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We characterize the boundedness of the commutators [b, T ] with biparameter Journé operators T in the
two-weight, Bloom-type setting, and express the norms of these commutators in terms of a weighted
little bmo norm of the symbol b. Specifically, if µ and λ are biparameter Ap weights, ν := µ1/pλ−1/p is
the Bloom weight, and b is in bmo(ν), then we prove a lower bound and testing condition ‖b‖bmo(ν) .
sup ‖[b, R1

k R2
l ] : L p(µ) → L p(λ)‖, where R1

k and R2
l are Riesz transforms acting in each variable.

Further, we prove that for such symbols b and any biparameter Journé operators T, the commutator
[b, T ] : L p(µ)→ L p(λ) is bounded. Previous results in the Bloom setting do not include the biparameter
case and are restricted to Calderón–Zygmund operators. Even in the unweighted, p = 2 case, the upper
bound fills a gap that remained open in the multiparameter literature for iterated commutators with Journé
operators. As a by-product we also obtain a much simplified proof for a one-weight bound for Journé
operators originally due to R. Fefferman.
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1. Introduction and statement of main results

Bloom [1985] proved a two-weight version of the celebrated commutator theorem of Coifman, Rochberg
and Weiss [Coifman et al. 1976]. Specifically, Bloom characterized the two-weight norm of the commutator
[b, H ] with the Hilbert transform in terms of the norm of b in a certain weighted BMO space:

‖[b, H ] : L p(µ)→ L p(λ)‖ ' ‖b‖BMO(ν),
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where µ, λ are Ap weights, 1 < p < ∞, and ν := µ1/pλ−1/p. Recently, this was extended to the
n-dimensional case of Calderón–Zygmund operators in [Holmes et al. 2017], using the modern dyadic
methods started by [Petermichl 2000] and continued in [Hytönen 2012]. The main idea in these methods
is to represent continuous operators like the Hilbert transform in terms of dyadic shift operators. This
theory was recently extended to biparameter singular integrals in [Martikainen 2012].

In this paper we extend the Bloom theory to commutators with biparameter Calderón–Zygmund
operators, also known as Journé operators, and characterize their norms in terms of a weighted version of
the little bmo space of [Cotlar and Sadosky 1996]. The main results are:

Theorem 1.1 (upper bound). Let T be a biparameter Journé operator on REn = Rn1 ⊗Rn2 , as defined in
Section 7A. Let µ and λ be Ap(R

En) weights, 1< p <∞, and define ν := µ1/pλ−1/p. Then

‖[b, T ] : L p(µ)→ L p(λ)‖. ‖b‖bmo(ν),

where ‖b‖bmo(ν) denotes the norm of b in the weighted little bmo(ν) space on REn.

We make a few remarks about the proof of this result. At its core, the strategy is the same as in [Holmes
et al. 2017], and may be roughly stated as:

(1) Use a representation theorem to reduce the problem from bounding the norm of [b, T ] to bounding
the norm of [b, dyadic shift].

(2) Prove the two-weight bound for [b, dyadic shift] by decomposing into paraproducts.

However, the biparameter case presents some significant new obstacles. In [Holmes et al. 2017], T
was a Calderón–Zygmund operator on Rn, and the representation theorem was that of [Hytönen 2012].
In the present paper, T is a biparameter Journé operator on REn = Rn1 ⊗ Rn2 (see Section 7A) and
we use Martikainen’s representation theorem [2012] to reduce the problem to commutators [b,SD],
where SD is now a biparameter dyadic shift. These can be cancellative, i.e., all Haar functions have
mean zero (defined in Section 7C), or noncancellative (defined in Section 7D). The strategy is summarized
in Figure 1.

The main difficulty arises from the structure of the biparameter dyadic shifts. At first glance, the
cancellative shifts are “almost” compositions of two one-parameter shifts SD1 and SD2 applied in each
variable — if this were so, many of the results would follow trivially by iteration of the one-parameter
results. Unfortunately, there is no reason for the coefficients aP1 Q1 R1 P2 Q2 R2 in the biparameter shifts to
“separate” into a product aP1 Q1 R1 · aP2 Q2 R2 , as would be required in a composition of two one-parameter
shifts. Therefore, many of the inequalities needed for biparameter shifts must be proved from scratch.

Even more difficult is the case of noncancellative shifts. As outlined in Section 7D, these are really
paraproducts, and there are three possible types that arise from the representation theorem:

(1) full standard paraproducts;

(2) full mixed paraproducts;

(3) partial paraproducts.
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‖[b, T ] : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν)

‖[b,S
Ei, Ej
D ] : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν)

with at most polynomial bounds in i, j .

Martikainen representation theorem

cancellative shifts:
Theorem 7.2

two-weight bounds
for paraproducts:

Section 6
noncancellative shifts

full standard paraproduct:
Theorem 7.3

full mixed paraproduct:
Theorem 7.4

partial paraproduct:
Theorem 7.5

Figure 1. Strategy for Theorem 1.1.

These methods were considered previously in [Ou et al. 2016; Ou and Petermichl 2018] for the unweighted,
p = 2 case. In [Ou et al. 2016] it was shown that

‖[b, T ] : L2(REn)→ L2(REn)‖. ‖b‖bmo(REn),

where T is a paraproduct-free Journé operator. This restriction essentially means that all the dyadic shifts
in the representation of T are cancellative, so the case of noncancellative shifts remained open. This gap
was partially filled in [Ou and Petermichl 2018], which treats the case of noncancellative shifts of standard
paraproduct type. So the case of general Journé operators, which includes noncancellative shifts of mixed
and partial type in the representation, remained open even in the unweighted, p = 2 case. These types
of paraproducts are notoriously difficult — see also [Martikainen and Orponen 2016] for a wonderful
discussion of this issue. We fill this gap in Section 7D, where we prove two-weight bounds of the type

‖[b,SD] : L p(µ)→ L p(λ)‖. ‖b‖bmo(ν),

where SD is a noncancellative shift. The same is proved for cancellative shifts in Section 7C.
At the backbone of all these proofs will be the biparameter paraproducts, developed in Section 6,

and a variety of biparameter square functions, developed in Section 3. For instance, in the case of the
cancellative shifts, one can decompose the commutator as

[b,S
Ei, Ej
D ] f =

∑
[Pb,S

Ei, Ej
D ] f +

∑
[pb,S

Ei, Ej
D ] f +REi, Ej f.
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Here Pb runs through nine paraproducts associated with product BMO, and pb runs through six paraproducts
associated with little bmo, so we are dealing with fifteen paraproducts in total in the biparameter case.
Some of these are straightforward generalizations of the one-parameter paraproducts, while some are
more complicated “mixed” paraproducts. Two-weight bounds are proved for all these paraproducts in
Section 6, building on two essential blocks: the biparameter square functions in Section 3, and the weighted
H 1- BMO duality in the product setting, developed in Section 4. In fact, Section 4 is a self-contained
presentation of large parts of the weighted biparameter BMO theory.

Once the paraproducts are bounded, all that is left is to bound the so-called “remainder term” REi, Ej f ,
of the form 5S f b−S5 f b, where one can no longer appeal directly to the paraproducts. At this point,
however, things become very technical, so bounding the remainder terms is no easy task. To help guide
the reader, we outline below the general strategy we will employ. This applies to Theorem 7.2, and in
large part to Theorems 7.3, 7.4, and 7.5:

(1) We break up the remainder term into more convenient sums of operators of the type O(b, f ), involving
both b ∈ bmo(ν) and f ∈ L p(µ). We want to show ‖O(b, f ) : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν). Using
duality this amounts to showing that

|〈O(b, f ), g〉|. ‖b‖BMO(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

(2) Some of these operators O(b, f ) involve full Haar coefficients b̂(Q1×Q2) of b, while others involve
a Haar coefficient in one variable and averaging in the other variable, such as 〈b, hQ1 × 1Q2/|Q2|〉.
Since, ultimately, we wish to use some type of H 1- BMO duality, the goal will be to “separate out” b
from the inner product 〈O(b, f ), g〉. If O(b, f ) involves full Haar coefficients of b, we use duality with
product BMO and obtain

|〈O(b, f ), g〉|. ‖b‖BMO(ν)‖SDφ( f, g)‖L1(ν),

where φ( f, g) is the operator we are left with after separating out b, and SD is the full biparameter
dyadic square function. If O(b, f ) involves terms of the form 〈b, hQ1 ×1Q2/|Q2|〉, we use duality with
little bmo, and obtain something of the form

|〈O(b, f ), g〉|. ‖b‖bmo(ν)‖SD1φ( f, g)‖L1(ν),

where SD1 is the dyadic square function in the first variable. Obviously this is replaced with SD2 if the
Haar coefficient on b is in the second variable.

(3) Then the next goal is to show that

SDφ( f, g). (O1 f )(O2g),

where O1,2 will be operators satisfying a one-weight bound of the type L p(w)→ L p(w). These operators
will usually be a combination of the biparameter square functions in Section 3. Once we have this, we
are done.

In Theorem 7.2, dealing with cancellative shifts, the crucial part is really step (1). At first glance,
the remainder term REi, Ej f seems intractable using this method, since it involves average terms 〈b〉Q1×Q2

instead of Haar coefficients of b. So the key here is to decompose these terms in some convenient form.
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In Section 7D, dealing with noncancellative shifts, the proofs follow this strategy in spirit, but deviate
as we advance through the more and more difficult operators. The main issue here is that we are really
dealing with terms of the form |〈O(a, b, f ), g〉|, where now the operator O involves a function b in
the weighted little bmo(ν), and a function a in unweighted product BMO. In the most difficult case of
partial paraproducts, a is even more complicated because it is essentially a sequence of one-parameter
unweighted BMO functions. In all these cases, the creature φ in the last step is really φ(a, f, g). While
in the previous case involving φ( f, g) it was straightforward to see the correct operators O1,2 to achieve
step (3), in this case nothing straightforward seems to work.

There are two key new ideas in these cases: one is to combine the cumbersome remainder term with
a cleverly chosen third term, which will make the decompositions easier to handle. The other is to
temporarily employ martingale transforms — which works for us because this does not increase the BMO
norms. We briefly describe the three situations below. As above, we will be rather nonrigorous about
the notation in this expository section. There is plenty of notation later, and the purpose here is just to
explain the main ideas and guide the reader through the technical proofs in Section 7D:

(1) The full standard paraproduct: Theorem 7.3. This case only requires simple martingale transforms
(aτ and gτ , which have all nonnegative Haar coefficients), and otherwise follows the strategy outlined
above. However, we already start to see the operators O1,2 becoming strange compositions of “standard”
operators and unweighted paraproducts, such as

SDφ ≤ (MS5
∗

aτ gτ )(SD f ).

(2) The full mixed paraproduct: Theorem 7.4. Here we introduce the idea of combining the remainder
term 5S f b−S5 f b with a third term T, and we analyze (5S f b− T ) and (T −S5 f b) separately. This
allows us to express the remainder as∑

[Pa, pb] f + T (1,0)
a,b f − T (0,1)

a,b f,

a sum of commutators of paraproduct operators, and a new remainder term. The new remainder has no
cancellation properties, so we prove separately that the Ta,b operators satisfy

|〈Ta,b f, g〉|. ‖b‖bmo(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

Here is where we employ the strategy outlined earlier, combined with a martingale transform aτ applied
to a. Interestingly, this transform depends on the particular argument f of [b,SD] f . This will be absorbed
in the end by the BMO norm of the symbol for SD, so ultimately the choice of f will not matter.

(3) The partial paraproducts: Theorem 7.5. Here we again combine the remainder terms with a third
term T, and this time end up with terms of the form pbF, where F is a term depending on a and f . So we
are done if we can show that ‖F‖L p(µ) ≤ ‖ f ‖L p(µ). Without getting too technical about the notation, we
reiterate that here a is not one function but rather a sequence aP Q R of one-parameter unweighted BMO
functions. So the difficulty here is that the inner products look something like

〈F, g〉 =
∑
〈5∗aP Q R

f̃ , g̃〉,



1698 IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

where each summand has its own BMO function! The trick is then to write this as
∑
〈aP Q R, φP Q R( f, g)〉.

The happy ending is that these functions aP Q R have uniformly bounded BMO norms, so at this point we
apply unweighted one-parameter H 1- BMO duality and we are left to work with ‖SDφ( f, g)‖L1(Rn); this
is manageable. In one case, we do have to work with Fτ instead, which is again obtained by applying
martingale transforms chosen in terms of f — only this time to each function aP Q R .

Finally, we see no reason why this result cannot be generalized to k-parameter Journé operators. The
main trouble in such a generalization should be strictly computational, as the number of paraproducts
will blow up.

In Section 8 we recall the definition of the mixed BMOI classes in between Chang and Fefferman’s
product BMO and Cotlar and Sadosky’s little BMO. In the same way as in [Ou et al. 2016] we deduce a
corollary from Theorem 1.1:

Theorem 1.2 (upper bound, iterated, unweighted case). Let us consider R
Ed, Ed = (d1, . . . , dt), with a

partition I = (Is)1≤s≤l of {1, . . . , t}. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter Journé

operator acting on functions defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.

Coming back to the Bloom setting, we prove the lower estimate below, via a modification of the
unweighted one-parameter argument of Coifman, Rochberg and Weiss.

Theorem 1.3 (lower bound). Let µ, λ be Ap(R
n
×Rn) weights, and set ν = µ1/pλ−1/p. Then

‖b‖bmo(ν) . sup
16k,l6n

‖[b, R1
k R2

l ]‖L p(µ)→L p(λ),

where R1
k and R2

l are the Riesz transforms acting in the first and second variables, respectively.

This lower estimate allows us to see the tensor products of Riesz transforms as a representative testing
class for all Journé operators.

We point out that in our quest to prove Theorem 1.1, we also obtain a much simplified proof of the
following one-weight result for Journé operators, originally due to R. Fefferman:

Theorem 1.4 (weighted inequality for Journé operators). Let T be a biparameter Journé operator on
REn = Rn1 ⊗Rn2 . Then T is bounded L p(w)→ L p(w) for all w ∈ Ap(R

En), 1< p <∞.

A version of Theorem 1.4 was first introduced by R. Fefferman and E. M. Stein [1982], with restric-
tive assumptions on the kernel. Subsequently the kernel assumptions were weakened significantly by
R. Fefferman [1987], at the cost of assuming the weight belongs to the more restrictive class Ap/2. This
was due to the use of his sharp function T # f = MS( f 2)1/2, where MS is strong maximal function. Finally,
he improved his own result in [Fefferman 1988], where he showed that the Ap class sufficed and obtained
the full statement of Theorem 1.4. This was achieved by an involved bootstrapping argument based on
his previous result [Fefferman 1987].

Our proof in Section 7E of Theorem 1.4 is significantly simpler. This may seem like a “rough sell” in
light of the many pages of highly technical calculations that precede it. However, our proof of Section 7E
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is only based on one-weight bounds for the biparameter dyadic shifts of the form

‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 1. (1-1)

These had to be proved along the way, as part of our proof of the two-weight upper bound for commutators,
Theorem 1.1. These one-weight bounds are useful in themselves, and their proofs are not that long: the
proof for cancellative shifts, given in (7-2), is easy, and the proof for the noncancellative shifts of partial
paraproduct type is given in Proposition 7.6. Once we have (1-1), the proof of Theorem 1.4 follows
immediately from Martikainen’s representation theorem — just as in the one-parameter case, a weighted
bound for Calderón–Zygmund operators follows trivially from Hytönen’s representation theorem, once
one has the one-weight bounds for the one-parameter dyadic shifts.

The paper is organized as follows. In Section 2 we review the necessary background, both one-parameter
and biparameter, and set up the notation. In Section 3 we set up the types of dyadic square functions we
will need throughout the rest of the paper. In Section 4, we discuss the weighted and Bloom BMO spaces
in the biparameter setting, and use some of these results in Section 5 to prove the lower bound result.
Section 6 is dedicated to biparameter paraproducts, which will be crucial in Section 7, which proves the
upper bound by an appeal to Martikainen’s representation theorem [2012]. Finally, we prove Theorem 1.4.

2. Background and notation

We review some of the basic building blocks of one-parameter dyadic harmonic analysis on Rn, followed
by their biparameter versions for REn := Rn1 ⊗Rn2 .

2A. Dyadic grids on Rn. Let D0 := {2−k([0, 1)n +m) : k ∈ Z,m ∈ Zn
} denote the standard dyadic grid

on Rn. For every ω = (ω j ) j∈Z ∈ ({0, 1}n)Z define the shifted dyadic grid Dω:

Dω := {Q+̇ω : Q ∈ D0}, where Q+̇ω := Q+
∑

j :2− j<l(Q)

2− jω j ,

and l(Q) denotes the side length of a cube Q. The indexing parameter ω is rarely relevant in what follows:
it only appears when we are dealing with Eω — expectation with respect to the standard probability
measure on the space of parameters ω. In fact, an important feature of the (by now standard) methods we
employ in this paper is obtaining upper bounds for dyadic operators that are independent of the choice of
dyadic grid. The focus therefore is on the geometrical properties shared by all dyadic grids D on Rn:

• P ∩ Q ∈ {P, Q,∅} for every P, Q ∈ D.

• The cubes Q ∈ D with l(Q)= 2−k, for some fixed integer k, partition Rn.

For every Q ∈ D and every nonnegative integer k we define:

• Q(k) — the k-th generation ancestor of Q in D, i.e., the unique element of D which contains Q and
has side length 2kl(Q).

• (Q)k — the collection of k-th generation descendants of Q in D, i.e., the 2kn disjoint subcubes of Q
with side length 2−kl(Q).
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2B. The Haar system on Rn. Recall that every dyadic interval I in R is associated with two Haar
functions,

h0
I :=

1
√
|I |
(1I−−1I+) and h1

I :=
1
√
|I |

1I ,

the first one being cancellative (it has mean 0). Given a dyadic grid D on Rn, every dyadic cube
Q = I1× · · · × In , where all Ii are dyadic intervals in R with common length l(Q), is associated with
2n
− 1 cancellative Haar functions:

hεQ(x) := h(ε1,...,εn)
I1×···×In

(x1, . . . , xn) :=

n∏
i=1

hεi
Ii
(xi ),

where ε ∈ {0, 1}n \{(1, . . . , 1)} is the signature of hεQ . To simplify notation, we assume that signatures are
never the identically 1 signature, in which case the corresponding Haar function would be noncancellative.
The cancellative Haar functions form an orthonormal basis for L2(Rn). We write

f =
∑
Q∈D

f̂ (Qε)hεQ,

where f̂ (Qε) := 〈 f, hεQ〉, 〈 f, g〉 :=
∫

Rn f g dx , and summation over ε is assumed. We list here some
other useful facts which will come in handy later:

• hεP(x) is constant on any subcube Q ∈ D, Q ( P. We denote this value by hεP(Q).

• The average of f over a cube Q ∈ D may be expressed as

〈 f 〉Q =
∑

P∈D,P)Q

f̂ (Pε)hεP(Q). (2-1)

• Then, if Q ( R ∈ D,
〈 f 〉Q −〈 f 〉R =

∑
P∈D,Q(P⊂R

f̂ (Pε)hεP(Q). (2-2)

• For Q ∈ D,
1Q( f −〈 f 〉Q)=

∑
P∈D,P⊂Q

f̂ (Pε)hεP . (2-3)

• For two distinct signatures ε 6= δ, define the signature ε + δ by letting (ε + δ)i be 1 if εi = δi and 0
otherwise. Note that ε+ δ is distinct from both ε and δ, and is not the identically E1 signature. Then

hεQhδQ =
1
√

Q
hε+δQ if ε 6= δ and hεQhεQ =

1Q

|Q|
.

Again to simplify notation, we assume throughout this paper that we only write hε+δQ for distinct signatures
ε and δ.

Given a dyadic grid D, we define the dyadic square function on Rn by

SD f (x) :=
(∑

Q∈D

| f̂ (Qε)|2
1Q(x)
|Q|

)1/2

.
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Then ‖ f ‖p ' ‖SD f ‖p for all 1< p <∞. We also define the dyadic version of the maximal function:

MD f (x)= sup
Q∈D
〈| f |〉Q1Q(x).

2C. A p(R
n) weights. Letw be a weight on Rn; i.e.,w is an almost everywhere positive, locally integrable

function. For 1< p <∞, let L p(w) := L p(Rn
;w(x) dx). For a cube Q in Rn, we let

w(Q) :=
∫

Q
w(x) dx and 〈w〉Q :=

w(Q)
|Q|

.

We say that w belongs to the Muckenhoupt Ap(R
n) class provided that

[w]Ap := sup
Q
〈w〉Q〈w

1−p′
〉

p−1
Q <∞,

where p′ denotes the Hölder conjugate of p and the supremum above is over all cubes Q in Rn with sides
parallel to the axes. The weight w′ := w1−p′ is sometimes called the weight “conjugate” to w, because
w ∈ Ap if and only if w′ ∈ Ap′ .

We recall the classical inequalities for the maximal and square functions

‖M f ‖L p(w) . ‖ f ‖L p(w) and ‖ f ‖L p(w) ' ‖SD f ‖L p(w)

for all w ∈ Ap(R
n), 1 < p < ∞, where throughout this paper “A . B” denotes A ≤ cB for some

constant c which may depend on the dimensions and the weight w. In dealing with dyadic shifts, we will
also need to consider the following shifted dyadic square function: given nonnegative integers i and j ,
define

Si, j
D f (x) :=

[∑
R∈D

( ∑
P∈(R)i

| f̂ (Pε)|
)2( ∑

Q∈(R) j

1Q(x)
|Q|

)]1/2

.

It was shown in [Holmes et al. 2017] that

‖Si, j
D : L

p(w)→ L p(w)‖. 2(n/2)(i+ j) (2-4)

for all w ∈ Ap(R
n), 1< p <∞.

A martingale transform on Rn is an operator of the form

f 7→ fτ :=
∑
P∈D

τ εP f̂ (Pε)hεP ,

where each τ εP is either +1 or −1. Obviously SD f = SD fτ , so one can work with fτ instead when
convenient, without increasing the L p(w)-norm of f .

2D. The Haar system on REn. In REn := Rn1 ⊗Rn2 , we work with dyadic rectangles

D := D1×D2 = {R = Q1× Q2 : Qi ∈ Di },

where each Di is a dyadic grid on Rni. While we unfortunately lose the nice nestedness and partitioning
properties of one-parameter dyadic grids, we do have the tensor product Haar wavelet orthonormal basis
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for L2(REn), defined by
hEεR(x1, x2) := hε1

Q1
(x1)⊗ hε2

Q2
(x2)

for all R = Q1× Q2 ∈D and Eε = (ε1, ε2). We often write

f =
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
,

short for summing over Q1 ∈ D1 and Q2 ∈ D2, and of course over all signatures, where

f̂ (Qε1
1 × Qε2

2 ) := 〈 f, hε1
Q1
⊗ hε2

Q2
〉 =

∫
REn

f (x1, x2)h
ε1
Q1
(x1)h

ε2
Q2
(x2) dx1 dx2.

While the averaging formula (2-1) has a straightforward biparameter analogue

〈 f 〉Q1×Q2 =

∑
P1)Q1
P2)Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
(Q1)h

ε2
P2
(Q2),

the expression in (2-3) takes a slightly messier form in two parameters: for any R = Q1× Q2

1R( f −〈 f 〉R)

=

∑
P1⊂Q1
P2⊂Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
⊗ hε2

P2
+

∑
P2⊂Q2

〈
f,
1Q1

|Q1|
⊗ hε2

P2

〉
1Q1 ⊗ hε2

P2
+

∑
P1⊂Q1

〈
f, hε1

P1
⊗
1Q2

|Q2|

〉
hε1

P1
⊗1Q2

=

∑
P1⊂Q1
P2⊂Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
⊗ hε2

P2
+1R[m Q1 f (x2)−〈 f 〉R] +1R[m Q2 f (x1)−〈 f 〉R], (2-5)

where for any cubes Qi ∈ Di ,

m Q1 f (x2) :=
1
|Q1|

∫
Q1

f (x1, x2) dx1 and m Q2 f (x1) :=
1
|Q2|

∫
Q2

f (x1, x2) dx2. (2-6)

As we shall see later, this particular expression will be quite relevant for biparameter BMO spaces.

2E. A p(R
En) weights. A weight w(x1, x2) on REn belongs to the class Ap(R

En) for some 1 < p < ∞,
provided that

[w]Ap := sup
R
〈w〉R〈w

1−p′
〉

p−1
R <∞,

where the supremum is over all rectangles R. These are the weights which characterize L p(w) boundedness
of the strong maximal function

MS f (x1, x2) := sup
R
〈| f |〉R1R(x1, x2),

where the supremum is again over all rectangles. As is well known, the usual weak (1, 1) inequality fails
for the strong maximal function, where it is replaced by an Orlicz norm expression. In the weighted case,
we have [Bagby and Kurtz 1985] for all w ∈ Ap(R

En),

w{x ∈ REn : MS f (x) > λ}.
∫

REn

(
| f (x)|
λ

)p(
1+ log+

| f (x)|
λ

)k−1

dw(x). (2-7)
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Moreover, w belongs to Ap(R
En) if and only if w belongs to the one-parameter classes Ap(R

ni ) in
each variable separately and uniformly:

[w]Ap(REn)
'max

{
ess sup
x1∈Rn1

[w(x1, · )]Ap(R
n2 ), ess sup

x2∈Rn2
[w( · , x2)]Ap(R

n1 )

}
.

It also follows, as in the one-parameter case, that w ∈ Ap(R
En) if and only if w′ := w1−p′

∈ Ap′(R
En) and

L p(w)∗ ' L p′(w′), in the sense that

‖ f ‖L p(w) = sup{|〈 f, g〉| : g ∈ L p′(w′), ‖g‖L p′ (w′) ≤ 1}. (2-8)

We may also define weights m Q1w and m Q2w on Rn2 and Rn1, respectively, as in (2-6). As shown
below, these are then also uniformly in their respective one-parameter Ap classes:

Proposition 2.1. If w ∈ Ap(R
En), 1< p<∞, then m Q1w ∈ Ap(R

n2) and m Q2w ∈ Ap(R
n1) for any cubes

Qi ⊂ Rni, with uniformly bounded Ap constants:

[m Qiw]Ap(R
n j ) ≤ [w]Ap(REn)

for all Qi ⊂ Rni , i ∈ {1, 2}, i 6= j .

Proof. Fix a cube Q1 ⊂ Rn1. Then for every x2 ∈ Rn2 ,

|Q1| =

∫
Q1

1 dx1 ≤

(∫
Q1

w(x1, x2) dx1

)1/p(∫
Q1

w′(x1, x2) dx1

)1/p′

,

and so

(m Q1w)
′(x2) := (m Q1w)

1−p′(x2)≤ m Q1w
′(x2).

Then for all cubes Q2 ⊂ Rn2 ,

〈m Q1w〉Q2〈(m Q1w)
′
〉

p−1
Q2
≤ 〈w〉Q1×Q2〈w

′
〉

p−1
Q1×Q2

≤ [w]Ap(REn),

proving the result for m Q1w. The other case follows symmetrically. �

Finally, we will later use a reverse Hölder property of biparameter Ap weights. This is well known to
experts, but we include a proof here for completeness.

Proposition 2.2. If w ∈ Ap(R
En), then there exist positive constants C, ε, δ > 0 (depending only on En, p,

and [w]Ap(REn)
) such that:

(i) For all rectangles R ⊂ REn ,(
1
|R|

∫
R
w(x)1+ε dx

)1/(1+ε)

≤
C
|R|

∫
R
w(x) dx .

(ii) For all rectangles R ⊂ REn and all measurable subsets E ⊂ R,

w(E)
w(R)

≤ C
(
|E |
|R|

)δ
.
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Proof. Note first that (ii) follows easily from (i) by applying the Hölder inequality with exponents 1+ ε
and (1+ ε)/ε in w(E)=

∫
E w(x) dx . This gives (ii) with δ = ε/(1+ ε).

In order to prove (i) we first recall a more general statement of the one-parameter reverse Hölder
property of Ap weights (see Remark 9.2.3 in [Grafakos 2004]):

For any 1< p <∞ and B > 1, there exist positive constants

D = D(n, p, B) and β = β(n, p, B) (2-9)

such that for all v ∈ Ap(R
n) with [v]Ap(REn)

≤ B, the reverse Hölder condition(
1
|Q|

∫
Q
v(t)1+β dt

)1/(1+β)

≤
D
|Q|

∫
Q
v(t) dt (2-10)

holds for all cubes Q ⊂ Rn.

It is easy to see that if a weight v satisfies the reverse Hölder condition (2-10) with constants D, β, then
it also satisfies it with any constants C, ε with C ≥ D and ε ≤ β.

Now let w ∈ Ap(R
En), set B := [w]Ap(REn)

, and for i ∈ {1, 2} let Di := D(ni , p, B) and βi := β(ni , p, B)
be as in (2-9). Fix a rectangle R = Q1× Q2, a measurable subset E ⊂ R, and set

C2
:=max(D1, D2) and ε :=min(β1, β2).

For almost all x1 ∈ Rn1, we have w(x1, · ) ∈ Ap(R
n2) with [w(x1, · )]Ap(R

n2 ) ≤ B, so w(x1, · ) satisfies
reverse Hölder with constants D2, β2 — and therefore also with constants

√
C, ε. So

1
|R|

∫
R
w(x)1+ε dx =

1
|Q1|

∫
Q1

(
1
|Q2|

w(x1, x2)
1+ε dx2

)
dx1

≤
1
|Q1|

∫
Q1

(√
C
|Q2|

∫
Q2

w(x1, x2) dx2

)1+ε

dx1

=
C (1+ε)/2

|Q1|

∫
Q1

(m Q2w(x1))
1+ε dx1.

By Proposition 2.1, we have m Q2w ∈ Ap(R
n1) with [m Q2w]Ap(R

n1 ) ≤ B, so this weight satisfies reverse
Hölder with constants D1, β1 — and therefore also with constants

√
C, ε. Then the last inequality above

gives (
1
|R|

∫
R
w(x)1+ε dx

)1/(1+ε)

≤
C
|Q1|

∫
Q1

m Q2w(x1) dx1 =
C
|R|

∫
R
w(x) dx . �

3. Biparameter dyadic square functions

Throughout this section, fix dyadic rectangles D :=D1×D2 on REn. The dyadic square function associated
with D is then defined in the obvious way:

SD f (x1, x2) :=

(∑
R∈D
| f̂ (REε)|2

1R(x1, x2)

|R|

)1/2

.
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We also want to look at the dyadic square functions in each variable, namely

SD1 f (x1, x2) :=

( ∑
Q1∈D1

|H ε1
Q1

f (x2)|
21Q1(x1)

|Q1|

)1/2

, SD2 f (x1, x2) :=

( ∑
Q2∈D2

|H ε2
Q2
(x1)|

21Q2(x2)

|Q2|

)2

,

where for every Qi ∈ Di and signatures εi , we define

H ε1
Q1

f (x2) :=

∫
Rn1

f (x1, x2)h
ε1
Q1
(x1) dx1, H ε2

Q2
f (x1) :=

∫
Rn2

f (x1, x2)h
ε2
Q2
(x2) dx2.

Then for any w ∈ Ap(R
En),

‖ f ‖L p(w) ' ‖SD f ‖L p(w) ' ‖SD1 f ‖L p(w) ' ‖SD2 f ‖L p(w).

More generally, define the shifted biparameter square function, for pairs Ei = (i1, i2) and Ej = ( j1, j2) of
nonnegative integers, by

S
Ei, Ej
D f :=

[ ∑
R1∈D1
R2∈D2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (Pε1
1 × Pε2

2 )|

)2( ∑
Q1∈(R1) j1
Q2∈(R2) j2

1Q1

|Q1|
⊗
1Q2

|Q2|

)]1/2

. (3-1)

We claim that
‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 2(n1/2)(i1+ j1)2(n2/2)(i2+ j2) (3-2)

for all w ∈ Ap(R
En), 1< p <∞. This follows by iteration of the one-parameter result in (2-4), through

the following vector-valued version of the extrapolation theorem (see Corollary 9.5.7 in [Grafakos 2004]):

Proposition 3.1. Suppose that an operator T satisfies ‖T : L2(w) → L2(w)‖ ≤ ACn[w]A2 for all
w ∈ A2(R

n), for some constants A and Cn , where the latter only depends on the dimension. Then∥∥∥∥(∑
j

|T f j |
2
)1/2∥∥∥∥

L p(w)

≤ AC ′n[w]
max(1,1/(p−1))
Ap

∥∥∥∥(∑
j

| f j |
2
)1/2∥∥∥∥

L p(w)

for all w ∈ Ap(R
n), 1< p <∞, and all sequences { f j } ⊂ L p(w), where C ′n is a dimensional constant.

Proof of (3-2). Note that (S
Ei, Ej
D f )2 =

∑
R1∈D1

(Si2, j2
D2

FR1)
2, where

FR1(x1, x2) :=
∑

P2∈D2

( ∑
P1∈(R1)i1

| f̂ (Pε1
1 × Pε2

2 )|

)( ∑
Q1∈(R1) j1

1Q1(x1)

|Q1|

)1/2

hε2
P2
(x2).

Then

‖S
Ei, Ej
D f ‖p

L p(w) =

∫
Rn1

∫
Rn2

( ∑
R1∈D1

(Si2, j2
D2

FR1(x1, x2))
2
)p/2

w(x1, x2) dx2 dx1.

For almost all fixed x1 ∈Rn1, we know w(x1, · ) is in Ap(R
n2) uniformly, so we may apply Proposition 3.1

and (2-4) to the inner integral and obtain

‖S
Ei, Ej
D f ‖p

L p(w) . 2(pn2/2)(i2+ j2)
∫

Rn1

∫
Rn2

( ∑
R1∈D1

|FR1(x1, x2)|
2
)p/2

w(x1, x2) dx2 dx1.
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Now, we can express the integral above as∫
Rn2

∫
Rn1
(Si1, j1

D1
fτ (x1, x2))

pw(x1, x2) dx1 dx2 . 2(pn1/2)(i1+ j1)‖ fτ‖p,

where
fτ =

∑
P1×P2

| f̂ (Pε1
1 × Pε2

2 )|h
ε1
P1
⊗ hε2

P2

is just a biparameter martingale transform applied to f , and therefore ‖ f ‖L p(w) ' ‖ fτ‖L p(w) by passing
to the square function. �

3A. Mixed square and maximal functions. We will later encounter mixed operators such as

[SM] f (x1, x2) :=

( ∑
Q1∈D1

(MD2(H
ε1
Q1

f )(x2))
2 1Q1(x1)

|Q1|

)1/2

,

[M S] f (x1, x2) :=

( ∑
Q2∈D2

(MD1(H
ε2
Q2

f )(x1))
2 1Q2(x2)

|Q2|

)1/2

.

Next we show that these operators are bounded L p(w)→ L p(w) for all w ∈ Ap(R
En). The proof only

relies on the fact that the one-parameter maximal function satisfies a weighted bound. So we state the
result in a slightly more general form below, replacing MD2 and MD1 by any one-parameter operator that
satisfies a weighted bound.

Proposition 3.2. Let T denote a (one-parameter) operator acting on functions on Rn that satisfies
‖T : L2(v)→ L2(v)‖ ≤ C for all v ∈ A2(R

n). Define the following operators on REn:

[ST ] f (x1, x2) :=

( ∑
Q1∈D1

(T (H ε1
Q1

f )(x2))
2 1Q1(x1)

|Q1|

)1/2

,

[T S] f (x1, x2) :=

( ∑
Q2∈D2

(T (H ε2
Q2

f )(x1))
2 1Q2(x2)

|Q2|

)1/2

,

where T acts on Rn2 in the first operator, and on Rn1 in the second. Then [ST ] and [T S] are bounded
L p(w)→ L p(w) for all w ∈ Ap(R

En).

Proof. We have

‖[ST ] f ‖p
L p(w) =

∫
Rn1

∫
Rn2

( ∑
Q1∈D1

(
T (H ε1

Q1
)(x2)

1Q1(x1)
√
|Q1|

)2)p/2

w(x1, x2) dx2 dx1

.
∫

Rn1

∫
Rn2

( ∑
Q1∈D1

(H ε1
Q1
)2(x2)

1Q1(x1)

|Q1|

)p/2

w(x1, x2) dx2 dx1

= ‖SD1 f ‖p
L p(w) . ‖ f ‖p

L p(w),

where the first inequality follows as before from Proposition 3.1. The proof for [T S] is symmetrical. �
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More generally, define shifted versions of these mixed operators:

[ST ]i1, j1 f (x1, x2) :=

( ∑
R1∈D1

( ∑
P1∈(R1)i1

T (H ε1
P1

f )(x2)

)2 ∑
Q1∈(R1) j1

1Q1(x1)

|Q1|

)1/2

,

[T S]i2, j2 f (x1, x2) :=

( ∑
R2∈D2

( ∑
P2∈(R2)i2

T (H ε2
P2

f )(x1)

)2 ∑
Q2∈(R2) j2

1Q2(x2)

|Q2|

)1/2

.

Under the same assumptions on T, it is easy to see that

‖[ST ]i1, j1 : L p(w)→ L p(w)‖.2(n1/2)(i1+ j1) and ‖[T S]i2, j2 : L p(w)→ L p(w)‖.2(n2/2)(i2+ j2) (3-3)

for all w ∈ Ap(R
En). Specifically,

‖[ST ]i1, j1 f ‖p
L p(w) =

∫
|Si1, j1

D1
F(x1, x2)|

p dw, where F(x1, x2) :=
∑

P1∈D1

T (H ε1
P1

f )(x2)h
ε1
P1
(x1),

so ‖[ST ]i1, j1 f ‖L p(w) . 2(n1/2)(i1+ j1)‖F‖L p(w). Now,

‖F‖L p(w) ' ‖SD1 F‖L p(w) = ‖[ST ] f ‖L p(w) . ‖ f ‖L p(w).

4. Biparameter weighted BMO spaces

Given a weight w on Rn, a locally integrable function b is said to be in the weighted BMO(w) space if

‖b‖BMO(w) := sup
Q

1
w(Q)

∫
Q
|b(x)−〈b〉Q | dx <∞,

where the supremum is over all cubes Q in Rn. If w= 1, we obtain the unweighted BMO(Rn) space. The
dyadic version BMOD(w) is obtained by only taking the supremum over Q ∈ D for some given dyadic
grid D on Rn. If w ∈ Ap(R

n) for some 1< p <∞, Muckenhoupt and Wheeden [1976] showed that

‖b‖BMO(w) ' ‖b‖BMO(w′;p′) := sup
Q

(
1

w(Q)

∫
Q
|b−〈b〉Q |p

′

dw′
)1/p′

, (4-1)

where w′ is the conjugate weight to w. Moreover, if w ∈ A2(R
n), the argument in [Wu 1992] shows that

BMOD(w)' H 1
D(w)

∗, where the dyadic Hardy space H 1
D(w) is defined by the norm

‖φ‖H1
D(w)
:= ‖SDφ‖L1(w).

Then
|〈b, φ〉|. ‖b‖BMOD(w)‖SDφ‖L1(w) for all w ∈ A2(R

n). (4-2)

Now suppose µ and λ are Ap(R
n) weights for some 1 < p < ∞, and define the Bloom weight

ν := µ1/pλ−1/p. As shown in [Holmes et al. 2017], we have ν ∈ A2(R
n), which means we may use (4-2)

with ν. A two-weight John–Nirenberg theorem for the Bloom BMO space BMO(ν) is also proved in that
paper, namely

‖b‖BMO(ν) ' ‖b‖BMO(µ,λ,p) ' ‖b‖BMO(λ′,µ′,p′),
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where

‖b‖BMO(µ,λ,p) := sup
Q

(
1

µ(Q)

∫
Q
|b−〈b〉Q |p dλ

)1/p

,

‖b‖BMO(λ′,µ′,p′) := sup
Q

(
1

λ′(Q)

∫
Q
|b−〈b〉Q |p

′

dµ′
)1/p′

.

We now look at weighted BMO spaces in the product setting REn = Rn1 ⊗Rn2 . Suppose w(x1, x2) is a
weight on REn. Then we have three BMO spaces:

• Weighted little bmo(w) is the space of all locally integrable functions b on REn such that

‖b‖bmo(w) := sup
R

1
w(R)

∫
R
|b−〈b〉R| dx <∞,

where the supremum is over all rectangles R = Q1 × Q2 in REn. Given a choice of dyadic rectangles
D = D1×D2, we define the dyadic weighted little bmoD(w) by taking supremum over R ∈D.

• Weighted product BMOD(w) is the space of all locally integrable functions b on REn such that

‖b‖BMOD(w) := sup
�

(
1

w(�)

∑
R⊂�,R∈D

|b̂(R)|2
1
〈w〉R

)1/2

<∞,

where the supremum is over all open sets �⊂ REn with w(�) <∞.

• Weighted rectangular BMOD,Rec(w) is defined in a similar fashion to the unweighted case — just like
product BMO, but taking the supremum over rectangles instead of over open sets:

‖b‖BMOD,Rec(w) := sup
R

(
1

w(R)

∑
T⊂R

|b̂(T ε)|2
1
〈w〉T

)1/2

,

where the supremum is over all rectangles R, and the summation is over all subrectangles T ∈D, T ⊂ R.

We have the inclusions

bmoD(w)( BMOD(w)( BMOD,Rec(w).

Let us look more closely at some of these spaces.

4A. Weighted product BMOD(w). As in the one-parameter case, we define the dyadic weighted Hardy
space H1

D(w) to be the space of all φ ∈ L1(w) such that SDφ ∈ L1(w), a Banach space under the norm
‖φ‖H1

D(w)
:= ‖SDφ‖L1(w). The following result exists in the literature in various forms, but we include a

proof here for completeness.

Proposition 4.1. With the notation above, H1
D(w)

∗
≡ BMOD(w). Specifically, every b ∈ BMOD(w)

determines a continuous linear functional on H1
D(w) by φ 7→ 〈b, φ〉,

|〈b, φ〉|. ‖b‖BMOD(w)‖SDφ‖L1(w), (4-3)

and, conversely, every L ∈H1
D(w)

∗ may be realized as Lφ = 〈b, φ〉 for some b ∈ BMOD(w).
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Proof. To prove the first statement, let b ∈ BMOD(w) and φ ∈H1
D(w). For every j ∈ Z, define the set

U j := {x ∈ REn : SDφ(x) > 2 j
}, and the collection of rectangles R j :=

{
R ∈D : w(R ∩U j ) >

1
2w(R)

}
.

Clearly U j+1 ⊂U j and R j+1 ⊂R j . Moreover,∑
j∈Z

2 jw(U j )' ‖SDφ‖L1(w), (4-4)

which comes from the measure-theoretical fact that for any integrable function f on a measure space
(X , µ), we have ‖ f ‖L1(µ) '

∑
j∈Z2 jµ{x ∈ X : | f (x)|> 2 j

}.
As shown in Proposition 2.2, there exist C, δ > 0 such that w(E)/w(R) ≤ C(|E |/|R|)δ for all

rectangles R and measurable subsets E ⊂ R. Define then for every j ∈ Z the (open) set

V j := {x ∈ REn : MS1U j (x) > θ}, where θ :=
(

1
2C

)1/δ

.

First note that if R ∈R j , then

1
2
<
w(R ∩U j )

w(R)
≤ C

(
|R ∩U j |

|R|

)δ
so

θ < 〈1U j 〉R ≤ MS1U j (x) for all x ∈ R.

Therefore ⋃
R∈R j

R ⊂ V j . (4-5)

Using (2-7), we have

w(V j ).
∫

U j

1
θ p

(
1+ log+

1
θ

)k−1

dw ' w(U j ). (4-6)

Now suppose R ∈D but R /∈
⋃

j∈Z R j . Then w(R ∩ {SDφ ≤ 2 j
})≥ 1

2w(R) for all j ∈ Z, and so

w(R ∩ {SDφ = 0})= w
( ∞⋂

j=1

R ∩ {SDφ ≤ 2− j
}

)
≥

1
2w(R).

Then |{SDφ = 0}| ≥ |R ∩ {SDφ = 0}| ≥ θ |R|> 0, and we may write

|φ̂(R)|2 =
∫
{SDφ=0}

|φ̂(R)|2
1R

|R ∩ {SDφ = 0}|
dx ≤

1
θ

∫
{SDφ=0}

(SDφ)2 dx = 0.

So

φ̂(R)= 0 for all R ∈D, R /∈
⋃
j∈Z

R j . (4-7)

Finally, if R ∈
⋂

j∈Z R j , then

0= w(R ∩ {SDφ =∞})= lim
j→∞

w(R ∩ {SDφ > 2 j
})≥ 1

2w(R),
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a contradiction. In light of this and (4-7),∑
R∈D
|b̂(R)||φ̂(R)| =

∑
j∈Z

∑
R∈R j\R j+1

|b̂(R)||φ̂(R)|

≤

∑
j∈Z

( ∑
R∈R j\R j+1

|b̂(R)|2
1
〈w〉R

)1/2( ∑
R∈R j\R j+1

|φ̂(R)|2〈w〉R

)1/2

.

To estimate the first term, we simply note that∑
R∈R j\R j+1

|b̂(R)|2
1
〈w〉R

≤

∑
R∈R j

|b̂(R)|2
1
〈w〉R

≤

∑
R⊂V j ,R∈D

|b̂(R)|2
1
〈w〉R

≤ ‖b‖2BMOD(w)
w(V j ),

where the second inequality follows from (4-5). For the second term, note that any R ∈R j \R j+1 satisfies
R ⊂ V j and w(R \U j+1)≥

1
2w(R). Then∑

R∈R j\R j+1

|φ̂(R)|2〈w〉R ≤ 2
∑

R∈R j\R j+1

|φ̂(R)|2
w(R \U j+1)

|R|

= 2
∫

V j\U j+1

∑
R∈R j\R j+1

|φ̂(R)|2
1R

|R|
dw

≤ 2
∫

V j\U j+1

(SDφ)2 dw . 22 jw(V j ),

since SDφ ≤ 2 j+1 off U j+1. Finally, we have by (4-6),∑
R∈D
|b̂(R)||φ̂(R)|. ‖b‖BMOD(w)

∑
j∈Z

2 jw(V j )' ‖b‖BMOD(w)

∑
j∈Z

2 jw(U j ).

Combining this with (4-4), we obtain (4-3).
To see the converse, let L ∈H1

D(w). Then L is given by Lφ = 〈b, φ〉 for some function b. Fix an open
set � with w(�) <∞. Then( ∑

R⊂�,R∈D
|b̂(R)|2

1
〈w〉R

)1/2

≤ sup
‖φ‖l2(�,w)≤1

∣∣∣∣ ∑
R⊂�,R∈D

b̂(R)φ̂(R)
∣∣∣∣,

where ‖φ‖2l2(�,w)
:=
∑

R⊂�,R∈D |φ̂(R)|
2
〈w〉R . By a simple application of Hölder’s inequality,∣∣∣∣ ∑

R⊂�,R∈D
b̂(R)φ̂(R)

∣∣∣∣. ‖L‖?‖φ‖H1
D(w)
≤ ‖L‖? (w(�))1/2‖φ‖l2(�,w),

so ‖b‖BMOD(w) . ‖L‖?. �

4B. Weighted little bmoD(w). In this case, we also want to look at each variable separately. Specifically,
we look at the space BMO(w1, x2): for each x2 ∈ Rn2 , this is the weighted BMO space over Rn1, with
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respect to the weight w( · , x2):

BMO(w1, x2) := BMO(w( · , x2); Rn1) for each x2 ∈ Rn2 .

The norm in this space is given by

‖b( · , x2)‖BMO(w1,x2) := sup
Q1

1
w(Q1, x2)

∫
Q1

|b(x1, x2)−m Q1b(x2)| dx1,

where

w(Q1, x2) :=

∫
Q1

w(x1, x2) dx1 and m Q1b(x2) :=
1
|Q1|

∫
Q1

b(x1, x2) dx1.

The space BMO(w2, x1) and the quantities w(Q2, x1) and m Q2b(x1) are defined symmetrically.

Proposition 4.2. Let w(x1, x2) be a weight on REn = Rn1 ⊗ Rn2 . Then b ∈ L1
loc(R

En) is in bmo(w) if
and only if b is in the one-parameter weighted BMO spaces BMO(wi , x j ) separately in each variable,
uniformly:

‖b‖bmo(w) 'max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w1,x2)

}
.

Remark 4.3. In the unweighted case bmo(REn), if we fixed x2 ∈ Rn2 , we would look at b( · , x2) in the
space BMO(Rn1)— the same one-parameter BMO space for all x2. In the weighted case however, the
one-parameter space for b( · , x2) changes with x2, because the weight w( · , x2) changes with x2.

Proof. Suppose first that b ∈ bmo(w). Then for all cubes Q1, Q2,

‖b‖bmo(w) ≥
1

w(Q1× Q2)

∫
Q1

∫
Q2

|b(x1, x2)−〈b〉Q1×Q2 | dx2 dx1

≥
1

w(Q1× Q2)

∫
Q1

∣∣∣∣∫
Q2

b(x1, x2)−〈b〉Q1×Q2 dx2

∣∣∣∣ dx1,

so ∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 | dx1 ≤
w(Q1× Q2)

|Q2|
‖b‖bmo(w). (4-8)

Now fix a cube Q2 in Rn2 and let fQ2(x1) :=
∫

Q2
|b(x1, x2)−m Q2b(x1)| dx2. Then for any Q1,

〈 fQ2〉Q1 ≤
1
|Q1|

∫
Q1

∫
Q2

|b(x1, x2)−〈b〉Q1×Q2 | dx +
1
|Q1|

∫
Q1

∫
Q2

|m Q2b(x1)−〈b〉Q1×Q2 | dx

≤
w(Q1× Q2)

|Q1|
‖b‖bmo(w)+

|Q2|

|Q1|

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 | dx1

≤ 2
w(Q1× Q2)

|Q1|
‖b‖bmo(w) = 2〈w(Q2, · )〉Q1‖b‖bmo(w),

where the last inequality follows from (4-8). By the Lebesgue differentiation theorem,

fQ2(x1)= lim
Q1→x1

〈 fQ2〉Q1 ≤ 2‖b‖bmo(w) lim
Q1→x1

〈w(Q2, · )〉Q1 = 2‖b‖bmo(w)w(Q2, x1)
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for almost all x1 ∈ Rn1, where Q1 → x1 denotes a sequence of cubes containing x1 with side length
tending to 0.

We would like to say at this point that ‖b(x1, · )‖BMO(w2,x1)= supQ2
1/(w(Q2, x1)) fQ2(x1) is uniformly

(a.a. x1) bounded. However, we must be a little careful and note that at this point we really have that for
every cube Q2 in Rn2 , there is a null set N (Q2)⊂ Rn1 such that

fQ2(x1)≤ 2‖b‖bmo(w)w(Q2, x1) for all x1 ∈ Rn1 \ N (Q2).

In order to obtain the inequality we want, holding for a.a. x1, let N :=
⋃

N (Q̃2) where Q̃2 are the
cubes in Rn2 with rational side length and centers with rational coordinates. Then N is a null set and
f Q̃2
(x1)≤ 2‖b‖bmo(w)w(Q̃2, x1) for all x1 ∈Rn1 \N. By density, this statement then holds for all cubes Q2

and x1 /∈ N, so
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1) ≤ 2‖b‖bmo(w).

The result for the other variable follows symmetrically.
Conversely, suppose

‖b(x1, · )‖BMO(w2,x1) ≤ C1 for a.a. x1, ‖b( · , x2)‖BMO(w1,x2) ≤ C2 for a.a. x2.

Then for any R = Q1× Q2,∫
R
|b−〈b〉R| dx ≤

∫
Q1

∫
Q2

|b(x1, x2)−m Q2(x1)| dx +
∫

Q1

|Q2||m Q2b(x1)−〈b〉Q1×Q2 | dx1

≤

∫
Q1

C2w(Q2, x1) dx1+

∫
Q1

∫
Q2

|b(x1, x2)−m Q1b(x2)| dx2 dx1

≤ C2w(R)+
∫

Q2

C1w(Q1, x2) dx2

= (C1+C2)w(R),
so

‖b‖bmo(w) ≤ 2 max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w1,x2)

}
. �

Corollary 4.4. Let w ∈ A2(R
En) and b ∈ bmoD(w). Then

|〈b, φ〉|. ‖b‖bmoD(w)‖SDiφ‖L1(w)

for all i ∈ {1, 2}.

Proof. This follows immediately from the one-parameter result in (4-2) and the proposition above:

|〈b, φ〉| ≤
∫

Rn1
|〈b(x1, · ), φ(x1, · )〉Rn2 | dx1

.
∫

Rn1
‖b(x1, · )‖BMOD2 (w(x1,· ))‖SD2φ(x1, · )‖L1(w(x1,· )) dx1

. ‖b‖bmo(w)‖SD2φ‖L1(w),

and similarly for SD1 . �
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We now look at the little bmo version of (4-1).

Proposition 4.5. If w ∈ Ap(R
En) for some 1< p <∞, then

‖b‖bmo(w) ' ‖b‖bmo(w;p′) := sup
R

(
1

w(R)

∫
R
|b−〈b〉R|p

′

dw′
)1/p′

.

Proof. By Proposition 4.2 and (4-1),

‖b‖bmo(w) 'max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w(x1,· );p′), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w( · ,x2);p′)
}
.

Suppose first that b ∈ bmo(w; p′). Note that for some function g on REn and a cube Q2 in Rn2 , we have∫
Q2

|g(x1, x2)|
p′w′(x1, x2) dx2 ≥

1
w(Q2, x1)p′−1

∣∣∣∣∫
Q2

g(x1, x2) dx2

∣∣∣∣p′

.

Then

‖b‖p′

bmo(w;p′) ≥
1

w(R)

∫
Q1

1
w(Q2, x1)p′−1

∣∣∣∣∫
Q2

b(x1, x2)−〈b〉Q1×Q2 dx2

∣∣∣∣p′

dx1

=
1

w(R)

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′ |Q2|

p′

w(Q2, x1)p′−1 dx1

≥
1

w(R)

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1,

where the last inequality follows from

|Q2|
p′

w(Q2, x1)p′−1 = |Q2|
1

〈w(x1, · )〉
p′−1
Q2

≥ |Q2|
〈w′(x1, ·)〉Q2

[w(x1, · )]
p′−1
Ap

' w′(Q2, x1).

Now fix Q2 and consider fQ2(x1) :=
∫

Q2
|b(x1, x2)−m Q2b(x1)|

p′w′(x1, x2) dx2. Then

〈 fQ2〉Q1 .
1
|Q1|

∫
Q1

∫
Q2

(
|b(x1, x2)−〈b〉Q1×Q2 |

p′
+ |m Q2b(x1)−〈b〉Q1×Q2 |

p′)w′(x1, x2) dx2 dx1

.
w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′)+
1
|Q1|

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1

.
w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′).

Then for almost all x1,

fQ2(x1)= lim
Q1→x1

〈 fQ2〉Q1 . lim
Q1→x1

w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′) = w(Q2, x1)‖b‖
p′

bmo(w;p′).

Taking again rational cubes, we obtain

‖b(x1, · )‖BMO(w(x1,· );p′) = sup
Q2

(
1

w(Q2, x1)
fQ2(x1)

)1/p′

. ‖b‖bmo(w;p′)

for almost all x1.



1714 IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

Conversely, if b ∈ bmo(w), then there exist C1 and C2 such that

‖b(x1, · )‖BMO(w(x1,· );p′) ≤ C1 for a.a. x1, and ‖b( · , x2)‖BMO(w( · ,x2);p′) ≤ C2 for a.a. x2.

Then∫
R
|b−〈b〉R|p

′

dw′ .
∫

Q1

∫
Q2

|b(x1, x2)−m Q2b(x1)|
p′w′(x1, x2) dx2 dx1

+

∫
Q1

∫
Q2

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(x1, x2) dx2 dx1.

The first integral is easily seen to be bounded by∫
Q1

‖b(x1, · )‖
p′

BMO(w(x1,· ))
w(Q2, x1) dx1 ≤ C p′

1 w(Q1× Q2).

The second integral is equal to∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1

≤

∫
Q1

w′(Q2, x1)

|Q2|p
′

(∫
Q2

|b(x1, x2)−m Q1b(x2)| dx2

)p′

dx1

≤

∫
Q1

w′(Q2, x1)w(Q2, x1)
p′−1

|Q2|p
′

∫
Q2

|b(x1, x2)−m Q1b(x2)|
p′w′(x1, x2) dx2 dx1.

We may express the first term as 〈w′(x1, · )〉Q2〈w(x1, · )〉
p′−1
Q2
. [w]p

′
−1

Ap
for almost all x1. Then, the

integral is further bounded by∫
Q2

w(Q1, x2)‖b( · , x2)‖BMO(w( · ,x2);p′) dx2 . C p′

2 w(Q1× Q2).

Finally, this gives

‖b‖bmo(w;p′) . (C
p′

1 +C p′

2 )
1/p′ .max(C1,C2)' ‖b‖bmo(w). �

We also have a two-weight John–Nirenberg for Bloom little bmo, which follows very similarly to the
proof above.

Proposition 4.6. Let µ, λ ∈ Ap(R
En) for 1< p <∞, and ν := µ1/pλ−1/p. Then

‖b‖bmo(ν) ' ‖b‖bmo(µ,λ,p) ' ‖b‖bmo(λ′,µ′,p′),

where

‖b‖bmo(µ,λ,p) := sup
R

(
1

µ(R)

∫
R
|b−〈b〉R|p dλ

)1/p

,

‖b‖bmo(λ′,µ′,p′) := sup
R

(
1

λ′(R)

∫
R
|b−〈b〉R|p

′

dµ′
)1/p′

.

Note that it also easily follows that ν ∈ A2(R
En).
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5. Proof of the lower bound

Proof of Theorem 1.3. To see the lower bound, we adapt the argument of Coifman, Rochberg and Weiss
[Coifman et al. 1976]. Let {Xk(x)} and {Yl(y)} both be orthonormal bases for the space of spherical
harmonics of degree n in Rn . Then

∑
k |Xk(x)|2 = cn|x |2n and thus

1=
1
cn

∑
k

Xk(x − x ′)
|x − x ′|2n Xk(x − x ′)

and similarly for Yl .
Furthermore Xk(x − x ′)=

∑
|α|+|β|=n x(k)αβ xαx ′β and similarly for Yl . Remember that

b(x, y) ∈ bmo(ν) ⇐⇒ ‖b‖bmo(ν) = sup
Q

1
ν(Q)

∫
Q
|b(x, y)−〈b〉Q | dx dy <∞.

Here, Q = I × J and I and J are cubes in Rn. Let us define the function

0Q(x, y)= sign(b(x, y)−〈b〉Q)1Q(x, y).

So

|b(x, y)−〈b〉Q ||Q|1Q(x, y)

= (b(x, y)−〈b〉Q)|Q|0Q(x, y)

=

∫
Q
(b(x, y)− b(x ′, y′))0Q(x, y) dx ′ dy′

∼

∑
k,l

∫
Q
(b(x, y)− b(x ′, y′))

Xk(x − x ′)
|x − x ′|2n Xk(x − x ′)

Yl(y− y′)
|y− y′|2n Yl(y− y′)0Q(x, y) dx ′ dy′

=

∑
k,l

∫
R2n

b(x, y)− b(x ′, y′)
|x − x ′|2n|y− y′|2n Xk(x − x ′)Yl(y− y′)·

·

∑
|α|+|β|=n

x(k)αβ xαx ′β
∑

|γ |+|δ|=n

y(l)γ δ yγ y′δ0Q(x, y)1Q(x ′, y′) dx ′ dy′.

Note that∫
R2n

b(x, y)− b(x ′, y′)
|x − x ′|2n|y− y′|2n Xk(x − x ′)Yl(y− y′) · x ′β y′δ1Q(x ′, y′) dx ′ dy′ = [b, Tk Tl](x ′β y′δ1Q(x ′, y′)).

Here Tk and Tl are the Calderón–Zygmund operators that correspond to the kernels

Xk(x)
|x |2n and

Yl(y)
|y|2n .

Observe that these have the correct homogeneity due to the homogeneity of the Xk and Yl . With this
notation, the above becomes

|b(x, y)−〈b〉Q ||Q|1Q(x, y)

=

∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

x(k)αβ xα y(l)γ δ yγ0Q(x, y)[b, Tk Tl](x ′β y′δ1Q(x ′, y′))(x, y).
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Now, we integrate with respect to (x, y) and the measure λ. Let us assume for a moment that both I
and J are centered at 0 and thus Q is centered at 0. In this case, since 0Q and 1Q are supported in Q,
there is only contribution for x, x ′, y, y′ in Q:

|Q|
(∫

Q
|b(x, y)−〈b〉Q |p dλ(x, y)

)1/p

6
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

∥∥x(k)αβ xα y(l)γ δ yγ0Q(x, y)[b, Tk Tl](x ′β y′δ1Q(x ′, y′))(x, y)
∥∥

L p(λ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |
∥∥[b, Tk Tl](x ′β y′δ1Q(x ′, y′))

∥∥
L p(λ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |‖[b, Tk Tl]‖L p(µ)→L p(λ)‖x ′β y′δ1Q(x ′, y′)‖L p(µ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |l(I )|β|l(J )|δ|‖[b, Tk Tl]‖L p(µ)→L p(λ)µ(Q)1/p.

We disregarded the coefficients of X and Y at the cost of a constant.
Notice that the Tk and Tl are homogeneous polynomials in Riesz transforms. Therefore the commutator
[b, Tk Tl] can be written as a linear combination of terms such as M[b, R1

i R2
j ]N, where M and N are

compositions of Riesz transforms: First write [b, Tk Tl] as linear combination of terms of the form
[b, Rk

(n)R
l
(n)], where

Rk
(n) =

∏
s

R1
i (k)s

is a composition of n Riesz transforms acting in the first variable with the choice i (k) = (i (k)s )ns=1 ∈

{1, . . . , n}n for each k and similarly for Rl
(n) acting in the second variable Then, for each term, apply

[AB, b]= A[B, b]+[A, b]B successively as follows. Use A= R1
i1

R2
j1 and B of the form Rk

(n−1)R
l
(n−1) and

repeat. It then follows that for each k, l the commutator [b, Tk Tl] can be written as a linear combination
of terms such as M[b, R1

i R2
j ]N, where M and N are compositions of Riesz transforms. Thus Tk and Tl

are homogeneous polynomials in Riesz transforms of the same degree. We require that all commutators
of the form [b, R1

i R2
j ] are bounded, and we have shown the bmo estimate for b for rectangles Q whose

sides are centered at 0. We now translate b in the two directions separately and obtain what we need, by
Proposition 4.6:

‖b‖bmo(ν) ' ‖b‖bmo(µ,λ,p) := sup
R

(
1

µ(R)

∫
R
|b−〈b〉R|p dλ

)1/p

. sup
16k,l6n

‖[b, R1
k R2

l ]‖L p(µ)→L p(λ). �

6. Biparameter paraproducts

Decomposing two functions b and f on Rn into their Haar series adapted to some dyadic grid D and
analyzing the different inclusion properties of the dyadic cubes, one may express their product as

b f =5b f +5∗b f +0b f +5 f b,
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where

5b f :=
∑
Q∈D

b̂(Qε)〈 f 〉QhεQ, 5∗b f :=
∑
Q∈D

b̂(Qε) f̂ (Qε)
1Q

|Q|
, 0b f :=

∑
Q∈D

b̂(Qε) f̂ (Qδ)
1
√
|Q|

hε+δQ .

In [Holmes et al. 2017], it was shown that, when b ∈BMO(ν), the operators 5b, 5∗b, and 0b are bounded
L p(µ)→ L p(λ).

6A. Product BMO paraproducts. In the biparameter setting D=D1×D2, we have fifteen paraproducts.
We treat them beginning with the nine paraproducts associated with product BMO. First, we have the
three “pure” paraproducts, direct adaptations of the one-parameter paraproducts:

5b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )〈 f 〉Q1×Q2hε1
Q1
⊗ hε2

Q2
,

5∗b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qε1
1 × Qε2

2 )
1Q1

|Q1|
⊗
1Q2

|Q2|
,

0b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qδ1
1 × Qδ2

2 )
1
√
|Q1|

1
√
|Q2|

hε1+δ1
Q1
⊗ hε2+δ2

Q2
= 0∗b f.

Next, we have the “mixed” paraproducts. We index these based on the types of Haar functions acting
on f , since the action on b is the same for all of them, namely b̂(Q1× Q2)— this is the property which
associates these paraproducts with product BMOD: in a proof using duality, one would separate out the b
function and be left with the biparameter square function SD. They are

5b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉
1Q1

|Q1|
⊗ hε2

Q2
,

5b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f,
1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗
1Q2

|Q2|
=5∗b;(0,1),

0b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f, hδ1

Q1
⊗
1Q2

|Q2|

〉
1
√
|Q1|

hε1+δ1
Q1
⊗ hε2

Q2
,

0∗b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qδ1
1 × Qε2

2 )
1
√
|Q1|

hε1+δ1
Q1
⊗
1Q2

|Q2|
,

0b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f,
1Q1

|Q1|
⊗ hδ2

Q2

〉
1
√
|Q2|

hε1
Q1
⊗ hε2+δ2

Q2
,

0∗b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qε1
1 × Qδ2

2 )
1
√
|Q2|

1Q1

|Q1|
⊗ hε2+δ2

Q2
.

Proposition 6.1. If ν := µ1/pλ−1/p for Ap(R
En) weights µ and λ, and Pb denotes any one of the nine

paraproducts defined above, then

‖Pb : L p(µ)→ L p(λ)‖. ‖b‖BMOD(ν), (6-1)

where ‖b‖BMOD(ν) denotes the norm of b in the dyadic weighted product BMOD(ν) space on REn.
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Proof. We first outline the general strategy we use to prove (6-1). From (2-8), it suffices to take f ∈ L p(µ)

and g ∈ L p′(λ′) and show that

|〈Pb f, g〉|. ‖b‖BMOD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

(1) Write 〈Pb f, g〉=〈b, φ〉, where φ depends on f and g. By (4-3), |〈Pb f, g〉|.‖b‖BMOD(ν)‖SDφ‖L1(ν).

(2) Show that SDφ . (O1 f )(O2g), where O1 and O2 are operators satisfying a one-weight bound
L p(w)→ L p(w) for all w ∈ Ap(R

En)— these operators will usually be a combination of maximal
and square functions.

(3) Then the L1(ν)-norm of SDφ can be separated into the L p(µ) and L p′(λ′) norms of these operators Oi

by a simple application of Hölder’s inequality,

‖SDφ‖L1(ν) . ‖O1 f ‖L p(µ)‖O2g‖L p′ (λ′) . ‖ f ‖L p(µ)‖g‖L p′ (λ′),

and the result follows.

Remark also that we will not have to treat the adjoints P∗b separately: interchanging the roles of f and g
in the proof strategy above will show that Pb is also bounded L p′(λ′)→ L p′(µ′), which means that P∗b is
bounded L p(µ)→ L p(λ).

Let us begin with 5b f . We write

〈5b f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

〈 f 〉Q1×Q2 ĝ(Qε1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
.

Then

(SDφ)2 ≤
∑

Q1×Q2

〈| f |〉2Q1×Q2
|ĝ(Qε1

1 × Qε2
2 )|

2 1Q1

|Q1|
⊗
1Q2

|Q2|
≤ (MS f )2 · (SDg)2,

so

|〈5b f, g〉|. ‖b‖BMOD(ν)‖MS f ‖L p(µ)‖SDg‖L p′ (λ′) . ‖b‖BMOD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

Note that if we take instead f ∈ L p′(λ′) and g ∈ L p(µ), we have

|〈5b f, g〉|. ‖b‖BMOD(ν)‖MS f ‖L p′ (λ′)‖SDg‖L p(µ) . ‖b‖BMOD(ν)‖ f ‖L p′ (λ′)‖g‖L p(µ),

proving that ‖5b : L p′(λ′)→ L p′(µ′)‖ = ‖5∗b : L
p(µ)→ L p(λ)‖. ‖b‖BMOD(ν). For 0b,

〈0b f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )ĝ(Q
δ1
1 × Qδ2

2 )
1
√
|Q1|

1
√
|Q2|

hε1+δ1
Q1
⊗ hε2+δ2

Q2
,

from which it easily follows that SDφ . SD f · SDg.
Let us now look at 5b;(0,1). In this case,

φ :=
∑

Q1×Q2

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉〈
g,

1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗ hε2

Q2
.
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Then

(SDφ)2 =
∑

Q1×Q2

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉2〈
g,

1Q1

|Q1|
⊗ hε2

Q2

〉2
1Q1

|Q1|
⊗
1Q2

|Q2|

=

∑
Q1×Q2

〈H ε1
Q1

f 〉2Q2
〈H ε2

Q2
g〉2Q1

1Q1

|Q1|
⊗
1Q2

|Q2|

≤

(∑
Q1

(MD2 H ε1
Q1

f )2(x2)
1Q1(x1)

|Q1|

)(∑
Q2

(MD1 H ε2
Q2

g)2(x1)
1Q2(x2)

|Q2|

)
= [SM]2 f · [M S]2g,

where [SM] and [M S] are the mixed square-maximal operators in Section 3A. Boundedness of 5b;(0,1)

then follows from Proposition 3.2. By the usual duality trick, the same holds for 5b;(1,0). Finally,
for 0b;(0,1),

φ =
∑

Q1×Q2

〈H δ1
Q1

f 〉Q2

1
√
|Q1|

ĝ(Qε1+δ1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
,

so SDφ . [SM] f · SDg. Note that 0b;(1,0) works the same way, except we bound SDφ by [M S] f · SDg,
and the remaining two paraproducts follow by duality. �

6B. Little bmo paraproducts. Next, we have the six paraproducts associated with little bmo. We denote
these by the small Greek letters corresponding to the previous paraproducts, and index them based on
the Haar functions acting on b — in this case, separating out the b function will yield one of the square
functions SDi in one of the variables:

πb;(0,1) f :=
∑

Q1×Q2

〈
b, hε1

Q1
⊗
1Q2

|Q2|

〉〈
f,
1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗ hε2

Q2
,

π∗b;(0,1) f :=
∑

Q1×Q2

〈
b, hε1

Q1
⊗
1Q2

|Q2|

〉
f̂ (Qε1

1 × Qε2
2 )

1Q1

|Q1|
⊗ hε2

Q2
,

πb;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hε2

Q2

〉〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉
hε1

Q1
⊗ hε2

Q2
,

π∗b;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hε2

Q2

〉
f̂ (Qε1

1 × Qε2
2 )h

ε1
Q1
⊗
1Q2

|Q2|
,

γb;(0,1) f :=
∑

Q1×Q2

〈
b, hδ1

Q1
⊗
1Q2

|Q2|

〉
f̂ (Qε1

1 × Qε2
2 )

1
√
|Q1|

hε1+δ1
Q1
⊗ hε2

Q2
= γ ∗b;(0,1) f,

γb;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉
f̂ (Qε1

1 × Qε2
2 )

1
√
|Q2|

hε1
Q1
⊗ hε2+δ2

Q2
= γ ∗b;(1,0) f.

Proposition 6.2. If ν := µ1/pλ−1/p for Ap(R
En) weights µ and λ, and pb denotes any one of the six

paraproducts defined above, then

‖pb : L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν),

where ‖b‖bmoD(ν) denotes the norm of b in the dyadic weighted little bmoD(ν) space on REn.
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Proof. The proof strategy is the same as that of the product BMO paraproducts, with the modification that
we use one of the SDi square functions and Corollary 4.4. For instance, in the case of πb;(0,1) we write

〈πb;(0,1) f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

〈H ε2
Q2

f 〉Q1 ĝ(Qε1
1 × Qε2

2 )h
ε1
Q1
⊗
1Q2

|Q2|
.

Then

(SD1φ)
2
≤

∑
Q1

(∑
Q2

〈|H ε2
Q2

f |〉2Q1
1Q1(x1)

1Q2(x2)

|Q2|

)(∑
Q2

|ĝ(Qε1
1 × Qε2

2 )|
21Q2(x2)

|Q2|

)
1Q1(x1)

|Q1|

≤

(∑
Q2

M2
D1
(H ε2

Q2
f )(x1)

1Q2(x2)

|Q2|

)(∑
Q1

∑
Q2

|ĝ(Qε1
1 × Qε2

2 )|
21Q1(x1)

|Q1|
⊗
1Q2(x2)

|Q2|

)
= [M S]2 f · S2

Dg,
and so

|〈πb;(0,1) f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν) . ‖b‖bmoD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

The proof for πb;(1,0) is symmetrical — we take SD2φ, which will be bounded by [SM] f · SDg. The
adjoint paraproducts π∗b;(0,1) and π∗b;(1,0) follow again by duality. Finally, for γb;(0,1),

φ :=
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )
1
√
|Q1|

ĝ(Qε1+δ1
1 × Qε2

2 )h
ε1
Q1
⊗
1Q2

|Q2|
,

from which it easily follows that SD1φ ≤ SD f · SDg. The proof for γb;(1,0) is symmetrical. �

7. Commutators with Journé operators

7A. Definition of Journé operators. We begin with the definition of biparameter Calderón–Zygmund
operators, or Journé operators, on REn := Rn1 ⊗Rn2 , as outlined in [Martikainen 2012]. As shown later in
[Grau de la Herrán 2016], these conditions are equivalent to the original definition of [Journé 1985].

I. Structural assumptions: Given f = f1⊗ f2 and g = g1⊗ g2, where fi , gi : R
ni → C satisfy spt( fi )∩

spt(gi )=∅ for i = 1, 2, we assume the kernel representation

〈T f, g〉 =
∫

REn

∫
REn

K (x, y) f (y)g(x) dx dy.

The kernel K : REn ×REn \ {(x, y) ∈ REn ×REn : x1 = y1 or x2 = y2} → C is assumed to satisfy:

(1) Size condition:

|K (x, y)| ≤ C
1

|x1− y1|n1

1
|x2− y2|n2

.

(2) Hölder conditions:

(a) If |y1− y′1| ≤
1
2 |x1− y1| and |y2− y′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K (x, (y1, y′2))− K (x, (y′1, y2))+ K (x, y′)

∣∣≤ C
|y1− y′1|

δ

|x1− y1|n1+δ

|y2− y′2|
δ

|x2− y2|n2+δ
.
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(b) If |x1− x ′1| ≤
1
2 |x1− y1| and |x2− x ′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K ((x1, x ′2), y)− K ((x ′1, x2), y)+ K (x ′, y)

∣∣≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(c) If |y1− y′1| ≤
1
2 |x1− y1| and |x2− x ′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K ((x1, x ′2), y)− K (x, (y′1, y2))+ K ((x1, x ′2), (y

′

1, y2))
∣∣≤ C

|y1− y′1|
δ

|x1− y1|n1+δ

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(d) If |x1− x ′1| ≤
1
2 |x1− y1| and |y2− y′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K (x, (y1, y′2))− K ((x ′1, x2), y)+ K ((x ′1, x2), (y1, y′2))

∣∣≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

|y2− y′2|
δ

|x2− y2|n2+δ
.

(3) Mixed size and Hölder conditions:

(a) If |x1− x ′1| ≤
1
2 |x1− y1|, then

|K (x, y)− K ((x ′1, x2), y)| ≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

1
|x2− y2|n2

.

(b) If |y1− y′1| ≤
1
2 |x1− y1|, then

|K (x, y)− K (x, (y′1, y2))| ≤ C
|y1− y′1|

δ

|x1− y1|n1+δ

1
|x2− y2|n2

.

(c) If |x2− x ′2| ≤
1
2 |x2− y2|, then

|K (x, y)− K ((x1, x ′2), y)| ≤ C
1

|x1− y1|n1

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(d) If |y2− y′2| ≤
1
2 |x2− y2|, then

|K (x, y)− K (x, (y1, y′2))| ≤ C
1

|x1− y1|n1

|y2− y′2|
δ

|x2− y2|n2+δ
.

(4) Calderón–Zygmund structure in Rn1 and Rn2 separately: If f = f1 ⊗ f2 and g = g1 ⊗ g2 with
spt( f1)∩ spt(g1)=∅, we assume the kernel representation

〈T f, g〉 =
∫

Rn1

∫
Rn1

K f2,g2(x1, y1) f1(y1)g1(x1) dx1 dy1,

where the kernel K f2,g2 : R
n1 ×Rn1 \ {(x1, y1) ∈ Rn1 ×Rn1 : x1 = y1} satisfies the size condition

|K f2,g2(x1, y1)| ≤ C( f2, g2)
1

|x1− y1|n1
,

and Hölder conditions:

(a) If |x1− x ′1| ≤
1
2 |x1− y1|, then

|K f2,g2(x1, y1)− K f2,g2(x
′

1, y1)| ≤ C( f2, g2)
|x1− x ′1|

δ

|x1− y1|n1+δ
.
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(b) If |y1− y′1| ≤
1
2 |x1− y1|, then

|K f2,g2(x1, y1)− K f2,g2(x1, y′1)| ≤ C( f2, g2)
|y1− y′1|

δ

|x1− y1|n1+δ
.

We only assume the above representation and a certain control over C( f2, g2) in the diagonal; that is,

C(1Q2,1Q2)+C(1Q2, uQ2)+C(uQ2,1Q2)≤ C |Q2|

for all cubes Q2 ⊂ Rn2 and all “Q2-adapted zero-mean” functions uQ2 — that is, spt(uQ2) ⊂ Q2,
|uQ2 | ≤ 1, and

∫
uQ2 = 0. We assume the symmetrical representation with kernel K f1,g1 in the case

spt( f2)∩ spt(g2)=∅.

II. Boundedness and cancellation assumptions:

(1) Assume T 1, T ∗1, T1(1) and T ∗1 (1) are in product BMO(REn), where T1 is the partial adjoint of T,
defined by

〈T1( f1⊗ f2), g1⊗ g2〉 = 〈T (g1⊗ f2), f1⊗ g2〉.

(2) Assume
|〈T (1Q1 ⊗1Q2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|

for all cubes Qi ⊂ Rni (weak boundedness).

(3) Diagonal BMO conditions: for all cubes Qi ⊂ Rni and all zero-mean functions aQ1 and bQ2 that are
Q1- and Q2-adapted, respectively, assume:

|〈T (aQ1 ⊗1Q2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|, |〈T (1Q1 ⊗1Q2), aQ1 ⊗1Q2〉|≤ C |Q1||Q2|,

|〈T (1Q1 ⊗ bQ2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|, |〈T (1Q1 ⊗1Q2),1Q1 ⊗ bQ2〉|≤ C |Q1||Q2|.

7B. Biparameter dyadic shifts and Martikainen’s representation theorem. Given dyadic rectangles
D = D1×D2 and pairs of nonnegative integers Ei = (i1, i2) and Ej = ( j1, j2), a (cancellative) biparameter
dyadic shift is an operator of the form

S
Ei, Ej
D f :=

∑
R1∈D1
R2∈D2

∑
P1∈(R1)i1
P2∈(R2)i2

∑
Q1∈(R1) j1
Q2∈(R2) j2

aP1 Q1 R1 P2 Q2 R2 f̂ (Pε1
1 × Pε2

2 ) hδ1
Q1
⊗ hδ2

Q2
, (7-1)

where

|aP1 Q1 R1 P2 Q2 R2 | ≤

√
|P1||Q1|

|R1|

√
|P2||Q2|

|R2|
= 2(−n1/2)(i1+ j1)2(−n2/2)(i2+ j2).

We suppress for now the signatures of the Haar functions, and assume summation over them is understood.
We use the simplified notation

S
Ei, Ej
D f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2) hQ1 ⊗ hQ2

for the summation above.



WEIGHTED LITTLE BMO AND TWO-WEIGHT INEQUALITIES FOR JOURNÉ COMMUTATORS 1723

First note that

S2
D(S

Ei, Ej
D f )=

∑
R1×R2

∑
Q1∈(R1) j1
Q2∈(R2) j2

( ∑
P1∈(R1)i1
P2∈(R2)i2

aP1 Q1 R1 P2 Q2 R2 f̂ (P1× P2)

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

. 2−n1(i1+ j1)2−n2(i2+ j2)(S
Ei, Ej
D f )2,

where S
Ei, Ej
D is the shifted biparameter square function in (3-1). Then, by (3-2),

‖S
Ei, Ej
D f ‖L p(w) . 2(−n1/2)(i1+ j1)2(−n2/2)(i2+ j2)‖S

Ei, Ej
D f ‖L p(w) . ‖ f ‖L p(w) (7-2)

for all w ∈ Ap(R
En).

Next, we state Martikainen’s representation theorem [2012]:

Theorem 7.1 (Martikainen). For a biparameter singular integral operator T as defined in Section 7A,
for some biparameter shifts S

Ei, Ej
D it holds that

〈T f, g〉 = CT Eω1Eω2

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2〈S
Ei, Ej
D f, g〉,

where noncancellative shifts may only appear if (i1, j1)= (0, 0) or (i2, j2)= (0, 0).

In light of this theorem, in order to prove Theorem 1.1, it suffices to prove the two-weight bound
for commutators [b,SD] with the dyadic shifts, with the requirements that the bounds be independent
of the choice of D and that they depend on Ei and Ej at most polynomially. We first look at the case of
cancellative shifts, and then treat the noncancellative case in Section 7D.

7C. Cancellative case.

Theorem 7.2. Let D=D1×D2 be dyadic rectangles in REn =Rn1⊗Rn2 and S
Ei, Ej
D be a cancellative dyadic

shift as defined in (7-1). If µ, λ ∈ Ap(R
En), 1< p <∞, and ν = µ1/pλ−1/p, then

‖[b,S
Ei, Ej
D ] : L

p(µ)→ L p(λ)‖.
(
(1+max(i1, j1))(1+max(i2, j2))

)
‖b‖bmoD(ν),

where ‖b‖bmoD(ν) denotes the norm of b in the dyadic weighted little bmo(ν) space on REn .

Proof. We may express the product of two functions b and f on REn as

b f =
∑

Pb f +
∑

pb f +5 f b,

where Pb runs through the nine paraproducts associated with BMOD(ν) in Section 6A, and pb runs
through the six paraproducts associated with bmoD(ν) in Section 6B. Then

[b,S
Ei, Ej
D ] f =

∑
[Pb,S

Ei, Ej
D ] f +

∑
[pb,S

Ei, Ej
D ] f +REi, Ej f,

where

REi, Ej f :=5
S
Ei, Ej
D f

b−S
Ei, Ej
D 5 f b.
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From the two-weight inequalities for the paraproducts in Propositions 6.1 and 6.2, and the one-weight
inequality for the shifts in (7-2),∥∥∥∥∑ [Pb,S

Ei, Ej
D ] +

∑
[pb,S

Ei, Ej
D ] : L

p(µ)→ L p(λ)

∥∥∥∥. ‖b‖bmoD(ν),

so we are left with bounding the remainder term REi, Ej . We claim that

‖REi, Ej : L
p(µ)→ L p(λ)‖.

(
(1+max(i1, j1))(1+max(i2, j2))

)
‖b‖bmoD(ν),

from which the result follows.
A straightforward calculation shows that

REi, Ej f =
Ei, Ej∑

R,P,Q

aP Q R f̂ (P1× P2)(〈b〉Q1×Q2 −〈b〉P1×P2)hQ1 ⊗ hQ2 .

We write this as a sum REi, Ej f =R1
Ei, Ej

f +R2
Ei, Ej

f by splitting the term in parentheses as

〈b〉Q1×Q2 −〈b〉P1×P2 = (〈b〉Q1×Q2 −〈b〉R1×R2)+ (〈b〉R1×R2 −〈b〉P1×P2).

For the first term, we may apply the biparameter version of (2-2), where we keep in mind that R1 = Q( j1)
1

and R2 = Q( j2)
2 :

〈b〉Q1×Q2−〈b〉R1×R2 =

∑
1≤k1≤ j1
1≤k2≤ j2

b̂(Q(k1)
1 ×Q(k2)

2 )h
Q
(k1)
1
(Q1)hQ

(k2)
2
(Q2)

+

∑
1≤k1≤ j1

〈
b, h

Q
(k1)
1
⊗
1R2

|R2|

〉
h

Q
(k1)
1
(Q1)+

∑
1≤k2≤ j2

〈
b,
1R1

|R1|
⊗h

Q
(k2)
2

〉
h

Q
(k2)
2
(Q2).

Then, we may write the operator R1
Ei, Ej

as

R1
Ei, Ej

f =
∑

1≤k1≤ j1
1≤k2≤ j2

Ak1,k2 f +
∑

1≤k1≤ j1

B(0,1)k1
f +

∑
1≤k2≤ j2

B(1,0)k2
f, (7-3)

where

Ak1,k2 f :=
Ei, Ej∑

R,P,Q

aP Q R f̂ (P1× P2)b̂(Q
(k1)
1 × Q(k2)

2 )h
Q
(k1)
1
(Q1)hQ

(k2)
2
(Q2)hQ1 ⊗ hQ2,

B(0,1)k1
f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)

〈
b, h

Q
(k1)
1
⊗
1R2

|R2|

〉
h

Q
(k1)
1
(Q1)hQ1 ⊗ hQ2,

B(1,0)k2
f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)

〈
b,
1R1

|R1|
⊗ h

Q
(k2)
2

〉
h

Q
(k2)
2
(Q2)hQ1 ⊗ hQ2 .
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We show that these operators satisfy

‖Ak1,k2 : L
p(µ)→ L p(λ)‖. ‖b‖BMOD(ν) for all k1, k2,

‖B(0,1)k1
: L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν) for all k1,

‖B(1,0)k2
: L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν) for all k2.

Going back to the decomposition in (7-3), these inequalities will give

‖R1
Ei, Ej
: L p(µ)→ L p(λ)‖. ( j1 j2+ j1+ j2)‖b‖bmoD(ν).

A symmetrical proof for the term R2
Ei, Ej

coming from (〈b〉R1×R2 −〈b〉P1×P2) will show that

‖R2
Ei, Ej
: L p(µ)→ L p(λ)‖. (i1i2+ i1+ i2)‖b‖bmoD(ν).

Putting these estimates together, we obtain the desired result

‖REi, Ej : L
p(µ)→ L p(λ)‖

. (i1+ i2+ i1i2+ j1+ j2+ j1 j2)‖b‖bmoD(ν) . (1+max(i1, j1))(1+max(i2, j2))‖b‖bmoD(ν).

Note that we are allowed to have one of the situations (i1, i2)= (0, 0) or ( j1, j2)= (0, 0)— but not both —
and then either the term R2

Ei, Ej
f or R1

Ei, Ej
f , respectively, will vanish.

Let us now look at the estimate for Ak1,k2 . Taking again f ∈ L p(µ) and g∈ L p′(λ′), we write 〈Ak1,k2 f,g〉=
〈b, φ〉, where

φ =

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)hQ
(k1)
1
(Q1)hQ

(k2)
2
(Q2)ĝ(Q1× Q2)hQ

(k1)
1
⊗ h

Q
(k2)
2

=

∑
R1×R2

∑
P1∈(R1)i1
P2∈(R2)i2

∑
N1∈(R1) j1−k1
N2∈(R2) j2−k2

f̂ (P1× P2)

( ∑
Q1∈(N1)k1
Q2∈(N2)k2

aP Q R ĝ(Q1× Q2)hN1(Q1)hN2(Q2)

)
hN1 ⊗ hN2 .

Then

S2
Dφ .

∑
N1×N2

( ∑
P1∈(N

( j1−k1)
1 )i1

P2∈(N
( j2−k2)
2 )i2

| f̂ (P1× P2)|
∑

Q1∈(N1)k1
Q2∈(N2)k2

|aP Q R||ĝ(Q1× Q2)|
1
√
|N1|

1
√
|N2|

)2
1N1 ⊗1N2

|N1||N2|

. 2−n1(i1+ j1)2−n2(i2+ j2)
∑

N1×N2

( ∑
P1∈(N

( j1−k1)
1 )i1

P2∈(N
( j2−k2)
2 )i2

| f̂ (P1× P2)|2n1k1/22n2k2/2〈|g|〉N1×N2

)2
1N1 ⊗1N2

|N1||N2|

. 2−n1(i1+ j1−k1)2−n2(i2+ j2−k2)(MSg)2
∑

R1×R2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1× P2)|

)2 ∑
N1∈(R1) j1−k1
N2∈(R2) j2−k2

1N1 ⊗1N2

|N1||N2|

= 2−n1(i1+ j1−k1)2−n2(i2+ j2−k2)(MSg)2(S(i1,i2),( j1−k1, j2−k2)

D f )2,
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where the last operator is the shifted square function in (3-1). Then, from (3-2),

‖Ak1,k2 : L
p(µ)→ L p(λ)‖

. ‖b‖BMOD(ν)‖SDφ‖L1(ν)

. ‖b‖BMOD(ν)2
(−n1/2)(i1+ j1−k1)2(−n2/2)(i2+ j2−k2)‖MSg‖L p′ (λ′)‖S

(i1,i2),( j1−k1, j2−k2)

D f ‖L p(µ)

. ‖b‖BMOD(ν)‖g‖L p′ (λ′)‖ f ‖L p(µ).

Finally, we look at B(0,1)k1
, with the proof for B(1,0)k2

being symmetrical. We write again 〈B(0,1)k1
f, g〉 =

〈b, φ〉, where

φ =

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)hQ
(k1)
1
(Q1)ĝ(Q1× Q2)hQ

(k1)
1
⊗
1R2

|R2|
.

Then

S2
D1

f .2−n1(i1+ j1)2−n2(i2+ j2)
∑

R1∈D1
N1∈(R1) j1−k1

1N1

|N1|

( ∑
R2∈D2

∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1×P2)|
∑

Q2∈(R2) j2

〈|HQ2 g|〉N12n1k1/2 1R2

|R2|

)2

,

and the summation above is bounded by( ∑
R1∈D1

N1∈(R1) j1−k1

1N1

|N1|

∑
R2∈D2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1× P2)|

)2
1R2

|R2|

)( ∑
R2∈D2

( ∑
Q2∈(R2) j2

MD1(HQ2 g)
)2
1R2

|R2|

)
,

which is exactly
(S(i1,i2),( j1−k1,0)

D f )2([M S] j2,0g)2.

From (3-2) and (3-3), we obtain exactly ‖SD1φ‖L1(ν) . ‖ f ‖L p(µ)‖g‖L p′ (λ′), and the proof is complete. �

7D. The noncancellative case. Following the proof in [Martikainen 2012], we are left with three types
of terms to consider, all of paraproduct type,

• the full standard paraproduct, 5a and 5∗a ,

• the full mixed paraproducts, 5a;(0,1) and 5a;(1,0),

where, in each case, a is some fixed function in unweighted product BMO(REn), with ‖a‖BMO(REn) ≤ 1, and

• the partial paraproducts, defined for every i1, j1 ≥ 0 as

S
i1, j1
D f :=

∑
R1∈D1
R2∈D2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
δ2
2 ) f̂ (Pε1

1 × Rε2
2 )h

δ1
Q1
×
1R2

|R2|
,

where, for every fixed P1, Q1, R1, we have aP1 Q1 R1(x2) is a BMO(Rn2) function with

‖aP1 Q1 R1‖BMO(Rn2 ) ≤

√
|P1|
√
|Q1|

|R1|
= 2(−n1/2)(i1+ j1),
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and
âP1 Q1 R1(R

δ2
2 ) := 〈aP1 Q1 R1, hδ2

R2
〉Rn2 :=

∫
Rn2

aP1 Q1 R1(x2)h
δ2
R2
(x2) dx2.

The symmetrical partial paraproduct Si2, j2
D is defined analogously.

We treat each case separately.

7D1. The full standard paraproduct. In this case, we are looking at the commutator [b,5a], where

5a f :=
∑
R∈D

â(R)〈 f 〉Rh R,

and a ∈ BMOD(R
En) with ‖a‖BMOD(REn) ≤ 1. We prove that:

Theorem 7.3. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,5a] : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

Proof. We remark first that

5a(b f )=
∑
R∈D

â(R)〈b f 〉Rh R and 55a f b =
∑
R∈D

â(R)〈b〉R〈 f 〉Rh R,

so
5a(b f )−55a f b =

∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R

=5a

(∑
Pb f +

∑
pb f +5 f b

)
−55a f b,

where the last equality was obtained by simply expanding b f into paraproducts. Then

55a f b−5a5 f b =
∑

5aPb f +
∑

5apb f −
∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R.

Noting that

[b,5a] f =
∑

Pb5a f +
∑

pb5a f −
∑

5aPb f −
∑

5apb f +55a f b−5a5 f b,

we obtain
[b,5a] f =

∑
Pb5a f +

∑
pb5a f −

∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R.

The first terms are easily handled:

‖Pb5a f ‖L p(λ) . ‖b‖BMOD(ν)‖5a f ‖L p(µ) . ‖b‖BMOD(ν)‖a‖BMOD(REn)‖ f ‖L p(µ),

‖pb5a f ‖L p(λ) . ‖b‖bmoD(ν)‖5a f ‖L p(µ) . ‖b‖bmoD(ν)‖a‖BMOD(REn)‖ f ‖L p(µ).

So we are left with the third term.
Now, for any dyadic rectangle R,

〈b f 〉R −〈b〉R〈 f 〉R =
1
|R|

∫
R

f (x)1R(x)(b(x)−〈b〉R) dx .
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Expressing 1R(b−〈b〉R) as in (2-5), we obtain

〈b f 〉R−〈b〉R〈 f 〉R =
1
|R|

∑
P1⊂Q1
P2⊂Q2

b̂(P1×P2) f̂ (P1×P2)

+
1
|R|

∑
P1⊂Q1

〈
b,h P1⊗

1Q2

|Q2|

〉
〈 f,h P1⊗1Q2〉+

1
|R|

∑
P2⊂Q2

〈
b,
1Q1

|Q1|
⊗h P2

〉
〈 f,1Q1⊗h P2〉.

Therefore ∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R =3a,b f + λ(0,1)a,b f + λ(1,0)a,b f,

where

3a,b f :=
∑

Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P1⊂Q1
P2⊂Q2

b̂(P1× P2) f̂ (P1× P2)

)
hQ1 ⊗ hQ2,

λ
(0,1)
a,b f :=

∑
Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P1⊂Q1

〈
b, h P1 ⊗

1Q2

|Q2|

〉
〈 f, h P1 ⊗1Q2〉

)
hQ1 ⊗ hQ2,

λ
(1,0)
a,b f :=

∑
Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P2⊂Q2

〈
b,
1Q1

|Q1|
⊗ h P2

〉
〈 f,1Q1 ⊗ h P2〉

)
hQ1 ⊗ hQ2 .

To analyze the term 3a,b, we write 〈3a,b f, g〉 = 〈b, φ〉, where

φ =
∑

P1×P2

f̂ (P1× P2)

( ∑
Q1⊃P1
Q2⊃P2

â(Q1× Q2)ĝ(Q1× Q2)
1

|Q1||Q2|

)
h P1 ⊗ h P2

=

∑
R∈D

f̂ (R)
( ∑

T∈D,T⊃R

â(T )ĝ(T )
1
|T |

)
h R.

So |〈3a,b f, g〉|. ‖b‖BMOD(ν)‖SDφ‖L1(ν), and

S2
Dφ =

∑
R∈D
| f̂ (R)|2

( ∑
T∈D,T⊃R

â(T )ĝ(T )
1
|T |

)2
1R

|R|
≤

∑
R∈D
| f̂ (R)|2

( ∑
T∈D,T⊃R

âτ (T )ĝτ (T )
1
|T |

)2
1R

|R|
,

where aτ :=
∑

R∈D |â(R)|h R and gτ :=
∑

R∈D |ĝ(R)|h R are martingale transforms which do not increase
either the BMO norm of a, or the L p′(λ′) norm of g. Now note that

〈5∗aτ gτ 〉R =
∑
T(R

âτ (T )ĝτ (T )
1
|R|
+

∑
T⊃R

âτ (T )ĝτ (T )
1
|T |

,

and since all the Haar coefficients of aτ and gτ are nonnegative, we may write∑
T⊃R

âτ (T )ĝτ (T )
1
|T |
≤ 〈5∗aτ gτ 〉R.
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Then

S2
Dφ ≤

∑
R∈D
| f̂ (R)|2〈5∗aτ gτ 〉2R

1R

|R|
≤ (MS5

∗

aτ gτ )2S2
D f,

and
‖SDφ‖L1(ν) ≤ ‖MS5

∗

aτ gτ‖L p′ (λ′)‖SD f ‖L p(µ)

. ‖5∗aτ gτ‖L p′ (λ′)‖ f ‖L p(µ)

. ‖aτ‖BMOD(REn)‖gτ‖L p′ (λ′)‖ f ‖L p(µ),

which gives us the desired estimate

‖3a,b : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖BMOD(ν).

Finally, we analyze the term λ
(0,1)
a,b , with the last term being symmetrical. We have 〈λ(0,1)a,b f, g〉 = 〈b, φ〉

with

φ =
∑

P1

(∑
P2

〈 f, h P1 ⊗1P2〉
1
|P2|

∑
Q1⊃P1

â(Q1× P2)ĝ(Q1× P2)
1
|Q1|

1P2

|P2|

)
h P1,

and |〈λ(0,1)a,b f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν). Now

S2
D1
φ ≤

∑
P1

(∑
P2

〈|HP1 f |〉P2

( ∑
Q1⊃P1

âτ (Q1× P2)ĝτ (Q2× P2)
1
|Q1|

)
1P2

|P2|

)2
1P1

|P1|
,

where we are using the same martingale transforms as above. Note that〈
5∗aτ gτ ,

1P1

|P1|

〉
Rn1

(x2)=
∑

P2

1P2(x2)

|P2|

∑
Q1

âτ (Q1× P2)ĝτ (Q1× P2)
|Q1 ∩ P1|

|Q1||P1|
,

and again since all terms are nonnegative:

S2
D1
φ ≤

∑
P1

M2
D2
(HP1 f )(x2)

( ∑
Q1⊃P1

∑
P2

âτ (Q1× P2)ĝτ (Q1× P2)
1
|Q1|

1P2(x2)

|P2|

)2
1P1(x1)

|P1|

≤

∑
P1

M2
D2
(HP1 f )(x2)

(〈
5∗aτ gτ ,

1P1

|P1|

〉
Rn1

(x2)

)2
1P1(x1)

|P1|

≤ (MD1(5
∗

aτ gτ )(x1, x2))
2
∑

P1

M2
D2
(HP1 f )(x2)

1P1(x1)

|P1|

= (MD1(5
∗

aτ gτ )(x1, x2))
2([SM] f (x1, x2))

2.

Then

‖SD1φ‖L1(ν) . ‖5
∗

aτ gτ‖L p′ (λ′)‖[SM] f ‖L p(µ) . ‖a‖BMOD(REn)‖g‖L p′ (λ′)‖ f ‖L p(µ),

and so

‖λ
(0,1)
a,b : L

p(µ)→ L p(λ)‖. ‖a‖BMOD(ν)‖b‖bmoD(ν). �
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7D2. The full mixed paraproduct. We are now dealing with [b,5a;(0,1)], where

5a;(0,1) f :=
∑

P1×P2

â(P1× P2)

〈
f, h P1 ⊗

1P2

|P2|

〉
1P1

|P1|
⊗ h P2 .

Theorem 7.4. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,5a;(0,1)] : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

Note that the case [b,5a;(1,0)] follows symmetrically.

Proof. By the standard considerations, we only need to bound the remainder term

R(0,1)
a,b f :=55a;(0,1) f b−5a;(0,1)5 f b.

Explicitly, these terms are

55a;(0,1) f b =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

〈b〉Q1×P2hδ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2),

5a;(0,1)5 f b =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

( ∑
Q2)P2

f̂ (Pε1
1 × Qδ2

2 )〈b〉P1×Q2hδ2
Q2
(P2)

)
1P1(x1)

|P1|
⊗ hε2

P2
(x2).

Consider now a third term

T :=
∑

P1×P2

â(Pε1
1 × Pε2

2 )〈b〉P1×P2

〈
f, hε1

P1
⊗
1P2

|P2|

〉
1P1

|P1|
⊗ hε2

P2
.

Using the one-parameter formula

1P1(x1)

|P1|
=

∑
Q1)P1

hδ1
Q1
(P1)h

δ1
Q1
(x1),

we write T as

T =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

〈b〉P1×P2hδ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2),

allowing us to combine this term with 55a;(0,1) f b:

55a;(0,1) f b−T =
∑

P1×P2

â(Pε1
1 ×Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

(〈b〉Q1×P2−〈b〉P1×P2)h
δ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2).

Using (2-2), we have

〈b〉Q1×P2 −〈b〉P1×P2 =−

∑
R1:P1(R1⊂Q1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1),

and then the term in parentheses above becomes

−

∑
Q1)P1

( ∑
R1:P1(R1⊂Q1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

)
hδ1

Q1
(P1)h

δ1
Q1
(x1). (7-4)
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Next, we analyze this term depending on the relationship between R1 and Q1:

Case 1: R1 ( Q1. Then we may rewrite the sum as∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

∑
Q1)R1

hδ1
Q1
(P1)︸ ︷︷ ︸

=h
δ1
Q1
(R1)

hδ1
Q1
(x1)=

∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

1R1(x1)

|R1|
.

This then leads to∑
P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

1R1(x1)

|R1|

)
hε2

P2
(x2)

=

∑
R1×P2

〈
b, hτ1

R1
⊗
1P2

|P2|

〉( ∑
P1(R1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

)
1R1(x1)

|R1|
⊗ hε2

P2
(x2)

=

∑
R1×P2

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
〈5a;(0,1) f, hτ1

R1
⊗ hε2

P2
〉
1R1(x1)

|R1|
⊗ hε2

P2
(x2)

= π∗b;(0,1)5a;(0,1) f.

Case 2a: R1 = Q1 and τ1 6= δ1. Then (7-4) becomes

−

∑
Q1)P1

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
1
√
|Q1|

hτ1+δ1
Q1

(P1)h
δ1
Q1
(x1),

which leads to∑
Q1×P2

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
1
√
|Q1|

hδ1
Q1
(x1)h

ε2
P2
(x2)

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
hτ1+δ1

Q1
(P1)

=

∑
Q1×P2

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
〈5a;(0,1) f, hτ1+δ1

Q1
⊗ hε2

P2
〉

1
√
|Q1|

hδ1
Q1
(x1)⊗ hε2

P2
(x2)

= γb;(0,1)5a;(0,1) f.

Case 2b: R1 = Q1 and τ1 = δ1. Then (7-4) becomes∑
Q1)P1

〈
b, hδ1

Q1
⊗
1P2

|P2|

〉
1
|Q1|

hδ1
Q1
,

which gives rise to the term

T (0,1)
a,b f :=

∑
Q1×P2

〈
b, hδ1

Q1
⊗
1P2

|P2|

〉
hδ1

Q1
(x1)h

ε2
P2
(x2)

1
|Q1|

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
.

We have proved that

55a;(0,1) f b− T =−π∗b;(0,1)5a;(0,1) f − γb;(0,1)5a;(0,1) f − T (0,1)
a,b f.
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Expressing T instead as

T =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

( ∑
Q2)P2

f̂ (Pε1
1 × Qδ2

2 )〈b〉P1×P2hδ2
Q2
(P2)

)
1P1

|P1|
⊗ hε2

P2
,

we are able to pair it with 5a;(0,1)5 f b. Then, a similar analysis yields

T −5a;(0,1)5 f b =5a;(0,1)πb;(1,0) f +5a;(0,1)γb;(1,0) f + T (1,0)
a,b f,

where

T (1,0)
a,b f :=

∑
P1×P2

â(Pε1
1 × Pε2

2 )
1P1(x1)

|P1|
⊗ hε2

P2
(x2)

( ∑
Q2)P2

〈
b,
1P1

|P1|
⊗ hδ2

Q2

〉
f̂ (Pε1

1 × Qδ2
2 )

1
|Q2|

)
.

Then

R(0,1)
a,b f =5a;(0,1)πb;(1,0) f +5a;(0,1)γb;(1,0) f −π∗b;(0,1)5a;(0,1) f −γb;(0,1)5a;(0,1) f +T (1,0)

a,b f −T (0,1)
a,b f.

It is now obvious that the first four terms are bounded as desired, and it remains to bound the terms Ta,b.
We look at T (0,1)

a,b , for which we can write 〈T (0,1)
a,b f, g〉 = 〈b, φ〉, where

φ =
∑

Q1×P2

ĝ(Qδ1
1 × Pε2

2 )
1
|Q1|

( ∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉)
hδ1

Q1
⊗
1P2

|P2|
.

Then |〈T (0,1)
a,b f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν), and

S2
D1
φ =

∑
Q1

(∑
P2

ĝ(Qδ1
1 × Pε2

2 )

(
1
|Q1|

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε2

P1
⊗
1P2

|P2|

〉)
1P2(x2)

|P2|

)2
1Q1(x1)

|Q1|
.

Now, 〈
5a;(0,1) f,

1Q1

|Q1|
⊗ hε2

P2

〉
=

∑
P1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
|P1 ∩ Q1|

|P1||Q1|
.

Define the martingale transform a 7→ aτ =
∑

P1×P2
τ
ε1,ε2
P1,P2

â(Pε1
1 × Pε2

2 ), where

τ
ε1,ε2
P1,P2
=

{
l + 1 if 〈 f, hε1

P1
⊗1P2/|P2|〉 ≥ 0,

−1 otherwise.

Note that, while this transform does depend on f , in the end it will not matter, as this will be absorbed
into the product BMO norm of aτ . Then we have

1
|Q1|

∣∣∣∣ ∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉∣∣∣∣≤ 〈5aτ ;(0,1) f,
1Q1

|Q1|
⊗ hε2

P2

〉
.

Returning to the square function estimate, we now have

S2
D1
φ ≤

∑
Q1

(∑
P2

|ĝ(Qδ1
1 × Pε2

2 )|
21P2(x2)

|P2|

)(∑
P2

〈|H ε2
P2
5aτ ;(0,1) f |〉2Q1

1Q1(x1)
1P2(x2)

|P2|

)
1Q1(x1)

|Q1|

≤ S2
Dg
(∑

P2

M2
D1
(H ε2

P2
5aτ ;(0,1) f )(x1)

1P2(x2)

|P2|

)
= S2

Dg([M S]5aτ ;(0,1) f )2.
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Finally,

‖SD1φ‖L1(ν) ≤ ‖SDg‖L p′ (λ′)‖[M S]5aτ ;(0,1) f ‖L p(µ)

. ‖g‖L p′ (λ′) ‖5aτ ;(0,1) f ‖L p(µ)︸ ︷︷ ︸
.‖aτ ‖BMOD (REn )‖ f ‖L p (µ)

. ‖a‖BMOD(REn)‖ f ‖L p(µ)‖g‖L p′ (λ′),

showing that

‖T (0,1)
a,b : L

p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

The estimate for T (1,0)
a,b follows similarly. �

7D3. The partial paraproducts. We work with

S
i1, j1
D f :=

∑
R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )h

δ1
Q1
⊗
1R2

|R2|
,

where i1, j1 are nonnegative integers, and for every P1, Q1, R1,

aP1 Q1 R1(x2) ∈ BMO(Rn2) with ‖aP1 Q1 R1‖BMO(Rn2 ) ≤ 2(−n1/2)(i1+ j1).

Theorem 7.5. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,Si1, j1
D ] : L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν).

First we need the one-weight bound for the partial paraproducts:

Proposition 7.6. For any w ∈ Ap(R
En), 1< p <∞,

‖S
i1, j1
D : L p(w)→ L p(w)‖. 1. (7-5)

Proof. Let f ∈ L p(w) and g ∈ L p′(w′), and we will show that |〈Si1, j1
D f, g〉|. ‖ f ‖L p(w)‖g‖L p′ (w′). First,

‖〈S
i1, j1
D f, g〉‖ ≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

|〈aP1 Q1 R1, φP1 Q1 R1〉R
n2 |

≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖aP1 Q1 R1‖BMO(Rn2 )‖SD2φP1 Q1 R1‖L1(Rn2 )

≤ 2(−n1/2)(i1+ j1)
∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖SD2φP1 Q1 R1‖L1(Rn2 ),

where for every P1, Q1, R1,

φP1 Q1 R1(x2) :=
∑
R2

f̂ (P1× R2)

〈
g, hQ1 ⊗

1R2

|R2|

〉
h R2(x2).
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Now,

S2
D2
φP1 Q1 R1 =

∑
R2

|ĤP1 f (R2)|
2
〈|HQ1 g|〉2R2

1R2(x2)

|R2|
≤ (MD2 HQ1 g)2(x2)(SD2 HP1 f )2(x2),

so∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖SD2φP1 Q1 R1‖L1(Rn2 )

≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

∫
Rn2
(MD2 HQ1 g)(x2)(SD2 HP1 f )(x2) dx2

=

∫
Rn2

∫
Rn1

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

(MD2 HQ1 g)(x2)(SD2 HP1 f )(x2)
1R1(x1)

|R1|
dx1 dx2

≤

∫
REn

(∑
R1

( ∑
P1∈(R1)i1

SD2 HP1 f (x2)

)2
1R1(x1)

|R1|

)1/2(∑
R1

( ∑
Q1∈(R1) j1

MD2 HQ1 g(x2)

)2
1R1(x1)

|R1|

)1/2

dx

=

∫
REn
[SSD2]

i1,0 f · [SMD2]
j1,0gw1/pw−1/p dx .

Then, from the estimates in (3-3),

‖〈S
i1, j1
D f, g〉‖ ≤ 2(−n1/2)(i1+ j1)‖[SSD2]

i1,0 f ‖L p(w)‖[SMD2]
j1,0g‖L p′ (w′)

. 2(−n1/2)(i1+ j1)2(n1i1/2)‖ f ‖L p(w)2(n1 j1/2)‖g‖L p′ (w′),

and the result follows. �

Proof of Theorem 7.5. In light of (7-5), we only need to bound the remainder term

Ri1, j1 f :=5
S

i1, j1
D f

b−Si1, j1
D 5 f b.

The proof is somewhat similar to that of the full mixed paraproducts, in that we combine each of these
terms

5
S

i1, j1
D f

b =
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )

( ∑
Q2)R2

〈b〉Q1×Q2hδ2
Q2
(R2)h

δ2
Q2
(x2)

)
hδ1

Q1
(x1),

S
i1, j1
D 5 f b =

∑
R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )〈b〉P1×R2hδ1

Q1
(x1)⊗

1R2(x2)

|R2|
,

with a third term

T :=
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )〈b〉Q1×R2hδ1

Q1
⊗
1R2

|R2|
.
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As before, expanding the indicator function in T into its Haar series, we may combine T with 5
S

i1, j1
D f

b:

5
S

i1, j1
D f

b− T =
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )Tb(x2)h

δ1
Q1
(x1),

where
Tb(x2)=

∑
Q2)R2

(〈b〉Q1×Q2 −〈b〉Q1×P2)h
δ2
Q2
(R2)h

δ2
Q2
(x2)

=

∑
Q2)R2

( ∑
P2:R2(P2⊂Q2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ2

P2
(R2)

)
hδ2

Q2
(R2)h

δ2
Q2
(x2).

We analyze this term depending on the relationship of P2 with Q2.

Case 1: P2 ( Q2. Then

Tb(x2)=
∑

P2)R2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ2

P2
(R2)

1P2(x2)

|P2|
,

which gives the operator∑
Q1×P2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ1

Q1
(x1)

1P2(x2)

|P2|

( ∑
P1∈(Q

( j1)
1 )i1

∑
R2(P2

âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 )h

τ2
P2
(R2)

)

=

∑
Q1×P2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ1

Q1
(x1)

1P2(x2)

|P2|

( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aP1 Q1 R1
(H ε1

P1
f ), hτ2

P2
〉Rn2

)
= π∗b;(1,0)F,

where

F :=
∑
Q1

( ∑
P1∈(Q

( j1)
1 )i1

5∗aP1 Q1 R1
(H ε1

P1
f )(x2)

)
hδ1

Q1
(x1).

Now
‖π∗b;(1,0)F‖L p(λ) . ‖b‖bmoD(ν)‖F‖L p(µ),

so we are done if we can show that

‖F‖L p(µ) . ‖ f ‖L p(µ). (7-6)

Take g ∈ L p′(µ′). Then

|〈F, g〉| ≤
∑
Q1

∑
P1∈(Q

( j1)
1 )i1

|〈5∗aP1 Q1 R1
(H ε1

P1
f ), H δ1

Q1
g〉Rn2 |.

Notice that we may write

〈5∗aP1 Q1 R1
(H ε1

P1
f ), H δ1

Q1
g〉Rn2 = 〈aP1 Q1 R1, φP1 Q1 R1〉R

n2 ,

where
φP1 Q1 R1(x2)=

∑
R2

Ĥ ε1
P1

f (Rδ2
2 )〈H

δ1
Q1

g〉R2hδ2
R2
(x2).



1736 IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

Then

|〈F, g〉| ≤
∑
Q1

∑
P1∈(Q

( j1)
1 )i1

‖aP1 Q1 R1‖BMO(Rn2 )‖SD2φP1 Q1 R1‖L1(Rn2 )

≤ 2(−n1/2)(i1+ j1)
∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

∫
Rn2

(∑
R2

|Ĥ ε1
P1

f (Rδ2
2 )|

2
〈|H δ1

Q1
g|〉2R2

1R2(x2)

|R2|

)1/2

dx2

≤ 2(−n1/2)(i1+ j1)
∫

REn

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

(MD2 H δ1
Q1

g)(x2)(SD2 H ε1
P1

f )(x2)
1R1(x1)

|R1|
dx .

The integral above is bounded by∫
REn

(∑
R1

( ∑
P1∈(R1)i1

(SD2 H ε1
P1

f )(x2)

)2
1R1(x1)

|R1|

)1/2(∑
R1

( ∑
P1∈(R1)i1

(SD2 H ε1
P1

f )(x2)

)2
1R1(x1)

|R1|

)1/2

dx

=

∫
REn
([SSD2]

i1,0 f )([SMD2]
j1,0g) dx ≤ ‖[SSD2]

i1,0 f ‖L p(µ)‖[SMD2]
j1,0g‖L p′ (µ′)

. 2(n1/2)(i1+ j1)‖ f ‖L p(µ)‖g‖L p′ (µ′) by (3-3).

The desired estimate in (7-6) is now proved.

Case 2a: P2 = Q2 and τ2 6= δ2. Then

Tb(x2)=
∑

Q2)R2

〈
b,
1Q1

|Q1|
⊗ hτ2

Q2

〉
1
√
|Q2|

hτ2+δ2
Q2

(R2)h
δ2
Q2
(x2),

giving rise to the operator∑
Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hτ2

Q2

〉( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aP1 Q1 R1
(H ε1

P1
f ), hτ2+δ2

Q2
〉Rn2

)
1
√
|Q2|

hδ1
Q1
⊗ hδ2

Q2
= γb;(1,0)F,

which is handled as in the previous case.

Case 2b: P2 = Q2 and τ2 = δ2. In this case, Tb(x2) gives rise to the operator

T ′ :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉
hδ1

Q1
⊗ hδ2

Q2

∑
P1∈(Q

( j1)
1 )i1

1
|Q2|

∑
R2(Q2

âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 ).

Now define

Fτ :=
∑
Q1

( ∑
P1∈(Q

( j1)
1 )i1

5∗aτP1 Q1 R1
(H ε1

P1
f )(x2)

)
hδ1

Q1
(x1),

just as we defined F before, except now to every function aP1 Q1 R1 we apply the martingale transform

aP1 Q1 R1 7→ aτP1 Q1 R1
=

∑
R2

τ
ε2
R2

âP1 Q1 R1(R
ε2
2 )h

ε2
R2
, where τ ε2

R2
:=

{
+1 if Ĥ ε1

P1
f (Rε2

2 )≥ 0,
−1 otherwise.
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Since this does not increase the BMO(Rn2) norms of the aP1 Q1 R1 functions, the estimate (7-6) still holds:
‖Fτ‖L p (µ) . ‖ f ‖L p(µ).

Moreover, note that

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2 =

∑
R2

âτP1 Q1 R1
(Rε2

2 )Ĥ
ε1
P1

f (Rε2
2 )︸ ︷︷ ︸

≥0

|R2 ∩ Q2|

|R2||Q2|

and that

πb;(1,0)Fτ =
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉 ∑
P1∈(Q

( j1)
1 )i1

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2hδ1

Q1
⊗ hδ2

Q2
.

Then

S2
DT ′ ≤

∑
Q1×Q2

∣∣∣∣〈b, 1Q1

|Q1|
⊗ hδ2

Q2

〉∣∣∣∣2( ∑
P1∈(Q

( j1)
1 )i1

1
|Q2|

∑
R2(Q2

|âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 )|

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

≤

∑
Q1×Q2

∣∣∣∣〈b, 1Q1

|Q1|
⊗ hδ2

Q2

〉∣∣∣∣2( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

= S2
D(πb;(1,0)Fτ ).

Finally, this gives us

‖T ′‖L p(λ) ' ‖SDT ′‖L p(λ) ≤ ‖SDπb;(1,0)Fτ‖L p(λ) ' ‖πb;(1,0)Fτ‖L p(λ) . ‖b‖bmoD(ν)‖Fτ‖L p(µ)

. ‖b‖bmoD(ν)‖ f ‖L p(µ).

This proves that5
S

i1, j1
D f

b−T obeys the desired bound, and the case T−Si1, j1
D 5 f b is handled similarly. �

7E. Proof of Theorem 1.4. Having now proved all the one-weight inequalities for dyadic shifts, we may
conclude that

‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 1

for all w ∈ Ap(R
En). For the cancellative shifts, this was proved in (7-2). For the noncancellative shifts,

the first two types are simply paraproducts with symbol ‖a‖BMOD(REn) ≤ 1, while the third type, a partial
paraproduct, was proved to be bounded on L p(w) in Proposition 7.6.

Theorem 1.4 now follows trivially from Martikainen’s representation theorem, Theorem 7.1: Take
f ∈ L p(w) and g ∈ L p′(w′). Then

|〈T f, g〉| ≤ CT Eω1Eω2

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2|〈S
Ei, Ej
D f, g〉|

. ‖ f ‖L p(w)‖g‖L p′ (w′)

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2

' ‖ f ‖L p(w)‖g‖L p′ (w′). �
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8. The unweighted case of higher-order Journé commutators

Here is the definition of the BMO spaces which are in between little BMO and product BMO.
Let b : R Ed → C with Ed = (d1, . . . , dt). Take a partition I = {Is : 1 ≤ s ≤ l} of {1, 2, . . . , t} so that⋃̇
1≤s≤l Is = {1, 2, . . . , t}. We say that b ∈ BMOI(R

Ed) if for any choice v = (vs), vs ∈ Is , we have b is
uniformly in product BMO in the variables indexed by vs . We call a BMO space of this type a “little
product BMO”. If for any Ex = (x1, . . . , xt) ∈ R

Ed we define Exv̂ by removing those variables indexed by vs ,
the little product BMO norm becomes

‖b‖BMOI =max
v

{
sup
Exv̂

‖b(Exv̂)‖BMO
}
,

where the BMO norm is product BMO in the variables indexed by vs .
In [Ou et al. 2016] it was proved that commutators involving tensor products of Riesz transforms in

L p are a testing class for these BMO spaces:

Theorem 8.1 (Ou, Petermichl and Strouse). Let Ej = ( j1, . . . , jt) with 1 ≤ jk ≤ dk and let for each
1≤ s ≤ l, Ej (s) = ( jk)k∈Is be associated a tensor product of Riesz transforms ERs, Ej (s) =

⊗
k∈Is

Rk, jk ; here
Rk, jk are jk-th Riesz transforms acting on functions defined on the k-th variable. We have the two-sided
estimate

‖b‖BMOI(R
Ed )
. sup
Ej
‖[ ER1, Ej (1), . . . , [

ERt, Ej (t), b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.

It was also proved that the estimate self-improves to paraproduct-free Journé commutators in L2, in the
sense T is paraproduct free T (1⊗ · )= T ( · ⊗ 1)= T ∗(1⊗ · )= T ∗( · ⊗ 1)= 0.

Theorem 8.2 (Ou, Petermichl and Strouse). Let us consider R
Ed , Ed = (d1, . . . , dt), with a partition

I = (Is)1≤s≤l of {1, . . . , t} as discussed before. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter

paraproduct-free Journé operator acting on function defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L2(R Ed )→L2(R Ed )
. ‖b‖BMOI(R

Ed )
.

This estimate was generalized somewhat in [Ou and Petermichl 2018] in that the paraproduct-free
condition was slightly weakened; the considerations in the present text in combination with arguments
from [Dalenc and Ou 2016; Ou et al. 2016] to pass to the iterated case, readily give us the following full
result, for all Journé operators and all p:

Theorem 8.3. Let us consider R
Ed , Ed = (d1, . . . , dt), with a partition I = (Is)1≤s≤l of {1, . . . , t} as

discussed before. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter Journé operator acting on

functions defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.
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