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STRONG SEMICLASSICAL LIMITS FROM HARTREE
AND HARTREE–FOCK TO VLASOV–POISSON EQUATIONS

LAURENT LAFLECHE AND CHIARA SAFFIRIO

We consider the semiclassical limit from the Hartree to the Vlasov equation with general singular
interaction potential including the Coulomb and gravitational interactions, and we prove explicit bounds
in the strong topologies of Schatten norms. Moreover, in the case of fermions, we provide estimates on
the size of the exchange term in the Hartree–Fock equation and also obtain a rate of convergence for the
semiclassical limit from the Hartree–Fock to the Vlasov equation in Schatten norms. Our results hold for
general initial data in some Sobolev space and any fixed time interval.

1. Introduction

The Vlasov equation is a kinetic equation describing the time evolution of the probability density of
particles in interaction, such as particles in a plasma or in a galaxy. The problem of deriving this
equation from the dynamics of N quantum interacting particles in a joint mean-field and semiclassical
approximation is a classical question in mathematical physics, and the first rigorous results were obtained
in the 1980s (see [Narnhofer and Sewell 1981; Spohn 1981]).

We study here the semiclassical limit from the Hartree and Hartree-Fock equations towards the Vlasov
equation, i.e., the limit corresponding to a regime in which the Planck constant h becomes negligible.
For any fixed time interval, we obtain quantitative Schatten norm estimates between the solutions of the
quantum equations (Hartree and Hartree-Fock) and the Weyl quantization of the solution of the Vlasov
equation. In particular, these imply the convergence of the Wigner transform of the quantum equations
towards the solution of the Vlasov equation.

1A. Context and state of the art.

Vlasov equation. The Vlasov equation is a nonlinear transport equation for the probability density
f : R+ × Rd

× Rd
→ R;

∂t f + ξ · ∇x f + E · ∇ξ f = 0, (1)

where t ∈ R+ denotes the time variable, x ∈ Rd denotes the space variable and ξ ∈ Rd denotes the
momentum variable. In the above equation, E := −∇K ∗ ρ f is the self-induced mean-field force field
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created by the pair interaction potential K : Rd
→ R through the formula

−(∇K ∗ ρ f )(t, x)= −

∫
Rd

∇K (x − y)ρ f (t, y) dy,

where ρ f is the spatial density associated to f , namely

ρ f (t, x)=

∫
Rd

f (t, x, ξ) dξ.

When K is the Green’s function for the Laplace operator, (1) is called the Vlasov-Poisson system
because K can be obtained as a solution to the Poisson equation −1K = ρ f , thus linking the Vlasov
equation to the Poisson equation. In this case, in dimension 3, K corresponds to the Coulomb potential

K (x)=
1

4π |x |
,

but our method allows us to consider more general attractive and repulsive potentials. To simplify the
presentation, we will look at homogeneous potentials of the form K (x)= ±|x |

−a or at K (x)= ± ln(|x |),
and we will then indicate how to generalize our results to a class of Sobolev spaces (see page 899).

The well-posedness of the Vlasov equation (1) is due to Dobrushin [1979] for smooth interaction
potentials K ∈C2

c (R
d). Concerning singular interactions, the cases of Coulomb and gravitational potentials

have been tackled first in [Iordanskiı̆ 1961] and [Ukai and Okabe 1978] for d = 1 and d = 2, respectively.
In d =3, the well-posedness for small data has been proven in [Bardos and Degond 1985] and later extended
to general initial data by Pfaffelmoser [1992] and by Lions and Perthame [1991]. In recent years, improve-
ments on the conditions of propagation of momenta and on the uniqueness condition have been addressed
in [Desvillettes et al. 2015; Holding and Miot 2018; Loeper 2006; Miot 2016; Pallard 2012; 2014]. The
setting of this paper will be close to the setting of the paper by Lions and Perthame [1991]; that is the one
that best suits the comparison with the quantum dynamics because of its Eulerian viewpoint.

The Vlasov equation (1) is supposed to emerge as a joint mean-field (weakly interacting particles at
high density) and semiclassical limit from the dynamics of N interacting quantum particles. This was
first proven in [Narnhofer and Sewell 1981] and [Spohn 1981] for analytic and C2 interaction potentials,
respectively, using the BBGKY approach in the fermionic setting. The case of bosons interacting through
a smooth pair potential has been studied in [Graffi et al. 2003] in the mean-field limit combined with a
semiclassical limit through the analysis of the dynamics of factored WKB states.

Hartree and Hartree–Fock equations. It is well known that the many-body dynamics can be approximated
in the mean-field limit by the Hartree equation

i h̄∂tρ = [H, ρ], (2)

an evolution equation for the density operator ρ = ρ(t), a nonnegative bounded operator on the
space L2(Rd) with Tr(ρ)= 1. In (2), h̄ =

h
2π is the reduced Planck constant, and H is the Hamiltonian

H = −
1
2 h̄21+ K ∗ ρ, (3)
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where 1 is the Laplace operator, K is the pair interaction potential, ρ(x)= ρ(x, x) is the diagonal of the
integral kernel of the trace class operator ρ and K ∗ ρ is identified with the operator of multiplication by
the function x 7→ K ∗ ρ(x).

In the case of fermions, a more precise mean-field approximation for the many-body quantum dynamics
is given by the Hartree-Fock equation

i h̄∂tρ = [HHF, ρ], (4)

with HHF = −h̄21+ K ∗ ρ −X, where X is the so-called exchange term defined as the operator with
integral kernel

X(x, y)= K (x − y)ρ(x, y). (5)

We recall that the interest in the mean-field regime is due to the fact that many systems of interest
in quantum mechanics are usually made of large numbers of particles, which typically range between
102 and 1023, while the above equations only describe the behavior of one typical particle in a system of
infinitely many particles. The mathematical literature on this subject is rather extensive. See for example
[Bardos et al. 2000; 2002; Chen et al. 2011; 2018; Erdős and Yau 2001; Fröhlich et al. 2009; Golse
and Paul 2017; 2019; Golse et al. 2016; 2018; Grillakis et al. 2010; Kuz 2015; Mitrouskas et al. 2019;
Pickl 2011; Rodnianski and Schlein 2009] for the case of bosons, and [Bach et al. 2016; Benedikter
et al. 2014; 2016a; Elgart et al. 2004; Fröhlich and Knowles 2011; Petrat 2017; Petrat and Pickl 2016;
Porta et al. 2017; Saffirio 2018] for the case of fermions.

Semiclassical limit. The Hartree and Hartree–Fock equations are quantum models. It is therefore natural
to investigate their semiclassical limit as h̄ → 0. First results in this direction provide the convergence from
the Hartree dynamics towards the Vlasov equation in the abstract sense, without rate of convergence and in
weak topologies, but including the case of singular interaction potentials, such as the Coulomb interaction
(see [Figalli et al. 2012; Gasser et al. 1998; Lions and Paul 1993; Markowich and Mauser 1993]). Explicit
bounds on the convergence rate in stronger topologies were established in [Amour et al. 2013a; 2013b;
Athanassoulis et al. 2011; Benedikter et al. 2016b; Golse and Paul 2017; Pezzotti and Pulvirenti 2009].
They all deal with smooth interaction potentials. More recently, the case of singular interactions, including
the Coulomb potential, has been considered in [Lafleche 2019; 2021], where the convergence from the
Hartree to the Vlasov equation is achieved in weak topology using the quantum Wasserstein–Monge–
Kantorovich distance, providing explicit bounds on the convergence rate. In strong topology (trace
norm and Hilbert–Schmidt norm), explicit bounds on the convergence from the Hartree dynamics to the
Vlasov equation with inverse power law of the form K (x)= |x |

−a with a ∈
(
0, 1

2

)
have been proven in

[Saffirio 2020b], and a proof that includes the Coulomb potential has been provided in [Saffirio 2020a]
but under restrictive assumptions on the initial data.

Key novelties. The aim of this paper is to establish a strong convergence result from both the Hartree and
the Hartree–Fock equations towards the Vlasov dynamics for a large class of regular initial states. Our
results apply to a wide class of initial data which are smooth as h → 0, thus giving a thorough answer to
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the question of strong convergence of the Hartree equation to the Vlasov system for singular interactions,
at least in the case of mixed states converging to smooth solutions of the Vlasov equation.

With respect to the results present in the literature, there are several novelties: Apart from the large
class of initial data for whose evolution we can establish strong convergence with explicit rate towards
the Vlasov equation, our techniques allow us to consider inverse power law potentials that are more
singular than the Coulomb potential, and our methods easily extend to very general nonradially symmetric
potentials. Moreover, the topology we consider is not only the one induced by the trace or Hilbert–Schmidt
norm (as it is for instance in [Saffirio 2020b]), but the ones induced by semiclassical Schatten norms Lp,
for all p ∈ [1,∞). These are obtained by a refinement on the estimate for the Lp-norms of the commutator
[K ( · − z), ρ] and a careful analysis of the propagation in time of initial conditions leading to bound the
quantity ∥∥∥∥diag

∣∣∣∣[ x
i h̄
, ρ

]∣∣∣∣∥∥∥∥
L p(Rd )

uniformly in h̄, for p > 3. This requires using kinetic interpolation inequalities as in [Lafleche 2019] and
an extension of the Calderón–Vaillancourt theorem for Weyl quantization.

Finally, we extend our results to the Hartree–Fock equation (4), thus proving the strong convergence
of the Hartree–Fock dynamics to the Vlasov equation. As a corollary, we get explicit estimates on the
difference between the Hartree and Hartree–Fock dynamics in Schatten norms, thus giving a rigorous
proof of the fact that the exchange term in the Hartree–Fock dynamics is also subleading with respect to
the direct term when the interaction potential is singular (this was proved in [Benedikter et al. 2014] in
the case of smooth potentials).

Open problems. Our work gives good answers to the problem of the semiclassical limit from the Hartree
and Hartree–Fock equations to the Vlasov equation with general singular potentials in the context of
mixed states. However, a certain number of questions related to the derivation of the Vlasov equation
from quantum dynamics remain open.

(i) To our knowledge, the mean-field limit from a system of N quantum particles interacting through a
singular potential in the case of mixed states is open in both the bosonic and the fermionic settings.

(ii) In the bosonic setting, where N and h̄ are independent parameters, the joint mean-field and semiclas-
sical limit is an open problem when the interaction is singular. Namely, no uniform convergence in the
semiclassical parameter h̄ has been proven so far.

(iii) We believe our results give optimal bounds on the convergence rate in trace norm L1. The question
whether the bounds we obtain for the semiclassical Hilbert–Schmidt norm L2 are optimal, and thus for
the L2 convergence of the associated Wigner functions, is open. The exact same question can be asked
about the bounds in Theorem 1.6 for the convergence of the Hartree–Fock equation to the Vlasov equation.
In both cases, we believe the bounds we get are not optimal and there is room for improvement.

Structure of the paper. The paper is structured as follows:

• We state our main result in Section 1B and include additional comments and generalizations in
Section 1C.
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• In Section 2 we explain our strategy. We introduce a semiclassical notion of regularity (Section 2A)
and then explain our method to get the semiclassical limit by making a comparison with the classical
Vlasov dynamics, finding a new stability estimate for the Vlasov system (Section 2B).

• Section 3 contains the main results concerning the regularity of the Weyl transform of a solution to the
Vlasov equation, which will be crucial to prove the theorems stated in Section 1B.

• Section 4 is devoted to proving Theorems 1.1 and 1.4, dealing with the semiclassical limit from the
Hartree equation under the assumption that the regularity proved in Section 3 holds.

• In Section 5 we present the proof of Theorem 1.6 about the semiclassical limit from the Hartree–Fock
equation, based on additional estimates on the exchange term.

• Two appendices on the propagation of regularity for the Vlasov equation and on basic operator identities
complement the paper.

1B. Main results.

Operators and function spaces. We denote by L p
= L p(Rd) the classical Lebesgue spaces and by

L p,q
= L p,q(Rd) the classical Lorentz spaces for (p, q) ∈ [1,∞]

2; see for example [Bergh and Löfström
1976]. In particular, L p,p

= L p. We define the space of positive and trace class operators by

L1
+

:= {ρ ∈ L(L2), ρ = ρ∗
≥ 0, Tr(ρ) <∞},

where L(L2) denotes the space of linear operators on L2, and the quantum Lebesgue norms (or semiclas-
sical Schatten norms) Lp by

∥ρ∥Lp := h−d/p′

∥ρ∥p = h−d/p′

(Tr(|ρ|
p))1/p,

where ∥ρ∥p denotes the usual Schatten norm (i.e., without dependency in h) and p′
= p/(p − 1) denotes

the conjugate exponent.
In this work, we consider the semiclassical limit to solutions of the Vlasov equation with regular data

in the sense that the initial condition will be bounded in some weighted Sobolev space. Therefore, we
write the following for smooth polynomial weight functions,

⟨y⟩ :=

√
1 + |y|2,

and for σ ∈ N, we define the spaces W σ,p
k (R2d) as the spaces equipped with the norm

∥ f ∥W σ,p
k (R2d ) := ∥⟨z⟩k f (z)∥L p(R2d ) + ∥⟨z⟩k

∇
σ
z f (z)∥L p(R2d ),

where z = (x, ξ) with ⟨z⟩2
= 1 + |x |

2
+ |ξ |2. We also use the standard notation when σ = 0 or p = 2:

L p
k (R

2d) := W 0,p
k (R2d), Hσ

k (R
2d) := W σ,2

k (R2d).

When R2d is replaced by Rd, as for Lebesgue spaces, we will use shortcut notation and write H n instead
of H n(Rd), for example, and C∞

c for the space of smooth compactly supported functions on Rd.
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Wigner and Weyl transforms. We can associate to each density operator ρ a function of the phase space
called the Wigner transform, which is defined (for h = 1) by

w(ρ)(x, ξ) :=

∫
Rd

e−2iπy·ξρ
(
x +

1
2 y, x −

1
2 y

)
dy = F(ρ̃x)(ξ),

where ρ̃x(y)= ρ
(
x +

1
2 y, x −

1
2 y

)
and we used the following convention for the Fourier transform:

F(u)(ξ) :=

∫
Rd

e−2iπx ·ξu(x) dx .

This function of the phase space is not a probability distribution, however, since it is generally not
nonnegative. We refer to [Lions and Paul 1993] for more properties of the Wigner transform. Given ρ,
we will write its semiclassical Wigner transform as

wh̄(ρ)(x, ξ) :=
1

hdw(ρ)

(
x,
ξ

h

)
.

Conversely, to each function of the phase space, we can associate an operator through the Weyl transfor-
mation, which is the inverse of the Wigner transform. It is defined as the operator ρW

h̄ (g) such that for any
ϕ ∈ C∞

c ,

ρW
h̄ (g)ϕ :=

∫∫
R2d

g
( 1

2(x + y), ξ
)
e−i(y−x)·ξ/h̄ϕ(y) dy dξ.

Theorems. We state our theorems, starting with our main result.

Theorem 1.1. Let d ∈ {2, 3}, a ∈
(
max

{1
2 d − 2,−1

}
, d − 2

]
and K be given by either

K (x)=
±1
|x |a

or K (x)= ± ln(|x |). (6)

In the second case we set a := 0. Let f ≥ 0 be a solution of the Vlasov equation (1) and ρ ≥ 0 be a
solution of the Hartree equation (2) with respective initial conditions

f in
∈ W σ+1,∞

m (R2d)∩ Hσ+1
σ (R2d), (7)

ρin
∈ L1, (8)

where (m, σ ) ∈ (4N)× (2N) satisfies m > d and σ >m +d/(b−1) with b= d/(a +1). If a ≤ 0, we also
require Tr((|x |

2
−h̄21)ρin) to be bounded. Then there exist λ f (t)∈C0(R+,R+) and C f (t)∈C0(R+,R+)

depending only on d, a and the initial condition of the solution of the Vlasov equation such that

Tr(|ρ − ρ f |)≤ (Tr(|ρin
− ρin

f |)+ C f (t)h̄)eλ f (t), (9)

where ρ f = ρW
h̄ ( f ) and ρin

f = ρ f in . Upper bounds for the functions λ f and C f are given by

λ f (t)≤ Cd,a

∫ t

0
∥∇ξ f ∥W n0,∞(R2d )∩Hσ

σ (R
2d ) ds,

C f (t)≤ Cd,a

∫ t

0
∥ρ f (s)∥L1∩H ν∥∇

2
ξ f (s)∥Hm

m (R
2d )e

−λ f (s) ds,

where ν =
( 1

2 m + a + 2 − d
)
+

and n0 = 2
⌊ 1

2 d
⌋

+ 2, and remain bounded at any time t ≥ 0.
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Remark 1.2. Condition (6) includes in particular the Coulomb or Newton potential in dimensions d = 3
and d = 2. In these cases, the conditions of regularity (7) of the initial data of the Vlasov equation become
f in

∈ W 13,∞
4 (R2d)∩ H 13

12 (R
2d) when d = 3 and a = 1, and f in

∈ W 9,∞
4 (R2d)∩ H 9

8 (R
2d) when d = 2

and a = 0. These conditions are of course not optimal: for example, we ask that m/2 and σ be even
numbers to simplify some computations.

Remark 1.3. To see more explicitly that (9) gives a good semiclassical approximation estimate, one
can take ρin and ρin

f such that Tr(|ρin
− ρin

f |)≤ Ch̄ and fix some T > 0, which yields the existence of a
constant CT > 0 such that for any t ∈ [0, T ],

Tr(|ρ − ρ f |)≲ CT h̄. (10)

The theorem also implies the convergence of the spatial density of particles ρ → ρ f in L1. Indeed, by
duality we have

∥ρ− ρ f ∥L1 = sup
O∈L∞(Rd )
∥O∥L∞≤1

∣∣∣∣∫ O(x)(ρ(x)− ρ f (x)) dx
∣∣∣∣ ≤ Tr(|ρ − ρ f |), (11)

since every bounded function x 7→ O(x) also defines a multiplication operator with operator norm ∥O∥L∞ .

From the bound in Theorem 1.1 we obtain estimates in other semiclassical Lebesgue spaces.

Theorem 1.4. Take the same assumptions and notations as in Theorem 1.1, define b = d/(a + 1) and
assume moreover that

f in
∈ W σ+1,∞

σ (R2d)∩ Hσ+1
σ (R2d)

and that σ > n0 + d/b. Then for any p ∈ [1, b),

∥ρ − ρ f ∥Lp ≤ ∥ρin
− ρin

f ∥Lp + (Tr(|ρin
− ρin

f |)+ c(t)h̄)eλ(t), (12)

where c and λ are continuous functions on R+ depending on d , a, p and f in. For any q ∈ [b,∞),
assuming also that ρin

∈ L∞, this leads to the estimate

∥ρ − ρ f ∥Lq ≤ c2(t)(∥ρin
− ρin

f ∥
p/q
Lp + Tr(|ρin

− ρin
f |)p/q

+ h̄ p/q)e(p/q)λ(t), (13)

where ρ f = ρW
h̄ ( f ), ρin

f = ρ f in and c2 ∈ C0(R+,R+) can be computed explicitly and depend on the initial
conditions.

Remark 1.5. In particular, if we assume ρin
= ρin

f , or more generally

Tr(|ρin
− ρin

f |)≤ Ch̄ and ∥ρin
− ρin

f ∥L2 ≤ Ch̄,

then we have a rate of the form h̄b/2−ε with ε> 0 arbitrarily small. For the Coulomb potential in dimension
d = 3, the estimate reads

∥ fρ − f ∥L2(R2d ) = ∥ρ − ρ f ∥L2 ≤ CT h̄3/4−ε,

for any t ∈ [0, T ] for some fixed T > 0, where fρ = wh̄(ρ) is the Wigner transform of ρ. Notice that
Theorem 1.1 does not imply convergence of the operators but is only a quantitative estimate, where
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both ρ and ρW
h̄ ( f ) depend on h̄. As operators, they both for instance converge to 0 in operator norm

since by hypothesis ∥ρ∥∞ ∼ Chd. On the contrary, the above equation is both a quantitative estimate
and a convergence result since f is a fixed element which does not depend on h̄. Thus it implies the
convergence of fρ to f in L∞

loc(R+, L2(R2d)).
With the same assumptions in the case d = 2, the Coulomb kernel is of the form K (x) = C ln(|x |)

and b = 2, implying that (12) holds for any p ∈ [1, 2) and that we almost get the conjectured optimal rate
of convergence for p = 2,

∥ fρ − f ∥L2(R2d ) ≤ CT h̄1−ε.

Our third result concerns the Hartree–Fock equation. In this case, we combine p = 1 and p > 1 in one
theorem.

Theorem 1.6. Let ρ be a solution of the Hartree–Fock equation (4) and f be a solution of the Vlasov
equation (1) which satisfy the same initial conditions as in Theorem 1.1, and if p > 1, the same initial
conditions as in Theorem 1.4. If a > 0, we also assume that the solution has finite kinetic energy, i.e.,

− Tr(h̄21ρin)

is bounded uniformly with respect to h̄. Then, for any p ∈ [1, b), there exist functions c ∈ C0(R+,R+)

and λ ∈ C0(R+,R+) depending on d , a, p and f in such that

∥ρ − ρ f ∥Lp ≤ ∥ρin
− ρin

f ∥Lp + (Tr(|ρin
− ρin

f |)+ c(t)h̄min{1,s̃−1})eλ(t),

where ρ f = ρW
h̄ ( f ), ρin

f = ρ f in and s̃ = d − a+ − d
( 1

2 −
1
p

)
+

. For q ∈ [b,∞), assuming again that
ρin

∈ L∞, we still have the estimate

∥ρ − ρ f ∥Lq ≤ c2(t)(∥ρin
− ρin

f ∥
p/q
Lp + Tr(|ρin

− ρin
f |)p/q

+ h̄(p/q)min{1,s̃−1})e(p/q)λ(t),

where c2(t) can be computed explicitly and depends on the initial conditions.

1C. Discussion.

Higher singularities. For a > d − 2, we have no propagation of regularity and therefore our results hold
true only in a conditional form. Namely, if the solution to the Vlasov equation is sufficiently regular, then
the bounds of Theorem 1.1 and Theorem 1.4 are still satisfied. More precisely, if d = 3, such conditional
results hold for any a ∈ (1, 2). As for Theorem 1.6, a conditional result is still true. However, due to the
need to control the exchange term X, we can only address a smaller class of potentials. In particular, in
dimension d = 3 we have a ∈

(
1, 3

2

)
. Our results in dimensions 2 and 3 can be summarized as follows:

settings:
d = 2 d = 3

a ∈ (−1, 0] a ∈ (0, 1) a ∈
(
−

1
2 , 1

]
a ∈

(
1, 3

2

)
a ∈

[3
2 , 2

)
Hartree global conditional global conditional conditional

Hartree–Fock global conditional global conditional no results
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General class of potentials. All our results generalize to more general nonradial pair interactions. For
s ∈ (0, d), define the weak Sobolev space Ḣ s,1

w as the completion of C∞
c with respect to the norm

∥u∥Ḣ s,1
w

:= ∥1s/2u∥TV,

where ∥ · ∥TV denotes the total variation norm over the space M of bounded measures. By the formula
of the inverse of the powers of the Laplacian, we deduce that it is the space of functions that can be
written as

u(x)=

∫
Rd

1
|x −w|d−sµ(dw), (14)

for some measure µ ∈ M.
Notice that this space contains the interaction kernel

K (x)=
1

|x |a
with a = d − s,

when a > 0, which follows by taking µ= δ0. In particular, for the Coulomb potential in dimension d = 3,

1
|x |

∈ Ḣ 2,1
w .

However, this space contains also more general potentials. It contains for example the Sobolev space
Ḣ s,1

= Ḟ s
2,1 which is defined by the norm ∥1s/2u∥L1 . When n ∈ N, then Ḣ n,1

= Ẇ n,1 is a classical
homogeneous Sobolev space.

The proof for more general potentials follows mainly from the fact that the equation and most of our
estimates depend linearly on K . As an example, Proposition 5.1 is proved with this class of potentials.
Hence, all our results also hold with the assumption K ∈ Ḣ d−a

w instead of K (x) = |x |
−a when a > 0,

except Theorem 1.6, since we need an assumption on K 2 to prove inequalities (39a) and (39b). For
this theorem, the assumption K (x) = |x |

−a can therefore be replaced by K ∈ Ḣ d−a
w and K 2

∈ Ḣ d−2a
w

when a ≥ 0.

From Hartree to Hartree–Fock. Notice that Theorem 1.4 and Theorem 1.6 give a semiclassical estimate
between the solutions of the Hartree equation (2) and the solutions of the Hartree–Fock equation (4).
Indeed, let ρH and ρHF be solutions to the Hartree equation and the Hartree–Fock equation, respectively,
and let ρ f be a solution to the Weyl transformed Vlasov equation. Then, for p ∈ [1,∞), we have

∥ρH − ρHF∥Lp ≤ ∥ρH − ρ f ∥Lp + ∥ρHF − ρ f ∥Lp ,

where the first term on the right-hand side is bounded by Theorem 1.4 and the second term on the
right-hand side can be estimated by Theorem 1.6.

Well-posedness. One of the strengths of the method is that our strong regularity assumptions that must be
independent of h̄ only concern the solutions of the Vlasov equation. Our assumptions on the solution of
the Hartree equation imply the global well-posedness of solutions, as proved in [Castella 1997], where the
trace norm corresponds to the L2(λ)-norm; see also [Ginibre and Velo 1980; 1985; Lions and Paul 1993].
Even if these assumptions are weak, observe however that the operator ρin has to be at a finite trace norm
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distance from the operator ρin which by construction is bounded in higher Sobolev spaces (as can be
deduced from Proposition 3.3). The additional moment bound when a ≤ 0 ensures that the energy is
finite, which allows us to propagate the space moments; see e.g., [Lafleche 2019, Remark 3.1]. This is
sufficient to give a meaning to the pair interaction potential which is growing at infinity in this case.

2. Strategy

The strategy of this paper consists in getting the semiclassical analogue of the estimates of classical
mechanics, and in particular the case of kinetic models. The quantum analogue of the classical momentum
variable ξ is the operator

p := −i h̄∇,

which is an unbounded operator on L2. From this we get in particular that | p|
2
:= p∗ p = −h̄21 and we

can express the Hamiltonian (3) as H =
1
2 | p|

2
+ V (x).

2A. Quantum gradients of the phase space. Since our method uses regular initial conditions, we define
the following operators which are the quantum equivalent of the gradient with respect to the variables x
and ξ of the phase space:

∇xρ := [∇, ρ] =

[
p

i h̄
, ρ

]
,

∇ξρ :=

[
x
i h̄
, ρ

]
.

These formulas can be seen from the point of view of the correspondence principle as the quantum
equivalent of the Poisson bracket definition of the classical gradients. Another point of view is to observe
that they are Weyl quantizations, since we have

∇xρ = ρW
h̄ (∇xwh̄(ρ)),

∇ξρ = ρW
h̄ (∇ξwh̄(ρ)).

One should not confuse ∇ ∈ L(L2) with ∇x ∈ L(L(L2)). In Section 3, we prove that if a function on
the phase space is sufficiently smooth in the classical sense, then its Weyl quantization also has some
smoothness in the semiclassical sense.

2B. The classical case: L1 weak-strong stability. In the classical case, the method we use to prove the
semiclassical limit, which is the content of Sections 4 and 5 can be seen as an equivalent of the following
L1 weak-strong stability estimate for the Vlasov equation, which says that we need to have control of the
gradient of only one of the solutions to get a bound on the integral of their difference.

We use the shortcut notation L p
x Lq,r

ξ = L p(Rd, Lq,r (Rd)) for functions on the phase space of the form
f = f (x, ξ). The next proposition can be seen as the classical equivalent of Theorem 1.1.

Proposition 2.1. Let b ∈ (1,∞] and ∇K ∈ Lb,∞, and assume f1 and f2 are two solutions of the Vlasov
equation (1) in L∞([0, T ], L1(R2d)) for some T > 0. Then, under the condition

∇ξ f2 ∈ L1([0, T ], Lb′,1
x L1

ξ ), (15)
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one has the stability estimate

∥ f1 − f2∥L1(R2d ) ≤ ∥ f in
1 − f in

2 ∥L1(R2d ) exp
(

C
∫ T

0
∥∇ξ f2∥Lb′,1

x L1
ξ

dt
)
,

where C = ∥∇K∥Lb,∞ .

Remark 2.2. In the case of the Coulomb interaction and b =
3
2 , the condition on f2 becomes∫

Rd
|∇ξ f2| dξ ∈ L1([0, T ], L3,1

x ),

which by real interpolation follows if

∥∇ξ f2∥L1
ξ
∈ L1([0, T ], L3+ε

x ∩ L3−ε
x ),

for some ε ∈ (0, 2]. In particular, the case ε = 2 yields (3 − ε, 3 + ε)= (1, 5), which corresponds to the
classical equivalent of the hypotheses required on the solutions in [Saffirio 2020a]. A quantum version of
this hypothesis can also be found in [Porta et al. 2017].

Remark 2.3. This result allows ∇K to be more singular than the case of the Coulomb potential. However,
it is a conditional result, since one still has to show that condition (15) holds. If the potential is the
Coulomb potential or a less singular potential, then one can prove that this condition holds if the data
is initially in some weighted Sobolev space by Proposition A.1 in Appendix A. If the potential is more
singular than the Coulomb potential, then it is not clear that there are cases such that condition (15) is
satisfied.

Proof of Proposition 2.1. Let f := f1 − f2 and define ρk =
∫

Rd fk dξ and Ek = −∇Vk = −∇K ∗ ρk for
k ∈ {1, 2}. Then

∂t f + ξ · ∇x f + E1 · ∇ξ f = (E2 − E1) · ∇ξ f2,

so that by defining ρ := ρ1 − ρ2 we obtain

∂t

∫∫
R2d

| f | dx dξ =

∫∫
R2d
(∇K ∗ ρ · ∇ξ f2) sgn( f ) dx dξ

= −

∫
Rd
ρ∇K ∗̇

(∫
Rd

sgn( f )∇ξ f2 dξ
)

≤ ∥ f ∥L1

∥∥∥∥∇K ∗

∫
Rd

|∇ξ f2| dξ
∥∥∥∥

L∞

,

where the notation ∗̇ indicates that we perform the dot product of vectors inside the convolution. We
conclude by noticing that by Hölder’s inequality for Lorentz spaces (see for example [Hunt 1966, (2.7)]),
for any g ∈ Lb′,1,

∥∇K ∗ g∥L∞ ≤ sup
z∈Rd

∫
Rd

|∇K (z − · )g| ≤ ∥∇K∥Lb,∞∥g∥Lb′,1, (16)

so the result follows by taking g = ∥∇ξ f2∥L1
ξ

and then using Grönwall’s lemma. □

The next proposition is the classical equivalent of the first part of Theorem 1.4.
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Proposition 2.4. Let b > 1 and ∇K ∈ Lb,∞, and assume f1 and f2 are two solutions of the Vlasov
equation (1) in L∞([0, T ], L1(R2d)) for some T > 0. Then, if ∇ξ f2 ∈ L1([0, T ], Lq,1

x L p
ξ ),

∥ f1 − f2∥L p(R2d )

≤ ∥ f in
1 − f in

2 ∥L p(R2d ) + C∥ f in
1 − f in

2 ∥L1(R2d )

∫ t

0
∥∇ξ f2∥Lq,1

x L p
ξ

dt exp
(

C
∫ T

0
∥∇ξ f2∥Lb′,1

x L1
ξ

dt
)
,

where C = ∥∇K∥Lb,∞ and
1
q

=
1
p

−
1
b
. (17)

Remark 2.5. Formula (17) implies p ≤ b. In the case of the Coulomb interaction in dimension d = 3 we
have b =

3
2 , thus the estimate works at most with p =

3
2 .

Proof. We define the two-parameter semigroup St,s such that Ss,s = 1 and

∂t St,s g =3t St,s g,

where
3t St,s g := −ξ · ∇x St,s g − E1(t) · ∇ξ St,s g,

with E1(t)= E1(t, x)= −∇K ∗ ρ1 and ρ1(t, x)=
∫

f1(t, x, ξ) dξ . Now observe that the flow property
of St,s implies that ∂s St,s = −St,s3s . Thus, using the notation

3̃t := −ξ · ∇x − E2(t) · ∇ξ

and taking f1(s)= f1(s, x, ξ) and f2(s)= f2(s, x, ξ) to be two solutions of the Vlasov equation, we get

∂s St,s( f1 − f2)(s)= −St,s3s( f1 − f2)(s)+ St,s3s f1(s)− St,s3̃s f2(s)

= St,s(3s − 3̃s) f2(s)= St,s((E2(s)− E1(s)) · ∇ξ f2(s)),

and by integrating with respect to s and writing f := f1 − f2 and E := E1 − E2 we obtain the Duhamel
formula

f (t)= St,0 f in
+

∫ t

0
St,s(E(s) · ∇ξ f2(s)) ds.

Since the semigroup St,s preserves all Lebesgue norms of the phase space, taking the L p-norm yields

∥ f (t)∥L p
x,ξ

≤ ∥ f in
∥L p

x,ξ
+

∫ t

0
∥E(s) · ∇ξ f2(s)∥L p

x,ξ
ds.

To bound the expression inside the time integral we write

∥E(s) · ∇ξ f2(s)∥L p
x,ξ

= ∥(ρ ∗ ∇K ) · ∇ξ f2(s)∥L p
x,ξ

≤

∫
Rd

|ρ(z)|∥∇K ( · − z) · ∇ξ f2(s)∥L p
x,ξ

dz

≤

∫
Rd

|ρ(z)|
∥∥|∇K ( · − z)|∥∇ξ f2(s)∥L p

ξ

∥∥
L p

x
dz

≤ ∥ρ∥L1∥∇K∥Lb,∞∥∇ξ f2(s)∥Lq,1
x L p

ξ

,

where we again used Hölder’s inequality for Lorentz spaces. □
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3. Regularity of the Weyl transform

In this section, we prove that if the solution f of the Vlasov equation is sufficiently well-behaved, then we
can obtain uniform in h̄ bounds for the quantum equivalent of the norm ∥∇ξ f ∥L p

x L1
ξ

expressed in terms of
the Weyl transform of f .

Proposition 3.1. Let n, n1 ∈ N be even numbers such that n > 1
2 d, and define σ := 2n + n1 and

n0 = 2
⌊1

2 d
⌋

+ 2. Then, for any f ∈ W n0+1,∞(R2d) ∩ Hσ+1
σ (R2d), there exists a constant Cd,n1 > 0

depending only on d and n1 such that

∥diag(|∇ξρW
h̄ ( f )|)∥L p ≤ Cd,n1∥∇ξ f ∥W n0,∞(R2d )∩Hσ

σ (R
2d )

for any p ∈ [1, 1 + n1/d].

The strategy is to use a special case of the quantum kinetic interpolation inequality proved in Theorem 6
of [Lafleche 2019]. For the operator |∇ξρ|, this special case reads

∥diag(|∇ξρ|)∥L p ≤ C(Tr(|∇ξρ|| p|
n1))θ∥∇ξρ∥

1−θ
L∞ , (18)

where p = 1 + n1/d and θ = 1/p. The corresponding kinetic inequality is

∥∇ξ f ∥L p
x (L1

ξ )
≤ C

(∫∫
R2d

|∇ξ f ||ξ |n1 dx dξ
)θ

∥∇ξ f ∥
1−θ
L∞

x,ξ
.

To do this, we will need to compare the multiplication of the Weyl transform of a phase space function g
by | p|

n and |x |
n, with the Weyl transform of the multiplication of g by |ξ |n and |x |

n. This makes error
terms appear involving derivatives of g. For example, in the case n = 2,

ρW
h̄ (g)| p|

2
= ρW

h̄
(
|ξ |2g +

1
2 i h̄ξ · ∇x g −

1
4 h̄21x g

)
and ρW

h̄ (g)|x |
2
= ρW

h̄
(
|x |

2g + i h̄ξ · ∇ξg +
1
4 h̄21ξg

)
.

More generally, one can obtain similar identities when n ∈ N. In order to write them, we introduce the
standard multi-index notation

α := (αi)i∈[[1,d]] ∈ Nd, |α| :=

d∑
i=1

αi, α! := α1!α2! · · ·αd !,

xα := xα1
1 xα2

2 · · · xαd
d , ∂αx := ∂α1

x1
∂α2

x2
· · · ∂αd

xd
, α ≤ β ⇐⇒ ∀i ∈ [[1, d]], αi ≤ βi.

We then obtain the following set of identities.

Lemma 3.2. For any n ∈ 2N and any tempered distribution g of the phase space,

ρW
h̄ (g)| p|

n
=

∑
|α+β|=n

aα,β
( 1

2 i h̄
)|β|

ρW
h̄ (ξ

α∂βx g), (19a)

ρW
h̄ (g)|x |

n
=

∑
|α+β|=n

bα,β(−i h̄)|β|ρW
h̄ (x

α∂
β
ξ g), (19b)

ρW
h̄ (g)| p|

n1 |x |
n

=

∑
|α+β|=n1
|α′

+β ′
|=n

aα,βbα′,β ′(−i h̄)|β
′
|
( 1

2 i h̄
)|β|

ρW
h̄ (x

α′

∂
β ′

ξ (ξ
α∂βx g)), (19c)

where the coefficients aα,β and bα,β are nonnegative and do not depend on h̄.
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Proof. By definition of the Weyl transform, we deduce that for any ϕ ∈ C∞
c ,

ρW
h̄ (g)| p|

nϕ = (i h̄)n
∫∫

R2d
g
( 1

2(x + y), ξ
)
e−i(y−x)·ξ/h̄1n/2ϕ(y) dy dξ

= (i h̄)n
∫∫

R2d
1n/2

y
(
g
( 1

2(x + y), ξ
)
e−i(y−x)·ξ/h̄)ϕ(y) dy dξ.

With the multi-index notation, we can expand the powers of the Laplacian of a product of functions in the
following way:

1n/2( f g)=

∑
|α+β|=n

aα,β∂α f ∂βg,

where the an
α,β are nonnegative constants depending on n and on the multi-index α such that∑

|α+β|=n

aα,β = (4d)n.

Thus we deduce that the integral kernel κ of the operator ρW
h̄ (g)| p|

n is given by

κ(x, y)=

∑
|α+β|=n

aα,β(i h̄)n−|α|

∫
Rd

2−|β|∂βx g
(1

2(x + y), ξ
)
ξαe−i(y−x)·ξ/h̄ dξ,

which yields

ρW
h̄ (g)| p|

n
=

∑
|α+β|=n

aα,β
(1

2 i h̄
)|β|

ρW
h̄ (ξ

α∂βx g).

This proves (19a). To prove the second identity, we write u :=
1
2(x + y) and v := y −x , so that the integral

kernel κ2 of the operator ρW
h̄ (g)|x |

2 is given by

κ2(x, y)=

∫∫
R2d

g
( 1

2(x + y), ξ
)
e−i(y−x)·ξ/h̄

|y|
n dξ

=

∫∫
R2d

g(u, ξ)e−iv·ξ/h̄(∣∣u +
1
2v

∣∣2)n/2 dξ

=

∫∫
R2d

g(u, ξ)e−iv·ξ/h̄
( d∑

i=1

(
u2

i +
1
4v

2
i + uivi

))n/2

dξ.

By the multinomial theorem, this can be written as

κ2(x, y)=

∑
|α+β|=n

bα,β

∫∫
R2d

uαg(u, ξ)vβe−iv·ξ/h̄ dξ

=

∑
|α+β|=n

bα,β

∫∫
R2d

uαg(u, ξ)(i h̄)|β|∂
β
ξ e−iv·ξ/h̄ dξ

=

∑
|α+β|=n

bα,β(−i h̄)|β|

∫∫
R2d

uα∂βξ g(u, ξ)e−iv·ξ/h̄ dξ,
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where we used integration by parts |β| times to get the last line, and the bα,β are nonnegative constants
that satisfy ∑

|α+β|=n

bα,β =
( 9

4 d
)n/2

.

In term of operators, this leads to

ρW
h̄ (g)|x |

n
=

∑
|α+β|=n

bα,β(−i h̄)|β|ρW
h̄ (x

α∂
β
ξ g),

which is (19b). To get the last identity, we combine the first two to get

ρW
h̄ (g)| p|

n1 |x |
n

=

∑
|α+β|=n1

aα,β
(1

2 i h̄
)|β|

ρW
h̄ (ξ

α∂βx g)|x |
n

=

∑
|α+β|=n1
|α′

+β ′
|=n

aα,βbα′,β ′(−i h̄)|β
′
|
( 1

2 i h̄
)|β|

ρW
h̄ (x

α′

∂
β ′

ξ (ξ
α∂βx g)). □

From this lemma, we deduce the following L2 inequalities.

Proposition 3.3. Let n ∈ 2N, and let g be a function of the phase space. Then there exists a constant
C > 0 depending only on d and n such that

∥ρW
h̄ (g)| p|

n
∥L2 ≤ (4d)n

(
∥g|ξ |n∥L2(R2d ) +

( 1
2 h̄

)n
∥∇

n
x g∥L2(R2d )

)
, (20a)

∥ρW
h̄ (g)|x |

n
∥L2 ≤

( 9
4 d

)n
(∥g|x |

n
∥L2(R2d ) + h̄n

∥∇
n
ξ g∥L2(R2d )), (20b)

∥ρW
h̄ (g)| p|

n1 |x |
n
∥L2 ≤ C

(
∥(1 + |x |

n
|ξ |n1)g∥L2(R2d ) + h̄n1∥|x |

n
∇

n1
x g∥L2(R2d )

+ h̄n
∥|ξ |n1∇

n
ξ g∥L2(R2d ) + h̄n+n1∥∇

n1
x ∇

n
ξ g∥L2(R2d )

)
. (20c)

Proof. By (19a) and the fact that ∥ρW
h̄ (u)∥L2 = ∥u∥L2(R2d ) for any u ∈ L2(R2d), we obtain

∥ρW
h̄ (g)| p|

n
∥L2 ≤

∑
|α+β|=n

aα,β
( 1

2 h̄
)|β|

∥ξα∂βx g∥L2(R2d ). (21)

Then, for any multi-index α and β such that |α + β| = n, define ĝ(y, ξ) to be the Fourier transform
of g(x, ξ) with respect to the variable x , and use the fact that the Fourier transform is unitary in L2

x to get( 1
2 h̄

)|β|
∥ξα∂βx g∥L2(R2d ) =

( 1
2 h

)|β|
∥ξα yβ ĝ∥L2(R2d ) ≤

|α|

n
∥|ξ |n ĝ∥L2(R2d ) +

|β|

n

( 1
2 h

)|β|
∥|y|

ng∥L2(R2d )

≤ ∥|ξ |ng∥L2(R2d ) +
( 1

2 h̄
)n

∥∇
n
x ĝ∥L2(R2d ).

Moreover, as remarked in the proof of Lemma 3.2,∑
|α+β|=n

aα,β = (4d)n,

from which we obtain (20a). Formulas (20b) and (20c) can be proved in the same way. □

Moreover, we can bound weighted L1-norms using L2-norms with bigger weights. This is the content
of the following proposition where we recall the notation ⟨y⟩ =

√
1 + |y|2 for the weights.
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Proposition 3.4. Let n, n1 ∈ N be even numbers such that n > 1
2 d , and define k := n + n1. Assume

ρ := ρW
h̄ (g) is the Weyl transform of a function g ∈ H n+k

n+k (R
2d). Then the following inequality holds:

Tr(|ρ|| p|
n1)≤C(∥⟨ξ⟩k

⟨x⟩
ng∥L2(R2d )+h̄k

∥⟨x⟩
n
∇

k
x g∥L2(R2d )+h̄n

∥⟨ξ⟩k
∇

n
ξ g∥L2(R2d )+h̄k+n

∥∇
k
x ∇

n
ξ g∥L2(R2d )).

Proof. First notice that since the sum of eigenvalues is always smaller than the sum of singular values
(see for example [Simon 2005, (3.1)]), we have that

Tr(|ρ|| p|
n1)≤ Tr(||ρ|| p|

n1 |),

and from the definition of |AB| if A and B are two operators, we see that |AB| = (B∗ A∗ AB)1/2 = ||A|B|,
so that Tr(||ρ|| p|

n1 |)= Tr(|ρ| p|
n1 |). Defining mn := (1 + | p|

n)(1 + |x |
n), we deduce from the Cauchy–

Schwarz inequality that

Tr(|ρ|| p|
n1)≤ Tr(|ρ| p|

n1 |)≤ ∥ρ| p|
n1 mn∥2∥m−1

n ∥2. (22)

To control the second factor on the right-hand side, we observe that it is of the form m−1
n =w(x)w(−i h̄∇)

with w(y)= (1+|y|
n)−1, so its Hilbert–Schmidt norm can be computed (see e.g., [Simon 2005, (4.7)]) as

∥m−1
n ∥2 = (2π)−d/2

∥w∥L2∥w(h̄ · )∥L2 = Cd,nh−d/2,

where Cd,n = ∥w∥
2
L2 is finite since n > 1

2 d . Therefore, by the definition of the L2-norm, (22) leads to

Tr(|ρ|| p|
n1)≤ Cd,n∥ρ| p|

n1 mn∥L2 ≤ Cd,n∥ρ(| p|
n1 + | p|

n1 |x |
n
+ | p|

n+n1 + | p|
n+n1 |x |

n)∥L2 .

To get the result, we take ρ = ρW
h̄ (g) and use Proposition 3.3 to bound the right-hand side of the above

inequality by weighted classical L2-norms of g. □

We can now prove the main proposition of this section following the strategy explained at the beginning
of this section.

Proof of Proposition 3.1. We use an improvement of the Calderón–Vaillancourt theorem for Weyl operators
proved by Boulkhemair [1999] which states that if g ∈ W n0,∞(R2d) with n0 = 2

⌊ 1
2 d

⌋
+ 2, then ρW

1 (g) is
a bounded operator on L2 and its operator norm is bounded by

∥ρW
1 (g)∥B(L2) ≤ C∥g∥W n0,∞(R2d ). (23)

Since ρW
h̄ (g)= hdρW

1 (g( · , h · )), and, for h ≤ 1,

∥g( · , h · )∥W n0,∞(R2d ) ≤ ∥g∥W n0,∞(R2d ),

by taking g = ∇ξ f we deduce from (23) and the definition of the L∞-norm that

∥∇ξρ
W
h̄ ( f )∥L∞ ≤ C∥∇ξ f ∥W n0,∞(R2d ),

uniformly in h̄. Moreover, taking g = ∇ξ f in Proposition 3.4 yields

Tr(|∇ξρW
h̄ ( f )|| p|

n1)≤ C∥∇ξ f ∥Hσ
σ (R

2d ).

The result then follows by combining these two inequalities to bound the right-hand side of the interpolation
inequality (18). □
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4. Proof of Theorems 1.1 and 1.4

We start this section by proving a stability estimate similar to the inequality used in the classical case,
and then use the results of Section 3 and the propagation of regularity for the Vlasov equation to get the
proof of Theorem 1.1 and then the proof of Theorem 1.4. The conditional result is stated here.

Proposition 4.1. Let K = 1/|x |
a with a ∈

(( 1
2 d − 2

)
+
, d − 1

)
, and assume ρ is a solution of the Hartree

equation (2) with initial condition ρin
∈ L1

+
and f ≥ 0 is a solution of the Vlasov equation satisfying

f ∈ L∞

loc(R+,W n0+1,∞(R2d)∩ Hσ+1
σ (R2d)), (24a)

ρ f ∈ L∞

loc(R+, L1
∩ H ν), (24b)

where n0 = 2
⌊1

2 d
⌋
+ 2 and n, n1 ∈ 2N are such that n > 1

2 d and n1 ≥ d/(b− 1), and we use the notation
σ = 2n + n1, ν = (n + a + 2 − d)+ and b = d/(a + 1). Then

Tr(|ρ − ρ f |)≤ (Tr(|ρin
− ρin

f |)+ C f (t)h̄)eλ f (t),

where

λ f (t)= Cd,n1,a

∫ t

0
∥∇ξ f ∥W n0,∞(R2d )∩Hσ

σ (R
2d ) ds,

C f (t)= Cd,n1,a

∫ t

0
∥ρ f (s)∥L1∩H ν∥∇

2
ξ f (s)∥H2n

2n (R
2d )e

−λ f (s) ds.

Remark 4.2. It is actually sufficient to assume that f ≥ 0 when t = 0 since this implies that it holds at
any time t ≥ 0.

In analogy with the classical case (see the proof of Proposition 2.4), we introduce the two-parameter
semigroup Ut,s such that Us,s = 1 and defined for t > s by

i h̄∂t Ut,s = H(t)Ut,s,

where H is the Hartree Hamiltonian (3). We consider the quantity

i h̄∂t(U∗

t,s(ρ(t)− ρ f (t))Ut,s)= U∗

t,s[K ∗ (ρ(t)− ρ f (t)), ρ f (t)]Ut,s + U∗

t,s Bt Ut,s,

where Bt is an operator defined through its integral kernel by

Bt(x, y)=
(
(K ∗ ρ f )(x)− (K ∗ ρ f )(y)− (∇K ∗ ρ f )

( 1
2(x + y)

)
· (x − y)

)
ρ f (x, y). (25)

Using Duhamel’s formula and taking the Schatten p-norm (recall that Ut,s is a unitary operator), we get

∥ρ(t)− ρ f (t)∥p

≤ ∥ρin
− ρin

f ∥p +
1
h̄

∫ t

0
∥Bt∥p ds +

1
h̄

∫ t

0

∫
|ρ(s, z)− ρ f (s, z)|∥[K ( · − z), ρ f (s)]∥p dz ds. (26)

We now take p = 1, i.e., the trace norm, and we have to bound each term on the right-hand side of (26) in
order to obtain a Grönwall type inequality which will prove Proposition 4.1. Note that we will then again
use (26) with p > 1 together with Theorem 1.1 to prove Theorem 1.4.



908 LAURENT LAFLECHE AND CHIARA SAFFIRIO

4A. The commutator inequality. Generalizing [Porta et al. 2017, Lemma 3.1], we obtain the quantum
equivalent of (16), which is the following inequality for the trace norm of the commutator of K and a
trace class operator ρ.

Theorem 4.3. Let a ∈ (−1, d − 1) and K (x)= 1/|x |
a or K (x)= ln(|x |) when a = 0. Then

∇K ∈ Lb,∞ with b = ba :=
d

a + 1
.

Let b′ be the conjugated Hölder exponent of b. Then for any ε ∈ (0, b′
− 1], there exists a constant C > 0

such that
Tr(|[K ( · − z), ρ]|)≤ Ch∥diag(|∇ξρ|)∥

1/2+ε̃

Lb′−ε
∥diag(|∇ξρ|)∥

1/2−ε̃

Lb′+ε
,

for any ε̃ ∈ (0, ε/(2b′)) and with the additional assumption ε < b′

3 − b′ if d ≥ 4.

Remark 4.4. In the case of the Coulomb interaction and d = 3, we have K (x)= 1/|x |, b = b1 =
3
2 and

∇K ∈ L3/2,∞. Thus for any ε ∈ (0, 2], there exists a constant C > 0 such that

Tr(|[K ( · − z), ρ]|)≤ Ch∥diag(|∇ξρ|)∥
1/2+ε̃

L3−ε ∥diag(|∇ξρ|)∥
1/2−ε̃

L3+ε ,

for any ε̃ ∈
(
0, 1

6ε
)
.

Theorem 4.3 is a corollary of the slightly more precise proposition that follows.

Proposition 4.5. For any δ ∈ ((1/b′

1 −1/b′)+, 1−1/b′) and q ∈ (b′/(1−δb′),∞], there exists a constant
C > 0 such that

Tr(|[K ( · − z), ρ]|)≤ Ch∥diag(|∇ξρ|)∥θL p∥diag(|∇ξρ|)∥1−θ
Lq , (27)

where 1/p = 1/b′
+ δ and θ = δ/(1/p − 1/q) and with the additional assumption that q < b′

3 if d ≥ 4.

Proof of Theorem 4.3. We will decompose the potential as a combination of Gaussian functions (see e.g.,
[Lieb and Loss 2001, 5.9 (3)]). By using the definition of the gamma function and a simple change of
variable, when a > 0 one obtains, for any r > 0,

1
ωara/2 =

1
2

∫
∞

0
ta/2−1e−πr t dt, (28)

where ωa = 2πa/2/
(
0

( 1
2a

))
. Taking r = |x |

2 leads directly to the decomposition

1
ωa|x |a

=
1
2

∫
∞

0
ta/2−1e−π |x |

2t dt.

Now when a ∈ (−2, 0), take (28) with a + 2 instead of a, integrate it with respect to r , exchange the
integrals and then again replace r by |x |

2. This yields a similar decomposition of the form

1
ωa|x |a

=
1
2

∫
∞

0
ta/2−1(e−π |x |

2t
− 1) dt.

In order to treat the case of the logarithm, do the same steps with a = 0 to obtain

− ln(|x |)=
1
2

∫
∞

0
ta/2−1(e−π |x |

2t
− e−π t) dt.
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In all these cases, defining ω0 := 1, we get the identity

1
ωa
(K (x)− K (y))=

1
2

∫
∞

0
ta/2−1(e−π |x |

2t
− e−π |y|

2t) dt.

Following the idea of [Porta et al. 2017] but using this new decomposition, we write

1
ωa
(K (x)− K (y))=

1
2

∫
∞

0
ta/2−1

∫ 1

0

d
dθ
(e−πθ |x |

2t e−π(1−θ)|y|
2t) dθ dt

= −π

∫
∞

0
ta/2

∫ 1

0
(x − y) · (x + y)e−πθ |x |

2t e−π(1−θ)|y|
2t dθ dt,

from which we get

K (x − z)− K (y − z)
−πωa

=

∫ 1

0

∫
∞

0
ta/2(x − y) · (φθ (x)ϕ1−θ (y)+ϕθ (x)φ1−θ (y)) dt dθ,

where we defined ϕk(x) := e−kπ |x−z|2t and φk(x) := (x − z)ϕk(x). Thus, using the fact that the integral
kernel of ∇ξρ is ((x − y)/(i h̄))ρ(x, y) and exchanging θ by 1 − θ in the second term of the integral, we
obtain

1
iπ h̄ωa

[K ( · − z), ρ] =

∫ 1

0

∫
∞

0
ta/2(φθ · ∇ξρϕ1−θ +ϕ1−θ∇ξρ ·φθ ) dt dθ.

Noticing that (φθ · ∇ξρϕ1−θ )
∗
= ϕ1−θ∇ξρ ·φθ , we can now estimate the trace norm by

1
h|ωa|

∥[K ( · − z), ρ]∥1 ≤

∫ 1

0

∫
∞

0
ta/2

∥φθ · ∇ξρϕ1−θ∥1 dt dθ. (29)

Then, by decomposing the self-adjoint operator ∇ξρ on an orthogonal basis (ψ j ) j∈J , we can write
∇ξρ =

∑
j∈J λ j |ψ j ⟩⟨ψ j | and get

∥φθ · ∇ξρϕ1−θ∥1 ≤

∑
j∈J

|λ j |∥|φθψ j ⟩⟨ψ jϕ1−θ |∥1

≤

∑
j∈J

|λ j |∥φθψ j∥L2∥ψ jϕ1−θ∥L2,

where we used the fact that ∥|u⟩⟨v|∥1 = ∥u∥L2∥v∥L2 . Thus, by the Cauchy–Schwarz inequality for series,

∥φθ · ∇ξρϕ1−θ∥1 ≤

(∑
j∈J

|λ j |∥φθψ j∥
2
L2

)1/2(∑
j∈J

|λ j |∥ψ jϕ1−θ∥
2
L2

)1/2

≤

(∫
Rd

|φθ |
2ρ1

)1/2(∫
Rd

|ϕ1−θ |
2ρ1

)1/2

,

with the notation ρ1 = diag(|∇ξρ|)=
∑

j∈J |λ j ||ψ j |
2. By the integral Hölder’s inequality, this yields

∥φθ · ∇ξρϕ1−θ∥1 ≤ ∥φθ∥L2p′ ∥ϕ1−θ∥L2q′ ∥ρ1∥
1/2
L p ∥ρ1∥

1/2
Lq , (30)
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where (p, q) ∈ [1,∞]
2 can depend on the parameter t , which will help us to obtain the convergence of

the integral in (29). We can now compute explicitly the integrals of the functions φ and ϕ:

∥φθ∥
2p′

L2p′ =

∫
Rd

|x − z|2p′

e−2πθ |x−z|2 p′t dx =
ωd

ωd+2p′

1
(2θp′t)(d+2p′)/2 ,

∥ϕ1−θ∥
2q ′

L2q′ =

∫
Rd

e−2π(1−θ)|x−z|2q ′t dx =
1

(2(1 − θ)q ′t)d/2
.

Combining these two formulas with (29) and (30) leads to

∥[K ( · − z), ρ]∥1 ≤ h
∫

∞

0

Cd,a,p′∥ρ1∥
1/2
L p ∥ρ1∥

1/2
Lq

t (1/2)(d/(2p′)+d/(2q ′)+1−a)

∫ 1

0

dθ
θ (d+2p′)/(4p′)(1 − θ)d/(4q ′)

dt,

with

Cd,a,p′ = |ωa|

(
ωd

ωd+2p′

)1/(2p′)

(2p′)−(d+2p′)/(4p′)(2q ′)−d/(4q ′).

We observe that the integral over θ is converging as soon as

1
p′
<

2
d

=
1
b1

and
1
q ′
<

4
d

=
1
b3
. (31)

In order to get a finite integral of the variable t , we cut the integral into two parts. The first for t ∈ (0, R)
and the second for t ∈ (R,∞), for a given R > 0. Then we choose p and q such that

1
2

(
d

2p′
+

d
2q ′

+ 1 − a
)
< 1 for t ∈ (0, R) and

1
2

(
d

2p′
+

d
2q ′

+ 1 − a
)
> 1 for t ≥ R,

or equivalently, since b = d/(a + 1),

1
2

(
1
p′

+
1
q ′

)
<

1
b

for t ∈ (0, R) and
1
2

(
1
p′

+
1
q ′

)
>

1
b

for t ≥ R.

However, this has to be compatible with the constraint (31). Therefore, when t ∈ (0, R), we can in
particular take q = p0 with p0<min(b′, b′

1). When t ≥ R, then we can also take for example p = p0>
1
2b

′

and then any q such that
2
b

−
1
p′

0
<

1
q ′
<

4
d

and
1
q ′

≤ 1. (32)

Notice that the condition 1/q ′ < 4/d is only used when d ≥ 4 and can be rewritten as q < b′

3. Such a
pair (p0, q) exists as long as a ≤

1
2 d and a < 2. By defining δ := 1/p0 − 1/b′, then these conditions are

equivalent to (
1
b′

1
−

1
b′

)
+

< δ < 1 −
1
b′
,

1
p0

=
1
b′

+ δ,
1
q
<

1
b′

− δ.

With these p and q , we deduce that there exists a constant C depending on d , a, p0 and q such that

∥[K ( · − z), ρ]∥1 ≤ Ch(R(d/2)(1/b−1/p′

0)∥ρ1∥L p0 + R(d/2)(1/b−1/(2p′

0)−1/(2q ′))
∥ρ1∥

1/2
L p0 ∥ρ1∥

1/2
Lq ).
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Optimizing with respect to R yields

Tr(|[K ( · − z), ρ]|)≤ Ch∥ρ1∥
θ0
L p0 ∥ρ1∥

1−θ0
Lq , (33)

where θ0 = (1/p0 − 1/b′)/(1/p0 − 1/q). In order to obtain an equation of the form (27), we can define
ε := q −b′, which is positive by (32) and the fact that p0< b′. The condition q < b′

3 when d ≥ 4 then reads
as ε < b′

3 −b′. We can also define p := b′
− ε ≥ 1. Then by a direct computation and again using (32) we

obtain
p0 − p = p0 + q − 2b′ > 0,

so that p < p0 < b′ < q and by interpolation of Lebesgue spaces,

∥ρ1∥L p0 ≤ ∥ρ1∥
θ1
L p∥ρ1∥

1−θ1
Lq ,

where θ1 = (1/p0 −1/q)/(1/p −1/q). Noticing that θ0θ1 = (1/p0 −1/b′)/(1/p −1/q) and that we can
take 1/p0 as close as we want to 1/p, there exists ε1 such that we can choose p0 such that

θ0θ1 + ε1 =
1/p − 1/b′

1/p − 1/q
=

1
2

+
ε

2b′
.

Therefore, the last inequality combined with (33) leads to (27). □

The following proposition is an extension of Theorem 4.3 to Lp spaces, for p < b. Notice however
that the right-hand side here is expressed in terms of weighted quantum Lebesgue norms, which makes
the inequality weaker than the one in Theorem 4.3.

Proposition 4.6. Let d ≥ 2, a ∈
(
−1,min

(
2, 1

2 d
))

and 1 ≤ p< b := d/(a+1). Then for any ε ∈ (0, q −1)
and n > a + 1, there exists a constant C > 0 such that

∥[K ( · − z), ρ]∥Lp ≤ Ch∥∇ξρmn∥
1/2+ε̃

Lq+ε ∥∇ξρmn∥
1/2−ε̃

Lq−ε ,

where ε̃ = ε/q, mn = 1 + | p|
n and with

1
p

=
1
q

+
1
b
.

Proof. First we do the same decomposition as for the L1 case but then take a Lp-norm in (29). This yields

1
h|ωa|

∥[K ( · − z), ρ]∥p ≤

∫
∞

0

∫ 1

0
ta/2

∥φθ · ∇ξρϕ1−θ∥p dθ dt. (34)

In order to bound this integral, we will cut it into two parts corresponding to t ∈ (0, R) and t ≥ R, and we
take 1/q > 1/p −1/b when t is small and 1/q < 1/p −1/b in the second case. Using the hypotheses, we
can find (α, β) ∈ [2,∞)2 and (nα, nβ) ∈ (d/α,∞)× (d/β,∞) such that α > d, β > 1

2 d, nα + nβ = n
and 1/α+ 1/β = 1/p − 1/q. Then we define mk := 1 + | p|

k and multiply and divide by mnα and mnβ .
This yields

∥φθ · ∇ξρϕ1−θ∥p = ∥(φθm−1
nα ) · mnα∇ξρmnβm−1

nβ ϕ1−θ∥p

≤ ∥φθm−1
nα ∥α∥m−1

nβ ϕ1−θ∥β∥mnα∇ξρmnβ∥q ,
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where we twice used Hölder’s inequality for operators to obtain the second line from the right side of the
first. We notice that φθm−1

nα is of the form g(−i∇) f (x), so that since α ≥ 2, by the Kato–Seiler–Simon
inequality (see e.g., [Simon 2005, Theorem 4.1]),

∥φθm−1
nα ∥α ≤ (2π)−d/α

∥φθ∥Lα∥m−1
nα (h̄ · )∥Lα ,

with m−1
nα (h̄x)= (1 + |h̄x |

nα )−1. By the change of variable y = h̄x in the last integral, and using the fact
that Cd,nα,α := ∥m−1

nα ∥Lα <∞, this yields

∥φθm−1
nα ∥α ≤ Cd,nα,αh−d/α

∥φθ∥Lα .

Then a direct computation of the integral of φθ yields

∥φθm−1
nα ∥α ≤ Cd,nα,αh−d/α

(
ωd

ωd+α

)1/α 1
(αθ t)(d+α)/(2α) .

By the same proof but replacing φθ by ϕ1−θ , if β ≥ 2, we have

∥m−1
nβ ϕ1−θ∥β ≤ Cd,nβ ,βh−d/β 1

(β(1 − θ)t)d/(2β)
.

Therefore, (34) leads to

∥[K ( · − z), ρ]∥p ≤

∫
∞

0

Cρh1−d(1/α+1/β)

t (1/2)(d/α+d/β+1−a)

(∫ 1

0

dθ
θ (d+α)/(2α)(1 − θ)d/(2β)

)
dt

≤

∫
∞

0

Cρh1+d/p′
−d/q ′

t (d/2)(1/p−1/q−1/b)+1

(∫ 1

0

dθ
θ (d+α)/(2α)(1 − θ)d/(2β)

)
dt,

where

Cρ =

(
ωd

ωd+α

)1/α Cd,nα,αCd,nβ ,β

βd/(2β)α(d+α)/(2α) ∥mnα∇ξρmnβ∥q .

The integrals in θ and t converge since

α > d and β >
d
2
,

1
p

−
1
q
<

1
b

if t ∈ [0, R],
1
p

−
1
q
>

1
b

if t ∈ (R,∞).

Then observe that as proved in Appendix B (see (56)),

∥mnα∇ξρmnβ∥q ≤ ∥∇ξρmnβmnα∥q = ∥∇ξρmn∥q ,

and we conclude the proof by taking the optimal R as in the proof of Theorem 4.3. □

4B. Bound for the error term. In this section, we will prove that the operator Bt defined by (25) is small
when h goes to 0.

Proposition 4.7. Under the hypotheses of Theorem 1.1, if p ∈ [1, 2] and n ∈ 2N with n > 1
2 d , then

∥Bt∥Lp ≤ Ch̄2
∥ρ f ∥L1∩H ν∥∇

2
ξ f ∥H2n

2n (R
2d ),

where ν = (n + a + 2 − d)+ and C is independent from h̄.
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Proof. Recalling the notation E = −∇K ∗ ρ as in [Saffirio 2020a; 2020b], we write a decomposition
of Bt as

1
i h̄

Bt(x, y)=

∫ 1

0
E((1 − θ)x + θy)− E

( 1
2(x + y)

)
dθ · ∇ξρ f (x, y)

= i h̄
∫ 1

0

∫ 1

0

(
θ −

1
2

)
∇E

(
((1 − θ)x + θy)θ ′

+
1
2(x + y)(1 − θ ′)

)
dθ dθ ′

: ∇
2
ξ ρ f (x, y)

= i h̄
∫ 1

0

∫ 1

0

(
θ −

1
2

)
∇E(aθ,θ ′ x + bθ,θ ′ y) dθ dθ ′

: ∇
2
ξ ρ f (x, y)

where aθ,θ ′ =
1
2(θ

′
+ 1)− θθ ′, bθ,θ ′ =

1
2(1 − θ ′)+ θθ ′ and “ : ” denotes the double contraction of tensors.

In terms of the Fourier transform of ∇E , this yields

1
i h̄

Bt(x, y)= i h̄
∫ 1

0

∫ 1

0

∫
Rd

(
θ −

1
2

)
e2iπ z·(aθ,θ ′ x+bθ,θ ′ y)

∇̂E(z) dθ dθ ′ dz : ∇
2
ξ ρ f (x, y).

Defining eω as the operator of multiplication by the function x 7→ e2iπωz·x, we obtain

1
i h̄

Bt = i h̄
∫ 1

0

∫ 1

0

∫
Rd

(
θ −

1
2

)
∇̂E(z) : eaθ,θ ′ (∇

2
ξ ρ f )ebθ,θ ′ dθ dθ ′ dz,

and since eω is a bounded (unitary) operator, taking the quantum Lebesgue norms yields

1
h̄
∥Bt∥Lp ≤ h̄

∫ 1

0

∫ 1

0

∫
Rd

∣∣θ −
1
2

∣∣|∇̂E(z)|∥eaθ,θ ′ (∇
2
ξ ρ f )ebθ,θ ′ ∥Lp dθ dθ ′ dz ≤

1
2 h̄∥∇̂E∥L1∥∇

2
ξ ρ f ∥Lp .

• Now to bound ∥∇̂E∥L1 , we can use the fact that for any n > 1
2 d, the Fourier transform maps H n

continuously into L1 to get
∥∇̂E∥L1 ≤ Cd,n∥∇

2K ∗ ρ f ∥Hn .

If a = d − 2, then by the continuity of ∇
2K ∗ · in H n, we get ∥∇̂E∥L1 ≤ C∥ρ f ∥Hn . Otherwise, if

a ∈
( 1

2 d − 2, d
)
\ {2}, we get

∥∇̂E∥L1 ≤ Cd,n,a∥(1 + |x |
n)|x |

a+2−d ρ̂ f ∥L2 ≤ Cd,n,a∥ρ f ∥Ḣa+2−d∩Ḣn+a+2−d ≤ Cd,n,a∥ρ f ∥L1∩H (n+a+2−d)+ ,

where we used the fact that if α ∈
(
−

1
2 d, 0

)
, then by Sobolev’s inequalities L p∗

⊂) Ḣα with 1/p∗
=

1
2 −α/d ,

and then L2
∩ L1

⊂) L p∗

since p∗
∈ [1, 2].

• Finally, to bound ∥∇
2
ξ ρ f ∥Lp , we interpolate it between the L1 and the L2 norms to get

∥∇
2
ξ ρ f ∥Lp ≤ ∥∇

2
ξ ρ f ∥

θ
L2∥∇

2
ξ ρ f ∥

1−θ

L1 = ∥∇
2
ξ f ∥

θ
L2(R2d )

∥∇
2
ξ ρ f ∥

1−θ

L1 , (35)

where θ = 2/p′. Then using the fact that ∇
2
ξ ρ f = ρW

h̄ (∇
2
ξ f ), we can use Proposition 3.4 with g = ∇

2
ξ f ,

n1 = 0 and n > 1
2 d to get

∥∇
2
ξ ρ f ∥L1 ≤ C∥∇

2
ξ f ∥H2n

2n (R
2d ),

which using (35) implies that ∥∇
2
ξ ρ f ∥Lp ≤ C∥∇

2
ξ f ∥H2n

2n (R
2d ). □
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4C. Proof of Proposition 4.1. We can now use the bounds on the commutator and the error terms proved
in previous sections to prove the stability estimate of Proposition 4.1.

For p = 1, inequality (26) yields

Tr(|ρ(t)− ρ f (t)|)

≤ Tr(|ρin
− ρin

f |)+
1
h̄

∫ t

0
Tr(|Bs |) ds +

1
h̄

∫ t

0

∫
|ρ(s, z)− ρ f (s, z)| Tr(|[K ( · − z), ρ f (s)]|) dz ds.

Proposition 4.7 gives a bound on the second term on the right-hand side, whereas Theorem 4.3 allows us
to bound the last term on the right-hand side uniformly in z. Moreover, because of (11), we have

∥ρ− ρ f ∥L1 ≤ Tr(|ρ − ρ f |).

Altogether, we obtain for some small ε > 0 to be chosen later,

Tr(|ρ − ρ f |)≤ Tr(|ρin
− ρin

f |)+ Ch̄
∫ t

0
∥ρ f (s)∥L1∩H (n+a+2−d)+ ∥∇

2
ξ f (s)∥H2n

2n (R
2d ) ds

+ C
∫ t

0
Tr(|ρ(s)− ρ f (s)|)∥diag(|∇ξρ f (s)|)∥Lb′+ε∩Lb′−ε ds,

where b′
= d/(d − (a + 1)). We then use Proposition 3.1 to bound the L p-norm of the diagonal for

p = b′
+ ε and p = b′

− ε by

∥diag(|∇ξρ f |)∥L p ≤ Cd,n1∥∇ξ f ∥
W n0,∞(R2d )∩H

2n+n1
2n+n1

(R2d )
,

where since n1 > d/(b− 1)= d(b′
− 1) we can choose ε such that b′

+ ε ≤ 1 + n1/d. We conclude by
using Grönwall’s lemma. □

4D. Proof of Theorem 1.1. To prove this theorem, it remains to prove that the assumptions (24a) and (24b)
are satisfied with our choice of initial conditions, which will imply the result by Proposition 4.1. But these
bounds are only about the solution of the classical Vlasov equation for which the long time existence of
regular solutions is known. More precisely, we prove the regularity needed in our case in Proposition A.1
in Appendix A. With our assumptions on the initial data, we have f in

∈ W σ+1,∞
m (R2d) with m > d.

Moreover, since f in
∈ Hσ+1

σ (R2d) with σ >m +d/(b−1), by Hölder’s inequality we deduce in particular
that f in

∈ L2
σ (R

2d) which by Hölder’s inequality yields∫∫
R2d

f in
|ξ |n1 dx dξ <∞

for some n1 > d/(b− 1). Therefore, Proposition A.1 indeed leads to

f ∈ L∞

loc(R+,W σ+1,∞
m (R2d)∩ Hσ+1

σ (R2d)),

where we notice that σ > n0 := 2
⌊ 1

2 d
⌋

+ 2. Finally, the H ν bound for ρ also follows from Hölder’s
inequality since σ > 1

2 d , so that

∥∇
⌈ν⌉ρ∥L2 ≤

∥∥∥∥∫
Rd

|∇
⌈ν⌉
x f | dξ

∥∥∥∥
L2

≤ Cd,σ∥⟨ξ⟩
σ
∇

⌈ν⌉
x f ∥L2(R2d ) ≤ C∥ f ∥Hσ+1

σ (R2d ),

where the last inequality follows from the fact that ⌈ν⌉ ≤ σ + 1. □
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4E. Proof of Theorem 1.4. We now prove Theorem 1.4 using the results of Propositions 4.6 and 4.7.
Recall inequality (26). The bound (11) yields

∥ρ − ρ f ∥Lp ≤ ∥ρin
− ρin

f ∥Lp +
1
h̄

∫ t

0
∥Bt∥Lp ds +

1
h̄

∫ t

0
Tr(|ρ − ρ f |) sup

z
∥[K ( · − z), ρ f ]∥Lp ds.

The second term on the right-hand side can be estimated thanks to Proposition 4.7 and can then be bounded
as in the case p = 1. The last term on the right-hand side is bounded by Proposition 4.6 by terms of the
form ∥∇ξρ f mn∥Lq with mn = 1+| p|

n, n> a +1 = d/b and 1/q close to 1/p−1/b. When a< 1
2(d −2),

then q ≤ 2 and we can bound them by interpolating between L1 and L2 weighted norms, yielding

∥∇ξρ f mn∥Lq ≤ ∥∇ξρ f mn∥
2/q ′

L2 ∥∇ξρ f mn∥
1−2/q ′

L1 ,

and we can then bound these terms by Propositions 3.3 and 3.4. When q > 2, this strategy is no
longer possible; however, by the property of the Weyl transform and Calderón–Vaillancourt–Boulkhemair
inequality (23) we know that

∥ρW
h̄ (g)∥L2 = ∥g∥L2(R2d ) and ∥ρW

h̄ (g)∥L∞ ≤ Cd∥g∥W n0,∞(R2d ),

where n0 = 2
⌊ 1

2 d
⌋

+ 2. Therefore, this time, we interpolate between the L2- and L∞-norm to get

∥ρW
h̄ (g)∥Lq ≤ Cθ

d ∥ρW
h̄ (g)∥

θ
L∞∥ρW

h̄ (g)∥
1−θ

L2 ≤ Cθ
d ∥g∥

θ
W n0,∞(R2d )

∥g∥
1−θ

L2(R2d )
, (36)

where θ = 1 − 2/q is close to 2/p′
− 1/b′

± ε. Using Lemma 3.2, we see that ∇ξρ f mn can be written as
a linear combination of terms of the form ρW

h̄ (ξ
α∂

β
x ∇ξ f )=: ρW

h̄ (gα,β), where α and β are multi-indices
satisfying |α+β| ≤ n. Therefore, taking g = gα,β in (36) for each gα,β , we obtain a control in terms of
weighted Sobolev norms of the solution f of the classical solution of the Vlasov equation (1) of the form
∥ f ∥W σ+1,∞

σ (R2d )∩Hσ+1
σ (R2d )

with σ > n0 +d/b, which can be controlled as in the proof of Theorem 1.1. We
can therefore conclude by Grönwall’s lemma that (12) holds.

Now we prove (13). Consider (12) and the bound

∥ρ − ρ f ∥L∞ ≤ ∥ρ∥L∞ + ∥ρ f ∥L∞ . (37)

As for the first term on the right-hand side, we know that all Lp-norms are propagated by the Hartree
equation, therefore ∥ρ∥L∞ = ∥ρin

∥L∞ and hence it is bounded by assumption. In the second term on
the right-hand side we again use the Calderón–Vaillancourt–Boulkhemair inequality (23). Hence, if
f ∈ W n0,∞(R2d) and ρin

∈ L∞, the L∞-norm of the difference ρ − ρ f is bounded uniformly in h̄. To
conclude, we bound the Lq -norm using the L∞-norm and the Lp-norm with p = b− ε, for ε > 0 small
enough, and get

∥ρ − ρ f ∥Lq ≤ ∥ρ − ρ f ∥
p/q
Lp ∥ρ − ρ f ∥

1−p/q
L∞ ,

since q ∈ (p,∞). Then (12) yields

∥ρ − ρ f ∥Lq ≤ C(t)(∥ρin
− ρin

f ∥
p/q
Lp + Tr(|ρin

− ρin
f |)p/q

+ h̄ p/q)eλ(t),

where C is a constant which depends on the dimension of the space d , on ∥ρin
∥L∞ and on f in. □
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5. Proof of Theorem 1.6

We recall that X = Xρ is the operator of the time-dependent integral kernel Xρ(x, y)= K (x − y)ρ(x, y),
where ρ is the integral kernel of the operator ρ. Under the conditions of Theorem 1.6, the associated
energy is bounded and we have the following inequalities.

Proposition 5.1. Let a ∈ [0, d), s := d − a and ρ be a positive trace class operator. Then if K ∈ Ḣ s,1
w ,

we have that

Tr(Xρ)≤ Chs
∥K∥Ḣ s,1

w
∥| p|

a/2ρ∥
2
L2 . (38)

Moreover, if a ∈
[
0, 1

2 d
)

and K 2
∈ Ḣ 2s−d,1

w , then for any p ∈ [1, 2] and q = (2p)/(2 − p) ∈ [2,∞] there
exists a constant such that for any operator ρ2,

∥Xρρ2∥Lp ≤ Chs
∥K 2

∥
1/2
Ḣ2s−d,1
w

∥| p|
a/2ρ∥L2∥ρ2∥Lq . (39a)

When p ∈ [2,∞] we still have

∥Xρρ2∥Lp ≤ Chs+d(1/p−1/2)
∥K 2

∥
1/2
Ḣ2s−d,1
w

∥| p|
a/2ρ∥L2∥ρ2∥L∞, (39b)

where in both (39a) and (39b) the constants C depend only on s and d.

Remark 5.2. We can control the weighted L2-norms by the inequality

∥| p|
a/2ρ∥

2
L2 ≤ ∥ρ∥L∞ Tr(| p|

aρ). (40)

Notice that we cannot deduce it immediately by Hölder’s inequality for the Schatten norms because it
would give us Tr(|| p|

aρ|) instead of Tr(| p|
aρ) on the right-hand side. However, by definition of the

absolute value for operators and by cyclicity of the trace, we get

∥| p|
a/2ρ∥

2
2 = Tr(ρ| p|

aρ)= Tr(ρρ1/2
| p|

aρ1/2)= Tr(ρ|| p|
a/2ρ1/2

|
2).

Now, Hölder’s inequality gives

Tr(ρ|| p|
a/2ρ1/2

|
2)≤ ∥ρ∥∞ Tr(|| p|

a/2ρ1/2
|
2)= ∥ρ∥∞ Tr(| p|

aρ),

which leads to (40) by the definition of L2 and L∞.

Proof of Proposition 5.1. We first prove (38) and then use it to show (39a) and (39b).

• Proof of inequality (38). Use (14) to get∫∫
R2d

K (x − y)|ρ(x, y)|2 dx dy = cd,a

∫
Rd

(∫∫
R2d

|ρ(x, y)|2

|x − y −w|a
dx dy

)
Q(dw)

for some measure Q such that ∥Q∥TV = ∥K∥Ḣ s,1
w

. This leads to

EX ≤ cd,a sup
w∈Rd

(∫∫
R2d

|ρ(x, y)|2

|x − y −w|a
dx dy

)
∥Q∥TV.
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Now we concentrate on bounding the double integral. First we observe that by the change of variable
z = x − y −w we have

Ea :=

∫∫
R2d

|ρ(x, y)|2

|x − y −w|a
dx dy =

∫∫
R2d

1
|z|a

|ρ(z + y +w, y)|2 dz dy.

Then, by the Hardy–Rellich inequality (see e.g., [Yafaev 1999]), since a ∈ [0, d), for any ϕ ∈ Ha/2, we
have that ∫

Rd

|ϕ(z)|2

|z|a
dz ≤ Cd,a

∫
Rd

|1a/4ϕ(z)|2 dz.

Therefore, taking ϕ(z)= ρ(z + y +w, y) in the above inequality and integrating with respect to y yields

Ea ≤ Cd,a

∫∫
R2d

|1a/4
z ρ(z + y +w, y)|2 dz dy = Cd,a

∫∫
R2d

|1a/4
x ρ(x, y)|2 dx dy.

Recalling that 1a/4
x ρ(x, y) is nothing but the integral kernel of the operator h̄−a/2

| p|
a/2ρ and using the

definition of the L2-norm, we obtain

Ea ≤ Cd,ahd−a
∥| p|

a/2ρ∥
2
L2,

where Cd,a = (2π)aCd,a .

• Proof of inequality (39a). Since Xρ is a positive operator, X2
ρ = |Xρ |

2. Moreover, denoting by X̃ρ the
exchange operator associated to the kernel K 2, the following interesting property holds:

Tr(X2
ρ)=

∫∫
R2d

K (x − y)2|ρ(x, y)|2 dx dy = Tr(X̃ρρ).

From this and Hölder’s inequality for operators, we deduce that if K 2
∈ Ḣ 2s−d,1

w with s ∈
( 1

2 d, d
]
, then

∥Xρρ2∥p ≤ ∥ρ2∥q∥Xρ∥2 ≤ hd/q ′

∥ρ2∥Lq Tr(X̃ρρ)1/2,

which by (38) for K 2 leads exactly to (39a).

• Proof of inequality (39b). We use the fact that ∥Xρρ2∥p ≤ ∥Xρρ2∥2 for any p ≥ 2 and then we use (39a)
for p = 2 to get

∥Xρρ2∥Lp ≤ h(d/2−d/p′)
∥Xρρ2∥L2 ≤ Chs+d(1/p−1/2)

∥K 2
∥

1/2
Ḣ2s−d,1
w

∥| p|
a/2ρ∥L2∥ρ∥L∞ .

The use of the nonsemiclassical inequality ∥Xρρ2∥p ≤ ∥Xρρ2∥2 explains the deterioration of the rate,
which might not be optimal. □

When a < 0, we have similar bounds using moments in x instead of moments in p.

Proposition 5.3. Let a < 0 and K (x)= |x |
|a|. Then for any positive operator ρ,

Tr(Xρ)≤ Chd
∥|x |

|a|/2ρ∥
2
L2 . (41)
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Moreover, for any p ∈ [1,∞], there exists a constant C > 0 such that for any operator ρ2,

∥Xρρ2∥Lp ≤ Chd
∥|x |

|a|/2ρ∥L2∥ρ2∥Lq when p ∈ [1, 2), (42a)

∥Xρρ2∥Lp ≤ Chd(1/p+1/2)
∥|x |

|a|/2ρ∥L2∥ρ2∥L∞ when p ∈ [2,∞], (42b)

where q = (2p)/(2 − p) ∈ [2,∞) when p < 2 and the constants C depend only on a and d.

Proof. The proof of (41) follows simply by writing∫∫
R2d

K (x − y)|ρ(x, y)|2 dx dy ≤ C
∫∫

R2d
(|x |

|a|
+ |y|

|a|)|ρ(x, y)|2 dx dy

and observing that the right-hand side is exactly the right-hand side of (41). The two other inequalities
follow by taking K 2 instead of K and using Hölder’s inequality as in the proof of Proposition 5.3. □

Proof of Theorem 1.6. We proceed as in the proof of Theorem 1.1 and consider the one-parameter group
of unitary transformations Ut generated by the Hartree–Fock Hamiltonian, i.e.,

i h̄∂t Ut = HHF(t)Ut ,

and compute

i h̄∂t(U∗

t (ρ − ρW
h̄ ( f ))Ut)= U∗

t [K ∗ (ρ− ρ f ), ρ
W
h̄ ( f )]Ut + U∗

t Bt Ut − U∗

t [Xρ, (ρ − ρW
h̄ ( f ))]Ut .

Using Duhamel’s formula and taking the Lp-norm using the fact that Ut is a unitary operator, we obtain

∥ρ − ρW
h̄ ( f )∥Lp ≤ ∥ρin

− ρin
f ∥Lp +

1
h̄

∫ t

0
∥[K ∗ (ρ− ρ f ), ρ

W
h̄ ( f )]∥Lp ds

+
1
h̄

∫ t

0
∥Bs∥Lp ds +

1
h̄

∫ t

0
∥[Xρ, (ρ − ρW

h̄ ( f ))]∥Lp ds. (43)

The second and third terms on the right-hand side in (43) can be bounded as in Theorem 1.1. As for the
fourth term, we use Proposition 5.1.

More precisely, when K (x)= ±|x |
−a with a ∈

[
0, 1

2 d
)
, using (39a) or (39b) yields

1
h̄
∥[Xρ, (ρ − ρW

h̄ ( f ))]∥Lp ≤ Ch s̃−1
∥K 2

∥
1/2
Ḣd−2a,1
w

∥| p|
a/2ρ∥L2∥ρ − ρW

h̄ ( f )∥Lp

≤ Ch s̃−1
∥K 2

∥
1/2
Ḣd−2a,1
w

∥| p|
a/2ρ∥L2(∥ρ∥Lp + ∥ρW

h̄ ( f )∥Lp),

with s̃ =d−a−d(1/2−1/p)+. When s̃ ≥2, this does not change the order of the rate of convergence O(h).
When s̃ < 2 (i.e., for high values of a and p), the contribution of the exchange term becomes bigger
than that of the second term on the right-hand side of (43), thus leading to a rate of convergence of the
order O(h s̃−1).

When K (x)= ±|x |
−a with a ∈ (−1, 0), we use (42a) or (39b) to get bounds in terms of ∥|x |

|a|/2ρ∥L2

instead of ∥| p|
|a|/2ρ∥L2 .

When K (x)= ± ln(|x |), we write K (x)≤ Cε(|x |
ε
+ |x |

−ε) and use both types of inequalities to get
bounds with ∥(|x |

ε/2
+ | p|

ε/2)ρ∥L2 instead.
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For all the choices of K , when p = 1, we can therefore conclude that

∥ρ − ρW
h̄ ( f )∥L1 ≤ (∥ρin

− ρin
f ∥L1 + C0(t)h̄ + C1(t)h̄s−1)eλ(t). (44)

When p ∈ (1, b), we proceed as in the proof of (12) (the Hartree case) and use (44) to get

∥ρ − ρW
h̄ ( f )∥Lp ≤ ∥ρin

− ρin
f ∥Lp + C(t)(∥ρin

− ρin
f ∥L1 + h̄ + h̄ s̃−1)eλ(t). (45)

Moreover, when p ∈ [b,∞), again as in the Hartree case, we proceed as in the proof of (13). Following the
exact same argument, ∥ρ − ρW

h̄ ( f )∥L∞ is bounded uniformly in h̄ as soon as ρin
∈L∞ and f ∈ W 2⌊d/2⌋+2,∞.

Hence,
∥ρ − ρW

h̄ ( f )∥Lp ≤ C(t)(∥ρin
− ρin

f ∥
1−θ
1 + C0h̄ p/q

+ C1h̄(s̃−1)p/q)eλ(t).

In particular, if ∥ρin
− ρin

f ∥1 ≤ Ch̄, we get for the Hilbert–Schmidt norm (p = 2) a convergence rate
of h̄(3/4−ε)min{1,s−1}. □

Appendix A: Propagation of weighted Sobolev norms for Vlasov equation

The existence of global smooth solutions and the propagation of regularity is a classical result for the
Vlasov–Poisson equation. It can be deduced starting from the works of Pfaffelmoser [1992] or Lions
and Perthame [1991], which imply the boundedness of the force field, so that any solution with compact
support in the phase space will remain compactly supported at any time. Other general results concerning
the propagation of regularity can be found in the more recent work by Han-Kwan [2019] or in Appendix A
in the work by the second author [Saffirio 2020b]. In our case, we need the boundedness of the solutions
of the Vlasov equation in weighted Sobolev norms, and we will see that we can propagate norms of the
form W σ,∞

n (R2d). We prefer to work in the framework of [Lions and Perthame 1991], which allows us
to have noncompactly supported solutions which are very interesting physically, since they include for
example Gaussian distributions of velocities. Moreover, compactly supported solutions are perhaps less
pertinent in the context of quantum mechanics. Furthermore, the proof here follows a completely Eulerian
point of view. The result of this section is the following.

Proposition A.1. Let K = 1/|x |
a with a ∈ (−1, d − 2] and let (n, σ, n1) ∈ N3 be such that n > d and

n1 > d/(b− 1) with b = d/(a + 1). Let f ≥ 0 be a solution of the Vlasov equation (1) with initial data
f in

∈ W σ,∞
n (R2d) satisfying ∫∫

R2d
f in

|ξ |n1 dx dξ <∞.

Then the following regularity estimates hold:

f ∈ L∞

loc(R+,W σ,∞
n (R2d)), (46a)

∇
σρ f ∈ L∞

loc(R+, L∞). (46b)

If in addition f in
∈ Hσ

k (R
2d) for some k ∈ R+, then

f ∈ L∞

loc(R+, Hσ
k (R

2d)).
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The proof works in two steps. We first explain in the next lemma how to get control of the regularity as
soon as ρ f is uniformly bounded. Then we finish the proof of the theorem by proving that this assumption
on ρ f holds.

Lemma A.2. Let f be a solution of the Vlasov equation (1) as in Proposition A.1 with σ ≥ 1 and assume
moreover that

ρ f ∈ L∞

loc(R+, L∞
∩ L1). (47)

Then the regularity estimates (46a) and (46b) hold.

Proof. For clarity, we first start with the case σ = 1 for which we present a detailed proof, and we will
then explain how to modify the proof to get higher regularity estimates. We follow the strategy explained
in the course notes [Golse 2013].

Case 1: σ = 1. Define the transport operator T := ξ · ∇x + E · ∇ξ . Then we have

∂t(∇x f )= −T∇x f − ∇E · ∇ξ f , (48a)

∂t(∇ξ f )= −T∇ξ f − ∇x f . (48b)

To simplify the computations, recall that T∗
= −T and T(uv) = uT(v)+ T(u)v. Hence, by writing

mn := 1 + |ξ |np
+ |x |

np and using the notation u p
:= |u|

p−1u, we have∫∫
R2d

T(u) · u p−1mn = −

∫∫
R2d

u ·T(u p−1)mn + |u|
pT(mn). (49)

However, noticing that

u · (T(u p−1))= u · (|u|
p−2T(u)+ (p − 2)(T(u) · u)u p−3)= u p−1

·T(u)+ (p − 2)(T(u) · u)|u|
p−2

= (p − 1)u p−1
·T(u),

we can simplify (49) as

−p
∫∫

R2d
T(u) · u p−1mn =

∫∫
R2d

|u|
pT(mn). (50)

Now define
Mx :=

∫∫
R2d

|∇x f |
pmn and Mξ :=

∫∫
R2d

|∇ξ f |
pmn.

Then using (48a) and (50) for u = ∇x f leads to

dMx

dt
=−p

∫∫
R2d
(∇x f )p−1

·(T∇x f +∇E ·∇ξ f )mn ≤

∫∫
R2d

|∇x f |
pT(mn)+∥∇E∥L∞(Mξ+(p−1)Mx),

where we used Young’s inequality for products, pabp−1
≤ a p

+ (p − 1)bp, to get the second term. In the
same way, using (48b) and taking u = ∇ξ f yields

dMξ

dt
≤

∫∫
R2d

|∇ξ f |
pT(mn)+ (Mx + (p − 1)Mξ ).

Then again by Young’s inequality for products,

T(mn)= np(E · ξ np−1
+ ξ · xnp−1)≤ np(∥E∥L∞ + 1)mn.
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Thus, for Mx,ξ := Mx + Mξ , we obtain

d
dt

Mx,ξ ≤ p(n∥E∥L∞ + 1 + ∥∇E∥L∞)Mx,ξ .

However, since we know that ρ f ∈ L∞

loc(R+, L∞
∩ L1) by assumption, we also get the following control

on ∥E∥L∞ :

∥E∥L∞ ≤ C(∥ρ f ∥L∞ + ∥ρ f ∥L1)≤ Ct

for some function of time Ct locally bounded on R+. To control ∇E , we can use the integral Young’s
inequality if ∇K is less singular than the Coulomb potential (i.e., if a < d − 2), and if a = 1, then we use
a singular integral estimate in the spirit of that in [Beale et al. 1984] which can be found in the course
notes [Golse 2013] and can be written as

∥∇E∥L∞ ≤ C(1 + M0 + ∥ρ f ∥L∞ ln(1 + ∥∇ρ f ∥L∞))≤ Ct(1 + ln(1 + ∥∇ρ f ∥L∞))=: J (t).

Combining these bounds we arrive at d
dt Mx,ξ ≤ p(1 + n)J (t)Mx,ξ , which by Grönwall’s lemma implies

M1/p
x,ξ (t)≤ M1/p

x,ξ (0)e
(1+n)

∫ t
0 J.

Now, since M1/p
x,ξ is equivalent to ∥ f ∥W 1,p

n (R2d )
in the sense that each one is bounded above by the other

up to a multiplicative constant, letting p → ∞, we obtain

∥ f ∥W 1,∞
n (R2d )

≤ ∥ f in
∥W 1,∞

n (R2d )
e(1+n)

∫ t
0 J. (51)

However, since n > d, we have

|∇ρ f | ≤

∫
Rd

|∇x f | dξ ≤ Cd,n∥ f ∥W 1,∞
n (R2d )

, (52)

where Cd,n =
∫

Rd ⟨ξ⟩
−n dξ <∞. Combining the two inequalities (51) and (52) and the fact that eJ (t)

≥ 1,
we deduce that

J (t)≤ Ct + Ct ln((1 + Cd,n∥ f in
∥W 1,∞

n (R2d )
)e(1+n)

∫ t
0 J )

≤ Ct + Ct ln(1 + Cd,n∥ f in
∥W 1,∞

n (R2d )
)+ Ct(1 + n)

∫ t

0
J.

Hence, by Grönwall’s lemma,

J (t)≤ J (0)+
1 + ln(1 + Cd,n∥ f in

∥W 1,∞
n (R2d )

)

n + 1
eCt (1+n)t

1 + n
.

We then deduce the bounds on ∥ f ∥W 1,∞
n (R2d )

and ∇ρ f by (51) and (52).

Case 2: σ > 1. We give details for σ = 2. The generalization to σ ≥ 2 follows in the same way. In the
case σ = 2, (48b) and (48a) become

∂t(∇
2
ξ f )+T∇

2
ξ f = −2∇x∇ξ f and ∂t(∇

2
x f )+T∇

2
x f = −2∇E · ∇ξ∇x f − ∇

2 E · ∇ξ f .
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Moreover, the mixed derivative of order two solves

∂t(∇x∇ξ f )+T∇x∇ξ f = −∇
2
x f − ∇E · ∇

2
ξ f .

We define the quantities

Mxx :=

∫∫
R2d

|∇
2
x f |

pmn dx dξ, Mξξ :=

∫∫
R2d

|∇
2
ξ f |

pmn dx dξ, Mxξ :=

∫∫
R2d

|∇x∇ξ f |
pmn dx dξ,

and compute their time derivatives, using Young’s inequality for products, the bound on T(mn) as in
Case 1 and the fact that p > 1:

dMξξ

dt
≤ p(n∥E∥L∞ + n + 2)Mξξ + 2pMxξ ,

dMxξ

dt
≤ p(n∥E∥L∞ + n + 1 + ∥∇E∥L∞)Mxξ + pMxx + p∥∇E∥L∞ Mξξ ,

dMxx

dt
≤ p(n∥E∥L∞ + n + 2∥∇E∥L∞ + ∥∇

2 E∥L∞)Mxx + 2p∥∇E∥L∞ Mxξ + p∥∇
2 E∥L∞ Mξ ,

where Mξ is defined and bounded as in Case 1. Thus, for M2 := Mxx + Mxξ + Mξξ , we obtain

d
dt

M2 ≤ Cp(n∥E∥L∞ + n + 2 + 2∥∇E∥L∞ + ∥∇
2 E∥L∞)M2.

We proved in Case 1 that ∥E∥L∞ and ∥∇E∥L∞ are bounded. To control ∇
2 E , we proceed analogously to

Case 1. More generally, we can bound ∇
σ E by ∇

σ
x f . This leads, by Grönwall’s lemma, to

M1/p
2 (t)≤ M1/p

2 (0)eCt, (53)

for some positive time-dependent constant Ct > 0. Now, since M1/p
2 is equivalent to ∥ f ∥W 2,p

n (R2d )
(with

the exact same meaning given in Case 1), letting p → ∞, we obtain

∥ f ∥W 2,∞
n (R2d )

≤ ∥ f in
∥W 2,∞

n (R2d )
eCt .

The general case σ > 1 can be handled analogously by defining

Mσ :=

∫∫
|∇

σ f |
pmn dx dξ,

where σ = |σ | stands for the sum of the components of the multi-index σ = (σ1, σ2, . . . ). □

Proof of Proposition A.1. It just remains to prove that assumption (47) holds. First notice that the method
used in [Lions and Perthame 1991, Theorem 1] actually works for any a ∈ (−1, d −2] since the Coulomb
potential is decomposed in two parts of the form ∇K ∈ L3/2,∞

∩ L1
+ W 2,∞. This proves that the n1

moments can be propagated, which implies that ρ f ∈ L p for p = 1 + n1/d by the kinetic interpolation
inequality. Then, by Young’s inequality, since n1 > d/(b− 1), we deduce that

E ∈ L∞

loc(R+, L∞).
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Finally, as proved in [Lafleche 2019, Corollary 5.1], this bound combined with the initial assumption
f ∈ L∞(1 + |ξ |n) is sufficient to control ∥ρ f ∥L∞ and gives

∥ρ f (t)∥L∞ ≤ C
(

1 +

∫ t

0
∥E(s)∥L∞ ds

)
,

which implies (47) so that we can apply the lemma. Then once we know the W s,∞
n (R2d)-norm is bounded

at any time, if the Hσ
k (R

2d)-norm is also initially bounded, we can again use (53) but with p = 2 and
then bound the terms involving E and ∇x f by the W σ,∞

n (R2d)-norm. Again we conclude the proof using
Grönwall’s lemma. □

Appendix B: Operator identities

Here we list some formulas for operators which are used in this paper. First, if A and B are self-adjoint,
then we have

∥AB∥p = ∥B A∥p, (54)

which follows from the fact that the singular values are the same for an operator and its adjoint [Simon
2005, (1.3)]. Then we shall remember Hölder’s inequality for operators [Simon 2005, Theorem 2.8],
which says that for any bounded operators A and B and any (p, q, r)∈ [1,∞]

3 such that 1/p = 1/q +1/r ,

∥AB∥p ≤ ∥A∥q∥B∥r . (Hölder)

The second important inequality is the Araki–Lieb–Thirring inequality [Araki 1990, Theorem 1] which
states that for any operators A, B ≥ 0 and any (q, r) ∈ [1,∞)× R+, the following inequality is true:

Tr((B AB)qr )≤ Tr((Bq Aq Bq)r ).

Replacing A by A2 and observing that |AB|
2
= B A2 B, this can be rewritten as

∥AB∥
q
qr ≤ ∥Aq Bq

∥r . (55)

These inequalities show that regrouping operators together in Schatten norms increases the value of the
norm, while mixing them will lower the value. In the same spirit, for any A, B ≥ 0, p ≥ 1 and r ≥ 0, the
following mixing inequality holds:

∥Br AB∥p ≤ ∥ABr+1
∥p. (56)

Proof of inequality (56). By (Hölder)’s inequality, we have

∥Br AB∥p ≤ ∥Br Ar/(r+1)
∥((r+1)/r)p∥A1/(r+1)B∥(r+1)p.

Now, by the cyclicity property (54) and by (55), we get

∥Br Ar/(r+1)
∥((r+1)/r)p ≤ ∥ABr+1

∥
r/(r+1)
p and ∥A1/(r+1)B∥(r+1)p ≤ ∥ABr+1

∥
1/(r+1)
p ,

which yield the result. □
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MARSTRAND–MATTILA RECTIFIABILITY CRITERION FOR
1-CODIMENSIONAL MEASURES IN CARNOT GROUPS

ANDREA MERLO

In this paper, we show that the flatness of tangents of 1-codimensional measures in Carnot groups implies
C1

G-rectifiability. As applications we prove a criterion for intrinsic Lipschitz rectifiability of finite perimeter
sets in general Carnot groups and we show that measures with (2n+1)-density in the Heisenberg groups Hn

are C1
Hn -rectifiable, providing the first non-Euclidean extension of Preiss’s rectifiability theorem.

Introduction

In Euclidean spaces the following rectifiability criterion, known as the Marstrand–Mattila rectifiability
theorem, is available. It was first proved by J. M. Marstrand [1961] for m = 2 and n = 3, later extended
by P. Mattila [1975] to every m ≤ n and eventually strengthened by D. Preiss [1987].

Theorem 1. Suppose φ is a Radon measure on Rn and let m ∈ {1, . . . , n − 1}. Then the following are
equivalent:

(i) φ is absolutely continuous with respect to the m-dimensional Hausdorff measure Hm, and φ-almost
all of Rn can be covered with countably many m-dimensional Lipschitz surfaces.

(ii) φ satisfies the following two conditions for φ-almost every x ∈ Rn:

(a) 0<2m
∗
(φ, x)≤2m,∗(φ, x) <∞.

(b) Tanm(φ, x)⊆ {λHm⌞V : λ > 0, V ∈ Gr(n,m)}, where the set of tangent measures Tanm(φ, x) is
introduced in Definition 1.24.

The rectifiability of a measure, namely that (i) of Theorem 1 holds, is a global property and as such it
is usually very difficult to verify in applications. Rectifiability criteria serve the purpose of characterizing
such global properties with local ones, which are usually conditions on the density and on the tangents
of the measure. Most of the more basic criteria impose condition (iia) and the existence of an affine
plane V (x), depending only on the point x , on which at small scales the support of the measure is
squeezed on around x . The difference between these various elementary criteria relies on how one defines
squeezed on; for an example see Theorem 15.19 of [Mattila 1995]. However, the existence of just one
plane approximating the measure at small scales may be still too difficult to prove in many applications
and this is where Theorem 1 comes into play. The Marstrand–Mattila rectifiability criterion says that
even if we allow a priori the approximating plane to rotate at different scales, the density hypothesis (iia)
guarantees a posteriori this cannot happen almost everywhere.

MSC2020: primary 28A75, 53C17; secondary 22E25, 49Q15.
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It is well known that if a Carnot group G has Hausdorff dimension Q, then it is (Q−1)-purely
unrectifiable in the sense of Federer; see for instance Theorem 1.2 of [Magnani 2004]. Despite this
geometric irregularity, in the foundational paper [Franchi et al. 2001], B. Franchi, F. Serra Cassano and
R. Serapioni introduced the new notion of C1

G
-rectifiability in Carnot groups; see Definition 1.34. This

definition allowed them to establish De Giorgi’s rectifiability theorem for finite perimeter sets in the
Heisenberg groups Hn.

Theorem 2 [Franchi et al. 2001, Corollary 7.6]. Suppose � ⊆ Hn is a finite perimeter set. Then its
reduced boundary ∂∗

H� is C1
Hn -rectifiable.

It is not hard to see that an open set with smooth boundary is of finite perimeter in Hn, but there are
finite perimeter sets in H1 whose boundary is a fractal from an Euclidean perspective; see for instance
[Kirchheim and Serra Cassano 2004]. This means that the Euclidean and C1

G
-rectifiability are not

equivalent.

The main goal of this paper is to establish a 1-codimensional analogue of Theorem 1 in Carnot groups.

Theorem 3. Suppose φ is a Radon measure on G. Then the following are equivalent:

(i) φ is absolutely continuous with respect to the (Q−1)-dimensional Hausdorff measure HQ−1, and
φ-almost all of G can be covered by countably many C1

G
-surfaces.

(ii) φ satisfies the following two conditions for φ-almost every x ∈ G:

(a) 0<2Q−1
∗

(φ, x)≤2Q−1,∗(φ, x) <∞.
(b) TanQ−1(φ, x) is contained in M, the family of Haar measures of the elements of Gr(Q− 1), the

1-codimensional homogeneous subgroups of G.

While the fact that (i) implies (ii) follows from [Vittone et al. 2022, Lemma 3.4 and Corollary 3.6], for
instance, the reverse implication is the subject of this work. Besides the already mentioned importance for
the applications, Theorem 1 is also relevant because it establishes that C1

G
-rectifiability is characterized in

the same way as the Euclidean one, and this is the main motivation behind the definition of P-rectifiable
measures, given in Definition 4.5. Our main application of Theorem 3 is the proof of the first extension of
Preiss’s rectifiability theorem outside the Euclidean spaces, which is obtained by combining Theorem 3
with [Merlo 2022, Theorem 1.2]:

Theorem 4. Suppose φ is a Radon measure on the Heisenberg group Hn such that for φ-almost every
x ∈ Hn, we have

0<22n+1(φ, x) := lim
r→0

φ(B(x, r))
r2n+1 <∞,

where B(x, r) are the metric balls relative to the Koranyi metric. Then φ is absolutely continuous with
respect to H2n+1, and φ-almost all of Hn can be covered with countably many C1

Hn -regular surfaces.

Finally, an easy adaptation of the arguments used to prove Theorem 3 also provides the following
rectifiability criterion for finite perimeter sets in arbitrary Carnot groups. Theorem 5 asserts that if the
tangent measures to the boundary of a finite perimeter set are sufficiently close to vertical hyperplanes,
then the boundary can be covered by countably many intrinsic Lipschitz graphs.
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Theorem 5. There exists an εG > 0 such that if �⊆ G is a finite perimeter set for which

lim sup
r→0

dx,r (|∂�|G,M) := lim sup
r→0

inf
ν∈M

W1(|∂�|G⌞B(x, r), ν⌞B(x, r))
rQ

≤ εG,

for |∂�|G-almost every x ∈ G, where W1 is the 1-Wasserstein distance, then |∂�|G-almost all of G can
be covered with countably many intrinsic Lipschitz graphs.

Before giving an overview of the strategy of the proof, we briefly compare our setting to the Euclidean
one and explain why Theorem 3 is so hard won. For the sake of discussion, let us put ourselves in a
simplified situation. Assume E is a compact subset of a Carnot group G = (Rn, ∗) such that

(α) there exists an η1 ∈ N such that η−1
1 rQ−1

≤ HQ−1(E ∩ B(x, r))≤ η1rQ−1 for any 0< r < diam(E)
and any x ∈ E , and

(β) the functions x 7→ dx,r (HQ−1⌞E,M) converge uniformly to 0 on E as r goes to 0.

Proving that the set E is C1
G

-rectifiable is (roughly) equivalent to constructing a plane V ∈ Gr(Q−1) and
a V -intrinsic Lipschitz graph 0 such that HQ−1(PV (E ∩0)) > 0, where intrinsic Lipschitz graphs are
introduced in Definition 1.36 and PV is the splitting projection on V introduced in 1.10. With this in
mind, it is easy to see that the difficulty one has to face when trying to prove Theorem 3 is twofold. On
the one hand intrinsic Lipschitz graphs are not Lipschitz in almost any sense of the word as their natural
parametrization is Hölder continuous, both from the Euclidean and the intrinsic perspective. On the
other hand, splitting projections PV are just (intrinsic) Hölder continuous maps. This latter complication
means that there is no a priori reason for which measure, or even dimension, should be preserved by the
projections or the parametrizations. This is indeed the case already in Heisenberg groups Hn, and for
further details we refer the reader to [Balogh et al. 2012; 2013].1

Unfortunately, the classical approaches to the proof of Theorem 1 all rely on the ideas H. Federer used
to prove his celebrated projection theorem, see for instance [Federer 1969, §3.3], and these arguments all
crucially exploit the fact that orthogonal projections are Lipschitz; see [De Lellis 2008; Mattila 1975; 1995;
Preiss 1987]. We remark that even in Carnot groups, in some particular cases and for high codimensions,
splitting projections are Lipschitz homomorphisms and thus the classical machinery works, although with
some highly nontrivial complications; see [Antonelli and Merlo 2022a; 2022b].

This unavoidable technical obstruction of the Hölderianity of intrinsic Lipschitz graphs and of projec-
tions implies that, at low codimension, we need to seek a completely different approach. The first pillar
of the alternative approach we pursue is the observation, encapsulated in Proposition 1.18, that despite the
lack of metric regularity, one can still nicely control the measure of the projection of a 1-codimensional
set. The other will be combining the classical ideas from [Mattila 1975] with quantitative techniques of
[David and Semmes 1993a]. We present here a survey on the strategy of the proof of our main result,
Theorem 3, in the simplified hypotheses (α) and (β) for E , that from now on should be considered
standing throughout the section.

1One could attempt to use metric projections instead, however one quickly realizes that in some simple cases, like the
Heisenberg groups Hn, splitting projections and metric projections coincide.



930 ANDREA MERLO

The cryptic condition (β) can be reformulated, thanks to Propositions 2.6 and 2.7 in the following
more geometric way. For any ϵ > 0 there is a r(ϵ) > 0 such that for HQ−1-almost any x ∈ E and any
0< ρ < r(ϵ) there is a plane V (x, ρ) ∈ Gr(Q− 1), depending on both the point x and the scale ρ, for
which

E ∩ B(x, ρ)⊆ {y ∈ G : dist(y, x ∗ V (x, ρ))≤ ϵρ}, (1)

B(y, ϵρ)∩ E ̸= ∅ for any y ∈ B
(
x, 1

2ρ
)
∩ x ∗ V (x, ρ). (2)

In Euclidean spaces if a Borel set E satisfies (α), (1) and (2) it is said to be weakly linear approximable.2

The condition (1) says that at small scales E is squeezed on the plane x ∗ V (x, ρ), while (2) implies that
inside B(x, ρ) any point of x ∗ V (x, ρ) is very close to E ; see Figure 1 on page 931.

Proposition 1 shows that if at some point x the set E has also big projections on some plane W, i.e.,
(3) holds, then around x the set E is almost a W -intrinsic Lipschitz surface.

Proposition 1. Let k > 10η2
1 and ω > 0. Suppose further that x ∈ E and ρ > 0 are such that

(i) dx,kρ(HQ−1⌞E,M)≤ ω,

(ii) there exists a plane W ∈ Gr(Q− 1) such that

(ρ/k)Q−1
≤ HQ−1⌞W (PW (B(x, ρ)∩ E)), (3)

where PW is the splitting projection on W ; see Definition 1.10.

If k−1 and ω are suitably small with respect to η1, there exists an α = α(η1, k, ω) > 0 with the following
property. For any z ∈ E ∩ B(x, ρ) and any y ∈ B

(
x, 1

8 kρ
)
∩ E for which 10ωρ ≤ d(z, y)≤ 1

2 kρ, we have
that y is contained in the cone zCW (α), which is introduced in Definition 1.13.

We remark that thanks to our assumption (β) on E , hypothesis (i) of the above proposition is satisfied
almost everywhere on E whenever ρ < r̃(ω), where r̃(ω) is suitably small and depends only on ω. Let us
explain some of the ideas of the proof of Proposition 1. If the plane W is almost orthogonal to V (x, ρ)
(the element of Gr(Q− 1) for which (1) and (2) are satisfied by E at x at scale ρ), we would have that
the projection of E on W would be too small and in contradiction with (3); see Figure 2 on page 931.

If the constants k−1 and ω are chosen suitably small with respect to η1 it is possible to show not only
that the planes V (x, ρ) and W are not orthogonal but that they must be at a very small angle indeed.
In particular, this means that inside B(x, ρ) the plane x ∗ V (x, ρ) must be very close to x ∗ W. So
close in fact that it can be proved that E ∩ B(x, ρ) is contained in a 2ωρ-neighborhood W2ωρ of W.
This implies that z, y ∈ W2ωρ , and since W and V (x, ρ) are at a small angle, it is possible to show that
dist(y, zW )≤ 4ωρ. Furthermore, by assumption on y, z we have d(z, y) > 10ωρ and thus we infer that
dist(y, zW )≤ 5d(y, z). This implies in particular that y ∈ zCW

( 2
5

)
.

The second step towards the proof of the main result is to show that at any point x of E and for any
ρ > 0 sufficiently small there is a plane Wx,ρ ∈ Gr(Q− 1) on which E has big projections.

2The reader might notice that our definition of weakly linearly approximable sets does not coincide with that which can be
commonly found in the literature; see for instance [Balogh et al. 2012, Definition 5.4], [De Lellis 2008, Section 5] and [Mattila
1995, Definition 15.7]. However, the assumption (α) on the AD-regularity of E makes our definition equivalent to all the others.
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E

ρ

x

2ϵρ

x ∗ V (x, ρ)

E

ϵρ

ρ

x

x ∗ V (x, ρ)

Figure 1. On the left we see that (1) implies that at the scale ρ the set E (collection
of blue wavy lines) is contained in a narrow strip of size 2ϵρ (shaded yellow) around
x ∗ V (x, ρ). On the right we see that (2) implies that any ball centered on the plane
x ∗ V (x, ρ) inside B

(
x, 1

2ρ
)

and of radius ϵρ (shaded yellow) must meet E .

E

x
PW (E)

W

2ϵρ

x ∗ V (x, ρ)

Figure 2. The weak linear approximability of E implies that E ∩ B(x, ρ) is contained
inside Vωρ , an ωρ-neighborhood of the plane V (x, ρ). If V (x, ρ) and W (a red line) are
almost orthogonal, i.e., the Euclidean scalar product of their normals is very small, it can
be shown that the projection PW (E) on W of Vωρ ∩ B(x, ρ) has HQ−1-measure smaller
than (ωρ)Q−1.
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Theorem 6. There is an η2 ∈ N such that for HQ−1-almost every x ∈ E and ρ > 0 sufficiently small there
is a plane Wx,ρ ∈ Gr(Q− 1) for which

HQ−1(PWx,ρ (E ∩ B(x, ρ)))≥ η−1
2 ρQ−1. (4)

We now briefly explain the ideas behind the proof of Theorem 6. Fix two parameters η3 ∈ N and ω > 0
such that ω < 1/ηQ(Q+1)

3 and for which

B+ := B(δ10η−1
3
(n(Wx,ρ)), η

−1
3 )⊆ {y ∈ B(0, 1) : ⟨y, n(Wx,ρ)⟩> ω},

B− := B+ ∗ δ20η−1
3
(n(Wx,ρ)

−1)⊆ {y ∈ B(0, 1) : ⟨y, n(Wx,ρ)⟩<−ω},

where the δλ are the intrinsic dilations introduced in (5) and n(Wx,ρ)∈ V1 is the Euclidean normal of Wx,ρ .
Thanks to assumption (1) on E , for any 0< ρ < r(ω) we have that

E ∩ B(x, ρ)⊆ {y ∈ B(x, ρ) : dist(y, x ∗ V (x, ρ))≤ ωρ}.

In particular, thanks to the assumptions on η3 and ω we infer that E ∩ xδρB+ = ∅ = E ∩ xδρB−. Let
Wx,ρ := V (x, ρ), and for any z ∈ xδρB+ define the curve

γz(t) := zδ20η−1
3 t(n(Wx,ρ)

−1),

as t varies in [0, 1]. The curve γz must intersect Wx,ρ at the point PWx,ρ (z) since γz(1) ∈ xδρB−, and as a
consequence we have the inclusion γz([0, 1])⊆ P−1

Wx,ρ
(PWx,ρ (z)). Since conditions (1) and (2) heuristically

say that E almost coincides with the plane x ∗ Wx,ρ inside B(x, ρ) and it has very few holes, most of the
curves γz should intersect the set E too.

More precisely, we prove that if some γz does not intersect E , there is a small ball Uz centered at some
q ∈ E such that γz ∩ Uz ̸= ∅. It is clear that, defining the set

F := E ∪

⋃
z∈xδr B+

γz∩E=∅

Uz,

we have PWx,r (xδr B+) ⊆ PWx,r (F). So, intuitively speaking adding these balls Uz allows us to close
the holes of E . An easy computation proves that HQ−1(PWx,r (xδr B+))≥ rQ−1/ηQ−1

3 , and thus in order
to be able to conclude the proof of (4) we should have some control over the size of the projection of
the balls Uz . This control is achievable thanks to (2) (see Proposition 2.27 and Theorem 2.28), and in
particular we are able to show that

HQ−1
(

PWx,r

( ⋃
z∈xδr B+

γz∩E=∅

Uz

))
≤ ωrQ−1.

This implies that E satisfies the big projection properties, i.e., (4) holds with η2 := 2ηQ−1
3 . This part of

the argument is rather delicate and technical. For the details we refer to the proof of Theorem 2.28.

The third step towards the proof of Theorem 3 is achieved in Section 2D, where we prove the following:

Theorem 7. There exists an intrinsic Lipschitz graph 0 such that HQ−1(E ∩0) > 0.
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The strategy we employ to prove the above theorem is the following. We know that at HQ−1-almost
every point of x ∈ E there exists a plane Wx,ρ such that HQ−1(PWx,ρ (E ∩ B(x, ρ)))≥ η−1

2 ρQ−1. For any
x ∈ E at which the previous inequality holds, we let B be the points y ∈ B(x, ρ) for which there is a
scale s ∈ (0, ρ) for which Wy,s is almost orthogonal to Wx,ρ . Choosing the angle between Wy,s and Wx,ρ

sufficiently big it is possible to prove that the projection of B on Wx,ρ is smaller than 1
2η

−1
2 ρQ−1. This

follows from the intuitive idea that if y ∈ B, the set E ∩ B(y, s) is contained in a narrow strip that is almost
orthogonal to Wx,ρ inside B(y, s) and thus its projection on Wx,ρ has very small HQ−1-measure. On the
other hand, Proposition 1.18 tells us that SQ−1⌞V (PWx,ρ (E∩B(x, ρ)\B))≤2c(V )SQ−1(E∩B(x, ρ)\B),
and this allows us to infer that there are many points z ∈ B(x, ρ)∩ E for which Wz,s is contained in a
(potentially large) fixed cone with axis Wx,ρ for any 0< s < ρ. This uniformity on the scales allows us
to infer thanks to Proposition 1 that E ∩ B(x, ρ) \ B is an intrinsic Lipschitz graph.

Since the property (β) is stable for the restriction-to-a-subset operation and for the sake of discussion
we can assume that (α) is also, Theorem 7 implies by means of a classical argument that HQ−1-almost
all of E can be covered with intrinsic Lipschitz graphs.

Therefore, we are reduced to seeing how we can improve the regularity of the surfaces 0i covering E
from intrinsic Lipschitz to C1

G
. Since the blowups of HQ−1⌞E are almost everywhere flat, the locality

of the tangents, i.e., Proposition 1.27, implies that the blowups of the measures HQ−1⌞0i are flat as
well, where we recall that a measure is said to be flat if it is the Haar measure of a 1-codimensional
homogeneous subgroup of G. Furthermore, since intrinsic Lipschitz graphs can be extended to boundaries
of sets of finite perimeter, see Theorem 1.38, they have an associated normal vector field ni . Therefore, for
HQ−1-almost every x ∈ 0i , the elements of TanQ−1(HQ−1⌞0i , x) are also the perimeter measures of sets
with constant horizontal normal ni (x); see Propositions B.12, B.13, and B.16. The above argument shows
that on the one hand the TanQ−1(HQ−1⌞0i , x) are flat measures and on the other if seen as the boundary of
finite perimeter sets, they must have constant horizontal normal coinciding with ni (x) almost everywhere.
Therefore, for HQ−1-almost every x ∈ E ∩ 0i , the set TanQ−1(HQ−1⌞0i , x) must be contained in the
family of Haar measures of the 1-codimensional subgroup orthogonal to ni (x). The fact that E ∩0i is
covered with countably many C1

G
-surfaces follows by means of the rigidity of the tangents discussed

above and a Whitney-type theorem, which is obtained in Appendix B with an adaptation of the arguments
of [Franchi and Serapioni 2016].

Structure of the paper

In Section 1 we recall some well-known facts about Carnot groups and Radon measures. Section 2
is divided in four parts. The main results of Section 2A are Propositions 2.6 and 2.7, which allow us
to interpret the flatness of tangents in a more geometric way. Section 2B is devoted to the proof of
Proposition 2.11, which is roughly Theorem 6. Section 2C is the technical core of this work and the
main result proved in it is Theorem 2.28, which codifies the fact that the flatness of tangents implies big
projections on planes. Finally, in Section 2D we put together the results of the previous three subsections
to prove Theorem 2.30, which asserts that for any Radon measure satisfying condition (ii) of Theorem 3,
there is an intrinsic Lipschitz graph of positive φ-measure. In Section 3 we prove that measures with
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almost-flat tangents and which are asymptotically AD-regular are intrinsic rectifiable, and we will use
this in Section 4 to prove Theorem 4.2. In Section 4 we prove Theorem 4.1, which is the main result of
the paper, Theorem 4.2 and their consequences. In Appendix A we construct the dyadic cubes that are
needed in Section 2 and in Appendix B we recall some well-known facts about finite perimeter sets in
Carnot groups and intrinsic Lipschitz graphs whose surface measures have flat tangents.

1. Preliminaries

This preliminary section is divided into four subsections. In Subsections 1A and 1B we introduce the
setting, fix notations and prove some basic facts on splitting projections and intrinsic cones. In Section 1C
we recall some well-known facts on Radon measures and their blowups and finally in Section 1D we
introduce the two main notions of 1-codimensional rectifiable sets available in Carnot groups.

1A. Carnot groups. In this subsection we briefly introduce some notations on Carnot groups that we
will extensively use throughout the paper. For a detailed account on Carnot groups and sub-Riemannian
geometry we refer to [Serra Cassano 2016].

We recall that a positive grading of a Lie algebra g is a direct-sum decomposition g= V1⊕V2⊕· · ·⊕Vs ,
for some integer s ≥ 1, where Vs ̸= 0 and [V1, Vj ] ⊆ V j+1 for all integers j ∈ {1, . . . , s} and where we
set Vs+1 = 0. A positive grading is said to be a stratification if [V1, Vj ] = V j+1 for all j ∈ {1, . . . , s}. We
also recall that the first layer V1 of a stratification is usually referred to as the horizontal layer.

A Carnot group G of step s is a connected and simply connected Lie group whose Lie algebra g admits
a stratification g = V1 ⊕ V2 ⊕ · · ·⊕ Vs . Throughout the paper we denote by n the topological dimension
of g, by nj the dimension of Vj and by hj the number

∑ j
i=1 ni .

Furthermore, we let πi : G → Vi be the projection maps on the i-th layer of the Lie algebra Vi . We
shall remark that more often than not, we will shorten the notation to vi := πiv.

The exponential map exp : g → G is a global diffeomorphism from g to G. Hence, if we choose a
basis {X1, . . . , Xn} of g, any p ∈ G can be written in a unique way as p = exp(p1 X1 +· · ·+ pn Xn). This
means that we can identify any p ∈ G with the n-tuple (p1, . . . , pn) ∈ Rn and the group G itself with Rn

endowed with ∗, the operation determined by the Campbell–Hausdorff formula. From now on, we will
always assume that G = (Rn, ∗) and, as a consequence, that the exponential map exp acts as the identity.

The stratification of g carries with it a natural family of dilations δλ : g → g, which are Lie algebra
automorphisms of g and are defined by

δλ(v1, . . . , vs)= (λv1, λ
2v2, . . . , λ

svs), (5)

where vi ∈ Vi . The stratification of the Lie algebra g naturally induces a grading on each of its homogeneous
Lie subalgebras h, that is,

h = V1 ∩ h⊕ · · · ⊕ Vs ∩ h. (6)

Furthermore, note that since the exponential map acts as the identity, the Lie algebra automorphisms δλ
are also group automorphisms of G.
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Definition 1.1 (homogeneous subgroups). A subgroup V of G is said to be homogeneous if it is a Lie
subgroup of G that is invariant under the dilations δλ for any λ > 0.

Thanks to Lie’s theorem and the fact that exp acts as the identity map, homogeneous Lie subgroups
of G are in bijective correspondence through exp with the Lie subalgebras of g that are invariant under
the dilations δλ. Therefore, homogeneous subgroups in G are identified with the Lie subalgebras of g
(that in particular are vector subspaces of Rn) that are invariant under the intrinsic dilations δλ.

For any nilpotent Lie algebra h with stratification W1 ⊕· · ·⊕Ws̄ , we define its homogeneous dimension

dimhom(h) :=

s̄∑
i=1

i · dim(Wi ).

Thanks to (6) we infer that, if h is a Lie subalgebra of g, we have dimhom(h) :=
∑s

i=1 i ·dim(h∩ Vi ). It is
a classical fact that the Hausdorff dimension3 with respect to any left-invariant homogeneous metric (see
Definition 1.3) of a nilpotent, connected and simply connected Lie group coincides with the homogeneous
dimension dimhom(h) of its Lie algebra. Therefore, the above discussion implies that if h is a vector
subspace of Rn which is also an α-dimensional homogeneous subgroup of G, we have

α =

s∑
i=1

i · dim(h∩ Vi )= dimhom(h). (7)

Definition 1.2. Let Q := dimhom(g), and for any m ∈ {1, . . . ,Q − 1} we define the m-dimensional
Grassmannian of G, denoted by Gr(m), as the family of all homogeneous subgroups V of G of Hausdorff
dimension m.

Furthermore, thanks to (7) and some easy algebraic considerations that we omit, one deduces that for
the elements of Gr(Q− 1) the following identities hold:

dim(V ∩ V1)= n1 − 1 and dim(V ∩ Vi )= dim(Vi ), for any i = 2, . . . , s. (8)

Thanks to (8), we infer that for any V ∈ Gr(Q− 1) there exists a n(V ) ∈ V1 such that

V = V ⊕ V2 ⊕ · · · ⊕ Vs,

where V := {w ∈ V1 : ⟨n(V ), w⟩ = 0}. In the following we will denote by N(V ) the 1-dimensional
homogeneous subgroup generated by the horizontal vector n(V ). We shall remark that the above discussion
implies that the elements of Gr(Q− 1) are hyperplanes in Rn whose normals lie in V1. It is not hard to
see that the converse holds too and that the elements of Gr(Q− 1) are normal subgroups of G.

For any p ∈ G, we define the left translation τp : G → G as

q 7→ τpq := p ∗ q.

3For a definition of Hausdorff dimension, see for instance [Mattila 1995, Definition 4.8].
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As already remarked above, we assume without loss of generality that the group operation ∗ is determined
by the Campbell–Hausdorff formula, and therefore it has the form

p ∗ q = p + q + Q(p, q) for all p, q ∈ Rn,

where Q = (Q1, . . . ,Qs) : Rn
× Rn

→ V1 ⊕· · ·⊕ Vs , and the Qi s have the following properties. For any
i = 1, . . . , s and any p, q ∈ G we have

(i) Qi (δλ p, δλq)= λiQi (p, q),

(ii) Qi (p, q)= −Qi (−q,−p),

(iii) Q1 = 0 and Qi (p, q)= Qi (p1, . . . , pi−1, q1, . . . , qi−1).

Thus, we can represent the product ∗ more precisely as

p ∗ q = (p1 + q1, p2 + q2 + Q2(p1, q1), . . . , ps + qs + Qs(p1, . . . , ps−1, q1, . . . , qs−1)).

Definition 1.3. A metric d : G × G → R is said to be homogeneous and left-invariant if for any x, y ∈ G

we have

(i) d(δλx, δλy)= λd(x, y) for any λ > 0,

(ii) d(τzx, τz y)= d(x, y) for any z ∈ G.

Throughout the paper, if not otherwise stated, we will endow the group G with the following homoge-
neous and left-invariant metric:

Definition 1.4. For any g ∈ G, we let

∥g∥ := max{ϵ1|g1|, ϵ2|g2|
1/2, . . . , ϵs |gs |

1/s
},

where ϵ1 = 1 and ϵ2, . . . , ϵs are suitably small parameters depending only on the group G. For the proof
that ∥ · ∥ is a left-invariant, homogeneous norm on G for a suitable choice of ϵ2, . . . , ϵs , we refer to
Section 5 of [Franchi et al. 2003]. Furthermore, we define

d(x, y) := ∥x−1
∗ y∥,

and let B(x, r) := {z ∈ G : d(x, z) < r} be the open metric ball relative to the distance d centered at x at
radius r > 0.

Remark 1.5. Fix an orthonormal basis E := {e1, . . . , en} of Rn such that

ej ∈ Vi , whenever hi ≤ j < hi+1. (9)

From the definition of the metric d , it immediately follows that the ball B(0, r) is contained in the box

BoxE(0, r) := {p ∈ Rn
: for any i = 1, . . . , s whenever |⟨p, ej ⟩| ≤ r i/ϵi for any hi ≤ j < h j+1}.
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Definition 1.6. For any 0 ≤ α ≤ Q, we define the spherical Hausdorff measure to be the Carathéodory
completion of the exterior measure that acts on Borel sets A ⊆ G as

Sα(A) := sup
δ>0

inf
{ ∞∑

j=1

rαj : A ⊆

∞⋃
j=1

B(xj , rj ), rj ≤ δ

}
.

In the following definition, we introduce a family of measures that will be of great relevance throughout
the paper.

Definition 1.7 (flat measures). For any m ∈ {1, . . . ,Q−1} the set of m-dimensional flat measures M(m)
is defined as

M(m) := {λSm⌞V : for some λ > 0 and V ∈ Gr(m)}. (10)

In order to simplify notation in the following we let M := M(Q− 1).

The following proposition gives a representation of (Q− 1)-flat measures, which will come in handy
later on.

Proposition 1.8. For any V ∈ Gr(Q−1) we have SQ−1⌞V =β−1Hn−1
eu ⌞V, where β :=Hn−1

eu (B(0, 1)∩V )
and β does not depend on V.

Proof. Let E := {z ∈ G : ⟨z1, n(V )⟩< 0} and let ∂E be the perimeter measure of E ; see Definition B.4.
Either by direct computation or thanks to identity (2.8) in [Ambrosio et al. 2009], it can be proven that
∂E = n(V )Hn−1

eu ⌞V. On the other hand, since the reduced boundary ∂∗E = V of E is a C1
G

-surface, see
Definition 1.34, thanks to Theorem 4.1 of [Magnani 2017] we conclude that

β(∥ · ∥, n(V ))SQ−1⌞V = |∂E |G = Hn−1
eu ⌞V,

where β(∥ · ∥, n(V )) := maxz∈B(0,1)Hn−1
eu (B(z, 1) ∩ V ). Since B(0, 1) is convex as a subset of Rn,

[Magnani 2017, Theorem 5.2] implies that

β(∥ · ∥, n(V ))= Hn−1
eu (B(0, 1)∩ V ).

Finally note that the right-hand side of the above identity does not depend on V since B(0, 1) is invariant
under rotations of the first layer V1. □

The above proposition has the following useful consequence:

Proposition 1.9. A function ϕ : G → R is said to be radially symmetric if there is a profile function
g : [0,∞)→ R such that ϕ(x)= g(∥x∥). For any V ∈ Gr(Q− 1) and any radially symmetric, positive
function ϕ we have ∫

ϕ dSQ−1⌞V = (Q− 1)
∫

sQ−2g(s) ds.

Proof. The thesis of the proposition is trivially satisfied for indicator functions of balls. The general result
follows by the monotone convergence theorem. □
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1B. Cones and splitting projections. For any V ∈ Gr(Q−1), the group G can be written as a semidirect
product of V and N(V ), i.e.,

G = V ⋊N(V ). (11)

In this subsection we adapt some of the results on projections from Subsection 2.2.2 of [Franchi and
Serapioni 2016] to the case in which splitting of G is given by (11).

Definition 1.10 (splitting projections). For any g ∈ G, there are two unique elements PV g ∈ V and
PN(V )g ∈ N(V ) such that

g = PV g ∗ PN(V )g.

The following result is a particular case of [Franchi and Serapioni 2016, Proposition 2.17].

Proposition 1.11. For any V ∈ Gr(Q− 1), we let

A2g2 := g2 − Q2(πV g1, πn(V )g1),

Ai gi := gi − Qi (πV g1, A2g2, . . . , Ai−1gi−1, πn(V )g1, 0, . . . , 0), whenever i = 3, . . . , s,

where πn(V )g1 := ⟨g1, n(V )⟩n(V ) and πV g1 = g1 −πn(V )g1. With these definitions, the projections PV

and PN(V ) have the following expressions in coordinates:

PV g = (πV g1, A2g2, . . . , As gs) and PN(V )g = (πn(V )g1, 0, . . . , 0).

Furthermore, for any x, y ∈ G, the above representations and the fact that V is a normal and homogeneous
subgroup of G imply:

(i) PV (x ∗ y)= x ∗ PV y ∗ PN(V )x−1,

(ii) PN(V )(x ∗ y)= PN(V )(x) ∗ PN(V )(y)= PN(V )(x)+ PN(V )(y),

where here the symbol + has to be interpreted as the sum of vectors.

Remark 1.12. Throughout the paper the reader should always keep in mind that the projections PV are
not Lipschitz maps and, as stated in the introduction, this is the major source of the technical problems
we have to overcome in order to prove our main result, Theorem 4.1.

The splitting projections allow us to give the following intrinsic notion of cone:

Definition 1.13. For any α > 0 and V ∈ Gr(Q− 1), we define the cone CV (α) as

CV (α) := {w ∈ G : ∥PN(V )(w)∥ ≤ α∥PV (w)∥}.

The next proposition is very useful, since one of the major difficulties when dealing with geometric
problems in Carnot groups is that d(x, y) ≈ |x − y|

1/s if x and y are not suitably chosen. However,
Proposition 1.14 shows that if y ̸∈ xCV (α), then d(x, y) is bi-Lipschitz equivalent to the Euclidean
distance |x − y|.

Proposition 1.14. For any x, y ∈ G for which x−1 y ̸∈ CV (α) for some α > 0 and V ∈ Gr(Q− 1), we
have

d(x, y)≤3(α)|π1(x−1 y)|, where 3(α) := (1 +α−1).
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Proof. For any α, β > 0 define

C(α) :=

⋃
V ∈Gr(Q−1)

(G \ CV (α)) and D(β) := {x ∈ G : ∥x∥ ≤ β|π1(x)|}.

Now let us prove that C(α) ⊆ D(3(α)). For any w ∈ C(α) there exists a W ∈ Gr(Q − 1) such that
∥PN(W )(w)∥> α∥PW (w)∥ and, in particular,

∥w∥ ≤ ∥PW (w)∥+∥PN(W )(w)∥ ≤ (1+α−1)∥PN(W )(w)∥ = (1+α−1)|πn(W )(π1w)| ≤ (1+α−1)|π1(w)|,

where the only identity in the equation above comes from the choice of the metric and Proposition 1.11.
This concludes the proof of the inclusion C(α)⊆ D(3(α)).

Since x−1 y ̸∈ CV (α), then x−1 y ∈ C(α) and hence d(x, y)= ∥x−1 y∥ ≤ (1 +α−1)|π1(x−1 y)|, which
concludes the proof of the proposition. □

The following proposition allows us to precisely quantify the distance of a point g ∈ G from a plane
V ∈ Gr(Q− 1).

Proposition 1.15. For any V ∈ Gr(Q− 1) and any g ∈ G we have dist(PN(V )g, V )= |πn(V )g1| and, in
particular, dist(g, V )= |πn(V )g1|. In addition, for any g ∈ G we have

∥PV (g)∥ ≤ 2∥g∥. (12)

Proof. First of all, we note that

dist(PN(V )g, V )≤ d(PN(V )g, 0)= |πn(V )g1|, (13)

where the last identity above comes from Proposition 1.11 and the definition of the metric. In addition,
once again thanks to the definition of the metric, we have

dist(PN(V )(g), V )= inf
v∈V

∥PN(V )(g)−1
∗ v∥ ≥ inf

v∈V
|−πn(V )g1 + v1| = |πn(V )g1|. (14)

Putting together (13) and (14) we conclude the proof of the identity dist(PN(V )(g), V )=|πn(V )g1|. Thanks
to this, we conclude that

dist(g, V )= inf
v∈V

d(g, v)= inf
v∈V

d(PV g ∗ PN(V )g, v)

= inf
v∈V

d(PN(V )g, PV g−1
∗ v)= dist(PN(V )g, V )= |πn(V )g1|,

proving the second claimed identity. In order to conclude the proof of (12) we just note that

∥PV (g)∥ = ∥g ∗ PN(V )g−1
∥ ≤ ∥g∥ +∥PN(V )g∥ = ∥g∥ + |πn(V )g1| ≤ ∥g∥ + |g1| ≤ 2∥g∥,

where the second identity above comes from the definition of the norm and Proposition 1.11. □

The following result is the analogue of [Franchi and Serapioni 2016, Proposition 2.12] where M := V
and H := N(V ).

Proposition 1.16. For any V ∈ Gr(Q− 1) and any g ∈ G we have

1
3(∥PN(V )g∥ +∥PV g∥)≤ ∥g∥ ≤ ∥PN(V )g∥ +∥PV g∥. (15)
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Proof. The right-hand side of (15) follows directly from the triangular inequality. Furthermore, thanks to
Propositions 1.11 and 1.15 we deduce on the one hand that ∥PN(V )(g)∥ = |πn(V )(g1)| ≤ ∥g∥ and on the
other that ∥PV g∥ ≤ 2∥g∥. The first inequality in (15) follows from combining these two inequalities. □

The following proposition allows us to estimate the distance of parallel 1-codimensional planes.

Proposition 1.17. Let x, y ∈ G and V ∈ Gr(Q− 1). Defining

dist(xV, yV ) := max
{
sup
v∈V

dist(xv, yV ), sup
v∈V

dist(yv, xV )
}
,

we have

(i) dist(xV, yV )= dist(x, yV )= dist(y, xV )= |πn(V )(π1(x−1 y))|,

(ii) dist(u, xV )≤ dist(u, yV )+ dist(xV, yV ), for any u ∈ G.

Proof. For any v ∈ V we have

dist(xv, yV )= inf
w∈V

dist(xv, yw)= inf
w∈V

d(x, y(y−1xv−1x−1 y)w)= inf
w∈V

d(x, yw)= dist(x, yV ),

where the second last identity comes from the fact that v∗
:= y−1xv−1x−1 y ∈ V and from the transitivity

of the translation by v∗ on V. Therefore, we have supv∈V dist(xv, yV ) = dist(x, yV ) and thus by
Proposition 1.15 we infer that

dist(xV, yV )= max{dist(x, yV ), dist(y, xV )} = max{|πn(V )(π1(y−1x))|, |πn(V )(π1(x−1 y))|}

= |πn(V )(π1(x−1 y))| = dist(x, yV )= dist(y, xV ),

where the last identity comes from interchanging x and y and exploiting the symmetry of the definition
of dist(xV, yV ). In order to prove (ii), let w∗ be the element of V for which dist(u, yV ) = d(u, yw∗)

and note that

dist(u, xV )= inf
v∈V

d(u, xv)≤ d(u, yw∗)+ inf
v∈V

d(yw∗, xv)= dist(u, yV )+ inf
v∈V

d(yw∗, xv)

= dist(u, yV )+ dist(yw∗, xV )≤ dist(u, yV )+ dist(xV, yV ). □

The following result is a direct consequence of [Franchi and Serapioni 2016, Proposition 2.2]. The
bound (16) can be obtained with the same argument used by V. Chousionis, K. Fässler and T. Orponen to
prove [Chousionis et al. 2019, Lemma 3.6]. In particular, (16) will play the role of a surrogate for the
Lipschitzianity of projections. The proof is omitted.

Proposition 1.18. For any V ∈ Gr(Q− 1) there is a constant 1 ≤ c(V )≤ SQ−1(B(0, 2)∩ V )=: C1 such
that for any p ∈ G and any r > 0 we have

SQ−1⌞V (PV (B(p, r)))= c(V )rQ−1.

Furthermore, for any Borel set A ⊆ G for which SQ−1(A) <∞, we have

SQ−1⌞V (PV (A))≤ 2c(V )SQ−1(A). (16)
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1C. Densities and tangents of Radon measures. In this subsection we briefly recall some facts and
notations about Radon measures on Carnot groups and their blowups.

Definition 1.19. If φ is a Radon measure on G, we define

2m
∗
(φ, x) := lim inf

r→0

φ(B(x, r))
rm and 2m,∗(φ, x) := lim sup

r→0

φ(B(x, r))
rm ,

and say that 2m
∗
(φ, x) and 2m,∗(φ, x) are the lower and upper m-densities of φ at the point x ∈ G,

respectively.

Definition 1.20 (weak convergence of measures). A sequence of Radon measures {µi }i∈N is said to be
weakly converging in the sense of measures to some Radon measure ν if, for any continuous functions
with compact support f ∈ Cc, we have ∫

f dµi →

∫
f dν.

Throughout the paper, we denote such convergence with the symbol µi ⇀ν.

Definition 1.21. For any pair of Radon measures φ and ψ and any compact set K ⊆ G we let

FK (φ, ψ) := sup
{∣∣∣∣∫ f dφ−

∫
f dψ

∣∣∣∣ : f ∈ Lip+

1 (K )
}
, (17)

where Lip+

1 (K ) is the set of nonnegative 1-Lipschitz functions whose support is contained in K . Further-
more, if K = B(x, r), we shorten the notation to Fx,r (φ, ψ) := FB(x,r)(φ, ψ).

The next lemma is an elementary fact about Radon measures. We omit its proof.

Lemma 1.22. If φ is a Radon measure on G, for any x ∈ G there are at most countably many radii R > 0
for which φ(∂B(x, R)) > 0.

The following proposition allows us to characterize the weak convergence of measures by means of
the convergence to 0 of the functionals FK .

Proposition 1.23. Assume that {µi }i∈N is a sequence of Radon measures and let µ be a Radon measure
on G. Then the following are equivalent:

(i) µi ⇀µ.

(ii) limi→∞ FK (µi , µ)= 0 for any compact set K ⊆ G.

Proof. The proof can be achieved with an argument similar to the Euclidean one; see for instance [Preiss
1987, Proposition 1.11]. □

Definition 1.24 (tangent measures). Let φ be a Radon measure on G. For any x ∈ G and any r > 0, we
define Tx,rφ to be the Radon measure for which

Tx,rφ(B)= φ(xδr (B)), for any Borel set B ⊆ G.
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For any m ∈ {1, . . . ,Q} define Tanm(φ, x), the set of the m-dimensional tangent measures to φ at x ,
as the collection of Radon measures ν for which there is an infinitesimal sequence {ri }i∈N such that
r−m

i Tx,rφ ⇀ ν.

Proposition 1.25. Let φ be a Radon measure, ν ∈ Tanm(φ, x) and {ri }i∈N an infinitesimal sequence
such that r−m

i Tx,riφ ⇀ ν. Then, if y ∈ supp(ν), there exists a sequence {zi }i∈N ⊆ supp(φ) such that
δ1/ri (x

−1zi )→ y.

Proof. A simple argument by contradiction yields the claim. The proof follows verbatim its Euclidean
analogue; see for instance the proof of [De Lellis 2008, Proposition 3.4]. □

Proposition 1.26. Suppose φ is a Radon measure on G such that

0<2m
∗
(φ, x)≤2m,∗(φ, x) <∞, for φ-almost every x ∈ G.

Then Tanm(φ, x) ̸= ∅ for φ-almost every x ∈ G.

Proof. This is an immediate consequence of the local uniform boundedness of the rescaled measures
Tx,rφ together with the compactness of measures. See Proposition [Preiss 1987, Proposition 1.12]. □

The following result is the analogue of [De Lellis 2008, Proposition 3.12], which establishes the
locality of tangents in the Euclidean space. This proposition is of capital importance since it will ensure
that restricting and multiplying a measure with flat tangents by a density will yield a measure still having
flat tangents.

Proposition 1.27 (locality of the tangents). In the hypothesis of Proposition 1.26, for any nonnegative
ρ ∈ L1(φ) we have Tanm(ρφ, x)= ρ(x)Tanm(φ, x) for φ-almost every x ∈ G.

Proof. First of all, let us note that φ is locally asymptotically doubling. Indeed,

lim sup
r→0

φ(B(x, 2r))
φ(B(x, r))

≤ lim sup
r→0

φ(B(x, 2r))
(2r)m

2mrm

φ(B(x, r))

≤
2m2m,∗(φ, x)
2m

∗
(φ, x)

<∞, for φ-almost every x ∈ G. (18)

Thanks to [Heinonen et al. 2015, Theorem 3.4.3], we know that the Lebesgue differentiation theorem
holds for φ; see [Heinonen et al. 2015, page 77]. In particular, the argument that proves the equivalent of
this result in Euclidean spaces, see for instance the aforementioned [De Lellis 2008, Proposition 3.12],
can be applied verbatim to φ. □

Proposition 1.28. Suppose φ is a Radon measure supported on a compact set K such that for φ-almost
every x ∈ G we have

0<2Q−1
∗

(φ, x)≤2Q−1,∗(φ, x) <∞.

Then, for any ϑ, γ ∈N, the set Eφ(ϑ, γ ) :={x ∈ K :ϑ−1rQ−1
≤φ(B(x, r))≤ϑrQ−1 for any 0<r<1/γ }

is compact.
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Proof. Since K is compact, in order to verify that Eφ(ϑ, γ ) is compact, it suffices to prove that it
is closed. If Eφ(ϑ, γ ) is empty or finite, there is nothing to prove. So, suppose there is a sequence
{xi }i∈N ⊆ Eφ(ϑ, γ ) converging to some x ∈ K . Fix an 0 < r < 1/γ and assume that δ > 0 is so small
that r + δ < 1/γ . Therefore, if d(x, xi ) < δ and r − d(x, xi ) > 0, we have

ϑ−1(r − d(x, xi ))
Q−1

≤ φ(B(xi , r − d(x, xi )))≤ φ(B(x, r))

≤ φ(B(xi , r + d(x, xi )))≤ ϑ(r + d(x, xi ))
Q−1.

Taking the limit as i goes to ∞, we see that x ∈ Eφ(ϑ, γ ). □

Proposition 1.29. With the hypothesis of Proposition 1.28, for any ϑ, γ, µ, ν ∈ N, the set

E
φ
ϑ,γ (µ, ν)= {x ∈ Eφ(ϑ, γ ) : (1 − 1/µ)φ(B(x, r))≤ φ(B(x, r)∩ Eφ(ϑ, γ )) for any 0< r < 1/ν}

is compact.

Proof. If E
φ
ϑ,γ (µ, ν) is empty or finite, there is nothing to prove. Furthermore, since by Proposition 1.28

we know that the sets Eφ(ϑ, γ ) are compact, in order to prove our claim it is sufficient to show that
E
φ
ϑ,γ (µ, ν) is closed in Eφ(ϑ, γ ). Take a sequence {yi }i∈N ⊆ E

φ
ϑ,γ (µ, ν) converging to some y ∈ Eφ(ϑ, γ ).

Fix an 0< r < 1/ν and a δ ∈
(
0, 1

4

)
and let i0(δ) ∈ N be such that for any i ≥ i0(δ) we have d(y, yi ) < δr .

These choices imply that

(1 − 1/µ)φ(B(yi , r − 2d(y, yi )))≤ φ(B(yi , r − 2d(y, yi ))∩ Eφ(ϑ, γ ))≤ φ(B(y, r)∩ Eφ(ϑ, γ )).

Note that the sequence of functions fi (z) := χB(yi ,r−2d(y,yi ))(z) converges pointwise φ-almost everywhere
to χB(y,r)(z). This is due to the fact that, for any i ≥ i0(δ), on the one hand we have supp( fi )⋐ B(y, r)
and on the other the functions fi are equal to 1 on B(y, r(1 − 3δ)). Thus, the dominated convergence
theorem implies that

(1 − 1/µ)φ(B(y, r))= lim
i→∞

(1 − 1/µ)φ(B(yi , r − 2d(y, yi )))≤ φ(B(y, r)∩ Eφ(ϑ, γ )).

Since r was arbitrarily chosen in (0, 1/ν), this shows that y ∈ Eϑ,γ (µ, ν), concluding the proof. □

Proposition 1.30. With the hypothesis of Proposition 1.28, for any 0< ϵ < 1
10 there are ϑ0, γ0 ∈ N such

that for any ϑ ≥ ϑ0, γ ≥ γ0 and µ ∈ N there is a ν = ν(ϑ, γ, µ) ∈ N such that

φ(K \ E
φ
ϑ,γ (µ, ν))≤ ϵφ(K ). (19)

Proof. The proof is an elementary application of the Lebesgue differentiation theorem that can be found
in [Heinonen et al. 2015, page 77]. □

The following result allows us to compare the measure φ when restricted to Eφ(ϑ, γ ) with the spherical
Hausdorff measure. Since the proof is a well-known application of the Lebesgue differentiation theorem
that can be found in [Heinonen et al. 2015, page 77], of [Franchi et al. 2015, Theorem 3.1] and the mutual
absolute continuity of the spherical and centered Hausdorff measures, see for instance [Franchi et al.
2015], we choose to leave it to the reader.
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Proposition 1.31. Let φ be a Radon measure and suppose further that there are 0< δ1 ≤ δ2 <∞ such
that

δ1 ≤2m
∗
(φ, x)≤2m,∗(φ, x)≤ δ2, for φ-almost every x ∈ E .

Then δ1Sm⌞E ≤ φ⌞E ≤ δ22mSm⌞E and in particular, for any ϑ, γ ∈ N, we have

ϑ−1SQ−1⌞Eφ(ϑ, γ )≤ φ⌞Eφ(ϑ, γ )≤ ϑ2Q−1SQ−1⌞Eφ(ϑ, γ ).

The following result will be used in the proof of the very important Proposition 2.4. It establishes the
natural request that if a sequence of planes Vi in Gr(Q−1) converges in the Grassmannian to some plane
V ∈ Gr(Q−1) (i.e., the normals converge as vectors in V1), then the surface measures on the Vi converge
weakly to the surface measure on V.

Proposition 1.32. Suppose that {V (i)}i∈N is a sequence of planes in Gr(Q− 1) such that n(V (i))→ n

for some n ∈ V1. Then there exists a V ∈ Gr(Q− 1) such that n(V )= n and SQ−1⌞V (i) ⇀ SQ−1⌞V.

Proof. For any continuous function of compact support, f ∈ Cc, we have thanks to Proposition 1.8 that

lim
i→∞

∫
f dSQ−1⌞V (i)−

∫
f dSQ−1⌞V = lim

i→∞

β−1
(∫

f dHn−1
eu ⌞V (i)−

∫
f dHn−1

eu ⌞V
)

= 0, (20)

where the last identity comes from the fact that Hn−1
eu ⌞V (i) ⇀Hn−1

eu ⌞V. □

1D. Rectifiable sets in Carnot groups. In this subsection we recall the two main notions of rectifiability
in Carnot groups that will be extensively used throughout the paper. First of all, let us recall the definitions
of horizontal vector fields and horizontal distributions.

Definition 1.33. Let e1, . . . , en1 be an orthonormal basis of V1 with respect to the Euclidean scalar
product. For any i = 1, . . . , n1 and any x ∈ G we let X i (x) := ∂t(x ∗ δt(ei ))|t=0 and say that the map
X i : G ∼= Rn

→ Rn so defined is the i-th horizontal vector field. Furthermore, we define the horizontal
distribution of G to be the following n1-dimensional distribution of planes in Rn:

HG(x) := span{X1(x), . . . , Xn1(x)}.

Finally, for any open set � in G we denote by C1
0(�, HG) the sections of HG of class C1 with support

contained in �.

The definition of regular surfaces we are about to give is reminiscent of the characterization of smooth
surfaces in the Euclidean spaces through the local inversion theorem. Heuristically speaking, a C1

G
-surface

is a set that is transverse to HG and whose sections with HG are C1-surfaces.

Definition 1.34 (C1
G

-surfaces). We say that a closed set C ⊆ G is a C1
G

-surface if there exists a
continuous function f : G → R such that C = f −1(0) and whose horizontal distributional gradient
∇G f := (X1 f, . . . , Xn1 f ) can be represented by a continuous, never-vanishing section of HG.

Remark 1.35. Thanks to [Serra Cassano 2016, Corollary 4.27], if C is a C1
G

-regular surface, then SQ−1⌞C
is σ -finite.
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The second notion of regular surface we give in this subsection is inspired by the characterization of
Lipschitz graphs through cones.

Definition 1.36 (intrinsic Lipschitz graphs). Let V ∈ Gr(Q−1) and E be a Borel subset of V. A function
f : E → N(V ) is said to be intrinsic Lipschitz if there exists an α > 0 such that for any v ∈ E we have

gr( f ) := {w f (w) : w ∈ E} ⊆ v f (v)CV (α).

A Borel set A ⊆ G is said to be a V -intrinsic Lipschitz graph, or simply an intrinsic Lipschitz graph, if
there is an intrinsic Lipschitz function f : E ⊆ V → N(V ) such that A = gr( f ).

Proposition 1.37. Suppose E is a Borel subset of G and assume there is a plane W ∈ Gr(Q− 1) and an
α > 0 such that for any w ∈ E we have E ⊆wCW (α). Then E is contained in an intrinsic Lipschitz graph.

Proof. Thanks to the assumption on E , for any w1, w2 ∈ E we have w−1
1 w2 ∈ CW (α). This implies

that for any v ∈ PW (E) there exists a unique w ∈ E such that PW (w) = v, otherwise we would have
w−1

1 w2 ∈ N(W ).
Let f : PW (E)→ N(V ) be the map associating every w ∈ PW (E) to the only element in its preimage

P−1
W (w). With this definition we have that the set gr( f ) := {v f (v) : v ∈ P−1

W (E)} coincides with E and
this shows that f is an intrinsic Lipschitz function since gr( f )⊆ v f (v)CW (α) for any v ∈ E . □

The following extension theorem is of capital importance for us:

Theorem 1.38 [Vittone 2012, Theorem 3.4]. Suppose V ∈ Gr(Q−1) and let f : E →N(V ) be an intrinsic
Lipschitz function. Then there is an intrinsic Lipschitz function f̃ : V → N(V ) such that f (v)= f̃ (v) for
any v ∈ E.

The following result is an immediate consequence of Theorem 1.38:

Proposition 1.39. If f : E ⊆ V → N(V ) is an intrinsic Lipschitz function, then SQ−1⌞gr( f ) is σ -finite.

Proof. Theorem 1.38 together with [Franchi and Serapioni 2016, Theorem 3.9] immediately implies that
SQ−1(gr( f )∩ B(0, R)) <∞ for any R > 0. □

From the notions of C1
G

-surfaces and of intrinsic Lipschitz surfaces rise the two following definitions
of rectifiability:

Definition 1.40. A Borel set A ⊆ G of finite SQ−1-measure is said to be

(i) C1
G

-rectifiable if there are countably many C1
G

-surfaces 0i such that

SQ−1
(

A \

⋃
i∈N

0i

)
= 0,

(ii) intrinsic rectifiable if there are countably many intrinsic Lipschitz graphs 0i such that

SQ−1
(

A \

⋃
i∈N

0i

)
= 0.

The following proposition is an adaptation of the well-known fact that Borel sets can be written in an
essentially unique way, as the union of a rectifiable and a purely unrectifiable set.
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Proposition 1.41 (decomposition theorem). Suppose F is a family of Borel sets in G for which SQ−1⌞C
is σ -finite for any C ∈ F. Then, for any Borel set E ⊆ G such that SQ−1(E) <∞, there are two Borel
sets Eu, Er

⊆ E such that

(i) Eu
∪ Er

= E ,

(ii) Er is contained in a countable union of elements of F,

(iii) SQ−1(Eu
∩ C)= 0 for any C ∈ F.

Such a decomposition is unique up to SQ−1-null sets, i.e., if Fu and Fr are Borel sets satisfying the three
properties listed above, we have SQ−1(Er

△Fr )= SQ−1(Eu
△Fu)= 0.

Proof. The proof follows verbatim the argument of [De Lellis 2008, Theorem 5.7]. □

Corollary 1.42. For any Borel set E ⊆ G such that SQ−1(E) <∞, there are two Borel sets Eu, Er
⊆ E

such that

(i) Eu
∪ Er

= E ,

(ii) there are countably many intrinsic Lipschitz functions fi : Vi →N(Vi ), where Vi ∈ Gr(Q−1), whose
graphs cover SQ−1-almost all of Er,

(iii) SQ−1(Eu
∩ C)= 0 for any C-intrinsic Lipschitz graph.

Proof. Thanks to Proposition 1.39 we know that every intrinsic Lipschitz graph is SQ−1-σ -finite. If we
choose F in the statement of Proposition 1.41 to be the family of all intrinsic Lipschitz graphs of G, we
get two sets Eu and Er whose union is the whole set E , such that Eu has SQ−1-null intersection with
every intrinsic Lipschitz graph and Er can be covered by countably many graphs of intrinsic Lipschitz
functions fi : Ei ⊆ Vi → N(Vi ). The conclusion follows from Theorem 1.38. □

2. The support of 1-codimensional measures with flat tangents is intrinsic rectifiable

Throughout this section we assume φ to be a fixed Radon measure on G whose support is a compact set K
and such that for φ-almost every x ∈ G we have

(H1) 0<2Q−1
∗

(φ, x)≤2Q−1,∗(φ, x) <∞,

(H2) TanQ−1(φ, x)⊆ M, where M is the family of 1-codimensional flat measures from Definition 1.7.

The main goal of this section is to prove the following:

Theorem 2.1. There is an intrinsic Lipschitz graph 0 such that φ(0) > 0.

The strategy we employ in order to prove Theorem 2.1 is divided into four parts: First of all in
Section 2A we show that hypotheses (H1) and (H2) on φ imply that for φ-almost any x ∈ K and r > 0
sufficiently small, there is a plane Vx,r for which K as a set is very close in the Hausdorff distance to Vx,r .
In Section 2B we prove that if K ∩ B(x, r) has a big projection on some plane W, then W is very close
to Vx,r and there exists an α > 0 such that for any y, z ∈ B(x, r)∩ K for which d(y, z)≥ dist(W, Vx,r )r ,
we have z ∈ yCW (α). Section 2C is the technical core of this section, and its main result, Theorem 2.28,
shows that for φ-almost any x ∈ K we have that the set B(x, r)∩ K has a big projection on Vx,r . Finally,
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in Section 2D, making use of the results of the previous subsections, we construct the wanted φ-positive
intrinsic Lipschitz graph.

2A. Geometric implications of flat tangents. In this subsection we reformulate the hypothesis (H2) on
φ in more geometric terms. In order to obtain such a reformulation, we need a way to pass from the
purely pointwise information on the flatness of tangents to a more local understanding of the measure φ
at small scales. In the following Definition 2.2, we introduce two functionals on Radon measures that
will be used for this precise objective. These functionals can be considered the Carnot analogue of the
functional d( · ,M) of Section 2 of [Preiss 1987].

Definition 2.2. For any x ∈ G and any r > 0 we define the functionals

dx,r (φ,M) := inf
2>0

V ∈Gr(Q−1)

Fx,r (φ,2SQ−1⌞xV )
rQ

and d̃x,r (φ,M) := inf
2>0, z∈G

V ∈Gr(Q−1)

Fx,r (φ,2SQ−1⌞zV )
rQ

,

where Fx,r was introduced in (17).

In the following proposition we summarize some useful properties of the functionals dx,r and d̃x,r .

Proposition 2.3. The functionals dx,r ( · ,M) and d̃x,r ( · ,M) satisfy the following properties:

(i) For any x ∈ G, k > 0 and r > 0, we have dx,kr (φ,M)= d0,k(r−(Q−1)Tx,rφ,M).

(ii) For any r > 0, the function x 7→ dx,r (φ,M) is continuous.

(iii) For any x, y ∈ G and r, s > 0 for which B(y, s)⊆ B(x, r), we have (s/r)Qd̃y,s(φ,M)≤ d̃x,r (φ,M).

(iv) For any x ∈ G and any s ≤ r , we have (s/r)Qdx,s(φ,M)≤ dx,r (φ,M).

Proof. It is immediate to see that f belongs to Lip+

1 (B(x, kr)) if and only if there is a g ∈ Lip+

1 (B(0, k))
such that f (z)= rg(δ1/r (x−1z)). This implies that

1
(kr)Q

(∫
f dφ−2

∫
f dSQ−1⌞xV

)
=

1
kQrQ−1

(∫
g(δ1/r (x−1z)) dφ(z)−2

∫
g(δ1/r (x−1z)) dSQ−1⌞xV

)
=

1
kQ

(∫
g(z) d

Tx,rφ

r Q−1 (z)−2
∫

g(z) dSQ−1⌞V
)
,

and this concludes the proof of (i). To show that the map x 7→ dx,r (φ,M) is continuous, we prove the
following stronger fact. There exists a constant C̃ depending only on G such that for any x, y ∈ G with
d(x, y) < 1 we have

|dx,r (φ,M)− dy,r (φ,M)| ≤ C̃(G)
2(r + 2)d(x, y)1/s

rQ
φ(B(x, r + d(x, y))). (21)

In order to prove (21), for any ϵ > 0 we let 2∗ > 0 and V ∗
∈ Gr(Q− 1) be such that∣∣∣∣∫ f d

Ty,rφ

rQ−1 −2∗

∫
f dSQ−1⌞V ∗

∣∣∣∣ ≤ dy,r (φ,M)+ ϵ, for any f ∈ Lip+

1 (B(0, 1)).
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Furthermore, by definition of dy,r we can find an f ∗
∈ Lip+

1 (B(0, 1)) such that

dx,r (φ,M)− ϵ ≤

∣∣∣∣∫ f ∗ d
Tx,rφ

rQ−1 −2∗

∫
f ∗ dSQ−1⌞V∗

∣∣∣∣.
This choice of f ∗, 2∗ and V ∗ implies that

dx,r (φ,M)− dy,r (φ,M)

≤

∣∣∣∣∫ f ∗ d
Tx,rφ

rQ−1 −2∗

∫
f ∗ dSQ−1⌞V ∗

∣∣∣∣ − ∣∣∣∣∫ f ∗ d
Ty,rφ

rQ−1 −2∗

∫
f ∗ dSQ−1⌞V ∗

∣∣∣∣ + 2ϵ

≤

∣∣∣∣∫ f ∗ d
Tx,rφ

rQ−1 −

∫
f ∗ d

Ty,rφ

rQ−1

∣∣∣∣ + 2ϵ ≤ r−(Q−1)
∫

| f ∗(δ1/r (x−1w))− f ∗(δ1/r (y−1w))| dφ(w)+ 2ϵ

≤ r−Q

∫
B(x,r+d(x,y))

d(x−1w, y−1w) dφ(x)+ 2ϵ

≤ r−Q
(
d(x, y)+ C(G)

(
d(x, y)1/s(r + d(x, y))(s−1)/s

+ d(x, y)(s−1)/s(r + d(x, y))1/s
))

×φ(B(x, r + d(x, y)))+ 2ϵ,

where the last inequality comes from [Franchi and Serapioni 2016, Proposition 2.13] together with the
constant C(G). Interchanging x and y, the bound (21) is proved thanks to the arbitrariness of ϵ. Finally,
statements (iii) and (iv) follow directly from the definitions. □

The following proposition allows us to rephrase the rather geometric condition on φ, the flatness of the
tangents, into a more malleable functional-analytic condition that is the φ-almost everywhere convergence
of the functions x 7→ dx,kr (φ,M) to 0. We omit the straightforward proof.

Proposition 2.4. Assume µ is a Radon measure on G such that 0<2Q−1(µ, x) <∞ for µ-almost every
x ∈ G. Then the following are equivalent:

(i) limr→0 dx,kr (µ,M)= 0 for µ-almost every x ∈ G and any k > 0.

(ii) TanQ−1(µ, x)⊆ M for µ-almost every x ∈ G.

Notation 2.5. Throughout Section 2 we let 0< ε1 <
1

10 be a fixed constant. Proposition 1.30 yields two
natural numbers ϑ, γ ∈ N, that from now on we consider fixed, such that φ(K \ Eφ(ϑ, γ )) ≤ ε1φ(K ).
We can assume without loss of generality, again thanks to Proposition 1.30, that ϑ and γ have the further
property that for any µ≥ 4ϑ there is a ν ∈ N for which

φ(K \ E
φ
ϑ,γ (µ, ν))≤ ε1φ(K ).

For future convenience, we define η := 1/Q and let

δG(ϑ) := min

{
1

24(Q+1)ϑ
,
ηQ+1(1 − η)Q

2
−1

(32ϑ)Q+1

}
.

Eventually, if dx,r (φ⌞Eφ(ϑ, γ ),M)+ dx,r (φ,M)≤ δ for some 0< δ < δG(ϑ), we define 5δ(x, r) to be
the subset of planes V ∈ Gr(Q− 1) for which there exists a 2> 0 such that

Fx,r (φ⌞Eφ(ϑ, γ ),2SQ−1⌞xV )+ Fx,r (φ,2SQ−1⌞xV )≤ 2δrQ. (22)



MARSTRAND–MATTILA RECTIFIABILITY CRITERION FOR MEASURES IN CARNOT GROUPS 949

The following two propositions are the main results of this subsection. They are so relevant since they
give a more geometric interpretation of the condition we call flatness of the tangents and in particular tell
us that Eφ(ϑ, γ ) is in essence a weakly linearly approximable set. For a discussion on how this will play
a role in the proof of the main result of this work, we refer to the Introduction.

Proposition 2.6. Let x ∈ Eφ(ϑ, γ ) be such that d̃x,r (φ,M)≤ δ for some δ<δG(ϑ) and 0<r<1/γ . Then,
for every V ∈ Gr(Q− 1) for which there is a z ∈ G and a 2> 0 such that Fx,r (φ,2SQ−1⌞zV )≤ 2δrQ,
we have

sup
w∈Eφ(ϑ,γ )∩B(x,r/4)

dist(w, xV )
r

≤ 22+3/Qϑ1/Qδ1/Q
=: C2(ϑ)δ

1/Q.

Proof. Since g(w) := min{dist(w, B(x, r)c), dist(w, zV )} belongs to Lip+

1 (B(x, r)), we deduce that

2δrQ≥

∫
g(w)dφ(w)−2

∫
g(w)dSQ−1⌞zV =

∫
g(w)dφ(w)≥

∫
B(x,r/2)

min
{1

2r,dist(w, zV )
}

dφ(w).

Suppose that y is a point in B(x, r/4)∩ Eφ(ϑ, γ ) furthest from zV , and let D = dist(y, zV ). If D ≥
1
8r ,

this would imply that

2δrQ ≥

∫
B(x,r/2)

min
{1

2r, dist(w, zV )
}

dφ(w)

≥

∫
B(y,r/16)

min
{1

2r, dist(w, zV )
}

dφ(w)≥
1
16rφ

(
B

(
y, 1

16r
))

≥
rQ

ϑ16Q
,

which is not possible thanks to the choice of δ. This implies that D < 1
8r and as a consequence, we have

2δrQ ≥

∫
B(x,r/2)

min
{1

2r, dist(w, zV )
}

dφ(w)

≥

∫
B(y,D/2)

min
{
12r, dist(w, zV )

}
dφ(w)≥

1
2 Dφ

(
B

(
y, 1

2 D
))

≥ ϑ−1( 1
2 D

)Q
, (23)

where the second inequality comes from the fact that B
(
y, 1

2 D
)
⊆ B

(
x, 1

2r
)
. This implies, thanks to (23),

that

sup
w∈Eφ(ϑ,γ )∩B(x,r/4)

dist(w, zV )
r

≤
D
r

≤ 21+3/Qϑ1/Qδ1/Q
=

1
2C2(ϑ)δ

1/Q.

Furthermore, since x ∈ Eφ(ϑ, γ ), we also infer that dist(x, zV )/r ≤
1
2C2(ϑ)δ

1/Q. Therefore, thanks to
Proposition 1.17, we conclude that

sup
w∈Eφ(ϑ,γ )∩B(x,r/4)

dist(w, xV )
r

≤ sup
w∈Eφ(ϑ,γ )∩B(x,r/4)

dist(w, zV )+ dist(xV, zV )
r

≤ C2(ϑ)δ
1/Q. □

Proposition 2.7. Let x ∈ Eφ(ϑ, γ ) and 0< r < 1/γ be such that for some 0< δ < δG(ϑ) we have

dx,r (φ,M)+ dx,r (φ⌞Eφ(ϑ, γ ),M)≤ δ. (24)

Then for any V ∈5δ(x, r) and any w ∈ B
(
x, 1

2r
)
∩ xV we have Eφ(ϑ, γ )∩ B(w, δ1/(Q+1)r) ̸= ∅.
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Proof. By the definition of 5δ(x, r) (see Notation 2.5), for any V ∈ 5δ(x, r), where here we choose
δ := 2−Q2

−Qε2, there exists a 2> 0 such that

Fx,r (φ,2SQ−1⌞xV )+ Fx,r (φ⌞Eφ(ϑ, γ ),2SQ−1⌞xV )
rQ

≤ 2δ. (25)

Therefore, defining g(x) := min{dist(x, B(0, 1)c), η}, we infer that

ϑ−1(1 − η)Q−1ηrQ −2ηrQ ≤ ηrφ(B(x, (1 − η)r))− ηr2SQ−1⌞xV (B(x, r))

≤

∫
rg(δ1/r (x−1z)) dφ(z)−2

∫
rg(δ1/r (x−1z)) dSQ−1⌞xV ≤ 2δrQ,

where the last inequality above comes from (25) and the fact that rg(δ1/r (x−1
· )) ∈ Lip+

1 (B(x, r)).
Simplifying and rearranging the above chain of inequalities we infer that

2≥ ϑ−1(1 − η)Q−1
− 2δ/η ≥ (2ϑ)−1(1 − η)Q−1

= (2ϑ)−1(1 − 1/Q)Q−1,

where the first inequality comes from the choice of δ and the last equality from that of η = 1/Q; see
Notation 2.5. Since the function Q 7→ (1−1/Q)Q−1 is decreasing and limQ→∞(1−1/Q)Q−1

= 1/e, we
infer that 2 ≥

1
2ϑe. Suppose that δ1/(Q+1) < λ < 1

2 and assume that we can find a w ∈ xV ∩ B
(
x, 1

2r
)

such that φ(B(w, λr)∩ Eφ(ϑ, γ ))= 0. This would imply that

2η(1 − η)Q−1λQrQ

=2ηλrSQ−1⌞xV (B(w, (1 − η)λr))

≤2

∫
λrg(δ1/λr (w

−1z)) dSQ−1⌞xV (z)

=2

∫
λrg(δ1/λr (w

−1z)) dSQ−1⌞xV (z)−
∫
λrg(δ1/λr (w

−1z)) dφ⌞Eφ(ϑ, γ )(z)≤ 2δrQ, (26)

where the inequality on the middle line is a consequence of the fact that, thanks to the precise choice
of g, we have g = η on B(0, 1 − η), whereas the last inequality comes from the choice of 2, V , the fact
that λrg(δ1/λr (w

−1
· )) ∈ Lip+

1 (B(x, r)) and the constraint on φ⌞Eφ(ϑ, γ ) given by (25). Thanks to (26),
the choice of λ and the fact that 1

4 eϑ <2, we have that

δQ/(Q+1)

4eϑ
η(1 − η)Q−1 <2λQη(1 − η)Q−1

≤ 2δ.

However, a few algebraic computations that we omit show that the above inequality chain is in contradiction
with the choice of δ < δG(ϑ). □

2B. Construction of cones complementing supp(φ) in case it has big projections on planes. This
subsection is devoted to the proof of Proposition 2.11, which tells us that if the measure φ is well
approximated inside a ball B(x, r) by some plane V and if there exists some other plane W on which
the SQ−1-measure of the projection PW (supp(φ) ∩ B(x, r)) is comparable with rQ−1, then at scales
comparable with r the set supp(φ)∩ B(x, r) is a W -intrinsic Lipschitz surface. In other words, we can



MARSTRAND–MATTILA RECTIFIABILITY CRITERION FOR MEASURES IN CARNOT GROUPS 951

find an α > 0 such that

y ∈ zCW (α) whenever y, z ∈ B(x, r)∩ supp(φ) and d(z, y)≳ r.

Before proceeding with the statement and the proof of Proposition 2.11, we fix some notation that will
be extensively used throughout the rest of the paper.

Notation 2.8. Throughout this paragraph we assume that ψ is a Radon measure on G supported on a
compact set K such that 0<2Q−1

∗
(ψ, x)≤2Q−1,∗(ψ, x) <∞ for ψ-almost every x ∈ G and that σ ∈ N

is a fixed positive natural number. First of all, let us define the following two numbers:

ζ(σ ) := 2−50Qσ−2 and N (σ ) := ⌊−4 log(ζ(σ ))⌋ + 40(Q+ 1).

Secondly, we let

C3(σ ) := 220(n1 − 1)C2(σ )
2, C4(σ ) := 224Qσ ,

C5(σ ) := C4(σ )(32ζ(σ )−2)Q−1, C6(σ ) := 22 log C4(σ )/(Q−1)+N (σ )+6ζ(σ )−2.

Finally, we introduce six further new constants that depend only on σ . Although we could avoid giving
an explicit expression for such constants, we choose nonetheless to make them explicit for the following
reasons: First of all, having their values helps keep their interactions in proofs under control, getting more
precise statements. Secondly, fixing these constants once and for all, we avoid the practice of choosing
them large enough when necessary. In doing so we hope to help the reader not to get distracted with the
problem of whether these choices were legitimate or not.

For the sake of readability, we choose not to make the dependence on σ of the numbers N , ζ and the
constants C1, . . . ,C6 explicit in the following. In addition, in the forthcoming definitions, we choose to
suppress any dependence on σ in the right-hand side of the expression. We let:

(i) A0(σ ) := 2 max
{

log(C6)+ C6,

⌊
2 log2 C4

N (Q− 1)

⌋
+ 1,

7 log 2 − 2 log ζ
N log 2 − 2

}
;

(ii) k(σ ) := 80N+8ζ−2 A4
0(1 + e8N A2

0) and 0< R < 2−(N+11)ζ 2k;

(iii) εG(σ ) := min
{

2−20,
22Q−n−18β

∏s
j=2 ϵ

ni
i

(A0k)Q−1C2
5

}
,

where β is the constant introduced in Proposition 1.8, the ni are the topological dimensions of the
i-th layer, Vi , of the Lie algebra g and the ϵi are the structure constants used to construct the metric;
see Definition 1.4;

(iv) ε2(σ ) := min
{
δG

4
,

εG

(220C2
2C2

5 A0k)(1 + 36k R−1)
,

k − 20
20C2k

,
1

2A2
0C3 + 2A0kC2C4e8N A2

0

}Q2
+Q

with δG = δG(σ ) and C2 = C2(σ );

(v) ε3(σ ) :=
1

22QC2
4C2

5(A0C6)Q−1
.
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Since in the rest of Section 2 we make extensive use of the dyadic cubes whose existence is stated in
Appendix A, we recall here some of the notation. For any ξ, τ ∈ N for which ψ(Eψ(ϑ, γ )) > 0, we
denote by 1ψ(ξ, τ ) the family of dyadic cubes relative to ψ and to the parameters ξ and τ yielded by
Theorem A.2. Furthermore, for any compact subset κ of Eψ(ξ, τ ) and l ∈ N we let

1ψ(κ; ξ, τ, l) := {Q ∈1ψ(ξ, τ ) : Q ∩ κ ̸= ∅ and Q ∈1
ψ

j (ξ, τ ) for some j ≥ l},

where 1ψj (ξ, τ ) is the j -th layer of cubes; see Theorem A.2. Finally, for any Q ∈1ψ(Eψ(ξ, τ ); ξ, τ, 1),
we define

α(Q) := d̃c(Q),2k diam Q(ψ,M)+ d̃c(Q),2k diam Q(ψ⌞Eψ(ξ, τ ),M),

where c(Q) ∈ Q is the center of the cube Q; see Theorem A.2 (v).
Eventually, we recall for the reader’s sake some standard nomenclature on dyadic cubes: for any pair

of dyadic cubes Q1, Q2 ∈1ψ(ξ, τ ),

(i) if Q1 ⊆ Q2, then Q2 is said to be an ancestor of Q1 and Q1 a subcube of Q2,

(ii) if Q2 is the smallest cube for which Q1 ⊊ Q2, then Q2 is said to be the parent of Q1 and Q1 the
child of Q2.

Notation 2.9. If not otherwise stated, in order to simplify notation throughout Section 2 we will always
denote by1 :=1φ(ϑ, γ ) the family of dyadic cubes constructed in Theorem A.2 relative to the measure φ,
which was fixed at the beginning of this Section, and to the parameters ϑ and γ , fixed in Notation 2.5.
Furthermore, we let

E(ϑ, γ ) := Eφ(ϑ, γ ), E (µ, ν) := E
φ
ϑ,γ (µ, ν) and 1(κ, l) :=1φ(κ;ϑ, γ, l).

Finally, if the dependence on σ of the constants introduced above is not specified, we will always
assume that σ = ϑ , where once again ϑ is the one natural number fixed in Notation 2.5.

Remark 2.10. For any compact subset κ of E(ϑ, γ ), we let M(κ, l) be the set of maximal cubes of1(κ, l)
ordered by inclusion. The elements of M(κ, l) are pairwise disjoint and enjoy the following properties:

(i) For any Q ∈1(κ, l) there is a cube Q0 ∈ M(κ, l) such that Q ⊆ Q0.

(ii) If Q0 ∈ M(κ, l) and there exists some Q′
∈1(κ, l) for which Q0 ⊆ Q′, then Q0 = Q′.

The proof of the following proposition is inspired by the argument employed in proving [David and
Semmes 1993b, Lemma 2.19] and its counterpart in the first Heisenberg group H1 [Chousionis et al. 2019,
Lemma 3.8].

Proposition 2.11. Let ι ∈ N be such that ι > N−1(5 + log2(4k)), and suppose that Q is a cube in
1(E(ϑ, γ ), ι) satisfying the two following conditions:

(i) d̃c(Q),4k diam Q(φ⌞E(ϑ, γ ),M)+ d̃c(Q),4k diam Q(φ,M)≤ ε2.

(ii) There exists a plane W ∈ Gr(Q− 1) such that

diam QQ−1

4C2
5 AQ−1

0

≤ SQ−1⌞W (PW [c(Q)−1(Q ∩ E(ϑ, γ ))]). (27)
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Let x ∈ E(ϑ, γ )∩ Q and y ∈ B
(
x, 1

8(k − 1) diam Q
)
∩ E(ϑ, γ ) be two points for which

R diam Q ≤ d(x, y)≤ 2N+6ζ−2 R diam Q. (28)

Then, for any α > (ζ 2εG/(6 · 28+N R−1k))−1
=: α0, we have y ∈ xCW (α).

Remark 2.12. Thanks to the definition of R and k, we have

2(N+6)ζ−2 R < 2(N+6)ζ−2
· 2−(N+11)ζ 2k =

1
32 k < 1

8(k − 1).

This implies that B(x, 2N+6ζ−2 R diam Q)⋐ B
(
x, 1

8(k − 1) diam Q
)
, and thus the requested inequality

d(x, y)≥ R diam Q is compatible with the fact that y is chosen in B
(
x, 1

8(k − 1) diam Q
)
.

Proof of Proposition 2.11. Suppose by contradiction there are two points x, y ∈ E(ϑ, γ ) satisfying the
hypothesis of the proposition such that y ̸∈ xCW (α) for some α > α0. This implies, since the cone CW (α)

is closed by definition, that we have π1(x−1 y) ̸= 0. Furthermore, Proposition 1.14 along with (28) yields

diam Q ≤ R−1d(x, y)≤ R−13(α)|π1(x−1 y)| ≤ R−13(1)|π1(x−1 y)| = 2R−1
|π1(x−1 y)|, (29)

where the last inequality comes from the fact that3 (the function yielded by Proposition 1.14) is decreasing
and from the last identity from the very definition of the function 3. Let ρ := diam(Q) and note that
Proposition 2.3 (iii) and the fact that B(x, 4(k − 1)ρ)⊆ B(c(Q), 4kρ) imply that

d̃x,4(k−1)ρ(φ,M)+ d̃x,4(k−1)ρ(φ⌞E(ϑ, γ ),M)

≤

(
k

(k − 1)

)Q

(d̃c(Q),4kρ(φ,M)+ d̃c(Q),4kρ(φ⌞E(ϑ, γ ),M))≤ 2Qε2.

In addition, we also have that 4(k − 1)ρ < 1/γ ; indeed,

4(k − 1)ρ = 4(k − 1) diam(Q)≤ 4(k − 1) · 2−N ι+5/γ < 1/γ,

where the first inequality above comes from Theorem A.2 and the last one from the choice of ι.
Therefore, thanks to Proposition 2.6 and the fact that 2Qε2 ≤ δG(ϑ), we infer that there exists a plane

V ∈ Gr(Q− 1), that we consider fixed throughout the proof, such that

sup
w∈E(ϑ,γ )∩B(x,(k−1)ρ)

dist(w, xV )
4(k − 1)ρ

≤ 2C2ε
1/Q
2 . (30)

Since y ∈ E(ϑ, γ )∩ B(x, (k − 1)ρ), we deduce from (30) that

dist(y, xV )≤ 8(k − 1)C2ε
1/Q
2 ρ. (31)

In this paragraph we prove that if there exists a point v ∈ V such that v1 ̸= 0 and |π1(PWv)| ≤ θ |v1|

for some 0< θ < 1, then
|⟨n(V ), n(W )⟩| ≤ θ/

√
1 − θ2. (32)

We note that the assumptions on v1 imply that

|v1|
2
− ⟨n(W ), v1⟩

2
= |v1 − ⟨n(W ), v1⟩n(W )|2 = |πW v1|

2
= |π1(PWv)|

2
≤ θ2

|v1|
2, (33)
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where πW is the projection in V1 onto W ∩ V1 that was defined in Proposition 1.11. By means of a few
omitted algebraic manipulations of (33), we conclude that

√
1 − θ2|v1| ≤ |⟨n(W ), v1⟩|. Finally, since

⟨n(V ), v1⟩ = 0, thanks to (33) and the Cauchy–Schwartz inequality, we have

θ |v1| ≥ |⟨πW v1, n(V )⟩| = |⟨v1 − ⟨n(W ), v1⟩n(W ), n(V )⟩|

= |⟨n(W ), v1⟩⟨n(V ), n(W )⟩| ≥

√
1 − θ2|v1||⟨n(V ), n(W )⟩|. (34)

It is immediate to see that (34) is equivalent to (32), proving the claim.

Given x, y ∈ E(ϑ, γ ) and V,W ∈ Gr(Q− 1) as above, in this paragraph using the counterassumption
x−1 y ̸∈ CW (α) we construct a v ∈ V with v1 ̸= 0 that satisfies the bound |π1(PWv)| ≤ θ |v1| for a suitably
small θ . Since y ̸∈ xCW (α), thanks to Proposition 1.11 we have

|π1(PW (x−1 y))| ≤ ∥PW (x−1 y)∥< α−1
∥Pn(W )(x−1 y)∥ = α−1

|⟨n(W ), π1(x−1 y)⟩| ≤ α−1
|π1(x−1 y)|.

Defined v to be the point of V for which d(y, xv) = dist(y, xV ), thanks to (31) and the fact that
y ∈ B

(
x, 1

8(k − 1)ρ
)

we have

∥v∥ ≤ d(xv, y)+ d(y, x)≤ dist(y, xV )+ 1
8((k − 1)ρ)≤

(
8C2ε

1/Q
2 +

1
8

)
kρ < (k − 1)ρ,

where the last inequality comes from the choice of ε2. Furthermore, thanks to (29) and (31) we have

1
4 Rρ ≤

( 1
2 R − 8C2kε1/Q

2

)
ρ ≤ |π1(x−1 y)| − d(y, xv)≤ |π1(x−1 y)| − |π1(y−1xv)|

≤ |π1(x−1 y)−π1(y−1xv)| = |v1|, (35)

and where the first inequality above, comes from the choice of ε2. Let us prove that v satisfies the
inequality

|π1(PWv)| ≤ 4R−1k(16C2ε
1/Q
2 + 26+N ζ−2α−1)|v1|. (36)

Since x−1 y ̸∈ CW (α), thanks to Proposition 1.11 we have

|π1(PW (v))| ≤ |π1(PW (v))−π1(PW (x−1 y))| + |π1(PW (x−1 y))|

≤ |π1(PW (y−1xv))| + ∥PW (x−1 y)∥ ≤ |π1(PW (y−1xv))| +α−1
∥PN(W )(x−1 y)∥

≤ ∥PW (y−1xv)∥ +α−1
|π1(x−1 y)| ≤ ∥PW (y−1xv)∥ + 26+N ζ−2 Rα−1ρ, (37)

where the last inequality of the last line above comes from (28). Proposition 1.15 together with (31), (35)
and (37) implies that

|π1(PW (v))|
(37)
≤ ∥PW (y−1xv)∥ + 26+N ζ−2 Rα−1ρ ≤ 2∥y−1xv∥ + 26+N ζ−2 Rα−1ρ

= 2 dist(y, xV )+ 26+N ζ−2 Rα−1ρ
(31)
≤ (16C2(k − 1)ε1/Q

2 + 26+N ζ−2 Rα−1)ρ

(35)
≤ 4R−1k(16C2ε

1/Q
2 + 26+N ζ−2α−1)|v1| =: θ(α, ε2)|v1|. (38)

Thanks to the choice of the constants α0, ε2, R and k together with some elementary algebraic computations
that we omit, it is possible to prove that

√
1 − θ(α, ε2)2 ≥

1
2 . Since |π1(PW (v))| ≤ θ(α, ε2)|π1(v)|, we
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deduce thanks to (32) that

|⟨n(V ), n(W )⟩| ≤
θ(α, ε2)√

1 − θ(α, ε2)2
≤ 2θ(α, ε2). (39)

Let us take a step back and let us examine what we have shown so far. Starting from the absurd
hypothesis y−1x ∈ CW (α) we have shown that there is a nonnull v ∈ V with |π1(PWv)| ≤ θ(α, ε2)|v|.
This can be alternatively read as the fact that the normals n(V ) and n(W ) of V and W respectively are
almost orthogonal. However, one should expect this orthogonality to be incompatible with (27).

Let us prove that (39) is in contradiction with (27). Choose some z ∈ B
(
x, 1

8(k − 1)ρ
)
∩ E(ϑ, γ ) and

note that
|⟨n(V ), π1(PW (x−1z))⟩| = |⟨n(V ), πW (z1 − x1)⟩|

≤ |⟨n(V ), z1 − x1⟩| + |⟨n(V ), πn(W )(z1 − x1)⟩|

≤ |⟨n(V ), z1 − x1⟩| + |⟨n(V ), n(W )⟩||⟨z1 − x1, n(W )⟩|

≤ ∥PN(V )(x−1z)∥ + d(x, z)|⟨n(V ), n(W )⟩|

= dist(z, xV )+ d(x, z)|⟨n(V ), n(W )⟩|, (40)

where the last identity comes from Proposition 1.15. Inequalities (30), (39), (40) and the choice of z
imply that

|⟨n(V ), π1(PW (x−1z))⟩|
(40)
≤ dist(z, xV )+ d(x, z)|⟨n(V ), n(W )⟩|

(30),(39)
≤ 8C2kε1/Q

2 ρ+ 2θ(α, ε2)d(x, z)≤ 8C2kε1/Q
2 ρ+ 2θ(α, ε2)kρ. (41)

Furthermore, defining n := πW (n(V )), it is immediate to see from (39) that |n−n(V )| ≤ 2θ(α, ε2), which
yields thanks to the triangular inequality and Proposition 1.15 the bound

|⟨n, π1(PW (x−1z))⟩| ≤ |⟨n(V ), π1(PW (x−1z))⟩| + |n− n(V )||π1(PW (x−1z))|

≤ |⟨n(V ), π1(PW (x−1z))⟩| + |n− n(V )|∥PW (x−1z)∥
(41)
≤ (8C2kε1/Q

2 ρ+ 2θ(α, ε2)kρ)+ 4θ(α, ε2)kρ ≤ 8(C2ε
1/Q
2 + 3θ(α, ε2))kρ. (42)

For the sake of notation, we introduce the set

S := {w ∈ W : |⟨n, w1⟩| ≤ 8(C2ε
1/Q
2 + 3θ(α, ε2))kρ}.

The bound (42) implies that the projection of x−1 E(ϑ, γ )∩B
(
0, 1

8(k−1)ρ
)

on W is contained in S, which
is a very narrow strip around V ∩W inside W. Furthermore, we recall that from Proposition 1.15 we have

PW
(
B

(
0, 1

8(k − 1)ρ
))

⊆ B
(
0, 2 ·

1
8(k − 1)ρ

)
. (43)

Finally, putting together (42) and (43), we deduce that

PW
(
x−1 E(ϑ, γ )∩ B

(
0, 1

8(k − 1)ρ
))

⊆ PW (x−1 E(ϑ, γ ))∩ PW
(
B

(
0, 1

8(k − 1)ρ
))

⊆ S ∩ B
(
0, 1

4(k − 1)ρ
)
. (44)
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Completing {n(W ), n} to an orthonormal basis E := {n(W ), n/|n|, e3, . . . , en} of Rn satisfying (9), thanks
to Remark 1.5 we have

S ∩ B
(
0, 2 ·

1
8(k − 1)ρ

)
⊆ S ∩ BoxE

(
0, 1

4 kρ
)
. (45)

The above inclusion together with Tonelli’s theorem yields

Hn−1
eu ⌞W

(
PW

(
x−1 E(ϑ, γ )∩ B

(
0, 1

8(k − 1)ρ
)))

≤ Hn−1
eu ⌞W

(
S ∩ B

(
0, 1

4(k − 1)ρ
))

≤ Hn−1
eu ⌞W

(
S ∩ BoxE

(
0, 1

4 kρ
))

= 16(C2ε
1/Q
2 + 3θ(α, ε2))kρ · 2n−2

s∏
i=2

ϵ
−ni
i

( 1
4 kρ

)Q−2

= 2n−2Q+8
s∏

i=2

ϵ
−ni
i (C2ε

1/Q
2 + 3θ(α, ε2))(kρ)Q−1. (46)

The inclusion (44), the bound (46), Proposition 1.8 and the definition of A0 finally imply that

SQ−1⌞W
(
PW

(
x−1 E(ϑ, γ )∩ B

(
0, 1

8(k − 1)ρ
)))

≤ SQ−1⌞W
(
S ∩ B

(
0, 1

4 kρ
))

= β−1Hn−1
eu ⌞W

(
S ∩ B

(
0, 1

4 kρ
))

≤ β−12n−2Q+8
s∏

i=2

ϵ
−ni
i (C2ε

1/Q
2 + 3θ(α, ε2))(kρ)Q−1

= 2−10C−2
5 ε−1

G
A−(Q−1)

0 (C2ε
1/Q
2 + 3θ(α, ε2))ρ

Q−1, (47)

where β is the constant introduced in Proposition 1.8 and where the last identity comes from the definitions
of εG and A0; see Notation 2.8. Furthermore, since SQ−1⌞W (PW (p ∗ E) = SQ−1⌞W (PW (E)) for any
measurable set E in G, see for instance the proof in [Franchi and Serapioni 2016, Proposition 2.2], we
deduce that

SQ−1⌞W
(
PW

(
x−1 E(ϑ, γ )∩ B

(
0, 1

8(k − 1)ρ
)))

= SQ−1⌞W
(
PW

(
c(Q)−1 E(ϑ, γ )∩ B

(
c(Q)−1x, 1

8(k − 1)ρ
)))
.

Thanks to the choice of k and the fact that x ∈ Q, we infer that B(0, ρ) ⊆ B
(
c(Q)−1x, 1

8(k − 1)ρ
)
.

Together with (27), this allows us to deduce that

SQ−1⌞W
(
PW

(
x−1 E(ϑ, γ )∩ B

(
0, 1

8(k − 1)ρ
)))

≥SQ−1⌞W (PW (c(Q)−1 E(ϑ, γ )∩B(0, ρ)))≥SQ−1⌞W (PW (c(Q)−1(E(ϑ, γ )∩Q)))≥
ρQ−1

4C2
5 AQ−1

0

. (48)

Putting together (47) and (48) we conclude that

28εG ≤ (C2ε
1/Q
2 + 3θ(α, ε2))= C2ε

1/Q
2 + 12R−1k(2C2ε

1/Q
2 + 26+N ζ−2α−1).

The choice of ε2 and α imply, with some algebraic computations that we omit, that the above inequality
is false, showing that the assumption y ̸∈ xCW (α) is false. We have reached a contradiction, proving the
proposition. □
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2C. Flat tangents imply big projections. We recall that the measure φ is supposed to be supported on a
compact set K and that for φ-almost every x ∈ G we assume that 0<2Q−1

∗
(φ, x)≤2Q−1,∗(φ, x) <∞

and TanQ−1(φ, x) ⊆ M. This subsection is devoted to the proof of the following result, which asserts
that hypothesis (ii) of Proposition 2.11 is satisfied by the measure φ⌞E(ϑ, γ ).

Theorem 2.13. There exists a compact subset C of E(ϑ, γ ) having big measure inside E(ϑ, γ ) such that
for any cube Q of sufficiently small diameter for which (1 − ε3)φ(Q)≤ φ(Q ∩ C), there exists a plane
5(Q) ∈ Gr(Q− 1) such that

SQ−1(P5(Q)(Q ∩ C))≥
diam QQ−1

2AQ−1
0

.

The compact set C will be constructed in Proposition 2.14 while the scale below which the thesis of
Theorem 2.13 is known to hold will be determined in Lemma 2.16 together with the plane 5(Q). The
reader can find the precise statement of the above result in Theorem 2.28.

In the following it will be useful to reduce to a compact subset C of E(ϑ, γ ) where the distance of φ
from planes is uniformly small below a fixed scale.

Proposition 2.14. For any µ ≥ 4ϑ , there exists a ν ∈ N, a compact subset C of E (µ, ν) and an ι0 ∈ N

such that

(i) φ(K \ C)≤ 2ε1φ(K ),

(ii) dx,4kr (φ,M)+ dx,4kr (φ⌞E(ϑ, γ ),M)≤ 2−Q2
−Qε2 for any x ∈ C and any 0< r ≤ 2−ι0 N+5/γ .

Proof. Since by assumption TanQ−1(φ, x)⊆ M for φ-almost every x ∈ G, thanks to Proposition 2.4 we
infer that the functions fr (x) := dx,4kr (φ,M) converge φ-almost everywhere to 0 on K as r goes to 0.
Thanks to Proposition 1.27, the same line of reasoning implies also that f ϑ,γr (x) := dx,4kr (φ⌞E(ϑ, γ ),M)

converges φ-almost everywhere to 0 on E(ϑ, γ ). Proposition 2.3 and Severini–Egoroff’s theorem yield
a compact subset C of E (µ, ν) such that φ(E(ϑ, γ ) \ C) ≤ ε1φ(E(ϑ, γ )) and such that the functions
x 7→ dx,4kr (φ,M)+ dx,4kr (φ⌞E(ϑ, γ ),M) converge uniformly to 0 on C as r goes to 0. This directly
implies both (i) and (ii) thanks to the choice of ϑ and γ . □

Notation 2.15. From now on we consider the integer µ≥ 4C4ϑ and the compact set C and the natural
numbers ν and ι0 yielded by Proposition 2.14 to be fixed. Furthermore, we define ι := max{ι0, ν}.

The following lemma rephrases Propositions 2.6 and 2.7 into the language of dyadic cubes.

Lemma 2.16. For any cube Q ∈ 1(C, ι) we have α(Q) ≤ ε2. Furthermore, there exists a plane
5(Q) ∈ Gr(Q− 1) for which

(i) sup
w∈E(ϑ,γ )∩B(c(Q),k diam Q/2)

dist(w, c(Q)5(Q))
2k diam Q

≤ C2ε
1/Q
2 , and

(ii) for any w ∈ B
(
c(Q), 1

2 k diam Q
)
∩ c(Q)5(Q) we have E(ϑ, γ )∩ B(w, 3kC2ε

1/(Q+1)
2 diam Q) ̸=∅.
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Proof. Let Q ∈1(C, ι), fix an x ∈ Q ∩ C and define ρ := diam Q. Thanks to Proposition 2.14 we know
that

dx,4kr (φ,M)+ dx,4kr (φ⌞E(ϑ, γ ),M)≤ 2−Q2
−Qε2, (49)

for any r ≤ 2−ιN+5/γ . Thanks to Theorem A.2 (ii) we have that ρ≤ 2−ιN+5/γ and thus by Proposition 2.3
we infer that

d̃c(Q),2kρ(φ,M)≤ 2Qd̃x,4kρ(φ,M)≤ 2−Q2
ε2,

d̃c(Q),2kρ(φ⌞E(ϑ, γ ),M)≤ 2Qd̃x,4kρ(φ⌞E(ϑ, γ ),M)≤ 2−Q2
ε2.

(50)

The bounds in (50) together with Proposition 2.6 imply that α(Q)≤ 2−Q2
+1ε2 ≤ ε2.

The proof of the second part of the statement is a little more delicate. Since C is a subset of Eϑ,γ (µ, ν),
thanks to the choice of µ and ι, by Proposition A.5 we have that c(Q) ∈ E(ϑ, γ )∩ B(x, ρ). Let us choose
5(Q) ∈5δ(x, 2kρ), where δ := 2−Q2

−Q, and note that Propositions 1.17 (i), (ii) and 2.6 imply that for
any w ∈ E(ϑ, γ )∩ B

( 1
2 kρ

)
we have

dist(w, c(Q)V )≤ dist(w, xV )+ dist(xV, c(Q)V )= dist(w, xV )+ dist(c(Q), xV )

≤ 2 · 2kρ · C2(2−Q2
−Qε2)

1/Q
≤ 2kρ · 2−Q

· C2ε
1/Q
2 , (51)

where the last inequality comes from (49). This concludes the proof of (i).
Let us move to the proof of (ii). For any V ∈5δ(x, 2kρ) and any w ∈ B

(
0, 1

2 kρ
)
∩ V, we define

w∗
:= x−1c(Q)wPN(V )(c(Q)−1x)= PN(V )(c(Q)−1x)−1 PV (c(Q)−1x)−1wPN(V )(c(Q)−1x) ∈ V.

With a few computations that we omit, it is not difficult to see that

d(c(Q)w, xw∗)= ∥PN(V )(c(Q)−1x)∥ = dist(c(Q), xV )≤ 2−(Q−2)kρC2ε
1/Q
2 , (52)

where the second identity follows from Proposition 1.17 and the last inequality from the second last
inequality in (51). Thanks to the definition of w∗, the triangle inequality, Proposition 1.15 and the fact
that d(c(Q), x)≤ ρ, the norm of w∗ can be estimated as

∥w∗
∥ ≤ 2∥PN(V )(c(Q)−1x)∥ +∥PV (c(Q)−1x)∥ +∥w∥ ≤ 2ρ+ 2ρ+

1
2 kρ < kρ. (53)

Thanks to inequalities (49) and (53) and Proposition 2.7, we infer that

B(xw∗, 2kρ · 2−Qε
1/(Q+1)
2 )∩ E(ϑ, γ ) ̸= ∅.

Finally, since 21−Q < C2, thanks to (52) we conclude that

E(ϑ, γ )∩ B(c(Q)w, 3kρC2ε
1/(Q+1)
2 )⊇ E(ϑ, γ )∩ B(xw∗, 2kρ · 2−Qε

1/(Q+1)
2 ) ̸= ∅. □

The arguments we will use in the rest of the subsection to prove Proposition 2.18 through Theorem 2.28
follow from an adaptation of the techniques found in Chapter 2, §2 of [David and Semmes 1993a]. The
first of such adaptations is the following definition, which is a way of saying that two cubes are close
both in metric and in size terms:
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Definition 2.17 (neighbor cubes). Let A := 4A2
0 and let Qj ∈1

φ
ij
(ϑ, γ ) be two cubes with j = 1, 2.4 We

say that Q1 and Q2 are neighbors if

dist(Q1, Q2) := inf
x∈Q1,y∈Q2

d(x, y)≤
(I)

A(diam Q1 + diam Q2) and |i1 − i2| ≤
(II)

A.

Furthermore, in the following (for the sake of notation), for any Q ∈1(C, ι) we let

n(Q) := n(5(Q)),

where 5(Q) ∈ Gr(Q− 1) is the plane yielded by Lemma 2.16.
Finally, two planes V,W ∈ Gr(Q − 1) are said to have compatible orientations if their normals

n(V ), n(W ) ∈ V1 are chosen in such a way that ⟨n(V ), n(W )⟩> 0. By extension, we will say that two
cubes Q1, Q2 ∈ 1(C, ι) have compatible orientations themselves if 5(Q1) and 5(Q2) are chosen to
have compatible orientations.

Proposition 2.18. Suppose that Qj ∈1
φ
ij
(ϑ, γ ) for j = 1, 2. Then the following hold:

(i) If Q1 is the parent of Q2, then Q1 and Q2 are neighbors.

(ii) If Q1 and Q2 are neighbors for any nonnegative integer k ≤ min{i1, i2}, then their ancestors
Q̃1 ∈1

φ
i1−k(ϑ, γ ) and Q̃2 ∈1

φ
i2−k(ϑ, γ ) are neighbors.

(iii) If Q1, Q2 ∈1(E(ϑ, γ ), 1) are neighbors, then |log(diam Q1/ diam Q2)| ≤ 2AN.

Proof. Let us prove (i). Since Q2 ⊆ Q1, we have that (I) of Definition 2.17 follows immediately. On the
other hand, since Q1 is the parent of Q2, Proposition A.4 implies that

|i1 − i2| ≤ ⌊2 log2 C4/N (Q− 1)⌋ + 1 ≤ 4A2
0 = A,

where the second inequality comes from the choice of A0 (see Notation 2.8) and this proves (II) of
Definition 2.17. In order to prove (ii), we first note that |(i1 − k)− (i2 − k)| = |i1 − i2| ≤ A and secondly
that

dist(Q̃1, Q̃2)≤ dist(Q1, Q2)≤ A(diam Q1 + diam Q2)≤ A(diam Q̃1 + diam Q̃2).

In order to prove (iii), we just need to note that thanks to Theorem A.2 (ii), (v) we infer that∣∣∣∣log
diam Q1

diam Q2

∣∣∣∣ ≤

∣∣∣∣log
2−Ni1+5/γ

ζ 22−Ni2−1/γ

∣∣∣∣ = (N |i2 − i1| + 6) log 2 − 2 log ζ ≤ log(C6)≤ 8A2
0 N = 2AN,

where the two last inequalities come from the choice of C6 and A0. □

Remark 2.19. If Q ∈1(C, ι) then c(Q) ∈ E(ϑ, γ ) thanks to the choices of µ and ι in Notation 2.15 and
Proposition A.5.

Remark 2.20. Note that if Q1, Q2 ∈1(E(ϑ, γ ), 1) are neighbors, Proposition 2.18 (iii) implies that

e−2AN diam Q2 ≤ diam Q1 ≤ e2AN diam Q2.

4The symbol 1φij
(ϑ, γ ) denotes the ij -th layer of dyadic cubes; see Theorem A.2.
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Remark 2.20 explicitly tells us that if two cubes Q1, Q2 ∈ 1(C, ι) are neighbors, then they have
comparable diameters which are in turn comparable with the distance of their diameters. The information
we have on the measure, by means of Lemma 2.16, tells us that φ is well approximated by two planes
V1 and V2 inside the balls B1 := B(c(Q1), k diam(Q1)) and B2 := B(c(Q2), k diam(Q2)), respectively.
However, since we have chosen k in such a way that k ≫ A ≈ dist(c(Q1), c(Q2))/ diam(Q1), the balls
B1 and B2 have a big overlap while having approximately the same size. Hence, the planes V1 and V2 are
in essence approximating the same portion of the measure and as a consequence they must be almost the
same plane. This heuristic argument is formalized in the following:

Proposition 2.21. Suppose that Q1, Q2 ∈1(C, ι) are two neighbor cubes. Then

(1 − C3ε
2/(Q+1)
2 )1/2 = (1 − 220(n1 − 1)C2

2ε
2/(Q+1)
2 )1/2 ≤ |⟨n(Q1), n(Q2)⟩|.

Proof. Thanks to the definition of k, we have

A(diam Q1 + diam Q2)≤ 2A max{diam Q1, diam Q2} ≤
1
4 k max{diam Q1, diam Q2}.

Without loss of generality we can assume that diam Q2 ≤ diam Q1. Therefore, since the cubes Q1 and Q2

are supposed to be neighbors, we deduce that

dist(Q1, Q2)≤ A(diam Q1 + diam Q2)≤
1
4 k diam Q1. (54)

This implies that for any z ∈ Q1, we have

dist(z, Q2)≤ diam Q1 + inf
y∈Q1

dist(y, Q2)= diam Q1 + dist(Q1, Q2)

≤
(1

4 k + 1
)

diam Q1 <
( 1

2 k − 1
)

diam Q1. (55)

Inequality (55) implies that for any z ∈ Q1 we have Q2 ⊆ B
(
z, 1

2 k diam Q1
)
. This, together with

Lemma 2.16 (i), implies that for any w ∈ E(ϑ, γ )∩ Q2 we have

dist(w, c(Q1)5(Q1))≤ 2C2ε
1/Q
2 k diam Q1. (56)

We now claim that B2 :=
{
u ∈ G : dist(u, Q2) ≤

1
20 k diam Q2

}
⊆ B

(
c(Q1),

1
2 k diam Q1

)
. In order to

prove this inclusion, let u ∈ B2 and note that

dist(u, c(Q1))

≤ inf
w∈Q2

(d(u, w)+ d(w, c(Q1))≤ inf
w∈Q2

d(u, w)+ diam Q1 + dist(Q1, Q2)+ diam Q2

≤
u∈B2

1
20 k diam Q2 + diam Q1 + dist(Q1, Q2)+ diam Q2 ≤

1
10(3k + 20) diam Q1 <

1
2 k diam Q1, (57)

where the second last inequality comes from (54) and the assumption that Q1 is the cube with the biggest
diameter. Inequality (57) concludes the proof of the inclusion B2 ⊆ B

(
c(Q1),

1
2 k diam Q1

)
. The inclusion

just proved, together with Remark 2.20, the fact that Q1, Q2 ∈1(E(ϑ, γ ), ι) and Lemma 2.16 (i), implies
that for any u ∈ E(ϑ, γ )∩ B2 we have

dist(u, c(Q1)5(Q1))≤ 2C2ε
1/Q
2 k diam Q1 ≤ 2C2e2N Aε

1/Q
2 k diam Q2. (58)
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Furthermore, thanks to Remark 2.19 we have c(Q2) ∈ B2 ∩ E(ϑ, γ ). Therefore, by Proposition 1.17 for
any u ∈ B2 ∩ E(ϑ, γ ) we conclude that

dist(u, c(Q2)5(Q1))

≤ dist(u, c(Q1)5(Q1))+ dist(c(Q2)5(Q1), c(Q1)5(Q1))

= dist(u, c(Q1)5(Q1))+ dist(c(Q2), c(Q1)5(Q1))
(58)
≤ 4C2e2N Aε

1/Q
2 k diam Q2. (59)

Thanks to Lemma 2.16 (ii), we deduce that for any y ∈ B
(
c(Q2),

1
40 k diam Q2

)
∩c(Q2)5(Q2) there exists

some w(y) in E(ϑ, γ )∩ B(y, 3kC2ε
1/(Q+1)
2 diam Q2). Since by definition ε2 ≤ ((k − 20)/20C2k)Q+1,

we have
dist(w(y), Q2)≤ inf

p∈Q2
d(w(y), y)+ d(y, c(Q2))+ d(c(Q2), p)

≤ 3kC2ε
1/(Q+1)
2 diam Q2 +

1
40 k diam Q2 + diam Q2 ≤

1
20 k diam Q2, (60)

where the last inequality comes from the choice of k. Inequality (60) implies that w(y) ∈ B2, and thanks
to (59) we infer that

dist(w(y), c(Q2)5(Q1))≤ 4C2e2N Aε
1/Q
2 k diam Q2.

Summing up, for any y ∈ B
(
c(Q2),

1
40 k diam Q2

)
∩ c(Q2)5(Q2), we have

dist(y, c(Q2)5(Q1))≤ d(y, w(y))+ dist(w(y), c(Q2)5(Q1))

≤ 3C2ε
1/(Q+1)
2 k diam Q2 + 4C2e2N Aε

1/Q
2 k diam Q2

≤ (3C2 + 4C2e2N Aε
1/(Q(Q+1))
2 )ε

1/(Q+1)
2 k diam Q2 ≤ 6C2ε

1/(Q+1)
2 k diam Q2, (61)

where the last inequality comes from the choice of ε2 and a few elementary algebraic computations that
we omit. Furthermore, inequality (61) and Proposition 1.15 imply that

|⟨π1(c(Q2)
−1 y),n(Q1)⟩|=∥Pn(Q1)(c(Q2)

−1 y)∥= dist(y,c(Q2)5(Q1))≤6C2ε
1/(Q+1)
2 k diam Q2. (62)

Suppose {vi }i=1,...,n1−1 are the orthonormal vectors of the first layer V1 spanning the orthogonal comple-
ment of n(Q2) inside V1, and let yj := c(Q2)δk diam Q2/80(vj ). Then, from inequality (62), we deduce that

1 = |⟨n(Q1), n(Q2)⟩|
2
+

n1−1∑
j=1

|⟨vj , n(Q1)⟩|
2
= |⟨n(Q1), n(Q2)⟩|

2
+

n1−1∑
j=1

|⟨π1(c(Q2)
−1 yj ), n(Q1)⟩|

2

(k diam Q2/80)2

≤ |⟨n(Q1), n(Q2)⟩|
2
+ 220(n1 − 1)C2

2ε
2/(Q+1)
2 . □

Proposition 2.22. Let Q1, Q2 ∈ 1(C, ι) be neighbor cubes and suppose that 5(Q1) and 5(Q2), the
planes yielded by Lemma 2.16, are chosen with compatible orientations. Then

|n(Q1)− n(Q2)| ≤ 2
√

C3ε
1/(Q+1)
2 . (63)

Furthermore, denote by Q̃1 and Q̃2 the parent cubes of Q1 and Q2, respectively, and assume that the
planes 5(Q̃1) and 5(Q̃2) have compatible orientations with 5(Q1) and 5(Q2), respectively. Then the
5(Qi ) have compatible orientations if and only if the planes 5(Q̃i ) do.
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Proof. Since Q1 and Q2 are neighbors and have compatible orientations, by definition, ⟨n(Q1), n(Q2)⟩≥0.
Thanks to Proposition 2.21 we infer that

|n(Q1)− n(Q2)|
2
= 2 − 2⟨n(Q1), n(Q2)⟩ ≤ 2 − 2(1 − C3ε

2/(Q+1)
2 )1/2 ≤ 2

√
C3ε

1/(Q+1)
2 ,

and (63) is proved. Let us move to the second part of the proposition. Thanks to Proposition 2.18, the
pairs Q̃1 and Q̃2, Q1 and Q̃1, and Q2 and Q̃2 are neighbors as well. Therefore Proposition 2.21 implies
that

⟨n(Q̃1), n(Q̃2)⟩ = ⟨n(Q1), n(Q2)⟩ + ⟨n(Q̃1)− n(Q1), n(Q2)⟩ + ⟨n(Q̃1), n(Q̃2)− n(Q2)⟩

≥ (1 − C3ε
2/(Q+1)
2 )1/2 − 4

√
C3ε

1/(Q+1)
2 ≥

1
10 .

Conversely, if 5(Q̃1) and 5(Q̃2) have the same orientation, the same line of reasoning yields that the
planes 5(Q1) and 5(Q2) have compatible orientations as well. □

Proposition 2.23. It is possible to fix an orientation on the planes {5(Q) : Q ∈1(C, ι)} in such a way
that

|n(Q1)− n(Q2)| ≤
1
10 ,

whenever Q1, Q2 ∈1(C, ι) are neighbors and are contained in the same maximal cube Q0 ∈ M(C, ι),
where the set M(C, ι) was introduced in Remark 2.10.

Proof. Suppose Qi ∈1
φ
ji (ϑ, γ ) for i = 1, 2, and assume without loss of generality that j1 ≤ j2. Fix the

normal of the plane 5(Q0), and determine the normals of all other planes 5(Q) as Q varies in 1(C, ι)
by demanding that the orientation of the cube Q is compatible with that of Q̃, its parent cube.

If Q1 = Q0, let us consider the finite sequence {Q̃i }i=1,...,M of ancestors of Q2 for which Q̃1 = Q2,
Q̃M = Q0 and such that Q̃i+1 is the parent of Q̃i . Then the scalar product between n(Q0) and n(Q2)

can be estimated as

⟨n(Q0), n(Q2)⟩ ≥ ⟨n(Q̃2), n(Q2)⟩−

M∑
i=2

|n(Q̃i )−n(Q̃i+1)| ≥ (1−C3ε
2/(Q+1)
2 )−2

√
C3 Mε1/(Q+1)

2 , (64)

where the last inequality comes from Propositions 2.21 and 2.22 and the fact that the orientation of
Q̃i and Q̃i+1 were chosen to be compatible. Since Q0 and Q2 were assumed to be neighbors, from
Definition 2.17 (II) it follows that M ≤ A and thus, thanks to (64) and the choice of ε2, we have

⟨n(Q0), n(Q2)⟩ ≥ (1 − C3ε
2/(Q+1)
2 )− 2

√
C3 Aε1/(Q+1)

2 > 0.

This proves the statement if one of the cubes is Q0. The proof of the general case can be obtained with
the following argument. Thanks to Proposition 2.22, we know that the orientations of the planes 5(Q1)

and 5(Q2) are compatible if and only if the orientations of 5(Q̃1) and 5(Q̃2), the planes relative to
their parent cubes Q̃1 and Q̃2, are compatible.5 Thus, taking the parents of the parents and so on, one
can reduce to the case in which one of the cubes is Q0. □

5Note that this is the case, since by construction we enforced that every element in 1(C, ι) has a compatible orientation with
its parent cube.
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Definition 2.24. For each cube Q ∈1(C, ι), we let

G±(Q) := c(Q){u ∈ B(0, A0 diam Q) : ±⟨π1u, n(Q)⟩> A−1
0 diam Q}

= {u ∈ B(c(Q), A0 diam Q) : ±⟨π1u −π1(c(Q)), n(Q)⟩> A−1
0 diam Q}

and G(Q)= G+(Q)∪ G−(Q). Furthermore, for any Q ∈ M(C, ι) we let

G±(Q) :=

⋃
Q∈1(C,ι)

Q⊆Q

G±(Q) and G(Q) :=

⋃
Q∈1(C,ι)

Q⊆Q

G(Q).

For any Q in the set G(Q), there is a ball B with radius comparable with diam(Q) from which a
tubular neighborhood T of the plane 5(Q) has been subtracted. The following lemma tells us that our
choice of parameters is sufficient to get the inclusion B ∩ E(ϑ, γ )⊆ T :

Lemma 2.25. For any cube Q of 1(C, ι) and any x ∈ G(Q), we have

1
2 A−1

0 diam Q ≤
(A)

dist(x, E(ϑ, γ )) ≤
(B)

A0 diam Q. (65)

Proof. Since A0 ≤
1
4 k, if we let z ∈ E(ϑ, γ ) be the point realizing the minimum distance of x from

E(ϑ, γ ), we deduce that

d(x, z)= dist(x, E(ϑ, γ ))≤ d(x, c(Q))≤ A0 diam Q, (66)

where the first inequality above comes from the fact that c(Q) ∈ E(ϑ, γ ) (see Remark 2.19) and the last
inequality comes from the very definition of G(Q). Note that inequality (66) proves (65) (B). Furthermore,
since 1 + A0 <

1
2 k, the bound (66) also implies that z ∈ B

(
c(Q), 1

2 k diam Q
)
∩ E(ϑ, γ ) and thus, thanks

to Lemma 2.16 (i), we deduce that

dist(z, c(Q)5(Q))≤ 2C2ε
1/Q
2 k diam Q. (67)

Let w be an element of 5(Q) satisfying the identity d(z, c(Q)w)= dist(z, c(Q)5(Q)), and note that

dist(x, E(ϑ, γ ))= dist(x, z) ≥ d(x, c(Q)w)− d(c(Q)w, z)

≥ dist(c(Q)−1x,5(Q))− dist(z, c(Q)5(Q))

≥
(67)

|⟨n(Q), π1(c(Q)−1x)⟩| − 2C2ε
1/Q
2 k diam Q

≥ A−1
0 diam Q − 2C2ε

1/Q
2 k diam Q ≥

1
2 A−1

0 diam Q, (68)

where the second last inequality used the fact that x ∈ G(Q) and the last inequality used the choice of ε2

and A0. □

The following is a disconnection result for G(Q). It tells us that G+(Q) and G−(Q) can be regarded as
two sides of G(Q) in the same way that G+(Q) and G−(Q) are the two sides of G(Q). The intuitive idea
for which this phenomenon occurs is the following. First, if Q1, Q2 ∈1(C, ι) are two cubes contained
in Q such that G+(Q1)∩ G−(Q2) ̸= ∅, then Lemma 2.25 implies that Q1 and Q2 must be neighbors.
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Since Q1 and Q2 are neighbors, the approximating planes 5(Q1) and 5(Q2) are very close thanks to
Proposition 2.21. In particular, G+(Q1) and G−(Q2) are in essence on opposite sides of a plane and thus
they cannot intersect, resulting in a contradiction.

Lemma 2.26. For any Q ∈ M(C, ι) we have that the sets G±(Q) are open and G+(Q)∩G−(Q)= ∅.

Proof. The fact that the G±(Q) are open sets follows immediately from the definitions of the G±(Q).
Suppose that G+(Q)∩G−(Q) ̸= ∅. Then we can find two cubes Q1, Q2 ∈1(C, ι) contained in Q such
that G+(Q1)∩G−(Q2) ̸=∅ and let x be a point of intersection. In order to fix notations, we also suppose
that Qi ∈1

φ
ji (ϑ, γ ) for i = 1, 2. Thanks to the definition of G±(Q), we immediately deduce that

B(c(Q1), A0 diam Q1)∩ B(c(Q2), A0 diam Q2) ̸= ∅. (69)

This in particular implies that dist(Q1, Q2) ≤ 2A0(diam Q1 + diam Q2). Therefore, since 2A0 ≤ A,
we have that Q1 and Q2 satisfy condition (I) of Definition 2.17. Furthermore, since by construction
x ∈ G+(Q1)∩ G−(Q2), Lemma 2.25 implies that

diam Q1

2A0
≤ dist(x, E(ϑ, γ ))≤ A0 diam Q1 and

diam Q2

2A0
≤ dist(x, E(ϑ, γ ))≤ A0 diam Q2. (70)

Putting together the bounds in (70), we infer that

(2A2
0)

−1
≤

diam Q1

diam Q2
≤ 2A2

0. (71)

Thanks to (71) and Theorem A.2 (ii), (v) we have that

(2A2
0)

−1
≤

diam Q1

diam Q2
≤

2− j1 N+5/γ

ζ 22− j2 N−1/γ
and

ζ 22− j1 N−1/γ

2− j2+5/γ
≤

diam Q1

diam Q2
≤ 2A2

0. (72)

Finally, thanks to the bounds in (72) together with some computations that we omit, we deduce that

| j2 − j1| ≤
log(27ζ−2 A2

0)

N log 2
≤ log A0,

where the last inequality comes from the choice of A0. Since A0 ≥ 2, we infer that | j2 − j1| ≤ A, proving
condition (II) of Definition 2.17. This concludes the proof that Q1 and Q2 are neighbors.

Now that we know that Q1 and Q2 are neighbors, (69) together with Proposition 2.18 (iii) implies that

d(c(Q1), c(Q2))≤ d(c(Q1), x)+ d(x, c(Q2))≤ A0(diam Q1 + diam Q2)

≤ A0(1 + e2N A) diam Q2 <
1
2 k diam Q2, (73)

where the last inequality comes from the choice of k and of A. Since by (73) and Remark 2.19, we have
c(Q2) ∈ E(ϑ, γ )∩ B

(
c(Q1),

1
2 k diam Q2

)
, thanks to Lemma 2.16 (i) and Remark 2.20, we deduce that

dist(c(Q2), c(Q1)5(Q1))≤ 2C2kε1/Q
2 diam Q1 ≤ 2C2ke2N Aε

1/Q
2 diam Q2. (74)

Furthermore, since Q1 and Q2 are neighbors, we infer by Proposition 2.22 that

|n(Q1)− n(Q2)| ≤ 2C3ε
1/(Q+1)
2 ,
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and this in turn implies that

⟨π1(c(Q1)
−1x), n(Q1)⟩

= ⟨π1(c(Q2)
−1x), n(Q2)⟩ + ⟨π1(c(Q2)

−1x), n(Q1)− n(Q2)⟩ + ⟨π1(c(Q1)
−1c(Q2)), n(Q1)⟩

≤ −A−1
0 diam Q2 + |π1(c(Q2)

−1x)||n(Q1)− n(Q2)| + dist(c(Q2), c(Q1)5(Q1))

≤ −A−1
0 diam Q2 + A0 diam Q2 · 2C3ε

1/(Q+1)
2 + 2C2ke2N Aε

1/Q
2 diam Q2, (75)

where third line above comes from the fact that x ∈ G−(Q2) and the bound on |n(Q1)−n(Q2)| discussed
above while the last inequality follows from (74). The chain of inequalities in (75) and the definition
of A imply that

⟨π1(c(Q1)
−1x), n(Q1)⟩ ≤ (−A−1

0 + A0C3ε
1/(Q+1)
2 + C2ke8N A2

0ε
1/Q
2 ) diam Q2 ≤ 0, (76)

where the last inequality comes from the definition of ε2 and some algebraic computations that we omit.
This contradicts the fact that x ∈ G+(Q1), proving that the assumption that G(Q)+ ∩G−(Q) ̸= ∅ was
absurd. □

Let us take a step back and explain what the set G(Q) is. Starting from a measure φ with flat blowups,
in this section we constructed a countable family of pairs (c(Q),5(Q)), parametrized by the cubes
in 1(C, ι) inside Q, of points of supp(φ) and planes that are a good approximation of φ around c(Q) at
the scale diam Q. From this family of pointed planes we built G(Q), which should be imagined as the
complement of the union of very thin tubular neighborhoods of the disks c(Q)5(Q)∩ B(c(Q), diam Q).
So, since the planes 5(Q) are very efficiently approximating φ one should expect that φ(G(Q)) ≈ 0,
allowing us to regard G(Q)c as an extension of supp(φ) inside the ball B(c(Q), diam Q). An extension,
however, that can ultimately be considered and treated as a countable union of planes. The next proposition
shows that supp(φ) is quite dense inside G(Q)c.

Proposition 2.27. Let Q ∈ M(C, ι) and define

I (Q) :=

⋃
Q∈1(C,ι)

Q⊆Q

B(c(Q), (A0 − 2) diam Q).

In addition, for any x ∈ I (Q) we let

d(x) := inf
Q∈1(C,ι)

Q⊆Q

dist(x, Q)+ diam Q. (77)

Then dist(x, E(ϑ, γ ))≤ 4A−1
0 d(x) whenever x ∈ I (Q) \G(Q).

Proof. Fix some x ∈ I (Q) \G(Q), and let Q ⊆ Q be a cube of 1(C, ι) such that

dist(x, Q)+ diam Q ≤
4
3 d(x). (78)

Let Q′ be an ancestor of Q in 1(C, ι), possibly Q itself. Since x ̸∈ G(Q), then x ̸∈ G(Q′) and, thanks
to Proposition 1.15, we have

dist(x, c(Q′)5(Q′))= |⟨π1(c(Q′)−1x), n(Q′)⟩| ≤ A−1
0 diam Q′, (79)
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where the last inequality is true provided that dist(x, c(Q′)) < A0 diam Q′. Since x ∈ I (Q), there must
exist some Q̃ ∈1(C, ι) such that Q̃ ⊆ Q and x ∈ B(c(Q̃), (A0 − 2) diam Q̃). This implies that

dist(x, c(Q))≤ d(x, c(Q̃))+ d(c(Q̃), c(Q))≤ (A0 − 2) diam Q̃ + diam Q < A0 diam Q. (80)

Therefore the inequality dist(x, c(Q)) < A0 diam Q is verified and hence (79) holds for Q′
= Q. Let

Q ⊆ Q0 ⊆ Q be the smallest cube in 1(C, ι) for which dist(x, c(Q0)) < A0 diam Q0 holds.
Let w ∈5(Q0) be the point for which d(x, c(Q0)w)= dist(x, c(Q0)5(Q0)), and note that the choice

of Q0 and the bound (79) imply that

∥w∥ = dist(c(Q0)w, c(Q0))≤ d(c(Q0)w, x)+ d(x, c(Q0))

≤ dist(x, c(Q0)5(Q0))+ A0 diam Q0

≤ A−1
0 diam Q0 + A0 diam Q0 ≤ 2A0 diam Q0 <

1
2 k diam Q0, (81)

where the last inequality comes from the choice of A0 and k made in Notation 2.8. Since Q0 ∈1(C, ι),
thanks to inequality (81) we have c(Q0)w ∈ B

(
c(Q0),

1
2 k diam Q0

)
and thus Lemma 2.16 (ii) implies that

E(ϑ, γ )∩ B(c(Q0)w, 3kC2ε
1/(Q+1)
2 diam Q0) ̸= ∅. Therefore, since by definition of Q0 the bound (79)

holds with Q′
= Q0, we have

dist(x, E(ϑ, γ ))≤ d(x, c(Q0)w)+ dist(c(Q0)w, E(ϑ, γ ))

= d(x, c(Q0)5(Q0))+ dist(c(Q0)w, E(ϑ, γ ))

≤ A−1
0 diam Q0 + 3kC2ε

1/(Q+1)
2 diam Q0 ≤ 2A−1

0 diam Q0, (82)

where the last inequality comes from the choice of ε2.
If Q0 = Q, then (78) implies that dist(x, E(ϑ, γ ))≤ 2A−1

0 diam Q0 ≤ 4A−1
0 d(x). Otherwise, let Q1 be

the child of Q0 that contains Q. Thanks to the minimality of Q0, we have dist(x, c(Q1))≥ A0 diam Q1,
and thus

dist(x, Q1)≥ d(x, c(Q1))− diam Q1 ≥ (A0 − 1) diam Q1

≥
A0 − 1

C6
diam Q0 ≥ diam Q0, (83)

where the second last inequality above follows from Proposition A.4 and the fact that Q0 is the parent
of Q1, whereas the last inequality comes from the choice of A0. Eventually, thanks to (78), (82), (83)
and the fact that Q ⊆ Q1, we deduce that

dist(x, E(ϑ, γ ))
(82)
≤ 2A−1

0 diam Q0
(83)
≤ 2A−1

0 dist(x, Q1)

≤ 2A−1
0 dist(x, Q)

(78)
≤ 4A−1

0 d(x). □

The following is the main result of this subsection. Theorem 2.28 transforms the qualitative information
on the relationship between G(Q)c and supp(φ) yielded by Proposition 2.27 into a quantitative one,
i.e., the bound on projections given in (84). The proof of the theorem reduces to constructing, for any
(suitable) cube Q, a family of balls {Bi }i∈N with the two following properties: First, the projection
on 5(Q) of supp(φ)∪

⋃
i Bi contains an open set with measure comparable with diam QQ−1. Second,
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the sum of the radii of the balls Bi is small and in particular the projection on planes of the set
⋃

i Bi has
small measure compared to diam QQ−1. The construction of the balls Bi , that the reader may imagine
centered at points of G(Q)c, relies on the one hand on the previously discussed fact that the set G(Q)c

can be regarded as a countable union of disks and on the other, that the holes of supp(φ), seen as a subset
of G(Q)c, are really small and patching them does not require too much measure.

Theorem 2.28. For any cube Q ∈1(C, ι) such that (1 − ε3)φ(Q)≤ φ(Q ∩ C), we have

SQ−1(P5(Q)(Q ∩ C))≥
diam QQ−1

2AQ−1
0

. (84)

Proof. Let Q0 ∈1(C, ι) be such that (1 − ε3)φ(Q0)≤ φ(Q0 ∩ C), and define

F(Q0) := C ∩ Q0 ∪

⋃
Q∈I (Q0)

B(c(Q), 2C6 diam Q),

where I (Q0) is a family of maximal cubes Q ∈1(E(ϑ, γ ), ι) such that Q ⊆ Q0 and Q ̸∈1(C, ι). As a
first step, we estimate the size of the projection of the balls

⋃
Q∈I (Q0)

B(c(Q),C6 diam Q). Thanks to
Proposition 1.18 we have

SQ−1
(

P5(Q)

( ⋃
Q∈I (Q0)

B(c(Q), 2C6 diam Q)
))

≤ 2Q−1c(5(Q0))CQ−1
6

∑
Q∈I (Q0)

diam QQ−1. (85)

We now need to estimate the sum in the right-hand side of (85). Since the cubes in I (Q0) are disjoint and
they are contained in 1(E(ϑ, γ ), ι), thanks to Remark A.3 and the fact that (1 − ε3)φ(Q0)≤ φ(Q0 ∩C),
we deduce that

C−1
5

∑
Q∈I (Q0)

diam QQ−1
≤

∑
Q∈I (Q0)

φ(Q)= φ

( ⋃
Q∈I (Q0)

Q
)

≤ φ(Q0 \ C)≤ ε3φ(Q0)≤ ε3C5 diam QQ−1
0 . (86)

Putting together (85) and (86), we conclude that

SQ−1
(

P5(Q)

( ⋃
Q∈I (Q0)

B(c(Q), 2C6 diam Q)
))

≤ 2Q−1c(5(Q0))C2
5ε3CQ−1

6 diam QQ−1
0

≤
c(5(Q0))

2AQ−1
0

diam QQ−1
0 , (87)

where the last inequality comes from the choice of ε3; see Notation 2.8.
In this first part of the proof of the theorem we have constructed the family of balls Bi mentioned in

the introductory paragraph to the statement of the theorem and we have also proved the second necessary
property of the Bi , that is the smallness of the measure of their projection. The rest of the proof will be
devoted to proving that supp(φ)∪

⋃
i Bi has big projections.
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More precisely, the next step in the proof of the theorem is to show that

SQ−1(P5(Q0)(F(Q0)))≥
c(5(Q0)) diam QQ−1

0

AQ−1
0

. (88)

In order to ease notations in the following we let x = c(Q0)δ10A−1
0 diam Q0

(n(Q0)) and define

B+ := B(x, A−1
0 diam Q0) and B− := B(x, A−1

0 diam Q0)δ20A−1
0 diam Q0

(n(Q0)
−1).

Before proceeding further with the proof of (88), we give a brief outline of what we are going to do, hoping
to help the reader keep track of the purpose of each computation. As a first step towards the proof of (88),
we prove that B+ and B− are contained in G+(Q0) and G−(Q0), respectively. Note that this implies that
B+ and B− are each on one side of the plane5(Q0). Let Q be the element of M(C, ι) containing Q0 and
recall that by Lemma 2.26, G+(Q) and G−(Q) are disjoint open sets. This implies in particular that for
any horizontal line parallel to the normal of the plane5(Q0) with starting point in B+ and end point in B−,
we can find a y in such a segment belonging to the complement of G(Q0). Our final step in the proof
of (88) is to show that y belongs to F(Q0), thus proving the inclusion P5(Q0)(B+) ⊆ P5(Q0)(F(Q0))

and in turn our claim.
Let us proceed with the proof of (88). We will prove that B+ ⊆ G+(Q0) and B− ⊆ G−(Q0) separately,

since the computations differ.
Let us begin with the proof of the inclusion B+ ⊆G+(Q0). For any1∈G such that ∥1∥≤ A−1

0 diam Q0,
we have

d(c(Q0), x1)= ∥δ10A−1
0 diam Q0

(n(Q0))1∥ ≤ 11A−1
0 diam Q0 ≤ A0 diam Q0. (89)

In addition, the choices of x and 1 imply that

⟨π1(c(Q0)
−1x1), n(Q0)⟩ = ⟨π1(δ10A−1

0 diam Q0
(n(Q0))1), n(Q0)⟩

= 10A−1
0 diam Q0 + ⟨π11, n(Q0)⟩ ≥ 9A−1

0 diam Q0. (90)

The bounds (89) and (90) together with the definitions of B+ and G+(Q0) finally imply that B+ ⊆ G+(Q0).
Let us prove that B− ⊆ G−(Q0). Similar to the previous case, for any ∥1∥ ≤ A−1

0 diam Q0, we have

d(c(Q0), x1δ20A−1
0 diam Q0

(n(Q0)
−1))= ∥δ10A−1

0 diam Q0
(n(Q0))1δ20A−1

0 diam Q0
(n(Q0)

−1)∥

≤ 31A−1
0 diam Q0 ≤ A0 diam Q0. (91)

Once again, the choices of x and 1 imply that

⟨π1(c(Q0)
−1x1δ20A−1

0 diam Q0
(n(Q0)

−1)), n(Q0)⟩

= ⟨π1(δ10A−1
0 diam Q0

(n(Q0))1δ20A−1
0 diam Q0

(n(Q0)
−1)), n(Q0)⟩

= −10A−1
0 diam Q0 + ⟨π11, n(Q0)⟩ ≤ −9A−1

0 diam Q0. (92)

The bounds (91) and (92) together with the definitions of B− and G−(Q0) show that B− ⊆ G−(Q0).



MARSTRAND–MATTILA RECTIFIABILITY CRITERION FOR MEASURES IN CARNOT GROUPS 969

Now that we have shown that B+ and B− lie on different sides of 5(Q0), we construct horizontal
curves parallel to n(Q0) joining B+ and B− and we show that each one of these lines intersect F(Q0).

First of all, let Q be the unique cube in M(C, ι) containing Q0. Thanks to Lemma 2.26 we know that
the sets G+(Q) and G−(Q) are disconnected. With this in mind, for any a ∈ B+ we define the curve
γa : [0, 1] → G as

γa(t) := aδ20A−1
0 diam Q0t(n(Q0)

−1).

By the definition of B−, it is immediate to see that γa(1) ∈ B−. On the other hand, since γa(0) ∈ B+

and the image of γa is connected, we infer that γa must meet the complement of G(Q) at y = γa(s) for
some s ∈ (0, 1).

We now prove that y ∈ F(Q0). First, we estimate the distance of y from c(Q0) as

d(y, c(Q0))≤ d(aδ20A−1
0 diam Q0s(n(Q0)

−1), c(Q0))≤ d(a, c(Q0))+ 20A−1
0 diam Q0s

≤ d(x, c(Q0))+ d(x, a)+ 20A−1
0 diam Q0s

≤ 10A−1
0 diam Q0 + A−1

0 diam Q0 + 20A−1
0 diam Q0s

≤ 40A−1
0 diam Q0 < (A0 − 2) diam Q0, (93)

where the inequality in the third line comes from the definition of x and the fact that a ∈ B(x, A−1
0 diam Q0).

The above computation together with the fact that Q is an ancestor of Q0 shows that y ∈ I (Q). In
addition, we have that

dist(y, E(ϑ, γ ) \ Q0)≥ dist(c(Q0), E(ϑ, γ ) \ Q0)− d(y, c(Q0))

≥ 64−1ζ 2 diam Q0 − 40A−1
0 diam Q0 ≥ 100A−1

0 diam Q0, (94)

where the first inequality in the last line above comes from the second last inequality of (93), Remark 2.19
and Theorem A.2 (v), while the last inequality follows from the choice of A0. From (93) and (94) we
deduce that

dist(y, E(ϑ, γ ) \ Q0)
(94)
≥ 100A−1

0 diam Q0
(93)
> d(y, c(Q0))≥ dist(y, Q0 ∩ E(ϑ, γ )), (95)

where the last inequality comes from the fact that c(Q0) belongs to E(ϑ, γ ); see Remark 2.19. Therefore,
if z ∈ E(ϑ, γ ) is the point of minimal distance of y from E(ϑ, γ ), (95) implies that z ∈ Q0 ∩ E(ϑ, γ ).
Furthermore, since by assumption y ̸∈ G(Q) and by (93) we have y ∈ I (Q), Proposition 2.27 implies
that

d(z, y)= dist(y, E(ϑ, γ ))≤ 4A−1
0 d(y) < 1

10 d(y), (96)

where the last inequality can be strict only if d(y) > 0. The definition of the function d , see (77), implies
further by (96) that

d(z)≥ d(y)− d(z, y) > 9
10 d(y), (97)

where last inequality is strict only if d(y) > 0. Summing up what we know so far about z is that it must
be contained in Q0 ∩ E(ϑ, γ ), however (97) implies that z cannot be contained in a cube Q ∈1(C, ι)
with diam Q ≤

9
10 d(y).
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On the one hand, if d(y)= 0, the bound (96) implies that d(y, z)= 0 and thus since E(ϑ, γ ) is compact
we have y = z ∈ E(ϑ, γ ). This implies in particular that

y ∈ E(ϑ, γ )∩ Q0 ⊆ C ∩ Q0 ∪

⋃
Q∈I (Q0)

Q ⊆ C ∩ Q0 ∪

⋃
Q∈I (Q0)

B(c(Q), 2C6 diam Q)= F(Q0).

If, on the other hand, d(y) > 0, we will now show that y ∈ F(Q0). We claim that there is a cube
Q1 ∈1(C, ι), contained in Q0 and possibly coinciding with Q0 itself, such that

(a) z ∈ Q1 and for any cube Q ∈1(C, ι) contained in Q1 we have z ̸∈ Q,

(b) diam Q1 ≥
9
10 d(y),

(c) there exists a Q̃ ∈ I (Q0), that is a child of Q1 for which z ∈ Q̃.

Let us verify that such a cube Q1 exists. Since z ∈ Q0, for any cube Q ∈1(C, ι) such that Q ⊆ Q0 and
z ∈ Q we have

9
10 d(y)≤ d(z)≤ dist(z, Q)+ diam Q = diam Q, (98)

where the first inequality above comes from (97) and the second from the definition of d. Let Q1 be
the smallest cube of 1(C, ι) containing z, and note that for any cube Q ⊆ Q1 belonging to 1(C, ι)
we have that z ̸∈ Q. This proves (a) and (b). In order to prove (c), we note that any ancestor of Q1

in 1(E(ϑ, γ ), ι) must be contained in 1(C, ι). Furthermore, since the condition diam Q1 ≥
9
10 d(y)

implies that z ∈ E(ϑ, γ ) \ C , we infer that there must exist a cube Q̃ in I (Q0) for which z ∈ Q̃. Such a
cube must be a child of Q1 otherwise the maximality of Q̃ would be contradicted.

Let us use (a), (b) and (c) to conclude the proof of the theorem. Items (a), (b) and inequality (96) imply
that

dist(y, Q1)
(a)
≤ d(y, z)

(96)
≤

1
10 d(y)

(b)
≤

1
9 diam Q1. (99)

Therefore, Proposition A.4 together with (c) and (99) implies that

d(c(Q̃), y)≤ d(c(Q̃), z)+ d(z, y)≤ diam Q̃ +
1
9 diam Q1

≤ diam Q̃ +
1
9C6 diam Q̃ < 2C6 diam Q̃. (100)

The bound (100) finally proves that y ∈ F(Q0) thanks to the fact that Q̃ ∈ I (Q0) by (c). Summing up,
this shows that for any a ∈ B+, the curve γa meets the set F(Q0) somewhere.

In turn, this shows that F(Q0) has big projections. Indeed,

SQ−1(P5(Q0)(F(Q0)))≥ SQ−1(P5(Q0)(B(x, A−1
0 diam Q0)))

= c(5(Q0))A
−(Q−1)
0 diam QQ−1

0 , (101)

where the first inequality comes from the fact that the images of the curves γa are contained in P−1
5(Q0)

(a)
for any a ∈ B+ and the last identity comes from Proposition 1.18. This concludes the proof of the main
step of the proof, which was to verify the validity of (88).
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In order to conclude the proof of the theorem we just need to put (87) together with (101) to get

SQ−1(P5(Q0)(Q0 ∩ C)) ≥ SQ−1(P5(Q0)(F(Q0)))−SQ−1
(

P5(Q0)

( ⋃
Q∈I (Q0)

B(c(Q),C6 diam Q0)

))
(87),(101)

≥
c(5(Q0))

2AQ−1
0

diam QQ−1
0 ≥

diam QQ−1
0

2AQ−1
0

,

where the last inequality comes from the fact that c(5(Q0))≥ 1; see Proposition 1.18. □

2D. Construction of the φ-positive intrinsic Lipschitz graph. This subsection is devoted to the proof of
the main result of Section 2, Theorem 2.1, which we restate here for the reader’s convenience:

Theorem 2.1. There is an intrinsic Lipschitz graph 0 such that φ(0) > 0.

We outline the proof of Theorem 2.1 here: For a fixed cube Q ∈ M(C, ι), we prove that the family
B(Q) of the maximal subcubes of Q having small projection on 5(Q), thanks to Theorem 2.28, is
small in measure. Therefore, we can find a cube Q′

∈ 1(C, ι) \ B(Q) that is contained in Q and for
which any subcube Q̃ of Q′ has big projections on 5(Q). This independence on the scales, thanks to
Proposition 2.11, implies that C ∩ Q is a 5(Q)-intrinsic Lipschitz graph.

Proposition 2.29. Define ε4 := min{ε1, (32ϑC1C5 AQ−1
0 )−1

}. There exists a compact set C1 ⊆ C and an
ι1 ∈ N such that

(i) φ(C \ C1)≤ ε4φ(C),

(ii) whenever Q ∈1(C1, ι1) we have
(
1 −

1
32ε3

)
φ(Q)≤ φ(Q ∩ C).

Proof. First of all, we prove that the set 1(C, ι) is a φ⌞C Vitali relation. It is immediate to see that
the family 1(C, ι) is a fine covering of C. Furthermore, let E be a Borel set contained in C and
suppose A ⊆ 1(C, ι) is a fine covering of E . Defining A∗

:= {Q ∈ A : Q is maximal}, the identity⋃
Q∈A Q =

⋃
Q∈A∗ Q is trivially satisfied and thus the family A∗ is still a covering of E . The maximality

of the elements of A∗ implies that they are pairwise disjoint and thus 1(C, ι) is a φ-Vitali relation in the
sense of [Federer 1969, §2.8.16]. Therefore, thanks to [Federer 1969, Theorem 2.9.11], we deduce that

lim
Q→x

φ(C ∩ Q)
φ(Q)

= 1, (102)

for φ-almost every x ∈ C . For any j ∈ N, define the functions fj (x) := φ(C ∩ Qj (x))/φ(Qj (x)),
where Qj (x) is the unique cube of the generation 1φj (ϑ, γ ) containing x . Identity (102) implies that
lim j→∞ fj (x)= 1 for φ-almost every x ∈ C and thus, the Severini–Egoroff theorem concludes that we
can find a compact subset C1 of C such that φ(C \ C1) ≤ ε4φ(C) and fj (x) converges uniformly to 1
on C1. This proves (i) and (ii) at once. □

Theorem 2.30. Let C1 be the compact set from Proposition 2.29. Then there exists a cube Q′
∈1(C1, 2ι1)

such that Q′
∩ C1 is an intrinsic Lipschitz graph of positive φ-measure.
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Proof. For any Q0 ∈ M(C1, 2ι1), Theorem 2.28 and Proposition 2.29 imply that

SQ−1(P5(Q0)(Q0 ∩ C))≥
diam QQ−1

0

2AQ−1
0

. (103)

Therefore, for any Q0 ∈ M(C1, 2ι1) we let B(Q0) be the family of the maximal cubes Q ∈1(C1, 2ι1)
contained in Q0 for which

SQ−1(P5(Q0)(E(ϑ, γ )∩ Q)) <
diam QQ−1

4C2
5 AQ−1

0

, (104)

and we define B(Q0) :=
⋃

Q∈B(Q0)
Q.

The first step of the proof of the theorem is to show that the projection of B(Q0) has small measure,
or more precisely, that

φ(C ∩ [Q0 \ B(Q0)]) >
φ(Q0)

8ϑC1C5 AQ−1
0

, for any Q0 ∈ M(C1, 2ι1). (105)

Throughout this paragraph we shall assume that Q0 ∈ M(C1, 2ι1) is fixed. The maximality of the
elements of B(Q0) implies that they are pairwise disjoint and since by definition we have Q∩E(ϑ, γ ) ̸=∅,
for any Q ∈ B(Q0) Remark A.3 yields

SQ−1(P5(Q0)(E(ϑ, γ )∩ Q)) <
diam QQ−1

4C2
5 AQ−1

0

≤
φ(Q)

4C5 AQ−1
0

. (106)

Thanks to the fact that C ⊆ E(ϑ, γ ), Propositions 1.18 and 1.31 allow us to infer that

φ(C ∩ [Q0 \ B(Q0)])≥
SQ−1(C ∩ [Q0 \ B(Q0)])

ϑ
≥

SQ−1(P5(Q0)(C ∩ [Q0 \ B(Q0)]))

2c(5(Q0))ϑ
. (107)

On the other hand, thanks to (103) we conclude that

SQ−1(P5(Q0)(C ∩ [Q0 \ B(Q0)]))≥ SQ−1(P5(Q0)(C ∩ Q0))−SQ−1(P5(Q0)(E(ϑ, γ )∩ B(Q0)))

≥
diam QQ−1

0

2AQ−1
0

−

∑
Q∈B(Q0)

SQ−1(P5(Q0)(E(ϑ, γ )∩ Q))). (108)

Since by definition Q0 ∩ E(ϑ, γ ) ̸=∅, Remark A.3, (106), (108) and the fact that the cubes in B(Q0) are
disjoint imply that

SQ−1(P5(Q0)(C ∩ [Q0 \ B(Q0)]))≥
φ(Q0)

2C5 AQ−1
0

−
1

4C5 AQ−1
0

∑
Q∈B(Q0)

φ(Q)

=
φ(Q0)

2C5 AQ−1
0

−
1

4C5 AQ−1
0

φ(B(Q0)). (109)
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Putting together (107) and (109), we eventually deduce that

2c(5(Q0))ϑφ(C ∩ [Q0 \ B(Q0)])≥
φ(Q0)

2C5 AQ−1
0

−
1

4C5 AQ−1
0

φ(B(Q0))

=
φ(Q0)

4C5 AQ−1
0

+
1

4C5 AQ−1
0

φ(Q0 \ B(Q0)), (110)

where the last equality above follows from the inclusion B(Q0)⊆ Q0. Inequality (110) together with the
fact that c(5(Q0))≤ C1, see Proposition 1.18, immediately implies (105).

Now that (105) is proved, the second step in the proof is to construct a cube Q′
∈1(C1, 2ι1) disjoint

from
⋃

Q0∈M(C1,2ι1) B(Q0) such that φ(C1 ∩ Q′) > 0. Every subcube of Q′ contained in 1(C1, 2ι1) thus
enjoys a big projections property, and this is what in the end allows us to prove that C1 ∩ Q′ is contained
in an intrinsic Lipschitz graph. Since the elements of M(C1, 2ι1) are pairwise disjoint and their union
covers C1, we infer that

φ

(
C1 \

⋃
Q0∈M(C1,2ι2)

B(Q0)

)

= φ

( ⋃
Q0∈M(C1,2ι1)

C1 ∩ [Q0 \ B(Q0)]

)
=

∑
Q0∈M(C1,2ι1)

φ(C1 ∩ [Q0 \ B(Q0)])

≥

∑
Q0∈M(C1,2ι1)

φ(C ∩ [Q0 \ B(Q0)])−φ((C \ C1)∩ Q0)

(106)
≥

( ∑
Q0∈M(C1,2ι1)

φ(Q0)

8ϑC1C5 AQ−1
0

)
−φ(C \ C1)≥

φ(C1)

8ϑC1C5 AQ−1
0

− ε4φ(C). (111)

Therefore, the choice of ε4, Proposition 2.29 and (111) imply that

φ

(
C1 \

⋃
Q0∈M(C1,2ι2)

B(Q0)

)
≥

1 − ε4

8ϑC1C5 AQ−1
0

φ(C)− ε4φ(C)≥
φ(C)

16ϑC1C5 AQ−1
0

. (112)

Inequality (112) implies that there must exist a cube Q′

0 ∈M(C1, 2ι1) such that φ
(
C1 \

⋃
Q∈B(Q′

0)
Q

)
> 0.

Defining G to be the set of maximal cubes in 1(C1, 2ι1) \B(Q′

0) contained in Q′

0, we can find at least a
cube Q′

∈ G for which φ(C1 ∩ Q′) > 0. Furthermore, thanks to the maximality of the elements in B(Q′

0)

and the fact that Q′
∩ B(Q′

0)= ∅, we also deduce that any subcube of Q′ cannot satisfy (104).

In the final step of the proof we show that C1 ∩ Q′ is contained in an intrinsic Lipschitz graph. Indeed,
we claim that

x−1
1 x2 ∈ C5(Q′

0)
(2α0), for any x1, x2 ∈ C1 ∩ Q′, (113)

where α0 was defined in Proposition 2.11. Fix x1, x2 ∈ C1 ∩ Q′, and note that there exists a unique j ∈ N

such that

Rγ−12− j N+5
≤ d(x1, x2)≤ Rγ−12−( j−1)N+5. (114)
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For i = 1, 2 we let Qxi be the unique cubes in the j-th layer of cubes 1φj (ϑ, γ ) for which xi ∈ Qxi .
Suppose Q′

∈1
φ

j̄
(ϑ, γ ) and note that Theorem A.2 (iv) and (114) imply that

Rγ−12− j N+5
≤ d(x1, x2)≤ diam Q′

≤ γ−12− j̄ N+5. (115)

The chain of inequalities (115) implies that j̄ ≤ j and thus by Theorem A.2 (i) we infer that Qxi ⊆ Q′

for i = 1, 2. Furthermore, thanks to Theorem A.2 (ii) and (v), for i = 1, 2 we have

R diam Qxi ≤ Rγ−12− j N+5
≤ d(x1, x2)≤ Rγ−12−( j−1)N+5

= 2N+6γ−1 R2− j N−1
≤ 2N+6ζ−2 R diam Qxi , (116)

since by construction Qx1 ∈ 1(ϑ, γ ). In addition to this, since as already remarked Qxi ∈ 1(C1, 2ι1),
Lemma 2.16 implies that α(Qxi )≤ ε2 for i = 1, 2. Furthermore, the construction of Q′ ensures that for
any cube Q ∈1(C1, 2ι1) contained in Q′, we have

SQ−1(P5(Q′

0)
(E(ϑ, γ )∩ Q))≥

diam QQ−1

4C2
5 AQ−1

0

. (117)

This proves that the hypotheses of Proposition 2.11 are satisfied and thus x1 ∈ x2C5(Q′

0)
(2α0). Finally,

C1 ∩ Q′ is proved to be contained in an intrinsic Lipschitz graph by means of Proposition 1.37. □

Remark 2.31. Note that the proof of Theorem 2.1 is an immediate consequence of Theorem 2.30.

3. The support of 1-codimensional measures with almost-flat tangents is intrinsic rectifiable

A careful examination of the arguments of Section 2 shows that in order to prove Theorem 2.1, we never
fully exploited the fact that φ-almost everywhere we have TanQ−1(φ, x) ⊆ M. Indeed, we used the
flatness of tangents just to show that there exists a set C with large φ-measure on which the 1-Wasserstein
distance between φ and some flat measure — below a certain (uniform on C) scale — is smaller than some
fixed constant, which in the specific case of Section 2 is in essence ε2. See for instance Proposition 2.14
and Lemma 2.16. This quantified closeness to flat measures is sufficient to construct the cones that yield
the intrinsic rectifiability property of the set C. This is a typical phenomena occurring even in Euclidean
spaces that has been observed explicitly in [David and Semmes 1993a, §II.2.1 Remark 2.5] and less
explicitly in [Preiss 1987, Lemma 5.2].

In this section we aim to show how to modify the arguments of Section 2 in order to prove the intrinsic
rectifiability of asymptotically AD-regular measures with almost flat tangents.

Throughout this section we let δ ∈ N be a fixed natural number and ψ be a fixed Radon measure on G

whose support is a compact set K and such that for ψ-almost every x ∈ G we have

(H1′) δ−1
≤2Q−1

∗
(ψ, x)≤2Q−1,∗(ψ, x)≤ δ,

(H2′) lim supr→0 dx,r (ψ,M) < 4−(Q+1)2ε2(2δ).

In the following we will make extensive use of constants, parameters and sets introduced in Notation 2.8
specializing them for the measure ψ . For clarity, we stress if not explicitly mentioned throughout this
section we will always assume that σ := 2δ.
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The first step in the understanding of the structure of ψ is to show that for any k > 0 the limit
lim supr→0 dx,kr (ψ,M) can be read as the maximum distance from flat measures among all the elements
of TanQ−1(ψ, x) inside B(0, k):

Proposition 3.1. For ψ-almost all x ∈ G and any k > 0 we have

lim sup
r→0

dx,kr (ψ,M)= sup{d0,k(ν,M) : ν ∈ TanQ−1(ψ, x)}.

Proof. Fix a point x ∈ K where TanQ−1(ψ, x) ̸= ∅ and where assumptions (H1′) and (H2′) hold. Recall
that this choice of x can be made without loss of generality thanks to Proposition 1.26. Suppose {ri }i∈N

is an infinitesimal sequence such that limi→∞ dx,kri (ψ, x) = lim supr→0 dx,kr (ψ, x) and assume up to
nonrelabeled subsequences that there exists a ν ∈ TanQ−1(ψ, x) such that

r−(Q−1)
i Tx,riψ ⇀ ν.

As a first step let us prove that lim supr→0 dx,kr (ψ,M)≤ d0,k(ν,M). For any 0<η< 1 we let2SQ−1⌞V
be an element of M such that F0,k(ν,2SQ−1⌞V )/kQ ≤ d0,k(ν,M)+ η. With this choice, thanks to the
triangle inequality, we infer that

lim sup
i→∞

d0,k(r
−(Q−1)
i Tx,riψ,M)≤ lim sup

i→∞

F0,k(r
−(Q−1)
i Tx,riψ,2SQ−1⌞V )

kQ

≤ lim sup
i→∞

F0,k(r
−(Q−1)
i Tx,riψ, ν)+ F0,k(ν,2SQ−1⌞V )

kQ

≤ d0,k(ν,M)+ η, (118)

where the last inequality comes from the choice of 2 and V and Proposition 1.23. The arbitrariness of η
concludes the proof of the first claim.

As a second and final step of the proof, fix a µ∈TanQ−1(ψ, x) and show that lim supr→0 dx,kr (ψ,M)≥

d0,k(µ,M). Since µ ∈ TanQ−1(ψ, x), we can find an infinitesimal sequence {ri }i∈N such that

r−(Q−1)
i Tx,riψ ⇀µ.

Furthermore, for any 0 < η < 2−(Q+1)(δ−1
− 2−Qε2(2δ)) and any i ∈ N there exists a 2i > 0 and a

Vi ∈ Gr(Q− 1) such that

F0,k(r
−(Q−1)
i Tx,riψ,2iSQ−1⌞Vi )

kQ
≤ d0,k(r

−(Q−1)
i Tx,riψ,M)+ η = dx,kri (ψ,M)+ η,

where the last identity above comes from Proposition 2.3 (i).
Our next task is to show that there exists a compact subinterval I of (0,∞) such that {2i }i∈N ⊆ I.

Thanks to assumption (H2′) on ψ , there exists an i0 ∈ N such that we have dx,kri (ψ,M)≤ 4−(Q+1)2ε2(2δ),
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for any i ≥ i0. This implies for any i ≥ i0 that∣∣∣∣∫ g(w) d
Tx,riψ(w)

rQ−1
i

−2i

∫
g(w) dSQ−1⌞Vi (w)

∣∣∣∣ ≤ F0,k(r
−(Q−1)
i Tx,riψ,2iSQ−1⌞Vi )

≤ 4−(Q+1)2ε2(2δ)kQ + ηkQ, (119)

where g(x) := max{k − d(0, x), 0}. Thanks to the definition of g and to (119) we infer that

2i 2−QkQ −
kψ(B(x, kri ))

rQ−1
i

≤2i

∫
B(0,k/2)

g(w) dSQ−1⌞Vi (w)−

∫
B(0,k)

k
dTx,riψ(w)

rQ−1
i

≤

∣∣∣∣2i

∫
g(w) dSQ−1⌞Vi (w)−

∫
g(w)

dTx,riψ(w)

rQ−1
i

∣∣∣∣ ≤ 4−(Q+1)2ε2(2δ)kQ + ηkQ. (120)

On the other hand, a similar argument shows that

k
2
ψ(B(x, kri/2))

rQ−1
i

−2i kQ

=

∫
B(0,k/2)

k
2

dTx,riψ(y)

rQ−1
i

−2i

∫
g(y) dSQ−1⌞Vi (y)

≤

∣∣∣∣∫ g(y)
dTx,riψ(y)

rQ−1
i

−2i

∫
g(y) dSQ−1⌞Vi (y)

∣∣∣∣ ≤ 4−(Q+1)2ε2(2δ)kQ + ηkQ. (121)

Rearranging inequality (120) and dividing both sides by
( 1

2 k
)Q, thanks to the choice of x and to the

arbitrariness of i , we have

lim sup
i→∞

2i ≤ 2Q lim sup
i→∞

ψ(B(x, kri ))

(kri )Q−1 + 2−(Q+1)ε2(2δ)+ 2Qη ≤ 2Q(δ+ 1)+ 2−(Q+1)ε2(2δ), (122)

where the second last inequality comes from the fact that (H1′) is satisfied at x and the last inequality
from the fact that η < 1.

Similarly, rearranging inequality (121) and dividing both sides by kQ, thanks to the arbitrariness of i ,
we infer that

2−Qδ−1
≤
2Q−1

∗
(ψ, x)

2Q
≤

1
2Q

lim inf
i→∞

ψ(B(x, kri/2))
(kri/2)Q−1 ≤ lim inf

i→∞

2i + 4−(Q+1)2ε2(2δ)+ η. (123)

On the other hand, (123) and the choice of η imply that

0< 2−(Q+1)(δ−1
− 2−Qε2(2δ))≤ 2−Q(δ−1

− 2−Qε2(2δ))− η ≤ lim inf
i→∞

2i , (124)

where the first inequality comes from the choice of ε2(2δ) and the second inequality from that of η. The
bounds (122) and (124) together imply that up to taking a nonrelabeled subsequence of {2i }i∈N we can
assume that the 2i converge to some 2 ∈ [2−(Q+1)(δ−1

− 2−Qε2(2δ)), 2Q(δ+ 1)+ 2−(Q+1)ε2(2δ)].
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Without loss of generality, we can assume that there exists a V ∈ Gr(Q− 1) such that n(Vi )→ n(V ).
Since under such an assumption Proposition 1.32 implies that 2iSQ−1⌞Vi ⇀2SQ−1⌞V , the triangle
inequality implies for any i ∈ N that

d0,k(µ,M)

≤
F0,k(µ, r

−(Q−1)
i Tx,riψ)+ F0,k(r

−(Q−1)
i Tx,riψ,2iSQ−1⌞Vi )+ F0,k(2iSQ−1⌞Vi ,2SQ−1⌞V )

kQ

≤
F0,k(µ, r

−(Q−1)
i Tx,riψ)

kQ
+ d0,k(r

−(Q−1)
i Tx,riψ,M)+ η+

F0,k(2iSQ−1⌞Vi ,2SQ−1⌞V )
kQ

.

Finally, thanks to the arbitrariness of i and of η and to Proposition 1.23, we infer that

d0,k(µ,M)≤ lim sup
i→∞

d0,k(r
−(Q−1)
i Tx,riψ,M). □

The following result is the analogue of Proposition 2.14 for ψ as it serves the same purpose, i.e., find a
compact subset C̃ of K in such a way that ψ⌞C̃ is essentially an AD-regular measure and the functions
x 7→ dx,4kr (ψ,M) have small supremum norms on C̃ provided r is small enough.

Proposition 3.2. There exist an ι̃0 ∈ N and a γ̃ ∈ N such that for any µ≥ 8C4(2δ)δ we can find a ν ∈ N

and a compact set C̃ ⊆ E
ψ

2δ,γ̃ (µ, ν) such that

(i) ψ(K \ C̃)≤ 2ε1ψ(K ),

(ii) dx,4k(2δ)r (ψ,M)+ dx,4k(2δ)r (ψ⌞Eψ(2δ, γ̃ ),M) ≤ 4−Q(Q+1)ε2(2δ) for any 0 < r < 2−ι̃0 N (2δ)+5/γ̃

and any x ∈ C̃ ,

where ε2(2δ) is the constant introduced in Notation 2.8 and ε1 is chosen in the same way as it was in
Notation 2.5.6

Proof. First of all, thanks to Propositions 1.28 and 1.30 we can find a γ̃ ∈ N and a ν ∈ N such that
ψ(K \ E

ψ

2δ,γ̃ (µ, ν))≤ ε1ψ(K ). Let us now prove that

lim sup
r→0

dx,4k(2δ)r (ψ⌞Eψ(2δ, γ̃ ),M)≤ 4−(Q+1)2ε2(2δ), for ψ-almost every x ∈ Eψ(2δ, γ̃ ).

Recall that for ψ-almost every x ∈ Eψ(2δ, γ̃ ), we have that TanQ−1(ψ⌞Eψ(2δ, γ̃ ), x)= TanQ−1(ψ, x).
Thanks to this, Proposition 3.1 yields

lim sup
r→0

dx,4k(2δ)r (ψ⌞Eψ(2δ, γ̃ ),M)≤ lim sup
r→0

Fx,4k(2δ)r (ψ⌞Eψ(2δ, γ̃ ), ψ)
(4k(2δ)r)Q

+ dx,4k(2δ)r (ψ,M)

= lim sup
r→0

dx,4k(2δ)r (ψ,M)≤ 4−(Q+1)2ε2(2δ),

for ψ-almost every x ∈ Eψ(2δ, γ̃ ), where the identity in the last line comes from hypothesis (H1′) and
the Lebesgue differentiation theorem of [Heinonen et al. 2015, page 77]. Therefore, for ψ-almost every

6The reader should notice that the objects and symbols introduced in Notation 2.5 were specific to the measure φ. However,
ε1 was just required to be a positive real number smaller than 1/10.
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x ∈ Eψ(2δ, γ̃ ) there exists an r(x) > 0 such that for every 0< r < r(x),

dx,4k(2δ)r (ψ,M)+ dx,4k(2δ)r (ψ⌞Eψ(2δ, γ̃ ),M)≤ 4−Q(Q+1)ε2(2δ).

For any j ∈ N, let us define Ej := {x ∈ E
ψ

2δ,γ̃ (µ, ν) : r(x) > 1/j} and show that the Ej are Borel sets.
Thanks to Proposition 2.3 (ii), the map x 7→ dx,r (ψ,M)+ dx,r (ψ⌞Eψ(2δ, γ̃ ),M) is continuous and thus
for any r > 0 the set �r := {y ∈ E

ψ

2δ,γ̃ (µ, ν) : dy,r (ψ,M)+ dy,r (ψ⌞Eψ(2δ, γ̃ ),M) < 4−Q(Q+1)ε2(2δ)}
is relatively open in E

ψ

2δ,γ̃ (µ, ν). In particular, if x ∈ �r for any r ∈ (0, 1/j)∩ Q we have r(x) > 1/j
thanks to Proposition 2.3 (iv) and hence x ∈ Ej . On the other hand, if x ∈ Ej then obviously x ∈�r for
any 0< r < 1/j . Since E

ψ

2δ,γ̃ (µ, ν) is compact, this shows that the sets Ej are Gδ and thus Borel. Let us
note that since ψ-almost every x ∈ E

ψ

2δ,γ̃ (µ, ν) is contained in some Ej , thanks to the existence of r(x),
we infer that

ψ

(
E
ψ

2δ,γ̃ (µ, ν) \
⋃
j∈N

Ej

)
= 0. (125)

Finally, (125) together with the measurability of the nested sets Ej implies that we can find a j ∈ N big
enough and a compact set C̃ contained in Ej satisfying items (i) and (ii). □

As in the case of Proposition 2.14, one can impose slightly different conditions on the measure and
obtain a family of cubes satisfying the same thesis as Lemma 2.16. From here on we will employ all the
notations introduced in Notation 2.8.

Proposition 3.3. Fixing µ ≥ 8C4(2δ)δ if γ̃ , ι̃0, ν ∈ N and C̃ ⋐ E
ψ

2δ,γ̃ (µ, ν) are the natural numbers
and the compact set yielded by Proposition 3.2, respectively, and defining ι̃ := max{ι̃0, ν} for any
cube Q ∈ 1ψ(C̃; 2δ, γ̃ , ι̃), we have that α(Q) ≤ ε2(2δ) and for any such cube Q there is a plane
5(Q) ∈ Gr(Q− 1) for which

(i) sup
w∈Eψ (2δ,γ̃ )∩B(c(Q),k(2δ) diam Q/2)

dist(w, c(Q)5(Q))
2k(2δ) diam Q

≤ C2(2δ)ε2(2δ)1/Q, and

(ii) for any w ∈ B
(
c(Q), 1

2 k(2δ) diam Q
)
∩ c(Q)5(Q) we have

Eψ(2δ, γ̃ )∩ B(w, 3k(2δ)C2(2δ)ε2(2δ)1/(Q+1) diam Q) ̸= ∅.

Proof. Thanks to Proposition 3.2, we can find a γ̃ ∈ N and a compact set C̃ contained in Eψ(2δ, γ ) such
that

(i) ψ(K \ C̃)≤ 2ε1ψ(K ), where ε1 was introduced in Notation 2.5,

(ii) dx,4k(2δ)r (ψ,M)+ dx,4k(2δ)r (ψ⌞Eψ(2δ, γ ),M) ≤ 4−Q(Q+1)ε2(2δ) for any 0 < r < 2−ι̃0 N (2δ)+5/γ

and any x ∈ C̃ .

Thus, if 1ψ(2δ, γ̃ ) is the family of dyadic cubes relative to the parameters 2δ, γ̃ and the measure ψ
yielded by Theorem A.2, one can prove that the cubes of 1ψ(C̃; 2δ, γ̃ , ι̃) satisfy (i) and (ii) by using
verbatim the argument we employed in the proof of Lemma 2.16. □
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As remarked at the beginning of this section, the arguments we used to prove Propositions 2.21
and 2.27, Lemmas 2.25 and 2.26 and Theorem 2.28 just relied on the possibility of proving Lemma 2.16
for the measure φ. Proposition 3.3 is the counterpart of Lemma 2.16 for the measure ψ where ϑ has
been substituted by 2δ, γ by γ̃ , and so on. Therefore, repeating the proofs of Section 2C for ψ and its
associated parameters and compact set C̃ , one can show the following:

Theorem 3.4. For any cube Q ∈1ψ(C̃; 2δ, γ̃ , ι̃) such that (1 − ε3(2δ))φ(Q)≤ φ(Q ∩ C̃), we have

SQ−1(P5(Q)(Q ∩ C̃))≥
diam QQ−1

2AQ−1
0

.

Remark 3.5. Similar to what we did in Proposition 2.29, we can construct a compact subset C̃1 of C̃
and an ι̃1 ∈ N satisfying (i) and (ii) of Proposition 2.29, provided ε3 is substituted with ε3(2δ), ε4 with
ε4(2δ) := min{ε1, (64δC1C5(2δ)AQ−1

0 (2δ))−1
} and 1(C, ι) with 1ψ(C̃; 2δ, γ, ι̃1).

The above remark allows us to construct the ψ-positive intrinsic Lipschitz graph that will be used to
prove Theorem 4.2 in Section 4.

Theorem 3.6. Let C̃1 be as in Remark 3.5. Then there exists a cube Q′
∈1ψ(C̃1; 2δ, γ, 2ι̃1) such that

Q′
∩ C̃1 is an intrinsic Lipschitz graph of positive ψ-measure.

Proof. Thanks to Propositions 3.2, 3.3, Remark 3.5 and Theorem 3.4, the argument we used to prove
Theorem 2.30 can be applied here verbatim. □

4. Conclusions and discussion of the results

In this section we use the main result of Section 2, i.e., Theorem 2.1, to deduce a number of consequences.
First of all we prove the main result of the paper, Theorem 4.1, which is a 1-codimensional extension of the
Marstrand–Mattila rectifiability criterion to general Carnot groups. Secondly, we provide in Corollary 4.3
a rigidity result for finite perimeter sets in Carnot groups: we are able to show that if locally a finite
perimeter set is not too far from its natural tangent plane, then its boundary is an intrinsic rectifiable
set; see Definition 1.40. Eventually, we use Theorem 4.1 to prove a 1-codimensional version of Preiss’s
rectifiability theorem in the Heisenberg groups Hn.

4A. Main results. In this subsection we finally conclude the proof of the main results of this work.

Theorem 4.1. Suppose φ is a Radon measure on G and let d̃( · , · ) be a left-invariant, homogeneous
distance on G. Assume further that for φ-almost all x ∈ G we have

(i) 0< lim inf
r→0

φ(B̃(x, r))
rQ−1 ≤ lim sup

r→0

φ(B̃(x, r))
rQ−1 <∞,

where B̃(x, r) is the ball relative to the metric d̃ centered at x of radius r > 0,

(ii) TanQ−1(φ, x)⊆ M, where M is the family of 1-codimensional flat measures from Definition 1.7.

Then φ is absolutely continuous with respect to SQ−1 and φ-almost all of G can be covered with countably
many C1

G
-hypersurfaces.
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Proof. Since d̃ is bi-Lipschitz equivalent to d , see for instance Corollary 5.15 in [Bonfiglioli et al. 2007],
hypothesis (i) implies that

0<2Q−1
∗

(φ, x)≤2Q−1,∗(φ, x) <∞, (126)

for φ-almost every x ∈ G. For any ϑ, γ, R ∈ N we define

E(ϑ, γ, R) := {x ∈ B(0, R) : ϑ−1rQ−1
≤ φ(B(x, r))≤ ϑrQ−1 for any 0< r < 1/γ }.

It is possible to prove, with the same arguments used in the proof of Proposition 1.28, that the E(ϑ, γ, R)
are compact sets and

φ

(
G \

⋃
ϑ,γ,R

E(ϑ, γ, R)
)

= 0. (127)

Thus, if A is an SQ−1-null Borel set, Proposition 1.31 yields

φ(A)≤

∑
ϑ,γ,R∈N

φ(A ∩ E(ϑ, γ, R))≤

∑
ϑ,γ,R∈N

ϑ2Q−1SQ−1(A ∩ E(ϑ, γ, R))= 0.

The above computation proves that φ is absolutely continuous with respect to SQ−1 and just to fix
notations we let ρ ∈ L1(SQ−1) be such that φ = ρSQ−1.

As a second step, we show that φ-almost all of G can be covered with countably many intrinsic Lipschitz
graphs. Assume by contradiction there are ϑ, γ, R ∈ N for which we can find a subset of E(ϑ, γ, R) of
positive φ-measure that we denote by E(ϑ, γ, R)u (following the notations of Corollary 1.42) and that has
SQ−1-null intersection with any intrinsic Lipschitz graph. Thanks to Corollary 2.9.11 of [Federer 1969]
it is immediate to see that

ϑ−1
≤2Q−1

∗
(φ⌞E(ϑ, γ, R)u, x)≤2Q−1,∗(φ⌞E(ϑ, γ, R)u, x)≤ ϑ,

for φ-almost every x ∈ E(ϑ, γ, R)u. Further, from Proposition 1.27, for φ-almost every x ∈ E(ϑ, γ, R)u,
we infer that TanQ−1(φ⌞E(ϑ, γ, R)u, x)⊆ M. And since its hypothesis is satisfied, Theorem 2.1 implies
that there exists an intrinsic Lipschitz graph 0 such that φ(0 ∩ E(ϑ, γ, R)u) > 0. However, this is not
possible since Proposition 1.31 would yield

0< φ(0 ∩ E(ϑ, γ, R)u)≤ ϑ2Q−1SQ−1(E(ϑ, γ, R)u ∩0),

and this contradicts the fact that E(ϑ, γ, R) intersects in a SQ−1-null set every intrinsic Lipschitz graph.
Up to this point we have shown that, for any choice of ϑ, γ, R, we have that SQ−1-almost all of the

sets E(ϑ, γ, R) are covered by countably many intrinsic Lipschitz graphs. Furthermore, since φ ≪ SQ−1,
thanks to (127) we conclude that φ-almost all of G can be covered by countably many intrinsic Lipschitz
graphs. This concludes the first part of the proof of the theorem.

So far we have shown that we can find countably many intrinsic Lipschitz graphs that cover φ-almost all
of G. Since by Remark B.7 we know that intrinsic Lipschitz graphs are boundaries of finite perimeter sets,
if G is a group where boundaries of finite perimeter sets are C1

G
-rectifiable, the proof of the proposition

would be completed here. In the moment of writing some broad families of Carnot groups where
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De Giorgi’s rectifiability theorem is known to hold include step 2 groups (see [Franchi et al. 2003]),
groups of type * (see [Marchi 2014]) and groups of diamond type (see [Le Donne and Moisala 2021]).

In this paragraph, we assume that ϑ, γ, R ∈ N are fixed. Thanks to Proposition 1.31 we infer that
SQ−1⌞E(ϑ, γ, R) is mutually absolutely continuous with respect to φ⌞E(ϑ, γ ) and in particular that

ϑ−1
≤ ρ(x)≤ ϑ2Q−1 for SQ−1-almost every x ∈ E(ϑ, γ, R).

Let {γi }i∈N be the sequence of intrinsic Lipschitz functions γi : Wi → N(Wi ) for which

φ

(
E(ϑ, γ, R) \

⋃
i∈N

gr(γi )

)
= 0,

and let Ei := epi(γi ) be the epigraph of the function γi which is defined in (142). Since SQ−1⌞gr(γi )

and |∂Ei |G
7 are asymptotically doubling measures by [Franchi and Serapioni 2016, Theorem 3.9] and

Theorems B.6 and B.8, respectively, we deduce thanks to Proposition 1.27 that for φ-almost every
x ∈ E(ϑ, γ, R)∩ gr(γi ) we have

M ⊇ TanQ−1(φ⌞E(ϑ, γ, R)∩ gr(γi ), x)= ρ(x)TanQ−1(SQ−1⌞gr(γi ), x)

= ρ(x)d(x)TanQ−1(|∂Ei |G, x), (128)

where d is the density yielded by Remark B.7. Finally, Proposition B.16 implies that

TanQ−1(φ⌞E(ϑ, γ, R)∩ gr(γi ), x)⊆ ρ(x)d(x){λSQ−1⌞Vi (x) : λ ∈ [L−1
G
, l−1

G
]}, (129)

for φ-almost every x ∈ E(ϑ, γ, R)∩ gr(γi ), where Vi (x) ∈ Gr(Q− 1) is the plane orthogonal to nEi (x),
the generalized inward normal introduced in Definition B.4, and the constants lG and LG are those yielded
by Theorem B.6. We now prove that (129) implies that for SQ−1-almost every x ∈ gr(γi )∩ E(ϑ, γ, R)
and every α > 0 we have

lim
r→0

SQ−1(gr(γi )∩ E(ϑ, γ, R)∩ B(x, r) \ x XVi (x)(α))

rQ−1 = 0, (130)

where XVi (x)(α) := {w ∈ G : dist(w, Vi (x))≤ α∥w∥}. Thanks to (128) and (129), for SQ−1-almost every
x ∈ gr(γi )∩ E(ϑ, γ, R) and any sequence rj → 0, there exists a λ > 0 for which

Tx,rSQ−1⌞E(ϑ, γ, R)∩ gr(γi )

rQ−1
j

⇀λSQ−1⌞Vi (x). (131)

The convergence in (131) implies that

lim
i→∞

SQ−1⌞gr(γi )∩ E(ϑ, γ, R)(B(x, rj ) \ x XVi (x)(α))

rQ−1
j

= lim
i→∞

Tx,rj (SQ−1⌞gr(γi )∩ E(ϑ, γ, R))(B(0, 1) \ XVi (x)(α))

rQ−1
j

= λ(SQ−1⌞Vi (x))(B(0, 1) \ XVi (x)(α))= 0, (132)

7With |∂Ei |G we denote as usual the perimeter measure associated to Ei .



982 ANDREA MERLO

where the second last identity above comes from the fact that SQ−1(Vi (x)∩ ∂B(0, 1) \ XVi (x)(α)) = 0
and [De Lellis 2008, Proposition 2.7].

Proposition B.17 and (130) together imply that each one of the intrinsic Lipschitz graphs gr(γi )∩

E(ϑ, γ, R) can be covered SQ−1-almost all with C1
G

-surfaces. In particular this shows that for any ϑ, γ, R
the set E(ϑ, γ, R) can be covered SQ−1-almost all, and thus φ-almost all, by countably many C1

G
-surfaces.

This, the arbitrariness of ϑ, γ, R ∈ N and (127) conclude the proof of the theorem. □

The following theorem trades off the regularity of tangents, which are assumed only to be close enough
to flat measures, with a strengthened hypothesis on the (Q−1)-density of φ.

Theorem 4.2. Suppose φ is a Radon measure on G and let d̃( · , · ) be a left-invariant, homogeneous
distance on G. If there exists a δ ∈ N such that

δ−1 < lim inf
r→0

φ(B̃(x, r))
rQ−1 ≤ lim sup

r→0

φ(B̃(x, r))
rQ−1 < δ for φ-almost every x ∈ G, (133)

where B̃(x, r) is the ball relative to the metric d̃ centered at x of radius r > 0, then we can find an
ε(δ, d̃) > 0 such that, if

lim sup
r→0

dx,r (φ,M)≤ ε(δ, d̃) for φ-almost every x ∈ G,

then φ is absolutely continuous with respect to SQ−1, and φ-almost all of G can be covered with countably
many intrinsic Lipschitz surfaces.

Proof. The first step in the proof is to note that since the metric d̃ and d are bi-Lipschitz equivalent, there
exists a constant c> 1, which we can assume without loss of generality to be a natural number, such that

(cδ)−1 < lim inf
r→0

φ(B(x, r))
rQ−1 ≤ lim sup

r→0

φ(B(x, r))
rQ−1 < cδ for φ-almost every x ∈ G.

If we let ε(δ, d̃) := 4−Q(Q+1)ε2(cδ) then the verbatim repetition of the first part of the argument used to
prove Theorem 4.1, where instead of Theorem 2.1 we make use of Theorem 3.6, proves the claim. □

An immediate consequence of Theorem 4.2 is the following:

Corollary 4.3. Let ϑG := max{l−1
G
, LG}, where lG and LG are the constants yielded by Theorem B.6, and

suppose �⊆ G is a finite perimeter set such that

lim sup
r→0

dx,r (|∂�|G,M)≤ ε(ϑG, d) for |∂�|G-almost every x ∈ G,

where ε(ϑG, d) is the constant yielded by Theorem 4.2 and d is the metric introduced in Definition 1.4.
Then |∂�|G-almost all of G can be covered with countably many intrinsic Lipschitz surfaces.

Proof. Theorem B.6 implies that lG < 2
Q−1
∗

(|∂�|G, x) ≤ 2Q−1,∗(|∂�|G, x) < LG for φ-almost every
x ∈ G. Theorem 4.2 directly implies the statement. □

As mentioned at the beginning of this section, the main application of Theorem 4.1 is an extension of
Preiss’s rectifiability theorem to 1-codimensional measures in Hn.
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Theorem 4.4. Suppose d is the Koranyi metric in Hn and φ is a Radon measure on Hn such that

0<22n+1(φ, x) := lim
r→0

φ(B(x, r))
r2n+1 <∞, for φ-almost every x ∈ Hn. (134)

Then φ is absolutely continuous with respect to S2n+1, and φ-almost all of Hn can be covered with
C1

Hn -surfaces.

Proof. Thanks to Theorem 1.2 of [Merlo 2022], the almost sure existence of the limit in (134) implies
that Tan(φ, x)⊆ M, for φ-almost every x ∈ G. Thanks to Theorem 4.1, this proves the claim. □

4B. Discussion of the results. Theorem 4.1 shows that C1
G

-rectifiability in Carnot groups can be char-
acterized by the same conditions on the densities and on the tangents as the Lipschitz rectifiability in
Euclidean spaces. With this in mind we introduce the following two definitions:

Definition 4.5 (P-rectifiable measures). Suppose that φ is a Radon measure on some Carnot group G

endowed with a left-invariant and homogeneous metric d , and let m be a positive integer. We say that φ
is Pm-rectifiable if

(i) 0<2m
∗
(φ, x)≤2m,∗(φ, x) <∞, for φ-almost every x ∈ G,

(ii) Tanm(φ, x)⊆ {λµx : λ > 0}, for φ-almost every x ∈ G, where µx is some Radon measure on G.

Remark 4.6. It was already remarked by P. Mattila [2005] that Definition 4.5 may be considered the
correct notion of rectifiability in H1; see the last paragraph of that work.

Remark 4.7. Instead of condition (ii) of Definition 4.5, we can assume without loss of generality that
µx = Hm⌞V (x) for some V (x) ∈ Gr(m), where Gr(m) is the family of m-dimensional homogeneous
subgroups of G introduced in Definition 1.7. This is due to Theorem 3.2 of [Mattila 2005] and Theorem 3.6
of [Onishchik 1993]: the former result tells us that µx must be the Haar measure of a closed, dilation-
invariant subgroup of G and the latter that such subgroup is actually a Lie subgroup.

Definition 4.8 (P∗-rectifiable measures). Suppose that φ is a Radon measure on some Carnot group G

endowed with a left-invariant and homogeneous metric d , and let m be a positive integer. We say that φ
is P∗

m-rectifiable if

(i) 0<2m
∗
(φ, x)≤2m,∗(φ, x) <∞, for φ-almost every x ∈ G,

(ii) Tanm(φ, x)⊆ M(m), for φ-almost every x ∈ G.

The difference between Definitions 4.5 and 4.8 is that in the former the tangent to φ is the same plane
at every scale, while in the latter the tangents are planes that may vary at different scales. Although there
is no a priori reason for which these definition should be equivalent in general, we see that our main
result, Theorem 4.1, may be rewritten as follows:

Theorem 4.9. Suppose φ is a Radon measure on G. Then the following are equivalent:

(i) φ is PQ−1-rectifiable.

(ii) φ is P∗

Q−1-rectifiable.
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(iii) φ is absolutely continuous with respect to HQ−1, and φ-almost all of G can be covered with countably
many C1

G
-hypersurfaces.

The notion of P-rectifiable measures is also relevant since in different contexts it appears to imply
the right notion of rectifiability. This is summarized in the following theorem, which is an immediate
consequence of the Euclidean Marstrand–Mattila rectifiability criterion and Theorem 4.1:

Theorem 4.10. The following two statements hold:

(i) A Radon measure φ on Rn is Pm-rectifiable if and only if it is Euclidean m-rectifiable;

(ii) A Radon measure φ on G is PQ−1-rectifiable if and only if it is a 1-codimensional C1
G

-rectifiable
measure.

In [Mattila et al. 2010], P. Mattila, F. Serra Cassano and R. Serapioni proved in Theorems 3.14 and 3.15
that whenever a good notion of regular surface is available in the Heisenberg group, provided the tangents
are selected carefully (see Definition 2.16 of the aforementioned work), a Pm-rectifiable measure is also
rectifiable with respect to the family of regular surfaces of the right dimension. However, because of the
algebraic structure of the group Hn, there is not an a priori (known) good notion of regular surface that
includes the vertical line V := {(0, 0, t) : t ∈ R}. For this reason the uniform measure S2⌞V is considered
to be nonrectifiable from the standpoint of [Mattila et al. 2010]. Up to this point Haar measures of not
complemented homogeneous subgroups (like the vertical line V in H1) were considered nonrectifiable and
thus prevented a possible extension of Preiss’s theorem to low dimension even in H1. This was already
remarked in [Chousionis and Tyson 2015]. On the other hand, we have the following theorem:

Theorem 4.11. Let φ be a Radon measure on H1 such that for φ-almost every x ∈ H1 we have

0<22(φ, x) := lim
r→0

φ(B(x, r))
r2 <∞,

where B(x, r) are the metric balls with respect to the Koranyi metric. Then φ is P2-rectifiable.

Proof. This follows from Proposition 2.2 of [Merlo 2022] and Theorem 1.4 of [Chousionis et al. 2020]. □

As remarked in the previous paragraph, to our knowledge, there is not a good candidate of rectifiability
in Carnot groups in the literature for which the density problem may have a positive answer. On the other
hand, Theorems 4.4, 4.10 and 4.11 encourage us to state the density problem in Carnot groups in the
following way:

Density Problem. Suppose φ is a Radon measure on the Carnot group G. Then there exists a left-invariant
distance d on G such that the following are equivalent:

(i) There exists an α > 0 such that for φ-almost every x ∈ G we have

0<2α(φ, x) := lim
r→0

φ(B(x, r))
rα

<∞.

(ii) α ∈ {0, . . . ,Q}, and φ is Pα- rectifiable.
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Neither one of the implications of the formulation of the density problem has an easy solution. In
[Antonelli and Merlo 2022a], the current author and G. Antonelli proved the implication (ii) ⇒ (i) of the
Density Problem when the tangent measures to φ are supported on complemented subgroups.

Furthermore, as already observed in [Merlo 2022], if d is a left-invariant distance coming from a
polynomial norm on G with the same argument used in [Kirchheim and Preiss 2002] and later on in
[Chousionis and Tyson 2015], it is possible to show that if (i) in the Density Problem holds, then α ∈ N.
In Rn this implies, thanks to Theorem 3.1 of [Ahmadi et al. 2019], that there is an open and dense set �
in the space of norms (with the distance induced by the Hausdorff distance of the unit balls) for which,
for any ∥ · ∥ ∈�, Marstrand’s theorem holds.

Appendix A. Dyadic cubes

Throughout this section we assume φ to be a fixed Radon measure on the Carnot group G, supported on a
compact set K , and such that

0< lim inf
r→0

φ(B(x, r))
rQ−1 ≤ lim sup

r→0

φ(B(x, r))
rQ−1 <∞, for φ-almost every x ∈ G. (135)

There are many constructions in the literature of such dyadic cubes for Radon measures both in Euclidean
and in (rather general) metric spaces; see for instance [Christ 1990]. In this section we state the existence
of a family of dyadic cubes for φ, we list their properties and we prove a number of consequences.

Throughout this Appendix, we will always assume that ξ and τ are two fixed natural numbers such
that φ(Eφ(ξ, τ )) > 0, where the set Eφ(ξ, τ ) was defined in Proposition 1.28.

Definition A.1. For any subset A of G and any δ > 0, we let

∂(A, δ) := {u ∈ A : dist(u, K \ A)≤ δ} ∪ {u ∈ K \ A : dist(u, A)≤ δ},

where we recall that K is the compact set supporting the measure φ.

For the rest of this subsection, we simplify the expressions of the constants introduced in Notation 2.8 to

N := N (ξ), ζ := ζ(ξ), C4 := C4(ξ), C5 := C5(ξ), C6 := C6(ξ).

The construction of the dyadic cubes for the measure φ under the hypothesis (135) can be performed
with a very similar approach to that employed for AD-regular measures in [David 1991, Appendix 1].
However, since (135) is a weaker condition than the AD-regularity, the construction needs some tweaks.
For the sake of completeness we recall that a dyadic lattice for general Radon measures in the Euclidean
spaces was constructed in [David and Mattila 2000, Section 3] and that such proof still follows pretty
closely the argument of [David 1991, Appendix 1].

In order to adapt the construction in [David 1991], one reduces to discussing the properties of those
cubes that intersect the set Eφ(ξ, τ ), where the measure φ behaves locally as an AD-regular measure; see
items (iii) and (v) of Theorem A.2 where a uniform bound on the lower density of the measure is crucially
exploited. Items (i) and (ii) hold by construction while (iv) can be seen as a fancy way of saying that
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since φ is a radon measure, almost every sphere has null measure. For a complete construction of these
cubes we refer to the version of this paper that can be found in the arXiv [Merlo 2020, Subsection A.3].

Theorem A.2. There are disjoint partitions {1
φ
j (ξ, τ )} j∈N, usually called layers, of K having the

following properties:

(i) If j ≤ j ′, Q ∈1
φ
j (ξ, τ ) and Q′

∈1
φ

j ′(ξ, τ ), then either Q contains Q′ or Q ∩ Q′
= ∅.

(ii) If Q ∈1
φ
j (ξ, τ ), we have diam(Q)≤ 2−N j+5/τ .

(iii) If Q ∈1
φ
j (ξ, τ ) and Q ∩ Eφ(ξ, τ ) ̸= ∅, then C−1

4 (2−N j/τ)Q−1
≤ φ(Q)≤ C4(2−N j/τ)Q−1.

(iv) If Q ∈1
φ
j (ξ, τ ), we have φ(∂(Q, ζ 22−N j/τ))≤ C4ζ(2−N j/)Q−1.

(v) If Q ∈1
φ
j (ξ, τ ) and Q∩Eφ(ξ, τ ) ̸=∅, there exists a c(Q)∈ Q such that B(c(Q), ζ 22−N j−1/τ)⊆ Q.

We define 1φ(ξ, τ ) :=
⋃

{Q : Q ∈1
φ
j (ξ, τ ) for some j ∈ N} and call it the family of all dyadic cubes.

Remark A.3. Part (iii) of Theorem A.2 can be rephrased in the following useful way. Recalling that
C5(ξ)= C4(32ζ−2)Q−1 and putting together Theorem A.2 (ii), (iii) and (v) we infer that

(iii)′ if Q ∩ Eφ(ξ, τ ) ̸= ∅, then C−1
5 diam QQ−1

≤ φ(Q)≤ C5 diam QQ−1.

The families of cubes yielded by Theorem A.2 may have the annoying property that for a fixed cube
Q ∈1

φ
j (ξ, τ ), the only subcube of Q in the layer1φj+1(ξ, τ ) contained in Q is just Q itself. The following

proposition shows that this is not much of a problem for the cubes intersecting Eφ(ξ, τ ).

Proposition A.4. Recall that given two cubes Q1, Q2 ∈1φ(ξ, τ ), if Q2 is the smallest cube for which
Q1 ⊊ Q2, then Q2 is said to be the parent of Q1.

Suppose Q∗
∈1

φ
j (ξ, τ ) is the parent of some cube Q ∈1

φ
j+κ(ξ, τ ) such that Q ∩ Eφ(ξ, τ ) ̸= ∅. Then

κ < ⌊2 log2 C4/N (Q− 1)⌋ + 1 and
diam Q∗

diam Q
≤ C6.

Proof. Suppose Q̃ is the ancestor of the cube Q contained in the layer 1φj ′(ξ, τ ) for some j ′ for which
j ′

− j ≥ ⌊2 log2 C4/N (Q−1)⌋+1. Then Q̃ ∩ Eφ(ξ, τ ) ̸=∅, and thanks to Theorem A.2 (i) and (iii), we
infer that

φ(Q̃ \ Q)= φ(Q̃)−φ(Q)≥ C−1
4

(
2− j N

τ

)Q−1

− C4

(
2− j ′ N

τ

)Q−1

= C−2
4

(
2− j N

τ

)Q−1

(1 − C2
42−( j ′

− j)N (Q−1)) > 0, (136)

where the last inequality above comes from the choice of j ′
− j. It is immediate to see that inequality (136)

implies that Q is strictly contained in Q̃. Therefore, the parent cube of Q must be contained in some
1
φ

j ′−κ(ξ, τ ) with 0 ≤ κ < ⌊2 log C4/N (Q− 1)⌋ + 1. Hence, thanks to Theorem A.2 (v), we infer that

diam Q∗
≤ 2−N j+5/τ = 2Nκ+6ζ−2

· ζ 22−N ( j+κ)−1/τ ≤ 2Nκ+6ζ−2 diam Q

≤ 22 log C4/(Q−1)+N+6ζ−2 diam Q = C6 diam Q. □
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The following result tells us that item (v) of Theorem A.2 in some cases can be strengthened to
assuming that the center of the cube c(Q) is contained in Eφ(ξ, τ ).

Proposition A.5. Assume µ ∈ N is such that µ≥ 4C4ξ . Then, for any cube Q ∈1φ(E
φ
ξ,τ (µ, ν); ξ, τ, ν),

we can find a c(Q) ∈ Eφ(ξ, τ )∩ Q such that

B
(
c(Q), 1

64ζ
2 diam Q

)
∩ K ⊆ Q.

Remark A.6. Recall that the set E
φ
ξ,τ (µ, ν) was introduced in Proposition 1.29 and 1φ(κ; ξ, τ, ν) in

Notation 2.8.

Proof. In order to prove the proposition it suffices to show that

Eφ(ξ, τ )∩ Q \ ∂
(
Q, 1

32ζ
2 diam Q

)
̸= ∅. (137)

In order to fix ideas, we let j ≥ ν be such that Q ∈ 1
φ
j (ξ, τ ) and note that since Q ∩ Eφ(ξ, τ ) ̸= ∅,

thanks to Theorem A.2 (ii), (iii) and (iv), we have

φ
(
Eφ(ξ, τ )∩ Q \ ∂

(
Q, 1

32ζ
2 diam Q

))
≥ φ(Eφ(ξ, τ )∩ Q)−φ

(
∂
(
Q, 1

32ζ
2 diam Q

)) A.2 (ii)
≥ φ(Eφ(ξ, τ )∩ Q)−φ(∂(Q, ζ 22− j N/τ))

A.2 (iv)
≥ φ(Eφ(ξ, τ )∩ Q)− C4ζ(2− j N/τ)Q−1

= φ(Q)−φ(Q \ Eφ(ξ, τ ))− C4ζ(2− j N/τ)Q−1

A.2 (iii)
≥ φ(Q)−φ(Q \ Eφ(ξ, τ ))− C2

4ζφ(Q). (138)

Since Q ∈1φ(E
φ
ξ,τ (µ, ν); ξ, τ, ν), we have diam Q ≤ 2−Nν+5/τ and there exists a w ∈ E

φ
ξ,τ (µ, ν)∩ Q.

Therefore, the definition of E
φ
ξ,τ (µ, ν) and Theorem A.2 (iii) imply that

φ(Q \ Eφ(ξ, τ ))≤ φ(B(w, 2− j N+5/τ) \ Eφ(ξ, τ ))≤ µ−1φ(B(w, 2− j N+5/τ))

≤ µ−1ξ(2− j N+5/τ)Q−1
≤ C4µ

−1ξφ(Q). (139)

Putting together (138) and (139), we conclude that

φ(Eφ(ξ, τ )∩ Q \ ∂(Q, ζ 2 diam Q))≥ (1 − C4µ
−1ξ − C2

4ζ )φ(Q)≥
1
4φ(Q),

where the last inequality follows from the fact that C2
4ζ = 248Qξ 2

· 2−50Qξ−2
≤

1
2 and C4µ

−1ξ ≤
1
4 . This

proves (137) and in turn the proposition. □

Appendix B. Finite perimeter sets in Carnot groups

Throughout this second appendix if not otherwise stated, we will always endow G with the box metric d
introduced in Definition 1.4.

Finite perimeter sets and their blow ups. In this subsection we recall the definitions of functions of
bounded variation and finite perimeter sets, and we collect from various papers some results that will be
useful throughout the paper.
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Definition B.1. We say that a function f : G → R is of local bounded variation if f ∈ L1
loc(G) and

∥∇G f ∥(�) := sup
{∫

�

f (x) divG ϕ(x) dx : ϕ ∈ C1
0(�, HG), |ϕ(x)| ≤ 1

}
<∞,

for any bounded open set � ⊆ G, where divG ϕ :=
∑n1

i=1 X iϕi and where X1, . . . , Xn1 are the vector
fields introduced in Definition 1.33. We denote by BVG,loc(G) the set of all functions of locally bounded
variation. As usual a Borel set E ⊆ G is said to be of finite perimeter if χE is of bounded variation.

The following result is a classical application of Riesz’s representation theorem:

Theorem B.2. If f is a function of bounded variation, then ∥∇G f ∥ is a Radon measure on G. More-
over, there exists a ∥∇G f ∥-measurable horizontal section σ f : G → HG such that |σ f (x)| = 1 for
∥∇G f ∥-almost every x ∈ G and for any open set � we have∫

�

f (x) divG ϕ(x) dx =

∫
�

⟨ϕ, σ f ⟩ d∥∇G f ∥, for every ϕ ∈ C1
0(�, HG).

As in the Euclidean spaces functions of bounded variation are compactly embedded in L1.

Theorem B.3 [Franchi et al. 2003, Theorem 2.16]. The set BVG,loc(G) is compactly embedded in L1
loc(G).

Definition B.4. If E ⊆ G is a Borel set of locally finite perimeter, we let |∂E |G := ∥∇GχE∥. Furthermore,
we call the horizontal vector nE(x) := σχE (x) the generalized horizontal inward G-normal to ∂E . Finally,
we define the reduced boundary ∂∗

G
E to be the set of those x ∈ G for which

(i) |∂E |G(B(x, r)) > 0 for any r > 0,

(ii) limr→0 /
∫

B(x,r) nE d|∂E |G exists,

(iii) limr→0
∣∣/∫B(x,r) nE d|∂E |G

∣∣
Rn1 = 1.

The following lemma on the scaling of the perimeter will come in handy later on.

Lemma B.5. Assume E is a set of finite perimeter in G and let x ∈ G and r > 0. Then

|∂(δ1/r (x−1 E))|G = r−(Q−1)Tx,r |∂E |G.

Proof. For any ϕ ∈ C1
0(G, HG), any x ∈ G and any r > 0, defining ϕ̃(z) := ϕ(δ1/r (x−1z)), we have the

identity
divG ϕ̃(z)= r−1 divG ϕ(δ1/r (x−1z)). (140)

This, indeed, is due to the fact that

X j ϕ̃j (z) := lim
h→0

ϕ̃j (zδh(ej ))− ϕ̃j (z)
h

= lim
h→0

ϕj (δ1/r (x−1zδh(ej )))−ϕj (δ1/r (x−1z))
h

= r−1 X jϕj (δ1/r (x−1z)).

Thanks to identity (140) and the fact that the Lebesgue measure is a Haar measure for G, we infer that∫
χδ1/r (x−1 E)(y) divG ϕ(y) dy = r−Q

∫
χE divG ϕ(δ1/r (x−1 y)) dy = r−(Q−1)

∫
χE(y) divG ϕ̃(y) dy.
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It is not hard to see that ϕ ∈ C1
0(�, HG) if and only if ϕ̃ ∈ C1

0(xδr�, HG), and thus for any open set �
we have

|∂(δ1/r (x−1 E))|G(�)= r−(Q−1)
|∂E |G(xδr�)= r−(Q−1)Tx,r |∂E |G(�). □

Theorem B.6 [Ambrosio et al. 2009, Theorem 4.16]. Let E ⊆ G be a set of locally finite perimeter. Then
|∂E |G is asymptotically doubling, and more precisely the following holds. For |∂E |G-almost every x ∈ G

there exists an r̄(x) > 0 such that

lGrQ−1
≤ |∂E |G(B(x, r))≤ LG2−(Q−1)rQ−1, for any r ∈ (0, r̄(x)), (141)

where the constants lG and LG depend only on G and the metric d and |∂E |G is concentrated on ∂∗

G
E, i.e.,

|∂E |G(G \ ∂∗

G
E)= 0.

Remark B.7. Proposition 1.31 and Theorem B.6 imply that lGSQ−1⌞∂∗

G
E ≤ |∂E |G ≤ LGSQ−1⌞∂∗

G
E.

Therefore, the measures SQ−1⌞∂∗

G
E and |∂E |G are mutually absolutely continuous. In particular there

exists a d ∈ L1(|∂E |G) such that
SQ−1⌞∂∗

G E = d|∂E |G,

and for |∂E |G-almost every x ∈ G we have L−1
G

≤ d(x)≤ l−1
G

.

Theorem B.8 [Franchi and Serapioni 2016, Theorem 3.9]. If f : V → N(V ) is an intrinsic Lipschitz
map, the epigraph of f ,

epi( f ) := {v ∗ δt(n(V )) : t < ⟨π1 f (v), n(V )⟩}, (142)

is a set with locally finite G-perimeter.

Since the topological boundary of epi( f ) coincides with gr( f ), thanks to [Franchi and Serapioni 2016,
Theorem 3.9], we infer that |∂ epi( f )|G(G\∂∗

G
epi( f ))= |∂ epi( f )|G(gr( f )\∂∗

G
epi( f ))= 0. In particular,

thanks to Remark B.7, we deduce the following proposition:

Proposition B.9. SQ−1(gr( f ) \ ∂∗

G
epi( f ))= 0.

It is convenient to associate a normal vector field to the graph of every intrinsic Lipschitz function
f : V → N(V ).

Definition B.10. For any intrinsic Lipschitz function f : V →N(V ), we denote by n f : ∂∗

G
epi( f )→ HG

the inward inner G-normal of epi( f ).

Tangents measures versus tangent sets to finite perimeter sets. In this subsection we connect the notion
of tangent sets to finite perimeter sets, which is extensively used in the theory of finite perimeter sets, to
the notion of tangent measures. This will help us to prove that if the perimeter measure associated to the
boundary of a finite perimeter set has flat tangents, then it has a unique tangent that coincides with the
plane in Gr(Q− 1) orthogonal to the normal.

Definition B.11 (tangent sets). Let E ⊆ G be a set of locally finite perimeter and assume x ∈ ∂∗

G
E . We

denote by Tan(E, x) the limit points in the topology of the local convergence in measure of the sets
{δ1/r (x−1 E)}r>0 as r → 0.
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For a proof of the following proposition, we refer to [Ambrosio et al. 2009] and in particular to
Proposition 5.3.

Proposition B.12. If E is a set of finite perimeter, for SQ−1-almost every x ∈ ∂∗

G
E we have

(i) Tan(E, x) ̸= ∅,

(ii) the elements of Tan(E, x) are sets of locally finite perimeter sets,

(iii) for any F ∈ Tan(E, x), that nF (y)= nE(x) for |∂F |G-almost every y ∈ G.

The following proposition is a characterization of the tangent measures of perimeter measures.

Proposition B.13. If E is a set of locally finite perimeter, for |∂E |G-almost every x ∈ ∂∗

G
E we have the

following:

(i) If {ri }i∈N is an infinitesimal sequence such that δ1/ri (x
−1 E) converges locally in measure to some

Borel set L , then L is a finite perimeter set and r−(Q−1)
i Tx,ri |∂E |G ⇀ |∂L|G. In particular, if

L ∈ Tan(E, x), then |∂L|G ∈ TanQ−1(|∂E |G, x).

(ii) If ν ∈ TanQ−1(|∂E |G, x), then there is an L ∈ Tan(E, x) such that ν = |∂L|G.

Proof. Let us first prove (i). From now on, thanks to Proposition B.12, we can assume without loss of
generality that x is a fixed point where properties (i), (ii) and (iii) of Proposition B.12 hold. Fix now an
open and bounded set � of G and note that, defining Ei := δ1/ri (x

−1 E), we have

∥χEi ∥L1(�) + ∥∇GχEi ∥(�)≤ Ln(�)+ r−(Q−1)
i |∂E |G(xδri�). (143)

The above bound implies that χEi is a compact sequence in L1(�) thanks to Theorems B.3 and B.6 and
thus the sets Ei converge in L1(�) to some locally finite perimeter set E which must coincide Ln-almost
everywhere with L inside �, by the uniqueness of the limit in measure. This implies in particular that for
any ϕ ∈ C1

0(�, HG) we have

lim
i→0

∫
�

⟨ϕ, nEi ⟩ d|∂Ei |G = lim
i→0

∫
χEi ∩�(y) divG ϕ(y) dy

=

∫
χL∩�(y) divG ϕ(y) dy =

∫
�

⟨ϕ, nL⟩ d|∂L|G. (144)

The above identity (144) implies in particular that nEi |∂Ei |G⌞�⇀nL |∂L|G⌞�. However, the arbitrariness
of � and the well-known fact that the weak convergence implies the convergence of the total variations
implies that |∂Ei |G⇀ |∂L|G. The second part of the statement of (i) follows immediately from Lemma B.5.

We now prove (ii). We can assume without loss of generality that x = 0 satisfy the thesis of Theorem B.6
and that {ri } is an infinitesimal sequence such that

r−(Q−1)
i Tx,ri |∂E |G ⇀ν ∈ TanQ−1(|∂E |G, x).

Now let Ei := δ1/ri (E), so that |∂Ei |G = rQ−1
i T0,ri |∂E |G. For any open and bounded set � we can find

an R > 0 such that �⊆ B(0, R). Therefore, thanks to Theorem B.3, we have

|∂(δ1/ri (x
−1 E))|G(�)≤|∂(δ1/ri (x

−1 E))|G(B(0, R))=r−(Q−1)
i Tx,ri |∂E |G(B(0, R))=

|∂E |G(B(x, Rri ))

rQ−1
i

.
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Since we assumed that Theorem B.6 holds at x , we have

lim sup
i→∞

|∂(δ1/r (x−1 E))|G(�)≤ lim sup
i→∞

|∂E |G(B(x, Rri ))

rQ−1
i

≤ LG RQ−1.

Thus, thanks to Theorem B.3, the sequence {δ1/ri (x
−1 E)}i∈N is precompact in L1

loc(G) and since we
assumed δ1/ri (x

−1 E) converges locally in measure to L , we have that δ1/ri (x
−1 E) converges in L1

loc(G)

to L . In particular, thanks to Theorem 2.17 of [Franchi et al. 2003], we infer that L is of local finite
perimeter. Thus, by definition of the tangent sets, we have L ∈ Tan(E, 0), and thanks to item (i),
we conclude that r−(Q−1)

i T0,ri |∂E |G ⇀ |∂L|G. Thanks to the uniqueness of the limit we conclude
that |∂L|G = ν. □

Proposition B.14. If E is an open set of finite perimeter in G, for SQ−1-almost any x ∈ ∂E and any
L ∈ Tan(E, x) we have Ln(L \ int(L))= 0. In particular, the measures |∂L|G and |∂(int(L))|G coincide
on Borel sets.

Proof. This proposition follows for instance from Proposition B.12 and [Bellettini and Le Donne 2021,
Theorem 1.1]. □

Remark B.15. Let V± := {w ∈ G : ±⟨n(V ), w⟩ > 0}. Thanks to (2.8) in [Ambrosio et al. 2009], it is
immediate to see that V± are open sets of locally finite perimeter in G and that ∂V± = ∓n(V )Hn−1

eu ⌞V .
This implies that the horizontal normal of each of the half spaces determined by V coincides, up to a
sign, |∂V±|G-almost everywhere with n(V ).

Proposition B.16. Let V ∈ Gr(Q− 1) and f : V → N(V ) be an intrinsic Lipschitz function. Suppose
that E is a compact subset of gr(γ ) such that

TanQ−1(|∂ epi( f )|G, x)⊆ M, for |∂ epi( f )|G-almost every x ∈ E .

Then for |∂ epi( f )|G-almost every x ∈ E , we have

TanQ−1(|∂ epi( f )|G, x)⊆ {λSQ−1⌞V (x) : λ ∈ [L−1
G
, l−1

G
]},

where V (x) ∈ Gr(Q− 1) is the plane orthogonal to n f (x), which is the normal to gr( f ) introduced in
Definition B.10, and where the constants lG and LG were introduced in Theorem B.6.

Proof. Proposition B.13, the asymptotic AD-regularity of the perimeter and Lebesgue’s differentiation
theorem at [Heinonen et al. 2015, page 77] imply that for SQ−1-almost every x ∈ ∂∗

G
epi( f )∩ E and for

every L ∈ Tan(epi( f ), x) we have

|∂L|G = λSQ−1⌞VL ,x for some VL ,x ∈ Gr(Q− 1) and λ > 0. (145)

Furthermore Remark B.7, Proposition 1.8 and a simple computation that we omit, imply that λ ∈ [lG, LG].
Fix now an x ∈ ∂∗ epi( f )∩ E at which (145) holds and that satisfies the thesis of Proposition B.12,

and let L ∈ Tan(epi( f ), x). Thanks to these choices, L is a finite perimeter set with constant horizontal
normal and Proposition B.9 and (145) tell us that its topological boundary must coincide up to SQ−1-null
sets with the plane VL ,x . Therefore, since by Proposition B.14 we can assume without loss of generality
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that L is an open set, we conclude that L must coincide with one of the two half-spaces determined
by VL ,x . This implies however, thanks to Remark B.15, that

n(VL ,x)= nL(y) for SQ−1-almost every y ∈ ∂L . (146)

Furthermore, Proposition B.12 (iii) and (146) imply that n(VL ,x)= nL(y)= n f (x) for SQ−1-almost all
y ∈ ∂L . This shows however that for SQ−1-almost all x ∈ gr( f )∩ E , every element of Tan(epi( f ), x) is a
half-space whose boundary is the plane orthogonal to n f (x) and Proposition B.13 concludes the proof. □

Proposition B.17. Suppose E is a compact subset of V and let γ : E ⊆ V → N(V ) be an intrinsic
Lipschitz function such that for SQ−1-almost every x ∈ E there exists a plane Vγ (x) ∈ Gr(Q− 1) for
which

lim
r→0

SQ−1(gr(γ )∩ B(xγ (x), r) \ xγ (x)XVγ (xγ (x))(α))

rQ−1 = 0 (147)

whenever α > 0, and where XVγ (xγ (x))(α) := {w ∈ G : dist(w, V (xγ (x))) ≤ α∥w∥}. Then gr(γ ) can be
covered with countably many C1

G
-surfaces.

Proof. Since the graph map x 7→ x ∗ γ (x) is continuous, let us notice that the set gr(γ ) is compact and
for any i ∈ N let us define the sets

Ai := {x ∈ gr(γ ) : (147) holds at x and SQ−1(B(x, r)∩ gr(γ ))≥ 2−1L−1
G

lGrQ−1 for any 0< r < 1/ i}.

As a first step in the proof, we show that the Ai are SQ−1⌞gr(γ )-measurable. It is immediate to see that
if we show that the set

Ãi := {x ∈ gr(γ ) : SQ−1(B(x, r)∩ gr(γ ))≥ 2−1L−1
G

lGrQ−1 for any 0< r < 1/ i}

is closed, the measurability of Ai immediately follows since (147) holds on a set of full SQ−1⌞gr(γ )-
measure. Since gr(γ ) is closed, to prove the closedness of Ãi it is sufficient to show that if a sequence
{xj } j∈N ⊆ Ãi converges to some x ∈ gr(γ ), then x ∈ Ãi . So, let 0< r < 1/ i and note that if d(x, xj ) < r
we have

2−1L−1
G

lG(r − d(x, xj ))
Q−1

≤ SQ−1⌞gr(γ )(B(xj , r − d(x, xj )))≤ SQ−1⌞gr(γ )(B(x, r)).

The arbitrariness of j implies that for any 0< r < 1/ i we have SQ−1⌞gr(γ )(B(x, r))≥ 2−1L−1
G

lGrQ−1,
proving that x ∈ Ãi .

We now prove that the sets Ai cover SQ−1-almost all gr(γ ). Thanks to Theorem 1.38 we can extend γ
to an intrinsic Lipschitz function γ̃ : V → N(V ). Recall now that gr(γ̃ ) is the boundary of the set of
locally finite perimeter epi(γ̃ ). Thanks to Theorem B.6, this implies that for |∂ epi(γ̃ )|G-almost every
x ∈ G there exists a r̄(x) > 0 such that for any 0< r < r̄(x) we have

LGSQ−1⌞gr(γ̃ )(B(x, r))≥ |∂ epi(γ̃ )|G(B(x, r))≥ lGrQ−1,

where the first inequality above comes from Remark B.7. In addition, thanks to [Franchi and Serapioni
2016, Theorem 3.9], [Heinonen et al. 2015, Theorem 3.4.3] and to the Lebesgue differentiation theorem
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that can be found in [Heinonen et al. 2015, page 77], we deduce that

2Q−1
∗

(SQ−1⌞gr(γ ), x)=2Q−1
∗

(χgr(γ )SQ−1⌞gr(γ̃ ), x)=2Q−1
∗

(SQ−1⌞gr(γ̃ ), x)≥ L−1
G

lG, (148)

for SQ−1⌞gr(γ )-almost every x ∈ G. From (148), we infer that for SQ−1⌞gr(γ )-almost every x ∈ G

there exists an r(x) > 0 such that SQ−1(B(x, r) ∩ gr(γ )) ≥ 2−1L−1
G

lGrQ−1 for any 0 < r < r(x).
Therefore, if r(x) > 1/ i and (147) holds at x , then x ∈ Ai and this concludes the proof of the fact that
SQ−1

(
gr(γ ) \

⋃
i∈N Ai

)
= 0.

For any i, j ∈ N and any x ∈ Ai , we let

ρi, j (x) := sup
{

|⟨nγ (x), π1(x−1 y)⟩|
d(x, y)

: y ∈ Ai and 0< d(x, y) < 1/j
}
.

We remark that the functions ρi, j are measurable for any i, j ∈ N. Indeed, on the one hand the func-
tion (x, y) 7→ |⟨nγ (x), π1(x−1 y)⟩|/d(x, y) is SQ−1⌞gr(γ )-measurable since it is the quotient of two
SQ−1⌞gr(γ )-measurable functions. On the other, since G is separable, it is immediate to see that ρi, j can
be rewritten as the supremum on y over a countable subset of B(x, δ)∩ Ai showing that ρi, j is indeed
measurable. We want to prove that for any i ∈ N and any x ∈ Ai we have

lim
j→∞

ρi, j (x)= 0. (149)

Assume by contradiction this is not the case and that there exists an i ∈ N and a z ∈ Ai for which (149)
fails. Then there is a 0 < c ≤ 1 and an increasing sequence of natural numbers { jk}k∈N such that for
any k ∈ N there is a yk ∈ Ai for which yk ∈ B(z, 1/jk) and |⟨nγ (z), π1(z−1 yk)⟩|> cd(z, yk). Thanks to
Proposition 1.15, we infer that yi ̸∈ zXVγ (z)

( 1
2c

)
; indeed,

dist(Vγ (z), z−1 yk)= |⟨nγ (z), π1(z−1 yk)⟩|> cd(z, yk). (150)

We now claim that for any k ∈ N we have

B
(
yk,

1
4cd(z, yk)

)
⊆ B(z, 2d(z, yk)) \ zXVγ (z)

( 1
4c

)
. (151)

In order to prove the inclusion (151) we fix a k ∈ N and let w := ykv for some v ∈ B
(
yk,

1
8cd(z, yk)

)
.

With these choices Proposition 1.15 and the triangle inequality imply that

dist(Vγ (z), z−1w)= |⟨nγ (z), π1(z−1w)⟩| ≥ |⟨nγ (z), π1(z−1 yk)⟩| − |⟨nγ (z), π1(y−1
k w)⟩|

≥ cd(z, yk)− d(yk, w)≥ cd(z, w)− (1 + c)d(yk, w). (152)

Furthermore, thanks to the choice of w we have

d(yk, w)= ∥v∥ ≤
1
4cd(z, yk)≤

1
4cd(z, w)+

1
4cd(yk, w), (153)

d(z, w)≤ d(z, yk)+ d(yk, w)≤ d(z, yk)+ ∥v∥ ≤
(
1 +

1
8c

)
d(z, yk)≤ 2d(z, yk). (154)

From (152) we infer in particular that (4/c− 1)d(yk, w)≤ d(z, w). This implies in particular that

dist(Vγ (z), z−1w)
(152)
≥ cd(z, w)− (1 + c)d(yk, w)≥ cd(z, w)−

1 + c

4/c− 1
d(z, w)≥

1
4cd(z, w), (155)
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where the last inequality comes from the fact that c ≤ 1. The inclusion (151) follows immediately from
the above bound and (154). Therefore, (151) implies that

lim sup
r→0

SQ−1(gr(γ )∩ B(z, r) \ zXVγ (z)(c/8))
rQ−1

≥ lim
k→∞

SQ−1(gr(γ )∩ B(z, 2d(z, yk)) \ zXVγ (z)(c/8))
(2d(z, yk))Q−1

≥ lim
k→∞

SQ−1(gr(γ )∩ B(yk, cd(z, yk)/8))
2Q−1d(z, yk)Q−1 ≥ lim

k→∞

L−1
G

lG(cd(z, yk)/8)Q−1

2Qd(z, yk)
=

lG

2LG

(
c

16

)Q−1

, (156)

where the second last inequality comes from the fact that yk ∈ Ai for any k and that 1
8cd(z, yk) < 1/ i

definitely. However, since by construction (147) holds at any point of Ai , (156) is in contradiction
with (147) and thus (149) must hold at any x ∈ Ai . Define fi to be the function identically 0 on Ai and
for any ι ∈ N we let Ki (ι) be a compact subset of Ai for which

(i) SQ−1(Ai \ Ki (ι))≤ 1/ι,

(ii) nγ is continuous on Ki (ι),

(iii) ρi, j converges uniformly to 0 on Ki (ι).

The existence of Ki (ι) is implied by Lusin’s theorem and Severini–Egoroff’s theorem. Thanks to Whitney’s
extension theorem, see for instance Theorem 5.2 in [Franchi et al. 2003], we infer that we can find a
C1

G
-function such that fi,ι|K = 0 and ∇H fi,ι(x) = nγ (x) for any x ∈ Ki (ι). This implies that Ai , and

thus gr(γ ), can be covered SQ−1-almost all with C1
G

-surfaces. □
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FINITE-TIME BLOWUP FOR A NAVIER–STOKES MODEL EQUATION FOR THE
SELF-AMPLIFICATION OF STRAIN

EVAN MILLER

We consider a model equation for the Navier–Stokes strain equation which has the same identity for
enstrophy growth and a number of the same regularity criteria as the full Navier–Stokes strain equation,
and is also an evolution equation on the same constraint space. We prove finite-time blowup for this
model equation, which shows that the identity for enstrophy growth and the strain constraint space are not
sufficient on their own to guarantee global regularity for Navier–Stokes. The mechanism for the finite-time
blowup of this model equation is the self-amplification of strain, which is consistent with recent research
suggesting that strain self-amplification, not vortex stretching, is the main mechanism behind the turbulent
energy cascade. Because the strain self-amplification model equation is obtained by dropping certain terms
from the full Navier–Stokes strain equation, we will also prove a conditional blowup result for the full
Navier–Stokes equation involving a perturbative condition on the terms neglected in the model equation.

1. Introduction

The incompressible Navier–Stokes equation is one of the fundamental equations of fluid mechanics.
Although it is over 150 years old, much about its solutions, including the global existence of smooth
solutions, remains unknown. The Navier–Stokes equation is given by

∂t u − 1u + (u · ∇)u + ∇ p = 0,

∇ · u = 0,

(1-1)

where u ∈ R3 is the velocity and p is the pressure. The first equation is a statement of Newton’s second
law, F = ma, where ∂t u + (u · ∇)u gives the acceleration in the Lagrangian frame, 1u describes the
viscous forces due to the internal friction of the fluid, and −∇ p describes the force due to the pressure.
The second equation, the divergence-free constraint, comes from the conservation of mass. We will note
that p is not an independently evolving function, but is determined entirely by u by convolution with the
Poisson kernel,

p = (−1)−1
3∑

i, j=1

∂uj

∂xi

∂ui

∂xj
.

It is possible to state the incompressible Navier–Stokes equation without giving any reference to
pressure at all by making use of the Helmholtz projection onto the space of divergence-free vector fields,
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Keywords: Navier–Stokes, finite-time blowup.
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yielding the equation

∂t u − 1u + Pdf∇ · (u ⊗ u) = 0. (1-2)

Note that we have used the fact that ∇ · (u ⊗ u) = (u · ∇)u because ∇ · u = 0, and the fact that the
Helmholtz decomposition implies that Pdf(∇ p) = 0.

The first major advances towards a rigorous mathematical understanding of the Navier–Stokes equation
came in the seminal paper by Leray [1934]. For all initial data u0

∈ L2
df, Leray proved the global-in-time

existence of weak solutions, in the sense of integrating against smooth test functions, satisfying the energy
inequality, which states that for all t > 0,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ ≤
1
2∥u0

∥
2
L2 .

Unfortunately, while such solutions are well suited to study in the sense that global-in-time existence is
guaranteed for all finite energy initial data, they are not known to be either smooth or unique, leaving
major problems for the well-posedness theory.

The lack of a uniqueness and regularity theory for Leray weak solutions led Fujita and Kato to develop
the notion of mild solutions, which satisfy (1-2) in the sense of Duhamel’s formula. Unlike Leray’s weak
solutions, mild solutions must be both smooth and unique. Fujita and Kato [1964] proved the local-in-time
existence, uniqueness, and smoothness of mild solutions for initial data in Ḣ 1, with the time of existence
bounded below uniformly in the Ḣ 1 norm.

Theorem 1.1. There exists an absolute constant C > 0 such that for all initial data u0
∈ Ḣ 1

df, there
exists Tmax ≥ C/∥u0

∥
4
Ḣ1 and a unique mild solution to the Navier–Stokes equation u ∈ C([0, Tmax); Ḣ 1

df).
Furthermore, we have the higher regularity u ∈ C∞((0, Tmax)×R3). If in addition we have u0

∈ H 1
df, then

the energy inequality holds with equality; that is for all 0 < t < Tmax,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ =
1
2∥u0

∥
2
L2 .

We will note that because mild solutions are smooth and unique, the initial value problem for mild
solutions of the Navier–Stokes equation is locally well posed in Ḣ 1 — and also in a number of larger
spaces; however, it is not known to be globally well posed. Whether the Navier–Stokes equation has
global smooth solutions or admits smooth solutions that blowup in finite time is one of the biggest open
problems in PDEs and one of the Millennium Problems put forward by the Clay Mathematics Institute
[Fefferman 2006].

The main difficulty is that the only bounds that are available on the growth of solutions are the bounds
in L∞

t L2
x and L2

t Ḣ 1
x due to the energy equality, and these bounds are not enough to guarantee the global

existence of smooth solutions because the energy equality is supercritical with respect to the invariant
rescaling of the Navier–Stokes equation. The solution set of the Navier–Stokes equation is preserved
under the rescaling

uλ(x, t) = λu(λx, λ2t),
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for all λ > 0. This means that is not enough to control the L∞
t L2

x - or L2
t Ḣ 1

x -norms of u, which are
supercritical in terms of scaling; in order to guarantee global regularity, we need to control a scale critical
norm. Ladyzhenskaya [1967], Prodi [1959], and Serrin [1962] independently proved a family of scale
critical regularity criteria, which state that if Tmax < +∞ and 2/p + 3/q = 1 with 3 < q ≤ +∞, then∫ Tmax

0
∥u(t)∥p

Lq dt = +∞.

Escauriaza, Seregin and Sv̌erák [Escauriaza et al. 2003] extended this result to the endpoint case q = 3.
They proved that if Tmax < +∞, then

lim sup
t→Tmax

∥u(t)∥L3 = +∞.

Recently, Tao [2021] further extended this regularity criterion giving a quantitative lower bound on the
rate of the blowup of the L3-norm. This result is very slightly supercritical — in fact triple logarithmic —
with respect to scaling, and is the first supercritical regularity criterion for the Navier–Stokes equation.

Two crucially important objects for the study of the Navier–Stokes equation are the strain, which is the
symmetric gradient of the velocity, S = ∇symu, with Si j =

1
2(∂i uj + ∂j ui ), and the vorticity, which is a

vector that represents the antisymmetric part of the velocity and is given by ω = ∇ × u. Physically, the
strain describes how a parcel of the fluid is deformed, while the vorticity describes how a parcel of the
fluid is rotated.

Taking the curl of (1-1), we find the evolution equation for ω is given by

∂tω − 1ω + (u · ∇)ω − Sω = 0.

Taking the symmetric gradient of (1-1), we find the evolution equation for S is given by,

∂t S − 1S + (u · ∇)S + S2
+

1
4ω ⊗ ω −

1
4 |ω|

2 I3 + Hess(p) = 0. (1-3)

We will note that the vorticity equation is invariant under the rescaling

ωλ(x, t) = λ2ω(λx, λ2t),

and the strain equation is invariant under the rescaling

Sλ(x, t) = λ2S(λx, λ2t).

The extra factor of λ comes from the fact that both ω and S scale like ∇u.
The vorticity has been studied fairly exhaustively for its role in the dynamics of the Navier–Stokes

equation. For instance, the Beale–Kato–Majda regularity criterion [Beale et al. 1984], which holds for
smooth solutions of both the Euler and Navier–Stokes equations, states that if Tmax < +∞, then∫ Tmax

0
∥ω( · , t)∥L∞ dt = +∞.

Chae and Choe [1999] proved a regularity criterion on two components of vorticity that has a geometric
significance, guaranteeing that the blowup must be fully three dimensional. They showed that if a smooth
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solution of the Navier–Stokes equation blows up in finite time Tmax < +∞, then for all 3/2 < q < +∞

and 2/p + 3/q = 2, ∫ Tmax

0
∥e3 × ω( · , t)∥p

Lq dt = +∞. (1-4)

The fixed direction condition in this regularity criterion was recently loosened by the author in [Miller
2021]. In another key result involving vorticity, Constantin and Fefferman [1993] proved that the direction
of the vorticity must vary rapidly in regions where the vorticity is large if there is finite-time blowup.
There are many other results involving vorticity, far too many to list here.

The strain equation has been investigated much less thoroughly, but can provide some insights that do
not follow as clearly from the vorticity equation. We will refer to the evolution equation for S in (1-3) as
the Navier–Stokes strain equation. This equation is an evolution equation on the constraint space L2

st, the
space of strain matrices, which replaces the divergence-free constraint for the Navier–Stokes and vorticity
equations. We define L2

st as follows.

Definition 1.2. Define L2
st ⊂ L2(R3

; S3×3) by

L2
st = {∇symu : u ∈ Ḣ 1, ∇ · u = 0}.

The role of this constraint space in the evolution equation (1-3) was examined by the author in [Miller
2020]. One geometric restriction on the matrices S ∈ L2

st is that they must be trace-free because

tr(S) = ∇ · u = 0.

Furthermore, in that paper, the author proved that Hessians and scalar multiples of the identity matrix
must be in the orthogonal compliment of L2

st.

Proposition 1.3. For all f ∈ Ḣ 2(R3) and for all g ∈ L2(R3), we have Hess( f ), gI3 ∈ (L2
st)

⊥. That is for
all S ∈ L2

st,

⟨Hess( f ), S⟩ = 0 and ⟨gI3, S⟩ = 0.

For sufficiently smooth solutions to the Navier–Stokes strain equation, 1
4 |ω|

2, Hess(p) ∈ L2, so we can
conclude that the terms 1

4 |ω|
2 I3 and Hess(p) are orthogonal to the constraint space, or in other words

that 1
4 |ω|

2 I3, Hess(p) ∈ (L2
st)

⊥. This means that the Navier–Stokes strain equation can be expressed in
terms of the projection onto L2

st as

∂t S − 1S + Pst
(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)
= 0. (1-5)

This is analogous to defining the Navier–Stokes equation without any reference to ∇ p by using the
Helmholtz projection onto the space of divergence-free vector fields in (1-2). We will use (1-5) to define
mild solutions to the Navier–Stokes strain equation in Section 3.

It is not actually necessary to separately prove the existence of mild solutions to the strain equation,
as it is straightforward to reduce this problem to the existence of mild solutions of the Navier–Stokes
equation. The author proved the equivalence of these formulations in [Miller 2020].
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Proposition 1.4. A velocity field u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation if

and only if S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain equation, where S = ∇symu

and u = −2 div(−1)−1S.

The strain evolution equation is extremely useful because it allows us to prove a simplified identity
for enstrophy growth, which can equivalently be defined in terms of the square of the L2-norm of S, ω,
or ∇u based on an isometry proved by the author in [Miller 2020].

Proposition 1.5. For all −
3
2 < α < 3

2 and for all S ∈ Ḣα
st ,

∥S∥
2
Ḣα =

1
2∥ω∥

2
Ḣα =

1
2∥∇u∥

2
Ḣα.

Remark 1.6. We should note here that the factor of 1
2 in Proposition 1.5 is entirely an artifact of how the

vorticity is defined. The vorticity is a vector representation of the antisymmetric part of ∇u, with

A =
1
2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

,

where A is the antisymmetric part of ∇u given by Ai j =
1
2(∂i uj −∂j ui ). From this identity we can see that

∥S∥
2
Ḣα = ∥A∥

2
Ḣα ,

so the isometry in Proposition 1.5 tells us that all the Hilbert norms of the symmetric and antisymmetric
parts of the gradient of a divergence-free vector field are equal.

Definition 1.7. Based on the isometry in Proposition 1.5, we will define the enstrophy of a solution to
the Navier–Stokes equation, which can be equivalently expressed as

E(t) = ∥S(t)∥2
L2 =

1
2∥ω(t)∥2

L2 =
1
2∥∇u(t)∥2

L2,

and the energy of a solution of the Navier–Stokes equation, which can be equivalently expressed as

K (t) = ∥S(t)∥2
Ḣ−1 =

1
2∥ω(t)∥2

Ḣ−1 =
1
2∥u(t)∥2

L2 .

Remark 1.8. The energy equality for smooth solutions of the Navier–Stokes equation can be stated in
terms of energy and enstrophy as

K (t) + 2
∫ t

0
E(τ ) dτ = K0.

Enstrophy is a very important quantity because Theorem 1.1 states that a smooth solution of the
Navier–Stokes equation must exist locally in time for initial data in u0

∈ Ḣ 1. This implies that enstrophy
controls regularity, because as long as enstrophy remains bounded on some time interval, a smooth
solution can be continued to some later time.

The standard estimate for enstrophy growth is given in terms of nonlocal interaction of the vorticity
and the strain:

d
dt

1
2
∥ω(t)∥2

L2 = −∥ω∥
2
Ḣ1 + ⟨S, ω ⊗ ω⟩.
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This is a nonlocal identity because S can be determined in terms of ω by a nonlocal, zeroth order
pseudo-differential operator, with S = ∇sym∇ × (−1)−1ω. Using the isometry in Proposition 1.5 and the
evolution equations for both the strain and the vorticity, this identity can be drastically simplified, with
the nonlocal term replaced by a term involving only the determinant of S.

Proposition 1.9. Suppose u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation. Note

that this is equivalent to assuming that S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain

equation. Then for all 0 < t < Tmax,

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S).

This identity was first proven by Neustupa and Penel [2001; 2005]. The analogous result without
the dissipation term −2∥S∥

2
Ḣ1 was later proven independently by Chae [2006] in the context of smooth

solutions of the Euler equation using similar methods to Neustupa and Penel. This identity was also
proven using the evolution equation for the strain, a different approach to that of Neustupa and Penel, by
the author in [Miller 2020]. The identity in Proposition 1.9 directly implies a family of scale-invariant
regularity criteria in terms of the positive part of the middle eigenvalue of S.

Theorem 1.10. Suppose u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution of the Navier–Stokes equation, or

equivalently that S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain equation. Let

λ1(x, t) ≤ λ2(x, t) ≤ λ3(x, t) be the eigenvalues of S(x, t), and let λ+

2 (x, t) = max{0, λ2(x, t)}. Then
for all 3/q + 2/p = 2 and 3/2 < q ≤ +∞, there exists Cq > 0 depending only on q such that for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
.

In particular, if Tmax < +∞, then ∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

This regularity criterion was first proven by Neustupa and Penel [2001; 2005; 2018]. It was also
proven independently by the author in [Miller 2020]. Note that because tr(S) = 0, this regularity criterion
significantly restricts the geometry of any finite-time blowup for the Navier–Stokes equation: any blowup
must be driven by unbounded planar stretching and axial compression, with the strain having two positive
eigenvalues and one very negative eigenvalue.

There are many other conditional regularity results, which guarantee the regularity of solutions as
long as some scale critical quantity remains finite, including regularity criteria involving the derivative in
just one direction ∂3u [Kukavica and Ziane 2007], and involving just one velocity direction u3 [Chemin
and Zhang 2016; Chemin et al. 2017]. For a more thorough, but by no means exhaustive, treatment of
regularity criteria for the Navier–Stokes equation, see Chapter 11 in [Lemarié-Rieusset 2016].

In this paper we will take the opposite approach. We will prove finite-time blowup for solutions of
the Navier–Stokes equation with a fairly broad set of initial data, assuming that a certain scale invariant
quantity related to the structure of the nonlinearity remains small. We will do this first by considering a
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model equation for the Navier–Stokes strain equation and proving finite-time blowup for solutions of this
model equation, and then by viewing the actual Navier–Stokes strain equation as a perturbation of the
model equation.

In order to do this, we will drop the advection and the vorticity terms from the evolution equation (1-5)
entirely, along with a piece of the S2 term so that the enstrophy growth identity in Proposition 1.9 still
holds. We will show that

⟨S, ω ⊗ ω⟩ = −4
∫

det(S) = −
4
3⟨S2, S⟩

and
⟨(u · ∇)S, S⟩ = 0,

and therefore 〈
Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
, S

〉
= 0.

Using this identity, we can rewrite the full Navier–Stokes strain equation as

∂t S − 1S +
2
3 Pst(S2) + Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
= 0.

Dropping the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
from the evolution equation, our strain model equation

will be given by
∂t S − 1S +

2
3 Pst(S2) = 0. (1-6)

We will refer to (1-6) as the strain self-amplification model equation because it isolates the interaction of
the strain with itself, discarding the nonlocal interaction with the vorticity and the effects of advection. In
the model equation, we are dropping a combination of terms that are orthogonal to S in L2, while keeping
the two terms that contribute to the evolution in time of the L2-norm to first order. We will also show that
for solutions of the strain self-amplification model equation we have

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 − 4

∫
det(S),

so the strain self-amplification model equation does in fact have the same identity for enstrophy growth
as the Navier–Stokes equation, and consequently has a regularity criterion for λ+

2 in the critical Lebesgue
spaces L p

t Lq
x entirely analogous to the regularity criterion for the Navier–Stokes equation in Theorem 1.10.

Solutions of this model equation blowup in finite time for a fairly wide range of initial conditions.

Theorem 5.3. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation such that
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0.

Then for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 , (1-7)

where

r0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

2∥S0∥2
L2

.
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Note in particular that this implies

Tmax ≤
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Furthermore, for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Remark 1.11. The key to the proof of Theorem 5.3, which is the main result of this paper, is a 3
2 lower

bound on the rate of enstrophy growth for a wide range of initial conditions. In particular, we will show
that if

g0 :=
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

∥S0∥3
L2

> 0,

then for all 0 < t < Tmax,
d
dt

E(t) > g0 E(t)3/2,

which immediately yields estimate (1-7) in Theorem 5.3.

Remark 1.12. Theorem 5.3 shows that the regularity criterion in Theorem 1.10, which guarantees the
existence of smooth solutions of the Navier–Stokes equation so long as λ+

2 ∈ L p
t Lq

x , is not enough to
guarantee the global existence of smooth solutions to the Navier–Stokes equation just by making use of
the constraint space. For solutions of the strain self-amplification model equation, which is an evolution
equation on L2

st (the constraint space), λ+

2 becomes unbounded in this whole family of scale critical
spaces. The regularity criterion on λ+

2 implies that the blowup for the Navier–Stokes equation must be
characterized by unbounded planar stretching and axial compression, corresponding to a strain matrix with
two positive eigenvalues and one very negative eigenvalue in turbulent regions. One physical example of
such a structure in turbulent fluids is two colliding jets. The blowup result for the strain self-amplification
model equation shows that a blowup with these features is possible within the relevant constraint space.

Because we chose our strain self-amplification model equation (1-6) by dropping some terms from the
full strain equation, we can prove a new conditional blowup result for the full Navier–Stokes equation, by
viewing the actual strain equation as a perturbation of the strain self-amplification model equation.

Theorem 6.1. Suppose u ∈ C([0, Tmax); H 2
df) is a mild solution of the Navier–Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 < t < Tmax, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.

Then there is finite-time blowup with

Tmax < T∗ :=
−E0 +

√

E2
0 + f0K0

f0
,

where K0 and E0 are taken as in Definition 1.7 and f0 is as defined above.
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Remark 1.13. Theorem 6.1 quantifies how close solutions of the Navier–Stokes strain equation have
to be to solving the model equation in order to be guaranteed to blowup in finite time. This result is —
to the knowledge of the author — the first of its kind. There are many results stating that if some scale
invariant quantity is finite, then solutions of the Navier–Stokes equation must be smooth, such as the
aforementioned Ladyzhenskaya–Prodi–Serrin and Beale–Kato–Majda regularity criteria. Theorem 6.1 is
the first result to say that, for some set of initial data, if a scale invariant quantity remains small enough
for the history of the solution, there must be blowup in finite time.

Remark 1.14. The mechanism for blowup proposed in Theorem 6.1 for the Navier–Stokes equation is
also consistent with research on the turbulent energy cascade. Very recently, Carbone and Bragg [2020]
showed both theoretically and numerically that strain self-amplification is a more important factor in
the average turbulent energy cascade than vortex stretching. This gave a concrete statement to a line
of inquiry on the turbulent energy cascade begun by Tsinober [2001]. The turbulent energy cascade is
directly tied to the Navier–Stokes regularity problem, as finite-time blowup requires a transfer of energy
to arbitrarily small scales, so this suggests that the self-amplification of strain is the most likely potential
mechanism for the finite-time blowup of solutions of the Navier–Stokes equation. The conditional blowup
result in this paper gives a quantitative estimate on the structure of the nonlinearity that will lead to
finite-time blowup for the Navier–Stokes equation via the self-amplification of strain if it is maintained
by the dynamics.

Remark 1.15. Turbulent solutions of the Navier–Stokes equation are, almost by definition, difficult to
impossible to write down in closed form. This poses a significant barrier to proving the existence of
smooth solutions of the Navier–Stokes equation that blowup in finite time: if finite-time blowup solutions
do in fact exist, it will still almost certainly not be possible to give a negative answer to the Navier–Stokes
regularity problem by providing a counterexample in closed form. Any progress on the Navier–Stokes
regularity problem in the direction of proving the existence of finite-time blowup will likely require an
interplay of analysis and numerics. Theorem 6.1 provides a quantitative criterion that could guide further
numerical work searching for possible blowup solutions.

We cannot show that there are any solutions of Navier–Stokes equation which satisfy the perturbative
condition in Theorem 6.1 up until T ∗. If we could, then this would solve the Navier–Stokes regularity
problem by implying the existence of finite-time blowup. We can, however, use scaling arguments to
prove that this condition is satisfied for short times for some solutions of the Navier–Stokes equation.

Theorem 6.3. There exists a mild solution of the Navier–Stokes equation u ∈ C([0, Tmax); H 3
df) and ϵ > 0

such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 ≤ t < ϵ, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.
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Remark 1.16. In this paper we have taken the viscosity to be ν = 1. For the Navier–Stokes regularity
problem, we can fix the viscosity to be ν = 1 without loss of generality because it is equivalent up to
rescaling the Navier–Stokes regularity problem for arbitrary ν > 0. It is useful, however, to see how the
blowup results that we will prove scale with respect to the viscosity parameter ν > 0. If we take the
viscosity to be ν > 0, then the Navier–Stokes equation is now given by

∂t u − ν1u + Pdf∇ · (u ⊗ u) = 0,

and the strain self-amplification model equation is given by

∂t S − ν1S +
2
3 Pst(S2) = 0.

In this case, the condition
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0

in Theorems 5.3 and 6.1 is replaced with the condition

−3ν∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.

Likewise the condition ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2

in Theorems 6.1 and 6.3 is replaced by∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−ν1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2.

Remark 1.17. We should note in particular this means that if S0
∈ H 1

st and −
∫

det(S0) > 0, then for all

0 < ν < ν0
:=

−4
∫

det(S0)

3∥S0∥2
Ḣ1

,

the strain self-amplification model equation with viscosity ν blows up in finite time. This implies that the
blowup for the strain self-amplification model equation is generic at sufficiently large Reynolds number,
subject only to the geometric sign constraint on initial data, i.e., −

∫
det(S0) > 0. This suggests that the

self-amplification of strain is likely the driving factor behind possible blowup for the full Navier–Stokes
equation, and any depletion of nonlinearity preventing finite-time blowup must come from the effects of
advection and the nonlocal interaction of strain and vorticity.

This also means that finite-time blowup may occur for the strain self-amplification model equation
even in simplified geometric settings where blowup is ruled out for the full Navier–Stokes equation. We
will show that there is finite-time blowup for the strain self-amplification model equation even when
restricted to axisymmetric, swirl-free solutions. This contrasts strongly with the Navier–Stokes equation
where there is global regularity for arbitrarily large initial data in the axisymmetric, swirl-free case. There
are also axisymmetric, swirl-free solutions of the Navier–Stokes equation that satisfy the perturbative
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condition for short times, as in Theorem 6.3. Such solutions cannot, of course, satisfy the conditions of
Theorem 6.1 because they cannot blowup in finite time, and hence the perturbative condition can only be
satisfied for short times in such cases.

Remark 1.18. Because such a wide range of initial data lead to finite-time blowup for the strain self-
amplification model equation, the set of initial data for which there is finite-time blowup for this model
equation is too broad a set to consider as possible candidates for finite-time blowup for the Navier–Stokes
equation. While initial data that blowup in finite time are ubiquitous at high Reynolds number, subject
only to a sign constraint on the integral of the determinant of the strain, this does not necessarily mean
that blowup itself is generic. There could be certain structures or scaling laws that emerge as the blowup
time is approached for any blowup solution; further study is needed.

One possible avenue for further work would be to allow the dynamics of the strain self-amplification
model equation to select candidates for blowup for the full Navier–Stokes equation. Consider a solution
of the strain self-amplification model equation that is not axisymmetric and swirl free, and that blows up
in finite time Tmax < +∞. If we take S( · , Tmax − ϵ) for some 0 < ϵ ≪ Tmax as our initial data for the
full Navier–Stokes equation, then this would be a very natural candidate for blowup if blowup does in
fact occur for the full Navier–Stokes equation. To consider such an approach, more detailed study of
the qualitative features of blowup solutions of the strain self-amplification model equation is needed. At
present, essentially all we know about such solutions is a lower bound on the growth of enstrophy and
that λ+

2 blows up in the scale-critical L p
t Lq

x spaces.

In Section 2, we will discuss the relationship between our results and previous results for simplified
model equations for Navier–Stokes. In Section 3, we will define a number of the spaces used in our analysis
and give precise definitions of mild solutions. In Section 4, we will develop the local well-posedness
theory for the strain self-amplification model equation, including proving global well-posedness for small
initial data, and scale critical regularity criteria in terms of λ+

2 and in terms of two vorticity components.
In Section 5, we will prove Theorem 5.3, demonstrating the existence of finite-time blowup for solutions
of the strain self-amplification model equation, and will prove a number of properties about the set of
initial data satisfying the hypothesis of this theorem. Finally in Section 6, we will prove Theorem 6.1, the
conditional blowup result for the full Navier–Stokes equation when a perturbative condition is satisfied
by the history of the solution, and further show that this perturbative condition is satisfied for short times
for some solutions of the Navier–Stokes equation.

2. Relationship to previous literature

There are a number of previous results that prove blowup for simplified model equations for Navier–
Stokes with the hope of elucidating possibilities of extending this to the full Navier–Stokes equation.
Montgomery-Smith [2001] introduced a scalar toy model equation, replacing the first order pseudo-
differential operator Pdf∇· by −(−1)1/2 and replacing the quadratic term u ⊗ u by u2, giving the scalar
equation

∂t u − 1u − (−1)1/2(u2) = 0,
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and proved the existence of finite-time blowup solutions for this equation. This blowup result was extended
by Gallagher and Paicu [2009] to a model equation on the space of divergence-free vector fields by
adjusting the Fourier symbol of the first order pseudo differential operator. However, while Gallagher and
Paicu’s model equation is an evolution equation on natural constraint space, the space of divergence-free
vector fields, neither of these model equations respects the energy equality, and so both are still quite
far from the actual fluid equations. They are nonetheless important in that they establish that it is not
possible to prove global regularity for the Navier–Stokes equation using heat semigroup methods alone.

Tao [2016] improved on these earlier blowup results by introducing a Fourier space averaged Navier–
Stokes model equation. His model equation is given by

∂t u − 1u + B̃(u, u) = 0, (2-1)

where B̃(u, u) is a Fourier space averaged version of Pdf∇ · (u ⊗ u). This equation is an improvement
over the previous results because B̃ is constructed so that

⟨B̃(u, u), u⟩ = 0,

so Tao’s model equation (2-1) respects the energy equality with, for all 0 < t < Tmax,

1
2∥u(t)∥2

L2 +

∫ t

0
∥u(τ )∥2

Ḣ1 dτ =
1
2∥u0

∥
2
L2,

while also exhibiting finite-time blowup. The operator B̃ also has some of the same harmonic analysis
bounds as those found for full Navier–Stokes equation, in particular,

∥B̃(u, u)∥L2 ≤ C∥u∥L4∥∇u∥L4 . (2-2)

The fact that there are finite-time blowup solutions to Tao’s model equation shows that if there is global
regularity for solutions of the Navier–Stokes equation with arbitrary smooth initial data, the proof will
require more than the energy equality and the standard harmonic analysis techniques. New a priori bounds
are needed. We will note in particular that the bound in (2-2) implies that Tao’s model equation respects
the Ladyzhenskaya–Prodi–Serrin regularity criterion, that is if Tmax < +∞ for a solution u of (2-1), then
for all 2/p + 3/q = 1 and 3 < q ≤ +∞, ∫ Tmax

0
∥u∥

p
Lq = +∞.

While the Tao model equation respects the energy equality and some of the structure of the velocity
equation, it does not respect the structure of the vorticity or strain equations. In particular, Tao’s model
does not respect — or at least has not been shown to respect — the identity for enstrophy growth in
Proposition 1.9, the regularity criterion on λ+

2 in Theorem 1.10, or the regularity criterion on two
components of the vorticity in (1-4). The finite-time blowup result for the strain self-amplification model
equation is an advance on Tao’s model equation if the Navier–Stokes regularity problem is considered
from the point of view of enstrophy growth. The model equation considered here, unlike Tao’s model
equation, does not respect the energy equality; however, from a mathematical point of view, the energy
equality is less fundamental to the Navier–Stokes regularity problem than the identity for enstrophy
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growth because energy does not control regularity. Blowup for the Navier–Stokes equation in finite
time is equivalent to the blowup of enstrophy in finite time, so mathematically it is very significant that
we are able to show blowup for an evolution equation on L2

st that respects the identity for enstrophy
growth in Proposition 1.9. In summary, Tao’s model equation reflects more of the structure of the velocity
formulation of the Navier–Stokes regularity problem, while the strain self-amplification model equation
reflects more of the structure of both the strain and vorticity formulations of the regularity problem.

The strain self-amplification model equation is the first model equation of possible Navier–Stokes
blowup that respects regularity criteria for the Navier–Stokes equation based not just on size, but on
geometric structure as well. It is straightforward to show that the strain self-amplification, Montgomery-
Smith, Gallagher–Paicu, and Tao model equations all respect the Ladyzhenskaya–Prodi–Serrin regularity
criterion on the size of u, but the strain self-amplification model equation also respects the regularity
criterion on λ+

2 in Theorem 1.10. This implies as a corollary that the strain self-amplification model
equation must respect the regularity criterion on two vorticity components proved by Chae and Choe as
well. This suggests it captures significantly more of the geometry of potential Navier–Stokes blowup than
any of the previous model equations, at least as far as deformation and vorticity are concerned.

Theorem 6.1 shows that the local part of the nonlinearity of the strain evolution equation tends to
lead to finite-time blowup for a wide range of initial conditions, so there must be finite-time blowup for
the Navier–Stokes equation similar to the blowup for the model equation for the self-amplification of
strain unless the vorticity and advection terms act to deplete this nonlinearity and prevent blowup. This
is consistent with a number of previous works for model equations related to the Navier–Stokes and
Euler equations that suggest that advection plays a regularizing role. For instance, there are a number of
previous works on the Constantin–Lax–Majda [Constantin et al. 1985] and De Gregorio [1990] 1D models
for the vorticity equation which showed that advection may have a regularizing effect [Córdoba et al.
2005; Elgindi and Jeong 2020; Jia et al. 2019]. Theorem 5.3, which states that finite-time blowup occurs
for a wide range of initial data for the strain self-amplification model equation, extends the analysis of the
regularizing role of advection from 1D models that do not respect the structure of the constraint space to
a 3D model that does respect the structure of the constraint space.

There is also previous research on model equations for the axisymmetric Navier–Stokes and Euler
equations which preserve more of the structures of three dimensional fluid mechanics than the Constantin–
Lax–Majda or De Gregorio models. These model equations also show that advection plays a regularizing
role [Hou and Lei 2009; Hou et al. 2018]. Furthermore, there has been research on the possible role
of advection in the depletion of nonlinearity related to its interaction with the pressure in the growth
of subcritical Lq-norms of u [Tran and Yu 2015]. Theorem 6.1 is entirely novel, however, because it
is the first perturbative, finite-time blowup result related to the possible role of nonlinear depletion by
advection. The previous results were either heuristic or numerical; in contrast, Theorem 6.1 provides
a quantitative condition guaranteeing blowup as long as the terms which could potentially deplete the
nonlinear self-amplification of strain are small enough relative to strain self-amplification.

Finally, we should mention that very recently, Elgindi [2021] and Elgindi, Ghoul, and Masmoudi
[Elgindi et al. 2021] proved finite-time blowup for a class of C1,α(R3) solutions of the Euler equation
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that conserve energy. While the question of blowup for smooth solutions to the Euler equation remains
open, this represents an enormous step forward in providing an example of classical solutions to the
Euler equation that blowup in finite time. The blowup solutions of the Euler equation constructed in
[Elgindi 2021; Elgindi et al. 2021] are axisymmetric and swirl free, and are closely related to an example
of finite-time blowup that we will construct for the strain self-amplification model equation. We will
discuss this further in Section 5.

3. Definitions

We begin by defining the homogeneous and inhomogeneous Hilbert spaces.

Definition 3.1. For all s ∈ R, let H s(R3) be the Hilbert space with norm

∥ f ∥
2
H s =

∫
R3

(1 + 4π2
|ξ |

2)s
| f̂ (ξ)|2 dξ = ∥(1 + 4π2

|ξ |
2)s/2 f̂ ∥

2
L2,

and for all −
3
2 < s < 3

2 , let Ḣ s(R3) be the homogeneous Hilbert space with norm

∥ f ∥
2
Ḣ s =

∫
R3

(2π |ξ |)2s
| f̂ (ξ)|2 dξ = ∥(2π |ξ |)s f̂ ∥

2
L2 .

Note that when referring to H s(R3), Ḣ s(R3), or L p(R3), we will often omit the R3 for brevity. All
Hilbert and Lebesgue norms are taken over R3 unless otherwise specified. Furthermore, S3×3 will refer
to the space of three by three symmetric matrices:

S3×3
=


a d e

d b f
e f c

 : a, b, c, d, e, f ∈ R

.

We now define the subspaces of divergence-free vector fields and strain matrices in Hilbert spaces.

Definition 3.2. For all s ∈ R, define H s
df ⊂ H s(R3

; R3) by

H s
df = {u ∈ H s(R3

; R3) : ξ · û(ξ) = 0 almost everywhere ξ ∈ R3
}.

For all −
3
2 < s < 3

2 , define Ḣ s
df ⊂ Ḣ s(R3

; R3) by

Ḣ s
df = {u ∈ Ḣ s(R3

; R3) : ξ · û(ξ) = 0 almost everywhere ξ ∈ R3
}.

Definition 3.3. For all s ∈ R, define H s
st ⊂ H s(R3

; S3×3) by

H s
st = {∇sym(−1)−1/2u : u ∈ H s

df}.

For all −
3
2 < s < 3

2 , define Ḣ s
st ⊂ Ḣ s(R3

; S3×3) by

Ḣ s
st = {∇sym(−1)−1/2u : u ∈ Ḣ s

df}.

Definition 3.4. For all 1 < q < +∞, define Lq
st by

Lq
st = {S ∈ Lq(R3

; S3×3) : tr(S) = 0, S = ∇sym(−1)−1(−2 div(S))}.
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Remark 3.5. We will note that we have already defined L2
st in the introduction, so we now have two

definitions of L2
st. These definitions are equivalent, as was proven by the author in [Miller 2020]. The key

reason for this is that, just as the vorticity can be inverted to obtain the velocity, with

u = ∇ × (−1)−1ω,

so too can the strain be inverted to obtain the velocity, with

u = −2 div(−1)−1S.

This means that for all S ∈ L2
st,

S = ∇symu ⇐⇒ u = −2 div(−1)−1S.

This implies the condition in Definition 3.4 in the case q = 2 is equivalent to the condition in Definition 1.2.
See [Miller 2020] for more details. We will also note that Definition 3.4 is well defined because the
operator −2∇sym div(−1)−1 is a bounded linear operator mapping Lq

→ Lq for all 1 < q < +∞. This
follows from the boundedness of the Riesz transform R = ∇(−1)−1/2 because

−2∇sym div(−1)−1S = −2Rsym R · S.

We will also define axisymmetric, swirl-free vector fields and strain matrices.

Definition 3.6. Begin by letting

r =

√
x2

1 + x2
2 , z = x3, er =

1
r
(x1, x2, 0), ez = (0, 0, 1).

We will say that u ∈ Ḣ 1
df is an axisymmetric, swirl-free vector field if

u(x) = ur (r, z)er + uz(r, z)ez.

Note that the divergence-free condition can be expressed in this case by

∇ · u = ∂r ur +
1
r

ur + ∂zuz = 0.

We will say that S ∈ L2
st is an axisymmetric, swirl-free strain matrix if

S = ∇symu,

where u ∈ Ḣ 1
df is an axisymmetric, swirl-free vector field.

We conclude this section by providing the precise definitions for mild solutions of the Navier–Stokes
equation, the Navier–Stokes strain equation, and the strain self-amplification model equation.

Definition 3.7. A velocity field u ∈ C([0, Tmax); Ḣ 1
df) is a mild solution to the Navier–Stokes equation if

it satisfies (1-2) in the sense of Duhamel’s formula, that is, if for all 0 < t < Tmax,

u(t) = et1u0
−

∫ t

0
eτ1 Pdf∇ · (u ⊗ u)(t − τ) dτ.
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Note that et1 is defined in terms of convolution with the heat kernel

G(x, t) =
1

(4π t)3/2 exp
(
−

|x |
2

4t

)
,

so that
et1 f = G( · , t) ∗ f.

Remark 3.8. Tmax is the maximal time of existence for a mild solution. If there is a mild solution globally
in time for some initial data u0

∈ Ḣ 1
df, then Tmax = +∞, and if there is not a mild solution globally in

time, then Tmax < +∞ is the blowup time when the solution becomes singular.

Definition 3.9. A strain matrix S ∈ C([0, Tmax); L2
st) is a mild solution to the Navier–Stokes strain

equation if it satisfies (1-5) in the sense of Duhamel’s formula, that is, if for all 0 < t < Tmax,

S(t) = et1S0
−

∫ t

0
eτ1 Pst

(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)
(t − τ) dτ,

with u = (−1)−1(−2 div(S)) and ω = ∇ × u.

Definition 3.10. S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model equa-

tion (1-6) if S satisfies this equation in the sense of Duhamel’s formula, that is, for all 0 < t < Tmax,

S(t) = et1S0
−

2
3

∫ t

0
eτ1 Pst(S2)(t − τ) dτ.

4. Some properties of the strain self-amplification model equation

We begin this section by considering the local-in-time existence of mild solutions to the strain self-
amplification model equation.

Theorem 4.1. Let C =
( 3

32∥g∥L2
)4, where g(x) = exp(−|x |

2/4)/(2π)3/2. For all S0
∈ L2

st, there exists a
unique mild solution to the strain self-amplification model equation, S ∈ C([0, Tmax); L2

st), with Tmax ≥

C/∥S0
∥

4
L2 . Furthermore, S ∈ C((0, Tmax); H∞) and is therefore smooth for all positive times up until

possible blowup.

Proof. The proof of Theorem 4.1 is essentially the same as the proof of local existence of mild solutions
for the Navier–Stokes equation introduced by Kato and Fujita. It will be based on a Banach fixed point
argument.

We begin by fixing

T <
C

∥S0∥4
L2

.

Note that this implies
32
3 ∥g∥L2∥S0

∥L2 T 1/4 < 1.

Define the map W : C([0, T ]; L2
st) → C([0, T ]; L2

st) by

W [M](t) = et1S0
+

∫ t

0
eτ1 Pst(M2(t − τ)) dτ.
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Note that S being a mild solution of the heat equation is equivalent to S being a fixed point of this map
with W [S] = S.

We will first show that if ∥M∥C([0,T ];L2) ≤ 2∥S0
∥L2 , then ∥W [M]∥C([0,T ];L2) ≤ 2∥S0

∥L2 . Recall that

et1 f = G( · , t) ∗ f,

where

G(x, t) = t−3/2g(t−1/2x).

Therefore we can compute that

∥G( · , t)∥L2 = ∥g∥L2 t−3/4.

Applying Young’s inequality for convolutions we find that for all 0 ≤ t ≤ T,

∥W [M](t)∥L2 ≤ ∥S0
∥L2 +

2
3

∫ t

0
∥Pst(eτ1)M2)∥L2 dτ ≤ ∥S0

∥L2 +
2
3

∫ t

0
∥G( · , t)∥L2∥M2(t − τ)∥L1 dτ

≤ ∥S0
∥L2 +

2
3
∥M2

∥C([0,T ];L1)

∫ t

0
∥g∥L2τ−3/4 dτ ≤ ∥S0

∥L2 +
8
3
∥M∥

2
C([0,T ];L2)

∥g∥L2 t1/4

≤ ∥S0
∥L2 +

8
3
∥M∥

2
C([0,T ];L2)

∥g∥L2 T 1/4.

Using the fact that ∥M∥C([0,T ];L2) ≤ 2∥S0
∥L2 and recalling that 32

3 ∥g∥L2∥S0
∥L2 T 1/4 < 1, we can see that

8
3∥M∥

2
C([0,T ];L2)

∥g∥L2 T 1/4
≤

32
3 ∥S0

∥
2
L2∥g∥L2 T 1/4

≤ ∥S0
∥L2 .

This implies that

∥W [M]∥C([0,T ];L2) ≤ 2∥S0
∥L2 .

Therefore W is an automorphism on the closed ball

B = {M ∈ C([0, T ]; L2
st) : ∥M∥C([0,T ];L2) ≤ 2∥S0

∥L2}.

We will now show that W is a contraction mapping on B. Fix M, Q ∈ B. Using Young’s convolution
inequality as above we can compute that for all 0 ≤ t ≤ T,

∥W [M](t) − W [Q](t)∥L2 =
1
3

∥∥∥Pst

∫ t

0
et1((M + Q)(M − Q) + (M − Q)(M + Q))

∥∥∥
L2

≤
8
3
∥g∥L2 t1/4

∥M + Q∥C([0,T ];L2)∥M − Q∥C([0,T ];L2)

≤
8
3
∥g∥L2 t1/4(∥M∥C([0,T ];L2) + ∥Q∥C([0,T ];L2))∥M − Q∥C([0,T ];L2)

≤
32
3

∥g∥L2∥S0
∥L2 T 1/4

∥M − Q∥C([0,T ];L2).

Letting

r =
32
3 ∥g∥L2∥S0

∥L2 T 1/4 < 1,

we find that

∥W [M] − W [Q]∥C([0,T ];L2) ≤ r∥M − Q∥C([0,T ];L2).
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Note that B is a complete metric space, so by the Banach fixed point theorem, we can conclude that there
exists a unique S ∈ B ⊂ C([0, T ]; L2

st) such that

W [S] = S.

This implies that there is a unique, mild solution with initial data in S0
∈ L2

st locally in time. Note that
the higher regularity S ∈ C((0, T ]; H∞) is a result of the smoothing due to the heat kernel, but we will
not go through the details of that here. This higher regularity follows from a bootstrapping argument that
is essentially the same as the argument in the case of the Navier–Stokes equation given in [Fujita and
Kato 1964]. □

We will now prove a useful proposition giving an identity for the determinant of 3 × 3, symmetric,
trace-free matrices.

Proposition 4.2. Suppose M ∈ S3×3 is a 3 × 3 symmetric matrix such that tr(M) = 0. Then

tr(M3) = 3 det(M).

Proof. Every symmetric matrix is diagonalizable over R, so let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of M.
Using the trace-free condition we can see that

tr(M) = λ1 + λ2 + λ3 = 0.

Therefore we can compute that

tr(M3) = λ3
1 + λ3

2 + λ3
3 = (−λ1 − λ2)

3
+ λ3

1 + λ3
2 = −3λ2

1λ2 − 3λ1λ
2
2

= 3(−λ1 − λ2)λ1λ2 = 3λ1λ2λ3 = 3 det(M). □

Using this proposition, we will show that the strain self-amplification model equation has the same
identity for enstrophy growth as the Navier–Stokes strain equation.

Proposition 4.3. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model

equation. Then for all 0 < t < Tmax,

d
dt

∥S( · , t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S).

Proof. Taking the derivative in time of the L2-norm, we plug equation (1-6) into the strain self-amplification
model, finding

d
dt

∥S( · , t)∥2
L2 = 2⟨∂t S, S⟩ = −2

〈
−1S +

2
3

Pst(S2), S
〉
= −2∥S∥

2
Ḣ1 −

4
3
⟨Pst(S2), S⟩

= −2∥S∥
2
Ḣ1 −

4
3
⟨S2, S⟩ = −2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3) = −2∥S∥

2
Ḣ1 − 4

∫
det(S),

where we have used the fact that S belongs to L2
st to drop the projection Pst and the fact that S is symmetric

to compute the inner product, and have finally applied Proposition 4.2. □
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In fact, the vortex stretching and the integral of the determinant of the strain can be related in a general
way as follows. This will be useful in showing the term we dropped in the model equation does not
contribute to enstrophy growth.

Proposition 4.4. For all S ∈ L3
st,

−4
∫

det(S) = ⟨S; ω ⊗ ω⟩,

where u = −2 div(−1)−1S and ω = ∇ × u. In particular, this implies that〈
S, Pst

( 1
3 S2

+
1
4ω ⊗ ω

)〉
= 0.

Proof. The first step of the proof will be to show that∫
tr((∇u)3) = 0. (4-1)

We begin by recalling that by definition,

S = ∇sym(−1)−1(−2 div(S)),

and so we can see that S = ∇symu. We may conclude that

∇u = −2∇ div(−1)−1S.

Using the boundedness of the Riesz transform from L3
→ L3, this implies that ∇u ∈ L3, so the integral

in (4-1) is absolutely convergent.
Using the divergence-free condition we note that

3∑
i=1

∂ui

∂xi
= ∇ · u = 0.

Therefore for all u ∈ C∞
c (R3

; R3) with ∇ · u = 0, we can integrate by parts — without worrying about
boundary terms because of compact support — finding∫

tr((∇u)3) =

3∑
i, j,k=1

∫
∂uj

∂xi

∂uk

∂xj

∂ui

∂xk
= −

3∑
i, j,k=1

∫
uj

∂2uk

∂xi∂xj

∂ui

∂xk

=

3∑
i, j,k=1

∫
uj

∂uk

∂xi

∂2ui

∂xj∂xk
= −

3∑
i, j,k=1

∫
∂uj

∂xk

∂uk

∂xi

∂ui

∂xj
= −

∫
tr((∇u)3) = 0.

Because C∞
c (R3

; R3) is dense in L3(R3
; R3), this suffices to guarantee that for all ∇u ∈ L3 with ∇ ·u = 0,∫

tr((∇u)3) = 0.

We know that ∇u = S + A. Using the fact that S is symmetric and A is antisymmetric, and that all
antisymmetric matrices are trace-free, we compute

tr((∇u)3) = tr(S3) + 3 tr(S A2).
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Recall from the introduction that

A =
1
2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

,

and we can compute that
A2

=
1
4ω ⊗ ω −

1
4 |ω|

2 I3.

Therefore we find
3 tr(S A2) =

3
4(S : ω ⊗ ω) +

3
4 |ω|

2 tr(S) =
3
4(S : ω ⊗ ω).

Applying Proposition 4.2, we find that

tr(S3) = 3 det(S).

Therefore we find
tr((∇u)3) = 3 det(S) +

3
4(S : ω ⊗ ω).

Integrating this equality over R3 we find

⟨S; ω ⊗ ω⟩ + 4
∫

det(S) =
4
3

∫ (
3 det(S) +

3
4
(S : ω ⊗ ω)

)
=

4
3

∫
tr((∇u)3) = 0.

Finally we compute〈
Pst

(
1
3

S2
+

1
4
ω⊗ω

)
; S

〉
=

〈
1
3

S2
+

1
4
ω⊗ω; S

〉
=

1
4
⟨S; ω⊗ω⟩+

1
3

∫
tr(S3)=

1
4
⟨S; ω⊗ω⟩+

∫
det(S)= 0,

and this completes the proof. The author would like to thank the anonymous referee from an earlier
version of [Miller 2020] for this observation. □

Using this result, we will observe that the term we have dropped from the Navier–Stokes strain equation
to obtain our strain self-amplification model equation is orthogonal to S with respect to the L2-inner
product.

Corollary 4.5. Suppose S ∈ H 1
st with S = ∇symu and ω = ∇ × u. Then〈

Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
; S

〉
= 0.

Proof. We begin by observing that H 1 ↪→ Ḣ 1/2 ↪→ L3, and so clearly S ∈ L3
st. Applying Proposition 4.4

we see that 〈
Pst

(1
3 S2

+
1
4ω ⊗ ω

)
; S

〉
= 0.

Next we use the divergence-free condition, ∇ · u = 0, and the fact that we have sufficient regularity to
integrate by parts to compute

⟨Pst((u · ∇)S); S⟩ = ⟨(u · ∇)S; S⟩ = −⟨S; (u · ∇)S⟩ = 0. □

Note that this means the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
does not contribute to enstrophy growth,

so when we write the Navier–Stokes strain equation as

∂t S − 1S +
2
3 Pst(S2) + Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
= 0,
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only the terms −1S and 2
3 Pst(S2) contribute to enstrophy growth. This is the justification for studying the

dynamics of enstrophy growth using a model equation that drops the term Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ω

)
,

retaining only the terms that actually contribute to the growth of enstrophy.
The strain self-amplification model equation, like the Navier–Stokes strain equation, is invariant under

the rescaling
Sλ(s, t) = λ2S(λx, λ2t).

We will now show the existence of global smooth solutions of the strain self-amplification model equation
with small initial data in the critical Hilbert space Ḣ−1/2.

Theorem 4.6. Suppose S0
∈ L2

st ∩ Ḣ−1/2
st and

∥S0
∥Ḣ−1/2 <

3
√

3
4
√

2
π.

Then there exists a unique, global smooth solution to the strain self-amplification model equation S ∈

C([0, +∞); L2
st), that is Tmax = +∞.

Proof. We begin by observing there must be a smooth solution S ∈ C((0, Tmax); L2
st), for some Tmax > 0.

We will consider the growth of the Ḣ−1/2-norm on this time interval. We will use the fractional Sobolev
inequality proven in [Lieb 1983; Lieb and Loss 1997]. For all f ∈ L3/2(R3),

∥ f ∥Ḣ−1/2 ≤
1

21/6π1/3
∥ f ∥L3/2,

and for all g ∈ L3(R3),
∥g∥L3 ≤

1
21/6π1/3

∥g∥Ḣ1/2 .

Applying both fractional Sobolev inequalities we find that

d
dt

∥S(t)∥2
Ḣ−1/2 = −2∥S∥

2
Ḣ1/2 −

4
3
⟨(−1)−1/2S, S2

⟩ ≤ −2∥S∥
2
Ḣ1/2 +

4
3
∥(−1)−1/2S∥Ḣ1/2∥S2

∥Ḣ−1/2

≤ −2∥S∥
2
Ḣ1/2 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥S2
∥L3/2 ≤ −2∥S∥

2
Ḣ1/2 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥S∥
2
L3

≤ −2∥S∥
2
Ḣ1/2 +

4
3

1
21/2π

∥S∥Ḣ−1/2∥S∥
2
Ḣ1/2 ≤ 2∥S∥

2
Ḣ1/2

(
−1 +

√
2

3π
∥S∥Ḣ−1/2

)
.

From this bound on the growth of the Ḣ−1/2-norm it is clear that if

∥S(t)∥Ḣ−1/2 <
3π
√

2
,

then
d
dt

∥S(t)∥Ḣ−1/2 < 0.

We know that
∥S0

∥Ḣ−1/2 <
3
√

3
4
√

2
π <

3π
√

2
,

so we can conclude that for all 0 ≤ t < Tmax,

∥S(t)∥Ḣ−1/2 <
3
√

3
4
√

2
π.
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To finish the proof we will need to consider bounds on the enstrophy growth in terms of the Ḣ−1/2-norm.
In addition to the fractional sharp Sobolev inequality, we will also make use of the ordinary sharp Sobolev
inequality [Sobolev 1963; Talenti 1976], which states that for all f ∈ L6(R3),

∥ f ∥L6 ≤
1

√
3

(
2
π

)2/3
∥ f ∥Ḣ1 .

Applying the Sobolev inequality, the fractional Sobolev inequality, Hölder’s inequality, and the product
rule to the identity for enstrophy growth in Proposition 4.3, we find

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 −

4
3
⟨S, S2

⟩ ≤ −2∥S∥
2
Ḣ1 +

4
3
∥S∥Ḣ−1/2∥S2

∥Ḣ1/2

= −2∥S∥
2
Ḣ1 +

4
3
∥S∥Ḣ−1/2∥∇(S2)∥Ḣ−1/2 ≤ −2∥S∥

2
Ḣ1 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/2∥∇(S2)∥L3/2

≤ −2∥S∥
2
Ḣ1 +

4
3

1
21/6π1/3

∥S∥Ḣ−1/22∥∇S∥L2∥S∥L6

≤ −2∥S∥
2
Ḣ1 +

8
3

1
21/6π1/3

1
√

3

(
2
π

)2/3
∥S∥Ḣ−1/2∥S∥

2
Ḣ1 = 2∥S∥

2
Ḣ1

(
−1 +

4
√

2
3
√

3π
∥S∥Ḣ−1/2

)
.

We have already shown that for all 0 ≤ t < Tmax,

4
√

2
3
√

3π
∥S(t)∥Ḣ−1/2 < 1,

so for all 0 ≤ t < Tmax,
d
dt

∥S(t)∥2
L2 ≤ 0.

This implies that for all 0 ≤ t < Tmax,

∥S(t)∥L2 ≤ ∥S0
∥L2 .

We know from Theorem 4.1 that for all 0 ≤ t < Tmax,

Tmax − t >
C

∥S(t)∥4
L2

.

This means that if Tmax < +∞, then

lim
t→Tmax

∥S(t)∥L2 = +∞.

We know that for all 0 ≤ t < Tmax we have ∥S(t)∥L2 ≤ ∥S0
∥L2 , so we can conclude that Tmax = +∞. □

Remark 4.7. We will note that the assumption S ∈ Ḣ−1/2
∩ L2 is not actually necessary; it is sufficient to

have small initial data in Ḣ−1/2 to guarantee global regularity with no assumption that S0
∈ L2. However,

dropping this assumption makes the proof a little more technical, and, more importantly, the whole point
of a strain self-amplification model equation is to model enstrophy growth, so if our solution is not in L2

the model does not mean very much.
Likewise, some of the other results in this section are not optimal: for example, it should be straightfor-

ward to prove the local existence of mild, smooth solutions with initial data in B−2+3/p
p,∞ , for 2 ≤ p < +∞,

without too much difficulty. Because the strain self-amplification model equation is adapted specifically
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to study L2 solutions however, getting local existence or small data results down to the largest scale
critical spaces is not particularly useful or illuminating.

We will now prove that because the strain self-amplification model equation has the same identity for
enstrophy growth as the Navier–Stokes equation, it also has a regularity criterion on the positive part
of the middle eigenvalue of the strain matrix that is precisely the same as the analogous result for the
Navier–Stokes equation, Theorem 1.10.

Theorem 4.8. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model equa-

tion. Let λ1(x, t) ≤ λ2(x, t) ≤ λ3(x, t) be the eigenvalues of S(x, t), and let λ+

2 (x, t) = max{0, λ2(x, t)}.
Then for all 3/q + 2/p = 2 and 3/2 < q ≤ +∞, there exists Cq > 0 depending only on q such that for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
. (4-2)

In particular, if Tmax < +∞, then ∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Proof. We know from Theorem 4.1 that if Tmax < +∞, then

lim
t→Tmax

∥S(t)∥2
L2 = +∞,

so it suffices to prove estimate (4-2). Because tr(S) = 0, we know that λ1 ≤ 0 and λ3 ≥ 0, and therefore

−λ1λ3 ≥ 0.

We can compute from the identity for enstrophy growth in Proposition 4.3 that

d
dt

∥S(t)∥2
L2 = −2∥S∥

2
Ḣ1 − 4

∫
det(S) = −2∥S∥

2
Ḣ1 + 4

∫
(−λ1λ3)λ2

≤ −2∥S∥
2
Ḣ1 + 4

∫
(−λ1λ3)λ

+

2 ≤ −2∥S∥
2
Ḣ1 + 2

∫
λ+

2 |S|
2
≤ Cq∥λ+

2 ∥
p
Lq ∥S∥

2
L2,

after applying Hölder’s inequality, the Sobolev inequality, and Young’s inequality. This computation is
precisely the same as the one done in the proof of the regularity criterion on λ+

2 in [Miller 2020], so we
refer the reader there for more details on these steps. Applying Grönwall’s inequality, we find for all
0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥L2 exp
(
Cq

∫ t

0
∥λ+

2 (τ )∥
p
Lq dτ

)
. □

This regularity criterion means that there must be unbounded planar stretching in the scale critical
L p

t Lq
x spaces in order for finite-time blowup to occur. The strength of the strain formulation of the

Navier–Stokes regularity problem means that not only does the strain self-amplification model equation
respect geometric regularity criteria in terms of the strain; it also respects the regularity criterion on two
components of the vorticity proven for the full Navier–Stokes equation by Chae and Choe [1999].
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Corollary 4.9. Suppose S ∈ C([0, Tmax); L2
st) is a mild solution to the strain self-amplification model

equation. Let ω = ∇ × (−1)−1(−2 div(S)) be the vorticity associated with the strain S. Then for all
3/q +2/p = 2 and 3/2 < q < +∞, there exists Cq > 0 depending only on q such that for all 0 < t < Tmax,

∥S(t)∥2
L2 ≤ ∥S0

∥
2
L2 exp

(
Cq

∫ t

0
∥e3 × ω(τ)∥

p
Lq dτ

)
.

In particular, if Tmax < +∞, then ∫ Tmax

0
∥e3 × ω(t)∥p

Lq dt = +∞.

Proof. We know that tr(S) = 0 and λ1 ≤ λ2 ≤ λ3, so λ2 is the smallest eigenvalue of S in magnitude. This
implies for all unit vectors v ∈ R3, that |λ2| ≤ |Sv|. Consequently we can see that for all x ∈ R3,

|λ2| ≤ |Se3|.

Next we observe that
2Se3 = ∇u3 + ∂3u,

e3 × ω = ∇u3 − ∂3u.

We can see that ∇u3 is a gradient and that ∇ · ∂3u = 0, and so using the Helmholtz projections unto the
spaces of divergence-free vector fields and gradients, we can see that

∇u3 = Pgr (e3 × ω),

∂3u = −Pdf(e3 × ω).

The boundedness of the Helmholtz decomposition then implies that for all 1 < q < +∞,

∥λ2∥Lq ≤ ∥Se3∥Lq ≤
1
2∥∇u3∥Lq +

1
2∥∂3u∥Lq ≤ Cq∥e3 × ω∥Lq .

The result then follows as an immediate corollary of Theorem 4.8. □

5. Finite-time blowup for the strain self-amplification model equation

In this section, we will prove the existence of finite-time blowup for the strain self-amplification model
equation. We begin by proving a nonlinear differential inequality giving a lower bound on the rate of
enstrophy growth that is sufficient to guarantee finite-time blowup for some initial data.

Proposition 5.1. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation. Then for all 0 ≤ t < Tmax,
d
dt

E(t) ≥ g0 E(t)3/2,

where

g0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

∥S0∥3
L2

.
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Proof. We will begin by letting

g(t) =
−3∥S( · , t)∥2

Ḣ1 − 4
∫

det(S( · , t))

∥S( · , t)∥3
L2

=
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

E(t)3/2 .

Differentiating g, we find that for all 0 < t < Tmax,

d
dt

g(t) =
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

E(t)3/2 −
3
2

(
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)
E(t)5/2

=
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

∥S∥
3
L2

−
3
2

(
−3∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)
∥S∥

5
L2

≥
6
∥∥−1S +

2
3 Pst(S2)

∥∥2
L2

∥S∥
3
L2

−
3
2

(
−2∥S∥

2
Ḣ1 −

4
3

∫
tr(S3)

)2

∥S∥
5
L2

=
6

∥S∥
5
L2

(
∥S∥

2
L2

∥∥∥−1S +
2
3

Pst(S2)

∥∥∥2

L2
−

(
−∥S∥

2
Ḣ1 −

2
3

∫
tr(S3)

)2 )
.

Applying Young’s inequality, we find

−∥S∥
2
Ḣ1 −

2
3

∫
tr(S3) = −

〈
−1S +

2
3

Pst(S2), S
〉
≤

∥∥∥1S +
2
3

Pst(S2)

∥∥∥
L2

∥S∥L2,

and so we can conclude that for all 0 < t < Tmax,

d
dt

g(t) ≥ 0.

Therefore, we can conclude that for all 0 < t < Tmax,

g(t) ≥ g0.

Finally, we observe that for all 0 < t < Tmax,

d
dt

E(t) = −2∥S∥
2
Ḣ1 − 4

∫
det(S) ≥ −3∥S∥

2
Ḣ1 − 4

∫
det(S) = g(t)E(t)3/2

≥ g0 E(t)3/2, (5-1)

and this completes the proof. □

Remark 5.2. Note that as long as S is not the trivial solution — as long as ∥S∥
2
Ḣ1 > 0 — then the inequality

in (5-1) is strict and therefore for all 0 < t < Tmax,

d
dt

E(t) > g0 E(t)3/2.

This differential inequality is sufficient to guarantee finite-time blowup for any solution with initial data
such that g0 > 0. We will now prove Theorem 5.3, which is restated here for the reader’s convenience.

Theorem 5.3. Suppose S ∈ C([0, Tmax); H 1
st) is a mild solution of the strain self-amplification model

equation such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.
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Then for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 ,

where

r0 =
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0)

2∥S0∥2
L2

.

Note in particular that this implies

Tmax ≤
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Furthermore, for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞.

Proof. The main argument of the proof will be integrating the differential inequality in Proposition 5.1.
Applying Proposition 5.1, we can see that for all 0 < t < Tmax,

d
dt

E(t) > g0 E(t)3/2, (5-2)

where g0 > 0 by hypothesis. Applying the chain rule and (5-2), for all 0 < t < Tmax,

d
dt

(−E(t)−1/2) =
1
2 E(t)−3/2 d

dt
E(t) > 1

2 g0,

Integrating this differential inequality, we find that for all 0 < t < Tmax,

E−1/2
0 − E(t)−1/2 > 1

2 g0t.

This implies that

E(t)−1/2 < E−1/2
0 −

1
2 g0t,

and therefore that

E(t) >
1(

E−1/2
0 −

1
2 g0t

)2 .

Multiplying the numerator and denominator by E0, we find that for all 0 < t < Tmax,

E(t) >
E0(

1 −
1
2 g0 E1/2

0 t
)2 .

It is easy to check that

r0 =
1
2 g0 E1/2

0 ,

so we have now established that for all 0 < t < Tmax,

E(t) >
E0

(1 − r0t)2 .
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Furthermore, this clearly implies that

Tmax ≤
1
r0

=
2∥S0

∥
2
L2

−3∥S0∥2
L2 − 4

∫
det(S0)

.

Finally, applying Theorem 4.8, we conclude that for all 2/p + 3/q = 2 and 3/2 < q ≤ +∞,∫ Tmax

0
∥λ+

2 (t)∥p
Lq dt = +∞. □

Next we will show that the set of initial data satisfying the hypothesis of Theorem 5.3 is nonempty and
bounded below in Ḣ−1/2. We will also show that λ+

2 is bounded below in L3/2 for all S in this set. First
we will need to perform a few calculations related to the determinant of the strain.

Proposition 5.4. There exists S ∈ H 1
st, axisymmetric and swirl-free, such that

−

∫
R3

det(S) > 0.

Note that we will say that S is axisymmetric and swirl free if S = ∇symu, where u is an axisymmetric,
swirl-free, divergence-free vector field.

Proof. We begin by taking u ∈ H 2
df using axisymmetric coordinates, letting

u(x) = (r − 2r z2) exp(−r2
− z2)er + (−2z + 2r2z) exp(−r2

− z2)ez.

We will observe that

u(x) =

(1 − 2x2
3)

x1

x2

0

 + (−2x3 + 2(x2
1 + x2

2)x3)

0
0
1

exp(−(x2
1 + x2

2 + x2
3)),

and so not only do we have u ∈ H 2, but we have the stronger result that u must be in the Schwartz class
of smooth functions, which have, along with all their derivatives, faster than polynomial decay at infinity.
Taking the divergence of u we find that

∇ · u =

(
∂r +

1
r

)
ur + ∂zuz = ((2 − 4z2

− 2r2
+ 4r2z2)+ (−2 + 2r2

+ 4z2
− 4r2z2)) exp(−r2

− z2) = 0,

as required, so that u ∈ H 2
df. Taking the curl of u we find that

ω = (∂zur − ∂r uz)eθ = ((−4r z − 2r z + 4r z3) − (4r z + 4r z − 4r3z)) exp(−r2
− z2)eθ

= (−14r z + 4r z3
+ 4r3z) exp(−r2

− z2)eθ .

Next we will observe that the gradient can be represented in axisymmetric coordinates as

∇ =
1
r

eθ∂θ + er∂r + ez∂z.

Using this representation and recalling that

er =

cos(θ)

sin(θ)

0

,
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we can see that
∂θer = eθ .

This means we can compute

tr(S(eθ ⊗ eθ )) = tr(∇u(eθ ⊗ eθ )) =
ur
r

= (1 − 2z2) exp(−r2
− z2).

Applying Proposition 4.4 we find that

−

∫
det(S) =

1
4
⟨S; ω ⊗ ω⟩ =

1
4

∫
R3

tr(S(eθ ⊗ eθ ))(x)|ω(x)|2 dx

=
1
4

∫ ∞

0

∫ ∞

−∞

2πr(1 − 2z2)(−14r z + 4r z3
+ 4r3z)2 exp(−3r2

− 3z2) dz dr

= π
∫ ∞

0

∫ ∞

0
r(1 − 2z2)(−14r z + 4r z3

+ 4r3z)2 exp(−3r2
− 3z2) dz dr

= 4π
∫ ∞

0

∫ ∞

0
r3z2(1 − 2z2)(−7 + 2z2

+ 2r2)2 exp(−3r2
− 3z2) dz dr,

using the fact that the integrand is even in z. Making the substitution v = z2 and w = r2, we find that

−

∫
det(S) = π

∫ ∞

0

∫ ∞

0
w

√
v(1 − 2v)(−7 + 2v + 2w)2 exp(−3w − 3v) dv dw =

8π3/2

81
√

3
.

Therefore we can conclude that there exists S ∈ H 1
st, axisymmetric and swirl-free, such that

−

∫
det(S) > 0. □

Theorem 5.5. Let the set of initial data satisfying the hypotheses of Theorem 5.3, 0blowup ⊂ H 1
st, be given

by

0blowup =

{
S ∈ H 1

st : −3∥S∥
2
Ḣ1 − 4

∫
det(S) > 0

}
.

Then 0blowup is nonempty.

Proof. Take any S ∈ H 1
st such that

−

∫
det(S) > 0.

We know such an S must exist from Proposition 5.4. If we multiply such an S ∈ H 1
st by a sufficiently

large constant we will end up with an element of 0blowup. In particular, we compute

lim
m→+∞

(
−3∥mS∥

2
Ḣ1 − 4

∫
det(mS)

)
= lim

m→+∞

(
−3m2(∥S∥

2
Ḣ1) + 4m3

(
−

∫
det(S)

))
= +∞.

Therefore we may conclude that for all S ∈ H 1
st such that −

∫
det(S) > 0 and for sufficiently large m > 0,

we have mS ∈ 0blowup. □

Remark 5.6. Note that near the origin, the velocity corresponding to finite-time blowup for the strain self-
amplification model equation from Proposition 5.4 and Theorem 5.5 has a very similar geometric structure
to the C1,α finite-time blowup solution to the Euler equation from [Elgindi 2021; Elgindi et al. 2021].
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Both involve planar stretching and axial compression near the origin. In particular, approximating the
velocity in Proposition 5.4 near the origin by the first order Taylor polynomial, we have

u(x) ≈ rer − 2zez.

Remark 5.7. The fact the 0blowup is nonempty means that the condition in Theorem 5.3 is satisfied for
some initial data, and so we can conclude that there must exist solutions of the strain self-amplification
model equation that blowup in finite time. In addition to knowing the 0blowup is nonempty, we also know
that 0blowup is bounded below in Ḣ−1/2 because Theorem 4.6 states that there is global regularity for
solutions of the strain self-amplification model equation with small initial data in Ḣ−1/2, and Theorem 5.3
requires that all of the solutions with initial data in 0blowup must blowup in finite time. This can also be
shown directly by computation using the relevant Sobolev embeddings along with Hölder’s inequality. In
addition, we have a lower bound on the amount of planar stretching for S ∈ 0blowup in the form of a lower
bound on λ+

2 in the scale critical Lebesgue space.

Proposition 5.8. For all S ∈ 0blowup,

∥λ+

2 ∥L3/2 >
9
2

(
π

2

)4/3
.

Proof. We will prove the contrapositive. Suppose S ∈ H 1
st with

∥λ+

2 ∥L3/2 ≤
9
2

(
π

2

)4/3
.

We will begin by observing that because tr(S) = 0, we have λ1 ≤ 0 and λ3 ≥ 0 because three positive
(respectively negative) eigenvalues would violate the trace-free condition. This implies that −λ1λ3 ≥ 0.
Therefore, we can compute

− det(S) = (−λ1λ3)λ2 ≤ (−λ1λ3)λ
+

2 ≤
1
2(λ2

1 + λ2
2)λ

+

2 ≤
1
2λ+

2 |S|
2.

Applying this estimate, Hölder’s inequality, and the Sobolev inequality, we find that

−3∥S∥
2
Ḣ1 − 4

∫
det(S) ≤ −3∥S∥

2
Ḣ1 + 2

∫
λ+

2 |S|
2
≤ −3∥S∥

2
Ḣ1 + 2∥λ+

2 ∥L3/2∥S∥
2
L6

≤ −3∥S∥
2
Ḣ1 +

2
3

(
2
π

)4/3
∥λ+

2 ∥L3/2∥S∥
2
Ḣ1 ≤ 0.

Therefore we can see that S /∈ 0blowup, and this completes the proof. □

6. A perturbative blowup condition for the full Navier–Stokes equation

In this section, we will prove a perturbative condition for blowup, and we will also show that this
perturbative condition is satisfied at least for short times. We begin by proving Theorem 6.1, which is
restated for the reader’s convenience.

Theorem 6.1. Suppose u ∈ C([0, Tmax); H 2
df) is a mild solution of the Navier–Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0,
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and for all 0 < t < Tmax, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
(1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

≤ 2. (6-1)

Then there is finite-time blowup with

Tmax < T∗ :=
−E0 +

√

E2
0 + f0K0

f0
,

where K0 and E0 are taken as in Definition 1.7 and f0 is as defined above.

Proof. We will begin by letting

f (t) = −3∥S( · , t)∥2
Ḣ1 − 4

∫
det(S)( · , t).

We know that tr(S) = 0 and that therefore det(S) =
1
3

∫
tr(S3). Therefore we can see that

f (t) = −3∥S∥
2
Ḣ1 −

4
3

∫
tr(S3).

Differentiating f , we find that for all 0 < t < Tmax,

d
dt

f (t) = 6
〈
1S +

2
3 Pst(S2), −1S + Pst

(
(u · ∇)S + S2

+
1
4ω ⊗ ω

)〉
.

Observe that for any M, Q ∈ L2,

⟨M, M + Q⟩ =
∥∥M +

1
2 Q

∥∥2
L2 −

1
4∥Q∥

2
L2,

and so letting M =−1S+
2
3 Pst(S2) and Q = Pst

(
(u ·∇)S+

1
3 S2

+
1
4ω⊗ω

)
, we find that for all 0< t < Tmax,

d
dt

f (t) = 6
∥∥−1S + Pst

( 1
2(u · ∇)S +

5
6 S2

+
1
4ω ⊗ ω

)∥∥2
L2 −

3
2

∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)∥∥2
L2 .

Applying the perturbative condition (6-1), we find that for all 0 < t < Tmax,

d
dt

f (t) ≥ 0,

and therefore for all 0 < t < Tmax,
f (t) ≥ f0.

Using the identity for enstrophy growth we find that for all 0 < t < Tmax,

d
dt

E(t) = −2∥S∥
2
Ḣ1 − 4

∫
det(S) > −3∥S∥

2
Ḣ1 − 4

∫
det(S) = f (t) ≥ f0.

Integrating this differential inequality we find that for all 0 < t < Tmax,

E(t) > E0 + f0t,

and integrating this lower bound for enstrophy growth, we find that for all 0 < t < Tmax,∫ t

0
E(τ ) dτ > E0t +

1
2 f0t2.
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Now suppose towards a contradiction that Tmax ≥ T∗. Using the definition

T∗ =
−E0 +

√

E2
0 + f0K0

f0
,

we find that ∫ T∗

0
E(t) dt > E0T∗ +

1
2 f0T 2

∗
=

1
2 K0.

However this contradicts the bound from the energy equality, which requires that∫ T∗

0
E(t) dt ≤

1
2 K0.

Therefore we may conclude that Tmax < T∗, and this complete the proof. □

We cannot show that the perturbative condition (6-1) is satisfied up until T∗ — if we could this would
resolve the Navier–Stokes regularity problem by proving the existence of finite-time blowup. We can,
however, show that it is satisfied for short times. The first step will be to show that it holds at the level of
initial data.

Proposition 6.2. There exists S ∈ H 2
st ∩ Ḣ−1

st such that

−3∥S∥
2
Ḣ1 − 4

∫
det(S) > 0 (6-2)

and ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)∥∥
L2∥∥−1S + Pst

( 1
2(u · ∇)S +

5
6 S2 +

1
8ω ⊗ ω

)∥∥
L2

< 2. (6-3)

Proof. Begin by taking M ∈ H 2
st ∩ Ḣ−1

st such that

−3∥M∥
2
Ḣ1 − 4

∫
det(M) > 0

and Q ∈ H 2
st ∩ Ḣ−1

st not identically zero. For all λ > 0, let

Qλ(x) = Q(λx) and Sλ
= M + Qλ.

It is a simple computation to observe that

∥Qλ
∥Ḣ1 = λ−1/2

∥Q∥Ḣ1 and ∥Qλ
∥L3 = λ−1

∥Q∥L3 .

Therefore we can see that
lim

λ→+∞
Qλ

= 0

in both Ḣ 1 and L3. This implies that

lim
λ→+∞

−3∥Sλ
∥

2
Ḣ1 − 4

∫
det(Sλ) = −3∥M∥

2
Ḣ1 − 4

∫
det(M) > 0,

so Sλ satisfies (6-2) for sufficiently large λ > 0.
Now take

v = −2 div(−1)−1 M and w = −2 div(−1)−1 Q.
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Note that we then have

M = ∇symv and Q = ∇symw.

Likewise we will take

a = ∇ × v and b = ∇ × w.

Finally we will let

wλ(x) = λ−1w(λx) and bλ(x) = b(λx),

noting that this implies

Qλ
= ∇symwλ and bλ

= ∇ × wλ.

Going back to our linear combination, we can see that

uλ
= v + wλ and ωλ

= a + bλ.

Applying the triangle inequality we can see that∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2

≤
∥∥Pst

(
(v · ∇)M +

1
3 M2

+
1
4a ⊗ a

)∥∥
L2 +

∥∥Pst
(
(wλ

· ∇)Qλ
+

1
3(Qλ)2

+
1
4 bλ

⊗ bλ
)∥∥

L2

+
∥∥Pst

(
(wλ

· ∇)M + (v · ∇)Qλ
+

1
3(QλM + M Qλ) +

1
4(bλ

⊗ a + a ⊗ bλ)
)∥∥

L2,

and applying Hölder’s inequality and our scaling laws from above, we can conclude∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2

≤
∥∥Pst

(
(v ·∇)M +

1
3 M2

+
1
4a ⊗a

)∥∥
L2 +λ−3/2∥∥Pst

(
(w ·∇)Q +

1
3 Q2

+
1
4 b⊗b

)∥∥
L2 +λ−1

∥w∥L∞∥∇M∥L2

+λ−1/2
∥v∥L∞∥∇Q∥L2 +

2
3λ−3/4

∥M∥L4∥Q∥L4 +
1
2λ−3/4

∥a∥L4∥b∥L4 . (6-4)

Likewise we may compute that∥∥−1Sλ
+ Pst

( 1
2(uλ

· ∇)Sλ
+

5
6(Sλ)2

+
1
8ωλ

⊗ ωλ
)∥∥

L2

≥ λ1/2
∥ −1Q∥L2 − λ−3/2∥∥Pst

( 1
2(w · ∇)Q +

5
6 Q2

+
1
8 b ⊗ b

)∥∥
L2

−
∥∥−1M + Pst

(1
2(v · ∇)M +

5
6 M2

+
1
8a ⊗ a

)∥∥
L2 −

5
3λ−3/4

∥M∥L4∥Q∥L4

−
1
4λ−3/4

∥a∥L4∥b∥L4 −
1
2λ−1/2

∥v∥L∞∥∇Q∥L2 −
1
2λ−1

∥w∥L∞∥∇M∥L2 . (6-5)

Putting together the inequalities in (6-4) and (6-5), we find that

lim
λ→+∞

∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2∥∥−1Sλ + Pst
(1

2(uλ · ∇)Sλ +
5
6(Sλ)2 +

1
8ωλ ⊗ ωλ

)∥∥
L2

= 0,

and so in particular for sufficiently large λ > 0,∥∥Pst
(
(uλ

· ∇)Sλ
+

1
3(Sλ)2

+
1
4ωλ

⊗ ωλ
)∥∥

L2∥∥−1Sλ + Pst
(1

2(uλ · ∇)Sλ +
5
6(Sλ)2 +

1
8ωλ ⊗ ωλ

)∥∥
L2

< 2. □
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Now that we have established that the perturbative condition (6-1) can hold for initial data, it is
straightforward to show that it can hold for at least short times by continuity. This result is Theorem 6.3,
which is restated for the reader’s convenience.

Theorem 6.3. There exists a mild solution of the Navier–Stokes equation u ∈ C([0, Tmax); H 3
df) and ϵ > 0

such that
−3∥S0

∥
2
Ḣ1 − 4

∫
det(S0) > 0,

and for all 0 ≤ t < ϵ, ∥∥Pst
(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

< 2.

Proof. Fix initial data S0
∈ H 2

st ∩ Ḣ−1
st such that

−3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0

and ∥∥Pst
(
(u0

· ∇)S0
+

1
3(S0)2

+
1
4ω0

⊗ ω0
)∥∥

L2∥∥−1S0 + Pst
( 1

2(u0 · ∇)S0 +
5
6(S0)2 +

1
8ω0 ⊗ ω0

)∥∥
L2

< 2,

where S0
=∇symu0 and ω0

=∇×u0. Note that u0
∈ H 3

df by definition and is given by u0
=−2 div(−1)−1S0.

Let u ∈ C([0, Tmax); H 3
df) be the unique mild solution of the Navier–Stokes equation with initial data u0.

Next we will let

c(t) =
∥∥Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ω

)
( · , t)

∥∥
L2 − 2

∥∥(
−1S + Pst

( 1
2(u · ∇)S +

5
6 S2

+
1
8ω ⊗ω

))
( · , t)

∥∥
L2 .

The fact that u ∈C([0, Tmax); H 3
df) immediately implies that c ∈C([0, Tmax)). We also know by hypothesis

that
c(0) < 0,

so by continuity there must exist ϵ > 0 such that for all 0 ≤ t < ϵ,

c(t) < 0.

This completes the proof. □

Remark 6.4. The key to the proof of Proposition 6.2 and Theorem 6.3 rests on the fact that we can add a
perturbative term which is small in both Ḣ 1 and L3, leaving (6-2) essentially unaffected, but which is
very large in Ḣ 2, making the denominator in (6-3) as large as we like. The key is to add a perturbative
term that is supported at very high Fourier modes, but with a scaling chosen so that the perturbation
remains small in Ḣ 1

∩ L3.

Remark 6.5. There are axisymmetric, swirl-free initial data that satisfy Theorem 6.3. To see this, in the
context of Proposition 6.2, take M as in Proposition 5.4 and Q to be an arbitrary axisymmetric, swirl-free
strain matrix and the result follows. In this case, however, we know that the perturbative condition can
only be satisfied for short times because there is global regularity for axisymmetric, swirl-free solutions
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of the Navier–Stokes equation. There is something in the geometry of axisymmetric swirl-free solutions
that, when coupled with the dynamics of the equation, guarantees the perturbative condition will fail after
short times.

Corollary 6.6. Suppose u ∈ C([0, +∞); H 2
df) is an axisymmetric, swirl-free, mild solution of the Navier–

Stokes equation such that

f0 := −3∥S0
∥

2
Ḣ1 − 4

∫
det(S0) > 0.

Then there exists 0 < t < T ∗
:= (−E0 +

√

E2
0 + f0K0 )/ f0 such that∥∥Pst

(
(u · ∇)S +

1
3 S2

+
1
4ω ⊗ ω

)
( · , t)

∥∥
L2∥∥(

−1S + Pst
( 1

2(u · ∇)S +
5
6 S2 +

1
8ω ⊗ ω

))
( · , t)

∥∥
L2

> 2.

Proof. Ladyzhenskaya [1968b; 1968a] first proved global regularity for solutions of the Navier–Stokes
equation with swirl-free, axisymmetric initial data. The corollary follows immediately from Theorem 6.1
and the global regularity of axisymmetric, swirl-free solutions of the Navier–Stokes equation because
if the perturbative condition from Theorem 6.1 was satisfied up until T ∗, then there must be finite-time
blowup, which we know cannot occur. □
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EIGENVALUE BOUNDS FOR SCHRÖDINGER OPERATORS WITH
RANDOM COMPLEX POTENTIALS

OLEG SAFRONOV

We consider the Schrödinger operator perturbed by a random complex-valued potential. For this operator,
we consider its eigenvalues situated in the unit disk. We obtain an estimate on the rate of accumulation of
these eigenvalues to the positive half-line.

1. Introduction and main results

We study the behavior of eigenvalues of the operator H = −1+ V acting on a Hilbert space L2(Rd),
where d ≥ 3. The potential V is assumed to be a complex-valued function of the form

V (x)=

∑
n∈Zd

ωnvnχ(x − n), vn ∈ C, x ∈ Rd,

where the ωn are independent random variables taking values in the interval [−1, 1] and χ is the
characteristic function of the unit cube [0, 1)d.

The probability space in our theorems is the set 6 of all infinite sequences ω = {ωn}n∈Zd . The
probability measure is defined on 6 as the infinite product of corresponding measures on intervals [−1, 1].
Since ωn can be viewed as a function on6 whose value is equal to the n-th coordinate of ω, its expectation
E[ωn] can be viewed as an integral over 6. We impose the condition

E[ωn] = 0

on ωn guaranteeing oscillations of V. The coefficients vn do not have to be real.
To formulate the main result, we set

Ṽ (x)=

∑
n∈Zd

|vn|χ(x − n).

Note that Ṽ is a nonnegative function such that |V | ≤ Ṽ.

Theorem 1.1. Let d ≥ 3, let R0 > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
|λj |<R2

0

Im
√
λj |λj |

(q−1)/2
]

≤ C |R0|
q−ν

(∫
Rd

|Ṽ (x)|p dx
)2

, (1.1)
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with

p =
d
2

+
d − q

2(d − 2)
. (1.2)

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

Theorem 1.1 is a particular case of the following statement, which has rather complicated looking
conditions imposed on the parameters.

Theorem 1.2. Let d ≥ 3, and let R0 > 0. Assume that the parameters ~ and p obey the conditions

~

2p
+

d − 1
2

< ~ <
d + 1

2
,

and

max{2, ~} ≤ p <min
{

2~,
d~

2~ − 1

}
.

Assume also that Ṽ ∈ L p(Rd). Then the eigenvalues λj of the operator −1+ V satisfy

E

[ ∑
|λj |≤R2

0

Im
√
λj |λj |

(q−1)/2
]

≤ C |R0|
q−2p−p(d−1)/~

(∫
Rd

|Ṽ (x)|p dx
)2

, q > 2p −
p(d − 1)
~

. (1.3)

It is assumed that Im
√
λj ≥ 0. If ~ =

1
2(d + 1), then (1.3) holds with p = ~. The constant C in (1.3)

depends only on d, p, ~ and q.

It is known that, if vn ∈ R, the eigenvalues λj obey the Lieb–Thirring estimate (see [Helffer and Robert
1990; Laptev and Weidl 2000; Lieb and Thirring 1976])∑

j

|λj |
γ

≤ C
∫

Rd
|V (x)|d/2+γ dx, V = V , d ≥ 3, γ ≥ 0. (1.4)

Theorem 1.1 allows one to consider real potentials V for which the right-hand side of (1.4) is infinite,
while the left-hand side is finite almost surely. Indeed, let 1< 2γ = q < d/(d −1). Then the parameter p
in (1.2) satisfies the inequality

p > 1
2 d + γ. (1.5)

Similar results for real random potentials V = V were obtained by the author and Vainberg in [Safronov
and Vainberg 2008]. However, there is a big difference between Theorem 1.1 and the results of that
earlier work, since the only point of accumulation of eigenvalues of the operator H considered there
is the point λ= 0. When one studies complex-valued potentials, the fact that the eigenvalues λj might
accumulate to points other than λ= 0 should not be excluded. Examples of decaying complex potentials V
such that eigenvalues of H = −1+ V accumulate to points of the positive real line R+ are constructed
in [Bögli 2017]. Because of the difference between the cases of real and complex potentials, it would be
more appropriate to ask what new information Theorem 1.1 provides compared to [Frank 2018; Frank
and Sabin 2017], rather than realize that this theorem does not follow from the Lieb–Thirring estimate
even in the selfadjoint case.
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The related result of [Frank and Sabin 2017] says that there is a constant C that depends on d , p and γ
such that ∑

j

dist(λj ,R+)|λj |
γ−1

≤ C
(∫

Rd
|V |

p dx
)2γ /(2p−d)

, (1.6)

under conditions on γ and p implying that p < γ +
1
2 d . One can now refer to (1.5) to conclude that our

results do give new information about the distribution of eigenvalues in the complex plane.
The same conclusion could be made by an analysis of the results of [Frank 2018], where the eigenvalues

in the disk

DV =

{
z ∈ C : |z|p−d/2

≤ C p,d

∫
|V |

p dx
}

are considered separately from the rest of the eigenvalues; here p > 1
2 d. R. Frank [2018] proves that

under some restrictions on p, ( ∑
λj ∈DV

dist(λj ,R+)
γ

)σ
≤ C

∫
Rd

|V |
p dx, (1.7)

for γ equal to either p or 2p − d + ε. The constants C > 0 and σ > 0 depend only on d and p in the
first case but also on ε > 0 in the second. In its turn, ε > 0 belongs to the interval whose size depends
on p. The observation we make is that p < γ +

1
2 d in (1.7). On the other hand, in deterministic results,

p simply can not be larger than γ +
1
2 d .

Theorem 1.1 gives information about the eigenvalues of H situated in a finite disk about the origin.
The behavior of the eigenvalues outside of this disk is described below.

Theorem 1.3. Let d ≥ 3, let R > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
|λj |≥R2

Im
√
λj (|λj | − R2)

|λj |R

]
≤ C |R|

−ν

(∫
Rd

|Ṽ (x)|p dx
)2

,

with

p =
d
2

+
d − q

2(d − 2)
.

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

According to Theorem 1.3, the condition Ṽ ∈ L p implies that, for any R > 0,∑
|λj |≥R2

|Im
√
λj |<∞ (1.8)

almost surely. Eigenvalues of H outside a finite disk about the point z =0 were also studied in [Frank 2018].
However, in the theorems of that work the radius R of the disk depends on V. Moreover, when d ≥ 3,
these theorems guarantee convergence of

∑
|λj |≥R2 |Im λj |

α
|λj |

−β for some α > 1 and β > 0 rather than
convergence of the series (1.8).

Theorem 1.3 immediately implies the following assertion.
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Corollary 1.4. Let d ≥ 3, let R > 0 and let 1 < ν < q < 2. Then the eigenvalues λj of the operator
−1+ V satisfy

E

[ ∑
R2≤|λj |≤2R2

Im
√
λj |λj |

(ν−1)/2
]

≤ C
(∫

Rd
|Ṽ (x)|p dx

)2

,

with

p =
d
2

+
d − q

2(d − 2)
.

It is assumed that Im
√
λj ≥ 0. The constant C in (1.1) depends only on d, ν and q.

We also mention the article [Frank 2018] because Theorem 1.1 of that paper deals with the question
about the shape of the domain containing all eigenvalues of H. In particular, it implies that the imaginary
part of an eigenvalue tends to zero as the real part tends to infinity (in a quantitative way) once V ∈ L p

with p > 1
2(d + 1). Despite a vague visual resemblance of Corollary 1.4 to such a theorem, it does not

give new information about the region containing all eigenvalues of H.
The next statement is an improvement of Theorem 1.1 for 3 ≤ d ≤ 5 and R0 ≤ 1.

Theorem 1.5. Let 3 ≤ d ≤ 5, and let 0< R0 ≤ 1. Assume that τ1 satisfies

0 ≤

((
d
2

+
(η− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 ≤

(ν− 1)(d + 1)
7d

,

with η and ν such that 1< ν < η < 2. If d = 3, then we assume additionally that 8ν+ 9η < 26. Let p, q
and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
,

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1.

Then the eigenvalues λj of the operator −1+ V satisfy

E

[ ∑
|λj |≤R2

0

Im
√
λj |λj |

(σ−1)/2
]

≤ Cτ1,σ |R0|
σ−θqν/2

(∫
Rd

|Ṽ (x)|r dx
)2q/r

, σ > 1
2θqν.

Besides its dependence on d , the constant Cτ1,σ in this inequality depends on a choice of the parameters
τ1 and σ .

Theorem 1.5 gives new information about eigenvalues of H. Even in the case V = V, this theorem
does not follow from the Lieb–Thirring estimates. It turns into Theorem 1.1 for dimensions 3 ≤ d ≤ 5
once we set τ1 = 0. On the other hand, since it allows us to consider ratios σ/r smaller than ratios q/p
allowed by Theorem 1.1, Theorem 1.5 is an improvement of Theorem 1.1 for dimensions 3 ≤ d ≤ 5 and
the values of the parameter R0 < 1.
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One of the difficulties we encountered in this paper is that our statements can not be derived by taking
expectations in the inequalities obtained by Borichev, Golinskii and Kupin [Borichev et al. 2009]. The
reason is that operators of the Birman–Schwinger type we are dealing with might have different properties
for different ω. This difficulty was overcome through an application of the Joukowski transform to a
half-plane with a removed semidisk and consecutive integration with respect to the radius.

Eigenvalue bounds for Schrödinger operators with complex potentials have been studied for a long
time. First of all, one should mention the related work of B. Pavlov, who found sharp conditions on V
guaranteeing that H has only finitely many eigenvalues in C \ R+. In particular, this is true for the one
dimensional operator on the half-line R+ (see [Pavlov 1966]) if

|V (x)| ≤ Ce−c
√

x , ∀x ∈ R+,

for some constants C and c > 0.
In 2001, E. B. Davies posed a question whether the estimate

|λ| ≤
1
4

(∫
R

|V (x)| dx
)2

, d = 1,

that he and his collaborators established for any nonreal eigenvalue λ of H (see [Abramov et al. 2001;
Davies and Nath 2002]) can be extended to higher dimensions. This question was nicely handled by
R. Frank [2011]. It was shown that, if 0< γ ≤

1
2 and d ≥ 2, then there is a positive constant Cγ,d such

that

|λ|γ ≤ Cγ,d

∫
Rd

|V (x)|d/2+γ dx, (1.9)

for any eigenvalue of H in C \ R+. The technique of [Frank 2011] was further developed and combined
with some complex analysis in [Frank and Sabin 2017], where the authors already give the estimate (1.6)
on the rate of accumulation of eigenvalues to the positive half-line R+. Another bound of this type is the
inequality (1.7) established in [Frank 2018].

Note also, that if one only considers eigenvalues outside of a cone

0ε = {z ∈ C : Re z ≥ 0, |Im z| ≤ εRe z}

(here ε > 0), then the Lieb–Thirring bound holds for these eigenvalues (see [Frank et al. 2006]):∑
λj /∈0ε

|λj |
γ

≤ Cγ,d,ε

∫
Rd

|V (x)|d/2+γ dx, γ ≥ 1.

While we do not intend to describe all results related to the theory of operators with complex-valued
potentials, we would like to mention the articles [Briet et al. 2021; Cuenin 2017; Cuenin et al. 2014;
Demuth et al. 2009; Demuth and Katriel 2008; Hansmann 2011; 2017; Korotyaev 2020; Korotyaev and
Laptev 2018; Korotyaev and Safronov 2020; Laptev and Safronov 2009; Pavlov 1967] in addition to
those already mentioned, all of which could be viewed as valuable contributions in this area.
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2. Preliminaries

Everywhere below, Sp denotes the class of compact operators K obeying

∥K∥
p
Sp

= Tr(K ∗K )p/2 <∞, p > 1.

Note that if K ∈ Sp for some p > 1, then K ∈ Sq for q > p and ∥K∥q ≤ ∥K∥p.
Let z j be the eigenvalues of a compact operator K ∈ Sn where n ∈ N \ {0}. We define the n-th

determinant of I + K as

detn(I + K )=

∏
j

(1 + z j ) exp
( n−1∑

m=1

(−1)mzm
j

m

)
, n ≥ 2,

det(I + K )=

∏
j

(1 + z j ), n = 1.

There exists a constant Cn > 0 depending only on n such that

|detn(I + X)| ≤ eCn∥X∥
n
Sn , ∀X ∈ Sn.

Moreover, we have the following statement; see Proposition 2.1 of [Korotyaev and Safronov 2020].

Proposition 2.1. Let n ≥ 2. Then for any n − 1 ≤ p ≤ n, there exists a constant C p,n > 0 depending only
on p and n such that

|detn(I + X)| ≤ eC p,n∥X∥
p
Sp , ∀X ∈ Sp. (2.1)

The way the eigenvalue bounds are obtained in [Korotyaev and Safronov 2020] uses applications of
the following abstract result.

Theorem 2.2. Let H0 be a selfadjoint operator on a Hilbert space H. Let W1 and W2 be two bounded
operators on H, and let V = W2W1. Assume that the function

C+ ∋ z 7→ W1(H0 − z)−1W2 ∈ Sp, 1 ≤ p <∞,

is analytic in the upper half-plane C+ = {z ∈ C : Im z > 0} and continuous up to the real line R. Assume
also that

∥W1(H0 − z)−1W2∥
p
Sp

= o
(

1
|z|

)
, as |z| → ∞. (2.2)

Then the eigenvalues λj of H0 + V in C+ satisfy∑
j

Im λj ≤ C p

∫
∞

−∞

∥W1(H0 − λ− i0)−1W2∥
p
Sp

dλ, (2.3)

where C p depends only on the parameter p.

Proof. The proof of this statement relies on Jensen’s inequality for zeros of an analytic function, which is
(also) justified in Proposition 3.11 of [Korotyaev and Safronov 2020]. □
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Proposition 2.3. Let a(z) be an analytic function on C+ satisfying the condition

a(z)= 1 + o
(

1
|z|

)
as |z| → ∞.

Assume that for some γ > 0,
ln|a(λ+ iγ )| ≤ f (λ), ∀λ ∈ R.

Then zeros of a(z) situated above the line Im z = γ satisfy the inequality∑
j

(Im λj − γ )+ ≤
1

2π

∫
∞

−∞

f (λ) dλ. (2.4)

The statement also holds for γ = 0, if a(z) is continuous up to the real line R.

The bound (2.3) follows from (2.1) and the estimate (2.4) with γ = 0 once we set

a(z)= detn(I + W1(H0 − z)−1W2)

and
f (λ)= C p,n∥W1(H0 − λ− i0)−1W2∥

p
Sp
.

According to the Birman–Schwinger principle, z is an eigenvalue of H0 + V if and only if a(z) = 0
(multiplicities coincide). This completes the proof of Theorem 2.2. □

One of the tools used in the present paper is an interpolation. Interpolation has been also used to prove
Theorem 1.2 of [Korotyaev and Safronov 2020], which can be generalized and formulated as follows.

Theorem 2.4. Let (�,µ) be a space with an σ -finite measure µ such that L2(�,µ) is separable. Let H0

be a selfadjoint operator on the Hilbert space L2(�,µ). Assume that the integral kernel of the operator
e−i t H0 satisfies the estimate

|e−i t H0(x, y)| ≤
C
t~
, ∀t > 0, ∀x, y ∈�,

for some ~ > 0. Let V ∈ L p(�,µ) ∩ L∞(�,µ) for p > ~ such that p ≥ 1. Assume also that (2.2)
holds for all W1 and W2 that belong to a class of functions dense in L2p(�,µ). Then eigenvalues of the
operator H = H0 + V satisfy ∑

j

|Im λj |
r
≤ C p,r

(∫
�

|V (x)|p dµ
)r/p−~

,

for any r >max{2(p − ~), 1}.

The proof of this result is a counterpart of the proof of Theorem 1.2 from [Korotyaev and Safronov
2020], with the only differences being that the value of the parameter ~ in Theorem 1.2 of that work is 3

2
and � = R3. However, one can consider different ~ as well as spaces � which are different from Rd.
Especially interesting are spaces of fractional dimensions for which 2~ is not an integer.

Another object that we will work with is the operator

X (k)= |V |
1/2(−1− z)−1V (−1− z)−1V |V |

−1/2, z = k2, k ∈ C+.
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If V is a bounded compactly supported function, then X (k) is a trace class operator for d ≤ 3, and
X (k) ∈ Sp for p > 1

4 d and d ≥ 4. In this case, we set

Dn(k)= detn(I − X (k)), n > 1
4 d, n ∈ N.

Proposition 2.5. Let V be a compactly supported function on Rd. If a point λ ∈ C\R+ is an eigenvalue
of H = −1+ V, then Dn(k) = 0 for k =

√
λ. The algebraic multiplicity of the eigenvalue λ does not

exceed the multiplicity of the root of the function Dn( · ).

Proof. According to the Birman–Schwinger principle, a point λ is an eigenvalue of H if and only if −1 is
an eigenvalue of |V |

1/2(−1− λ)−1V |V |
−1/2. Therefore, 1 is an eigenvalue of X (k0) with k2

0 = λ. On
the other hand, if 1 is an eigenvalue of X (k0), then Dn(k0)= 0.

The statement about the multiplicity follows from the fact that an isolated eigenvalue of H whose
multiplicity m is larger than 1 can be turned into m simple eigenvalues by an arbitrarily small perturbation
of finite rank (which does not have to be a function). For any ε > 0 there is a finite rank operator Kε such
that ∥Kε∥< ε and that all eigenvalues of −1+ Kε + V near λ are simple. Define now the function

dε(k)= detn(I − |V |
1/2(−1+ Kε − z)−1V (−1+ Kε − z)−1V |V |

−1/2),

analytic in the neighborhood of k0 =
√
λ for sufficiently small ε > 0. In this neighborhood of the point k0,

we have dε(k) → Dn(k) uniformly, as ε → 0. Since the function dε(k) has at least m zeros near k0,
the multiplicity of the zero of the function Dn(k) at k = k0 can not be smaller than m by the argument
principle. □

3. Large values of Re ζ without projections

The following proposition gives an important estimate for the integral kernel of (−1− z)−ζ.

Proposition 3.1. Let d ≥ 2, and let 1
2(d − 1) ≤ Re ζ ≤

1
2(d + 1). The integral kernel of the operator

(−1− z)−ζ satisfies the estimate

|(−1− z)−ζ (x, y)| ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
|x − y|

Re ζ−(d+1)/2, (3.1)

for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ .

The proof of this proposition, as well as related references, can be found in [Frank and Sabin 2017].
Everywhere below, we use the notation χl(x)= χ(x − l), where l ∈ Zd.

Corollary 3.2. Let 1
2(d − 1)≤ Re ζ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2 Re ζ − 1). Suppose that
W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then

∥W (−1− z)−ζχl∥S2 ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
∥W∥r , (3.2)
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for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ . If Re ζ =
1
2(d+1)

and d ≥ 2, then (3.2) holds with r = 2.

Proof. It follows from (3.1) that

∥W (−1− z)−ζχl∥
2
S2

≤ Ce2α(Im ζ )2
|k|

(d−1)−2 Re ζ
∑
n∈Zd

(|n − l| + 1)2 Re ζ−(d+1)
|wn|

2.

A simple application of Hölder’s inequality leads to (3.2). □

We need to turn (3.2) into a similar estimate for the S4-norm of the operator corresponding to smaller
values of Re ζ . For that purpose, we employ the inequality

∥W (−1− z)−ζχl∥ ≤ βeα(Im ζ )2
∥W∥∞, (3.3)

for Re ζ = 0.
By interpolation we obtain the following proposition from (3.2) and (3.3).

Proposition 3.3. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2~ − 1). Suppose that W
is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0, ~] and z /∈ R+,

∥W (−1− z)−ζχl∥S2~/τ ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)τ
∥W∥r~/τ . (3.4)

The positive constants β and α in this inequality depend only on d and τ . If ~ =
1
2(d + 1) and d ≥ 2,

then (3.4) holds with r = 2.

Proof. Indeed, let Re ζ0 = τ , and let
A =�|A|

be the polar decomposition of the operator

A = |W |
ζ0/τ (−1− z)−ζ0χl .

Consider the function

f (ζ )= eαζ
2

Tr(|W |
ζ/τ (−1− z)−ζχl |A|

(2~−ζ+i Im ζ0)/τ�∗).

If Re ζ = 0, then
| f (ζ )| ≤ C1∥A∥

2~/τ
S2~/τ

.

If Re ζ = ~, then
| f (ζ )| ≤ C2|k|

(d−1)/2−~
∥A∥

~/τ

S2~/τ
∥W∥

~/τ
r~/τ .

Consequently, by the three lines lemma,

| f (ζ0)| ≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.
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Put differently,

|eαζ
2
0 |∥A∥

2~/τ
S2~/τ

≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

The latter inequality implies (3.4). □

In particular, once we set r~/τ = 4, we obtain the following.

Corollary 3.4. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 2. Suppose that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then

∥W (−1− z)−ζχl∥S4 ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)Re ζ
∥W∥4, (3.5)

for any 1
2~ ≤ Re ζ <min{~, d~/(4~ − 2)} and z /∈ R+. The positive constants β and α in this inequality

depend only on d and Re ζ . If ~ =
1
2(d + 1) and d ≥ 2, then (3.5) holds with Re ζ =

1
2~.

Let us now consider the operator

X(ζ )= eα0ζ
2
W (−1− z)−ζV (−1− z)−ζW,

where W is a fixed function independent of ω. The proof of the following proposition is based on the
fact that E[ωn] = 0.

Proposition 3.5. Let 1
2(d − 1) ≤ ~ < 1

2(d + 1), where d ≥ 2. Let 1
2~ ≤ Re ζ < min{~, d~/(4~ − 2)}.

Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then

(E(∥X(ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥2∥W∥
2
4. (3.6)

If ~ =
1
2(d + 1) and d ≥ 2, then (3.6) holds with Re ζ =

1
2~.

Proof. Obviously,

E(∥X(ζ )∥2
S2
)= E(TrX(ζ )∗X(ζ ))≤ e2α0 Re ζ 2 ∑

l∈Zd

|vl |
2
∥W (−1− z)−ζχl∥

2
S4

∥χl(−1− z)−ζW∥
2
S4
.

Together with Corollary 3.4, this implies (3.6). □

Corollary 3.6. Let 1
2(d −1)≤ ~ < 1

2(d +1), where d ≥ 2. Let 1
2~ ≤ Re ζ <min{~, d~/(4~−2)}. Assume

that Ṽ ∈ L2(Rd), W = Ṽ 1/2 and α0 > 2α. Then

(E(∥X(ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥
2
2. (3.7)

If ~ =
1
2(d + 1) and d ≥ 2, then (3.7) holds with Re ζ =

1
2~.
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4. An estimate for the square of the Birman–Schwinger operator

According to the observations that we made, if W =

√
Ṽ , then X(ζ ) is a function that obeys (3.7) for

some rather large values of Re ζ , and it also obeys

∥X(ζ )∥ ≤ C∥Ṽ ∥
2
∞
,

for Re ζ = 0. To obtain our first result about eigenvalues, we can interpolate between these two cases. Let

X̃(k)= W (−1− z)−1V (−1− z)−1W, z = k2, k ∈ C+,

where W is a fixed function independent of ω. What follows is the result of the interpolation (which does
not work for d = 2).

Proposition 4.1. Let 1
2(d − 1)≤ ~ < 1

2(d + 1), where d ≥ 3. Let

max{2, ~} ≤ p <min
{

2~,
d~

2~ − 1

}
. (4.1)

Let W = Ṽ 1/2. Assume that Ṽ ∈ L p(Rd). Then

(E(∥X̃(k)∥p
Sp
))1/p

≤ C |k|
(d−1)/~−2

∥Ṽ ∥
2
p. (4.2)

If ~ =
1
2(d + 1) and d ≥ 3, then (4.2) holds with p = ~.

Proof. Note that X (k)= X(1). The logic of interpolation says that (4.2) holds for p defined as

p = 2/θ, for θ such that 1 = θτ,

where 1
2~ ≤ τ < min{~, d~/(4~ − 2)}. Of course, this interpolation works only if τ > 1, which is

impossible for d = 2. Observe that, with this notation, p = 2τ .
Let

X (k)=�|X (k)|

be the polar decomposition of the operator X (k). Consider the function

f (ζ )= eα0ζ
2
E(Tr(|W |

ζ (−1− z)−ζVζ (−1− z)−ζ |W |
ζ
|X (k)|2τ−ζ�∗)),

where
Vζ (x) :=

∑
n

ωn|vn|
ζ ei arg vnχ(x − n).

If Re ζ = 0, then
| f (ζ )| ≤ C1E(∥X (k)∥2τ

S2τ
).

If Re ζ = τ , then
| f (ζ )| ≤ C2|k|

((d−1)/~−2)τ (E(∥X (k)∥2τ
S2τ
))1/2∥Ṽ ∥

2τ
2τ .

Consequently, by the three lines lemma,

| f (1)| ≤ C |k|
(d−1)/~−2

∥Ṽ ∥
2
2τ (E(∥X (k)∥2τ

S2τ
))1−1/(2τ).
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Put differently,

E(∥X (k)∥2τ
S2τ
)≤ C |k|

(d−1)/~−2
∥Ṽ ∥

2
2τ (E(∥X (k)∥2τ

S2τ
))1−1/(2τ).

The latter inequality implies (4.2) because 2τ = p. □

Now we can formulate and prove the following result.

Theorem 4.2. Let d ≥ 3, and let 1< ν < q < 2. Assume that W = |V |
1/2. Then

E(∥X (k)∥p
Sp
)≤ C |k|

−ν
∥Ṽ ∥

2p
p , (4.3)

for p defined by

p =
d(d − 1)− q

2(d − 2)
=

d
2

+
d − q

2(d − 2)
. (4.4)

Proof. Observe that the assumption ν < q < 2 leads to the inequalities

d + 1
2

< p <
d(d − 1)− ν

2(d − 2)
. (4.5)

We will show that the conditions of Proposition 4.1 are fulfilled for the parameter ~ defined by

~ =
(d − 1)p
2p − ν

.

The latter relation simply means that

ν =

(
2 −

(d − 1)
~

)
p. (4.6)

Consequently, (4.3) follows from (4.2). The second inequality in (4.5) implies

~ >
d(d − 1)− ν

2(d − ν)
>

d − 1
2

, (4.7)

while the first inequality in (4.5) combined with the condition ν < 2 implies

~ <
d + 1

2
.

One can also see that the first inequality in (4.7) is equivalent to the estimate

p =
~ν

2~ − (d − 1)
<

d~
2~ − 1

.

Finally, note that when d ≥ 3, the condition p < 2~ follows from the fact that ν+ q > 2. □

5. Proof of Theorem 1.1

We will work with the function

d(z)= detn(I − X (k)), n = [p] + 1,
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where z is related to k via the Joukowski mapping

z =
R
k

+
k
R
, R > 0,

which maps the set {k ∈ C : Im k > 0, |k| > R} onto the upper half-plane {z ∈ C : Im z > 0}. Rather
standard arguments lead to the estimate∑

j

Im z j ≤ C
∫

∞

−∞

ln|d(z)| dz, (5.1)

where the z j are the zeros of the function d(z) situated in the upper half-plane C+. In fact, (5.1) could be
established in the same way as Jensen’s inequality for zeros of an analytic function on a unit disk. In (5.1)
we assume that V is compactly supported. The relation (5.1) leads to the estimate

∑
j

(
|kj |

2
− R2

|kj |
2 R

)
+

Im kj ≤ C
(∫

∞

−∞

∥X (k)∥p
Sp

(
1
R

−
R
k2

)
+

dk +

∫ π

0
∥X (R · eiθ )∥

p
Sp

sin θ dθ
)
.

Taking the expectation we obtain

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]

≤ C
(∫

∞

−∞

E[∥X (k)∥p
Sp

]

(
1
R

−
R
k2

)
+

dk +

∫ π

0
E[∥X (R · eiθ )∥

p
Sp

] sin θ dθ
)
. (5.2)

Due to Theorem 4.2, the latter inequality leads to

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C |R|

−ν
∥Ṽ ∥

2p
p . (5.3)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj | ≤ R0.

Multiplying (5.3) by Rq−1 and integrating with respect to R from 0 to R0, we obtain

E

[ ∑
|kj |≤R0

Im kj |kj |
q−1

]
≤ C |R0|

q−ν
∥Ṽ ∥

2p
p , q > ν. (5.4)

This implies Theorem 1.1. □

Theorem 1.2 can be proved in the same way. The only difference is that one needs to use Proposition 4.1
instead of Theorem 4.2.

Note also that (5.3) implies Theorem 1.3.
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6. Operators of the Birman–Schwinger type

Let a, b and V be functions on Rd. Define

Aζ = |a|
ζ FVζ F∗

|b|
ζ,

where F is the unitary Fourier transform operator. For any complex number z, we understand Vz as the
sum

Vz(x) :=

∑
n

ωn|vn|
zei arg vnχ(x − n).

Note that the operator Aζ can be viewed as a sum over the lattice Zd :

Aζ =

∑
n∈Zd

Aζ,n, (6.1)

where
Aζ,n = ωn|a|

ζ F |vn|
ζ ei arg vnχ( · − n)F∗

|b|
ζ .

We will show that while Aζ might not be bounded at some points ω, it is still a compact operator
almost surely if a, b and Ṽ are in L2. We remind the reader that Ṽ was defined as the function

Ṽ (x)=

∑
n

|vn|χ(x − n).

Remark. Operators of the form aFW F∗b do not have to be bounded for all a, b and W from L2. Indeed,
let

W (x)= (|x | + 1)−s, with 1
2 d < s < 2

3 d,

and let

a(ξ)= b(ξ)=

{
|ξ |−3s/4 if |ξ | ≤ 1,
0 if |ξ |> 1.

If aFW F∗b was bounded, the operator T = aF
√

W would be bounded as well. The latter is not true,
simply because Tψ /∈ L2 for ψ = W (the singularity of Tψ at zero is |ξ |3s/4−d ).

Proposition 6.1. Let a ∈ L2, b ∈ L2 and Ṽ ∈ L2. Let also p ≥ 2. Then the sum (6.1) with Re ζ = 2/p
converges almost surely in Sp. Moreover,

(E[∥Aζ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥
2/p
2 ∥b∥

2/p
2 ∥Ṽ ∥

2/p
2 , Re ζ = 2/p. (6.2)

Proof. We are going to prove (6.2) for one point ζ0 such that Re ζ0 = 2/p. For that purpose, we define the
operator K (ω)= |Aζ0 |

p/2. Then, obviously,

β := E(∥K∥
2
S2
)= E[∥Aζ0∥

p
Sp

].

Let �=�(ω) be the partially isometric operator appearing in the polar decomposition

Aζ0 =�(ω)|Aζ0 |.
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We introduce the analytic function

f (ζ )= E[Tr Aζ |K |
2−ζ

|K |
i Im ζ0�∗

],

which will be treated by the three lines lemma. Since ∥Aζ∥ ≤ 1 for Re ζ = 0, and ∥|K |
i Im ζ0�∗

∥ ≤ 1, we
obtain that

| f (ζ )| ≤ β, for Re ζ = 0. (6.3)

On the other hand,
| f (ζ )| ≤ (2π)−dβ1/2

∥Ṽ ∥2∥a∥2∥b∥2, for Re ζ = 1, (6.4)

by an analogue of Hölder’s inequality valid for Schatten classes. Indeed, for Re ζ = 1,

| f (ζ )|2 ≤ E[∥Aζ∥2
S2

] · E[∥K∥
2
S2

],

and
E[∥Aζ∥2

S2
] = E[Tr A∗

ζ Aζ ] =

∑
n∈Zd

E[Tr A∗

ζ,n Aζ,n] ≤ (2π)−2d
∥Ṽ ∥

2
2∥a∥

2
2∥b∥

2
2.

Using the three lines lemma, we obtain from (6.3) and (6.4) that

| f (ζ )| ≤ (2π)−d Re ζβ1−Re ζ/2
∥Ṽ ∥

Re ζ
2 ∥a∥

Re ζ
2 ∥b∥

Re ζ
2 .

Note now that f (ζ0)= β. Consequently,

β1/p
≤ (2π)−2d/p

∥Ṽ ∥
2/p
2 ∥a∥

2/p
2 ∥b∥

2/p
2 . □

Corollary 6.2. Let T be a random operator of the form

T = |a|FV F∗
|b|,

with
V (x) :=

∑
n

ωnvnχ(x − n).

Let a ∈ L p, b ∈ L p, vn ∈ ℓp and p ≥ 2. Then

(E[∥T ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥p∥b∥p∥Ṽ ∥p.

Proof. Observe that the functions |a|
p/2, |b|

p/2 and Ṽ p/2 belong to L2. Therefore, according to the
proposition, the Sp-norm of the operator

K̃ = |a|
pζ/2 FVpζ/2 F∗

|b|
pζ/2

obeys the inequality

(E[∥K̃∥
p
Sp

])1/p
≤ (2π)−2d/p

∥|a|
p/2

∥
2/p
2 ∥|b|

p/2
∥

2/p
2 ∥Ṽ p/2

∥
2/p
2 , Re ζ = 2/p. □

The following result is a very well-known bound obtained by E. Seiler and B. Simon [Seiler and Simon
1975]. Moreover, the reader can easily prove it using standard interpolation.
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Proposition 6.3. Let a and W be two functions from L p(Rd) with p ≥ 2. Let T be the operator

T = aFW,

where F is the operator of the Fourier transform. Then

∥T ∥Sp ≤ (2π)−d/p
∥a∥p∥W∥p, p ≥ 2.

Corollary 6.4. Let q ≥ p ≥ 2. Let T be a random operator of the form

T = |a|FV F∗
|b|,

with
V (x) :=

∑
n

ωnvnχ(x − n).

Let a ∈ L p, b ∈ Lq and vn ∈ ℓp. Then

(E[∥T ∥
q
Sp

])1/q ≤ (2π)−d/p−d/q
∥a∥p∥b∥q∥Ṽ ∥p.

Proof. According to Proposition 6.3,

∥T ∥Sp ≤ (2π)−d/p
∥a∥p∥b∥∞∥Ṽ ∥p, p ≥ 2.

On the other hand, according to Corollary 6.2,

(E[∥T ∥
p
Sp

])1/p
≤ (2π)−2d/p

∥a∥p∥b∥p∥Ṽ ∥p.

It remains to interpolate between the two cases. For that purpose, we introduce the function

f (ζ )= E[(Tr K p)(1+q−p)(1−ζ )/p+ζ(p−1)(q−p)/p2
Tr |a|FV F∗

|b|
qζ/p K p−1�∗

],

where K = ||a|FV F∗
|b|| and � is the partially isometric operator appearing in the polar decomposition

|a|FV F∗
|b| =�K .

For convenience, we write
β := E[(Tr K p)q/p

].

If Re ζ = 0, then by Hölder’s inequality,

| f (ζ )| ≤ (2π)−d/pβ∥a∥p∥Ṽ ∥p.

If Re ζ = 1, then

| f (ζ )| ≤ E[(Tr K p)(p−1)(q−p)/p2
∥|a|FV F∗

|b|
q/p

∥Sp(Tr K p)(p−1)/p
],

which leads to
| f (ζ )| ≤ β1−1/p(2π)−2d/p

∥a∥p∥b∥
q/p
q ∥Ṽ ∥p.

Observe also that
f (p/q)= β.

Thus by the three lines lemma,

β ≤ β1−1/q(2π)−d/p−d/q
∥a∥p∥b∥q∥Ṽ ∥p. □
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7. Large values of Re ζ

Let 0< R ≤ 1. Let χ0,k be the characteristic function of the ball

B =

{
ξ ∈ Rd

: |ξ | ≤
2|k|

R

}
,

and let χ1,k = 1 −χ0,k be the characteristic function of its complement

Rd
\B =

{
ξ ∈ Rd

: |ξ |>
2|k|

R

}
.

We introduce the operators
Pn,k = Fχn,k F∗,

which are the spectral projections of −1 corresponding to the intervals [0, 4|k|
2/R2

] and (4|k|
2/R2,∞).

Besides depending on the properties of (−1− z)−ζ, the arguments of this paper also rely on the
properties of the operators Pn,k(−1− z)−ζ for different values of ζ . In this section, we discuss relatively
large values of Re ζ . The following proposition gives an important estimate for the integral kernel of
Pn,k(−1− z)−ζ.

Proposition 7.1. Let R ≤ 1. Let d ≥ 2, and let 1
2(d − 1) < Re ζ ≤

1
2(d + 1). The integral kernel of the

operator Pj,k(1− z)−ζ satisfies the estimate

|Pj,k(−1− z)−ζ (x, y)| ≤ βeα(Im ζ )2
|k|

(d−1)/2−Re ζ
|x − y|

Re ζ−(d+1)/2, (7.1)

for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d and Re ζ .

Proof. Due to Proposition 3.1, it is sufficient to prove only one of the inequalities (7.1). Let us first
estimate the integrals

In =

∫
2n |k|<R|ξ |<2n+1|k|

eiξ(x−y) dξ
(|ξ |2 − k2)ζ

= −|x − y|
−2

∫
2n |k|<R|ξ |<2n+1|k|

1ξeiξ(x−y) dξ
(|ξ |2 − k2)ζ

= |x − y|
−2

∫
S2n+1|k|/R∪S2n |k|/R

±i(x − y)ξeiξ(x−y) d Sξ
|ξ |(|ξ |2 − k2)ζ

− ζ |x − y|
−2

∫
2n |k|<R|ξ |<2n+1|k|

2iξ(x − y)eiξ(x−y) dξ
(|ξ |2 − k2)ζ+1 , (7.2)

for n ≥ 1. We will show that

|In| ≤ βeα(Im ζ )2(2n
|k|/R)(d−1)/2−Re ζ

|x − y|
Re ζ−(d+1)/2, (7.3)

for some β > 0 and α > 0. A priori,

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ, (7.4)

but the representation (7.2) leads to

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ−1

|x − y|
−1. (7.5)
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The first estimate (7.4) implies (7.3) for 2n
|k||x − y|< R, because in this case,

|In| ≤ Cde2π |Im ζ |(2n
|k|/R)d−2 Re ζ (2n

|k||x − y|/R)Re ζ−(d+1)/2.

The second inequality (7.5) implies (7.3) for 2n
|k||x − y| ≥ R, because 1

2(d +1)−Re ζ ≤ 1 and, therefore,

(2n
|k|/R)d−2 Re ζ−1

|x − y|
−1

≤ (2n
|k|/R)d−2 Re ζ+Re ζ−(d+1)/2

|x − y|
Re ζ−(d+1)/2.

The estimates (7.3) imply (7.1) for j = 1, because

P1,k(−1− z)−ζ (x, y)= (2π)−d
∞∑

n=1

In. □

Corollary 7.2. Let 1
2(d − 1) < Re ζ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2 Re ζ − 1). Suppose
that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then
∥W Pj,k(−1− z)−ζχl∥S2 ≤ βeα(Im ζ )2

|k|
(d−1)/2−Re ζ

∥W∥r , (7.6)

for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d and Re ζ .
If Re ζ =

1
2(d + 1) and d ≥ 2, then (7.6) holds with r = 2.

Proof. It follows from (7.1) that

∥W Pj,k(−1− z)−ζχl∥
2
S2

≤ Ce2α(Im ζ )2
|k|

(d−1)−2 Re ζ
∑
n∈Zd

(|n − l| + 1)2 Re ζ−(d+1)
|wn|

2.

A simple application of Hölder’s inequality leads to (7.6). □

On the other hand, we have the inequality

∥W Pj,k(−1− z)−ζχl∥ ≤ βeα(Im ζ )2
∥W∥∞, (7.7)

for Re ζ = 0.
By interpolation, we obtain the following from (7.6) and (7.7).

Proposition 7.3. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Let 2 ≤ r < 2d/(2~ − 1). Suppose that W
is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0, ~), z /∈ R+ and j = 0, 1,

∥W Pj,k(−1− z)−ζχl∥S2~/τ ≤ βeα(Im ζ )2
|k|

((d−1)/(2~)−1)τ
∥W∥r~/τ . (7.8)

The positive constants β and α in this inequality depend only on d and τ . If ~ =
1
2(d +1) and d ≥ 2, then

(7.8) holds with r = 2.
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Proof. Indeed, let Re ζ0 = τ , and let
A =�|A|

be the polar decomposition of the operator

A = |W |
ζ0/τ Pj,k(−1− z)−ζ0χl .

Consider the function

f (ζ )= eαζ
2

Tr(|W |
ζ/τ Pj,k(−1− z)−ζχl |A|

(2~−ζ+i Im ζ0)/τ�∗).

If Re ζ = 0, then
| f (ζ )| ≤ C1∥A∥

2~/τ
S2~/τ

.

If Re ζ = ~, then
| f (ζ )| ≤ C2|k|

(d−1)/2−~
∥A∥

~/τ

S2~/τ
∥W∥

~/τ
r~/τ .

Consequently, by the three lines lemma,

| f (ζ0)| ≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

Put differently,
|eαζ

2
0 |∥A∥

2~/τ
S2~/τ

≤ C |k|
θ((d−1)/2−~)

∥W∥
θ~/τ
r~/τ ∥A∥

(2−θ)~/τ

S2~/τ
, θ = τ/~.

The latter inequality implies (7.8), and the proof is completed. □

In particular, once we set r~/τ = 4, we obtain the following.

Corollary 7.4. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Suppose that W is a function of the form

W (x)=

∑
n∈Zd

wnχ(x − n), wn ∈ C, x ∈ Rd.

Then
∥W Pj,k(−1− z)−ζχl∥S4 ≤ βeα(Im ζ )2

|k|
((d−1)/(2~)−1)Re ζ

∥W∥4, (7.9)

for any 1
2~ ≤ Re ζ <min{~, d~/(4~ − 2)}, z /∈ R+ and j = 0, 1. The positive constants β and α in this

inequality depend only on d and Re ζ . If ~ =
1
2(d + 1) and d ≥ 2, then (7.9) holds with Re ζ =

1
2~.

We will now discuss the properties of the random operators

Xn,m(ζ )= eα0ζ
2
(W Pn,k(−1− z)−ζV (−1− z)−ζ Pm,k W ).

Here W is a fixed function which does not depend on ω.

Proposition 7.5. Let 1
2(d − 1) < ~ < 1

2(d + 1), where d ≥ 2. Let 1
2~ ≤ Re ζ < min{~, d~/(4~ − 2)}.

Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then

(E(∥Xn,m(ζ )∥
2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥2∥W∥
2
4. (7.10)

If ~ =
1
2(d + 1) and d ≥ 2, then (7.10) holds with Re ζ =

1
2~.
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Proof. Obviously,

E(∥Xn,m(ζ )∥
2
S2
)= E(Tr Xn,m(ζ )

∗Xn,m(ζ ))

≤ e2α0 Re ζ 2 ∑
l∈Zd

|vl |
2
∥W Pn,k(−1− z)−ζχl∥

2
S4

∥χl(−1− z)−ζ Pm,k W∥
2
S4
.

Together with Corollary 7.4, this implies (7.10). □

We will also study the spectral properties of the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ).

Corollary 7.6. Let 1
2(d −1)< ~ < 1

2(d +1), where d ≥ 2. Let 1
2~ ≤ Re ζ <min{~, d~/(4~−2)}. Assume

that Ṽ ∈ L2(Rd), W = Ṽ 1/2 and α0 > 2α. Then

(E(∥Y (ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
((d−1)/~−2)Re ζ

∥Ṽ ∥
2
2. (7.11)

If ~ =
1
2(d + 1) and d ≥ 2, then (7.11) holds with Re ζ =

1
2~.

8. Small values of Re ζ

The notations we use in this section are the same as in the previous one. In particular, the projections
Pn,k are the same as before. As was mentioned, the arguments of this paper rely on the properties of the
operators Pn,k(−1− z)−ζ for different values of ζ . In this section, we discuss the case 0 ≤ Re ζ < 1.

In the next two propositions, we discuss the properties of the random operators

Xn,m(ζ )= eα0ζ
2
(W Pn,k(−1− z)−ζV (−1− z)−ζ Pm,k W ),

for Re ζ =
1
2γ and 0< γ < 3

2 . Here W is a fixed function which does not depend on ω. The value of the
parameter α0 should be sufficiently large as in Corollary 7.6.

Later, we will also study the spectral properties of the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ).

However, the terms in this representation will be studied separately. A this point, we do not discuss
X1,1(ζ ) at all.

Proposition 8.1. Let d ≥ 2. Let z ∈ C \ R+, and let 2 ≤ 2p < 3/γ . Assume that 0< R ≤ 1. If Re ζ =
1
2γ ,

W ∈ L4p and Ṽ ∈ L2p, then X0,0(ζ ) ∈ Sp almost surely. Moreover,

E(∥X0,0(ζ )∥
p
Sp
)1/p

≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−2γ

∥Ṽ ∥2p∥W∥
2
4p. (8.1)

Proof. This statement follows from Corollary 6.2 and Proposition 6.3. If r =
1
2q =2p, then 1/r+2/q =1/p.

Moreover, since

X0,0(ζ )= eα0ζ
2
(W (−1− z)−ζ/3 P0,k(−1− z)−2ζ/3V (−1− z)−2ζ/3 P0,k(−1− z)−ζ/3W ),
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we obtain the estimate

∥X̃0,0(ζ )∥p

≤ |eα0ζ
2
| · ∥W (−1− z)−ζ/3 P0,k∥q∥P̃0,k(−1− z)−2ζ/3V (−1− z)−2ζ/3 P0,k∥r∥P0,k(−1− z)−ζ/3W∥q .

It remains to realize that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)2ζ/3|r

)2/r

≤

(∫
|ξ |<2|k|

dξ
|(|ξ |2 − z)2ζ/3|r

)2/r

+ cp,γ ec|Im ζ |

(∫
|ξ |<2|k|/R

dξ
|ξ |2γ r/3

)2/r

≤ C p,γ ec|Im ζ |

(
|k|

R

)2(d−2rγ /3)/r

= C p,γ ec|Im ζ |

(
|k|

R

)d/p−4γ /3

, γ r < 3,

while a similar argument shows that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)ζ/3|q

)2/q

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)2(d−qγ /3)/q

= C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(2p)−2γ /3

. □

Proposition 8.2. Let 2 ≤ d ≤ 5. Let z ∈ C \ R+, and let 2 ≤ 2p < 3/γ . Assume that 4pγ > d and
0< R ≤ 1. If Re ζ =

1
2γ , W ∈ L4p and Ṽ ∈ L2p, then X0,1(ζ ) ∈ Sp for all ω. Moreover,

∥X0,1(ζ )∥Sp ≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)d/p−2γ

∥Ṽ ∥2p∥W∥
2
4p. (8.2)

Proof. Since

X0,1(ζ )= eα0ζ
2
(W (−1− z)−ζ/3 P0,k(−1− z)−2ζ/3V P1,k(−1− z)−ζW ),

we obtain the estimate

∥X0,1(ζ )∥p ≤ |eα0ζ
2
| · ∥W (−1− z)−ζ/3 P0,k∥4p∥P0,k(−1− z)−2ζ/3V ∥2p∥P1,k(−1− z)−ζW∥4p.

It remains to realize that(∫
Rd

χ0,k dξ
|(|ξ |2 − z)2ζ/3|2p

)1/(2p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(2p)−2γ /3

,

while (∫
Rd

χ0,k dξ
|(|ξ |2 − z)ζ/3|4p

)1/(4p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(4p)−γ /3

.

Finally,(∫
Rd

χ1,k dξ
|(|ξ |2 − z)ζ |4p

)1/(4p)

≤ 2ec|Im ζ |

(∫
|ξ |>2|k|/R

dξ( 3
4 |ξ |2

)2γ p

)1/(4p)

≤ C̃ p,γ ec|Im ζ |

(
|k|

R

)d/(4p)−γ

. □

Let us now talk about the operator Y (ζ ). The study of this operator must be harder compared to the
study of X1,1(ζ ) simply because P1,k(−1− z)−ζ is bounded uniformly in z while this is not true about
P0,k(−1− z)−ζ.
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Corollary 8.3. Let 2 ≤ d ≤ 5. Let |k| ≥ R where 0< R ≤ 1. Let also W =

√
Ṽ . Assume that 2 ≤ 2p< 3/γ

and 4pγ > d. If Re ζ =
1
2γ and Ṽ ∈ L2p, then

E(∥Y (ζ )∥p
Sp
)1/p

≤ C p,γ e−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−2γ

∥Ṽ ∥
2
2p.

In particular, we can set p = 1 and prove the following statement.

Proposition 8.4. Let 2 ≤ d ≤ 5. Let |k| ≥ R where 0< R ≤ 1. Let also W =

√
Ṽ . Assume that

1
8 d < 1

2γ = Re ζ < 3
4 .

Then

E(∥Y (ζ )∥S1)≤ CRe ζ e−α0|Im ζ |2/2
(

|k|

R

)3d/2−4 Re ζ

∥Ṽ ∥
2
2.

9. Another interpolation between small and large values of Re ζ

Let us recall two theorems that hold for the operator

Y (ζ )= X0,0(ζ )+ X0,1(ζ )+ X1,0(ζ ),

with W = Ṽ 1/2. By small values of Re ζ we mean the values that are considered in Corollary 8.3, which
states that, for any p ≥ 1 and d/(8p) < Re ζ < 3/(4p),

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)3d/(2p)−4 Re ζ

∥Ṽ ∥
2
2p. (9.1)

In this corollary, we had to assume that 2 ≤ d ≤ 5 and |k| ≥ R, where 0< R ≤ 1. One should also not
forget that our assumptions about γ = 2 Re ζ imply that Re ζ < 3

4 .
In the next result, we only replace 4 Re ζ by d/(2p) in the right-hand side of (9.1).

Theorem 9.1. Let 2 ≤ d ≤ 5. Let W = Ṽ 1/2. Let

0< Re ζ < 3
4 .

Assume that
d

8 Re ζ
< p <

3
4 Re ζ

, p ≥ 1,

and 0< R ≤ 1. Then

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)d/p

∥Ṽ ∥
2
2p,

for |k| ≥ R.

For the sake of simplicity, we choose

p =
d

7 Re ζ
.

In this case, because of the assumption p ≥ 1 that we made, we have to assume that

0< Re ζ ≤
1
7 d.

Note that 1
7 d < 3

4 . Thus, we can formulate the following assertion.
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Corollary 9.2. Let 2 ≤ d ≤ 5. Let 0< Re ζ ≤
1
7 d and let p = d/(7 Re ζ ). Assume that 0< R ≤ 1. Then

E(∥Y (ζ )∥p
Sp
)1/p

≤ CRe ζ,pe−α0|Im ζ |2/2
(

|k|

R

)d/p

∥Ṽ ∥
2
2p,

for |k| ≥ R.

By the large values of Re ζ we mean the values appearing in Corollary 7.6. We will use only a simpler
version of this result.

Theorem 9.3. Let d ≥ 3. Let 1< ν < η < 2. Let

2 Re ζ =
d
2

+
d − η

2(d − 2)
. (9.2)

Assume that V ∈ L2(Rd) and α0 > 2α. Then

(E(∥Y (ζ )∥2
S2
))1/2 ≤ CRe ζ e(2α−α0)(Im ζ )2

|k|
−ν/2

∥Ṽ ∥
2
2. (9.3)

Proof. For Re ζ defined in (9.2), the assumption ν < η < 2 leads to the inequalities

d + 1
2

< 2 Re ζ <
d(d − 1)− ν

2(d − 2)
. (9.4)

Let us now introduce the parameter ~, setting

~ =
2(d − 1)Re ζ

4 Re ζ − ν
.

The latter relation simply means that

ν =

(
2 −

(d − 1)
~

)
2 Re ζ. (9.5)

Thus (9.3) coincides with (7.11). Let us check that all conditions of Corollary 7.6 are fulfilled. The
second inequality in (9.4) implies

~ >
d(d − 1)− ν

2(d − ν)
>

d − 1
2

, (9.6)

while the first inequality in (9.4) combined with the condition ν < 2 implies that

~ <
d + 1

2
.

One can also see that the first inequality in (9.6) is equivalent to the estimate

2 Re ζ =
~ν

2~ − (d − 1)
<

d~
2~ − 1

.

Finally, note that when d ≥ 3, the condition Re ζ < ~ follows from the fact that ν+ η > 2. Consequently,
Corollary 7.6 implies Theorem 9.3. □

We interpolate between Corollary 9.2 and Theorem 9.3.
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Theorem 9.4. Let 3 ≤ d ≤ 5. Assume that τ1 satisfies

0 ≤

((
d
2

+
(η− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 ≤

(ν− 1)(d + 1)
7d

, (9.7)

with η and ν such that 1< ν < η < 2. If d = 3, then we assume additionally that 8ν+ 9η < 26. Let p, q
and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
, (9.8)

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1. (9.9)

Then

(E(∥Y (1)∥q
Sq
))1/q ≤ Cq

(
|k|

R

)d(1−θ)/p

|k|
−θν/2

∥Ṽ ∥
2
r , (9.10)

for |k| ≥ R and 0< R ≤ 1.

Proof. Observe that

τ1 <


2(ν−1)(d+1)

7(d−3)d
≤

d
7

if d > 3,

8(ν−1)
21(2−η)

≤
d
7

if 8ν+ 9η < 26 and d = 3.

In both cases, τ1 obeys
0< τ1 ≤

1
7 d.

Consider Y (ζ ) for ζ running over the strip

τ1 ≤ Re ζ ≤
d
4

+
d − η

4(d − 2)
.

Since we have some information about the values of this function on the boundary of the strip, we obtain
(9.10) by interpolation between Corollary 9.2 and Theorem 9.3. □

Remark. We need to explain why the parameters were selected as described in Theorem 9.4. The work
with perturbation determinants requires convergence of integrals of the form∫

∞

ε

E(∥Y (1)∥q
Sq
) dk, ε > 0,

so we need the parameters to satisfy the condition

qd(1 − θ)

p
−

qθν
2
<−1,

which is equivalent to the inequality

τ1(1 − θ) <
θν

14
−

1
7q

=
θ(ν− 1)

14
−
(1 − θ)τ1

d
,
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implying that

τ1(1 − θ) <
θ(ν− 1)(d + 1)

14d
.

The latter can be written differently as

1 −
θ

2

(
d
2

+
d − η

2(d − 2)

)
<
θ(ν− 1)(d + 1)

14d
.

In other words,

2< θ
(

d
2

+
(ν− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
. (9.11)

The condition that θ is large can be converted into an inequality showing that τ1 is small. The relation
(9.11) is satisfied if ((

d
2

+
(ν− 1)(d + 1)

7d
+

d − η

2(d − 2)

)
− 2

)
τ1 <

(ν− 1)(d + 1)
7d

.

Since η > ν, this condition is obviously fulfilled if (9.7) holds.

In the next statement, we estimate the remainder X1,1(ζ ) for ζ = 1.

Theorem 9.5. Let p > 3
4 d ≥ 2, and let ζ = 1. Then

E[∥X1,1(ζ )∥
p
Sp/2

]
1/p

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
p.

Proof. In this theorem, we deal with the operator

W (−1− z)−1 P1,k V (−1− z)−1 P1,k W.

On the one hand, we see that

E[∥(−1− z)−2/3 P1,k V (−1− z)−2/3 P1,k∥
p
Sp

]
1/p

≤ C
(∫

|ξ |>2|k|/R
||ξ |2 − z|−2p/3 dξ

)2/p

∥Ṽ ∥p,

which implies the inequality

E[∥(−1− z)−2/3 P1,k V (−1− z)−2/3 P1,k∥
p
Sp

]
1/p

≤ C
(

|k|

R

)−8/3

∥Ṽ ∥p, p > 3
4 d.

On the other hand,

∥W (−1− z)−1/3 P1,k∥
2
S2p

≤ C
(

|k|

R

)−4/3

∥Ṽ ∥p, p > 3
4 d.

Consequently,

E[∥W (−1− z)−1 P1,k V (−1− z)−1 P1,k W∥
p
Sp/2

]
1/p

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
p, p > 3

4 d. □

The next statement follows by Hölder’s inequality.
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Corollary 9.6. Let q > 3
8 d ≥ 1, and let ζ = 1. Then

E[∥X1,1(ζ )∥
q
Sq

]
1/q

≤ C
(

|k|

R

)−4

∥Ṽ ∥
2
2q .

Surprisingly, q in (9.8) satisfies the inequality q > 3
8 d ≥ 1. Thus, we obtain the following result.

Theorem 9.7. Let 3 ≤ d ≤ 5. Assume that τ1 satisfies (9.7) with η and ν such that 1< ν < η < 2. If d = 3,
then we assume additionally that 8ν+ 9η < 26. Let p, q and r be the numbers defined by

p =
d

7τ1
,

1
q

=
1 − θ

p
+
θ

2
and

1
r

=
1 − θ

2p
+
θ

2
, (9.12)

where θ is the solution of the equation

τ1(1 − θ)+
θ

2

(
d
2

+
d − η

2(d − 2)

)
= 1. (9.13)

Then

(E(∥X (k)∥q
Sq
))1/q ≤ Cq

[(
|k|

R

)d(1−θ)/p

|k|
−θν/2

+

(
|k|

R

)−4]
∥Ṽ ∥

2
r ,

for |k| ≥ R and 0< R ≤ 1.

10. Proof of Theorem 1.5

Again, we work with the function

d(z)= detn(I − X (k)), n = [q] + 1,

where z is related to k via the Joukowski mapping

z =
R
k

+
k
R
, R > 0.

Standard arguments allow us to rewrite (5.2) with p replaced by q as

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C

(∫
∞

−∞

E[∥X (k)∥q
Sq

]

(
1
R

−
R
k2

)
+

dk +

∫ π

0
E[∥X (R · eiθ )∥

q
Sq

] sin θ dθ
)
,

where the kj are defined as square roots of eigenvalues of H. Due to Theorem 9.7, the latter inequality
yields

E

[∑
j

Im kj (|kj |
2
− R2)+

|kj |
2 R

]
≤ C |R|

−θqν/2
∥Ṽ ∥

2q
r . (10.1)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj | ≤ R0.

Multiplying (10.1) by Rσ−1 and integrating with respect to R from 0 to R0, we obtain

E

[ ∑
|kj |≤R0

Im kj |kj |
σ−1

]
≤ C |R0|

σ−θqν/2
∥Ṽ ∥

2q
r , σ > 1

2θqν. □
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Let E ⊂ Rn+1 be a parabolic uniformly rectifiable set. We prove that every bounded solution u to

∂t u −1u = 0 in Rn+1
\ E

satisfies a Carleson measure estimate condition. An important technical novelty of our work is that we
develop a corona domain approximation scheme for E in terms of regular Lip(1/2, 1) graph domains.
This scheme has an analogous elliptic version which improves on the known results in that setting.

1. Introduction

For more than forty years, there has been significant interest in quantitative estimates for solutions of (linear)
elliptic and parabolic partial differential equations in the absence of smoothness. In this area of research,
the lack of smoothness presents itself in the structure or regularity of the coefficients of the operator, or
in the geometry of the domain. Recently, sustained efforts in this area have provided characterizations of
quantitative geometric notions (e.g., uniform rectifiability) in terms of quantitative estimates for harmonic
functions [Garnett et al. 2018; Hofmann et al. 2016] and a geometric characterization of the L p-solvability
of the Dirichlet problem [Azzam et al. 2020]. This paper concerns the parabolic analogue of [Hofmann
et al. 2016] and overcomes the substantial difficulty introduced by the distinguished time direction and
the anisotropic scaling. To deal with this difficulty, we are forced to build appropriate approximating
domains with better properties than would be enjoyed by the parabolic analogues of the chord-arc domains
constructed in that paper. In particular, our construction improves on that of [Hofmann et al. 2016], even
in the elliptic setting. We shall discuss these issues in more detail momentarily.

We shall prove the following.

Theorem 1.1 (a Carleson measure estimate for bounded caloric functions). Let n ≥ 2. Let E ⊂ Rn+1

be a set which is uniformly rectifiable in the parabolic sense. Then for any solution to (∂t −1X )u = 0
in Rn+1

\ E with u ∈ L∞(Rn+1
\ E),

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)
|∇u|

2δ(s, Y ) dY ds ≤ C∥u∥
2
L∞(Ec), (1.2)

where δ(s, Y ) := dist((s, Y ), E) and C depends only on the dimension and the parabolic uniformly
rectifiable constants for E.
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Here and below, dist((s, Y ), E) is the parabolic distance from (s, Y ) to the given set E , and the ball
B((t, X), r) is defined with respect to the parabolic metric; see (2.1) and (2.2) below.

In the case that � is an open set, the following holds.

Theorem 1.3. Let n ≥ 2. Let � ⊂ Rn+1 be an open set for which ∂� is uniformly rectifiable in the
parabolic sense. Then for any solution to (∂t −1X )u = 0 in � with u ∈ L∞(�),

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)∩�
|∇u|

2δ(s, Y ) dY ds ≤ C∥u∥
2
L∞(�),

where C depends only the dimension and the parabolic uniformly rectifiable constants for ∂�. Here,
δ(s, Y ) := dist((s, Y ), ∂�), the parabolic distance to ∂�.

The notion of parabolic uniform rectifiability was introduced in [Hofmann et al. 2003; 2004] and
is defined below, but we first provide some context here. Through the works of Hofmann, Lewis,
Murray and Silver [Hofmann 1995; 1997; Hofmann and Lewis 1996; 2005; Lewis and Murray 1995;
Lewis and Silver 1988], it was shown that the good parabolic graphs for parabolic singular integrals
and parabolic potential theory are regular Lip(1/2, 1) graphs, that is, graphs which are Lip(1/2, 1) (in
time-space coordinates) and which possess extra regularity in time in the sense that a (nonlocal) half-order
time derivative of the defining function of the graph is in the space of functions of parabolic bounded
mean oscillation. This is in contrast to the elliptic setting, where one often views Lipschitz graphs as the
good graphs for singular integrals and potential theory (because of [Coifman et al. 1982; 1983; Coifman
and Semmes 1991; Dahlberg 1977; David 1991]), and where the BMO estimate for the gradient is an
automatic consequence of Rademacher’s theorem and the inclusion of L∞ in BMO. The definition of
parabolic uniform rectifiability in [Hofmann et al. 2003; 2004] is given in terms of parabolic β numbers,1

but we do not work with this definition directly here. Instead, we work with an equivalent notion of
parabolic uniform rectifiability in terms of the existence of appropriate corona decompositions recently
established in [Bortz et al. 2023; 2022a]. However, it is worth remarking that the graph of a Lip(1/2, 1)
function is parabolic uniformly rectifiable if and only if the function has a half-order time derivative in
parabolic BMO. In contrast to the case of elliptic uniform rectifiability, which has reached a state of
maturity that includes numerous interesting characterizations, this is not the case for parabolic uniform
rectifiability. In fact, beyond [Hofmann et al. 2003; 2004], the only correct and more systematic studies of
parabolic uniformly rectifiable sets can be found in [Bortz et al. 2023; 2022a].2 In these works, parabolic
uniform rectifiability is characterized in terms of a bilateral coronization by regular Lip(1/2, 1) graphs
(Lemma 2.14), and this characterization is the starting point for the analysis in this paper. In general
there are many interesting open problems in this and related areas, and it should be emphasized that
parabolic uniform rectifiability is significantly different to its elliptic counterpart; see [Bortz et al. 2022a,
Observation 4.19].

1These β numbers can be traced back to the work of P. Jones [1990].
2There are works of J. Rivera-Noriega in this area, but these articles have significant gaps or no proofs. Some of these gaps

are outlined in [Bortz et al. 2023; 2022a; 2022b].
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To give an idea of the methods involved in the proof of Theorem 1.1, the primary novelty of our
work is a corona domain approximation scheme (Proposition 3.25) in terms of regular Lip(1/2, 1) graph
domains. This is in contrast to the (elliptic) NTA domain approximations produced in [Hofmann et al.
2016] for uniformly rectifiable sets. In fact, our proof here carries over without modification to the
elliptic setting,3 providing an (improved) approximation by Lipschitz domains. In [Hofmann et al. 2016]
the authors use Whitney cubes to construct these NTA domains using dyadic sawtooths and exploiting
an elliptic bilateral corona decomposition. The heuristic in the elliptic setting is that these sawtooth
domains inherit many essential properties of the original boundary. In contrast, in the parabolic setting
the analogous constructions do not necessarily inherit even the most basic properties. One of the most
readily apparent difficulties in the parabolic setting comes from the fact that the natural lower dimensional
parabolic measure can easily fail to see relatively nice sets. In particular, given a cube (with respect to
the standard coordinates) in Rn+1, two of the faces (those orthogonal to the time axis) have zero natural
parabolic surface measure, which says that, not only does the boundary of a cube fail to be uniformly
rectifiable in the parabolic sense, it fails even to have the Ahlfors–David regularity property. The method
outlined in this paper circumvents this difficulty by lifting the graphs in the parabolic bilateral corona
decomposition (Lemma 2.14) in a manner that respects the stopping time regimes and thereby produces
the graph domains rather directly. We also point out that, while the analogous elliptic results (in [Hofmann
et al. 2016]) proceed along the lines of extrapolation of Carleson measures it was later seen in [Hofmann
et al. 2019] that this was unnecessary and a more direct approach is available. Therefore, upon proving
Proposition 3.25, the proof of Theorem 1.1 proceeds as in [Hofmann et al. 2019].

Let us provide some motivation for the estimate in Theorem 1.1. As remarked above, (elliptic)
uniform rectifiability has been characterized by various properties of harmonic functions and among these
characterizations is the elliptic version of the Carleson measure estimate in Theorem 1.1; see [Garnett
et al. 2018; Hofmann et al. 2016]. We therefore expect that the estimate in Theorem 1.1 is a significant
step in characterizing parabolic uniform rectifiability by properties of caloric functions. We suspect that
additional considerations and conditions will need to be made, as was the case for nonsymmetric operators
in the elliptic setting [Azzam et al. 2022], in the converse, free-boundary direction due to the lack of
self-adjointness of the heat operator. In domains that are sufficiently nice topologically, the estimate
in Theorem 1.1 (and its elliptic analogue) is also intimately tied to the solvability of the L p-Dirichlet
boundary value problem in the parabolic setting [Dindoš et al. 2017; Genschaw and Hofmann 2020] (see
[Kenig et al. 2000; 2016] and related work in [Dindoš et al. 2011; Hofmann and Le 2018; Zhao 2018] for
the elliptic theory). Indeed, in the case of regular Lip(1/2, 1) graph domains it is known that estimate (1.2)
for bounded null-solutions to general parabolic operators of the form L = ∂t − divX A∇X is equivalent to
the solvability of the L p-Dirichlet boundary value problem for some p> 1 [Dindoš et al. 2017] (boundary
value problem means the data is prescribed on the lateral boundary). In fact, merely assuming parabolic
Ahlfors–David regularity4 and a backwards thickness condition (also of Ahlfors–David regular type),
the solvability of the L p-Dirichlet boundary value problem is implied by a stronger estimate where the

3Except that the technical Lemma 3.24 is no longer needed.
4In particular, without assuming that the domain is the region above a regular Lip(1/2, 1) graph.
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L∞-norm on the right-hand side of (1.2) is replaced by the (boundary) BMO norm of the data; see
[Genschaw and Hofmann 2020]. This stronger estimate is unlikely to hold5 in the present setting due to
the lack of (nontangential) accessibility to the boundary.

The rest of this paper is organized as follows. In Section 2 we introduce the notions and notation used
throughout the paper. In Section 3 we construct approximating domains, each adapted to a particular
stopping time regime in the parabolic bilateral corona decomposition, Lemma 2.14. In Section 4 we prove
the main theorems of the paper (Theorems 1.1 and 1.3) using the constructions produced in Section 3. In
Section 5 we discuss some possible extensions of the results here.

2. Preliminaries

In this paper, we work in Rn+1 identified with R × Rn
= {(t, X) : t ∈ R, X ∈ Rn

} and n ∈ N, n ≥ 2.6 We
use the notation

dist(A, B) := inf
(t,X)∈A,(s,Y )∈B

|X − Y | + |t − s|1/2 (2.1)

to denote the parabolic distance between A and B, with A, B ⊆Rn+1. We also use the notation B((t, X), r)
for the parabolic ball centered at (t, X) with radius r > 0, that is,

B((t, X), r) := {(s, Y ) : dist((t, X), (s, Y )) < r}. (2.2)

Given E ⊂ Rn+1 we let diam(E) denote the diameter, or parabolic diameter, defined with respect to the
parabolic metric.

Definition 2.3 (parabolic Hausdorff measure). Given s > 0 we let Hs
p denote the s-dimensional parabolic

Hausdorff measure. More specifically, for a set E ⊂ Rn+1 and ϵ > 0 we define

Hs
p,ϵ(E) := inf

{∑
i

diam(Ei )
s
: E ⊆

⋃
i

Ei , diam(Ei )≤ ϵ

}
,

Hs
p(E) := lim

ϵ→0+

Hs
p,ϵ(E)= lim sup

ϵ→0+

Hs
p,ϵ(E).

The following family of planes will be important in this work.

Definition 2.4 (t-independent planes). We say that an n-dimensional plane P in Rn+1 is t-independent if
it contains a line in the t-direction. Equivalently, if ν⃗ is the normal vector to P , then ν⃗ · (1, 0⃗)= 0.

The following local energy (Caccioppoli) inequality holds for solutions to the heat equation.

Lemma 2.5 (Caccioppoli inequality). Let B = B((t, X), r), and suppose that u ∈ (1 +α)B is a solution
to (∂t −1X )u = 0 for some α > 0. Then∫

B
|∇X u(t, X)|2 d X dt ≲ r−2

∫
(1+α)B

|u|
2 d X dt,

where the implicit constant depends on the dimension and α.
5The elliptic analogue does not hold (in general) in the complement of uniformly rectifiable set.
6We apologize for the departure from the usual notation (X, t), but we will often be working with graphs and it is convenient

to have the last variable as the graph variable.
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Definition 2.6 (Ahlfors–David regular). We say E ⊂ Rn+1 is (parabolic) Ahlfors–David regular, written
E is ADR, if it is closed and there exists a constant C > 0 such that

C−1rn+1
≤ Hn+1

p (B((t, X), r)∩ E)≤ Crn+1, ∀(t, X) ∈ E, r ∈ (0, diam(E)).

We will call the C of Definition 2.6 the Ahlfors–David regularity constant and if a particular constant
depends on the Ahlfors–David regularity constant, we will say that the constant depends on ADR. We
will sometimes write σ := Hn+1

p |E to denote the surface measure on E . (The underlying set defining σ
will always be clear from the context.)

An ADR set E can be viewed as a space of homogeneous type, (E, dist, σ ), with homogeneous
dimension n + 1. All such sets have a nice filtration, which we will refer to as the dyadic cubes on E .

Lemma 2.7 [Christ 1990; David and Semmes 1991; 1993; Hytönen and Kairema 2012; Hytönen and
Martikainen 2012]. Assume that E ⊂ Rn+1 is (parabolic) ADR in the sense of Definition 2.6 with
constant C. Then E admits a parabolic dyadic decomposition in the sense that there exist constants
a0 > 0, γ > 0, and c∗ <∞, such that for each k ∈ Z there exists a collection of Borel sets, Dk , which we
will call (dyadic) cubes, such that

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (countable) index set depending on k, with the decomposition satisfying

(i) E = ∪j Qk
j , for each k ∈ Z.

(ii) If m ≥ k, then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = ∅.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam(Qk
j )≤ c∗2−k.

(v) Each Qk
j contains E ∩ B((tk

j , Z k
j ), a02−k) for some (tk

j , Z k
j ) ∈ E.

(vi) E({(t, Z) ∈ Qk
j : dist((t, Z), E \ Qk

j )≤ ϱ2−k
})≤ c∗ϱ

γ E(Qk
j ), for all k, j and for all ϱ ∈ (0, α).

Remark 2.8. We denote by D = D(E) the collection of all Qk
j , i.e.,

D :=

⋃
k

Dk .

Given a cube Q ∈ D, we set

DQ := {Q′
∈ D : Q′

⊆ Q}.

For a dyadic cube Q ∈ Dk , we let ℓ(Q) := 2−k, and we refer to this quantity as the size or side-length
of Q. Evidently, ℓ(Q)∼ diam(Q) with constant of comparison depending at most on n and C. Note that
(iv) and (v) of Lemma 2.7 imply that for each cube Q ∈ Dk , there is a point (tQ, X Q) ∈ E and a ball
B((tQ, X Q), r) such that r ≈ 2−k

≈ diam(Q) and

E ∩ B((tQ, X Q), r)⊂ Q ⊂ E ∩ B((tQ, X Q),Cr), (2.9)
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for some uniform constant C. We shall refer to the point (tQ, X Q) as the center of Q. Given a dyadic
cube Q ⊂ E and K > 1, we define the K dilate of Q as

K Q := {(t, X) ∈ E : dist((t, X), E) < (K − 1) diam(Q)}. (2.10)

Throughout the paper we assume that E is uniformly rectifiable in the parabolic sense. We nominally
define this notion in language that will be meaningful to those intimately familiar with the work of David
and Semmes, but we will not discuss and introduce all the relevant terminology (the interested reader may
consult [Bortz et al. 2022a, Definition 4]), as it will not be used in the present work. In fact, the reader
can safely ignore the following definition, as parabolic uniform rectifiability is equivalent to the existence
of a bilateral corona decomposition [Bortz et al. 2023, Theorem 3.3] (see Lemma 2.14 below) and the
latter is the formulation of parabolic uniform rectifiability that we will actually use throughout the paper.

Definition 2.11 (uniformly rectifiable in the parabolic sense (P-UR)). We say a set E ⊂ Rn+1 is uniformly
rectifiable in the parabolic sense (P-UR) if E is ADR and satisfies the (2, 2) geometric lemma with respect
to t-independent planes and the measure Hn+1

p ; see [Bortz et al. 2022a, Definition 4.1].7 We say that a
constant depends on P-UR if it depends on the ADR and Carleson measure constant in the definition of
the (2, 2) geometric lemma (with respect to t-independent planes and the measure Hn+1

p ).

In order to state the bilateral corona decomposition, we need to define regular Lip(1/2, 1) graphs and
coherent subsets of dyadic cubes.

Definition 2.12 (regular Lip(1/2, 1) graphs). We say that 0 is a regular Lip(1/2, 1) graph if there exists a
t-independent plane P and a function ψ : P → P⊥ such that

0 = {(p, ψ(p)) : p ∈ P},

where, upon identifying P with Rn
= R × Rn−1

= {(t, x ′) : t ∈ R, x ′
∈ Rn−1

}, there exist constants b1

and b2 such that ψ has the following two properties:

• ψ is a Lip(1/2, 1) function with constant bounded by b1, that is

|ψ(t, x ′)−ψ(s, y′)| ≤ b1(|x ′
− y′

| + |t − s|1/2), ∀(t, x ′), (s, y′) ∈ Rn.

• ψ has a half-order time derivative in parabolic-BMO with parabolic-BMO norm bounded by b2, that is,

∥D1/2
t ψ∥P-BMO(Rn) ≤ b2,

where P-BMO is the space of bounded mean oscillation with respect to parabolic balls (or cubes) and
D1/2

t ψ(t, x ′) denotes the half-order time derivative. The half-order time derivative of ψ can be defined
by the Fourier transform or by

D1/2
t ψ(t, x ′) := ĉ p.v.

∫
R

ψ(s, x ′)−ψ(t, x ′)

|s − t |3/2
dt, ∀t ∈ R, ∀x ′

∈ Rn−1,

where ĉ is an appropriate constant.
7In [Bortz et al. 2022a], a different measure was used in place of Hn+1

p , but these measures are equivalent when the set E is
P-UR (with respect to either measure). See [Bortz et al. 2023, Corollary B.2].
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Definition 2.13 (coherency [David and Semmes 1993]). Suppose E is a d-dimensional ADR set with
dyadic cubes D(E). Let S ⊂ D(E). We say that S is coherent if the following conditions hold:

(a) S contains a unique maximal element Q(S) which contains all other elements of S as subsets.

(b) If Q belongs to S and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.

(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them do.

We say that S is semicoherent if only conditions (a) and (b) hold.

The following is the bilateral corona decomposition.

Lemma 2.14 [Bortz et al. 2023, Theorem 3.3]. Suppose that E ⊂ Rn+1 is P-UR. Given any positive
constant η≪1 and K :=η−1, there are constants Cη=Cη(η, n,ADR,P-UR) and b2 =b2(n,ADR,P-UR)
and a disjoint decomposition D(E)= G ∪B satisfying the following properties:

(1) The good collection G is further subdivided into disjoint stopping time regimes, G = ∪S∗∈S S∗ such
that each such regime S∗ is coherent.

(2) The bad cubes, as well as the maximal cubes Q(S∗) satisfy a Carleson packing condition:∑
Q′⊂Q, Q′∈B

σ(Q′)+
∑

S∗:Q(S∗)⊂Q

σ(Q(S∗))≤ Cησ(Q), ∀Q ∈ D(E).

(3) For each S∗, there is a regular Lip(1/2, 1) graph 0S∗ , where the function defining the graph has
Lip(1/2, 1) constant at most η (that is, b1 ≤ η) and whose half-order time derivative has P-BMO norm
bounded by b2, such that, for every Q ∈ S∗,

sup
(t,X)∈K Q

dist((t, X), 0S∗)+ sup
(s,Y )∈B∗

Q∩0S∗

dist((s, Y ), E) < η diam(Q), (2.15)

where B∗

Q := B(xQ, K diam(Q)).

Remark 2.16. Notice that if S is any coherent subregime of S∗,8 then item (3) holds for every Q ∈ S.
Also, note that below we may insist that K is large, but this should be interpreted as taking η small.

Definition 2.17 (Whitney cubes and Whitney regions). Given an ADR set E ⊂ Rn+1 we let W(Ec) be
the standard (parabolic) Whitney decomposition of Ec, that is, W(Ec) = {Ii } is a collection of closed
parabolic dyadic cubes9 with disjoint interiors, ∪W(Ec) Ii = Ec, and for each I ∈ W(Ec),

4 diam(I )≤ dist(4I, E)≤ dist(I, E)≤ 100 diam(I ).

(A similar construction can be found in Lemma 3.24 below). For η≪ 1 ≪ K and Q ∈ D(E), we define

WQ(η, K )= {I ∈ W(Ec) : η1/4 diam(Q)≤ dist(I, E)≤ dist(I, Q)≤ K 1/4 diam(Q)}

and
W∗

Q(η, K )= {I ∈ W(Ec) : η4 diam(Q)≤ dist(I, E)≤ dist(I, Q)≤ K diam(Q)}.

8This means S ⊆ S∗ and S satisfies the coherency conditions in Definition 2.13.
9This means cubes from the collection of parabolic cubes in Rn+1

= R × Rn with vertices at the lattice points 22kZ × 2kZn,
for each k ∈ Z.
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Comparing volumes, we see that #WQ ≤ C(n, η, K ) (we use the notation #A to denote the cardinality of
a finite set A). For η≪ 1 ≪ K and Q ∈ D(E), we set

UQ(η, K )=

⋃
I∈WQ(η,K )

I and U∗

Q(η, K )=

⋃
I∈W∗

Q(η,K )

I.

Remark 2.18. The reader may readily verify that the Whitney regions UQ and U∗

Q have bounded overlaps,
that is, ∑

Q∈D(E)

1UQ (t, X)+
∑

Q∈D(E)

1U∗

Q
(t, X)≲ 1, ∀(t, X) ∈ Rn+1,

where the implicit constant depends on the dimension, ADR, η, and K.

3. Domain approximation in stopping time regimes

In this section we assume that E has a bilateral corona decomposition and we fix S, a coherent subregime
of a stopping time regime S∗ in the bilateral corona decomposition (by Remark 2.16 the same estimates
hold for S). Our goal is to construct a family of graphs that approximate the set E well in the sense of
Lemma 2.14 (3) but have the additional property that they lie above (or on) the set E at the scale and
location of the maximal cube QS. Other important properties of the construction will also be established
including containment properties with respect to the Whitney regions defined above (see Definition 2.17).
In the sequel we will often insist on further smallness of η depending on dimension and the ADR constant
for E . Compared to [Hofmann et al. 2016], the constructions outlined in this section are the main novelties
of this paper.

Let QS := Q(S) be the maximal cube in the coherent subregime under consideration. Recall that
S ⊆ S∗ and that there exists a regular Lip(1/2, 1) graph, 0S∗ , such that Lemma 2.14 (3) holds for S∗

and hence also for S. Without loss of generality we may assume that the t-independent plane over
which 0 := 0S∗ is defined is the plane Rn

× {0}. Let f : Rn
→ R be the regular Lip(1/2, 1) function that

defines 0S∗ , that is,
0 := 0S∗ = {(t, x ′, f (t, x ′)) : (t, x ′) ∈ Rn

}.

We define the Rn+1-valued function
F(t, x ′)= (t, x ′, f (t, x ′)).

Inspired by [David and Semmes 1991], we define the stopping time distance d : Rn+1
→ R by10

dS[(t, X)] = inf
Q∈S

[dist((t, X), Q)+ diam(Q)].

Given α ∈
[7

8 ,
31
32

]
we introduce

gα(t, x ′) := f (t, x ′)+ ηαd[F(t, x ′)] and Gα(t, x ′) := (t, x ′, gα(t, x ′)).

As α ∈
[ 7

8 ,
31
32

]
, below we will drop the subscript α and all constants will be independent of α. As we

have fixed S, we will also drop the subscript S from dS.

10Note that we take the stopping time distance in the subregime.
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We first prove that g is Lip(1/2, 1).

Lemma 3.1. If η7/8
≤

1
2 , then g is a Lip(1/2, 1) function with constant less than 3ηα, and the function

G(t, x ′) := (t, x ′, g(t, x ′))

satisfies
1
2 d[F(t, x ′)] ≤ d[G(t, x ′)] ≤ 2d[F(t, x ′)].

Proof. Note first that d is Lip(1/2, 1) (on Rn+1) with constant no more than 1, that is,

|d[(t, X)] − d[(s, Y )]| ≤ dist((t, X), (s, Y )).

This follows from the fact that d is the infimum of nonnegative Lip(1/2, 1) functions with constant 1.
Using this we see that

|g(t, x ′)− g(s, y′)| ≤ | f (t, x ′)− f (s, y′)| + ηα|d[(t, x ′, f (t, x ′))] − d[(s, y′, f (s, y′))]|

≤ η[|t − s|1/2 + |x ′
− y′

|] + ηα[|t − s|1/2 + |x ′
− y′

| + | f (t, x ′)− f (s, y′)|]

≤ 3ηα[|t − s|1/2 + |x ′
− y′

|].

To deduce the inequalities involving d[G(t, x ′)] and d[F(t, x ′)] we consider two cases. If d[F(t, x ′)] = 0,
then G(t, x ′)= F(t, x ′) so that d[G(t, x ′)]= 0. Otherwise, d[F(t, x ′)]> 0, and using that d is Lip(1/2, 1)
with constant 1, we have

|d[F(t, x ′)]−d[G(t, x ′)]|≤dist(F(t, x ′),G(t, x ′))=| f (t, x ′)−g(t, x ′)|≤ηαd[F(t, x ′)]≤ 1
2 d[F(t, x ′)].

From this we easily obtain

1
2 d[F(t, x ′)] ≤ d[G(t, x ′)] ≤ 2d[F(t, x ′)]. □

We will use the following elementary lemma several times.

Lemma 3.2. If 0′ is the graph of a Lip(1/2, 1) function ϕ with Lip(1/2, 1)-norm less than 1
2 , then

1
2 |xn −ϕ(t, x ′)| ≤ dist((t, X), 0′)≤ |xn −ϕ(t, x ′)|,

for all (t, X)= (t, x ′, xn).

Proof. The inequality on the right-hand side is trivial. To prove the inequality on the left-hand side,
we can, after a translation, assume that (t, x ′, ϕ(t, x ′))= (0, 0, 0). Furthermore, we can without loss of
generality assume that xn ≥ 0 (the case xn < 0 is treated in the same way). Then |xn − ϕ(0, 0)| = xn .
If (s, y′) ∈ Rn satisfies |y′

| + |s|1/2 > xn , then

dist((t, X), (s, y′, ϕ(s, y′)))≥ |y′
| + |s|1/2 ≥ xn.

If (s, y′) ∈ Rn satisfies |y′
| + |s|1/2 ≤ xn , then |ϕ(s, y′)| ≤

1
2 xn and hence

dist((t, X), (s, y′, ϕ(s, y′)))≥ |xn −ϕ(s, y′)| ≥
(
1 −

1
2

)
xn =

1
2 xn.

These estimates prove the lemma. □
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We will need the following properties of the stopping time distance.

Lemma 3.3. Let A> 1. If (t, X) ∈ Rn+1 satisfies 0< 2d[(t, X)] ≤ A diam(QS), then there exists Q∗
∈ S

such that
dist((t, X), Q∗)≤ 2d[(t, X)] ≤ A diam(Q∗)≤ Cn,ADRd[(t, X)]. (3.4)

If d[(t, X)] = 0, then there exists, for every ϵ ∈ (0, A diam(QS)), Qϵ ∈ S such that

dist((t, X), Qϵ)≤ ϵ < A diam(Qϵ)≤ Cn,ADRϵ. (3.5)

Proof. We start with proving (3.4). By definition there exists Q ∈ S such that

dist((t, X), Q)+ diam(Q)≤ 2d[(t, X)].

Let Q∗
∈ S be the smallest cube satisfying Q ⊆ Q∗

⊆ QS such that

A diam(Q∗)≥ 2d[(t, X)]. (3.6)

Such a cube exists because QS is a candidate. Notice that since Q∗ contains Q, dist((t, X), Q∗) ≤

dist((t, X), Q) ≤ 2d[(t, X)] which proves the first inequality in (3.4). The second inequality in (3.4)
holds by the choice of Q∗. To see that the last inequality holds, we first note that if Q∗

= Q, then
diam(Q∗)= diam(Q)≤ 2d[(t, X)] and we are done. Otherwise, the child of Q∗ containing Q, namely Q′,
fails to satisfy (3.6) and hence

A diam(Q∗)≲n,ADR A diam(Q′)≤ 2d[(t, X)].

Since A > 1, we have that diam(Q∗) ≲n,ADR d[(t, X)] (with the implicit constant independent of A).
This proves (3.4).

To verify (3.5), note that by definition there exists Q ∈ S such that

dist((t, X), Q)+ diam(Q)≤ ϵ ≤ A diam(QS).

This allows us to repeat the argument above to produce Qϵ . □

Lemma 3.7. If (t, X) ∈ B
(
(tQS, X QS),

1
4 K diam(QS)

)
∩ E with (t, X)= (t, x ′, xn), then

dist((t, X), 0)≲ ηd[(t, X)] and |xn − f (t, x ′)| ≲ ηd[(t, X)].

Here the implicit constants depend only on the dimension and ADR.

Proof. The second inequality follows from the first and Lemma 3.2. If d[(t, X)] = 0, then Lemma 3.3
gives that for n ∈ N, we have (t, X) ∈ K Q1/n for some Q1/n ∈ S with diam(Q1/n)≈ 1/n. Then using
Lemma 2.14(3) we have dist((t, X), 0)≲ 1/n for all n and hence (t, X) ∈ 0. This proves the lemma in
the case d[(t, X)] = 0.

Now assume d[(t, X)]>0 and note that 2d[(t, X)]<(K−1) diam(QS) if K >6. Applying Lemma 3.3,
there exists Q∗ such that

dist((t, X), Q∗)≤ (K − 1) diam(Q∗)≲ d[(t, X)].
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Then Lemma 2.14 (3) gives the desired inequality

dist((t, X), 0)≤ η diam(Q∗)≲ ηd[(t, X)]. □

Let
0+

:= {(t, x ′, g(t, x ′)) : (t, x ′) ∈ Rn
}

denote the graph of g. We first prove that we did not lose too much by modifying f and that, in fact,
E lies below 0+ (near QS).

Lemma 3.8. If (t, X) ∈ B
(
(tQS, X QS),

1
4 K diam(QS)

)
∩ E with (t, X)= (t, x ′, xn), then

(a) 1
8η
αd[(t, X)] ≤ dist((t, X), 0+)≤ 3ηαd[(t, X)], and

(b) xn ≤ g(t, x ′)− 1
4η
αd[(t, X)].

Proof. If d[(t, X)] = 0, then d[F(t, x ′)] = 0 by Lemma 3.7, and

(t, X)= (t, x ′, f (t, x ′))= (t, x ′, g(t, x ′)).

This implies (a) and (b).
Assume d[(t, X)]> 0. Lemma 3.7 yields the estimate

|xn − f (t, x ′)| ≤ Cηd[(t, X)]. (3.9)

If Cη < 1
2 , then following the lines of the proof of Lemma 3.1, we have that

1
2 d[(t, X)] ≤ d[F(t, x ′)] ≤ 2d[(t, X)]. (3.10)

Thus, by definition of g,

g(t, x ′)− xn = ηαd[F(t, x ′)] + ( f (t, x ′)− xn)≥
1
2η
αd[(t, X)] − Cηd[(t, X)] ≥

1
4η
αd[(t, X)],

provided Cη≤
1
4η
α. This proves (b), and when combined with Lemma 3.2, it gives the lower bound in (a).

To verify the upper bound in (a), we use (3.9) and (3.10) to write

|g(t, x ′)− xn| ≤ ηαd[F(t, x ′)] + | f (t, x ′)− xn| ≤ 2ηαd[(t, X)] + Cηd[(t, X)] ≤ 3ηαd[(t, X)]. □

We remind the reader that we have previously defined certain Whitney regions (see Definition 2.17).
We now investigate how these Whitney regions interact with the graphs we are constructing. First we
need to see how they interact with the original graph 0. As in the elliptic setting [Hofmann et al. 2016],
we have the following.

Lemma 3.11. If Q ∈ S and I ∈ WQ , then I is either above or below 0 (it does not meet 0). Moreover,
we have the estimate

dist(I, 0)≥ η1/2 diam(Q).

Proof. The first statement, about the cubes being above or below the graph, follows from the estimate.
Suppose for the sake of contradiction that there exists I ∈WQ , Q ∈ S such that dist(I, 0)<η1/2 diam(Q),
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and let (s, Y ) ∈ 0 be such that dist((s, Y ), I )≤ η1/2 diam(Q). By construction, dist((t, Z), (tQ, X Q))≲
K 1/4 diam(Q) for all (t, Z) ∈ I and hence

dist((s, Y ), (tQ, X Q))≤ η1/2 diam(Q)+ C K 1/4 diam(Q)≲ K 1/4 diam(Q).

By Lemma 2.14 (3), dist((s, Y ), E)≤ η diam(Q). Choosing (t0, Z0) ∈ I such that dist((t0, Z0), (s, Y ))=
dist((s, Y ), I )≤ η1/2 diam(Q), we have that

dist(I, E)≤ dist((t0, Z0), (s, Y ))+ dist((s, Y ), E)

≤ η1/2 diam(Q)+ η diam(Q)≤ 2η1/2 diam(Q) < η1/4 diam(Q),

provided η1/4 < 1
2 . This violates the assumption that I ∈ WQ . □

In light of Lemma 3.11, for Q ∈ S we have that WQ = W+

Q ∪W−

Q , where W+

Q is the collection of
Whitney cubes above 0 and W−

Q is the collection of Whitney cubes below 0. We then define

U±

Q :=

⋃
I∈W±

Q

I.

The following lemma says that U+

Q still lies above 0+ and, when (t, X) ∈ U+

Q , the distance from (t, X)
to 0+ is roughly the distance to E .

Lemma 3.12. Let Q ∈ S. If η is sufficiently small, then U+

Q lies above 0+ and

xn − g(t, x ′)≥
1
2 dist((t, X), 0), ∀(t, X)= (t, x ′, xn) ∈ U+

Q . (3.13)

Moreover,
dist((t, X), 0+)≈ dist((t, X), E), (t, X) ∈ U+

Q , (3.14)

where the implicit constants depend on dimension, ADR, η, and K.

Proof. Recall that η = K −1. Let (t, X)= (t, x ′, xn) ∈ I for some I ∈ W+

Q . As dist((t, X), (tQ, X Q))≲
K 1/4 diam(Q) and Q ∈ S, we have

dist((t, X), 0)≲ (K 1/4
+ η) diam(Q)≲ K 1/4 diam(Q). (3.15)

Using Lemma 3.2,
|(t, X)− F(t, x ′)| ≲ K 1/4 diam(Q),

and therefore dist(F(t, x ′), Q)≲ K 1/4 diam(Q). It follows that d[F(t, x ′)] ≲ K 1/4 diam(Q), and using
Lemma 3.11,

xn − f (t, x ′)≥ dist((t, X), 0)≥ η1/2 diam(Q)≳ η1/2K −1/4d[F(t, x ′)] ≈ η3/4d[F(t, x ′)].

By the definition of g and the fact that α ≥
7
8 , Lemma 3.2 implies that

xn − g(t, x ′)= xn − f (t, x ′)− ηαd[F(t, x ′)] ≥
1
2(xn − f (t, x ′))

≥
1
2 dist((t, X), 0)≥

1
2η

1/2 diam(Q), (3.16)
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where the next-to-last inequality yields (3.13), and where we have used Lemma 3.11 in the last step. In
particular, U+

Q lies above 0+. Using (3.15) and the last inequality in (3.16), and then the properties of the
Whitney cubes in WQ , we have

dist((t, X), 0)≈η,K diam(Q)≈η,K dist((t, X), E).

Combining (3.16) and the last displayed estimate and then using Lemma 3.2, we obtain

dist((t, X), 0+)≥
1
2(xn − g(t, x ′))≥

1
4 dist((t, X), 0)≈η,K dist((t, X), E)

and
dist((t, X), 0+)≤ xn − g(t, x ′)≤ xn − f (t, x ′)≤ 2 dist((t, X), 0)≈ dist((t, X), E). □

We also require that close to QS, the region above 0+ shall be contained in a collection of Whitney
regions associated to Q ∈ S. This can be done using the Whitney regions U∗

Q .

Lemma 3.17. Suppose (t, X)= (t, x ′, xn) satisfies xn > g(t, x ′) and

(t, X) ∈ B
(
(tQS, X QS),

1
32 K diam(QS)

)
.

Then
dist((t, X), E)≥ dist((t, X), 0+), (3.18)

and there exists Q∗
∈ S such that (t, X) ∈ U∗

Q∗ .

Proof. Let (t, X) be as above. By Lemma 3.8, we see that d[(t, X)] ̸= 0. To prove (3.18), we note that if
(s, Y ) is the closest point to (t, X) in E , then

dist((t, X), (s, Y ))≤ dist((t, X), (tQS, X QS)) <
1

32 K diam(QS).

Thus dist((s, Y ), (tQS, X QS)) <
1

16 K diam(QS), so in particular,

(s, Y ) ∈ B
(
(tQS, X QS),

1
4 K diam(QS)

)
∩ E .

By Lemma 3.8 (b), (s, Y ) lies below 0+ and hence the line segment between (s, Y ) and (t, X) meets 0+.
This proves (3.18).

To prove the existence of Q∗
∈ S such that (t, X) ∈ U∗

Q∗ , we break the proof into cases.

Case 1: xn − g(t, x ′)≥ η3d[(t, X)]. In this case, by (3.18) and Lemma 3.2,

dist((t, X), E)≥ dist((t, X), 0+)≥
1
2η

3d[(t, X)].

Since d[(t, X)] ≤
( 1

32 K +1
)

diam(QS) <
( 1

2(K −1)
)

diam(QS), we use Lemma 3.3 to produce Q∗ with

dist((t, X), Q∗)≤ (K − 1) diam(Q∗)≲n,ADR d[(t, X)].

Thus,
(t, X) ∈ B((tQ∗, X Q∗), K diam(Q∗))

and
dist((t, X), E)≳ η3d[(t, X)] ≳ η3(K − 1) diam(Q∗)≈ η2 diam(Q),
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where the implicit constants depend on the dimension and ADR. Letting I ∈ W be such that (t, X) ∈ I , it
follows that I ∈ W∗

Q , provided η is sufficiently small.

Case 2: xn − g(t, x ′)≤ η3d[(t, X)]. In this case, note that

dist((t, X),G(t, x ′))≤ xn − g(t, x ′)≤ η3d[(t, X)]. (3.19)

Thus, since d is Lipschitz with norm 1 with respect to dist( · ), we have, for η3 < 1
2 ,

1
2 d[(t, X)] ≤ d[G(t, x ′)] ≤ 2d[(t, X)]. (3.20)

In particular, d[G(t, x ′)]> 0. Notice then that

d[G(t, x ′)] ≤ 2d[(t, X)] ≤
( 1

16 K + 2
)

diam(QS)≤
1
8(K − 1) diam(QS),

provided that K is large enough, and Lemma 3.3 then yields Q∗
∈ S such that

dist(G(t, x ′), Q∗)≤
1
4(K − 1) diam(Q∗)≈ d[G(t, x ′)]. (3.21)

Combining the latter estimate with (3.19) and (3.20), we see that

(t, X) ∈ B
(
(tQ∗, X Q∗), 1

2(K − 1) diam(Q∗)
)
.

Claim 3.22. For η chosen small enough (η2 < 1
2 will suffice at this stage),

dist(G(t, x ′), E)≥ η2d[G(t, x ′)].

Taking the claim for granted momentarily, by (3.19), (3.20), and (3.21), we have

dist((t, X), E)≥ dist(G(t, x ′), E)− dist((t, X),G(t, x ′))

≥ dist(G(t, x ′), E)− η3d[(t, X)] ≳ η2d[(t, X)]

≈ η2
[G(t, x ′)] ≳ η2(K − 1) diam(Q∗)≈ η diam(Q∗),

and the lemma is proved. It remains to prove Claim 3.22.

Proof of Claim 3.22. Let (s, Y )= (s, y′, yn) ∈ E be such that

dist(G(t, x ′), (s, Y ))= dist(G(t, x ′), E).

Assume, for the sake of obtaining a contradiction, that

dist(G(t, x ′), (s, Y )) < η2d[G(t, x ′)].

Then for η2 < 1
2 , since d is Lipschitz with norm 1 with respect to dist( · ), we have

d[G(t, y′)] ≤ 2d[(s, Y )].

Hence, under the current assumption that dist(G(t, x ′), (s, Y )) < η2d[G(t, x ′)],

|y′
− x ′

| + |t − s|1/2 < 2η2d[(s, Y )].
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Since g is Lip(1/2, 1) with constant 3ηα (in particular less than 1),

dist(G(t, x ′),G(s, y′))≲ η2d[(s, Y )].

Thus,
|yn − g(s, y′)| = dist((s, Y ),G(s, y′))≲ η2d[(s, Y )],

which contradicts the conclusion of Lemma 3.8, provided that

(s, Y ) ∈ B
(
(tQS, X QS),

1
4 K diam(QS)

)
. (3.23)

Indeed, the latter is true, as we now show. Recall that by hypothesis

(t, X) ∈ B
(
(tQS, X QS),

1
32 K diam(QS)

)
.

Moreover, in the scenario of Case 2,

dist((t, X),G(t, x ′))= xn − g(t, x ′) < η3d[(t, X)] ≤ diam(QS),

and therefore
dist(G(t, x ′), (tQS, X QS)) <

1
16 K diam(QS).

Since (s, Y ) is the closest point on E to G(t, x ′), it must be that

(s, Y ) ∈ B
(
(tQS, X QS),

1
8 K diam(QS)

)
.

In particular, (3.23) holds, and this proves the claim. □

Our next goal is to produce a regular version of the graphs we have constructed above. The vehicle for
this regularization is the following lemma.

Lemma 3.24. Let h : Rn
→ R, h(t, x ′)≥ 0, be a Lip(1/2, 1) function with Lip(1/2, 1) constant (at most) 1.

There exists a function H : Rn
→ R such that

(1) c1h(t, x ′)≤ H(t, x ′)≤ c2h(t, x ′) for all (t, x ′) ∈ Rn.

(2) If Z = {(t, x ′) : h(t, x ′)= 0}, then

h(t, x ′)2m−1
|∂m

t H(t, x ′)| + h(t, x ′)m−1
|∇

m
x ′ H(t, x ′)| ≤ cn,m, ∀(t, x ′) ∈ Z c, m ∈ N.

(3) H ∈ Lip(1/2, 1) with constant less than c3.

Here c1, c2, and c3 depend on the dimension alone and cn,m depends on the dimension and m. Moreover,
H enjoys the estimate

∥D1/2
t H∥P-BMO ≤ c4,

where c4 depends only on the dimension.

The proof has many standard elements (if one knows where to look), but is a little lengthy. The proof
can be found in the Appendix.
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Now we are ready to create our regularized graph. Let h(t, x ′) := 1
2 d[F(t, x ′)], and let H(t, x ′) be the

function provided by Lemma 3.24.11 We define two functions

ψ±

η,S(t, x) := f (t, x)± η15/16 H(t, x ′).

We hope that it is clear to the reader that the function

g−

α (t, x ′) := f (t, x ′)− ηαd[F(t, x ′)]

has properties analogous to those of gα(t, x ′) except that g−
α is below f and E , that the cubes in W−

Q
are below the graph of g−

α , etc. We next deduce that ψ±

η,S has the same properties as the functions gα
(and g−

α ), enumerated below.

Proposition 3.25. Let E be uniformly rectifiable in the parabolic sense. Let D(E)= G∪B, G = ∪S∗∈S S∗,
and {0S∗}S∗∈S be the bilateral corona decomposition of E given by Lemma 2.14, with constants η≪ 1,
K = η−1, and b2. Let M0 be the constant from Lemma 4.1 below, with b̃1 = 2 and b̃2 = 1 + b2. If η is
sufficiently small, depending only on the dimension and ADR, then the following holds.

Let S∗
∈ S. Then for every coherent subregime S of S∗, there is a t-independent plane PS and two

regular parabolic graphs 0±

S over PS given by the functions ψ±

η,S, with

∥ψ±

η,S∥Lip(1/2,1) ≤ Cnη
15/16 and ∥D1/2

t ψ±

η,S∥P-BMO ≤ (1 + b2),

with the following properties (in the coordinates given by PS ⊕ P⊥

S ):

(1) If Q ∈ S, then WQ has a disjoint decomposition WQ =W+

Q ∪W−

Q , and if we let U±

Q := ∪I∈W±

Q
I , then

U±

Q ⊆ B((tQS, X QS), K 3/4 diam(QS))∩ {±xn >±ψ±

η,S(t, x ′)}.

Here the notation {±xn >±ψ±

η,S(t, x ′)} means

{(t, X)= (t, x ′, xn) : ±xn >±ψ±

η,S(t, x ′)}.

In particular, ⋃
Q∈S

U±

Q ⊆ B((tQS, X QS), K 3/4 diam(QS))∩ {±xn >±ψ±

η,S(t, x ′)}.

(2) If (t, X) ∈ ∪Q∈SU±

Q , then

dist((t, X), E)≈η dist((t, X), 0±

S ).

(3) If (t, X) ∈ B
(
(tQS, X QS),

1
32 K diam(QS)

)
∩ {±xn >±ψ±

η,S(t, x ′)}, then

dist((t, X), E)≥ dist((t, X), 0±

S ).

(4) B
(
(tQS, X QS),

1
32 K diam(QS)

)
∩ {±xn >±ψ±

η,S(t, x ′)} ⊆ ∪Q∈SU∗

Q .

11See the proof of Lemma 3.1, from which one can easily deduce that d[F(t, x ′)] has Lip(1/2, 1) norm less than 1 + η and
hence h(t, x ′) has Lip(1/2, 1)-norm less than 1. This allows one to apply Lemma 3.24.
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(5) There exist (t±

S , X±

S ) ∈ 0±

S such that

B((tQS, X QS),M0K 3/4 diam(QS))⊂ B((t±

S , X±

S ), K 7/8 diam(QS)) (3.26)
and

B((t±

S , X±

S ), K 7/8 diam(QS))⊂ B
(
(tQS, X QS),

1
32 K diam(QS)

)
. (3.27)

Proof. Let ψ±

η,S be as constructed before the statement of the proposition. Both ψ±

η,S are Lip(1/2, 1) with
constant less than Cη15/16 because f is Lip(1/2, 1) with constant less than η and H has Lip(1/2, 1)-norm
less than c3 = c3(n); see Lemma 3.24. Similarly,

∥D1/2
t ψ±

η,S∥P-BMO ≤∥D1/2
t f ∥P-BMO+η15/16

∥D1/2
t H∥P-BMO ≤∥D1/2

t f ∥P-BMO+c4η
15/16<b2+1, (3.28)

provided η is sufficiently small. We define 0±

S to be the graphs of ψ±

η,S, respectively.
We claim that

g7/8(t, x ′)≥ ψ+

η,S(t, x ′)≥ g31/32(t, x ′) (3.29)
and

g−

7/8(t, x ′)≤ ψ−

η,S(t, x ′)≤ g−

31/32(t, x ′). (3.30)

Indeed, these inequalities are a result of the fact that η7/8
≫ η15/16

≫ η31/32 when η is very small along
with the properties of H in relation to d . For example,

ψ+

η,S(t, x ′)− g31/32(t, x ′)= η15/16 H(t, x ′)− η31/32d[F(t, x ′)].

Using Lemma 3.24 we have
d[F(t, x ′)] = 2h(t, x ′)≈n H(t, x ′).

Since the constants are independent of η the second inequality in (3.29) follows. The other inequalities
are treated similarly.

With (3.29)–(3.30) at hand, properties (1) and (2) can be deduced directly from Lemmas 3.11 and 3.12.
Note that to prove property (2), we observe that (t, X) ∈ UQ implies that (t, X) is above the graphs
of both g7/8 and g31/32. Similarly, properties (3) and (4) can be deduced from (3.29) (or (3.30)) and
Lemma 3.17: to prove (3) and (4) in, e.g., the context of ψ+

η,S(t, x ′), we simply observe that if (t, X) is
above ψ+

η,S(t, x ′), then it is also above g31/32.
To prove (5), let (s, Y ) be the closest point on 0S to (tQS, X QS) and observe from Lemma 2.14 (3) that

dist((tQS, X QS), (s, Y ))≤ η diam(QS).

As (s, Y )= (s, y′, yn)= F(s, y′), we have that

H(s, y′)≈n d[F(s, y′)] ≤ diam(QS)+ η diam(QS) < 2 diam(QS),

where we have used the properties of H given by Lemma 3.24. Then by definition,

dist((tQS, X QS), (s, y′, ψ±

η,S(s, y′)))≤ dist((tQS, X QS), (s, Y ))+ η15/16 H(s, y′)≲n η
15/16 diam(QS).

Setting (t±

S , X±

S ) = (s, y′, ψ±

η,S(s, y′)) and taking η sufficiently small (and hence K sufficiently large),
we arrive at (5). □
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4. Carleson measure estimates: Proof of Theorems 1.1 and 1.3

Before we get into the details of proving Theorems 1.1 and 1.3, we point out that the domains we produced
in Proposition 3.25 support (a local version of) the Carleson measure estimate.

Lemma 4.1 [Hofmann and Lewis 2005, Lemma A.2]. Let b̃1, b̃2 be fixed nonnegative constants. Let
ϕ(t, x ′) be a regular Lip(1/2, 1) function, with Lip(1/2, 1) constant b̃1, such that ∥D1/2

t ϕ∥P-BMO ≤ b̃2. Let

�+
= {(t, X)= (t, x ′, xn) : xn > ϕ(t, x ′)}.

Then there exist M0 = M0(n, b̃1, b̃2) > 1 and c5 = c5(n, b̃1, b̃2), such that if u is a bounded solution to
(∂t −1x)u = 0 in

�+((t0, X0),M0r) := B((t0, X0),M0r)∩�+,

for some (t0, X0) ∈ ∂�, then∫∫
B((t0,X0),r)∩�+

|∇u(s, Y )|2δ̃(s, Y ) dY ds ≤ c5rn+1
∥u∥

2
L∞(�+((t0,X0),M0r)). (4.2)

Here δ̃(s, Y )= dist((s, Y ), ∂�+). An analogous statement holds for bounded solutions to (∂t −1x)u = 0
in

�−((t0, X0),M0r) := B((t0, X0),M0r)∩�−,

where
�−

= {(t, X)= (t, x ′, xn) : xn < ϕ(t, x ′)}.

Proof. The lemma is a consequence of [Hofmann and Lewis 2005, Lemma A.2], henceforth abbreviated
[HL, A.2]. However, to reduce the proof of the lemma to [HL, A.2] one has to note two things. First, by
using the parabolic version of the Dahlberg–Kenig–Stein pullback, the operator (∂t −1) is transformed
to an operator of the form treated in [HL, A.2] in the upper half-space. Furthermore, �+((t0, X0),M0r)
is transformed into a region containing a Carleson region of size roughly M0r . Second, while stated for
solutions in the upper half-space, [HL, A.2] uses only that u is a solution in a Carleson region. □

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let E be uniformly rectifiable in the parabolic sense and let u be a bounded solution
to (∂t −1X )u = 0 in Ec. We may assume that ∥u∥L∞(Ec) ̸= 0 since the conclusion of Theorem 1.1 holds
trivially if ∥u∥L∞(Ec) = 0. Let

v :=
u

∥u∥L∞(Ec)

.

Then ∥v∥L∞(Ec) = 1 and it clearly suffices to prove the theorem with v in place of u.
For each Q ∈ D(E) we set

βQ =

∫∫
UQ

|∇Xv|
2δ(s, Y ) dY ds.

We first reduce the proof of the theorem to a statement concerning the βQ .
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Claim 4.3. If there exists C (independent of v) such that∑
Q⊆Q0

βQ ≤ Cσ(Q0), ∀Q0 ∈ D(E), (4.4)

then there exists C ′ such that

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)
|∇Xv|

2δ(s, Y ) dY ds ≤ C ′. (4.5)

In particular, to prove the theorem it is enough to verify (4.4)

Sketch of Proof of Claim 4.3. To prove that (4.4) implies (4.5), we select a collection {Qi
0}i ⊂ D(E) such

that, for each i , diam(Qi
0)≈ κr , and such that the collection has uniformly bounded cardinality depending

only on n and ADR. Furthermore, B((t, X), r)∩ E ⊂ ∪i Qi
0. Choosing κ large enough depending only

on allowable parameters, we have that B((t, X), r) \ E ⊂ ∪i ∪Q⊂Qi
0

UQ . We can then apply (4.4) to each
Q0 = Qi

0. We omit the routine details. □

We have now reduced everything to the setting of our dyadic machinery and we are almost ready to
begin employing the constructions in Proposition 3.25. Notice that these constructions are only likely to
be helpful when bounding a βQ when Q is a good cube. That is why the following claim is important
when handling the bad cubes.

Claim 4.6. There exists a constant A depending only the dimension, K , η, and ADR such that

βQ ≤ Aσ(Q).

Sketch of Proof of Claim 4.6. The claim follows readily from Lemma 2.5 and ADR as in [Hofmann et al.
2016]. We omit the details. □

We now prove (4.4). Fix Q0 ∈ D(E). If Q0 ∈ S∗ for some S∗
∈ S we let S = S∗

∩DQ0 and note that S
is a coherent subregime of S∗ with maximal cube Q0. DQ0 has the disjoint decomposition

DQ0 = {Q ∈ B : Q ⊆ Q0} ∪

( ⋃
S∗:Q(S∗)⊂Q0

S∗

)
∪ S, (4.7)

where S = ∅ if Q0 is not in a stopping time regime (i.e., if Q0 is a bad cube). By Lemma 2.14 (2) and
Claim 4.6, ∑

Q⊆Q0
Q∈B

βQ ≤ C
∑

Q⊆Q0
Q∈B

σ(Q)≤ CCη,Kσ(Q0). (4.8)

Let us suppose, for the moment, that we can show that∑
Q∈S∗

βQ ≤ Cσ(Q(S∗)), (4.9)

for all S∗ such that Q(S∗)⊂ Q0, and that∑
Q∈S

βQ ≤ Cσ(Q(S))= Cσ(Q0), (4.10)
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if Q0 is in some stopping time regime. Then, by Lemma 2.14 (2),∑
Q∈S

βQ +

∑
S∗:Q(S∗)⊂Q0

∑
Q∈S∗

βQ ≲ σ(Q0)+
∑

S∗:Q(S∗)⊆Q0

σ(Q(S∗))≲ (Cη,K + 1)σ (Q0).

Combining this estimate with (4.8) and using the decomposition of DQ0 in (4.7) proves (4.4) and hence
the theorem. Thus it suffices to verify (4.9) and (4.10). In the following we only prove (4.9) as the only
change needed when proving (4.10) is to change S∗ to S.

To prove (4.9) we use Proposition 3.25. Fix S∗ such that Q(S∗)⊂ Q, and letψ±

η,S∗ be the functions from
Proposition 3.25. Then by Proposition 3.25 (1), if Q ∈ S∗, then UQ =U+

Q ∪U−

Q and so βQ =β+

Q+β−

Q , where

β±

Q :=

∫∫
U±

Q

|∇Xv|
2δ(s, Y ) dY ds.

Clearly it is enough to show that ∑
Q∈S∗

β±

Q ≤ Cσ(Q(S∗)).

We prove the estimate for the sum of the β+

Q leaving the straightforward modification needed to handle
the sum of the β−

Q to the interested reader. Moreover, since the {UQ}, and hence the {U±

Q }, have bounded
overlap it is enough to prove that∫∫

∪Q∈S∗U+

Q

|∇Xv|
2δ(s, Y ) dY ds ≤ Cσ(Q(S∗)). (4.11)

Let
�+

S∗ = B((t+

S∗, X+

S∗), K 7/8 diam(QS∗))∩ {xn >ψ
+

η,S∗(t, x ′)},

�̃+

S∗ = B((tQS∗ , X QS∗ ), K 3/4 diam(QS∗))∩ {xn >ψ
+

η,S∗(t, x ′)},

�̂+

S∗ = B((tQS∗ , X QS∗ ),M0K 3/4 diam(QS∗))∩ {xn >ψ
+

η,S∗(t, x ′)},

where we recall that we use the coordinates PS∗ ⊕ P⊥

S∗ and that the notation {xn >ψ
+

η,S∗(t, x ′)} means

{(t, x ′, xn) : xn >ψ
+

η,S∗(t, x ′)}.

We note that �̂+

S∗ ⊂ �+

S∗ by (3.26). Proposition 3.25 (4) and (3.27) ensure that �+

S∗ is an open subset
of Ec and hence v is a solution in �+

S∗ . Applying Lemma 4.1 we have∫∫
�̃+

S∗

|∇Xv|
2δ̃(s, Y ) dY ds ≲ diam(Q(S∗))n+1

≈ σ(Q(S∗)), (4.12)

where δ̃(s, Y )= dist((s, Y ), 0+

S∗) and 0+

S∗ is the graph of ψ+

S∗ . Note that if Q ∈ S∗, we have U+

Q ∈ �̃+

S∗ by
Proposition 3.25 (1). Moreover, by Proposition 3.25 (2), we have δ̃(s, Y )≈ δ(s, Y ) in ∪Q∈S∗U+

Q . Thus,∫∫
∪Q∈S∗U+

Q

|∇Xv|
2δ(s, Y ) dY ds ≈

∫∫
∪Q∈S∗U+

Q

|∇Xv|
2δ̃(s, Y ) dY ds

≤

∫∫
�̃+

S

|∇Xv|
2δ̃(s, Y ) dY ds ≲ σ(Q(S∗)), (4.13)

where we used (4.12) in the last inequality. This proves (4.11), and the proof of the theorem is complete. □
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The proof of Theorem 1.3 is nearly identical, the only difference being that in this case one needs to
take W(�), a Whitney decomposition of �, instead of W(Ec). Modulo the following remark we leave
the details to the interested reader.

Remark 4.14. As in the elliptic setting, Theorem 1.3 does not require the corkscrew condition. On
the other hand, the converse of the elliptic version of Theorem 1.3 [Garnett et al. 2018; Azzam et al.
2022] requires the additional assumption of interior corkscrews. Note that when carrying out the proof
of Theorem 1.3, without the corkscrew assumption it may be the case that the Whitney regions UQ are
empty for some cubes Q ∈ D(∂�), but this does not affect the analysis above.

5. Further remarks

In this section we make some remarks concerning possible extensions and consequences of Theorem 1.1
and the constructions in Proposition 3.25. These extensions and consequences can be proved, or, we
expect that they can be proved, largely using the tools already developed in the elliptic setting. Again, we
believe that the main novelty of this paper is the approximation scheme, that is, Proposition 3.25.

The first observation is that solutions to the heat equation are (locally) smooth and that t-derivatives
of solutions are, in fact, solutions. This allows one to produce a Caccioppoli-type inequality for the
t-derivative which, in turn, allows one to improve the Carleson measure estimate in Theorems 1.1 and 1.3
to one that includes the t-derivative. In particular, under the same hypotheses as Theorem 1.1, the estimate

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)
(|∇u|

2
+ δ(s, Y )2|∂su|

2)δ(s, Y ) dY ds ≤ C∥u∥
2
L∞(Ec) (5.1)

holds with a constant C depending only the dimension and the parabolic uniformly rectifiable constants
for E .

The second observation is that the proof of Theorem 1.1 uses essentially three properties of u:

(i) u ∈ L∞(Ec),

(ii) the Caccioppoli’s inequality of Lemma 2.5, and

(iii) the local square function estimate stated in Lemma 4.1.

If one wants to extend the validity of Theorem 1.1 to more general parabolic equations in divergence
form,

L = ∂t − divX A(t, X)∇X ,

where A is an n × n uniformly elliptic matrix, then some regularity conditions on the coefficients need to
be imposed in order to guarantee property (iii). A natural sufficient condition is the parabolic analogue of
the Kenig–Pipher condition.12 More specifically, this means that A satisfies

|∇X A(s, Y )|δ(s, Y ), |∂t A(s, Y )|δ2(s, Y ) ∈ L∞(Rn+1
\ E),

12In fact, in [Hofmann and Lewis 2005, Lemma A.2], a slightly more general class of coefficients is permitted.
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where δ(s, Y )= dist((s, Y ), E), and that there exists a constant M such that

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)
|∇X A(s, Y )|2δ(s, Y ) dY ds ≤ M,

sup
(t,X)∈E,r>0

r−n−1
∫∫

B((t,X),r)
|∂t A(s, Y )|2δ3(s, Y ) dY ds ≤ M. (5.2)

In particular, our results apply to this class of coefficients.
A final observation is that it seems likely that some form of ϵ-approximability [Hofmann et al. 2016;

2019] should hold in this parabolic setting along with the corresponding quantitative Fatou theorem [Bortz
and Hofmann 2020]. In fact, it may be more reasonable to use the dyadic constructions from [Hofmann
et al. 2016] in proving these results. Indeed, our construction here would provide some of the necessary
initial estimates (Theorem 1.1), but it seems easier to deduce (parabolic) BV estimates using dyadic cubes.
We also mention that it is natural to use the estimate (5.1) and to prove ϵ-approximability via a Carleson
measure estimate which includes the t-derivative of the approximator. Note that this estimate was not
included in [Rivera-Noriega 2003] and therefore the proof used in [Rivera-Noriega 2003, Proposition 4.3]
is valid only if one works with a vertical version of the nontangential counting function N (or by a spatially
nontangential version based on time-slice cones with t fixed), rather than a fully nontangential version.

Appendix: Proof of Lemma 3.24

The idea is to follow Stein’s construction of the regularized distance [Stein 1970, Chapter VI, §1 & §2]
and to combine this with ideas from some of the estimates produced in [David and Semmes 1991].

Proof of Lemma 3.24. Let d := n + 1 and Z = {(t, x ′) : h(t, x ′)= 0}. We note that Z is closed since h is
continuous. We set H(t, x ′)= 0 for all (t, x ′) ∈ Z .

We need to define H off of Z , and following [David and Semmes 1991], we begin by producing a
Whitney-type decomposition of Z c with respect to h.13 For each (t, x ′) ∈ Z c, we let I(t,x ′) be the largest
closed (parabolic) dyadic cube containing (t, x ′) satisfying

diam(I(t,x ′))≤
1
20 inf
(τ,z′)∈I(t,x ′)

h(τ, z′).

Recall that the diameter is defined with respect to the parabolic metric. To see that such a cube exists, set
r =

1
2 h(t, x ′) and note, as h is Lip(1/2, 1) with constant 1, that h(τ, z′)≥ r in B((t, x ′), r). Therefore, any

cube which contains (t, x ′) and which has diameter less than 1
20r is a candidate for I(t,x ′). We conduct

this construction for each (t, x ′) ∈ Z c, and we enumerate the resulting maximal cubes (without repetition)
as {Ii }i∈3. We note that

10 diam(Ii )≤ h(t, x ′)≤ 60 diam(Ii ), ∀(t, x ′) ∈ 10Ii , (A.1)

where κ I is the parabolic dilation of I by a factor of κ . Indeed, if (t, x ′) ∈ 10Ii , then (t, x ′) is at most a
(parabolic) distance of 10 diam(Ii ) from a point in Ii , and hence, using the selection criterion for Ii and

13In contrast to the usual Whitney decomposition, in which h is the distance to a closed set, the present version remains valid
even in the case that Z is empty.
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the Lip(1/2, 1) condition for h,

h(t, x ′)≥ min
(τ,z′)∈Ii

h(τ, z′)− 10 diam(Ii )≥ 10 diam(Ii ).

To prove the upper bound in (A.1), we note that if I is the parent of Ii , then I fails the selection criteria.
Hence there exists (τ, z′) ∈ I such that h(τ, z′) < 20 diam(I )= 40 diam(Ii ), and as h is Lip(1/2, 1) with
constant 1 and dist((τ, z′), (t, x ′))≤ 20 diam(Ii ), it follows that

h(t, x ′)≤ h(τ, z′)+ 20 diam(Ii )≤ 60 diam(Ii ).

Using (A.1), we have that
1
6 diam(Ij )≤ diam(Ii )≤ 6 diam(Ij ) (A.2)

whenever 10Ii ∩ 10j ̸= ∅. By comparing volumes, it follows that the {10Ij } have bounded overlap, with
a constant depending on the dimension alone, that is,∑

i∈3

1Ii (t, x ′)≤ N , ∀(t, x ′) ∈ Rn, (A.3)

where N = N (n).
Let Q0 =

{
(t, x ′) ∈ Rn

: |x ′
|∞ ≤

1
2 , |t |< 1

4

}
be the unit parabolic cube in Rn. Let ϕ ∈ C∞

0 (3Q0), with
0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on 2Q0. Clearly the Lip(1/2, 1) constant of ϕ is bounded. For each i ∈3, let (ti , x ′

i )

be the center of Ii and ℓ(Ii ) be the parabolic side length of Ii , that is, ℓ(Ii )=
1
2ri and

Ii = {(t, x ′) : |x − xi |∞ < ri , |t − ti |< r2
i }.

For i ∈3i we set

ϕi (t, x ′)= ϕ

(
t − ti
ℓ(Ii )2

,
x − xi

ℓ(Ii )

)
.

Then 0 ≤ ϕi ≤ 1, ϕi is supported in 3Ii , ϕi ≡ 1 on 2Ii , ϕi is Lip(1/2, 1) with constant less than
ℓ(Ii )

−1
≈n diam(Ii )

−1, and (on all of Rn),

ℓ(Ii )
2m

|∂m
t ϕi | + ℓ(Ii )|∇x ′ϕi | ≈n,m diam(Ii )

2m
|∂m

t ϕi | + diam(Ii )|∇x ′ϕi | ≲ c̃n,m .

We now define
H(t, x ′) :=

∑
i∈3

diam(Ii )ϕi (t, x ′).

Using (A.1) we see that 3Ii does not meet Z for any i ∈3, and hence H(t, x ′)= 0 for all (t, x ′) ∈ Z . By
construction, if (t, x ′) ∈ Z c then (t, x ′) ∈ Ij for some j ∈3, and as ϕj (t, x ′)= 1, using also (A.1), we
have that

H(t, x ′)≥ diam(Ij )≥
1
60 h(t, x ′).

This proves the lower bound in (1). To prove the upper bound in (1) we have, by (A.2) and (A.3),

H(t, x ′)≤

∑
i :3Ii ∩3Ij ̸=∅

diam(Q j )≤ 6N diam(Qi )≤
3
5 Nh(t, x ′),
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where we used (A.1) in the last inequality. Having proved (1), we see that the proof of (2) is very similar.
For instance, using the bounds for the t-derivatives of ϕi , if (t, x ′) ∈ Z c, then (t, x ′) ∈ Ij for some j , and
hence

|∂m
t H(t, x ′)| ≤ c̃n,m

∑
i :3Ii ∩3Ij ̸=∅

diam(Ii ) diam(Ii )
−2m ≲ C N diam(Ij )

−2m+1
≈ h(t, x ′)−2m+1.

The bound for |∇
m
x ′ H | has a similar proof. Finally, to see that H is Lip(1/2, 1), we have

|H(t, x ′)− H(s, y′)| ≤

∑
i :(t,x ′)∈3Ii

diam(Ii )|ϕi (t, x ′)−ϕ(s, y′)| +
∑

i :(s,y′)∈3Ii

diam(Ii )|ϕi (t, x ′)−ϕ(s, y′)|

≤ 2c′N [|t − s|1/2 + |x ′
− y′

|],

where we used that ϕi is a Lip(1/2, 1) function with constant c′ diam(Ii )
−1.

Now we get to the heart of the matter, that is, proving the half-order in time regularity of H (this part
is not in Stein’s book, but rather draws a great deal of inspiration from [David and Semmes 1991]). By
the results in [Hofmann et al. 2003, pp. 370–373], it suffices to verify the Carleson measure estimate

ν̃(s, y′, ρ)≤ c′

4ρ
n+1, ∀(s, y′) ∈ Rn, ρ > 0, (A.4)

where

ν̃(s, y′, ρ) :=

∫ ρ

0

∫∫
B((s,y′),ρ)

γ̂ (τ, z′, r)2 dσ(τ, z′)
dr
r
,

where dσ(τ, z′)=
√

1 + |∇z′ H(τ, z′)| dz′ dt and

γ̂ (τ, z′, r) := inf
L

[
r−d

∫∫
B((τ,z′),r)

(
H(t, x ′)− L(x ′)

r

)2

dσ(t, x ′)

]1/2

,

where the infimum is taken over all affine functions L of x ′ only, and we recall that d = n + 1.
The idea behind the proof of the estimate (A.4) is as follows. If the scale r is large with respect

to h(τ, z′), then H is well approximated by just the linear function 0, If the scale is small with respect
to h(τ, z′), then, necessarily, h(τ, z′) > 0 and H is flat (below the scale r ) by the derivative estimates (2)
and therefore we can approximate H by its x ′-tangent plane.

Now let us begin the proof of (A.4). Fix (s, y′) ∈ Rn and ρ > 0. Set hρ(t, x ′) := min
{ 1

60 h(t, x ′), ρ
}
,

and write

ν̃(s, y′,ρ)=

∫ ρ

0

∫∫
B((s,y′),ρ)

γ̂ (τ, z′,r)2dσ(τ, z′)
dr
r

=

∫∫
B((s,y′),ρ)

∫ ρ

hρ(τ,z′)

γ̂ (τ, z′,r)2
dr
r

dσ(τ, z′)+

∫∫
B((s,y′),ρ)

∫ hρ(τ,z′)

0
γ̂ (τ, z′,r)2

dr
r

dσ(τ, z′)

= T1+T2.

Let us handle term T2 first. For (τ, z′) and r in the domain of integration, r > 0 and h(τ, z′)≥ 60r . In
particular, (τ, z′)∈ Ij for some j ∈3, and for all such j it holds that Ij ∩B((s, y′), ρ) ̸=∅ and r ≤diam(Ij )
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(by the right-hand estimate in (A.1)). Thus we have

T2 ≤

∑
j∈3̃

∫∫
Ij ∩B((s,y′),ρ)

∫ min{diam(Ij ),ρ}

0
γ̂ (τ, z′, r)2

dr
r

dσ(τ, z′), (A.5)

where 3̃= { j ∈3 : B((s, y′), ρ)∩ Ij ̸= ∅}. Fix j ∈ 3̃, (τ, z′) ∈ Ij , and r ≤ diam(Ij ). Using the affine
function

L(τ,z′)(x ′)= H(τ, z′)+ ∇z′ H(τ, z′) · (x ′
− z′),

we find by Taylor’s theorem, Lemma 3.24 (2) (already proved above), and (A.1) that

γ̂ (τ, z′, r)2 ≤ r−d
∫∫

B((τ,z′),r)

(
|H(t, x ′)− L(τ,z′)(x ′)|

r

)2

dσ(t, x ′)

≲ r2 sup
B(xIj ,2 diam(Ij ))

[|∂t H |
2
+ |∇

2 H |]
2 ≲ r2 sup

B(xIj ,2 diam(Ij ))

h−2(t, x ′)

≲ r2 diam(Ij )
−2 ≲ r2(min{diam(Ij ), ρ})−2, (A.6)

where xIj = (tIj , x ′

Ij
) is the center of Ij . Using (A.6) and (A.5) we obtain

T2 ≲
∑
j∈3̃

∫∫
Ij ∩B((s,y′),ρ)

∫ min{diam(Ij ),ρ}

0
r2(min{diam(Ij ), ρ})−2 dr

r
dσ(τ, z′)

≲
∑
j∈3̃

∫∫
Ij ∩B((s,y′),ρ)

1 dσ(τ, z′)≲
∑
j∈3̃

σ(Ij ∩ B((s, y′), ρ))≲ σ(B((s, y′), ρ))≲ ρd,

as desired.
Having obtained the desired bound for T2, we turn our attention to T1. For (τ, z′) ∈ Rn and r > 0, set

3′(τ, z′, r) := {i ∈ Ii ∩ B((τ, z′), r) ̸= ∅}.

Note that in term T1, we have r ∈
( 1

60 h(τ, z′), ρ
)
, so that h(τ̂ , ẑ′) < 61r for all (τ̂ , ẑ′) ∈ B((τ, z′), r)

because h has Lip(1/2, 1) constant 1. Hence, by (A.1), we have diam(Ii )≤ 7r ≤ 7ρ for all i ∈3′(τ, z′, r).
In particular, since (τ, z′) ∈ B((s, y′), ρ),⋃

i∈3′(τ,z′,r)

Ii ⊂ B((s, y′), 10ρ). (A.7)

For (τ, z′) ∈ B((s, y′), ρ), with r ∈
( 1

60 h(τ, z′), ρ
)
, we plug L = 0 into the definition of γ̂ and use

property (1) (which we have already established) along with (A.1) to see that

γ̂ (τ, z′, r)2 ≤ r−d
∫∫

B((τ,z′),r)

(
H(t, x ′)

r

)2

dσ(t, x ′)≲
∑

i∈3′(τ,z′,r)

r−d
∫∫

Ii

diam(Ii )
2r−2 dσ(t, x ′)

≲
∑

i∈3′(τ,z′,r)

(
diam(Ii )

r

)d+2

≲
∑

i∈3′(τ,z′,r)

(
diam(Ii )

r

)d+1

, (A.8)
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where we used the fact that diam(Ii )≲ r in the estimate on the last line. Thus, if we let

30 := {i ∈3 : Ii ⊂ B((s, y′), 10ρ), diam(Ii )≤ 7ρ},

then using (A.7), the definition of3′(τ, z′, r), and again using the fact that diam(Ii )≤7r for i ∈3′(τ, z′, r),
we obtain

T1 ≤

∫∫
B((s,y′),ρ)

∫ ρ

h(τ,z′)/60

∑
i∈3′(τ,z′,r)

diam(Ii )
d+1 dr

rd+2 dσ(τ, z′)

≲
∑
i∈30

diam(Ii )
d+1

∫ ρ

diam(Ii )/7

∫
dist((τ,z′),Ii )<r

1 dσ(τ, z′)
dr

rd+2

≲
∑
i∈30

diam(Ii )
d+1

∫
∞

diam(Ii )/7

dr
r2 ≲

∑
i∈30

diam(Ii )
d ≲ ρd.

This yields the desired Carleson measure estimate and concludes the proof of the lemma. □

Acknowledgements

The authors Hoffman, Hofmann, and Luna Garcia were partially supported by NSF grants DMS-1664047
and DMS-2000048. Nyström was partially supported by grant 2017-03805 from the Swedish research
council (VR).

References

[Azzam et al. 2020] J. Azzam, S. Hofmann, J. M. Martell, M. Mourgoglou, and X. Tolsa, “Harmonic measure and quantitative
connectivity: geometric characterization of the L p-solvability of the Dirichlet problem”, Invent. Math. 222:3 (2020), 881–993.
MR Zbl

[Azzam et al. 2022] J. Azzam, J. Garnett, M. Mourgoglou, and X. Tolsa, “Uniform rectifiability, elliptic measure, square
functions, and ε-approximability via an ACF monotonicity formula”, Int. Math. Res. Not. 2022 (online publication June 2022).

[Bortz and Hofmann 2020] S. Bortz and S. Hofmann, “Quantitative Fatou theorems and uniform rectifiability”, Potential Anal.
53:1 (2020), 329–355. MR Zbl

[Bortz et al. 2022a] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna-Garcia, and K. Nyström, “Coronizations and big pieces in
metric spaces”, Ann. Inst. Fourier (Grenoble) 72:5 (2022), 2037–2078. MR Zbl

[Bortz et al. 2022b] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna-Garcia, and K. Nyström, “On big pieces approximations of
parabolic hypersurfaces”, Ann. Fenn. Math. 47:1 (2022), 533–571. MR Zbl

[Bortz et al. 2023] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna-Garcia, and K. Nyström, “Corona decompositions for parabolic
uniformly rectifiable sets”, J. Geom. Anal. 33:3 (2023), art. id. 96. MR Zbl

[Christ 1990] M. Christ, “A T (b) theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math. 60:2
(1990), 601–628. MR Zbl

[Coifman and Semmes 1991] R. Coifman and S. Semmes, “L2 estimates in nonlinear Fourier analysis”, pp. 79–95 in Harmonic
analysis (Sendai, Japan, 1990), edited by S. Igari, Springer, 1991. MR Zbl

[Coifman et al. 1982] R. R. Coifman, A. McIntosh, and Y. Meyer, “L’intégrale de Cauchy définit un opérateur borné sur L2 pour
les courbes lipschitziennes”, Ann. of Math. (2) 116:2 (1982), 361–387. MR Zbl

[Coifman et al. 1983] R. R. Coifman, G. David, and Y. Meyer, “La solution des conjectures de Calderón”, Adv. Math. 48:2
(1983), 144–148. MR Zbl

http://dx.doi.org/10.1007/s00222-020-00984-5
http://dx.doi.org/10.1007/s00222-020-00984-5
http://msp.org/idx/mr/4169053
http://msp.org/idx/zbl/1453.31009
http://dx.doi.org/10.1093/imrn/rnab095
http://dx.doi.org/10.1093/imrn/rnab095
http://dx.doi.org/10.1007/s11118-019-09771-1
http://msp.org/idx/mr/4117993
http://msp.org/idx/zbl/1453.31010
http://dx.doi.org/10.5802/aif.3518
http://dx.doi.org/10.5802/aif.3518
http://msp.org/idx/mr/4485846
http://msp.org/idx/zbl/07589436
http://dx.doi.org/10.54330/afm.115417
http://dx.doi.org/10.54330/afm.115417
http://msp.org/idx/mr/4394311
http://msp.org/idx/zbl/07498303
http://dx.doi.org/10.1007/s12220-022-01176-8
http://dx.doi.org/10.1007/s12220-022-01176-8
http://msp.org/idx/mr/4533510
http://msp.org/idx/zbl/07647772
http://dx.doi.org/10.4064/cm-60-61-2-601-628
http://msp.org/idx/mr/1096400
http://msp.org/idx/zbl/0758.42009
http://dx.doi.org/10.1007/978-4-431-68168-7_7
http://msp.org/idx/mr/1261430
http://msp.org/idx/zbl/0773.42010
http://dx.doi.org/10.2307/2007065
http://dx.doi.org/10.2307/2007065
http://msp.org/idx/mr/672839
http://msp.org/idx/zbl/0497.42012
http://dx.doi.org/10.1016/0001-8708(83)90084-1
http://msp.org/idx/mr/700980
http://msp.org/idx/zbl/0518.42024


CARLESON MEASURE ESTIMATES FOR CALORIC FUNCTIONS 1087

[Dahlberg 1977] B. E. J. Dahlberg, “Estimates of harmonic measure”, Arch. Ration. Mech. Anal. 65:3 (1977), 275–288. MR
Zbl

[David 1991] G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math. 1465, Springer, 1991.
MR Zbl

[David and Semmes 1991] G. David and S. Semmes, Singular integrals and rectifiable sets in Rn
: beyond Lipschitz graphs,

Astérisque 193, Soc. Math. France, Paris, 1991. MR Zbl

[David and Semmes 1993] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Math. Surv. Monogr. 38,
Amer. Math. Soc., Providence, RI, 1993. MR Zbl

[Dindoš et al. 2011] M. Dindoš, C. Kenig, and J. Pipher, “BMO solvability and the A∞ condition for elliptic operators”, J. Geom.
Anal. 21:1 (2011), 78–95. MR Zbl

[Dindoš et al. 2017] M. Dindoš, S. Petermichl, and J. Pipher, “BMO solvability and the A∞ condition for second order parabolic
operators”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34:5 (2017), 1155–1180. MR Zbl

[Garnett et al. 2018] J. Garnett, M. Mourgoglou, and X. Tolsa, “Uniform rectifiability from Carleson measure estimates and
ε-approximability of bounded harmonic functions”, Duke Math. J. 167:8 (2018), 1473–1524. MR Zbl

[Genschaw and Hofmann 2020] A. Genschaw and S. Hofmann, “A weak reverse Hölder inequality for caloric measure”, J. Geom.
Anal. 30:2 (2020), 1530–1564. MR Zbl

[Hofmann 1995] S. Hofmann, “A characterization of commutators of parabolic singular integrals”, pp. 195–210 in Fourier
analysis and partial differential equations (Miraflores de la Sierra, Spain, 1992), edited by J. García-Cuerva et al., CRC, Boca
Raton, FL, 1995. MR Zbl

[Hofmann 1997] S. Hofmann, “Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials”,
Duke Math. J. 90:2 (1997), 209–259. MR Zbl

[Hofmann and Le 2018] S. Hofmann and P. Le, “BMO solvability and absolute continuity of harmonic measure”, J. Geom. Anal.
28:4 (2018), 3278–3299. MR Zbl

[Hofmann and Lewis 1996] S. Hofmann and J. L. Lewis, “L2 solvability and representation by caloric layer potentials in
time-varying domains”, Ann. of Math. (2) 144:2 (1996), 349–420. MR Zbl

[Hofmann and Lewis 2005] S. Hofmann and J. L. Lewis, “The L p Neumann problem for the heat equation in non-cylindrical
domains”, J. Funct. Anal. 220:1 (2005), 1–54. MR Zbl

[Hofmann et al. 2003] S. Hofmann, J. L. Lewis, and K. Nyström, “Existence of big pieces of graphs for parabolic problems”,
Ann. Fenn. Math. 28:2 (2003), 355–384. MR Zbl

[Hofmann et al. 2004] S. Hofmann, J. L. Lewis, and K. Nyström, “Caloric measure in parabolic flat domains”, Duke Math. J.
122:2 (2004), 281–346. MR Zbl

[Hofmann et al. 2016] S. Hofmann, J. M. Martell, and S. Mayboroda, “Uniform rectifiability, Carleson measure estimates, and
approximation of harmonic functions”, Duke Math. J. 165:12 (2016), 2331–2389. MR Zbl

[Hofmann et al. 2019] S. Hofmann, J. M. Martell, and S. Mayboroda, “Transference of scale-invariant estimates from Lipschitz
to non-tangentially accessible to uniformly rectifiable domains”, preprint, 2019. arXiv 1904.13116

[Hytönen and Kairema 2012] T. Hytönen and A. Kairema, “Systems of dyadic cubes in a doubling metric space”, Colloq. Math.
126:1 (2012), 1–33. MR Zbl

[Hytönen and Martikainen 2012] T. Hytönen and H. Martikainen, “Non-homogeneous T b theorem and random dyadic cubes on
metric measure spaces”, J. Geom. Anal. 22:4 (2012), 1071–1107. MR Zbl

[Jones 1990] P. W. Jones, “Rectifiable sets and the traveling salesman problem”, Invent. Math. 102:1 (1990), 1–15. MR Zbl

[Kenig et al. 2000] C. Kenig, H. Koch, J. Pipher, and T. Toro, “A new approach to absolute continuity of elliptic measure, with
applications to non-symmetric equations”, Adv. Math. 153:2 (2000), 231–298. MR Zbl

[Kenig et al. 2016] C. Kenig, B. Kirchheim, J. Pipher, and T. Toro, “Square functions and the A∞ property of elliptic measures”,
J. Geom. Anal. 26:3 (2016), 2383–2410. MR Zbl

[Lewis and Murray 1995] J. L. Lewis and M. A. M. Murray, The method of layer potentials for the heat equation in time-varying
domains, Mem. Amer. Math. Soc. 545, Amer. Math. Soc., Providence, RI, 1995. MR Zbl

http://dx.doi.org/10.1007/BF00280445
http://msp.org/idx/mr/466593
http://msp.org/idx/zbl/0406.28009
http://dx.doi.org/10.1007/BFb0091544
http://msp.org/idx/mr/1123480
http://msp.org/idx/zbl/0764.42019
http://numdam.org/item/AST_1991__193__1_0/
http://msp.org/idx/mr/1113517
http://msp.org/idx/zbl/0743.49018
http://dx.doi.org/10.1090/surv/038
http://msp.org/idx/mr/1251061
http://msp.org/idx/zbl/0832.42008
http://dx.doi.org/10.1007/s12220-010-9142-3
http://msp.org/idx/mr/2755677
http://msp.org/idx/zbl/1215.42029
http://dx.doi.org/10.1016/j.anihpc.2016.09.004
http://dx.doi.org/10.1016/j.anihpc.2016.09.004
http://msp.org/idx/mr/3742519
http://msp.org/idx/zbl/1383.35097
http://dx.doi.org/10.1215/00127094-2017-0057
http://dx.doi.org/10.1215/00127094-2017-0057
http://msp.org/idx/mr/3807315
http://msp.org/idx/zbl/1396.28005
http://dx.doi.org/10.1007/s12220-019-00212-4
http://msp.org/idx/mr/4081323
http://msp.org/idx/zbl/1436.42028
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351072137-16
http://msp.org/idx/mr/1330241
http://msp.org/idx/zbl/1039.42500
http://dx.doi.org/10.1215/S0012-7094-97-09008-6
http://msp.org/idx/mr/1484857
http://msp.org/idx/zbl/0941.42006
http://dx.doi.org/10.1007/s12220-017-9959-0
http://msp.org/idx/mr/3881972
http://msp.org/idx/zbl/1405.42032
http://dx.doi.org/10.2307/2118595
http://dx.doi.org/10.2307/2118595
http://msp.org/idx/mr/1418902
http://msp.org/idx/zbl/0867.35037
http://dx.doi.org/10.1016/j.jfa.2004.10.016
http://dx.doi.org/10.1016/j.jfa.2004.10.016
http://msp.org/idx/mr/2114697
http://msp.org/idx/zbl/1065.35125
https://www.acadsci.fi/mathematica/Vol28/hofmann.html
http://msp.org/idx/mr/1996443
http://msp.org/idx/zbl/1046.35045
http://dx.doi.org/10.1215/S0012-7094-04-12222-5
http://msp.org/idx/mr/2053754
http://msp.org/idx/zbl/1074.35041
http://dx.doi.org/10.1215/00127094-3477128
http://dx.doi.org/10.1215/00127094-3477128
http://msp.org/idx/mr/3544283
http://msp.org/idx/zbl/1359.28005
http://msp.org/idx/arx/1904.13116
http://dx.doi.org/10.4064/cm126-1-1
http://msp.org/idx/mr/2901199
http://msp.org/idx/zbl/1244.42010
http://dx.doi.org/10.1007/s12220-011-9230-z
http://dx.doi.org/10.1007/s12220-011-9230-z
http://msp.org/idx/mr/2965363
http://msp.org/idx/zbl/1261.42017
http://dx.doi.org/10.1007/BF01233418
http://msp.org/idx/mr/1069238
http://msp.org/idx/zbl/0731.30018
http://dx.doi.org/10.1006/aima.1999.1899
http://dx.doi.org/10.1006/aima.1999.1899
http://msp.org/idx/mr/1770930
http://msp.org/idx/zbl/0958.35025
http://dx.doi.org/10.1007/s12220-015-9630-6
http://msp.org/idx/mr/3511480
http://msp.org/idx/zbl/1386.35070
http://dx.doi.org/10.1090/memo/0545
http://dx.doi.org/10.1090/memo/0545
http://msp.org/idx/mr/1323804
http://msp.org/idx/zbl/0826.35041


1088 SIMON BORTZ, JOHN HOFFMAN, STEVE HOFMANN, JOSÉ LUIS LUNA GARCÍA AND KAJ NYSTRÖM

[Lewis and Silver 1988] J. L. Lewis and J. Silver, “Parabolic measure and the Dirichlet problem for the heat equation in two
dimensions”, Indiana Univ. Math. J. 37:4 (1988), 801–839. MR Zbl

[Rivera-Noriega 2003] J. Rivera-Noriega, “Absolute continuity of parabolic measure and area integral estimates in non-cylindrical
domains”, Indiana Univ. Math. J. 52:2 (2003), 477–525. MR Zbl

[Stein 1970] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser. 30, Princeton Univ.
Press, 1970. MR Zbl

[Zhao 2018] Z. Zhao, “BMO solvability and A∞ condition of the elliptic measures in uniform domains”, J. Geom. Anal. 28:2
(2018), 866–908. MR Zbl

Received 29 Mar 2021. Revised 23 Sep 2021. Accepted 26 Oct 2021.

SIMON BORTZ: sbortz@ua.edu
Department of Mathematics, University of Alabama, Tuscaloosa, AL, United States

JOHN HOFFMAN: jlh82b@mail.missouri.edu
Department of Mathematics, University of Missouri at Columbia, Columbia, MO, United States

STEVE HOFMANN: hofmanns@missouri.edu
Department of Mathematics, University of Missouri at Columbia, Columbia, MO, United States

JOSÉ LUIS LUNA GARCÍA: lunagaj@mcmaster.ca
Department of Mathematics & Statistics, McMaster University, Hamilton, Canada

KAJ NYSTRÖM: kaj.nystrom@math.uu.se
Department of Mathematics, Uppsala University, Uppsala, Sweden

mathematical sciences publishers msp

http://dx.doi.org/10.1512/iumj.1988.37.37039
http://dx.doi.org/10.1512/iumj.1988.37.37039
http://msp.org/idx/mr/982831
http://msp.org/idx/zbl/0698.35068
http://dx.doi.org/10.1512/iumj.2003.52.2210
http://dx.doi.org/10.1512/iumj.2003.52.2210
http://msp.org/idx/mr/1976086
http://msp.org/idx/zbl/1073.35096
https://www.jstor.org/stable/j.ctt1bpmb07
http://msp.org/idx/mr/0290095
http://msp.org/idx/zbl/0207.13501
http://dx.doi.org/10.1007/s12220-017-9845-9
http://msp.org/idx/mr/3790485
http://msp.org/idx/zbl/1398.35042
mailto:sbortz@ua.edu
mailto:jlh82b@mail.missouri.edu
mailto:hofmanns@missouri.edu
mailto:lunagaj@mcmaster.ca
mailto:kaj.nystrom@math.uu.se
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission
page at msp.org/apde.

Originality. Submission of a manuscript acknowledges that the manu-
script is original and and is not, in whole or in part, published or under
consideration for publication elsewhere. It is understood also that the
manuscript will not be submitted elsewhere while under consideration
for publication in this journal.

Language. Articles in APDE are usually in English, but articles written
in other languages are welcome.

Required items. A brief abstract of about 150 words or less must be
included. It should be self-contained and not make any reference to the
bibliography. If the article is not in English, two versions of the abstract
must be included, one in the language of the article and one in English.
Also required are keywords and subject classifications for the article,
and, for each author, postal address, affiliation (if appropriate), and email
address.

Format. Authors are encouraged to use LATEX but submissions in other
varieties of TEX, and exceptionally in other formats, are acceptable. Ini-
tial uploads should be in PDF format; after the refereeing process we will
ask you to submit all source material.

References. Bibliographical references should be complete, including
article titles and page ranges. All references in the bibliography should
be cited in the text. The use of BibTEX is preferred but not required. Tags
will be converted to the house format, however, for submission you may
use the format of your choice. Links will be provided to all literature
with known web locations and authors are encouraged to provide their
own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you
will need to submit the original source files in vector graphics format for
all diagrams in your manuscript: vector EPS or vector PDF files are the
most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator,
Corel Draw, MATLAB, etc.) allow the user to save files in one of these
formats. Make sure that what you are saving is vector graphics and not a
bitmap. If you need help, please write to graphics@msp.org with details
about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in
the document. There is no point in your trying to optimize line and page
breaks in the original manuscript. The manuscript will be reformatted to
use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the des-
ignated corresponding author) at a Web site in PDF format. Failure to
acknowledge the receipt of proofs or to return corrections within the re-
quested deadline may cause publication to be postponed.

http://msp.org/apde
mailto:graphics@msp.org


ANALYSIS & PDE
Volume 16 No. 4 2023

891Strong semiclassical limits from Hartree and Hartree–Fock to Vlasov–Poisson equations
LAURENT LAFLECHE and CHIARA SAFFIRIO

927Marstrand–Mattila rectifiability criterion for 1-codimensional measures in Carnot groups
ANDREA MERLO

997Finite-time blowup for a Navier–Stokes model equation for the self-amplification of strain
EVAN MILLER

1033Eigenvalue bounds for Schrödinger operators with random complex potentials
OLEG SAFRONOV

1061Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets
SIMON BORTZ, JOHN HOFFMAN, STEVE HOFMANN, JOSÉ LUIS LUNA GARCÍA and
KAJ NYSTRÖM

A
N

A
LY

SIS
&

PD
E

Vol.16,
N

o.4
2023


	 vol. 16, no. 4, 2023
	Masthead and Copyright
	01
	1. Introduction
	1A. Context and state of the art
	Vlasov equation
	Hartree and Hartree–Fock equations
	Semiclassical limit
	Key novelties
	Open problems
	Structure of the paper

	1B. Main results
	Operators and function spaces
	Wigner and Weyl transforms
	Theorems

	1C. Discussion
	Higher singularities
	General class of potentials
	From Hartree to Hartree–Fock
	Well-posedness


	2. Strategy
	2A. Quantum gradients of the phase space
	2B. The classical case: L^1 weak-strong stability

	3. Regularity of the Weyl transform
	4. Proof of Theorems 1.1 and 1.4
	4A. The commutator inequality
	4B. Bound for the error term
	4C. Proof of Proposition 4.1
	4D. Proof of Theorem 1.1
	4E. Proof of Theorem 1.4

	5. Proof of Theorem 1.6
	Appendix A. Propagation of weighted Sobolev norms for Vlasov equation
	Appendix B. Operator identities
	References

	02
	Introduction
	Structure of the paper
	1. Preliminaries
	1A. Carnot groups
	1B. Cones and splitting projections
	1C. Densities and tangents of Radon measures
	1D. Rectifiable sets in Carnot groups

	2. The support of 1-codimensional measures with flat tangents is intrinsic rectifiable
	2A. Geometric implications of flat tangents
	2B. Construction of cones complementing supp(phi) in case it has big projections on planes
	2C. Flat tangents imply big projections
	2D. Construction of the phi-positive intrinsic Lipschitz graph

	3. The support of 1-codimensional measures with almost-flat tangents is intrinsic rectifiable
	4. Conclusions and discussion of the results
	4A. Main results
	4B. Discussion of the results

	Appendix A. Dyadic cubes
	Appendix B. Finite perimeter sets in Carnot groups
	Acknowledgements
	References

	03
	1. Introduction
	2. Relationship to previous literature
	3. Definitions
	4. Some properties of the strain self-amplification model equation
	5. Finite-time blowup for the strain self-amplification model equation
	6. A perturbative blowup condition for the full Navier–Stokes equation
	Acknowledgements
	References

	04
	1. Introduction and main results
	2. Preliminaries
	3. Large values of Re(zeta) without projections
	4. An estimate for the square of the Birman–Schwinger operator
	5. Proof of Theorem 1.1
	6. Operators of the Birman–Schwinger type
	7. Large values of Re(zeta)
	8. Small values of Re(zeta)
	9. Another interpolation between small and large values of Re(zeta)
	10. Proof of Theorem 1.5
	References

	05
	1. Introduction
	2. Preliminaries
	3. Domain approximation in stopping time regimes
	4. Carleson measure estimates: Proof of Theorem 1.1 and Theorem 1.3
	5. Further remarks
	Appendix: Proof of Lemma 3.24
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

