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FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP
FOR QUASILINEAR WAVE EQUATIONS

JARED SPECK

In three spatial dimensions, we study the Cauchy problem for the wave equation−∂2
t 9+(1+9)

P19= 0
for P ∈ {1, 2}. We exhibit a form of stable Tricomi-type degeneracy formation that has not previously
been studied in more than one spatial dimension. Specifically, using only energy methods and ODE
techniques, we exhibit an open set of data such that 9 is initially near 0, while 1+9 vanishes in finite
time. In fact, generic data, when appropriately rescaled, lead to this phenomenon. The solution remains
regular in the following sense: there is a high-order L2-type energy, featuring degenerate weights only
at the top-order, that remains bounded. When P = 1, we show that any C1 extension of 9 to the future
of a point where 1+9 = 0 must exit the regime of hyperbolicity. Moreover, the Kretschmann scalar of
the Lorentzian metric corresponding to the wave equation blows up at those points. Thus, our results
show that curvature blowup does not always coincide with singularity formation in the solution variable.
Similar phenomena occur when P = 2, where the vanishing of 1+9 corresponds to the failure of strict
hyperbolicity, although the equation is hyperbolic at all values of 9.

The data are compactly supported and are allowed to be large or small as measured by an unweighted
Sobolev norm. However, we assume that initially the spatial derivatives of9 are nonlinearly small relative
to |∂t9|, which allows us to treat the equation as a perturbation of the ODE (d2/dt2)9 = 0. We show that
for appropriate data, ∂t9 remains quantitatively negative, which simultaneously drives the degeneracy
formation and yields a favorable spacetime integral in the energy estimates that is crucial for controlling
some top-order error terms. Our result complements those of Alinhac and Lindblad, who showed that if
the data are small as measured by a Sobolev norm with radial weights, then the solution is global.

1. Introduction

Many authors have studied model nonlinear wave equations as a means to gain insight into more challenging
wave-like quasilinear equations, such as Einstein’s equations of general relativity, the compressible Euler
equations without vorticity, and the equations of elasticity. Motivated by the same considerations, in this
paper, we study model quasilinear wave equations in three spatial dimensions. To simplify the presentation,
we have chosen to restrict our attention to the 3-dimensional case only; with only modest additional effort,
our results could be generalized to apply in any number of spatial dimensions. In a broad sense, we are
interested in finding initial conditions without symmetry assumptions that lead to some kind of stable
breakdown. In our main results, which we summarize just below (1A-2), we exhibit a type of stable degen-
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erate solution behavior, distinct from blowup, that, to the best of our knowledge, has not previously been
studied in the context of quasilinear equations in more than one spatial dimension. Roughly, we show that
there exists an open set of data such that certain principal coefficients in the equation vanish in finite time
without a singularity forming in the solution. More precisely, the vanishing of the coefficients corresponds
to the vanishing of the wave speed, which in turn is tied to other kinds of degeneracies described below. We
note that Wong [2016] has obtained similar constructive results for axially symmetric timelike minimal sub-
manifolds of Minkowski spacetime, a setting in which the equations of motion are a system of (effectively
one-space-dimensional) quasilinear wave equations with principal coefficients that depend on the solution
(but not its derivatives). Specifically, he showed that all axially symmetric solutions (without any smallness
assumption) lead to a finite-time degeneracy caused by the vanishing of a principal coefficient in the evolu-
tion equations. We also note that in the case of one spatial dimension, results similar to ours are obtained in
[Kato and Sugiyama 2013; Sugiyama 2013; 2016a; 2016b] using proofs by contradiction that rely on the
method of Riemann invariants. However, since the method of Riemann invariants is not applicable in more
than one spatial dimension and since we are interested in direct proofs, our approach here is quite different.

Through our study of model problems, we are aiming to develop approaches that might be useful for
studying the kinds of degeneracies that might develop in solutions to more physically relevant quasilinear
equations. One consideration behind this aim is that there are relatively few breakdown results for
quasilinear equations compared to the semilinear case. A second consideration is that many of the
techniques that have been used to study semilinear wave equations do not apply in the quasilinear case;
see Section 1D for further discussion. A third consideration concerns fundamental limitations of semilinear
model equations: they are simply incapable of exhibiting some of the most important degeneracies that
can occur in solutions to quasilinear equations. In particular, the degeneracy exhibited by the solutions
from our main results cannot occur in solutions to semilinear wave equations with principal part equal to
the linear wave operator1 �m . As a second example of breakdown that is unique to the quasilinear case,
we note that the phenomenon of shock formation, described in more detail at the end of Section 1F, cannot
occur in solutions to semilinear equations since, in the semilinear case, the evolution of characteristics is
not influenced in any way2 by the solution.

In view of the above discussion, it is significant that our analysis has robust features and could be
extended to apply to a large class3 of quasilinear equations. The robustness stems from the fact that our
proofs are based only on energy estimates, ODE-type estimates, and the availability of an important
monotonic spacetime integral (which we describe below) that arises in the energy estimates. However,
rather than formulating a theorem about a general class of equations, we prefer to keep the paper short
and to exhibit the main ideas by studying only the model equation (1A-1a) below in the cases P = 1, 2.

1Here,�m :=−∂
2
t +1 denotes the standard linear wave operator corresponding to the Minkowski metric m :=diag(−1,1,1,1)

on R1+3.
2In the works on shock formation for quasilinear equations described in Section 1F, the intersection of the characteristics is

tied to the blowup of some derivative of the solution.
3Of course, we can only hope to treat wave equations whose principal spatial coefficients vanish when evaluated at some finite

values of the solution variable; equations such as −∂2
t 9 + (1+9

2)19 = 0 are manifestly immune to the kind of degeneracies
under study here.
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1A. Statement of the equations and summary of the main results. Specifically, in the cases P = 1, 2,
we study the following model Cauchy problem on R1+3:

−∂2
t 9 + (1+9)

P19 = 0, (1A-1a)

(9|60, ∂t9|60)= (9̊, 9̊0), (1A-1b)

where (x0
:= t, x1, x2, x3) is a fixed set of standard rectangular coordinates on R1+3, 1 :=

∑3
a=1 ∂

2
a is

the standard Euclidean Laplacian on R3, and throughout,4 6t := {t}×R3
' R3. We sometimes denote

the spatial coordinates by x := (x1, x2, x3). Note that we can rewrite (1A-1a) as5 (g−1)αβ(9)∂α∂β9 = 0,
where g is the Lorentzian (for 9 >−1) metric

g := −dt2
+ (1+9)−P

3∑
a=1

(dxa)2. (1A-2)

This geometric perspective will be useful at various points in our discussion.
We now summarize our results; see Theorem 4.1 and Proposition 4.2 for precise statements.

Summary of the main results: In the case P = 1, there exists an open subset of H 6(R3) × H 5(R3)

comprising compactly supported initial data (9̊, 9̊0) such that the solution 9, its spatial derivatives, and
its mixed space-time derivatives initially satisfy a nonlinear smallness condition compared to6 max60[9̊0]−

and 1/‖9̊0‖L∞(60), and such that the solution has the following property: the coefficient 1+9 in (1A-1a)
vanishes at some time T? ∈ (0,∞). In fact, the finite-time vanishing of 1+9 always occurs if 9̊0 is
nontrivial and the data are appropriately rescaled; see Remark 2.4. Moreover,

9 ∈ C
(
[0, T?), H 6(R3)

)
∩ L2(

[0, T?], H 6(R3)
)
∩C

(
[0, T?], H 5(R3)

)
,

while for any N < 5,

∂t9 ∈ C
(
[0, T?), H 5(R3)

)
∩ L∞

(
[0, T?], H 5(R3)

)
C
(
[0, T?], H N (R3)

)
.

In addition, the Kretschmann scalar Riem(g)αβγ δ Riem(g)αβγ δ blows up precisely at points where 1+9
vanishes, where Riem(g) denotes the Riemann curvature of g. Finally, the solution exits the regime of
hyperbolicity at time T? and thus it cannot be continued beyond T? as a classical solution to a hyperbolic
equation. In the case P = 2, similar results hold, the main differences being that 9 is not necessarily an
element of L2

(
[0, T?], H 6(R3)

)
and that the strict hyperbolicity7 breaks down when 1+9 vanishes but

hyperbolicity8 does not.9 This leaves open, in the case P = 2, the possibility of classically extending the
solution past time T?; see Section 1C2.

4Here we use the notation “'” to mean “diffeomorphic to”.
5Throughout we use Einstein’s summation convention.
6Throughout, [p]− := |min{p, 0}|.
7Equation (1A-1a) is said to be strictly hyperbolic in the direction ω if the symbol p(ξ) := −ξ2

0 + (1+9)
P ∑3

a=1 ξ
2
a has

the following property: for any one-form ξ 6= 0, the polynomial s→ p(ξ + sω) has two distinct real roots. It is straightforward
to see that (1A-1a) is strictly hyperbolic in the direction ω := (1, 0, 0, 0) if 1+9 > 0, and that it is not strictly hyperbolic in any
direction if 1+9 = 0.

8Here, by hyperbolic (in the direction ω), we mean that for all one-forms ξ 6= 0, the polynomial s → p(ξ + sω) from
Footnote 7 has only real roots. Such polynomials are known as hyperbolic polynomials.

9In the literature, equations exhibiting this kind of degeneracy are often referred to as weakly hyperbolic.
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1B. Paper outline. The remainder of the paper is organized as follows.

• In Section 1C, we provide some initial remarks expanding upon various aspects of our results.

• In Section 1D, we mention some techniques that have been used in studying the breakdown of
solutions to semilinear equations. As motivation for the present work, we point out some limitations
of the semilinear techniques for the study of quasilinear equations.

• In Section 1E we provide a brief overview of the proof of our main results.

• In Section 1F, we describe some connections between our results and prior work on degenerate
hyperbolic PDEs.

• In Section 1G we summarize our notation.

• In Section 2, we state our assumptions on the initial data and introduce bootstrap assumptions.

• In Section 3, we use the bootstrap and data-size assumptions of Section 2 to derive a priori pointwise
estimates and energy estimates. From the energy estimates, we deduce improvements of the bootstrap
assumptions.

• In Section 4, we use the estimates of Section 3 to prove our main results.

1C. Initial remarks on the main results. As far as we know, there are no prior results in the spirit of
our main results in more than one spatial dimension. There are, however, examples in which the Cauchy
problem for a quasilinear wave equation has been solved (for suitable data without symmetry assumptions)
and such that it was shown that some derivative of the solution blows up in finite time while the solution
itself remains bounded. One class of such examples comprises shock formation results, which we describe
in more detail at the end of Section 1F. A second example is [Luk 2013] on the formation of weak null
singularities in a family of solutions to the Einstein-vacuum equations. Specifically, Luk exhibited a stable
family of solutions such that the Christoffel symbols (which are, roughly speaking, the first derivatives
of the solution) blow up along a null boundary, while the metric (that is, the solution itself) extends
continuously past the null boundary. We stress that the degeneracy we have exhibited in our main results
is much less severe than in the above results; there is no blowup in our solutions, except possibly at the
top derivative level, due to the degeneracy of the weights in the energy (1E-1).

We also point out a connection between our work here and our joint works [Rodnianski and Speck
2014a; 2014b], in which we proved stable blowup results (without symmetry assumptions) for solutions to
the linearized and nonlinear Einstein-scalar field and Einstein-stiff fluid systems. In the nonlinear problem,
the wave speed became, relative to a geometrically defined coordinate system,10 infinite at the singularity.
Although the infinite wave speed is in the opposite direction of the degeneracy exhibited by our main results
(in which the wave speed vanishes11), the analysis in [Rodnianski and Speck 2014a; 2014b] shares a key
feature with that of the present work: the solution regime studied is such that the time derivatives dominate
the evolution. That is, the spatial derivatives remain negligible, all the way up to the degeneracy; see

10Specifically, the 6t have constant mean curvature and the spatial coordinates are transported along the unit normal to 6t .
11Note that the effective wave speed for (1A-1a) is (1+9)P/2.
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Section 1E for further discussion regarding this issue for the solutions under study here. Hence, those works
and the present work all exhibit the stability of ODE-type behavior in some solutions to wave equations.

1C1. Remarks on small data. The methods of Alinhac [2003] and Lindblad [2008] yield that small-data
solutions to (1A-1a) exist globally,12 where the size of the data is measured by Sobolev norms with radial
weights. Consequently, if (9̊, 9̊0) are compactly supported data to which our main results apply, then
for λ sufficiently large, the solution corresponding to the data (λ−19̊, λ−19̊0) is global. On the other
hand, our main results apply to data that are allowed to be small in certain unweighted norms, as long as
the spatial derivatives are “very small”. How can we reconcile these two competing statements? The
answer is that our data assumptions are nonlinear in nature and are not invariant under the rescaling
(9̊, 9̊0)→ (λ−19̊, λ−19̊0) if λ is too large. We can sketch the situation as follows (see Section 2C for
the precise nonlinear smallness assumptions that we use to close our proof): if ε is the size of ∇9 at
time 0 (where ∇ denotes the spatial coordinate gradient) and δ is the size of ∂t9 at time 0, then, roughly
speaking, some parts of our proof rely on13 the assumption that ε exp(Cδ−1). 1. The point is that if λ
is too large, then the assumption is not satisfied, the reason being that ε and δ both scale like λ−1. One
can contrast this against the discussion in Section 2D, where we note that a different scaling of the data
always leads to our nonlinear smallness assumptions being satisfied.

1C2. Remarks on extending the solution past the degeneracy. It is of interest to know if and when
the solutions provided by our main results can be extended, as solutions with some kind of Sobolev
regularity,14 past the time of first vanishing of 1+9. Although we do not address this question in this
article, in this subsubsection, we describe what is known and some of the difficulties that one would
encounter in attempting to answer it. The cases P = 1 and P = 2 in (1A-1a) correspond to different
phenomena and hence we will discuss them separately, starting with the case P = 1.

Interesting results have recently been obtained in [Lerner et al. 2015] for equations related to (1A-1a).
They suggest that in the case P = 1, it might not be possible to continue the solutions from our main
results as Sobolev-class solutions in a spacetime neighborhood of a point at which 1 + 9 vanishes.
Perhaps this is not surprising since, for the solutions under study, the case P = 1 corresponds to (1A-1a)
changing from hyperbolic to elliptic type past the degeneracy (at least for C1 solutions). Specifically,
those authors proved a type of Hadamard ill-posedness for certain initial data for a class of quasilinear
first-order systems in n spatial dimensions of the form

∂t u+
n∑

a=1

Aa(t, x, u) ∂au = F(t, x, u), (1C-1)

12Since the equations do not satisfy the null condition, the asymptotics of the solution can be distorted compared to the case
of solutions to the linear wave equation.

13For example, a careful analysis of the proof of inequality (3C-4) yields that the constant C in front of the ε̊2 term on
the right-hand side depends on exp(δ̊−1

∗ ), where δ̊∗ is defined in (2A-2). See Section 3A for our conventions regarding the
dependence of constants on various parameters.

14The Cauchy–Kovalevskaya theorem could be used to prove an (admittedly unsatisfying) result showing that in the cases
P = 1, 2, one can extend analytic solutions to (1A-1a) to exist in a spacetime neighborhood of a point at which 1+9 vanishes.
Note that this shows that the blowup of the curvature of the metric of (1A-1a) that occurs when 1+9 = 0 is not always an
obstacle to continuing the solution classically.
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where (t, x)∈R1+n, u is a map from R1+n to RN with n and N arbitrary, and the Aa are real N×N matrices.
The authors proved several types of results in [Lerner et al. 2015], but here we describe only the ones that
are most relevant for (1A-1a). Roughly, in Theorem 1.3 of that paper, for systems of type (1C-1) that
satisfy some technical conditions, the authors studied perturbations of a background solution, denoted by
φ = φ(t, x), with the following property: the system (1C-1) is hyperbolic when evaluated at (t, x, u)=
(0, x, φ̊(x)), where φ̊(x) := φ(0, x), but necessarily becomes elliptic at (t, x, u)= (t, x, φ(t, x)) at any
t > 0 due to the branching15 of the eigenvalues of the principal symbol. The assumptions of their
Theorem 1.3 guarantee that the branching is stable under small perturbations. Roughly, for the solutions
to (1A-1a) from our main results, a similar transition to ellipticity would occur in the case P = 1 if one
were able to classically extend the solution16 past the time of first vanishing of 1+9. We now summarize
the main aspects of [Lerner et al. 2015, Theorem 1.3]. We will use the notation ů to denote initial data
for the system (1C-1) and u to denote the corresponding solution (if it exists). The theorem is, roughly,
as follows: for any m ∈ R and α ∈

( 1
2 , 1

]
, and any sufficiently small T > 0, there is no H m-neighborhood

U of φ̊ whose elements launch corresponding solutions obeying a bound roughly17 of the type18

sup
ů∈U

‖u−φ‖W 1,∞
x L∞t ([0,T ])

‖ů− φ̊‖αHm

<∞.

Put differently, there exist data arbitrarily close to φ̊ (as measured by a Sobolev norm of arbitrarily high
order) such that either the solution does not exist or such that its deviation from φ becomes arbitrarily
large in the low-order norm ‖ · ‖W 1,∞

x
in an arbitrarily short amount of time. It would be interesting to

determine whether or not a similar result holds for initial data close to that of the data induced by the
solutions to (1A-1a) from our main results at the time of first vanishing of 1+9.

We now discuss the case P=2. We are not aware of any results for Sobolev-class solutions to quasilinear
equations that are relevant for extending solutions to (1A-1a) to exist in a spacetime neighborhood of a point
at which 1+9 vanishes. As we will explain, the main technical difficulty that one encounters is that the
solution might lose regularity past the degeneracy. In the case P = 2, even though the strict hyperbolicity
(see Footnote 7) of (1A-1a) breaks down when 1+9 vanishes (corresponding to a wave of zero speed),
the hyperbolicity (see Footnote 8) of the equation nonetheless persists for all values of 9. The degeneracy
is therefore less severe compared to the case P = 1 and thus in principle, when P = 2, the Sobolev-class
solutions from our main results might be extendable, as a Sobolev-class solution, to a neighborhood of the
points where 1+9 first vanishes. As we alluded to above, the lack of results in this direction might be tied
to the following key difficulty: the best energy estimates available for degenerate19 linear hyperbolic wave

15In [Lerner et al. 2015], the definition of hyperbolicity is that the polynomial (in λ) p := det
(
λI −

∑n
a=1 ξa Aa(t, x, u)

)
should have only real roots, which are eigenvalues of

∑n
a=1 ξa Aa(t, x, u). Moreover, branching roughly means that the

eigenvalues are real at t = 0 but can have nonzero imaginary parts at arbitrarily small values of t > 0.
16As we will explain, the solutions from our main results are such that 9 is strictly decreasing in time at points where 1+9

vanishes.
17The precise results of [Lerner et al. 2015, Theorem 1.3] are localized in space, but here we omit those details for brevity.
18If f = f (t, x), then ‖ f ‖W 1,∞

x L∞t ([0,T ])
:= ess supt∈[0,T ] ‖ f (t, · )‖W 1,∞ .

19By degenerate, we mean that the wave equation is allowed to violate strict hyperbolicity at one or more points.
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equations exhibit a loss of derivatives. By this, we roughly mean that the estimates for solutions 9 to the
linear equation are of the form ‖9‖H N (6t ). ‖9̊‖H N+d (60)+‖9̊0‖H N+d (60), where the loss of derivatives d
(relative to the data) depends in a complicated way on the details of the degeneration of the coefficients
in the equation; see Section 1F for further discussion. As is described in [Dreher 1999], in some cases,
the loss of derivatives in the estimates is known to be saturated. Since proofs of well-posedness for
nonlinear equations typically rely on estimates for linearized equations, any derivative loss would pose a
serious obstacle to extending (in the case P = 2) the solution of (1A-1a) as a Sobolev-class solution in a
spacetime neighborhood of points at which 1+9 vanishes. At the very least, one would need to rely
on a method capable of handling a finite loss of derivatives in solutions to quasilinear equations. As is
well-known [Hamilton 1982], in some cases, it is sometimes possible to handle a finite loss of derivatives
using the Nash–Moser framework.

Despite the lack of results concerning extending the solution to (1A-1a) as a Sobolev-class solution past
points at which 1+9 vanishes, there are constructive results in the class C∞. Specifically, in one spatial
dimension, Manfrin [1996] obtained well-posedness results that, for C∞ initial data, allow one to locally
continue the solution to (1A-1a) in the case P = 2 to a C∞ solution that exists in a spacetime neighborhood
of a point at which 1+9 vanishes; see Section 1F for further discussion. Manfrin [1999] also derived
similar results in more than one spatial dimension, again treating the case of C∞ data/solutions. We are
also aware of a few results [Dreher 1999; Han et al. 2003] for quasilinear equations in more than one spatial
dimension in which the authors proved local well-posedness in Sobolev spaces for equations featuring a
degeneracy related to — but distinct from — the one under study here. However, the degeneracy in those
works was created by a “prescribed semilinear factor” rather than a quasilinear-type solution-dependent
factor. For this reason, it is not clear that the techniques used in those works are of relevance for trying to
extend solutions to (1A-1a) beyond points where 1+9 vanishes; see the paragraph below (1F-5) for
further discussion.

To close this subsubsection, we note that there are various well-posedness results [D’Ancona and
Spagnolo 1992; Ebihara 1985; Ebihara et al. 1986] for degenerate wave equations of Kirchhoff type. An
example of an equation of this type is

−∂2
t 9 + F

(∫
�

|∇9|2 dx
)
19 = 0, (1C-2)

where � is a bounded open set in Rn and F = F(s) ≥ 0 satisfies various technical conditions (with
F = 0 corresponding to the degeneracy). However, it remains open whether or not the techniques used in
studying Kirchhoff-type equations are of relevance for proving local well-posedness for (1A-1a) (in the
case P = 2) in regions where 1+9 is allowed to vanish.

1D. Remarks on methods used for studying blowup in solutions to semilinear wave equations. Al-
though we are not aware of any other results in the spirit of the present work, there are many results
exhibiting the most well-known type of degeneracy that can occur in solutions to wave equations in three
spatial dimensions: the finite-time blowup of initially smooth solutions. Our main goal in this subsection
is to recall some of the most important of these results but, at the same time, to describe some limitations
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of the proof techniques for the study of more general equations. We will focus only on constructive20

results, by which we mean that the proofs provide a detailed description of the degeneracy formation and
the mechanisms driving it, as in the present work. Constructive results, especially those proved via robust
techniques, are clearly desirable if one aims to understand the mechanisms of breakdown in solutions to
realistic physical and geometric systems. They are also important if one aims to continue the solution
past the breakdown, as is sometimes possible if it is not too severe; see, for example, [Christodoulou and
Lisibach 2016] for a recent result in spherical symmetry concerning weakly locally extending solutions to
the relativistic Euler equations past the first shock singularity. Importantly, we will confine our discussion
to prior results for semilinear equations since, as we mentioned earlier, aside from the shock formation
results described at the end of Section 1F, most constructive breakdown results for wave equations in
three spatial dimensions are blowup results for semilinear equations.

Specifically, most constructive breakdown results for wave equations in three spatial dimensions are
blowup results for semilinear equations (or systems) of the form �m9 = f (9, ∂9), where f is a smooth
nonlinear term. Many important21 approaches have been developed to prove constructive blowup for
such equations, especially for scalar equations with f = f (9) given by a power law and for systems of
wave-map type; see, for example, [Kenig and Merle 2008; Donninger 2010; Donninger and Schörkhuber
2012; 2014; Krieger and Schlag 2014; Krieger et al. 2008; 2009; Donninger et al. 2014; Rodnianski and
Sterbenz 2010; Raphaël and Rodnianski 2012; Duyckaerts et al. 2012; Martel et al. 2014; Donninger and
Krieger 2013]. There are also related results that are conditional in the sense that they do not guarantee
that the solution will blow up. Instead they characterize the possible behaviors of the solution by providing
information such as (i) how the singularity would form if the solution is not global and (ii) the structures
of the data sets that lead to the various outcomes; see, for example, [Payne and Sattinger 1975; Struwe
2003; Nakanishi and Schlag 2011a; 2011b; 2012a; 2012b; Krieger et al. 2013a; 2013b; 2014; 2015; Killip
et al. 2014].

Although the above results and others like them have yielded major advancements in our understanding
of the blowup of solutions to semilinear equations, their proofs fundamentally rely on tools that are not
typically applicable to quasilinear equations. Here are some important examples, where for brevity, we
are not specific about exactly which semilinear equations have been treated with the stated technique:

• The existence of a conserved energy (which is not available for some important quasilinear equations,
such as Einstein’s equations22). This allows, among other things, for the application of techniques from
Hamiltonian mechanics.

20Constructive proofs of blowup stand, of course, in contrast to proofs of breakdown by contradiction. There are many
examples in the literature of proofs of blowup by contradiction for wave or wave-like equations. Two of the most important ones
are Sideris’ blowup result [1985] (proved by virial identity arguments) for the compressible Euler equations under a polytropic
equation of state and John’s proof [1981] of breakdown for several classes of semilinear and quasilinear wave equations in
three spatial dimensions. See also the influential work [Levine 1974], in which he proved a nonconstructive blowup result for
semilinear wave equations on an abstract Hilbert space.

21Arguably, the most sophisticated blowup results of this type have been proved for nonlinearities that correspond to energy
critical equations.

22For asymptotically flat solutions to Einstein’s equations, the ADM mass is conserved. However, in three spatial dimensions
without symmetry assumptions, this quantity has thus far proven to be too weak to be of any use in controlling solutions.
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• The invariance of the solutions under appropriate rescalings (which is not a feature of some important
quasilinear equations, such as the compressible Euler equations23).

• The availability of well-posedness results in low regularity spaces such as the energy space (Lindblad
[1998] showed that low regularity well-posedness fails for a large class of quasilinear equations in three
spatial dimensions).

• The existence of a nontrivial ground state solution (corresponding to the existence of a soliton solution)
and sharp classification results for the possible behaviors of the solution for initial data with energy
less than the ground state: either there is finite-time blowup in both time directions or global existence,
according to the sign of a functional (for quasilinear equations, there is no known analog of this kind
of dichotomy). Moreover, in some cases, there are more complicated classification results available for
solutions with energy just above the ground state.

• A characterization of a certain norm of the ground state as a size threshold separating global scattering
solutions from ones that can blow up or exhibit other degenerate behavior (again, for quasilinear equations,
there is no known analog of this kind of dichotomy).

• A characterization of the ground state as the universal blowup-profile under various assumptions.

• The availability of profile decompositions for sequences bounded in the natural energy space, which
allows one to view the sequence as a superposition of linear solutions plus a small error (for quasilinear
equations, there is no known analog of this).

• Channel-of-energy-type arguments showing that a portion of the solution propagates precisely at
speed one (again, for quasilinear equations, there is no known24 analog of this phenomenon).

• The possibility of sharply characterizing the spectrum, see for example [Costin et al. 2012], of linear
operators tied to the dynamics (which, for quasilinear equations in many solution regimes, is exceedingly
difficult).

Although the above methods are impressively powerful within their domain of applicability, since they
do not seem to apply to quasilinear equations, we believe that it is important to develop new methods for
studying the kinds of breakdown that can occur in the quasilinear case. It is for this reason that we have
chosen to study the model wave equations (1A-1a).

1E. Brief overview of the analysis. As we mentioned earlier, the solutions that we study are such that 9̊,
∇9̊0 (where ∇ denotes the spatial coordinate gradient), and sufficiently many of their spatial derivatives
are “nonlinearly small” (in appropriate norms) compared to [9̊0]− := |min{9̊0, 0}| and 1/‖9̊0‖L∞(60).
A key aspect of our work is that we are able to propagate the smallness, long enough for the coefficient
1+9 in (1A-1a) to vanish. Put differently, our main results show that under the smallness assumptions,
the solution to (1A-1a) behaves in many ways like a solution to the second-order ODE (d2/dt2)9 = 0.
The reason that 9 vanishes for the first time is that ∂t9 is sufficiently negative at one or more spatial

23In particular, the fluid equation of state does not generally enjoy any useful scaling transformation properties.
24It is conceivable that channel-of-energy-type results might hold for certain quasilinear wave equations in various solution

regimes, since channel-of-energy-type arguments seem to be somewhat stable under perturbations.
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points, a condition that persists by the previous remarks. To control solutions, we use the (nonconserved)
energy25

E[2,5](t) :=
5∑

k′=2

∫
6t

|∂t∇
k′9|2+ (1+9)P

|∇∇
k′9|2+ |∇k′9|2 dx . (1E-1)

We avoid using low-order energies corresponding to k ′ = 0, 1 in (1E-1) because for the solution regime
under consideration such energies would contain terms that are allowed to be large, and we prefer to work
only with small energies. Hence, to control the low-order derivatives of 9, we derive ODE-type estimates
that rely in part on the energy estimates for its higher derivatives and Sobolev embedding. Analytically,
the main challenge is that the vanishing of 1+9 leads to the degeneracy of the top-order spatial derivative
terms in (1E-1), which makes it difficult to control some top-order error integrals in the energy estimates.

To close the energy estimates, we exploit the following monotonicity, which is available due to our
assumptions on the data:

∂t9 is quantitatively strictly negative in a neighborhood of points where 1+9 is close to 0.

This quantitative negativity yields, in our energy identities, the spacetime error integral∫ t

s=0

∫
6s

(∂t9)(1+9)P−1
|∇∇

k′9|2 dx ds, (1E-2)

which has a “friction-type” sign in regions where 1+9 is close to 0 but positive; see the spacetime integral
on the left-hand side of (3C-3). It turns out that the availability of this spacetime integral compensates
for the degeneracy of the energy (1E-1) and yields integrated control over the spatial derivatives up to
top-order; this is the key to closing the proof.

1F. Comparing with and contrasting against other results for degenerate hyperbolic equations. For
solutions such that 1+9 is near 0, (1A-1a) can be viewed as a “nearly degenerate” quasilinear hyperbolic
PDE. For this reason, the proofs of our main results have ties to some prior results on degenerate hyperbolic
PDEs, which we now discuss. In one spatial dimension, various aspects of degenerate hyperbolic PDEs
have been explored in the literature, such as the branching of singularities [Alinhac 1978; Amano and
Nakamura 1981; 1982; 1983; 1984], uniqueness of solutions for equations that are hyperbolic in one region
but that can change type [Ruziev and Reissig 2016], and conditions that are necessary for well-posedness
[Yagdzhyan 1989]. However, in the rest of this subsection, we will discuss only well-posedness results
since they are most relevant in the context of our main results.

In one spatial dimension, there are many results on well-posedness, in various function spaces, for
degenerate linear wave equations for the form

−∂2
t 9 + a(t, x) ∂2

x9 + b(t, x) ∂x9 + c(t, x) ∂t9 = f (t, x), (1F-1)

where a(t, x) ≥ 0 and a(t, x) = 0 corresponds to degeneracy via a breakdown of strict hyperbolicity.
For example, if the coefficients a(t, x), b(t, x), and c(t, x) are analytic and satisfy certain technical
assumptions, then it is known [Nishitani 1984] that (1F-1) is well-posed for C∞ data; see also [Nishitani

25Throughout, dx := dx1dx2dx3 denotes the standard Euclidean volume form on 6t .
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1980] for similar results. There are also results on well-posedness for degenerate semilinear equations.
For example, in [D’Ancona and Trebeschi 2001], the authors used a Nash–Moser argument to prove C∞

local well-posedness for semilinear equations of the form

−∂2
t 9 + a(t, x) ∂2

x9 = f (t, x, 9, ∂t9, ∂x9), (1F-2)

where a(t, x)≥ 0 is analytic and a and f satisfy appropriate technical assumptions. We clarify that in
contrast to our work here, in the above works, the authors solved the equation in a spacetime neighborhood
of points at which the degeneracy occurs.

A serious limitation of the above results is that techniques relying on analyticity assumptions are of little
use for studying quasilinear Cauchy problems with Sobolev-class data, such as the problems we consider
here. Fortunately, well-posedness results for degenerate linear equations that do not rely on analyticity
assumptions are also known; see, for example, [Oleı̆nik 1970; Taniguchi and Tozaki 1980; D’Ancona
1994; Han et al. 2006; Herrmann 2012; Herrmann et al. 2013; Han and Liu 2015]. We note in particular
that the results of [Oleı̆nik 1970; Taniguchi and Tozaki 1980; Han et al. 2006; Herrmann 2012; Herrmann
et al. 2013; Han and Liu 2015] provide Sobolev estimates for the solution in terms of a Sobolev norm
of the data, with a finite loss of derivatives. We also mention the related works [Ascanelli 2006; 2007], in
which the author proves well-posedness results (in C∞ and Gevrey spaces) for linear wave equations with
two kinds of degeneracies: (i) the breakdown of strict hyperbolicity (corresponding to the vanishing of
certain coefficients) and (ii) the blowup of the time derivatives of certain coefficients in the wave equation.
We also mention the works [Ivriı̆ 1975; Ishida and Yagdjian 2002], in which the authors obtain necessary
and sufficient conditions for the Gevrey space well-posedness of degenerate linear hyperbolic equations.

Most relevant for our work here is Manfrin’s aforementioned proof [1996] of C∞ well-posedness
for various degenerate quasilinear wave equations in one spatial dimension (see also [Manfrin 1999]
for a similar result in more than one spatial dimension and the related work [Boiti and Manfrin 2000]),
including those of the form

−∂2
t 9 +9

2ka(t, x, 9) ∂2
x9 = f (t, x, 9), (1F-3)

where k ≥ 1 is an integer and a(t, x, 9) is uniformly bounded from above and from below, strictly away
from 0 (and 9 = 0 corresponds to the degeneracy). More precisely, for C∞ initial data, Manfrin used
weighted energy estimates and Nash–Moser estimates to prove local well-posedness for solutions to
(1F-3). The energy estimate weights are complicated to construct and are based on dividing spacetime into
various regions with the help of “separating functions” adapted to the degeneracy. Note that Manfrin’s
results apply to our model equation26 (1A-1a) in the case P = 2. However, it is an open problem whether
or not his results can be extended to yield a local well-posedness result for (1F-3) with data in Sobolev
spaces.

To further explain these results and their connection to our work here, we consider the simple Tricomi-
type equation

−∂2
t 9 + a(t)19 = 0, (1F-4)

26More precisely, the role of “1+9” in (1A-1a) is played by “9” in (1F-3).
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where a(t) ≥ 0. It is known [Colombini and Spagnolo 1982] that in one spatial dimension, the linear
(1F-4) can be ill-posed,27 even if a = a(t) is C∞. Hence, it should not be taken for granted that we can
(for suitable data) solve (1A-1a) in Sobolev spaces all the way up to the time of first vanishing of 1+9.
Roughly, what can go wrong in an attempt to solve the linear equation (1F-4) is that a(t) can be highly
oscillatory near a point t0 with a(t0)=0. In fact, in the example from [Colombini and Spagnolo 1982], a(t)
oscillates infinitely many times near t0. This generates, in the basic energy identity, an uncontrollable term
involving the ratio ((d/dt)a(t))/a(t) and leads to ill-posedness in domains [A, B)×R when t0 ∈ [A, B).

In all of the aforementioned well-posedness results, the technical conditions imposed on the coefficients
rule out the infinite oscillatory behavior from [Colombini and Spagnolo 1982] that led to ill-posedness. To
provide a more concrete example, we note that in one spatial dimension, Han [2010] derived degenerate
energy estimates for linear wave equations of the form

−∂2
t 9 + a(t, x) ∂2

x9 + b0(t, x) ∂t9 + b(t, x) ∂x9 + c(t, x)9 = f (t, x), (1F-5)

where the coefficients satisfy certain technical conditions, including, roughly speaking, that a(t, x)≥ 0
behaves like tm

+ cm−1(x)tm−1
+ · · ·+ c1(x)t + c0(x). In particular, even though a is allowed to vanish

at some points, it does not exhibit highly oscillatory behavior in the t-direction. In [Han et al. 2006],
similar results were derived in n ≥ 1 spatial dimensions.

We now describe Dreher’s Ph.D. thesis [1999], which involves the study of equations that share some
common features with (1A-1a) near the degeneracy 1+9 = 0. Specifically, in his thesis, Dreher proved
local well-posedness results in Sobolev spaces for several classes of quasilinear hyperbolic PDEs in any
number of dimensions with various kinds of space and time degeneracies. However, a key difference
between the equations studied by Dreher in his thesis and our work is that the degeneracies there were
“prescribed” in the sense that they were caused only by degenerate semilinear factors that explicitly
depend on the time and space variables. That is, if one deletes the degenerate semilinear factors, then
one obtains a strictly hyperbolic PDE for which local well-posedness follows from standard techniques.
Dreher made technical assumptions on the degenerate semilinear factors that were sufficient for proving
well-posedness. In contrast, the degeneracy caused by 1+9 = 0 in (1A-1a) is “purely quasilinear” in
nature. The following model equation in one spatial dimension gives a sense of the kinds of prescribed
degeneracy treated by Dreher:

−∂2
t 9 + t2 f (9) ∂2

x9 = 0, (1F-6)

where f is smooth and satisfies f (9) > 0. We stress that the absence of strict hyperbolicity in a
neighborhood of 60 is not caused by the quasilinear factor f (9), but rather by the semilinear factor t2.
A related example, coming from geometry, is the aforementioned work [Han et al. 2003], in which the
authors proved the existence of local Ck embeddings of surfaces of nonnegative Gaussian curvature
into R3. The quasilinear system of PDEs studied there degenerated at points where the Gauss curvature of
the surface vanishes. As in [Dreher 1999], the degeneracy was “prescribed” in the sense that it was caused

27In [Colombini and Spagnolo 1982], which addressed solutions in one spatial dimension, the authors exhibited a smooth
function a(t)≥ 0 with a(t0)= 0 for some t0 > 0 and data such that there is no distributional solution to (1F-4) with the given
data that extends past time t0.
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by the Gauss curvature (which is “known”). Hence, the authors were free to make technical assumptions
on the Gauss curvature to ensure the local well-posedness of the PDE system.

We now give another example of prior work that is closely connected to our main results. In [Ruan
et al. 2016], the authors proved local well-posedness in homogeneous Sobolev spaces on domains of the
form [0, T )×Rn for semilinear Tricomi equations of the form

−∂2
t 9 + t P19 = f (9), (1F-7)

where P ∈ N and f is a nonlinearity such that f and f ′ obey certain P, n−dependent power-law growth
bounds at∞. See [Ruan et al. 2015a; 2015b] for related results. Note that the coefficient t P in (1F-7)
does not oscillate; once again, this is the key difference compared to the ill-posedness result for (1F-4)
mentioned above. As we described in Section 1E, (1F-7) is a good model for the solutions to (1A-1a)
provided by our main results in the sense that the degenerating coefficient (1+9)P in (1A-1a) behaves
in some ways, when 1+9 is small, like28 the coefficient t P (near t = 0) in (1F-7).

In view of the above discussion, we believe that one should not expect to be able to solve (1A-1a)
in Sobolev spaces all the way up to points with 1+9 = 0 unless one makes assumptions on the data
that preclude highly oscillatory behavior in regions where 1+ 9 is small. In this article, we avoid
the oscillatory behavior by exploiting the relative largeness of [∂t9]− and the relative smallness of
∂2

t 9 in regions where 1+9 is small, which are present at time 0 and which we propagate; see the
estimates (3B-2) and (3C-5c). As we have mentioned, the relative largeness of [∂t9]− can be viewed
as a kind of monotonicity in the problem. One might say that this monotonicity makes up for the lack
of remarkable structure in (1A-1a), including that it is not an Euler–Lagrange equation, its solutions
admit no known coercive conserved quantities, and the nonlinearities are not signed. As we described
in Section 1E, this monotonicity yields an important signed spacetime integral that we use to close the
energy estimates; see the spacetime integral on the left-hand side of (3C-4). The largeness of [∂t9]− is
connected to so-called Levi-type conditions that have appeared in the literature. Roughly, a Levi condition
is a quantitative relationship between the sizes of various coefficients in the equation and their derivatives.
As an example, we note that in their study [D’Ancona and Trebeschi 2001] of well-posedness for (1F-2)
with analytic coefficients, the authors studied linearized equations of the form (1F-1) under the Levi
condition |b(t, x)|. |a(t, x)|+|∂t

√
a(t, x)|; the Levi condition allowed them, for the linearized equation,

to construct suitable weights for the energy estimates (even at points where a vanishes), which were
sufficient for proving well-posedness. In the problems under study here, the largeness of [∂t9]− at points
with 1+9 = 0 can be viewed as a Levi-type condition for the coefficient (1+9)P in (1A-1a), which
allows us to control various error terms that arise when we derive energy estimates for the solution’s
higher derivatives.

The degenerate energy estimates featured in our proofs have some features in common with the
foundational works [Alinhac 1999a; 1999b; 2001; 2002; Christodoulou 2007] on the formation of shock
singularities in solutions to quasilinear wave equations in two or three spatial dimensions; see also the

28The key point is that since our solutions are such that ∂t9 < 0 when 1+9 = 0, it follows that 1+9 behaves, to first order,
linearly in t near points where it vanishes.
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follow-up works [Christodoulou and Miao 2014; Speck et al. 2016; Speck 2016; Ding et al. 2015a; 2015b;
2017] and the survey article [Holzegel et al. 2016]. In those works, the authors constructed a dynamic
geometric coordinate system that degenerated in a precise fashion29 as the shock formed. Consequently,
relative to the geometric coordinates, the solution remains rather smooth,30 which was a key fact used
to control error terms. A crucial feature of the proofs is that the energy estimates31 contained weights
that vanished at the shock, which is in analogy with the vanishing of the weight (1+9)P in (1E-1) at
the degeneracy. A second crucial feature of the proofs of shock formation is that they relied on the fact
that the weight has a quantitatively strictly negative time derivative in a neighborhood of points where it
vanishes. This yields a critically important monotonic spacetime integral that is in analogy with the one,
(1E-2), that we use to control various error terms in the present work.

We close this subsection by noting that the degeneracy that we encounter in our study of (1A-1a) is
related to — but distinct from — a particular kind of absence of strict hyperbolicity that has been studied in
the context of the compressible Euler equations for initial data satisfying the physical vacuum condition;
see, for example, [Coutand et al. 2010; Coutand and Shkoller 2011; 2012; Jang and Masmoudi 2009;
2011]. The key difference between those works and ours is that in those works, the degeneracies occurred
along the fluid-vacuum boundary in spacelike directions rather than a timelike one. In particular, the
degeneracy was already present at time 0. More precisely, at time 0, the fluid density vanished at a certain
rate, meaning that the density’s derivative in the (spacelike) normal direction to the vacuum boundary
satisfied a quantitative signed condition. It turns out that this condition yields a signed integral in the
energy identities that is essential for closing the energy estimates. The signed integral exploited in those
works is analogous to the integral (1E-2), but the integrals in the above papers were available because
the solution’s (spacelike) normal derivative had a sign, which is in contrast to the sign of the timelike
derivative ∂t9 exploited in the present work. With the help of the signed integral, the authors of the
above papers were able to prove degenerate energy estimates with weights that vanished at a certain rate
in the normal direction to the vacuum boundary. Ultimately, these degenerate estimates allowed them to
prove local well-posedness in Sobolev spaces with weights that degenerate at the fluid-vacuum boundary.

1G. Notation. In this subsection, we summarize some notation that we use throughout.

• {xα}α=0,1,2,3 denotes the standard rectangular coordinates on R1+3
= R×R3, and ∂α := ∂/∂xα denotes

the corresponding coordinate partial derivative vector fields; x0
∈ R is the time coordinate and x :=

(x1, x2, x3) ∈ R3 are the spatial coordinates.

• We often use the alternate notation x0
= t and ∂0 = ∂t .

29In essence, the authors straightened out the characteristics via a solution-dependent change of coordinates.
30The high-order geometric energies were allowed to blow up at the shock, which led to enormous technical complications

in the proofs. Note that this possible high-order energy blowup is distinct from the formation of the shock singularity, which
corresponds to the blowup of a low-order Cartesian coordinate partial derivative of the solution.

31There are many shock-formation results for solutions to quasilinear equations in one spatial dimension, with important
contributions coming from Riemann [1860], Oleı̆nik [1957], Lax [1957], Klainerman and Majda [1980], John [1974; 1981;
1984], and many others. However, those results are based exclusively on the method of characteristics and hence, unlike in the
case of two or more spatial dimensions, the proofs do not rely on energy estimates.



FINITE-TIME DEGENERATION OF HYPERBOLICITY 2015

• Greek “spacetime” indices such as α vary over 0, 1, 2, 3 and Latin “spatial” indices such as a vary over
1, 2, 3. We use primed indices, such as a′, in the same way that we use their nonprimed counterparts. We
use Einstein’s summation convention in that repeated indices are summed over their respective ranges.

• We raise and lower indices with g−1 and g respectively (not with the Minkowski metric!).

• We sometimes omit the arguments of functions appearing in pointwise inequalities. For example, we
sometimes write | f | ≤ C ε̊ instead of | f (t, x)| ≤ C ε̊.

• ∇
k9 denotes the array comprising all derivatives of order k of 9 with respect to the rectangular

spatial coordinate vector fields. We often use the alternate notation ∇9 in place of ∇19. For example,
∇9 := (∂19, ∂29, ∂39).

• |∇
≤k9| :=

∑k
k′=0 |∇

k′9|.

• |∇
[a,b]9| :=

∑b
k′=a |∇

k′9|.

• H N (6t) denotes the standard Sobolev space of functions on 6t with corresponding norm

‖ f ‖H N (6t ) :=

{ ∑
a1+a2+a3≤N

∫
x∈R3
|∂

a1
1 ∂

a2
2 ∂

a3
3 f (t, x)|2 dx

}1/2

.

In the case N = 0, we use the notation “L2” in place of “H 0”.

• L∞(6t) denotes the standard Lebesgue space of functions on6t with corresponding norm ‖ f ‖L∞(6t ) :=

ess supx∈R3 | f (t, x)|.

• If A and B are two quantities, then we often write A. B to indicate that “there exists a constant C > 0
such that A ≤ C B”.

• We sometimes write O(B) to denote a quantity A with the following property: there exists a constant
C > 0 such that |A| ≤ C |B|.

2. Assumptions on the initial data and bootstrap assumptions

In this short section, we state our assumptions on the data (9|60, ∂t9|60) := (9̊, 9̊0) for the model
equation (1A-1a) and formulate bootstrap assumptions that are convenient for studying the solution. We
also show that there exist data satisfying the assumptions.

2A. Assumptions on the data. We assume that the initial data are compactly supported and satisfy the
size assumptions

‖∇
≤49̊‖L∞(60)+‖∇

[1,3]9̊0‖L∞(60)+‖∇
29̊‖H4(60)+‖∇

29̊0‖H3(60) ≤ ε̊, ‖9̊0‖L∞(60) ≤ δ̊, (2A-1)

where ε̊ and δ̊ are two data-size parameters that we will discuss below (roughly, ε̊ will have to be small
for our proofs to close). Roughly speaking, in our analysis, we will approximately propagate the above
size assumptions all the way up until the time of breakdown in hyperbolicity, except at the top derivative
level. More precisely, we are not able to uniformly control the top-order spatial derivatives of 9 in the
norm ‖ · ‖L2(6t ) up to the time of breakdown due to the presence of degenerate weights in our energy (see
Definition 3.4).
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Before we can proceed, we must first introduce the crucial parameter δ̊∗ that controls the time of first
breakdown in hyperbolicity; our analysis shows that for ε̊ sufficiently small, the time of first breakdown
is {1+O(ε̊)}δ̊−1

∗
; see also Remark 2.2.

Definition 2.1 (the parameter that controls the time of breakdown in hyperbolicity). We define the
data-dependent parameter δ̊∗ as

δ̊∗ :=max
60
[9̊0]−. (2A-2)

Remark 2.2 (the relevance of δ̊∗). The solutions that we study are such that32 9̊ ∼ 0 and ∂2
t 9 ∼ 0

(throughout the evolution). Hence, by the fundamental theorem of calculus, we have ∂t9(t, x)∼ 9̊0(x)
and 1+9(t, x)∼ 1+ t9̊0(x). From this last expression, we see that 1+9 is expected to vanish for the
first time at approximately t = δ̊−1

∗
. See Lemma 3.1 for the precise statements.

2B. Bootstrap assumptions. In proving our main results, we find it convenient to rely on a set of bootstrap
assumptions, which we provide in this subsection.

The size of T(Boot): We assume that T(Boot) is a bootstrap time with

0< T(Boot) ≤ 2δ̊−1
∗
. (2B-1)

The assumption (2B-1) gives us a sufficient margin of error to prove that finite-time degeneration of
hyperbolicity occurs, as we explained in Remark 2.2.

Degeneracy has not yet occurred: We assume that for (t, x) ∈ [0, T(Boot))×R3 we have

0< 1+9(t, x). (2B-2)

L∞ bootstrap assumptions: We assume that for t ∈ [0, T(Boot)), we have

‖9‖L∞(6t ) ≤ 2δ̊−1
∗
δ̊+ ε1/2, (2B-3a)

‖∂t9‖L∞(6t ) ≤ δ̊+ ε
1/2, (2B-3b)

‖∇
[1,3]9‖L∞(6t ) ≤ ε, ‖∂t∇

[1,3]9‖L∞(6t ) ≤ ε, ‖∂
2
t ∇
≤19‖L∞(6t ) ≤ ε, (2B-3c)

where ε > 0 is a small bootstrap parameter; we describe our smallness assumptions in the next subsection.

Remark 2.3 (the solution remains compactly supported in space). From (2B-3a), we deduce that the
wave speed (1 + 9)P/2 associated to (1A-1a) remains uniformly bounded from above for (t, x) ∈
[0, T(Boot))×R3. Hence, there exists a large, data-dependent ball B ⊂ R3 such that 9(t, x) vanishes for
(t, x) ∈ [0, T(Boot))× Bc, where Bc denotes the complement of B in R3.

2C. Smallness assumptions. For the rest of the article, when we say that “A is small relative to B,”
we mean that B > 0 and that there exists a continuous increasing function f : (0,∞)→ (0,∞) such
that A ≤ f (B). In principle, the functions f could always be chosen to be polynomials with positive

32Here “A ∼ B” imprecisely indicates that A is well-approximated by B.
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coefficients or exponential functions. However, to avoid lengthening the paper, we typically do not specify
the form of f .

Throughout the rest of the paper, we make the following relative smallness assumptions. We continually
adjust the required smallness in order to close our estimates.

• The bootstrap parameter ε from Section 2B is small relative to δ̊−1, where δ̊ is the data-size parameter
from (2A-1).

• ε is small relative to the data-size parameter δ̊∗ from (2A-2).

The first assumption will allow us to control error terms that, roughly speaking, are of size εδ̊k for some
integer k ≥ 0. The second assumption is relevant because the expected degeneracy-formation time is
approximately δ̊−1

∗
(see Remark 2.2); the assumption will allow us to show that various error products

featuring a small factor ε remain small for t ≤ 2δ̊−1
∗

, which is plenty of time for us to show that 1+9
vanishes.

Finally, we assume that

ε3/2
≤ ε̊ ≤ ε, (2C-1)

where ε̊ is the data smallness parameter from (2A-1).

2D. Existence of data. It is easy to construct data such that the parameters ε̊, δ̊, and δ̊∗ satisfy the relative
size assumptions stated in Section 2C. For example, we can start with any smooth compactly supported
data (9̊, 9̊0) such that minR3 9̊0 < 0. We then consider the one-parameter family((λ)

9̊(x),
(λ)
9̊0(x)

)
:=
(
λ−19̊(x), 9̊0(λ

−1x)
)
.

One can check that for λ > 0 sufficiently large, all of the size assumptions of Section 2C are satisfied.
The proof relies on the simple scaling identities

∇
k (λ)9̊(x)= λ−1(∇k 9̊)(x), (2D-1a)

∇
k (λ)9̊0(x)= λ−k(∇k 9̊0)(λ

−1x) (2D-1b)

and

‖∇
k (λ)9̊‖L2(60) = λ

−1
‖9̊‖L2(60), (2D-2a)

‖∇
k (λ)9̊0‖L2(60) = λ

3/2−k
‖9̊0‖L2(60). (2D-2b)

Remark 2.4 (degeneracy occurs for solutions launched by any appropriately rescaled nontrivial data).
The discussion in Section 2D can easily be extended to show that if 9̊0 is nontrivial, then one always
generates data to which our results apply by considering the rescaled data (

(λ)
9̊,

(λ)
9̊0) with λ sufficiently

large. More precisely, if minR3 9̊0 = 0, then we must have maxR3 9̊0 > 0; in this case, the degeneracy in
the solution generated by the rescaled data occurs in the past rather than the future.
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3. A priori estimates

In this section, we use the data-size assumptions and the bootstrap assumptions of Section 2 to derive
a priori estimates for the solution. This is the main step in the proof our results.

3A. Conventions for constants. In our estimates, the explicit constants C > 0 and c> 0 are free to vary
from line to line. These constants are allowed to depend on the data-size parameters δ̊ and δ̊−1

∗
from

Section 2A. However, the constants can be chosen to be independent of the parameters ε̊ and ε whenever
ε̊ and ε are sufficiently small relative to δ̊−1 and δ̊∗ in the sense described in Section 2C. For example,
under our conventions, we have that δ̊−2

∗
ε =O(ε).

3B. Pointwise estimates. In this subsection, we derive pointwise estimates for 9 and the inhomogeneous
terms in the commuted wave equation.

We start with a simple lemma that provides sharp pointwise estimates for 9 and ∂t9.

Lemma 3.1 (pointwise estimates for 9 and ∂t9). Under the data-size assumptions of Section 2A, the
bootstrap assumptions of Section 2B, and the smallness assumptions of Section 2C, the following pointwise
estimates hold for (t, x) ∈ [0, T(Boot))×R3:

9(t, x)= t9̊0(x)+O(ε), (3B-1a)

∂t9(t, x)= 9̊0(x)+O(ε). (3B-1b)

Proof. To derive (3B-1b), we first use the bootstrap assumptions to deduce ‖(1+9)P19‖L∞(6t ) ≤ Cε.
Hence, from (1A-1a), we deduce the pointwise bound |∂2

t 9|≤Cε. From this estimate and the fundamental
theorem of calculus, we conclude the desired bound (3B-1b). The bound (3B-1a) then follows from the
fundamental theorem of calculus, (3B-1b), and the small-data bound ‖9̊‖L∞(60) ≤ ε̊ ≤ ε. �

The next proposition captures the monotonicity that is present at points where 1+9 is small. It is of
critical importance for the energy estimates.

Proposition 3.2 (monotonicity near the degeneracy). Under the data-size assumptions of Section 2A,
the bootstrap assumptions of Section 2B, and the smallness assumptions of Section 2C, the following
statement holds for (t, x) ∈ [0, T(Boot))×R3:

9(t, x)≤− 1
2 =⇒ ∂t9(t, x)≤− 1

8 δ̊∗, (3B-2)

where δ̊∗ is the data-dependent parameter from Definition 2.1.

Proof. To prove (3B-2), we first use the estimates (3B-1a) and (3B-1b) to deduce that 9(t, x) =
t ∂t9(t, x)+O(ε). Hence, if 9(t, x) ≤ −1

2 , then t ∂t9(t, x) ≤ −1
4 . Recalling that 0 ≤ t < 2δ̊−1

∗
, see

(2B-1), we conclude (3B-2). �

We now derive pointwise estimates for the inhomogeneous terms in the commuted wave equation.

Lemma 3.3 (pointwise estimates for the inhomogeneous terms). Let9 be a solution to the wave equation
(1A-1a). For k = 2, 3, 4, 5 and P = 1, 2, consider following wave equation,33 obtained by commuting

33We do not bother to state the precise form of F(k) here.
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(1A-1a) with ∇k :
−∂2

t ∇
k9 + (1+9)P1∇k9 = F (k). (3B-3)

Under the data-size assumptions of Section 2A, the bootstrap assumptions of Section 2B, and the smallness
assumptions of Section 2C, the following pointwise estimates hold for (t, x) ∈ [0, T(Boot))×R3:

|F (k)| ≤ Cε|∇[2,k+1]9| (P = 1), (3B-4)

|F (k)| ≤ Cε(1+9)|∇k+19| + ε|∇[2,k]9| (P = 2). (3B-5)

Proof. We first consider the case P = 1. Commuting (1A-1a) with ∇k, we compute that

|F (k)| ≤ C
∑

a+b≤k+2
1≤a, 2≤b≤k+1

|∇
a9||∇b9|.

The desired estimate (3B-4) then follows as a simple consequence of this bound and the bootstrap
assumptions. The proof of (3B-5) is similar, the difference being that when P = 2, we have the bound

|F (k)| ≤ Cε(1+9)|∇k+19| +C
∑

a+b≤k+2
1≤a≤k, 2≤b≤k

|∇
a9||∇b9|. �

3C. Energy estimates. We will use the following energy, which corresponds to between two and five
commutations of the wave equation with ∇, in order to control solutions.

Definition 3.4 (the energy). We define

E[2,5](t) :=
5∑

k′=2

∫
6t

|∂t∇
k′9|2+ (1+9)P

|∇∇
k′9|2+ |∇k′9|2 dx . (3C-1)

We now provide the basic energy identity satisfied by solutions.

Lemma 3.5 (basic energy identity). Let 9 be a solution to the wave equation (1A-1a). Let E[2,5] be the
energy defined in (3C-1) and let F (k) be the inhomogeneous term from (3B-3). Then for P = 1, 2, we have
the energy identity

E[2,5](t)= E[2,5](0)+ P
5∑

k′=2

∫ t

s=0

∫
6s

(∂t9)(1+9)P−1
|∇∇

k′9|2 dx ds

− 2P
5∑

k′=2

∫ t

s=0

∫
6s

(1+9)P−1(∇9) · (∇∇k′9)(∂t∇
k′9) dx ds

− 2
5∑

k′=2

∫ t

s=0

∫
6s

(∂t∇
k′9)F (k

′) dx ds+ 2
5∑

k′=2

∫ t

s=0

∫
6s

(∂t∇
k′9)(∇k′9) dx ds. (3C-2)

Proof. The identity (3C-2) is standard and can verified by taking the time derivative of both sides of
(3C-1), using (3B-3) for substitution, integrating by parts over 6t , and then integrating the resulting
identity in time. �
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With the help of Lemma 3.5, we now derive an inequality satisfied by the energy E[2,5].

Proposition 3.6 (integral inequality for the energy). Let E[2,5] be the energy defined in (3C-1). Let
1{−1<9≤−1/2} be the characteristic function of the spacetime subset

{
(t, x) | −1 < 9(t, x) ≤ −1

2

}
and

define 1{−1/2<9} analogously. Let δ̊∗ be the data-size parameter from Definition 2.1. Under the data-size
assumptions of Section 2A, the bootstrap assumptions of Section 2B, and the smallness assumptions of
Section 2C, the following integral inequality holds for P = 1, 2 and t ∈ [0, T(Boot)):

E[2,5](t)+ 1
8 P δ̊∗

5∑
k′=2

∫ t

s=0

∫
6s

1{−1<9≤−1/2}(1+9)P−1
|∇∇

k′9|2 dx ds

≤ E[2,5](0)+C
5∑

k′=2

∫ t

s=0

∫
6s

|∂t∇
k′9|2 dx ds+C

5∑
k′=2

∫ t

s=0

∫
6s

|∇
k′9|2 dx ds

+C
5∑

k′=2

∫ t

s=0

∫
6s

1{−1/2<9}(1+9)P−1
|∇∇

k′9|2 dx ds

+Cε
5∑

k′=2

∫ t

s=0

∫
6s

1{−1<9≤−1/2}(1+9)2(P−1)
|∇∇

k′9|2 dx ds. (3C-3)

Proof. We must bound the terms appearing in the energy identity (3C-2). We give the proof only for the
case P = 1 since the case P = 2 can be handled using similar arguments. We start by bounding the first
sum on the right-hand side of (3C-2); this is the only term that requires careful treatment. We split the
integration domain [0, t] ×R3 into two pieces: a piece in which −1 < 9 ≤ − 1

2 and a piece in which
9 >−1

2 . To bound the first piece, we use the estimate (3B-2) to deduce that whenever −1<9 ≤− 1
2 ,

the integrand satisfies (∂t9)|∇∇
k′9|2 ≤−1

8 δ̊∗|∇∇
k′9|2. We can therefore bring all of the corresponding

integrals over to the left-hand side of (3C-3) as positive integrals, as is indicated there. To bound the
second piece, we use the estimate (3B-1b) to bound ∂t9 in L∞ by ≤ C , which allows us to bound the
integrand by C |∇∇k′9|2. It follows that since 9 >−1

2 (by assumption), the integrals under consideration
are bounded by the third sum on the right-hand side of (3C-3).

To bound the second sum on the right-hand side of (3C-2), we first use the bootstrap assumption
(2B-3c) to bound the integrand factor ∇9 in L∞ by ≤ ε. Thus, using Young’s inequality, we bound the
terms under consideration by the sum of the first, third, and fourth sums on the right-hand side of (3C-3).

To bound the third sum on the right-hand side of (3C-2), we use (3B-4) and Young’s inequality to
bound the integrand by Cε

∑5
k′=2 |∂t∇

k′9|2+Cε
∑6

k′=2 |∇
k′9|2. It is easy to see that the corresponding

integrals are bounded by the right-hand side of (3C-3).
Finally, using Young’s inequality, we bound last sum on the right-hand side of (3C-2) by the first two

sums on the right-hand side of (3C-3). �

In the next proposition, we use Proposition 3.6 to derive our main a priori energy estimates. We also
derive improvements of the bootstrap assumptions (2B-3).

Proposition 3.7 (a priori energy estimates and improvement of the bootstrap assumptions). Let δ̊∗ be the
data-size parameter from (2A-2) and let 1{−1<9≤−1/2} be the characteristic function of the spacetime
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subset
{
(t, x) | −1 < 9(t, x) ≤ − 1

2

}
. There exists a constant C > 0 such that under the data-size

assumptions of Section 2A, the bootstrap assumptions of Section 2B, and the smallness assumptions of
Section 2C, the following a priori energy estimate holds for P = 1, 2 and t ∈ [0, T(Boot)):

E[2,5](t)+ 1
16 P δ̊∗

5∑
k′=2

∫ t

s=0

∫
6s

1{−1<9≤−1/2}(1+9)P−1
|∇∇

k′9|2 dx ds ≤ C ε̊2. (3C-4)

Moreover, we have the following estimates, which are a strict improvement of the bootstrap assumptions
(2B-3) for ε̊ sufficiently small:

‖9‖L∞(6t ) ≤ 2δ̊−1
∗
δ̊+C ε̊, (3C-5a)

‖∂t9‖L∞(6t ) ≤ δ̊+C ε̊, (3C-5b)

‖∇
[1,3]9‖L∞(6t ) ≤ C ε̊, ‖∂t∇

[1,3]9‖L∞(6t ) ≤ C ε̊, ‖∂2
t ∇
≤19‖L∞(6t ) ≤ C ε̊. (3C-5c)

Proof. We give the proof only for the case P = 1 since the case P = 2 can be handled using similar
arguments. To obtain (3C-4), we first note that for ε sufficiently small relative to δ̊∗, we can absorb
the last sum on the right-hand side of (3C-3) into the second term on the left-hand side, which at most
reduces its coefficient from 1

8 δ̊∗ to 1
16 δ̊∗, as is stated on the left-hand side of (3C-4). Moreover, since

1{−1/2<9}≤C 1{−1/2<9}(1+9), we have the bound
∫
6s

1{−1/2<9}|∇∇
k′9|2 dx ≤CE[2,5](s) for the terms

in the next-to-last sum on the right-hand side of (3C-3). The remaining 6s integrals are easily seen to be
bounded in magnitude by ≤ CE[2,5](s). Also using the data bound E[2,5](0)≤ C ε̊2, which follows from
our data assumptions (2A-1), we obtain

E[2,5](t)+ 1
16 δ̊∗

5∑
k′=2

∫ t

s=0

∫
6s

1{−1<9≤−1/2}|∇∇
k′9|2 dx ds ≤ C ε̊2

+ c
∫ t

s=0
E[2,5](s) ds. (3C-6)

From (3C-6), Grönwall’s inequality, and (2B-1), we conclude

E[2,5](t)+ 1
16 δ̊∗

5∑
k′=2

∫ t

s=0

∫
6s

1{−1<9≤−1/2}|∇∇
k′9|2 dx ds ≤ C exp(ct)ε̊2

≤ C ε̊2,

which is the desired bound (3C-4).
The estimates (3C-5c) for ∇[2,3]9 and ∂t∇

[2,3]9 then follow from (3C-4) and the Sobolev embedding
result H 2(R3) ↪→ L∞(R3). Next, we take up to one ∇ derivative of (1A-1a) and use the already obtained
L∞ estimates and the bootstrap assumptions to obtain the bound ‖∂2

t ∇
≤19‖L∞(6t )≤C ε̊ stated in (3C-5c).

Using this bound, the fundamental theorem of calculus, and the data assumptions ‖∇9̊0‖L∞(60) ≤ ε̊ and
‖9̊0‖L∞(60)≤ δ̊, we obtain the bounds ‖∂t∇9‖L∞(6t )≤C ε̊ and ‖∂t9‖L∞(6t )≤ δ̊+C ε̊, which in particular
yields (3C-5b). Using a similar argument based on the already obtained bound ‖∂t∇9‖L∞(6t ) ≤ C ε̊,
we deduce ‖∇9‖L∞(6t ) ≤ C ε̊. Similarly, from the already obtained bound ‖∂t9‖L∞(6t ) ≤ δ̊+C ε̊, the
fundamental theorem of calculus, the initial data bound ‖9̊‖L∞(60) ≤ ε̊, and the fact that 0≤ t < T(Boot) ≤

2δ̊−1
∗

, we deduce ‖9‖L∞(6t ) ≤ 2δ̊−1
∗
δ̊+C ε̊, that is, (3C-5a). �
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4. The main results

We now derive our main results, namely Theorem 4.1 and Proposition 4.2.

Theorem 4.1 (stable finite-time degeneration of hyperbolicity). Let (9̊, 9̊0) ∈ H 6(R3)× H 5(R3) be
compactly supported initial data (1A-1b) for the wave equation (1A-1a) with P ∈ {1, 2} and let 9 denote
the corresponding solution. Let

M(t) := min
(s,x)∈[0,t]×R3

{1+9(s, x)}. (4-1)

Let ε̊, δ̊, and δ̊∗ be the data-size parameters from (2A-1)–(2A-2) and assume that δ̊ > 0 and δ̊∗ > 0. Note
that if ε̊ is sufficiently small, then M(0)= 1+O(ε̊) > 0. If ε̊ is sufficiently small relative to δ̊−1 and δ̊∗ in
the sense described in Section 2C, then the following conclusions hold.

Breakdown in hyperbolicity precisely at time T?: There exists a T? > 0 satisfying

T? = {1+O(ε̊)}δ̊−1
∗

(4-2)

such that the solution exists classically on the slab [0, T?)×R3 and such that the following inequality
holds for 0≤ t < T?:

M(t) > 0. (4-3)
Moreover,

lim
t↑T?

M(t)= 0. (4-4)

Regularity properties on [0, T?)×R3: On the slab [0, T?)×R3, the solution satisfies the energy bounds
(3C-4), the L∞ estimates (3C-5) and the pointwise estimates (3B-1) (with C ε̊ on the right-hand side in
place of ε in the latter two estimates). Moreover,

9 ∈ C
(
[0, T?), H 6(R3)

)
∩ L∞

(
[0, T?), H 5(R3)

)
, (4-5a)

∂t9 ∈ C
(
[0, T?), H 5(R3)

)
∩ L∞

(
[0, T?), H 5(R3)

)
. (4-5b)

Regularity properties on [0, T?]×R3: 9 extends to a classical solution on the closed slab [0, T?]×R3

enjoying the following regularity properties: for any N < 5, we have

9 ∈ C
(
[0, T?], H 5(R3)

)
, (4-6a)

∂t9 ∈ C
(
[0, T?], H N (R3)

)
∩ L∞

(
[0, T?], H 5(R3)

)
. (4-6b)

In particular, the L∞ estimates (3C-5) and the pointwise estimates (3B-1) (with C ε̊ on the right-hand
side in place of ε in these estimates) hold on [0, T?]×R3. Moreover, in the case34 P = 1, we have

9 ∈ L2(
[0, T?], H 6(R3)

)
. (4-7)

Description of the breakdown along 6T? : The set

6
Degen
T? := {q ∈6T? | 1+9(q)=0} (4-8)

34In the proof of the theorem, we clarify why our proof of (4-7) relies on the assumption P = 1.
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is nonempty and we have the estimate

sup
6

Degen
T?

∂t9 ≤−
1
8 δ̊∗. (4-9)

In particular, in the case P = 1, the hyperbolicity of the wave equation breaks down on 6Degen
T? in

the following sense: if q ∈ 6Degen
T? , then any C1 extension of 9 to any spacetime neighborhood �q

containing q necessarily contains points p such that (1A-1a) is elliptic at 9(p). In contrast, in the case
P = 2, only the strict hyperbolicity (in the sense of Footnote 7) of (1A-1a) breaks down for the first time
at T?.

Proof. Let T? be the supremum of the set of times T(Boot) subject to inequality (2B-1) and such that
the solution exists classically on the slab [0, T(Boot))×R3, has the same Sobolev regularity as the initial
data, and satisfies the bootstrap assumptions of Section 2B with ε := C∗ε̊, where C∗ is described just
below. By standard local well-posedness, see for example [Hörmander 1997], if ε̊ is sufficiently small
and C∗ > 1 is sufficiently large, note that this is consistent with the assumed inequalities (2C-1), then
T? > 0. Next, we state the following standard continuation result, which can be proved, for example, by
making straightforward modifications to the proof of [Hörmander 1997, Theorem 6.4.11]: if T? < 2δ̊−1

∗
,

then the solution can be classically continued to a slab of the form [0, T?+4]×R3 (for some 4> 0 with
T?+1< 2δ̊−1

∗
) on which the solution has the same Sobolev regularity as the initial data and on which the

bootstrap assumptions hold, as long as the bootstrap inequalities (2B-3) are strictly satisfied for t ∈ [0, T?)
and inft∈[0,T?)M(t) > 0. It follows that either (i) T? = 2δ̊−1

∗
, (ii) that the bootstrap inequalities (2B-3)

are saturated at some time t ∈ [0, T?), or (iii) that inft∈[0,T?)M(t)= 0. If C∗ is chosen to be sufficiently
large and ε̊ is chosen to be sufficiently small, then the a priori estimates (3C-5) ensure that the bootstrap
inequalities (2B-3) are in fact strictly satisfied for t ∈ [0, T?). Moreover, from (2A-2) and the estimate
(3B-1a) (which is now known to hold with ε replaced by C ε̊), we see that min6t (1+9)= 1− δ̊∗t+O(ε̊)
and thus, in fact, case (iii) occurs with T? = δ̊−1

∗
+O(ε̊)= {1+O(ε̊)}δ̊−1

∗
< 2δ̊−1

∗
and limt↑T? M(t)= 0.

From the above reasoning, we easily deduce that the energy bound (3C-4) holds for t ∈ [0, T?) and, since
the a priori estimates (3C-5) show that the bootstrap assumptions hold with ε replaced by C ε̊, that the
pointwise estimates (3B-1) hold for (t, x) ∈ [0, T?)×R3 with ε replaced by C ε̊.

In the rest of this proof, we sometimes silently use the simple facts that 9, ∂t9 ∈ L∞
(
[0, T?), H 1(R3)

)
.

These facts do not follow from the energy estimates (3C-4) (since the energy does not directly control
9, ∂t9, ∇9 or ∇∂t9), but instead follow from (3C-5) and the compactly supported (in space) nature
of the solution. To proceed, we easily conclude from the definition of E[2,5](t) and the fact that the
estimates (3C-4) and (3C-5b)–(3C-5c) hold on [0, T?) that ∂t9 ∈ L∞

(
[0, T?], H 5(R3)

)
, as is stated in

(4-6b). Also, this fact trivially implies the corresponding statement in (4-5b), where the closed time
interval is replaced with [0, T?). The facts that 9 ∈ C

(
[0, T?), H 6(R3)

)
and ∂t9 ∈ C

(
[0, T?), H 5(R3)

)
,

as is stated in (4-5a) and (4-5b), are standard results that can be proved using energy estimates and
simple facts from functional analysis. We omit the details and instead refer the reader to [Speck 2008,
Section 2.7.5]. We note that in proving these “soft” facts, it is important that M(t)>0 for t ∈[0, T?), which
implies that standard techniques for strictly hyperbolic equations can be used. To obtain the conclusion
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9 ∈ L2
(
[0, T?], H 6(R3)

)
in the case P = 1, as is stated in (4-7), we simply use the fact that the energy

bounds (3C-4) hold on [0, T?) (including the bound for the spacetime integral term on the left-hand side).
Note that the same argument does not apply in the case P = 2 since in this case, the spacetime integral on
the left-hand side of (3C-4) features the degenerate weight 1+9. The fact that 9 ∈ C

(
[0, T?], H 5(R3)

)
,

as is stated in (4-6a), is a simple consequence of the fundamental theorem of calculus, the fact that
9̊∈H 6(60), and the already proven fact that ∂t9∈ L∞

(
[0, T?], H 5(R3)

)
. To obtain that for N<5 we have

∂t9 ∈C
(
[0, T?], H N (R3)

)
, as is stated in (4-6b), we first use (1A-1a), the fact that9 ∈C

(
[0, T?], H 5(R3)

)
,

and the standard Sobolev calculus to obtain ∂2
t 9 ∈ C

(
[0, T?], H 3(R3)

)
. Hence, from the fundamental

theorem of calculus and the fact that 9̊0 ∈ H 5(60), we obtain ∂t9 ∈ C
(
[0, T?], H 3(R3)

)
. From this fact

and the fact ∂t9 ∈ L∞
(
[0, T?], H 5(R3)

)
, we obtain, by interpolating35 between L2 and H 5, the desired

conclusion ∂t9 ∈ C
(
[0, T?], H N (R3)

)
.

Next, we note that the arguments given in the first paragraph of this proof imply that M extends
as a continuous decreasing function defined for t ∈ [0, T?] such that M(t) > 0 for t ∈ [0, T?) and
such that M(T?) = 0. Also using that 9 ∈ C

(
[0, T?], H 5(R3)

)
⊂ C

(
[0, T?],C3(R3)

)
, we deduce, in

view of definitions (4-1) and (4-8), that 6Degen
T? is nonempty. Moreover, from (3B-2) and the fact that

∂t9 ∈ C
(
[0, T?], H 4.9(R3)

)
⊂ C

(
[0, T?],C3(R3)

)
, we find that the estimate (4-9) holds. In addition, in

view of (4-9), we see that in the case P = 1, if q ∈6Degen
T? , then any C1 extension of 9 to a neighborhood

of q contains points p such that 1+9(p) < 0, which renders (1A-1a) elliptic. This is in contrast to the
case P = 2 in the sense that (1A-1a) is hyperbolic for all values of 9. �

Theorem 4.1 yields that 9 remains regular, all the way up to the time T?. However, as the next
proposition shows, a type of invariant blowup does in fact occur at time T? in both the cases P = 1, 2.
The blowup is tied to the Riemann curvature of the metric g.

Proposition 4.2 (blowup of the Kretschmann scalar). Let g = g(9) denote the spacetime metric
defined in (1A-2) and let Riem(g) denote the Riemann curvature tensor36 of g. Under the assump-
tions and conclusions of Theorem 4.1, we have the following estimate for the Kretschmann scalar
Riem(g)αβγ δ Riem(g)αβγ δ on [0, T?]×R3:

Riem(g)αβγ δ Riem(g)αβγ δ =
15
2
(∂t9)

4

(1+9)4
+O

(
ε̊

(1+9)3

)
(P = 1), (4-10a)

Riem(g)αβγ δ Riem(g)αβγ δ = 60
(∂t9)

4

(1+9)4
+O

(
ε̊

(1+9)3

)
(P = 2). (4-10b)

In particular, Riem(g)αβγ δ Riem(g)αβγ δ is bounded for 0≤ t < T?, while by (3B-2) and (4-10) at time T?,
Riem(g)αβγ δ Riem(g)αβγ δ blows up precisely on the subset 6Degen

T? defined in (4-8).

Proof. We prove only (4-10a) since the proof of (4-10b) is similar. The identities that we state in this
proof rely on the form of the metric (1A-2). We first note the following simple decomposition formula,

35Here, we mean the following standard inequality: if f ∈ H5(6t ) and 0≤ N ≤ 5, then there exists a constant CN > 0 such
that ‖ f ‖H N (6t )

≤CN ‖ f ‖1−N/5
L2(6t )

‖ f ‖N/5
H5(6t )

.
36Our sign convention for curvature is DαDβ Xµ − DβDαXµ = Riem(g)αβµνXν, where D denotes the Levi-Civita

connection of g and X is an arbitrary smooth vector field.
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which relies on the standard symmetry and antisymmetry properties of the Riemann curvature tensor:

Riem(g)αβγ δ Riem(g)αβγ δ = Riem(g) cd
ab Riem(g) ab

cd + 4 Riem(g) c0
a0 Riem(g) a0

c0

− 4gcc′gdd ′gbb′ Riem(g) cd
0b Riem(g) c′d ′

0b′ . (4-11)

Next, we let g denote the first fundamental form of 6t relative to g; that is, gi j = gi j = (1+9)−Pδi j for
i, j = 1, 2, 3, where δi j denotes the standard Kronecker delta. We also let (recalling that P = 1 in the
present context)

ki
j := −(g

−1)ia
( 1

2L∂t gaj
)
=

1
2{∂t ln(1+9)}δi

j (4-12)

denote the
(
type

(1
1

))
second fundamental form of 6t relative to g, where L∂t denotes Lie differentiation

with respect to the vector field ∂t and δi
j denotes the standard Kronecker delta. Standard calculations

based on the Gauss and Codazzi equations for the Lorentzian manifold (R1+3, g) yield, see for example
[Rodnianski and Speck 2014b, Appendix A], the identities

Riem(g) cd
ab = kc

akd
b− kd

akc
b+4

cd
ab , (4-13)

Riem(g) c0
a0 = (∂t ln(1+9))kc

a + kc
eke

a +4
c0

a0 , (4-14)

Riem(g) cd
0b =4

cd
0b , (4-15)

where the error terms are

4
cd

ab := Riem(g) cd
ab , (4-16)

4
c0

a0 := −
1

1+9
∂t((1+9)kc

a), (4-17)

4
cd

0b := (g
−1)ce ∂e(kd

b)− (g
−1)de ∂e(kc

b)

+ (g−1)ce 0 d
e f k f

b− (g
−1)ce0

f
e b kd

f − (g
−1)de0 c

e f k f
b + (g

−1)de0
f

e b kc
f , (4-18)

and
0 i

j k :=
1
2(g
−1)ai
{∂ j gak + ∂k g ja − ∂ag jk} (4-19)

are the Christoffel symbols37 of g. In (4-16), Riem(g) denotes the Riemann curvature tensor of g. We
note that in deriving (4-14) and (4-17), we have used the simple identity

−∂t(kc
a)= (∂t ln(1+9))kc

a −
1

1+9
∂t((1+9)kc

a).

We will use the estimates of Theorem 4.1 to show that

4
cd

ab :=O(ε̊) 1
1+9

, (4-20)

4
c0

a0 :=O(ε̊), (4-21)

4
cd

0b :=O(ε̊) 1
1+9

. (4-22)

37Our index conventions for the Christoffel symbols are different than the ones used in many works on differential geometry.
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The desired bound (4-10a) then follows from (4-11), (4-12), (4-13)–(4-15), (4-20)–(4-22), the simple
estimates gi j

=O(1)(1+9) and gi j =O(1)(1+9)−1, and straightforward calculations.
It remains for us to prove (4-20)–(4-22). To prove (4-20), we first use (4-19) and (3C-5) to deduce

0 i
j k =O(ε̊)

1
1+9

, ∂l0
i

j k =O(ε̊)
1

(1+9)2
. (4-23)

Since Riem(g) cd
ab has the schematic structure Riem(g) cd

ab = g−1∂0 + g−10 · 0 (where ∂ denotes
the gradient with respect to the spatial coordinates), we deduce from (4-23) and the simple estimate
(g−1)i j

=O(1)(1+9) that

Riem(g) cd
ab =O(ε̊)

1
1+9

,

which yields (4-20). To prove (4-21), we first use (4-12), (1A-1a), and the estimates (3C-5a) and (3C-5c)
to deduce ∂t((1+9)kc

a) =
1
2∂

2
t 9δ

c
a =

1
2(1+9)19δ

c
a = O(ε̊)(1+9). From this bound and (4-17),

we conclude (4-21). To prove (4-22), we first use (4-12) and the estimates (3C-5) to deduce

ki
j =O(1)

1
1+9

, ∂lki
j =O(ε̊)

1
(1+9)2

. (4-24)

From (4-23), (4-24), and the simple estimate (g−1)i j
=O(1)(1+9), we conclude (4-22). �
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