φ2(� \ D̊j−1)∩ t B=∅.

and, taking into account (B1), (D1), and the maximum principle for the function |φ2|, there exists a
smoothly bounded compact domain ϒ ⊂� such that:

(D3) Dj−1 b ϒ and Dj−1 is a strong deformation retract of ϒ.

(D4) φ2(bϒ)⊂ b(t ′B) and meets transversely there for some number t ′ with r ′j < t ′ < sj .

Next, choose a point q0 ∈ bϒ and a smooth embedded compact path λ ⊂ C2
\ t ′B having φ2(q0) as

an endpoint, meeting b(t ′B) transversely there, and being otherwise disjoint from t ′B. Assume also that

3j ⊂ λ⊂ s ′j B \ t ′B. (3-10)

Also take a smooth embedded compact path γ ⊂�\ϒ̊ having q0 as an endpoint, meeting bϒ transversely
there, and being otherwise disjoint from ϒ. Extend φ2, with the same name, to a smooth embedding
ϒ ∪ γ ↪→ C2 such that

φ2(γ )= λ. (3-11)

Observe that ϒ ∪γ is a Runge compact subset of �; take into account (B1) and (D3). Thus, given τ3 > 0
to be specified later, Mergelyan’s theorem applied to φ2 :ϒ ∪γ ↪→C2 ensures the existence of a smoothly
bounded compact domain ϒ ′ ⊂� and an embedding φ3 : ϒ

′ ↪→ C2 of class A 1(ϒ ′) such that:

(E1) ϒ∪γ ⊂ ϒ̊ ′ and ϒ ′ is a strong deformation retract of Mj . In particular, Dj−1 is a strong deformation
retract of ϒ ′; see (D3).

(E2) |φ3(p)−φ2(p)|< τ3 for all p ∈ ϒ ∪ γ.

Furthermore, if we take ϒ ′ close enough to ϒ ∪ γ and if τ3 > 0 is chosen sufficiently small, we obtain
in view of (E2) that:

(E3) φ3(ϒ
′
\ ϒ̊)⊂ s ′j B \ r ′j B. See (D4), (a), (3-10), and (3-11).

(E4) φ3(bDj−1)⊂ rj B \ t B. See (D1) and (D3).

(E5) φ3(ϒ
′
\ D̊j−1)∩ t B=∅. See (D2).

(E6) φ3(ϒ
′)∩ |F| =∅. See (3-9), (C1), (E3), and (A2).
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Given τ4 > 0 to be specified later, applying Lemma 2.4 once again, we obtain, in view of (E3), a
domain �′ b Mj and a proper holomorphic embedding φ4 :�

′ ↪→ C2 such that:

(F1) ϒ ′ ⊂ �′ and �′ is a deformation retract of M̊j and homeomorphic to M̊j . In particular, �′ \ϒ ′

consists of a finite collection of pairwise disjoint open annuli. See (B1).

(F2) |φ4(p)−φ3(p)|< τ4 for all p ∈ ϒ ′.

(F3) φ4(�
′
\ ϒ̊ ′)∩ r ′j B=∅.

If τ4 > 0 is chosen sufficiently small then, in view of (F2), we also have:

(F4) φ4(bDj−1)⊂ rj B \ t B. See (E4).

(F5) φ4(�
′
\ D̊j−1)∩ t B=∅. See (F3) and (E5), and recall that t < rj < r ′j .

(F6) φ4(�
′)∩ |F| =∅. See (E6), (F3), and (A2).

Assume now that the numbers τi , i = 1, . . . , 4, are chosen small enough such that
∑4

i=1 τi < δ, where
δ > 0 is the number in (3-8). Thus, by (B2), (C2), (3-9), (E2), and (F2), we have:

(F7) |φ4(p)−ψj−1(p)|<
∑4

i=1 τi < δ for all p ∈ Dj−1.

(F8) |φ4(p)−φ2(p)|< τ3+ τ4 <
∑4

i=1 τi < δ for all p ∈ ϒ ∪ γ.

By (6j−1), (c), (3-10), and (3-11), we infer that 3i ⊂ ψj−1(D̊i ), i = 0, . . . , j − 1, and 3j ⊂ φ2(γ ).
Thus, (F7) and (F8) guarantee the existence of an injective map ϕ :3′→ φ4(�

′)⊂ C2 such that:

(G1) |ϕ(ζ )− ζ |< δ for all ζ ∈3′.

(G2) ϕ(3i )⊂ φ4(D̊i ) for all i ∈ {0, . . . , j − 1}.

(G3) ϕ(3j )⊂ φ4(γ )⊂ φ4(ϒ̊
′
\ϒ).

Observe that, since 0< δ < η where η is given by Lemma 2.3 for the subset 3′ ⊂ B, see (3-8), every map
ϕ :3′→ C2 satisfying (G1) is injective. In view of (3-8) and (G1), Lemma 2.3 provides a holomorphic
automorphism 9 : C2

→ C2 such that:

(H1) 9(ϕ(ζ ))= ζ for all ζ ∈3′.

(H2) |9(ζ)− ζ | < µδ for all ζ ∈ B, where µ is the number given by Lemma 2.3 for the set 3′ which
appears in (3-8).

Consider the proper holomorphic embedding

φ :=9 ◦φ4 :�
′ ↪→ C2.

Properties (F4), (F7), (H2), and (3-8), together with the maximum principle, ensure that

|φ(p)−ψj−1(p)|< (µ+ 1)δ <min{η′, η′′, εj } for all p ∈ Dj−1. (3-12)

This inequality and (A1) guarantee that

distφ(p0, bDj−1) > j − 1 (3-13)
and

φ(bDj−1)⊂ rj B \ s ′j−1B. (3-14)
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Furthermore, since φ4 : �
′ ↪→ C2 is a proper holomorphic embedding, (F4), (F1), and the maximum

principle ensure the existence of a smoothly bounded compact domain Dj ⊂ M̊j satisfying condition (1j )
and such that

φ4(bDj )⊂ (rj+1−µδ)B \ (s ′j +µδ)B⊂ B; (3-15)

observe that rj+1−µδ > s ′j +µδ > rj by (3-8) and (a). Thus, (H2) gives that

φ(bDj )⊂ rj+1B \ s ′j B. (3-16)

Moreover, (3-15) and the maximum principle imply that φ4(Dj )⊂ (rj+1−µδ)B⊂ B, and hence (H2)
gives that

|φ(p)−φ4(p)|< µδ for all p ∈ Dj . (3-17)

Set
ψj := φ|Dj : Dj → C2.

We claim that the pair 4j = {Dj , ψj } satisfies conditions (1j )–(6j ). Indeed, (1j ) has been already checked,
(2j ) is implied by (3-12), and (4j )= (3-16). On the other hand, since φ4(Dj )⊂ B, properties (F5) and
(H2) ensure that ∅ = ψj (Dj \ D̊j−1)∩ (t −µδ)B ⊃ ψj (Dj \ D̊j−1)∩ s ′j−1B, where the latter inclusion
follows from the fact that s ′j−1 < t−µδ; see (3-8). This proves (5j ). Further, (G2) and (H1) guarantee that
3i ⊂ψj (D̊i ) for all i ∈ {0, . . . , j − 1}, whereas (G3), (H1), and (3-16) ensure that 3j ⊂ψj (D̊j ); thereby
proving (6j ). Finally, (3-14), (3-16), (3-17), (F6), and (A4) guarantee that distψj (bDj−1, bDj ) > 1; take
into account that s ′j > r ′j in view of (a). This and (3-13) prove (3j ); recall that p0 ∈ D̊j−1 b Dj .

This concludes the construction of 4j in Case 1.

Case 2: Assume that χ(Mj \ M̊j−1) = −1. In this case there is a smooth embedded compact path
γ ⊂ M̊j \ D̊j−1 with its two endpoints lying in bDj−1, meeting transversely there, and otherwise disjoint
from Dj−1, such that Dj−1 ∪ γ is a strong deformation retract of Mj .

By (4j−1) we may extend ψj−1, with the same name, to a smooth embedding Dj−1∪γ ↪→C2 such that
ψj−1(γ )⊂ rj B\s ′j−1B. Thus, in view of properties (1j−1)–(6j−1), Mergelyan’s theorem with interpolation
applied to ψj−1 : Dj−1 ∪ γ ↪→ C2 guarantees the existence of a connected, smoothly bounded, compact
domain D′j−1⊂ M̊j and an embedding ψ ′j−1 : D

′

j−1 ↪→C2 of class A 1(D′j−1) with the following properties:

(1′j−1) Dj−1 b D′j−1 b Mj and D′j−1 is a strong deformation retract of Mj .

(2′j−1) |ψ ′j−1(p)−ψj−1(p)|< εj/2 for all p ∈ Dj−1.

(3′j−1) distψ ′j−1
(p0, bD′j−1) > j − 1.

(4′j−1) ψ ′j−1(bD′j−1)⊂ rj B \ s ′j−1B.

(5′j−1) ψ ′j−1(D
′

j−1 \ D̊j−1)∩ s ′j−1B=∅.

(6′j−1) 3i ⊂ ψ
′

j−1(D̊i ) for all i ∈ {0, . . . , j − 1}.

Since χ(Mj \ D̊′j−1)= 0, this reduces the proof to Case 1 and hence concludes the construction of the
sequence 4j = {Dj , ψj } meeting properties (1j )–(6j ), j ∈ N.

This completes the proof of Theorem 3.1. �
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To finish the paper we show how Theorem 3.1 implies Theorem 1.2.

Proof of Theorem 1.2. Let 3 and M be as in Theorem 1.2 and assume without loss of generality that
0 ∈ 3. By [Alarcón and López 2013b, Main Theorem, page 1795], there exists a complex structure
on M such that the open Riemann surface M admits a proper holomorphic embedding φ : M ↪→ C2; up
to composing with a translation, we may assume that 0 ∈ φ(M). Take a number 0 < r < 1 such that
3∩ rB = {0}; since 3 ⊂ B is closed and discrete, every small enough r > 0 meets this requirement.
Thus, there are a small number 0 < s < r and a smoothly bounded compact disk K ⊂ M such that
φ(bK )⊂ rB \ sB and 0 ∈ φ(K̊ ).

Now, Theorem 3.1 applied to ψ :=φ|K furnishes a domain D⊂M homeomorphic to M and a complete
proper holomorphic embedding ψ̃ : D ↪→ B with 3⊂ ψ̃(D). Since D is homeomorphic to the smooth
surface M, there exists a complex structure on M (possibly different from the one used in the previous
paragraph) such that the open Riemann surface M is biholomorphic to D. �
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