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KOSZUL COMPLEXES,
BIRKHOFF NORMAL FORM
AND THE MAGNETIC DIRAC OPERATOR

NIKHIL SAVALE

We consider the semiclassical Dirac operator coupled to a magnetic potential on a large class of manifolds,
including all metric contact manifolds. We prove a sharp Weyl law and a bound on its eta invariant. In the
absence of a Fourier integral parametrix, the method relies on the use of almost analytic continuations
combined with the Birkhoff normal form and local index theory.

1. Introduction

Semiclassical analysis concerns the study of the spectrum of (k-)pseudodifferential operators Py, :
C®(X) —> C*®(X), h €(0,1], in the limit &z — 0 and is now the subject of several texts [Dimassi and
Sjostrand 1999; Guillemin and Sternberg 2013; Ivrii 1998; 2017; Maslov and Fedoriuk 1981; Robert 1987;
Zworski 2012]. Standard examples of such operators include the Schrodinger operator P, = —h2Ax +V
on a compact n-dimensional Riemannian manifold X with potential V' € C°°(X). The clearest asymptotic
result is given by the celebrated Weyl law, see for example [Dimassi and Sjostrand 1999, Chapter 10], on
the asymptotic number of eigenvalues N [a, b] in a fixed interval [a, b]. A related result is on the number
of eigenvalues N(—ch, ch) of Py in the finer interval (—ch, ch): assuming 0 is not a critical value of the
symbol o (P) = p(x,&) € C*®°(T*X), one has

N(—=ch,ch) = O(h™"th (1-1)

as h — 0, for all ¢ > 0. Similar results also exist in the case where 0 is a Morse—Bott critical level for
the symbol; see [Brummelhuis et al. 1995]. In the critical case, the exponent in the Weyl law may drop
depending on the codimension of zero energy level Eg = {p(x, &) =0} and the signature of the normal
Hessian. The Weyl laws thus obtained are sharp and are proved using a parametrix construction for the
evolution operator e Ph as a Fourier integral operator.

In the context of nonscalar operators Py : C°°(X; E) — C*°(X; E) acting on sections of a vector
bundle E, fewer result are known. The simplest case is when the nonscalar symbol p(x, ) e C®°(T*X; E)
is smoothly diagonalizable near the zero energy level E(I; = {det(p(x,&))=0}. In this case, similar
Fourier integral methods apply; see [Emmrich and Weinstein 1996; Maslov and Fedoriuk 1981] or
[Guillemin; Sandoval 1999] for an exposition in the microlocal/classical setting. For nonscalar operators

MSC2010: primary 35P20, 81Q20; secondary 58J40, 58J28.
Keywords: Dirac operator, Weyl law, eta invariant.
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1794 NIKHIL SAVALE

another method is provided under the microhyperbolicity condition of Ivrii [1998, Chapters 2 and 3]; see
also [Dimassi and Sjostrand 1999, Chapter 12]. In this paper, we study the particular case of the magnetic
Dirac operator where neither diagonalizability nor the microhyperbolicity condition is satisfied.

More precisely, let (X, gTX) be an oriented Riemannian manifold of odd dimension n = 2m + 1
equipped with a spin structure. Let S be the corresponding spin bundle and let L be an auxiliary Hermitian
line bundle. Fix a unitary connection Ag on L and let a € Q!(X; R) be a one-form. This gives a family
of unitary connections on L via V# = A + %a and a corresponding family of coupled magnetic Dirac
operators

Dy :=hDy, +ic(a) (1-2)

for h € (0, 1] and where ¢ stands for the Clifford multiplication endomorphism (see Section 2B).

In order to derive sharp spectral asymptotics, we shall make a couple of restrictive assumptions on the
one-form a and the metric gTX . First, the one-form a will be assumed to be a contact one-form (i.e., one
satisfying a A (da)™ > 0). This gives rise to the contact hyperplane H = ker(a) C TX as well as the
Reeb vector field R defined viaigda =0, iga = 1.

To state the assumption on the metric, consider the contracted endomorphism J : Tx X — T X defined
at each point x € X via

TX(vl,

da(vi,v2) =g Jva) VYup, v e Ty X.

From the contact assumption, J has a one-dimensional kernel spanned by the Reeb vector field R. The
endomorphism J is clearly antisymmetric with respect to the metric

g7 (v1,Jv2) = —gTX Gu1, v2),

and hence its nonzero eigenvalues come in purely imaginary pairs iy, u > 0. The assumption on the
metric g7¥ is then as follows.

Definition 1.1. We say that the metric g7 is suitable to the contact form a if there exist positive
constants 0 < p1 <ty <--- < iy, (independent of x € X) and a positive real function v(x) > 0 such that

Spec(Jx) = {0, £ipv(x), £ipov(x), ..., Figmv(x)} (1-3)
for all x € X.
Before proceeding further, we give two examples of suitable metrics:

(1) In the case that the dimension of the manifold X is 3, any metric gTX is suitable, as Spec(Jx) =
{0, +i|da|} has only two nonzero eigenvalues.
(2) There is a smooth endomorphism J : TX — TX such that (X2 a, ¢TX J) is a metric contact
manifold. That is, we have
J?v = —vy + a(v1)R,

(1-4)
gTX(vl, Jvy) =da(vy,v2) VYvi,vp € T X.
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In this case the nonzero eigenvalues of J, = J are £i (each with multiplicity m). For any given
contact form a there exists an infinite-dimensional space of (g%, J) satisfying (1-4). This case in
particular includes all strictly pseudoconvex CR manifolds.

In addition to the Weyl law we shall also be interested in the asymptotics of the eta invariant n; = n(Djy)
of the Dirac operator, formally its signature (see Section 2A for a definition). The main result is now
stated as follows.

Theorem 1.2. Under the contact and suitability assumptions on a and gTX, the Weyl counting function

and eta invariant of Dy, satisfy the sharp asymptotics

N(=ch,ch) = O(h™), (1-5)
np = O(Mh™™) (1-6)

ash — 0.

We note that the exponents above are significantly lower than (1-1). This is again partly attributed to
the high codimension of the zero energy level T2 In this case £ = {§= —a} C T*X is the graph of
the contact form a, a submanifold of half-dimension 2m + 1 on which the canonical symplectic form is
maximally nondegenerate of rank 2m.

The proof of the asymptotic result Theorem 1.2 above will be based on a functional trace expansion.
To state the trace expansion involved, set Vo := w1 [mingey v(x)] and choose f € C° (—~/2v0, +/2v0).
Pick real numbers 0 < 7" < T and let 6 € C2°((—T,T); [0, 1]) such that 6(x) = 1 on (=7, T”). Let

Flo0) =000 = 5 [0 d.

1+(x 1 i
Filo) = —0(=) = — [ eh*0(8)d
0w = 10(7) = g [ ePe@ at
be its classical and semiclassical inverse Fourier transforms respectively. We now have the following

functional trace expansion for the magnetic Dirac operator D = Dy, given in (1-2).

Theorem 1.3. Let a be a contact form, gT% be a suitable metric and f be as above. There exist smooth
functions u; € C°°(R) such that there is a trace expansion

(o] (552

N-1 .
— pm1 (f(x) > uj (WhZ + O(hg)) (1-7)

j=0
for T sufficiently small and for each N € N, A € R.
Again, the trace (1-7) should be compared with the wave trace expansions for scalar and microhyperbolic

operators [Dimassi and Sjostrand 1999, Chapters 10 and 12], although a different scale of size Vh is
being used. In the absence of a Fourier integral parametrix or microhyperbolicity our strategy is to
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combine the use of almost analytic continuations with local index theory expansions. We first show that
the trace is O(h®°) in the region spt(0) C {T > |x| > h®}, ¢ € (0, %) (see Lemma 3.1). Here the lack of
microhyperbolicity for the symbol poses a difficulty in the use of almost analytic continuations [Dimassi
and Sjostrand 1999, Chapter 12]; see also [Dimassi and Sjostrand 1996]. We however show that this can
be overcome with a closer understanding of the total symbol of D via its Birkhoff normal form. It is in
deriving the Birkhoff normal form that Koszul complexes are used and the assumptions on a, g7 X are
required. The local index theory method [Bismut 1987; Ma and Marinescu 2007] finally provides the
expansion in the region spt(0) C {|x| < h®} (see Lemma 3.2).

There is a large recent literature for semiclassical problems in the presence of magnetic fields. In
particular the extensive book of Ivrii [2017] specifically considers the case of the magnetic Dirac operator
in Chapter 17. The Birkhoff normal form here (5-13) generalizes Proposition 17.2.1 therein. Our use
of normal forms should also be compared to their use in scalar cases from [Charles and Vii Ngoc 2008;
Helffer et al. 2016; Raymond and Vii Ngoc 2015]. We note that some of the spectral literature on Dirac
operators treats the massive case (e.g., mass m = 1 in [Helffer and Robert 1983]), where the mass term
renders the symbol diagonalizable. The geometric Dirac operator considered here corresponds to the
odd-dimensional purely massless case.

The asymptotic problem of the eta invariant (1-6) was earlier considered by the author in [Savale
2014], where a nonsharp estimate was proved, under no assumptions on a, g’ X, via the use of the heat
trace. This asymptotic problem was first considered and applied in [Taubes 2007] in the proof of the
three-dimensional Weinstein conjecture using Seiberg—Witten theory. The three-dimensional case has
been further explored in [Tsai 2014].

The paper is organized as follows. In Section 2, we begin with preliminary notions used throughout the
paper, including basic facts about Clifford representations, Dirac operators and the semiclassical calculus.
In Section 2B1 we compute the spectrum of a model magnetic Dirac operator on R™ using Clifford
representations and the harmonic oscillator. In Section 3 we perform certain reductions towards proving
Theorem 1.3, including a time scale breakup of the trace into Lemmas 3.1 and 3.2. These reductions are
then used in Section 4 to further reduce Lemma 3.1 to the case of a Euclidean magnetic Dirac operator
on R". In Section 5 we obtain the Birkhoff normal form for the Euclidean magnetic Dirac operator on R”
from Section 4. It is here in Section 5A that Koszul complexes are employed for the normal form. In
Section 6 we show how the normal form is used in proving Lemma 3.1 via the use of almost analytic
continuations. In Section 7 we prove Lemma 3.2 using the methods of local index theory. In Section 8 we
show how to prove the spectral estimates of Theorem 1.2 via the trace expansion Theorem 1.3. Finally, in
the Appendix we prove some spectral estimates useful in Sections 4 and 5.

2. Preliminaries

2A. Spectral invariants of the Dirac operator. Here we review the basic facts about Dirac operators
used throughout the paper, with [Berline et al. 2004] providing a standard reference. Consider a compact,
oriented, Riemannian manifold (X, g7X) of odd dimension n = 2m + 1. Let X be equipped with spin
structure, i.e., a principal Spin(n) bundle Spin(7X) — SO(TX) with an equivariant double covering
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of the principal SO(#n)-bundle of orthonormal frames SO(7X). The corresponding spin bundle S =
Spin(T'X ) Xspin(n) S2m is associated to the unique irreducible representation of Spin(n). Let VTX denote
the Levi-Civita connection on T'X. This lifts to the spin connection VS on the spin bundle S. The Clifford
multiplication endomorphism ¢ : T*X — S ® S* may be defined (see Section 2B) satisfying

c(@)? =—|a|*> VaeT*X.

Let L be a Hermitian line bundle on X. Let A be a fixed unitary connection on L and let a € Q! (X;R)
be a one-form on X. This gives a family Vi = 49+ %a of unitary connections on L. We denote by
VS®L — VS @1+ 1® V" the tensor product connection on S ® L. Each such connection defines a
coupled Dirac operator

Dj:=hDy,+ic(a)=hco(VS®L):C®(X:SQL)—> C®(X:S®L)

for h € (0, 1]. Each Dirac operator Dy, is elliptic and self-adjoint. It hence possesses a discrete spectrum
of eigenvalues.
We define the eta function of Dj by the formula

. — 1 ° s—1 —¢tD2
1D = 3 s = | wwe P ar @-1)
A0 2 )70
A€Spec(Dy)

Here, and in the remainder of the paper, we use the convention that Spec(Dy,) denotes a multiset with
each eigenvalue of Dy, being counted with its multiplicity. The above series converges for Re(s) > n. It
was shown in [Atiyah et al. 1975; 1976] that the eta function possesses a meromorphic continuation to
the entire complex s-plane and has no pole at zero. Its value at zero is defined to be the eta invariant of
the Dirac operator

Np = 1(Dp, 0).
By including the zero eigenvalue in (2-1), with an appropriate convention, we may define a variant, known
as the reduced eta invariant, by
in = 5kn +1n}
with k;, = dimker Dy,.
The eta invariant is unchanged under positive scaling:
D

7 on the product X x X. Throughout the
paper all Schwartz kernels will be defined with respect to the Riemannian volume density. Denote by

Let L; j denote the Schwartz kernel of the operator Dpe™!

tr(L; »(x, x)) the pointwise trace of L, ; along the diagonal. We may now analogously define the function

1
L)

n(Dp,s,x) = / 7 (L p(x. X)) dt. (2-3)
0
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In [Bismut and Freed 1986, Theorem 2.6], it was shown that for Re(s) > —2, the function n(Dy, s, x) is
holomorphic in s and smooth in x. From (2-3) it is clear that this is equivalent to

tr(L;p) = O(t%) ast — 0. (2-4)

The eta invariant is then given by the convergent integral

| D2
Nh :/0 ﬁtr(Dhe h)dt. (2-5)
2B. Clifford algebra and its representations. Here we review the construction of the spin representation
of the Clifford algebra. The following, being standard, is merely used to set up our conventions and
subsequently compute the spectrum of the model magnetic Dirac operator on R in Section 2B1.
Consider a real vector space V' of even dimension 2m with metric (-, - ). Recall that its Clifford algebra
CI(V) is defined as the quotient of the tensor algebra 7 (V) := @f‘;o V' ®J by the ideal generated from the
relations v ® v + |v|? = 0. Fix a compatible almost complex structure J and split V @ C = V1.0 g V0.1
into the +i eigenspaces of J. The complexification V' ® C carries an induced C-bilinear inner product
(-.-)c, as well as an induced Hermitian inner product h®(-,-). Next, define Sp,;, = A*V 10, Clearly
Som is a complex vector space of dimension 2 on which the unique irreducible (spin)-representation of

the Clifford algebra C1(}V) ® C is defined by the rule
com(V)w = «/5(1)1’0 AW —1l010), VEV, we Sypy.

The contraction above is taken with respect to (-,-)¢. It is clear that cop, (v) @ ASveM/odd . A odd/even
switches the odd and even factors. For the Clifford algebra C1(W) ® C of an odd-dimensional vector
space W =V & R[eg] there are exactly two irreducible representations. These two (spin)-representations
S2+m+1 = Somi1 = A*V 10 are defined via

i1 (V) = cam(v), vev, 06

c;_m+1 (eO)wevenfodd = _02_m+1 (€O)weven/0dd = i Weven/odd-
Throughout the rest of the paper, we stick with the positive convention and use the shorthand ¢ = c2,
c= c;'m 41 When the indices 2m, 2m + 1 are implicitly understood.

Pick an orthonormal basis eg, ez, ..., ez, for V in which the almost complex structure is given by
Jezj_1=e;, 1<j<m.An h®-orthonormal basis for V10 is now given by w; = %(62,‘ +iezj—1),
1 <j <m. Abeasis for S, and Sz:’Em+1 is given by wy = w’fl A- -/\wfn’" with k = (kq,k2,...,km)€{0, 1}
Ordering the above chosen bases lexicographically in k£, we may define the Clifford matrices, of rank 2™,
via

vit=clej), 0=<j<2m,
for each m. Again, we often write yj’." = y; with the index m implicitly understood. Giving representations
of the Clifford algebra, these matrices satisfy the relation

Yivi +vivi = —26i;. (2-7)
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Next, one may further define the Clifford quantization map on the exterior algebra

c:AN*W ®C — End(S2m), o)
C(el(fo Ao A e’;ﬁ;”) = c(eo)k .. .c(e2m)k2m.

An easy computation yields

cleg A---Neam) = i1,

Furthermore, if eg A -+ A ea, is designated to give a positive orientation for W then for w € AKW we

have
c(xw) = i (=) (), (2-9)
c@)* = (1) c(w) (2-10)

under the Hodge star and 4C-adjoint. The Clifford quantization map (2-8) is a linear surjection with
k(k+1 . . .
kernel spanned by elements of the form sw — i T1(—=1)" 2 ' . Thus, in particular one has linear

isomorphisms
¢ AU & C — End(Som). (2-11)
Next, given (rq,...,ry,) € R™\ 0, we define
Iy ={j|r; #0} C{1,2,...,m}, (2-12)
Zy = |Ir|, (2-13)
V=@ Clw;] c v, (2-14)
JEIy
m
wy =Y _rjw; € V. (2-15)
j=1
Clearly, |w,| = |r|. Denoting by w;- the h®-orthogonal complement of w, C V;, one clearly has
V, = Clwy] ® w;-. Hence
AevenVr :(Aevenwl) D & A (Aodde_)
r r/
u'f' (2-16)
AOddVr =(Aodder) D |_'i A (Aevenwﬁ_).
r
Next, we define
i, AV, — A*V, via ir(w) :=w—r|/\a), ir(%/\a)) =w (2-17)
r r

forw € A*wf-. Clearly, 2 = 1 with the decomposition (2-16) implying that

i ATV — AN

iy AoddVr s AevenVr
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are linear isomorphisms. Next, the endomorphism

c(%) =Wy A+ig,) A Ve = AV, (2-18)

W, — Wy _ |r|iri| ’-19
( NG ) [iriir 19

with respect to the decomposition AV, = Ay @ ASvenY. . This finally allows us to write the
eigenspaces of (2-18) as

has the form

= (1£1,)(A%"V;) (2-20)
with eigenvalues +|r| respectively.

2B1. Magnetic Dirac operator on R™. We now define the magnetic Dirac operator on R via

m 1
. 2 m
Dgn = Z(&) [y2j (hdx;) +iv2j-1x;] € BHR™: C*"). (2-21)

, 2
Jj=1

Its square is computed in terms of the harmonic oscillator

D@m =Ha — ihRam+1, (2-22)
with
1 v 1 v
=5 > = (hdx)? + 7). Romtr = 3 > wjlyzj-1v2)]. (2-23)
— =
It is an easy exercise to show that
l. m
ki—1
Rom4110k = 5 [Z(—l) 4 u,} w. (2-24)
=1

Next, define the lowering and raising operators A; = hdy, + x; and A;'.‘ = —hdy; +xj for1 <j <m,

and the Hermite functions

Ve k(X) = ¥ (x) @ wy,

[]‘[ (A )@} -5 for T = (11, T2, ..., Tm) € NI, (2-25)

Vel = (rh) % 2h) 'S /21

It is well known that v, x (x) form an orthonormal basis for L2(R™:; C2"). Furthermore we have the
standard relations

m
* 1 *
(A7 Af]=2h, Hy=; 2 (A AT = 1). (2-26)
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It is clear from (2-22), (2-24) and (2-26) that each v, x (x) is an eigenvector of Du%m with eigenvalue

m
heg =0y + 14 (=1 HEL
vk ;(w +(=DH5

x|2
Hence, clearly the kernel of Drm is one-dimensional and spanned by Y90 = e_%. We now find a

decomposition of L2 (R™; €2") into eigenspaces of Dgm. First, if we define

m 1
5 1 H’J 2 . .
= 52(7) c(w))A;, (2-27)
Jj=1
then one quickly computes
m L
3 1 A
g% — -3 2(71) c (W) AT (2-28)
j=1
and
Drm = /2(3 + 3%). (2-29)

For each v € Ni' \ 0, we define I, V7 as in (2-12), (2-14) and set
b.
c(wi)A; "~
o= @ o [T(22) ool
befo,1}/c  Ljel, N V=
It is clear that we have an orthogonal decomposition
L*R™;C*") = Clyool ® P E-.
7eNJ'\0
Furthermore, we have the isomorphism
I N*V — Eo,
b .
b; c(wj)A;\”’
jr( /\ wjj) = l_[ (— 1/,-[,0.
jelr jelr \4 erh

Each E. hence has dimension 247 and is closed under c(w i)A; and c(w j)A;'.‘ for 1 < j <m. We again
have
E, = E:ven D E?dd, where E:ven/odd =7 (Aevenlodd Vr), (2-30)

thus giving the Landau decomposition
L*R™:C*") =Clyool® P (B @ EXM). (2-31)
TeNJ'\0
The Dirac operator Dgm by virtue of (2-27)—(2-29) preserves and acts on E; via
( Wr, + wrr
C —

/2 ) = (wr, A ‘Hu_)rr),
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under the isomorphism %, where r; := (y/Ti(t1h, ..., /Tmimh) and w,_ is as in (2-15). Hence, if we
define i; := S7i,, Jr_l : E;’VS“/"dd — F ;’dd/e"e“, we have that the restriction of Dgm to E; is of the form

VE|ir} (2-32)

via (2-19). Also note that since ES*V04d C 7 (C®(R™) @ A®Yen/odd 1.0) regpectively, one has
c(eo) ESeodd — L peveniodd (2-33)
using (2-6). The eigenspaces for Dgm are now given by
EEX = 7 (VD) (2-34)
via (2-20) with eigenvalues *|r;| = 4 +/u.7h respectively. We now summarize.

Proposition 2.1. An orthogonal decomposition of L*(R™; (Ezm) consisting of eigenspaces of the magnetic
Dirac operator Dgm (2-21) is given by

L*R™:C*") =Clyool® P (Ef @ E;).
TeNJ'\0

Here E;t, as in (2-34), have dimension 2471 and correspond to the eigenvalues + \/ W.Th respectively.

2C. The semiclassical calculus. Finally, here we review the semiclassical pseudodifferential calculus
used throughout the paper, with [Guillemin and Sternberg 2013; Zworski 2012] being the detailed
references. Let gl(/) denote the space of all / x / complex matrices. For A = (a;;) € gl(/) we define
|A| = max;; |a;;|. Denote by S(R"; C!) the space of Schwartz maps f : R" — C!. We define the symbol
space S™(R2"; C!) as the space of maps a : (0, 1], — C ”(Rit’é; gl(1)) such that each of the seminorms

lallap = supye (&) 00  alx, &5 )]

is finite for all «, B € N{j. Such a symbol is said to lie in the more refined class a € S (R27; C!) if there
exists an /i-independent sequence ag, k =0, 1,. .. of symbols such that

N
a— (Z hkak) e WNt1smr2™.Cl)y VN. (2-35)
k=0

Symbols as above can be Weyl quantized to define one-parameter families of operators a "V : S(R"; C!) —
S(R"; C!) with Schwartz kernels given by

1 i(x—).E [(X+Y
W’z: i(x—y). .
a” (Znh)”/e ha(—2 ,E,h) d§.

We denote by W7} (R"; C!) the class of operators thus obtained by quantizing S m(R2"; C!). This class of
operators is closed under the standard operations of composition and formal-adjoint. Indeed, the Weyl
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symbols of the composition and adjoint satisfy

w

ih —
ClW ) bW = (a % b)W = [e 2 (3r1 8?2 8"23S1)(Cl(51, }"1;h)b(S2, ro, h))]x=sl =sp,k=r =12’ (2—36)

(LZW)* — (a*)W

Furthermore the class is invariant under changes of coordinates and basis for C!. This allows one to
define an invariant class of operators W' (X; E) on C*°(X; E) associated to any complex vector bundle
on a smooth compact manifold X. These define uniformly in 4 bounded operators between the Sobolev
spaces H%(X; E) and H*7™(X; E) with the h-dependent norm on each Sobolev space defined via

lullgscxy := | (1 +R2VE*VEYIu| 5, seR,
with respect to any metric g7X, h¥ on X, E and unitary connection V£,

For A € W/} (X E), its principal symbol is well defined as an element in 0(4) € S™(X;End(E)) C
C°(X:;End(E)). One has that 0(A4) = 0 if and only if A € AW/} (X; E). We remark that o(A) is the
restriction of standard symbol in [Zworski 2012] to the refined class W/} (X: E) and is locally given by
the first coefficient ag in the expansion of its Weyl symbol. The principal symbol satisfies the basic
relations 6 (AB) = 0(A)o(B) and 6(A*) = 0(A)* with the formal adjoints being defined with respect
to the same Hermitian metric #Z. The principal symbol map has an inverse given by the quantization
map Op : $™(X;End(E)) — W (X; E) satisfying 0(Op(a)) = a € S (X;End(E)). We often use the
alternate notation Op(a) = a". For a scalar function b € S (X), it is clear from the multiplicative property
of the symbol that [¢",h"] € h¥7(X; E) and we define Hy(a) := ;l;a([aW, b%]) € S™(X;End(E)).
If a is self adjoint and b real, then it is easy to see that Hp(a) is self-adjoint. We then define |Hp(a)| =
Max)eSpec Hy(a) |A]. L

The wavefront set of an operator A € W' (X; E) can be defined invariantly as a subset WF(A) C T*X
of the fiberwise radial compactification of its cotangent bundle. If the local Weyl symbol of A is given by
a then (xg, £9) ¢ WF(A) if and only if there exists an open neighborhood (x¢, £9;0) € U C T*X x (0, 1],
such that a € h*®(£)~°°C*(U; C!) for all k. The wavefront set satisfies the basic properties

WEF(A + B) C WF(A) UWF(B), WF(AB) C WF(A)NWE(B) and WF(A4*) = WE(A).

The wavefront set WF(A) = & is empty if and only if A € h°°W~%°(X; E). We say that two operators A
and B are equal microlocally on U C T*X if WF(4 — B)NU = @. We also define by V(X E) the
class of pseudodifferential operators A with wavefront set WF(A) € T*X compactly contained in the
cotangent bundle. It is clear that ¥ (X; E) C V(X E).

An operator A € W] (X ; E) is said to be elliptic if (£ )" (A)~! exists and is uniformly bounded on T* X.
If Ac VI(X; E), m>0,is formally self-adjoint such that A+i is elliptic then it is essentially self-adjoint
(with domain C2°(X; E)) as an unbounded operator on L2(X; E). Its resolvent (A—z) ! € v "™M(XE),
z € C, Imz # 0, now exists and is pseudodifferential by an application of Beals’s lemma. The resolvent
furthermore has an expansion (A—z)~1 ~ Z;‘)io h' Op(ajz. )in W™ (X E). Here each symbol appearing
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in the expansion has the form

aF = (0(4) = 2)71a5 1 (0(A) = 1)+ (0(A) = )N aE 5 (0(4) —2) 7 € STM(XEnd(E)),

where ajz. « i @ polynomial in z symbols for k = 1,...,2;. Given a Schwartz function f € S(R), the
Helffer—Sjostrand formula now expresses the function f(A) of such an operator in terms of its resolvent
and an almost analytic continuation f via

1 _ .
f(A):Z[CE)f(z)(A—z)_ldde.

Plugging the resolvent expansion into the above formula then shows that the above lies in and has an
expansion f(A) ~ Z;io h' Ajf in W °°(X; E). Finally, one defines the classical A-energy level of A
via

2 = {(x,6) e T*X | det(0(A)(x, &) —AI) = 0}.

Now, the form for the coefficients of the resolvent expansion also shows

WE(f(A) 4= U =%
A€spt(f)

2C1. The class V§'(X; E). In Section 3 we shall need the more exotic class of symbols S g"([R{z”; 0C)
defined for each 0 < § < % A functiona : (0, 1], = C OO(R)%”E; C) is said to be in this class if and only if

lalla,p = supy ¢ 5 (&) HEIRAFIEDS 19250 4 (x 2 ) (2-37)

is finite for all o, B € Ng. This class of operators is closed under the standard operations of composition,
adjoint and changes of coordinates allowing the definition of the exotic pseudodifferential algebra W' (X)
on a compact manifold. The class S§"(X) is a family of functions a : (0, 1], — C*°(T™* X; C) satisfying
the estimates (2-37) in every coordinate chart and induced trivialization. Such a family can be quantized to
a e g (X) satisfying aV bW = (ab)W +p1 28 lIJQ"JF’”/_1 (X) for another b € Sg”/(X). The operators
in \lfg(X ) are uniformly bounded on L?(X). Finally, the wavefront of an operator A4 € V(X E) is
similarly defined and satisfies the same basic properties as before.

2C2. Fourier integral operators. We shall also need the local theory of Fourier integral operators. Let
k : U — V be an exact symplectomorphism between two open subsets U C T*X and V C T*Y
inside cotangent spaces of manifolds of same dimension n. Assume that there exist local coordinates
(x1,...,xn),(y1,...yn) on T (U), 7 (V) respectively with induced canonical coordinates (x, &), (y,n)
on U, V. A function S(x,n) € C°°(£2) on an open subset 2 C [R{)chl,’ is said to be a generating function
for the graph of « if the Lagrangian submanifolds

(T*X)x (T*Y)™ D A= {((x, £k (x, §) | (x,§) € U} and  {(x,9xS:9,S.,7) | (x.n) € 2}

are equal. Here (T*Y )™ denotes the cotangent bundle with the negative canonical symplectic form. A
generating function S always exists locally near any point on A . Letting a : (0, 1], = CZ°(Qxm(V); C),



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1805

which admits an expansion a(x, y, m;h) ~ Y zeo h*ay (x, y,n), one may now define a Fourier integral
operator associated to x via

A:L*(Y) - L*(X),

1 i
/ e SCEM=Y Mgy n:h) f(y) dy dn.
R2n

Q2mh)"

(Af)(x) =

The symbol of 6 (A4) € C2°(Ay; C) is defined using the generating function via o (4)(x, n) =ag(x, 9xS, n).
The adjoint A* is again a Fourier integral operator associated to the symplectomorphism x~1. The
wavefront set of A maybe defined as a subset WF(A) C T*X x T*Y. A point (x,£;y,n) is not in
WF(A) if and only if there exist pseudodifferential operators B € W[/ (X), C € \Ilgf/(Y) with (x,&;y,n) €
WE(B) x WE(C) such that || BAC ||HS(Y)—>HA’(X) = O(h®°) for each s, s’ € R. It can be shown that the
wavefront set is in fact a compact subset WF(A4) C A,. Given a pseudodifferential operator B € W' (X),
Egorov’s theorem says that the composite is a pseudodifferential operator A*BA € W (Y). Moreover
its principal symbol is given via o(4* BA) = (k" 1)*|o(4)|?0(B) € CX°(V'), where we have again used
the identification of V' with A, given by the generating function. Finally one has the wavefront relation
WF(A*BA) C WF(A) N WF(B), again using the identifications of U, V and A.

An important special case arises when k = e?f¢ is the time ¢ flow of a Hamiltonian g € S™(T*X).
The operator e ns” , defined as a unitary operator via Stone’s theorem, is now a Fourler 1ntegral op-
erator associated to . Egorov’s theorem now gives that the conjugatlon e e e e \IJ’" (X) is

it W

pseudodifferential for each A4 € \IJ’” (X) with principal symbol o (e &4 ne ) = (etHe )*o(A).

3. First reductions

The trace expansion theorem, Theorem 1.3, will be proved in two steps based on the following two
lemmas. Below, 7, T, T/, f,6 and D are the same as in Section 1.

Lemma 3.1. Let ¢ € (0, 3) and 9 € C((T'h*, T); [—1,1]). Then

oo (5) 1o (252)] oo

forall A € R.

We note that in the above lemma the function ¥ is allowed to depend on /4, while its support and range
are contained in /-independent intervals.

Lemma 3.2. There exist smooth functions u; € C*°(R) such that for each A € R and ¢ € (O 2) one has
a trace expansion

N-1
tr[f(%)(fh_leg)(z\«/ﬁ—D)} =tr[f (%)hf_sé(*ﬁ;l) )} _pomet (Z thé_{_O(hg/))’

Jj=0

where 0.(x) := 0(x/h?).
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We note that the trace expansion theorem, Theorem 1.3, follows from the above two lemmas by simply
splitting
G(X) = 98()6) + [Q(X) - Qg(X)]
~—
¥ (x)

and applying Lemmas 3.2 and 3.1 to the first and second summands respectively. Lemma 3.2 is a relatively
classical expansion proved via local index theory and will be deferred to Section 7. Our main occupation
until then is in proving Lemma 3.1.

As a first step, for 7 > 0 fixed one chooses a microlocal partition of unity Ay € \Ilgl(X ), 0<a <N,

satisfying
N
Y Ae=1.  WF(A))CUyCT*X\ZP, ).  WF(Aa)€UsCEl,, 5, 1<a<N, (3D
a=0
subordinate to an open cover {U, }(]xv=0 of T*X. Clearly, it suffices to prove
D \y(AVh—D
tr| A — |0 ———— 4| = O™ 3-2
e () (557 )w] =0 .

for 1 <a,B < N with WF(44) N WF(Ag) # @.
By the Helffer—Sjostrand formula we have the trace above is given by

A—z

-1
Tap (D) :%/@éf(z)é( 7 )tr[Aa(%D—z) Aﬁ} dzdz (3-3)

for f an almost analytic extension of f. We note that the resolvent, the above trace, and the left-hand
side of (3-2) are well defined for any essentially self-adjoint pseudodifferential operator in place of D.
The next reduction step attempts to modify D without affecting the asymptotics of 7;% (D). To this end,
choose open subsets Uyg, Vop such that

WF(Ay) NWFE(Ag) CUgyg
N (3-4)
WF(A4q) UWF(Ag) CVyp € T*X

for each such pair o, B with WF(4,) N WF(Ag) # @. With d = o(D) € C*®(X;iu(S)), define the
required exit time

1

= ————— Wwh ={geC®(T*X;[0,1 =1, glye =0}, (35
infycons | Hed] where Gop 1= {g ( [0,1]) | lUes glye, =0} (3-5)

Typ -
If one were to use a scalar symbol d € C°°(X) instead in (3-5), the required exit time Tpg would have
the following significance: any Hamiltonian trajectory y(¢) = ¢4 with y(0) € Uyp and y(T) € V(fﬂ
would have length T' > Tyg at least the required exit time. We now have the following.



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1807

Lemma 3.3. Let D’ € \Ilcll (X: E) be essentially self-adjoint such that D = D' microlocally on Vyg. Then
ford € C(f?o((To/lﬂhs, Top):10,1]), 0 < Toiﬂ < Top, one has

T3 (D) =T5(D") mod h™

Proof. Let B € \I’ )(X) be a microlocal cutoff such that B =0 on WF(D — D’) and B =1 on V,g. Then
(1 = B)Apg = 0 microlocally implies

(z - %D)B(Z - %D’)_IA/;

_ I 1 - /_L _L /_1 [e’e) _
= Ag [ﬁD B](z D)~ Aﬁ+B(J_ ﬁD)(z ﬁD) Ag (mod h*)  (3-6)

in trace norm. Next, multiplying through by A, (Z — JLI;D)_Iand using Ay B = Ay microlocally gives

Aq (Z_%Df)_lAﬂ_Aa (z_ﬁp)_llﬂ ~ A (%D)B(LIDLID) (Z\LFIQID/)IAﬂ
o) )
+O0([Imz|~1h™>) (3-7)

in trace norm. Now B = 0 on WF(D — D’) gives that the first term on the right-hand side above is
O(|Im z|~2h®®).

We now estimate the second term. Let Sy < S‘;’ﬂ < St;//% < Typ and S‘;ﬂ > To/tﬂ be such that
S C°°([S’ h®, Sepl: [0.1]). Let go € Gy With [Hg,(d)| < l/Sg;}. Set g = a;go, where

S’ Imz
oy = min(L, N),
Vhlog(1/h)
with the constant N > 0 to be specified later. We note that
G = (et =)W e N W0(x)

foreach 0 < § < % Since it has an elliptic symbol, we may construct its inverse by symbolic calculus
G le hN\IJg(X). Moreover

1 1
Glz——D, |G ! —— Dy +ilazvhio )H anv, (3-8)
with
1
R=0 (hiaz log E) in SY(X). (3-9)
Now, since
1 //
(ozz«/ﬁlog E)Hg0 S |Imz| < |Imz|,
Sap
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the inverse G(z — LD;,)_1 G~ of the above exists and is O(|/Imz|™!) in operator norm for Im z # 0
and & sufficiently small.

Next, pick C € W9 (X) such that WF(C) C Uyp and C =1 on WF(A44) "WF(Ap). Now G = e% log ;
on WF(CAy), G =G~ =1 on WE(B)\ Vop and [Dy,, B] =0 on Vg imply

1 -r g 1 -1 1
ez 1025 g (Z——D) [—D ,B]:CA G(z——D) G—l[—D ,B}ro Im z|~ 17>
o NG h NG h @ NG h NG h (|Im z| )

in trace norm. The above is now O(|]Imz|~!A™") in trace norm. Hence

1 1 S&'B Imz

-1
CAa(Z—ﬁDh) [ﬁDh,B]:0(|1mz|—1h—"max(hN,e‘ Vi)

in trace norm. This and CAyAg = Ay A now estimate the second term of (3-7) to give

1 —1 1 —1 _Sa/ Imz
Aa(Z_ﬁD;L) Aﬂ_Aa(Z_ﬁDh) A,3=0(|Imz|_2h_”max(hN,e vh )) (3-10)

in trace norm.
Next, we have the Paley—Wiener estimate

Saﬁ([mz)
v A—=z O ~vr ), Imz>0,
19( x/ﬁ ) = S&B(Imz) (3-11)

O(e n'/2=2 ), Imz <O.
Introduce ¥ € C*°(R; [0, 1]) such that

1, x<l1,

Wx)z{o x>2.

Setting

W(z)—w(lm—z)
M=\ MvRog(1/ 1)

for another constant M > 1 yet to be chosen, we have the estimate

1 Imz
. o(vumay — (—))1 0.
dn f) = (lemzl T Tiogm N\ Viog(i/h) me= (3-12)
O(|Imz|N), Imz <O.

Finally, (3-10)—(3-12), along with the observation

N
wM|ImZ|N= O((M«/Zlog%) ),
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give

T5(D") =T, (D)

1 [ = < (A — 1 \! 1 -1 )
:;/Ca(wa)ﬁ(Thz)[Aa(z—ﬁDh) Alg—Aa(Z—ﬁDh) Aﬂ} dzdz

—n Sqpmz)  (Syg—Sgp)Imz
=0(h°°)+0[/ ———max(hNe” Vi e N )}
{M«/ﬁlog %SImZSZMx/I;log %} \/Elog A
— O[max(hN_zMS“B_", hM(Sgﬁ—Sag)—n)].
Choosing M > n/(S (;/ 5~ Sqp) and furthermore N >> 2M Sy + n gives the result. O

In the proof above we have closely followed [Dimassi and Sjostrand 1999, Lemma 12.7]. Again, the
proof above avoids the use of an unknown parametrix for e P which, following the significance of the
required exit time 7, g noted before, maybe used to give an alternate proof in the case when d is scalar.

4. Reduction to R”

In this section we shall further reduce to the case of a Dirac operator on R”. First we cover X by a finite
set of Darboux charts {¢; : Q5 — Q? C R"}ses for the contact form a, centered at points {xs}scs € X. By
shrinking the partition of unity (3-1) we may assume that for each pair e, B, with WF(A4,) "WF(Ag) # @,
the open sets Vpg C T*Qg in (3-4) are contained in some Darboux chart. Now consider such a chart
with coordinates(xp, . .., X2,,) centered at x; € X and an orthonormal frame {e; = w]’.c Oxe ), 0=<j <2m,
for the tangent bundle on 2. We hence have

wh grw) = 8jr, “-1)

where gy ; is the metric in these coordinates and the Einstein summation convention is being used. Let
F]l. « be the Christoffel symbols for the Levi-Civita connection in the orthonormal frame e; satisfying
Vej e = Fjl. K€l This orthonormal frame induces an orthonormal frame u,, 1 < ¢ < 2™, for the spin
bundle S. We further choose a local orthonormal section 1(x) for the Hermitian line bundle L and define
via Véol =T;(x)1, 0 < j <2m, the Christoffel symbols of the unitary connection Ao on L. In terms
of the induced frame uy; ® 1, 1 < g < 2™, for § ® L the Dirac operator (1-2) has the form [Berline et al.
2004, Section 3.3]

D =y wk P+ h(§0L 7 v*y +1597). (4-2)
where
P = hox, +iag, (4-3)
and
m
a(x) =ay dx* = de-i-Z(Xj Axjim—Xjymdx;) (4-4)

Jj=1

is the standard contact one-form in these coordinates.
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The expression in (4-2) is formally self-adjoint with respect to the Riemannian density e® A--- A e?™ =
Jgdx = /g dx® A--- Adx®™ with g = det(g;;). To get an operator self-adjoint with respect to the
Euclidean density dx, one expresses the Dirac operator in the framing giuq ® 1,l 1 <g <2™ In this
new frame the expression (4-2) for the Dirac operator needs to be conjugated by g4 and hence the term
hy’ wj’.c g_% (O g%) needs to be added. Hence, the Dirac operator in the new frame has the form

D = [0/ wk (& + ai)]” +hE € Wh(QJ:C*"),

with o/ = iy/, for some self-adjoint endomorphism E(x) € C*®(Q9;i w(C?™y).
The one-form a is extended to all of R” by the same formula (4-4). The functions wf-‘ are extended
such that

m
. 1 . .
(WK, ®dx!)| oy = Ox ®AX"+ Y p? (O, ®dx! + 0y, ®dx/t™)
Jj=1

(and hence g oy = dxg + D71y 1) (dsz + de?er)) outside a compact neighborhood Q¢ € K?.
These extensions may further be chosen such that the suitability assumption Definition 1.1 holds globally
on R” and for an extended positive function v € C>°(R") satisfying

vo = pt1(infv). (4-5)

The endomorphism E(x) € CX°(R"; iu(C2")) is extended to an arbitrary self-adjoint endomorphism of
compact support. This now gives

Do = o7 wf (& +ap]" +hE € Py(R": C*"), (4-6)

as a well defined formally self adjoint operator on R”. Furthermore, the symbol of Do 4+ i is elliptic in
the class S°(m) for the order function

2m %
m= (1 + > x +ak>2) ,
k=0

and hence Dy is essentially self adjoint; see [Dimassi and Sjostrand 1999, Chapter 8]. Below ¢ €

Cc°°((To/tﬂh8, Top):10,1]), 0 < To/eﬁ < Typ, as before and we set Vo?ﬂ = (dos)*Vyp C T*Q0.

Proposition 4.1. There exist AY, Ag € WY (R™), with WF(AY) UWF(Ag) € V;’ﬂ C T*Qy, such that

7;33 (D)= tr[Agf(%)é(@)A%] mod 2™

:=T.5(Do)

Proof. Let K|, 5K " 5 and v 5 VO;% be compact and open subsets respectively satisfying Vo5 C K, 5 C

VO’{B C K(;'ﬂ C Va’lﬁg C T*Q. Choose D’ € W4 (X; ) self-adjoint such that D = D’ microlocally on K&ﬁ
and

D/
p) 1€ Vap (4-7)

(—00,27
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and set E = D' — 37 € (X S). Pick a cutoff function y(x;y,n) € CC"O(n(Vé}}) X (d(ps)*Vé;g; [0, 1])
such that y =1 on n(Kgﬁ) x (des)* gﬂ. Now define the operator

U:L*R":C*") > L*(X;S),

fez(%(x)_”'"x(x;y,n)f(y) dydn, xelX.

N0 = G

The above is a semiclassical Fourier integral operator associated to symplectomorphism k = (d (ps_l)*
given by the canonical coordinates. Its adjoint U* : L?(X; S) — L?(R"; Cc2") is again a semiclassical
Fourier integral operator associated to the symplectomorphism «~! = (dgg)*. A simple computation
gives the following compositions are pseudodifferential with

UU* =1 microlocally on K/, (4-8)
U*U =1 microlocally on K(K(/x/ﬂ). (4-9)

The composition
E'=Eo:=U*EU € VQ(R";C*")

is now a pseudodifferential operator by Egorov’s theorem with symbol

a(Eo) = (dgs)* x*.0(E). (4-10)
Similarly, E) := UEqU* € ¥9(X; S) and

0(Ep) = (dgs)*x*.0(Eo). (4-11)

By (4-7), (4-10) and (4-11) we have »Eo —qC K(Véﬂ) and 70

(—o0 (—o0
E.E', Eg and E| all have discrete spectrum in (—oo, —7]. We now select g € C°(—57, —7) such that

- C 44 g~ Hence by Proposition A.6,

g =1 on [—4t,—27]. We have
WE(E(E) CEE ) C 2 o1 C Vagp-
Combined with (4-9) this gives (U*U —1)g(E) € h*°W¥_*°(X; S) and hence [|[(U*U—-1)g(E)||= O(h*™)
as an operator on L2(X; S). This in turn now gives
|w*v—nnF AENU]+1) = 0kh™), (4-12)

with 12 = TIE

[Ca7.—27] denoting the spectral projector of £ onto the interval [—4t, —2t]. Similarly, we

get
|(UU* = DIE| (| Eo|| |U*]| + 1) = O (). (4-13)

Another easy computation gives E = E{ microlocally on K g 8 and we may similarly estimate

|(E — EpyTiEo| = 0(h). (4-14)
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Next we define A% := U* 4, U, Ag =U%AgU € \Ilgl([Ri”) and again note

UAgAgU* = Ay Ag  microlocally on Ky,

(4-15)
U*AqAgU = AS AY A% microlocally on k(Kgg).
This again gives
|[UAQAGU* — Ag AgITTE | = O(h™), (4-16)
|[U* Ag AgU — AQAZITTO|| = O(h™). (4-17)

Now using (4-12), (4-13), (4-14), (4-16), (4-17) and using the cyclicity of the trace we may apply
Proposition A.5 of the Appendix with

p(x):f(x:;;r)g}(kx/z—h?ﬂ—x)

or (5 (B o () ] ou

for D(,:= Eo+ 3. Finally observing D = D’ on Vg, Do = D, on Vo?ﬂ and using Lemma 3.3 completes
the proof. O

to get

5. Birkhoff normal form for the Dirac operator

In this section we derive a Birkhoff normal form for the Dirac operator (4-6) on R™. First consider the
function

In4 &
fo:=(oso— il ) # 2 m  58)
(\/__1) P J JSJ

If Hy, and ¢"70 denote the Hamilton vector field and time ¢ flow of fo respectively then it is easy to
compute

e Hro(xo, £9) = (ﬁxo’&%)»

e 0 () &5 X pm. Ejrm) = (xj Jif;m, xjt;"{r 5, xHT/; 5 Y j;”m).

We abbreviate (x',&") = (x1,...,Xm: &1, ... Em)s (X" ") = (Xm+1s- -5 X2m: Em+1, ..., E2m) and
(x,€) = (xo.x",x";£0.&,€"). Further, let oy C SL(R>"; C!) denote the subspace of self-adjoint
symbols a : (0, 1], — C°°(IR)2€”’ ;iu(2™)) such that each of the coefficients a;, k =0,1,2,..., in its
symbolic expansion (2-35) vanishes to order N in (§p, x’, £) at 0. We also denote by oy the space of

Weyl quantizations of such symbols.
Using Egorov’s theorem, the operator (4-6) is conjugated to

e 1o’ Doe~ S0 = dl, (5-1)
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with
do = \/E(ij](-)’foéo +o/ wj]."foék +o/ w]]."%”xk) + hoo, (5-2)
where
wy g, = (e o) . (5-3)

Note that the index k ranges from 1 to m in the Einstein summation above. A Taylor expansion of dy,
given in (5-2), in (&g, x’, ') now gives r](.) € 02, 0 < j <2m, such that

do = ~207 (0960 + WF & + ") + 0/ 1) + hoo

-k .k £ ” . . .
and where W} (xo, x”,§") = w} (xo, 7 %) On squaring using (4-1) we obtain

(d(?V)z = Q(I))V + hot + 03 +h200,
with
g(k—l—m)(l—}—m) (XO’ xu’ é”) g(k—l—m)o(x()’ x//’ EN) g(k+m)l (XO, x//’ E”) X/
Qo=[x" & &1| &0 (xo,x"8") 00 x".E")  2%(xo.x".E") | |k
é—,k(l—f-m) (XO’ x//’ é”) g’kO(XO, x//’ %-//) gkl (XO’ x//’ %-//) Sl

4

4
Here g (xo,x",£") = 2g%! (x0. —3—5, 3—5) and the g are the components of the inverse metric
on T*R".
Next we consider another function f; of the form

/

X

fi=3[x & 5/][ Umxm (%0, X" §")  VYmxm+1(x0.x".§") ] §o
’ Vit 1xm (X0 X" E") Bt 1xm+1(xo0, X", §") g

where «, B and y are matrix-valued functions of the given orders, with «, 8 symmetric. An easy

’

computation now shows
/ /

X X
ey | & | =e™ | & | + 02,
£ &

with

A(X(),x”, é//) — [

0 _]m+lxm+1] |: Olme(xo,X”, //) )/me+1()€0,)€//,$//) i|
TImxm 0 V,tn+1><m(x07x”’$,,) ,Bm+1xm+1(x0»x/,,$,/)

From the suitability assumption (1-3), we have that there exist smooth matrix-valued functions «, § and y
such that

t g(k-}-m)(l-l—m) (XO» X/,, %-//) g(k—}-m)O(xO’ X//, S//) gr(k—i-m)l (XO’ X//, %-//) X!
[X/ £o E/] eA gO(l-l-m) (o, X", g_-//) gOO(XO, X", //) gOl (xo, X, //) eA £
g X" 8" g0 "8 g (xo. X" E") 3

=&+ D[Z 1 (7 +S,-2)} + o3,

j=1



1814 NIKHIL SAVALE
where
E// x//
v (xo, x”, f//) = v(xo, —E, E) (5-4)

Letting
1 v 2 g2
H, = 3 ;Mj(xj +§7),
Egorov’s theorem now gives
oW oW 2m w
ei i dOWe_ﬁfl = (Z ojbj) + hoo, (5-5)
j=0
with
2m
Z b7 = (& + 20H,)" + 03.
j=0

Another Taylor expansion in the variables (x’, £, §') gives A= (ajx (xo.x",§"))eC*® (R?xo gy 50(n))
and r; €02, j =0,...,2m, such that

€o
1
5 (2vp1)2x
0 - 1 ro
2V 2
oA _ ( :le) €1 n
b ' r
2m (ZD[Lm)%Xm 2m
— 1
| 2V m)2Em

We may now set cq = llajkajak € COO(RE’XO X iu(2™)) and compute

eicye%flwdgve_%flwe_icy =dy, (5-6)
where
dy = Hy + 0’ r; + ho, (5-7)
TR
Hy = §000+ (20)2 ) 2 (xj02/-1 +£/02))- (5-8)
j=1

S5A. Weyl product and Koszul complexes. We now derive a formal Birkhoff normal form for the sym-
bol dy in (5-7). First denote by R = C*°(x¢, x”, €”) the ring of real-valued functions in the given
2m + 1 variables. Further define

S := R[x. &.£": 1],

the ring of formal power series in the further given 2m + 2 variables with coefficients in R. The ring
S ® C is now equipped with the Weyl product

axb:= [e%(arl3S2—3r23ﬁ)(a(s1, r1;h)b(sa, 1r2; h))]x=s1=sz,§=r1=r2’
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corresponding to the composition formula (2-36) for pseudodifferential operators, with
[a,b]:=axb—b*a

being the corresponding Weyl bracket. It is an easy exercise to show that for a, b € S real-valued, the
commutator i [a, b] € S is real-valued.

Next, we define a filtration on S. Each monomial 7% EG(x)™ (& )8 in S is given the weight 2k +a +
|| + |B|. The ring S is equipped with a decreasing filtration

S=002012--20y>D.... [)On=1{0}
N

where Oy consists of those power series with monomials of weight N or more. Itis an exercise to show that

ON *Oym CON+ M,
[ON.Om] CihON+M—2.

The associated grading is given by

oo
S=@p Sw.

N=0
where S consists of those power series with monomials of weight exactly N. We also define the quotient
ring Dy := S/O0pn+1 whose elements may be identified with the set of homogeneous polynomials with
monomials of weight at most N. The ring Dy is also similarly graded and filtered. In a similar vein,

we may also define the ring
S(m) =S ®glc(2™)

of R ® gl (2™)-valued formal power series in (x’, &g, &'; h). The ring S(m) is equipped with an induced
product * and decreasing filtration

Oo(m) D 01(m) D -2 On(m) D=+, () On(m)=1{0},
N

where Oy (m) = Oy ® gl (2™). It is again a straightforward exercise to show that for a, b € S ® iuc(2"™)
self-adjoint, the commutator i [a, b] € § ® iuc(2™) is self-adjoint.

5A1. Koszul complexes. Let us now again consider the 2m and (2m+1)-dimensional real inner product
spaces V =Rley, . .., eam] and W =R[eg]®V from Section 2B. Considering the chain groups Dy @ A¥V/,
k=0,1,...,n, one may define four differentials

mo mo

0 > .0 > . .

w =Y pr(xjerj—1 AtEjeajn), il =Y 1P (Xjiey;, +Ejiey).
j=1 j=1

1
15 Bxjler; g+ jier; ).

™

Il
_

m
1
wg = Z,uj? (0x;€2j—1 A +0g; €25 A), ig =
Jj=1 J
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We equip Dy with the R[[A]-valued inner products, where the distinct monomials

a o B

Ws § (&)
are orthonormal. With these inner products w? po la and w? 50 lx
Laplacians A® = w?;9 g T g w? = w8 0440 wg are computed to be equal and act on basis elements
EG (x> (& )8 (A ejyf ) via multlphcation by 1.(2(a+pB)+7y). It now follows that these have (co-)homology

only in degree zero given by R[[A].

0 are respectively adjoints. The combinatorial

Similarly, we may consider the chain groups Dy ® Ak W, k =0,1,...,n; one may define four
differentials . .
wx = oeo A +2D)2wy,  ix = Eoley + (20) 20y,
1 1
Wy = dgy0 A +(20)2w), ig = gyie, + (20)205.
Again these complexes have cohomology only in degree zero given by R[[A].
Next, we define twisted Koszul differentials on Dy ® AKV via

. m
1 1 1
= Z ,uJ? (ady; e2j—1 A tadg, ez A) = Zujz (0x;€2) AN —0g;€2j-1N),

UL
iy = h Z “J 7 (ady; ey, +adg;de,;) = Z“J’z (Ox;ier; — Ogjler;—y)-
j=1

We note that the above are symplectic adjoints to their untwisted counterparts with respect to the symplectic
pairing Z}';l exj—1Aeyjonl.
Similar twisted Koszul differentials on Dy ® ARW are defined via

Wy = hadgoeo A+20) 3BT = —dxye0 A +(20) 2 DY
~ I} 1~ . 1~
iy = Siegadg, + (20)21f) = —0xyie, + (20)215.
These twisted differentials correspond to the untwisted ones by a mere change of basis in V, W and hence
also have (co-)homology only in degree zero given by R[[A]].

We now compute the twisted combinatorial Laplacian to be

0 — 5904050 = 0
A" = wyi, +iywy = —(w 13 +law )—Zu][éj x; x,ag +enjies;_; —€2j—1ies;]-
j=1

One may similarly define A = Wyix + iyiy. Next, we define the spaces of twisted A°-harmonic,
£o-independent elements

1k ={o e Dy @ AW | A’w=0, 95,0 =0},
HE = {we S AW | A’w=0, d;,w=0}.

We now prove a twisted version of the Hodge decomposition theorem.
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Lemma 5.1. The k-th chain group is spanned by three subspaces:
Dy ® AFW = R[Im(ixy), Im(ix), HK,].
Proof. We first compute A in terms of A° to be
A = —Eqdyy +20A% —2(dx, 9 2)eoil.
Next, since A° is skew-adjoint, we may decompose

Dy ® AYW = Eo & PEix @ E—ia]
A>0

into its eigenspaces. Following [A?, 7] = 0 we may now invert A on the nonzero eigenspaces of A°
above using the Volterra series:

A= 20A%) T Y [@PA%) ! (Eodx +2(0x72)e0i)].
Jj=0

The sum above is finite since £pdx, + Z(BXOﬁ%)eoi )(C) is nilpotent on Dy ® A¥W. Thus we have

PIEix ® E_i2] CIm(A) C R[Im(ixy). Im(Dyix)]-
A>0

Finally, we have the decomposition
N
Eo =P &iHk
Jj=0

and we write each w € S(J)”Hk , j>1,as

o =wo+ Awy,

where .
| X0/ k
wo = |:—2(8x0\72)€0i)?§0_1 / :| w € HN’
0
X0 j_l 1 X0 l
w1 = —(50_1/ )Z[—Xaxofﬂ)eoi%&l/ } ,
0 I—o 0
to complete the proof. O

5B. Formal Birkhoff normal form. The importance of the Koszul complexes introduced in the previous
subsection is in continuing the Birkhoff normal form procedure for the symbol d; in (5-7). The remaining
steps in the procedure are formal.

First let us define the Clifford quantization of an element in a € S ® A¥ W using (2-8) as an element in

cola) =i 2" c(a) € S(m).
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It is clear from (2-10) and (2-11) this gives an isomorphism
co: S @AY 5 S @ iuc(2™) (5-9)
of real elements of the even or odd exterior algebra with self-adjoint elements in S(m). It is clear from
(5-7) that
diy=Hy+co(r) +hS Qiuc(2™) (5-10)
forr:=3"7_ rje; € 020 W.
For a € AKW, we define [a] := [%] Now for f € Oy, N >3,anda € Oy AW, N > 1, we
may compute the conjugations
e/ Hie™h! = Hy +co(p ) + On ® iuc(2™), (5-11)
e!0@ pe710@ = [y 4 (=D 2¢q(ixa) + heo(Wha) + On 42 @ iuc(2™) (5-12)

in terms of the Koszul differentials.
We now come to the formal Birkhoff normal form for the symbol d.

Proposition 5.2. There exist f € O3, a € O, @ A®"W and w € 1% N\ Oy such that
eic"(“)e%fdle_%fe_ic"(“) = Hy + co(w). (5-13)

Proof. We first prove that for each N > 1, there exist fy € O3, a?v € 01 AW, a)R, e "N O, and
r]?] € On+1 @ W such that

eiCO(a(I)\’)e%fNdle_%fNe_iCO(“oN) =H, + co(a)?\,) + co(rj(:,) +hS Q@iuc(2™), (5-14)
SN+1— SN € Onta, ayi—ay €ON, @i~y € Oni.

The base case N =1 is given by (5-10) with a(l) = f1= a)? =0 and r? = r. To complete the induction

step we decompose r?, as

0 _ 0 0
IN= Uy T Tnyp - (5-15)
ESN+1®W  €OnN420W

Next we use Lemma 5.1 to find by, gy € On+1 ® W and UR, € H! N Sy such that

Ul = v —ix Wby —Woixgnw + On+2. (5-16)

Next, define fy4+1 = fv + ixg?\, € 03, a?\,_H = a?\, + %u?abg, € 01 ® A*W and a)g,_i_l = a)?v + v?,.
We now use (5-11), (5-12), (5-15) and (5-16) to compute

eiCO(a(/)v_i_l)e;%fN-g-ldle—%fN-He—l'Co(a?V.,_l)
i 1. 30 ;i 50 _Li o0 _; 1% 50 .
= ¢/c0(300bY) o hix8X e~ hix8N e 10 (GIBN) 4 co(@d) + co(ry) + IS ® iuc(2™)

= H, +CO(CU2]+1) + CO(”]%_H) +hS ®iuc(2™),
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completing the induction step. Now setting f =limy 00 /N, a0 =limy 00 a?v and wo =limpy — o a)]O\,
and letting N — oo in (5-14) gives the relation
¢i€0@0) i f g =5 S e=1€06@0) — H\ 4 co(wo) + S ® iuc(2™). (5-17)
Next we claim that for each N > 0, there exist ay € O1 @ A"W, wy € H* N O, such that
eico(aN)e%fdle—%fe—ico(azv) = Hy + co(on) + hOx ® iuc(2™), 5.18)
aAN4+1—danN 60N+1®AevenW, a)N+1—a)N€'H0ddr]0N.

The base case N = 0 is now provided by (5-17). To complete the induction step, we use the isomorphism
(5-9) to decompose the remainder term in (5-18) above as

co(un) +ihOn 41 ®uc(2™)

foruy € Sy ® A°YW. Next we use Lemma 5.1 to find by, gy € Oy ® A°YW and vy € HOY N Sy
such that
UN = UN —ixWybNy — WyixgN + ON+1. (5-19)
Now define ay 41 =ay +ixgn + %h(—l)[bN]u?abN € 01 and wy+1 = wn + vy. We now use (5-11),
(5-12), (5-15) and (5-19) to compute
eiCo(aN+1)e%fdle—%fe—ic‘o(azvﬂ) = Hi + co(on+1) +ihON 41 @ uc(2™),
completing the induction step. Now setting @ = limy o0 @y and w = limy _, o, @ and letting N — 0o
in (5-18) gives the proposition. O
Finally, we show how the Birkhoff normal form maybe used to perform a further reduction on the
trace. First note that we may similarly use (2-8) to define a self-adjoint Clifford—Weyl quantization map

¢y 1= Op®co : SY(R*";C) ® A — W (R"; C*"),

which maps real-valued symbols Sg([F\RZ”; R) ® Acddevenyy 1o self-adjoint operators in \Ifgl([RE”; c2".
Similarly we define a space of real-valued, twisted A°-harmonic, &o- independent symbols

1SS = {w e SSR™;R) @ A*W | A’w=0, 9,0 =0).

Next, an application of Borel’s lemma by virtue of (5-1), (5-6) and (5-13) gives the existence of

o0 o0
a~Y Wa;e SRR @AW, [~ I fi € SRR,
j=0 j=0

> o0
P~ thfj e S3(R*™;R) R AYW, @~ Zhja_)j c Hoddsg
/=0 Jj=0
such that
e'd @i aff i TV @ = g 4 @) +elf () (5-20)
e

=D
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on I7a,3 = %o (Vo?ﬂ)' Here {7 }jeno> fo, @o vanish to infinite, second and second order respectively
along

D D+c¥ (7)
T =25 =%, 0 ={f=x'=¢=0}

Note that on account of (4-5) and (5-4) one again has

vo=pM1 minv(x) <p; inf .
xeX &

x0.x" &’

Furthermore, since wg vanishes to second order we may choose wq arbitrarily small satisfying the estimate
loollcr <& (5-21)

for any ¢ > 0, while still satisfying (5-20).

We note that D € \IJ1 (R C2"™), with D + i having an elliptic symbol in the class S°((&o, £’)), and
is hence essentially self-adjoint as an unbounded operator on L?(R"; C2"™). The domain of its unique
self-adjoint extension is H ' (Ry,) ® LZ(R” C2"); see [Dimassi and Sjostrand 1999, Chapter 8]. We

x//’
now set
Ag =i @il g0 =5 pmicy’ @) (5-22)
AvVh—D
D):=tul| A 3 A
o= (GH(E2))
lféf( )5\(1_2){& (1 D )_1/1 ]d dz (5-23)
=— z r —D— zdz. -

7 Je N WA g

Proposition 5.3. We have
T35 (Do) = T3 (D) mod h™.

Proof. Since the conjugations in (5-1) and (5-20) are unitary and WF(Ay), WF(4 g) C 170“3, we have

U f=x xf(A=z\ [+ (1 = .
TV (Do) = _/ 8f(z)z9(—) tr|:A (—(D + 7 (7)) —z) A ]dz dz.
ob 7 Jc vh “\Vh 0 P
It now remains to do away with the ¢, W (¥) above. Since this term vanishes to infinite order along

ED ED +eg ), we may use symbolic calculus to find Py, Qn € \Il (R €2"), for all N > 1, such
that

ey (7) = Pn(D + ¢ ()Y, (5-24)
e (7) = On(D)N. (5-25)
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Modifying D outside a neighborhood of 170,5 using Lemma 3.3 and Proposition A.6 we may assume that
D,D+ ch () have discrete spectrum in (—+/2vg, ~/2v¢) and hence

0 = (5)(5-0)a)

D +c(‘)’V(f))l§()L\/ﬁ—D—c0 (r)) ﬁ].

T3 (Do) = tr[fiaf(

Vh h
Next, with o H[ Nerm e and IT 0 = H[_ Nerm e denoting the spectral projections,

(5-24) and (5-25) give
le AP = 0(h%), | HTIP+ D) = oh?)

for each N > 1. Finally applying Proposition A.5 with

o= () (5)

and using the cyclicity of the trace gives 7;% (Do) — 7:)33 (D) = O(h_lhﬂgvi%), for all N > 1, completing
the proof. O

6. Extension of a resolvent

In this section we complete the proof of Lemma 3.1. On account of the reductions in Propositions 4.1 and
5.3 in the previous sections, it suffices to now consider the trace 7"9 (D). First let Ay = a A B = a}’fV
foraq,ag € S, ([RRZ”) The conjugations

ir - it it - it
L-x0 —Lx0 _ W 5 xo —Lxo _ W
en0Age 10 =ay, and eh CAge” 0 =ag,

are easily computed in terms of the one-parameter family of symbols ay (o, ...) = ag(§0 +1¢,...),
ag;=ago+1,...) €S %(R?™), t € R, obtained by translating in the &-direction. One now introduces
almost analytic continuations of the symbols aq ¢, ag; € S 3 (R?"), defined for ¢ € C, such that all the
Fréchet seminorms of éaa,t, da g, are O(|Im¢|*°). These may be further chosen to have the property that
the wavefront sets of their quantizations have uniform compact support when ¢ is restricted to compact
subsets of C. Again one clearly has

agft :e“}zet ; w _HZSIXO’ (6_1)
iRet __iRet
ag,=en *(ap ) e h 0, (6-2)
In similar vein we may define
Dyi=e i Dol = 1"+ (@), (6-3)
=\ 3 3 1 m2n
Hy ;= (§o +1)00 + (20)2 Z 1} (xXj02j—1 + &027) € SHR") (6-4)

Jj=1



1822 NIKHIL SAVALE

for ¢ € R, on account of the £y-independence of @. An almost analytic continuation of D; is easily intro-
duced by simply allowing ¢ € C to be complex in (6-4) above. The resolvent (D; —z)~ ' : L2(R"; C?"") —
L2(R";C%") is well defined and holomorphic in the region Im z > [Im¢|.

In the lemma below we set t =i y(M, 8) :=i2M h® log %, for6=1—¢c¢€ (%, 1) with ¢ as in Lemma 3.1
and M > 1. We now have the following.

Lemma 6.1. For h sufficiently small and for all gy > 0, the resolvent

1 - -1 m m
—Djy—z) L*R*:C*")— L*>(R":C?
(ﬁ iy ) ®:C?") > LR ")

extends holomorphically, and is uniformly O(h_%), in the region Imz > MK log%, Rez| <

A/ 21)() —£0.

Proof. We begin with the orthogonal Landau decomposition (2-31)

LZ(Rn; @2"1) _ LZ(R;nO—f—xIN) ® (C[WO,O] ® @ [ Eeven D Eodd )’ (6-5)
Aep.(NG\0)

=L2(R7,;C2™)

where
Eilven . @ Eeven’ Eodd . @ Eodd (6—6)
TeNG'\0 TeNG\0
A=p.t A=,u,.r

according to the eigenspaces of the squared magnetic Dirac operator Dﬁm (2-21) on R™. Tt is clear from
(6-4) that

_\ 1
HY; = o+ 1) 00 +129)2]" ® Dy
in terms of the above decomposition. Furthermore one has the commutation relations

[005 Dﬂ%m] - 0,
[C(‘)/V(CD), D3n] = ihch(AOJ)) =

since @ is A®-harmonic. The above and (6-3) show that the (%ﬁﬁ r— Z) preserves the eigenspaces in the
decomposition (6-5) for all ¢ € C. It hence suffices to consider the restriction of (ﬁ D iy — z) to each
eigenspace.

Let Eg := C[0,0], Ea := E" ® EY 9dd and Py, P4 denote the projection onto the corresponding
summands of (6-5). Define the restrictions

Q0 :="Pocq (@)Po : L*RYL) — L2REEL),

QA = PAC(I)/V(C_!))PA Lz(Rm x”’ Eeven D EOdd) — Lz(Rm x//’ Eeven ey Eodd , A>0.
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Now @ ~ Z}io h'@; € HOMS 9 with &-independent @ vanishing to second order along Z(l)) 0= Z(l? =
{€o =x"=§&"=0}. Hence we may decompose
wo = Z[aijzizj +a;jzizj +bijziz; +5ijzi2j]
i<j
in terms of the complex coordinates z; = x; +i§;, z; = x; —i§;, 1 < j < m, with a;;,b;; €
SY(R?"; R) ® A°4W. The self-adjoint Clifford-Weyl quantization now yields

co (@0) = Y [e/ (i) Ai Aj + AT AT cq (@ij) + ey (bij) AT Aj + AT Aicq (bij)] + hWS R C")
i<j
in terms of the raising and lowering operators in (2-26). Since each lowering operator A; annihilates

Y¥o,0, this leads to the estimate
120]l = O(h). (6-7)

Next, on account of (5-21) one may also expand Wy = Z;”:l lajzj+a;z;], witha; € Sg(len; R)®@ AW,
satisfying ||aj|co < & < 1. On self-adjoint quantization this now gives
m
cff (@0) = [ed (ap) A + Atell (@p)] + hU{R™; C27),
j=1
where
leg @ liz2osz2s ey @)llz2—r2 = llajlico + OGh) < &+ O(h).

Knowing the action of the lowering and raising operators A;, A}'f on each eigenstate (2-25) of Dﬂ%m gives
the estimate

24l = eV AR+ O(h), (6-8)

with the O(h) term above being uniform in A.
Next we compute the restriction of (%}75”, — Z) to the Eg eigenspace in (6-5) using (2-6) to be

1 - 1
Dl'y’o(Z) =Py (EDW —Z)P() = ﬁ[—éo —iy —Z\/E-f— 0]. (6-9)

The above is again understood as a closed unbounded operator on LZ(RTOJFXI//) with domain H(Ry,) ®
L2(R™,)). Set Riy,0(z) = [r,-yio(z)]W, with

x”
i — ,
iy,0lZ) = ; f

1

which is well defined for Imz > —y/(2+/h) = =M h%~2 log +, and compute

Riy0(2)Diyo(z) =1+ O(h'™%),
Diy0(2)Riyo(z) =1+ O(h'™%)

using (6-7). This shows that the inverse D;,,0(z) ! exists and is O(R;y,0(2)) = O(h%_‘g).
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Next, we compute the restriction of (\/Lﬁls iy— Z) to the £ 4, A > 0, eigenspace in (6-5). Using (2-32),
(2-33) this has the form

_ Z)PA= 1 [_go—iy—z«/ﬁ («/2ﬁAh)W} 1

1
Diy,A(Z)::PA(ﬁDiV_ Vil V2ARY g +iy—zvh +EQA

with respect to the Z5-grading Ep = E{*""® E de' Here we leave the identification i, in (2-32) between
the odd and even parts as being understood. Set R;y 4(z) = [riy, 4(2)]%, where

vh —Eo—iy—zvh  (V20Ah)
22h—(§o +iy)2 —20Ah (V20Ah) & +iy—zVh|

riy,A(Z) =

which is well defined for |[Re z| < +/2vg — o < infgn +/2V A, and & sufficiently small. We now compute
[Riy,a(z)Diy,a(z) = I = Ce+ O(h),
IDiy,A(2)Riy,a(z) = I|| = Ce + O(h)

using (6-8) with the constants above being uniform in A. Choosing ¢ sufficiently small in (5-21) shows
that the inverse D;y, 4(z)"! exists and is O(R;y,4(z)) = O(h_%) uniformly. d

We now finally finish the proof of Lemma 3.1.

Proof of Lemma 3.1. As noted in the beginning of the section, on account of (3-2), (3-3) and the reductions
in Propositions 4.1 and 5.3, it suffices to show 7 ’;’3 (D) = O(h®). We now define the trace

1 _ -1
T, (2) = tr[agft(ﬁDt —Z) a?{t], Imz > |Im¢|, (6-10)

in terms of the almost analytic continuations. We clearly have
p(2) = Oh"[Imz| ),
E%_r(w,,(z) = O(h™"|Im¢|*°|Im z|2).
Furthermore, by (6-1)—(6-3) 74g,;(z) only depends on Im# and we have
Taf,int (2) = Tap,0(2) + O(h ™" [Im1|**[Im z| 72). (6-11)
As before, we again introduce ¥ € C°°(R; [0, 1]) such that

vo={y 125

and set

" (z)—w(lm—z)
MA=T= M«/Zlog% '
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The estimates (3-11), (3-12) along with the observation a7 |[Im z|V = 0((M«/Elog }Z)N) now give
_ 1 - ~ v A—zZ
72 (D :—/3 ﬁ(—)r z)dzdz
ap(D) . Ym f) N «B,0(2)

<‘3(wa~)5()L — Z)ra,g,o(z) dzd:z.

=O0Mh>*)+— / L -
{M[]ogh<lmz<2M\F10gh} \/Z

Using (6-11) and y = 2M h® log 1 7 0 € (z, 1), the above now equals
- ~x(A—z
oo 719 (%)
Mﬂlog%flmszM«/lqlog%} \/E

Since the resolvent (%5 ) 1, and hence the trace 74p ;,(2), extends holomorphically to Imz >
—MhK=3 log%, |Rez| <

_ 1 _
’7;%(D) = 0(h*™) + ;/{ ToB,iy(2)dzdZ.

v/2vg — &9 by Lemma 6.1 we may replace the integral in the last line above:

_ 1 - ~ v A=z
7?2 (D)= O(h®)+— / 3 19(—)‘( - (2)dzd?
(D)= 0(h>) /2051210 b <imz < M1 10 (WUm f) 7 aB.iy(2)
hn12 0 Sapns)
= O(h°°)+0[/ e/ dzdz}
{—1/2Mh8=1/210g } <imz<—L MB5=1/210¢ 1} ~/R10g(1/ h)

— O[h'% Sap)—n—3)

using (3-11) and O(h_%) estimate on the resolvent («/LIZ D iy — Z)_l. Choosing M sufficiently large now
gives the result. O

7. Local trace expansion

In this section we prove Lemma 3.2. This is a relatively classical trace expansion. A parametrix construc-
tion for the operator e D may potentially be employed in its proof since the principal symbol of D? 5 1s
Morse—Bott critical, as in [Brummelhuis et al. 1995]. However Lemma 3.2 would require an understanding
of the large time behavior of parametrix left open in that paper; see [Camus 2004; Khuat-Duy 1997]. Here
we prove the expansion using the alternate methods of local index theory. The expansion is analogous to
the heat trace expansions arising in the analysis of the Bergman kernel [Bismut 1987; Ma and Marinescu
2007]. Here we adopt a modification of the approach in [Ma and Marinescu 2007, Chapters 1 and 4].

First, fix a point p € X. On account of Definition 1.1 there is an orthonormal basis eg,, = Ry, ¢; p,

ejtm,p»j =1,....,m,of T, X consisting of eigenvectors of Jj, with eigenvalues 0, =1, ,(:=£iu;v(p)),
j =1,...,m, such that
m
da(p) =Y _ A (p)e} A€ sm - (7-1)
j=1
Using the parallel transport from this basis, fix a geodesic coordinate system (xg, . .., X2,,) On an open

neighborhood of p € 2. Lete; = w} k3xe» 0<j <2m, be the local orthonormal frame of TX obtamed by
parallel transport of e; , = 0x; |, O < j <2m, along geodesics. Hence we again have w gklw =0djr,
wk | p = = 8k, with the gx; bemg the components of the metric in these coordinates. Choose an orthonormal
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basis {ug( p)}éilfor Sp in which Clifford multiplication

clej)lp=vj (7-2)

is standard. Choose an orthonormal basis 1, for L. Parallel transport the bases {uq(p)} 1, along

q=1’
geodesics usmg the spin connection V¥ and unitary family of connections Vh = 4 + +a to obtain trivi-

alizations {uq} 1of S, L on Q. Since Clifford multiplication is parallel, the relation (7-2) now holds

q=0
on 2. The connection VS®L = VS ®1+1® V" can be expressed in this frame and these coordinates as

VSOL =g 4+ Al dx/ + T dx/, (7-3)

where each Ah is a Christoffel symbol of V” and each T; ' 1s a Christoffel symbol of the spin connection VS,
Since the sectlon [ is obtained via parallel transport along geodesics, the connection coefficient Ah may
be written in terms of the curvature F h dxf Adx* of V" via

1
A1) = [ dp(or* Fy o). (7-4)
The dependence of the curvature coefficients Fj};C on the parameter /4 is seen to be linear in % via

i
Fl =F) + 7 (da)ji (7-5)

despite the fact that they are expressed in the h-dependent frame 1. This is because a gauge transformation
from an i-independent frame into 1 changes the curvature coefficient by conjugation. Since L is a line
bundle, this is conjugation by a function and hence does not change the coefficient. Furthermore, the
coefficients in the Taylor expansion of (7-5) at 0 maybe expressed in terms of the covariant derivatives
(VAo FO J T (VA (da) ik evaluated at p. Next, using the Taylor expansion

(da)jx = (da)jx(0) +x'ajur. (7-6)

we see that the connection VS®L has the form
: k
i(x .
vS®L — g 4 [E(T(da)jk(()) + xkxlAJ-kl) +xkA% + r,-] dx’, (7-7)
where

A9, = / dp(pFS% (px)),  Ager = / dp(pak (o))

and I'; are all independent of 4. Finally from (7-2) and (7-7) may write down the expression for the
Dirac operator (1-2) also given as D = /¢ o (VS®L) in terms of the chosen frame and coordinates to be

D =y w][hdy; +i5x*(da);(0) +ix*x" Ajy + h(x* A% +T))] (7-8)
=y [wihdx, +iw,2xk(da),k(0)+ Lhg™30y, (g2 wl)]
+y [iwd xkx! Ajpg + hw! (x AOk+FJ)——hg zaxj (gzwf)] e vl (% c?). (79

In the second expression above, both square brackets are self-adjoint with respect to the Riemannian
density e! Ao A" = J&dx = ﬂdxl A--- A dx" with g = det(g;;). Again one may obtain an
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expression self-adjoint with respect to the Euclidean density dx in the framing g%uq ®L, 1<qg<2™
with the result being an addition of the term Ay’ wJ].c g_% (s g%).

Let ig be the injectivity radius of gTX. Define the cutoff y € C>(—1,1) such that y =1 on (—%, %)
We now modify the functions wJ’.‘, outside the ball B;, />(p), such that wjl.‘ = 8]’.‘ (and hence gjx = d;¢)

are standard outside the ball B;, (p) of radius iy centered at p. This again gives
D = y"[wfhdy, +zw,2x’<(da),k(0)+ Lhg™30y, (g2 wl)]
_1 1 m
+ 1 (x1/ i)y [iwf x*x! Ajpg + hw] (F A% +T)) = Lhg ™28y, (g2 w))] € WHR™: C?")  (7-10)

as a well defined operator on R” formally self adjoint with respect to /g dx. Since D) + i is elliptic in
the class S°(m) for the order function

m = \/1 + g/ (& + 2x¥(da)jx (0)) (& + 3x7 (da);,(0)),
the operator D is essentially self adjoint.

Proposition 7.1. There exist tempered distributions uj € S'(Ry), j =0,1,2,..., such that one has a

trace expansion
D n N J
Z )\=hz (DY 2
tr‘ﬁ(\/ﬁ) (;0”’("” )

foreach N e N, ¢ € S(Ry).

n+1

0( > ||<5>N</3(k)llu) (7-11)
k=0

Proof. We begin by writing ¢ = ¢o + ¢1, with

b0 = 5t [ e S*F) t5 wi6r= 4 [ o122 a

4

via Fourier inversion.
First considering ¢, integration by parts gives the estimate

n+1
"y ()] < O T ( > ||sN¢(k>||u)
for all N € N. Hence,

n+1

D ntN o
D"+, (—)D“ =Cyh' > ( ||$N¢(")||L1)
oo ()P = (2
forall N e N, foralla =0,...,n + 1. The semiclassical elliptic estimate and Sobolev’s inequality now
give the estimate
D N n+1
() <™ (0 17601L), (7-12)
Vi) coxxx) ,g)

for all N € N, on the Schwartz kernel.
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Next, considering ¢g, we first use the change of variables o = & V' to write

D 1 ia(Da +ih_'c(a))A( o ) (20‘)
B — = e 0 e da
¢O(\/E) 2 vh JR ¢ vh X ig

Now smce D =D on B;,/2(p), we may use the finite propagation speed of the wave operators e
el@h™'D [Ma and Marinescu 2007, Theorem D.2.1] to conclude

¢o( })(p,) ¢0( f)(o ). (7-13)

The right-hand side above is defined using functional calculus of self-adjoint operators, with standard

ich™ D

local elliptic regularity arguments implying the smoothness of its Schwartz kernel. By virtue of (7-12), a
.. . D . . D
similar estn?late for ¢ (J_E) aI"ld (7-13) it now suffices to consider ¢(¢_ﬁ)
We now introduce the rescaling operator

Z: CO[R":C*") > CRR"; C?"), (%s)(x) :=s(%).

Conjugation by % amounts to the rescaling of coordinates x — xv/h. A Taylor expansion in (7-10)
now gives the existence of classical (h-independent) self-adjoint, first-order differential operators D; =
a;‘ (x)0x, +Dj(x), j =0,1,..., with polynomial coefficients (of degree at most j + 1) as well as
h-dependent self-adjoint, first-order differential operators E; = Y, _y 41 X* [c]k W (X1 )0x, +dja(x:h)],
j =0,1,..., with uniformly C°° bounded coefficients c]]? o dja such that

#D% ' = VI, (7-14)

with
N

D= (Z hénj) +h' 2 Enyr VA (7-15)

Jj=0

The coefficients of the polynomials aj.‘ (x), bj(x) again involve the covariant derivatives of the curvatures
FTX FA40 and da evaluated at p. Furthermore, the leading term in (7-15) is easily computed as

Do = ¥/ [, +iix¥(da) 1 (0)] (7-16)

=1%o + ¥/ [0x, + 2iA;(P)Xjm ] + v T [0, 1 — 2i X (P)X)] (7-17)

:=Doo

using (7-1), (7-6). It is now clear from (7-14) that

oGl )

Next, let I; = {k =(ko.k1,...) ‘ ko €N, DY kg = } denote the set of partitions of the integer j and set

= Y " (z—Do) "[Mql[Dg, (z —Do)'1]. (7-19)

kel;
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Local elliptic regularity estimates again give

1829

(Z—D)_l=0L1200_>L1200(|Imz|_1) and Cijle()C_)LiC(Hmzrj_l), j=0,1,....

A straightforward computation using (7-15) then yields
N
(z—D)" ! — (Z hécj.) = Oleoc_>leoc((|Imz|_1h%)N+1).
=0
A similar expansion as (7-15) for the operator (1 4 Dz)% (z — D) also gives the bounds
N
(1+0%) "% (z-D)"' - (Z h'ﬁcjz-,nﬂ) = OHgﬁH,f;nﬂ((|Imz|—1h%)N“>
j=0

for all s € R, for classical (h-independent) Sobolev spaces H} . Here each Cjz. na Satisfies
—j-1
CjZ.,n-i-l = OHlfyc_)Hlij_n+l(|ImZ| J )

with leading term
_ntl —
Conr1=+D§)™ 2 (z—Do)~".

Finally, plugging the expansion (7-21) into the Helffer—Sjostrand formula
1 - n
¢(D) =—— / 35(z)(1+D*) "% (z D)~ dz dz,
2 C

with p(x) := (x)* g (x), gives

N N+1 ntl A
$(0)(0.0) = (Z hévj,p@s)) i 0( 3 1)V p® ||Ll)
k=0

Jj=0

using Sobolev’s inequality. Here each

1 _
Upp(#) =—— /C 0p(2)C3 ,41(0.0)dzdZ e End STX

(7-20)

(7-21)

(7-22)

(7-23)

defines a smooth family (in p € X)) of distributions U; and the remainder term in (7-22) comes from the

estimate
n+1

3= 0(Im = 3 16901

k=0

on the almost analytic continuation; see [Zworski 2012, Section 3.1]. Integrating the trace of (7-22) over

X and using (7-18) gives (7-11).

O

Next we would like to understand the structure of the distributions u; appearing in (7-11). Clearly,

uj Z/Xuj,p» with u; , :=trUj , € C*(X;S'(Ry)),

(7-24)
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is the smooth family of tempered distributions parametrized by X defined via the pointwise trace of
(7-23). Letting H(s) € S’(Ry) denote the Heaviside distribution, we now define the following elementary
tempered distributions:

Va;p(s):=5% aeNp, (7-25)
Varb.ea:p(s) = 02[Is]s? (5220, A) T2 H(s>=2v, A)],  (a,b,c; A) € NoxZxNoxju.(NZ\0). (7-26)

Proposition 7.2. For each j, the distribution (7-24) can be written in terms of (7-25), (7-26):

Mjsp(s) = Z Cja (p)sa + Z Cj;a,b,c,A(p)va,b,c,A;p(S)- (7-27)
a<2j+2 Aep.(NT\0)
a,|bl,c<4j+4

Moreover, the coefficient functions cjia, Cj.q.b,c,A € C°°(X) above are evaluations at p of polynomials
in the covariant derivatives (with respect to VIX ® 1 + 1 ® VA0) of the curvatures FTX, FA0 of the
Levi-Civita connection VIX, VA0 and da.

Proof. 1t suffices to consider the restriction of u; to the interval (—+/2vM, ~/2v M) for each 0 < M ¢
w.(NG' \ 0). We begin by finding the spectrum of the operator Dgg in (7-17). To this end, define the
unitary operator Uy, : C®°(R": C2") — C°(R"; C2"),

e _1 _1 _1 _1
(Ups)(x0, X1,X2,...) = (1_[ )Lj)s(xo,kl PX1,A0 7 X2, A, 2 X3, A, P X4, )

j=1
and

m
=X 4m +E&jym) € CORP™).
j=1
Next, as in (5-1) we compute the conjugate
e%fOWUADooUie_iTﬂfOW = [20(p)]? Dl
of the operator in (7-17) in terms of the magnetic Dirac operator on R (2-21) evaluated at # = 1. Hence

the eigenspaces of Dgg are

Ute T/ (B @ L2R™FL)), Ulem T/ (EX @ L2R™T))): A € n.(NT\ 0),

X(),X” xo’x//

with eigenvalues 0, =+/2v A respectively, where

Eo:=C[Yoolim1]. EL= E¥|
0 [Vo,0ln=1] A GB 3

TeNG\0

A=u.T
are as in (6-5). We again let Py, Pﬁ denote the respective projections onto the eigenspaces of Dgg and
Pp= PZ @ P,. We also denote by P~y = @ o> pmP 4 the projection onto eigenspaces with eigenvalue
greater than ~/2vM in absolute value.
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2
loc

computation of u;. The j-th term in the expansion is of the form

Now, since expansions in L = are unique, it suffices to work with the resolvent expansion (7-20) in the

¢ =Y (z—Do) ' [MaD, (z —Do) '], (7-28)
kel;

where each Dy, is a differential operator with polynomial coefficients involving the covariant derivatives of
the curvatures F7X, F40 and da. Now using (7-17) we decompose each resolvent term above according
to the eigenspaces of Dgog:

1
—Do) L =pPo[ ————|P
(z —Do) O(z—yoaxo) 0

Z+y %y +D z+y%x, +D
o P PA(ZZ_:_/asz_zvi{))PAEBP>M( zyaz"o DZOO)P>M. (7-29)
AepNIO(0,M) Xo 2=+ %, —Doo

Next, we plug (7-29) into (7-28). This gives an expansion for CJZ. with some of the terms given by

%9, +D
TZ[HaDkaTZ], where TZ:P>M(Z+V xo T 00) .

2 2 2
ze+ ax() —Doo

and which are holomorphic for Re z € (—+/2vM, ~/2vM). For the rest of the terms in CJZ. , we use the
commutation relations

[y°.Pol = [¥°.Pal = [y°.P-m] = 0.
[0x0+ Po] = [9x0, P4l = [0xy, P>m] =0,
[0x.Doo] = 0,
[(z% + 03, —2vA) ", xj] = 80, (2% + 03, — 2vA) 20y,
[(z* + 03, —2vA) ™', 0x,] =0,

as well as the Clifford relations (2-7). This now gives a finite sum of terms of the form

K
1 _
¢ | T 8«77 | % I1 — (z — y08xy) "902P1x02082 (7-30)
(z2 402 —2vA)9a
k=1 Aep.NFN(0,M) 0

ap+3ap<2j+2, by,by, b3 < j+1, where each Sy, is a differential operator in (x’x”) (i.e., independent
of xo) with polynomial coefficients and each T} is equal to one of

1 Doo
Po, Pa, PaDooPa, P M(—)P M, or P M(—)P M, (7-31)
\z2 92 -0, ) T\ 2 -n2) )7

with at least one occurrence of Pg,P 4 or P4DgoP 4 in (7-30). Now using partial fractions, (7-30) may be
written as a sum of terms of the forms
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K

TOZ|:1_[ SkaZ] X (z— yoaxO)_“Ozb‘ 232(3),
k=1
K
TOZ[]_[ Sy T,f} x (22492, —20A) T zb1xl295 A e wNET N (0, M), (7-32)

k=1
apg,apn <2j +2, b1,ba, b3 < j + 1. Next, we plug (7-32) into the Helffer—Sjostrand formula and
use the analyticity of P> pr(1/(z% + 82 —D3))P>ar and P= a7 (Doo/ (2% 4 83 —D§))P>ps for Rez €

(—+/2vM, ~/2vM). This gives
1 .
Ujp(p) = —E[Daqs(z)cj(o,()) dzdz

for ¢ € CX°(—~2vM, ~/2vM), as a sum of terms of the form

(TO []‘[ Ska} xx028b3¢0()/08xo)) (0,0),

k=1

K
(T(?[H SkT,?] X x028b3¢A( a ot 2vA)) (0,0), A€ M.Ng’ Nn(oO,M), (7-33)
k=1
where each T]? is equal to one of
P P P ADgoP P 1 p p Doo p
’ ’ ) — , or - ,
0 A AP00F A >M 21)A—D%0 M M QVA_D%O M
and

D@,
$o(s) = mxb P(s),

2 _(_l)aA_l as—1 ”b1¢(”) | qaa—1 rb1¢(r)
‘“(”‘(aA—l)!{[a’ ((r—s)w)},:_s [3’ ((rﬂ)%)]r:s}‘

At least one occurrence of Pg,P 4 and P 4DgoP 4 in (7-33) gives the smoothness of the kernel.
Finally, an elementary computation involving Laplace transforms using the knowledge of the heat

kernel . 5
2 Ixo—yol
elaxo (XO’ yo) = \/me——o 4;}—0
gives
b3+1
_l)[i]

X229 o (y%9x0)(0, 0) = 80, Vbs:p($0),

VAT ([P +3)
; S
28 3¢A( 3 +2UA)(0,0)= 47TF( 3 _%)
0, b3 odd,

S+ NI'—'

2
50b200,0’b73,A;p(¢A(S ), bz even,

|

completing the proof. O
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As an immediate corollary of Proposition 7.2, we have that the distributions u; are smooth near 0.
Corollary 7.3. For each j,

sing spt(u;) C R\ (—y/2v0. v/2vp).

Proof. This follows immediately from (7-24)—(7-27) on noting that the distributions v,;, are smooth,
while vg p ¢ 4.p = 0 0n R\ (—+/2v9, +/2vg) for each p € X. O

We next give the exact computation for the first coefficient 1o of Proposition 7.1. In the computation
below, recall that Z; = |I;|, as in (2-13), denotes the number of nonzero components of T € N’ \ 0.

Proposition 7.4. The first coefficient ug of (7-11) is given by

uop =co0+ Y €0:0,00,4(P)V0,0,0,4:p(5). (7-34)
A (NI1\0)

where

u;,"(]‘[;.”=1 14)

(47)2
CO;O,O,O,A(P) — M dim(E ) = M( Z ZZr). (7-35)
(47)2 (47)2 TeNI\0
nw.t=A

Proof. First note that the square of (7-16) gives the harmonic oscillator
. . . 1 . i .
DZ = —8/%0,, 0%, —i(da)] (0)xFdy, + Zxkxl (da)](0)(da)’(0) + v v (da)x (0).

The heat kernel e % of the above is given by Mehler’s formula [Berline et al. 2004, Section 4.2]

_(X()—y())2 .
(4mr)ym 4t sinhitda(0)
- Aj Ajt
Xexp{ _m((Xj_yj)2+(xj+m_yj+m)2)+7]tanh(%)(xjyj +XjtmYj+m) -
(7-37)
Next, using (7-1) we compute
) m
e~te(ida(0)) — l_[ [cosh(tA;) —ic(ej)c(ej+m)sinh(tA;)]. (7-38)
j=1
For I C{2,...,m}and wy = /\;c;(€j A €j+m), the commutation

clene(em+)e(wr) = zle(er). clem+1)e(@r)]
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shows that the only traceless terms in (7-38) are the constants. Hence, Mehler’s formula (7-36) gives

. 1 m

B 1 1 itda(0) 12 Aj
D3.(0. 0) = det 2 = ’
re 0.0 =007  nnitda©) ) = an)? Utanhtlj

1

S
_ 172 (ﬁ lj)( Z 22,6—2”.)&)
(4m)2 \ TeN!
pm m_ .
— V4 (2];% /’LJ) (t—é Z 2Z,e—2tr.k) — u(),p(e_tsz)’ (7_39)
T TeNy

with ug, , as in (7-34) and the last line above following from an easy computation of Laplace transforms;
see [Savale 2014, Section 4]. Furthermore, differentiating Mehler’s formula using (7-16) gives

trDoe*20(0,0) = 0 = ug,p(se ") (7-40)

since the right-hand side of (7-34) is an even distribution. From (7-39) and (7-40) we have that the

. . _¢2 _+e2 . .. . .
evaluations of both sides of (7-34) on e 5", se™*S” are equal. Differentiating with respect to ¢ and setting

t = 1 gives that the two sides of (7-34) evaluate equally on ske=s? for all k € No. The proposition now

follows from the density of this collection in S(Ry). O
We now complete the proof of Lemma 3.2.

Proof of Lemma 3.2. We begin by writing

e Ry o TR

Next, the expansion result, Proposition 7.1, with ¢ (x) = f(x)e!? =) combined with the smoothness of
uj on spt( f) C (—+/2vg, +/2v9) from Corollary 7.3 gives

[ D N+1—n ntl ~
tr[f(ﬂ)e”(*‘ﬁ’] ity (me (r)) 18 (Z ||<$>N¢<k><s—r)||y). (7-42)
ﬂ k=0

=0((t)N)

Finally, plugging (7-42) into (7-41) and using 6 (th%_a) = 1+ O(h®°) gives via Fourier inversion

E 2 it(l_%) %—s _ j,—m—1 y é . e(N+1)—m—1
— /dztr[f(ﬁ)e f}@(zh )= h (Zh f(A)u,(A))+0(h )

J=0

as required. O
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8. Asymptotics of spectral invariants
In this section we prove Theorem 1.2 on the asymptotics of the spectral invariants.

Proof of Theorem 1.2. To prove the Weyl law (1-5), we choose 6 € CZ°((—T,T); [0, 1]) such that
O(x)=1on (=T".T"), T'<T, 6(§) >0and 6(§) > 1 for |¢| < ¢ in Theorem 1.3. Choosing f(x) >0
with f(0) = 1, the trace expansion (1-7) with A = 0 now gives

%N(—ch, ch)(1+ 0(Vh)) < tr[f (%) %é(%)] = o™y

proving (1-5).
To prove the estimate (1-6) on the eta invariant, we first use its invariance under positive scaling (2-2)

]

=/0 dtﬁt[—e th] / dt—— [ﬁ z’«DZ] (8-1)

Next, [Savale 2014, equation 4.5, p. 859] with r = % translates to the estimate

and the formula (2-5) to write

wei(5)-

D _DZ] _
tr| —e % O(h™™e ). (8-2)
K
Plugging, (8-2) into the first integral of (8-1) gives

np=0Mh"")+ trE(E (8-3)

)

where

E(x) = sign(x) erfc(|x|) = sign(x) - % /|0|o e ds

with the convention sign(0) = 0. The function E(x) above is rapidly decaying with all derivatives, odd
and smooth on Ry \ 0. We may hence choose functions f € C°(—+/2vg, +/2v9), g € CZ°(R<p) such
that

f(x)+g(x)=E(x) forx <O0.

Define the spectral measure

MeA):= Y fSA-L).

A€Spec (%)
It is clear that the expansion (1-7) to its first term may be written as

My o+ (Fy0) () = K2 (S (Muo(A) + 0(h2),
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where 0 1 (x) = 0(x/~/h) as before. Since both sides above involve Schwartz functions in A, the remainder
maybe replaced by O(h%/ (A)?). One may then integrate the equation to obtain

0 1 0 1
/ dA / AV (F )= 2)Mp (V) = > ( / dAf(Muo(h) + O(hz)). (8-4)

Next we observe

0 ) , 0 . A, , )k/ —00
dAMF, ' 01)(A—A =/ dt@(t——)zl_ A —|—0(<—> ) (8-5)
/_oo (Fp 01 ) N NG (—00,0](A") NG
While the Weyl law yields

A\
dX MmN — =0h™™). -
1 ( )0(<\/ﬁ> ) O(h™™) (8-6)

Substituting (8-5) and (8-6) into (8-4) gives

1 0
) f(x)=h—'"—z( / dxf(x)uo(x))w(h—'").
A<0 B
AESpec(%)

This combined with D
ol — ) =hr"2u +omh™™
Tl ﬁ) o() + O™
then gives
0
Y En=nm (/ d)LE(A)uO()L)) +O(h™),
—o0

A<0
A€Spec (%)

where the integral makes sense from the formula (7-34) for up. A similar formula for

> EW

A>0
A€Spec (%)

trE(%) — M2 ([_Z dAE()L)uo()\)) +Oo(h™).

Since E is odd and ug is even from (7-34), the integral above is zero and hence n = tr E(D/~h) =
O(h™™) from (8-3) as required. O

now gives

In the above proof we have used a Tauberian argument, as in [Dimassi and Sjostrand 1999, Chapter 10].
A similar argument along with the trace expansion theorem, Theorem 1.3, also gives a true Weyl law in
O(~/h)-sized intervals: the number of eigenvalues N(—c Vh,eNh), 0 < ¢ < /2vg, in the given interval
satisfies

—m—% 2c m - . -m
N(=cvh,eNh) = h [(4n)m /Xv (J]:[1 M,) dx] +O(h™™). (8-7)
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The leading term of the above may possibly be obtained by squaring the Dirac operator and using the
spectral estimates on an O (h)-sized interval near the critical level for D,zl, as in [Brummelhuis et al. 1995].

8A. Sharpness of the result. Here, we finally show that the result Theorem 1.2 is sharp. The worst case
example was already noted in [Savale 2014, Section 5] for ny. To recall, we let ¥ be a complex manifold
of dimension 2m with complex structure J and a Riemannian metric g7 Y. Fix a positive, holomorphic,
Hermitian line bundle £ — Y. The curvature F* of the Chern connection is thus a positive (1, 1)-form.
Let X be the total space of the unit circle bundle S' — X -5 Y of £. The Chern connection gives a
splitting of the tangent bundle

TX =TS'@&=*TY, (8-8)

where T'S! is the vertical tangent space spanned by the generator e of the S! action. Define a metric gTSl
on T'S! via ||€||gTSI = 1. A metric on X can now be given using the splitting (8-8) via

TX TS!

g =g 698_17'[*gTY

for any € > 0. A spin structure on Y corresponds to a holomorphic, Hermitian square root K of the
canonical line bundle Ky = K®2. Fixing such a spin structure as well as the trivial spin structure on 7'S'!
gives a spin structure on X. Finally a = ¢* € Q1 (X), while the auxiliary line bundle is chosen to be
trivial L = C with the family of connections V* = d + ,%a. We now have the required family of Dirac
operators Dj, (1-2). One may check that (X2 +1 4, g7X, J) here gives a metric contact structure (1-4)
and hence the assumption Definition 1.1 is satisfied.

Denote by Ag Q0P (XK QL) — Q0P (X K ® £P¥) the Hodge Laplacian acting on (0, p)
forms on X. Its mﬁll-space is given by the cohomology H? (X : K ® £L®¥) of the tensor product via Hodge
theory. Let eﬁ’k denote the dimension of a each positive eigenspace with eigenvalue % u? € Spec™ (Agk).
The spectrum of Dy was now computed in Proposition 5.2 of [Savale 2014].

Proposition 8.1. The spectrum of Dy, is given by eigenvalues of the following types:

e Type 1.
A= (—I)Ph(k + (s - %) - %) (8-9)
0 < p <m, k € Z, with multiplicity diim H? (X ; K ® £L®F).
e Type 2.
A= h[% ((—1)1’“8 - \/(Zk +eQ2p—m)— % + 1)2 + 4;&9)}, (8-10)

0<p<m,ke”, %/Lz € Spec+(Ag ), with multiplicity dff’k = eﬁ’k —eﬁ_l’k et (_1)1)32:’{
k

As observed in [Savale 2014], by choosing

< inf{%u2 € Spect(A? )},
k.p 9%
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the eigenvalues of type 2 are either positive or negative depending on the sign appearing in (8-10). Hence
the dimension of the kernel k;, of Dj, is now given by the eigenvalues of type 1:

dim H*(X: K ® £Z%), } =k +(e—2),

ki, =
h 0, otherwise.

(8-11)
Now by a combination of Kodaira vanishing and Hirzebruch—-Riemann—Roch,
dim H*(X; K ® £2%) = dim HO(X; K ® £8%) = y(X, K ® L&) = / ch(K ® £2%) td(X)
X

for k > 0, where y(X, K ® £8%), ch(K ® £8¥) and td(X) denote Euler characteristic, Chern character
and Todd genus respectively. Hence (8-11), (8-12) show that the kernel and hence the counting function
are discontinuous of order O(h~™) = kj, < N(—ch, ch) in this example. A similar discontinuity of the
eta invariant of O(h~™) was proved in Theorem 5.3 of [Savale 2014].

Appendix: Some spectral estimates

In this appendix we prove some spectral estimates used in Sections 4 and 5; see [Helffer 1988, Section 4.1]
for some related estimates.
Let H be a separable Hilbert space. Let A : H — H be a bounded self-adjoint operator. The resolvent
set and the spectrum of A are defined to be
R(A)={A e C| A— Al is invertible},
Spec(A4) = C\ R(A).
Since A is self-adjoint, Spec(A) C R. We may now define the following subsets of the spectrum:

EssSpec(A) = {A € C| A — Al is not Fredholm},
DiscSpec(A) = Spec(A) \ EssSpec(A).

We shall consider DiscSpec(A4) above as a multiset with the multiplicity function m4 : DiscSpec(4) —
No defined by m4(X) = dimker(4). We may then find a countable set of orthonormal eigenvectors
vf‘, vé“, vg‘, ..., with eigenvalues )L’l‘l < )L’z‘l < )L’34 < --- such that DiscSpec(A4) and {A‘l‘l,k‘z‘l, ...} are
equal as multisets. Now let [a, ] C R be a finite closed interval such that EssSpec(A) N [a, b] = @ (i.e.,

A has discrete spectrum in [a, b]). Then

A
Hi oy = @ ker(A—A)
A€Spec(A)N[a,b]

is a finite-dimensional vector subspace of H. We denote by
A . A
i,y — Hp ) CH

the orthogonal projection onto H [‘3 5] and by N[’;l b] the dimension of H [‘3 b]" The operator p(A): H - H
may now be defined for any function p € C9([a, b]) by functional calculus.
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Lemma A.1. Letv € H and A € [a, b). Assume there exists ¢ > 0 such that A has discrete spectrum in
[a —/e,b+ el and ||(A—L)v| < ¢|v|. Then

1M s ya? — ol < Velvll, (A-1)

1(p(4) = pM)vll = 3vellpllco [[v]] (A-2)

for any Holder continuous function p € CCO’1 ([a, b]).

Proof. We abbreviate 1 = H[a—ﬁ,b+¢§]‘ Let Hy := H[a—ﬁ,b+ﬁ] = IT1H, which by assumption

is a finite-dimensional vector space. Let Hd- be the orthogonal complement of Hy. By assumption,
Spec((A —1)?| Hé_) N [—¢, €] = @. Hence by the mini-max principle for self-adjoint operators bounded
from below [Dimassi and Sjostrand 1999, Lemma 4.21], we have ¢ < (4 — 1)?]| H Hence

ITTv —v]1%e < [[(A = 2)(TTv —v)|?
< [1(4 =)o =) |> + [|(4 = D TT[* = [[(4A = D)v||* < ?||v]|?
since (A —A)(ITv — v) and (A — A)ITv are orthogonal. This gives
1Ty —v|| < Vellv]l. (A-3)

To prove (A-2) first note that | TT'v — v|| < 4/¢||v||, for TT' =
now have

Hﬁ_ JEA+ A by the same argument. We

I(p(A4) = p()v |l < [I(p(A) = p(M))(IT'v — )| + [ (p(A) — p(A) IT'v]|
=2Velpllcor vl + Velplicorlv]. O

Before stating the next lemma we need the following definition.

Definition A.2. Given 0 < ¢ < 1, a set of vectors w1, wy, ..., wy € H is called an g-almost orthonormal
set of eigenvectors (¢-AOSE for short) of A4 if

(D) [lwj|>—1| <& forall j,

(2) {wj,wg)| <eforall j #k,

(3) (A= pj)w;| <& for some pu; € R, forall j.
Lemma A.3. Assume that Hy C H has finite dimension M and is mapped onto itself by A. Let
w1, Wa,...,wWN € Ho be an e-AOSE of A for some ¢ < 1/(2(M + 1)). Then there exist orthonormal

Wi, Wy, ..., Wy, _n € Ho such that ||(A — ,u})w]’.H < 4M ¢ for some /L} € R, for all j. Furthermore
(wj, wy) = 0 for each j, k.

Proof. It follows from ¢ < 1/(2(M + 1)) that wy, w,, ..., wy are linearly independent. Let W denote
their span and WL C Hy its orthogonal complement. Let IT, I be the orthogonal projections onto
W, W and consider the operator Ag := T ATIL: WL — WL Let Wi WY, ... Wy € W+ be an
orthogonal basis of eigenvectors of Ag. Hence

1 A
N~ Aw; = p;w;
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for some 11, € R, for all j. Also

[(Aw}, we )| = [(w}, (A — pp)wg )| <e.
It then follows that ||HAw} | <2Me/1+ ¢ < 4Me giving the result. O

Lemma A4. Given N € N, let 0 < ¢ < (||[A|| + |a| + |b| + N + 1)™*. Let wi,wa,...,wy € H

be an ¢-AOSE for A. Assume that A has discrete spectrum in [a — eé,b + 8%]. Then there exist

orthonormal vectors w1, Wy, ..., Wy € H which span the same subspace of H as wy, w3, ..., WN.

Moreover |lwj —w;|| < /& and ||(p(A) — p(u;))w; || < 38%”,0”00,1 for 1 < j < N and any Holder
. . 0,1

continuous function p € C¢"" ([a, b]).

Proof. Again it follows easily that the vectors w;, 1 < j < N, are linearly independent. Let W C H be
their span and choose an orthonormal basis e¢;, 1 < j < N, for W. We write

N
w; = Z M.
k=1

If we consider the matrix M = [m ], then assumptions (1) and (2) of Definition A.2 are equivalent
to [M*M — I| < ¢. Consider the polar decomposition M = UP, where U is unitary and P is a
positive semidefinite Hermitian matrix. We have |P*P — I| < ¢ and hence |[P*P — I|| < Ne. Thus
any eigenvalue A of P, being nonnegative, satisfies [A* — 1| < ¢ and we have ||P —I|| < Ne. Thus
[M—-U| =|UP—-U| < Ne. If we now let U = [ux] and w; = Z,y:l ujkek, then the w; are clearly
orthonormal and satisfy |w; —w; || < 4/e. This last inequality along with assumption (3) of Definition A.2
easily gives
(A= iy | < 5.

Now Lemma A.1 gives

|1 — b | < e, (A-4)
- 1
I(o(A) = p(u; Nw; || < 3e¥lpllco.r (A-5)
completing the proof. O

Next, let H’ be another separable Hilbert space. Let U : H — H’ be a bounded operator. Let
B,D:H' — H’ and C : H — H be bounded self-adjoint operators. Define A’ = UAU™* : H' — H’,
B'=U*BU:H—->H,C'=UCU*:H'— H and D'=U*DU : H — H. In the next proposition we
assume that there exists § > 0 such that A, A, B and B’ have discrete spectrum in [a — &, b + §]. We also
abbreviate N4 = N[ﬁ—é’,bw] and T4 = chlz—S,b—‘,—S] and similarly define NA/, NB, NB/, HA/, M2, s,

Proposition A.5. Suppose there exists 0 < & < L2948 with
L=25{|A| + || + | Bl + 1B+ ICIl+ DI + N4+ N4 + NB + NB 4 |a| + b + 571 + 1},
such that

W) 1O =T (AU +1) < e and |(UU* = DHOP|(IBIIU*]| +1) <e,
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2) (A" =B)I4 || < g and ||(A— BHTIF|| <,
(3) |[(C"'—D)[T4|| < e and ||(C — D18 <&.

Then we have

|tr[Cp(A)] — e[ Dp(B)]| < £70% || p]| 1
for any p € CX([a, b)).

Proof. Let (DiscSpec(A4),m4) Na,b] = {24 A4 ... }, with N = N[ b 38 multisets. Let

artaz e aN

pT(x) = 3(p(x) + [p(x)]) and p~(x) = 3(p(x) — |p(x)]). We then have p*,p~ € C;*' ([a,b]) with
ot lcor < llellcis o~ llcor < llpllcr- We further decompose C = CT +C~, D = D" + D™ into
their positive and nonpositive parts. Clearly

N
alCFpT (] =D o+ (a)) (v, CFvg)).

Jj=1

Next we consider wj = Uv,, € H ’. From assumption (1) we have
|(A" = 2a)wj | = |(UAU* = 2a))Uvq, | < [(U*U = DTf [ 141U <.

Similar estimates glve ‘||w] > — 1} < e and [(wj, wg)| < ¢ for j # k. Now by Lemma A.1 we have
[TTw; —w;|| < (23)2 with IT = H[a N Tk Following this and using assumption (3) we have

[(B = 2a)ws]| = (4" = Aa;)ws | + [[(B = A)TTw; | + (B — 4)([w; —w) |
<etevT+e+ Q)2 (|4 +B)

1 1
<e* <es|w;].

Next define wj(.) = H[ljl—al/w,b—l—al/lqwj' By Lemma A.1,
1
lw? —w; || < &6 Jw; . (A-6)
From here it follows immediately that w(l’, wg, .. w?\, form an £53-AOSE of B. If we let Hy =
[a—e1/16 b tel/16]° then by Lemma A4 there exist orthonormal wi, Wy, ..., Wy € Hp which span the

same subspace of Hy as the w . Furthermore

1

||w —wj|| < g8 (A7)
and [|(p™ (B) — p* (Aa, ), || < 3|lpllc1e512. From (A-6) and (A-7) we also have |lw; — ;|| < s756.
From Lemma A.3 there exist orthonormal w1, w12’ Wy With M = N[a £1/16 1 1/16] such that
(wj,wj) =0and [|[(B—pHw}| < 4Mest < eT%. Hence by Lemma A.1, ||(pT(B) — p"'(uj))w/ | <
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3||p||c1eﬁ. We now have

N —
w[ DT pT(B) =) (w;. DT pt(B)w;) + Z 5. DT pt(B)w))
j=1 j=1
N _ 1
>3 pt(Aa) iy DY) Z W) (wh, DTwh) —3esz M| Dl|lpll e
J=1 J=1

N
_ _ 1
> 3" pt(ha) )iy, DT i) =365 M| DIl
j=1

N
1
>3 pt(Aa)(wj. DY wy) —6e52 M| D [Ipll
j=1
N 1
> T (ha;)(va; . CFva,) =652 M([ D] + Dl
j=1

> tr[C T p T (4)] - 7% | 1.
Reversing the roles of H and H' gives
[u[DF p (B)] —tr[C T pT ()] < e70% o)l 1.
Similar estimates with C*p~(A4), C~p*(A) and C~p~(A) give the result. O

Finally, we now give a criterion implying the discreteness of spectrum for pseudodifferential operators
required by the preceding propositions in this appendix.

Proposition A.6. Let A € W (R"; CH and I = [a,b] C R be a closed interval such that the I -energy

band
A._ A
>t ==
Ael

is bounded. Then for h < hg sufficiently small
EssSpec(A)NI =g

Proof Let 0(A) = a(x,£) € C®(R?") and X (a) C By be some open ball of finite radius R around the
origin. For A € I and (x, £) ¢ Br, we hence have thata_1 := (a(x, £)—A) ! exists. Let y e C°(—4R, 4R)
such that y(x) = 1 for x < 2R. Set ¢(x) = 1 — y(x) and define

w
Ay =[p(x. Oha-1(x, 9] € WHR";C).
Then since it has vanishing symbol, we have

(A=A — (I = x(I(x,OD") = hR € RV (R"; C).
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Next, we clearly have I + hR is invertible for i < hg sufficiently small. Also, y(|(x, £)])" is trace class
by [Hormander 1994, Lemma 19.3.2]. Hence if S := A_{({ + hR)™!, then (A—A)S — I is trace class.
By a similar argument, S(A — A) — I is trace class. Hence by Proposition 19.1.14 of [Hormander 1994],
A — A is Fredholm. O
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INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN POROUS MEDIA
A VARIATIONAL APPROACH

CLEMENT CANCES, THOMAS O. GALLOUET AND LEONARD MONSAINGEON

We describe the competitive motion of N+1 incompressible immiscible phases within a porous medium
as the gradient flow of a singular energy in the space of nonnegative measures with prescribed masses,
endowed with some tensorial Wasserstein distance. We show the convergence of the approximation
obtained by a minimization scheme 4 la R. Jordan, D. Kinderlehrer and F. Otto (SIAM J. Math. Anal.
29:1 (1998) 1-17). This allows us to obtain a new existence result for a physically well-established
system of PDEs consisting of the Darcy—Muskat law for each phase, N capillary pressure relations, and a
constraint on the volume occupied by the fluid. Our study does not require the introduction of any global
or complementary pressure.

1. Introduction

Equations for multiphase flows in porous media. We consider a convex open bounded set Q C R?
representing a porous medium; N+1 incompressible and immiscible phases, labeled by subscripts
i €{0,..., N} are supposed to flow within the pores. Let us present now some classical equations that
describe the motion of such a mixture. The physical justification of these equations can be found, for
instance, in [Bear and Bachmat 1990, Chapter 5]. Let T > 0 be an arbitrary finite time horizon. We
denote by s; : Q2 x (0, T) =: @ — [0, 1] the content of the phase i, i.e., the volume ratio of the phase i
compared to all the phases and the solid matrix, and by v; the filtration speed of the phase i. Then the
conservation of the volume of each phase can be written as

05 +V-(s;v;) =0 in Q, Vie{0,...,N}. (D)
The filtration speed of each phase is assumed to be given by Darcy’s law
1 . .
vi=—;K(Vp,-—pig) in Q, Vie{0,..., N} )
l

In the above relation, g is the gravity vector, u; denotes the constant viscosity of the phase i, p; its
pressure, and p; its density. The intrinsic permeability tensor I : @ — R¢*? is supposed to be smooth,
symmetric, that is, I = K7, and uniformly positive definite: there exist «,, k* > 0 such that

KEP < K(x)E-& <ik*|E]* VEER! VxeQ. 3)
MSC2010: 35K65, 35A15, 49K20, 76S05.
Keywords: multiphase porous media flows, Wasserstein gradient flows, constrained parabolic system, minimizing movement

scheme.
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The pore volume is supposed to be saturated by the fluid mixture

N

o= Zsi =w(x) ae.in Q, “

i=0

where the porosity w : @ — (0, 1) of the surrounding porous matrix is assumed to be smooth. In particular,
there exists 0 < w, < @* such that w, < w(x) < o* for all x € . In what follows, we set s = (s, . . ., SN),

A@) ={se ROV | T s =0@)},
and
X ={seL"(RY™ |s(x) e Ax) ae. in Q).

There is an obvious one-to-one mapping between the sets A(x) and
A*x) = {s* =1, ..., € ROY [T s <o)},
and consequently also between X and
X*={s*e L'(RY) | s*(x) € A*(x) ae. in Q}.

In what follows, we set ¥ =, .5 A*(x) x {x}.
In order to close the system, we impose N capillary pressure relations

pi—po=mi(s*,x) ae inQ, Viell,..., N}, (5)

where the capillary pressure functions 7; : ¥ — R are assumed to be continuously differentiable and to
derive from a strictly convex potential IT: Y — R, ; that is,

oIl
mi(s*, x) = a—(s*, x) Vie{l,..., N}
Si

We assume that IT is uniformly convex with respect to its first variable. More precisely, we assume that
there exist two positive constants @, and @ * such that, for all x € Q and all s*, §* € A*(x), one has

L8 — s> = TI(E*, x) — T1(s*, x) — (5%, x) - §* —s*) > Lev, |§* — 57/, (6)
where we introduced the notation
T: Y > RY, % x) ns%x) =G5 %), ..., 7565 x)).
The relation (6) implies that r is monotone and injective with respect to its first variable. Denoting by
2> ¢z, x) = ($1(z,%), ..., dn(z, X)) € A™(x)
the inverse of (-, x), it follows from (6) that

0< 1 <Upzx)< - Vxel Viem(A'(x).x), @)
w w.

*
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where J; stands for the Jacobian with respect to z and the above inequality should be understood in the
sense of positive definite matrices. Moreover, due to the regularity of & with respect to the space variable,
there exists Mg > 0 such that

IVid(z,x)| < My Vx €Q, Vzem(A*(x),x), (8)

where V, denotes the gradient with respect to the second variable only.

The problem is complemented with no-flux boundary conditions

v;-n=0 ondR2x(0,T), Vie{0,...,N}, 9
and by the initial content profile s0 = (sg e s?\,) e X
N
si(-,0) =sl.0 Vi € {0, ..., N}, with Zs? =w a.e.in Q. (10)
i=0

Since we did not consider sources, and since we imposed no-flux boundary conditions, the volume of
each phase is conserved along time:

/s,-(x,t)dx:/s?(x)dx::m,->0 Vie{0,...,N} (11D
Q Q

We can now give a proper definition of what we call a weak solution to the problem (1)—(2), (4)—(5),
and (9)—(10).

Definition 1.1 (weak solution). A measurable function s : Q — (Rp)" +1 5 said to be a weak solution
if s € A a.e. in Q, if there exists p = (po, ..., pn) € L>((0, T); H'(£2))N*! such that the relations (5)
hold, and such that, for all ¢ € CSQ(S_Z x[0,T))and alli € {0, ..., N}, one has

// s,-atq&dxdt—l—/s?d)(-,O)dx—// i[K(Vp,‘—,oig)-Vquxdt:O. (12)
0 Q 0 Mi

Wasserstein gradient flow of the energy.

Energy of a configuration. First, we extend the convex function IT : Y — [0, +o0], called capillary
energy density, to a convex function (still denoted by) IT : R¥N*! x @ — [0, +00] by setting

S*
H(w—,x) = H<a)s—l,...,ws—N,x) ifs e Rﬁ“ and 0 < w(x),
II(s, x) = o o log

+00 otherwise,

o being defined by (4). The extension of IT by +o00 where o > w is natural because of the incompressibility
of the fluid mixture. The extension to {o < w}U [R{f *lis designed so that the energy density only depends
on the relative composition of the fluid mixture. However, this extension is somehow arbitrary, and,
as it will appear in the sequel, it has no influence on the flow since the solution s remains in X; i.e.,
Z;V:O s; = w. In our previous note [Cances et al. 2015] the appearance of void o < w was directly
prohibited by a penalization in the energy.



1848 CLEMENT CANCES, THOMAS O. GALLOUET AND LEONARD MONSAINGEON

The second part in the energy comes from the gravity. In order to lighten the notation, we introduce
the functions

lIf,-:S_Z—>[R+, x+— —pig-x, Vie{0,...,N},
and
¥:Q— R x> (W), ..., Uy (x)).
The fact that W; can be assumed to be positive comes from the fact that €2 is bounded. Even though the
physically relevant potentials are indeed the gravitationals W;(x) = —p; g - x, the subsequent analysis

allows for a broader class of external potentials and for the sake of generality we shall therefore consider
arbitrary W; € C'(Q) in the sequel.

We can now define the convex energy functional £ : L'(2, RV 1) — RU{+o00} by adding the capillary
energy to the gravitational one:

5(s)=/(1'[(s,x)+s-\ll)dx20 Vs € L1(Q; RN, (13)
Q

Note moreover that £(s) < oo if and only if s > 0 and 0 < w a.e. in 2. It follows from the mass
conservation (11) that

N
dx = ;= dx.
/Qa(x) gm /Qa)(x) x

Assume that there exists a nonnegligible subset A of 2 such that ¢ < w on Aj; then necessarily, there
must be a nonnegligible subset B of Q2 such that ¢ > w so that the above equation holds, and hence
£(s) = +o0o. Therefore,

E(s) <00 < selX. (14)

Let p = (po, ..., pn) : @ — RN*! be such that p € 3I1(s, x) for a.e. x in Q. Then, defining
hi=pi+WV;(x)foralli €{0, ..., N} and h = (h;)o<i<n, we have h belongs to the subdifferential d;E (s)
of £ ats;i.e.,

N
5(§)Z€(s)+2fhi(§i—si)dx Vs e L'(@ RV,
i=0 v

The reverse inclusion also holds; hence
ES)=1{h:Q — RN | h; — W (x) € 3,T1(s, x) for ae. x € Q). (15)

Thanks to (14), we know that a configuration s has finite energy if and only if s € X. Since we are
interested in finite energy configurations, it is relevant to consider the restriction of £ to X. Then using
the one-to-one mapping between X and X'*, we define the energy of a configuration s* € X’*, which we
denote by £(s*), by setting £(s*) = £(s), where s is the unique element of X corresponding to s* € X'™*
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Geometry of 2 and Wasserstein distance. Inspired by [Lisini 2009], where heterogeneous anisotropic
degenerate parabolic equations are studied from a variational point of view, we introduce N+1 distances
on 2 that take into account the permeability of the porous medium and the phase viscosities. Given two
points x, y in €2, we denote by

P(x,y)={y € C(I0,1]; ) | y(0)=x and y(1)=y}

the set of the smooth paths joining x to y, and we introduce distances d;, i € {0, ..., N}, between elements
on 2 by setting

1 1/2
di(x,y)= inf ( / wlKHy @)y (x) -y (7) dr) V(x, y) € Q. (16)
yeP(x,y)\ Jo
It follows from (3) that
Mi Wi =
K—i|x—y|5di(x,y>s‘/,(—’|x—y| V(x,y) e Q% (17)

Fori € {0, ..., N} we define
Ai={si e LN Ry) | [g sidx=m;}.
Given s;, §; € A;, the set of admissible transport plans between s; and §; is given by
Ti(si, ) = [6i € Mu(Qx Q) | 6:(2 x Q) =m;, 6" =s; and 67 =5;},
Qi(k)

where M (2 x ) stands for the set of Borel measures on 2 x 2 and is the k-th marginal of the

measure 6;. We define the quadratic Wasserstein distance W; on 4; by setting

12
W,~(s,~,§,~):( inf f/ di(x,y)zdei(x,y)> . (18)
0; €l (s;,S;) QxQ

Due to the permeability tensor K(x), the porous medium €2 might be heterogeneous and anisotropic.
Therefore, some directions and areas might be privileged by the fluid motions. This is encoded in the
distances d; we put on 2. Moreover, the more viscous the phase is, the more costly are its displacements,
hence the u; in the definition (16) of d;. But it follows from (17) that

i A [ ) )
K_iWref(Si’ 5;) < Wisi, 8i) < K_lWref(Sia 5i)) Vsi, s €A, (19)

where Wt denotes the classical quadratic Wasserstein distance defined by

12
Wiet(si, 5i) = ( inf // x — y|*do; (x, y)) . (20)
0: €l (si,5:) QxQ

With the phase Wasserstein distances (W;)o<ij<y at hand, we can define the global Wasserstein
distance W on A := Ay x - - - x Ay by setting

N 172
W(s, §) = (Z Wi(si,§l-)2) Vs, § € A.
i=0



1850 CLEMENT CANCES, THOMAS O. GALLOUET AND LEONARD MONSAINGEON

Finally for technical reasons we also assume that there exists a smooth extension K to R? of the
permeability tensor such that (3) holds on R% This allows us to define distances d; on the whole R? by

1 - 1/2

di(x,y)= inf (/ wil 'y ()Y (o) - y/(f)dr> Vx,yeR (21)
YeP(x,y)\JO

where ﬁ(x, y) ={y € Cl([0, 1]; RY) | ¥(0)=x and y(1)=y}. In the sequel, we assume that the

extension [ of < is such that

Q is geodesically convex in M; = (R?, d;) for all i. (22)

In particular Ji =d; on Q x Q. Since K1 is smooth, at least Cg(Rd), the Ricci curvature of the
smooth complete Riemannian manifold M, is uniformly bounded; i.e., there exists C depending only on
(mi)o<i<n and i< such that

IRicpg, ()] < CuiK'v-v  Vx e RY, Vv e RY (23)

We deduce from the lower bound on the Ricci curvature and on the geodesic convexity of €2 that the
Boltzmann relative entropy H,, with respect to w;, defined by

He(s) = / s log(i> dx for all measurable s : 2 — R, (24)
Rd w

is X;-displacement convex on P?*(2) for some A; € R. Here, P*(£2) denotes the set of probability
measures on €2 that are absolutely continuous with respect to the Lebesgue measure. Then mass scaling
implies that H,, is also A;-displacement convex on (A;, W;). We refer to [Villani 2009, Chapters 14
and 17] for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic case IK(x) = Id, condition (22) simply amounts to assuming that
Q is convex. A simple sufficient condition implying (22) is given in Appendix A in the isotropic but
heterogeneous case K(x) = «(x)[4.

Gradient flow of the energy. The content of this section is formal. Our aim is to write the problem as a
gradient flow, i.e.,

d
d—“: € —grady £(s) = —(grady, £(s), ..., grady, £(s)), (25)

where grady, £(s) denotes the full Wasserstein gradient of £(s), and grady, £(s) stands for the partial
gradient of s; — £(s) with respect to the Wasserstein distance W;. The Wasserstein distance W; was built
so that § = (§;); € grady £(s) if and only if there exists k € d;€(s) such that

K
atsl' =-V. (Si—Vh,') Vi e {0, ey N}
Ki

Such a construction was already performed by Lisini in the case of a single equation. Owing to the defini-

tions (13) and (15) of the energy £(s) and its subdifferential ;€ (s), the partial differential equations can
be (at least formally) recovered. This was, roughly speaking, the purpose of our note [Cances et al. 2015].
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In order to define rigorously the gradient gradyy £ in (25), A has to be a Riemannian manifold. The
so-called Otto’s calculus [2001], see also [Villani 2009, Chapter 15], allows to put a formal Riemannian
structure on .A. But as far as we know, this structure cannot be made rigorous and .A is a mere metric
space. This leads us to consider generalized gradient flows in metric spaces; see [Ambrosio et al. 2008].
We won’t go deep into details in this direction, but we will prove that weak solutions can be obtained as
limits of a minimizing movement scheme presented in the next section. This characterizes the gradient
flow structure of the problem.

Minimizing movement scheme and main result.

The scheme and existence of a solution. For a fixed time-step T > 0, the so-called minimizing movement
scheme [De Giorgi 1993; Ambrosio et al. 2008] or JKO scheme [Jordan et al. 1998] consists in computing
recursively (s"),>1 as the solution to the minimization problem

w , n—1y2

§ = Argmin<& + 5(s)>, (26)
seA 27

the initial data s° being given in (10).

Approximate solution and main result. Anticipating that the JKO scheme (26) is well-posed (this is
the purpose of Proposition 2.1 below), we can now define the piecewise constant interpolation s°® €
L*(0,T); XN.A) by

sT(0, ) =s° and st(t,)=s" Vie((m—-Drt,nt], Va>1. 27
The main result of our paper is the following.

Theorem 1.2. Let (t)i>1 be a sequence of time steps tending to 0. Then there exists one weak solution s
in the sense of Definition 1.1 such that, up to an unlabeled subsequence, (s™)y>1 converges a.e. in Q
towards s as k tends to co.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least) one solution in the
sense of Definition 1.1. As far as we know, this existence result is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori d,s; € LZ((0, T); H'(Q)"),
s; € L>((0, T); H'(R)), and thus s; € C([0, T]; L*(2)). This regularity is enough to retrieve the so-called
energy-dissipation equality

—S(S(t))— Z/ KﬁV(p,(t)—i-lD) V(pi(t) +¥;)dx <0 forae.te(0,T),

which is another admissible formulation of gradient flows in metric spaces [Ambrosio et al. 2008].

Goal and positioning of the paper. The aims of the paper are twofold. First, we aim to provide a
rigorous foundation to the formal variational approach introduced in the authors’ recent note [Cances et al.
2015]. This gives new insights into the modeling of complex porous media flows and their numerical
approximation. Our approach appears to be very natural since only physically motivated quantities appear
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in the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff transform and global
pressure, which classically appear in the mathematical study of multiphase flows in porous media; see,
for instance, [Chavent 1976; 2009; Antoncev and Monahov 1978; Chavent and Jaffré 1986; Fabrie and
Saad 1993; Gagneux and Madaune-Tort 1996; Chen 2001; Amaziane et al. 2012; 2014].

Second, the existence result that we deduce from the convergence of the variational scheme is new as
soon as there are at least three phases (N > 2). Indeed, since our study does not require the introduction of
any global pressure, we get rid of many structural assumptions on the data, among which is the so-called
total differentiability condition; see, for instance, Assumption (H3) in [Fabrie and Saad 1993]. This
structural condition is not naturally satisfied by the models, and suitable algorithms have to be employed
in order to adapt the data to this constraint [Chavent and Salzano 1985]. However, our approach suffers
from another technical difficulty: we are limited to the case of linear relative permeabilities. The extension
to the case of nonlinear concave relative permeabilities, i.e., where (1) is replaced by

0rsi + V- (ki(si)v;) =0,

may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [Dolbeault et al. 2009], see
also [Zinsl and Matthes 2015b], but we did not push in this direction since the relative permeabilities k;
are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [Jordan et al. 1998], gradient flows in metric
spaces (and particularly in the space of probability measures endowed with the quadratic Wasserstein
distance) were the object of many studies. Let us for instance refer to the monograph of Ambrosio,
Gigli, and Savaré [Ambrosio et al. 2008] and to Villani’s book [2009, Part II] for a complete overview.
Applications are numerous. We refer for instance to [Otto 1998] for an application to magnetic fluids,
to [Sandier and Serfaty 2004; Ambrosio and Serfaty 2008; Ambrosio et al. 2011] for applications to
superconductivity to [Blanchet et al. 2008; Blanchet 2013; Zinsl and Matthes 2015a] for applications to
chemotaxis, to [Lisini et al. 2012] for phase field models, to [Maury et al. 2010] for a macroscopic model
of crowd motion, to [Bolley et al. 2013] for an application to granular media, to [Carrillo et al. 2011]
for aggregation equations, and to [Kinderlehrer et al. 2017] for a model of ionic transport that applies
in semiconductors. In the context of porous media flows, this framework has been used by Otto [2001]
to study the asymptotic behavior of the porous medium equation, which is a simplified model for the
filtration of a gas in a porous medium. The gradient flow approach in Wasserstein metric spaces was used
more recently by Laurengot and Matioc [2013] on a thin film approximation model for two-phase flows
in porous media. Finally, let us mention that similar ideas were successfully applied for multicomponent
systems; see, e.g., [Carlier and Laborde 2015; Laborde 2016; Zinsl and Matthes 2015b; Zinsl 2014].

The variational structure of the system governing incompressible immiscible two-phase flows in porous
media was recently depicted by the authors in their note [Cances et al. 2015]. Whereas the purpose of
that paper is formal, our goal is here to give a rigorous foundation to the variational approach for complex
flows in porous media. Finally, let us mention the work of Gigli and Otto [2013], where it was noticed
that multiphase linear transportation with saturation constraint, as we have here thanks to (1) and (4),
yields nonlinear transport with mobilities that appear naturally in the two-phase flow context.
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The paper is organized as follows. In Section 2, we derive estimates on the solution s* for a fixed t.
Beyond the classical energy and distance estimates detailed in the first subsection, in the second subsection
we obtain enhanced regularity estimates thanks to an adaptation of the so-called flow interchange technique
of Matthes, McCann, and Savaré [Matthes et al. 2009] to our inhomogeneous context. Because of the
constraint on the pore volume (4), the auxiliary flow we use is no longer the heat flow, and a drift term
has to be added. An important effort is then done in Section 3 to derive the Euler—Lagrange equations
that follow from the optimality of s”. Our proof is inspired by the work of Maury, Roudneff-Chupin, and
Santambrogio [Maury et al. 2010]. It relies on an intensive use of the dual characterization of the optimal
transportation problem and the corresponding Kantorovich potentials. However, additional difficulties
arise from the multiphase aspect of our problem, in particular when there are at least three phases (i.e.,
N > 2). These are bypassed using a generalized multicomponent bathtub principle (Theorem B.1 in
Appendix B) and computing the associated Lagrange multipliers in the first subsection. This key step
then allows to define the notion of discrete phase and capillary pressures in the second subsection. Then
Section 4 is devoted to the convergence of the approximate solutions (s*); towards a weak solution s
as 7 tends to 0. The estimates we obtained in Section 2 are integrated with respect to time in the first
subsection. In the second subsection, we show that these estimates are sufficient to enforce the relative
compactness of (s™); in the strong L'(Q)N*! topology. Finally, it is shown in the third subsection that
any limit s of (s™); is a weak solution in the sense of Definition 1.1.

2. One-step regularity estimates

The first thing to do is to show that the JKO scheme (26) is well-posed. This is the purpose of the
following proposition.

Proposition 2.1. Letn > 1 and s"~' € X N.A. Then there exists a unique solution s" to the scheme (26).
Moreover, one has s € X N A.

Proof. Any s"~! € X N A has finite energy thanks to (14). Let (s"), C .A be a minimizing sequence in
(26). Plugging s"~! into (26), it is easy to see that £(s™*) < £(s"~!) < oo for large k; thus (s™*), c XN.A
thanks to (14). Hence, one has 0 < si" ’k(x) < w(x) for all k. By the Dunford—Pettis theorem, we can
therefore assume that s’ ks s!' weakly in L'(Q). It is then easy to check that the limit s” of s belongs
to X N.A. The lower semicontinuity of the Wasserstein distance with respect to weak L' convergence is
well known, see, e.g., [Santambrogio 2015, Proposition 7.4], and since the energy functional is convex
and thus lower semicontinuous, we conclude that s” is indeed a minimizer. Uniqueness follows from the
strict convexity of the energy as well as from the convexity of the Wasserstein distances (with respect to
linear interpolation sg = (1 — 6)sg + 0s7). O

The rest of this section is devoted to improving the regularity of the successive minimizers.

Energy and distance estimates. Plugging s = s"~! into (26) we obtain
W(Sn, sn71)2

+ &™) < EG™H. (28)
2t
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As a consequence we have the monotonicity
S EGE) SEE"TH s < EG6%) <00

at the discrete level; thus s" € X for all n > 0 thanks to (14). Summing (28) over n we also obtain the
classical total square distance estimate

LY Wil s <2660 = €@, 11, W), (29)

n>0

where the last inequality comes from the fact that s° is uniformly bounded since it belongs to X, and
thus so is £(s”). This readily gives the approximate %—Hblder estimate

W(s", ") < Cy/Iny —ny|t. (30)

Flow interchange, entropy estimate and enhanced regularity. The goal of this section is to obtain some
additional Sobolev regularity on the capillary pressure field m (s"*, x), where s"* = (s{, ..., s}) is the
unique element of X'* corresponding to the minimizer s” of (26). In what follows, we set

Q- R, x> (™ (x),x), Vie{l,...,N}

and " = (7{, ..., ). Bearing in mind that o (x) > @, > 0 in Q, we can define the relative Boltzmann
entropy H,, with respect to w by (24).

Lemma 2.2. There exists C depending only on Q, I1, o, K, (u;);, and ¥ such that, for all n > 1 and all
T > 0, one has

: T : T
i=0 i=0

N n— N - n
S IVAL 2, < C(l N W2(s" s 1) s Heop(s"71) = Ho 5! ))' a1
Proof. The argument relies on the flow interchange technique introduced by Matthes, McCann, and
Savaré [Matthes et al. 2009]. Throughout the proof, C denotes a fluctuating constant that depends on the
prescribed data 2, IT, w, K, (u;);, and W, but neither on ¢, 7, nor on n. Fori =0, ..., N consider the
auxiliary flows
0;8; = div(KVs; —5;KVlogw), t>0, x € Q,
K(Vs; —$;Vlogw) -v =0, t>0, x €0Q, (32)

Sili=o = s', xeQ

for each i € {0, ..., N}. By standard parabolic theory, see for instance [LadyZenskaja et al. 1968,
Chapter III, Theorem 12.2], these initial-boundary value problems are well-posed, and their solutions $; (x)
belong to C12((0, 1] x ) NC([0, 1]; LP()) for all p € (1, 00) if w € C>%(RQ) and K € C1* (L) for some
o > 0. Therefore, ¢ > §;( -, t) is absolutely continuous in L'(£2), and thus in A; endowed with the usual
quadratic distance Wier (20) thanks to [Santambrogio 2015, Proposition 7.4]. Because of (19), the curve
t > §; (-, t) is also absolutely continuous in 4; endowed with W;.
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From Lisini’s results [2009], we know that the evolution ¢ — §; (-, ¢) can be interpreted as the gradient
flow of the relative Boltzmann functional (1/u;)H,, with respect to the metric W;, the scaling factor 1/u;
appearing due to the definition (18) of the distance W;. As a consequence of (23), The Ricci curvature
of (R, d;) is bounded, and hence bounded from below. Since w € C*(S2), and with our assumption (22),
we also have that (1/u;)H,, is A;-displacement convex with respect to W; for some A; € R depending
on w and the geometry of (2, d;); see [Villani 2009, Chapter 14]. Therefore, we can use the so-called
evolution variational inequality characterization of gradient flows, see for instance [Ambrosio and Gigli
2013, Definition 4.5], centered at s” _1, namely

1d 2 n—1 2 n—1 n—1 1 v
——W7(si (@), s; )+ W Si(1),s7) < —H (s; ) — —Ho(si(0)).
2 Mi Mi

2dt
Define § = (¢, ..., Sy) and §* = (51, ..., Sy). Summing the previous inequality over i € {0, ..., N}
leads to
d 2(r o] W2E@). 5" | o Hols) ™) = HoGi(0))
< W2GE @), s )) gc( +) ) (33)
dr T P T

In order to estimate the internal energy contribution in (26), we first note that st (x) = w(x) for
all x € Q; thus by the linearity of (32) and since w is a stationary solution we have ) _$;(x, 1) = w(x)
as well. Moreover, the problem (32) is monotone, thus order preserving, and admits O as a subsolution.
Hence s;(x, ) > 0, so that §(¢) € AN X is an admissible competitor in (26) for all # > 0. The smoothness
of § for r > 0 allows us to write

N
d . . .
— / MG (x, 1), x) dx ) = Z/ %, 1) 0,5 (x, 1) dx = L (1) + L (1), (34)
dr Q — Q
where 7; := 7; (§*% -), and where, for all r > 0, we have set

I(t) = — Z/ V(1) - KV () dx, L) =— Zf wvm(z) KV dx.

To estimate I, we first use the invertibility of ; to write

S(x, 1) =@ (x, 1), x) = d(x, 1),
yielding
Vs(x,t) = J]ng(ft(x, 1), x)Vr(x, 1)+ Vx¢(ft(x, 1), Xx). (35)

Combining (3), (7), (8) and the elementary inequality

2 2
ab < 5% + 35 with 8 > 0 arbitrary, (36)

we get that for all r > 0,

mmg—“—*/ |Vfr(t)|2dx+x*<8/ |v;z(t)|2dx+l/ |Vx¢(fr(t>)|2dx).
o* Jo Q s Ja
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Choosing § = k,/(4k*w*), we get that

3K,
4oo*

L) < — /|sz(t)|2dx+c Vi > 0. (37)
Q

In order to estimate I, we use that §(z) € X for all # > 0, so that 0 < 5;(x, ) < w(x); hence we deduce
that Z;N: 1 (5i/w)? < 1. Therefore, using (36) again, we get

Iz(t)f&c*/ |V1Vr(t)|2dx+K—/ IVo|? dx.
Q 3 Ja

Choosing again § = k, /(4x*w™*) yields

L) < K—/ Vit (1) dx + C. (38)
doo* Q
Taking (37)—(38) into account in (34) provides
d * .
= /H(§*(x,t),x)dx < /lVJt(t)|2dx+C Vi > 0. (39)
dr \ Jq 2w* Jq

Let us now focus on the potential (gravitational) energy. Since §(7) belongs to X N A for all ¢ > 0, we

can make use of the relation
N

Sox.)=w(@) =Y Fikx.) V(x.HeQxRy,
i=1

to write: for all # > 0,

N N
Zf Si(x, )V (x)dx = Z/ Si(x,1)(¥; — Yp)(x)dx +/ w(x)¥o(x)dx.
i=0 V< i—1 Y Q
This leads to
d (& N
E(Z /Q 50 dx) =3 /Q (Wi (x) = Wo(x)) Bys; (x. 1) dx = J1(8) + o (1), (40)
i=0 i=1
where, using the equations (32), we have set

N N v
Ji(t) = —Z/QV(\IJ,-—\IJO)-KVii(t)dx, (1) = ngwwwi—%)-mv@dx.
i=1 i=1

w

The term J; can be estimated using (36). More precisely, for all § > 0, we have

N
Ji(t) < x*(anVi*(r)niz + § oIV - wo)Hiz). (41)
i=1

Using (35) together with (7)—(8), we get that

2

) 1. 2
Vit|2 <<—V QM)<—
IVs™ll7. < p— IVl 2+ R2IMg ) < @)

IVE]I7, +2(12 Mg)>
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Therefore, choosing § = (@) k. /(8k*w*) in (41), we infer from the regularity of W that

Jl(t)<—f Vi ()>dx+C Vi >0. (42)

Finally, it follows from the fact that Zi:l S; < w, from the Cauchy—Schwarz inequality, and from the
regularity of ¥, w that

N
(1) = —k* Y VW = V¥l Vol 2 = C. (43)
i=1

Combining (40), (42), and (43) with (39), we get that

(44)

Denote by |
Fl(s) == sz(s’ s"H + E(s) (45)

the functional to be minimized in (26); then combining (33) and (44) provides

d
—F"(§ Vvt > 0.

dt

W2GED), s"1) o Ho(s" ™) = Ho (i (1))
+> - )

T

§CQ+
i=0

Since §(0) = s” is a minimizer of (26), we must have
. d __, .
0 <limsup| —F7(5(1))],
1—0F dr
otherwise §(¢) would be a strictly better competitor than s” for small ¢ > 0. As a consequence, we get

W2GE), s 1) QA Hol(s! 1) — Ho i (1
11m1nf||V7r(t)||L2 < Chmsup(l + W G@.s") +Z (s; ) (i ( ))).
t—0t T o T

Since §; belongs to C ([0, 1]; LP(2)) for all p € [1, 00), see for instance [Cances and Gallouét 2011], the
continuity of the Wasserstein distance and of the Boltzmann entropy with respect to strong L”-convergence
imply that

W2E@), s 20 W2(s" ") and Hy (i) 25 H ().

Therefore, we obtain that

W) i Ha(s! ™) —%(sw)

T T

lim inf |V (1)1} < c(l +
t—
i=0

(46)

It follows from the regularity of & that

TG, x) =7 (1) 28 7" = 1 (s"*, x) in LY(Q).
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Finally, let (#;),>1 be a decreasing sequence tending to O realizing the lim inf in (46); then the sequence
(V1 (t7))e>1 converges weakly in L2(2)V*4 towards V. The lower semicontinuity of the norm with
respect to the weak convergence leads to

N

Va7, < lim [|[VE @)l
2|| P2 < Jim V@),
1=

2¢at on—1 N n—1y n
W=(s", s )+2Hw(s,' ) /Hw(sl‘)>. 0

T T

=liminf |V ®)]|3, < C(l +
t—0t+ ‘o

3. The Euler-Lagrange equations and pressure bounds

The goal of this section is to extract information coming from the optimality of s” in the JKO mini-
mization (26). The main difficulty consists in constructing the phase and capillary pressures from this
optimality condition. Our proof is inspired by [Maury et al. 2010] and makes extensive use of the
Kantorovich potentials. Therefore, we first recall their definition and some useful properties. We refer to
[Santambrogio 2015, §1.2; Villani 2009, Chapter 5] for details.

Let (vi, ) € /\/l+(52)2 be two nonnegative measures with same total mass. A pair of Kantorovich
potentials (¢;, ¥;) € L'(v)) x L'(v,) associated to the measures v; and v, and to the cost function %dl.z
defined by (16), i € {0, ..., N}, is a solution of the Kantorovich dual problem

DP; (vi, 1p) = max /qoi(x)w(x)der/ Yi(y)va(y) dy.
(@i yi)eL () x L1 (1) Q Q
@i () +i () <3d? (x,y)

We will use the three following important properties of the Kantorovich potentials:
(a) There is always duality; that is,
DP; (vi, v2) = W7 (vi, v2) Vi €{0,..., N}

(b) A pair of Kantorovich potentials (¢;, ;) is dv; ® dv, unique, up to additive constants.

(c) The Kantorovich potentials ¢; and ; are %dl.z—conjugate; that is,
@i(x) = inf 3d7(x, y) = ¥i(y) VxeQ,
yeQ
Yi(y) = inf 3d7(x,y) —gi(x) VyeQ.

Remark 3.1. Since 2 is bounded, the cost functions (x, y) — %diz(x, y),i €{l,..., N}, are globally
Lipschitz continuous; see (17). Thus item (c) shows that ¢; and ; are also Lipschitz continuous.

A decomposition result. The next lemma is an adaptation of [Maury et al. 2010, Lemma 3.1] to our
framework. It essentially states that, since s” is a minimizer of (26), it is also a minimizer of the linearized
problem.
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Lemma 3.2. Forn>1andi =0, ..., N there exist some (backward, optimal) Kantorovich potentials ¢;'
from s!' to sl.”_l such that, using the convention wy = (011/3ds0)(s{, ..., sy, x) =0, setting
no_ P .
F] .:?+ni+\lli, Viel{0,...,N}, 47)

and defining F" = (F/")o<i<n, we have
s" e Argmin/ F"(x)-s(x)dx. (48)
seXNA JQ
Moreover, F' € L* N HY(Q) foralli {0, ..., N}.
Proof. We assume first that sl."_l(x) > 0 everywhere in 2 for all i € {1, ..., N}, so that the Kantorovich

potentials (¢!, ¥/") from s/ to slf“l
arbitrary point X € 2; see [Santambrogio 2015, Proposition 7.18]. Given any s = (s;)j<o<y € X N A

are uniquely determined after normalizing ¢ (xrf) = O for some

and ¢ € (0, 1) we define the perturbation
s :=(1—¢)s" +ss.

Note that X N.A is convex; thus s° is an admissible competitor for all ¢ € (0, 1). Let (¢;, %) be the unique
Kantorovich potentials from s; to s/ ~! similarly normalized as @; (xrer) = 0. Then by characterization of
the squared Wasserstein distance in terms of the dual Kantorovich problem we have

Lw2(st, 50 = /Q o ()57 () dx + /Q Vs () dy,

%Wf(SZ’,S,-”_I)Z/prf(x)S?(x)dx+f9wf(y)S,”_1(y)dy-

By definition of the perturbation s° it is easy to check that s — s/ = &(s; — s}'). Subtracting the previous
inequalities we get

W2(se, "1 — W2(st, st
l(l i ) z(z i )§£/<pf(s,—sl")dx (49)
2t T Jo
Define s = (s{,...,sy), ®° = m(s°*, -), and extend to the zeroth component 7° = (0, w®). The
convexity of IT as a function of sy, ..., sy implies
/(l‘[(s"*,x)—H(sg*,x))dxzf ns-(s"*—ss*)dxzf ﬁe-(s"—ss)dx=—8/ % (s—s")dx. (50)
Q Q Q Q

For the potential energy, we obtain by linearity that

/(se—s")~‘I’dx=s/(s—s”)-\Ildx. &2}
Q Q

Summing (49)—(51), dividing by &, and recalling that s” minimizes the functional 7' defined by (45), we
obtain

N
Fn & _j’_'fl n €
0< ’(S)g 6Dy /((p?’+ﬁf+\lfi)(sz~—sf’)dx (52)
i=0 7€
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forall s e XN Aandall ¢ € (0, 1). Because 2 is bounded, any Kantorovich potential is globally Lipschitz
with bounds uniform in &; see, for instance, the proof of [Santambrogio 2015, Theorem 1.17]. Since s°

converges uniformly towards s” when ¢ tends to 0, we infer from Theorem 1.52 of the same paper that
¢; converges uniformly towards ¢! as ¢ tends to 0, where ¢ is a Kantorovich potential from s to sf_l
Moreover, since & is uniformly continuous in s, we also know that 7° converges uniformly towards "

and thus 78 — " = (0, ") as well. Then we can pass to the limit in (52) and infer that
0§/F”-(s—s”)dx Vse XNA (53)
Q

and (48) holds.

If s ~! > 0 does not hold everywhere, we argue by approximation. Running the flow (32) for a short
time 8 > O starting from s”~!, we construct an approximation s”~ 1% = (sg —Ls s]’\’fl’a) converging to
st = (sg_l, e s”N_l) in L'(Q) as 8 tends to 0. By construction s"~1* € X N A, and it follows from
n—1,8
i

n—1

the strong maximum principle that s > 0in  for all § > 0. By Proposition 2.1 there exists a unique

minimizer s™° to the functional
n,8 1 w2, n-1,8
F: XNA— Ry, SHZW (s, 8" ) +E(s).

n—1,8

i

n—1,8 . This allows

us to construct F™% using (47), where ¢! and 7/ have been replaced by ¢ % and ) % Thanks to the

Since s > 0, there exist unique Kantorovich potentials (¢;' a /8 %) from s} Yo s

above discussion,

0< / F"o% . (s* —s™%*)dx Vs* e X*NA* (54)

Q
We can now let § tend to 0. Because of the time continuity of the solutions to (32), we know that §n—1.8
converges towards s”~! in L!(€2). On the other hand, from the definition of s”° and Lemma 2.2 (in
particular (31) with s"18 gmd gmd instead of s~ 1, 57, &™) we see that 7™ is bounded in H'(Q)N*!
uniformly in § > 0. Using next the Lipschitz continuity (8) of ¢, one deduces that s is uniformly
bounded in H'($2)¥*!. Then, thanks to Rellich’s compactness theorem, we can assume that s”-® converges

n=1,6 _ ¢"=1 and standard properties

strongly in LZ(2)N*! as § tends to 0. By the strong convergence §
of the squared Wasserstein distance, one readily checks that F% I"-converges towards ', and we can
therefore identify the limit of s™- as the unique minimizer s” of 7. Thanks to Lebesgue’s dominated
convergence theorem, we also infer that 7' /8 converges in L2(Q) towards m!. Using once again the
stability of the Kantorovich potentials [Santambrogio 2015, Theorem 1.52], we know that ¢! e converges
uniformly towards some Kantorovich potential ¢;’. Then we can pass to the limit in (54) and claim
that (53) is satisfied even when some coordinates of s”~! vanish on some parts of €.

Finally, note that since the Kantorovich potentials ¢ are Lipschitz continuous and because n' € H !
(see Lemma 2.2) and ¥ is smooth, we have F/' € H 1. Since the phases are bounded 0 < st (x) <w(x)
and 7 is continuous we have " € L*; thus F/" € L* as well and the proof is complete. ]

We can now suitably decompose the vector field F"* = (F/")o<;<y defined by (47).
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Corollary 3.3. Let F" = (Fy, ..., Fy) be as in Lemma 3.2. There exists a" € RN+ such that, setting
M(x) = rninj(F}’(x) + a;’), we have A" € H (Q) and
F!'+o! =A" ds''-a.e.in 2, Vi € {0, ..., N}, (55)
VF'=V)" ds!'-a.e.inQ,Vie{0,...,N}. (56)
Proof. By Lemma 3.2 we know that s” minimizes s — [ F" - s among all admissible s € X N A.
Applying the multicomponent bathtub principle, Theorem B.1 in Appendix B, we infer that there exists
" = (ag, ..., ay) € RN+ such that F'+al = A" fords-a.e. x € 2 and A" = minj(Fj’? +a;’) as in our
statement. Note first that A" € H'(S2) as the minimum of finitely many H ! functions Fy, ..., Fy € H' ().
From the usual Serrin’s chain rule we have moreover that

Vit =V mjin(F]’? + o) = VF X(Frpar=n1,
and since s;' = 0 inside [F}" 4+ o' # A"], the proof is complete. O

The discrete capillary pressure law and pressure estimates. In this section, some calculations in the
Riemannian settings (€2, d;) will be carried out. In order to make them as readable as possible, we have
to introduce a few basics. We refer to [Villani 2009, Chapter 14] for a more detailed presentation.

Leti € {0, ..., N}; then consider the Riemannian geometry (€2, d;), and let x € Q2. We denote by
8ix: R? x RY — R the local metric tensor defined by

gix(v,v)= uiK_l(x)v v=0G;x)v-v Vve R?.
In this framework, the gradient V¢ of a function ¢ € C'(R) is defined by
@(x +hv) = (x) + hgi (Ve , 0(x),v) +o(h) YveS' VxeQ.
It is easy to check that this leads to the formula
Vip = KVp. (57)

where V¢ stands for the usual (euclidean) gradient. The formula (57) can be extended to Lipschitz
continuous functions ¢ thanks to Rademacher’s theorem.
For ¢ belonging to C%, we can also define the Hessian Df,i(p of ¢ in the Riemannian setting by

d2
gix(Dge(x) v, v) = T30

t=0
for any geodesic y; = exp; , (tv) starting from x with initial speed v € T; » 2.

Denote by ¢! the backward Kantorovich potential sending s/' to 57" ~! associated to the cost %dlz By
the usual definition of the Wasserstein distance through the Monge problem, one has

W2(st, st :/ d*(x, ' (x))s! (x) dx,
Q
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where ¢ denotes the optimal map sending s to s;' ~! 1t follows from [Villani 2009, Theorem 10.41] that
t!(x) =exp; (= Vg 0! (x)) VxeQ. (58)
Moreover, using the definition of the exponential and the relation (57), one gets that
1
d? (x, exp; (= Vg, @' (x)) = gi.x (Ve 0 (x), Ve, 0 (x)) = ;K(x)Vso?(x) -Vl (x).
4
This yields the formula
n
Wiz(si",si"_l)=/ S—"Kchf-V(pi”dx Viel0,..., N} (59)
Q Mi
We have now introduced the necessary material in order to reconstruct the phase and capillary pressures.

This is the purpose of the following Proposition 3.4 and then of Corollary 3.5.

Proposition 3.4. Forn > 1let ¢! : s!' — s ~! be the (backward) Kantorovich potentials from Lemma 3.2.
There exists h = (hy, ..., h") € H' (Q)NT! such that

(i) Vh! =—-V¢!'/t fords!'-a.e. x € Q,
(i) h?(x) —hy(x) =m"(x) + W;(x) — Wo(x) fordx-ae x €, i e{l,..., N},

(iii) there exists C depending only on Q,I1, o, K, (u;);, and ¥ such that, for alln > 1 and all T > 0,

one has
N

0 W2(s", s" 1) He (s 1) — He(s7)
1" 151 @yver < c<1 ) - )
i=0

Proof. Let ¢! be the Kantorovich potentials from Lemma 3.2 and F/' € LN H 1(Q) as in (47), as well
asa” e RV*! and A" = min; (Fj’.z +(x;’) e L®N H'(Q) as in Corollary 3.3. Setting

n
4
T

hn =

1

+F'—" Vie{0,...,N},

we have h! € H 1(Q) as the sum of Lipschitz functions (the Kantorovich potentials ¢!') and H ! functions
F', A". Recalling that we use the notation 7o = 9I1/9s09 = 0, we see from the definition (47) of F" that

n
n—mn = (F =) (R =20} = (o W) — (W) = 7+ — W (60)
T T

foralli € {1,..., N} and dx-a.e. x, which is exactly our statement (ii).
For (1), we simply use (56) to compute

V(pf
T

Vi .
Vh} = +V(F' -1 =— . for ds;/-a.e. x € 2, Vi €{0,..., N}. (61)

In order to establish now the H' estimate (iii), let us define

Uy ={x € Q2| si'(x) = w./(N+ D}
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Then since ) s!(x) = w(x) > w, > 0, one gets that, up to a negligible set,

N
Uui =Q, hence U;)°C qu. (62)
i j#i

We first estimate th. To this end, we write

1
IVAGIZ, < —/ KVhy-Vhidx <A+ B, (63)
Ky JOQ
where we have set
a=L [ wvirvirdar, B=1 [ KvAl-VAdx.
K Juty ks J o)
Owing to (61) one has Vhj = —Vgo /T on Uy C 2, where s; > w,/(N + 1). Therefore,
N+1 N+1
St )“0/ 50 peypn . wandx < N )“0/ 20 KVl - Vel d.
Wik Uy W 2w Ja 1o
Then it results from formula (59) that
C
WG, (64)

where C depends neither on n nor on . Comblnlng (62) and (60), we infer
B<— Z/ KV[A! — (z' + W; — Wo)] - V[h! — (2 + ¥; — ¥p)] dx.

Using (a+ b+ ©)? <3(@*>+b*>+¢*) and (3), we get that

« N

D VAl 17+ 1V (W = Wo)ll7.). (65)
i=1

3 Y 3k
Bg—Zf KVh, - Vh; dx +

*

Similar calculations to those carried out to estimate A yield
C . »
[KVh - Vh; dx<—W (si', s! )

for some C depending neither on n, i nor on . Combining this inequality with Lemma 2.2 and the
regularity of ¥, we get from (65) that

2¢al on—1 N n—1y n
w (S » § )+ZHw(si ) Hw(s,')) (66)

72 T

BsC(l—i—
i=0

for some C not depending on 7 and 7 (here we also used 1/t < 1/72 for small T in the W? terms).
Gathering (64) and (66) in (63) provides

W2(s", 5" 1) o Hao(s! ") — Ho(s])
ny2 ’ w\¥; w\3;
||Vho||Lzsc(1+—T2 Y . )

i=0
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Note that (i) and (ii) remain invariant under subtraction of the same constant, that is, hg, A} ~
hy — C, hi — C, as the gradients remain unchanged in (i) and only the differences h} — h; appear in (ii)
fori € {1,..., N}. We can therefore assume without loss of generality that fQ hiy dx = 0. Hence by the
Poincaré—Wirtinger inequality, we get that

N

UG 3 Ho(s) ") — Hw(s{l)).

I = 1oy, = 1+ 2 :

i=0
Finally, from (ii) A} = hg + /' +W; — Wy, the smoothness of W, and using again the estimate (31) for
||V1t”||i2 we finally get that for all i € {1, ..., N}, one has

W2(s", ") O Ho(s) ™) — Hos))
||h;'||§,.sc(nh'sn%,l+||nf||§,l+||w,-||§,l+||\Ifo||§,l)sc(1+ S )

i=0
and the proof of Proposition 3.4 is complete. ([

We can now define the phase pressures (p}')i—o

pl=h! —V; Viel{0,...,N}. (67)
The following corollary is a straightforward consequence of Proposition 3.4 and of the regularity of W;.

Corollary 3.5. The phase pressures p" = (p})o<i<ny € H LN+ satisfy

N

W2s"s" ) 3 Ho(s! ™) — %(s,-"))

(68)

nn2
||P ”Hl(Q) E C(1+ _[2 T

i=0
for some C depending only on Q, I1, o, K, (;);, and ¥ (but neither on n nor on tv), and the capillary
pressure relations are fulfilled:

pi—py=m" Viell,...,N}. (69)
Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C depending only on Q, I1, o, KK, (1;);, and ¥ (but neither on n nor on v) such
that, foralli € {0,..., N}and all £ € CZ(K_Z), one has

K
[ =shgax e [ v w - Vedr| < CWAL S TID (70
Q Q M

This is of course a discrete approximation to the continuity equation d;s; = V - (s; (K/u; )V (p; + ¥;)).

Proof. Let ¢!' denote the (backward) optimal Kantorovich potential from Lemma 3.2 sending s to s{z’l,

and let #' be the corresponding optimal map as in (58). For fixed & € C%() let us first Taylor expand (in
the g; Riemannian framework)

S(tf(x))—axwiﬂ«(st(x)-Vgo?(x) < 311D} & llood} (x. £ (x)).
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Using the definition of the pushforward si"_1 = t/'#s]', we then compute

1 1 K( )
(S (x) — (x))§(x) dx — —VE(X) Vi (x)si' (x) dx

= / (E(x) — £t (x))s]' (x) dx — / B Ve () Vol (o)sp ) de
Q Q Mi
51}M§ﬂw&m¢umnmm D2 Elloo Wi Gs?, 577 h).

From Proposition 3.4(i) we have V¢!' = —t VA for ds'-a.e. x € Q; thus by the definition (67) of p!', we
get Vo' = —1tV(p;' + ;). Substituting in the second integral of the left-hand side gives exactly (70). [

4. Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant interpolated solutions s?, defined
by (27), towards a weak solution s as t — 0. Similarly, the t superscript denotes the piecewise
constant interpolation of any previous discrete quantity (e.g., p; (t) stands for the piecewise constant
time interpolation of the discrete pressures p!'). In what follows, we will also use the notation s™* =
(S7,...,sp) €L®(O0,T); X*)and r* = (s, x).

Time integrated estimates. We immediately deduce from (30) that
W™ (1), ") <Clo—n +1|'? VO<t<n<T. (71)
From the total saturation Z —057(x) =w(x) <o* and 57 > 0, we have the L°°-estimates
0<s/(x,t) <w* ae.inQforallie{0,..., N} (72)
Lemma 4.1. There exists C depending only on 2, T, I1, o, K, (1;);, and ¥ such that
12120,y 11 @y T I N T 20,71 ey =< € (73)

Proof. Summing (68) fromn=1ton =N, :=[T/t], we get

[ = T @ Sl w i

i=0

2 n—1
c(r+1 +Z w 3 () —%(sfvf))).

i=0

/'\

We use that
0> 7,(s) > —éuwny > J% Vs € L¥(Q) with 0 <5 < @

together with the total square distance estimate (29) to infer that || p|| < C. The proof is identical

LZ( H! ) —
for the capillary pressure m* (simply summing the one-step estimate from Lemma 2.2). U
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Compactness of approximate solutions. We define H' = H'(Q)'.

Lemma 4.2. For eachi € {0, ..., N}, there exists C depending only on Q, I1, ¥, K, and w; (but not

on t) such that

1/2

Is; (t2) —sf ) lw < Clty —t1 + 7| VO<n <t <T.

Proof. Thanks to (72), we can apply [Maury et al. 2010, Lemma 3.4] to get

/Q FAsT () = sF @)Y dx | < |V fll 2@ Weet (57 (1), 57 (1)) Vf € HY(Q).
Thus by duality and thanks to the distance estimate (71) and to the lower bound in (19), we obtain that
s (12) = 57 )l < Wier(s] (1), 7 (12)) < CWils] (1), 57 (1)) < Clia — 11 +|'/2
for some C depending only on 2, I, (0;);, g, (1), K. O
From the previous equicontinuity in time, we deduce full compactness of the capillary pressure:

Lemma 4.3. The family (%)~ is sequentially relatively compact in L*>(Q)".

Proof. We use Alt and Luckhaus’ trick [1983] (an alternate solution would consist in slightly adapting the
nonlinear time compactness results [Moussa 2016; Andreianov et al. 2015] to our context). Let 27 > 0 be a
small time shift; then by monotonicity and Lipschitz continuity of the capillary pressure function (-, x),

T—h
1 s *

”m('+h)_”7(')||i2((o,r_h);L2(sz)N) < K_f /(nf(t—{—h,x)—nf(t,x)).(sf (t+h,x)—s"® (t,x)) dxdr
xJo Ja

2T
== 172" | 20,1y 1 M) IS T (- Ry ) =8 || oo (0. 7=y YN -

Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither on % nor on 7,
such that

™ +h, ) =" | 20.7—n): L2y < Clh + |2

On the other hand, the (uniform with respect to ) L2((0, T); H'(2)N)- and L>®(Q)" -estimates on 7 ®
ensure that

IZ* o 4+ 3) — w202 < CVIYIA+Iy) VyeRY

where x” is extended by O outside €2. This allows us to apply Kolmogorov’s compactness theorem, see,
for instance, [Hanche-Olsen and Holden 2010], and gives the desired relative compactness. (Il

Identification of the limit. In this section we prove our main result, Theorem 1.2, and the proof goes in
two steps: we first retrieve strong convergence of the phase contents s* — s and weak convergence of
the pressures p* — p, and then use the strong-weak limit of products to show that the limit is a weak
solution. Throughout this section, (tx)x>1 denotes a sequence of times steps tending to 0 as k — oo.
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Lemma 4.4. There exist p € L>((0, T); H' (Q)V*") and s € L*®(Q)N*! with s(-,1t) € X N A for
a.e. t € (0, T) such that, up to an unlabeled subsequence, the following convergence properties hold:

st k=00, g ae.in Q, (74)
n k=00 (5% ) weakly in L*((0, T); H' (Q)V), (75)
p A=l p weakly in L*((0, T); H' ()N *1). (76)

Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that 7% — z strongly in L?(Q)" for some limit z, thus a.e. up
to the extraction of an additional subsequence. Since z — ¢(z, x) = w ' (z, x) is continuous, we have

s = @™, x) X225 ¢(r, x) =:s* ae.in Q.

In particular, this yields ™ €= 7 (s* .) a.e. in Q. Since we have the total saturation Z oSt x) =

w(x), we conclude that the first component i = O converges pointwise as well. Therefore, (74) holds.
Thanks to Lebesgue’s dominated convergence theorem, it is easy to check that s(-,¢) € X N .A for
a.e.t € (0, T). The convergences (75) and (76) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (69) that

pl—pyf =mi(s™*, ) Vie{l,...,N}, Vk>1.
We can finally pass to the limit £ — oo in the above relation thanks to (75)—(76) and infer
pi—po=mi(s%x) in L*((0,T); H'(Q)), Vi e {1,..., N},
which immediately implies (5) as claimed. ]

Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of (§*)x>1 belongs to
C([0, T1; A), where A is equipped with the metric W. Moreover, W(s%(t), s(t)) X225 0 for all
tel0, T]

Proof. 1t follows from the bounds (72) on s; that for all # € [0, T'], the sequence (sirk)k is weakly compact in
L'(). Ttis also compact in A; equipped with the metric W; due to the continuity of W; with respect to the
weak convergence in L! (2); this is, for instance, a consequence of [Santambrogio 2015, Theorem 5.10]
together with the equivalence of W; with Wt stated in (19). Thanks to (71), one has

limsup W; (57 (12), 57 (1)) < |2 —11]"/* V11,12 € [0, T].

k— 00
Applying a refined version of the Arzela—Ascoli theorem [Ambrosio et al. 2008, Proposition 3.3.1] then

provides the desired result. (Il

In order to conclude the proof of Theorem 1.2, it only remains to show that s =lim s™ and p = lim p*
satisfy the weak formulation (12):
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Proposition 4.6. Let (t3)x>1 be a sequence such that the convergences in Lemmas 4.4 and 4.5 hold. Then
the limit s of (s™*)r>1 is a weak solution in the sense of Definition 1.1 (with —p; g replaced by +VV; in
the general case).

Proof. Let 0 <t; <1, <T, and define n x = [t; /7] and fj =nj 7 for j € {1, 2}. Fixing an arbitrary
£ € C*(Q) and summing (70) from n =ny; + 1 to n = ny yields

/Q (57 (t2) — 7 (11))€ dx = / (s — s hE dx

n=np ;+1
t2 n2 k
:_/ S_Kv(pfk+\p) ngxdt—i—(’)( Z W2(s?, s 1)). (77)
o JQ Mi n=njx+1

Since 0 <7; —t; < 7 and (srk/,u,)KV (p“ + ;) - V£ is uniformly bounded in L?(Q), one has

2 Tk t Tk
/fs’—KV(p?w,-)-ngxdz:/ / KV (p* + W) - VE dx df + O(/T0).
o Jo Mi n JQ Mi

Combining the above estimate with the total square distance estimate (29) in (77), we obtain

/ (s7(2) — 57 ()6 dlx + / f SOV (P ) - VE de df = O(J/T0). (78)

Thanks to Lemma 4.5, and since the convergence in (A;, W;) is equivalent to the narrow convergence of
measures (i.e., the convergence in C(Q)/, see for instance [Santambrogio 2015, Theorem 5.10]), we get

/(S”(tz)—sr"(tl))é‘dx oo, /Q(Si(tz)—sz'(tl))é dx. (79)

Moreover, thanks to Lemma 4.4, one has

/ f —KV(p”‘Jr\IJ) VE dx dr ==, / / —Kv(pz-i-‘l-’) V& dx dr. (80)
QM
Combining (78)—(80) yields, for all £ € Cz(Q) andall0 <ty <t <T,

/(Si(tz)—st'(tl))fdx-i-/z/ YLKV (pi + W) - VE dx dr = 0. (81)
Q 1 Q Mi

In order to conclude the proof, it remains to check that the formulation (81) is stronger the formula-
tion (12). Let ¢ > 0 be a time step, unrelated to that appearing in the minimization scheme (26), and set
L.=|T/e]. Letg € C°°(52 x [0, T)), and set ¢y = (-, le) for £ € {0, ..., L.}. Since t — ¢(-,1)is
compactly supported in [0, T'), there exists ¢* > 0 such that ¢, =0 for all ¢ € (0, &*]. Then define

¢ Qx[0,T]—> R, (x,1)— ¢p(x) iftelle, L+ 1e).
Choose t; =ZLe, tp =+ 1)e, £ = ¢ in (81) and sum over £ € {0, ..., L, — 1}. This provides

A(e)+ B(e)=0 Ve=>0, (82)
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where
e_l §:
A@)= ) / (5:((€ + De) = 5;(Le))p" dx,  B(e) = f “LKV (pi + W) - Vo dx dr.
=0 Y2 0 Mi
Due to the regularity of ¢, we know V¢® converges uniformly towards ¢ as ¢ tends to 0, so that
B(e) =9 / iKV(pi + ;) - Vo dxdr. (83)
Q Mi

Reorganizing the first term and using that ¢;, = 0, we get

Ae) = Z /s,(ﬁs) — Py /s?qs(.,())dx.
Q

It follows from the continuity of # — s; (-, t) in \A; equipped with W; and from the uniform convergence of

$e(x) — Po—1(x)

(x,1) —~ if t € [(£ — 1)e, Le)
e
towards d;¢ that
A(e) =9 // Si 8,¢dxdt—/ 520 (-, 0)dx. (84)
0 Q
Combining (82)—(84) shows that the weak formulation (12) is fulfilled. O

Appendix A: A simple condition for the geodesic convexity of (2, d;)

The goal of this appendix is to provide a simple condition on the permeability tensor in order to ensure
that condition (22) is fulfilled. For the sake of simplicity, we only consider here the case of isotropic
permeability tensors

Kx)=«x)l; VxeQ (85)

with «, < (x) < «* for all x € Q. Let us stress that the condition we provide is not optimal.

As in the core of the paper, Q denotes a convex open subset of R? with C? boundary 2. For ¥ € 9%,
we denote by n(x) the outward-pointing normal. Since 92 is smooth, there exists £y > O such that,
for all x € Q such that dist(x, 02) < £y, there exists a unique X € 92 such that dist(x, 0Q2) = |x — x|
(here dist denotes the usual euclidean distance between sets in R?). As a consequence, one can rewrite
x =X —¢n(x) for some £ € (0, £p).

In what follows, a function f :  — R is said to be normally nondecreasing (resp. nonincreasing) on
a neighborhood of 9<2 if there exists £ € (0, £¢] such that £ — f(x — £n(x)) is nonincreasing (resp.
nondecreasing) on [0, £;].

Proposition A.1. Assume that

(i) the permeability field x — Kk (x) is normally nonincreasing in a neighborhood of 9%2;

(i) forall ¥ € 3K, either Vi (¥) -n(¥) <0, or Vi (¥) - n(x) = 0 and D*« (¥)n(x) -n(x) =
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Then there exists a C? extension k : R¢ — [%K*, K*] of k and a Riemannian metric

~ 1 1 1/2
8(x,y)= inf (f ~ |:/<r>|2dr) Vx,yeR’ (86)
yePay\Jo k(y(1))

with F(x, y)={y € C'([0, 1]; RY) | y(0)=x and y (1)=1y}, such that (2, S) is geodesically convex.

Proof. Since € is convex, for all x € R? \  there exists a unique x € 92 such that dist(x, ) = |x — x|.
Then one can extend « in a C? way into the whole R? by defining

K(x) = k(%) +|x —%|Vk () -n(&) + 5 |x — %> D’ (¥)n(¥) -n(x), VxeR'\Q.

Thanks to assumptions (i) and (ii), the function £ — « (¥ — £n(x)) is nondecreasing on (—oo, £;] for all
x € 0€2. Since 0€2 is compact, there exists £» > 0 such that

k(X —Ln(X) > Sk, Ve (—2,0]

Let p : R — R be a nondecreasing C? function such that p(0) = 1, p’(0) = p”(0) =0 and p(£) = 0 for
all £ > £,. Then define

& (x) = p(dist(x, Q)k (x) + (1 — p(dist(x, )3k, Vx e R,

so that the function £ — k(X — £n(x)) is nonincreasing on (—oo, £1) and bounded from below by %K*.

Let x, y € Q; then there exists ¢ > 0 such that dist(x, 02) > ¢, dist(y, d2) > ¢, and « is normally
nonincreasing on 02, := {x € Q | dist(x, 9Q2) < &}. A sufficient condition for (€2, §) to be geodesic is
that the geodesic y,?f)yt from x to y is such that

dist(yf}’yt(t), 0Q2) >¢, Vtell, 1] (87)

In order to ease the reading, we denote by y = yf?yt any geodesic such that

- b 2
. y)=[ = Iy’ (0)]” dz. (88)
0o Ky (D)
We define the continuous and piecewise C! path y, from x to y by setting

Ye(t) = projg (¥ (1)) Vi €][0,1], (89)

where Q, 1= {x € Q | dist(x, 3Q) > ¢} is convex, and the orthogonal (with respect to the euclidean
distance dist) projection projg_onto Q. is therefore uniquely defined.
Assume that condition (87) is violated. Then by continuity there exists a nonempty interval [a, b] C [0, 1]
such that
dist(y(¢),0Q) <& Vt € (a, b);

that is, the geodesic between y (a) and y (b) coincides with the part of the geodesic between x and y.
Then, changing x into y(a) and y into y (b), we can assume without loss of generality that

dist(y(¢),02) <e Vt e (0,1).
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It is easy to verify that
. <y’ Veel0,11  and [|p/(0)] <|y'®)| on(a,b) (90)

for some nonempty interval (a, b) C [0, 1]. It follows from (86) that

5(x. y) < fl L yopdr
=y Zeen

Since « is normally nonincreasing, one has

Sz(x,y></1 L yoidr
=)y Zon

Thanks to (90), one obtains that

Iy (v)*dr,

(§2(x,y)</1 !
0o k(y())

providing a contradiction with the optimality (88) of y. Thus condition (87) holds; hence (€2, §) is a
geodesic space. O

Appendix B: A multicomponent bathtub principle

The following theorem can be seen as a generalization of the classical scalar bathtub principle; see, for
instance, [Lieb and Loss 2001, Theorem 1.14]. In what follows, N is a positive integer and €2 denotes an
arbitrary measurable subset of R?.

Theorem B.1. Let w € L. (Q), and let m = (my, ..., my) € (RN be such that 3" m; = [, w dx.
We define

XNA= {SZ(SO, ...,SN) E Lfr(Q)NJrl | sti dx =m; and vazosi =wa.e. in SZ}
Then for any F = (Fy, ..., Fy) € (L®(Q))N*, the functional

.7-":sr—>/F-sdx
Q

has a minimizer in X N A. Moreover, there exists & = (a, .. ., an) € RNt such that, defining
Alx) = Og}ian{Fj(x) +oaj}, xe€Q,
any minimizer s = (so, . . . , SN) satisfies
Fi+o;=A dsi-ae in2, Vie{0,...,N}.

One can think of this as: s; =0 in {F; +«; > A} and F; 4+ o; > A everywhere; i.e., s; > 0 can only
occur in the “contact set” {x | F;(x) +a; = min; (F;(x) +o;)}.
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Proof. For the existence part, note that F is continuous for the weak L' convergence, and that X N A is
weakly closed. Since ) s; = w and 5; > 0, we have in particular 0 <s; <w e L' foralli and s € X N A.
This implies that X N.A is uniformly integrable, and since the mass ||s;||;1 = [ s; = m; is prescribed, the
Dunford—Pettis theorem shows that X N A is L'-weakly relatively compact. Hence from any minimizing
sequence we can extract a weakly-L' converging subsequence, and by weak L' continuity the weak limit
is a minimizer.

Let us now introduce a dual problem: for fixed & = («g, . .., an) € RV ! we set

Ae(x) :=min{F;(x) + o;} (C2))]
1
and define
N
J(@) = / ()0 (x) dx = " aim;.

@ i=0

We shall prove below that
(1) supgepn+t J (o) = maxycgn+t J (o) is achieved,

(i1) mingexn.a F(s) = maxycpy+t J (o).

The desired decomposition will then follow from equality conditions in (ii), and A(x) = Ag(x) will be
retrieved from any maximizer & € Argmax J.

Remark B.2. The above dual problem can be guessed by introducing suitable Lagrange multipliers
A(x), a for the total saturation and mass constraints, respectively, and writing the convex indicator of the
constraints as a supremum over these multipliers. Formally exchanging inf sup and sup inf and computing
the optimality conditions in the rightmost infimum relates A to & as in (91), which in turn yields exactly
the duality infy 7 = max, J.

Let us first establish property (i). For all @ € RV *! and all s € X N A, we first observe that

N
J(oz):fmjn{Fj(x)+aj}w(x)dx—Zaimi
Q J o

N N
:/m_in{Fj(x)—{—ozj}Zsi(x)dx—Zai/si(x)dx
Q J i=0 i=0 /9

N
= Z/(min{Fj(x)+Olj}_ai)si(x)dxf/ F-sdx = F(s).
i= 72/ @

In particular J is bounded from above and

sup J(a) < seIR}rleA]:(s)' (92)

acRN+!1

Since f wdx =) m;, the function J is invariant under diagonal shifts, i.e., J(a + c1) = J(«) for any

constant ¢ € R. As a consequence we can choose a maximizing sequence {a*};> such that min j oz’;. =0
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k

for all k > 0. Let j(k) be an index such that a’]‘.(k) = min; af = 0. Then, since «" is maximizing and

w(x) >0, we get, for k large enough,

supJ —1< J(ozk)=/Qmjin{Fj(x)—Fa];}w(x)dx—Zaz{{mi

< f (Fia () +ab ) Yo de =) afm; < [|F|r~llolp — Y afm;.
Q ——
=0

Thus > afm,' < C, and since ozf > 0 and m; > 0 we deduce that (ak)k is bounded. Hence, up to extraction
of a nonrelabeled subsequence, we can assume that o* converges towards some & € Rﬁ“. The map J is
continuous; hence & is a maximizer.

Let us now focus on property (ii). Note from (92) and (i) it suffices to prove the reverse inequality

max J(a)> min F(s).
acRN+! sEXNA

We show below that, for any maximizer & of J, we can always construct a suitable s € X N A such that
F(s) = J(a). This will immediately imply the reverse inequality and thus our claim (ii). In order to
do so, we first observe that J is concave; thus the optimality condition at & can be written in terms of
superdifferentials as Ognv+1 € dJ (). Denoting by

Ala) = / Ao @ dx =/ min{F;(x) +o;}w(x)dx
Q Q J
the first contribution in J, this optimality can be recast as
m e A (@). (93)

For fixed x € Q2 and by usual properties of the min function, the superdifferential dA,(x) of the concave
map o — Ag(x) at o € RN+ is characterized by

() ={0 e RYT | YN 6,=1and 6, =0 if F;(x) +o; > ha(x)}.

Therefore, it follows from the extension of the formula of differentiation under the integral to the
nonsmooth case, see [Clarke 1990, Theorem 2.7.2], that

oA (a) = {w € [Riﬁ“ | w= fQ 0(x)w(x)dx for some (x) € 0Ay(x) a.e. in Q} (94)
The optimality criterion (93) at any maximizer a gives the existence of some function 8 as in (94) such that

m,-=/9,-(x)a)(x)dx Vi €{0,..., N}.
Q

Defining
si(x):=6;(x)w(x) Vief0,..., N}, (95)

we have by construction that s; > 0, f si=mj,and )_s; = (Zl 9,-) w=w a.e.; thus s € XN.A. Exploiting
again ) _s; = w as well as the crucial property that ; = 0 a.e. in {x | F; + & > Ag}, or in other words
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that F; +a; = A4 for ds;-a.e x € Q, we get

N N N N N
J(@) = / rgwdx — Y @m; = Zf hasidx = " aim; = Z/ (Fi+a)sidx — Y aim; = F(s)
& i=0 i=0 v i=0 i=0 i=0
as claimed. Therefore s constructed by (95) is a minimizer of F and

J(a) = F(s). (96)

In order to finally retrieve the desired decomposition, choose any minimizer s € X N.A of F and any
maximizer @ € RV*! of J. Then it follows from (96) that

N N
O=]—"(§)—J(&):Z/ Figidx—/kawdx+2&imi.
i=0 /& g i=0

Using once again that ['s; =m; and ) ; s; = w, we get that

N
2/ (Fi +& —hg)si dx = 0.
i=0 V¢

By the definition of A4, the above integrand is nonnegative; hence F; + @; = A a.e. in {s; > 0}. (I
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RESONANCES FOR SYMMETRIC TENSORS
ON ASYMPTOTICALLY HYPERBOLIC SPACES

CHARLES HADFIELD

On manifolds with an even Riemannian conformally compact Einstein metric, the resolvent of the
Lichnerowicz Laplacian, acting on trace-free, divergence-free, symmetric 2-tensors is shown to have a
meromorphic continuation to the complex plane, defining quantum resonances of this Laplacian. For higher-
rank symmetric tensors, a similar result is proven for (convex cocompact) quotients of hyperbolic space.

1. Introduction

This paper studies the meromorphic extension of the resolvent of the Laplacian acting on symmetric tensors
above asymptotically hyperbolic manifolds. The geometric setting of asymptotically hyperbolic manifolds,
modelled on convex cocompact quotients of hyperbolic space, dates back to [Mazzeo 1988; Mazzeo and
Melrose 1987; Fefferman and Graham 1985]. The meromorphic extension with finite-rank poles of the
resolvent of the Laplacian on functions is obtained in [Mazzeo and Melrose 1987], excluding certain
exceptional points in C. Refining the definition of asymptotically hyperbolic manifolds by introducing
a notion of evenness, Guillarmou [2005] provided the meromorphic extension to all of C and showed
that for such an extension, said evenness is essential; see also [Guillopé and Zworski 1995]. By shifting
his viewpoint and studying a Fredholm problem, rather than using Melrose’s pseudodifferential calculus
on manifolds with corners, Vasy [2013a; 2013b] was also able to recover the result of [Guillarmou
2005]. This technique is presented in a very accessible article of Zworski [2016] in a microlocal language
(nonsemiclassical). This alternative method is more appropriate when one considers vector bundles, and,
for symmetric tensors, is lightly explained later in this introduction. Effectively contained in [Vasy 2013a],
the meromorphic extension is explicitly obtained in [Vasy 2017] for the resolvent of the Hodge Laplacian
upon restriction to coclosed forms (or excluding top forms, for closed forms). Such a restriction is natural
in light of works in a conformal setting [Aubry and Guillarmou 2011; Branson and Gover 2005], i.e.,
the boundary of the asymptotic space. In fact, from the conformal geometry viewpoint, Vasy’s method
of placing the asymptotically hyperbolic manifold in an ambient manifold equipped with a Lorentzian
metric is very much in the spirit of both the tractor calculus [Bailey et al. 1994], as well as the ambient
metric construction [Fefferman and Graham 2012].

We give the theorems (with precise definitions of the objects involved left to the body of the article) and
sketch their proofs. Let X be a compact manifold with boundary ¥ = 8 X. That (X, g) is asymptotically

MSC2010: primary 35P25; secondary 35Q75, 53B21.
Keywords: quantum resonances, asymptotically hyperbolic, meromorphic extension of resolvent.
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hyperbolic means that, locally near Y in X, there exists a chart [0, €)p x Y such that on (0, ¢) x Y, the
metric g takes the form
dp>+h
8= 5
P

’

where & is a family of Riemannian metrics on Y, depending smoothly on p € [0, €). That g is even means
that / has a Taylor series about p = 0 in which only even powers of p appear. Above X, we consider the
set of symmetric cotensors of rank m, denoting this vector bundle by £/ = Sym” T*X. On symmetric
tensors, there exist two common Laplacians. The (positive) rough Laplacian V*V and the Lichnerowicz
Laplacian A, originally defined on 2-cotensors [Lichnerowicz 1961], but easily extendible to arbitrary
degree [Heil et al. 2016]. On functions, these two Laplacians coincide; on one-forms, the Lichnerowicz
Laplacian agrees with the Hodge Laplacian; and in general, for symmetric m-cotensors, the Lichnerowicz
Laplacian differs from the rough Laplacian by a zeroth-order curvature operator

A =V*V+4qR).
We construct the Lorentzian cone M = R} x X with metric
n=—ds®ds +s2g

(and call s the Lorentzian scale). Pulling £ back to M we naturally see £ as a subbundle of the bundle
of all symmetric cotensors of rank m above M this larger bundle is denoted by F = Sym” T*M. On F
we consider the Lichnerowicz d’ Alembertian [J. Up to symmetric powers of ds/s we may identify F
with the direct sum of £® = Sym* T*X for all k < m. Indeed by denoting by £ = DBio & ®) the bundle
of all symmetric tensors above X of rank not greater than m, we are able to pull back sections of this
bundle and see them as sections of F:

7l CP(X; E) > CP(M; F).

A long calculation gives the structure of the Lichnerowicz d’ Alembertian with respect to this identification.
It is seen that s>(] decomposes as the Lichnerowicz Laplacian A acting on each subbundle of £%®
for 0 < k < m; however, these fibres are coupled via off-diagonal terms consisting of the symmetric
differential d and its adjoint, the divergence 8. (There are also less important couplings due to the trace A
and its adjoint L.) Also present in the diagonal are terms involving s d; and (s 9;)% By conjugating by

§7"/2+M we obtain the operator

Q=V*V+(s3)*+D+G,

where D is of first order consisting of the symmetric differential and the divergence, while G is a smooth
endomorphism on F. By appealing to the b-calculus of Melrose [1993], we can push this operator acting
on F above M to a family of operators (holomorphic in the complex variable A) acting on £ above X of
the form

0, =V*V+A24+D+G,
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where D is of first order consisting of the symmetric differential and the divergence, while G is a smooth
endomorphism on £. Explicitly, in matrix notation writing
um
u=| 1 |, ueC®X;&), u® ec®X; W),
O

the operator Q, takes the form

[ A+22—cp—LA  2bpu_1d —by_sbpu_iL i
b8 e e 0
b A
. 5 5 —bobiL
0 2byd
L —bob1 A —2bp8  A4+A%—cog—LA -

for constants
by=vVm—k, ci=1in*+mmn+2k+1)—kQn+3k—1),

and operators A the Lichnerowicz Laplacian, § the divergence, d the symmetric differential, A the trace,
and L the adjoint of the trace. (The operator 9, naively does not appear self-adjoint for A € iR since § is
the adjoint of d. The sign discrepancy is due to the Lorentzian signature of 5. The operator is indeed
self-adjoint for A € iR as detailed in Proposition 5.13.) When this family of operators acts on L? sections,
denoted by LE(X ; €) described in (5), it has an inverse for Re A >> 1. This family of operators has the
following meromorphic family of inverses.

Theorem 1.1. Let (X" T, g) be even asymptotically hyperbolic. Then the inverse of (Definition 5.11)
9, acting on L?(X; &),

written as Q;l, has a meromorphic continuation from Re > > 1 to C,

m

even
k=0

with finite-rank poles.

Consider u € C*®(X; &). Although the trace operator A acting on each subbundle £®) gives a notion
of u being trace-free, it is more natural to consider the ambient trace operator from F, denoted by A,
(Section 3B). Pulling u back to M, we have 7 u € C*°(M; F) and we may consider the condition that
mu € ker A,. Avoiding extra notation for this subbundle of £ (consisting of symmetric tensors above X
which are trace-free with respect to the ambient trace operator A,) we will simply refer to its sections
using the notation

C™(X; &) Nker(A, om)).
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On this subbundle, the operator Q, takes the form

A+A2—c,  2b,_d
“2bpa8 e 0
i —2bp8 A+ —c} |

with the modified constants
r=ck—(m—k)(m—k—1).

Note that if u = u'™ € C®(X; £™) then u € ker A if and only if 7}u € ker A,. Again, a similar
meromorphic extension of the inverse may be obtained.

Theorem 1.2. Let (X", g) be even asymptotically hyperbolic. Then the inverse of (Definition 5.11)
Qj. acting on L*(X; ) Nker(A, oY),

written as Q;l, has a meromorphic continuation from Re > > 1 to C,

m
Ol C®(X; &) Nker(A, o)) — p*tm/2m (EB p~kc, (X, 5“‘))) Nker(A, o7)
k=0

with finite-rank poles.

In order to uncouple the Lichnerowicz Laplacian acting on £™ and obtain the desired meromorphic
extension of the resolvent, we need to restrict further from simply trace-free tensors to trace-free,
divergence-free tensors. Equivalently, we must be able to commute the Lichnerowicz Laplacian with
both the trace operator and the divergence operator. The first commutation is always possible giving
the preceding structure of Q,; however, unlike in the setting of differential forms (where the Hodge
Laplacian always commutes with the divergence), such a commutation on symmetric tensors depends on
the geometry of (X, g). For m = 2 the condition is that the Ricci tensor be parallel, while for m > 3, the
manifold must be locally isomorphic to hyperbolic space.

Theorem 1.3. Let (X" T, g) be even asymptotically hyperbolic and Einstein. Then the inverse of
A — }Ln(n —8) +22 acting on L2(X; Sm) Nker A Nker§,
written as R, has a meromorphic continuation from Re A > 1 to C,

Ry C(X; EPDyNker A Nkers — pH"/z_ngfn()?; EPD)yNker A Nkers

(¢

with finite-rank poles.
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Theorem 1.4. Let (X", g) be a convex cocompact quotient of W'+, Then the inverse of
A — 3(n* —4m(n+m —2)) + A% acting on L*(X; E"™) Nker A Nker$,
written as R, has a meromorphic continuation from Re A > 1 to C,

Ry CO(X; E™)Nker A Nker§ — ™22 (X; £™) Nker A Nkers

even
with finite-rank poles.

Note that on H"*!, the difference between the Lichnerowicz Laplacian and the rough Laplacian is
q(R) = —m(n +m — 1). Thus by introducing a spectral parameter s = A + %n (not to be confused with
the Lorentzian scale), the previous operator A — ¢,, + A may be equivalently written as

V*V —s(n—s)—m

in the spirit of [Dyatlov et al. 2015].

In order to demonstrate Theorem 1.1, Vasy’s technique is to consider a slightly larger manifold X,,
as well as the ambient space M, = RT x X,. Using two key tricks near the boundary ¥ = 8X: the
evenness property allows us to introduce the coordinate 1. = p? and twisting the Lorentzian scale with the
boundary-defining function gives (what is termed the Euclidean scale) ¢ = s/p, it is seen that the ambient
metric 7 may be extended nondegenerately past R x ¥ to M,. On Sym™ T*M, we construct, analogous
to @, an operator P replacing appearances of s by ¢ which, on M, is easily related to (). Again the
b-calculus provides a family of operators P on €5;__, Sym* T*X, above X,. Section 7 shows precisely
how this family of operators fits into a Fredholm framework giving a meromorphic inverse, and very
quickly also provides Theorem 1.1.

Such theorems are desirable for several reasons. Firstly, the quantum/classical correspondence between
the spectrum of the Laplacian on a closed hyperbolic surface and Ruelle resonances of the generator
of the geodesic flow on the unit tangent bundle [Faure and Tsujii 2013, Proposition 4.1] has been
extended to compact hyperbolic manifolds of arbitrary dimension [Dyatlov et al. 2015], at which point
the correspondence is between Ruelle resonances and the spectrum of the Laplacian acting on trace-free,
divergence-free, symmetric tensors of arbitrary rank. This correspondence is extended in [Guillarmou
et al. 2016] to convex cocompact hyperbolic surfaces using the scattering operator [Graham and Zworski
2003], as well as [Dyatlov and Guillarmou 2016], to obtain Ruelle resonances in this open system.
Theorem 1.4 has been applied, along with results from [Dyatlov et al. 2015; Dyatlov and Guillarmou
2016], in order to provide such a correspondence in the setting of convex cocompact hyperbolic manifolds
of arbitrary dimension [Hadfield 2017]. Secondly, with knowledge of the asymptotics of the resolvent
of the Laplacian on functions, it is possible to construct the Poisson operator, the scattering operator,
and study in a conformal setting, the GJMS operators and the Q-curvature of Branson [Djadli et al.
2008, Chapters 5—6]. This problem should be particularly interesting on symmetric 2-cotensors above
a conformal manifold which, upon extension to a “bulk” Poincaré-Einstein manifold, makes contact
with Theorem 1.3. Finally, and again with respect to Theorem 1.3, the Lichnerowicz Laplacian plays
a fundamental role in problems involving deformations of metrics and their Ricci tensors [Biquard 2000;
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Delay 1999; Graham and Lee 1991], as well as to linearised gravity [Wang 2009]. Spectral analysis
of the Lichnerowicz Laplacian [Delay 2002; 2007], as well as the desire to build a scattering operator,
emphasise the importance of considering this Laplacian acting on more general spaces than that of L?
sections. From the viewpoint of gravitational waves, the recent work [Baskin et al. 2015] studies decay
rates of solutions to the wave equation (acting on the trivial bundle) on Minkowski space with metrics
similar to (1). It is very natural to consider this problem on symmetric 2-cotensors acted upon by the
Lichnerowicz d’ Alembertian.

Theorem 1.3 requires the global condition that the manifold be Einstein. It is unclear whether such a
condition is necessary. Vasy’s technique deals with the condition of even asymptotic hyperbolicity near the
boundary. Indeed, this is reflected in Theorem 1.2. However to obtain our desired result, uncoupling the
Lichnerowicz Laplacian from the operator Q currently requires a global condition on the base manifold.
One should study whether perturbation techniques could provide a more general theorem, giving precise
conditions for when such a meromorphic continuation exists.

The paper is structured as follows. Section 2 sets up the geometric side of the problem, introducing the
various manifolds of interest as well as the construction of the ambient metric 7. This section also includes
a digression into the model geometry X = H"*! to motivate Vasy’s construction. Section 3 introduces the
algebraic aspects of symmetric tensors, introduces many notational conventions and establishes several
relationships between symmetric tensors when working relative to the Lorentzian and Euclidean scales.
Section 4 recalls standard notions from microlocal analysis and gives several notions from the b-calculus
framework adapted to vector bundles. Section 5 contains the bulk of the calculations of this paper, relating
0 and Q with the Lichnerowicz Laplacian. Sections 6 and 7 introduce the operators P and P and provide
the desired meromorphic inverse. Section 8 establishes the four theorems. Section 9 details the particular
case of symmetric cotensors of rank m = 2. It is useful to gain insight into this problem via this low-rank
setting, and it is hoped that the presentation of this case will aid the reader particularly during Sections 5
and 8. Finally, Section 10 gives the high energy estimates one would obtain if the microlocal analysis
performed in Section 7 was performed using semiclassical notions.

2. Geometry

2A. Model geometry. It is worth mentioning the model geometry which provides a clear geometric
motivation for the construction of the ambient space, as well as the Minkowski and Euclidean scales.
Let R!"*+! be Minkowski space with the Lorentzian metric

n+1
n:= —dxg + deiz

i=1
and set M, to be Minkowski space minus the closure of the backward light cone. The metric gives the
Minkowski distance function, denoted by % on R1"*! from the origin:

n+1
nz(x) = —xg + X:x,2

i=1
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Hyperbolic space X = H"*! is then identified with the (connected) hypersurface
X:={xeR" | n’(x)=-1, xo >0}

and is given the metric g induced by the restriction of 1. The boundary at infinity of hyperbolic space,
i.e., the sphere Y = S", is identified with the (connected) submanifold

Yi={x e R | n?(x) =0, xo=1},

which, as an aside, inherits the standard metric, denoted by #, by restriction of 1. For completeness we
introduce de Sitter space dS"*! as the hypersurface

ds"™ = {x e RV | 2 (x) = 1).
We define the forward light cone
M:={x e R""* | n?(x) <0, xo > 0}
and note the decomposition M = R} x X via the identification
R;’_XXB(S,X)I—)S-XGX.
In these coordinates, the metric 7 restricted to M takes the form
n=—dsQds+s°g
and we refer to s as the Minkowski scale. We define X, to be the subset of the (n+1)-sphere contained

in M, - 1
5 _
in =1,x0>—
ﬁ}

i=0

X, = {x e RV !

and note that the ambient space M, is diffeomorphic to R} x X, via the identification
Rf XX, x)—>1t-x€M,.
We refer to ¢ as the Euclidean scale. The dilations induced by the Euclidean scale allow the identification

X, ~Xuyuds'tl

2B. General setting. We now properly introduce the geometric setting of the article. Let (X, g) be a
Riemannian manifold of dimension n + 1 which is even asymptotically hyperbolic [Guillarmou 2005,
Definition 1.2] with boundary at infinity denoted by Y. We recall the definition of evenness.

Definition 2.1. Let (X, g) be an asymptotically hyperbolic manifold. We say that g is even if there exists
a boundary-defining function p and a family of tensors (/12;);en, On Y = 9 X such that, for all N, one has
the following decomposition of g near Y:

N
¢*(pPg) =dr’+ ) hur® + 0N,
i=0
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where ¢ is the diffeomorphism induced by the flow ¢, of the gradient grad »,(p):
¢:10,)xY - ¢([0,1) xY¥) C X,
(r, y) = ¢ (y).

We define X2 := (X LU X)/Y to be the topological double of X. (For a slicker definition, we stray ever
so slightly from the model geometry.) From the diffeomorphism ¢ we initially construct a C* atlas on
X2 by noting that ¥ C X? is contained in an open set U2 := (U_UU,)/Y with Uy :=¢([0, 1) x Y) and
we declare this set to be C*° diffeomorphic to (—1, 1) x Y via

(—1,1) x Y ~U?

(t )Hiqb_,(y)eU_ if 1 <0,
’ ¢+ (y)eUy ift=0.

Charts on the interior of X in X complete the atlas on X2
We want to consider the boundary-defining function p as a function from X2 to [—1, 1] such that X
may be identified with {p > 0}. Using the previous chart for U? ~ (-1, 1) x ¥ we initially set

p:(=1,1)xY — (—1,1),
(r,y)—>r,

and extend p to a continuous function on X? by demanding that p be constant on X?\U? In order to
ensure smoothness at dU? we deform p smoothly on the two subsets (—1, —1+¢) x Y and (1 —¢,1) XY
of U2 This achieves our goal. We now define the function i on X? by declaring
2 .
—p= ifp =<0,
X —[=11, p=1",
p- ifp>0.
Remark 2.2. Although we have performed a deformation of p near dU? we will continue to think of
p and p as coordinates for the first factor of U2 = (—1, 1) x Y (if we wanted to be correct, in what
follows we would replace (—1, 1) with (—1 4 ¢, 1 — &) but this is cumbersome and we prefer to free up
the variable ¢). Of course, only the coordinates (w, y) provide a smooth chart for X 2 pnear Y.

We now weaken the atlas on X2 near Y. By the previous remark, we may think of 4 as coordinates for
the first factor of U? and we thus demand that the C* atlas is with respect to this coordinate rather than p
(as was the case for the initial atlas). It is now the case that on X2, only u (and not p) is a smooth function.

We define the set Cgy.., (X) to be the subset of functions in C°°(X) which are extensible to C>(X?)
and whose extension is invariant with respect to the natural involution on X2 (For example, consider
the restriction of u to X. However, such an invariant extension would of course not give the function p
previously constructed due to a sign discrepancy.) We remark that C*°(X), the subset of functions in
C*°(X) which vanish to all orders at Y, injects naturally into C*°(X 2y and may be identified with the
subset of C*°(X?) whose elements vanish on {p < 0}. Such constructions may also readily be extended
to the setting of vector bundles above X by using a local basis near Y of such a vector bundle which
smoothly extends across Y.
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Definition 2.3. We denote by X, the extension of X
X, ={u>-1}cx?

by S the hypersurface { = —%} C X,, and by X, the open submanifold { uw > —%} C X, such that
Xcs=S.
We construct two product manifolds M := R} x X and M, := R, x X,. We supply M with the

Lorentzian cone metric
n:=—ds®ds +s2g

and explain how this structure may be smoothly extended to M,.
Using the even neighbourhood at infinity U := (0, 1),, x ¥, we remark that, on R} x U, the Lorentzian
metric takes the form

4p? w

where & has a smooth Taylor expansion about ;& = 0 by the evenness hypothesis. Upon the change of

d d h
n:—ds@ds—l—sz(m—l- )

variables t = s/p with t € R*, the metric on R;” x U takes the form
n=—pdt®@dt — 3t(dpu®@dt +dt @dw) +t*h

or, in a slightly more attractive convention,

—2, W (dty? _Ldr

with the convention for the symmetric product - introduced in the following section. From this display we
see that, by extending /4 to a family of Riemannian metrics on Y parametrised smoothly by u € (—1, 1),
we can extend 7 smoothly onto the chart R;” x U? C M,. We do this, thus furnishing M, with a Lorentzian
metric. As in the model geometry we refer to s (which is only defined on M) as the Minkowski scale,
and to ¢ (which is defined on M,) as the Euclidean scale.

From (1), the measure associated with =25 on R x U? is ﬂdx where dx = %du dvoly,. On U, we
have dx = p"*zdvolg; hence dx extends smoothly to a measure on X,, also denoted dx, and agrees with
dvolg on X\U.

3. Symmetric tensors

This section introduces the necessary algebraic aspects of symmetric tensors and establishes conventions,
which follow [Heil et al. 2016].

3A. A single fibre. Let E be a vector space of dimension n + 1 equipped with an inner product g and
let {e;};_, be an orthonormal basis and {e! }7_, be the corresponding dual basis for E*. We denote by
Sym* E* the k-fold symmetric tensor product of E* Elements are symmetrised tensor products

Up----- Uk 1= Z Uo() ® - QUg), Ui € E™,

o’El—Ik
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where I is the permutation group of {1, ..., k}. By linearity, this extends the operation - to a map from
Sym* E* x Sym*” E* to Sym**¥" E*. Note the inner product takes the form g = 1 "% ¢/ - ¢’ and that
for u € E* we write u* to denote the symmetric product of k copies of u. The inner product induces an
inner product on Sym* E* defined by

(wy---- U, U1 ==+ - k) = Z g i, vom) - 87 k, vo),  wis Vi € EX.

oelly

For u € E*, the metric adjoint of the linear map u- : Sym* E* — Sym**! E* is the contraction u_ :
Sym**t! E* — Sym* E* defined by

(usv)(wi, ..., we) =v® wi,...,wp), uekE* veSym'E* w; €E,

where u* is dual to u relative to the inner product on E. Contraction and multiplication with the metric g
define two additional linear maps:
A :Sym* E* — Sym* 2 E*,
urs Y0 ge se Lu,
and
L:Sym* E* — Sym**? E*,
U Z;’:Oei e,
which are adjoint to each other. As the notation is motivated by standard notation from complex geometry,
we will refer to these two operators as Lefschetz-type operators.

Let F be the vector space R x E equipped with the standard Lorentzian inner product — f ® f + g,
where f is the canonical vector in R* The previous constructions have obvious counterparts on F which
will not be detailed. (For this subsection, we write (-, - ) g for the Lorentzian inner product on Sym™ F*)
The decomposition of F provides a decomposition of Sym™ F*:

m
1
Sym” F* = D a " - Sym* E*, ap= —on
y kej)kf y k ]

and we write

m
u= Zak R ® e Sym™ F*, u® e Symf E*.
k=0

The choice of the normalising constant ay is chosen so that (u, v)p =Y ;_(— D"k (u®  y®). There is
a simple relationship between the terms «®) in this decomposition of u when u is trace-free.

Lemma 3.1. Let Ap and A denote the Lefschetz-type trace operators obtained from the inner products
on F and E respectively. For u € Sym™ F* in the kernel of A, we have

Au® = —bp b u*?),

whereu =Y ,_, ar "% u® for u® e Sym* E* and constants by = /m — k.
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Proof. Beginning with A "% = (m —k)(m —k — 1) f"~*=2 we obtain

Ap(a f" 7 u®) = apo/(m — k) m —k = D) "2 u® g