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THE CAUCHY PROBLEM FOR THE INFINITESIMAL MODEL
IN THE REGIME OF SMALL VARIANCE

FLORIAN PATOUT

We study the asymptotic behavior of solutions of the Cauchy problem associated to a quantitative
genetics model with a sexual mode of reproduction. It combines trait-dependent mortality and a
nonlinear integral reproduction operator, the infinitesimal model. A parameter describes the standard
deviation between the offspring and the mean parental traits. We show that under mild assumptions
upon the mortality rate m, when the deviations are small, the solutions stay close to a Gaussian profile
with small variance, uniformly in time. Moreover, we characterize accurately the dynamics of the mean
trait in the population. Our study extends previous results on the existence and uniqueness of stationary
solutions for the model. It relies on perturbative analysis techniques with a sharp description of the
correction from the Gaussian profile.

A list of symbols can be found on page 1348.

1. Introduction

We investigate solutions fε ∈ L1(R+× R) of the Cauchy problem{
ε2∂t fε(t, z) + m(z) fε(t, z) = Bε( fε)(t, z), t > 0, z ∈ R,

fε(0, z) = f 0
ε (z),

(Pt fε)

where Bε( f ) is the following nonlinear, homogeneous mixing operator associated with the infinitesimal
model of [Fisher 1918], see also [Barton et al. 2017] for a modern perspective:

Bε( f )(z) :=
1

ε
√

π

∫∫
R2

exp
[
−

1
ε2

(
z −

z1 + z2

2

)2]
f (z1)

f (z2)∫
R

f (z′

2) dz′

2
dz1 dz2. (1-1)

This problem originates from quantitative genetics in the context of evolutionary biology. The variable z
denotes a phenotypic trait, fε is the distribution of the population with respect to z and m is the trait-
dependent mortality rate.

The mixing operator Bε models the inheritance of quantitative traits in the population, under the
assumption of a sexual mode of reproduction. As formulated in (1-1), it is assumed that offspring traits are
distributed normally around the mean of the parental traits 1

2(z1 + z2), with a constant variance, here 1
2ε2.

We are interested in the evolutionary dynamics resulting in the selection of well-fitted (low mortality)
individuals, i.e., the concentration of the distribution around some dominant traits with standing variance.

MSC2020: 35B40, 35P20, 35P30, 35Q92, 47G20.
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In theoretical evolutionary biology, a broad literature deals with this model to describe sexual repro-
duction; see e.g., [Barfield et al. 2011; Barton et al. 2017; Bulmer 1980; Cotto and Ronce 2014; Huisman
and Tufto 2012; Roughgarden 1972; Slatkin 1970; Slatkin and Lande 1976; Tufto 2000; Turelli 2017;
Turelli and Barton 1994].

We are interested in the asymptotic behavior of the trait distribution fε as ε2 vanishes. It is expected
that the profile concentrates around some particular traits under the influence of selection.

The asymptotic description of concentration around some particular trait(s) has been extensively
investigated for various linear operators Bε associated with asexual reproduction such as, for instance, the
diffusion operator fε(t, z) + ε21 fε(t, z), or the convolution operator (1/ε)K (z/ε) ∗ fε(t, z) where K is
a probability kernel with unit variance; see [Barles and Perthame 2007; Barles et al. 2009; Diekmann
et al. 2005; Lorz et al. 2011; Perthame 2007] for the earliest investigations and [Bouin et al. 2018;
Méléard and Mirrahimi 2015; Mirrahimi 2020] for the case of fat-tailed kernels K. In those linear cases,
the asymptotic analysis usually leads to a Hamilton–Jacobi equation after performing the Hopf–Cole
transform uε = −ε log fε. Those problems require a careful well-posedness analysis for uniqueness and
convergence as ε → 0; see [Barles et al. 2009; Calvez and Lam 2020; Mirrahimi and Roquejoffre 2016].

Much less is known about the operator Bε defined by (1-1). From a mathematical viewpoint, in the
field of probability theory, [Barton et al. 2017] derived the model from a microscopic framework. In
[Mirrahimi and Raoul 2013; Raoul 2017], the authors deal with a different scaling than the current small
variance assumption ε2

≪ 1 and add a spatial structure in order to derive the celebrated Kirkpatrick and
Barton system [1997].

Gaussian distributions will play a pivotal role in our analysis as they are left-invariant by the infinitesimal
operator Bε; see [Mirrahimi and Raoul 2013; Turelli and Barton 1994]. In [Calvez et al. 2019], the authors
studied special stationary solutions, having the form

exp
[
λεt
ε2

]
Fε(z), with Fε(z) =

1

ε
√

2π
exp

[
−

(z − z∗)
2

2ε2 − U s
ε (z)

]
.

In this paper we tackle the Cauchy problem (Pt fε), and we hereby look for solutions that are close to
Gaussian distributions uniformly in time of the form

fε(t, z) =
1

ε
√

2π
exp

[
λ(t)
ε2 −

(z − z∗(t))2

2ε2 − Uε(t, z)
]
. (1-2)

The scalar function λ measures the growth (or decay according to its sign) of the population. The mean
of the Gaussian density, z∗, is also the trait at which the population concentrates when ε → 0. The
pair (λ, z∗) will be determined by the analysis at all times. It is somehow related to invariant properties of
the operator Bε. The function Uε measures the deviation from the Gaussian profile induced by the selection
function m. It is a cornerstone of our analysis that Uε is Lipschitz continuous with respect to z, uniformly
in t and ε. Plugging the transformation (1-2) into (Pt fε) yields the following equivalent problem:

−ε2∂tUε(t, z) + λ̇(t) + (z − z∗(t))ż∗(t) + m(z)

= Iε(Uε)(t, z) exp[Uε(t, z) − 2Uε(t, z̄(t)) + Uε(t, z∗(t))], (PtUε)
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where z̄(t) is the midpoint between z and z∗(t):

z̄(t) =
1
2(z + z∗(t)),

and the functional Iε is defined by

Iε(Uε)(t, z)

=

∫∫
R2 exp

[
−

1
2 y1 y2 −

3
4(y2

1 + y2
2) + 2Uε(t, z̄) − Uε(t, z̄ + εy1) − Uε(t, z̄ + εy2)

]
dy1 dy2

√
π
∫

R
exp

[
−

1
2 y2 + Uε(t, z∗) − Uε(t, z∗ + εy)

]
dy

. (1-3)

This functional is the residual shape of the infinitesimal operator (1-1) after suitable transformations. It
was first introduced in the formal analysis of [Garnier et al. 2022] and in the study of the corresponding
stationary problem in [Calvez et al. 2019]. The Lipschitz continuity of Uε is pivotal here as it ensures that
Iε(Uε) → 1 when ε → 0. Thus for small ε, we expect that (Pt fε) is well approximated by the following
problem:

λ̇(t) + (z − z∗(t))ż∗(t) + m(z) = exp[U0(t, z) − 2U0(t, z̄(t)) + U0(t, z∗(t))]. (1-4)

Interestingly, this characterizes the dynamics of (λ(t), z∗(t)). By differentiating (1-4) and evaluating at
the point z = z∗(t), then simply evaluating (1-4) at z = z∗(t), we find the following pair of relationships:

ż∗(t) + m′(z∗(t)) = 0, (1-5)

λ̇(t) + m(z∗(t)) = 1. (1-6)

Then, a more compact way to write the limit problem for ε = 0 is

M(t, z) = exp[U0(t, z) − 2U0(t, z̄(t)) + U0(t, z∗(t))], (PtU0)

with the notation
M(t, z) := 1 + m(z) − m(z∗(t)) − m′(z∗(t))(z − z∗(t)). (1-7)

It follows from (1-6) and (1-5) that

M(t, z∗(t)) = 1, ∂z M(t, z∗(t)) = 0. (1-8)

An explicit solution of (PtU0) exists under the form of an infinite series:

V ∗(t, z) :=

∑
k≥0

2k log(M(t, z∗(t) + 2−k(z − z∗(t)))). (1-9)

This formula is obtained by noticing a recursive relation on the first derivative of ∂zU0, as in Section 2.2
of [Calvez et al. 2019]. The same recursive argument is used here in Section 7G. Interestingly, this series
is convergent thanks to the relationships of (1-8). The function V ∗ is a solution of (PtU0), but not the
only one. There are two degrees of freedom when solving (PtU0), since adding any affine function to U0

leaves the right-hand side unchanged. Therefore, a general expression of solutions is the following, where
the scalar functions p0 and q0 are arbitrary:

U0(t, z) = p0(t) + q0(t)(z − z∗(t)) + V ∗(t, z). (1-10)
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We have foreseen that the Lipschitz regularity of Uε was the way to guarantee that Iε(Uε) → 1 as ε → 0.
As a matter of fact, an important part of [Calvez et al. 2019] is dedicated to proving such regularity for U s

ε ,
the solution of the stationary problem

λs
ε + m(z) = Iε(U s

ε )(z) exp
[
U s

ε (z) − 2U s
ε

(1
2(z + zs

∗
)
)
+ U s

ε (zs
∗
)
]
, z ∈ R. (PUε stat)

The authors introduced an appropriate functional space controlling Lipschitz bound. They were then
able to show the existence of U s

ε and its (local) uniqueness in that space. They also proved that U s
ε was

converging when ε → 0 towards solutions of (PtU0); see Figure 1 for a schematic comparison of the
scope of the present article compared to previous work.

Here, to tackle the nonstationary problem (PtUε), we make the following assumptions of asymptotic
growth on the selection function m, when |z| → ∞.

Assumption 1.1. We suppose that the function m is a C5(R) function, bounded below. We define the
scalar function z∗ as the gradient flow

ż∗(t) = −m′(z∗(t)), t > 0, (1-11)

associated to a prescribed initial data z∗(0). Next, we make the following assumptions:

• We suppose that z∗(0) lies next to a nondegenerate local minimum of m, denoted by zs
∗
, such that

z∗(t) −−−→
t→∞

zs
∗
. (1-12)

• We also require that there exists a uniform positive lower bound on M :

inf
(t,z)∈R+×R

M(t, z) > 0. (1-13)

• We make growth assumptions on M in the following way:

for k = 1, 2, 3, 4, 5, (1 + |z − z∗|)
α ∂k

z M(t, z)
M(t, z)

∈ L∞(R+× R), (1-14)

for some 0 < α < 1, the same as in Definition 1.2.

• We make a final assumption upon the behavior of m at infinity, roughly that it has superlinear growth,
uniformly in time:

lim sup
z→∞

∣∣∣∣M(t, z̄)
M(t, z)

∣∣∣∣ := a <
1
2
, lim sup

z→∞

∣∣∣∣∂z M(t, z̄)
∂z M(t, z)

∣∣∣∣< ∞. (1-15)

The first assumption on m and z∗ guarantees the following local convexity property, at least for times t
large enough:

∃ µ0 > 0, ∃ t0 > 0, such that ∀t ≥ t0, m′′(z∗(t)) ≥ µ0. (1-16)

Any convex function m with at least quadratic growth at infinity will satisfy Assumption 1.1, without
restriction on the initial data. This type of fitness landscape is fairly standard in the asexual models, e.g.,
the Fisher geometrical model [Fisher 1999; Martin and Roques 2016] assumes a quadratic fitness function.
However, our analysis also encompasses different scenarios with possibly multiple optima, the limiting
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condition is the positivity of M. This corresponds to a global assumption on the behavior of z∗ and m,
that reduces the choice of z∗(0).1 The relationship (1-14) corresponds to algebraic decay assumptions
for M, and accordingly, it holds true if m behaves like any (at least quadratic) polynomial function as
|z| → +∞ (as well as (1-15)). The shape of the selection function, even far from the optimum, changes
the qualitative behavior of a population; see [Osmond and Klausmeier 2017]. A detailed discussion on
the behavior of the solution whether our assumptions are satisfied or not is carried out in Section 9 with
some numerical simulations displayed.

The purpose of this work is to rigorously prove the convergence of the solution of (PtUε) towards a
particular solution of (PtU0). Given the general shape of U0, see (1-10), it is natural to decompose Uε by
separating the affine part from the rest:

Uε(t, z) = pε(t) + qε(t)(z − z∗(t)) + Vε(t, z). (1-17)

We require accordingly that at all times t > 0,

Vε(t, z∗) = ∂z Vε(t, z∗) = 0,

which is another way of saying that the pair (pε, qε) tunes the affine part of Uε. The pair (qε, Vε) is the
main unknown of this problem. It is expected that Vε converges to V ∗ when ε → 0. Our analysis will be
able to determine the limit of qε even if it cannot be identified by the problem at ε = 0. Indeed, in (PtU0),
the linear part q0 can be any constant. Our limit candidate for qε is q∗, that we define as the solution of
the differential equation

q̇∗(t) = −m′′(z∗(t))q∗(t) +
1
2 m(3)(z∗(t)) − 2m′′(z∗(t))m′(z∗(t)), (1-18)

corresponding to an initial value of q∗(0). Moreover we define p∗ as the function which satisfies, for a
given p∗(0),

ṗ∗(t) = −m′(z∗(t))q∗(t) + m′′(z∗(t)). (1-19)

These expressions for p∗ and q∗ are obtained formally by canceling same order (in ε) terms when
differentiating (PtUε) and looking at the main terms when ε is very small. More precisely, we must
also evaluate the differentiated problem at z = z∗. Thus, those expressions are somehow linked to the
formulas for λ and z∗ in (1-5) and (1-6). Note that differentiating and evaluating at z = z∗ the problem
for ε > 0 will be our strategy of proof to tackle the convergence of pε and qε, in Sections 5A and 5B.
Before detailing these technical points, let us note that the function

U∗(t, z) := p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z) (1-20)

will be our candidate for the limit of Uε when ε → 0. The problem for Vε equivalent to the problem (PtUε),
using (1-17), is

M(t, z) − ε2( ṗε(t) + q̇ε(t)(z − z∗(t)) + m′(z∗(t))qε(t)) − ε2∂t Vε(t, z)

= Iε(qε, Vε)(t, z) exp[Vε(t, z) − 2Vε(t, z̄(t)) + Vε(t, z∗(t))]. (Pt Vε)

1 M is structurally positive, based on the formulation of (Pt U0). The uniform lower bound in (1-13) is mainly technical.
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One can notice that thanks to cancellations the functional Iε(Uε) does not depend on pε, which explains
for the most part why we focus upon (qε, Vε). We choose to write Iε(qε, Vε)(t, z) := Iε(Uε)(t, z) as
a functional of both unknowns because we will study variations in both directions. One of the main
difficulties to prove the link between (Pt Vε) and (PtU0) is that, formally, the terms with the time derivatives
in qε and Vε vanish when ε → 0. This makes our study belong to the class of singular limit problems.

Before stating our main result we need to define appropriate functional spaces. We first define a
reference space E, similar to the one introduced in [Calvez et al. 2019] for the study of the stationary
problem (PUε stat). However, compared to that case we will need more precise controls, which is why
we introduce a subspace F with more stringent conditions.

Definition 1.2 (functional spaces). We define α < 2− ln 3/ln 2 such that α ∈ (0, 1) along with the weight
function ϕα:

ϕα(t, z) := (1 + |z − z∗(t)|)α.

The corresponding functional space E is given by

E =
{
v ∈ C3(R+× R)

∣∣ ∀t > 0, v(t, z∗(t)) = ∂zv(t, z∗(t)) = 0
}

∩
{
v ∈ C3(R+× R)

∣∣ |∂zv(t, z)|, ϕα(t, z)|∂2
z v(t, z)|, ϕα(t, z)|∂3

z v(t, z)| ∈ L∞(R+× R)
}

equipped with the norm

∥v∥E = max
{

sup
(t,z)∈R+×R

|∂zv(t, z)|, sup
(t,z)∈R+×R

(ϕα(t, z)|∂2
z v(t, z)|), sup

(t,z)∈R+×R

(ϕα(t, z)|∂3
z v(t, z)|)

}
.

We also define the subspace F :

F := E ∩
{
v ∈ C1(R+× R)

∣∣ |2v(t, z̄(t)) − v(t, z)|, ϕα(t, z)|∂zv(t, z̄(t)) − ∂zv(t, z)| ∈ L∞(R+× R)
}
,

and we associate to it the corresponding norm

∥v∥F = max
{
∥v∥E , sup

(t,z)∈R+×R

(|2v(t, z̄(t)) − v(t, z)|), sup
(t,z)∈R+×R

(ϕα(t, z)|∂zv(t, z̄(t)) − ∂zv(t, z)|)
}
.

The condition on α exists for computational reasons, highlighted at the end of the discussion of
Proposition 7.7. The threshold coincides with that of the stationary case; see [Calvez et al. 2019, (5.11)].
The weight function ϕα is another similar feature. Its role is mainly to have a uniform bound on the first
derivative using previous estimates on further derivatives, for which we need α to be bounded. We refer
to Section 7G for comments on the tuning of this parameter.

Since most of this paper is focused around the pair (qε, Vε) ∈ R × F, we will use the convenient
notation ∥(q, V )∥ := max(|q|, ∥V ∥F ). Our main theorem is the following convergence result:

Theorem 1.3 (convergence). There exist K0, K ′

0 and ε0 >0 such that if we make the following assumptions
on the initial condition, for all ε ≤ ε0:

∥Vε(0, · ) − V ∗(0, · )∥F ≤ ε2K0, |qε(0) − q∗(0)| ≤ ε2K0 and |pε(0) − p∗(0)| ≤ ε2K0,
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then we have uniform estimates of the solutions of the Cauchy problem:

sup
t>0

∥Vε − V ∗
∥F ≤ ε2K ′

0, sup
t>0

|qε(t) − q∗(t)| ≤ ε2K ′

0 and sup
t>0

|pε(t) − p∗(t)| ≤ ε2K ′

0,

where q∗ is the solution of (1-18) associated to q∗(0) and p∗ is the solution of (1-19) associated to p∗(0).
The function V ∗ is defined in (1-9).

Therefore, as predicted, the limit of Uε when ε → 0 is the function

p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z).

Theorem 1.3 establishes the stability, with respect to ε and uniformly in time, of Gaussian distributions
around the dynamics of the dominant trait driven by a gradient flow differential equation.

In [Calvez et al. 2019], a fixed-point argument was used to build solutions of the stationary prob-
lem (PUε stat) when ε ≪ 1. Estimates were uniform in ε, in order to pass to the limit ε → 0. As a
matter of fact, their limit problem when ε = 0 [Calvez et al. 2019, Problem PU0] is consistent with (1-4),
without time dependency. However, their method of proof can no longer be applied in our case because
the (singular) derivative in time of the Cauchy problem (Pt fε) breaks the structure that made the stationary
problem equivalent to a fixed-point mapping. In fact, in the present article, (PtU0) and (PtUε) are different
in nature due to the fast time relaxation dynamics. This is one of the main difficulties of this work
compared to [Calvez et al. 2019]. For this reason, we replace the fixed-point argument by a perturbative
analysis. This program is schematized in Figure 1. We introduce the corrector terms κε and Wε, our aim
is to bound them uniformly:

Vε(t, z) = V ∗(t, z) + ε2Wε(t, z), (1-21)

qε(t) = q∗(t) + ε2κε(t). (1-22)

The scalar q∗, perturbed by ε2κε, will tune further the affine part of the solution. The function Wε measures
the error made when approximating (PtUε) by (PtU0). We choose not to perturb pε because we will
realize in Section 5B that it can be straightforwardly deduced from the analysis.

This decomposition highlights a crucial part of our analysis, coming back to the initial (Pt fε). The
main part (in ε) of the solution fε is quadratic (up to the transform (1-2)). This means that it does not
belong to the space of the corrective term Vε. After this main (quadratic) part of fε, of order 1/ε2, the
corrective terms are much more precise for small ε: V ∗ is of order 1, while ε2Wε is of order ε2. The
objective of this article is to show that κε and Wε are uniformly bounded with respect to time and ε.

2. Heuristics and method of proof

For this section only, we focus on the function Uε instead of Vε to get a heuristic argument in favor of the
decomposition (1-17) and some elements supporting Theorem 1.3. We will denote by Rε the perturbation
such that we look for solutions of (PtUε) of the form

Uε(t, z) = U∗(t, z) + ε2 Rε(t, z).
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linearized problem

perturbative analysis

evolutionary problem stationary problem, fixed time

fixed point
argument

for " > 0

convergence    as " → 0

Calvez et al (2019)

stability

present work

scaling transform

approximations
for small "

" "t f "f tP ( )2∂ +

" "tU "U tP ( )2∂ +

"F tP ((problem ))

"U tP ((problem ))

0U tP ((problem ))

"�( ,solution "U )

0�(solution , 0U )

Figure 1. Scope of our paper compared to preceding work.

The function U∗, defined in (1-20), also solves (PtU0). Plugging this perturbation into (PtUε) yields the
following perturbed equation for Rε:

M(t, z) − ε2∂tU∗(t, z) − ε4∂t Rε(t, z)

= Iε(U∗
+ ε2 Rε)(t, z)

× exp[U∗(t, z) − 2U∗(t, z̄(t)) + U∗(t, z∗(t))] exp[ε2(Rε(t, z) − 2Rε(t, z̄(t)) + Rε(t, z∗(t)))].

By using (PtU0), one gets that Rε solves

M(t, z) − ε2∂tU∗(t, z) − ε4∂t Rε(t, z)

= Iε(U∗
+ ε2 Rε)(t, z)M(t, z) exp[ε2(Rε(t, z) − 2Rε(t, z̄(t)) + Rε(t, z∗(t)))].

To prove the boundedness of Rε, a solution to this nonlinear equation, we shall linearize it and show
a stability result on the linearized problem; see Theorem 7.1. We explain here the heuristics about the
linearization. We have already said that Iε is expected to converge to 1. Therefore by linearizing the
exponential, a natural linearized equation when ε is small appears to be

ε2∂t R̃ε(t, z) = M(t, z)(−R̃ε(t, z) + 2R̃ε(t, z̄(t)) − R̃ε(t, z∗(t))), (2-1)

For clarity we denote by T the linear operator

T (R)(t, z) := M(t, z)(2R(t, z̄(t)) − R(t, z) + R(t, z∗(t))).
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We know precisely the eigenelements of this linear operator. The eigenvalue 0 has multiplicity two, the
eigenspace consisting of affine functions. More generally one can get every eigenvalue by differentiating
iteratively the operator T and evaluating at z = z∗. This corresponds to the following table:

Eigenvalue: 0 0 −
1
2 −

3
4 · · ·

Dual eigenvector: δz∗(t) δ′

z∗(t) δ′′

z∗(t) δ
(3)
z∗(t) · · ·

This explains why Rε should be decomposed between affine parts and the rest, and, as a consequence,
why this is also the case for the solution Uε we are investigating. The scalars pε and qε of the decomposi-
tion (1-17) correspond to the projection of Uε upon the eigenspace associated to the (double) eigenvalue 0.
On the other hand, the rest is expected to remain uniformly bounded since the corresponding eigenvalues
are negative, below −

1
2 .

Beyond the heuristics about the stability, this linear analysis also illustrates the discrepancy between Vε

and qε in Theorem 1.3. While Vε is expected to relax to an explicit bounded value arbitrary quickly
as ε → 0 (fast dynamics), this is not true for qε, and its limit q∗ solves a differential equation (slow
dynamics):

q̇∗(t) = −m′′(z∗(t))q∗(t) +
1
2 m(3)(z∗(t)) − 2m′′(z∗(t))m′(z∗(t)).

One interpretation of this formula is that, for ε > 0, the second eigenvalue, which corresponds to
the affine part, is not 0 as in the table above. Our intuition, given the equation above, is that it is of
order −ε2m′′(z∗(t)). We can guess that this explains why, in Section 8, we obtain directly with contraction
arguments that the perturbation of Vε is bounded (fast dynamics), while to show that the perturbation
of qε is uniformly bounded, we must deal with an ODE that it solves. This “vanishing” but negative
second eigenvalue could also explain why our analysis needs a uniform contraction argument for the
affine part while it can be chosen freely at ε = 0; see (PtU0).

The technique we will use in the following sections to bound Wε in F will seem more natural in light
of this formal analysis. The first step will be to work around z∗, the base point of the dual eigenelements
in the table above. We derive uniform bounds up to the third derivative to estimate Wε; see Theorem 7.1.

By plugging the expansions of (1-21) and (1-22) associated to the decomposition (1-17) and the
logarithmic transform (1-2) into our original model (Pt fε), we obtain the following main reference
equation that we will study in the rest of this article:

M(t, z)−ε2( ṗε(t)+q̇∗(t)(z−z∗)+m′(z∗)q∗(t)+∂t V ∗(t, z))−ε4(κ̇ε(t)(z−z∗)+m′(z∗)κε(t)+∂t Wε(t, z))

= M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε) exp[ε2(Wε(t, z) − 2Wε(t, z̄(t)) + Wε(t, z∗(t)))]. (2-2)

Our main objective will be to linearize (2-2), in order to deduce the boundedness of the unknowns, (κεWε),
by working on the linear part of the equations. We will need to investigate different scales (in ε) to capture
the different behaviors of each contribution.

We will pay attention to the remaining terms. We will use the classical notation O(1) and O(ε), and
we will write ∥(κε, Wε)∥O(ε) to illustrate when the constants of O(ε) depend on (κε, Wε). We also
define a refinement of the classical notation O(ε):
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Definition 2.1 (O∗(εβ)). For β ∈ N, we say that a function g(ε, t, z) is such that g(ε, t, z) = O∗(εβ) if
there exists ε∗ such that for all ε ≤ ε∗,

|g(ε, t, z)| ≤ C∗εβ,

and the constants ε∗ and C∗ depend only on the pair (q∗, V ∗).

More generally, when we write O(ε), the constants involved may a priori depend upon the pair (κε, Wε).
Our intent is to make the dependency of the constants clear when we linearize. This will prove to be a
crucial point when we go back to the nonlinear problem (2-2). We will see that all the terms that do not
have a sufficient order in ε, to be negligible, will be O∗(1), and therefore uniformly bounded independently
of (κε, Wε). A key point of our analysis is to segregate those terms when doing the linearization.

The rest of the paper is organized as follows:

• First we prove some properties upon the reference pair (q∗, V ∗) around which all the terms of (2-2)
are linearized.

• A key part of our perturbative analysis is to be able to linearize Iε, which we do in Section 4 thanks
to careful estimates upon the directional derivatives.

• We derive an equation on κε in Section 5A, and later a linear equation for the approximation Wε, as
well as derivations for all of its derivatives in Section 6, while controlling precisely the error terms.

• We next show the boundedness of the solutions of the linear problem in the space F, see Section 7,
mainly through maximum principles and a dyadic division of the space to take into account the
nonlocal behavior of the infinitesimal operator. This is the content of Theorem 7.1.

• Finally, we tackle the proof of Theorem 1.3 in Section 8, using contraction arguments deduced from
the previous section.

• To conclude, in Section 9 we discuss some of our assumptions made in Assumption 1.1, illustrated
by some numerical simulations.

3. Preliminary results: estimates of I∗
ε and V ∗

3A. Control of (q∗, V ∗). Before tackling the main difficulties of this article, we first state some controls
on the function V ∗, the solution of (PtU0). Most of them use the explicit expression of (1-9) and were
proved in [Calvez et al. 2019]. To be able to measure this function we introduce another functional space,
with more constraints.

Definition 3.1 (subspace E∗). We define E∗ as the following subspace of E :

E∗
:= E ∩ {v ∈ C5(R+× R) | ϕα(t, z)|∂4

z v(t, z)|, ϕα(t, z)|∂5
z v(t, z)| ∈ L∞(R+× R)},

and we equip it with the norm ∥ · ∥∗:

∥v∥∗ = max
(
∥v∥E , sup

(t,z)∈R+×R

ϕα(t, z)|∂4
z v(t, z)|, sup

(t,z)∈R+×R

ϕα(t, z)|∂5
z v(t, z)|

)
.
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Our intention with the successive definitions of the functional spaces is to be able to measure each
term of the decomposition made in (1-21) as follows:

Vε = V ∗
+ ε2Wε, with Vε ∈ E, V ∗

∈ E∗ and Wε ∈ F.

The fact that V ∗
∈ E∗ is part of the claim of the following lemma:

Lemma 3.2 (properties of V ∗). The function V ∗ belongs to the space E∗. Moreover,

∂2
z V ∗(t, z∗) = 2m′′(z∗) and ∂3

z V ∗(t, z∗) =
4
3 m(3)(z∗). (3-1)

Proof. Precise estimates of the summation operator that defines V ∗ in (1-9) are studied in [Calvez et al.
2019]. They can be applied there thanks to the decay assumptions about M; see (1-14). The only difference
here is that a uniform bound for the fourth and fifth derivative are required. The proofs of those bounds
rely solely upon the assumption made in (1-14), for the fourth and fifth derivative of M. This shows
that V ∗

∈ E∗. Explicit computations based on (1-9) prove the relationships (3-1). □

A consequence of Lemma 3.2 is that since m′′(z∗(t)) > 0 for t > t0, thanks to (1-16), we have that V ∗

is locally convex around z∗(t). However, we need more information about V ∗ than the space it belongs
to. We will bound (q∗, V ∗) independently of time. This is the content of the following result:

Proposition 3.3 (uniform bound on (q∗, V ∗)). There exists a constant K ∗ such that for j = 0, 1, 2, 3, we
have

max(∥V ∗
∥∗, ∥q∗

∥L∞(R+), ∥∂t∂
j

z V ∗
∥L∞(R+×R)) ≤ K ∗.

Proof. For the estimates upon V ∗ and ∂t V ∗, it is a direct consequence of the definition of E∗ and the
explicit formula (1-9). The technique to bound the sums is to distinguish between the small and large
indices, as was detailed in [Calvez et al. 2019].

For q∗, one must look to (1-18). The boundedness of q∗ is a straightforward consequence of the
convexity of m at z∗(t) for large times; see (1-16) and the convergence of z∗ to bound the other terms. □

3B. Estimates of I∗
ε and its derivatives. We next define a notational shortcut for the functional Iε

introduced in (1-3), when it is evaluated at the reference pair (q∗, V ∗):

I∗

ε := Iε(q∗, V ∗).

This section is devoted to getting precise estimates of this function. This will be crucial for the linearization
of Iε(q∗

+ ε2κε, V ∗
+ ε2Wε) as can be seen on the full equation (2-2).

Proposition 3.4 (estimation of I∗
ε ). We have that

I∗

ε (t, z) = 1 + O∗(ε2),

where the constants of O∗(ε2) depend only on K ∗, as introduced in Proposition 3.3 and as defined by
Definition 2.1.
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The proof involves exact Taylor expansions in ε. Very similar expansions were performed in Lemma 3.1
of [Calvez et al. 2019]. We adapt the method of proof here, since it will be used extensively throughout
this article.

Proof of Proposition 3.4. We recall that by Proposition 3.3, max(|q∗
|, ∥V ∗

∥∗) ≤ K ∗, and, by definition,

I∗

ε (t, z) =

∫∫
R2 e−Q(y1,y2) exp[−εq∗(t)(y1 + y2) + 2V ∗(t, z̄) − V ∗(t, z̄ + εy1) − V ∗(t, z̄ + εy2)] dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗(t)y + V ∗(t, z∗) − V ∗(t, z∗ + εy)] dy

:=
N (t, z)
D(t)

,

where Q is the quadratic form appearing after the rescaling of the infinitesimal operator in (1-3):

Q(y1, y2) :=
1
2 y1 y2 +

3
4(y2

1 + y2
2).

This quadratic form will appear very frequently in what follows, mostly, as here, through the bivariate
Gaussian distribution it defines. Once and for all, we state that a correct normalization of this Gaussian
distribution is

1
√

2π

∫∫
R2

e−Q(y1,y2) dy1 dy2 = 1.

We start the estimates with the more complicated term, the numerator N. With an exact Taylor expansion
inside the exponential, there exists generic 0 < ξi < 1, for i = 1, 2, such that

N (t, z) =
1

√
2π

∫∫
R2

e−Q(y1,y2) exp
[
−εq∗(t)(y1 + y2) − ε(y1 + y2)∂z V ∗(t, z̄)

−
1
2ε2(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2))

]
dy1 dy2.

Moreover, we can write, for some θ = θ(y1, y2) ∈ (0, 1),

exp[−εP] = 1 − εP +
1
2ε2 P2 exp[−θεP], with

P := (y1 + y2)(q∗(t) + ∂z V ∗(t, z̄)) +
1
2ε(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2)),

such that

|P| ≤ K ∗
(
|y1| + |y2| +

1
2ε(y2

1 + y2
2)
)
. (3-2)

Combining the expansions, we find that

N (t, z) =
1

√
2π

∫∫
R2

e−Q(y1,y2)
(
1 − εP +

1
2ε2 P2 exp[−θεP]

)
dy1 dy2

= 1 − ε
1

√
2π

∫∫
R2

e−Q(y1,y2) P dy1 dy2 +
ε2

2
√

2π

∫∫
R2

e−Q(y1,y2) P2 exp[−θεP] dy1 dy2. (3-3)

The key part is the cancellation of the terms O(ε) due to the symmetry of Q:

1
√

2π

∫∫
R2

e−Q(y1,y2)(y1 + y2) dy1 dy2 = 0.
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Therefore,

ε
√

2π

∫∫
R2

e−Q(y1,y2) P dy1 dy2

=
ε2

2
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1∂2

z V ∗(t, z̄ + εξ1 y1) + y2
2∂2

z V ∗(t, z̄) + εξ2 y2) dy1 dy2,

and we get the estimate∣∣∣∣ ε
√

π

∫∫
R2

e−Q(y1,y2) P dy1 dy2

∣∣∣∣≤ ε2

2
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1 + y2

2)K ∗ dy1 dy2 ≤ O∗(ε2).

Thanks to (3-2) it is easy to verify that the last term of (3-3) behaves similarly:

ε2

2
√

2π

∫∫
R2

e−Q(y1,y2) P2 exp[−θεP] dy1 dy2 = O∗(ε2).

Indeed, it states that the term P is at most quadratic with respect to yi , so Q + θεP is uniformly bounded
below by a positive quadratic form for ε small enough. This shows that

N (t, z) = 1 + O∗(ε2).

The denominator is easier. With the same arguments, using the Gaussian density, we find that

D(t) = 1 + O∗(ε2).

Combining the estimates of N and D, we get the desired result. □

There exists a link between q∗ and ∂zI∗
ε (t, z∗), which is in fact the motivation behind the choice of q∗.

Proposition 3.5 (link between q∗ and ∂zI∗
ε (t, z∗)).

∂zI∗

ε (t, z∗(t)) = ε2(m′′(z∗(t))q∗(t) −
1
2 m(3)(z∗(t))

)
+ O∗(ε4),

where the constants of O∗(ε4) only depend on K ∗.

The proof of this result was the content of [Calvez et al. 2019, Lemma 3.1] and only requires that the
pair (q∗, V ∗) is uniformly bounded, as stated in Proposition 3.3. Its proof follows the same procedure of
exact Taylor expansions as that of Proposition 3.4.

It will be useful to dispose of estimates of ∂zI∗
ε not only at the point z∗. They are less precise, as stated

in the following proposition:

Proposition 3.6 (estimates of the decay of the derivatives of I∗
ε ). There exists a constant ε∗ that depends

only on K ∗ such that for all ε ≤ ε∗, for j = 1, 2, 3,

sup
(t,z)∈R+×R

ϕα(t, z)|∂( j)
z I∗

ε (t, z)| = O∗(ε2).
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To simplify notations, we introduce the following difference operator that appears in the integral Iε;
see (1-3):

Dε(V )(Y, t, z) := V (t, z̄) −
1
2 V (t, z̄ + εy1) −

1
2 V (t, z̄ + εy2), with Y = (y1, y2),

D∗

ε (V )(y, t) := V (t, z∗) − V (t, z∗ + εy).
(3-4)

We will use the following technical lemma giving an estimate of the weight function against the derivatives
of a given function.

Lemma 3.7 (influence of the weight function). There exists a constant C such that for each ball B of E∗

or F, there exists εB such that for every W ∈ B, for every y ∈ R and ε ≤ εB , for j = 2, 3, 4, 5,

ϕα(t, z)|∂( j)
z W (t, z̄(t) + εy)| ≤

{
C∥W∥ if |y| ≤ |z − z∗(t)|,
(1 + |y|

α)∥W∥ otherwise,

with ∥W∥ = ∥W∥∗ or ∥W∥F depending on the case.

Proposition 3.6 is a prototypical result. It will be followed by a series of similar statements. Therefore,
we propose two different proofs. In the first one, we write exact Taylor expansions. However, the
formalism is heavy, which is why we propose next a formal argument, where the Taylor expansions are
written without the exact remainder for the sake of clarity.

In the rest of this paper more complicated estimates will be proved, in the spirit of Proposition 3.6; see
Proposition 4.1 and Lemma 4.8 for instance. The notations and formulas will be very long, so we shall
only write the formal parts of the argument. However, it can all be made rigorous, as below.

Proof of Proposition 3.6. First, write the expression for the derivative, using our notation Dε introduced
in (3-4):

∂zI∗

ε (t, z) =

∫∫
R2 e−Q(y1,y2) exp[−εq∗(y1 + y2) + 2Dε(V ∗)(Y, t, z)]Dε(∂z V ∗)(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

:=
N (t, z)
D(t)

. (3-5)

We only focus on the numerator. The denominator D can be handled similarly as in the proof of
Proposition 3.4, where we show that it is essentially 1 + O∗(ε2). We perform two Taylor expansions in
the numerator N, namely,

2Dε(V ∗)(Y, t, z̄) = −ε(y1+y2)∂z V ∗(t, z̄)− 1
2ε2(y2

1∂2
z V ∗(t, z̄+εξ1 y1)+y2

2∂2
z V ∗(t, z̄+εξ2 y2)),

Dε(∂z V ∗)(Y, t, z̄) = −
1
2ε(y1+y2)∂

2
z V ∗(t, z̄)− 1

4ε2(y2
1∂3

z V ∗(t, z̄+εξ1 y1)+y2
2∂3

z V ∗(t, z̄+εξ2 y2)),
(3-6)

where the ξi denote some generic number such that 0 < ξi < 1 for i = 1, 2. Moreover, we can write

exp[−εP] = 1 − εP exp[−θεP], with

P := (y1 + y2)(∂z V ∗(t, z̄) + q∗) +
1
2(y2

1∂2
z V ∗(t, z̄ + εξ1 y1) + y2

2∂2
z V ∗(t, z̄ + εξ2 y2)), (3-7)
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for some θ = θ(y1, y2) ∈ (0, 1). Combining the expansions, we find that

ϕα(t, z)∂zI∗

ε (t, z)

=
ϕα(t, z)
√

2π

∫∫
R2

e−Q(y1,y2)(1 − εP exp[−θεP])

×
(
−

1
2ε(y1 + y2)∂

2
z V ∗(t, z̄) −

1
4ε2(y2

1∂3
z V ∗(t, z̄ + εξ1 y1) + y2

2∂3
z V ∗(t, z̄ + εξ2 y2))

)
dy1 dy2.

Crucially, the O(ε) contribution cancels due to the symmetry of Q, as already observed above:∫∫
R2

e−Q(y1,y2)(y1 + y2) dy1 dy2 = 0.

So, it remains that

ϕα(t, z)N (t, z)

= −ε2 ϕα(t, z)

4
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1∂3

z V ∗(t, z̄ + εξ1 y1) + y2
2∂3

z V ∗(t, z̄ + εξ2 y2)) dy1 dy2

+ ε2 ϕα(t, z)

2
√

2π

∫∫
R2

e−Q(y1,y2) P exp[−θεP](y1 + y2)∂
2
z V ∗(t, z̄) dy1 dy2

+ ε3 ϕα(t, z)

4
√

2π

∫∫
R2

e−Q(y1,y2) P exp[−θεP](y2
1∂3

z V ∗(t, z̄ + εξ1 y1) + y2
2∂3

z V ∗(t, z̄ + εξ2 y2)) dy1 dy2.

If we forget about the weight in front of each term, clearly the last two contributions are uniform O∗(ε)

since ε ≤ ε∗ is small enough and V ∗ and q∗ are uniformly bounded by K ∗; see Proposition 3.3. The
term P is at most quadratic with respect to yi , see (3-7), so Q + θεP is uniformly bounded below by a
positive quadratic form for ε small enough.

A difficulty is to add the weight to those estimates. To do so, we use Lemma 3.7, for each integral
term appearing in the previous formula, because each time a term of the following form appears:

ϕα(t, z)∂( j)
z V ∗(t, z̄ + εξi yi ). (3-8)

Since every ξi satisfies 0 < ξi < 1, the bounds given by Lemma 3.7 ensure that each integral remains
bounded by moments of the bivariate Gaussian defined by Q, as if there were no weight function. This
concludes the proof of the first estimate of Proposition 3.6.

Bounding the quantity ϕα(t, z)|∂( j)
z I∗

ε (t, z)| for j = 2, 3 follows the same steps, as seen here:

∂2
z I

∗

ε (t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V ∗)(Y, t, z)]

(
Dε(∂z V ∗)2

+
1
2Dε(∂

2
z V ∗)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
,

∂3
z I

∗

ε (t, z) =

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V ∗)(Y, t, z)]

×
(
Dε(∂z V ∗)3

+
3
2Dε(∂z V ∗)Dε(∂

2
z V ∗) +

1
4Dε(∂

3
z V ∗)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
.
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The motivation behind going up to the fifth derivative of V ∗ in Definition 3.1 lies in the terms

1
2Dε(∂

2
z V ∗) and 1

4Dε(∂
3
z V ∗). (3-9)

To gain an order ε2 as needed in Proposition 3.6 for the estimates, one needs to go up by two orders in
the Taylor expansions, which involve fourth and fifth derivatives. The importance of the order ε2 will
later appear in Proposition 4.2 and Section 7. □

We now propose a formal argument which is much simpler to read.

Formal proof of Proposition 3.6. We tackle the first derivative. We use the same notations as previously,
see (3-5), and again focus on the numerator N. Formally,

N (t, z) =

∫∫
R2

e−Q(y1,y2) exp[−ε(y1 + y2)(q∗
+ ∂z V ∗(t, z̄)) + (y2

1 + y2
2)O∗(ε2)]

× (−ε(y1 + y2)∂
2
z V ∗(t, z̄) + (y2

1 + y2
2)O∗(ε2)) dy1 dy2.

Thanks to the linear approximation of the exponential, we find that

N (t, z) =

∫∫
R2

e−Q(y1,y2)(1 − ε(y1 + y2)(q∗
+ ∂z V ∗(t, z̄)) + (y2

1 + y2
2)O∗(ε2))

× (−ε(y1 + y2)∂
2
z V ∗(t, z̄) + (y2

1 + y2
2)O∗(ε2)) dy1 dy2. (3-10)

By sorting out the orders in ε, this can be rewritten as

N (t, z) = εN1 + O∗(ε2).

By symmetry,

N1 := −

∫∫
R2

e−Q(y1,y2)(ε(y1 + y2)∂
2
z V ∗(t, z̄)) dy1 dy2 = 0.

To conclude, we notice that we can add the weight function to those estimates and make the same
arguments as in the previous proof. □

Proof of Lemma 3.7. If |z − z∗| ≤ 1, then 1 + |z − z∗| ≤ 2, and the result is immediate by Definitions 3.1
and 1.2 of the adequate functional spaces. Therefore, one can suppose that |z − z∗| > 1. We first look at
the regime |y| ≤ |z − z∗|. Then, by definition of the norms,

ϕα(t, z)|∂( j)
z W (t, z̄ + εy)| ≤ 2

|z − z∗|
α

|z̄ + εy − z∗|
α
|z̄ + εy − z∗|

α
|∂( j)

z W (t, z̄ + εy)|

≤ 2
|z − z∗|

α

|z̄ + εy − z∗|
α
∥W∥. (3-11)

To bound the last quotient, we use the following inequality, that holds true because we are in the regime
|y| ≤ |z − z∗|:

|z̄ + εy − z∗| ≥ −|εy| + |z̄ − z∗| ≥
1
2 |z − z∗| − ε|z − z∗|.

This yields

2
|z − z∗|

|z̄ + εy − z∗|
≤

2
1/2 − ε

. (3-12)
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Bringing together (3-11) and (3-12), one gets Lemma 3.7 in the regime |y| ≤ |z − z∗|, on the condition
that ε < 1

2 .
On the contrary, when |z − z∗| ≤ |y|, we have immediately that

(1 + |z − z∗|
α)|∂( j)

z W (t, z̄ + εy)| ≤ (1 + |y|
α)∥W∥. □

4. Linearization of Iε and its derivatives

The first step to obtain a linearized equation on Wε is to study the nonlinear terms of (2-2). A key point is
the study of the functional Iε defined in (1-3), which plays a major role in our study. We will show that it
converges uniformly to 1, as we claimed in Section 1, and that its derivatives are uniformly small, with
some decay for large z, similarly to what we proved for the function I∗

ε in the previous section. This will
enable us to linearize Iε and its derivatives in Propositions 4.2 and 4.5.

4A. Linearization of Iε. We first bound uniformly all the terms that appear during the linearization
of Iε by Taylor expansions. One starts by measuring the first order directional derivatives.

Proposition 4.1 (bounds on the directional derivatives of Iε). For any ball B of R × E , there exists a
constant εB that depends only on B such that for all ε ≤ εB we have, for all (g, V ) ∈ B and H ∈ E :

sup
(t,z)∈R+×R

|∂gIε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε2) (4-1)

and

sup
(t,z)∈R+×R

|∂V Iε(g, V ) · H(t, z)| ≤ ∥(g, V )∥∥H∥E O(ε2). (4-2)

Proof. As in the estimates of I∗
ε and its derivatives in the previous section, the argument to obtain the

result will be to perform exact Taylor expansions. As explained before we will not pay attention to the
exact remainders that can be handled exactly as before, and we refer to the proofs of Propositions 3.4
and 3.6 for the details. However, our computations will make clear the order ε2 of (4-1) and (4-2). First,
thanks to the derivation with respect to g, an order of ε is gained straightforwardly:

∂gIε(g, V )(t, z)

= −ε

(∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− Iε(g, W )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]y dy
√

π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

)
. (4-3)

The common denominator is bounded:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)] dy ≥

∫
R

exp
[
−

1
2 |y|

2
− 2ε|y|∥(g, V )∥

]
dy.
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For the numerators, a supplementary order in ε is gained by symmetry of Q, as in other estimates; see
Proposition 3.6 for instance. For the single integral we write∫

R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy ≤

∫
R

e−|y|
2/2 y exp[−εgy + 2ε|y|∥(g, V )∥] dy

≤

∫
R

e−|y|
2/2 y(1 − εgy + O(ε)|y|∥(g, V )∥) dy.

Finally, ∫
R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy ≤ ∥(g, V )∥O(ε). (4-4)

For the first numerator of (4-3), the computations work in the same way:∫∫
R2

exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2) dy1 dy2

≤

∫∫
R2

exp[−Q(y1, y2) + O(ε)(y1 + y2)∥(g, V )∥](y1 + y2) dy1 dy2

≤

∫∫
R2

exp[−Q(y1, y2)](1 + O(ε)(y1 + y2)∥(g, V )∥)(y1 + y2) dy1 dy2 ≤ ∥(g, V )∥O(ε). (4-5)

Therefore, combining (4-3)–(4-5) we have proven the bound upon the first derivative of Iε in (4-1).
Concerning (4-2), one starts by writing the following formula for the Fréchet derivative:

∂V Iε(g, V ) · H(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]2Dε(H)(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− Iε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-6)

The claimed order ε2 holds true, by similar symmetry arguments. For instance, when we do the Taylor
expansions on the numerator of the first term of (4-6), we find that∫∫

R2
exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]2Dε(H)(Y, t, z) dy1 dy2

= 2
∫∫

R2
exp[−Q(y1, y2)](1 − ε(y1 + y2)(g + ∂z V (t, z̄)) + O(ε2)∥V ∥E)

× (−ε(y1 + y2)∂z H(t, z̄) + O(ε2)(y2
1 + y2

2)∥H∥E) dy1 dy2

= −2ε∂z H(t, z̄)
∫∫

R2
exp[−Q(y1, y2)](y1 + y2) dy1 dy2

+ ε2∂z H(t, z̄)(g + ∂z V (t, z̄))
∫∫

R2
exp[−Q(y1, y2)](y1 + y2)

2 dy1 dy2+ O(ε2)∥H∥E∥(g, V )∥

≤ ∥(g, V )∥∥H∥E O(ε2). (4-7)
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For the second term of (4-6), we also gain an order ε2 when making Taylor expansions of D∗
ε (V ), since

∂z H(t, z∗) = 0:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗

ε (H)(y, t) dy

= −

∫
R

e−|y|
2/2 exp[−εgy + 2ε|y|∥(g, V )∥]y2O(ε2)∥H∥E dy

= −

∫
R

e−|y|
2/2(1 − εgy + 2ε|y|∥(g, V )∥)y2O(ε2)∥H∥E dy ≤ ∥(g, V )∥∥H∥E O(ε2). (4-8)

As before, the denominator of (4-6) has a uniform lower bound, therefore combining (4-6)–(4-8) concludes
the proof. □

We have proven all the tools to linearize Iε as follows, thanks to the previous estimates on the directional
derivatives of Iε.

Proposition 4.2 (linearization of Iε). For any ball B of R × E , there exists a constant εB that depends
only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B,

Iε(q∗
+ ε2g, V ∗

+ ε2W )(t, z) = I∗

ε (t, z) + O(ε3)∥(g, W )∥ (4-9)

= 1 + O∗(ε2) + O(ε3)∥(g, W )∥, (4-10)

where O(ε3) only depends on the ball B.

Proof. We write an exact Taylor expansion

Iε(q∗
+ ε2g, V ∗

+ ε2W ) = I∗

ε + ε2(∂gIε(q∗
+ ε2ξg, V ∗

+ ε2ξW )+ ∂V Iε(q∗
+ ε2ξg, V ∗

+ ε2ξW ) · W ),

for some 0 < ξ < 1. Therefore (4-9) is a direct application of Proposition 4.1 to g′
= q∗

+ ε2ξg,
V = V ∗

+ ε2ξW and H = W . One deduces the estimation of (4-10) from Proposition 3.4. □

As a matter of fact, in (4-10), we have even shown an estimate 1+ O∗(ε2)+ O(ε4)∥(g, W )∥. However,
we choose to reduce arbitrarily the order in ε for consistency reasons with further estimates of this article.
It suffices for our purposes.

4B. Linearization of ∂zIε and decay estimates. In order to prove Theorem 1.3, we need to uniformly
bound ∥Wε∥F , and this implies L∞ bounds of the derivatives of Wε. To obtain those, our method is to
work on the linearized equations they satisfy. Therefore, linearizing Iε is not enough, we need to linearize
∂

( j)
z Iε as well, for j = 1, 2, 3. For that purpose we need more details than previously about the nature of

the negligible terms. More precisely, we need to know how it behaves relatively to the weight function of
the space E and F, that acts by definition upon the second and third derivatives. The objective of this
section is to linearize ∂

( j)
z Iε to obtain similar results to Proposition 4.2. We first prove the following

estimates on the derivatives of Iε:
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Proposition 4.3 (decay estimate of ∂zIε). For any ball B of R×E , there exists a constant εB that depends
only on B such that for any pair (g, V ) in B, for all ε ≤ εB :

sup
(t,z)∈R+×R

ϕα(t, z)|∂zIε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε),

sup
(t,z)∈R+×R

ϕα(t, z)|∂2
z Iε(g, V )(t, z)| ≤ ∥(g, V )∥O(ε),

sup
(t,z)∈R+×R

ϕα(t, z)|∂3
z Iε(g, V )(t, z)| ≤ ∥(g, V )∥O(εα) +

1
21−α

∥ϕα∂3
z V ∥∞,

where all the O(ε) depend only on the ball B, and ∥ϕα∂3
z V ∥∞ = sup(t,z)∈R+×R ϕα(t, z)|∂3

z V (t, z)|.

We are not able to propagate an order ε for all derivatives. There is a factor of order 0 in ε in the
third one: ∥ϕα∂3

z V ∥∞/21−α. It will be dealt with using a contraction argument, since 2α−1 < k(α) < 1;
and k(α) plays the same role as in Theorem 7.1. This has to be put in parallel with [Calvez et al. 2019,
Proposition 4.6].

Proof. We focus on the first derivative, the proof for the second derivative is straightforward to adapt:

ϕα(t, z)∂zIε(g, V )(t, z)

= ϕα(t, z)

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]Dε(∂z V )(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-11)

As before, the following formal Taylor expansions hold true for the numerator, ignoring the weight in the
first step:∫∫

R2
exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]Dε(∂z V )(Y, t, z) dy1 dy2

=

∫∫
R2

exp[−Q(y1, y2)](1 − O(ε)(y1 + y2)∥(g, V )∥)(−O(ε)(y1 + y2)∥(g, V )∥) dy1 dy2,

≤ O(ε)∥(g, V )∥. (4-12)

Meanwhile the denominator has a uniform lower bound:∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)] dy ≥

∫
R

exp
[
−

1
2 |y|

2
− 2ε|y|∥(g, V )∥

]
dy.

The estimate of (4-12) can be made rigorous as in the proof of Proposition 3.6, for instance. Moreover,
one can add the weight to bound (4-11) thanks to Lemma 3.7, as explained in the proof of Proposition 3.6.
Therefore, the proof of the first estimate of Proposition 4.3 is achieved.

For the second term of Proposition 4.3, involving the second derivative, the arguments and decomposi-
tion of the space are the same. We follow the same steps, arriving at the formula

∂2
z Iε(g, V )(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

(
Dε(∂z V )2

+
1
2Dε(∂

2
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
.



THE CAUCHY PROBLEM FOR THE INFINITESIMAL MODEL IN THE REGIME OF SMALL VARIANCE 1309

Things are a little bit different for the third derivative, as can be seen in the following explicit formula:

∂3
z Iε(t, z) =

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

×
(
Dε(∂z V )3

+
3
2Dε(∂z V )Dε(∂

2
z V ) +

1
4Dε(∂

3
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
. (4-13)

All terms in this formula will provide an order ε exactly as before, except for the linear contribution
of Dε(∂

3
z V ) since we lack a priori controls of the fourth derivative of V in F. Therefore, for this term we

proceed as follows:

ϕα(t, z)|Dε(∂
3
z V )(Y, t, z)|

= (1 + |z − z∗|)
α
∣∣∂3

z V (t, z̄) −
1
2∂3

z V (t, z̄ + εy1) −
1
2∂3

z V (t, z̄ + εy2)
∣∣

≤ (1 + |z − z∗|)
α
(
|∂3

z V (t, z̄)| + 1
2 |∂3

z V (t, z̄ + εy1)| +
1
2 |∂3

z V (t, z̄ + εy2)|
)

≤ 2α+1
∥ϕα∂3

z V ∥∞(1 + εα(|y1|
α
+ |y2|

α)). (4-14)

For this computation, we used the following property of the weight function, which was also of crucial
importance in [Calvez et al. 2019, Lemma 4.5]:

sup
(t,z)∈R+×R

ϕα(t, z)
ϕα(t, z̄)

≤ 2α.

As a consequence, take i = 1 or 2. Then

ϕα(t, z)|∂3
z V (z̄ + εyi )| ≤

2αϕα(t, z̄)
(1 + |z̄ + εyi − z∗|)α

∥ϕα∂3
z V ∥∞

≤ 2α

(
1 +

|εyi |

1 + |z̄ + εyi − z∗|

)α

∥ϕα∂3
z V ∥∞

≤ 2α(1 + εα
|yi |

α)∥ϕα∂3
z V ∥∞.

We deduce that

ϕα(t, z)

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

( 1
4Dε(∂

3
z V )(Y, t, z)

)
dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

≤
1

21−α
∥ϕα∂3

z V ∥∞ + O(εα)∥(g, V )∥,

by subadditivity of | · |
α. This justifies (4-14). Once added to other estimates of the terms of (4-13),

obtained by Taylor expansions of Dε as before, we get the desired estimate. □

One can notice in the proof that the order O(ε) is not the sharpest one can possibly get for the first
derivative; see (4-12). However, it is sufficient for our purposes. We now detail the control upon the
directional derivatives of Iε.
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Proposition 4.4 (bound of the directional derivatives of Iε). For any ball B of R × E , there exists a
constant εB that depends only on B such that for any pair (g, V ) in B and any function H ∈ E , for
every ε ≤ εB :

sup
(t,z)∈R+×R

(ϕα(t, z)|∂g∂
( j)
z Iε(g, V )(t, z)|) ≤ O(ε)∥(g, V )∥E , j = 1, 2, 3, (4-15)

sup
(t,z)∈R+×R

(ϕα(t, z)|∂V ∂( j)
z Iε(g, V ) · H(t, z)|) ≤ O(ε)∥H∥E , j = 1, 2, (4-16)

sup
(t,z)∈R+×R

(ϕα(t, z)|∂V ∂3
z Iε(g, V ) · H(t, z)|) ≤ O(εα)∥H∥E +

1
21−α

∥ϕα∂3
z H∥∞, (4-17)

where the O(ε) depend only on the ball B.

As for Proposition 4.3, in those estimates, the order of precision O(ε) is not optimal and we could
improve it without it being useful. We will not give the full proof for each estimate of this Proposition.
However, we see that it follows the same pattern than in Proposition 4.3, and we will even use those
results for the proof. In particular for the third derivative, it is not possible to completely recover an
order ε, hence the term

∥ϕα∂3
z H∥∞/21−α.

It comes from the linear part Dε(∂
3
z V ) that appears in ∂3

z Iε, see (4-13). However, it does not prevent
us from carrying our analysis since the factor 1/21−α will be absorbed by a contraction argument; see
Section 8.

Proof of Proposition 4.4. We first detail the proof of (4-15), because derivatives in g are somehow easier
to estimate. The formula for the first derivative is:

∂g∂zIε(g, V )(t, z)

= −ε

(∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)](y1 + y2)Dε(∂z V )(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− ∂zIε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]y dy
√

π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

)
. (4-18)

The first term of this formula closely resembles the one for ∂z Iε(g, V ), with an additional factor ε(y1+ y2).
We do not detail how to bound it, as it follows the same steps; see the work done following (4-11). For
the second term we first use the following bound:∫

R
e−|y|

2/2 exp[−εgy +D∗
ε (V )(y, t)]y dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
≤

∫
R

exp
[
−

1
2 |y|

2
+ 2ε|y|∥(g, V )∥

]
y dy∫

R
exp

[
−

1
2 |y|2 − 2ε|y|∥(g, V )∥

]
dy

. (4-19)

For ε sufficiently small that depends only on ∥(g, V )∥ we deduce a uniform bound with moments of
the Gaussian distribution. We then use the estimate from Proposition 4.3 on ∂z Iε(g, V ), which takes the
weight into account, to conclude.
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Every other estimate of Proposition 4.4 works along the same lines. We illustrate this with the second
derivative in g and z:

∂g∂
2
z Iε(g,V )(t, z)

=−ε

(∫∫
R2 e−Q(y1,y2) exp[−εg(y1+y2)+2Dε(V )(Y, t, z)](y1+y2)

(
Dε(∂zV )2

+
1
2Dε(∂

2
z V )

)
(Y, t, z)dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)]dy

−∂2
z Iε(g,V )

∫
R

e−|y|
2/2 y exp[−εgy+D∗

ε (V )(y, t)]dy∫
R

e−|y|2/2 exp[−εgy+D∗
ε (V )(y, t)]dy

)
. (4-20)

This is very close to ∂2
z Iε that has already been estimated in Proposition 4.3, and therefore the same

arguments as before hold.
The structure is different for the derivatives in V, as can be seen for ∂V ∂zIε(g, V ) · H :

∂V ∂zIε(g, V )· H(t, z)

=

∫∫
R2 exp[−Q(y1, y2)−εg(y1 + y2)+2Dε(V )(Y, t, z)](2Dε(∂z V )Dε(H)+Dε(∂z H))(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)] dy

−∂zIε(g, V )(t, z)

∫
R

e−|y|
2/2 exp[−εgy+D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy+D∗

ε (V )(y, t)] dy
. (4-21)

The second term can still be bounded using Proposition 4.3 and estimate (4-19) along with the following
immediate result:

|D∗

ε (V )(y, t)| ≤ ε|y|∥V ∥E .

For the first term, we must do Taylor expansions of 2Dε(∂z V )Dε(H) +Dε(∂z H) to control them with
the weight. One ends up with moments of the multidimensional Gaussian distribution just as in all the
previous proofs. For instance,

2ϕα(t, z)|Dε(∂z V )Dε(H)|(t, z) ≤ ϕα(t, z)|Dε(∂z V )(t, z)|O(ε)(|y1| + |y2|)∥H∥E

≤ O(ε)(|y1| + |y2| + |y1|
α+1

+ |y2|
1+α)(|y1| + |y2|)∥H∥E∥V ∥E .

The same method holds for the second derivative in V and z.
The estimate of the third derivative in g and z is similar to the previous computations with the following

formula:

∂g∂
3
z Iε(t, z)

=

−ε
∫∫

R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

× (y1 + y2)
(
Dε(∂z V )3

+
3
2Dε(∂z V )Dε(∂

2
z V ) +

1
4Dε(∂

3
z V )

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

− ε∂3
z Iε(t, z)

∫
R

e−|y|
2/2 y exp[−εgy +D∗

ε (V )(y, t)] dy∫
R

e−|y|2/2 exp[−εgy +D∗
ε (V )(y, t)] dy

. (4-22)
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However, to get the bound (4-17), things are a little bit different, because of the linear term of higher
order, Dε(∂

3
z H):

∂V ∂3
z Iε(g, V ) · H(t, z)

=

∫∫
R2 exp[−Q(y1, y2) − εg(y1 + y2) + 2Dε(V )(Y, t, z)]

×

(
Dε(H)

(
2Dε(∂z V )3

+ 3Dε(∂z V )Dε(∂
2
z V ) +

1
2Dε(∂

3
z V )

)
+ 3Dε(∂z H)Dε(∂z V )2

+
3
2(Dε(∂z V )Dε(∂

2
z H) +Dε(∂z H)Dε(∂

2
z V )) +

1
4Dε(∂

3
z H)

)
(Y, t, z) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy

+ ∂3
z Iε(t, z)

∫
R

e−|y|
2/2 exp[−εgy +D∗

ε (V )(y, t)]D∗
ε (H)(y, t) dy

√
π
∫

R
e−|y|2/2 exp[−εgy +D∗

ε (V )(y, t)] dy
.

We do not get an order ε from the linear part Dε(∂
3
z H), since we do not control the fourth derivative in E.

We then proceed with arguments following (4-13) in the proof of Proposition 4.3. □

Thanks to those estimates we are able to write our main result for this part, which is a precise control
of the linearization of the derivatives of Iε:

Proposition 4.5 (linearization with weight). For any ball B of R × E, there exists a constant εB that
depends only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B:

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z) = ∂zI∗

ε (t, z) +
∥(g, W )∥

ϕα(t, z)
O(ε3), (4-23)

∂2
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = ∂2

z I
∗

ε (t, z) +
∥(g, W )∥

ϕα(t, z)
O(ε3), (4-24)

∂3
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = ∂3

z I
∗

ε (t, z) +
ε2

∥ϕα∂3
z W∥∞

21−αϕα(t, z)
+

∥(g, W )∥

ϕα(t, z)
O(ε2+α), (4-25)

where the O(ε3) only depend on the ball B.

Proof. The methodology for (4-23)–(4-25) is the same. We detail for instance how to prove (4-23). One
begins by writing the following exact Taylor expansion up to the second order:

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z)

= ∂zI∗

ε (t, z) + ε2(∂g∂zIε(q∗
+ ε2ξg, V ∗

+ ε2ξW )(t, z) + ∂V ∂zIε(q∗
+ ε2ξg, V ∗

+ ε2ξW ) · W (t, z)),

with 0 < ξ < 1. The result for (4-23) is then given by the directional decay estimates of Proposition 4.4
applied to g′

= q∗
+ ε2ξg, V = V ∗

+ ε2ξW and H = W. □

Together with Proposition 3.6, we know exactly how ∂
j

z Iε behaves when ε is small:

∂( j)
z Iε(q∗

+ ε2g, V ∗
+ ε2W )(t, z) = O∗(ε2) +

∥(g, W )∥

ϕα(t, z)
O(ε3),

where j = 1, 2, and the behavior is only slightly different for j = 3.
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4C. Refined estimates of I∗
ε at z = z∗. To conclude this section dedicated to estimates of Iε, we now

show that our estimates above can be made much more precise when looking at the particular case of
the function I∗

ε evaluated at the point z∗. In particular, we will gain information about the sign of the
derivatives, that will prove crucial regarding the stability of κε. This additional precision is similar to what
was needed in the stationary case [Calvez et al. 2019, Lemma 3.1] where detailed expansions of Iε were
needed for the study of the affine part, there named γε. We will find it convenient to use the following
notations, as in [Calvez et al. 2019]:

Definition 4.6 (measure notations). We introduce the following measures:

dG∗

ε(Y, z, t) :=
G∗

ε(Y, t, z)∫∫
R2 G∗

ε(Y, t, z)dy1 dy2

=
exp[−Q(y1, y2)−εq∗(y1+y2)+2Dε(V ∗)(Y, t, z)]∫∫

R2 exp[−Q(y1, y2)−εq∗(y1+y2)+2Dε(V ∗)(Y, t, z)]dy1 dy2
, (4-26)

with Y = (y1, y2), and

d N ∗

ε (y, t) :=
N ∗

ε (y, t)∫
R

N ∗
ε ( · , t)

:=
exp

[
−

1
2 |y|

2
− εq∗y +D∗

ε (V ∗)(y, t)
]∫

R
exp

[
−

1
2 |y|2 − εq∗y +D∗

ε (V ∗)(y, t)
]

dy
. (4-27)

Proposition 4.7 (uniform control of the directional derivatives of ∂zI∗
ε ). There exist a function of time R∗

ε

such that for any ball B of E , there exists a constant ε∗ that depends only on K ∗, that satisfies for all
ε ≤ ε∗, for all H ∈ E :

∂g∂zI∗

ε (t, z∗) = ε2 R∗

ε (t) + O∗(ε3) and ∂V ∂zI∗

ε · H(t, z∗) = O∗(ε2)∥H∥E , (4-28)

where all the O∗(ε j ) depend only on K ∗ defined in Proposition 3.3 and R∗
ε is given by the formula

R∗

ε (t) := m′′(t, z∗)

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2)
2 dy1 dy2. (4-29)

So R∗
ε is uniformly bounded and there exists a constant R0 and time t0 such that R∗

ε ≥ R0 > 0 for all t ≥ t0.

The sign of R∗
ε is directly connected to the behavior of z∗ we assumed in the introduction; see (1-16).

The derivative in V admits a lower order in ε as in previous estimates; see (4-25) and (4-17) for instance.
This lower order term will be absorbed by a contraction argument, see Section 8, once we have a definitive
estimate of ∥Wε∥F ; see estimate (8-2).

Proof of Proposition 4.7. First we focus on the bound of the first equation in (4-28). Similarly to (4-18),
the explicit formula for the derivative is

∂g∂zI∗

ε (t, z∗)

:= − ε(I1 + I2)

= − ε

(∫∫
R2 exp[−Q(y1, y2) − εq∗(y1 + y2) + 2Dε(V ∗)(Y, t, z∗)](y1 + y2)Dε(∂z V ∗)(Y, t, z∗) dy1 dy2

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

− ∂zI∗

ε (t, z∗)

∫
R

e−|y|
2/2 y exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy
√

π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

)
. (4-30)
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Thanks to Proposition 4.4, we already know that |∂zI∗
ε (t, z∗)|= O∗(ε2). Moreover, we bound uniformly

the second term as follows:∣∣∣∣
∫

R
e−|y|

2/2 y exp[−εq∗y +D∗
ε (V ∗)(y, t)] dy

√
π
∫

R
e−|y|2/2 exp[−εq∗y +D∗

ε (V ∗)(y, t)] dy

∣∣∣∣≤
∫

R
exp

[
−

1
2 |y|

2
+ 2εK ∗

|y|
]
|y| dy

√
π
∫

R
exp

[
−

1
2 |y|2 − 2εK ∗|y|

]
dy

≤ O∗(1),

where K ∗ was defined in Proposition 3.3. This shows that I2 = O∗(ε2). Therefore one can focus on I1.
In order to gather information about the sign of this quantity and not only get a bound in absolute value,
we perform exact Taylor expansions of Dε(∂z V ∗). We divide I1 by I∗

ε (t, z∗), and thanks to the definitions
of (4-26) and (4-27) we get

I1

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2)Dε(∂z V ∗)(Y, t, z∗) dy1 dy2.

As usual, we make Taylor expansions: there exists 0 < ξ1, ξ2 < 1 such that

I1

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)
(
−ε 1

2(y1 + y2)
2∂2

z V ∗(t, z∗)−
1
4ε2 y2

1(y1 + y2)∂
3
z V ∗(t, z∗+εξ1 y1)

−
1
4ε2 y2

2(y1 + y2)∂
3
z V ∗(t, z∗ + εξ2 y2)

)
dy1 dy2. (4-31)

We next define R∗
ε as

ε∂2
z V ∗(t, z∗)

∫∫
R2

dG∗

ε(Y, t, z∗)
1
2(y1 + y2)

2 dy1 dy2 =: εR∗

ε (t),

with the following uniform bounds, that come from bounding by moments of a Gaussian distribution:

0 < R0 ≤ R∗

ε (t), ∀t ≥ t0.

Moreover, it is easy to see that R∗
ε is uniformly bounded. The next terms of (4-31) are of order superior

to ε2 and can be bounded uniformly by

1
4
ε2
∣∣∣∣∫∫

R2
dG∗

ε(Y, t, z∗)(y2
1(y1 + y2) + y2

2(y1 + y2))K ∗ dy1 dy2

∣∣∣∣≤ O∗(ε2).

Therefore one can rewrite (4-31) as

I1

I∗
ε (t, z∗)

= −εR∗

ε (t) + O∗(ε2).

Thanks to Proposition 3.4, we recover a similar estimate for I1:

I1 = −εR∗

ε (t) + O∗(ε2).

Finally coming back to (4-30), we have shown that

∂g∂zI∗

ε (t, z∗) = ε2 R∗

ε (t) + O∗(ε3).
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This concludes the proof of the first estimate in (4-28). Next, we tackle the proof of the estimate upon the
Fréchet derivative in (4-28), where, again, we first divide by I∗

ε (t, z∗):

∂V ∂zI∗
ε · H(t, z∗)

I∗
ε (t, z∗)

=

∫∫
R2

dG∗

ε(Y, t, z∗)(Dε(∂z V ∗)2Dε(H) +Dε(∂z H))(Y, t, z∗) dy1 dy2

−
∂zI∗

ε (t, z∗)

I∗
ε (t, z∗)

∫
R

d N ∗

ε (y, t)D∗

ε (H)(y, t) dy. (4-32)

Thanks to Propositions 3.6 and 3.4 and a uniform bound on D∗
ε (W ), we have∣∣∣∣∂zI∗

ε (t, z∗)

I∗
ε (t, z∗)

∫
R

d N ∗

ε (y, t)D∗

ε (H)(y, t) dy
∣∣∣∣≤ O∗(ε3)∥H∥E . (4-33)

For the first term of (4-32), we first make a bound based on Taylor expansions of Dε(H):

|Dε(H)(Y, t, z∗)| ≤
1
2ε2(|y1|

2
+ |y2|

2)∥H∥E .

The key element here is that since Dε is evaluated at z∗, one gains an order in ε because ∂z H(t, z∗) = 0,
by definition of E. Therefore, one gets∣∣∣∣∫∫

R2
dG∗

ε(Y, t, z∗)(Dε(∂z V ∗)2Dε(H))(Y, t, z∗) dy1 dy2

∣∣∣∣≤ O∗(ε3)∥H∥E , (4-34)

where the additional order in ε is gained through a Taylor expansion of Dε(∂z V ∗). We finally tackle the
last term of (4-32) we did not yet estimate, involving Dε(∂z H). Based only on Taylor expansions in E ,
we do not gain an order ε3 as in the previous terms, which explains our estimate of order ε2 in (4-32).
Rather, we obtain, for some 0 < ξ < 1,∫∫

R2
dG∗

ε(Y, t, z∗)Dε(∂z H)(Y, t, z∗) dy1 dy2

= ε
∂2

z H(t, z∗)

2

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2) dy1 dy2

+
ε2

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1∂3

z H(t, z∗ + εξ y1) + y2
2∂3

z H(t, z∗ + εξ y2)) dy1 dy2. (4-35)

It is straightforward, based on multiple similar computations, to deduce that the first moment of dG∗
ε is

zero at the leading order. Therefore,

ε
∂2

z H(t, z∗)

2

∫∫
R2

dG∗

ε(Y, t, z∗)(y1 + y2) dy1 dy2 = ε
∂2

z H(t, z∗)

2
O∗(ε) = O∗(ε2)∥H∥E . (4-36)

See for instance the proof of Proposition 3.4 for similar computations. In the second term of (4-35), we
also cannot do better than an order in ε2:

ε2

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1∂3

z H(t, z∗ + εξ y1) + y2
2∂3

z H(t, z∗ + εξ y2)) dy1 dy2

≤
ε2

∥H∥E

4

∫∫
R2

dG∗

ε(Y, t, z∗)(y2
1 + y2

2) dy1 dy2 = O∗(ε2)∥H∥E .

Finally, by putting together (4-33)–(4-35) and finally (4-36), the second estimate of (4-28) is proven. □
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The order ε3 of the second equation in (4-28) will be crucial in our analysis around κε, the perturbation
of the linear part qε defined in (1-22). Next, we provide an accurate linearization of ∂zIε compared to
the one provided before in Proposition 4.5 and (4-23). This is possible thanks to an evaluation at z = z∗,
and it will prove useful when tackling the perturbation of the linear part κε. This is the content of the
following lemma.

Lemma 4.8 (uniform control of the second Fréchet derivative of ∂zIε). For any ball B of R × E , there
exists a constant εB that depends only on B such that for all ε ≤ εB we have, for all (g, W ) ∈ B, that

∂zIε(q∗
+ ε2g, V ∗

+ ε2W )(t, z∗)

= ∂zI∗

ε (t, z∗) + ε2(∂g∂zI∗

ε (t, z∗)g + (∂V ∂zI∗

ε · W )(t, z∗)) + O(ε5)∥(g, W )∥. (4-37)

Proof. We write f (p) := ∂zIε(q∗
+ pg, V ∗

+ pW )(t, z). We recognize in formula (4-37) a Taylor
expansion of f . Then, to prove the estimate of (4-37) it is sufficient to bound f ′′(ε2) uniformly:

f ′′(ε2) ≤ O(ε)∥(g, W )∥.

The formula for f ′′ is very long, so for clarity we will denote by Aε(p) the numerator and by Bε(p) the
denominator of f (p), respectively, so that when we differentiate we have the structure

f ′′(p) =
A′′

ε(p)

Bε(p)
− 2

A′
ε(p)B ′

ε(p)

Bε(p)2 −
Aε(p)B ′′

ε (p)

Bε(p)2 + 2
Aε(p)B ′

ε(p)2

Bε(p)3 . (4-38)

The numerator is defined as

Aε(p) :=

∫∫
R2

exp[−Q(y1, y2) + 2Dε(V ∗
+ pW )(Y, t, z∗) − ε(q∗

+ pg)(y1 + y2)]

×Dε(∂z V ∗
+ pW )(Y, t, z∗) dy1 dy2,

while the denominator reads

Bε(p) :=

∫
R

e−|y|
2/2 exp[−ε(q∗

+ pg)y +D∗

ε (V ∗
+ pW )(y, t)] dy.

Therefore we will divide each term by I∗
ε to simplify the notations. This will make the measures dG∗

ε, d N ∗
ε ,

introduced in (4-26) and (4-27), appear. For instance,

Aε(p)

I∗
ε (t, z∗)Bε(p)

:=

∫∫
R2 dG∗

ε(Y, t, z∗) exp[−εpg(y1 + y2) + 2pDε(W )(Y, t, z∗)](Dε(∂z V ∗
+ p∂z V ∗)(Y, t, z∗)) dy1 dy2∫

R
d N ∗

ε (y, t) exp[pD∗
ε (W )(y, t) − εpgy] dy

.

We notice that any factor of the sum in (4-38) (divided by I∗
ε ) is a sum (and a product) of terms of the

form
A( j)

ε (p)B(k)
ε (p)

Bε(p)I∗
ε (t, z∗)

=
A( j)

ε (p)

I∗
ε (t, z∗)Bε(p)

B(k)
ε (p)

Bε(p)
,
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with j = 0, 1, 2, k = 1, 2 and the constraint j + k = 2. It is rather convenient to bound separately each of
those terms. For instance, we deal with the second one:

A′
ε(p)B ′

ε(p)

Bε(p)2I∗
ε (t, z∗)

=
A′

ε(p)

I∗
ε (t, z∗)Bε(p)

B ′
ε(p)

Bε(p)
. (4-39)

The first term of this product is

A′
ε(p)

I∗
ε (t, z∗)Bε(p)

:=

∫∫
R2 dG∗

ε(Y, t, z∗) exp[2pDε(W )−εgp(y1+y2)]Dε(∂zW ) dy1 dy2∫
R

d N ∗
ε (y, t) exp[2D∗

ε (W )(y, t)−εgy] dy

+

∫∫
R2 dG∗

ε(Y, t, z∗) exp[2pDε(W )−εgp(y1+y2)]2Dε(∂z V ∗
+p∂zW )(Dε(W )−εg(y1+y2)) dy1 dy2∫

R
d N ∗

ε (y, t) exp[2D∗
ε (W )(y, t)−εgy] dy

.

The numerator and denominator can be bounded by estimating naively Dε:∣∣∣∣ A′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣
≤

∫∫
R2 dG∗

ε(Y, t, z∗)exp[3ε∥(g,W )∥(|y1|+|y2|)]ε(|y1|+|y2|)∥(g,W )∥dy1 dy2∫
R

d N ∗
ε (y, t)exp[−3ε∥(g,W )∥|y|]dy

+

∫∫
R2 dG∗

ε(Y, t, z∗)exp[3ε∥(g,W )∥(|y1|+|y2|)]ε
2(|y1|+|y2|)

2(3∥(g,W )∥+2K ∗)3∥(g,W )∥dy1 dy2∫
R

d N ∗
ε (y, t)exp[−3ε∥(g,W )∥|y|]dy

.

Therefore, we only get moments of a Gaussian distribution, so the previous bound is in fact∣∣∣∣ A′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥. (4-40)

With the exact same arguments but more convoluted formulas, one shows that∣∣∣∣ A′′
ε(p)

Bε(p)I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥. (4-41)

For the quotients of B in (4-38), we lose the structure of the measures dG∗
ε and d N ∗

ε , but they are replaced
by an actual Gaussian measure exp[−y2/2]. Therefore, with the same arguments as before, we bound the
quotient by the moments of a Gaussian distribution. For instance,∣∣∣∣ B ′

ε(p)

Bε(p)

∣∣∣∣= ∣∣∣∣
∫

R
e−|y|

2/2 exp[2D∗
ε (V ∗

+ pW ) − ε(q∗
+ gp)y](2D∗

ε (W ) − εgy) dy∫
R

e−|y|2/2 exp[2D∗
ε (V ∗ + pW ) − ε(q∗ + gp)y] dy

∣∣∣∣
≤

∫
R

e−|y|
2/2 exp[3ε|y|K ∗

+ 3ε∥(g, W )∥|y|](3ε∥(g, W )∥|y|) dy∫
R

e−|y|2/2 exp[−3εK ∗|y| − 3ε∥(g, W )∥|y|] dy

≤ O(ε)∥(g, W )∥. (4-42)
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Multiplying each term of (4-41) by (4-42) and then combining them yields the desired estimate result,
given the separation of terms made in (4-38):∣∣∣∣ f ′′(p)

I∗
ε (t, z)

∣∣∣∣≤ O(ε)∥(g, W )∥.

Thanks to Proposition 3.4, Lemma 4.8 is proven. □

5. Linearized equation for κε, convergence of pε

5A. Uniform boundedness of κε. Thanks to the estimates of the previous sections, all the useful tools to
look at the perturbation κε are made available. We recall that our final goal is to show that κε is bounded
as it is the perturbation from q∗; see (1-22). We show in this section that one gets an approximated ODE
on κε with good properties when linearizing; see Proposition 5.1. It is obtained by differentiating (2-2)
and evaluating at z = z∗. This is exactly what suggested the spectral analysis of the formal linearized
operator T in the table on page 1297. Now, thanks to our previous set of estimates from Section 4, we
are able to carefully justify our linearization. Finally, the limit ODE we introduced for q∗ in (1-18) will
appear clearly when we do our analysis to balance contributions of smaller order.

To simplify expressions, we introduce the following alternative notations for all t, z ∈ R+× R:

4ε(t, z) := Wε(t, z) − 2Wε(t, z̄(t)). (5-1)

Compared to previous sections, and for the rest of this article, we will work in the space F that is well
suited to measure Wε and build the linearization results, here for κε. All our previous estimates that were
established in E remain true in F.

Proposition 5.1 (equation on κε). For any ball B of R ×F there exists a constant εB that depends only
on B such that if (κε, Wε) ∈ B is a solution of (2-2), then for all ε ≤ εB , we have that κε is a solution of
the following ODE:

−κ̇ε(t) = R∗

ε (t)κε + O∗(1)∥Wε∥F + O∗(1) + O(ε)∥(κε, Wε)∥, (5-2)

where the O(ε) depend only on B, and the R∗
ε are defined in Proposition 4.7.

Proof. As announced above, one starts by differentiating (2-2). This yields, with the notation 4ε introduced
in (5-1),

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z).

When we evaluate the expression at z = z∗, the last two terms vanish, since ∂z M(t, z∗) = ∂z4ε(t, z∗) = 0.
Therefore, the equation becomes, since 4ε(t, z∗) = 0 and M(t, z∗) = 1,

−ε2q̇∗(t) − ε2∂z∂t V ∗(t, z∗) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z∗) = ∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗). (5-3)
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We then use directly the linearization result of Lemma 4.8 that we prepared for that purpose:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ∂zI∗

ε (t, z∗) + ε2(∂g∂zI∗

ε (t, z∗)κε + (∂V ∂zI∗

ε · Wε)(t, z∗)) + O(ε5)∥(κε, Wε)∥. (5-4)

We see that for most of the terms, we previously provided a careful estimate in Section 4. First, by
Proposition 3.5,

∂zI∗

ε (t, z∗) = ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ O∗(ε4).

Plugging this into the asymptotic development of (5-4), we get the following:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ε2(m′′(z∗(t))q∗(t) −
1
2 m(3)(z∗(t))

)
+ ε2(∂g∂zI∗

ε (t, z∗)κε + ∂V ∂zI∗

ε · Wε(t, z∗)) + O∗(ε4) + O(ε5)∥(κε, Wε)∥.

Combining this with Proposition 4.7 where we got precise estimates at the point z∗, we complete the
expansion of ∂zIε:

∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗)

= ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ ε4 R∗

ε (t)κε + O∗(ε4)∥Wε∥F + O∗(ε4) + O(ε5)∥(κε, Wε)∥.

When we turn back to (5-3), we have shown at this point the following relationship:

−ε2q̇∗(t) − ε2∂z∂t V ∗(t, z∗) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z∗)

= ε2(m′′(z∗)q∗(t) −
1
2 m(3)(z∗)

)
+ ε4 R∗

ε (t)κε + O∗(ε4)∥Wε∥F + O∗(ε4) + O(ε5)∥(κε, Wε)∥. (5-5)

To get a stable equation on κε, the terms of order ε2 must cancel out. This is precisely the role played by
the dynamics of q∗ defined in (1-18). To see it, we just rewrite a term of (5-5), using ∂z V ∗(t, z∗) = 0
and Lemma 3.2:

∂z∂t V ∗(t, z∗) = m′(z∗)∂
2
z V ∗(t, z∗) = 2m′(z∗)m′′(z∗).

Therefore, we recognize that by the definition of q∗ in (1-18), the following terms cancel:

ε2(q̇∗(t) + m′′(z∗)q∗(t) −
1
2 m(3)(z∗) + 2m′′(z∗)m′(z∗)

)
= 0.

We then rewrite the second term of (5-5) of order ε4:

∂z∂t Wε(t, z∗) = m′(z∗)∂
2
z Wε(t, z∗) = O∗(1)∥Wε∥F .

Finally, we deduce from (5-5) the following relationship:

−κ̇ε(t) = R∗

ε (t)κε + O∗(1)∥Wε∥F + O∗(1) + O(ε)∥(κε, Wε)∥.

We have proven (5-2). □
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In this ODE solved by κε, each term plays a separate part. First the function R∗
ε is what guarantees the

stability of κε because it is positive for large times. The other terms come from our perturbative analysis
methodology. The term O∗(1) + O(ε)∥(κε, Wε)∥ measures the error made when linearizing to obtain
the ODE, and it ensures that it is of superior order in ε except for the part that comes from the reference
point of our linearization: O∗(1). Interestingly, there is also an error term that is not of superior order
when linearizing, O∗(1)∥Wε∥F , but what saves our contraction argument of Section 8 is that this term
only involves Wε, which we can bound independently, see Section 7.

5B. Equation on pε. We did not perturb the number pε as we did for (qε, Vε) since it can be straightfor-
wardly computed from our reference equation (2-2). Given the spectral decomposition in the table on
page 1297 in the heuristics of Section 2, it is consistent to evaluate (2-2) at z = z∗ to gain the necessary
information about pε. This yields

1 − ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4m′(z∗)κε(t) = Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗). (5-6)

Thanks to Propositions 3.3 and 4.2, and as long as κε is bounded (which we will show in Section 8),

ε2( ṗε(t) + m′(z∗(t))q∗(t)) = O(ε2).

In this last equation, the order of precision is not enough to recover the equation on p∗ when ε → 0. The
problem is that the linearization of Iε made in (4-10) is a little too rough. Coming back to Proposition 3.4,
we make the more precise estimate

I∗

ε (t, z∗) = 1 −
1
2ε2∂2

z V ∗(t, z∗) + O∗(ε4). (5-7)

The proof of this result is a direct adaptation of that of Proposition 3.4, by making Taylor expansions
up to the fourth derivative of V ∗, as made possible by the introduction of E∗; see Definition 3.1. This
involves computing the moments of the Gaussian distribution exp[−Q]:

1
√

2π

∫∫
R2

e−Q(y1,y2)(y2
1 + y2

2) dy1 dy2 =
1
2
. (5-8)

By plugging (5-7) into (5-6), and using (4-9), we find that

ṗε(t) + m′(z∗)q∗(t) =
1
2∂2

z V ∗(t, z∗) + O(ε2) = m′′(z∗) + O(ε2). (5-9)

We used (3-1) for the last equality. From (5-9), the convergence of pε towards p∗ defined by (1-19),
stated in Theorem 1.3, is straightforward.

6. Linearization results

We finally tackle the complete linearization of (2-2). A preview was given when we studied the equation
on κε, however it was local since we had beforehand evaluated at z∗(t). Here, we will provide global (in
space) results.
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6A. Linearization of Wε. A first step is to control the function 4ε, which, we recall, is a byproduct
of Wε, introduced in (5-1).

Lemma 6.1 (control of 4ε). For any ball B of F, there exists a constant εB that depends only on B such
that for all ε ≤ εB , if Wε ∈ B, then 4ε defined in (5-1) satisfies

exp[ε24ε(t, z)] = 1 + ε24ε(t, z) + O(ε4)∥Wε∥F ,

where O(ε4) depends only on the ball B.

Proof. By the choice of the norm in F and in the setting of Wε ∈ B we have the following uniform control
for all t, z:

|4ε(t, z)| ≤ ∥Wε∥F .

Then, by performing an exact Taylor expansion, there exists 0 < ξ < 1 such that

exp[ε24ε(t, z)] = 1 + ε24ε(t, z) +
1
2ε44ε(t, z)2 exp[ε2ξ4ε(t, z)].

To conclude we uniformly bound the rest for ε2
≤ 1/∥Wε∥F :∣∣ 1

2ε44ε(t, z)2 exp[ε2ξ4ε(t, z)]
∣∣≤ 1

2ε4
∥Wε∥

2
F . □

This first result is prototypical of the tools we will employ to linearize the problem (2-2) solved
by (κε, Wε). We now write the linearized problem satisfied by Wε.

Proposition 6.2 (linearization for Wε). For any ball B of R ×F, there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the estimate

−ε2∂t Wε(t, z) = M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥), (6-1)

where O(ε) depends only on B.

Proof. One starts from (2-2):

M(t, z)−ε2( ṗε(t)+m′(z∗)q∗(t)+q̇∗(t)(z−z∗)+∂t V ∗(t, z))−ε4(κ̇ε(t)(z−z∗)+m′(z∗)κε(t)+∂t Wε(t, z))

= M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]. (6-2)

Thanks to Lemma 6.1 and Proposition 4.2, where we linearized Iε, and the term in 4ε, one can expand
the right-hand side as follows:

M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

= M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z) + ε2 M(t, z)4ε(t, z) + M(t, z)(O∗(ε2) + O(ε3)∥(κε, Wε)∥). (6-3)

The left-hand side of (6-2) is a little bit more involved. We will use our previous work on (pε, κε). First,
thanks to (5-6) which states the relationship satisfied by pε, we have

−ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4κεm′(z∗) = 1 − Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z∗).
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We then use Proposition 4.2 involving the linearization of Iε to get that

−ε2( ṗε(t) + m′(z∗)q∗(t)) − ε4κεm′(z∗) = O∗(ε2) + O(ε3)∥(κε, Wε)∥. (6-4)

From Proposition 3.3, we have the following uniform bound:

|∂t V ∗(t, z)| ≤ K ∗. (6-5)

Thanks to our preliminary work on κε, and more precisely (5-5), we know that

q̇∗(t) + ε2κ̇ε(t) = O∗(1) + O(ε)∥(κε, Wε)∥.

Therefore, the affine terms are comparable to M, since M is a superlinear function that admits a uniform
lower bound by hypothesis; see (1-13):∣∣∣∣(q̇∗(t) + ε2κ̇ε(t))(z − z∗)

M(t, z)

∣∣∣∣= O∗(1) + O(ε)∥(κε, Wε)∥. (6-6)

When adding up the estimates of (6-5) and (6-6), we have shown that

−ε2( ṗε(t)+m′(z∗)q∗(t)+ q̇∗(t)(z − z∗)+ ∂t V ∗(t, z))− ε4(κ̇ε(t)(z − z∗)+m′(z∗(t))κε(t)+ ∂t Wε(t, z))

= M(t, z)(O∗(ε2) + O(ε3))∥(κε, Wε)∥ − ε4∂t Wε(t, z). (6-7)

We have divided by M the relationships (6-4) and (6-5), which is possible thanks to the uniform lower
bound of M.

Finally, when putting together (6-6) and (6-3) in (6-2), the terms M cancel each other, and we find
(6-1) by factoring out ε2. □

One can notice the similarity between what we just proved rigorously and the heuristics made in (2-1).
From this result one can straightforwardly deduce an approximated linear equation satisfied by 4ε.

Corollary 6.3 (linearization in 4ε(t, z)). For any ball B of R×F , there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B satisfies the estimate

ε2∂t4ε(t, z) = M(t, z)
(

2
M(t, z̄(t))

M(t, z)
4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
, (6-8)

where O(ε) depends only on B.

Remark 6.4. • The reader may notice that the computation of ∂t4ε yields a parasite term ε2 ż∗∂z4ε(t, z̄)
not dealt with by (6-1). However, this is a lower order term since it satisfies

ε2 ż∗(t)∂z4ε(t, z) = O(ε2)∥(κε, Wε)∥. (6-9)

• Under the same assumption as Corollary 6.3, Wε also satisfies the following linear equation:

−ε2∂t Wε(t, z) = M(t, z)(4ε(t, z) + O(1)).

However, in Section 7, we will study the stability of the solution of the linear problem. We will see that
one needs precise estimates about the structure of the nonlinear negligible terms, which explains the more
detailed estimate (6-1) and is the purpose of all our previous sections.
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6B. Linearization of ∂zWε. The computations for ∂zWε are slightly more complex because of the
differentiation of the triple product in the right-hand side (2-2). However, the key point is that when
we linearize Iε(q∗

+ ε2κε, V ∗
+ ε2κε) the derivatives of Iε are negligible in ε. Therefore the intuitive

linearized problem for ∂zWε, given by the derivation of the linearized equation for Wε, actually holds
true. This is the content of the following proposition:

Proposition 6.5 (linearization in ∂zWε). For any ball B of R ×F, there exists a constant εB that depends
only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B solution of (2-2) satisfies the following estimate:

−ε2∂t∂zWε(t, z) = M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥), (6-10)

where O(ε) depends only on B.

Proof. One starts by differentiating (2-2) as in the proof of Proposition 5.1 to highlight κε. This yields

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

+ ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z).

However, contrary to the case where we were studying κ̇ε, we will not evaluate at z∗. We introduce the
notations Ri corresponding to each of the three terms of the right-hand side of the previous equation.
We will linearize each Ri starting with R1, which we estimate thanks to Proposition 4.5 and Lemma 6.1,
paired with the estimate of Proposition 3.6:

R1 := ∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]

= M(t, z)
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore, the final contribution of R1 is

R1 = M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-11)

Next, one looks at R2. Thanks to Proposition 4.2,

R2 := ∂z M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]

= ∂z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂z M(t, z) + ε2∂z M(t, z)4ε(t, z) + ∂z M(t, z)(O∗(ε2) + O(ε3)∥(κε, Wε)∥). (6-12)
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We finally tackle R3 with the same techniques, using Proposition 4.2 and Lemma 6.1:

R3 := ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z)

= ε2 M(t, z)∂z4ε(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ε2 M(t, z) + M(t, z)
O(ε4)∥(κε, Wε)∥

ϕα(t, z)
. (6-13)

In that last estimate, we chose to write O∗(ε4) as a regular O(ε4). Coming back to our initial problem,
when we assemble (6-11)–(6-13), we obtain

∂z M(t, z) − ε2q̇∗(t) − ε2∂z∂t V ∗(t, z) − ε4κ̇ε(t) − ε4∂z∂t Wε(t, z)

= ∂z M(t, z) + ε2∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ ε2 M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-14)

We now deal with the left-hand side of (6-14). First, the terms ∂z M(t, z) on each side cancel. Next, using
the ODE that defines q∗ in (1-18), our linearized equation on κ̇ε stated in (5-2) and finally our bound
of ∂t V ∗ made in Proposition 3.3, we find that

−ε2(q̇∗(t) + ∂z∂t V ∗(t, z) + ε2κ̇ε(t)) = O∗(ε2) + O(ε3)∥(κε, Wε)∥. (6-15)

Finally, if we divide by M , the following estimate holds true since α < 1:∣∣∣∣O∗(ε2) + O(ε3)∥(κε, Wε)∥

M(t, z)

∣∣∣∣≤ O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)
.

Plugging this into (6-14), and dividing each side by ε2, we therefore recover the relationship we wanted
to prove:

−ε2∂t∂zWε(t, z) = M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). □

We deduce straightforwardly a linearization result upon the quantity ∂z4ε.

Corollary 6.6 (linearization for ∂z4ε(t, z)). For any ball B of R ×F, there exists a constant εB that
depends only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the
following estimate:

ε2∂t∂z4ε(t, z) = M(t, z)
(

M(t, z̄)
M(t, z)

∂z4ε(t, z̄) − ∂z4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ∂z M(t, z)

(
∂z M(t, z̄)
∂z M(t, z)

4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
,

where the O(ε) depends only on B.
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6C. Linearization of ∂2
z Wε(t, z). We now tackle the linearized equation for ∂2

z Wε.

Proposition 6.7 (linearization for ∂2
z Wε). For any ball B of R×F, there exists a constant εB that depends

only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following
estimate:

−ε2∂2
z ∂t Wε(t, t)

= ∂2
z M(t, z)(4ε(t, z)+ O∗(1)+ O(ε)∥(κε, Wε)∥)+2∂z M(t, z)

(
∂z4ε(t, z)+

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
, (6-16)

where the O(ε) depend only on B.

In the next sections, we choose to write the second derivative ∂2
z 4ε(t, z) in full,

∂2
z Wε(t, z) −

1
2∂2

z Wε(t, z̄),

as the factor 1
2 will be the key to ensure the uniform boundedness of ∂2

z Wε; see Section 7.

Proof. We start by differentiating (2-2) twice. This yields

∂2
z M(t, z) − ε2∂2

z ∂t V ∗(t, z) − ε4∂2
z ∂t Wε(t, z) = R1 + R2 + R3 + R4 + R5 + R6,

with the following notations:

R1 := ∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)],

R2 := 2∂z M(t, z)∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)],

R3 := 2M(t, z)ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R4 := Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)],

R5 := 2ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

and finally,

R6 := ε2 M(t, z)Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)).

We will estimate each term separately, starting with R1, for which we apply Proposition 4.5, Lemma 6.1
and Proposition 3.6:

R1 = M(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore, the final estimate of R1 is

R1 = M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-17)
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Next, for the term R2 we use Propositions 4.5 and 3.6 and find that

R2 = 2
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
∂z M(t, z)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 2∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression as

R2 = ∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-18)

The term R3 will not contribute at the order ε2, because of Proposition 3.6, and |∂z4ε(t, z)| ≤ ∥Wε∥F :

R3 = 2ε2 M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

=
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
M(t, z). (6-19)

For R4, the zeroth order terms are more entangled. With Proposition 4.2 and Lemma 6.1 we have

R4 = ∂2
z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). (6-20)

We see in R4 the appearance of the term ε2∂2
z M(t, z)4ε(t, z) which is also in (6-16), and so it is a good

opportunity to do at first a summary of the computations when adding (6-17)–(6-20):

R1 + R2 + R3 + R4

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ ε2 M(t, z)
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
+ ε2∂z M(t, z)

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (6-21)

We continue the estimations by looking at R5, and thanks to Proposition 4.2 we have

R5 = 2ε2∂z M(t, z)∂z4ε(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 2ε2∂z M(t, z)∂z4ε(t, z) + ε2∂z M(t, z)
O∗(ε) + O(ε2)∥(κε, Wε)∥

ϕα(t, z)
.

(6-22)
Finally, we tackle the last term, R6, with Proposition 4.2:

R6 = ε2 M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

= ε2 M(t, z)∂2
z 4ε(t, z) + ε2 M(t, z)

O(ε2)∥(κε, Wε)∥

ϕα(t, z)
. (6-23)
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Thanks to those last two estimates, (6-22) and (6-23), that we add with the previous result of (6-21), we
obtain for the full equation

∂2
z M(t, z) − ε2∂2

z ∂t V ∗(t, z) − ε4∂2
z ∂t Wε(t, z)

= ∂2
z M(t, z) + ε2∂2

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 2ε2∂z M(t, z)
(
∂z4ε(t, z) +

O∗(1)+ O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2 M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
.

Thanks to Proposition 3.3 we know that ∥ε2∂2
z ∂t V ∗(t, z)∥∞ ≤ O∗(ε2). Then,

−ε4∂2
z ∂t Wε(t, t)

= ε2∂2
z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 2ε2∂z M(t, z)
(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2 M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
,

which proves (6-16) after dividing by ε2. □

6D. Linearization of ∂3
z Wε(t, z). Our last linearized equation is the one for ∂3

z Wε, and we proceed with
the same technique, with slightly more complex formulas.

Proposition 6.8 (linearization in ∂3
z Wε). For any ball B of R ×F, there exists a constant εB that depends

only on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following
estimate:

−ε2∂t∂
3
z Wε(t, z) = ∂3

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂2
z M(t, z)

(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ 3∂z M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ M(t, z)

(
∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
, (6-24)

where the O(ε) depend only on B.

Proof of Proposition 6.7. We start, as ever, by differentiating (2-2), but now three times. This yields, for
the right-hand side, ten terms:

∂3
z M(t, z)−ε2∂3

z ∂t V ∗(t, z)−ε4∂3
z ∂t Wε(t, t) = R1+R2+R3+R4+R5+R6+R7+R8+R9+R10, (6-25)
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with the following notations:

R1 := ∂3
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)],

R2 := 3∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)],

R3 := 3ε2∂2
z Iε(q∗

+ ε2κε, V ∗
+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R4 := 6ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R5 := 3∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)],

and, moreover,

R6 := 3ε2∂zIε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)),

R7 := 3ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂z M(t, z) exp[ε24ε(t, z)](ε2∂z4ε(t, z)2
+ ∂2

z 4ε(t, z)),

R8 := 3ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂2
z M(t, z) exp[ε24ε(t, z)]∂z4ε(t, z),

R9 := Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)∂3
z M(t, z) exp[ε24ε(t, z)].

The last term corresponds to the third derivative of the exponential term exp[ε24ε]:

R10 := ε2Iε(q∗
+ ε2κε, V ∗

+ ε2Wε)(t, z)M(t, z) exp[ε24ε(t, z)]

× (ε4∂z4ε(t, z)3
+ 3ε2∂z4ε(t, z)∂2

z 4ε(t, z) + ∂3
z 4ε(t, z)).

We first tackle R1. We use the linearization of the third derivative of Iε in Proposition 4.5 to find that

R1 = M(t, z)
(
∂3

z I
∗

ε (t, z)+
ε2

∥ϕα∂3
z Wε∥∞

21−αϕα(t, z)
+

O(ε2+α)∥(κε, Wε)∥

ϕα(t, z)

)
(1+ε24ε(t, z)+O(ε4)∥(κε, Wε)∥)

= ε2 M(t, z)
(
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1)+O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
(1+ε24ε(t, z)+O(ε4)∥(κε, Wε)∥).

We end up with the estimate

R1 = ε2 M(t, z)
(

∥∂3
z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-26)

For R2, with Proposition 4.5 we have

R2 = 3∂z M(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3∂z M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression to

R2 = ε2∂z M(t, z)
(

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-27)
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For R3, we get

R3 = 3ε2 M(t, z)∂z4ε(t, z)
(
∂2

z I
∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3ε2 M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify roughly this expression to

R3 =
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
M(t, z). (6-28)

For R4 one has very similarly

R4 = 6ε2∂z M(t, z)∂z4ε(t, z)
(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 6ε2∂z M(t, z)∂z4ε(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

We can simplify this expression to

R4 =
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
∂z M(t, z). (6-29)

The expression for R5 still follows the same road:

R5 = 3∂2
z M(t, z)

(
∂zI∗

ε (t, z) +
O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= 3∂2
z M(t, z)

(
O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

This last expression can be shortened to

R5 = 3ε2∂2
z M(t, z)

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (6-30)

For R6, the expression is a little more involved due to the second derivative of the exponential:

R6 = ε2 M(t, z)
(

O∗(ε2) + O(ε3)∥(κε, Wε)∥

ϕα(t, z)

)
(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

.

We eventually shorten R6 to

R6 = 3M(t, z)
O(ε3)∥(κε, Wε)∥

ϕα(t, z)
. (6-31)
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If we bring together all of our previous estimates in (6-26)–(6-31), we obtain that

R1 + R2 + R3 + R4 + R5 + R6

= ε2 M(t, z)
(

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2∂z M(t, z)

(
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ ε2∂2

z M(t, z)
(

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+

ε2
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
M(t, z). (6-32)

In that first round of estimates, we have shown that all the contributions of the terms with the derivatives
of Iε do not appear when linearizing because they are of high order in ε. Therefore, the most meaningful
contribution will now appear, because Iε now contributes mainly as 1 and no longer vanishes.

We start with R7:

R7 = 3ε2∂z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂2

z 4ε(t, z)
)

,

which can be rewritten as

R7 = 3ε2∂z M(t, z)(1 + O∗(ε) + O(ε2)∥(κε, Wε)∥)

(
∂2

z 4ε(t, z) +
O(ε2)∥(κε, Wε)∥

ϕα(t, z)

)
.

Finally, for R7,

R7 = 3ε2∂z M(t, z)∂2
z 4ε(t, z) + ∂z M(t, z)

(
O∗(ε3) + O(ε4)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-33)

For R8, the following estimates hold true:

R8 = 3ε2∂2
z M(t, z)∂z4ε(t, z)(1 + O∗(ε) + O(ε2)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥).

Therefore,

R8 = 3ε2∂2
z M(t, z)∂z4ε(t, z) + ∂2

z M(t, z)
(

O∗(ε3) + O(ε4)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-34)

For the last two terms, the derivatives up to the third order appear. The simplest is given by R9:

R9 = ∂3
z M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

= ∂3
z M(t, z) + ε2∂3

z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥). (6-35)

At last, for the term R10, we have

R10 = ε2 M(t, z)(1 + O∗(ε2) + O(ε3)∥(κε, Wε)∥)(1 + ε24ε(t, z) + O(ε4)∥(κε, Wε)∥)

×

(
O(ε2)∥(κε, Wε)∥

ϕα(t, z)
+ ∂3

z 4ε(t, z)
)

. (6-36)

This is shortened to

R10 = ε2 M(t, z)∂3
z 4ε(t, z) + ε2 M(t, z)

O(ε2)∥(κε, Wε)∥

ϕα(t, z)
. (6-37)
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We now add every estimate, starting from (6-32) and including (6-33)–(6-37) to obtain

10∑
j=1

R j = ∂3
z M(t, z) + ε2∂3

z M(t, z)(4ε(t, z) + O∗(ε2) + O(ε3)∥(κε, Wε)∥)

+ 3ε2∂2
z M(t, z)

(
∂z4ε(t, z) +

O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)
+ 3ε2∂z M(t, z)

(
∂2

z 4ε(t, z) +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

)

+ ε2 M(t, z)
(
∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−αϕα(t, z)
+

O∗(1) + O(εα)∥(κε, Wε)∥

ϕα(t, z)

)
. (6-38)

To conclude the proof, we deal with the left-hand side of (6-25) as in the linearization of the second
derivative, noticing that the terms ∂3

z M cancel on each side. □

7. Stability of the linearized equations

Building upon the series of linear approximations, we can study the stability of Wε in the space F. The
first result is to control the different terms of F in the norm ∥ · ∥F ; see Definition 1.2. The weight function
introduced in the definition of E is meant to control the behavior at infinity.

Theorem 7.1 (stability analysis). For any ball B of R ×F, there exists a constant εB that depends only
on B such that for all ε ≤ εB , any pair (κε, Wε) ∈ B, a solution of (2-2), satisfies the following bounds:

∥4ε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥∂zWε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂z4ε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂2
z Wε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂3
z Wε∥∞ ≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥Wε∥F ,

where O∗

0 (1) = max(O∗(1), O(1)∥Wε(0, · )∥F ) and k(α) < 1 is a uniform constant.

The proof of this theorem is quite intricate and will be divided into several subsections. The plan is as
follows:

• First, we focus on a fixed ball around z∗(t). The first step is to get bounds only on a small time interval
on this ball, and the second step is to propagate this bound uniformly in time, locally in space.

• Next, we propagate this bound on the whole space by successively dividing it into growing balls Bn

and dyadic rings Dn centered around z∗; see the definitions in (7-2) and (7-3).

The main arguments are the maximum principle coupled with a suitable division of the space that accounts
for the nonlocal nature of the infinitesimal operator. The purpose of this dyadic decomposition in rings is
to obtain a decay of the norm with respect to the radius of the ring.
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7A. Division of the space into a ball surrounded by growing balls and dyadic rings. Let us first consider
a time T∗. Then for all times t and s such that 0 ≤ t, s ≤ T∗, the inequality

|z∗(t) − z∗(s)| ≤ sup
s≥0

|m′(z∗(s))|T∗ := r∗

holds true, and the supremum is finite because z∗ lives in a bounded domain uniquely determined by m
and z∗(0); see (1-5).

We slightly expand this ball by a constant r0 to be defined later, and define the ball

B0 := {z : |z − z∗(0)| ≤ r0 + r∗}.

Our intention behind this choice is that the ball B0 satisfies the following property:

∀t ≤ T∗, ∀z ∈ B0, |z − z̄(t)| =
1
2 |z − z∗(t)| =

1
2 |z − z∗(0) + z∗(0) − z∗(t)| ≤

1
2r0 + r∗. (7-1)

We recall that z̄(t) :=
1
2(z + z∗(t)). We will split the rest of the space around B0 into successive balls. The

first ball is defined as B1 = {z : |z − z∗(0)| ≤ 2r0 + r∗}. It contains B0, and more importantly, it satisfies
for every t ≤ T∗ the following identity on the middle point:

|z̄(t) − z∗(0)| =
∣∣ 1

2(z + z∗(t)) − z∗(0)
∣∣≤ ∣∣1

2(z − z∗(0))
∣∣+ ∣∣1

2(z∗(0) − z∗(t))
∣∣≤ r0 + r∗.

This shows that for any z ∈ B1 and time t ≤ T∗, the corresponding middle point z̄(t) lies in B0. More
generally, the following lemma holds true if we define, for n ≥ 2,

Bn := {z : |z − z∗(0)| ≤ 2nr0 + r∗}. (7-2)

Lemma 7.2 (middle point property). For every time 0 ≤ t ≤ T∗,

∀n ≥ 1, ∀z ∈ Bn, z̄(t) ∈ Bn−1.

The proof will also feature prominently the dyadic rings Dn , defined as

Dn := {2n−1r0 + r∗ ≤ |z − z∗(0)| ≤ 2nr0 + r∗}, (7-3)

with the convention that D0 = B0. Note that Dn (a subset of Bn) is the set such that Bn−1 ∪ Dn = Bn; see
Figure 2. On the rings, we will need the following notations:

an := sup
(t,z)∈R+×Dn

∣∣∣∣M(t, z̄)
M(t, z)

∣∣∣∣, bn := sup
(t,z)∈R+×Dn

∣∣∣∣∂z M(t, z̄)
∂z M(t, z)

∣∣∣∣. (7-4)

From the asymptotic hypothesis made in (1-15) on the quotient of M, the sequence an is bounded and
satisfies an → a < 1

2 as n → ∞. The sequence bn is uniformly bounded.

Notations for this section. We will denote by ∥ · ∥
n
∞

the L∞ norm on R+× Bn:

for n ≥ 0, ∥ · ∥
n
∞

:= sup
(t,z)∈R+×Bn

| · |. (7-5)
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B0

z*
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B2

D1

D2
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B1

B2

D1

D2

Figure 2. The division of the space into successive dyadic balls and rings.

7B. Local bounds on B0. The first step of the proof of Theorem 7.1 consists in getting uniform bounds
(in time) on the ball B0. The estimates on the third derivative are dealt with slightly differently, and are
thus delayed to Section 7F.

Proposition 7.3 (local bounds). For a convenient choice of T ∗ and r0 introduced above, and made explicit
in (7-7), there exists a constant εB that depends only on B, such that with the conditions of Theorem 7.1,
Wε satisfies, for ε ≤ εB :

∥4ε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥∂zWε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂z4ε∥
0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

∥ϕα∂2
z Wε∥

0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

where O∗

0 (1) = max(O∗(1), O∗(1)∥Wε(0, · )∥F ).

To prove this local bound, i.e., in the ball B0, one must start with the higher order derivative to
build a contraction argument. Estimates of the lower order derivatives are then successively deduced
by integration. Clearly, our argument for the third derivative is more technical because it involves a
lot of terms through the linearized approximation made in Proposition 6.8. Therefore, for reasons of
clarity, third derivatives are left out of Proposition 7.3, we will deal with them, locally and on the balls, in
Proposition 7.7. We present here our argument on the simpler derivatives up to order two, and we refer to
Section 7F for the generalization of the method to the third derivative. Interestingly, to prove the nonlocal
estimates on the balls, we will proceed in the reverse way by first dealing with the lower order derivatives.
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Proof of Proposition 7.3. By the derivation of the linearized equation in Proposition 6.7, Wε satisfies the
following, see (5-1):

ε2∂t∂
2
z Wε(t, z) = −∂2

z M(t, z)(Wε(t, z) − 2Wε(t, z̄) + O∗(1) + O(ε)∥(κε, Wε)∥)

− 2∂z M(t, z)(∂zWε(t, z) − ∂zWε(t, z̄) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
(1

2∂2
z Wε(t, z̄) − ∂2

z Wε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

We will use the maximum principle on the ball B0. The key point is that on this ball, all other factors
are controlled by ∥∂2

z Wε∥∞. To compare all those terms with ∂2
z Wε, we perform Taylor expansions with

respect to the space variable. First, thanks to (7-1), for any z ∈ B0 we write

∂zWε(t, z̄) − ∂zWε(t, z) ≤

(
r0

2
+ r∗

)
∥∂2

z Wε(t, · )∥L∞(B0).

Similarly, there exists ξ ∈ (z, z̄) and ξ ′
∈ (z∗, z̄) such that

4ε(t, z) = Wε(t, z) − 2Wε(t, z̄) + Wε(t, z∗)

=

(
z − z∗

2

)
∂zW (t, z̄) +

1
2

(z − z∗)
2

4
∂2

z W (t, ξ)−

(
z − z∗

2

)
∂zW (z̄) +

1
2

(z − z∗)
2

4
∂2

z W (ξ ′)

≤
1
4

(
r0

2
+ r∗

)2

∥∂2
z Wε(t, · )∥L∞(B0). (7-6)

Moreover, by the hypothesis made in (1-14) on M, for j = 1, 2,

sup
(t,z)∈R+×B0

∣∣∣∣∂( j)
z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1).

Thanks to those a priori bounds, when we evaluate (6-16) at the maximum point of ∂2
z Wε on B0, we get

ε2∂t [∥∂
2
z Wε(t, · )∥L∞(B0)]

≤ M(t, z)
(

1
2∥∂2

z Wε(t, · )∥L∞(B0) − ∥∂2
z Wε(t, · )∥L∞(B0)

+ O∗(1)
( 1

4

( 1
2r0 + r∗

)2
+

1
2r0 + r∗

)
∥∂2

z Wε(t, · )∥L∞(B0) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

The crucial step is that we choose T ∗ and r∗ so small, so that

O∗(1)
( 1

4

( 1
2r0 + r∗

)2
+

1
2r0 + r∗

)
≤

1
4 . (7-7)

The consequence is that

ε2∂t [∥∂
2
z Wε(t, · )∥L∞(B0)] ≤ M(t, z)

(
−

1
4∥∂2

z Wε(t, · )∥L∞(B0) + O∗(1) + O(ε)∥(κε, Wε)∥
)
.

The function M(t, z) admits a lower bound. Therefore, we can apply the maximum principle, on the
ball B0, and get

∥∂2
z Wε∥L∞([0,T ∗]×B0) ≤ max(O∗(1) + O(ε)∥(κε, Wε)∥, ∥∂

2
z Wε(0, · )∥L∞(B0)).
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We now detail how to propagate this bound uniformly in time. One can renew every previous estimate on
each interval Ik := [kT∗, (k + 1)T∗]. By going over the same steps, we notice that the only argument that
changes for different k is the center of the ball B0 around z∗, but interestingly not its radius; see (7-7).
Every other estimate is the same and is independent of k. Therefore, since the condition (7-7) is uniform
in time (O∗(1) does not depend on time), once the radius is chosen small enough depending only on K ∗,
see (7-7), we can repeat recursively the estimates on each interval Ik . Considering all k ∈ N, we have
therefore proven that

∥∂2
z Wε∥

0
∞

≤ max(O∗(1) + O(ε)∥(κε, Wε)∥, ∥∂
2
z Wε(0, · )∥L∞(B0)) ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-8)

We will use this estimate as the starting point in order to prove the rest of Proposition 7.3. First, notice
that adding the weight function ϕα is straightforward, since it is uniformly bounded on B0:

∥ϕα∂2
z Wε∥

0
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥.

Next, taking advantage of the fact that both Wε and ∂zWε vanish at z∗, we write

|∂zWε(t, z)| =

∣∣∣∣∫ z

z∗(t)
∂2

z Wε(t, z′) dz′

∣∣∣∣≤ (r0 + 2r∗)∥∂
2
z Wε∥

0
∞

.

As a consequence, using again the expansion of (7-6),

|4ε(t, z)| = |2Wε(t, z̄(t)) − Wε(t, z)| ≤
1
4

( 1
2r0 + r∗

)2
∥∂2

z Wε∥
0
∞

.

Similarly, we get a uniform bound on ∂z4ε. Combining those estimates with the first estimate in (7-8),
which comes from the maximum principle, the proof of Proposition 7.3 is concluded. □

7C. Bound on the balls: 4ε. We will now propagate those bounds beyond the small ball. It is very
important to keep the level of precision of O∗(1) + O(ε)∥(κε, Wε)∥, to which we will add some decay
property due to the specific shape of the rings Dn .

Proposition 7.4 (in the balls, 4ε). There exists a constant εB that depends only on B such that with the
conditions of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥4ε∥
n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥, (7-9)

for all n ≥ 1.

Proof. The starting point of the analysis is the linearized equation given by Corollary 6.3. For t ∈ R+,
n ≥ 1, take z in the ball Bn defined previously. We know that

ε2∂t4ε(t, z) = M(t, z)
(

2
M(t, z̄)
M(t, z)

4ε(t, z̄) − 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
.

One can multiply by sign(4ε) this equality to bound the absolute value; it is important to keep the minus
sign on the right-hand side. We get

ε2∂t |4ε(t, z)| ≤ M(t, z)
(

2
M(t, z̄)
M(t, z)

|4ε(t, z̄)| − |4ε(t, z)| + O∗(1) + O(ε)∥(κε, Wε)∥

)
.
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Then, from Lemma 7.2, we know that the middle point z̄ is in the smaller ball Bn−1, and so we have the
following estimate:

ε2∂t |4ε(t, z)| ≤ M(t, z)
(

2
M(t, z̄)
M(t, z)

∥4ε∥
n−1
∞

− 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥

)
.

To obtain precise bounds from this inequality, we shall discuss whether the maximum point of 4ε on
the ball Dn is reached inside the ring Dn−1, defined in (7-3), or not. If it is the case, we obtain a sharper
estimate than if it is not the case.

• Suppose that the maximum point that reaches ∥4ε∥
n
∞

belongs to the ring Dn . We can then control the
quotient of M by the sequence an defined in (7-4). Moreover, M admits a uniform lower bound by (1-13),
thus, we can apply the maximum principle to get

∥4ε∥
n
∞

≤ max(2an∥4ε∥
n−1
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥, ∥4ε(0, · )∥L∞(Bn)). (7-10)

We first notice that for all n ∈ N,

∥4ε(0, · )∥L∞(Bn) ≤ O∗

0 (1).

Therefore, from (7-10),

∥4ε∥
n
∞

≤ 2an∥4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-11)

Here lies the motivation behind the introduction of the notation O∗

0 (1). It allows us to take into account
the initial data and to make recursive estimates that were a priori not possible with (7-10).

• Before going further, we now assume that the maximum point that reaches ∥4ε∥
n
∞

is outside the ring Dn ,
in Bn \ Dn = Bn−1. In that case, the estimate of (7-4) is not helpful, as we would need to define ãn to be
the supremum over Bn , but then this sequence would not give a contraction factor as in (7-10). Therefore,
we simply write for this case

∥4ε∥
n
∞

≤ ∥4ε∥
n−1
∞

. (7-12)

• The combination of (7-11) and (7-12) yields

∥4ε∥
n
∞

≤ max(2an∥4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥4ε∥
n−1
∞

). (7-13)

This inequality guarantees that the sequence (∥4ε∥
n
∞

)n is uniformly bounded. Heuristically, on the
right-hand side of (7-13), the geometric part of the maximum satisfies 2an → 2a < 1 when n → ∞,
thanks to (1-15), therefore it ensures a contraction, while the other part of the maximum yields at worst a
bound by the term n = 0.

We detail more rigorously the steps as it will serve as a model for future proofs. We assume without
loss of generality that 2an < θ for all n ∈ N, with, for instance the factor θ := a +

1
2 , such that 2a < θ < 1.

We know this is true, but for a finite number of terms, by (7-4). For this handful of terms, we do not
need a contraction argument, since the bound (7-9) follows from a finite number of iterations of (7-13).
Let fn be the function fn(ξ) = max(ξ, 2anξ +C), and a sequence ξn be such that ξn+1 ≤ fn(ξn). We will
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then show that for all n ∈ N,

ξn ≤ max
(
ξ0,

C
1 − θ

)
. (7-14)

The proof is done by induction, the initial step is obvious. If we now assume that the inequality holds
true for a certain n ∈ N, we get

ξn+1 ≤ fn(ξn) ≤ max(ξn, 2anξn + C).

If the previous max is ξn , then we immediately deduce by the induction hypothesis the following:

ξn+1 ≤ ξn ≤ max
(
ξ0,

C
1 − θ

)
.

Otherwise,

ξn+1 ≤ 2an max
(
ξ0,

C
1 − θ

)
+ C.

We once again discuss where the maximum point is reached. If it is ξ0, then we end up with

ξn+1 ≤ 2anξ0 + C ≤ (2an − θ)ξ0 + ξ0 ≤ ξ0.

Similarly, if it is not ξ0,

ξn+1 ≤
2anC
1 − θ

+ C =
(2an − θ)C + C

1 − θ
≤

C
1 − θ

.

Therefore, we have shown that in all cases,

ξn+1 ≤ max
(
ξ0,

C
1 − θ

)
,

which proves (7-14). We conclude, given the bound (7-13), that

∥4ε∥
n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − θ
, ∥4ε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

All the remaining proofs of this section will follow this blueprint.

7D. Bound on the balls: ∂z4ε. We now state a similar result for ∂z4ε. We will see the appearance of
the weight function ϕα in the estimates. It slightly worsens the expressions but the strategy deployed to
prove Proposition 7.4 will still works.

Proposition 7.5 (in the balls, ∂z4ε). There exists a constant εB that depends only on B such that upon
the condition of Theorem 7.1, Wε satisfies for ε ≤ εB

∥ϕα∂z4ε∥
n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

for n ≥ 1.
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Proof. The proof is similar to the bound on 4ε, but we have to take the weight function into account. We
start with the linear equation satisfied by ∂t∂z4ε in Corollary 6.6. It yields, for z ∈ Bn and t ∈ R+,

ε2∂t |∂z4ε(t, z)|

≤ M(t, z)

(
M(t, z̄)
M(t, z)

|∂z4ε(t, z̄)| − |∂z4ε(t, z)| +
O∗(1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)

+
O∗(1)

ϕα(t, z)

(
∂z M(t, z̄)
∂z M(t, z)

∥4ε∥
n−1
∞

+ ∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

))
. (7-15)

In the second factor, thanks to (1-14), we used that

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1).

To take into account the weight function, we make the following computation:

∂t [ϕα∂z4ε](t, z) = ϕα(t, z)∂t∂z4ε(t, z) + ∂z4ε(t, z)∂tϕα(t, z).

First,

∂z4ε(t, z)∂tϕα(t, z) = α∂z4ε(t, z)
m′(z∗) sign(z − z∗)

(1 + |z − z∗|)1−α
= O∗(1)∂z4ε(t, z), (7-16)

and therefore,

ε2∂z4ε(t, z)∂tϕα(t, z) = O∗(ε2)∥(κε, Wε)∥. (7-17)

By multiplying (7-15) by ϕα and taking into account (7-17), we deduce that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂z4ε(t, z)| +

M(t, z̄)
M(t, z)

ϕα(t, z)|∂z4ε(t, z̄)| + O∗(1) + O(ε)∥(κε, Wε)∥

+ O∗(1)

(
∂z M(t, z̄)
∂z M(t, z)

∥4ε∥
n−1
∞

+ ∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

)
+

O∗(ε2)∥(κε, Wε)∥

M(t, z)

)
,

As in the previous proof, to obtain sharp bounds from the maximum principle, we discuss whether the
maximum point of ϕα∂z4ε on Bn is reached on the subset Dn or not. We now assume that it is the case.

We can then use the sequences an and bn defined in (7-4) to control the right-hand side of (7-19).
Moreover, with Proposition 7.4 we can estimate the terms involving 4ε on the balls. We then find that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂z4ε(t, z)| + an

∣∣∣∣ϕα(t, z)
ϕα(t, z̄)

∣∣∣∣∥ϕα∂z4ε∥
n−1
∞

+ bn(O∗

0 (1) + O(ε)∥(κε, Wε)∥)

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥ +
O∗(ε2)∥(κε, Wε)∥

M(t, z)

)
.
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The weight function was chosen precisely to satisfy the scaling estimate

sup
R+×R

∣∣∣∣ϕα(t, z)
ϕα(t, z̄)

∣∣∣∣≤ 2α. (7-18)

Since the function 1/M has a uniform upper bound, and the sequence bn is uniformly bounded, we finally
conclude that

ε2∂t [ϕα|∂z4ε|](t, z)

≤ M(t, z)(−ϕα(t, z)|∂z4ε(t, z)| + 2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥). (7-19)

The maximum principle applied to (7-19) gives

∥ϕα∂z4ε∥
n
∞

≤ max(2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂z4ε(0, · )∥n
∞

).

Notice that for all n ∈ N,

∥ϕα∂z4ε(0, · )∥L∞(Bn) ≤ ∥Wε(0, · )∥F ≤ O∗

0 (1).

Therefore, we obtain finally, in the case where the maximum point of ϕα∂z4ε on Bn is reached on the
subset Dn ,

∥ϕα∂z4ε∥
n
∞

≤ 2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥. (7-20)

When this is not the case, we will only state that

∥ϕα∂z4ε∥
n
∞

≤ ∥ϕα∂z4ε∥
n−1
∞

. (7-21)

Combining (7-20) and (7-21), we eventually conclude that

∥ϕα∂z4ε∥
n
∞

≤ max(2αan∥ϕα∂z4ε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂z4ε∥
n−1
∞

). (7-22)

This implies that the sequence (∥ϕα∂z4ε∥
n
∞

)n is a contraction, using the same recursive arguments as
in the previous proof. Indeed, by hypothesis, 2αan ≤ 2αa < 1, but for a finite number of terms, which
gives for instance a contraction factor θ := a +

1
2 , such that 2a < θ < 1. The second part of the maximum

in (7-22) does not perturb the contraction part, and we deduce that

∥ϕα∂z4ε∥
n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − θ
, ∥ϕα∂z4ε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥.

The second inequality uses the local bounds of the ball B0 made in Proposition 7.3. □

7E. Bound on the balls: ∂2
z Wε. We now make a similar statement about the second derivative.

Proposition 7.6 (in the balls, ∂2
z Wε). There exists a constant εB that depends only on B such that with

the condition of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥ϕα∂2
z Wε∥

n
∞

≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥,

for n ≥ 1.
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Proof. We proceed as in the proof of Proposition 7.5. We already know a linearized approximation
for ∂2

z Wε, thanks to (6-16) in Proposition 6.7. Taking the weight into account, one finds that ϕα∂2
z Wε

satisfies the following:

ε2∂t [ϕα(t, z)∂2
z Wε](t, z)

= −∂2
z M(t, z)ϕα(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

− 2∂z M(t, z)(ϕα(t, z)∂z4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
( 1

2ϕα(t, z)∂2
z Wε(t, z̄) − ϕα(t, z)∂2

z Wε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥
)

+ O(ε2)∥(κε, Wε)∥. (7-23)

The last term comes from the same computation of ∂tϕα as that made in (7-17). To continue, we first use
the following uniform controls of (1-14):

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂2
z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1) and sup
(t,z)∈R+×R

∣∣∣∣∂z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1).

We also need the scaling estimate of the weight function, stated in (7-18). Then, we can bound the
right-hand side of (7-23) after factorizing by M, for t ∈ R+ and z ∈ Bn:

ε2∂t [ϕα(t, z)|∂2
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂2

z Wε(t, z)| + 1
21−α

∥ϕα∂2
z Wε∥

n−1
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥

+ O∗(1)(∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ O∗(1)(∥ϕα∂z4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

)
.

Plugging in the controls on the balls of 4ε and ∂z4ε from Propositions 7.4 and 7.5, we have

ε2∂t [ϕα(t, z)|∂2
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂2

z Wε(t, z)| + 1
21−α

∥ϕα∂2
z Wε∥

n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥
)
.

The function M(t, z) admits a positive lower bound by (1-13). We apply the maximum principle to get

∥ϕα∂2
z Wε∥

n
∞

≤ max
( 1

21−α
∥ϕα∂2

z Wε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥, ∥ϕα∂2
z Wε(0, · )∥n

∞

)
.

As earlier, we can get rid of the initial data in the maximum by stating that for all n ∈ N,

∥ϕα∂2
z Wε(0, · )∥n

∞
≤ ∥Wε(0, · )∥F ≤ O∗

0 (1). (7-24)

Then, the recursive arguments are somehow a little easier in that case than in the proofs of Propositions 7.4
and 7.5 since the geometric term, 2α−1, does not depend on n. Hence we have

∥ϕα∂2
z Wε∥

n
∞

≤
1

21−α
∥ϕα∂2

z Wε∥
n−1
∞

+ O∗

0 (1) + O(ε)∥(κε, Wε)∥.
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Because 2α−1 < 1, we immediately get that

∥ϕα∂2
z Wε∥

n
∞

≤ max
(

O∗

0 (1) + O(ε)∥(κε, Wε)∥

1 − 2α−1 , ∥ϕα∂2
z Wε∥

0
∞

)
≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

7F. Local and on-the-balls bound for ∂3
z Wε. We dedicate this section to the study of ∂3

z Wε since it does
not exactly fit the mold of the previous estimates due to the additional factor ∥ϕα∂3

z Wε∥∞/21−α in the
linearized equation in Proposition 6.8.

• We highlight the difference by first proving the initial bound on the local ball B0. We write the linear
equation solved by ϕα∂3

z Wε:

−ε2∂t [ϕα∂3
z Wε](t, z)

= ϕα(t, z)∂3
z M(t, z)(4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂2
z M(t, z)(ϕα(t, z)∂z4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3∂z M(t, z)(ϕα(t, z)∂2
z 4ε(t, z) + O∗(1) + O(ε)∥(κε, Wε)∥)

+ M(t, z)
(
ϕα(t, z)∂3

z 4ε(t, z) +
∥ϕα∂3

z Wε∥∞

21−α
+ O∗(1) + O(εα)∥(κε, Wε)∥

)
− ε2∂3

z Wε(t, z)∂tϕα(t, z). (7-25)

First, one finds that
ε2∂3

z 4ε(t, z)∂tϕα(t, z) = O∗(ε2)∥(κε, Wε)∥.

We recall that 4ε, ∂z4ε and ∂2
z 4ε were all uniformly bounded on B0, with the weight, in Proposition 7.3.

Moreover, from (1-13), for j = 1, 2,

sup
(t,z)∈R+×R

∣∣∣∣∂( j)
z M(t, z)
M(t, z)

∣∣∣∣≤ O∗(1),

sup
(t,z)∈R+×R

(
ϕα(t, z)

∣∣∣∣∂3
z M(t, z)
M(t, z)

∣∣∣∣)≤ O∗(1).

(7-26)

Finally,

ϕα(t, z)|∂3
z Wε(t, z̄)| ≤

2α

4
|ϕα(t, z̄)∂3

z Wε(t, z̄)|.

When plugging all of this into (7-25), we obtain, by evaluating at the point of maximum on B0,

ε2∂t∥ϕα(t, · )∂3
z Wε(t, · )∥L∞(B0)

≤ M(t, z)

(
−∥ϕα(t, · )∂3

z Wε(t, · )∥L∞(B0) +
1

22−α
∥ϕα(t, · )∂3

z Wε(t, · )∥L∞(B0) +
∥ϕα∂3

z Wε∥∞

21−α

+ O∗

0 (1) + O(εα)∥(κε, Wε)∥

)
.



1342 FLORIAN PATOUT

Since there is a positive lower bound of M, we recognize a contraction argument on the ball B0, and for
bounded times 0 < t ≤ T ∗,

∥ϕα∂3
z Wε∥L∞([0,T ∗]×B0)

≤ max
(( 1

1−2α−2

)(
O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
1

21−α
∥ϕα∂3

z Wε∥∞

)
, ∥ϕα(0, · )∂3

z Wε(0, · )∥L∞(B0)

)
.

Therefore, since the initial data is controlled by O∗

0 (1), we may write

∥ϕα∂3
z Wε∥L∞([0,T ∗]×B0) ≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
2α−1

1−2α−2 ∥ϕα∂3
z Wε∥∞.

As explained in Section 7A, we can now repeat the procedure on each interval of time

Ik := [kT∗, (k + 1)T∗],

and end up with a bound uniform in time on the ball B0:

∥ϕα∂3
z Wε∥

0
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +
2α−1

1−2α−2 ∥ϕα∂3
z Wε∥∞. (7-27)

• We now proceed to propagate this bound on the balls, starting again from (7-25) and using the maximum
principle. For any t ∈ R+ and z ∈ Bn , we have

ε2∂t [ϕα|∂3
z Wε|](t, z)

≤ M(t, z)

(
−ϕα(t, z)|∂3

z Wε(t, z)| +
1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞

+ O∗

0 (1) + O(εα)∥(κε, Wε)∥ +

∣∣∣∣ϕα(t, z)
∂3

z M(t, z)
M(t, z)

∣∣∣∣(∥4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3
∣∣∣∣∂2

z M(t, z)
M(t, z)

∣∣∣∣(∥ϕα∂z4ε∥
n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

+ 3
∣∣∣∣∂z M(t, z)

M(t, z)

∣∣∣∣(∥ϕα∂2
z 4ε∥

n
∞

+ O∗(1) + O(ε)∥(κε, Wε)∥)

)
.

We will use once more our hypothesis (1-14), in the form stated in (7-26). We also need all our previous
estimates on the balls: Propositions 7.4, 7.5 and 7.6. We then obtain

ε2∂t [ϕα|∂3
z Wε|](t, z)

≤ M(t, z)
(
−ϕα(t, z)|∂3

z Wε(t, z)|+ 1
22−α

∥ϕα∂3
z Wε∥

n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞+O∗

0 (1)+O(εα)∥(κε, Wε)∥
)
.

We recall that the term ∥ϕα∂3
z Wε∥∞ is a global control on the whole space R and not localized on the

balls. By applying the maximum principle, one gets

∥ϕα∂3
z Wε∥

n
∞

≤ max
( 1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞ + O∗

0 (1)+ O(εα)∥(κε, Wε)∥, ∥ϕα(0, · )∂3
z Wε(0, · )∥n

∞

)
.
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We can absorb the initial data in the term O∗

0 (1) to deduce that

∥ϕα∂3
z Wε∥

n
∞

≤
1

22−α
∥ϕα∂3

z Wε∥
n−1
∞

+
1

21−α
∥ϕα∂3

z Wε∥∞ + O∗

0 (1) + O(εα)∥(κε, Wε)∥.

This sequence is bounded, because its ratio satisfies 2α−2 < 1. Hence,

∥ϕα∂3
z Wε∥

n
∞

≤ max
(

O∗

0 (1) + O(εα)∥(κε, Wε)∥

1 − 2α−2 +
2α−1

1 − 2α−2 ∥ϕα∂3
z Wε∥∞, ∥ϕα∂3

z Wε∥
0
∞

)
. (7-28)

We define k(α) as follows:

k(α) :=
2α−1

1 − 2α−2 ,

and from (7-28) we finally conclude, taking the local bound (7-27) into account, that

∥ϕα∂3
z Wε∥

n
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥ϕα∂3
z Wε∥∞.

We have therefore proven the following proposition:

Proposition 7.7 (in the rings, ∂3
z Wε). There exists a constant εB that depends only on B such that with

the condition of Theorem 7.1, Wε satisfies, for ε ≤ εB ,

∥ϕα∂3
z Wε∥

n
∞

≤ O∗

0 (1) + O(εα)∥(κε, Wε)∥ + k(α)∥ϕα∂3
z Wε∥∞,

for n ≥ 1, with

0 < k(α) :=
2α−1

1 − 2α−2 < 1. (7-29)

The scalar k(α) is a contraction factor, only upon the condition that

α < 2 −
ln 3
ln 2

≈ 0.415. (7-30)

We made that assumption prospectively when we introduced E in Definition 1.2. Beside (7-30), another
reason for which α cannot be taken too large is that it worsens the contraction estimate ϕα(t, z)≤2αϕα(t, z̄);
see (7-18).

7G. Conclusion: proof of Theorem 7.1. All our previous estimates from Propositions 7.4, 7.5, 7.6
and 7.7 are uniform in n, and therefore apply to the whole space. Therefore, so far, every bound of
Theorem 7.1 has been proved except for the one upon ∂zWε. A proof by recursion on the balls could be
adapted from that of Proposition 7.5, starting from the linearized equation of Proposition 6.5. We propose
here a more concise argument on the whole space, that uses instead the result of Proposition 7.5.

For all times t > 0 and z ∈ R,

|∂z4ε(t, z)| = |∂zWε(t, z) − ∂zWε(t, z̄)|

≤
O∗

0 (1) + O(ε)∥(κε, Wε)∥

ϕα(t, z)
. (7-31)
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This estimate is helpful for large z, given the weight function. To control uniformly on the whole space,
let h ∈ R and define N 0

h as the lowest index such that z∗(t)+2−k
|h| ∈ B0 for all k > N 0

h . From Section 7A
we know that N 0

h ≥ ⌈ln(|h|/r0)/ ln(2)⌉. Then, by iterating (7-31), we get

|∂zWε(t, z∗ + h)| ≤ |∂zWε(t, z∗ + 2−(N h
0 +1)h)| + (O∗

0 (1) + O(ε)∥(κε, Wε)∥)

N 0
h∑

k=0

1
ϕα(t, z∗ + 2−kh)

.

Given the control of ∂zWε on B0 from Proposition 7.3 and the explicit form of the weight ϕα , we deduce
that

∂zWε(t, z∗ + h) ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥ + (O∗

0 (1) + O(ε)∥(κε, Wε)∥)

N 0
h∑

k=0

2αk

|h|α
. (7-32)

This series has a finite number of terms (roughly log(|h|)), by definition of N h
0 , and otherwise it would

not be converging. Indeed, since 2N h
0/|h| ≤ 1/r0, this sum is uniformly bounded:

N 0
h∑

k=0

2αk

|h|α
≤ O∗(1)

2αN 0
h

|h|α
≤ O∗(1).

Plugging this into (7-32), we have shown, as stated in Theorem 7.1, that

∥∂zWε∥∞ ≤ O∗

0 (1) + O(ε)∥(κε, Wε)∥. □

One should note that the weight function ϕα plays a crucial role here, by “compensating” for the
diverging terms. Namely, if α = 0, the previous argument crumbles starting as early as estimate (7-31).
This shows that the weight ϕα is necessary to ensure uniform Lipschitz bounds of Wε.

8. Proof of Theorem 1.3

We now prove the main result of this paper, that is the boundedness of (κε, Wε) in R×F. We first suppose
that there exists K0 such that

|κε(0)| ≤ K0 and ∥Wε(0, · )∥F ≤ K0, (8-1)

and we look to prove that
|κε| ≤ K ′

0 and ∥Wε∥F ≤ K ′

0,

with K ′

0 to be determined by the analysis.
Theorem 7.1 grants precise bounds of Wε, as long as there exists K such that ∥(κε, Wε)∥ ≤ K. More

precisely, there exists a constant C∗

0 that depends only on K0 and K ∗ and a constant C ′

K that depends
only K such that

∥Wε∥F ≤ C∗

0 + C ′

K εα K + k(α)∥Wε∥F .

Therefore, up to renaming the constants,

∥Wε∥F ≤
C∗

0 + C ′

K εα K
1 − k(α)

≤ C∗

0 + C ′

K εα K . (8-2)
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Clearly, a crucial part of this contraction was to ensure that k(α) < 1. We can now work on κε. We go
back to Proposition 5.1, from which we learned that κε solves

−κ̇ε(t) = R∗

ε (t)κε + O∗(1) + O(ε)∥(κε, Wε)∥ + O∗(1)∥Wε∥F . (8-3)

Thanks to our previous contraction argument, we have an estimate of ∥Wε∥F , and we can get rid of this
last term of order 0. We can plug the estimate (8-2) into (8-3) to finally conclude the argument on κε.

Since R∗
ε is a positive function that admits, for t ≥ t0, a uniform lower bound R0, per Proposition 4.7,

it is straightforward from (8-2) and (8-3), and our subsequent bounds, that there exists C∗

0 and C ′

K such
that, for all time t ,

|κε(t)| ≤ C∗

0 + C ′

K εα K . (8-4)

Coupled with (8-2), those are the stability results we needed on the pair (κε, Wε). We now set a scalar K ′

0
such that

K ′

0 ≥ 2C∗

0 . (8-5)

Then, choose ε0 in the following way:

ε0 :=

( 1
2C ′

0

)1/α

,

where C ′

0 is the constant in (8-2) and (8-4) corresponding to the choice made in (8-5) of the size of the
ball K ′

0. Then for ε ≤ ε0, starting from an initial data that satisfies (8-1), the bound is propagated in time,
and furthermore

∥Wε∥F ≤ K ′

0, |κε| ≤ K ′

0.

Since Vε = V ∗
+ ε2Wε and qε = q∗

+ ε2κε, Theorem 1.3 is proven. □

9. Numerical simulations and discussion

In this section we display some numerical simulations showing the behavior of the solution of the Cauchy
problem for positive ε, and we will provide insight into the structural assumption we made in (1-13).

Influence of the condition (1-13). A first example for our study is to consider a quadratic selection
function, as depicted in Figure 3. In that case, according to Theorem 1.3, starting from any initial
data z∗(0), the solution fε stays close to a Gaussian density with variance ε2. In addition, its mean z∗

converges to the unique minimum of m when the time is large.
Our framework encompasses more general selection functions with multiple local minima, such as

the one depicted in Figure 4. The condition in (1-13) restricts somehow the position of those minima.
If one assumes that z∗ starts from a local minimum, that is m′(z∗(0)) = 0, then this condition implies that
the selective difference between minima must be inferior to 1: m(z∗(0)) − m(zopt) < 1. We recover the
structural condition under which the analysis for the stationary case was performed; see [Calvez et al. 2019].

The selection function depicted in Figure 4, coupled with z∗(0), satisfies the condition (1-13). Then as
stated by Theorem 1.3 the population density fε concentrates around the local minimum, according to
the gradient flow dynamics of Assumption 1.1.
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Time
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Figure 3. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt.
On the right, the trajectory of the dominant trait z∗.

z∗(0) zloc zopt

zloc

O
pt

im
al

tr
ai

t

z∗(0)

Time
)

Figure 4. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt and
a local optimum zloc. On the right, the trajectory of the dominant trait z∗. The function M
is uniformly positive.

A case not taken into account by our methodology is when (1-13) is not satisfied at all times. This is
the case if the slopes of the lines between local and global minima are too sharp. For instance, this is
true in the case of Figure 5. Interestingly, what is observed is a critical behavior. The solution will first
concentrate around the first local minimum before jumping sharply in the attraction basin of the global
minimum; see the right-hand picture of Figure 5.

Under this model it would seem that the population will concentrate around the global minimum of
selection if it is much better than the other selective optima. Interestingly, the value of the local maximum
in between the two minima, that could act as an obstacle between the two convex selection valleys, do not
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Figure 5. On the left, in dotted red, the initial data fε(0, · ), and in orange, the distribution fε
after a long time. In the background the selection function m with a global optimum zopt and
a local optimum zloc. On the right, the trajectory of the dominant trait z∗. The function M
is not uniformly positive.

appear to play a role. On the other hand, if the global minimum is not much better than a local minima,
in the sense that each of them falls under the regime of (1-13), the population can concentrate around this
local minimum.

Influence of the sign of qε. We introduced the scalar qε in (1-17) as part of the decomposition of Uε

between the affine parts and the rest of the function, which we later justified by heuristics on the linearized
problem; see the table on page 1297. We can propose a different interpretation of this scalar, related to
the Gaussian distribution.

The logarithmic transform (1-2) coupled with the decomposition (1-17) can be rewritten as the following
transform on the solution of (Pt fε):

fε(t, z) =
1

ε
√

2π
exp

[
λ(t) − ε2 pε(t) + ε4qε(t)2

ε2 −
(z − (z∗(t) − ε2qε(t)))2

2ε2 − Vε(t, z)
]
. (9-1)

Therefore one can see that qε is the correction to the mean of the Gaussian distribution at the next order
in ε. Its sign corresponds to the sign of the error made on the mean of the Gaussian distribution. If qε is
positive, the correction of z∗ lies on its left. This is consistent with the following reasoning on the limit
value q∗

= limε→0 qε, defined in (1-18). For clarity, suppose that z∗ does not depend on time, that is the
regime of the stationary case. Then from (1-18), we find an explicit value for q∗, which coincides with
[Calvez et al. 2019, (3.2)]:

q∗
=

m(3)(z∗)

2m′′(z∗)
.

By local convexity of m around z∗, see (1-12), the sign of q∗ is the same as the sign of m(3)(z∗).
Therefore, if this scalar is positive, selection leans the profile towards the left, which has better selective
values than the right, since it is flatter. Therefore, we recover what we deduced from (9-1); the sign of qε

is linked to the skewness of the selection function m around z∗.
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List of symbols

Uε Perturbation to solve the Cauchy problem (Pt fε) (1-2)

m Selection function Assumption 1.1

Iε Residual shape of the infinitesimal operator (1-3)

z∗(t) Dominant trait in the population (1-11)

z̄(t) 1
2 (z + z∗(t)) (PtUε)

M 1 + m(z) − m(z∗(t)) − m ′(z∗(t))(z − z∗(t)) (PtU0)

pε, qε, Vε Uε(t, z) = pε(t) + qε(t)(z − z∗(t)) + Vε(t, z) (1-17)

Iε Iε, but as a function of two variables: Iε(qε, Vε) = Iε(Uε) (Pt Vε)

p∗, q∗, V ∗ Limits of our unknowns when ε → 0 (1-19), (1-18), (1-9)

U ∗ Limit of Uε, U ∗(t, z) = p∗(t) + q∗(t)(z − z∗(t)) + V ∗(t, z) (1-20)

Rε Decomposition Uε = U ∗
+ ε2 Rε Section 2

(κε, Wε) qε = q∗
+ ε2κε, Vε = V ∗

+ ε2Wε perturbations (1-21), (1-22)

E , ∥ · ∥E Functional space to measure Vε, and its norm Definition 1.2

F , ∥ · ∥F Functional space to measure Wε, and its norm Definition 1.2

ϕα Weight function ϕα(t, z) = (1 + |z − z∗(t)|)α Definition 1.2

∥(g, W )∥ max(|g|, ∥W∥F ) or max(|g|, ∥W∥E) Definition 2.1

E∗, ∥ · ∥∗ Functional space to measure V ∗, and its norm Definition 3.1

K ∗ Uniform bound of V ∗ in E∗ Proposition 3.3

O∗(ε) Special negligible term O(ε) Definition 2.1

I∗
ε Iε(q∗, V ∗) Proposition 3.4

∂gIε, ∂V Iε Fréchet derivatives w.r.t. the first and second variables Section 4

Q(y1, y2) Quadratic form: 1
2 y1 y2 +

3
4 (y2

1 + y2
2) (1-3)

Y Refers to the pair of traits (y1, y2) (3-4)

Dε(V )(Y, t, z) V (t, z̄) −
1
2 V (t, z̄ + εy1) −

1
2 V (t, z̄ + εy2) (3-4)

D∗
ε (V )(y, t) V (t, z∗) − V (t, z∗ + εy) (3-4)

∥W∥∞ sup(t,z)∈R+×R|W (t, z)|

dG∗
ε, d N ∗

ε Probability densities Section 4C, (4-26), (4-27)

4ε(t, z) Notation shortcut for Wε(t, z) − 2Wε(t, z̄) (5-1)

O∗

0 (1) Dependency upon the initial data at t = 0 Theorem 7.1

B0 “Small” ball around z∗ Figure 2, Section 7A,
Proposition 7.3

r∗, T∗ Parameters in the definition of B0 Section 7A, (7-7)

Bn, Dn Successive balls and dyadic rings Section 7: (7-2), (7-3),
Figure 2

(an)n≥1, (bn)n≥1 Controls of M on the rings Dn (7-4)

∥W∥
n
∞

L∞ norm on R+× Bn , for n ≥ 0 (7-5)
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THE “GOOD” BOUSSINESQ EQUATION: LONG-TIME ASYMPTOTICS

CHRISTOPHE CHARLIER, JONATAN LENELLS AND DENG-SHAN WANG

We consider the initial-value problem for the “good” Boussinesq equation on the line. Using inverse
scattering techniques, the solution can be expressed in terms of the solution of a 3 × 3-matrix Riemann–
Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a
Deift–Zhou steepest descent analysis of a regularized version of this Riemann–Hilbert problem. Our results
are valid for generic solitonless Schwartz class solutions whose space-average remains bounded as t → ∞.

1. Introduction

When investigating the bidirectional propagation of small amplitude and long wavelength capillary-gravity
waves on the surface of shallow water, J. Boussinesq [1872] derived the classical Boussinesq equation

ηt t − gh0ηxx = gh0

(
3
2

η2

h0
+

h2
0

3
ηxx

)
xx

, (1-1)

where η(x, t) is the perturbation-free surface, h0 is the mean depth, and g is the gravitational constant.
This equation was later rediscovered by Keulegan and Patterson [1940]. In nondimensional units, (1-1)
can be written as

ut t − uxx − (u2)xx − uxxxx = 0, (1-2)

where u(x, t) is a real-valued function and subscripts denote partial derivatives. Equation (1-2) is often
referred to as the “bad” Boussinesq equation in contrast to the so-called “good” Boussinesq equation

ut t − uxx + (u2)xx + uxxxx = 0, (1-3)

in which the ut t and uxxxx terms have the same sign, thus making the equation linearly well-posed; see,
e.g., [Bona and Sachs 1988; Compaan and Tzirakis 2017; Farah 2009; Himonas and Mantzavinos 2015;
Linares 1993] for well-posedness results for (1-3). Equation (1-3) governs small nonlinear oscillations in
an elastic beam and is also known as the “nonlinear string equation” [Falkovich et al. 1983].

Deift and Zhou [1993] proposed a steepest descent method for the asymptotic analysis of Riemann–
Hilbert (RH) problems. The Deift–Zhou approach has been successfully utilized to determine long-time
asymptotics for a large number of integrable equations such as the modified KdV equation [Deift and
Zhou 1993], the KdV equation [Deift et al. 1994], the nonlinear Schrödinger equation [Jenkins and
McLaughlin 2014; Tovbis et al. 2004], the sine-Gordon equation [Cheng et al. 1999], the Camassa–Holm
equation [Boutet de Monvel et al. 2009], the Degasperis–Procesi equation [Boutet de Monvel et al. 2019],
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and the Toda lattice [Deift et al. 1996]. At his 60th birthday conference in 2005, P. Deift [2008] presented
a list of sixteen open problems, among which he pointed out that “The long-time behavior of the solutions
of the Boussinesq equation with general initial data is a very interesting problem with many challenges.”
The purpose of this paper is to take a first step towards the solution of this problem.

As in [McKean 1981; Deift et al. 1982], we consider the following version of the “good” Boussinesq
equation:

ut t +
4
3(u2)xx +

1
3 uxxxx = 0, (1-4)

which can be obtained from (1-3) by a simple shift u → u +
1
2 followed by a trivial rescaling. Our main

result provides explicit formulas for the long-time asymptotics of the solution u(x, t) of (1-4) in a sector
in the right half-plane {x > 0, t > 0} under the assumption that the initial data lie in the Schwartz class and
satisfy the physically natural assumption that ut(x, 0) has zero mean. The proof is based on a Deift–Zhou
steepest descent analysis of a 3×3-matrix RH problem, which is parametrized by x and t . This RH problem
was derived in [Charlier and Lenells 2022] by performing a spectral analysis of a Lax pair associated to
(1-4); it is formulated in the complex plane of the spectral parameter k and has a jump contour consisting
of the three lines R ∪ ωR ∪ ω2R, where ω = e2π i/3. The steepest descent analysis of this RH problem is
severely complicated by the fact that the associated spectral problem is third-order. In fact, even though
a version of the inverse scattering formalism was developed for the Boussinesq equation already in [Deift
et al. 1982], the results presented here are, to the best of our knowledge, the first asymptotic results for any
of the equations (1-2)–(1-4) obtained via steepest descent techniques (there exists a substantial amount
of work on the long-time asymptotics for Boussinesq equations based on functional analytic approaches,
see, e.g., [Farah 2008; Liu 1997; Linares and Scialom 1995; Wang 2009], but these approaches yield
asymptotic information of a much less precise type). In addition to the third-order spectral problem,
another complication in the analysis of (1-4) stems from the fact that the associated RH problem is singular
at the origin. Therefore, instead of performing the steepest descent analysis of this RH problem directly, we
will analyze a regularized version of the RH problem and then transfer the results to the singular problem.

The paper is organized as follows. The main result is stated in Section 2. An overview of the rather
involved proof, which also contains a statement of the relevant RH problem, is presented in Section 3.
The steepest descent analysis begins in Section 4, where several transformations of the RH problem are
implemented. Local parametrices at the three critical points are constructed in Section 5 and the resulting
small-norm RH problem is estimated in Section 6. Finally, the asymptotic behavior of u(x, t) is obtained
in Section 7.

2. Main result

Equation (1-4) can be rewritten as the system [Zakharov 1974]{
wt +

1
3 uxxx +

4
3(u2)x = 0,

ut = wx ,
(2-1)

which is equivalent to (1-4) provided that u1(x) := ut(x, 0) satisfies∫
R

u1(x) dx = 0. (2-2)



THE “GOOD” BOUSSINESQ EQUATION: LONG-TIME ASYMPTOTICS 1353

The assumption (2-2) ensures that the integral
∫

R
u dx does not grow linearly but is conserved in time.

Indeed, letting u0(x) := u(x, 0) and assuming that u has sufficient smoothness and decay, (1-4) implies

d2

dt2

∫
R
u dx = 0, i.e.,

∫
R
u dx =

(∫
R
u1 dx

)
t +

∫
R
u0 dx .

Therefore, instead of analyzing (1-4) with initial data u(x, 0) and ut(x, 0) directly, we will consider the
system (2-1) with initial data u0(x) = u(x, 0) and w0(x) = w(x, 0).

2A. Definition of s(k) and s A(k). The formulation of our main result involves two spectral functions
s(k) and s A(k) which are defined as follows (see [Charlier and Lenells 2022] for details). Suppose u0(x)

and w0(x) are real-valued functions in S(R), where S(R) denotes the Schwartz class of rapidly decaying
functions on the real line. Let ω := e2π i/3 and let, for j = 1, 2, 3, lj (k) = ω j k. Define U(x, k) by

U(x, k) = P(k)−1

 0 0 0
0 0 0

−w0(x)−u0x −2u0(x) 0

 P(k), (2-3)

where

P(k) =

 ω ω2 1
ω2k ωk k
k2 k2 k2

 . (2-4)

Let X (x, k) and X A(x, k) be the 3×3-matrix-valued eigenfunctions defined by the linear Volterra integral
equations

X (x, k) = I −

∫ ∞

x
e(x−x ′)L̂(k)(UX)(x ′, k) dx ′, (2-5a)

X A(x, k) = I +

∫ ∞

x
e−(x−x ′)L̂(k)(UT X A)(x ′, k) dx ′, (2-5b)

where L = diag(l1, l2, l3), L̂ denotes the operator which acts on a 3 × 3 matrix A by L̂A = [L, A] (i.e.,
eL̂A = eLAe−L), and UT denotes the transpose of U. The 3 × 3-matrix-valued functions s(k) and s A(k)

are defined by

s(k) = I −

∫
R

e−xL̂(k)(UX)(x, k) dx, (2-6)

s A(k) = I +

∫
R

exL̂(k)(UT X A)(x, k) dx . (2-7)

2B. Statement of the main result. We first state our main result for the system (2-1); the formulation for
(1-4) is given as a corollary. For simplicity, we only consider solutions in the Schwartz class, but it will
be clear from the text that our result and its proof only require a finite degree of smoothness and decay.

Definition 2.1. We call {u(x, t),w(x, t)} a Schwartz class solution of (2-1) with initial data u0, w0 ∈S(R) if

(i) u, w are smooth real-valued functions of (x, t) ∈ R × [0, ∞),

(ii) u, w satisfy (2-1) for (x, t) ∈ R × [0, ∞) and

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ R.



1354 CHRISTOPHE CHARLIER, JONATAN LENELLS AND DENG-SHAN WANG

0
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Figure 1. The contour 0 and the open sets Dn , n = 1, . . . , 6, which decompose the
complex k-plane.

(iii) u, w have rapid decay as |x | → ∞ in the sense that, for each integer N ≥ 1 and each T > 0,

sup
x∈R

t∈[0,T )

N∑
i=0

(1 + |x |)N (|∂ i
x u| + |∂ i

xw|) < ∞.

Let {Dn}
6
n=1 denote the sectors shown in Figure 1. We make the following two assumptions.

Assumption 2.2 (absence of solitons). Assume that (s(k))11 and (s A(k))11 are nonzero for k ∈ D1 \ {0}

and k ∈ D4 \ {0}, respectively.

Assumption 2.3 (generic behavior at k = 0). Assume that

lim
k→0

k2(s(k))11 ̸= 0, lim
k→0

k2(s A(k))11 ̸= 0.

Assumption 2.2 ensures that no solitons are present (the case when s11 and s A
11 have a finite number

of simple poles off the contour can be treated by standard methods; see, e.g., [Fokas and Its 1996], or
[Lenells 2012] for a 3 × 3 matrix case). Assumption 2.3 ensures that s11 and s A

11 have double poles at
k = 0, which is the case for generic initial data [Charlier and Lenells 2022].

Define the reflection coefficient r1(k) by

r1(k) =
(s(k))12

(s(k))11
, k ∈ (0, ∞). (2-8)

If u0, w0 ∈ S(R) are such that Assumptions 2.2 and 2.3 hold, then r1(k) extends to a smooth function of
k ∈ [0, ∞) with rapid decay as k → ∞ which satisfies r1(0) = ω and |r1(k)| < 1 for k > 0; see [Charlier
and Lenells 2022].

We can now state our main result, which establishes the long-time behavior of u(x, t) in the asymptotic
sector x/t > 0; see Figures 2 and 3.
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k

|r1(k)|

x
(0, 0)

t

asymptotic sector

Figure 2. Numerical example showing |r1(k)| as a function of k ≥ 0 (left) and an example
of an asymptotic sector in the (x, t)-plane where the formula of Theorem 2.4 applies (right).

x

u

t = 0

x

u

t = 100

x

u

t = 200

x

u

t = 300

Figure 3. Numerical simulation of the solution u(x, t) of (1-4) with initial data u(x, 0)=

−
1
10 e−x2/20 and ut(x, 0) = 0 (solid blue) together with the asymptotic approximation in

(2-9) (dashed black) at the times t = 0, t = 100, t = 200, and t = 300. As expected,
the asymptotic formula provides a better and better approximation as t increases. The
convergence is the slowest for small values of x , which is consistent with the fact that
the asymptotic estimate (2-9) is not uniform near x = 0.

Theorem 2.4 (long-time asymptotics for (2-1)). Suppose {u(x, t), w(x, t)} is a Schwartz class solution
of (2-1) with initial data u0, w0 ∈ S(R) such that Assumptions 2.2 and 2.3 hold. Then the following
asymptotic formula holds uniformly for ζ = x/t in compact subsets of (0, ∞) as t → ∞:

u(x, t) = −
35/4k0

√
ν

√
2t

sin
(

19π

12
+ ν ln(6

√
3tk2

0) −
√

3k2
0 t − arg r1(k0) − arg 0(iν)

+
1
π

∫
∞

k0

ln
∣∣∣∣ s − k0

s − ωk0

∣∣∣∣ d ln(1 − |r1(s)|2)
)

+ O
(

ln t
t

)
, (2-9)
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where 0 denotes the Gamma function, k0 ≡ k0(ζ ) = ζ/2, and ν ≡ ν(ζ ) ≥ 0 is defined by

ν = −
1

2π
ln(1 − |r1(k0)|

2).

The proof of Theorem 2.4 is presented in Sections 3–7; Section 3 contains an overview of the proof.
As a corollary, we obtain asymptotics of the solution of (1-4) with initial data u0(x) = u(x, 0) and

u1(x) = ut(x, 0).

Corollary 2.5 (long-time asymptotics for (1-4)). Suppose u(x, t) is a Schwartz class solution of the
“good” Boussinesq equation (1-4) with initial data u0, u1 ∈ S(R) such that

∫
R

u1 dx = 0. Let w0(x) =∫ x
−∞

u1(x ′) dx ′ and define r1 : (0, ∞) → C by (2-8). Suppose Assumptions 2.2 and 2.3 hold. Then u obeys
the asymptotic formula (2-9) as t → ∞ uniformly for ζ = x/t in compact subsets of (0, ∞).

Remark 2.6 (asymptotics in the left half-plane). In Theorem 2.4, we have, for conciseness, only presented
asymptotics of u(x, t) in a subsector of the right-half plane x > 0. A similar formula can be derived by the
same methods for a subsector of the left half-plane, except that the formulas there involve r2 := s A

12/s A
11

instead of r1. Alternatively, asymptotics in the left half-plane can be obtained directly from Theorem 2.4
and the invariance of the Boussinesq equation under space inversion.

Remark 2.7 (asymptotics of w). Theorem 2.4 provides a formula for the asymptotics of u. Our methods
can be used to derive an analogous asymptotic formula for w, but since this requires somewhat lengthy
estimates of t-derivatives (see (3-6)), we have decided to not include this.

Remark 2.8 (regularity and decay assumptions). The Schwartz class assumption in Theorem 2.4 can be
relaxed significantly. In fact, even our current proofs only require a finite degree of smoothness and decay.
In light of the developments for integrable equations with second-order spectral problems, we expect that
significant further improvements can be obtained by considering solutions in weighted Sobolev spaces.
Consider for example the nonlinear Schrödinger equation: In [Deift and Zhou 2003], asymptotic formulas
for the solution of the Cauchy problem were established under essentially minimal assumptions on the
initial data, and more recently, the error terms in these formulas have been sharpened to become in a
certain sense optimal by using the ∂̄ generalization of the nonlinear steepest descent method [Borghese
et al. 2018; Dieng et al. 2019]. It is an interesting research direction to investigate the regularity and
decay requirements necessary for the derivation of asymptotic formulas for integrable equations with
higher-order spectral problems. It seems clear that the ∂̄ steepest descent method can be effectively
applied also in this context. However, the construction of the direct and inverse scattering transforms in
the framework of weighted Sobolev spaces is likely to be more involved for spectral problems of at least
third order than for second-order problems.

2C. Notation. We summarize some notation that will be used throughout the paper. In what follows,
γ ⊂ C denotes an oriented (piecewise smooth) contour.

• If A is an n × m matrix, then |A| ≥ 0 is defined by |A|
2
=

∑
i, j |Ai j |

2. Note that |A + B| ≤ |A| + |B|

and |AB| ≤ |A||B|.

• c and C will denote generic positive constants which may change within a computation.
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• We write R+ = (0, ∞) and R− = (−∞, 0).

• For 1 ≤ p ≤ ∞, we write A ∈ L p(γ ) if |A| belongs to L p(γ ). Then A ∈ L p(γ ) if and only if each
entry Ai j belongs to L p(γ ). We write ∥A∥L p(γ ) := ∥|A|∥L p(γ ).

• We define L̇3(γ ) as the space of all functions f : γ → C such that (1 + |k|)1/3 f (k) ∈ L3(γ ). If γ is
bounded, L̇3(γ ) = L3(γ ), but in general it only holds that L̇3(γ ) ⊂ L3(γ ). We turn L̇3(γ ) into a Banach
space with the norm ∥ f ∥L̇3(γ ) := ∥(1 + |k|)1/3 f ∥L3(γ ).

• We let Ė3(C \ γ ) denote the space of all analytic functions f : C \ γ → C with the property that for
each component D of C \ γ there exist curves {Cn}

∞

1 in D such that the Cn eventually surround each
compact subset of D and

sup
n≥1

∫
Cn

(1 + |k|) | f (k)|3 |dk| < ∞.

• For a function f defined in C \ γ , we let f± denote the nontangential boundary values of f from the
left and right sides of γ , respectively, whenever they exist. If f ∈ Ė3(C \ γ ), then f± exist a.e. on γ and
f± ∈ L̇3(γ ); see [Lenells 2018, Theorem 4.1].

3. Overview of the proof

The proof of Theorem 2.4 consists of a Deift–Zhou steepest descent analysis of a 3×3 matrix RH problem.
The jump contour 0 of this RH problem consists of the three lines R ∪ ωR ∪ ω2R, see Figure 1, and the
jump matrix v is given explicitly in terms of r1(k) defined in (2-8) and the function r2(k) defined by

r2(k) =
(s A(k))12

(s A(k))11
, k ∈ (−∞, 0). (3-1)

More precisely, v is defined as follows. Define {lj (k), z j (k)}3
j=1 by

lj (k) = ω j k, z j (k) = ω2 j k2, k ∈ C, (3-2)

and define the complex-valued functions 8i j (ζ, k) for 1 ≤ i ̸= j ≤ 3 by

8i j (ζ, k) = (li − lj )ζ + (zi − z j ),

where ζ := x/t . By symmetry, it is enough to consider 821, 831, and 832, which are explicitly given by

821(ζ, k) = ω(ω − 1)k(ζ − k),

831(ζ, k) = (1 − ω)k(ζ − ω2k),

832(ζ, k) = (1 − ω2)k(ζ − ωk).

Given a function f (k) of k ∈ C, we let f ∗ denote the Schwartz conjugate of f , i.e.,

f ∗(k) = f (k̄).
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The jump matrix v(x, t, k) is defined for k ∈ 0 by

v1 =

 1 −r1(k)e−t821 0
r∗

1 (k)et821 1−|r1(k)|2 0
0 0 1

 , v2 =

1 0 0
0 1−|r2(ωk)|2 −r∗

2 (ωk)e−t832

0 r2(ωk)et832 1

 ,

v3 =

 1−|r1(ω
2k)|2 0 r∗

1 (ω2k)e−t831

0 1 0
−r1(ω

2k)et831 0 1

 , v4 =

1−|r2(k)|2 −r∗

2 (k)e−t821 0
r2(k)et821 1 0

0 0 1

 ,

v5 =

1 0 0
0 1 −r1(ωk)e−t832

0 r∗

1 (ωk)et832 1−|r1(ωk)|2

 , v6 =

 1 0 r2(ω
2k)e−t831

0 1 0
−r∗

2 (ω2k)et831 0 1 − |r2(ω
2k)|2

 ,

(3-3)

where vj denotes the restriction of v to the subcontour of 0 labeled by j in Figure 1. We consider the
following RH problem, which is formulated in the L3-setting to ensure uniqueness (the solution of an
n × n-matrix L p-RH problem is unique whenever it exists provided that 1 ≤ n ≤ p; see [Lenells 2018,
Theorem 5.6]).

RH problem 3.1 (L3-RH problem for m). Find a 3×3-matrix-valued function m(x, t, · ) ∈ I + Ė3(C\0)

such that m+(x, t, k) = m−(x, t, k)v(x, t, k) for a.e. k ∈ 0.

By introducing the row-vector-valued function n by

n(x, t, k) = (ω ω2 1)m(x, t, k), (3-4)

we can transform the RH problem for m into the following vector RH problem for n.

RH problem 3.2 (L3-RH problem for n). Find a 1×3-row-vector-valued function n(x, t, · )∈ (ω, ω2, 1)+

Ė3(C \ 0) such that n+(x, t, k) = n−(x, t, k)v(x, t, k) for a.e. k ∈ 0.

For technical reasons, we also need the classical version of this RH problem.

RH problem 3.3 (classical RH problem for n). Find a 1 × 3-row-vector-valued function n(x, t, k) with
the following properties:

(i) n(x, t, · ) : C \ 0 → C1×3 is analytic.

(ii) The limits of n(x, t, k) as k approaches 0 \ {0} from the left and right exist, are continuous on 0 \ {0},
and are denoted by n+ and n−, respectively. Furthermore, they are related by

n+(x, t, k) = n−(x, t, k)v(x, t, k), k ∈ 0 \ {0}. (3-5)

(iii) n(x, t, k) = (ω, ω2, 1) + O(k−1) as k → ∞.

(iv) n(x, t, k) = O(1) as k → 0.

The following result was proved in [Charlier and Lenells 2022].

Proposition 3.4. Suppose the assumptions of Theorem 2.4 hold. Let U be an open subset of R × [0, ∞)

and suppose for each (x, t) ∈ U that the solution of the classical RH problem 3.3 for n is unique whenever
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it exists. Then RH problem 3.3 has a unique solution n(x, t, k) for each (x, t) ∈ U and the solution
{u(x, t), w(x, t)} of (2-1) can be expressed in terms of n = (n1, n2, n3) byu(x, t) = −

3
2

∂

∂x
limk→∞ k(n3(x, t, k) − 1),

w(x, t) = −
3
2

∂

∂t
limk→∞ k(n3(x, t, k) − 1),

(x, t) ∈ U. (3-6)

To use Proposition 3.4, we need the following lemma.

Lemma 3.5. Suppose RH problem 3.1 has a solution m(x, t, · ) at some point (x, t) ∈ R × [0, ∞).
Then n = (ω, ω2, 1)m is the unique solution of RH problem 3.2 at (x, t). Moreover, if the solution of
RH problem 3.3 exists, then it is unique and is given by n = (ω, ω2, 1)m.

Proof. The assertion for n = (ω, ω2, 1)m follows as in [Boutet de Monvel et al. 2019, Lemma A.5]. The
last claim follows because every solution of RH problem 3.3 is also a solution of RH problem 3.2. □

It will follow from the steepest descent analysis (see Lemma 6.3) that there exists a T > 0 such
that RH problem 3.1 has a unique solution m for t ≥ T and x/t in a compact subset of (0, ∞). Thus
Proposition 3.4 and Lemma 3.5 imply that the formulas (3-6) for u, w are valid for all t ≥ T and x/t in
compact subsets of (0, ∞) if n is defined by n = (ω, ω2, 1)m. Therefore it is enough to determine the
large t asymptotics of m.

3A. Steepest descent analysis. The large t behavior of m can be obtained by performing a Deift–
Zhou steepest descent analysis of RH problem 3.1. The first step in this analysis is to define analytic
approximations of the functions r1 and r2 appearing in the jump matrix v, as well as of the combination
r1/(1 − |r1|

2). Once these approximations are in place, we can deform the contour in such a way that
the new jump is close to the identity matrix everywhere except near three critical points (see Section 4).
The critical points are the solutions of the stationary phase equations ∂821/∂k = 0, ∂831/∂k = 0, and
∂832/∂k = 0. For each choice of 1 ≤ j < i ≤ 3, ∂8i j/∂k = 0 has a single zero ki j given by

k21 =
ζ

2
, k31 =

ωζ

2
, k32 =

ω2ζ

2
.

Writing k0 ≡ k21, these three critical points can be expressed as k0, ωk0, and ω2k0; see Figure 4. The
signature tables for 821, 831, and 832 are shown in Figures 5–7.

Near each of the three critical points, the RH problem can be approximated by a local parametrix
which is constructed in Section 5. In fact, since the jump matrix v obeys the symmetries

v(x, t, k) = Av(x, t, ωk)A−1
= Bv(x, t, k̄)−1B, k ∈ 0, (3-7)

where

A =

0 0 1
1 0 0
0 1 0

 and B =

0 1 0
1 0 0
0 0 1

 , (3-8)

the solution m obeys the symmetries

m(x, t, k) = Am(x, t, ωk)A−1
= Bm(x, t, k̄)B, k ∈ C \ 0. (3-9)
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R

ω2RωR

ωk0

k0

ω2k0

Figure 4. The three critical points k0, ωk0, ω
2k0 in the complex k-plane for ζ > 0.

R

Re821 > 0

Re821 < 0ωk0

k0

ω2k0

Figure 5. The regions where Re821 > 0 (shaded) and Re821 < 0 (white).

R

Re 831 < 0

Re 831 > 0ωk0

k0

ω2k0

Figure 6. The regions where Re 831 > 0 (shaded) and Re 831 < 0 (white).

It is therefore sufficient to construct the local parametrix mk0 at k0, because then the local parametrices at
ωk0 and ω2k0 can be obtained by symmetry. In the end, we arrive at a small-norm RH problem whose
solution is estimated in Section 6. Finally, the asymptotics of u(x, t) is obtained in Section 7.

3B. Assumptions for the remainder of the paper. From here on, we assume that {u(x, t), w(x, t)} is a
Schwartz class solution of (2-1) with initial data u0, w0 ∈ S(R) such that Assumptions 2.2 and 2.3 hold.
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R

Re 832 < 0

Re 832 > 0ωk0

k0

ω2k0

Figure 7. The regions where Re 832 > 0 (shaded) and Re 832 < 0 (white).

We also assume that r1(k) and r2(k) are defined by (2-8) and (3-1). We let I denote a fixed compact
subset of (0, ∞).

4. Transformations of the RH problem

By performing a number of transformations, we can bring the RH problem 3.1 to a form suitable for deter-
mining the long-time asymptotics. More precisely, starting with m, we will define functions m( j)(x, t, k),
j = 1, 2, 3, such that the RH problem satisfied by m( j) is equivalent to the original RH problem 3.1. The
RH problem for m( j) can be formulated as follows, where the contours 0( j) and the jump matrices v( j)

are specified below.

RH problem 4.1 (RH problem for m( j)). Find a 3 × 3-matrix-valued function m( j)(x, t, · ) ∈ I +

Ė3(C \ 0( j)) such that m( j)
+ (x, t, k) = m( j)

− (x, t, k)v( j)(x, t, k) for a.e. k ∈ 0( j).

The jump matrix v(3) obtained after the third transformation has the property that it approaches the
identity matrix as t → ∞ everywhere on the contour except near the three critical points k0, ωk0, ω2k0.
This means that we can find the long-time asymptotics of m(3) by computing the contribution from three
small crosses centered at these points.

The symmetries (3-7) and (3-9) will be preserved at each stage of the transformations, so that, for
j = 1, 2, 3,

v( j)(x, t, k) = Av( j)(x, t, ωk)A−1
= Bv( j)(x, t, k̄)−1B, k ∈ 0( j), (4-1)

m( j)(x, t, k) = Am( j)(x, t, ωk)A−1
= Bm( j)(x, t, k̄)B, k ∈ C \ 0( j). (4-2)

4A. First transformation. The purpose of the first transformation is to remove (except for a small
remainder) the jumps across the subcontours eπ i/3R+, R−, and e−π i/3R+ of 0. To implement this
transformation, we need analytic approximations of the functions r∗

2 , r1, and r̂∗

1 , where r̂1(k) is defined by

r̂1(k) =
r1(k)

1 − r1(k)r∗

1 (k)
.
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Re k

U1U2

U3 U4

k0

Figure 8. The open sets {Uj }
4
1 in the complex k-plane.

We introduce open sets Uj = Uj (ζ ) ⊂ C, j = 1, . . . , 4, as in Figure 8, such that

U1 ∪ U3 = {k | Re 821(ζ, k) < 0}, U2 ∪ U4 = {k | Re 821(ζ, k) > 0}.

Lemma 4.2. There exist decompositions

r∗

2 (k) = r∗

2,a(x, t, k) + r∗

2,r (x, t, k), k ∈ (−∞, 0],

r1(k) = r1,a(x, t, k) + r1,r (x, t, k), k ∈ [0, k0],

r̂∗

1 (k) = r̂∗

1,a(x, t, k) + r̂∗

1,r (x, t, k), k ∈ [k0, ∞),

(4-3)

where the functions r∗

2,a, r∗

2,r , r1,a, r1,r , r̂∗

1,a, r̂∗

1,r have the following properties:

(a) For each ζ ∈ I and each t > 0, r∗

2,a(x, t, k) and r1,a(x, t, k) are defined and continuous for k ∈ U 2

and analytic for k ∈ U2, and r̂∗

1,a(x, t, k) is defined and continuous for k ∈ U 1 and analytic for k ∈ U1.

(b) For each ζ ∈ I and t > 0, the functions r∗

2,a , r1,a , and r̂∗

1,a satisfy

|r∗

2,a(x, t, k)| ≤
C |k − ωk0|

1 + |k|2
e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4a)

|∂ l
x(r

∗

2,a(x, t, k) − r∗

2 (0))| ≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4b)

|∂ l
x(r1,a(x, t, k) − r1(0))| ≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4c)

|∂ l
x(r1,a(x, t, k) − r1(k0))| ≤ C |k − k0|e(t/4)|Re 821(ζ,k)|, k ∈ U 2, (4-4d)

|∂ l
x(r̂

∗

1,a(x, t, k) − r̂∗

1 (k0))| ≤ C |k − k0|e(t/4)|Re 821(ζ,k)|, k ∈ U 1, (4-4e)

|∂ l
x r̂∗

1,a(x, t, k)| ≤
C

1 + |k|
e(t/4)|Re 821(ζ,k)|, k ∈ U 1, (4-4f)

where l = 0, 1 and the constant C is independent of ζ, t, k.

(c) For each 1 ≤ p ≤ ∞ and l = 0, 1,

the L p-norm of (1 + | · |)∂ l
xr∗

2,r (x, t, · ) on (−∞, 0) is O(t−3/2), (4-5)
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the L p-norms of ∂ l
xr1,r (x, t, · ) and r1,r (x, t, · )

· −k0
on (0, k0) are O(t−3/2), (4-6)

the L p-norms of (1 + | · |)∂ l
x r̂∗

1,r (x, t, · ) and
r̂∗

1,r (x, t, · )
· −k0

on (k0, ∞) are O(t−3/2), (4-7)

uniformly for ζ ∈ I as t → ∞.

Proof. The proof uses the techniques of [Deift and Zhou 1993]. Since these techniques are rather standard
by now, we omit the details; see [Lenells 2017, Lemma 4.8] for a proof of a similar lemma. □

In the sequel, we often write r j,a(k) and r j,r (k) instead of r j,a(x, t, k) and r j,r (x, t, k), respectively,
for notational convenience.

Recalling that r2 = r2,a + r2,r , we can factorize v2, v4, v6 as

v2 = vU
2,av2,rv

L
2,a, v4 = vU

4,av4,rv
L
4,a, v6 = vL

6,av6,rv
U
6,a,

where the analytic factors are given by

vU
2,a =

1 0 0
0 1 −r∗

2,a(ωk)e−t832

0 0 1

 , vL
2,a =

1 0 0
0 1 0
0 r2,a(ωk)et832 1

 ,

vU
4,a =

1 −r∗

2,a(k)e−t821 0
0 1 0
0 0 1

 , vL
4,a =

 1 0 0
r2,a(k)et821 1 0

0 0 1

 ,

vL
6,a =

 1 0 0
0 1 0

−r∗

2,a(ω
2k)et831 0 1

 , vU
6,a =

1 0 r2,a(ω
2k)e−t831

0 1 0
0 0 1

 ,

and the small remainders v j,r , j = 2, 4, 6, are given by the expressions obtained by replacing rj with r j,r

in the definition (3-3) of vj , i.e.,

v2,r =

1 0 0

0 1−r2,r (ωk)r∗

2,r (ωk) −r∗

2,r (ωk)e−t832

0 r2,r (ωk)et832 1

 ,

v4,r =

1−|r2,r (k)|2 −r∗

2,r (k)e−t821 0

r2,r (k)et821 1 0
0 0 1

 ,

v6,r =

 1 0 r2,r (ω
2k)e−t831

0 1 0
−r∗

2,r (ω
2k)et831 0 1−r2,r (ω

2k)r∗

2,r (ω
2k)

 .

Define the sectionally analytic function m(1) by

m(1)(x, t, k) = m(x, t, k)G(x, t, k),
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where G is defined by

G(x, t, k) =



vU
2,a, k ∈ D1,

(vL
2,a)

−1, k ∈ D2,

vU
4,a, k ∈ D3,

(vL
4,a)

−1, k ∈ D4,

vL
6,a, k ∈ D5,

(vU
6,a)

−1, k ∈ D6.

(4-8)

Lemma 4.3. G(x, t, k) and G(x, t, k)−1 are uniformly bounded for k ∈ C\0, t > 0, and ζ ∈ I. Moreover,
G = I + O(k−1) as k → ∞.

Proof. We have Re 821(ζ, k) > 0 for k ∈ D3 (see Figure 5). Therefore, by virtue of (4-4a),

|vU
4,a(x, t, k) − I | ≤

C
1 + |k|

e−ct |Re 821(ζ,k)|, k ∈ D3,

uniformly for ζ ∈ I. Since Re 821(ζ, k) < 0 for ζ ∈ D4 (see Figure 5 again), we deduce similarly that

|r2,a(x, t, k)| ≤
C

1 + |k|
e(t/4)|Re 821(ζ,k)|, k ∈ U 3,

and hence
|(vL

4,a)
−1(x, t, k) − I | ≤

C
1 + |k|

e−ct |Re 821(ζ,k)|, k ∈ D4.

We appeal to the A-symmetry of (4-1) to extend these bounds to the other sectors. □

It follows from Lemma 4.3 that m satisfies RH problem 3.1 if and only if m(1) satisfies RH problem 4.1
with j = 1, where 0(1)

= 0 and the jump matrix v(1) is given on 01 ∪ 03 ∪ 05 by

v
(1)
1 = vU

6,av1v
U
2,a, v

(1)
3 = vL

2,av3v
U
4,a, v

(1)
5 = vL

4,av5v
L
6,a,

and the small jumps remaining on 02 ∪ 04 ∪ 06 are given by

v
(1)
j = v j,r , j = 2, 4, 6.

Here 0j denotes the subcontour of 0 labeled by j in Figure 1. More explicitly, the jump matrices v
(1)
j ,

j = 1, 3, 5, can be expressed as

v
(1)
1 =

 1 −r1(k)e−t821 β(k)e−t831

r∗

1 (k)et821 1−r1(k)r∗

1 (k) α(k)e−t832

0 0 1

 ,

v
(1)
3 =

1−r1(ω
2k)r∗

1 (ω2k) α(ω2k)e−t821 r∗

1 (ω2k)e−t831

0 1 0
−r1(ω

2k)et831 β(ω2k)et832 1

 ,

v
(1)
5 =

 1 0 0
β(ωk)et821 1 −r1(ωk)e−t832

α(ωk)et831 r∗

1 (ωk)et832 1−r1(ωk)r∗

1 (ωk)

 ,
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0(2)

1

2

3

4

5

6

7

8

9
k0

ωk0

ω2k0

Figure 9. The contour 0(2) in the complex k-plane.

where the functions α(k) ≡ α(x, t, k) and β(k) ≡ β(x, t, k) are defined by

α(k) = −r∗

2,a(ωk)(1 − r1(k)r∗

1 (k)), k ∈ R+,

β(k) = r2,a(ω
2k) + r1(k)r∗

2,a(ωk), k ∈ R+.

4B. Second transformation. Let 0(2)
=

⋃9
j=1 0

(2)
j denote the contour displayed in Figure 9, where

0
(2)
1 = [k0, ∞) etc. For each ζ ∈ I, we choose δ1(ζ, k) such that δ1 is analytic except for the jump

across 0
(2)
1 ,

δ1+(ζ, k) = δ1−(ζ, k)(1 − |r1(k)|2), k ∈ 0
(2)
1 ,

and such that
δ1(ζ, k) = 1 + O(k−1), k → ∞. (4-9)

The relation k0 = ζ/2 implies that there exists an ϵ > 0 such that

|r(k0)| ≤ 1 − ϵ for all k ∈ [k0, ∞) and all ζ ∈ I. (4-10)

Hence, by the Plemelj formulas, we find

δ1(ζ, k) = exp
{

1
2π i

∫
[k0,∞)

ln(1 − |r1(s)|2)
s − k

ds
}
, k ∈ C \ 0

(2)
1 . (4-11)

Let ln0(k) denote the logarithm of k with branch cut along arg k = 0, i.e., ln0(k) = ln |k|+ i arg0 k with
arg0 k ∈ (0, 2π).

Lemma 4.4. The function δ1(ζ, k) has the following properties:

(a) δ1 can be written as
δ1(ζ, k) = e−iν ln0(k−k0)e−χ1(ζ,k), (4-12)

where ν ≡ ν(ζ ) ≥ 0 is defined by

ν = −
1

2π
ln(1 − |r1(k0)|

2), ζ ∈ I,
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and

χ1(ζ, k) =
1

2π i

∫
∞

k0

ln0(k − s) d ln(1 − |r1(s)|2). (4-13)

(b) For each ζ ∈ I, δ1(ζ, k) and δ1(ζ, k)−1 are analytic functions of k ∈ C \ 0
(2)
1 with continuous

boundary values on 0
(2)
1 \ {k0}. Moreover,

sup
ζ∈I

sup
k∈C\0

(2)
1

|δ1(ζ, k)±1
| < ∞. (4-14)

(c) δ1 obeys the symmetry

δ1(ζ, k) = δ1(ζ, k̄)−1, ζ ∈ I, k ∈ C \ 0
(2)
1 . (4-15)

(d) As k → k0 along a path which is nontangential to (k0, ∞), we have

|χ1(ζ, k) − χ1(ζ, k0)| ≤ C |k − k0|(1 + |ln |k − k0||), (4-16)

|∂x(χ1(ζ, k) − χ1(ζ, k0))| ≤
C
t

(1 + |ln |k − k0||), (4-17)

where C is independent of ζ ∈ I. Furthermore,

|∂xχ1(ζ, k0)| =
1
t

∣∣∣∂uχ1(u, v)|(u,v)=(ζ,k0) +
1
2
∂vχ1(u, v)|(u,v)=(ζ,k0)

∣∣∣ ≤
C
t

(4-18)

and

∂x(δ1(ζ, k)±1) =
±iν

2t (k − k0)
δ1(ζ, k)±1. (4-19)

Proof. The lemma follows from (4-11) and relatively straightforward estimates. □

The functions δ3 and δ5 defined by

δ3(ζ, k) = δ1(ζ, ω2k), k ∈ C \ 0
(2)
3 ,

δ5(ζ, k) = δ1(ζ, ωk), k ∈ C \ 0
(2)
5 ,

satisfy the jump relations
δ3+(ζ, k) = δ3−(ζ, k)(1 − |r1(ω

2k)|2), k ∈ 0
(2)
3 ,

δ5+(ζ, k) = δ5−(ζ, k)(1 − |r1(ωk)|2), k ∈ 0
(2)
5 .

The jump matrix v(1) cannot be appropriately factorized on the subcontour 0
(2)
1 ∪ 0

(2)
3 ∪ 0

(2)
5 of 0(2).

Hence we introduce m(2) by

m(2)(x, t, k) = m(1)(x, t, k)1(ζ, k),

where the 3 × 3-matrix-valued function 1(ζ, k) is defined by

1(ζ, k) =


δ1(ζ, k)

δ3(ζ, k)
0 0

0 δ5(ζ, k)

δ1(ζ, k)
0

0 0 δ3(ζ, k)

δ5(ζ, k)

 . (4-20)
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From (4-14) and (4-9), we infer that 1 and 1−1 are uniformly bounded for ζ ∈ I and k ∈ C \

(0
(2)
1 ∪ 0

(2)
3 ∪ 0

(2)
5 ) and that

1(ζ, k) = I + O(k−1) as k → ∞. (4-21)

It follows that m satisfies RH problem 3.1 if and only if m(2) satisfies RH problem 4.1 with j = 2, where
the jump matrix v(2) is given by v(2)

= 1−1
− v(1)1+. A computation gives

v
(2)
1 =


δ1+

δ1−

−
δ3δ5

δ1−δ1+

r1(k)e−t821 δ2
3

δ1−δ5
β(k)e−t831

δ1−δ1+

δ3δ5
r∗

1 (k)et821 δ1−

δ1+

(1−r1(k)r∗

1 (k))
δ1−δ3

δ2
5

α(k)e−t832

0 0 1



=


1−r1(k)r∗

1 (k) −
δ3δ5

δ2
1−

r1(k)

1−r1(k)r∗

1 (k)
e−t821 δ2

3
δ1−δ5

β(k)e−t831

δ2
1+

δ3δ5

r∗

1 (k)

1−r1(k)r∗

1 (k)
et821 1 −r∗

2,a(ωk)
δ1+δ3

δ2
5

e−t832

0 0 1

 ,

v
(2)
2 =


1 0 0
0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,

v
(2)
7 =


1 −

δ3δ5

δ2
1

r1(k)e−t821 δ2
3

δ1δ5
β(k)e−t831

δ2
1

δ3δ5
r∗

1 (k)et821 1−r1(k)r∗

1 (k)
δ1δ3

δ2
5

α(k)e−t832

0 0 1

 .

The remaining jumps v
(2)
j can be obtained from these matrices together with the Z3 symmetry (4-1) and

are given by

v
(2)
3 =


1 −

δ3+δ5

δ2
1

r∗

2,a(k)e−t821
δ2

3+

δ1δ5

r∗

1 (ω2k)e−t831

1−r1(ω2k)r∗

1 (ω2k)

0 1 0
−

δ1δ5

δ2
3−

r1(ω
2k)et831

1−r1(ω2k)r∗

1 (ω2k)

δ2
5

δ1δ3−

β(ω2k)et832 1−r1(ω
2k)r∗

1 (ω2k)

 ,

v
(2)
4 =


1−r2,r (k)r∗

2,r (k) −
δ3δ5

δ2
1

r∗

2,r (k)e−t821 0
δ2

1
δ3δ5

r2,r (k)et821 1 0

0 0 1

 ,

v
(2)
5 =


1 0 0

δ2
1

δ3δ5−

β(ωk)et821 1−r1(ωk)r∗

1 (ωk) −
δ3δ1

δ2
5−

r1(ωk)e−t832

1−r1(ωk)r∗

1 (ωk)

−
δ1δ5+

δ2
3

r∗

2,a(ω
2k)et831

δ2
5+

δ1δ3

r∗

1 (ωk)et832

1−r1(ωk)r∗

1 (ωk)
1

 ,
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v
(2)
6 =


1 0 δ2

3
δ1δ5

r2,r (ω
2k)e−t831

0 1 0
−

δ1δ5

δ2
3

r∗

2,r (ω
2k)et831 0 1−r2,r (ω

2k)r∗

2,r (ω
2k)

 ,

v
(2)
8 =


1−r1(ω

2k)r∗

1 (ω2k)
δ3δ5

δ2
1

α(ω2k)e−t821 δ2
3

δ1δ5
r∗

1 (ω2k)e−t831

0 1 0

−
δ1δ5

δ2
3

r1(ω
2k)et831 δ2

5
δ1δ3

β(ω2k)et832 1

 ,

v
(2)
9 =


1 0 0

δ2
1

δ3δ5
β(ωk)et821 1 −

δ1δ3

δ2
5

r1(ωk)e−t832

δ1δ5

δ2
3

α(ωk)et831 δ2
5

δ1δ3
r∗

1 (ωk)et832 1−r1(ωk)r∗

1 (ωk)

 .

4C. Third transformation. The (11)-entry of v
(2)
1 can be rewritten as

(v
(2)
1 )11 = 1 − r1(k)r∗

1 (k) = 1 −
δ1+

δ1−

r̂1(k)
δ1+

δ1−

r̂∗

1 (k).

Therefore, using the general identity1+ f1 f3 f1 f2

f3 1 f4

0 0 1

 =

1 f1,a f2− f1 f4

0 1 0
0 0 1

 1+ f1,r f3,r f1,r 0
f3,r 1 0
0 0 1

  1 0 0
f3,a 1 f4

0 0 1

 ,

where f j = f j,a + f j,r , as well as the relation

β(k) − r∗

2,a(ωk)r1(k) = r2,a(ω
2k), k ∈ R+,

we can factorize v
(2)
1 for k ∈ 0

(2)
1 as

v
(2)
1 =


1−

δ2
1+

δ2
1−

r̂1(k)r̂∗

1 (k) −
δ3δ5

δ2
1−

r̂1(k)e−t821 δ2
3

δ1−δ5
β(k)e−t831

δ2
1+

δ3δ5
r̂∗

1 (k)et821 1 −r∗

2 (ωk)
δ1+δ3

δ2
5

e−t832

0 0 1

 = v
(2)A
1 v

(2)
1,rv

(2)B
1 , (4-22)

where

v
(2)A
1 =

1 −
δ3δ5

δ2
1−

r̂1,a(k)e−t821 δ2
3

δ1−δ5
r2,a(ω

2k)e−t831

0 1 0
0 0 1

 ,

v
(2)
1,r =


1−

δ2
1+

δ2
1−

r̂∗

1,r (k)r̂1,r (k) −
δ3δ5

δ2
1−

r̂1,r (k)e−t821 0

δ2
1+

δ3δ5
r̂∗

1,r (k)et821 1 0

0 0 1

 ,
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v
(2)B
1 =


1 0 0

δ2
1+

δ3δ5
r̂∗

1,a(k)et821 1 −
δ1+δ3

δ2
5

r∗

2,a(ωk)e−t832

0 0 1

 .

Similarly, using the general identity 1 f1 f2

f3 1+ f1 f3 f4

0 0 1


=

 1 0 0
f3,a 1 f4,a− f2,a f3,a

0 0 1

  1 f1,r f2,r

f3,r 1+ f1,r f3,r f4,r− f2,a f3,r− f2,r f3,a

0 0 1

 1 f1,a f2,a

0 1 0
0 0 1

 ,

where f j = f j,a + f j,r , as well as the relation

α(k) − r∗

1 (k)β(k) = −r∗

2,a(ωk) − r∗

1 (k)r2,a(ω
2k), k ∈ R+,

we can factorize v
(2)
7 for k ∈ 0

(2)
7 as

v
(2)
7 =


1 −

δ3δ5

δ2
1

r1(k)e−t821 δ2
3

δ1δ5
β(k)e−t831

δ2
1

δ3δ5
r∗

1 (k)et821 1−r1(k)r∗

1 (k)
δ1δ3

δ2
5

α(k)e−t832

0 0 1

 = v
(2)A
7 v

(2)
7,rv

(2)B
7 ,

where

v
(2)A
7 =


1 0 0

δ2
1

δ3δ5
r∗

1,a(k)et821 1 −
δ1δ3

δ2
5

(
r∗

2,a(ωk)+r∗

1,a(k)r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(2)
7,r =


1 −

δ3δ5

δ2
1

r1,r (k)e−t821 δ2
3

δ1δ5
βr (k)e−t831

δ2
1

δ3δ5
r∗

1,r (k)et821 1−|r1,r (k)|2
δ1δ3

δ2
5

r∗

1,r (k)
(
r1,r (k)r∗

2,a(ωk)−r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(2)B
7 =

1 −
δ3δ5

δ2
1

r1,a(k)e−t821 δ2
3

δ1δ5
βa(k)e−t831

0 1 0
0 0 1

 ,

and
βr (k) := r1,r (k)r∗

2,a(ωk), βa(k) := r2,a(ω
2k) + r1,a(k)r∗

2,a(ωk).

Let Vj ≡ Vj (ζ ) ⊂ C, j = 1, . . . , 4, denote the open subsets of the complex k-plane displayed in
Figure 10. Define the sectionally analytic function m(3) by

m(3)(x, t, k) = m(2)(x, t, k)H(x, t, k),
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Re k

V1V2

V3 V4
k0

ωk0

ω2k0

Figure 10. The open sets {Vj }
4
1 in the complex k-plane.

where H is defined for k ∈ D1 ∪ D6 by

H(x, t, k) =



(v
(2)B
1 )−1, k ∈ V1,

(v
(2)B
7 )−1, k ∈ V2,

v
(2)A
7 , k ∈ V3,

v
(2)A
1 , k ∈ V4,

I, elsewhere in D1 ∪ D6,

(4-23)

and extended to all of C \ 0 by means of the symmetry H(x, t, k) = AH(x, t, ωk)A−1. Let 0(3) be the
contour displayed in Figure 11.

Lemma 4.5. H(x, t, k) is uniformly bounded for k ∈C\0(3), t >0, and ζ ∈I. Moreover, H = I +O(k−1)

as k → ∞.

0(3)

12

3 4

5

6

7 8k0

ωk0

ω2k0

Figure 11. The contour 0(3) in the complex k-plane.
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Proof. We present the proof for k ∈ V1 ∪ V2; the proof for k ∈ V3 ∪ V4 is similar. Note that Vj ⊂ Uj ,
j = 1, . . . , 4 (see Figures 8 and 10). Note also the identities

821(ζ, ωk) = 832(ζ, k), 821(ζ, ω2k) = −831(ζ, k), 821 + 832 = 831. (4-24)

If k ∈ V 1, then ωk ∈ U 2 and (see Figures 5 and 7)

Re 821(ζ, k) ≤ 0, Re 832(ζ, k) ≥ 0.

Therefore, using (4-24), (4-4a), (4-4f), and (4-14), we find

|((v
(2)B
1 )−1)21| =

∣∣∣∣ δ2
1

δ3δ5
r̂∗

1,a(k)et821

∣∣∣∣ ≤
C

1 + |k|
e−ct |Re 821|, k ∈ V1,

|((v
(2)B
1 )−1)23| =

∣∣∣∣δ1δ3

δ2
5

r∗

2,a(ωk)e−t832

∣∣∣∣ ≤
C

1 + |k|
e−ct |Re 832|, k ∈ V1.

This proves the claim for k ∈ V1. All entries of (v
(2)B
7 )−1 are continuous functions on V 2. Since V 2 is

compact, the claim follows also for k ∈ V2. □

It follows from Lemma 4.5 that m satisfies RH problem 3.1 if and only if m(3) satisfies RH problem 4.1
with j = 3, where 0(3) is the contour displayed in Figure 11 and the jump matrix v(3) is given for
−

π
3 < arg k ≤

π
3 by

v
(3)
1 = v

(2)B
1 =


1 0 0

δ2
1

δ3δ5
r̂∗

1,a(k)et821 1 −
δ1δ3

δ2
5

r∗

2,a(ωk)e−t832

0 0 1

 ,

v
(3)
2 = (v

(2)B
7 )−1

=

1 δ3δ5

δ2
1

r1,a(k)e−t821 −
δ2

3
δ1δ5

(
r2,a(ω

2k)+r1,a(k)r∗

2,a(ωk)
)
e−t831

0 1 0
0 0 1

 ,

v
(3)
3 = (v

(2)A
7 )−1

=


1 0 0

−
δ2

1
δ3δ5

r∗

1,a(k)et821 1 δ1δ3

δ2
5

(
r∗

2,a(ωk)+r∗

1,a(k)r2,a(ω
2k)

)
e−t832

0 0 1

 ,

v
(3)
4 = v

(2)A
1 =

1 −
δ3δ5

δ2
1

r̂1,a(k)e−t821 δ2
3

δ1δ5
r2,a(ω

2k)e−t831

0 1 0
0 0 1

 ,

v
(3)
5 = v

(2)
2 =


1 0 0
0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,
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v
(3)
6 = v

(2)B
7 v

(2)
2 A−1v

(2)A
7 (x, t, ω2k)A =


1 δ3δ5

δ2
1

g(k)e−t821 δ2
3

δ1δ5
f (k)e−t831

0 1−r2,r (ωk)r∗

2,r (ωk) −
δ1δ3

δ2
5

r∗

2,r (ωk)e−t832

0 δ2
5

δ1δ3
r2,r (ωk)et832 1

 ,

v
(3)
7 = v

(2)
7,r =


1 −

δ3δ5

δ2
1

r1,r (k)e−t821 δ2
3

δ1δ5
r1,r (k)r∗

2,a(ωk)e−t831

δ2
1

δ3δ5
r∗

1,r (k)et821 1−r1,r (k)r∗

1,r (k)
δ1δ3

δ2
5

r∗

1,r (k)h(k)e−t832

0 0 1

 ,

v
(3)
8 = v

(2)
1,r =


1−

δ2
1+

δ2
1−

r̂1,r (k)r̂∗

1,r (k) −
δ3δ5

δ2
1−

r̂1,r (k)e−t821 0

δ2
1+

δ3δ5
r̂∗

1,r (k)et821 1 0

0 0 1

 ,

and extended to the remainder of 0(3) by means of the first symmetry in (4-1). Here the functions
f (k) ≡ f (x, t, k), g(k) ≡ g(x, t, k), and h(k) ≡ h(x, t, k) are defined by

f (k) = r2,a(ω
2k)+r1,a(k)r∗

2 (ωk)+r∗

1,a(ω
2k),

g(k) = r2,r (ωk)
(
r2,a(ω

2k)+r1,a(k)r∗

2,a(ωk)
)
−r1,a(k)

(
1−r2,r (ωk)r∗

2,r (ωk)
)
−r∗

2,a(k)−r∗

1,a(ω
2k)r2,a(ωk),

h(k) = r1,r (k)r∗

2,a(ωk)−r2,a(ω
2k).

The next lemma establishes bounds on f and g and their x-derivatives.

Lemma 4.6. For k ∈ 03, and l = 0, 1, we have

|∂ l
x f (k)| ≤ C |k|e(t/4)|Re 821(ζ,k)|, |∂ l

x g(k)| ≤ C |k|e(t/4)|Re 821(ζ,k)|. (4-25)

Proof. By (4-4b) and (4-4c), we have r∗

2,r (0) = 0, r∗

2,a(0) = r∗

2 (0), r1,r (0) = 0, and r1,a(0) = r1(0). Since
r1(0) = ω and r2(0) = 1 (see [Charlier and Lenells 2022]), we deduce that

r∗

2,a(0) = r∗

2 (0) = 1 and r1,a(0) = r1(0) = ω.

In particular,

r1,a(0)r∗

2 (0) + r∗

1,a(0) + r2,a(0) = ω + ω̄ + 1 = 0. (4-26)

To derive the estimate for f , we write

f (k) = r∗

1,a(ω
2k) + r2,a(ω

2k) + r1,a(k)r∗

2 (ωk)

= r∗

1,a(ω
2k) − r∗

1,a(0) + r2,a(ω
2k) − r2,a(0) + (r1,a(k) − r1,a(0))r∗

2 (ωk)

+ r1,a(0)(r∗

2 (ωk) − r∗

2 (0)) + r1,a(0)r∗

2 (0) + r∗

1,a(0) + r2,a(0).
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Using (4-26) and the fact that 0
(6)
3 ⊂ (ω2R− ∩ U2), the inequalities (4-4b) and (4-4c) imply

| f (k)| ≤ |r∗

1,a(ω
2k) − r∗

1,a(0)| + |r2,a(ω
2k) − r2,a(0)| + C |r1,a(k) − r1,a(0)| + C |k|

≤ C |k|(e(t/4)|Re 821(ζ,ωk̄)|
+ e(t/4)|Re 821(ζ,ωk̄)|

+ e(t/4)|Re 821(ζ,k)|)

≤ C |k|e(t/4)|Re 821(ζ,k)|, k ∈ 0
(6)
3 .

The estimate for ∂x f is derived in a similar way. Writing

g(k) = r2,r (ωk)
(
r2,a(ω

2k) + r1,a(k)r∗

2,a(ωk)
)
+ r1,a(k)r2,r (ωk)r∗

2,r (ωk) − f ∗(ω2k),

and using that r2,r and ∂xr2,r vanish at k = 0, the estimates for g and ∂x g follow from the estimates for f
and ∂x f . □

Lemma 4.7. The jump matrix v(3) (resp. ∂xv
(3)) converges to the identity matrix I (resp. to the zero

matrix 0) as t → ∞ uniformly for ζ ∈ I and k ∈ 0(3) except near the three critical points k0, ωk0, ω
2k0.

Moreover, the jump matrices v
(3)
j , j = 5, 6, 7, 8, satisfy

∥(1 + | · |)∂ l
x(v

(3)
− I )∥

(L1∩L∞)(0
(3)
5 )

≤ Ct−3/2, (4-27a)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥L1(0

(3)
6 )

≤ Ct−3/2, (4-27b)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥L∞(0

(3)
6 )

≤ Ct−1, (4-27c)

∥(1 + | · |)∂ l
x(v

(3)
− I )∥

(L1∩L∞)(0
(3)
7 ∪0

(3)
8 )

≤ Ct−3/2, (4-27d)

uniformly for ζ ∈ I and l = 0, 1.

Proof. Consider first the jump matrix v
(3)
1 . Since Re 832 ≥ c > 0 and Re 821 ≤ 0 for k ∈ 0

(3)
1 , v

(3)
1

(resp. ∂xv
(3)
1 ) converges to I (resp. to the zero matrix) as t → ∞ by (4-24), (4-4), and (4-14). Note

however that the convergence to 0 of the (21) entry is not uniform for k near k0, because Re 821(ζ, k0)= 0.
Analogous statements for v

(3)
2 , v

(3)
3 , and v

(3)
4 can be proved in a similar way.

Since Re 832 = 0 for k ∈ 0
(3)
5 , (4-27a) follows from (4-5), and (4-14).

We next show (4-27b) and (4-27c). We parametrize 0
(3)
6 by ueπ i/3, 0 ≤ u ≤ 2k0/(1+

√
3), and note that

Re 831(ζ, ueπ i/3) = Re 821(ζ, ueπ i/3) =
3
2 u(2k0 − u), u ∈ R.

It follows that {
Re 831(ζ, k) ≥

4
3 k0|k|,

Re 821(ζ, k) ≥
4
3 k0|k|,

k ∈ 0
(3)
6 .

Using (4-25), (4-14), (4-19), and the fact that ∂x(t831) = (1 − ω)k, we thus find

|(v
(3)
6 − I )13| ≤ C | f (k)|e−t Re 831 ≤ C |k|e−tk0|k|, k ∈ 0

(3)
6 ,

|∂x(v
(3)
6 )13| ≤ C |k|e−tk0|k|, k ∈ 0

(3)
6 .

Hence, for l = 0, 1, we have

∥(1 + | · |)∂ l
x(v

(3)
6 − I )13∥L1(0

(3)
6 )

≤
C

(k0t)2 , ∥(1 + | · |)∂ l
x(v

(3)
6 − I )13∥L∞(0

(3)
6 )

≤
C
k0t

,
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and similar estimates apply to the (12)-entry. On the other hand, Re 832 = 0 for k ∈ 0
(3)
6 , and hence we

can estimate the (23)-entry using (4-14) as

|(v
(3)
6 − I )23| =

∣∣∣∣δ1δ3

δ2
5

r∗

2,r (ωk)

∣∣∣∣ ≤ C |r∗

2,r (ωk)|, k ∈ 0
(3)
6 .

By (4-5), this implies that the L1 and L∞ norms of (1 + | · |)(v(3)
− I )23 on 0

(3)
6 are O(t−3/2) as t → ∞.

Using also (4-19) and (4-5), we conclude similarly that the L1 and L∞ norms of (1 + | · |)∂xv
(3)
23 on 0

(3)
6

are O(t−3/2) as t → ∞. A similar estimate applies to the (32)-entry and its x-derivative. The (22)-entry
is even smaller. This proves (4-27b) and (4-27c).

We finally show (4-27d). Note that Re 832 > 0 and Re 831 > 0 for k ∈ R+. We conclude from (4-4a)
that |(v

(3)
7 − I )23| and |(v

(3)
7 − I )13| decay to zero as t → ∞ faster than |(v

(3)
7 − I )12| and |(v

(3)
7 − I )21|.

Moreover, since Re 821 = 0 for k ∈ R+, (4-6) and (4-14) imply

|(v
(3)
7 − I )21| =

∣∣∣∣ δ2
1

δ3δ5
r∗

1,r

∣∣∣∣ ≤ Ct−3/2, |(v
(3)
7 − I )12| =

∣∣∣∣δ3δ5

δ2
1

r1,r

∣∣∣∣ ≤ Ct−3/2,

while |(v
(3)
7 − I )22| is even smaller. Thus,

∥v(3)
− I∥

(L1∩L∞)(0
(3)
7 )

≤ Ct−3/2.

To estimate ∂x(v
(3)
7 )21, we use (4-6) and (4-19). This gives

|∂x(v
(3)
7 )21| ≤

∣∣∣∣∂x

(
δ3δ5

δ2
1

)
r1,r

∣∣∣∣ + ∣∣∣∣δ3δ5

δ2
1

∂xr1,r

∣∣∣∣ ≤ Ct−3/2.

The entries ∂x(v
(3)
7 )12 and ∂x(v

(3)
7 )22 are estimated in a similar way.

The matrix v
(3)
8 can be estimated in the same way as v

(3)
7 , except that now we need to use (4-7) and to

note that Re 821 = 0 for k ∈ (k0, ∞). This proves (4-27d). □

5. Local parametrix at k0

In Section 4C, we arrived at an RH problem for m(3) with the property that the matrix v(3)
− I decays to

zero as t → ∞ everywhere except near the three critical points k0, ωk0, ω2k0. This means that we only
have to consider neighborhoods of these three points when computing the long-time asymptotics of m(3).
In this section, we find a local solution mk0 which approximates m(3) near k0. The basic idea is that in the
large t limit, the RH problem for m(3) near k0 reduces to an RH problem on a cross which can be solved
exactly in terms of parabolic cylinder functions [Its 1981; Deift and Zhou 1993].

Let ϵ ≡ ϵ(ζ ) = k0/2. Let Dϵ(k0) denote an open disk of radius ϵ centered at k0. Let D = Dϵ(k0) ∪

ωDϵ(k0) ∪ ω2 Dϵ(k0). Let X = k0 + X , where X is the contour defined in (A-1). We will also use the
notation X ϵ

= X ∩ Dϵ(k0) and X ϵ
j = (k0 + X j ) ∩ Dϵ(k0), j = 1, . . . , 4, where X j is defined in (A-1).

In order to relate m(3) to the solution m X of Lemma A.2, we make a local change of variables for k
near k0 and introduce the new variable z ≡ z(ζ, k) by

z = 31/4
√

2t(k − k0). (5-1)
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For each ζ ∈ I, the map k 7→ z is a biholomorphism from Dϵ(k0) onto the open disk of radius 31/4
√

2tϵ
centered at the origin. Using that

821(ζ, k) = 821(ζ, k0) + i
√

3(k − k0)
2,

where 821(ζ, k0) = −i
√

3k2
0 , we see that

t (821(ζ, k) − 821(ζ, k0)) =
i
2

z2.

Equations (4-12) and (5-1) imply that, for ζ ∈ I and k ∈ Dϵ(k0) \ [k0, ∞),

δ3δ5

δ2
1

= e2iν ln0(z)(2
√

3t)−iνe2χ1(ζ,k)δ3δ5 = e2iν ln0(z)d0(ζ, t)d1(ζ, k),

where the functions d0(ζ, t) and d1(ζ, k) are defined for ζ ∈ I and k ∈ Dϵ(k0) \ [k0, ∞) by

d0(ζ, t) = (2
√

3t)−iνe2χ1(ζ,k0)δ3(ζ, k0)δ5(ζ, k0), (5-2)

d1(ζ, k) = e2χ1(ζ,k)−2χ1(ζ,k0)
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)
. (5-3)

Defining m̃ for k near k0 by

m̃(x, t, k) = m(3)(x, t, k)Y (ζ, t), k ∈ Dϵ(k0),

where

Y (ζ, t) =

d1/2
0 (ζ, t)e−(t/2)821(ζ,k0) 0 0

0 d−1/2
0 (ζ, t)e(t/2)821(ζ,k0) 0

0 0 1

 ,

we find that the jump ṽ(x, t, k) of m̃ across X ϵ is given by

ṽ1 =

 1 0 0
e−2iν ln0(z)d−1

1 r̂∗

1,a(k)ei z2/2 1 −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0)

0 0 1

 ,

ṽ2 =

1 e2iν ln0(z)d1r1,a(k)e−i z2/2
−

δ2
3

δ1δ5
d−1/2

0 �1(k)e−t831e(t/2)821(ζ,k0)

0 1 0
0 0 1

 ,

ṽ3 =

 1 0 0
−e−2iν ln0(z)d−1

1 r∗

1,a(k)ei z2/2 1 δ1δ3

δ2
5

d1/2
0 �2(k)e−t832e−(t/2)821(ζ,k0)

0 0 1

 ,

ṽ4 =

1 −e2iν ln0(z)d1r̂1,a(k)e−i z2/2 δ2
3

δ1δ5
d−1/2

0 r2,a(ω
2k)e−t831e(t/2)821(ζ,k0)

0 1 0
0 0 1

 ,
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where ṽj denotes the restriction of ṽ to X ϵ
j , j =1, 2, 3, 4, and �1(k)≡�1(x, t, k) and �2(k)≡�2(x, t, k)

are given by

�1(k) = r2,a(ω
2k) + r1,a(k)r∗

2,a(ωk), �2(k) = r∗

2,a(ωk) + r∗

1,a(k)r2,a(ω
2k).

Define q ≡ q(ζ ) by
q = r1(k0).

For a fixed z, r1,a(k) → q, r̂∗

1,a(k) → q̄/(1 − |q|
2), and d1(ζ, k) → 1 as t → ∞. This suggests that

ṽ(x, t, k) tends to the jump matrix vX (x, t, z) defined in (A-2) for large t . In other words, the jumps of m(3)

for k near k0 approach those of the function m X Y −1 as t → ∞. This suggests that we approximate m(3)

in the neighborhood Dϵ(k0) of k0 by the 3 × 3-matrix-valued function mk0 defined by

mk0(x, t, k) = Y (ζ, t)m X (q(ζ ), z(ζ, k))Y (ζ, t)−1, k ∈ Dϵ(k0). (5-4)

The prefactor Y (ζ, t) on the right-hand side of (5-4) is included so that mk0 → I on ∂ Dϵ(k0) as t → ∞;
this ensures that mk0 is a good approximation of m(3) in Dϵ(k0) for large t .

Lemma 5.1. The function Y (ζ, t) is uniformly bounded:

sup
ζ∈I

sup
t≥2

|∂ l
x Y (ζ, t)±1

| < C, l = 0, 1. (5-5)

Moreover, the functions d0(ζ, t) and d1(ζ, k) satisfy

|d0(ζ, t)| = e2πν, ζ ∈ I, t ≥ 2, (5-6a)

|∂x d0(ζ, t)| ≤ C ln t
t

, ζ ∈ I, t ≥ 2, (5-6b)

and

|d1(ζ, k) − 1| ≤ C |k − k0|(1 + |ln |k − k0||), ζ ∈ I, k ∈ X ϵ, (5-7a)

|∂x d1(ζ, k)| ≤
C
t

|ln |k − k0||, ζ ∈ I, k ∈ X ϵ . (5-7b)

Proof. The symmetry (4-15) implies

|δ3(ζ, k0)δ5(ζ, k0)| = |δ1(ζ, ω2k0)δ1(ζ, ωk0)| = 1,

and hence (5-6a) follows because

Re χ1(ζ, k0) =
1

2π

∫ ∞

k0

πd ln(1 − |r1(s)|2) = −
1
2

ln(1 − |r1(k0)|
2) = πν.

Using (5-6a), we obtain

|∂x d0(ζ, t)| = |d0(ζ, t)∂x ln d0(ζ, t)| = e2πν
|∂x ln d0(ζ, t)|

≤ C
(
|ln t ∂xν| + |∂xχ1(ζ, k0)| + |∂x ln(δ3(ζ, k0)δ5(ζ, k0))|

)
,

and thus (5-6b) follows from (4-18) and the fact that ∂x = (1/t)∂ζ . Observing that δ3 and δ5 are analytic
for k ∈ X ϵ , (5-7a) follows from (4-16). Finally, we have

∂x d1(ζ, k) = d1(ζ, k) ∂x log d1(ζ, k).
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Since

∂ζ log
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)

is analytic and |d1(ζ, k)| ≤ C for k ∈ X ϵ, it follows that

|∂x d1(ζ, k)| ≤ C
(
|∂x(χ1(ζ, k) − χ1(ζ, k0))| +

1
t

∣∣∣∣∂ζ log
δ3(ζ, k)δ5(ζ, k)

δ3(ζ, k0)δ5(ζ, k0)

∣∣∣∣),

and so (5-7b) follows from (4-17). □

Lemma 5.2. For each (x, t), the function mk0(x, t, k) defined in (5-4) is an analytic and bounded function
of k ∈ Dϵ(k0) \X ϵ. Across X ϵ, mk0 obeys the jump condition mk0

+ = mk0
−vk0 , where the jump matrix vk0

satisfies {
∥∂ l

x(v
(3)

− vk0)∥L1
(X ϵ)

≤ Ct−1 ln t,

∥∂ l
x(v

(3)
− vk0)∥L∞(X ϵ) ≤ Ct−1/2 ln t,

ζ ∈ I, t ≥ 2, l = 0, 1. (5-8)

Furthermore, as t → ∞,

∥∂ l
x(m

k0(x, t, · )−1
− I )∥L∞(∂ Dϵ(k0)) = O(t−1/2), l = 0, 1, (5-9)

1
2π i

∫
∂ Dϵ(k0)

(mk0(x, t, k)−1
− I ) dk = −

Y (ζ, t)m X
1 (q(ζ ))Y (ζ, t)−1

31/4
√

2
√

t
+ O(t−1), (5-10)

uniformly for ζ ∈ I, and (5-10) can be differentiated with respect to x without increasing the error term.

Proof. We have

v(3)
− vk0 = Y (ζ, t)(ṽ − vX )Y (ζ, t)−1.

Thus, recalling (5-5), the bounds (5-8) follow if we can show that

∥∂ l
x [ṽ(x, t, · ) − vX (x, t, z(ζ, · ))]∥L1(X ϵ

j ) ≤ Ct−1 ln t, (5-11a)

∥∂ l
x [ṽ(x, t, · ) − vX (x, t, z(ζ, · ))]∥L∞(X ϵ

j ) ≤ Ct−1/2 ln t (5-11b)

for j = 1, . . . , 4 and l = 0, 1. We give the proof of (5-11) for j = 1; similar arguments apply when
j = 2, 3, 4.

For k ∈ X ϵ
1 , only the (21) and (23) elements of the matrix ṽ − vX are nonzero. Using (4-4a), (4-14),

(5-6a), and the facts that 821(ζ, ωk) = 832(ζ, k) and vX
23(q(ζ ), z(ζ, k)) = 0 for k ∈ X ϵ

1 , |(ṽ − vX )23| can
be estimated as

|(ṽ − vX )23| =

∣∣∣∣δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0)

∣∣∣∣ ≤ |r∗

2,a(ωk)|e−t Re 832

≤ Ce(t/4)|Re 821(ζ,ωk)|e−t Re 832 = Ce−(3t/4)|Re 832(ζ,k)|, k ∈ X ϵ
1 .

For k = k0 + ueπ i/4 and u ≥ 0, we have

Re 832(ζ, k0 + ueπ i/4) =
1
2(9k2

0 + 6
√

2k0u +
√

3u2) ≥ c(k0 + u)2. (5-12)
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Hence

∥(ṽ − vX )23∥L1(X ϵ
1 ) ≤ C

∫ k0/2

0
e−ct (k0+u)2

du = C
∫ 3k0/2

k0

e−ctv2
dv ≤ Ce−ctk2

0

and

∥(ṽ − vX )23∥L∞(X ϵ
1 ) ≤ C sup

u≥0
e−ct (k0+u)2

≤ Ce−ctk2
0 .

To estimate ∂x(ṽ − vX )23, we first note that

∂x(ṽ − vX )23 = a1 + a2 + a3 + a4 + a5,

where

a1 = −∂x

(
δ1δ3

δ2
5

)
d1/2

0 r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0),

a2 = −
δ1δ3

δ2
5

∂x(d
1/2
0 )r∗

2,a(ωk)e−t832e−(t/2)821(ζ,k0),

a3 = −
δ1δ3

δ2
5

d1/2
0 ∂x(r∗

2,a(ωk))e−t832e−(t/2)821(ζ,k0),

a4 = −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)∂x(e−t832)e−(t/2)821(ζ,k0),

a5 = −
δ1δ3

δ2
5

d1/2
0 r∗

2,a(ωk)e−t832∂x(e−(t/2)821(ζ,k0)).

We claim that ∥aj∥(L1∩L∞)(X ϵ
1 ) ≤ Ce−ctk2

0 for j = 1, . . . , 5. These bounds follow from arguments which
are similar to those given for (ṽ−vX )23, but more estimates are required. For a1, we note that ∂x(δ1δ3/δ

2
5)

has a pole at k = k0 (see (4-19)) which is canceled by the zero of r∗

2,a(ωk) (see (4-4a)). For a2 and a3, we
use (5-6b) and (4-4b), respectively. For a4, we note that ∂x(t832) = ∂ζ (832) = (1 − ω)k, and for a5, we
observe that ∂x(t821(ζ, k0)) =

1
2∂k0821(ζ, k0) = ω(ω − 1)k0. Therefore, we arrive at

∥∂x(ṽ − vX )23∥(L1∩L∞)(X ϵ
1 ) ≤ Ce−ctk2

0 .

We next consider the (21)-entry of ṽ−vX. Since q = r1(k0), from (4-4e) it follows r̂∗

1,a(k0) = r̂∗

1 (k0) =

q̄/(1 − |q|
2). Furthermore,

e(t/4)|Re 821(ζ,k)|
= e(t/4)|Re(821(ζ,k)−821(ζ,k0))| = e(1/4)|Re(i z2/2)|

≤ e|z|2/8.

Thus |(ṽ − vX )21| can be estimated as

|(ṽ − vX )21| = |e−2iν ln0(z)d−1
1 r̂∗

1,a(k)ei z2/2
− r̂∗

1,a(k0)e−2iν ln0(z)ei z2/2
|

= |e−2iν ln0(z)||(d−1
1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))||ei z2/2
|

≤ C(|d−1
1 − 1||r̂∗

1,a(k)| + |r̂∗

1,a(k) − r̂∗

1 (k0)|)e−|z|2/2.

≤ C(|d−1
1 − 1| + |k − k0|)e(t/4)|Re 821(ζ,k)|e−|z|2/2.

≤ C(|d−1
1 − 1| + |k − k0|)e−ct |k−k0|

2
, k ∈ X ϵ

1 ,
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where we have used (4-4e) and (4-4f). Utilizing (5-7a), this gives

|(ṽ − vX )21| ≤ C |k − k0|(1 + |ln |k − k0||)e−ct |k−k0|
2
, k ∈ X ϵ

1 .

Hence
∥(ṽ − vX )21∥L1(X ϵ

1 ) ≤ C
∫ ∞

0
u(1 + |ln u|)e−ctu2

du ≤ Ct−1 ln t

and
∥(ṽ − vX )21∥L∞(X ϵ

1 ) ≤ C sup
u≥0

u(1 + |ln u|)e−ctu2
≤ Ct−1/2 ln t.

To analyze ∂x(ṽ − vX )21, we split it into three parts as follows:

∂x(ṽ − vX )21 = b1 + b2 + b3,

where
b1 = ∂x(e−2iν ln0(z))

(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
ei z2/2,

b2 = e−2iν ln0(z)∂x
(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
ei z2/2,

b3 = e−2iν ln0(z)
(
(d−1

1 − 1)r̂∗

1,a(k) + (r̂∗

1,a(k) − r̂∗

1,a(k0))
)
∂x ei z2/2.

For b1, we use that |∂x(e−2iν ln0(z))| ≤ C/(t (k − k0)) for k ∈ X ϵ
1 , and thus, by (4-4),

∥b1∥L1(X ϵ
1 ) ≤ Ct−1

∫ ∞

0
(1 + ln u)e−ctu2

du ≤ Ct−3/2 ln t,

∥b1∥L∞(X ϵ
1 ) ≤ Ct−1 sup

u≥0
(1 + ln u)e−ctu2

≤ Ct−1 ln t.

The norms of b2 and b3 are estimated in a similar way. This completes the proof of (5-8).
The variable z goes to infinity as t → ∞ if k ∈ ∂ Dϵ(k0), because

|z| = 31/4
√

2t |k − k0|.

Thus (A-3) yields

m X (q(ζ ), z(ζ, k)) = I +
m X

1 (q(ζ ))

31/4
√

2t(k − k0)
+ O(t−1), t → ∞,

uniformly with respect to k ∈ ∂ Dϵ(k0) and ζ ∈ I, and this asymptotic formula can be differentiated with
respect to x without increasing the error term. Recalling the definition (5-4) of mk0, this gives

(mk0)−1
− I = −

Y (ζ, t)m X
1 (q(ζ ))Y (ζ, t)−1

31/4
√

2t(k − k0)
+ O(t−1), t → ∞, (5-13)

uniformly for k ∈ ∂ Dϵ(k0) and ζ ∈ I. In view of (5-5), the asymptotics (5-13) can be differentiated with
respect to x . This proves (5-9). Equation (5-10) follows from (5-13) and Cauchy’s formula. □

6. A small-norm RH problem

We use the symmetry
mk0(x, t, k) = Amk0(x, t, ωk)A−1
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0̂

1

3 4

5

6

7 8k0

ωk0

ω2k0

Figure 12. The contour 0̂ = 0(3)
∪ ∂D in the complex k-plane.

to extend the domain of definition of mk0 from Dϵ(k0) to D, where we recall that D= Dϵ(k0)∪ωDϵ(k0)∪

ω2 Dϵ(k0). We will show that the solution m̂(x, t, k) defined by

m̂ =

{
m(3)(mk0)−1, k ∈ D,

m(3), elsewhere,

is small for large t . Let 0̂ = 0(3)
∪ ∂D be the contour displayed in Figure 12 and define the jump

matrix v̂ by

v̂ =


v(3), k ∈ 0̂ \D,

(mk0)−1, k ∈ ∂D,

mk0
−v(3)(mk0

+ )−1, k ∈ 0̂ ∩D.

The function m̂ satisfies the following RH problem.

RH problem 6.1 (RH problem for m̂). Find a 3 × 3-matrix-valued function m̂(x, t, · ) ∈ I + Ė3(C \ 0̂)

such that m̂+(x, t, k) = m̂−(x, t, k)v̂(x, t, k) for a.e. k ∈ 0̂.

Let X̂ ϵ denote the union of the cross X ϵ and its images under the maps k 7→ ωk and k 7→ ω2k, i.e.,
X̂ ϵ

= X ϵ
∪ ωX ϵ

∪ ω2X ϵ. Define the contour 0′ by

0′
= 0̂ \ (0 ∪ X̂ ϵ

∪ ∂D).

Lemma 6.2. Let ŵ = v̂ − I . The following estimates hold uniformly for t ≥ 2 and ζ ∈ I:

∥(1 + | · |)∂ l
x ŵ∥(L1∩L∞)(0) ≤

C
k0t

, (6-1a)

∥(1 + | · |)∂ l
x ŵ∥(L1∩L∞)(0′) ≤ Ce−ct , (6-1b)
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∥∂ l
x ŵ∥(L1∩L∞)(∂D) ≤ Ct−1/2, (6-1c)

∥∂ l
x ŵ∥L1(X̂ ϵ

) ≤ Ct−1 ln t, (6-1d)

∥∂ l
x ŵ∥L∞(X̂ ϵ

) ≤ Ct−1/2 ln t, (6-1e)
with l = 0, 1.

Proof. Using that ∂ l
ζ mk0

± and its inverse are uniformly bounded for k ∈ 0̂ ∩D and l = 0, 1, the estimate
(6-1a) follows from Lemma 4.7.

The contour 0′ consists of the set
(⋃4

j=1 0
(3)
j

)
\D and the images of this set under the rotations k 7→ ωk

and k 7→ ω2k. We estimate the L1 and L∞ norms of (1+|· |)∂ l
x ŵ on 0

(3)
j \D for j = 1; similar arguments

apply when j = 2, 3, 4, and (6-1b) then follows by symmetry. We parametrize 0
(3)
1 \D by k = k0 +ueπ i/4,

u > k0/2. Only the (21) and (23) elements of ŵ = v
(3)
1 − I are nonzero. Using (4-4a), (4-14), and (5-12),

the (23)-entry can be estimated as

|ŵ23(x, t, k0 + ueπ i/4)| ≤ C |r∗

2,a(ωk)|e−t832 ≤ Ce−(3t/4)832 ≤ Ce−ct (k0+u)2
.

The analysis of |∂x ŵ23| is similar. Using (4-4e), (4-14), and the identity

Re 821(ζ, k0 + ueπ i/4) = −
√

3u2, u ≥ 0, (6-2)

the (21)-entry can be estimated as

|ŵ21(x, t, k0 + ueπ i/4)| ≤ C |r̂∗

1,a|e
t821 ≤ Cect821 ≤ Ce−ctu2

, u ≥ 0.

Using in addition (4-4f) and (4-19), we conclude that |∂x ŵ21(x, t, k0 + ueπ i/4)| ≤ Ce−ctu2
. Hence

|∂ l
x ŵ(x, t, k0 + ueπ i/4)| ≤ Ce−ctu2

, u > k0/2, l = 0, 1.

It follows that the L1 and L∞ norms of (1 + | · |)∂ l
x ŵ, l = 0, 1, are O(e−ct) as t → ∞ on 0

(3)
1 \D. This

proves (6-1b).
The estimates in (6-1c) are immediate from (5-9).
For k ∈ X ϵ , we have ŵ = mk0

− (v(3)
− vk0)(mk0

+ )−1, so (6-1d) and (6-1e) follow from (5-8) combined
with the fact that ∂ l

ζ mk0
± and its inverse are uniformly bounded for k ∈ 0̂ ∩D and l = 0, 1. □

For a function h defined on 0̂, the Cauchy transform Ĉh is defined by

(Ĉh)(z) =
1

2π i

∫
0̂

h(z′)dz′

z′ − z
, z ∈ C \ 0̂.

If h ∈ L̇3(0̂), then Ĉh ∈ Ė3(C \ 0̂), and the left and right nontangential boundary values of Ĉh, which we
denote by Ĉ+h and Ĉ−h respectively, exist a.e. on 0̂ and belong to L̇3(0̂); furthermore, Ĉ± ∈ B(L̇3(0̂))

and Ĉ+ − Ĉ− = I , where B(L̇3(0̂)) denotes the space of bounded linear operators on L̇3(0̂); see [Lenells
2018, Theorems 4.1 and 4.2].

The estimates in Lemma 6.2 show that{
∥(1 + | · |)∂ l

x ŵ∥L1
(0̂)

≤ Ct−1/2,

∥(1 + | · |)∂ l
x ŵ∥L∞(0̂) ≤ Ct−1/2 ln t,

t ≥ 2, ζ ∈ I, l = 0, 1, (6-3)
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and hence, employing the general identity ∥ f ∥L p ≤ ∥ f ∥
1/p
L1 ∥ f ∥

(p−1)/p
L∞ ,

∥(1 + | · |)∂ l
x ŵ∥L p(0̂) ≤ Ct−1/2(ln t)(p−1)/p, t ≥ 2, ζ ∈ I, l = 0, 1, (6-4)

for each 1 ≤ p ≤ ∞. The estimates (6-4) imply that ŵ ∈ L̇3(0̂) ∩ L∞(0̂). We define Ĉŵ = Ĉŵ(x,t,· ) :

L̇3(0̂) + L∞(0̂) → L̇3(0̂) by Ĉŵh := Ĉ−(hŵ).

Lemma 6.3. There exists a T > 0 such that I − Ĉŵ(x,t,· ) ∈ B(L̇3(0̂)) is invertible whenever t ≥ T and
ζ ∈ I.

Proof. Let K := ∥Ĉ−∥B(L̇3(0̂)). For each h ∈ L̇3(0̂), we have ∥Ĉŵh∥L̇3(0̂) ≤ K∥ŵ∥L∞(0̂)∥h∥L̇3(0̂), and
thus ∥Ĉŵ∥B(L̇3(0̂)) ≤ K∥ŵ∥L∞(0̂). By (6-3), there exists a T > 0 such that ∥ŵ∥L∞(0̂) < K −1 for t ≥ T. □

In view of Lemma 6.3, we may define µ̂(x, t, k) for k ∈ 0̂, t ≥ T, and ζ = x/t ∈ I by

µ̂ = I + (I − Ĉŵ)−1Ĉŵ I ∈ I + L̇3(0̂). (6-5)

Lemma 6.4. For t ≥ T and ζ ∈ I, there exists a unique solution m̂ ∈ I + Ė3(C \ 0̂) of RH problem 3.1.
This solution is given by

m̂(x, t, k) = I + Ĉ(µ̂ŵ) = I +
1

2π i

∫
0̂

µ̂(x, t, s)ŵ(x, t, s) ds
s−k

. (6-6)

Proof. Since ŵ ∈ L̇3(0̂) ∩ L∞(0̂), this follows from [Lenells 2018, Proposition 5.8]. □

Lemma 6.5. Let 1 < p < ∞. For all sufficiently large t , we have

∥∂ l
x(µ̂ − I )∥L p(0̂) ≤ Ct−1/2(ln t)(p−1)/p, l = 0, 1, ζ ∈ I.

Proof. Let K p := ∥Ĉ−∥B(L p(0̂)) < ∞ and assume t is so large that ∥ŵ∥L∞(0̂) < K −1
p . Standard estimates

using the Neumann series show that

∥µ̂ − I∥L p(0̂) ≤

∞∑
j=1

∥Ĉŵ∥
j−1
B(L p(0̂))

∥Ĉŵ I∥L p(0̂) ≤

∞∑
j=1

K j
p∥ŵ∥

j−1
L∞(0̂)

∥ŵ∥L p(0̂) =
K p∥ŵ∥L p(0̂)

1 − K p∥ŵ∥L∞(0̂)

.

The claim for l = 0 now follows from (6-3) and (6-4). Using that

∂x(µ̂ − I ) = ∂x

∞∑
j=1

(Ĉŵ) j I =

∞∑
j=1

[(∂x Ĉŵ)Ĉŵ · · · Ĉŵ + · · · + Ĉŵ · · · Ĉŵ(∂x Ĉŵ)]I,

we find

∥∂x(µ̂−I )∥L p(0̂) ≤

∞∑
j=2

( j−1)∥Ĉŵ∥
j−2
B(L p(0̂))

∥∂x Ĉŵ∥B(L p(0̂))∥Ĉŵ I∥L p(0̂)+

∞∑
j=1

∥Ĉŵ∥
j−1
B(L p(0̂))

∥∂x Ĉŵ I∥L p(0̂)

≤ C
∞∑
j=2

j K j−2
p ∥ŵ∥

j−2
L∞(0̂)

∥∂x ŵ∥L∞(0̂)∥ŵ∥L p(0̂)+

∞∑
j=1

K j
p∥ŵ∥

j−1
L∞(0̂)

∥∂x ŵ∥L p(0̂)

≤ C
∥∂x ŵ∥L∞(0̂)∥ŵ∥L p(0̂)+∥∂x ŵ∥L p(0̂)

1−K p∥ŵ∥L∞(0̂)

and the claim for l = 1 follows from another application of (6-3) and (6-4). □
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6A. Asymptotics of m̂. The following nontangential limit exists as k → ∞:

L(x, t) :=

̸

lim
k→∞

k(m̂(x, t, k) − I ) = −
1

2π i

∫
0̂

µ̂(x, t, k)ŵ(x, t, k) dk.

Lemma 6.6. As t → ∞,

L(x, t) = −
1

2π i

∫
∂D

ŵ(x, t, k) dk + O(t−1 ln t) (6-7)

and (6-7) can be differentiated termwise with respect to x without increasing the error term.

Proof. Since

L(x, t) = −
1

2π i

∫
∂D

ŵ(x, t, k) dk + L1(x, t) + L2(x, t),

where

L1(x, t) = −
1

2π i

∫
0̂\∂D

ŵ(x, t, k) dk, L2(x, t) = −
1

2π i

∫
0̂

(µ̂(x, t, k) − I )ŵ(x, t, k) dk,

the lemma follows from Lemmas 6.2 and 6.5 and straightforward estimates. □

We infer from (5-10) that the function F defined by

F(ζ, t) = −
1

2π i

∫
∂ Dϵ(k0)

ŵ(x, t, k) dk = −
1

2π i

∫
∂ Dϵ(k0)

((mk0)−1
− I ) dk

satisfies

F(ζ, t) =
Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1

31/4
√

2
√

t
+ O(t−1 ln t) as t → ∞.

The symmetry properties of v̂ imply that both Am̂(x, t, ωk)A−1 and m̂(x, t, k) satisfy RH problem 6.1;
by uniqueness they must be equal, i.e.,

m̂(x, t, k) = Am̂(x, t, ωk)A−1, k ∈ C \ 0̂.

It follows that µ̂ and ŵ also obey this symmetry. Using this in (6-7), we find that the leading contribution
from ∂D to the right-hand side of (6-7) is

−
1

2π i

∫
∂D

ŵ(x, t, k) dk = −
1

2π i

(∫
∂ Dϵ(k0)

+

∫
ω∂ Dϵ(k0)

+

∫
ω2∂ Dϵ(k0)

)
ŵ(x, t, k) dk

= F(ζ, t) + ωA−1 F(ζ, t)A+ ω2A−2 F(ζ, t)A2.

Therefore, (6-7) implies that

∂ l
x lim

k→∞

k(m̂(x, t, k) − I )

= ∂ l
x

(∑2
j=0 ω jA− j Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1A j

31/4
√

2
√

t

)
+ O(t−1 ln t), t → ∞, l = 0, 1, (6-8)

uniformly for ζ ∈ I.
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7. Asymptotics of u(x, t)

Recall from the discussion in Section 3 (see Proposition 3.4 and Lemma 3.5) that

u(x, t) = −
3
2

∂

∂x
(

lim
k→∞

k(n3(x, t, k) − 1)
)
,

where n = (ω, ω2, 1)m. Taking the transformations of Section 4 into account, we can write

m = m̂ H−11−1G−1

for all k ∈ C \D, where G, 1, H are defined in (4-8), (4-20), and (4-23), respectively. It follows that

u(x, t) = −
3
2

∂

∂x

̸

lim
k→∞

k(n̂3(x, t, k) − 1) −
3
2

d
dx

̸

lim
k→∞

k
(

δ5(ζ, k)

δ3(ζ, k)
− 1

)
, (7-1)

where n̂ = (ω, ω2, 1)m̂. Thus, utilizing (6-8) and the fact that 0(iν) = 0(−iν),

u(x, t) = −
3
2

d
dx

(
(ω ω2 1)

∑2
j=0 ω jA− j Y (ζ, t)m X

1 (q(ζ ))Y (ζ, t)−1A j

31/4
√

2
√

t

)
3
+ O(t−1 ln t)

= −
3
2

d
dx

(
ω2d−1

0 et821(ζ,k0)β21 + ωd0e−t821(ζ,k0)β12

31/4
√

2
√

t

)
+ O(t−1 ln t)

= −
3×2

2×31/4
√

2t
d

dx
Re(ω2d−1

0 et821(ζ,k0)β21) + O(t−1 ln t), t → ∞.

Using the identities

|0(iν)| =

√
2π

√
ν
√

eπν − e−πν
=

√
2π

√
νeπν/2|q|

,

δ−1
3 (ζ, k0)δ

−1
5 (ζ, k0) = exp

[
iν log(3k2

0) +
1
π i

∫ ∞

k0

log |ωk0 − s|d ln(1 − |r1(s)|2)
]
,

we conclude that, as t → ∞,

u(x, t)

= −
33/4
√

2t
d

dx
Re

{
√

ν exp
[

4π i
3

+iν ln(6
√

3tk2
0)−i

√
3k2

0 t

−
1
π i

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)+i

(
π

4
−argq−arg0(iν)

)]}
+O(t−1 ln t)

= −
33/4√ν
√

2t
d

dx
cos

(
19π

12
+ν ln(6

√
3tk2

0)−
√

3k2
0 t−argq

−arg0(iν)+
1
π

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)

)
+O(t−1 ln t)

= −
35/4k0

√
ν

√
2t

sin
(

19π

12
+ν ln(6

√
3tk2

0)−
√

3k2
0 t−argq

−arg0(iν)+
1
π

∫
∞

k0

ln
|s−k0|

|s−ωk0|
d ln(1−|r1(s)|2)

)
+O(t−1 ln t)

uniformly for ζ ∈ I. This proves (2-9) and completes the proof of Theorem 2.4.
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X1X2

X3 X4

0

Figure 13. The contour X = X1 ∪ X2 ∪ X3 ∪ X4 defined in (A-1).

Appendix: Exact solution on a cross

Let X = X1 ∪ · · · ∪ X4 ⊂ C be the cross defined by

X1 = {seiπ/4
| 0 ≤ s < ∞}, X2 = {se3iπ/4

| 0 ≤ s < ∞},

X3 = {se−3iπ/4
| 0 ≤ s < ∞}, X4 = {se−iπ/4

| 0 ≤ s < ∞},
(A-1)

and oriented away from the origin; see Figure 13. Let D ⊂ C denote the open unit disk and define the
function ν : D → (0, ∞) by ν(q) = −

1
2π

ln(1 − |q|
2). We consider the following family of RH problems

parametrized by q ∈ D.

RH problem A.1 (RH problem for m X ). Find a 3×3-matrix-valued function m X (q, z) with the following
properties:

(a) m X (q, · ) : C \ X → C3×3 is analytic.

(b) The limits of m X (q, z) as z approaches X \{0} from the left and right exist, are continuous on X \{0},
and are related by

m X
+
(q, z) = m X

−
(q, z)vX (q, z), k ∈ X \ {0},

where the jump matrix vX (q, z) is defined by 1 0 0
q̄

1−|q|2
z−2iν(q)ei z2/2 1 0

0 0 1

 if z ∈ X1,

1 qz2iν(q)e−i z2/2 0
0 1 0
0 0 1

 if z ∈ X2,

 1 0 0
−q̄z−2iν(q)ei z2/2 1 0

0 0 1

 if z ∈ X3,

1 −q
1−|q|2

z2iν(q)e−i z2/2 0

0 1 0
0 0 1

 if z ∈ X4,

(A-2)

with the branch cut running along the positive real axis, i.e., z2iν(q)
= e2iν(q) ln0(z).

(c) m X (q, z) = I + O(z−1) as z → ∞.

(d) m X (q, z) = O(1) as z → 0.
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The proof of the following lemma is standard and relies on deriving an explicit formula for the
solution m X in terms of parabolic cylinder functions [Its 1981].

Lemma A.2 (the solution m X ). The RH problem A.1 has a unique solution m X (q, z) for each q ∈ D.
This solution satisfies

m X (q, z) = I +
m X

1 (q)

z
+ O

(
1
z2

)
, z → ∞, q ∈ D, (A-3)

where the error term is uniform with respect to arg z ∈ [0, 2π ] and q in compact subsets of D, and the
function m X

1 (q) is defined by

m X
1 (q) =

 0 β12 0
β21 0 0
0 0 0

 , q ∈ D, (A-4)

where β12 and β21 are defined by

β12 =

√
2πe−π i/4e−5πν/2

q̄0(−iν)
, β21 =

√
2πeπ i/4e3πν/2

q0(iν)
, q ∈ D.

Moreover, for each compact subset K of D,

sup
q∈K

sup
z∈C\X

|∂ l
qm X (q, z)| < ∞, l = 0, 1.
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We prove a quantitative version of Obata’s theorem involving the shape of functions with null mean value
when compared with the cosine of distance functions from single points. The deficit between the diameters
of the manifold and of the corresponding sphere is bounded likewise. These results are obtained in the
general framework of (possibly nonsmooth) metric measure spaces with curvature-dimension conditions
through a quantitative analysis of the transport-ray decompositions obtained by the localization method.
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1. Introduction

One of the core topics in geometric analysis is the deep connection between the geometry of a domain (in
a possibly curved space) and spectral properties of the Laplacian defined on it.

The present paper focuses on the first eigenvalue λ1 of the Laplacian (with Neumann boundary
conditions, in case the domain has nonempty boundary). Since the Poincaré(–Wirtinger) inequality plays
an important role in analysis and since a lower bound of the first eigenvalue gives an upper bound of the
constant in the Poincaré(–Wirtinger) inequality, it is extremely useful to have a good lower estimate of λ1.

For domains in the Euclidean space, classical estimates of the first eigenvalue of the Laplacian (under
Dirichlet or Neumann boundary conditions) date back to Lord Rayleigh [1877], Faber [1923], Krahn
[1925], Pólya and Szegő [1951], and Payne and Weinberger [1960], among others. For curved spaces,
two major results are due to Lichnerowicz [1958] and Obata [1962]:

Theorem 1.1. Let (M, g) be an N-dimensional Riemannian manifold with Ricg ≥ (N −1)g. Then λ1 ≥ N
(Lichnerowicz spectral gap [1958]).

Moreover, λ1 = N if and only if (M, g) is isometric to the unit sphere SN (Obata’s theorem [1962]).
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Remark 1.2. On SN , the first eigenvalue λ1 = N has multiplicity N + 1. The corresponding eigenspace
is spanned by the restriction to SN of affine functions of RN+1 (i.e., an L2-orthogonal basis is composed
of the standard coordinate functions {x1, x2, . . . , x N+1

} of RN+1). Equivalently, a function u : SN
→ R

is a first eigenfunction normalized as ∥u∥L2(SN ) = 1 if and only if there exists P ∈ SN such that
u =

√
N + 1 cos dP , where we denote by dP the Riemannian distance from the point P.

Our main result is a quantitative spectral gap involving the shape of the eigenfunctions (or, more
generally, of functions with almost optimal Rayleigh quotient), when compared with the eigenfunctions
of the model space SN (as in Remark 1.2). In detail, we show that if Ricg ≥ (N − 1)g and u : M → R is
a first eigenfunction with ∥u∥L2(M) = 1, then there exists P ∈ M such that

∥u −
√

N + 1 cos dP∥L2(M) ≤ C(N )(λ1 − N )O(1/N ). (1-1)

More generally, the same conclusion holds for every Lipschitz function u : M → R with null mean value
and ∥u∥L2(M) = 1, provided λ1 on the right-hand-side is replaced by the Dirichlet energy

∫
M |∇u|

2 d volg.
We will prove (1-1) with tools of optimal transport tailored to study (possibly nonsmooth) metric

measure spaces satisfying Ricci curvature lower bounds and dimensional upper bounds in the synthetic
sense, the so-called CD(K , N ) spaces introduced in [Sturm 2006a; 2006b; Lott and Villani 2009]. For
the sake of this introduction, a metric measure space (m.m.s. for short) is a triple (X, d,m), where (X, d)

is a compact metric space and m is a Borel probability measure, playing the role of reference volume
measure. A CD(K , N ) space should be roughly thought of as a possibly nonsmooth metric measure
space having Ricci curvature bounded below by K ∈ R and dimension bounded above by N ∈ (1, ∞)

in the synthetic sense. The basic idea of the synthetic approach of Lott, Sturm and Villani is to analyze
weighted convexity properties of suitable entropy functionals along geodesics in the space of probability
measures endowed with the quadratic transportation (also known as Kantorovich–Wasserstein) distance.
An important technical assumption throughout the paper is the essentially nonbranching (“e.n.b.” for
short) property [Rajala and Sturm 2014], which roughly corresponds to requiring that the L2-optimal
transport between two absolutely continuous (with respect to the reference volume measure m) probability
measures is performed along geodesics which do not branch (for the precise definitions see Sections 2A
and 2B). Notable examples of spaces satisfying e.n.b. CD(K , N ) include (geodesically convex domains in)
smooth Riemannian manifolds with Ricci bounded below by K and dimension bounded above by N, their
measured Gromov–Hausdorff limits (i.e., the so-called “Ricci limits”) and more generally RCD(K , N )

spaces (i.e., CD(K , N ) spaces with linear Laplacian; see Remark 2.4 for more details), finite-dimensional
Alexandrov spaces with curvature bounded below, and Finsler manifolds endowed with a strongly convex
norm. A standard example of a space failing to satisfy the essentially nonbranching property is R2

endowed with the L∞ norm. Later in the introduction, when discussing the main steps of the proof, we
will mention how the essentially nonbranching assumption is used in our arguments.

We will establish our results directly on the more general class of e.n.b. CD(N −1, N ) metric measure
spaces. For an m.m.s. (X, d,m) we define the nonnegative real number λ

1,2
(X,d,m) as

λ
1,2
(X,d,m) := inf

{∫
X |∇u|

2 m∫
X |u|2 m

: u ∈ Lip(X) ∩ L2(X,m), u ̸= 0,

∫
X

u m = 0
}
, (1-2)
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where |∇u| is the slope (also called local Lipschitz constant) of the Lipschitz function u given by

|∇u|(x) =

{
lim supy→x |u(x) − u(y)|/d(x, y) if x is not isolated,

0 otherwise.

It is well known that, in case (X, d,m) is the m.m.s. corresponding to a smooth compact Riemannian
manifold (possibly with boundary) λ

1,2
(X,d,m) coincides with the first eigenvalue of the problem −1u = λu

with Neumann boundary conditions.
Considering the extension of (1-1) to e.n.b. CD(N −1, N ) spaces is natural: indeed a sequence (M j , g j )

of Riemannian N -manifolds with Ricg j ≥ (N − 1)g j where the right-hand side of (1-1) converges to
zero as j → ∞ may develop singularities and admits a limit (up to subsequences) in the measured
Gromov–Hausdorff sense to a possibly nonsmooth e.n.b. CD(N − 1, N ) space (actually the limit is, more
strongly, RCD(N − 1, N )).

In the enlarged class of e.n.b. CD(N − 1, N ) spaces (actually already for RCD(N − 1, N ) spaces),
Obata’s rigidity theorem must be modified:

• First of all, N ∈ (1, ∞) is a (possibly noninteger) real number.

• Even in the case when N is an integer, the round sphere SN is not anymore the only case of equality in
the Lichnerowicz spectral gap as the spherical suspensions achieve equality as well [Ketterer 2015].

A key geometric property of the spherical suspensions is that they have diameter π , thus saturating
Bonnet–Myers diameter upper bound. The first part of our main result is a quantitative control of how
close to π the diameter must be, in terms of the spectral gap deficit. The second part of the statement is
an L2-quantitative control of the shape of functions with almost optimal Rayleigh quotient. We can now
state our main theorem.

Theorem 1.3 (quantitative Obata’s theorem for e.n.b. CD(N − 1, N )-spaces). For every real number
N > 1 there exists a real constant C(N ) > 0 with the following properties: If (X, d,m) is an essen-
tially nonbranching metric measure space satisfying the CD(N − 1, N ) condition and m(X) = 1 with
supp(m) = X, then

π − diam(X) ≤ C(N )(λ
1,2
(X,d,m) − N )1/N . (1-3)

Moreover, for any Lipschitz function u : X → R with
∫

X u m = 0 and
∫

X u2 m = 1, there exists a
distinguished point P ∈ X such that

∥u −
√

N + 1 cos dP∥L2(X,m) ≤ C(N )

(∫
X
|∇u|

2 m− N
)η

, η =
1

6N +4
. (1-4)

Remark 1.4. Although Theorem 1.3 is formulated for e.n.b. CD(N − 1, N ) spaces, a statement for e.n.b.
CD(K , N ) spaces with K > 0 is easily obtained by scaling. Indeed, (X, d,m) satisfies CD(K , N ) if and
only if, for any α, β ∈ (0, ∞), the scaled metric measure space (X, αd, βm) satisfies CD(α−2K , N ); see
[Sturm 2006b, Proposition 1.4].

Let us compare Theorem 1.3 with related results in the literature. Under the standing assumption that
(M, g) is a smooth Riemannian N -manifold without boundary and with Ricg ≥ (N − 1)g:
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(1) It follows from Cheng’s comparison theorem [1975] that if λ
1,2
(M,g) is close to N then the diameter

of M must be close to π . Conversely, Croke [1982] proved that if the diameter is close to π then λ
1,2
(M,g)

must be close to N. Bérard, Besson and Gallot [Bérard et al. 1985] sharpened the diameter estimate of
Cheng by proving an estimate very similar to (1-3).

(2) Bertrand [2007] established the following stability result for eigenfunctions (see also [Petersen 1999]):
for every ϵ > 0 there exists δ > 0 such that if λ1 ≤ N +δ and u is an eigenfunction relative to λ1 normalized
so that

∫
M u2 d volg =volg(M), then there exists a point P ∈ M such that ∥u−

√
N + 1 cos dP∥L∞(X,m) ≤ ϵ.

Theorem 1.3 sharpens and extends the above results in various ways:

• The estimate (1-3) extends [Bérard et al. 1985] to e.n.b. CD(N − 1, N ) spaces. These spaces are
nonsmooth a priori and may have (convex) boundary. Actually, as the reader will realize, the claim (1-3)
will be proved in Section 4 along the way to proving the much harder (1-4), to which the entire Section 5
is devoted.

• The estimate (1-4) extends Bertrand’s stability [2007] to the more general class of e.n.b. CD(N −1, N )

spaces and to arbitrary functions (a priori not eigenfunctions) with Rayleigh quotient close to N. The fact
that u is an eigenfunction was key in [Bertrand 2007] in order to apply maximum principle and gradient
estimates in the spirit of [Li and Yau 1980]. Let us stress that our methods are completely different and
work for an arbitrary Lipschitz function satisfying a small energy condition but no PDE a priori.

Inequality (1-4) naturally fits in the framework of quantitative functional/geometric inequalities. A
basic result in this context is the quantitative Euclidean isoperimetric inequality proved by Fusco, Maggi
and Pratelli [Fusco et al. 2008] (see also [Figalli et al. 2010; Cicalese and Leonardi 2012] for different
proofs) stating that for every Borel set E ⊂ Rn of positive and finite volume there exists x̄ ∈ Rn such that

|E1BrE (x̄)|

|E |
≤ C(N )

(
P(E)

P(BrE (x̄))
− 1
)1/2

, (1-5)

where rE is such that |BrE (x̄)| = |E |. Quantitative results involving the spectrum of the Laplacian have
been proved for domains in Rn, among others, by Hansen and Nadirashvili [1994] in dimension 2, by
Melas [1992] for convex bodies, by Fusco, Maggi and Pratelli [Fusco et al. 2009] and Brasco, De Philippis
and Velichkov [Brasco et al. 2015] regarding quantitative forms of the Faber–Krahn inequality and by
Brasco and Pratelli [2012] regarding quantitative versions of the Krahn–Szegő and Szegő–Weinberger
inequalities. More recently, a quantitative version of the Lévy–Gromov isoperimetric inequality was
proved for essentially nonbranching CD(N − 1, N ) metric measure spaces in [Cavalletti et al. 2019], and
a quantitative isoperimetric inequality in the setting of smooth Riemannian manifolds was considered in
[Chodosh et al. 2023].

Taking variations in the broad context of metric measure spaces makes the prediction on the sharp
exponent η in (1-4) a hard task. Even formulating a conjecture is a challenging question and it could
actually be that η = O(1/N ) as N → ∞ is already sharp. In the direction of this guess, we notice that the
exponent 1/N in (1-3) is indeed optimal in the class of metric measure spaces, as a direct computation
on the model one-dimensional space ([0, D], | · |, sinN−1( · )L1) shows.
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Before discussing the main steps in the proof of Theorem 1.3, it is worth recalling remarkable examples
of spaces fitting in the assumptions of the result. Let us stress that our main theorem seems new in all of
them. The class of essentially nonbranching CD(N − 1, N ) spaces includes many notable families of
spaces, among them:

• Geodesically convex domains in (resp. weighted) Riemannian N -manifolds satisfying Ricg ≥ (N − 1)g
(resp. N -Bakry–Émery Ricci curvature bounded below by N − 1).

• Measured Gromov Hausdorff limits of Riemannian N-manifolds satisfying Ricg ≥ (N − 1)g (so-called
“Ricci limits”) and more generally the class of RCD(N − 1, N ) spaces. Indeed Ricci limits are examples
of RCD(N −1, N ) spaces (see for instance [Gigli et al. 2015]) and RCD(N −1, N ) spaces are essentially
nonbranching CD(N − 1, N ) (see [Rajala and Sturm 2014]).

• Alexandrov spaces with curvature ≥ 1. Petrunin [2011] proved that the synthetic curvature lower bound
in the sense of comparison triangles is compatible with the optimal transport lower bound on the Ricci
curvature of Lott, Sturm and Villani (see also [Zhang and Zhu 2010]). Moreover geodesics in Alexandrov
spaces with curvature bounded below do not branch. It follows that Alexandrov spaces with curvature
bounded from below by 1 and Hausdorff dimension at most N are nonbranching CD(N − 1, N ) spaces.

• Finsler manifolds with strongly convex norm, and satisfying Ricci curvature lower bounds. More
precisely we consider a C∞-manifold M , endowed with a function F : T M → [0, ∞] such that F |T M\{0}

is C∞ and for each x ∈ M it holds that Fx := Tx M → [0, ∞] is a strongly convex norm, i.e.,

gx
i j (v) :=

∂2(F2
x )

∂vi∂v j (v) is a positive definite matrix at every v ∈ Tx M \ {0}.

Under these conditions, it is known that one can write the geodesic equations and the geodesics do not
branch: in other words these spaces are nonbranching. We also assume (M, F) to be geodesically complete
and endowed with a C∞ probability measure m in such a way that the associated m.m.s. (X, F,m) satisfies
the CD(N − 1, N ) condition. This class of spaces has been investigated by Ohta [2009], who established
the equivalence between the curvature dimension condition and a Finsler version of the Bakry–Émery
N -Ricci tensor bounded from below.

An overview of the proof. The starting point of the proof of Theorem 1.3 is the metric-measure version
of the classical localization technique. First introduced by Payne and Weinberger [1960] for establishing
a sharp Poincaré–Wirtinger inequality for convex domains in Rn, the localization technique has been
developed into a general dimension-reduction tool for geometric inequalities in symmetric spaces by
Gromov and Milman [1987], Lovász and Simonovits [1993] and Kannan, Lovász and Simonovits [Kannan
et al. 1995]. More recently, Klartag [2017] used optimal transportation tools in order to extend the range
of applicability of the technique to general Riemannian manifolds. The extension to the metric setting
was finally obtained in [Cavalletti and Mondino 2017b]; see Section 2D.

Given a function u ∈ L1(X,m) with
∫

X u m = 0, the localization theorem (Theorem 2.10) gives a
decomposition of X into a family of one-dimensional sets {Xq}q∈Q formed by the transport rays of a Kan-
torovich potential associated to the optimal transport from the positive part of u (i.e., µ0 := max{u, 0}m)
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to the negative part of u (i.e., µ1 := max{−u, 0}m); each Xq is in particular isometric to a real interval.
A first key property of such a decomposition is that each ray Xq carries a natural measure mq (given by
the disintegration theorem) in such a way that

(Xq , d,mq) is a CD(N − 1, N ) space and
∫

Xq

u mq = 0, (1-6)

so that both the geometry of the space and the null mean value constraint are localized into a family
of one-dimensional spaces. An important ingredient used in the proof of such a decomposition is the
essentially nonbranching property which, coupled with CD(N − 1, N ) (actually the weaker measure
contraction would suffice here), guarantees that the rays form a partition of X (up to an m-negligible set).

In order to exploit (1-6), as a first step, in Section 3 we prove the one-dimensional counterparts of
Theorem 1.3. More precisely, given a one-dimensional CD(N −1, N ) space (I = [0, D], | · |,m) we show
that (Proposition 3.3)

π − D ≤ C(N )(λ
1,2
(I,| · |,m) − N )1/N , (1-7)

and that, if u ∈ Lip(I ) satisfies
∫

u m = 0 and
∫

u2 m = 1, then (Theorem 3.11)

min{∥u −
√

N + 1 cos( · )∥L2(m), ∥u +
√

N + 1 cos( · )∥L2(m)} ≤ C
(∫

|u′
|
2 m− N

)min{1/2,1/N }

. (1-8)

Combining (1-6) and (1-7), it is not hard to prove (see Theorem 4.3) the first claim (1-3) of Theorem 1.3.
Actually, calling Qℓ (for “Q long”) the set of indices for which |Xq | ≃ π , we aim to show that q(Qℓ) ≃ 1
(i.e., “most rays are long”). As we will discuss in a few lines, this is far from being trivial (in particular, it
needs new ideas when compared with [Cavalletti et al. 2019]).

A second crucial property of the decomposition {Xq}q∈Q , inherited by the variational nature of the
construction, is the so-called cyclical monotonicity. This was key in [Cavalletti et al. 2019] for showing
that, for q ∈ Qℓ, the transport ray Xq has its starting point close to a fixed “south pole” PS , and ends up
near a fixed “north pole” PN (in particular, the distance between PS and PN is close to π ) (Proposition 5.1).

Then we observe that (1-8) forces, for q ∈ Qℓ, the fiber uq := u⌞Xq (that is the restriction of u to the
corresponding one-dimensional element of the partition) to be L2 close to a multiple of the cosine of the
arclength parametrization along the ray Xq , i.e.,

uq( · ) ≃ cq
√

N + 1 cos( · ) along Xq , where cq = ∥uq∥L2(mq ) for q ∈ Qℓ (see (5-13)). (1-9)

The difficulties in order to conclude the proof are mainly two, and are strictly linked:

(1) Show that Qℓ ∋ q 7→ cq is almost constant.

(2) Show that q(Qℓ) ≃ 1.

Let us stress that at this stage the only given information is that
∫

Qℓ
c2

q q ≃ 1. The intuition why (1) and
(2) should hold is that an oscillation of cq would correspond to an oscillation of u “orthogonal to the
transport rays”, which would be expensive in terms of Dirichlet energy of u. The proofs of the two claims
are the most technical part of the work and correspond respectively to Propositions 5.2 and 5.3.
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Let us mention that the two difficulties (1) and (2) were not present in the proof of the quantitative
Lévy–Gromov inequality in [Cavalletti et al. 2019], where it was sufficient to work with characteristic
functions (which have a fixed scale, i.e., they are either 0 or 1).

2. Background material

The goal of this section is to fix the notation and to recall the basic notions/constructions used throughout
the paper: in Section 2A we review geodesics in the Wasserstein distance, in Section 2B curvature-
dimension conditions, in Section 2C some basics of CD(K , N ) densities on segments of the real line,
and in Section 2D the decomposition of the space into transport rays (localization).

2A. Geodesics in the L2-Kantorovich–Wasserstein distance. Let (X, d) be a compact metric space and m

a Borel probability measure over X. The triple (X, d,m) is called metric measure space, m.m.s. for short.
The space of all Borel probability measures over X will be denoted by P(X). We define the

L2-Kantorovich–Wasserstein distance W2 between two measures µ0, µ1 ∈ P(X) as

W2(µ0, µ1)
2
= inf

π

∫
X×X

d2(x, y) π(dx dy), (2-1)

where the infimum is taken over all π ∈P(X × X) with µ0 and µ1 as the first and the second marginal, i.e.,
(P1)♯π = µ0, (P2)♯π = µ1. Of course Pi , i = 1, 2, denotes the projection on the first and second factors,
respectively, and (Pi )♯ is the corresponding push-forward map on measures. As (X, d) is complete,
(P(X), W2) is also complete.

The space of geodesics of (X, d) is denoted by

Geo(X) := {γ ∈ C([0, 1], X) : d(γs, γt) = |s − t |d(γ0, γ1) for every s, t ∈ [0, 1]}.

A metric space (X, d) is said to be a geodesic space if and only if for each x, y ∈ X there exists γ ∈ Geo(X)

such that γ0 = x , γ1 = y. A basic fact of W2 geometry is that if (X, d) is geodesic then (P(X), W2) is
geodesic as well. For any t ∈ [0, 1], let et denote the evaluation map:

et : Geo(X) → X, et(γ ) := γt .

Any geodesic (µt)t∈[0,1] in (P(X), W2) can be lifted to a measure ν ∈ P(Geo(X)), called a dynamical
optimal plan, such that (et)♯ ν =µt for all t ∈ [0, 1]. Given µ0, µ1 ∈P(X), we denote by OptGeo(µ0, µ1)

the space of all ν ∈ P(Geo(X)) for which (e0, e1)♯ ν realizes the minimum in (2-1). Here as usual ♯

indicates the push-forward operation. If (X, d) is geodesic, then the set OptGeo(µ0, µ1) is nonempty for
any µ0, µ1 ∈ P(X).

A set F ⊂ Geo(X) is a set of nonbranching geodesics if and only if for any γ 1, γ 2
∈ F , it holds

there exists t̄ ∈ (0, 1) such that, for all t ∈ [0, t̄ ], γ 1
t = γ 2

t =⇒ γ 1
s = γ 2

s for all s ∈ [0, 1].

A measure µ on a measurable space (�,F) is said to be concentrated on F ⊂ � if there exists E ⊂ F
with E ∈ F so that µ(� \ E) = 0. With this terminology, we next recall the definition of essentially
nonbranching space from [Rajala and Sturm 2014].
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Definition 2.1. A metric measure space (X, d,m) is essentially nonbranching if and only if for any
µ0, µ1 ∈ P(X), with µ0, µ1 absolutely continuous with respect to m, any element of OptGeo(µ0, µ1) is
concentrated on a set of nonbranching geodesics.

2B. Curvature-dimension conditions for metric measure spaces. The L2-transport structure described
in Section 2A allows us to formulate a generalized notion of Ricci curvature lower bound coupled with a
dimension upper bound in the context of possibly nonsmooth metric measure spaces. This corresponds to
the CD(K , N ) condition introduced in the seminal works of Sturm [2006a; 2006b] and Lott and Villani
[2009], which here is reviewed only for a compact m.m.s. (X, d,m) with m∈P(X) and in the case K > 0,
1 < N < ∞ (the basic setting of the present paper).

For N ∈ (1, ∞), the N-Rényi relative-entropy functional EN : P(X) → [0, 1] is defined as

EN (µ) :=

∫
ρ1−1/N dm,

where µ = ρm+ µsing is the Lebesgue decomposition of µ with µsing
⊥ m.

Given K ∈ (0, ∞), N ∈ (1, ∞), and t ∈ [0, 1], define σ
(t)
K ,N : [0, ∞) → [0, ∞] as

σ
(t)
K ,N (0) := t,

σ
(t)
K ,N (θ) := sin(tθ

√
K/N )/sin(θ

√
K/N ) if 0 < θ < π/

√
K/N ,

σ
(t)
K ,N (θ) := +∞ otherwise.

(2-2)

Set also
τ

(t)
K ,N (θ) := t1/N σ

(t)
K ,N−1(θ)1−1/N . (2-3)

Definition 2.2 (CD(K , N )). An m.m.s. (X, d,m) is said to satisfy CD(K , N ) if for all µ0, µ1 ∈ P(X)

absolutely continuous with respect to m there exists ν ∈ OptGeo(µ0, µ1) so that for all t ∈ [0, 1] it holds
µt := (et)#ν ≪ m and

EN ′(µt) ≥

∫
X×X

(
τ

(1−t)
K ,N ′ (d(x0, x1))ρ

−1/N ′

0 (x0) + τ
(t)
K ,N ′(d(x0, x1))ρ

−1/N ′

1 (x1)
)
π(dx0, dx1) (2-4)

for all N ′
≥ N, where π = (e0, e1)♯(ν) and µi = ρim, i = 0, 1.

If (X, d,m) satisfies the CD(K , N ) condition then the same is valid for (supp(m), d,m); hence we
directly assume X = supp(m).

For the general definition of CD(K , N ) see [Lott and Villani 2009; Sturm 2006a; 2006b].

Remark 2.3 (case of a smooth Riemannian manifold). It is worth recalling that if (M, g) is a Riemannian
manifold of dimension n and h ∈ C2(M) with h > 0 then, denoting by dg and volg the Riemannian
distance and volume measure, the m.m.s. (M, dg, h volg) satisfies CD(K , N ) with N ≥ n if and only if
(see [Sturm 2006b, Theorem 1.7])

Ricg,h,N ≥ K g, Ricg,h,N := Ricg −(N − n)
∇

2
gh1/(N−n)

h1/(N−n)
,

in other words if and only if the weighted Riemannian manifold (M, g, h volg) has N -Bakry–Émery
Ricci tensor bounded below by K . Note that if N = n, the Bakry–Émery Ricci tensor Ricg,h,N = Ricg

makes sense only if h is constant. □
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Remark 2.4 (CD∗(K , N ), RCD∗(K , N ) and RCD(K , N )). The lack of the local-to-global property
of the CD(K , N ) condition (for K/N ̸= 0) led Bacher and Sturm [2010] to introduce the reduced
curvature-dimension condition, denoted by CD∗(K , N ). The CD∗(K , N ) condition asks for the same
inequality (2-4) of CD(K , N ) to hold but the coefficients τ

(s)
K ,N (d(γ0, γ1)) are replaced by the slightly

smaller σ
(s)
K ,N (d(γ0, γ1)). Let us explicitly notice that, in general, CD∗(K , N ) is weaker than CD(K , N ).

A subsequent breakthrough in the theory was obtained with the introduction of the Riemannian curvature
dimension condition RCD(K , N ): in the infinite-dimensional case N = ∞ this condition was introduced
in [Ambrosio et al. 2014] (for finite measures m, and in [Ambrosio et al. 2015] for σ -finite ones). The
finite-dimensional refinements RCD(K , N )/ RCD∗(K , N ) with N < ∞ were subsequently studied in
[Gigli 2015; Erbar et al. 2015; Ambrosio et al. 2019]. We refer to these articles as well as to the survey
papers [Ambrosio 2018; Villani 2019] for a general account on the synthetic formulation of Ricci curvature
lower bounds, in particular of the latter Riemannian-type. Here we only briefly recall that it is a stable
[Gigli et al. 2015] strengthening of the (resp. reduced) curvature-dimension condition: an m.m.s. satisfies
RCD(K , N ) (resp. RCD∗(K , N )) if and only if it satisfies CD(K , N ) (resp. CD∗(K , N )) and the Sobolev
space W 1,2(X,m) is a Hilbert space (with the Hilbert structure induced by the Cheeger energy).

To conclude we recall also that recently, the first author together with E. Milman [Cavalletti and Milman
2021] proved the equivalence of CD(K , N ) and CD∗(K , N ), together with the local-to-global property
for CD(K , N ), in the framework of essentially nonbranching m.m.s. having m(X) < ∞. As we will
always assume the aforementioned properties to be satisfied by our ambient m.m.s. (X, d,m), we will use
both formulations with no distinction. It is worth also mentioning that an m.m.s. satisfying RCD∗(K , N )

is essentially nonbranching (see [Rajala and Sturm 2014, Corollary 1.2]), implying also the equivalence
of RCD∗(K , N ) and RCD(K , N ) (see [Cavalletti and Milman 2021] for details). □

We shall always assume that the m.m.s. (X, d,m) is essentially nonbranching and satisfies CD(K , N )

for some K > 0, N ∈ (1, ∞) with supp(m) = X. It follows that (X, d) is a geodesic and compact
metric space. More precisely: note we assumed from the beginning (X, d) to be compact for the sake
of simplicity; however, such an assumption could have been replaced by completeness and separability
throughout Sections 2A and 2B, but compactness would have been now a consequence of CD(K , N ) for
some K > 0, N ∈ (1, ∞).

A useful property of essentially nonbranching CD(K , N ) spaces is the validity of a weak local Poincaré
inequality.

Proposition 2.5 (weak local Poincaré inequality). Let (X, d,m) be an essentially nonbranching CD(K , N )

space for some K ≥ 0, N > 1. For every u ∈ Lip(X) it holds

/
∫

Br (x)

∣∣∣∣u − /
∫

Br (x)

u
∣∣∣∣m ≤ 2N+2r /

∫
B2r (x)

|∇u|m. (2-5)

More generally, for every p ≥ 1 there exists C p,N such that

/
∫

Br (x)

∣∣∣∣u − /
∫

Br (x)

u
∣∣∣∣p

m ≤ C p,N r p /
∫

B10r (x)

|∇u|
pm. (2-6)
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Proof. It is well known that, in essentially nonbranching CD(K , N ) spaces, the W2 geodesic connecting
two absolutely continuous probability measures is unique (indeed, it holds more generally for essentially
nonbranching MCP(K , N ) spaces [Cavalletti and Mondino 2017a, Theorem 1.1]). Thus, (X, d,m) as in
the assumptions enters the framework of [Rajala 2012, Corollary 1] and (2-5) follows.

Recalling that by the Bishop–Gromov inequality [Sturm 2006b, Theorem 2.3] it holds

m(Bρ(x0))

m(B1(x0))
≥ CN ρN

for every ρ ∈ [0, 1], x0 ∈ X, the second claim (2-6) is a consequence of (2-5) and [Hajłasz and Koskela
2000, Theorem 5.1]. □

2C. CD(K, N) densities on segments of the real line. We will use several times the following terminol-
ogy: recalling the coefficients σ from (2-2), a nonnegative function h defined on an interval I ⊂ R is
called a CD(K , N ) density on I , for K ∈ R and N ∈ (1, ∞), if for all x0, x1 ∈ I and t ∈ [0, 1]

h(t x1 + (1 − t)x0)
1/(N−1)

≥ σ
(t)
K ,N−1(|x1 − x0|)h(x1)

1/(N−1)
+ σ

(1−t)
K ,N−1(|x1 − x0|)h(x0)

1/(N−1). (2-7)

The link with the definition of CD(K , N ) for an m.m.s. can be summarized as follows (see for instance
[Cavalletti and Milman 2021, Theorem A.2]): if h is a CD(K , N ) density on an interval I ⊂ R then the
m.m.s. (I, | · |, h(t) dt) satisfies CD(K , N ); conversely, if the m.m.s. (R, | · |, µ) satisfies CD(K , N ) and
I = supp(µ) is not a point, then µ ≪ L1 and there exists a representative of the density h = dµ/dL1

which is a CD(K , N ) density on I.
A CD(K , N ) density h defined on an interval I ⊂ R satisfies the following properties:

• h is lower semicontinuous on I and locally Lipschitz continuous in its interior (this is easily reduced to
the corresponding statement for concave functions on I ).

• h is strictly positive in the interior of I whenever it does not vanish identically (this follows directly
from the definition (2-7)).

• h is locally semiconcave in the interior of I, i.e., for all x0 in the interior of I, there exists Cx0 ∈ R so
that x 7→ h(x) − Cx0(x − x0)

2 is concave in a neighborhood of x0. In particular, h is twice differentiable
in I with at most countably many exceptions.

As proven in [Cavalletti and Milman 2021, Lemma A.5], if h is a CD(K , N ) density on an interval I
then at any point x in the interior where it is twice differentiable (thus up to at most countably many
exceptions) it holds

(log h)′′(x) +
1

N −1
((log h)′(x))2

= (N − 1)
(h1/(N−1))′′(x)

h1/(N−1)(x)
≤ −K . (2-8)

Also the converse implication holds; see [Cavalletti and Milman 2021, Lemma A.6] for the proof and the
precise statement.
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We next recall some estimates on CD(N −1, N ) densities, which will turn out to be useful in the paper.
Let hN be the model density for the CD(N − 1, N ) condition given by

hN (t) :=
1

ωN
sinN−1(t) for t ∈ [0, π], (2-9)

where ωN :=
∫ π

0 sinN−1(t) dt . Let ϵ := π − D and λD :=
∫ D

0 hN (t) dt for any D ∈ [0, π].
For a proof of the next proposition see for instance [Cavalletti et al. 2019, Proposition A.3].

Proposition 2.6. Let h : [0, D] → [0, +∞) be a CD(N − 1, N ) density which integrates to 1 on [0, D].
Then, for any t ∈ (0, D), it holds(

ωN

ωN λD + ϵ

)
min{hN (t), hN (t + ϵ)} ≤ h(t) ≤

(
ωN

ωN − ϵ

)
max{hN (t), hN (t + ϵ)}. (2-10)

Corollary 2.7. Under the assumptions of Proposition 2.6, there exist a constant C = C(N ) > 0 and
ϵ0 > 0 with the following property: if ϵ ∈ [0, ϵ0] then for any t ∈ (0, D) it holds

|h(t) − hN (t)| ≤ Cϵ. (2-11)

Moreover, for r ∈
(
0, 1

10

)
and ϵ ∈

(
0, 1

10r
)

the following improved estimate holds:

|h(t) − hN (t)| ≤ Cr N−2ϵ for all t ∈ ([0, r ] ∪ [π − r, D]). (2-12)

Proof. The validity of (2-11) follows from (2-10) taking into account the Lipschitz continuity of hN and
the asymptotic expansions of

ωN

ωN λD + ϵ
and

ωN

ωN − ϵ
,

as ϵ → 0. The improved estimate (2-12) on ([0, r ] ∪ [π − r, D]) follows analogously from (2-10) and the
mean value theorem. □

Armed with Corollary 2.7 we can prove that, if D ∈ (0, π) is close to π , then the integrals of the
functions sin and cos (and of any bounded function, more in general) with respect to a CD(N − 1, N )

density h defined on [0, D] do not differ much from the value of the corresponding integrals computed
with respect to the model density hN .

Corollary 2.8. Let f : [0, π]→[−1, 1] be Borel measurable. Define m(dt) := h(t)L1(dt) and mN (dt) :=

hN (t)L1(dt). Under the assumptions of Proposition 2.6, there exist a constant C = C(N ) > 0 and ϵ0 > 0
with the following property: if ϵ ∈ [0, ϵ0] then∣∣∣∣∫ D

0
f (t)m(dt) −

∫ π

0
f (t)mN (dt)

∣∣∣∣≤ Cϵ. (2-13)

Moreover, for any r ∈
(
0, 1

10

)
and ϵ ∈

(
0, 1

10r
)

the following improved estimate holds∣∣∣∣∫ r

0
f (t)m(dt) −

∫ r

0
f (t)mN (dt)

∣∣∣∣+ ∣∣∣∣∫ D

π−r
f (t)m(dt) −

∫ π

π−r
f (t)mN (dt)

∣∣∣∣≤ Cϵr N−1. (2-14)
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Proof. The conclusion follows from Corollary 2.7 just by integrating on [0, D] and taking into account
that |

∫ π

D f mN | ≤ CϵN. □

2D. Localization and L1-optimal transportation. The localization technique has its roots in a work
of Payne and Weinberger [1960] and has been developed by Gromov and Milman [1987], Lovász and
Simonovits [1993] and Kannan, Lovász and Simonovits [Kannan et al. 1995] in the setting of Euclidean
spaces, spheres and Hilbert spaces. The basic idea is to reduce an n-dimensional problem, via tools
of convex geometry, to lower-dimensional problems which are easier to handle. In the aforementioned
papers, the symmetries of the spaces were heavily used to obtain such a dimensional reduction, typically
via iterative bisections. Recently Klartag [2017] found a bridge between L1-optimal transportation
problems and the localization technique yielding the localization theorem in the framework of smooth
Riemannian manifolds. Inspired by this approach, the first and the second author in [Cavalletti and
Mondino 2017b] proved a localization theorem for essentially nonbranching metric measure spaces
satisfying the CD(K , N ) condition. Before stating the result it is worth recalling some basics about the
disintegration of a measure associated to a partition (for a comprehensive treatment see the monograph
[Fremlin 2006]; for a discussion closer to the spirit of this paper see [Bianchini and Caravenna 2009]; for
a one-page summary see [Cavalletti et al. 2019, Appendix B]).

Given a measure space (X, X ,m), suppose a partition of X into disjoint sets is given by {Xq}q∈Q so
that X =

⋃
q∈Q Xq . Here Q is the set of indices and Q : X → Q is the quotient map, i.e.,

q = Q(x) ⇐⇒ x ∈ Xq .

We endow Q with the push forward σ -algebra Q of X :

C ∈ Q ⇐⇒ Q−1(C) ∈ X ,

i.e., the biggest σ -algebra on Q such that Q is measurable. Moreover, the push forward measure q :=Q♯ m

defines a natural measure q on (Q,Q). The triple (Q,Q, q) is called the quotient measure space.

Definition 2.9 (consistent and strongly consistent disintegration). A disintegration of m consistent with
the partition is a map

Q ∋ q 7→ mq ∈ P(X, X )

such that the following requirements hold:

(1) For all B ∈ X , the map q 7→ mq(B) is q-measurable.

(2) For all B ∈ X and C ∈ Q, the following consistency condition holds:

m(B ∩Q−1(C)) =

∫
C
mq(B) q(dq).

A disintegration of m is called strongly consistent if in addition:

(3) For q-a.e. q ∈ Q, mq is concentrated on Xq = Q−1(q).
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In the next theorem, for q-a.e. q ∈ Q, the equivalence class Xq is a geodesic in X. With a slight abuse of
notation Xq denotes also the arc-length parametrization on a real interval of the corresponding geodesic;
i.e., it is a map from a real interval with image Xq . We will use the following terminology: q 7→ mq is a
CD(K , N ) disintegration if, for q-a.e. q ∈ Q, mq = hqH1⌞Xq , where H1 denotes the one-dimensional
Hausdorff measure and hq ◦ Xq is a CD(K , N ) density, in the sense of (2-7).

Theorem 2.10 [Cavalletti and Mondino 2017b]. Let (X, d,m) be an essentially nonbranching
metric measure space satisfying the CD(K , N ) condition for some K ∈ R and N ∈ [1, ∞). Let
f : X → R be m-integrable such that

∫
X f m = 0, and assume the existence of x0 ∈ X such that∫

X | f (x)| d(x, x0)m(dx) < ∞.
Then the space X admits a partition {Xq}q∈Q and a corresponding (strongly consistent) disintegration

of m, {mq}q∈Q , such that:

• For any m-measurable set B ⊂ T it holds

m(B) =

∫
Q
mq(B) q(dq),

where q is a probability measure over Q defined on the quotient σ -algebra Q.

• For q-almost every q ∈ Q, the set Xq is a geodesic (possibly of zero length) and mq is supported on it.
Moreover q 7→ mq is a CD(K , N ) disintegration.

• For q-almost every q ∈ Q, it holds
∫

Xq
f mq = 0.

In Theorem 2.10 we can also distinguish the set of Xα having positive length, whose union forms
the so-called transport set denoted by T , from the ones having zero length, i.e., points, whose union we
usually denote by Z , so to have a decomposition of X into T and Z . The last point of Theorem 2.10
implies then that m-a.e. f ≡ 0 on Z .

Following the approach of [Klartag 2017], Theorem 2.10 was proven in [Cavalletti and Mondino
2017b] studying the following optimal transportation problem. Let µ0 := f +m and µ1 := f −m, where f ±

denote the positive and the negative parts of f respectively, and study the L1-optimal transport problem
associated with it:

inf
{∫

X×X
d(x, y) π(dx dy) : π ∈ P(X × X), (P1)♯π = µ0, (P2)♯π = µ1

}
. (2-15)

Then the relevant object to study is given by the dual formulation of the previous minimization problem.
By the summability properties of f (see the hypotheses of Theorem 2.10), there exists a 1-Lipschitz
function φ : X → R such that π is a minimizer in (2-15) if and only if π(0) = 1, where

0 := {(x, y) ∈ X × X : φ(x) − φ(y) = d(x, y)}

is the naturally associated d-cyclically monotone set; i.e., for any (x1, y1), . . . , (xn, yn) ∈ 0 it holds
n∑

i=1

d(xi , yi ) ≤

n∑
i=1

d(xi , yi+1), yn+1 = y1,
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for any n ∈ N. The set 0 induces a partial order relation whose maximal chains produce a partition
(up to an m-negligible subset) of the set T ⊂ X appearing in the statement of Theorem 2.10, made of
one-dimensional subsets. For a summary of the constructions see [Cavalletti et al. 2019, Section 2.5]; for
more details see [Cavalletti and Mondino 2017b; Cavalletti and Milman 2021].

3. One-dimensional estimates

The goal of this section is to give a self-contained presentation of the one-dimensional estimates we will
use throughout the paper.

3A. Bérard–Besson–Gallot explicit lower bound on the model isoperimetric profile. For N > 1, let

ωN :=

∫ π

0
(sin t)N−1 dt and mN :=

1
ωN

(sin t)N−1L1(dt)⌞[0,π ]. (3-1)

From now on fix D ∈ (0, π). For b ∈ [0, π − D] and v ∈ [0, 1], let R(b, v) ∈ [b, π] be uniquely defined
by the equation ∫ R(b,v)

b
(sin t)N−1 dt = v

∫ b+D

b
(sin t)N−1 dt. (3-2)

Set

IN ,D(v) := inf{g(b, v) : b ∈ [0, π − D]}, (3-3)

where

g(b, v) :=
[sin(R(b, v))]N−1∫ b+D
b (sin t)N−1 dt

. (3-4)

To keep notation short, we also set IN := IN ,π . Notice that IN is the isoperimetric profile of SN for an
integer N. We refer to Section 4 for a brief discussion about the isoperimetric profile; note also that IN ,D

is the model isoperimetric profile in the Lévy–Gromov isoperimetric comparison theorem for spaces with
Ricci ≥ N − 1, dimension ≤ N and diameter ≤ D; see [Gromov 1999, Appendix C; Bérard et al. 1985;
Milman 2015; Cavalletti and Mondino 2017b].

The proof of the next lemma is inspired by, but somewhat different from, [Bérard et al. 1985, Appendix 1]
and the statement generalizes to arbitrary real N > 1 the result stated in the reference for an integer N ≥ 2.

Lemma 3.1 (Bérard–Besson–Gallot explicit isoperimetric lower bound). Fix N > 1 and D ∈ [0, π], and
let IN ,D : [0, 1] → [0, ∞) be defined in (3-3). Then

IN ,D(v)

IN (v)
≥

( ∫ π/2
0 (cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)1/N

=: CN ,D ≥ 1 for all v ∈ (0, 1). (3-5)

Proof. Let v′
∈ (0, 1) and f : [0, π − D] × (0, 1) → [0, +∞) be defined by

v′
:=

1
ωN

∫ R(b,v)

0
(sin t)N−1 dt and f (b, v) :=

g(b, v)

IN (v)
. (3-6)
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In particular

IN (v′) =
1

ωN
[sin R(b, v)]N−1, (3-7)

and therefore

f (b, v) = ωN

(∫ b+D

b
(sin t)N−1 dt

)−1 IN (v′)

IN (v)
. (3-8)

Thanks to the explicit expression of the isoperimetric profile IN it is possible to compute

(I N/(N−1)

N )′′I (N−2)/(N−1)

N = −N . (3-9)

In particular it follows from (3-9) that I N/(N−1)

N is concave on (0, 1).
We now distinguish two cases: v′

≤ v and v′ > v.

Case 1: v′
≤ v. First observe that

ωN v′
=

∫ R(b,v)

0
(sin t)N−1 dt ≥

∫ R(b,v)

b
(sin t)N−1 dt = v

∫ b+D

b
(sin t)N−1 dt. (3-10)

The concavity observed above, together with (3-10), gives that

IN (v′)

IN (v)
≥

(
v′

v

)1−1/N

≥

(
ω−1

N

∫ b+D

b
(sin t)N−1 dt

)1−1/N

.

Hence, taking into account (3-8), we obtain

f (b, v) ≥ ω
1/N
N

(∫ b+D

b
(sin t)N−1 dt

)−1/N

. (3-11)

Case 2: v′ > v. A change of variables in the definition of R easily yields

R(π − b − D, 1 − v) = π − R(b, v)

and therefore
f (b, v) = f (π − b − D, 1 − v). (3-12)

Moreover ∫ R(π−b−D,1−v)

0
(sin t)N−1 dt =

∫ π

R(b,v)

(sin t)N−1 dt = (1 − v′)ωN ;

hence

f (π − b − D, 1 − v) = ωN

(∫ b+D

b
(sin t)N−1

)−1 IN (1 − v′)

IN (1 − v)
. (3-13)

Next we observe that, as in the previous case, the concavity of I N/(N−1)

N yields

IN (1 − v′)

IN (1 − v)
≥

(
1 − v′

1 − v

)1−1/N

. (3-14)

Moreover, it holds

ωN (1 − v′) =

∫ π

R(b,v)

(sin t)N−1 dt ≥

∫ b+D

R(b,v)

(sin t)N−1 dt = (1 − v)

∫ b+D

b
(sin t)N−1 dt. (3-15)
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Combining (3-13), (3-14) and (3-15) and taking into account (3-12), we get

f (b, v) ≥ ω
1/N
N

(∫ b+D

b
(sin t)N−1 dt

)−1/N

. (3-16)

It is now sufficient to observe that the function x 7→
∫ x+D

x (sin t)N−1 dt attains its maximum at
x = π/2 − D/2 in order to obtain from (3-11), (3-16), (3-6) and (3-3) that

IN ,D(v)

IN (v)
≥

(
ωN∫ π/2+D/2

π/2−D/2 (sin t)N−1 dt

)1/N

= CN ,D for all v ∈ (0, 1).

Above, the last identity follows from the expression for CN ,D introduced in (3-5) thanks to the identity
cos(π/2 − x) = sin(x) and a change of variables. □

Let us study the behavior of CN ,D in the asymptotic D → π .

Lemma 3.2. It holds that

lim
D→π

(π − D)N

C2
N ,D − 1

= 2N−1 N 2
∫ π/2

0
(cos t)N−1 dt. (3-17)

Hence there exist C = C(N ) > 0 and D = D(N ) < π such that

C2
N ,D − 1 ≥ C(π − D)N for all D ∈ [D, π]. (3-18)

Proof. Recalling the expression of CN ,D from (3-5), we have

C2
N ,D − 1 =

( ∫ π/2
0 (cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)2/N

− 1 =

(
1 +

∫ π/2
D/2(cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)2/N

− 1.

Now, as D → π , we have the expansion∫ π/2

D/2
(cos t)N−1 dt =

∫ π/2−D/2

0
(sin t)N−1 dt ∼

∫ π/2−D/2

0
s N−1 ds ∼

1
N

(
π

2
−

D
2

)N
.

Taking into account the asymptotic (1 + x)β − 1 ∼ βx , we obtain (3-17).
The second conclusion in the statement easily follows from the first one. □

3B. Spectral gap and diameter. Building on top of the lower bound of the isoperimetric profile obtained
in Lemma 3.1, we next obtain a quantitative spectral gap inequality for Neumann boundary conditions in
terms diameters.

The analogous result in the case of smooth Riemannian manifolds was established in [Croke 1982,
Theorem B] building upon a quantitative improvement of the Lévy–Gromov inequality and on [Bérard
and Meyer 1982] (see also [Bérard et al. 1985, Corollary 17]). The usual strategy to show the improved
Neumann spectral gap inequality is based on the observation that a Neumann first eigenfunction of the
Laplacian f is a Dirichlet first eigenfunction of the Laplacian on the domains { f > 0} and { f < 0} (see,
for instance, [Matei 2000, Lemma 3.2]). The improved Dirichlet spectral gap inequality is then obtained
by rearrangement starting from the isoperimetric inequality.
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Proposition 3.3 (1-dimensional quantitative Obata’s theorem on the diameter). Let (I, deucl,m) be a
one-dimensional CD(N − 1, N ) m.m.s. with diam(I ) ≤ D. Then

λ
1,2
(I,deucl,m)

N
≥ C2

N ,D =

( ∫ π/2
0 (cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)2/N

, (3-19)

where CN ,D was defined in (3-5).
In particular, there exists a constant CN > 0 (more precisely one can choose CN = C N, where C was

defined in Lemma 3.2) such that

CN (π − diam(I ))N
≤ λ

1,2
(I,deucl,m) − N . (3-20)

Proof. From [Bakry and Qian 2000] (see also [Cavalletti and Mondino 2017c, Section 4.1] for the
regularization procedure) we know that λ

1,2
(I,deucl,m) ≥ λ

1,2
N ,D where λ

1,2
N ,D is the first solution λ > 0 of the

eigenvalue problem

ẅ + (N − 1) tan(t)ẇ + λw = 0, (3-21)

on [−D/2, D/2] with Neumann boundary conditions. The eigenfunction associated to the first eigenvalue
in (3-21) is unique, up to a multiplicative constant. Therefore, denoting it by wN ,D : [−D/2, D/2] →

(−∞, +∞), it holds wN ,D(−x)=−wN ,D(x) for any x ∈[−D/2, D/2] as a consequence of the symmetry
of (3-21). In particular wN ,D(0) = 0. Let

mN ,D := 3N ,D(cos t)N−1L1⌞[−D/2,D/2],

with 3N ,D such that mN ,D is a probability measure. Note that ([−D/2, D/2], deucl,mN ,D) is a
CD(N − 1, N ) m.m.s. with diameter equal to D and mN ,D([−D/2, 0]) = mN ,D([0, D/2]) =

1
2 . Hence

λ
1,2
N ,D =

∫ D/2
−D/2|w

′

N ,D|
2 mN ,D∫ D/2

−D/2|wN ,D|2 mN ,D
=

∫ D/2
0 |w′

N ,D|
2 mN ,D∫ D/2

0 |wN ,D|2 mN ,D
≥ λ

1,2,D
N ,D

( 1
2

)
,

where λ
1,2,D
N ,D

( 1
2

)
is the least first eigenvalue of the Laplacian with Dirichlet boundary conditions on one

extremum for intervals of volume 1
2 in ([−D/2, D/2], deucl,mN ,D).

Moreover a coarea argument (see for instance [Bérard et al. 1985, Corollary 17; Mondino and Semola
2020, Proposition 3.13]) using Lemma 3.1 gives

λ
1,2,D
N ,D

(1
2

)
≥ C2

N ,D λ
1,2,D
N ,π

( 1
2

)
.

Recalling that λ
1,2,D
N ,π

( 1
2

)
= λ

1,2
N ,π = N (see for instance [Bakry and Qian 2000]), we conclude that

λ
1,2
(I,deucl,m) ≥ λ

1,2
N ,D ≥ λ

1,2,D
N ,D

( 1
2

)
≥ N C2

N ,D. (3-22)

The second part of the statement follows by choosing D = diam(I ) and applying Lemma 3.2. □

A converse of the inequality proved in Proposition 3.3 can be obtained as follows.
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Lemma 3.4. For any N > 1 there exists C = C(N ) > 0 such that if ([0, D], deucl,m) is a one-dimensional
CD(N − 1, N ) m.m.s. with D ≥ π − ϵ then

|λ
1,2
([0,D],deucl,m) − N | ≤ Cϵ.

Proof. By the Lichnerowicz spectral gap we already know that λ
1,2
([0,D],deucl,m) ≥ N. It is therefore enough

to prove the existence of u ∈ Lip([0, D]) such that

∥u∥L2([0,D],m) = 1,

∫
[0,D]

u m = 0,

∫
[0,D]

|u′
|
2 m ≤ N + CN ϵ. (3-23)

Setting u∗

N (t) :=
√

N + 1 cos(t) and using Corollary 2.8 we get∣∣∣∣∫
[0,D]

u∗

N m

∣∣∣∣≤ CN ϵ,

∣∣∣∣1 −

∫
[0,D]

|u∗

N |
2 m

∣∣∣∣≤ CN ϵ,

∫
[0,D]

|(u∗

N )′|2 m ≤ N + CN ϵ. (3-24)

Let v = u∗

N −
∫
[0,D]

u∗

N m and cv := ∥v∥L2([0,D],m). Using the estimates (3-24), it is straightforward to
check that u = (1/cv)v satisfies (3-23). □

3C. Spectral gap and shape of eigenfunctions. Next we establish some basic estimates on eigenfunctions
which will be useful later.

Given a one-dimensional CD(K , N ) space (I, deucl,m), we know that we can write m(dt) = hL1(dt)
for some CD(K , N ) density h. We start by recalling the definition and basic properties of the Laplace
operator 1. A function u ∈ W 1,2(I,m) is said to be in the domain of 1, and we write u ∈ Dom(1) if for
every φ ∈ C∞

c (I ) it holds ∣∣∣∣∫
I

u′φ′ m

∣∣∣∣≤ Cu∥φ∥L2(I,m)

for some Cu ≥ 0 depending on u. In this case, by the Riesz theorem, there exists a function 1u ∈ L2(I,m)

such that
−

∫
I

u′φ′ m =

∫
I
1u φ m.

It is readily seen that the operator Dom(1) ∋ u 7→ 1u ∈ L2(I,m) is linear.
Moreover, using the properties of CD(K , N ) densities recalled at the beginning of the section, it holds

that every u ∈ Dom(1) is twice differentiable L1-a.e. on I and

1u = u′′
+ (log h)′u′, L1-a.e. on I, for all u ∈ Dom(1). (3-25)

Proposition 3.5. Let (I, deucl,m) be a one-dimensional CD(N −1, N ) m.m.s. Then there exists a constant
C = C(N ) > 0 such that, if u is an eigenfunction of the Laplacian on (I, deucl,m) associated to an
eigenvalue λ ∈ [N , 2N ] and with ∥u∥2 = 1, then u ∈ W 2,2

loc (I, deucl,L1) and

∥u′′
+ u∥L2(m) ≤ C(λ − N )1/2. (3-26)

Proof. Step 1: We claim that it holds∫
I

(
u′′

−
1
N

1u
)2

m ≤

∫
I

(N −1
N

(1u)2
− (N − 1)(u′)2

)
m. (3-27)
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Since by assumption u ∈ W 1,2(I, deucl,m) is an eigenfunction we have −1u ∈ W 1,2(I, deucl,m) as well.
Thus we can define the 02 operator as

02(u; φ) :=

∫
I

(1
2(u′)21φ − (1u)′ u′φ

)
m (3-28)

for all φ ∈ L∞(I,m) with 1φ ∈ L∞(I,m). Using that h satisfies (2-8), a manipulation via integration by
parts gives that for all φ ≥ 0 as above it holds:

02(u; φ) ≥

∫
I

[
(u′′)2

+ (N − 1)(u′)2
+

1
N −1

(1u − u′′)2
]
φ m. (3-29)

By direct computations, one can check that

(u′′)2
+ (N − 1)(u′)2

+
1

N −1
(1u − u′′)2

= (N − 1)(u′)2
+

(
u′′

−
1
N

1u
)2

+
1
N

(1u)2
+

1
N −1

(
u′′

−
1
N

1u
)2

m-a.e. (3-30)

Plugging (3-30) into (3-29) gives

02(u; φ) ≥

∫
I

[
(N − 1)(u′)2

+

(
u′′

−
1
N

1u
)2

+
1
N

(1u)2
]
φ m.

Choosing φ ≡ 1 yields (3-27).

Step 2: Inserting the eigenvalue relation λu = −1u into (3-27), we obtain∫
I

(
u′′

+
λ

N
u
)2

m ≤

∫
I

(N −1
N

(λu)2
− (N − 1)(u′)2

)
m =

N −1
N

λ(λ − N )

∫
I

u2 m. (3-31)

Eventually,∫
I
(u′′

+ u)2 m ≤ 2
∫

I

∣∣∣∣u′′
+

λ

N
u
∣∣∣∣2 m+ 2

∫
I

∣∣∣∣λ − N
N

u
∣∣∣∣2 m

≤ 2
(

N − 1
N

λ(λ − N ) +
(λ − N )2

N 2

)∫
I

u2 m ≤ C(N )(λ − N )

∫
I

u2 m,

where, in the last estimate, we used the assumption λ ≤ 2N. □

The aim of the remaining part of this section is to prove Theorem 3.11 stating roughly that, on any
one-dimensional CD(N − 1, N ) m.m.s. (I, deucl,m), a function u : I → R whose 2-Rayleigh quotient is
close to N (the optimal one on the model (N − 1, N )-space) and with L2-norm equal to 1, is W 1,2-close
to the (normalized) cosine of the distance from one of the extrema of the interval, in quantitative terms.

The conclusion of Theorem 3.11 will be achieved through some intermediate steps. First we estimate
the W 1,2-closeness of a first eigenfunction u∗ for (I, deucl,m) with the cosine of the distance from one of
the extremes of the segment, see Proposition 3.6. Then, we bound the W 1,2-closeness of the function u
from u∗ (or −u∗), see Proposition 3.10.

Let us observe that
∥cos( · )∥L2(mN ) =

1
√

N + 1
, (3-32)
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and, by symmetry, ∫
[0,π ]

cos(t)mN (dt) = 0. (3-33)

Proposition 3.6. For every N > 1 there exist constants C = C(N ) > 0 and ϵ0 = ϵ0(N ) > 0 such that for
every one dimensional CD(N − 1, N ) m.m.s. ([0, D], deucl,m) and every Neumann eigenfunction u∗, with
∥u∗

∥L2(m) = 1, of eigenvalue λ ∈ [N , 2N ] it holds

min{∥u∗
−

√
N + 1 cos( · )∥L2(m), ∥u∗

+
√

N + 1 cos( · )∥L2(m)} ≤ Cδmin{1/2,1/N }, (3-34)

where δ :=
∫

|∇u∗
|
2 m− N < ϵ0. Furthermore the conclusion can be improved to W 1,2-closeness:

min{∥(u∗
−

√
N + 1 cos( · ))′∥L2(m), ∥(u

∗
+

√
N + 1 cos( · ))′∥L2(m)} ≤ Cδmin{1/2,1/N }. (3-35)

Proof. Let h : [0, D] → [0, +∞) be the density of m with respect to L1 and let x0 ∈ (0, D) be a maximum
point of h. In [Cavalletti et al. 2019, Lemma A.4] it is proved that such a maximum point is unique and
that h is strictly increasing on [0, x0] and strictly decreasing on [x0, D].

Step 1: In this first step we prove that, given z ∈ L2([0, D],m), any solution of v′′
+v = z can be written as

v(t) =

∫ t

x0

sin(t − s)z(s) ds + α sin(t) + β cos(t) (3-36)

for some α, β ∈ R. To this aim, it suffices to prove that

v0(t) :=

∫ t

x0

sin(t − s)z(s) ds (3-37)

solves v′′
+v = z. First we observe that v0 is well-defined, since the assumption z ∈ L2((0, D),m) guaran-

tees that z ∈ L1
loc((0, D),L1) (due to the fact that h is locally bounded from below by a strictly positive con-

stant in the interior of [0, D]). The fact that it satisfies v′′

0 +v0 = z follows from an elementary computation.

Step 2: Next, we prove that the function v0 defined in (3-37) satisfies

∥v0∥L2(m) ≤ π∥z∥L2(m). (3-38)

Indeed, taking into account that |sin| ≤ 1, applying the Cauchy–Schwarz inequality, Fubini’s theorem
and recalling that h is increasing on [0, x0] and decreasing on [x0, D], we can compute

∥v0∥
2
L2(m)

=

∫ D

0

(∫ t

x0

sin(t − s)z(s) ds
)2

h(t) dt ≤ π

∫ D

0
h(t)

∣∣∣∣∫ t

x0

z2(s) ds
∣∣∣∣ dt

= π

(∫ x0

0
z2(s)

∫ s

0
h(t) dtds +

∫ D

x0

z2(s)
∫ D

s
h(t) dt ds

)
≤ π2

(∫ x0

0
z2(s)h(s) ds +

∫ D

x0

z2(s)h(s) ds
)

= π2
∥z∥2

L2(m)
.

Let us remark that from (3-38) it follows applying Cauchy–Schwarz inequality that ∥v0∥L1(m) ≤π∥z∥L2(m).

Step 3: Recall from Proposition 3.3 the bound π − D ≤ Cδ1/N. Furthermore we know from (3-26) that if
u∗ is as in the assumptions of the statement, then (u∗)′′ + u∗

= z on [0, D] for some function z such that
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∥z∥L2(m) ≤ Cδ1/2. Hence, as proved in Step 1, u∗ can be written as

u∗(t) =

∫ t

x0

sin(t − s)z(s) ds + α sin(t) + β cos(t) (3-39)

for some α, β ∈ R. We want to show that there exists C = C(N ) > 0 such that |α| + |β| ≤ C(N ).
Set u0(t) :=

∫ t
x0

sin(t − s)z(s) ds and recall that, from Step 2, it holds ∥u0∥L2(m) ≤ Cδ1/2. Since by
assumption u∗ has null mean value, integrating (3-39) over [0, D] with respect to m gives

0 = α

∫
[0,D]

sin(t)m(dt) + β

∫
[0,D]

cos(t)m(dt) +

∫
[0,D]

u0(t)m(dt). (3-40)

From the last remark in Step 2 and Corollary 2.8, it follows that(∫
[0,π ]

sinN (t) dt + O(δ1/N )

)
α + O(δ1/N )β + O(δ1/2) = 0,

giving that
α = O(δ1/N )β + O(δ1/2). (3-41)

In order to estimate β, we compute the L2(m)-norm squared of both the left- and right-hand sides of
(3-39) to obtain

1 = ∥u0∥
2
L2(m)

+ α2
∥sin( · )∥2

L2(m)
+ β2

∥cos( · )∥2
L2(m)

+ 2α

∫
u0(t) sin(t)m(dt) + 2β

∫
u0(t) cos(t)m(dt) + 2αβ

∫
sin(t) cos(t)m(dt). (3-42)

Plugging (3-41) into (3-42), gives

(1 + O(δ)) + O(δ1/N+1/2) β +

(∫
[0,π ]

cos2(t) sinN−1(t) dt + O(δ1/N )

)
β2

= 0, (3-43)

yielding |β| ≤ C(N ) and thus, by (3-41), also |α| ≤ C(N ).

Step 4: Conclusion. In order to get (3-34), we have to bound |α| and min{|
√

N + 1 − β|, |
√

N + 1 + β|}

in terms of δ.
From (3-40), Step 3, the last remark in Step 2 and Corollary 2.8 it follows that

|α| ≤ C(δ1/2
+ δ1/N ) ≤ Cδmin{1/N ,1/2}, (3-44)

up to increasing the value of the constant C in the second inequality. Plugging (3-44) into (3-42) gives

1 = O(δ) + O(δmin{1,2/N }) + O(δ1/2) + O(δmin{1/2,1/N }) + β2/(N + 1)

and therefore ∣∣∣∣1 −
β2

N + 1

∣∣∣∣= O(δmin{1/2,1/N }). (3-45)

From (3-45) we easily obtain that

min{|
√

N + 1 − β|, |
√

N + 1 + β|} ≤ Cδmin{1/4,1/(2N )}. (3-46)
In the case

|
√

N + 1 − β| = min{|
√

N + 1 − β|, |
√

N + 1 + β|} ≤ Cδmin{1/4,1/(2N )}
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(respectively |
√

N + 1 + β| = min{|
√

N + 1 − β|, |
√

N + 1 + β|} ≤ Cδmin{1/4,1/(2N )}), it follows that

|
√

N + 1 + β| ≥ 2
√

N + 1 − Cδmin{1/4,1/(2N )}
≥

√
N + 1 for δ ≤ δ0(N ). (3-47)

(resp. |
√

N + 1 −β| ≥
√

N + 1). Plugging (3-47) back into (3-45) gives |
√

N + 1 −β| ≤ Cδmin{1/2,1/N }

(resp. |
√

N + 1 + β| ≤ Cδmin{1/2,1/N }). In conclusion, (3-45) and (3-46) can be bootstrapped to give

min{|
√

N + 1 − β|, |
√

N + 1 + β|} ≤ Cδmin{1/2,1/N }. (3-48)

Combining all these ingredients we can eventually estimate the L2(m)-distance between the first Neumann
eigenfunction and the normalized cosine. Indeed, assuming without loss of generality that |

√
N + 1−β| ≤

|
√

N + 1 + β| and taking into account (3-44), (3-48), we obtain

∥u∗
−

√
N + 1 cos( · )∥L2(m) = ∥u0 + α sin( · ) + β cos( · ) −

√
N + 1 cos( · )∥L2(m)

≤ |α|∥sin( · )∥L2(m) + ∥u0∥L2(m) + |β −
√

N + 1|∥cos( · )∥L2(m)

≤ Cδmin{1/2,1/N }.

Finally, we improve the L2(m)-closeness to W 1,2(m)-closeness. To this aim, differentiate (3-39) to obtain

(u∗)′(t) =

∫ t

x0

cos(t − s)z(s) ds + α cos(t) − β sin(t). (3-49)

With computations analogous to the ones used to obtain the bound ∥v0∥2 ≤ π∥z∥2 in Step 2, one can
prove that, letting w0(t) :=

∫ t
x0

cos(t − s) ds, it holds ∥w0∥2 ≤ π∥z∥2. The sought estimate for

min{∥(u∗
−

√
N + 1 cos( · ))′∥L2(m), ∥(u

∗
+

√
N + 1 cos( · ))′∥L2(m)}

follows taking into account (3-44) and (3-46). □

We isolate the following corollary, which will be useful later in the paper.

Corollary 3.7. Under the assumptions of Proposition 3.6, setting r = δγ /N for some γ ∈ (0, 1), it holds

min{∥u∗
−

√
N + 1 cos( · )∥W 1,2([0,r ],m), ∥u∗

+
√

N + 1 cos( · )∥W 1,2([0,r ],m)}

≤ C(N )(δ1/2
+ r N/2δmin{1/2,1/N }). (3-50)

Moreover, for η ∈
(
0, 1

10r
)
,

min{∥u∗
−

√
N + 1 cos( · )∥W 1,2([r−η,r+η],m), ∥u∗

+
√

N + 1 cos( · )∥W 1,2([r−η,r+η],m)}

≤ C(N )(δ1/2
+ (r N−1η)1/2δmin{1/2,1/N }). (3-51)

Proof. It is enough to improve the final estimates in Step 4 of the proof of Proposition 3.6 by using (2-14):

∥u∗
−

√
N +1 cos( · )∥L2([0,r ],m) = ∥u0+α sin( · )+β cos( · )−

√
N +1 cos( · )∥L2([0,r ]m)

≤ ∥u0∥L2([0,r ],m)+|α|∥sin( · )∥L2([0,r ],m)+|β−
√

N +1|∥cos( · )∥L2([0,r ]m)

≤ C(δ1/2
+δmin{1/2,1/N }(∥cos( · )∥L2([0,r ]mN )+Cδ1/N r N−1

}))

≤ C(δ1/2
+r N/2δmin{1/2,1/N }).

The improved estimate for the first derivative and for the domain [r − η, r + η] is analogous. □
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Lemma 3.8. For any N > 1 there exist D = D(N ) < π and α = α(N ) > 0 such that the following holds.
Let ([0, D], deucl,m) be a one-dimensional CD(N − 1, N ) m.m.s. with D ≥ D and u∗ any first Neumann
eigenfunction, with ∥u∗

∥L2(m) = 1.
Then for any v ∈ L2([0, D],m) with ∥v∥L2(m) = 1 such that

∣∣∫ vu∗ m
∣∣≤ 1

2 we have

N + α ≤

∫
[0,D]

|v′
|
2 m.

Proof. We argue by contradiction.
Suppose there is a sequence of CD(N−1, N ) measures mn = hnL1 with supp hn = [0, Dn] and Dn ↑ π

satisfying the following: for every n there exists vn ∈W 1,2([0, Dn],deucl,mn) with ∥vn∥L2(mn) =1 such that∫
[0,Dn]

|v′

n|
2 mn → N as n → ∞, and

∣∣∣∣∫ vn u∗

n mn

∣∣∣∣≤ 1
2
, (3-52)

where u∗
n is a first Neumann eigenfunction on ([0, Dn], deucl, hnL1), i.e.,∫

[0,Dn]

|u∗

n|
2 mn = 1,

∫
[0,Dn]

|(u∗

n)
′
|
2 mn = λn → N , (3-53)

where in the last identity we used (3-25), and the convergence of λn to N follows from Lemma 3.4.
From Corollary 2.7, the fact that supp hn = [0, Dn] with Dn ↑ π implies that (hn) (extended to the

constant h(Dn) on [Dn, π]) converges uniformly to the model one-dimensional CD(N − 1, N )-density
hN = (1/c′

N ) sinN−1 on [0, π]. In particular, for every η ∈ (0, π/2) the densities hn restricted to [η, 1−η]

are bounded above and below by strictly positive constants.
The bounds (3-53) then imply that u∗

n (resp. vn) are uniformly 1
2 -Hölder continuous on [η, π − η] for

every η ∈ (0, π/2).
Thus, by the Arzelà–Ascoli theorem combined with a standard diagonal argument, there exists

u∗
: [0, π] → R (resp. v : [0, π] → R) and a (nonrelabeled for simplicity) subsequence such that

u∗
n → u∗ (resp. vn → v) uniformly on [η, π − η] for every η ∈ (0, π/2). It is also easy to check that∫

[0,π ]

u∗

nhn φ L1
→

∫
[0,π ]

u∗hN φ L1,

∫
[0,π ]

vnhn φ L1
→

∫
[0,π ]

vhN φ L1 for all φ ∈ C([0, π]).

Combining the last weak convergence statement with the bounds (3-52), (3-53) and with [Gigli et al.
2015, Theorem 6.3] gives

∥u∗
∥L2([0,π ],mN ) = ∥v∥L2([0,π ],mN ) = 1,

∣∣∣∣∫
[0,π ]

u∗vmN

∣∣∣∣≤ 1
2
,∫

[0,π ]

|(u∗)′|2 mN ≤ N ,

∫
[0,π ]

|v′
|
2 mN ≤ N .

Therefore, both u∗ and v are first Neumann eigenfunctions on the model space ([0, π], deucl,mN ). However
the first eigenfunction is unique up to a sign, thus it must hold∣∣∣∣∫

[0,π ]

u∗vmN

∣∣∣∣= 1,

a contradiction. □
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Corollary 3.9. For every N > 1 there exists β = β(N ) > 0 with the following property. Let (I, deucl,m)

be a one-dimensional CD(N − 1, N ) m.m.s. with m(I ) = 1 and satisfying

λ
1,2
(I,deucl,m) − N < β.

Then, for any u ∈ W 1,2(I, deucl,m) with ∥u∥L2(m) = 1 and
∣∣∫

I uu∗ m
∣∣ ≤ 1

2 , where u∗ is a first Neumann
eigenfunction with ∥u∗

∥L2(m) = 1, it holds

λ
1,2
(I,deucl,m) + β <

∫
|u′

|
2 m.

Proof. First choose β > 0 sufficiently small so that, by Proposition 3.3, the diameter of (I, deucl,m) is
bigger than D. Then conclude by Lemma 3.8 (and decrease the constant β > 0 if necessary). □

Proposition 3.10. For every N > 1 there exists β =β(N )> 0 with the following property. Let (I, deucl,m)

be a one-dimensional CD(N − 1, N ) m.m.s. with m(I ) = 1. Assume there exists v ∈ W 1,2(I, deucl,m)

with ∥v∥L2(m) = 1 satisfying ∫
I
|v′

|
2 m− N < β. (3-54)

Then it holds

min{∥v − u∗
∥

2
W 1,2(m)

, ∥v + u∗
∥

2
W 1,2(m)

} ≤ C
(∫

|v′
|
2 m−

∫
|(u∗)′|2 m

)
, (3-55)

where u∗ is a first Neumann eigenfunction with ∥u∗
∥L2(m) = 1.

Proof. We begin by rewriting∫
|v′

|
2 m−

∫
|(u∗)′|2 m =

∫
|(v − u∗)′|2 m+ 2

∫
(v − u∗)′ (u∗)′ m

=

∫
|(v − u∗)′|2 m− 2λ

1,2
(I,deucl,m)

(
1 −

∫
v u∗ m

)
=

∫
|(v − u∗)′|2 m− λ

1,2
(I,deucl,m)

∫
(v − u∗)2 m. (3-56)

Now (3-54) implies that
∣∣∫ vu∗ m

∣∣> 1
2 by Corollary 3.9. Hence, assuming without loss of generality that∫

u∗vm > 1
2 , we get

∣∣∫ u∗(u∗
− v)m

∣∣< 1
2 . Therefore, Corollary 3.9 yields∫

|(v − u∗)′|2 m ≥ (λ
1,2
(I,deucl,m) + β)∥v − u∗

∥
2
2.

The combination of the last estimate with (3-56) gives

∥v − u∗
∥

2
2 ≤ C

(∫
|v′

|
2 m−

∫
|(u∗)′|2 m

)
, (3-57)

with C := 1/β. We now improve (3-57) to W 1,2-closeness, namely (3-55). In order to do so, it suffices to
observe that the estimates we obtained above yield∫

|(v − u∗)′|2 m ≤ λ
1,2
(I,deucl,m)∥v − u∗

∥
2
2 +

∫
|v′

|
2 m−

∫
|(u∗)′|2 m

≤ C(1 + λ
1,2
(I,deucl,m))

(∫
|v′

|
2 m−

∫
|(u∗)′|2 m

)
. □
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Theorem 3.11 (one-dimensional quantitative Obata’s theorem on the function). For every N > 1 there
exist constants C = C(N ) > 0 and δ0 = δ0(N ) > 0 with the following property. Let ([0, D], deucl,m) be a
one-dimensional CD(N − 1, N ) m.m.s. and let u ∈ Lip(I ) satisfy

∫
u m = 0 and

∫
u2 m = 1. If

δ :=

∫
|u′

|
2 m− N ≤ δ0,

then

min{∥u −
√

N + 1 cos( · )∥W 1,2(m), ∥u +
√

N + 1 cos( · )∥W 1,2(m)} ≤ Cδmin{1/2,1/N }. (3-58)

Moreover, setting r = δγ /N for some γ ∈ (0, 1), for any η ∈
(
0, 1

10r
)

it holds

min{∥u −
√

N + 1 cos( · )∥W 1,2([0,r ],m), ∥u +
√

N + 1 cos( · )∥W 1,2([0,r ],m)}

≤ C(δ1/2
+ r N/2δmin{1/2,1/N }), (3-59)

min{∥u∗
−

√
N + 1 cos( · )∥W 1,2([r−η,r+η],m), ∥u∗

+
√

N + 1 cos( · )∥W 1,2([r−η,r+η],m)}

≤ C(N )(δ1/2
+ (r N−1η)1/2δmin{1/2,1/N }). (3-60)

Proof. First apply Proposition 3.10 to bound the W 1,2(m)-distance between u and a first eigenfunction
of the Neumann Laplacian on ([0, D], deucl,m), then apply Proposition 3.6 (respectively Corollary 3.7)
to bound the W 1,2(m)-distance (respectively the W 1,2([0, r ],m) or W 1,2([r − η, r + η],m) distance)
between the first eigenfunction and the normalized cosine. The sought estimate follows by the triangle
inequality. □

4. Quantitative Obata’s theorem on the diameter

Building on top of the one-dimensional results obtained in Section 3, we will derive several quantitative
estimates for a general essentially nonbranching m.m.s. (X, d,m) satisfying CD(K , N ).

Given an m.m.s. (X, d,m), the perimeter P(E) of a Borel subset E ⊂ X is defined as

P(E) := inf
{

lim inf
n→∞

∫
X

|∇un|m : un ∈ Lip(X), un → χE in L1
loc(X)

}
, (4-1)

where χE is the characteristic function of E . Accordingly E ⊂ X has finite perimeter in (X, d,m) if and
only if P(E) < ∞.

The isoperimetric profile I(X,d,m) : [0, 1] → [0, ∞) is given by

I(X,d,m)(v) := inf{P(E) : E ⊂ X, m(E) = v}. (4-2)

Given a smooth Riemannian manifold (M, g) with finite Riemannian volume volg(M) < ∞, let us
denote by

mg :=
1

volg(M)
volg

the normalized Riemannian volume measure.
We next recall the improved Lévy–Gromov inequality obtained by Bérard, Besson and Gallot [Bérard

et al. 1985, Remark 3.1] for smooth Riemannian N -manifolds with Ricci ≥ N − 1 and with upper bound
on the diameter (see also [Milman 2015]).
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Theorem 4.1. Let (M, d,mg) be the metric measure space associated to a Riemannian manifold (M, g)

with dimension N ∈ N, N ≥ 2, Ricci bounded from below by N − 1 and diameter D (recall that, by the
Bonnet–Myers theorem, D ≤ π ). Then, for any v ∈ (0, 1), it holds

I(X,d,m)(v)

IN (v)
≥

( ∫ π/2
0 (cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)1/N

=: CN ,D ≥ 1, (4-3)

where IN , defined in (3-3), for N ≥ 2, N ∈ N, is the isoperimetric profile of the normalized round sphere
of constant sectional curvature 1 (SN , dSN ,mg

SN ).

We extend Theorem 4.1 to the class of essentially nonbranching CD(N −1, N ) metric measure spaces,
N > 1 any real parameter. In view of [Cavalletti and Mondino 2017b; 2018] the result follows from the
one-dimensional improved Lévy–Gromov inequality proved in Lemma 3.1.

Theorem 4.2 (Bérard–Besson–Gallot improved Lévy–Gromov for CD(N − 1, N ) e.n.b. spaces). Let
(X, d,m) be an essentially nonbranching CD(N − 1, N ) m.m.s. with diam(X) ≤ D for some N > 1,
D ∈ (0, π]. Then, for any v ∈ (0, 1), it holds

I(X,d,m)(v)

IN (v)
≥

( ∫ π/2
0 (cos t)N−1 dt∫ D/2
0 (cos t)N−1 dt

)1/N

=: CN ,D ≥ 1, (4-4)

where IN was defined in (3-3).

Proof. One of the main results in [Cavalletti and Mondino 2017b; 2018] is that for (X, d,m) as in the
assumptions of the theorem it holds

I(X,d,m)(v) ≥ IN ,D(v), (4-5)

where IN ,D stands for the model isoperimetric profile defined in (3-3).
The claimed (4-4) follows by combining (4-5) with Lemma 3.1. □

It is also possible to obtain a quantitative spectral gap inequality for Neumann boundary conditions. The
analogous result in the case of smooth Riemannian manifolds was established in [Croke 1982, Theorem B]
building upon a quantitative improvement of the Lévy–Gromov inequality and on [Bérard and Meyer
1982] (see also [Bérard et al. 1985, Corollary 17]).

Theorem 4.3 (improved spectral gap and quantitative Obata’s theorem for CD(N − 1, N ) e.n.b. spaces).
Let (X, d,m) be an essentially nonbranching CD(N − 1, N ) m.m.s. with diam(X) ≤ D for some N > 1,
D ∈ (0, π]. Then

λ
1,2
(X,d,m) ≥ NC2

N ,D, (4-6)

where CN ,D is given in (4-4). Moreover, there exists C = CN > 0 (more precisely one can choose
CN = C N where C was defined in Lemma 3.2) such that

CN (π − diam(X))N
≤ λ

1,2
(X,d,m) − N .
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Proof. Thanks to [Cavalletti and Mondino 2017c, Theorem 4.4] (see also Proposition 3.3) we know that
λ

1,2
(X,d,m) ≥ λ

1,2
N ,D , where λ

1,2
N ,D was defined in (3-21).

Let us briefly outline the argument since it will be relevant for addressing the quantitative inequality
for the first eigenfunction later in the note. By the very definition of λ

1,2
(X,d,m) it suffices to prove that, for

any u ∈ Lip(X) with
∫

u m = 0 and
∫

u2 m = 1, it holds

δ(u) :=

∫
X
|∇u|

2 m− N ≥ CN (π − diam(X))N .

To this aim, we perform the one-dimensional localization associated to the function u which by assumption
has null mean value (this is analogous to the proof of [Cavalletti and Mondino 2017c, Theorem 4.4]; see
Section 2D for some basics about one-dimensional localization). We obtain∫

X
|∇u|

2m− N
∫

X
u2 m ≥

∫
Q

(∫
Xq

|u′

q |
2 mq − N

∫
Xq

u2
q mq

)
q(dq)

≥

∫
Q

(
λ

1,2
N ,diam(Xq )

∫
Xq

u2
q mq − N

∫
Xq

u2
q mq

)
q(dq)

≥

∫
Q
(λ

1,2
N ,diam(X) − N )

∫
Xq

u2
q mq q(dq) = λ

1,2
N ,diam(X) − N .

Taking into account Proposition 3.3, we conclude that

δ(u) ≥ λ
1,2
diam(X),N − N ≥ CN (π − diam(X))N

and (4-6) can be obtained in an analogous way. □

Remark 4.4. In [Jiang and Zhang 2016] the authors obtained a quantitative version of the estimate for the
gap of the diameters in terms of the deficit in the spectral gap for RCD spaces (see Remark 1.3 therein).
Their estimate reads as follows: if (X, d,m) is an RCD(N − 1, N ) space of diameter D ≤ π , then

λ
1,2
(X,d,m) ≥

N
1 − cosN (D/2)

.

Theorem 4.3 extends such quantitative control to essentially nonbranching CD(N − 1, N ) spaces whose
Sobolev space W 1,2 is a priori non-Hilbert (but just Banach, as for instance on Finsler manifolds).

4A. Volume control. The aim of this brief subsection is to prove that for a CD(N − 1, N ) m.m.s. with
diameter close to π we have a quantitative volume control for balls centered at extrema of long rays. The
proof is inspired by [Ohta 2007, Lemma 5.1], where the case of maximal diameter π is treated (see also
[Cavalletti et al. 2019, Proposition 5.1]).

Proposition 4.5. Let (X, d,m) be an m.m.s. satisfying CD(N −1, N ) (actually MCP(N −1, N ) is enough).
Let PN , PS ∈ X be such that d(PN , PS) = π − δ for some δ ≥ 0. Then, for any 0 < r < π − δ, it holds

mN ([0, r ]) ≤ m(Br (PN )) ≤ mN ([0, r ]) +mN ([r, r + δ]), (4-7)

where we recall that mN = (1/ωN )(sin t)N−1dt is the model measure on the interval [0, π].
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Proof. First of all, since d(PN , PS) = π − δ, it holds Br (PN ) ∩ Bπ−r−δ(PS) = ∅.
By the Bishop–Gromov inequality implied by the CD(N − 1, N ) condition (actually MCP(N − 1, N )

is enough), and using that m(X) = 1, we have

m(Br (PN )) ≥ mN ([0, r ]), m(Bπ−r−δ(PS)) ≥ mN ([0, π − r − δ]) = mN ([r + δ, π]), (4-8)

where the last equality follows from the symmetries of the density sinN−1( · ). Hence we can compute

m(Br (PN )) ≤ 1 −m(Bπ−r−δ(PS)) ≤ 1 −mN ([0, π − r − δ])

= mN ([0, r ]) +mN ([r, r + δ]).

The claimed conclusion (4-7) follows. □

5. Quantitative Obata’s theorem on almost optimal functions

Consider u ∈ Lip(X) such that ∫
X

u m = 0,

∫
X

u2 m = 1;

denote its spectral gap deficit by

δ(u) :=

∫
X

|∇u|
2 m− N . (5-1)

Since we are interested in quantitative estimates when the spectral gap deficit is small, it is enough to
consider the case δ(u) ≤ 1. Recall that N is the first eigenvalue for the Neumann Laplacian for the
one-dimensional metric measure space ([0, π], | · |,mN ), where mN := sinN−1(t) dt/ωN and ωN is the
normalizing constant. In particular

N = (N + 1)

∫
(0,π)

sin2(t)mN (dt),

since, as we already observed,
∫
(0,π)

cos2(t)mN (dt) = 1/(N + 1).
Consider the localization associated to the zero-mean function u (see Section 2D for the background

and for the relevant bibliography):

m⌞T =

∫
Q
mq q(dq),

where T is the transport set associated to the L1-optimal transport problem between u+m and u−m, the
positive and the negative parts of u, respectively. It follows that∫

Q

∫
Xq

|u|
2 mq q(dq) =

∫
T

|u|
2 m =

∫
X

|u|
2 m = 1,

∫
X\T

|∇u|
2 m = 0. (5-2)

Setting uq := u|Xq and |cq | :=
(∫

Xq
|uq |

2 mq
)1/2 (for the sign of cq , see before (5-13)), observe that (5-2)

gives ∫
Q

c2
q q(dq) = 1. (5-3)
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Moreover, the integral constraint
∫

X u m = 0 localizes to almost every ray:∫
Xq

uq mq = 0. (5-4)

Since almost each ray (Xq , d|Xq ,mq) is a one-dimensional CD(N −1, N ) space, the Lichnerowicz spectral
gap gives ∫

Xq

|u′

q |
2 mq ≥ Nc2

q , (5-5)

where |u′
q |(x) denotes the local Lipschitz constant of uq : (Xq , d|Xq ) → R at x ∈ Xq . It is clear that, for

each x ∈ Xq ⊂ X, |u′
q |(x) is bounded by the local Lipschitz constant |∇u|(x) of u : (X, d) → R:

|u′

q |(x) ≤ |∇u|(x) for all x ∈ Xq , q-a.e. q ∈ Q. (5-6)

With a slight abuse of notation, in order to keep the formulas short, in the following we will often identify
q and q⌞{q∈Q: cq>0}. Localizing the spectral gap deficit using (5-6) gives

δ(u) =

∫
X

|∇u|
2 m− N ≥

∫
Q

(∫
Xq

|u′
q |

2

c2
q

mq

)
c2

q q(dq) − N

=

∫
Q

[∫
Xq

(
|u′

q |
2

c2
q

− N
)
mq

]
c2

q q(dq) (5-7)

=

∫
Q

δ(uq)c2
q q(dq), (5-8)

where we set

δ(uq) :=

∫
Xq

(
|u′

q |
2

c2
q

− N
)
mq ,

the one-dimensional spectral gap deficit of uq . From now on, in order to keep notation short, we will
write δ for δ(u). Let β ∈ (0, 1) be a real parameter to be optimized later in the proof and denote the set of
“long rays” by

Qℓ := {q ∈ Q : δ(uq) ≤ δβ and cq > 0}.

It follows from (5-8), Chebyshev’s inequality and (5-3) that∫
Q\Qℓ

c2
q q(dq) ≤ δ1−β,

∫
Qℓ

c2
q q(dq) ≥ 1 − δ1−β . (5-9)

Hence we can use Proposition 3.3 to deduce that, for all q ∈ Qℓ,

(π − |Xq |)N
≤ CN δβ, (5-10)

where |Xq | denotes the length of the ray Xq . Being the preimage of a measurable function, Qℓ is
a measurable subset of Q. Adopting the notation R(E) :=

⋃
q∈E Xq , so that R(E) is the span of the rays

corresponding to equivalence classes in E , we claim that∫
X\R(Qℓ)

|∇u|
2 m ≤ (N + 1)δ1−β . (5-11)
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Indeed (5-6), (5-5) and (5-9) yield∫
R(Qℓ)

|∇u|
2 m ≥

∫
Qℓ

∫
Xq

|u′

q |
2 mq q(dq) ≥ N

∫
Qℓ

c2
q q(dq) ≥ N (1 − δ1−β).

The claim (5-11) follows by combining the last estimate with∫
X\R(Qℓ)

|∇u|
2 m+

∫
R(Qℓ)

|∇u|
2 m =

∫
X
|∇u|

2 m ≤ N + δ.

For each q ∈ Q, we denote by a(Xq) (resp. b(Xq)) the initial (resp. final) point of the ray Xq .
Throughout this last section we will often make the identification between the ray Xq and the interval

(0, |Xq |).

Proposition 5.1. There exists a distinguished q̄ ∈ Qℓ having initial point PN and final point PS such that

d(PN , a(Xq)) ≤ C(N )δβ/N , d(PS, b(Xq)) ≤ C(N )δβ/N for all q ∈ Qℓ. (5-12)

Proof. Fix any q̄ ∈ Qℓ and set PN := a(X q̄), PS := b(X q̄). By d-cyclical monotonicity of the transport
set T , for any other q ∈ Qℓ it holds

2π − d(a(Xq), b(Xq)) − d(PN , PS) ≥ 2π − d(a(Xq), PS) − d(b(Xq), PN ),

which we rewrite as

π − |Xq | +π − |X q̄ | ≥ π − d(a(Xq), PS) + π − d(b(Xq), PN ).

Combining the last estimate with (5-10) gives

2CN δβ/N
≥ π − d(a(Xq), PS) + π − d(b(Xq), PN ).

Finally by [Cavalletti et al. 2019, Proposition 5.1] we deduce the existence of a constant, depending only
on the dimension N, such that

d(a(Xq), PN ) ≤ C(N )δβ/N , d(b(Xq), PS) ≤ C(N )δβ/N ,

and the claim follows. □

From now on, for every q ∈ Qℓ choose the sign of cq so that∥∥∥∥uq

cq
−

√
N+1cos( ·)

∥∥∥∥
L2(Xq ,mq )

=min
{∥∥∥∥ uq

|cq |
+

√
N+1cos( ·)

∥∥∥∥
L2(Xq ,mq )

,

∥∥∥∥ uq

|cq |
−

√
N+1cos( ·)

∥∥∥∥
L2(Xq ,mq )

}
.

From Theorem 3.11 we obtain that for all q ∈ Qℓ it holds∥∥∥∥uq

cq
−

√
N + 1 cos( · )

∥∥∥∥
L2(Xq ,mq )

≤ C(N )δβ min{1/2,1/N }. (5-13)

The goal of the next section is to globalize estimate (5-13) to the whole space X.
The sought bound will be obtained through two intermediate steps: Firstly, in Proposition 5.2, we

control the variance of the map q 7→ cq with respect to the measure q on the set of long rays Qℓ. Then,
in Proposition 5.3, we estimate (1 − q(Qℓ)) in terms of a power of the deficit.
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Below we briefly present the strategy of the proof. In order to fix the ideas, we discuss the heuristics in
the rigid case of zero deficit. Actually in the case of zero deficit there is a more streamlined argument (the
assumption that u is Lipschitz, combined with the fourth bullet below, gives immediately that q 7→ cq

is constant); however, the point here is to present a strategy which generalizes to the nonrigid case of
nonzero deficit.

In the case where δ(u) = 0, the results of the previous sections give the following conclusions:

• Almost all the transport rays have length π . Moreover, they start from a common point PN , with
u(PN ) > 0, and end in a common point PS , with u(PS) < 0.

• m(Br (PN )) = mN ([0, r ]) for any r ∈ [0, π].

• For q-a.e. q ∈ Q, it holds that mq = mN is the model measure for the CD(N − 1, N ) condition.

• For q-a.e. q ∈ Q, it holds that uq( · ) = cq cos(d(PN , · )).

Our aim is to prove that q(Q) = 1 and that cq = 1 for q-a.e. q ∈ Q. The basic idea is to apply the Poincaré
inequality to balls centered at PN and having radii converging to 0.

Observe that we can compute

/
∫

Br (PN )

u m =
1

mN ([0, r ])

∫
Q

∫ r

0
cq cos(t)mN (dt) =

(∫
Q

cq q

)
/
∫ r

0
cos(t)mN (dt). (5-14)

Moreover, recalling that u = 0 m-a.e. outside of the transport set, we have

/
∫

Br (PN )

∣∣∣∣u − /
∫

Br (PN )

u m

∣∣∣∣2m
(5-14)
= (1 − q(Q))

(
/
∫

Br (PN )

u m

)2

+

∫
Q

/
∫ r

0

∣∣∣∣cq cos(t) −

∫
Q

cq q(dq) /
∫ r

0
cos(t)mN (dt)

∣∣∣∣2 mN (dt) q(dq)

∼ (1 − q(Q))

(∫
Q

cq q(dq)

)2

+

∫
Q

∣∣∣∣cq −

∫
Q

cq q(dq)

∣∣∣∣2q(dq) as r → 0, (5-15)

where in the last step we relied on the asymptotic cos(t) = 1+o(t) as t → 0. Eventually we can compute

/
∫

B2r (PN )

|∇u|
2m =

∫
Q

c2
q q(dq) /

∫ 2r

0
sin2(t)mN (dt) = /

∫ 2r

0
sin2(t)mN (dt) ∼ r2 as r → 0,

where in the last step we relied on the asymptotic sin(t) = t + o(t) as t → 0.
An application of the Poincaré inequality, in the asymptotic regime r ↓ 0, yields that∫

Q

∣∣∣∣cq −

∫
Q

cq q(dq)

∣∣∣∣2q(dq) = 0, (5-16)

which implies both the conclusions q(Q) = 1 and q 7→ cq constant q-a.e. Due to the constraint∫
Q c2

qq(dq) = 1 and the fact that u(PN ) > 0, we also get that cq = 1 q-a.e., as we claimed.
A second heuristic motivation of the fact that the oscillation of the map q 7→ cq is controlled by (a

power of) the deficit is that “the gradient of u is almost aligned along the rays” in a quantitative L2-sense,
suggesting that u “should not oscillate much in the direction orthogonal to the rays”. Note that in the
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current framework of CD(K , N ) spaces there is no scalar product and the set Q is far from regular, this
is the reason why we cannot directly implement this heuristic strategy. However, let us make precise the
fact that “the gradient of u is almost aligned along the rays” in a quantitative L2-sense, since this will be
used in the arguments below:

0
(5-6)
≤

∫
Q

(∫
Xq

|∇u|
2
− |u′

q |
2 mq

)
q(dq) =

∫
X

|∇u|
2 m−

∫
Q

(∫
Xq

|u′

q |
2 mq

)
q(dq) (by (5-1),(5-5))

≤ N + δ − N
∫

Q
c2

q q(dq)
(5-3)
= δ. (5-17)

The proofs of Propositions 5.2 and 5.3 below are based on the idea we just presented, although they are
quite technical since one has to handle all the various error terms occurring in the nonrigid case δ(u) > 0.

5A. Control on the variance.

Proposition 5.2. The following estimate holds:∫
Qℓ

∣∣∣∣cq − /
∫

Qℓ

cq q(dq)

∣∣∣∣2 q(dq) ≤ C(N )(δ4γ /N
+ δ1−β−γ+(2γ /N )

+ δ(β−γ ) min{2/N ,1}) (5-18)

for any 0 < β < 1 and for any 0 < γ < min{β, 1 − β}.

Proof. In order to bound the variance of q 7→ cq on Qℓ we wish to prove that it can be controlled by an
integral depending on the variation of the function u on a small ball Br (PN ). Next we will appeal to
the fact that in the rigid case the L2-norm squared of the gradient of u on Br (PN ) is comparable with
r N+2 and, at least heuristically, this has to be the case also when dealing with almost rigidity. Some
intermediate steps are devoted to reducing to the case where the function u coincides with cq cos( · ) when
restricted to any long ray Xq .

In order to slightly shorten the notation, we will write C in place of C(N ) to denote a dimensional
constant.

Step 1: We will set r = δγ /N for a suitable γ ∈ (0, β). First of all, notice that the triangle inequality and
(5-12) yield

[0, r − Cδβ/N
] ⊂ Xq ∩ Br (PN ) ⊂ [0, r + Cδβ/N

] (5-19)

for any q ∈ Qℓ, where we have identified [0, r ± Cδβ/N
] with the set

{z ∈ Xq : d(z, a(Xq)) ≤ r ± Cδβ/N
}.

The minimality of the mean combined with the inclusion (5-19) and with the weak local 2-2 Poincaré
inequality (2-6) gives∫

Qℓ×[0,r−Cδβ/N ]

∣∣∣∣u− /
∫

Qℓ×[0,r−Cδβ/N ]

u m

∣∣∣∣2 m≤

∫
Br (PN )

∣∣∣∣u− /
∫

Br (PN )

u
∣∣∣∣2 m≤ Cr2

∫
B10r (PN )

|∇u|
2 m. (5-20)

Step 2: Next we will obtain a more explicit expression of /
∫

Q×[0,r−Cδβ/N ]
u m.

Recall that we will often tacitly identify the ray Xq with the interval (0, |Xq |).
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Using Theorem 3.11, Corollary 2.7 and that δq ≤ δβ for q ∈ Qℓ, we estimate∣∣∣∣∫
Qℓ

∫
[0,r ]

u mq q(dq) −
√

N + 1
∫

Qℓ

∫
[0,r ]

cq cos( · )mq q(dq)

∣∣∣∣
≤

∫
Qℓ

|cq |

∫
[0,r ]

∣∣∣ u
cq

−
√

N + 1 cos( · )

∣∣∣mq q(dq)

≤

∫
Qℓ

|cq |
√
mq([0, r ])

∥∥∥ u
cq

−
√

N + 1 cos( · )

∥∥∥
L2([0,r ],mq )

q(dq)

≤ C r N/2(r N/2δβ min{1/2,1/N }
+ δβ/2)

∫
Qℓ

|cq | q(dq). (5-21)

Also, using Corollary 2.8, it holds∣∣∣∣∫
Qℓ

∫
[0,r ]

cq cos( · )mq q(dq) −

∫
Qℓ

∫
[0,r ]

cq cos( · )mN q(dq)

∣∣∣∣≤ Cδβ/N r N−1
∫

Qℓ

|cq | q(dq). (5-22)

With an analogous estimate involving Corollary 2.8, we also obtain

|m(Qℓ × [0, r ]) − q(Qℓ)mN ([0, r ])| ≤ Cq(Qℓ)r N−1δβ/N . (5-23)

The combination of (5-21), (5-22) and (5-23), setting r̄ := r − Cδβ/N, yields∣∣∣∣ /
∫

Qℓ×[0,r̄ ]

u m−

√
N + 1

∫
Qℓ×[0,r̄ ]

cq cos( · )mN q(dq)

q(Qℓ)(mN ([0, r̄ ]) − Cr N−1δβ/N )

∣∣∣∣
≤

C
(∫

Qℓ
|cq | q(dq)

)
(r N δβ min{1/2,1/N }

+ r N/2δβ/2
+ r N−1δβ/N )

q(Qℓ)(mN ([0, r̄ ]) − Cr N−1δβ/N )
. (5-24)

Step 3: In this step we estimate the order in δ of the right-hand side of (5-24) and choose r as

r = δγ /N , with γ ∈ (0, β). (5-25)

Approximating the cosine with its first-order Taylor expansion near to the origin in (5-24), we have

/
∫

Qℓ×[0,r̄ ]

u m =

∫
Qℓ

cq q(dq) +
(∫

Qℓ
|cq | q(dq)

)
O(δ(β−γ ) min{1/2,1/N })

q(Qℓ)/
√

N + 1
.

Since by Cauchy–Schwarz inequality and (5-3) it holds(
/
∫

Qℓ

cq q(dq)

)2

≤ /
∫

Qℓ

c2
q q(dq) ≤

1
q(Qℓ)

,

the last estimate can be rewritten as∣∣∣∣ /
∫

Qℓ×[0,r̄ ]

u m−
√

N + 1 /
∫

Qℓ

cq q(dq)

∣∣∣∣2 ≤
C

q(Qℓ)
δ(β−γ ) min{1,2/N }. (5-26)
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Step 4: The aim of this step is to eventually gain (5-18). We first need the following intermediate
inequality, where we assume that r ≫ δβ/N is a free parameter, that we will set later:∫

Qℓ

∫
[0,r ]

|u −
√

N + 1cq |
2mq q(dq)

≤ 2
∫

Qℓ

∫
[0,r ]

|u −
√

N + 1cq cos( · )|2 mq q(dq) + 2
∫

Qℓ

∫
[0,r ]

(
√

N + 1|cq || cos( · ) − 1|)2 mq q(dq)

≤ Cδβ min{1,2/N }r N
∫

Qℓ

c2
q q(dq) + Cδβ

+ Cr4
∫

Qℓ

c2
q mq([0, r ]) q(dq) (by (3-59))

≤ Cδβ min{1,2/N }r N
+ Cδβ

+ Cr4
∫

Qℓ

c2
q (mN ([0, r ]) + Cr N−1δβ/N ) q(dq) (by (5-10)+(2-12))

≤ Cδβ min{1,2/N }r N
+ Cr4mN ([0, r ])

∫
Qℓ

c2
q q(dq) + Cδβ

≤ Cr N (δβ min{1,2/N }
+ r4) + Cδβ . (5-27)

In particular, the previous inequality holds true substituting r̄ := r −Cδβ/N in place of r , and r = δγ /N is
as in the previous Step 3. We deduce

mN ([0, r̄ ])(N + 1)

∫
Qℓ

∣∣∣∣cq − /
∫

Qℓ

cq q(dq)

∣∣∣∣2 q(dq)

≤ (N + 1)

∫
Qℓ

∣∣∣∣cq − /
∫

Qℓ

cq q(dq)

∣∣∣∣2(mq([0, r̄ ]) + Cr N−1δβ/N ) q(dq)

≤ Cδβ/N r N−1
+ (N + 1)

∫
Qℓ

∣∣∣∣cq − /
∫

Qℓ

cq q(dq)

∣∣∣∣2mq([0, r̄ ]) q(dq)

≤Cδβ/N r N−1
+2

∫
Qℓ

∫
[0,r̄ ]

|u−
√

N + 1cq |
2 mq q(dq)+2

∫
Qℓ

∫
[0,r̄ ]

∣∣∣∣u− /
∫

Qℓ

√
N + 1cq q(dq)

∣∣∣∣2 mq q(dq)

≤ Cδβ/N r N−1
+ 2

∫
Qℓ

∫
[0,r̄ ]

|u −
√

N + 1cq |
2 mq q(dq) + 4

∫
Qℓ×[0,r̄ ]

∣∣∣∣u − /
∫

Qℓ×[0,r̄ ]

u m

∣∣∣∣2 m
+ 4

∫
Qℓ

∫
[0,r̄ ]

∣∣∣∣ /
∫

Qℓ×[0,r̄ ]

u m−
√

N + 1 /
∫

Qℓ

cq q(dq)

∣∣∣∣2 mq q(dq).

Now use (5-20), (5-26), (5-25), (5-27) to continue the chain of inequalities

≤ Cδγ (δ(β−γ ) min{1,2/N }
+ δ4γ /N ) + Cr2

∫
B10r (PN )

|∇u|
2 m. (5-28)

Next we wish to bound the term
∫

B10r (PN )
|∇u|

2 m. To this aim we observe that∫
B10r (PN )

|∇u|
2 m

≤

∫
X\R(Qℓ)

|∇u|
2 m +

∫
Qℓ

∫ 10r+Cδβ/N

0
|u′

q |
2 mq q(dq)+δ (by (5-17))

≤ C(δ1−β
+δβ

+r N δβ min{2/N ,1}
+δβ/N r N−1r2)+C

∫ 10r+Cδβ/N

0
sin( · )2 mN (by (5-11), (3-59), (2-12))

≤ C(δ1−β
+δβ

+r N (δβ min{2/N ,1}
+r2)). (5-29)
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Combine now (5-28) with (5-29) and recall that r = δγ /N for 0 < γ < min{β, 1 − β} to get

δγ

∫
Qℓ

∣∣∣∣cq − /
∫

Qℓ

cq q(dq)

∣∣∣∣2 q(dq) ≤ Cδγ (δ4γ /N
+ δ1−β−γ+(2γ /N )

+ δ(β−γ ) min{1,2/N }),

which gives the desired estimate (5-18). □

5B. Control of the measure of long rays. Following Proposition 5.2, we set

c̄ := /
∫

Qℓ

cq q(dq). (5-30)

Next we proceed proving that q(Qℓ) is quantitatively close to 1 up to an error of the order of a suitable
power of the deficit.

Proposition 5.3. The following estimate holds:

(1 − q(Qℓ))
2
≤ C(N )(δ4γ /N

+ δ(β−γ )/N
+ δ1−β−γ ) (5-31)

for any 0 < β < 1 and for any 0 < γ < min{β, 1 − β}.

Proof. In order to slightly shorten the notation, we will write C in place of C(N ) to denote constants
depending only on N. Moreover, we will continue to tacitly identify the ray Xq with the interval (0, |Xq |).
We achieve (5-31) through three intermediate steps.

Step 1: Aim of this first step is to prove that, for r = δγ /N, γ ∈ (0, min{β, 1−β}), letting r̄ := r −Cδβ/N,
it holds

(N + 1)

∫
Qℓ

∫
[0,r̄ ]

∣∣∣∣cq cos( · ) − c̄ q(Qℓ) /
∫

[0,r̄ ]

cos( · )mN

∣∣∣∣2 mN q(dq)

≤

∫
Br (PN )

∣∣∣∣u − /
∫

Br (PN )

u m

∣∣∣∣2 m+ C(δγ+(β−γ )/N
+ δ1−β). (5-32)

Arguing as in the first steps of the proof of Proposition 5.2, we estimate∫
Qℓ

∫ r̄

0

∣∣∣∣√N+1cq cos( · )− /
∫

Br (PN )

u m

∣∣∣∣2 mN q(dq)

≤

∫
Qℓ

∫ r̄

0

∣∣∣∣√N+1cq cos( · )− /
∫

Br (PN )

u m

∣∣∣∣2 mq q(dq)+Cδβ/N r N−1 (by (2-12), (5-10))

≤ 2
∫

Qℓ

∫ r̄

0
|
√

N+1cq cos( · )−u|
2 mq q(dq)+Cδβ/N r N−1

+2
∫

Qℓ

∫ r̄

0

∣∣∣∣u− /
∫

Br (PN )

u m

∣∣∣∣2 mq q(dq)

≤ 2
∫

Qℓ

c2
q

∥∥∥∥ u
cq

−
√

N+1 cos( · )

∥∥∥∥2

L2([0,r̄ ],mq )

q(dq)+Cδβ/N r N−1
+2

∫
Qℓ

∫ r̄

0

∣∣∣∣u− /
∫

Br (PN )

u m

∣∣∣∣2 mq q(dq)m

≤ 2
∫

Br (PN )∩R(Qℓ)

∣∣∣∣u− /
∫

Br (PN )

u m

∣∣∣∣2 m+Cδβ/N r N−1 (by (3-59), (5-19)). (5-33)

In order to achieve (5-32), having in mind to argue by triangle inequality, we are left to bound

mN ([0, r̄ ]) q(Qℓ)

∣∣∣∣ /
∫

Br (PN )

u m−
√

N + 1c̄ q(Qℓ) /
∫

[0,r̄ ]

cos( · )mN

∣∣∣∣2. (5-34)
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We start by observing that∣∣∣∣∫
Br (PN )

u m−
√

N + 1 c̄ q(Qℓ)

∫ r

0
cos( · )mN

∣∣∣∣
≤

∣∣∣∣∫
Br (PN )∩R(Qℓ)

u m−
√

N + 1 c̄ q(Qℓ)

∫ r

0
cos( · )mN

∣∣∣∣+ ∣∣∣∣∫
Br (PN )\R(Qℓ)

u m

∣∣∣∣. (5-35)

We first treat the second term of the right-hand side.
From (5-9) we know that

∫
X\R(Qℓ)

u2 m≤ δ1−β ; an application of Hölder’s inequality and (2-12) yields∫
Br (PN )\R(Qℓ)

|u|m ≤ δ(1−β)/2
√
m(Br (PN ) \ R(Qℓ)) ≤ Cδ(1−β)/2r N/2. (5-36)

We estimate the first term in the right-hand side of (5-35) by reducing to (5-21) in the second step of the
proof of Proposition 5.2:∣∣∣∣∫

Br (PN )∩R(Qℓ)

u m−
√

N + 1c̄q(Qℓ)

∫ r

0
cos( · )mN

∣∣∣∣
≤

∣∣∣∣∫
Br (PN )∩R(Qℓ)

u m−

∫
Qℓ

∫
[0,r ]

umq q(dq)

∣∣∣∣
+

∣∣∣∣∫
Qℓ

∫
[0,r ]

u mq q(dq) −
√

N + 1
∫

Qℓ

∫
[0,r ]

cq cos( · )mq q(dq)

∣∣∣∣
+

∣∣∣∣∫
Qℓ

∫
[0,r ]

√
N + 1cq cos( · )mq q(dq) −

√
N + 1c̄q(Qℓ)

∫ r

0
cos( · )mN

∣∣∣∣.
Using (2-12), (3-59), (5-10), (5-19), (5-21), we continue as follows:

≤

∫
Qℓ

∫ r+Cδβ/N

r−Cδβ/N
|u|mq q(dq)+Cr N/2(δβ min{1/2,1/N }r N/2

+δβ/2
+r (N/2)−1δβ/N )

∫
Qℓ

|cq | q(dq). (5-37)

Arguing by triangle inequality bounding first the distance from the normalized cosine (with (3-60)) and
then replacing the measures mq with the model measure mN (with (2-12)), we estimate the first summand
in the right-hand side of (5-37) as∫

Qℓ

∫ r+Cδβ/N

r−Cδβ/N
|u|mq q(dq) ≤ C(r N−1δβ/N

+ r (N−1)/2δβ(1/2+1/(2N )))

∫
Qℓ

|cq | q(dq). (5-38)

Combining (5-37), (5-38), and choosing r = δγ /N with γ ∈ (0, min{β, 1 − β}) yields∣∣∣∣∫
Br (PN )∩R(Qℓ)

um−c̄
√

N+1q(Qℓ)

∫ r̄

0
cos( ·)mN

∣∣∣∣≤C(r N−1δβ/N
+r N δβ min{1/2,1/N }

+r N/2δβ/2). (5-39)

The combination of (5-35) (5-36) and (5-39) gives∣∣∣∣∫
Br (PN )

u m− c̄
√

N + 1q(Qℓ)

∫ r̄

0
cos( · )mN

∣∣∣∣
≤ C(r N−1δβ/N

+ r N δβ min{1/2,1/N }
+ r N/2δβ/2

+ δ(1−β)/2r N/2). (5-40)
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To bound (5-34), approximating the measure of the ball Br (PN ) and then the function u with the respective
model behaviors, we now estimate

mN ([0, r̄ ])q(Qℓ)

∣∣∣∣ /
∫

Br (PN )

u m− c̄
√

N + 1 q(Qℓ) /
∫ r̄

0
cos( · )mN

∣∣∣∣2
≤ 2mN ([0, r̄ ])q(Qℓ)

∣∣∣∣ /
∫

Br (PN )

u m−
1

mN ([0, r̄ ])

∫
Br (PN )

u m

∣∣∣∣2
+ 2mN ([0, r̄ ])q(Qℓ)

∣∣∣∣ 1
mN ([0, r̄ ])

∫
Br (PN )

u m− c̄ q(Qℓ)
√

N + 1 /
∫ r̄

0
cos( · )mN

∣∣∣∣2
≤ 2mN ([0, r̄ ])q(Qℓ)

(∫
Br (PN )

u m

)2( 1
m(Br (PN ))

−
1

mN ([0, r̄ ])

)2

+ 2
1

mN ([0, r̄ ])
q(Qℓ)

∣∣∣∣∫
Br (PN )

u m− c̄q(Qℓ)
√

N + 1
∫ r̄

0
cos( · )mN

∣∣∣∣2. (5-41)

Estimate the first term by Cauchy–Schwarz and the second term by (5-40):

≤ 2q(Qℓ)

[
(m(Br (PN ))−mN ([0, r̄ ]))2

m(Br (PN ))mN ([0, r̄ ])

]∫
Br (PN )

u2m+Cq(Qℓ)[δ
γ+2(β−γ )/N

+δγ+β min{1,2/N }
+δβ

+δ1−β
].

Now use Proposition 4.5 and choose r = δγ /N, γ ∈ (0, min{β, 1 − β}):

≤ 2
(∫

Br (PN )

u2 m

)(
mN ([r̄ , r + Cδβ/N

])

mN ([0, r̄ ])

)2

+ C(δγ+2(β−γ )/N
+ δγ+β min{1,2/N }

+ δβ
+ δ1−β)

≤ C(δγ+2(β−γ )/N
+ δγ+β min{1,2/N }

+ δβ
+ δ1−β), (5-42)

where the second inequality is obtained by observing that∫
Br (PN )

u2 m =

∫
Br (PN )\Qℓ

u2 m+

∫
Br (PN )∩Qℓ

u2 m

≤ δ1−β
+ 2

∫
Qℓ

∫
[0,r+Cδβ/N ]

(u − cq
√

N + 1 cos( · ))2mq q(dq)

+ 2
∫

Qℓ

∫
[0,r+Cδβ/N ]

c2
q(N + 1) cos2( · )mqq(dq)

≤ C(δ1−β
+ δβ

+ δγ+β min{1,2/N }
+ δγ ).

The claimed estimate (5-32) is eventually obtained via triangle inequality from (5-33) and (5-42)

Step 2: Building upon Proposition 5.2, we shall obtain the bound∫
Qℓ

∫
[0,r̄ ]

(N + 1)

∣∣∣∣c̄ cos( · ) − c̄ q(Qℓ) /
∫ r̄

0
cos( · )mN

∣∣∣∣2 mN q(dq)

≤ 2
∫

Br (PN )

∣∣∣∣u − /
∫

Br (PN )

u m

∣∣∣∣2 m+ Cδγ (δ4γ /N
+ δ(β−γ )/N ) + Cδ1−β . (5-43)



1426 FABIO CAVALLETTI, ANDREA MONDINO AND DANIELE SEMOLA

Thanks to the triangle inequality, the error we introduce by replacing cq cos( · ) with c̄ cos( · ) can be
controlled by∫

Qℓ

∫
[0,r̄ ]

|cq − c̄|2 cos2(t)mN (dt) q(dq) ≤ mN ([0, r̄ ])

∫
Qℓ

|cq − c̄|2 q(dq)

≤ Cδγ (δ4γ /N
+ δ(β−γ ) min{1,2/N }) + Cδ1−β+2γ /N , (5-44)

where the last inequality is a consequence of (5-18) and the fact that r̄ ≤ r = δγ /N, γ ∈ (0, min{β, 1−β}).
The claimed (5-43) follows from (5-44) and (5-32) via triangle inequality.

Step 3: Using the Taylor expansion cos(t) = 1 + O(t2) in the left-hand side of (5-43), we obtain∫
Qℓ

∫ r̄

0
(N +1)|c̄− c̄q(Qℓ)|

2mN q(dq) ≤

∫
Br (PN )

∣∣∣∣u − /
∫

Br (PN )

u m

∣∣∣∣2m+Cδγ (δ4γ /N
+δ(β−γ )/N )+Cδ1−β,

giving

mN ([0, r̄ ])(N +1)c̄2(1−q(Qℓ))
2q(Qℓ)≤2

∫
Br (PN )

∣∣∣∣u− /
∫

Br (PN )

u m

∣∣∣∣2m+Cδγ (δ4γ /N
+δ(β−γ )/N )+Cδ1−β .

Using the 2-2 Poincaré inequality (2-6) (combined with Bishop–Gromov volume comparison), we obtain

mN ([0, r̄ ])(N + 1)c̄2(1 − q(Qℓ))
2q(Qℓ) ≤ Cr2

∫
B10r (PN )

|∇u|
2 m+ Cδγ (δ4γ /N

+ δ(β−γ )/N ) + Cδ1−β

≤ Cδγ (δ4γ /N
+ δ(β−γ )/N ) + Cδ1−β, (5-45)

where in the last estimate we used (5-29) (recall that r = δγ /N ).
Using again that

∫
Qℓ

|cq − c̄|2 q(dq) ≤ Cδα(N ) from (5-18) for some α(N ) > 0, observing that∫
Qℓ

(c2
q − c̄2) q(dq) =

∫
Qℓ

|cq − c̄|2 q(dq), (5-46)

and recalling (5-9), we get

c̄2q(Qℓ) =

∫
Qℓ

c2
q q(dq) +

∫
Qℓ

(c̄2
− c2

q) q(dq) ≥ 1 − δ1−β
−

∫
Qℓ

|cq − c̄|2 q(dq)

≥ 1 − δ1−β
− Cδα(N ) >

1
C(N )

> 0. (5-47)

Plugging (5-47) into (5-45) yields

(1 − q(Qℓ))
2
≤ C(δ4γ /N

+ δ(β−γ )/N
+ δ1−β−γ ), (5-48)

completing the proof. □

Remark 5.4. Observe that a direct consequence of Proposition 5.3 above is an estimate of the measure
of the region of the space which is not covered by transport rays, that is, {u = 0}.

Indeed (5-31) implies in particular that

m(X \ T ) ≤ 1 − q(Qℓ) ≤ C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2). (5-49)
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5C. Proof of the main theorem. We are now ready to prove the main result putting together the estimates
we proved so far. First we reduce to the set spanned by long rays using Proposition 5.3; then, building
upon Proposition 5.2 and on Theorem 3.11, we prove that on the set of long rays the function is close to a
fixed multiple of the cosine of the distance from the endpoint. Eventually we change the distance from
the endpoint of the ray into the distance from a pole thanks to (5-12).

Theorem 5.5. For any N ∈ (1, ∞) there exist C(N ) > 0 and δ0 = δ0(N ) > 0 with the following properties.
Let (X, d,m) be an essentially nonbranching CD(N − 1, N ) m.m.s. Then, for any u ∈ Lip(X) with∫

X u m = 0,
∫

X u2 m = 1 and

δ :=

∫
X
|∇u|

2 m− N ≤ δ0, (5-50)

there exists a distinguished point P ∈ X such that

∥u −
√

N + 1 cos(d(P, · ))∥L2(m) ≤ C(N )δ1/(6N+4). (5-51)

Proof. Step 1: Let us begin observing that Proposition 5.2 combined with (5-30) and (5-46) gives∣∣∣∣∫
Qℓ

c2
q q(dq) − c̄2 q(Qℓ)

∣∣∣∣≤ C(N )(δ4γ /N
+ δ1−β−γ+(2γ /N )

+ δ(β−γ ) min{2/N ,1}). (5-52)

Since from (5-9) we know that

1 − δ1−β
≤

∫
Qℓ

c2
q q(dq) ≤ 1,

and in Proposition 5.3 we proved that

q(Qℓ) ≥ 1 − C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2), (5-53)

from (5-52) we infer that

|1 − c̄2
| ≤ C(N )(δ2γ /N

+ δ(1−β−γ )/2
+ δ(β−γ )/2N ). (5-54)

Notice that (5-54) implies (see for instance the proof of (3-48))

min{|1 − c̄|, |1 + c̄|} ≤ C(N )(δ2γ /N
+ δ(1−β−γ )/2

+ δ(β−γ )/2N ). (5-55)

Without loss of generality (up to switching the sign of u) we can assume that

|1 − c̄| = min{|1 − c̄|, |1 + c̄|}.

The combination of Proposition 5.2 and (5-55) gives∫
Qℓ

|cq − 1|
2 q(dq) ≤ 2

∫
Qℓ

|cq − c̄|2 q(dq) + 2|c̄ − 1|
2 q(Qℓ)

≤ C(N )(δ4γ /N
+ δ1−β−γ

+ δ(β−γ )/N ). (5-56)
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Step 2: Next we let P be equal to PN given in Proposition 5.1. We get

∥u −
√

N + 1 cos(d(P, · ))∥2
L2(m)

=

∫
Q

∫
Xq

|u −
√

N + 1 cos(d(P, · ))|2 mq q(dq) +

∫
X\T

(N + 1) cos(d(P, · ))2 m

≤

∫
Qℓ

∫
Xq

|u −
√

N + 1 cos(d(P, · ))|2 mq q(dq)

+ 2
∫

X\R(Qℓ)

u2 m+ 2(N + 1) q(Q \ Qℓ) + (N + 1)m(X \ T ).

Using (5-9), (5-53) and Remark 5.4, recalling that we are tacitly identifying the ray Xq with the interval
(0, |Xq |),

≤

∫
Qℓ

∫
Xq

|u −
√

N + 1 cos(d(P, · ))|2 mq q(dq) + C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2)

≤ 2
∫

Qℓ

∫
Xq

|u −
√

N + 1 cos( · )|2 mq q(dq)

+ 2
∫

Qℓ

∫
Xq

|cos( · ) − cos(d(P, · ))|2 mq q(dq) + C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2).

Using triangle inequality to estimate the first term and (5-12) for the second,

≤ 4
∫

Qℓ

∫
Xq

|u −
√

N + 1cq cos( · )|2 mq q(dq) + C(N )

∫
Qℓ

|cq − 1|
2 q(dq)

+ C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2).

By (5-13) and (5-56),

≤ C(N )δβ min{1,2/N }

∫
Qℓ

c2
q q(dq) + C(N )(δ2γ /N

+ δ(β−γ )/2N
+ δ(1−β−γ )/2)

≤ C(N )(δ2γ /N
+ δ(β−γ )/2N

+ δ(1−β−γ )/2). (5-57)

The optimal choice of parameters in (5-57) is β = 5N/(6N + 4) and γ = N/(6N + 4) giving the
claim (5-51). □
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ON PRODUCT SYSTEMS OVER RIGHT LCM SEMIGROUPS

EVGENIOS T.A. KAKARIADIS, ELIAS G. KATSOULIS, MARCELO LACA AND XIN LI

We study the structure of C∗-algebras associated with compactly aligned product systems over group
embeddable right LCM semigroups. Towards this end we employ controlled maps and a controlled
elimination method that associates the original cores to those of the controlling pair, and we combine
these with applications of the C∗-envelope theory for cosystems of nonselfadjoint operator algebras
recently produced. We derive several applications of these methods that generalize results on single
C∗-correspondences.

First we show that if the controlling group is exact then the couniversal C∗-algebra of the product
system coincides with the quotient of the Fock C∗-algebra by the ideal of strong covariance relations. We
show that if the controlling group is amenable then the product system is amenable. In particular if the
controlling group is abelian then the couniversal C∗-algebra is the C∗-envelope of the tensor algebra.

Secondly we give necessary and sufficient conditions for the Fock C∗-algebra to be nuclear and exact.
When the controlling group is amenable we completely characterize nuclearity and exactness of any
equivariant injective Nica-covariant representation of the product system.

Thirdly we consider controlled maps that enjoy a saturation property. In this case we induce a compactly
aligned product system over the controlling pair that shares the same Fock representation, and preserves
injectivity. By using couniversality, we show that they share the same reduced covariance algebras. If in
addition the controlling pair is a total order then the fixed point algebra of the controlling group induces a
super product system that has the same reduced covariance algebra and is moreover reversible.

1. Introduction

Framework. In the present project we study further the effect of nonselfadjoint operator algebras and
boundary theory of group coactions on the theory of C∗-algebras recently initiated by the authors and
Dor-On in [Dor-On et al. 2022]. We work in the class of algebras of a compactly aligned product system X
over a right LCM semigroup P in a group G with coefficients in a C∗-algebra A (for brevity we will say
that such a pair (G, P) is a weak right LCM inclusion). Continuous product systems of Hilbert spaces
were coined by Arveson [1989] for R+, and their discrete counterparts were studied by Dinh [1991].
Motivated by Pimsner’s seminal work [1997], Fowler [1999] studied product systems of correspondences
over quasilattices. Since then discrete product systems have been studied by many authors (far too
many to list here) and constitute an active area of research in their own right. Recently there has been a
growing interest in passing from quasilattices to right LCM semigroups. Kwaśniewski and Larsen [2019]
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studied the Toeplitz–Nica–Pimsner C∗-algebra NT (X) for right LCM semigroups proving Toeplitz–
Cuntz–Krieger-type uniqueness theorems. Here we turn our focus to equivariant quotients with an eye
towards Cuntz-type covariant realizations.

One of the main questions in this direction has been to identify the appropriate quotient of NT (X)
so that faithful representations of A lift to faithful representations of the quotient. This cannot be
expected to hold unconditionally. The next best hope is thus to locate the quotient of NT (X) so that
faithful representations of A lift to faithful representations of its fixed point algebra. Sehnem [2019]
has provided a full answer by introducing the strongly covariant representations. This generalizes the
study of Cuntz–Nica–Pimsner relations, initiated by Sims and Yeend [2010], and later continued by
Carlsen, Larsen, Sims and Vittadello [Carlsen et al. 2011]. A second aim of [Carlsen et al. 2011] was
to use these relations and provide a couniversal object by passing to an appropriate reduced quotient.
This was achieved under extra conditions on the product system (such as injectivity or directness of the
quasilattice).

Couniversality and boundary representations arise naturally in the context of nonselfadjoint operator
algebras and their C∗-envelope in the sense of Arveson. With Dor-On, in [Dor-On et al. 2022] we
introduced a coaction variant of the C∗-envelope and used it to fully answer the problem of Carlsen,
Larsen, Sims and Vittadello [Carlsen et al. 2011] without any assumptions on the product system X . Even
more, the results of [Dor-On et al. 2022] apply to weak right LCM inclusions (G, P) rather than just
quasilattices; more specifically, the C∗-envelope C∗

env(Tλ(X)+,G, δ̄G) of the Fock tensor algebra Tλ(X)+

with its normal coaction is couniversal for equivariant injective Nica-covariant representations of X .
Seeing Sehnem’s covariance algebra A ×X P as the universal C∗-algebra of an induced Fell bundle we
further showed that C∗

env(Tλ(X)+,G, δ̄) coincides with the reduced C∗-algebra of this Fell bundle, here
denoted by A ×X,λ P.

The algebraic structure of C∗
env(Tλ(X)+,G, δ̄G) was studied in [Dor-On et al. 2022]. Pivotal in this

endeavor was the remark that the strong covariance relations of Sehnem are actually filtered through the
Fock representation. Following Sehnem [2019], we will denote by A ×X P the universal C∗-algebra
with respect to the strongly covariant representations of X . We further consider the induced quotient
qsc(Tλ(X)) of Tλ(X) by the strong covariance relations. In [Dor-On et al. 2022] it is shown that the
canonical map

qsc(Tλ(X))→ C∗

env(Tλ(X)
+,G, δ̄)≃ A ×X,λ P (1-1)

is faithful if and only if the normal coaction of Tλ(X) descends to a normal coaction on qsc(Tλ(X)),
e.g., when G is exact.

The motivation for the present work is two-fold. On one hand we wish to explore further general
settings that entail normality of the coaction of qsc(Tλ(X)) and thus identify the algebraic structure of
the couniversal object. Our main theorem here is that this happens when (G, P) is controlled by another
weak right LCM inclusion (G,P) with G exact. When G is abelian we can further induce dual actions on
the C∗-algebras. This has the remarkable consequence that the canonical ∗-epimorphism

C∗

env(Tλ(X)
+,G, δ̄)→ C∗

env(Tλ(X)
+) (1-2)
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is faithful. On the other hand we wish to use the couniversal property in such a context and apply it in
the identification of C∗-algebras. The quotient by the strong covariance relations is used as a model in
several constructions, and this line of reasoning allows to show functoriality without checking a long list
of C∗-properties. This is quite pleasing in particular because reduced C∗-algebras do not enjoy a priori
universal properties. In fact we follow the reverse route of using the identification of reduced objects and
then lift them to ∗-isomorphisms of the universal ones.

Main results. Controlled maps ϑ : (G, P)→ (G,P) between quasilattice ordered groups were introduced
by Laca and Raeburn [1996] with the purpose of extending the range of application of the faithfulness
and uniqueness theorems for Toeplitz algebras of quasilattice ordered groups. The key idea is that (G, P)
is amenable in the sense of Nica [1992], provided that G is an amenable group. A similar notion of
controlled maps was formulated simultaneously and independently by Crisp [1999] to prove that some
Artin monoids inject in their groups. The combination of these two sets of ideas led to the amenability and
nonamenability results for Artin monoids by Crisp and the third author [Crisp and Laca 2002]. Similar
results can be derived for the Fock algebra Tλ(X) of a product system over P, as it has a P-core that
can be expressed as a direct sum of matrix algebras (see for example the proof of Theorem 6.4). As a
consequence one obtains for example that compactly aligned product systems over the free semigroup Fn

+

are amenable, although the group Fn is not, the reason being that the pair (Fn, Fn
+
) is controlled by its

abelianization or by its length map on (Z,Z+).
However this type of argument is no longer valid for equivariant quotients as these relations live in

the diagonal of the P-core (and thus in the P-core). An elimination method was recently developed
in [Kakariadis 2020] when (G,P) = (Zn,Zn

+
) with the purpose of studying nuclearity and exactness

properties. By building further on these techniques, in the subsection on page 1458 we give a controlled
elimination method for passing from the P-cores to the P-cores of injective Nica-covariant representations.
Essentially the method asserts that any relation in a P-core must live at the diagonal and thus in a P-core.
We then use this to lift all properties from the realm of the P-fixed point algebras to the P-fixed point
algebras. For example this applies to the fixed point algebra property of Sehnem’s algebra [2019];
see Corollary 5.8. In particular exactness of G impacts on the maps appearing in (1-1).

Theorem A (Theorem 6.1). Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM in-
clusions and let X be a compactly aligned product system over P with coefficients in A. Consider the
canonical ∗-epimorphisms

qsc(Tλ(X))→ A ×X,λ P ≃ C∗

env(Tλ(X)
+,G, δ̄G)→ C∗

env(Tλ(X)
+). (1-3)

If G is exact then the left map is faithful. If in addition G is abelian then the right map is also faithful.

Theorem A implies that the coaction on qsc(Tλ(X)) is normal when G is exact. As pointed out in
[Dor-On et al. 2022], this implies that the reduced Hao–Ng problem over discrete group actions has a
positive answer (Remark 6.3). A similar method applies whenever the C∗-envelope functor is stable
under crossed products, e.g., for dynamics over abelian locally compact groups or when the tensor
algebra is hyperrigid [Katsoulis 2020; Katsoulis and Ramsey 2019], and we leave this to the interested
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reader. A further consequence of Theorem A is that amenability of G implies amenability of the product
system and thus universality of the reduced constructions (Theorem 6.4). The case of abelian G directly
generalizes the results of [Dor-On and Katsoulis 2020]. There is further potential for Takai duality results
even when (G, P) does not admit a dual. A further consequence of Theorem A provides a generalization
of the extension theorem of [Katsoulis and Ramsey 2019], which recognizes a Fock tensor algebra by the
presence of a coaction (Corollary 6.7).

Another application of the controlled elimination method concerns nuclearity and exactness results.
It has been observed by Katsura [2004] that nuclearity of a Cuntz–Pimsner algebra is equivalent to the
coefficient algebra being nuclearly embedded in the fixed point algebra. Kakariadis [2020] produced
similar results for Zn

+
. In Theorem 6.11 we first give an equivalent characterization for nuclearity of Tλ(X)

for right LCM semigroups. Although our original goal was to exploit A ×X P, we tackle any equivariant
quotient of NT (X) that is injective on A.

Theorem B (Theorem 6.12, Theorem 6.13). Let ϑ : (G, P)→ (G,P) be a controlled map between weak
right LCM inclusions with G amenable and let X be a compactly aligned product system over P with
coefficients in A. Let (π, t) be an equivariant injective Nica-covariant representation of X. Then:

(i) A is exact if and only if C∗(π, t) is exact.

(ii) A ↪→ C∗(π, t) is nuclear if and only if C∗(π, t) is nuclear.

We emphasize that the controlled elimination process occurs at the level of representations. One might
be intrigued to introduce a product system Y over P that would share the same algebras with X over P.
However it is not clear that such a procedure gives a compactly aligned product system. For this reason
we introduce the notion of saturation for controlled maps, which preserves inclusions of ideals in the
semigroups. Under this condition we do get a super product system on the same coefficient algebra that
does the job.

Theorem C (Theorem 7.7). Let ϑ : (G, P)→ (G,P) be a saturated controlled map between weak right
LCM inclusions. Let X be an (injective) compactly aligned product system over P with coefficients in A
and let

Yh :=

∑
⊕

p∈ϑ−1(h)

X p for h ∈ P.

Then the collection Y ={Yh}h∈P is an (injective) compactly aligned product system over P with coefficients
in A such that Tλ(X)+ ≃ Tλ(Y )+ with

Tλ(X)≃ Tλ(Y ) and A ×X,λ P ≃ A ×Y,λ P,

by ∗-isomorphisms that preserve the inclusions X p 7→ Yϑ(p) for all p ∈ P. These ∗-isomorphisms further
lift to ∗-isomorphisms

NT (X)≃ NT (Y ) and A ×X P ≃ A ×Y P

that preserve the inclusions X p ↪→ Yϑ(p) for all p ∈ P.
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Our method here is to show that the ∗-isomorphism Tλ(X)≃ Tλ(Y ) is canonical on the tensor algebras
and then apply the C∗-envelope machinery to induce the ∗-isomorphism A ×X,λ P ≃ A ×Y,λ P. The
saturation property can be induced by free products of abelian total orders, and is preserved by semidirect
products. As a notable application of this method we deduce that Sehnem’s covariance algebra of a
product system over F+

n is nothing more than the Cuntz–Pimsner algebra of a single C∗-correspondence,
in a similar way that the Nica–Cuntz–Pimsner algebra of F+

n coincides with On (Corollary 7.8).
We then take a closer look at total orders. To further motivate these results, recall that the Cuntz

algebra On may be viewed as the Cuntz–Pimsner algebra of a Hilbert bimodule over the n∞-hyperfinite
C∗-algebra. In spite of the coefficient algebra of the latter being much larger, Hilbert bimodules are better
behaved than other types of C∗-correspondences and they allow for a rich theory, including versions
of Takai duality. Here we will show that the situation with On generalizes to product systems that are
controlled by exact total orders. Towards this end we consider reversible product systems for which the
image of every fiber in A ×X,λ P is a Hilbert bimodule. We then show that reversible product systems
produce all possible covariance algebras for weak right LCM inclusions that are controlled by total
orders in a saturated way. The construction relies on using the fixed point algebra and generalizes results
of Pimsner [1997], Abadie, Eilers and Exel [Abadie et al. 1998], Schweizer [2001], Kakariadis and
Katsoulis [2012], and Meyer and Sehnem [2019]. However our proof uses the C∗-envelope machinery
and thus avoids categorical arguments.

Theorem D (Theorem 7.15). Let ϑ : (G, P)→ (G,P) be a saturated controlled map between weak right
LCM inclusions and suppose that (G,P) is a total order. Let X be an (injective) product system over P
with coefficients in A. Then there exists an (injective) reversible product system Z over P with coefficients
in a C∗-algebra B such that

A ⊆ B and X p ⊆ Zϑ(p) for all p ∈ P (1-4)
that satisfies

A ×X P ≃ B ×Z P and A ×X,λ P ≃ B ×Z ,λ P, (1-5)

by ∗-isomorphisms that preserve the inclusions X p ↪→ Zϑ(p) for all p ∈ P.

Semigroup C∗-algebras have been an important source of inspiration for this study. Our results have
a direct application to C∗-algebras of right LCM semigroups where X p = C for every p ∈ P. In this
case the Nica–Toeplitz C∗-algebra is denoted by C∗

s (P) for the Nica-covariant representations of P
and Theorem A (and in particular Theorem 6.4) is a direct generalization of [Crisp and Laca 2007,
Theorem 4.7]. Faithfulness of the maps of Theorem A has been further investigated in [Kakariadis et al.
2022] for (not-necessarily right LCM) semigroups that embed in exact groups. Theorem B asserts that
every quotient of C∗

s (P) is nuclear and aligns with [Li 2013, Corollary 8.3] for quasilattices. Under the
saturation property, Theorem C asserts that the operator algebras of P coincide with those of a product
system Y over P with Yh = C|ϑ−1(h)| for h ∈ P. This follows a recurring idea of obtaining realizations of
the same C∗-algebra in different classes. It has been shown in [Li 2017] that C ×C,λ P can be realized as
the partial crossed product of the smallest G-invariant subspace of the fixed point algebra of C∗

s (P) by G.
Theorem D provides a similar (augmented) realization when ϑ is saturated and (G,P) is a total order.
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Let us close with a remark on controlled maps. It has been known that controlled maps cannot handle
HNN extensions of quasilattices as the height map does not have a trivial kernel on the semigroup. In
order to resolve this, recently an Huef, Nucinkis, Sehnem and Yang [an Huef et al. 2021] introduced a
more general definition of controlled maps for weak quasilattices that allows infinite descending chains
and thus produces direct limits of matrix algebras. The controlled elimination arguments we provide here
should be compatible with this general definition, as they refer to ideals of representations, which are
compatible with direct limits.

Structure of the paper. In Section 2 we review the boundary theory and the theory of the cosystems from
[Dor-On et al. 2022]. In Sections 3 and 4 we review the main elements of the product systems theory,
and we see how they are enriched under the presence of a controlled map. We have included more details
from the aforementioned paper in order to set the ground for the next sections, and also prove additional
results that are not covered there. In Section 5 we present the controlled elimination method. Section 6
contains the applications to Sehnem’s covariance algebra, the structure of the couniversal C∗-algebra,
amenable product systems, nuclearity and exactness, and the reduced Hao–Ng problem. In Section 7 we
give the product system reparametrizations under the saturation property with applications to reversible
product systems.

2. Operator algebras and their coactions

Operator algebras. The reader may refer to [Blecher and Le Merdy 2004; Paulsen 2002] for the general
theory of nonselfadjoint operator algebras and dilations of their representations.

Let A be an operator algebra, which in this paper means a subalgebra of B(H) for a Hilbert space H . We
say that (C, ι) is a C∗-cover of A if ι :A→ C is a completely isometric representation with C = C∗(ι(A)).
The C∗-envelope C∗

env(A) of A is a C∗-cover (C∗
env(A), ι) with the following couniversal property:

if (C ′, ι′) is a C∗-cover of A then there exists a (necessarily unique) ∗-epimorphism 8 : C ′
→ C∗

env(A)
such that 8(ι′(a))= ι(a) for all a ∈ A. Arveson [1969] defined the C∗-envelope in and computed it for a
variety of operator algebras, predicting its existence in general. Ten years later Hamana [1979] confirmed
Arveson’s prediction by proving the existence of injective envelopes for the unital case. The C∗-envelope
is the C∗-algebra generated in the injective envelope of A once this is endowed with the Choi–Effros
C∗-structure.

Dritschel and McCullough [2005] provided an alternative proof based on maximal dilations for the
unital case. A dilation of a representation φ : A → B(H) is a representation φ′

: A → B(H ′) such that
H ⊆ H ′ and φ(a) = PHφ

′(a)|H for all a ∈ A. A completely contractive map φ : A → B(H) is called
maximal if every dilation φ′

:A→B(H ′) is trivial, i.e., PHφ
′(a)=φ(a)=φ′(a)|H for all a ∈A. It follows

that the C∗-envelope is the C∗-algebra generated by a maximal completely isometric representation.
It does not hold in general that if π : C∗

env(A) → B(H) is a ∗-representation then it is the unique
contractive completely positive extension of π |A. The algebra A is called hyperrigid if this is the case for
any representation π of C∗

env(A). An operator algebra A is said to be Dirichlet if

C∗

env(A)= A+A∗.
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Equivalently, A is Dirichlet if there exists a C∗-cover (C, ι) of A such that C = ι(A)+ ι(A)∗, in which
case C = C∗

env(A). It follows that Dirichlet algebras are automatically hyperrigid.

Coactions on operator algebras. If X and Y are subspaces of some B(H) then we write

[XY] := span{xy | x ∈ X , y ∈ Y}.

All groups and semigroups we consider are discrete and unital. Further, we denote the spatial tensor
product by ⊗.

For a discrete group G we write ug for the unitary generator associated with g ∈ G in the full
group C∗-algebra C∗(G). We write λg for the generators of the left regular representation C∗

λ(G).
We write λ : C∗(G) → C∗

λ(G) for the canonical ∗-epimorphism. Recall that C∗(G) admits a faithful
∗-homomorphism

1 : C∗(G)→ C∗(G)⊗ C∗(G) such that 1(ug)= ug ⊗ ug,

given by the universal property of C∗(G), and with left inverse given by id ⊗ χ for the character χ
of C∗(G). We will require some preliminaries from [Dor-On et al. 2022] on coactions on operator
algebras.

Definition 2.1 [Dor-On et al. 2022, Definition 3.1]. Let A be an operator algebra. A coaction of G on A
is a completely isometric representation δ : A → A⊗ C∗(G) such that the linear span of the induced
subspaces

Ag := {a ∈ A | δ(a)= a ⊗ ug}

is norm-dense in A, in which case δ satisfies the coaction identity

(δ⊗ idC∗(G))δ = (idA ⊗1)δ.

If, in addition, the map (id ⊗ λ)δ is injective, then the coaction δ is called normal.
If A is an operator algebra and δ : A → A⊗ C∗(G) is a coaction on A, then we will refer to the triple

(A,G, δ) as a cosystem. A map φ : A → A′ between two cosystems (A,G, δ) and (A′,G, δ′) is said to
be G-equivariant, or simply equivariant, if δ′φ = (φ⊗ id)δ.

If (A,G, δ) is a cosystem then Ar ·As ⊆ Ars for all r, s ∈ G, since δ is a homomorphism.

Remark 2.2 [Dor-On et al. 2022]. Suppose that (A,G, δ) is a cosystem and that δ extends to a
∗-homomorphism δ : C∗(A)→ C∗(A)⊗ C∗(G) that satisfies the coaction identity

(δ⊗ id)δ(c)= (id ⊗1)δ(c) for all c ∈ C∗(A).

Then δ is automatically nondegenerate on C∗(A) in the sense that

[δ(C∗(A))C∗(A)⊗ C∗(G)] = C∗(A)⊗ C∗(G).
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Moreover, Definition 2.1 covers that of full coactions of Quigg [1996] when A is a C∗-algebra. In this
case δ is a faithful ∗-homomorphism and we have that

(Ag)
∗
= {a∗

∈ A | δ(a∗)= a∗
⊗ ug−1} = Ag−1 .

Due to the Fell absorption principle, the existence of a “reduced” coaction implies that of a normal
coaction.

Proposition 2.3 [Dor-On et al. 2022, Proposition 3.4]. Let A be an operator algebra. Suppose there is a
group G that induces a grading on A, i.e., there are subspaces {Ag}g∈G such that

∑
g∈G Ag is norm-dense

in A, and a completely isometric homomorphism

δλ : A → A⊗ C∗

λ(G)

such that
δλ(ag)= ag ⊗ λg for all ag ∈ Ag, for all g ∈ G.

Then A admits a normal coaction δ of G such that δλ = (id ⊗ λ)δ.

Example 2.4. The reduced group C∗-algebra C∗

λ(G) admits a faithful ∗-homomorphism

1λ : C∗

λ(G)→ C∗

λ(G)⊗ C∗

λ(G) such that 1λ(λg)= λg ⊗ λg.

Thus C∗

λ(G) admits a normal coaction δ of G such that 1λ = (id ⊗ λ)δ.

Definition 2.5 [Dor-On et al. 2022, Definition 3.6]. Let (A,G, δ) be a cosystem. A triple (C, ι, δC) is
called a C∗-cover for (A,G, δ) if (C, ι) is a C∗-cover of A and δC : C → C ⊗ C∗(G) is a coaction on C
such that the diagram

A ι
//

δ
��

C

δC
��

A⊗ C∗(G)
ι⊗id

// C ⊗ C∗(G)

commutes. When the coaction is understood we will say that C is a C∗-cover for A over G.

Definition 2.6 [Dor-On et al. 2022, Definition 3.7]. Let (A,G, δ) be a cosystem. The C∗-envelope
of (A,G, δ) is a C∗-cover (C∗

env(A,G, δ), ι, δenv) such that: for every C∗-cover (C ′, ι′, δ′) of (A,G, δ)
there exists a ∗-epimorphism 8 : C ′

→ C∗
env(A,G, δ) that fixes A and intertwines the coactions, i.e., the

diagram
ι′(A) δ′

//

8

��

C ′
⊗ C∗(G)

8⊗id
��

ι(A)
δenv

// C∗
env(A,G, δ)⊗ C∗(G)

is commutative on A, and thus is commutative on C ′.

The existence of the C∗-envelope of a cosystem was proved in [Dor-On et al. 2022] by a direct
computation that uses the C∗-envelope of the ambient operator algebra. In order to state the result
explicitly we need to make some preliminary remarks and establish the notation. Suppose (A,G, δ)
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is a cosystem, let i : A → C∗
env(A) be the C∗-envelope of A, and recall that the spatial tensor product

of completely isometric maps is completely isometric. Then the representation of A obtained via the
composition

A δ
−−→ A⊗ C∗(G) i⊗id

−−→ C∗

env(A)⊗ C∗(G)

is completely isometric, and the C∗-algebra

C∗((i ⊗ id)δ(A)) := C∗(i(ag)⊗ ug | g ∈ G)

becomes a C∗-cover of A. This C∗-cover is special because it admits a coaction id ⊗1, such that the
triple

(C∗(i(ag)⊗ ug | g ∈ G), (i ⊗ id)δ, id ⊗1)

is a C∗-cover for (A,G, δ). The following theorem summarizes fundamental results about existence and
representations of C∗-envelopes for cosystems.

Theorem 2.7 [Dor-On et al. 2022, Theorem 3.8, Corollary 3.9 and Corollary 3.10]. Let (A,G, δ) be a
cosystem and let i : A → C∗

env(A) be the inclusion map. Then

(C∗

env(A,G, δ), ι, δenv)≃ (C∗(i(ag)⊗ ug | g ∈ G), (i ⊗ id)δ, id ⊗1).

If in addition δ is normal on A, then δenv is normal on C∗
env(A,G, δ).

Moreover, if 8 : C∗
env(A,G, δ)→ B is a ∗-homomorphism that is completely isometric on A, then it is

faithful on the fixed point algebra of C∗
env(A,G, δ).

Remark 2.8. A coaction of an abelian group G is equivalent to point-norm continuous actions {βγ }γ∈Ĝ of
the dual group Ĝ. Since every βγ is a completely isometric automorphism it extends to the C∗-envelope.
Hence the C∗-envelope of a cosystem coincides with the usual C∗-envelope of the ambient operator
algebra when G is abelian. Equivalently, every coaction of an abelian group on an operator algebra lifts
to a coaction on its C∗-envelope. As pointed out in [Dor-On et al. 2022], it is unknown if this is the case
for general amenable groups.

Group homomorphisms implement coactions. Note that the following proposition for G = {eG} says
nothing more than that every C∗-cover of a cosystem is a C∗-cover of the ambient operator algebra.

Proposition 2.9. Let (A,G, δG) be a (normal) cosystem and let ϑ : G → G be a group homomorphism.
Then G induces a (normal) coaction δG on A. Thus every C∗-cover of A over G is also a C∗-cover of A
over G.

Proof. By the universal property of C∗(G) we have a ∗-homomorphism

ϑ̃ : C∗(G)→ C∗(G), ug 7→ uϑ(g).

We then have the canonical completely contractive homomorphism

δG : A δG
−−→ A⊗ C∗(G) id⊗ϑ̃

−−→ A⊗ C∗(G),
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which has id ⊗χ as a completely contractive left inverse. By definition we have that

Ah := {a ∈ A | δG(a)= a ⊗ uh} ⊇ {a ∈ Ag | ϑ(g)= h}

and thus

A =

∑
g∈G

Ag ⊆

∑
h∈G

Ah ⊆ A.

Hence (id ⊗ ϑ̃)δG defines a coaction of G on A.
Next suppose that δG is normal and let δG,λ = (id ⊗ λ)δG . Let δG be the coaction induced by δG . By

Fell’s absorption principle we have that the map λg 7→ λg ⊗ λϑ(g) gives a faithful ∗-homomorphism
of C∗

λ(G) and thus we get the induced completely isometric representation

A
δG,λ

//

δG,λ
��

alg{ag ⊗ λg | g ∈ G}

��

alg{ag ⊗ λϑ(g) | g ∈ G} alg{ag ⊗ λg ⊗ λϑ(g) | g ∈ G}
δ−1

G,λ⊗id
oo

which induces a faithful ∗-homomorphism δG,λ. It follows that δG,λ = (id ⊗ λ)δG and thus δG is a normal
coaction of G on A. □

Let us close this section with some remarks on topological gradings from [Exel 1997; 2017]. Recall
that a topological grading {Bg}g∈G of a C∗-algebra B consists of linearly independent subspaces that
span a dense subspace of B and are compatible with the group G, i.e., B∗

g = Bg−1 and Bg ·Bh ⊆ Bgh . By
[Exel 1997, Theorem 3.3] the linear independence condition can be substituted by the existence of a
conditional expectation on Be. The maximal C∗-algebra C∗(B) of B is defined as universal with respect to
the representations of B. The reduced C∗-algebra C∗

λ(B) of B is defined by the left regular representation
of B on ℓ2(B).

Definition 2.10. Let B = {Bg}g∈G be a topological grading over a group G in a C∗-algebra C∗(B) that it
generates, with completely contractive Fourier maps Eg : C∗(B)→ Bg, i.e.,

Eg(b)= δg,hb for all b ∈ Bh and g, h ∈ G.

An ideal I◁C∗(B) is called induced if I = ⟨I ∩Be⟩. An ideal I◁C∗(B) is called Fourier if Eg( f )⊆ I
for every f ∈ I.

Remark 2.11. It follows that an ideal I ◁C∗(B) is Fourier if and only if Ee( f ∗ f ) ∈ I for all f ∈ I.
Every induced ideal is a Fourier ideal. The converse holds if G is exact and Ee is a faithful conditional
expectation. These can be found at [Exel 2017, Proposition 23.9].

A topological grading defines a Fell bundle and once a representation of a Fell bundle is established
the two notions are the same. In a loose sense a Fell bundle B over a discrete group G is a collection of
Banach spaces {Bg}g∈G , often called the fibers of B, that satisfy canonical algebraic properties and the
C∗-norm properties; see [Exel 2017, Definition 16.1]. So we will alternate freely between Fell bundles
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and topologically graded C∗-algebras. Spectral subspaces of coactions on C∗-algebras are an important
source of topological gradings.

Definition 2.12. Let δ be a coaction of G on a C∗-algebra C and let I◁C be an ideal of C . We say that
the quotient map is G-equivariant, or that the quotient C/I is G-equivariant if δ descends to a coaction
of G on C/I.

Remark 2.13. If δ : C → C ⊗ C∗(G) is a coaction and I ◁C is an induced ideal then δ descends to a
faithful coaction of G on C/I; see for example [Carlsen et al. 2011, Proposition A.1]. The same holds
for the normal actions when G is exact; see for example [Carlsen et al. 2011, Proposition A.5].

3. Operator algebras of product systems

C∗-correspondences. A C∗-correspondence X over A is a right Hilbert module over A with a left action
given by a ∗-homomorphism ϕX : A → LX . We write LX and KX for the adjointable operators and the
compact operators of X , respectively. For two C∗-correspondences X, Y over the same A we write X ⊗A Y
for the balanced tensor product over A. We say that X is unitarily equivalent to Y (and write X ≃ Y ) if
there is a surjective adjointable operator U ∈L(X, Y ) such that ⟨Uξ,Uη⟩ = ⟨ξ, η⟩ and U (aξb)= aU (ξ)b
for all ξ, η ∈ X and a, b ∈ A. A C∗-correspondence is called injective if the left action is injective.

A representation (π, t) of a C∗-correspondence is a left module map that preserves the inner product.
Then (π, t) is automatically a bimodule map. Moreover there exists a ∗-homomorphism ψ on KX
such that ψ(θξ,η) = t (ξ)t (η)∗ for all θξ,η ∈ KX . When π is injective, then both t and ψ are isometric.
A representation (π, t) is called covariant if it satisfies π(a) = ψ(ϕX (a)) for all a in Katsura’s ideal
JX := kerϕ⊥

X ∩ϕ−1
X (KX).

Toeplitz algebras. Let P be a unital subsemigroup of a group G. We will write P∗ for the set of elements
in P that are invertible in P. A product system X over P is a family {X p | p ∈ P} of C∗-correspondences
over the same C∗-algebra A such that:

(i) Xe = A.

(ii) There are multiplication rules X p ⊗A Xq ≃u p,q X pq for every p, q ∈ P \ {e}.

(iii) There are multiplication rules A⊗A X p ≃ue,p [A · X p] and X p ⊗A A ≃u p,e [X p · A] = X p for all p ∈ P.

(iv) The multiplication rules are associative in the sense that

u pq,r (u p,q ⊗ idXr )= u p,qr (idX p ⊗ uq,r ) for all p, q, r ∈ P.

We say that X is injective if every X p is injective. If x ∈ P∗ then the multiplication rules impose that

Xx ⊗A Xx−1 ≃ A ≃ Xx−1 ⊗A Xx .

In particular every such Xx is nondegenerate since

A ⊗A Xx ≃ Xx ⊗A Xx−1 ⊗A Xx ≃ Xx ⊗A A = Xx .
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Throughout this work we will be assuming that all left actions are nondegenerate. We do this in order to
be able to use freely the results from [Dor-On et al. 2022; Sehnem 2019]. Nevertheless it is possible that
this assumption can be removed.

Henceforth we will suppress the use of symbols for the multiplication rules. Thus we write ξpξq for
the image of ξp ⊗ ξq under u p,q , and so

ϕpq(a)(ξpξq)= (ϕp(a)ξp)ξq for all a ∈ A and ξp ∈ X p, ξq ∈ Xq .

The product system structure gives maps

i pq
p : LX p → LX pq such that i pq

p (S)(ξpξq)= (Sξp)ξq .

If x ∈ P∗ then ir x
r : LXr → LXr x is a ∗-isomorphism with inverse ir xx−1

r x : LXr x → LXr .

Definition 3.1. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A. A Toeplitz representation (π, t) of X consists of a family of representations (π, tp)

of X p over A such that

tp(ξp)tq(ξq)= tpq(ξpξq) for all ξp ∈ X p, ξq ∈ Xq .

The Toeplitz algebra T (X) of X is the universal C∗-algebra generated by A and X with respect to the
representations of X . The Toeplitz tensor algebra T (X)+ of X is the subalgebra of T (X) generated by A
and X .

If (π, t) is a Toeplitz representation then we write ψp for the induced representation on KX p. We obtain
a bimodule triple (ψr , ψr,s, ψs) on the bimodule (KXr ,K(Xs, Xr ),KXs) so thatψr,s(θξr ,ξs )= tr (ξr )ts(ξs)

∗.
We will often interpret π as te or ψe to simplify our notation henceforth.

Proposition 3.2 [Dor-On et al. 2022, Proposition 2.4]. Let X be a product system over P with coefficients
in A. Let (π, t) be a Toeplitz representation of X. If x ∈ P∗ then

tx(Xx)
∗
= tx−1(Xx−1).

If w ∈ P and x ∈ P∗ then

iwx
w (kw) ∈ KXwx and ψwx(iwx

w (kw))= ψw(kw) for all kw ∈ KXw.

Suppose that T (X) is faithfully represented by (π̃, t̃ ). By the universal property of T (X) there is a
canonical ∗-homomorphism

δ̃ : T (X)→ T (X)⊗ C∗(G), t̃(ξp) 7→ t̃(ξp)⊗ u p.

Sehnem [2019, Lemma 2.2] has shown that δ̃ is a nondegenerate and faithful coaction of T (X) when X
is nondegenerate, with each spectral space T (X)g, with g ∈ G, given by the products

t̃p1(ξp1)t̃p2(ξp2)
∗
· · · t̃pn (ξpn )

∗ for p1 p−1
2 · · · p−1

n = g.

We will do a little bit more for semigroup homomorphisms.
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Definition 3.3. Let P and P be unital subsemigroups of the groups G and G, respectively. If ϑ : G → G is
a group homomorphism such that ϑ(P)⊆P, we write ϑ : (G, P)→ (G,P) and say that ϑ is a semigroup
preserving homomorphism.

Proposition 3.4. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A. Let ϑ : (G, P)→ (G,P) be a semigroup preserving homomorphism and suppose that
(π̃, t̃ ) is a faithful representation of T (X). Then there is a coaction of G on T (X) such that

δ̃ : T (X)→ T (X)⊗ C∗(G), t̃(ξp) 7→ t̃(ξp)⊗ uϑ(p).

Moreover, each spectral space T (X)h with h ∈ G is given by the products of the form

t̃p1(ξp1)t̃p2(ξp2)
∗
· · · t̃pn (ξpn )

∗ for ϑ(p1)ϑ(p2)
−1

· · ·ϑ(pn)
−1

= h,

where we impose that t̃pi (ξpi )= I when pi = eP and h ̸= eP .

Proof. The universal property induces a ∗-homomorphism δ̃ : T (X)→ T (X)⊗ C∗(G). Moreover δ̃ is
injective with left inverse given by id ⊗ χ . By construction the fibers [T (X)]g contain the generators
of T (X). By Remark 2.2 and the definition of T (X)+, this gives the coaction of G. Proposition 2.9
provides the coaction of G. □

Remark 3.5. The Fock space representation of Fowler [2002] ensures that A, and thus X , embeds
isometrically in T (X). In short, let F(X)=

∑
⊕

q∈P Xq and for a ∈ A and ξp ∈ X p define (π, t̄p) by

π(a)ξq = ϕq(a)ξq and t̄p(ξp)ξq = ξpξq for all ξq ∈ Xq .

Then every (π, t̄p) defines a representation of X p and hence it induces a representation of T (X). By
taking the compression at the (e, e)-entry we see that π , and thus t̄p, is injective.

Definition 3.6. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A. The Fock algebra Tλ(X) is the C∗-algebra generated by the Fock representation (π, t̄ ).
The Fock tensor algebra Tλ(X)+ of X is the subalgebra of Tλ(X) generated by A and X .

It is shown in [Dor-On et al. 2022, Proposition 4.1] that the Fock algebra admits an analogous normal
coaction. Proposition 2.9 yields the next proposition.

Proposition 3.7. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A, and let Tλ(X)= C∗(π, t̄ ) be its associated Fock algebra. If ϑ : (G, P)→ (G,P) is a
semigroup preserving homomorphism then there is a normal coaction of G on Tλ(X) such that

δ̄G : Tλ(X)→ Tλ(X)⊗ C∗(G), t̄(ξp) 7→ t̄(ξp)⊗ uϑ(p).

Moreover for each h ∈ G the spectral space Tλ(X)h is the closed linear span of the products of the form

t̄p1(ξp1)t̄p2(ξp2)
∗
· · · t̄pn−1(ξpn−1)t̄pn (ξpn )

∗ for ϑ(p1)ϑ(p2)
−1

· · ·ϑ(pn)
−1

= h,

where we impose that t̄pi (ξpi )= I when pi = eP and h ̸= eP .

In turn the coaction of G induces a faithful conditional expectation of the following form.
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Proposition 3.8. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A. Let ϑ : (G, P)→ (G,P) be a semigroup preserving homomorphism. Then Tλ(X) admits
a faithful conditional expectation EP such that

EP(ψ̄r,s(kr,s))= δϑ(r),ϑ(s)ψ̄r,s(kr,s) for all kr,s ∈ K(Xs, Xr ).

Proof. Let δ̄G : Tλ(X)→ Tλ(X)⊗ C∗(G) be the normal coaction and let ωe,e be the faithful conditional
expectation on C∗

λ(G). Then Tλ(X) admits the faithful conditional expectation

EP := (id ⊗ωe,e)(id ⊗ λ)δ̄G .

On the other hand for h ∈ P let Yh :=
∑

⊕

ϑ(p)=h Xh and consider the projections Qh : F(X)→ Yh . We
will show that

EP( · )=

∑
h∈P

Qh · Qh .

It suffices to check on the spanning elements of the form

f := t̄p1(ξp1)t̄p2(ξp2)
∗
· · · t̄pn−1(ξpn−1)t̄pn (ξpn )

∗,

where we impose that t̄pi (ξpi )= I when pi = eP . For p ∈ P we directly compute

EP( f )=

{
f ξp if ϑ(p−1

1 p2 · · · p−1
n−1 pn)= eG,

0 otherwise.

If f ξp ̸= 0 then it is in some Xr with r = p−1
1 p2 · · · p−1

n−1 pn p which gives ϑ(r) = ϑ(p). On the other
hand we have that (∑

h∈P

Qh f Qh

)
ξp =

{
f ξp if ϑ(p−1

1 p2 · · · p−1
n−1 pn p)= ϑ(p),

0 otherwise.

We have that ϑ(p−1
1 p2 · · · p−1

n−1 pn p)= ϑ(p) if and only if ϑ(p−1
1 p2 · · · p−1

n−1 pn)= eG and so

EP( f )=

∑
h∈P

Qh f Qh .

For the second part let r, s ∈ P and ξp ∈ Yh so that ϑ(p)= h. Then we directly compute

EP(ψ̄r,s(kr,s))ξp = Qhψ̄r,s(kr,s)ξp =

{
ψ̄r,s(kr,s)ξp if p = ss ′, ϑ(p)= ϑ(rs ′),

0 otherwise,

= δϑ(r),ϑ(s)ψ̄r,s(kr,s)ξp,

where we used that ϑ is a group homomorphism and so ϑ(s)ϑ(s ′) = ϑ(p) = ϑ(r)ϑ(s ′). As p ∈ P is
arbitrary the proof is complete. □



COUNIVERSALITY AND CONTROLLED MAPS ON PRODUCT SYSTEMS OVER RIGHT LCM SEMIGROUPS 1447

Covariance algebras and Cuntz–Nica–Pimsner algebras. Let us review Sehnem’s strong covariance
relations [2019]. We will be using a description presented in [Dor-On et al. 2022]. Let P be a unital
subsemigroup of a group G. For a finite set F ⊆ G let

KF :=

⋂
g∈F

g P.

For r ∈ P and g ∈ F define the ideal of A given by

Ir−1 K{r,g}
:=

{⋂
t∈K{r,g}

kerϕr−1t if K{r,g} ̸= ∅ and r /∈ K{r,g},

A otherwise.
Then let

Ir−1(r∨F) :=
⋂
g∈F

Ir−1 K{r,g}
,

and define the C∗-correspondences

X F :=

⊕
r∈P

Xr Ir−1(r∨F) and X+

F :=

⊕
g∈G

XgF .

For every p ∈ P define the representation (πF , tF,p) to X+

F given by

tF,p(ξp)(ηr )= u p,r (ξp ⊗ ηr ) ∈ X pr I(pr)−1(pr∨pF), for all ηr ∈ Xr Ir−1(r∨F).

It is well defined as Ir−1(r∨F) = I(pr)−1(pr∨pF) for all r ∈ P, and Ir−1(r∨F) = I(s−1r)−1(s−1r∨s−1 F) for all
r ∈ s P. This provides a representation (πF , tF ) of X on L(X+

F ) that integrates to a representation

8F : T (X)→ L(X+

F ).

Now consider the projections Qg,F : X+

F → XgF and define

∥ f ∥F := ∥Qe,F8F ( f )Qe,F∥ for all f ∈ [T (X)]e.

In particular we have that

tF,p(ξp)Qg,F = Q pg,F tF,p(ξp) and tF,p(ξp)
∗Qg,F = Q p−1g,F tF,p(ξp)

∗,

and so Qe,F is reducing for the fixed point algebra [T (X)]e under 8F .

Definition 3.9 [Sehnem 2019, Definition 3.2]. A Toeplitz representation is called strongly covariant if it
vanishes on the ideal Ie ◁ [T (X)]e given by

Ie :=
{

f ∈ [T (X)]e
∣∣ lim

F
∥ f ∥F = 0

}
,

where the limit is taken with respect to the partial order induced by inclusion on finite sets of P. The
universal C∗-algebra with respect to the strongly covariant representations of X is denoted by A ×X P.

That is, A ×X P is the quotient T (X)/I∞ for the ideal I∞ ◁ T (X) of strong covariance relations
generated by Ie. One of the important points of Sehnem’s theory is that the inclusion A ↪→ A ×X P is
faithful. As a quotient by an induced ideal of T (X), the C∗-algebra A ×X P inherits the coaction of G.
The following is the main theorem of [Sehnem 2019].
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Theorem 3.10 [Sehnem 2019, Theorem 3.10]. Let P be a unital subsemigroup of a group G and X be a
product system over P with coefficients in A. Then a ∗-homomorphism of A ×X P is faithful on A if and
only if it is faithful on the fixed point algebra [A ×X P]e.

Due to the grading A ×X P is the maximal C∗-algebra of a Fell bundle over G. We consider two
reduced versions.

Definition 3.11. Let P be a unital subsemigroup of a group G and X be a product system over P with
coefficients in A. We write A ×X,λ P for the reduced C∗-algebra of the Fell bundle in A ×X P. If
q : T (X)→ Tλ(X) is the canonical ∗-epimorphism, then we write qsc(Tλ(X)) for the quotient of Tλ(X)
by the ideal q(I∞).

Remark 3.12. The notation SCX is used in [Dor-On et al. 2022] to denote the G-Fell bundle inside
A ×

G
X P. Therefore we have two ways of writing the related C∗-algebras in the sense that

A ×X P = C∗(SCX) and A ×X,λ P = C∗

λ(SCX).

Sehnem [2019, Lemma 3.9] shows that the strong covariance relations do not depend on the group
embedding in the following sense. Suppose that P admits two group embeddings iG : P → G and
iH : P → H and write C∗

max(SCG X)= C∗(πG, tG) and C∗
max(SCH X)= C∗(πH , t H ). Then there exists

a ∗-isomorphism
C∗

max(SCG X)→ C∗

max(SCH X), tG
iG(p)(ξiG(p)) 7→ t H

iH (p)(ξiH (p)).

The ∗-isomorphism between C∗
max(SCG X) and C∗

max(SCH X) descends to a ∗-isomorphism that fixes X
at the reduced level, as well, and thus A ×X,λ P does not depend on the group embedding either. Indeed
suppose that G is the enveloping group of P and thus there exists a group homomorphism γ : G → H
that is injective on P. We then have that there is a ∗-homomorphism between the maximal C∗-algebras
induced by the G-Fell bundle and the H -Fell bundle on Sehnem’s covariance algebra. Sehnem’s result
[2019, Lemma 3.9] is that this ∗-homomorphism is faithful. By Fell bundle theory we then get a canonical
∗-epimorphism

C∗

λ(SCG X)→ C∗

λ(SCH X)

that fixes X . Hence by construction it intertwines the normal faithful conditional expectations. Their fixed
point algebras are ∗-isomorphic to the fixed point algebras in the maximal C∗-algebras and these are
∗-isomorphic by [Sehnem 2019, Lemma 3.9]. Thus the ∗-epimorphism on the reduced models is faithful.

We see that the representations 8F used to define the strong covariance relations are subrepresentations
of δ̄G,λ : Tλ(X)→ Tλ(X)⊗ C∗

λ(G) for δ̄G,λ = (id ⊗ λ)δ̄G , where δ̄G is the normal coaction on the Fock
representation. Indeed we can identify

X+

F =

⊕
g∈G
r∈P

Xr Ir−1(r∨gF)

with a submodule of FX ⊗ ℓ2(G) through the isometry given by

Xr Ir−1(r∨gF) ∋ ηr 7→ ηr ⊗ δg ∈ Xr ⊗ ℓ2(G).
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Recall here that FX ⊗ ℓ2(G) is the exterior tensor product of two modules (seeing ℓ2(G) as a module
over C), and there is a faithful ∗-homomorphism

Tλ(X)⊗ C∗

λ(G)⊆ L(FX)⊗B(ℓ2(G)) ↪→ L(FX ⊗ ℓ2(G)).

We then see that

tF,p(ξp)= (t̄p(ξp)⊗ λp)|X+

F
= δ̄G,λ(t̄p(ξp))|X+

F
for all p ∈ P,

and likewise for their adjoints. Thus X+

F is reducing under δ̄G,λ(Tλ(X)). Recall also that X F is reducing
for [T (X)]e as the range of the projection Qe,F and so we obtain the representation⊕

fin F⊆G

8F ( · )|X F : [T (X)]e → [Tλ(X)]e →

∏
fin F⊆G

L(X F ).

In particular, by definition we have for an f ∈ T (X) that

f ∈ Ie ⇐⇒

⊕
fin F⊆G

8F ( f )|X F ∈ c0(L(X F ) | fin F ⊆ G).

By definition we then get that the diagram

[T (X)]e

��

// [Tλ(X)]e //

qsc

��

∏
fin F⊆G L(X F )

��

[A ×X P]e // [qsc(Tλ(X))]e //
(∏

fin F⊆G L(X F )
)
/(c0(L(X F ) | fin F ⊆ G))

is commutative. Consequently the e-graded ∗-algebraic relations in Tλ(X) and A ×X P induce relations
in qsc(Tλ(X)). In particular, since by [Sehnem 2019, Proposition 3.5] A is represented faithfully in the
bottom right corner of the above diagram, we obtain the following corollary.

Corollary 3.13 [Dor-On et al. 2022, Corollary 5.5]. Let P be a unital subsemigroup of a group G
and X be a product system over P with coefficients in A. Then we have A ↪→ qsc(Tλ(X)). Moreover, a
∗-homomorphism of qsc(Tλ(X)) is faithful on A if and only if it is faithful on [qsc(Tλ(X))]e. Likewise for
the reduced C∗-algebra A ×X,λ P.

4. Compactly aligned product systems over weak right LCM inclusions

Weak right LCM inclusions. A semigroup P is said to be a right LCM semigroup if it is left-cancellative
and satisfies Clifford’s condition [Lawson 2012; Norling 2014]:

for every p, q ∈ P with pP ∩ q P ̸= ∅ there exists a w ∈ P such that pP ∩ q P = wP.

In other words, if p, q ∈ P have a right common multiple then they have a right least common multiple.
As we always see a semigroup P inside a group G, it follows that P is by default cancellative, and we will
refer to (G, P) simply as a weak right LCM inclusion. We use the adjective “weak” here to emphasize
that we do not assume that the least common multiple property holds for all elements in G.
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It is clear that w is a right LCM for p, q if and only if wx is a right LCM of p, q for every x ∈ P∗. A
weak quasilattice (G, P) is a weak right LCM inclusion with P ∩ P−1

= {e}, i.e., when least common
multiples are unique (whenever they exist).

Definition 4.1. Let (G, P) be a right weak LCM inclusion. A finite set F is said to be ∨-closed if for
any p, q ∈ F with pP ∩ q P ̸= ∅ there exists a unique w ∈ F such that pP ∩ q P = wP.

Equivalently, a finite F ⊆ P is ∨-closed if and only if the familiar relation

p ≤ q ⇐⇒ q−1 p ∈ P

defines a partial order on F. In particular, if F is ∨-closed, then pP ̸= q P for any p, q ∈ F with p ̸= q .
Furthermore, any ∨-closed set admits maximal and minimal elements. Our terminology here regarding
∨-closed sets extends the familiar one from the case where (G, P) is a weak quasilattice order. There is
an alternative way for describing ∨-closed sets in the context of weak right LCM inclusions. Given a
finite subset F ⊆ P we write

I(F) := {pP | p ∈ F}

for the set of principal ideals defined by F. It then follows that F is ∨-closed if and only if I(F) is closed
under intersections and the partial order defined on I(F) by set theoretic inclusion lifts to a partial order
on F.

Let F ⊆ P be a finite set so that I(F) is closed under intersections. From such a set F we can produce
a ∨-closed subset F∨ such that I(F)= I(F∨) by choosing a minimal set of distinct representatives for
the principal ideals. This process does not produce a unique F∨ in general.

Nica-covariant representations. Following Fowler’s work [2002], Brownlowe, Larsen and Stammeier
[Brownlowe et al. 2018] and Kwaśniewski and Larsen [2019] considered product systems of right
LCM semigroups.

Definition 4.2. A product system X over a weak right LCM semigroup P with coefficients in A is called
compactly aligned if for p, q ∈ P with pP ∩ q P = wP we have that

iwp (S)i
w
q (T ) ∈ KXw whenever S ∈ KX p, T ∈ KXq .

A note is in order for clarifying that this is independent of the choice of w. Recall that if w′ is a right
LCM of p, q then w′

= wx for some x ∈ P∗. Since LXw ≃ LXwx we have that iwp (S)i
w
q (T ) ∈ KXw if

and only if iwx
p (S)iwx

q (T )= iwx
w (iwp (S)i

w
q (T )) ∈ KXwx for all x ∈ P∗.

Definition 4.3. Let X be a compactly aligned product system over a right LCM semigroup P with
coefficients in A. A Nica-covariant representation (π, t) is a Toeplitz representation of A that in addition
satisfies the Nica-covariance condition: for S ∈ KX p and T ∈ KXq we have that

ψp(S)ψq(T )=

{
ψw(iwp (S)i

w
q (T )) if pP ∩ q P = wP,

0 otherwise.
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The Toeplitz–Nica–Pimsner algebra NT (X) of X is the universal C∗-algebra generated by A and X
with respect to the representations of X . The Toeplitz–Nica–Pimsner tensor algebra NT (X)+ of X is the
subalgebra of T (X) generated by A and X .

Remark 4.4. As noted in [Dor-On et al. 2022], the definition of Nica-covariance requires that the right-
hand side is independent of the choice of the least common multiple, i.e., if pP ∩ q P = wP and x ∈ P∗

then
ψw(iwp (S)i

w
q (T ))= ψwx(iwx

p (S)iwx
q (T )) for all S ∈ KX p, T ∈ KXq .

This is verified in [Dor-On et al. 2022, Proposition 2.4] (see Proposition 3.2 herein) and completes the
definition of Nica-covariance in [Kwaśniewski and Larsen 2019].

Remark 4.5. By definition NT (X) is a quotient of T (X) by an ideal generated by a subspace of [T (X)]e.
Even though NT (X) = T (X) when P = Z+, this is not the case even when P = Zn

+
. Dor-On and

Katsoulis provide a counterexample to this effect in [Dor-On and Katsoulis 2020, Example 5.2]. The
same example further shows that T (X)+ is not completely isometric to NT (X)+.

Under the assumption of compact alignment, one can check that the Fock representation is automatically
Nica-covariant. Thus NT (X) is nontrivial. As NT (X) is a quotient of T (X) by an induced ideal,
by [Carlsen et al. 2011, Proposition A.1] the nondegenerate and faithful coaction of T (X) descends
canonically to one on NT (X). Alternatively one may use the arguments of the proof of Proposition 3.4
for the Toeplitz–Nica–Pimsner tensor algebra to deduce the following.

Proposition 4.6. Let (G, P) be a weak right LCM inclusion and X be a compactly aligned product
system over P with coefficients in A. Suppose that (π̂, t̂ ) is a faithful representation of NT (X). Then the
canonical ∗-homomorphism

δ̂ : NT (X)→ NT (X)⊗ C∗(G), t̂(ξp) 7→ t̂(ξp)⊗ u p

defines a coaction of G on NT (X).

We have refrained from describing the spectral spaces for the coaction on NT (X) because of the fol-
lowing additional property of Nica-covariant representations. Let (π, t) be a Nica-covariant representation
of X . We compute

tp(X p)
∗tp(X p) · tp(ξp)

∗tq(ξq) · tq(Xq)
∗tq(Xq)⊆ [tp(X p)

∗ψp(KX p)ψq(KXq)tq(Xq)].

Next take a limit by contractive approximate identities in [tp(X p)
∗tp(X p)] and in [tq(Xq)

∗tq(Xq)], and
derive that

tp(ξp)
∗tq(ξq) ∈ [tp′(X p′)tq ′(Xq ′)∗] for wP = pP ∩ q P, p′

= p−1w, q ′
= q−1w,

and
tp(ξp)

∗tq(ξq)= 0 for pP ∩ q P = ∅.

Hence the C∗-algebra C∗(π, t) generated by π(A) and tp(X p) admits a Wick ordering in the sense that

C∗(π, t)= span{tp(ξp)tq(ξq)
∗
| ξp ∈ X p, ξq ∈ Xq and p, q ∈ P}.
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In particular if NT (X)= C∗(π̂, t̂ ) then the spectral spaces that only matter are of the form

NT (X)pq−1 = span{t̂p(ξp)t̂q(ξq)
∗
| ξp ∈ X p, ξq ∈ Xq},

that is, only for g ∈ G of the form g = pq−1 for some p, q ∈ P.
The following proposition gives a direct criterion to check compact alignment.

Proposition 4.7. Let (G, P) be a weak right LCM inclusion and let X = {X p}p∈P be a product system
over Xe = A. Let (π, t) be an injective representation of X. Then X is compactly aligned, if and only if
for all p, q ∈ P we have that

tp(X p)
∗tq(Xq)⊆ [tp−1w(X p−1w)tq−1w(Xq−1w)

∗
] for wP = pP ∩ q P,

if and only if for all p, q ∈ P we have that

tp(X p)tp(X p)
∗tq(Xq)tq(Xq)

∗
⊆ [tw(Xw)tw(Xw)∗] = ψw(KXw) for wp = pP ∩ q P,

with the understanding that the left-hand sides are the zero space when p and q have no right common
multiple.

Proof. The first equivalence follows in the same way as [Katsoulis 2020, Proposition 3.2] and it is omitted.
By using that X p X∗

p X p is dense in X p for every p ∈ P, we get the second equivalence. □

Let us now pass to the analysis of the cores of a Nica-covariant representation (π, t) of X . For a finite
F ⊆ P that is ∨-closed we write

BF := span{ψp(kp) | kp ∈ KX p, p ∈ F}.

Since F is ∨-closed, Nica-covariance implies that BF is a ∗-subalgebra of C∗(π, t). In [Dor-On et al.
2022, Proposition 2.10] we show that every BF is actually a C∗-subalgebra. Moreover for such an F we
write

BF ·P := span{ψq(kq) | kq ∈ KXq , q ∈ F · P}.

Likewise this is also a (closed) ∗-subalgebra. Finally we write

BP\{e} := span{ψp(kp) | kp ∈ KX p, e ̸= p ∈ P} and BP := π(A)+ BP\{e}.

We see that BP\{e} is an ideal in BP and thus the sum π(A)+ BP\{e} is indeed closed. We refer to these
sets as the cores of the representation (π, t). In [Dor-On et al. 2022, Proposition 2.11] we showed that
we can exhaust the cores by using finite ∨-closed sets, in the sense that

BP =

⋃
{BF | F ⊆ P finite and ∨-closed}.

We denote by B F the cores of Tλ(X) = C∗(π, t̄ ). Recall that Tλ(X) admits the faithful conditional
expectation

E P : Tλ(X)→ B P , t̄p(ξp)t̄q(ξq)
∗
= δp,q t̄p(ξp)t̄q(ξq)

given by the sum of compressions to the (r, r)-entries in L(FX) (see Proposition 3.8).
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The Toeplitz–Nica–Pimsner algebra is modeled after the Fock algebra in this context. A compactly
aligned product system X over P with coefficients in A is called amenable if the Fock representation is
faithful on NT (X). Let us give some equivalent conditions for this to happen.

Theorem 4.8. Let (G, P) be a weak right LCM inclusion and X be a compactly aligned product system
over P with coefficients in A. The following are equivalent:

(i) The coaction of G on NT (X) is normal.

(ii) The conditional expectation on NT (X) is faithful.

(iii) The Fock representation is faithful on NT (X).

(iv) The representation

NT (X)→ C∗(π, t)⊗ C∗

λ(P), t̃p(ξp) 7→ tp(ξp)⊗ Vp

is faithful for any injective Nica-covariant pair (π, t).

Proof. By the universal property there exists a canonical ∗-representation

NT (X)→ NT (X)⊗ C∗

λ(G)

that intertwines the conditional expectations. Thus items (i) and (ii) are equivalent. For the same reason
items (ii) and (iii) are equivalent.

Assuming item (iii) we have to show that the representation

NT (X)→ C∗(π, t)⊗ C∗

λ(P)

is faithful on the fixed point algebra. It suffices to show injectivity on the F-boxes for arbitrary ∨-closed
F ⊆ P. To this end suppose that ∑

p∈F

ψp(kp)= 0

for some kp ∈KX p and let p0 be minimal so that kp0 ̸= 0. Injectivity of π then implies that ψp0(kp0) ̸= 0
as well. However, if Q p0 : ℓ2(P)→ Cep0 is the canonical projection, minimality of p0 yields

ψp0(kp0)= I ⊗ Q p0

(∑
p∈F

ψp(kp)

)
I ⊗ Q p0 = 0,

which is a contradiction. This shows that item (iii) implies item (iv).
Since the ∗-representation

NT (X)→ C∗(π, t)⊗ C∗

λ(P)

intertwines the conditional expectations, we finally have that item (iv) implies item (i). □

On the other hand strongly covariant representations are Nica-covariant (which is expected as Nica-
covariance is an e-graded relation in [Tλ(X)]e). It is proven by Sehnem [2019, Proposition 4.2] for
quasilattices, but the same proof passes to right LCM semigroups as well [Dor-On et al. 2022, Proposi-
tion 5.4]. Hence A ×X P is a quotient of NT (X).
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Proposition 4.9 [Dor-On et al. 2022, Proposition 5.4; Sehnem 2019, Proposition 4.2]. Let X be a
compactly aligned product system over a right LCM semigroup P with coefficients in A. Let

ψF,p : KX p → L(X+

F )

be the induced representations from (πF , tF,p). A representation (π, t) of X is strongly covariant if and
only if it is Nica-covariant and it satisfies∑

p∈F

ψF,p(kp)|X F = 0 =⇒

∑
p∈F

ψp(kp)= 0

for any finite F ⊆ P and kp ∈ KX p.

Carlsen, Larsen, Sims and Vittadello [Carlsen et al. 2011] explored the idea of finding the couniversal
C∗-algebra with respect to injective equivariant Nica-covariant representations of X . By using the
C∗-envelope machinery we can prove that this object always exists, thus completing the couniversal
aspect of their program in the more general context of right weak LCM inclusions.

Definition 4.10. Let (G, P) be a weak right LCM inclusion and X be a compactly aligned product system
over P with coefficients in A. We say that a representation (π, t) of X is couniversal for NT (X) if

(i) π is faithful,

(ii) C∗(π, t) is an equivariant quotient of NT (X),

(iii) (π, t) factors through any other equivariant quotient of NT (X) that is injective on A.

Of course the C∗-algebras of couniversal representations are automatically ∗-isomorphic by an equi-
variant homomorphism. In [Dor-On et al. 2022] we proved that the equivariant representation

NT (X)→ C∗

env(Tλ(X)
+,G, δ̄G)

that is given by the diagram

NT (X) //

$$

C∗
env(Tλ(X)+,G, δ̄G)

Tλ(X)

66

is couniversal. Let us review the main arguments and see what more we can obtain.

Proposition 4.11 [Dor-On et al. 2022, Proposition 4.4]. Let (G, P) be a weak right LCM inclusion
and X be a compactly aligned product system over P with coefficients in A. Let 8 : Tλ(X)→ B be a
∗-representation such that 8|π(A) is faithful. Then there exists a faithful ∗-homomorphism

Tλ(X)→ B ⊗ C∗

λ(P), t̄p(ξp) 7→8t̄p(ξp)⊗ Vp.

As a consequence the injective equivariant representations on product systems generate C∗-covers for
the cosystem (Tλ(X)+,G, δ̄G).
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Proposition 4.12 [Dor-On et al. 2022, Proposition 4.5]. Let (G, P) be a weak right LCM inclusion and X
be a compactly aligned product system over P with coefficients in A. Let8 : Tλ(X)→ B be an equivariant
∗-epimorphism such that 8|π(A) is faithful. Then B is a C∗-cover for the cosystem (Tλ(X)+,G, δ̄G).

Another consequence of Proposition 4.11 provides a generalization of the extension theorem of
[Katsoulis and Ramsey 2019]. It essentially allows us to recognize a Fock tensor algebra by the presence
of a coaction.

Theorem 4.13 (extension theorem). Let (G, P) be a weak right LCM inclusion and X be a compactly
aligned product system over P with coefficients in A. Let8 : Tλ(X)→ B be a representation of X and set

A := alg{8π(A),8t̄p(X p) | p ∈ P}.

Then the following are equivalent:

(i) 8|Tλ(X)+ is completely isometric.

(ii) There exists a completely contractive map

A → B ⊗ C∗(G), 8t̄p(ξp) 7→8t̄p(ξp)⊗ u p.

(iii) There exists a completely contractive map

A → B ⊗ C∗

λ(G), 8t̄p(ξp) 7→8t̄p(ξp)⊗ λp.

(iv) There exists a completely contractive map

A → B ⊗ C∗

λ(P), 8t̄p(ξp) 7→8t̄p(ξp)⊗ Vp.

Proof. Below we have a diagram of completely contractive representations induced by Propositions 4.11
and 4.12, which are completely positive maps fixing the nonselfadjoint part. If any of the items holds
then it makes the representation of Tλ(X)+ to A completely isometric and the proof is complete.

Tλ(X)+

≃
��

,,alg{8t̄p(ξp)⊗ u p | ξp ∈ X p, p ∈ P}

��

A

alg{8t̄p(ξp)⊗ λp | ξp ∈ X p, p ∈ P}

��

alg{8t̄p(ξp)⊗ Vp | ξp ∈ X p, p ∈ P}

≃

��

Tλ(X)+ □
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We now come to the last part of [Dor-On et al. 2022] that connects reduced C∗-algebras with the
C∗-envelope. By Corollary 3.13 and Proposition 4.12 we get a canonical ∗-epimorphism

qsc(Tλ(X))→ A ×X,λ P ≃ C∗

env(Tλ(X)
+,G, δ̄G).

We remind the reader of the notation used here and in [Dor-On et al. 2022] as explained in Remark 3.12.
The same remark asserts that the C∗-envelope of the cosystem is independent of the group embedding in
this setting.

Theorem 4.14 [Dor-On et al. 2022, Theorem 4.9, Theorem 5.3 and Corollary 5.6]. Let (G, P) be a weak
right LCM inclusion and X be a compactly aligned product system over P with coefficients in A. Then
the equivariant ∗-epimorphism

NT (X)→ C∗

env(Tλ(X)
+,G, δ̄G)

is couniversal. Moreover we have an equivariant ∗-isomorphism

C∗

env(Tλ(X)
+,G, δ̄G)≃ A ×X,λ P.

The equivariant ∗-epimorphism

qsc(Tλ(X))→ A ×X,λ P ≃ C∗

env(Tλ(X)
+,G, δ̄G)

is faithful if and only if the coaction of G on qsc(Tλ(X)) is normal.

5. Controlled maps

Let ϑ : (G, P)→ (G,P) be a semigroup preserving homomorphism between weak right LCM inclusions
and let X be a compactly aligned product system over P with coefficients in A. By Proposition 2.9 the
Toeplitz algebra admits a G-grading that contains the G-grading, and the same is true for the fixed point
algebras. Of course this may be useless; for example the ϑ-fixed point algebra for the map ϑ : G → {e}
is the entire C∗-algebra. Nevertheless more can be obtained for weak right LCM inclusions as long as we
impose axioms that control the map. The following extends the controlled maps on quasilattice ordered
groups from [Laca and Raeburn 1996], see also [Fowler 2002] and [Crisp and Laca 2007], to the context
of weak right LCM inclusions.

Definition 5.1. A controlled map ϑ : (G, P)→ (G,P) between weak right LCM inclusions is a semigroup
preserving homomorphism such that:

(A1) If pP ∩ q P ̸= ∅, then ϑ(p)P ∩ϑ(q)P = ϑ(pP ∩ q P)P.

(A2) If pP ∩ q P ̸= ∅ and ϑ(p)= ϑ(q), then p = q .

It is worth pointing out that in the case where P = G then there is only one right ideal (generated by
the identity). Therefore a controlled map in this case is simply an injective group homomorphism due
to (A2).
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Remark 5.2. It is clear that having ϑ(p)P ∩ϑ(q)P = ϑ(w)P whenever pP ∩ q P = wP is equivalent
to (A1). Moreover, because of (A2) we have that ϑ−1(eG)∩ P = {eG}. Indeed as ϑ is a group homomor-
phism we have that ϑ(eG)= eG . Now if ϑ(p)= eG for some p ∈ P, then since pP ∩ eG P = pP ̸=∅ we
get by (A1) that p = eG . This extra generality is crucial when we wish to consider the generalized length
function given by abelianization on the free monoid F+

n [Laca and Raeburn 1996], and, more generally,
the Artin monoids of rectangular type [Crisp and Laca 2002].

Remark 5.3. Similar types of maps appear in [Crisp 1999] and [Brownlowe et al. 2018, Section 3].
However the maps therein satisfy the stronger requirement that ϑ(p)P ∩ ϑ(q)P = ϑ(pP ∩ q P)P for
all p, q ∈ P. This means that p, q ∈ P have a right LCM if and only if ϑ(p), ϑ(q) ∈ P also do. In our
Definition 5.1, the condition (A1) allows the possibility that ϑ(p), ϑ(q) have a right LCM in P even
when pP ∩ q P = ∅.

We will investigate the impact of the existence of a controlled map on Nica-covariant representations.
Henceforth fix a controlled map ϑ : (G, P)→ (G,P) between two weak right LCM inclusions. Suppose
that (π, t) is a Nica-covariant representation of a compactly aligned product system X over P with
coefficients in A. If p, q ∈ P with ϑ(p) = ϑ(q) then by (A2) either p = q or pP ∩ q P = ∅; thus
Nica-covariance yields the orthogonality

tp(ξp)
∗tq(ξq)= δp,qπ(⟨ξp, ξq⟩).

Hence the C∗-algebra

Bϑ−1(h) := span{ψp,q(kp,q) | kp,q ∈ K(Xq , X p), ϑ(p)= h = ϑ(q)}

is a matrix C∗-algebra. For a ∨-closed F ⊆ P we define

Bϑ−1(F) := span{Bϑ−1(h) | h ∈ F}.

By conditions (A1) and (A2) of Definition 5.1 we get that ϑ−1(F) is also ∨-closed (and thus the above
space is a C∗-algebra). Therefore every Bϑ−1(F) is the inductive limit of the matrix C∗-subalgebras

span{ψp,q(kp,q) | kp,q ∈ K(Xq , X p), p, q ∈ F, ϑ(p)= ϑ(q)} for finite ∨-closed F ⊆ ϑ−1(F).

Taking the closure of the union we obtain the ϑ-fixed point algebra

Bϑ−1(P) := span{ψp,q(kp,q) | kp,q ∈ K(Xq , X p), ϑ(p)= ϑ(q)}.

It follows that

BP = span{ψp(KX p) | p ∈ P} ⊆ Bϑ−1(P).

It is clear that the faithful conditional expectation EP on C∗(π, t̄ )= Tλ(X) described in Proposition 3.8
is onto Bϑ−1(P). We already commented on the effect of semigroup preserving homomorphisms of the
form ϑ : (G, P)→ (G,P) on T (X) and Tλ(X). We give some basic facts about the effect of controlled
maps on Tλ(X).
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Proposition 5.4. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Let 8 : Tλ(X) → B be a
∗-representation such that 8|π(A) is faithful. Then there exists a faithful ∗-homomorphism

Tλ(X)→ B ⊗ C∗

λ(P), t̄p(ξp) 7→8t̄p(ξp)⊗ Vϑ(p).

Proof. The proof follows the same lines as Proposition 4.11 with the observation that Bϑ−1(h) for h ∈ G is
a matrix algebra. □

As an immediate consequence we have the following corollary which extends Theorem 4.13 to the
controlled setting.

Corollary 5.5. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Let 8 : Tλ(X) → B be a
∗-representation and set

A := alg{8π(A),8t̄p(X p) | p ∈ P}.

Then the following are equivalent:

(i) 8|Tλ(X)+ is completely isometric.

(ii) There exists a completely contractive map

A → B ⊗ C∗(G), 8t̄p(ξp) 7→8t̄p(ξp)⊗ uϑ(p).

(iii) There exists a completely contractive map

A → B ⊗ C∗

λ(G), 8t̄p(ξp) 7→8t̄p(ξp)⊗ λϑ(p).

(iv) There exists a completely contractive map

A → B ⊗ C∗

λ(P), 8t̄p(ξp) 7→8t̄p(ξp)⊗ Vϑ(p).

Proof. The proof follows as in Theorem 4.13, modulo Proposition 3.7 and Proposition 5.4. □

Controlled elimination. We will require the following lemma for solving polynomial equations in the
ϑ-fixed point algebra.

Lemma 5.6. Let ϑ : (G, P) → (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Let (π, t) be an injective
Nica-covariant representation of X.

(i) Let p, q be distinct in ϑ−1(h). For r, s ∈ ϑ−1(h) with (r, s) ̸= (p, q), we get

tp(X p)
∗ψr,s(kr,s)tq(Xq)= (0) for all kr,s ∈ K(Xs, Xr ).

(ii) Let F ⊆ P be ∨-closed and F ⊆ ϑ−1(F) be finite and ∨-closed. Let (r, s) ∈ F × F with ϑ(r)= ϑ(s)
and kr,s ∈ K(Xs, Xr ) such that ∑

r,s∈F
ϑ(r)=ϑ(s)

ψr,s(kr,s)= 0,



COUNIVERSALITY AND CONTROLLED MAPS ON PRODUCT SYSTEMS OVER RIGHT LCM SEMIGROUPS 1459

and suppose that h ̸= eG is minimal in F so that kp,q ̸= 0 for distinct p, q ∈ ϑ−1(h). Then there exists a
∨-closed F ′

⊆ P and a finite ∨-closed F ′
⊆ ϑ−1(F ′) with eG /∈ F ′ and |F ′

| ≤ |F | − 1 such that

tp(X p)
∗ψp,q(kp,q)tq(Xq)⊆ BF ′ .

Proof. (i) First we note that condition (A2) of Definition 5.1 yields pP ∩ q P = ∅. By Nica-covariance
we have that tp(X p)

∗ψr,s(kr,s)tq(Xq)= (0), unless

∃w, z, v ∈ P such that pP ∩ r P = wP, q P ∩ s P = z P and r−1wP ∩ s−1z P = vP. (5-1)

If (r, s) ̸= (p, q) and ϑ(r)= h = ϑ(s), then condition (A2) of Definition 5.1 implies that pP ∩ r P = ∅
or q P ∩ s P = ∅, in which case

tp(X p)
∗ψr,s(kr,s)tq(Xq)= (0).

(ii) Minimality of h in F forces minimality of p, q in F. If (5-1) holds, then Nica-covariance yields

tp(ξp)
∗ψr,s(kr,s)tq(ξq) ∈ ψp−1rv,q−1sv(K(Xq−1sv, X p−1rv)),

otherwise the product is zero. If r = s and v exists then there are p′, q ′, x, x ′, y, y′
∈ P such that

pp′
= r x, qq ′

= r y and xx ′
= yy′.

But then
pp′x ′

= r xx ′
= r yy′

= qq ′y,

giving the contradiction that pP ∩ q P ̸= ∅. Hence in this case the product is zero. We will show that the
product is zero also when ϑ(p−1rv)= eG = ϑ(q−1sv) for r ̸= s unless (r, s)= (p, q). If ϑ(p−1rv)= eG
then condition (A2) of Definition 5.1 yields p ∈ r P. Likewise q ∈ s P. Minimality of p, q in F forces
either (p, q)= (r, s) or kr,s = 0. Set

F ′
:= {h−1g | g ∈ F, g > h} and F ′

:= {u−1v | u, v ∈ F, ϑ(u)= h, u > v} ⊆ ϑ−1(F ′).

We see that F ′ is ∨-closed with |F ′
| ≤ |F | − 1 and so F ′ is ∨-closed with

|F ′
| ≤ |F \ {p, q}| = |F | − 2.

Moreover we see that p−1rv, q−1sv ∈ F ′ whenever v exists. Hence for every ξp ∈ X p and ξq ∈ Xq there
are suitable k ′

r ′,s′ with nontrivial r ′, s ′
∈ F ′ so that

0 =

∑
r,s

tp(ξp)
∗ψr,s(kr,s)tq(ξq)= tp(ξp)

∗ψp,q(kp,q)tq(ξq)+
∑
r ′,s′

ψr ′,s′(k ′

r ′,s′), □

In the next proposition we show that we can eliminate elements of the form ψr,s(kr,s) for r ̸= s with
ϑ(r)= ϑ(s), from a polynomial equation in the ϑ-fixed point algebra. Such arguments for the left-regular
representation appear in [Dinh 1991, Proposition 2.10] and [Laca and Raeburn 1996, Lemma 4.1] for
semigroups over quasilattices, i.e., when X p = C for every p ∈ P and (G, P) is a quasilattice. Here we
need to move in three directions: (a) beyond one-dimensional fibers, (b) beyond quasilattices, and (c)
beyond just the left-regular representation. A step towards this direction is done in [Kakariadis 2020] for
quasilattices that are controlled by (Zn,Zn

+
), and here we expand further on this approach.
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Proposition 5.7. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Let (π, t) and (π ′, t ′) be
injective Nica-covariant representations such that there exists a canonical ∗-epimorphism

8 : C∗(π ′, t ′)→ C∗(π, t), with 8(π ′(a))= π(a), 8(t ′

p(ξp))= tp(ξp).

Then 8 is injective on B ′

P if and only if it is injective on B ′
ϑ−1(P).

Proof. As B ′

P ⊆ B ′

ϑ−1(P) we need to show just one direction. To this end suppose that 8 is injective on
the C∗-subalgebras of the form

B ′

F = span{ψ ′

p(KX p) | p ∈ F}

for every finite ∨-closed F ⊆ P. We will show that 8 is injective on every

B ′

ϑ−1(F) = span{ψ ′

r,s(kr,s) | ϑ(r)= ϑ(s) ∈ F}

for all ∨-closed F ⊆ P. Our strategy is to show the implication∑
r,s∈F

ϑ(r)=ϑ(s)∈F

ψ ′

r,s(kr,s) ∈ ker8 =⇒ kr,s = 0 whenever r ̸= s

for every finite ∨-closed F ⊆ ϑ−1(F). Then injectivity of 8 in the smaller cores yields∑
r∈F

ψr (kr )=

∑
r,s∈F

ϑ(r)=ϑ(s)∈F

ψr,s(kr,s)= 0 =⇒

∑
r∈F

ψ ′

r (kr )= 0,

and so ∑
r,s∈F

ϑ(r)=ϑ(s)∈F

ψ ′

r,s(kr,s)=

∑
r∈F

ψ ′

r (kr )= 0.

Since F is arbitrary this proves injectivity of 8 on B ′
ϑ−1(F). We proceed by induction on the size of F.

Case 1. Assume that F = {h} and let F be a finite ∨-closed subset of ϑ−1(F). Suppose that∑
r,s∈F

ϑ(r)=ϑ(s)=h

ψr,s(kr,s)= 0,

and fix p, q ∈ ϑ−1(h). Then condition (A2) of Definition 5.1 implies that

ψp(KX p)ψp,q(kp,q)ψq(KXq)= ψp(KX p)

( ∑
r,s∈F

ϑ(r)=ϑ(s)=h

ψr,s(kr,s)

)
ψq(KXq)= (0).

Using an approximate identity on both sides gives that ψp,q(kp,q)= 0, and the injectivity of ψ implies
that kp,q = 0. As (p, q) was arbitrary we have that kr,s = 0 for all r, s ∈ ϑ−1(h) and so∑

r,s∈F
ϑ(r)=ϑ(s)=h

ψ ′

r,s(kr,s)= 0.

Hence 8 is injective on B ′
ϑ−1(F) whenever |F | = 1.
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Case 2. Assume that F = {eG, h} and let F be a finite ∨-closed subset of ϑ−1(F). Suppose that∑
r,s∈F

ϑ(r)=ϑ(s)

ψr,s(kr,s)= 0.

By condition (A1) of Definition 5.1 we have that if p ̸= q with ϑ(p) = ϑ(q) ∈ F then p, q ∈ ϑ−1(h).
As before and by using item (i) of Lemma 5.6 on p, q we get that

ψp(KX p)ψp,q(kp,q)ψq(KXq)= ψp(KX p)

( ∑
r,s∈F

ϑ(r)=ϑ(s)

ψr,s(kr,s)

)
ψq(KXq)= (0).

Using an approximate identity eventually gives that kp,q = 0 whenever p ̸= q . Hence kr,s = 0 whenever
r ̸= s in F and injectivity of 8 on B ′

F gives that∑
r,s∈F

ϑ(r)=ϑ(s)

ψ ′

r,s(kr,s)= 0.

Hence 8 is injective on B ′
ϑ−1(F) whenever F = {e, h}.

Case 3. Assume that F = {h1, h2} and let F be a finite ∨-closed subset of ϑ−1(F). Suppose that∑
r,s∈F

ϑ(r)=ϑ(s)∈{h1,h2}

ψ ′

r,s(kr,s) ∈ ker8.

Without loss of generality assume that it is written with the understanding that for every ψ ′
r,s(kr,s) we

have that either ψ ′
r,s(kr,s)= 0 or that

ψ ′

r,s(kr,s) /∈ B ′

ϑ−1(ϑ(r)P).

Choose h ∈ F to be minimal such that ψ ′
p,q(kp,q) ̸= 0 for distinct p, q ∈ ϑ−1(h). Hence kp,q ̸= 0 and so

0 ̸= ψ ′

p,q(kp,q) /∈ B ′

ϑ−1(hP).

By using Lemma 5.6 item (ii) we have that

tp(X p)
∗ψp,q(kp,q)tq(Xq)⊆ Bϑ−1(F ′) for |F ′

| ≤ 1,

with eG /∈ F ′. By using injectivity of Case 2 we then derive that

ψ ′

p(KX p)ψ
′

p,q(kp,q)ψ
′

q(KXq)⊆ B ′

ϑ−1(hP).

By using approximate identities on both sides we get the contradiction

ψ ′

p,q(kp,q) ∈ B ′

ϑ−1(hP).

Hence 8 is injective on B ′
ϑ−1(F) whenever |F | ≤ 2.
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Case 4. Let F ⊆P be ∨-closed with |F | = n +1 and assume that 8 is injective on B ′
ϑ−1(F ′) for all F ′

⊆P
with |F ′

| ≤ n. We will show that 8 is injective on B ′
ϑ−1(F). To this end let F be a finite ∨-closed subset

of ϑ−1(F) and suppose that ∑
r,s∈F

ϑ(r)=ϑ(s)∈F

ψ ′

r,s(kr,s) ∈ ker8,

with the understanding that for every ψ ′
r,s(kr,s) we have that either ψ ′

r,s(kr,s)= 0 or that

ψ ′

r,s(kr,s) /∈ B ′

ϑ−1(ϑ(r)P).

Choose h ∈ F to be minimal such that ψ ′
p,q(kp,q) ̸= 0 for distinct p, q ∈ ϑ−1(h). Hence kp,q ̸= 0 and so

0 ̸= ψ ′

p,q(kp,q) /∈ B ′

ϑ−1(hP).

By using Lemma 5.6 item (ii) we then have that

tp(X p)
∗ψp,q(kp,q)tq(Xq)⊆ Bϑ−1(F ′) for |F ′

| ≤ |F | − 1 = n.

Using the induction hypothesis we then derive that

ψ ′

p(KX p)ψ
′

p,q(kp,q)ψ
′

q(KXq)⊆ Bϑ−1(F ′) ⊆ B ′

ϑ−1(hP).

By using approximate identities on both sides we have the contradiction

ψ ′

p,q(kp,q) ∈ B ′

ϑ−1(hP).

This concludes the proof of the proposition. □

Combining with [Sehnem 2019, Theorem 3.10] we get the following corollary.

Corollary 5.8. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Then the following are
equivalent for a strongly covariant representation (π, t) of A ×X P:

(i) The ∗-representation π is faithful on A.

(ii) The induced ∗-representation is faithful on the fixed point algebra BP of A ×X P.

(iii) The induced ∗-representation is faithful on the ϑ-fixed point algebra Bϑ−1(P) of A ×X P.

In particular this holds for the ∗-representations of qsc(Tλ(X)) and A ×X,λ P.

A second application of the controlled elimination allows us to pass in between the C∗-envelopes
induced by G and G.

Proposition 5.9. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions, and
let X be a compactly aligned product system over P with coefficients in A. Let δ̄G be the induced coaction
of G on Tλ(X) and Tλ(X)+. Then C∗

env(Tλ(X)+,G, δ̄G) inherits a normal coaction of G and there exists a
G-equivariant ∗-isomorphism

C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(X)
+,G, δ̄G)

that fixes Tλ(X)+.
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Proof. By Theorem 2.7 and Propositions 2.9 and 3.7, we get that C∗
env(Tλ(X)+,G, δ̄G) admits a normal

coaction of G and therefore there exists a G-equivariant ∗-epimorphism

8 : C∗

env(Tλ(X)
+,G, δ̄G)→ C∗

env(Tλ(X)
+,G, δ̄G)

that fixes Tλ(X)+. By construction 8 is G-equivariant, and so it intertwines the faithful conditional
expectations induced by G. On the other hand, by Theorem 2.7 the map 8 is faithful on the G-fixed point
algebra of C∗

env(Tλ(X)+,G, δ̄G). By Proposition 5.7 the map 8 is faithful on the G-fixed point algebra of
C∗

env(Tλ(X)+,G, δ̄G). Consequently 8 is injective. □

6. Applications

Couniversality of Sehnem’s covariance algebra. We will consider weak right LCM inclusions that are
controlled by exact groups. In this case we get normality of the coaction of G on qsc(Tλ(X)), and thus
the latter coincides with A ×X,λ P and, by [Dor-On et al. 2022, Theorem 5.3], with C∗

env(Tλ(X)+,G, δ̄G).
This provides another algebraic description of C∗

env(Tλ(X)+,G, δ̄G) by the strong covariance relations in
the Fock space representation.

Theorem 6.1. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions and
let X be a compactly aligned product system over P with coefficients in A. Consider the canonical
∗-epimorphisms

qsc(Tλ(X))→ A ×X,λ P ≃ C∗

env(Tλ(X)
+,G, δ̄G)→ C∗

env(Tλ(X)
+).

If G is exact then the left map is faithful. If in addition G is abelian then the right map is also faithful.

Proof. First we show that the ideal of the strong covariance relations is G-induced. Let Iλ be the image
of the strong covariance relations in Tλ(X) so that Tλ(X)/Iλ = qsc(Tλ(X)). Let us denote by B F the
cores of the Fock representation (π, t̄ ) and let qIλ : Tλ(X)→ qsc(Tλ(X)) be the canonical ∗-epimorphism.
Proposition 5.7 implies that

Iλ ∩ Bϑ−1(P) =
⋃

finite ∨-closed
F⊆P

ker qIλ ∩ Bϑ−1(F) =
⋃

finite ∨-closed
F⊆P

ker qIλ ∩ B F = Iλ ∩ B P .

Therefore we get that
Iλ = ⟨Iλ ∩ B P⟩ = ⟨Iλ ∩ Bϑ−1(P)⟩,

showing that Iλ is indeed G-induced.
Consequently, by exactness of G we derive that the normal coaction of G on Tλ(X) descends to a normal

coaction on the quotient qsc(Tλ(X)). Thus by Proposition 4.12 we have that qsc(Tλ(X)) is a C∗-cover for
(Tλ(X)+,G, δ̄G). Therefore there exists a G-equivariant ∗-epimorphism

8 : qsc(Tλ(X))→ C∗

env(Tλ(X)
+,G, δ̄G)

that fixes Tλ(X)+. The ∗-epimorphism 8 intertwines the coactions (and thus the faithful conditional
expectations implemented by normality and exactness of G), and it is faithful on the G-fixed point algebra
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[qsc(Tλ(X))]e by Corollary 3.13. Hence we derive that 8 is faithful by Corollary 5.8. By Proposition 5.9
we conclude that

qsc(Tλ(X))≃ C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(X)
+,G, δ̄G).

Now if in addition G is abelian then C∗
env(Tλ(X)+) inherits the coaction of G by the dual gauge action Ĝ.

Due to couniversality we thus derive

C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(X)
+). □

Combining with Proposition 2.9 and Proposition 4.12 we get the following corollary.

Corollary 6.2. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions such
that G is exact, and let X be a compactly aligned product system over P with coefficients in A. Then
qsc(Tλ(X)) is couniversal with respect to both G-equivariant and G-equivariant quotients of Tλ(X) that
are faithful on A.

Remark 6.3. As an immediate consequence of Theorem 6.1 we get that the coaction of G on qsc(Tλ(X))
is normal. Therefore one can use the results of [Dor-On et al. 2022] to derive that the reduced Hao–Ng
problem for discrete group actions on A×X,λ P has a positive answer when (G, P) is controlled by (G,P)
with G exact. A similar method applies whenever the C∗-envelope functor is stable under crossed products,
e.g., for dynamics over abelian locally compact groups or when the tensor algebra is hyperrigid [Katsoulis
2020; Katsoulis and Ramsey 2019], and we leave this to the interested reader.

Next we consider amenably controlled weak right LCM inclusions, i.e., the range of the controlled
map is inside an amenable group. In this case the reduced C∗-algebras become universal with respect to
classes of representations. First we consider NT (X). (A variant of) the following has been obtained by
Fowler [2002] for nondegenerate product systems over quasilattices. Here we extend it to the weak right
LCM inclusions framework with a different approach that does not require nondegeneracy of X .

Theorem 6.4. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions with G
amenable and let X be a compactly aligned product system over P with coefficients in A. Then the Fock
representation is faithful on NT (X).

Conversely, suppose that (π, t) is an injective G-equivariant Nica-covariant representation of X and
for every ∨-closed F ⊆ P we have linear independence in the ϑ-cores in the sense that

Bϑ−1(F) =
∑

⊕

h∈F

Bϑ−1(h).

Then (π, t) integrates to a faithful representation of NT (X).
In particular, a Nica-covariant pair (π, t) defines a faithful representation of NT (X) if and only if the

associated representation is G-equivariant and satisfies the condition∑
p∈F

ψp(kp)= 0 ⇐⇒ kp = 0 for all p ∈ F,

for every ∨-closed F ⊆ P and every finite ∨-closed F ⊆ ϑ−1(F).
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Proof. Let (π̂, t̂ ) be a faithful representation of NT (X) and consider the canonical ∗-epimorphism

8 : NT (X)= C∗(π̂, t̂ )→ Tλ(X)= C∗(π, t̄ ).

Let EG be the faithful conditional expectation induced by Proposition 3.8 on Tλ(X). Let ÊG be the faithful
conditional expectation on NT (X) induced by the amenable G. Since 8ÊG = EG8, it suffices to show
injectivity of 8 on B̂F for every ∨-closed F ⊆ P. To this end fix a finite ∨-closed F ⊆ ϑ−1(F) and
suppose that

f :=

∑
{ψ̂r1,r2(kr1,r2) | kr1,r2 ∈ K(Xr2, Xr1), r1, r2 ∈ F, ϑ(r1)= ϑ(r2)} ∈ ker8.

Let h be minimal in F such that kq1,q2 ̸= 0 with ϑ(q1)=ϑ(q2)= h. Using condition (A2) of Definition 5.1
and the Fock space representation we have that

kq1,q2 = Qq18( f )Qq2 = 0

for the projections Q p : FX → X p, which gives the required contradiction. Thus the Fock representation
is injective and also we have linear independence of the cores. The converse follows with a similar proof.

For the last part it is clear that the condition with F = {eG} and F = {eG} implies that π is injective.
Moreover the condition shows that the canonical ∗-epimorphism 8 is injective on the C∗-subalgebras

B̂F = span{ψ̂r (kr ) | r ∈ F}

for every finite ∨-closed F ⊆ P, and so 8 is injective on B̂P . Thus by Proposition 5.7 the map 8 is
injective on B̂ϑ−1(P) and hence on NT (X). □

Next we consider the universal covariance algebra A ×X P.

Theorem 6.5. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions with G
amenable and let X be a compactly aligned product system over P with coefficients in A. Then a strongly
covariant representation of X integrates to a faithful representation of A ×X P, if and only if it is injective
and G-equivariant, if and only if it is injective and G-equivariant.

Proof. By Theorem 6.4 we have that A ×X P coincides with qsc(Tλ(X)) and A ×X,λ P. Thus the result
follows from Corollary 6.2. □

Remark 6.6. When (G, P) is amenably controlled then we have a wider selection for a coaction that
implements the extension theorem. The diagram in the proof of Corollary 6.7 on page 1466 depicts those.
We denote restrictions of ∗-homomorphisms by solid arrows, and we have used Proposition 4.11 for the
upper and lower completely isometric maps. Recall that if G is amenable then C∗(G)≃ C∗

λ(G) is nuclear,
and by [Li 2013] C∗

λ(P) is also nuclear.

Corollary 6.7. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions with G
amenable. Suppose that A, X p ⊆ B(H) for p ∈ P define a compactly aligned product system X ={X p}p∈P

and set
A := alg{A, X p | p ∈ P}.

Then the following are equivalent:
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(i) There is a completely isometric isomorphism

A → Tλ(X)+, ξp 7→ t̄(ξp).

(ii) There is a completely contractive map

A → Tλ(X)+ ⊗ C∗(G), ξp 7→ t̄(ξp)⊗ u p.

(iii) There is a completely contractive map

A → Tλ(X)+ ⊗ C∗

λ(G), ξp 7→ t̄(ξp)⊗ λp.

(iv) There is a completely contractive map

A → Tλ(X)+ ⊗ C∗

λ(P), ξp 7→ t̄(ξp)⊗ Vp.

(v) There is a completely contractive map

A → Tλ(X)+ ⊗ C∗(G), ξp 7→ t̄(ξp)⊗ uϑ(p).

(vi) There is a completely contractive map

A → Tλ(X)+ ⊗ C∗

λ(P), ξp 7→ t̄(ξp)⊗ Vϑ(p).

Proof. The proof follows by the system of completely positive maps fixing the nonselfadjoint part
below, where the solid arrows denote the maps that arise from restrictions of ∗-homomorphisms from the
appropriate C∗-algebras to the required subalgebras.

NT (X)+

≃
��

,,alg{t̄p(ξp)⊗ u p | ξp ∈ X p, p ∈ P}
NT (X)⊗C∗(G)

��

A

alg{tp(ξp)⊗ u p | ξp ∈ X p, p ∈ P}
C∗(π,t)⊗C∗(G)

�� ,,

alg{tp(ξp)⊗ λp | ξp ∈ X p, p ∈ P}
C∗(π,t)⊗C∗

λ(G)

��

alg{tp(ξp)⊗ λϑ(p) | ξp ∈ X p, p ∈ P}
C∗(π,t)⊗C∗(G)

��

alg{tp(ξp)⊗ Vp | ξp ∈ X p, p ∈ P}
C∗(π,t)⊗C∗

λ(P)

≃

��

alg{tp(ξp)⊗ Vϑ(p) | ξp ∈ X p, p ∈ P}
C∗(π,t)⊗C∗

λ(P)

≃

rr
NT (X)+ □
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Exactness and nuclearity. We will require some results about nuclearity which we record here for
convenience.

Lemma 6.8 [Katsura 2004, Proposition B.8]. Let (π, t) be a representation of a C∗-correspondence X
over A such that π(A)⊆ B and t (X)⊆ Y for a second C∗-correspondence Y over B. If π : A → B is
nuclear then the induced map ψ : KX → KY is nuclear.

Lemma 6.9 [Kakariadis 2020, Proposition 3.1]. Let A, A′ be C∗-algebras and consider the ideals I ◁ A
and I ′ ◁ A′. Suppose we have the commutative diagram of short exact sequences

0 // I //

ϕ0
��

A //

ϕ
��

A/I //

ϕ̃
��

0

0 // I ′ // A′ // A′/I ′ // 0

where ϕ : A → A′ is an injective ∗-homomorphism that satisfies ϕ(I ) ⊆ I ′, ϕ̃ : A/I → A′/I ′ is the
induced map and ϕ0 := ϕ|I . If ϕ : A → A′ is nuclear, then ϕ0 and ϕ̃ are both nuclear.

Lemma 6.10 [Kakariadis 2020, Proposition 3.3]. Let A, A′ be C∗-algebras and consider the ideals I ◁ A
and I ′ ◁ A′. Suppose we have the commutative diagram of short exact sequences

0 // I //

ϕ0
��

A //

ϕ
��

A/I //

ϕ̃
��

0

0 // I ′ // A′ // A′/I ′ // 0

where ϕ : A → A′ is an injective ∗-homomorphism that satisfies ϕ(I ) ⊆ I ′, ϕ̃ : A/I → A′/I ′ is the
induced map and ϕ0 := ϕ|I . Suppose further that there exists a contractive approximate identity (ei ) of I ′

such that ϕ(a)ei ∈ ϕ0(I ) for all a ∈ A. If ϕ0 and ϕ̃ are nuclear, then so is ϕ.

First we provide a nuclearity and exactness result for Tλ(X).

Theorem 6.11. Let (G, P) be a weak right LCM inclusion and X be a compactly aligned product system
over P with coefficients in A. Let E P : Tλ(X)→ B P be the faithful conditional expectation that arises by
compressing to the diagonal. Then the following are equivalent:

(i) A is nuclear (resp. exact) and E P ⊗max idD is a faithful conditional expectation on Tλ(X)⊗max D
for all C∗-algebras D.

(ii) Tλ(X) is nuclear (resp. exact).

Proof. We will show nuclearity; exactness follows in the same way. Notice that for any C∗-algebra D we
have the commutative diagram

C∗(π, t̄ )⊗max D //

E P⊗maxid
��

C∗(π, t̄ )⊗ D

E P⊗id
��

B P ⊗max D // B P ⊗ D

and we recall that E P ⊗ id is faithful on C∗(π, t̄ )⊗ D.
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Suppose first that C∗(π, t̄ ) is nuclear. Then trivially E P ⊗max id is faithful on C∗(π, t̄ )⊗max D. Since A
is the corner of C∗(π, t̄ ) at the (e, e)-place we have that A is nuclear, as the compression of a nuclear
C∗-algebra.

For the converse, the diagram above implies that it suffices to show that B P is nuclear. Equivalently it
suffices to show that B F is nuclear for every finite ∨-closed F ⊆ P. To this end let F = {p1, . . . , pn}. We
choose the enumeration so that it covers the partial order in F in the sense that if pm > pm′ then m < m′.
We will use induction on n.

For the first step we have that ψ̄p1(KX p1) is nuclear as A is nuclear by [Katsura 2004, Proposition B.7].
For the inductive step suppose that B Fk is nuclear for Fk = {p1, . . . , pk} (which is ∨-closed by the choice
of the enumeration). We will show that so is B Fk+1 for Fk+1 = {p1, . . . , pk, pk+1}. The enumeration
shows that pk+1 is minimal in Fk+1 and hence

B Fk+1 = B Fk ⊕ ψ̄pk+1(KX pk+1).

Indeed let kpi ∈ KX pi such that
k+1∑
i=1

ψ̄pi (kpi )= 0.

Due to minimality of pk+1 in Fk+1 we have that

kpk+1 = Q pk+1

( k+1∑
i=1

ψ̄pi (kpi )

)
Q pk+1 = 0,

for the projection Q pk+1 : FX → X pk+1 . Minimality of pk+1 also gives that B Fk is an ideal in B Fk+1 , and
we thus derive the following short exact sequence

0 −→ B Fk −→ B Fk+1 −→ ψ̄pk+1(KX pk+1)−→ 0.

Since B Fk is nuclear by the inductive hypothesis and ψ̄pk+1(KX pk+1) is nuclear by the base case we have
that B Fk+1 is nuclear. Inducing on k gives that B F = B Fn is nuclear. □

In the amenably controlled case, and by combining with Theorem 6.4, we can deduce nuclearity and
exactness of NT (X) from nuclearity and exactness of A, and conversely. The exactness equivalence
passes to A ×X P, however this fails for nuclearity even for P = Z+ due to a counterexample of Ozawa
in [Katsura 2004]. In [Kakariadis 2020] it is shown that A ×X P is nuclear if and only if the embedding
A ↪→ A ×X P is nuclear when (G, P) is a quasilattice controlled by (Zn,Zn

+
) that satisfies a minimality

condition. In fact this holds for any quotient in between the Toeplitz–Nica–Pimsner and the covariance
algebra. Here we generalize to controlled maps by amenable weak right LCM inclusions. Recall that in
the amenably controlled case the reduced C∗-algebras are universal.

Theorem 6.12. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions with G
amenable and let X be a compactly aligned product system over P with coefficients in A. Let (π, t) be an
equivariant injective Nica-covariant representation of X. Then A is exact if and only if C∗(π, t) is exact.
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Proof. We are going to introduce new product systems from X . Therefore in order to make a distinction
we will write E X

P for the faithful conditional expectation on the Fock C∗-algebra Tλ(X) of X .
If C∗(π, t) is exact then so is A, since exactness passes to C∗-subalgebras. For the converse, by

Theorem 6.4 we have that X is amenable and thus C∗(π, t) is a quotient of Tλ(X). Hence it suffices to
show that Tλ(X) is exact. In view of Theorem 6.11 it suffices to show that E X

P ⊗max idD is faithful on
Tλ(X)⊗max D for all C∗-algebras D.

Towards this end let the product system Y = {Yp}p∈P be defined by

Yp := t̄p(X p)⊙ D
⊗max

⊆ Tλ(X)⊗max D.

That Y is a product system follows as X is a product system. Since X is compactly aligned we have that

YpY ∗

p YqY ∗

q ⊆ ψ̄p(KX p)ψ̄q(KXq)⊙ D
⊗max

= ψ̄w(KXw)⊙ D
⊗max

= [YwY ∗

w]

for wP = pP ∩ q P, with the understanding that YpY ∗
p YqY ∗

q = (0) when p and q have no common right
common multiple. Thus by Proposition 4.7 we get that Y is a compactly aligned product system over P
with coefficients in A.

Again by Theorem 6.4 we have that Y is amenable. Our goal is to show that the identity representation
on Y is faithful on NT (Y )≃ Tλ(Y ), and thus we have that

NT (Y )≃ Tλ(Y )≃ Tλ(X)⊗max D.

We then derive that the faithful conditional expectation EY
P on Tλ(Y ) coincides with E X

P ⊗max idD and
the proof will be completed. We will invoke Theorem 6.4.

First we see that the identity representation is G-equivariant. Indeed we have that (π, t̄ ) admits a
coaction δ̄G of G and thus we have an equivariant ∗-homomorphism

δ̄G ⊗max idD : Tλ(X)⊗max D → (Tλ(X)⊗ C∗(G))⊗max D.

By amenability of G and associativity of the maximal tensor product we get that

(Tλ(X)⊗ C∗(G))⊗max D ≃ Tλ(X)⊗max C∗(G)⊗max D

≃ (Tλ(X)⊗max D)⊗max C∗(G)≃ (Tλ(X)⊗max D)⊗ C∗(G),

and thus we deduce that δ̄G ⊗max idD is a coaction of G on Tλ(X)⊗max D. By construction δ̄G ⊗max idD

satisfies the coaction identity with aligned fibers in the sense that

[Tλ(X)⊗max D]g = [Tλ(X)]g ⊙ D
⊗max

.

Secondly let F ⊆ P be a ∨-closed finite set and let k ′
p ∈ KYp such that

∑
p∈F id(k ′

p)= 0. For every
state φ ∈ S(D) we have the completely contractive map

id ⊗max φ : [YpY ∗

p ] ⊗max D → ψ̄p(KX p), ψ̄p(kp)⊗ d 7→ φ(d)ψ̄p(kp).

Therefore we derive ∑
p∈F

(id ⊗max φ)(k ′

p)= (id ⊗max φ)

(∑
p∈F

k ′

p

)
= 0.
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Note here that this is a relation in Tλ(X) with every (id⊗max φ)(k ′
p) ∈ ψ̄p(KX p). Thus if p0 is a minimal

element in F such that (id ⊗max φ)(k ′
p0
) ̸= 0, then we get

Pp0(id ⊗max φ)(k ′

p0
)Pp0 = Pp0(id ⊗max φ)

(∑
p∈F

k ′

p

)
Pp0 = 0,

where Pp0 : FX → X p0 is the canonical projection. However the compression to X p0 is a faithful
∗-representation on ψ̄p0(KX p0), and thus we get the contradiction that (id ⊗max φ)(k ′

p0
)= 0. Continuing

inductively we deduce that (id ⊗max φ)(k ′
p)= 0 for all p ∈ F (one by one for fixed φ). As this holds for

all φ and the family {id ⊗max φ}φ∈S(D) separates [YpY ∗
p ]⊗max D we get that k ′

p = 0 for all p ∈ F. Hence
the assumptions of Theorem 6.4 hold for Y and the proof is complete. □

Theorem 6.13. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right LCM inclusions with G
amenable and let X be a compactly aligned product system over P with coefficients in A. Let (π, t) be an
equivariant injective Nica-covariant representation of X. Then A ↪→ C∗(π, t) is nuclear if and only if
C∗(π, t) is nuclear.

Proof. It is clear that if C∗(π, t) is nuclear then A ↪→ C∗(π, t) is nuclear. Let us prove the converse.
By Theorem 6.4 we have that Tλ(X)≃ NT (X) and so (π, t) promotes to a ∗-representation of Tλ(X).
Due to amenability, C∗(G) = C∗

λ(G) is nuclear (and so the minimal and the maximal tensor product
coincide). Let δ : C∗(π, t)→ C∗(π, t)⊗C∗

λ(G) be the coaction of G and let E = (id⊗ EG)δ be the faithful
conditional expectation induced on C∗(π, t) by the faithful conditional expectation EG of C∗

λ(G). Let D
be any C∗-algebra. Associativity of ⊗max and nuclearity of C∗

λ(G) yields

D ⊗max C∗(π, t)⊗max C∗

λ(G)≃ (D ⊗max C∗(π, t))⊗ C∗

λ(G),

and so idD ⊗max id ⊗max EG = (idD ⊗max id)⊗ EG is faithful on D ⊗max C∗(π, t)⊗max C∗

λ(G). Hence

idD ⊗max E := (idD ⊗max id ⊗max EG)(idD ⊗max δ)

is a faithful conditional expectation of D⊗maxC∗(π, t) on D⊗max BP . Therefore we have the commutative
diagram

C∗(π, t)⊗max D //

��

C∗(π, t)⊗ D

��

BP ⊗max D // BP ⊗ D

where the vertical arrows are faithful conditional expectations. Hence it suffices to show that if π : A → BP

is nuclear then the fixed point algebra BP is nuclear. As the latter is an inductive limit, it suffices to
show that nuclearity of π in BP induces nuclearity of the embedding Bϑ−1(F) ↪→ Bϑ−1(P) for every finite
∨-closed F ⊆ P. We will actually show nuclearity of the embedding

Bϑ−1(F) ↪→ Bϑ−1(F ·P) ⊆ Bϑ−1(P),

where we write
ϑ−1(F ·P)= {pP | ϑ(p) ∈ F}.
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First we remark that BF contains a contractive approximate identity for BF ·P . Indeed let (ei ) be a con-
tractive approximate identity for BF so that limi eiψp(kp)=ψp(kp) for every p ∈ ϑ−1(F). Consequently
limi ei tp(ξp)= tp(ξp) for every p ∈ ϑ−1(F) and thus

lim
i

ei tp(ξp)tr (ξr )ts(ξs)
∗
= tp(ξp)tr (ξr )ts(ξs)

∗ for all r, s ∈ P.

Thus limi eiψp,q(kp,q)= ψp,q(kp,q) for every p, q ∈ ϑ−1(F · P).
Now fix a finite ∨-closed F. By using maximal elements we can write F in levels, i.e.,

F = {h11, . . . , h1n1, h21, . . . , h2n2, . . . , hm1, . . . , hmnm },

such that every
Fi := {hi1, . . . , hini }, with i ∈ {1, . . .m},

consists of the maximal elements of F \ ∪
i−1
j=1F j and F1 consists of the maximal elements of F.

We now proceed by induction. For the base case let h ∈ P and consider the space

Yh :=

∑
p∈ϑ−1(h)

tp(X p).

By using condition (A2) of Definition 5.1 we can equip Yh with the A-valued bilinear map defined by

⟨yh, y′

h⟩ := y∗

h y′

h ∈ π(A) for all yh, y′

h ∈ Yh .

Then each Yh becomes a C∗-correspondence over A, since π is faithful. The embedding Yh ↪→[Yh Bϑ−1(P)]

and nuclearity of π(A) ↪→ Bϑ−1(P) imply nuclearity of the embedding

Bϑ−1(h) = [YhY ∗

h ] ↪→ [Yh Bϑ−1(P)Y
∗

h ] = Bϑ−1(hP) for all h ∈ P,

by [Katsura 2004, Proposition B.8]. Maximality of the h1 j in F yields that the h1 jP are minimal in
{hP | h ∈ F} with respect to inclusions. As F is ∨-closed we have that h1 jP ∩ h1 j ′P = ∅ for j ̸= j ′.
Hence the C∗-algebras Bϑ−1(h1 j ) are orthogonal and thus the embedding

BF1 =

n1∑
⊕

j=1

Bϑ−1(h1 j ) ↪→

n1∑
j=1

Bϑ−1(h1 jP) ⊆ Bϑ−1(F1·P)

is nuclear. For the inductive hypothesis suppose we have shown that the embedding Bϑ−1(F ′) ↪→ Bϑ−1(F ′·P)
is nuclear for

F ′
= {h11, . . . , h1n1, . . . hi1, . . . , hi j }

for some j ∈ {1, . . . , ni }. If j < ni then set h := hi( j+1); if j = ni then set h = h(i+1)1. We will show
that the embedding

Bϑ−1(F ′′) ↪→ Bϑ−1(F ′′·P) for F ′′
:= F ′

∪ {h}

is nuclear. By construction Bϑ−1(F ′) is an ideal in Bϑ−1(F ′′) and Bϑ−1(F ′′) = Bϑ−1(h) + Bϑ−1(F ′); thus

Bϑ−1(F ′′)/Bϑ−1(F ′) ≃
Bϑ−1(h)/(Bϑ−1(h) ∩ Bϑ−1(F ′)).
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Likewise Bϑ−1(F ′·P) is an ideal of Bϑ−1(F ′′·P). From the base case we have nuclearity of the map

Bϑ−1(h) ↪→ Bϑ−1(hP) ⊆ Bϑ−1(F ′′·P).

By applying Lemma 6.9 on the commutative diagram of short exact sequences

0 // Bϑ−1(h)/Bϑ−1(F ′)
//

��

Bϑ−1(h)
//

��

Bϑ−1(h)/(Bϑ−1(h) ∩ Bϑ−1(F ′))
//

��

0

0 // Bϑ−1(F ′·P)
// Bϑ−1(F ′′·P) // Bϑ−1(F ′′·P)/Bϑ−1(F ′·P)

// 0

we get that the right vertical arrow is nuclear, i.e., the map

Bϑ−1(F ′′)/Bϑ−1(F ′) ≃
Bϑ−1(h)/(Bϑ−1(h) ∩ Bϑ−1(F ′))→ Bϑ−1(F ′′·P)/Bϑ−1(F ′·P)

is nuclear. Let (ei )⊆ Bϑ−1(F ′) be a contractive approximate identity for Bϑ−1(F ′·P), and note that

Bϑ−1(F ′′) · ei ⊆ Bϑ−1(F ′′) · Bϑ−1(F ′) = Bϑ−1(F ′).

Using the inductive hypothesis and Lemma 6.10 on the commutative diagram of short exact sequences

0 // Bϑ−1(F ′)
//

��

Bϑ−1(F ′′)
//

��

Bϑ−1(F ′′)/Bϑ−1(F ′)
//

��

0

0 // Bϑ−1(F ′·P) // Bϑ−1(F ′′·P) // Bϑ−1(F ′′·P)/Bϑ−1(F ′·P)
// 0

we derive that the middle vertical arrow is nuclear, as required. This concludes the inductive step. Now
by using induction we derive that Bϑ−1(F) ↪→ Bϑ−1(F ·P) is nuclear, and the proof is complete. □

7. Saturated controlled maps

A product system reparametrization. Let ϑ : (G, P)→ (G,P) be a controlled map between weak right
LCM inclusions and let X be a compactly aligned product system over P with coefficients in A. We can
then define the C∗-correspondence

Yh :=

∑
⊕

p∈ϑ−1(h)

X p for all h ∈ P.

One is tempted to consider the family Y ={Yh}h∈P and associate its C∗-algebras with those of X . However
it is not clear that Y is in general a product system (let alone compactly aligned). Nevertheless this
happens for controlled maps that satisfy one extra condition.

Definition 7.1. Let ϑ : (G, P)→ (G,P) be a controlled map of weak right LCM inclusions. We say that
ϑ is saturated if for any h ∈ P and t ∈ ϑ−1(hP) there exists an s ∈ P with ϑ(s)P = hP and t ∈ s P.

Remark 7.2. In particular, saturated maps satisfy the following property:

(A3) If z ∈ P∗ then there exists an x ∈ P∗ such that ϑ(x)= z.

Indeed, we apply the saturation property for z ∈ P∗ and t = eG ∈ ϑ−1(zP) to obtain an x ∈ P with
eG ∈ x P. Hence we get that P = x P giving that x ∈ P∗.
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The following provides a good supply of saturated controlled maps. Recall that a pair (G, P) is a total
order if G = P−1

∪ P and P−1
∩ P = {eG}. It is clear that total orders, being lattices, form weak right

LCM inclusions.

Proposition 7.3. Let (G, P) be an abelian total order. For n ∈ N ∪ {∞} consider the free product(
∗n

i=1G,∗n
i=1 P

)
of n copies of (G, P). Then the map

ϑ :
(
∗n

i=1G,∗n
i=1 P

)
→ (G, P), (g1)i1(g2)i2 · · · (gk)ik 7→ g1 + g2 + · · · + gk

is a saturated controlled map.

Proof. For condition (A1) of Definition 5.1, if p̄, q̄ ∈ ∗n
i=1 P with

p̄
(
∗n

i=1 P
) ⋂

q̄
(
∗n

i=1 P
)
̸= ∅,

then the freeness construction implies that either p̄ ≤ q̄ or q̄ ≤ p̄.
For condition (A2) of Definition 5.1 suppose that p̄, q̄ have a right LCM and they satisfy ϑ( p̄)= ϑ(q̄).

Without loss of generality assume that r̄ = p̄−1q̄ ∈ ∗n
i=1 P. Then ϑ(r̄) = 0. If r̄ = (r1)i1 · · · (rk)ik then

r1 + · · · + rk = 0 giving that rk ∈ −P ∩ P = {0}. Inductively we get that r1 = · · · = rk = 0 and so p̄ = q̄ .
Next we verify that ϑ is saturated. To this end let

p̄ = (p1)i1(p2)i2 · · · (pk)ik ,

and let h ∈ P with
h ≤ ϑ( p̄)= p1 + p2 + · · · + pk .

Let ℓ ∈ {1, . . . , k} be the smallest index such that h ≤ p1 + p2 + · · · + pℓ. Set

h′
=

{
h if ℓ= 1,
h − (p1 + p2 + · · · + pℓ−1) otherwise,

and notice that h′
∈ P with h′

≤ pℓ. Let

q̄ =

{
(h′)i1 if ℓ= 1,
(p1)i1(p2)i2 · · · (pℓ−1)iℓ−1(h

′)iℓ otherwise.

Then q̄ ≤ p̄ and ϑ(q̄)= h, as desired. □

Example 7.4. A second example comes from types of semidirect products. Let (G, P) and (H, S) be
quasilattice ordered groups and consider an action α : H → Aut(G) such that α|S : S → Aut(P) restricts
to automorphisms of P. Then we can form the semidirect products G ⋊α H and P ⋊α S with respect to
the relations αh(g)h = hg. The condition on α makes P · S a subsemigroup of the semidirect product, and
in [Kakariadis 2020] it is shown that the pair (G ⋊α H, P ⋊α S) is quasilattice ordered. Now suppose that
(G, P) admits an abelian controlled map ϑ1 in (G1,P1) and (H, S) admits an abelian controlled map ϑ2 in
(G2, P2). In order for the semidirect product to inherit the obvious controlled map on (G1 ⊕G2,P1 ⊕P2),
it is necessary that α is ϑ1-invariant in the sense that ϑ1αh = ϑ1 for all h ∈ H . We can then define the
homomorphism

ϑ : (G ⋊α H, P ⋊α S)→ (G1 ⊕G2,P1 ⊕P2) such that ϑ(gh)= (ϑ1(g), ϑ2(h)).
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We claim that if ϑ1 and ϑ2 are saturated, then so is ϑ . Suppose that ϑ(gh)= (ϑ1(g), ϑ2(h)) ≥ (m, ℓ).
Then there are s1, r1 ∈ G and s2, r2 ∈ H such that

g = s1r1, ϑ1(s1)= m and h = s2r2, ϑ(s2)= ℓ.

It follows that ϑ(s1s2)= (m, ℓ) and gh = s1s2α
−1
s2
(r1)r2.

The following examples show that surjectivity is not enough to render a controlled map saturated.

Example 7.5. Take the free quasilattice on two symbols a, b and take ϑ to be its abelianization map.
Then for ab and (0, 1) ∈ Z2 we have that ϑ(ab)= (1, 1)≥ (0, 1). However {b} = ϑ−1((0, 1)) and ab ̸≥ b.
(Although, Proposition 7.3 induces a saturated map on free quasilattices.)

Example 7.6. Consider the Baumslag–Solitar group B(3, 3) = ⟨a, b | a3b = ba3
⟩. Recall that every

element x ∈ B(3, 3) admits a unique normal form

x = a p1bε1a p2 · · · a pk bεk a pk+1 with p1, . . . , pk ∈ {0, 1, 2}, pk+1 ∈ Z, k ∈ Z+.

Let B+(3, 3) be its subsemigroup generated by a, b. If x is in its normal form as above, it follows that

x = a p1bε1a p2 · · · a pk bεk a pk+1 ∈ B+(3, 3) ⇐⇒ ε1, . . . , εk = 1, pk+1 ≥ 0.

By [Spielberg 2012, Theorem 2.11] we have that the pair (B(3, 3), B+(3, 3)) is a quasilattice ordered
group. In [Kakariadis 2020] it is shown that the abelianization gives a surjective controlled map

ϑ : (B(3, 3), B+(3, 3))→ (Z2,Z2
+
), a p1ba p2b · · · a pk ba pk+1 7→ (p1 + · · · + pk+1, k).

However this map is not saturated. Take t = a2b and h = (1, 1) so that

ϑ(t)= (2, 1) ∈ (1, 1)+ Z2
+
.

We have that ϑ−1(1, 1)= {ab, ba} and thus these are the only choices for a possible s with ϑ(s)= (1, 1)
and s ≤ t . However we see that

(ab)−1t = b−1ab /∈ B+(3, 3) and (ba)−1t = a−1b−1a2b /∈ B+(3, 3).

Theorem 7.7. Let ϑ : (G, P)→ (G,P) be a saturated controlled map between weak right LCM inclusions.
Let X be an (injective) compactly aligned product system over P with coefficients in A and let

Yh :=

∑
⊕

p∈ϑ−1(h)

X p for h ∈ P.

Then the collection Y ={Yh}h∈P is an (injective) compactly aligned product system over P with coefficients
in A such that Tλ(X)+ ≃ Tλ(Y )+ with

Tλ(X)≃ Tλ(Y ) and A ×X,λ P ≃ A ×Y,λ P,

by ∗-homomorphisms that preserve the inclusions X p 7→ Yϑ(p) for all p ∈ P. These ∗-isomorphisms
further lift to ∗-isomorphisms

NT (X)≃ NT (Y ) and A ×X P ≃ A ×Y P

that preserve the inclusions X p ↪→ Yϑ(p) for all p ∈ P.
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Proof. Let A act on both the left and right of each Yh with h ∈ P via the usual multiplication of operators.
By using condition (A2) of Definition 5.1 we can equip Yh with the A-valued bilinear map defined by

⟨yh, y′

h⟩ := y∗

h y′

h ∈ A ⊆ Tλ(X) for all yh, y′

h ∈ Yh .

Then each Yh becomes a C∗-correspondence over A. Since kerϕYh =
⋂

p∈ϑ−1(h) kerϕX p , we have that
every Yh is injective when every X p is so.

We now show that Y := {Yh}h∈P is a product system. Since [YhYg] ≃ Yh ⊗A Yg we have to show that

[YhYg] = Yhg for all h, g ∈ P.

As (π, t̄ ) is a Toeplitz representation we have that YhYg ⊆ Yhg for all h, g ∈ P. For the reverse inclusion,
let p ∈ P with ϑ(p)= hg, and we will show that t̄p(X p)∈ [YhYg]. Since ϑ is saturated there are q, q ′

∈ P
such that

p = qq ′ and ϑ(q)P = hP.

We can write ϑ(q)= hz for some z ∈P∗ and let w ∈ P∗ with ϑ(w)= z by condition (A3) of the saturation
property. Since ϑ(q)ϑ(q ′)= ϑ(p)= hg it follows that ϑ(q ′)= z−1g. We thus conclude that

ϑ(qw−1)= h and ϑ(wq ′)= g.

Recall that Xw satisfies [t̄w−1(Xw−1)t̄w(Xw)] = π(A). By taking elementary vectors we get the required

t̄p(X p)= [t̄q(Xq)t̄q ′(Xq ′)] = [t̄q(Xq)π(A)t̄q ′(Xq ′)]

= [t̄q(Xq)t̄w−1(Xw−1)t̄w(Xw)t̄q ′(Xq ′)]

⊆ [t̄qw−1(Xqw−1)t̄wq ′(Xwq ′)] ⊆ [Yϑ(q)ϑ(w−1)Yϑ(w)ϑ(q ′)] = [YhYg].

Next we show that Y is compactly aligned. Let h, h′
∈ P and take p ∈ ϑ−1(h) and q ∈ ϑ−1(h′). If

h ∨ h′
= ∞ then p ∨ q = ∞ as well for all p ∈ ϑ−1(h) and q ∈ ϑ−1(h′), and so

Y ∗

h Yh′ =

∑
p∈ϑ−1(h)
q∈ϑ−1(h′)

t̄p(X p)
∗ t̄q(Xq)= (0).

On the other hand, if h ∨ h′ <∞ and p ∨ q <∞ for p ∈ ϑ−1(h) and q ∈ ϑ−1(h′), then

t̄p(X p)
∗ t̄q(Xq)⊆ [t̄p−1w(X p−1w)t̄q−1w(Xq−1w)

∗
].

Since w= px = qy we have that ϑ(p−1w)= h−1ϑ(w)= (h′)−1ϑ(w)=ϑ(q−1w) and also ϑ(w)= h∨h′.
Hence

Y ∗

h Yh′ =

∑
p∈ϑ−1(h)
q∈ϑ−1(h′)
p∨q<∞

t̄p(X p)
∗ t̄q(Xq)⊆ [Yh−1(h∨h′)Yh′(h∨h′)].

Thus Proposition 4.7 gives that Y is compactly aligned.
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By definition we have that FX ≃ FY (by grouping together summands with the same ϑ-image), and
therefore we have that Tλ(X)≃ Tλ(Y ) and that Tλ(X)+ ≃ Tλ(Y )+. Notice that these identifications are
G-compatible. By applying Proposition 5.9 and Theorem 4.14 we then get

A ×X,λ P ≃ C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(X)
+,G, δ̄G)≃ C∗

env(Tλ(Y )
+,G, δ̄G)≃ A ×Y,λ P.

The second part of the proof is treated likewise. First note that any representation of X lifts to a
representation of Y in a unique way, as every fiber of Y is spanned independently by the corresponding
fibers of X . Applying similar arguments as above for a representation (π, t) in the place of the Fock
representation we see that this correspondence preserves Nica-covariant representations. Hence we get
that NT (X)≃ NT (Y ).

Finally the ∗-isomorphisms A ×X,λ P ≃ A ×Y,λ P gives an injective map

[A ×X P]pq−1 ≃ [A ×X,λ P]pq−1 ↪→ [A ×Y,λ P]ϑ(pq−1) ≃ [A ×Y P]ϑ(pq−1).

Therefore we get a commutative diagram

NT (X) 8
//

qX

��

NT (Y )

qY

��

A ×X P 9
// A ×Y P

where the upper horizontal arrow is a ∗-isomorphism. Since the ideals of strong covariance relations are
induced, it suffices to show that

ker8qY ∩ [NT (X)]eG ⊆ ker qX .

Equivalently it suffices to show that9 is faithful on the G-fixed point algebra defined on A×X P. However
this follows by Corollary 5.8 as 9 is by definition faithful on A. □

Theorem 7.7 gives a very clear picture for the covariance algebras of a product system over a free
product order of the form

(
∗n

i=1G,∗n
i=1 P

)
for an abelian total order (G, P). It is well known that the

Cuntz C∗-algebra On for n ∈ N can be viewed as either the Nica–Cuntz–Pimsner C∗-algebra of the
trivial product system over the free semigroup on n generators or as the Cuntz–Pimsner C∗-algebra of the
C∗-correspondence (Cn,C). Our next result generalizes this fact to arbitrary product systems over the
free semigroup.

Corollary 7.8. Let X be a compactly aligned product system over the free semigroup F+
n = ⟨i1, . . . , in⟩.

Then A ×X F+
n ≃ OY for the C∗-correspondence Y =

∑
⊕

j=1,...,n X i j .

Reversible product systems and total orders. An application of the theorem of Burns and Hale [1972]
asserts that G admits a total order if and only if for every nontrivial finitely generated subgroup H of G
there exists a totally ordered L and a nontrivial homomorphism H → L . If L = Z then the group is called
left indicable. There are plenty of abelian total orders. Examples include R2 with the lexicographical
order and Z2 with the semigroup given by the half-plane defined by any line through the origin with
irrational slope. Conrad’s theorem [1959] asserts that if (G, P) is a total order and G is Archimedean
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then G embeds in R so that P embeds in R+. Here we say that G is Archimedean if whenever eG < x < y,
there exists an n ∈ N such that y < xn. We refer the reader to [Clay and Rolfsen 2016] for an exposition
of these results.

There are not many ways for a total order to be controlled by an abelian total order.

Proposition 7.9. Let (G, P) be a total order and let ϑab : (G, P)→ (Gab, Pab) be the abelianization map.
Then the following are equivalent:

(i) There is a controlled map ϑ : (G, P)→ (G,P) where (G,P) is an abelian total order.

(ii) ϑ−1
ab (0)∩ P = {eG}.

(iii) The abelianization map is a controlled map and (Gab, Pab) is a total order.

If any (and thus all) of the above hold then the abelianization is a saturated controlled map.

Proof. If item (i) holds then ϑ factors through the abelianization. Since ϑ−1(eG)∩ P = {eG} is a controlled
map, we have that ϑ−1

ab (0)∩ P = {eG} as well.
Assume that item (ii) holds, and we will show that (Gab, Pab) is a total order. First we clearly have that

−Pab ∪ Pab = ϑab(P−1
∪ P)= Gab.

Next suppose that −Pab ∩ Pab ̸= {0} so that there are h, g ∈ Pab with h + g = 0. As the abelianization
map is surjective there are p, q ∈ P with pq = eG with ϑ(p) = h and ϑ(q) = g. As (G, P) is a total
order we derive that p = q = eG and thus h = g = 0. Next we show that ϑab satisfies conditions (A1)
and (A2) of Definition 5.1. Let p, q ∈ P. Then either p ≤ q or q ≤ p and condition (A1) follows. For
condition (A2) suppose without loss of generality that p ≤ q with ϑab(p) = ϑab(q). Then q = ps for
s ∈ P ∩ϑ−1

ab (0). Then s = eG and so p = q .
If item (iii) holds then clearly item (i) holds, concluding the equivalences between all items.
For the saturation property let a t ∈ P and an h ∈ Pab such that ϑab(t)= h + h′. Take an s ∈ ϑ−1

ab (h)
since the abelianization map is surjective. Then either s ≤ t or s > t . But if s > t then h = ϑab(s) > ϑab(t)
which is a contradiction. Thus we must have that s ≤ t . □

Remark 7.10. There are exact total orders for which the abelianization map is not controlled. An example
is given by the Klein bottle group

K := ⟨x, y | x−1 yx = y−1
⟩ = ⟨x, y | x = yxy⟩

with the total order induced by the semigroup K+ generated by x, y in K. It is not hard to see that K+

induces a total order on K, being left indicable (or since K is the extension Z⋊Z). Alternatively one
can see that every element in K is written (uniquely) in the form xm yn for m, n ∈ Z and we take cases:
if m, n ≥ 0 then xm yn

∈ K; if m ≥ 1 and n ≤ 0 then we have that xm yn
= xm−1 y−nx ∈ K+; if m = 0

and n ≤ 0 then xm yn
= yn

∈ (K+)−1. By symmetry these cover all cases. We see that ϑab(yxy)= ϑab(x)
and so eK ̸= y2

∈ K+
∩ϑ−1

ab (0). In fact we have that Kab = Z × Z2 and K+

ab = Z+
× Z2 and thus it does

not define a total order as −K+

ab ∩ K+

ab = Z2.
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Definition 7.11. Let (G, P) be a total order and let X be a product system over P with coefficients
in A. We say that X is a reversible product system if every X p is a Hilbert bimodule in A ×X,λ P, i.e., if
A ×X,λ P = C∗(π, t) then tp(X p)tp(X p)

∗
⊆ A for all p ∈ P.

It follows that reversible product systems consist of Hilbert bimodules. The converse holds also for
injective product systems, as in this case every strongly covariant representation is Katsura-covariant
fiberwise.

Proposition 7.12. Let (G, P) be a total order and let X be a product system over P with coefficients in A.
Suppose that every X p is injective. If (π, t) is a strongly covariant representation of X then (π, tp) is a
covariant representation of X p, in the sense of Katsura, for every p ∈ P.

Therefore an injective product system X is reversible if and only if every X p is a Hilbert bimodule.

Proof. Fix p ∈ P and a ∈ A such that ϕp(a)= kp ∈KX p. In view of strong covariance of Proposition 4.9
and Katsura covariance we have to show that

[πF (a)+ψp,F (kp)]X F = 0 for F = {e, p},

where
X F =

⊕
r∈P

Xr Ir−1(r∨F).

Let r ∈ P with r = ps for some s ∈ P. Then for every ξr = ξpξs ∈ Xr and b ∈ Ir−1(r∨F) we have that

πF (a)ξr b = (ϕp(a)ξp)ξsb = (kpξp)ξsb = ψF,p(kp)ξr b.

Now suppose that r < p. Then by construction ψF,p(kp)ξr b = 0 and we have to show that πF (a)ξr b = 0
as well. To this end it suffices to show that

Ir−1(r∨F) := Ir−1 K{r,e}

⋂
Ir−1 K{r,p}

= (0).

Since r < p we have that r /∈ K{r,p} ⊆ pP while p ∈ K{r,p}. Therefore r−1 p ̸= eG and so

Ir−1 K{r,p}
=

⋂
t∈K{r,p}

kerϕr−1t ⊆ kerϕr−1 p = (0),

and the proof is complete. □

In the case of (G, P)= (Z,Z+), the following result was established in [Kakariadis 2013].

Proposition 7.13. Let (G, P) be a total order and let X be a product system over P with coefficients in A.
Then X is a reversible product system if and only if the tensor algebra Tλ(X)+ is Dirichlet in A ×X,λ P.

Proof. Let (π, t) be a faithful representation of A ×X,λ P. Suppose first that X is a reversible product
system so that tp(X p)tp(X p)

∗
⊆ π(A) for all p ∈ P. We will show that

A ×X,λ P = span{ts(Xs)+ tr (Xr )
∗
| s, r ∈ P}.

Let s, r ∈ P. If rs−1
∈ P then we have that

ts(Xs)tr (Xr )
∗
⊆ [ts(Xs)ts(Xs)

∗trs−1(Xrs−1)∗] ⊆ [π(A)trs−1(Xrs−1)∗] = trs−1(Xrs−1)∗.
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If sr−1
∈ P then we have that

ts(Xs)tr (Xr )
∗
⊆ [tsr−1(Xsr−1)tr (Xr )tr (Xr )

∗
] ⊆ [tsr−1(Xsr−1)π(A)] = tsr−1(Xsr−1).

Hence

A ×X,λ P = span{ts(Xs)tr (Xr )
∗
| s, r ∈ P} ⊆ span{ts(Xs)+ tr (Xr )

∗
| s, r ∈ P} ⊆ A ×X,λ P,

and so Tλ(X)+ is Dirichlet in A ×X,λ P.
Conversely, assume that Tλ(X)+ is Dirichlet in A ×X,λ P and let E be the conditional expectation

induced by the coaction of G on A ×X,λ P. Then E(Tλ(X)+)= π(A) and

E(A ×X,λ P)= E(Tλ(X)+ + (Tλ(X)+)∗)= π(A).

Thus for each p ∈ P we have that tp(X p)tp(X p)
∗
⊆ E(A ×X,λ P)= π(A) as desired. □

The next corollary squares with the fact that Popescu’s noncommutative disc algebra is not Dirichlet.
Recall that for abelian coactions the C∗-envelope of a cosystem coincides with the usual C∗-envelope of
the ambient operator algebra.

Corollary 7.14. Let ϑ : (G, P)→ (G,P) be a saturated controlled map between weak right LCM inclu-
sions and suppose that (G,P) is an abelian total order. Let X be an injective product system over P with
coefficients in A. Then Tλ(X)+ is Dirichlet if and only if every strongly covariant representation (π, t)
of X satisfies tp(X p)tq(Xq)

∗
⊆ A whenever ϑ(p)= ϑ(q).

Proof. By Theorem 6.1, and since the controlling pair is abelian, the C∗-envelope of Tλ(X)+ is A ×X P.
For the injective X , let Y be the injective product system over P with coefficients in A constructed
in Theorem 7.7. By construction we see that Yh with h ∈ P is a Hilbert bimodule if and only if
tp(X p)tq(Xq)

∗
⊆ A for all p, q ∈ ϑ−1(h). By applying Remark 2.8, Theorems 6.1 and 7.7, and

Propositions 7.12 and 7.13 we have that the Fock tensor algebra Tλ(X)+ is Dirichlet in A ×X P, if
and only if Tλ(Y )+ is Dirichlet in A ×Y P, if and only if every Yh with h ∈ P is a Hilbert bimodule, if
and only if tp(X p)tq(Xq)

∗
⊆ π(A) whenever ϑ(p)= ϑ(q)= h for all h ∈ P. □

The next theorem shows that, for weak right LCM inclusions that are controlled by total orders in a
saturated way, reversible product systems produce all possible covariance algebras.

Theorem 7.15. Let ϑ : (G, P) → (G,P) be a saturated controlled map between weak right LCM in-
clusions and suppose that (G,P) is a total order. Let X be an (injective) product system over P with
coefficients in A. Then there exists an (injective) reversible product system Z over P with coefficients in a
C∗-algebra B such that

A ⊆ B and X p ⊆ Zϑ(p) for all p ∈ P (7-1)

that satisfies
A ×X P ≃ B ×Z P and A ×X,λ P ≃ B ×Z ,λ P, (7-2)

by ∗-homomorphisms that preserve the inclusions X p ↪→ Zϑ(p) for all p ∈ P.



1480 EVGENIOS T.A. KAKARIADIS, ELIAS G. KATSOULIS, MARCELO LACA AND XIN LI

Proof. By Theorem 7.7 we can assume that (G, P)= (G,P). Let (π, t) be a faithful representation of
A ×X,λ P , and let

B := BP = C∗({ts(Xs)ts(Xs)
∗
| s ∈ P} and Z p := [tp(X p)B] for all p ∈ P\{e}.

The trivial C∗-correspondence structure on A ×X,λ P descends to a C∗-correspondence structure on
each Z p over B. Notice here that since (G, P) is totally ordered we automatically have that the product
system Z = {Z p}p∈P is compactly aligned. Also C∗(B, Z) = C∗(π, t) admits a coaction of G from
A ×X,λ P. Hence by Theorem 4.13 we have that

alg{B, Z p | p ∈ P} ≃ Tλ(Z)+.

By construction
A ×X,λ P = Tλ(Z)+ + (Tλ(Z)+)∗,

thus the cosystem of Tλ(Z)+ over G is Dirichlet in a C∗-cover. This gives at the same time that this
C∗-cover A ×X,λ P is the C∗-envelope of the cosystem Tλ(Z)+ over G, and that Z is reversible by
Proposition 7.13. Theorem 4.14 then concludes that

B ×Z ,λ P ≃ C∗

env(Tλ(Z)
+,G, δ̄G)≃ A ×X,λ P.

For the case of the universal C∗-algebras we proceed as in Theorem 7.7. That is, first we notice that
the ∗-isomorphism between the reduced C∗-algebras implies an embedding of the Fell bundles

[A ×X P]pq−1 ≃ [A ×X,λ P]pq−1 ↪→ [B ×Z ,λ P]pq−1 ≃ [B ×Z P]pq−1

which lifts to a ∗-epimorphism 9 : A ×X P → B ×Z P. Since X ⊆ Z we also have a ∗-epimorphism at
the level of the Nica–Toeplitz–Pimsner algebras and thus the diagram

NT (X) 8
//

qX

��

NT (Z)

qZ

��

A ×X P 9
// B ×Z P

is commutative, and fixes X . Since the ideals of strong covariance relations are induced, it suffices to
show that

ker8qZ ∩ [NT (X)]e ⊆ ker qX .

Equivalently it suffices to show that 9 is faithful on the G-fixed point algebra defined on A ×X P, which
by definition is B. However this follows by the property of A ×X P as 9|A is by construction faithful.

It is left to show that injectivity of X implies injectivity of Z . By Theorem 7.7 we can still assume that
(G, P)= (G,P). To this end let p ∈ P and f ∈ kerϕZ

p . We need to show that f = 0.
As BpP is an ideal in B we have that B = B{s<p} + BpP , and let f1 ∈ B{s<p} and f2 ∈ BpP be such

that f = f1 + f2. Let (ei ) be a contractive approximate identity of ψp(KX p) so that

0 = f ei = f1ei + f2ei .



COUNIVERSALITY AND CONTROLLED MAPS ON PRODUCT SYSTEMS OVER RIGHT LCM SEMIGROUPS 1481

However (ei ) is also a contractive approximate identity for BpP and so

lim
i

f1ei = − lim
λ

f2ei = f2.

By Nica-covariance f1ei ∈ Bp for all i , and so we have that f2 ∈ Bp. Thus we can assume without loss
of generality that f ∈ B{s≤p}. As B{s≤p} is the inductive limit of BF for F = {p1 < p2 < · · ·< pn = p}

we may assume that

f =

n∑
i=1

ψpi (kpi ) with kpi ∈ KX pi and p1 < p2 < · · ·< pn = p.

Recall the representation (πF , tF ) on

X F =

⊕
r∈P

Xr I X
r−1(r∨F),

and we will show that
n∑

i=1

ψF,pi (kpi )|X F = 0.

As (π, t) is strongly covariant this will give that f = 0 by Proposition 4.9. For r ≥ p we have that
f ∈ kerϕZ

p ⊆ kerϕZ
r , and for every ηr ∈ Xr I X

r−1(r∨F) we have that tr (ηr ) ∈ tr (Xr )⊆ Zr . Hence

tr

( n∑
i=1

ir
pi
(kpi )(ηr )

)
=

n∑
i=1

ψpi (kpi )tr (ηr )= f tr (ηr )= 0.

As t is isometric we obtain
n∑

i=1

ψF,pi (kpi )|Xr I X
r−1(r∨F)

=

n∑
i=1

ir
pi
(kpi )= 0, for r ≥ p. (7-3)

On the other hand for r < p we have that r−1 p ̸= eG , and so

I X
r−1(r∨F) ⊆ I X

r−1 K{r,p}
⊆ kerϕX

r−1 p = (0).

Hence trivially
n∑

i=1

ψF,pi (kpi )|Xr I X
r−1(r∨F)

= 0, for r < p. (7-4)

By (7-3) and (7-4) we have that
∑n

i=1 ψpi ,F (kpi )|X F = 0, and the proof is complete. □
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