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RESONANCES FOR SCHRÖDINGER OPERATORS
ON INFINITE CYLINDERS AND OTHER PRODUCTS

T. J. CHRISTIANSEN

We study the resonances of Schrödinger operators on the infinite product X = Rd
× S1, where d is odd,

S1 is the unit circle, and the potential V lies in L∞
c (X). This paper shows that at high energy, resonances

of the Schrödinger operator −1 + V on X = Rd
× S1 which are near the continuous spectrum are

approximated by the resonances of −1 + V0 on X , where the potential V0 is given by averaging V over
the unit circle. These resonances are, in turn, given in terms of the resonances of a Schrödinger operator
on Rd which lie in a bounded set. If the potential is smooth, we obtain improved localization of the
resonances, particularly in the case of simple, rank 1 poles of the corresponding scattering resolvent on Rd .
In that case, we obtain the leading order correction for the location of the corresponding high-energy
resonances. In addition to direct results about the location of resonances, we show that at high energies
away from the resonances, the resolvent of the model operator −1 + V0 on X approximates that of
−1+V on X . If d = 1, in certain cases this implies the existence of an asymptotic expansion of solutions
of the wave equation. Again for the special case of d = 1, we obtain a resonant rigidity type result for the
zero potential among all real-valued smooth potentials.

1. Introduction

We study the Schrödinger operator −1+V on the manifold X = Rd
×S1 with the product metric, where d

is odd, S1 is the unit circle, and V ∈ L∞
c (X). In the special case d = 1, X is the infinite cylinder R × S1.

We show that in the large energy limit, resonances near the continuous spectrum are well approximated
by those of −1+ V0, where V0 is the average of V over S1: V0(x) =

1
2π

∫ 2π

0 V (x, θ) dθ . By a separation
of variables argument, these, in turn, are determined by the low energy resonances of the Schrödinger
operator −

∑d
j=1 ∂2/∂x2

j + V0 on Rd. In the case of smooth potentials V , for simple rank 1 poles of the
(scattering) resolvent of −

∑d
j=0 ∂2/∂x2

j + V0, we find the leading-order corrections to the location of the
corresponding poles of the resolvent of −1+V on X . Among other things, this allows us to prove that no
other smooth real-valued potential on R×S1 has the same resonances as the zero potential. For potentials
with V0 ≡ 0, we show the existence of large resonance-free regions. When d = 1 and V ∈ C∞

c (X; R),
under certain hypotheses on the potential V0 we are able to give an asymptotic expansion of solutions
of the wave equation. For the case of d = 1 we study a simple example of a nontrivial potential V
with V0 ≡ 0 and locate some of the corresponding resonances. Some of these results are reminiscent of
Drouot’s results [2018] for rapidly oscillating potentials on Rd.

MSC2020: primary 58J50, 81U24; secondary 35L05, 35P25.
Keywords: Schrödinger operator, resonance, infinite cylindrical end, scattering theory.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2023.16-7
https://doi.org/10.2140/apde.2023.16.1497
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1498 T. J. CHRISTIANSEN

Let 1 ≤ 0 denote the Laplacian on X = Rd
× S1 with the product metric. For V ∈ L∞

c (X) the
Schrödinger operator −1 + V has continuous spectrum [0, ∞), with multiplicity which increases at
each threshold j2, for j ∈ N0. For Im ζ > 0, set RV (ζ ) = (−1 + V − ζ 2)−1. This (scattering) resolvent
has a meromorphic continuation to Ẑ , the minimal Riemann surface for which τl(ζ )

def
= (ζ 2

− l2)1/2 is a
single-valued analytic function for each l ∈ N0. The resonances are poles of the resolvent RV (ζ ). We
refer to the portion of Ẑ for which Im τl(ζ ) > 0 for all l ∈ N0 as the physical space. In this set RV is a
bounded operator on L2(X), away from a discrete set of points which correspond to (square roots of)
eigenvalues. For l ∈ N0 and ρ > 0, denote by Bl(ρ) the connected component of {ζ ∈ Ẑ : |τl(ζ )| < ρ}

which nontrivially intersects both the physical space and the set {ζ ∈ Ẑ : Re τ0(ζ ) > 0}. Using as the
coordinate τl(ζ ), Bl(ρ) is identified with the disk of radius ρ in the complex plane, centered at the origin,
and this identification is compatible with the complex structure of Ẑ↾Bl (ρ) if ρ <

√
2l − 1. The point

τl(ζ ) = 0 in Bl(ρ) corresponds to the l-th threshold. We study the resonances of −1 + V in Bl(ρ),
or Bl(α log l), as l → ∞. Results of Section 6 show that these are the high-energy resonances “near” the
continuous spectrum which have Re τ0 > 0.

For a function V ∈ L∞
c (X) and m ∈ Z define

Vm(x) =
1

2π

∫ 2π

0
V (x, θ)e−imθ dθ,

so that V (x, θ) =
∑

∞

m=−∞
Vm(x)eimθ. The minimal assumption on a potential V in most of this paper

will be that
V ∈ L∞

c (X) and ∥Vm∥L∞ = O(|m|
−δ) for some δ with 0 < δ ≤

1
2 . (1-1)

Note that this imposes an assumption on δ as well, which we shall include when we invoke hypothesis (1-1).
We use the notation 10 =

∑d
j=1 ∂2/∂x2

j for the Laplacian on Rd,

RV0,0(λ) = (−10 + V0 − λ2)−1, if Im λ > 0 (1-2)

with the same notation for its meromorphic continuation to the complex plane — see Section 3A. The poles
of RV0,0 in C are the resonances of −10 + V0. The multiplicity mV0,0(λ0) of a resonance of −10 + V0

at λ0 is given by the dimension of the range of the singular part of the resolvent at λ0; this is discussed
further in Section 4.

Theorem 1.1. Let X = Rd
× S1, d odd, and let V ∈ L∞

c (X) satisfy ∥Vm∥L∞ = O(|m|
−δ) for some δ

with 0 < δ ≤
1
2 . Suppose λ0 ∈ C, λ0 ̸= 0, is a resonance of −10 + V0 on Rd, of multiplicity mV0,0(λ0).

Let ρ ∈ R, ρ > |λ0|. Then there are C0 > 0, L > 0 so that for l > L , l ∈ N there are exactly 2mV0,0(λ0)

resonances, when counted with multiplicity, of −1 + V in the set

{ζ ∈ Bl(ρ) : |τl(ζ ) − λ0| < C0l−δ/(mV0,0(λ0))}.

Here, and elsewhere in the paper, the apparent “doubling” of the number of poles (when counted with
multiplicity) on X as compared with those on Rd is due to the fact that for l ∈ N, l2 is an eigenvalue
of −d2/dθ2 on S1 of multiplicity two. This can be seen immediately in the simplest case, V ≡ V0, by
separating variables.
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τl

ρ

Figure 1. A schematic showing resonances of −1 + V in Bl(ρ), pictured in the
τl-coordinate. Each red x indicates a single resonance of even multiplicity or a cluster of
resonances. The hatched region indicates the portion of Bl(ρ) which lies in the physical
space. By comparing Figure 2, Section 3B one can see how this fits in the larger picture.

In this paper we refer to any pole of the resolvent as a resonance, including those which correspond to
eigenvalues. The second part of Theorem 1.2, for which V is assumed to be smooth, implies an improved
localization of the resonances for smooth potentials.

The next theorem shows that, other than possible poles near the threshold, the poles as described above
are all the poles in Bl(ρ) for sufficiently large l.

Theorem 1.2. Let X = Rd
× S1, d odd, and suppose V satisfies the hypothesis (1-1). Choose ρ > 0 so

that if λj is a pole of RV0,0(λ), then |λj | ̸= ρ. Set

3ρ = {λj ∈ C : |λj | < ρ and λj is a pole of RV0,0(λ)}.

Let ϵ′ > 0 be so that ϵ′ < min{|λj | : λj ∈ 3ρ, λj ̸= 0}. Then there are C̃ , L > 0 so that for l > L , l ∈ N,
there are no resonances of −1 + V in

{ζ ∈ Bl(ρ) : |τl(ζ )| > ϵ′ and |τl(ζ ) − λj | > C̃l−δ/mV0,0(λj ) for all λj ∈ 3ρ}.

Moreover, if V is smooth for perhaps larger L and C̃ , for l > L there are no resonances in

{ζ ∈ Bl(ρ) : |τl(ζ )| > ϵ′ and |τl(ζ ) − λj | > C̃l−2/(mV0,0(λj )) for all λj ∈ 3ρ}.

In addition, if RV0,0(λ) is analytic in a neighborhood of the origin, then there are no poles in Bl(ϵ
′) for l

sufficiently large.

We comment that smoothness of the potential V is more than is needed for the second part of
Theorem 1.2. It would suffice to have V ∈ Ck(X), for some k sufficiently large. In order to simplify the
proofs, we have not tracked the value of k which is needed.

To help visualize these theorems, we include Figure 1, which is a schematic showing the resonances of
−1+ V in Bl(ρ) for large l, using the τl-coordinate. This schematic is familiar from odd-dimensional
scattering theory; that this should be so is a consequence of Theorems 1.1–1.3. One difference is that
in this diagram, the only portion of Bl(ρ) which lies in the physical space is the portion which is in the
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first quadrant, indicated by hatching. Another is that each x indicates either a single resonance of even
multiplicity, or a cluster of resonances. See Figure 2 to see how Bl fits in a larger context.

For Schrödinger operators on Rd, the behavior of the singularities of the resolvent at the origin is
delicate. For example, notions of multiplicity of a resonance which agree at points away from the origin
may differ at the origin; see [Dyatlov and Zworski 2019, Theorem 2.8]. These same sorts of issues arise
at thresholds in the case under study here, and accounts for the fact that this next theorem, which concerns
resonances very near the thresholds, is weaker than the previous ones.

Theorem 1.3. Let V satisfy (1-1) and suppose the resolvent of −10 + V0 on Rd has a pole at 0 of
order r > 0, and multiplicity mV0,0(0) Then there are C , L > 0 so that −1 + V on X has at least
2mV0,0(0) resonances, when counted with multiplicity, in Bl(Cl−δ/r ) when l > L , l ∈ N. Moreover, there
is an ϵ > 0 so that −1 + V has no poles in Bl(ϵ) \ Bl(Cl−δ/r ) when l > L. If V ∈ C∞

c (X), then this
can be improved to show that there is a C1 > 0 so that −1 + V has no poles in Bl(ϵ) \ Bl(C1l−2/r )

when l > L. Moreover, under the hypothesis (1-1), if r = 1 there are exactly 2mV0,0(0) resonances of
−1 + V in Bl(Cl−δ) for l > L.

Suppose for the moment that V0 is real-valued. In this case, it is well known that if d = 1 the order
of the pole of the resolvent of −d2/dx2

+ V0 at 0 cannot exceed 1, and if it is 1, then mV0,0(0) = 1
[Dyatlov and Zworski 2019, Theorem 2.7]. If d ≥ 3 is odd, then the order of the pole of the resolvent
of −10 + V0 at 0 cannot exceed 2 [Dyatlov and Zworski 2019, Lemma 3.16]. For general V and r , the
order of the pole at 0 can be bounded from above in terms of mV0,0(0), and in the case d = 1, mV0,0(0)

can be bounded above by r .
It is of particular interest to understand poles of the resolvent RV near the physical region. In Section 6

we show that there are large regions near the physical region that contain no resonances. A consequence
of those results is that large energy resonances near the continuous spectrum and having Re τ0(ζ ) > 0 are
contained in regions of the form Bl(ρ), where ρ depends on how near the continuous spectrum we wish
to look. In Section 6 we further justify our focus on the resonances in sets Bl(ρ).

Theorems 1.1–1.3 combined with results of Section 6 yield the following corollary. Here dẐ is a
distance on Ẑ , defined in Section 6. The boundary of the physical region corresponds to the continuous
spectrum. In the corollary, we use {ζ ♭

j } to denote a sequence of points in Ẑ , to distinguish them from ζl

which is used elsewhere to denote a particular mapping from an open subset of the complex plane into Ẑ .

Corollary 1.4. Let V ∈ L∞
c (X; R) satisfy (1-1). Then RV (ζ ) has a sequence {ζ ♭

j }
∞

j=1 of poles satisfying
both |τ0(ζ

♭
j )| → ∞ as j → ∞ and dẐ (ζ ♭

j , physical region) → 0 as j → ∞ if and only if RV0,0(λ) has at
least one pole in i[0, ∞).

In particular, if d = 1, by [Reed and Simon 1978, Theorem XIII.110] if
∫

X V ≤ 0 then RV (ζ ) has
such a sequence of poles approaching the physical space. In contrast, if V0(x) ≥ 0 for all x and V0

is nontrivial, RV (ζ ) does not have such a sequence of poles. Note that for any fixed k0 ∈ N, we have
|τ0(ζ

♭
j )| → ∞ as j → ∞ if and only if |τk0(ζ

♭
j )| → ∞ as j → ∞. We remark that we could prove an

analog of Corollary 1.4 for complex-valued potentials as well.
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If we enlarge the region centered at the threshold l2 with increasing l, we have less fine localization of
the resonances, see Theorem 7.1. However, when V0, the average of the potential, is identically zero, we
can get a larger resonance-free region. The difference in the next result for d = 1 and d ≥ 3 is due to the
fact that the resolvent of −d2/dx2 on R has a pole at the origin, but that of −10 on Rd for d ≥ 3 odd
does not.

Theorem 1.5. Let V ∈ L∞
c (X) satisfy (1-1), and suppose V0 ≡ 0. If d = 1 there are α, c0 > 0 so that for

l ∈ N sufficiently large there are no resonances of −1 + V in the set {ζ ∈ Bl(α log l) : |τl(ζ )| > c0/ lδ}.
If d ≥ 3 is odd, there is an α > 0 so that for l sufficiently large there are no resonances of −1+ V in the
set Bl(α log l).

There is a sense in which this theorem is sharp; see Proposition 12.6 for a computation for the case d = 1
with the potential V (x, θ) = 2χI0(x) cos θ , where χI0 is the characteristic function of the interval [−1, 1].

We can find the leading correction term for high-energy resonances of −1+ V which correspond to
simple resonances of −10 + V0. In the next theorem, ∇0 is the gradient on Rd, so that

∇0 f =

(
∂

∂x1
f,

∂

∂x2
f, . . . ,

∂

∂xd
f
)

.

Theorem 1.6. Let X = Rd
×S1, d odd, V ∈ C∞

c (X), and suppose λ0 ∈ C is a simple pole of the scattering
resolvent RV0,0 of −10 + V0 on Rd, and that the residue of RV0,0 at λ0 has rank 1. Suppose for any
χ ∈ C∞

c (Rd),

χ

(
RV0,0(λ) −

i
λ − λ0

u ⊗ u
)

χ (1-3)

is analytic near λ = λ0. Let ρ > |λ0|. Then there are ϵ, L > 0 so that for l > L there are exactly two
poles of RV (ζ ), when counted with multiplicity, in {ζ ∈ Bl(|λ0| + 1) : |τl(ζ ) − λ0| < ϵ}, and each pole
of RV (ζ ) in this set satisfies

τl(ζ ) = λ0 −
i

4l2

∑
k ̸=0

1
k2

∫
R

(k2V−k Vku2
+ (∇0V−k · ∇0Vk)u2)(x) dx + O(l−3).

We note that the normalization of the singularity in (1-3) is chosen so that if V is real-valued and
λ0 ∈ i[0, ∞), then u is real-valued. There is some further discussion of u at the beginning of Section 10.
Proposition 12.3 shows that the leading correction may be rather different for a nonsmooth potential by
considering the special case of the potential on R × S1 given by V (x, θ) = 2 cos θχI0(x), where χI0 is
the characteristic function of the interval [−1, 1]. As for Theorem 1.2, the proof of Theorem 1.6 only
needs V to be Ck for some k sufficiently large. Since Theorem 1.8 requires smoothness of the potential
only for an application of Theorem 1.6, the same is true for it. Again, we have chosen not to track this
value in the interest of simplifying proofs.

If V0 ∈ L∞
c (Rd

; R) and the operator −10 + V0 on L2(Rd) has a simple negative eigenvalue −β2, then
this negative eigenvalue corresponds to a simple pole of RV0,0 on the positive imaginary axis at i |β|,
and the residue has rank 1. By Theorem 1.1 (or Corollary 1.4), in this case RV has a sequence of poles
approaching the physical space. If V ∈ C∞

c (X; R), the poles approach the physical space very rapidly.
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Theorem 1.7. Suppose V ∈ C∞
c (X; R) and λ0 ∈ C is a simple pole of RV0(λ) with Re λ0 = 0, with residue

of RV0 at λ0 having rank 1. Then there is an ϵ > 0 so that if {ζ ♭
l }

∞

l=L ⊂ Ẑ is a sequence of poles of RV

with ζ ♭
l ∈ Bl(|λ0| + 1) and |τl(ζ

♭
l ) − λ0| < ϵ, then Re τl(ζ

♭
l ) = O(l−N ) for any N. In particular, this

implies that if Im λ0 > 0, then dẐ (ζ ♭
l , physical region) = O(l−N ).

Proposition 12.3 demonstrates the necessity of assuming some regularity of the potential, at least
for d = 1, by studying the resonances very near the l-th threshold for a certain real-valued potential with
a jump singularity. These resonances in Bl(1) arise from the pole of R0,0(λ) at λ0 = 0. They have

|τl(ζ
♭
l )| = O(l−3/2)

and, for a subsequence of l’s tending to infinity,

|Im(τl(ζ
♭
l ))| > 1

10 l−3/2.

This paper was initially motivated by the case d = 1, as R × S1 provides a particularly simple example
of a manifold with infinite cylindrical ends and as such provides a testing ground for studying resonances
for Schrödinger operators on such manifolds. Most of the proofs of the preceding theorems are essentially
identical for any odd dimension of the factor Rd, so we have included the more general results. However,
Theorems 1.8 and 1.9 are particular to the d = 1 case.

As a corollary of Theorems 1.1, 1.3, and 1.6, we get in the case d = 1 a uniqueness-type result for the
zero potential among smooth real-valued potentials.

Theorem 1.8. Let V ∈ C∞
c (R × S1

; R). Suppose for each ρ > 0 there is a sequence

{lj }
∞

j=1 = {lj (ρ)}∞j=1 ⊂ N

with lj → ∞ when j → ∞ so that in Blj (ρ) the resonances of −1 + V and −1 on X = R × S1 are the
same. Then V ≡ 0.

This result is false if we omit the hypothesis that V is real-valued. For example, for V1 ∈ C∞
c (R) set

V (x, θ) = V1(x)eiθ. Then the operators −1+ V and −1 have the same resonances; see [Autin 2011] or
[Christiansen 2004, Section 4]. This example can be easily generalized.

As part of our study of the distribution of resonances, we prove that, in a suitable sense, near the
physical region of Ẑ , RV is well approximated by RV0 away from the poles of RV0 ; see Proposition 5.4
and Lemma 5.5. In the case d = 1, this and results of [Christiansen and Datchev 2022] give a wave
expansion; see Theorem 1.9.

Let X = R×S1, V ∈ C∞
c (X; R), and suppose −1+ V has finitely many eigenvalues µ1, µ2, . . . , µJ ,

repeated with multiplicity, with associated orthonormal eigenfunctions {ηj }, so that (−1+ V )ηj = µjηj .
Let u satisfy

∂2

∂t2 u − 1u + V u = 0,

(u, ut)↾t=0 = ( f1, f2) ∈ C∞

c (X) × C∞

c (X).

(1-4)
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Theorem 1.9. Let X = R × S1 and V, f1, f2 ∈ C∞
c (X), with V real-valued, and suppose −d2/dx2

+ V0

on R has no negative eigenvalues and no resonance at 0. Let u be the solution of (1-4) on [0, ∞) × X.
Then for each k0 ∈ N we can write u(t) = ue(t) + uthr,k0(t) + ur,k0(t), where

ue(t, x, θ) =

∑
µj ∈σp(−1+V )

µj ̸=0

ηj (x, θ)

(
cos((µj )

1/2t)⟨ f1, ηj ⟩ +
sin((µj )

1/2t)
(µj )1/2 ⟨ f2, ηj ⟩

)

+

∑
µj ∈σp(−1+V )

µj =0

ηj (x, θ)(⟨ f1, ηj ⟩ + t⟨ f2, ηj ⟩) (1-5)

and

uthr,k0(t, x, θ) = b0,0,+(x, θ)+

k0−1∑
k=0

t−1/2−k
∞∑
j=1

(ei t j bj,k,+(x, θ)+ e−i t j bj,k,−(x, θ))

for some bj,k,± ∈ ⟨x⟩
1/2+2k+ϵ L2(X). For any χ ∈ C∞

c (X) there is a constant C so that
∞∑
j=1

∥χbj,k,±∥L2(X) < C, k = 0, 1, 2, . . . , k0 − 1

and
∥χur,k0(t)∥L2(X) ≤ Ct−k0 for t sufficiently large.

The assumption that −d2/dx2
+ V0 on R has no negative eigenvalues and no resonance at 0 means,

by Theorem 1.2, that RV has at most finitely many poles on the boundary of the physical space. In
particular, this means at most finitely many eigenvalues of −1+V , so that the sum in ue is finite. Further,
there are at most finitely many poles at thresholds, and this implies via results of [Christiansen and
Datchev 2022] that at most finitely many of the bj,0,± are nonzero.

If −d2/dx2
+V0 on R has one or more negative eigenvalues, it seems plausible that there is an asymptotic

expansion of solutions of the wave equation on compact sets. Since in this case by Theorem 1.7 the
resolvent RV may have a sequence of poles rapidly approaching, but not lying in, the continuous spectrum,
such an expansion would need to take these into account and is more complicated — see for example
[Tang and Zworski 2000] for an expansion in a Euclidean scattering setting with resonances approaching
the continuous spectrum. In our setting proving the existence of such an expansion may use techniques
similar to those of [Christiansen and Datchev 2022] but does not follow directly from the results of that
work. Proving this is outside the scope of this paper.

In this paper we have, for simplicity, limited ourselves to the case of Schrödinger operators on Rd
× S.

However, many of our results for L∞ potentials hold as well for Schrödinger operators with Dirichlet or
Neumann boundary conditions on Rd−1

× (0, ∞) × S or on Rd
× (0, π).

1A. Relation to previous work. This paper was inspired in part by two different sets of papers. The
first are papers which study eigenvalues and resonances of Schrödinger operators on Rd with rapidly
oscillating potentials, and includes [Borisov 2006; Borisov and Gadylshin 2006; Duchêne and Weinstein
2011; Duchêne et al. 2014; 2015; Dimassi 2016; Drouot 2018]. Of these the most closely related to this
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paper is that of Drouot [2018], which studies the distribution of resonances of Schrödinger operators
−10 + Vϵ on Rd with d odd. Here

Vϵ(x) = V0(x) +

∑
k∈Zd,k ̸=0

Vk(x)eik·x/ϵ, x ∈ Rd.

Drouot shows in quantitative ways that in the limit ϵ ↓ 0, resonances of −10 + Vϵ near the continuous
spectrum are well approximated by those of −10 + V0. In addition, he proves some refinements related,
for example, to the leading order correction of the positions of the resonances. Theorems 1.1, 1.2, 1.3, 1.5,
and 1.6, as well as some computations in Section 12, are inspired by results in [Drouot 2018]. However,
the proofs are quite different. In part, this is because the different setting requires different techniques.
Additionally, Drouot’s results come mainly from studying regularized determinants. While this has the
potential of producing in some instances more refined results than we obtain here, it requires a substantial
amount of technical work. We have chosen instead to mostly avoid determinants, or to work only with
determinants of operators of the type I + F, where F is finite rank. Instead, we use an operator Rouché
theorem of Gohberg and Sigal [1971]. In some places this may allow for sharper results than could be
obtained by using a regularized determinant. We note in addition that in the setting of [Drouot 2018], the
resonances lie on the complex plane, while for us, the resonances lie on a Riemann surface which is a
countable but infinite cover of the complex plane, with infinitely many branch points. This means that
some of the techniques used in [Drouot 2018] cannot be applied here.

A less direct source of inspiration is work done on the distribution of eigenvalues of the Schrödinger
operator −1Sn + W on the sphere Sn (and certain other compact manifolds), n ≥ 2; see for example
[Weinstein 1977; Widom 1979]. In this setting, eigenvalues of the Schrödinger operator occur in bands.
Roughly speaking, these authors show that a suitable average of the potential W can be used to obtain
information about the distribution of high-energy eigenvalues of the Schrödinger operator within these
bands. This average is over closed geodesics, rather than over all of Sn. Of course, our function V0(x) is
the average of the potential V over the cross section of S1, the unique closed geodesic on S1.

This paper was originally motivated by the d = 1 case, which gives X = R × S1, a manifold with an
infinite cylindrical end. The spectral and scattering theory of manifolds with infinite cylindrical ends
has been studied in, for example, [Goldstein 1974; Guillopé 1989; Melrose 1993]. There is a large
literature studying the existence of eigenvalues and, in certain settings, the locations of resonances for
such manifolds and the related problems of waveguides which have a “one-dimensional infinity” as our
d = 1 case does; see, e.g., [Levitin and Marletta 2008] or the monograph [Exner and Kovařík 2015]. This
monograph also includes some results for manifolds with “higher-dimensional infinity”. Many of these
results focus on low-energy eigenvalues or resonances. We mention the papers [Christiansen 2002; 2004;
Christiansen and Datchev 2021; Christiansen and Zworski 1995; Parnovski 1995; Edward 2002] which
are more directly connected with high-energy behavior.

1B. Comments regarding other product manifolds. This paper studies only Schrödinger operators on
Rd

× S1, where d is odd. Here we comment on why we require that d be odd and on the choice of S1 for
the second factor.
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For Euclidean scattering, e.g., for the Schrödinger operator −1Rd + VRd on Rd with VRd ∈ L∞
c (Rd),

the space to which the resolvent continues is determined by the dimension: for odd d the meromorphic
continuation is to the complex plane, and for even d the meromorphic continuation is to 3, the logarithmic
cover of C \ {0}. This means that certain questions related to the distribution of resonances are more
difficult in even dimensional Euclidean scattering than in odd dimensional Euclidean scattering. For
the problem we consider here, the Riemann surface on which the resonances live is a bit involved to
describe when d is odd; see Section 3B. The Riemann surface when d is even is much more complicated,
requiring as its building block 3 rather than C. It is, however, clear that some of our results, appropriately
interpreted, hold if d is even as long as we stay away from thresholds. In the interest of clarity we do not
pursue this here.

Next we turn to the choice of the factor S1. There are three things that make this an especially nice
choice:

(1) The spacing between the distinct eigenvalues grows as the eigenvalues grow.

(2) Upon averaging in S1, we get a model operator that we understand fairly well.

(3) There is a choice of eigenfunctions of the Laplacian on S1 so that a product of two eigenfunctions is
again an eigenfunction: ei jθeikθ

= ei( j+k)θ.

Not all of our results require this last property. In view of [Weinstein 1977; Widom 1979], it would be
natural to think of replacing S1 with Sm. Of course, the spacing of distinct eigenvalues of the Laplacian
on Sm is similar to that for S1. However, when using a factor Sm with m > 1, obtaining a model operator
is much more complicated, and it seems any results for general potentials would likely be substantially
weaker.

1C. Ideas from the proofs. Our starting point for the study of resonances of −1+ V is an identification
of the resonances with the points ζ for which the operator I + (V − V0)RV0(ζ )χ has nontrivial null
space. Here RW (ζ ) is the meromorphic continuation of the resolvent of −1 + W, and χ ∈ L∞

c (X)

satisfies χV = V and is, for convenience, chosen independent of θ . By separating variables, we can
understand RV0 in terms of the resolvent of −

∑d
j=1∂

2/∂x2
j + V0(x) on Rd.

We use two well-known and related properties of the resolvent of −
∑d

j=1∂
2/∂x2

j + V0(x) on Rd. One
is the estimate ∥∥∥∥χ̃

(
−

d∑
j=1

∂2/∂x2
j + V0 − (λ + i0)2

)−1

χ̃

∥∥∥∥ = O(|λ|
−1)

as λ → ∞ for λ ∈ R and χ̃ ∈ L∞
c (Rd). The second is the existence of a logarithmic resonance-free

neighborhood of the real axis.
An immediate consequence of this second fact and the fact that the distance between thresholds of our

operator −1+ V on X increases at high energy is that if V = V0, at high energy near the thresholds the
resonances of −1+ V0 on X are determined by low-energy resonances of −

∑d
j=1 ∂2/∂x2

j + V0 on Rd.
Moreover, using these facts and an operator Rouché theorem of Gohberg and Sigal [1971], we are able
to show that at high energy near the thresholds the zeros of I + (V − V0)RV0χ are approximated by the
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poles of χ RV0χ . These ideas underlie the proofs of the L∞ results of Theorems 1.1–1.3 and 1.5. They
are also central to the proofs of the smooth versions of these results and of Theorem 1.6, although these
proofs require some additional study of the resolvent of −1 + V0 when V0 is smooth.

1D. Organization. In Section 3 we recall some results from Euclidean scattering and show that the
resolvent of −1 + V on X has a meromorphic continuation to Ẑ . (We note that this latter is known;
see Section 3 for references.) We define the multiplicity of a pole of the resolvent, and give several
useful identities involving it in Section 4. In addition, this section introduces some notation and results
related to the operator Rouché theorem of Gohberg and Sigal [1971]. With these preliminaries we prove
Theorems 1.1 and 1.2 in the case of an L∞ potential V , using results from [Gohberg and Sigal 1971].
Section 6 contains more discussion of the Riemann surface Ẑ and shows the existence of resonance-free
regions which are, at high energy, near the physical region and away from thresholds. This provides the
missing pieces of the proof of Corollary 1.4. Combining these with the resolvent estimates of Section 5
and results of [Christiansen and Datchev 2022] proves Theorem 1.9.

Section 8 contains preliminary computations which are needed to refine our results for smooth potentials.
The smooth case of Theorem 1.2 is proved with techniques similar to that of the L∞ result, but using in
addition results of Section 8.

In Section 10 we prove Theorems 1.6 and 1.7. We do this using Fredholm determinants, but determinants
of the form det(I + F), where F is a finite-rank operator. Theorem 1.8 follows rather directly from the
earlier results. Finally, in Section 12, in the case d = 1 we give approximations of some of the high-energy
resonances for a particularly simple potential which has V0 ≡ 0 and which is not smooth.

2. Notation and conventions

On X = Rd
× S1 we use the coordinates (x, θ) or (x ′, θ ′), with x, x ′

∈ Rd and θ, θ ′
∈ [0, 2π).

Throughout the paper, V ∈ L∞
c (X) and l ∈ N0, and the dimension d of Rd is odd. We use C to stand

for a positive constant, the value of which may change without comment.
Suppose A and B are linear operators on domains in L2(Rd) and L2(S1), respectively, and are given

by

(A f )(x) =

∫
Rd

A(x, x ′) f (x ′) dx ′ and (Bg)(θ) =

∫ 2π

0
B(θ, θ ′)g(θ ′) dθ.

Then A and B give rise to linear operators on domains in L2(X), which we again denote by A and B,
and which are given by

(Ah)(x, θ) =

∫
Rd

A(x, x ′)h(x ′, θ) dx ′ and (Bh)(x, θ) =

∫
Rd

B(θ, θ ′)h(x, θ ′) dθ ′.

For f, g ∈ L2(Rd), the operator f ⊗ g : L2(Rd) → L2(Rd) is defined via

(( f ⊗ g)h)(x) = f (x)

∫
Rd

g(x ′)h(x ′) dx ′.

If f, g ∈ L2(X), the operator f ⊗ g on L2(X) is defined analogously.
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We list some repeatedly used notation for the convenience of the reader:

• The Laplacians on Rd and X are given, respectively, by

10 =

d∑
j=1

∂2

∂x2
j

and 1 =

d∑
j=1

∂2

∂x2
j

+
∂2

∂θ2 .

• Vm(x) =
1

2π

∫ 2π

0 V (x, θ)e−imθ dθ for m ∈ Z.

• V #
= V #(x, θ) = V (x, θ)− V0(x).

• Bl(ρ) and Dl(λ0, ρ) are open sets in Ẑ , defined in Sections 1 and 5, respectively.

• RV is the (scattering) resolvent of −1 + V on X ; see Section 3B.

• RV0,0 is the (scattering) resolvent of −10 + V0 on Rd ; see Section 3.

• mV (ζ0) is the multiplicity of ζ0 ∈ Ẑ as a pole of RV ; see (4-1).

• mV0,0(λ0) is the multiplicity of λ0 ∈ C as a pole of RV0,0; see (4-2).

• ζl : {z ∈ C : |z| <
√

2l − 1} → Bl(
√

2l − 1) ⊂ Ẑ is the (local) inverse of

Bl(
√

2l − 1) ∋ ζ 7→ τl(ζ ) ∈ {z ∈ C : |z| <
√

2l − 1} ⊂ C.

3. Odd-dimensional Euclidean scattering and continuation of the resolvent

We begin by fixing notation and recalling some well-known facts from Euclidean scattering theory. We
then use these to give a self-contained proof that the resolvent of −1 + V on X has a meromorphic
continuation to Ẑ .

3A. The Euclidean resolvent. Let V0 ∈ L∞
c (Rd), d odd, and set

RV0,0(λ) = (−10 + V0 − λ2)−1
: L2(Rd) → L2(Rd)

when Im λ > 0. The 0 in the second place in the subscript is to help us think of this as a model operator,
as we shall see. We shall later use the explicit expression for the resolvent as an integral when d = 1,
f ∈ L2(R), and Im λ > 0:

(R0,0(λ) f )(x) =
i

2λ

∫
eiλ|x−x ′

| f (x ′) dx ′ for d = 1. (3-1)

From this we can see immediately that if χ ∈ L∞
c (R), then χ R0,0(λ)χ has a meromorphic continuation

to C \ {0}. The same is true when d ≥ 3 is odd: if χ ∈ L∞
c (Rd), then χ R0,0(λ)χ has an analytic

continuation to the complex plane, see [Dyatlov and Zworski 2019, Theorem 3.3]. In higher dimensions,
the Schwartz kernel is given in terms of a Hankel function. It is well known, see [Dyatlov and Zworski 2019,
Theorem 3.8], that if V0, χ ∈ L∞

c (Rd), then χ RV0,0(λ)χ has a meromorphic continuation to the complex
plane. Alternatively, restricting the domain and enlarging the range, RV0,0(λ) : L2

c(R
d) → H 2

loc(R
d) has a

meromorphic continuation to C.
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The following lemma is well known, but we include it for completeness, as it is crucial for our
arguments.

Lemma 3.1. Let V0, χ ∈ L∞
c (Rd). Then there are constants C0, C1 > 0 so that χ RV0,0(λ)χ is analytic in

{λ ∈ C : | Re λ| > C0, Im λ > −C1 log(1 + | Re λ|)}. Moreover, in this region ∥χ RV0,0(λ)χ∥ = O(|λ|
−1).

Proof. Without loss of generality, we may assume χV0 = V0. Then

χ RV0,0(λ)χ = χ R0,0(λ)χ(I + V0 R0,0(λ)χ)−1.

Since from (3-1) when d = 1 or [Dyatlov and Zworski 2019, Theorem 3.1] when d ≥ 3, there is a C > 0
so that

∥V R0,0(λ)χ∥ ≤ CeC(Im λ)−/|λ|,

where (Im λ)− = max(0, − Im λ); the lemma follows immediately. □

3B. The resolvent of −1 + V on X and the Riemann surface Ẑ. Recall that when d = 1, X is a
manifold with infinite cylindrical ends. For a manifold with infinite cylindrical ends, the space to which
the resolvent of a Schrödinger operator continues is determined by the distinct eigenvalues of the Laplacian
on the cross-section of the end(s). Here that means { j2

}j∈N0 , since this is the set of (distinct) eigenvalues
of −d2/dθ2 on S1. As we show below, the resolvent for −1 + V on Rd

× S1 has a meromorphic
continuation to the same space as that of the resolvent of −1 + V on R × S1, provided d is odd.

For j ∈ N0 and ζ ∈ C, Im ζ > 0, set

τj (ζ )
def
= (ζ 2

− j2)1/2

with Im τj (ζ ) > 0. Set τ− j (ζ ) = τj (ζ ) if j ∈ N.
The Riemann surface Ẑ is defined to be the minimal Riemann surface on which, for each j ∈ N0, τj is a

single-valued analytic function on Ẑ . We briefly describe its construction and some of its properties. Note
that τ0(ζ ) = ζ for ζ in the upper half-plane, and this has, of course, an analytic continuation to C. Now
τ1(ζ ) = τ−1(ζ ) is an analytic function of ζ ∈ C \ ((−∞, 1] ∪ [1, ∞)), and there is a minimal Riemann
surface Ẑ1 so that τ1 extends analytically to Ẑ1. This is a double cover of C, ramified at the points ±1.
This process can be repeated for each j ∈ N, resulting in a minimal Riemann surface Ẑ on which τj

is analytic for each j ∈ N0. We define a projection p : Ẑ → C as follows. For ζ in the physical space,
identified with the upper half-plane, p(ζ ) = ζ , and p is in general the analytic continuation of this function.
Then Ẑ has infinitely many ramification points which project under p to j ∈ Z \ {0}. We call the set
{ζ ∈ Ẑ : Im τj (ζ ) > 0 for all j ∈ N0} the physical space, or physical region. For further discussion of this
Riemann surface; see [Melrose 1993, Section 6.6].

We shall say that a point ζ0 ∈ Ẑ corresponds to a threshold if τ0(ζ0) ∈ Z. Note that with this definition,
all the ramification points of Ẑ correspond to thresholds. In addition, the set of points corresponding to
thresholds includes those points projecting to 0. These might naturally also be considered ramification
points of Ẑ , as in some sense by choosing ζ 2 to originally be our spectral parameter we have already
made the cuts corresponding to the zero threshold.
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In order to separate variables below, we introduce the orthogonal projections Pk : L2(X) → L2(X)

defined for k ∈ Z by

(Pk f )(x, θ) =
1

2π

∫ 2π

0
f (x, θ ′)(eik(θ−θ ′)

+ e−ik(θ−θ ′)) dθ ′ if k ∈ N,

(P0 f )(x, θ) =
1

2π

∫ 2π

0
f (x, θ ′) dθ ′.

We shall use these throughout the paper.
Let V ∈ L∞

c (X). For ζ ∈ C with Im ζ > 0, set RV (ζ ) = (−1+ V − ζ 2)−1. Consider first the special
case where V ∈ L∞

c (X) is independent of θ . Then V = V0, and we can think of V0 as an element
of L∞

c (X) or of L∞
c (Rd). In this special case we can separate variables to obtain

RV0(ζ ) =

∞∑
k=0

RV0,0(τk(ζ ))Pk . (3-2)

The explicit expression (3-2) for RV0 using separation of variables shows that if χ ∈ L∞
c (X), then χ RV0χ

and RV0 : L2
c(X) → H 2

loc(X) have meromorphic continuations to Ẑ . In fact, the same is true for χ RV χ

and RV for general V ∈ L∞
c (X). This is well known, at least when d = 1, see [Goldstein 1974; Guillopé

1989; Melrose 1993], though we sketch a proof below, valid for all odd d .
If ζ ∈ C, Im ζ > 0, then

(−1 + V − ζ 2)R0(ζ ) = I + V R0(ζ ).

Multiplying by a function χ ∈ L∞
c (X) with χV = V ,

(−1 + V − ζ 2)R0(ζ )χ = χ(I + V R0(ζ )χ),

implying that
χ R0(ζ )χ = χ RV (ζ )χ(I + V R0(ζ )χ) (3-3)

or
χ RV (ζ )χ = χ R0(ζ )χ(I + V R0(ζ )χ)−1. (3-4)

Using I − V R0(ζ )χ(I + V R0(ζ )χ)−1
= (I + V R0(ζ )χ)−1 and (3-4) yields

(I + V R0(ζ )χ)−1
= I − V RV (ζ )χ; (3-5)

compare [Dyatlov and Zworski 2019, (2.2.15)–(2.2.16)]. Likewise, writing

V # def
= V − V0, (3-6)

we find, making the additional hypothesis that χV #
= V #,

χ RV0(ζ )χ = χ RV (ζ )χ(I + V # RV0(ζ )χ) and (I + V # RV0(ζ )χ)−1
= I − V # RV (ζ )χ. (3-7)

Each of these is helpful. Since V R0(ζ )χ : L2(X) → L2(X) is compact and has a meromorphic extension
to Ẑ , and I + V R0(ζ )χ is invertible for ζ in the physical space with Im ζ sufficiently large, meromorphic
Fredholm theory ensures that (I +V R0(ζ )χ)−1 is a meromorphic operator-valued function on Ẑ , and each
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τl

ρ
(l − 1)2 l2 (l + 1)2

w = τ 2
0

ρ2

branch
cut

branch
cut

branch
cut

Figure 2. On the left, Bl(ρ) in the τl-coordinate; on the right, a portion of Bl(ρ) in the
w= (τ0(ζ ))2-coordinate for larger context. In the w diagram, (−1+V −w)−1 is bounded
in the upper half-plane and the red dots on the horizontal axis indicate thresholds. The
hatching denotes the portion of Bl(ρ) in the physical region; the shaded region indicates
the rest which is visible in the w plane diagram.

of (3-3)–(3-5) and (3-7) holds on all of Ẑ . Moreover, writing I + V R0 = (I + V R0(I − χ))(I + V R0χ)

and noting that (I + V R0(I − χ))−1
= I − V R0(I − χ), this shows that

RV (ζ ) = R0(ζ )(I + V R0(ζ )χ))−1(I − V R0(ζ )(I − χ)) : L2
c(X) → H 2

loc(X)

has a meromorphic continuation to Ẑ .
We note from (3-2) that RV0 is bounded on L2(X) when ζ is in the physical space and is away from a

discrete set of poles (corresponding to eigenvalues). The same is true of RV .
Throughout this paper we shall mainly work with subsets of Bl(

√
2l − 1)⊂ Ẑ , for l ∈N. We recall Bl(ρ)

is defined to be the connected component of {ζ ∈ Ẑ : |τl(ζ )| < ρ} which has nonempty intersection with
both the physical space and the portion of Ẑ with Re τ0(ζ ) > 0. The choice of

√
2l − 1 in Bl(

√
2l − 1) is

made because then (for l ≥ 1) Bl(
√

2l − 1) contains only a single point of Ẑ corresponding to a threshold,
the one associated with the eigenvalue l2 of −d2/dθ2 on S1. If ϵ > 0, then z = τl(ζ ) gives the complex
structure of Ẑ↾Bl (

√
2l−1−ϵ), and Bl(

√
2l − 1 − ϵ) is naturally identified with a disk BC(

√
2l − 1 − ϵ) of

radius
√

2l − 1 − ϵ in C, centered at the origin. In this coordinate z, we have that z = 0 corresponds to
the threshold l2 and the intersection of BC(

√
2l − 1 − ϵ) with the first quadrant corresponds to a region

in physical space, and so has Im τk > 0 for all k ∈ N0. If z lies in the intersection of BC(
√

2l − 1 − ϵ)

with the fourth quadrant, then Im τk(ζ(z)) < 0 for 0 ≤ k ≤ l and Im τk(ζ(z)) > 0 for k > l. On the other
hand, if z lies in the intersection of BC(

√
2l − 1 − ϵ) with the second quadrant, then Im τk(ζ(z)) < 0

for 0 ≤ k ≤ l − 1 and Im τk(ζ(z)) > 0 for k ≥ l. Figure 2 shows a schematic of Bl(ρ) and, for context,
the portion of Bl(ρ) which is visible in the w = (τ0(ζ ))2 plane. We note that while we have used the
spectral parameter ζ 2 in the definition of RV (ζ ) to be consistent with the usual odd-dimensional Euclidean
scattering resolvent, the diagram on the right in Figure 2 uses as spectral parameter w = (τ0(ζ ))2 to make
a more easily digested diagram. To put the diagram in context, think of (−1 + V − w)−1 as having
meromorphic continuation from the upper half-plane to

{
w ∈ C \

(⋃
∞

j=0( j2
+ i(−∞, 0])

)}
(which can,

of course, be identified with a subset of Ẑ ).
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On the open set Bl(
√

2l − 1 − ϵ), z = τl(ζ ) is a coordinate compatible with the complex structure
of Ẑ . Thus it is natural to use τl as a local coordinate. We write

ζl : {z ∈ C : |z| <
√

2l − 1 − ϵ} → Bl(
√

2l − 1 − ϵ) ⊂ Ẑ

as the function satisfying
ζl(τl(ζ )) = ζ for all ζ ∈ Bl(

√
2l − 1 − ϵ).

We note that if ζ ∈ Bl(
√

2l − 1 − ϵ), then Re τj (ζ ) > 0 if 0 ≤ j < l, and Im τj (ζ ) > 0 if j > l.
The next lemma follows easily from (3-2) and Lemma 3.1, but is fundamental to many of the results

of this paper.

Lemma 3.2. Let V0 ∈ L∞
c (R), α > 0, and χ ∈ L∞

c (X). Then for l sufficiently large, uniformly for
ζ ∈ Bl(α log l), we have ∥χ(I −Pl)RV0(ζ )χ∥ = O(l−1/2).

Proof. Set τl = z and |z| < α log l. Then using the identity

τ 2
k = τ 2

l + l2
− k2,

for l sufficiently large, |τk(ζl(z))| >
√

l for k ∈ N0, k ̸= l. Moreover, Im τk(ζl(z)) > 0 if k > l, and
|Im τk(ζl(z))| = O(1) if k < l. Then the lemma follows from Lemma 3.1 and the representation of RV0,0

given by (3-2). □

4. Multiplicities of poles and results of [Gohberg and Sigal 1971]

For an operator A depending meromorphically on ζ ∈ C or ζ ∈ Ẑ , let 4(A, ζ0) denote the principal part
of the Laurent expansion of A at ζ0. For V ∈ L∞

c (X) and ζ0 ∈ Ẑ , define

mV (ζ0)
def
= rank 4(RV , ζ0)(L2

c(X)). (4-1)

Suppose χ ∈ L∞
c (X) satisfies χV = V (and, if V ≡ 0, χ is nontrivial). Then it follows from an expansion

of RV at its singularities as in [Dyatlov and Zworski 2019, Theorems 2.5, 2.7, 3.9, 3.17] and a unique
continuation result, e.g., [Jerison and Kenig 1985, Remark 6.7], that mV (ζ0) = rank 4(χ RV χ, ζ0). Note
that if RV is analytic at ζ0, then mV (ζ0) = 0.

If V0 ∈ L∞
c (Rd) and λ0 ∈ C we define

mV0,0(λ0)
def
= rank 4(RV0,0, λ0)(L2

c(R
d)). (4-2)

Again, the second 0 in the subscript is meant to help us think of this as corresponding to a model. As for mV ,
if χ ∈ L∞

c (R) satisfies χV = V (and χ is nontrivial if V0 ≡ 0), then mV0,0(λ0) = rank 4(χ RV0,0χ, λ0).
We recall some definitions and results of [Gohberg and Sigal 1971], adapted to our setting.
Let A be a bounded linear operator on a complex Hilbert space H, depending meromorphically on

z ∈�⊂ C, where � is a domain. Near a point z0 ∈�, we have A(z)=
∑

∞

j=−n(z−z0)
j Aj . If the operators

A−1, . . . , A−n are finite rank, then we say A is finitely meromorphic at z0. If A is finitely meromorphic
at each z0 ∈ �, then A is finitely meromorphic on �. Suppose that A is a compact operator on H, A is
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finitely meromorphic on �, and I + A(z1) is invertible for some z1 ∈ �. Then by the meromorphic
Fredholm theorem, (I + A(z))−1 is finitely meromorphic on �.

Suppose A is a finitely meromorphic operator on a domain �, with (I + A)−1 also finitely meromorphic
on �. Below we denote the derivative of A with respect to z by Ȧ. Then for z0 ∈ �, define

M(I + A, z0)
def
=

1
2π i

tr
∫

γz0

Ȧ(z)(I + A(z))−1 dz,

where γz0 is a positively oriented circle, centered at z0 with radius ϵ. Here we choose ϵ small enough that
{|z − z0| ≤ ϵ} ⊂ � and neither A nor (I + A)−1 has poles in the set {z : 0 < |z − z0| ≤ ϵ}.

Our definition of finitely meromorphic is local, so it makes sense on domains in Ẑ as well, using a
local coordinate compatible with the complex structure of Ẑ . Likewise, we can define M(I + A, ζ0) for
such operators. (This requires the choice of a circle small enough that it has in its interior at most one
ramification point of Ẑ .)

We will say the linear operator A on the Hilbert space H satisfies hypotheses (H1) on a domain � ⊂ C

if A is a finitely meromorphic, compact operator defined on �, and I + A is invertible for at least one
point in � and hence has a finitely meromorphic inverse in �.

The following lemma is a direct consequence of [Gohberg and Sigal 1971, Proposition 5].

Lemma 4.1 [Gohberg and Sigal 1971, Proposition 5]. Suppose A, B : H → H satisfy hypotheses (H1),
and suppose B and (I + B)−1 are analytic on �. Then for z0 ∈ �,

M(I + A, z0) = M((I + A)(I + B), z0).

Let T : L2(X) → L2(X) be a bounded linear operator. We shall repeatedly make use of the straightfor-
ward identities

I + TPl = (I +Pl TPl)(I + (I −Pl)TPl) and (I + (I −Pl)TPl)
−1

= I − (I −Pl)TPl . (4-3)

Lemma 4.2. Let A : L2(X) → L2(X) satisfy hypotheses (H1) on a domain �. Then for z0 ∈ �,

M(I + APl, z0) = M(I +Pl APl, z0).

Proof. Using (4-3) implies that

M(I + APl, z0)=
1

2π i
tr

∫
γz0

Ȧ(z)Pl(I + A(z)Pl)
−1 dz =

1
2π i

tr
∫

γz0

Ȧ(z)Pl(I +Pl A(z)Pl)
−1 dz, (4-4)

where γz0 is a small circle centered at z0 as in the definition of M(I + A, z0).
Because Pl is a projection, using the cyclicity of the trace, tr(BPl) = tr(Pl BPl) for a trace class

operator B : L2(X) → L2(X). Using this in (4-4) gives

M(I + APl, z0) =
1

2π i
tr

∫
γz0

Pl Ȧ(z)Pl(I +Pl A(z)Pl)
−1 dz = M(I +Pl APl, z0). □

The following proposition is a variant of a well-known result in the study of resonances of Schrödinger
operators on Rd ; compare, e.g., [Dyatlov and Zworski 2019, Theorem 3.15].
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Proposition 4.3. Suppose V ∈ L∞
c (X) is nontrivial, and let χ ∈ L∞

c (X) satisfy χV = V. Then the
operator RV (ζ ) has a pole at ζ0 ∈ Ẑ if and only if the operator I + V R0(ζ )χ has nontrivial null space
at ζ0. Moreover, if ζ0 does not correspond to a threshold, then

mV (ζ0) = M(I + V R0χ, ζ0).

Proof. A proof follows by essentially the same method as [Dyatlov and Zworski 2019, Theorem 3.15]. □

We recall the notation V #
= V − V0. Another useful identity is the following.

Lemma 4.4. Let χ ∈ L∞
c (X) satisfy χV = V and χV0 = V0. Then for ζ0 ∈ Ẑ so that ζ0 does not

correspond to a threshold, we have

mV (ζ0) = M(I + V # RV0χ, ζ0) + mV0(ζ0).

Proof. We first note that

I + V R0χ = (I + V # R0χ(I + V0 R0χ)−1)(I + V0 R0χ) = (I + V # RV0χ)(I + V0 R0χ). (4-5)

Thus using Proposition 4.3 and [Gohberg and Sigal 1971, Theorem 5.2] gives

mV (ζ0) = M(I + V R0χ, ζ0) = M(I + V # RV0χ, ζ0) + M(I + V0 R0χ, ζ0)

= M(I + V # RV0χ, ζ0) + mV0(ζ0). □

Lemma 4.5. Suppose V, χ ∈ L∞
c (X), with χV = V , and χ is independent of θ . Let α > 0. Then there is

an L > 0 so that for l > L

M(I + V R0χ, ζ0) = M(I +Pl(I + V R0(I −Pl)χ)−1V R0Plχ, ζ0)

for any ζ0 ∈ Bl(α log l).

Proof. We begin by writing

I + V R0χ = (I + V R0(I −Pl)χ)(I + (I + V R0(I −Pl)χ)−1V R0Plχ)

and noting that since by Lemma 3.2 ∥V R0(I −Pl)χ∥ = O(l−1/2) uniformly on Bl(α log l) there is an
L > 0 so that for l > L , (I + V R0(I −Pl)χ)−1 is analytic on Bl(α log l). Thus for these l by Lemma 4.1
M(I + V R0χ, ζ0) = M(I + (I + V R0(I −Pl)χ)−1V R0Plχ, ζ0) for any ζ0 ∈ Bl(α log l). An application
of Lemma 4.2 completes the proof. □

Lemma 4.6. Let V, χ ∈ L∞
c (X), with V satisfying (1-1), χV = V , and χ independent of θ . Set

Al,V = (I + V R0(I − Pl)χ)−1 and Bl,V = V R0Plχ . Let K ⊂ C be a compact set such that RV0,0 is
analytic on K , and suppose 0 ̸∈ K if d = 1. Choose ρ > 0 so that K ⊂ {λ ∈ C : |λ| < ρ}, and set
Kl = {ζ ∈ Bl(ρ) : τl(ζ ) ∈ K }. Then for sufficiently large l,

∥Pl(Al,V Bl,V − Al,V0 Bl,V0)∥ = O(l−δ) (4-6)
and

∥(I +Pl Al,V0 Bl,V0)
−1Pl(Al,V Bl,V − Al,V0 Bl,V0)∥ = O(l−δ) (4-7)

uniformly for ζ ∈ Kl .
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Proof. We write

Pl(Al,V Bl,V − Al,V0 Bl,V0) = Pl(Al,V − Al,V0)Bl,V +Pl Al,V0(Bl,V − Bl,V0). (4-8)

By Lemma 3.2, ∥Al,V − I∥ = O(l−1/2) and ∥Al,V0 − I∥ = O(l−1/2) uniformly on Bl(ρ), so that the first
term on the left-hand side is O(l−1/2). Moreover,

Pl Al,V0(Bl,V − Bl,V0) = Al,V0Pl(Bl,V − Bl,V0) = Al,V0Pl V # R0Pl,

and ∥Pl V #Pl∥ = O(l−δ) by our assumption on V . Hence the norm of the second term on the right-hand
side of (4-8) is O(l−δ). This proves (4-6).

On Kl ,
I +Pl Al,V0 Bl,V0 = I +Pl Bl,V0 + O(l−1/2) = I +Pl V0 R0χ + O(l−1/2). (4-9)

But
(I +Pl V0 R0χ)−1

= I −Pl + (I − V0 RV0,0(τl)χ)Pl = I −Pl + TPl,

where T is given by T = (I +V0 R0,0(τl)χ)−1
= I −V0 RV0,0(τl)χ . By our choice of K , we have that T is

uniformly bounded for τl ∈ K or for ζ ∈ Kl , and hence (I +Pl V0 R0χ)−1 is bounded on Kl . Using (4-9),
this shows (I +Pl Al,V0 Bl,V0)

−1 is bounded on Kl , and thus, by (4-6), we get (4-7). □

5. A resolvent estimate and localizing the resonances in the L∞ case:
Proofs of Theorems 1.1, 1.2, and 1.3

In this section we prove Theorems 1.1–1.3 in the case of an L∞ potential V , providing a high-energy
localization of the resonances in sets Bl(ρ). We also prove Proposition 5.4 and Lemma 5.5, which show
that the resolvent for the potential V0 is, at high energies, a good approximation of the resolvent for the
potential V away from poles.

We shall use notation for a disk in the τl-coordinate in Bl(ρ). For λ0 ∈ C and r0 > 0, set ρ =|λ0|+r0+1,
and define, for 2l > ρ2

+ 1, Dl(λ0, r0) ⊂ Bl(ρ) ⊂ Ẑ by

Dl(λ0, r0)
def
= {ζ ∈ Bl(ρ) : |τl(ζ ) − λ0| < r0}.

A preliminary step in the proof of Theorem 1.1 is the following proposition, which provides an initial
localization of the resonances.

Proposition 5.1. Let V ∈ L∞
c (X) satisfy (1-1). Suppose λ0 ∈ C, λ0 ̸= 0 is a resonance of −10 + V0

on Rd, of multiplicity mV0,0(λ0). Then there are L , ϵ > 0 so that∑
ζ∈Dl (λ0,ϵ)
mV (ζ )>0

mV (ζ ) = 2mV0,0(λ0)

when l > L.

Proof. Choose ϵ > 0 so that RV0,0(λ) is analytic on 0 < |λ−λ0| ≤ ϵ and ϵ < |λ0|. By our expression (3-2)
for RV0 , using separation of variables and Lemmas 3.1 and 3.2, mV0(ζl(λ0)) = 2mV0,0(λ0) for l sufficiently
large. The factor of 2 on the right comes from the fact that the range of Pl (as an operator on L2(S1)) has



RESONANCES FOR SCHRÖDINGER OPERATORS ON INFINITE CYLINDERS AND OTHER PRODUCTS 1515

rank 2 for l > 0. Choose χ ∈ L∞
c (X) independent of θ so that χV = V . From Proposition 4.3 and our

choice of ϵ, for l sufficiently large,

mV0(ζl(λ0)) = M(I + V0 R0χ, ζl(λ0)) =

∑
ζ∈Dl (λ0,ϵ)

M(I+V0 R0χ,ζ ) ̸=0

M(I + V0 R0χ, ζ ).

Lemma 4.5 implies that if W = V0 or W = V ,

M(I + W R0χ, ζ ′) = M(I +Pl(I + W R0(I −Pl)χ)−1W R0Plχ, ζ ′) for ζ ′
∈ Dl(λ0, ϵ) (5-1)

if l is sufficiently large.
By Lemma 4.6 and an operator Rouché theorem [Gohberg and Sigal 1971, Theorem 2.2], for l

sufficiently large,∑
ζ∈Dl (λ0,ϵ)

M(I+Pl (I+V R0(I−Pl )χ)−1V R0Plχ,ζ )̸=0

M(I +Pl(I + V R0(I −Pl)χ)−1V R0Plχ, ζ )

=

∑
ζ∈Dl (λ0,ϵ)

M(I+Pl (I+V0 R0(I−Pl )χ)−1V0 R0Plχ,ζ )̸=0

M(I +Pl(I + V0 R0(I −Pl)χ)−1V0 R0Plχ, ζ ). (5-2)

Combining (5-1) (with W = V and with W = V0), (5-2), and another application of Proposition 4.3, this
time with V , proves the proposition. □

5A. Proofs of Theorems 1.1 and 1.2 for V ∈ L∞
c (X). Theorem 1.1 follows from combining the result

of Theorem 1.2 for L∞ potentials and Proposition 5.1. In this section we prove Theorem 1.2 for L∞

potentials V .
Recall by the definition of 4(RV0,0, λ0), if λ0 ∈ C is a pole of RV0,0, then RV0,0(λ) − 4(RV0,0(λ), λ0)

is analytic at λ0. Define

Rreg
V0

(ζ ; λ0, l) def
= RV0(ζ ) − 4(RV0, ζl(λ0)). (5-3)

For l sufficiently large, by (3-2) and Lemma 3.2

Rreg
V0

(ζ ; λ0, l) = RV0(ζ ) − 4(RV0,0(λ), λ0)|λ=τl (ζ )Pl . (5-4)

Note that if RV0 is analytic at ζl(λ0), then Rreg
V0

(ζ ; λ0, l) = RV0(ζ ).

Lemma 5.2. Suppose V, χ ∈ L∞
c (X) and V satisfies (1-1). Let λ0 ∈ C and Rreg

V0
= Rreg

V0
(ζ ; λ0, l) be the

operator defined in (5-3). If RV0,0(λ) is analytic for 0 < |λ − λ0| ≤ ϵ, then for l sufficiently large,

V # Rreg
V0

(ζ )χ = V # Rreg
V0

(ζ ; λ0, l)χ

is analytic on Dl(λ0, ϵ), and as l → ∞ the estimate ∥χ Rreg
V0

(ζ )V # Rreg
V0

(ζ )χ∥ = O(l−δ) holds uniformly
for ζ ∈ Dl(λ0, ϵ).
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Proof. Without loss of generality we can assume χ is independent of θ and χV = V . By (3-2) and
Lemma 3.2, for l sufficiently large, Rreg

V0
(ζ ) is analytic and bounded in Dl(λ0, ϵ). We write

χ Rreg
V0

(ζ )V # Rreg
V0

(ζ )χ

= χ Rreg
V0

χ(I −Pl)V # Rreg
V0

χ + χ Rreg
V0

χPl V # Rreg
V0

χ(I −Pl) + χ Rreg
V0

χPl V # Rreg
V0

χPl . (5-5)

Now for ζ ∈ Dl(λ0, ϵ) and l sufficiently large, ∥χ Rreg
V0

χ(I −Pl)∥ = O(l−1/2) uniformly in Dl(λ0, ϵ).
Since ∥Vm∥ = O(|m|

−δ) we have ∥Pl V #Pl∥ = O(l−δ), and so

∥Pl V # Rreg
V0

χPl∥ = ∥Pl V #Pl Rreg
V0

χPl∥ = O(l−δ). □

A related lemma which we also need is the following.

Lemma 5.3. Let V, χ ∈ L∞
c (X) with V satisfying (1-1). Let K ⊂ C be a compact set on which RV0,0 is

analytic and suppose K ⊂ {λ ∈ C : |λ| < ρ}. Set Kl
def
= {ζ ∈ Bl(ρ) : τl(ζ ) ∈ K } ⊂ Ẑ . Then for l sufficiently

large, ∥χ RV0 V # RV0χ∥ = O(l−δ) uniformly on Kl .

Proof. This lemma can be proved by mimicking the proof of Lemma 5.2. Alternatively, it can be proved
by covering Kl with a finite number of neighborhoods on which Lemma 5.2 holds. □

Proof of Theorem 1.2 for V ∈ L∞
c (X). We shall use the identities (3-7). Thus poles of RV in Bl(ρ) are

the values of ζ ∈ Bl(ρ) such that I + V # RV0(ζ )χ is not invertible. Here χ ∈ C∞
c (X) satisfies χV = V

and is independent of θ .

(1) For each λj ∈ 3ρ , λj ̸= 0, let ϵj > 0 be as guaranteed by Proposition 5.1, so that there are exactly
2mV0,0(λ0) resonances (counted with multiplicity) of −1 + V in Dl(λj , ϵj ) for l sufficiently large. Set

K = {λ ∈ C : ϵ′
≤ |λ| ≤ ρ and |λ − λj | ≥ ϵj for all λj ∈ 3ρ},

Kl = {ζ ∈ Bl(ρ + 1) : τl(ζ ) ∈ K } = Bl(ρ) \

(
Dl(0, ϵ′)

⋃
λj ∈3ρ

Dl(λj , ϵj )

)
.

By an application of Lemma 5.3, for l sufficiently large, I + V # RV0(ζ )χ is invertible by its Neumann
series on Kl . Thus by (3-7) RV has no poles on Kl for l sufficiently large.

(2) Now we work on Dl(λj , ϵj ) and set Rreg
V0

(ζ ) = Rreg
V0

(ζ ; l, λj ), so that

Rreg
V0

(ζ ) = RV0(ζ ) − 4(RV0,0(λ), λj )|λ=τl (ζ )Pl

for l sufficiently large. By our choice of ϵj this is analytic on Dl(λj , ϵj ) for large enough l. Then by
Lemma 5.2 I + V # Rreg

V0
(ζ )χ is invertible in Dl(λj , ϵj ), with

(I + V # Rreg
V0

(ζ )χ)−1
= I − V # Rreg

V0
(ζ )χ + OL2(X)→L2(X)(l

−δ)

for ζ ∈ Dl(λj , ϵj ). Thus on Dl(λj , ϵj ),

I + V # RV0χ = (I + V # Rreg
V0

(ζ )χ)(I + (I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ), λ0)|λ=τl (ζ )Plχ). (5-6)
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By (5-6) and (4-3), I + V # RV0χ is invertible at a point ζ ∈ Dl(λj , ϵj ) if and only if

I +Pl(I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ), λ0)|λ=τl (ζ )Plχ

is invertible at ζ . There is a C j so that ∥χ4(RV0,0, λj )χ∥ ≤ C j |λ−λj |
−mV0,0(λj ) on {λ ∈ C : |λ−λj | ≤ ϵj };

see [Dyatlov and Zworski 2019, Theorems 2.5 and 3.9]. Thus on Dl(λj , ϵj ), using Lemma 5.2,

∥Pl(I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ, λ0))|λ=τl (ζ )Plχ∥

=

∥∥∥∥ ∞∑
j=0

Pl(−V # Rreg
V0

(ζ )) j V #4(RV0,0(λ, λ0))|λ=τl (ζ )Plχ

∥∥∥∥
≤ ∥Pl(I − V # Rreg

V0
(ζ ))V #4(RV0,0(λ, λ0))|λ=τl (ζ )Plχ∥ + C ′

j l
−δ

|τl(ζ ) − λj |
−mV0,0(λj ).

Now we use Lemma 3.2, ∥Vm∥L∞ = O(|m|
−δ), and the fact that Pl commutes with RV0,0 so that

∥Pl(I − V # Rreg
V0

(ζ ))V #Pl∥ = O(l−δ)

on Dl(λj , ϵj ). Thus there is a (new) C ′

j so that

∥Pl(I + V # Rreg
V0

(ζ ))−1V #4(RV0,0(λ, λ0))|λ=τl (ζ )Plχ∥ ≤ C ′

j l
−δ

|τl(ζ ) − λj |
−mV0,0(λj )

on Dl(λj , ϵj ). Therefore
I +Pl(I + Rreg

V0
(ζ ))−14(RV0,0(λ, λ0))|λ=τl (ζ )Plχ

is invertible in this region if |τl(ζ )−λj | ≥ C j l−δ/mV0,0(λj ), where we can take C j = (2C ′

j )
1/mV0,0(λj ). Taking

C̃ = maxλj ∈3ρ
C j finishes the proof of Theorem 1.2 away from τl = 0.

(3) If RV0,0(λ) does not have a pole at the origin, then there is a δ > 0 so that for l sufficiently large, RV0(ζ )

is analytic in Bl(δ). Thus by Lemma 5.3, for l sufficiently large, RV (ζ ) is analytic in Bl(δ). □

5B. Approximating the resolvent RV . In a sense made precise below in Proposition 5.4 and Lemma 5.5, at
high energies RV0 approximates RV well away from resonances. The first result is useful for neighborhoods
of thresholds.

Proposition 5.4. Let V, χ ∈ L∞
c (X), with V satisfying (1-1). Let K ⊂ C be a compact set on which RV0,0

is analytic and suppose K ⊂ {λ ∈ C : |λ| < ρ}. Define Kl
def
= {ζ ∈ Bl(ρ) : τl(ζ ) ∈ K } ⊂ Ẑ . Then for l

sufficiently large, RV is analytic on Kl . Moreover, if χ ∈ L∞
c (X), then ∥χ(RV (ζ )− RV0(ζ ))χ∥ = O(l−δ)

uniformly for ζ ∈ Kl .

Proof. Without loss of generality we may assume χ is independent of θ and satisfies χV = V . Then
χ RV0χ = χ RV χ(I + V # RV0χ). Since by Lemma 5.3 ∥(V # RV0χ)2

∥ ≤
1
2 on Kl for l sufficiently large,

I + V # RV0χ is invertible as (I + V # RV0χ)−1
=

∑
∞

j=0(−V # RV0χ) j, and thus RV is analytic on Kl .
Moreover,

χ(RV (ζ ) − RV0(ζ ))χ = χ

∞∑
j=1

RV0(ζ )(−V # RV0(ζ )χ) j.

By applying Lemma 5.3 twice, this becomes

χ(RV (ζ ) − RV0(ζ ))χ = −χ RV0(ζ )V # RV0(ζ )χ + OL2→L2(l−δ) = OL2→L2(l−δ). □
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A similar result with a similar proof is the following lemma. The points ζ ∈ Ẑ considered in this
lemma lie on the boundary of the physical space, but are away from the thresholds.

Lemma 5.5. Let V, χ ∈ L∞
c (X), with V satisfying (1-1). Then there are constants M, L > 0 so that

if l > L , ζ ∈ Bl(
√

2l − 1), τl(ζ ) ∈ i[0, ∞), and M <
τl(ζ )

i
<

√
2l − 1 −

M
√

l
,

then ∥χ(RV (ζ ) − RV0(ζ ))χ∥ = O(l−δ). (5-7)
Likewise, there are constants M1, L1 > 0 so that

if l > L1, ζ ∈ Bl(
√

2l − 1), τl(ζ ) ∈ [0, ∞), and M1 < τl(ζ ) <
√

2l − 1 −
M1
√

l
,

then ∥χ(RV (ζ ) − RV0(ζ ))χ∥ = O(l−δ). (5-8)

Proof. This proof is very similar to the proof of Proposition 5.4. We outline the proof of the first statement
only, as the proof of the second is analogous.

Without loss of generality, we may assume χ is independent of θ and satisfies χV = V .
We next note that if ζ ∈ Bl(

√
2l − 1), then for l > 3 either |τl(ζ )| > 1

4

√
2l − 1 or |τl−1(ζ )| > 1

4

√
2l − 1

or both are true. In either case, if τl(ζ ) ∈ i[0, ∞), then there is a c0 > 0 so that |τj (ζ )| > c0l1/2 for
j ̸= l, l − 1. Moreover, again with τl(ζ ) ∈ i[0, ∞), Im τj (ζ ) > 0 if j > l and Im τj (ζ ) = 0 if 0 ≤ j < l.

Suppose ζ ∈ Bl(
√

2l − 1), τl(ζ ) ∈ i[0, ∞), and |τl(ζ )| > 1
4

√
2l − 1. Then using Lemma 3.1 and (3-2)

we see that
∥χ RV0(ζ )χ(I −Pl−1)∥ = O(l−1/2).

By Lemma 3.1 there is a C > 0 so that if λ ∈ R, |λ| > C , then

∥V #
∥L∞∥χ RV0,0(λ)χ∥ ≤

1
2 .

Choose M > C + 1; then if τl(ζ ) ∈ i[0, ∞) with

τl(ζ )

i
<

√
2l − 1 −

M
√

l
,

for l sufficiently large |τl−1(ζ )| > C . Now we restrict ourselves to τl(ζ ) ∈ i[0, ∞) with

1
4
√

2l − 1 <
τl(ζ )

i
<

√
2l − 1 −

M
√

l
.

Since ∥Pl−1V #Pl−1∥ = O(l−δ) by our assumption on ∥Vm∥L∞ ,

∥χ RV0(ζ )Pl−1V # RV0(ζ )Pl−1χ∥ = O(l−δ),

and we can follow the proof of Lemma 5.2 to show that ∥χ RV0(ζ )V # RV0(ζ )χ∥ = O(l−δ). Then

∥χ(RV (ζ ) − RV0(ζ ))χ∥ = ∥χ RV0(ζ )χ((I + V # RV0(ζ )χ)−1
− I )∥

= ∥χ RV0(ζ )V # RV0(ζ )χ∥ + O(l−δ) = O(l−δ),

proving the lemma when τl(ζ )∈ i[0, ∞) with 1
4

√
2l − 1< 1

i τl(ζ )<
√

2l − 1−M/
√

l. A similar argument,
singling out Pl rather than Pl−1, handles the case when τl(ζ ) ∈ i[0, ∞) with 1

4

√
2l − 1 < |τl−1(ζ )|. □
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5C. Proof of Theorem 1.3. Theorem 1.3 concerns poles of RV arising as perturbations of threshold
poles of RV0(ζ ). Using separation of variables as in (3-2), these threshold poles, in turn, correspond to a
pole of RV0,0(λ) at λ = 0.

We begin with a lemma about poles of RV0(λ) at the origin. This result is well known if V0 is
real-valued.

Lemma 5.6. Suppose V0 ∈ L∞
c (Rd), and near λ = 0

RV0,0(λ) =

k0∑
k=1

1
λk Ak + A(λ), (5-9)

where A is analytic in a neighborhood of the origin. Then mV0,0(0) = max0≤t≤1 rank(A1 + t A2).

Since A1, A2 are finite-rank, the rank of A1 + t A2 is equal to its maximum for all but a finite number
of values of t in [0, 1].

Proof. Using the expansion (5-9) and the identity (−10 + V0 − λ2)RV0,0(λ) = I shows that for k > 0,
(−10+V0)Ak = Ak+2, where we use the convention Ak+2 =0 if k+2>k0. Just as in [Dyatlov and Zworski
2019, Theorem 2.5], one can use this and the fact that −10+V0 commutes with RV0,0 to show that for j ∈N,
Ran(A2 j ) ⊂ Ran(A2) and Ran(A2 j+1) ⊂ Ran(A1). Here Ran(Ak) denotes the range of the operator Ak

on L2
c(R

d). Since mV0,0(0) = dim
(⋃k0

k=1 Ran(Ak)
)
, this shows mV0,0(0) = dim(Ran A1 ∪ Ran A2). But

dim(Ran A1 ∪ Ran A2) = max
t∈[0,1]

dim Ran(A1 + t A2) = max
t∈[0,1]

rank(A1 + t A2),

proving the lemma. □

Lemma 5.7. Let V ∈ L∞
c (X) satisfy (1-1). Let ϵ > 0 be chosen so that RV0,0(λ) has no poles in

{λ ∈ C : 0 < |λ| < 2ϵ}, and let γl ⊂ Bl(2ϵ) ⊂ Ẑ be the curve {|τl | = ϵ} with positive orientation. Then
for t ∈ [0, 1] and l sufficiently large,

rank
∫

γl

(1 + tτl(ζ ))RV (ζ ) dτl(ζ ) ≥ rank
∫

γl

(1 + tτl(ζ ))RV0(ζ ) dτl(ζ ).

Proof. We assume V # is nontrivial, since otherwise there is nothing to prove.
We first point out that if RV0,0(λ) =

∑k0
k=1 λ−k Ak + A(λ), with A(λ) analytic near λ = 0, then for l

sufficiently large∫
γl

(1 + tτl(ζ ))RV0(ζ ) dτl(ζ ) =

∫
γl

(1 + tτl(ζ ))RV0,0(τl(ζ ))Pl dτl(ζ ) = 2π i(A1 + t A2)Pl .

Let χ ∈ L∞
c (X) satisfy χV = V , with χ independent of θ . Using Proposition 5.4, for l sufficiently

large, ∥∥∥∥∫
γl

(1 + tτl(ζ ))χ(RV (ζ ) − RV0(ζ ))χ dτl(ζ )

∥∥∥∥ = O(l−δ).

Thus ∥∥∥∥∫
γl

(1 + tτl(ζ ))χ RV (ζ )χ dτl(ζ ) − 2π iχ(A1 + t A2)Plχ

∥∥∥∥ = O(l−δ),
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and this implies that for l sufficiently large,

rank
∫

γl

(1 + tτl(ζ ))χ RV (ζ )χ dτl(ζ ) ≥ 2 rank(χ(A1 + t A2)χ). (5-10)

But since (−10 + V0)
k0 Aj = 0 for j = 1, 2, a unique continuation theorem, e.g., [Jerison and Kenig

1985], ensures that rank(A1 + t A2) = rank(χ(A1 + t A2)χ), and similarly

rank
∫

γl

(1 + tτl(ζ ))χ RV (ζ )χ dτl(ζ ) = rank
∫

γl

(1 + tτl(ζ ))RV (ζ ) dτl(ζ ). □

Lemma 5.8. Let V0, χ ∈ L∞
c (Rd), with χV0 = V0. Suppose RV0(λ) has a pole of order 1 at the origin.

Then for l sufficiently large, 2(mV0,0(0) − m0,0(0)) = M(I + V0 R0χ, ζl(0)).

Proof. We note here that the requirement that l is sufficiently large is to ensure that, using (3-2), any poles
of RV0 at ζl(0) arise from poles of RV0 at the origin. Then via separation of variables it suffices to show
that

mV0,0(0) − m0,0(0) = M(I + V0 R0,0(λ)χ, 0).

For d = 1, then mV0,0(0) = 1 and if V0 is real-valued, this follows immediately from [Dyatlov and Zworski
2019, (2.2.31)]. For complex-valued V0, the proof is similar, if one uses the assumption that RV0 has a
simple pole at the origin. When d ≥ 3 is odd, the lemma follows as in the proof of [Dyatlov and Zworski
2019, Theorem 3.15]. In each case, the assumption that the pole is of order 1 is important. □

Lemma 5.9. Let V ∈ L∞
c (X) satisfy (1-1). Let ϵ > 0 be chosen so that RV0,0(λ) has no poles in

{λ ∈ C : 0 < |λ| < 2ϵ}. Suppose RV0,0(λ) has a pole of order 1 at the origin, with residue of rank mV0,0(0).
Then for l sufficiently large, ∑

ζ∈Dl (ϵ)
mV (ζ ) ̸=0

mV (ζ ) ≤ 2mV0,0(0).

Proof. Let χ ∈ L∞
c (X) be independent of θ and satisfy χV = V . We first claim that for any ζ0 ∈ Ẑ ,

mV (ζ0) ≤ M(I + V R0χ, ζ0) + m0(ζ0). (5-11)

If ζ0 does not correspond to a threshold, then m0(ζ0)= 0 and this follows from the stronger Proposition 4.3.
If ζ0 does correspond to a threshold, this follows from a simplified adaptation of the proof of [Dyatlov
and Zworski 2019, Theorem 3.15].

Arguing as in the proof of Proposition 5.1, using Lemmas 4.5 and 4.6 and an operator Rouché theorem
[Gohberg and Sigal 1971, Theorem 2.2], for l sufficiently large,∑

ζ∈Bl (ϵ)
M(I+V R0χ,ζ ) ̸=0

M(I + V R0χ, ζ ) =

∑
ζ∈Bl (ϵ)

M(I+V0 R0χ,ζ ) ̸=0

M(I + V0 R0χ, ζ ) = M(I + V0 R0χ, ζl(0)). (5-12)

But by our assumptions and Lemma 5.8, M(I + V0 R0χ, ζl(0)) = 2(mV0,0(0)− m0,0(0)) for l sufficiently
large. Using this, (5-12), and applying (5-11) completes the proof. □
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Proof of Theorem 1.3 under the assumption ∥Vm∥L∞ = O(|m|
−δ). Let ϵ > 0 be as in the statement of

Lemma 5.7. By applying Lemmas 5.6 and 5.7, we see that for l sufficiently large,∑
ζ∈Bl (ϵ)

mV (ζ ) ̸=0

mV (ζ ) ≥

∑
ζ∈Bl (ϵ)

mV0 (ζ ) ̸=0

mV0(ζ ) = 2mV0,0(0).

Thus for l sufficiently large RV has at least 2mV0,0(0) poles in Bl(ϵ). If RV0,0(λ) has a simple pole at the
origin, then applying in addition Lemma 5.9 we see that RV has at exactly 2mV0,0(0) poles in Bl(ϵ).

To finish the proof of the theorem for the L∞ case we need to refine the estimate on the location of
the resonances in Bl(ϵ). We do this by showing that there is a C > 0 so that there are no resonances in
Bl(ϵ) \ Bl(Cl−δ/r ) for l sufficiently large. This follows almost exactly the proof of Theorem 1.2, point 2,
with λj replaced by 0. The difference here is that the bound on the singular part of χ RV0χ at the origin
is given by ∥χ4(RV0, 0)χ∥ ≤ C |λ|

−r ; that is, mV0,0(λj ) is replaced by r rather than mV0,0(0). Having
made this minor adaptation, the remainder of the proof follows without change. □

6. Resonance-free regions, poles of RV and RV , and the proofs of Corollary 1.4 and Theorem 1.9

Thus far we have focused on resonances in the sets Bl(ρ), for l large. In this section we justify this
by showing that the high-energy resonances near the physical space which also have Re τ0(ζ ) > 0 lie
in Bl(ρ), for ρ sufficiently large. We do this by showing the existence of large resonance-free regions
in Bl(

√
2l − 1). We discuss Ẑ further, focusing on the region near the physical space. We describe the

relationship between the resolvents RV and RV , where V is the complex conjugate of V ; see Lemma 6.2.
This lemma shows that we can understand the poles of RV which are near the physical space and have
Re τ0(ζ ) < 0 by understanding the poles of RV which are near the physical space and have Re τ0(ζ ) > 0.

Lemma 6.1. Let V ∈ L∞
c (X). Then for any 0 < γ < 1 there are M+, c+ > 0 so that the region

U+

l
def
= {ζ ∈ Bl(

√
2l − 1) : M+ < Re(τl(ζ )) < γ

√
2l, Im τl(ζ ) > −c+ log Re(τl(ζ ))}

contains no poles of RV for l sufficiently large. Likewise, for any α > 0 and 0 < γ < 1, there is a constant
M− > 0 so that

U−

l
def
= {ζ ∈ Bl(

√
2l − 1) : M− < Im(τl(ζ )) < γ

√
2l, Re τl(ζ ) > −α}

contains no poles of RV for l sufficiently large.

The region U+

l is reminiscent of the logarithmic resonance-free regions familiar from potential scattering
on Rd. We note that there is substantial overlap between U+

l and U−

l+1.

Proof. Let χ ∈ L∞
c (X) be independent of θ and satisfy χV = V and 0 ≤ χ ≤ 1. To prove the lemma, we

use χ RV (ζ )χ = χ R0(ζ )(I + V R0(ζ )χ)−1 and the representation (3-2) via separation of variables.
From (3-2) and the estimate ∥χ R0,0(λ)χ∥ ≤ Ce(C Im λ)−/|λ|, there are constants C1, C2 so that

∥V R0(ζ )χ∥ ≤ sup
j∈N0

(
C1eC2(Im τj (ζ ))−

|τj (ζ )|

)
.
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First consider U+

l . Set c+ = 1/C2 − δ+, where δ+ > 0, δ+ < 1/C2, and take M+ > (2C1)
1/(δ+C2).

Then if ζ ∈ U+

l ,
C1eC2(Im τl (ζ ))−

|τl(ζ )|
< 1

2 .

If j < l and ζ ∈ U+

l , then |τj (ζ )| ≥ |τl(ζ )| and a computation shows

eC2(Im τj (ζ ))−

|τj (ζ )|
<

eC2(Im τl (ζ ))−

|τl(ζ )|
.

On the other hand, for j > l, if ζ ∈ U+

l , then

Re(τj (ζ ))2
≤ Re(τl+1(ζ ))2

= (Re τl(ζ ))2
− 2l − (Im τl(ζ ))2

− 1 ≤ −2l(1 − γ 2).

Since Im τj (ζ ) > 0 for j > l and ζ ∈ Bl(
√

2l − 1), this is enough to show that

C1eC2(Im τj (ζ ))−

|τj (ζ )|
< 1

2

for ζ ∈ U+

l and l sufficiently large. Then ∥V R0(ζ )χ∥ < 1
2 , and I + V R0(ζ )χ is invertible.

For U−

l , choose M− >0 so that 16∥V ∥L∞ < M2
−

. Then using (3-2) and ∥R0,0(λ)∥≤1/(dist(λ2, [0, ∞)))

for Im λ > 0, for ζ ∈ U−

l ,∥∥∥∥V R0(ζ )χ
∑
j≥l

Pj

∥∥∥∥ ≤ ∥V ∥L∞ sup
j≥l

1
(dist τ 2

j , [0, ∞))
≤

8∥V ∥L∞

M2
−

≤
1
2 .

Next we show that ∥∥∥∥V R0(ζ )
∑

0≤ j<l

Pjχ

∥∥∥∥ ≤
1
2

in U−

l for sufficiently large l. Using the orthogonality of the projections
∑

j≥l Pj and
∑

0≤ j<l Pj this
will complete our proof that I + V R0χ is invertible. Note that

τ 2
l−1 = 2l − (Im τl)

2
+ (Re τl)

2
− 1 + 2i Re(τl) Im(τl).

Thus |τl−1| ≥
√

(1 − γ 2)2l + O(1) and − Im(τl−1) ≤ 2α/
√

1 − γ 2 + O(l−1/2), so for l sufficiently large,

C1eC2(Im τl−1(ζ ))−

|τl−1(ζ )|
< 1

2

for ζ ∈ U−

l . But if 0 ≤ j < l − 1 and ζ ∈ U−

l ,

C1eC2(Im τj (ζ ))−

|τj (ζ )|
<

C1eC2(Im τl−1(ζ ))−

|τl−1(ζ )|
.

This ensures that ∥∥∥∥V R0(ζ )
∑

0≤ j<l

Plχ

∥∥∥∥ < 1
2

so that I + V R0(ζ )χ is invertible on U−

l for l sufficiently large. □
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We remark that we have not made an effort to optimize the results of Lemma 6.1, as in this paper we
are concentrating instead on regions near the thresholds, where, as we have seen, resonances can occur.

Before proving Corollary 1.4, we discuss Ẑ and the boundary of the physical space a bit more. To
motivate the discussion, consider the simpler case of the Schrödinger operator −10 + V0 on Rd, where
we use λ2 as the spectral parameter in defining the (scattering) resolvent. Thus, given a value E > 0,
there are two points, ±

√
E corresponding to the spectral parameter E on the boundary of the physical

space, with RV0,0(±
√

E) = (−10 + V0 − (
√

E ± i0))−1.
There is a similar phenomena in the case of −1 + V on Rd

× S1, but it is notationally harder to
describe. Given E > 0, let

√
E ± i0 ∈ Ẑ be the points on Ẑ with RV (

√
E ± i0) = (−1+ V − E ∓ i0)−1.

Equivalently, we could define
√

E ± i0 to be the point in Ẑ with τj (
√

E ± i0) = ±
√

E − j2 if j2
≤ E ,

and τj (
√

E ± i0) = i
√

j2 − E if j2 > E . By our definition of Bl(ρ), if lE = ⌊
√

E⌋ and lE > 0, then
√

E + i0 ∈ BlE (
√

2lE − 1), but
√

E − i0 ̸∈ BlE (
√

2lE − 1). Thus there is some sense in which we have
been studying only “half” of the boundary of the physical space. However, we shall see in Lemma 6.2
that this suffices for understanding the behavior of the resolvent, if we consider both the resolvent of
−1 + V and that of −1 + V .

Thus, to fully cover points on the boundary of the physical space, we need to define another type of
open set in Ẑ , analogous to Bl(ρ). For l ∈ N and ρ > 0, denote by B±

l (ρ) the connected component
of {ζ ∈ Ẑ : |τl(ζ )| < ρ} which intersects the physical space and includes a region with ± Re τ0(ζ ) > 0.
With the + sign, we get the set Bl(ρ) defined in the introduction: B+

l (ρ) = Bl(ρ). If lE = ⌊
√

E⌋ and
√

E − lE < ρ, then the point
√

E − i0 corresponding to E on the boundary of the physical space as
defined above has

√
E − i0 ∈ B−

lE
(ρ). Hence any point on the boundary of the physical space lies in

B+

0 (1) ∪

( ∞⋃
l=1

B+

l (
√

2l − 1)

)
∪

( ∞⋃
l=1

B−

l (
√

2l − 1)

)
.

As before, we make the choice of
√

2l − 1 for ρ as that is the largest value of ρ for which B±

l (ρ) contains
only a single point corresponding to a threshold. For certain combinations of l and ρ it can happen that
B+

l (ρ) = B−

l (ρ).
Consider a Schrödinger operator on d-dimensional Euclidean space with potential V0 ∈ L∞

c (Rd) and
scattering resolvent RV0,0(λ). When Im λ > 0, that is λ is in the physical space,

RV0,0(λ) = (−10 + V0 − λ2)−1
= ((−10 + V0 − λ̄2)−1)∗ = (RV00(−λ̄))∗.

Here V0 and λ̄ denote the usual complex conjugates. For odd d the identity RV0,0(λ) = (RV00(−λ̄))∗ then
holds by meromorphic continuation for all λ ∈ C. In particular, this implies λ0 is a pole of RV0,0(λ) if
and only if −λ̄0 is a pole of RV00(λ). For real-valued V , this is the well-known symmetry of resonances
for symmetric Schrödinger operators in odd dimensions.

We turn to the analog of this result for RV , which is shown in a similar way. Suppose ζ is in the
physical space, here identified with the upper half-plane, so that RV (ζ ) = (−1 + V − ζ 2)−1. Thus
(RV (−ζ̄ ))∗ = RV (ζ ). For general ζ ∈ Ẑ , we define −ζ †

∈ Ẑ to be the point in Ẑ which satisfies
τj (−ζ †) = −τj (ζ ) for all j . This is an antiholomorphic mapping, and if ζ is in the physical space,
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identified with the upper half-plane, the mapping ζ 7→ −ζ † agrees with the mapping ζ 7→ −ζ̄ . Then the
identity

(RV (−ζ †))∗ = RV (ζ ), where τj (−ζ †) = −τj (ζ ), for all j ∈ N0 (6-1)

holds for all ζ ∈ Ẑ by meromorphic continuation. In particular, this means that ζ0 ∈ Ẑ is a pole of RV (ζ )

if and only if −ζ
†
0 is a pole of RV (ζ ). Note that if ζ ∈ B+

l (ρ) = Bl(ρ), then −ζ †
∈ B−

l (ρ). Thus to study
the poles of RV (ζ ) in B−

l (ρ) it suffices to study the poles of RV (ζ ) in B+

l (ρ) = Bl(ρ). Likewise, an
estimate on RV in B+

l (
√

2l − 1) implies an estimate on RV in B−

l (
√

2l − 1).
We summarize these results in the following lemma.

Lemma 6.2. If V0 ∈ L∞
c (Rd), then λ0 is a pole of RV0,0(λ) if and only if −λ̄0 is a pole of RV00(λ).

Let V ∈ L∞
c (X). Then ζ0 ∈ Ẑ is a pole of RV (ζ ) if and only if −ζ

†
0 is a pole of RV (ζ ). Here λ̄0, V ,

and V0 are the complex conjugates of λ0, V , and V0, respectively, and −ζ † is as defined in (6-1).

We define a distance on Ẑ as follows: for ζ, ζ ′
∈ Ẑ ,

dẐ (ζ, ζ ′)
def
= sup

j
|τj (ζ ) − τj (ζ

′)|. (6-2)

That this is well defined and a metric is shown in [Christiansen and Datchev 2021, Section 5.1]. Note that
if ζ, ζ ′

∈ Ẑ satisfy τj (ζ ) ̸= −τj (ζ
′), then since τj (ζ )2

− τj (ζ
′)2

= τl(ζ )2
− τl(ζ

′)2,

|τj (ζ ) − τj (ζ
′)| = |τl(ζ ) − τl(ζ

′)|

∣∣∣∣ τl(ζ ) + τl(ζ
′)

τj (ζ ) + τj (ζ ′)

∣∣∣∣.
In particular, this implies that for any ρ > 0 there is an L = L(ρ) so that if l ≥ L and ζ, ζ ′

∈ Bl(ρ) then

dẐ (ζ, ζ ′) = |τl(ζ ) − τl(ζ
′)|.

Proof of Corollary 1.4. Recall our hypotheses include that V is real-valued, ensuring that V0 is real-valued
as well.

The operator-valued function RV (ζ ) has a sequence {ζ ♭
j } of poles satisfying |τ0(ζ

♭
j )| → ∞ as j → ∞

and dẐ (ζ ♭
j , physical space) → 0 only if RV (ζ ) has infinitely many poles in

⋃
∞

l=1 Bl(
√

2l − 1) or infinitely
many poles in

⋃
∞

l=1 B−

l (
√

2l − 1) (or both). If RV (ζ ) has infinitely many poles in
⋃

∞

l=1 B−

l (
√

2l − 1),
then by Lemma 6.2, RV (ζ ) = RV (ζ ) has infinitely many poles in

⋃
∞

l=1 Bl(
√

2l − 1). Thus it suffices to
study sequences of poles in

⋃
∞

l=1 Bl(
√

2l − 1).
Note that while Bl(

√
2l − 1) contains only a single threshold, Bl(

√
2l − 1) and Bl+1(

√
2l + 1) are

not disjoint and in fact have substantial overlap which contains an interval of the continuous spectrum.
Moreover, for l sufficiently large the sets U+

l and U−

l+1 of Lemma 6.1 have nontrivial intersection. Applying
Lemma 6.1 we see that in order to have a sequence of resonances contained in

⋃
∞

l=1 Bl(
√

2l − 1) and
approaching the continuous spectrum (and with |τ0| → ∞), the resonances must lie in

⋃
∞

l=1 Bl(M) for
some M. But then the corollary follows from an application of Theorems 1.1–1.3. □

We now have the ingredients we need to prove Theorem 1.9.
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Proof of Theorem 1.9. The hypotheses on −d2/dx2
+ V0 and the expression (3-2) mean that the resol-

vent RV0(ζ ) has no poles on the boundary of the physical space. Moreover, since for any χ̃ ∈ C∞
c (R)

there is a constant C so that ∥χ̃ RV0,0(λ)χ̃∥ ≤ C for all λ ∈ R ∪ i[0, ∞), for any χ ∈ C∞
c (X) there is a

C1 > 0 so that ∥χ RV0(ζ )χ∥ ≤ C1 for all ζ in the boundary of the physical space.
Corollary 1.4 shows that there are no poles of the resolvent RV in the continuous spectrum at high

energy. Proposition 5.4 and Lemma 5.5 show that when ζ is in the boundary of the physical space and
ζ ∈ Bl(

√
2l − 1), the cut-off resolvent of −1 + V satisfies ∥χ RV (ζ )χ − χ RV0(ζ )χ∥ = O(l−1/2). Thus

∥χ RV0(ζ )χ∥ is uniformly bounded on the boundary of the physical space when |τ0(ζ )| is sufficiently
large. Hence by [Christiansen and Datchev 2021, Theorem 5.6] the hypotheses of [Christiansen and
Datchev 2022, Theorem 4.1] hold. Theorem 1.9 then follows directly. □

7. Larger neighborhoods of the threshold l2

In this section we consider poles of RV (ζ ) in neighborhoods Bl(α log l) and Bl(α(log l)1−ϵ) of the l-th
threshold. We prove Theorem 1.5 for potentials with V0 ≡ 0 and the related, but weaker, Theorem 7.1
which holds for a general potential V ∈ L∞

c (X).
The proof of Theorem 1.5 is similar to that of the proof of Theorem 1.2 for L∞ potentials.

Proof of Theorem 1.5. Choose χ ∈ L∞
c (X), χV = V , and χ independent of θ . We write

χ R0V R0χ

= χ R0Pl V R0Plχ +χ R0(1−Pl)V R0Plχ +χPl R0V R0(1−Pl)χ +χ R0(1−Pl)V R0(1−Pl)χ. (7-1)

Let α′ > 0, and let ζ ∈ Bl(α
′
| log l|), where l is large enough that Bl(α

′
| log l|) contains only a single

point of Ẑ which corresponds to a threshold. Let ζ ∈ Bl(α
′ log l) satisfy |τl(ζ )| ≥ 1. Then by Lemma 3.2,

∥χ R0(ζ )(1 −Pl)χ∥ = O(l−1/2),

and by (3-1) and [Dyatlov and Zworski 2019, Theorem 3.1],

∥χ R0(ζ )Plχ∥ = O
(

eC(Im τl (ζ ))−

|τl(ζ )|

)
for some C > 0. Using this estimate and Pl VPl = O(l−δ) in (7-1) shows

∥χ R0(ζ )V R0(ζ )χ∥ = O(l−δe2C(Im τl (ζ ))−).

Thus from (7-1) there is a C1 > 0 so that I +V R0(ζ )χ is invertible if l is sufficiently large, ζ ∈ Bl(α
′ log l),

|τl(ζ )| ≥ 1, and e2C(Im τl (ζ ))− ≤ C1lδ. This last item may be ensured by requiring |τl | ≤ α log l, for suitably
chosen α > 0, α ≤ α′, and taking l sufficiently large. Recall that −1+ V has no resonances in regions
where I + V R0χ is invertible, see Proposition 4.3.

Applying Theorems 1.2 and 1.3 shows that if d = 1 there is a c0 > 0 so that when l is sufficiently
large the region {ζ ∈ Bl(α log l) : 1 ≥ |τl(ζ )| > c0l−δ

} contains no resonances, and if d > 1 there are no
resonances in Bl(1) for l sufficiently large. □

A similar proof gives the next theorem.
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Theorem 7.1. Let V ∈ L∞
c (X) satisfy (1-1), and let ϵ > 0. Then there is a c0 = c0(ϵ, V ) > 0 so that for l

sufficiently large, the region

{ζ ∈ Bl(c0(log l)1/(d+ϵ)) : |τl(ζ ) − λ′
| ≥ (1 + |λ′

|
2)−(d+ϵ)/2 for every λ′

∈ C : mV0,0(λ
′) > 0}

contains no poles of RV (ζ ).

Proof. We assume V #
= V − V0 ̸≡ 0, since otherwise there is nothing to prove.

Choose χ ∈ L∞
c (X) so that χV = V and χ is independent of θ . We may think of χ as an element

of L∞
c (Rd) as well.

Set

Aϵ
def
= {λ ∈ C : |λ − λ′

| ≥ (1 + |λ′
|
2)−(d+ϵ)/2 for every λ′

∈ C : mV0,0(λ
′) > 0}.

We shall use, from the proof of [Dyatlov and Zworski 2019, Theorem 3.54], that there is a C > 0 so that

∥(I + V0 R0,0(λ))−1
∥ ≤ C exp(C |λ|

d+ϵ) if λ ∈ Aϵ . (7-2)

Choose α′ > 0. If ζ ∈ Bl(α
′ log l),

χ RV0(ζ )Plχ = χ RV0,0(τl(ζ ))Plχ

= χ R0,0(τl(ζ ))χ(I + V0 R0,0(τl(ζ ))χ)−1Pl .

Thus, if ζ ∈ Bl(α
′ log l) with τl ∈ Aϵ and |τl(ζ )| ≥ 1, then

∥χ RV0(ζ )Plχ∥ ≤ C exp(C(Im τl(ζ )−)) exp(C |τl(ζ )|d+ϵ)

≤ C exp(C |τl(ζ )|d+ϵ).
(7-3)

Here and below we allow the constant C to change from line to line, and note that it depends on V, ϵ,
and χ , but not l.

Let ζ ∈ Bl(α
′ log l) with τl ∈ Aϵ and |τl(ζ )| ≥ 1. Writing χ RV0χ as in (7-1) and applying Lemma 3.2

and (7-3), we find that for these ζ , if l is sufficiently large,

∥χ RV0(ζ )V # RV0(ζ )χ∥ ≤ C1l−δ exp(C1|τl(ζ )|d+ϵ) (7-4)

for some C1. Now we can choose c0 > 0 sufficiently small and L > 0 sufficiently large so that

if |τl(ζ )| ≤ c0(log l)1/(d+ϵ) and l > L then C1l−δ exp(C1|τl(ζ )|d+ϵ) ≤
1
2

ensuring that I + V # RV0(ζ )χ is invertible.
Recalling that with V # nontrivial if I + V # RV0(ζ )χ is invertible then ζ is not a resonance of −1 + V

proves the theorem. □

8. Expansion of Pl(I + V # Rreg
V0

χ)−1V #Pl for smooth V

This section contains preliminary computations which allow us to refine some of our results when V is
smooth. We begin with a straightforward lemma about Schrödinger operators on Rd.
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Lemma 8.1. Let V0, χ ∈ C∞
c (Rd) and J ∈ N. Then as an operator from H s(Rd) to H s−2J (Rd),

χ RV0,0(λ)χ = −

J∑
j=1

1
λ2 j χ(−10 + V0)

j−1χ +
1

λ2J χ RV0,0(λ)(−10 + V0)
J χ. (8-1)

Proof. First assume λ is in the physical region, that is, Im λ > 0. Then the J = 1 case follows from
rearranging the equality

(−10 + V0 − λ2)RV0,0(λ) = RV0,0(λ)(−10 + V0 − λ2) = I

to get

RV0,0(λ) =
1
λ2 (−I + RV0,0(λ)(−10 + V0)).

The general case follows by induction.
Since both sides of (8-1) have meromorphic continuations to the complex plane, the equality holds for

all λ. □

We shall use the following Hilbert spaces: for n ∈ N0,

H(0,n)(X)
def
=

{
u ∈ L2(X) :

∂α

∂xα
u ∈ L2(X) if |α| ≤ n

}
with ∥u∥

2
H(0,n)

=

∑
|α|≤n

∥∥∥∥ ∂α

∂xα
u
∥∥∥∥2

L2(X)

.

Here we use the usual multi-index notation for α = (α1, . . . , αd). This allows us to indicate mapping
properties of operators which act differently in the x and θ variables.

One of the main results of this section is the following proposition. Recall that Rreg
V0

(ζ ) = Rreg
V0

(ζ ; λ0, l)
is defined in (5-3).

Proposition 8.2. Let V, χ ∈ C∞
c (X) satisfy χV = V. In addition, suppose χ is independent of θ . Let

λ0 ∈ C, and suppose RV0,0(λ) is analytic on 0 < |λ − λ0| ≤ ϵ. Then, for Rreg
V0

(ζ ) = Rreg
V0

(ζ ; λ0, l) and
ζ ∈ Dl(λ0, ϵ),∥∥∥∥Pl(I +V # Rreg

V0
(ζ )χ)−1V #Pl +

1
l2

∑
k∈Z
k ̸=0

(
τ 2

l −k2

4k2 V−k Vk −
V−k

4k2 (−10+V0)Vk

)
Pl

∥∥∥∥
H(0,8)(X)→L2(X)

= O(l−3),

where the error is uniform on Dl(λ0, ϵ) for l sufficiently large.

To prove this proposition we use Lemmas 8.3–8.6. In each of these, V , λ0, Rreg
V0

(ζ ), and ϵ are as in
Proposition 8.2. Some of these computations rely on the identity e±ikθe±ilθ

= e±i(k+l)θ and hence use
the structure of the eigenfunctions of the Laplacian on S1 in an essential way.

For l ∈ N, let Pl± : L2(X) → L2(X) denote orthogonal projection onto L2(Rd
x )e

±ilθ, so that

(Pl± f )(x, θ) =
1

2π

∫ 2π

0
f (x, θ ′)e±il(θ−θ ′) dθ ′,

for l > 0 and Pl = Pl+ +Pl−.
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Lemma 8.3. Under the hypotheses of Proposition 8.2,∥∥∥∥Pl V # Rreg
V0

(ζ )V #Pl −
1
l2

∑
k∈Z, k ̸=0

(
τ 2

l − k2

4k2 V−k Vk −
V−k

4k2 (−10 + V0)Vk

)
Pl

∥∥∥∥
H(0,n+6)→H(0,n)

= O(l−3)

uniformly for ζ ∈ Dl(λ0, ϵ) when l is sufficiently large.

Proof. Since V ∈ C∞
c (X), we have ∥Vm∥L∞ = O(|m|

−N ) for any N, so ∥Pl V #Pl∥ = O(l−N ). Thus,
choosing l sufficiently large so that (5-4) holds, it suffices to consider

Pl V # Rreg
V0

(ζ )(I −Pl)V #Pl = Pl V # RV0(ζ )(I −Pl)V #Pl .

Then

Pl V # Rreg
V0

(I −Pl)V #Pl =

∑
±

∑
k∈Z

0<|k|, k ̸=−l

V∓k RV0,0(τl+k)V±kPl±

=

∑
±

∑
k∈Z

0<|k|<l1/2

V∓k RV0,0(τl+k)V±kPl± + OL2→L2(l−N ).

Here we use the rapid decay of ∥Vm∥ to bound the error obtained when we restrict the values of k in the
sum. Using Lemma 8.1 with J = 3 gives

Pl V # Rreg
V0

(I −Pl)V #Pl =

∑
±

∑
k∈Z

0<|k|<l1/2

V∓k

(
−1
τ 2

l+k
−

1
τ 4

l+k
(−10 + V0)

)
V±kPl± + O(l−3), (8-2)

where the error is as an operator from H(0,n+6)(X) to H(0,n)(X) and is uniform in Dl(λ0, ϵ). Since we
have restricted |k| to be relatively small compared with l, we can expand τl±k asymptotically in l. Thus,
with each sum over k ∈ Z with 0 < |k| < l1/2, using τ 2

l±k = τ 2
l ∓ 2lk − k2 gives∑

0<|k|<l1/2

1
τ 2

l+k
V−k Vk =

1
2

∑
0<|k|<l1/2

(
1

τ 2
l+k

+
1

τ 2
l−k

)
V−k Vk =

∑
0<|k|<l1/2

τ 2
l − k2

(τ 2
l − k2)2 − 4k2l2

V−k Vk

=
−1
4l2

∑
0<|k|<l1/2

(
τ 2

l − k2

k2

)
V−k Vk + O(l−4). (8-3)

Here and below the error is uniform in Dl(λ0, ϵ) when l is sufficiently large.
For the second term in (8-2), we write∑

0<|k|<l1/2

1
τ 4

l+k
V∓k(−10 + V0)V±k =

∑
0<|k|<l1/2

1
(τ 2

l − 2lk − k2)2
V∓k(−10 + V0)V±k

=
1

4l2

∑
0<|k|<l1/2

1
k2 V∓k(−10 + V0)V±k + O(l−3).

Note that ∑
0<|k|<l1/2

1
k2 V∓k(−10 + V0)V±k =

∑
0<|k|<l1/2

1
k2 V−k(−10 + V0)Vk, (8-4)
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since the sum is over k ∈ Z, with 0 < |k| < l1/2. The rapid decay in m of ∥Vm∥C p means we can replace
the sums in (8-3) and (8-4) over 0 < |k| < l1/2 by sums over all nonzero k ∈ Z, with an error which
is O(l−N ). □

The next lemma is an algebraic identity.

Lemma 8.4. For any V ∈ C∞
c (X) ∑

m, j∈Z
m, j ̸=0, m ̸=− j

1
j ( j + m)

Vm Vj V−m− j = 0.

We give two different proofs.

Proof. For this proof, we show that for each j0 ̸= 0, m0 ̸= 0 the coefficient of Vj0Vm0V− j0−m0 in the sum
is zero. This proof is purely algebraic in nature.

If m0 ̸= ± j0, then there are six possibilities for the pair ( j, m) which will give a term containing
Vm0Vj0V−m0− j0 : ( j0, m0), (m0, j0), (−m0− j0, m0), (m0, − j0−m0), ( j0, −m0− j0), (−m0− j0, j0). Thus
the sum of the coefficients of Vm0Vj0V−m0− j0 is

1
j0( j0 + m0)

+
1

m0( j0 + m0)
+

1
j0( j0 + m0)

−
1

j0m0
−

1
j0m0

+
1

m0( j0 + m0)
= 0.

A similar argument when j0 = m0 shows the coefficient of V 2
j0 V−2 j0 is zero as well. □

Alternate proof of Lemma 8.4. For this proof, we use that Vj is the j-th Fourier coefficient of V . Though
in our applications Vj depends on x , that dependence is not important here so we will suppress it.

Set
W (θ) =

∑
j ̸=0

1
j

Vj ei jθ

and note d/dθW (θ) = V (θ) − V0. Then∫ 2π

0
(V (θ) − V0)(W (θ))2 dθ =

1
3
(W (θ))3

|
2π
0 = 0 (8-5)

by the fundamental theorem of calculus. But∑
m, j∈Z
m, j ̸=0
m ̸=− j

1
j ( j + m)

Vm Vj V−m− j =

∑
m, j∈Z
m, j ̸=0
m ̸=− j

−1
jm

Vm Vj V−m− j

= −

∫ 2π

0
(V (θ) − V0)(W (θ))2 dθ, (8-6)

where the last equality uses ei jθeimθ
= ei( j+m)θ and the fact that the integral of a function over a circle is

its zeroth Fourier coefficient. Combining (8-5) and (8-6) proves the lemma. □

Lemma 8.5. Under the hypotheses of Proposition 8.2, if l is sufficiently large

∥Pl(V # Rreg
V0

)2V #Pl∥H(0,n+6)(X)→H(0,n)(X)
= O(l−3) uniformly for ζ ∈ Dl(λ0, ϵ).
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Proof. Again we use that ∥Pl V #Pl∥ = O(l−N ) for any N. This implies

Pl(V # Rreg
V0

)2V #Pl = Pl(V # Rreg
V0

(I −Pl))
2V #Pl + OL2→L2(l−N ).

Note that for ζ ∈ Dl(λ0, ϵ) and l sufficiently large, Rreg
V0

(ζ )(I −Pl) = RV0(ζ )(I −Pl). Then

Pl(V # RV0(I −Pl))
2V #Pl

= Pl

∑
±

e±i( j+k+m)θ
∑

k,m, j∈Z
k,m+k ̸=0,−2l

m, j ̸=0

V± j RV0,0(τl+k+m)V±m RV0,0(τl+k)V±kPl±

=

∑
±

∑
k,m+k ̸=0,−2l
m ̸=0, k,m∈Z

V∓(k+m) RV0,0(τl+k+m)V±m RV0,0(τl+k)V±kPl± + O(l−N ). (8-7)

By Lemma 8.1, for k, m + k ̸= 0, −2l,∥∥∥∥χ RV0,0(τl+k+m)V±m RV0,0(τl+k)V±k −
1

τ 2
l+k+mτ 2

l+k
χV±m V±k

∥∥∥∥
Hn+6(Rd )→Hn(Rd )

= O(l−3
∥V±k∥C6+n∥V±m∥C6+n ).

This implies (with sums still over Z), using ∥Vm∥C p = O(|m|
−N ), that

Pl(V # RV0(I −Pl))
2V #Pl =

∑
±

∑
k,m,k+m ̸=0,−2l

1
τ 2

l+k+mτ 2
l+k

V∓(k+m)V±m V±kPl± + O(l−3)

=

∑
±

∑
0<|k|, |k+m|<l1/2, m ̸=0

1
τ 2

l+k+mτ 2
l+k

V∓(k+m)V±m V±kPl± + O(l−3)

=

∑
±

∑
0<|k|, |k+m|<l1/2, m ̸=0

1
4l2k(k + m)

V∓(k+m)V±m V±kPl± + O(l−3)

=

∑
±

∑
0̸=k,k+m,m

1
4l2k(k + m)

V∓(k+m)V±m V±kPl± + O(l−3). (8-8)

Here errors are as operators from H(0,n+6)(X) to H(0,n)(X), and are uniform in Dl(λ0, ϵ) when l is
sufficiently large. But the final sum in (8-8) is zero by Lemma 8.4. □

Lemma 8.6. Under the hypotheses of Proposition 8.2 for j ≥ 3, j ∈ N, and l sufficiently large,

∥(V # Rreg
V0

(ζ )) j V #Pl∥H(0,8)(X)→L2(X) = O(l−3)

uniformly for ζ ∈ Dl(λ0, ϵ).

Proof. By Lemma 8.5,
∥Pl(V # Rreg

V0
)2V #Pl∥H(0,n+6)→H(0,n)

= O(l−3).

This gives

(V # Rreg
V0

)3V #Pl = V # Rreg
V0

(I −Pl)(V # Rreg
V0

)2V #Pl + V # Rreg
V0

Pl(V # Rreg
V0

)2V #Pl

= V # Rreg
V0

(I −Pl)(V # Rreg
V0

)2V #Pl + O(l−3) (8-9)
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as an operator from H(0,n+6)(X) to H(0,n)(X). Using that Pl commutes with RV0 and ∥Pl V #Pl∥= O(l−N )

for any N gives

(V # Rreg
V0

)2V #Pl = (V # RV0(I −Pl))
2V #Pl + V # Rreg

V0
Pl V # RV0(I −Pl)V #Pl + OL2→L2(l−N ).

Using this in (8-9) yields

(V # Rreg
V0

)3V #Pl = (V # RV0(I −Pl))
3V #Pl

+ V # RV0(I −Pl)V # Rreg
V0

Pl V # RV0(I −Pl)V #Pl + OH(0,n+6)→H(0,n)
(l−3). (8-10)

For large l, Lemma 8.1 applied with J = 1 shows that

∥(V # RV0(I −Pl))
3V #Pl∥H(0,6)(X)→L2(X) = O(l−3).

Choose χ ∈ C∞
c (X) independent of θ so that V χ = V . We write the second term on the right in (8-10)

as the composition of three operators, with the grouping indicated below by the brackets:

V # RV0(I −Pl)V # Rreg
V0

Pl V # RV0(I −Pl)V #Pl

=
[
V # RV0(I −Pl)V #][χ Rreg

V0
Plχ

][
Pl V # RV0(I −Pl)V #Pl

]
. (8-11)

By Lemma 8.1,

∥V # RV0(I −Pl)V #
∥H(0,n+2)→H(0,n)

= O(l−1).

The second operator, χ Rreg
V0

Plχ , is bounded. By Lemma 8.3, the third is O(l−2) as an operator from
H(0,n+6) to H(0,n). Thus we have proved the lemma when j = 3.

The case of j > 3 follows from the j = 3 case. □

We now can prove Proposition 8.2.

Proof of Proposition 8.2. For l sufficiently large, on Dl(λ0, ϵ),

Pl(I + V # Rreg
V0

(ζ )χ)−1V #Pl = Pl

∞∑
j=0

(−V # Rreg
V0

(ζ )χ) j V #Pl .

The proposition then follows from an application of Lemmas 8.3, 8.5, and 8.6, and recalling that
∥Pl V #Pl∥ = O(l−N ). □

The proof of Theorem 1.6 uses the next lemma, which computes an expression related to the leading
term of

Pl(I + V # Rreg
V0

(ζl(z)))−1V #Pl .

Lemma 8.7. Suppose V ∈ C∞
c (X) and u ∈ H 2(Rd) satisfies (−10 + V0 − λ2

0)u = 0. Then

−

∫
Rd

u((z2
−k2)V−k Vku−V−k(−10+V0)(Vku)) dx =

∫
Rd

((k2
+λ2

0−z2)u2V−k Vk+u2
∇0V−k ·∇0Vk) dx .
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Proof. We first compute
∫

R
uV−k(−10 + V0)(Vku) dx . Expanding and then integrating by parts yields∫

Rd
uV−k(−10 + V0)(Vku) dx

= −

∫
Rd

(u2V−k10Vk + 2V−ku∇0Vk · ∇0u) dx +

∫
Rd

uV−k Vk(−10 + V0)u dx

= −

∫
Rd

u2V−k10Vk dx +

∫
Rd

u2
d∑

j=1

∂

∂x j

(
V−k

∂

∂x j
Vk

)
dx + λ2

0

∫
Rd

u2V−k Vk dx

=

∫
Rd

u2
∇0V−k · ∇0Vk dx + λ2

0

∫
Rd

u2V−k Vk dx . (8-12)

Using this, we find∫
Rd

((z2
−k2)V−k Vku2

−uV−k(−10+V0)(Vku)) dx =−

∫
Rd

(((k2
+λ2

0−z2)V−k Vk+∇0V−k ·∇0Vk)u2) dx,

completing the proof. □

The proof of the next lemma uses some of the same ideas as that of Proposition 8.2. This result will be
used in the proof of Theorem 1.7.

Lemma 8.8. Suppose V ∈ C∞
c (X; R). Let λ0 ∈ iR be a simple pole of RV0,0(λ) with residue of rank 1.

Let M > |λ0| and N ∈ N, and suppose RV0,0(λ) − 4(RV0,0(λ), λ0) is analytic for |λ − λ0| ≤ ϵ. Then
if χ ∈ C∞

c (X; R) is independent of θ and satisfies V χ = V , there exists an s = s(N ) ∈ N and an
AN = AN (τl, l) : H(0,s)(X) → L2(X) so that for l sufficiently large,

∥Pl(I + V # Rreg
V0,0(ζ )χ)−1V #Pl − AN (τl(ζ ), l)∥H(0,s)(X)→L2(X) = O(l−N ) (8-13)

uniformly for ζ ∈ Dl(λ0, ϵ). Moreover, AN (z, l) depends analytically on z in the set {z ∈ C : |z −λ0| ≤ ϵ}

and if z ∈ iR, then AN (z, l) is symmetric on C∞
c (X) ⊂ L2(X). Furthermore,

∥Pl± ANPl∓∥H(0,s)(X)→L2(X) = O(l−N )

for any N.

Proof. By Lemma 5.2, if j > 2N, then on Dl(λ0, ϵ) we have

∥(V # Rreg
V0

(ζ )χ) j
∥L2(X)→L2(X) = O(l−N ).

Thus ∥∥∥∥(I + V # Rreg
V0

(ζ )χ)−1
−

2N∑
j=0

(−V # Rreg
V0

(ζ )χ) j
∥∥∥∥

L2(X)→L2(X)

= O(l−N ). (8-14)

Now we write, for l sufficiently large,

Rreg
V0

= Rreg
V0

Pl + RV0(I −Pl). (8-15)
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From our assumptions on V0 and the pole of RV0,0 at λ0, there is a u ∈ C∞(Rd
; R) so that for |λ−λ0| ≤ ϵ,

RV0,0(λ) − i/(λ − λ0)u ⊗ u is analytic. Then for l sufficiently large

Rreg
V0

(ζ )Pl = Rreg
V0

(ζ ; λ0, l)Pl = RV0,0(τl(ζ ))Pl −
i

τl(ζ ) − λ0
(u ⊗ u)Pl .

If τl = τl(ζ ) ∈ iR and ζ ∈ Dl(λ0, ϵ), the operator χ Rreg
V0

(ζ )Plχ is symmetric on C∞
c (X). On the other

hand, for k ̸= l, writing τk for τk(ζ ) and using Lemma 8.1 yields

χ RV0Pkχ = χ RV0,0(τk)Pkχ

= −χ

N∑
j=1

1
(τ 2

l + l2 − k2) j
(−10 + V0)

j−1Pkχ

+ χ
1

(τ 2
l + l2 − k2)N

RV0(τk)(−10 + V0)
NPkχ. (8-16)

If τ 2
l ∈ R, then

χ
1

(τ 2
l + l2 − k2) j

(−10 + V0)
j−1Pkχ

is symmetric on C∞
c (X). Set

TN = TN (τl, l) = Rreg
V0,0(τl)Pl −

∑
k ̸=l

N∑
j=1

1
(τ 2

l + l2 − k2) j
(−10 + V0)

j−1Pk . (8-17)

Note that TN is an analytic operator-valued function of τl for ζ ∈ Dl(λ0, ϵ), where |τl − λ0| ≤ ϵ.
Using (8-16),

∥χ(Rreg
V0

− TN )χ∥H(0,2N+t)(X)→H(0,t)(X) = O(l−N ),

if |τl − λ0| ≤ ϵ, and χTN (τl, l)χ is symmetric on C∞
c (X) if τl ∈ iR. Moreover, by (8-14),∥∥∥∥(I + V # Rreg

V0
(ζl(τl))χ)−1

−

2N∑
j=0

(−V #TN (τl, l)) jχ

∥∥∥∥
H(0,s(N ))→L2

= O(l−N )

if s(N ) ≥ 4N 2. Thus if we define

AN = AN (τl, l) = Pl

2N∑
j=0

(−V #TN ) j V #Pl (8-18)

then AN satisfies (8-13), AN is an analytic function of τl if |τl − λ0| ≤ ϵ, and AN (τl, l) is symmetric
on C∞

c (X) if τl ∈ iR.
To show that ∥Pl± ANPl∓∥H(0,s)→L2 = O(l−N ), consider a term Pl+(V #TN ) j V #Pl−. We write

Pl+(V #TN ) j V #Pl− =

∑
m1+m2+···+m j+1=2l

mk ̸=0

Vm1eim1θ TN Vm2eim2θ TN · · · Vm j e
im j θ TN Vm j+1eim j+1θPl−.
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Thus we see that at least one mn must have absolute value at least 2l/( j +1). Since ∥Vm∥Cr = O(|m|
−p)

for any fixed r , any p, we obtain

∥Pl+(V #TN ) j V #Pl−∥H(0,s)→L2 = O(l−N )

for some sufficiently large s. Thus the result for Pl+ ANPl− follows from our expression (8-18) for AN .
The result for Pl− ANPl+ follows similarly. □

9. Proofs of the smooth case of Theorem 1.2 and Theorem 1.3

The first application of our results in the previous section is to improve the localization of the resonances
when V ∈ C∞

c (X).

Proof of Theorem 1.2 for V ∈ C∞
c (X). Let λj ∈ 3ρ and choose ϵ > 0 so that there are no poles of

RV0,0(λ) in 0 < |λ − λj | ≤ ϵ. We will show that there is a C j > 0 so that there are no poles of RV (ζ )

in ζ ∈ Dl(λj , ϵ) with |τl(ζ ) − λj | > C j l−2/(mV0,0(λj )) when l is sufficiently large.
Choose χ ∈ C∞

c (X) so that χV = V and χ is independent of θ . As previously, if l is sufficiently large,

Rreg
V0

(ζ ) = Rreg
V0

(ζ ; λj , l) = RV0(ζ ) − 4(RV0,0, λj )|λ=τl (ζ )Pl

and note that Rreg
V0

(ζ ; λj , l) is analytic on Dl(λj , ϵ). By (3-7), any poles of RV (ζ ) in Dl(λj , ϵ) are points
at which I +Pl(I + V # Rreg

V0
(ζ )χ)−1V #4(RV0,0, λj )χPl has nontrivial null space.

Using the smoothness of V , for any fixed s ∈ N there is a constant C > 0 (depending on s, V0, λj )
with

∥V #4(RV0,0, λj )|λ=τl (ζ )χPl∥L2(X)→H(0,s)(X) ≤
C

|τl(ζ ) − λj |
mV0,0(λj )

, (9-1)

[Dyatlov and Zworski 2019, Theorems 2.5, 2.7, 3.9, and 3.17]. Thus on Dl(λj , ϵ), for l sufficiently large
by Proposition 8.2,

∥Pl(I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0, λj )|λ=τl (ζ )χPl∥L2(X)→L2(X) ≤
C

l2|τl(ζ ) − λj |
mV0,0(λj )

,

for some C . Thus there is a C j > 0 so that if ζ ∈ Dl(λj , ϵ) and |τl(ζ ) − λj | > C j l−2/mV0,0(λj ), then
I +Pl(I + V # Rreg

V0
(ζ )χ)−1V #4(RV0,0, λj )Pl is invertible, and ζ is not a resonance.

Since λj ∈ 3ρ is arbitrary, 3ρ contains only finitely many elements and we have already proved the
theorem for the case of an L∞ potential V , this suffices to prove the smooth version of the theorem. □

The proof of the smooth case of Theorem 1.3 is almost identical, given our earlier results.

Proof of Theorem 1.3 for V ∈ C∞
c (X). Recall that we have already proved the L∞ case of this theorem.

Thus, the proof follows just as in the proof of the smooth case of Theorem 1.2, except that estimate (9-1)
is replaced by

∥V #4(RV0,0, 0)|λ=τl (ζ )χPl∥L2(X)→H(0,s)(X) ≤
C

|τl(ζ )|r
. □
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10. Proofs of Theorems 1.6 and 1.7

We prove Theorems 1.6 and 1.7 in this section, using results of Section 8.
Before turning to the proofs of the theorems, we say something more about the function u of (1-3).

The mapping properties of the resolvent mean that for any ϵ > 0 away from its poles, we have the map

RV0,0(λ) : e−(ϵ+max(0,− Im λ))|x |L2(Rd) → e(ϵ+max(0,− Im λ))|x |L2(Rd).

With RV0,0(λ)t denoting the transpose, we have the symmetry RV0,0(λ)t
= RV0,0(λ), checked first for

Im λ> 0 and then holding by analytic continuation for all λ. This implies that if RV0,0(λ) has a simple pole
of rank 1 at λ0, then there is a u ∈ e(ϵ+max(0,− Im λ))|x |L2(Rd) so that (1-3) holds, where the operator u ⊗u
is understood as an operator between weighted L2 spaces.

Now we turn more directly to the proofs, beginning with a preliminary lemma.

Lemma 10.1. Let λ0 be a pole of RV0,0 and set Rreg
V0

(ζ ) = Rreg
V0

(ζ ; λ0, l). Let χ ∈ C∞
c (X) be independent

of θ and satisfy χV = V , with χ nontrivial. Suppose RV0,0(λ) is analytic for 0 < |λ−λ0| ≤ ϵ. Then there
is an L > 0 so that for l > L , if ζ0 ∈ Dl(λ0, ϵ), then

M(I + V # RV0(ζ )χ, ζ0) = M(I + (I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ), λ0)↾λ=τl (ζ )Pl, ζ0).

Proof. By Lemma 5.2, there is an L > 0 so that I + V # Rreg
V0

(ζ )χ is invertible on Dl(λ0, ϵ) for l > L .
Then if l > L and ζ0 ∈ Dl(λ0, ϵ),

M(I +V # RV0χ, ζ0) = M((I +V # Rreg
V0

(ζ )χ)(I +(I +V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ), λ0)↾λ=τl (ζ )Pl), ζ0)

= M(I +(I +V # Rreg
V0

(ζ )χ)−1V #4(RV0,0(λ), λ0)↾λ=τl (ζ )Pl, ζ0),

where the second equality uses Lemma 4.1. □

Given f ∈ C∞
c (Rd), define h±l ∈ C∞

c (X) by h±l(x, θ) = f (x)e±ilθ/
√

2π . For z0 ∈ C and an operator
A : H(0,s)(X) → L2(X) set

DA(z) = det
(

I +
i

z − z0
(Ahl ⊗ h−l + Ah−l ⊗ hl)

)
. (10-1)

Here “det” is the Fredholm determinant. In this special case it is easily calculated to be

DA(z) =
1

(z−z0)2

{(
z−z0+i

∫
X

h−l(Ahl)

)(
z−z0+i

∫
X

hl(Ah−l)

)
+

∫
X

h−l(Ah−l)

∫
X

hl(Ahl)

}
. (10-2)

Proposition 10.2. Let z0 ∈ C, ϵ > 0, and set Uϵ = {z ∈ C : |z − z0| < ϵ}. Suppose there are L1, m0 ≥
1
2

and s ∈ N so that for l > L1, l ∈ N and z ∈ Uϵ there are linear operators Sl = Sl(z) and Tl = Tl(z)
mapping H(0,s)(X) to L2(X) which are operator-valued functions analytic on Uϵ satisfying:

• supz∈Uϵ
∥Pl Sl(z)Pl − Tl(z)Pl∥H(0,s)(X)→L2(X) = O(l−m0),

• Tl(z)Pl = Pl+Tl(z)Pl+ +Pl−Tl(z)Pl− and supz∈Uϵ
∥Tl(z)∥H(0,s)(X)→L2(X) = O(l−1/2).

Then given f ∈ C∞
c (Rd), for l sufficiently large the functions (z − z0)

2DSl (z) and (z − z0)
2DTl (z) have

exactly two zeros, counted with multiplicity, in Uϵ , and they lie in Uϵ/2. Moreover, there is a labeling of
these two sets of zeros as zSl± and zTl±, so that |zSl± − zTl±| = O(l−m0).
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Proof. By translating if necessary, we may assume z0 = 0.
Our assumptions on Tl imply that F±(z) = F±(z; l) def

= z + i
∫

X h∓l(Tl(z)h±l) is analytic on Uϵ and
satisfies F±(z) = z + O(l−1/2) uniformly on Uϵ . Applying Rouché’s theorem to the pair F±(z) and the
function z, we see that F± has, for l sufficiently large, exactly one zero in the set Uϵ/4 and no zeros
in Uϵ \ Uϵ/4. We label this zero as zTl±. Since

∫
X h±l(Tlh±l) = 0, we have that z2DTl (z) = F+(z)F−(z)

and zTl± are the zeros of z2DTl .
We write

F±(z; l) = z + i
∫

X
h∓l(Tl(z)h±l) = (z − zTl±)ϕ±(z; l), (10-3)

with ϕ± analytic on Uϵ for l sufficiently large. An application of the maximum principle shows that there
is a C > 0 independent of l so that for l sufficiently large,

1
C

≤ |ϕ±(z; l)| ≤ C for all z ∈ U3ϵ/4. (10-4)

Next consider the intermediary

G±(z) = G±(z; l) def
= z + i

∫
X

h∓l(Sl(z)h±l) = z + i
∫

X
h∓l(Tl(z)h±l) + O(l−m0).

Our estimate G± − F± = O(l−m0), (10-3), and (10-4) allow an application of Rouché’s theorem to the
pair F±, G± on a disk with center zTl± and radius c0l−m0 for an appropriate choice of c0 > 0 and for l
sufficiently large. This shows that for l sufficiently large, G± has exactly one zero (counting multiplicity)
in Uϵ/3. We label this zero z I,l,± (the “I ” here stands for intermediate, as this is an intermediate step).
We have shown |z I,l,± − zTl ,±| = O(l−m0). As before, by the maximum principle we may write

G±(z; l) = (z − z I,l,±)ϕI±(z; l), with 1
C

≤ |ϕI±(z; l)| ≤ C, for all z ∈ U3ϵ/4 (10-5)

for some constant C independent of l, and for l sufficiently large.
Now consider z2DSl (z). By our assumptions on Sl and Tl ,

z2DSl (z) = G+(z)G−(z) + O(l−2m0) = (z − z I,l,+)(z − z I,l,−)ϕI+(z)ϕI−(z) + O(l−2m0).

Thus we can apply Rouché’s theorem again, this time to the pair z2DSl (z) and G+(z; l)G−(z; l) at a
distance proportional to l−m0 of z I,l,±, proving the proposition. □

We apply this proposition in the proof of Theorem 1.6.

Proof of Theorem 1.6. We assume that V #
̸≡ 0, since otherwise there is nothing to prove. Choose

χ ∈ C∞
c (X) with χV = V , and χ independent of θ .

Let Rreg
V0

(ζ ) = Rreg
V0

(ζ ; λ0, l), and let ϵ, L > 0 be as in Lemma 10.1. For l > L the function

Fl(ζ )
def
= (τl(ζ ) − λ0)

2 det(I + (I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0, λ0)|λ=τl (ζ )Pl)

is analytic on Dl(λ0, ϵ). Moreover, the order of vanishing of Fl at ζ0 ∈ Dl(λ0, ϵ) is given by

M(I + (I + V # Rreg
V0

(ζ )χ)−1V #4(RV0,0, λ0)|λ=τl (ζ )Pl, ζ0) + mV0(ζ0),
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see [Gohberg and Sigal 1971, Theorem 5.1]. Note that for ζ0 ∈ Dl(λ0, ϵ) and l sufficiently large,
mV0(ζ0) ̸= 0 if and only if τl(ζ0) = λ0. For λ0 ̸= 0, combining this with Lemmas 10.1 and 4.4, we see
that the poles of RV in Dl(λ0, ϵ) are, for l > L , given by the zeros of Fl , and the multiplicities agree.
If λ0 = 0, the same is true, but as in the proof of Theorem 1.3 we use Lemmas 5.6, 5.7, and 5.9.

To prove the theorem, we will apply Proposition 10.2 with the following choices: z = τl(ζ ), z0 = λ0,
f (x) = χ(x)u(x) so that h±l(x, θ) = χ(x)u(x)e±ilθ/

√
2π,

Sl = Sl(z) = (I + V # Rreg
V (ζl(z)))−1V #Pl,

Tl = Tl(z) =
−1
l2

∑
k ̸=0

(
z2

− k2

4k2 V−k Vk −
1

4k2 V−k(−10 + V0)Vk

)
Pl,

and s = 8. By Proposition 8.2 we have, in the notation of Proposition 10.2, m0 = 3. Note that using the
coordinate z = τl(ζ ), we have Fl(ζl(z)) = (z − λ0)

2DSl (z), where DSl is as defined via (10-1).
The function (z − λ0)

2DTl (z) has a single zero of multiplicity 2 in Uϵ , and by Lemma 8.7 this is the
zero of

z − λ0 +
i

4l2

∑
k ̸=0

∫
R

(
k2

+ λ2
0 − z2

k2 u2V−k Vk +
u2

∇0V−k · ∇0Vk

k2

)
near z = λ0. This zero is given by

zTl± = λ0 −
i

4l2

∑
k ̸=0

∫
R

(
u2V−k Vk +

u2
∇0V−k · ∇0Vk

k2

)
+ O(l−4).

By Proposition 10.2, the zeros of (z − λ0)
2DSl (z) in Uϵ are within O(l−m0) = O(l−3) of the zero

(of multiplicity 2) of (z − λ0)
2DTl (z) in Uϵ , thus completing the proof. □

The proof of Theorem 1.7 is similar.

Proof of Theorem 1.7. We prove the theorem by showing that for any N ∈ N there is an ϵ > 0 so that
for l ∈ N sufficiently large if ζ ♭

l ∈ Dl(λ0, ϵ) and ζ ♭
l is a pole of RV (ζ ), then Re τl(ζ

♭
l ) = O(l−N ).

Choose χ ∈ C∞
c (X; R) so that χV = V and χ is independent of θ . Choose ϵ, L > 0, as in Lemma 10.1.

Let u ∈ C∞(Rd) be such that RV0,0(λ) − i/(λ − λ0)u ⊗ u is analytic for λ near λ0. Our assumptions
on V and λ0 imply that u is real-valued. We apply Proposition 10.2 in a way very similar to the proof of
Theorem 1.6. We make the following choices: z = τl(ζ ), z0 = λ0, h±l(x, θ) = χ(x)u(x)e±ilθ/

√
2π , and

Sl = Sl(z) = (I + V # Rreg
V (ζl(z))χ)−1V #Pl , where Rreg

V (ζ ) = Rreg
V (ζ ; λ0, l). For l sufficiently large, Sl is

analytic on Uϵ . Let AN = AN (z, l) be the operator from Lemma 8.8, and set

Tl = Tl(z; N ) = Pl+ ANPl+ +Pl− ANPl−.

By Lemma 8.8, there is an s ∈ N so that

∥Pl Sl(z)Pl − Tl(z)∥H(0,s)(X)→L2(X) = O(l−N )

uniformly for z ∈ Uϵ . Thus for our application of Proposition 10.2 we have m0 = N.
Following the proof of Theorem 1.6, the poles of RV in Dl(λ0, ϵ) are determined by the zeros of

(z − λ0)
2DSl (z) in Uϵ , using Uϵ ∋ z = τl(ζ ). By Proposition 10.2, these zeros are approximated by those
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of (z − λ0)
2DTl (z) in Uϵ , with an error which is O(l−N ). We compete the proof by showing that for l

sufficiently large the zeros of DTl (z) in Uϵ lie on the imaginary axis.
Set a±(z; l) def

=
∫

X h∓l(Tl(z)h±l) =
∫

X h±l(Tl(z)h±l). From Lemma 8.8 and the definition of Tl , if
z ∈ Uϵ ∩ iR, then Tl(i z) is symmetric on C∞

c (X) ⊂ L2(X). In particular, this implies that if z ∈ iR ∩ Uϵ

then a±(z; l) ∈ R. Since a±(z; l) is analytic for z ∈ Uϵ and is real-valued for z ∈ iR ∩ Uϵ , we must have

a±(z; l) = ā±(−z̄; l) for z ∈ Uϵ . (10-6)

We remark that since λ0 ∈ iR, we have z ∈ Uϵ if and only if −z̄ ∈ Uϵ .
From the proof of Proposition 10.2, the zeros of (z − λ0)

2DTl (z) in Uϵ are given by the zeros of
z − λ0 + ia±(z, l) in Uϵ , and there is, for l sufficiently large, exactly one such zero for each choice of ±.
We denote these zeros by zTl± and focus on the zero for the “+” sign, zTl+. Using λ0 ∈ iR,

zTl+ − λ0 + ia+(zTl+; l) = 0 = zTl+ − λ0 + ia+(zTl+; l) = −(−zTl+ − λ0 + i ā+(zTl+; l))

= −(−zTl+ − λ0 + ia+(−zTl+; l)),

where the last equality uses (10-6). Hence −zTl+ is also a zero of z − λ0 + ia+(z; l) in Uϵ , and since
there is exactly one such zero, it must be that −zTl+ = zTl+, and thus zTl+ ∈ iR. The same argument
shows zTl− ∈ iR. □

11. Proof of Theorem 1.8, the resonant uniqueness of V ≡ 0 when d = 1

Theorem 1.8, a result on the resonant rigidity of the zero potential on R×S1, follows rather directly from
Theorems 1.1, 1.3, and 1.6.

Proof of Theorem 1.8. Suppose X = R × S1 and V is as in Theorem 1.8. Then by Theorems 1.1 and 1.3,
the one-dimensional operator −d2/dx2

+ V0 on R must have a resonance at the origin and nowhere
else, and this resonance must have multiplicity 1. But since V0 ∈ L∞

c (R), by well-known results for
one-dimensional Schrödinger operators, V0 ≡ 0; see for example [Zworski 1987].

The operator R0,0(λ)− i/(2λ)1 ⊗ 1 is analytic at the origin. Using this in Theorem 1.6 along with the
fact that RV has poles at a sequence of thresholds tending to infinity, we find∑

k ̸=0

1
k2

∫
R

(k2Vk V−k + V ′

k V ′

−k)(x) dx = 0.

But since V−k(x) = V k(x) for a real-valued potential V , this implies Vk ≡ 0 for all k, and hence V ≡ 0. □

12. The potential V (x, θ) = 2χI0(x) cos θ on R × S1

In this section we investigate the resonances near the l-th threshold of the Schrödinger operator with
potential V (x, θ) = 2χI0(x) cos θ on X = R×S1. Here χI0(x) is the characteristic function of the interval
I0 = [−1, 1], so χI0(x) = 1 if |x | ≤ 1 and χI0(x) = 0 if |x | > 1. This potential has V0 ≡ 0 so that V #

= V .
Proposition 12.3 shows that the resonances nearest the threshold, which correspond to perturbations of the
pole at the origin for R0,0(λ), are, for this potential, localized in a different way than for smooth potentials;
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compare Theorem 1.6. By Proposition 12.6, there is a sense in which Theorem 1.5 is sharp. We remark
that some of the computations of this section are reminiscent of those found in [Drouot 2018, Section 2].

In all of this section,
V (x, θ) = 2χI0(x) cos θ and X = R × S1.

We will use this preliminary lemma.

Lemma 12.1. For λ, λ′
∈ C, λ ̸= ±λ′,

χI0 R0,0(λ)χI0 R0,0(λ
′)χI0

=
1

(λ′)2 − λ2 χI0(R0,0(λ
′) − R0,0(λ))χI0 +

i
4λλ′(λ + λ′)

ei(λ+λ′)(φλ ⊗ φλ′ + φ−λ ⊗ φ−λ′), (12-1)

where
φ±λ(x) = e±iλxχI0(x).

Moreover, if τ ∈ C, τ ̸= ±λ, applying the operator χI0 R0,0(τ ) to the function χI0(x)eiλx yields

(χI0 R0,0(τ )χI0eiλ⋆)(x)=χI0(x)

(
1

λ2 − τ 2 eiλx
+

1
2τ(λ − τ)

e−iλeiτ(1+x)
+

1
2τ(τ + λ)

eiλeiτ(1−x)

)
. (12-2)

Proof. The first can be seen, for example, by using (3-1), the explicit expression for the Schwartz kernel
of R0,0, and evaluating ∫ 1

−1
eiλ|x−x ′′

|+iλ′
|x ′′

−x ′
| dx ′′

for |x |, |x ′
| ≤ 1. Likewise, (12-2) follows from an explicit computation using (3-1). □

12A. Resonances near the threshold τl = 0 for V (x, θ) = 2χI0(x) cos θ . Since in this section we
concentrate on the resonance near the threshold, we work on Bl(1). A preliminary step is the following.

Lemma 12.2. Let Rreg
0 (ζ ) = Rreg

0 (ζ ; 0, l). Then for l sufficiently large, uniformly on Bl(1),

∥Pl((I + V Rreg
0 (ζ )χI0)

−1V + V Rreg
0 (ζ )V + (V Rreg

0 (ζ ))3V )Pl∥ = O(l−2).

Proof. Using the Neumann series,

(I + V Rreg
0 (ζ )χI0)

−1V =

∞∑
j=0

(−V Rreg
0 (ζ )) j V .

By Lemma 5.2, ∥(−V Rreg
0 (ζ )) j

∥ = O(l−2) on Bl(1) if j ≥ 4 and l is sufficiently large. This ensures the
Neumann series for (I + V Rreg

0 (ζ )χI0)
−1 converges, and∥∥∥∥(I + V Rreg

0 (ζ )χI0)
−1V −

3∑
j=0

(−V Rreg
0 (ζ )) j V

∥∥∥∥ = O(l−2)

on Bl(1).
Now we note that our explicit expression for V means that Pl VPl = 0. Likewise, it implies that

Pl(V Rreg
0 (ζ ))2VPl = 0, completing the proof. □
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Proposition 12.3. For l sufficiently large, the poles of RV (ζ ) in Bl(1) satisfy

τl(ζ ) =
1

4l
√

2l
(−1 − i + ei2

√
2l) + O(l−2).

Proof. We give a proof similar to that of Theorem 1.6 using Proposition 10.2.
Let Rreg

0 be as in Lemma 12.2, and restrict ζ to ζ ∈ Bl(1). Note

R0,0(λ) −
i

2λ
1 ⊗ 1

is regular at λ = 0. Set z = τl(ζ ),

Sl(z) = (I + V Rreg
0 (ζl(z))χI0)

−1VPl, and h±l(x, θ) =
1

√
2π

χI0(x)e±ilθ

We use DSl as is defined by (10-1) and Uϵ as in Proposition 10.2. Then just as in the proof of Theorem 1.6,
the poles of RV in Bl(1) are identified via z = τl(ζ ) with the zeros of z2DSl (z) in U1. Set z0 = 0 and
Tl = Pl(−V Rreg

0 (ζ )V − (V Rreg
0 (ζ ))3V )Pl . Then by Lemma 12.2, in our application of Proposition 10.2

we can take s = 0 and m0 = 2. We claim that uniformly for z ∈ U1,

z2DTl (z) =

(
z +

1
2(2l)3/2 (1 − e2i

√
2l

+ i) + O(l−2)

)2

. (12-3)

Assuming for the moment that (12-3) holds, this shows that the two zeros (when counted with multiplicity)
of z2DTl (z) in U1 satisfy

z =
−1 − i + e2i

√
2l

2(2l)3/2 + O(l−2).

An application of Proposition 10.2 and Lemma 12.2 then proves the proposition.
We now turn to showing (12-3). We use

Rreg
0 (ζl(z))VPl =

∑
±

(e±iθ R0,0(τl+1) + e∓iθ R0,0(τl−1))χI0Pl±, (12-4)

where τl±1 = τl±1(ζl(z)), so that

Pl V Rreg
0 (ζl(z))VPl = χI0(R0,0(τl−1) + R0,0(τl+1))χI0Pl . (12-5)

Then using (12-2) gives∫
X

h∓l V Rreg
0 (ζl(z))V h±l =

−i
2(2l)3/2 (1 − e2i

√
2l) +

1
2(2l)3/2 + O(l−2) (12-6)

uniformly on U1. Now note∫
X

h∓l(V Rreg
0 )3V h±l =

∫
X
(V Rreg

0 V h∓l)(χI0(Rreg
0 V )2h±l). (12-7)

By (12-2),
∥(V Rreg

0 V h∓l)∥ = O(l−1) and ∥χI0(Rreg
0 V )2h±l∥ = O(l−1).

Using the expression for DTl as in (10-2) and equations (12-5)–(12-7) completes the proof of (12-3). □
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12B. Existence of poles of RV within ≈ log l of the l-th threshold, for V (x, θ) = 2χI0(x) cos θ . As a
point of comparison with Theorem 1.5, for the special case V (x, θ) = 2χI0(x) cos θ on X = R × S1 we
consider the existence of poles of RV (ζ ) in Dl(α log l) with |τl(ζ )| > 1.

Again, we use the coordinate z = τl(ζ ) on Bl(α log l), and the functions φλ are as defined in Lemma 12.1.

Lemma 12.4. Let α > 0 be fixed, and set z = τl(ζ ). For l sufficiently large, uniformly on Bl(α log l)\Bl(1)

we have∥∥∥∥Pl(I + V R0(ζ )χI0(I −Pl))
−1V R0(ζ )χI0Pl + ( f+ ⊗φz + f− ⊗φ−z)Pl −

1
2l2 χI0 R0,0(z)χI0Pl

∥∥∥∥
= O

(
1

l5/2 e2(Im z)−

)
+ O(l−3/2), (12-8)

where

f±(x) = f±(x, z, l) =
iei z

4z
χI0(x)

(
eiτl+1

τl+1(z + τl+1)
φ±τl+1 +

eiτl−1

τl−1(z + τl−1)
φ±τl−1

)
.

For notational simplicity, we have written τl±1 for τl±1(ζl(z)).

Proof. We use

(I + V R0(ζ )χI0(I −Pl))
−1

=

∞∑
j=0

(−V R0(ζ )χI0(I −Pl))
j

since ∥V R0(ζ )χI0(I −Pl)∥ = O(l−1/2). This estimate, along with others in this proof, are uniform for
ζ ∈ Bl(α log l) \ Bl(1). By Lemma 12.1, (3-1), and the explicit expression for V , we see that

∥χI0 R0(ζ )(I −Pl)V R0(ζ )χI0Pl∥ = O(e2(Im z)−/(l|z|)) for ζ ∈ Bl(α log l)

for l sufficiently large. Moreover, this same lemma implies that if | j − l| ≤ 2, then

∥χI0(V R0(ζ )(I −Pl))
2χI0Pj∥ = O(l−3/2)

uniformly on Bl(α log l). This ensures that∥∥∥∥(
(I + V R0(ζ )χI0(I −Pl))

−1
−

2∑
j=0

(−V R0(ζ )χI0(I −Pl))
j
)

V R0(ζ )χI0Pl

∥∥∥∥
= O

(
1

l5/2|z|
e2(Im z)−

)
. (12-9)

Since, as in the proof of Proposition 12.3, Pl VPl = 0 and Pl(V R0(I −Pl))
2VPl = 0, it suffices to use

−Pl V R0(ζ )χI0(I −Pl)V R0(ζ )Pl to approximate Pl(I + V R0(ζ )χI0(I −Pl))
−1V R0(ζ )χI0Pl with the

desired accuracy.
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Using Lemma 12.1 and its notation,

Pl V R0(ζl(z))(I −Pl)V R0(ζl(z))χI0Pl

= χI0(R0,0(τl+1)χI0 R0,0(z) + R0,0(τl−1)χI0 R0,0(z))χI0Pl

=
1

τ 2
l+1 − z2

χI0(R0,0(τl+1) − R0,0(z))χI0Pl +
iei(z+τl+1)

4zτl+1(z + τl+1)
(φτl+1 ⊗ φz + φ−τl+1 ⊗ φ−z)Pl

+
1

τ 2
l−1 − z2

χI0(R0,0(τl−1) − R0,0(z))χI0Pl +
iei(z+τl−1)

4zτl−1(z + τl−1)
(φτl−1 ⊗ φz + φ−τl−1 ⊗ φ−z)Pl .

Note that ∥∥∥∥ 1
τ 2

l±1 − z2
χI0 R0,0(τl±1)χI0

∥∥∥∥ = O(l−3/2)

and ∥∥∥∥(
1

τ 2
l+1 − z2

+
1

τ 2
l−1 − z2

)
χI0 R0,0(z)χI0 −

1
2l2 χI0 R0,0(z)χI0

∥∥∥∥ = O(l−4
|z|−1e2(Im z)−).

This gives

Pl(V R0(ζl(z))(I −Pl)V R0,0(ζl(z))χI0Pl

=
iei(z+τl+1)

4zτl+1(z + τl+1)
(φτl+1 ⊗φz+φ−τl+1 ⊗φ−z)Pl +

iei(z+τl−1)

4zτl−1(z + τl−1)
(φτl−1 ⊗φz+φ−τl−1 ⊗φ−z)Pl

−
1

2l2 R0,0(z)Pl + OL2→L2

(
1

l5/2|z|
e2(Im z)−

)
+ OL2→L2(l−3/2), (12-10)

and completes the proof. □

Note that the functions f± and φ± in Lemma 12.4 depend holomorphically on z in the set

{z ∈ C : 1 ≤ z ≤ α log l}.

The function gl of the next lemma appears in the proof of Proposition 12.6, as its zeros approximate
the locations of the poles of RV (ζ ) away from the threshold in Bl(α log l), if α < 1. A discussion of the
Lambert W function can be found, for example, in [Corless et al. 1996]. This next lemma is very similar
to [Drouot 2018, Lemma 2.4].

Lemma 12.5. The zeros of

gl(z)
def
=

(
1 −

1

z8l
√

2l
e2i(

√
2l+z)

)2

−

(
1

8lz
√

2l
(ie2i z

+ e2i z)

)2

are given by z±
ν = z±

ν (l) =
i
2Wν((−ie2i

√
2l

∓ i ± 1)/(4l
√

2l)), where Wν is the ν-th branch of the
Lambert W function. In particular, we have z+

1 ∼ −
3i
4 log l. Moreover, for l sufficiently large there is

an r0 > 0 independent of l so that if w ∈ C and |w| < r0, then

|gl(z+

1 (l) + w)| ≥
2
3 |w|. (12-11)
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Proof. The zeros of gl are solutions of

1 −
1

z8l
√

2l
e2i(

√
2l+z)

= ±
1

8lz
√

2l
(ie2i z

+ e2i z)

and so satisfy

ze−2i z
=

1

8l
√

2l
(e2i

√
2l

± 1 ± i).

Solutions of this equation are given by

z±

ν =
i
2
Wν

(
1

4l
√

2l
(−ie2i

√
2l

∓ i ± 1)

)
.

From [Corless et al. 1996, (4.20)], we have z+

1 ∼ −
3i
4 log l as l → ∞.

To finish the proof, we set γ = 1/(8l
√

2l) and write

gl(z) =

(
1 +

γ

z
e2i z(−e2i

√
2l

− 1 − i)
)(

1 +
γ

z
e2i z(−e2i

√
2l

+ 1 + i)
)

.

Now we evaluate at z = z+

1 + w, with w ∈ C, |w| small, to find

gl(z+

1 + w) =

(
1 +

z+

1 e2iw

z+

1 + w

γ

z+

1 e−2i z+

1
(−e2i

√
2l

− 1 − i)
)(

1 +
z+

1 e2iw

z+

1 + w

γ

z+

1 e−2i z+

1
(−e2i

√
2l

+ 1 + i)
)

=

(
1 −

z+

1 e2iw

z+

1 + w

)(
1 +

z+

1 e2iw

z+

1 + w

−e2i
√

2l
+ 1 + i

e2i
√

2l + 1 + i

)
,

where for the second equality we have used z+

1 e−2i z+

1 = γ (e2i
√

2l
+ 1 + i). This gives, then, recalling

|z+

1 | → ∞ as l → ∞,

gl(z+

1 + w) = (−2iw + O(|w|/|z+

1 |) + O(|w|
2))

(
2(i + 1)

e2i
√

2l + 1 + i
+ O(|w|)

)
for |w| small. Then there is a r0 > 0 independent of l so that for l sufficiently large and |w| < r0,
|gl(z+

1 + w)| > 2
3 |w|. □

Proposition 12.6. For V (x, θ) = 2χI0(x) cos θ and l sufficiently large, RV (ζ ) has a pole at a point
ζ+

l ∈ Bl
( 7

8 log l
)

with ζ+

l satisfying

τl(ζ
+

l ) =
i
2
W1

(
1

4l
√

2l
(ie2i

√
2l

− i + 1)

)
+ O(l−1/2+ϵ)

for any ϵ > 0.

Proof. We continue to use z = τl(ζ ) and work in a region with 1 < |z| < 7
8 log l.

Using Lemma 12.4,

Pl(I + V R0(ζ )χI0(I −Pl))
−1V R0(ζ )χI0Pl = FPl +

1
2l2 χI0 R0,0(z)χI0Pl + A,

where, with notation from Lemma 12.4,

F = F(z, l) = − f+ ⊗ φz − f− ⊗ φ−z
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and ∥A∥ = O(l−5/2e(2 Im z)−) + O(l−3/2) on Bl
(7

8 log l
)

\ B1(l). We recall that the poles of RV in
Bl

( 7
8 log l

)
\ B1(l) are the zeros of I +Pl(I + V R0(ζ )χI0(I −Pl))

−1V R0(ζ )χI0Pl in Bl
( 7

8 log l
)
\ B1(l).

We write

I +Pl(I + V R0(ζ )χI0(I −Pl))
−1V R0(ζ )χI0Pl

=

(
I +

1
2l2 χI0 R0,0(z)χI0Pl

)(
I +

(
I +

1
2l2 χI0 R0,0(z)χI0Pl

)−1

(FPl + A)

)
(12-12)

since

I +
1

2l2 χI0 R0,0(z)χI0Pl

is invertible here. For notational convenience, set

S = Sl =

(
I +

1
2l2 χI0 R0,0(z)χI0Pl

)−1

,

and note that

S = I −
1

2l2 χI0 R0,0(z)χI0Pl + OL2→L2(l−4e4(Im z)−).

We first consider the poles of I + SFPl . These poles are given by the zeros of the function

D̃l(z)
def
= det(I + SFPl±) =

(
1 −

∫
R

(S f+)φz

)(
1 −

∫
R

(S f−)φ−z

)
−

(∫
R

(S f−)φz

)(∫
R

(S f+)φ−z

)
with twice the multiplicity. A computation and use of the approximations τl+1 = i

√
2l + O(l−1/2) and

τl−1 =
√

2l + O(l−1/2) show that

D̃l(z) = gl(z) + O(l−3/2) + O(l−2 log le2(Im z)−),

where gl is the function of Lemma 12.5. We note that both gl and D̃l are analytic in z if 1 < |z| < 7
8 log l.

We use z+

1 (l) as in Lemma 12.5. Recalling that Im z+

1 ∼ −
3
4 log l, the estimate (12-11) combined with

Rouché’s theorem shows that D̃l(z) has a zero within O(l−1/2+ϵ), for any ϵ > 0, of z+

1 (l). This, in turn,
means that

(I + SFPl)
−1

=

(
I +

(
I +

1
2l2 χI0 R0,0(z)χI0

)−1

FPl

)−1

has a single pole of multiplicity two at a point satisfying z = z+

1 (l)+ O(l−1/2+ϵ). Moreover, we can find
a c0 = c0(ϵ) so that ∥∥∥∥(

I +

(
I −

1
2l2 χI0 R0,0(z)χI0

)
FPl

)−1∥∥∥∥ = O(l1+ϵ)

when the distance from z to the pole is given by c0l−1/2+ϵ.
Now using our estimate on ∥A∥ we can apply the operator Rouché theorem to the pair I + SFPl and

I + SFPl + S A, to find that I + SFPl + S A has two poles (when counted with multiplicity) which are,
using the z-coordinate, within O(l−1/2+ϵ) of z+

1 (l). □
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