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HIGHER RANK QUANTUM-CLASSICAL CORRESPONDENCE

JOACHIM HILGERT, TOBIAS WEICH AND LASSE L. WOLF

For a compact Riemannian locally symmetric space 0\G/K of arbitrary rank we determine the location
of certain Ruelle–Taylor resonances for the Weyl chamber action. We provide a Weyl-lower bound on
an appropriate counting function for the Ruelle–Taylor resonances and establish a spectral gap which
is uniform in 0 if G/K is irreducible of higher rank. This is achieved by proving a quantum-classical
correspondence, i.e., a one-to-one correspondence between horocyclically invariant Ruelle–Taylor
resonant states and joint eigenfunctions of the algebra of invariant differential operators on G/K .

1. Introduction

Ruelle resonances for an Anosov flow provide a fundamental spectral invariant that reflects not only
many important dynamical properties of the flow but also geometric and topological properties of the
underlying manifold. Very recently the concept of resonances was extended to higher rank Rn-Anosov
actions and led to the notion of Ruelle–Taylor resonances1 which were shown to be a discrete subset
σRT ⊂ Cn [Bonthonneau et al. 2020]. It was furthermore shown in that same paper that the leading
resonances (i.e., those with vanishing real part) are related to mixing properties of the considered Anosov
action. In particular, it was shown that if the action is weakly mixing in an arbitrary direction of the
abelian group Rn , then 0 ∈ Cn is the only leading resonance. Furthermore, the resonant states at zero give
rise to equilibrium measures that share properties of Sinai–Ruelle–Bowen (SRB) measures of Anosov
flows.

Apart from the leading resonances the spectrum of Ruelle–Taylor resonances has so far not been
studied if n ≥ 2. In particular, when n ≥ 2, it was not known whether there are other resonances than the
resonance at zero. Neither was it known whether there is a spectral gap, i.e., whether the real parts of
the resonances are bounded away from zero. In this article we shed some light on these questions by
examining the Ruelle–Taylor resonances for the class of Weyl chamber flows via harmonic analysis.

Let us briefly introduce the setting: Let G be a real connected noncompact semisimple Lie group with
finite center and Iwasawa decomposition G = KAN . Let a be the Lie algebra of A and M the centralizer
of A in K . Then A is isomorphic to Rn , where n is the real rank of G, and acts on G/M from the right.
Hence A also acts on the compact manifold M :=0\G/M , where 0≤G is a cocompact torsion-free lattice.
It can be easily seen that this action is an Anosov action with hyperbolic splitting TM = E0 ⊕ Es ⊕ Eu

which can be described explicitly in terms of associated vector bundles (see Section 2A for a general

MSC2020: primary 22E46, 37C85, 37D20, 43A90, 58J50; secondary 58J40.
Keywords: compact locally symmetric space, Poisson transform, spectral correspondence, Weyl chamber flow.

1They were named Ruelle–Taylor resonances because the notion of the Taylor spectrum for commuting operators is a crucial
ingredient of their definition.
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definition of Anosov actions and Proposition 3.1 for the description of the hyperbolic splitting for Weyl
chamber flows). Furthermore, if 6 ⊆ a∗ is the set of restricted roots with simple system 5 and positive
system 6+ then the positive Weyl chamber is given by a+ = {H ∈ a | α(H) > 0 ∀α ∈ 5}.

The Ruelle–Taylor resonances of this Anosov action are defined as follows: For H ∈ a let X H be the
vector field on M defined by the right A-action. Then

σRT := {λ ∈ a∗

C | ∃u ∈ D′

E∗
u
(M) \ {0} s.t. (X H + λ(H))u = 0 ∀H ∈ a},

where D′

E∗
u
(M) is the set of distributions with wavefront set contained in the annihilator E∗

u ⊆ T ∗M of
E0 ⊕ Eu . The distributions u ∈ D′

E∗
u
(M) satisfying (X H + λ(H))u = 0 for all H ∈ a are called resonant

states of λ and the dimension of the space of all such distributions is called the multiplicity m(λ) of
the resonance λ. It has been shown in [Bonthonneau et al. 2020] that σRT ⊂ a∗

C
is discrete and that all

resonances have finite multiplicity. It also follows from that work that the real part of the resonances are
located in a certain cone −a∗ ⊂ a∗ which is the negative dual cone of the positive Weyl chamber a+ (see
Section 2B for a precise definition).

In this article we will prove that there is a bijection between a certain subset of the Ruelle–Taylor
resonant states and certain joint eigenfunctions of the invariant differential operators on the locally
symmetric space 0\G/K . Before explaining this correspondence in more detail we state two results on
the spectrum of Ruelle–Taylor resonances that we can conclude from the correspondence.

The first result says that, for any Weyl chamber flow, there exist infinitely many Ruelle–Taylor
resonances by providing a Weyl-lower bound on an appropriate counting function.

Theorem 1.1. Let ρ be the half-sum of the positive restricted roots, let W be the Weyl group (see Section 2B
for a precise definition) and, for t > 0, let

N (t) :=

∑
λ∈σRT, Re(λ)=−ρ, ∥Im(λ)∥≤t

m(λ).

Then, for d := dim(G/K ),

N (t) ≥ |W | Vol(0\G/K )(2
√

π)−d 1
0(d/2 + 1)

td
+O(td−1).

More generally, let � ⊆ a∗ be open and bounded such that ∂� has finite (n−1)-dimensional Hausdorff
measure. Then ∑

λ∈σRT, Re(λ)=−ρ, Im(λ)∈t�

m(λ) ≥ |W | Vol(0\G/K )(2π)−d Vol(Ad(K )�)td
+O(td−1).

The second result guarantees a uniform spectral gap.

Theorem 1.2. Let G be a real semisimple Lie group with finite center. Then, for any cocompact torsion-
free discrete subgroup 0 ⊂ G, there is a neighborhood G ⊂ a∗ of 0 such that

σRT ∩ (G × ia∗) = {0}.

If G furthermore has Kazhdan’s property (T) (e.g., if G is simple of higher rank), then the spectral gap G
can be taken uniformly in 0 and only depends on the group G.
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Let us now explain in some detail the spectral correspondence that is the key to the above results.
We define the space of first band resonant states as those resonant states that are in addition horocycli-

cally invariant:

Res0
X (λ) := {u ∈ D′

E∗
u
(M) | (X H + λ(H))u = 0 and Xu = 0 ∀H ∈ a and X ∈ C∞(M, Eu)},

and we call a Ruelle–Taylor resonance a first band resonance if and only if Res0
X (λ) ̸= 0. By working

with horocycle operators and vector-valued Ruelle–Taylor resonances we will be able to show that all
resonances with real part in a certain neighborhood of zero in a∗ are always first band resonances (see
Proposition 3.7). As the Weyl chamber flow is generated by mutually commuting Hamilton flows, we
consider the set of Ruelle–Taylor resonances as a classical spectrum.

Let us briefly describe the quantum side: In the rank 1 case the quantization of the geodesic flow is
given by the Laplacian on G/K . In the higher rank case we have to consider the algebra of G-invariant
differential operators on G/K which we denote by D(G/K ). As an abstract algebra this is a polynomial
algebra with n algebraically independent operators, among them the Laplace operator. These operators
descend to 0\G/K and we can define the joint eigenspace

0Eλ = { f ∈ C∞(0\G/K ) | D f = χλ(D) f ∀D ∈ D(G/K )},

where χλ is a character of D(G/K ) parametrized by λ ∈ a∗

C
/W with the Weyl group W . Here χρ is the

trivial character (see Section 2D). Let σQ denote the corresponding quantum spectrum {λ∈ a∗

C
|
0Eλ ̸= {0}}.

We have the following correspondence between the classical first band resonant states and the joint
quantum eigenspace:

Theorem 1.3. Let λ ∈ a∗

C
be outside the exceptional set

A :=

{
λ ∈ a∗

C

∣∣∣∣ 2⟨λ + ρ, α⟩

⟨α, α⟩
∈ −N>0 for some α ∈ 6+

}
.

Then there is a bijection between the finite-dimensional vector spaces

π∗ : Res0
X (λ) →

0E−λ−ρ,

where π∗ is the push-forward of distributions along the canonical projection π : 0\G/M → 0\G/K .

Using this one-to-one correspondence we can then use results about the quantum spectrum to obtain
obstructions and existence results on the Ruelle–Taylor resonances. Notably we use results of Duistermaat,
Kolk and Varadarajan [Duistermaat et al. 1979] on the spectrum σQ , but we also deduce refined information
on the quantum spectrum. Here we use L p-bounds for spherical functions obtained from asymptotic
expansions [van den Ban and Schlichtkrull 1987] and L p-bounds for matrix coefficients based on work
by Cowling [1979] and Oh [2002]. Theorems 1.1 and 1.2 as stated above give only a rough version of the
information on the Ruelle–Taylor resonances that we can actually obtain. As the full results require some
further notation we refrain from stating them in the introduction and refer to Theorem 5.1. We also refer
to Figure 6 for a visualization of the structure of first band resonances for the case G = SL(3, R).
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Methods and related results. The key ingredient to the quantum-classical correspondence is that we can
in a first step relate the horocyclically invariant first band resonant states with distributional vectors in some
principal series representations. Then we can apply the Poisson transform of [Kashiwara et al. 1978]
to get a bijection onto the quantum eigenspace 0E−λ−ρ . The prototype of such a quantum-classical
correspondence was first established by Dyatlov, Faure and Guillarmou [Dyatlov et al. 2015] in the
case of manifolds of constant curvature or in other words for the rank 1 group G = SO(n, 1). Certain
central ideas have, however, already been present for G = SO(2, 1) in the work of Cosentino [2005]
and Flaminio and Forni [2003]. In the rank 1 setting there exist several generalizations of the quantum
classical correspondence of [Dyatlov et al. 2015], for example, to convex cocompact manifolds of constant
curvature [Guillarmou et al. 2018; Hadfield 2020], general compact locally symmetric spaces of rank 1
[Guillarmou et al. 2021] and vector bundles [Küster and Weich 2020; 2021].

Besides the correspondence between the classical Ruelle resonant states and the quantum Laplace
eigenvalues there are several other approaches in the literature establishing exact relations between the
Laplace spectrum and the geodesic flow. One approach is to relate the Laplace spectrum to divisors of
zeta functions. Such relations have been obtained for rank 1 locally symmetric spaces on various levels of
generality by Bunke, Olbrich, Patterson and Perry: G = SO(n, 1) and 0 convex cocompact [Bunke and
Olbrich 1997; 1999; Patterson and Perry 2001]; G real rank 1 and 0 cocompact [Bunke and Olbrich 1995].

A third approach to an exact quantum-classical correspondence is to relate the Laplace spectrum to
a transfer operator which represents a time discretized dynamics of the geodesic flow. This type of
correspondence was notably studied for hyperbolic surfaces with cusps; see [Bruggeman and Pohl 2023;
Bruggeman et al. 2015; Lewis and Zagier 2001] for results for G = SL(2, R) and 0 discrete subgroups
of increasing generality. We refer in particular to the expository article [Pohl and Zagier 2020] and the
introduction of [Bruggeman and Pohl 2023] for a current state of the art of these techniques. A very first
step towards generalizations of this approach to higher rank has been recently achieved in [Pohl 2020] for
the Weyl chamber flow on products of Schottky surfaces by the construction of symbolic dynamics and
transfer operators.

Note that in [Dyatlov et al. 2015] not only was the first band of Ruelle resonances related to the Laplace
spectrum, but a complete band structure has been established and the higher bands can be related to
the Laplace spectrum on divergence-free symmetric tensors. In the present article we do not study the
higher bands. This will presumably be a very hard question for general semisimple groups G (note that in
[Dyatlov et al. 2015] it was crucial at several points that N ∼= Rn−1 is abelian for G = SO(n, 1)). However,
it might be tractable for some concrete groups with simple enough root spaces such as G = SL(3, R).
For geodesic flows the phenomenon of such a band structure is quite universal and known in the case of
compact locally symmetric spaces of rank 1 [Küster and Weich 2021] and also for geodesic flows on
manifolds of pinched negative curvature [Cekić and Guillarmou 2021; Faure and Tsujii 2013; 2021].

As mentioned above an important application of Ruelle resonances for Anosov flows are mixing results.
More precisely, the existence of a spectral gap in addition with resolvent estimates imply mixing of the
flow. For Weyl chamber flows this relation of gaps and mixing rates is not yet established but conjectured
to be true. From this perspective, Theorem 1.2 is related to the work of Katok and Spatzier [1994] who
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showed exponential mixing for the Weyl chamber action in every direction of the closure of the positive
Weyl chamber if G has property (T). However it is not known whether their result remains true if the
property (T) assumption is dropped. Our result above (Theorem 1.2) ensures a 0-dependent gap in any
case but as mentioned above the precise relation to mixing rates is not yet established.

Finally, Weyl laws for Ruelle resonances of geodesic flows can also be established in variable curvature
(or more generally contact Anosov flows) in various settings [Datchev et al. 2014; Faure and Sjöstrand
2011; Faure and Tsujii 2023]. In particular, in the very recent article by Faure and Tsujii [2021] the Weyl
law also follows because a “first band” of resonances can be related to a quantum operator. The methods
in their work are, however, completely different and are based on microlocal analysis rather then global
harmonic analysis.

2. Preliminaries

2A. Ruelle–Taylor resonances for higher rank Anosov actions. In this section we recall the main
properties of Ruelle–Taylor resonances for higher rank Anosov actions from [Bonthonneau et al. 2020].
Let M be a compact Riemannian manifold, let A ≃ Rn be an abelian group and let τ : A → Diffeo(M)

be a smooth locally free group action. If a := Lie(A) we define the generating map

X : a → C∞(M, TM), H 7→ X H :=
d
dt

∣∣∣
t=0

τ(exp(t H)).

Note that [X H1, X H2] = 0 for Hi ∈ a. For H ∈ a we denote by ϕ
X H
t the flow of the vector field X H . The

action is called Anosov if there exists H ∈ a and a continuous ϕ
X H
t -invariant splitting

TM = E0 ⊕ Eu ⊕ Es,

where E0 := span{X H : H ∈ a} is of dimension n because the action is locally free and there exist C > 0
and ν > 0 such that, for each x ∈ M,

for all w ∈ Es(x), t ≥ 0, ∥dϕ
X H
t (x)w∥ ≤ Ce−νt

∥w∥,

for all w ∈ Eu(x), t ≤ 0, ∥dϕ
X H
t (x)w∥ ≤ Ce−ν|t |

∥w∥,

where the norm on TM is given by the Riemannian metric on M. Such an H ∈ a is called transversally
hyperbolic. We call the set

W := {H ′
∈ a | H ′ is transversally hyperbolic with the same splitting as H}

the positive Weyl chamber containing H .
Let E → M be the complexification of a Euclidean bundle over M, and denote by Diff1(M, E) the

set of first-order differential operators with smooth coefficients acting on sections of E . Then a linear
map X : a → Diff1(M, E) such that X H1 X H2 = X H2 X H1 for all Hi ∈ a is called an admissible lift of the
generic map X if

X H ( f s) = (X H f )s + f X H s (1)

for s ∈ C∞(M, E), f ∈ C∞(M) and H ∈ a.
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For a fixed positive Weyl chamber W , the set of Ruelle–Taylor resonances can be defined as

σRT(X) := {λ ∈ a∗

C | ∃u ∈ D′

E∗
u
(M, E) \ {0} s.t. (X H + λ(H))u = 0 ∀H ∈ a},

where D′

E∗
u
(M, E) is the set of distributional sections of the bundle E with wavefront set contained in E∗

u .
Here E∗

u is defined as the annihilator of E0 ⊕ Eu in T ∗M. The vector space of Ruelle–Taylor resonant
states for a resonance λ ∈ σRT(X) is defined by

ResX(λ) := {u ∈ D′

E∗
u
(M, E) | (X H + λ(H))u = 0 ∀H ∈ a}.

Remark 2.1. The original definition of Ruelle–Taylor resonances and resonant states is stated via Koszul
complexes; see [Bonthonneau et al. 2020, Section 3]. More precisely, λ is a resonance if and only if the
corresponding Koszul complex is not exact and the resonant states are the cohomologies of this complex.
The space of resonant states that we are considering is just the zeroth cohomology. However, it turns out
that the Koszul complex is not exact if and only if the zeroth cohomology is nonvanishing, i.e., the two
notions coincide; see [Bonthonneau et al. 2020, Theorem 4].

It is known that the resonances have the following properties.

Proposition 2.2 (see [Bonthonneau et al. 2020, Theorems 1 and 4]). The set σRT(X) of Ruelle–Taylor
resonances is a discrete subset of a∗

C
contained in

{λ ∈ a∗

C | Re(λ(H)) ≤ CL2(H) ∀H ∈ W}

with CL2(H) = inf{C > 0 | ∥e−t X H ∥L2→L2 ≤ eCt
∀t > 0}, where e−t X H : L2(M, E) → L2(M, E) is the

semigroup with generator −X H . Moreover, for each λ ∈ σRT(X), the space ResX(λ) of resonant states is
finite-dimensional.

2B. Semisimple Lie groups. In this section we fix the notation for the present article. Let G be a real
semisimple connected noncompact Lie group with finite center and Iwasawa decomposition G = KAN .
Furthermore, let M := Z K (A) be the centralizer of A in K and G = KAN− be the opposite Iwasawa
decomposition. We denote by g, a, n, n−, k and m the corresponding Lie algebras. For g ∈ G, let H(g)

be the logarithm of the A-component in the Iwasawa decomposition. We have a K -invariant inner product
on g that is induced by the Killing form and the Cartan involution. We have the orthogonal Bruhat
decomposition g = a⊕m⊕

⊕
α∈6 gα into root spaces gα with respect to the a-action via the adjoint

action ad. Here 6 ⊆ a∗ is the set of restricted roots. Denote by W the Weyl group of the root system
of restricted roots. Let n be the real rank of G and 5 = {α1, . . . , αn} (resp. 6+) the simple (resp.
positive) system in 6 determined by the choice of the Iwasawa decomposition. Let mα := dimR gα and
ρ :=

1
26α∈6+mαα. Denote by w0 the longest Weyl group element, i.e., the unique element in W mapping

5 to −5. Let a+ := {H ∈ a | α(H) > 0 ∀α ∈ 5} be the positive Weyl chamber and a∗
+

the corresponding
cone in a∗ via the identification a ↔ a∗ through the Killing form ⟨ · , · ⟩ restricted to a. We denote by +a

∗

the dual cone {λ∈a∗
|λ(H)>0 ∀H ∈a+\{0}} and by +a∗ its closure {λ∈a∗

|λ(H)≥0 ∀H ∈a+}=R≥05.
Hence if ωj is the dual basis of αj then +a∗ = {λ ∈ a∗

| ⟨λ, ωj ⟩ ≥ 0 ∀ j = 1, . . . , n}. Furthermore, we
write −a∗ := −+a∗. If A+ := exp(a+), then we have the Cartan decomposition G = K A+K .
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a∗
+ α1 + α2 = ρ

α2

α1

−a∗

Figure 1. The root system for the special case G = SL3(R): There are three positive
roots 6+

= {α1, α2, α1 +α2}. As all root spaces are one-dimensional the special element
ρ =

1
26α∈6+mαα equals α1 + α2.

Example 2.3. If G = SLn(R), then we choose K = SO(n), A as the set of diagonal matrices of positive
entries with determinant 1, and N as the set of upper triangular matrices with 1’s on the diagonal. Then a

is the abelian Lie algebra of diagonal matrices and the set of restricted roots is 6 = {εi −εj | i ̸= j}, where
εi (λ) is the i-th diagonal entry of λ. The positive system corresponding to the Iwasawa decomposition is
6+

= {εi − εj | i < j} with simple system 5 = {αi = εi − εi+1}. The positive Weyl chamber is

a+ = {diag(λ1, . . . , λn) | λ1 > · · · > λn}

and the dual cone is

+a = {diag(λ1, . . . , λn) ∈ a | λ1 + · · · + λk ≥ 0 ∀k}.

See Figure 1 for a visualization in the special case G = SL3(R). The Weyl group is the symmetric
group Sn acting by permutation of the diagonal entries.

2C. Principal series representations. The concept of a principal series representation is an important
tool in representation theory of semisimple Lie groups. It can be described using different pictures. We
start with the induced picture: Pick λ ∈ a∗

C
and (τ, Vτ ) an irreducible unitary representation of M . We

define

V τ,λ
:= { f : G → Vτ cont. | f (gman) = e−(λ+ρ) log aτ(m)−1 f (g), g ∈ G, m ∈ M, a ∈ A, n ∈ N }

endowed with the norm ∥ f ∥
2
=

∫
K ∥ f (k)∥2 dk where dk is the normalized Haar measure on K . Recall

that ρ is the half-sum of positive roots. The group G acts on V τ,λ by the left regular representation.
The completion H τ,λ of V τ,λ with respect to the norm is called the induced picture of the (nonunitary)
principal series representation with respect to (τ, λ). We also write πτ,λ for this representation. If τ is the
trivial representation then we write Hλ and πλ and call it the spherical principal series with respect to λ.
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Note that for equivalent irreducible unitary representations τ1 and τ2 of M the corresponding principal
series representations are equivalent as representations as well. In particular, the Weyl group W acts
on the unitary dual of M by wτ(m) = τ(w−1mw), where w ∈ W is given by a representative in the
normalizer of A in K , and therefore Hλ,wτ is well defined up to equivalence.

A different way to view the principal series representation is the so-called compact picture. Although
we don’t need this description here, we want to introduce it in order to give a larger overview of these
representations. It is given by restricting the function f : G → Vτ to K , i.e., a dense subspace is given by

{ f : K → Vτ cont. | f (km) = τ(m)−1 f (k), k ∈ K , m ∈ M}

with the same norm as above. In this picture the G-action is given by

πτ,λ(g) f (k) = e−(λ+ρ)H(g−1k) f (kKAN (g−1k)), g ∈ G, k ∈ K ,

where kKAN is the K -component in the Iwasawa decomposition G = KAN . Furthermore, recall from
Section 2B that H(g) ∈ a was defined as the logarithm of the Iwasawa A component.

For the example G = PSL2(R), the compact picture allows us to describe this representation explicitly
without using the Iwasawa decomposition: since K = PSO(2) ≃ S1

⊆ R2, the representation H 1,λα
= Hλα

with λ ∈ C is given by L2(S1) with the action πλ(g) f (ω) = ∥g−1ω∥
−2λ−1 f (g−1ω/∥g−1ω∥).

2D. Invariant differential operators. Let D(G/K ) be the algebra of G-invariant differential operators
on G/K , i.e., differential operators commuting with the left translation by elements g ∈G. Then we have an
algebra isomorphism HC : D(G/K )→ Poly(a∗)W from D(G/K ) to the W -invariant complex polynomials
on a∗ which is called the Harish-Chandra homomorphism; see [Helgason 1984, Chapter II Theorem 5.18].
For λ ∈ a∗

C
, let χλ be the character of D(G/K ) defined by χλ(D) := HC(D)(λ). Obviously, χλ = χwλ

for w ∈ W . Furthermore, the χλ exhaust all characters of D(G/K ); see [Helgason 1984, Chapter III
Lemma 3.11]. We define the space of joint eigenfunctions

Eλ := { f ∈ C∞(G/K ) | D f = χλ(D) f ∀D ∈ D(G/K )}.

We will only work with the subspace of functions of moderate growth

E∗

λ := { f ∈ Eλ | ∃c ∈ R : | f (kaK )| ≤ Cec∥log a∥
∀k ∈ K , a ∈ A}.

Note that Eλ and E∗

λ are G-invariant.

2E. Poisson transform. The representation of G on E∗

λ can be described via the Poisson transform:
If (H τ,λ)−∞ denotes the distributional vectors in the principal series, then the Poisson transform Pλ

maps (H−λ)−∞ into E∗

λ G-equivariantly. It is given by Pλ f (x K ) =
∫

K f (k)e−(λ+ρ)H(x−1k) dk if f is a
sufficiently regular function in the compact picture of the principal series. If f is given in the induced
picture, then Pλ f (x K ) is simply

∫
K f (xk) dk. Since K/M can be seen as the boundary of G/K at

infinity, the Poisson transform produces a joint eigenfunction for a given boundary value; see [van den
Ban and Schlichtkrull 1987] for more details.
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It is important to know for which values of λ ∈ a∗

C
the Poisson transform is a bijection. By [van den

Ban and Schlichtkrull 1987, Theorem 12.2] we have that Pλ : (H−λ)−∞
→ E∗

λ is a bijection if

−
2⟨λ, α⟩

⟨α, α⟩
̸∈ N>0 for all α ∈ 6+. (2)

In particular, Pλ is a bijection if Re λ ∈ a∗
+.

2F. L p-bounds for elementary spherical functions. One can show that in each joint eigenspace Eλ there
is a unique left K -invariant function which has the value 1 at the identity; see [Helgason 1984, Chapter IV
Corollary 2.3]. We denote the corresponding bi-K -invariant function on G by φλ and call it the elementary
spherical function. Therefore, φλ = φµ if and only if λ = wµ for some w ∈ W . It is given by the Poisson
transform of the constant function with value 1 in the compact picture, i.e., φλ(g) =

∫
K e−(λ+ρ)H(g−1k) dk.

The aim of this section is to establish the following proposition (see Figure 2 for a visualization) that
will be needed to obtain a spectral gap in Theorem 4.10.

Proposition 2.4. Let p ∈ [2, ∞[. Then the elementary spherical function φλ is in L p+ε(G) (where the
L p-space is defined via a Haar measure on G) for every ε > 0 if and only if Re λ ∈ (1−2p−1) conv(Wρ),
where conv(Wρ) is the convex hull of the finite set Wρ.

Proof. First of all note that we only have to consider Re λ ∈ a∗
+ since φλ = φµ if and only if λ = wµ for

some w ∈ W . In this case Re λ ∈ (1 − 2p−1) conv(Wρ) is equivalent to Re λ ∈ (1 − 2p−1)ρ + −a∗; see
[Helgason 1984, Chapter IV Lemma 8.3].

With this remark, one implication of the proposition is a straightforward consequence of standard
estimates for elementary spherical functions: Suppose that Re λ ∈ a∗

+ and Re λ ∈ (1 − 2p−1)ρ + −a∗.
Then we have the following bound on φλ (see [Knapp 1986, Chapter VII Property 7.15]):

|φλ(a)| ≤ Ce(Re λ−ρ)(log a)(1 + ρ(log a))d , a ∈ A+,

where C and d are constants ≥ 0. By the integral formula for G = K A+K (see [Helgason 1984, Chapter I
Theorem 5.8]) and the bi-K -invariance of φλ, we have∫

G
|φλ(g)|p+ε dg =

∫
a+

|φλ(exp H)|p+ε
∏

α∈6+

sinh(α(H))mα d H

≤

∫
a+

(Ce(Re λ−ρ)H (1 + ρ(H))d)p+εe2ρ(H) d H

for a suitable Lebesgue measure on a. Because Re λ ∈ (1 − 2p−1)ρ + −a∗, we have

(p + ε)(Re λ − ρ)(H) ≤ −(2 + 2εp−1)ρ(H).

Hence ∫
G

|φλ(g)|p+ε dg ≤ C p+ε

∫
a+

(1 + ρ(H))d(p+ε)e−2εp−1ρ(H) d H,

and we see that the latter is indeed finite by coordinizing a+ by x j ↔ αj (H) with x j > 0. Then d H is a
multiple of dx and ρ(H) =

∑
x jρj with ρj > 0. Therefore, φλ ∈ L p+ε(G).
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a∗
+

ρ

α2

(1−2p−1)ρ

α1

conv(Wρr)

−a∗ + (1 − 2p−1)ρ

Figure 2. Visualization of the regions appearing in Proposition 2.4 for the special case
G = SL3(R): The green dashed region is the boundary of (1 − 2p−1) conv(Wρ). Its
intersection with the positive Weyl chamber a∗

+ (blue cone) equals (1 − 2p−1)ρ + −a∗

intersected with a∗
+.

The opposite implication will be proved by combining the proof of [Knapp 1986, Theorem 8.48] with
[van den Ban and Schlichtkrull 1987]: according to [van den Ban and Schlichtkrull 1987, Corollary 16.2],
the elementary spherical function φλ has a converging expansion

φλ(exp H) =

∑
ξ∈X (λ)

pξ (λ, H)eξ(H), H ∈ a+, (3)

where
X (λ) = {wλ − ρ − µ | w ∈ W, µ ∈ N05}

and the pξ (λ, · ) are polynomials of degree ≤ |W |. The series converges absolutely on a+ and uniformly
on each subchamber {H ∈ a+ | αi (H) ≥ εi > 0}. The main ingredient of the proof of Proposition 2.4 is
the fact that (see [van den Ban and Schlichtkrull 1987, Theorem 10.1])

pλ−ρ(λ, · ) ̸= 0. (4)

Now, if φλ ∈ L p+ϵ(G), the proof of [Knapp 1986, Theorem 8.48] shows that

Re⟨λ − (1 − 2(p + ϵ)−1)ρ, ωj ⟩ < 0.

Hence Re λ − (1 − 2p−1)ρ ∈ −a∗. □
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2G. Positive definite functions and unitary representations. In this section we recall the correspondence
between positive semidefinite elementary spherical functions and irreducible unitary spherical represen-
tations. Recall first that a continuous function f : G → C is called positive semidefinite if the matrix
( f (x−1

i x j ))i, j for all x1, . . . , xk ∈G is positive semidefinite. If f is positive semidefinite, then f is bounded
by f (1) and one has f (x−1) = f (x). Moreover, we can define a unitary representation π f associated to f
in the following way: if R denotes the right regular representation of G, then π f is the completion of the
space spanned by R(x) f with respect to the inner product defined by ⟨R(x) f, R(y) f ⟩ := f (y−1x), which
is positive definite. G acts unitarily on this space by the right regular representation. If f (g) = ⟨π(g)v, v⟩

is a matrix coefficient of a unitary representation π , then f is positive semidefinite and π f is contained
in π .

Secondly, recall that a unitary representation is called spherical if it contains a nonzero K -invariant
vector. Denote by Ĝsph the subset of the unitary dual consisting of spherical representations. We then
have a one-to-one correspondence between positive semidefinite elementary spherical functions and Ĝsph

given by φλ 7→ πφλ
; see [Helgason 1984, Chapter IV Theorem 3.7]. The preimage of an irreducible

unitary spherical representation π with normalized K -invariant vector vK is given by g 7→ ⟨π(g)vK , vK ⟩.
If the set Ĝsph is endowed with the Fell topology (see [Bekka et al. 2008, Appendix F.2]) and we use the
topology of convergence on compact sets on the set of elementary spherical functions, then the above
correspondence is a homeomorphism as is easily seen from the definitions.

2H. Associated vector bundles. In order to define the Weyl chamber flow not only on the base manifold
but also on vector bundles we recall the definition of the associated vector bundle Vτ over a homogeneous
space G/M for a unitary finite-dimensional representation (τ, Vτ ) of M . Its total space is given by
Vτ = G ×τ Vτ = (G × Vτ )/∼ , where (gm, v) ∼ (g, τ (m)v) with g ∈ G, m ∈ M and v ∈ Vτ . The
equivalence classes are denoted by [g, v] and the projection to G/M is [g, v] 7→ gM . A section s of
this bundle can be identified with a function s̄ : G → Vτ satisfying s̄(gm) = τ(m)−1s̄(g). We will use
this identification throughout this article. We also have a G-action on Vτ defined by g[g′, v] := [gg′, v].
Therefore, we also have the left regular action on smooth sections of Vτ :

(gs)(g′M) := g(s(g−1g′M)), s ∈ C∞(G/M,Vτ ).

Identifying s with s̄, this actions reads gs(g′) = s̄(g−1g′).
A special case of an associated vector bundle is the tangent bundle T (G/M) = G ×Ad |M (a⊕ n⊕ n−).

Hence vector fields X can be identified with smooth functions X : G → a⊕ n⊕ n− satisfying

X(gm) = Ad(m)−1X(g).

Therefore, we have a canonical connection ∇ on Vτ given by

∇Xs(g) =
d
dt

∣∣∣
t=0

s̄(g exp(tX(g)),

where s is a smooth section identified with a s̄ : G → Vτ and X is a vector field of G/M identified with X

as above. This connection will be used to lift the Weyl chamber flow to Vτ .
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3. Ruelle–Taylor resonances for the Weyl chamber action

We keep the notation from Section 2B. Let 0 be a discrete, torsion-free, cocompact subgroup of G. Then
the biquotient M = 0\G/M is a smooth compact Riemannian manifold where the Riemannian structure
is induced by the inner product on g. More precisely, the tangent bundle TM of M is given by the
quotient 0\(G ×Ad |M (a⊕ n⊕ n−)), and the norm of some 0[g, Y ] with g ∈ G and Y ∈ a⊕ n⊕ n− is
given by the norm of Y ∈ g. We have a well-defined right A-action on M:

(0gM)a := 0gaM, a ∈ A, g ∈ G.

Therefore, we have an a-action by smooth vector fields:

0 X : a → C∞(M, TM), 0 X H f (0gM) =
d
dt

∣∣∣
t=0

f (0get H M),

which we call the Weyl chamber action.
For later use we denote by X : a → Diff1(G/M) the corresponding action on G/M .

Proposition 3.1. The A-action on M is Anosov. More precisely, each H ∈ a+ is transversally hyperbolic
with the splitting E0 = 0\(G ×Ad |M a), Es = 0\(G ×Ad |M n) and Eu = 0\(G ×Ad |M n−)). Moreover,
for fixed H0 ∈ a+, the dynamically defined positive Weyl chamber

W = {H ∈ a | H is transversally hyperbolic with the same splitting as H0}

equals a+. Hence the two notions of positive Weyl chambers agree.

Proof. Pick 0[g, Xα] ∈ 0\(G ×M a⊕ n⊕ n−) and assume that Xα is in the root space gα. Then we
calculate

dϕ0 X H
t (0gM)0[g, Xα] =

d
ds

∣∣∣
s=0

ϕ0 X H
t (0ges Xα M)

=
d
ds

∣∣∣
s=0

0es Xα et H M

=
d
ds

∣∣∣
s=0

0get H es Ad(e−t H )Xα M

= 0[get H , Ad(e−t H )Xα]

= 0[get H , e−tα(H)Xα].

Hence we have exponential decay if α ∈ 6+ and exponential growth if α ∈ −6+. The general statement
is obtained from the observation that gα ⊥ gβ ⊥ a for α ̸= β in 6. □

3A. Lifted Weyl chamber action. In order to define horocycle operators we generalize the Weyl chamber
action to associated vector bundles. Let (τ, Vτ ) be a finite-dimensional unitary representation of M ,
that is, a complexification of an orthogonal representation. Then we have defined the associated vector
bundle Vτ = G ×τ Vτ over G/M ; see Section 2H.

The quotient bundle 0\Vτ is the complexification of a Euclidean vector bundle over M, where the
Euclidean structure is induced by the inner product on Vτ . We identify smooth sections s of this bundle
with smooth functions s̄ : G → Vτ with s̄(γ gm) = τ(m−1)s̄(g) for all γ ∈ 0, g ∈ G and m ∈ M .
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The canonical connection ∇ descends to a connection 0∇ : C∞(M, 0\Vτ ) → C∞(M, 0\Vτ ⊗ T ∗M)

and we have

0∇s(X)(g) := 0∇Xs(g) =
d
dt

∣∣∣
t=0

s̄(g exp(tX(g))), (5)

where s is a smooth section identified as above and X is a vector field of M identified with a smooth
function X : G → a⊕ n⊕ n− which is left 0-invariant and right M-equivariant.

Definition 3.2. The lifted Weyl chamber action is defined as follows:

0 Xτ
: a → Diff1(M, 0\Vτ ), 0 Xτ

H := 0∇XH ,

where XH is the vector field identified with the constant mapping G → a ⊆ a⊕ n⊕ n−, and g 7→ H .

The fact that 0∇ is a covariant derivative implies that 0 Xτ is an admissible lift of the Weyl chamber
action in the sense of (1).

For later use we denote by Xτ
: a → Diff1(G/M,Vτ ) the corresponding action on G/M .

We can find a nontrivial tube domain in a∗

C
which is independent of τ and contains all Ruelle–Taylor

resonances for the lifted Weyl chamber action.

Proposition 3.3. The set of Ruelle–Taylor resonances σRT(0 Xτ ) is contained in −a∗ + ia∗.

Proof. By Proposition 2.2 we have

σRT(0 Xτ ) ⊆ {λ ∈ a∗

C | Re(λ(H)) ≤ Cτ
L2(H) ∀H ∈ a+}.

Hence it remains to show that Cτ
L2(H) := inf{C > 0 | ∥e−t0 Xτ

H ∥L2→L2 ≤ eCt
∀t > 0} = 0 for all H ∈ a+.

We show the stronger statement that e−t0 Xτ
H is unitary.

Since M commutes with A, we have a well-defined action of A on 0\Vτ given by (0[g, v])a =0[ga, v].
This action gives rise to an A-action on sections of the bundle 0\Vτ defined via (a f )(x) = f (xa)a−1

with f ∈ C∞(M, 0\Vτ ), x ∈ M and a ∈ A. If we identify f with a equivariant function f̄ : G → Vτ ,
then (a f )(g) = f̄ (ga). Let d0g be the normalized right G-invariant Radon measure on 0\G. Then the
L2-norm of f is given by ∥ f ∥

2
L2 =

∫
0\G ∥ f̄ (g)∥2

Vτ
d0g, and it follows that the A-action continued to

L2(M, 0\Vτ ) is unitary. By definition, e−t0 Xτ
H f = exp(−t H) f for f ∈ L2(M, 0\Vτ ), and therefore

e−t0 Xτ
H is unitary. □

3B. First band resonances and horocycle operators. In analogy to the rank 1 setting we make the follow-
ing definition; see [Küster and Weich 2021, Definition 2.11] and [Guillarmou et al. 2021, Definition 3.1]
in the scalar case.

Definition 3.4. We call λ ∈ σRT(0 Xτ ) a first band resonance and write λ ∈ σ 0
RT(0 Xτ ) if the vector space

Res0
0 Xτ (λ) = {u ∈ Res

0 Xτ (λ) | 0∇Xu = 0 ∀X ∈ C∞(M, Eu)}

of first band resonant states is nontrivial.
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The goal of this section is to prove that, in a certain neighborhood of 0 in a∗

C
, each Ruelle–Taylor

resonance is a first band resonance and Res0
0 Xτ (λ) = Res

0 Xτ (λ). This will be done by introducing
so-called horocycle operators as follows.

Recall that TM = 0\(G ×Ad |M a ⊕ n ⊕ n−) and the bundle 0\(G ×Ad |M n) can be written as⊕
α∈6+ 0\(G ×Ad |M gα), and similarly for n−. Therefore, the cotangent bundle T ∗M is the Whitney

sum 0\(G ×Ad∗
|M a∗) ⊕

⊕
α∈6 0\(G ×Ad∗

|M g∗
α). Let us denote the coadjoint action of M on the

complexification of g∗
α by τα. Note that τα is unitary with respect to the inner product induced by the

Killing form and the Cartan involution. We can now define

prα : (T ∗M)C → 0\Vτα

by fiber-wise restriction to the subbundle 0\(G ×Ad |M gα). This induces a map

p̃rα : C∞(M, 0\Vτ ⊗ (T ∗M)C) → C∞(M, 0\Vτ⊗τα
).

Definition 3.5. If 0∇
C

: C∞(M, 0\Vτ ) → C∞(M, 0\Vτ ⊗ (T ∗M)C) denotes the complexification of
the canonical connection 0∇, then the horocycle operator Uα for α ∈ 6 is defined as the composition

Uα := p̃rα ◦ 0∇
C

: C∞(M, 0\Vτ ) → C∞(M, 0\Vτ⊗τα
).

Note that we have the explicit formula

Uαs(g)(Y ) =
d
dt

∣∣∣
t=0

s̄(g exp(tY )), s ∈ C∞(M, 0\Vτ ), Y ∈ gα, (6)

if we again use the identification of sections of some associated vector bundle with left 0-invariant and
right M-equivariant functions indicated by · and the identification Vτ ⊗ g∗

α ≃ Hom(gα, Vτ ).
We should point out that the space of first band resonant states can be rewritten with the horocycle

operators as
Res0

0 Xτ (λ) = {u ∈ Res
0 Xτ (λ) | U−αu = 0 ∀α ∈ 6+

}. (7)

Note that in the case of constant curvature manifolds (i.e., the real hyperbolic case G = PSO(n, 1) of
rank 1) there is only one positive root and our definition reduces to the original one due to Dyatlov and
Zworski; see [Dyatlov et al. 2015, p. 931]. Furthermore, our definition extends the definition of the
horocycle operators for arbitrary G of rank 1; see [Küster and Weich 2021].

The horocycle operators fulfill the following important commutation relation.

Lemma 3.6. For all H ∈ a,

0 Xτ⊗τα

H Uα −Uα0 Xτ
H = α(H)Uα.

Proof. Using the formulas (5) and (6) we obtain

0 Xτ⊗τα

H Uα −Uα0 Xτ
H (g)(Y ) =

d
dt1

∣∣∣
t1=0

d
dt2

∣∣∣
t2=0

s̄(g exp(t1 H) exp(t2Y )) − s̄(g exp(t1Y ) exp(t2 H)),

and the latter equals
d
dt

∣∣∣
t=0

s̄(g exp(t[H, Y ])).

Since [H, Y ] = α(H)Y for Y ∈ gα, the claim follows. □
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+a∗

α2

α1

λ + α1

λ λ + α2

−λ0

−a∗

+a∗ − λ0

Figure 3. For G = SL3(R) the green region depicts the real part of the region where
every resonance is a first band resonance; see Proposition 3.7.

We can now prove the main result of this section.

Proposition 3.7. The horocycle operators can be extended continuously as linear operators to distribu-
tional sections, i.e.,

Uα : D′(M, 0\Vτ ) → D′(M, 0\Vτ⊗τα
).

Moreover, for λ ∈ σRT(0 Xτ ), the horocycle operator U−α maps

Res
0 Xτ (λ) into Res

0 Xτ⊗τ−α (λ + α).

In particular, each λ ∈ σRT(0 Xτ ) with Re λ ∈
⋂

α∈5 −a∗ \ (−a∗ − α) is a first band resonance and
Res

0 Xτ (λ) = Res0
0 Xτ (λ) holds.

See Figure 3 for a visualization for G = SL3(R).

Proof. Since the horocycle operators are differential operators, we obtain a continuation to distributional
sections and Lemma 3.6 still holds. Let u ∈ Res

0 Xτ (λ), i.e., u ∈ D′(M, 0\Vτ ) with WF(u) ⊆ E∗
u and

0 Xτ
H u =−λ(H)u. Since differential operators do not increase the wavefront set, we have WF(U−αu)⊆ E∗

u .
Furthermore,

0 Xτ⊗τ−α

H U−αu = −α(H)U−αu +U−α0 Xτ
H u = −(λ + α)(H)U−αu

by Lemma 3.6. Hence U−αu ∈ Res
0 Xτ⊗τ−α (λ + α).

For the “in particular” part recall that Res
0 Xτ ′ (λ′) = 0 for each unitary representation τ ′ of M and

Re(λ′) ̸∈ −a∗ (see Proposition 3.3), and Res0
0 Xτ (λ) = {u ∈ Res

0 Xτ (λ) | U−αu = 0 ∀α ∈ 6+
}. □

Note that
⋂

α∈5 −a∗\(−a∗−α)=−a∗∩(+a
∗
−λ0), where λ0 =

∑
α∈5 α. Indeed, let λ=

∑
α∈5 cαα∈a∗.

Then λ ∈ −a∗ if and only if cα ≤ 0 for all α ∈ 5, λ ∈ −a∗ − α if and only if cα ≤ −1 and cβ ≤ 0 for
all β ∈ 5 \ {α}, and λ ∈ +a

∗ if and only if cα > 0 for all α ∈ 5. Combining these statements implies
the claim.
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3C. First band resonant states and principal series representation. In this section we identify first band
resonant states with certain 0-invariant vectors in a corresponding principal series representation. The
proof follows the line of arguments given in [Küster and Weich 2021, Section 2] in the rank 1 case. This
will allow us to apply the Poisson transform and obtain a quantum-classical correspondence.

By analogy to [Küster and Weich 2021, Definition 2.1], we define

R(λ) := {s ∈ D′(G/M,Vτ ) | (Xτ
H + λ(H))s = 0, ∇X−

s = 0 ∀X− ∈ C∞(G/M, G ×Ad |M n−), H ∈ a}.

The following lemma allows us to first study the representation of G in R(λ) and take 0-invariants
afterwards.

Lemma 3.8. The space Res0
0 Xτ (λ) is isomorphic to the space of 0-invariants of R(λ), where the

isomorphism is defined by considering 0-invariant sections as sections of the bundle 0\Vτ .

Proof. The only part to observe is that each s ∈ R(λ) automatically has WF(s) ⊆ G ×Ad |M n∗. This
holds because G ×Ad∗

|M n∗ is the joint characteristic set of Xτ
H and X−; see [Küster and Weich 2021,

Lemma 2.5] for details. □

We will now show that the smooth sections in R(λ) correspond to smooth vectors in the principal
series representation for the opposite Iwasawa decomposition.

Lemma 3.9. The smooth sections R(λ) ∩ C∞(G/M,Vτ ) in R(λ) can be identified G-equivariantly with

W = {s̄ : G → Vτ smooth | s̄(gman−) = e−λ log aτ(m)−1s̄(g), m ∈ M, a ∈ A, n− ∈ N−}.

The identification is obtained by considering sections s ∈R(λ) as right M-equivariant functions s̄ :G → Vτ .

Proof. The M-equivariance is clear so it remains to show the transformation properties under A and N−.
The property (Xτ

H +λ(H))s = 0 amounts to (d/dt)|t=0 s̄(get H ) = −λ(H)s̄(g) for every g ∈ G and H ∈ a.
Hence the function ϕ(t) = s̄(get H ) satisfies

ϕ′(r) =
d
dt

∣∣∣
t=0

ϕ(ger H et H ) = −λ(H)s̄(ger H ) = −λ(H)ϕ(r).

Therefore, s̄(get H ) = ϕ(t) = e−tλ(H)s̄(g). This proves the right A-equivariance.
For the N−-invariance, let Y ∈ n− and consider ϕ(t) = s̄(getY ). For r ∈ R, let gr = gerY

∈ G. Since
[gr , Y ] ∈ G ×Ad |M n− is in the fiber over gr M ∈ G/M , there is a smooth section

Xr ∈ C∞(G/M, G ×Ad |M n−)

such that Xr (gr M) = [gr , Y ]. In particular, the corresponding right M-equivariant function Xr : G → n−

satisfies Xr (gr ) = Y . It follows that

0 = ∇Xr s(gr ) =
d
dt

∣∣∣
t=0

s̄(gr etXr (gr )) =
d
dt

∣∣∣
t=0

s̄(gerY etY ) = ϕ′(r).

Hence ϕ is constant. This completes the proof. □
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Note that the space W from Lemma 3.9 is already very close to the definition of the induced picture
of the principal series representation (see Section 2C). The only difference is that in W we have a right
invariance with respect to N− instead of N . This can be easily fixed using a conjugation with the longest
Weyl group element and leads to the main result of this section:

Proposition 3.10. With the longest Weyl group element w0 (see Section 2B), we have an isomorphism

Res0
0 Xτ (λ) →

0(Hw0τ,w0(λ+ρ))−∞,

where 0(Hw0τ,w0(λ+ρ))−∞ denotes the 0-invariant distributional vectors in the principal series represen-
tation πw0τ,w0(λ+ρ).

Proof. Pick k0 ∈ K normalizing a such that the action of Ad(k0) on a is the longest Weyl group element w0.
We consider the map I s̄(g) := s̄(gk0). Then I commutes with the left action by G and one calculates that

I s̄(gman) = e−(w0λ) log a(w0τ)(m)−1 I s̄(g), g ∈ G, m ∈ M, a ∈ A, n ∈ N .

Hence we have an intertwiner between W and smooth vectors in Hw0τ,w0(λ+ρ) which extends to distribu-
tional sections. By Lemma 3.9 we conclude that R(λ) ≃ (Hw0τ,w0(λ+ρ))−∞ as G-representations. Taking
0-invariants and using Lemma 3.8 completes the proof. □

3D. Quantum-classical correspondence. In the previous section we identified the first band resonant
states Res0

0 Xτ (λ) with 0-invariant distributional vectors in the principal series (Hw0τ,w0(λ+ρ))−∞. If
we restrict ourselves to the scalar case τ = 1, then the Poisson transform P−w0(λ+ρ) defines a map
from 0(Hw0(λ+ρ))−∞ to 0E−w0(λ+ρ), as P−w0(λ+ρ) provides a G-equivariant map from (Hw0(λ+ρ))−∞

to E−w0(λ+ρ) (see Section 2E). Hence we can identify eigendistributions of the classical motion with
quantum states and we call this identification quantum-classical correspondence. More precisely, we
have the following result, which immediately gives Theorem 1.3.

Proposition 3.11. If λ ∈ a∗

C
satisfies 2⟨λ+ρ, α⟩/⟨α, α⟩ ̸∈ −N>0 for all α ∈ 6+, then we have a bijection

Res0
0 X(λ) →

0E−w0(λ+ρ) =
0E−(λ+ρ).

In particular, λ ∈ σ 0
RT(0 X) if and only if 0E−(λ+ρ) ̸= 0. Furthermore, the isomorphism is given by the

push-forward π∗ of distributions along the canonical projection 0π : 0\G/M → 0\G/K .

Proof. In view of Section 2E, the Poisson transform is a bijection from (Hw0(λ+ρ))−∞
→ E∗

−λ−ρ . Restricted
to 0-invariant distributional vectors it is still injective with image 0E−λ−ρ since 0 is cocompact, and
therefore 0E−λ−ρ =

0E∗

−λ−ρ .
It remains to show that the isomorphism is the push-forward along the canonical projection. To this

end let s ∈ R(λ) be smooth and let π : G/M → G/K be the canonical projection. Then the isomorphism
R(λ) → (Hw0(λ+ρ))−∞ carries s to s̃ : G → C with s̃(g) = s(gk0), where k0 ∈ K is as in the proof of
Proposition 3.10. It follows that

P−w0(λ+ρ)s̃(gK ) =

∫
K

s̃(gk) dk =

∫
K

s(gkk0) dk =

∫
K

s(gk) dk
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since K is unimodular. On the other hand, for f ∈ C∞
c (G/K ), we have

(π∗s)( f ) = s( f ◦ π) =

∫
G/M

s(gM) f (gK ) dgM =

∫
G/K

(∫
K/M

s(gk M) dk M
)

f (gK ) dgK

if we normalize the Haar measure on M and choose compatible invariant measures on G/K and K/M .
Hence π∗s = P−w0(λ+ρ)s̃ for s ∈ R(λ) ∩ C∞(G/M). Using the density of smooth compactly supported
functions in R(λ) [Küster and Weich 2021, Corollary 2.9] we obtain the equality for the whole space R(λ).
As before we now restrict to 0-invariant distributions identified with distributions on 0\G/M and 0\G/K
to complete the proof. □

4. Quantum spectrum

In this section we analyze the quantum spectrum of the locally symmetric space 0\G/K . Recall the
definition of the joint eigenspace

Eλ = { f ∈ C∞(G/K ) | D f = χλ(D) f ∀D ∈ D(G/K )}

for λ ∈ a∗

C
. For the definition of χλ see Section 2B. Since D ∈ D(G/K ) is G-invariant, it descends to a

differential operator 0 D on the locally symmetric space 0\G/K . Therefore, the left 0-invariant functions
of Eλ (denoted by 0Eλ) can be identified with joint eigenfunctions on 0\G/K for each 0 D:

0Eλ = { f ∈ C∞(0\G/K ) | 0 D f = χλ(D) f ∀D ∈ D(G/K )}.

This leads to the following definition.

Definition 4.1. The quantum spectrum of 0\G/K is defined as

σQ := σQ(0\G/K ) := {λ ∈ a∗

C |
0Eλ ̸= 0}.

We now use the quantum-classical correspondence and the Weyl law from [Duistermaat et al. 1979].

Proof of Theorem 1.1. From [Duistermaat et al. 1979, Theorem 8.9] we have, for each set � ⊂ a∗ as in
Theorem 1.1, ∑

λ∈σQ∩ia∗, Im λ∈t�

dim(0Eλ)|Wλ|
−1

= Vol(0\G/K )(2π)−d Vol(Ad(K )�)td
+O(td−1),

where Vol(0\G/K ) is the volume of the compact Riemannian manifold 0\G/K with Riemannian
structure induced by the Killing form and Vol(Ad(K )�) is the volume of the set Ad(K )� ⊆ Ad(K )a

with respect to the Killing form restricted to Ad(K )a. Replacing � by � \
⋃

α∈6+ α⊥ we deduce that∑
λ∈σQ∩ia∗, Im λ∈t�∩

⋃
α⊥

dim(0Eλ) = O(td−1)

since Vol(Ad(K )α⊥) = 0. Therefore,∑
λ∈σQ∩ia∗, Im λ∈t�

dim(0Eλ) = |W | Vol(0\G/K )(2π)−d Vol(Ad(K )�)td
+O(td−1)
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since W acts freely on the Weyl chambers. To complete the proof we observe that σRT(0 X) ⊇ σ 0
RT(0 X)

and m(λ) ≥ dim(Res0
0 X(λ)) = dim(0E−λ−ρ) for λ ∈ ia∗. □

As χλ = χwλ for w ∈ W it is obvious that σQ is W -invariant. The following properties of σQ were
derived by Duistermaat, Kolk and Varadarajan [Duistermaat et al. 1979]. We include the proof for the
convenience of the reader.

Proposition 4.2 (see [Duistermaat et al. 1979, Propositions 2.4 and 3.4, Corollary 3.5]). If λ ∈ σQ , then
the corresponding spherical function φλ is positive semidefinite. Moreover, there is some w ∈ W such that
wλ = −λ̄ and Re λ ∈ conv(Wρ). In particular, ⟨Re λ, Im λ⟩ = 0 and ∥Re λ∥ ≤ ∥ρ∥.

Proof. Pick u ∈
0Eλ, regarded as a right K -invariant element of L2(0\G), normalized such that

⟨u, u⟩L2(0\G) = 1. With the right regular representation R on L2(0\G), define 8(g) := ⟨R(g)u, u⟩.
Being a matrix coefficient the function 8 is positive semidefinite. We will show that 8 is the elementary
spherical function φλ. By right K -invariance of u and unitarity of R we get that 8 is K -biinvariant.
8(1) = 1 is obvious. Smoothness follows from the fact that u is smooth. Furthermore,

D8(g) = ⟨R(g)Du, u⟩ = χλ(D)8(g)

by left invariance of D. We conclude that 8 is the elementary spherical function for χλ, i.e., 8 = φλ.
Since φλ is positive semidefinite we have φλ(g) = φλ(g−1) by definition of positive definiteness, and

φλ(g−1) = φ
−λ̄(g) by the integral representation (see Section 2G). Therefore, φλ = φ

−λ̄, implying that
wλ = −λ̄ for some w ∈ W . It easily follows that

⟨Re λ, Im λ⟩ = ⟨w Re λ, w Im λ⟩ = ⟨− Re λ, Im λ⟩ = 0.

Moreover, φλ is bounded which holds if and only if Re λ ∈ conv(Wρ); see [Helgason 1984, Chapter IV
Theorem 8.1]. Since {µ ∈ a∗

| ∥µ∥ ≤ ∥ρ∥} is convex and contains Wρ, the last assertion follows. □

Remark 4.3. In the rank 1 case Proposition 4.2 implies, for λ ∈ σQ , that λ ∈ a∗ with ∥λ∥ ≤ ∥ρ∥ or
that λ ∈ ia∗. In this particular case, this can be obtained not only from Proposition 4.2 but also from
the positivity of the Laplacian on 0\G/K . In the higher rank setting the algebra D(G/K ) contains
more operators; more precisely it is a polynomial algebra in n variables. Using the properties of the
Harish-Chandra isomorphism HC one can obtain that −λ̄ ∈ Wλ from the self/skew-adjointness of the
operators in D(G/K ).

Remark 4.4. Proposition 4.2 implies the following obstructions for λ ∈ a∗

C
to be in σQ .

(1) If Re λ = 0, then we get no obstructions on Im λ since wλ = −λ̄ is satisfied with w = 1.

(2) If Re λ ̸= 0, then Im λ is singular, i.e., Im λ ∈ α⊥ for some α ∈ 6, since Im λ nonsingular implies
w = 1 as W acts simply transitively on open Weyl chambers.

(3) If Re λ is regular, i.e., ⟨Re λ, α⟩ ̸= 0 for all α ∈ 6, we denote by w̃0 the unique Weyl group element
mapping the Weyl chamber containing Re λ to its negative. Then λ ∈ Eig−1(w̃0) + i Eig+1(w̃0) ⊆ a∗

C
,

where Eig±1 denotes the eigenspace for ±1. If −1 is contained in W , then Im λ = 0. In particular, this is
true in the rank 1 case but need not hold in general as is seen below.



2260 JOACHIM HILGERT, TOBIAS WEICH AND LASSE L. WOLF

α1 ρ

conv(Wρ)

α2

Re λ

α1 ρ

α2

Im λ

Figure 4. The situation for SL3(R) as obtained from Remark 4.4: if λ ∈ σQ then Re λ

is either equal to zero (blue dot in the left picture) or lies on one of the pink, orange or
brown lines depicted on the left. Furthermore, Im λ has to lie in the respective region
depicted on the right, i.e., if Re λ = 0, then Im λ can take any value (blue shaded plane);
if Re λ lies on the orange line, then Im λ has to lie on the orange line; and so on.

Let us calculate dim Eig+1(w0) = dim Eig+1(w̃0) in order to control the amount of freedom for Im λ.
Let d± := dim Eig±1(w0). Then n = d+ + d− and Tr(w0) = d+ − d−. Choosing the basis 5 we observe
Tr(w0) = −#{α ∈ 5 | w0α = −α} ≤ 0. Thus, d± =

1
2(n ± Tr(w0)), so that d+ ≤

1
2 n. We obtain the

following traces and dimensions for the irreducible root systems from the classification:

type An , n even An , n odd Bn Cn Dn , n even Dn , n odd E6 E7 E8 F4 G2

−Tr(w0) 0 1 n n n n−2 2 7 8 4 2

d+
1
2 n 1

2(n−1) 0 0 0 1 2 0 0 0 0

Example 4.5. For G = SLn(R), an element λ ∈ a∗
≃ a is regular if and only if the diagonal entries are

pairwise distinct. An element λ = diag(λ1, . . . , λn) ∈ σQ with Re λ ∈ a∗
+ satisfies Re λk = − Re λn+1−k

and Im λk = Im λn+1−k for all k = 1, . . . , n since the longest Weyl group element is the permutation
(1 ↔ n)(2 ↔ n − 1) · · · .

More specifically, for G = SL3(R), the only Weyl group elements with eigenvalue equal to −1 are
the reflections at hyperplanes perpendicular to the roots. Hence λ ∈ σQ implies Re λ ∈ [−1, 1]α and
Im λ ∈ α⊥ for some α ∈ 6 or λ ∈ ia∗. The obstructions for λ to be in σQ described by Remark 4.4 are
less concrete and are visualized in Figure 4.

Let us formulate the condition that φλ is positive semidefinite in a different way.

Proposition 4.6. The elementary spherical function φλ is positive semidefinite if and only if the subrepre-
sentation generated by the K -invariant vector in the principal series representation Hwλ is unitarizable
and irreducible for some w ∈ W . Equivalently, H−wλ̄ has a unitarizable irreducible spherical quotient.

Proof. By Casselman’s embedding theorem, πφλ
is a subrepresentation of H τ,ν for some τ ∈ M̂ and

ν ∈ a∗

C
; see, e.g., [Knapp 1986, Theorem 8.37]. More precisely, the (g, K )-module of K -finite vectors are

equivalent. Since the only principal series representations containing K -invariant vectors are the spherical
ones, we obtain τ = 1. Since infinitesimally equivalent admissible representations of G have the same set
of K -finite matrix coefficients (see [Knapp 1986, Corollary 8.8]), we conclude φλ = φν , i.e., wλ = ν.
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−ρ

ia∗

a∗

C ≃ C

a∗

ρ =
1
2 mα + m2α

−ρ

ia∗

a∗

ρ1
2 mα + 1

Figure 5. Spherical dual in the rank 1 case. The picture on the left describes the real and
complex hyperbolic case m2α ≤ 1. The picture on the right describes the quaternionic
case m2α ≥ 2. In the latter case note that there is a spectral gap separating ρ.

Conversely assume that the subrepresentation generated by the K -invariant vector in the principal
series representation Hwλ is unitarizable and irreducible. Again by the aforementioned result the matrix
coefficient φwλ = φλ of Hwλ is a matrix coefficient of the unitary representation obtained by the unitary
structure as well. Hence φλ is positive semidefinite. Transition to the dual representation implies the
second equivalence. □

Remark 4.7. Although the unitary dual is classified for many groups, it is difficult to deduce which
elementary spherical functions are positive semidefinite. This is due to the fact that most classifications
are not obtained in terms of quotients of the spherical principal series but use different descriptions of
admissible representations. However, for rank 1 groups everything is classified (see [Helgason 1984,
p. 484]): if α denotes the unique reduced root in 6+, then φλ is positive semidefinite if and only if λ ∈ ia∗

or λ∈ a∗ and |⟨λ, α⟩| ≤ ⟨ρ, α⟩ for 2α ̸∈6 (i.e., in the real hyperbolic case) and |⟨λ, α⟩| ≤
( 1

2 mα +1
)
⟨α, α⟩

for 2α ∈ 6 or λ = ±ρ. See Figure 5 for a visualization.

4A. Property (T). In this section we review some facts about Kazhdan’s property (T) which will lead to
a more precise description of the location of σQ . Recall that a locally compact group has property (T)
if and only if the trivial representation is an isolated point in the unitary dual of the group with respect
to the Fell topology; see [Bekka et al. 2008] for a general reference. It is well known that each real
simple Lie group of real rank ≥ 2 has property (T); see [Bekka et al. 2008, Theorem 1.6.1]. Since the
mapping λ 7→φλ is continuous and the correspondence between positive semidefinite elementary spherical
functions and irreducible unitary spherical representations is a homeomorphism (see Section 2G), we
obtain that in some neighborhood of ρ no elementary spherical function is positive semidefinite. We
will use a more quantitative description introduced by Oh [2002, Section 7.1]. Therefore, we denote
by pK (G) the smallest real number such that the K -finite matrix coefficients of π are in Lq(G) for any
q > pK (G) and nontrivial π ∈ Ĝ.
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Remark 4.8. (1) Since each matrix coefficient of π ∈ Ĝ is bounded, it is contained in Lq for each q > p
if it is in L p. Hence

pK (G) = inf{p | all K -finite matrix coefficients of π are in L p(G) ∀π ∈ Ĝ \ {1}}.

(2) pK (G) ≥ 2.

(3) By [Cowling 1979] together with [Oh 2002] we have pK (G) < ∞ if and only if G has property (T).

In many examples one knows the number pK (G) explicitly or at least its upper bounds.

Example 4.9 (see [Oh 2002, Section 7]). (1) pK (SLn(k)) = 2(n − 1) for n ≥ 3 and k = R, C.

(2) pK (Sp2n(R)) = 2n for n ≥ 2.

(3) pK (G) is bounded above by an explicit value for split classical groups of higher rank.

We can now prove the following theorems.

Theorem 4.10. Let G be a noncompact real semisimple Lie group with finite center and 0 ≤ G be a
discrete, cocompact, torsion-free subgroup. Then

Re σQ(0\G/K ) ⊆ (1 − 2pK (G)−1) conv(Wρ) ∪ Wρ.

Proof. Let λ ∈ σQ(0\G/K ). By Proposition 4.2, φλ is positive semidefinite so that the irreducible unitary
representation πφλ

is defined (see Section 2G), and φλ is a matrix coefficient of this representation. By
the definition of pK (G) we have φλ ∈ L pK (G)+ϵ(G) for all ϵ > 0 or πφλ

is the trivial representation. By
Proposition 2.4 we get Re λ ∈ (1 − 2pK (G)−1) conv(Wρ) in the first case. The latter case occurs if and
only if φλ ≡ 1, i.e., λ ∈ Wρ. □

Theorem 4.11. Let G be a noncompact real semisimple Lie group with finite center and 0 ≤ G be a
discrete, cocompact, torsion-free subgroup. Then there is a neighborhood G of ρ in a∗ such that

σQ(0\G/K ) ∩ (G × ia∗) = {ρ}.

Proof. Without loss of generality we assume that G has trivial center, otherwise replace G by G/Z(G).
Then G is a product of simple Lie groups G1, . . . , Gl such that G1, . . . , Gk , k ≤ l, are of rank 1. With
the obvious notation let λ = (λ1, . . . , λl) ∈ (a1)

∗

C
⊕ · · · ⊕ (al)

∗

C
be in σQ . By Proposition 4.2 we have

wλ = −λ̄ for some w ∈ W . Since the Weyl group W is the product of the Weyl groups, λi ∈ a∗

i are
real for i ≤ k if Re λi ̸= 0. The elementary spherical function φλ is the product of elementary spherical
functions φ

Gi
λi

for the factors Gi . Again by Proposition 4.2 we know that φλ is positive semidefinite and
therefore each φ

Gi
λi

is positive semidefinite. The same line of arguments as in the proof of Theorem 4.10
implies that Re λi ∈ (1−2pK (Gi )

−1) conv(Wiρi )∪Wiρi for i > k. Since the Gi , i > k, have property (T),
we conclude that there is a neighborhood U of ρ in a∗ such that

σQ ∩ (U × ia∗) ⊆ a∗

1 × · · · × a∗

k × {ρk+1} × · · · × {ρl}.

Discreteness of σQ implies the theorem. □
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5. Main Theorem

In this section we present the main theorem of the article and deduce Theorem 1.2 from it. See Figure 6
for a visualization for G = SL3(R).

Theorem 5.1. Let G be a noncompact real semisimple Lie group with finite center and 0 ≤ G be a
discrete, cocompact, torsion-free subgroup. Define

A :=

{
λ ∈ a∗

C

∣∣∣∣ 2⟨λ + ρ, α⟩

⟨α, α⟩
∈ −N>0 for some α ∈ 6+

}
,

B := {λ ∈ a∗

C | wλ = −λ̄ for some w ∈ W },

F := {λ ∈ a∗
| λ + α ̸∈ −a∗ for all α ∈ 5}.

Then we have the inclusions
σRT(0 X) ∩ (F × ia∗) ⊆ σ 0

RT(0 X)

and

σ 0
RT(0 X) ∩ (a∗

C \A) ⊆ −σQ(0\G/K ) − ρ ⊆ B∩ (((1 − 2pK (G)−1) conv(Wρ) ∪ Wρ) + ia∗) − ρ.

Proof. This is immediate from Propositions 3.7, 3.11 and 4.2, and Theorem 4.10. □

Proof of Theorem 1.2. It follows from Theorem 5.1 that (a∗
+

− ρ)∩F ∩ (−G − ρ) can be chosen as the
neighborhood, where G is obtained by Theorem 4.11. If G has property (T), then pK (G) is finite and G
can be replaced by the complement of the 0-independent set (1 − 2pK (G)−1) conv(Wρ). □

A
α1 ρ

α2
F

−a∗

Figure 6. Visualization of the real part of a∗

C
for G = SL3(R): The pink region is where

Ruelle–Taylor resonances can a priori be located in view of the results of [Bonthonneau
et al. 2020]. The red points and lines depict the region where first band resonances can
occur:

(
B∩

1
2 conv(Wρ) ∪ Wρ

)
− ρ. The purple shaded region illustrates the real parts

in which only first band resonances can occur. Further first band resonances might occur
inside the exceptional set A depicted by the black lines.
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GROWTH OF HIGH L p NORMS FOR EIGENFUNCTIONS
AN APPLICATION OF GEODESIC BEAMS

YAIZA CANZANI AND JEFFREY GALKOWSKI

This work concerns L p norms of high energy Laplace eigenfunctions: (−1g − λ2)φλ = 0, ∥φλ∥L2 = 1.
Sogge (1988) gave optimal estimates on the growth of ∥φλ∥L p for a general compact Riemannian manifold.
Here we give general dynamical conditions guaranteeing quantitative improvements in L p estimates
for p > pc, where pc is the critical exponent. We also apply results of an earlier paper (Canzani and
Galkowski 2018) to obtain quantitative improvements in concrete geometric settings including all product
manifolds. These are the first results giving quantitative improvements for estimates on the L p growth of
eigenfunctions that only require dynamical assumptions. In contrast with previous improvements, our
assumptions are local in the sense that they depend only on the geodesics passing through a shrinking
neighborhood of a given set in M. Moreover, we give a structure theorem for eigenfunctions which saturate
the quantitatively improved L p bound. Modulo an error, the theorem describes these eigenfunctions as
finite sums of quasimodes which, roughly, approximate zonal harmonics on the sphere scaled by 1/

√
log λ.

1. Introduction

Let (M, g) be a smooth, compact, Riemannian manifold of dimension n and consider normalized Laplace
eigenfunctions, i.e., solutions to

(−1g − λ2)φλ = 0, ∥φλ∥L2(M) = 1.

This article studies the growth of L p norms of the eigenfunctions φλ as λ → ∞. Since the work of
Sogge [1988], it has been known that there is a change of behavior in the growth of L p norms for
eigenfunctions at the critical exponent pc := 2(n + 1)/(n − 1). In particular,

∥φλ∥L p(M) ≤ Cλδ(p), δ(p) :=

{
n−1

2 −
n
p , pc ≤ p,

n−1
4 −

n−1
2p , 2 ≤ p ≤ pc.

(1-1)

For p ≥ pc, (1-1) is saturated by the zonal harmonics on the round sphere Sn. On the other hand, for p ≤ pc,
these bounds are saturated by the highest weight spherical harmonics on Sn, also known as Gaussian
beams. In a very strong sense, the authors showed in [Canzani and Galkowski 2021, page 4] that any
eigenfunction saturating (1-1) for p > pc behaves like a zonal harmonic, while Blair and Sogge [2015b;
2017] showed that for p < pc such eigenfunctions behave like Gaussian beams. In the case p ≤ pc, Blair
and Sogge [2015a; 2018; 2019] have made substantial progress on improved L p estimates on manifolds
with nonpositive curvature.
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This article concerns the behavior of L p norms for high p; that is, for p > pc. While there has been a
great deal of work on L p norms of eigenfunctions [Hezari and Rivière 2016; Koch et al. 2007; Sogge
et al. 2011; Sogge and Zelditch 2002; 2016; Tacy 2018; 2019; Toth and Zelditch 2002; 2003], this article
departs from the now standard approaches. We both adapt the geodesic beam methods developed by
the authors in [Canzani and Galkowski 2023; 2019; 2021; Canzani et al. 2018; Galkowski 2018; 2019;
Galkowski and Toth 2018; 2020] and develop a new second microlocal calculus used to understand the
number of points at which |uλ| can be large (see Section 1A for details on the new ideas here). By doing
this, we give general dynamical conditions guaranteeing quantitative improvements over (1-1) for p > pc.
In order to work in compact subsets of phase space, we semiclassically rescale our problem. Let h = λ−1,
and, abusing notation slightly, write φλ = φh , so that

(−h21g − 1)φh = 0, ∥φh∥L2(M) = 1.

We also work with the semiclassical Sobolev spaces H s
h (M), with s ∈ R, defined by the norm

∥u∥
2
H s

h (M)
:= ⟨(−h21g + 1)su, u⟩

L2(M)
.

We start by stating a consequence of our main theorem. Let 4 denote the collection of maximal unit
speed geodesics for (M, g). For m a positive integer, r > 0, t ∈ R, and x ∈ M, define

4m,r,t
x := {γ ∈4 : γ (0)= x and there exists at least m conjugate points to x in γ (t − r, t + r)},

where we count conjugate points with multiplicity. Next, for a set V ⊂ M, write

Cm,r,t
V :=

⋃
x∈V

{γ (t) : γ ∈4m,r,t
x }.

Note that if rt → 0+ as |t | → ∞, then saying y ∈ Cn−1,rt ,t
x for t large indicates that y behaves like a

point that is maximally conjugate to x . This is the case for every point x on the sphere when y is either
equal to x or its antipodal point. The following result applies under the assumption that points are not
maximally conjugate and obtains quantitative improvements.

Theorem 1.1. Let p > pc and U ⊂ M, and assume there exist t0 > 0 and a > 0 such that

inf
x1,x2∈U

d(x1, Cn−1,rt ,t
x2

)≥ rt for t ≥ t0,

with rt =
1
a e−at. Then, there exist C > 0 and h0 > 0 such that, for 0< h < h0 and u ∈ D′(M),

∥u∥L p(U ) ≤ Ch−δ(p)
(

∥u∥
L2(M)√

log h−1
+

√
log h−1

h
∥(−h21g − 1)u∥H (n−3)/2−n/p

h (M)

)
.

The assumption in Theorem 1.1 rules out maximal conjugacy of any two points x, y ∈ U uniformly up
to time ∞, and we expect it to hold for a dense set of metrics on any smooth manifold M with U = M.
Since Theorem 1.1 includes the case of manifolds without conjugate points, it generalizes the work of
Hassell and Tacy [2015], where it was shown that logarithmic improvements in L p norms for p > pc

are possible on manifolds with nonpositive curvature. One family of examples where the assumptions
of Theorem 1.1 hold is that of product manifolds [Canzani and Galkowski 2021, Lemma 1.1], i.e.,
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(M1 × M2, g1 ⊕ g2), where the (Mi , gi ) are nontrivial compact Riemannian manifolds. Note that this
family of examples includes manifolds with large numbers of conjugate points, e.g., S2

× M for any
nontrivial M.

The proof of Theorem 1.1 gives a great deal of information about eigenfunctions which saturate L p

bounds (p > pc). Indeed, its proof yields Theorem 3.8 (see Section 3G), which describes the profile
of these functions modulo an error in L p. It shows that, under the assumptions of Theorem 1.1, an
eigenfunction can saturate the logarithmically improved L∞ norm near at most boundedly many points (it
actually shows the same for the L p norm when p > pc). That is, for ε > 0, there is Nε > 0 such that

#
{
α ∈ I(h) : ∥u∥L∞(B(xα,R(h))) ≥

εh(1−n)/2√t0√
log h−1

∥u∥
L2(M)

, B(xα, R(h))∩ U ̸= ∅
}

≤ Nε, (1-2)

where {xα}α∈I(h) is a maximal R(h) := h1/2−δ separated collection of points with δ > 0.
Moreover, modulo an error small in L p, near each of these points the eigenfunction u can be decom-

posed as a sum of quasimodes which are similar to the highest weight spherical harmonics scaled by
h(n−1)/4/

√
log h−1 whose number is nearly proportional to h(1−n)/2. Indeed, Theorem 3.8 (see Section 3G)

shows that there is a collection of geodesic tubes {Tj }j∈L(ε,u) ⊂ S∗M of radius R(h) (see Definition 1.3)
with indices in the set L(ε, u)=

⋃C
i=1 J i and with pairwise disjoint tubes Tk ∩Tℓ = ∅ for k, ℓ ∈ J i with

k ̸= ℓ, such that

u = ue +
1√

log h−1

∑
j∈L(ε,u)

vj .

Here, ue should be understood as an error term satisfying, for all p ≤ q ≤ ∞,

∥ue∥Lq ≤ εh−δ(q)(log h−1)−1/2
∥u∥L2 .

Each vj is microsupported in the geodesic tube Tj and is a quasimode with

∥(−h21g − 1)vj∥L2 ≤ Cε−1h R(h)(n−1)/2
∥u∥L2 and ∥v j∥L2 ≤ Cε−1 R(h)(n−1)/2

∥u∥L2 . (1-3)

While similar to highest weight spherical harmonics (also known as Gaussian beams), they are not as
tightly localized to a geodesic segment and do not have Gaussian profiles. We refer to these quasimodes
as geodesic beams (see Remark 3.2 and Figure 1 for an illustration).

Furthermore, in Theorem 3.8 we prove that near each point xα on which u nearly saturates the L p

bound, i.e., for α that belongs to the set displayed in (1-2), we have

cε2 R(h)1−n
≤ |L(ε, u, α)| ≤ C R(h)1−n, (1-4)

where L(ε, u, α) := { j ∈ L(ε, u) : πM(Tj ) ∩ B(xα, 3R(h)) ̸= ∅} and πM : S∗M → M is the natural
projection. Since dim S∗

xα M = n − 1, this means that at points xα at which u nearly saturates its L p norm
there must be a full measure set of directions on which u is microsupported. In addition, we also prove
that the collection of geodesic beams vj on which u has its microsupport carries a positive portion of the
total L2 mass: ∑

j∈L(ε,u,α)

∥vj∥
2
L2 ≥ c2ε2

∥u∥
2
L2 .
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x↵1

x↵2

x↵3

10"h
1�n

2p
log h�1

R(h)

vjp
log h�1

10εh(1−n)/2
√

log h−1 vj√
log h−1

R(h)

Figure 1. The figure illustrates a function u that saturates the L∞ bound at three points
xα1, xα2, xα3 viewed as a superposition of geodesic beams vj . Each ridge corresponds to
a beam vj and is microsupported on a tube Tj of radius R(h).

Note that, together with (1-3) and (1-4), this implies that most of the geodesic beams carry mass exactly
proportional to R(h)(n−1)/2

∥u∥L2 , and hence that the mass is nearly uniform over all possible directions.
For the precise statement of these estimates, see Section 3G.

Remark 1.2. Note that we do not use the bound (1-2) to prove our main theorem. Instead, this decompo-
sition is a consequence of the proof of Theorem 1.1, which, in principle describes much more about the
profile of eigenfunctions (see the outline of the proof in Section 1A for more details).

The proofs of Theorems 1.1 and 3.8 hinge on a much more general theorem, Theorem 1.4, which does
not require global geometric assumptions on (M, g). As far as the authors are aware, Theorem 1.4 is the
first result giving quantitative estimates for the L p growth of eigenfunctions that only requires dynamical
assumptions. We emphasize that, in contrast with previous improvements on Sogge’s L p estimates, the
assumptions in Theorem 1.4 are purely dynamical and, moreover, are local in the sense that they depend
only on the geodesics passing through a shrinking neighborhood of a given set in M. Moreover, the
techniques do not require long-time wave parametrices.

Theorem 1.4 controls ∥u∥L p(U ) using an assumption on the maximal volume of long geodesics joining
any two given points in U. For our proof, it is necessary to control the number of points in U where
the L∞ norm of u can be large (see Step 4 in Section 1A). This is a very delicate and technical part
of the argument, as the points in question may be approaching one another at rates ∼ hδ as h → 0+

with 0< δ < 1
2 . To state our theorem, we need to introduce a few geometric objects. First, consider the

Hamiltonian function p ∈ C∞(T ∗M\{0}),

p(x, ξ)= |ξ |g − 1,

and let ϕt : T ∗M \ 0 → T ∗M \ 0 denote the Hamiltonian flow for p at time t , which coincides with
the geodesic flow in this case. We also define the maximal expansion rate and the Ehrenfest time at
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frequency h−1, respectively, as

3max := lim sup
|t |→∞

1
|t |

log sup
S∗M

∥dϕt(x, ξ)∥ and Te(h) :=
log h−1

23max
, (1-5)

where ∥ · ∥ denotes the norm in any metric on T (T ∗M). Note that 3max ∈ [0,∞), and if 3max = 0 we
may replace it by an arbitrarily small positive constant. We next describe a cover of S∗M by geodesic
tubes.

For each ρ0 ∈ S∗M, the cosphere bundle to M, let Hρ0 ⊂ M be a hypersurface such that ρ0 ∈ SN ∗Hρ0 ,
the unit conormal bundle to Hρ0 . Then, let

Hρ0 ⊂ T ∗

Hρ0
M = {(x, ξ) ∈ T ∗M : x ∈ Hρ0}

be a hypersurface containing SN ∗Hρ0 . Next, for q ∈ Hρ0 and τ > 0, we define the tube through q of
radius R(h) > 0 and “length” τ + R(h) as

3τq(R(h)) :=

⋃
|t |≤τ+R(h)

ϕt(BHρ0
(q, R(h))),

BHρ0
(q, R(h)) := {ρ ∈ Hρ0 : d(ρ, q)≤ R(h)},

(1-6)

where d is the distance induced by the Sasaki metric on T ∗M (see e.g., [Blair 2010, Chapter 9] for a
description of the Sasaki metric). Note that the tube runs along the geodesic through q ∈ Hρ0 . Similarly,
for A ⊂ S∗M, we define 3τA(R(h)) in the same way, replacing q with A in (1-6).

Definition 1.3. Let A ⊂ S∗M, r > 0, and {ρj (r)}
Nr
j=1 ⊂ A for some Nr > 0. We say the collection of tubes

{3τρj
(r)}Nr

j=1 is a (τ, r) cover of a set A ⊂ S∗M provided

3τA
( 1

2r
)
⊂

Nr⋃
j=1

Tj , Tj :=3τρj
(r).

Given a (τ, r) cover {Tj }j∈J for S∗M, for each x ∈ M we define

J x := { j ∈ J : π(Tj )∩ B(x, r) ̸= ∅}.

We are now ready to state Theorem 1.4, where we give explicit dynamical conditions guaranteeing
quantitative improvements in L p norms.

Theorem 1.4. There exists τM > 0 such that for all p > pc and ε0 > 0 the following holds. Let U ⊂ M
and 0< δ1 < δ2 <

1
2 , and let hδ2 ≤ R(h)≤ hδ1 for all h > 0. Let 1 ≤ T (h)≤ (1−2δ2)Te(h) and let t0 > 0

be h-independent. Let {Tj }j∈J be a (τ, R(h)) cover for S∗M for some 0< τ < τM .
Suppose that, for any pair of points x1, x2 ∈ U, the tubes over x1 can be partitioned into a disjoint

union
J x1 = Bx1,x2 ⊔Gx1,x2,

where ⋃
j∈Gx1,x2

ϕt(Tj )∩ S∗

B(x2,R(h))M = ∅, t ∈ [t0, T (h)].
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Then, there are h0 > 0 and C > 0 such that, for all u ∈ D′(M) and 0< h < h0,

∥u∥L p(U ) ≤ Ch−δ(p)
( √

t0
√

T (h)
+

[
sup

x1,x2∈U
|Bx1,x2 |R(h)

n−1](6+ε0)
−1(1−pc/p)

)
×

(
∥u∥L2 +

T (h)
h

∥(−h21g − 1)u∥H (n−3)/2−n/p
h

)
. (1-7)

In order to interpret (1-7), note that we think of the tubes Gx1,x2 and Bx1,x2 as good (or nonlooping) and
bad (or looping), respectively. Then, observe that

|Bx1,x2 |R(h)
n−1

∼ vol
( ⋃

j∈Bx1,x2

Tj ∩ S∗

x1
M

)
and that

⋃
j∈Bx1,x2

Tj is the set of directions over x1 which may loop through x2 in time T (h). Therefore,
if the volume of points in S∗

x1
M looping through x2 is bounded by T (h)−(3+ε0)(1−pc/p)−1

, (1-7) provides
T (h)−1/2 improvements over the standard L p bounds. We expect these nonlooping-type assumptions to
be valid for a dense set of metrics on any smooth manifold M.

Theorem 1.4 can be used to obtain improved L p resolvent bounds [Cuenin 2020, Theorem 2.21] which,
as shown there, are stable by certain rough perturbations. These estimates in turn can be used to construct
complex geometric optics solutions and solve certain inverse problems [Dos Santos Ferreira et al. 2013].

One can check using a similar argument to that in [Canzani and Galkowski 2021, Lemma 5.1 (see also
Theorem 5, Section 1.5.3)] that in certain integrable situations(

sup
x1,x2∈U

|Bx1,x2 |R(h)
n−1)(6+ε0)

−1(1−pc/p)
≤

C
√

T (h)
,

with T (h)≫ log h−1 and U a nontrivial open subset of M, thus producing o((log h−1)−1/2) improvements
on the L p norms over U after an application of Theorem 1.4. One example of such an integrable system
is the spherical pendulum where U can be taken to be any set that lies at a positive distance from the
poles.

For other examples, where one can understand these types of good and bad tubes, we refer the reader
to [Canzani and Galkowski 2023], where they are used to understand averages and L∞ norms under various
assumptions on M, including that it has Anosov geodesic flow or nonpositive curvature. Since our results
do not require parametrices for the wave group, we expect that the arguments leading to Theorem 1.4
will provide polynomial improvements over Sogge’s estimates on manifolds where Egorov-type theorems
hold for longer than logarithmic times.

Note that Theorem 1.4 addresses L p norms with pc < p ≤ ∞, while the authors’ previous work
in [Canzani and Galkowski 2021] considers p = ∞ alone. Moreover, for p = ∞, the estimate in
Theorem 1.4 is actually weaker than those in that previous work in that it requires an assumption about
geodesics passing near two distinct points, while those in that previous work require only a nonrecurrent
assumption on geodesics passing through a small neighborhood of a single point. This is because
describing the L p norm for p <∞ requires understanding the behavior at many points simultaneously,
while the L∞ norm cares only about a single point with maximal growth.
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Remark 1.5. The proofs below could be adapted to the case of quasimodes for real principal type
semiclassical pseudodifferential operators of Laplace type. That is, to operators with principal symbol p
satisfying both that ∂ξ p ̸= 0 on {p = 0} and that {p = 0}∩ T ∗

x M has positive definite second fundamental
form. This is the case, for example, for Schrödinger operators away from the forbidden region. However,
for concreteness and simplicity of exposition, we have chosen to consider only the Laplace operator.

1A. Outline of the proof of Theorem 1.4. Our method for proving Theorem 1.4 differs from the standard
approaches for treating L p norms in two major ways: it hinges on adapting the geodesic beam techniques
constructed by the authors [Canzani and Galkowski 2021] and on the development of a new second
microlocal calculus. We now give a detailed sketch of the argument used in this proof.

To simplify the presentation in this outline, we suppose u is a Laplace eigenfunction and U = M, and
sketch the proof of Theorem 1.4.

Step 1: We first write u =
∑

j χTj u, where the Tj are as in Definition 1.3 and χTj is a microlocal cutoff
to Tj which approximately commutes with P = −h21g − 1; see Section 3A. We also cover M by balls
{B(xα, R)}α∈I such that I consists of a union of boundedly many collections of disjoint balls. We next
organize the tubes Tj by the L2 mass of χTj u, writing

Ak := { j : 2−(k+1)
∥u∥L2 ≤ ∥χTj u∥L2 ≤ 2−k

∥u∥L2};

see Section 3B. For each k, we then organize the balls B(xα, R) by the L∞ norm of
∑

j∈Ak
χTj u, writing

Ik,m :=

{
α ∈ I : 2m−k−1

∥u∥L2 ≤ h(n−1)/2 R(1−n)/2
∥∥∥∥ ∑

j∈Ak

χTj u
∥∥∥∥

L∞(B(xα,R))
≤ 2m−k

∥u∥L2

}
; (1-8)

see Section 3C. The reason for this choice comes from the geodesic beam estimate (see [Canzani and
Galkowski 2021]) ∥∥∥∥ ∑

j∈Ak

χTj u
∥∥∥∥

L∞(B(xα,R))
≤ Ch(1−n)/2 R(n−1)/2

∑
j∈Ak(α)

∥χTj u∥L2, (1-9)

where Ak(α) denotes those tubes Tj such that j ∈ Ak and Tj passes over the ball B(xα, R). Because of
the definition of Ak , we have that 2m is a lower bound for the number of tubes in Ak(α) for α ∈ Ik,m ;
see (3-20).

With this bookkeeping completed, we record the estimate on the L p norm:

∥u∥L p ≤ C
∑

k

(∑
m

∥∥∥∥ ∑
j∈Ak,m

χTj u
∥∥∥∥p

L p(
⋃
α∈Ik,m

B(xα,R))

)1/p

, (1-10)

where Ak,m =
⋃
α∈Ik,m

Ak(α), i.e., those tubes in Ak which pass over a ball in Ik,m .

Step 2: We control each L p norm in (1-10) by using interpolation between the L∞ estimate analogous
to (1-9) and the standard L pc estimate:∥∥∥∥ ∑

j∈Ak,m

χTj u
∥∥∥∥

L pc

≤ Ch−1/pc

∥∥∥∥ ∑
j∈Ak,m

χTj u
∥∥∥∥

L2
≤ Ch−1/pc 2−k

|Ak,m |
1/2

∥u∥L2 .



2274 YAIZA CANZANI AND JEFFREY GALKOWSKI

In Section 3D, we start by handling the “easy” piece where the L∞ norm is smaller than T(h)−Nh−(n−1)/2

for some very large N. This piece can be neglected since the standard interpolation estimate shows that it
has L p norm ≪ h−δ(p)/

√
T (h)∥u∥L2 .

Next, in Section 3E, we write Ak,m = Gk,m ⊔Bk,m , where
⋃

j∈Gk,m
Tj is non-self-looping in the sense

that ⋃
t∈[t0,T (h)]

ϕt
(⋃

j∈Gk,m
Tj

) ⋂ ⋃
j∈Gk,m

Tj = ∅.

Using non-self-looping estimates from [Canzani and Galkowski 2021] (see also Lemma 3.6) and summing
carefully, we are able to show that

C
∑

k

(∑
m

∥∥∥∥ ∑
j∈Gk,m

χTj u
∥∥∥∥p

L p(
⋃
α∈Ik,m

B(xα,R))

)1/p

≤
h−δ(p)
√

T (h)
∥u∥L2 .

This is done in Section 3E2.
Our final task is to estimate the sum over the bad tubes. For this, we again use the geodesic beam

estimate to control the L∞ norm of
∑

j∈Bk,m
χTj u by the maximal number, |Bmax

k,m |, of “bad” tubes passing
over a ball B(xα, R) with α ∈ Ik,m . In addition, we control the L2 norm of this sum by |Bk,m |

1/22−k. The
numbers of “bad” tubes are estimated in the next step.

Step 3: We first estimate |Bmax
k,m | using the dynamical hypothesis. In particular, we check that

|Bmax
k,m | ≤ |Ik,m ||Bx1,x2 |.

This estimate comes from imagining the worst case scenario that every tube connecting some ball B(xα, R)
with α ∈ Ik,m to another ball B(xβ, R) with β ∈ Ik,m lies in Ak and that no such tube connects B(xα, R)
to B(xβ, R) and B(xβ ′, R) for β ̸= β ′; see (3-46). Using a similar argument, we can see that

|Bk,m | ≤ |Ik,m |
2 sup

x1,x2

|Bx1,x2 |;

see (3-39). Thus, it remains only to estimate |Ik,m |.

Step 4: To estimate the size of Ik,m , we need to estimate the number of balls on which the combination
of beams wk,m :=

∑
j∈Ak,m

χTj u with L2 mass 2−k has L∞ norm 2m−k R(n−1)/2h(1−n)/2
∥u∥L2 .

To do this, we aim to understand both the minimal amount of L2 mass needed for an eigenfunction
to have a certain (large) L∞ norm and where that mass must be located in phase space. The standard
Hörmander-type L∞ bound (as presented in [Koch et al. 2007]) answers the first question: for x ∈ M,

h(n−1)/2
|w(x)| ≤ C(∥w∥L2 + h−1

∥Pw∥L2). (1-11)

To answer the second question, we need to understand to what extent this inequality can be microlocalized.
Because of the invariance of eigenfunctions under the geodesic flow we localize to the coisotropic
submanifolds

0x :=

⋃
|t |≤1

ϕt(T ∗

x M). (1-12)
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We want three properties for X0x , our localizers to 0x ; see (3-25) for the precise requirements and
Theorem 6.3 for their construction. First, they should localize tightly (hρ with ρ ∼ 1) to 0x . Second, they
must nearly maintain the value of a function at x :

w(x)= (X0xw)(x)+ O(h∞). (1-13)

Third, they must preserve quasimodes for P so that, using the inequality (1-11), we have

h(n−1)/2
|(X0xwk,m)(x)| ≤ C∥X0xwk,m∥L2 . (1-14)

Thus, from (1-13) and (1-14) it follows that, for α ∈ Ik,m , there is x̃α ∈ B(xα, R) with

R(n−1)/22m−k
∥u∥L2 ≤ h(n−1)/2

∥X0x̃α
wk,m∥L∞(B(xα,R)) ≤ ∥X0x̃α

wk,m∥L2 . (1-15)

Note that we use 0x as defined above, as opposed to the flowout of S∗
x M , precisely so that (1-13) is

possible.
Finally, we will bound |Ik,m | by summing (1-15) over all balls in Ik,m to obtain

Rn−122(m−k)
|Ik,m | ≤

∑
α∈Ik,m

∥X0x̃α
wk,m∥

2
L2 . (1-16)

We produce an upper bound on (1-16) of the form∑
α∈Ik,m

∥X0x̃α
wk,m∥

2
L2 ≤ ∥wk,m∥

2
L2 . (1-17)

This follows from Proposition 6.6 (see the analysis leading to (3-31)) and controls the minimal L2 mass
necessary for wk,m to have a large value at all the points in Ik,m . We view this estimate as an uncertainty
principle type of result in which we prove that, for x̃α ̸= x̃β , localization to 0x̃α and 0x̃β are incompatible
in the sense that

∥X0x̃α
X0x̃β

∥L2→L2 ≪ 1, (1-18)

with uniform estimates in d(x̃α, x̃β). Combining (1-16) with (1-17) yields the bound needed on |Ik,m | to
finish the analysis in the proof of Theorem 1.4. This is done in Section 3E1.

Remark 1.6 (uncertainty principle). Note that, if the function wk,m could be localized simultaneously on
all the manifolds 0x̃α , then we would have∑

α∈Ik,m

∥X0x̃α
wk,m∥

2
L2 ≥ c|Ik,m |∥wk,m∥

2
L2 ≫ ∥wk,m∥

2
L2 .

This contradicts (1-17). Hence, if one more carefully quantifies this argument by assigning weights to the
localized masses ∥X0x̃α

wk,m∥L2 , we can understand how much of the L2 mass of wk,m can be localized
to many 0x̃α . This is a type of uncertainty principle. Since (1-15) shows that 0x̃α must carry mass in order
for wk,m(x̃α) to be large, this can be thought of as an estimate on how much a “single unit” of L2 mass
can be used to produce a large L∞ norm at multiple points.
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Remark 1.7 (zonal harmonics). Another way to think of the estimate (1-18) is on the round sphere S2,
where the natural enemy is a zonal harmonic Zx at a point x ∈ S2. Recall that the zonal harmonic Zx is
localized h close to 0x , in the sense that in a fixed size neighborhood of x ,

X0x Zx = Zx + O(h∞).

The estimate (1-18), or more precisely Corollary 6.5, can be used to give lower bounds on∥∥∥∥∑
xα∈I

Zxα

∥∥∥∥2

L2
=

∑
xα∈I

∥Zxα∥
2
L2 +

∑
xα ̸=xβ

⟨X∗

0xβ
X0xα

Zxα , Zxβ ⟩L2,

where d(xα, xβ) > R for α ̸= β. Equation (1-18) shows that, for α ̸= β,

∥X∗

0xβ
X0xα

∥ ≪ 1

and hence quantifies the amount of cancellation in such a sum. This cancellation is easy to see with
d(xα, xβ) > c > 0, but becomes much more subtle when this distance is small.

Remark 1.8 (second microlocal calculus). In order to build the localizers X0x satisfying (1-13) and (1-14),
we develop a new second microlocal calculus associated to a Lagrangian foliation L over a coisotropic
submanifold 0 ⊂ T ∗M. In the case of the 0x defined in (1-12), the leaves of L will be given by ϕt(T ∗

x M)
for a fixed time t . The calculus allows for simultaneous hρ localization (with ρ close to 1) along a leaf
of L and along 0. Because of this and the fact that T ∗

x M is one such leaf, we can find localizers with the
property (1-13). We note that other works on L p norms, especially [Blair and Sogge 2015b; 2017], use
localizers to h1/2 neighborhoods of geodesic segments. However, when two cutoffs X1 and X2 localizing
at scale h1/2 have overlapping support, we always have

∥X1 X2∥L2→L2 ∼ 1,

and hence (1-18) does not hold. Therefore, in our framework it is necessary to localize in some directions
at scales below h1/2 and hence to develop a special calculus associated to the pairs (L , 0). The calculus,
which is developed in Section 5, can be seen as an interpolation between those in [Dyatlov and Zahl
2016; Sjöstrand and Zworski 1999].

Outline of the paper. In Section 2, we construct the covers of S∗M and T ∗M consisting of tubes and balls,
respectively, which are necessary in the rest of the article. Section 3 contains the proof of Theorems 1.4
and 3.8. This proof uses the anisotropic calculus developed in Section 5 and the almost-orthogonality
results from Section 6. Section 4 contains the necessary dynamical arguments to prove Theorem 1.1 using
Theorem 1.4.

2. Tube lemmas

The next few lemmas are aimed at constructing (τ, r)-good covers and partitions of various subsets
of T ∗M ; see also [Canzani and Galkowski 2021, Section 3.2]. Before we proceed, we recall the symbol
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classes Sm
δ (T

∗M); see also, e.g., [Zworski 2012, Chapters 4, 9]. We say that a ∈ C∞(T ∗M) is in Sm
δ (T

∗M)
if, for all α, β ∈ Nd, there is Cαβ > 0 such that, for 0< h < 1,

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβh−δ(|α|+|β|)

⟨ξ⟩m−|β|, ⟨ξ⟩ := (1 + |ξ |2)1/2.

We sometimes write Sδ(T ∗M)= S0
δ (T

∗M), and we write a ∈ Sm
δ (T

∗M; A) if a ∈ C∞(T ∗M; A) is also
in Sm

δ (T
∗M).

Definition 2.1 (good covers and partitions). Let A ⊂ T ∗M, r > 0, and {ρj (r)}
Nr
j=1 ⊂ A be a collection of

points for some Nr > 0. Let D be a positive integer. We say that the collection of tubes {3τρj
(r)}Nr

j=1 is a
(D, τ, r)-good cover of A ⊂ T ∗M provided it is a (τ, r) cover of A and there exists a partition {Jℓ}Dℓ=1
of {1, . . . , Nr } such that for every ℓ ∈ {1, . . . ,D},

3τρj
(3r)∩3τρi

(3r)= ∅, i, j ∈ Jℓ, i ̸= j.

In addition, for 0 ≤ δ ≤
1
2 and R(h)≥ 8hδ, we say that a collection {χj }

Nh
j=1 ⊂ Sδ(T ∗M; [0, 1]) is a δ-good

partition for A associated to a (D, τ, R(h))-good cover if {χj }
Nh
j=1 is bounded in Sδ and

suppχj ⊂3τρj
(R(h)) and

Nh∑
j=1

χj ≥ 1 on 3τ/2A

( 1
2 R(h)

)
.

Remark 2.2. We show below that for any compact Riemannian manifold M, there are DM , R0, τ0 > 0,
depending only on (M, g), such that, for 0< τ < τ0 and 0< r < R0, there exists a (DM , τ, r)-good cover
for S∗M.

We start by constructing a useful cover of any Riemannian manifold with bounded curvature.

Lemma 2.3. Let M̃ be a compact Riemannian manifold. There exist Dn > 0, depending only on n, and
R0 > 0, depending only on n and a lower bound for the sectional curvature of M̃, so that the following
holds: for 0 < r < R0, there exists a finite collection of points {xα}α∈I ⊂ M̃, I = {1, . . . , Nr }, and a
partition {Ii }

Dn
i=1 of I such that

M̃ ⊂

⋃
α∈I

B(xα, r), B(xα1, 3r)∩ B(xα2, 3r)= ∅ for α1, α2 ∈ Ii , α1 ̸= α2,

{xα}α∈I is a maximal 1
2r -separated set in M̃.

Proof. Let {xα}α∈I be a maximal 1
2r -separated set in M̃. Fix α0 ∈I and suppose B(xα0, 3r)∩B(xα, 3r) ̸=∅

for all α ∈ Kα0 ⊂ I. Then, for all α ∈ Kα0 , we have B
(
xα, 1

2r
)
⊂ B(xα0, 8r). In particular,∑

α∈Kα0

vol
(
B

(
xα, 1

2r
))

≤ vol(B(xα0, 8r)).

Now, there exist R0 > 0, depending on n and a lower bound on the sectional curvature of M̃, and
Dn > 0, depending only on n, such that, for all 0< r < R0,

vol(B(xα0, 8r))≤ vol(B(xα, 14r))≤ Dn vol
(
B

(
xα, 1

2r
))
. (2-1)
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Hence, it follows from (2-1) that∑
α∈Kα0

vol
(
B

(
xα, 1

2r
))

≤ vol(B(ρα0, 8r))≤
Dn

|Kα0 |

∑
α∈Kα0

vol
(
B

(
xα, 1

2r
))
.

In particular, |Kα0 | ≤ Dn .
At this point we have proved that each of the balls B(xα, 3r) intersects at most Dn − 1 other balls. We

now construct the sets I1, . . . , IDn using a greedy algorithm. We will say that the index α1 intersects the
index α2 if

B(xα1, 3r)∩ B(xα2, 3r) ̸= ∅.

We place the index 1 ∈ I1. Then suppose we have placed the indices {1, . . . , α} in I1, . . . , IDn so each
of the Ii consists of disjoint indices. Then, since α+ 1 intersects at most Dn − 1 indices, it is disjoint
from Ii for some i . We add the index α to Ii . By induction we obtain the partition I1, . . . , IDn .

Now, suppose that there exists x ∈ M̃ such that x /∈
⋃
α∈I B(xα, r). Then, minα∈I d(x, xα) ≥ r , a

contradiction of the 1
2r maximality of xα. □

In order to construct our microlocal partition, we first fix a smooth hypersurface H ⊂ M, and choose
Fermi normal coordinates x = (x1, x ′) in a neighborhood of H = {x1 = 0}. We write (ξ1, ξ

′) ∈ T ∗
x M for

the dual coordinates. Let

6H :=
{
(x, ξ) ∈ S∗

H M
∣∣ |ξ1| ≥

1
2

}
. (2-2)

We then consider

H6H :=
{
(x, ξ) ∈ T ∗

H M
∣∣ |ξ1| ≥

1
2 ,

1
2 < |ξ |g(x) <

3
2

}
. (2-3)

Then H6H is transverse to the geodesic flow and there is 0< τinjH < 1 such that the map

9 : [−τinjH , τinjH ] ×H6H → T ∗M, 9(t, ρ) := ϕt(ρ), (2-4)

is injective. Our next lemma shows that there is Dn > 0 depending only on n such that one can construct
a (Dn, τ, r)-good cover of 6H .

Lemma 2.4. There exist Dn > 0 depending only on n and R0 = R0(n, H) > 0 such that, for 0< r1 < R0,
0< r0 ≤

1
2r1, there exist points {ρj }

Nr1
j=1 ⊂ 6H and a partition {Ji }

Dn
i=1 of {1, . . . , Nr1} such that, for all

0< τ < 1
2τinjH ,

3τ6H
(r0)⊂

Nr1⋃
j=1

3τρj
(r1),

3τρj
(3r1)∩3

τ
ρℓ
(3r1)= ∅,

for j, ℓ ∈ Ji , j ̸= ℓ.

Proof. We first apply Lemma 2.3 to M̃ = 6H to obtain R0 > 0 depending only on n and the sectional
curvature of H and that of M near H such that, for 0< r1 < R0, there exist {ρj }

Nr1
j=1 ⊂6H and a partition
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{Ji }
Dn
i=1 of {1, . . . , Nr1} such that

6H ⊂

Nr1⋃
j=1

B(ρj , r1), B(ρj , 3r1)∩ B(ρℓ, 3r1)= ∅ for j, ℓ ∈ Ji , j ̸= ℓ,

{ρj }
Nr1
j=1 is a maximal 1

2r1-separated set in 6H .

Now, suppose that j, ℓ ∈ Ji and

3τρℓ(3r1)∩3
τ
ρj
(3r1) ̸= ∅.

Then, there exist

qℓ ∈ B(ρℓ, 3r1)∩H6H , qj ∈ B(ρj , 3r1)∩H6H ,

and tℓ, tj ∈ [−τ, τ ] such that ϕtℓ−tj (qℓ)= qj . Here, H6 is the hypersurface defined in (2-3). In particular,
for τ < 1

2τinjH , this implies that qℓ = qj , tℓ = tj , and hence B(ρℓ, 3r1)∩ B(ρj , 3r1) ̸= ∅, a contradiction.
Now, suppose r0 ≤ r1 and that there exists ρ ∈3τ6H

(r0) so that ρ /∈
⋃

j=1,...,Nr1
3τρj

(r1). Then, there
are |t |< τ + r0 and q ∈ H6H such that

ρ = ϕt(q), d(q, 6H ) < r0, min
j=1,...,Nr1

d(q, ρj )≥ r1.

In particular, there exists ρ̃ ∈6H with d(q, ρ̃) < r0 such that for all j = 1, . . . , Nr1 ,

d(ρ̃, ρj )≥ d(q, ρj )− d(q, ρ̃) > r1 − r0.

This contradicts the maximality of {ρj }
Nr1
j=1 if r0 ≤

1
2r1. □

We proceed to build a δ-good partition of unity associated to the cover we constructed in Lemma 2.4.
The key feature in this partition is that it is invariant under the geodesic flow. Indeed, the partition is built
so that its quantization commutes with the operator P = −h21− I in a neighborhood of 6H .

Proposition 2.5. There exist τ1 = τ1(τinjH ) > 0 and ε1 = ε1(τ1) > 0, and given 0< δ < 1
2 and 0< ε ≤ ε1

there exists h1 > 0 such that, for any 0< τ ≤ τ1 and R(h)≥ 2hδ, the following holds.
There exist C1 > 0 such that for all 0< h ≤ h1 and every (τ, R(h)) cover of 6H there exists a partition

of unity

χj ∈ Sδ ∩ C∞

c (T
∗M; [−C1h1−2δ, 1 + C1h1−2δ

])

on 3τ6H

( 1
2 R(h)

)
for which

suppχj ⊂3τ+ερj
(R(h)), MSh([P,Oph(χj )])∩3

τ
6H
(ε)= ∅,

∑
j

χj ≡ 1 on 3τ6H

(1
2 R(h)

)
,

{χj }j is bounded in Sδ, and [−h21g,Oph(χj )] is bounded in 9δ.

Proof. The proof is identical to that of [Canzani and Galkowski 2021, Proposition 3.4]. Although the
claim that

∑
j χj ≡ 1 on 3τ6H

( 1
2 R(h)

)
does not appear in its statement, it is included in its proof. □
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3. Proof of Theorem 1.4

For each q ∈ S∗M, choose a hypersurface Hq ⊂ M with q ∈ SN ∗Hq and τinj Hq >
1
2 inj(M), where τinj Hq

is defined in (2-4) and inj(M) is the injectivity radius of M. We next use Lemma 2.4 to generate a cover
of 6Hq . Lemma 2.4 yields the existence of Dn > 0 depending only on n and R0 = R0(n, Hq) > 0 such
that the following holds: Since by assumption R(h)≤ hδ1, there is h0 > 0 such that hδ2 ≤ R(h)≤ R0 for
all 0< h < h0. Also, set r1 := R(h) and r0 :=

1
2 R(h). Then, by Lemma 2.4 there exist

NR(h) = NR(h)(q, R(h)) > 0, {ρj }j∈J q ⊂6Hqwi thJ q = {1, . . . , NR(h)},

and a partition {Jq,i }
Dn
i=1 of J q , such that, for all 0< τ < 1

2τinjH q ,

3τ6Hq

( 1
2 R(h)

)
⊂

⋃
j∈J q

3τρj
(R(h)), (3-1)

Dn⋃
i=1

Jq,i = J q , (3-2)

3τρj1
(3R(h))∩3τρj2

(3R(h))= ∅ for j1, j2 ∈ Jq,i , j1 ̸= j2. (3-3)

By (3-1) there is an h-independent open neighborhood of q , Vq ⊂ S∗M, covered by tubes as in Lemma 2.4.
Since S∗M is compact, we may choose {qℓ}L

ℓ=1 with L independent of h such that S∗M ⊂
⋃L
ℓ=1 Vqℓ . In

particular, if 0< τ ≤ min1≤ℓ≤L τHqℓ
and for each ℓ ∈ {1, . . . , L} we let

Tqℓ, j =3τρj
(R(h)),

then there is DM > 0 such that
L⋃
ℓ=1

{Tqℓ, j }j∈J qℓ

is a (DM , τ, R(h))-good cover for S∗M. Let {ψqℓ}
L
ℓ=1 ⊂ C∞

c (T
∗M) satisfy

suppψqℓ ⊂

{
(x, ξ) ∈ T ∗M \ {0}

∣∣∣∣ (
x,

ξ

|ξ |g

)
∈ Vqℓ

}
for all ℓ= 1, . . . , L ,

L∑
ℓ=1

ψqℓ ≡ 1 in an h-independent neighborhood of S∗M.

We split the analysis of u in two parts: near and away from the characteristic variety {p = 0} = S∗M. In
what follows we use C to denote a positive constant that may change from line to line.

3A. It suffices to study u near the characteristic variety. In this section we reduce the study of ∥u∥L p(U )

to an h-dependent neighborhood of the characteristic variety {p = 0} = S∗M. We will use repeatedly the
following result.

Lemma 3.1. For all ε > 0 and all p ≥ 2, there exists C > 0 such that

∥u∥L p ≤ Chn(1/p−1/2)
∥u∥Hn(1/2−1/p)+ε

h
. (3-4)
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Proof. By [Galkowski 2019, Lemma 6.1] (or more precisely its proof), for any ε > 0, there exists Cε ≥ 1
so that ∥Id∥Hn/2+ε

h →L∞ ≤ Cεh−n/2. By complex interpolation of Id : L2
→ L2 and Id : H n/2+ε

h → L∞

with θ = 2/p, we obtain ∥Id∥Hh (n/2+ε)(1−θ)→L p ≤ C1−θ
ε h−n(1−θ)/2, and this yields (3-4). □

Observe that

u =

L∑
ℓ=1

Oph(ψqℓ)u +

(
1 −

L∑
ℓ=1

Oph(ψqℓ)

)
u.

Since 1 −
∑L

ℓ=1 ψqℓ=0 in an h-independent neighborhood of S∗M = {p = 0}, by the standard elliptic
parametrix construction (e.g., [Dyatlov and Zworski 2019, Appendix E]) there is E ∈9−2(M) with

1 −

L∑
ℓ=1

Oph(ψqℓ)= E P + O(h∞)9−∞ . (3-5)

Next, combining (3-5) with Lemma 3.1 and using that hn(1/p−1/2)
= h−δ(p)+1/2h−1, we have∥∥∥∥(

1 −

L∑
ℓ=1

Oph(ψqℓ)

)
u
∥∥∥∥

L p
≤ Chn(1/p−1/2)

∥E Pu∥Hn(1/2−1/p)+ε
h

+ O(h∞)∥u∥L2

≤ Ch−δ(p)+1/2h−1
∥Pu∥Hn(1/2−1/p)+ε−2

h
+ O(h∞)∥u∥L2 . (3-6)

It remains to understand the terms Oph(ψqℓ)u. Since there are finitely many such terms,∥∥∥∥ L∑
ℓ=1

Oph(ψqℓ)u
∥∥∥∥

L p
≤

L∑
ℓ=1

∥Oph(ψqℓ)u∥L p , (3-7)

and we consider each term ∥Oph(ψqℓ)u∥L p individually.
By Proposition 2.5, for each ℓ= 1, . . . , L , there exist τ1(qℓ) > 0 and ε1(qℓ) > 0 and a family of cutoffs

{χ̃Tqℓ, j }j∈J qℓ
with χ̃Tqℓ, j supported in 3τ+ε1(qℓ)

ρj (R(h)) such that, for all 0< τ < τ1(qℓ),∑
j∈J qℓ

χ̃Tqℓ, j ≡1 on 3τ6Hqℓ

( 1
2 R(h)

)
. (3-8)

Let τ0(qℓ) be as in [Canzani and Galkowski 2021, Theorem 10]. Then, set

τM := min
1≤ℓ≤L

{1
4 inj(M), τ0(qℓ), τ1(qℓ), 1

2τinj Hqℓ

}
.

From now on we work with tubes Tqℓ, j =3τρj
(R(h)) for some 0< τ < τM . Next, we localize u near and

away from 3τ6Hqℓ
(hδ):

Oph(ψqℓ)u =

∑
j∈J qℓ

Oph(χ̃Tqℓ, j )Oph(ψqℓ)u +

(
1 −

∑
j∈J qℓ

Oph(χ̃Tqℓ, j )

)
Oph(ψqℓ)u.

Remark 3.2. We refer to functions of the form Oph(χ̃Tqℓ , j )u as geodesic beams. One can check using
Proposition 2.5 that if u solves Pu = O(h)L2 , then the geodesic beams solve

POph(χ̃Tqℓ, j )u = O(h)H k
h

for any k and are localized to an R(h) neighborhood of a length ∼ 1 segment of a geodesic.
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In particular, by (3-8), 1
2 R(h) ≥

1
2 hδ2, and [Canzani and Galkowski 2021, Lemma 3.6], there is

E ∈ h−δ29comp
δ2

so that (
1 −

∑
j∈J qℓ

Oph(χ̃Tqℓ, j )

)
Oph(ψqℓ)= E P + O9−∞(h∞). (3-9)

Since hn(1/p−1/2)−δ2 = h−δ(p)+1/2−δ2h−1, combining (3-9) with Lemma 3.1 yields∥∥∥∥(
1 −

∑
j∈J qℓ

Oph(χ̃Tqℓ, j )

)
Oph(ψqℓ)u

∥∥∥∥
L p

≤ Ch−δ(p)−1/2−δ2∥Pu∥Hn(1/2−1/p)+ε−2
h

+ O(h∞)∥u∥L2 . (3-10)

Combining (3-6), (3-7), and (3-10), we have proved that for U ⊂ M,

∥u∥L p(U ) ≤

L∑
ℓ=1

∥∥∥∥ ∑
j∈J qℓ

Oph(χ̃Tqℓ, j )Oph(ψqℓ)u
∥∥∥∥

L p(U )

+ Ch−δ(p)+1/2−δ2h−1
∥Pu∥Hn(1/2−1/p)+ε−2

h
+ O(h∞)∥u∥L2 . (3-11)

3B. Filtering tubes by L2 mass. By (3-11) it only remains to control terms of the form∥∥∥∥ ∑
j∈J qℓ

Oph(χ̃Tqℓ, j )Oph(ψqℓ)u
∥∥∥∥

L p
,

where u is localized to Vqℓ within the characteristic variety S∗M and, more importantly, to the tubes Tqℓ, j .
We fix ℓ and, abusing notation slightly, write

ψ := ψqℓ, J = J qℓ, Tj = Tqℓ, j , χ̃Tj := χ̃Tqℓ, j , v :=

∑
j∈J

Oph(χ̃Tj )Oph(ψ)u. (3-12)

Let T = T (h)≥ 1. For each j ∈ J let

χTj ∈ C∞

c (T
∗M; [0, 1])∩ Sδ (3-13)

be a smooth cut-off function with suppχTj ⊂ Tj and χTj ≡ 1 on supp χ̃Tj , and such that {χj }j is bounded
in Sδ. We shall work with the modified norm

∥u∥P,T := ∥u∥L2 +
T
h

∥Pu∥L2 .

Note that this norm is the natural norm for obtaining T −1/2 improved estimates in L p bounds since the
fact that u is an o(T −1h) quasimode implies, roughly, that u is an accurate solution to (h Dt + P)u = 0
for times t ≤ T . For each integer k ≥ −1, we consider the set

Ak =

{
j ∈ J :

1
2k+1 ∥u∥P,T ≤ ∥Oph(χTj )u∥L2 + h−1

∥Oph(χTj )Pu∥L2 ≤
1
2k ∥u∥P,T

}
. (3-14)

It follows that Ak consists of those tubes Tj with L2 mass comparable to 2−k.
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Remark 3.3. Note that if A ∈9δ and MSh(A)⊂ {χTj ≡ 1}, then the elliptic estimate implies

∥Av∥L2 ≤ C∥Oph(χTj )v∥L2 + O(h∞)∥v∥L2 .

In particular, if j ∈ Ak and MSh(A)⊂ {χTj ≡ 1}, then

∥Au∥L2 + h−1
∥APu∥L2 ≤ C2−k

∥u∥P,T + O(h∞)∥u∥P,T .

Observe that since |χTj | ≤ 1, for h small enough depending on finitely many seminorms of χj ,
∥Oph(χTj )∥L2→L2 ≤ 2. In particular, this together with T ≥ 1 implies that

J =

⋃
k≥−1

Ak. (3-15)

Lemma 3.4. There exists Cn > 0 so that for all k ≥ −1

|Ak | ≤ Cn22k . (3-16)

Proof. According to (3-2), the collection {Tj }j∈J can be partitioned into Dn sets of disjoint tubes. Thus,
we have

∑
j∈J |χTj |

2
≤ Dn and there is Cn > 0 depending only on n such that∥∥∥∥∑

j∈J

Oph(χTj )
∗ Oph(χTj )

∥∥∥∥
L2→L2

≤ Cn.

In particular, ∑
j∈J

∥Oph(χTj )u∥
2
L2 ≤ Cn∥u∥

2
L2,∑

j∈J

∥Oph(χTj )Pu∥
2
L2 ≤ Cn∥Pu∥

2
L2 .

Therefore,

|Ak |2−2k−2
∥u∥

2
P,T ≤ 2

( ∑
j∈Ak

∥Oph(χTj )u∥
2
L2 + h−2

∥Oph(χTj )Pu∥
2
L2

)
≤ Cn∥u∥

2
P,T . □

Next, let

wk :=

∑
j∈Ak

Oph(χ̃Tj )Oph(ψ)u. (3-17)

Then, by (3-12) and (3-15) we have

v =

∞∑
k=−1

wk . (3-18)

The goal is therefore to control ∥wk∥L p(U ) for each k since the triangle inequality yields

∥v∥L p(U ) ≤

∞∑
k=−1

∥wk∥L p(U ).
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3C. Filtering tubes by L∞ weight on shrinking balls. By Lemma 2.3, there are points {xα}α∈I ⊂ M
such that there exists a partition {Ii }

Dn
i=1 of I such that

M ⊂

⋃
α∈I

B(xα, R(h)),

B(xα1, 3R(h))∩ B(xα2, 3R(h))= ∅ for α1, α2 ∈ Ii , α1 ̸= α2.

Then, for m ∈ Z, define

Ik,m :=

{
α ∈ IU : 2m−1

≤ h(n−1)/2 R(h)(1−n)/22k ∥wk∥L∞(B(xα,R(h)))

∥u∥P,T
≤ 2m

}
, (3-19)

where IU := {α ∈ I : B(xα, R(h))∩ U ̸= ∅}. For each k ∈ Z+ and α ∈ I, consider the sets

Ak(α) := { j ∈ Ak : πM(Tj )∩ B(xα, 2R(h)) ̸= ∅},

where πM : T ∗M → M is the standard projection. The indices in Ak are those that correspond to tubes
with mass comparable to 1

2k ∥u∥P,T , while indices in Ak(α) correspond to tubes of mass 1
2k ∥u∥P,T that

run over the ball B(xα, 2R(h)). In particular, we claim that Lemma 3.4 and [Canzani and Galkowski
2021, Lemma 3.7] yield the existence of Cn, cM > 0 such that

cM 2m
≤ |Ak(α)| ≤ Cn22k for α ∈ Ik,m . (3-20)

The upper bound follows directly from Lemma 3.4, while, to obtain the lower bound, we first observe
that for α ∈ Ik,m ,

2m−1h(1−n)/2 R(h)(n−1)/22−k
∥u∥P,T ≤ ∥wk∥L∞(B(xα,R(h))). (3-21)

In addition, (3-14) and [Canzani and Galkowski 2021, Lemma 3.7] imply that there exist cM > 0, τM > 0,
and Cn > 0, depending on M and n respectively, such that for all N > 0 there exists CN > 0 with

∥wk∥L∞(B(xα,R(h)))

≤
Cn R(h)(n−1)/2

τ
1/2
M h(n−1)/2

∑
j∈Ak(α)

∥Oph(χ̃Tj )Oph(ψ)u∥L2 + h−1
∥Oph(χ̃Tj )P Oph(ψ)u∥L2 + CN hN

∥u∥P,T

≤ c−1
M h−(n−1)/2 R(h)(n−1)/22−k

∥u∥P,T |Ak(α)| + CN hN
∥u∥P,T ,

which, combined with (3-21), proves the lower bound in (3-20). To obtain the second bound we used
Remark 3.3. To simplify notation, let

Ak,m :=

⋃
α∈Ik,m

Ak(α). (3-22)

Note that for each α ∈ Ik,m , there is x̃α ∈ B(xα, R(h)) such that

|wk(x̃α)| ≥ 2m−1h(1−n)/2 R(h)(n−1)/22−k
∥u∥P,T . (3-23)

We finish this section with a result that controls the size of Ik,m in terms of that of Ak,m . Let

1
2(δ2 + 1) < ρ < 1, (3-24)
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0< ε < δ, χ̃ ∈ C∞
c ((−1, 1)), and define the operator

χh,x̃αu(x) := χ̃
(1
ε

h−ρd(x, x̃α)
)[

Oph

(
χ̃

(1
ε
(|ξ |g − 1)

))
u
]
(x).

In Lemma 6.2 we prove that χh,x̃α ∈9−∞

0x̃α ,L x̃α ,ρ
, where

�x̃α = {ξ ∈ T ∗

x̃α M : |1 − |ξ |g(x̃α)|< δ}, 0x̃α =

⋃
|t |< 1

2 inj(M)

ϕt(�x̃α ),

and 9−∞

0x̃α ,L x̃α ,ρ
is a class of smoothing pseudodifferential operators that allows for localization to hρ

neighborhoods of 0x̃α and is compatible with localization to hρ neighborhoods of the foliation L x̃α of 0x̃α

generated by �x̃α .
In Theorem 6.3 for ε > 0 we explain how to build a cut-off operator X x̃α ∈9−∞

0x̃α ,L x̃α ,ρ
such that{

χh,x̃α X x̃α = χh,x̃α + O(h∞)9−∞,

WFh
′([P, X x̃α ])∩

{
(x, ξ) : x ∈ B

(
x̃α, 1

2 inj M
)
, ξ ∈�x

}
= ∅,

(3-25)

where inj M denotes the injectivity radius of M. Moreover, X x̃α acts microlocally in the sense that if
a, b ∈ S(T ∗M) with supp a ∩ supp b = ∅, then

Oph(a)X x̃α Oph(b)= O(h∞)9−∞ . (3-26)

Lemma 3.5. Let 1
2(δ2 + 1) < ρ ≤ 1. There exists C > 0 such that for every k ≥ −1 and m ∈ Z the

following holds: if

|Ak,m | ≤ C 22m R(h)n−1(hρ−1/2 R(h)−1/2)−2n(n−1)/(3n+1),

then

|Ik,m | ≤ C |Ak,m |2−2m R(h)1−n. (3-27)

Proof. We claim that by (3-17), for α ∈ Ik,m ,

χh,x̃αwk = χh,x̃αwk,m + O(h∞
∥u∥L2) and wk,m :=

∑
j∈Ak,m

Oph(χ̃Tj )Oph(ψ)u. (3-28)

Indeed, it suffices to show that χh,x̃α Oph(χ̃Tj )Oph(ψ)u = O(h∞
∥u∥L2) for α ∈ Ik,m and j /∈ Ak,m . Note

that for such indices πM(Tj )∩ B(x̃α, 2R(h))= ∅, while

supp χ̃
(1
ε

h−ρd(x, x̃α)
)

⊂ B(x̃α,Cεhρ)⊂ B
(
xα, 3

2 R(h)
)

for some C > 0 and all h small enough.
Our next goal is to produce a lower bound for |Ak,m | in terms of |Ik,m | by using the lower bound (3-23)

on ∥χh,x̃αwk,m∥L∞ for indices α ∈ Ik,m . By (3-25), we have

χh,x̃αwk,m = χh,x̃α X x̃αwk,m + O(h∞)L∞

for α ∈ Ik,m .



2286 YAIZA CANZANI AND JEFFREY GALKOWSKI

Next, note that since MSh(χ̃Tj )⊂ {||ξ |g − 1| ≪ ε}, using (3-26) we have

Oph

(
χ̃

(1
ε
(|ξ |g − 1)

)
i
)

X x̃αwk,m

= Oph

(
χ̃

(1
ε
(|ξ |g − 1)

))
X x̃α Oph

(
χ̃

(10
ε
(|ξ |g − 1)

))
wk,m + O(h∞

∥u∥P,T )L∞

= X x̃αwk,m + O(h∞
∥u∥P,T )L∞ .

In particular, using this with (3-23) and (3-28),

2m−1h(1−n)/2 R(h)(n−1)/22−k
∥u∥P,T ≤ ∥χh,x̃αwk∥L∞

≤

∥∥∥Oph

(
χ̃

(1
ε
(|ξ |g − 1)

))
X x̃αwk,m

∥∥∥
L∞

+O(h∞)∥u∥P,T

= ∥X x̃αwk,m∥L∞+O(h∞)∥u∥P,T . (3-29)

Therefore, applying the standard L∞ bound for quasimodes of the Laplacian (see, e.g., [Zworski 2012,
Theorem 7.12]) and using, by (3-25), that X x̃α nearly commutes with P on B

(
x̃α, 1

2 inj M
)
, we have

2m−1 R(h)(n−1)/22−k
∥u∥P,T ≤ C(∥X x̃αwk,m∥L2 + h−1

∥P X x̃αwk,m∥L2(B))+ O(h∞
∥u∥P,T ).

≤ C(∥X x̃αwk,m∥L2 + h−1
∥X x̃α Pwk,m∥L2)+ O(h∞

∥u∥P,T ). (3-30)

Note that we have canceled the factor h(1−n)/2 which appears both in (3-29) and the standard L∞ bounds
for quasimodes. Using that h2ρ−1 R(h)−1

= o(1), Proposition 6.6 proves that, for all Ĩ ⊂ Ik,m and
v ∈ L2(M), ∑

α∈Ĩ

∥X x̃αv∥
2
L2 ≤ C(1 + ah |̃I|

(3n+1)/(2n))∥v∥2
L2,

where ah = (hρ−1/2 R(h)−1/2)n−1. As a consequence, (3-30) gives

|̃I|R(h)n−12−2k22(m−1)
∥u∥

2
P,T ≤ C

(∑
α∈Ĩ

∥X x̃αwk,m∥
2
L2 + h−2

∑
α∈Ĩ

∥X x̃α Pwk,m∥
2
L2

)
≤ C(1 + ah |̃I|

(3n+1)/(2n))(∥wk,m∥
2
L2 + h−2

∥Pwk,m∥
2
L2)

≤ C(1 + ah |̃I|
(3n+1)/(2n))2−2k

|Ak,m |∥u∥
2
P,T .

The last inequality follows from the definition of wk,m together with the definition of Ak in (3-14).
In particular, we have proved that there is C > 0 such that for all Ĩ ⊂ Ik,m ,

|̃I|R(h)n−122m
≤ C max(1, ah |̃I|

(3n+1)/(2n))|Ak,m |. (3-31)

Now, suppose that ah|Ik,m |
(3n+1)/(2n)

≥ 1. Then, there exists Ĩ ⊂ Ik,m such that ah |̃I|
(3n+1)/(2n)

= 1. In
particular, |̃I|R(h)n−122m

≤ C |Ak,m |. This implies that if

|Ak,m | ≤
1
C

a−(2n)/(3n+1)
h R(h)n−122m,

then ah|Ik,m |
(3n+1)/(2n)

≤ 1, and so by (3-31),

|Ik,m |R(h)n−122m
≤ C |Ak,m |. □
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Note that for wk,m defined as in (3-28),

∥wk∥
p
L p(U ) ≤ Dn

∞∑
m=−∞

∥wk∥
p
L p(Uk,m)

= Dn

∞∑
m=−∞

∥wk,m∥
p
L p(Uk,m)

+ O(h∞
∥u∥P,T ), (3-32)

where
Uk,m :=

⋃
α∈Ik,m

B(xα, R(h)). (3-33)

Finally, we split the study of ∥wk∥L p(U ) into two regimes: tubes with low or high L∞ mass. Fix N > 0
large, to be determined later. (Indeed, we will see that it suffices to take N> 1

2(1 − pc/p)−1.) Then, we
claim that, for each k ≥ −1,

∥wk∥
p
L p(U ) ≤ Dn

m1,k∑
m=−∞

∥wk,m∥
p
L p(Uk,m)

+Dn

m2,k∑
m=m1,k+1

∥wk,m∥
p
L p(Uk,m)

+ O(h∞
∥u∥P,T ), (3-34)

where m1,k and m2,k are defined by

2m1,k = min
(

2k R(h)(1−n)/2

T N , cn22k, c0 R(h)1−n
)
,

2m2,k = min(cn22k, c0 R(h)1−n),

where c0 and cn are described in what follows. Indeed, note that the bound (3-20) yields that 2m is
bounded by |Ak(α)| for all α ∈ Ik,m , and the latter is controlled by c0 R(h)n−1 for some c0 > 0, depending
only on (M, g). Also, note that by (3-20) the wk,m are only defined for m satisfying 2m

≤ cn22k. These
observations justify that the second sum in (3-34) runs only up to m2,k .

3D. Control of the low L∞ mass term, m ≤ m1,k. We first estimate the small m term in (3-34). The
estimates here essentially amount to interpolation between L pc and L∞. From the definition of Ik,m

in (3-19), together with 1
2(1 − n)(p − pc)− 1 = −pδ(p) and using Sogge’s L pc estimate

∥wk,m∥L pc (Uk,m) ≤ Ch−1/pc(∥wk,m∥L2 + h−1
∥Pwk,m∥L2)

≤ Ch−1/pc∥u∥P,T ,

we obtain
m1,k∑

m=−∞

∥wk,m∥
p
L p(Uk,m)

≤ C
m1,k∑

m=−∞

∥wk,m∥
p−pc
L∞(Uk,m)

∥wk,m∥
pc
L pc (Uk,m)

≤ Ch−pδ(p)R(h)(n−1)(p−pc)/22−k(p−pc)

m1,k∑
m=−∞

2m(p−pc)∥u∥
p
P,T

≤ Ch−pδ(p)R(h)(n−1)(p−pc)/22(m1,k−k)(p−pc)∥u∥
p
P,T .

It follows that∑
k≥−1

( m1,k∑
m=−∞

∥wk,m∥
p
L p(Uk,m)

)1/p

≤ Ch−δ(p)R(h)(n−1)(1−pc/p)/2
∥u∥P,T

∑
k≥−1

2(m1,k−k)(1−pc/p). (3-35)
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Finally, define k1 and k2 such that

2k1 =
R(h)(1−n)/2

cnT N and 2k2 = c0 R(h)(1−n)/2T N. (3-36)

If k ≤ k1, then 2m1,k = cn22k, so there exists Cn,p > 0 such that

k1∑
k=−1

2(m1,k−k)(1−pc/p)
≤ Cn,p

R(h)(1−n)(1−pc/p)/2

T N (1−pc/p) .

If k1 ≤ k ≤ k2, then 2m1,k = 2k R(h)(1−n)/2/T N. Therefore, since |k2 − k1| ≤ cN log T for some c > 0,
there exists C > 0 such that

k2∑
k=k1

2(m1,k−k)(1−pc/p)
≤ C N log T

R(h)(1−n)(1−pc/p)/2

T N (1−pc/p) .

Last, if k ≥ k2, then 2m1,k = c0 R(h)1−n, so there exists C p > 0 such that

∞∑
k=k2

2(m1,k−k)(1−pc/p)
≤ C p

R(h)(1−n)(1−pc/p)/2

T N (1−pc/p) .

Putting these three bounds together with (3-35), we obtain

∑
k≥−1

( m1,k∑
m=−∞

∥wk,m∥
p
L p(Uk,m)

)1/p

≤ Ch−δ(p) N log T
T N (1−pc/p) ∥u∥P,T . (3-37)

3E. Control of the high L∞ mass term, m ≤ m1,k. In this section we estimate the large m term in (3-34).
To do this we write

Ak,m = Gk,m ⊔Bk,m,

where the set of “good” tubes
⋃

j∈Gk,m
Tj is [t0, T ] non-self-looping and the number of “bad” tubes |Bk,m |

is small. To do this, let

BU (α, β) :=

{
j ∈

⋃
k

Ak(α) :

T⋃
t=t0

ϕt(Tj )∩ S∗

B(xβ ,2R(h))M ̸= ∅
}
. (3-38)

Then, we define
Bk,m :=

⋃
α,β∈Ik,m

BU (α, β)∩Ak(α).

Let Gk,m := Ak,m \Bk,m . Then, by construction,
⋃

j∈Gk,m
Tj is [t0, T ] non-self-looping and we have

|Bk,m | ≤ c|Ik,m |
2
|BU | (3-39)

for some c > 0, where
|BU | := sup{|BU (α, β)| : α, β ∈ I}. (3-40)

That is, |BU | is the maximum number of loops of length in [t0, T ] joining any two points in U.
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Then, define

wG
k,m :=

∑
j∈Gk,m

Oph(χ̃Tj )Oph(ψ)u and wB
k,m :=

∑
j∈Bk,m

Oph(χ̃Tj )Oph(ψ)u. (3-41)

Next, consider( m2,k∑
m=m1,k

∥wk,m∥
p
L p(Uk,m)

)1/p

≤

( m2,k∑
m=m1,k

∥wG
k,m∥

p
L p(Uk,m)

)1/p

+

( m2,k∑
m=m1,k

∥wB
k,m∥

p
L p(Uk,m)

)1/p

. (3-42)

3E1. Bound on the looping piece. We start by estimating the “bad” piece

∑
k≥−1

( m2,k∑
m=m1,k

∥wB
k,m∥

p
L p(Uk,m)

)1/p

.

Observe that if 2m1,k = min(c0 R(h)1−n, cn22k), then m1,k = m2,k and we need not consider this part of
the sum. Therefore, the high L∞ mass term has

2m1,k =
2k R(h)(1−n)/2

T N (3-43)

and k1 ≤ k ≤ k2. Hence, for m1,k < m ≤ m2,k , Lemma 3.4 gives that there is Cn > 0 with

|Ak,m | ≤ Cn22k
≤ Cn R(h)n−122m T 2N.

Furthermore, since R(h) ≥ hδ2 with δ2 <
1
2 , (3-24) yields that there is ε = ε(n, N ) > 0 such that

hρ−1/2 R(h)−1/2 < hε, and hence, since T = O(log h−1),

|Ak,m |= o(R(h)n−122m(hρ−1/2 R(h)−1/2)−2n(n−1)/(3n+1)).

In particular, a consequence of Lemma 3.5 is the existence of h0 > 0 and C > 0 such that

|Ik,m | ≤ C R(h)1−n2−2m
|Ak,m | (3-44)

≤ C R(h)1−n22k−2m (3-45)

for all 0< h ≤ h0, where we have used again Lemma 3.4 to bound |Ak,m |.
Next, note that for each point in Ik,m there are at most c|Ik,m ||BU | tubes in Bk,m touching it. Therefore,

we may apply [Canzani and Galkowski 2021, Lemma 3.7] to obtain C > 0 such that

∥wB
k,m∥L∞(Uk,m) ≤ Ch(1−n)/2 R(h)(n−1)/2

|Ik,m ||BU |2−k
∥u∥P,T . (3-46)

Using (3-46) and interpolating between L∞ and L pc we obtain

∥wB
k,m∥

p
L p(Uk,m)

≤ Ch−pδ(p)(R(h)(n−1)/2
|Ik,m ||BU |2−k

∥u∥P,T )
p−pc∥wB

k,m∥
pc
L2(Uk,m)

. (3-47)

In addition, since combining (3-14) with (3-39) yields

∥wB
k,m∥L2(Uk,m) ≤ C |Bk,m |

1/22−k
∥u∥P,T ≤ C2−k

|Ik,m ||BU |
1/2

∥u∥P,T ,
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the bounds in (3-47) and (3-45) together with the definition of m1,k in (3-43) yield

m2,k∑
m=m1,k

∥wB
k,m∥

p
L p(Uk,m)

≤ Ch−pδ(p)R(h)(n−1)(p−pc)/2
m2,k∑

m=m1,k

|Ik,m |
p
|BU |

p−pc/22−kp
∥u∥

p
P,T

≤ Ch−pδ(p)R(h)(n−1)(−p−pc)/22kp
|BU |

p−pc/2∥u∥
p
P,T

m2,k∑
m=m1,k

2−2mp

≤ Ch−pδ(p)R(h)(n−1)(p−pc)/2|BU |
p−pc/2T 2N p 2−kp

∥u∥
p
P,T .

Then, with k1 and k2 defined as in (3-36), we have

k2∑
k=k1

( m2,k∑
m=m1,k

∥wB
k,m∥

p
L p(Uk,m)

)1/p

≤ Ch−δ(p)R(h)(n−1)(1−pc/p)/2
|BU |

1−pc/(2p)T 2N
∥u∥P,T

k2∑
k=k1

2−k

≤ Ch−δ(p)(R(h)n−1
|BU |)1−pc/(2p)T 3N

∥u∥P,T .

Finally, since we only need to consider k1 ≤ k ≤ k2,

∑
k≥−1

( m2,k∑
m=m1,k

∥wB
k,m∥

p
L p(Uk,m)

)1/p

≤ Ch−δ(p)(R(h)n−1
|BU |)1−pc/(2p)T 3N

∥u∥P,T . (3-48)

3E2. Bound on the non-self-looping piece. In this section we aim to control the “good” piece,

∑
k≥−1

( m2,k∑
m=m1,k

∥wG
k,m∥

p
L p(Uk,m)

)1/p

. (3-49)

So far all L p bounds appearing have been ≪ h(1−n)/2/
√

T . The reason for this is that the bounds were
obtained by interpolation with an L∞ estimate which is substantially stronger than h(1−n)/2/

√
T .

We now estimate the number of non-self-looping tubes Tj with j ∈ Ak . That is, tubes on which the
L2 mass of u is comparable to 2−k

∥u∥P,T .

Lemma 3.6. Let k ∈ Z, k ≥ −1, and t0 > 1. Suppose that G ⊂ Ak is such that⋃
j∈G

Tj is [t0, T ] non-self-looping.

Then, there exists a constant Cn > 0, depending only on n, such that |G| ≤ (Cnt0/T )22k.

Proof. Using that G ⊂ Ak , we have

|G|
∥u∥

2
P,T

22(k+1) ≤ 2
∑
j∈G

(∥Oph(χTj )u∥
2
L2 + h−2

∥Oph(χTj )Pu∥
2
L2). (3-50)

Since {Tj }j∈G is (Dn, τ, R(h))-good, there are {Gi }
Dn
i=1 ⊂ G, such that, for each i = 1, . . . ,Dn ,

Tj ∩ Tk = ∅, j, k ∈ Gi , j ̸= k.
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By [Canzani and Galkowski 2021, Lemma 4.1] with tℓ = t0 and Tℓ = T for all ℓ,∑
j∈G

∥Oph(χTj )u∥
2
L2 ≤

Dn∑
i=1

∑
j∈Gi

∥Oph(χTj )u∥
2
L2 ≤

Dn4t0
T

∥u∥
2
P,T . (3-51)

On the other hand, since
∑

j∈Gi
∥Oph(χTj )∥

2
≤ 2 for each i ,∑

j∈G

∥Oph(χTj )Pu∥
2
L2 ≤ 2Dn∥Pu∥

2
L2 . (3-52)

Combining (3-50), (3-51), and (3-52) yields

|G|
∥u∥

2
P,T

22(k+1) ≤
8Dnt0

T
∥u∥

2
P,T +

4Dn

h2 ∥Pu∥
2
L2 ≤

8Dnt0 + 4Dn/T
T

∥u∥
2
P,T . □

We may now proceed to estimate the L p norm of the nonlooping piece (3-49). The first step is to
notice that we only need to sum up to m ≤ m3,k , where m3,k is defined by

2m3,k := min
(

Cnt022k

cM T
, c0 R(h)1−n

)
,

cM > 0 is as defined in (3-20), and Cn > 0 is the constant in Lemma 3.6. To see this, first observe that,
using (3-19), (3-44), and (3-46), for each α ∈ Ik,m ,

∥wG
k,m∥L∞(B(xα,R(h))) ≤ ∥wk,m∥L∞(B(xα,R(h))) + ∥wB

k,m∥L∞(B(xα,R(h)))

≤ C(2m
+ |Ik,m ||BU |)2−kh(1−n)/2 R(h)(n−1)/2

∥u∥P,T

≤ C(1 + R(h)1−n2−3m
|Ak,m ||BU |)2m−kh(1−n)/2 R(h)(n−1)/2

∥u∥P,T . (3-53)

Furthermore, since |Gk,m | ≥ |Ak,m | − |Ik,m |
2
|BU | and Gk,m is [t0, T ] non-self-looping, Lemma 3.6 yields

the existence of Cn > 0 such that

|Ak,m | − |Ik,m |
2
|BU | ≤ Cn

t0
T

22k.

Next, since m1,k ≤ m ≤ m2,k , we may apply Lemma 3.5 to bound |Ik,m | as in (3-44) to obtain that for
some C > 0,

|Ak,m |(1 − C R(h)2(1−n)2−4m
|Ak,m ||BU |)≤ Cn

t0
T

22k. (3-54)

In addition, provided
|BU |R(h)n−1

≪ T −6N, (3-55)

we have that, for m ≥ m1,k and k1 ≤ k ≤ k2,

R(h)2(1−n)2−4m
|Ak,m ||BU | ≤ R(h)2(1−n)2−4m+2k

|BU | ≤ 2−2k T 4N
|BU | ≤ R(h)n−1T 6N

|BU |≪ 1, (3-56)

where we used that, by (3-20), |Ak,m | is controlled by 22k to get the first inequality, that m ≥ m1,k to
get the second, and that k ≥ k1 to get the third. Combining (3-54) and the bound in (3-56) we obtain
|Ak,m | ≤ Cnt022k/T , and so, by (3-20), 2m

≤ Cnt022k/(cM T ). As claimed, this shows that to deal
with (3-49) we only need to sum up to m ≤ m3,k .
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The next step is to use interpolation to control the first sum in (3-49) by
m2,k∑

m=m1,k

∥wG
k,m∥

p
L p(Uk,m)

=

m3,k∑
m=m1,k

∥wG
k,m∥

p
L p(Uk,m)

. (3-57)

We claim that (3-53) yields

∥wG
k,m∥L∞(B(xα,R(h))) ≤ C2m−kh(1−n)/2 R(h)(n−1)/2

∥u∥P,T . (3-58)

Indeed, using the bound (3-55) on |BU |, that |Ak,m | is controlled by 22k, that m ≥ m1,k as in (3-43), and
that k1 ≤ k ≤ k2, we have

R(h)1−n2−3m
|Ak,m ||BU | ≪ R(h)2(1−n)2−3m+2k T −6N

≤ T −2N.

Note that

∥wG
k,m∥L pc (Uk,m) ≤ Ch−1/pc(∥wG

k,m∥L2 +h−1
∥PwG

k,m∥L2)

≤ Ch−1/pc

(
∥wG

k,m∥L2 +h−1
∥∥∥∥ ∑

j∈Gk,m

[P,Oph(χ̃Tj )]w
G
k,m

∥∥∥∥
L2

+h−1
∥∥∥∥ ∑

j∈Gk,m

Oph(χ̃Tj )Pu
∥∥∥∥

L2

)
≤ Ch−1/pc 2−k

|Gk,m |
1/2

∥u∥P,T +O(h∞
∥u∥P,T ),

where the last line follows from the definition of Ak,m , the fact that [P,Oph(χ̃Tj )] ∈ h9δ with its micro-
support contained in supp χ̃Tj , and Remark 3.3. Finally, by Lemma 3.6, |Gk,m | ≤ (Cnt0/T )22k, and hence

∥wG
k,m∥L pc (Uk,m) ≤ C

√
t0
T

h−1/pc∥u∥P,T + O(h∞
∥u∥P,T ).

Using this together with interpolation and (3-58) we obtain

∥wG
k,m∥

p
L p(Uk,m)

≤ ∥wG
k,m∥

p−pc
L∞(Uk,m)

∥wG
k,m∥

pc
L pc (Uk,m)

≤ Ch−pδ(p)(R(h)(n−1)/22m−k)p−pc
t pc/2
0

T pc/2
∥u∥

p
P,T + O(h∞

∥u∥
p
P,T ). (3-59)

Using this, we estimate (3-57):
m2,k∑

m=m1,k

∥wG
k,m∥

p
L p(Uk,m)

≤ Ch−pδ(p)(R(h)(n−1)/22(m3,k−k))p−pc∥u∥
p
P,T

t pc/2
0

T pc/2
+ O(h∞

∥u∥
p
P,T ). (3-60)

Then, summing in k, and again using that only k1 ≤ k ≤ k2 contribute,
∞∑

k=−1

( m2,k∑
m=m1,k

∥wG
k,m∥

p
L p(Um)

)1/p

≤ Ch−δ(p)
∥u∥P,T

t pc/(2p)
0

T pc/(2p)

k2∑
k=k1

(R(h)(n−1)/22(m3,k−k))1−pc/p
+ O(h∞

∥u∥P,T )

≤ Ch−δ(p) t1/2
0

T 1/2 ∥u∥P,T +O(h∞
∥u∥P,T ). (3-61)

Note that the sum over k in (3-61) is controlled by the value of k for which Cnt022k/(cM T )= c0 R(h)1−n,
since the sum is geometrically increasing before such k and geometrically decreasing afterward.
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3F. Wrapping up the proof of Theorem 1.4. Combining (3-37), (3-48), and (3-61) with (3-42) and (3-34),
and taking N> 1

2(1 − pc/p)−1 provided R(h)n−1
|BU | ≤ CT −6N for some C > 0, we obtain

∥v∥L p(U ) ≤

∞∑
k=−1

∥wk∥L p(U ) ≤ Ch−δ(p)
(

t1/2
0

T 1/2 + (R(h)n−1
|BU |)1−pc/(2p)T 3N

)
∥u∥P,T

as requested in (3-55). Since this estimate holds only when |BU |R(h)n−1
≤ CT −6N, we replace T by

T0 := min
{ 1

C (R(h)
n−1

|BU |)−1/6N, T
}
, so that

∥v∥L p(U ) ≤ Ch−δ(p)
(

t1/2
0

T0
1/2 + (R(h)n−1

|BU |)1−pc/(2p)T 3N
0

)
∥u∥P,T

≤ Ch−δ(p)
(

t1/2
0

T 1/2 + t1/2
0 (R(h)n−1

|BU |)1/(12N )
+ (R(h)n−1

|BU |)(1−pc/p)/2
)

∥u∥P,T

≤ Ch−δ(p)
(

t1/2
0

T 1/2 + (R(h)n−1
|BU |)1/(12N )

)
∥u∥P,T , (3-62)

where the constant C is adjusted from line to line.
Next, combining (3-62) with (3-11) and the definition of v in (3-12), we obtain

∥u∥L p(U ) ≤ Ch−δ(p)
(

t1/2
0

T 1/2 + (R(h)n−1
|BU |)1/(12N )

)
∥u∥P,T + Ch−δ(p)+1/2−δ2h−1

∥Pu∥Hn(1/2−1/p)+ε−2
h

.

Putting ε =
1
2 and setting N =

1
2

(
1 +

1
6ε0

)
(1 − pc/p)−1, estimate (1-7) will follow once we relate |BU |

for a given (τ, R(h)) cover to |BU | for the (D, τ, R(h)) cover used in our proof.
Finally, to finish the proof of Theorem 1.4, we need to show that for any (τ, R(h)) cover {Tj }j of S∗M,

up to a constant depending only on M, |BU | can be bounded by |̃BU | where B̃U is defined as in (3-40)
using a (D̃, τ, R(h))-good cover {T̃k}k of S∗M.

Lemma 3.7. There exists CM > 0 depending only on M such that if {Tj }j∈J and {T̃k}k∈K are a (τ, R(h))
cover of S∗M and a (D̃, τ, R(h))-good cover of S∗M, respectively, and |BU | and |̃BU | are defined as
in (3-40) for the covers {Tj }j∈J and {T̃k}k∈K, respectively, then

|̃BU | ≤ CMD̃|BU |.

Proof. Fix α, β such that xα, xβ ∈ U. Suppose that j ∈ BU (α, β), where BU (α, β) is as in (3-38). Then,
there is k ∈ B̃U (α, β) such that T̃k ∩ Tj ̸= ∅. Now, fix j ∈ J and let

Cj := {k ∈ K : Tj ∩ T̃k ̸= ∅}.

We claim that there is cM > 0 such that for each k ∈ Cj ,

T̃k ⊂3cMτ
ρj
(cM R(h)). (3-63)

Assuming (3-63) for now, there exists CM > 0 such that

|Cj | ≤ D̃
vol(3cMτ

ρj
(cM R(h))

infk∈K vol(T̃k)
≤ D̃CM .
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Thus, for each j ∈ BU (α, β), there are at most CMD̃ elements in B̃U (α, β), and hence

|BU (α, β)| ≥
|̃BU (α, β)|

CMD̃
as claimed.

We now prove (3-63). Let q ∈ T̃k . Then, there are ρ ′

k, ρ
′

j , q ′
∈ S∗M and tk, tj , s ∈ [τ − R(h), τ + R(h)]

such that
d(ρk, ρ

′

k) < R(h), d(ρj , ρ
′

j ) < R(h), d(ρk, q ′) < R(h),

ϕtk (ρ
′

k)= ϕtj (ρ
′

j ), ϕs(q ′)= q.

In particular, d(q ′, ρ ′

k) < 2R(h), so there is cM > 0 such that d(ϕtk (ρ
′

k), ϕtk−s(q)) < cM R(h). Apply-
ing ϕ−tj , and adjusting cM in a way depending only on M, we have d(ρ ′

j , ϕtk−tj −s(q)) < cM R(h). In
particular, adjusting cM again, d(ρj , ϕtk−tj −s(q)) < cM R(h) and the claim follows. □

3G. Profiles of near-saturating functions. As explained in the introduction, our next theorem describes
the profiles of functions which extremize the improved bounds from Theorem 1.4.

Theorem 3.8. Let p > pc, T (h) → ∞, and δ > 0. Let 0 < δ1 < δ2 <
1
2 , hδ2 ≤ R(h) ≤ hδ1, and

{xα}α∈I(h) ⊂ M be a maximal R(h)-separated set. Let BU be as in (3-40), and suppose that

|BU |R(h)n−1T (h)3p/(p−pc)+δ = o(1)

and u ∈ D′(M) with

∥Pu∥H (n−3)/2
h

= o
( h

T
∥u∥L2

)
. (3-64)

For ε > 0, set

SU (h, ε, u) :=

{
α ∈ I(h) : ∥u∥L∞(B(xα,R(h))) ≥

εh(1−n)/2√t0
√

T (h)
∥u∥

L2(M)
, B(xα, R(h))∩ U ̸= ∅

}
.

Then, there are c,C > 0 such that, for all ε > 0, there are Nε > 0 and h0 > 0 such that |SU (h, ε, u)| ≤ Nε
for all 0< h ≤ h0.

Moreover, there is a collection of geodesic tubes {Tj }j∈L(ε,u) of radius R(h) (see Definition 1.3) with
indices satisfying L(ε, u)=

⋃C
i=1 J i and Tk ∩ Tℓ = ∅ for k, ℓ ∈ J i with k ̸= ℓ, such that

u = ue +
1

√
T (h)

∑
j∈L(ε,u)

vj ,

where vj is microsupported in Tj , |L(ε, u)| ≤ Cε−2 R(h)1−n, and, for all p ≤ q ≤ ∞,

∥ue∥Lq ≤ εh−δ(q)(T (h))−1/2
∥u∥L2,

∥vj∥L2 ≤ Cε−1 R(h)(n−1)/2
∥u∥L2, ∥Pvj∥L2 ≤ Cε−1 R(h)(n−1)/2h∥u∥L2 .

Finally, with L(ε, u, α) := { j ∈ L(ε, u) : π(Tj )∩ B(xα, 3R(h)) ̸= ∅}, for every α ∈ SU (h, ε, u),

cε2 R(h)1−n
≤ |L(ε, u, α)| ≤ C R(h)1−n and

∑
j∈L(ε,u,α)

∥vj∥
2
L2 ≥ c2ε2

∥u∥
2
L2 .

The proof of Theorem 3.8 is completed in the following three subsections.
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3G1. Proof of the bound on |SU (h, ε, u)|. We claim that there is c > 0 such that, for α ∈ SU (h, ε, u),

cε
√

t0
√

T
h−1/p

∥u∥P,T ≤ ∥u∥L p(B(xα,2R(h))). (3-65)

To see (3-65), first let χ0, χ1 ∈ C∞
c (−2, 2) with χ0 ≡ 1 on

[
−

3
2 ,

3
2

]
and χ1 ≡ 1 on suppχ0 and note

that, by Lemma 3.1, the elliptic parametrix construction for P, and (3-64),

∥(1 −χ0(−h21g))u∥L p ≤ Ch−δ(p)−1/2
∥Pu∥H (n−3)/2

h
= o

(
h−δ(p)+1/2

T

)
∥u∥L2 . (3-66)

Therefore, for α ∈ SU (h, ε, u), we have

∥χ0(−h21g)u∥L∞(B(xα,R(h))) ≥
εh(1−n)/2

2
√

T
∥u∥

L2(M)
(3-67)

for h small enough. Next, set χα,h(x) := χ0(R(h)−1d(x, xα)) and note

χ1(−h21g)χα,hχ0(−h21g)u = χα,hχ0(−h21g)u + O(h∞
∥u∥L2)C∞ .

Then, by (3-67) and [Zworski 2012, Theorem 7.15],

εh(1−n)/2

2
√

T
∥u∥

L2(M)
≤ ∥χ0(−h21g)u∥L∞(B(xα,R(h)))

= ∥χα,hχ0(−h21g)u∥L∞(B(xα,R(h)))

= ∥χ1(−h21g)χα,hχ0(−h21g)u∥L∞(B(xα,R(h))) + O(h∞)∥u∥L2

≤ Ch−n/p(∥χ0(−h21g)u∥L p(B(xα,2R(h))) + O(h∞)∥u∥L2). (3-68)

Combining (3-68) and (3-66) yields the claim in (3-65). It then follows from Theorem 1.4 that, if
{αi }

N
i=1 ⊂ SU (h, ε, u) with B(xαi , 2R(h))∩ B(xαj , 2R(h))= ∅ for i ̸= j , we have

N 1/p cε
√

t0
√

T
h−1/p

∥u∥P,T ≤ ∥u∥L p ≤ Ch−1/p
∥u∥L2 ≤ Ch−1/p

√
t0

√
T

∥u∥P,T .

Then, N 1/p
≤ Cε−1. Since at most Dn balls B(xα, 2R(h)) intersect, |SU (h, ε, u)| ≤ CDnε

−p.

3G2. Preliminaries for the decomposition of u. Let q ∈ R such that p ≤ q ≤ ∞. Below, all implicit
constants are uniform for p ≤ q ≤ ∞. As above, it suffices to prove the statement for v as in (3-12)
instead of u. Then, we write v =

∑
∞

k=−1wk as in (3-18). For V ⊂ U, by the same analysis that led
to (3-34),

∥wk∥
q
Lq (V ) ≤ Dn

m2,k∑
m=−∞

∥wk,m∥
q
Lq (V ∩Uk,m)

+ O(h∞)∥u∥P,T ,

where wk,m is as in (3-28). Then, by (3-37) with N =
1
2q/(q − pc)+

1
6δ,∑

k≥−1

( m1,k∑
m=−∞

∥wk,m∥
q
Lq (Uk,m)

)1/q

≤ Ch−δ(q) log T
T 1/2+δ(q−pc)/(6q) ∥u∥P,T (3-69)
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for h small enough. Then, splitting wk,m = wB
k,m +wG

k,m , as in (3-41), we have by (3-48) that

∑
k≥−1

( m2,k∑
m=m1,k

∥wB
k,m∥

q
Lq (Uk,m)

)1/q

≤ Ch−δ(q)(R(h)n−1
|BU |)1−pc/(2q)T 3q/(2(q−pc))+δ/2∥u∥P,T . (3-70)

Define kε1 and kε2, respectively, by

22kε1 =
C−2D−2

n ε2 R(h)1−ncM T
4Cnt0

and 22kε2 =
C2D2

nε
−2 R(h)1−ncM T

4Cnt0
, (3-71)

where C is as in (3-61). Then, define K(ε) := {k : kε1 ≤ k ≤ kε2} and note that, since 2(k
ε
2−kε1) = C2D2

nε
−2,

|K(ε)| ≤ log2(4C2D2
nε

−2)=: Kε. Using (3-59) and summing over k /∈ K(ε), it follows that∑
k /∈K(ε)

( m3,k∑
m=m1,k

∥wG
k,m∥

q
Lq (Uk,m)

)1/q

≤
ε

4Dn

h−δ(q)√t0
√

T
∥u∥P,T . (3-72)

Next, for k ∈ K(ε), let

M(k, ε) := {m : mε
3,k ≤ m ≤ m3,k}, mε

3,k := m3,k −
q

q − pc
log2(ε

−12CDn),

and note |M(k, ε)| ≤ (q/(q − pc)) log2(ε
−12CDn) := Mε. Using (3-59) and summing over k ∈ K(ε)

and m /∈ M(k, ε), it follows that∑
k∈K(ε)

( ∑
m /∈M(k,ε)

∥wG
k,m∥

q
Lq (Uk,m)

)1/q

≤ Ch−δ(q) t pc/(2q)
0

T pc/(2q)

∑
k∈K(ε)

(R(h)(n−1)/22mε
3,k−k)1−pc/q∥u∥P,T + O(h∞

∥u∥P,T )

≤
ε

4Dn

h−δ(q)t1/2
0

T 1/2 ∥u∥P,T . (3-73)

Let

Nk,m(ε) :=

{
α ∈ Ik,m : ∥wG

k,m∥L∞(B(xα,R(h))) ≥
ε

4Dn MεKε

h(1−n)/2√t0
√

T
∥u∥P,T

}
. (3-74)

We claim
SU (h, ε, u)⊂

⋃
k∈K(ε)

⋃
m∈M(k,ε)

Nk,m(ε). (3-75)

To prove (3-75), suppose α /∈
⋃

k∈K(ε)
⋃

m∈M(k,ε)Nk,m(ε). Then, using (3-69) with q = ∞ and N =
1
2 +

δ
6 ,

1
Dn

∥v∥L∞(B(xα,R(h))) ≤
Ch(1−n)/2 log T

T 1/2+δ/6 ∥u∥P,T +

∑
k≥−1

m2,k∑
m=m1,k

∥wk,m∥L∞(Uk,m). (3-76)

Next, for the second term in the right-hand side of (3-76), we write the decomposition∑
k≥−1

m2,k∑
m=m1,k

∥wB
k,m∥L∞(Uk,m) +

∑
k /∈K(ε)

m3,k∑
m=m1,k

∥wG
k,m∥L∞(Uk,m) +

∑
k∈K(ε)

m2,k∑
m=m1,k

∥wG
k,m∥L∞(Uk,m). (3-77)
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Note that in the term with the sum over k /∈ K(ε) we only sum over m ≤ m3,k for the same reason as
in (3-57). We bound the three terms in (3-77) using (3-70), (3-72), (3-73), and (3-74) with q = ∞ and
N =

1
2 +

δ
6 . Combining with (3-76) this yields

1
Dn

∥v∥L∞(B(xα,R(h))) ≤ Ch(1−n)/2
∥u∥P,T

(
log T

T 1/2+δ/6 + R(h)n−1
|BU |T 3/2+δ/2

+
3ε

4Dn

√
t0

√
T

+ O(h∞)

)
.

Thus, if α /∈
⋃

k∈K(ε)
⋃

m∈M(k,ε)Nk,m(ε), then ∥v∥L∞(B(xα,R(h)))≤ εh
(1−n)/2

√
t0

√
T
∥u∥P,T for h small enough.

In particular, α /∈ SU (h, ε, u). This proves the claim (3-75).

3G3. Decomposition of u. We next decompose u as described in the theorem. First, put

ue,1 :=

∑
k≥−1

m1,k∑
m=−∞

wk,m +

∑
k≥−1

m2,k∑
m=m1,k

wB
k,m +

∑
k /∈K(ε)

m3,k∑
m=m1,k

wG
k,m +

∑
k∈K(ε)

∑
m /∈M(k,ε)

wG
k,m,

ubig :=

∑
k∈K(ε)

∑
m∈M(k,ε)

wG
k,m,

and ue,2 := u − ubig − ue,1. Note that

∥ue,1∥Lq ≤
3ε
4

h−δ(q)
√

t0
√

T
∥u∥P,T ,

∥ue,2∥Lq ≤ Ch−δ(q)+1/2−δ2h−1
∥Pu∥H (n−3)/2

h
,

where we use (3-70), (3-72), (3-73), (3-76), and (3-77) to obtain the first estimate, and (3-11) to obtain
the second. These two estimates prove the claim on ∥ue∥Lq after combining them with (3-64). Next,
observe that

ubig =

∑
j∈L(ε)

u j , u j := Oph(χ̃Tj )Oph(ψ)u, and L(ε) :=

⋃
k∈K(ε)

⋃
m∈M(k,ε)

Gk,m .

We claim that the statement of the theorem holds with vj =
√

T u j . Note that the vj are manifestly
microsupported inside Tj .

Let α ∈ SU (h, ε, u). Then by definition,

∥ubig∥L∞(B(xα,R(h))) ≥
ε

4
h(1−n)/2

√
t0

√
T

∥u∥P,T . (3-78)

Note that for all j ∈ L(ε), the estimate

∥Oph(χ̃Tj )Oph(ψ)u∥L2 + h−1
∥Oph(χ̃Tj )Oph(ψ)Pu∥L2 ≤ 2−kε1+1

∥u∥P,T (3-79)

follows from the definition of Ak in (3-14) and the fact that χTj ≡ 1 on supp χ̃Tj . To see that u j is a
quasimode, we use the definition of Ak again, together with Proposition 2.5, and obtain

∥Pu j∥L2 ≤ ∥[−h21g,Oph(χ̃Tj )]u j∥L2 + ∥Oph(χ̃Tj )Pu∥L2 ≤ C2−kε1 h∥u∥P,T . (3-80)

The definition of kε1 together with (3-79) and (3-80) give the required bounds on vj and Pvj .
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Next, define

L(ε, u, α) := { j ∈ L : πM(Tj )∩ B(xα, 3R(h)) ̸= ∅},

and note that by [Canzani and Galkowski 2021, Lemma 3.7],

∥ubig∥L∞(B(xα,R(h)))

≤ Ch(1−n)/2 R(h)(n−1)/2
∑

j∈L(ε,u,α)

∥Oph(χ̃Tj )Oph(ψ)u∥L2+h−1
∥Oph(χ̃Tj )Oph(ψ)Pu∥L2+O(h∞)∥u∥L2

≤ Ch(1−n)/2 R(h)(n−1)/22−kε1 |L(ε,u,α)|∥u∥P,T +O(h∞)∥u∥P,T . (3-81)

(Note that in [Canzani and Galkowski 2021, Lemma 3.7], the number τ |HprH (ργ )| appears in the
prefactor. In our circumstance, one can check that |HprH (ργ )| = 2 and τ > 0 is a number uniformly
bounded below by c inj(M) for some c > 0.) Therefore, combining (3-78) with (3-81) yields

ε

√
t0

√
T

≤ C R(h)(n−1)/22−kε1 |L(ε, α, u)| + O(h∞).

Moreover,
⋃

j∈L(ε,u) Tj is [t0, T ] non-self-looping and so by Lemma 3.6, |L(ε, u)| ≤ (Cnt0/T )22kε2 . Using
the definition of kε1 and kε2 in (3-71), we have, for h small enough,

cε2 R(h)1−n
= ε

√
t0

√
T

R(h)(1−n)/22kε1 ≤ |L(ε, u, α)| ≤ |L(ε, u)| ≤
Cnt0

T
22kε2 ≤ Cε−2 R(h)1−n,

which yields the upper bound on |L(ε, u)| and the lower bound on |L(ε, u, α)|. Note that the upper bound
on |L(ε, u, α)| follows from the fact that the total number of tubes over B(xα, 3R(h)) is bounded by
C R(h)1−n. Next, we note that the fact that at most Dn tubes Tj overlap implies∑

j∈L(ε,u,α)

∥Oph(χ̃Tj )Oph(ψ)Pu∥
2
L2 ≤ C∥Pu∥

2
L2 + O(h∞

∥u∥L2).

Therefore, using the first inequality in (3-81) again, applying Cauchy–Schwarz, and using that there is
C > 0 such that |L(ε, u, α)| ≤ C R(h)1−n , we have

ε

4

√
t0

√
T

∥u∥P,T ≤ C R(h)(n−1)/2
|L(ε, u, α)|1/2

( ∑
j∈L(ε,u,α)

∥u j∥
2
L2

)1/2

+ Ch−1
∥Pu∥L2 + O(h∞)∥u∥L2

≤ C
( ∑

j∈L(ε,u,α)

∥u j∥
2
L2

)1/2

+ o(T −1
∥u∥L2). (3-82)

Here, the o(T −1
∥u∥L2) term comes from using (3-64). In particular, for h small enough,

c
√

t0
√

T
∥u∥P,T ≤

( ∑
j∈L(ε,u,α)

∥u j∥
2
)1/2

.

This completes the proof of Theorem 3.8. □
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4. Proof of Theorem 1.1

In order to finish the proof of Theorem 1.1, we need to verify that the hypotheses of Theorem 1.4 hold with
T (h)= b log h−1 for some b> 0, such that, for all x1, x2 ∈ U , there is some splitting J x1 = Gx1,x2 ∪Bx1,x2

of the set of tubes over x1 ∈ M with a set of “bad” tubes Bx1,x2 satisfying

(|Bx1,x2 |R(h)
n−1)(1−pc/p)/(6+ε0) ≤ T (h)−1/2

and ε0 > 0. Fix x1, x2 ∈ U and let F1, F2 : T ∗M → Rn+1 be smooth functions such that, for i = 1, 2,

S∗

xi
M = F−1

i (0), 1
2 d(q, S∗

xi
M)≤ |Fi (q)| ≤ 2d(q, S∗

xi
M), max

|α|≤2
(|∂αFi (q)|)≤ 2,

d Fi (q) has a right inverse RFi (q) with ∥RFi (q)∥ ≤ 2.
(4-1)

Define also ψi : R × T ∗M → Rn+1 by ψi (t, ρ)= Fi ◦ϕt(ρ).
To find Bx1,x2 , we apply the arguments from [Canzani and Galkowski 2023, Sections 2, 4]. In particular,

fix a> 0 and let rt := a−1e−a|t |, 3>3max, and 3max be as in (1-5). Suppose that d(x2 , C
n−1,rt0 ,t0
x1 ) > rt0 .

Then for ρ0 ∈ S∗
x1

M with d(S∗
x2

M, ϕt0(ρ0)) < rt0 , we have by [Canzani and Galkowski 2023, Lemma 4.1]
that there exists w ∈ Tρ0 S∗

x1
M such that

d(ψ2)(t0,ρ0) : R∂t × Rw → Tψ2(t0,ρ0)R
n+1

has a left inverse L(t0,ρ0) satisfying

∥L(t0,ρ0)∥ ≤ CM max(aeCM (a+3)|t0|, 1),

Next, let {3τρj
(r1)} be a (DM , τ, r1)-good cover for S∗M. We apply [Canzani and Galkowski 2023,

Proposition 2.2] to construct Bx1,x2 and Gx1,x2 .

Remark 4.1. We must point out that we are applying the proof of that proposition rather than the
proposition as stated. The only difference here is that the loops we are interested in go from a point x1 to
a point x2, where x1 and x2 are not necessarily equal. This does not affect the proof.

We use [Canzani and Galkowski 2023, Proposition 2.2] to see that there exist α1 = α1(M) > 0,
α2 = α2(M, a), and C0 = C0(M, a) such that the following holds. Let r0, r1, r2 > 0 satisfy

r0 < r1, r1 < α1 r2, r2 ≤ min{R0, 1, α2 e−γ T
}, r0 <

1
3 e−3T r2, (4-2)

where γ = 53+ 2a and 3 > 3max where 3max is as in (1-5). Then, for all balls B ⊂ S∗
x1

M of radius
R0 > 0, there is a family of points {ρj }j∈BB ⊂ S∗

x1
M such that

|BB | ≤ C0Dnr2
Rn−1

0

rn−1
1

T e4(23+a)T ,

and for j ∈ GB := { j ∈ J x1 : B(ρj , 2r1)∩ B ̸= ∅} \BB},⋃
t∈[t0,T ]

ϕt(3
τ
ρj
(r1))∩3

τ
S∗

x2
M(r1)= ∅.
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We proceed to apply [Canzani and Galkowski 2023, Proposition 2.2]. There is cMr1−n
≥ Nr > 0 such

that, for all x1 ∈ M, we can cover S∗
x1

M by Nr balls. Let 0< R0 < 1 and {Bi }
NR0
i=1 be such a cover. Fix

0< ε< ε1 <
1
4 and set

r0 := hε1, r1 := hε, r2 :=
2
α1

hε.

Let T (h)= b log h−1 with

0< b<
1

43max
<

1 − 2ε1

23max

to be chosen later. Then, the assumptions in (4-2) hold provided

hε <min
{1

2α1α2e−γ T , 1
2α1 R0

}
and hε1−ε <

2
3α1

e−3T .

In particular, if we set α3 =
1
2α1α2 and α4 =

2
3α

−1
1 , the assumptions in (4-2) hold provided h<

( 1
2α1 R(h)

)1/ε

and

T (h) <min
{
ε

γ
log h−1

+
logα3

γ
,
ε1 − ε

3
log h−1

+
log(α4)

3

}
. (4-3)

Fix b> 0 and h0 > 0 such that b< 1
12 min(ε, ε1 − ε)/(23+a) and (4-3) is satisfied for all h< h0. Note

that this implies that b =b(M, a) and h0 =h0(M, a). Let Bx1,x2 :=
⋃NR0

i=1 BBi . For j ∈Gx1,x2 :=J x1 \Bx1,x2 ,
we then have ⋃

t∈[t0,T ]

ϕt(3
τ
ρj
(r1))∩3

τ
S∗

x2
M(r1)= ∅.

Moreover, shrinking h0 in a way depending only on (M, a, ε), we have, for 0< h < h0,

rn−1
1 |Bx1,x2 | ≤ CM C0Dnr2T e4(23+a)T

≤ hε/3.

Therefore, putting R(h)= r1 = hε and T = T (h)= b log h−1 in Theorem 1.4 proves Theorem 1.1.

5. Anisotropic pseudodifferential calculus

In this section, we develop the second microlocal calculi necessary to understand “effective sharing” of
L2 mass between two nearby points. That is, to answer the question: how much L2 mass is necessary
to produce high L∞ growth at two nearby points? To that end, we develop a calculus associated to the
coisotropic

0x :=

⋃
|t |< 1

2 inj(M)

ϕt(�x), �x := {ξ ∈ T ∗

x M : |1 − |ξ |g|< δ},

which allows for localization to the Lagrangian leaves ϕt(�x). In Section 6B we will see, using a type of
uncertainty principle, that the calculi associated to two distinct points, xα, xβ ∈ M, are incompatible in
the sense that, despite the fact that 0xα and 0xβ intersect in a dimension 2 submanifold, for operators Xxα

and Xxβ localizing to 0xα and 0xβ , respectively,

∥Xxα Xxβ∥L2→L2 ≪ ∥Xxα∥L2→L2∥Xxβ∥L2→L2 .
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Let 0 ⊂ T ∗M be a coisotropic submanifold and L = {Lq}q∈0 be a family of Lagrangian subspaces
Lq ⊂ Tq0 that is integrable in the sense that if U is a neighborhood of 0, and V and W are smooth
vector fields on T ∗M such that Vq ,Wq ∈ Lq for all q ∈ 0, then [V,W ]q ∈ Lq for all q ∈ 0. The aim of
this section is to introduce a calculus of pseudodifferential operators associated to (L , 0) that allows
for localization to hρ neighborhoods of 0 with 0 ≤ ρ < 1 and is compatible with localization to hρ

neighborhoods of the foliation of 0 generated by L . This calculus is close in spirit to those developed
in [Dyatlov and Zahl 2016; Sjöstrand and Zworski 1999]. To see the relationships between these calculi,
note that the calculus in [Dyatlov and Zahl 2016] allows for localization to any leaf of a Lagrangian
foliation defined over an open subset of T ∗M , while that in [Sjöstrand and Zworski 1999] allows for
localization to a single hypersurface. The calculus developed in this paper is designed to allow localization
along leaves of a Lagrangian foliation defined only over a coisotropic submanifold of T ∗M. In the case
that the coisotropic is a whole open set, this calculus is the same as the one developed in [Dyatlov and
Zahl 2016]. Similarly, in the case that the coisotropic is a hypersurface and no Lagrangian foliation is
prescribed, the calculus becomes that developed in [Sjöstrand and Zworski 1999].

Definition 5.1. Let 0 be a coisotropic submanifold and L a Lagrangian foliation on 0. Fix 0 ≤ ρ < 1 and
let k be a positive integer. We say that a ∈ Sk

0,L ,ρ if a ∈ C∞(T ∗M), a is supported in an h-independent
compact set, and

V1 · · · Vℓ1 W1 · · · Wℓ2a = O(h−ρℓ2⟨h−ρd(0, · )⟩k−ℓ2), (5-1)

where W1, . . . ,Wℓ2 are any vector fields on T ∗M, V1, . . . , Vℓ1 are vector fields on T ∗M with

(V1)q , . . . , (Vℓ1)q ∈ Lq

for q ∈ 0, and q 7→ d(0, q) is the distance from q to 0 induced by the Sasaki metric on T ∗M.

We also define symbol classes associated to only to the coisotropic submanifold 0.

Definition 5.2. Let 0 be a coisotropic submanifold. We say that a ∈ Sk
0,ρ if a ∈ C∞(T ∗M), a is supported

in an h-independent compact set, and

V1 · · · Vℓ1 W1 · · · Wℓ2a = O(h−ρℓ2⟨h−ρd(0, · )⟩k−ℓ2)

where V1, . . . , Vℓ1 are tangent vector fields to 0 and W1, . . . ,Wℓ2 are any vector fields.

5A. Model case. The goal of this section is to define the quantization of symbols in Sk
00,L0,ρ

, where 00

and L0 are a model pair of coisotropic and Lagrangian foliation defined below. The model coisotropic
submanifold of dimension 2n − r is

00 := {(x ′, x ′′, ξ ′, ξ ′′) ∈ Rr
× Rn−r

× Rr
× Rn−r

: x ′
= 0}

with Lagrangian foliation

L0 := {L0,q}q∈00, L0,q = span{∂ξi , i = 1, . . . , n} ⊂ Tq00.
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Note that in this model case the distance from a point (x, ξ) to 00 is controlled by |x ′
|. Therefore,

a ∈ Sk
00,L0,ρ

if and only if a is supported in an h-independent compact set and, for all (α, β) ∈ Nn
× Nn,

there exists Cα,β > 0 such that

|∂αx ∂
β
ξ a| ≤ Cα,βh−ρ|α|

⟨h−ρ
|x ′

|⟩
k−|α|.

In the model case, it will be convenient to define ã ∈ C∞(Rn
x × Rn

ξ × Rr
λ) such that

a(x, ξ)= ã(x, ξ, h−ρx ′),

and, for all (α′, α′′, β, γ ) ∈ Nr
× Nn−r

× Nn
× Nr, there exists Cα,β,γ > 0 such that

|∂α
′

x ′ ∂
α′′

x ′′ ∂
β
ξ ∂

γ

λ ã(x, ξ, λ)| ≤ Cα,β,γ h−ρ|α′′
|
⟨λ⟩k−|γ |−|α′′

|. (5-2)

Similarly, if a ∈ Sk
00,ρ

, then, for (α′, α′′, β, γ ) ∈ Nr
× Nn−r

× Nn
× Nr, there exists Cα,β,γ > 0 such that

|∂α
′

x ′ ∂
α′′

x ′′ ∂
β
ξ ∂

γ

λ ã(x, ξ, λ)| ≤ Cα,β,γ ⟨λ⟩k−|γ |. (5-3)

Definition 5.3. The symbols associated with this submanifold are as follows: We say a ∈ S̃k
00,L0,ρ

if
a ∈ C∞(Rn

x × Rn
ξ × Rr

λ) satisfies (5-2) and a is supported in an h-independent compact set in (x, ξ). If
we have the improved estimates (5-3) then we say that a ∈ S̃k

00,ρ
.

Remark 5.4. While there is no ρ in the definition of S̃k
00,ρ

, we keep it in the notation for consistency.

Let a ∈ S̃k
00,L0,ρ

. We then define

[Õph(a)]u(x) :=
1

(2πh)n

∫
ei⟨x−y,ξ⟩/ha(x, ξ, h−ρx ′)u(y) dy dξ.

Since a ∈ S̃k
00,L0,ρ

is compactly supported in x , there exists C > 0 such that on the support of the integrand
|λ| ≤ Ch−ρ, and hence h ≤ Ch1−ρ

⟨λ⟩−1. This will be important when computing certain asymptotic
expansions.

Lemma 5.5. Let k ∈ R and a ∈ S̃k
00,L0,ρ

. Then,

∥Õph(a)∥L2→L2 ≤ C sup
R2n

|a(x, ξ, h−ρx ′)| + O(h−ρmax(k,0)+(1−ρ)/2).

Proof. Define Tδ : L2(Rn)→ L2(Rn) by

Tδu(x) := hnδ/2u(hδx). (5-4)

Then Tδ is unitary and, for a ∈ S̃k
00,L0,ρ

,

Õph(a)u = T −1
(1+ρ)/2 Op1(ah)T(1+ρ)/2u, ah(x, ξ) := a(h(1+ρ)/2x, h(1−ρ)/2ξ, h(1−ρ)/2x ′).

Then, for all α, β ∈ Nn, there exists Cα,β such that

|∂αx ∂
β
ξ ah| ≤ Cα,βh(1−ρ)(|α|+|β|)/2

⟨h(1−ρ)/2x ′
⟩

k−|α|.
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Now, since ah ∈ S(1−ρ)/2, by [Zworski 2012, Theorem 4.23] there is a universal constant M > 0 with

∥Õp1(ah)∥L2→L2 ≤ C
∑

|α|≤Mn

sup
R2n

|∂αah| ≤ C sup |a| + Cah− max(ρk,0)+(1−ρ)/2.

(To see that [Zworski 2012, Theorem 4.23] applies equally well to the left quantization, we apply the
change of quantization formula [Zworski 2012, Theorem 4.13] and the boundedness of ei⟨Q D,D⟩/2 on
symbol classes [Zworski 2012, Theorem 4.17].) □

Lemma 5.6. Suppose that a ∈ S̃k1
00,L0,ρ

and b ∈ S̃k2
00,L0,ρ

. Then

Õph(a)Õph(b)= Õph(c)+ O(h∞)L2→L2,

where c ∈ S̃k1+k2
00,L0,ρ

satisfies
c = ab + O(h1−ρ)

S̃
k1+k2−1
00,L0,ρ

. (5-5)

In particular,

c ∼

∑
j

∑
|α|= j

i j

j !
((h Dx ′′)α

′′

(h Dx ′ + h1−ρDλ)
α′

b)Dα
ξ a. (5-6)

If instead a ∈ S̃k1
00,ρ

and b ∈ S̃k2
00,ρ

, then the remainder in (5-5) lies in h1−ρ S̃k1+k2−1
00,ρ

.

Proof. With Tδ as in (5-4), we have Õph(a)Õph(b)= T −1
ρ/2 Oph(ah)Oph(bh)Tρ/2, where

ah = a(hρ/2x, h−ρ/2ξ, h−ρ/2x ′) and bh = b(hρ/2x, h−ρ/2ξ, h−ρ/2x ′).

Now, for all α, β ∈ Nn, there exists Cα,β such that

|∂αx ∂
β
ξ ah| ≤ Cα,βh−ρ(|α|+|β|)/2

⟨h−ρ/2x ′
⟩

k1−|α| and |∂αx ∂
β
ξ bh| ≤ Cα,βh−ρ(|α|+|β|)/2

⟨h−ρ/2x ′
⟩

k2−|α|.

In particular, using that a and b are compactly supported, we have that ah ∈ h− max(ρk1,0)Sρ/2 and
bh ∈ h− max(ρk2,0)Sρ/2, and hence [Zworski 2012, Theorems 4.14, 4.17] apply. In particular, if we let
M > 0 and k̃ := max(k1, 0)+ max(k2, 0), we obtain Oph(ah)Oph(bh)= Oph(ch), where, for any N > 0,

ch(x, ξ)=

N−1∑
j=0

∑
|α|= j

h j i j

j !
(Dα

ξ ah(x, ξ))(Dα
x bh(x, ξ))+ O(h−ρk̃+N (1−ρ))Sρ/2

=

N−1∑
j=0

∑
|α|= j

∑
α′+α′′=α

h(1−ρ) j i j

j !
(Dα

ξ a)h[(hρDx ′′)α
′′

(hρDx ′ + Dλ)
α′

b]h + O(h−ρk̃+N (1−ρ))Sρ/2 .

Choosing

N = max
(

k1 + k2,
ρk̃ + M
1 − ρ

)
,

the remainder is O(hM)Sρ/2 . Moreover, since a and b were compactly supported, we may assume,
introducing an h∞ error, that the remainder is supported in {(x, ξ) : |(x, ξ)| ≤ Ch−ρ/2

}. Putting

c =

N−1∑
j=0

∑
|α|= j

∑
α′+α′′=α

i j

j !
(Dα

ξ a)[(h Dx ′′)α
′′

(h Dx ′ + h1−ρDλ)
α′

b],

we thus have T −1
ρ/2 Oph(ch)Tρ/2 = Õph(c)+ O(hM)D′→C∞ as claimed. □
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Lemma 5.7. Suppose that a ∈ S̃m1
00,L0,ρ

and b ∈ S̃m2
00,L0,ρ

. Then,

[Õph(a), Õph(b)] = −ih1−ρÕph(c)+ O(h∞)L2→L2,

where c ∈ S̃m1+m2−2
00,L0,ρ

satisfies

c = hρ
n∑

i=1

(∂ξi a∂xi b − ∂ξi b∂xi a)+
r∑

i=1

(∂ξi a∂λi b − ∂λi a∂ξi b)+ O(h1−ρ)
S̃

m1+m2−2
00,L0,ρ

.

If instead a ∈ S̃m1
00,ρ

and b ∈ S̃m2
00,ρ

, then the remainder lies in h1−ρ S̃m1+m2−2
00,ρ

. Moreover, if a ∈ Scomp(R2n)

is independent of λ and ∂ξ ′a = e(x, ξ)x ′ with e(x, ξ) : Rr
→ Rr for all (x, ξ), then

[Õph(a), Õph(b)] = −ihÕph(c)+ O(h∞)9−∞

with c = Hab +
∑r

i=1(eλ)i∂λi b + O(h1−ρ)S̃
m2−1
00,L0,ρ

. Similarly, the same conclusion holds if b ∈ S̃m2
00,ρ

with
the error term in c being O(h1−ρ)

S̃
m2−1
00,ρ

.

Proof. In each case, we need only apply formula (5-6). □

5B. Reduction to normal form. In order to define the quantization of symbols in S0,L ,ρ for general (0, L),
we first explain how to reduce the problem to the model case (00, L0).

Lemma 5.8. Let L be a Lagrangian foliation over a coisotropic submanifold 0⊂ R2n of dimension 2n −r .
Then, there is a neighborhood U0 of (x0, ξ0) and a symplectomorphism κ : U0 → V0 ⊂ T ∗Rn for each
(x0, ξ0) ∈ 0 such that

κ(0 ∩ U0)= 00 ∩ V0 and (κ∗)q Lq = L0,q for q ∈ 0 ∩ U0.

Proof. We first put 0 in normal form. That is, we build symplectic coordinates (y, η) such that

0 = {(y, η) : y1 = · · · = yr = 0}. (5-7)

First, assume r = 1 and let f1 ∈ C∞(T ∗M) define 0. By Darboux’s theorem (see e.g., [Zworski 2012,
Theorem 12.1]) there are symplectic coordinates such that y1 = f1, and the proof of (5-7) is complete
for r = 1.

Next, assume that we can put any coisotropic of codimension r − 1 in normal form. Let f1, . . . , fr ∈

C∞(T ∗M) define 0. Then, for X ∈ T0 and i = 1, . . . , r ,

σ(X, H fi )= d fi (X)= 0.

In addition, since 0 is coisotropic, (T0)⊥ ⊂ T0, and so H fi ∈ T0 for all i = 1, . . . , r . In particular,

{ fi , f j } = H fi f j = d f j (H fi )= 0 on 0.

Now, using Darboux’ theorem, choose symplectic coordinates (y, η)=(y1, y′, η1, η
′) such that y1 = f1

and (x0, ξ0) 7→ (0, 0). Then, ∂η1 f j = { f j , y1} = 0 on 0 for j = 2, . . . , r . Next, we will observe that
0 = {(y, η) :y1 = f2 = · · · = fr = 0} and dy1 and {d f j }

r
j=2 are independent. Thus, since ∂η1 f j = 0 on 0,

0 = {(y, η) : y1 = 0, f j (0, y′, 0, η′)= 0, j = 2, . . . , r}.
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Now, {y1 = η1 = 0} ∩0 is a coisotropic submanifold of codimension r − 1 in T ∗
{y1 = 0}. Hence, by

induction, there are symplectic coordinates (y2, . . . , yn, η2, . . . , ηn) on T ∗
{y1 = 0} such that

0 ∩ {y1 = η1 = 0} = {y1 = η1 = 0, y2 = · · · = yr = 0}.

In particular,
{(y′, η′) : f j (0, y′, 0, η′)= 0, j = 2, . . . , r} = {y2 = · · · = yr = 0}.

Thus, extending (y2, . . . , yn, η2, . . . , ηn) to be independent of (y1, η1) puts 0 in the form (5-7).
Next, we adjust the coordinates to be adapted to L along 0. First, define ỹi := yi for i = 1, . . . , r .

Then, since L ⊂ T0, for every i = 1, . . . , r , we have that d ỹi (X)|0 is well defined for X ∈ L and
d ỹi (X)|0 = 0. Next, since L is integrable, the Frobenius theorem [Lee 2013, Theorem 19.21] shows that
there are coordinates (ỹr+1, . . . , ỹn, ξ̃1, . . . , ξ̃n) on 0, defined in a neighborhood of (0, 0), such that L is
the annihilator of d ỹ. Since we know that for every X ∈ L ,

σ(X, Hỹi )= d ỹi (X)= 0

and L is Lagrangian, we conclude that Hỹi ∈ L . In particular, since L is the annihilator of d ỹ,

{ỹi , ỹj } = Hỹi ỹj = d ỹj (Hỹi )= 0.

Now, extend (ỹr+1, . . . , ỹn, ξ̃1, . . . , ξ̃n) outside 0 to be independent of (ỹ1, . . . , ỹr ). Then, {ỹi , ỹj } = 0
in a neighborhood of (x0, ξ0), and hence, by Darboux’s theorem, there are functions {η̃j }

n
j=1 such that

{ỹi , η̃j } = δi j and {η̃i , η̃j } = 0. In particular, in the (ỹ, η̃) coordinates, 0 = {(ỹ, η̃) : ỹ1 = · · · = ỹr = 0}

and d ỹ(L)|0 = 0. In particular, L = span{∂η̃i } as claimed. □

In order to create a well-defined global calculus of pseudodifferential operators associated to (0, L),
we will need to show invariance under conjugation by Fourier integral operators (FIOs) preserving the
pair (L0, 00).

Proposition 5.9. Suppose that U0 and V0 are neighborhoods of (0, 0) in T ∗Rn and κ : U0 → V0 is a
symplectomorphism such that

κ(0, 0)= (0, 0), κ(00 ∩ U0)= 00 ∩ V0, κ∗|00 L0 = L0|00 . (5-8)

Next, let T be a semiclassically elliptic FIO microlocally defined in a neighborhood of

((0, 0), (0, 0)) ∈ T ∗Rn
× T ∗Rn

quantizing κ . Then, for a ∈ S̃k
00,L0,ρ

, there are b ∈ S̃k
00,L0,ρ

and c ∈ S̃k−1
00,L0,ρ

such that

T −1Õph(a)T = Õph(b) and b = a ◦ Kκ + h1−ρc,

where Kκ : T ∗Rn
× Rr

→ T ∗Rn
× Rr is defined by

Kκ(y, η, µ)=

(
κ(y, η), πx ′(κ(y, η))

|µ|

|y′|

)
,

and πx ′ : T ∗Rn
→ Rr is the projection onto the first r-spatial coordinates. In addition, if a ∈ S̃k

00,ρ
, then

c ∈ S̃k−1
00,ρ

and b ∈ S̃k
00,ρ

.
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To prove Proposition 5.9, we follow [Sjöstrand and Zworski 1999]. First, observe that the proposition
holds with κ = Id since then T is a standard pseudodifferential operator. In addition, the proposition also
holds whenever, for a given j ∈ {1, . . . , n}, we work with

κ(y, η) := (y1, . . . , yj−1,−yj , yj+1, . . . , yn, η1, . . . , ηj−1,−ηj , ηj+1, . . . , ηn).

Indeed, this follows from the fact that in this case an FIO quantizing κ is

T u(x)= u(x1, . . . , x j−1,−x j , x j+1, . . . , xn),

and so the conclusion of the proposition follows from a direct computation together with the identity case.
Thus, we may assume that

κ(y, η)= (x, ξ) ⇒ xi yi ≥ 0, i = 1, . . . , n. (5-9)

Lemma 5.10. Let κ be a symplectomorphism satisfying (5-8) and (5-9). Then, there is a piecewise smooth
family of symplectomorphisms [0, 1] ∋ t 7→ κt such that κt satisfies (5-8), (5-9), κ0 = Id, and κ1 = κ .

Proof. In what follows we assume that κ(y, η)= (x, ξ) but reorder the coordinates: (y′, y′′, η′, η′′)∈ T ∗Rn

is written as (y′, η′, y′′, η′′) ∈ R2r
× R2(n−r). Let ξ ′ and κ ′′

= (x ′′(y′, η), ξ ′′(y′, η)) with

κ|00 : (0, η′, y′′, η′′) 7→ (0, ξ ′(y′′, η), κ ′′(y′′, η)).

Now, since (κ∗)|00 L0 = L0, we have, for i = 1, . . . , n,

κ∗∂ηi =
∂x j

∂ηi
∂x j +

∂ξj

∂ηi
∂ξj ∈ L0, (5-10)

and hence
∂ηx |00 ≡ 0. (5-11)

Next, since κ preserves 00, {κ∗xi }
r
i=1 defines 00, and span{dκ∗xi |00}

r
i=1 = span{dyi |00}

r
i=1, we have

span{Hκ∗xi |00}
r
i=1 = span{Hyi |00}

r
i=1.

By Jacobi’s theorem, κ∗Hκ∗x i = Hxi . Therefore,

(κ|00)∗(span{Hyi }
r
i=1|00)= span{Hxi }

r
i=1|00,

and we conclude from (5-10) that ξ ′′
|00 is independent of η′, and hence that κ ′′ is independent of η′. In

particular, κ ′′ is a symplectomorphism on T ∗Rn−r. This also implies that, for each fixed (y′′, η′′), the
map η′

7→ ξ ′(y′′, η′, η′′) is a diffeomorphism. Writing

κ ′′(y′′, η′′)= (x ′′(y′′, η′′), ξ ′′(y′′, η′′)),

we have by (5-11) that ∂η′′ x ′′
= 0, and hence x ′′

= x ′′(y′′). Now, since κ ′′ is symplectic,

(∂η′′ξ ′′dη′′
+ ∂y′′ξ ′′dy′′)∧ ∂y′′ x ′′dy′′

= dη′′
∧ dy′′,

and so we conclude that
(∂y′′ x ′′)t∂η′′ξ ′′

= Id, (∂y′′ x ′′)t∂y′′ξ ′′ is diagonal. (5-12)
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The first equality in (5-12) gives that ∂η′′ξ ′′ is a function of y′′ only, and hence there exists a function
F = F(y′′) such that

ξ ′′(y′′, η′′)= [(∂x ′′(y′′))t ]−1(η′′
− F(y′′)).

Therefore, calculating on η′′
= F(y′′), the second statement in (5-12) implies that −∂y′′ F(y′′) dy′′

∧dy′′
=0.

In particular, d(F(y′′) · dy′′)= 0. It follows from the Poincaré lemma that, shrinking the neighborhood of
(0, 0) to be simply connected if necessary, F(y′′) · dy′′

= dψ(y′′) for some function ψ =ψ(y′′). Hence,

κ ′′(y′′, η′′)= (x ′′(y′′), [(dx ′′(y′′))t ]−1(η′′
− ∂ψ(y′′))). (5-13)

Now, every symplectomorphism of the form (5-13) preserves L0. Hence, we can deform κ ′′ to the identity
by putting ψt = tψ and deforming x ′′ to the identity. Since the assumption in (5-9) implies ∂y′′ x ′′> 0, this
can be done simply by taking x ′′

t = (1 − t) Id +t x ′′. Putting κ ′′
t = (x ′′

t , ξ
′′
t ), there is κ ′′

t such that κ ′′

0 = Id
and κ ′′

1 = κ ′′. Now, composing κ with

(y′, η′
; y′′, η′′) 7→ (y′, η′

; (κ ′′

t )
−1(y′′, η′′)),

we reduce to the case that κ ′′
= Id. In particular, we need only consider the case in which

κ(y′, η′, y′′, η′′)= ( f (y, η)y′, ξ ′(y′′, η)+ h0(y, η)y′, (y′′, η′′)+ h1(y, η)y′), (5-14)

where f (y, η) ∈ GLr , h0(y, η) is an r × r matrix, and h1(y, η) is an 2(n − r)× r matrix. Next, we claim
that the projection map from graph(κ) to R2n defined as (x, ξ ; y, η) 7→ (x, η) is a local diffeomorphism.
To see this, note that, for |y′

| small, the map (x ′′, η′′) 7→ (y′′, ξ ′′) is a diffeomorphism, that, for each
fixed (y′′, η′′), the map η′

7→ ξ ′ is a diffeomorphism, and that det ∂y′ x ′
|00 ̸= 0. Thus, κ has a generating

function φ:
κ : (∂ηφ(x, η), η) 7→ (x, ∂xφ(x, η))

such that
det ∂2

xηφ(0, 0) ̸= 0 and ∂η′φ(0, x ′′, η)= 0.

Now, writing κ = (κ ′, κ ′′), we have κ ′′
= Id at x ′

= 0. Therefore,

∂η′′φ(0, x ′′, η)= x ′′ and ∂x ′′φ(0, x ′′, η)= η′′,

and we have φ(0, x ′′, η)= ⟨x ′′, η′′
⟩ + C for some C ∈ R. We may choose C = 0 to obtain

φ(x, η)= ⟨x ′′, η′′
⟩ + g(x, η)x ′ (5-15)

for some g : R2n
→ M1×r . Finally, since κ(0, 0) = (0, 0) and ∂2

xηφ is nondegenerate, we have that
∂x ′φ(0, 0)= g(0, 0)= 0 and ∂η′ g is nondegenerate. In fact (5-9) implies that, as a quadratic form,

∂η′ g > 0. (5-16)

Observe next that every φ satisfying (5-15) for some g satisfying (5-16) and g(0, 0)= 0 generates a
canonical transformation satisfying (5-14) and (5-9). In particular, the symplectomorphism satisfies (5-8).
Thus, we can deform from the identity by putting gt = (1 − t)η′

+ tg. □

Finally, we proceed with the proof of Proposition 5.9.
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Proof of Proposition 5.9. Let κt be as in Lemma 5.10. That is, a piecewise smooth deformation from
κ0 = Id to κ1 = κ such that κt preserves 00 and (κt)∗|00 preserves L0. Let Tt be a piecewise smooth
family of elliptic FIOs defined microlocally near (0, 0), quantizing κt , and satisfying

h Dt Tt + Tt Qt = 0 and T0 = Id . (5-17)

Here, Qt is a smooth family of pseudodifferential operators with symbol qt satisfying ∂tκt = (κt)∗Hqt .
(Such an FIO exists, for example, by [Zworski 2012, Chapter 10], and qt exists by [Zworski 2012,
Thoerems 11.3, 11.4].) Next, define

At := T −1
t Õph(a)Tt .

Note that T −1Õp(a)T = T −1T1T −1
1 Õp(a)T1T −1

1 T +O(h∞)9−∞ . Hence, since the proposition follows
by direct calculation when κ = Id, we may assume that T = T1.

In that case, our goal is to find a symbol b such that A1 = Oph(b). First, observe that (5-17) implies
that h Dt T −1

t − Qt T −1
t = 0 and so

h Dt At = [Qt , At ] and A0 = Õph(a).

We will construct bt ∈ S̃k
00,L0,ρ

such that Bt := Õph(bt) satisfies

h Dt Bt = [Qt , Bt ] + O(h∞)9−∞ and B0 = Õph(a). (5-18)

This would yield that Bt − At = O(h∞)L2→L2 and the argument would then be finished by setting b = b1.
Indeed, that Bt − At = O(h∞)L2→L2 would follow from the fact that, by (5-18),

h Dt(Tt Bt T −1
t )= O(h∞)9−∞,

and hence, since T0 = Id and B0 = Õph(a), we have Tt Bt T −1
t − Õph(a)= O(h∞)9−∞ . Combining this

with the fact that both Tt and T −1
t are bounded on H k

h completes the proof.
To find bt as in (5-18), note that since κt preserves 00 and L0, ∂tκt = Hqt and Hqt is tangent to L0

on 00. Therefore, ∂η′qt = 0 on y′
= 0, and so there exists rt(y, η) such that ∂η′qt(y, η) = rt(y, η)y′.

Hence, by Lemma 5.7, for any b ∈ S̃k
00,L0,ρ

,

[Qt , Õph(b)] = −ihÕph( f )+ O(h∞)9−∞ and f = Hqt b +

r∑
j=1

(rtλ)j (∂λb)j + O(h1−ρ)S̃k−2
00,L0,ρ

.

Then, letting b0
t := a ◦ Kκt ∈ S̃k

00,L0,ρ
and B0

t = Õph(b
0
t ) yields

h Dt B0
t = −ihÕph(Hqt b

0
t + (rtµ) · ∂µb0

t )= [Qt , B0
t ] + h2−ρÕph(e

0
t ),

where e0
t ∈ S̃k−2

00,L0,ρ
. This follows from the fact that if we set µ(y)= y′h−ρ, then

∂t(b0
t (y, η, µ(y)))= Hqt b

0
t (y, η, µ(y))+ ∂µb0

t (y, η, µ(y))Hqt (µ(y))

and Hqtµ(y)= rt(y, η)µ(y).
Iterating this procedure and solving away successive errors finishes the proof of Proposition 5.9.

If a ∈ S̃k
00,ρ

, then we need only use that ∂ξ ′qt = rt x ′ and we obtain the remaining results. □
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Our next lemma follows [Sjöstrand and Zworski 1999, Lemma 4.1] and gives a characterization of
our second microlocal calculus in terms of the action of an operator. In what follows, given operators A
and B, we define the operator adA by adA B = [A, B].

Lemma 5.11 (Beal’s criteria). Let Ah : S(Rn) → S ′(Rn) and k ∈ Z. Then, Ah = Õph(a) for some
a ∈ S̃k

00,L0,ρ
if and only if , for any α, β ∈ Rn, there exists C > 0 with

∥adαh−ρ x adβh Dx
Ahu∥|β|−min(k,0) ≤ Ch(1−ρ)(|α|+|β|)

∥u∥max(k,0),

where ∥u∥r := ∥u∥L2 +∥h−ρr
|x ′

|
r u∥L2 for r ≥ 0. Similarly, Ah = Oph(a) for some a ∈ S̃k

00,ρ
if and only if

∥adα
′

h−ρ x ′ adα
′′

x ′′ adβ
′

h Dx ′
adβ

′′

h Dx ′′
Ahu∥|β ′|−min(k,0) ≤ Ch(1−ρ)(|α′

|+|β ′
|)+|α′′

|+|β ′′
|
∥u∥max(k,0).

Proof. The fact that Ah = Õph(a) for some a ∈ S̃k
00,L0,ρ

implies the estimates above follow directly from
the model calculus. Let Uh be the unitary (on L2) operator, Uhu(x)= hn/2u(hx), and note that

∥U−1
h u∥r = ∥u∥L2 + ∥h(1−ρ)r

|x ′
|
r u∥L2 .

Then, consider Ãh := Uh AhU−1
h . For fixed h, we can use Beal’s criteria (see e.g., [Zworski 2012,

Theorem 8.3]) to see that there is ah such that Ãh = ah(x, D). Define a such that a(hx, ξ ; h)= ah(x, ξ),
and hence Ah = Oph(a). Note that, for φ,ψ ∈ S(Rn),

⟨ Ãhψ, φ⟩ =
1

(2π)n

∫∫
ei⟨x,ξ⟩ah(x, ξ)ψ̂(ξ)φ(x) dx dξ, (5-19)

where ψ̂(ξ)= (Fψ)(ξ)=
∫

e−i⟨y,ξ⟩ψ(y) dy. Next, define

Bh := Uh adαh−ρ x(adβh Dx
(Ah))U−1

h .

Since DxUh = Uhh Dx and U−1
h Dx = h DxU−1

h , we have

Bh = adαh1−ρ x adβDx
Ãh = (−i)|α|+|β|h(1−ρ)|α|bh(x, D),

where bh(x, ξ) = (−∂ξ )
α∂

β
x ah(x, ξ). Our goal is then to understand the behavior of bh(x, ξ) in terms

of h and ⟨h1−ρx ′
⟩. Let τx0 and τ̂ξ0 be the physical and frequency shift operators

τx0u(x)= u(x − x0) and τ̂ξ0u(x)= ei⟨x,ξ0⟩u(x)

with F τ̂ξ0 = τξ0F and Fτx0 = τ̂−x0 . In addition, write ∥u∥(−r) := ∥⟨h1−ρx ′
⟩
−r u∥L2 for the dual norm to

∥u∥(r) := ∥U−1
h u∥r .

Assume that k ≥ 0. Then, the definition of Bh combined with the assumptions yields

|⟨Bτx0 τ̂ξ0ψ, τy0 τ̂η0φ⟩| ≤ h(1−ρ)(|α|+|β|)
∥τx0 τ̂ξ0ψ∥(k)∥τy0 τ̂η0φ∥−|β|. (5-20)

In addition, note that, for fixed ψ, φ ∈ S,

∥τx0 τ̂ξ0ψ∥(k) ∼ ⟨h1−ρ(x0)
′
⟩

k and ∥τy0 τ̂η0ψ∥(−|β|) ∼ ⟨h1−ρ(y0)
′
⟩
−|β|.

Therefore, (5-20) leads to

|⟨Bτx0 τ̂ξ0ψ, τy0 τ̂η0φ⟩| ≤ Ch(1−ρ)(|α|+|β|)
⟨h1−ρ(x0)

′
⟩

k
⟨h1−ρ(y0)

′
⟩
−|β|. (5-21)
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On the other hand, we have by (5-19) that

|⟨Bτx0 τ̂ξ0ψ, τy0 τ̂η0φ⟩| =
h(1−ρ)|α|

(2π)n

∣∣∣∣∫∫
ei⟨x,ξ⟩bh(x, ξ)ψ̂(ξ − ξ0)e−i⟨x0,ξ−ξ0⟩−i⟨η0,x−y0⟩φ̄(x − y0) dx dξ

∣∣∣∣
= h(1−ρ)|α|

|F((τy0,ξ0χ)bh)(η0 − ξ0, x0 − y0)|, (5-22)

where χ(x, ξ)= ei⟨x,ξ⟩ψ̂(ξ)φ̄(x). Combining (5-22) with (5-21) we then have

|F((τy0,ξ0χ)∂
α
ξ ∂

β
x ah)(η0 − ξ0, x0 − y0)| ≤ Ch(1−ρ)|β|

⟨h1−ρ(x0)
′
⟩

k
⟨h1−ρ(y0)

′
⟩
−|β|.

Next, note that χ can be replaced by any fixed function in C∞
c by taking ψ and φ with ψ̂(ξ)φ(x) ̸= 0

on suppχ . Putting ζ = η0 − ξ0 and z = x0 − y0, we obtain that, for every α̃, β̃ ∈ Nn,

|F(∂ α̃ξ ∂ β̃x (τy0,ξ0χ)∂
α
ξ ∂

β
x ah)(ζ, z)| ≤ Ch(1−ρ)|β|

⟨h1−ρ(x0)
′
⟩

k
⟨h1−ρ(x0 − z)′⟩−|β|.

Hence,
|zα̃ζ β̃F((τy0,ξ0χ)∂

α
ξ ∂

β
x ah)(ζ, z)| ≤ Ch(1−ρ)|β|

⟨h1−ρ(x0)
′
⟩

k
⟨h1−ρ(x0 − z)′⟩−|β|.

In particular, for every N > 0,

|F((τy0,ξ0χ)∂
α
ξ ∂

β
x ah)(ζ, z)| ≤ Ch(1−ρ)|β|

⟨h1−ρ(x0)
′
⟩

k−|β|
⟨ζ ⟩−N

⟨z⟩−N,

and, as a consequence, we obtain

∂αξ ∂
β
x ah(x, ξ)= ∂αξ ∂

β
x (a(hx, ξ))= O(h(1−ρ)|β|

⟨h1−ρx ′
⟩

k−|β|).

This gives the first claim of the lemma for k ≥ 0. For k ≤ 0, we consider ⟨h−ρx ′
⟩
−k A and use the

composition formulae. A nearly identical argument yields the second claim. □

5C. Definition of the second microlocal class. With Proposition 5.9 in place, we are now in a position
to define the class of operators with symbols in Sk

0,L ,ρ .

Definition 5.12. Let 0 ⊂ U ⊂ T ∗M be a coisotropic submanifold, U an open set, and L a Lagrangian
foliation on 0. A chart for (0, L) is a symplectomorphism

κ : U0 → V, U0 ⊂ U, V ⊂ T ∗Rn,

such that κ(U0 ∩0)⊂ V ∩00 and κ∗,q Lq = (L0)κ(q) for q ∈ 0 ∩ U.

We now define the pseudodifferential operators associated to (0, L).

Definition 5.13. Let M be a smooth, compact manifold and U ⊂ T ∗M open, 0 ⊂ U a coisotropic
submanifold, L a Lagrangian foliation on 0, and ρ ∈ [0, 1). We say that A : D′(M) → C∞

c (M) is a
semiclassical pseudodifferential operator with symbol class Sk

0,L ,ρ(U ) (and write A ∈9k
0,L ,ρ(U )) if there

are charts {κℓ}
N
ℓ=1 for (0, L) and symbols {aℓ}N

ℓ=1 ⊂ S̃k
0,L ,ρ(U ) such that A can be written in the form

A =

N∑
ℓ=1

T ′

ℓ Õph(aℓ) Tℓ + O(h∞)D′→C∞, (5-23)

where Tℓ and T ′

ℓ are FIOs quantizing κℓ and κ−1
ℓ for ℓ= 1, . . . , N.
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We say that A is a semiclassical pseudodifferential operator with symbol class Sk
0,ρ(U ) (and write

A ∈9k
0,ρ(U )) if there are symbols {aℓ}N

ℓ=1 ⊂ S̃k
0,ρ(U ) such that A can be written in the form (5-23).

Lemma 5.14. Suppose that κ : U → T ∗Rn is a chart for (0, L), T quantizes κ , and T ′ quantizes κ−1. If
A ∈9k

0,L ,ρ(U ), then there is a ∈ S̃k
0,L ,ρ(U ) with supp a( · , · , λ)⊂ κ(U ) such that

T AT ′
= Õph(a)+ O(h∞)D′→C∞ .

Moreover, if A is given by (5-23), then

a ◦ Kκ = σ(T ′T )
N∑
ℓ=1

σ(T ′

ℓTℓ) (aℓ ◦ Kκℓ)+ O(h1−ρ)S̃ k−1
0,L ,ρ

.

Proof. Note that we can write

T AT ′
=

N∑
ℓ=1

T T ′

ℓÕph(aℓ)TℓT
′
+ O(h∞)D′→C∞ .

Next, note that T T ′

ℓ quantizes κ◦κ−1
ℓ and that TℓT ′ quantizes κℓ◦κ−1. Letting Fℓ be a microlocally unitary

FIO quantizing κℓ ◦ κ−1, we have that Fℓ satisfies the hypotheses of Proposition 5.9 and we can write

TℓT ′
= CL Fℓ and T T ′

ℓ = F−1
ℓ CR

with CL ,CR ∈9(M) satisfying σ(CRCL)= (σ (T ′

ℓTℓ) ◦ κ−1
ℓ )(σ (T ′T ) ◦ κ−1

ℓ ). Therefore,

T T ′

ℓÕph(aℓ)TℓT
′
= F−1

ℓ CRÕph(aℓ)CL Fℓ = Oph(bℓ)+ (h
∞)D′→C∞,

bℓ = (σ (CRCL) ◦ κℓ ◦ κ−1)(aℓ ◦ Kκℓ◦κ−1)+ O(h1−ρ)S̃ k−1
0,L ,ρ

. □

Lemma 5.15. Let 0 ⊂ U ⊂ T ∗M be a coisotropic submanifold, U be an open set, and L be a Lagrangian
foliation on 0. There is a principal symbol map

σ0,L :9k
0,L ,ρ(U )→ Sk

0,L ,ρ(U )/h1−ρSk−1
0,L ,ρ(U )

such that, for A ∈9
k1
0,L ,ρ(U ) and B ∈9

k2
0,L ,ρ(U ),

σ0,L(AB)= σ0,L(A)σ0,L(B) and σ0,L([A, B])= −ih{σ0,L(A), σ0,L(B)}. (5-24)

Furthermore, the sequence

0 → h1−ρ9k−1
0,L ,ρ(U )

ι
−→9k

0,L ,ρ(U )
σ0,L

−−→ Sk
0,L ,ρ(U )/h1−ρSk−1

0,L ,ρ(U )→ 0

is exact. The same holds with σ0, 90,ρ , and Sk
0,ρ .

Proof. For A as in (5-23), we define

σ0,L(A)=

N∑
ℓ=1

σ(TℓT ′

ℓ)(ãℓ ◦ κ),

where ãℓ(x, ξ) := aℓ(x, ξ, h−ρx ′). The fact that σ is well defined then follows from Lemma 5.14, and
the formulae (5-24) follow from Lemma 5.6.
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To see that the sequence is exact, we only need to check that if A ∈ 9k
0,L ,ρ and σ0,L(A) = 0, then

A ∈ h1−ρ9k−1
0,L ,ρ . To do this, we may assume that WFh

′(A)⊂ U such that there is a chart (κ,U ) for (0, L).
Let T be a microlocally unitary FIO quantizing κ and suppose that σ0,L(A) ∈ h1−ρSk−1

0,L ,ρ . Then, by
the first part of Lemma 5.14, we know T AT −1

= Õph(a)+ O(h∞) for some a ∈ S̃k
0,L ,ρ . Then, by the

second part of Lemma 5.14, since σ0,L(A) ∈ h1−ρSk−1
0,L ,ρ , we have that a ∈ h1−ρ S̃k−1

0,L ,ρ and, in particular,
A ∈ h1−ρ9k−1

0,L ,ρ . □

Note that if A ∈ 9comp(M), then A ∈ 90
0,L ,ρ and σ(A) = σ0(A). Furthermore, if A ∈ 9k

0,ρ , then
A ∈9k

0,L ,ρ and σ0(A)= σ0,L(A).

Lemma 5.16. Let 0 ⊂ U ⊂ T ∗M be a coisotropic submanifold, U be an open set, and L be a Lagrangian
foliation on 0. There is a noncanonical quantization procedure

Op0,Lh : Sk
0,L ,ρ(U )→9k

0,L ,ρ(U )

such that, for all A ∈9k
0,L ,ρ(U ), there is a ∈ Sk

0,L ,ρ(U ) such that Op0,Lh (a)= A + O(h∞)D′→C∞ and

σ0,L ◦ Op0,Lh : Sk
0,L ,ρ(U )→ Sk

0,L ,ρ(U )/h1−ρSk−1
0,L ,ρ(U )

is the natural projection map.

Proof. Let {(κℓ,Uℓ)}
N
ℓ=1 be charts for (0, L) such that {Uℓ}

N
ℓ=1 is a locally finite cover for U, Tℓ and T ′

ℓ

quantize κℓ and κ−1
ℓ , respectively, and σ(T ′

ℓTℓ) ∈ C∞
c (Uℓ) is a partition of unity on U. Let a ∈ Sk

0,L ,ρ(U ).
Then, define aℓ ∈ S̃k

00,L0,ρ
such that aℓ(x, ξ, h−ρx ′) := (χℓa) ◦ κ−1(x, ξ), where χℓ ≡ 1 on supp σ(T ′

ℓTℓ).
We then define the quantization map

Op0,Lh (a) :=

N∑
ℓ=1

T ′

ℓÕph(aℓ)Tℓ.

The fact that σ0,L ◦ Op0,Lh is the natural projection follows immediately. Now, fix A ∈9k
0,L ,ρ(U ). Put

a0 = σ0,L(A). Then, A = Op0,Lh (a0)+h1−ρ A1, where A1 ∈9k−1
0,L ,ρ . We define ak = σ0,L(Ak) inductively

for k ≥ 1 by

h(k+1)(1−ρ)Ak+1 = A −

k∑
k=0

hk(1−ρ) Op0,Lh (ak).

Then, letting a ∼
∑

k hk(1−ρ)ak , we have A = Op0,Lh (a)+ O(h∞)D′→C∞ as claimed. □

Remark 5.17. Note that E :=
∑N

ℓ=1 TℓT ′

ℓ is an elliptic pseudodifferential operator with symbol 1.
Therefore, there is E ′

∈90 with σ(E ′)= 1 such that E ′E E ′
= Id. Replacing Tℓ by E ′Tℓ and T ′

ℓ by T ′

ℓE ′,
we may (and will) ask for

∑N
ℓ=1 TℓT ′

ℓ = Id, and so Op0,Lh (1)= Id.

Lemma 5.18. Let 0 ⊂ U ⊂ T ∗M be a coisotropic submanifold. If A ∈9k
0,ρ(U ) and P ∈9m(U ) with

symbol p such that, for every q ∈ 0, we have Hp(q) ∈ Tq0. Then,

i
h
[P, A] = Op0h (Hpa)+ O(h1−ρ)9k−1

0,ρ
,

where a(x, ξ ; h)= σ0(A)(x, ξ, h−ρx ′).
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Proof. Suppose that WFh
′(A) ⊂ Uℓ for Uℓ ⊂ U open, and suppose that κ : Uℓ → T ∗Rn is a chart

for (0, L). Note that we may assume that WFh(A)′ ⊂ Uℓ and then use a partition of unity to cover U
with a family {Uℓ}ℓ. Therefore, there exist a Fourier integral operator T that is microlocally elliptic on Uℓ

and quantizes κ and a ∈ S̃k
0,ρ such that A = T −1Õph(a)T + O(h∞)D′→C∞ . Then, on WFh

′(A),

T [P, A]T −1
= [T PT −1, Õph(a)] + O(h∞)D′→C∞ .

Now, T PT −1
= Oph(p ◦ κ−1)+ O(h)9m−1 . Hence, a direct computation using Lemma 5.7 gives

[T PT −1, Õph(a)] = −ihÕph(c)+ O(h2−ρ)9̃k−2
00,ρ

with c(x, ξ, h−ρx ′)= Hp◦κ−1(a(x, ξ, h−ρx ′)) ∈ Sk−1
0,ρ (Uℓ). In particular,

[P, A] = −ihT −1Õph(c)T + O(h2−ρ)9k−2
0,ρ
.

Therefore, [P, A] ∈ h9k−1
0,ρ with symbol σ0(ih−1

[P, A])= Hp(a(x, ξ, h−ρx ′)). □

6. An uncertainty principle for coisotropic localizers

The first goal of this section is to build a family of cut-off operators X y with y ∈ M that act as the identity
on the shrinking ball B(y, hρ) and such that they commute with P in a fixed-size neighborhood of y.
This is the content of Section 6A. The second goal is to control ∥X y1 X y2∥L2→L2 in terms of the distance
d(y1, y2) as this distance shrinks to 0. We do this in Section 6B. Finally, in Section 6C, we study the
consequences of these estimates for the almost-orthogonality of X yi .

In order to localize to the ball B(y, hρ) in a way compatible with microlocalization we need to make
sense of

χy(x)= χ̃
(1
ε

h−ρd(x, y)
)
, χ̃ ∈ C∞

c ((−1, 1)),

as an operator in some anisotropic pseudodifferential calculus. As a function, χy is in the symbol
class S−∞

0y ,L y
, where 0y and L y are the coisotropic submanifold and Lagrangian foliation defined as

follows: fix δ > 0, to be chosen small later, and, for each x ∈ M , let

0y :=

⋃
|t |< 1

2 inj(M)

ϕt(�y), �y := {ξ ∈ T ∗

y M : |1 − |ξ |g|< δ}. (6-1)

In this section, we construct localizers to 0y adapted to the Laplacian and study the incompatibility
between localization to 0y1 and 0y2 as a function of the distance between y1, y2 ∈ M. Let y ∈ M. In what
follows we work with the Lagrangian foliation L y of 0y given by

L y = {L y,q̃}q̃∈0y , L y,q̃ = (ϕt)∗(Tq T ∗

y M),

where q̃ = ϕt(q) for some |t |< 1
2 inj(M) and q ∈�y .

Remark 6.1. In fact, it will be enough for us to show that χy(x)χ̃(δ−1(|h D|g − 1)) ∈90y ,L y ,ρ since we
will be working near the characteristic variety for the Laplacian.
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6A. Coisotropic cutoffs adapted to the Laplacian.

Lemma 6.2. Let y ∈ M, 0< ε < δ, 0 ≤ ρ < 1, χ̃ ∈ C∞
c ((−1, 1)), and define the operator χh,y by

χh,yu(x) := χ̃
(1
ε

h−ρd(x, y)
)[

Oph

(
χ̃

(1
ε
(|ξ |g − 1)

))
u
]
(x). (6-2)

Then, χh,y ∈9−∞

0y ,L y ,ρ
.

Proof. We will use Lemma 5.11 to prove the claim. First, observe that we may work in a single chart for
(0y, L y) by using a partition of unity. Therefore, suppose that B ∈90 and κ : U0 → T ∗Rn is a chart for
(0y, L y), V0 ⋐ U0, and T is an FIO quantizing κ that is microlocally unitary on V0. Furthermore, since
κ∗L y = L0, we may assume that κ(U0 ∩ T ∗

y M)⊂ T ∗

0 Rn. Denote the microlocal inverse of T by T ′. Then,
observe that, for A and B with wavefront set in V0,

adA(T BT ′)= T adT ′ AT (B)T ′
+ O(h∞)D′→C∞ .

By a partition of unity, we will work as though χh,y were microsupported in U0. We then consider, for
all N > 0 and α, β ∈ Nn,

h−2Nρ
|x ′

|
2N adαh−ρ x adβh Dx

(Tχh,yT ′)

= h−2ρN T (T ′
|x ′

|
2T )N adαh−ρT ′xT (adβT ′h Dx T (χh,y))T ′

+ O(h∞)D′→C∞ .

In order to prove the requisite estimates, we will first view χh,y as an element of the model microlocal
class. In particular, we work with x ∈ M written in geodesic normal coordinates centered at y, so that

χh,yu(x)= χ̃
(1
ε

h−ρ
|x |

)[
Oph

(
χ̃

(1
ε
(|ξ |g − 1)

))
u
]
(x).

Then,

χh,y = Õph

(1
ε
χ̃(λ)

)
Oph

(
χ̃

(1
ε
(|ξ | − 1)

))
is an element of 9̃−∞

00,L0,ρ
with r = n, and so we can apply Lemma 5.7 to compute adA(χh,y) for

A ∈9−∞(M). In particular,

adT ′h Dx T (χh,y)= Õph(c)+ O(h∞), (6-3)

where c ∈ h1−ρ S̃−∞

00,L0,ρ
is supported on {(x, ξ, λ) : |x | ≤ εhρ, |λ| ≤ ε}. Now, suppose c ∈ S̃−∞

00,L0,ρ
is

supported on {(x, ξ, λ) : |x | ≤ εhρ, |λ| ≤ ε} and B ∈ 9−∞ with σ(B)(0, ξ) = 0. Then, again using
Lemma 5.7 and the fact that ∂ξ ′σ(B)|x ′=0 = 0,

adB(Õph(c))= Õph(c
′)+ O(h∞), (6-4)

where c′
∈ hS̃−∞

00,L0,ρ
is supported on {(x, ξ, λ) : |x | ≤ εhρ, |λ| ≤ ε}.

Now, note that since κ(T ∗
y M)⊂ T ∗

0 Rn, then, for all i = 1, . . . , n, we have that B = T ′xi T has symbol
σ(B)= [b(x, ξ)x]i for some b ∈ C∞(T ∗M; Mn×n). Therefore, (6-3) and (6-4) yield

adαh−ρT ′xT (adβT ′h Dx T (χh,y))= h(1−ρ)(|α|+|β|)Õph(c
′)+ O(h∞),
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where c′
∈ S̃−∞

00,L0,ρ
is supported on {(x, ξ, λ) : |x | ≤ εhρ, |λ| ≤ ε}. Finally, using again that T ′xi T has

symbol [b(x, ξ)x]i , we have that (6-4) gives

∥h−2Nρ
|x ′

|
2N adαh−ρT ′xT (adβT ′h Dx T (χh,y))∥L2→L2 ≤ Ch(1−ρ)(|α|+|β|). □

We next construct a pseudodifferential cutoff, X y ∈9−∞

0y ,ρ
, which is microlocally the identity near S∗

y M
and which essentially commutes with P = −h21g − 1 near y. In particular, we will have

χh,y X y = χh,y + O(h∞)9−∞ .

When considering the value of a quasimode u that is hρ close to the point y, this will allow us to effectively
work with X yu instead.

Theorem 6.3. Let y ∈ M, 0< ε < δ, and 0 ≤ ρ < 1. Then, there exists X y ∈9−∞

0y ,ρ
⊂9−∞

0y ,L y ,ρ
satisfying

(1) If χh,y is defined as in (6-2), then

χh,y X y = χh,y + O(h∞)9−∞ . (6-5)

(2) WFh
′([P, X y])∩

{
(x, ξ) : x ∈ B

(
y, 1

2 inj(M)
)
, ξ ∈�x

}
= ∅.

Proof. First, we note that we will actually prove that X y ∈ 9−∞

0y ,ρ
, and so the result will follow since

9−∞

0y ,ρ
⊂9−∞

0y ,L y ,ρ
. Let H ⊂ T ∗M be transverse to the Hamiltonian flow Hp such that �y ⊂ H. Next, let

~ ∈ C∞
c ((−2, 2)) with ~ ≡ 1 on [−1, 1], and define ~0 ∈ C∞

c (H) by

~0 = ~(h−ρd(x, y))~
(2
δ
(1 − |ξ |g)

)
,

where δ is as in the definition of �y . Let ψ ∈ C∞
c (T

∗M) with

ψ ≡ 1 on B
(
y, 1

2 inj(M)
)
∩ {|ξ |g < 2}, suppψ ⊂ B

(
y, 3

4 inj(M)
)
.

Then, let χ0 be defined locally by Hpχ0 ≡ 0 and χ0|H = ~0 such that χ0 ∈ S−∞

0y ,ρ
. That is, χ0(ϕt(q))=

ψ(ϕt(q))χ0(q) for |t |< inj(M) and q ∈H. Next, observe that by Lemma 5.7 there is e0 ∈ S−∞

0y ,ρ
such that

−
i
h
[P,Op0y

h (χ0)] = h1−ρ Op0y
h (e0), supp e0 ∩ B

(
y, 1

2 inj(M)
)
⊂

⋃
|t |< 3

4 inj(M)

ϕt(H∩ supp ∂~0).

(Here and below ∂~0 denotes the gradient of ~0.) Suppose that there exist χk−1, ek−1 ∈ S−∞

0y ,ρ
such that

−
i
h
[P,Op0y

h (χk−1)] = hk(1−ρ) Oph(ek−1), supp ek−1 ∩ B
(
y, 1

2 inj(M)
)
⊂

⋃
|t |< 3

4 inj(M)

ϕt(H∩ supp ∂~0).

Then, define χ̃k ∈ S−∞

0y ,ρ
by solving locally Hpχ̃k = ek−1 and χ̃k |H = 0. Note that then

supp χ̃k ∩ B
(
y, 1

2 inj(M)
)
⊂

⋃
|t |< 3

4 inj(M)

ϕt(H∩ supp ∂~0)

and
h−k(1−ρ)σ

( i
h
[P,Op0y

h (χk−1 + hk(1−ρ)χ̃k)]
)

= Hpχ̃k − ek−1 = 0.



2316 YAIZA CANZANI AND JEFFREY GALKOWSKI

In particular, with χk := χk−1 + hk(1−ρ)χ̃k , we obtain −
i
h [P,Op0y

h (χk)] = h(k+1)(1−ρ) Oph(ek) with
ek ∈ S−∞

0y ,ρ
and

supp ek ∩ B
(
y, 1

2 inj(M)
)
⊂

⋃
|t |< 3

4 inj(M)

ϕt(H∩ supp ∂~0).

Setting

X y = Op0y
h (χ∞) and χ∞ ∼

(
χ0 +

∑
k

(χk+1 −χk)

)
,

we have that X y satisfies the second claim and, moreover, χ∞ ≡ 1 on⋃
|t |≤ 1

4 inj(M)

ϕt
(
H∩ {d(x, y) < hρ} ∩

{
||ξ |g − 1|< 1

2δ
})
.

To see the first claim, observe that, for ε > 0 small enough,

B(y, εhρ)∩ {||ξ |g − 1|< δ} ⊂

⋃
|t |≤ 1

4 inj(M)

ϕt
(
H∩ {d(x, y) < hρ} ∩

{
||ξ |g − 1|< 1

2δ
})
,

and hence, by Lemma 5.6,

χh,y X y = χh,y Op0,Lh (1)+ O(h∞)9−∞ = χh,y + O(h∞)9−∞ . □

6B. An uncertainty principle for coisotropic localizers. Let 0(t)⊂ T ∗Rn, t ∈ (−ε0, ε0), be a smooth
family of coisotropic submanifolds of dimension n + 1 with

0(0)= {(0, xn, ξ
′, ξn) : xn ∈ R, ξ ′

∈ Rn−1, ξn ∈ R}.

Assume that for each t , we define 0(t) by the functions {qi (t)}n−1
i=1 ⊂ C∞(R2n) with qi (0)= xi (note that

qi (t) should be thought of as a function in C∞(R2n) parametrized by t). Moreover, assume that there are
c,C > 0 such that for i = 1, . . . , n − 1,

|{qi (t), xi }| ≥ c|t | on 0(0)∩0(t), |t |> 0, (6-6)

and, for all i, j = 1, . . . , n − 1 and all t ∈ (−ε0, ε0),

{qi (t), qj (t)} = 0, {qi (t), ξn} = 0, |{qi (t), x j }| ≤ Ct2 on 0(0)∩0(t), i ̸= j. (6-7)

The main goal of this section is to prove the following proposition.

Proposition 6.4. Let 0< ρ < 1 and {0(t) : t ∈ (−ε0, ε0)} be as above. Suppose that X (t) ∈9−∞

0(t),ρ for
all t ∈ (−ε0, ε0) and that there is ε > 0 such that hρ−ε

≤ |t |< ε0. Then,

∥X (0)X (t)∥L2→L2 ≤ Ch(n−1)(2ρ−1)/2t (1−n)/2.

Proof. We begin by finding a convenient chart for 0(t). By Darboux’s theorem (see, e.g., [Zworski
2012, Theorem 12.1]), there is a smooth family of symplectomorphisms κt : V1 → V2 such that, for
j = 1, . . . , n − 1,

κ∗

t (qj (t))= yj and κ∗

t ξn = ηn, (6-8)
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where V1 and V2 are simply connected neighborhoods of 0. Note that κt(0(0))= 0(t) with this setup,
so κ−1

t is a chart for 0(t). By [Zworski 2012, Theorem 11.4], the symplectomorphism κt can be extended
to a family of symplectomorphisms on T ∗Rn that is the identity outside a compact set, and such that there
is a smooth family of symbols pt ∈ C∞(T ∗Rn) satisfying ∂tκt = (κt)∗Hpt .

Now, let U (t) : L2
→ L2 solve

(h Dt + Oph(pt))U (t)= 0, U (0)= Id .

Then, U (t) is microlocally unitary from V1 to V2 in the sense that if a ∈ C∞
c (V1) and b ∈ C∞

c (V2) then

[U (t)]∗U (t)Oph(a)= Oph(a)+ O(h∞)9−∞ and U (t)[U (t)]∗ Oph(b)= Oph(b)+ O(h∞)9−∞,

and U (t) quantizes κt . Moreover,

U (t)=
1

(2πh)n

∫
Rn

ei(φ(t,x,η)−⟨y,η⟩)/hb(t, x, η; h) dη,

where b(t, · ) ∈ Scomp(T ∗Rn) and the phase function φ(t, · ) ∈ C∞(T ∗Rn
; R) satisfies

∂tφ+ pt(x, ∂xφ)= 0, φ(0, x, η)= ⟨x, η⟩

for all t ∈ (−ε0, ε0). Since U (t) is microlocally unitary, it is enough to estimate the operator

A(t) := X (0)X (t)U (t).

First, note that since X (t) ∈ 9−∞

0(t),ρ and U (t) quantizes κt , there exists a(t) ∈ S̃−∞

00,ρ
with t ∈ (−ε0, ε0)

such that X (t)= U (t)Õph(a(t))[U (t)]
∗
+ O(h∞)L2→L2 , and so

A(t)= Õph(a(0))U (t)Õph(a(t))+ O(h∞)L2→L2 .

Fix N > n −1 and let χ = χ(λ) ∈ S̃−N
00,ρ

be such that |χ(λ)| ≥ c⟨λ⟩−N . Now, since a(t) ∈ S̃−∞

00,ρ
, by the

elliptic parametrix construction there are eL(t), eR(t) ∈ S̃−∞

00,ρ
such that

Õph(eL(t))Õph(χ)= Õph(a(t))+ O(h∞)L2→L2, Õph(χ)Õph(eR(t))= Õph(a(t))+ O(h∞)L2→L2

for all t ∈ (−ε0, ε0). Note that we are implicitly using the fact that a(t) is compactly supported in (x, ξ)
to handle the fact that χ is not compactly supported in (x, ξ). Thus,

A(t)= Õph(eL(0))Õph(χ)U (t)Õph(χ)Õph(eR(t))+ O(h∞)L2→L2 .

Since Õph(eL(t)) and Õph(eR(t)) are L2 bounded uniformly in t ∈ (−ε0, ε0), we estimate

Ã(t) := Õph(χ)U (t)Õph(χ).

In fact, we estimate B(t) := Ã(t)( Ã(t))∗ by considering its kernel:

B(t; x, y)=

∫
U (t)(x, w)U (t)∗(w, y)χ(h−ρx ′)χ(h−ρ y′)χ(h−ρw′)2 dw

=
1

(2πh)2n

∫
ei8(t,x,w,y,η,ξ)/hb(t, x, η)b̄(t, y, ξ)χ(h−ρx ′)χ(h−ρ y′)χ(h−ρw′)2 dw dη dξ
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with 8(t, x, w, y, η, ξ) = φ(t, x, η) − φ(t, y, ξ) + ⟨w, ξ − η⟩. First, performing stationary phase in
(wn, ηn) yields

B(t; x, y)=
1

(2πh)2n−1

∫
F(t, x, w′, ξn)F(t, y, w′, ξn) dw′ dξn,

F(t, x, w′, ξn) :=

∫
ei(φ(t,x,η′,ξn)−⟨w′,η′

⟩)/hb1(t, x, η′, ξn)χ(h−ρx ′)χ(h−ρw′)2 dη′

for some b1 ∈ Scomp(T ∗Rn). Next, note that since φ(0, x, η)= ⟨x, η⟩,

φ(t, x, η)− ⟨x, η⟩ = t φ̃(t, x, η)

with φ̃ such that, for every multi-index α, there exists Cα > 0 with |∂αt,x,ηφ̃| ≤ Cα.
Next, we claim that there exists C > 0 such that

∥(∂2
η′ φ̃(t, x, η))−1

∥ ≤ C if (x, η) ∈ 0(0), ∂η′φ(t, x, η)= 0. (6-9)

We postpone the proof of (6-9) and proceed to finish the proof of the lemma.
To continue the proof, note that, modulo an O(hNε) error, we may assume that the integrand of

B(t; x, y) is supported in {(x, y, w′) : |x ′
| ≤ hρ−ε, |y′

| ≤ hρ−ε, |w′
| ≤ hρ−ε

} and hρ−ε
≤ |t |. Therefore,

the bound in (6-9) continues to hold on the support of the integrand. By (6-9) and

∂2
η′(φ(t, x, η)− t φ̃(t, x, η))= 0, (6-10)

there is a unique critical point η′
c(t, x, w′, ξn) for the map η′

7→ φ(t, x, η′, ξn)− ⟨w′, η′
⟩, in an O(1)

neighborhood of η′
c. Indeed, since |∂3

η′φ| ≤ Ct ,

∂η′φ = t (⟨∂2
η′ φ̃(t, x, η′

c, ξn)(η
′
− η′

c), η
′
− η′

c⟩ + O(|η− η′

c|
3)).

In particular, η′
c is the unique solution to ∂η′φ(t, x, η′

c, ξn)−w
′
= 0.

Next, again using (6-10), by applying the method of stationary phase in η′ to F with small parameter h/t ,
we obtain

B(t; x, y)=
1

(2πh)ntn−1

∫
ei81(t,x,w′,y,ξn)/h B1(t; x, y, w′, η′

c, ξ) dw′ dξn,

81(t, x, w′, y, ξn) :=9(t, x, w′, ξn)−9(t, y, w′, ξn),

9(t, x, w′, ξn) := φ(t, x, η′

c(t, x, w′, ξn), ξn)− ⟨w′, η′

c(t, x, w′, ξn)⟩,

B1(t; x, y, w′, η′, ξ) := b2(t, x, η′, ξn)b̄(t, y, ξ ′, ξn)χ(h−ρx ′)χ(h−ρ y′)χ(h−ρw′)2

for some b2 ∈ Scomp(T ∗Rn). Next, observe that

∂xn∂ξn9(t, x, w′, ξn)= ∂xn∂ξn (⟨x
′
−w′, η′

c⟩ + xnξn + O(t)C∞

= ⟨x ′
−w′, ∂xn∂ξnη

′

c⟩ + 1 + O(t)

= 1 + O(t)+ O(hρ)= 1 + O(t),

where in the last line we use the fact that |t | ≥ hρ−ε, and therefore, there exist c > 0 and a function
g = g(x ′, y, w′, ξn) such that |∂ξn81| ≥ c|xn −g|. In particular, integration by parts in ξn (with the operator
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L = (h2
+ ∂ξn81h Dξn )/(h

2
+ |∂ξn81|

2)) shows that for any N > 0 there is CN > 0 such that

|B(t; x, y)| ≤ CN h−nt1−nhρ(n−1)χ(h−ρ y′)χ(h−ρx ′)
h2N

+ hN
|xn − g|

N

(h2 + |xn − g|2)N .

Applying Schur’s lemma together with the fact that there exists C > 0 such that, for all t ,

sup
x

∫
|B(t; x, y)| dy + sup

y

∫
|B(t; x, y)| dx ≤ Ch(2ρ−1)(n−1)t1−n

yields that ∥B(t)∥L2→L2 ≤ Ch(2ρ−1)(n−1)t1−n for all t ∈ (−ε0, ε0), and hence

∥X (0)X (t)∥L2→L2 ≤ Ch(n−1)(2ρ−1)/2t (1−n)/2,

as claimed.

Proof of the bound in (6-9). Let φt(x, η) := φ(t, x, η) and ϕt(x, y, η) := φt(x, η)−⟨y, η⟩. Then we have
Cϕt = {(x, y, η) : ∂ηφt(x, η)= y}, and so

3ϕt = {(x, ∂xφt(x, η), ∂ηφt(x, η), −η)} ⊂ T ∗Rn
× T ∗Rn.

In particular, since 3ϕt is the twisted graph of κt , we have that κt is characterized by

κt(∂ηφt(x, η), η)= (x, ∂xφt(x, η)).

Furthermore, since κt(0(0))= 0(t), we have

0(t)= {(x, ξ) : κt(y, η)= (x, ξ), y = ∂ηφt(x, η), ξ = ∂xφt(x, η), (y, η) ∈ 0(0)}.

Then, using κ∗
t ξn = ηn ,

0(t)= {(x, ξ) : ξ ′
= ∂x ′φt(x, η), ∂η′φt(x, η)= 0, ξn = ηn, η ∈ Rn

}.

Next, let p̃ := (x̃, η̃) ∈ 0(0) be such that ∂η′φt(x̃, η̃)= 0. Without loss of generality, in what follows
we assume that x̃n = 0. Letting 00(t) := 0(t)|{xn=0} we have that

00(t)= {(x, ξ) : ξ ′
= ∂x ′φt(x, η), ∂η′φt(x, η)= 0, xn = 0, ξn = ηn, η ∈ Rn

}.

In particular, letting ξ̃ := (∂x ′φt( p̃), η̃n) and p̃0 := (x̃, ξ̃ ), we have p̃0 ∈ 00(t)∩00(0) and

Tp̃000(t)=
{
(δx , δξ ) : δξ ′ = ∂x∂x ′φt( p̃)δx + ∂η∂x ′φt( p̃)δη,

∂x∂η′φt( p̃)δx + ∂η∂η′φt( p̃)δη = 0, δxn = 0, δξn = δηn , δη ∈ Rn}.
Next, we note that ∂xn ∈ Tp̃00(t) and Hqi (t) ∈ Tp̃00(t) for all i = 1, . . . , n−1. Therefore, since ∂xn qi (t)= 0,
we also know that H ′

qi (t) := (∂ξ ′qi (t), 0,−∂x ′qi (t), 0) ∈ Tp̃000(t) for all i = 1, . . . , n − 1. We claim that
there exists C > 0 such that, for all v = (δx ′, 0, δξ ′, 0) ∈ span{H ′

qi (t)}
n−1
i=1 ⊂ Tp̃00(t), we have

∥δx ′∥ ≥ Ct∥δξ ′∥. (6-11)
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x ′

ξ ′

0xi

γxi ,x j

0x j

∼ cd(xi , x j )

Figure 2. A pictorial representation of the coisotropics involved in Corollary 6.5,
where γxi ,x j is the geodesic from xi to x j . Localization to both 0xi and 0x j implies
localization in the nonsymplectically orthogonal directions x ′ and ξ ′. The uncertainty
principle then rules this behavior out.

Suppose that the claim in (6-11) holds. Then, note that for each such v, since δxn = 0 and δξn = 0, we
have that there is δη′ ∈ Rn−1 such that

δξ ′ = ∂2
x ′φt( p̃)δx ′ + ∂2

η′x ′φt( p̃)δη′, ∂2
x ′η′φt( p̃)δx ′ + ∂2

η′φt( p̃)δη′ = 0.

Using that ∂2
x ′η′φt( p̃)= Id +O(t) and ∂2

x ′φt( p̃)= O(t), we conclude that

∂2
η′φt( p̃)[∂2

η′x ′φt( p̃)]−1δξ ′ = (∂2
η′φt( p̃)[∂2

η′x ′φt( p̃)]−1∂2
x ′φt( p̃)− ∂2

x ′η′φt( p̃))δx ′,

and so

∂2
η′φt( p̃)(Id +O(t))δξ ′ = (− Id +O(t))δx ′ . (6-12)

Let H ′

qi (t) = (δ
(i)
x ′ , 0, δ(i)ξ ′ , 0). Since p̃0 ∈ 0(t)∩0(0), assumptions (6-6) and (6-7) yield that the vectors

{δ
(i)
x ′ }

n−1
i=1 are linearly independent. Indeed, setting ei := (δi j )

n−1
j=1 ∈ Rn−1,

δ
(i)
x ′ = ∂ξi qi (t)ei + O(t2), |∂ξi qi (t)| ≥ Ct (6-13)

for t small enough. Furthermore, (6-12) then yields that the {δ
(i)
ξ ′ }

n−1
i=1 are linearly independent. Then,

combining (6-12) with (6-11) yields (6-9) as claimed. □

To finish it only remains to prove (6-11). Let v = (δx ′, 0, δξ ′, 0) ∈ span{H ′

qi (t)}
n−1
i=1 . Then, there

is a ∈ Rn−1 such that δx ′ =
∑n−1

i=1 aiδ
(i)
x ′ and δξ ′ =

∑n−1
i=1 aiδ

(i)
ξ ′ . Next, note that by (6-13) we have

∥δx ′∥ ≥ ∥a∥(Ct + O(t2)). Since ∥δξ ′∥ ≤ C0∥a∥ for some C0 > 0, the claim in (6-11) follows. □

For each x ∈ M , let 0x be as in (6-1). (See Figure 2 for a schematic representation of these two
coisotropic submanifolds.) Then we have the following result.

Corollary 6.5. Let 0 < ρ < 1, 0 < ε < ρ, and γ (t) : (−ε0, ε0)→ M be a unit speed geodesic. Then,
for X (t) ∈9−∞

0γ (t),ρ
and h such that hρ−ε

≤ |t |< ε0,

∥X (0)X (t)∥L2→L2 ≤ Ch(n−1)(2ρ−1)/2t (1−n)/2.
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Proof. To do this, we study the geometry of the flow-out coisotropics 0γ (t). Namely, we prove that 0γ (t)
is defined by some functions {qi (t)}n

i=1 with qi (0) = xi that satisfy (6-6) and (6-7). We then apply
Proposition 6.4 to 0(t)= κ−1(0γ (t)) for a suitable symplectomorphism κ .

Fix coordinates (x ′, xn) ∈ Rn−1
× R on M such that γ (t)= (0, t) and

∂2
ξ ′ |ξ |g(x)

∣∣
x=0,ξ=(0,1) = Id .

For each t ∈ (−ε0, ε0), let Ht be the submanifold transverse to the Hamiltonian vector field Hp defined by

Ht := {(x ′, t, ξ ′, ξn) : 2ξn > |ξ |g, |x ′
| ≤ δ0},

where δ0 > 0 is chosen such that 0γ (t) ∩Ht = {(0, t, ξ ′, ξn) : 2ξn > |ξ |g, ||ξ |g − 1|< δ}.
In particular, as a subset of {||ξ |g − 1|< δ}, we define 0γ (t) ∩Ht by the coordinate functions {xi }

n−1
i=1 .

For each t ∈ (−ε0, ε0) let q̃i (t) : Ht → R be given by q̃i (t) = xi for i = 1, . . . , n − 1. Then, define
{qi (t)}n−1

i=1 on T ∗M by
Hpqi (t)= 0, qi (t)|Ht = q̃i (t).

For all t , we note that Hp(Hqi (t)qj (t))= 0 and

{qi (t), qj (t)}|Ht = ∂ξn qi (t)∂xn qj (t)− ∂ξn qj (t)∂xn qi (t)+ H̃qi (t)qj (t),

where H̃ is the Hamiltonian vector field in T ∗
{xn = t}. In particular, since ∂ξn q̃i (t) = 0 and H̃qi (t)

is tangent to Ht , we have {qi (t), qj (t)}|Ht = 0. Hence, {qi (t), qj (t)} ≡ 0, {qi (t), p} = 0, qi (0) = xi ,
and {qi (t)}n−1

i=1 define 0γ (t). Next, observe that there exists s ∈ R such that, for each i = 1, . . . , n − 1,
qi (0)(x, ξ)= xi (ϕs(x, ξ)) with ϕs(x, ξ) ∈ H0. Since ∂ξn p ̸= 0 on H0, for E near 0 there exist aE and eE

such that
p(x, ξ)− E = eE(x, ξ)(ξn − aE(x, ξ ′)) (6-14)

with eE > c for some constant c> 0. In particular, ϕs = es Hp is a reparametrization of ϕ̃s := es(Hξn−aE ) on
{p = E}, and we have that, for (x, ξ) ∈ {p = E} and all i = 1, . . . , n − 1,

qi (0)(x, ξ)= xi (ϕ̃−xn (x, ξ))= xi + xn∂ξi aE(x, ξ ′)+ O(x2
n)C∞ .

In particular, on Ht ∩ {p = E}, using this together with the fact that since Hqj (t) is tangent to {p = E}

and xn = t , ∂ξn qi (t)= ∂ξn q̃i (t)= 0, we have

{qj (t), qi (0)}|Ht∩{p=E} = ∂ξn qj (t)∂xn qi (0)− ∂xn qj (t)∂ξn qi (0)+ H̃qj (t)qi (0)

= ∂ξn q̃j (t)∂xn qi (0)− ∂xn qj (t)O(t2)+ H̃q̃j (t)qi (0)

= O(t2)+ ∂ξj (t∂ξi aE)(0, ξ ′).

Now, since ∂2
ξ p|T {p=E} > 0 and, for all i, j = 1, . . . , n,

∂ξi ξj p = ∂ξj ∂ξi eE(ξn − aE)+ ∂ξi eE(δnj − ∂ξj aE)+ ∂ξj eE(δni − ∂ξi aE)− eE∂ξj ∂ξi aE , (6-15)

we have, as quadratic forms, ∂2
ξ p|T {p=E} = −eE∂

2
ξ aE |T {p=E}. Indeed, if V =

∑
j V j∂ξj ∈ T {p = E}, then

0 = V (p − E)|p=E = eE V (ξn − aE)+ (V eE)(ξn − E)|p=E = eE V (ξn − aE),
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and therefore, since eE ̸= 0, we have V (ξn − aE)|p=E = 0. Next, observe that, on {p = E},

∂ξi eE

∑
j

(δnj − ∂ξj aE)V j
= ∂ξi eE(V (ξn − aE))= 0.

In particular, the first three terms in (6-15) vanish on T {p = E}.
Hence, since ∂2

ξ ′ p|x=0,ξ=(0,1) = Id, we have that ∂2
ξ ′aE(0, ξ ′) < 0 is a multiple of the identity at x = 0,

ξ ′
= 0, and p = E . Next, observe that

0γ (0) ∩0γ (t) ⊂ {(0, s, 0, ξn) : s ∈ R, ξ ′
= 0}.

Therefore, there are c,C > 0 with

cδi j t + O(t2)≤
∣∣{qi (t), qj (0)}|Ht∩{p=E}∩0γ (0)∩0γ (t)

∣∣ ≤ Cδi j t + O(t2)

on 0γ (0) ∩0γ (t). Then, cδi j t + O(t2) ≤
∣∣{qi (t), qj (0)}|{p=E}

∣∣ ≤ Cδi j t + O(t2) by invariance under Hp.
Since E small is arbitrary, this holds on 0γ (0) ∩0γ (t).

Now, by Darboux’s theorem, there is a symplectomorphism κ such that, for all i = 1, . . . , n − 1,
κ∗qi (0)= xi and κ∗ p = ξn . In particular, κ−1(0γ (0))⊂0(0)= {(0, xn, ξ

′, ξn) : xn ∈ R, ξ ∈ Rn−1
×R} and,

abusing notation slightly by relabeling qi (t)= κ∗qi (t), we have that (6-6) and (6-7) hold. In particular,
Proposition 6.4 applies to 0(t)= κ−1(0γ (t)).

Now, let U be a microlocally unitary quantization of κ and X (t)∈9−∞

0γ (t),ρ
. Then, U−1 X (t)U ∈9−∞

0(t),ρ
and hence the corollary is proved. □

6C. Almost orthogonality for coisotropic cutoffs. In this section, we finally prove an estimate which
shows that coisotropic cutoffs associated with 0xi for many xi are almost orthogonal. This, together with
the fact that these cutoffs respect pointwise values near xi , is what allows us to control the number of
points at which a quasimode may be large.

Proposition 6.6. Let {B(xi , R)}N (h)
i=1 be a (D, R)-good cover for M, and X i ∈ 9−∞

0xi ,ρ
, i = 1, . . . , N (h),

with uniform symbol estimates. Then, there are C > 0 and h0 > 0 such that, for all 0 < h < h0,
J ⊂ {1, . . . , N (h)} and u ∈ L2(M), we have∑

j∈J

∥X j u∥
2
L2 ≤ C(1 + (h2ρ−1 R−1)(n−1)/2

|J |
(3n+1)/(2n)(1 + (h2ρ−1 R−1)(n−1)/4))∥u∥

2
L2 . (6-16)

Proof. To prove this bound we will decompose the sum in (6-16) as∑
i∈J

∥X i u∥
2
L2 =

∥∥∥∥∑
i∈J

X i u
∥∥∥∥2

L2
−

〈 ∑
i, j∈J
i ̸= j

X∗

j X i u, u
〉
. (6-17)

First, we note that by Corollary 6.5, (once with X (0) = X∗

j and X (t) = X i , and once with X (0) = X j

and X (t)= X∗

i ) there exists C > 0 such that, for i ̸= j ,

∥X∗

j X i∥+∥X j X∗

i ∥ ≤ Ch(n−1)(ρ−1/2)d(xi , x j )
(1−n)/2.
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Therefore, by the Cotlar–Stein lemma,∥∥∥∥∑
j∈J

X j

∥∥∥∥ ≤ sup
j∈J

(
∥X j∥ +

∑
i∈J \{ j}

∥X∗

j X i∥
1/2

+ ∥X j X∗

i ∥
1/2

)
≤ 2 + Ch(n−1)(ρ−1/2)/2 sup

j∈J

∑
i∈J \{ j}

d(xi , x j )
(1−n)/4.

To estimate the sum, observe that there exists C > 0 such that, for any j ∈ J and any positive integer k,

2kn

C
≤ #{i : 2k R ≤ d(xi , x j )≤ 2k+1 R} ≤ C2(k+1)n.

In particular, there is C > 0 such that, for any j ∈ J ,

∑
i∈J \{ j}

d(xi , x j )
(1−n)/4

≤ C

1
n log2 |J |∑

k=0

2kn(2k R)(1−n)/4
≤ C |J |

(3n+1)/(4n)R(1−n)/4. (6-18)

Therefore, we shall bound the first term in (6-17) using∥∥∥∥∑
j∈J

X j

∥∥∥∥ ≤ C + Ch(n−1)(ρ−1/2)/2 R(1−n)/4
|J |

(3n+1)/(4n). (6-19)

We next proceed to control the second term in (6-17). Let X̃ j ∈9−∞

0xj ,ρ
such that

X̃ j X j = X j + O(h∞)L2→L2 .

By the Cotlar–Stein Lemma,∥∥∥∥ ∑
i, j∈J
i ̸= j

X∗

j X i

∥∥∥∥ ≤ sup
k,ℓ∈J

k ̸=ℓ

∑
i, j∈J
i ̸= j

∥X∗

k X̃ℓXℓX∗

j X̃∗

j X i∥
1/2

+ ∥X∗

ℓ X̃k Xk X∗

i X̃∗

i X j∥
1/2

+ O(h∞
|J |

2). (6-20)

By Corollary 6.5 there exists C > 0 such that, for k ̸= ℓ, i ̸= j ,

∥X∗

k X̃ℓXℓX∗

j X̃∗

j X i∥ ≤ Ch(n−1)(2ρ−1) min{1, h(n−1)(2ρ−1)/2d(x j , xℓ)−(n−1)/2
}(d(xk, xℓ)d(x j , xi ))

(1−n)/2.

Using that
sup

k,ℓ∈J
k ̸=ℓ

d(xk, xℓ)(1−n)/4
≤ R(1−n)/4,

adding in (6-20), and combining with the bound in (6-18), we get∥∥∥∥ ∑
i, j∈J
i ̸= j

X∗

j X i

∥∥∥∥ ≤ Ch(n−1)(2ρ−1)/2(1+h(n−1)(2ρ−1)/4
|J |

(3n+1)/(4n)R(1−n)/4)|J |
(3n+1)/(4n)R(1−n)/2. (6-21)

In particular, combining (6-19) and (6-21) into (6-17) we obtain∑
i∈J

∥X i u∥
2
≤ C(1 + h(n−1)(ρ−1/2)R(1−n)/2

|J |
(3n+1)/(2n)

+ h3(n−1)(2ρ−1)/4 R3(1−n)/4
|J |

(3n+1)/(2n))∥u∥
2
L2

≤ C(1 + h(n−1)(ρ−1/2)R(1−n)/2(1 + (h2ρ−1 R−1)(n−1)/4)|J |
(3n+1)/(2n))∥u∥

2
L2 . □
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We employ functional analysis techniques in order to deduce some versions of classical and recent
interpolation results in Fourier analysis with perturbed nodes. As an application of our techniques, we
obtain generalizations of Kadec’s 1

4 -theorem for interpolation formulae in the Paley–Wiener space both
in the real and complex cases, as well as versions of the recent interpolation result of Radchenko and
Viazovska (Publ. Math. Inst. Hautes Études Sci. 129 (2019), 51–81) and the result of Cohn, Kumar,
Miller, Radchenko and Viazovska (Ann. Math (2) 196:3 (2022), 983–1082) for Fourier interpolation with
derivatives in dimensions 8 and 24 with suitable perturbations of the interpolation nodes. We also provide
several applications of the main results and techniques, relating to recent contributions in interpolation
formulae and uniqueness sets for the Fourier transform.
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1. Introduction

A fundamental question in analysis is that of how to recover a function f from some subset { f (x)}x∈A of
its values, together with some information on its Fourier transform f̂ : R → C, which we define to be

f̂ (ξ)=

∫
R

f (x)e−2π i xξ dx . (1-1)

Perhaps the most classical result in that regard is the Shannon–Whittaker interpolation formula: if f̂ is
supported on an interval [−δ/2, δ/2], then

f (x)=

∞∑
k=−∞

f (k/δ) sinc(δx − k), (1-2)

where convergence holds both in L2(R) and uniformly in compact sets of C, where we let sinc(x) =

sin(πx)/(πx). A major recent breakthrough in regard to the problem of determining which conditions
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on the sets A, B ⊂ R imply that a function f ∈ S(R) is uniquely determined by its values at A and the
values of its Fourier transform at B was made in [Radchenko and Viazovska 2019], where the authors
proved that, if f : R → R is even and Schwartz, then

f (x)=

∞∑
k=0

f (
√

k)ak(x)+
∞∑

k=0

f̂ (
√

k)âk(x). (1-3)

Radchenko and Viazovska’s result and its techniques were somewhat inspired by Viazovska’s recent
solution [2017] to the sphere-packing problem in dimension 8, and her subsequent work with Cohn,
Kumar, Miller and Radchenko [Cohn et al. 2017] to solve the same problem in dimension 24. Indeed, the
proof of (1-3) uses such tools from the theory of modular forms heavily for constructing and bounding
the basis functions {an}n≥0.

Subsequent to the Radchenko–Viazovska result, other recent works have successfully used a similar
approach in order to tackle what are now known as Fourier interpolation and Fourier uniqueness problems.
Among those, we mention the following:

(1) Cohn and Gonçalves [2019] used a modular form construction in order to obtain that there are cj > 0,
j ∈ N, so that, for each f ∈ Srad(R

12) real,

f (0)−
∑
j≥1

cj f (
√

2 j)= − f̂ (0)+
∑
j≥1

cj f̂ (
√

2 j). (1-4)

Such a formula enables the authors to prove a sharp version of a root uncertainty principle first raised by
Bourgain, Clozel and Kahane [Bourgain et al. 2010] in dimension 12; see, e.g., [Gonçalves et al. 2017;
2021; 2023] for more information on this topic.

(2) On the other hand, Cohn, Kumar, Miller, Radchenko and Viazovska [Cohn et al. 2022] built upon the
basic ideas of [Radchenko and Viazovska 2019] to be able to prove universal optimality results about the
E8 and Leech lattices in dimensions 8 and 24, respectively. In order to do so, they prove interpolation
formulae in such dimensions that involve the values of f (

√
2n), f ′(

√
2n), f̂ (

√
2n), f̂ ′(

√
2n), where f

is a radial, Schwartz function, and n ≥ n0, with n0 = 1 if d = 8, and n0 = 2 in case d = 24.

(3) Talebizadeh Sardari [2021] studied the problem of constructing interpolation formulae involving the
values f (

√
r), f ′(

√
r), f̂ (

√
r), f̂ ′(

√
r), where f is a radial, Schwartz function, in R2, and r is any point

in the set {(4
3

)1/4
√

n2 + nm + m2 : n,m ∈ Z
}
,

which would correspond to a Fourier interpolation formula with derivatives over the hexagonal lattice.
Such a formula was conjecture not to exist in [Cohn et al. 2022, Conjecture 7.5], and indeed that is the
case: there are infinitely many linearly independent Schwartz functions that cannot be recovered by these
values. This is perhaps surprising, since the hexagonal lattice is conjectured to be universally optimal
in the language of [Cohn et al. 2022], which suggests this problem is not amenable to the exact same
techniques in that work in dimensions 8 and 24.

(4) Finally, more recently, other developments in the theory of interpolation formulae given values
on both Fourier and spatial sides have been made by Stoller [2021], who considered the problem of
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recovering any function in Rd from its restrictions and the restrictions of its Fourier transforms to spheres
of radii

√
n, where n > 0, is an integer, and for any d > 0. Moreover, we mention also the more recent

work of Bondarenko, Radchenko and Seip [Bondarenko et al. 2023], which generalizes Radchenko and
Viazovska’s construction of the interpolating functions to prove interpolation formulae for some classes
of functions f that take into account the values of f̂ at log n/(4π), and the values of f at a sequence(
ρ−

1
2

)
/ i , where ρ ranges over nontrivial zeros of some L-function with positive imaginary part.

One fundamental point to stress is that, in a suitable way, all the previously mentioned results relate some
sort of summation formula, the most basic instance of such being the classical Poisson summation formula∑

m∈Z

f (m)=

∑
n∈Z

f̂ (n),

which is obtained in [Radchenko and Viazovska 2019] as a particular case of (1-3) by setting x = 0, with
some modular form construction. In this direction, the formula (1-4) is also a manifestation of such a
principle that implies rigidity between certain values of f and other values of f̂ .

The aforementioned connection between summation formulae and modular forms is classical, with the
modularity of the Jacobi theta series θ being a primal example of how one relates to the other. On the
other hand, this connection may be deepened through the following argument: Suppose that a summation
formula of the kind ∑

a∈A

ca f (a)=

∑
a∈A

ca f̂ (a) (1-5)

holds for all f ∈ S(R) a radial function. This is seen to be equivalent, by a density argument (see, for
instance, [Radchenko and Viazovska 2019, Section 6]), to (1-5) holding for f (x)= ei zπ |x |

2
, where z ∈ C

is fixed so that Im(z) > 0. This, on the other hand, is equivalent to the function M(z) =
∑

a∈A eiπ z|a|
2

satisfying the modular relationship (−i z)−d/2 M(−1/z) = M(z) in the upper half-space. In particular,
if A ⊂

√
Z+, then M satisfies additionally some periodicity condition, and thus a search for M can be

further narrowed to a certain space of modular forms.
From a similar yet not identical point of view, however, the topics described above can also be inserted

into the framework of crystalline measures. Indeed, if we adopt the classical definition of a crystalline
measure to be a distribution with locally finite support, such that its Fourier transform possesses the
same support property, we will see that the Poisson summation formula implies, for instance, that the
measure δZ is not only a crystalline measure, but also self-dual, in the sense that δZ = δ̂Z holds in S ′(R).

Outside the scope of interpolation formulae per se, we mention the works [Lev and Olevskii 2013; 2015;
Meyer 2017], where the authors explore on a deeper lever structural questions on crystalline measures. In
particular, Meyer [2017] exhibits examples of crystalline measures with self-duality properties, and uses
modular forms to construct explicitly examples of nonzero self-dual crystalline measures µ supported on
{±

√
k + a : k ∈ Z+} for a ∈ {9, 24, 72}. We also mention [Kurasov and Sarnak 2020], where the authors,

as a by-product of investigations of the additive structure of the spectrum of metric graphs, prove that
there are exotic examples of positive crystalline measures other than generalized Dirac combs.

Our investigation in this paper focuses on both classical and modern results in the theory of such
interpolation formulae and crystalline measures. In generic terms, we are interested in determining when,
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given an interpolation formula such as (1-2) or (1-3), we can perturb it suitably. That is, given a sequence
of real numbers {εk}k∈Z, under which conditions can we recover f from the values

{( f (sn + εn), f̂ (ŝn + εn))}n∈Z, (1-6)

given that we can recover f from {( f (sn), f̂ (ŝn))}n∈Z?
In this manuscript, the main idea is to study such perturbations of interpolation formulae for band-

limited and Schwartz functions through functional analysis. Indeed, most of our considerations are based
on the idea that, whenever an operator T : B → B, where B is a Banach space, satisfies

∥T − I∥B→B < 1,

then T is, in fact, a bijection with continuous inverse T −1
: B → B. In fact, in all our considerations on

interpolation formulae below, some form of this principle will be employed, and other proofs and results
in the paper, such as Theorem 1.6, which gives new bounds related to the Radchenko–Viazovska formula,
arise naturally when trying to employ this principle in different contexts.

1A. Perturbations and interpolation formulae in the band-limited case. The question of when we are
able to recover the values of a function such that its Fourier transform is supported in

[
−

1
2 ,

1
2

]
from its

values at n + εn is well known, having been asked in [Paley and Wiener 1934], where the authors proved
that recovery — and also an associated interpolation formula — is possible as long as supn |εn| < π

−2.
Many results relate to the original problem of Paley and Wiener, but the most celebrated of them all is the
so-called Kadec- 1

4 theorem, which states that, as long as supn |εn|<
1
4 , one can recover any f ∈ L2(R)

which has Fourier support on
[
−

1
2 ,

1
2

]
from its values at n + εn , n ∈ Z; see [Kadec 1964] for the original

proof and [Avantaggiati et al. 2016] for a generalization.
Our first results provide one with a simpler proof of a particular range of Kadec’s result. We recall,

for that matter, that the Paley–Wiener space PWπ (R) is defined as the aforementioned space of all
square-integrable functions on the real line such that f̂ has support in the interval

[
−

1
2 ,

1
2

]
.

Theorem 1.1. Let {εk}k∈Z be a sequence of real numbers and assume L = supk |εk | < L0, where
L0 = 0.239 . . . is defined to be the smallest positive solution to the equation

sin(πL0)

πL0
=
π

3
L0 sinπL0

1 − L0
+ sin(πL0).

Then any function f ∈ PWπ is completely determined by its values { f (n + εn)}n∈Z, and there is
C = C(L) > 0 such that

1
C

∑
n∈Z

| f (n + εn)|
2
≤ ∥ f ∥

2
2 ≤ C

∑
n∈Z

| f (n + εn)|
2

for all f ∈ PWπ .
Moreover, there are functions gn ∈ PWπ (R) such that for every f ∈ PWπ , the following identity holds:

f (x)=

∑
n∈Z

f (n + εn)gn(x),

where the right-hand side converges absolutely in compact sets of C.
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The condition in Theorem 1.1 is satisfied for L < 0.239, which possesses only a 0.011 difference from
Kadec’s result. The main difference, however, is that while Kadec’s proof relies on a clever expansion of
the underlying functions in a different orthonormal basis, we make a less direct use of orthogonality in
our considerations.

We also remark that, in the proof of Theorem 1.1, one can use complex numbers for perturbations.
The difference is that we have to take into account the sine of complex numbers, and the resulting bound
would be L < 0.2125 instead of L < 0.239. This only falls very mildly short of the results in [Avantaggiati
et al. 2016, Theorem 3], where L < 0.218 is achieved in the complex setting, and our methods of proof
are relatively simpler in comparison to those of that work, where the authors must enter the realm of
Lamb–Oseen functions and constants.

As another application of the idea of inverting an operator, we present a couple of results related to
Vaaler’s interpolation formula. J. Vaaler [1985] proved, as means to study extremal problems in Fourier
analysis, the following counterpart to the Shannon–Whittaker interpolation formula: Let f ∈ L2(R), and
suppose that f̂ is supported on [−1, 1]. Then

f (x)=
sin2(πx)
π2

∑
k∈Z

{
f (k)

(x − k)2
+

f ′(k)
x − k

}
. (1-7)

This can be seen as a natural tradeoff: (1-2) demands that we have information at 1
2 Z in order to recover

the functions f as stated above. On the other hand, Vaaler’s result only demands information at Z, but
one must pay the price of replacing the rest of the information by values of the derivative at Z.

The first result concerning (1-7) is a direct deduction of its validity from the Shannon–Whittaker
formula (1-2). We state it in the following form.

Theorem 1.2 [Vaaler 1985]. Fix a sequence {ak}k∈Z ∈ ℓ2(Z). Consider the function f ∈ PWπ given by

f (x)=

∑
n∈Z

an sinc(x − n)

for each x ∈ R. Then the interpolation formula

f (x)=
4 sin2(π

2 x
)

π2

∑
k∈Z

{
a2k

(x − 2k)2
+

b2k

x − 2k

}
(1-8)

holds, where the right-hand side converges uniformly on compact sets, and we let

bk =

∑
j ̸=k

aj

k − j
(−1)k− j .

It is a consequence of (1-8) that f ′(2k) = b2k in Theorem 1.2 above. Moreover, we note that one
readily obtains Vaaler’s formula from (1-8) above: indeed, in order to obtain (1-7) for a square-integrable
function g ∈ L2(R) with supp(ĝ) ⊂ [−1, 1], consider f (x) = g

( 1
2 x

)
. It follows that f satisfies the

hypotheses of Theorem 1.2, and substituting back allows one to conclude (1-7) from (1-8).
A main difference between our proof of Theorem 1.2 and the original proof in [Vaaler 1985] is the

absence of any significant use of the Fourier transform. Differently, however, from the de Branges spaces
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approach in [Gonçalves 2017], we do not delve deeply into any theory of function spaces, but rather we
make use of classical operators in ℓ2(Z) such as discrete Hilbert transforms and its properties. We believe
our approach might lead to derivations of other interesting interpolation formulae.

Our final contribution in the realm of interpolation formulae for band-limited function is a generalized
version of Vaaler’s formula (1-7) with perturbed nodes. We mention that, to the best of our knowledge,
this result in its present form is new, as Vaaler’s ideas are rigid to specific properties of integers and
Fourier transforms of special functions such as sinc(x)2.

Theorem 1.3. Let {εk}k∈Z be a sequence of real numbers and consider L = supk |εk |. Suppose that
L < 0.111. Then any function f ∈ PW2π is completely determined by its values { f (n + εn)}n∈Z and those
of its derivative { f ′(n + εn)}n∈Z, and there is C = C(L) > 0 such that

1
C

∑
n∈Z

(| f (n + εn)|
2
+ | f ′(n + εn)|

2)≤ ∥ f ∥
2
2 ≤ C

∑
n∈Z

|(| f (n + εn)|
2
+ | f ′(n + εn)|

2) (1-9)

for all f ∈ PW2π .
Moreover, there are functions gn, hn ∈ PW2π so that, for all f ∈ PW2π , we have

f (x)=

∑
n∈Z

{ f (n + εn)gn(x)+ f ′(n + εn)hn(x)},

where convergence holds absolutely.

This result and its method of proof resemble the ideas from Theorem 1.1 and its proof, with an increase
in technical difficulties, such as considering higher-order analogues of the perturbed discrete Hilbert
transforms we use for the proof of Theorem 1.1. We note also that some further technical changes, together
with [Littmann 2006], allow one to extend the perturbation results for arbitrarily many derivatives; see
Theorem 6.1 for a discussion on that.

We point the reader, for instance, to the remark following Corollary 2 in [Gonçalves 2017] together with
[Lyubarskii and Seip 2002; Ortega-Cerdà and Seip 2002] for related discussion on sampling sequences
with derivatives for PWπ ; see also [Gonçalves and Littmann 2018] for discussions involving higher-order
derivatives.

1B. Perturbations of symmetric interpolation formulae. Moving on from band-limited functions to
Schwartz functions instead, we notice that the Radchenko–Viazovska result (1-3), although being a major
breakthrough, is rigid in its statement: the interpolating functions are carefully tailored to interpolate at
the {

√
n}n≥0 nodes. The same sort of phenomenon happens to the result of [Cohn et al. 2022], as the

construction takes into account a specific property of {
√

2n}n≥n0 in dimensions 8 and 24.
A natural and yet unexplored question is that of determining whether formula (1-3) is rigid for its

interpolation nodes or not. In other words, a natural question concerns conditions when we can replace
a single interpolation node

√
k by a suitable perturbation of it, say

√
k + εk , where εk ∈ (−1, 1). To the

best of our knowledge, even this simple case remained open prior to this manuscript.
Such a question inspired the following result. Perhaps surprisingly, the idea of inverting an operator T

when it is reasonably close to the identity still works in this context. The next result may thus be regarded
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as the main result and novelty of this paper, establishing criteria when we are allowed, not only to perturb
one node in the interpolation formula, but all of them simultaneously.

Theorem 1.4. There is δ > 0 so that, for each sequence of real numbers {εk}k≥0 such that εk ∈
(
−

1
2 ,

1
2

)
,

ε0 = 0, supk≥0 |εk |(1 + k)5/4 log3(1 + k) < δ, there are sequences of functions {θj } j≥0, {ηj } j≥0, with

|θj (x)| + |ηj (x)| + |θ̂j (x)| + |η̂j (x)| ≲ (1 + j)O(1)(1 + |x |)−10

and

f (x)=

∑
j≥0

(
f (

√
j + εj )θj (x)+ f̂ (

√
j + εj )ηj (x)

)
for all f ∈ Seven(R) real-valued functions.

In other words, we can perturb each interpolation node from
√

k to ∼
√

k + k−5/4 and still obtain a
valid interpolation formula converging for all Schwartz functions. In fact, one does not strictly need that
f ∈ S(R), but only that f, f̂ decay at least as fast as (1 + |x |)−M for some sufficiently large M ≫ 1.

Theorem 1.4 is related to [Cohn and Triantafillou 2021, §6]. Indeed, in that paper, they construct
summation formulae of the form

∞∑
n=0

an f (
√

n)=

(
2

√
N

)d/2 ∞∑
n=0

bn f̂ (2
√

n/N ),

where N is a suitable positive integer, where they aim to make the coefficients {an}n≥0, {bn}n≥0 non-
negative, in order to obtain better estimates for the linear programming bounds for the sphere-packing
problem. In §7 in [Cohn and Triantafillou 2021], the authors mention that a “modular” method as carried
out by them cannot achieve perturbed nodes in such an interpolation formula, which would be desirable
for numerical purposes.

Theorem 1.4, on the one hand, does prove that we can make this rigid property somewhat looser
when it comes to the Radchenko–Viazovska interpolation formula, but on the other hand, positivity of
coefficients can by no means be guaranteed in our present case. It would be, however, interesting if one
could explore further the connections between our methods and those in [Cohn and Triantafillou 2021] to
obtain better bounds, but we have not pursued such a path in this work.

As an immediate corollary of Theorem 1.4, we obtain the following:

Corollary 1.5. Let {εj } j≥0 satisfy the hypotheses of Theorem 1.4. Define a continuous family of measures

µx =
δx + δ−x

2
−

∑
j≥0

θj (x)
2

δ
±
√

j+εj
.

Then these measures possess Fourier transforms given by

µ̂x =

∑
j≥0

ηj (x)
2

δ
±
√

j+εj
.

In particular, these measures are nontrivial examples of crystalline measures supported on both space
and frequency on any set of the form {±x} ∪ {±

√
k + εk : |εk | ≪ log−3 (1 + k) · (1 + k)−5/4

}.
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This result, in particular, aligns well with the recent examples from [Bondarenko et al. 2023; Kurasov
and Sarnak 2020], which indicate that crystalline measures are, if not impossible, very hard to classify.
Its proof follows from the fact that µx is even and real-valued, so that its distributional Fourier transform
will also be an even and real-valued distribution. Therefore, it suffices to test against even, real-valued
functions f , and thus Theorem 1.4 gives us the asserted equality.

In order to prove Theorem 1.4, we need to find a suitable space to use the idea of inverting operators
close to the identity. It turns out that, in analogy to Sobolev spaces, the weighted spaces ℓ2

s (N) of
sequences square summable against ns are natural candidates to work with, as they are well-suited to
accommodate the sequence

{( f (
√

k + εk), f̂ (
√

k + εk))}k≥0

whenever f, f̂ decay sufficiently fast. In order to prove some perturbation result — that is, a weaker
version of Theorem 1.4 — using the spaces ℓ2

s (N) together with the polynomial growth bounds on {an}n≥0

from (1-3) is already enough.
On the other hand, the fact that we may push the perturbations up until the k−5/4 threshold needs a

suitable refinement to [Radchenko and Viazovska 2019] or even to the bound of [Bondarenko et al. 2023].
The next result, thus, represents an improvement over those in [Bondarenko et al. 2023; Radchenko and
Viazovska 2019], as besides obtaining uniform bounds, we are able to introduce exponential decay factors
to the interpolating functions.

Theorem 1.6. Let b±
n = an ± ân , where {an}n≥0 are the basis functions in (1-3). Then there is an absolute

constant c > 0 such that

|b±

n (x)| ≲ n1/4 log3(1 + n)e−c|x |/
√

n,

|(b±

n )
′(x)| ≲ n3/4 log3(1 + n)e−c|x |/

√
n

for all positive integers n ∈ N.

The proof of such a result employs a mixture of the main ideas for the uniform bounds in [Radchenko
and Viazovska 2019; Bondarenko et al. 2023], with the addition of an explicit computation of the best
uniform constant bounding |x |

k
|b±

n (x)+ (b
±
n )

′(x)| in terms of k and n. In order to obtain such a constant,
we employ ideas from characterizations of Gelfand–Shilov spaces, as in [Chung et al. 1996].

We remark that, with a modification of the growth lemma for Fourier coefficients of 2-periodic functions,
we are able to obtain a slight improvement over the growth stated in Theorem 1.6. As, however, this
modification does not yield any improvement on the perturbation range stated in Theorem 1.4, we postpone
a more detailed discussion about it to Corollary 4.6 below.

1C. Applications. As a by-product of our method of proof for Theorem 1.4, we are able to deduce some
interesting consequences in regard to some other interpolation formulae and uniqueness results.

Indeed, it is a not-so-difficult task to adapt the ideas employed before to the contexts of interpolation
formulae for odd functions. As remarked by Radchenko and Viazovska, the following interpolation
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formula is available whenever f : R → R is odd and belongs to the Schwartz class:

f (x)= d+

0 (x)
f ′(0)+ i f̂ ′(0)

2
+

∑
n≥1

(
cn(x)

f (
√

n)
√

n
− ĉn(x)

f̂ (
√

n)
√

n

)
,

where the interpolating sequence {ci }i≥0 possesses analogous properties to those of {ai }i≥0, and the
function

d+

0 (x)=
sin(πx2)

sinh(πx)

is odd and real and so it vanishes together with its Fourier transform at ±
√

n, n ≥ 0.
With our techniques, we are able to prove an analogous result to Theorems 1.6 and 1.4 for the odd

interpolation formula. Also, with our techniques, we are able to prove a version of Cohn–Kumar–Miller–
Radchenko–Viazovska interpolation results with derivatives in dimensions 8 and 24 with perturbed nodes
in a suitable range, as polynomial growth bounds for such interpolating functions are available in [Cohn
et al. 2022]; see Theorems 5.11 and 5.13 for more details.

Another interesting application of our techniques delves a little deeper into functional analysis tech-
niques. Indeed, in order to prove that the operator that takes the set of values { f (

√
k)}k≥0, { f̂ (

√
k)}k≥0

to the sequences
{ f (

√
k + εk)}k≥0, { f̂ (

√
k + εk)}k≥0

is bounded and close to the identity on a suitable ℓ2
s (N)× ℓ2

s (N) space, we explore two main options,
which are Schur’s test and the Hilbert–Schmidt test. Although there is no direct relation between them,
Schur’s test seems to hold, in generic terms, for more operators than the Hilbert–Schmidt test, and for that
reason we employ the former in our proof of Theorem 1.4. On the other hand, the Hilbert–Schmidt test
has the advantage that, whenever an operator is bounded in the Hilbert–Schmidt norm, it is automatically
a compact operator. This allows us to use many more tools derived from the theory of Fredholm operators,
and, in particular, deduce a sort of interpolation/uniqueness result in the case ε0 ̸= 0, which is excluded
by Theorem 1.4 above; see Theorem 5.3 below for such an application.

The final interesting application of Theorem 1.4 and its techniques the we present is to the problem of
Fourier uniqueness for powers of integers. In [Ramos and Sousa 2022], we have proven a preliminary
result on conditions on (α, β), 0< α, β, α+β < 1, so that the only f ∈ S(R) such that

f (±nα)= f̂ (±nβ)= 0

is f ≡ 0. In particular, we prove that, if α = β, then we can take α < 1 −

√
2

2 .
By an approximation argument, a careful analysis involving Laplace transforms and the perturbation

techniques and results above, we are able to reprove such a result for α = β in the α < 2
9 range in the

case f is real and even by a completely different method than that in [Ramos and Sousa 2022]. Although
the current method does not yield any improvement over [Ramos and Sousa 2022, Theorem 1], we obtain
additionally some strong annihilation properties of such pairs, in the form of Corollary 5.10, which are
novel in that context.

Still on the subject of annihilation, we obtain two other interesting results.
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Theorem 1.7. For each s > 1 sufficiently large, there are γ > s and ω > 0 such that both inequalities(∑
n≥0

(1 + n)s[| f (
√

n)|2 + | f̂ (
√

n)|2]
)1/2

≲ ∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ ), (1-10)

∥ f ∥L2((1+|x |)s) + ∥ f̂ ∥L2((1+|x |)s) ≲

(∑
n≥0

(1 + n)ω[| f (
√

n)|2 + | f̂ (
√

n)|2]
)1/2

(1-11)

hold for each f ∈ Seven(R) real.

Corollary 1.8. Let {εi }i∈N satisfy the hypotheses of Theorem 1.4. Then for s ≫ 1 sufficiently large, both
inequalities(∑

n≥0

(1+n)s[| f (
√

n+εn)|
2
+| f̂ (

√
n+εn)|

2
]

)1/2

≲ ∥ f ∥L2((1+|x |)γ )+∥ f̂ ∥L2((1+|x |)γ ),

∥ f ∥L2((1+|x |)s)+∥ f̂ ∥L2((1+|x |)s)≲

(∑
n≥0

(1+n)ω[| f (
√

n+εn)|
2
+| f̂ (

√
n+εn)|

2
]

)1/2

hold for each f ∈ Seven(R) real, where ω, γ are as in Theorem 1.7.

We refer the reader to discussion in Section 5C for more precise definitions about annihilating pairs
We should remark that it has been recently communicated to us by Kulikov, Nazarov and Sodin (personal

communication) that they have been able to significantly strengthen the results in [Ramos and Sousa 2022].
As a particular application of their results, they are able to obtain the whole range α+β < 1, conjectured
in [loc. cit.]. In fact, they can say quite a bit more even in the “critical” case α+β = 1, constructing also
suitable counterexamples to these uniqueness questions. It has also been communicated to us that they have
obtained strong annihilating properties in such a range as well. In spite of that, we have decided to maintain
this application of our work, as it contains interesting ideas that could be applied to other uniqueness
problems of similar flavor. In particular, Theorem 1.7 and Corollary 1.8 are a novelty of this present
work, and seem not to be included as a consequence of the results from Kulikov, Nazarov and Sodin.

1D. Organization. We comment briefly on the overall display of our results throughout the text. In
Section 2 below, we discuss generalities on background results needed for the proofs of the main theorems,
going over results in the theory of band-limited functions, modular forms and functional analysis. Next,
in Section 3, we prove, in this order, Theorems 1.1, 1.2 and 1.3 about band-limited perturbed interpolation
formulae. We then prove, in Section 4, Theorem 1.4, by first discussing the proof of Theorem 1.6 in
Section 4A. We then discuss the applications of our main results and techniques in Section 5, and finish
the manuscript with Section 6, talking about some possible refinements and open problems that arise
from our discussion throughout the paper.

2. Preliminaries

2A. Band-limited functions. We start by recalling some basic facts about band-limited functions. Given a
function f ∈ L2(R), we say that it is band-limited if its Fourier transform satisfies that supp( f̂ )⊂[−M,M]

for some M > 0. In this case, we say that f is band-limited to [−M,M].
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It is a classical result due to Paley and Wiener that a function f ∈ L2(R) is band-limited to [−σ, σ ] if
and only if it is the restriction of an entire function F : C → C to the real axis, and the function F is of
exponential type 2πσ , i.e., for each ε > 0, there is Cε such that

|F(z)| ≤ Cεe(2πσ+ε)|z|

for all z ∈ C. From now on we will abuse notation and let F = f whenever there is no danger of confusion,
and we may also write f ∈ PW2πσ (Paley–Wiener space) to denote the space of functions with such
properties.

Besides this fact, we will make use of some interpolation formulae for those functions. Namely:

(1) Shannon–Whittaker interpolation formula. For each f ∈ L2(R) band-limited to
[
−

1
2 ,

1
2

]
, the following

formula holds:

f (x)=

∑
n∈Z

f (n) sinc(x − n),

where sinc(x)= sin(πx)/(πx) and the sum above converges both in L2(R) and uniformly on compact
sets of C.

(2) Vaaler interpolation formula. For each f ∈ L2(R) band-limited to [−1, 1], the following formula
holds:

f (x)=

(
sinπx
π

)2 ∑
n∈Z

[
f (n)

(x − n)2
+

f ′(n)
x − n

]
,

where the right-hand side converges both in L2(R) and uniformly on compact sets of C.

For more details on these classical results, see, for instance, [Vaaler 1985; Littmann 2006; Paley and
Wiener 1934; Shannon 1949; Whittaker 1915].

2B. Modular forms. In order to prove the improved estimates on the interpolation basis for the Radchenko–
Viazovska interpolation result, we will need to make careful computations involving certain modular
forms defining the interpolating functions. For that purpose, we gather some of the facts we will need in
this subsection. For more information on the functions λ, J and the automorphy factors we just defined,
we refer the reader to [Chandrasekharan 1985; Radchenko and Viazovska 2019, Section 2; Berndt and
Knopp 2008; Zagier 2008].

We denote by H = {z ∈ C : Im(z) > 0} the upper half-plane in C. The special feature of this space is
that the group SL2(R) of matrices with real coefficients and determinant 1 acts naturally on it through
Möbius transformations:

γ =

(
a b
c d

)
∈ SL2(R), z ∈ H =⇒ γ z =

az + b
cz + d

∈ H.

Indeed, it suffices to look at the action of the quotient PSL2(Z)= SL2(Z)/{±I }, since clearly the action
by both matrices γ and −γ induces the same Möbius transformation. Some elements of this group will
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be of special interest to us. Namely, we let

I =

(
1 0
0 1

)
, T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
.

This already allows us to define the most valuable subgroup of SL2(Z) for us: the group 0θ is defined
then as the subgroup of SL2(Z) generated by S and T 2. This group has 1 and ∞ as cusps, and its standard
fundamental domain is given by

D = {z ∈ H : |z|> 1,Re(z) ∈ (−1, 1)}.

With these at hand, we define modular forms for 0θ . For that purpose, we will use the following notation
for the Jacobi theta series:

ϑ(z, τ )=

∑
n∈Z

exp(π in2τ + 2π inz).

We are interested in some of its Nullwerte, the so-called Jacobi theta series. These are defined in H by

22(τ )= exp
(
π
4 iτ

)
ϑ

( 1
2τ, τ

)
,

23(τ )= ϑ(0, τ )(=: θ(τ )),

24(τ )= ϑ
( 1

2 , τ
)
.

These functions satisfy the identity 24
3 =24

2 +24
4. Moreover, under the action of the elements S and T

of SL2(Z), they transform as

(−i z)−1/222(−1/z)=24(z), 22(z + 1)= exp
(
π
4 i

)
22(z),

(−i z)−1/223(−1/z)=23(z), 23(z + 1)=24(z),

(−i z)−1/224(−1/z)=22(z), 24(z + 1)=23(z).

(2-1)

These functions allow us to construct the classical lambda modular invariant given by

λ(z)=
22(z)4

23(z)4
.

Using q := q(z)= eπ i z, the lambda invariant can be alternatively rewritten as

λ(z)= 16q ×

∞∏
k=1

(
1 + q2k

1 + q2k−1

)8

= 16q − 128q2
+ 704q3

+ · · · . (2-2)

The function λ is also invariant under the action of elements of the subgroup 0(2)⊂ SL2(Z) of all matrices(a
c

b
d

)
so that a ≡ b ≡ 1 mod 2, c ≡ d ≡ 0 mod 2, and λ(z) never assumes the values 0 or 1 for z ∈ H.

Besides this invariance, (2-1) gives us immediately that

λ(z + 1)=
λ(z)

λ(z)− 1
, λ

(
−

1
z

)
= 1 − λ(z). (2-3)

We then define the following modular function for 0θ (which is a Hauptmodul for 0θ )

J (z)=
1
16λ(z)(1 − λ(z)).
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From (2-3), we obtain immediately that J is invariant under the action of elements of 0θ ; i.e.,

J (z + 2)= J (z), J
(
−

1
z

)
= J (z).

Other properties of the functions λ and J that we may eventually need will be proved throughout the text.
Finally, we mention that, for the proof in Section 4, we will need to use the so-called θ-automorphy

factor defined, for z ∈ H and γ ∈ 0θ , as

jθ (z, γ )=
θ(z)
θ(γ z)

.

We can then define a slash operator of weight k/2 to be

( f |k/2γ )(z)= jθ (z, γ )k f
(

az + b
cz + d

)
,

where γ =
(a

c
c
d

)
. These slash operators induce other sign slash operators given by

( f |
ε
k/2γ )= χε(γ )( f |k/2γ ),

where we let χε be the homomorphism of 0θ so that χε(S)= ε, χε(T 2)= 1.

2C. Functional analysis. We also recall some classical facts in functional analysis that will be useful
throughout our proof.

As our main goal and strategy throughout this manuscript is to prove that a small perturbation of
the identity is invertible, we must find ways to prove that the operators arising in our computations are
bounded. To this end, we use two major criteria to prove boundedness — and therefore to prove smallness
of the bounding constant. These are:

(1) Hilbert–Schmidt test [Brezis 2011, Chapter 6]. Let H be a (real or complex) Hilbert space, and let
there be given a linear operator T : H → H. If T satisfies additionally that∑

i, j

|⟨T ej , ei ⟩|
2 <+∞

for some orthonormal basis {ei }i∈Z of H, then the operator T is bounded. Moreover,

∥T ∥
2
H→H ≤

∑
i, j

|⟨T ej , ei ⟩|
2
=: ∥T ∥

2
H S.

(2) Schur test [Hedenmalm et al. 2000, Theorem 1.8]. Let (ai j )i, j≥0 denote a (possibly infinite) matrix of
complex numbers. Suppose that there are two sequences {vi }i≥0 and {wi }i≥0 of positive real numbers so
that ∑

i≥0

|ai j |wi ≤ λvj ,
∑
j≥0

|ai j |vj ≤ µqi

for some positive constants µ, λ> 0. Then the operator T : ℓ2(N)→ ℓ2(N) given by ai j =⟨T ei , ej ⟩ (where
{ei }i≥0 denotes the standard orthonormal basis of ℓ2(N)) extends to a bounded linear operator. Moreover,

∥T ∥ℓ2→ℓ2 ≤
√
µλ.
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Both tests will play a major role in the deduction of the validity of perturbed interpolation versions
of the Radchenko–Viazovska result. The main difference is that, while Schur’s test generally gives one
boundedness for more operators, the Hilbert–Schmidt test imposes stronger conditions on the operator. In
fact, let us denote by T ∈HS(H) the space of operators such that ∥T ∥H S <+∞. A classical consequence
of this fact is that T is compact. This compactness will be used when proving that a suitable version of our
interpolation results holds for small perturbations of the origin. See, for instance, [Brezis 2011, Chapter 6]

2D. Notation. We will use Vinogradov’s modified notation throughout the text; that is, we write A ≲ B
in the case there is an absolute constant C > 0 so that A ≤ C · B. If the constant C depends on some set
of parameters λ, we shall write A ≲λ B.

On the other hand, we shall also use the big-O notation f =O(g) if there is an absolute constant C such
that | f | ≤ C · g, although the usage of this will be restricted mostly to sequences. We may occasionally
use as well the standard Vinogradov notation a ≪ b to denote that there is a (relatively) large constant
C > 1 such that a ≤ C · b.

We shall also denote the spaces of sequences of complex numbers decaying polynomially by

ℓ2
s (Z+)=

{
(an)n ∈ ℓ2(Z+) : |a0|

2
+

∑
n∈N

|an|
2n2s <+∞

}
,

ℓ2
s (N)=

{
{an}n∈N :

∑
n∈N

|an|
2n2s <+∞

}
,

(2-4)

where N = {1, 2, . . . } denotes the set of natural numbers and Z+ denotes the nonnegative integers. We
remind the reader that we always normalize the Fourier transform as in (1-1), i.e,

f̂ (ξ)= F f (ξ)=

∫
Rn

f (x) e−2π i x ·ξ dx .

3. Perturbed interpolation formulae for band-limited functions

3A. Perturbed forms of the Shannon–Whittaker formula and Kadec’s result. Fix a sequence ε={εk}k∈Z

of real numbers such that supk |εk | < 1. We wish to obtain a criterion based solely on the value of
L = supn |εn| such that the sequence {n + εn}n∈Z is completely interpolating in PWπ , i.e, for every
sequence a = {an} ∈ ℓ2(Z) there is a unique f ∈ L2(R) of exponential type τ( f )≤ π that satisfies

f (n + εn)= an.

Our goal here is to obtain a simple proof of such a criterion going through new and simple ideas. We will
fall short of the 1

4 proven by Kadec by approximately 0.11, but it illustrates the power of our perturbation
scheme and does not go through the theory of exponential bases.

In this particular case, we need to invert in ℓ2(Z) the operator given by

Aε(a)(n)=

∑
k∈Z

ak sinc(n + εn − k),

where
sinc(x)=

sinπ(x)
πx

.
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The fact Aε is invertible will follow from proving that it is a close perturbation of the identity whenever L
is sufficiently small.

3A1. Auxiliary perturbations of the Hilbert transforms. Given a sequence a = {ak}k∈Z, we define the
following operators, which are akin to the discrete Hilbert transform:

Hε(a)(n)=

∑
k ̸=n

(−1)n−kak

n + εn − k
, H0(a)(n)=

∑
k ̸=n

(−1)n−kak

n − k
.

We start by comparing these two objects:

H0(a)(n)−Hε(a)(n)=

∑
k ̸=n

(−1)n−kak

(
1

n − k
−

1
n + εn − k

)

= εn

∑
k ̸=n

(−1)n−kak
1

(n − k)(n + εn − k)
.

This identity then gives us

|H0(a)(n)−Hε(a)(n)| ≤ |εn|
∑
k ̸=n

|ak |
1

|n − k|2

|n − k|

|n + εn − k|

≤
|εn|

1 − |εn|

∑
k ̸=n

|ak |
1

|n − k|2
.

This means that, in norm, one can compare these two operators. Indeed, it is a classical result that the
operator norm of H0 is π , and by Plancherel the operator norm of the transformation

S(a)=

∑
k ̸=n

ak
1

|n − k|2

is π2/3. This in turn implies

∥Hε∥ ≤ π +
π2

3
supn |εn|

1 − supn |εn|
. (3-1)

3A2. Norm estimates of the perturbation. It is worth noticing the estimate (3-1) is very crude, as it is
meant to depend only on L = supn |εn|. For instance, if {εn}n∈Z is a constant sequence, then the norm
∥Hε∥ is equal to π . We also note that the fact that we obtain invertibility by means of perturbations of
small norm of an invertible operator does not take into account other factors, such as cancellation.

In order to apply our perturbation scheme to the operator Aε, we need to bound the following family
of operators:

Pε(a)(n)=

∑
k∈Z

ak(sinc(n + εn − k)− δn,k).

We may rewrite them as

Pε(a)(n)=(sinc(εn)− 1)an +

∑
k ̸=n

ak(sinc(n + εn − k))

=(sinc(εn)− 1)an +

∑
k ̸=n

ak
(−1)n−k sinπεn

π(n + εn − k)
.
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This implies, on the other hand,

Pε(a)(n)= (sinc(εn)− 1)an +

(
sinπεn

π

)
Hε(a)(n),

which in turn implies that

∥Pε∥ ≤ sup
n

| sinc(εn)− 1| + sup
n

∣∣∣∣sinπεn

π

∣∣∣∣∥Hε∥

≤ sup
n

| sinc(εn)− 1| + sup
n

| sinπεn| +
π

3
supn | sinπεn| supn |εn|

1 − supn |εn|
.

Since Aε = Pε + Id, whenever

1 − sinc(L)+ | sinπL| +
π

3
L sinπL

1 − L
< 1,

we will have that Aε is invertible. In particular, a routine numerical evaluation implies that L < 0.239
satisfies the inequality above. Let then A−1

ε : ℓ2(Z)→ ℓ2(Z) be the inverse of Aε, which is continuous by
the considerations above. We know, by the Shannon–Whittaker interpolation formula (1-2) that Aε takes
{ f (k)}k∈Z, for f ∈ PWπ , to { f (k + εk)}k∈Z. This is enough to prove the assertion about recovery, and as
such implies that ∑

n∈Z

| f (n + εn)|
2

is an equivalent norm to the usual L2-norm on PWπ , by [Young 1980, Theorem 1.13].
Moreover, by writing

A−1
ε (b)(k)=

∑
n∈Z

bn · ρk,n,

we have immediately ∑
n∈Z

f (n + εn)ρk,n = f (k), (3-2)

and supn
(∑

k∈Z |ρk,n|
2
)
≲ 1. If (A−1

ε )
∗
: ℓ2(Z)→ ℓ2(Z) denotes the adjoint of the inverse of Aε, then we

see that for any compact set K ⊂ C there is a constant C = CK such that

∥(A−1
ε )

∗(sincz(k))∥ℓ2(Z) ≤ ∥A−1
ε ∥ℓ2→ℓ2∥(sincz(k))∥ℓ2(Z)

≤ C∥A−1
ε ∥ℓ2→ℓ2,

and C does not depend on z ∈ K and we let sincx(k) := sinc(x − k). Therefore, by letting gn(z) =∑
k∈Z ρk,n sinc(z − k), we have

sup
z∈R

(∑
n∈Z

|gn(z)|2
)1/2

≲ 1,

and thus, by the previous considerations, the sum
∑

n∈Z f (n + εn)gn(z) converges absolutely by Cauchy–
Schwarz. As ⟨(A−1

ε )
∗(sincz(k)), f (n +εn)⟩ = ⟨sincz(k), A−1

ε ( f (n +εn))⟩ = f (z) by Shannon–Whittaker,
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this implies
f (z)=

∑
n∈Z

f (n + εn)gn(x),

where the convergence happens uniformly in compact sets, as desired.
This finishes the proof of Theorem 1.1.

3B. From Shannon to Vaaler: the proof of Theorem 1.2. We now concentrate on proving that the usual
Shannon–Whittaker interpolation formula implies Vaaler’s celebrated interpolation result [1985] with
derivatives.

Indeed, as proving that the interpolation formula of Theorem 1.2 converges uniformly on compact sets
of C is a routine computation, given that {ak}k∈Z, {bk}k∈Z ∈ ℓ2(Z), we shall omit this part and focus on
proving that the asserted equality holds.

Given a sequence a = {ak}k∈Z, we define the operators

H(a)(k)=
1
π

∑
0̸= j∈Z

ak− j

j
=

1
π

∑
k ̸= j∈Z

aj

k − j
,

H1(a)(k)=
1
π

∑
j∈Z

ak− j

j +
1
2

=
1
π

∑
j∈Z

aj

k − j +
1
2

.

It is known that both H and H1 are bounded operators in ℓ2(Z), with H1 being also unitary with H2 its
inverse being given by

H2(a)(k)= −
1
π

∑
j∈Z

aj−k

j −
1
2

=
1
π

∑
j∈Z

aj

j − k +
1
2

.

Given a function f ∈ PWπ , as a consequence of the Shannon–Whittaker interpolation formula we
obtain, for every k ∈ Z, that

f ′(k)=

∑
j ̸=k

f ( j)
k − j

(−1)k− j .

We consider three sequences

a(k)= f (2k − 1), b(k)= f (2k), c(k)= f ′(2k).
We have, thus,

c(k)= f ′(2k)=

∑
j ̸=2k

f ( j)
2k − j

(−1)2k− j
=

1
2

∑
j ̸=k

f (2 j)
k − j

−
1
2

∑
j∈Z

f (2 j − 1)

k − j +
1
2

=
1
2

∑
j ̸=k

b( j)
k − j

−
1
2

∑
j∈Z

a( j)

k − j +
1
2

=
π

2
H(b)(k)− π

2
H1(a)(k).

This means that, for every k ∈ Z,

H1(a)(k)= H(b)(k)− 2
π

c(k).

Since H2 is the inverse of H1, this can be rewritten as

a(k)= (H2 ◦H)(b)(k)− 2
π
H2(c)(k).
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We know, by the Shannon–Whittaker interpolation formula, that

f (x)=

∑
k∈Z

f (k)
sinπ(x − k)
π(x − k)

.

This implies, on the other hand,

f (x)=

∑
k∈Z

f (2k)
sinπ(x − 2k)
π(x − 2k)

+

∑
k∈Z

[
(H2 ◦H)(b)(k)− 2

π
H2(c)(k)

]sinπ(x − 2k + 1)
π(x − 2k + 1)

=

∑
k∈Z

b(k)
sinπx

π(x − 2k)
+

∑
k∈Z

(H2 ◦H)(b)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

−
2
π

∑
k∈Z

H2(c)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

= A(x)+ B(x)+ C(x).

We shall investigate each term A, B and C thoroughly in order to obtain our final result.

3B1. Determining C. By considering the family of functions h j ∈ PWπ — which satisfy the important
property h j (k)= 0 if k ∈ 2Z — given by

h j (z)=
sin2(π

2 z
)

π2(z − 2 j)
,

we obtain

C(x)= −2
∑
k∈Z

∑
j∈Z

f ′(2 j)

π2
(

j − k +
1
2

) sinπ(x − 2k + 1)
π(x − 2k + 1)

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

1
π2((2k − 1)− 2 j)

sinπ(x − (2k − 1))
π(x − (2k − 1))

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

h j (2k − 1)
sinπ(x − (2k − 1))
π(x − (2k − 1))

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

h j (k)
sinπ(x − k)
π(x − k)

.

Notice that one can use Fubini’s theorem to justify all the changes of order of summation by the fact that
h j ∈ PWπ . By applying the Shannon–Whittaker interpolation to h j , we have

C(x)= 4
∑
j∈Z

f ′(2 j)
sin2(π

2 x
)

π2(x − 2 j)
.

3B2. Determining B. For the second term, we expand

B(x)=

∑
k∈Z

H2 ◦H(b)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π

∑
k∈Z

sinπ(x − 2k + 1)
π(x − 2k + 1)

∑
j

H(b)( j)

j − k +
1
2

=
1
π2

∑
k∈Z

sinπ(x − 2k + 1)
π(x − 2k + 1)

∑
j

∑
l ̸= j

b(l)(
j − k +

1
2

)
( j − l)

.
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By Fubini’s theorem, this implies

B(x)=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

1
j − l

∑
k∈Z

1

j − k +
1
2

sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

2
j − l

∑
k∈Z

1
2 j − 2k + 1

sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

2
j − l

sin2(π
2 x

)
2 j − x

=
sin2(π

2 x
)

π2

∑
l∈Z

b(l)
∑
j ̸=0

1

j
(

j + l −
1
2 x

) .
But it is a well-known fact that the summation formula∑

j ̸=0

1
j ( j + z)

=
ψ(1 + z)−ψ(1 − z)

z

holds, where ψ(z)=
d
dz log0(z) is the digamma function. This implies

B(x)=
2 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
ψ

(
1 + l −

1
2 x

)
−ψ

(
1 − l +

1
2 x

)
2l − x

.

3B3. Determining A + B. Using that sin(2x)= 2 sin x cos x , we obtain

A(x)= −
2 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
π cot

(
π
2 x

)
2l − x

.

The digamma function satisfies the functional equations

ψ(1 − z)= ψ(z)+π cotπ z,

ψ(1 + z)= ψ(z)+ 1/z.

Using these relations with z =
1
2 x − l in the equations above, we obtain readily

A(x)+ B(x)=
4 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
1

(x − 2l)2
.

3B4. A + B + C. Summing the analysis undertaken for the terms above, we have

f (x)= A(x)+ B(x)+ C(x)=
4 sin2(π

2 x
)

π2

∑
k∈Z

{
f (2k)

(x − 2k)2
+

f ′(2k)
x − 2k

}
.

This finishes the proof of Theorem 1.2.

3C. Perturbed interpolation formulae with derivatives. By the arguments in the previous section, the
formula we just derived for PW2π , i.e.,

f (x)=
sin2(πx)
π2

∑
k∈Z

{
f (k)

(x − k)2
+

f ′(k)
x − k

}
,
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converges in compact sets of C. We fix, for shortness, the notation

g(x)=
sin2(πx)
π2x2 , h(x)=

sin2(πx)
π2x

,

which means we can read Vaaler’s interpolation as

f (x)=

∑
k∈Z

{ f (k)g(x − k)+ f ′(k)h(x − k)}.

Because of uniform convergence, we can differentiate term by term in the above formula. This implies

f ′(x)=

∑
k∈Z

{ f (k)g′(x − k)+ f ′(k)h′(x − k)}.

We record, for completeness, the formulae for the derivatives of g and h. For x /∈ Z we have

g′(x)=
2 sin(πx)(πx cos(πx)− sin(πx))

π2x3 ,

h′(x)=
sin(πx)(2πx cos(πx)− sin(πx))

π2x2 ,

and, for n ∈ Z,

g(n)= h′(n)= 0, g′(n)= h(n)= δ0.

Our goal now is to invert the operator A = Aε defined in ℓ2(Z)× ℓ2(Z) by

A1(a, b)n =

∑
k∈Z

ak · g(n + εn − k)+
∑
k∈Z

bk · h(n + εn − k),

A2(a, b)n =

∑
k∈Z

ak · g′(n + εn − k)+
∑
k∈Z

bk · h′(n + εn − k),
(3-3)

where A(a, b) = (A1(a, b),A2(a, b)) for (a, b) ∈ ℓ2(Z)× ℓ2(Z). Furthermore, we wish to establish a
criterion that depends only on L = sup |εn|. For that purpose, we estimate when the operator norm of
Aε − Id from ℓ2(Z)× ℓ2(Z) to itself is small, in terms of L .

3C1. Auxiliary perturbations for the derivative case. Given a sequence a = {ak}k∈Z, we define the
operators

Hp
ε (a)n =

∑
k ̸=n

ak

(n + εn − k)p ,

and denote by Hp
0 the operator associated to the sequence εn = 0 for all n ∈ Z. In an analogous manner

to the proof of Theorem 1.1, we compare

Hp
0 (a)n −Hp

ε (a)n =

∑
k ̸=n

ak

(
1

(n − k)p −
1

(n + εn − k)p

)

=

p−1∑
j=0

( p
j

)
ε p− j

n

∑
k ̸=n

ak

(n + εn − k)p(n − k)p− j .
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Therefore,

|Hp
0 (a)n −Hp

ε (a)n| ≤

p−1∑
j=0

( p
j

)
|εn|

p− j
∑
k ̸=n

ak

|n − k|2p− j

|n − k|
p

(|n − k| − |εn|)p

≤
1

(1 − |εn|)p

p−1∑
j=0

( p
j

)
|εn|

p− jS2p− j (a∗)n,

where

Sq(a)n =

∑
k ̸=n

ak

|n − k|q

and a∗
= (|an|). Since Sq+1(a∗)n ≤ Sq(a∗)n , we have

|Hp
0 (a)n −Hp

ε (a)n| ≤
S p+1(a∗)n

(1 − |εn|)p

p−1∑
j=0

( p
j

)
|εn|

p− j
=

(
(1 + |εn|)

p
− 1

(1 − |εn|)p

)
S p+1(a∗)n.

This means that we have the following estimate on the norm of the perturbed operator:

∥Hp
ε ∥ ≤ γp(L), (3-4)

where we let

γp(L)= ∥Hp
0 ∥ +

(1 + L)p
− 1

(1 − L)p ∥S p+1
∥.

Now, in order to estimate the value of γp(L), we resort to [Littmann 2006, Corollary 2], which gives us

∥Hp
0 ∥ =

(2π)mbm

m!
,

where bm is the maximum of |Bm(x)| when x ∈ [0, 1], and Bm denotes the m-th Bernoulli polynomial.1

Therefore,

∥H1
0∥ = π, ∥H2

0∥ =
π2

3
, ∥H3

0∥ =
π3

9
√

3
.

On the other hand, by Plancherel’s theorem it is easy to see that

∥S p
∥ = 2ζ(p).

Joining all these data into (3-4), we obtain

∥H1
ε∥ ≤ π +

(
L

1 − L

)
π2

3
,

∥H2
ε∥ ≤

π2

3
+ 2

(
L2

+ 2L
(1 − L)2

)
ζ(3),

∥H3
ε∥ ≤

π3

9
√

3
+

(
L3

+ 3L2
+ 3L

(1 − L)3

)
π4

45
.

(3-5)

1It is worth mentioning that in [Carneiro et al. 2013, Corollary 22] the authors also obtain the same bounds.
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3C2. Norm estimates of the perturbations in the derivative case. In order to invert the operator Aε, we
estimate the norm of Pε = Aε − Id = (P1,P1), where

P1(a, b)n =

∑
k∈Z

ak · (g(n + εn − k)− δn,k)+
∑
k∈Z

bk · h(n + εn − k),

P2(a, b)n =

∑
k∈Z

ak · g′(n + εn − k)+
∑
k∈Z

bk · (h′(n + εn − k)− δn,k).
(3-6)

By a straightforward calculation,

P1(a, b)n = (g(εn)− 1)an +
sin(πεn)

2

π2 H2
ε(a)n + h(εn)bn +

sin(πεn)
2

π2 H1
ε(b)n,

P2(a, b)n = g′(εn)an +
2 sin(πεn)(πεn cos(πεn)− sin(πεn))

π2 H3
ε(a)

+ (h′(εn)− 1)bn +
sin(πεn)(2πεn cos(πεn)− sin(πεn))

π2 H2
ε(b).

(3-7)

Thus,

∥Pε∥ ≤
√

2 max{|g(L)− 1|, |h′(L)− 1|, |g′(L)|, |h(L)|} +
sin(πL)2

π2 ∥Gε∥,

where Gε = (G1
ε ,G2

ε ) and

G1
ε (a, b)n =H2

ε(a)n +H1
ε(b)n,

G2
ε (a, b)n =

2(πεn cos(πεn)− sin(πεn))

sin(πε)
H3
ε(a)+

(2πεn cos(πεn)− sin(πεn))

sin(πε)
H2
ε(b).

(3-8)

By taking L < 1
4 and using the Cauchy–Schwarz inequality, we have

∥Gε∥2

2
≤ max{∥H1

ε∥, ∥H
2
ε∥}

2

+ max
{(

2(πL cos(πL)− sin(πL))
sin(πL)

)2

∥H3
ε∥

2,

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

∥H2
ε∥

2
}

≤ max{γ1(L)2, γ2(L)2}

+ max
{(

2(πL cos(πL)− sin(πL))
sin(πL)

)2

γ3(L)2,
(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

γ2(L)2
}
.

We note that we have abused the notation ∥Gε∥ to denote the operator norm of Gε when defined on
ℓ2(Z)× ℓ2(Z). One can further check that, for 0 ≤ L < 1

4 ,

|g(L)− 1|< |h′(L)− 1|, |h(L)|< |g′(L)|, γ1(L)2 < γ2(L)2,(
2(πL cos(πL)− sin(πL))

sin(πL)

)2

γ3(L)2 <
(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

γ2(L)2,

which means, in turn,

∥Gε∥ ≤ γ2(L)

√
2
(

1 +

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2)
,
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and directly implies the estimate

∥Pε∥ ≤ 1 −
sin(πL)(2πL cos(πL)− sin(πL))

π2L2 +
2 sin(πL)(sin(πL)−πL cos(πL))

π2L3

+
sin(πL)2

π2

(
π2

3
+ 2

(
L2

+ 2L
(1 − L)2

)
ζ(3)

)√
2
(

1 +

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2)
.

By evaluating the last expression on the right-hand side above numerically, we obtain that we can go up to
L < 0.111 and maintain ∥Pε∥< 1. By invoking again [Young 1980, Theorem 1.13], we see immediately
that ∑

n∈Z

(| f (n + εn)|
2
+ | f ′(n + εn)|

2)

yields an equivalent norm for PW2π , as long as supn |εn|< 0.111.
Moreover, as A−1

ε : ℓ2(Z)× ℓ2(Z)→ ℓ2(Z)× ℓ2(Z) is bounded, the same argument as in the proof of
Theorem 1.1 shows that there are ϱk,n , ϑk,n , ϱ′

k,n , ϑ ′

k,n such that

f (k)=

∑
n∈Z

f (n + εn)ϱk,n + f ′(n + εn)ϑk,n,

f ′(k)=

∑
n∈Z

f (n + εn)ϱ
′

k,n + f ′(n + εn)ϑ
′

k,n,
(3-9)

and

sup
n

(∑
k∈Z

{|ϱk,n|
2
+ |ϑk,n|

2
+ |ϱ′

k,n|
2
+ |ϑ ′

k,n|
2
}

)
≲ 1.

By using the adjoint (A−1
ε )

∗
: ℓ2(Z)× ℓ2(Z) → ℓ2(Z)× ℓ2(Z) in an analogous manner to that of the

proof of Theorem 1.1 together with (3-9) and (1-7), we obtain the asserted existence of the functions
gn, hn ∈ PW2π so that

f (x)=

∑
n∈Z

f (n + εn)gn(x)+ f ′(n + εn)hn(x),

where the right-hand side converges absolutely, as desired. This proves the desired version of Vaaler’s
interpolation formula with perturbed nodes, given in Theorem 1.3.

4. Perturbed Fourier interpolation on the real line

4A. Improved estimates on the interpolation basis. As our goal is to obtain versions of the formula

f (x)=

∑
n≥0

[ f (
√

n)an(x)+ f̂ (
√

n)ân(x)]

with perturbed nodes
√

k + εk deviating from
√

k as much as possible, and in order to run our argument of
estimating the operator norm of a perturbation of the identity, we will need better decay estimates for the
interpolating functions an than the ones readily available in the literature. In [Radchenko and Viazovska
2019, Section 5], the authors prove that an/n2 is uniformly bounded in n ≥ 0, x ∈ R. In order to be able
to make the perturbations larger, we need to improve that result substantially, as even the refined bound
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|an| = O(n1/4 log3(1 + n)) from [Bondarenko et al. 2023] does not seem to be enough for our purposes.
This first subsection is, therefore, devoted to the proof of Theorem 1.6.

A tool of major importance in our proof is the Fourier characterization of Gelfand–Shilov spaces.
These are spaces where, in a nutshell, both the function and Fourier transform decay as fast as the negative
exponential of a certain monomial. Several results connect these spaces with specific decay for both the
function and its Fourier transform. See, e.g., [Chung et al. 1996, Theorem 2.3] for more details.

In what follows, we will use the idea behind the characterization described in [Chung et al. 1996]:
from bounds for certain L2-norms of derivatives of f and f̂ , we run an optimization procedure to obtain
decay bounds in both space and frequency. This will be achieved through careful estimates involving the
reproducing functions of the interpolation basis {an}n≥0, which joins elements of classical analysis and
estimates for modular forms.

Indeed, let ε ∈ {±} be a sign. In [Radchenko and Viazovska 2019], the authors consider the generating
functions ∞∑

n=0

gεn(z)e
iπnτ

=: Kε(τ, z), (4-1)

where gεn are weakly holomorphic modular forms of weight 3
2 with growth and coefficient properties so

that the functions
bεn(x)=

1
2

∫ 1

−1
gεn(z)e

iπx2z dz

are eigenvectors of the Fourier transform associated to the eigenvalues ε satisfying that b±
n = an ± ân for

{an}n≥0 defined as in (1-3).
These functions satisfy (see [Radchenko and Viazovska 2019, Proposition 1])

bεm(
√

n)= δn,m if n ≥ 1,m ≥ 0,

b+

m(0)= δm,0 if m ≥ 0,

b−

0 = 0, b+

0 (
√

n)= δn,0 if n ≥ 0,

b−

m(0)= −2 if m = k2 for some k ∈ Z≥1,

b−

m(0)= 0 otherwise. (4-2)

Moreover, we mention for completeness the following result regarding Kε. We refer the reader to
[Radchenko and Viazovska 2019] for its proof.

Proposition 4.1 [Radchenko and Viazovska 2019, Theorem 3]. For any fixed z ∈ H, there is y0 > 0
so that for all τ ∈ H with Im(τ ) > y0, the series on the left-hand side of (4-1) converges. Under these
assumptions, we have the following equalities for the kernels:

K+(τ, z)=
θ(τ )(1 − 2λ(τ))θ(z)3 J (z)

J (z)− J (τ )
,

K−(τ, z)=
θ(τ )J (τ )θ(z)3(1 − 2λ(z))

J (z)− J (τ )
,

(4-3)

where θ, J and λ are as previously defined. In particular, Kε(τ, z) are meromorphic functions with poles
at τ ∈ 0θ z.
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The authors then define the natural candidate for the generating function for the {bεn}n≥0 to be

Fε(τ, x)=
1
2

∫ 1

−1
Kε(τ, z)eiπx2z dz, (4-4)

where the contour is the semicircle in the upper half-plane that passes through −1 and 1, which is defined,
a priori, for each fixed x ∈ R and τ ∈ {z ∈ H : for all k ∈ Z, |z − 2k| > 1} ⊃ D + 2Z, where D is the
standard fundamental domain for 0θ . By Proposition 4.1, there holds that, whenever Im(τ ) > 1,

Fε(τ, x)=

∞∑
n=0

bεn(x)e
iπnτ . (4-5)

As Fε(τ, x) admits an analytic continuation to H (see [Radchenko and Viazovska 2019, Proposition 2]),
they are able to extend (4-5) to the entire upper half-space H. Moreover, the following functional equations
hold:

Fε(τ, x)− Fε(τ + 2, x)= 0,

Fε(τ, x)+ ε(−iτ)−1/2 Fε
(
−

1
τ
, x

)
= eiπτ x2

+ ε(−iτ)−1/2eiπ(−1/τ)x2
.

The proof of Theorem 1.6 follows the same essential philosophy as the proof of [Radchenko and Viazovska
2019, Theorem 4]: in order to bound each of the terms b±

n , we bound, uniformly on x ∈ R, the analytic
function F±(τ, x). Relating the two bounds is achieved by employing the idea behind the proof of
the following lemma, originally attributed to Hecke (see for instance [Radchenko and Viazovska 2019,
Lemma 1] and [Berndt and Knopp 2008, Lemma 2.2(ii)] for a proof).

Lemma 4.2. Let f : H → C be a 2-periodic analytic function admitting an absolutely convergent Fourier
expansion

f (τ )=

∑
n≥0

cneiπnτ .

Suppose, additionally, that for some α > 0 it satisfies that | f (τ )| ≤ C Im(τ )−α for Im(τ ) < c0. Then there
is C̃ > 0, depending only on C and α, such that for all n > 1/c0

|cn| ≤ C̃nα.

Moreover, there is C ′ > 0, depending only on C and α, such that if n > α/(πc0), the improved estimate

|cn| ≤ C ′

(
eπ
α

)α
nα

holds.

Before proving Theorem 1.6, we need one more crucial tool in our analysis. Indeed, we consider the
functions

Fk
ε (τ, x) := xk Fε(τ, x).

By Lemma 4.2, if we prove that, for some 1> 0,

|Fk
ε (τ, x)| ≤ Ck(k!) Im(τ )−k/2−1 (4-6)
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for all k ≥ 1, then we will have
sup
x∈R

|xkbεn(x)| ≤ C̃kn1nk/2(k!).

As bεn = εb̂n , the strategy of relating norms of derivatives with Fourier decay will then imply that each of
the functions bεn satisfies

|bεn(x)| ≲ n1e−θ |x |/
√

n,

which is the content of Theorem 1.6. Therefore, we focus on proving a suitable version of (4-6). By
the functional equation for Fε, we see that Fk

ε is a 2-periodic function on H that satisfies the functional
equation

Fk
ε (τ, x)+ ε(−iτ)−1/2 Fk

ε (−1/τ, x)= xk(eiπτ x2
+ ε(−iτ)−1/2eiπ(−1/τ)x2

). (4-7)

The strategy, in analogy to that in [Radchenko and Viazovska 2019], is of splitting into cases: if τ ∈ D,
then estimates for Fk

ε are available directly by analytic methods. Otherwise, we need to use (4-7) to
obtain the bound (4-6) for all τ ∈ H.

More explicitly, we have the following:

Proposition 4.3. There is a positive constant C > 0 such that, for each k ≥ 1, the inequality

|Fk
ε (τ, x)| ≤ Ck(k!)(1 + Im(τ )−k/2)

holds, whenever τ ∈ D.

This proposition can be directly compared to [Radchenko and Viazovska 2019, Lemma 4]. In fact, it is
nothing but a carefully quantified version of it.

Proof of Proposition 4.3. As the proof follows thoroughly the main ideas in Lemma 4 in [Radchenko and
Viazovska 2019], we will mainly focus on the points where we have to sharpen bounds.

We see directly from the definition of Fk
ε that we are allowed to consider only values of τ ∈ D1 =

D∩ {τ ∈ H : Re(τ ) ∈ (−1, 0)}. By subsequent considerations from that reduction, we see that the bound

|xk Fε(τ, x)| ≤ 10
∫
ℓ

|Kε(τ, z)|xk(e−πx2 Im(τ )
+ |z|−1/2e−πx2 Im(−1/z)) |dz| (4-8)

holds, where ℓ is the path joining i to 1 on the upper half-space, defined to be

ℓ=
{
w ∈ D : Re(J (w))=

1
64 , Im(J (w)) > 0

}
. (4-9)

An explicit computation gives us that the maximal value of

xke−πx2 Im(z)

is attained at x = (k/(2π Im(z)))1/2. Therefore, as any z ∈ ℓ has norm bounded from above and below by
absolute constants, we find that there is C > 0 so that

|Fk
ε (τ, x)| ≤ Ck/2

·

(
k

2πe

)k/2 ∫
ℓ

|Kε(τ, z)| Im(z)−k/2
|dz|. (4-10)

We have then three regimes to consider:
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Case 1: |τ − i |< 1
10 . Notice that if we prove that the proposition holds for any τ ∈ H so that |τ − i | = 1

10 ,
we can use the maximum modulus principle on Fk

ε on that circle to conclude that the proposition
holds inside as well. Moreover, by the functional equation (4-7), we see that the proposition holds for
A =

{
τ ∈ H : |τ − i | =

1
10 , |τ | ≤ 1

}
in the case it holds for the image of the circle arc A under the action

of S. But a simple computation shows that SA is just another circle arc contained (up to endpoints) in{
τ ∈ D1 :

1
4 > |τ − i |> 1

10

}
. This shows that in order to prove the proposition for this case, it suffices to

show it for the other cases.

Case 2: |τ−i |> 1
10 , Im(τ )> 1

2 . For this case, we use the fact that |Kε(τ, z)|≲ |θ(z)|3 ≲ Im(z)−2e−π/ Im(z)

for z ∈ ℓ, Im(τ ) > 1
2 , with constants independent of τ . Using this bound in (4-8) yields

|Fk
ε (τ, x)| ≤ (1 + |x |

k+2)e−c|x | ≲ Ck
(

k + 2
e

)k+2

for some C > 0. Applications of Stirling’s formula imply that this bound is controlled by Ck
1(k!), with

C1 > 0 an absolute constant. This shows the result in this case.

Case 3: |τ−i |> 1
10 , Im(τ )≤ 1

2 . Again, we resort to the estimates in the proof of Lemma 4 in [Radchenko
and Viazovska 2019]: there, the authors prove that

|K+(τ, z)| ≲ Im(τ )−1/2 |J (τ )|3/8|J (z)|5/8 Im(z)−3/2

|J (z)− J (τ )|
,

|K−(τ, z)| ≲ Im(τ )−1/2 |J (τ )|7/8|J (z)|1/8 Im(z)−3/2

|J (z)− J (τ )|
.

Due to the not-so-symmetric nature of these bounds, we focus on the one for K+, and the analysis for K−,
as well as the bounds, will be almost identical, and thus the details will be omitted.

Taking advantage of the explicit structure of the curve we are integrating over (4-9), and the fact that there
is an absolute constant C > 0 so that Im(z)−1

≤ C log(1+|J (z)|) and that z ∈ ℓ⇐⇒ J (z)= 1
64 +i t , t ∈ R,∫

ℓ

|K+(τ, x)| Im(z)−k/2
|dz| ≤ Ck/2 Im(τ )−1/2

∫
∞

0

|J (τ )|3/8t−3/8 log(k−1)/2(1 + t)√
t2 + |J (τ )|2

dt

= Ck/2 Im(τ )−1/2
∫

∞

0

t−3/8 log(k−1)/2(1 + t |J (τ )|)
√

1 + t2
dt. (4-11)

Now, the last integral in (4-11) can be estimated as follows: if k − 1 is even, by using that log(1 + ab)≤

log(1 + a)+ log(1 + b) whenever a, b > 0, the integral∫
∞

0

t−3/8 log(k−1)/2(1 + t |J (τ )|)
√

1 + t2
dt

is bounded by

(k−1)/2∑
i=0

(
(k−1)/2

i

)
logi (1 + |J (τ )|)

∫
∞

0

t−3/8 log(k−1)/2−i (1 + t)
√

1 + t2
dt. (4-12)
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Each summand above can be easily estimated. Indeed,
(
(k−1)/2

i

)
≤ 2k/2 trivially, logi (1 + |J (τ )|) ≤

C i Im(τ )−i, and the integrals can be explicitly bounded in terms of gamma functions. In fact, we first
split the integrals in question as(∫ 1

0
+

∫
∞

1

)
t−3/8 log(k−1)/2−i (1 + t)

√
1 + t2

dt.

For the first part, we simply bound the integrand by t−3/8 log(2)(k−1)/2−i, and this yields a bound uniform
in k. For the second, we change variables log(1 + t) 7→ s in (4-12) above. A simple computation shows
that it is bounded by

10
∫

∞

0
e−3s/8s(k−1)/2−i ds ≲ Ck

∫
∞

0
e−rr (k−1)/2−i dr = Ck0

(
k − 1

2
− i + 1

)
.

Thus, (4-12) is bounded by

Ck Im(τ )(1−k)/20

(
k − 1

2

)
.

Putting together the estimates in (4-11) and (4-10) and using Stirling’s formula for the approximation
of 0, we conclude that

|Fk
ε (τ, x)| ≤ Ck(k!) Im(τ )−k/2,

which was the content of the proposition when k is odd. In the case where k is an even number, the
fact that F j

ε (τ, x)2 = F j−1
ε (τ, x)F j+1

ε (τ, x) allows one to use the bounds of the case where k is odd to
conclude the proof. □

We are now finally able to finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We first notice that Fk
ε is 2-periodic, so we lose no generality in assuming that

τ ∈ {z ∈ H : Re(z) ∈ [−1, 1]} = S1. If Re(τ ) ∈ [−1, 1], then we have two cases:

Case 1: If τ ∈ D, we can use Proposition 4.3 directly, and the decay obtained by the assertion of the
proposition remains unchanged.

Case 2: If τ ∈ S1\D, the strategy is to use (4-7) to reduce it to the previous case. In fact, we define the
0θ -cocycle {φk

A}A∈0θ by
φk

T 2(τ, x)= 0,

φk
S(τ, x)= xk(eiπx2τ

+ ε(−iτ)−1/2eiπx2(−1/τ)),

together with the cocycle relation

φk
AB = φk

A +φk
A |B. (4-13)

For a fixed τ ∈ S1 \D, we associate τ ′
∈ D through the following process: Let{
γ0 = τ,

γi = −1/(γi−1)− 2ni ,
(4-14)
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where ni =
⌊ 1

2((−1/γi−1)+ 1)
⌋

. We define m = m(τ ) to be the smallest positive integer so that γm ∈ D.
In this case, we let γm(τ ) =: τ ′. In other words, we have that the sequence{

τ0 = τ ′,

τi+1 = −1/τi + 2ni
(4-15)

satisfies the hypotheses of Lemma 3 in [Radchenko and Viazovska 2019]. We therefore have that |τj |> 1,
Im(τj ) is nonincreasing and Im(τj )≤ 1/(2 j − 1). An inductive procedure shows us that

γm−i = −
1
τi
.

In particular, the sequence {τi }i≥0 is in fact finite, with at most m(τ ) terms. This implies that

m + 1 ≤ 4m − 2 ≤ 2 Im(τ )−1. (4-16)

We will use (4-16) in the following computation with the cocycle condition. We write τ ′
= Aτ , where

A ∈ 0θ is of the form
A = ST 2nm ST 2nm−1 S · · · T 2n1 S.

As {φk
A}A∈0θ satisfies the cocycle condition (4-13), the proof of Lemma 3 in [Radchenko and Viazovska

2019] gives us that

Im(τ ′)1/4|φk
A(τ

′)| ≤

m∑
j=1

Im(τj )
1/4

|φk
S(τj )|.

By the definition of φk
S , we see that

|φk
S(τj , x)| ≤ C0

(
k + 1

2

)
(Im(τj )

−k/2
+ |τj |

−1/2 Im(−1/τj )
−k/2). (4-17)

As γm−i = −1/τi = τi+1 − 2ni , |τj |> 1, and the sequence Im(τj ) is nonincreasing, the right-hand side
of (4-17) is bounded from above by C ·0((k + 1)/2) Im(τ )−k/2. From (4-16), it follows that

|φk
A(τ

′)| Im(τ ′)1/4 ≤ C0
(

k + 1
2

)
Im(τ )−k/2

( m∑
j=1

Im(τj )
1/4

)
.

If we use the aforementioned facts about Im(τj ), we will see that, in fact,

|φk
A(τ

′)| Im(τ ′)1/4 ≤ C0
(

k + 1
2

)
Im(τ )−k/2m(τ )3/4. (4-18)

Now, using the functional equation for Fk
ε implies

Fk
ε − (Fk

ε )|A = φk
A,

which then gives us

|Fk
ε (τ, x)||Im(τ )|1/4 ≤ |Im(τ ′)|1/4|Fk

ε (τ
′, x)| + |φk

A(τ
′, x)||Im(τ ′)|1/4.

Defining Im(τ ′)=: I (τ ) and using Proposition 4.3 and (4-18) to estimate this expression, it follows that

|Fk
ε (τ, x)| ≤ Im(τ )−k/2−1/4(Ck(k!) · I (τ )1/4 +0((k + 1)/2)m(τ )3/4

)
. (4-19)
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In order to estimate (4-19), we must resort not only to the general idea of obtaining bounds for Fourier
coefficients based on decay at infinity, as in Lemma 4.2, but also to the following estimate of the average
values of m(τ ) and I (τ ), recently available by the work of Bondarenko, Radchenko and Seip. We refer
the reader to Propositions 6.6 and 6.7 in [Bondarenko et al. 2023] for a proof.

Lemma 4.4. Whenever y ∈
(
0, 1

2

)
, we have∫ 1

−1
I (x + iy)1/4 ≲ 1 and

∫ 1

−1
m(x + iy)3/4 ≲ log3(1 + y−1).

An application of Lemma 4.4 together with the bound (4-19) to the proof of the first bound in Lemma 4.2
implies

sup
x∈R

|xkb±

n (x)| ≲ Ckn1/4nk/2 log3(1 + n)(k!) (4-20)

for n > 1/c0, k ≥ 1. Also, in the case n ≥ k/(πc0), the sharper bound

sup
x∈R

|xkb±

n (x)| ≲ (C
′)kn1/4nk/2 log3(1 + n)(k!)1/2 (4-21)

holds instead. We now proceed to optimize in k > 0, completing the outline devised in the beginning of
this section.

Indeed, let us start by optimizing (4-20). We postpone the discussion on the improved bound (4-21) to
a later remark.

Notice that we may assume |x | ≥ C ′
√

n, as for if |x |< C ′
√

n, the bound (4-20) with k = 0 gives us
already the result, as 1 ≲c e−c|x |/

√
n . If we then set k = |x |/C ′

√
n, where C ′ > 0 will be a fixed positive

constant, whose exact value shall be determined later, we have that

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp(k log(Cn1/2)+ k log(k)− k log |x |).

The exponential term above is

exp
(

|x |

C ′
√

n
log(Cn1/2)+

|x |

C ′
√

n
(log(|x |)− log(C ′

√
n))−

|x |

C ′
√

n
log |x |

)
= exp

(
|x |

C ′
√

n
log

(
C
C ′

))
.

We only need to set C ′
≥ 2C above, and this quantity will grow like exp(−c|x |/

√
n). This finishes the

first assertion in Theorem 1.6.
For the second one, we notice that the proof above adapts in many instances. Indeed, if we shift our

attention to the function ∂x Fk
ε (τ, x) instead, we will see that, in an almost identical fashion to that of the

proof of Proposition 4.3, we are able to prove that, for all τ ∈ D,

|∂x Fk
ε (τ, x)| ≲ Ck(k!) Im(τ )−(k+1)/2.

On the other hand, the partial derivative ∂x of the cocycle {φk
A}A∈0θ is itself a cocycle with respect to the

same slash operator. Moreover, for A = S, the following formula holds:

∂xφ
k
S(τ, x)= (2π i)xk+1(τeπ i x2τ

+ iε(−iτ)−3/2eπ i x2(−1/τ)).
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In that case, using the notation from above for the elements τ ′, τj ∈H associated to τ ∈H∩{|z|≤1}, we see

Im(τ ′)1/4|∂xφ
k
A(τ

′)| ≤ Im(τ ′)1/4|∂xφ
k
S(τ

′)| +

m∑
j=1

Im(τj )
1/4

|∂xφ
k
A(τj )|.

For j ∈ {0, 1, 2, . . . ,m}, the definition of our new cocycle implies

|∂xφ
k
S(τj , x)| ≲ 0

(k+3
2

)
(|τj | Im(τj )

−(k+1)/2
+ |τj |

−3/2 Im(τj+1)
−(k+1)/2)

≤ 0
(k+3

2

)
Im(τ )−(k+1)/2.

This follows as before from the fact that Im(τj+1)= Im(τj )/|τj |
2
≥ Im(τ ) and that |τj |> 1. Analyzing

the functional equations for ∂x Fk
ε (τ, x) in the same way as before readily gives that

|∂x Fk
ε (τ, x)| ≤ Ck Im(τ )−(k+1)/2−1/4(k!)(I (τ )1/4 + m(τ )3/4).

Lemma 4.4 and the considerations employed for Fk
ε apply almost verbatim here, and thus we conclude

|(b±

n )
′(x)| ≲ n3/4 log3(1 + n)e−c|x |/

√
n,

as wished. □

As a consequence of Theorem 1.6, we are able to establish the following bound for the interpolation
basis taking into account both decay and zeros.

Corollary 4.5. Let {an} be the interpolation sequence of functions from (1-3). Then there is c > 0 so that

|an(x)| ≲ n3/4 log3(1 + n) dist(|x |,
√

N)e−c|x |/
√

n

for all positive integers n ∈ N.

Proof. We simply use the fundamental theorem of calculus on the an: Without loss of generality, we
suppose x > 0. We then have

|an(x)| = |an(x)− an(
√

m)+ δn,m | ≤

∫ x

√
m

|a′

n(x)| dx + δn,m

≤ n3/4 log3(1 + n) dist(x,
√

N)e−c|x |/
√

n
+ δm,n

≲ n3/4 log3(1 + n) dist(x,
√

N)e−c|x |/
√

n,

as the δm,n factor is only one if |x | ∈ [
√

n,
√

n + 1), where 1 ≲ e−c|x |/
√

n. □

Remark. Although the exponential bound n1/4 log3(1 + n)e−c|x |/
√

n suffices for our purposes, below we
sketch how to deduce a slightly improved decay for the interpolation basis {an}n≥0.

We again wish to optimize (4-21). If we set k = |x |
2/C ′n, where C ′ > 0 will be chosen soon, we have

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp(k log(Cn1/2)+ k log(k1/2)− k log |x |).

This bound holds as long as πn ≳ k ≥ 1. If instead k < 1, that means, |x | ≤
√

C ′
√

n, we use the bound
in either (4-20) or (4-21) for k = 0, which yields |b±

n (x)| ≲ n1/4 log3(1 + n)≲ n1/4 log3(1 + n)e−c|x |
2/n ,

for c > 0.
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On the other hand, in the case k > 1, the first exponential term above becomes

exp
(

|x |
2

C ′n
log(Cn1/2)+

|x |
2

C ′n
(log(|x |)− log(

√
C ′n))−

|x |
2

C ′n
log |x |

)
= exp

(
|x |

2

C ′n
log

(
C

√
C ′

))
.

We only need to set C ′
≥ (2C)2 above, and this quantity will grow like exp(−c|x |

2/n).
For the remaining |x | >

√
C ′n case, we need to refine the analysis of the proof of Lemma 4.2 and

Theorem 1.6. Indeed, it is easy to see that if n ∈ (2− jα, 21− jα), j ≥ 1, then evaluating the Fourier
coefficients of a 2-periodic function f : H → C such that | f (τ )| ≲ Im(τ )−α(I (τ )1/4 + m(τ )3/4) for
Im(τ )≤ 1 as

2cn =

∫ 1+iα/(2 jπn)

−1+iα/(2 jπn)
f (τ )e−π inτ dτ

implies

|cn| ≲

(
2 jπe1/2 j

α

)α
nα log3(1 + n).

Using this new bound in (4-19), we obtain that, when n ∈ (2− j−1k, 2− j k),

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp
(
k( j/2 + log(C

√
n)+ log(k1/2)− log |x |)

)
.

This suggests that we take k = |x |
2/C ′2 j n, which is admissible to the condition n ∈ (2− j−1k, 2− j k) if

|x | ∼
√

C ′2 j n. A similar computation to the ones above implies that

|b±

n (x)| ≲ n1/4 log3(1 + n) exp
(
−c

|x |
2

2 j n

)
≲ n1/4 log3(1 + n) exp(−c′

|x |),

whenever C ′
≫ C . The next corollary then follows as a natural consequence.

Corollary 4.6. Let an : R → R be the interpolating functions in the Radchenko–Viazovska interpolation
formula. Then there are c,C > 0 so that

|an(x)| ≲ n1/4 log3(1 + n)(e−c|x |
2/n1|x |<Cn + e−c|x |1|x |>Cn)

for each n ≥ 1.

Indeed, the application of Lemma 4.2 requires that we take n ≥ C for C > 0 some absolute constant. In
order to prove such a result for n ≲ 1, we may simply use the definition of b±

n as a Laplace transform of a
the weakly holomorphic modular form g±

n . Indeed, in order to extend Corollary 4.6 to n = 0, we write

a0(x)= â0(x)=
1
4

∫ 1

−1
θ(z)3 eπ i x2z dz.

In order to prove that a0 decays exponentially, we employ a similar technique to that of [Radchenko and
Viazovska 2019, Proposition 1]. Indeed, we have

|θ(z)|3 ≲ Im(z)−2 e−π/ Im(z) for z → ±1,
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and moreover that |θ(z)| ≲ 1 whenever z ∈ H, |z| = 1. We also suppose without loss of generality that
x > 0. This implies that, for δ > 0,

|a0(x)| ≲
∫ δ

0

e−1/(2t)

t2 dt + e−πx2δ ≲ e−1/(2δ)
+ e−πx2δ.

We then choose, for x ≫ 1, δ = 1/(
√

2πx). This implies that |a0(x)| ≲ e−(
√
π/2)x, which is the desired

bound. For other bounded values of n such a proof can be easily adapted.

4B. Proof of the main result. For this part, we shall use the definitions of ℓ2
s (Z≥0) and ℓ2

s (N), as in (2-4)
from Section 2. Let then I : ℓ2

s (Z+)× ℓ
2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+) denote the identity operator. Recall

the Radchenko–Viazovska interpolation result: for f ∈ Seven(R) a real-valued function,

f (x)=

∑
n≥0

( f (
√

n)an(x)+ f̂ (
√

n)ân(x)), (4-22)

where an : R → R is a sequence of interpolating functions independent of the Schwartz function f . In
particular,

f (
√

k)=

∑
n≥0

( f (
√

n)an(
√

k)+ f̂ (
√

n)ân(
√

k)).

In fact, for any pair of sequences ({xi }i , {yi }i ) decaying sufficiently fast and satisfying∑
n∈Z

xn2 =

∑
n∈Z

yn2, (4-23)

the function
G(t)= Gx,y(t)=

∑
n≥0

(xnan(t)+ yn ân(t)) (4-24)

is well-defined and satisfies G(
√

k)= xk, Ĝ(
√

k)= yk . In fact, let ({xi }i , {yi }i )∈ ℓ
2
s (N)×ℓ

2
s (N) for s > 0

sufficiently large. The operator

T : ℓ2
s (Z+)× ℓ

2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

given by T = (T 1, T 2), where

T 1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k)+ yn ân(
√

k)),

T 2({xi }, {yi })k = T 1({yi }, {xi })k,

has an explicit form as a consequence of (4-2). Indeed, for k ≥ 1, we have

T 1({xi }, {yi })k = xk, T 2({xi }, {yi })= yk,

whereas for k = 0, we have

T 1({xi }, {yi })0 =
x0 + y0

2
−

∑
n≥1

xn2 +

∑
n≥1

yn2,

T 2({xi }, {yi })0 =
x0 + y0

2
−

∑
n≥1

yn2 +

∑
n≥1

xn2 .

(4-25)
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In particular, it is then easy to see that T = I whenever ({xi }i , {yi }i ) satisfy the relation (4-23). This
relation is always satisfied by sequences of the type xk = f (

√
k) and yk = f̂ (

√
k) because of the Poisson

summation formula. Inspired by this fact, we define the perturbed operator associated to a sequence
εk > 0, k ∈ Z+, to be

T̃ defined on ℓ2
s (Z+)× ℓ

2
s (Z+),

where T̃ = (T̃ 1, T̃ 2), with

T̃ 1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k + εk)+ yn ân(
√

k + εk)),

T̃ 2({xi }, {yi })k = T̃ 1({yi }, {xi })k

for k ≥ 1, and T̃ 1({xi }, {yi })0 = x0, T̃ 2({xi }, {yi })0 = y0. At first, such an operator might not be defined
in the entire space ℓ2

s (Z+)× ℓ
2
s (Z+) because of summability issues, but a way to avoid this trouble is to

initially define the operator in the dense subspace of pairs of sequences with finitely many nonzero entries.
A posteriori, we will prove the fundamental fact that this operator is bounded from ℓ2

s (Z+)× ℓ
2
s (Z+)→

ℓ2
s (Z+)× ℓ

2
s (Z+), which will allow to extend it to the entirety of the space ℓ2

s (Z+)× ℓ
2
s (Z+). One way to

see this will be provided in the proof of our main theorem, by showing that the operator norm satisfies
∥I − T̃ ∥ℓ2

s (Z+)×ℓ2
s (Z+)→ℓ2

s (Z+)×ℓ2
s (Z+)

<+∞. This is, incidentally, our main device to prove our result: if

∥I − T̃ ∥ℓ2
s (Z+)×ℓ2

s (Z+)→ℓ2
s (Z+)×ℓ2

s (Z+)
< 1,

then T̃ is an invertible operator defined on ℓ2
s (Z+)× ℓ

2
s (Z+). Therefore, its inverse

T̃ −1
: ℓ2

s (Z+)× ℓ
2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

is well-defined and bounded. In particular, for f ∈ Seven(R) real, given the lists of values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

f̂ (0), f̂ (
√

1 + ε1), f̂ (
√

2 + ε2), . . . ,

there is a unique pair ({xi }i , {yi }i ) ∈ ℓ2
s (Z+)× ℓ

2
s (Z+) so that

T̃ ({xi }, {yi })= ({ f (
√

k + εk)}k, { f̂ (
√

k + εk)}k).

But we also know that

T̃ ({ f (
√

i)}i , { f̂ (
√

i)}i )= T ({ f (
√

i)}i , { f̂ (
√

i)}i )= { f (
√

k + εk)}k, { f̂ (
√

k + εk)}k .

This implies x j = f (
√

j), yj = f̂ (
√

j). By writing the k-th entry of the inverse of T̃ as

T̃ −1({wi }, {zi })k =

∑
j≥0

(γj,kwj + γ̂j,kz j )

for two sequences {γj,k} j,k≥0, {γ̂j,k} j,k≥0 so that |γj,k | + |γ̂j,k | ≲ ( j/k)s, we must have

f (
√

k)=

∑
j≥0

(γj,k f (
√

j + εj )+ γ̂j,k f̂ (
√

j + εj )). (4-26)
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This implies, by (1-3), that we can recover f from its values and those of its Fourier transform at
√

k + εk .
Moreover, as the adjoint of T̃ −1 is also bounded from ℓ2

s (Z+)× ℓ
2
s (Z+) to itself, we conclude that, for

s ≫ 1 sufficiently large and f, f̂ both being O((1 + |x |)−10s), we can use Fubini’s theorem in (1-3)
together with (4-26). This proves the existence of two sequences of functions {θj } j≥0, {ηj } j≥0 so that

|θj (x)| + |ηj (x)| + |θ̂j (x)| + |η̂j (x)| ≲ (1 + j)s(1 + |x |)−10

and
f (x)=

∑
j≥0

(
f (

√
j + εj )θj (x)+ f̂ (

√
j + εj )ηj (x)

)
.

Thus, we focus on the proof of the invertibility of T̃ for s > 0 suitably chosen.

Proof of invertibility of T̃ . We use, for this part, the Schur test. For that, define the auxiliary infinite
matrices A = {Ai j }i, j>0 and Â = { Âi j }i, j>0 by

Ai j = (aj (
√

i + εi )− δi j )× (i/j)s,

Âi j = âj (
√

i + εi )(i/j)s .

For a given vector (x, y) ∈ ℓ2(N)× ℓ2(N), we write then

B(x, y)= (A · x + Â · y, A · y + Â · x),

or, in matrix notation,

B =

(
A Â
Â A

)
.

Furthermore, define the operator B0 : C2
→ ℓ2(Z≥0)× ℓ

2(Z≥0) by

B0(r, s)=

((
r · a0(

√
k + εk)+ s · â0(

√
k + εk)

)
ks,

(
s · a0(

√
k + εk)+ r · â0(

√
k + εk)

)
ks

)
k≥0
.

Notice that the operator norm of T̃ − I acting on ℓ2
s (Z+)× ℓ2

s (Z+) is, by virtue of our definitions,
bounded by the operator norm of B acting on ℓ2(N)× ℓ2(N) plus the norm of B0 acting on C2, since

(T̃ − I )(x, y)k = B0(x0, y0)k + B(x ′, y′)k, k ≥ 1,

(T̃ − I )(x, y)0 = (0, 0),
where

(x ′, y′)n = (xn, yn), n > 0.

First of all, bounds for the operator B0 are simple to obtain. In fact, by the Cauchy–Schwarz inequality

∥B0(x0, y0)∥
2
ℓ2(N)×ℓ2(N)

≤ 2(x2
0 + y2

0)

(∑
k>0

{|a0(
√

k + εk)|
2
+ |â0(

√
k + εk)|

2
}k2s

)
.

Since a0(
√

k)= â0(
√

k)= 0 for k ≥ 1, and a0 ∈ S(R), for any fixed M > 0 there is C = CM > 0 such
that

max{|a0(
√

k + εk)|, |â0(
√

k + εk)|} ≤ CM
|εk |

k M . (4-27)
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This implies the norm of B0 is sufficiently small, assuming that we make supk≥0 |εk | sufficiently small,
depending on s.

We now turn to bounding the operator norm of B. By Schur’s test, it suffices to find α, β > 0, such
that

√
αβ ≪ 1, and positive sequences {pi }i≥0, {qi }i≥0 so that the following inequalities hold:∑

j>0

(i/j)s×[|aj (
√

i + εi )− δi j |pj + |âj (
√

i + εi )|qj ] ≤ αpi ,∑
j>0

(i/j)s×[|aj (
√

i + εi )− δi j |qj + |âj (
√

i + εi )|pj ] ≤ αqi ,∑
i>0

(i/j)s×[|aj (
√

i + εi )− δi j |pi + |âj (
√

i + εi )|qi ] ≤ βpj ,∑
i>0

(i/j)s×[|aj (
√

i + εi )− δi j |qi + |âj (
√

i + εi )|pi ] ≤ βqj .

(4-28)

Now, we make the ansatz that, for all i > 0, pi = qi = i θ, for some real number θ ∈ R. By making use of
Theorem 1.6, we know that

|aj (
√

i + εi )− δi j | + |âj (
√

i + εi )| ≲
εi
√

i
j3/4log3(1 + j)e−c

√
i/j .

Therefore, (4-28) reduces to verifying∑
j>0

(i/j)s × j θ ×
εi
√

i
j3/4 log3(1 + j)e−c

√
i/j

≤ αi θ , (4-29)

∑
i>0

(i/j)s × i θ ×
εi
√

i
j3/4 log3(1 + j)e−c

√
i/j

≤ β j θ . (4-30)

Estimate of (4-29). For this term, we rewrite it as

i s−1/2
× εi

(∑
j>0

j3/4−s log3(1 + j)e−c
√

i/j j θ
)
.

In order to estimate this last sum, we break it into j < i1/3 and j > i1/3 contributions. Therefore,∑
j>0

j3/4−s log3(1 + j)e−c
√

i/j j θ

≲ i1/3imax(3/4−s+θ,0) log3(1 + i1/3)e−ci1/3
+

∑
j>i1/3

j3/4−s log3(1 + j)e−c
√

i/j j θ . (4-31)

Because of the presence of the exponential, the first term is always bounded by an absolute constant
times i θ, so we treat it as negligible. For the second term, notice that the summand is bounded by a
constant times

∫ j+1
j x3/4−s+θ log3(1 + x)e−c

√
i/x dx . Indeed, the inverse of the ratio between both is

bounded from below by∫ j+1

j
(x/j)3/4−s+θ log3(1 + x)

log3(1 + j)
ec(

√
i/j−

√
i/x) dx ≥ min

{(
1 +

1
j

)3/4−s+θ
, 1

}
≳θ,s 1. (4-32)
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Thus, we obtain that the second term on the right-hand side of (4-31) is bounded by∫
∞

i1/3
x3/4−s+θ log3(1 + x)e−c

√
i/x dx =

∫ i−1/3

0

(
1 +

1
y

)3/4−s+θ
log3

(
1 +

1
y

)
y−2e−c

√
iy dy

≲s,θ

∫ i−1/3

0
y−11/4+s−θ log3

(
1 +

1
y

)
e−c

√
iy dy

= i7/4−s+θ
∫ i2/3

0
y−11/4+s−θ log3

(
1 +

i
y

)
e−c

√
y dy

≲s,θ i7/4−s+θ log3(1 + i),

as long as −
11
4 + s − θ >−1, that is, θ < s −

7
4 . Thus, (4-29) is bounded under such a condition by

Cs,θ |εi |i s−1/2 log3(1 + i)i7/4−s+θ
= i5/4+θ log3(1 + i)|εi |.

In order for this last quantity to be less than αi θ, we must have |εi | ≲s,θ αi−5/4 log−3(1 + i). We will
assume that we have this bound while estimating the second term.

Estimate of (4-30). For this term, the strategy is similar, only now the estimates become somewhat simpler
by the arithmetic of the bounds given by Theorem 1.6. Indeed, (4-30) is bounded by

cs,θ j3/4−s
(∑

i>0

i s+θ−7/4 log−3(1 + i) e−c
√

i/j
)
.

Much as before, each summand above is bounded by
∫ i+1

i x s+θ−7/4 log−3(1 + x)e−c
√

x/j dx . Thus, the
expression within the parenthesis above is bounded by∫

∞

1
x s+θ−7/4 log−3(1 + x) e−c

√
x/j dx ≲s,θ j s+θ−3/4

∫
∞

0
x s+θ−7/4 log−3(1 + j x) e−c

√
x dx

≲s,θ j s+θ−3/4
∫

∞

0
x s+θ−7/4 log−3(1 + x) e−c

√
x dx .

This last integral converges given that s + θ −
7
4 >−1 ⇐⇒ s + θ > 3

4 . In the end, we obtain that (4-30) is
bounded by cs,θ j θ if these conditions on s, θ hold.

Finally, we gather these two estimates to get that, if s −θ > 7
4 , s +θ > 3

4 and if εi <γ i−5/4 log−3(1+i)
for γ > 0 sufficiently small, then (4-29) and (4-30) are bounded by small constants times i θ and j θ.
Notice that picking s = 10 and θ > 0 sufficiently small yields that both conditions above hold true, and
thus the result follows from Schur’s test, as previously indicated. □

As mentioned in the beginning of this manuscript, the usage of Schur’s test here was instrumental in
order to expand the range of our perturbations. In fact, in Section 5A, we employ the Hilbert–Schmidt
test successfully to our operator T̃ and obtain that, as long as there is δ > 0 such that εi ≲ i−5/4−δ, then
T̃ is bounded on ℓ2

s (N)× ℓ
2
s (N) for s sufficiently large, but we seem to be unable to include 5

4 , even with
a log-loss, in our considerations with the Hilbert–Schmidt method.

On the other hand, we will see in that subsection that the Hilbert–Schmidt method provides us with a
way to suitably perturb the origin, a feature we could not obtain with Schur’s test.
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5. Applications of the main results and techniques

5A. Interpolation formulae perturbing the origin. In the main results of this manuscript, the only
interpolation node that remains unchanged in every scenario is 0. One of the reasons for that is aesthetic:
we are concerned mainly with even functions here, so the origin keeps a sense of symmetry. The other
main reason is technical: we recall that the operator

T : ℓ2
s (Z+)× ℓ

2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

defined in Section 4B is the identity only when restricted to the set of pairs of sequences satisfying∑
n∈Z

xn2 =

∑
n∈Z

yn2 .

For general sequences, the first entries of this operator possess a correction factor due to the lack of
Poisson summation. Indeed, the kernel of T is the set of all (x, y) ∈ ℓ2

s (Z+)× ℓ
2
s (Z+) such that

xn = yn = 0 for all n ≥ 1,

x0 = −y0.

Furthermore, the cokernel of T is the set where

x0 − y0 + 2
∑
n∈N

x2
n − 2

∑
n∈N

y2
n = 0.

This means dim(ker(T ))= dim(coker(T ))= 1. Therefore we can no longer prove invertibility. Nonethe-
less, since the kernel and cokernel of T are finite-dimensional, T is a Fredholm operator; see the comments
on [Brezis 2011, p. 168] for more details.

We denote by en ∈ ℓ2
s (Z+) the vector consisting of max{1, n}

−s on the n-th entry, and zero otherwise.
With this definition, the set

{(en, 0) : n ∈ Z+} ∪ {(0, en) : n ∈ Z+}

forms an orthonormal basis of ℓ2
s (Z+)× ℓ

2
s (Z+). Thus, for a general operator,

∥A∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

=

∑
n≥0

(∥A(en, 0)∥2
(s,s) + ∥A(0, en)∥

2
(s,s)),

where we denote by ∥ · ∥(s,s) the norm of ℓ2
s (Z+)× ℓ

2
s (Z+). Next we estimate the Hilbert–Schmidt norm

in the case where A = I − T̃.

Claim 5.1. ∥I − T̃ ∥H S(ℓ2
s (Z+)×ℓ2

s (Z+))
<+∞ holds whenever there is δ > 0 so that |εk | ≲ k−5/4−δ for all

k ≥ 1.

Proof of Claim 5.1. As mentioned before, we can write the identity on ℓ2
s (Z+)× ℓ

2
s (Z+) as

I ({xi }, {yi })= ((x0,G(1),G(
√

2), . . . ), (y0, Ĝ(1), Ĝ(
√

2), . . . )),

where we define the function G as in (4-24). With this notation, the operator T̃ becomes

T̃ ({xi }, {yi })=
(
(x0,G(

√
1 + ε1),G(

√
2 + ε2), . . . ), (y0, Ĝ(

√
1 + ε1), Ĝ(

√
2 + ε2), . . . )

)
.
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Therefore, evaluating at the basis vectors gives us that (I − T̃ )(en, 0) equals(
(0,max{1, n}

−s(an(1)− an(
√

1 + ε1)),max{1, n}
−s(an(

√
2)− an(

√
2 + ε2)), . . . ),

(0,max{1, n}
−s(ân(1)− ân(

√
1 + ε1)),max{1, n}

−s(ân(
√

2)− ân(
√

2 + ε2)), . . . )
)
.

We readily see then that

∥I − T̃ ∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

≤ 22s+1
∑
n≥0

(∑
k≥1

(1 + k)2s(1 + n)−2s
|an(

√
k)− an(

√
k + εk)|

2
)

+ 22s+1
∑
n≥0

(∑
k≥1

(1 + k)2s(1 + n)−2s
|ân(

√
k)− ân(

√
k + εk)|

2
)
. (5-1)

To bound the terms involving a0 and â0, we simply appeal to the fact these functions are of Schwartz
class to use an estimate like (4-27) and obtain∑
k≥1

(1 + k)2s(
|a0(

√
k + εk)− a0(

√
k)|2 + |â0(

√
k + εk)− â0(

√
k)|2

)
=

∑
k≥1

(1 + k)2s(
|a0(

√
k + εk)|

2
+ |â0(

√
k + εk)|

2)
≤ Cs

∑
k≥1

|εk |
2 (1 + k)2s

k2s+2 .

From Theorem 1.6, we know that when n > 1 there is a c > 0 such that

|an(
√

k)− an(
√

k + εk)| ≤

∫ √
k+εk

√
k

|a′

n(t)| dt ≤
Cεk
√

k
n3/4 log3(1 + n) e−c

√
k/n (5-2)

for every k ≥ 1. Analogously, for n > 1,

|ân(
√

k)− ân(
√

k + εk)| ≤
Cεk
√

k
n3/4 log3(1 + n) e−c

√
k/n.

These estimates plus the condition |εk | ≤ ak−5/4−δ for some a > 0 imply that (5-1) may be bounded from
above by a constant that depends on s times

a2
∑
n≥1

(∑
k≥1

k2sk−5/2−2δ
· k−1e−2c

√
k/n

)
n3/2−2s log6(1 + n)+ a2

∑
k≥1

k−15/2−2δ. (5-3)

The second term in the sum above is convergent, so it is not a problem. Now, in order to prove convergence
of the first term, we first investigate the inner sum. A Riemann sum approach together with a change of
variables shows that the first term in (5-3) is bounded by a constant times

(1 + n)2s−5/2−2δlog6(1 + n)
(∫

∞

0
t2s t−5/2−2δ

· t−1e−c
√

t dt
)

=: (1 + n)2s−5/2−2δlog6(1 + n)Is,δ.

Clearly, the inner integral converges given that s > 5
4 + δ. Putting these estimates together with (5-1), we

obtain that

∥I − T̃ ∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

≲ a2 Is,δ

(∑
n≥0

(1 + n)−1−2δlog6(1 + n)
)
<+∞,

as desired. □
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As a direct corollary, we see that, for each δ > 0, there is a > 0 so that, if |εi | ≤ ai−5/4−δ for every
i > 0, then

∥I − T̃ ∥H S(ℓ2
s (Z+)×ℓ2

s (Z+))
< 1.

In particular, we shall make use of the fact that T is a Fredholm operator by means of such an inequality,
with the aid of the following result.

Lemma 5.2 [Schechter 1967, Theorems 2.8 and 2.10]. Let 8(X, Y ) denote the set of bounded Fredholm
operators between Banach spaces X and Y. If A ∈ 8(X, Y ) and K ∈ K(X, Y ) is a compact operator,
then A + K ∈8(X, Y ) and i(A)= i(A + K ), where we define the index i :8(X, Y )→ N by

i(A)= dim(ker(A))− dim(coker(A))=: α(A)−β(A).

Furthermore, if ∥K∥op is small enough, then it also holds that α(A + K )≤ α(A).

Let us then define a new perturbed operator S, defined on ℓ2
s (Z+)× ℓ

2
s (Z+), such that

S1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k + εk)+ yn ân(
√

k + εk)),

S2({xi }, {yi })k = S1({yi }, {xi })k

for all k ≥ 0. Notice that we may write S −T = T̃ − I + K0, where K0 has finite rank and is bounded, and
thus also compact. Therefore, S = T + (S − T )= T + (T̃ − I )+ K0 can be written as sum of a Fredholm
operator T and a compact operator T̃ − I + K0. This already implies that, modulo a finite-dimensional
subspace, the sequences ({ f (

√
k + εk)}, { f̂ (

√
k + εk)}) determine the sequences ({ f (

√
k)}, { f̂ (

√
k)}).

That is, we can determine the function f ∈ Seven(R) from its (Fourier) values at the set {
√

k + εk}k∈Z+
,

modulo subtracting functions belonging to a finite-dimensional space.
If, however, we make |εk |<ϵk−5/4−δ , and |ε0| ≤ ϵ, with ϵ small enough, it is now a routine calculation

to conclude that the operator norms of both I − T̃ = A and K0 can be made bounded by a sum of an
arbitrarily small factor plus something that will depend on a convergent series multiplied by the value
of |ε0|, which can made arbitrarily small by choosing ϵ properly. Thus,

i(S)= i(T + (S − T ))= i(T )= 0 ⇐⇒ α(S)= β(S),

and, moreover,
α(S)≤ α(T ),

as the Hilbert–Schmidt norm of the difference is small. Thus, either

α(S)= β(S)= 0,

in which case we can perfectly invert the operator S, or

α(S)= β(S)= 1,

which implies that there is essentially at most one function f0 ∈ Seven(R) that vanishes at
√

k + εk . As
({ f (

√
k + εk)}, { f̂ (

√
k + εk)}) ∈ Im(S) for every real f ∈ Seven(R), we have proved the following result.
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Theorem 5.3. Let T, S, {εi }i≥0 be as above. Then one of the following holds:

(1) either S is an isomorphism from ℓ2
s (Z+)× ℓ

2
s (Z+) onto itself , and thus the values

({ f (
√

j + εj )}, { f̂ (
√

j + εj )})

determine any real-valued function f ∈ Seven(R),

(2) or ker(S) has dimension 1, and therefore S is an isomorphism from ker(S)⊥ onto Im(S).
In particular, any real-valued function f ∈ Seven(R) is uniquely determined by

({ f (
√

j + εj )}, { f̂ (
√

j + εj )}),

together with the value of

⟨({ f (
√

j + εj )}, { f̂ (
√

j + εj )}), ({αi }, {βi })⟩(s,s)

∥({αi }, {βi })∥
2
(s,s)

,

where ({αi }, {βi }) ∈ ker(S) is a generator for the kernel of S.

Notice that the first option in Theorem 5.3 yields immediately an interpolation formula, in the spirit of
(4-26). For the second one, the operator is now only invertible if restricted to ker(S)⊥, and the process
of recovering f ∈ Seven(R : R) has to take into account the inner product with the kernel vector and the
structure of the range.

5B. Uniqueness for small powers of integers. Let α ∈
(
0, 1

2

)
. Bearing in mind the overall framework of

uniqueness formulae in which Theorem 1.4 situates itself, we address the question of determining when
the only function f ∈ Seven(R) that vanishes together with its Fourier transform at ±nα is the identically
zero function.

Indeed, we would like to study the natural operator that sends the sequence of values at the roots
of integers ({ f (

√
k)}k, { f̂ (

√
k)}k}) to the sequence ({ f (nα)}n, { f̂ (nα)}n). Our goal is to show that this

operator is injective. In order to do that, we will first study simpler operators.
In fact, let K0 ∈ N be a fixed positive integer. Fix a set of 2K0 positive real numbers t1< t2< · · ·< t2K0

such that t1 >
√

K0 and none of the tj can be written as a square root of a positive integer. We fix s > 0
sufficiently large and define the operator

TK0 : ℓ2
s (N)× ℓ

2
s (N)→ℓ2

s (N)× ℓ
2
s (N),

({xi }i , {yi }i ) 7→
(
(x0,G(t1),G(t2), . . . ,G(t2K0), xK0+1, xK0+2, . . . ),

(y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2K0), yK0+1, yK0+2, . . . )
)
.

Here, we denoted by G the function defined as in (4-24). Recall that G depends itself on {xi }i , {yi }i , and
thus, for fixed t , G(t) and Ĝ(t) are both linear functionals on ℓ2

s (Z≥0)× ℓ
2
s (Z≥0).

Lemma 5.4. For any K0 ≥ 1 and {tj } j=1,...,2K0 as above, the operator TK0 is bounded and injective.

Proof. We begin with the boundedness assertion. As TK0 differs only in at most the first 2K0 + 1
coordinates from an iteration of the shift operator

s(({xi }i , {yi }i )= ((0, x0, x1, . . . ), (0, y0, y1, . . . )),
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boundedness follows from boundedness of the operator that maps a pair of sequences ({xi }i , {yi }i ) ∈

ℓ2
s (N)× ℓ

2
s (N) to(
(x0,G(t1),G(t2), . . . ,G(t2K0), 0, . . . ), (y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2K0), 0, . . . )

)
.

As G, Ĝ ∈ L∞(R) for any pair of sequences {xi }, {yi }, with bounds depending only on the ℓ2
s (N)-norms

of the sequences, it follows that this new finite-rank operator is bounded.
The injectivity part is subtler. Indeed, fix a pair of sequences ({xi }, {yi }) ∈ ℓ2

s (N) × ℓ2
s (N), and

suppose that TK0({xi }, {yi }) = 0. It follows that the special function G(t) is a linear combination of
a1, . . . , aK0, â1, . . . , âK0 . In order to analyze such functions, we will need to investigate further the
intrinsic form of the interpolating functions an , and thus those of b±

n . As the reader will see in the analysis
below, we will show that the functions G±Ĝ have at most K0+1 zeros on (

√
K0,+∞) from the assertions

above. This is, indeed, the reason why we need to use 2K0 different values in order to prove injectivity.
Indeed, it follows from the Fourier expansion of g±

n near infinity and the formula

b±

n (x)=
1
2

∫ 1

−1
g±

n (z)e
π i x2z dz (5-4)

that, whenever |x |>
√

n, it can also be represented as

b±

n (x)= sin(πx2)

∫
∞

0
g±

n (1 + i t)e−πx2t dt. (5-5)

To see this, one shifts contours in (5-4) over the rectangular path passing through −1,−1 + iT, 1 + iT
and 1. The condition |x |>

√
n comes into play in order to guarantee that one may safely send T to ∞,

and the results in [Radchenko and Viazovska 2019] show that gεn(s + i R) grows as eπn R at infinity for
fixed s ∈ R. With (5-5) in mind and the facts that an = (b+

n + b−
n )/2 and ân = (b+

n − b−
n )/2, we see that

the Fourier invariant part of G may be written as

(G+ Ĝ)(x)= sin(πx2)

∫
∞

0

( K0∑
j=1

αj g+

j (1 + i t)
)

e−πx2t dt

for some sequence αj of real numbers, and an analogous identity holds for G− Ĝ, with g−
n instead. We

recall that the weakly holomorphic modular forms g±
n satisfy that

g+

n (z)= θ(z)3 P+

n (1/J (z)),

g−

n (z)= θ(z)3(1 − 2λ(z))P−

n (1/J (z)),

where the monic polynomials P−
n , P+

n are of degree n. Therefore, there are polynomials Q, R of
degree ≤ K0 such that

G+ Ĝ = sin(πx2)

∫
∞

0
θ(1 + i t)3 Q

(
1

J (1 + i t)

)
e−πx2t dt,

G− Ĝ = sin(πx2)

∫
∞

0
θ(1 + i t)3(1 − 2λ(1 + i t))R

(
1

J (1 + i t)

)
e−πx2t dt.

Before moving forward, we need the following result:
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Lemma 5.5. The factors θ(1 + i t)3 and (1 − 2λ(1 + i t)) do not change sign for t ∈ (0,∞), and the
function 1/J (1 + i t) is real-valued and monotonic for t ∈ (0,∞).

Proof. By using (2-1), we get that

θ(1 + i t)=

∑
n∈Z

(−1)ne−πn2t
=

∑
n∈Z

e−4πn2t
−

∑
n∈Z

e−π(2n+1)2t .

We now consider the function ft(x)= e−π(2x)2t. Then the sum above equals∑
n∈Z

ft(n)−
∑
n∈Z

ft
(
n +

1
2

)
.

By the Poisson summation formula, the difference above equals

1
2
√

t

(∑
n∈Z

e−π(n/(2
√

t))2
−

∑
n∈Z

eπ ine−π(n/(2
√

t))2
)

=
1

√
t

∑
n odd

e−π(n/(2
√

t))2
≥ 0.

This proves the first assertion.
For the second, we simply see from (2-2) that λ(1 + z) has only nonpositive coefficients in its q-series

expansion. This implies that λ(1 + i t) is nonpositive for t ∈ (0,∞), which implies that 1 − 2λ(1 + i t) is
always nonnegative.

Finally, for the third assertion, we notice that, as J (1 + z)=
1
16λ(1 + z)(1 − λ(1 + z)), and thus, from

the analysis above, the q-series expansion of J (1 + z) contains only nonpositive coefficients. Therefore,
the function 1/J (1 + i t) is nonpositive for t ∈ (0,∞), and it is monotonically decreasing there. □

By Lemma 5.5, we get that the part of the integrand in the expressions above multiplying the e−πx2t

factor changes sign at most K0 + 1 times. Notice that we can embed both integrals in (5-6) into the
framework of Laplace transforms: defining

Q(t)= θ(1 + i t)3 Q(1/J (1 + i t)), R(t)= θ(1 + i t)3(1 − 2λ(1 + i t))R(1/J (1 + i t)),

we are interested in studying the positive zeros of L[Q](πx2),L[R](πx2), where

L[φ](s)=

∫
∞

0
φ(t)e−st dt

denotes the Laplace transform of φ evaluated at the point s. We may reduce even further our task to
studying the positive zeros of L[Q],L[R]. The following result, a version of the Descartes rule for the
Laplace transform, is the tool we need to bound the number of positive zeros of such expressions as a
function of the number of sign changes of the function being transformed.

Proposition 5.6 (Descartes rule for the Laplace transform). Let φ : R → R be a smooth function such
that its Laplace transform L[φ] converges on some open half-plane Re(s) > s0. Then the number of zeros
of L[φ] on the interval (s0,+∞) is at most the number of sign changes of φ.

Proof. The proof follows by induction on the number of sign changes of the function φ. Indeed, if φ ≥ 0,
it follows easily that the Laplace transform satisfies L[φ] ≥ 0, with equality if and only if φ ≡ 0.
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Suppose now that φ changes sign n + 1 times on (0,∞). Number its zeros on the positive half-line as
a0 < a1 < · · · < an . Then L[φ] has as many zeros as ea0sL[φ](s) = F(s). The derivative of F is then
given by

F ′(s)= −

∫
∞

0
(t − a0)φ(t)e−(t−a0)s dt = ea0sL[(t − a0)φ(s)](s).

Notice that the new smooth function (t − a0)φ(t) still satisfies the same properties as φ, but now has
exactly n sign changes. By inductive hypothesis, F ′ has at most n zeros, which, by the mean value
theorem, implies that F has at most n + 1 zeros. □

Using this claim for Q,R, we see that their respective Laplace transforms possess at most K0 zeros
on the interval (

√
K0,+∞). With this information, we can already finish: From (5-6), the functions

G± Ĝ can only vanish at at most K0 points on the interval (
√

K0,∞) which are not roots of positive
integers, in the case G ̸≡ 0. But, according to our assumption that ({xi }, {yi }) ∈ ker(TK0), we have
G(tj )= Ĝ(tj )= 0, j = 1, . . . , 2K0. By the properties we chose for the sequence tj , G ≡ 0, and thus the
map TK0 is injective. □

We need one more result in order to infer results about uniqueness for small powers of integers. In
contrast to the full perturbation case of our main theorem, we must prove that the injective operators TK0

are also somewhat stable with respect to injectivity under perturbations. In order to do this, the following
result is essential.

Lemma 5.7. The range of TK0 is closed.

Proof. Suppose the sequence in ℓ2
s (N)×ℓ

2
s (N) given by {TK0({x j

i }, {y j
i })} j≥0 is a Cauchy sequence. This

implies that the sequence {{x j
i }i=0,K0+1,..., {y j

i }i=0,K0+1,...} j≥0 is a Cauchy sequence, and therefore it
converges to a certain limiting sequence

{{xi }i=0,K0+1,..., {yi }i=0,K0+1,...} ∈ ℓ2
s (N)× ℓ

2
s (N).

Define, thus, the 4K0 × 2K0 matrix AK0 given by taking

(a1(tj ), a2(tj ), . . . , aK0(tj ), â1(tj ), â2(tj ), . . . , âK0(tj ))

and
(â1(tj ), â2(tj ), . . . , âK0(tj ), a1(tj ), a2(tj ), . . . , aK0(tj ))

to be its lines for j = 1, . . . , 2K0. We first claim that this matrix is injective. Indeed,

G̃(t)=

K0∑
i=1

(xi ai (t)+ yi âi (t))

vanishes, together with its Fourier transform, at tj , j = 1, . . . , 2K0, where ({xi }
K0
i=1, {yi }

K0
i=1) belongs to

ker(AK0). By the proof of Lemma 5.4, this implies xi = yi = 0, i = 1, . . . , K0.
As AK0 is injective, there is a constant cK0 > 0 so that

∥AK0v∥4K0 ≥ cK0∥v∥2K0, (5-6)
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where we denote by ∥ · ∥d the usual euclidean norm on a d-dimensional space. Translating to our original
problem, as {TK0({x j

i }, {y j
i })} j≥0 is a Cauchy sequence in ℓ2

s (N)× ℓ
2
s (N),

{{x j
i }i=0,K0+1,..., {y j

i }i=0,K0+1,...} j≥0

is a convergent sequence, and thus we get that the sequences
K0∑

i=1

(xk
i ai (tj )+ yk

i âi (tj )), j = 1, . . . , 2K0,

are also Cauchy in k ≥ 0. By (5-6), ({xk
i }

K0
i=1, {yi }

K0
i=1)k≥0 is Cauchy. This implies that there is a limiting

sequence ({xi }, {yi }) ∈ ℓ2
s (N)× ℓ

2
s (N) so that

TK0({x j
i }, {y j

i })→ TK0({xi }, {yi }) as j → ∞. □

We are finally able to prove the following uniqueness result:

Corollary 5.8. Let α ∈
(
0, 2

9

)
. There exists cα > 0 such that the following holds. For each c ∈ (0, cα),

if f ∈ Seven(R) is a real-valued function that vanishes together with its Fourier transform at ±c · nα,
then f ≡ 0.

Moreover, for each n0 > 1, the same assertion as before holds under the weaker assumption that f
vanishes together with f̂ at ±c ·mα, where m ∈ {0}∪(mα(n0),+∞) and mα(n0)= min{n ∈ N : cnα > n0}.

Notice that the second assertion above, albeit technical, merely means we may start the sequences of
nonzero roots of f, f̂ as far away from the origin as we wish, as long as one keeps it under a certain
threshold in terms of denseness.

Proof. Fix α ∈
(
0, 2

9

)
and let c> 0 be a constant, to be precisely chosen later, which is allowed to depend

only on α. We start by noticing that, for each α ∈
(
0, 2

9

)
, there is n0(α) ≥ 1 such that whenever n ∈ N

is greater than n0(α), then there is m ∈ N so that for all n ≥ n0(α), there exists m ∈ N so that we can
write c · mα

=
√

n + εn , where {εn}n satisfies the conditions of Theorem 1.4. Indeed, start by noticing
that simply letting m = ⌈(n/c2)1/(2α)⌉ implies |

√
n − cmα

| ≲ c1/αn(α−1)/(2α).
Indeed,

|
√

n − cmα
| = cα

∫
⌈(n/c2)1/(2α)⌉

(n/c2)1/(2α)
tα−1 dt ≲ c1/ααn(α−1)/(2α). (5-7)

In particular, if (α− 1)/(2α) <−
5
4 −

1
2 ⇐⇒ α < 2

9 , the assertion follows. Let us single out the sequence
of numbers selected above, which we index as {c · m(n)α}n≥n0(α). We then consider the operator Tn0(α)

associated to some sequence of 2n0(α) positive real numbers tj , j = 1, . . . , 2n0(α), satisfying the
hypotheses of Lemma 5.4.

We claim that the perturbed operator

T̃n0(α) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) that takes a pair ({xi }, {yi }) to(

(x0,G(t1),G(t2), . . . ,G(t2n0),G(c · m(n0 + 1)α),G(c · m(n0 + 2)α), . . . ),

(y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2n0), Ĝ(c · m(n0 + 1)α), Ĝ(c · m(n0 + 2)α), . . . )
)

(5-8)
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is injective for some s > 0 that depends on α. Indeed, from Lemma 5.7 there must exist a constant Cn0

so that
∥Tn0v∥(s,s) ≥ Cn0∥v∥(s,s)

holds for all v ∈ ℓ2
s (N)× ℓ

2
s (N). But, by the same calculation as in the previous subsection, we have that

∥T̃n0(α) − Tn0(α)∥H S(ℓ2
s (N)×ℓ

2
s (N))

<
Cn0

2

holds, as long as we take α < 2
9 and c = c(α) sufficiently small, because (5-7) implies we satisfy the

conditions of Theorem 5.3. This implies, in particular, that

∥T̃n0v∥(s,s) ≥
Cn0

2
∥v∥(s,s)

for each v ∈ ℓ2
s (N)× ℓ

2
s (N), and thus the operator T̃n0 is, indeed, injective, as desired.

In order to conclude, we notice that the operator

Tn0(α) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) that takes a pair ({xi }, {yi }) to(

(x0,G(ckα1 ),G(ckα2 ), . . . ,G(ckα2n0
),G(c · m(n0 + 1)α),G(c · m(n0 + 2)α), . . . ),

(y0, Ĝ(ckα1 ), Ĝ(ckα2 ), . . . , Ĝ(ckα2n0
), Ĝ(c · m(n0 + 1)α), Ĝ(c · m(n0 + 2)α), . . . )

)
, (5-9)

for some sequence kj , j = 1, . . . , 2n0, of integers not belonging to the sequence m(n) we selected above,
is still injective. In fact, it only differs from the operator T̃n0 in at most 2n0 entries. But, on the other
hand, for kj = ⌊(tj/c)1/α⌋, j = 1, . . . , 2n0, and c > 0 sufficiently small, we see by Theorem 1.6 that

|G(ckαj )−G(tj )| ≤

∞∑
i=0

(|xi∥ai (tj )− ai (ckαj )| + |yi ||âi (tj )− âi (ckαj )|)

≲ sup
1≤l≤2n0

|tl − ckαl |

( ∞∑
i=0

(1 + i)5/2(|xi | + |yi |)

)
≲ ϵ∥({xi }, {yi })∥(s,s).

Here, note that ϵ depends on c > 0 and α, and tends to 0 as c → 0. For ϵ > 0 sufficiently small, we see
from the previous argument that Tn0(α) still has closed range and is injective. Thus, by taking cα > 0
sufficiently small we have that the sequence ({ f (±nα)}, { f̂ (±nα)}) determines uniquely the sequence
({ f (

√
n)}, { f̂ (

√
n)}). This finishes the proof of the first assertion.

The assertion about being able to restrict the first node cαmα to be as large as we want follows in the
exact same way, and we thus omit it. □

One can inquire about the importance of such a result; as in [Ramos and Sousa 2022] we have shown
that the uniqueness result stated in Corollary 5.8 holds for α ∈

(
0, 1 −

√
2

2

)
, which is significantly larger

than the range stated here. Nonetheless, Corollary 5.8 gives us automatic results. Indeed, if one manages
to prove that for all δ > 0 there is ϵ > 0 so that, if |εk | ≤ ϵ for all k ∈ N, then

∥I − T̃ ∥op < δ,

it implies automatically that we can extend the results in Corollary 5.8 to the full diagonal range α ∈
(
0, 1

2

)
.
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We also note that Corollary 5.8 is not all we can say about the problem of determining the best
exponents (α, β) so that

f (±nα)= f̂ (±nβ)= 0, f ∈ Seven(R) =⇒ f ≡ 0.

Indeed, we can easily go further than the diagonal case detailed above: if α, β ∈
(
0, 2

9

)
are arbitrary

exponents, we notice that we can still pick n0 ∈ N so that for each n > n0 = n0(α, β), there exists a pair
(m1(n),m2(n)) ∈ N2 so that

|cm1(n)α −
√

n| + |cm2(n)β −
√

n| ≲ c1/ααn(α−1)/(2α)
+ c1/ββn(β−1)/(2β),

and the right-hand side can be made ≪ n−5/4−δ for some δ > 0. This induces us to consider the operator

Tn0(α,β) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) taking pairs ({xi }, {yi }) to(

(x0,G(ckα1 ),G(ckα2 ), . . . ,G(ckα2n0
),G(m1(n0 + 1)α),G(m1(n0 + 2)α), . . . ),

(y0, Ĝ(clβ1 ), Ĝ(clβ2 ), . . . , Ĝ(clβ2n0
), Ĝ(m2(n0 + 1)β), Ĝ(m2(n0 + 2)β), . . . )

)
(5-10)

for two sequences of integers (kj , lj ), j = 1, . . . , 2n0, so that |tj − ckαj | + |tj − clβj | is sufficiently small
for all j ∈ [0, 2n0], where we select tj , j = 1, . . . , 2n0, satisfying the hypotheses of Lemma 5.4.

By the same strategy outlined in the proof of Corollary 5.8, the Hilbert–Schmidt norm as operators
acting on ℓ2

s (N)× ℓ2
s (N) of the difference Tn0(α,β) − Tn0(α,β) is arbitrarily small, as long as we make

the value of c = c(α, β) smaller. As a consequence, Tn0 is also injective and its range is closed. These
considerations prove, therefore, the following:

Corollary 5.9. Let α, β ∈
(
0, 2

9

)
. Then there is cα,β > 0 so that the following holds. For all c ∈ (0, cα,β), if

f ∈ Seven(R) is a real-valued function that vanishes at ±cnα and its Fourier transform vanishes at ±cnβ,
then f ≡ 0.

Moreover, for each n0>1, the same assertion above holds under the weaker assumption that f vanishes
for ±c · mα and f̂ vanishes for ±c · kβ, where m ∈ {0}∪ (mα,β(n0),+∞), k ∈ {0}∪ (kα,β(n0),+∞), and
mα,β(n0), nα,β(n0) are the least positive integers such that c · mα > n0 and c · kβ > n0, respectively.

Remark. In the end, we do not quite attain the primary goal of this section of proving Fourier uniqueness
results for the sequences ({±nα}, {±nβ}), but only a slightly weaker version of it, with a small constant
c(α, β) in front. The main reason for that in the proofs above is the location of the positive reals ti :
although their exact values do not matter in the end, it is crucial, in order to use Proposition 5.6, that they
lie after the node n0. We must therefore either force n0 not to be too large in order not to make the norm
of the matrix AK0 too small, or fix them from the beginning and make the perturbations of TK0 fall closer
to it. In any case, this implies nontrivial use of the constant c multiplying the sequences ({±nα}, {±nβ}).

We believe that further studying operators resembling TK0 above and their injectivity properties could
yield better results in this regard. In order not to make this exposition even longer, we will not pursue this
matter any further.



2374 JOÃO P. G. RAMOS AND MATEUS SOUSA

5C. Annihilating pairs. As an application of the results above, we will prove some strong annihilating
properties of the sets {±cαnα}n∈N, {±cβnβ}n∈Z.

Indeed, let A, B ⊂ R be two discrete sets. Inspired by the results and definitions of [Benedicks 1985;
Amrein and Berthier 1977] (see also [Nazarov 1993]), we say that (R \ A,R \ B) is a weakly annihilating
pair for a class C ⊂ L2(R) if whenever f (A)= f̂ (B)= {0}, f ∈ C, then f ≡ 0.

This definition implies directly that (R \ {±
√

n}n≥0,R \ {±
√

n}n≥0) is a weakly annihilating pair for
Seven(R; R) due to (1-3). On the other hand, under the hypotheses of Theorem 1.4, it follows directly that
(R \ {±

√
n + εn}n≥0,R \ {±

√
n + εn}n≥0) is also weakly annihilating for Seven(R; R).

As a natural counterpart, we define a pair (R \ A,R \ B) to be ω-strongly annihilating for a class
C ⊂ L2(R), ω ∈ R, if there is a real number γ ∈ R such that the inequality

∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ ) ≲

(∑
a∈A

| f (a)|2(1 + |a|)ω +

∑
b∈B

| f̂ (b)|2(1 + |b|)ω
)1/2

holds for all f ∈ C.
Our first contribution is Theorem 1.7; i.e., the pair (R \ {±

√
n}n≥0,R \ {±

√
n}n≥0) is ω-strongly

annihilating for some ω > 0.

Proof of Theorem 1.7. We start with (1-10). Indeed, consider a sequence {εn}n≥0 of real numbers. We
begin by observing that, for all integers n ≥ 1, we have, by (1-3) together with Theorem 1.6,

| f (x)− f (
√

n)| ≲
|εn|
√

n

∑
m≥0

(1 + m)3/4 log3(m + 1)e−c
√

n/m
[| f (

√
m)| + | f̂ (

√
m)|],

whenever x ∈ [
√

n,
√

n + εn). Suppose then |εn| ≤ δ(1 + |n|)−θ holds for all n ≥ 1, for some θ > 0 and
δ > 0. If one uses the bound above together with the triangle inequality, an integration over the interval
[
√

n,
√

n + εn) and the Cauchy–Schwarz inequality, one obtains

(1 + n)s | f (
√

n)|2 ≲
(∫ √

n+1

√
n

| f (y)|2(1 + |y|)2(θ+2s)+1 dy
)

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m)e−2c
√

n/m(1 + n)−2θ−1+s .

If 2θ+1− s > 1 ⇐⇒ θ > s/2, we may sum the right-hand side above in n ≥ 1 and get a uniform constant
in m ≥ 0. This yields∑
n≥1

(1 + n)s | f (
√

n)|2 ≲
∫

R

| f (y)|2(1 + |y|)2(θ+2s)+1 dy

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m).

An entirely analogous calculation implies the same on the level of Fourier transforms; that is,∑
n≥1

(1 + n)s | f̂ (
√

n)|2 ≲
∫

R

| f̂ (y)|2(1 + |y|)2(θ+2s)+1 dy

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m).
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Summing these two bounds, if s > 3
2 and δ ≪ 1 is sufficiently small, we obtain∑

n≥1

(1 + n)s[| f (
√

n)|2 + | f̂ (
√

n)|2] ≤ C(∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ )), (5-11)

which was the desired inequality, except for the n = 0 term. In that regard, we notice that a Sobolev
embedding argument allows us to include it in the left-hand side of (5-11), which proves (1-10). Notice
that we may take, for this part, any γ > 5s + 1.

For (1-11), we will use once more Theorem 1.6. Indeed, it follows from that and Cauchy–Schwarz that

| f (x)| + | f̂ (x)| ≲
∑
n≥0

[| f (
√

n)| + | f̂ (
√

n)|](1 + n)1/4 log3(1 + n)e−c|x |/
√

1+n

≲

(∑
n≥0

[| f (
√

n)|2 + | f̂ (
√

n)|2](1 + n)5/2 log6(1 + n)e−2c|x |/
√

1+n
)1/2

.

Thus, we readily obtain that

∥ f ∥L2((1+|x |)s) + ∥ f̂ ∥L2((1+|x |)s) ≲

(∑
n≥0

[| f (
√

n)|2 + | f̂ (
√

n)|2](1 + n)(5+s)/2 log6(1 + n)
)1/2

for any s > 0. This proves the Theorem for any ω > s/2 + 4. □

Furthermore, as a corollary we can also obtain that the pair (R \ {±
√

n + εn}n≥0,R \ {±
√

n + εn}n≥0)

is ω-strongly annihilating for some ω > 0, which was the content of Corollary 1.8.

Proof of Corollary 1.8. Notice that the operator T̃ : ℓ2
r (N)×ℓ

2
r (N)→ ℓ2

r (N)×ℓ
2
r (N) given in Section 4B is,

under our given hypotheses, bounded and invertible for r ≫1 sufficiently large. Moreover, it takes, for each
f ∈ Seven(R), the pair ({ f (

√
n)}n∈N, { f̂ (

√
n)}n∈N) to the pair ({ f (

√
n + εn)}n∈N, { f̂ (

√
n + εn)}n∈N).

Therefore, if ω > s > r , then the comparison of

∥({ f (
√

n)}n∈N, { f̂ (
√

n)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

with

∥({ f (
√

n + εn)}n∈N, { f̂ (
√

n + εn)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

holds with comparing constants independent of f ∈Seven(R). The same assertion holds with ℓ2
ω(N)×ℓ

2
ω(N)

norms instead of ℓ2
s (N)× ℓ

2
s (N). This is enough to conclude the asserted statement. □

Finally, we conclude that, whenever cα, cβ are sufficiently small, then (R \ {±cαnα},R \ {±cβnβ}) is
ω-strongly annihilating for ω sufficiently large.

Corollary 5.10. For α, β < 2
9 and cα, cβ sufficiently small and for any γ > 0 sufficiently large, we have

∥ f ∥L2((1+|x |)) + ∥ f̂ ∥L2((1+|x |)γ ) ≲

(∑
n≥0

(1 + n)ω[| f (cαnα)|2 + | f̂ (cβnβ)|2]
)1/2

,

whenever ω > (5 + γ )/4 and f ∈ Seven(R) is a real-valued function.
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Proof. Under the hypotheses above, we know that the operator Tn0(α,β) from (5-10) is still injective and
has closed range on ℓ2

s (N)× ℓ
2
s (N) for s ≫ 1. For that reason, the norm

∥({ f (
√

n)}n∈N, { f̂ (
√

n)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

can be controlled by a constant independent of f times

∥Tn0(α,β)({ f (
√

n)}, { f̂ (
√

n)})∥ℓ2
s (N)×ℓ

2
s (N)

.

However, the sequences constituting Tn0(α,β)({ f (
√

n)}, { f̂ (
√

n)}) are subsequences of each entry of
({cαnα}, {cβnβ}), respectively. As the weight n 7→ (1 + n)ω is monotonic on N, adding more terms only
increases the weighted norm, and thus the conclusion follows. □

5D. The Cohn–Kumar-Miller-Radchenko–Viazovska result and perturbed interpolation formulae with
derivatives. As another illustration of our main technique, we prove that the interpolation formulae with
derivatives in dimension 8 and 24 from [Cohn et al. 2022] can be suitably perturbed.

Indeed, we first recall one of the main results of [Cohn et al. 2022]: let (d, n0) be either (8, 1) or
(24, 2). Then every f ∈ Srad(R

d) can be uniquely recovered by the sets of values

{ f (
√

2n), f ′(
√

2n), f̂ (
√

2n), f̂ ′(
√

2n)}, n ≥ n0,

through the interpolation formula

f (x)=

∑
n≥n0

f (
√

2n)an(x)+
∑
n≥n0

f ′(
√

2n)bn(x)+
∑
n≥n0

f̂ (
√

2n)ân(x)+
∑
n≥n0

f̂ ′(
√

2n)b̂n(x). (5-12)

We also have uniform estimates on the functions an, ân, bn, b̂n: indeed, there is τ > 0 so that

sup
l∈{0,1,2}

sup
x∈Rd

(1 + |x |)100(|a(l)n (x)| + |â(l)n (x)| + |b(l)n (x)| + |b̂(l)n (x)|)≲ nτ (5-13)

for all n ∈ N. Here and throughout this section, we shall denote by g′(x) the derivative of the (radial)
function g regarded as a one-dimensional function.

By [Cohn et al. 2022, Theorem 1.9], we know that the matrices

Mn(x)=


an(x) a′

n(x) ân(x) â′
n(x)

bn(x) b′
n(x) b̂n(x) b̂′

n(x)
ân(x) â′

n(x) an(x) a′
n(x)

b̂n(x) b̂′
n(x) bn(x) b′

n(x)

 (5-14)

satisfy that Mn(
√

2m)= δm,n I4×4 for m, n ≥n0. As we know that the map that takes a vector of sufficiently
rapidly decaying sequences

({αn}, {βn}, {α̃n}, {β̃n})n≥n0

onto the function

f(x)=

∑
n≥n0

(αnan(x)+βnbn(x)+ α̃n ân(x)+ β̃n b̂n(x))



PERTURBED INTERPOLATION FORMULAE AND APPLICATIONS 2377

is, in fact, injective (and moreover an isomorphism if we consider the set of all arbitrarily rapidly decaying
sequences), we shall make use of this function in our estimates. Indeed, we have that the map that takes
the quadruple of sequences

({αn}, {βn}, {α̃n}, {β̃n})

onto

(f(
√

2n), f′(
√

2n), f̂(
√

2n), f̂′(
√

2n))n≥n0

is, in fact, the identity. Another way to represent this map is as the series∑
n≥n0

(αn, βn, α̃n, β̃n) · Mn(
√

2n).

We define, therefore, the operator that takes the same quadruple onto(
f(

√
2n + εn), f

′(
√

2n + εn), f̂(
√

2n + εn), f̂
′(
√

2n + εn)
)

n≥n0
.

In the alternative notation, this operator, which we shall denote by T, is given by∑
n≥n0

(αn, βn, α̃n, β̃n) · Mn(
√

2n + εn).

As before, we seek to prove that T is invertible when defined over some space

ℓ2
s (N)× ℓ

2
s (N)× ℓ

2
s (N)× ℓ

2
s (N)=: (ℓ2

s (N))
4,

where we may take s ≫ 1 sufficiently large. As our aim here is not to establish the sharpest possible results,
but only to prove that we may prove versions of the above interpolation formula with some perturbed nodes;
we shall make use of the Hilbert–Schmidt test, as in Section 5A above. Indeed, the same remark about
the definition of the perturbed operators in the proof of Theorem 1.4 holds here as well: we first define
T over quadruples of sequences with finitely many nonzero terms, and then we use a priori boundedness
of I −T over this space to define T in the whole space (ℓ2

s (N))
4 by density. Thus, we wish to prove that

∥I −T∥H S((ℓ2
s (N))

4) < 1.

A simple computation with the Hilbert–Schmidt norm using (5-14) shows that this quantity is bounded by∑
m,n>n0

m2sn−2s(|an(
√

2m)−an(
√

2m+εm)|
2
+|ân(

√
2m)−ân(

√
2m+εm)|

2

+|a′

n(
√

2m)−a′

n(
√

2m+εm)|
2
+|â′

n(
√

2m)−â′

n(
√

2m+εm)|
2
+|bn(

√
2m)−bn(

√
2m+εm)|

2

+|b̂n(
√

2m)−b̂n(
√

2m+εm)|
2
+|b′

n(
√

2m)−b′

n(
√

2m+εm)|
2
+|b̂′

n(
√

2m)−b̂′

n(
√

2m+εm)|
2).

Notice that we have used, as in the proof of Theorems 1.4 and 5.3, the standard orthonormal basis for
the space ℓ2

s (N), which induces the additional (m/n)2s factor in the summand above. By (5-13) and the
mean value theorem, the sum above is bounded by (an absolute constant times)∑

m,n>0

m2sn−2s
× m−100n2τε2

m .
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The sum above is representable as a product of a sum in m and one in n. The one in n is convergent if
s > τ + 1. We then fix such a value of s. For such values, the second sum is∑

m>0

m2s−100ε2
m,

which converges in the case εm ≲m49−s. For all such sequences, the difference I −T is a Hilbert–Schmidt
operator. Moreover, if εm ≤ δm49−s for δ > 0 sufficiently small, we will have ∥I − T∥H S(ℓ2

s (N)
4) < 1.

Summarizing, we have shown the following result:

Theorem 5.11. There are C0 > 0 and δ > 0 so that the following holds: for each sequence εk so that
|εk |< δk−C0, any function f ∈ Srad(R

d) is uniquely determined by the values(
f (

√
2n + εn), f ′(

√
2n + εn), f̂ (

√
2n + εn), f̂ ′(

√
2n + εn)

)
n≥n0

, (5-15)

where we let (d, n0)= (8, 1) or (24, 2).

In the same spirit of Section 4B, one can obtain an interpolation formula with the values (5-15) from
Theorem 5.11.

We remark that, in the same way that we undertook our analysis for the Radchenko–Viazovska
interpolating functions, we expect the functions an, bn in [Cohn et al. 2022, Theorem 1.9] should also
satisfy some exponential-like decay. This fact, although possible, should be sensibly more technically
involved than Theorem 1.6, due to the more complicated nature of the construction of the interpolating
functions with derivatives in dimensions 8 and 24.

5E. Perturbed interpolation formulae for odd functions. Finally, in the same spirit of the results in
Section 4, we briefly comment on interpolation formulae for odd functions. Recall the following results
from [Radchenko and Viazovska 2019, Section 7]:

Theorem 5.12 [Radchenko and Viazovska 2019, Theorem 7]. There exist sequences of odd functions
d±

m : R → R, m ≥ 0, belonging to the Schwartz class so that

d̂±
m = (∓i)d±

m , d±

m (
√

n)= δn,m
√

n, n ≥ 1.

Moreover, limx→0 d+
m (x)/x = δ0m . These functions satisfy the uniform bound

|d±

n (x)| ≲ n5/2 for all x ∈ R, n ≥ 0,

and, finally, for each odd and real Schwartz function f : R → R,

f (x)= d+

0 (x)
f ′(0)+ i f̂ ′(0)

2
+

∑
n≥1

(
cn(x)

f (
√

n)
√

n
− ĉn(x)

f̂ (
√

n)
√

n

)
, (5-16)

where cn = (d+
n + d−

n )/2, and the right-hand side of the sum above converges absolutely.

As a direct consequence, we see that any real, odd, Schwartz function on the real line is determined
uniquely by the union of its values at

√
n and the values of its Fourier transform at

√
n with f ′(0)
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and f̂ ′(0). By employing the results in Section 4, we will show that we can actually recover any such
function from { f (

√
n + εn)}n≥1 ∪ { f̂ (

√
n + εn)}n≥1 ∪ { f ′(0)} ∪ { f̂ ′(0)} instead.

Indeed, first of all, we start by noticing that the same techniques employed to refine the uniform
estimates from [Radchenko and Viazovska 2019] can be applied to the functions d±

m , as they are defined
in a completely analogous way to the b±

n from Section 4. By carrying out the same kind of estimates, we
are able to obtain

|d±

n (x)| ≲ n3/4 log3(1 + n)e−c′
|x |/

√
n for all x ∈ R, n ≥ 1, (5-17)

for some absolute constant c′ > 0. By the same analysis of the ∂x -partial derivative of the generating
function used in Section 4A, this readily implies that the derivatives of the d±

n satisfy essentially the same
decay; in fact, |(d±

n )
′(x)| ≲ n5/4 log3(1 + n)e−c′′

|x |/
√

n for all x ∈ R, n ≥ 1, with c′′ > 0 another absolute
constant.

We consider now the operator that takes a pair of sequences ({αn}, {βn}) ∈ ℓ
2
s (N)× ℓ

2
s (N), s > 0 to be

chosen, into {∑
n≥0
(αn, βn)Cn(

√
m + εm)

}
m≥0

,

where we abbreviate

Cn(x)=

(
cn(x)/

√
n ĉn(x)/

√
n

−ĉn(x)/
√

n cn(x)/
√

n

)
.

Let us denote this operator by V . From (5-16) and the fact that the function d+

0 (x)= sin(πx2)/sinh(πx)
vanishes together with its Fourier transform at ±

√
n, n ∈ N, we know that the identity operator on

ℓ2
s (N)× ℓ

2
s (N) may be written as {∑

n≥0
(αn, βn)Cn(

√
m)

}
m≥0

.

Therefore, the techniques from Sections 4B, 5D and 5A, together with our previous considerations in this
subsection, allow us to deduce the following result:

Theorem 5.13. There is δ > 0 so that, in the case |εn| ≤ δn−7/4, for each f ∈ Sodd(R) real, the values

( f (
√

1 + εn), f (
√

2 + ε2), . . .) and ( f̂ (
√

1 + εn), f̂ (
√

2 + ε2), . . .)

allow us to recover uniquely the values ( f (1), f (
√

2), f (
√

3), . . .) and ( f̂ (1), f̂ (
√

2), f̂ (
√

3), . . .). In
particular, given the values

{ f (
√

n + εn)}n≥1 ∪ { f̂ (
√

n + εn)}n≥1 ∪ { f ′(0)} ∪ { f̂ ′(0)},

we can uniquely recover any real-valued function f ∈ Sodd(R).

As previously mentioned, we do not carry out the details here, for their similarities with the proof of
Theorems 1.6 and 1.4.

6. Comments and remarks

In this section, we gather some remarks about the problems and techniques discussed and state some
results we expect to be true.
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6A. Asymmetric perturbations. In the statement of Theorem 1.4, we have assumed that the perturbations
made to the Radchenko–Viazovska interpolation formula were the same on the function and Fourier
sides for fixed j . We remark that, by the exact same proof as given above, one may obtain results with
different perturbations: in that regard, Theorem 1.4 can be immediately reinterpreted as stating that one
may recover f from the values of f (

√
n + εn), f̂ (

√
n + δn), n ≥ 0, where one assumes ε0 = δ0 = 0, and

supn(1 + n)5/4 log(1 + n)3 · (|εn| + |δn|) is sufficiently small.
Similarly, one can safely introduce four different perturbation parameters in Theorem 5.11 — one for f ,

one for f ′, one for f̂ and a last one for f̂ ′ — as long as they still satisfy the conditions predicted in that
result. The same holds for Theorem 1.3, where one may select two different perturbation parameters, one
for the function and another for its derivative. As these generalizations are immediate from our proofs,
we chose to keep all results with one perturbation parameter, in order to simplify the exposition.

6B. Maximal perturbed interpolation formulae for band-limited functions. In Section 3, we have seen
how our basic functional analysis techniques can be employed in order to deduce new interpolation
formulae for band-limited functions. Although Kadec’s proof also uses the basic fact that, whenever a
perturbation of the identity is sufficiently small, we can basically “invert” an operator, he then proceeds to
find that the set of exponentials {exp(2π i(n + εn)x)}n≥0 is a Riesz basis for L2

(
−

1
2 ,

1
2

)
if supn |εn|<

1
4

by means of orthogonality considerations. Indeed, one key strategy in his estimates is to expand in the
different complete orthogonal system

{1, cos(2πnt), sin((2n − 1)π t)}n≥1

and use the properties of this expansion. Our results, as much as they do not come so close to Kadec’s thresh-
old, follow a slightly different path: instead of using the orthogonality of a different system, we choose to
work directly with discrete analogues of the Hilbert transform and estimate over those. Although we do
not reach — by a 0.011 margin — the sharp 1

4 -perturbation result, one advantage of our approach is that it
yields bounds for perturbing any kind of interpolation formulae with derivatives. Indeed, following the line
of thought of Vaaler, many authors have investigated the property of recovering the values of a function
f ∈ L2(R) band-limited to [−k/2, k/2] from the values of its (k−1)-first derivatives (see, e.g., [Littmann
2006; Gonçalves and Littmann 2018]). Our approach in Section 3 in order to prove Theorem 1.3 generalizes
easily to the case of several derivatives by an easy modification. It can be summarized as follows:

Theorem 6.1. There is L(k) > 0 so that if max0≤l<k supn∈Z |ε
(l)
n |< L(k), then any function f ∈ L2(R)

band-limited to [−k/2, k/2] is uniquely determined by the values of

f (l)(n + ε(l)n ), n ∈ Z, l = 0, 1, . . . , k − 1.

A natural question that connects our results to Kadec’s results is about the best value of L(k) so that
Theorem 6.1 holds. We do not have evidence to back any concrete conjecture, but we find possible that
the threshold L(k) =

1
4 is kept for higher values of k ∈ N. We speculate that, in order to prove such a

result, one would need to find an appropriate hybrid of our techniques and Kadec’s techniques (see for
instance Section 10 in [Young 1980, Chapter 1]), taking into account properties of the discrete Hilbert
transforms as well as orthogonality results.
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6C. Theorem 1.6, optimal decay rates for interpolating functions and maximal perturbations. In
Theorem 1.6, we have improved the uniform bound obtained in [Radchenko and Viazovska 2019] and,
more recently, the sharper uniform bound of [Bondarenko et al. 2023] on the interpolating functions an to
one that decays with x ; namely, we have that

|an(x)| ≲ n1/4 log3(1 + n)(e−c|x |
2/n1|x |<Cn + e−c|x |1|x |>Cn)

holds for all n ∈ N, where C, c > 0 are two fixed positive constants. Although this improves the decay
rates from before, the power n1/4 found here and in [Bondarenko et al. 2023] in the growth seems likely
not to be optimal; to that regard, we pose the following:

Question 1. What is the best decay rate for an as in Theorem 1.6? Can one prove that supx∈R |an(x)| =

O((log n)C) in n for some absolute constant C > 0?

This conjectured growth seems to be the best possible, due to the recent findings of [Bondarenko et al.
2023], which show that, for each N ≫ 1, the average

1
N +1

∑
k≤N

|ak(x)|2

grows slower than some power of log N.
Notice that, by a simple modification of the computations made in Section 4B, an affirmative answer

to Question 1 yields an immediate improvement in the range of εi that we allow for the theorems in
Section 4B. Indeed, we get automatically that |εi | ≲ i−1 is allowed in such results. On the other hand,
this seems to be the best possible result one can achieve with our current methods, as the mean value
theorem implies that supx∈R |a′

n(x)| ≳
√

n.
In particular, everything indicates that one needs a new idea in order to prove the following conjecture:

Conjecture 6.2 (maximal perturbations). Let f ∈ Seven(R) be a real-valued function. Then there is θ > 0
so that, if |εi | + |δi |< θ for all i ∈ N, then f can be uniquely recovered from its values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

together with the values of its Fourier transform

f̂ (0), f̂ (
√

1 + δ1), f̂ (
√

2 + δ2), . . . .

It might not be an easy task to prove Conjecture 6.2 even with a new idea starting from our techniques,
but we believe that the following version stands a chance of being more tractable with the current methods:

Conjecture 6.3 (maximal perturbations, weak form). Let f ∈ Seven(R) be a real-valued function. Then,
for each a > 0, there is δ > 0 so that, if |εi |+|δi | ≤ δk−a, then f can be uniquely recovered from its values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

together with the values of its Fourier transform

f̂ (0), f̂ (
√

1 + δ1), f̂ (
√

2 + δ2), . . . .

In this framework, the results in Section 4B may be regarded as partial progress towards this conjecture.
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NONEXISTENCE OF THE BOX DIMENSION
FOR DYNAMICALLY INVARIANT SETS

NATALIA JURGA

One of the key challenges in the dimension theory of smooth dynamical systems lies in establishing
whether or not the Hausdorff, lower and upper box dimensions coincide for invariant sets. For sets invariant
under conformal dynamics, these three dimensions always coincide. On the other hand, considerable
attention has been given to examples of sets invariant under nonconformal dynamics whose Hausdorff
and box dimensions do not coincide. These constructions exploit the fact that the Hausdorff and box
dimensions quantify size in fundamentally different ways, the former in terms of covers by sets of varying
diameters and the latter in terms of covers by sets of fixed diameters. In this article we construct the first
example of a dynamically invariant set with distinct lower and upper box dimensions. Heuristically, this
says that if size is quantified in terms of covers by sets of equal diameters, a dynamically invariant set can
appear bigger when viewed at certain resolutions than at others.

1. Introduction

The dimension theory of dynamical systems is the study of the complexity of sets and measures which
remain invariant under dynamics, from a dimension theoretic point of view. This branch of dynamical
systems has its foundations in the seminal work [Bowen 1979] on the dimension of quasicircles and
[Ruelle 1982] on the dimension of conformal repellers, and has since developed into an independent field
of research which continues to receive noteworthy attention in the literature [Bárány et al. 2019; Cao et al.
2019; Das and Simmons 2017]. For an overview of this extensive field, see the monographs [Barreira
2008; Pesin 1997] and the surveys [Barreira and Gelfert 2011; Chen and Pesin 2010; Schmeling 2001].

The most common ways of measuring the dimension of invariant sets are through the Hausdorff
dimension and the lower and upper box dimensions, which quantify the complexity of the set in related
but subtly distinct ways. Roughly speaking, the Hausdorff dimension measures how efficiently the set
can be covered by sets of arbitrarily small size, whereas the lower and upper box dimensions measure
this in terms of covers by sets of uniform size, along the scales for which this can be done in the most
and least efficient way, respectively. Given a subset E of a separable metric space X, the lower and upper
box dimensions are defined by

dimB E = lim inf
δ→0

log Nδ(E)

− log δ
and dimB E = lim sup

δ→0

log Nδ(E)

− log δ
,
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respectively, where Nδ(E) denotes the smallest number of sets of diameter δ > 0 required to cover E .
If the lower and upper box dimensions coincide we call the common value the box dimension, written
dimB, otherwise we say that the box dimension does not exist.

For any subset E ⊆ X,
dimH E ≤ dimB E ≤ dimB E, (1)

where dimH denotes the Hausdorff dimension. A priori each inequality may or may not be strict. However,
when E is invariant under a smooth mapping f , the additional structure imposed by the dynamical
invariance of E means that certain properties of f can either force some degree of homogeneity or, on
the contrary, inhomogeneity across the set, forcing equalities or strict inequalities in (1), respectively.
Characterising which properties of f imply or preclude equalities in (1) is one of the key challenges in
dimension theory.

A common feature in the dimension theory of smooth conformal dynamics is the coincidence of the
Hausdorff and lower and upper box dimensions for invariant sets. For example, in the setting of smooth
expanding maps, the following result pertains to a more general result which was obtained independently
by Gatzouras and Peres [1997] and Barreira [1996], generalising previous results of Falconer [1989].

Theorem 1.1 [Barreira 1996; Gatzouras and Peres 1997]. Suppose f : M → M is a C1 map of a
Riemannian manifold M and that 3 = f (3) is a compact set such that f −1(3)∩ U ⊂ 3 for some open
neighbourhood U of 3. Additionally, assume that

• f is conformal: for each x ∈ M, the derivative dx f is a scalar multiple of an isometry,

• f is expanding on 3: there exist constants C > 0 and λ > 1 such that, for all x ∈ 3 and u in the
tangent space Tx M,

∥dx f nu∥ ≥ Cλn
∥u∥.

Then, for any compact set F = f (F) ⊂ 3,

dimB F = dimB F = dimH F.

Similar results hold in the setting of smooth diffeomorphisms. For example, if f : M → M is a
topologically transitive C1 diffeomorphism with a basic set 3 and f is conformal on 3, then we have
dimH 3 = dimB 3 = dimB 3 [Barreira 1996; Pesin 1997], and an analogous statement holds for the
dimensions of the intersections of 3 with its local stable and unstable manifolds [Palis and Viana 1988;
Takens 1988].

In contrast, in the realm of smooth nonconformal dynamical systems, coincidence of the Hausdorff
and box dimensions is no longer a universal trait of invariant sets. Indeed, examples of invariant sets with
distinct Hausdorff and box dimensions have attracted enormous attention [Bedford 1984; Kenyon and
Peres 1996; Lalley and Gatzouras 1992; McMullen 1984; Neunhäuserer 2002; Pollicott and Weiss 1994]
and discussion in surveys [Barreira and Gelfert 2011; Chen and Pesin 2010; Fraser 2021]. This type of
dimension gap result exploits the fact that the Hausdorff dimension quantifies the size of the set in terms
of covers by sets of varying diameters rather than fixed diameters which are used by the box dimension.
Indeed invariant sets of certain nonconformal dynamics will contain long, thin and well-aligned copies of
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itself, meaning that covering by sets of varying diameter is often more efficient, inducing this type of
dimension gap. However, surprisingly there seems to be no mention in the literature of the possibility of
a dynamically invariant set with distinct lower and upper box dimensions. Our main result demonstrates
the existence of such sets.

Theorem 1.2. There exist integers n > m ≥ 2 and a compact subset of the torus F ⊂ T2 such that F is
invariant, F = T (F) under the expanding toral endomorphism

T (x, y) = (mx mod 1, ny mod 1)

and

dimB F < dimB F.

In particular, the box dimension of F does not exist.

Since n > m, we have that T is a nonconformal map. Well-known examples from the literature,
such as Bedford–McMullen carpets [Fraser 2021], demonstrate that equality of the Hausdorff and box
dimensions is not guaranteed in Theorem 1.1 if the assumption of conformality is dropped. Furthermore,
Theorem 1.2 indicates that the lower and upper box dimensions need not coincide either in Theorem 1.1 if
the assumption of conformality is dropped. This is arguably a more striking type of dimension gap since,
while it is easy to see that sets invariant under nonconformal dynamics may cease to be homogeneous in
space, which is captured by the possibility of distinct Hausdorff and box dimensions, one would expect
the dynamical invariance to at least force homogeneity in scale, but our result demonstrates that this too
can fail. In particular Theorem 1.2 describes that, when measuring size in terms of covers by sets of equal
diameter, a dynamically invariant set can sometimes appear bigger and at other times appear smaller
depending on the “resolution” we are viewing it at. We highlight that our construction is also significantly
more involved than standard examples of invariant sets with distinct Hausdorff and box dimensions, such
as Bedford–McMullen carpets.

The dynamics of T on the invariant set F, which will be constructed in Section 2, has two key features
which in conjunction induce distinct box dimensions. Firstly, the nonconformality of T causes the box
dimensions of F to be sensitive to the length of time it takes for an orbit of T to move from a subset A ⊂ F
which is “entropy maximising” for the dynamics of T to a subset B which is “entropy maximising” for the
dynamics of the projection x 7→ mx mod 1 of T . Secondly, the dynamics on F, which can be modelled
by a topologically mixing coded subshift [Blanchard and Hansel 1986] on an appropriate symbolic space,
has the property that the length of time it takes an orbit of T to move from A to B is highly dependent on
how long the orbit has spent in A. In particular, the dynamics fails to satisfy most forms of specification
[Kwietniak et al. 2016]. The resolution at which F is viewed determines how long the orbits of points
of interest (for the dimension estimates at that particular resolution) spend in A, and combined with the
properties mentioned above this forces distinct box dimensions.

Finally, we discuss some connections between Theorem 1.2 and the literature on self-affine and sub-
self-affine sets. Let {Si : Rd

→ Rd
}

N
i=1 be a collection of affine contractions, i.e., Si ( · ) = Ai ( · ) + ti for

each 1 ≤ i ≤ N , where Ai ∈ GL(d, R) with Euclidean norm ∥Ai∥ < 1 and ti ∈ Rd. We call {Si }
N
i=1 an
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affine iterated function system. A sub-self-affine set [Käenmäki and Vilppolainen 2010] is a nonempty,
compact set E ⊂ Rd such that

E ⊆

N⋃
i=1

Si (E). (2)

If (2) is an equality then E is called a self-affine set, in particular every self-affine set is an example of a
sub-self-affine set. Every affine iterated function system admits a unique self-affine set. However, there
are infinitely many sub-self-affine sets which are not self-affine. Indeed, the unique self-affine set is
the image of the full shift {1, . . . , N }

N under an appropriate projection induced from the family {Si }
N
i=1,

whereas sub-self-affine sets are in one-to-one correspondence with the projections of subshifts of the full
shift. Under suitable “separation conditions” on {Si }

N
i=1, any sub-self-affine set E satisfies f (E) ⊆ E for

an appropriate piecewise expanding map f given by the inverses of the contractions. The set F which
will be constructed in Section 2 to prove Theorem 1.2 is a sub-self-affine set (which is not self-affine) for
the affine iterated function system induced from the inverse branches of T .

The dimension theory of self-affine sets has been an active topic of research since the 1980s and
substantial progress has been made in recent years. Sub-self-affine sets were introduced by Käenmäki
and Vilppolainen [2010] as natural analogues of sub-self-similar sets which were studied earlier by
Falconer [1995]. It is known by the results of Falconer [1988] and Käenmäki and Vilppolainen [2010]
that the box dimension of a generic sub-self-affine sets exists, moreover this has been verified for large
explicit families of planar self-affine sets [Bárány et al. 2019]. However, the following question was open
until now.

Question 1.3. Does the box dimension of every (sub-)self-affine set exist?

The version of the above question for self-affine sets is a folklore open question within the fractal
geometry community, to which the answer is widely conjectured to be affirmative. In contrast, a corollary
of our main result is that the answer to Question 1.3 for general sub-self-affine sets is negative.

Corollary 1.4. There exist sub-self-affine sets whose box dimension does not exist.

Organisation of paper. In Section 2 we construct the set F and its underlying subshift 6 and offer some
heuristic reasoning behind Theorem 1.2. Section 3 contains entropy estimates. In Section 4 we introduce
the scales for the lower and upper box dimension computations and prove Theorem 1.2. Section 5 contains
some questions for further investigation.

2. Construction of a (×m, ×n)-invariant set

Fix m = 2 and n = 12. Let

1 = {(a, b) : 1 ≤ a ≤ 2, 1 ≤ b ≤ 12, a, b ∈ N}.

For any (a, b) ∈ 1, define the contraction S(a,b) : [0, 1]
2
→ [0, 1]

2 as

S(a,b)(x, y) =
( 1

2 x +
1
2(a − 1), 1

12 y +
1

12(b − 1)
)
.
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v w(1, 2)z

(w ∈ �z, z = 13N )

(1, 1)

(2, 1)
(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(1, 7)

(1, 8)

(1, 9)

(1, 10)

(1, 11)

(1, 12)

(2, 1)

Figure 1. Left: The presentation G of 6. The dashed loop indicates that, for each
N ∈ N and w ∈ �13N

, there is a path of length 2 · 13N which begins and ends at v such
that its sequence of labels reads w(1, 2)13N

. Right: Images of [0, 1]
2 under S(a,b) for

each (a, b) that labels some edge in G. The darker of the shaded rectangles correspond
to S(a,b)([0, 1]

2) for (a, b) ∈ �.

These are the partial inverses of T . If i, j ∈ 1N with i ̸= j, we let i ∧ j denote the longest common
prefix to i and j and denote its length by |i ∧ j|. We equip 1N with the metric

d(i, j) =

{
1/2|i∧j| if i ̸= j,

0 if i = j.

The set F that satisfies Theorem 1.2 will be the projection of a set 6 ⊆ 1N under the continuous and
surjective (but not injective) coding map 5 : 1N

→ [0, 1]
2 given by

5((a1, b1)(a2, b2) · · · ) := lim
n→∞

S(a1,b1)···(an,bn)(0),

where S(a1,b1)···(an,bn) denotes the composition S(a1,b1) ◦ · · · ◦ S(an,bn).
Let � = {(1, i)}12

i=3. For each N ∈ N, let �N denote words of length N with symbols in �, and �N

the set of infinite sequences with symbols in �. Given any (a, b) ∈ 1, we denote by (a, b)n the word
(a, b)(a, b) · · · (a, b) of length n. Define C to be the collection of words

C := {(1, 1), (2, 1)} ∪

∞⋃
N=1

⋃
w∈�13N

{w(1, 2)13N
}

and
B := {uu1u2u3 · · · : ui ∈ C for all i ∈ N, u is a suffix of some word in C}. (3)

Then we define the sequence space 6 = B.1 Equivalently B can be understood as the set of all infinite
sequences which label a one-sided infinite path on the directed graph G in Figure 1. G is called the
presentation of 6.

1The set of accumulation points 6 \ B will turn out to be unimportant for our analysis, but for the reader’s convenience we
provide a description of this set in (4).
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It is easy to check that σ(6) = 6, where σ : 6 → 6 denotes the left shift map. In particular, 6 is an
example of a coded subshift, meaning a subshift which can be expressed as the closure of the space of all
infinite paths on a path-connected (possibly infinite) graph, which were first introduced by Blanchard and
Hansel [1986]. Note that whenever this graph is finite, its coded subshift is necessarily sofic, and that
any (×m, ×n)-invariant set which can be modelled by a sofic shift has a well-defined box dimension
which can be explicitly computed [Fraser and Jurga 2020; Kenyon and Peres 1996]. Finally, we set
F = 5(6), noting that F = T (F) since σ(6) = 6 and 5 ◦σ = T ◦5. From this it is easy to see that F
is a sub-self-affine set for the iterated function system {S(a,b) : (a, b) ∈ 1}.

While of course it will be necessary to cover the entirety of F and obtain bounds on the size of this
cover at different scales, the proof of Theorem 1.2 will essentially boil down to the asymptotic difference
that emerges between

(a) the size of the cover — by squares of side 12−13N
— of the intersection of F with the collection of

rectangles {Si ([0, 1]
2) : i ∈ �13N

}, and

(b) the size of the cover — by squares of side 12−13N−1/2
— of the intersection of F with the collection of

rectangles {Si ([0, 1]
2) : i ∈ �13N−1/2

}.

Roughly speaking, F occupies a large proportion of the width of each rectangle Si ([0, 1]
2) in case (a).

Such a rectangle has width 2−13N
and height 12−13N

(which equals the sidelength of squares in the cover).
For any i ∈ �13N

and j ∈ {(1, 1), (2, 1)}13N (log 12/ log 2−2), we have that i(1, 2)13N j constitutes a legal
word in 6 and each Si(1,2)13N j ([0, 1]

2) has width roughly 12−13N
(which equals the sidelength of squares

in the cover), therefore Si ([0, 1]
2) requires roughly 213N (log 12/ log 2−2) squares to cover it. Importantly,

this is a positive power of 1213N
, which indicates “growth” in dimension.

In case (b), F occupies a very thin proportion of the width of each rectangle Si ([0, 1]
2). Each such

rectangle has width 2−13N−1/2
and height 12−13N−1/2

(which is equal to the sidelength of squares in this
cover). Any i ∈ 6 which begins with a word in �13N−1/2

can be written as i = i jj for i ∈ �13N−1/2
,

j = (1, b1) · · · (1, b13N ) and some infinite word j ∈ 6. In particular, any point in F ∩ Si ([0, 1]
2) belongs

to Si j ([0, 1]
2) which has width less than 12−13N−1/2

. In particular, only one square of sidelength 12−13N−1/2

is required to cover Si ([0, 1]
2), meaning no further “growth” in dimension at this scale.

Notation. For any N ∈ N, we let 6N denote the subwords of sequences in 6 of length N. Finite words
in

⋃
∞

N=1 6N will be denoted in bold using notation such as i or j , whereas infinite words in 6 will be
denoted using typewriter notation such as i and j. For infinite sequences i = (a1, b1)(a2, b2) · · · and
integers n ≥ 1, we write i|n for the truncation of i to its first n symbols: i|n = (a1, b1) · · · (an, bn). The
same notation is used for the truncation of a finite word i = (a1, b1) · · · (am, bm) to its first n symbols:
i |n = (a1, b1) · · · (an, bn) when m ≥ n. For any finite word i = (a1, b1) · · · (an, bn), its length is denoted
by |i | = n. Given any (a, b) ∈ 1, we write (a, b)∞ for the infinite word (a, b)(a, b) · · · . For any finite
word i , we denote the cylinder set by [i] := {i ∈ 6 : i|n = i}. We let ∅ denote the empty word.

To avoid a profusion of constants, we write A ≲ B if A ≤ cB for some universal constant c > 0. We
write A ≲ε B if A ≤ cε B for all ε > 0, where the constant cε depends on ε. We write A ≳ B if B ≲ A
and write A ≈ B if both A ≲ B and B ≲ A, and we define the notation A ≳ε B and A ≈ε B analogously.
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3. Entropy estimates

In this section we obtain estimates on the entropy of important subsets of 6. Let GN be the words in 6N

which label a path that starts and ends at the vertex v of the graph G in Figure 1. Define

h(G) := lim sup
N→∞

1
N

log #GN ,

where #GN denotes the cardinality of GN .

Lemma 3.1. h(G) ≤ log 4.

Proof. Fix N ∈ N. Given a word in GN , let c denote the number of symbols belonging to � and a denote
the number of symbols belonging to {(1, 1), (2, 1)}, noting that

(a) 2c + a = N and

(b) c =
∑ j

i=1 13ni for some integers n1, . . . , n j .

Fix 0 ≤ a ≤ N and let Sc be the set of possible ways that c =
1
2(N − a) can be written as an ordered sum

c =
∑ j

i=1 13ni. By ordered sum, we mean that if (n′

1, . . . , n′

j ) is a permutation of (n1, . . . , n j ) such that
(n′

1, . . . , n′

j ) ̸= (n1, . . . , n j ), then
∑ j

i=1 13ni is considered a distinct way of writing c as a sum of powers
of 13. Observe that j ≤

1
13 c (for example, consider writing c = 13 ·

1
13 c when c is a multiple of 13).

We begin by bounding #Sc ≤ 2c/13−1. Recall that any n ∈ N can be expressed in 2n−1 ways as an
ordered sum of one or more positive integers. Moreover, #Sc is clearly bounded above by the number of
ways that 1

13 c can be decomposed into an ordered sum
∑ℓ

i=1 pi for some positive integers p1, . . . , pℓ.
Hence #Sc ≤ 2c/13−1.

Now let us return to considering a word in GN . Following each substring of symbols from �, there is a
tail of the same length consisting of (1, 2)’s. The a symbols from {(1, 1), (2, 1)} can either be placed
directly after any of these tails or at the beginning of the word. Therefore assuming that the string
contains c =

1
2(N − a) symbols from � in blocks of lengths 13n1, . . . , 13n j — so that c =

∑ j
i=1 13ni —

it follows that there are
(a+ j

j

)
ways in which the a symbols from {(1, 1), (2, 1)} can be distributed.

Bounding this above by the central binomial term and using the bounds
(2K

K

)
≤ 4K and j ≤

1
13 c we obtain(a+ j

j

)
≤ 2a+(N−a)/(2·13). Hence

#GN ≤

N∑
a=0

#S(N−a)/22a+(N−a)/(2·13)10(N−a)/22a
≤

N∑
a=0

22a+(N−a)(2/13+log2 10)/2

=
22(N+1)

− 2(2/13+log2 10)(N+1)/2

22 − 2(2/13+log2 10)/2 ≲ 4N

since 1
2

( 2
13 + log2 10

)
< 2, completing the proof of the lemma. □

Let IN be the words in 6N which label a path that ends at v in the graph G in Figure 1. Clearly
GN ⊆ IN . Writing I∗

=
⋃

∞

N=1 IN and �∗
=

⋃
∞

N=1 �N, observe that

6 \ B = {uw : u ∈ I∗
∪∅, w ∈ �N

} ∪ {w(1, 2)∞ : w ∈ �∗
∪∅}. (4)

Define
h(I) = lim sup

N→∞

1
N

log #IN .
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Lemma 3.2. h(I) ≤ log 4.

Proof. Fix N ∈ N. Note that any word in IN \GN is either of the form

(a) (1, 2)z g for g ∈ GN−z or

(b) w(1, 2)z g for z = 13k for some k ∈ N and w ∈ �w, where 0 < w < z and g ∈ GN−z−w.

Fix any ε > 0. The number of words of the form (a) is

N∑
z=1

#GN−z ≲ε eN (h(G)+ε)
= (4eε)N.

The number of words of the form (b) is

∑
z=13k<N

min{z−1,N−z}∑
w=1

10w#GN−z−w ≲ε

∑
z=13k<N

min{z−1,N−z}∑
w=1

10w(4eε)N−z−w

≲
∑

z=13k<N

( 10
4

)min{z−1,N−z}
(4eε)N−z.

Since ∑
z=13k<N/2

( 10
4

)min{z−1,N−z}
(4eε)N−z

=

∑
z=13k<N/2

10z−14N−2z+1eε(N−z) ≲ε (4e2ε)N

and ∑
N/2≤z=13k<N

( 10
4

)min{z−1,N−z}
(4eε)N−z

=

∑
N/2≤z=13k<N

(10eε)N−z ≲ε (10e2ε)N/2 < 4N

for sufficiently small ε, we have that
#IN ≲ε (4e2ε)N.

Since ε > 0 was arbitrary, the proof is complete. □

4. Dimension estimates

In this section, we introduce the sequences of scales which will be used for the lower and upper box
dimension estimates and prove Theorem 1.2. We also show how the proof of Theorem 1.2 can be used to
construct an infinitely generated self-affine set whose box dimension does not exist.

Let δ > 0. We let k(δ) denote the unique positive integer satisfying 12−k(δ)
≤ δ < 121−k(δ) and l(δ)

denote the unique positive integer satisfying 2−l(δ)
≤ δ < 21−l(δ), noting that k(δ) < l(δ) for sufficiently

small δ. By definition l(δ) = ⌈− log δ/log 2⌉ and k(δ) = ⌈− log δ/log 12⌉.
Define the projection π : 1N

→ {1, 2}
N by π((a1, b1)(a2, b2) · · · ) = (a1a2 · · · ). For i ∈ 6k and l > k,

define
M(i, l) = #π( j ∈ 6l : j |k = i). (5)

Our general covering strategy at each scale δ can now be described as follows. For each i ∈6k(δ), observe
that Si ([0, 1]

2) is a rectangle of height 1/12k(δ)
≈ δ. In particular, Nδ(5(6)) ≈

∑
i∈6k(δ)

Nδ(5([i])). For
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each j ∈ 6l(δ), we note that S j ([0, 1]
2) has width 1/2l(δ)

≈ δ. Therefore, for each i ∈ 6k(δ), we cover
each projected cylinder 5([i]) independently by considering how many level l(δ) columns contain part
of the set 5(6) inside 5([i]). Since by definition the number of such columns is given by M(i, l(δ)),
we obtain

Nδ(5(6)) ≈

∑
i∈6k(δ)

Nδ(5([i])) ≈

∑
i∈6k(δ)

M(i, l(δ)).

Define the null sequence {δN }N∈N by δN = 1/1213N
, noting that l(δN ) = ⌈13N log 12/log 2⌉ and

k(δN ) = 13N. Also define the null sequence {δ′

N }N∈N by δ′

N = 1/1213N−1/2
, noting that k(δ′

N ) = ⌈13N−1/2
⌉

and l(δ′

N ) = ⌈13N−1/2 log 12/log 2⌉.
In this section we will prove that

lim sup
N→∞

log NδN (5(6))

− log δN
> lim inf

N→∞

log Nδ′

N
(5(6))

− log δ′

N
. (6)

Theorem 1.2 will follow from (6) since it implies that dimB 5(6) > dimB 5(6).

Lemma 4.1 (scales with large dimension).

lim sup
N→∞

log NδN (5(6))

− log δN
≥

log 10
log 12

+ log 2
(

1
log 2

−
2

log 12

)
.

Proof. For all w ∈ �k(δN ) and u ∈ {(1, 1), (2, 1)}l(δN )−2k(δN ), we have that w(1, 2)k(δN )u ∈ 6l(δN ). In
particular, for any w ∈ �k(δN ),

M(w, l(δN )) = 2l(δN )−2k(δN )
≈ 2(log 12/log 2−2)13N

, (7)

noting that log 12/log 2 > 2. Hence

NδN (5(6)) ≥ NδN

( ⋃
w∈�k(δN )

5([w])

)
≈

∑
w∈�k(δN )

NδN (5([w]))

≈

∑
w∈�k(δN )

M(w, l(δN )) ≈ 1013N
2(log 12/log 2−2)13N

.

Hence for some uniform constant c > 0,

log NδN (5(6))

− log δN
≥

13N log 10
13N log 12

+

13N
( log 12

log 2 − 2
)

log 2

13N log 12
+

log c
−13N log 12

=
log 10
log 12

+ log 2
(

1
log 2

−
2

log 12

)
+

log c
−13N log 12

.

The result follows by letting N → ∞. □

Lemma 4.2 (scales with small dimension).

lim inf
N→∞

log Nδ′

N
(5(6))

− log δ′

N
≤

1
√

13
log 10 +

(
1 −

1
√

13

)
log 4

log 12
+ log 2

(
1

log 2
−

1 +
1

√
13

log 12

)
.
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Proof. Let ε > 0. Recall that for all N ∈ N, we have − log δ′

N = 13N−1/2 log 12, k(δ′

N ) = ⌈13N−1/2
⌉ and

l(δ′

N ) = ⌈13N−1/2 log 12/log 2⌉. Recall that 6 = B, where B is the set of all infinite sequences which
label a one-sided infinite path on the graph G given in Figure 1, and where the set of points B \ B are
characterised in (4). Therefore, any word i ∈ 6k(δ′

N ) has one of the following forms:

(a) i = u for u ∈ Ik(δ′

N ).

(b) i = uw for u ∈ Iu and w ∈ �w, where u + w = k(δ′

N ).

(c) i = w for w ∈ �k(δ′

N ).

(d) i = w(1, 2)z for w ∈ �w, where w + z = k(δ′

N ).

(e) i = uw(1, 2)z for u ∈ Iu and w ∈ �w, where u + w + z = k(δ′

N ) and z ≤ w.

Let Ya ⊂ 6k(δ′

N ) be the set of words which are of the form (a), and let Xa ⊂ 6 be the subset

Xa := {i ∈ 6 : i|k(δ′

N ) ∈ Ya}.

Define Xb, Xc, Xd , Xe and Yb, Yc, Yd , Ye analogously. We note that these sets are not all mutually
exclusive, for example Ya ∩ Ye ̸= ∅, but this will not affect our bounds.

Upper bound on Nδ′

N
(5(Xa)). For any j ∈ {(1, 1), (2, 1)}l(δ′

N )−k(δ′

N ) and u ∈ Ik(δ′

N ), we have u j ∈ 6l(δ′

N ).
Therefore, for each u ∈ Ik(δ′

N ),

M(u, l(δ′

N )) = 2l(δ′

N )−k(δ′

N )
≈ 213N−1/2(log 12/log 2−1). (8)

Hence

Nδ′

N
(5(Xa)) ≈

∑
u∈Ya

Nδ′

N
(5([u])) ≈

∑
u∈Ik(δ′N )

M(u, l(δ′

N )) ≲ε (4eε)13N−1/2
213N−1/2(log 12/log 2−1)

by Lemma 3.2 and (8). Since ε > 0 was chosen arbitrarily and − log δ′

N = 13N−1/2 log 12, we deduce
that

lim inf
N→∞

log Nδ′

N
(5(Xa))

− log δ′

N
≤

log 4
log 12

+ log 2
(

1
log 2

−
1

log 12

)
. (9)

Upper bound on Nδ′

N
(5(Xc)). Suppose i ∈ Xc, so that i|k(δ′

N ) = w ∈ �k(δ′

N ). By definition of 6, either
i ∈ �N or i begins with u(1, 2)z for some u ∈ �∗, where |u| ≥ k(δ′

N ) = ⌈13N−1/2
⌉ and z ≥ 13N. For N

sufficiently large,

z + |u| ≥ 13N
+ 13N−1/2 > 131/213N−1/2 >

⌈
log 12
log 2

13N−1/2
⌉

= l(δ′

N ).

In particular, for any w ∈ �k(δ′

N ),
M(w, l(δ′

N )) = 1. (10)

By (10),

Nδ′

N
(5(Xc)) ≈

∑
w∈Yc

Nδ′

N
(5([w])) ≈

∑
w∈�

k(δ′N )

M(w, l(δ′

N )) = 10k(δ′

N )
≈ 1013N−1/2

.
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Therefore, since − log δ′

N = 13N−1/2 log 12,

lim inf
N→∞

log Nδ′

N
(5(Xc))

− log δ′

N
≤

log 10
log 12

. (11)

Upper bound on Nδ′

N
(5(Xd)). For x > 0 we let T (x) denote the smallest power of 13 which is greater

than or equal to x . Suppose i ∈ Xd , so that i|k(δ′

N ) = w(1, 2)z for w ∈ �w, where w+ z = k(δ′

N ). Either
i = w(1, 2)∞ or i begins with w(1, 2)z′ j for some j ∈ 61 \ {(1, 2)} and

z′
≥ T (max{w, z}) = T (max{w, k(δ′

N ) − w}) = 13N,

where the final equality is because, for sufficiently large N,

max{w, k(δ′

N ) − w} ≥
1
2 k(δ′

N ) =
1
2⌈13N−1/2

⌉ > 13N−1.

Moreover, for sufficiently large N,

w + z′
≥ 13N >

⌈
13N−1/2 log 12

log 2

⌉
= l(δ′

N ).

In particular, for any w(1, 2)z
∈ Yd ,

M(w(1, 2)z, l(δ′

N )) = 1. (12)

By (12),

Nδ′

N
(5(Xd)) ≈

∑
i∈Yd

Nδ′

N
(5([i]))

≈

k(δ′

N )−1∑
w=1

∑
w∈�w

M(w(1, 2)k(δ′

N )−w, l(δ′

N ))

≲ε (10eε)k(δ′

N )
≈ (10eε)13N−1/2

.

Since ε > 0 was arbitrary and − log δ′

N = 13N−1/2 log 12,

lim inf
N→∞

log Nδ′

N
(5(Xd))

− log δ′

N
≤

log 10
log 12

. (13)

Upper bound on Nδ′

N
(5(Xb)). Suppose i ∈ Xb, so that i|k(δ′

N ) = uw for u ∈ Iu and w ∈ �w, where
u + w = k(δ′

N ). Either i = uj, where j ∈ �N, or i begins with uv(1, 2)z, where v ∈ �z and we have
z = |v| = T (|v|) ≥ T (w). In particular, for any uw ∈ Yb,

M(uw, l(δ′

N )) ≤ 2l(δ′

N )−|u|−|v|−z

= 2l(δ′

N )−|u|−2z

= 2l(δ′

N )−k(δ′

N )+w−2z

≤ 2l(δ′

N )−k(δ′

N )+w−2·T (w). (14)
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By (14) and Lemma 3.2,

Nδ′

N
(5(Xb))

≈

∑
i∈Yb

Nδ′

N
(5([i])) ≈

k(δ′

N )−1∑
w=1

∑
u∈Ik(δ′N )−w

∑
w∈�w

M(uw, l(δ′

N ))

≲ε

k(δ′

N )−1∑
w=1

10w(4eε)k(δ′

N )−w2l(δ′

N )−k(δ′

N )+w−2T (w)

≤

13N−1∑
w=1

(
10 · 2

4eε · 22

)w

(4eε)k(δ′

N )2l(δ′

N )−k(δ′

N )
+

k(δ′

N )−1∑
w=13N−1+1

(
10 · 2

4eε · 22
√

13

)w

(4eε)k(δ′

N )2l(δ′

N )−k(δ′

N ), (15)

where in the last line of (15) we have used the trivial lower bound T (x) ≥ x in the first sum and, in the
second sum, that, for all 13N−1

+ 1 ≤ x ≤ k(δ′

N ) − 1 = ⌈13N−1/2
⌉ − 1,

√
13x ≤

√
13(13N−1/2

− 1) ≤ 13N
= T (x). (16)

For sufficiently small ε > 0, the first sum of the last line of (15) can be bounded above by

13N−1∑
w=1

(
10 · 2

4eε · 22

)w

(4eε)k(δ′

N )2l(δ′

N )−k(δ′

N ) ≲ε 1013N−1
(4e2ε)k(δ′

N )−13N−1
2l(δ′

N )−k(δ′

N )−13N−1
.

For sufficiently small ε > 0,
10 · 2

4eε · 22
√

13
=

5

eε4
√

13
< 1;

hence the second sum of the last line of (15) can be bounded above by

k(δ′

N )−1∑
w=13N−1+1

(
10 · 2

4eε · 22
√

13

)w

(4eε)k(δ′

N )2l(δ′

N )−k(δ′

N ) ≲ε 1013N−1
(4e2ε)k(δ′

N )−13N−1
2l(δ′

N )−k(δ′

N )+13N−1
−2·13N−1/2

< 1013N−1
(4e2ε)k(δ′

N )−13N−1
2l(δ′

N )−k(δ′

N )−13N−1
.

In particular,

Nδ′

N
(5(Xb)) ≲ε 1013N−1

(4e2ε)k(δ′

N )−13N−1
2l(δ′

N )−k(δ′

N )−13N−1

≈ 1013N−1
(4e2ε)13N−1/2

−13N−1
2(log 12/log 2−1)13N−1/2

−13N−1
.

Since ε > 0 was chosen arbitrarily and − log δ′

N = 13N−1/2 log 12,

lim inf
N→∞

log Nδ′

N
(5(Xb))

− log δ′

N
≤

1
√

13
log 10 +

(
1 −

1
√

13

)
log 4

log 12
+ log 2

(
1

log 2
−

1 +
1

√
13

log 12

)
. (17)

Upper bound on Nδ′

N
(5(Xe)). If uw(1, 2)z

∈ Ye with |w| = w and |u| = u, then since u + w ≤ k(δ′
N ) =

⌈13N−1/2
⌉ we have

l(δ′

N ) − 2w − u ≥ l(δ′

N ) − 2⌈13N−1/2
⌉ > l(δ′

N ) −

⌈
log 12
log 2

13N−1/2
⌉

= 0.
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In particular,
M(uw(1, 2)z, l(δ′

N )) = 2l(δ′

N )−2w−u. (18)

By (18) and Lemma 3.2,

Nδ′

N
(5(Xe)) ≈

∑
i∈Ye

Nδ′

N
(5([i])) ≈

∑
w=13r ≤13N−1

k(δ′

N )−w−1∑
u=1

∑
u∈Iu

∑
w∈�w

M(uw(1, 2)k(δ′

N )−u−w, l(δ′

N ))

≲ε

∑
w=13r ≤13N−1

k(δ′

N )−w−1∑
u=1

(4eε)u10w2l(δ′

N )−2w−u

≲ε

∑
w=13r ≤13N−1

(
10 · 2

4e2ε · 22

)w(
4e2ε

2

)k(δ′

N )

2l(δ′

N )

≲ε 1013N−1
(4e3ε)k(δ′

N )−13N−1
2l(δ′

N )−k(δ′

N )−13N−1

≈ 1013N−1
(4e3ε)13N−1/2

−13N−1
2(log 12/log 2−1)13N−1/2

−13N−1
.

Since ε > 0 was chosen arbitrarily and − log δ′

N = 13N−1/2 log 12,

lim inf
N→∞

log Nδ′

N
(5(Xe))

− log δ′

N
≤

1
√

13
log 10 +

(
1 −

1
√

13

)
log 4

log 12
+ log 2

(
1

log 2
−

1 +
1

√
13

log 12

)
. (19)

Since the upper bounds in (17) and (19) are strictly greater than the upper bounds in (9), (11) and (13)
the proof is complete. □

Proof of Theorem 1.2. 5(6) is invariant under the smooth expanding map

T (x, y) = (mx mod 1, ny mod 1).

Note that to four decimal places

log 10
log 12

+ log 2
(

1
log 2

−
2

log 12

)
≈ 1.3687

and
1

√
13

log 10 +
(
1 −

1
√

13

)
log 4

log 12
+ log 2

(
1

log 2
−

1 +
1

√
13

log 12

)
≈ 1.3038.

By Lemmas 4.1 and 4.2,

dimB 5(6) ≥ lim sup
N→∞

log NδN (5(6))

− log δN
> lim inf

N→∞

log Nδ′

N
(5(6))

− log δ′

N
≥ dimB 5(6).

In particular, the box dimension of 5(6) does not exist. □

Remark 4.3. Lemmas 4.1 and 4.2 can also be used to demonstrate the existence of infinitely generated
self-affine sets whose box dimensions are distinct. Consider the countable family of affine contractions

{S(1,1)} ∪ {S(1,2)} ∪

∞⋃
N=1

⋃
w∈�13N

{S
w(1,2)13N }
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which generates the infinitely generated self-affine set E = 5(6̃), where

6̃ := {u1u2 · · · : ui ∈ C for all i ∈ N}.

Since E ⊂ F, we have that dimB E ≤ dimB F. On the other hand, for all N ∈ N, w ∈ �k(δN ) and
u ∈ {(1, 1), (2, 1)}l(δN )−2k(δN ),

[w(1, 2)13N
u] ∩ 6̃ ̸= ∅.

Therefore by bounding NδN (E) in the same way as in Lemma 4.1 we deduce that dimB E < dimB E .

5. Further questions

Here we suggest possible directions for future work.

Question 5.1. Does there exist an expanding repeller whose box dimension does not exist? Namely,
does there exist a smooth expanding map f : M → M of a Riemannian manifold M and compact set
3 = f (3) such that 3 = {x ∈ U : f n(x) ∈ U, ∀n ∈ N} for some open neighbourhood U of 3?

Question 5.2. Given a smooth diffeomorphism f : M → M, does the box dimension of its basic set (or
intersections of the basic set with local stable and unstable manifolds) always exist?
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We study decoupling theory for functions on R with Fourier transform supported in a neighborhood of
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1. Introduction

We study decoupling theory for functions f W R! C with Fourier support near certain convex sequences.
As a model case of decoupling, consider the truncated parabola P1 D f.t; t2/ W jt j � 1g. Let R � 1 be a
large parameter and write NR�1.P1/ as a disjoint union of caps � DNR�1.P1/\ .I �R/, where I is an
R�1=2-interval. The decoupling inequality of [Bourgain and Demeter 2015] says that if 2� p � 6, then
for any " > 0 there exists C" such that



X
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Lp.R2/

� C"R
"

�X
�

kf�k
2
Lp.R2/

�1
2

whenever f� W R2! C are Schwartz functions satisfying supp yf� � � .
This paper explores analogues between decoupling for P1 and short Dirichlet sequences flogngNCN

1=2

nDNC1 ,
as well as sequences with similar convexity properties described in the following definition.
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Definition 1.1. Let N � 2. We call fangNnD1 a generalized Dirichlet sequence (with parameter N ) if it
satisfies the property

a2� a1 2
h
1

4N
;
4

N

i
; .aiC2� aiC1/� .aiC1� ai / 2

h
1

4N 2
;
4

N 2

i
: (1)

We will call fangN
1=2

nD1 satisfying (1) an N 1=2- short generalized Dirichlet sequence.

For simplicity, we say short (generalized) Dirichlet sequence to meanN 1=2-short (generalized) Dirichlet
sequence, unless otherwise specified. Note that the reflected short Dirichlet sequence,

f� log.N CN�
1
2 �nC 1/gN

1=2

nD1 ;

satisfies (1).
Now we describe our decoupling set-up. From now on C; c > 0 will denote absolute constants that

may vary from line to line. For convenience of reading, we may regard C; c as 1. For 1 � L � cN 1=2

and each j D 1; : : : ; N 1=2=L, define

Ij D

jL[
iD.j�1/LC1

BL2=N 2.ai /;

where BL2=N 2.ai / means the L2=N 2 interval centered at ai . Let � be the L2=N 2-neighborhood of
fang

N 1=2

nD1 . We consider the partition
�D

G
j

Ij : (2)

We choose theL2=N 2-neighborhood of fangN
1=2

nD1 because every Ij is essentially anL2=N 2-neighborhood
of an arithmetic progression, which we call a fat AP. To see this we calculate, for 1� n�N 1=2�L,

anCL� an�L.anC1� an/D

LX
mD1

.anCm� anCm�1� .anC1� an//�

LX
mD1

m� 1

N 2
�
L2

N 2
:

So indeed Ij lies in a CL2=N 2-neighborhood of an L-term AP with common difference a.j�1/LC1�
a.j�1/L and starting point a.j�1/L. Also, note that the common differences for distinct Ij are cL=N 2-
separated.

We denote the partition fIj g
N 1=2=L
jD1 by I. The first main result of this paper is the following decoupling

theorem for �D
F
I2I I.

Theorem 1.2. Let � and I be defined as in the last paragraphs. Then for 2� p � 6 and every " > 0



X
I2I

fI






Lp.R/

." N "

�X
I2I

kfIk
2
Lp.R/

�1
2

(3)

for functions fI with supp yfI � I.

The range of p is sharp in the sense that (3) cannot hold for p >6, which can be seen by taking yfI to be
a smooth bump with height 1 adapted to I for every I. Indeed for this choice of fI , we have

ˇ̌P
I fI

ˇ̌
�

.L2=N 2/N 1=2 on BcN 1=2.0/, and kfIkLp.R/ � k yfIkLp0 .R/ � .L.L
2=N 2//1=p

0

, where 1=pC 1=p0 D 1.
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So 



X
I2I

fI






Lp.R/

&
L2

N 2
N
1
2 .N

1
2 /

1
p ;

�X
I2I

kfIk
2
Lp.R/

�1
2

�

�
N

1
2

L

�1
2
�
L3

N 2

�1� 1
p

:

Then (3) would imply �
N
1
2

L

�1
2
� 3
p

." N ";

and hence p � 6. We shall compare Theorem 1.2 with the `2Lp decoupling inequality of the parabola
in [Bourgain and Demeter 2015], which has the same critical exponent 6. Indeed we will see many
similarities between short generalized Dirichlet sequences and P1 from a Fourier analytic point of view.

The notion of strict convexity of a sequence fang in R will parallel the role of curvature of the parabola
in decoupling. Some key geometric aspects in the proof of decoupling for P1 are identifying caps � as
approximate R�1=2�R�1 rectangles, which give rise to dual tubes �� of dimension R1=2�R, and noting
that � are separated in angle and so are ��. The jf� j are roughly constant on translates of ��.

In the fangN
1=2

nD1 setting, corresponding to f� we have fIj which are functions fIj W R! C satisfy-
ing supp yfIj � Ij . We may identify the .L2=N 2/-neighborhood of I as approximately an .L2=N 2/-
neighborhood of an arithmetic progression (called a fat AP), giving rise to dual I� defined in Definition 2.1,
which are also fat APs, and note that distinct I are separated in step-size of the corresponding arithmetic
progressions (and the same for I�). The jfI j are also roughly constant on translates of I� [Bourgain
1991; 1993].

Bourgain [1991; 1993] made use of this locally constant property to connect a conjecture of Montgomery
with the Kakeya conjecture. To prove a decoupling inequality we need to identify another geometric
analogy, the “ball”, which is roughly the smallest set restricting to which in the physical space essentially
preserves the frequency support.

For the R�1-neighborhood of the parabola, the “ball” is a ball BR of radius of R. We will define the
“ball” P.L/ in the short generalized Dirichlet sequence setting in Section 3B. P.L/ will be a fat AP
which sometimes degenerates to a Euclidean ball. With these notions of caps, tubes, and balls in the short
generalized Dirichlet sequence setting, we are able to exploit the wave packet structure of a function with
frequency support on I 2 I, and prove a bilinear Kakeya-type estimate (Proposition 3.3) and a bilinear
restriction-type estimate (Proposition 3.5) that look almost identical to those in the parabola setting. The
choice of N 1=2 plays an important role in making this resemblance possible, which we will discuss at the
end of Section 7.

The proof of Theorem 1.2 is based on the high-low decomposition method in [Guth et al. 2022]. We
do not intend to get a logarithmic decoupling constant as in that work, but we want to prove a refined
decoupling inequality as in [Guth et al. 2020], which creates some technical differences.

The partition �D
F
I2I I is maximal in the sense that if �D

F
I 0, where I 0 is the union of more

than CL many adjacent intervals, then I 0 is no longer essentially a fat AP. Because of this, we will call
�D

F
I2I I the canonical partition and refer to Theorem 1.2 as decoupling for the canonical partition,

or simply decoupling. In the spirit of small cap decoupling as in [Demeter et al. 2020], we may also
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consider the “small cap” decoupling for short generalized Dirichlet sequences. Now we let L1 2 Œ1; L� be
an integer, and we partition � into L1 consecutive intervals Jj :

�D

N 1=2=L1G
jD1

Jj D

N 1=2=L1G
jD1

� jL1[
iD.j�1/L1C1

BL2=N 2.ai /

�
: (4)

We let J denote the partition fJj g
N 1=2=L1
jD1 . The next decoupling result in this paper is small-cap-type

decoupling inequalities.

Theorem 1.3. Let 1 � L1 � L � N 1=2, and fJ gJ2J be defined as in the paragraph above. Suppose
p � 4. Then, for every " > 0,



X

J2J

fJ






Lp.R/

." N "

�
N
1
2
� 2
pL

2
p

L
1� 2

p

1

C

�
N

1
2

L1

� 1
2
� 1
p
��X

J2J

kfJ k
p

Lp.R/

�1
p

(5)

for a function fJ W R! C with supp yfJ � J.

Inequality (5) is sharp up to C"N " for every fixed p;L;L1 satisfying the condition in Theorem 1.3.
The first factor in front of

�P
J2J kfJ k

p

Lp.R/

�1=p is sharp because of the example yfJ equals a smooth
bump adapted to J with height 1 for every J 2 J. The calculation is similar to the one in the paragraph
below Theorem 1.2. The second factor is sharp because of the example yfJ equals a random sign times
a smooth bump adapted to a ball of radius L2=N 2 inside J with height 1 for every J 2 J, where the
random signs are chosen so that

R
R

ˇ̌P
J fJ

ˇ̌p
�
R

R

�P
J jfJ j

2
�p=2 by Khintchine’s inequality.

The structure of the proof of Theorem 1.3 is similar to that of Theorem 3.1 in [Demeter et al. 2020],
consisting of three ingredients: refined decoupling for the canonical partition, refined flat decoupling, and
an incidence estimate. Refined decoupling for the canonical partition is a refined version of Theorem 1.2,
which we will prove in Sections 4, 5, and 6 in order to derive Theorem 1.2. We show the other two
counterparts in Section 8.

1A. Lp estimates for short generalized Dirichlet polynomials. A straight corollary of Theorem 1.3 is
essentially sharp Lp estimates for short generalized Dirichlet polynomials

PN 1=2

nD1 bne
itan .

Corollary 1.4. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence. Suppose p � 4 and N � T �N 2.
We have for every " > 0



N

1=2X
nD1

bne
itan






Lp.BT /

." N ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p (6)

for every BT and every fbngN
1=2

nD1 � C.

If we letL2 Œ1; N 1=2� be the integer such thatN 2=L2DT , then Corollary 1.4 follows from Theorem 1.3
with that L, and L1 D 1, applied to functions fJ .t/D bneitan�.t/ for every J, where � is a Schwartz
function adapted to BT with Fourier support inside BT�1.0/.

The inequality (6) is sharp up to C"N ". This is from discrete versions of the examples described below
Theorem 1.3, taken with L1 D 1: bn D 1 for every n, and bn equal to random signs.
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We will in fact prove a more general version of Theorem 1.3 which allows us to get essentially sharp
.`q; Lp/ estimates for

PN 1=2

nD1 bne
itan in the range p� 4, 1

p
C
3
q
� 1. See Theorem 8.5 and Corollary 8.2.

After this work was done we learned from James Maynard a general transference method, which can
in particular transfer the Lp estimate on a short generalized Dirichlet polynomial to a 2-dimensional
Lp estimate on an exponential sum with frequency support near a convex curve in R2. This allows us to
derive Corollary 1.4 directly from the small cap decoupling inequalities for the parabola in [Demeter et al.
2020]. We provide that particular argument in detail in the Appendix.

The starting point of this paper was to see whether decoupling methods could be used to make progress
on Montgomery’s conjecture on Dirichlet polynomials [1971; 1994]. Our investigation led us in a different
direction, proving decoupling inequalities for short generalized Dirichlet sequences.

Conjecture 1.5 (Montgomery’s conjecture). For every p � 2 and every " > 0 we have



 2NX
nDNC1

bnn
it






Lp.BT /

� C"T
"N

1
2 .N

p
2 CT /

1
p kbnk`1 (7)

for every ball BT of radius T and every fbng2NnDNC1 � C.

Conjecture 1.5 is widely open. In fact it has significant implications which are also hard conjectures.
It is shown in [Montgomery 1971] that Conjecture 1.5 implies the density conjecture for the Riemann
zeta function. Bourgain [1991; 1993] observed that a stronger version of Conjecture 1.5 on large value
estimate of Dirichlet polynomials implies the Kakeya maximal operator conjecture in all dimensions.
Conjecture 1.5 itself also implies a weaker statement that a Kakeya set has full Minkowski dimension;
see [Green 2002].

Our Corollary 1.4 proves some Lp estimates for “short” Dirichlet polynomials which do not directly
connect to Montgomery’s conjecture. In fact we believe to make progress on Montgomery’s conjecture
significant new ideas are needed.

On the other hand, combining Theorem 1.2 with flat decoupling we obtain `2Lp decoupling inequalities
for generalized Dirichlet sequences (with N many terms instead of N 1=2), and the decoupling inequalities
we get are essentially sharp for the class of generalized Dirichlet sequences. As a corollary we have
essentially sharp .`2; Lp/ estimates on generalized Dirichlet polynomials, but the Dirichlet polynomialP2N
nDNC1 bne

it logn has more structure and admits better estimates. This has to do with examples of
generalized Dirichlet sequences containing a cN 1=2-term AP with common difference CN�1=2, which
flogng2NnDNC1 cannot contain by a number theory argument. We discuss these in detail in Section 7.

The paper is structured as follows. In Section 2 we will illustrate the wave packet structure of functions
with frequency support in a fat AP. In Section 3 we prove a bilinear Kakeya-type estimate and a bilinear
restriction-type estimate for functions with frequency support in a neighborhood of a short generalized
Dirichlet sequence fangN

1=2

nD1 . Sections 4, 5, and 6 are dedicated to proving Theorem 1.2. Section 4
introduces a refined decoupling inequality for the canonical partition (Theorem 4.4), which implies
Theorem 1.2, and which we will actually prove. Section 5 sets up a high-low frequency decomposition
for square functions at different scales, and in Section 6 we finish the proof of Theorem 4.4. Section 7
discusses the decoupling problem for (N -term) generalized Dirichlet sequences. In Section 8 we prove
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Theorem 1.3. The Appendix is about the transference method for one-dimensional exponential sum
estimates like (6).

Notation. C will denote a positive absolute constant that may vary from line to line, and it may be either
small or large. A . B means A � CB , and A � B means A . B and B . A. We will also use O.A/
to denote a quantity that is less than or equal to CA. A .q B will mean A � CqB for some constant
depending on q. Similarly Oq.A/ denotes a quantity that is less than or equal to CqA. There will be a
parameter N and A/ B denotes A." N "B for every " > 0.

2. Locally constant property

We set up some notation and describe the locally constant property related to fat APs in this section.

Definition 2.1. We let P ıv .a/ denote the ı-neighborhood of the arithmetic progression on R which
contains a and has common difference v. We call P ıv .x0/\BR.x0/, or simply P ıv \BR, a fat AP with
thickness ı, common difference v, and diameter R. We will call PR

�1

v�1
\Bı�1 a fat AP dual to P ıv \BR.

To exploit the locally constant property of a function with frequency support in a fat AP, we first
construct a family of functions  k W R! C adapted to a fat AP (in the frequency space).

Lemma 2.2. For every x0 2 R, ı � v=2, M � 1, and k � 1 there exists a function  k W R! C with the
property

y k.�/D 1 on P ıv .x0/\BMv.x0/; supp y k � P
2ı
v .x0/\B8kMv.x0/; (8)

and  k decays at order k outside of the dual fat AP P .Mv/�1

v�1
.0/\Bı�1.0/:

.Mı/1
P
.Mv/�1

v�1
.0/\B

ı�1
.0/
.k j k.x/j.k Mı

�
1C

d.x; v�1Z/

.Mv/�1

��k�
1C

d.x; Bı�1.0//

ı�1

��k
: (9)

We say such a  k is adapted to the fat AP P ıv .x0/\BMv.x0/ in the frequency space with order of
decay k.

Proof. Since translation in frequency space corresponds to modulation in the physical space, we may
assume x0 D 0.

We start with the Dirichlet kernel

DM .x/D
X
jj j�M

e2�ijx D
sin..2M C 1/�x/

sin.�x/
:

We define zD1.x/DDM .x/. Then we define zDk.x/ inductively by

zDk.x/D d
�1
k
zDk�1.x/D8k�1M=2.x/;

where dk D k yD8k�1M=2kL1.R/ is the total measure of yD8k�1M=2. Equivalently we can define zDk
explicitly as

zDk D QdDM
Y

1�s�k�2

D8sM=2

for some suitable constant Qd > 0.
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Since zD1 DDM has the property
yzD1.�/D

X
jj j�M

ı0.� � j /;

by induction we can show that

yzDk.�/D
X
jj j�M

ı0.� � j /C
X

M<jj j�8kM=4

bj;kı0.� � j /

for some 0 � bj;k � 1. From the explicit expression of the Dirichlet kernel we see that zD1 decays at
order 1 outside of PM

�1

1 .0/:

j zD0.x/j D jDM .x/j.
M

1C d.x;Z/=M�1
:

By induction on k we obtain zDk decays at order k outside of PM
�1

1 .0/:

j zDk.x/j.k M
�
1C

d.x;Z/

M�1

��k
: (10)

Now let �.x/ be a Schwartz function such that y� is a smooth bump adapted to B1.0/:

y�.�/D 1 on B1.0/; supp y� � B2.0/:

Let �ı�1.x/ be the function �.ıx/. Note that �ı�1 decays rapidly outside of Bı�1.0/. Let  k be given by

y k WD y�ı�1 �
yzDk.v

�1�/=v D
X
jj j�M

y�ı�1.� � jv/C
X

M<jj j�8k M
4

bj;k y�ı�1.� � jv/:

From this definition we immediately see property (8) holds. Writing  k as

 k.x/D �ı�1.x/ zDk.vx/

we observe from (10) and the rapid decay of �ı�1 outside Bı�1.0/ that (9) holds. �

For every fat AP P DP .Mv/�1

v�1
.x0/\Bı�1.x0/ with ı � v, and every k � 100, let WP;k be the weight

function

WP;k.x/D

�
1C

d.x; x0C v
�1Z/

.Mv/�1

��k�
1C

d.x; Bı�1.x0//

ı�1

��k
:

We will use the notation Z
WP;k

f .x/ dx WD

Z
R

f .x/WP;k.x/ dx;

�

Z
WP;k

f .x/ dx WD
1

kWP;kkL1.R/

Z
R

f .x/WP;k.x/ dx;

kf k�Lp.WP;k/ WD

�
�

Z
WP;k

jf jp.x/ dx

�1
p

:
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For measurable sets E � R we use similar notation for average integrals and Lp norms:

�

Z
E

f .x/ dx WD
1

jEj

Z
E

f .x/ dx;

kf k�Lp.E/ WD

�
�

Z
E

jf jp.x/ dx

�1
p

:

For a fat AP P, consider another fat AP P 0 �P. Let P 0 �P denote an indexing set of translates of P 0

which form an O.1/-overlapping tiling of P. Then we have the pointwise inequality

1P .x/.k
X
P 0�P

WP 0;k.x/.k WP;k.x/: (11)

If we look at translated copies P 00 of P, we haveX
P 00�R

WP 00;k.x/WP;k.P
00/.k WP;k.x/: (12)

Here
P
P 00�R means summing over a tiling (with O.1/ overlap) of R by P 00, and WP;k.P 00/ is defined to

be WP;k.supP 00/, which is comparable to WP;k.x/ for any x 2 P 00.

Proposition 2.3 (locally constant property). Suppose f satisfies supp yf � P ıv \BMv. Then for every
dual fat AP P D P .Mv/�1

v�1
\Bı�1 and every 1� q < p <1 we have

kf k�Lp.WP;k/ .p;q;k kf k�Lq.W
P;
qk
p
/ if

qk

p
� 100;

kf kL1.P / .k kf k�L1.WP;k/:

Proof. We first prove the second inequality. Fix k � 100. From (8) we have

f .x/D f � k.x/D

Z
R

f .y/ k.x�y/ dy;

where  k is the function in Lemma 2.2 adapted to P ıv \ BMv in the frequency space with order of
decay k. Therefore for x 2 P we have

jf .x/j �

Z
R

jf .y/jj k.x�y/j dy

�

Z
R

jf .y/j sup
x2P

j k.x�y/j dy

.k ıM
Z

R

jf .y/jWP;k.y/ dy �k �

Z
WP;k

jf .y/j dy:

For the third inequality we used (9). Now we prove the first inequality in the proposition. We claim that
from (12) (applied with k replaced by qk=p) and the assumption q < p we only need to show

kf k�Lp.P / .p;q;k kf k�Lq.WP;k/: (13)
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Indeed if (13) holds, thenZ
WP;k

jf jp .k
X
P 0�R

Z
P 0
jf jpWP;k.P

0/

.p;q;k jP j1�
p
q

X
P 0�R

WP;k.P
0/

�Z
WP 0;qk=p

jf jq
�p
q

� jP j1�
p
q

�Z
R

jf .x/jq
X
P 0�R

WP;k.P
0/
q
pW

P 0;qk
p

.x/ dx

�p
q

.p;q;k jP j1�
p
q

�Z
jf .x/jq

X
P 0�R

W
P;qk

p

.P 0/W
P 0;qk

p

.x/ dx

�p
q

.p;q;k jP j1�
p
q

�Z
jf jqW

P;qk
p

�p
q

.by (12)/;

which is exactly the first inequality in the proposition. To show (13) we observe that the second inequality
in the proposition together with Hölder’s inequality implies that

kf k�Lp.P / � kf kL1.P / .p;q;k kf k�Lq.W
P;
qk
p
/;

which is (13). �

3. Bilinear Kakeya-type and restriction-type estimates

Kakeya and restriction-type estimates are closely related to decoupling, and we will use the bilinear
version of them in the proof of Theorem 1.2, but first we need to introduce a more general decoupling
set-up for the purpose of induction.

3A. General set-up. To prove Theorem 1.2 we will do a broad-narrow argument which involves rescaling
of a segment of fangN

1=2

nD1 . To properly set up our induction hypothesis we consider the following more
general class of generalized Dirichlet sequences.

Definition 3.1 (generalized Dirichlet sequence). Let � 2 .0; 1� and N � 2. We call fangNnD1 a generalized
Dirichlet sequence (with parameters N; �) if it satisfies the property

a2� a1 2
h
1

4N
;
4

N

i
; .aiC2� aiC1/� .aiC1� ai / 2

h
�

4N 2
;
4�

N 2

i
: (14)

We will call fangN
1=2

nD1 satisfying (1) an N 1=2-short generalized Dirichlet sequence (with parameters N; � ).

As before we write “short” for “N 1=2-short” for simplicity. Comparing with Definition 1.1 we see an
extra parameter � which measures the convexity of the sequence. From now on we use Definition 3.1 for
the definition of generalized Dirichlet sequence.

We shall also incorporate � in our decoupling set-up. Let fangN
1=2

nD1 be a short generalized Dirichlet
sequence with parameter � 2 .0; 1�. From the spacing property (14) of fangN

1=2

nD1 we see that, for every
1� j �N 1=2=L, fang

jL

nD.j�1/LC1
is essentially contained in an L2�=N 2-neighborhood of an arithmetic

progression. Indeed, if we define vj D a.j�1/LC2 � a.j�1/LC1, then fang
jL

nD.j�1/LC1
is contained in
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the CL2�=N 2-neighborhood of the arithmetic progression containing ajL with common difference vj ,
that is,

fang
jL

nD.j�1/LC1
� PCL

2�=N 2

vj
.ajL/\BCL=N .ajL/:

Now we let � be the �L2=N 2-neighborhood of fangN
1=2

nD1 . For 1 � L � cN 1=2 and each j D
1; : : : ; N 1=2=L, define

Ij D

jL[
iD.j�1/LC1

B�L2=N 2.ai /:

We denote the collection of Ij by I, and consider the partition

�D
G
I2I

I:

This will be our new decoupling set-up for the canonical partition, and from now on the notation here
supersedes that in the Introduction. For small-cap-type decoupling we postpone the description of the
corresponding general set-up to Section 8.

3B. Analogies between fangN
1=2

nD1
and P1. For I D Ij 2 I, we let

zIj WD P
CL2�=N 2

vj
.ajL/\BCL=N .ajL/;

with C large enough so that
I D Ij � zIj D zI:

Here vj D a.j�1/LC2� a.j�1/LC1 and vj �N�1.
For each I 2 I, we denote by PI .x/ the fat AP dual to zI and centered at x, that is,

PI .x/ WD P
CN=L

v�1
j

.x/\BCN 2=.L2�/.x/ (15)

if I D Ij , and we simply write PI if stressing the center x is unnecessary. For I D Ij , we also write vI
to denote vj . We let P.L; y/ denote a larger fat AP

P.L; y/ WD P
CN 3=2=L2

v�11
.y/\BCN 2=.L2�/.y/; (16)

and we simply write P.L/ if stressing the center y is unnecessary. If L.N 1=4 we have N 3=2=L2 �N

and in that case P.L/ is a ball BCN 2=.L2�/. Comparing (15) and (16), we see P.L/ has a larger thickness
size CN 3=2=L2. We will see shortly (Lemma 3.2 and the paragraph following it) that CN 3=2=L2 is the
smallest thickness that allows us to fit a PI in any fixed P.L/ for every I 2 I.

The starting point of this paper is to make use of an analogy between the extension operator on fangN
1=2

nD1

fbng
N 1=2

nD1 7!

N 1=2X
nD1

bne
itan

and the extension operator on the truncated parabola P1

f 7!

Z
Œ�1;1�

f .�/ ei.x�Ct�
2/ d�:
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BR

T1 T2

TR1=2

PI1

PI2

PI
N1=2=L

P .L/

Figure 1. The ball BR �R2 contains the union of tubes Ti having the same center, each
of which is dual to �i , where

F
i �i partitions NR�1.P1/. On the right, we see analogous

dual fat APs, one PIi per Ii which partition � into L consecutive intervals. We see that
P.L/ contains the union of the PIi which have the same starting point.

We list the correspondence between objects in this paper and in the parabola setting. For simplicity we
assume � D 1 in the following list:

(1) The parameter L 2 Œ1; N 1=2� is the length of the “cap” that we are looking at, and that determines a
canonical neighborhood � with width L2=N 2. The corresponding parameter in the parabola setting
is R, which determines the length (R�1=2) of the cap and a canonical neighborhood with width R�1.

(2) The zI; PI defined above is analogous to the cap and tube in the context of parabola decoupling. Let
‚ be a partition of NR�1.P1/, the R�1-neighborhood of the truncated parabola P1 (over Œ�1; 1�),
into R�1=2 �R�1 caps � . The dual object of � is a tube T of dimension R1=2 �R.

(3) P.L/ is defined to be the smallest fat AP with the property that, for a function F with frequency
support on �, “restricting” F in the physical space to P.L/ will essentially preserve its frequency
support. The corresponding object for the parabola is BR, a ball of radius R.

See Figure 1 which illustrates the analogous properties of tubes T with the ball BR and fat APs PI
with P.L/. Bourgain [1991; 1993] made use of the first two analogies. The new ingredient we need is
the third analogy, which gives an appropriate notion of ball in the short generalized Dirichlet sequence
setting. It is very important that we define P.L/ to be the smallest fat AP with such a property. If we
naively use BN 2=L2 as the ball P.L/, the whole argument that follows will break down.

To make the third point precise, we prove the following lemma. We introduce one more notation. For
a general fat AP P D P ıv .x0/\BMv.x0/ and s > 0, sP will denote the fat AP P sıv .x0/\BsMv.x0/.

Lemma 3.2. Fix a P.L/. For every I 2 I and every PI with PI \P.L/¤∅, PI is contained in 2P.L/.

Proof. In fact for every j , the difference of differences hypothesis in (14) implies that jvj �v1j.N�3=2� .
It follows that jv�1j � v

�1
1 j.N 1=2� . Therefore PI \P.L/¤∅ implies

d.PI ; P.L//. .N
1
2 �/

N 2=.L2�/

N
D
N
3
2

L2
; (17)

which implies PI � 2P.L/ if C is large enough in the definition of P.L/. �
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To put it in another way, the proof above shows that, for every x 2 R,[
I2I

PI .x/� P.L; x/ (18)

if C is large enough in the definition of P.L/. Since the inequality (17) is sharp up to a constant, the
choice of CN 3=2=L2 as the thickness in the definition of P.L/ makes (18) and Lemma 3.2 barely hold.

We note that the above lemma holds if we replace I , I, PI , P.L/ by �;‚; T; BR respectively.

3C. Transversality and bilinear Kakeya-type estimate. We say I; J 2 I are transversal if jv�1I �v
�1
J j&

N 1=2� , or equivalently, if d.I; J /&N�1=2 on R. We now prove a bilinear Kakeya-type estimate for two
transversal families of PI .

Proposition 3.3 (bilinear Kakeya-type estimate). Suppose g1 D
P
I aI1PI and g2 D

P
J bJ 1PJ , where

aI ; bJ are positive real numbers, I; J 2 I and PI are transversal to PJ . Then

�

Z
P.L/

g1g2 . �
Z
2P.L/

g1 �

Z
2P.L/

g2: (19)

For comparison we state the bilinear Kakeya-type estimates for R1=2 �R tubes in R2.

Proposition 3.4. Suppose g1 D
P
i ai1Ti and g2 D

P
j bj 1Tj , where ai ; bj are positive real numbers,

Ti ; Tj are R1=2 �R tubes and every Ti is transversal to every Tj (in the sense that the angle between
Ti ; Tj is & 1). Then

�

Z
BR

g1g2 . �
Z
2BR

g1 �

Z
2BR

g2:

Proof of Proposition 3.3. For simplicity of notation we assume C D 1 in (15), (16). For general C the
argument works the same way. Since

�

Z
P.L/

g1g2 �
X

I;J WPI\P.L/¤∅; PJ\P.L/¤∅

aIbJ jP.L/j
�1
jPI \PJ j

it suffices to show that for I; J transversal we have

jPI \PJ j.
jPI j

2

jP.L/j
: (20)

We consider two cases L�C1N 1=4 and L�C1N 1=4 separately, where C1 is a sufficiently large constant
that will be chosen.

Case 1: L�C1N 1=4. Without loss of generality we assume PI ; PJ both start at the origin (meaning that
the first term of the underlying AP is 0). Let PI;k denote the k-th interval in PI . If VI ; VJ are the common
difference of PI ; PJ respectively, then from the transversality assumption we have jVI �VJ j �N 1=2� .
So for some integer

K �
N=L

N 1=2�
D
N 1=2

L�
we have

d.PI;k; PJ;k/�
N

L
if 1� k �K



DECOUPLING INEQUALITIES FOR SHORT GENERALIZED DIRICHLET SEQUENCES 2413

and

d.PI;k; PJ;k/ 2
h
N

L
;N
i

if K � k .
N

N
1
2 �
D
N
1
2

�
:

Since L � C1N 1=4 we know that if C1 is sufficiently large then N 1=2=�N D N 3=2=� is larger than
N 2=.L2�/, which is the diameter of PI . Therefore we have

jPI \PJ j.
N
1
2

L�

N

L
D
N
3
2

L2�
D
jPI j

2

jP.L/j
:

Case 2: L� C1N 1=4. From the first case we know that

jPI \PJ \BCN 3=2=� j.
N
3
2

L2�
:

Therefore by the triangle inequality we have

jPI \PJ j.
N
3
2

L2�

N 2=.L2�/

N
3
2 =�

D
N 2

L4�
D
jPI j

2

jP.L/j
:

Here we recall that P.L/ degenerates to the Euclidean ball BN 2=.L2�/ if L�N 1=4. So we have shown
(20) and hence (19). �

3D. Bilinear restriction-type estimate. To prove a bilinear restriction estimate, we will use the above
bilinear Kakeya estimate and induction on L. First we identify where the (square of the) square functionP
I2I jfI j

2 is locally constant on. Note that supp1jfI j2 � I � I � PCL
2�=N 2

vI .0/\BCL=N .0/. Since
jvI � v1j.N�3=2� for every I 2 I, we have[

I2I

.I � I /� PCL�=N
3=2

v1
\BCL=N :

Therefore
P
I jfI j

2 is locally constant on dual fat AP of the form P
CN=L
v�11

\BCN 3=2=.L�/. Observe that
if we define L1 D .N 1=2L/1=2, then

P
CN=L

v�11
\BCN 3=2=.L�/ D P

CN 3=2=L21
v�11

\BCN 2=.L21�/
D CP.L1/:

Now suppose I 0; I 00 are unions of I in I, and I 0; I 00 are transversal in the sense that d.I 0; I 00/&N�1=2

on R. Then we have the following bilinear restriction estimate. The proof closely resembles the multilinear
Kakeya implies multilinear restriction proof in [Bennett et al. 2006].

Proposition 3.5 (bilinear restriction-type estimate). Suppose supp yF1 � I 0 and supp yF2 � I 00. Then we
have

�

Z
P.L/

jF1j
2
jF2j

2 ." N "
jP.L/j�2

Z
R

jF1j
2

Z
R

jF2j
2: (21)

Before proving the proposition, we remark that under the conditions of Proposition 3.5, the seemingly
stronger inequality

�

Z
P.L/

jF1j
2
jF2j

2 ." N "
jP.L/j�2

Z
R

jF1j
2WP.L/;100

Z
R

jF2j
2WP.L/;100 (22)
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holds. This is essentially by applying Proposition 3.5 to the functions F1 ;F2 , where  is from
Lemma 2.2 and is adapted to the fat AP dual to P.L/, with order of decay 100.

Proof of Proposition 3.5. We define BR.L/ to be the smallest constant such that

�

Z
P.L/

jF1j
2
jF2j

2
� BR.L/jP.L/j�2

Z
R

jF1j
2

Z
R

jF2j
2

holds for all F1; F2 with supp yF1� I 0 and supp yF2� I 00. We let BK.L/ be the smallest constant such that

�

Z
P.L/

g1g2 � BK.L/jP.L/j�2
Z

R

g1

Z
R

g2

holds for all g1 D
P
aI1PI and g2 D

P
bJ 1PJ , where aI ; bJ are positive real numbers and I; J 2 I

with I � I 0, J � I 00. Equivalently, we have

jPI j
�2 �

Z
P.L/

�X
I�I 0

g1;I � 1PI .0/

�� X
J�I 00

g2;J � 1PJ .0/

�
� BK.L/jP.L/j�2

�Z
R

X
I

g1;I

��Z
R

X
J

g2;J

�
(23)

for all finite measures g1;I , g2;J which are linear combinations of Dirac measures with nonnegative
coefficients. By a density argument (linear combinations of Dirac measures are dense in the weak*
topology on C0.R/�), (23) also holds for all finite measures g1;I , g2;J . In particular, (23) holds for all
nonnegative L1 functions g1;I , g2;J .

We have shown in Proposition 3.3 that
BK.L/. 1:

Now we want to show BR.L/." N ". First we prove

BR.L/. BR.L1/BK.L/: (24)

From the definition of BR and local L2 orthogonality (Lemma 3.6 below) we have

�

Z
P.L/

jF1F2j
2 . �

Z
P.L/

kF1F2k
2
�L2.P.L1;x//

dx

. BR.L1/ �
Z
P.L/

kF1k
2
�L2.WP.L1;x/;200/

kF2k
2
�L2.WP.L1;x/;200/

. BR.L1/ �
Z
P.L/

�X
I�I 0

kF1;Ik
2
�L2.WP.L1;x/;200/

�� X
J�I 00

kF2;J k
2
�L2.WP.L1;x/;200/

�
:

We claim that

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.WP.L1;x/;200/

kF2;J k
2
�L2.WP.L1;x/;200/

.BK.L/jP.L/j�2kF1k2L2.R/kF2k
2
L2.R/

; (25)

which together with previous arguments will imply (24). Since
P
P.L1/�RWP.L1;x/;200.P.L1//. 1, it

suffices to show that

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.P.L1;x//

kF2;J k
2
�L2.P.L1;x//

.k BK.L/jP.L/j�2kF1k2L2.R/kF2k
2
L2.R/

:
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We choose  I;200 adapted to PI .0/ in the frequency space with order of decay 200 as in Lemma 2.2. Let
�I WD { I;200=jPI j. If we define G1;I D . yF1;I=y�I /L, then due to the support property of yF1;I we have
pointwise

j yG1;I j � j yF1;I j: (26)

Also by definition we have F1;I DG1;I ��I . We define G2;J D . yF2;J =y�J /L for F2;J in the same way.
Now for y 2 R such that xCy 2 P.L1; x/, we have

jF1;I .xCy/j
2
D j.G1;I ��I /.xCy/j

2 . .jG1;I j2 � j�I j/.xCy/. jG1;I j2 � 1CPI =jPI j;

where we used Jensen’s inequality for the first inequality. Therefore we have

kF1;Ik
2
�L2.P.L1;x//

. jG1;I j2 � 1CPI =jPI j:

and similarly

kF2;J k
2
�L2.P.L1;x//

. jG2;J j2 � 1CPJ =jPI j:

Hence using (23) we obtain

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.P.L1;x//

kF2;J k
2
�L2.P.L1;x//

. jPI j�2
X
I;J

�

Z
P.L/

.jG1;I j
2
� 1CPI /.jG2;J j

2
� 1CPJ /

. BK.L/jP.L/j�2
�Z

R

X
I

jG1;I j
2

��Z
R

X
J

jG2;J j
2

�
. BK.L/jP.L/j�2

�Z
R

X
I

jF1;I j
2

��Z
R

X
J

jF2;J j
2

�
. BK.L/jP.L/j�2

�Z
R

jF1j
2

��Z
R

jF2j
2

�
;

where the second-to-last inequality is due to (26). So we have proved (25) and therefore (24). Now we
prove BR.L/."N ". Define LmD .Lm�1N 1=2/1=2. Fix an "> 0. We define M to be the smallest integer
such that LM &N 1=2�". So M ." 1. Plugging in BK.Lm/. 1 and applying (24) repeatedly we get

BR.L/� CM BR.LM /:

Since BR.LM / ." NC" for some universal constant C (because of the locally constant property
Proposition 2.3) we conclude BR.L/." NC", which is what we want. �

The L4 bilinear restriction inequality for the parabola in R2 has a more straightforward proof exploiting
the fact that #f.�3; �4/ W d.�3; �4/& 1, NR�1=2.�3C �4/\NR�1=2.�1C �2/g. 1 for every fixed �1; �2,
with d.�1; �2/ & 1, where �i are R�1=2 �R�1 caps that cover the compact parabola [Cordoba 1977;
Fefferman 1973]. However, it is not obvious whether a similar property would hold for I in our setting,
so we took the approach in [Bennett et al. 2006] instead.

Now we give a proof of the local L2 orthogonality used in the proof above. We denote .LN 1=2/1=2

by L0. So P.L0/D P.L1/D P
CN=L

v�11
\BCN 3=2=.L�/.
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Lemma 3.6 (local L2 orthogonality). For every fI with supp yfI � I we have



X
I2I

fI





2
L2.WP.L0/;k/

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

(27)

Proof. Due to (12) it suffices to prove



X
I2I

fI





2
L2.P.L0//

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

:

We choose  k adapted to P.L0/� WD P
CL�=N 3=2

v1 .0/ \ BCL=N .0/ in the frequency space with or-
der of decay k as in Lemma 2.2. Here P.L0/� is dual to P.L0/. Since supp y k � 8kP.L0/�, and
fI C 8kP.L0/�gI2I is Ok.1/-overlapping, we conclude



X

I2I

fI





2
L2.P.L0//

.k jP.L0/j




X
I2I

fI k





2
L2.R/

.k jP.L0/j
X
I2I

kfI kk
2
L2.R/

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

: �

4. Decoupling for the canonical partition

We focus on proving Theorem 1.2 in Sections 4, 5, and 6, and in these three sections decoupling will
refer to decoupling for the canonical partition.

Recall that fangN
1=2

nD1 satisfies

aiC1� ai �
1

N
; .aiC2� aiC1/� .aiC1� ai /�

�

N 2
; (28)

where, here, � means within a factor of 4. The parameter � is in .0; 1�, � is the L2�=N 2-neighborhood
of fangN

1=2

nD1 , and

�D
G
I2I

I;

where each I is an L2�=N 2-neighborhood of L consecutive terms in fangN
1=2

nD1 .
We restate Theorem 1.2 but for all short generalized Dirichlet sequences with � 2 .0; 1�.

Theorem 4.1. Let � and I be defined as in the last paragraphs. Then for 2� p � 6 and every " > 0 we
have 



X

I2I

fI






Lp.R/

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.R/

�1
2

(29)

for functions fI with supp yfI � I.

Comparing (29) with (3) we see an extra factor logC .��1C 1/. This factor appears as a consequence
of dyadic pigeonholing in our proof.

4A. Local decoupling and refined decoupling inequalities. We first formulate a local decoupling in-
equality which implies (in fact is equivalent to) the global decoupling inequality (29).
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Proposition 4.2. Let p � 2. Suppose that, for some k � 100,



X
I2I

fI






Lp.P.L//

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.WP.L/;k/

�1
2

(30)

holds for every fI with supp yfI � I. Then (29) is true.

Proof. Suppose (30) holds for some k � 100. Since
P
P.L/�RWP.L/;k .k 1 and p � 2, by Minkowski’s

inequality, we have



X
I

fI





p
Lp.R/

�

X
P.L/�R

Z
P.L/

jf jp ."N " logC .��1C1/
X
P.L/

�X
I

kfIk
2
Lp.WP.L/;k/

�p
2

.N " logC .��1C1/
�X
I

kfIk
2
Lp.

P
P.L/WP.L/;k/

�p
2

.N " logC .��1C1/
�X
I

kfIk
2
Lp.R/

�p
2

;

which is (29). �

The following local decoupling inequality will imply Theorem 4.1 by Proposition 4.2.

Theorem 4.3 (local decoupling). Suppose 2� p � 6. Then



X
I2I

fI






Lp.P.L//

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.WP.L/;100/

�1
2

(31)

for fI with supp yfI � I.

Theorem 4.3 is a consequence of the following refined decoupling theorem, which we focus on proving
in the next two sections. The analogous result for the parabola can be found in [Guth et al. 2020; Demeter
et al. 2020]. We will show how Theorem 4.4 implies Theorem 4.3 in Section 6E.

Theorem 4.4 (refined decoupling). Suppose 2� p � 6. For every P.L/ and every X � P.L/, we have



X
I

fI






Lp.X/

."N " logC .��1C1/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

(32)

for fI with supp yfI � I.

We remark that Theorem 4.4 implies that for every X � P, where P is a fat AP larger than P.L/ in
the sense that P.L/� P for at least one P.L/, and, for 2� p � 6,



X

I

fI






Lp.X/

." N " logC .��1C 1/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP;100/

�1
p

(33)

for fI with supp yfI � I. Indeed, (33) follows from taking (32) to the p-th power and summing over
X \P.L/ with P.L/� P.



2418 YUQIU FU, LARRY GUTH AND DOMINIQUE MALDAGUE

4B. Induction scheme for proving Theorem 4.4. We fix p;L and let Dec.N; �/DDecp.N;L; �/ denote
the smallest constant such that



X

I

fI






Lp.X/

� Dec.N; �/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

(34)

holds for every sequence fangN
1=2

nD1 satisfying (14), every P.L/, every X � P.L/, and every fI with
supp yfI � I. For a specific choice of the short generalized Dirichlet sequence fangN

1=2

nD1 satisfying (14)
we will call the smallest constant the refined decoupling constant of fangN

1=2

nD1 such that (34) holds for
every X �P.L/, and every fI with supp yfI � I. Note that Decp.N;L; �/ is the supremum of all refined
decoupling constants of sequences fangN

1=2

nD1 satisfying (14).
We will deduce Theorem 4.4, which now is equivalent to Dec.N; �/." N " logC .��1C 1/, from the

following main proposition.

Proposition 4.5. For every " > 0 and every 1�K �N "=2 satisfying N 1=2=K � L,

Dec.N; �/." sup
� 02Œ�=4;��

Dec
�
N

K2
;
� 0

K2

�
CKDN " logD.��1C 1/: (35)

Here D is an absolute constant.

We postpone the proof of Proposition 4.5 to Section 6. Here we show how it implies Theorem 4.4.

Proof of Theorem 4.4 assuming Proposition 4.5. For some sufficiently large S0 we have Dec.N; �/ �
CsN

s � CsN
s logD.��1C 1/ for s � S0. Now suppose Dec.N; �/ � CsN s logD.��1C 1/ for some

s � S0. Then from (35) we have, for every " > 0 and K with N 1=2=K � L,

Dec.N; �/� C"

�
sup

� 02Œ�=4;��

Cs

�
N

K2

�s
logD.K2.� 0/�1C 1/CKDN " logD.��1C 1/

�
:

� C"

�
CCs

�
N

K2

�s
logD.K2��1C 1/CKDN " logD.��1C 1/

�
� C"

�
CCs

�
N

K2

�s
.C logD.��1C 1/CC logD.K2//CKDN " logD.��1C 1/

�
:

If we choose " to be s=2 and let N s=K2s D KDN " D KDN s=2, that is, K D N s=.2.2sCD//, then for
some constant C 0s depending only on s,

Dec.N; �/� C 0sN
s.1� 1

2sCD
/.logD.��1C 1/C logD N/

if N 1=2N�s=.2.2sCD// � L. If N 1=2N�s=.2.2sCD// � L, then jIj . N s=.2.2sCD// and by the triangle
inequality and Cauchy–Schwarz inequality we have

Dec.N; �/.N
s

2.2sCD/ :

We can assume thatD is large enough such that maxf2; S0g�D. Then 1=.2sCD/�D�1 andK�N "=2,
so for some absolute constant c > 0,

Dec.N; �/.s N s.1�c/ logD.��1C 1/:
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Therefore we conclude
Dec.N; �/." N " logD.��1C 1/

for every " > 0, since S0.1� c/m is arbitrarily small for large enough m. �

4C. Two applications. Before ending this section, we record two applications of Theorem 4.1. Technically
these are corollaries of the `2L6 decoupling inequality for the parabola in [Bourgain and Demeter 2015],
by deriving the corresponding .`2; L6/ estimate on short generalized Dirichlet polynomials using the
method described in the Appendix.

First we may estimate approximate solutions to the equation an1 C an2 C an3 D an4 C an5 C an6 for
a short generalized Dirichlet sequence fangN

1=2

nD1 . The number of exact solutions of such equations for
general convex sequences was studied in [Iosevich et al. 2006].

Corollary 4.6. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1�. Then

#f.an1 ; : : : ; an6/ W 1� ni �N
1
2 ; j.an1 C an2 C an3/� .an4 C an5 C an6/j � �=N

2
g

." logC .��1C 1/N
3
2
C": (36)

This estimate is sharp up to C"N " logC .��1C 1/ due to N 3=2 many diagonal solutions.

In particular if we take an D log.nCN C 1/ in the above corollary, then � � 1 and (36) reads

#f.n1; : : : ; n6/ WN C 1� ni �N CN
1
2 ; jn1n2n3�n4n5n6j.N g." N

3
2
C": (37)

We note that the triple products n1n2n3 with N C 1 � n1; n2; n3 � N C N 1=2 lies in the interval
ŒN 3; N 3CCN 5=2�. So (37) implies that the triple products fn1n2n3 WN C 1� n1; n2; n3 �N CN 1=2g

are roughly evenly distributed in ŒN 3; N 3CCN 5=2� with cN separation. Indeed if we split the interval
ŒN 3; N 3CCN 5=2� into intervals of length cN and let E� denote the number of cN -intervals which
contain at least � many triple products n1n2n3, then (37) says that

�2E� � C"N
3
2
C":

Consequently if we choose �� 10C"N ", then we have �E� � 9
10
N 3=2, and �E� is the number of triple

products n1n2n3 that lie in a cN -interval which contains at least �many triple products. The total number
of triple products is N 3=2 so we can conclude most of the triple products lie in cN -intervals, each of
which contains few triple products.

Proof of Corollary 4.6. We let � be a Schwartz function whose Fourier transform is given by a smooth
bump function adapted to B�=N 2.0/:

y� D 1 on B�=N 2.0/; supp y� � B2�=N 2.0/; 0� y� � 1; y� is even.

Applying Theorem 4.1 with p D 6;LD 1 we obtainZ
R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
." N " logC .��1C 1/

�N 1=2X
nD1

keianx�.x/k2
L6.R/

�3
.N " logC .��1C 1/N

3
2 �5N�10: (38)
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We expand the left-hand side of (38) asZ
R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
dx D

X
n1;:::;n6

Z
R

ei.an1Can2Can3�an4�an5�an6 /xj�j6 dx

D

X
n1;:::;n6

b
j�j6.an1 C an2 C an3 � an4 � an5 � an6/:

Since y� is even we know that � is real-valued and hence b
j�j6 D y� � � � � � y� is nonnegative and b

j�j6 &
�5N�10 on Bc�=N 2.0/ for some small absolute constant c > 0. ThereforeZ

R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
& �5N�10#f.an1 ; : : : ; an6/ W 1� ni �N

1
2 ; j.an1 C an2 C an3/� .an4 C an5 C an6/j � �=N

2
g:

Combining the above estimate and (38) we obtain (36). �
Another application of Theorem 4.1 is estimating the size of the intersection of an AP with a generalized

Dirichlet sequence.

Corollary 4.7. Let fangNnD1 be a generalized Dirichlet sequence with parameter � 2 .0; 1� and let
aDN�˛ with ˛ 2 Œ0; 2�. Then

jfang
nDN
nD1 \ aZj.

�
N ˛ if ˛ 2

�
0; 1
2

�
;

C"N
" logC .��1C 1/N

1
3
C˛
3 if ˛ 2

�
1
2
; 2
�
:

When � D 1, Corollary 4.7 is sharp for ˛ 2
�
0; 1
2

�
(see Lemma 7.3), but we do not know if it is sharp

for ˛ 2
�
1
2
; 2
�
. Corollary 4.7 has a slight connection to a conjecture of Rudin which states in an N -term

AP we can find at most O.N 1=2/ many squares (numbers of the form n2 for some n 2 Z). The best
result so far seems to be in [Bombieri and Zannier 2002], which proves at most O.N 3=5 logO.1/N/ many
squares can be found in an N -term AP. We note that fn2=N 2g2NnDNC1 is a generalized Dirichlet sequence.
However we shall not expect to solve Rudin’s conjecture exploiting only the convexity of the sequence
fn2 W n 2 Ng, as shown by the example given in Lemma 7.3.

Proof of Corollary 4.7. The case ˛ 2
�
0; 1
2

�
is trivial as fangNnD1 is contained in a ball of radius . 1 and

aZ has at most . a�1 DN ˛ many terms in such a ball. Now we suppose ˛ 2
�
1
2
; 2
�
. It suffices to show

that, for a short generalized Dirichlet sequence fangN
1=2

nD1 , H WD jfn W 1� n�N 1=2; an 2 aZgj satisfies

H ." C" logC .��1C 1/N
˛
3
� 1
6
C":

We consider the function
f .x/D

X
nW1�n�N 1=2; an2aZ

e2�itan :

Case 1: ˛ 2 Œ1; 2�. We apply Theorem 4.3 with p D 6, LD 1 and P.L/D P.L; 0/. Since jf j �H=10
on NcN 1=2.a�1Z/ with c & 1, we obtain

H

�
N 2��1

N ˛
N
1
2

�1
6

." N " logC .��1C 1/H
1
2 .N 2��1/

1
6 ;
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where we used that P.L/ is approximately an N 2��1 interval. Simplifying the above displayed math,

H ." C" logC .��1C 1/N
˛
3
� 1
6
C":

Case 2: ˛ 2
�
1
2
; 1
�
. We apply Theorem 4.3 with p D 6, L D N 1�˛ and P.L/ D P.L; 0/. Since

jf j �H=10 on NcN 1=2.a�1Z/ with c & 1, we obtain

H

�
N 2˛2��1

N ˛
N
1
2

�1
6

." N " logC .��1C 1/H
1
2 .N 2˛2��1/

1
6 ;

that is,
H ." C" logC .��1C 1/N

˛
3
� 1
6
C": �

5. High-low frequency decomposition for the square function

The proof of Proposition 4.5 is based on the method in [Guth et al. 2022], which uses a high-low frequency
decomposition for the square function. Such a decomposition is also used in [Guth et al. 2019] to study inci-
dence estimates for tubes. We set up the preliminaries in this section and prove Proposition 4.5 in Section 6.
We begin in Section 5A with an overview of the argument, at a symbolic and heuristic level, and refer
readers to Section 2 of [Guth et al. 2022] for a more detailed description of the intuition behind this method.

5A. Overview of the argument. Let 2 � p � 6. We will present a heuristic overview of the high-low
proof of Theorem 4.4 (which is our goal to prove via Proposition 4.5). By a pigeonholing argument, we
may assume that there is a parameter ˛ > 0 so thatZ

X

ˇ̌̌̌X
I

fI

ˇ̌̌̌p
� ˛pjU˛j;

whereU˛D
˚
x 2X W

ˇ̌P
I fI .x/

ˇ̌
� ˛

	
. A “broad/narrow” argument (written in our context in Section 6A)

roughly allows us to reduce to the case that, on most of U˛ ,
ˇ̌P

I fI
ˇ̌

is bounded by a bilinear expressionˇ̌P
I1�I 0

fI1
P
I2�I 00

fI2
ˇ̌1=2 where I 0; I 00 are transverse, meaning d.I 0; I 00/ & N�1=2. The high-low

frequency proof of decoupling involves upgrading the bilinear restriction theorem (Proposition 3.5) to the
refined decoupling theorem (Theorem 4.4).

We splitU˛ into� "�1 many sets on which we know certain square functions are high- or low-frequency
dominated. Consider scales 1� L� LmC1 � Lm �N 1=2, where Lm=LmC1 �N ". Define the (square
of the) square functions gm D

P
Im
jfIm j

2, gmC1 D
P
ImC1

jfImC1 j
2, where Im; ImC1 are unions of

Lm; LmC1 many consecutive intervals in�, respectively. Also write gD
P
I jfI j

2. Suppose that on most
of U˛ , gmC1.x/. g.x/. Observe the pointwise inequality that, for x 2 U˛ satisfying gmC1.x/. g.x/,

˛�

ˇ̌̌̌X
ImC1

fImC1.x/

ˇ̌̌̌
.

X
ImC1WjfImC1 .x/j>N

" g.x/
˛

jfImC1.x/jC

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌

.
˛

N "g.x/

X
ImC1WjfImC1 .x/j>N

" g.x/
˛

jfImC1.x/j
2
C

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌

.
˛

N "g.x/
gmC1.x/C

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌
:
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This type of reasoning means that on most of U˛ we may perform a wave packet decomposition of f at
scale ImC1 and replace f with a version which only preserves the “small” wave packets, ensuring the
property that kfImC1kL1.R/ / kgkL1.X/=˛.

Case 1: high-dominance. Suppose that on most of U˛ , gm.x/. jgm�{��LmC1=N .x/j, where ��LmC1=N
is a smooth bump function with support in LmC1=N � j!j � 2, on most of U˛ . A combination of a broad-
narrow argument, Proposition 3.5, the locally constant property, and the assumption of high-frequency
dominance of gm leads to the inequality

˛4jU˛j.
Z
jgm � {��LmC1=N j

2:

Next, by Plancherel’s theorem, we analyze the integral on the right-hand side. A geometric argument
shows that the supports of the 1

jfIm j
2 from ygm are sparsely overlapping on the support of ��LmC1=N .

This allows us to bound the right-hand side of the previous displayed inequality by

C"N
"
X
Im

Z
jfIm j

4;

which is bounded by C"N 10"
P
ImC1

R
jfImC1 j

4 using Cauchy–Schwarz. Finally, use the goodL1 bound
for each fImC1 from the pruning of the wave packets to getX

ImC1

Z
jfImC1 j

4 /
kgk2

L1.X/

˛2

X
ImC1

Z
jfImC1 j

2:

A pigeonholing argument may be used to show that without loss of generality, we may assume that
kgkL1.X/ . ˛2. By L2 orthogonality, the integral on the right-hand side of the previous displayed line
equals

P
I

R
jfI j

2. The conclusion of the argument in this case is then

jU˛j/
kgk2

L1.X/

˛6

X
I

kfIk
2
L2.R/

.
kgk

p
2
�1

L1.X/

˛p

X
I

Z
jfI j

2;

which is a version of the statement of Theorem 4.4.

Case 2: low-dominance. The remaining case is if gm.x/ � jgm � {�<LmC1=N .x/j on most of U˛. A
local L2-orthogonality argument shows that jgm� {�<LmC1=N .x/j is bounded by gmC1�j{�<LmC1=N j.x/,
which by the locally constant heuristic, is roughly the same as gmC1.x/. We conclude in this case that,
on most of U˛ , gm.x/. gmC1.x/. g.x/. This is the same type of assumption we made before consider
the cases, except at the scale Lm instead of LmC1. This allows us to reinitiate the argument beginning
with the assumption that gm.x/. g.x/ in place of gmC1.x/. g.x/.

In the case that we are “low”-dominated for "�1 many scales, then

jU˛j � jfx 2 U˛ W g1.x/. g.x/gj;

where g1 is a square function corresponding to partitions of � into I1, which are N " many adjacent
intervals. Since j

P
I fI .x/j . N "g1.x/ by Cauchy–Schwarz, the statement of Theorem 4.4 becomes

trivial. In the next sections, we set up the argument in full technical detail.
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5B. Wave-packet decomposition. We start with a few definitions. Write f D
P
I2I fI , where fI will

always denote a function with frequency support in I.
Fix 2 � p � 6 and " > 0. For m 2 N, let Lm D N 1=2N�"m. Without loss of generality we assume

LM DL for someM 2N. SoM ." 1. For every 1�m�M we let Im be the partition of� intoN 1=2=Lm

many Im, each of which is the union of Lm-consecutive intervals in �. Lm can be thought of as scales.
Note that

Im � P
CL2m�=N

2

vm \BCLm=N ;

where vm � 1
N

. We denote the right-hand side as zIm:

zIm WD P
CL2m�=N

2

vm \BCLm=N :

Let PIm be a tiling of R by PIm . For each Im, we will now construct a partition of unity f�ImgPIm2PIm
which will be used to perform the wave packet decomposition

fIm D
X
PIm

�PImfIm :

We regard each summand �PImfIm as a wave packet. Specifically, we let  Im be adapted to zIm� zIm,
which is of the form PCL

2
m�=N

2

v0
.0/\BCLm=N .0/, in the frequency space as in Lemma 2.2, with order

of decay 200 outside of the dual fat AP PIm . For each PIm 2 PIm , define

�PIm WD k 
2
Im
k
�1
L1.R/

Z
PIm

j Im.x�y/j
2 dy: (39)

Proposition 5.1 (wave-packet decomposition). f�PIm gPIm2PLm forms a partition of unity, that is,P
�PIm D 1, �PIm � 0. Each �PIm is a translated copy of the others, and

supp y�PIm � 8
400. zIm� zIm/; 1PIm . �PIm .WPIm ;200: (40)

Proof. By definition we see that �PIm forms a partition of unity, and each �PIm is a translated copy of
the others. Also it follows from the definition that

1PIm . j�PIm j:

Note that �P.Lm/ equals k 2Imk
�1
L1.R/

j Im j
2 � 1PIm . Therefore  Im decays at order 200 outside PIm.0/

implies that �P.Lm/ decays at order 400 outside PIm , and in particular

j�PIm j.WPIm ;200:

The support property supp y�PIm � 8
400. zIm� zIm/ follows from the fact that

y�PIm D k 
2
Im
k
�1
L1.R/

2
j Im j

2 y1PIm

and from Lemma 2.2. �

5C. A pruning process and modified square functions. Now we define “square functions” (squared) at
scales Lm, which differ from the usual square functions by a pruning process of wave packets and taking
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spatial averages. The pruning process will depend on two parameters ˛ and r , which can be thought
of as the values of jf j and

P
IM
jfIM j

2 D
P
I jfI j

2 which dominate the Lp norm of f . We define
�D �.˛; r/ by

�D zC"N
" r

˛
; (41)

where zC" is a sufficiently large constant depending on " which will be chosen later in the proof of
Lemma 5.4.

We first do the pruning process (with parameters ˛; r), which inductively removes wave packets at
each scale whose height exceeds �. As we shall see (Lemma 5.4), those wave packets do not play a
dominant role in the Lp norm of f . This process produces a family of functions fm;Im ; fm;Im�1 ; fm
that depend on ˛; r , which is implicit in the notation. We will write fm;Im;˛;r ; fm;Im�1;˛;r ; fm;˛;r to
emphasize such dependence when necessary.

Let PIM ;� D fPIM 2 PLM W k�PIM fIM kL1.R/ � �g, and define

fM;IM WD
X

PIM 2PIM ;�

�PImfIM ; fM WD
X
IM

fM;IM :

We let fM;IM�1D
P
IM�IM�1

fM;IM . Now we define fm and fm;Im inductively formD1; : : : ;M�1 by

fm;Im WD
X

PIm2PIm;�

�PImfmC1;Im ; fm WD
X
Im

fm;Im ; (42)

where fmC1;Im D
P
ImC1�Im

fmC1;ImC1 and PIm;� D fPIm 2 PIm W k�PImfmC1;ImkL1.R/ � �g. For
notational convenience we also define fMC1 D f and fMC1;IM WD fIM D fI .

We note that

(i) fm D
P
Im
fm;Im D

P
Im�1

fm;Im�1 ,

(ii) supp yfm;Im � C zIm,

(iii) supp yfm;Im�1 � C zIm�1,

(iv) jfm;Im j � jfmC1;Im j pointwise.

Item (i) follows from the definitions, and (iv) holds because f�PIm gPIm is a partition of unity. To see (ii)
and (iii) we may induct on m and note that[

Im�Im�1

C zIm � 2 zIm�1

when N is sufficiently large depending on ".
To define the “square function” gm at scale Lm we introduce �Im , which is an L1-normalized nonneg-

ative function adapted to PIm.0/ with decay order 100

jPIm j
�11PIm.0/.x/. �Im.x/.

WPIm .0/;100.x/

kWPIm .0/;100kL1.R/
; (43)

and supp y�Im � C. zIm� zIm/. Such a function can be constructed by taking j j2=k 2kL1 for  adapted
to zIm with decay order 100 as in Lemma 2.2.
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Finally we define the “square function” by

gm WD
X
Im

jfmC1;Im j
2
� �Im

for 1�m�M � 1 and for mDM we define

gM WD
X
IM

jfIM j
2
� �IM :

We note here that gm for 1�m�M�1 implicitly depends on ˛; r , and we will write gm;˛;r to emphasize
such dependence when necessary; gM does not depend on ˛; r .

5D. High-low decomposition. To set up a high-low frequency decomposition for gm, we let �m.�/ be
an even smooth bump function that equals to 1 on BLmC1=N .0/ and vanishes outside B2LmC1=N .0/ for
every 1�m�M � 1. We also assume that �m are rescalings of each other.

Define, for 1�m�M � 1,
g`m WD gm � {�m and ghm WD gm�g

`
m;

which are low- and high-frequency parts of gm. Both g`m and ghm satisfy some proprieties. We discuss
them in the following two lemmas.

Lemma 5.2 (low lemma). For 1�m�M � 1, we have the pointwise inequality

jg`mj. gmC1:
Proof. By definition

g`m D

�X
Im

jfmC1;Im j
2

�
� �Im � {�m D

�X
Im

jfmC1;Im j
2

�
� {�m � �Im :

Using Plancherel’s theorem,

jfmC1;Im j
2
� {�m.x/D

Z
jfmC1;Im.y/j

2
{�m.x�y/ dy

D

Z
. yfmC1;Im �

y
f mC1;Im/.�/ e

2�ix��m.�/ d�

D

X
ImC1;I

0
mC1
�Im

Z
. yfmC1;ImC1 �

y
f mC1;I 0

mC1
/.�/ e2�ix��m.�/ d�: (44)

We note that yfmC1;ImC1 �
y
f mC1;I 0

mC1
is supported in C zImC1 � C zI 0mC1 and zImC1 is of the form

P
CL2�=N 2

vImC1
\BCLmC1=N . Since �m is supported on B2LmC1=N .0/ we conclude that for every fixed

ImC1 there are only O.1/ many I 0mC1 such that the integral in (44) is nonzero, and for those I 0mC1
we write I 0mC1 � ImC1. We let  ImC1 be adapted to C. zImC1� zImC1/ as in Lemma 2.2 with order of
decay 200. Then, using Cauchy–Schwarz in the first two inequalities, we have

jjfmC1;Im j
2
� {�m.x/j D

X
ImC1�Im

X
I 0
mC1
�ImC1

fmC1;ImC1f mC1;I 0mC1
� {�m

�

X
ImC1�Im

X
I 0
mC1
�ImC1

.jfmC1;ImC1 j
2
� j{�mj/

1
2 .jfmC1;I 0

mC1
j
2
� j{�mj/

1
2
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.
X

ImC1�Im

jfmC1;ImC1 j
2
� j{�mj

.
X

ImC1�Im

jfmC1;ImC1 j
2
� j { ImC1 j � j{�mj

�

X
ImC1�Im

jfmC2;ImC1 j
2
� j { ImC1 j � j{�mj;

where the last inequality is because of jfmC1;ImC1 j � jfmC2;ImC1 j pointwise. Now to finish the proof, it
suffices to observe that

j{�mj � j { ImC1 j � �Im . �ImC1 ;

since j{�mj decays rapidly outsideBN=LmC1.0/, j { ImC1 j decays at order 200 outsidePImC1.0/, �Im decays
at order 100 outside PIm.0/, and BLmC1=N .0/CPIm.0/� CPImC1.0/. �

Recall that
P.Lm/D P

CN 3=2=L2m
v�11

\BCN 2=.L2m�/

(which degenerates to BCN 2=.L2m�/ if Lm � CN 1=4) as defined in (16). Let �P.LM / be a function such
that

supp 2�P.LM /�P
CL2M �=N

2

v1 .0/\BCL2M =N 3=2
.0/�

\
I2I

. zI�zI/; where 1P.LM /.j�P.LM /j.WP.LM /;200:

To construct such a function we can take a  in Lemma 2.2 adapted to certain fat AP and apply a
translation in the physical space to it.

Lemma 5.3 (high lemma). For 1�m�M � 1 we haveZ
jghmj

2WP.LM /;100 .N
"

Z X
Im

jfmC1;Im j
4WP.LM /;100:

Proof. Because of (12), it suffices to show for every P.LM /Z
P.LM /

jghmj
2 .N "

Z X
Im

jfmC1;Im j
4WP.LM /;100:

CalculateZ
jghmj

2WP.LM /;100 .
Z
jghm�P.LM /j

2
D

Z ˇ̌̌̌X
Im

^

.jfmC1;Im j
2/y�Im.1� �m/�

2�P.LM /
ˇ̌̌̌2
:

Note that
supp.
^

.jfmC1;Im j
2/y�Im.1� �m/�

2�P.LM //� C. zIm� zIm/ nBLmC1=.2N/.0/:
Indeed, the high-frequency cutoff .1� �m/ removes the ball BLmC1=N .0/. The support of 2�P.LM / is
contained in a ball of radius � 1

2
L2M=N

3=2 (if the C in the definition of P.L/ as in (16) is large enough),
so convolution with 2�P.LM / shrinks the high-frequency cutoff by an amount smaller than LmC1=.2N /.
The structure of zIm� zIm is unchanged by convolution by 2�P.LM / because the thickness of zIm is�Lm=N
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and 1
2
L2M=N

3=2 � LmC1=.2N /�N
�"Lm=N . We claim that at every point on R, the collection of sets

fC. zIm � zIm/ nBLmC1=.2N/.0/gIm has at most O.N "/ overlap. Assuming this claim, by the Cauchy–
Schwarz inequality we obtainZ

jghmj
2WP.LM /;100 .N

"

Z X
Im

ˇ̌̂
.jfmC1;Im j

2/y�Im.1� �m/�
2�P.LM /

ˇ̌2
:

So we haveZ
jghmj

2WP.LM /;100

.N "
X
Im

Z ˇ̌
jfmC1;Im j

2
� �Im �

S.1� �m/
ˇ̌2
j�P.LM /j

2

.N "
X
Im

�Z ˇ̌
jfmC1;Im j

2
� �Im

ˇ̌2
j�P.LM /j

2
C

Z ˇ̌
jfmC1;Im j

2
� �Im � j{�mj

ˇ̌2
j�P.LM /j

2

�
.N "

X
Im

�Z
jfmC1;Im j

4.j�P.LM /j
2
� �Im/C

Z
jfmC1;Im j

4.j�P.LM /j
2
� �Im � j{�mj/

�
;

where we used Cauchy–Schwarz and that �Im and {�m have L1 norms � 1 to justifyˇ̌
jfmC1;Im j

2
� �Im

ˇ̌2 . jfmC1;Im j4 � �Im ; ˇ̌
jfmC1;Im j

2
� �Im � j{�mj

ˇ̌2 . jfmC1;Im j4 � �Im � j{�mj:
Noting that j�P.LM /j

2 � �Im .WP.LM /;100 and j�P.LM /j
2 � �Im � j{�mj.WP.LM /;100, we concludeZ

jghmj
2WP.LM /;100 .N

"
X
Im

Z
jfmC1;Im j

4WP.LM /;100:

Now we prove the claim. Recall that zIm is a fat AP of the form P
CL2�=N 2

vIm
\BCLm=N , where vIm �N

�1.
Suppose x 2C. zIm� zIm/nBLmC1=.2N/.0/ and x 2C. zI 0m� zI

0
m/nBLmC1=N .0/ for distinct zIm and zI 0m. We

denote the common difference of zIm and zI 0m by v and v0 respectively. Recalling that vIm are C�Lm=N 2

separated, and the maximal separation is C.N 1=2=Lm/.�Lm=N
2/D C�=N 3=2, we have

�Lm=N
2 . jv� v0j. �=N

3
2 :

Suppose x2BCL2m�=N 2.kv/ and x2BCL2m�=N 2.k
0v0/ for some k; k02N. Then since x 62BLmC1=.2N/.0/,

LmC1 . k; k0 . Lm. By definition Lm DN "LmC1 �N
1=2�", so we have

LmC1
�Lm

N 2
&N�"

�L2m
N 2

; Lm
�

N
3
2

�
�

N 1C"
�

1

N 1C"
:

It follows that jk� k0j. 1 and

either jv� v0j.N "�
Lm

N 2
or jv� v0j&

1

N
3
2
�"
:

The second case cannot happen ifN is sufficiently large (depending on "). Since common differences v are
O.�Lm=N 2/-separated, we conclude that there are at most O.N "/ many zI 0m such that x 2 C. zI 0m� zI

0
m/ n

BLmC1=.2N/.0/. �
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5E. The sets �m;˛;r and U˛;r . The last part of our high-low decomposition set-up is to partition P.LM /
into �m;˛;r , for a fixed pair .˛; r/. For 1�m�M � 1 we define �m;˛;r to be

�m;˛;r WD fx 2 P.LM / W gm.x/� 2jg
h
m.x/j; gmC1.x/� 2jg

`
mC1.x/j; : : : ; gM�1.x/� 2jg

`
M�1.x/jg:

Here gk D gk;˛;r . Also define �0;˛;r to be

�0;˛;r WD fx 2 P.LM / W g1.x/� 2jg
`
1.x/j; g2.x/� 2jg

`
2.x/j; : : : ; gM�1.x/� 2jg

`
M�1.x/jg:

Clearly

P.LM /D
[

0�m�M�1

�m;˛;r

for every ˛; r . For notational convenience we let �M;˛;r D P.LM /.
We define U˛0;r 0 by

U˛0;r 0 WD fx 2 P.LM / W r
0=2 < gM .x/� 2r

0; ˛0=2 < jf .x/j � 2˛0g: (45)

Recall that gM D
P
IM
jfIM j

2 � �IM is defined without the pruning process so in particular it does not
depend on the pruning parameters ˛; r .

We prove the following lemma, which shows that, on U˛;r \�m;˛;r , jfm � fm;˛;r j is very small
so that jfmj � jfm;˛;r j. We define f0 D f1 for notational convenience. Also recall we have defined
fMC1 D f and fMC1;IM D fIM D fI .

Lemma 5.4. If the constant zC" in the definition of � is large enough depending on ", then for every ˛; r ,
every 1�m�M � 1, and any subset S of the partition Im D fImg, we haveˇ̌̌̌ X

Im2S

fIm �
X
Im2S

fm;˛;r;Im

ˇ̌̌̌
�

˛

100

on U˛;r \�m;˛;r , and also on U˛;r \�0;˛;r if mD 1. In particular if zC" in the definition of � is large
enough depending on ", then for every ˛; r , every 0�m�M � 1,

jfm;˛;r j 2
h
˛

4
; 4˛

i
;

on U˛;r \�m;˛;r .

Proof. Fix ˛; r . In the following proof gk means gk;˛;r , and fk;Ik , fk;Ik�1 , fk mean fk;Ik ;˛;r , fk;Ik�1;˛;r ,
fk;˛;r respectively. First suppose 1�m�M � 1. By the definition of �m;˛;r and Lemma 5.2 we know
that on U˛;r \�m;˛;r ,

gmC1 . gmC2 . � � �. gM . r:

We also have by the Cauchy–Schwarz inequality gm ." N "gmC1. Recall that M ." 1 so we have, for
m� k �M,

gk ." N "r on U˛;r \�m;˛;r :
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Let m0 be an integer between m and M and let Im0 2 Im0 . By the definition of fm0;Im0 and fm0C1;Im0 we
have for x 2 U˛;r \�m;˛;r

jfm0;Im0 .x/�fm0C1;Im0 .x/jD

ˇ̌̌̌ X
PIm0

…PIm0 ;�

�PIm0
.x/fm0C1;Im0 .x/

ˇ̌̌̌

.
X

PIm0
…PIm0 ;�

j�
1
2

PIm0
.x/fm0C1;Im0 .x/j�

1
2

PIm0
.x/

.
X

PIm0
…PIm0 ;�

��1k�PIm0
fm0C1;Im0kL1.R/k�

1
2

PIm0
fm0C1;Im0kL1.R/�

1
2

PIm0
.x/

.��1
X

PIm0
…PIm0 ;�

k�
1
2

PIm0
fm0C1;Im0k

2
L1.R/�

1
2

PIm0
.x/

.��1
X

PIm0
…PIm0 ;�

X
zPIm0

k�PIm0
f 2m0C1;Im0

k
L1. zPIm0

/
�
1
2

PIm0
.x/

.��1
X
PIm0

X
zPIm0

k�PIm0
k
L1. zPIm0

/
kf 2m0C1;Im0

k�L1.W zPIm0
/�

1
2

PIm0
.x/;

where we used �PIm0 . �
1=2
PIm0

. We also used the locally constant property Proposition 2.3 for the last in-
equality. If we use �Im0 . zPIm0 / to denote �Im0 .sup zPIm0 /, which is comparable to �Im0 .y/ for any y 2 zPIm0 ,
then we have

jfm0;Im0 .x/�fm0C1;Im0 .x/j. �
�1
jPIm0 j

�1
X
PIm0

X
zPIm0

�Z
W zPIm0

�PIm0
. zPIm0 /jfm0C1;Im0 j

2

�
�
1
2

PIm0
.x/

. ��1jPIm0 j
�1

X
zPIm0

�Z
W zPIm0

jfm0C1;Im0 j
2

�
�
1
2

zPIm0
.PIm0 .x//

. ��1jPIm0 j
�1

Z
jfm0C1;Im0 j

2.y/
X
zPIm0

W zPIm0
.y/ �

1
2

zPIm0
.PIm0 .x// dy

. ��1jPIm0 j
�1

Z
jfm0C1;Im0 j

2.y/ �
1
2

PIm0
.x/
.y/ dy:

Noting that jPIm0 j
�1�

1=2

PIm0
.x/
.y/. �Im0 .x�y/, we get

jfm0;Im0 .x/�fm0C1;Im0 .x/j. �
�1
jfm0C1;Im0 j

2
� �Im0 .x/:

Summing the above over Im0 �
S
Im2S Im we concludeˇ̌̌̌ X

Im0�
S
Im2S Im

fm0;Im0 .x/�
X

Im0�
S
Im2S Im

fm0C1;Im0 .x/

ˇ̌̌̌
� ��1

X
Im02Im0

jfm0C1;Im0 j
2
� �Im0 .x/

D ��1gm0.x/." N " r

�
:
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Therefore if we choose the constant zC" in the definition of �D zC"N " r
˛

to be large enough depending
on ", then we have, for x 2 U˛;r \�m;˛;r ,X

m�m0�M

ˇ̌̌̌ X
Im0�

S
Im2S Im

fm0;Im0 .x/�
X

Im0�
S
Im2S Im

fm0C1;Im0 .x/

ˇ̌̌̌
�

˛

100
:

Since by definition
P
Im0�

S
Im2S Im

fm0;Im0 D
P
Im0�1�

S
Im2S Im

fm0;Im0�1 , we have by the triangle
inequality that ˇ̌̌̌ X

Im2S

fIm �
X
Im2S

fm;Im

ˇ̌̌̌
�

˛

100
:

The case mD 0 follows from the above argument for mD 1 as by definition f0 D f1. �

From now on we will assume that zC" is chosen large enough such that the conclusion of Lemma 5.4
holds.

6. Proof of Proposition 4.5

We prove Proposition 4.5 in this section, and consequently Theorem 4.4. We also give the proof of
Theorem 4.3 assuming Theorem 4.4 in the last subsection. Still fix 2� p � 6, " > 0, and P.LM /� R.

Suppose 1�K�N "=2 andN 1=2=K�L. Let I 0 be a partition of NN�1K�1.fangN
1=2

nD1 / intoK many I 0,
which is a union ofN 1=2=K consecutive intervals in NN�1K�1.fangN

1=2

nD1 /. We call I 0; I 002I 0 nonadjacent
if there exist at least two other I 000 2 I 0 between I 0 and I 00 on the real line. Alternatively, we can list
I 0 2 I 0 as I 0j so that I 0jC1 is on the right side of I 0j on the real line for every j . Then we define I 0j ; I

0
j 0 to

be nonadjacent if jj � j 0j � 3. In displayed math we write “nonadj.” as the shorthand for nonadjacent.
For f with supp yf � �, we let fI 0 denote the projection of f to I 0 in the frequency space. So

fI 0 D
P
IM�I 0

fIM .

6A. Broad-narrow decomposition. The following lemma is a broad-narrow analysis on f with some
complication. For parameters ˛; r > 0 and m, 0�m�M � 1, define

fm;˛;r;I 0 WD
X
Im�I 0

fm;˛;r;Im ;

where we recall that fm;˛;r;Im is defined in (42).

Lemma 6.1. For every X � P.LM /, there exist some ˛; r with ˛ � r1=2 and some m such that 0�m�
M � 1 andZ
X

jf jp ."
X
I 02I0

Z
X

jfI 0 j
p
C .logN log.��1C1//C

KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

C

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
: (46)

First we prove a technical lemma which is a pointwise broad-narrow analysis.
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By taking all parameters to have dyadic values, we may assume that for each Im, 0 �m �M, and
any I 0, either Im � I 0 or Im\ I 0 D∅.

Lemma 6.2. For every ˛; r > 0 and 0�m�M � 1,

jfm;˛;r.x/j
2 .max

I 0
jfI 0.x/j

2
CKC max

I 0;I 00

nonadj.

jfm;˛;r;I 0.x/jjfm;˛;r;I 00.x/j

for every x 2X \U˛;r \�m;˛;r .

Proof. Let x 2X\U˛;r\�m;˛;r . If there exist I 0; I 00 2 I 0 nonadjacent such that jfm;˛;r;I 0 j; jfm;˛;r;I 00 j �
1

100K
jfm;˛;r.x/j, then we have

jfm;˛;r.x/j
2 .K2 max

I 0;I 00

nonadj.

jfm;˛;r;I 0.x/jjfm;˛;r;I 00.x/j: (47)

Now we assume there do not exist I 0; I 002I 0 nonadjacent with jfm;˛;r;I 0 j; jfm;˛;r;I 00 j� 1
100K

jfm;˛;r.x/j.
Note that fm;˛;r.x/D

P
I 0 fm;˛;r;I 0.x/ and the number of I 0 is bounded by K. So if we choose I 000 2 I 0

with jfm;˛;r;I 000.x/j DmaxI 02I0 jfm;˛;r;I 0.x/j, then

jfm;˛;r;I 000.x/j �
1
2
jfm;˛;r.x/j: (48)

By Lemma 5.4 we have jfm;˛;r.x/j 2 Œ˛=4; 4˛�, and jfm;˛;r;I 000.x/� fI 000.x/j � ˛
100

. Therefore by
the triangle inequality and (48) we obtain

jfI 000.x/j& ˛ � jfm;˛;r.x/j:

This combined with (47) proves the lemma. �

Proof of Lemma 6.1. Since P.LM /D
F
˛;rW dyadic U˛;r , we haveZ

X

jf jp �
X

˛;rW dyadic

Z
X\U˛;r

jf jp:

Without loss of generality we assume�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

D 1: (49)

Then X \U˛;r D∅ if maxf˛; rg � CNC ��C for some sufficiently large constant C . Also�Z
X\.

S
minf˛;rg�C�1N�C�C U˛;r /

jf jp
� 1
p

. 1

if C is sufficiently large. So now we writeZ
X

jf jp �
X
˛;r

Z
X\U˛;r

jf jpCC; (50)

where the number of pairs .˛; r/ in the summation is O.logN log.��1C1//2, since the number of dyadic
numbers between C�1N�C �C and CNC ��C is O.logN C log.��1C 1//DO.logN log.��1C 1//.
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We also observe that by Hölder’s inequality and Fubini’s theorem we haveZ
X\

S
˛�r1=2

U˛;r

jf jp .
Z
X

�X
I

jfI j
2
� �I

�p
2

.




X
I

jfI j
2
� �I





p2�1
L1.X/

�X
I

kfIk
2
L2.WP.L/;100/

�
:

Since 



X
I

jfI j
2
� �I






L1.X/

� sup
x2X

X
I

jfI j
2
� �I .x/. sup

x2X

X
I

kfIk
2
�L2.WPI .x/;100/

;

we obtainZ
X\

S
˛�r1=2

U˛;r

jf jp .
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
D 1:

So in summary Z
X

jf jp .
X

˛;rW˛�r1=2

Z
X\U˛;r

jf jpC 1: (51)

Next we further decompose X \U˛;r into
S
m.X \U˛;r \�m;˛;r/:Z

X\U˛;r

jf jp �

M�1X
mD0

Z
X\U˛;r\�m;˛;r

jf jp:

By Lemma 5.4 we have, for 0�m�M � 1,Z
X\U˛;r\�m;˛;r

jf jp �

Z
X\U˛;r\�m;˛;r

jfm;˛;r j
p:

It then follows from Lemmas 6.2 and 5.4 thatZ
X

jf jp

. 1C
X

˛;rW˛�r1=2

M�1X
mD0

�X
I 02I0

Z
X\U˛;r\�m;˛;r

jfI 0 j
p
C
KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

�

. 1CC"
X
I 02I0

Z
X

jfI 0 j
p
C

X
˛;rW˛�r1=2

X
m

KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2;

where we used M ." 1 in the last inequality. Recall that the number of pairs .˛; r/ in the summation is
O.logN log.��1C 1//2 (see (50)); by the pigeonhole principle we haveX
˛;rW˛�r1=2

X
m

KC

˛4�p
max
I 0; I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

." .logN log.��1C 1//2
KC

˛4�p
max
I 0; I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

for some ˛; r with ˛ � r1=2, 0�m�M � 1, which completes the proof. �
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Now fix X � P.LM /. We have identified a pair .˛; r/ from Lemma 6.1, and we fix that pair of ˛; r
and suppress the dependence on ˛; r from now on in the notation. In particular write gm D gm;˛;r ,
�m D�m;˛;r , fm;I 0 D fm;˛;r;I 0 and fm;Im D fm;˛;r;Im where ˛; r are those chosen in Lemma 6.1.

We estimate the broad and narrow parts separately, which together with Lemma 6.1 will imply
Proposition 4.5.

6B. Narrow part.

Proposition 6.3. For every I 0 2 I 0 we haveZ
X

jfI 0 j
p

.
�

sup
� 02Œ�=4;��

Dec
�
N

K2
;
� 0

K2

�p��
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
: (52)

Proof. In this proof, the notation cA with c 2 R; A� R will denote the set fca W a 2 Ag.
We first prove (52) for I 0 DNL2�=N 2.fang

N 1=2=K
nD1 /. Note that K2I 0 DNK2L2�=N 2.fK2ang/

N 1=2=K
nD1 ,

and if we let QaDK2an, zN DN=K2 and Q� D �=K2, then

Qa� Qa 2

�
K2

4N
;
4K2

N

�
D

�
1

4 zN
;
4

zN

�
; . Qa� Qa/� . Qa� Qa/ 2

�
K2�

4N 2
;
4K2�

N 2

�
D

�
Q�

4 zN 2
;
4 Q�

zN 2

�
;

and K2I 0 DN
L2 Q�= zN 2

.f Qag
zN 1=2

nD1 /.

We define zP.L/, zPK2I by (16), (15) respectively with N;L; �; vj replaced by zN;L; Q�;K2vj . Then for
any x0 we have zPK2I .K

�2x0/DK
�2PI .x0/, and zP.L;K�2x0/�K�2P.L; x0/. Now by the change

of variable formula, Z
X

jfI 0.x/j
p dx DK2

Z
K�2X

jfI 0.K
2x/jp dx:

We have supp 3fI 0.K2 �/�K2I 0DN
L2 Q�= zN 2

.f Qag
zN 1=2

nD1 /. Let Qf .x/ denote the function fI 0.K2x/. Therefore
by the definition of the refined decoupling constant for N

L2 Q�= zN 2
.f Qag

zN 1=2

nD1 /, and (33) (as zP.L;K�2x0/�
K�2P.L; x0/), we haveZ
K�2X

j Qf .x/jp dx�Dec. zN; Q�/p
�

sup
x2X

X
I�I 0

k Qf k2
�L2.W zP

K2I
.K�2x/;100

/

�p
2
�1�X

I�I 0

k Qf k2
L2.W

K�2P.L/;100
/

�
:

By the change of variable formula,

k Qf k�L2.W zP
K2I

.K�2x/;100
/ . kfIk�L2.WPI .x/;100/;

k Qf k2
L2.W

K�2P.L/;100
/
.K�2kfIk2L2.WP.L/;100/:

So we concludeZ
X

jfI 0 j
p . Dec

�
N

K2
;
�

K2

�p�
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
:
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Now we consider a general I 0 2 I 0. Suppose al is the first term in I 0\fangN
1=2

nD1 , and let vl D alC1� al .
Because of (14) we have vl 2 Œv1; 2v1�. So we may choose Kl 2 ŒK=

p
2;K� such that

K2l vl 2

�
1

4 zN
;
4

zN

�
:

Then

K2l ..anC1� an/� .an� an�1// 2

�
�K2

l

4N 2
;
4�K2

l

N 2

�
D

�
Q� 0

4 zN 2
;
4 Q� l
zN 2

�
for some Q� l 2 Œ Q�=4; Q��. Let �l D K2 Q� l , which lies in Œ�=4; 4��. So by a change of variable argument
again we haveZ

X

jfI 0 j
p . Dec

�
N

K2
;
�l

K2

�p�
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
:

Therefore we have shown (52) for every I 0 2 I 0. �

The proof of Proposition 6.3 actually shows that (52) holds for every f with frequency support in �
(not only alternately spaced f ) and every X � P.L/.

6C. Broad part.

Proposition 6.4. For 1�m�M � 1 and I 0; I 00 2 I 0 nonadjacent we haveZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2 ." NC"KC
�
r

˛

�2�X
I2I

kfIk
2
L2.WP.L/;100/

�
: (53)

Proof. Fix a P.L0m/ such that P.L0m/ \ X \ U˛;r \�m ¤ ∅. Recall that L0m D .LmN
1=2/1=2 as

defined in Section 3. Suppose the distance between I 0 and I 00 is 1=K 0. Since I 0; I 00 are nonadjacent,
we have 1=K � 1=K 0 . 1. Let Qf .x/ denote the function fm;I 0..K 0/2x/, and Qf .x/ denote the function
fm;I 00..K

0/2x/. Then supp yQf1 � .K 0/2I 0, supp yQf2 � .K 0/2I 00, and d..K 0/2I 0; .K 0/2I 00/ & 1. By (22)
and a change of variable argument similar to that in the proof of Proposition 6.3, we haveZ
.K0/�2P.L0m/

j Qf j2j Qf j2 ." N ".K 0/C jP.L0m/j
�1

Z
j Qf j2W.K0/�2P.L0m/;200

Z
j Qf j2W.K0/�2P.L0m/;200:

By the local L2 orthogonality Lemma 3.6, we further obtainZ
.K0/�2P.L0m/

j Qf j2j Qf j2

."N ".K 0/C jP.L0m/j
�1

Z X
Im�I 0

j. Qf /.K0/2Im j
2W.K0/�2P.L0m/;200

Z X
Im�I 00

j. Qf /.K0/2Im j
2W.K0/�2P.L0m/;200:

Here the notation cA with c 2 R; A� R denotes the set fca W a 2 Ag. Applying the change of variable
x 7! .K 0/�2x to both sides of the above inequality, and using K 0 �K, we getZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2."N "KC jP.L0m/j
�1

Z X
Im�I 0

jfm;Im j
2WP.L0m/;200

Z X
Im�I 00

jfm;Im j
2WP.L0m/;200:
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By Hölder’s inequality,Z
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 .e N "KC
Z �X

Im

jfm;Im j
2

�2
WP.L0m/;200;

and due to jfm;Im j � jfmC1;Im j we further haveZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 ." N "KC
Z �X

Im

jfmC1;Im j
2

�2
WP.L0m/;200:

Now applying Proposition 2.3 we obtainZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 ." N "KC jP.L0m/j
�1

�Z �X
Im

jfmC1;Im j
2

�
WP.L0m/;100

�2
.N "KC

Z
P.L0m/

g2m:

Note that from the definition of �m and the definition of gm WD
P
Im
jfmC1;Im j

2 ��Im we have x 2�m
implies jgm.x/j � supy2P.L0m.x// jgm.y/j. jg

h
m.x/j. Therefore we have (by Proposition 2.3)Z

P.L0m/

g2m . jP.L
0
m/jjg

h
m.x/j

2 .
Z
jghmj

2WP.L0m/;100;

where x 2 P.L0m/\�m. Summing over disjoint P.L0m/ that intersect X \U˛;r \�m we obtainZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2."N "KC
Z
jghmj

2WP.LM /;100.N
2"KC

Z X
Im

jfmC1;Im j
4WP.LM /;100;

where the last inequality is due to Lemma 5.3. By Hölder’s inequality and the definition of fmC1;ImC1
we have Z X

Im

jfmC1;Im j
4WP.LM /;100 .N

C"

Z X
ImC1

jfmC1;ImC1 j
4WP.LM /;100

.NC"

�
r

˛

�2Z X
ImC1

jfmC1;ImC1 j
2WP.LM /;100:

By the pointwise inequality jfmC1;ImC1 j � jfmC2;ImC1 j and local L2 orthogonality (Lemma 3.6),Z X
ImC1

jfmC1;ImC1 j
2WP.LM /;100 .

Z X
ImC2

jfmC2;ImC1 j
2WP.LM /;100

.
Z X
ImC2

jfmC2;ImC2 j
2WP.LM /;100:

Continuing this process we obtainZ X
ImC1

jfmC1;ImC1 j
2WP.LM /;100 ."

Z X
IM

jfM;IM j
2WP.LM /;100: (54)
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Recalling that jfM;IM j � jfIM j D jfI j we concludeZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2 ." NC"KC
�
r

˛

�2Z X
I

jfI j
2WP.LM /;100: �

Proposition 6.5. For I 0; I 00 2 I 0 nonadjacent we haveZ
X\U˛;r\�0

jf0;I 0 j
p
2 jf0;I 00 j

p
2 ." N "

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
:

Proof. By the Cauchy–Schwarz inequality we haveZ
X\U˛;r\�0

jf0;I 0 j
p
2 jf0;I 00 j

p
2 .N "

Z
X\U˛;r\�0

�X
I1

jf1;I1 j
2

�p
2

.N " sup
x2X\�0

�X
I1

jf1;I1 j
2

�p
2
�1Z X

I1

jf1;I1 j
2WP.LM /;100:

We have shown in the proof of Proposition 6.4 (inequality (54)) thatZ X
I1

jf1;I1 j
2WP.LM /;100 ."

Z X
I

jfI j
2WP.L/;100:

So it suffices to show

sup
x2X\�0

�X
I1

jf1;I1 j
2

�
." sup

x2X

X
I

kfIk
2
�L2.WPI .x/;100/

: (55)

From the locally constant property (Proposition 2.3) we haveX
I1

jf1;I1 j
2.x/.

X
I1

jf1;I1 j
2
� �I1.x/.

X
I1

jf2;I1 j
2
� �I1.x/D g1.x/

(recall that �I1 is an L1 normalized nonnegative function adapted to PI1.0/ satisfying (43)), and by
Lemma 5.2 we have, for x 2X \�0, g1.x/." gM .x/. So we conclude

sup
x2X\�0

X
I1

jf1;I1 j
2.x/." sup

x2X\�0

gM .x/. sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

: �

6D. Proof of Proposition 4.5. Let X � P.L/. We choose ˛; r as in Lemma 6.1. Note that

r � 2





X
I

jfI j
2






L1.X/

since otherwise X \U˛;r D∅. So

r � 2





X
I

jfI j
2






L1.X/

. sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

:
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Also ˛� r1=2 implies that r3�p=2=˛6�p � 1 as p� 6. Therefore combining Propositions 6.3, 6.4, and 6.5
and Lemma 6.1 we obtainZ
X

jf jp ."
�

sup
� 02Œ�=4;4��

Dec
�
N

K2
;
� 0

K2

�p
C logC .��1C 1/NC"KC

�
�

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
: (56)

6E. Proof of Theorem 4.3. Finally, in this section we show how Theorem 4.4 implies Theorem 4.3. Let
f D

P
I fI . Taking X D P.L/ in (32) we see that

kf kLp.P.L// ." N " logC .��1C 1/
�

sup
x2P.L/

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

:

To prove Theorem 4.1 we will do dyadic pigeonholing on the L2-norm of wave packets of f , using
Proposition 5.1. More precisely we write

f D
X
I

fI D
X
I

X
PI

�PIfI D
X

�W dyadic

X
I;PI Wk�PI fI kL2.WPI ;100/

2Œ�=2;�/

�PIfI :

Without loss of generality we assume
�P

I kfIk
2
Lp.WP.L/;100/

�1=2
D 1. Then



 X

I;PI Wk�PI fI kL2.WPI ;100/
…ŒN�C �C ;NC ��C �

�PIfI






Lp.P.L//

. 1

for sufficiently large C . Therefore there exists a � such that

kf kLp.P.L// . C"N "logC .��1C 1/




 X
I;PI Wk�PI fI kL2.WPI ;100/

2Œ�=2;�/

�PIfI






Lp.P.L//

C 1:

By a further dyadic pigeonholing argument on I, we may assume, for every I, either

#fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g D 0

or

#fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g 2 ŒA=2;A/ for some constant A:

We denote by #I the number of I such that #fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g 2 ŒA=2;A/. For
simplicity of notation we will also drop writing the condition k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/ in the
summation. Now apply Theorem 4.4 to get



X
I;PI

�PIfI






Lp.P.L//

." logC .��1C 1/N "

�
sup

x2P.L/

X
I





X
PI

�PIfI





2
�L2.WPI .x/;100/

�1
2
� 1
p

�

�X
I





X
PI

�PIfI





2
L2.WP.L/;100/

�1
p

: (57)
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To estimate the first factor on the right-hand side of (57) we note that, for every x 2 P.L/,

X
I





X
PI

�PIfI





2
�L2.WPI .x/;100/

.
X
I

X
PI

k�PIfIk
2
�L2.WPI .x/;100/

. .#I /�2jPI j�1

because of
�P

PI
�PI .y/

�2 . supPI �
2
PI
.y/�

P
PI
�2PI .y/ and (12). Therefore

sup
x2P.L/

X
I





X
PI

�PIfI





2
�L2.WPI .x/;100/

. .#I /�2jPI j�1:

To estimate the second factor on the right-hand side of (57) we calculate

X
I





X
PI

�PIfI





2
L2.WP.L/;100/

.
X
I

X
PI

k�PIfIk
2
L2.WP.L/;100/

. .#I /�2A:

To summarize, (57) implies that



X
I;PI

�PIfI






Lp.P.L//

." logC .��1C 1/N "
jPI j

1
p
� 1
2 .#I /

1
2A

1
p �:

Now by Hölder’s inequality we have�X
I

kfIk
2
Lp.WP.L/;100/

�1
2

�

�X
I

�X
PI

k�
1
2

PI
fIk

p

Lp.WP.L/;100/

�2
p
�1
2

&
�X
I

�X
PI

k�PIfIk
p

L2.WP.L/;100/
jPI j

1�p
2

�2
p
�1
2

& jPI j
1
p
� 1
2 .#I /

1
2A

1
p �:

Hence we have (31).

7. A decoupling inequality for generalized Dirichlet sequences

In this section we focus only on generalized Dirichlet sequences with parameter � D 1. That is, we say
fang

N
nD1 is a generalized Dirichlet sequence if it satisfies (14) with � D 1. We will present a decoupling

inequality for generalized Dirichlet sequences, by combining Theorem 4.1 and the flat decoupling
(Proposition 7.2 below). Then we show that for certain choices of the generalized Dirichlet sequences
fang

N
nD1 the decoupling inequality that we obtain in this way is sharp (up to C"N ").

More precisely, for 1 � L � N 1=2, we let �0 denote the L2=N 2-neighborhood of fangNnD1, and
let fJ gJ2J be a partition of �0 into �0 \ BN�1=2 , where BN�1=2 runs over a tiling of R by balls of
radius N�1=2. So there are about N 1=2 many J and each J contains O.N 1=2/ many consecutive intervals
in �0. For each J we let IJ be the partition of J into I, which is a union of L many consecutive intervals
in �0.

We have the following decoupling inequality for the partition �0 D
F
J2J

F
I2IJ I.
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Theorem 7.1. For 2� p � 6, we have

kf kLp.R/ ." N
1
4
� 1
2p
C"

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

(58)

for every f WR!C with supp yf ��0. There exists a choice of fangNnD1 (satisfying (14) with � D 1) such
that the above estimate is sharp up to an N " factor.

7A. Proof of (58). From Theorem 4.1 we have, for every J 2 J and 2� p � 6,

kfJ kLp.R/ ." N "

�X
I2IJ

kfIk
2
Lp.R/

�1
2

: (59)

Next we decouple fJ into fI using the flat decoupling:

Proposition 7.2. Let U denote the partition

Œ0;M/D

M�1G
mD0

Œm;mC 1/:

Then for p � 2 we have

kf kLp.R/ .p M
1
2
� 1
p

�X
U2U

kfU k
2
Lp.R/

�1
2

for every f W R! C with supp yf � Œ0;M/.

Flat decoupling inequality is well known (see for example Proposition 2.4 in [Demeter et al. 2020])
but we include a proof here for the sake of completeness.

Proof. Fix p � 2. It suffices to prove that

kf kLp.B1/ .M
1
2
� 1
p

�X
U2U

kfU k
2
Lp.WB1;100/

�1
2

for f with supp yf � Œ0;M/. We calculate

kf k
p

Lp.B1/
� kf k

p�2

L1.B1/
kf k2

L2.B1/

.
�X
U

kfU kL1.B1/

�p�2�X
U

kfU k
2
L2.WB1;100/

�
.
�X
U

kfU kLp.WB1;100/

�p�2�X
U

kfU k
2
Lp.WB1;100/

�

.M
p�2
2

�X
U

kfU k
2
Lp.WB1;100/

�p�2
2
�X
U

kfU k
2
Lp.WB1;100/

�
.M

p�2
2

�X
U

kfU k
2
Lp.WB1;100/

�p
2

:

Here we used the locally constant property similar to Proposition 2.3 and local L2 orthogonality similar
to Lemma 3.6. �
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Now we prove the decoupling inequality in Theorem 7.1.

Proof of (58) in Theorem 7.1. Combining (59) with Proposition 7.2 we obtain

kf kLp.R/ ." N "

�X
J2J

kfJ k
2
Lp.R/

�1
2

.N
1
4
� 1
2p
C"

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

for f with supp yf ��0. �

7B. An example and sharpness of (58). To prove the sharpness part, we construct a sequence fangNnD1
satisfying (14) (with � D 1) and for which (58) is sharp. We will use the function

g.x/D
4xC .N

1
2 �
p
N � 4x/2

4N

to define the sequence. For nD 0; : : : ; N
8

, let

an D g.n/:

Distinguish the subsequence ank where nk D kN 1=2� k2.

Lemma 7.3. There is an absolute constant N0 > 0 such that for every N �N0, the sequence fang
N=8
nD1

constructed above satisfies property (14) (with � D 1). Furthermore, there is an absolute constant c > 0
so that �

j

N
1
2

W j D 1; : : : ; bcN
1
2 c

�
is a subsequence of fang

N=8
nD1.

Proof. First we verify the presence of the subsequence: Let nk and ank be as above. Calculate directly that

ank D g.nk/D
4nkC .N

1
2 �
p
N � 4nk/

2

4N

D
4.kN

1
2 � k2/C .N

1
2 �

p
N � 4.kN

1
2 � k2//2

4N

D
4.kN

1
2 � k2/C .N

1
2 � .N

1
2 � 2k//2

4N

D
4kN

1
2 � 4k2C 4k2

4N
D

k

N
1
2

:

This calculation holds as long as k �N 1=2=2. Also note that nk D kN 1=2�k2 is increasing as a function
of k as long as k �N 1=2=2, so the nk define a subsequence an0 ; : : : ; anK where K D bN 1=2=2c.

To verify property (14), it suffices to check that for N large enough

a1� a0 2
h
1

2N
;
2

N

i
(60)

and that
.anC1� an/� .an� an�1/ 2

h
1

4N 2
;
4

N 2

i
(61)

whenever 1� n� N
8
�1, since (60) together with (61) will imply a2�a1 2

�
1
4N
; 4
N

�
for N large enough.



DECOUPLING INEQUALITIES FOR SHORT GENERALIZED DIRICHLET SEQUENCES 2441

First we check (60). Note that a0 D 0 and

a1 D g.1/D
4C .N

1
2 �
p
N � 4/2

4N
:

Then

a1� a0 D
1

4N

�
4C

16

.N
1
2 C
p
N � 4/2

�
2

�
1

2N
;
2

N

�
if N is large enough.

Next we check (61). First calculate

g.xC 1/�g.x/D
4C .N

1
2 �
p
N � 4x� 4/2� .N

1
2 �
p
N � 4x/2

4N

D
4C 2N

1
2 .
p
N � 4x�

p
N � 4x� 4/� 4

4N

D

p
N � 4x�

p
N � 4x� 4

2N
1
2

D
2

N
1
2 .
p
N � 4xC

p
N � 4x� 4/

:

Use this formula to calculate the difference

.anC1� an/� .an� an�1/

D
2

N
1
2

�
1

p
N � 4nC

p
N � 4n� 4

�
1

p
N � 4nC 4C

p
N � 4n

�
D

2

N
1
2

p
N � 4nC 4�

p
N � 4n� 4

.
p
N � 4nC

p
N � 4n� 4/.

p
N � 4nC 4C

p
N � 4n/

D
16

N
1
2 .
p
N � 4nC

p
N � 4n� 4/.

p
N � 4nC 4C

p
N � 4n/.

p
N � 4nC 4C

p
N � 4n� 4/

:

As long as n� N
8

, and N is sufficiently large, this lies in
�
1
4N
; 4
N

�
and we are done. �

Now we can finish the sharpness part of Theorem 7.1.

Proof of the sharpness part of Theorem 7.1. For N �N0, we take fang
N=8
nD1 to be the sequence constructed

in Lemma 7.3, extended arbitrarily to fangNnD1 so that (14) is satisfied with � D 1. We take f D
P
I fI

to be the function

�N 2=L2.x/

bcN 1=2cX
nD1

eixan ;

where c is the constant in Lemma 7.3, and �N 2=L2.x/ is an L1-normalized Schwartz function whose
Fourier transform is a smooth bump adapted to BL2=N 2.0/. Then we have

kf kLp.R/ &N
1
2

�
N
3
2

L2

�1
p
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since jf .x/j �N 1=2 on PC
N 1=2

.0/\BCN 2=L2.0/. Since jfI j D �N 2=L2 , we have

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

�N
1
4

�
N 2

L2

�1
p

:

Therefore (58) is sharp up to N ". �

7C. Some discussions. If we take LD 1 and p D 4 in Theorem 7.1, we get



 NX
nD1

bne
ianx






L4.B

N2
/

." N
1
2
C 1
8
C"
kbnk`2 : (62)

On the other hand, for the Dirichlet polynomial we have, by unique factorization in Z and local L2

orthogonality, that



 2NX
nDNC1

bne
ix logn






L4.B

N2
/

D





 2NX
mDNC1

2NX
nDNC1

bmbne
ix log.nm/





 12
L2.B

N2
/

." N
1
2
C"
kbnk`2 : (63)

Comparing (62) with (63) we see that while we can construct a generalized Dirichlet sequence that
contains an AP with about N 1=2 many terms and common difference N�1=2 so that (62) is sharp for that
sequence, the Dirichlet sequence flogng2NnDNC1 does not contain such an (N�2-approximate) AP and
therefore allows a better estimate (63).

However we notice that the example D0.x/D
PcN 1=2

jD1 eixj=N
1=2

does not exclude the possibility that
Montgomery’s conjecture may hold for generalized Dirichlet polynomials. By Montgomery’s conjecture
for generalized Dirichlet polynomials we mean, for every " > 0,



 NX

nD1

bne
ixan






Lp.BT /

." T "N
1
2 .N

p
2 CT /

1
p kbnk`1 (64)

for every generalized Dirichlet sequence fangNnD1 with � D 1. Indeed we know jD0.x/j & N 1=2 on
PC
N 1=2

.0/, so

kD0kLp.BT / & T
1
pN

1
2
� 1
2p :

On the right-hand side of (7) we have C"T "N 1=2.Np=2CT /1=p�N 1=2T 1=p . So there is no contradiction
to (64). Note that if we apply Hölder’s inequality kbnk`2 �N

1=2kbnk`1 to (63) then we obtain



 2NX
nDNC1

bne
ix logn






L4.B

N2
/

." N 1C"
kbnk`1 ;

which is exactly (7) with pD 4; T DN 2. However although we know (62) is sharp (up to C"N ") for our
example D0.x/, the Hölder step kbnk`2 �N

1=2kbnk`1 is not sharp because D0.x/ has only N 1=2 many
nonzero coefficients.
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On the other hand we may construct a periodic generalized Dirichlet polynomial

f D

NX
nD1

e
it .NCn/

N2 ;

which contradicts (64) for p > 4, T >N 2C"0 with any " > 0. We notice that jf j&N on NC .N 2Z/. So

kf kLp.BT / &N
�
T

N 2

�1
p

DN 1� 2
p T

1
p :

Under the condition p > 4 we have

N 1� 2
p T

1
p &"0 N

"1N
1
2T

1
p

for some "1 > 0 depending on p. Under the condition T > N 2C"0 we have

N 1� 2
p T

1
p >N "2N

for some "2 > 0 depending on p. Therefore when p > 4 and T > N 2C"0 with any "0 > 0, (64) fails for
the generalized Dirichlet polynomial f .

At the end of this section we discuss briefly what makes N 1=2 special. Suppose we consider the
sequence fangN

˛

nD1 for some ˛ 2
�
1
2
; 1
�
, and fangNnD1 is a generalized Dirichlet sequence with � D 1. For

simplicity we will omit constants C in the following discussion. Still we look at .L2=N 2/-neighborhood
of fangN

˛

nD1 with L� 1. For L�N 1=2, the .L2=N 2/-neighborhood is essentially the same as the .1=N /-
neighborhood (as long as L�N ), which is an interval of length about 1. So the induction scheme in this
paper fails to work for L�N 1=2.

Another difficulty is about the “bush” structure of
S
I .I � I / in the frequency space. To illustrate this,

we let L�N 1=2, and define I; PI as before, that is, I is the .L2=N 2/-neighborhood of an L-segment
fang

jL

nD.j�1/LC1
of the sequence fangN

˛

nD1, and PI denotes a fat AP of the form P
CN=L

v�1I
\BCN 2=L2 ,

where vI D a.j�1/LC2� a.j�1/LC1 (see (15)). So now there are N ˛=L many I, vI � 1=N are L=N 2

separated, and the maximal separation of vI is 1=N 2�˛. For ˛ > 1
2

, we no longer have an essentially
linear decaying pattern of the bush

S
I .I �I / if L�N 1�˛ , which is exploited in the proof of Lemma 5.3.

To be precise, we consider the function
P
I 1I�I .t/, which counts the number of overlap of the sets

I � I at t . If ˛ � 1
2

then we can verify thatˇ̌̌̌X
I

1I�I .t/

ˇ̌̌̌
.
N=L

jt j
when

1

N
. jxj.

L

N
: (65)

See Figure 2 for a rough graph of the function
P
I 1I�I .t/. However if ˛ > 1

2
then we no longer have

(65). This is because 1
2

is the largest value for ˛ such that for every L�N 1=2, the k-th intervals in all
I � I are within about N�1 distance from each other for every 1� k � L. For comparison, we note that
for R�1=2�R�1 caps � that tile the R�1-neighborhood of the truncated parabola, the bush f� � �g has a



2444 YUQIU FU, LARRY GUTH AND DOMINIQUE MALDAGUE

y D
P
i 1I�I .x/

y

x
L=N

Figure 2. The overlap number of the I � I has a linear decay pattern provided
L=N 2�˛ . N�1. This condition is guaranteed as long as ˛ � 1

2
. Controlling the

overlap number of the I � I outside of a certain neighborhood of the origin is a central
step in Lemma 5.3.

similar linear decay pattern:ˇ̌̌̌X
�

1��� .x/

ˇ̌̌̌
.
R�

1
2

jxj
when R�1 . jxj.R�

1
2 :

On the physical side, how PI interact also becomes more complicated when ˛ > 2. One important
property we used in the ˛ D 1

2
case is that the maximal separation of v�1I (which is about N 1=2) is less

than the thickness of PI (which is about N=L) for every 1�L�N 1=2. However for ˛ > 1
2

, the maximal
separation is about N 1�˛ which is greater than the thickness N=L for L�N 1�˛. In particular this makes
the pattern of the intersection PI \PJ more complicated and the notion of transversal less clear.

8. Small-cap-type decoupling

In this section we prove Theorem 1.3, which is about small-cap-type decoupling inequalities in the spirit
of [Demeter et al. 2020].

First we restate Theorem 1.3 but with the more general definition of generalized Dirichlet sequence. Let
fang

N 1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1� as defined in Definition 3.1.
Let L;L1 be two integers such that 1 � L1 � L � N 1=2. Denote by � the �L2=N 2-neighborhood of
fang

N 1=2

nD1 . We let fJ gJ2J D fJkg
bN 1=2=L1c

kD0
be the partition of � into unions of L1 many consecutive

intervals, that is,

Jk D

L1[
iD1

B�L2=N 2.akL1Ci /:

Let fI gI2I be the partition of � into unions of L many consecutive intervals, which we called the
canonical partition.

A more general version of Theorem 1.3 is the following, which we prove in the rest of this section.
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Theorem 8.1. Let fJ gJ2J be defined as in the above paragraph. Suppose p � 4, 1
q
C

3
p
� 1. If either of

the two conditions

(a) L1 D 1,

(b) p D q,

is satisfied, then, for every " > 0,



X
J2J

fJ






Lp.R/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

(66)

for all functions fJ W R! C with supp yfJ � J.

As a corollary we have a more general version of Corollary 1.4.

Corollary 8.2. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1�. Suppose
p � 4, 1

q
C

3
p
� 1, and N��1 � T �N 2��1. We have, for every " > 0,



N

1=2X
nD1

bne
itan






Lp.BT /

." N " logC .��1C 1/.N
1
2
.1C 1

p
� 1
q
/��

1
p CT

1
pN

1
4
� 1
2q /kbnk`q (67)

for every BT and every fbngN
1=2

nD1 � C,

To prove results of the form (66), we may use the small cap decoupling method for P1 developed
in [Demeter et al. 2020], which is based on refined decoupling for the canonical partition, refined flat
decoupling and an incidence estimate for tubes with spacing conditions. We have three analogous results
in the short generalized Dirichlet sequence setting. Theorem 4.4 is the analogy of the refined canonical
cap decoupling for P1. Now we state and prove the other two.

8A. An incidence estimate for fat APs. We start with the incidence estimate. First we introduce some
notation. Suppose P;P 0 are fat APs such that P D PI .y/ and P 0 D PI 0.y0/ for some I; I 0 2 I. We
say P;P 0 are parallel if I D I 0. For a collection P D fP g of fat APs, we say x 2 R is an r-rich point if
r many P contain it.

Proposition 8.3. Let 1 � L1 � L � N 1=2 and let fJ gJ2J , fI gI2I be defined as in the beginning of
Section 8. Suppose we have a collection of fat AP P D fP g inside a fixed P.L/, where each P D PI for
some I 2 I. Assume for every J 2 J and every PJ � P.L/, PJ contains either M or 0 parallel P 2 P .
Denote by Qr the set of r-rich points of P . Suppose Qr ¤∅. Then one of the two cases below happens:

(1) There exists a dyadic s 2 Œ1;minfL;N 1=2=Lg� and Ms 2 N such that

jQr j/
Ms

sr2
.#P /jP j; (68)

r /
MsN

1=2

s2L
; (69)

Ms . sM max
�
1; s

L1

L

�
: (70)
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(2) We have
jQr j � jP.L/j; (71)

r . .#P /
jP j

jP.L/j
: (72)

Here #P denotes the cardinality of P .

Proof. For each dyadic 1� s �minfL;N 1=2=Lg, we let �s denote a smooth bump with height 1 adapted
to the annulus j�j� .L=s/v in the frequency space, and let �0 denote a smooth bump with height 1 adapted
to PC�L

2=N 2

v1 .0/\BCL2=N 3=2.0/ (which degenerates to BC�L2=N 2.0/ when L�N 1=4) such that

�0C
X

1�s�minfL;N 1=2=Lg;
sW dyadic

�s D 1 on
[
I

.I � I /:

For each P 2 P we let vP .x/ be a positive smooth function (with height 1) adapted to P in the physical
space with frequency support in C.I � I /, where P D PI . If we define g D

P
P vP , then we can write

g D g � {�0C
X

1�s�minfL;N 1=2=Lg

g � {�s:

Fix s 2 Œ1;minfL;N 1=2=Lg�. There exists a collection of fat APs Is consisting of Is DP
C�sL2=N 2

vIs
.0/\

BCL=N .0/ with the properties that vIs �N
�1 and vIs are � s�L=N 2 separated such that for every I 2 I,

I � I is contained in one and only one Is 2 Is . In fact we may let vIs D vI for any I with .I � I /� Is .
The cardinality of Is is N 1=2=.sL/. For Is 2 Is we let PIs be the tiling of R by fat APs of the form
P
�CsN=L

v�1Is
\BCN 2=.L2�/. For every P D PI 2 P there exists a unique Is 2 Is and Ps 2 PIs such that

I � I � Is and P � Ps . For every 1 �M . s2, we define Ps;M be the subcollection of P consisting
of P such that Ps contains �M many P 0 2 P . For 1� s �minfL;N 1=2=Lg let

gs;M D
X

P2Ps;M

vP � {�s:

By the pigeonhole principle, for every x 2Qr there either exist an s and Ms such that g.x// jgs;Ms .x/j
or g.x/ / jg0.x/j. Again by the pigeonhole principle either we can find s;Ms such that, for x in a
subset E of Qr with measure ' jQr j,

g.x// jgs;Ms .x/j

or, for x in a subset E of Qr with measure ' jQr j,

g.x// jg0.x/j:
We consider these two cases separately.

Case 1: Suppose g.x// jgs;Ms .x/j for x in a subset E of Qr with measure ' jQr j. We write

gs;Ms D
X
Is

X
PIs

X
P�PIs ; P2Ps;Ms

vP � {�s DW
X
Is

X
PIs

gPIs :

Here the sum over PIs is over PIs 2 PIs such that gPIs is nonzero.
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We note that
P
PIs

gPIs with Is varying are almost orthogonal (meaning that the Fourier support of
them has O.1/-overlap). This is because supp ygPIs �

�S
I�Is

.I � I /
�
\
˚
� W j�j � Lv

s

	
, and for every

distinct Is; I 0s 2 Is , and every I; I 0 2 I with I � Is; I 0 � I 0s , the distance dI;I 0 between the L
s

-th terms
in I and I 0 satisfies

�L2

N 2
D
s�L

N 2

L

s
. dI;I 0 .

N
1
2 �

N 2

L

s
.
1

N
:

Therefore supp
P̂
PIs
gPIs are O.1/-overlapping.

Hence

jQr jr
2 /

Z
E

g2 /
Z

R

jgs;Ms j
2 .

X
Is

Z
R

ˇ̌̌̌X
PIs

gPIs

ˇ̌̌̌2
:

We note that for P � PIs ,

jvP � {�sj.
1

s
WPIs ;100;

so Z
R

ˇ̌̌̌X
PIs

gPIs

ˇ̌̌̌2
.
Z

R

�X
PIs

X
P�PIs ; P2Ps;Ms

1

s
WPIs ;100

�2
.
X
PIs

M 2
s

s2
jPIs j:

Hence

jQr jr
2 /

X
Is

X
PIs

jPIs j

�
Ms

s

�2
:

Since jPIs j=s � jP j and
P
Is

P
PIs

Ms � .#P /, we obtain

r2jQr j/ .#P /jP j
Ms

s
;

which is (68).
Now we show (69). We choose x 2E. Then

r . g.x// jgs;Ms .x/j �
X
Is

X
PIs

jgPs .x/j. jIsj
Ms

s
.
N
1
2

sL

Ms

s
:

Finally we prove (70). When s � L=L1, every PIs is contained in a single PJ and therefore can contain
.M parallel P 2 P . For every PIs , there are . s many I 2 I such that there could exist PI such that
PI � PIs , so we conclude PIs contain . sM many P 2 P . When s � L=L1, every PIs is contained in
at most sL1=L many PJ and therefore can contain . sMsL1=L many P 2 P . Hence we obtain (70).

Case 2: Suppose g.x// jg0.x/j for x in a subset of Qr with measure ' jQr j. Inequality (71) is trivial
since Qr � P.L/. To show (72) we choose x 2E. Then

r . g.x// jg0.x/j. .#P /
jP j

jP.L/j
;

where the last inequality is because

jg0.x/j D jg � {�0.x/j � kgkL1k{�0kL1 . .#P /jP j
1

jP.L/j
D .#P /

jP j

jP.L/j
: �
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8B. Refined flat decoupling for fat APs. Next we have the following refined flat decoupling inequality
for fat APs.

Proposition 8.4. Suppose 2� q � p, and let fJ gJ2J , fI gI2I be defined as in the beginning of Section 8.
Fix I 2 I. Write fI D

P
PI2PI fI;PI for the wave packet decomposition of fI . Suppose that zPI � PI

is a collection of PI for which fI;PI are nonzero, kfI;PI kL1.R/ are roughly constant, and for every
J � I, and every PJ (in a tiling of R), PJ contains either �M or 0 wave packets fI;PI (in the sense
that PI � PJ ). Then



 X

PI2zPI

fI;PI






Lp.R/

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.R/

�1
q

: (73)

Proof. Fix a PJ that contains �M many wave packets fI;PI . We first show



 X
PI2zPI

fI;PI






Lp.PJ /

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

: (74)

Assume kfI;PI kL1.R/ �H for every nonzero fI;PI , PI 2 zPI . By assumption we have



 X
PI2zPI

fI;PI






Lp.PJ /

.H.M jPI j/
1
p :

On the other hand by local L2 orthogonality we have

H.M jPI j/
1
2 .





 X
PI2zPI

fI;PI






L2.PJ /

� kfIkL2.PJ / .
�X
J�I

kfJ k
2
L2.WPJ ;100/

�1
2

(where we used that
ˇ̌P

PI2zPI fI;PI
ˇ̌
� jfI j), and by Hölder’s inequality the right-hand side is bounded by�

L

L1

�1
2
� 1
q

jPJ j
1
2
� 1
p

�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

:

Noting that jPI j=jPJ j D L1=L, we conclude



 X
PI2zPI

fI;PI






L2.PJ /

.H.M jPI j/
1
2 .M jPI j/

1
p
� 1
2

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

:

So (74) holds. Since q � p, (73) follows from (74) by raising (74) to the p-th power, summing over PJ
in a tiling of R, and applying Minkowski’s inequality (see Proposition 4.2). �

8C. Proof of Theorem 8.1. Now we are ready to prove Theorem 8.1. We first show a bilinear version
of Theorem 8.1 and then conclude Theorem 8.1 by a broad-narrow argument. Still let fJ gJ2J be
defined as in the beginning of Section 8. We say two subcollections of J , J1 and J2, are transversal if
d.J1; J2/&N�1=2 for every J1 2 J1; J2 2 J2.
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Theorem 8.5. Suppose 4� q � p � 6, 1
q
C

3
p
� 1. If either of the two conditions

(a) L1=2�1=q1 � L1�3=p�1=q ,

(b) p D q,

is satisfied, then, for every " > 0,



 Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2





Lp.R/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

�1
2q

(75)

for all transversal subcollections J1;J2 of J , and all functions fJ W R! C with supp yfJ � J.

Proof. By a local-to-global argument similar to Proposition 4.2, to show (75), it suffices to show, for a
sufficiently large k and for every ball BN 2=.�L2/,



 Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.WB
N2=.�L2/

;k/

�1
2q

: (76)

We will assume that fJ has been replaced by fJ B
N2=.�L2/

, where  B
N2=.�L2/

is a Schwartz func-
tion satisfying j B

N2=.�L2/
j � 1 on BN 2=.�L2/,  BN2=.�L2/ decays rapidly away from BN 2=.�L2/, and

supp y B
N2=.�L2/

� .��L2=N 2; �L2=N 2/. Then fJ B
N2=.�L2/

has Fourier support which is contained
in a .�L2=N 2/-neighborhood of J. The arguments which follow apply equally well to the �L2=N 2

neighborhoods of J (which are contained in 2J ) as they do to J. Note also that kfJ B
N2=.�L2/

kLp.R/.k
kfJ kLp.WB

N2=.�L2/
;k/, so abusing notation by letting fJ mean fJ B

N2=.�L2/
from here on in the proof,

the inequality



 Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

�1
2q

(77)

implies (76). Now we fix a BN 2=�L2 and prove (77). Write F1 D
P
J2J1 fJ and F2 D

P
J2J2 fJ . For

i 2 f1; 2g we write Fi D
P
P2Pi Fi;P for the wave packet decomposition with respect to fI gI2I . So

Fi D
X
I2I

Fi;I D
X
I2I

X
PI

Fi;I;PI DW
X
P2Pi

Fi;P :

Write I1 D fI 2 I W I � [J2J1J g and I2 D fI 2 I W I � [J2J2J g. Let F D F1CF2. By a dyadic
pigeonholing argument and rescaling which we detail in Proposition 8.6 directly following this proof, we
may assume that, for every nonzero Fi;P , kFi;P kL1 � 1. We assume Pi contains only nonzero Fi;P .
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By a further dyadic pigeonholing argument we may assume that for every PJ (in a tiling of R), PJ
either contains Mi or 0 many wave packets Fi;I;PI , where J � I, for i 2 f1; 2g. Lastly, by one more
dyadic pigeonholing argument we may assume that, for each i 2 f1; 2g, kFIkLp.R/ are comparable for
nonzero FI with I 2 Ii . For dyadic 1� r1; r2 �N 1=2=L we let Qr1;r2 denote the collection of P.L0/ (in
the tiling of P.L/) that intersect� r1 many P 2P1, and� r2 many P 2P2. Recall that L0D .N 1=2L/1=2.
From the refined decoupling inequality (Theorem 4.4) we have

k.F1F2/
1
2 kL6.Qr1;r2 /

�kF1k
1
2

L6.Qr1;r2 /
kF2k

1
2

L6.Qr1;r2 /
."N " logC .��1C1/r

1
6

1 r
1
6

2

Y
i2f1;2g

�X
I2Ii

Z
jFI j

2

� 1
12

:

On the other hand from bilinear restriction (Proposition 3.5) we have for every P.L0/�Qr1;r2

k.F1F2/
1
2 kL4.P.L0// ." N "r

1
4

1 r
1
4

2 jP.L
0/j

1
4

and thus

k.F1F2/
1
2 kL4.Qr1;r2 /

." N "r
1
4

1 r
1
4

2 jQr1;r2 j
1
4 :

Therefore by the interpolation inequality we obtain

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/r
1
p

1 r
1
p

2 jQr1;r2 j
3
p
� 1
2

Y
i2f1;2g

�X
I2Ii

kFIk
2
L2

�1
4
� 1
p

: (78)

We assumed each nonzero wave packet Fi;P satisfies kFi;P kL1 � 1, soX
I2Ii

kFIk
2
L2
� .#Pi /jP j �

X
I2Ii

kFIk
p
Lp ;

where #Pi denotes the total number of nonzero wave packets in Fi , that is, jPi j. Hence we may rewrite
(78) as

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/jQr1;r2 j
3
p
� 1
2

Y
i2f1;2g

�
r
2
p

i

�X
I2Ii

kFIk
q
Lp

�1
q

..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
q

�1
2

;

where #Ii denotes the total number of I 2 Ii such that FI is nonzero. By Proposition 8.4 we have (note
that in (73) the left-hand side involves pigeonholed wave packets while the right-hand side includes all
wave packets) X

I2Ii

kFIk
q
Lp .M

q
p
�
q
2

i

�
L

L1

�q� q
p
�1�X

J2Ji

kfJ k
q
Lp

�
: (79)

Therefore we conclude

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/jQr1;r2 j
3
p
� 1
2

�

Y
i2f1;2g

�
r
2
p

i ..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q
�X
J2Ji

kfJ k
q
Lp

�1
q
�1
2

: (80)
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So (75) follows if we may show for i 2 f1; 2g,

jQr1;r2 j
3
p
� 1
2 r

2
p

i ..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

/
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q

: (81)

We show (81) using Proposition 8.3. Fix i 2 f1; 2g. We split the proof into two cases depending on which
case happens in Proposition 8.3 when applied to fP gP2Pi with r D ri .

Case 1: (1) in Proposition 8.3 happens. Let s;Ms be the s;Ms given in case (1) of Proposition 8.3. By
(68) we have

LHS of (81)/ r
1� 4

p

i s
1
2
� 3
pM

3
p
� 1
2

s .#Ii /
1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

:

Case 1.1: s � L=L1. Then (70) reads Ms . sMi . Note that we have

.#I /& ri

since we have assumed kFi;P kL1 � 1. Therefore by (69) and (70) we have

LHS of (81)/
�
MsN

1
2

s2L

�1� 3
p
� 1
q

s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

DM
1
2
� 1
q

s

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

. .sMi /
1
2
� 1
q

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

DM
1
p
� 1
q

i s�1C
3
p
C 1
q

�
N

1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

:

Since p � q, 1
q
C

3
p
� 1, and s;Mi � 1, we conclude

LHS of (81)/
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

D
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

:

Case 1.2: s � L=L1. This is the case where we see the two conditions in Theorem 8.5. Now (70) reads
Ms . s2MiL1=L. By .#I /& ri and (69) we have

LHS of (81)/ r
1� 3

p
� 1
p

i s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

.
�
Ms

s2
N
1
2

L

�1� 3
p
� 1
q

s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

DM
1
2
� 1
q

s

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i :
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Plugging in (70) we obtain

LHS of (81)/
�
s2Mi

L1

L

�1
2
� 1
q
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

DM
1
p
� 1
q

i s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

Since Mi � 1 and q � p, we conclude

LHS of (81)/ s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

If we use s � L, then

s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

� L�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

We may then verify that

L�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

�
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

if and only if

L
1
2
� 1
q

1 � L1�
3
p
� 1
q :

On the other hand if we use s �N 1=2=L, then

LHS of (81)/
�
N
1
2

L

�� 1
2
C 3
p
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

D

�
N
1
2

L

�1
2
� 1
q
�
L

L1

�1
2
� 1
p

:

The last line equals �
N
1
2

L

�1
2
� 1
p
�
L

L1

�1
2
� 1
p

if p D q. In conclusion we have shown (81) holds in this case if either condition (a) or (b) is satisfied.

Case 2: (2) in Proposition 8.3 happens. By (71), (72) we have

LHS of (81)/ jP.L/j
3
p
� 1
2

�
.#Pi /jP j
jP.L/j

�2
p

.#Ii /
1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

..#Pi /jP j/
1
2
� 3
p : (82)

Note that we have

.#Pi /. .#Ii /Mi
jP.L/j

jPJ j
� .#Ii /Mi

jP.L/j

jP j

L1

L

since the right-hand side is the maximal number of P one can fit into a P.L/ under the assumption that
each PJ can contain .Mi many P 2 Pi . Substituting the above for Mi in (82) and simplifying the
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algebra we obtain

LHS of (81)/ .#Ii /
1
2
� 1
q

�
L

L1

�1
2
� 1
q

:

Since #Ii �N 1=2=L and q � 2, we conclude

LHS of (81)/
�
N
1
2

L1

�1
2
� 1
q

:

Hence (81) holds in this case.
In conclusion we have shown (81) and therefore (77) and (75). �

The following proposition shows that it was justified in the proof of Theorem 8.5 to treat functions
zFi D

P
P2Pi Fi;P whose wave packets with respect to fI gI2I satisfied certain extra assumptions. Here,

each wave packet Fi;P equals �PIfI for some I 2 I and some PI , as in the definition of wave packet
decomposition from Section 5B, except we assume the extra condition that �PI decays at a rate of 103"�2

away from PI .
Write Ii D

˚
I 2 I W I �

S
J2Ji J

	
. For each I 2 Ii , write

fI D
X
PI2PI

fI;PI ;

where fI;PI D �PIfI and PI denotes the collection of translates of PI which tile R, from the definition
of wave packet decomposition. Fix collections PJ of translates of PJ which tile R and with the property
that PJ \PI is either PI or ∅ whenever J � I. Note that the set PJ does not vary for J � I.

Proposition 8.6 (pigeonholing of the wave packets). Assume the hypotheses of Theorem 8.5. There exist
subsets zIi � Ii and zPI � PI as well as integers Mi , Hi with the following properties:



 Y
i2f1;2g

jFi j
1
2






Lp.B

N2=.�L2/
/

. log.��1C1/.logN/2




 Y
i2f1;2g

j zFi j
1
2






Lp.B

N2=.�L2/
/

CN�50.RHS of (77)/;

where zFi D
P
I2zIi

P
PI2zPI fI;PI ,

#fPI 2 zPI W PI � PJ g �Mi or D 0 for all PJ 2 PJ ; J � I 2 zIi ; (83)

#zPI � #zPI 0 for all I; I 0 2 zIi ; (84)

kfI;PI kL1.R/ �Hi for all I 2 zIi and PI 2 zPI : (85)

It follows that, for zFI D
P
PI2zPI fI;PI with I 2 zIi , k zFIk

p

Lp.R/
is within a factor of C"N " of

H
p
i #fPI 2 zPigjPI jCN�500 maxJ2Ji kfJ k

p

Lp.R/
.

The collection Pi from the proof of Theorem 8.5 is the union of the zPI , where I 2 zIi .

Proof. First we will show that kjF1F2j1=2kLp.B
N2=.�L2/

/ . kjF1 zF2j1=2kLp.B
N2=.�L2/

/ plus the remainder
term. The argument showing kjF1 zF2j1=2kLp.B

N2=.�L2/
/ . kj zF1 zF2j1=2kLp.B

N2=.�L2/
/ plus the remainder
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term is analogous, so we omit it. Split F2 into

F2 D
X
I2I2

X
PI2P cI

fI;PI C
X
I2I2

X
PI2P

f
I

fI;PI ; (86)

where the close set is

P cI WD fPI 2 PI W PI \N
10BN 2=.�L2/ 6D∅g

and the far set is

PfI WD fPI 2 PI W PI \N
10BN 2=.�L2/ D∅g:

Using Hölder’s inequality, Cauchy–Schwarz, and Minkowski’s inequality with q � p, we have



ˇ̌̌̌F1 X
I2I2

X
PI2P

f
I

fI;PI

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

.
�
N

L1

�1� 1
q




ˇ̌̌̌ X
J12J1

jfJ1 j
q
X
I2I2

X
J2�I

ˇ̌̌̌ X
PI2P

f
I

�PIfJ2

ˇ̌̌̌q ˇ̌̌̌ 1
2q





Lp.B

N2=.�L2/
/

�

�
N

L1

�1� 1
q




ˇ̌̌̌ X
J12J1

jfJ1 j
q

ˇ̌̌̌ 1
q




 12
Lp.B

N2=.�L2/
/





ˇ̌̌̌X
I2I2

X
J2�I

ˇ̌̌̌ X
PI2P

f
I

�PIfJ2

ˇ̌̌̌q ˇ̌̌̌ 1
q




 12
Lp.B

N2=.�L2/
/

�

�
N

L1

�1� 1
q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q
�X
I2I2

X
J2�I





 X
PI2P

f
I

�PIfJ2





q
Lp.B

N2=.�L2/
/

� 1
2q

�

�
N

L1

�1� 1
q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

max
I2I2





 X
PI2P

f
I

�PI





 12
L1.B

N2=.�L2/
/

� X
J22J2

kfJ2k
q

Lp.B
N2=.�L2/

/

� 1
2q

�
1

N 100

Y
i2f1;2g

� X
Ji2Ji

kfJik
q

Lp.B
N2=.�L2/

/

� 1
2q

:

This takes care of the far portion of F2.
For each I 2 I2, the close set has cardinality #P cI �N

11. Let

H2 D max
I2I2

max
PI2P cI

kfI;PI kL1.R/: (87)

By Proposition 2.3 and Hölder’s inequality,

H2 � max
I2I2
kfIkL1.R/ .N

� X
J22J2

kfJ2k
q

Lp.R/

�1
q

: (88)

Split the close part of F2 intoX
I2I2

X
PI2P cI

fI;PI D
X
I2I2

X
�N�10

3
���1

X
PI2PcI;�

fI;PI C
X
I2I2

X
PI2PcI;s

fI;PI ; (89)
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where � is a dyadic number in the range Œ�N�10
3

; 1�,

PcI;� WD
n
PI 2 P cI W kfI;PI kL1.R/ 2

�
�H2
2
; �H2

io
;

and

PcI;s WD
n
PI 2 P cI W kfI;PI kL1.R/ �

�

2
N�10

3

H2

o
:

Handle the small term from (89) by



ˇ̌̌̌F1 X
I2I2

X
PI2PcI;s

fI;PI

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

�

�
N 2

L1L

�1
2
� 1
2q




ˇ̌̌̌ X
J12J1

jfJ1 j
q
X
I2I2

ˇ̌̌̌ X
PI2PcI;s

fI;PI

ˇ̌̌̌q ˇ̌̌̌ 1
2q





Lp.B

N2=.�L2/
/

�

�
N 2

L1L

�1
2
� 1
2q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

�
�
#I

1
q

2 max
I2I2

#P cI max
PI2PcI;s

kfI;PI kL1.BN2=.�L2//
jBN 2=.�L2/j

2
p
� 1
2

�

� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q
��
N

L

�1
q

N 11�N�10
3

H2jBN 2=.�L2/j
2
p

�1
2

�N�150
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

H
1
2

2 .N
�100

Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

� 1
2q

:

Decompose the remaining term from (89) using the fact that for J � I 2 I2, PJ 2 PJ , the number
#fPI 2 PcI;� W PI � PJ g is in f0; : : : ; L=L1g (and does not depend on the specific J � I ), which allows
us to write X

�N�10
3
���1

X
I2I2

X
PI2PcI;�

fI;PI D
X

�N�10
3
���1

X
1�2k�L=L1

X
I2I2

X
PI2PcI;�;k

fI;PI ; (90)

where, for J � I,
PkJ D fPJ 2 PJ W #fPI 2 P

c
I;� W PI � PJ g � 2

k
g;

PcI;�;k D
[

PJ2PkJ

fPI 2 PcI;� W PI � PJ g:

Finally, note that the number of PJ 2 PJ which intersect N 10BN 2=.�L2/ is bounded by N 10L1 �N
11.

Further decompose the right-hand side from (90) asX
�N�10

3
���1

X
1�2k�L=L1

X
1�2j�N 11

X
I2Ik;j

2;�

X
PI2PcI;�;k

fI;PI ; (91)

where, for J � I, Ik;j
2;�
D fI 2 I2 W #PkJ � 2

j g.
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Because 2k , 2j , and � are dyadic numbers, by the pigeonhole principle, there is a choice of .k; j; �/
so that



ˇ̌̌̌F1 X

�N�10
3
���1

X
1�2k�L=L1

X
1�2j�N 11

X
I2I2;k;j

X
PI2PcI;�;k

fI;PI

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

. log.��1C 1/.logN/2




ˇ̌̌̌F1 X

I2Ik;j
2;�

X
PI2PcI;�;k

fI;PI

ˇ̌̌̌ 1
2





Lp.B

N2=.�L2/
/

:

Let zI2 D Ik;j
2;�

and for each I 2 zI2, let zPI D Pc
I;�;k

. It follows from Proposition 2.3 and properties of
weight functions �PI and WPI DWPI ;600 that, for each I 2 zI2,

k zFIk
p

Lp.R/
D

X
P 0I2PI





 X
PI2zPI

fI;PI





p
Lp.P 0I /

�

X
P 0I2PI

Z
P 0I

ˇ̌̌̌ X
PI2zPI

�PI

ˇ̌̌̌p
kfIk

p

L1.P 0I /
�

X
P 0I2PI

jP 0I j max
PI2zPI

�PI .P
0
I /
p
kfIk

p

L1.P 0I /

�

X
P 0I2PI

jP 0I j
X
PI2zPI

�PI .P
0
I /
p
kfIk

p

L1.P 0I /
.

X
P 0I2PI

X
PI2zPI

jP 0I jk�PIfIk
p

L1.P 0I /

.
X
PI2zPI

X
P 0I2PI

Z
j�PIfI j

pWP 0I
�

X
PI2zPI

Z
j�PIfI j

p:

The assumption that �PI decays at order 103"�2 allows us to write, for each I 2 zI2 and PI 2 zPI ,ˇ̌̌̌Z
j�PIfI j

p
�

Z
N "PI

j�PIfI j
p

ˇ̌̌̌
� C"N

�1000
kfIk

p

Lp.R/

� C"N
�500 max

J�I
kfJ k

p

Lp.R/

and Z
N "PI

j�PIfI j
p
� C"N

"
jPI jB

p
2 . C"N

"

Z
jfI;PI j

p;

which proves the final property about kfI;PI kLp.R/ from the proposition. �

Proof of Theorem 8.1 using Theorem 8.5. The proof resembles Section 5.1 in [Demeter et al. 2020]. First
we fix .p; q/ with 4� p � 6, and either 1

q
C
3
p
D 1 or pD q. Note that under such assumption we always

have p � q and q � 2. Recall that � is the .�L2=N 2/-neighborhood of fangN
1=2

nD1 , which is a union of
N 1=2 many intervals of length C�L2=N 2. We let � denote the union of l many consecutive intervals
in �, and write `.�/D l , so in this notation `.I /D L and `.J /D L1. Let F D

P
J2J fJ , and denote

by F� the Fourier projection of F to � , that is, Q.1� yF/. Fix K > 1. We have the inequality

jF.x/j �
X

`.�/DN
1=2

K

jF� .x/j � C max
`.�/DN

1=2

K

jF� .x/jCK
C max
`.�1/D`.�2/D

N1=2

K

d.�1;�2/&
1

KN1=2

jF�1F�2 j
1
2 :
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Iterating this (for the first term) we obtain

kF k
p

Lp.R/
.Cm

X
`.�/DL

kF�k
p

Lp.R/
CCmKC

X
lDN

1=2

Ka
for a2Z

KL�l�N 1=2

X
� W`.�/Dl

X
�1;�2��

`.�1/D`.�2/DK
�1l

d.�1;�2/&K
�1l

k.F�1F�2/
1
2 k
p

Lp.R/
:

(92)
Here m satisfies N 1=2=Km D L.

By Proposition 7.2 and Hölder’s inequality we haveX
`.�/DL

kF�k
p

Lp.R/
.

X
`.�/DL

�
L

L1

�p
2
�1�X

J��

kFJ k
2
Lp.R/

�p
2

�

X
`.�/DL

�
L

L1

�p�1�p
q
�X
J��

kFJ k
q

Lp.R/

�p
q

:

Since 1
q
C

3
p
� 1 and L�N 1=2, we have

N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�
L1�

1
q
� 1
p

L
1� 1

p
� 1
q

1

:

Therefore,X
`.�/DL

kF�k
p

Lp.R/
.
�
L

L1

�p�1�p
q
�X
J2J

kFJ k
q

Lp.R/

�p
q

�

�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�p�X
J2J

kFJ k
q

Lp.R/

�p
q

: (93)

Now we estimate the second term on the right-hand side of (92). Let s DN 1=2=l . Then using the change
of variable x 7! s2x as in the proof of Proposition 6.3, and by Theorem 8.5 we have

k.F�1F�2/
1
2 kLp.R/ ." N " logC . Q��1C 1/

�
zN
1
2
� 1
2q
� 3
2p zL

2
p

zL
1� 1

p
� 1
q

1

C

�
zN
1
2

zL1

�1
2
� 1
q
��X

J��

kfJ k
q

Lp.R/

�1
q

;

where zN DN=s2, Q� D �=s2, zL1 D L1, zL D L. Plugging in the expressions for zN; Q�; zL1; zL we obtain

k.F�1F�2/
1
2 kLp.R/

." N " logC .��1C 1/
�
s�1C

1
q
C 3
p
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C s�
1
2
C 1
q

�
N
1
2

L1

�1
2
� 1
q
��X

J��

kfJ k
q

Lp.R/

�1
q

: (94)

We let K D N "0 for some "0 > 0 which will be chosen depending on ". Then from (93) and (94) we
conclude

kF kLp.R/ .";"0 N "CC"0 logC .��1C 1/
�� X

sDKa for a2Z

1�s�N
1=2

KL

s�1C
1
q
C 3
p

�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

� X
sDKa for a2Z

1�s�N
1=2

KL

s�
1
2
C 1
q

��
N
1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

.";"0 N "CC"0 logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N

1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

:
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Therefore we have shown Theorem 8.1 under condition (a) and the extra condition 1
q
C

3
p
D 1, p � 6, or

under condition (b) with the extra condition p � 6.
First assume (a) and we want to remove the condition 1

q
C

3
p
D 1, p � 6. First we note that it suffices

to show (66) for every .p; q/ with p � 4, 1
q
C

3
p
D 1. This is because for a general .p; q/ with p � 4,

1
q
C

3
p
� 1 we may consider (66) with .p; q/ replaced by .p; q0/, where 1

q0
C

3
p
D 1. Then (66) with

.p; q/ follows from Hölder’s inequality applied in the index J to the right-hand side of (66) with .p; q0/,
since jJ j . N 1=2=L1. Second we note that it suffices to show (66) for every .p; q/ with 4 � p � 6,
1
q
C

3
p
D 1. This is because when p � 6, we always have

N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�

�
N

1
2

L1

�1
2
� 1
q

and (66) reduces to



X
J2J

fJ






Lp.R/

." N " logC .��1C 1/
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�X
J2J

kfJ k
q

Lp.R/

�1
q

:

So (66) with q > 6, 1
q
C

3
p
D 1 follows from interpolating (66) with .p; q/D .6; 2/, and with .p; q/D

.1; 1/. (For the interpolation of decoupling inequalities, see Exercise 9.21 of [Demeter 2020].) When
p D 1; q D 1, (66) becomes the triangle inequality which holds trivially. Hence we have shown
Theorem 8.1 under condition (a).

Now assume (b) and we want to remove the condition p � 6. As in the previous paragraph, when
p � 6 we always have

N
1
2
� 1
2p
� 3
2pL

2
p

L
1� 1

p
� 1
p

1

�

�
N
1
2

L1

�1
2
� 1
p

;

and therefore (66) with q >6, pD q follows from interpolating (see Exercise 9.21 of [Demeter 2020]) (66)
with .p; q/D .6; 6/, and with .p; q/D .1;1/. So Theorem 8.1 holds under condition (b) as well. �

Appendix

Corollary 1.4 can be derived from small-cap decoupling inequalities for the parabola in [Demeter et al.
2020]. This is through a transference method which we learned from James Maynard. We record a
detailed proof here. The same argument would also imply Corollary 8.2 if the corresponding `qLp small
cap decoupling inequalities for the parabola are known.

We first recall the small-cap decoupling inequalities in [Demeter et al. 2020].

Theorem A.1 [Demeter et al. 2020]. Suppose ˛ 2
�
1
2
; 1
�
, and let � D f
g be the partition of NR�1.P1/

into R˛ many R�˛ �R�1 rectangles 
 . Assume p D 2C 2
˛

. Then for every " > 0 we have



X

2�

f







Lp.R2/

." R˛.
1
2
� 1
p
/C"

�X



kf
k
p

Lp.R2/

�1
p

(95)

for every f
 W R2! C with supp yf
 � 
 .
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Theorem A.1 continues to hold, by essentially the same proof, with P1 replaced by a C 2 curve of
the form f.x; g.x// W x 2 Œ0; 1�g, with g0.0/D 0, g00.x/� 1 for x 2 Œ0; 1�. See for example Section 7 of
[Bourgain and Demeter 2015] (whose argument we think actually requires a bit more regularity of the
curve than C 2), or the appendix of [Guth et al. 2022]. Additionally we may interpolate (see Exercise 9.21
of [Demeter 2020]) between (95) and the elementary inequalities



X


2�

f







L2.R2/

.
�X



kf
k
2
L2.R2/

�1
2





X

2�

f







L1.R2/

.R˛.sup


kf
kL1.R2//

to obtain the following version of Theorem A.1.

Theorem A.2 [Demeter et al. 2020]. Suppose G is a C 2 convex curve of the form f.x; g.x// W x 2 Œ0; 1�g,
where g0.0/ D 0, g00.x/ � 1 for x 2 Œ0; 1�. Suppose ˛ 2

�
1
2
; 1
�
, and let � D f
g be the partition of

NR�1.G/ into R˛ many R�˛ �R�1 rectangles 
 . Assume p � 2. Then for every " > 0 we have



X

2�

f







Lp.R2/

." R".R˛.
1
2
� 1
p
/
CR˛.1�

1
p
/�.1C˛/ 1

p /

�X



kf
k
p

Lp.R2/

�1
p

(96)

for every f
 W R2! C with supp yf
 � 
 .

For the rest of this section we work under the assumption of Corollary 1.4. In particular � D 1. For
simplicity we assume a1 D 0, and v WD a2 � a1 D N�1. Let 1 � L � N 1=2. It suffices to show (67)
for 4� p � 6 and we assume that (since the p > 6 case follows from interpolating between p D 6 and
p D1).

By (14) we may write an D .n� 1/=N C en, where en D an� .n� 1/=N � .n� 1/2=N 2. For every
t 2 R we may write it as t1C t2, where t1 2 2�NZ and t2 2 Œ0; 2�N/. Without loss of generality we
assume 2�N divides T, so .2�/�1N�1T 2 Z. Now we may write

Z T

0

ˇ̌̌̌N 1=2X
nD1

bne
itan

ˇ̌̌̌p
dt D

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1Ct2/.

n�1
N
Cen/

ˇ̌̌̌p
dt2

D

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2

n�1
N
Ct2en/

ˇ̌̌̌p
dt2:

We write e.n/ D en and let e W Œ1; N 1=2� ! R be the piecewise linear function such that, for every
n 2 Z\ Œ1; N 1=2 � 1�, e.x/ is linear on Œn; nC 1� and e.n/ D en. Since enC1 � en � n=N 2, we have
je0.x/j. 1=N 3=2 for x 2 Œ1; N 1=2� nZ.
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By Abel’s summation formula we haveˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N Ct2en/

ˇ̌̌̌
�

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2

n�1
N
/

ˇ̌̌̌
jt2e
0.u/jdu

.
ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

1

N
1
2

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du: (97)

The last inequality uses t2 .N .
We first estimate

A WD
X

t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2:

Since en . 1
N

for every 1 � n � N 1=2,
PN 1=2

nD1 bne
i.t1enCt2.n�1/=N/ is locally constant on intervals of

length N in t1, that is, for every y 2 R,

sup
t12Œy;yC2�N�

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
.
�Z

R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
WŒy;yC2�N�;100.t1/ dt1

�1
p

:

We note that the above is also a special case of Proposition 2.3, applied to a fat AP that is just a single
interval. Since

P
y22�NZ\Œ0;T�2�N�WŒy;yC2�N�;100.t1/.WŒ0;T �;100.t1/, we have

A.
1

N

Z
R

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2WŒ0;T �;100.t1/ dt1: (98)

We consider two cases, T �N 3=2 and T �N 3=2.

Case 1: T �N 3=2. We observe that
PN 1=2

nD1 bne
i.t1enCt2.n�1/=N/ is 2�N -periodic in t2, so we have

A.
1

N

N
3
2

T

Z
R

Z TN�1=2

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2WŒ0;T �;100.t1/ dt1

By a change of variable t1 7!N 1t1, t2 7!N 1=2t2, we obtain

A.N
1
2
N
3
2

T

Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

TN�1
.0/;100.t1; t2/ dt2 dt1:

Now we let g.x/ be a C 2 strictly convex function defined on Œ0; 1� such that jg..n�1/=N 1=2/� enN j �

N�1=4 for nD 1; : : : ; N 1=2. (See Lemma A.3 below.) Since N�1 � T �1N , we have for every n, the
ball of radius T �1N=4 centered at ..n�1/=N 1=2; enN/ fits in exactly one of the 
 in the partition of the
T �1N neighborhood of GDf.x; g.x// W x 2 Œ0; 1�g by N�1=2�T �1N rectangles. Under our assumption
that T 2 ŒN 3=2; N 2� we have log.N�1=2/=log.T �1N/ 2

�
1
2
; 1
�
. Therefore we may apply Theorem A.2
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with RD TN�1, R˛ DN 1=2 to the curve G, which yields for every T 2 ŒN 3=2; N 2�,Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

TN�1
.0/;100.t1; t2/ dt2 dt1

." N ".T
1
pN

1
2
� 2
p CT

2
pN

1
4
� 5
2p /pkbnk

p

`p
: (99)

Hence
A." N ".N

1
2 CT

1
pN

1
4
� 1
2p /pkbnk

p

`p
:

Case 2: T �N 3=2. From (98) and a change of variable we have

A.N
1
2

Z
R

Z 2�N 1=2

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
dt2WŒ0;TN�1�;100.t1/ dt1:

Since T �N 3=2, we may bound the right-hand side trivially by

N
1
2

Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

N1=2
.0/;100.t1; t2/ dt2 dt1;

so by (99) with T DN 3=2 we have

A." N "N
1
2 .N

3
2pN

1
2
� 2
p CN

3
2
2
pN

1
4
� 5
2p /pkbnk

p

`p
:

Since p � 4 we may verify

N
3
2pN

1
2
� 2
p �N

3
2
2
pN

1
4
� 5
2p :

Hence
A." N ".N

1
2 /pkbnk

p

`p
:

In conclusion we have shown
A." N ".N

1
2 CT

1
pN

1
4
� 1
2p /pkbnk

p

`p
: (100)

Next we estimate the second term in (97). We define

B WD
X

t122�NZ\Œ0;N 2=L2�2�N�

Z 2�N

0

ˇ̌̌̌
1

N
1
2

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du

ˇ̌̌̌p
dt2:

By Minkowski’s inequality we have

B
1
p �

1

N
1
2

Z N 1=2

1

� X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2

�1
p

du:

Then applying (100) to the expression in the brackets we obtain

B
1
p ." N " 1

N
1
2

Z N 1=2

0

.N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p du

DN ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p :
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Combining the estimates for A and B we conclude



N
1=2X

nD1

bne
itan






Lp.BT /

." N ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p :

We used the following lemma in the proof above.

Lemma A.3. Suppose fangN
1=2

nD1 is a short generalized Dirichlet sequence with � D 1, a2� a1 DN�1,
a1 D 0. Let en D an � .n� 1/=N . Then, for every c > 0, there exists a C 2 curve g W Œ0; 1�! R with
g00.x/� 1 for x 2 Œ0; 1� such that jg..n� 1/=N 1=2/� enN j � cN

�1 for every nD 1; : : : ; N 1=2.

Proof. We first define g0 W Œ0; 1�!R to be a C 1 piecewise quadratic polynomial with g00.0/D 0 such that
g0 restricted to Œn=N 1=2; .nC 1/=N 1=2� is a quadratic polynomial for every nD 0; : : : ; N 1=2� 1, and

g0

�
n� 1

N
1
2

�
D enN:

Since
N.enC1� 2enC en�1/

N�1
� 1;

we have g000 � 1 on Œ0; 1� nN�1=2Z, and consequently kg0kL1.Œ0;1�/ . 1 because g00.0/D 0. Now we
let g D g0 �� be the c0N�1 mollification of g0. Here � is an L1-normalized smooth bump adapted to
Bc0N�1.0/ and c0 > 0 is sufficiently small depending on c. Then we have, for every x 2 Œ0; 1�,

g00.x/D

Z
R

g000.y/�.x�y/ dy � 1;

and ˇ̌̌̌
g

�
n� 1

N
1
2

�
� enN

ˇ̌̌̌
�

Z
R

ˇ̌̌̌
g0.y/�g0

�
n� 1

N
1
2

�ˇ̌̌̌
�

�
n� 1

N
1
2

�y

�
dy � c0N�1 sup

y2Œ0;1�

jg00j � cN
�1

if c0 D c=.kg00kL1.Œ0;1�/C 1/. �

We can use the same approach to transfer an Lp estimate for a longer generalized Dirichlet polynomial
to an Lp estimate on an exponential sum with frequency support near a C 2 convex curve.

Suppose fangNnD1 is a generalized Dirichlet sequence with � D 1, a2 � a1 D 1=N , a1 D 0, and let
˛2

�
1
2
; 1
�
. As before we write enD .n�1/=N � ..n�1/2/=N 2. The same calculation as above shows thatZ
Œ0;T �

ˇ̌̌̌N˛X
nD1

bne
itan

ˇ̌̌̌p
dt .

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N˛X
nD1

bne
i.t1enCt2

n�1
N
Ct2en/

ˇ̌̌̌p
dt2:

One difficulty that appears is that we cannot treat eit2en as an error term as before. This is because
when we apply the partial summation formula we getˇ̌̌̌N˛X

nD1

bne
i.t1enCt2 n�1N Ct2en/

ˇ̌̌̌
.
ˇ̌̌̌N˛X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

1

N 1�˛

Z N˛

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du:
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However now N 1�˛ >N ˛ and we cannot estimate the second term on the right-hand side as before using
the estimate for the first term and Minkowski’s inequality. We could still find a C 2 convex curve such
that ..n� 1/=N C en; en/ lies in an N�1-neighborhood of it, but the extra en doesn’t allow us to use the
2�N -periodicity in the t2-variable.

Another difficulty we find is the integrand is locally constant on intervals of length N 2�2˛ in the
t1-variable, and since N < N 2�2˛, that prevents us from transferring the discrete summation intoP
t122�NZ\Œ0;T�2�N� into

R
Œ0;T �. We may though transfer the discrete sum into an integral over a fat

AP
R
PN

2�2˛

2�N \BŒ0;T �
, and that might suggest some new decoupling problems in R2 that might be helpful

for estimating longer generalized Dirichlet polynomials.
Finally we remark that for the Dirichlet sequence flogng2NnDNC1, we may implement this transference

method to higher-order approximations of logn. For examples we can writeˇ̌̌̌NCN˛X
nDNC1

bne
it logn

ˇ̌̌̌
D

ˇ̌̌̌N˛X
nD1

bnCN e
it log .1C n

N
/
ˇ̌̌̌
D

ˇ̌̌̌N˛X
nD1

bnCN e
it. n

N
� n2

2N2
Ce0n/

ˇ̌̌̌
;

where

e0n WD log
�
1C

n

N

�
�
n

N
C

n2

2N 2
�
n3

N 3
:

If we write t D t1 C t2 C t3 with t1 2 2�N 2Z, t2 2 2�NZ, t3 2 Œ0; 2�N/, then we could transfer
Lp estimates on

PNCN˛

nDNC1 bne
it logn to 3-dimensional Lp estimates on exponential sums with frequency

supported on a nondegenerate curve in R3. More generally one can exploit more terms in the Taylor
expansion and get higher-dimensional estimates. We do not know how much this would help with
estimates on Dirichlet polynomials using decoupling techniques.
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GLOBAL WELL-POSEDNESS OF VLASOV–POISSON-TYPE SYSTEMS
IN BOUNDED DOMAINS

LUDOVIC CESBRON AND MIKAELA IACOBELLI

In this paper we prove global existence of classical solutions to the Vlasov–Poisson and ionic Vlasov–
Poisson models in bounded domains. On the boundary, we consider the specular reflection boundary
condition for the Vlasov equation and either homogeneous Dirichlet or Neumann conditions for the
Poisson equations.

1. Introduction

Here, we investigate the well-posedness of Vlasov–Poisson models in bounded domains. These models
describe the evolution of particles in a plasma, which is an ionised gas mostly constituted of two species
of charged particles: ions and electrons. Due to the significant difference in size between those two
species, the former being much larger and slower than the latter, it is classical to decouple their dynamics.

On the one hand, when investigating the behaviour of electrons it is reasonable to assume that the ions
are stationary. Assuming the plasma has low density and that the velocity of the particles is significantly
lower than the speed of light — i.e., neglecting electron-electron collisions and magnetic forces — one
can model the evolution of the distribution function of the electrons f = f (t, x, v), which represents at
time t the probability of finding an electron at position x with velocity v, by the Vlasov–Poisson system

(VP) :=


∂t f + v · ∇x f + E · ∇v f = 0 in (0,+∞)×�× Rd,

E = −∇U, 1U = −ρ in (0,+∞)×�,

f |t=0 = f0 in �× Rd,

(1)

where ρ =
∫

Rd f dv is the macroscopic density. In this model, the Vlasov equation describes the transport
of the electrons under the influence of the electric field E , while the Poisson equation models how the
electric potential U is generated by the distribution of the electrons. We shall always assume that the
initial distribution f0 is nonnegative and normalized:

f0 ≥ 0,
∫∫

�×Rd
f0 dx dv = 1. (2)

On the other hand, when investigating the behaviour of the ions in the plasma, it is common in physics
literature to assume that the electrons are close to thermal equilibrium. Indeed, although electron-electron
collisions are neglected in the model above because of their rarity, they become relevant in the ion’s
timescale and it is reasonable to assume that the distribution of the electrons is the thermal equilibrium of
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a collisional kinetic model. The Vlasov–Poisson model for massless electrons (VPME) — sometimes
called ionic Vlasov–Poisson — which is a celebrated model for the evolution of ions, can then be derived
asymptotically as the ratio of mass between electrons and ions grows small. For more details on the
massless limit we refer to [Bardos et al. 2018], and for a more thorough introduction of this model we
refer, e.g., to [Griffin-Pickering and Iacobelli 2021c]. The VPME system consists of a Vlasov equation
coupled with a nonlinear Poisson equation, which models how the electric potential is generated by the
distribution of the ions and the Maxwell–Boltzmann distribution of the electrons. It reads

∂t f + v · ∇x f + E · ∇v f = 0 in (0,+∞)×�× Rd,

E = −∇U, 1U = eU
− ρ− 1 in (0,+∞)×�,

f |t=0 = f0 in �× Rd,

(3)

with the same assumptions on f0 given in (2).
We consider a bounded C2,1 domain�={x ∈ Rd

: ξ(x)< 0} in Rd, where ξ : Rd
→ R is a C2,1 function,

and its boundary ∂�= {x ∈ Rd
: ξ(x)= 0}. We assume that � is uniformly convex, which means that for

some C� > 0 we have

v · ∇
2ξ(x) · v ≥ C�|v|2 for all (x, v) ∈�× Rd, (4)

where ∇
2ξ denotes the Hessian matrix of ξ : v · ∇

2ξ(x) · v =
∑

i, j viv j∂i jξ(x). We also assume that the
normal vectors are well defined on the boundary, i.e., ∇ξ(x) ̸= 0 for any x such that |ξ(x)| ≪ 1. The
outward unit normal vector is then defined, for x ∈ ∂�, as n(x)= ∇ξ(x)/|∇ξ(x)|.

On the boundary of � we need to prescribe the behaviour of the particles in the Vlasov equation as
well as the behaviour of the electric potential U in the Poisson equation. For the Vlasov part, the boundary
condition takes the form of a balance between the incoming and outgoing traces of f in the phase-space.
Namely, if we introduce the sets

γ± = {(x, v) : x ∈ ∂�, ±v · n(x) > 0}

and write γ± f for the restriction of the trace of f to γ±, then the boundary condition takes the form

γ− f (t, x, v)= B[γ+ f ](t, x, v) on (0,+∞)× γ−.

In this paper, we will focus on the specular reflection boundary condition:

γ− f (t, x, v)= γ+ f (t, x,Rxv) on (0,+∞)× γ− (5)

with
Rxv = v− 2(v · n(x))n(x).

This means that we assume the boundary is a surface with no asperities and the particles bounce on this
surface in a billiard-like fashion.

For the Poisson equation on the electric potential U, we will consider either the homogeneous Dirichlet
condition

U (t, x)= 0 on (0,+∞)× ∂� (6)
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or the Neumann boundary condition

∂nU (t, x)= h on (0,+∞)× ∂�, (7)

where ∂nU = n(x) · ∇U is the normal derivative of U at x ∈ ∂�. Note that we will require h to satisfy a
compatibility condition in order for the system to be well-posed. The Dirichlet boundary condition arises
when one assumes that the boundary is a perfect conductor and that it is grounded for the homogeneous
case that we consider. On the other hand, the Neumann boundary condition comes down to specifying
the value of the electric field E everywhere on the surface. We refer, e.g., to [Jackson 1999, Chapter 1.9]
for a more detailed physical interpretation of these conditions.

In the case � = R3, the Cauchy theory for the Vlasov–Poisson system (1) is well developed. In
particular, existence and uniqueness of global-in-time classical C1 solutions were established in the 90s
[Horst 1993; Lions and Perthame 1991; Pfaffelmoser 1992; Schaeffer 1991], and there is also an extended
literature on weaker notions of solutions; see, e.g., [Ambrosio et al. 2017; Arsenev 1975; DiPerna and
Lions 1988; Horst and Hunze 1984]. The bounded domain case is more challenging due to the fact that
singularities may form at the boundary and propagate inside the domain even in one dimension [Guo
1995]. In the case of the half-space, the existence of global classical solutions was proved for the specular
reflection condition (5) and both Neumann and Dirichlet conditions on the electric potential [Guo 1994;
Hwang and Velázquez 2009]. Note that while Y. Guo proved well-posedness [Guo 1994] by adapting
the velocity moments method of P.L. Lions and B. Perthame [Lions and Perthame 1991], H.J. Hwang
and J.J.L. Velázquez [Hwang and Velázquez 2009] took a different approach by adapting the ideas of
Pfaffelmoser [1992] to the half-space case. In both approaches, the key difficulty is the analysis of the
trajectories of the particles, governed by the Vlasov equation, near the singular set γ0, see (8), where
these transport dynamics are degenerate. Hwang and Velázquez [2010] also refined their approach in
order to consider uniformly convex domains of class C5 by means of local changes of coordinates near
the singular set γ0 that allow them to efficiently estimate the effect of the curvature of the boundary on
the transport dynamics. In our paper we develop a more global analysis of the trajectories of the particles,
without local coordinates, in order to lower the regularity of the boundary to C2,1, which is optimal for
our notion of classical solutions. Note that weaker notions of solutions have also been investigated in
bounded domains; see, for instance, [Abdallah 1994; Alexandre 1993; Fernández-Real 2018; Mischler
2000; Weckler 1995].

For the VPME system, the Cauchy theory is much less developed due to the difficulties arising from the
additional nonlinearity of the Poisson equation. In the case �= R3, global-in-time weak solutions were
first constructed by F. Bouchut [Bouchut 1991] and, in one dimension, D. Han-Kwan and M. Iacobelli
constructed global weak solutions for measure data with bounded first moment [Han-Kwan and Iacobelli
2017]. More recently, M. Griffin-Pickering and M. Iacobelli proved the global well-posedness of VPME
in the torus in dimensions 2 and 3 [Griffin-Pickering and Iacobelli 2021b], and in the whole space in
dimension 3 [Griffin-Pickering and Iacobelli 2021a]. They proved existence of strong solutions for
measure initial data with bounded moments — strong in the sense that if the initial data is C1 then the
solution they construct is a classical C1 solution — and uniqueness of solution with bounded density in
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the spirit of Loeper’s uniqueness result for Vlasov–Poisson [2006]. In this paper we present the first result
of well-posedness for VPME in bounded domains.

2. Main results

Let us first consider the Vlasov–Poisson system (1). We will prove existence and uniqueness of classical
solutions in a bounded domain � in dimension 3 with the boundary conditions mentioned above. One of
the key difficulties is to control the behaviour of the solution f near the grazing set

γ0 := {(x, v) : x ∈ ∂�, v · n(x)= 0} (8)

where the Vlasov equation with specular reflections is degenerate. In order to avoid having singularities
at the initial time we shall assume flatness of the initial distribution near the grazing set. Furthermore, we
will also assume compactness of support in velocity and regularity of f0. Namely, we consider initial
distributions f0 satisfying (2) and

f0 ∈ C1,µ(�× R3), µ ∈ (0, 1), (9)

supp f0 ⋐�× R3, (10)

f0(x, v)= constant for all (x, v) such that α(0, x, v)≤ δ0, (11)

where α(0, x, v) is the kinetic distance defined in Definition 3.1 and Lemma 3.3, which measures a
distance to the grazing set γ0, and by A ⋐ B we mean that A is a compact subset of B. Before stating
our existence result for the Vlasov–Poisson system we also need a compatibility condition on h in the
Neumann boundary condition case (7) in order to ensure well-posedness. This condition can be derived
by integrating the boundary condition over ∂� and using Green’s formula and the Poisson equation:∫

∂�

h(x) dx = −

∫∫
�×R3

f0(x, v) dx dv = −1. (12)

Finally, we introduce the following notation: for A ⊆� or �× R3 and T > 0, we write

C1
t C1,µ([0, T ] ×A) := C1([0, T ]; C0(A))∩ L∞((0, T ); C1,µ(A)).

We now state our main result for the Vlasov–Poisson system.

Theorem 2.1. Let�⊂ R3 be a C2,1 uniformly convex domain, let f0 satisfy (2) and (9)–(11), and consider
the Vlasov–Poisson system (1) with the specular reflection condition (5) for the Vlasov equation, and
either the Dirichlet boundary condition (6) or the Neumann boundary condition (7) with h satisfying (12)
for the Poisson equation. Then there exists a unique classical solution f ∈ C1

t C1,µ((0,∞)×�× R3) and
E ∈ C1

t C1,µ((0,∞)×�)3. Moreover, the solution f has a compact support in velocity for all t ≥ 0.

Apart from our analysis of the trajectories of transport, our strategy of proof is somewhat classical. We
begin in any dimension d with an approximation of the Vlasov–Poisson system by a sequence of linear
equations (27). We show, using our analysis of the trajectories of transport, that given a fixed electric
field E the Vlasov equation has a solution in the appropriate functional space. Conversely, by classical



GLOBAL WELL-POSEDNESS OF VLASOV–POISSON-TYPE SYSTEMS IN BOUNDED DOMAINS 2469

elliptic regularity, we know that given a regular enough density ρ the Poisson equation in � will have
a regular solution. This yields sequences of solutions ( f n) and (En) to the linear Vlasov and Poisson
equations. We then assume boundedness of the velocity uniformly in time, namely that, for all t ∈ [0, T ],
the quantity

Qn(t)= sup{|v| : (x, v) ∈ supp f n(s), 0 ≤ s ≤ t}

is bounded by some K (T ) > 0. Under this assumption we show convergence of the sequences ( f n)

and (En) to a solution of the Vlasov–Poisson system. Then, we restrict ourself to the case d = 3 and
remove the assumption of uniformly bounded velocities by proving that if the velocities are initially
bounded (10), then Q(t)= limn→∞ Qn(t) is bounded for all t ∈ [0, T ] via a Pfaffelmoser-type argument.
Finally, we conclude the proof of Theorem 2.1 with the global-in-time existence by showing that the
bound on Q(t) holds as T → ∞ and prove uniqueness of solution adapting the idea of P.L. Lions
and B. Perthame [Lions and Perthame 1991] albeit in an L1 framework.

This strategy of construction of a solution via an iterative sequence also applies to the VPME case.
However, the nonlinearity of the Poisson equation in (3) will remain in the iterative sequence, and therefore
classical elliptic regularity will not provide the desired regularity estimates on the force field E . In order
to derive such estimates we adopt a calculus of variation approach, identifying the solution of the Poisson
equation with the minimiser of an energy functional which will take into account the boundary conditions.
Furthermore, we introduce a splitting of the electric potential into a singular part Û — solution to a
linear Poisson equation — and a regular part U — solution to a nonlinear elliptic PDE — in the spirit of
[Griffin-Pickering and Iacobelli 2021b; Han-Kwan and Iacobelli 2017]. The purpose of this splitting
is to isolate the difficulties due to the nonlinearity from those that we can handle via classical elliptic
regularity theory. The estimates we derive, which are stated in Proposition 5.1 for the Dirichlet case
and Proposition 5.2 for the Neumann case, are crucial for our analysis and can be useful in the study of
singular limits for VPME, as done in [Griffin-Pickering and Iacobelli 2020]. In the Neumann boundary
condition case this will naturally lead to a compatibility condition on h, which reads as follows:

h < 0,
∫
∂�

|h| dσ(x) < 1 + |�|. (13)

We can now state our main result in the VPME case:

Theorem 2.2. Let � ⊂ R3 be a C2,1 uniformly convex domain, let f0 satisfy (2) and (9)–(11), and
consider the Vlasov–Poisson model for massless electrons (3) with the specular reflection condition (5)
for the Vlasov equation, and either the Dirichlet boundary condition (6) or the Neumann boundary
condition (7) with h satisfying (13) for the Poisson equation. Then there exists a unique classical solution
f ∈ C1

t C1,µ((0,∞)×�× R3) and E ∈ C1
t C1,µ((0,∞)×�)3. Moreover, the solution f has a compact

support in velocity for all t ≥ 0.

For the sake of clarity, we have decided to devote the core of our paper to the Vlasov–Poisson system
and treat the VPME case independently in the last section. Since the general method is the same, we will
only highlight in that section the differences between the two cases and the modifications required for the
VPME case.
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The paper is thus organised as follows. In Section 3 we develop our global analysis of the trajectories
of particles governed by the Vlasov equation in any dimension d, which culminates in the Velocity
Lemma (Lemma 3.3). In Section 4 we focus on the Vlasov–Poisson case and show well-posedness via
an approximating sequence of linear problems as explained above and a Pfaffelmoser-like argument in
dimension 3 to show boundedness of the velocities. Finally, in Section 5 we derive elliptic regularity
estimates for the nonlinear Poisson equation of (3) in any dimension d and outline the proof of well-
posedness for the VPME system.

3. Velocity lemma

Consider a uniformly convex C2,1 domain� and a field E ∈ C0,1([0, T ]×�)d satisfying E(t, x)·n(x)> 0
for all t ∈ [0, T ] and x ∈ ∂�. Note that the latter condition on E holds for any strong solution to the
Poisson equation thanks to the Hopf lemma in the Dirichlet case, and by assumption in the Neumann case.

The characteristic curves associated to the Vlasov equation with specular reflections

(Xs, Vs)= (X (s; t, x, v), V (s; t, x, v))

are governed by the following ODE system:

∂s Xs = Vs, X (t; t, x, v)= x, (14)

∂s Vs = E(s, Xs), V (t; t, x, v)= v, (15)

Vs+ = Vs− − 2(n(Xτ ) · Vs−)n(Xs) for all s s.t. Xs ∈ ∂�. (16)

These trajectories evolve in the phase-space �× Rd. The purpose of this section is to characterise their
distance to the grazing set γ0, and to deduce some control on the number of bounces on ∂� that such
trajectories undergo in a finite time interval. To that end we begin by defining a notion of kinetic distance.

Definition 3.1. Consider δ > 0 and define the neighbourhood of the boundary

∂�δ := {x ∈� : dist(x, ∂�) < δ}.

We say that α : [0, T ]×�×Rd
→ R+ is a δ-kinetic distance if α is in C0([0, T ]×�×Rd) and satisfies,

for all (t, x, v) ∈ [0, T ] × ∂�δ × Rd , [α(t, x, v)= 0] ⇐⇒ [(x, v) ∈ γ0]. (17)

We then have the following lemma of isolation of the grazing set.

Lemma 3.2. Consider E ∈ C0,1([0, T ]×�)d and the flow of transport (X (s; t, x, v), V (s; t, x, v)) given
by (14)–(16). If there exists a δ-kinetic distance α such that, for all (t, x, v) ∈ [0, T ] × ∂�δ × Rd and
s ∈ [0, T ],

C−

s α(t, x, v)≤ α(s, X (s; t, x, v), V (s; t, x, v))≤ C+

s α(t, x, v) (18)

with C±
s = C±

s (t − s, x, v) > 0, then the grazing set γ0 is isolated in the sense that a trajectory

s → (X (s; t, x, v), V (s; t, x, v))

can only reach γ0 if it starts in γ0.
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Proof. If δ is large enough that ∂�δ =�, then the isolation of the grazing set is a direct consequence of (17)
and (18) since the former states that α only cancels on γ0, while the latter states that α cannot cancel along
a trajectory (Xs, Vs) unless it is initially null. When ∂�δ ⊊�, then there may exist (x, v) /∈ ∂�δ×Rd

⊃ γ0

such that α(0, x, v) = 0. In order to prove Lemma 3.2 it is enough to show that a trajectory (Xs, Vs)

starting in �× Rd cannot reach γ0 without going through (∂�δ × Rd) \ γ0. This follows immediately
from the continuity of s → X (s; t, x, v) given by (14)–(16) with E ∈ C0,1([0, T ] ×�)d. □

We now turn to the main result of this section: the Velocity Lemma which states the existence of a
kinetic distance.

Lemma 3.3 (Velocity Lemma). We consider a C2,1 uniformly convex domain � and a field E in
C0,1([0, T ] ×�)d such that E(t, x) · ∇ξ(x)≥ C0 > 0 for all t ∈ [0, T ] and x ∈ ∂�. We define

α(s, x, v)=
1
2(v · ∇ξ(x))2 + (v · ∇

2ξ(x) · v+ E(s, x) · ∇ξ(x))|ξ(x)|. (19)

Then there exists δ > 0 such that α is a δ-kinetic distance satisfying (18) with

C±

s = exp(±C0[(|v| + 1)|s − t | + ∥E∥L∞(s − t)2])

and C0 = C0(∥ξ∥C2,1, ∥E∥C0,1).

Proof. Since E is continuous and E(t, x) · ∇ξ(x) ≥ C0 > 0 for all t ∈ [0, T ] and x ∈ ∂�, there exists
δ > 0 such that E(t, x) · ∇ξ(x) > 0 for all x ∈ ∂�δ. In that neighbourhood we have, using (4) and the
continuity of ∇

2ξ , that, for all v ∈ Rd and t ∈ [0, T ],

v · ∇
2ξ(x) · v+ E(t, x) · ∇ξ(x) > 0,

and therefore α only cancels if both v · ∇ξ(x)= 0 and ξ(x)= 0, i.e., if (x, v) ∈ γ0; hence α is a δ-kinetic
distance.

We will prove that α satisfies (18) by a Grönwall argument, differentiating α along a trajectory. To that
end, note that if we write b=ξ(Xs), then ∂sb=Vs ·∇xξ(Xs) and ∂2

ssb=Vs ·∇
2ξ(Xs)·Vs+E(s, Xs)·∇ξ(Xs),

so we have
α(s, Xs, Vs)=

1
2(∂sb)2 − b∂2

ssb,

and we easily compute d
dsα = −b∂3

sssb:

d
ds
α(s, Xs, Vs)= |ξ(Xs)|

(
Vs · (Vs · ∇

3ξ(Xs) · Vs)+ 3E(s, Xs) · ∇
2ξ(Xs) · Vs

+ (∂s E(s, Xs)+ Vs · ∇x E(s, Xs)) · ∇ξ(Xs)
)
.

Our regularity assumptions on E and ξ yield on the one hand∣∣∣ d
ds
α(s, Xs, Vs)

∣∣∣ ≤ C |ξ(Xs)|(|Vs |
3
∥∇

3ξ∥L∞ + |Vs |∥E∥C0,1
x

∥ξ∥C1,1 + ∥∂s E∥L∞∥∇ξ∥L∞)

≤ C |ξ(Xs)|(|Vs |
3
+ |Vs | + 1),

and on the other hand, since � is uniformly convex by (4),

α(s, Xs, Vs)≥ C |ξ(Xs)|(C�|Vs |
2
+ 1) (20)
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with C� > 0. Hence ∣∣∣ d
ds
α(s, Xs, Vs)

∣∣∣ ≤ C(|Vs | + 1)α(s, Xs, Vs),

and Grönwall’s lemma concludes the proof with (15). □

Remark 3.4. Note that if we only assume that � is convex but not uniformly convex, i.e., C� ≥ 0 in (4),
then α given by (19) is still a δ-kinetic distance. However, for s ≤ t , the constant C±

s in (18) given by the
Grönwall argument is controlled by

C±

s ≤ exp
(
±C

[
(|v| + 1)|s − t | + ∥E∥L∞(s − t)2 +

∫ t

s
|Vτ | dτ

])
≤ exp

(
±C

[
(|v| + 1)|s − t | + ∥E∥L∞(s − t)2 +

(|v| + ∥E∥L∞(s − t))4

4∥E∥L∞

−
|v|4

4∥E∥L∞

])
.

We will see in Section 4C that this bound is not enough to close our proof of existence of classical
solutions to the Vlasov–Poisson systems. We believe that the nonuniformly convex domain case actually
requires a much finer characterisation of the isolation of the grazing set.

The Velocity Lemma is an essential part of this proof because it is directly related to the number of
reflections on the boundary that a trajectory s → (X (s; t, x, v), V (s; t, x, v)) undergoes within a given
time interval, and consequently with the fact that said trajectory is uniquely defined. Morally, the closer
you are to the grazing set the more reflections can happen. We characterise this relation in the following
lemma in which we establish an upper bound on the number of reflections along a trajectory within a
given time interval in terms of the distance of that trajectory to the grazing set.

Lemma 3.5. Under the assumptions of Lemma 3.3, for any (t, x, v) ∈ [0, T ] ×�× Rd, the trajectory
s → (X (s; t, x, v), V (s; t, x, v)) is uniquely defined and the number of reflections k that it undergoes
within an interval of time s ∈ (t −1, t) is bounded above:

k ≤1C1
(|v| +1∥E∥L∞)2 + ∥E∥L∞

√
α(t, x, v)

eC0[(|v|+1)1+∥E∥L∞12
]

with C1 = C1(�) > 0 and C0 given by Lemma 3.3.

Proof. The fact that the trajectory is uniquely defined follows directly from the upper bound on the number
of reflections. Indeed, for any (t, x, v)∈[0, T ]×(�×Rd)\γ0, if the trajectory (X (s; t, x, v), V (s; t, x, v))
undergoes a finite number of reflections in a finite time, then we can construct the trajectory by the com-
position of a finite number of transports given by the ODE system (14)–(15) and specular reflections (16).
The velocity component s → V (s; t, x, v) will be piecewise continuous since E is in C0,1([0, T ]×�)d

with discontinuities at the times of the reflections, and since specular reflections do not affect the norm of
the velocity, we see that s → |V (s; t, x, v)| will be continuous. Furthermore, the position component
s → X (s; t, x, v) will be continuous and piecewise C1.

Let us now fix (t, x, v)∈ [0, T ]×(�×Rd)\γ0 and prove the upper bound on the number of reflections.
Since E ∈ L∞([0, T ] ×�), the norm of the velocity V (s; t, x, v) is uniformly bounded on (t −1, t) as

|V (s; t, x, v)| ≤ M = |v| +1∥E∥L∞ .
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Let us consider two consecutive reflection times t −1≤ si+1 < si ≤ t such that Xsi = X (si ; t, x, v) ∈ ∂�,
Xsi+1 = X (si+1; t, x, v) ∈ ∂�, and, for all s ∈ (si+1, si ), we have Xs /∈ ∂�. Since the velocity is bounded
and by continuity of the transport flow on (si+1, si ), we have immediately

|Xsi − Xsi+1 |

si − si+1
< M. (21)

Furthermore, integrating (14) and (15) over (si+1, si ) we get

Xsi = Xsi+1 +

∫ si

si+1

(
Vsi+1 +

∫ τ

si+1

E(u, Xu) du
)

dτ = Xsi+1 +(si −si+1)Vsi+1 +

∫ si

si+1

∫ τ

si+1

E(u, Xu) du dτ,

which yields, multiplying by ∇ξ(Xsi+1),

|Vsi+1 · ∇ξ(Xsi+1)| ≤

∣∣∣∣ Xsi − Xsi+1

si − si+1
· ∇ξ(Xsi+1)

∣∣∣∣ + 1
2∥E∥L∞(si − si+1). (22)

We know that the norm of (Xsi+1 − Xsi )/(si+1 − si ) is bounded; we are now interested in its direction. To
that end, we write the Taylor expansion of ξ ∈ C2,1:

ξ(Xsi )= ξ(Xsi+1)+ (Xsi − Xsi+1) · ∇ξ(Xsi+1)

+
1
2

∫ 1

0
(Xsi − Xsi+1) · ∇

2ξ(Xsi+1 + t (Xsi − Xsi+1)) · (Xsi − Xsi+1) dt. (23)

Since ξ cancels both at Xsi+1 and Xsi ∈ ∂�, we get

|(Xsi − Xsi+1) · ∇ξ(Xsi+1)| ≤
1
2 |Xsi − Xsi+1 |

2
∥∇

2ξ∥L∞ .

Together with (22) and (21) this yields

|Vsi+1 · ∇ξ(Xsi+1)| ≤
1
2∥∇

2ξ∥L∞ M2(si − si+1)+
1
2∥E∥L∞(si − si+1).

Furthermore, by definition of α from (19), α(si+1, Xsi+1 Vsi+1)= |Vsi+1 · ∇ξ(Xsi+1)|
2; hence we get

|si − si+1| ≥ C

√
α(si+1, Xsi+1 Vsi+1)

M2 + ∥E∥L∞

with C =C(�). The result then follows from the Velocity Lemma (Lemma 3.3) since k ≤ supi 1/(si−si+1)

by construction. □

4. The Vlasov–Poisson system

We will construct a solution to the Vlasov–Poisson equation as a limit of an iterative sequence defined as
follows:

For any n ≥ 0, we consider an initial data f n
0 satisfying

f n
0 ∈ C1,µ(�× Rd), f n

0 ≥ 0, (24)

supp f n
0 ⋐�× Rd, (25)

f n
0 (x, v)= constant for all (x, v) such that αn(0, x, v)≤ δ0, (26)
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where δ0 > 0 is fixed, µ∈ (0, 1), and αn is the δ-kinetic distance defined in (19) using the field En defined
below, initiated with the stationary field E0(x) = −∇U 0 and 1U 0

= −
∫

f0 dv with Dirichlet (6) or
Neumann (7)-(12) boundary conditions. Note that the fields En are indeed regular enough for this kinetic
distance to exist; see Corollary 4.2.

We then define the sequences f n and En for n ≥ 1 as
∂t f n

+ v · ∇x f n
+ En−1

· ∇v f n
= 0 in (0, T ] ×�× Rd,

En(t, x)= −∇U n, 1U n
= −

∫
Rd f n dv in (0, T ] ×�,

f n(0, x, v)= f n−1
0 (x, v) in �× Rd,

(27)

with the specular reflection boundary condition (5) for every fn and either the Dirichlet (6) or the Neumann
boundary condition (7) for every Un , with h ∈ C1,µ(∂�) satisfying (12) in the latter case.

4A. Well-posedness of the linear problem. We prove well-posedness of (27) in two steps. First we
consider the Vlasov equation with a fixed electric field E ∈ C0

t C1,µ([0, T ]×�)d and prove existence and
uniqueness of a solution f ∈ C1

t C1,µ([0, T ] ×�× Rd) in Theorem 4.1. Secondly, classical elliptic PDE
theory yields the converse, namely the existence and uniqueness of a solution E ∈ C1

t C1,µ([0, T ] ×�)d

to the Poisson equation for a fixed ρ ∈ C1
t C0,µ([0, T ]×�). Combining these two results, we finally state

in Corollary 4.2 the well-posedness of (27).

Theorem 4.1. Consider a C2,1 domain � and a fixed electric field E ∈ C0
t C1,µ([0, T ] ×�)d, µ ∈ (0, 1),

satisfying E(t, x) · ∇ξ(x)≥ C0 > 0 for all t ∈ [0, T ] and x ∈ ∂�. For all f0 satisfying (24)–(26) with the
kinetic distance associated with the field E , there is a unique solution f ∈ C1

t C1,µ([0, T ]×�× Rd) to
the linear Vlasov equation

∂t f + v · ∇x f + E · ∇v f = 0 in (t, x, v) ∈ (0, T ] ×�× Rd,

γ− f (t, x, v)= γ+ f (t, x,Rxv) on (t, x, v) ∈ (0, T ] × γ−,

f |t=0 = f0 in �× Rd.

(28)

Proof. By assumption on E and Lemmas 3.5 and 3.2 we know that α defined in (19) is a δ-kinetic distance,
that the grazing set is isolated, and that the flow of transport (X (s; t, x, v), V (s; t, x, v)) is uniquely
defined. Therefore, there is a unique solution f to our system, which is given by the push-forward of the
initial distribution along the flow of transport as expressed by the representation formula

f (t, x, v)= f0(X (0; t, x, v), V (0; t, x, v)). (29)

The key subject of this proof is then the regularity of f . Combining the representation formula with the
flatness assumption (26) we see that f (t, x, v) is constant if

α(0, X (0; t, x, v), V (0; t, x, v))≤ δ0,

and the Velocity Lemma (Lemma 3.3) then means that f (t, x, v) is constant if

α(t, x, v)≤ δ0eC0[(|v|+1)t+∥E∥L∞ t2
]
≤ δ0(T )

with
δ0(T ) := δ0eC0[(Q+1)T +∥E∥L∞ T 2

], Q = sup{|v|, v ∈ supp( f0)}. (30)



GLOBAL WELL-POSEDNESS OF VLASOV–POISSON-TYPE SYSTEMS IN BOUNDED DOMAINS 2475

As a consequence, it is enough to study the regularity of f away from a neighbourhood of γ0 where it is
constant, i.e., on the set

O = {(t, x, v) ∈ [0, T ] ×�× Rd
: α(t, x, v)≥ δ0(T )}. (31)

For any (t, x, v) ∈ O, we know from Lemma 3.2 that the number of reflections k that the trajectory
s → (X (s; t, x, v), V (s; t, x, v)) undergoes in the interval of time [0, t] is bounded by

k ≤ kδ(T )= T C1
(Q + T ∥E∥L∞)2 + ∥E∥L∞

√
δ0(T )

eC0[(Q+1)t+∥E∥L∞ t2
]. (32)

As a consequence the trajectory can be expressed as at most kδ(T ) compositions of transports inside
the domain, governed by the ODEs (14)-(15), and specular reflections on the boundary. By classical
ODE theory we know that, since E ∈ C0

t C1,µ([0, T ] ×�)d, the flow of transport inside the domain will
be C1

t C1,µ([0, T ] ×�× Rd)). Moreover, at the boundary, by assumption we have n(x) ∈ C1,1(∂�)

so the specular reflection operator Rxv = v − 2(v · n(x))n(x) is C1,1(0+). Thus, the entire flow
(X (s; t, x, v), V (s; t, x, v)) is C1

t C1,µ([0, T ] ×�× Rd) for all (t, x, v) ∈ O. □

We conclude this section with the well-posedness of the sequences f n and En.

Corollary 4.2. Consider a C2,1 domain � and an initial datum f0 satisfying (24)–(26) with µ ∈ (0, 1).
Then the sequences f n and En given by (27) are globally defined on (0, T )×�× Rd and, moreover, we
have, for any T > 0,

f n
∈ C1

t C1,µ([0, T ] ×�× Rd), En
∈ C1

t C1,µ([0, T ] ×�)d,

∥ f n
∥L∞(�×Rd ) = ∥ f0∥L∞(�×Rd ), ∥ f n

∥L1(�×Rd ) = ∥ f0∥L1(�×Rd ).

Proof. We recall that by standard Elliptic regularity theory, see e.g., [Gilbarg and Trudinger 1998,
Chapter 6; Nardi 2014], if f n

∈ C1
t C1,µ([0, T ]×�× Rd) and ∂� is C2,1 then the field En given by (27)

is in C1
t C1,µ([0, T ] × �)d. The well-posedness and the regularity of f n and En follow directly by

induction using Theorem 4.1 and this classical elliptic regularity result. The conservation of the L∞

norm follows from the representation formula (29) and the conservation of the L1 norm follows from
integrating the Vlasov equation in (27) over �× Rd. □

4B. Compactness and convergence with bounded velocity. In this section we will prove compactness of
the sequences f n and En under the assumption of bounded velocity support. To that end, we introduce

Qn(t)= sup{|v| : (x, v) ∈ supp f n(s), 0 ≤ s ≤ t}, (33)

and we shall assume in this section that, for all t ∈ [0, T ], we have Qn(t) < K = K (T ) uniformly in n.

Proposition 4.3. Consider a C2,1 domain � and an initial datum f0 satisfying (24)–(26) with µ ∈ (0, 1).
Assume that, for all n ∈ N, we have Qn(t)≤ K . Then, for some n0 > 0, the sequences f n and En given
by (27) satisfy, for all n ≥ n0,

∥En
∥C1

t C1,µ
x

≤ C(T ) and ∥ f n
∥C1

t C1,µ
x,v

≤ C(T ),

where C(T ) depends only on T , K , and ∥ f0∥L∞ .
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Proof. From the uniform bound on Qn(t) and the conservation of the L∞ norm in Corollary 4.2, we have

∥ρn(t)∥L∞(�) = sup
�

∫
Rd

f (t, x, v) dv ≤ ∥ f (t)∥L∞(�×Rd )Q
n(t)d ≤ K d

∥ f0∥L∞(�×Rd ).

Hence, by classical elliptic regularity, En is log-Lipschitz uniformly in n. This allows for uniform estimates
on ρn+1 in C0,γ (�) for some γ < 1. Indeed, we can consider v,w ∈ Rd, x, y ∈�, and sn+1

∗
∈ [0, t] such

that, for all s ∈ (sn+1
∗

, t), trajectories Xn+1(s; t, x, v) and Xn+1(s; t, y, v) do not undergo any reflections
on the boundary. Then, introducing

Y n+1(s)= |Xn+1(s; t, x, v)− Xn+1(s; t, y, w)| + |V n+1(s; t, x, v)− V n+1(s; t, y, w)|

we have, using the characteristic equations,

|Ẏ n+1(s)| ≤ |V n+1(s; t, x, v)−V n+1(s; t, y, w)|+|En(s, X (s; t, x, v))− En(s; X (s; t, y, w))|

≤ Y n+1(s)−C |Xn+1(s; t, x, v)− Xn+1(s; t, y, w)| log(|Xn+1(s; t, x, v)− Xn+1(s; t, y, w)|)

≤ CY n+1(s)|log Y n(s)|,

and hence

Y n+1(s)≤ elog Y n+1(t)e−C(t−s)
≤ (Y n+1(t))γ ≤ |x − y|

γ
+ |v−w|

γ

for all γ ≤ e−C(t−sn+1
∗ ). We have proved that the flow (Xn+1(s; t, x, v), V n+1(s; t, x, v)) is uniformly

bounded in some C0,γ (�× Rd) for s ∈ (sn+1
∗

, t).
Analogously to the proof of Theorem 4.1, we introduce the set

On = {(t, x, v) ∈ [0, T ] ×�× Rd
: αn(x, v)≥ δ(T )} (34)

with δ(T ) given by (30), and we know that f n+1 is constant on (�× Rd) \On so it is enough to study its
regularity on On .

Note that δ(T ) does not depend on n thanks to the uniform bounds on Qn(t) and ∥En
∥L∞ . Similarly,

for any (t, x, v) ∈ On , we can also bound the number of reflections within the interval (0, t) uniformly
in n with kδ(T ) given by (32). Hence the flow (Xn+1(s; t, x, v), V n+1(s; t, x, v)) can be expressed as at
most kδ(T ) compositions of transports in C0,γ (�× Rd) and specular reflections, and hence the flow is in
C0,γ ′

(�× Rd) with γ ′
≤ γ kδ(T ) ≤ e−kδ(T )CT . Combined with the representation formula (29) this yields

a uniform bound of f n+1, and in turn ρn+1, in C0,γ ′

(�× Rd) and C0,γ ′

(�), respectively.
Consequently, En+1 will be in C1,γ ′

(�)d by classical elliptic regularity, which means the system (27) at
rank n+2 satisfies the assumptions of Theorem 4.1, and our proposition then follows by iteration. Indeed,
at rank n+2 we have ρn+2

∈ C1,γ ′

(�) which yields En+2
∈ C1,µ(�)d — note that the limiting factor for

the regularity of En+2 is the regularity of the domain �— and finally we get ρn+3
∈ C1,µ(�). □

Remark 4.4. Note that the limiting factor for the regularity is, in fine, the specular reflection operator
which stops the flow of transport from reaching any regularity above C1,1.

Using the uniform bounds derived previously, we now state the following convergence result.
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Proposition 4.5. Consider a C2,1 domain � and an initial datum f0 satisfying (24)–(26) with µ ∈ (0, 1).
Assume that, for all n ∈ N, we have Qn(t)≤ K . Then, as n → ∞,

( f n, En)→ ( f, E) in Cν
t C1,µ′

([0, T ] ×�× Rd)× Cν
t C1,µ′

([0, T ] ×�)d

with 0 < ν < 1 and 0 < µ′ < µ. Moreover the limits f and E are in C1
t C1,µ([0, T ] ×�× Rd) and

C1
t C1,µ([0, T ] ×�)d, respectively, and ( f, E) is a solution to the Vlasov–Poisson system (1)–(5) with

either the Dirichlet (6) or the Neumann (7)–(12) boundary condition.

Unlike the previous results of this section, this proof does not rely on any geometrical considerations
but rather on some standard functional analysis using Proposition 4.3; we refer to [Hwang and Velázquez
2010, Proposition 3] for details.

4C. Global bound on Q(t) in dimension 3. We now restrict ourselves to the 3-dimensional case. The
purpose of this section is to remove the assumption of bounded velocity support by proving that if f0 is
compactly supported in velocity (10), i.e., Q(0) < K , then

Q(t)= sup{|v| : (x, v) ∈ supp f (s), 0 ≤ s ≤ t} (35)

is uniformly bounded on [0, T ].

Proposition 4.6. Consider a C2,1 domain �, an initial datum f0 satisfying (24)–(26) with µ ∈ (0, 1),
and the solution ( f, E) ∈ C1

t C1,µ([0, T ]×�× R3)×C1
t C1,µ([0, T ]×�)3 of the Vlasov–Poisson system

given by Proposition 4.5. Then there exists K (T ) <∞ depending only on T and f0 such that

Q(t)≤ K (T ) for all t ∈ [0, T ]. (36)

Proof. We prove this proposition via an estimation of the acceleration of the velocity along a characteristic
trajectory. To that end let us fix a trajectory (X̂(t), V̂ (t)). We wish to control, for some 1> 0,∫ t

t−1
|E(s, X̂(s))| ds ≤

∫ t

t−1

∫∫
�×R3

f (s, y, w)

|y − X̂(s)|2
dy dw ds + C1∥h∥L∞

≤

∫ t

t−1

∫∫
�×R3

f (t, x, v)

|X (s; t, x, v)− X̂(s)|2
dx dv ds + C1∥h∥L∞, (37)

where we have used the fact that the evolution of the characteristic trajectories is Hamiltonian, and hence
dy dw = dX (t; s, y, w) dV (t; s, y, w)= dx dv.

Following the approach of Pfaffelmoser [1992], we will split this integral into three parts. We introduce
three parameters η, β, γ > 0 to be determined later, and define P = Qη‘, R = Qβ‘, and 1= c0 Q−γ , with
c0 > 0 fixed. We then split the domain of integration as follows:

G = {(s, x, v) ∈ [t −1, t] ×�× R3
: |v|< P or |v− V̂ (t)|< P}, (38)

B = {(s, x, v) ∈ ([t −1, t] ×�× R3) \ G : |X (s; t, x, v)− X̂(s)|< ε0(v)}, (39)

U = {(s, x, v) ∈ ([t −1, t] ×�× R3) \ G : |X (s; t, x, v)− X̂(s)|> ε0(v)}, (40)
with

ε0(v)= max
{

R
|v|3

,
R

|v− V̂ (t)|3

}
. (41)
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We shall now handle each part of the integration individually. Throughout this section, we are mostly
interested in bounding each part of the integral with respect to powers of Q, and since the constants in
these bounds will not play a role, we introduce the notation a ≲ b to denote a ≤ Cb for some constant C
independent of Q. Note that we will also commonly use the notation G, B, or U to mean subsets of
�× Rd when the time parameter s is fixed, and also write G as a subset of Rd for fixed (s, x).

Remark 4.7. Note that our definition of ε0 differs from that of Hwang and Velázquez [2010] which
morally includes the term R/|v− V̂ +(t)|3 in the maximum (41), where V̂ +(t) is the specular reflection
of V̂ (t) at the last time of reflection s0 ∈ [t −1, t].

This difference is directly related to the fact that we develop in the paper a global analysis of the
trajectories, whereas Hwang and Velázquez developed a localised analysis. In the global framework, the
main argument to control the evolution of the velocity is the balance between the number of reflections
and the impact of these reflections on the direction of the velocity. Heuristically, the more reflections
happen within the interval (t −1, t), the closer the trajectory is to the grazing, i.e., the more tangential
the trajectory is at the points of reflections, and hence the lesser the impact of the specular reflection on
the direction of the velocity. In this context, it is enough to compare v with V̂ (t) so we do not need to
add a comparison with V̂+(t) in the definition of ε0.

4C1. The good set. For the integral over the good set G, the key argument is the following pointwise
control of E : for any (s, x) ∈ (0, T )×� and λ > 0,

|E(s, x)| ≲
∫
�

ρ(s, y)
|x − y|2

dy ≲ ∥ρ(s)∥L∞

∫
|x−y|<λ

dy
|y − x |2

+ ∥ρ(s)∥L5/3

(∫
|y−x |>λ

dy
|y − x |5

)2/5

≲ ∥ρ(s)∥L∞λ+ ∥ρ(s)∥L5/3λ−4/5.

Choosing λ such that ∥ρ(s)∥L∞λ= ∥ρ(s)∥L5/3λ−4/5 yields

|E(s, x)| ≲ ∥ρ(s)∥4/9
L∞∥ρ(s)∥5/9

L5/3 .

Moreover, the norm ∥ρ(s)∥L5/3 is related to the kinetic energy of the system: for any λ > 0,

ρ(s, x)≤

∫
|v|<λ

f dv+ λ−2
∫

|v|>λ

|v|2 f dv ≲ ∥ f0∥L∞λ3
+ λ−2

∫
|v|2 f dv,

and we know that the kinetic energy is bounded:∫∫
|v|2 f (t) dv dx := K (t)≤ K <∞

by conservation of the total energy of the system; see e.g., [Glassey 1996, Chapter 4]. Hence choosing
λ= K 1/5 yields ∥ρ(s)∥L5/3 ≲ K 3/5. Therefore we can bound E pointwise as

|E(s, x)| ≲ ∥ρ∥
4/9
L∞ ≲

(∫
R3

f (s, x, v) dv
)4/9

≲

(
∥ f0∥L∞

∫
|v|<Q

dv
)4/9

≲ Q4/3. (42)

We use this bound on E to derive a bound on w = V (s; t, x, v) when |v|< P:

|w| = |v| +

∫ t

s
|E(u, X (u))| du ≤ P + Q4/3(t − s).
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Choosing s ∈ (t −1, t) and γ ≥
4
3 − η ≥ 0 we get |w| ≲ P . This yields a control on the restriction of ρ

to the good set G:

ρG(s, y) :=

∫
w∈G

f (s, y, w) dw ≲ ∥ f0∥L∞ P3.

Let us now use these estimates to control the integral over the good set in (37) with an approach similar
to that of the pointwise bound of E above. Since the integral with respect to s will not play a role in this
bound we first control the rest: for any λ > 0,∫∫

G

f (s, y, w)

|y − X̂(s)|2
dy dw ≲

∫
�

ρG(s, y)

|y − X̂(s)|2
dy

≲ ∥ρG(s)∥L∞

∫
|y−X̂(s)|<λ

1

|y − X̂(s)|2
dy + ∥ρG∥L5/3

∫
|y−X̂(s)|>λ

1

|y − X̂(s)|2
dy

≲ ∥ρG(s)∥L∞λ+ ∥ρG∥L5/3λ−4/5

≲ ∥ρG(s)∥
4/9
L∞∥ρG∥

5/9
L5/3,

where we chose λ such that

∥ρG(s)∥L∞λ= ∥ρG∥L5/3λ−4/5.

Note that ρG(s, y)≤ ρ(s, y) by positivity of f , and hence we have immediately ∥ρG∥L5/3 ≤ ∥ρ∥L5/3 ≤ K ,
the kinetic energy. Finally, we get∫∫∫

G

f (s, y, w)

|y − X̂(s)|2
dy dw ds ≲1P4/3.

4C2. The bad set. The control of the integral over the bad set B in (37) follows rather immediately from
our choice of ε0:∫∫∫

B

f (t, x, v)

|X (s; t, x, v)− X̂(s)|2
dx dv ds ≲

∫ t

t−1

∫
v /∈G

∥ f ∥L∞ε0(v) dv ds

≲1
∫
v /∈G

max
{

R
|v|3

,
R

|v− V̂ (t)|3
,

R

|v− V̂ +(t)|3

}
dv

≲1R
∫ Q

P

1
r

dr ≲1R ln
Q
P
.

4C3. The ugly set. For the ugly set U, the time-integration of (37) is essential. Let us fix some (t, x, v)
and define W(s) as

W(s)= V (s; t, x, v)− v.

We easily deduce from our transport dynamics (14)–(16) the following system of ODEs for the evolution
of W(s):

Ẇ(s)= E(s, X (s; t, x, v)), W(t)= 0, (43)

W(τ )= RX (τ ;t,x,v)V (τ ; t, x, v)− v for all τ such that X (τ ; t, x, v) ∈ ∂�. (44)
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Note that the reflection condition (44) does not preserve the norm of W(τ ), as such it is not comparable
to specular reflections and the norm |W(s)| will not be a continuous function of s. Nevertheless, we can
bound the jump of |W(s)| at a reflection time τ using the Velocity Lemma (Lemma 3.3). Indeed, recall that,
for any τ ∈ (t −1, t), if (x, v) belongs to ∂�δ as defined in Lemma 3.2, then the Velocity Lemma yields

|V (τ ; t, x, v) · n(X (τ ; t, x, v))| ≤ c�
√
α(τ, X (τ ; t, x, v), V (τ ; t, x, v))

≤ c�(α(t, x, v)eC(|v|+1)(t−τ)+∥E∥L∞ (t−τ)2)1/2

≤ c�(α(t, x, v)eC[(Q+1)1+Q4/312
])1/2

with c� = ∥∇ξ∥L∞(∂�), and hence

|W(τ+)| = |V (τ−
; t, x, v)− v− 2(V (τ−

; t, x, v) · n(X (τ ; t, x, v)))n(X (τ ; t, x, v))|

≤ |W(τ−)| + 2c�(α(t, x, v)eC[(Q+1)1+Q4/312
])1/2. (45)

Moreover, from the uniform bound on E given in (42) we know that W is Lipschitz between reflection
times so that, assuming there are k reflections within the interval (t −1, t), we have

|W(s)| ≲ Q4/31+ 2k(α(t, x, v)eC[(Q+1)1+Q4/312
])1/2. (46)

If x /∈ ∂�δ , then the coefficient before |ξ(x)| in (19) could take negative values and α(t, x, v) could cancel
even though (x, v) /∈ γ0. However, if τ1 ∈ (t −1, t) is the first reflection time of the backwards trajectory
(X (s; t, x, v), V (s; t, x, v)), then, by continuity of X (s), the trajectory will reach ∂�δ at some time
s = t − δ̃1 ∈ (τ1, t) before it reflects on the boundary. In the interval [t − δ̃1, t] there are no reflections, so
the evolution of |W(s)| is bounded by the uniform estimate of the electric field (42). As a consequence, the
inequality (45) still holds with α(t − δ̃, X (t − δ̃; t, x, v), V (t − δ̃; t, x, v)) instead of α(t, x, v). Moreover,
the same argument holds at any reflection time τi ∈ (t −1, t), namely there exists a δ̃i > 0 such that,
if s ∈ (τi − δ̃i , τi ) then X (s; t, x, v) ∈ ∂�δ and the isolation of the grazing set ensures that

α(τi − δ̃i , X (τi − δ̃i ; t, x, v), V (τi − δ̃i ; t, x, v))

≤ α(t − δ̃, X (t − δ̃; t, x, v), V (t − δ̃; t, x, v))eC[(Q+1)(τi −δ̃i −t+δ̃)+Q4/3(τi −δ̃i −t+δ̃)2]

≤ α(t − δ̃, X (t − δ̃; t, x, v), V (t − δ̃; t, x, v))eC[(Q+1)1+Q4/312
].

Since (45) is established at a reflection time τ , this control of the kinetic distance holds and (46) follows.
Therefore, we define an extension of the kinetic distance as

α(t, x, v) :=

{
α(t, x, v) for all x ∈ ∂�δ,

α(t − δ̃, X (t − δ̃; t, x, v), V (t − δ̃; t, x, v)) for all x /∈ ∂�δ,

and (46) holds without the need to distinguish the cases x ∈ ∂�δ and x /∈ ∂�δ.
Now, we know from Lemma 3.5 that α(t, x, v) yields an upper bound on the number of reflections k.

More precisely, with |v|+1∥E∥L∞ ∼ Q (see the proof of Lemma 3.5) and using (42) we have, assuming
without loss of generality that Q ≥ 1,

k ≲
Q21

√
α(t, x, v)

eC[(Q+1)1+Q4/312
]
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from which we deduce the following bound on |W(s)|:

|W(s)| ≲ Q4/31+ Q21eC[(Q+1)1+Q4/312
].

In order for the exponential term to be uniformly bounded in Q, we want 1Q to decay when Q grows
large. Therefore, we choose γ > 1 and get the estimate

|W(s)| ≲ c0 Q2−γ ≲ c0 P Q2−γ−η
≤

1
4 P (47)

if we choose 1<γ ≤ 2−η with η< 3
4 and the appropriate choice of c0> 0 in the definition of1= c0 Q−γ.

Now that we’ve established this bound on |W(s)|, the control of the integral over the ugly set in (37)
follows rather classically. As a consequence, we shall skip the details which can be found, e.g., in
[Schaeffer 1991; Glassey 1996, Section 4.4] and only outline the following steps of the proof. First, note
that one can define Ŵ(s)= V̂ (s)− V̂ (t) and derive the same estimate so that we have

|V (s; t, x, v)− V̂ (s)| ≥ |v− V̂ (t)| − |V (s; t, x, v)− v| − |V̂ (t)− V̂ (s)|

≥ |v− V̂ (t)| − 1
2 P ≥

1
2 |v− V̂ (t)|,

where the last bound follows from the fact that (s, x, v) ∈ U. We now define Z(s) as

Z(s)= X (s; t, x, v)− X̂(s)

and have immediately |Ż(s)| = |V (s; t, x, v)− V̂ (s)| ≥
1
2 |v− V̂ (t)|. Moreover, one can compare Z(s)

with the linear approximation Z(s)= Z(s0)+ Ż(s0)(s − s0) with s0 ∈ [t −1, t] minimizing |Z(s)|, and
using the uniform bound on Z̈(s) which follows from (42) one gets

|Z(s)| ≳ |s − s0||v− V̂ (t)|.

Furthermore, considering (s, x, v) ∈ U for which ε0(v)=
R

|v|3
, the substitution s → τ = |s − s0||v− V̂ (t)|

yields∫ t

t−1

ds
|Z(s)|2

≤

∫ t

t−1

ds

|s − s0|2|v− V̂ (t)|2
≤

1

|v− V̂ (t)|

(∫ ε0(v)

0

1
ε2

0
dτ +

∫
+∞

ε0

1
τ 2 dτ

)
≲

|v|3

R|v− V̂ (t)|
.

Similarly, for (s, x, v) ∈ U such that ε0(v)=
R

|v−V̂ (t)|3
, one gets∫ t

t−1

ds
|Z(s)|2

≲
|v− V̂ (t)|3

R|v− V̂ (t)|
,

so that, for any (s, x, v) ∈ U,∫ t

t−1

ds
|Z(s)|2

≲
1

R|v− V̂ (t)|
(min{|v|, |v− V̂ (t)|})3 ≲

|v|2

R
.

Using the boundedness of the kinetic energy, we finally derive the estimate∫∫∫
U

f (t, x, v)

|X (s; t, x, v)− X̂(s)|2
dx dv ds ≲

1
R

∫∫
U

|v|2 f (t, x, v) dx dv ≲
1
R
.
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4C4. Conclusion of the Pfaffelmoser argument. Collecting the estimates above, we have

1
1

∫ t

t−1
|E(s, X̂(s))| ds ≲ P4/3

+ R ln
Q
P

+
1
1R

≲ Q4η/3
+ Qβ ln Q1−η

+ Qγ−β.

To optimize the order of Q on the right-hand side we can take R = Qβ ln−1/2 Q and choose η =
6

11 ,
β =

8
11 , and γ =

16
11 , which yields

1
1

∫ t

t−1
|E(s, X̂(s))| ds ≲ Q8/11 ln1/2 Q.

We see in particular that the right-hand side is sublinear in Q so we have proved that

Q(t)− Q(t −1)

1
≲ Q8/11(t) ln1/2 Q(t), (48)

and the boundedness of Q follows from a classical iteration procedure; see [Glassey 1996, Section 4.5]. □

4D. Proof of Theorem 2.1. In the previous sections, we have constructed solutions to the Vlasov–Poisson
system in the sense of Theorem 2.1 on a time interval [0, T ] in dimension 3. Note, indeed, that due to
the Hopf lemma the electric field in the Dirichlet case satisfies E(t, x) · n(x) < 0 for all t ∈ [0, T ] and
x ∈ ∂�; therefore the Velocity Lemma (Lemma 3.3) applies. To conclude the proof of the theorem we
only need to show uniqueness and that this construction holds as T → ∞.

Global solutions: First of all, recall that thanks to the flatness assumption (11) and the isolation of the
grazing set given by Lemma 3.3 we can restrict our analysis to the set O defined in (31), i.e., away from
the grazing set, where the number of reflections that any trajectory undergoes within a finite interval of
time is uniformly bounded as a consequence of Lemma 3.5. By convergence of En

→ E , the characteristic
flow (Xn(s; t, x, v), V n(s; t, x, v)) converges uniformly to (X (s; t, x, v), V (s; t, x, v)), and therefore
Qn(t)→ Q(t) uniformly on [0, T ]; see, e.g., [Hwang and Velázquez 2009, Proposition 5] for details.
Therefore, there exists n0 > 0 such that, for all n ≥ n0, the assumption Qn(t) < K in Proposition 4.3 can
be removed as it follows from Proposition 4.6 and our choice of initial data. Hence in order to prove that
our construction holds as T → ∞ it is enough to show that K (T ) given by Proposition 4.6 is finite for
any T > 0, which follows classically from our bound (48) on the discrete derivative of Q.

Uniqueness: Let us consider ( f 1, E1) and ( f 2, E2), two solutions of the Vlasov–Poisson system in
the sense of Theorem 2.1 with the same initial condition f0. We easily see that the difference f 1

− f 2

satisfies

∂t( f 1
− f 2)+ v · ∇x( f 1

− f 2)+ E1
· ∇v( f 1

− f 2)= (E1
− E2) · ∇v f 2.

We then consider the characteristic flow (X1(s; t, x, v), V 1(s; t, x, v)) associated with the force field E1,
which is indeed characteristic for the transport operator on the left-hand side of the equation above, and
integrate along this flow to write

( f 1
− f 2)(t, x, v)=

∫ t

0
(E1

− E2)(s, X1(s; t, x, v)) · ∇v f 2(s, X1(s; t, x, v), V 1(s; t, x, v)) ds,
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since ( f 1
− f 2)(0, x, v) = 0 by assumption. Using classical estimates on the Poisson kernel in a

C2,1 domain � we have, for all (s, x),

|(E1
− E2)(s, x)| ≲

∫
�

|ρ1(s, y)− ρ2(s, y)|
|x − y|2

dy, (49)

and hence, with Fubini and the fact that the characteristic flow is Hamiltonian,

∥( f 1
− f 2)(t)∥L1(�×R3) ≤

∫ t

0

∫
�

|ρ1(s, y)− ρ2(s, y)|
∫∫

�×R3

|∇v f 2(s, x, v)|
|x − y|2

dx dv dy ds.

On the one hand, we have∫∫
�×R3

|∇v f 2(s, x, v)|
|x − y|2

dx dv ≤

∫
|y−x |<1

|∇v f 2(t, y)|
|x − y|2

dy +

∫
|y−x |≥1

|∇v f 2(t, y)|
|x − y|2

dy

≲ ∥∇v f 2(t)∥L∞(�;L1(R3)) + ∥∇v f 2(t)∥L1(�×R3),

where both norms of ∇v f 2 are uniformly bounded on [0, T ] by assumption. On the other hand, we have∫
�

|ρ1(s, y)− ρ2(s, y)| dy ≤ ∥( f 1
− f 2)(s)∥L1(�×R3),

and hence

∥( f 1
− f 2)(t)∥L1(�×R3) ≤ C(T )

∫ t

0
∥( f 1

− f 2)(s)∥L1(�×R3) ds,

and uniqueness follows from Grönwall’s lemma, which concludes the proof of Theorem 2.1. □

5. The ionic Vlasov–Poisson system

We now turn to the VPME system (3). The general strategy of proof for Theorem 2.2 is the same as for
Theorem 2.1 in the Vlasov–Poisson system case, with the exception of the elliptic regularity estimate
of Corollary 4.2 which does not apply to the nonlinear Poisson equation of (3). Therefore, we will
prove analogous elliptic estimates in the next two sections as stated in Proposition 5.1 for the Dirichlet
case and Proposition 5.2 for the Neumann case, and in Section 5C we will rather briefly present the
proof of Theorem 2.2, focusing on the differences between the VP and the VPME case in order to avoid
unnecessary repetitions.

5A. The Dirichlet case.

Proposition 5.1. For any ρ ≥ 0 in C0,α(�), the nonlinear Poisson equation with Dirichlet boundary
condition {

1U = eU
− ρ− 1, x ∈�,

U (x)= 0, x ∈ ∂�,
(50)

has a unique solution U ∈ H 1
0 (�). Furthermore, this solution is in C2,α(�) and satisfies ∂nU (x) < 0 for

all x ∈ ∂�.
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Proof. In the spirit of [Griffin-Pickering and Iacobelli 2021b, Proposition 3.5], we prove existence of a
solution in H 1

0 (�) via a calculus of variation approach, by finding a minimiser for the energy functional

φ → ED[φ] :=

∫
�

(
1
2
|∇φ|

2
+ eφ −φ− ρφ

)
dx

in H 1
0 (�), and proving that this minimiser solves the Euler–Lagrange equation associated with ED , which

is (50). Uniqueness then follows from the strict convexity of ED .
First of all, for any φ ∈ H 1

0 (�) let us write φ+(x)= max(0, φ(x)). Since ρ ≥ 0, we have −ρφ≥ −ρφ+

and eφ −φ ≥ eφ+ −φ+ because, for all x ≤ 0, we have ex
− x ≥ e0

− 0 = 1. As a consequence,

ED[φ]=

∫
�

(
1
2
|∇φ+|

2
+

1
2
|∇(φ−φ+)|

2
+eφ−φ−ρφ

)
dx ≥

∫
�

(
1
2
|∇φ+|

2
+eφ+−φ+−ρφ+

)
dx =ED(φ+).

Hence if φ minimises ED on H 1
0 (�) then φ = φ+. Moreover, by the strong maximum principle, if ρ ̸≡ 0

then φ > 0 in � and cancels at the boundary, which implies ∂nφ < 0 on ∂�.
Secondly, we show existence of a minimiser. Let us consider a minimising sequence (φk), i.e., a

sequence in H 1
0 (�) such that

ED[φk
] → inf

φ∈H1
0 (�)

ED[φ] =: m.

Note that since ED[φ+] ≤ ED[φ] we can assume without loss of generality that φk
≥ 0. We want to show

that the sequence φk is uniformly bounded in H 1
0 (�). To that end, we first notice that ED(0)= |�|, and

hence, for k large enough,
ED[φk

] ≤ |�|.

Furthermore, since φk
≥ 0 we have that eφ

k
−φk

≥ (φk)2, and since ρ ∈ L∞(�) we can fix C > 0 such
that 1

2(φ
k)2 ≥ ρφk

− C . As a result, we have

|�| ≥ ED[φk
] ≥

∫
�

(
1
2
|∇φk

|
2
+

1
2
(φk)2 − C

)
dx =

1
2
∥φk

∥H1
0 (�)

− C |�|,

and hence the sequence (φk) is equibounded in H 1
0 (�). The rest of the proof of existence of a solution

to (50) follows exactly the proof of [Griffin-Pickering and Iacobelli 2021b, Proposition 3.5], which is
a similar result in the torus. For the sake of completeness we outline the main arguments here. The
boundedness of (φk) in H 1

0 (�) implies that, up to a subsequence, φk
→ U a.e. with U a minimiser of ED .

Finally, one can show that U solves the Euler–Lagrange equation associated with ED , namely (50), by
investigating the limit as η→ 0 of (ED[U + ηϕ] − ED[U ])/η for any ϕ ∈ C∞

c (�).
We now turn to the regularity of U. We split U into a regular part Û and a singular part U, solutions to{

1Û = eU+Û
− 1,

Û |∂� = 0,

{
1U = −ρ,

U |∂� = 0.
(51)

By classical elliptic PDE theory on a C2,1 domain � (see, e.g., [Evans 1998, Chapter 6]), we know that,
for ρ ∈ C0,α(�), there is a unique solution U ∈ C2,α

c (�) ⊂ H 1
0 (�), and consequently we also have a

unique Û = U − U ∈ H 1
0 (�). We are now interested in the regularity of Û.
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First of all, we know that Û is the unique minimiser in H 1
0 (�) of

φ → ÊD[φ] :=

∫
�

(
1
2
|∇φ|

2
+ eU+φ

−φ
)

dx,

where the Dirichlet Poisson potential U is uniformly bounded, i.e., there exists M1 > 0 such that
−M1 ≤ U (x)≤ M1 for all x ∈�. By minimality, this means on the one hand

ÊD[Û ] ≤ ÊD[0] =

∫
eU dx = eM1 |�|<∞.

On the other hand, using the Poincaré inequality,

ÊD[Û ] ≥
1
2

∫
�

(|∇Û |
2
+ eU+Û ) dx − C∥∇Û∥L2(�) ≥

∫
�

eÛ+U dx − C∗

for some C∗ > 0. Combining the two estimates we get a bound of eÛ in L1(�):∫
�

eÛ dx ≤ eM1(eM1 |�| + C∗).

Furthermore, by construction, for any test function φ ∈ H 1
0 (�), we know that Û satisfies∫

�

(∇Û · ∇φ+ (eU+Û
− 1)φ) dx = 0.

In particular, for any n ∈ N, writing Ûn := Û ∧ n we can take φn = eÛn − 1 which is indeed in
H 1

0 (�)∩ L∞(�), and hence∫
�

(|∇Û |
2eÛ 1Û≤n + eU eÛ+Ûn − eÛ+U

− eÛn + 1) dx = 0.

Since |∇Û |
2eÛ

+ 1 ≥ 0, this yields∫
�

eU eÛ+Ûn dx ≤

∫
�

(eÛ+U
+ eÛn ) dx . (52)

Moreover, by construction eÛn is increasing and converges to eÛ, and hence the monotone convergence
theorem yields

∥eÛ
∥

2
L2(�)

=

∫
�

e2Û dx ≤
1 + eM1

e−M1

∫
�

eÛ dx := C0∥eÛ
∥L1(�).

We may iterate this argument: for any k ∈ N, we take φ = ekÛn − 1, write C0 = (1 + eM1)eM1, and get

∥eÛ
∥

k
Lk(�)

=

∫
�

ekÛ dx ≤ C0

∫
�

e(k−1)Û dx ≤ · · · ≤ Ck−1
0 ∥eÛ

∥L1(�).

Thus, for any k ∈ N, we have 1Û = eÛ+U
− 1 ∈ Lk(�) with ∥eÛ+U

− 1∥Lk(�) ≤ Ce5M1, so by standard
elliptic regularity Û ∈ W 2,k(�); see e.g., [Gilbarg and Trudinger 1998, Section 6.3]. We can take k large
enough for Sobolev embeddings to yield Û ∈ C1,α(�) with

∥∇Û∥C0,α(�) ≤ Ce5M1, (53)
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which in turns implies eU
− ρ − 1 ∈ C0,α(�) since U ∈ C2,α

c (�). Standard elliptic regularity for (50)
then yields U ∈ C2,α

c (�) and concludes the proof since we already have ∂nU < 0 on ∂� from the fact
that U minimises ED . □

5B. The Neumann case.

Proposition 5.2. For any ρ ≥ 0 in C0,α(�) with
∫
�
ρ dx = 1, consider the nonlinear Poisson equation

with Neumann boundary condition {
1U = eU

− ρ− 1, x ∈�,

∂nU (x)= h, x ∈ ∂�,
(54)

with h < 0 in C1,1(∂�) satisfying (13). Then there is a unique solution U ∈ H 1(�) to this problem.
Furthermore, this solution is in C2,α(�).

Note that one could remove the assumption
∫
�
ρ dx = 1 as long as ρ remains integrable on �. The

condition that h satisfies (13) would then be

h < 0,
∫
∂�

|h| dσ(x) <
∫
�

ρ dx + |�|.

Proof. Analogously to the Dirichlet case, we will prove existence of a solution to (54) in H 1(�) by
finding the minimiser in H 1(�) of

EN [U ] :=

∫
�

(
1
2
|∇U |

2
+ eU

− U − ρU
)

dx −

∫
∂�

Uh dσ(x),

and uniqueness will follow from the strict convexity of EN .
Let us consider a minimising sequence (φk) in H 1(�) and prove that it is equibounded. An upper

bound is immediate since EN [0] = |�|, and hence for k large enough EN [φk
] ≤ |�|. Note however that,

unlike the Dirichlet case, we cannot easily compare EN [max(φ, 0)] with EN [φ]. Instead, we will show
equiboundedness of the positive and negative parts of φk which we denote φk

±
= ± max(0,±φk) and that

will yield the equiboundedness of φk since

EN [φk
] = EN [φk

+
] + EN [φk

−
] and ∥φk

∥H1(�) = ∥φk
+
∥H1(�) + ∥φk

−
∥H1(�).

On the one hand, we have

−

∫
∂�

hφk
+

dσ(x)≥ 0,

and, with the same arguments as in the Dirichlet case, we have eφ
k
+ −φk

+
− ρφk

+
≥

1
2(φ

k
+
)2 − C for some

C > 0, and hence

|�| ≥ EN [φk
+
] ≥

∫
�

(
1
2
|∇φk

+
|
2
+

1
2
(φk

+
)2 − C

)
dx ≥

1
2∥φk

+
∥H1(�) − C |�|,

which is the equiboundedness of φk
+

.
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On the other hand, we write φk
−

= Ck +ψk with Ck =
∫
�
φk

−
dx ≤ 0 and ψk = φk

−
− Ck ∈ H 1(�) with∫

�
ψk dx = 0, which yields

EN [φk
−
] =

∫
�

(
1
2
|∇ψk |

2
+ eCk+ψk − (ρ+ 1)ψk

)
dx −

∫
∂�

hψk dσ(x)− Ck

(
1 + |�| +

∫
∂�

h dσ(x)
)
.

Assumption (13) immediately yields, for some c0 > 0,

−Ck

(
1 + |�| +

∫
∂�

h dσ(x)
)

≥ c0|Ck |. (55)

Further, using the Poincaré inequality and the Sobolev trace theorem we have∫
�

(
1
2
|∇ψk |

2
+ eCk+ψk − (ρ+ 1)ψk

)
dx −

∫
∂�

hψk dσ(x)

≥
1
2

∫
�

|∇ψk |
2 dx − C

∫
�

|ψk | dx − C
∫
∂�

|ψk | dσ(x)

≥
1
2

∫
�

|∇ψk |
2 dx − C∥∇ψk∥L2(�)

≥
1
2

∫
�

|∇ψk |
2 dx − C∗

for some C∗ > 0. Together with (55) and the upper bound EN (φk)≤ |�| we have

∥∇φk
−
∥

2
L2(�)

+ c0|Ck | ≤ C∗
+ |�|.

Finally, using the Poincaré inequality again we get boundedness of φk
−

in H 1(�) since

∥φk
−
∥L2(�) ≤ ∥φk

−
− Ck∥L2(�) + |Ck ||�| ≤ ∥∇φk

−
∥L2(�) + C,

and the equiboundedness of φk in H 1(�) follows. This implies, up to a subsequence, convergence a.e.
of φk towards U, the unique minimiser of EN in H 1(�). Let us now check that the Euler–Lagrange
equation associated with EN is indeed (54). For any η > 0 and φ ∈ C∞(�), since U is the minimiser
of EN we have EN [U + ηφ] ≥ EN [U ] and

0 ≤ lim
η→0

1
η
(EN [U + ηφ] − EN [U ])

≤ lim
η→0

[∫
�

(
∇U · ∇φ+

1
2
η|∇φ|

2
+ eU

(
eηφ − 1
η

)
−φ− ρφ

)
dx −

∫
∂�

φh dσ(x)
]

≤

∫
�

[∇U · ∇φ+ (eu
− 1 − ρ)φ] dx −

∫
∂�

φh dσ(x).

This holds for any φ ∈ C∞(�), so it is true in particular for φ̃ = −φ, and hence, for all φ ∈ C∞(�),
U satisfies ∫

�

[∇U · ∇φ+ (eU
− 1 − ρ)φ] dx −

∫
∂�

φh dσ(x)= 0,

which means that U is indeed the unique weak solution in H 1(�) of (54).
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For the regularity of U, we follow the strategy of the Dirichlet case. We split U into a regular part Û
and a singular part U , solutions to{

1Û = eU+Û
− 1 in �,

∂nÛ = h1 on ∂�,

{
1U = −ρ in �,
∂nU = h2 on ∂�,

(56)

with {
h2 < 0,

∫
∂�

h2 dσ(x)= −1,
h1 ≤ 0,

∫
∂�

h1 dσ(x)=
∫
∂�

h dσ(x)+ 1,

and naturally h1 + h2 = h on ∂�. By standard elliptic regularity theory, see e.g., [Nardi 2014], there
exists a unique (up to an additive constant) solution U ∈ C2,α(�) for all α ∈ (0, 1), which in turns yields
existence and uniqueness (for a fixed U ) of Û ∈ H 1(�) which satisfies, for all φ ∈ H 1(�),∫

�

(∇Û · ∇φ+ (eÛ+U
− 1)φ) dx −

∫
∂�

h1φ dσ(x)= 0.

Next, we write Ûn = Û ∧ n for any n ∈ N and take φ = eÛn ∈ H 1(�)∩ L∞(�) as a test function. Since
h1 ≤ 0 we get a similar estimate as (52) in the Dirichlet case:∫

�

(eU eÛ+Ûn − eÛn ) dx = −

∫
�

|∇Û |
2eÛ 1Û≤n dx −

∫
∂�

|h1|eÛn dσ(x)≤ 0,

and hence, for M1 > 0 such that −M1 ≤ U (x)≤ M1 for all x ∈�, we have by monotone convergence

∥eÛ
∥

2
L2(�)

≤ eM1∥eÛ
∥L1(�).

We can iterate this estimate, choosing φ = ekÛn as a test function for any k ∈ N, and derive

∥eÛ
∥

k
Lk(�)

≤ eM1∥eÛ
∥

k−1
Lk−1(�)

≤ · · · ≤ e(k−1)M1∥eÛ
∥L1(�).

Furthermore, we can take φ = 1 ∈ H 1(�) as a test function as well which yields∫
�

eÛ dx ≤ eM1

∫
�

(eÛ+U
− 1) dx ≤ eM1∥h1∥L1(∂�).

As a consequence, eÛ
∈ Lk(�) for all k ∈N which yields eU+Û

−1∈ Lk(�)with ∥eU+Û
−1∥Lk(�)≤Ce3M1.

Similarly to the Dirichlet case, standard elliptic regularity yields Û ∈ W 2,k(�) and we can take k large
enough for Sobolev embeddings to yield Û ∈ C1,α(�) with

∥∇Û∥C0,α(�) ≤ Ce3M1, (57)

and since U ∈ C2,α(�) this means eU
− 1 −ρ ∈ C0,α(�) and Proposition 5.2 follows by standard elliptic

regularity theory. □
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5C. Proof of Theorem 2.2. Using the elliptic regularity estimates established above for both the Dirichlet
and the Neumann case, we can now prove well-posedness of the VPME system in the sense of Theorem 2.2
following the same arguments as in the Vlasov–Poisson case.

More precisely, we notice that the electric field E = −∇U with U a solution to (50) or (54) is in
C0

t C1,µ([0, T ] ×�)d and satisfies E · n(x) = −∂nU > 0 for all x ∈ ∂�, so the results of Section 3
apply, namely there exists a δ-kinetic distance α and we have a Velocity Lemma. Moreover, if we define
an iterative sequence (27) with the nonlinear Poisson equation (50) or (54), then Theorem 4.1 holds
and the elliptic regularity estimates proved above ensure that both Corollary 4.2 and Proposition 4.3
hold. Therefore, we have constructed a classical solution of the VPME system under the assumption of
uniformly bounded velocities Q(t) < K (T ) for all t ∈ [0, T ] with Q(t) given by (35). In order to remove
this assumption we decompose the electric field as E = Ê + E with the regular part given by Ê = −∇Û
and the singular part given by E = −∇U, where Û and U are defined either by (51) or (56).

On the one hand, since |�|<∞ and by classical elliptic regularity, see e.g., [Gilbarg and Trudinger
1998, Chapter 6; Nardi 2014],

∥U∥L∞(�) ≤ C(1 + ∥ρ∥C0,α(�)),

where C depends on ∥h∥C1,α(∂�). Using (53) or (57) this yields a uniform control of Ê in L∞(�) as

∥Ê(t, · )∥L∞(�) ≤ C exp((1 + ∥ρ∥C0,α(�))).

Therefore, in order to bound the maximum velocity Q(t), one only needs to consider E for which the
analysis developed in Section 4C applies, so we have an equivalent of Proposition 4.6 for VPME. Finally,
we conclude the proof of Theorem 2.2 by the same argument as in Section 4D in order to show global
existence and uniqueness, with the following estimate instead of (49):

|(E1
− E2)(s, x)| ≤ |(E1

− E2)(s, x)| + |(Ê1
− Ê2)(s, x)|

≲
∫
�

|ρ1(s, y)− ρ2(s, y)|
|x − y|2

dy + ∥Ê1(t, · )− Ê2(t, · )∥L∞(�). □

Appendix: Numerical simulations

In this appendix, we present some numerical simulations of the trajectories of particles in the linear
Vlasov equation (28) in order to illustrate the results of Section 3.

We consider � to be the unit disk in dimension 2 and introduce an electric field E . In order to stay
close to a Vlasov–Poisson framework, we will consider a field given by a Poisson equation with a nice
density ρ. More precisely, we consider a Gaussian bell function centred at x0 = (0.5, 0),

ρ(x)= C exp
(
−

1
1 − 4|x − x0|2

)
1|x−x0|<1/2,

and the stationary electric field E given by E = −∇U and 1U = −ρ with Dirichlet boundary conditions
U |∂� = 0. This field can be explicitly written as a convolution with the Green function of the ball; see,
e.g., [Evans 1998, Section 2.2.4]. We illustrate ρ and E in Figure 1 and note that E is indeed outgoing
on ∂� in the sense that E · n(x) > 0 for all x ∈ ∂� as assumed in Section 3.
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Figure 1. Choice of density ρ and associated field E .

Given this fixed field E , we can compute the trajectory of a particle by solving the system of ODEs
(14)–(16). For instance, if we consider a particle starting at x = (−0.9, 0) with velocity direction (−0.2, 1),
then its trajectory in the domain � will be given by Figure 2.

On that figure, we also plot the norm of the velocity s → |V (s; 0, x, v)|, which decreases when the
particle moves against the direction of the field and increases when it follows the field. In particular,
we see that when the trajectory moves towards the right of the disk, where the field is strongest, it may
change direction if the norm of the velocity is too small, as is the case in Figure 2. This can be interpreted
as the particle slowing down to the point where the electric field becomes stronger than the natural inertia
of the particle, and hence the change of direction. We also notice on this plot that the norm of the velocity
is a continuous function of s that is piecewise smooth (for the regular field E we consider in this example)
with singularities at the points of reflection, as expected.

s

V| |s

V( )sX ,s

V( )0X ,0

Figure 2. Trajectory in the disk from x = (−0.9, 0), v ∝ (−0.2, 1), and evolution of speed.
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a (s)

s

Figure 3. Kinetic distance along a trajectory.

We would like to illustrate the Velocity Lemma (Lemma 3.3), which states that if a trajectory starts
close to the grazing set γ0 then it remains close to γ0 through time, although the size of the neighbourhood
increases exponentially fast; see (18). However, since any neighbourhood of γ0 is a subset of the four-
dimensional phase-space, we cannot really illustrate this result on the plot of the trajectory (even though
if a trajectory is close to γ0 then necessarily Xs is close to ∂� by construction, but that is not a sufficient
condition). Instead, let us look at the kinetic distance α given by (19). In our example, we characterise
the unit disk via the function ξ(x)=

1
2(|x |

2
− 1) for which the kinetic distance α can be written as

α(x, v)=
1
2(v · x)2 + (1 − |x |)(|v|2 + E(x) · x).

Note that since the electric field is stationary, the kinetic distance does not depend directly on t . Introducing
α(s) = α(X (s; 0, x, v), V (s; 0, x, v)) for a fixed (x, v) ∈ �× R2, we plot in Figure 3 the evolution of
the kinetic distance along the trajectory illustrated in Figure 2.

The Velocity Lemma (Lemma 3.3) gives a uniform exponential bound on α: for all (x, v) ∈�× R2

and s ∈ (0, t),

α(x, v)e−C0[(|v|+1)s+∥E∥L∞ s2
]
≤ α(X (s; 0, x, v), V (s; 0, x, v))≤ α(x, v)eC0[(|v|+1)s+∥E∥L∞ s2

]

for some C0 = C0(ξ, E) > 0. Since the constant C0 is not given explicitly by our Velocity Lemma we
will not illustrate this exponential bound.

To conclude this appendix we now consider other examples of trajectories and their associated kinetic
distances in order to illustrate the behaviours that these trajectories can exhibit and the associated variations
of their kinetic distances. In Figure 4 we represent 6 trajectories, all starting with the same vertical
direction of velocity (0, 1) (with a greater initial norm than the one of Figure 2, which is why there is no
change of direction in plots 4 to 6 when the trajectory travels through the right side of the domain) and
initial position on the x-axis with coordinate −0.2,−0.4,−0.6,−0.8,−0.9, and −0.95, respectively. As
in Figure 2, we represent with a blue star the position at s = 0 and with a blue circle the position at the
end time, with colours matching that of Figure 5. These trajectories illustrate in particular the isolation of
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Figure 4. Examples of trajectories on the disk; (top) examples 1–3, (bottom) examples 4–6.

grazing. We see indeed that the trajectories 4 to 6, which start relatively close to the grazing set, remain in
a neighbourhood of ∂�, a neighbourhood which grows smaller as (x, v) grows closer to the grazing set γ0.

We also plot the evolution of the kinetic distance along these trajectories in Figure 5. Note that since
they all start with the same velocity (and initial position on the same axis) it is easy to identify which
curve corresponds to which trajectory by the initial value of the kinetic distance which decreases as the
initial position grows near the boundary.

One may observe many phenomena in this last illustration. For instance, we see that the kinetic
distances of the last two trajectories, which start rather close to grazing, vary little through time. Note
that this also applies to the trajectory of Figure 2, which morally would fit between the fourth and fifth

a (s)

s

Figure 5. Kinetic distances as functions of s.
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trajectories of Figure 4. On the other hand, the kinetic distance of the trajectories that start with a position
far from ∂� show significant variations, and we see in particular that, at their lowest, their value is close
to that of the last two trajectories. This illustrates the fact that if x is close to ∂� and |v| ≪ 1, then
α(x, v) will be small even if v is not tangential. The exponential bounds given by the Velocity Lemma
(Lemma 3.3) naturally allow for such behaviour since the exponential coefficients are uniform in x ∈�

and only depend on the norm of v.
Finally, let us emphasize that for these illustrations we have chosen a very smooth electric field E and

a smooth domain � with constant curvature. Naturally, if the field E is less regular, and if one consider a
more general uniformly convex domain �, then one may observe a much wider variety of behaviours for
the trajectories of the linear Vlasov equation (28). On the importance of curvature, let us recall that we
are not yet able to prove a strong enough isolation of the grazing set when the domain is not uniformly
convex — i.e., when the curvature may cancel pointwise or on portions of the boundary — in order to
conclude the Pfaffelmoser argument of Section 4C since the exponential controls of our Velocity Lemma
are significantly worse in the nonuniformly convex case, as explained in Remark 3.4.
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