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GLOBAL REGULARITY FOR THE NONLINEAR WAVE EQUATION
WITH SLIGHTLY SUPERCRITICAL POWER

MARIA COLOMBO AND SILJA HAFFTER

We consider the defocusing nonlinear wave equation Ou = |u|?~!u in R x [0, c0). We prove that for
any initial datum with a scaling-subcritical norm bounded by M, the equation is globally well-posed for
p =548, where § € (0,80(Myp)).

1. Introduction

We consider the Cauchy problem for the nonlinear defocusing wave equation on R3, that is,

{Du: |u|P~tu,

(u, d;u)(-,0) = (uo,u1) € (H'NH?) x H!, M

where u : R3>x 1 — R, p>1and 00 = —3d;; + A is the d’ Alembertian. For sufficiently regular solutions

of (1) the energy
|u|p+1

E(u)(r):/%|atu|2+%|w|2+p—

dx
+1

is conserved, i.e., E(t) = E. Moreover, there is a natural scaling associated to (1): for A > 0 the map
w1y (x, 1) = Ar=Tu(Ax, Af)

preserves solutions of (1). Correspondingly, the energy rescales like E (u;) (1) = AC—2)/ (=D E ) (1)
and hence the equation is energy-supercritical for p > 5. Our goal is to show that given any (possibly
large) initial data (1o, u1), the supercritical nonlinear defocusing wave equation (1) is globally well-posed
at least for an open interval of exponents p € [5,5 + 8p).

Theorem 1.1. Let [|(uo, u1)|l g1ng2xg1 < Mo. Then there exists 8o = 8o(Mo) > 0 such that for any
8 € (0, 8o) there exists a global solution u of (1) with p = 5 + § from the initial data (ug, u1). Moreover,
there exists a universal constant C > 1 such that for any time t

CE(u)352
1, 0:) (O g1 pr2se gt = ||(M0,M1)||HlmHszleC(1+(CE(”)) ) (2)

and we have the global spacetime bound

)352

||u||L2(1’—1)(R3xR) <C(+ (CE(u))CE(“ ).

In particular, the solution scatters as t — F00.

MSC2010: 35B65, 35L15, 35L70.
Keywords: nonlinear wave equation, global regularity, supercritical equation.
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614 MARIA COLOMBO AND SILJA HAFFTER

Global regularity and scattering for the energy-critical regime was established in [Struwe 1988;
Grillakis 1990]. The classical results in the critical case were recently improved to obtain explicit double
exponential bounds [Tao 2006b] and to allow a critical nonlinearity with an extra logarithmic factor
f(u) = u’log(2 + u?) in the case of spherical symmetric data [Tao 2007]. Exploiting the method
introduced in [Tao 2006b; Roy 2009] could remove the assumption of spherical symmetry for slightly
log log-supercritical growth. In two-dimensions, global regularity has also been established for the slightly
supercritical nonlinearity f(u) = ue” in [Struwe 2011]. For the classical supercritical nonlinearity
f(u) = |u|P~'u with p > 5, global existence and scattering of solutions still holds for small data in
scaling-invariant spaces, for instance in H*» x H%»~!, where

)
LT

is the critical Sobolev exponent. For general large data, however, the problem of global regularity and
scattering is still open: apart from conditional regularity results in terms of the critical Sobolev regularity
[Kenig and Merle 2011; Killip and Visan 2011], global solutions have been built only from particular
classes of initial data [Krieger and Schlag 2017; Beceanu and Soffer 2018] or for a nonlinearity satisfying
the null condition as in [Wang and Yu 2016; Miao et al. 2019].

Our result should be seen in line with [Tao 2006b; Roy 2009], pushing global regularity in a slightly
supercritical regime. Although the nonlinearity considered in those papers has a logarithmically supercrit-
ical growth at infinity, it still comes, up to lower-order terms, with the scaling associated to the critical
case p = 5. Correspondingly, both the scaling-invariant quantities of the critical regime, as well as some
logarithmically higher integrability, are controlled by the energy. Instead, we consider the supercritical
nonlinearity (1) and achieve global existence and scattering by paying the price of working on bounded
sets of initial data, as previously done for other equations, such as SQG [Coti Zelati and Vicol 2016] and
Navier—Stokes [Colombo and Haffter 2021]. As in [Roy 2009; Coti Zelati and Vicol 2016; Colombo and
Haffter 2021], the crucial ingredient of the proof of Theorem 1.1 is a (quantitative) long-time estimate.
In the spherically symmetric case, the classical Morawetz inequality gives an a priori spacetime bound
as long as the solution exists. The following result replaces this long-time estimate in the absence of
symmetry assumptions.

Theorem 1.2 (a priori spacetime bound). There exists a universal constant C > 1 such that, for any
solution (u,d;u) € L®(J,(H' N H% x HY)(R3)) of (1) with p =5+ 86, § € (0,1), defining M :=
[ull Loo®3xs)> E:= E(u)and L := ||(u, at”)||LOO(J,(HprHSp—1)(R3)) the following hold.:

o F min{ EM%/2 L} < ¢o, then lull20-1 3% sy < 1.
. Ifrnin{EMS/Z, L} > coand (CEMS/ZL)C(EMS/zL)ws <218 then
g 8/2 71176
||u||L2(p—1)(R3><J) < (CEMzL)C(EM L' 3

Corollary 1.3. There exists a universal constant C > 1 such that the following holds. Let My > 0 be given.
Then there exists 8o = 8o(Mo) > 0 such that, for any solution (u,d,u) € L®(J, (H' N H% x H')(R3))
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of (1) with p =5+ 6 for § € (0,8¢] and with ||(u,3;u)||Loo(J (HNE2xHY)®3) = My, we have the
a priori spacetime bound

3 8/2\352
lutll 20— 1 o sy < max{1, (CE(u)Mg )CE@MT> 4)

Remark 1.4. From the proof, we observe that §p has the following dependence as My — oco: there exists
C’ > 1 such that
In2 In2

S0 :=min! 1, , .
0= MM LMy In(C'E)(C'E)352

Theorem 1.1 follows from Corollary 1.3 and a continuity argument, taking advantage of the fact that,
if the estimate (4) involves in the right-hand side higher-order norms of the solution itself, which we a
priori don’t control for large times, on the other side they appear only to the power § and hence can be
kept under control for § small.

The proof of Theorem 1.2 follows instead the scheme introduced in [Tao 2006b] to obtain double
exponential bounds on critical Strichartz norms based on Bourgain’s “induction on energy” method [1999].
In [Roy 2009], the scheme has been successfully applied to a log-supercritical equation assuming
a (subcritical) a priori bound M on [[u|[fcog3xs): indeed, it was noticed that the induction on the
energy, which does not allow the inclusion of the a priori bound M, can actually be bypassed by a
simpler ad-hoc argument. We will use the latter strategy also in our case. Rather than controlling an
L*L'? norm as performed in the mentioned papers, we estimate an L2~ norm, which is scaling-
critical for every p. To follow their line of proof, we need to overcome some issues related to the
supercritical nature of our equation: for instance, a fundamental use of the equation in all critical
global regularity results is the localized energy equality and the subsequent potential energy decay,
first used in [Struwe 1988; Grillakis 1990; Shatah and Struwe 1993]. In the supercritical regime, the
localized energy inequality becomes less powerful, since the nonlinear term is estimated this time in
terms of a power of the length of the time interval besides the energy itself (see Lemma 4.5). To
be able to still take advantage of this localized energy inequality, we need a control on the length of
the so-called unexceptional intervals, which was not derived before in [Tao 2006b; Roy 2009] and
seems to work in the supercritical case only. To achieve this control, we introduce another scaling-
invariant norm of u accounting for more differentiability, namely L% HS». This quantity, which
appears in the final estimate (3), was not needed in [Tao 2006b; Roy 2009]. It turns out to be fun-
damental to bound the length of unexceptional intervals by performing a mass concentration in H 7,
rather than in H! (see Lemma 6.2), and thereby obtaining an upper bound on the mass concentration
radius.

The strategy of proof of Theorem 1.1 is very flexible and we plan to apply it in a future work to
the radial supercritical Schrodinger equation. For instance, as regards the initial data, the statement
of Theorem 1.1 is written with (ug,u1) € H! N H% x H! and in the proof we take advantage of the
embedding of H 3/2+€ in L. However, we will investigate whether a similar result holds just above the
critical threshold, namely for (1o, u1) € H' N HY€ x H€ for some € > 0, with 8o depending on €.
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2. Preliminaries

2A. Energy-flux equality. With the notation of [Shatah and Struwe 1998], we introduce the forward-in-
time wave cone, the truncated cone and their boundaries centered at zg = (x¢, f9) € R3 x R defined by

K(zo) :={z = (x.1) € R* : |x —xo| <1 — 10},

K} (z0) := K(z0) N (R x [s.1]).
M!(z0):={z=(x,r) € R3x (s,1):|x —xo| =r —1to}.
D(t:z0) := K(z0) N (R? x1).

Correspondingly, we introduce the localized energy as well as the energy flux

E(u; D(t; zg)) :=/ l|8,u|2—i-lquIZ—I-de,
D(t;z0) 2 2 p+l1

Flux(u; M; (z0)) := /

1\ x—xo 7 ! do
Mf(Zo)2

u— ul| +———.
x—xo| ' pt1l V2
Let us recall that for any sufficiently regular solution we have the energy-flux identity

E(u; D(t: z9)) + Flux(u; M (z0)) = E(u; D(s; z9)) (5)

for any 0 < s < ¢. Indeed, (5) is obtained by integrating (Ju — |u|?~'u) d;u on K!(zo); see for instance
[Shatah and Struwe 1998]. Whenever zo = (0, 0), we will not write the dependence on zg; we will write
' (1) for the forward wave cone centered at 0 and truncated by 1,

Fo(l):={(x,t)eR3xR:|x|<t,tel},
and we define e(¢) := E(u; D(¢)). We can then rewrite (5) for any 0 <s < ¢ as

2 [u|?*1 do

p+1 2°

e(t) —e(s) = /Mt %

2B. Strichartz estimates. Letu:R*x1 — R solve the linear wave equation Ju = F. Letm €1, %) Then
for any (¢, r) € (2, 0o] x[1, 00) wave-m-admissible and for any conjugate pair (¢, 7) € [1, +00] x[1, +00]
with

W—)[—Catu

=5—m, (6)

we have

lellzacr,ory + 11Ge, 8) | poop grm s frm—1y < CUIW, 0::0) (C0) | g grm—1 + 1 F llLacz,ry)s (D

where t9 € [ is a generic time. The above Strichartz estimates are classical and we refer for instance
to [Ginibre and Velo 1995; Keel and Tao 1998; Lindblad and Sogge 1995; Sogge 1995]. Notice that
(q.7r) =2(p—1),2(p—1)) is wave-s,-admissible and all (g, r) wave-s,-admissible are scaling-critical.
Moreover, the constant C can be taken independent of m € [1, %]
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2C. Localized Strichartz estimates. By the finite speed of propagation, we can localize the above
Strichartz estimates on wave cones. Let = [a,b] and m € [1, 2). For any solution u : R3>x / — R of a
linear wave equation u = F, we have for any (¢, r) wave-m-admissible and any conjugate pair (g, 7)
satisfying (6) the localized estimate

llliLarr gy S N 00O grmy gm—1ywsy 1 F ILarr @ ay)- (8)

As a consequence, if I = [a,b] = J1 U J», we have
lllzarr @y oy S N 00Ol gomx gm-1y@3y T 1 F lLa L oy 1002))-

2D. Littlewood—-Paley projection. We follow the presentation of [Tao 2006a]. Fix ¢ € C*° (R?) radially
symmetric, 0 < ¢ < 1 such that supp¢ € B»(0) and ¢ = 1 on B;(0). For N € 27, introduce the Fourier
multipliers

Py [ (€)= p(E/N) [ (),
Pon f(§):= (1—p(E/N) L (®),
PN [ (€)= (p(E/N)—p(QE/N)) f ().

The above projections can equivalently be written as convolution operators and the Young inequality
shows that the Littlewood—Paley projections are bounded on L? for any 1 < p < 4+00. Moreover, we
have the Bernstein inequalities

d(i-1
1P<n sy Spa NG Pan £l o @ )

for 1 < p < g < 400 and the same holds with Py f in place of P<y f. Moreover, for 1 < p < 400 we
also recall the fundamental Littlewood—Paley inequality

1 f o ety ~ H( 3 |PNf|2)2

Ne2?

(10)

LP([R“’)‘

2E. Dependence of constants. In the rest of the paper, all constants will be independent of the choice of
8 €0, 1). We keep the estimates in scaling-invariant form (for instance, in all the statements of the lemmas
in Sections 3—6). We write the terms in the estimate in terms of simpler scaling-invariant quantities, such
as E||u||i/020, lullL2co—vs ull; oo grsps ET—3/(r=1 (see for instance (16)).

3. Spacetime norm bound under a scaling-invariant smallness assumption

In this section, we recall that the Strichartz estimates give a universal control on the critical L2(P—1)
spacetime norm, which is in particular independent of the length of the time interval of existence, provided
that the solution satisfies a suitable scaling-invariant smallness assumption. In our context, we formulate
the smallness assumption in terms of the critical H*» norm as well as a scaling-invariant combination of
the energy and the L°° norm.
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Lemma 3.1. Let p = 5+ 8 for § € (0, 1) and consider a solution (u,d;u) € L°(I, H' N H? x H)
to (1). Assume additionally that ||u||.cog3x )y < M. There exists a universal 0 < co < 1 such that if

s
EM2 <co or |(u, atu)”LOO(I,(HSPXHSp—l)(R:'a)) =< co,
then

||u||L2(p_1)(R3XI) <1 (11)

Proof. Let us first assume that EM®/2 < ¢q fora co < 1 yet to be chosen. By interpolation

_s _4
lull 20 < llull oo llull /5"

We notice that (8, 8) is wave-1-admissible. By the Strichartz estimate (7) (With m=1and(q,7)= (2, %)),
Holder and the Sobolev embedding H'(R3) — L°(®3) we have

1 1
lullzs =< E2 4 |Jul” ullp2p 52 S E2 + [[JulP” Iz Mullzoers < E3(1+ IIMIILZ(,, )
Summarizing, we have obtained that fora C > 1
52 4
lull 20— < C(M2E)P=T(1 + |[ull;20-1),

from which (11) follows setting co := (4C)~?~D/2 < 1,
Let us now assume || (1, 0;u) ”LOO(HSP wEsp—1) = cq fora0<cg < 1. Observing that (2(p—1),2(p—1))
is wave-sp,-admissible, by the Strichartz estimate (7) (with m = s, and (g,7) = (2,6(p —1)/(Bp + 1))),
Hoélder and the Sobolev embedding H 57 (R3) — L3(P~D/2(R3), we have
el 20 < N1, 30wl oo (frsp x frsp—1y + 1P~ | 2 poor—1r/Goa 1y
S0 86w oo (ggsmegrso—1y + 1P~ Iz2 Mullzeep3r-1r2

< ”(u atu)”LOO(HprHYp 1)(1 + ||u||L2(p 1))

Calling C’ the constant in the above inequality, (11) follows by setting ¢y := (4C’)~L O

4. Spacetime norm decay in forward wave cones

The goal of this section is to prove the following proposition, which identifies a subinterval J (of quantified
length) with small L2~ norm of u in any sufficiently large given interval I = [T}, T5]. The main
difference to the energy-critical case p = 5 [Tao 2006b, Corollary 4.11] lies in the fact that the largeness
requirement on / can no longer be reached by simply choosing 75 big enough (see Remark 4.3).

Proposition 4.1 (spacetime-norm decay). Let p =548 with § € (0,1), I = [Ty, Tz] C (0, 00) and
consider a solution (u,d;u) € L¥(I, H* N H2 x HY) 1o (1). Assume that |ull Loor3x 1y < M. There
exists a universal constant 0 < C < 1 such that if 0 < n < 1 is such that

,7<C2(EM§)76<£1> (12)
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then the following holds for any A satisfying

12(p—1) 14

A> (Co ) 5 (EM3)S (13)

if T1 and T, are such that

_ _ —1\— —1)2 _ _
Q>A3(C27I 1)6(17 1)(p+1)/5(EM8/2)(9P+19)/10max{(Czn 1) 6(p—1) /S(EMa/z)g(p 1)/10,(M(p 1)/2T2)8/2}’

T,
(14)

then there exists a subinterval J = [t’, At'] C I with

el 20-1 0y gy = 10-

Remark 4.2 (simplified assumptions in the large energy regime). In the large energy regime EM 8/2 > ¢,
with ¢g defined through Lemma 3.1, the hypothesis (12) can be simplified to

n < Cacg” " i=cy,
where we observe that 0 < ¢( < 1. Moreover, the assumption (14) can be replaced by the stronger
condition

LRI

T,

—1)6(p—1)(p+1)/5(EM8/2)9p+19/10 max{c(()P—1)/25(M(p—1)/2T2)8/2} (] 5)
Remark 4.3. The assumptions of Proposition 4.1 comprise an upper bound on 77 for any fixed n
satisfying (12), A satisfying (13) and 73 satisfying (14). However, this will not be the spirit of the
application of this proposition: we will rather fix 77 and consider (14) as a condition on 73 and §. This
condition may sound strange since, when all other parameters are fixed, (14) is not verified for large 75.
On the other hand, we will instead fix

T2 — TlA3(C2,7—1)6(1J—1)(1)+1)/5(EM8/2)(9P+19)/10
and notice that (14) is verified for § sufficiently small.

As a first step to the proof of Proposition 4.1, we show that if the L2®~D norm of u in a strip is
bounded from below, the Strichartz estimates imply a lower bound on the L L?*! norm in the same
interval.

Lemma 4.4 (lower bound on global and local potential energy). Let p =5+8 with § € (0, 1) and n € (0, 1].
Consider a solution (u,d;u) € L°(I, H' N H% x HY) to (1). Assume that lull L2-v@3x 1y = 1 and
]l Loo3x 1y < M. Then there exists 0 < Cy < 1 universal such that

Il 5ty Loy = Cin S PO MBE)y "5 M3, (16)

Moreover, by finite speed of propagation the same estimate can be obtained by replacing R3 x I by any
truncated forward wave cone I'(I).
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Proof. Let 0 <n < 1. By shrinking /, we can assume without loss of generality that [u|| z20—1) g3 1) = 7-
We observe that we control all wave-1-admissible spacetime norms with the energy. Indeed, fix (¢, r)
wave-1-admissible. By the Strichartz estimate (7) with m = 1 and Holder

1 _ 1 _ 1 1, 1
lullzorr S EZ + ul? ullp2ps2 S E2 + lullpoopolllul? Mz S E2+E2nP ' SE2. (17)

We observe that the pair (3, 18) is wave-1-admissible and that (3, 18) and (oo, p + 1) interpolate to

((%(p +1)+3, %(p + 1D+ 3) = (8 + é8, 8+ %8). By interpolation and (17), we thus have
2 1 8+ 8 2 (p+1) 8 3. .5 2(p+1)

)21, < llu ||Loo Il 650 < M@ S0l 82l s s S (MEEY Mo P T 0 O

We now come to a localized energy inequality of Morawetz-type which, in the critical case p = 5,
implies the potential energy decay and hence it is crucial for the global regularity in the critical case
[Grillakis 1990; Struwe 1988]. In the supercritical case, the former localized energy inequality degenerates
and will only lead to some decay estimate on bounded intervals: indeed the presence of the extra term

p¥/(P+1) in the right-hand side of (18) below makes the inequality interesting only when an estimate on
the length of the interval is at hand.

Lemma 4.5, Let § € [0,1) and p =5+ 8. For any 0 < a < b and any weak finite energy solution
(u,d;u) € C([a,b], H' N LPtYY N LP([a, b], L?P) x C([a,b], L?) of (1), we have

/|| b|u(x,b)|p+1dx < ;’—)E+e(b)—e(a)+b%(e(b)—e(a))#. (18)

Proof. Let us first assume that u € C%(R3 x [a, b]) is a classical solution of (1). We follow the notation
of [Shatah and Struwe 1993; Bahouri and Shatah 1998] and introduce the quantities

2 Ju|PH! X
Qo =—((3tu) + | Vul?) + ——— +du( = Vu),
p+1 t
x ()% |Vul*  |u|PT! x u
Poi=" _ _ Vuldu+2 - vut+2),
0 t( 2 2 ST AR

Observe Rg > 0. Multiplying (1) by (¢ ;14 x-Vu+u) one obtains d; (t Q¢+ 9su u)—div(zPy)+ Ro =0;
see [Shatah and Struwe 1998, Chapter 2.3]. Integrating on K 3 (recall the definitions in Section 2), we
obtain

b Qodx —a Qodx—l—/ Ro dx dr
D(a) K?

D(b)
do
=—/ 8,uudx+/ 8,uudx+/ (Q0+8,uu+tP0 )—
D) D(a) Mp x|} V2

=/Mbt(8,u+ -Vu + ) iig, (19)
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where in the second equality we used the computations of [Bahouri and Shatah 1998, Section 2] for p =5
to rewrite the last addend on the right—hand side. Indeed, on M? the integrand

t Qo+ 0du+ Poy- | | —t(atu)2+28tux-Vu+8tuu

is now independent of p. Proceeding as in [Bahouri and Gérard 1999], we estimate on K, 5

2 2
_ 0

(3tu)2 1
+ - 2

X
i v
2 2 U

t

8;u)t—C-Vu < +%|Vu|2. (20)

We infer from (19)—(20), the positivity of Ry and the conservation of the energy that

Ju|PH1 a / ( ) do
drx < — Qodx + — 8u+ -Vu +
/D(b) p+1 b Jp(a) b ! V2

a lu|P+1 5 2) 1/ ( X u)z do
< - + (0;u)” + |Vul|* ) dx + — tloju+—-Vu+—| —
_bD(a)(p+1 (0% + |V (o vty

<E+1/za+ V+ da

We estimate the last term on the right-hand side as in [Bahouri and Gérard 1999]: we use (5) to bound

2 do u? do
b/ (3t“+— Vi + — ) \/—_2(e(b)—e(a))+2[£t—zﬁ.

The main difference with respect to the energy-critical regime is the estimate of the second addend which
now deteriorates with b. Indeed, we estimate by Holder

u? do ul?tl do pi
/MH_ZE@M(/W |p|+1 E) < b7 (e(b) — ela)) 7.

Collecting terms, we have obtained (18) for classical solutions u € C%(R3 x [a, b]).
If u is a weak finite-energy solution of (1) as in the statement, we proceed as in [Bahouri and Gérard

/\

1999]: we fix a family of mollifiers {p¢ }¢>0 in space and define u, := u * pe. Then, setting
Je= _|ue|p_1”e + (|u|p_1“) * Pe»
ue € C%(R3 x [a, b)) is a classical solution of
Oue = |ue? ue + fe. (21)

By assumption, f; € L!([a, b], L?) can be treated as a source term. We then deduce (18) by proving the
analogous local energy inequality for a nonlinear wave equation with right-hand side (21) and pass to the
limit € — 0. We refer to [Bahouri and Gérard 1999, Lemma 2.3] for details. O

Lemma 4.5 can be viewed as decay estimate for the potential energy. Again, when compared to
the critical case [Tao 2006b, Corollary 4.10], the supercriticality of the equation weakens the decay by
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introducing a new dependence on 75, the endpoint of the interval to which the decay estimate is applied,
which deteriorates as 72 — +oc.

Proposition 4.6 (potential energy decay in forward wave cones). Let I = [T1, T3] C (0, +00) and
consider a solution (u,d,u) € LI, H' N H% x HY) to (1) with p = 5 + & for some § € (0, 1). Let
0 < 6 such that

ETZ_%G_(P“) > 1. (22)
Let A > 0 be such that

A= ET, 71600 gng gPETS V00 maxigmD0mD 2 o o)

Then there exists a subinterval of the form J = [t, At'] such that

5
[[u ||LooLp+1(F+(J)) < Tz(”_”””rl) 9.

Notice that 6 in the previous statement is not dimensional.

Proof. Let 6 > 0 be as in (22) and fix A > ET, 8/(p=Dg=(r+1) Let N to be chosen later be such that
ANT < T, namely

N

U1 a2 njc 1.

i=1

Since e is nondecreasing in time (see (5)), we have e(A42"1) —e(A2~V¢) > 0 for all n and

N
0= e(A>"T1) —e(4>"™VT1) = e(A>NTy) —e(Ty) < E.

n=1

Hence there exists ng € {1, ..., N} such that e (4270 Ty )—e(A2"0~D ) < EN 1. Splitting the interval as
[AZ(n()—l)Tl’ AZno Tl] — [AZ(n()—l)Tl’ A2n0—1T1] U [A2n0—lT1’ A2n0 Tl],

we have, applying Lemma 4.5 with a := A2®0=D T} and varying b € [42"0~1T}, A2"0T}], that

1 s 2
p+1 -1 2 ST -1\ 537
HMHLOOLP'H(I‘+([A2"0_1T1,A2”0T1]) < ZE+EN + (AT P+ (EN™ ") pH1

_3 _é _8
5 sz—l 0P+1 4 EN—I + T2p+1 (EN—I)ﬁ S sz—l 9p+1’
provided
(EN—I)ﬁ < szep-f—l and EN—l < TZ%QP-I-I’

or equivalently,

pt+D =1
2

__8_
ET, 777 PTD max{1,6~ V<N

For the latter, we have to ask that [T}, A2V T}] C [T}, T»], which is enforced by the second requirement
in (23). =
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Proof of Proposition 4.1. Fix 0 < 6 yet to be determined such that ETZ_S/ (P=Dg—(p+D) 5 |, Fix
A>F T2—8/ (P=1)g—(p+1 and assume that (23) holds. By Proposition 4.6, there exists a subinterval J of
the form J := [t/, At'] and C’ > 1 such that

5
lull oo Lo+1(ry (1)) = C/Tz(p_])(””@. (24)

We claim that if we choose 6 appropriately, we have |[u|z2—1(r, (7)) = 7. Indeed, assume by contra-
diction that [[u[|z2(»—1)(r, (7)) = 1- Then we have from Lemma 4.4
12(p—1) & . __9 &
||u||LOOLp+1(F+(J)) > Cyn5e+D (MZE) 5(p+D M 2(»+D)
Choosing 6 to be

C 2(p—1)
= é EEaE (MzE) 5(p+1)M 2(p+1)T ~ D D
2

we reach a contradiction with (24). Let us now verify the hypothesis on 8: We observe that

ET, 776~ = (¢ 20y 0y 28 (g dy ¥
such that hypothesis (22) is enforced if
0<n< (Cflzc’)%(EM%)ﬁ-
This explains the hypotheses (12) and (13) with the choice
= (C;12c) 6D

We also rewrite the largeness hypothesis on /, namely the second formula in (23), in terms of 7,

9_(p+1)2(p—1) _ (Cl(26,,)_1)_(174-1)(1)—1)77 6(1J D2 (EM )9(p I)MS(p“_l)TZ%
_1. 8w 2p=1)
=(Can™) (M Tz) (EM?)
so that
max{l,G_(p+l)2(p_l)}
_ (p 12 3 9p—1) _ (p 2
= (Canh (EM?2)” 10 max{(Con~ ")~ Tz) ).
This shows that (14) implies the second inequality in (23). O

5. Asymptotic stability

Let u : R3 x I — R solve an inhomogeneous wave equation Ju = F. We now introduce the free
evolution u; ;, from time 7o, that is, the unique solution of the free wave equation Cu; ,, = 0 which
agrees with u at time fg, i.e., (1] z,, 07U 4,)(t0) = (u, 0;u)(t9). We recall that, from solving the linear
wave equation in Fourier space, we have the representation formula

O bt

where we use Fourier multiplier notation; see for instance [Sogge 1995]. From this representation as well

Up (1) = cos(tv/—=A)u(to) +

as the Strichartz estimate (7), it follows that for any m € [ ) and any (p, q) satisfying (6) we have the
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estimate

Gert5 Deut1,e) | oo (1 grm s gm—1y + Ui g llL20-0 @31y S N 300) ()| grom s frm—1- (25)

From Duhamel’s principle it follows that we can write for # € 1

t o 4! —
u(t) = g1y (1) +/t‘ sin((¢ \/%«/_A)

We recall from [Shatah and Struwe 1998, Chapter 4] that for ¢ # ¢’ we have the explicit expression

sin((t =t )V—=A) ., 1
VAN Fe) = A (t —1') Jix—x'|=|t—r

We recall that the linear evolution enjoys asymptotic stability in the following sense.

F(t)dt'. (26)

F(t',x") dH*(x').

Lemma 5.1 (asymptotic stability for the linear evolution). Let p =546 with 6 € (0, 1). Let u be a solution
to (1) on R3 x I’ with lull poow3x1y < M. Then for any I = [t1,t2] € 1" and anyt € I"\ I we have

2
120 =11, ) ooy < (EM $)T0D dise(r, 1) 777,

Proof. From (5) we deduce that

u ,t P+1
ate(t)zfll |(2+c17{2(y).
xX|=t

Integrating in time, by translation invariance and time reversibility, we have
// lu(x’',t")|PTLdn3(x")dt' < E
I J|x'—x|=|t'—t|

for any (x, 1) € R3 x I'. Using (26), we write for t € I’ \ [
1 A |
A Joy Nt =1 Jix—xr=le—r|

U, (t) —up s (1) = lu(x’,t")|? a2 (x") dr’.

We apply Holder with

(3(p—1> 3(p—1))_(p+1+% p+1+%)
2p 7 p-3 2
to estimate for any x € R3

|ul,t2(x’[)_ul,t1(xvt)|

123 1
< / P lu(x’, t")|P dH3(x") dt’
o=

1 |x—x'|=t—t|

2p p—3

2 s 3(p—D 2 dt’ 3(p—D
S(/./ |”|p+1+2(xl’l/)dHZ(x,)dt,) (f 30— )
1 Jx—x'|=lt—t'| nolp—¢| 3 2

2p
s 2 3(p—1) 2
< 2 pH+l 1 20N 347 . -2
< (Wl [ [ e ) i,y

s _2r 2
< (M2E)30-0 dist(r, I )" 7T, U
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The importance of the above asymptotic stability lies in the following corollary.

Corollary 5.2. Let p = 5+ 6 with § € (0,1) and I = [t—,t4+]. Consider a solution (u,d;u) €
Lo°(I, H'NH2x HY) to (1) and assume that [ull Loo®3xry < M. Consider Iy = [t1, t2] and I = [t2, 13]
foranyt_ <ty <tp, <tz <ty. Then

1
(TP < M(EM%)WP—U ||M||%
Ltz ULt IL2(=D(T (1) ~ |12|2(p1_1) Loo(I,(HP xHsp—1))"

Proof. We observe that the pair (oo, %(p — 1)) is wave-sp-admissible, where we recall that s, :=
1+6/Q2(p—1)) is the critical Sobolev regularity of (1). We estimate by Holder

_ 1 1 3
”ul,t3 - ul,t+ ||L2(”—1)(I‘+(11)) s |11 | 2(p=1) ”ul,tz — Ut ||z°°([R3><I|) ||ul,t3 - ul,t+ ||2°°L3(p71)/2(l"+(11))'

Observe that v :=uj ,; —uy,, solves Ov = 0 with v(¢3) = u(#3) —u;;, (¢3). Hence by the Strichartz
estimate (7) and (25) we have
0l oo Lao—r2y (1)) S 12 0:0) ) (s  Frsm—1) w3y
SN 0ew) (@) || grsp wggso—1 + 1 @ep s Oeur e )@ grsp o grsp—1
S 1 9) @) grsp w grso—1 + 1, 0010 ()| grsp o grsp—1

< ”(u, 8tu)||LOO(I’(HSpXHSp—1))- O

6. A reverse Sobolev inequality and mass concentration

The section is devoted to proving that, if u solves (1), then there exists a suitable ball with controlled size
which contains an amount of L? norm, quantified in terms of [|u||;2»—1) and ||u| grs. A key ingredient
in the proof is the reverse Sobolev inequality of Tao, generalized for any s € (0, %) We present the proof
for completeness, since the original argument used the fact that p was integer.

Proposition 6.1. Let 0 <s < % andé = %— 3 Let f € H*(R3). Then there exists x € R and 0 < r < %

such that
1

1 2 3 2 (3 2
(& [, PO@) 21Paw AL 1 o

Proof. By replacing f with f (x) := (1/| f I ) f (x) we can assume without loss of generality that
Ifllgs =1

Step 1: Let g € HS with lgll 75 < 1. Then there exists N €27 such that

3
lglzs < 1Pxygllza, (28)

and as a consequence

(2) 5
lgll; 7" N < | Pygllree. (29)
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From (10), Plancherel’s theorem and the hypothesis ||g|| ;s < 1, we infer that

> N*|Pygli. 1. (30)
Ne2Z

By interpolation, (30) and the definition of g we see that (29) is a consequence of (28); indeed
2

2 1-2 25 g 1 -2 __2s 3
1PyglLe < IPgglf-llPrgle =N ¢ (N Pyel;2) eI Prglpe SN 7 | Prgll oo
We are left to prove (28). Let us fix M € N big enough such that ‘21 € (M — 1, M]. With this choice
of M, we ensure the subadditivity of the map x — x4/ M) We then write, using the hypothesis, (10),
the aforementioned subadditivity, a reordering and Holder,

M &
lelf < [ (Z |PMg<x>|2) we= | 1—[(2 |PNig<x)|2) dx
Me2Z i=1 "N;e2Z
M q M q
< [T1 X ipveerfracs Y [ [iPwewli ax
i=1N;e2’ Ni<+-<Ny i=1
q(M—=2)

< (sup I1Pnglize) 3 (/|PN1g(x)|3|PNMg(x)|3dx)M.

Ne2? Ni1<+<Nm

In all sums on N <--- < Njz, we intend that each N; belongs to 2Z. We claim that the second factor is
bounded by a constant. Indeed, we estimate the last integral for fixed N1 and Nps using Holder by

( [ 12w Py 018 dx)

&

NS

u =M =M M
<\ 1PN &llfoo | 1PN () 2 [PNy 8(X) 2 | PNy, g(x)] 2 dx

9—M 9—M
<1PngllLelIPngllpa" 1PNy 8l a" |1 PNas&lipara-

By Bernstein’s inequality (9) and the definition of g, we have
3

3 6 3 93
1PN, gllLoe PNy gl ¢ S N7 Ny “IPN gllr2llPans gllie = NP Ny 21PN gllzz | P g2

Combining the three estimates, we deduce that

q—2
g% < ((sup IPnglize) > IPw gLl Pry gllLars
Ne2? Ni<+<Nm

q-2 3_g -3
s(sup ||PNg||m) > NP Ny P(NPUIPNyglF s+ Nif | Py gl32).
Ne2? Ni<-<Nm

Let us consider the first addend on the right-hand side (the second is handled analogously):

g s—3 > A (33— _
> NN NP PN gl < Y 22 PyngllZe Y (g — )M 22 (B0

Ni<+<Npy ni€Z np=ni

S Y2 Pynglfa S,

ni1€z
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where we used that for fixed s € (O, %) the series || Ppn; g||i2 Yoo nM—22=6/2=9)n conyerges for every
M € N as well as (30). We conclude from (31) that

3 _a_
lglze = llglfa” < sup | PnllLa.
Ne2?
which implies (28).
Step 2: Let N, N € 2% and define Yy = N3y (N x), where v is a bump function supported in By (0)
whose Fourier transform has magnitude ~ 1 on B10o(0). Then we can rewrite
PyPsn f = ﬁﬁ(f*%v),

where ﬁﬁ is a Fourier multiplier which is bounded on L.
The claimed identity of Fourier multipliers follows by setting F(Px)(§) := W (§/ N), where

V() = (9(§) 9261~ 9N /NP (E) 7
To verify that ﬁﬁ is bounded on L, for g € L°° we estimate by Young and a change of variables
1PyglLee S IF (@E/N)ilglize = IF (@)1 llglze.

Observe that U € C2(R?) C S(R?), so that | F~ (W) |11 < +oo.

Step 3: Conclusion of the proof.
We apply Step 1 to g = P>y f to deduce that there exist N €27 such that

(2) 52
|Pon £IE) N S Py Pay fliLee.

We observe that N > % because otherwise Py P>y f = 0. By Step 2, we deduce that there exists x € R3
such that
1
(3)" 72 N3 2 >
1P AN sty el =W ([ ma) e
B(x,%)
Combining the two inequalities, we obtain the claimed inequality (27) with r := % € (O, %] O

The proposition above will be applied with s = s,; the choice of s # 1 is in turn fundamental in the
main theorem, since it allows us to give an upper bound on the r¢ given by the mass concentration only
in terms of E, M, [[u|l; co gysp -

Lemma 6.2 (mass concentration). Let p =546 for§ € (0,1) and let 0 < n < 1. Assume
lull L2co-v@®3xry =0 and  |ulpeomsxry < M.

Then, forany 1 <s <sp :=1+8/(2(p — 1)) there exists (x,t) € R*> x I and r > 0 such that

1 2 —a 5 _ e _
% t)dy = o . M2 E) 9 pp—Gp=s)(p=1) paz 31
r2s BGer) u (y’ ) y =< ||u||L°°(I,HS-” (R3))( ) n-, ( )
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where a; = i (s) > 0 are defined as

s—1 2s 3—2s
o= (V—z)—l’ o= 1()7/(3 2s)+y L — and oy:=———2(p-l)y fory:=-
Sp— sp—l 5

Moreover,
8 G=D(p—=1)
1| = ,’2(17 1)” ||LOO(I HAP(R%))(EMz) M 2 s, (32)

where a}(s) > 0 are defined as

—D(p-—1 1 —D(p—1
P L1 LR Y PR L)
Proof. Fix 1 <s <s, =146/(2(p—1)) and set
1._1_s
g 2 3

the conjugate Sobolev exponent. By shrinking /, we can always assume that [[u|z2;-0R3xr) = 7-
Recalling the proof of Lemma 4.4, we have that for any wave-1-admissible (g, )

lullparr S E?. (33)

Step 1: We find a frequency scale N € 2%, where || Py f lL20-D@3x1) 2 -
By Holder and Bernstein (9) with exponents 2(p — 1) and 6(p — 1)/(s + 3) € [6, ¢*] we estimate

1 1 Ky
IP<nullL2ew-n S [I[ZP=D | P<nutllpoo200-1) < [[2P=DN27=D |[uf| oo p6o—1)/c54+3)

We observe that by interpolation and the Sobolev embedding of H» « [3(p=1)/2

G=1)(pD) (s=1)(p+1) 1— =1+ 5 =D (=D
Iullzoepoirvrisss < Il sty It S Il =

Thus if we choose the frequency scale N € 27 such that

G—=D(p+1) s (s— (s—1)

W=Dip+1l) s—1) R
|1|2(p 0 N 2=D ||u||LOOHépz“ (EM2) 5 M3 =cn (34)

for a universal small constant 0 < ¢ < 1, we can ensure that || P> Nyt z200-0) R3x1) 2 7-

Step 2: We deduce a lower bound of || P> Nu | o1, Law3)) in terms of n, E, M.
Observe that the pair (3, 18) is wave-1-admissible and (3, 18) and (o0, ¢) interpolate to (%q +3, %q—i—S).

Using (33) and (34), we have by Holder
|2(19 D—(2q+3) |%q+3

2 1 2 1
PO S 1 Ponul [, 5 P2yl e
X

2(p 1) ||P2Nu|
_5 §q
S MR P pull3 s sl Ponvull e g

5,06, 35 s .3 2
< M1GHSE (M EYE | Payu| 82,
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hence after some easy algebraic manipulations

12 9 6 3
| Psyullzoors 2 %P0 (M5 E)~5a (G +5g5-1)

(3—2s)

= U2 (33 )~ 16 3-29) =3 (5p=9)(p=1)

Step 3: We apply the reverse Sobolev of Proposition 6.1 to conclude that there exists (x,7) € R3 x I and
O0<r< 2 guch that

N
L eendy 2 P
r2s B(x,r) Loo(1,HS (R3))

(3=2s)

(0 2(17—1)(M%E)—%(3—2S)M—%(Sp—s)(17—1)))" (35)

where y := 9/(252). Moreover from (34) we get

(C)”)Z(p I)M(S 1)(p 1)
11| = =DP=D(p+1)
BT (EMH
G=D(p=1)
n2(p—1) M 2 S
~ 2(p—1)—-L=D=D(+D) § G=Dp=D
[l (p=1) 5 EM2)" 5
Lo HSp
We now rewrite (35): by interpolation and energy conservation,
(sp— S)(P 1) w
lulloogis < E el o iy
Observe that y > 2 for s € (0, 2). Thus we have
(sp—$)(p—1)(2—y) —20—1)(178—1)(2—?) (sp—$)(p—1)(y—2)
Wl 2 M3E) 5l Mo
so that
1 2
35 u“(y,1)dy
r B(x,r) —(y—2)= y=2 Sp—s 32
> [lu]| o T (MZE) —[HrG-29+2%5 Sp— 1]M—(Sp—5)(P—1)n 5 2=y O

L HP
Remark 6.3 (optimization of exponents on 7, |[u||; o z7s, and EM 8/2) Whilst the free powers of M
in (31) and (32) are fixed by scaling, the other powers come from interpolation and can be optimized.
Since we are not aiming at an optimal double exponential bound, we can take in Step 2 of the proof
of Lemma 6.2 any Strichartz-1-pair (¢’, r’) (here (3, 18)) such that (00, q) and (¢’, r’) interpolate to
(7,7) with ¥ < 2(p — 1). Alternatively, to optimize the exponents o1 and oy, we first suppose that
the endpoint (2, o0) was Strichartz-1-admissible, interpolate in Step 2 between (2, o0) and (o0, ¢) and
conclude in Step 3 as before. We then approximate (2, co) by wave-1-admissible pairs (2+¢€, 6(2+¢€)/€).
Letting € — 0,

3—-2s —25,—
+ X2
6 2 sp—1
and a2 (s) approaches
3—-2s 1)
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In the very same way, the free exponents in Lemma 4.4 can be optimized. Proceeding in this way, we
would obtain the lower bound, for any @ > 0 (and an implicit constant depending on w),

lull 2L 40 2 PP (EM STy,

7. Proof of Theorem 1.2 and Corollary 1.3

We have now assembled all necessary tools to prove Theorem 1.2. We outline now its main steps which
are based on the scheme of [Tao 2006b] and its adaptation in [Roy 2009].

Let (u, d,u) € L°(J, H' N H2x H') solve (1). Whenever the scaling-invariant smallness assumption
of the first item of Theorem 1.2 holds, then Lemma 3.1 gives the desired spacetime bound. Otherwise, we
split J into subintervals J; such that on each subinterval the L2(P~1) spacetime is completely under control
and substantial, i.., ||u||z2(r—1)(g3xs,) = 1 for all but eventually the last subinterval. The estimate (3) is
then equivalent to estimating the number of such subintervals and relies on the following key arguments:

(i) Using Lemma 4.4, we deduce that on each J; also the potential energy L%°(J;, L?T1) is substantial:
it has a quantitative lower bound in terms of £, M and L.

(i) Lemma 6.2 allows us to identify a ball B = B(x;, r;) such that mass concentrates on B at time
t =t; € J;. The mass concentration can be extended to a neighborhood of #; using that the local mass is
Lipschitz in time. At the same time, the size of intervals J; where such concentration happens is bounded
from below in terms of E, M, L and r;.

(iii) In the scheme of [Tao 2006b], the previous observation together with the finite speed of propagation
is used to remove a cone in spacetime, containing the mass-concentration “bubble”, and to construct
a new solution # with smaller energy than u which coincides with u outside the cone. This allows us
to perform an induction on the level sets of the energy since for sufficiently small energy the claimed
estimate holds by Lemma 3.1. In our setting, such an induction argument seems not applicable, since the
solution % does not need to obey the same a priori bounds on the L°°(J, H'N H2x H') norm as u.

(iv) As in [Roy 2009] we bypass the induction on the energy by an ad-hoc argument. By time reversal
and translation symmetry and the lower bound on the length of (ii), it is enough to estimate the length of
K4+ = J N[ty, +00), where (xo =0, tp) is the point where mass concentration occurs at the minimal mass
concentration radius (among those individuated before). As in (ii), the mass concentration at minimal
radius extends to a neighborhood Jo of t9. We then look at the truncated-in-time cone 't (K+) and we
define a new splitting of K in subintervals J; such that the L2(P~1 norm on every truncated-in-time cone
'y (J;) is substantial and such that J; C Jy. The asymptotic stability of Section 5 controls inductively
the size |fj+1| < |fj |. Moreover, the size of Jg is controlled from below by the mass concentration
argument in (ii) and from above by an upper bound on the mass concentration radius (which was not
needed in [Roy 2009]). If | K4 | was too large, then by the decay of the potential energy Proposition 4.6
there must be a subinterval such that on the truncated-in-time cone the L2(P~1) spacetime norm is small.
By construction, such subinterval cannot be covered by many J;, which means that one of them has to be
sufficiently large, contradicting the upper bound on |J|.
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Proof of Theorem 1.2. Let p =5+ § with § € (0,1), J = [t—, t+] and consider a solution (u, d;u) €
L®(J, (H' N H?) x HY)(R?)) to (1) as in the statement. If either EM%/2 < ¢g or L < c¢g, then we
conclude by Lemma 3.1 that |[u|z2p—1)®3x ) < 1. For the rest of the argument, we thus may assume
the lower bound

min{EM 2, L} > co,

where co > 0 is the universal constant given by Lemma 3.1.

Let C > 2¢, 2 be a universal constant that will be fixed at the end of the proof. The inequality imposed
on C guarantees that CLEM?®/2 > 2,

Moreover, we may assume without loss of generality that [[u|| 20— (g3x ) = 1. We then split J into
subintervals Jq, ..., J; such that

. ||u||L2(p—l)(R3X_]i) =l1fori=1,...,1—-1,
 lullL2-n@3xg,y = 1.
We call J; exceptional if
-1
1,y 20— @3x) + U L20-D@3x7,) = Bexe

for some B > 1 yet to be defined. We have by Strichartz estimates (7) that

e M L2o-v@3xrys e llL20-v@3xsy < L.
In particular, J cannot consist of too many exceptional intervals. More precisely, calling the number of
exceptional intervals Nex. := |{i € {1,...,[}: J; exceptional}|, we have the bound

NCXC S LBGXC'

Between two exceptional intervals there can lie a chain K = J;, U---U J;; of unexceptional intervals.
However, since a chain K of unexceptional intervals has to be confined between two exceptional intervals
(or one of its endpoints is 7— or ¢+ ), the number of chains of unexceptional intervals Nchain 1S comparable
t0 Nexc, that is,

N chain < N, exc:

For a chain K = J;, U---U J;, of unexceptional intervals, we define N(K) := i1 + 1 —ip to be the
number of intervals it is made of. Summarizing, we have

[ 2P0 < Nexc + Nenain SUp N(K) < L Bexc(1 + sup N(K)).
K K

L2(p—DR3xJ) —

The proof is thus concluded with the following lemma and with the choice of Be. in (36) below. ]

Lemma 7.1. There exists a universal constant C > 1 such that the following holds: Consider a solution
(u,du) € L®(J, (H' N H? x HY)(R?)) of (1) with p =548, § € (0,1). Define M := |[u|| oo @3-
E:=Em)and L := ||(u, at“)”LOO(J,(HSPxHSp—l)(R3)) onJ =[t_,t4+] and set

Bexe 1= (CEM 2 L)CEMY2L)17, (36)
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8/2
Assume that Beye < 2 and that
. 3
min{ EM 2, L} > cy. 37
Then for any chain of unexceptional intervals, that is, for any K = Jjy U---U J;; € J with
el z2co-v @y = 1. (38)
-1
e N2c-v@3xr;) + 1Ml L20-0@®3x,) < Bexes
foralli €{ig,...,i1}, we have the estimate
N(K) < Bexc-

Proof of Lemma 7.1. Step 0: Let ag, o, aq and o) be defined through Lemma 6.2 for s = sp, that is, for
y:=203/2sp))* €[3.5].
6y 3
= — € =,
5(p=1) 3

We prove that there exists (ty, xo.70) € K x R3 x (0, +00) such that

| ewp=5+328€[52] and of=%. (39

[SI[)

w=y-2€[33] «

(i) mass concentrates in B(xg, ro) at time ty, i.e.,

1
25 / w?(y, o) dy > CeL ™ (EM3)™, (40)
ro " JB(xo0.r0)
(i1) the length of the J; is uniformly bounded from below in terms of ry, i.e., for alli =iy, ...,i

;| = C7L ™0 (EM 2)™® M. (@1)

From (1), we immediately also deduce the lower bound on the mass concentration radius

p—1

ro 2 (L™ (EM %)) 5 M~"7" (42)
By (38), we can apply the mass concentration Lemma 6.2 with n = 1 and s = s,, to find that for any
i €{ig,..., i1} there exists (f;,x;,7;) € J; x R® x (0, +00) such that

1
25 / u?(y,1;)dy = CsL™ % (EM %)™,
P JB(xi.ri)

! ;| > C7L™ %0 (EM %)™ M 47

r

Defining the minimal mass concentration radius ro := min;¢g;,, .. ;;3 i and calling the associated point

in spacetime (xg, f9), we reach (i) and (ii). The lower bound on the mass concentration radius (42) is a
consequence of the simple observation that the left-hand side of (40) can be bounded from above, up
to constants, by rg T2 M2 = rg [(P=Dpr2 By time and space translation symmetry, we can assume
without loss of generality that xo = 0 and that ¢y = ro such that B(x¢, rg) X {fo} lies in the forward wave

cone centered in (0, 0). In view of (ii) it is enough to prove

K| < L0 (EM2)™* M % Beery”.
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Moreover, by time reversal symmetry, it is enough to estimate K+ := K N [tg, +00), i.e., to show
K| S L™0(EM3)™ M4 Begery”. 43)
Step 1: We find a cylinder B(xq, ro) x Jo € T+ (K4.) in spacetime such that:

(i) Mass still concentrates in B(xq, ro) for any t € Jy, i.e., fort € Jg it holds

1 C
2 / WA (y, 1) dy = —S L (M 3 E)™*, (44)
57 J B(x0,r0) 2

o

(i) j() has controlled length, i.e.,

(23]

s +1 s ~ )
L™ (M2E)™"2 Mary <|Jo|<Miry.

(iii) Jo does not carry too much of the spacetime norm. More precisely,

2(p—1) o~
||u“L2(p—l>(R3xf0) < L% 2, (45)

The local mass is Lipschitz in time with Lipschitz constant at most [|0u|| 00y, 12®3)) < E /2 More
precisely, we have

1 1
2 2 1
‘(/ uz(y,t)dy) —(/ uz(y,to)dy) 'ﬁEZIt—tol-
B(xo0,70) B(x0,70)

241

1 _Qo s o 5
E2|t—to| <c1L”2(M2E) 2r)

In particular, if

for a universal 0 < ¢; < 1 yet to be chosen sufficiently small, then we still have the mass concentration
on the bubble B(xq, ro) X Jo, where

j() = [to, to —I-ClL_%(M%E)_O(12+1 M%I’gp].

More precisely, for any ¢ € Jo, (44) holds. We observe that

—L(@o+ar+1)
0

Jo =01M%L_% EM %)~ 2@+1),5 <cic Marse (46)
0 0

such that we can choose ¢ < cg/ 2 to ensure (ii). Finally, if K4 C Jo is a strict subset, then | K| < |Jo|

and (43) holds (for big enough constants in the definition of B.x.). Thus we can assume that Jo € K
and hence B(xg,ro) x Jo € 't (K4). Finally, let us argue that Jo cannot be covered by too many
unexceptional intervals and thus cannot carry too much spacetime norm. Indeed, from (41), (46) and (37)
we deduce that Jo can be covered by at most

_ Qo s._ 1 +1 3 5
c1L”2(EM?2) 82(0” )18‘4”0p < L%~%
C7L™%0(EM2)™ M 4r,”

many intervals of the family {Ji}i1 . Hence by (38) we deduce (45).

i=ip
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Step 2: Let
fi=c2(LEM2)™3 € (0,c}). (47)

with c(y defined through Remark 4.2 (so that 7} is admissible for the spacetime norm decay on large
intervals). For a suitable choice of the universal constant c,, we truncate I'y (K4) into wave cones

(T (J)}*_, such thar:

(1) Each of them carries substantial spacetime norm 1, i.e., ||u ||L2(p—1)(1"+(ji)) =nfori=1,....k—1
and ||u||L2(P—1)(F+(fk)) <1
(i1) The first interval is not too long, that is, J 1< fo.

For an 7 yet to be chosen, we will truncate I' (K4 ) into wave cones {F+(.ij)}{-c:1 such that

||u||L2(p_|(F+(ji)) = f] fori = 1, . ,k—l and ||u||L2(p_])(F+(jk)) < ﬁ

We come to the choice of 7. Let us estimate the spacetime norm on the mass concentration cylinder from

1
—1 _ 3(p—2)
f~ / uz(y,z)dydrs(/ ] |u|2<1’—“(y,z)dydr)” ol 57y 7
Jo J B(x0,ro) 'y (Jo)

and from below, using (44),

above

/~ / uz(y’[)dydl‘z |j0|L_‘x0(M%E)—a|r§Sp.
Jo J B(x0,r0)

We have obtained, using the definition of Jo from Step 1, that
> (7 —a0 -
||u||L2(P—1)(F+(f0)) 2 (L™0(EM2)™*)3=0 (E~'rd ™" )30,
Using (45), we obtain an upper bound on rg, that is,

8§ < (rao S a1\Cp—1)(p—1) p—1 4(p—1)?
rO ~ (L (EMz) ) E ||u||L2(p_l)(F+(j0))
< (L% (EM%)OH)(2P—1)(17—1)EP—1L(“(’)_%)Z(P—l)

sp=1)

— M-z LZ(P—l)(ao(P—1)+(¥6)(EM%)(P—I)(O!I(2P—1)+1). (48)

On the other hand, using the lower bound on r¢ given by (42), we can estimate furthermore, recalling
(37) and (39), that

2p—1
el oo, (o 2 (L7 (EM 3) ™) 360 F 1601 (EM )~ 50D

1

— L1620 EM 3~ (Te@1+ae=n) > (LEM3)~3.

Thus choosing 7 := ca(LEM 8/ 2)_3/ 2, for a small universal constant 0 < ¢, < 1, we ensure that J 1€ fo.

Choosing ¢, even smaller, namely ¢ < c{c3, we ensure that 7 € (0, ¢p), with ¢y given by Remark 4.2.
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Step 3: We prove the following dichotomy (analogous to [Tao 2006b, Lemma 5.2]). Let j € {1,...,k—1}.
Then, for some universal constants Cg > 8 and Cg < 1, either

- 15, ¥ ~ 5 8
|Tiv1] < Csii 51 J;| or | Jj| = Cof M3 Bexeri.

Consider two subsequent intervals fj =[tj—1.t;] and fj+1 = [tj,tj41] forsome j € {1,... .k —1}.
We have by the localized Strichartz estimates (8) (with (7, 7) = (2,6(p—1)/@Bp+1)) andvi=u—u;,, ,
solving Ov = |u|?~u with initial datum (v, 9:v)(tj+1) = (0,0)) and Holder that

- p—1 ..
f|u ULt ||L2(1’—1>(I'+(JJ- )) < |lfuf u||L¢?L7(I‘+(JjUJj+1))

~ ||M||LOOL3(I7 1)/2(F+(JJUJJ+1))|| ”Lz(p ”(FJ,_(JJUJJJ,_I))

2(p+1)

3(p—1D ( 1 1
~ ”u“Z(oI;([}]@?)XJ)” ||Z£L1;+1(R3XJ)7IP < (EMz)’%(p D TIp

Using (37) and (47), we have

4 8
~p— [ =1 y —t — p—D__ 4 1.4 4
P HEM)TFT < I LG 272G < (eacy )T < () ST eJ0 D < (P

where we recall that from the choice of ¢g in Lemma 3.1, it is clear that it beats also the constant arising
from Strichartz estimates. We infer [[u —uj ;s [l; 20— DLy S 1. Since [[ull; 2p— DIy = =1 by
construction, the triangular inequality implies

““l,tj_H ||L2(p—1)(p+(jj)) 2 1.
This now gives rise to a dichotomy: either [uy ;| —uy s, |72 P=D(T4(T)) > 7 or the scattering solution

uj,s, is nonnegligible [[u;,, ||L2(p_1)(r+(jj)) = 1.

Case 1: Assume [u,,  \ —uj;z, ||L2<p_1)(r+(jj)) = 7. Then in view of Corollary 5.2, we have

~ — _ 8§ p 3(p—1) ~ — _ 8 15 ~ — ~
|Jip1] S 7 2P~ D(EM?2) T | <2 N(EMEL) T T < 78T,

where in the second inequality we used (37) and in the last the definition (47).

Case 2: Assume [luy s, || 2001 T4 () > 7. Recall that K consists of unexceptional intervals. Hence
we need at least 77 Bexc many of them to cover f ;. Recalling the lower bound on the length of unexceptional
intervals, the definition of 7, (37) and that oy, > & from (39), we have

;| = C7iiL ™0 (EM )™ M3 Bexerd? = C7i(EM 2 L) ™0 (EM )%~ M & Boyors?

20
0‘0

~14+2a) 3 —a)
>Cymn "3 0c, M4Bexcr() >C9772M4Bexcr0 )

—2ay/3 a,—a
where in the last inequality we introduced a universal constant Co < C7c, of co’

Step 4: We show that
K| < Con® M3 Beyery)

Since 0 < 7 < 1, this implies in particular that |K4| < C9M8/4Bexcrgp and we achieved (43), thereby
concluding the proof.
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Let us therefore assume by contradiction that |K4| > Cgﬁll/ 208/ 4Bexcr3" . We call jj1 the first
interval for which |f 1U---u ‘ijl | > Cgﬁll/ 2Mm8/ 4Bexcr5” . We observe that up to choosing the constant C
in the definition of Bex. big enough, we may assume that

1 2
nz Bexc>max{—,1}. 49)
Co
By the definition of j;, we then have:

(i) j1 # 1. Indeed, by Steps 1 and 2, |J;| < |Jo| < M®/4r;".

(ii) For every j € {1,..., j1 — 1} we have |.ij+1| < Cgﬁ_lslfj|. This follows from Step 3 since the

second option in the dichotomy is ruled out.

Letus call [Ty, T3] := JLU. .. jj1 —1. We want to apply the spacetime norm decay result of Proposition 4.1
on [ = [T, T,] withn = %. Recall that by choice of 7 in Step 2, we have that % € (0, c) is admissible for
the spacetime norm decay. We need thus a lower bound on the length of /. By construction, Step 2 and (ii)

18 ~ ~ 5 —
Coil 2 M4 Bexery” < |J1| 4+ ;| < Marg” + (To—Ty) + Cgfj” > (Ta — Th),
so that
1 41 8 s
I, —-Th 2_02M4Bexcr0p- (50)
2Cg

On the other hand, we have from Step 2 and the lower bound on rg (42)

8 sp 8 sp 1—sp 5, =8 s 5, o 5. o 28 5
Th<ro+Marl? =Mar’(1+ry "M3)<SMary”(1+ (L (EM2)™")®@-D?)
s g —2oto)d 1 5 g
§M4r0p;7 =2 <7 4M4r0p.
Summarizing, we have obtained

n_T-T
T~ T

> C1077*! Bexe- (51)

We now claim that to reach a contradiction, it is enough to find A and a constant C > 1 such that we
can verify the following three requirements:

(R1) A satisfies the hypothesis (13) of Proposition 4.1, that is,

12(p—1)

A> (@G Y 5 (EM2)S .

(R2) The interval [ is sufficiently large to apply Proposition 4.1, i.e., (14) is satisfied. In view of (51),
we can enforce (15) if

Bexe = (CEM 2 L)CEMP2L)1T¢

< Cl_ol 77]_21 A3(4C2ﬁ—1)6(p—1)(p+1)/5(EM8/2)(9[)+19)/10 max{c(()l’—1)/2’(M(p—1)/2T2)8/2}.

(R3) Moreover /A > 2Cgii1%.
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Observe that (R3) ensures in particular that A > 4. If (R1)-(R3) hold, we are in the position to
conclude the proof following [Roy 2009]. The difficulty in the supercritical case instead lies in verifying
the requirements (R1)-(R3). Indeed, if (R1)-(R3) hold, we infer from Proposition 4.1 that there exists
[t], At]] € JoU. .. J},—1 such that

il
lellL2o-0 0y q1ef aeiy) = -

In particular, [¢{, At{] is covered by at most two consecutive intervals of the family {J; JJ U _21. We claim
that then there exists j € {2,..., j1 — 1} such that

- JA -
UEE /) (52)
Notice that in view of (R3), the claim contradicts (ii) such that we reached a contradiction. Indeed, assume
first, that [¢], At}] is covered by one interval J; for some j € {2, ..., ji — 1}. Then, recalling that A > 4,
we have

VA

- A A - ~
il = 11(A=1) > Efi z S -1lz ==l

Assume now that [t{, At{] is covered by two intervals Jj laj,b;] and JJ.H [@j+1.bj41] for some
J €142,...,J1 —2}. We consider two cases. First, if b; < «/—tl, then |JJ+1| > t1(A— VA) and
|J;| < ~/At] such that
- - VA -
[T+l = (VA=D1 = ==1j1.
Second, if b; > +/At{, then |J;| > (v/A— 1)t} and |J;_1| <] such that

i1z (VA=D1 = %J}-u.
This proves (52).
To conclude the proof, we are left to verify the requirements (R1)-(R3) by choosing A and C. We
observe that the right-hand side of (R1) can be bounded from above using (47) and (37) by
12(
Cloya)

such that (R1) and (R3) are enforced if we set

SR EMHE <ot

A= Cyfi °
for C12 := max{3Cg, C11}2. We are left to verify (R2). We observe that from (49)
Th=T1+(Tr—-T) <7~ 1M4r +7]2M4Bexcro <M%Bexcr(§p-
Combining this with the upper bound on rg in (48) and using (39), we obtain
(M*Z Ty < (M8+ Bexerd)? < 82 Lsp(p D@o(p=D+ap) (g g3y % (p=Di@i@p=D+1)

Bezxc(EMzL)lo5 =< CISBexcﬁ 0
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We now bound the right-hand side of (R2) from above using again (47) and (37) by
Cr 7721 (Craii=30) 3 C2T YR (EM/2)OrH19/10 max{c "~ V/2 (MBP=D/27,5)3/2)
<Cpo'i ! (C1pfj30)3C13(CT~ ) 2 (eacy ! 7 Or+19/155=70 g2
<(C'EM3L)CT "B < (CEMS L)(C/DEMYL) 0B
for a big enough constant C, C’ > 1. We now define Bey. to be

Bexe 1= (CEM 2 L)C(EM?/2L)17

for the same constant C. With this definition, (R2) is enforced since we assumed ng/cz <2. O

Proof of Corollary 1.3. Consider a solution (1, d;u) € L®(J, (H' N H2x HY)(R?)) of (1) with p =5+
for § € [0, 1) and with

”(u: atu)||L°°(J,(H10H2XH1)(R3)) < My.

By interpolation, conservation of the energy and the Sobolev embeddings (H'NH?)(R3)— WIO(R3) —
L>®(R3), we observe

8
1—=-38 5 =1)
L:= ”(u’ atu)llLoo(J,HSPxHSP_l) <E 2(p_1)M02(P b s
M = |lullpoom3xs) = Cs Mo.

By Theorem 1.2, if min{ EM?®/2, L} < ¢, then [ull L2-D@®3xs) < 1. Otherwise, we may assume
min{ EM®/2 L} > ¢y and we fix 0 < § < min{1, (In2)/(In My)}. We estimate as above

s 8 )y __8 __p+l
EM2L < c;(”zw—”)co 2=h EZM(f(1 ) <2Cscg'E? =: (C'E)?

for C’ := (2Cscqy /2. Thus the corollary follows, if we can meet the smallness requirement of
Theorem 1.2 which now reads, setting C.=.JCcc/

)352

(CEyCCBT) <2,

The latter holds defining
In2 In2

"InMo" In(CE)2C(CE)352)°

80 := min{ 1
Observe that §¢g depends on My only, since £ = E(ug,u1) depends on the initial data only. O

8. Proof of Theorem 1.1

By time reversibility, it is enough to consider forward-in-time solutions. Thanks to classical local well-
posedness and existence theory [Sogge 1995], the proof of Theorem 1.1 consists in establishing an a
priori bound on || (u, 8,14)||Loo([0 TLHNE2xH) which is uniform in 7.
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Lemma 8.1 (local boundedness). Let § € (0, 1), p = 5+ 8 and consider a solution
(u,du) e L°(I,H' N H*>x HY)

to (1)on I = [tg,t1]. Then there exists a universal constant C; > 1 such that if

—1 —
||u||1’12(p—1)(R3X1) < C[ 17 (53)
then

[ (ue, atu)”LOO(]’HIQHZXHI) < Cll(u, 8tu)(ZO)||1r17101.'12x17[1-

Proof. For t € I, define Z(t) := ||(u, 0:u)(¢)|| 1241~ By Strichartz estimate (7), Holder and the
Sobolev embedding of H' < L° we have

Z(t) < Z(to) + N[ul? ™ ull L2z 1,372 + IV (1P ) L2(,01,1372)

< Z(to) + |||M|p_1 | 22 @3 x[t0,e) Ul oo (120,11, £.6) + IVl Loo (10,21, L.6))

< Z(to) + llull 7 sup  Z(t).

2(p D (R3
L2 @xloal) |, 0P

We set Y (t) := sup, ey, ;] Z(¢'). Observe that Y is nondecreasing, continuous, Y (f9) = Z(to) and

V() < C(Z(t0) + 1l 251y g,y Y(O) (54)

for any ¢ € I. Setting C; := 2C, we have by monotonicity that Y (z) < C; Z(to) for all 7 € [tg, 1], where
t:=sup{t € [to, 11] : Y(¢) < C; Z(tp)}. We claim that if ||u||£2_(1)_1)(R3X1) C ! then 7 =t;. Assume
by contradiction that 7 < ¢1. By continuity Y () = C; Z(to) and by the Vahdlty of (54) at 7, we obtain

C1Z(t) = Y(F) < CZ(to) + C [[ul 5, h@sxnyY ) <2CZ(t0) = C1 Z(to),
which is a contradiction. O
We achieve an a priori bound on (u, d;u) in L*([0, T], H' N H? x H'), uniform in T, by iterating

Lemma 8.1 on a partition {/ n} —, of [0, T'], where the smallness assumption (53)

1

lullL20-D@3x1,) <€
is satisfied by construction. Corollary 1.3 is crucial to control N, independent of 7', in terms of a double
exponential in E and || (u, d,u)||° Lo HNE2 X The crucial observation is that in the limit as § — 0,
N is a double exponential of the energy which in turn is controlled by the initial data only. This will allow

us to iterate the local bound obtained in Lemma 8.1 on bounded sets of initial data for § small enough.
Proof of Theorem 1.1. Fix (ug,u1) € H' N H2 x H. Consider (u, d;u) a solution to (1) with p =5+ §
for § € (0, 1). We introduce the set

for some Mo = Mo (|| (w0, u1) ||l 1~ f25 1) YE to be chosen large enough. We claim that 7 = [0, +00).
For Mo > ||(wo, u1) || g1 g2 gg1- it is clear that O € F and, by continuity, that F is a closed set. We show
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openness. Let 7' € F. By continuity, there exists € > 0 such that for all 7’ € [0, T + €) we have

1, 31| oo 0,71, Fr 1 n T2 X E 1y = 2 M0

Fix such a T’ and let us show that 77" € F. If § < §o(2My), with 8y given through Corollary 1.3, then

)8/2)352

3
[lu ||L2(”_1)([R3X[0,T’]) < max{l, (CE(ZMO)Z)C(E(ZMO 1. (55)
We can split [0, 7] into subintervals {J; }N , such that
o lellz2o-v@axsy = 367 P fori =1, N -1,
-1 1
* lulloon@say < 567070,
and we deduce by iterating Lemma 8.1 that
” (u, 8tu) ||Loo([0’T/]’HlnHZ><H1) = C]N ” (u()’ u) ”HIDHZXHI . (56)
Moreover, from (55) we have the upper bound
1
N <2C7 " max{1, (CE(2Mq)%)C(ECMY»¥2y (57)

We want to show that with an appropriate choice of Mo = Mo(|[(uo.u1)|l ;125 1) and of § =
8(”(“07 ul)”HlnHsz]), we haVe

N < (nCp)~HIn(Mo /|| (o, u) | g1 g2 g1): (58)

which in view of (56) implies ||(u, d;u) ||Loo([0 TNHINE2xHT) = My concluding the proof. Observe that
for My fixed, we have that the right-hand side of (57) as § — 0 converges, more precisely

e 1
Jim 2C," 7" max{l, (CE(2My)?)CEC@M0)P )2y _ 2C, max{l, (CE)CE™y, (59)
—0

We now choose My such that the right-hand side of (58) exceeds (59) by a factor 2; that is, we choose
Mo(E, ||(uo, u1)ll g1 g2y gr1) such that

E352

1
(InCp) ™" In(Mo/ || (o, u) || g1 g 1) = 4C,* max{1, (CE)“E™"}

or, equivalently,

E352

1/4 C
My > ”(uO’ u1)||HlmH2lee4Cl In C; max{1,(CE) }

Finally, by (57) we can choose S0 =80 (My) < 69(2My) even smaller such that for all § € (0, So) we have

E352

N < 4C4 max{1, (CE)E "} (60)

This finishes the proof that F' = [0, +00) and in particular the solution (u, d;u) cannot blow up. Recalling
the choice of My, we then obtain (2). As a byproduct of the upper bound (60) on N, independent of the
size of the interval, we also obtain

E352

)

where we used that C; > 1. O

1
ull L2 @0, r00) < 5C = 74 max{1, (CE)CF ™"} < 2max{1, (CE)€
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SUBELLIPTIC WAVE EQUATIONS ARE NEVER OBSERVABLE

CYRIL LETROUIT

It is well known that observability (and, by duality, controllability) of the elliptic wave equation, i.e., with
a Riemannian Laplacian, in time 7 is almost equivalent to the geometric control condition (GCC), which
stipulates that any geodesic ray meets the control set within time 7. We show that in the subelliptic
setting, the GCC is never satisfied, and that subelliptic wave equations are never observable in finite time.
More precisely, given any subelliptic Laplacian A = — ) """ | X*X; on a manifold M, and any measurable
subset w C M such that M\ w contains in its interior a point g with [X;, X ;1(¢g) ¢ Span(X1, ..., X,,) for
some 1 < i, j < m, we show that, for any Ty > 0, the wave equation with subelliptic Laplacian A is not
observable on w in time Tj.

The proof is based on the construction of sequences of solutions of the wave equation concentrating on
geodesics (for the associated sub-Riemannian distance) spending a long time in M\w. As a counterpart,
we prove a positive result of observability for the wave equation in the Heisenberg group, where the
observation set is a well-chosen part of the phase space.
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1. Introduction

1.1. Setting. Let n € N* and let M be a smooth connected compact manifold of dimension n with a
nonempty boundary d M. Let u be a smooth volume on M. We consider m > 1 smooth vector fields
X1, ..., X, on M which are not necessarily independent, and we assume that the following Hérmander
condition [1967] holds:

The vector fields X, ..., X,, and their iterated brackets [X;, X;], [X;, [X;, X]], etc.
span the tangent space T, M at every point g € M.
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Keywords: subelliptic, wave equation, observability, sub-Riemannian.
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We consider the sub-Laplacian A defined by

m m
A== "X{X; = X}+div,(X)X;,
i=1 i=1
where the star designates the transpose in L?(M, i) and the divergence with respect to 1 is defined by
Lxp = (div, X)u, where Lx stands for the Lie derivative. Then A is hypoelliptic; see [Hormander 1967,
Theorem 1.1].

We consider A with Dirichlet boundary conditions and the domain D(A) which is the completion in
L*(M, ) of the set of all u € C2°(M) for the norm ||(Id— A)u|| 2. We also consider the operator (—A)1/2
with domain D((—A)Y?) which is the completion in L*(M, ) of the set of all u € C2°(M) for the norm
I1(d = A)2u]] .

Consider the wave equation

R2u—Au=0 in(0,T)x M,

u=0 on(0,T)xoM, (D)

(t)1=0, 01 j1=0) = (uo, u1),
where T > 0. It is well known (see for example [Garetto and Ruzhansky 2015, Theorem 2.1; Engel and
Nagel 2000, Chapter II, Section 6]) that for any (ug, u1) € D((—A)'/?) x L?(M), there exists a unique
solution

ue 0, T: D(—A)2)NC O, T: L*(M)) 2)

to (1) (in a mild sense).

We set

ol = ( fM Z(va(X))2du(X))2- 3)
Jj=1

Note that [|v]lz = [[(=A) 2]l 2a 1)
The natural energy of a solution is

Eu(t,-)) = 518t 720y + e, D15

If u is a solution of (1), then

d _
;B ) =0,

and therefore the energy of u at any time is equal to
2 2 2
Il G, w35 12 = llollz, + Nunllz2 a0
In this paper, we investigate exact observability for the wave equation (1).

Definition 1. Let 7 > 0 and w C M be a u-measurable subset. The subelliptic wave equation (1) is
exactly observable on w in time Ty if there exists a constant Cr,(w) > 0 such that, for any (u, u1) €
D((—A)/?) x L?(M), the solution u of (1) satisfies

To
/0 [ ot dor dr > Cr @l )l )
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1.2. Main result. Our main result is the following.

Theorem 2. Let Ty > 0 and let o C M be a measurable subset. We assume that there exist 1 <1i, j <m
and q in the interior of M\w such that [X;, X ;1(q) ¢ Span(X(q), ..., X;n(q)). Then the subelliptic
wave equation (1) is not exactly observable on w in time Ty.

Consequently, using a duality argument (see Section 4.2), we obtain that exact controllability also does
not hold in any finite time.

Definition 3. Let 7) > 0 and w C M be a measurable subset. The subelliptic wave equation (1) is exactly
controllable on w in time Ty if for any (ug, u1) € D((—A)'/?) x L*(M) there exists g € L?((0, Tp) x M)

such that the solution u of
2u—Au=1,g in (0, Ty) x M,

u=0 on (0, Ty x oM, (5)
(t)1=0, 01 j1=0) = (uo, uy),

satisfies u(7Ty, - ) = 0.

Corollary 4. Let Ty > 0 and let w C M be a measurable subset. We assume that there exist 1 <i, j <m
and q in the interior of M\w such that [X;, X ;1(q) ¢ Span(X(q), ..., Xn(q)). Then the subelliptic
wave equation (1) is not exactly controllable on w in time Ty.

In what follows, we denote by D the set of all vector fields that can be decomposed as linear combinations
with smooth coefficients of the X;:

D =Span(Xy,..., X)) CTM.

D is called the distribution associated to the vector fields X1, ..., X,,. For g € M, we denote by D, C T, M
the distribution D taken at point g.

The assumptions of Theorem 2 are satisfied as soon as the interior U of M \ w is nonempty and D has
constant rank < n in U. Indeed, under these conditions, we can argue by contradiction: assume that for
any g € U and any 1 <i, j <m, itholds [X;, X;](¢) € Span(X(q), ..., X;n(q)) = D,. Then we have
[D,D] C Din U, i.e., D is involutive. By Frobenius’s theorem, D is then completely integrable, which
contradicts Hormander’s condition.

The following examples show that the assumptions of Theorem 2 are also satisfied in some nonconstant-
rank cases:

Example 5. In the Baouendi—Grushin case, for which X; = 9,, and X, = x;9,, are vector fields on
(-1, 1)y, x Ty,, where T = R/Z, the corresponding sub-Laplacian A = Xl2 + X% (here, u = dx dx;
for simplicity) is elliptic outside of the singular submanifold S = {x; =0}. Therefore, the corresponding
subelliptic wave equation is observable on any open subset containing S (with some finite minimal time
of observability, see [Bardos et al. 1992]), but according to Theorem 2, it is not observable in any finite
time on any subset w such that the interior of M \ @ has a nonempty intersection with S.

Example 6. In the Martinet case, the vector fields are X; = 0y, and X, = 9y, + xf@m on (—1, 1),, x
Ty, x T,,, and the corresponding sub-Laplacian is A = X 12 + X % (again, u = dx| dx, dx3 for simplicity).
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Then, we have [X, X;] = 2x10,,. The only points at which this bracket belongs to the distribution
Span(X, X») are the points for which x; = 0. Since this set of points has empty interior, the assumptions
of Theorem 2 are satisfied as soon as M \ w has nonempty interior.

Remark 7. The assumption of compactness on M is not necessary; we may remove it and just require that
the subelliptic wave equation (1) in M is well-posed. It is for example the case if M is complete for the
sub-Riemannian distance induced by X1, ..., X, since A is then essentially self-adjoint [Strichartz 1986].

Remark 8. Theorem 2 remains true if M has no boundary. In this case, (1) is well-posed in a space
slightly smaller than (2): a condition of null average has to be added since nonzero constant functions
on M are solutions of (1); see Section 1.5. The observability inequality of Theorem 2 remains true in this
space of solutions; anticipating the proof, we notice that the spiraling normal geodesics of Proposition 17
still exist (since their construction is purely local), and we subtract from the initial datum u'é of the
localized solutions constructed in Proposition 16 their spatial average | M u’é du.

Remark 9. Thanks to abstract results (see for example [Miller 2012]), Theorem 2 remains true when the
subelliptic wave equation (1) is replaced by the subelliptic half-wave equation d,u + i/—Au = 0 with
Dirichlet boundary conditions.

1.3. Ideas of the proof. In the sequel, we define a normal geodesic' to be the projection on M of a
bicharacteristic (parametrized by time) for the principal symbol of the wave equation (1). We will give a
more detailed definition in Section 1.4.

The proof of Theorem 2 mainly requires two ingredients:

(1) There exist solutions of the free subelliptic wave equation (1) whose energy concentrates along any
given normal geodesic.

(2) There exist normal geodesics which “spiral” around curves transverse to D, and which therefore
remain arbitrarily close to their starting point on arbitrarily large time intervals.

Combining the two above facts, the proof of Theorem 2 is straightforward (see Section 4.1). Note that
the first point follows from the general theory of propagation of complex Lagrangian spaces, while the
second point is the main novelty of this paper.

Since our construction is purely local (meaning that it does not “feel” the boundary and only relies
on the local structure of the vector fields), we can focus on the case where there is a (small) open
neighborhood V' of the origin O such that V C M\w, and [X;, X;1(0) ¢ Do for some 1 <i, j <m. In
the sequel, we assume it is the case.

Let us give an example of vector fields where the spiraling normal geodesics used in the proof
of Theorem 2 are particularly simple. We consider the three-dimensional manifold with boundary
My =(—1,1), x Ty, x Ty,, where T =R/Z ~ (-1, 1) is the one-dimensional torus. We endow M; with

I This terminology is common in sub-Riemannian geometry, and it is justified by the fact that we can naturally associate to the
vector fields X, ..., X;; a metric structure on M for which these projected paths are geodesics; see [Montgomery 2002].
1 proj p g g y
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the vector fields X = 0y, and X, = 9y, — x10x,. This is the Heisenberg manifold with boundary. We
endow M; with an arbitrary smooth volume . The normal geodesics we consider are given by

x1(t) = esin(t/e),
x(t) =ecos(t/e) —e, (6)
x3(t) = e(t/2 —esin(2t/e) /4).

They spiral around the x3-axis x; = x, = 0.

Here, one should think of ¢ as a small parameter. In the sequel, we denote by x, the normal geodesic
with parameter €.

Clearly, given any Ty > 0, for ¢ sufficiently small, we have x.(¢) € V for every t € (0, Tp). Our
objective is to construct solutions u* of the subelliptic wave equation (1) such that ||(u’5, u'f) layxrz =1
and the energy of uk(t, -) concentrates outside of an open set V; containing x,(¢), i.e.,

f \ (13" (2, X) 1 + (Xque (2, X)) + (Xour (2, x))?) dpe(x)
M\ V;

tends to 0 as k — 4-0o uniformly with respect to ¢ € (0, 7p). As a consequence, the observability inequality
(4) fails.

The construction of solutions of the free wave equation whose energy concentrates on geodesics
is classical in the elliptic (or Riemannian) case; these are the so-called Gaussian beams, for which
a construction can be found for example in [Ralston 1982]. Here, we adapt this construction to our
subelliptic (sub-Riemannian) setting, which does not raise any problem since the normal geodesics we
consider stay in the elliptic part of the operator A. It may also be directly justified with the theory of
propagation of complex Lagrangian spaces (see Section 2).

In the case of general vector fields X1, ..., X,,, the existence of spiraling normal geodesics also has to
be justified. For that purpose, we first approximate X1, ..., X, by their nilpotent approximations, and
we then prove that, for these approximations, such a family of spiraling normal geodesics exists, as in the
Heisenberg case.

1.4. Normal geodesics. In this section, we explain in more details what normal geodesics are. As said
before, they are natural extensions of Riemannian geodesics since they are projections of bicharacteristics.
We denote by Sg;lg(T*((O, T) x M)) the set of polyhomogeneous symbols of order i with compact

m
phg
order m whose distribution kernel has compact support in (0, 7) x M (see Appendix A).

Weset P =0, —Ae W,

support and by W ((0, T) x M) the set of associated polyhomogeneous pseudodifferential operators of

((0, T) x M), whose principal symbol is

pa(t, T, x, &) = —T* + g*(x, £),

with 7 the dual variable of 7 and g* the principal symbol of —A. For & € T*M, we have (see Appendix A)
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Here, given any smooth vector field X on M, we denote by 4y the Hamiltonian function (momentum
map) on 7*M associated with X defined in local (x, &)-coordinates by hy (x, §) = £(X (x)).

In T*(R x M), the Hamiltonian vector field p, associated with p; is given by p, f = {p2, f}, where
{-, -} denotes the Poisson bracket (see Appendix A). Since p;p, = 0, we get that p; is constant along
the integral curves of p,. Thus, the characteristic set C(ps) = {p>=0} is preserved by the flow of p,.
Null-bicharacteristics are then defined as the maximal integral curves of p, which live in C(p). In other
words, the null-bicharacteristics are the maximal solutions of

i(s) = —=21(s),
x(s) = Veg*(x(s), §(s)),
#(s) =0, %)

§(s) = —Vig* (x(5), §(9)),
72(0) = g*(x(0), £(0)).
This definition needs to be adapted when the null-bicharacteristic meets the boundary d M, but in the
sequel, we only consider solutions of (7) on time intervals where x(¢) does not reach 0 M.
In the sequel, we take 7 = —%, which gives g*(x(s), £(s)) = }1. This also implies that 7 (s) = s + o
and, taking ¢ as a time parameter, we are led to solve

i(1) = Veg* (x(1). £(1)).
E(t) = -V, g*(x(1), £(1)), (8)
g*(x(0),£(0)) = 1.

In other words, the ¢-variable parametrizes null-bicharacteristics in a way that they are traveled at speed 1.

Remark 10. In the subelliptic setting, the cosphere bundle S*M can be decomposed as S*M =U*MUSX,
where U*M = { gr= le} is a cylinder bundle, ¥ = {g* =0} is the characteristic cone and S¥ is the sphere
bundle of X; see [Colin de Verdiere et al. 2018, Section 1].

We denote by ¢; : S*M — S*M the (normal) geodesic flow defined by ¢, (xo, &) = (x(¢), £(t)), where
(x(1), &(1)) is a solution of the system given by the first two lines of (8) and initial conditions (xg, &y).
Note that any point in SX is a fixed point of ¢, and that the other normal geodesics are traveled at speed 1
since we took g* = i in U*M (see Remark 10).

The curves x(¢) which solve (8) are geodesics (i.e., local minimizers) for a sub-Riemannian metric g;
see [Montgomery 2002, Theorem 1.14].

1.5. Observability in some regions of phase-space. We have explained in Section 1.3 that the existence of
solutions of the subelliptic wave equation (1) concentrated on spiraling normal geodesics is an obstruction
to observability in Theorem 2. Our goal in this section is to state a result ensuring observability if one
“removes” in some sense these normal geodesics.

For this result, we focus on a version of the Heisenberg manifold described in Section 1.3 which has
no boundary. This technical assumption avoids us using boundary microlocal defect measures in the
proof, which, in this sub-Riemannian setting, are difficult to handle. As a counterpart, we need to consider
solutions of the wave equation with null initial average, in order to get well-posedness.
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We consider the Heisenberg group G, that is, R* with the composition law
(x1, X2, X3) % (X, X5, X3) = (X1 4 X7, X2+ X3, X3 + X3 — X1.X)).

Then X| =0y, and X, = 9y, —x1 0y, are left-invariant vector fields on G. Since I' = 22 x 2nZ x 277
is a co-compact subgroup of G, the left quotient My = I'\G is a compact three-dimensional manifold
and, moreover, X and X, are well-defined as vector fields on the quotient. We call My endowed with the
vector fields X and X, the “Heisenberg manifold without boundary”. Finally, we define the Heisenberg
Laplacian Ay = X? + X5 on My. Since [X1, X2] = —d,,, it is a hypoelliptic operator. We endow My
with an arbitrary smooth volume p.

We introduce the space

L3 ={uo € L2(M), /MHuo dn =0}

and we consider the operator Ay whose domain D(Ag) is the completion in L(Z) of the set of all
u € CX°(Mpy) with null-average for the norm ||(Id — Ag)ul|;2. Then, — Ay is positive definite and we
consider (—A g)'/? with domain D((—=Ag)'/?) = Ho:= L(z) NH(Mpg). The wave equation

Zu—Ayu=0 inRx My,
{l‘[ H H (9)

(jr—0. dytyr—0) = (o, u1) € D((—Ap)2) x L2,

admits a unique solution u € CO(R; D((—Ax)'*) N CH(R; L}).

We note that —A g is invertible in L%. The space Hy is endowed with the norm ||u|| (defined in
(3) and also equal to ||(—Ag)"/?u||;2), and its topological dual H,, is endowed with the norm lluellyy =
(=A™ 2ull 2.

We note that g*(x, &) = 512 + (& — x1&3)? and hence the null-bicharacteristics are solutions of

X1 (1) = 281, E1(1) = 283(5 — x153),
X (1) =26 — x16), £(1) =0, (10)
X3(t) = —2x1 (& — x1&), &) =0.

The spiraling normal geodesics described in Section 1.3 correspond to & = cos(t/¢)/2, & = 0 and
& = 1/(2¢). In particular, the constant &3 is a kind of rounding number reflecting the fact that the
normal geodesic spirals at a certain speed around the x3-axis. Moreover, &3 is preserved under the flow
(somehow, the Heisenberg flow is completely integrable), and this property plays a key role in the proof
of Theorem 11 below and justifies that we state it only for the Heisenberg manifold (without boundary).
As said above, normal geodesics corresponding to a large momentum &3 are precisely the ones used to
contradict observability in Theorem 2. We expect to be able to establish observability if we consider only
solutions of (1) whose &3 (in a certain sense) is not too large. This is the purpose of our second main result.
Set

Vo=l o) e My 161 > Lg1@)t].

Note that since &3 is constant along null-bicharacteristics, V, and its complement V¢ are invariant under
the bicharacteristic equations (10).
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In the next statement, we define a horizontal strip to be the periodization under the action of the
co-compact subgroup I' of a set of the form

{(x1, X2, X3) : (x1, x2) € [0, v2m)%, x3 € I},

where [ is a strict open subinterval of [0, 27).

Theorem 11. Let B C My be an open subset and suppose that B is sufficiently small, so that o = M\ B
contains a horizontal strip. Let a € Sghg(T*MH)> a > 0, such that, denoting by j : T*w — T*Mpy the
canonical injection,

J(T*w) UV, C Supp(a) C T*My,

and in particular a does not depend on time. There exists k > 0 such that, forany e >0and any T > kg™,

it holds
T
Cllu©), uO)I?, ;2 < / |(Op(@)dyu, dyu) 2] dt + [[w(0), Bu (O, ,, (11)
0 0 0 0

for some C = C(g, T) > 0 and for any solution u € CO(R; D((—Ag)'*) N C'(R; L(z)) of (9).

The term ||(ug, u1) ||i2X 2, in the right-hand side of (11) cannot be removed; i.e., our statement only
consists of a weak observability inequality. Indeed, the usual way to remove such terms is to use a
unique continuation argument for eigenfunctions ¢ of A, but here it does not work since Op(a)¢ = 0 does
not imply in general that ¢ = 0 in the whole manifold, even if the support of a contains j (7 *w) for some
nonempty open set w: in some sense, there is no “pseudodifferential unique continuation argument”.

1.6. Comments on the existing literature.

Elliptic and subelliptic waves. The exact controllability/observability of the elliptic wave equation is
known to be almost equivalent to the so-called geometric control condition (GCC) (see [Bardos et al.
1992]) that any geodesic enters the control set @ within time 7". In some sense, our main result is that GCC
is not satisfied in the subelliptic setting, as soon as M \w contains in its interior a point x at which A is
“truly subelliptic”. For the elliptic wave equation, in many geometrical situations, there exists a minimal
time Ty > 0 such that observability holds only for 7 > Tj: when there exists a geodesic y : (0, Top) > M
traveled at speed 1 which does not meet @, one constructs a sequence of initial data (u’(‘), u’f )kens of the
wave equation whose associated microlocal defect measure is concentrated on (xg, &) € $*M taken to be
the initial conditions for the null-bicharacteristic projecting onto y. Then, the associated sequence of
solutions (u*)xene of the wave equation has an associated microlocal defect measure v which is invariant
under the geodesic flow: pv =0, where p is the Hamiltonian flow associated to the principal symbol p
of the wave operator. In particular, denoting by = : T*M — M the canonical projection, v gives no
mass to w since y is contained in M \ @, and this proves that observability cannot hold.

In the subelliptic setting, the invariance property pv = 0 does not give any information on v on the
characteristic manifold ¥, since p = —279, + g* vanishes on . This is related to the lack of information
on propagation of singularities in this characteristic manifold; see the main theorem of [Lascar 1982].
If one instead tries to use the propagation of the microlocal defect measure for subelliptic half-wave
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equations, one is immediately confronted with the fact that v/—A is not a pseudodifferential operator
near X.

This is why, in this paper, we used only the elliptic part of the symbol g* (or, equivalently, the strictly
hyperbolic part of p,), where the propagation properties can be established, and then the problem is
reduced to proving geometric results on normal geodesics.

Subelliptic Schrodinger equations. The recent article [Burq and Sun 2019] deals with the same observ-
ability problem, but for subelliptic Schrodinger equations: namely, the authors consider the Baouendi—
Grushin Schrédinger equation id;u — Agu = 0, where u € L%((0,T) x Mg), Mg =(—1,1), x Ty and
Ag = 83 + x28}2, is the Baouendi-Grushin Laplacian. Given a control set of the form @ = (=1, 1), x wy,
where w, is an open subset of T, the authors prove the existence of a minimal time of control £(w) related
to the maximal height of a horizontal strip contained in M¢\w. The intuition is that there are solutions of
the Baouendi—Grushin Schrédinger equation which travel along the degenerate line x = 0 at a finite speed;
in some sense, along this line, the Schrodinger equation behaves like a classical (half)-wave equation.
What we want here is to explain in a few words why there is a minimal time of observability for the
Schrodinger equation, while the wave equation is never observable in finite time as shown by Theorem 2.

The plane IR% , endowed with the vector fields 9, and xd,, also admits normal geodesics similar to the
1-parameter family ¢., namely, for ¢ > 0,

x(t) =esin(t/¢),
y(t) =e(t/2 —esin(2t/e)/4).

These normal geodesics, denoted by ¥, also “spiral” around the line x = 0 more and more quickly as
& — 0, and so we might expect to construct solutions of the Baouendi—Grushin Schrédinger equation
with energy concentrated along y,, which would contradict observability when ¢ — 0 as above for the
Heisenberg wave equation.

However, we can convince ourselves that it is not possible to construct such solutions: in some sense,
the dispersion phenomena of the Schrodinger equation exactly compensate for the lengthening of the
normal geodesics y; as € — 0 and explain that even these Gaussian beams may be observed in w from a
certain minimal time £(w) > 0 which is uniform in &.

To put this argument into a more formal form, we consider the solutions of the bicharacteristic equations
for the Baouendi—Grushin Schrédinger equation id;u — Agu = 0 given by

x(1) = e sin(§y1), &x (1) = &y cos(&,1),

t  sin(2&,1)
y@) = ezé‘y(E - T})) &y (1) =§y.

It follows from the hypoellipticity of Ag (see [Burq and Sun 2019, Section 3] for a proof) that

1,112 < =AG = (&2 + X215, 1)/? =¢|&, .

Therefore 82|§y| 2 1, and hence |y(#)| 2 ¢, independently from ¢ and &,. This heuristic gives the
intuition that a minimal time £(w) is required to detect all solutions of the Baouendi—Grushin Schrodinger
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equation from w, but that for 7y > L(w), no solution is localized enough to stay in M \w during the time
interval (0, Tp). Roughly speaking, the frequencies of order &, travel at speed ~ &, which is typical for a
dispersion phenomenon. This picture is very different from the one for the wave equation (which we
consider in this paper) for which no dispersion occurs.

With similar ideas, in [Letrouit and Sun 2021], the interplay between the subellipticity effects measured
by the nonholonomic order of the distribution D (see Section 3.1) and the strength of dispersion of
Schrodinger-type equations was investigated. More precisely, for A, = 32+ |x | ayz onM=(—1,1),xT,,
and for s € N, the observability properties of the Schrodinger-type equation (19, — (—A, ) )u = 0 were
shown to depend on the value k = 2s/(y + 1). In particular it is proved that, for ¥ < 1, observability
fails for any time, which is consistent with the present result, and that for ¥ = 1, observability holds only
for sufficiently large times, which is consistent with the result of [Burq and Sun 2019]. The results of
[Letrouit and Sun 2021] are somehow Schrodinger analogues of the results of [Beauchard et al. 2014]
which deal with a similar problem for the Baouendi—Grushin heat equation.

General bibliographical comments. Control of subelliptic PDEs has attracted much attention in the
last decade. Most results in the literature deal with subelliptic parabolic equations, either the Baouendi—
Grushin heat equation [Koenig 2017; Duprez and Koenig 2020; Beauchard et al. 2020] or the heat
equation in the Heisenberg group [Beauchard and Cannarsa 2017]. The paper [Burq and Sun 2019] was
the first to deal with a subelliptic Schrodinger equation and the present work is the first to handle exact
controllability of subelliptic wave equations.

A slightly different problem is the approximate controllability of hypoelliptic PDEs, which was studied
in [Laurent and Léautaud 2022] for hypoelliptic wave and heat equations. Approximate controllability is
weaker than exact controllability, and it amounts to proving “quantitative” unique continuation results
for hypoelliptic operators. For the hypoelliptic wave equation, it is proved in [Laurent and Léautaud
2022] that for T > 2 sup, ¢, (dist(x, w)) (here, dist is the sub-Riemannian distance), the observation of
the solution on (0, 7)) x w determines the initial data, and therefore the whole solution.

1.7. Organization of the paper. In Section 2, we construct exact solutions of the subelliptic wave
equation (1) concentrating on any given normal geodesic. First, in Section 2.1, we show that, given any
normal geodesic ¢ — x(¢) which does not hit 9 M in the time interval (0, T), it is possible to construct a
sequence (vg)ren of approximate solutions of (1) whose energy concentrates along # +— x(¢) during the
time interval (0, T') as k — +o00. By “approximate”, we mean here that 8,2, v — Avyg is small, but not
necessarily exactly equal to 0. In Section 2.1, we provide a first proof for this construction using the
classical propagation of complex Lagrangian spaces. Another proof using a Gaussian beam approach is
provided in Appendix B. Then, in Section 2.2, using this sequence (vi)ren, We explain how to construct a
sequence (ux)ien Of exact solutions of (8,% — A)u =0 in M with the same concentration property along
the normal geodesic # +— x ().

In Section 3, we prove the existence of normal geodesics which spiral in M, spending an arbitrarily
large time in M\w. These normal geodesics generalize the example described in Section 1.3 for the
Heisenberg manifold with boundary. The proof proceeds in two steps: first, we show that it is sufficient
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to prove the result in the so-called “nilpotent case” (Section 3.2), and then we prove it in the nilpotent
case (Section 3.3).

In Section 4.1, we use the results of Sections 2 and 3 to conclude the proof of Theorem 2. In Section 4.2,
we deduce Corollary 4 by a duality argument. Finally, in Section 4.3, we prove Theorem 11.

2. Gaussian beams along normal geodesics

2.1. Construction of sequences of approximate solutions. We consider a solution (x (), £(¢)):c[0.1]
of (8) on M. We shall describe the construction of solutions of

2u—Au=0 (12)
on [0, T] x M with energy

Eu(t,-)) == 5(I18:a(t, )72y, + I, 115

concentrated along x(¢) for ¢ € [0, T']. The following proposition, which is inspired by [Ralston 1982;
Macia and Zuazua 2002], shows that it is possible, at least for approximate solutions of (12).

Proposition 12. Fix T > 0 and let (x(t), £(t)):c[0,7] be a solution of (8) (in particular g*(x(0), £(0)) = JT)
which does not hit the boundary dM in the time interval (0, T). Then there exist ag, ¥ € C>((0, T) x M)
such that, setting, for k € N,

we(t, x) = kT lag(r, x)e VO
the following properties hold:

Vi is an approximate solution of (12), meaning that

_1
||8,2,vk — Avelloo,my;2my) < Ck™ 2. (13)
o The energy of vy is bounded below with respect to k and t € [0, T]:

there exists A > 0 such that, forallt € [0, T], %{im inf E(vi(t,-)) > A. (14)
—+0o0

o The energy of vy is small off x(t): For any t € [0, T], we fix V, an open subset of M for the initial
topology of M, containing x(t), so that the mapping t — V; is continuous (V; is chosen sufficiently
small so that this makes sense in a chart). Then

sup f \ <|atvk<z,x>|2+2(x,~vk<t,x>)2)du(x)mo. (15)
M\V,

t€l0,T] =1

Remark 13. The construction of approximate solutions such as the ones provided by Proposition 12 is
usually done for strictly hyperbolic operators, that is, operators with a principal symbol p,, of order m such
that the polynomial f(s) = p,, (¢, q, s, &) has m distinct real roots when & # 0; see for example [Ralston
1982]. The operator 8,2, — A is not strictly hyperbolic because g* is degenerate, but our proof shows that the
same construction may be adapted without difficulty to this operator along normal bicharacteristics. This
is due to the fact that along normal bicharacteristics, 32 — A is indeed strictly hyperbolic (or equivalently,
A is elliptic). It was already noted by [Ralston 1982] that the construction of Gaussian beams could
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be done for more general operators than strictly hyperbolic ones, and that the differences between the
strictly hyperbolic case and more general cases arise while dealing with propagation of singularities.
Also, in [Hormander 1985, Chapter 24.2], it was noticed that “since only microlocal properties of p, are
important, it is easy to see that hyperbolicity may be replaced by Ve p #0.”

Hereafter we provide two proofs of Proposition 12. The first proof is short and is actually quite
straightforward for readers acquainted with the theory of propagation of complex Lagrangian spaces,
once one has noticed that the solutions of (8) which we consider live in the elliptic part of the principal
symbol of —A. For the sake of completeness, and because this also has its own interest, we provide
in Appendix B a second proof, longer but more elementary and accessible without any knowledge of
complex Lagrangian spaces; it relies on the construction of Gaussian beams in the subelliptic context.
The two proofs follow parallel paths, and indeed, the computations which are only sketched in the first
proof are written in full detail in the second proof, given in Appendix B.

First proof of Proposition 12. The construction of Gaussian beams, or more generally of a WKB
approximation, is related to the transport of complex Lagrangian spaces along bicharacteristics, as
reported for example in [Hérmander 1985, Chapter 24.2; Ivrii 2019, Volume I, Part I, Chapter 1.2]. Our
proof follows the lines of [Hormander 1985, pages 426—428].

A usual way to solve (at least approximately) evolution equations of the form

Pu=0, (16)

where P is a hyperbolic second-order differential operator with real principal symbol and C* coefficients,
is to search for oscillatory solutions

v (x) = k1 g (x)e®V ™, (17)
In this expression as in the rest of the proof, we suppress the time variable r. Thus, we use x =
(x0, X1, - .., Xn), Where xo =t in the earlier notation, and we set x’ = (xy, ..., x,,). Similarly, we take
the notation & = (&, &1, ..., &), where & = 1 previously, and &' = (&, ..., &,). The bicharacteristics

are parametrized by s as in (7), and without loss of generality, we only consider bicharacteristics with
x(0) =0 at s = 0, which implies in particular xo(s) = s because of our choice t2(s) = g*(x(s), £(s5)) = le'
Taking charts of M, we can assume M C R". The precise argument for reducing to this case is written
at the end of Appendix B. Also, in the sequel, P = 8,% —A
Plugging the ansatz (17) into (16), we get

Pug= (k3T AL+ kT Ay + k171 AtV (18)
with
A1(x) = pa(x, Vi (0))ao(x),  Ax(x) = Lag(x),  As(x) = da0(x) — Aag(x),
and L is a transport operator given by

_ aps dagp 1 ~ 02p, 9%y
Lao——Z@u Vi x )>—+zl(20 eV k) a. (19)
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For vy to be an approximate solution of P, we are first led to cancel the higher-order term in (18), i.e.,
S (x) = pa(x, Vi (x)) =0, (20)

which we solve for initial conditions

¥ (0, x") =vYo(x), Vip0)=¢&(0) and y0(0)=0 1)

(i.e., we fix such a ¥, and then we solve (20) for v). Indeed, it will be sufficient for our purpose for (20)
to be satisfied at second order along the curve x(s); i.e., DY f(x(s)) = 0 for any |¢| < 2 and any s. For
that, we first notice that the choice Vi (x(s)) = £(s) ensures that (20) holds at orders 0 and 1 along the
curve s — x(s) (see Appendix B for detailed computations). Now, we explain how to choose D>y (x(s))
adequately in order for (20) to hold at order 2.

We use the decomposition of p; into

pa(xo, X', &0, 8') = — (6o —r(x', &) (G0 +r(x", &) + R(', &),

where r = ,/g* in a conic neighborhood of (0, £(0)). Note that /g* is smooth in small conic neigh-
borhoods of (0, £(0)) since g*(0, £(0)) = i # 0. Indeed, g* is elliptic along the whole bicharacteristic
since g*(x (1), (1)) = % is preserved by the bicharacteristic flow. The rest term R(x’, &) is smooth and
microlocally supported far from the bicharacteristic; i.e., R(x’, &) =0 for any (x’, §’) € T*M in a conic
neighborhood of (x(s), &'(s)) for s € [0, T].

We consider the bicharacteristic y starting at (0, 0, 7(0, £’(0)), £'(0)) and the bicharacteristic y_
starting at (0, 0, —r (0, £'(0)), £'(0)).

We denote by ®*(xo, y’, ') the solution of the Hamilton equations with Hamiltonian H. (x0, x', &N =
EoFr(x’, &) and initial datum (x', &) = (', ) at xo =0. In other words, ®* (xq, y’, n') == (0, y', 1').
Then, for any s, ®(s, -) is well-defined and symplectic from a neighborhood of (0, £’(0)) to a neigh-
borhood of H4 (s, 0, £'(0)).

The solution ¥ (s, -) of (20) and (21) is equal to O on y+ and Vi (s, -) is obtained by the transport
of the values of Vi by ®*(s, -). In other words, to compute Vi (s, - ), one transports the Lagrangian
subspace Ag = {(x’, Viyp(x"))} along the Hamiltonian flow H. during a time s, which yields Ay C T*M,
and then, if possible, one writes A under the form {(x’, V¥ (s, x))}, which gives V4 (s, x"). The
trouble is that the solution is only local in time: when x’ — 7 (®* (s, x’, Vi/(x’))) ceases to be a
diffeomorphism (conjugate point), where = : T*M — M is the canonical projection, we see that the
process described above does not work (appearance of caustics). In the language of Lagrangian spaces,
Ao = {(x', Vio(x"))} C T*M is a Lagrangian subspace and, since ®*(s, - ) is a symplectomorphism,
Ay = dE(s, Ag) is Lagrangian as well. If 7|5 is a local diffeomorphism, one can locally describe A by
Ay ={(x', Vy(s,x"))} C T*M for some function ¥/ (s, - ), but blow-up happens when rank(dm|s,) < n
(classical conjugate point theory), and such a (s, - ) may not exist.

However, if the phase v is complex, quadratic, and satisfies the condition Im(D?vy) > 0, where
D> denotes the Hessian, no blow-up happens, and the solution is global-in-time. Let us explain why.
Indeed, Ao = {(x, Viyo(x"))} then lives in the complexification of the tangent space T*M, which may be
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thought of as C>"*+1), We take coordinates (y, ) on T*R"*! or T*C"*! and we consider the symplectic
forms defined by 0 =Y dy; Adn; and oc = Y_dy; Adn;.

Because of the condition Im(D?y/) > 0, Ay is called a “strictly positive Lagrangian space” (see
[Hormander 1985, Definition 21.5.5]), meaning that ioc(v, v) > O for v in the tangent space to Ayp.
For any s, the symplectic forms o and o¢ are preserved by ® (s, - ), meaning that ®(s, - ),0 = o and
d (s, - )soc = oc; therefore o = 0 on the tangent space to A, and ioc(v, v) > O for v tangent to Aj.
It precisely means that Ay is also a strictly positive Lagrangian space. Then, by [Hérmander 1985,
Proposition 21.5.9], we know that there exists ¥ (s, - ) complex and quadratic with Im(D>y (s, -)) >0
such that Ay = {(x’, Vv (s, x'))} (to apply [Hormander 1985, Proposition 21.5.9], recall that, for
p(x') = %(Ax’, x"), it holds Vg (x") = Ax’). In other words, the key point in using complex phases is that
strictly positive Lagrangian spaces are parametrized by complex quadratic phases ¢ with Im(D?¢) > 0,
whereas real Lagrangian spaces were not parametrized by real phases (see explanations above). This
parametrization is a diffeomorphism from the Grassmannian of strictly positive Lagrangian spaces to
the space of complex quadratic phases with ¢ with Im(D?¢) > 0. Hence, the phase

Y(s, ) = Vo (x() - () = X' () + 3/ = x'(5)) - DL (s, X' () (¢ — x'(s))

for s € [0, T] and y’ € R" is smooth and for this choice (20) is satisfied at second order along s > x(s)
(the rest R(x’, &’) plays no role since it vanishes in a neighborhood of s > x(s)).

Then, we note that A, vanishes along the bicharacteristic if and only if Lag(x(s)) =0 (see also [Horman-
der 1985, equation (24.2.9)]). According to (19), this turns out to be a linear transport equation on ag(x(s)),
with leading coefficient Ve pa (x (s), £ (s)) different from 0. Given a #0 at (r =0, x" =x'(0)), this transport
equation has a solution ag(x(s)) with initial datum a, and, by Cauchy uniqueness, ag(x(s)) # 0 for any s.
We can choose ag in a smooth (and arbitrary) way outside the bicharacteristic. We choose it to vanish
outside a small neighborhood of this bicharacteristic, so that no boundary effect happens.

With these choices of ¢ and ay, the bound (13) then follows from the following result whose proof
is given in [Ralston 1982, Lemma 2.8].

Lemma 14. Let c(x) be a function on R"T! which vanishes at order S — 1 on a curve T" for some S > 1.
Suppose that Supp c N {|xg| < T} is compact and that Im ¥ (x) > ad (x)? on this set for some constant
a > 0, where d(x) denotes the distance from the point x € R*! to the curve T. Then there exists a
constant C such that

/ le()e™ P2 gy < Ck™571.
|xol<T

Let us now sketch the end of the proof, which is given in Appendix B in full detail. We apply Lemma 14
toS=3,c=A;andto S =1, ¢c = Ay, and we get

_1 _1 _
||at2tvk_Avk”Ll(O,T;LZ(M))<C(k 2+k 2+k 1)’

which implies (13). The bounds (14) and (15) follow from the facts that Im(D>*¥ (s, -)) > 0 and
Ve () = K4 ag (x) etk ™), O
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Remark 15. An interesting question would be to understand the delocalization properties of the Gaussian
beams constructed along normal geodesics in Proposition 12. Compared with the usual Riemannian
case done for example in [Ralston 1982], there is a new phenomenon in the sub-Riemannian case since
the normal geodesic x (¢) (or, more precisely, its lift to $* M) may approach the characteristic manifold
3 = {g*=0}, which is the set of directions in which A is not elliptic. In finite time 7 as in our case,
the lift of the normal geodesic remains far from X, but it may happen as T — oo that it goes closer
and closer to ¥. The question is then to understand the link between the delocalization properties of the
Gaussian beams constructed along such a normal geodesic, and notably the interplay between the time T’
and the semiclassical parameter %

2.2. Construction of sequences of exact solutions in M. In this section, using the approximate solutions
of Section 2.1, we construct exact solutions of (12) whose energy concentrates along a given normal
geodesic of M which does not meet the boundary d M during the time interval [0, T'].

Proposition 16. Let (x(t), £(2))ecf0.1] be a solution of (8) in M (in particular g*(x(0), £(0)) = %) which
does not meet 9M. Let 6 € C°([0, T]1 x M) with 6(t, - ) = 1 in a neighborhood of x(t) and such that the
support of 0(t, -) stays at positive distance of o M.

Suppose (vi)reN is constructed along x(t) as in Proposition 12 and uy, is the solution of the Cauchy

problem

(@2 —Aug =0 in(0,T)x M,

ur=0 in(0,T)xoM,

uki=0 = (v 1=0,  Oukjr=0 = [3;(Ovi)lj1=0.
Then:

o The energy of uy is bounded below with respect to k and t € [0, T']:

there exists A > 0 such that, forallt € [0, T], lkim inf E(ui(t,-)) > A. (22)
——+00

o The energy of uy is small off x(t): For any t € [0, T], we fix V; an open subset of M for the initial
topology of M, containing x(t), so that the mapping t — V; is continuous (V; is chosen sufficiently
small so that this makes sense in a chart). Then

sup / \ <|atuk<z,x)|2+Z(X<,uk(r,x>>2)du(x)mo. (23)
M\V;

t€l0,T] i=1

Proof of Proposition 16. Set hy, = (8,2, — A)(Bvr). We consider wy the solution of the Cauchy problem
(02— A)wy=hy in(0,T)x M,
wry=0 in(0,T)x oM, (24)
(Wi |r=0, 0 wi|r=0) = (0, 0).

Differentiating E (wg(¢, - )) and using Gronwall’s lemma, we get the energy inequality

sup E(wi(t, ) < CE(wi(0, ) + 1kl 10, 7:22(my))-
1€[0,7T]
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Therefore, using (13), we get sup, .77 E(wi(r, -)) < Ck~ . Since uy = 0vi — wy, we obtain that
lim E(ui(t,-)) = lim E((Ov)(t,-)) = lim E(v(t,-))
k—+00 k—+o00 k—+00

for every t € [0, T'], where the last equality comes from the fact that 8 and its derivatives are bounded
and |Jvg|lz2 < Ck~! when k — +o0. Using (14), we conclude that (22) holds.
To prove (23), we observe similarly that

sup / (|3zuk(f7x)|2+Z(Xjuk(t,X))2> du(x)
M\V;

1€[0,T] sy

<C sup (/ (B vk, )+ Y (X jue(t, x)%) dﬂ(x)> L Ckt =0
M\V,

1€[0,T] ol

as k — 400, according to (15). It concludes the proof of Proposition 16. UJ

3. Existence of spiraling normal geodesics

The goal of this section is to prove the following proposition, which is the second building block of the
proof of Theorem 2, after the construction of localized solutions of the subelliptic wave equation (1) done
in Section 2.

We say that X1, ..., X, satisfies the property (P) at ¢ € M if the following holds:

(P) For any open neighborhood V of q, for any Ty > 0, there exists a nonstationary normal geodesic
t — x(t), traveled at speed 1, such that x(t) € V for any t € [0, Tp].

Proposition 17. At any point g € M such that there exist 1 <i, j <m with [X;, X ;1(q) ¢ Dy, property (P)

holds.
In Section 3.1, we define the so-called nilpotent approximations X9,..., X% ata point g € M, which are
first-order approximations of X, ..., X,, at g € M such that the associated Lie algebra Lie(X?, ..., X/,

is nilpotent. Roughly, we have X lq ~ X;(q), but low-order terms of X;(g) are not taken into account for
defining X l.q, so that the high-order brackets of the X ? vanish (which is not generally the case for the X;).
These nilpotent approximations are good local approximations of the vector fields X1, ..., X,,, and their
study is much simpler.

The proof of Proposition 17 splits into two steps: first, we show that it is sufficient to prove the result
in the nilpotent case (Section 3.2), then we handle this simpler case (Section 3.3).

3.1. Nilpotent approximation. In this section, we recall the construction of the nilpotent approximations
5(\’1’, R 5(\,31 The definitions we give are classical, and the reader can refer to [Agrachev et al. 2020,
Chapter 10; Jean 2014, Chapter 2] for more material on this section. This construction is related to the
notion of tangent space in the Gromov—Hausdorff sense of a sub-Riemannian structure (M, D, g) at a
point ¢ € M; the tangent space is defined intrinsically (meaning that it does not depend on a choice of
coordinates or of local frame) as an equivalence class under the action of sub-Riemannian isometries; see
[Bellaiche 1996; Jean 2014].
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Sub-Riemannian flag. We define the sub-Riemannian flag as follows: we set DY = {0}, P! =D, and, for
any j > 1, D/t = DJ +[D, D/]. For any point g € M, it defines a flag

=p)cp,c---CcD ' ¢DD =T, M.

The integer r(q) is called the nonholonomic order of D at g, and it is equal to 2 everywhere in the
Heisenberg manifold for example. Note that it depends on ¢; see Example 5 in Section 1.2 (the Baouendi—
Grushin example).

For 0 <i <r(q), we set n;(q) = dim Dq", and the sequence (n;(q))o<i<r(¢) 18 called the growth vector
at point g. We set Q(q) = Z;(:q]) i(nj(q) —ni—1(q)), which is generically the Hausdorff dimension of the
metric space given by the sub-Riemannian distance on M; see [Mitchell 1985]. Finally, we define the
nondecreasing sequence of weights w;(¢) for 1 <i < n as follows. Given any 1 < i < n, there exists
aunique 1 < j <nsuchthatn; i(g)+1<i<nj(g). Weset w;(g) = j. For example, for any ¢ in
the Heisenberg manifold, wi(g) = w2(g) = 1 and w3(q) = 2; indeed, the coordinates x; and x, have
“weight 17, while the coordinate x3 has “weight 2” since d,, requires a bracket to be generated.

Regular and singular points. We say that g € M is regular if the growth vector (n;(q"))o<i<r() at ¢’ is
constant for ¢’ in a neighborhood of ¢. Otherwise, ¢ is said to be singular. If any point ¢ € M is regular,
we say that the structure is equiregular. For example, the Heisenberg manifold is equiregular, but not the
Baouendi—Grushin example.

Nonholonomic orders. The nonholonomic order of a smooth germ of function is given by the formula
ord, (f) = min{s € N : there exists iy, ..., is € {l,...,m} such that (X;, --- X; f)(q) # 0},

where we adopt the convention that min & = +o0.
The nonholonomic order of a smooth germ of vector field X at g, denoted by ord, (X), is the real
number defined by

ord, (X) =sup{o € R:ord,(Xf) > o +ord,(f) forall f € C*®(q)}.

For example, it holds ord, ([X, Y]) > ord, (X) + ord,(Y) and ord,(fX) > ord,(f) + ord,(X). As a
consequence, every X which has the property that X (¢") € in/ for any ¢’ in a neighborhood of ¢ is of
nonholonomic order > —i.

Privileged coordinates. Locally around g € M, it is possible to define a set of so-called “privileged
coordinates” of M see [Bellaiche 1996].

A family (Zy, ..., Z,) of n vector fields is said to be adapted to the sub-Riemannian flag at g if itis a
frame of T, M at q and if Z;(q) € D;”i(q) forany i € {1, ..., n}. In other words, forany i € {1,...,r(q)},
the vectors Zi, ..., Zy,(q) at g span in.

A system of privileged coordinates at ¢ is a system of local coordinates (x, ..., x,) such that

ordy(x;)) =w; forl<i<n. (25)
In particular, for privileged coordinates, we have d,, € D;” ' (4)\D;U )=l
coordinates are adapted to the flag.

at ¢, meaning that privileged
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Example: exponential coordinates of the second kind. Choose an adapted frame (Z, ..., Z,) at q. Itis
proved in [Jean 2014, Appendix B] that the inverse of the local diffeomorphism

(X1, ...y Xp) > exp(x1Zy) o - oexp(x, Z,)(q)
defines privileged coordinates at ¢, called exponential coordinates of the second kind.

Dilations. We consider a chart of privileged coordinates at ¢ given by a smooth mapping ¥, : U — R",
where U is a neighborhood of ¢ in M, with ¥, (g) = 0. For every ¢ € R\{0}, we consider the dilation
3; : R* — R" defined by

8e(x) = (6" Wxy, ..., " W)

for every x = (x1, ..., x;). A dilation §, acts also on functions and vector fields on R" by pull-back:
87 f = fod. and §} X is the vector field such that (6} X) (6} f) =87 (X f) forany f € C!(R™). In particular,
for any vector field X of nonholonomic order k, it holds §* X = ¢ ¥ X.

Nilpotent approximation. Fix a system of privileged coordinates (xi, ..., x,) at g. Given a sequence of
integers o = (o1, ..., oy), we define the weighted degree of x* = x‘l’” <o xy" to be

w(a) =wi(g)ay + -+ wy(q)ay.
Coming back to the vector fields X1, ..., X,,, we can write the Taylor expansion

Xi(x) ~ ) g, ;x"y,. (26)

a,j
Since X; € D, its nonholonomic order is necessarily —1; hence it holds w(a) > w;(g) — 1 if a, ; #0.
Therefore, we may write X; as a formal series

X=X+ xO 4 xP oy

where X l.(s) is a homogeneous vector field of degree s, meaning that
* () _ s (5)
88 (wq)*xi =¢ (%)*Xi .

We set X f’ = (V)X l-(_l) for 1 <i <m. Then X ? is homogeneous of degree —1 with respect to dilations,
ie., 82‘5(\ f’ =g} 5(\7 for any ¢ # 0. Each X lq may be seen as a vector field on R” thanks to the coordinates
(x1,...,x,). Moreover,
X7 = 1im &8 (¥)4 Xi
e—0

in the C*° topologys; all derivatives uniformly converge on compact subsets. For ¢ > 0 small enough we have
X¢ =8 () Xi = X! +eRE,

where R? depends smoothly on & for the C* topology; see also [Agrachev et al. 2020, Lemma 10.58].
An important property is that (S(\q, ey 5(\;],,) generates a nilpotent Lie algebra of step r(q); see [Jean
2014, Proposition 2.3].
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The nilpotent approximation of X1, ..., X, at g is then defined as M% ~ R" endowed with the vector
fields X ‘f, L X Ttis important to note that the nilpotent approximation depends on the initial choice
of privileged coordinates. For an explicit example of computation of nilpotent approximation; see [Jean
2014, Example 2.8].

3.2. Reduction to the nilpotent case. In this section, we show the following.

Lemma 18. Let X4, ..., X,, be smooth vector fields on M satisfying Hormander’s condition, and let
q € M. If the property (P) holds at point 0 € R" for the nilpotent approximation X1, ..., X}, then the
property (P) holds at point q for X1, ..., Xn.

Note that the above lemma is true for any nilpotent approximation X 7 ..., X J at q, 1.e., for any choice
of privileged coordinates (see Section 3.1).

Proof of Lemma 18. We use the notation &z for the momentum map associated with the vector field Z
(see Section 1.4). We use the notation of Section 3.1, in particular the coordinate chart v, .
We set ¥; = (¥4)«X; and X7 = &68;Y; which is a vector field on R". Recall that

X¢=X! 4 &R,

where R; depends smoothly on ¢ for the C* topology. Therefore, using the homogeneity of X f.’, we get,
for any € > 0,

1 1 = S
Y, = 5(88)*Xf = E(Ss)*(xzj +8R;'€) = X,('I + (88)*Rie' (27)

The vector field (8,)+R; (x) does not depend on & and has a size which tends uniformly to 0 as
x — 0 e M? >~ R". Recall that the Hamiltonian H associated to the vector fields X f’ is given by

m
i=1

Similarly, we set

H =

.MS

—_

We note that (27) gives
hy, = hzs +heo.re -
Hence

m
H=2) hyhy,=H+86, (28)
i=1

where © is a smooth vector field on T*R" such that
I(dr 0 ©)(x, &) < Clix| (29)

when ||x|| = O (independently of &), where = : T*R" — R”" is the canonical projection. This last
point comes from the smooth dependence of R; on ¢ for the C* topology (uniform convergence of all
derivatives on compact subsets of R").
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Given the projection of an integral curve c(-) of H, we denote by ¢(-) the projection of the integral
curve of H with same initial covector. Combining (28) and (29), and using Gronwall’s lemma, we obtain
the following result:

Fix Ty > 0. For any neighborhood V of 0 in R",
there exists another neighborhood V' of 0 such that if ¢|[0,7,; C V', then éj0,7,1 C V.

Therefore, if the property (P) holds at 0 € R” for X7, ..., X, then it holds also at 0 € R" for the
vector fields Yi, ..., Y.

Using that X; = ¢;'¥;, we can pull back the result to M and obtain that the property (P) holds at point ¢
for X1, ..., X, which concludes the proof of Proposition 17. O

Thanks to Lemma 18, it is sufficient to prove the property (P) under the additional assumption that
M C R" and Lie(X1q, ..., X,,) is nilpotent. (30)
In all that follows, we assume that this is the case.

3.3. End of the proof of Proposition 17. Let us finish the proof of Proposition 17. Our ideas are inspired
by [Agrachev and Gauthier 2001, Section 6].

First step: reduction to the constant Goh matrix case. We consider an adapted frame Y1, ..., Y, at g. We
take exponential coordinates of the second kind at g; we consider the inverse v, of the diffeomorphism

(X1, s xp) > exp(xYy) - - -exp(x, Y)(q).

Then we write the Taylor expansion (26) of X1, ..., X, in these coordinates. Thanks to Lemma 18, we can
assume that all terms in these Taylor expansions have nonholonomic order —1. We denote by §; the dual
variable of x;. We use the notation ny, no, ... introduced in Section 3.1, and we make a strong use of (25).

Claim 1. Ifanormal geodesic (x(t), £(t));er has initial momentum satisfying &(0) =0 forany k > n,+1,
then & =0 for any k > ny + 1, and in particular & =0 for any k > n> + 1.

Proof. We write

n
Xj(x)zzaij(x)axia j:17"'7m7
i=1
where the a;; are homogeneous polynomials. We have
m n 2
g (x, &) =Z(Za,~j<x>a~). 31)
j=1 Vi=1

Let k > ny+1, which means that x; has nonholonomic order > 3. If a;; (x) depends on xi, then necessarily
i > n3+ 1, since a;;(x)dy, has nonholonomic order —1. Thus, writing explicitly ék = —0g*/dx; thanks
to (31), there is in front of each term a factor &; for some i which is in particular > n, + 1. By Cauchy
uniqueness, we deduce that & =0 for any k > n, + 1.
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Now, let k > ny + 1, which means that x; has nonholonomic order > 2. If a;;(x) depends on xi, then
necessarily i > ny+1, since a;; (x)d,, has nonholonomic order —1. Thus, writing explicitly £, =—0g"/0xk
thanks to (31), there is in front of each term a factor &; for some i which is > ny + 1. It is null by the
previous conclusion; hence & = 0. UJ

The previous claim will help us to reduce the complexity of the vector fields X; once again (after the
first reduction provided by Lemma 18). Let us consider, for any 1 < j < m, the vector field

ny
X" =" a;(x) 0y, (32)

i=1

where the sum is taken only up to n,. We also consider the reduced Hamiltonian on 7*M
m
* 2
gred = Z hX§ed-
j=1

Claim 2. If X ﬁed, -, X™ satisfy property (P) at q, then X1, ..., X, satisfy property (P) at q.

Proof. Let us assume that X {ed, e X ,r;'d satisfy property (P) at g. Let Ty > 0 and let (x™%¢(0), £°9¢(0))
be initial data for the Hamiltonian system associated to g, which yield speed-1 normal geodesics
(x"ed2 (1), £74:2 (1)) such that x™d¢ () — g uniformly over (0, Ty) as ¢ — 0.

We can assume without loss of generality that Sl.red’g(O) =0 for any i > n» + 1, since these momenta
(preserved under the reduced Hamiltonian evolution) do not change the projection x™%¢(¢) of the normal
geodesic. We consider (x¢(0), £2(0)) = (x™%¢(0), £7°4-¢(0)) as initial data for the (nonreduced) Hamil-

tonian evolution associated to g*. Then we notice that £ = 0 for k > n, + 1 thanks to Claim 1. It follows
that when i < n,, we have x{ (1) = xl.red’g(t); i.e., the coordinate x; is the same for the reduced and the
nonreduced Hamiltonian evolution.

Finally, we take k such that n, + 1 < k < n3. Since g* is given by (31), we have
. & ag* < &€ < &€ &
xk=a—§k=22ak,-(x )(Zai,(x )g). (33)
j=1 i=1
But a;; has necessarily nonholonomic order 2 since d,, has nonholonomic order —3. Thus, a;;(x) is a
nonconstant homogeneous polynomial in xi, ..., x,,. Since x7, ..., xf,z converge to g uniformly over
(0, Tp) as e — 0, it is also the case of x; according to (33), noticing that

n
1
D i (xE| < (g7 =3
i=1

& &

for any j. In other words, x; ., ..., x;, also converge to ¢ uniformly over (0, Tp) as & — 0.
We can repeat this argument successively for k € {n3+1,...,n4}, k€ {ns+1, ..., ns}, etc., and we
finally obtain the result: for any 1 <k < n, x; converges to g uniformly over (0, Tp) as ¢ — 0. g

Thanks to the previous claim, we are now reduced to proving Proposition 17 for the vector fields
X {ed, R X;fd. In order to keep notation as simple as possible, we simplify to X1, ..., X,;; i.e., we drop
the upper notation “red”. Also, without loss of generality we assume that g = 0.
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If we choose our normal geodesics so that x(0) = 0, then x; = 0 for any i > n, + 1 thanks to (32). In
other words, we forget the coordinates x,,41, .. ., X, in the sequel, since they all vanish.2

Second step: conclusion of the proof. Now, we write the normal extremal system in its “control” form.
We refer the reader to [Agrachev et al. 2020, Chapter 4]. We have

m

i) =) uwi)X;(x(0), (34)

i=1

where the u; are the controls, explicitly given by
ui(t) =2hyx, (x(r), §(1)) (35)
since (x(t),&(t)) = etg*(O, &o). Thanks to (32), we rewrite (34) as
x(1) = F(x(@)u(r), (36)

where F = (a;;), which has size ny x m, and u = "(uy, ..., u,). Differentiating (35), we have the
complementary equation

u(t) =Gx(@),E@)u(t),
where G is the Goh matrix
G = Q{hx,, hx;Di<ij<m

(it differs from the usual Goh matrix by a factor —2 due to the absence of factor % in the Hamiltonian g*
in our notation).

Let us prove that G(¢) is constant in 7. Fix 1 < j, j* < m. We notice that in (32), g;; is a constant
(independent of x) as soon as 1 <i < nj since dy, has weight —1. This implies

[X;, X]is spanned by the vector fields 9 0 .,0 (37

Xny+12 “Xnp422 " ° Xny *

Putting this into the relation {/ X h Xj,} =h X;. Xyl and using that the dual variables & forn|+1 <k <n»p
are preserved under the Hamiltonian evolution (due to Claim 1), we get that G(¢) = G is constant in ¢.

We know that G # 0 and that G is antisymmetric. The whole control space R™ is the direct sum of the
image of G and the kernel of G, and G is nondegenerate on its image. We take u( in an invariant plane
of G; in other words its projection on the kernel of G vanishes (see Remark 19). We denote by G the
restriction of G to this invariant plane. We also assume that 1o, decomposed as ug = (ugy, - . . , Uom) € R™,
satisfies > ;.| u(z)l. = ‘—1‘. Then u(t) = etéuo and since ' is an orthogonal matrix, we have ||e’5uo|| = |luo||.
We have by integration by parts

t

x() = /Z F(x(s)e*Cupds = F(x(1))G ' (¢'C — Dug —/ ;—S(F(x(s)))é_l(esa — Dupds. (38)
0 0

ZNote that this is the case only because we are now working with the reduced Hamiltonian evolution; otherwise, under
the original Hamiltonian evolution associated to (31), the x; (for i > ny + 1) remain small according to Claim 2, but do not
necessarily vanish.
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Let us now choose the initial data of our family of normal geodesics (indexed by ¢). The starting point
x¢(0) = 0 is the same for any &; we only have to specify the initial covectors £ = £°(0) € TR"™. For any
i=1,...,m, we impose that

(6%, Xi) = uoi. (39)

It follows that g*(x(0), £°(0)) = >/, u%l. = }L for any ¢ > 0. Now, we notice that Span(X1, ..., X,,)
is in direct sum with the Span of the [X;, X ;] for 7, j running over 1, ..., m (this follows from (37)).
Fixing G° # 0 an antisymmetric matrix and G its restriction to an invariant plane, we can specify,
simultaneously to (39), that

(€°.20X;, X;) =& G},

Then x(¢) is given by (38) applied with G =& 'G° which brings a factor ¢ in front of (38).

Recall finally that the coefficients a;; which compose F' have nonholonomic order O or 1; thus
they are degree-1 (or constant) homogeneous polynomials in xi, ..., x,,. Thus f—s(F (x(s))) is a linear
combination of x;(s) which we can rewrite thanks to (36) as a combination with bounded coefficients
(since sz:l “12 = i) of the x;(s). Hence, applying the Gronwall lemma in (38), we get || x%(¢)| < Ce,
which concludes the proof.

Remark 19. Let us explain why we choose ug to be in an invariant plane of G. If the projection of ug
to the kernel of G is nonzero then the primitive of the exponential of ¢?/®)%0y, contains a linear term
that does not depend on . Then the corresponding trajectory follows a singular curve; see [Agrachev
et al. 2020, Chapter 4] for a definition. This means we find normal geodesics which spiral around a
singular curve and do not remain close to their initial point over (0, Tp), although their initial covector is
“high in the cylinder bundle U*M”. For example, for the Hamiltonian & 12 + (& + )61253)2 associated to
the “Martinet” vector fields X| = dy,, X2 = 0, + x]28x3 in R3, there exist normal geodesics which spiral
around the singular curve (z, 0, 0).

Remark 20. The normal geodesics constructed above lose their optimality quickly, in the sense that their
first conjugate point and their cut-point are close to g.

4. Proofs

4.1. Proof of Theorem 2. In this section, we conclude the proof of Theorem 2.

Fix a point ¢ in the interior of M \ w and 1 <i, j < m such that [X;, X;](¢) ¢ D,. Fix also an open
neighborhood V of ¢ in M such that V. C M\w. Fix V' an open neighborhood of ¢ in M such that
V' C V, and fix also Tj > 0.

As already explained in Section 1.3, to conclude the proof of Theorem 2, we use Proposition 16 applied
to the particular normal geodesics constructed in Proposition 17.

By Proposition 17, we know that there exists a normal geodesic ¢ —> x(¢) such that x(¢) € V' for
any t € (0, Tp). It is the projection of a bicharacteristic (x(¢), £(¢)) and since it is nonstationary and
travels at speed 1, it holds g*(x(¢), £(¢)) = %. We denote by (ux)ren @ sequence of solutions of (12) as in
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Proposition 16 whose energy at time ¢ concentrates on x(¢) for ¢ € (0, Tp). Because of (22), we know that

1k (0), ;ux () ll3xr2 = ¢ >0

uniformly in k.
Therefore, in order to establish Theorem 2, it is sufficient to show that

k—+o00

To
/ 18,15 (2, X)|* dp(x) dt ——— 0. (40)
0 Jo

Since x(¢) € V' for any ¢ € (0, Tp), we get that for V; chosen sufficiently small for any z € (0, Tp), the
inclusion V; C V holds (see Proposition 16 for the definition of V;). Combining this last remark with (23),
we get (40), which concludes the proof of Theorem 2.

4.2. Proof of Corollary 4. We endow the topological dual H (M)’ with the norm
ooy = (=220l 200).
The following proposition is standard; see, e.g., [Tucsnak and Weiss 2009; Le Rousseau et al. 2017].

Lemma 21. Let Ty > 0 and w C M be a measurable set. Then the following two observability properties
are equivalent:

(P1) There exists Cr, such that, for any (vo, v1) € D((—A)/?) x L2(M), the solution
v e C0, Ty: D((—A)2) NC (0, Ty; LA(M))
of (1) satisfies

To
f [ 19v(t, @) 1> din(q) dt = Cry | (o, v lgaryx 220y - (41)
0 Jo

(P2) There exists Cr, such that, for any (vo, v1) € L*>(M) x D((—A)~Y/?), the solution

v e 0, Ty; LA(M)) N C'(0, Ty: D(—A) ™))
of (1) satisfies

To
[ 10 P dint@ydr > Con wlE )

Proof. Let us assume that (P2) holds. Let u be a solution of (1) with initial conditions (ug, u;) €
D((—A)'/2) x L2(M). We set v = d,u, which is a solution of (1) with initial data v;—o = u; € L?>(M) and
d =0 = Aug € D((—A)~1/2). Since || (vo, vi) Il 2xary = N1, Auo)ll g2 aary = 110, wD llaary 20
applying the observability inequality (42) to v = d,u, we obtain (41). The proof of the other implication
is similar. (|

Finally, using Theorem 2, Lemma 21 and the standard HUM method [Lions 1988], we get Corollary 4.
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4.3. Proof of Theorem 11. We consider the space of functions u € C*°([0, T] x My) such that

/ u, - )du=0
My

for any ¢ € [0, T'], and we denote by #Hr its completion for the norm || - ||%,induced by the scalar product

T
(u,v)yr=// (Qrudv + (X1u)(X1v) + (Xou)(X2v)) dp dt.
0 J My

We consider also the topological dual 7, of the space H, (see Section 1.5).
Lemma 22. The injections Ho — L*(My), L>(My) — 7-[6 and Hr — L*((0, T) x My) are compact.

Proof. Let (¢r)ren be an orthonormal basis of real eigenfunctions of L*(Mpy), labeled with increasing
eigenvalues 0 = Ao < A1 < -+ - < Ay = 400, so that —A ggr = Ar@g. The fact that A; > 0, which will
be used in the sequel, can be proved as follows: If —A gz =0 then fMH (X19)? + (X20)?) du = 0 and,
since ¢ € C*°(Mp) by hypoelliptic regularity, we get X ¢(x) = X»¢(x) = 0 for any x € My. Hence,
[X1, X2]e =0, and all together, this proves that ¢ is constant; thus A; > 0.

We prove the last injection. Let u € Hy. Writing u(t, -) = Z,fil ar(t)er(-) (note that there is no
0-mode since u(t, - ) has null average), we see that

(o.¢] (o.¢]
I3y, = (= Anu, 1) 20,yxmm = P Mlal 2oy = 210 Y Nkl F 20,y = 21180 200,10
k=1 k=1
and thus 7 embeds continuously into L?((0, T) x My). Then, using a classical subelliptic estimate (see
[Hormander 1967; Rothschild and Stein 1976, Theorem 17]), we know that there exists C > 0 such that

Null 20,1y xmyy < CUll L2000, 7y x My + 1t ll327)-

Together with the previous estimate, we obtain that, for any u € Hr, [lull gi2¢0,1yxm,) < Cllull3;. Then,

the result follows from the fact that the injection H'/ 2((0, T) x M) <= L*((0,T) x My) is compact.
The proof of the compact injection Hy <> L?(Mp) is similar, and the compact injection L?(M ) <> M,

follows by duality. U

Proof of Theorem 11. In this proof, we use the notation P = 83, — Ap. For the sake of a contradiction,
suppose that there exists a sequence (u*)ken of solutions of the wave equation such that || (ul(‘), u’l‘ Maxrz=1
for any k € N and

T
1y )| L2570 = O, / |(Op(@)d;u*, 9iut*) 241,y dE = O (43)
0

as k — +oo. Following the strategy of [Tartar 1990; Gérard 1991], our goal is to associate a defect
measure to the sequence (uF)ren. Since the functional spaces involved in our result are unusual, we give
the argument in detail.

First, up to extraction of a subsequence which we omit, (u’é, u’l‘) converges weakly in Ho x L?(Mpy)
and, using the first convergence in (43) and the compact embedding Hgy x L>(Mp) — L*(My) x H),
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we get that (ul(‘), ull‘) — 0in Hp x L%. Using the continuity of the solution with respect to the initial data,
we obtain that u* — 0 weakly in 7. Using Lemma 22, we obtain u¥ — 0 strongly in L2((0, T) x My).
Fix B € W (0, T) x My). We have

T
(Bu*, u¥)yy, = / / (3 Bu*) (3,u*) + (X1 Bu*) (X 1u*) + (X2 Bu*) (Xouh)) dp(q) dt
0 J My

T
- / / (13, Blu*)(3u) + (X1, Blu") (X1u") + ([X2, Blu") (X2u")) dpu(q) dt
0 Jmy ,
+ fo fM ((Bo,u*) (0" + (BX1u) (X 1u") + (BXou") (Xou")) dpu(g) dr. (44)
H
Since [9;, Ble \pghg((o, T)xMpy), [X;, Ble \pghg((o, T) x My) and u* — 0 strongly in L2((0, T)xMpy),
the first of the two lines in (44) converges to 0 as k — +00. Moreover, the last line is bounded uniformly
in k since B € \Dghg((O, T) x My). Hence (BuF, u")HT is uniformly bounded. By a standard diagonal
extraction argument (see [Gérard 1991] for example), there exists a subsequence, which we still denote
by (uF)ren such that (Bu*, u*) converges for any B of principal symbol b in a countable dense subset
of C2°((0, T) x My). Moreover, the limit only depends on the principal symbol b, and not on the full
symbol.
Let us now prove that

liminf (Bu*, u*)3;, >0 (45)
k——+o00

when b > 0. With a bracket argument as in (44), we see that it is equivalent to proving that the liminf as
k — 400 of the quantity

Ok (B) = (Bd,u*, 3,u*) ;> + (BX1u*, X1ub) 2 + (BXou*, Xou®) (46)

is > 0. But there exists B’ € \Ilghg((O, T) x My) such that B — B € \IJp’hL,((O, T) x My) and B’ is
positive (this is the so-called Friedrichs quantization, see for example [Taylor 1974, Chapter VII]). Then,
liminf;_, y oo Qx(B") > 0, and Qy(B’ — B) — 0 since (B’ — B)9, € \Pghg((O, T) x My) and u* — 0
strongly in L?((0,T) x Mg). It immediately implies that (45) holds.

Therefore, setting p = 0,(P) and denoting by C(p) the characteristic manifold C(p) = {p =0}, there

exists a nonnegative Radon measure v on S*(C(p)) = C(p)/(0, +00) such that

(Op(b)uk, ubyy, — bdv
S*(C(p))
for any b € Sghg((o, T) x My).

Let C € \IJI;llg((O, T) x Mpy) of principal symbol ¢. We have pc = {p, c} € Sghg((O, T) x My) and, for
any k e N,

(CP — PO, u*)yy, = (CPUF, u*)y, — (CuF, Pub)e, =0 (47)
since Pu* =0. To be fully rigorous, the identity of the previous line, which holds for any solution u € Hr

of the wave equation, is first proved for smooth initial data since Pu ¢ Hr in general, and then extended
to general solutions u € Hr. Taking principal symbols in (47), we get (v, pc) = 0.
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Therefore, denoting by (1/5)scr the maximal solutions of

L) = pU(p). p e TR x My)

(see (7)), we get that, for any s € (0, T),

0= (v, peot) = (v, Leoyy) = Liv,coy)
and hence

(v, c) = (v, coy). (48)

We note here that the precise homogeneity of ¢ (namely c € S | ' ((0, T) x My)) does not matter since v

phg
is a measure on the sphere bundle S*(C(p)). The identity (48) means that v is invariant under the flow p.

From the second convergence in (43), we can deduce that
v=0 inS*(C(p)NT*((0,T) x Supp(a)). (49)

The proof of this fact, which is standard (see for example [Burq and Sun 2022, Section 6.2]), is given in
Appendix C.

Let us prove that any normal geodesic of My with momentum & € V¢ enters o in time at most ke ™!
for some « > 0, which does not depend on ¢. Indeed, the solutions of the bicharacteristic equations (10)

with g* = % and &3 # 0 are given by

1 1
x1(1) = % cos(283t + ¢) + 2—2 x(1) =B — % sin(2§3t + @),

() =C+ 4; 1 6153 Sin(2(2E5t +¢)) + 2; Sin(2&31 + ),

where B, C, &, &3 are constants. Since £ € V¢ and g* = 4—11, it holds
1 £
- > —
41531~ 2
Hence, we can conclude using the expression for x3 (whose derivative is roughly (4|&;3 1) and the fact
that @ = Mg\ B contains a horizontal strip. Note that if &3 = 0, the expressions of x;(¢), x,(¢), x3(¢) are
much simpler and we can conclude similarly.
Hence, together with (49), the propagation property (48) implies that v = 0. It follows that |k |2, = 0.

By conservation of energy, it is a contradiction with the normalization || (u’é, u’f) ll4xr2 = 1. Hence, (11)
holds. U

Appendix A: Pseudodifferential calculus

We denote by 2 an open set of a d-dimensional manifold (typically d = n or d = n + 1 with the notation
of this paper) equipped with a smooth volume ©. We denote by g the variable in €2, typically ¢ = x or
q = (t, x) with our notation.



670 CYRIL LETROUIT

Let wy = dp A dq be the canonical symplectic form on 7*Q written in canonical coordinates (g, p).
The Hamiltonian vector field f of a function f € C*°(T*2) is defined by the relation

wo(f,-) =—df(-).

In the coordinates (g, p), it reads
d
f= Z(apjf)aqj — (99, )0y,
j=1

In these coordinates, the Poisson bracket is
d

(f.8y=w0(f. )= (0, 1)By,8) — (3, )(3p,8),

j=1

which is also equal to fg and —3 f.

Let 7 : T*Q — Q be the canonical projection. We recall briefly some facts concerning pseudodifferential
calculus, following [Hormander 1985, Chapter 18].

We denote by S (T*<2) the set of homogeneous symbols of degree m with compact support in 2. We
also write Sgll]g(T*Q) for the set of polyhomogeneous symbols of degree m with compact support in Q.
Hence, a € SI’)’flg(T*Q) ifa e C*(T*Q2), m(Supp(a)) is a compact of €2, and there exist a; € Sg;r_n] (T*2)
such that, for all N € N, a — Z;V:O aj € ngj;N_](T*Q). We denote by \Ill’;;lg(T*Q) the space of
polyhomogeneous pseudodifferential operators of order m on 2, with a compactly supported kernel
in 2 x Q. For A € \IJI’)'flg(Q), we denote by 0,(A) € S;”hg(T*Q) the principal symbol of A. The
subprincipal symbol is characterized by the action of pseudodifferential operators on oscillating functions:

if Ae Wi (Q) and f(g) = b(g)e*3@ with b, S smooth and real-valued, then

fQ ADF du =k /Q (00(A)(g. §'@) + Lown(A)(g. S @) £ @ dr(g) + O K" ).
A quantization is a continuous linear mapping

Op: ™ (T*Q) — W™

phe (§2)

m
phg
satisfying 0,(Op(a)) = a. An example of quantization is obtained by using partitions of unity and, locally,
the Weyl quantization, which is given in local coordinates by

1 : / !
OpW(a)f(q)=_d/ el<q*q »p)a(m’p>f(q/)dq/dp.
Q) Jrd, xre 2

We have the following properties:

(1) If A e W) () and B € W2 (), then [A, B] € Wi~ (@) and 6, ([A, B]) = Ho,(a), o, (b)}.

(2) If X is a vector field on Q and X* is its formal adjoint in L?($2, i), then X*X € \yghg(sz),
0, (X*X) = h3 and ogb(X*X) = 0.

B)IfAc ‘I’gﬁg(ﬂ)’ then A maps continuously the space H®(£2) to the space H*~"(2).
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Appendix B: Proof of Proposition 12

In this appendix, we give a second proof of Proposition 12 written in a more elementary form than the
one of Section 2.1. Let us first prove the result when M C R”", following the proof of [Ralston 1982].
The general case is addressed at the end of this section.

As in the proof of Section 2.1, we suppress the time variable . Thus we use x = (xg, X1, ..., X»),
where xo = ¢. Similarly, & = (§o, &1, ..., &,), where § = t previously. Let I' be the curve given by
x(s) € R""1. We insist on the fact that in the proof the bicharacteristics are parametrized by s, as in (7).
We consider functions of the form

v (x) = ki Lag(x)e V),

We would like to choose 1 (x) such that for all s € R, ¥ (x(s)) is real-valued and

2

14
Bxiaxj (X(S))

Im

is positive definite on vectors orthogonal to x(s). Roughly speaking, |e/*¥ )| will then look like a
Gaussian distribution on planes perpendicular to I" in R"*1,
We first observe that 82 vx — Avg can be decomposed as

02vp — Avp = (k3TTA 4+ kT Ay + kT ARV (50)
with
A1(x) = po(x, Vi (x)ao(x), Ax(x) = Lag(x), As(x)=d}ao(x) — Aag(x).

Here we have set

I« 3 9 209
Lag =~ Zai:( Vi (x ))ﬂ+ (Z o g; (x. w ) ap. 51)
J

(For general strictly hyperbolic operators, L contains a term with the subprincipal symbol of the operator,
but here it is null; see Appendix A.)

In what follows, we construct ag and i so that A(x) vanishes at order 2 along I" and A;(x) vanishes
at order O along the same curve. We will then be able to use Lemma 14 with § =3 and S = 1 respectively.

Analysis of A1(x). Our goal is to show that, if we choose ¥ adequately, we can make the quantity

fx) = pa(x, Vg (x)) (52)

vanish at order 2 on I'. For the vanishing at order 0, we prescribe that i satisfies Vi (x(s)) = &(s), and
then f(x(s)) =0 since (x(s), £(s)) is a null-bicharacteristic. Note that this is possible since x(s) # x(s”)
for any s # s/, due to xo(s) = 1 (bicharacteristics are traveled at speed 1; see Section 1.4). For the
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vanishing at order 1, using (52) and (7), we remark that, for any 0 < j < n,

af oy

e ())——(x( ))+Z—< ) 3w ©)
__d(ay . Iy -
=— <8xj (x(s))) + ;M(S) 9, 0%, (x(s)) =0. (53)

Therefore, f vanishes automatically at order 1 along I (without making any particular choice for ¥): it
just follows from (52) and the bicharacteristic equations (7). But for f(x) to vanish at order 2 along T, it
is required to choose a particular v. In the end, we will find that if i is given by the formula (59) below,
with M being a solution of (54), then f vanishes at order 2 along I'. Let us explain why.

Using the Einstein summation notation, we want that, for any 0 < i, j < n, it holds

_ P Pp By Py @pp v B Py By 0y Py
o axjaxi N anaxi 8§k8xi 8xj8xk 8Xj3§k 8xl~8xk 85]35]( axiaxk 3)6]'8)61 8§k ijaxkfix,-

along I'. Introducing the matrices

M) = 2 Ay, = P2
(M(s))ij = 8xiax_(X(S)), (A(s))ij = 8x,~8x-(x(s)’€(s))’
2p 2p
(B(s))ij = 05 0x (X(S) £(s)), (C@))ij = 3&351 2 (x(5). (),
this amounts to solving the matricial Riccati equation
Cil—M-i-MCM—i-B M+MB+A=0 (54)

on a finite-length time interval. While solving (54), we also require M (s) to be symmetric, Im(M (s)) to be
positive definite on the orthogonal complement of X (s), and M (s)x(s) = E (s) to hold for all s due to (53).

Let My be a symmetric (n+1) x (n41) matrix with Im(Mp) > 0 on the orthogonal complement of
x(0) and Myx(0) = .g“— (0) (in particular Im(My)x(0) = 0). It is shown in [Ralston 1982] that there exists a
global solution M (s) on [0, T'] of (54) which satisfies all the above conditions and such that M (0) =
The proof just requires that A, C are symmetric, but does not need anything special about p» (in particular,
it applies to our sub-Riemannian case where p; is degenerate). For the sake of completeness, we recall
the proof here.

We consider (Y (s), N(s)) the matrix solution with initial data (Y (0), N(0)) = (Id, M) (where Id is
the (n+1) x (n+1) identity matrix) to the linear system

(55)

Y =BY+CN,
N =—AY — BTN.
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We note that (Y (s)x(0), N(s)x(0)) then also solves (55), with ¥ and N being this time vectorial. One
can check that (x(s), é(s)) is the solution of the same linear system with same initial data, and therefore,
for any s € R,

() =Y(5)%(0), £(s) = N(£)%(0). (56)

All the coefficients in (55) are real and A and C are symmetric, and it follows that the flow defined by (55)
on vectors preserves both the real symplectic form acting on pairs (y, n) € (R"*!)2 and (y’, ') € (R"+1)2
given by

a(v,m, O\ =y-n'—n-y

and the complexified form oc((y, n), (¢, 7)) = o ((y,m), (¥, 7)) for (y,n) € (C"*H? and (y', ) €
(C"t1)2. When we say that og is invariant under (55), it means that we allow complex vectorial initial
data in (55).

Let us prove that Y (s) is invertible for any s. Let v € C"+! and s € R be such that Y (so)v = 0. We set
y(s9) = Y (so)v and n(sg) = N (s9)v and consider x (s9) = (¥(so), n(s9)). From the conservation of o¢,
we get

0= 0c(x (%), x(50)) = oc(x(0), x(0)) = v- Mov — ¥ - Mov = —2i 0 - (Im(Mo))v.

Since Im(My) is positive definite on the orthogonal complement to x(0), it holds v = Ax(0) for some
A € C. Hence
0="Y(so)v =AY (50)x(0) = Ax(s0),

where the last equality comes from (56). Since xo(sg) = (9p2/9&0) (s0) = —2&((sp) = 1, it holds x (sg) #~ O;
hence A = 0. It follows that v = 0 and Y (s¢) is invertible.
Now, for any s € R, we set
M(s)=N(s)Y ()™,

which is a solution of (54) with M (0) = M. It satisfies M (s)x(s) = E (s) thanks to (56). Moreover, it is
symmetric: if we denote by y(s) and ' (s) the column vectors of ¥ and N, by preservation of &, for any
0 <1, j < n, the quantity

o (5 (), 0" (), (77 (), 07 (5))) = ¥ (5) - M(8)y! (s) — ¥/ (s) - M(5)Y' (s)

is equal to the same quantity at s = 0, which is equal to O since M, is symmetric.

Let us finally prove that, for any s € R, Im(M (s)) is positive definite on the orthogonal complement of
%(s). Let y(sg) € C"*! be in the orthogonal complement of X (sg). We decompose y(sp) on the column
vectors of Y (sq):

y(so) = Zbiyi (so), b;eC.
i=0

For s € R, we consider y(s) = Y 7, b;y'(s) and we set x (s) = > +_o bi(y'(s), 7' (s)). Then,

oc(x(s), x(s)) = —2iy(s) - Im(M () y(s). (57)
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By preservation of o¢ and using (57), we get that
¥(s0) - Im(M (50)) y (s0) = y(0) - Im(Mo) y (0). (58)

But y(0) cannot be proportional to x(0); otherwise, using (56), we would get that y(sg) is proportional
to x(sg). Hence, the right-hand side in (58) is > 0, which implies that Im(M (sg)) is positive definite on
the orthogonal complement to x (sg).

Therefore, we found a choice for the second-order derivatives of v along I' which meets all our
conditions. For x = (¢, x") € R x R" and s such that t = 7(s), we set

Y(x) =E(s) (' =x'() + 3" = x'(8)) - M(s)(x" =X (s)), (59)

and f vanishes at order 2 along I" for this choice of .

To sum up, as in the Riemannian (or “strictly hyperbolic”) case handled in [Ralston 1982], the key
observation is that the invariance of o and o¢ prevents the solutions of (54) with positive imaginary part
on the orthogonal complement of x (0) from blowing up.

Analysis of A>(x). We note that A, vanishes along I' if and only if Lag(x(s)) = 0. According to (51),
this turns out to be a linear transport equation on ag(x (s)). Moreover, the coefficient of the first-order term,
namely Ve po(x(s), £(s)), is different from 0. Therefore, given ag # 0 at (=0, x =x(0)), this transport
equation has a solution ag(x (s)) with initial datum ag, and, by Cauchy uniqueness, ag(x(s)) 7 O for any s.
Note that we have prescribed ag only along I', and we may choose ag in a smooth (and arbitrary) way
outside I". We choose it to vanish outside a small neighborhood of T'.

Proof of (13). We use (50) and we apply Lemma 14 to S=3,c= A and to S =1, ¢ = A, and we get

_1 _1 _
||atztvk_Avk”Ll(O,T;LZ(M))<C(k 2+k 2+k 1),

which implies (13).

Proof of (14). We first observe that since Im(M (s)) is positive definite on the orthogonal complement
of x(s) and continuous as a function of s, there exist «, C > 0 such that, for any #(s) € [0, T'] and any
x' e M,

m
10,0t (5), XN 4+ D 1X 0t (), X2 = (Clag(t (), x) k2 + O (k3B 1)) makd )
j=1
where d( -, - ) denotes the Euclidean distance in R”. We denote by ¢,, the Lebesgue measure on R”. Using
the observation that, for any function f,
n/2

b4 .o du
TN

as k — 400, and the fact that ag(x(s)) % 0, we obtain (14).

(x'(s)) (60)

f f(x/)e—akd(x’,x’(s))z a',u(x/) ~
M
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Proof of (15). We observe that since Im(M (s)) is positive definite (uniformly in s) on the orthogonal
complement of x(s), there exist C, &’ > 0 such that, for any # € [0, T'], for any x" € M, |3;v;(z(s), x')]|
and | X jvg(¢(s), x")| are both bounded above by C k/4e=o'kd(' X' (s)® Therefore

m
/ (|a,vk<t<s>, P+ 71X vt (s), x/)|2) dp(x)
M\VI(.v) j=1
< Ckn/2/ e—zo/kd(x/,x/(s))2 du(x’)
M\Vis)

<oR [ O g, () o), (1)
M\Vis)

where, in the last line, we used the fact that |du/d¢,| < C in a fixed compact subset of M (since u is a
smooth volume), and the o(1) comes from the eventual blowup of pu at the boundary of M.

Now, M C R", and there exists r > 0 such that B;(x(s), r) C V() for any s such that z(s) € (0, T),
where d( -, -) still denotes the Euclidean distance in R”. Therefore, we bound above the integral in (61) by

Ckn/Z / e—Za’kd(x’,x’(s))z dﬁn ()C,). (62)
R"\Bg(x(s),r)

Making the change of variables y = k~1/ 2(y —x(s)), we can bound (62) from above by

c / eI dg,(y),
R\ By (0,rk!/2)

with || - || the Euclidean norm. This last expression is bounded above by

Ceer / e~ ae, (y),
which implies (15).

Extension of the result to any manifold M. In the case of a general manifold M, not necessarily included
in R", we use charts together with the above construction. We cover M by a set of charts (U, ¢y), where
(Uy) is a family of open sets of M covering M and ¢, : U, — R" is an homeomorphism U, onto an
open subset of R". Take a solution (x(¢), £(¢)):efo0,77 of (8). It visits a finite number of charts in the order
Uy,, Uy,, . .., and we choose the charts and ap so that vi (¢, -) is supported in a unique chart at each
time ¢. The above construction shows how to construct ag and i as long as x(¢) remains in the same

chart. For any / > 1, we choose #; so that x(f;) € Uy, N Uy,,, and ao(1;, -) is supported in Uy, N U,

1+1 1+1°
Since there is a (local) solution v for any choice of initial ag(#;, x(¢;)) and Im(azw/ (0x; 0x;)) (11, x(17))

in Proposition 12, we see that vy may be continued from the chart Uy, to the chart Uy, . This continuation

I+1°
is smooth since the two solutions coincide as long as ao(z, - ) is supported in Uy, N Uy, ,,. Patching all

solutions on the time intervals [#, ;4] together, it yields a global-in-time solution vy, as desired.

Appendix C: Proof of (49)
Because of the second convergence in (43) and the nonnegativity of a, it amounts to proving that

(X1 Op(@)u®, X1u") 20,7y xmy) + (X2 Op(@)u®, Xou®) 20,7y myy = O-
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Now, we notice that for any B € \Ilghg((O, T) x Mpy), it holds

(Bu®, X1u") 1201y M) =7 0 and (Bu*, 9:*) 120, 7y x M) =i 0 (63)

since u¥ — 0 strongly in L2((0, T) x My) and both X u* and 9,u* are bounded in L2((0, T) x My).
We apply this to B = [X, Op(a)], and then, also using (63), we see that we can replace Op(a) by its
Friedrichs quantization Op” (), which is positive; see [Taylor 1974, Chapter VII]. In other words, we are
reduced to proving

(Op” (@) X u*, X1u") 201y xaty) + (Op” (a) Xpu*, Xou") 12 0.1y x by > O (64)

k—+o00

Letéd >0anda € Sghg((—(S, T +68)x My), 0<a <sup(a), and such thata(t,-) =a(-) for0 <r < T.
Making repeated use of (63) and of integrations by parts (since a is compactly supported in time), we have

2 2

Z(OPF(é)Xjuk, Xub) 20,1y M) = Z(Xj Op” @u", X ju") 120, 1yx ) +0(1)
j=1 j=1

= —(0p" @u*, Au") 120, 1y x ) +0(1)
= —(0p" @, 37u") 120, 7yx My +0(1)
= (3, Op" (@)u", 3,u") 120, 1y x ) +0(1)
= (Op" @3 ", 31" 120, 1) by + 0(D).

Finally we note that since Op” is a positive quantization, we have

2 2
Z(OPF(G)Xij, Xjub) 20,1y M) < Z(OPF(ﬁ)Xij, X jub) 20,1y x M)
j=1 j=l1
= (0p" (@), 3u*) 120, 7yxpy) + 0(1)
C8+ (Op” (@)du*, 8;u*) 1201y ptyy) +0(1)

<
<Cé+o(1),

where C does not depend on §. Taking § — 0O concludes the proof of (64), and consequently (49) holds.
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QUANTITATIVE ALEXANDROV THEOREM
AND ASYMPTOTIC BEHAVIOR OF THE
VOLUME PRESERVING MEAN CURVATURE FLOW

VESA JULIN AND JOONAS NIINIKOSKI

We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of
a regular set in R"*! is close to a constant in the L” sense, then the set is close to a union of disjoint balls
with respect to the Hausdorff distance. This result is more general than the previous quantifications of the
Alexandrov theorem, and using it we are able to show that in R? and R3 a weak solution of the volume
preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a
disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow,
obtained via the minimizing movements scheme.

1. Introduction

Here we study the asymptotic behavior of the weak solution of the volume preserving mean curvature
flow starting from a set of finite perimeter. In the classical setting we are given a smooth set Eyg C R"*!
and we let it evolve into a smooth family of sets (E;), according to the law, where the normal velocity V,
is proportional to the mean curvature of E; as

V,=—(Hg,— Hg,) on JE,, (1-1)

where Hp, = fa E, HE, dH". Equations of mean curvature type are important in geometry, where one
usually studies the geometric properties of 0 E; which are inherited from 9 Ey. Equation (1-1) can also be
seen as a volume preserving gradient flow of the surface area. These equations arise naturally in physical
models involving surface tension; see [Taylor et al. 1992].

The main issue with (1-1) is that it may develop singularities in finite time even in the plane [Mayer
2001; Mayer and Simonett 2000]. In order to pass over the singular time one may try to do a surgery
procedure and restart the flow after a singular time as in [Huisken and Sinestrari 2009] or to define a weak
solution of (1-1), which is what we will consider here. For the mean curvature flow one may define a weak
solution by using the varifold setting by Brakke [1978], the level set solution developed independently
by Chen, Giga and Goto [Chen et al. 1989] and Evans and Spruck [1991], or by using the minimizing
movements scheme developed independently by Almgren, Taylor and Wang [Almgren et al. 1993] and
Luckhaus and Stiirzenhecker [1995]. Since we want the solution of (1-1) to be a family of sets and since
(1-1) does not satisfy the comparison principle, the natural choice is to define a weak solution via the
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minimizing movements scheme as in [Almgren et al. 1993; Luckhaus and Sturzenhecker 1995]. This
solution is usually called a flat flow, and it is well defined due to [Mugnai et al. 2016] but might not be
unique.

The advantage of the flat flow is that it is defined for all times for any bounded initial set with finite
perimeter and we may thus study its asymptotic behavior. Heuristically, one may guess that the flat flow
converges to a critical point of the static problem, which are classified in [Delgadino and Maggi 2019]
as a disjoint union of balls, possibly tangent to each other. The asymptotic convergence of (1-1) has
been proved for initial sets with certain geometric properties such as convexity [Huisken 1987], nearly
spherical [Escher and Simonett 1998] or sets which are near a stable critical set in the flat torus in low
dimensions [Niinikoski 2021]. We note that in these cases the flow does not develop singularities and is
thus classically well defined for all times. The result in [Kim and Kwon 2020] shows that the convergence
holds also for star-shaped sets, up to possible translations. For the mean curvature flow with forcing, the
asymptotic behavior has been studied for the level set solution in [Giga et al. 2019; 2020] and for the flat
flow in the plane in [Fusco et al. 2022]. The result closest to ours is the work by Morini, Ponsiglione and
Spadaro [Morini et al. 2022], where the authors prove that the discrete-in-time approximation of the flat
flow of (1-1) converges exponentially fast to a disjoint union of balls. Here we are able to pass the time
discretization to zero and characterize the limit sets for the flat flow of (1-1) in R? and R3. The precise
definition of the flat flow is given in Section 4.

Theorem 1.1. Assume Eq C R"T!, with n <2 and |Eo| = |By|, is a bounded set of finite perimeter which
is either essentially open or essentially closed, and let (E;);>o be a flat flow of (1-1) starting from E.
There is N € N such that the following holds: for every € > 0 there is T, > 0 such that for every t > T,
there are points x1, ..., Xy, which may depend on time, with |x; — xj| > 2r fori # j andr = N~U/o+D
such that for F; = U,N=1 B, (x;),
sup dpr (x) <e.
x€EAF,

Here dyr denotes the distance function. To the best of our knowledge this is the first result on
the characterization of the asymptotic limit of (1-1) in R3. The above result holds for any limit of the
approximative flat flow, and we do not need the additional assumption on the convergence of the perimeters
as in [Luckhaus and Sturzenhecker 1995; Mugnai et al. 2016]. We note that the assumption on Eg being
either essentially open or closed is only needed to ensure that the flow is continuous up to time zero. It
plays no role in the asymptotic analysis.

Concerning the limiting configurations, Theorem 1.1 is sharp since the flow (1-1) may converge to
tangent balls as shown in [Fusco et al. 2022]. On the other hand, we believe that one may rule out
the possible translations and the flow actually convergences to a disjoint union of balls. The higher
dimensional case and the possible speed of convergence are also open problems.

Quantitative Alexandrov theorem. The proof of Theorem 1.1 is based on the dissipation inequality
proven in [Mugnai et al. 2016] and stated in Proposition 4.1. This implies that there is a sequence of
times 7; — oo such that the mean curvatures of the evolving sets E;; are asymptotically close to a constant
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with respect to the L2-norm. Therefore, we need a quantified version of the Alexandrov theorem which
enables us to conclude that the sets E;; are close to a disjoint union of balls.

There is a lot of recent research on generalizing the Alexandrov theorem [Ciraolo and Maggi 2017;
Delgadino and Maggi 2019; Delgadino et al. 2018; De Rosa et al. 2020; Krummel and Maggi 2017;
Magnanini and Poggesi 2020]. We refer the survey paper [Ciraolo 2021] for the state of the art. Unfor-
tunately, none of the available results is applicable to our problem, and we are also not able to use the
characterization of the critical sets in [Delgadino and Maggi 2019, Corollary 2] to identify the limit set.
Indeed, even if we know that the sets E,; converge to a set of finite perimeter and their mean curvatures
converge to a constant, it is not clear why the limit set is a set of finite perimeter with weak mean
curvature as this class of sets is not in general closed. Our main result is the following quantification of
the Alexandrov theorem, which is the main technical tool in the proof of Theorem 1.1.

Theorem 1.2. Let E C R"! be a C? regular set such that P(E) < Cy and |E| > 1/Cy. There are
positive constants q = q(n) € (0, 1], C = C(Cyp, n) and § = §(Co, n) such that if ||Hg — AllpnoE) <6
for some X € R, then 1/C < A < C and there are points x1, ..., Xy with |x; —x;| > 2R, where R =n/A,
such that for F =, Br(x;),

sup daF(x) = C”HE - )“”qn(aE)-

x€EAF
Moreover,

|P(E) = N1+ D1 R"| < Cl Hg — MYs .

The main advantage of Theorem 1.2 with respect to the previous results in the literature is that we
do not assume any geometric restriction on E such as mean convexity. Moreover, we assume the mean
curvature to be close to a constant only in the L" sense, which is exactly what we need for the asymptotic
analysis in Theorem 1.1. This makes the proof challenging as, for example, we cannot use the estimates
from Allard’s regularity theory [1972].

Theorem 1.2 is sharp in the sense that | Hg — A||zn5£) cannot be replaced by a weaker L”-norm. This
can be seen by considering a set which is a union of the unit ball and a ball of small radius ¢ located far
away. On the other hand, the dissipation inequality in Proposition 4.1 controls only the L?-norm of the
mean curvature, which is the reason we cannot prove Theorem 1.1 in higher dimensions. The proof of
Theorem 1.2 is done in a constructive way and we obtain an explicit bound on the exponent ¢ = (n +2) .
It would be interesting to obtain the sharp bound as it might be crucial in order to obtain the possible
exponential convergence of (1-1) as in [Morini et al. 2022]. In the two-dimensional case the optimal
power g =1 is proven in [Fusco et al. 2022].

Outline of the proof of Theorem 1.2. Since the proof of Theorem 1.2 is rather long, we outline it here.
As in [Delgadino and Maggi 2019], our argument is based on the proof of the Heinze—Karcher inequality
by Montiel and Ros [1991], which is an alternative for the proof in [Ros 1987]. In [Delgadino and
Maggi 2019], the authors are able to generalize the Montiel-Ros argument to sets of finite perimeter
with weak distributional mean curvature. Here we revisit the argument by Montiel and Ros and deduce
in Proposition 3.3 that for £ and R as in Theorem 1.2 and for 0 < r < R, the volume of the set
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E, ={x € E : dist(x, 0F) > r} satisfies the estimate
|E|

Rn—',—l

|E,| — (R—r)""M < C||Hg — Ml 1o oE)-

We use this in Step 1 of the proof of Theorem 1.2 to deduce that for r close to R the set E; is a union of
a finite number of components, or clusters, with positive distance to each other.

We note that the above inequality is not enough to conclude the proof as, e.g., the cube Q = (—1, 1)"*!
satisfies |Q,| = (1 —r)"T!|Q|. Therefore, we need further information from the Montiel-Ros argument
and we prove in Proposition 3.3 that the Minkowski sum E, + B, = {x € R+ dist(x, E,) < p}, with
0 < p <r < R, satisfies

LR =) <

|Er+Bp| - Rn+1 — (R—I’)"'H

|Hg — AllLrE)-

This enables us to prove that the components of E, + B, C E, with properly chosen p and r, are almost
spherical. In particular, if E satisfies the above estimate with C = 0, then it is a disjoint union of balls.
This, together with the density estimate from [Topping 2008], concludes the proof.

2. Notation and preliminary results

In this section we briefly introduce our notation and recall some results from differential geometry. Given
a set E C R"! the distance function dg : R*t! — [0, 00) is defined, as usual, as

dg(x) := inf |x — y|,
yeE

and we denote the signed distance function dr : R"*! — R by

—dyp(x) for x € E,

dp(x) = {daE(x) for x e R"T1\ E.

Then clearly dyr = |cZE|. We denote the ball with radius r centered at x by B,(x) and by B, if it is
centered at the origin. Given a set E C R"*! we denote its p-enlargement by the Minkowski sum

E4+B,={x+yeR":xcE, yeB,))={x e R"™ 1 dp(x) < p}.

For a measurable set E C R"*! the shorthand notation | E| denotes its Lebesgue measure, and we
denote the k-dimensional measure of the unit ball in R¥ by wy. In some cases, we may use the shorthand
notation | E| more generally for a measurable set E C RF to denote its k-dimensional Lebesgue measure
but this shall be clear from context.

For a set of finite perimeter E C R"*! we denote its reduced boundary by 8*E and the perimeter by
P(E). Recall that P(E) = H"(0*E) and for a regular enough set, 0*E = dE. The relative isoperimetric
inequality states that for every set of finite perimeter E and for every ball B, (x),

H*(0*E N B, (x))"*D/" > ¢, min{|E N B, (x)], | B, (x) \ E|},

for a dimensional constant c,. We refer to [Maggi 2012] for an introduction to the topic.
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We define the tangential differential of F € C'(R"*!; R™) on JE by
D F(x) =DF(x)(I —vg(x) @ ve(x)),

where vg denotes the unit outer normal of E. For a function f € C L(R™*!; R) we denote by V. f its
tangential gradient which is a vector in R"*!. We define the tangential divergence of F € C!(R"*!; R"*1)
by div; F = Tr(D; F). Then the divergence theorem on manifolds generalizes to

/ din Fd’Hn = HE(F, I)E) dHn,
0*E 0*E

where Hr € L'(9*E) is the distributional mean curvature. When 9E is smooth, Hg agrees with the
classical definition of the mean curvature, which for us is the sum of the principal curvatures.

We begin by recalling the well-known inequality proven first by Simon [1993] in R? and then by
Topping [2008] in the general case.

Theorem 2.1. Let ¥ C R"*! be a compact and connected C*-hypersurface. Then
diam(X%) < C,,/ |Hs "~ d#", (2-1)
b

where C,, depends only on the dimension.
We need also the Michael-Simon inequality [Michael and Simon 1973].

Theorem 2.2. Let ¥ C R*™! n > 2, be a compact C?-hypersurface. Then for every nonnegative
g € C'R™,

1l oo i) < C / Vool + | Hs | dH", 2-2)
)

where C,, depends only on the dimension.
The following density-type estimate is essentially proven in [Morini et al. 2022, Lemma 2.1].

Proposition 2.3. Let E C R"! be a set of finite perimeter with P(E) > 0 and 0 < B < 1. There is a
positive constant ¢ = c¢(n, B) such that

|E]
P(E)

We use the previous results to prove the following lemma, which is useful when we bound the Lagrange

re.g :=sup{r € Ry : there exists x € R with |B,(x)NE| > B|B-(x)|} =c¢

multipliers and the number of the components of the flat flow of (1-1).

Lemma 2.4. Let E C R""! be a bounded set of finite perimeter with a distributional mean curvature
Hp € L'(3*E), » e Rand 1 < Cy < 0o. There is a positive constant C = C(Cy, n) such that:

(1) If P(E)<Coand|E| > 1/Cy, then
1/C—CHg —Mipigey <A< C+ClHg — Al L1 9+E)-
(i) If P(E) < Cy, |E| > 1/Cq and E is C? regular, then the number of components of E is bounded by

C(l1+||Hg — A||”"(BE)) and the diameters of the components are bounded by C(1 + |Hg — )LII’L:,II (3E)).
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Proof. Our standing assumptions throughout the proof are P(E) < Cp and |E| > 1/Cy. The perimeter
bound and the global isoperimetric inequality yield

|E| < e P(E)"/" < eV,

By the assumptions on E and by the divergence theorems, we compute the following for any vector
field F e C'(R"1; R™1):

A/ diVFdx:/ MF, vg)dH"
E I*E

= He(F,vp)dH"+ | (A — Hp)(F, vg) dH"
9*E 9*E

= f div, FdH" + (A — Hg)(F,vg)dH". (2-3)
IE PE

Our goal is to construct a suitable vector field F' to obtain (i) from (2-3). To this aim, we use first

the relative isoperimetric inequality, Proposition 2.3 and a suitable continuity argument to find positive

ro = ro(Co, n), Ro = Ro(Cop, n) and r such that ro <r < Ry and, by possibly translating the coordinates,

|B,NE|= %|B,|. Again, it follows from the relative isoperimetric inequality that %" (0*E N B,) > ¢ for

some positive ¢ = c(Cp, n). Choose a decreasing C' function f : R — R with

@2r)~' forr<

¢! for t >

f(t)z{

and for which the conditions f(#) < min{(2r)~%, ¢~} and | f'()| < (2r)~% hold on [3r, 3r]. We define
the function F : R"*! — R"*! by setting F(x) = f(|x|)x. Then F is a C' vector field with

f'(xD

|x|

DF(x)= f(lxDI + X ®x for every x € R"",

divF(x)=m+ 1D f(xD)+ £ (x])]|x] for every x € R"",
(x,vg)?
|x|
Then 0 < div F < (n+ 1)(2r)~! everywhere and div F = (n 4+ 1)(2r)~! in B,, so by using these and the

earlier observations we obtain
n+1 n+1 n+1

div; F(x) =nf(|x]) + f’(|x|)<|x| — ) for every x € 9*E.

|B,| < ——I|B/| = |B, NE|
4R0 4r 2r

n+1 cn(n+1) (2-4)

S/ divFdx < ——|E| < ”—Cén-i-l)/n.

E 2r 2ro

Again, 0 < div; F < n(2r)~! on 8*E and div, F = n(2r)~! on 9*E N By, and thus

P(E C
E51’7‘1”(8"‘E03r)5/ div, Fayr < "PE) 1o 2:5)

2Ry ~ 2r E > 20

We use (2-3), (2-4), (2-5) and |F| < 1 to obtain (i).
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The claim (ii) is easy to prove in the planar case and therefore we assume thatn >2. Let £y, E, ..., Ey
denote the connected components of £. We apply Theorem 2.2 on 9E; with ¢ = 1 and use Holder’s
inequality to obtain

C,' < | Hg,|roe) < | Hg, — Mroe) + M P(EDY",
from which we conclude, using (i) and Holder’s inequality, that
Ncn_n =< 2”“I"IE - )\”’in(aE) + 2n|)\|nP(E)

<2 Hg = Mfagoe) + 27 CoC" (L + 1 He = A7 o))

<2 Hg — Moz + 22 CoC" (L + CA~ I HE — M3uapy)- (2-6)

On the other hand, Theorem 2.1 together with (i) and Holder’s inequality implies

> diam(E;) SZCH/ |Hg, "' dH"
i i OE;
<) 2c, (/ |Hg, — " dH" + |)\|"—1P(E,-)>
i JIE;

<2 Ic, (/ |Hg — A"V an" + P(E)|A|”_1)
oE

§2n71CH(||HE )\'”Ln I(aE)+2nilC0Cn(1+”HE )””L'(BE)))
Thus, by possibly increasing C, the second claim follows from (2-6) and (2-7). (|

3. Quantitative Alexandrov theorem

We split the proof of Theorem 1.2 into two parts. We first revisit the Montiel-Ros argument in

Proposition 3.3 where all the technical heavy lifting is done. The idea of Proposition 3.3 is to transform

the (local) information of the mean curvature of E being close to a constant into information on the

p-enlargement of the level sets of the distance function of 0 E. We note that the statement of Proposition 3.3

is given by the sharp exponent. The proof of Theorem 1.2 is then based on purely geometric arguments.
We first state the following equivalent formulation of the theorem.

Remark 3.1. Once we prove that in Theorem 1.2 the number of component of E is bounded, the statement
on the L*°-distance is equivalent to the fact that, under the assumption ||Hg — Al 1»3E) < &, there are
points x1, ..., xy such that

N N
U Bo_xi) c E | Bp, (x),
i=1 i=1

where we have p_ = R — C||Hg — )‘”?ﬁ(aE)’ p+ =R+ C|Hg — k||qn(3E), R = n/A\ and the balls
B, (x1),..., By,_(xy) are disjoint to each other. We leave the details to the reader.
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In Theorem 1.2 we assume that the mean curvature is bounded only in the L" sense and thus the
estimates from Allard’s regularity theory [1972] are not available for us. Indeed, the L"-boundedness of
the mean curvature is not strong enough to give proper density estimates. Moreover, even in the three
dimensional case R?> we cannot use the results from [Simon 1993], because we do not have a uniform
bound on the Euler characteristic of the set E. However, if we know that the mean curvature is close to a
constant with respect to the L"-norm, then the following density estimate holds. The proof is based on
[Topping 2008, Lemma 1.2].

Lemma 3.2. Let ¥ C R"*! be a compact C*-hypersurface and ) € Ry. There is a positive dimensional
constant 8, such that if ||Hs — A||1n(s) < 8p, then

< H'(B(x,r)NX)

r}’l

Sn

foreveryx € X and0 <r <§,/A.

Proof. The planar case n =1 is rather obvious and we leave it to the reader. Assume n > 2. Fix x € X
and define V : [0, 00) — [0, 00) as V(r) = H"(B,(x) N X). Since V is increasing, the derivative V'(r) is
defined for almost every r € [0, 00), and

n
/ V'(p)dp < V(r2) —V(r;) whenever 0 <r| <rs.
i
By a standard foliation argument we have that H" (9B, (x) N X) > O for at most countably many r € R,..
Thus V’(r) is defined and H" (3B, (x) N X) = 0 for almost every r € [0, 00). Fix such an r and choose
h € Ry for which H"(3B,4,(x) N X) = 0. Define a cut-off function f;, : R"*! — R by setting

1, y € B, (x),
Sn()=1—Ily—x|/h, y€Brin(x)\ B (x),
0, y € R"\ By (x).

By using a suitable approximation argument combined with Theorem 2.2 we obtain

Vir+h)—V(r)
h

V()b < Cn< + ||thE||L1(E)>'

In turn, we may choose a sequence (h;); such that sy — 0 and H"(0B,44, (x) N X) = 0. Then by
letting k — oo the previous estimate yields

B, (x)NX

<c, (v’<r> + / |Hy| dH")
B, (x)NX

§C,,(V/(r)+/ |HE—A|dH”+AV(r)>
B (x)NX

V(ir)bn < c, (v’(r) +/ |Hs | d’H”)

< Co(V'(r) + | Hs — Al osy V() "D/ 42V (r)).
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Thus for almost every r € (0, 00),

C,' = lHs = Mlnsy
V(r)l/n

A) V(r)<V'(r).

If ||Hs — Al|z#(s) < 8, for small 6,, then the above inequality implies

5C. VTV —ave) < V).

Fix r < §,,/1. We will assume that V (r) < §,r", since otherwise the claim is trivially true. By the
monotonicity of V we have

V()" < V" < 8, /n

for all 0 < p < r. For §,, small enough the above inequality then yields
1
Vi) =l/n <y
ic, (0) =Vi(p)

for almost every 0 < p < r. The claim follows by integrating this over (0, r). O

Montiel-Ros argument. We recall that for E C R"*! we write
E, . ={x € E : dist(x, 0E) > r}. (3-1)

We use the fact that E is C? regular and say that x € dE satisfies the interior ball condition with radius r
if, for y =x — rvg(x), it holds that B,(y) C E. For r > 0 we define

I, := {x € OE : x satisfies the interior ball condition with radius r}. (3-2)

Proposition 3.3. Let ) € R and suppose that a bounded and C? regular set E C R"*! satisfies P(E) < Cy
and |E| > 1/Cq with Cy € Ry. Then for 0 <r < Rwith R =n/X,
|E]

|Evl = =y

(R—r)""" < C|Hg — Ml 1ooE)

and

C
H'(OE\T,) < WHHE — Al E),

provided that || Hg — Al .»9E) < 8, where the constants C and 6 depend only on Cy and on the dimension.
Moreover, under the same assumptions, for) < p <r < R,
|E|

|E, + Byl — ——(R—(r—p)"™| <

Rl = WHHE_)\”L"(BE)-

Proof. As we already mentioned the proof is based on the Montiel-Ros argument for the Heinze—Karcher
inequality, which we recall shortly. To that aim, we define ¢ : 9E x R — R"*! as

C(x,t) =x —tvg(x).
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We denote the principle curvatures of dE at x by ki(x), ..., k,(x) and assume that they are pointwise
ordered as k; (x) < k;+1(x). If we consider dE x R as a hypersurface embedded in R"*2 then its tangential
Jacobian is

Jo(x, 1) = ]_[|1 —thk;(x)| on JE x R.

i=1
For every bounded Borel set M C dE x R we have, by the area formula,
HE N dy = [ scan
(M) M

In the proof, C denotes a positive constant which may change from line to line, depending only on Cj
and on the dimension.

Step 1: In order to utilize Lemma 2.4, we choose § = §(Cp, n) to be the same as in the lemma and assume
|Hg — AllL73E) < 8. Then E has N connected components with N < C. We may thus prove the claim
componentwise and assume that £ is connected. We write

Y :={x €dE: |Hp(x) — A < $1}.

By Lemma 2.4 we have A > 1/C, and thus by Holder’s inequality

2
H"(aE\E)szf |Hp () — 2] dH" < Cl| Hg — Mo, (33)
IE
Moreover, we have
n / 1d7—l"— n / 1+ 1 1 dH"
n+1J)s Hg a4+l s\ \Hg A
nP(E)
< ———+ClHg(x) — Ml oE)-

T (n+ DA

Since E is connected, Lemma 2.4 yields diam(E) < R with R =R (Co, n) = R. Choose xg € E. Then
using (2-3) with F(x) = x — xop we obtain

nP(E) = (n+ DAIE| +f (He —M){(x —x0), vg) dH",
OE

which in turn implies

[nP(E) — (n+ DAIE|| < Cl|HE — Ml o). (3-4)
Hence we deduce
n 1
—dH" < |E|+ C||Hg — M| 12 (3E)- 3-5
pal <|E|+Cl||Hg — A|1r3E) (3-5)

Next we define

Z={(x,t) e 2 x[0,00):0=<1t=<1/k,(x)}.
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Note that this is well defined, since x € X implies k,(x) > Hg(x)/n > 1/(2n) > 0. We also set
={x€dE\X:k,(x)<1/R} and X)={x€dE\X:k,(x)> 1/R)},
Zi =% x[0, R] and Zy={(x,1) € £, x[0,00): 0 <1 < 1/ky(x)},
and finally
Z'=271UZ,.

Then Z and Z’ are disjoint and bounded Borel sets and E C ¢(Z U Z’). To see this fix y € E and let
x € 0F be such that r = dye(y) = |x — y|. Then we may write y = x — rvg(x), and by the maximum
principle k,(x) < 1/r. Since diam(FE) < R, we have r < R and so we conclude that (x,r)eZUZ and
y=28(x,r).

We now recall the Montiel-Ros argument. We use the fact that E is a subset of {(Z U Z’), the area
formula, the arithmetic geometric inequality and the fact that 1/k,(x) <n/Hg(x) for x € ¥ to obtain

|E| < 18D+ 15(ZN)] < . 1 N2y dy +12(2)]
¢

=/ Jog M 4 10(2)
7z

1/kp(x) "
:// [T —tkix)) de dH" + |£(2))]
2 J0 i=1

l/kn(x) t n
s/f (1——HE<x)) dr dH" + 1£(2)]
> Jo n
n/Hg(x) t n
5// (1——HE(x>) dr dH" +1¢(Z)|
> JO

n
n—l—l

Next we quantify the previous four inequalities. To that aim we define the nonnegative numbers R, Ry, R3
and R4 as

—d’H"+|§(Z)I

= ¢\ E|, (-6
R2=/ HE ()N Z) —1]dy, (3-7)
L(2)
1k () ; non
R; = / / <1—;HE(x)) —H(l—tki(x)) dr dH", (3-8)
z i=1
n/Hg(x) n
Ry = / / 1——HE(x) dr dH". (3-9)
1k ()

Then by repeating the Montiel-Ros argument we deduce that

|E| <

1
—dH" ZNV | — Ry — Ry, — R3 — Ry.
w1 )y Hy +1¢(Z9)] 1 2 3 4



690 VESA JULIN AND JOONAS NIINIKOSKI
Therefore, by (3-5),
Ri+ R+ R3+ Ry < |0(Z)| + CI|HE — Al r9E)»

where the R; are defined in (3-6)—(3-9).
Let us next show that
1€(ZN] < Cl|HE(x) — Ml 12 oE)- (3-10)

Indeed, by the area formula we have

R n 1/ky(x) 1
|;(z/)|§f Jrg“dH”*l:/ / ]_[|1—tk,~(x)|dde"+/ f [ it —tkiGo)l de dH”. (3-11)
z 170 o % J0 i=1

By the definition of Ei, we have |1 —tk; (x)| = (1 —tk; (x)) for every (x, 1) € ¥ x [0, I?], and therefore
by the arithmetic-geometric inequality we may estimate

n
1_[|1 —tki(x)| < C(1 4 |Hg(x)|") for (x,1) € ] x [0, R).
i=1
Similarly, we deduce that
n
l—lll —thki(x)| < CA+*Hg(x)|") for xeX) and 0<rt<1/k,(x).
i=1

On the other hand, by the definition of X} we have 1/k,(x) < R. Therefore, by (3-11), A < C and (3-3)
we have

I3
IE(Z’)I5C/ / (14 |Hg(x)|") dt dH"
g, Jo
=cz§/ (14 |Hg(x)|") dH"
AE\XT

§C/ (L4 A" + | Hg — A]") dH"
IE\T

<CH"OE\Z)+ HE — M noE)
< CllHg — Al1n@E)
when ||Hg — All1»9E) < 1. Hence by decreasing &, if needed, we have (3-11). In particular,
Ri+ Ry + R3+ Ry < C||Hg — Al (9E)» (3-12)

where the R; are defined in (3-6)—(3-9).

Step 2: Here we utilize the estimate (3-12) and prove the following auxiliary result. For a Borel set
FCoEand O <r < R,

IENC(ZA(T x (r, R))| = (H"(F)
n

o Rr R = ClHE = M. (3-13)
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We prove (3-13) by “backtracking” the Montiel-Ros argument. By the definition of Ry, R>, R3, R4
and (3-12) we may estimate

IENS(ZN(T X (r, )| = [8(ZN T x (r, R)))| — Ry

z/ HOE ' ()N ZN (T x (r, R)) dy — Ry — Ry
Z(ZN(T x(r,R)))

min{R, 1/k,,(x)
f (l—lk,‘(x)) drdH" — R — R,
rnx Jmin{r,1/k,(x)} i=1

min{R,1/k,(x)} ¢ n

Z/ / (1——HE(X)) dldH”—Rl—Rz—R3
min{r,1/k, (x)} n
min{R,n/HE(x)} t n

Z/ (1——HE) dtdH" — R — Ry — R3— Ry
min{r,1/k, (x)} n
min{R,n/HE(x)} t n

Z/ / (1——HE) dtdH" — R — Ry — R3 — Ry.
min{r,n/Hg (x)} n

Recall that for x € X, we have %)L < Hg(x) <2A and R = n/A. Therefore, we may estimate

min{R,n/HE (x)} ¢t n min{R,n/Hg(x)} ¢t n
/ <1——HE> dt dH" 2/ (1—— > dt dH" = Cl|Hg — Mok
rnx rnx

min{r,n/Hg(x)} n min{r,n/HEg (x)}

/ f (——A) dr dH"—C||Hg —All o)
rns

HUTNS)n [ r VT
B ER OGN —ClHE =
nDn ( nr) |Hg —AllroE)

H'(CNT)R ( r )"“
== = (1->) —ClHg—Muiom.
D |Hg —AllLroE)

R
Hence we obtain (3-13) from the previous two inequalities, from (3-3) and from (3-12).

Step 3: Here we finally prove the proposition. Recall the definition of E, in (3-1). Let us first prove that

P(E) .
|E,| _m( — )" — C|Hg — Mnom) (3-14)
forall 0 <r < R.
To this aim, we claim that
ENZN(Ex(r,R) CEU{yet(2): H' ¢ (»N2z)=21u¢e(Z). (3-15)

The point of this inclusion is that almost every point which is of the form y =x —tvg(x), for x € Z and
t € (r, R), belongs to E,.

To this aim, let y € EN¢(X x (r, R)). Then we may write y = x — tvg(x) = ¢(x, t) for some x € X
and t € (r, R), with (x,t) € Z. If dyp(y) = |y — x|, then y € E, because |x — y| =t > r. Otherwise,

dyp(y)=|y—Xx|=r <t for x € 9F,
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so we may write y =X —Fvg(x) = ¢(X,7) and (X,7) € ZU Z'. Again, if (X, 7) ¢ Z’, then (X, 7) € Z and

thus Ho(gfl(y) N Z) > 2. Hence we have (3-15).
Recall that by the definition of R, and by (3-12),

Hyec2):H ¢ ' (ynnZ)>2) < f(z)mo(;—](y) NZ)—1]dy
¢

< C|l|Hg — AllLn3E)-
We then use (3-15), (3-16), (3-10) and (3-13) with I' = X to deduce
|E-| = [ENS(ZN (X X (r, R)| —Cl|HE — MlLroE)
n
| H)
“ (n+1)R"
The inequality (3-14) then follows from (3-3).
Let us next show that for all € (0, R),
HH (T
Bl < )
(n+1R"

where I', C OF is defined in (3-2).
First we show

(R—r)""' —C||Hg — M 1o o).

(R—r)""' + C||Hg — Ml 11 o),

|Er| = CllHE — AllroE)-
This follows from an already familiar argument, so we only sketch it here. It is easy to see that
ER CE(ZNUL(ZN(E x (R, 09))).

Moreover, since %)L <Hg(x)<2AxforxeX,

TGty =] 11— thi(0)] < CU+|H(x)[") <C  for (x,1) € ZN(Z x (R, 00)).
i=1

Recall that R = n/A. Therefore, we have

max{n/HEg(x),R}
|;<zm<zx<R,oo>>)|sf/ Joe (e, 1) di dH”
X JR
MR

n
<c
<|H

E
< C||Hg — Al 3E)-

dr dH"

The estimate (3-18) then follows from |Eg| < |£(ZN (X x (R, 00)))| + |¢(Z")] and (3-10).

(3-16)

(3-17)

(3-18)

Note that for all p € (r, R) we have {x € E : dyp(x) = p} = ¢(I'p, p) and I') C I',. We also set

(p=¢(-,p):0E — R"*! and thus {x € E : dyp(x) = p} = ¢p(T'p) and

n H n
Jfg“p(x):l_[|1—pki(x)|§(1—7Ep) for x e T',.
i=1
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Therefore by (3-18) and by coarea and area formulas we obtain
R
|Er| < |Er| — |ERl+ ClIlHE — ML) < / H"'({x € E :dyr = p}) dp + C||Hg — Al Ln o)
r
R
= [ # e do -+ ClHE = M

R
5/ / J25,(0) dH" dp + Cl| H — Ml o)
r l"/,

R HE n
r Iy

R n
A
S/ ’H"(Fp)(l - ;,0) dp + CllHE — MlroE)
r

R n
0
S’H"(Fr)/ (I_E) dp +Cl|Hg — Al 3E)

H'(T))

= m(R — )"+ C|HE — Ml E)-

Hence we have (3-17).
The second claim of the proposition follows immediately from (3-14) and (3-17). These also imply

By = — ) (R — !

T DR < CllHg — Ml 1r@E)-

The first claim thus follows from (3-4) and R = n/A.
For the last claim we refine the inclusion (3-15) and show that for0 < p <r < R andr’ € (r, R),

ENZ(ZNTy x (' —p, R)) C(E-+By)U{yec(2):H(¢ ' (y)N2Z)>210¢e(Z).  (3-19)

Indeed, let y € EN¢(ZN (T x (r' — p, R))). Then we may write y = x — tvg(x) for some x € EN T,
andt € (r' — p, R), with (x,r) € Z. If t € (+, R), then by (3-15),

YEENLZN(EX(rnR)) CEU{yec(Z):H ¢ ' (y)NZ)>21ue(Z))
C(E,+By)U{yet(2):H(¢ ' (»)NZ)>21U¢(Z).

Let us then assume that ¢ € (r' — p, r']. We write y = x —r'vg(x) + (' —t)vg(x). Since x € '/, i.e.,
dE satisfies the interior ball condition at x with radius r’ > r, necessarily we have x — r'vg(x) € E,.
Therefore, since 0 < r’ —t < p, we conclude that y € E, + B, and (3-19) follows.

We use (3-10), (3-13), (3-16) and (3-19) to conclude

|E, 4+ Byl = |[ENC(ZN T Nx(r' —p, R))| —CllHg — A r9E)
H" ()

> mm — (' = p)"" — C|Hg — M ror)-
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By using the second claim of the proposition and then letting r’ — r, we deduce

P(E)

Ert Byl 2 o (R = = o)™ = oy | He = Mo,
On the other hand, clearly E, + B, C E,_,. Then by (3-17) we have
By + Byl < 1Er—pl < — O (R— (r = )™ + Cll Hg — Mlr o1
(n+1)R"
The last claim thus follows from the two previous inequalities and (3-4). (|

Proof of Theorem 1.2. Let E, ) and Cy be as in the formulation of Theorem 1.2. Recall that we write
R =n/A. As before C denotes a constant which may change from line to line but always depends only
on Cy and n. Let us write

e:=||Hg — AllLrE)-

If e =0, then E is a disjoint union of balls by [Delgadino and Maggi 2019]. Let us then assume that
0 < & <4, where § is initially set as in Proposition 3.3. We might shrink § several times but always in
such a way that it depends only on Cy and the dimension n. Indeed, by shrinking 8, if needed, Lemma 2.4
provides the estimates

1/C <A and R <C,

and hence the first claim of Theorem 1.2 is clear. We will use these estimates repeatedly without further
mention.

By Lemma 2.4, the number of connected components of E and their diameters are bounded by C. Thus,
by applying a similar argument as in the proof of Proposition 3.3 (to obtain (3-4)) on each component
and then summing these estimates we obtain

nP(E)— (n+ DA|E|| < Ce. (3-20)
| |

By possibly shrinking § we have R —8'/"*2 > 1 R. Choose g = R —&!/"+2). Then the volume estimates
given by Proposition 3.3 read as

E
’IErI —%(R—r)"“ <Ce (3-21)
forall0 <r < R and
]
‘|Er + Byl = g (R—= (= p))" 1| < Gt/ (3-22)

for all 0 < p <r <ry. We remark that by (3-21) we have

B, > AEL gorviod _op s Lot _ ey
Rn+1 C

Hence by decreasing 8, if needed, we may assume that E,, is nonempty. This implies that £, is nonempty
for r’ > ro when |r’ —ry| is small enough. Since for any r’ > r it is geometrically clear that ', C 8Er0+1§,0,
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and then by using Proposition 3.3 and rp = R — ¢!/®"*+2) we have
e

HMOE (Ery+ Br)) < H'OENT) < €

Thus by letting ' — ry the previous estimate yields
H'(DE\ (E,, + B,,)) < Ce!/"*2), (3-23)

As previously, we divide the proof into three steps.

Step 1: Recall that ro = R —e!/"+2) > 1 R. We prove that there is a positive constant dy = do(Co, n) < 1 R
such that if x, y € E,, then either

1/(2(n+2))

lx—y|<e or |x—y|>dp. (3-24)

Let us fix x, y € E,,. We write d := |x — y| and denote the segment from x to y by
Joyi={tx+ (1 —=1)y:t€[0, 1]}

We may assume that d is small, since otherwise the claim (3-24) is trivially true. To be more precise, we
assume
d <min{4R, 1}. (3-25)

Let us first show that
Jyy CEp_g-142- (3-26)

Note that 7o — R™'d?> > 0 by ro > %R and (3-25), and hence E, _g-1,2 is well defined and nonempty.
Choose z € R"™!'\ E and 7’ € J,, such that

|z — 7| = dist(R"T'\ E, Jy).

If 7/ =x or 7/ =y, then it follows from x, y € E,, that |z —z/| > ro. If not, then from the fact that z" is the
closest point on Jy, to z, we deduce that the vector x — z’ is orthogonal to z — 2/, i.e., (x — 2/, z —z/) =0.
Note also that min{|x —z/[, |y — 7|} < %d and we may thus assume that |x — 7’| < %d. Therefore, by the
Pythagorean theorem we have

x—zP=lx— P+l < 3d*+ 12—~

Since |x — z| > rp, the previous estimate gives us
/|2 2 1d2

lz=21">ry—y4

We deduce from rg > %R and (3-25) that
(rg — }‘dz)l/2 >ro— R™'d%

The previous two estimates yield |z — z/| > ro — R~'d? and claim (3-26) follows due to the choice of
z and 7',
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Again, we use ry > %R and (3-25) to observe that
ro—(1+R Yd*>rg—d—R'd*>iR—{R— LR >0.

Thus E, (14 g-1)42 is well defined and nonempty. Next, we deduce from (3-26) and E, + B, C E,—,
that

ny + de C ErO_R—ldz + de C Er()—(l—i-R_l)dz' (3—27)

Since Jy, + B,z contains the cylinder J,, x B, it is clear that

d?’

|y + Bpa| > w,d' .

On the other hand, (3-21) and ¢ < 1 (we may assume § < 1) imply

|E| ~
|Ero—(1+R*1)d2| =< W(R —(o—(0+R 1)d2))n+1 +Ce
_|E]
~ Rntl
< %(8”("“} + (1 + R D@2y 4 cetth/o42)

< CdZ(}’H-l) + Cg(n+l)/(n+2)‘

(81/(n+2)+(1+R_1)d2)n+1+C8

Then (3-27) yields
w,d' T2 < CA*FD 4 et/ 42

If d > £!/C0+2) then
a)ndl+2n < Cdz(n+l).

This implies d > ¢ > 0 for some ¢ = c(Cy, n). By recalling (3-25), claim (3-24) follows.

2(n+2)}

Step 2: By (3-24) and possibly replacing § with min{8, (%do) we may divide the set E,, into N

clusters Erlo, cee Er’\(f such that we fix a point x; € E,, and define the corresponding cluster Eio as
' . 1
E; ={x € E;:|x — x| < gdo}.

By (3-24), we have Eﬁo C Bg,(x;), where g9 = el/C0+2) and |x; — xj| = do for i # j. Therefore, we
have for every p > 0

N N
U Botri) € Ery+ B, €| By (i) (3-28)
i=1 i=1

Since rg > %R > }‘R > do and |x; — x| > dp for i # j, we have that the balls B,(x1), ..., B,(xy) with

p= %do are disjoint and contained in E, which in turn implies there is an upper bound No = No(Co, n) € N
for the number of clusters N.

Next we improve the lower bound |x; —x ;| > dj and prove that there is a positive constant C; = C (Co, n)
such that

x; —x;| = 2R —2C,"/"  for all pairs i # ;. (3-29)
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As a byproduct we prove the last statement of the theorem, i.e., we show
|P(E) — N(n+ Dwpp 1 R"| < Cel/C0+2), (3-30)

Recall that the balls By, 4(x1), ..., Bgy/4(xy) are disjoint. Therefore, using N < Ny and (3-28) with
p= %do we deduce

||Es, + Bay/al — Noni (%do)n+l| < Cgg = Ce'/0H2),

On the other hand, we have %do < 11—6R < %R < rp, SO we may use (3-22) to obtain

E
|Ey + Bay/al — %(%do + 81/("+2))n+1 < Cgl/nt2),

These two estimates and ¢ < 1 imply
|E| = Nwy R | < Ce/C0+2), (3-31)

Thus (3-20), R = n /A and (3-31) yield (3-30).

To obtain (3-29), let us assume that there is 0 < & < %R such that |x; — x;| <2R —2h for some i # j.
This implies that the balls Br(x;) and Bg(x;) intersect each other such that a set enclosed by a spherical
cap of height 4 is included in their intersection. As the volume enclosed by the spherical cap of height &
has a lower bound ¢, R"T'h"*2)/2 with some dimensional constant ¢,, then there is ¢ = ¢(Cy, n) such
that

|Br(xi) N Br(xj)| = ch" 272

We use the previous estimate as well as (3-22), (3-28), (3-31), e <1 and N < Ny to estimate
N1 R < |E|+Ceg
<|E; + Byy| +Ceo+ Ce'/"+2

N
U BR+€0 ()C,')

i=1

N

UBR(Xi)

i=1
< Nwy 1 R" — | Br(x)) N Br(x;)| + Ceg + Ce'/ "2
< Nwyy  R" = ch"/2 4 Cgg 4 Cel/ 1+

= Nay ™ — ch /2 L cgV/Q0tD) 4 cpl/nt2)

< an+an+1 — cht2)/2 + Cel/n+2)

+Ceg+ Cel/0+

=

= + Ny (R+80)" ' — R"™) 4 Ceg + Ce'/ 2

Thus h"T2/2 < Cgl/C+2) and (3-29) follows.

Step 3: Let C be as in (3-29). By decreasing §, if needed, we may assume

0<R—Cg"/0t?* < R g0 — .



698 VESA JULIN AND JOONAS NIINIKOSKI

Then by (3-28) and (3-29) we have that the balls B,(x1), ..., B,(xy), with p = R — Clel/("+2)2, are
disjoint and

N
U B,(x;) C E;,+ B, C E,,_, C E. (3-32)
i=1
This, e <1, N < Ny and (3-31) imply
N

’E\UBp(xi)

i=1

< Cel/+2?, (3-33)

Set &1 = /2 We prove

N
Ec| Bt (3-34)

i=1
for n = R 4+ C,e; with some positive C, = C»(n, Cp). By decreasing §, if necessary, we deduce from
(3-33) that

|B€|| >

N
E\|JB,x)
i=1

Thus, if x € E;, then B, (x) N Uthl B, (x;) must be nonempty. This implies

N
Ee, C | Bote, (). (3-35)

i=1
Assume that for x € 9F,
d, :=dist(x, E,, + B,,) > 0.
Then by (3-23)
H"(OE N B(x, dy)) < Ce'/+2),

Let §, € Ry be as in Lemma 3.2, and set r, = min{d,, 6,/A}. Again, by possibly decreasing § so that
8 <6,, Lemma 3.2 yields
Sury < H"(OE N By (x)).

By combining the two previous estimates we have
min{dx, 87} < Cel/tn ),

Since 8,/A > 6§,/ C, by decreasing &, if necessary, the previous estimate implies r, = d, and further yields

d, < Cgl/(nn+2) < Cgl/(n+2)2. (3-36)

On the other hand, by (3-28),

N
Eyy+ By C Eqy+ Bg C | Bryey(x0), (3-37)

i=1



QUANTITATIVE ALEXANDROV THEOREM AND ASYMPTOTIC BEHAVIOR OF MEAN CURVATURE FLOW 699

where g = &!/C01+2) < ¢1/(1+2)? Thys (3-36) and (3-37) imply

N
OE | Bj(x)
i=1
with 7 = R+ Ce!/ (n+2)?, By combining this observation with (3-35) we obtain (3-34).
Finally, by decreasing § one more time, if necessary, (3-30), (3-32) and (3-34) yield

N N
U Bo ) c E ) Bp, (x),
i=1 i=1
where p_ = R — Cel/0+2° p. = R+ Ce/"+2" the balls B, (x1), ..., B,_(xy) are mutually disjoint,
for N we have
|P(E) = N(n+ D11 R"| < CeV/ 0+

and C = C(Cy, n) € R4. The claim of Theorem 1.2 then follows by Remark 3.1. Il

4. Asymptotic behavior of the volume preserving mean curvature flow

In this section we first define the flat flow and recall some of its basic properties. We do this in the general
dimensional case R"*! and restrict ourselves to the case n < 2 only in the proof of Theorem 1.1. We
begin by defining the flat flow of (1-1).

Assume that Eg C R"*! is a bounded set of finite perimeter with the volume of the unit ball | Eg| = wp,41.
For a given h € Ry we construct a sequence of sets (£ ,i’),fi | by an iterative minimizing procedure called
minimizing movements, where initially Eé‘ = Eg and E,il 1 is a minimizer of the problem

1
dx + —
vh

Recall that d £, 1s the signed distance function from E;. We then define the approximative flat flow
(E]')i=0 by

1 _
Fin(E, Ek>=P<E>+Z/ dg, [|E| — wpy1]- (4-1)
E

EM=E! for (k—1)h <t <kh. (4-2)

By [Mugnai et al. 2016] we know that there is a subsequence of the approximative flat flow which
converges:

(E;h[)tzo — (E1)i>0,

where for every ¢ > O the set E, is a set of finite perimeter with |E;| = w,+(. Any such limit is called
a flat flow of (1-1). It follows from [Mugnai et al. 2016] that when n < 6 and if the perimeters of Eth
converge, i.e., lim,_o P(E f) = P(E,) for every t > 0, then the flat flow is a weak solution of the volume
preserving mean curvature flow. It is not known if the flat flow coincides with the classical solution
of (1-1) when the latter is well defined and smooth, but the result in [Chambolle and Novaga 2008] seems
to suggest this (see also [Chambolle et al. 2015]).
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Preliminary results. Let us take a more rigorous approach to the concepts heuristically introduced above.
We base this mainly on [Mugnai et al. 2016], with the only difference being that the volume constraint
has a different value. Obviously, this does not affect the arguments.

First, we take a closer look at the functional F, given by (4-1). If E, F C R"*! are bounded sets of
finite perimeter, then it is easy to see that modifications of E in a set of measure zero do not affect the
value 75, (E, F), whereas such modifications of F may lead to drastic changes of the value of Fj,(E, F).
To eliminate this issue, we use a convention that a topological boundary of a set of finite perimeter is
always the support of the corresponding Gauss—Green measure. Thus, we consider F, as a functional

Xny1 X{A€ X1t A# T} >R,
where
X,41 ={E C R""!: E is a bounded set of finite perimeter with E = spt ).

We remark that if Eg is essentially open or closed and Ep € X, 1, then we may assume X4 to be open
or closed, respectively.

For F € X,,+1 nonempty, there is always a minimizer E of the functional Fj (-, F) in the class X,
satisfying the discrete dissipation inequality

1 1 1
P(E)—i——/ dyrdx+ —||E| —o <PF)+—||F|—w ; (4-3)
see [Mugnai et al. 2016, Lemma 3.1]. Moreover, there is a dimensional constant C,, such that
sup dyr < Cpvh; (4-4)

EAF

see [Mugnai et al. 2016, Proposition 3.2]. The minimizer E is always a (A, ro)-minimizer in any open
neighborhood of E with suitable A, ro € R satisfying Arg < 1. Thus, by the standard regularity theory
[Maggi 2012, Theorem 26.5 and Theorem 28.1] 9*E is relatively open in dE and C'* regular with any
O<a< % and the Hausdorff dimension of the singular part 9E \ 9*E is at most n — 7. These imply that E
can always be chosen as an open set. On the other hand, if E is nonempty, it has a Lipschitz-continuous
distributional mean curvature Hg satisfying the Euler—Lagrange equation

dr

7=—HE+)»E, (4-5)

where the Lagrange multiplier can be written in the case |E| # w,1] as

1
Ag = 7 sgn(wy 11 — |E), (4-6)

see [Mugnai et al. 2016, Lemma 3.7]. Thus, using standard elliptic estimates one can show that *E is in
fact C%¢ regular and (4-5) holds in the classical sense on 3*E. In particular, E is C> regular when n < 6.
Moreover, if x € JE satisfies the exterior or interior ball condition with any r, then it must belong to the
reduced boundary of E. This is well known and follows essentially from [Delgadino and Maggi 2019,
Lemma 3].
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Now let us turn our attention back to flat flows. Let Ey € X, be a set with volume w,4; and let
0 < h < (wns1/P(Ep))> Then we find a minimizer Ei’ € Xp41 for Fi (-, Ep), and by (4-3) we have
||Ei’| — Wn+1 | < \/EP(EO) implying, via the condition & < (a),,/P(Eo))z, that E{’ is nonempty. Again we
find a minimizer Eg € X, for F,(-, E1), and using (4-3) twice we obtain ’|E£’| — a)nH‘ < \/EP(EO)
and thus Eg is also nonempty. By continuing the procedure we find nonempty sets E/, E {’ Eé’ € X
as mentioned earlier, i.e., Eg = Ey and E,i‘ is a minimizer of Fj (-, Ex—1) for every k € N. Thus we may
define an approximate flat flow (Eth),zo, with the initial set Eyp, defined by (4-2). Further, a flat flow as a
limit is defined as before. By iterating (4-3) we obtain

k

1 1

PE)+— Y / dypr  dx+ —=||E},| — wps1| < P(Eg) forevery keN.  (4-7)
L o1 Y ERAEG Ly, v vh

By the earlier discussion we may assume that E” is an open set, for every ¢ > h, and dE" is C? regular up
to the singular part dE/ \ 3*E" with Hausdorff dimension at most n — 7. We use the shorthand notation A/
for the corresponding Lagrange multiplier.

Next we list some basic properties of the approximative flat flow.

Proposition 4.1. Let (Eth),zo be an approximative flat flow starting from Eg € X, 11 with volume w4
and P(Eg) < Cy. There is a positive constant C = C(Cy, n) such that the following hold for every
0 <h < (wn/P(Ep))?:

(i) Foreverys,t withh <s <t —h we have |[E"AE"| < C/t—s5.

(i1) Suppose that for a given Ty > 0 we have |E¥1| = wy+1. Then P(E%) > P(E,h) foreveryt > T, and

T
(Hgn — A2 dH" dt < C(P(EL) — P(EL))
Ti+hJorgl 1 :

for every T, > T\ + h. Moreover, for every h < T < T3,
T
/ / (Hgr — A2 dH" dt < CP(Ey).
T, Jo+E! !

(iii) For every T > 0 there is R = R(Ey, T) such that Eth C Bg forall0 <t <T.

@iv) If (hp)y is a sequence of positive numbers converging to zero, then up to a subsequence there exist
approximative flat flows ((E,hk)lzo)k which converge to a flat flow (E;);>o in the L' sense in space and
pointwise in time, where E; € X, 11, i.e., for everyt > 0,

lim |EM*AE,| =0.
hk~>0

The limit flow also satisfies |[E;AE;| < C/t —s forevery0 <s <t and |E;| = wp41 for everyt > 0.
(v) If Ey is either open or closed, then the sequence in (iv) converges to (E;);>¢ in the L! sense in space

and compactly uniformly in time, i.e., for a fixed T,

lim sup |EMAE,|=0.
h—04e10,T]

Moreover, |E;AE:| < C/t —s forevery() <s <.
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Proof. Claims (i)—(iv) are essentially proved in [Mugnai et al. 2016]; see the proofs of Proposition 3.5,
Lemma 3.6 and Theorem 2.2.
To prove (v) we first show that

|ENAE) — 0 as h— 0,

which immediately implies via (iv) that |EgAE;| < C J/t for every t > 0 and hence the second claim of (v)
holds. Then the compactly uniform convergence in time is a rather direct consequence of this and (i).
To this aim, let (k) be an arbitrary sequence of positive numbers converging to zero. By (iii) and by
the standard compactness property of sets of finite perimeter, there is a bounded set of finite perimeter E o
such that, up to extracting a subsequence, EZ: — E. in the L' sense. In particular, by (4-7) we have

|Eco| = wp+1 = | Eol. Again, by using | Ej* AEss| — 0 and (4-4) we have
|Exc\{y €R":dg,(3) <j'}I=0 and [{y eR":dg,(y) <—j "}\Ex| =0

for every j € N. Thus, by letting j — oo we obtain |Es \ Eo|l =0 and [int(Ey) \ Es| = 0. Since Ej is
open or closed, this means either |Ex \ Eg|l =0 or |Eg\ Ex| =0. But now |E| = | Egl, so the previous
yields | Exo A Ep| = 0. Thus |EZf \ Eg| — O up to a subsequence and since (hy); was arbitrarily chosen
we have |EZAE0| — 0. U

We note that claim (v) does not hold for every bounded set of finite perimeter Ey. As an example one
may construct a wild set of finite perimeter Eq such that |E ZAEol >co > 0forall h > 0.

By [Mugnai et al. 2016, Corollary 3.10], for a fixed time T > h, we have that the integral th |){’|2 dr
is uniformly bounded in 4 and hence, via (4-6), that |{t € (h, T) : |E,h| # wp+1}] < Ch, where C depends
also on 7. We may improve this by using Lemma 2.4.

Proposition 4.2. Let Cy> 0and Eg € X,,11 be a set of finite perimeter with volume w, | and P (Eg) < Cy.
There are positive constants C = C(Cy, n) and hy = ho(Cy, n) such that if h < hy and (Elh),zo is an
approximative flat flow starting from Eq, then for every h < T < T,

Ip)
/ A2 de<C(T—Ti+1) and |{t € (T1, T2) : |EM| # wpp1}l < Ch(T — Ty 4 1).
T

1

Proof. By (4-7) we may choose hg = ho(Cop, n) such that |Eth| > %wnH whenever 1 < hy. We may also
assume Cgy > 2w, 41 so that |Eth| > 1/Cq for h < hg. Thus, by Lemma 2.4 and P(Eth) < Cp, we find a
positive C = C(Cy, n) such that for every t > h and h < hyg

W2 <c 1+/ (Hgh — A2 dH" ),
I*Eh !
and therefore

T, T
/ |AM2 dt §C(T2—T1)~|—C/ / (Hpn — A2 dH" dr.
T n Joh

1

By Proposition 4.1 (ii) we obtain the first inequality. The first inequality implies, via (4-6), the second
inequality with the same constant C. O
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We need also the following comparison result for the proof.

Lemma 4.3. Let 1 < Cy < o0o. Assume Ey € X,,41 is a set of finite perimeter with volume wy, | and
P(Ey) <Cy,andlet F = UlNzl B, (x;) with |x; —x ;| > 2r and 1/ Cy <r < Cy. There is a positive constant
g9 = &0(Co, n) such that if (Eth) >0 s an approximative flat flow starting from Eq and
sup dyr(x) <e with ¢ <¢g
x€Ep AF
forty > 0, then

sup dyrp(x) < ce'/? forall tg <t <ty++/¢
xeEl'AF

provided that h < min{\/¢, ho}, where hy = ho(Cy, n) is as in Proposition 4.2.

Proof. Our standing assumptions are
h <min{s/e, hg} and & <min{l1/(2Cy), 1}.

As usual, C denotes a positive constant which may change from line to line but depends only on the
parameters Co and n.

Without loss of generality we may assume fy = 0. Fix an arbitrary x; € {x1, ..., xy}. Up to translating
the coordinates we may assume that x; = 0. We set for every k =0, 1,2, ...

ox =inf{|x| :x € R"T\ E},}
and
rr = min{r, pg, ..., Pk}
We claim that
Fesr — 1 = —Cr(1+ Xy DA, (4-8)

with some positive constant C; = C(Co, n). First, if 11 = r¢, the claim (4-8) is trivially true. Thus we
may assume 74| < ry which implies pxy1 = rry1 < r¢ < px. Then pr > 0 which in turn means

Pr = min|x|.
OE}),

Since EélkJrl)h is bounded and open, there is a point x € R"+!\ E?k+1)h with pg11 = |x|. Let x” be a closest
point to x on 8E,ﬁ‘h. Then

Pt gy (0] = x|+ 1dgy ()] = X' = pr = 1
The condition |x| < p; means x exists in E,’jh, so the previous estimate yields
Pkl — Tk > d El (x). 4-9)
Again, x € E,’gh \ E?k-i-l)h so by Equation (4-4), |c?E£h )] < C,~/h and hence

Pt — 1k = —CpV/h. (4-10)
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We split the argument into two cases. First, if ryy) < Cn«/ﬁ, then by (4-10) we have r; < 2C, Vh.
Therefore, using (4-10) we obtain

ri — ¢ = —C(rppr +r)0Vh = —=3C2h. @4-11)

Ifreer > C,,«/E, then by (4-10) we have ry < 2r¢4. Since r¢y1 > 0, we have x € 8Eé’k+l)h and Eélk-i—l)h
satisfies the interior ball condition of radius r¢1| at x. Thus by the discussion in Section 2, x belongs to
the reduced boundary of E & 1y, and therefore by the maximum principle H Elio (x) <n/rps1. Again,

by the previous estimate, (4-9), the Euler—Lagrange equation (4-5) and ri4+1 < Cp we obtain

Tk+1 — Tk = dE,’:h (x) - n

i
h - h - _rk+1 B |)L(1k+1)h|
1
> ———(n+ Col Ay
Feal (k+1)h

Therefore 5

r —r Ik

—k“h k> —(1 + e 1)(n + Col A1) = =3+ ColAf sy (4-12)

+

Thus (4-11) and (4-12) yield the claim (4-8) in the case ryy; < rg.
We iterate (4-8) up to K € N, which is chosen so that Kh € (/¢, 24/¢) (recall h < \/¢), and use
Proposition 4.2 to obtain

K—-1
re =152 —=C1 Y+ Al Dk
k=0

(K+1Dh
:—ClKh—CI/ |An| de
h

3Je
z—zclf—clf A de
h

3Je
Z_zclﬁ—/ 8_]/4+81/4|)»?|2dt
h

3/e
> —Cs‘/4(1+/ |A?|2dz>
h

> _cellt (4-13)

By the assumption sup, g ar dyr(x) < & we have r — & < ro. Thus we divide rlz( — rg by rx +ro and
usero=r—&= %I’ > 1/(2Cp) as well as (4-13) to find a positive constant Cy = C»(Cy, n) such that
rg > r — Cpe'/% This means that

inf dp, () >—Cae/* forall t < /e,
R”Jrl\E,h

and again due to the arbitrariness of x; € {x, ..., xy}, that

inf dp >—Cye'/* forall ¢ < /.
Re+\E!
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To conclude the proof, we show that there is a positive constant &, = ¢1(Cy, n) such that

supdrp <29 forall t < /e (4-14)
E}
provided that ¢ < ;. To this aim we choose an arbitrary xo € R*t!\ F with dr(xo) > 2¢!/°. For every
k=0,1,2,..., we set

pr = inf |x —xo|
er,i‘h

and
re =min{2e', p1, ..., i)

In particular, r; < ZCé/ ° A slight modification of the procedure we used to obtain (4-13) yields

rlz( —rg > —Ce'/,
where K is the same as described earlier. Again, the conditions sup, g Ar dar(x) < € and & < 1 imply
ro>2e'? —¢ > ¢!/ Thus

1/4

e

rk —ro> —C—— > —Ce30 = —Ce! /36177,
ro

and thus
rg > (11— C81/36)81/9 > %81/9,

when ¢ is small enough. Since xg, with dr(xg) > 261/° was arbitrarily chosen we deduce that
El C{xeR"™ :dp(x) <2¢'°} forall k=0,..., K.
The claim (4-14) then follows from the choice of K. O

Proof of Theorem 1.1. The proof of Theorem 1.1 is based on Theorem 1.2. We first use it together with
the dissipation inequality in Proposition 4.1 (ii) to deduce that there exists a sequence of times 7; — o0
such that the sets E;; are close to a disjoint union of balls. Since the perimeter of the approximative
flat flow is essentially decreasing, the number of balls is also monotone. In particular, we deduce that
after some time, the sets E;, are close to a fixed number, say N, of balls. We use the second statement of
Theorem 1.2 to deduce that the perimeters of E;; converge to the perimeter of N balls with volume w1
and thus the right-hand side of the dissipation inequality converges to zero. This allows us to improve
our estimate and use Theorem 1.2 again to deduce that the flat flow E; is close to a disjoint union of N
balls for all large ¢ except a set of times with small measure. The statement then finally follows from
Lemma 4.3.

Proof. Assume that the initial set Ey € X4+ has the volume of the unit ball | Eg| = w41, fiX a positive Cy
with Cy > max{1, P(Ep)} and assume & < (Co/wn+1)2. Let (E;);>0 be a flat flow starting from E( and
let (E ,h ")t>0 be an approximative flat flow which by Proposition 4.1 converges to (E;),>0 locally uniformly
in L. We simplify the notation and denote the converging subsequence again by /. Since we are now in
the dimensions 2 and 3 (n = 1, 2), the sets E,h are C2 regular.
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Step 1: Let us denote
%) = {t € (0,00) : |[E! # wn11}. (4-15)

By (4-7) and Proposition 4.2 we find a constant hg = ho(Cy, n) < 1 such that |Eth| >1/Cy for every t >0
and
[(Ty, T)) N B4 < §(T—Th)

for every Ty > 1 and T, > T} + 1 provided that 2 < hg. On the other hand, by Proposition 4.1 (ii) we have,
for every h < hg and [ € N, that

(+1)? 5
Iy = f 1H g —= A7 1172 df <
12

C
L2(3E! 1

By Chebysev’s inequality,
it € P A+ D) 1 Hpr = 3170 = 304} < 50+ 1D = 1),
Therefore, by choosing 7 = 1% and 75 = (I + 1)?> we deduce that the set

(€ (11, T2)  |Ef| = oust, | Hgp = A | Jaopn, < 300}

is nonempty. Thus if & < hy, then there is a sequence of times (Tlh)l, with 12 < Tlh < (I + 1)? such that
the corresponding sets satisfy |E¥h| = wy+1 and
1

\Hgr, = }”};,h le2en,) = cirm', (4-16)
1 !

By slight abuse of the notation we set Elh = E%;, and A, 1= )\}}lh for & < hy. Since the sets Elh are
C? regular and bounded and thanks to P(Ey) < Co, |Elh| > 1/Cy, (4-16) and Theorem 1.2, we find
lo = lp(Cy, n) such that for every [ > [y we have 1/C < X;; < C,

|P(E") — N (n 4+ D)@ (r!)"| < CI7% and  sup dypn < CI7972 (4-17)
ElAF] :
where rlh = n/A;; and Flh is a union of Nlh pairwise disjoint (open) balls of radius r; . Since we
have 1/C < A;;, < C, we also have 1/C < r;; < C, which together with the perimeter estimate
P(Elh) < P(Eg) < Cy implies that there is Ny = No(Cy, n) € N such that Nlh < Ny. Further, the distance
estimate in (4-17), together with 1/C <r;; < C and Nlh < Ny, yields

|EI'AF'| < CI79/2,

Since |E'| = wy+1, we have that the estimate above implies |(r; )" ! N/* — 1| < CI7%/ and further
that |(r1,h)"(N,h)"/ (n+1) _ 1] <Cl —4/2, This inequality, the perimeter estimate in (4-17) and N,h < Ny
imply

|P(E) = (n+ Do, (NHY V] < C17972, (4-18)

Since by Proposition 4.1 (ii) (P(E lh))lzlo is nonincreasing, we have that (4-18) implies there is a positive
integer [y = [1(Cy, n) > ly for which (Nlh)lzl1 is nonincreasing for all & < hg.
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Step 2: For [ > [} and h < h¢ the sets Elh are thus close to Nlh balls. We claim that there are N € N and
[ > [; such that for every integer L > I,

N'=N forall L<I<L, (4-19)

provided that £ is small enough.

By using a standard diagonal argument and possibly passing to a subsequence we find a sequence
of positive integers (N;);>;,, with N; < Ny, such that Nlh — N, for every [ > [;. Since (Nlh)lzl1 is
nonincreasing, we have that (NV;);>;, is nonincreasing too and hence there are N, [, € N, [, > /1, such
that N; = N for every [ > [,. Hence we have (4-19) by the convergence of N, lh to Nj.

‘We obtain from (4-18) and (4-19) that

|P(E}) — (n+ Do (N0 < 17972 (4-20)

for I, <1 < L, provided that % is small enough. Therefore, it follows from Proposition 4.1 (ii) that

T}
hy 2 —q/2
— <
/mh”HEf M3y At < CI77
1

Since & < 1 and L > 1 was arbitrarily chosen, the above yields

T
sup [limsup/ | H g —,\?niz(aEh)dz] <2 (4-21)
T>(+2)2L h—0 J(+2)? !

for every [ > [.

Step 3: Let us fix a small §, the choice of which will be clear later. Then it follows from (4-21), (4-20)
and the fact that the map ¢ — P(E,”) is nonincreasing in Xy, that there is 75 such that for every 7 > T+ 1
there is A5 7 such that

T
8

forall h < hs 7 and
|P(E!) — (n+ Dy NV < (4-23)

for all ¢ € (T5, T) \ £p,. On the other hand, by Proposition 4.2 and by decreasing &5 7 if necessary, we
deduce that

IS, N (T3, T)| <8 forall h < hsr. (4-24)

Let e > 0 and let us fix t > Ts + 1. (The time T5 + 1 will be T, in the claim.) We claim that, when & is
chosen small enough, we have

sup d, g (4-25)
E'AF]
for h < hs 1, where F!* is a union of N pairwise disjoint (open) balls of radius r = N~/"+D with
volume w4 1.
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Fix T >t + 1. Then it follows from (4-22) that

t
Hen — A3 dr <3,
/1“_31/4” E? T||L2(3E?) =

and from (4-23) and (4-24) that
|P(E") — (n + D, 1NV <8 forall e (-84 1)\ %,

and |Z, Nt — 84 1| < 8. Using these estimates we deduce that there is fy € (t — 8174 1) such that
|Eff)| = Wn+1,

|P(Ef) — (n+ Do, NV D <5 (4-26)
and

| Hpp =M ll 2oy < 8%
Theorem 1.2 implies that
sup dypn < C81/*
El AF} o
forall h <hs 1, where F, ,f)’ is a union of Ny, ;, pairwise disjoint (open) balls of radius ry, 5, with volume w1,
and
|P(E}) = Nipn(n + Dongry, | < C897%,

Since 1/C <y, < C, as in Step 1 we deduce from the previous two estimates that |E§3AF£| < (C89/4,
Then by (4-26) and |Ftﬁ| = w,+1 we further conclude that Ny, , = N, i.e., Ftﬁ‘ is a union of N pairwise
disjoint (open) balls with volume w, | and radius r = N~/ ¢+D,

By Lemma 4.3,

sup dypn < C813% forall 1y <t <o+ 83
N

and h < hs 7. In particular, since §9/% > §!/4 the above inequality holds for ¢. This proves (4-25) by choos-
ing F' = Ftﬁ and 6 small enough. The claim follows by letting 2 — 0. Note that by Proposition 4.1 (iii)
there is R > O such that F* C Bg for all i < hs 7. Therefore, by passing to another subsequence if
necessary, we have that F/* — F,, where F, is a union of N pairwise disjoint (open) balls with volume w1,
and by (4-25),

sup dyr, <¢. O
E,AF,
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A SIMPLE NUCLEAR C*-ALGEBRA WITH AN INTERNAL ASYMMETRY

ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS

We construct an example of a simple approximately homogeneous C*-algebra such that its Elliott invariant
admits an automorphism which is not induced by an automorphism of the algebra.

Classification theory for simple nuclear C*-algebras reached a milestone recently. The results of
[Elliott et al. 2015; Tikuisis et al. 2017], building on decades of work by many authors, show that simple
separable unital C*-algebras with finite nuclear dimension satisfying the universal coefficient theorem
are classified via the Elliott invariant, Ell(-), which consists of the ordered Kg-group along with the
class of the identity, the K{-group, the trace simplex, and the pairing between the trace simplex and the
Ko-group. Earlier counterexamples due to Toms [2008] and Rgrdam [2003], related to ideas of Villadsen
[1998], show that one cannot expect to be able to extend this classification theorem beyond the case
of finite nuclear dimension, at least not without either extending the invariant or restricting to another
class of C*-algebras. An important facet of the classification theorems is a form of rigidity. Starting
with two C*-algebras A and B and an isomorphism & : Ell(A) — ElI(B), one not only shows that A
and B are isomorphic, but rather that there exists an isomorphism from A to B which induces the given
isomorphism @ on the level of the Elliott invariant.

The goal of this paper is to illustrate how this existence property may fail in the infinite nuclear
dimension setting, even when restricting to a class consisting of a single C*-algebra. Namely, we
construct an example of a simple unital nuclear separable AH algebra C, along with an automorphism
of Ell(C), which is not induced by any automorphism of C. This can be viewed as a companion of
sorts to [Toms 2008, Theorem 1.2], where it was shown that when such automorphisms exist, they
need not be unique in the sense described. The mechanism of the example is that if there were such an
automorphism ¢, there would be projections p, g € C such that ¢(p) = ¢ but such that the corners pCp
and gCgq have different radii of comparison [Toms 2006] (the definition is recalled at the beginning of
Section 1). This further shows that simple unital AH algebras can be quite inhomogeneous. In particular,
extending the Elliott invariant by adding something as simple as the radius of comparison will not help
for the classification of AH algebras which are not Jiang—Su stable.
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We now give an overview of our construction. We start with the counterexample from [Toms 2008,
Theorem 1.1]. We consider two direct systems, described diagrammatically as follows:

C(Xo) =—= CX)®M,(1) — C(X) QM) ——F -+
C(10, 11) == C ([0, 1)) ® M, (1) == C ([0, 1) ® M,2) == - --

The ordinary arrows indicate a large (and rapidly increasing) number of embeddings which are carefully

(0-1)

chosen, and the dotted arrows indicate a small number of point evaluation maps, thrown in so as to ensure
that the resulting direct limit is simple. The spaces in the upper diagram are contractible CW complexes
whose dimension increases rapidly compared to the sizes of the matrix algebras. (Toms uses cubes; in our
construction we found it easier to use cones over products of spheres, but the underlying idea is similar.)
The direct system is constructed so as to have positive radius of comparison. We use [Thomsen 1994] to
choose the lower diagram so as to mimic the upper diagram, and produce the same Elliott invariant. As
the resulting algebra on the bottom is Al, it has strict comparison, and therefore is not isomorphic to the
one on the top. (In [Toms 2008] it isn’t important for the two diagrams to match up nicely in terms of the
ranks of the matrices involved. However, we will show that it can be done, as it is important for us.)
Our construction involves moving the point evaluations across, so as to merge the two systems:

C(Xo) == C(X)) @ M,y =3 C(X2) ® M, (3) E% e
C([0,1) == €0, 1) ® M;(1) == C((0, 1]) ® M, 2 E*: e

With care, one can arrange for the flip between the two levels of the diagram to make sense as an
automorphism of the Elliott invariant. The resulting C*-algebra has positive radius of comparison and
behaves roughly as badly as Toms’ example. Nevertheless, we can distinguish a part of it which roughly
corresponds to the rapid dimension growth diagram on the top from a part which roughly corresponds to
the AI part on the bottom. Namely, if at the first level C(Xg) @& C([0, 1]) we denote by ¢ the function
which is 1 on X, and 0 on [0, 1], and we define g = 1 — ¢, then the Ko-classes of ¢ and ¢ will be
switched by the automorphism of the Elliott invariant we construct. However, we can tell apart the corners
gCq and g+ Cq™ by considering their radii of comparison.

Section 1 develops the choices needed to get different radii of comparison in different corners of the
algebra we construct. Section 2 contains the work needed to assemble the ingredients of the construction
into a simple C*-algebra whose Elliott invariant admits an appropriate automorphism. The main theorem
is in Section 3.

1. Upper and lower bounds on the radius of comparison

We recall the required standard definitions and notation related to the Cuntz semigroup. See Section 2
of [Rgrdam 1992] for details. For a unital C*-algebra A, we denote its tracial state space by T(A).
We take M, (A) = UZOZl M, (A), using the usual embeddings M,,(A) — M, +1(A). For t € T(A), we



A SIMPLE NUCLEAR C*-ALGEBRA WITH AN INTERNAL ASYMMETRY 713

define d; : Moo (A)4+ — [0, 00) by d;(a) =lim,_ t(a'/"). If a,b € My (A)4, then a < b (a is Cuntz
subequivalent to b) if there is a sequence (v,);2 | in M (A) such that lim,_, , v,bv, =a.

Following [Toms 2006, Definition 6.1], for p € [0, 00), we say that A has p-comparison if whenever
a,b e My (A); satisfy d;(a) + p < d;(b) for all T € T(A), then a = b. The radius of comparison of A,
denoted by rc(A), is

rc(A) =inf({p € [0, 00) | A has p-comparison}).

We take rc(A) = oo if there is no p such that A has p-comparison. Since AH algebras are nuclear, all
quasitraces on them are traces by [Haagerup 2014, Theorem 5.11]. Thus, we ignore quasitraces. Also, by
[Phillips 2014, Proposition 6.12], the radius of comparison remains unchanged if we replace My, (A) by
K ® A throughout. Thus, we may work only in My, (A).

Our construction uses a specific setup, with a number of parameters of various kinds which must be
chosen to satisfy specific conditions. Construction 1.1 lists for reference many of the objects used in it,
and some of the conditions they must satisfy. It abstracts the diagram (0-2). Construction 1.6 specifies the
choices of spaces and maps needed for the results on Cuntz comparison, and Construction 2.17, together
with the additional maps in parts (11), (12), and (13) of Construction 1.1, is used to arrange the existence
of a suitable automorphism of the tracial state space of the algebra we construct. Because of the necessity
of passing to a subsystem at one stage in this process, we must start the proof of the main theorem with a
version of just the top row in the diagram (0-1); this is Construction 3.3. Many of the lemmas use only a
few of the objects and their properties, so that the reader can refer back to just the relevant parts of the
constructions. In particular, many details are used only in this section or only in Section 2. Some of the
details are used for just one lemma each.

Construction 1.1. For much of this paper, we will consider algebras constructed in the following way
and using the following notation:

(1) (d(n))n=0.1.2... and (k(n))p=0.12,... are sequences in Zg, with d(0) = 1 and k(0) = 0. Moreover,

for n € Z>y,
n

[n)=dm) +k@), rmy=[]I1(). and sm)=]]d0).

j=0 j=0
Further define ¢ (n) inductively as follows. Set #(0) = 0, and
tmn+ 1) =dn+Dt(n) +k(n+ D[rn) —t(n)].

(See Lemma 1.14 for the significance of 7(n).)
(2) We will assume that k(n) < d(n) for all n € Z>y.
(3) We define

Kk = Inf ——

For estimates involving the radius of comparison, we will assume « > %
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(4) The numbers w, @ € (0, oo] are defined by

o]

SR ST N
k()4+d(1) k(n)+d(n)

n=2

We will require o’ < w < % In particular,

> k()
> e <o
— k(n)+d(n)

(5) We will also eventually require that « as in (3) and w as in (4) are related by 2k — 1 > 2w. This can
easily be arranged with a suitable choice of d(1) and k(1).

(6) (Xn)n=0.1.2,... and (Y;)u=0.12.... are sequences of compact metric spaces. (They will be further
specified in Construction 1.6.)

(7) For n € Z>, the algebra C,, is
Cn = Mr(n) 02y (C(Xn) ® C(Yn))
We further make the identifications
C(Xns1, Mriuiy) = My ® C(Xpy1, M),
C(Yn-i-l, Mr(n-‘rl)) = Ml(n—H) ® C(Yn—&-l, Mr(n)),
C(Xn) &® C(Yn) = C(Xn a| Yn)v
C(Xn» Mr(n)) @ C(an Mr(n)) = C(Xn a| an Mr(n))-
(8) Forn € Z-(, we are given a unital homomorphism
Yo : C(Xp) @ C(Y,) — Ml(n+1)(C(Xn+l) @ C(Yuy1)),

and the homomorphism
1_‘In—i-l,n : Cn — Cn-‘rl

is given by I'y41,, = idp,,, ® yn. Moreover, for m, n € Z>¢ with m < n,

Fnm=Tnno10ln_1.n—20- -0l myim:Cn— Cy.
In particular, I', , =1idc,.
(9) We require that the maps

Yot C(Xn LYy) = M1y (C(Xp1 U Yn11))

in (8) be diagonal; that is, that there exist continuous functions

Suts Sn2s - o5 Sutaty Xyt WYy — X, LY,
such that for all f € C(X,, L1Y;), we have

Yu(f) =diag(foSu1, foSu2, ..\ fOSuim+1)-

(These maps will be specified further in Construction 1.6.)
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(10) We set C =lim, C,, taken with respect to the maps I', ,,. The maps associated with the direct limit
will be called I'sg 1, : C;yy = C form € Z>y.

As we need to work with two diagrams which are similar in most positions, as in diagrams (0-1)
and (0-2), we sometimes use additional objects and conditions in the construction, as follows:

(11) For n € Z-¢, we may be given an additional unital homomorphism
Y0 C(Xn) ® C(Yy) = Migni1y(C(Xni1) & C(Yuy1).
0)

n+l,n
is given as C O = lim, C,, taken with respect to the maps F,(z(,),)n, and the maps Fég),m :Cp — CO are

Then the maps I :Cp — Cyy, r,ﬁ"},l : C,, — C, are defined analogously to (8), the algebra cO

defined analogously to (10).
(12) In (11), analogously to (9), we may require that there be
S(O) S(O)

n,1> ~“n2> *-

0
SO ity Xurt U Y1 — X, 1Y,

such that for all f € C(X, LIY,) we have

. 0 0 0
v (f) = diag(f oSy}, fo S oos oS i)
(These maps will be specified further in Construction 1.6.)

(13) Assuming diagonal maps as in (9), we may require that they agree in the coordinates 1, 2, ...,d(n+1);

thatis, forneZ.gandk=1,2,...,d(n+ 1), we have S,(l?,)c = Snk-

Lemma 1.2. In Construction 1.1(1), the sequence (s(n)/r(n))n=12.... is strictly decreasing.
Proof. The proof is straightforward. (|

Lemma 1.3. In Construction 1.1(1), and assuming Construction 1.1(2), we have

t(0) (1) 12 1
0= < < << o
r@@ r() r@ 2
Proof. We have t(0) = 0 by definition. We prove by induction on n € Z. that

tin—1 @ 1 (1-1)

< <
rn—=1) rn) 2
This will finish the proof. For n = 1, we have

t() k(1)
r(1) k(D) 4+d)’

which is in (0, %) by Construction 1.1(2). Now assume (1-1); we prove this relation with n + 1 in place
of n. We have r(n) —t(n) > t(n), so
tn+1) din+Dt(n) +k(n+ D[r(n) —t(n)] - din+Dt(n) +k(n+ )t(n) _ t(n)
r(n+1) [din+1)4+k(n+1)]r(n) [din+ D) +k(n+Dlr(n)  rn)’

(1-2)
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Also, with
dn+1) t(n)
o= and f=——,
din+1)+k(n+1) r(n)

starting with the first step in (1-2), and at the end using o > % (by Construction 1.1(2)) and 8 < % (by the

induction hypothesis), we have

E D ap+ (=)l =)= 41 — Q= D1 —28)] < §
rin+1) 2 >
This completes the induction, and the proof. g

Lemma 1.4. With the notation of Constructions 1.1(1) and 1.1(4), and assuming the conditions in

Constructions 1.1(2) and 1.1(4), foralln € Z~ we have
t
w < 1) <w+o <2w.
r(n)

Proof. The third inequality is immediate from Construction 1.1(4).
By Lemma 1.3, the sequence (¢(n)/r(n)),=1.2,.. is strictly increasing. Also,

() k(D)

= =w 1-3
r(l) k()+d() (1-3)
The first inequality in the statement now follows.
Next, we claim that
1(n) <y .k(J) |
r(n) = k() +4d()
foralln € Z.¢. The case n =1 is (1-3). Assume this inequality is known for n. Then
t(n+1) _( dn+1) )(t(n))+< kn+1) )(r(n)—t(n))
rin+1)  \k(n+D+dn+1)/)\rn kin+1)+dn+1) r(n)
n+1 .
< 1(n) k(n+1) SZ .k(]) .
r(n) kmn+1)+dn+1) s k(j)+d(j)
as desired.
The second inequality in the statement now follows. (|

Notation 1.5. For a topological space X, we define
cone(X) = (X x [0, 1])/(X x {0}).

Then cone(X) is contractible, and cone( - ) is a covariant functor: if 7 : X — Y is a continuous map, then
it induces a continuous map cone(7’) : cone(X) — cone(Y). We identify X with the image of X x {1} in
cone(X).

Construction 1.6. We give further details on the spaces X, and Y, in Construction 1.1(6).
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(14) The space X,, is chosen as follows. First set Zg = S2. With (d(n))pn=0.12,.. and (s(n))n=012,.... asin
Construction 1.1(1), define inductively

Z _Zd(") (SZ)S(H)

Then set X,, = cone(Z,). (In particular, X,, is contractible, and Z,, C X,, as in Notation 1.5.) Further, for
neZspand j=1,2,...,d(n+1), we let P( " Zn+1 — Z, be the j-th coordinate projection, and we
set Q(") = cone(P( ) Xn+1 — X,.

(15) Y, =10, 1] for all n € Z.¢. (In particular, Y, is contractible.)
(16) We assume we are given points x,,, € X, for m € Z> such that, using the notation in (14), for all
n € 7/, the set
{0l o. 0@ M(xy) Im=n+1,n+2, ...andv; =1,2,....d(n+ j)

for j=1,2,...,m—n}
is dense in X,.

(17) We assume we are given a sequence (yx)x=0,1.2,... in [0, 1] such that for all n € Z> the set {yx | k > n}
is dense in [0, 1].
(18) The maps

Yn: C(X, UYy) = M1y (C(Xp1 U Y541))

will be as in Construction 1.1(9), with the maps S, ; : X,,;1 I Y,41 — X,, 1Y, appearing there defined
as follows:

(2) With 04" as in (14), we set S, ;(x) = Q" (x) forx € X,y and j =1,2,....d(n+1).
(b) Sp,j(x) = yn for
x€Xpy1 and j=dmn+D)+1,dn+1)+2,...,I(n+1).
(c¢) There are continuous functions
Rn1, Ry ooy Rujagst) : Yap1 = Yy

(which will be taken from Proposition 2.14 below) such that S, ;j(y) = R, ;(y) for y € ¥, | and
j=12,...,dn+1).

(d) S, j(y) =x, for

yeYyyr and j=dn+D+1,dn+1D)+2, ..., 1(n+1).
(19) The maps
Y0 C(X, U Yy) = Mgty (C(Xpp1 U Y,41))

will be as in Construction 1.1(12), with the maps S, © ) X1 UY,+1 — X, 1Y, appearing there given by
S\ =S, for j=1,2,....d(n+1) and to be spemﬁed later for j=d(n+ 1)+ 1, dn+1)+2, ...,
l(n +1).
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With the choices in Construction 1.6(18), the map
Yn: C(Xp) ®C(Yy) — C(Xng1, Minr1) © C(Yyg1, Miguiry)
in Construction 1.1(8), as further specified in Construction 1.1(9), is given as follows. With C¢™ viewed
as embedded in M, as the diagonal matrices, there is a homomorphism
8n 2 C(Yy) = C(Yyp1, CUFY) C CWotr, Maurny)

such that
ya(f. 8) = (diag(f o Q" fo 03", ... Fo QU 1)

) &)y -+ 8(yn)), diag(8,(8)s f(xn)s f(Xn)s -.ns f(xn))). (1-4)

k(n+1) times k(n+1) times

For the purposes of this section, we need no further information on the maps §,, except that they send
constant functions to constant functions.

Lemma 1.7. Assume the notation and choices in parts (1), (7), (8), and (10) of Construction 1.1, and in
Construction 1.6 (except part (19)) and the parts of Construction 1.1 referred to there. Then the algebra C
is simple.

Proof. Using Construction 1.6(16), this is easily deduced from [Dadarlat et al. 1992, Proposition 2.1]. [J

Notation 1.8. Let p € C (52, M») denote the Bott projection, and let L be the tautological line bundle over
$2 = CP!. (Thus, the range of p is the section space of L.) Recalling that X = cone(S?), parametrized
as in Notation 1.5, define b € C(Xg, M) by b(L) = A - p for A € [0, 1]. Assuming the notation and
choices in parts (1), (6), (7), (8), and (10) of Construction 1.1 and in Construction 1.6, for n € Z- set
by = (idy, ® I'n,0) (b, 0) € M2 (Cy).

We require the following simple lemma concerning characteristic classes. It gives us a way of estimating
the radius of comparison, which is similar to the one used in [Villadsen 1998, Lemma 1], but more
suitable for the types of estimates we need here.

Lemma 1.9. The Cartesian product L** does not embed in a trivial bundle over (S*)* of rank less
than 2k.

Proof. We refer the reader to [Milnor and Stasheff 1974, Section 14] for an account of Chern classes. The
Chern character c(L) is of the form 1+ ¢, where ¢ is a generator of H>(S?, Z), and the product operation

satisfies €2 = 0. Let Py, Pa, ..., Py : (Sz)k — S? be the coordinate projections. For j =1,2,...,k,
set&; = P;‘(e). The elements 1, &2, . .., & € H*((S®)¥, 2), along with 1 € HO((S%)%, Z) (the standard
generator) generate the cohomology ring of ($2)* and satisfy 8? =0for j=1,2,...,k. By naturality

of the Chern character [Milnor and Stasheff 1974, Lemma 14.2] and the product theorem [Milnor and
Stasheff 1974, (14.7) on page 164], we have c(L*%) = ]_[1;.:1(1 +¢j). Now, suppose L% embeds as
a subbundle of a trivial bundle E. Let F be the complementary bundle, so that L** @ F = E. By the
product theorem, c(Le(F)=c(L**@® F)=c(E)=1. Thus, ¢(F) =c(L**)~1 = H§:1 (I —¢;). Since
c(F) has a nonzero term in the top cohomology group H?!(($2)¥), it follows that rank(F) is at least k.
Thus, rank(E) = rank(L**) + rank(F) > 2k, as required. Il
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Lemma 1.10. Adopt the assumptions and notation of Notation 1.8. Let n € Z-o. Then b, |z, is the
orthogonal sum of a projection p, whose range is isomorphic to the section space of the Cartesian product
bundle L™ and a constant function of rank at most r(n) — s(n) — t (n).

We don’t expect b, |z, to be a projection, since some of the point evaluations occurring in the maps of
the direct system will be at points x € cone(Z,,) \ Z,, for values of m < n, and b,,(x) is not a projection
for such x.

We don’t need the estimate on the rank of the second part of the description of b,|z,; it is included to
make the construction more explicit. If there are no evaluations at the “cone points”

(Zm x {0}/ (Zin x {0}) € (Zy x [0, 11)/(Zin x {0})
(following the parametrization in Notation 1.5), then this rank will be exactly r(n) — s(n) —t (n).

Proof of Lemma 1.10. For n € Z> write b, = (¢, gn), with
cn € Mr(C(X,, Mr(n))) and g, € Ma(C(Y,, Mr(n)))-

Further, for j =1,2,...,s(n) let Tj(") (S?2)’™ - §2? be the Jj-th coordinate projection. We claim that
¢y 1s an orthogonal sum ¢, ¢ 4 ¢,.1, in which ¢, ¢ is the direct sum of the functions b o cone(Tj(”)) for
j=1,2,...,5(n) and ¢, ; is a constant function of rank at most r(n) — s(n) — t(n), and moreover that
gn 1s a constant function of rank at most #(n). The statement of the lemma follows from this claim.

The proof of the claim is by induction on n. The claim is true for n = 0, by the definition of b and
since s(0) =1, #(0) =0, and r(0) — s(0) —£(0) = 0.

Now assume that the claim is known for n, recall that I, 11, , = idp,,, ® ¥ (see Construction 1.1(8)),
and examine the summands in the description (1-4) of the map y,, (after Construction 1.6). With this
convention, first take (f, g) in (1-4) to be (cp,0, 0). The first coordinate I';,41 ,(cy.0, 0)1 is of the form
required for ¢, 41,0, while I',, 11, (cs.0, 0)2 is a constant function of rank k(n + 1)s(n) unless ¢, (x,) =0,
in which case it is zero. In the same manner, we see that:

e I'yi1.n(cn.1,0)1 is constant of rank at most d(n + 1)[r (n) —s(n) —t(n)].
e I'yi1.4(cn 1, 0)2 is constant of rank at most k(n 4 1)[r(n) —s(n) —t(n)].
e I'y41.,(0, gn)1 is constant of rank at most k(n + 1)t (n).
e ['11.2(0, g4)2 is constant of rank at most d(n + 1)z (n).

Putting these together, we get in the first coordinate of I',41 ,(b,) the direct sum of ¢,41,0 as described
and a constant function of rank at most

dn+Drn)—sm) —tm)]+k(n+ D).

A computation shows that this expression is equal to r(n + 1) —s(n + 1) —¢t(n + 1). In the second
coordinate we get a constant function of rank at most

kin+Dsn)+kn+Dr(n) —sn) —tm)]+dn+Dt(n) =t(n+1).

This completes the induction, and the proof. O
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Corollary 1.11. Adopt the assumptions and notation of Notation 1.8. Let n € Zsq. Let e = (e, e2) be an
element in Mo (Cy) = Moo (C(X,) @& C(Yy,)) such that ey is a projection which is equivalent to a constant
projection. If there exists x € Mo (Cy,) such that ||xex™ — b, || < % then rank(eq) > 2s(n).

Proof. Recall from Construction 1.6(14) and Notation 1.5 that
Z,=(8**™ and Z, Ccone(Z,) =X, C X, LY,.

Also recall the line bundle L and the projection p from Notation 1.8.

It follows from Lemma 1.10 that there is a projection ¢ € M2, (,)(C(Z,)) whose range is isomorphic
to the section space of the s(n)-dimensional vector bundle L ** ™ and such that g (b, z,)q9 = q. Now
lxex* —b,]| < % implies ||g(xex*|z,)g —q| < % Since e|z, and g|z, are projections, it follows that g|z,
is Murray—von Neumann equivalent to a subprojection of e|z, = e;|z,. Therefore rank(e;|z, ) > 2s(n) by
Lemma 1.9. So rank(e;) > 2s(n). O

Although not strictly needed for the sequel, we record the following.

Corollary 1.12. Assume the notation and choices in parts (1), (3) (including K > %), (M), (8), and (10) of
Construction 1.1, and in Construction 1.6 (except part (19)) and the parts of Construction 1.1 referred to
there. Then the algebra C satisfies rc(C) > 2k — 1 > 0.

Proof. Suppose p < 2k — 1. We show that C does not have p-comparison. Choose n € Z- such that
1/r(n) <2k —1—p. Choose M € Z>¢ such that p+1 < M /r(n) < 2k. Let e € M (C,,) be a trivial
projection of rank M. By slight abuse of notation, we use I';, , to denote the amplified map from M, (C,)
to M (Cy,) as well. For m > n, the rank of I',, ,(e) is Mr(m)/r(n), and the choice of M guarantees
that this rank is strictly less than 2s(m). Now, for any trace T on C,, (and thus for any trace on C), and
justifying the last step afterwards, we have

dr(Fm,n(e)) = T(Fm,n(e)) = L -M - M >1 +p0 > dt(bm) +p.
r(m) r(n)
To explain the last step, recall b,,, from Notation 1.8, and use Lemma 1.10 to see that the ranks of its
components (b,); € Ma(C (X, My(m))) and (by,)2 € Ma(C (Y, M, (m))) are both less than r(m), while
the identity element has rank r(m).
On the other hand, if s 0(b) = Too.n (e) then, in particular, there exists some m > n and x € M (Cp,)

such that ||[x[y, ,(e)x™ — by || < %, which contradicts Corollary 1.11. Il

Notation 1.13. We assume the notation and choices in parts (1), (6), (7), (8), and (10) of Construction 1.1.
In particular, Co = C(Xg) & C(Yp). Define go = (1, 0) € C(Xp) & C(Yp) and qOL =1—gqgg.ForneZ.y
define g, = T'.0(q0) € C, and ¢;- = 1 — g,,, and finally, define ¢ = 's,0(g0) € C and ¢t =1 —¢q.

Lemma 1.14. Make the assumptions in Notation 1.13. Further assume the notation and choices in
Construction 1.6 (except part (19)). Then the projection

I —gn € Mjiny(C(X,)) ® M) (C(Yy))

has the form (e, f) for a constant projection e € M,y (C (X)) = C(X,, My)) of rank t (n) and a constant
projection f € M) (C(Y,)) = C(Y,, My of rank r(n) — t(n).
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From Construction 1.6, we don’t actually need to know anything about the spaces X, and Y,,, we don’t
need to know anything about the points x, and y, except which spaces they are in, and we don’t need to
know anything about the maps QE") and R, ; except their domains and codomains.

Proof of Lemma 1.14. The proof is an easy induction argument, using the fact that the image of a constant
function under a diagonal map is again a constant function. O

Lemma 1.15. Assume the notation and choices in parts (1)—(10) of Construction 1.1, Construction 1.6
(except part (19)), and Notation 1.13, including k(n) < d(n) for all n € Z>9, k > %, w > o', and

2k — 1 > 2w. Then
Kk —1

2w

Proof. We proceed as in the proof of Corollary 1.12, although the rank computations are somewhat more

2
re(gtCqh) =

involved. The difference is in the definition of d;. In this corner, d; is normalized so that d; (ql) =1 for
all T € T(C). To avoid redefining the notation, we will use t to denote a tracial state on C, and therefore
our dimension functions will be of the form a — d; (a)/t(g"), noting that t(¢*) = d, (¢*) since g is
a projection.

It suffices to show that for all p € (1, 2k — 1)/(2w)) N Q, we have rc(¢-Cq™t) > p.

Fix § € (0, w) such that
2k — 1
p<(1—8)< ) (1-5)
2w

)
e=———>0
2p(1=9)

Set
(1-6)

Since the sequence (s(n)/r(n)),=0,1.2,... 1S nonincreasing and converges to a nonzero limit «, there exists
no € Z>¢ such that, for all n and m with m > n > ng, we have

r(n)  s(m)
s r(m)

<é&

This implies that

rm) sm) _ r(m)

<e . (1-7)
r(n)  s(n) r(n)
Using (1-5) and § < w at the first step, we get
2k —1
l—w+2p0<1—-5642(1-9) w=2k(1—=75).
Now write p = a/B with «, € Z~o. Choose n > ng such that
i <2k(1—=6)— (1 —-—w+2pw).
r(n)
Then there exists N € Z. such that pN; € Z.¢ and
Ny
2k(1—=8) > — > 1—w+2pw. (1-8)

r(n)
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Set
N> = ,0N1. (1-9)
Using p > 1 at the last step, we have
Ny pN;
—=——>p(l—-w+4+2pw) > p(1 —w) +2w.
r(n) r(n

Now suppose e € Moo (Cy) = Mo (C(X,) ® C(Y,)) is an ordered pair whose first component is a trivial
projection on X, of rank N| and whose second component is a (trivial) projection on Y,, of rank N,. Let
m > n, and let f be the first component of I', ,(e); we estimate rank( f). (The second component is a
trivial projection over Y,, whose rank we don’t care about.) Now f is the direct sum of r(m)/r(n) trivial
projections, coming from C(X,, M,,)) and C(Y,, M,,). At least s(m)/s(n) of these summands come
from C(X,, M,@)). So at most r(m)/r(n) — s(m)/s(n) of these summands come from C(Y,, M,()).
The summands coming from C(X,,, M, )) have rank N; and the summands coming from C(Y,, M)
have rank N;. Since N, > Nj, we get

r(m) s(m) s(m) _r(m) r(m) s(m)
o s(n>)N2+ son M (r(n) 0

Combining this with (1-7) at the first step, and using (1-9) at the second step, (1-6) at the third step, (1-8)
at the fifth step, and Construction 1.1(3) at the sixth step, we get

rank(f)§< )(Nz—Nl)-

rank(f) < %-(Nl—{—eNz):;((—’:))(l—i-ep)-Nl
= rm) . 2—9 -Np < r(m) . M < 2kr(m) < 2s(m).
r(n) 2(1-9) r(n) 1-348

So Corollary 1.11 implies that there is no x € My (Cy,) for which [|xI"; () x™ — by, || < % Since m > n
is arbitrary,

Fooun(e) Z b. (1-10)

Now let 7 be a trace on C, and restrict it to C,, = M,,)(C(X,) @ C(Y,)). Denote by tr the normalized
trace on M,(,y. There is a probability measure © on X,, 1Y, such that 7(a) = f X, 117, tr(a) du for all
a € C,. Define A = u(X,), so 1 — A = u(Y,). Then, using (1-9) at the second step,

ANI+ (1 =2)N2  [A+p(1 =2)IN;
T(e) = = .
r(n) r(n)

Using Lemma 1.14 to calculate the ranks of the components of g1, we get

r(q,f): M(n)+(1—k)[r(n)—t(n)]’ (1-11)
r(n)

(gn) =1 —7(qh) = A[r(n)—t(n)]-i—(l—k)t(n).

r(n)

(1-12)
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It follows from Lemmas 1.10 and 1.14 that d;(b,) < t(g,). Using this at the first step, and (1-11)
and (1-12) at the second step, we get

de(bp) _ 7(gn) _ Mr(n) —tm]+dA—Mtm)
(g T (g Am)+ A=V —tm]

So

@) —d:(by) (A +pd—=A)IN = @lr(n) —t()]+ A - At (n))
t(qy) T At(n) + (1 =1)[r(n) —t(n)] '

The last expression is a fractional linear function in A and is defined for all values of A in the interval
[0, 1]. Any such function is monotone on [0, 1]. In the following calculations, we recall from Lemma 1.4
that w <t(n)/r(n) <2w. If we set A = 1 and use (1-8), the value we obtain is

Ni/r(n) — (1 —t(n)/r(n)) - (l-w+2pw)—(1-0w) p
t(n)/r(n) 2w

If we set A =0, we get, using (1-8) at the first step and p > 1 at the last step,

pNi/r(n) —t(n)/r(n) p(l—w+2pw)—2w 20%w — 2w
> =p+ —

= > p.
1—t(n)/r(n) l—w l—w
Therefore
dr (Too,n(e)) d. (b)
L = 1
d-(q+) d-(q+)
for all traces T on C, so rc(g-Cq™r) > p, as required. (|

We now turn to the issue of finding upper bounds on the radius of comparison. For this, we appeal to
results from [Niu 2014]. Niu [2014, Definition 3.6] introduced a notion of mean dimension for a diagonal
AH-system. Suppose we are given a direct system of homogeneous algebras of the form

An == C(Kn,l) ® Mjn_] D C(Kn,Z) ® Mj,,,z D---D C(Kn,m(n)) ® Mj

n,m(n)

in which each of the spaces involved is a connected finite CW complex, and the connecting maps are
unital diagonal maps. Let y denote the mean dimension of this system, in the sense of Niu. It follows
trivially from [Niu 2014, Definition 3.6] that

. dim(K, ;)
y < lim max({.—’ )l: 1,2,...,m(n)}).

n—oo ]n I

Theorem 6.2 of [Niu 2014] states that if A is the direct limit of a system as above, and A is simple, then
rc(A) < y /2. Since the system we are considering here is of this type, Niu’s theorem applies. With that
at hand, we can derive an upper bound for the radius of comparison of the complementary corner.

Lemma 1.16. Under the same assumptions as in Lemma 1.15, we have

Cqg) <
re(qCq) = T~
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Proof. The algebra C is simple by Lemma 1.7, so ¢Cgq is also simple. This fact and Lemma 1.14 allow
us to apply the discussion above, getting

rc(gCq) < 1 lim max
2 n—oo

( dim(X,,) dim(Y,,) )
rank(q,|x,) " rank(qaly,) )
As dim(Y;,) =1 for all n, the second term converges to 0. As for the first term, by Construction 1.6(14), we
have dim(X,) =2s(n)+ 1. Also, rank(g,|x,) =r(n)—t(n) by Lemma 1.14. Thus, by Construction 1.1(1)
and Lemma 1.4, and using d (n) — oo (which follows from Construction 1.1(4)) at the last step,
dim(X}) . 2s(n) +1 . 2r(n) +1 2
———=1lm —— <1 < .
n—oorank(g,|x,) n—oor(n)—t(n)  nooor(n)—tn)  1-2w

This gives us the required estimate. O

Lemma 1.17. Let the assumptions and notation be as in Notation 1.13, Construction 1.6(14), and
Construction 1.6(15). If e € C is a projection which has the same Ko-class as q then e is unitarily
equivalent to q. The same holds with q* in place of q.

Proof. This can be seen directly from the construction. For each n € Z-, since X, and Y,, are contractible
(Constructions 1.6(14) and (15)), if e € M (C,) is a projection which has the same Ky-class as ¢, then e
is actually unitarily equivalent to g,. The same holds for g;-. It follows that this is the case in C as well. [J

We point out that this lemma can also be deduced using cancellation. By [Elliott et al. 2009, The-
orem 4.1], simple unital AH algebras which arise from AH systems with diagonal maps have stable
rank 1. Rieffel has shown that C*-algebras with stable rank 1 have cancellation; see [Blackadar 1998,
Theorem 6.5.1].

2. The tracial state space

For a compact Hausdorff space X, we will need all of C(X, R) (the space of real-valued continuous
functions on X), the tracial state space of C(X) (and of C(X, M,)), and the space of affine functions on
the tracial state space. This last space is an order unit space, and much of our work will be done there.

For later reference, we recall some of the definitions, and then describe how to move between these
spaces. We begin with the definition of an order unit space from the discussion before Proposition 11.1.3
of [Alfsen 1971]. We suppress the order unit in our notation, since (except in several abstract results) our
order unit spaces will always be sets of affine continuous functions on compact convex sets with order
unit the constant function 1.

Definition 2.1. An order unit space V is a partially ordered real Banach space (see page 1 of [Goodearl
1986] for the axioms of a partially ordered real vector space) which is Archimedean (if v € V and
{Av| A € (0, 00)} has an upper bound, then v <0), with a distinguished element e € V which is an order unit
(that is, for every v € V there is A € (0, 0o) such that —le < v < Ae), and such that the norm on V satisfies

[v]| = inf({A € (0, 00) | —Ae < v < Ae})
forallv e V.



A SIMPLE NUCLEAR C*-ALGEBRA WITH AN INTERNAL ASYMMETRY 725

The morphisms of order unit spaces are the positive linear maps which preserve the order units.

The morphisms of compact convex sets (compact convex subsets of locally convex topological vector
spaces) are just the continuous affine maps.

Definition 2.2. If K is a compact convex set, we denote by Aff(K) the order unit space of continuous
affine functions f : K — R, with the supremum norm and with order unit the constant function 1.

If K and L are compact convex sets and A : K — L is continuous and affine, we let A*: Aff(L) — Aff(K)
be the positive linear order unit preserving map given by A*(f) = f o A for f € Aff(L).

This definition makes K +— Aff(K) a functor.

Definition 2.3. If V is an order unit space with order unit e, we denote by S(V) (or S(V, e) if e is not
understood) its state space (the order unit space morphisms to (R, 1)), which is a compact convex set
with the weak™* topology.

If W is another order unit space and ¢ : V — W is positive, linear, and order unit preserving, we let
S(p) : S(W) — S(V) be the continuous affine map given by S(¢)(w) = w o ¢ for w € S(W).

This definition makes V +— S(V) a functor.

Theorem 2.4 [Goodearl 1986, Theorem 7.1]. There is a natural isomorphism S(Aff(K)) = K for compact
convex sets K, given by sending x € K to the evaluation map ev, : Aff(K) — R defined by ev, (f) = f(x)
for f € Aff(K).

Definition 2.5. For a unital C*-algebra A, we denote its tracial state space by T(A). If A and B are unital
C*-algebras and ¢ : A — B is a unital homomorphism, we let T(¢) : T(B) — T(A) be the continuous
affine map given by T(¢)(t) = 1 o ¢ for T € T(B). We let ¢ : Aff(T(A)) — Aff(T(B)) be the positive
order unit preserving map given by ¢(f) = f o T(p) for f € Aff(T(A)). (Thus, § = T(¢)*.)

Lemma 2.6. Let X be a compact Hausdorff space. Then C(X,R), with the supremum norm and
distinguished element the constant function 1, is a complete order unit space. Restriction of tracial states
on C(X) is an affine homeomorphism from T(C (X)) to S(C(X, R)). The map from X to S(C(X, R))
which sends x € X to the point evaluation ev, : C(X, R) — R is a homeomorphism onto its image, and
the map Ry : Aff(S(C(X, R))) — C(X, R), given by Rx(f)(x) = f(evy) for f € Aff(S(C(X, R))) and
x € X, is an isomorphism of order unit spaces.

If Y is another compact Hausdorff space, then the function which sends a positive linear order unit
preserving map Q : C(X,R) - C(Y, R) to S(Q) : S(C(Y,R)) - S(C(X, R)), as in Definition 2.3, is a
bijection to the continuous affine maps from S(C (Y, R)) to S(C(X, R)). Its inverse is the map E given as
follows. For a continuous affine map X : S(C(Y, R)) — S(C(X, R)), using the notation of Definition 2.2,
define EQL) : C(X,R) > C(Y,R) by E(A\) = Ry o A* oR;(l.

A positive linear order unit preserving map from C (X, R) to C(Y, R) is called a Markov operator.

Proof of Lemma 2.6. 1t is immediate that C (X, R) is a complete order unit space. The identification of
S(C(X, R)) is also immediate. The fact that Ry is bijective follows from [Goodearl 1986, Corollary 11.20]
using the identification of X with the extreme points of S(C(X, R)).
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For the second paragraph, it is immediate that S sends positive linear order unit preserving maps to
continuous affine maps, and that E does the reverse. For the rest, we must show that So E and E o § are
the identity maps on the appropriate sets.

We first claim that for g € Aff(S(C(X, R))) and p € S(C(X, R)) we have

g(p) = p(Rx(g))- 2-1)

This formula is true by definition when p = ev, for some x € X. Since, for fixed g, both sides of (2-1)
are continuous affine functions of p, and since S(C (X, R)) is the closed convex hull of {ev, | x € X}, the
claim follows.

We next claim that if A : S(C(Y, R)) — S(C(X, R)) is continuous and affine, w € S(C(Y, R)), and
g € Aff(S(C(X, R))), then

(wo Ry)(gor) = (A(w)o Rx)(g). (2-2)

To prove this claim, for the same reasons as in the proof of the first claim, it suffices to prove this when
there is y € ¥ such that w = ev,. In this case, using the definition of Ry at the second step, and the
previous claim with p = A(evy) at the third step,

(evyoRy)(goX) = Ry(gor)(y) = (gor)(evy) = (A(evy) o Rx)(g),
as desired.
Now let A : S(C(Y,R)) — S(C(X, R)) be continuous and affine; we prove that S(E(A)) = A. Let
we S(C(X,R)) and let f € C(Y, R). Working through the definitions gives

S(EO))(@)(f) = (@o Ry)(Ry' (f) o).

By (2-2) with g = R;(l (f), the right-hand side is A(w)(f), as desired.
Finally, let Q : C(X, R) — C(Y, R) be a positive linear order unit preserving map; we show that
E(S(Q))=0. Let f € C(X,R) and let y € Y. Working through the definitions gives

ES(Q)()(y) =Rx'(f)(evy0 Q).

Applying (2-1) with g = R;(l (f)and p=ev,0Q, we see that the right-hand side is (ev, 0 Q) (f) = Q(f)(y).
This proves that E(S(Q)) = Q, and the proof is complete. U

Direct limits of direct systems of order unit spaces are constructed at the beginning of Section 3 of
[Thomsen 1994], including Lemma 3.1 there.

Proposition 2.7. Let ((Dy)n=0.12...., (¥n.m)o<m<n) be a direct system of unital C*-algebras and unital
homomorphisms. Set D = lim, D,. Then there are a natural homeomorphism

T(D) — im T(D,)

and a natural isomorphism
Aff(T(D)) — lim Aff(T(D,))

n
of order unit spaces.
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Proof. The first part is Lemma 3.3 of [Thomsen 1994].
The second part is Lemma 3.2 of [Thomsen 1994], combined with the fact (Theorem 2.4) that the state
space of Aff(K) is naturally identified with K. (|

Definition 2.8. Let V and W be order unit spaces, with order units e € V and f € W. We define the
direct sum V & W to be the vector space direct sum V @ W as a real vector space, with the order
(v1, wy) < (va, wyp) for vy, vy € V and wy, wy € W if and only if v; < vp and w; < w,, with the order
unit (e, f), and the norm || (v, w)|| = max(||v]|, lw]]).

Lemma 2.9. Let V and W be order unit spaces. Then V @ W as in Definition 2.8 is an order unit space,
which is complete if V and W are.

Proof. The proof is straightforward. U

Lemma 2.10. Let A and B be unital C*-algebras. Then, taking the direct sum on the right to be as in
Definition 2.8, there is an isomorphism

Aff(T(A @ B)) = Aff(T(A)) @ Aff(T(B)),

given as follows. Identify T(A) with a subset of T(A @ B) by, for T € T(A), defining i(t)(a,b) =
t(a) for alla € A and b € B, and similarly identify T(B) with a subset of T(A @ B). Then the map
Aff(T(A @ B)) — Aff(T(A)) @ Aff(T(B)) is f = (flry. flrs))-

Proof. 1t is clear that if f € Aff(T(A @ B)), then f|r) € Aff(T(A)) and f|r) € Aff(T(B)), and
moreover that the map of the lemma is linear, positive, and preserves the order units. One easily checks
that every tracial state on A @ B is a convex combination of tracial states on A and B, from which it
follows that if f|r4) =0 and f|r) =0 then f =0.

It remains to prove that the map of the lemma is surjective. Let g € Aff(T(A)) and h € Aff(T(B)).
Define f: T(A® B) — R by, for r € T(A & B),

f(@) =1(1,0)g(r(1,0)"'7|4) +7(0, Dg(z(0, D~ 'z|p)

(taking the first summand to be zero if 7(1, 0) = 0 and the second summand to be zero if (0, 1) = 0).
Straightforward but somewhat tedious calculations show that f is weak* continuous and affine, and
clearly f|ta) =g and f|r) = h. O

The following result generalizes Lemma 3.4 of [Thomsen 1994]. It still isn’t the most general Elliott
approximate intertwining result for order unit spaces, because we assume that the underlying order unit
spaces of the two direct systems are the same. The main effect of this assumption is to simplify the notation.

Proposition 2.11. Let (V,,)m=0.1.2... be a sequence of separable complete order unit spaces, and let

((Vm)m:O,l,Z,..., (Wn,m)()fmfn) and ((Vm)m:O,l,Z,..., (W;z,m)OSmSn)

be two direct systems of order unit spaces, using the same spaces, and with maps ¢, m, ¢y, * Vim = Va
which are linear, positive, and preserve the order units. Let V and V' be the direct limits

V= h_r)n((vm)mZO,I,Z,...’ ((Pn,m)OSmgn) and V' =h_r)n((vm)m:0,1,2,“.7 ((p;,,m)OSmSn),
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with corresponding maps
Yoo Vo=V and @, :V,— V'

forn € Zso. Forn € Zsq further let

vé"), vi"), ...€eV,

be a dense sequence in the closed unit ball of V,,, and define F,, C V, to be the finite set
n
Fo = JUenm@™) :0 <k <n}U{g,,,(00") :0 <k <n}].
m=0
Suppose that there are 8, 81, . .. € (0, 00) such that
o0
> bn<o0 (2-3)
n=0

and foralln € Z>y and all v € F,, we have

I @n+1,0 (V) = @iy, W < 8.

Then there is a unique isomorphism p : V. — V' such that for all m € 7= and all v € V,,, we have

P (Poom(v)) = Tim (¢, , 0 Pnm) (V).
Its inverse is determined by

P (@) = M (P09}, ,) (V)
form e Zxyand v € Vy,.

Proof. We first claim that for m € Z>¢ and v € F,,, the sequence (((péo’n © On.m)(V))n>m 1s a Cauchy
sequence in V'. For n > m, we estimate, using ||(,0(’merl I <1, vl <1, and ¢, ,,(v) € F; at the last step:

”((p/oo,n-uO(pn+l,m)(v)_((p/oo,nogﬂn,m)(v)” = ”((p/oo,n+1O‘pn-i-l,nO(Pn,m)(v)_((péo,n-q-lO(p;l-q-l,no(pn,m)(v)”
=< ”(p/oo,nJrl ” ||(pn+l,n((pn,m(v)) —(P;,H, n(‘Pn,m (U)) ” = 6n-

The claim now follows from (2-3).

Next, we claim that for m € Z>p and k € Z., the sequence (((p’oo’n o gon,m)(v,gm)))nzm is a Cauchy
sequence in V. Indeed, taking my = max(m, k), this follows from the previous claim and the fact that
<Pm0,m(v;§m)) € Fy,.

Now we claim that for m € Z~¢ and v € V,,, the sequence ((gogo’n 0 @n.m)(V))n>m 1s a Cauchy sequence
in V'. Without loss of generality ||v|| < 1. This claim follows from a standard /3 argument: to show that

”((péo,n] o (pnl,m)(v) - ((péo,nz o (pnz,m)(v) | <e

for all sufficiently large n; and n;, choose k € Z. ¢ such that ||[v — v,Em) || < &/3, and use the previous
claim.

Since V' is complete, it follows that limn_mo((péoﬁ o @n.m)(v) exists for all m € Z>p and v € V,,,. Since
||gaéo’n o@n.ml <1 whenever m, n € Z satisty m <n, it follows that for m € Z. ¢ there is a unique bounded
linear map p,, : V,, — V' such that || p, || < 1 and p,,(v) = limnﬁoo(q)éovn o @u.m)(v) forall v e V,.
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It is clear from the construction that p, 0@, ,, = o, Whenever m, n € Z satisfy m <n. By the universal
property of the direct limit, there is a unique bounded linear map p : V — V’ such that p o 9o = P
for all m € Z>. It is clearly contractive, order preserving, order unit preserving, and uniquely determined
as in the statement of the proposition.

The same argument shows that there is a unique contractive linear map A : V' — V determined in the
analogous way. For all m € Z, we have

X000 Qoo =AOPL = Poc,ms
so the universal property of the direct limit implies A o p = idy. Similarly p o A =idy-. U

Proposition 2.12. The isomorphism of Proposition 2.11 has the following naturality property. Let the
notation be as there, and suppose that, in addition, we are given separable complete order unit spaces Wy,
forn € Zs, direct systems

((Wm)m:O,l,Z,...’ (1//n,m)()§m§n) and ((Wm)m:O,l,Z,...v (w;l,m)OSmSn)

using the same spaces, with positive linear order unit preserving maps, with direct limits W and W', and
with corresponding maps

Yoo : Wy — W and v’c/x;n ‘W, > W’
forn € Z>q. Also suppose that for n € Z . there is a sequence
w(()"), wi"), ...eW,

which is dense in the closed unit ball of W,,, and that there is a sequence (€,)n=0.12.... in (0, 00) such that
Y o2 0 €n < 00 and, with

Gn = [ JUnmw{™) 10 <k <n}U{y,,,w™) |0 <k <n}],

m=0

foralln € Z>o and all w € G, we have

W41, 0 (W) = Yy, (W < &0

Let o : W — W' be the isomorphism of Proposition 2.11. Suppose further that we have positive linear
order unit preserving maps fin, |4, : V, = W, forn € Z=¢ such that

/ / / /
/“Ll’l o (pn,m = 110}’1,111 o I'Lm and /"Ln o (pn,m = l//n’m o Mm

forallm,n € Zsowithm <n. Let u:V — W and u' : V' — W' be the induced maps of the direct limits.
Then (' o p =0 o .

Proof. By construction, p : V — V' and o : W — W’ are determined by

P (Poom(v)) = Hm (¢, , 0 Pnm)(V) (2-4)
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form e Z-p and v € V,,;, and
0 (Voom(w)) = nli)ngo(lﬁéo,n ° Vn.m) (W) (2-5)

form € Z>o and w € W,,,. Using (2-4) at the first step and (2-5) at the last step, for m € Z-¢ and v € V),
we therefore have

(140 p)(Poom (V) = ' ( im (¢7, , 0 Pnm) (V) = lim (1" 0 @ , 0 Pnm) (V)

= lim (Y, , © Ynm © W) (V) = (0 0 1) (Poo,m (V).

n—oo
Since U;O:o ©¥oo.m (Vi) 1s dense in V, the result follows. O

Proposition 2.14 below can essentially be extracted from the proof of Lemma 3.7 of [Thomsen 1994].
We give here a precise formulation which is needed for our purposes. The difference between our
formulation and that of [Thomsen 1994] is that we need more control over the matrix sizes in the
construction. In the argument, the following result substitutes for Lemma 3.6 there.

Lemma 2.13 (based on [Thomsen 1994]). Let X and Y be compact Hausdorff spaces, with X path
connected. Let A : T(C(Y)) — T(C (X)) be affine and continuous. Let E(L) : C(X, R) - C(Y, R) be as
in Lemma 2.6. Then for every ¢ > 0 and every finite set F C C(X, R) there exists Ny € Z~ such that for
every N € Z-q with N > Ny there are continuous functions g1, g2, ..., gn . ¥ — X such that for every
f € F we have

<é&.
o]

N
mef) — Y fog;
j=1

Proof. It suffices to prove the result under the additional assumption that || f|| <1 for all f € F.
Let ¢ > 0. Since E()) is a Markov operator, Theorem 2.1 of [Thomsen 1994] provides n € Z-., unital
homomorphisms ¥, ¥, ..., ¥, : C(X) > C(Y), and a1, ap, .. ., @, € [0, 1] with Z;’Zl oy = 1 such that

HE(A)(f) - ;aﬂ/fz(f) “OO <3
for all f € F. Note that if 81, B2, ..., B, € [0, 1] satisfy > ;_, |y — 1| < &/2 then
HE()»)(f)—ZﬁH!fl(f)H <e
=1 o0

for all f € F. Choose Ny € Z~o such that Ny > 4n/e. Let N € Z.¢ satisty N > Ny. For/=1,2,...,n—1
choose By € (¢ —1/N, oy]N(1/N)Z, and set B, =1 — 72_11 Bi. Then

n n
1
Br. B ... Bu € 220, ;;31:1, and ;Iaz—ﬂz|<%-
Setm;=Np;forl=1,2,...,n. Then for all f € F we have

HE(k)(f) - memH <e.
=1 S
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Now for/ =1,2,...,nlet h; : Y — X be the continuous function such that ¥;(f) = f o h; for all
feCX),andfor j =1,2,..., N define g; = h; when

-1 I
Sm<izYm
k=1 k=1
Then

n N
LS mn(H =13 fog
=1 j=1
for all f € C(X). ! O

Proposition 2.14. Let K be a metrizable Choquet simplex, and let (I(n)),=0.1.2.... be a sequence of integers
such thatl(n)>2 foralln>0. ForneZ>qsetr(n)= ]_[;le [(j). Then there existng<nj; <nz<---€Zso,
withng =0 and ny = 1, and a direct system

C([0, 1) ® My (ng) — C([0, 11) ® My (n;) = C([0, 1) @ M ny) —2> -+ -

with injective maps which are diagonal (in the sense analogous to Construction 1.1(9)) and such that the
direct limit A satisfies T(A) = K.

It is easy to arrange that the algebra A in this proposition be simple: by Proposition 2.11, replacement
of a small enough fraction of the maps gi; in the proof with suitable point evaluations does not change
the tracial state space. However, doing so at this stage does not help with later work.

The conditions np = 0 and n; = 1 are needed because we will later need to pass to a corresponding
subsystem of a system as in Construction 1.1 (more accurately, Construction 3.3 below), and we want to
avoid later complexity of the argument by preserving the value of w.

Proof of Proposition 2.14. We mostly follow the proof of Lemma 3.7 of [Thomsen 1994], using
Lemma 2.13 in place of Lemma 3.6 of [Thomsen 1994], and slightly changing the order of the steps to
accommodate the difference between our conclusion and that of Theorem 3.9 of [Thomsen 1994]. For
convenience, we will use Proposition 2.11 in place of Lemma 3.4 of [Thomsen 1994].

For convenience of notation, and following [Thomsen 1994], set P = T(C([0, 1])). Lemma 3.8 of
[Thomsen 1994] provides an inverse system ((Py)r=0,1
Ajk . Py — Pjsuchthat P, = P for all k € Z>( and

Um((Pr)k=o0,1,.... (Ajr)o<j<k) =K. (2-6)

Choose fy, f1,...€ C([0, 1], R) such that { fy, fi, ...} is dense in C([0, 1], R).
We now construct numbers ny € Z. for k € Z>, finite subsets F C C([0, 1], R) for k € Z>, positive
unital linear maps Y41 : C([0, 1], R) — C([0, 1], R) for k € Z-, and continuous functions

, (Ajk)o<j<k) with continuous affine maps

yaee

8k,1> 8k,2> -+ - » &k, r(mesn)/r(np) - [0, 11— [0, 1]
such that the following conditions are satisfied:

(1) Fo={fo} and for k € Z>,),

Frpr = FeU{fir 1} U EQ k1) (B U{ frt D U, o (B U { fri1 D).
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(2) no=0, ny =1, and np =2, and for k € Z.¢ with k > 2 we have ng1 > ny and r(ngy1)/r(ng) > 2k,

(3) Fork € Z>9 and f € C([0, 1], R),
r(ng+1)/r(ng)
r(ng)

Y. fog
=1

@) 1E e, k) () — Y1,k (F)Il < 27% for k > 2 and f € Fy.

We carry out the construction by induction on k. Define Fy = { fo}, no =0, and ny = 1. Take go; :
[0, 1] — [0, 1] to be the identity map for/ =1, 2, ..., r(1). Then define ¥r; ¢ by (3) and define F; by (1).
Now suppose k > 1 and we have Fj and ny; we construct

Vi1, k(f) =

r(niy1)

Fis1, Mgt 81y 8k2s - -5 8k, r(mgs)/r(n)»  and Yy .

Apply Lemma 2.13 with A = Ag g4+1, wWith ¢ = 27k and with F = F;, obtaining Ny € Z-y. Choose

ng+1 > ny and so large that
r(ng+1)

r(ng)
This gives (2). Apply the conclusion of Lemma 2.13 with N = r(ng41)/r(ng), calling the resulting
functions 8k, 1> 8k,25 ++ > 8k, r(ngr1)/r(ng)- Then define l/fk_,_]’k by (3) This giVCS (4) Finally, define Fk+1

> max(No, 2").

by (1). This completes the induction.
For j, k € Z>¢ with j <k, define v ; : C([0, 1], R) — C([0, 1], R) by
Vi, j =V k—10Vk—1,k—20---0Vjt1 j.

An induction argument shows that for j, k € Z>o with j <k, we have

Eji)(fj) € Fr and Yy ;j(f)) € Fy.

This condition, together with Proposition 2.11, allows us to conclude that, as order unit spaces, we have

lim((C ([0, 1], R))k=0.1...., (E(Aji))o<j<k) =Hm((C([0, 1], R))k=0.1..... (V. j)o<j<k)- (2-7)
For k € Z>( define
ari1, k- C([0, 1], My@wy) — CUO0, 11, My ) = My 1) /rmo (C((0, 1], My@y)))
by
a1,k (f) = diag(f o gr1, fo8k2s - -y [ 08k rtnsn)/ring)
for f € C([0, 1], M,(,,)). Let A be the resulting direct limit C*-algebra.

It is easy to check, and is stated as Lemma 3.5 of [Thomsen 1994], that @ = Yk+41.x. Letting V
and W be the order unit spaces

V =1lim((C([0, 1], R))k=o,1...., (E(Ajk))o<j<k)
W =1im((C ([0, 1], R))k=o.1..... (@, })o<j<k)s

(2-7) now says V = W. Lemma 3.2 of [Thomsen 1994] and (2-6) imply that V = Aff(K). Proposition 2.7
implies that Aff(7T(A)) = W. So Aff(T (A)) = Aff(K), whence T (A) = K by Theorem 2.4. Il
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Proposition 2.15. Let (Dy)n=0.1.2.... and (Cp)n=0.1.2.... be sequences of unital C*-algebras. Let

((Dn)n:0,1,2,...v (Qon,m)OfmSn)v ((Dn)n:0,1,2,...v ((p;,,m)Ofmfn)a
((Cn)n:O,l,2,...’ (Wn,m)OfmSn)v ((Cn)nzo,l,l,..., (llf,i,m)OSmSn)

be direct systems with unital homomorphisms, and call the direct limits (in order) D, D', C, and C".
Suppose further that we have unital homomorphisms (i, |, : Dy — Cy for n € Zs such that

’ ’ / ’
Mn ©Pnm = 1ﬁn,m O Um and My O Py m = an O Uy,

forallm,n € Z-g withm <n. Let u: D — C and ' : D" — C' be the induced maps of the direct limits.
Assume that for all m € Z>o we have

o o
> NG — @l <00 and Y NVm =yl < 00.

n=m n=m

Then there exist isomorphisms
p : Aff(T(D)) — Aff(T(D')) and o : Aff(T(C)) — Aff(T(C"))

such that ;/[’ o p =0 o[l Moreover, if C, = D, for alln € Z>o and Yry m = @n.m and V,, ,, = @n.m for all
m and n, then we can take o = p.

Proof. We can apply Propositions 2.11 and 2.12 using arbitrary countable dense subsets of the closed
unit balls of Aff(T(D,)) and Aff(T(C,)) for n € Z.o. Under the hypotheses of the last statement, the
uniqueness statement in Proposition 2.11 implies that o = p. U

Lemma 2.16. Adopt the notation of Construction 1.1, including (11) (a second set of maps), and (9)
and (13) (diagonal maps, agreeing in the coordinates 1,2, ...,d(n+1)). Then

P~ Tt Sdnt )4kt D
foralln € 7.

Proof. For a compact metrizable space Z, let M (Z) be the real Banach space consisting of all signed Borel
measures on Z. (That is, M (Z) is the dual space of C(Z, R).) Identify Z with the set of point masses
in M(Z). For n € Z¢, we can identify T(C,) with the weak* compact convex subset of M (X, L1Y,)
consisting of probability measures. Thus X,, L1 Y, C T(C,). For every function f € Aff(T(C,)), the
function ¢, (f)(2) = f(2) - 1m,, forz € X, 1Y, isin C(X, UY,, M) = Cp; and 7(1,(f)) = f(7) for
all t € X, Y, C T(C,), hence also all T € T(C,) by linearity and continuity.

For f € Aff(T(C,)) and t € T(C,+1), we can apply the formula in Construction 1.1(9) to ¢,(f) and
apply t to everything, to get

[(n+1) [(n+1)

05 S _ .
TP, ; oSy and Tt (@) = 1o ; 2(f 0 Su1).

Fff’jl (@) =
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Using (13), we get

[(n+1)

[t(f oS —T(foSu1)]
I(n+1) k:d(;m I

In+1)—dn+1)
< TCES QI flloo)-

The conclusion follows. O

rflojl (@) = Dot a(H(@)] =

We add additional parts to Constructions 1.1 and 1.6.

Construction 2.17. Adopt the assumptions and notation of all parts of Construction 1.1 (except (13)),
and in addition make the following assumptions and definitions:

(20) For all m € Z=0, the maps S}, ;. Sy : X1 LYy — X LLY,, satisfy

SV (X)) C Xy and S (Yug1) C Yoy
for j=1,2,...,1(m),

Sm,j(Xmy1) C Xy and S j (Y1) C Yy
for j=1,2,...,d(m), and

Sm,j(Xmy1) CY and Sy j (Y1) C X

for j =d(m)+1, dm)+2, ..., [(m).
(21) Form € Z~, define D,, = M, (u) ® M, (). Define <pm+1 ms Pmitm: Dm—> Dyy1 by, fora, b e My,

o1 (@, b) = (diag(a, a, ..., a), diag(b, b, ..., b)),

Om+1.m(a, b) = (diag(a,a,...,a,b,b,...,b), diag(b,b,...,b,a,a, ..., a)),

in which a occurs d (m) times in the first entry in the second line on the right and k() times in the second
entry, while b occurs k(m) times in the first entry and d(m) times in the second entry. For m,n € Z¢
with m < n, define

Onm = Pnn—1°90n—1,n—290"""OPp+1,m - D, — D,,

)

and define go(o : D, = D, similarly. Define AF algebras by

. . 0
D =lim(Dy, @m+1.m) and DO =lHm(Du, 91, ).
m m

and form € Z-¢ let 9o ;m : Dy — D and go(o) : D,, = D© be the maps associated to these direct limits.

(22) For m € Zxy, define w,, : D,, = C,, as follows. For a,b € M, let f € C(X,,, M,(n)) and
g € C(Y;n, M, () be the constant functions with values a and b. Then set w,,(a, b) = (f, g). Further,
following Lemma 2.18(2) below, let i : D — C and 1 © : D© — C© be the direct limits of the maps fi,,.

(23) For m € Zsy, define 6,, : D, — D, by 8,(a, b) = (b, a) for a,b € M,y). Further, following
Lemma 2.18(3) below, let 6 € Aut(D) and 8© e Aut(D©) be the direct limits of the maps 6y,.
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Lemma 2.18. Under the assumptions of Constructions 1.1 (except (13)), 1.6, and 2.17, the following hold.:

(1) The direct system ((C,EO)),,:()J,QW, (F,(,?zn)ofmfn) is the direct sum of two direct systems

(CXns Mr))n=0,12,..o Ty 1C (Ko, My))0=mzn)s
((C(Yns My)))n=0.1.2...., (Fy(l?y)n|C(Yn,,M,(,n)))OSmSn)’
and C© is isomorphic to the direct sum of the direct limits A and B of these systems.
(2) Forallm,n € Z>o withm <n,

Fr(z(,);)n OUm = MUn © (pr(;?;)qq and 1—‘n,m OlUm = MUnOPnm-

Moreover, the maps (L, induce unital homomorphisms 1@ : D© — C© and u : D — C, and for all
m e ZZO’

Fég)m oy = M(O) o (pé(o)),m and Foo,m OUm = U O QPoo,m-

(3) Forallm,n € Z>o withm < n,

9020;31 00y =0p0 (p;(10;)11 and @n,m © Om =060 Dn,m-

The maps 6,, induce automorphisms 6 : D — D and 0© : D© — DO sych that

Doo,m © Op =00 Poo,m and <P<(>g),m 00 = 9(0) © (pég),m

forallm e Zxy.

4) Forallm € Z>o, (m)« : Ks(Dp) — K (Cy,) is an isomorphism, and

ps: K(D) = K(€) and (W) Ku(D) — K(C)
are isomorphisms.

Proof. The fact that all the maps in (4) are isomorphisms on K-theory comes from the assumption that
the spaces X,, and Y,, are contractible ((14) and (15) in Construction 1.6). Everything else is essentially
immediate from the constructions. O

3. The main theorem

We now have the ingredients to deduce the main theorem of this paper, Theorem 3.2.

To state the theorem, we first need to define automorphisms of Elliott invariants, so we need a category
in which they lie. For convenience, we restrict to unital C*-algebras, and we give a very basic list of
conditions.

Definition 3.1. An abstract unital Elliott invariant is a tuple G = (Gy, (Go)+, &, G1, K, p) in which
(Go, (Go)+, g) is a preordered abelian group with distinguished positive element g which is an order
unit, G| is an abelian group, K is a Choquet simplex (possibly empty), and p : Go — Aff(K) is an
order preserving group homomorphism such that p(g) is the constant function 1. (If K = &, we take
Aff(K) = {0}, and we take p to be the constant function with value 0.)
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If
0 0 0 1 1 1
G0 =Gy (G348 G KO, p®) and GV =(Gy, (G4, 8" GV KD, ™M)

are abstract unital Elliott invariants, then a morphism from G9to GDisa triple F' = (Fy, F1, S) in
which Fy : G(()O) — G(()l) is a group homomorphism satisfying

0 1
Fo((Gyh)+) C(Gy)y and  Fo(g®) =g,
F: G(IO) — Gio) is a group homomorphism, and S : KV — K'© is a continuous affine map satisfying

PV (Fo(m) =pP oS (3-1)
forall n € G(()O).
If
FO:69 56" and FO =P, FP, sV):6H - G

are morphisms of abstract unital Elliott invariants, then define
FO o pO — (Fél) o FSO), F1<1) o F1(0)7 SO o 5y,

(Note: S©@ o 5D not §M o SO
The Elliott invariant of a unital C*-algebra A is

Ell(A) = (Ko(A), Ko(A)+, [1], K1(A), T(A), pa),

in which py4 : Ko(A) — Aff(T(A)) is given by pa(n)(t) = 1.(n) for n € Ko(A) and T € T(A).

If A and B are unital C*-algebras and ¢ : A — B is a unital homomorphism, then we define ¢, :
Ell(A) — EIlI(B) to consist of the maps ¢, from Ky(A) to Ko(B) and from K;(A) to K(B), together
with the map T(¢) of Definition 2.5. We write it as (@x,0, @« 1, T(¢)).

Definition 3.1 is enough to make the abstract unital Elliott invariants into a category such that ElI( - ) is
a functor from unital C*-algebras and unital homomorphisms to abstract unital Elliott invariants.

Theorem 3.2. There exists a simple unital separable AH algebra C with stable rank 1 and with the
following property. There exists an automorphism F of EN(C) such that there is no automorphism o of
C satisfying a, = F. Moreover, the automorphism F in this example can be chosen so that F o F is the
identity morphism of EII(C).

We outline the proof. We make a first pass through Constructions 1.1 and 1.6, without the spaces Y,,, and
without specifying the point evaluation maps. This is Construction 3.3 below. We get a direct system; call
its direct limit C. Apply Proposition 2.14 using the sequence of matrix sizes in this system and K = T(E ).
Doing so requires passing to a subsequence of the sequence of matrix sizes. Replace the original system
with the corresponding subsystem; Lemma 3.5 below justifies this. Then make a second pass through
Constructions 1.1 and 1.6, taking the spaces X,, and the maps between them from this subsystem and
the spaces Y, and the maps between them from the system gotten from Proposition 2.14, as needed
substituting appropriate point evaluations for the diagonal entries of the formulas for the maps. This
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requires sufficiently few changes that, by our work in Section 2, the tracial state space remains the same.
Therefore the algebra obtained from these constructions has an order two automorphism of its tracial state
space which corresponds to exchanging the two rows in the diagram (0-2). The constructions have been
designed so that there is also a corresponding automorphism of the K-theory. Our work in Section 1 rules
out the possibility of a corresponding automorphism of the algebra, because such an automorphism would
necessarily send a particular corner of the algebra to another one with a different radius of comparison.

We start with the following construction, which is “half” of Construction 1.1, and gives just the top
row of the diagram (0-1).

Construction 3.3. We will consider direct systems and their associated direct limits constructed as follows.

(1) The sequences (d(n))n=0,1,2.... and (k(n)),=0.1,2.... in Z>¢ are as in Construction 1.1(1) and satisfy
the condition of Construction 1.1(2). We further define (I(n)),=0.1.2..., " ("))n=0.12...., (s(1))n=0.1.2....,
and (¢(n)),=0.1,2,... as in Construction 1.1(1).

(2) Following Constructions 1.1(3) and (4), we define

s k(1) S k)
k = inf and o _Zk(n)—l—d(n)'

wetoor(m) O k() +d(l) s
(These will not be used directly in connection with this direct system.)

(3) As in Construction 1.6(14), we define compact metric spaces by X, = cone((S2)*™) for n € Z>,
and we define maps Q§") Xnt1 > Xy forneZspand j=1,2,...,d(n+1) to be the cones over the
projection maps

(Sz)s(n—i-l) — ((Sz)s(n))d(n+1) - (SQ)s(n)_

(4) We are given maps 6, : C(X,) = C(X,+1, Miu+1y) (as in Construction 1.1(8), but with only one
summand) which are diagonal; that is, there are continuous maps
Tn,lv Tn,2v ) Tn,l(n+1) : Xn+l - Xn
such that
Su(f)=diag(foTu1, foTua, ..., foTuimt1)
for f € C(X,). (Compare with Construction 1.1(9).) Moreover, T, ; = Q(/.") forj=1,2,...,d(n+1).
The maps T, ; are unspecified for j =d(n+1)+1,dn+1)+2, ..., [(n+1).

(5) Set A, = M,(») ® C(X,) (like in Construction 1.1(7) but with only one summand). Following
Construction 1.1(8), set
An-‘,—l,n = idM,(,,) Qbn: Ay = Anyi,

and for m, n € Z>o with m < n, take
An,m — An,n—] o An—l,n—2 0--+0 Am—i—l,m : Am - An-

(6) Define A =1lim, A,, taken with respect to the maps A, . Forn € Z>, let A, : Ay, — A be the
map associated with the direct limit.
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To avoid confusing notation, we isolate the following computation as a lemma.

Lemma34. Letn € Z.gandlet ki, k2, ..., Ky, 81,02,...,8, € (0,00). Then
1Lk - n?:1(5j + k) — H’}:I 8j
itk T [Ti=1@+x)
Proof. For j =1,2,...,n define
b= 81-’—2/(]-'

Then A; € (0, 1). Some calculation shows that the conclusion of the lemma becomes

pIrTES T [ (S ) (3-2)
j=1 j=1

We prove (3-2) by induction on n. For n =1 it is trivial. Suppose (3-2) is known for some value of 7.
Given Ay, Ag, ..., A1 €0, 1), set u=1—(1—Xx,)(1 — Ayy1). Then

ne,1) and p=2A,+rnt1 —AnAns1 < Ay + Apyi-

Applying the induction hypothesis on Ay, Az, ..., A,—_1, u at the second step, we then have
n+1 n—1 n—1 n+1
Dai=Y AjAp=1- []_[(1 —xj)](l —w=1-JJa-xrp.
j=1 j=1 j=1 j=1
This completes the induction, and the proof of the lemma. g

Lemma 3.5. Let a direct system as in Construction 3.3 be given, but using sequences (cz (n))n=0.12...
and (l;(n))n:o,l,z,__, in place of (d(n))p=0.12... and (k(n))n=0,1.2,.. Denote the additional sequences
analogous to those in Construction 3.3(1) by [, 7, and 5. Denote the numbers analogous to those
in Construction 3.3(2) by k, @, and @. Denote the spaces used in the system by X,. Letv :
Z>0 — Zsq be a strictly increasing function such that v(0) = 0 and v(1) = 1. Then the direct system
(C(fv(m), M5 (wm))))m=0,1,2,... is isomorphic to a system as in Construction 3.3, with the choices d(0) =1,
k(0) =0,

dim)=d(v(m —1)+1)d(w(m —1)+2)---d(v(m)), (3-3)

k(m) =I(wm — 1)+ DI(wm — 1) +2)---[(v(m)) — d(m) (3-4)
form € Z~o. Moreover, following the notation of Construction 3.3,

I(m) =I(wm — 1)+ DIwm —1)+2)---[(v(m)),
r(m)=r(v(m)), and s(m)==5(m))

(3-5)

form e Z=y, and

~ ~ / ~/
K=k, w=w, and w <.

Proof. Given the definitions of d and k, the proofs of the formulas for /, r, and s are easy.
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Using Lemma 1.2 at the first and fourth steps, we now get

sm) . r(m)) lim 50 _

n=00 F(n) ~ m—oo §((m)) ~ m—oo r(m)

We have w = @ because v(1) = 1.
Using Lemma 3.4 at the second step and (3-3), (3-4) and (3-5) at the third step, we have
v(m)

I k(j)
W = S A
n; j_v(;lm k() +d()j)
i Z ‘J,(”:)(m 1)+1[d(j) + k()] - H;(:l?(m_nﬂ d(j) i k(m) .
1 ey [ + RG] L k(m)+d(m)

Define X,, = X vim) form € Z>g. Clearly X,, = cone((S2)*™), as required. Denote the maps in the

system of the hypotheses by

Sn : C(in) — C(g,,ﬂ, M;, and An,m : (me — 5,1,

(n+1))

with 8, being built using maps

Tn,l, Tn,z, Tn,l(n+1) : yn+1 - }?m
as in Construction 3.3(4). For p =v(m), vim)+1, ..., vim+1) — 1, set
. r(p) ~ = =
J(p) =< =Il(wim)+ DIwim)+2)---1(p).
r(v(m))
Then define
89 C(Xom) = CXopmstys Mignrn)
by

8 = id s mi1)1) ® Suima1)—1 0 1M nr1r2) @ Suim+1)=2 0+ + 0 Sy

iy Since j(v(m)) = 1.) With this definition, one checks that 1da; ) ®(§m =
AU(er 1), v(m)» SO that the direct system gotten using the maps 8,51) in Construction 3.3 is a subsystem of

(In the last term we omit id .

the system given in the hypotheses.

We claim that 8,(,?) is unitarily equivalent to a map §,,: C (X)) = C (X,n+1, Min+1)) asin Construction 3.3.
This will imply isomorphism of the direct systems, and complete the proof of the lemma. First, 3(0)
given as in Construction 3.3 (4) using some maps from X v(m+1) tO X v(m)> hamely all possible compositions

~

Tv(m), ivm) © Tv(m)-i-], ivomy4+1 O 77 0 Tv(m+1)—1, Ty(m+1)—1°
withi,=1,2,..., i(p—l— 1) for p =v(m), vim)+1, ..., v(m—+1) — 1. Moreover, since the composition
of projection maps is a projection map, restricting toi, =1,2, ..., d(p+1) for all p gives exactly all

the maps Qi.m) : Xppi1 — X for j=1,2,...,d(n+1). Therefore 8% is unitarily equivalent to a map
as in Construction 3.3 by a permutation matrix. O



740 ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS
Proof of Theorem 3.2. Choose N € 7 such that

1 3
N >5 and exp<—m> > Z (3-6)

(For example, N = 6 will work.) In Construction 1.1 (1) we make preliminary choices of the numbers d (1)
etc., calling them ci(n) etc. Take J(O) =1 and IE(O) =0, and take dN(n) = N" and lE(n) =1forneZ.y.
Then

n n
Im=N"+1, Fm)=]]N/+1), and §m)=][N’
j=1 j=1

for n € Z-¢o. We obtain numbers as in Construction 3.3(2) (equivalently, Constructions 1.1(3) and (4)),
which we call ¥, @, and @'. Further, adopt the definitions and notation of Construction 3.3, except that we
use i instead of X, and similarly throughout. That is, in Construction 3.3(3) we call the spaces i
instead of X,,, the pI'Q]eCthH maps Q( ") in Construction 3. 3(4) we call the maps of algebras §, and the
maps of spaces T,,, IE Xn+1 - X n» in Construction 3.3(5) we call the algebras A and the maps An s
and in Construction 3.3(6) we call the direct limit A and the maps to it Aoo,,,. As in Construction 3.3(4),
we take Tn ji= Q(") for j=1,2,. . d (n+1). For n € Z>( choose an arbitrary point X, € )N(n, and for
j= d(n +1)+1 let Tn ,j be the constant function on X,,+1 with value x,,. (Note that d(n +D)+1= l(n +1).)

We claim that the conditions in Constructions 1.1(3), 1.1(4), and 1.1(5) are satisfied, and moreover that

1 2k —1
- < =
1—-20® 20

For n € Z- ¢ we have, using log(m + 1) —log(m) < 1/m at the third step,

S _ - - . " 1
) l_[ N -I—l —exp(z —[log(N’ +1) —log(N/)]) > exp(— Zm) - eXp(_ﬁ)

j=1 j=1

So ik > exp(—1/(N —1)) > 43'1 by (3-6). Furthermore,

2 1 1 d o} i
w = < — an w =
4

o
1
<Y N =N
N+1 Ni+1 Ni N(N—l)

j=2 j=2
so the conditions @' < @ < % in Construction 1.1(4) and 2k — 1 > 2@ in Construction 1.1(5) are satisfied.
Moreover,
I _N+1 _N41_ 1 2(3)-1 2k—1
= — = < .
1-2& N-— 1 4 46 20 20

The claim is proved.

Apply Proposition 2.14 with K = T(A) and with [ (n) and 7(n) in place of /(n) and r(n), getting a
strictly increasing sequence, which we call (v(n)),=0,1.2,.., with v(j) = j for j =0, 1, an Al algebra By
(called A in Proposition 2.14) which is the direct limit of a unital system

C(10, 1) ® My (u(0)) —> C([0, 1) ® M, (1)) == C([0, 1) ® My 2y =5 -+,
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with injective diagonal maps «;,11,, given by

f'_> diag(foRn,l, fORn,Zv ceey fORn,r(vnH)/r(vn))

for continuous functions

Ry, Ruoy ooy Ry oty /romy = 10, 11— [0, 1],

and an isomorphism T(Bg) — T(A).

Apply Lemma 3.5 with this choice of v. Define the sequences (d(n)),—0.1.2,... and (k(1n))n=0.1.2.... as
in Lemma 3.5, and then make all the definitions in Constructions 1.1 and 1.6. (Some are also given in
the statement of Lemma 3.5.) Then, as in the proof of Lemma 3.5, X,, = X v(n)- We make the following
choices for the unspecified objects in these constructions. We choose points x, € X,, and y, € [0, 1] for
n € Z> such that the conditions in Constructions 1.6(16) and (17) are satisfied. (It is easy to see that this
can be done.) Use these points in parts (b) and (d) of Construction 1.6(18). Take the maps

Rui, Ruo, ooy Ry a+1) i Y1 —> Yy

in part (c) of Construction 1.6(18) to be those from the application of Proposition 2.14 above. For
j=1,2,...,l(n+1), let Sﬁ?}lxm : Xp41 — X, be the maps in the system obtained from Lemma 3.5,
and take S,(l(,);.lgm = R, j. The requirement S,g?;. =S, jforj=1,2,...,d(n+1) in Construction 1.6(19)
is then satisfied, so that the condition in Construction 1.1(13) is also satisfied. Moreover, with these
choices, the conditions in Construction 2.17(20) are satisfied.

By Lemma 3.5, the numbers «, @, and o’ from Constructions 1.1(3) and (4) satisfy

Kk=k, w=o, and o <&.

Therefore k > %, o <w< %, and 2« — 1 > 2w, as required in Constructions 1.1(3), (4), and (5); moreover

1 2Kk — 1
< .
1-2w 2w

(3-7)

The algebra C is simple by Lemma 1.7.

The algebras A and B of Lemma 2.18(1) are now A = A and B = By, so C©), as in Construction 1.1 (11),
is isomorphic to A @ By. The isomorphism T(By) — T(A) gives an isomorphism §(§0) : Aff(T(A)) —
Aff(T(B)). This provides an automorphism of Aff(T(A)) & Aff(T(B)), given by

f, &) = (@), 2.

Let ¢© be the corresponding automorphism of Aff(T(A @ B)) = Aff(T(C)) gotten using Lemma 2.10.
Clearly ;D670 s the identity map on Aff(T(C Oy).

Adopt the notation of Construction 2.17: C and C© are as already described, D and D@ are
the AF algebras from Construction 2.17(21), u : D — C and u© : D© — C© are the maps of
Construction 2.17(22) (which are isomorphisms on K-theory by Lemma 2.18(4)), and 8 € Aut(D) and
0O e Aut(D©) are as in Construction 2.17(23).
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Define E =lim, M, ), with respect to the maps a > diag(a, a, ..., a), with a repeated /(n) times.
The direct system defining D is the direct sum of two copies of the direct system just defined, so

DOZE@E and Aff(T(DQ)) = Aff(T(E ® E)).

Since E is a UHF algebra, we have Aff(T(E)) = R with the usual order and order unit 1. Using ldAff(T( E))
in place of g“ ) above, we we get an automorphlsm of Aff(T(D©®)). But this automorphism is just 90,
We claim that £© o 2@ = £© 66O, To prove the claim, we work with

Aff(T(E)) @ Aff(T(E)) and Aff(T(A)) ® Aff(T(B))

in place of Aff(T(D®)) and AFf(T(C©)), but keep the same names for the maps.

Since ¥ : E® E — A @ B is the direct sum of unital maps from the first summand to A and the
second summand to B, the map /I(\O) is similarly a direct sum of maps Aff(T(E)) — Aff(T(A)) and
Aff(T(E)) — Aff(T(B)). Let e and f be the order units of Aff(T(A)) and Aff(T(B)). The unique
positive order unit preserving maps Aff(T(E)) — Aff(T(A)) and Aff(T(E)) — Aff(T(B)) are a — «e
and B — Bf for a, B € R. Therefore ,u(o) (o, B) = (e, Bf). Since g ) is order unit preserving, we have

& () = £, 50
(O ae. pf) = (Be. af) = nO(B. ) = (1 00O (@, ).
The claim follows.
Using conditions (4) and (13) in Construction 1.1, Lemma 2.16, and Proposition 2.15, we get isomor-
phisms
0 Aff(T(D®)) — Aff(T(D)) and o : Aff(T(C?)) — Aff(T(C))
such that top =00 ;ﬁ. Define
n=po60op! e Aut(AfF(T(D))) and ¢ =00c® oo~ € Aut(AHF(T(C))).
A calculation now shows that the claim above implies
Coji=[Lon. (3-8)
We also have ¢ o ¢ = idas(T(c))-

We want to apply Proposition 2.15 with D, and ¢, ,, as in Construction 2.17(21), and (p(O) as there in
place of wn’m, so that D and D© are as already given, with C,, = D,, for all n € Z>¢ and ¥, ;» = @n.m
and w;;,m = (p,’L . for all m and n, and with 6,,, 0,50), 0, and 6 from Construction 2.17(23) in place of u,,

W, w, and p'. As before, this application is justified by conditions (4) and (13) in Construction 1.1, and
Lemma 2.16. The outcome is an isomorphism p’ : Aff(T(D©)) — Aff(T(D)) such that

0=p 0000 (p)l. (3-9)

We claim that n = . The “right” way to do this is presumably to show that p’ = p above, but the
following argument is easier to write. We have

Aff(T(D)) = Aff(T(D?)) = R?
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with order (, ) > 0 if and only if @ > 0 and 8 > 0 and order unit (1, 1). Since the state space S(R?)
of R? with this order unit space structure is an interval, and automorphisms of order unit spaces preserve
the extreme points of the state space, there is only one possible action of a nontrivial automorphism of R?
on S(R?). Theorem 2.4 implies that R? = Aff(S(R?)), so there is only one nontrivial automorphism of R
Since 6O is nontrivial, so is 6 by (3-9), and so is n by its definition. The claim follows.

The claim and (3-8) imply

Cofi=fod. (3-10)

Passing to state spaces and applying Theorem 2.4, we get an affine homeomorphism H : T(C) — T(C)
such that {(f) = f o H for all f € Aff(T(C)), and moreover H o H = idy(c). By Lemma 2.18(4),
the expression py 0 8, o (M*)_l is a well-defined automorphism of K, (C), of order 2. We claim that
F = (ux 00,0 (us)~ ', H) is an order two automorphism of ElI(C). We use the notation of Definition 3.1
for the Elliott invariant of a C*-algebra; in particular, pc and pp are not related to the maps p and p’
above. The only part needing work is the compatibility condition (3-1) in Definition 3.1, which amounts
to showing that

/OCOM*OQ*O(M*)il ={fopc.

To see this, we calculate, using at the second and last steps the notation of Definition 2.5 and the fact that
the morphisms of Elliott invariants defined by p and 6 satisfy (3-1) in Definition 3.1, and using (3-10) at
the third step,

fopc=Copcopso(u) ' =co0foppo(u)!

=fiofoppo(u) " =pcomsobio(m) ",
as desired.

Thus, we have constructed an automorphism F of Ell(C) of order 2. It remains to show that F is not
induced by any automorphism of C.

Using (3-10) on the last components, one easily sees that F o j1, = . o 6,. Let ¢ and g+ be
as in Notation 1.13. In the construction of D as in Construction 2.17(21), set ¢ = ¢o0,0((1, 0)) and
et =1—e=0x0((0,1)). Then (e) = e, u(e) =q, and u(et) = g*. Therefore F([q]) = [¢™].

Suppose now that there exists an automorphism « such that a, = F. Then [a(g)] = [¢*]. By
Lemma 1.17, a(g) is unitarily equivalent to g*. Let u be a unitary such that ua(q)u* = g*. Thus,
since a(qAq) = a(q)Aa(g) = u*q+Ag*tu, it follows that the ¢ Ag and g Ag~* have the same radius of
comparison. By (3-7), this contradicts Lemmas 1.15 and 1.16. U

Remark 3.6. One can easily check that, with C as in the proof of Theorem 3.2, there is a unique
automorphism of Ell(C) whose component automorphism of the tracial state space is as in the proof.
Therefore the conclusion can be slightly strengthened: there is an automorphism of T(C) which is
compatible with an automorphism of ElI(C) but which is not induced by any automorphism of C.

Question 3.7. Does there exist a compact metric space X and a minimal homeomorphism h : X — X
such that the crossed product C*(Z, X, h) has the same features as the example we construct here?
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Our construction provides an example of an automorphism of order 2 of the Elliott invariant which is
not induced by any automorphism of the C*-algebra. The question of whether there exists an example of
such an automorphism of the invariant which is induced by an automorphism of the algebra but not by
one of order 2 is an older question by Blackadar, which we record below. For Kirchberg algebras in the
UCT class, it is known that any order two automorphism of the Elliott invariant is induced by an order
two automorphism of the C*-algebra [Benson et al. 2003]; also see [Katsura 2008] for a generalization to
actions of many other finite groups. However, very little seems to be known in the stably finite case, even
for classifiable C*-algebras (and in fact even for AF algebras).

Question 3.8 (Blackadar). Does there exist a simple separable stably finite unital nuclear C*-algebra C
and an automorphism F of EIl(C) such that:

(1) F o F is the identity morphism of EllI(C).

(2) There is an automorphism o of C such that o, = F.

(3) There is no « as in (2) which in addition satisfies o o o = idc.
Can such an algebra be chosen to be AH and have stable rank 1?

Our method of proof suggests that, instead of being just a number, the radius of comparison should
be taken to be a function from V (A) to [0, co]. If one uses the generalization to nonunital algebras in
[Blackadar et al. 2012, Section 3.3], one could presumably even get a function from Cu(A) to [0, oo].
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PARTIAL REGULARITY OF LERAY-HOPF WEAK SOLUTIONS TO THE
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HYPERDISSIPATION

WOICIECH S. OZANSKI

We show that if u is a Leray—Hopf weak solution to the incompressible Navier—Stokes equations with
hyperdissipation & € (1, 3) then there exists a set S C R* such that # remains bounded outside of S at each
blow-up time, the Hausdorff dimension of S is bounded above by 5 — 4« and its box-counting dimension
is bounded by %(— 16a% 4 16a + 5). Our approach is inspired by the ideas of Katz and Pavlovi¢ (Geom.
Funct. Anal. 12:2 (2002), 355-379).

1. Introduction

We are concerned with the incompressible Navier—Stokes equations with hyperdissipation,
U+ (—A)u+u-Vu+Vp=0 inR>,

divu =0,

(1-1)

where o € (1, %) The equations are equipped with an initial condition u(0) = ug, where ug is given. We
note that the symbol (—A)“ is defined as the pseudodifferential operator with the symbol (277)2*|£]%* in
the Fourier space, which makes (1-1) a system of pseudodifferential equations.

It is well known that the hyperdissipative Navier—Stokes equations (1-1) are globally well-posed for
o> 45'1’ which was proved by Lions [1969]; see also [Tao 2009]. The question of well-posedness for
o< %, including the case o = 1 of the classical Navier—Stokes equations, remains open.

The first partial regularity result for the hyperdissipative (1-1) model was given by Katz and Pavlovi¢
[2002], who proved that the Hausdorff dimension of the singular set in space at the first blow-up time
of a local-in-time strong solution is bounded by 5 — 4« for « € (1, %) Recently Colombo et al. [2020]

showed that if o € (1, %], u is a suitable weak solution of (1-1) on R3 x (0, co) and
S":={(x, 1) : u is unbounded in every neighbourhood of (x, 7)}

denotes the singular set in space-time then P>~%*(S") = 0, where P* denotes the s-dimensional parabolic
Hausdorff measure. This is a stronger result than that of [Katz and Pavlovi¢ 2002] since it is concerned
with the space-time singular set S (rather than the singular set in space at the first blow-up), it is a
statement about the Hausdorff measure of the singular set (rather than merely the Hausdorff dimension)
and it includes the case o = % (in which case the statement, PY(S’) = 0, means that the singular set is
in fact empty, and so (1-1) is globally well-posed). The main ingredient of the notion of a “suitable weak
MSC2020: primary 35Q30, 35Q35, 35R11, 76D03, 76D05; secondary 35B44, 35B65.
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dimension.
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solution” in the approach of [Colombo et al. 2020] is a local energy inequality, which is a generalisation
of the classical local energy inequality in the Navier—Stokes equations (i.e., when o = 1) to the case
o€ (1, %) The fractional Laplacian (—A)“ is incorporated in the local energy inequality using a version
of the extension operator introduced in [Caffarelli and Silvestre 2007]; see also [Yang 2013; Kwon and
Ozanski 2022; Colombo et al. 2020, Theorem 2.3]. Colombo et al. [2020] also showed a bound on the
box-counting dimension of the singular set

dp(S' N (R x [t, 00))) < §(—8a> — 20 + 15) (1-2)

for every ¢ > 0. We note that this bound reduces to 0 at o = % and converges to % as o — 17, which is the
bound that one can deduce from the classical result of [Caffarelli et al. 1982]; see [Robinson and Sadowski
2007] or Lemma 2.3 in [Ozanski 2019] for a proof. We note that this bound (for the Navier—Stokes
equations) has recently been improved by [Wang and Yang 2019] (to the bound dp(S) < %)

Here, we build on the work of [Katz and Pavlovi¢ 2002], as their ideas offer an entirely different
viewpoint on the theory of partial regularity of the Navier—Stokes equations (or the Navier—Stokes
equations with hyper- and hypodissipation), as compared to the early work of Scheffer [1976a; 1976b;
1977; 1978; 1980] and the celebrated result of [Caffarelli et al. 1982], as well as alternative approaches of
[Vasseur 2007; Lin 1998; Ladyzhenskaya and Seregin 1999] and numerous extensions of the theory, such
as [Colombo et al. 2020; Tang and Yu 2015; Kwon and Ozanski 2022]. Instead it is concerned with the
dynamics (in time) of energy packets that are localised both in the frequency space and the real space R,
and with studying how these packets move in space, as well as transfer the energy between the high and
low frequencies. An important concept in this approach is the so-called barrier (see (3-23)), which, in a
sense, quarantines a fixed region in space in a way that prevents too much energy flux entering the region.
This property is essential in showing regularity at points outside of the singular set.

In order to state our results, we will say that u is a (global-in-time) Leray—Hopf weak solution of (1-1) if

(i) it satisfies the equations in a weak sense, namely
! 2 2
[ ] (o A Pu (=8 Pyt - Vyu-g) = [uo-o— [u)-o)

holds for all # > 0 and all ¢ € C5°([0, 00) x R3: R?), with div ¢ (s) = 0 for all s > 0 (where we wrote
[= fw for brevity),

(i) the strong energy inequality,
t
u@)? + / 1(=A)*u(T)|? de < Lfuts)|? (1-3)
S

holds for almost every s > 0 (including s = 0) and every 7 > 5. Here || - || denotes the || - || 2(r) norm.

We note that Leray—Hopf weak solutions admit intervals of regularity; namely for every Leray—Hopf
weak solution there exists a family of pairwise disjoint intervals (a;, b;) C (0, 0o) such that u coincides
with some strong solution of (1-1) on each interval and

24(5—4a)/2a (R \ U(ai’ b )) =0: (1-4)
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see Theorem 2.6 and Lemma 4.1 in [Jiu and Wang 2014] for a proof. This is a generalisation of
the corresponding statement in the case o« = 1 (i.e., in the case of the Navier—Stokes equations); see
Section 6.4.3 in [Ozarski and Pooley 2018] and Chapter 8 in [Robinson et al. 2016].

Given ug € L*(R?) with div uo = 0 there exists at least one global-in-time Leray—Hopf weak solution
(see Theorem 2.2 in [Colombo et al. 2020], for example). We denote by S the singular set in space of u
at single blow-up times, namely

S = U S, (1-5)
where
Si={xe R3 : u is unbounded in U x (3(a; +b;), b;) for any neighbourhood U of x}

denotes the singular set. In particular, if x ¢ S then limsup,_, ;- ||u(?)||z~@w) < c¢; for every i and U > x.
The first of our main results is the following.

Theorem 1.1. Let u be a Leray—Hopf weak solution of (1-1) with « € (1, %) and an initial condition
ug € HY(R?), and let ¢ > 0. There exists C > 0 and a family of collections B; of cubes Q C R3 of
sidelength 2=10% sych that

#B; < C 2/ O~date)
foreach j € N, and

S climsup | ] 0. (1-6)

J7 0eB;

In particular, dg (S) <5 —4a.

Here dy stands for the Hausdorff dimension, and we recall that limsup;_, o, G; := (= szk G;
denotes the set of points belonging to infinitely many G;’s. It is well known (see Lemma 3.1 in [Katz
and Pavlovi¢ 2002], for example) that (1-6) implies that dy (S) <5 — 4« + ¢, from which the last claim
of the theorem follows by sending ¢ — 0.

We note that C might depend on &, but it does not depend on the interval of regularity (a;, b;), which
gives us a control of the structure of the singular sets ; that is uniform across blow-ups in time of a
Leray—Hopf weak solution. This is an improvement of the result of Katz and Pavlovié¢ [2002], who
obtained such control for a given strong solution, and so for each interval of regularity (a;, ;) of a
Leray—Hopf weak soluti_on their result implies existence of C; > 0 such t_hat Si Climsup;_, U 0eB 0
for some collections BJ(.I) of cubes of sidelength 2770+ satisfying B}’) < C;2/G=4+) for all j. One
could therefore expect that the constants C; become unbounded as i varies (for example in a scenario of a
limit point of the set of blow-up times {b;}), and Theorem 1.1 shows that it does not happen.

We note, however, that Theorem 1.1 does not estimate the dimension of the singular set at the blow-up
time which is not an endpoint b; of an interval of regularity (but instead a limit of a sequence of such b;’s).
In other words, if x € §, U > x is a small open neighbourhood of x and {(a;, b;)}; is a collection of
consecutive intervals of regularity of u, we show that supy (4, 4+5,)/2,6) [l = ¢i < 00, but our result
does not exclude the possibility that ¢; — 0o as i — oo. It also does not imply boundedness of |u(?)|
at times ¢ near the left endpoint a@; of any interval of regularity (a;, b;). These issues are related to the
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fact that inside the barrier we still have to deal with infinitely many energy packets (i.e., infinitely many
frequencies and cubes in R?). Thus, supposing that the estimate on the energy packets inside the barrier
breaks down at some ¢, we are unable to localize the packet (i.e., the frequency and the cube) on which
the growth occurs near ¢, unless ¢ is located inside an interval of regularity; see Step 1 of the proof of
Theorem 3.7 for details.

The proof of Theorem 1.1 is inspired by the strategy of the proof of [Katz and Pavlovi¢ 2002], which
we extend to the case of Leray—Hopf weak solutions and we use a more robust main estimate. The main
estimate controls the time derivative of the L norm of the Littlewood—Paley projection Pju combined
with a cut-off in space (the energy packet); see (3-2). We show that such norm is continuous in time
(regardless of putative singularities of a Leray—Hopf weak solution), which makes the main estimate
valid for all ¢ > 0. Inspired by [Katz and Pavlovi¢ 2002], we then define bad cubes and good cubes (see
(3-15)) and show that we have a certain more-than-critical decay on a cube that is good and has some
good ancestors. We then construct B; as a certain cover of bad cubes and prove (1-6).

Our second main result is concerned with the box-counting dimension. We let

s = Jsi. (1-7)

i<k
Theorem 1.2. Let u be as in Theorem 1.1. Then dg(S®) < %(—160{2 + 16« 4 5) for every k € N.

We prove the theorem by sharpening the argument outlined below Theorem 1.1. We recall that the
box-counting dimension dp is concerned with covering the given set by a collection of balls of radius r,

dp(K) := limsupw, (1-8)
r—0 - log r
where N (K, r) denotes the minimal number of balls (or boxes) of radius r required to cover K. In this con-
text, one can actually use the families B; from (1-6) to deduce that dp (S ®)y < é(—64oz3 +9602 —48x+35)
for every k, which we discuss in detail in Section 4. This is however a worse estimate than claimed in
Theorem 1.2.

In fact, in Section 4 we improve this estimate by constructing refined families C; that, in a sense, give a
more robust control of the low modes, which reduces the number of cubes required to cover the singular
set and hence improve the bound on dp(S®). See the informal discussion following Proposition 4.1 for
more insight about this improvement.

We note that we can only estimate dp(S &)y (rather than dg(S)) because of the localisation issue
described above. To be more precise, for each sufficiently small § > 0 we can construct a family of cubes
of sidelength § > 0 that covers the singular set when ¢ approaches a singular time, and that has cardinality
less than or equal to § (~160+16a+5)/3+¢ for any given ¢ > 0. This family can be constructed independently
of the interval of regularity, but given x outside of this family we can show that the solution is bounded
in a neighbourhood of x if the choice of (sufficiently small) § is dependent on the interval of regularity.
This gives the limitation to only finite number of intervals of regularity in the definition of S®).

We note that the result of [Colombo et al. 2020] is stronger than our result in the sense that it is
concerned with the space-time singular set S’ (rather than the singular set S in space), it is concerned
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with the parabolic Hausdorff measure of S’ (rather than merely the bound on dp (S”)) and its estimate of
dp(S") is sharper than our estimate on dp(S;).

However, our result is stronger than [Colombo et al. 2020] in the sense that it applies to any Leray—Hopf
weak solutions (rather than merely suitable weak solutions). In other words we do not use the local energy
inequality, which is the main ingredient of [Colombo et al. 2020]. Also, our approach does not include
any estimates of the pressure function. In fact we only consider the Leray projection of the first equation
in (1-1), which eliminates the pressure. Furthermore, our approach can be thought of as an extension of
the global regularity of (1-1) for o > %. In fact, the following corollary can be proved almost immediately
using our main estimate; see Section 3F.

Corollary 1.3. If « > f—1 then (1-1) is globally well-posed.

We also point out that our estimate on the box-counting dimension, dg(Sg) < %(—160{2 + 16a + 5),
converges to % as a — 17, just as (1-2).

Finally, we also correct a number of imprecisions appearing in [Katz and Pavlovi¢ 2002]; see for
example Remark 3.4 and Step 1 of the proof of Theorem 3.7.

The structure of the article is as follows. In Section 2 we introduce some preliminary concepts
including the Littlewood—Paley projections, paraproduct decomposition, and Bernstein inequalities, as
well as a number of analytic tools that allow us to manipulate quantities involving cut-offs in both the real
space and the Fourier space, which includes estimates of the errors when one moves a Littlewood—Paley
projection across spatial cut-offs and vice versa. We prove the first result, Theorem 1.1, in Section 3. We
prove Corollary 1.3 in Section 3F and we prove the second result, Theorem 1.2, in Section 4.

2. Preliminaries

Unless specified otherwise, all function spaces are considered on the whole space R In particular
L?:=L*(R?). We do not use the summation convention. We will write 9; := Oy, B(R):={x¢€ R3:|x| <R},
[ = fgs-and |- [l :== Il - | Lo(m3)- We reserve the notation | - || for the L? norm, that is, || - || := || - ||2.

We denote any positive constant by ¢ (whose value may change at each appearance). We point out
that ¢ might depend on u( and «, which we consider fixed throughout the article. As for the constants
dependent on some parameters, we sometimes emphasise the parameters by using subscripts. For example,
Ck,q 18 any constant dependent on k and q.

We denote by e(j) (a j-negligible error) any quantity that can be bounded (in absolute value) by
cx2~%J for any given K > 0.

We say that a differential inequality f’ < g on a time interval [ is satisfied in the integral sense if

f@® < f(s)+ /tg(r) dt foreveryt,s €l witht >s. (2-1)

We recall that Leray—Hopf weak solutions are weakly continuous with values in L2 Indeed, it follows
from part (i) of the definition that

/ u(t)g is continuous for every ¢ € CS°(R?) with dive = 0.
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This is also true if div ¢ # 0, as in this case one can apply the Helmholtz decomposition to write ¢ = ¢+V 1,
where div¢ = 0 (then f u(t)¢ is continuous and f u(t)Vyr = 0 since u(t) is divergence-free). Thus,
since part (ii) gives that {u(¢)},;>¢ is bounded in L? weak continuity of u(t) follows.

2A. Littlewood—Paley projections. Given f € L'(R?), we denote by f its Fourier transform, i.e.,
f@® = [ foe? i Sar, te®,

and by f its inverse Fourier transform, i.e., f (x):= f (=x). Let h € C*°(R; [0, 1]) be any function such
that #(x) =1 forx < 1 and h(x) =0 for x > 2. We set p(x) := h(|x|) — h(2|x]), where x € R3, we let

pi(§):=p2778) forjez, (2-2)
and we let P; (the j-th Littlewood—Paley projection) be the corresponding multiplier operator, that is,

Bif(&) = pi(&)f (&)

By construction, supp p; C B(2/ +1y\ B(2/~!). We note that Z ez pj =1, and so formally ) jez Pj=1d.
We also define
Jj+2 Jj+2
=P Z Pi, Pi_4j42:= Z Py, P<j:= Z P, P —ZPk, (2-3)
k=j—-2 k=j—4 k=—00
and analogously for p;, pj_4 j+2, p<j, p>j. By a direct calculation one obtains that
i) =2"p@2'y) (24)
for all j € Z, y € R®. In particular lpjlli = ¢ and so, since P;jf = p; * f (where “x” denotes the
convolution), Young’s inequality for convolutions gives
[ Pjully = cllullg (2-5)
for any g € [1, oo]. Moreover, given K > 0 there exists cx > 0 such that
5] < ek @y 72V, (2-6)
18; B () < cx (27 |y 2K 2% 27

forall jeZ, y#0andi=1,2,3. Indeed, the case j = 0 follows by noting that
627Ti)"§ — (_4n2|y|2)—KA§e2ﬂiy~§
and calculating

B = | [ p©@™ de| = dmly) X [ A p@)e v de| < exly [ 18K pl=exly "

(and similarly |9; p(y)| < ck]| y|~2K), where we have integrated by parts 2K times, and the case j # 0
follows from (2-4). Using (2-6) and (2-7) we also get

9l La(Bayy < Ci.q(d27)~2K+3/423i@=D/4 (2-8)
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and
18; Pl LaBay) < Ci q(d2?)~2K+3/4 27 0Hnta=D/a) (2-9)

respectively, forany K >0, d >0,i=1,2,3, j€Zand g > 1. Indeed

Lo 1By < Cie 279K [ 32Ky = C 274K g 2K,
RAB(@) lyl=d

from which (2-8) follows (and (2-9) follows analogously). We note that the same is true when p is
replaced by any compactly supported multiplier.
Corollary 2.1. Let 1 € Cgo(RS) and, given j € Z, set A;(§) 1= M27/E). Then, given d > 0,

||):j l2®3\B@)) < cg2 1GR3 g2KA3/2,

We will denote by T the Leray projection, that is,

TF&) = (1 5@’5) i

-2\, (2-10)
&2
where f :R3 — R3 and I denotes the 3 x 3 identity matrix.

2B. Bernstein inequalities. Here we point out classical Bernstein inequalities on R3:
1P fllg < e 2 YP=VD P £, (2-11)
1P<j fllg < c2YWP=VD NP f) (2-12)

for any 1 < p < g < co. We refer the reader to Lemma 2.1 of [Bahouri et al. 2011] for a proof.

2C. The paraproduct formula. Here we briefly describe the Bony decomposition formula, that is, we
concern ourselves with a structure of a Littlewood—Paley projection of a product of two functions, P;(fg).
One could obviously write f =), _, Pxf (and similarly for g) to obtain that

Pi(fe) = PJ-( Y P ng>. (2-13)
k.meZ
However, since functions p;, p; have pairwise disjoint supports for many pairs j, k € Z, one could
speculate that some of the terms on the right-hand side of (2-13) vanish. This is indeed the case and

Pi(fg) =P <Pjizf Pojsg+ P<j_sf Praog+ Pi_ajiof Pirag+ Y Pif Pkizg)
k>j+3

= Pj(Kloc,low + Klow,loc + Kloc + Khh), (2’14)
which is also known as Bony’s decomposition formula. For the sake of completeness we prove the formula
below. Heuristically speaking, Kjoc jow coOrresponds to interactions between local (i.e., around j) modes
of f and low modes of g, Kjow,10c t0 interactions between low modes of f and local modes of g, Kjo to
local interactions and Ky to interactions between high modes; see Figure 1 for a geometric interpretation
of (2-14). We now prove (2-14). For this it is sufficient to show that

Pi(Pif Png) =0 for (k,m) € Ry URyURs, (2-15)
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""" K loc,low k

Figure 1. Sketch of the interpretation of the terms on the right-hand side of (2-14).
The regions R;, R;, R3 (consisting of grey dots) correspond to pairs (k, m) for which
P;(Py f Py,g) vanishes; see the discussion following (2-15).

where Ry, Ry, R3 are as sketched in Figure 1. The Fourier transform of w := P; (P f P,g) is

D) = p; € [ P f )€ —mEE —m)dn.

We can assume that |&] € (271, 2/%1) (as otherwise pj(§) vanishes) and that |n| € (k=1 2k+1y (as
otherwise py(n) vanishes).

Case 1: (k, m) € Ry. Suppose that k > m (the opposite case is analogous). Then j > k + 3 (see Figure 1)
and so
& —nl = |&] — || = 2771 =21 > okF2 _pkHl okl > ol

Thus p;, (& — n) vanishes.

Case 2: (k, m) € R, U R3. Suppose that (k, m) € R; (the case (k, m) € Rs is analogous). Then m > k+3
and m > j 4 3 (see Figure 1) and so

& —nl <&+ Inl <2+ + 25 <2.2m 2 =0l
Hence p,,(§ —n) vanishes as well, and so (2-15) follows.

2D. Moving bump functions across Littlewood—Paley projections. Here we show the following:

Lemma 2.2. Let ¢1, ¢ : R3 — [0, 1] be such that their supports are separated by at least d > 21. Then

g1 P (d2f)lly < cx(@2) K3 £,
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forallge[l,o0], jeZ, K>0and f € Lq([R{3). Furthermore, if |V¢,| < cd! then

161 P92V Pllg < cx @2)) 2327 £l
We will only use the lemma (and the corollary below) with ¢ =2 or g = 1.

Proof. We note that
91PN =h1) [ (e = )20 f () dy
supp ¢»
=910 [ Sy = )20 () dy (2-16)
supp ¢»
since the supports of ¢y, ¢, are at least d apart. Thus using Young’s inequality for convolutions

61 P; (D2 H)llq < 1511 By ld2f llg < ek (@223 £1l,

for any K > 0, where we used (2-8). This shows the first claim of the lemma. The second claim follows by
replacing f by V f in (2-16), integrating by parts, and using Young’s inequality for convolutions to give

1P (d2V fllg < cllVPillLr sy ld2f llg + 15 1L By I Vo2 £l
< cx d2)) K327 £,

where we also used the assumption that |V¢,| < cd™! < c2/. O

In fact the same result is valid when P; is replaced by the composition of P; with any 0-homogeneous
multiplier (e.g., the Leray projector).

Corollary 2.3. Let M be a bounded, 0-homogeneous multiplier (i.e., W E)=m() f (&), where m(A&) =
m (&) for any A > 0). Let ¢, ¢ : R3 — [0, 1] be such that their supports are separated by at least d > 27/,
Then

1 M P;($2V )l < cx (@29) K327 £11,

forallqg e[1,00], j€Z, K >0and f € L1(R%).

2E. Moving Littlewood—Paley projections across spatial cut-offs. We say that ¢ € C8°([R3) is a d-cutoff
if diam(supp ¢) < c¢d and |D'¢| < ¢;d~" for any I > 0.

We denote by e, (j) any quantity that can be bounded (in absolute value) by cx2% (d2/)°~X for any
given K > 0. The point of such notation is that it will articulate the dependence of the size of the error in
our main estimate (see Proposition 3.1) on both j and d.

In this section we show that, roughly speaking, we can move Littlewood—Paley projections P; across
d-cutoffs as long as d > 27/

Lemma 2.4. Given a d-cutoff ¢, q € [1, oo] and multiindices «, B, with |B], |o| < 3,

I(1 = P)D*(@P;DP f)lly < eali)I fllg
for every j.
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Proof. We write ¢ = ¢ + ¢», where
¢A>1 é):= X|g|52/‘72¢3(§),

$2(8) 1= Xz 1022 (E).
Note that

@ PP &) = [ 16 —mp; @) PP f)

is supported in |£] € (2/72,2/%2) (as ¢ (&£ —n) is supported in {|& —n| < 2/72} and p; (1) is supported
in {2771 < |n| < 2/*1}). Since p; (&) = 1 for such &, we obtain
¢1P;DP f = P P;D’ 2-17)
and so it suffices to show that
I(1 = P)D*(¢2PiDP f)llg < ea(DIf g
We will show that
D@21 < ea(j) (2-18)

for every || < 3. Then the claim follows by writing

11— P)D*@2PiDP f)llg < > 1D 2P DM £,

a)tor=a

< Y DGl DT £
a1+or=a

< > 1Dl - 2% fllg < ea(DIf -
o [<3

In order to see (2-18) we first note that
[ 200625 x|
= clg @) | [ gatnaKe e dy

=C|§||a\(4n2|gl2)—K‘/‘AK¢2(x)e—2ﬂix~§ dx‘ < CK|S|_2K+Ia‘d_2K+3-

D% ()] < cl&

Thus
| D*@all1 = Cf D (&)] < ch*ZK“/ . &K Hl = ¢ 237 (g27)"2K+3,
|§]>2/ |52/
which gives (2-18). .

Similarly one can put the Littlewood-Paley projection “inside the cutoff”. In this case one can prove
a statement similar to Lemma 2.4, but, since we will only need a version with no derivatives, we state
a simplified statement.

Corollary 2.5. Given a d-cutoff ¢, || Pj(¢(1 — Pjx2) f)Il < eq(j) forevery j.
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Proof. The claim follows using the same decomposition as above, ¢ = ¢; + ¢,. Since
61— P f&) = [ d1(5 =) (1= pya(n) f () .

we see that (since || € (—o00, 2/72) U (2/12, 00)) either || > |n| — | —n| > 2772 — 2772 > 2i*1 or
€] < Inl+1& —nl <2/724+2/72=2/~1 In any case p;(£) =0 and so P;(¢1(1 — P;) f) = 0. The part
involving ¢, can be estimated by e;(j) using the same argument as above. O

2F. Cubes. We denote by Q any open cube in R’ Given a > 1, we denote by a Q the cube with the
same centre as Q and a times larger sidelength. We sometimes write Q(x) to emphasise that cube Q
is centred at a point x € R>. Given an open cube Q of sidelength d > 0, we let o € C° (R3; [0, 1]) be
a d-cutoff such that

po=1o0nQ, supppoC 20, and [Vi¢glo <Crd™ . (2-19)
Note that
E[¥ g0 (8)] < cxd®™* for & e R, (2-20)

which can be shown by a direct computation.

2G. Localised Bernstein inequalities. 1f Q is a cube of sidelength d > 27/ then

lpo P flly < 22D g0 P FIl +ea(DI f g, (2-21)

due to Lemma 2.4 and the classical Bernstein inequality (2-11).

2H. Absolute continuity. Here we state two lemmas that will help us (in Step 1 of the proof of
Proposition 3.1) in proving the main estimate for Leray—Hopf weak solutions.

Lemma 2.6. Suppose that f : [a, bl — R is continuous and such that f' € L'(a, b). Then
t
fO=rf@+ [ @
N
foreverys,t € (a,b).
Proof. This is elementary. U

Lemma 2.7. Ifu(x, t) is weakly continuous in time on an interval (a, b) with values in L>(R>) then Piu
is strongly continuous in time into L>(2) on (a, b) for any bounded domain Q C R>

Proof. We note that

2
1Pty = P2y = [[| [ 10 =@ —uty ) dy| ar.

Weak continuity of u(¢) gives that the integral inside the absolute value converges to 0 as ¢t — s (for any
fixed x). Furthermore it is bounded by

15 IHu@) —u(s)ll < cj,
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where we used the Cauchy—Schwarz inequality and the fact that u is bounded in L? (a property of
functions weakly continuous in L?). Since the constant function cjz is integrable on €2, the claim of the

lemma follows from the dominated convergence theorem. (|

3. The proof of the main result

In this section we prove Theorem 1.1; namely we will show that dy (S) <5 — 4o, where S is the singular
set in space of a Leray—Hopf weak solution (recall (1-5)). We will actually show that

da(S) <5—4a+=¢

for any
¢ € (0, min(3 (4o —4), 55)). (3-1)

We now fix such ¢ and we allow every constant (denoted by “c”) to depend on ¢.

We say that a cube Q is a j-cube if it has sidelength 27/(!=), The reason for considering such “almost
dyadic cubes” (rather than the dyadic cubes of sidelength 27/) is that e;(j) = e(j) for d = 2-Jj(1-#)
(which is not true for d = 27/). We say that a cover of a set is a j-cover if it consists only of j-cubes.
We denote by S;(€2) any j-cover of Q2 such that #S;(2) < c(% diam(Q)‘j(l_s)f.

Moreover, given a j-cube and k € Z, we denote the k-cube concentric with Q by Oy, that is,

Oy i= 2=k (1-e) 0.
3A. The main estimate. Given a cube Q and j € Z we let

ug,j:=llgoPull

and we write
J+2
Ug 2= Y gk

k=j—2

We point out that u ¢ ; is a function of time, which we will often skip in our notation.
We start with a derivation of an estimate for u o ; for any j € Z and any cube Q of sidelength d > 16-27/.

Proposition 3.1 (main estimate). Let u be a Leray—Hopf weak solution of the hyperdissipative Navier—
Stokes equations (1-1) on the time interval [0, 00) and let d > 16 -27J. Then ug,j is continuous on
[0, 0c0) and

d » 2aj 2 j 3k/2
0. < —e2up jreug (Pusop i Y, 2 umoisonk
0j<k<j-5
2003 1 g 232N 2N, /2’k>+ediss+Zed(k)
k>j+1 k>0j
= —Gisstcug, j(Giow,loct+Gloc+Ghn)+ediss+evi+ Z eq(k) (3-2)

k>6j
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is satisfied in the integral sense (recall (2-1)) for any cube Q of side-length d and any j € Z, where

0:=2Qa—1-¢) (3-3)
and

ediss 1= ¢ 22 (dzj)_ll"%Q/Z,jj:Z’

. 20jn—¢ej,,2
€yl .=C2 OUZ /M3Q/2,jj:2

Here max(Qk, %Q) denotes the larger of the cubes Oy, %Q, and Ggiss should be thought of as the
dissipation term, Giow.10c the interaction between low (i.e., modes k < j —5) and local modes (i.e., modes
Jj £2), Gioc the local interactions (i.e., including only the modes j +4) and Gy, the interactions between
high modes (i.e., modes k > j).

The role of the parameter 6 is to separate the “very low” Littlewood projections from the “low”
Littlewood—Paley projections. That is (roughly speaking), given j € N we will not have to worry about
the Littlewood—Paley projections P, with k < 6 (i.e., they will be effortlessly absorbed by the dissipation
at the price of the error term e,; (“v1” here stands for “very low”); see (3-12)—(3-13) below for a detailed
explanation), which is the reason why such modes are not included in Giow 1oc- In fact Giow 1oc is (roughly
speaking) the most dangerous term, as it represents, in a sense, the injection of energy from low scales to
high scales, and we will need to use Ggjss to counteract it; see Step 5 in the proof of Theorem 3.7.

The error term eqiss appearing in the estimate is the error appearing when estimating the dissipation
term, and it cannot be estimated by e, (j). Its appearance is a drawback of the main estimate, but in our
applications (in Theorems 3.3 and 3.7) it can be absorbed by G ggs.

Proof of Proposition 3.1. Recall (1-4) that a Leray—Hopf weak solution admits intervals of regularity.

Step 1: We show that it is sufficient to show (3-2) on each of the intervals of regularity.
On each interval of regularity (a, b) we apply the Leray projection (recall (2-10) to the first equation
of (1-1) to obtain
u+ (=) *u~+T[(u-V)u] =0.

Multiplying by Pj(¢2Q P;u) and integrating in space we obtain (at any given time)

1d
D= —/ (—A)u Py(¢3 Pju) — / Tl - V)ul P (3 Pu) =: 1 +J.
We note that 7, J € L'(0, T) for every T > 0. Indeed, by brutal estimates

17| = }/¢QP,~T[(M.V)M]¢§PJ-M‘
< 1P T Vyullli | Pjullos < cllull|Vull - 2372 Pjul| < ¢ 2%7/%||Vu|

(where we used Bernstein inequality (2-11) in the third line), which is integrable on (0, T') for every
T > 0. That I € L'(0, T) for every T > 0 is a consequence of Step 2 below. Thus, since u(t) is weakly
continuous with values in L? (recall Section 2), Lemma 2.6 gives that (3-2) is valid (in the integral sense)
on [0, c0).

Thus it suffices to show that / 4+ J can be estimated by the right-hand side of (3-2).
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Step 2: We show that I < —Ggiss + ediss + eq4(j). (Note that this gives in particular that I € L'(0, 00),
since (trivially) u g ; < ¢ for every cube Q' and every j.)
We write

I = _/¢Q(—A)“Pju b0 Piu
= —[ (—A)* Py (¢ Pju) po Pju — / (=AY (1 = P)) (o Pju) o Pju — / (b0, (—A)*1Pju g Pu
=L+ hL+15.

Note that, due to the Plancherel theorem
I=—c [P0 d < =2 [ 1561 s
= —c22“j/1’5jv-v = —c22°‘ju2Q’j +022“j/(1 — E)v v
<=2y} 421 — P)v| = —Gaiss +ea (),

where we wrote v := ¢ Pju for brevity, and we used the fact that ||v|| < ¢ (recall (1-3)) in the last line,
as well as Lemma 2.4 in the last equality.

Step 2.1: We show that I, < e;(j).
We write

L < [(=A)*(1 = P)) (o Piu)lug.j,
and we will show that

I(=2)*(1 = P ($g Pyu)l| < ea(j). (3-4)

(This completes this step as ug ; < c, as above.) Indeed, (3-4) follows in a way similar to Lemma 2.4 by
taking the decomposition

b0 = P1+ P2,

where

$1(£) == X|§|§2/’—2‘13Q($),
$2(E) := Xjg1=2i2h0 (&)

We see that ¢ Pju = F’, (¢1 Pju) (because of the supports in Fourier space, see (2-17)) and so it is sufficient
to show that

1(=A)*(pa Pju) || < ea())
(since ||1 — ﬁ; || < 1). Since the Fourier transform of (—A)% (¢, Pju) is
cle* [ 2 — ) p;j(mia(n) dy
<cf 16 —nl$2(E — mp;mam|dn+c | m**1a(E —n)p;(mia(n)|dn,

we obtain

1M @Bl < ellall f - IEPIB2E) 148 +elldollill (- AP Prull < ea()),
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where we used the Plancherel theorem, (2-18) and the fact that ||| - |20‘$2( 1 <eq(j) (which follows in
the same way as (2-18)).

Step 2.2: We show that I3 < egiss + €4 ().
We have

I3 < |ll¢g, (=A)*1Pjullug,;.
For brevity we let v := Pj(¢30,21), ¢ := ¢ and
=[¢, (=A)]v.

We will show below that
1W< c2*(d2))  usgp, +ea (),
and we will show in Step 2.2c that

W =Illlg, (—A)*1Pjull +ea()), (3-5)
from which the claim of this step follows (and so, together with Step 2.1, finishes Step 2). Since
WE) =c / (Inf** = 1EP*)(E — n)d(n) dn,
we can decompose W by writing [ = fln_glfzj,3 + fln_$|>2j,3, that is,

W =W +W,,

where

Wi =cf 0P = EPdE —min dn

Wa@)=cf P —1EPOGE — i d

We will show (in Step 2.2b below) that || W2 || < e4(j). As for Wy, since supp p; C {[n] € (2/71, 2/},
note that
supp Wi C {I&] € 2/7%,27%%). (3-6)

Setting f(z) := z% and expanding it in the Taylor series around |& |> we obtain

(k)
e — g Zf U 1y ket + L0 2 — ey,

where z( belongs to the interval with endpoints |5|> and |£]? (and so in particular zo € [2%/ 4, 22/+4]).
Writing \
> —1€17 =) i — &) + &)
i=1
and taking the k-th power we obtain
4

P =g =Y afP@) D g —&PnE,

k=1 |BI=k. [y1|+ly2l=k
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where z = |£|? (for k < 3) or z = z¢ (for k = 4). Thus, noting that | f® (z)| < ¢ 2/C*=2k)

3
W@l < 1fPEn Y g
k=1

|BI=k, [y1|+ly2l=k

+c Z |§||V2|

[B1=4, lyil+ly2l=4

<c 23: Z 27 Qu=2k+12))

k=1 |Bl=k, lyil+ly2|=k

[ &=l — oo dn|
[n—§1<2/7"

/IU—SIQH F© o) E —mPP&E —mn" () dn

[ = feE —mn e dn|
In—§1=<2/~

T s 18 —mdm)ldy

3
< CZ Z 2j(2a—2k+\V2|)|5B/¢;D\V|U(§)|

k=1 |BI=k, lyi|+|r2l=k

4 23: Z 2J Qa=2k+]y2])

k=1 |Bl=k. [yi|+ly2l=k

[ &= P& = a dn
In—§|>2/

+ 2/ € nl*l¢E —mD ()] dn

3
=cy ), YD IDPYDYv(E)| + Emry () + Emy(6).

k=1 |Bl=k, Iyil+Iy21=k

We will show below (in Step 2.2a below) that
[Erry ||, [Erra |l < € 2°%(d 27) " us g2, ja2 + €a ().

This, together with the Plancherel identity gives

3
Wi <e) Yo e PP DY | + 22 (d 2 usg ). 2+ €a())
k=1 |BI=k, [yil+ly2l=k
3

<c Y 229 d2) vl 422 (d ) usgpa. jr2 + ea (i),
k=1

where we used the facts that |VE¢| < cd~* for k = 1,2, 3, and | D" v|| < c2/72|v] (by applying
Lemma 2.4). Since d > 2~/ and

oIl < g3/ Pjuell +ea(j) = usgpo,j2 + ea(j)
(where we applied Corollary 2.5), we thus arrive at
IWill < 2% 2)) usg )2, j+2 + ea (),
as required.

Step 2.2a: We show that ||Erry || < e4(j) and ||Erra|| < ¢ 22%(d 2/) Yus g2, jaa + e€a ().
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‘We focus on Err; first. We have

3
Err(§) = ¢ Z Z 0J Qa=2k+|y2)

k=1 "|Bl=k, lyil+ly2l=k

[ &= eE — "o dn
In—§1>2/

3
<ey DO [ el —mieidn

k=1
<2k e IdE =m0 dn
In—§1>2/
<ex CRK [ el dy
In—§|>2/
i Qa—1 iN(1—K 4 172
<ex @@ O(f e -y~ dy)
In—g|>2/73

for every K > 3, where we used (2-20) in the fourth line as well as the Cauchy—Schwarz inequality, (2-2)
and the fact that ||v]| < ||u|| < ¢ (recall (1-3)) in the last line. Thus Err; (£) < e4(j) for every £ € R3, and
hence (since |&] < 2/%2) also ||Erry || < eq(j).

As for Err, we write

Erry (&) = ¢ 27«9 / & —nl*1p(E — )| dy

In—&|<2/=3

<2/ Hg! HOIL;
In—§|<2/

<2/ 3@y )|

= ¢ 2/ (@ 2)) | Pghsg ol

<203 (d 2wz g0 a0 +ea( ),
where we used (2-20) in the second line, the Cauchy—Schwarz inequality (as above) in the third line, and
Corollary 2.5 in the last line. Thus

IErra || < ¢2%(d 2)) w3, ja2 + ea (),
as required.

Step 2.2b: We show that || W>|| < ez (j).
Indeed, since |£|%* < ¢|n|** + c|€ — n|**, we obtain for any K > 2«

W26)] =| S P = P90 — o) d|
<cf PG —mieldnte | g —nlIdE —mdm)dy
In—§1>2/" In—§1>2/"

<@ [ 1E =0l ¥ 1B —mdm)] dn,
In—§[>2/
where we used the inequality 1 < cx|€ — n|X27/X, as well as || < ¢ 2/ inside the first integral in the

second line and the inequality 1 < cg|& — n|K—2¢27/(K=29) ingide the second integral. Thus, using the
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Plancherel identity and Young’s inequality for convolutions

IWall = W2l < ex 2’0 v]] [ sl igmidn
o2

<cg2 T I F g I~ dny
[n]>2/7"

< Csz(ZOl—K)d—(K-i—l) . |n|—4 dn
[nl>27

as required, where we used (2-20) in the third inequality.

Step 2.2¢c: We show that ||[¢, (—A)*]P;(1 — ¢30/2)ull < eq(j). (This implies (3-5).)
Indeed, letting (for brevity) w := (1 — ¢30/2)u and g;(§) := |E|2"‘pj (&), we can write

¢ (—A)* Pyw(x) = ¢<x>/{ G (x — y)w(y) dy,

|x—y|=d/3}

as in (2-16). Thus, since [|gjll.1(p@/3)) < ea(j) (as in (2-8)), we can use Young’s inequality for
convolutions to obtain

o (=2)* Piwll < lIgjll 1 s lwll < ea(j)- (3-7)
On the other hand
I(=A)*@Pw) | < I(=8)* By (@ Pyw) + |(=A)* (1 = P) (@ Pyw)|
< c 2 pPjwl +ea()) < ea()),
where we used (3-4) (applied with w instead of u) in the second line and Lemma 2.2 in the last line. This
and (3-7) prove the claim.

Step 3: We show that J < cug_ ;(Giow,loc + Gloc + Ghn) + ey + Zkzej eq (k). (This together with Step 2
finishes the proof.)
We can rewrite J in the form

J =~ [ $oPiTlw-Vyul- @ Piu) ==Y [ $oTiP;(ar S po Py,
i,l,m
where we used the fact that “7,,;” and “P;” are multipliers (so that they commute). (Recall that ?mi &)=
(8mi — En&ilE]72), see (2-10).) We now apply the paraproduct formula (2-14) to P;(u;0;u,,) to write
J = Jloc,low + Jlow,loc + ]loc + tha

where each of Jioc lows Jiow.loc> Jloc. Jhn €quals J except for the term u; d;u,,, which is replaced by the
corresponding combination of the modes of u; and 9Jju,,, as in the paraproduct formula (see (3-8) and
(3-10) below). We estimate Jpp, in Step 3.1 below and Jioc 1ow»> Jlow.loc> Jloc 0 Step 3.2.

Step 3.1: We show that Juy < cug ;G + Zkzj eq (k).
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‘We write

Jhh = — Z/beTmiF’j( Z Pk”lﬁkalum>¢QPj”i

i,l,m k>j+3

<llpoPittlloo Y ‘¢>QTmin > (Peui Pdyun)

1

idm k>j+3

§C23j/2MQ,jZ ¢QTmin Z (Pkulﬁkalum) +6d(])
ilm k>j+3 1

§C23j/2uQ,jZ ¢QTmin¢>§Q/2< Z Pkulﬁkalum> +eq()j)
ilm k>j+3 1

<c2Pug ;3" Ngsgp Pulll93p)n PeVull + ea (i), (3-8)
k=>j+3

where, in the fourth line we applied Corollary 2.3 with f:=)_ k> j+3 Priti Py, and noted that supp ¢ C % 0
is separated from supp(1 — qﬁ; 0 /2) by at least %d . As for the third line, we used Pju = P, Eu, (2-21) and
(2-11) to write

g Pittlloo < 2% ug j+ea() Piullos < c2%ug j +ea(j),

as well as noted that e;(j) multiplied by the (long) L' norm still gives e4(j), since we can brutally
estimate this norm,

‘¢>QTm,~Pj > (P Pedyuy) §||¢>Q||’P,»81Tm,» > (Paw Py
k>j+3 1 k>j+3

<cdPV Py Y (Pau Pat)
k>j+3

< cd**2%i%| p; Z (Peuy Pytty)
k>j+3 1

<cdP2P N | Pay Pag |l < e d*P2 || Pl

k> j+3 k> j+1

< cd3P2IP|u|? < cd¥1?251

for each i, I, m, where we used the Cauchy—Schwarz inequality in the first line, boundedness (in L?) of
the Leray projection (i.e., the fact that |fm,~ (§)] < 1) and the Bernstein inequality (2-11) in the third line,
(2-5) in the fourth line and the Cauchy—Schwarz inequality (twice) in the fifth line.

Noting that

1930,2 PeViell = | Pesa (939, V Pett) | + ea (k)
< Pki2v(¢§Q/2Fk”) | + 2] Pea2 (V302 ¢3Q/2Fku) | +ea(k)
<c2* I|¢32Q/2ﬁku I+ cd ™ usgpea + ea(k)

< c2fuzg 0 140 +ea(k),
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where we used Lemma 2.4 in the first inequality, the fact that || fN’k || <1 and (2-19) in the third inequality,
and the assumption d > 27/ > 27* in the last inequality, we obtain

Jin<c2Pug ;37 2830+ Y ealk), (3-9)
k>j+1 k=j
as required, where we also applied the Cauchy—Schwarz inequality in the first sum.

Step 3.2: We show that Jloc,low + Jlow,loc + Jioc < € ug,j (Glow,loc + Gloc) + eyl + Zkz@j eq(k). (This
completes the proof of Step 3.)

We set
j+2 j+4
U= Bur 3 Poti+ P 3 Py + ( 3 pku,>< ) pkum)
k<j-5 k<j-5 k=j—4 k=j—4
to write
Jioc,low + Jiow,loc + Jloc = — Z /¢QTminalUml¢QR/”i Sug,;j Z ||¢QTminalUm[”

i.l,m i,l,m

=ug; Y N6oTmiPi($30,0Un)l + €a(j)

i,l,m

<cug; Y P30, Un)ll +ea(j)
I,m

<cug,; Z(llpjal(¢§Q/QUml)|| + 311 Py ($30,201930/2Umn) ) + €4 (j)

I,m
<c2ug ;Y 1630Unll +ea(i), (3-10)
I,m
where we applied Corollary 2.3 (with ¢ :=2 and f := U,,;) in the third line, as well as (2-19) (as in the
previous calculation) and the assumption d > 27/ in the last line.
‘We note that for each m, [

30,2 Z Pru

k<j-—5

”¢32Q/2U”11” <2u3g2,j+2 + 9302 Pj+attl|ccU30)2, j+4- (3-11)

(o.¢]

Since we can estimate the above L* norm including the summation by writing

=2t 2
k<j—5 k<0j 6j<k<j-—5
that is,

+ Z | Pmax(0x,30/2) Prttll oo
o 9j<k=j-5

<l Pegjullcctec D 2*Pumiigisomit Y ealk)
0j<k<j—5 k>6j

<c2% ¢ Z 2% Y max0r.30/2) % + Z eq(k), (3-12)
0j<k<j—5 k>0j

$30)2 Z Pru

k<6j

302 Z Pru

k<j-5

=

o0
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where we used the localised Bernstein inequality (2-21) in the second line (note that taking max(Qx, 3 Q)
is necessary since only then can we guarantee that the sidelength of such cube is greater than 27, as
required by (2-21)) and the Bernstein inequality (2-12) in the last line, we can plug it in (3-11) to get

||¢§Q/2Uml | < cusgp.j+22°"* + cusgp jan Z 2% 2y30pk +c 231/2u§Q/2’ji4 + Z eq(k),
0j<k<j-5 k>0

where we used the assumption d > 27774 to apply the localised Bernstein inequality(2-21) again. Inserting
this into (3-10) and using the fact that %8 =2ua — 1 — &, we obtain

in—cj ' 3
Jioc.tow + Jiow.loc + Jioe < ¢ 22492 EJM%Q/ZJ':EZ +c2lug juzg, j+2 Z 220300k

0j<k<j—5
+c2Pug 13 gt Y ealk),  (3-13)
k>6j
as required (note the first term on the right-hand side the is the “very low modes error”, ey). O

We now constrain ourselves to j-cubes. Given a j-cube Q we will write

Ug :=ug,j
for brevity. The above proposition then reduces to the following.

Corollary 3.2. Let u be a Leray—Hopf weak solution of the Navier—Stokes equations (1-1) on the time
interval [0, 00). Let Q be a j-cube with j large enough so that 25/ > 16. Then

d 2 20j .2 j+3k/2 57/2,,2 3j/24+k, 2
aqu—CZ aqu+ch M3Q/2,j:|:2 Z 2j / qu+2 il u3Q/2,j:t4+ Z 2 il ”3Q/2,k
0j<k<j—5 k>j+1

+c2T T3, o ate(f). (3-14)
Proof. We apply the estimate from Proposition 3.1 (which is valid due to the assumption 2%/ > 16). Since

< ¢ 0JCa—e) 2

Ediss U30/2,j+2

and

Z ed(k) <cg Z 2Ck2€k(C—K) < CK209j+89j(c—K) =e(j),
k>0j k>0j

where K is taken large enough (to guarantee the summability of the geometric series), we arrive at (3-14),
as required. O

3B. Good cubes and bad cubes. We now fix ug € H'(R?) and a Leray—Hopf weak solution with initial
data ug. We say that a cube Q is j-good if

/OO/ Z 22ak|Pku|2 < 2—j(5—4oé+8). (3_15)
070 k>j

We say that a j-cube is good if it is j-good. Otherwise we say that it is bad.



768 WOJCIECH S. OZANSKI

3C. Critical regularity on cubes with some good ancestors. We show that, for sufficiently large j, good-
ness of a j-cube and some of its ancestors guarantees critical regularity (4-¢) of u o on a smaller cube Q.

Theorem 3.3. There exists jo > O (sufficiently large) such that whenever Q is a j-cube such that j > jy
and each Q_19, k € 0], jl, is good then

ug(t) < 27Ut fhrr 0, T).

Remark 3.4. The above theorem appears in an imprecise form as Theorem 7.1 in [Katz and Pavlovié
2002]." This is related to the somewhat unexpected way in which the dissipation error is handled in
Lemma 6.3 in the same work. This lemma is in fact not needed, and it seems necessary to incorporate the
dissipation error directly into the main estimate (in order to get around the imprecision), as in egjss in (3-2).

Moreover the statement of Theorem 7.1 in [Katz and Pavlovi¢ 2002] suggests that goodness of only
one cube is sufficient for the critical decay, which is not consistent with its proof (which uses goodness
of the ancestors in the third line on p. 375).

Proof. Note that the claim is true for sufficiently small # > 0 since uo € H', so that
|Buoll® = [ pF@lio@)P ds < c27 [ 1P lio(@)I> d& < 27 flugll}yy <2704+

for sufficiently large j, and u(z) remains bounded in H' for small > 0. Suppose that the theorem is
false, and let ¢y be the first time when it fails and Q a j-cube for which it fails. Then

ug(t) <27 UPCHFE for 1 < g, (3-16)
with equality for = #g. Let 11 € (0, 7o) be the last time when ug(f;) < %2_0 [2G—4ete) g0 that
%2_0/2)(5_4‘”8) <ug(t) < 2-UDGA+0)  fort e (11, 1p). (3-17)

Note that, since supp ¢3p/2 C ZTQ C Qj—1 CQj_10and Qj_1p is good,

To to .
/ Z 22aku%Q/2k < c/ / Z 22ak|Pku|2 < 02—/(5—4a+s)’
51 k>7-10 1 JQj-10

k>j—10

and so in particular (recalling that o € (1, %))

to g
/n Wl jag < 271672040 (3-18)
and
1o . 1o .
k. 2 1-2 20k 2 —j(4—20+
L2 Yuigpi=c?t a)/tl D 2 uSg < c27IOTRH), (3-19)
k=j+1 k>j

I The claim following “we must have” on p. 374 does not follow, as the assumption of the proof by contradiction is only on Q,
rather than on every cube in its nuclear family.
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Moreover, since Q19 is good for every k € [6], j], we also have

fo
2 —k(5—2a+¢)
/ uo, <c?2

1

(as in (3-18)), and so
Z 23k < c Z 2—k(2—20l+8) <c 2—j(2—2a+£) , (3_20)
" 0j<k<j-5 0j<k<j—5

where we used the fact that & > 1 and the fact that ¢ > 0 is small (recall (3-1)).2
Applying the main estimate (3-14) between #; and #p (and ignoring the first term on the right-hand
side) and then utilizing (3-18)—(3-20) we obtain

27O = (g (t0)* —ug()?)

1o . . .
= C/ ”Q<21”3Q/2,ji2 Z 23k/zu3Q/2J< +25J/ZM%Q/2,j:I:4+23J/2 Z Zkugg/z,k)
1 0j<k<j—5 k>j+1
. )
20— 2 .
§c2_(j/2)(5_4“+8) (2j2—(j/2)(5—2(x+s)2—(_/'/2)(2—2a+s/2)+25j/22—j(5—2a+s)+23j/22—j(4—2a+e))

4 ¢ 2 Qa—e)y=j(5-20+e)
SC27j(57405+£)(273j6/8+27j£/2+27j£/2+273j6/2)

< ¢ 0—i—date)y=3je/8

where, in the second inequality, we also used the Cauchy—Schwarz inequality and used the inequality
j <c27/%/% as well as absorbed e(j) (by writing, for example, e(j) < ¢ 27/ G~4+2¢) _recall the beginning
of Section 2 for the definition of the j-negligible error e(j)). Thus

1 <c277¢/4,
which gives a contradiction for sufficiently large j. O

3D. The singular set. Having defined good cubes and bad cubes, and observing that we have a “slightly
more than critical” estimate on a cube that has some good ancestors (Theorem 3.3), we now characterize
the singular set S in terms of its covers by bad cubes, and (in the next section) we show a much stronger
(than critical) estimate outside S.
Let A; denote the union of all bad j-cubes. Using Vitali covering lemma we can find a cover A; that
covers A; and such that
#A; < 2/ 04t (3-21)

Indeed, the Vitali covering lemma gives a sequence of pairwise disjoint bad j-cubes Q) such that

A cJso®
1

2The restriction o > 1 is used here, but & > 1 would be sufficient by noting that Zk>6 27ke < ¢27J9¢ Indeed, since 6 > 3
(recall (3-3)), the last inequality of this proof would become 1 <c¢2™ je®=1/2-1/8) Wthh still gives contradiction for large ]
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However, since [,/ |(—A)*?u|* < ¢ (from the energy inequality, recall (1-3)),

ez [[1era©r =Y [ m@lrlier
kez
> e Y2 [T @i P = [T Y2 Pl
k=j k> j
o 20k 2 —j(5—4a+e) )
ZC;/O /Qa);jz | Prutl 2022 J o, (3-22)

where we used the Plancherel identity (twice, in the first and fourth lines), Tonelli’s theorem (twice, in
the second and fourth lines), and the fact that QV’s are pairwise disjoint in the fifth line. Thus

#{l} < Czj(5—40{+8)’

and so A; can be obtained by covering each of 50® by at most 6° j-cubes.

In the remainder of this section we will show that there exists a (larger) j-cover B; of all bad j-cubes
(i.e., of A;) with the same cardinality (i.e., satisfying (3-21), but with a larger constant) and the additional
property that

for any x outside of B; there exists r € (0, 2_10)
such that 9(r Q;(x)) does not touch any bad k-cube for any k > ;. (3-23)

(Recall that Q;(x) denotes the j-cube centred at x.) We will refer to d(r Q;(x)) as the barrier, and to
(3-23) as the barrier property. We first discuss a simple geometric lemma.

Lemma 3.5 (geometric lemma). Let Q = Q(y), Q' = Q'(x) be open cubes with sidelengths 2a, 2b,
respectively. Then
d(rQ) intersects Q' = relrg—b/a,ro +b/al,

where ror > 0 is such that x € 3(rg' Q).

Proof. We will write y := b/a for brevity. We split the reasoning into cases.

Case 1: y€dQ’. Thenry =b/a (see Figure 2 (middle)), and so r > ro' —b/a trivially. Moreover d(r Q)
intersects Q’ if and only if ra < 2b (see Figure 2 (middle)), that is, r < 2b/a =rg + b/a, as required.

Case 2: y ¢ Q'. Then ro > b/a (which is clear by comparison with Case 1), and 3(r Q) intersects Q’
if and only if
roa—b<ra<rga+b

(see Figure 2 (right)), as required.
Case 3: y € Q'. Thenrg < b/a and 9(r Q) intersects Q' if and only if

b—rga<ra<rga-+b

(see Figure 2 (left)). The claim follows by ignoring the first of these two inequalities (and writing
r > 0> rg —b/a instead). O
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Figure 2. Sketch of the interpretation of Lemma 3.5.

We can now construct the j-cover satisfying the barrier property (3-23).

Lemma 3.6. For every j > 0 there exists a j-cover B; of A; such that #8; < c 2/C=4+8) and the barrier
property (3-23) holds.

Proof. (Here we follow the argument from [Katz and Pavlovi¢ 2002, Section 8].) We will find a j-cover
(also denoted by B;) of A; such that

for any j-cube Q outside of B; there exists r € (0, 2710y
such that d(r Q) does not touch any bad k-cube for any k > j. (3-24)

(Here “outside” is a short-hand notation for “disjoint with every element of”.) The barrier property (3-23)
is then recovered by replacing every j-cube Q € B; by 30 and covering it by at most 43 j-cubes. Indeed,
then for any x outside of such set we have that Q;(x) (the j-cube centred at x) is outside of B; and so
the barrier property (3-23) follows from (3-24).

Step 1: We define naughty j-cubes.

We say that a j-cube Q is k-naughty, for k > j, if it intersects more than n2*—/)G—4a+2¢) elements
of A;. Here 1 € (0, 1) is a universal constant, whose value we fix in Step 4 below. We say that a j-cube is
naughty if it is k-naughty for any k > j. (Note that a bad cube is naughty. A good cube is not necessarily
naughty, and vice versa.)

Step 2: For each k > j we construct a j-cover B; i of all k-naughty j-cubes such that
#B; i < o2/ Ot REUR), (3-25)

(Note that B; ; covers all j-naughty j-cubes, and so in particular all bad j-cubes.)
Let Q) be any k-naughty j-cube. Given QWV, ..., 0® let QU*D be any k-naughty j-cube that is
disjoint with each of 30, ..., 30®. Note that then 30", ..., 30? contain all elements of A; that
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oW, ..., 0¥ intersect. This means that QU*1 intersects at least n 2=/ O —42+28) “peyw elements of Ay
(i.e., the elements that none of OV, ..., O intersect). This means that such an iterative definition can

go on for at most
L= # A~ 2k DE—dat2e) ) —1oj(5—da+e) ge (=)

steps, and then the family {301, ..., 30®)} covers all k-naughty j-cubes. We now cover each of 3Q®"
(I=1,...,L)byatmost 43 j-cubes to obtain B; k. (Note (3-25) then follows from the upper bound on L.)

Step 3: We define B5;.
Let
Bj = U Bj,k.
k=j
By construction, B; covers all naughty j-cubes (and so, in particular, all bad j-cubes) and

#B; < Z#Bj,k < Cn—lzj(5—4a+8) Zza(j—k) =Cn—12j(5—4a+£),
k>j k>j

as required (given 7 is fixed).

Step 4: We show that (3-24) holds for sufficiently small € (0, 1). (This, together with the previous step,
finishes the proof.)

Let O be a j-cube disjoint with all elements of 3;. Let us denote by C*(Q) the collection of k-cubes Q’
(k > j) from Ay intersecting Q. Since Q is not naughty (as otherwise it would be covered by B5;)

#Ck(Q) < nz(k—j)(5—4()l+2€) .

Letrg € (0, 00) be such that 3 (ro’ Q) contains the centre of Q”. Applying Lemma 3.5 with 2a = 2-i=e)
and 2b = 27*1-8) we obtain that

d(rQ) intersects ' = relrg — 20-a(-k) ro + 2= -k,
Thus if fi(r) denotes the number of bad k-cubes that intersect d(r Q) then

fi(r) < Z X[,Q,_2<1fs)(.f—k),rQ,+2<1—s)(.f—k)](V)-
Q'eCk(Q)
Thus

Il fell 10,210y < 24k ()21 =0 < gppea—4=30)(j—k)

and so letting f:=) ;. ; Ji and recalling that o > 1 and ¢ is small enough so that 4o —4 — 3¢ > 0 (see
(3-1)) we obtain
I fllLr,2-10) < Z I fill 21 0,2-10) < €n.
k>j

(This is the only place in the article where we need the assumption o > 1; otherwise o > 1 would be
sufficient.) By choosing 1 € (0, 1) sufficiently small such that cn < 3 271% we see that || |11 9.2-10) <2719,
and so there exists r € (0, 27'9) such that f(r) =0 (recall that f takes only integer values). In other words
there exists r such that d(r Q) does not intersect any element of .4; for any k > j, and so in particular
any bad k-cube. O
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We now let
E :=lim sup U 0.
I gep;
Observe that, since #B; < ¢ 2/ 04+,
dy(E) <5—4a +¢;

see, for example, Lemma 3.1 in [Katz and Pavlovié¢ 2002] for a proof.

3E. Regularity outside E. We now show that for every x ¢ E and every interval of regularity (a;, b;)
there exists an open neighbourhood of x on which u(#) remains bounded (as ¢ € (1 (a; +b;), b;)). This
together with the above bound on dy (S) finishes the proof of Theorem 1.1.

Note that if x ¢ E then for sufficiently large jo

x ¢ Q forany Q € B;, for j > jo.
In particular
x does not belong to any bad j-cube for j > jj (3-26)

(since B; is a cover of all bad j-cubes), and for any j; > jo there exists r =r(x, ji) € (0, 2710y such that
d(r Qj, (x)) does not intersect any bad k-cube with k > j; (3-27)

(by the barrier property, (3-23)). The point is that the barrier can be constructed for any j; > jo. This will
be relevant for us, since in the proof of regularity below we will consider a j-cube with j > j; > jo /6%
Thus we will be able to deal with some of the low modes (k € [0/, j — 5])) using (3-26) and others using
(3-27). Indeed, for such modes we will have “cubes larger than j-cube” (i.e., Qf with k < j) and we will
obtain the critical decay on such cubes by either utilising the barrier property (3-27) (for cubes that are
only “a little bit larger”, see Case 1 in Step 2 for details) or the fact that distant ancestors are large enough
to contain x so that we can use (3-26). As for local and high modes (i.e., k > j —5), we will use the
barrier property (3-27) to obtain critical regularity for cubes located near the barrier, with more and more
regularity on cubes located further away from the barrier towards the interior. In fact we can guarantee an
arbitrary strong estimate for cubes located sufficiently far from the barrier, but we limit ourselves to the
estimate < 27/O—4a+10)/2,

We now proceed to a rigorous version of the above explanation.

Theorem 3.7 (regularity outside E). Let x & E. Given an interval of regularity (a;, b;), there exists ¢c; > 1
and j1 = ji1(c;) € N such that
ug(t) < ¢27IPQ/2 (3-28)

forallt e (%(ai +b;), b,~) and for every j-cube Q C rQj (x), wherer € (0, 2710y is as in (3-27),
p(Q) :=5—4a +min(10, 7;68(Q))
and §(Q) denotes the smallest k € N such that Q;_y intersects 9(r Qj, (x)).

Note that the theorem gives no restriction on the range of j’s, but it is clear from the inclusion
Q CrQj (x) that j > ji +10 (as r <2719),
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Proof. Since u is a strong solution in (a;, b;), it is continuous in time in (a;, b;) with values in H 6 (recall
(1-4)). Thus letting

ci = 1+c|u(3@ + b)) 4o
we see that, for any j-cube Q, uQ(%(ai +bl~)) < ||Pju(%(a,- +b,~))|| < ¢;27% and hence also ug(t) <c;

for some ¢ > %(ai + b;) (due to the continuity of the H 6 norm). Thus the claim remains valid on some
nonempty time interval following %(ai +b;) (since p(Q) <5—4a+10<11).

[T3E 2]

Since the interval of regularity (a;, b;) is fixed, from now on we will suppress the subindex “i”, for
brevity.

We take jo sufficiently large so that (3-26) and the claims of Corollary 3.2 and Theorem 3.3 are valid
(we will let jo even larger below). We let j; be the smallest integer such that

j1 = (o +10)/62. (3-29)
We also note that

if Q'(y) is a k-cube centred at y € rQj, (x) and touching the barrier 9(r Q}, (x))
then Q' is good if k > j. (3-30)

Indeed, if k > j; then Q' is good by the barrier property (3-27). If k < j; then Q" D rQj, (x) > x (as the
sidelength of Q’(y) is more than 210 times larger than the sidelength of 7 Q;, (x) 3 y), and so Q" is good
by (3-26).

Suppose that the theorem is false and let 7y > %(a + b) be the first time when it fails. Then

g (t) < c27%@Y2 forall ¢ € [0, 1] and all k-cubes Q' C rQ;, (x) (3-31)
and there exists a j-cube Q C r Q;, (x) (for some j > 0) such that
ug(tg) >27P(Q/2, (3-32)

We note that the existence of such Q is nontrivial, since there are infinitely many functions u o/ (¢) for

Q' CrQj, (x). In fact one can think of a scenario when all such u '’s remain close to zero until 7y with a

sequence of u o’s growing faster and faster past 7o (in such scenario (3-31) holds but not (3-32)). We verify

in Step 1 below that such a scenario does not happen (i.e., that such Q exists) as long as #( lies inside (a, b).3
We now let 11 € (0, tp) be the last time such that u g (1) = %2_jp(Q)/2. Then

up(t) € [%2_”’(@/2, 2_”’(@/2] for t € [1, tp]- (3-33)
The main estimate (3-14) gives
279 = S (ug(10)*—ug(h)?)

. rh I00) . . .
<-—c 22a]/ u2Q+c/ Uug <2]u3Q/2,ji2 Z 23k/2, Ok +25J/2M§Q/2,j:|:4+23]/2 Z 2ku§Q/2’k)
5 " bj<k=j—5 k=jt1

Io . .
—{—C[ 22a]2_]5u§Q/2yji2+e(j)’ (3_34)
1

3This is the localisation issue that we referred to in the Introduction. This issue was ignored in [Katz and Pavlovi¢ 2002].
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where we omitted the time argument in our notation. Note that we can write

e(j)<c2720

(recall the beginning of Section 2 for the definition of e(j), the j-negligible error), so that it can be
ignored (i.e., it can be absorbed into the left-hand side for sufficiently large j). We will estimate the terms
appearing on the right-hand side of (3-34) in Steps 2—4 below, and we will conclude the proof in Step 5.

Step 1: We verify (3-32).

Letm €N. By definition of # there exists T € (to, to+1/m) and a j-cube Q such that u o (1) > ¢ 27/°(@)/2,
We claim that (3-32) holds for such Q if m is taken sufficiently large. Indeed, if it does not, then
2jp(Q)/2uQ(t0) < 1 for each m, and so

c—1<2POPwg(r) —ugtn)) <2295 P (u(r) — ulto)ll < cllu(r) — uto) 36,

for all m, uniformly in j, and so continuity of « in time (on (a, b)) with values in H 6 gives a contradiction
for sufficiently large m. (Note that, for simplicity, we have omitted the dependence of T and Q on m in
the notation above.)

Step 2: We observe that §(Q) > 11, so that in particular
p(Q)=>5—4a+e. (3-35)
In order to see this, note that if §(Q) < 10 then Q;_j¢ touches 9(r Q;, (x)). Thus (3-30) implies that
Qk—10 is good for every k € [6], j], since
k—10>=60j—10=>0j, —10 > jy
by our choice (3-29) of j;. Hence Theorem 3.3 gives that

Qg (tn) < 271 64+02 < 9= G—4ated()/10)/2 _ 5=ip(Q)/2,

which contradicts (3-32).
Step 3: We show that
g () < c2HOTRHAI2, kel6j,j—5l,
c27/ P D=2/3/2 ke [j—4,...,j+100/¢], (3-36)
u3Q/2,k(t) =< —3in—k(9—4a)/2 .
c2737kO42 | > 4100/,
for ¢t € (11, tp).

Case 1: k € [0, j —5]. If 6(Qy) > 11 then in particular Oy C rQ;,(x) and p(Qx) > 5 —4a + ¢, and so
the claim follows from (3-31). If 6(Qy) < 10 then Q;_¢ is good for every / € [0k, k] due to (3-30), since

[—10>0k—10>6%j —10>6%j; — 10> jp. (3-37)

Therefore the claim follows from Theorem 3.3.
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Figure 3. An illustration of (3-40) - note that each Q' € Sk(ZT Q) is of the same size as
O (as in the illustration) or smaller (as k > j).

Case2: kel[j—4,...,j+100/¢). Then
Q) =8(Q)+k—j=8(Q)—4=7, (3-38)

where we used Step 2 in the last inequality. Hence Qy C r Qj, (x) and

P(Q1) = p(Q) — 2e.
Thus since for k € [j —4, j — 1] we have %Q C Qp, (3-31) gives

U3zQ/2.k < 2_kP(Qk)/2 < 2—k(,0(Q)—28/5)/2 <c 2_./(P(Q)—28/5)/2’

as required. If k > j we note that

usppk < Y. g (3-39)
Q'S 10/4)

where Si(3 Q) denotes a cover of 7 Q by k-cubes with #5; (5 Q) < ¢ 23¢=)0-9 (recall the beginning
of Section 3). Since

Q;=2"UP0=99"c Q; , forevery Q'€ 5 (50). (3-40)
see Figure 3, we obtain
30N =8(Q) +k—j=38(Qj-2)=68(0) -2, (3-41)
and so p(Q') > p(Q) — %8. Therefore (3-31) gives

ug < 2—kn(Q"/2 < 2—k(p(Q)—¢/5)/2 < c2—j(p(Q)—28/5)/2,

and since #Sk(% Q) < ¢23000=8)/¢ — ¢ (recall our constants may depend on ¢) the claim follows by
applying (3-39) above.

Case 3: k> j +100/¢e. For such k we improve (3-41) by writing

8(0) =8(0)) +k— j>8(Qj-2)+100/e = 5(Q) +100/e — 2 > 100/¢ (3-42)
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for any Q' € Sx(20Q) where we used Step 2 in the last inequality. This gives p(Q’) = 15 — 4. Thus
using (3-39) and the estimate #S, (1 Q) < ¢ 23*=N01=9) < ¢23%*=)) we arrive at

uzgk < Z ug < Z 2k0(QN/2 < (93k=1p=ko(Q)/2 _ .9=3ip—kO—4)/2
Qe (19/4) Qe (19/4)
as required.
Step 4: We use the previous step to estimate the terms appearing on the right-hand side of the main
estimate (3-34). Namely we show that

Z 22530 0k < ¢ 231207 G40 2p =2,
j<k<j=5 5 —Jjp(Q)/29~j(5—4a)/29—je/10
U302, jka = C2 2 2 ’ (3-43)

Z 2k”§Q/2,k < c2i2—ir(@)/29—j(5—4a)/2y—je/10
k>j+1

We note that, although the terms appearing on the right-hand side might look complicated, we write
them in this form to articulate their roles. As for the factors 23//2 or 2/, these are “bad factors” which,
together with the corresponding factor in the main estimate (3-34), give 23//2 This should be compared
against the factor 2°%/ which is a “good factor” given by the dissipation (i.e., by the first term on the
right-hand side of (3-34), which comes with a minus). This brings us to the factors of the form 2~/ S
whose role is exactly to balance the “bad factor” against the “good factors”.

As for the factors 27/°(9)/2 we point out that together with the corresponding factor ug (which is
bounded above and below by 27/°(2)/2 due to (3-33)) appearing in the basic estimate, one obtains 27/°(2)
as the common factor of all terms in (3-34).

Finally, the role of any factor involving ¢ is to make sure that the balance falls in our favour, namely
that the resulting constant at all terms on the right-hand side of (3-34) (except for the first term), is smaller
than the constant at the first term (the dissipation term). Writing the estimates in the form (3-43) also
exposes the value of 5 — 4«, which is our desired bound on the Hausdorff dimension.

We now briefly verify (3-43). The first two of them follow from Step 3 by a simple calculation,

Z 23k/2u3Q/2,k <c Z 2—k(2—4a+£)/2 < Cz—j(2—4a+£)/2 (3_44)

0j<k<j-5 0j<k<j-5
and

Wg) jua < €27TPO2/D — (0 ip(O/ =i (0@—4e/5)/2 < ¢ p=ip(@)/2 (4 2= je/10,

as required, where we used (3-35) in the last inequality. As for the third estimate in (3-43) we write
2= X o+ 2
k>j+1  j+1<k<j+100/e  k>j+100/s
and estimate each of the two sums separately,

S 2y < 22RO < 0 9)pmin(@))2 i date/S)2
j+1<k<j+100/e ’
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(recall that ¢ might depend on ¢), where we used (3-35) in the last inequality, and
Z 2k”§Q/2,k <273 Z pk@—da)  o—j(1-d0) o 9] =jP(Q)/2)~j(G—4ate/5)/2
k>j+100/¢ k>j+100/¢

where we used the inequality 11 — 4o > —1+ % p(0)+ %(5 —4da) + 1—108 (a trivial consequence of the
fact that p(Q) <5 — 4a + 10) in the last inequality.

Step 5: We conclude the proof.
Applying the estimates from the previous step into the main estimate (3-34) and recalling that
M%Q/Z,j:tz < ¢271(P(D=2¢/5 (from Step 3) we obtain

2=ip(Q)
< i / ‘°u2Q te / 0 0 (27271 P (Q=26/5)/2031/29= ] (5=4a) 29 &2 953120 =P (@2~ 5~4a 2= ]&/10
! ! 123012919 ip(Q)/29 =i (54 /2)=je/10)
Ly p2ain—je / 05— i(p(@—2¢/5)
f

=—c2% f t0u2Q+c 22 / " (2P Q2 (3810 9 e 10 pje/10y) | p2ein=37e/5 / “2-in(@
1 f n

< _czj(Za*p(Q))(to_tl)(l_czij/lo)’

where we used the lower bound u g > % 2-iP(Q)/2 (see (3-33)) in the last line. Therefore if Jjo is sufficiently
large so that
1—c2771e10 5 ¢

(where c is the last constant appearing in the calculation above; recall also that j; is given by (3-29)),
we obtain

1<0,
a contradiction. OJ

Corollary 3.8. Given x ¢ E and an interval of regularity (a;, b;) there exists an open neighbourhood U
of x such that
lu(t)|| L) remains bounded for t € (%(ai +b;), bi).

Proof. We fix an interval of regularity. By Theorem 3.7 there exists j; and r € (0, 27'9) such that
ug(t) < 2=ir(Q)/2

forall# € [0, T) and all j-cubes Q CrQj (x). Let j> € N be the smallest number such that §(Q) > 100/¢
for every j-cube O C Qj,(x). (Note that the last condition implies also that j > j».) Then p(Q) > 10 for
any such j-cube Q and so ug < c273. We let

U :=Q0j+2(x).
To show that [lu(t)]| .~ () remains bounded, we note that the localised Bernstein inequality (2-21) gives

o Pittlloo < ¢2°Pug +e(j) <c27 /2
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for every j-cube Q € §;(U) with j > j, +2. Hence

|Pulisw) < ) lIgoPjulles < 230U RA2 T2 — ¢ 9712
QeS;(U)
for such j and so
lull Loy < 1 P<jpiullo+ Y IPjutllow)
jzp+2
<c 2P| Pojul 4, Y 2717 <,
jzp+2
as required, where we used the Bernstein inequality (2-12) in the second inequality. U

3F. Regularity for o > %. Here we briefly verify Corollary 1.3. Letting € € (0, 4o —5) we see that any

j-cube (j > 0) satisfies
ug(t) <c< ¢~/ (5—date)

for all + > 0. Thus any closed and sufficiently small surface S C R’ can be used as a barrier, and
Theorem 3.7 (with 9(r Qj, (x)) replaced by S) gives that ug(r) < 277P(D)/2 for all j-cubes Q located
inside S and all # > 0 (provided ug is sufficiently smooth). Furthermore j, (from the proof of Corollary 3.8)
can be chosen independently of x (i.e., depending only on how small S is), and consequently Corollary 3.8
gives boundedness of ||u(t)||co in t > 0.

4. The box-counting dimension

Here we prove Theorem 1.2; namely that dg (S0 < %(—160{2 + 16a + 5), where % := Uisk S;
(recall (1-7)).

A bound on dg(S®) can in fact be obtained by examining the proof of Theorem 3.7 above. Namely,
observing that the only consequence of x ¢ E that we used in its proof was that

x¢Q forany Q€Bi, kel[6)i—10, jil, (4-1)
where j; is taken sufficiently large. In fact, this allowed us to deduce that for a given j-cube Q C rQj, (x)
the cube Q; = 2U=00-9 0 is good for such k’s (take jy := |6%j; — 10] and recall (3-26), (3-27) and
(3-30)). This, in light of Theorem 3.3, gave us the “slightly more than critical” decay, which in turn
enabled us to deduce better decay for cubes located further inside the barrier r Q;, (x). Corollary 3.8 then

deduced that x & S.
Using (4-1) we see that for sufficiently large j

U Ue
ke{|62j—10],...,j} QB

contains the singular set in space at a given blow-up time. Thus, covering each of the covers By
(k € {|6%j —10], ..., j}) by at most

C23(j—k)(l—s)#Bk < C23(j—k)(1—8)2k(5—4a+£) — C23j(1—€)2k(2—4a+28)
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j-cubes we obtain a cover of the singular set by at most
J
c Z 237 (1—8) gk(2—da+26) _ . 1) (3=36+6(2—4a+26))

k=6%j—10] —c 2j(—64oz3+96012(1+8)—48a(1+8)2+35+883+882—3s)/9 (4-2)

Jj-cubes, where we substituted 6 = %(204 —1—¢) (recall (3-3)) in the last line. In other words N (S, r),
the minimal number of r-balls required to cover S (recall the definition (1-8) of the box-counting
dimension), satisfies

N(S(m) r) <Cr(764a3+96a2(l+s)74805(1+£)2+35+8a3+86273e)/9(1fs) (4-3)

for sufficiently small ». This gives that
dp(S"™) < §(—64a® +96a* — 48a + 35) (4-4)

for every m € N. As noted in the Introduction, we point out that the required smallness of r for (4-3)
to hold depends on the interval of regularity (a;, b;). This is the reason why we only estimate d(S"™),
rather than dg(S).

In what follows we present a sharper argument that allows one to get rid of one of 8’s in the first line
of (4-2) to yield the following.

Proposition 4.1. Given the interval of regularity (a;, b;) the set

U Ue

kefl6j—10].....j} QeBy
covers the singular set in space at time b; if j is sufficiently large.

Assuming this proposition and letting C; be a j-cover of all elements of By for k = [0 — 10/, ..., j,
we obtain a j-cover of the singular set with

J
#Cj <c Z 23(j—k)(l—e)#Bk < ¢ 2J (3=3e+0(2—4a+2e)) =C2j(—16a2+16a(1+s)+5—178—4a2)/3’

k=[0j—10]

which shows that dg(S™) < %(—160{2 + 16 + 5) for all m € N, by an argument analogous to that above.
This is sharper than (4-4), and it proves Theorem 1.2. We note that if one was able to get rid of the other 8
in (4-2), then one would obtain dg(S) <5 — 4«, i.e., the same bound as for dg (5).

Before proceeding to the proof of Proposition 4.1, we comment on the main idea of Proposition 4.1 in
an informal way.

Recall (3-37) that for each k € [0, j — 5] we needed Q;_1¢ to be good for [ € [0k, k], and deduced
from the “e-better than critical” decay for u ¢, (in Case 1 of Step 3 of the proof of Theorem 3.7, by using
Theorem 3.3), which we have then plugged into the sum of the low modes of the main estimate (3-34) (in
(3-44) above). However, looking closely at this term of the main estimate,

. fo
2/ / uousgp jza Y 2% ug,,
" 0j<k=j-5
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we observe that it has a structure similar to the definition of a good cube (3-15). Indeed, ignoring u o and
u3g /2, j+2 for amoment we see that we could use (3-15) to estimate it. If that were possible, we would only
need to require that Qy (or rather Q_1) is good for k € [0, j — 5], and so we would end up with a saving
of one 6. The only problem is that (3-15) is concerned with the time integral of a squared function, rather
than the function itself, and so, applying the Cauchy—Schwarz inequality in the time integral we would

obtain an additional factor of (fo — #;)~'/2; see the last term in (4-8) below. It turns out that this additional

factor can be taken care of by absorbing a part of this term by the left-hand side (as in (4-9) below).

Proof of Proposition 4.1.. We will show that if j; is sufficiently large then every x outside of C;, is a
regular point in the given interval of regularity (a, b). We set

Jo:=10j1—10]. (4-5)
As in Theorem 3.7 we show that, for sufficiently large j; = ji(c;),

for every x ¢ LJQEcj1 Q. where ¢; depends on the interval of regularity (a;, b;). In fact, we can copy the
entire proof of Theorem 3.7, except for Step 4, where we replace the estimate on the low modes (i.e., the
first inequality in (3-43)) by

Z 23k/2/’°qu < c(tg— 11)2~ T C—4HO/2 | (g — 1)\ /20 = Q=2040)/2. (4-7)
kel0,j-51 5
which we prove below. Given (4-7), we can plug it, together with the remaining two inequalities in (3-43),
into the main estimate (3-34) (just as we did in Step 5 of the proof of Theorem 3.7 above) to yield
2779 = c(ug(t0)*~ug(n)*)

. Iy 1o . . .
h h 0j<k<j—3 k> j+1

Ly p2ajp—je ’Ouz te(j)
" 30/2,j%2 J

0]
Z 23k/2u 0

0j<k<j-5
+C(t0—t1)22“j2_jp(Q) (2]'8/10+2j£/10+23ja/5)

< 22 (to_tl)z—jp(Q)+02—jp(Q)2j(1+8/5)/
n
< 2% (19—11)27 1P QD (—c+c 271NNy e (19—1)) 12271 Q) i =3//10, (4-8)

where, in the last step, we applied (4-7) to estimate the low modes. At this point we obtain the same
inequality as before (i.e., as in Step 5 of the proof of Theorem 3.7), except for the last term, which can be
estimated using Young’s inequality ab < %az + %bz to give

% 2=ir(Q) +e 22aj (o — tl)z—jp(Q)2—3j8/5_ (4-9)
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Absorbing the first term above on the left-hand side we obtain
1< 2% (g — ) (= + 27719,

which gives a contradiction for sufficiently large j.
It remains to verify (4-7). To this end, if §(Qf) > 11 then, as before, we can use the fact that the claim
(4-6) remains valid until 7y to obtain that

Z 23k/2/f0qu < clto—11) Z 23k/20—kp(01)/2 SC(to—t1)2_‘/(2_4“+8)/2,
t

kel6j, j—51 ! kel6j,j—51
3(Qr)=11 8(Qr)=>11

where we used the fact that p(Qx) > 5 — 4a + ¢ in the last inequality.
If §(Qy) < 10 then Qo intersects the barrier (r Q;, (x)), and so it is good as k — 10 > 6 — 10 > jp
(recall (3-30) and (4-5)). Thus since ¢p, <19, ,, (recall (2-19)) the definition (3-15) of a good cube gives

fo Io
/ ”%Qk < // |Pku|2 SC2—k(5—2a+s)‘
15 t1J Qr—10

Hence
10 fo 1/2
S s Y ([,
kel6),j—51,6(Qx)=<10 g )., J—5,8(Qx)=<10 g
< C(t() . tl)l/Z Z 271{(2720{4»8)/2 — C(t() _ t1)1/227j(2*20t+8)/2’
k<j—5
as required. 0
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THE PESKIN PROBLEM WITH VISCOSITY CONTRAST

EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

The Peskin problem models the dynamics of a closed elastic filament immersed in an incompressible fluid.
We consider the case when the inner and outer viscosities are possibly different. This viscosity contrast adds
further nonlocal effects to the system through the implicit nonlocal relation between the net force and the free
interface. We prove the first global well-posedness result for the Peskin problem in this setting. The result ap-
plies for medium-size initial interfaces in critical spaces and shows instant analytic smoothing. We carefully
calculate the medium-size constraint on the initial data. These results are new even without viscosity contrast.
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1. Introduction

Fluid structure interaction (FSI) problems in which an elastic structure interacts with a surrounding fluid
are found in many areas of science and engineering. Many numerical algorithms have been developed
for such problems, and the scientific computing of FSI problems continues to be a very active area of
research [Li and Ito 2006; Peskin 2002; Tryggvason et al. 2001; Richter 2017]. The Peskin problem,
considered in this paper, is arguably one of the simplest FSI problems and has been used extensively in
physical modeling as well as in the development of numerical algorithms as a prototypical test problem.

1A. Formulation. Consider the following fluid problem in R?. A closed elastic string I" encloses a
simply connected bounded domain Q; C R? filled with a Stokes fluid with viscosity ;. The outside
region £, = R?\(Q; UT) is filled with a Stokes fluid of viscosity yt». The equations satisfied are

wiAu—Vp=0 inQ, (1-1)
poAu—Vp=0 inQ, (1-2)
V-u=0 inRA\TI. (1-3)

Here u is the velocity field and p is the pressure.

MSC2020: primary 35Q35, 35C15, 35R11, 35R35, 76D07; secondary 35C10.
Keywords: Peskin problem, fluid-structure interface, viscosity contrast, global regularity, critical regularity, immersed boundary
problem, Stokes flow, fractional Laplacian, solvability, stability.
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We must specify the interface conditions at I". Parametrize I" by the material or Lagrangian coordinate
0€S=R/(2nZ), and let X (6, t) denote the coordinate position of " at time ¢. The parametrization is
in the counterclockwise direction, so that the interior region €2; is on the left-hand side of the tangent
vector 0 X /d6. For any quantity w defined on €21 and €2, we set

[w]l=w|r, —w|r,,

where w|r, and w|r, are the trace values of w at I" evaluated from €2; (interior) and €2, (exterior) sides
of I'. Let n be the outward-pointing unit normal vector on I':

dp X+ X N 0 —1
- _ , g X =—, X =RpX, R= ,
x| a0 b [1 o}
where R is the %—rotation matrix. The interface conditions are
X (X, 1) (1-4)
—=u s s -
ot
[u] =0, (1-5)

pi(Vu+ (Vu)") — pI  in Qy,

w2 (Vu+ (Va)™y — pI  in Q, (1)

[En] = Faldo x|, 2={
where [ is the 2 x 2 identity matrix. The first condition is the no-slip boundary condition and the second is
the stress balance condition, where X is the fluid stress and Fg is the elastic force exerted by the string I
We let

Fa =kod7 X, ko> 0, (1-7)

where k is the elasticity constant of the string I'.

In the far field, x — oo, we impose the condition that # — 0 and p — 0. This completes the specification
of the Peskin problem.

Let us rewrite the above problem using boundary integral equations. Given some function F defined
on I', we express the solution to our problem as the following single-layer potential on S = [—, 7 ]:

u(x,t) =/§G(x —X(m)Fn)dn, (1-8)
G(x):%(—log|x|l+%), x = (x1, )T € R?, (1-9)

where G is the stokeslet, the fundamental solution of the two-dimensional Stokes problem. Additionally
for y = (y1, 2)T € R? we use the notation

XQy= [X1Y1 X1)’2]
X2¥1 X2)2

We note that X and F (and other variables) depend on ¢, but we will often suppress this dependence to
avoid cluttered notation. We note that the single-layer potential does not have a velocity jump across the
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interface, and thus the boundary condition (1-5) is automatically satisfied. We then have

oX
W(G) =/ G(AX)F(n)dn, (1-10)
s
where we use the notation
AX =X(0)— X(n).

On the other hand, the stress interface condition (1-6) is not automatically satisfied, and this will lead
to an equation for F. Let us compute the stress associated with the single-layer expression (1-8). The
stress X in €25 is given by
Xij(x) = Mz/ Tijk(x — X () Fie(n) dn,
S
with

1 XiXjXk
Tijk=———-

, 1-11
T xf’ (1-11)

where the subscripts denote the components of the respective tensors/vectors, such as F = (F1, F>)T and
the summation convention is in effect for repeated indices. We refer to Chapter 2 of [Pozrikidis 1992] for
further details on the derivation of the stokeslet and the stresslet tensors. In €21, the stress is given by

Yij(x, 1) = /S’Ejk(x — X () Fi(n) dn.

Thus, the trace values of the normal stresses are given by the equations
1 -
Xii(X@))ni(@)|r, = 12 (—EFI' 18X | +pv [ Tij(AX)Fr(n)n;(0) dﬂ),
S

i (X(©0)n;(@)|r, = (%Filae?fll +pv A Tijik (AX) Fi()n j(0) dn)-

The stress jump condition (1-6) thus reduces to (fori =1, 2)

Fi(0)+24, | Tij(AX)Fe(n)dg X:-(0)dn = Fer,i (9),
0)+ M/g HOX)FD X} O)dn = 2 Fa,(0)
where
M2 — U1
A, = . (1-12)
. 1+ 2
We define
Si(F, X)(9)=—39Xf(9)/ Tijx (AX) Fi(n) dn.
S
We will frequently write it in vector notation as
F(0) =2A,8(F., X)(0) +24.Fa(9), (1-13)
where
S(F, X)(9)=—30X(9)L-/T(X(G)—X(n))‘F(n)dn, (1-14)
S
with
~ 1 ko
Felz_ el» Ae (1—15)

ko ot



788 EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

We point out that the above boundary integral equation has a unique solution F given Fg for sufficiently
smooth X.

The Peskin problem thus reduces to the integral equations (1-10) and (1-13) for X', where G, T, A,
S, A,, and ﬁel are given by (1-9), (1-11), (1-12), (1-14), and (1-15), with F¢; given by (1-7). Note also
that, when A, =0, i.e., 1 = 2, equation (1-13) reduces to F = 2A,F|, and we may just work with the
single equation (1-10).

Assuming that the stationary solutions are sufficiently smooth, it can be shown by an easy calculation
that the only stationary solutions are those in which X is a uniformly parametrized circle and the velocity
field is u = 0; see Section 5.1 of [Mori et al. 2019]. Thus, all of the equilibrium configurations of (1-10)
and (1-13) are spanned by

o T e O ) R

1B. Critical regularity and related results. A general guideline for seeking the most natural and largest
class of initial data for a given problem is to identify its scaling and consider a function space that is critical
(invariant) with respect to this scaling. The Peskin problem given above by (1-10) and (1-13) is invariant
under dilation, and thus to make proper sense of scaling one must first fix a reference scale. Consider the
scaling parameter A > 0. The domain scales accordingly from the torus S=[—n, 7]to S/A=[—7x /A, T /A].
Then, we choose as the reference scale the length of uniformly parametrized circles, which we pick to be 2.
Given the additional rotation and translation invariance of the problem, let us consider the particular choice

X.1(0) = 27" X,0.0),

where X, (0) = e, (0). Then, the system (1-10), (1-13) is written in terms of the difference X (9, t) =
X0, t) — X.(0). One can check that the following dilation invariance holds: if X (6, ¢) is a solution,
then X, (0, 1) = A~ X (10, A1) is also a solution.

More generally, if the elastic force Fg is given by (1-7), then (1-10) has an additional scaling invariance
given by X (0,¢) =1t X (A0, At) and X, ) (0) = 1 X.(A0) for any A, T > 0. The stress jump condition
(1-13) then scales as F) . (0,¢t) = A2t F ()0, At). This more general scaling leaves the equation invariant
with 7 unrelated to A. We note however that the chord arc condition, defined below in (1-17), is only
invariant under the dilation rescaling where 7 = AL,

The analytical study of the Peskin problem was initiated in [Lin and Tong 2019; Mori et al. 2019],
in which the case of equal viscosity p; = wy was studied. In [Lin and Tong 2019], well-posedness was
established in X € C([0, T]; H*(S)), T > 0, with initial data X in H>/%(S), whereas in [Mori et al.
2019], the solution resides in X € C([0, T]; C1*(S)), @ > 0, T > 0, with initial data X in h1%(S),
o > 0 (this space is the completion of smooth functions in the C*% norm). These spaces are subcritical
with respect to the above scaling. Indeed, in the L? Sobolev scale, H>*(S) (or C([0, T1; H>?*(S))) is
the critical space, whereas in the scale of (Holder) continuous functions, C'(S) (or C([0, T1; C1(S))) is
the critical scale. In this sense, the results in [Mori et al. 2019] are only barely subcritical. The semilinear
parabolic methods [Lunardi 1995] that are used in [Mori et al. 2019] rely crucially on subcriticality,
however, and do not seem to be readily extendible to the critical regularity exponent.



THE PESKIN PROBLEM WITH VISCOSITY CONTRAST 789

In this paper, we consider the Peskin problem in which the viscosities p| and w, are not necessarily
equal. Furthermore, we establish a solution theory with initial data X in the Wiener space F!-1(S), the
space of functions whose derivatives have a Fourier series that is absolutely summable (see Section 1C).
This space is critical with respect to the scaling of the Peskin problem identified above.

In contrast to [Lin and Tong 2019; Mori et al. 2019], our theory is restricted to initial data that is
sufficiently close to the stationary states, i.e., the uniformly parametrized circles. The papers [Lin and
Tong 2019; Mori et al. 2019] establish local-in-time well-posedness in their respective function spaces
subject to the following arc-chord condition on the initial data:

|X0(0) — Xo(n)|

|Xol,= inf > 0. (1-17)
0,n€S,0%n |60 —n|

In this sense, our results might be better compared to the results on asymptotic stability of the uniformly
parametrized circle obtained in [Lin and Tong 2019; Mori et al. 2019]. The uniformly parametrized circle
is proved to be exponentially stable in the above L? Sobolev and Holder scales respectively, and in the
latter paper, it is proved that the solution is in C*°(S) for all positive time. In this paper, we improve
upon this result to prove that the solution is analytic for positive time.

Local-in-time well-posedness for initial data in 7!'! merely satisfying condition (1-17) is an open
question that we do not address in this paper. It is notable, however, that the arc-chord condition (1-17) is
invariant under the dilation scaling described above. In [Mori et al. 2019], it is shown that, if the solution
ceases to exist as ¢ approaches f, < 0o, then following must hold:

5 B 1199 Xl ce
im gy (X) =00, ©u(X)=——— foranya >0.
= kD
On the other hand, if g, (X’) remains bounded for all time for some « > 0, then X must converge to a
uniformly parametrized circle. A similar criterion, in which the numerator of g, is replaced with a critical
norm such as the 7!'! norm, would be a major improvement that should lead to a better understanding of
the global-in-time dynamics of the Peskin problem.
Another extension of the Peskin problem is to consider the following elastic force in place of (1-7):

Fu = 00 (T80 20 2% (1-18)
el — 0o 0 |89X| s

where 7 (s) is a tension coefficient that must satisfy the structure condition 7 > 0 and d7 /ds > 0. Note
that the above expression is reduced to (1-7) if we take T (s) = kgs, hence ko = 7 (1) =d7T /ds. In the
case of equal viscosity (| = p, a local-in-time well-posedness theory for initial data satisfying (1-17)
under the more general force (1-18) is established in [Rodenberg 2018] in the Holder scale similarly to
[Mori et al. 2019], using nonlinear parabolic methods [Lunardi 1995]. It is expected that the results and
methods of this paper can be extended to this more general case.

Finally, we mention [Tong 2021] in which the author considers a regularization of the Peskin problem
inspired by the immersed boundary method, extending the techniques in [Lin and Tong 2019]. Such
studies may form the basis for numerical analysis of the Peskin problem.



790 EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

The surface tension problem, in which the interface is not elastic but only exerts a surface tension,
may be the most closely related class of problems for which there are extensive analytical studies. We
note that our problem is distinct from the surface tension problem; in contrast to an elastic interface
considered in the Peskin problem, an interface with surface tension only does not resist stretching. This
difference manifests itself in the different energy dissipation laws satisfied by the respective problems;
see Section 1.1 of [Mori et al. 2019]. We refer the reader to [Priiss and Simonett 2009; 2016; Shimizu
2009] for an extensive survey of the analytical study of the surface tension problem.

There is also an increasing number of analytical studies on fluid-structure interaction problems in
which an elastic structure interacts with a fluid, related to the Peskin problem considered here [Ambrose
and Siegel 2017; Cheng et al. 2007; Cheng and Shkoller 2010; Liu and Ambrose 2017; Muha and Cani¢
2013; Plotnikov and Toland 2011; 2012; Li 2021; Boulakia et al. 2012]. The equations dealt with in these
studies are typically more complicated than those of the Peskin problem; the sharp results obtained for
the simpler Peskin problem should serve as a guide to what is possibly true for the more complicated
model problems.

From an analytical perspective, the Muskat problem is perhaps the closest nonlinear PDE to our
problem for which there is a large body of analytical studies. However, it models a very different physical
setting: two immiscible and incompressible fluids in a porous media governed by Darcy’s law. On the
other hand, for a nearly flat interface in the presence of gravity both problems have the same symbol
at the linear level. The authors of [Constantin et al. 2013] introduced the use of the Wiener algebra
to obtain global well-posedness results for the Muskat problem at critical regularity. Moreover, the
size restriction on the initial data was given by an explicit constant that is independent of any physical
parameter. These techniques were extended in [Constantin et al. 2016; Gancedo et al. 2019a] to deal with
the three-dimensional setting and the case of viscosity jumps, respectively. Other results for the Muskat
problem that only require medium-size initial data in critical spaces (as opposed to the more standard
arbitrarily small data condition) [Cameron 2019; 2020] rely on the maximum principle; these methods
have thus far not been shown to be well-suited to deal with viscosity contrasts.

In this paper, we will use spaces related to the Wiener algebra that allow us to perform careful and
detailed estimates on the nonlinear terms to control explicitly the size constraint on the initial data (see
Figure 1). As opposed to the Muskat problem, here the problem is not only described by the shape of
the interface: the parametrization corresponds to the distribution of material points, and thus it matters.
As a consequence, we have to develop further techniques to deal with a system of equations (for both
components of the curve). Interestingly, a careful understanding of the linear system, together with an
appropriate change of framework, allows us to decouple the frequencies associated to the projection of
the interface onto the space of equilibria from the others. Indeed, we overcome a major difficulty of the
very recent result in [Gancedo et al. 2019b] that deals with the Muskat problem for closed interfaces (i.e.,
bubbles), and obtain the global existence and uniqueness result for the Peskin problem with viscosity
contrast at critical regularity.

1C. Notation and functional spaces. We summarize here the notation and functional spaces that will be
used throughout the paper.
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For a vector x = (x1, x2)T € C? we define

L def def [0 —1 1| 01
x— =Rx, R—[l O]’ R —[_10.

We denote the Euclidean norm as

x| = VaTE =Ix1 2+ |xl%,
and for a matrix A = (a;;)1<;, j<2> we use the induced matrix norm
|All = omax(A), (1-19)

where omax(A) is the largest singular value of A. For a vector such as X, we will write X, ; to be the
Jj-th component of that vector.
We now define the periodic Hilbert transform of a function f with period 2P as

def 1 G 77) / fO—m—f0O@+n
3 4P tan ( 2P/rr)

_p tan (W
Unless stated otherwise, throughout the paper we will use the case P = . In this case, we also define
the Fourier transform of a periodic function f with domain S = [—m, 7] as

H()O) = dn. (1-20)

F(HRE Fk) = % /n f@e ™ 4o, kez.

Further F(H(f))(k) = —i sgn(k) f (k). Then we define the operator A using the Fourier transform as
FAL)K) E k| £ (k). And we observe that H(dy £)(0) = Af.
We denote by f * g the standard convolution of f and g. We use the iterated convolution notation

KK f=fo-xf (1-21)
N e’

k—1 convolutions of k copies of f

Thus for instance %> f = f * f.
We also use the following notation for the discrete delta function, 8,(k), which is the function that is
equal to 1 when k = a and equal to O elsewhere. Throughout the paper we will further define

81,—1(k) =81 (k) + -1 (k). (1-22)
We further define the high-frequency cut-off operator 7, for M > 0 by
TnX (k) E 1=p X (6), (1-23)

where 14 is the standard indicator function of the set A, sothat I4(x) =1ifx € Aand 14(x) =0if x ¢ A.
For two vectors X (0), Y (0) € R? we define

(X,Y) :/ X(©0) -Y(©)deo. (1-24)
S
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Generalizing the Wiener algebra of functions with absolutely convergent Fourier series as in [Gancedo
et al. 2019b], we further define the homogeneous F*! and nonhomogeneous F**! norms as

Xl 1= > "MK |X K, seR, (1-25)
kez\{0}
XN o = 1XO)+ > "Mkl |X k)], s >0, (1-26)
kez\{0}
with
t) = >0, 1-27
V(1) = Vso 1+7° ( )

and vy, > 0 is chosen sufficiently small. Note that v(0) =0, v(¢) > 0 for all 7 > 0. Further v'(¢) < vy
and v(t) < v are bounded for all time. When v = 0, we write .?-'5’1 = 75! and .7-"5’1 = F5! These are
the main norms that we will use in this paper. Note that when s = 1, the F*! norm is critical for the
Peskin problem.

In this paper we write A < B if A < CB for some inessential constant C > 0. We also write A &~ B if
both A < B and B < A hold. Throughout the paper, we will define

Ci=Ci([ Xl g =Ci(IX £115v00) >0, i=1,2,..., (1-28)

as functions that are increasing in || X || A= 0 and might depend on the analyticity constant v, with
the properties that Ci(||X||J-Tv1,1) ~ 1 for all v, > 0 and limHX”ijl,l—)(ﬁ C,~(||X||J-TV1,1; 0) = 1. We will also
define

Di = Di(I X z1.1) = Di(II Xl 113 Ay, voo) >0, i=1,2,...,

as functions that are increasing in || X|| = 0 and might depend on the physical parameter A, and the
analyticity constant v, with the properties that D; (|| X|| ]’_-vl,l) ~1forall A, € (—1,1) and all vy, > 0,
and lim”XH]':Ll_)OJr Di(”X”j:vl’l; 0, 0) =1.

1D. Main results. In this section we will state the main result of this paper: namely, that membranes
whose initial interface has critical regularity (in terms of the scaling of the problem), and that are not too
far from an equilibrium configuration, become instantaneously analytic and converge exponentially fast
to the equilibrium. Without loss of generality, we assume that the initial area enclosed by the membrane
is . We get the result under an explicit medium-size condition for the initial deviation and for general
viscosity contrast A, € (—1, 1).

Definition 1.1 (strong solution). Let

xXecCc(o,7T: F*YHnclwo, T1; FOhH

and

X@,1)—X(n,t
A o XED-X@0l
0,neS,0#n |6 — T]l

0

for 0 <t <T. Then, X is a strong solution to the viscosity-contrast Peskin problem with initial value
X (0) = X, if it satisfies (1-10), (1-13) for 0 <7 < T and X () — Xoin F'!l ast — 0.
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Theorem 1.2 (main result). Let A, € (—1,1) and Xy € F L1 Let Xo.. be the projection of X onto the
vector space spanned by (1-16) and Xo = X — Xo ; thus X is mean zero and X 0(0) = X0,.(0). Assume
that initially the deviation X satisfies the medium-size condition

| Xoll 711 < k(A,), (1-29)

where k(A ) > 0 is defined in (4-9) (see also (4-10) and Figure 1), and that the area enclosed by X is 7.
Then, for any T > 0, there exists a constant Voo > 0 such that there exists a unique global strong solution
X (t) to the system (1-10) and (1-13), which lies in the space

Xec(o, 1], FFhnclo, T1; FAYhn Lo, T1; 21,

with v(t) given by (1-27). In particular, it becomes instantaneously analytic. Moreover, the following
energy inequality is satisfied for 0 <t <T:

A t
IIXII;UH(I)JrfC/ 1 X1 z21(T) dT < [ Xoll 1.1, (1-30)
0
with C = C(||Xoll z1.1, Ay, Voo) > 0 defined in (4-12). In addition,
1X [ 511 (8) < | Xoll e ™A/ (1-31)

The zero frequency X ¢(0) remains uniformly bounded for all times as

1X:(0)] < |X0,(0)] +Cl Xol 1.
with C = C(| Xol| 1.1, A,)) > 0 given in (4-15), while
L= 3IX150 < 1XeP < 1+ 51X 1300 (1-32)

We remark that the decay to zero of the deviation X in (1-31) together with (1-32) shows the exponen-
tially fast convergence to a uniformly parametrized circle with the same area as the initial one.

Remark 1.3. The size of vy > 0 is limited by the size of the initial data. This can be seen in (4-7).
Because we are only interested in having any fixed but arbitrarily small vy, to ensure analyticity, we
stated the size condition as in (1-29).

Remark 1.4. In our results, we assume that both viscosities 141 and 1, are positive and hence —1 <A, < 1.
We remark on the endpoint cases of A, = %1, which formally correspond to the cases when 1 =0
or up = 0. As can be seen from Figure 1, the allowed size of the deviation from X tends to O as
A, — %1, which may indicate potential difficulties in formulating a well-posed mathematical problem
for the endpoint cases. From a physical standpoint, it does not make sense to set the viscosity to 0 in
either Q; or €2;, and thus a proper treatment of these endpoint cases will require a rethinking of the
physical situation under consideration. The case A, = —1 or > = 0 may be thought of as corresponding
to the problem in which a droplet of Stokesian fluid is floating in vacuum. One significant difference
between this and the Peskin problem is that in the former problem a droplet in linear translation or rigid
rotation experiences no external forces. The force balance and continuity equations will thus have to be
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supplemented by auxiliary conditions that assure uniqueness, after which this problem is likely to be
well-posed. In the case A, =1 or u; =0, €; might be considered to be vacuum. It is not clear if this
problem is well-posed. We will not pursue these issues further.

1E. Outline. The rest of the paper is structured as follows. In Section 2, we first decompose in Section 2A
the system (1-10), (1-13) into zero-order, linear, and nonlinear parts around the equilibrium configuration,
and then in Section 2B we perform the linearization of the problem and show its parabolic structure.
Section 2C shows how this structure leads to dissipation and in Section 2D we summarize the system of
equations in its final form. Section 3 contains the crucial nonlinear estimates needed to prove Theorem 1.2.
Finally, Section 4 is dedicated to the proof of Theorem 1.2 via a regularization argument and also shows
the uniqueness of the solutions.

2. Linearization around the steady state

We will linearize the system (1-9)-(1-15), with F given by (1-7), around a time-dependent uniformly
parametrized circle with center (c(¢), d(¢)) and radius R(t):

Xc(0,1) =a(t)e-(0) +b(t)e, (0) +c()er +d(1)er,

2-1
R*(t) =a*(t) +b* (1), _

where a(t), b(t), c(t) and d(t) are arbitrary time-dependent functions and e, (), e;(0), e;(6), e>(0) are
defined in (1-16). For notational convenience, we will suppress the time dependence of the coefficients.

2A. Nonlinear expansion. We will denote by X (6) the deviation from the circle X.(0) as X(0) =
X (@) — X.(0). We define further

def

AX =X(O)—-X()
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and
o X(0)—X
A, X (0) & X O~ X(0) 9_5”). (2-2)
2sin ()
In particular, we have
0 0
Aan(9)=a8t< —;n)—b r(%)
since . (M)
A er(9)= Sin 2 =e[(9+77)
' cos (5] T2
0+
Aey— | (T =—e,<9+”)
S EE ] )

where we have used the trigonometric identities

sin (0) — sin (n) = 2 sin <9;77> cos (9—;77),

cos (f) —cos (n) = —2sin (0%77) sin (@)

Recalling (2-1) and using the identities

dper () = e, ()" = e (6),

dpe:(0) = e, ()" = —e, (),
one has

09X (0) =ae,(0) — be,(0),

X (0)" = —ae,(6) — be(6).

The trigonometric identities cos(a + b) = cos(a) cos(b) — sin(a) sin(b) and sin(a + b) = sin(a) cos(b) —
cos(a) sin(b) further give

o0 e(51) =sn (157, a0 () s (157).

e (0) -e,(e%) = cos (9577), e;(0) m,(%) = —sin <9%77>

These calculations imply the following computations for a circle that will be used frequently throughout
the paper:

86 Xc(0)" - A, X(0) = —R?sin (95’7), (2-3)

86 X(0) - ApXe(8) = R*cos (9;’7), (2-4)
é 1—cos(0+n) —sin(6+n)
2 | —sin(@+n) 1+cos(8+n)

b_2 14cos(0+n) sin(6+n) ab sin(0+n) —cos(60+n)
2 sin(6+n) 1—cos(0+n) —cos(B+n) —sin(6+n)

A X (O)RA, X (0) =

] . (2-5)

The matrices in the last line above have been simplified using the identities sin? (a) = (1 —cos(2a))/2,
cos®(a) = (1 + cos(2a))/2, and sin(2a) = 2 sin(a) cos(a).
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Next, we perform a Taylor expansion of the nonlinear terms around the a time-dependent uniformly
parametrized circle (2-1) under the assumption that |A, X (0)| < 1. First, we start with the magnitude of

the curve
|AX + AX,|? = 4R? sin (9 - ’7)(1 + 2 AKX (0) - AYX(O) + = |A,7X(9)|2).
Recalling the expression for G(AX) in (1-9), we expand each term as
6—n

log |AX + AX, |_10g(2R‘sm( )() 11og(1+ 2 A Xo(0) - A,X(©O) + 2|A,7X(9)|2)

2

=tog (2R|sin (251)]) + 258, Xe(0) - 4,X(0) + R1 (4,X©@)). (2-6)
where
. . n ( l)n 1 n—m 2m
R1(A, X (0)) =Z <m>w(2Aan(9)-AnX(9)) 1A, X O 2-7)

|VO

2
We expand the denominator in the second term of (1-9) as

1 1 5
|AX—|—AXC|2 4R2 sin (Tn) (1_ﬁAan(9)'AnX(9))+

< Ra(A, X (0 2-8
e
with the notation
00 n —1)n
Ro(8,X(0) = (,’;)(R—zz(mnxc(e) ALX(O) AL X O)". (29)
n=1 m=0
n+m>2

Therefore, we can write

(AX + |AA)§;)+®A(§i2+ AXe) _ Ao+ AL+ Ay, (2-10)
with

Ao = 25 A, X O, X 0),

AL =—%AUXC(G)-A,,X(G)AWXC(9)®A,7XC(9)+%AUXC(9)®A,7X(9)+%A,,X(Q)@AUXC(G),
and the nonlinear term is given by

Ay = %AUX(Q) ® A,,X(e)(l - %Anxc(e) A X () +R2(A,7X(9)))
+1; AyXe(0)® A X(9)< 2 AyXe(0) - A, X(0) +Ra(A X(G)))
+R1 AX(0)® A X (9)( Z A, X (0) - A, X (6) + Ra(A X(@)))
+ %AnXC(Q) ® Ay X (O)R2 (A, X (6)).

Joining the expansions (2-6) and (2-10), we split G(AX) in (1-9) into zero-order, linear, and nonlinear
parts in terms of X as follows:

G(AX) = Go(A;X(0)) +GL(A, X (0), ApX(0)) +Gn (A Xc(6), Ay X(0)), (2-11)
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where
Go(A,Xc(0)) = 7 (—log (2]sin (252 n)DI—#—%AUXC(@)@AWXC(@)), (2-12)
1

GL(AyXe(0), Ay X (0) = =3

(—Anxc(e)-AnX(e)l
2 AN X (0)-0) X (0) A, X (O)R A, X (0)
+AnXc(e)@)AnX(9)+A,,X(9)®A,7Xc(9)), (2-13)
|
in
+

Gn(ApXc(0), Ay X(0)) =——Ri1(A, X(0))1

1
AT R?

1
+4 R?

2

A X (O)BA X(9)< R2A,]XC(G)-A,7X(9)+R2(A,7X(6?)))

(A X (O)RA, X (0)+A, X (0)RA, X (6))
><<—%A,,XC(O)-A,,X(Q)+R2(A,7X(9)))

1
4T R?

Consider the splitting of the solution F (6) to (1-13) into zero-order, linear, and nonlinear parts as

5 A X (0)®A X (0)R2 (A, X(0)). (2-14)
F(0) = Fo(0) + FL(6) + Fy(9). (2-15)

(We will prove bounds for these terms in Section 3B.) Introducing the splittings (2-11) and (2-15) in
(1-10), we obtain

X (0) =0(X)(0)+ L(X:, X)(0) + N (Xc, X)), (2-16)
where we recall that X' (0) = X () + X.(0) and we use the notation
O(Xc)(G)=/§G0(Anxc(9))Fo(n)d77,
L(X., X)(0) = fg Go(AyXc(0)FL(n) dn+ /S GL(A;Xc(0), Ay X(0))Fo(n)dn,

N(Xc, X)(©0) = / (GL(A,X(0), Ay X(0)FL(n) + Gn (A, Xc(0), A, X(0)) Fo(n)
+GN (A Xc(0), Ay X(O)FL(n) + G(X(0) — X () Fyn(n)) d.
We have thus expanded the evolution equation (1-10) distinguishing the zero-order, linear, and nonlinear
in X contributions.

2B. Linearized system. We proceed to show that the linearized system gives rise to a diffusion operator
on X. Since the linear structure is the same for any uniformly parametrized circle (see [Mori et al. 2019]),
we will use now (2-1) witha =1, b =c=d =0 and R =1 to simplify the computations, and for clarity
of notation we will denote this circle by X,.

We will now linearize (1-10) and (1-13). We first determine Fy, the value of F at the steady state:

0=(9(X*)(9)=/§G0(AnX*(9))Fo(77)d77, (2-17)

Fo(0) —2A,80(Fo, X,)(0) = 2A, Fa0(6), (2-18)
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where
Fe0(0) = 0; X,.(6)

and

1 n Fo(n)

So(Fo, X)) = — | 99X, Ay Xu(0) Ay Xu(0) Ay X (0) - ——5— =

T Js 2 sin (T)
Rewriting A, X, (0) Ay, X, (0) - Fo(n) = Ay X.(0) @ Ay X, (0) Fy(n), and recalling the computations (2-3)
and (2-5), one finds that

dn.

So(Fo,X*)(Q)Z—%/gM(@,n)Fo(n)dn,

where from (2-5) we have

. 1 |1=cos(0+n) —sin(0+n)
M(@©, 1) =8, X, (0) ® Ay Xu(0) = 5 [ _sin(@+n) 1+cos @+ |’ (2-19)
and therefore Fj is defined by
A
Fo@)+ 22 [ M@, Fotn) dn =24,53X.(0)
S
Since 97X, = — X, and noting that
1
L[ me.mx.dn=-X.0)
T Js
it is easily seen that
24,
Fy(0) = A 9, X.(0). (2-20)

n
Now, recalling (2-12), it can be checked that (2-20) satisfies in fact (2-17):

1- A,
471( ) /5 Go(A,X.(6)) Foln) dn

=—/10g(2
S

so integration by parts in the first term yields (2-17).

sin (u)DaZX*(n)dnJr/ M6, 032X, (1) dn,
2 n IS 7

We now proceed to compute the linear term £(X,, X)(#) in (2-16). For convenience, we write it as

L0 00 = [ God XDFLtdn+ [ (FGAXIFa)AX di, @-21)
S S
where G and G are defined in (2-12) and (1-9), respectively. To simplify the second integral above, note
BG,-J- 0 il 0 i2
_(AX*)er,j (n) = (AX e, 1(n) + (AXDer2(n)
3X1 8)61 8)61
_ %G (AX,)d,X aGiz(AX ), X
- 8x1 *)On A2 8x1 *)OnAx 1
8G,’2 aGiZ

= AX,)0, X0 —
8)62 ( ) 7 2 8x1

(AX*)anX*,l = anGil(AX*)-



THE PESKIN PROBLEM WITH VISCOSITY CONTRAST 799

Here e, ; is the j-th component of the vector e, etc. Further, in the third equality above, we used the fact
that the stokeslet is divergence-free:
G n 0Gi _
8)61 3)62

0.

Likewise, we have
G
8_(AX*)€r,j (n) = _anGil (AX,).
X2

We thus have
2A,
1-A,

2A, _
R f (RLG(X.(0) — X. (1)), X (1)
—a ).

/g(VG(AX*)Fo(n))AX dn=— /g(R‘la,,G(X*(@) —X.(m)AX dn

1

2A, _
- 2 / G(X.(0) — X.(n)(R™8,X () dn.
—a ).

def

Since G(X,(0) — X.(n) = Go(A,X,), equation (2-21) simplifies to

L(X,, X)(Q):/ GO(A,,X*)(FL(n)-i— 12A1: R‘lanX> dn. (2-22)
S —Au

This is our specification of the linearized operator.
We will now determine Fy as in (2-15), that is, the linear part of F in (1-13). We find

A
FL(9)+?M/ M, n)FL(n) dn=2A,0;X —2A,(Q+5), (2-23)
s

where
Qi=-— fg Tijk(AX) Fox (DR, 9 X1 (6) dn,

oTijk _
Si=-— f —L(AX)AX Fo xR 09 X,1(0) dn.
S axm
Let us compute Q. We start with
24, AX,iAX, jAX,keri(n)  2A. AX.iAX,
1-A, T|AX,* C1—A, 27|AX 2

~Tijk(AX ) Fo = —

where we used

AX*'er(U) 1
o N 2-24
IAX, |2 2 ( )

Therefore, we have

B A, 1 AX,®AX,

C1-Aum)s 1AXL2
Ae 1

= — | M®,n)dnR'9,X(©®) =
1_AMN/S(n)n b X (0)

0 dnR '3, X (0)

e

R 19, X(9),
—a, b X (0)
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where we used (2-19) in the second equality. We next compute S,

7;jk —1
————(AX)AXy Fo (MR, 96 X41(6)

0X;
_ 1 24, AXiAX*,jAX*,ker,j(Q)er,k(n)
_;l—Aﬂ( IAX,[4 )
B 2A,/m <AX*,iAXjAX*,ker,j(e)er,k(n) n AX*,iAX*,jAXker,j(Q)er,k(n)>
1-4, IAX,|* IAX,|*

8A. /7 ([ AX,iAX, jAX, e (0)erk(NAX, mAX,y

1—A ( |AX, 6 )
1 24, 2A./7 8A,. /7

=—= I- 1+ 1.
Tl—A, 1-4, "1-A

We simplify each term as follows:
1

I = —ZAX,-,
I — AX*’,'AXJ'ELJ’(Q) AX*’iAXker’k(T]) . AX,,’,'AX*’J'AX]'
- AKX, 2 JAAX 2 20X, 2
AX,iAX, jAX;
1l = — - . ,
4AX, |2

where above we made repeated use of (2-24) and

AX, - R™'9X,(0) _ AX,-e0) _ 1

|AX, |2 T OAXE T2

Thus

0T ik _
——L(AX)AXy Fox (MR} 09 X =

Ae/27r ( 2AX*’,'AX*’jAXj>
AX; —
Xm 1—-A

" |AXLI?

Substituting this back into the expression for S in (2-23), we have

S— A 2w

/(I 2M (6, n)AX dn

A /271 Ac/2m

1—A,

where we used (2-19) in the first equality and we are using the notation (1-24) for the inner product.
Equation (2-23) thus reduces to

f(1—2M(9 mX () dn = (—({er, X)er + (e, X)ey),

A
Fu@)+ 2 f M@, ) Fy () diy
T Js ) 2A,A,
= 2Ae89 X0)——

-1 1
A (RT0XO)+ 5o len X)) + et X)e®)).

We must solve the above equation for Fy in terms of X. Suppose (e;, X) = (e, X) = 0. Then, it is easily

checked that
2A,A,
F;(0) =2A BQX(Q)— T — R 8 X(9). (2-25)

—Ap
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We may further compute F; when X is either e; or e;. Noting that

M@©, ne(n) = 2(e:(n) —e:(0)), M©, nen) = 1(e(n) +e(6)),

we see by an easy calculation that

2A,
If X =e,,;, then F|, = — e
El l _ AIIL i)
Note that
2A,A 2A
2A.07e, — . _‘fAZ R 9ge; = — = zu ers.

This shows that the expression for Fy in (2-25) is in fact valid without the restriction (e;, X) = (e, X) =0.
Substituting (2-25) into (2-22) yields
L(X., X)) =24, f Go(A,X)(@2X (1) +R ™8, X (m)) d. (2-26)
s
Finally, since

Go(A,X,) = = (log[25in (52) )1+ M@, )

and
/5 M(G,n)<3§X(n)+R18nX(n)) dn = /5 @7 M(6. 1) — 9,M(©6. MR~ X () dn =0,

we have

C(X.. X)(@):—?—;/Slog‘2sin<9;n>’(8$X(n)+RlanX(n))dn

=_i/ X +R™'X(n)
2n Js 2tan(9%'7)

dn,

which is given by a Hilbert transform
Ae
2

Therefore, the system (2-16) can be written as

L(X,, X)(0) = —ZEH0,X () +R™ X () (6). (2-27)

X (6) :—%(AX(Q)#—HR_IX(@))—%N(XC,X)(H). (2-28)

Notice that X is a uniformly parametrized circle with time-dependent radius R(¢), as opposed to the X,
used in this subsection to obtain the linearization. We will use the system (2-28) to study the global-in-time
dynamics of the Peskin problem in the rest of this paper.

2C. Evolution _of the j—',,l’l norm of X. We first notice that, because X (6) is real-valued, it must hold
that X (—k) = X (k). Therefore, the norm (1-25) can be written in terms of positive frequencies alone

Xl g0 =2 e kX (k) =2 " O X, X1 (k) + X X (k). (2-29)
k>1 k>1



802 EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

The system (2-28) in Fourier variables reads for k > 0 as
Ae
2
Here we recall that X = X 4 X .. Further the diffusion matrix is given by

_ k —i sgn(k) |00
L(k)_[isgn(k) k ] k=1, L(O)_[O o]‘

X, (k) = = 2L X (k) + FN (Xc, X)) (k). (2-30)

The diagonalization of this matrix for k > 1 shows that

L(k) = P(k)D(k)P(k)~",

where for k > 1 we have

_ 1 [—isgn(k) 1 1 5 _|k+1 0
Pl = [ o Sgn(k)} . PRTI=P®. Do=|" |
And when k = 0 we define
1101 1 _ A Dm {00
PO)= [1 0} PO =2P©), DO)= [0 0} |
This leads us to define the change of variables
Y= Pk 'XK), Yek) = PR Xe(k), (2-31)
with Y Ly + Y.. The system (2-30) for kK > O then becomes
<) Ae v —
Yi(k) = —TD(k)Y(k) + P(k) ' FWW (Xe, X)) (k). (2-32)

The relationship between X and Y in space variables is given by the Hilbert transform (1-20), using also
H2(Y;) = —Y;, as follows:

1 |:7'[Y1 O)+Y2(0) (2-33)

1 [—HX1(9)+X2(9)]

XO=7 Y1(9)+7-[Yz(0)] YO=7 1 xio-mx0

Because, for k # 0, P (k) is a unitary matrix, it holds that || P (k)| = || P(k)~!|| = 1, and therefore
Y| =X k)|, k#0,

and thus
I XN g0 = 1Y [l £ (2-34)

We will use this norm equivalence several times in the following.
Notice that the first Fourier coefficient of a uniformly parametrized circle (2-1) is given by
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and in the Y-variable

& 1 0
Y.(1)= E [a-l—bi] . (2-35)
Note that H(cosf) = sinf and H(sinf) = —cos6f. Then from the transformation (2-33) uniformly

parametrized circles (1-16) in the Y variable are spanned by

B 0 3 0 1 J0] . 11
e,(e):ﬁ[cosg], e,(e):ﬁ[_sine}, el:ﬁ[l]’ ezzﬁ[o]. (2-36)

Further the second component of ?(1) becomes zero after the operation of D(1) is applied, which
corresponds to the fact that uniformly parametrized circles are steady states. Therefore, we will split the
curve Y(0) = Y.(0) + Y (0), with

0

Y0) = [0

], Ya(1) =0,

since those frequencies are contained in the time-dependent circle (2-1). In other words, Y is the projection
of Y onto the orthogonal complement of the vector space spanned by (2-36). In fact, the system of
equations (2-32) does not provide dissipation for the zero frequency of Y nor for the second component
of its first frequency (i.e., for uniformly parametrized circles). We thus can only expect decay for Y. It is
convenient then to write the equations of those frequencies in (2-32) separately:

Y. (0) = 8,Y.(0) = P(0) "' FIN (X, X))(0),
V1D =8, Y1(1) = —A (1) + (P() ' FW (Xe, X)(D),,
- - B (2-37)
3 Y2(1) =8, Yeo(D) = (P()'FW (X, X))(D),,

Vi (k) =Y, (k) = —%D(kﬁ(k) + P(k) ' FIW (X, X)) (k), k=>2.

Therefore, we study the evolution in time of ||Y || Fl1,as in (2-29), which is given by

LYl 00 = 1(2 3 OV TI 0T 1 () + ?z(m?z(k))

dt
k>1
=2 VORSONYh)|+2) ek
k>1 k>1
and introducing the time derivative (2-32), with N = N (X, X) = N (X), we have
d 2Ok T vk, e+ DIYIE 2+ (k= DIV (k)2
LY e =2 VWV Ok DN Y (k)| — 24, Y e Okk _
Y5 kZ] ®) Y (k)| kZI TE
PN Y (k) + T (k)T (P (k)N () (k
+2Zev(t)kk( (k)N () (k)) (2|)i;;k)|() (P (k)TN (X)( ))‘

aY ()Y (k) + ¥ (k)T 3, Y (k)
21Y (k)|

k>1

Noticing that for kK > 1 we have

s s 1 - Gk
—Ak((k+ DY)+ (k — DV (k)[2) —— = —Ak(k — DY (k)| — 2A k——"—,
( |Y1 (k)| |Y> |)|Y(k)| | | Tl
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we can then see a diffusion term coming from the linear part:

IIYII;H <—-A, Ze”(’)"k(k DY (k)| =24, Z v(t)kk|Y1(k)|
k=1 k=1 1Y (k)]

+ 2 Z U/(t)kzev(l)k|/Y\(k)| + 2 Z eV(I)kk|(P(k)—lN/'(?)(k))l (2—38)
k>1 k>1

The balance above does not include the control of ?L We will show in Section 4A that the evolution of
Y, (0), that is, of the center, can be controlled by all the other frequencies. Moreover, the incompressibility
condition (1-3) allows us to control ?6,2(1) as follows:

Vo=m = % X(O)A0gX()dO = % (X109 Xy — Xp09 X)) dO
= 411 / ((HY1 4 I2) (31 + AV2) — V1 +HI2) (AV1 + 09 )0) d6). (2-39)
Performing the products and taking into account the equalities
HYiAY; dO = Yi0p); do, HY;09);dO = — YiAY;do,
we obtain -
T = % N2 AYy = V1AV dO = (V2 AY2(0) — Vi AY1(0))
=7 Y (kIV2(0)V2(—k) — [kIV1 (k)1 (—k))
kezZ
=7 Y k|(IYe2(b) P + Ye 2 () Ya(—k) + Vo (k) Yo 2 (—K) + [ V2(R)[* — [V1 (K)?),
keZ

where we have used that 2,1(k) = 0 for k # 0. We can also eliminate the terms f’\c,z(k)?z(—k) and
Y>(k)Y, 2(—k), since Y,(1) = 0 and Y, (k) = O for k # 0, &1. Therefore,

1 a+b

2

+ Y k(200 = V(0.

k=1
And so the incompressibility condition translates to the constraint

2 2 2 ~ ~
e (AT AT (2-40)

~ 2
Yer(DPP = 55> =
k>1

Then, we can obtain an upper bound

Ter WP = 3+ D k(B0 + T (0P = %+Z<k”2|?<k>|>2

k>1 ) k>1

1 ~

5+(Zk”|¥(k)|) = IV 1B = 5 1Y B
k>1

and analogously we find the lower bound

R _ &
5 =YD =

1 1
z Z”Y”].-I/Z,l' (2’41)
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Recalling the relationship between X and Y in (2-34), we finally obtain

11 % 11
5~ 71X = Y2 = 5+ 71X,

and, since |Y.(1)[? = R?/2 = [X.(D)|?/2,
1 > 1
L= ZIX 150 < 1Xe(P < 1+ 51X

so using the notation R? = a” + b?, we have

1 1
e SRS (2-42)
T3 1 X050 I=3 X150
The upper bound above motivates us to define
def 1
Ci=Ci(IX N z0) = (2-43)

1 2
VI=31X15,,

We will later use (2-42) to control the size of R when || X || z1.1(z) — 0 as 1 — oo.

2D. Complete system. We finally summarize the final form of the system of equations that describes our
problem. The system given by (1-10) and (1-13) for X was replaced by (2-37) on the Fourier coefficients
of the associated variable Y from (2-31). We recall that we decompose Y into a time-dependent circle Y,
plus the deviation from the circle given by Y. In other words, we decompose Y into its projection onto
the vector space spanned by (2-36) represented by Y. and its orthogonal complement represented by Y.
Therefore, recalling (2-35), we have

Y(0) =0, Y>(1) =0, Y.(k)=0, k#0,1, Ye1(1) =0. (2-44)
Now, for k =1 and k > 2 separately, we have
3Y1(1) = —A Y1 (1) + (P() "W (X, X)(1))1,
_ A R (2-45)
0, Y (k) = —TeD(k)Y(k) + P(k)" N (X, X)(k),

where X, and X are given in terms of Y, and Y in (2-31). In the following paragraphs, we will write one
or the other without distinction for simplicity of notation. The incompressibility condition (2-39) yielded

(2-40). Thus in particular
V3= glIY 1500 < YeaMI =V 3+ 1Y 500 (2-46)
To close the system, notice that ?C(O) = P(k)*I:Y\C (0) and, from (1-10), we have
AX0) = 5= / f G(AX. + AX)F(n)dndo,
sJs

with F defined by (1-13). We can also write the equation for X ¢(0) using (2-16) or (2-30) and recalling
that the zero frequency of the linear part vanishes,

3,X.(0) = N(X., X)(0). (2-47)
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We notice that the evolution of the zero frequency i’\C(O), corresponding to the center, is decoupled from
all the other equations (in terms of the ?C(O)-Variable), because X <(0) does not appear on the right-hand
side of (1-10) and (1-13) and therefore also (2-47). This can be seen from the fact that in (1-10) G only
depends on the difference AX = &X' (6) — X' (1) and in (1-13) the expression for S only depends on dyp X
and AX. In summary, the system to determine Y (equivalently determining X via (2-31)) consists of
(2-44), (2-45), (2-40), and (2-47). That is, all together we have

Y(0)=0, Y,(1)=0, Y.(k)=0, k#0,1,  Y.;(1)=0,
3,Y.(0) = P(0)"' N'(X., X)(0),

Yi(1) = —A T (1 DTN X, X)(D)1,

3,Y (k) = —%mk)m) +PR)'N (X, X)), k=2,

Fer(DP = 2= Y KIBOP - Fi0P),
k>1
with F given in (1-13), and ¥, X related by (2-31).

To prove Theorem 1.2 (see Section 4) we will use system (2-48) to obtain the energy balance (2-38)
to show the decay of Y. We will need to perform a priori estimates on the nonlinear terms, which in
particular requires us to prove bounds for F' due to the viscosity contrast. Those estimates are performed
in the next section. The decay for Y will allow us to control the evolution of the zero frequency, that is,
of the center.

3. A priori estimates

In this section we perform the a priori estimates on X and F that will be used in the proof of our main
result, Theorem 1.2. First, in Proposition 3.1, we estimate the nonlinear terms in (2-16) in terms of X
and F. Next, in Section 3B, we obtain the a priori estimates for F in (1-13) in terms of X. In order to get
the result with critical regularity, we have to get uniform bounds for some Fourier multipliers given by
principal values (see Lemma 3.2).

3A. A priori estimates on X.

Proposition 3.1. Assume Fy, Fy, Fy € ]-",?’1 and X € .7-"51 Then, the nonlinear term N'. =N (X, X)(0) =
N (X) in (2-16) satisfies the following estimate in .7.-"1}’1:

1NNz < TV2D [ X 00 | FLll o0 + 232 Dl Foll o | X 5 [1X || 720 + § D3l Pyl or, (31
where D; = Di(||X||fV1,1 ,Voo) & 1 are increasing functions of ”X”]'_-Ul,l and v such that
lim  Di(|X|[511,0) =1
1Xla—0t

and are defined in (3-54).
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In the proof, the following multiplier will come up frequently:

_ sin(kn/2) ,—ikns2
ktan (n/2)

def
)

= (3-2)

and we define m (0, n) = 0.
Now let n > 1, k = ko, ki, ..., ky, be integers that further satisfy |k; — k;j41| > 1 for all j =

0,1,...,2n — 1. We define the integral of type I, = I,,(k, ky, ..., k2,,) by
2n—1

e T in((k; —k; 2) _.
L[ mte— ki [T 2 (&) = RisD12) itz gy (3-3)
—w j—1 ki —kjr)sin(n/2)
We further define I, =0if k; =k forany j =0,1,...,2n — 1. We will also consider the integral,
I' =1 (ki, ..., ky,), under the same conditions
. / sin (ki +ka,)n/2) 77 sin (k; — kj41)n/2) )
" - sin (n/2) ik (kj —kji1)sin(n/2)
We again define I, =0 if k; = k; forany j =1,...,2n — 1. In the proofs of the a priori estimates in
this section we will frequently use the following lemma.
Lemma 3.2. We recall (3-2), (3-3) and (3-4). Then, the following uniform bounds hold:
|Il’l(k’ klv ey kZVl)| S 2”5
[y ki, k)| < 27,
This lemma will be proven at the end of this section.
Proof of Proposition 3.1. We first take a derivative of M (X, X)(0) in (2-16) and let
BN (X, X)(0) = N1(0) + N2(0) + N3(6) + N4 (6), (3-5)
where
N1(9) =/ 9 (GL(A,Xc(6), A X(0)))FL(n) dn,
S
N2(6) =/ 9 (Gn (A, Xc(0), Ay X(0))) Fo(n) dn,
S
N3(0) 2/ 9 (Gn (A, Xc(0), A, X(6)))FL(n)dn,
S
N4(©0) = / 3 (G (X (0) — X)) Fx () dn.
S
We will bound A; in F*! fori =1,2,3, 4.
N estimates: Taking a derivative in (2-13), we obtain
10
Ni©) =) NLi©), (3-6)

i=0
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and we proceed to bound each of these terms in F!. We note that each term N7 ; corresponds to when
the derivative hits a different term inside (2-13). The terms A/ ; are written in (3-8), (3-15), (3-16), (3-19),
and (3-20) in the following.

The first term A/ 1 (9) is given by

1
47 R?

We first take the derivative of A, X.(6) in (2-2) to obtain

(X0)—X.(n)
0p X (0) — —~—~———<
P2 = S an (@=n)/2)
2sin((6 —1n)/2) '
Further define the operator D%(X,) (and analogously D2(X)) to be 9y A, X () as above after taking the
change of variables n <— 8 — n as follows:

N11(0) = — /§89Aan(9)‘AnX(9)FL(77) dn.

A, X (0) =

X (0)—Xc(0—n)

dp X (0) — T >
DX, ) __2tan/2) (3-7)
2sin(n/2)
Then we make the change of variables n <— 6 — n to obtain
N1 = — R2 / DX(X)O, ) Dg—yX(O)FL (6 — ) dn, (3-8)

where we used transpose notation instead of a dot for future convenience in the notation. We will also
make extensive use of the identities

— 1—e 1 o kn/2
Ag—y X (k) = .; — M *l/ﬁ?/Za X (k),
2sin (n/2) k sin (n/2) (3-9)
— 1—emikn o kn/2
Ag_yX (k) = .; (k) = M —ikn/25 % 30 X . (k).
2sin (n/2) k sin (17/2)
We remark that both terms above are equal to O when k = 0. We further have
DX (X (k) = m(k, )3 X (k), (3-10)
where m(k, ) is given by (3-2).
Regarding the Fourier coefficients of the derivative of the circle (2-1) we have
o a+ib i ib i
I Xo(k) = ——01(k) | | 1= IONEE (3-11)

Taking Fourier transform in (3-8), we obtain

/\71,1(/6)

— Rz/’DZ(X YT % Ag_y X (k) % e ™ Fy (k) dy

= / S Y DXk — k) By, K ks — ke "V Fy (ko) d.

4JTR2
kIEZ kzéz
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and plugging in (3-9) and (3-10) we have

1

N1 (k) = IR

Z Z I Xo(k — k)T 0 X (k1 — ko) Fp (ko) 11 (K, k1, k),
k]EZszZ

with I; given by (3-3). By Lemma 3.2 we have |I (k, k1, k2)| <2m. Then we get
~ 1 _— T ~
WNL1h)] < mkgkg 130 Xe(k = k)" 89 X (k1 — ko) || FL(k2)). (3-12)
1€ €

Then, it follows from (3-11) that

—_— R
|0g X o (k — k1) 5351,—1(/€—k1)- (3-13)
We will now also use the notation (1-22). In particular we have
V2

—— —— 2 —
186 X (k — k1) T 36 X (k1 — k2)| < TR(al(k_kl) +6_1(k — k1)) [0 X (k1 — k2)|.

Therefore, we can write

A /\/E — —~~
Nl = 32D > 811k =kl Xtk — k) [ FL (ko).
ki€Z kreZ

We multiply by ek = O k=k)v(Dki—k2) oKz 1 get

_ V2 _ .
v(t)k v(t)(k—ky) _ v(t) (k1 —ky) _ v(t)k;
"N ()] < 1R E E e Y811k —k1)e” T 0g X (ki — ko) e | Fr (ko)

kleZ szZ

so Young’s inequality for convolutions and the estimate (2-42) yield the bound

€' N/2|| X || 5.1
N0 < || FL | 2o (3-14)
2V 1= LIXI,,
This is our desired estimate for N 1.1-
We now proceed to estimate N7 5 as
1
Nio®) = - = f B9y Xe(®) D> (X)(E. MFLE —n)di, (3-15)
s

with Fourier transform given by

7 _ 1 v T2y —ikan T
Niak) = —1— /§ kZGZkZEZAMXAkl—kz) DX(X)(k — ke Fy (k) d.
1 2

Using again (3-9) and (3-10), we can write it as

1

Niak) = =

Y 0 Xet — ko) 9 X (k — k) FL(ko) 11 (k. k1, ko),
k]EZ szZ
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with I given by (3-3). Using Lemma 3.2, we find that
~ 1 _—— —— -~
N2 < 55 D D 106Xtk — k)T 8o X (ki — ko)l | FL (ko).
kIEZ szZ

so following the steps after (3-12) we conclude that

" V/2| X 1.

v

IV 2l o < A
2V 1= LIXI1%,,
v

This completes our bound for A/ 5.
The term N/ 3 is given by

Nia®) = =5 [ DXEG 0T 80, X080, Xe0)® 80, XOFLO -5, (-16)

and its Fourier transform by

1 T v —
2709 X, (ko — k3) R* Z"'ZaGXc(k—kl)TagX(kl—kz)
g X (ky — 3) kiez kscZ ®8/9\ch(k3—k4)ﬁL(k4)Iz(k,k1, ...,k4),

Nisk)=—

with Ir(k, ky, ..., ks) given by (3-3). Since |l>(k, ..., k4)| <27 from Lemma 3.2, we have
INV13(k)]

1 —_— — —_— —_— _~
< x D D |0 Xe(k = k)8 X (ky — k)| 136 X (ko — k3) @ o X ks — k) || FL (ko). (3-17)
kieZz ks€Z

Expression (3-11) gives
30 X o (ko —k3) @39 X - (k3—ks)
_ (a+ib)?

-1 i —ib 2
51(k2—k3)81(k3—k4)[ ; ;]+%
_@tib)a=ib)

4

All the matrices above have norm equal to 2, so that

-1 —i
3—1(k2—k3)3—1(k3—k4)[_l. ﬂ

Srta—k)s k)| ) )|

_1 /
8_1(k2—k3>51(k3—k4>[ : l].
i —1 4 —i

-1

. _ R?
100 X (ko — k3) ® dg X (k3 — ka)|| < 731,—1(/@ —k3)31,—1(k3 — kg). (3-18)
Introducing this bound, together with (3-13), back to (3-17), we find that
A~ ﬁ — —~
N30 < ==Y o> 811k — ki) 8o X (ki — ko) |81, 1 (ko — k3)S1, -1 (ks — ka)| FL(ka) |
4R kieZ kqyeZ
1 4

thus multiplication by the exponential ¢ ®*

, Young’s inequality and (2-42) yield that
272637 || X || 1.

| FLll 2o
i 2 Fo
\/1—§||X||E1_1

M3l zor <

This completes our bound for A/ 3.



THE PESKIN PROBLEM WITH VISCOSITY CONTRAST 811
The term A/ 4 is given by

1

Ni40) = ~ i

dn
/ B0y Xe©O) DX, )Ag - Xe(0) @ Doy XeOFLO = m)5—.  (3-19)
S
We take the Fourier transform and write the result as

o~ 1 _— o~ _——
Nia®)y==5—7 >+ ) G Xelkr —ka) 0 X (k — kn)y X (k2 — k3)

kel kel ®% Xo(ks — k) Fr (k) Lo (k. ki, . .., ks),
with Ir(k, ki, ..., ks) given by (3-3). Since |I,| <27 by Lemma 3.2, comparing now with (3-17), we
conclude that
23263 | X || 111
IV 4]l o < i

1Ll 701
1 2 ]:)
VI=3l1 X050, '

This completes our estimate for N 4.
The remaining terms from A (0) in (3-6) are

d
N1,5<9>=—% fg B0 Xe(0) By XOD (X0, 1) ® Mgy X O)FLO =)

d
N1,6<9>=—% /S 8- Xe®) By XO) Mg, Xe(0) ® D*(X) O, )FLO — )3
Ni7(60) = 4ﬂlR2 /g D(X) (O, 1) ® Ag—y XO)FL(6 —n)dn,

(3-20)

M,g<9>=ﬁ /g No—yXo(0) @ D*(X) (O, m)FL(0 — ) dn,
Nio(6) = 4ﬂlR2 /g DX(X) (0, 1) ® Ag—y X(O)F1 (6 — ) dn,
Ni1o®) = 3 fg Ao—yX(0) @ DX(X) (O, ) FL(0 — ) dn.

It is not hard to see that N/} 5 and N ¢ are bounded exactly as A/j 3 in (3-16), since the bound (3-18) is
also valid for D*(X.)(0, ) ® Ag_, X (0) or Ag_, X(0) @ DXH(X.) (6, ).
We proceed then with A/ 7. Comparing with A} ; in (3-8), (3-12), we obtain

~ 1 —— — ~
N7 < 55 D D 180 Xelk — ki) ® 3 X (ki — ko) [ FL (ko).
k]EZszZ

Using (3-11), we find that

—_— — R
1106 X c (k—k1)®039 X (k1—k2) || = 551(k—k1)

J2

< 7R81,71<k—k1)|aﬁ<kl—kz)|, (3-21)

R
—6_1(k—k
+ 5 1(k—ky)

[_1} 30X (k1 —k2)

i

[ 1] 30X (k1 k)

—i
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where in the last inequality we have used that the matrix norm (1-19) is bounded by the Frobenius norm.

Therefore we conclude that
V26| X] 1

| FLl 2o
0 2 F
2V1- 31X,

The bound for A/ g follows in the same way as that of N7 7:
V2e"||X | 1

IFL] o1
21— 31 X3,

Finally, the bounds for A} g and N/ 19 are the same as for N/} 7 and N g because

I 700 <

IV sl 01 <

136 X (k — k) ® g X (ki — k)|

R v . R v .
= 581tk —k) |9 X (k —kD)[—1 i]ll + 61tk — k)19 X (k —kD)[=1 —i]ll

2 —
< %RSI,—I(kl —k2)|0g X (k — k1) (3-22)
Joining the bounds for N} | to N7, 19, we obtain the bound for Aj in (3-6) as
NV ||]__Uo,1 < 11v/2e3>C, ||X||]-__v1,1 | Fr ||]__Uo,1 , (3-23)

where C is defined in (2-43). This completes our estimates for the N/ term.

N estimates: Taking a derivative in (2-14), we split N3 as

11
N3®) =) N, (3-24)
i=1
where

N3 (0) = — = /g 39R1 (A, X 0)) FL(n) dn,

N220) = iz [ 08, X0 9 8,X©) (1 = 728, Xe0)7 8,XO) Fun)d,
Naa®) = =5 [ 2,X6)© 2, X0 (8,X:0)" 8, X©) (o) d,
N2a®) = s [ 30(8,X(©) © 2, XO)Ra(a, XO) Fr ) i
TR S
Nas®) = e [ )X 0@ 8, XORa(a, X O) Fr ) di
T R S
Nao®) =g [ (8, Xc0) 8,X0)+ 8,X0)@ A, Xc0) 4, Xc0)] A, XO)Fi (1) d,
Nar®) =gl [[(3X0)8 8,X0)+ 2,X6)© 8, X0)00(8,Xe0)T A, X)) o) d,

N35(0) = 471%/Sae(Aan(e)®AnX(Q)+AnX(9)®Aan(Q))Rz(AnX(Q))FL(n)dn,
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N39(0) = = R2 / (A, X (0) @ A X (0) + Ay X (0) @ Ay Xc(0))dgRa(A, X (0)) FL () d,

N3100) = ﬁfg39(Anxc(9)®Aan(G))Rz(AnX(G))FL(TI)dn,

1

N311(60) = T R2

/gAan(G)®Aan(G)aeRz(AnX(G))FL(n)dn,

where R and R, were defined in (2-7) and (2-9).
We proceed with A3 ; first. We take the derivative in (2-7) to obtain

N31(0) = 01(0) + 02(0) + 03(0), (3-25)
where
1)* 1
016) =~ [ Z R N RO O
n>1ngfm22 1205 A Xc(0)" A X (0)| A, X (0) " F(n) dn,
1)* 1
0:6) =~ [ Z R N RO
n>1n1m22 20, X(0) 05 A, X (0)| Ay X (0))*" FL(n) d,
= 1
03<9>———/ ZZ ( ) R RAXO) A X (O) "
=1 m= 1 A X @) VAX(6) 9 A, X (O)FrL(n)dn.

After performing the change of variables 1 <— 6 — n, we take Fourier transform of O;(6) to obtain

~ Dl —
01(k) = — / 3 Z )= R(z’,f ") DA X O) Doy X O)
n>1 m=0 B -~
ntm=2 £ 2D*(X)(0) Ag—y X (k) +™ Ag_y X (0) Ag—, X () * Fp (k) dn.

Using (3-9) and (3-10), we rewrite it as

n—1
~ 1 (—1)" ! (n—m)
00==5 3 3 ()

n>1 m=0

n+m=>2
n—m-—2

Z Z l_[ 200X (kajr1—k2j+2) 9 X (kajro—kajy3)

o fa 0= 20 X (k—k1)" 8 X (kan—2m—1—Kan-2m)
[T %X aj—kajs1)" 8 X (kaji1—kajy2) Frlkan) Lok, e, .. o), (3-26)

j=n—m
with |1, (k, ki, ..., kop)| <2m given by (3-3) and using Lemma 3.2. Above we are using the convention

v(tk

that ]_[f: i f()=1if jo < ji. Recalling estimate (3-13), distributing the exponential factor ¢, and

applying Young’s inequality, we have

101501 < g (Z > () g vy e m gy ||X||;’j,1>||FL||ﬁo,l,

n>1 m=0
n+m=>2
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which can be summed first in m to get

1 3y X% X[ 0\
1011l por < 12;(2 e —2 (1 5 feva> IFL] 5o, (3-27)
n=
and then summed in n,
[ X 5.
262”°°(1 + —> 2
10110 < 2v/2e~R e Bl
P =23 X 1.0 (1 1 X 1. ) R? o
_ evoo v + v
R 24/2eV~R
Using estimate (2-42) and the notation (2-43), we conclude that
1011 701 < 26> CoCRIX (511 FLll o1 (3-28)
with
1+ —=e™">C|| X|| 11
Cy= 25 il (3-29)

1= 2v2eCiIX | g (14 55" CullX | 1)

where C; was defined in (2-43).
We proceed with O3 in (3-25). We take Fourier transform and, recalling (3-9), we obtain

n—1
~ 1 (="t n—m)
OZ(k):_QZ > (::) nRZZ :

n>1 m=0
n+m>2
n—m—2

ZZ 1_[ 209 X (kajr1 —kaj12) 99 X (knjra —kaj13)

b by, =0 200 X (kan—am—1 — kan—om)" 3 X (k — k1)
n—1
l_[ I X (kaj —kajy1) 99 X (kajy1 — kajy2) FLlkan) Lok, ki . k), (3-30)
j=n—m

again with |I,(k, k1, ..., kop)| <27 from (3-3) and Lemma 3.2. Thus, comparing (3-30) with (3-26), we
find the estimate for 05,
102101 = 26~ CoCHIX 12, I Pl 2o (3-31)

with C, defined in (3-29) and C| in (2-43).
Repeating these steps for O3, we obtain

n
1 n\m@2v2)" " ) e
10311500 = 5 22 3 (30 ) = ogmr—e" RN XIS X W 1L o

n>1 m=1

which after summation in m the right side above becomes

1 _
105l 01 = 5 > V2" ORIX g+ 1X W )" X IS0 I FL L 5o

n>1

X% 11 IX N \ L IX N2
=—Z o (2vaen 4+ SR S R, (332
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and after summation in n we have

| X115
10501 < 2 2Pl o
=3 L L.
T 21— 2v2e (X [ 511 /RY(L+ e (| X [ 211 /2V2R))  R? 7
Introducing the bound for R in (2-42), we obtain
1051 01 < 3C3CTIX 0 I Pl oo, (3-33)

and using C; in (3-29) and C; in (2-43) we have
C

Cy=-T : (3-34)
+37¢ 2 CillX ] g
Joining the bounds (3-28), (3-31), and (3-33), we find the estimate for A3 ; from (3-25) as
V3.1l o1 < 3CaCEIX IS0l FL 2o, (3-35)
with
Cy = 2(4e®=Cr + 1C3). (3-36)

This completes our desired estimate for N3 ;.
We continue with the next term A3 > from (3-24), which we split in two:

N32(0) = 04(0) + 05(9),
where

04(9)=ﬁfgaa(AnX(G)ébAnX(@))FL(n) dn,

1

OO =57k

Lag(AnX(e)®AnX(e))A,,XC(e)TA,,X(e)FL(n)dn.

The bounds for these terms follow in a similar way to that of A ; from (3-15) and N 4 from (3-19),
respectively. Taking into account that

106 X (k — k1) ® 9 X (k1 — ko) || < |86 X (k — k)| |36 X (ky — ka), (3-37)
and Lemma 3.2, it is not hard to find that

04(k)| < % D 18X (k= k180 X (ki — k)| | FL (k).

k1€Zk2€Z

and recalling (3-13), we have

o~ \/5 —— — — -~

|05 (k)| < e Z o Z |09 X (k — k1) [109 X (k1 — k2)[81,—1 (ko — k3) |09 X (k3 — ka)| | FL (ka)|.

kieZ kae?
Therefore,
X113, ; IIXIIj-Tl‘l
103501 < —3 = IFLl o1, 105510 < 23/2e" — 20y o
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thus )
1113,

R2

IFL] 5o,

1 XMl 10
Niallgor < (142¢2e">—2L
[N32ll g1 < {1 4+2v2e R

so plugging in the estimate (2-42) yields that
V320l o1 < CSCRIX 3l FLl g1,
with
Cs =1+2v2e"Cy[|X|| z1.1.

This completes our estimate for A3 5.
The Fourier transform of A3 3 in (3-24) can be bounded as

(3-38)

(3-39)

N 2 o _ . ~
W33k < 2—JR_3 33 136X ke k)36 X (ki — k)81, -1 (ka — k3) |85 X (ks — ka) || Fr (k).

kleZ k4EZ
and thus 5
X
v
I3 3l 0 = V/2e" — 1Pl o,

3
which becomes
N3l 500 < V2= CHIX IS0 I FL oo
Similarly, recalling (2-9), the estimate for N3 4 in (3-24) is

X115

m

n
F n (zﬁ)n—me(n—m)v(t)Rn—m 3
I3l zo1 < > > () XX 0

R2 R2n

which can be rewritten as

I3 4l zo.1

- R? R R

IIXllﬁfl,l (Z (Zﬁe”(’)Rllelfl,l)"(l X 1| 21 ) 2ﬁeV<f>||X||fl,1)”F
< v v v _ v

24/2e"®O R

n>1

2IPOIXIE,, <Z<2«/§e”<”||X||ﬁ.l)”‘l(l XM 1 ) 1>||F [
_ — L ]_-VO,]

+ - vy
24/2e"OR

R3 R
n>1
- 2V2e"DNX 00 1K 0
B R3 23/2e" R

RYFE 2¢/2¢" V|1 X | 51 11| 511
R G e U
2v2e"OR ) S R 2¢/2e"®OR

Performing the sum in n and using estimate (2-42), we conclude that

4 4
IN3,4ll go1 < 9C6CY IIXIIJ-TJJIIFLIIEQI,

(3-40)

LFL oo,

L”]:vov1

))"_1>||FL||RO.1.

(3-41)
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with

| ) -
Co = 5(1 + 8¢ (1 T2 VOOC1||X||_7':I}-1)C2), (3-42)

where Cy, C, were defined in (2-43), (3-29). This completes our estimate for A3 4.
To deal with the term N3 5 in (3-24), we have to take a derivative in R, from (2-9). This gives the
splitting
N35(0) = 06(0) 4+ 07(0) + 03(6), (3-43)
where

06(0) =

ln
o szz Z M(A X(©)®A,X(0))

n>1 m=0
n+m=>2

Ay X O A, X 0))" 12050, X (0)" Ay X (0)1A, X (O)1" Fr () dn,

1 I’l
01(0) = ;- szz Z M(A X(0)® A, X(6))

n>1 m=0
n+m>2

A, X (0) A, X 0))" " I20, X (0) 09 A, X (0)| A, X (6)P" FiL(n) d,

" 1
0s(0) = 5 /S YY) R ax @ @ a,x0)
n>1m=1
- C2AX (O AXO)) T AXO) VAL X6) 9 A, X (O)FL(n) dn.

Comparing Og and Og to O and O3, respectively, in (3-25), and recalling the bounds (3-27), (3-32),
together with (3-37), we find that

IX1%10 — (2v/2)"em®n X 50\
1 O6ll 0.1 = > - IXN (1 + —=—— | FLl zou1,
2R p R zfe OR
X112, n| X" XN\ L IX N2
Fy’ Fy’ v(t) Fy’ Fy
1081l 7o < —25 ; T (zﬁe +— ) =5 IFLl 2o,
n=

which after summation in # the right side above becomes

X1 1. 2V2e" | X|| 1. 1X 1| 1.
||06||fvo,154e2”°°<1+—fv)<2_ A <1+ 7 ))

2+/2¢"% R R 22V R
4
X1 1. X150 N\ 2 X
x<1—2«/_e”°° RV <1+2\/§e”:oR)) R4v I FLIl o1,

4
X £ X150 Y2 X
||08||E0,1§(1—2\/_e“w . (1+2ﬁev;R)) I FLl 5o

It is now clear that, for the same reason that the bound for O, (3-30) was the same as that for O; (3-26),
the estimate for 07 is the same as the one for Og. Therefore, with (2-42), we conclude that

V3,50 501 < 17CCHIX NS00 FLl oo, (3-44)
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with

16 2, ~1 - | EP C3
Cr = 12e2=CaC3(1- 67 V2! ||X||fv1,.(1+mc8 e ||X||fu.,1>)+ﬁ, (3-45)

where we note that C7 is indeed increasing in || X|| 5.1 as can be seen because the infinite sums in the
v
upper bounds of || Og|| 0.1 and || Os|| zo.1 above are indeed increasing. Further above we are also using
v v

Cs S VI 31X, (3-46)

and we are further using C, and C3 from (3-29) and (3-34).
Recalling the bounds (3-21) and (3-22), the remaining terms N3 ¢—A/3 11 can be estimated similarly,
using also Cy, Cg and C7 from (2-43), (3-42) and (3-45), to obtain

2 2 2
V3.6l 50 < 82 CHIX 31l FLll ou.
2 2 2
I3 71510 < 8¢ CIX s | Fr oo,
v
3 3
I3 8]l 10 < 18v2e" CoCTI X L[ FL | 5o
3 3” (3-47)
VY
IN30ll a1 < 348/2e"CrCT I X 1 | Pl gt
v
2 2 2
[N 310 0 < 18> C6CT X 130 I FL | o,
2 2 2
I3, 11ll o1 < 34> C7 G X 10 I Fel| o

Therefore, from the splitting (3-24) and adding all the bounds (3-35), (3-38), (3-40), (3-41), (3-44), and
(3-47), we conclude that

I3 o1 < 5 CoCTIX 0 I il g1, (3-48)
where

Co = 12 (3Ca + Cs + 167" + 18¢2< Cg + 34e*"= C;
+ (V24 18v2C + 34V2C7)e"™ C1 || X || 511 + (9Cs + 17C)CTIX51.),  (3-49)

with Cy, C4, Cs, Cg, and C7 defined in (2-43), (3-36), (3-39), (3-42), and (3-45).

N estimates: It is clear from (3-5) that the previous estimate for A3 in (3-48) is also valid for N3, with
| Fyl Fo1 replaced by || Fo|| FO.1. Therefore we have

Il o1 < B2 CoCHIX I, 1 Foll o, (3-50)

with Cy defined above in (3-49).

N4 estimates: We split the term N4 in (3-5) following the splitting (2-11):

N3 (0) = N4 1(0) + Nup(0) +Naj3(0),
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where
N4,1(9)=/ d9(Go(Ay X (0))Fn(n)dn,
S

Nap(0) = /g 9 (GL(A,X(0), A, X(6)))Fy(n)dn,

Naj3(0) =/§89(GN(AWXC(9), Ay X (6)))Fn () dn.

We notice that the term N4 5 can be bounded exactly as N in (3-5), with || Fy || Fo1 replaced by || Fy || FOLs
that is, from (3-23) we have

INa 2l o1 < 11822 Cy || X | 211 | Fy |l £0u
with Cy from (2-43). Analogously using the similarity between Ny 3 and N3 in (3-48), we have
IN4,3]l g0 < %Cngllel%,l [ Fnll o,

where we recall Cg from (3-49).
Now taking a derivative in (2-12), the term N4 can be written as

1 Fn(m) 1 /
f)=—— WA, X ORQAN,X.(OF d
Nur®) =gt [ sy s [ ana e )® 8, X0 E )
+4”R2LAUXC(9)®BGAan(Q)FN(U)dn,
and therefore, recalling (3-18), we have

ING 1l 01 < (5 +2¢™) [ Fy |l 2o
We add the previous bounds to obtain
1INl 701 < FC10ll Fy |l o1, (3-51)

with
Cio=5(5+26" + 112> Cll|X || 1 + 5L CoCTI X [311), (3-52)

with Cy, Cg defined in (2-43) and (3-49). Combining the estimates (3-23), (3-50), (3-48), and (3-51), we
conclude from (3-5) that
[Nl 10 < W CoC X 5011 Foll o 1 X | 320 + 1IN2C 1 CLlIX |z [ FL L o + SCroll iyl o1
where
Cii = 5775 (11V26 + 10 CHIX [ 1), (3-53)
and Cq, Cy are defined in (2-43) and (3-49). Rename the constants
D;=CyC), Dy=CoC}, D3=Ci, (3-54)

to get the result (3-1), where Cy, Co, C19, and C; are given in (2-43), (3-49), (3-52), and (3-53). O
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3B. A priori estimates on F. In this section we will obtain bounds for Fy, F;, and Fy in ]-"Uo’l.

Proposition 3.3. Assume that X € j-'vz’l and that F solves (1-13). Then, the functions Fy in (3-58), F in
(2-25) and Fy = F — Fy — F|, satisfy the estimate

24,
| Foll s < v/2¢" Cy—— m (3-55)
where Cyg is defined in (3-46). Further
|A |
[ FLll zor <24, (1 t1o 1 X1l £21, (3-56)
IAMI(I + 1ALl
Byl or = 1000V24, =y = DAl Xl X . (3-57)
where Dy = D4(I|X”]'_-Ul,1; AL, Vo) is an increasing function of ||X||E1,1 as in (1-28) such that
li Dy(| X 311;0,0) =1
nxufjﬁlam (1 X1 5115 0, 0)
and is defined in (3-78).
Proof. First, for a general circle the expression for Fj in (2-20) becomes
24, .,
Fy(6) = 9 Xe. (3-58)
1-A,

Similar to (3-13) using (3-11) we have for (3—55) that

F, <\/_“°°R <2e"C
| Foll o1 = 2e l—AM 26 Cy- AM

where Cg is given by (3-46) and we used (2-42).
Further F} is given by (2-25) and so we have
2|A, IA

I FLI zor < 2A[1 X | z20 + = X z1.05
/L
which gives (3-56).

We proceed with the expansion of the nonlinear terms in (1-13). First, using (2-8), we write

1 1 4 ,
= 1= 258,X:00)" A X AyX(©6))),
|AX + AXc[*  16R*sin® ((e—n)/z)( g2 O X O 8y X (O) +R5 (A (9))>

where

R3(Ap X (0) = =5 8, X (O) Ay X O)R(A, X (6)) +2Ro(A, X(0))

(8 X O A X0 + (Ro(A, X (0)°, (3-59)

and R2(A,X(0)) is given in (2-9). Then, we use the above expansion to rewrite S(F, X')(6) from
(1-14) as

S(F. X)(0) = / KX X0, 20— g (3-60)
’ s @ “2sin(n/2) "
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where

K (Xe, )0, 1) = —2 (0 X O Ay XO) Mg, X (0) @ Mg, X ()
x <1 — %Anxc(e)TA,,X(G) +R3(A17X(9)))’

and we recall the notation X' (0) = X.(8) + X (#) and (2-2).
We will plug in the splitting for F in (2-15) into (1-13). We first introduce an analogous splitting for
K as

K(Xc, X)(0, 1) = Ko(X)(0,m) + KL(Xe, X)(0,n) + Ky (X, X)(0, n). (3-61)

After we remove the zero-order (2-18), and linear-order terms (2-23), then (1-13) for the nonlinear-order
terms becomes the following equation for Fy:
F FyO—n)
N(6) — 2AM/ Ko(Xc)(0, 77)2.— dn=J(X, Fy)(©). (3-62)
S sin (n/2)
with
T E)©) =24, [ (Kuer 00,0 + Ky (X 000, 1) 550
s 2sin (1/2)
+24, / (KL(Xe, X)(0, )+ Kn(Xe, X) (6, n))m dn (3-63)
S 2sin (n/2)
dn
2sin(n/2)’
where the first term in J will be treated as a perturbation with Fy and Fy given in (3-58) and (2-25)
respectively. Notice that Ky is given by

+24, fg) Ky(Xc, X)(0,n)Fo(6 —n)

1
Ko(Xc)(0,n) = m(89Xc(9)l)TAe—an(G)Ae—an(Q) ® Ag—nXc(0),
where by (2-3) and (2-5) we have

ANT _ 2un (N
@ X)) 8oy Xo(0) =—R*sin (1),

a?[1—cos(20—n) —sin(20—n)
Bo—n X O)®Lo—Xc(0) =7 —sin(20—n) 1+4cos(20—n)

b_2 14cos(20—n) sin(20—n) tab sin(20—n) —cos(20—n)
2 sin(20—n) 1—cos(260—n) —cos(20—n) —sin(20—n) |
Therefore,

Fy@—m) 1 B
ZSin—(n/Z)dn_ 4n/§FN(9 ndn

a?® —b? —cos (20—n) —sin (20—n)
47 R? /S[—sin(ZG—n) cos (26 —1n) }FN(Q_”)‘Z”

_ab sin(20—n) —cos (20—n)
2w R? Jg | —cos (260—n) —sin (260—n)

/ Ko(Xc)(0,n)
s

] Fy(© —n)dn.
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Then taking the Fourier transform we find that

Fyn(© —n)
f(/g Ko(Xc) (0, Tl)m dﬂ) (k)

=3 Py 80(t) +

4R? i —1

(@+ib)?*[ 1 —i
4R?2 | —i —1

_ib)? :
}Ev(—l)al(kw—(“ b) [ b

} Fy(1)s_ (k).

Equation (3-62) is then given on the Fourier side by the expressions

J(X, Fy)(0),
" (3-64)

Fy(k)=J(X, Fy)(k), k=>2,

N 1
Fv® =177

while for k = 1 one has that

S (a+ib)*>[ 1 =il a -
Fy() = Ap—pr— |:—i _1] Fy(=1) = J(X, Fy)(1),
~ (@a—ib)*’[ 1 il=- _
FN(_I)_A/LT[ ; _J Fy(1)=J (X, Fy)(—1),

which gives that

A2y A2 0T 132 S N
[1 AZ)2 zAu/z] FN(D:AMM[_; _’1] T, Fa)(—1) + J(K, Fa) (D),

iA%/2 1-AZ)2 2R?
and thus
= Ay (@Fib) [ 1 =i e 1 [1-A%/2 iAL)2 ]
Fy(1) = A2 2R | i ] J(X»FN)(_I)'FW Ak 1-A2) J(X, Fy)(1).

Since we have

. 2 * A2
[ [ (iAo [
—i —1 —iA2/2 1-A2)2

we obtain
~ VP — S
[Py (D] < ——£2 | T (X, Fa) (= D] + — | T (X, Fy)(1)]
l—Au l—Au
1+]Ayl

= J(X, Fy)(1)],
(l—A,L)(1+A,L)|J( mIe]

which together with (3-64) implies that

L+]Ayl
1-A)0+AL

I Fy o0 < 1J (X, Fy)ll o (3-65)

This is our estimate for Fy.

J (X, Fy) estimate: Notice that J (X, Fy) corresponds to the nonlinear terms in S(F, X) except the
one in the left-hand side of (3-62). For simplicity in notation, we are going to estimate S(F, X'), and

later extract from there the corresponding bounds for J (X, Fy).
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Consider the following splitting for S(F, X)) from (1-14):

S(F,X)(0)=S8(F, X))+ S2F, X)(0) + S3(F, X)(9), (3-66)
with
F(O—n)

_ Ly T