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PARTIAL REGULARITY FOR NAVIER–STOKES AND
LIQUID CRYSTALS INEQUALITIES WITHOUT MAXIMUM PRINCIPLE

GABRIEL S. KOCH

In 1985, V. Scheffer discussed partial regularity results for what he called solutions to the Navier–Stokes
inequality. These maps essentially satisfy the incompressibility condition as well as the local and global
energy inequalities and the pressure equation which may be derived formally from the Navier–Stokes
system of equations, but they are not required to satisfy the Navier–Stokes system itself.

We extend this notion to a system considered by Fang-Hua Lin and Chun Liu in the mid 1990s related to
models of the flow of nematic liquid crystals, which include the Navier–Stokes system when the director
field d is taken to be zero. In addition to an extended Navier–Stokes system, the Lin–Liu model includes a
further parabolic system which implies an a priori maximum principle for d which they use to establish
partial regularity (specifically, P1(S)= 0) of solutions.

For the analogous inequality one loses this maximum principle, but here we nonetheless establish the
partial regularity result P9/2+δ(S) = 0, so that in particular the putative singular set S has space- time
Lebesgue measure zero. Under an additional assumption on d for any fixed value of a certain parameter
σ ∈ (5, 6)— which for σ = 6 reduces precisely to the boundedness of d used by Lin and Liu — we obtain
the same partial regularity (P1(S)= 0) as do Lin and Liu. In particular, we recover the partial regularity
result (P1(S)= 0) of Caffarelli–Kohn–Nirenberg [1982] for suitable weak solutions of the Navier–Stokes
system, and we verify Scheffer’s assertion that the same holds for solutions of the weaker inequality as well.

We remark that the proofs of partial regularity both here and in the work of Lin and Liu largely follow the
proof in Caffarelli–Kohn–Nirenberg, which in turn used many ideas from an earlier work of Scheffer [1975].

1. Introduction

Fang-Hua Lin and Chun Liu consider the following system in [Lin and Liu 1995; 1996], which reduces
to the classical Navier–Stokes system in the case d ≡ 0 (here we have set various parameters equal to one
for simplicity):

ut −1u + ∇
T

· [u ⊗ u + ∇d ⊙ ∇d] +∇ p = 0

∇ · u = 0

dt −1d + (u · ∇)d + f (d)= 0

 (1-1)

with f = ∇F for a scalar field F given by

F(x) := (|x |
2
− 1)2,

so that
f (x)= 4(|x |

2
− 1)x
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(and in particular f (0) = 0). We take the spatial dimension to be three, so that for some � ⊆ R3 and
T > 0, we are considering maps of the form

u, d :�× (0, T )→ R3, p :�× (0, T )→ R,

and here
F : R3

→ R, f : R3
→ R3

are fixed as above. As usual, u represents the velocity vector field of a fluid, p is the scalar pressure in the
fluid, and, as in nematic liquid crystals models, d corresponds roughly1 to the director field representing
the local orientation of rod-like molecules, with u also giving the velocities of the centers of mass of
those anisotropic molecules.

In (1-1), for vector fields v and w, the matrix fields v⊗w and ∇v⊙ ∇w are defined to be those with
entries

(v⊗w)i j = viw j and (∇v⊙ ∇w)i j = v,i ·w, j :=
∂vk

∂xi

∂wk

∂x j

(summing over the repeated index k as per the Einstein convention), and for a matrix field J = (Ji j ), we
define the vector field ∇

T
· J by2

(∇T
· J )i := Ji j, j :=

∂ Ji j

∂x j

(summing again over j ). We think formally of ∇ (as well as any vector field) as a column vector and ∇
T

as a row vector, so that each entry of (the column vector) ∇
T

· J is the divergence of the corresponding
row of J . In what follows, for a vector field v we similarly denote by ∇

T v the matrix field with i-th row
given by ∇

T vi := (∇vi )
T , i.e.,

(∇T v)i j = vi, j :=
∂vi

∂x j
,

so that for smooth vector fields v and w we always have

∇
T

· (v⊗w)= (∇T v)w+ v(∇ ·w)= (w · ∇)v+ v(∇ ·w). (1-2)

For a scalar field φ we set ∇
2φ := ∇

T (∇φ), and for matrix fields J = (Ji j ) and K = (Ki j ), we let
J : K := Ji j Ki j (summing over repeated indices) denote the (real) Frobenius inner product of the matrices;
that is, J : K = tr(J T K ). We set |J | :=

√
J : J and |v| :=

√
v · v, and to minimize cumbersome notation

will often abbreviate by writing ∇v := ∇
T v for a vector field v where the precise structure of the matrix

field ∇
T v is not crucial; for example, |∇v| := |∇

T v|.
We note that by formally taking the divergence ∇· of the first line in (1-1) we obtain the usual pressure

equation
−1p = ∇ · (∇T

· [u ⊗ u + ∇d ⊙ ∇d]). (1-3)

1In principle, for d to only represent a direction one should have |d| ≡ 1. As proposed in [Lin and Liu 1995], F(d) is used
to model a Ginzburg–Landau type of relaxation of the pointwise constraint |d| ≡ 1. For further discussions on the modeling
assumptions leading to systems such as the one above, see e.g., [Lin and Wang 2014] or the appendix of [Lin and Liu 1995].

2Many authors simply write ∇ · J , which is perhaps more standard.
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As in the Navier–Stokes (d ≡ 0) setting, one may formally deduce (see Section 2) from (1-1) the following
global and local energy inequalities which one may expect solutions of (1-1) (with appropriate boundary
conditions) to satisfy:3

d
dt

∫
�

[
|u|

2

2
+

|∇d|
2

2
+ F(d)

]
dx +

∫
�

[|∇u|
2
+ |1d − f (d)|2] dx ≤ 0 (1-4)

for each t ∈ (0, T ), as well as a localized version4

d
dt

∫
�

[(
|u|

2

2
+

|∇d|
2

2

)
φ

]
dx +

∫
�

(|∇u|
2
+ |∇

2d|
2)φ dx

≤

∫
�

[(
|u|

2

2
+

|∇d|
2

2

)
(φt +1φ)+

(
|u|

2

2
+

|∇d|
2

2
+ p

)
u · ∇φ

+ u ⊗ ∇φ : ∇d ⊙ ∇d −φ∇
T
[ f (d)] : ∇

T d︸ ︷︷ ︸
=:R f (d,φ)

]
dx (1-5)

for t ∈ (0, T ) and each smooth, compactly supported in � and nonnegative scalar field φ ≥ 0. (For
Navier–Stokes, i.e., when d ≡ 0, one may omit all terms involving d , even though 0 ̸= F(0) /∈ L1(R3).)

In [Lin and Liu 1995], for smooth and bounded�, the global energy inequality (1-4) is used to construct
global weak solutions to (1-1) for initial velocity in L2(�), along with a similarly appropriate condition
on the initial value of d which allows (1-4) to be integrated over 0< t < T . This is consistent with the
pioneering result of J. Leray [1934] for Navier–Stokes (treated later by many other authors using various
methods, but always relying on the natural energy as in [Leray 1934]).

In [Lin and Liu 1996], the authors establish a partial regularity result for weak solutions to (1-1)
belonging to the natural energy spaces which moreover satisfy the local energy inequality (1-5). The result
is of the same type as known partial regularity results for a class of solutions known as suitable weak
solutions to the Navier–Stokes equations. The program for such partial regularity results for Navier–Stokes
was initiated in a series of papers by V. Scheffer in the 1970s and 1980s (see, for example, [Scheffer 1977;
1980] and other works mentioned in [Caffarelli et al. 1982]), and subsequently improved by L. Caffarelli,
R. Kohn and L. Nirenberg in [Caffarelli et al. 1982].5 They show (as do Lin and Liu [1996]) that the
one-dimensional parabolic Hausdorff measure of the (potentially empty) singular set S is zero (P1(S)= 0,
see Definition 2 below), implying that singularities (if they exist) cannot for example contain any smooth
one-parameter curve in space-time. The method of proof in [Lin and Liu 1996] largely follows the method
of [Caffarelli et al. 1982].

Of course the general system (1-1) is (when d ̸≡ 0) substantially more complex than the Navier–Stokes
system, and one therefore could not expect a stronger result than the type in [Caffarelli et al. 1982],
i.e., P1(S)= 0; in fact, it is surprising that such a result still holds even when d ̸≡ 0. The explanation

3For sufficiently regular solutions one can show that equality holds.
4Note that in [Lin and Liu 1996], the term “−R f (d,φ)” in (1-5) actually appears incorrectly as “+R f (d,φ)”; see Section 2.
5Alternative proofs of slight variations of the main results in [Caffarelli et al. 1982] were given in later works such as [Lin

1998; Ladyzhenskaya and Seregin 1999; Vasseur 2007; Kukavica 2009].
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for this seems to be that although (1-1) is more complex than Navier–Stokes in view of the additional
d components, one can derive an a priori maximum principle for d because of the third equation in
(1-1) which substantially offsets this complexity from the viewpoint of regularity. Therefore, under
suitable boundary and initial conditions on d , one may assume that d is in fact bounded, a fact which is
significantly exploited in [Lin and Liu 1996]. More recently, the authors of [Du et al. 2020] established
the same type of result for a related but more complex Q-tensor system; however there, as well, one may
obtain a maximum principle which is of crucial importance for proving partial regularity. One is therefore
led to the following natural question, which we will address below:

Can one deduce any partial regularity for systems similar in structure to (1-1) but which lack any
maximum principle?

In the Navier–Stokes setting, it was asserted by Scheffer [1985] that in fact the proof of the partial
regularity result in [Caffarelli et al. 1982] does not require the full set of equations in (1-1). He mentions
that the key ingredients are membership of the global energy spaces, the local energy inequality (1-5), the
divergence-free condition ∇ · u = 0 and the pressure equation (1-3) (with d ≡ 0 throughout). Scheffer
called vector fields satisfying these four requirements solutions to the Navier–Stokes inequality, equivalent
to solutions to the Navier–Stokes equations with a forcing f which satisfies f · u ≤ 0 everywhere. In
contrast, the results in [Lin and Liu 1996] do very strongly use the third equation in (1-1) in that it implies
a maximum principle for d .

In this paper, we explore what happens if one considers the analog of Scheffer’s Navier–Stokes
inequality for the system (1-1) when d ̸≡ 0. That is, we consider triples (u, d, p) with global regularities
implied — at least when � is bounded and under suitable assumptions on the initial data — by (1-4) which
satisfy (1-3) and ∇ · u = 0 weakly as well as (a formal consequence of) (1-5), but are not necessarily
weak solutions of the first and third equations (i.e., the two vector equations) in (1-1). In particular,
we will not assume that d ∈ L∞(�× (0, T )), which would have been reasonable in view of the third
equation in (1-1). We see that without further assumptions, the result is substantially weaker than the
P1(S)= 0 result for Navier–Stokes: following the methods of [Caffarelli et al. 1982; Lin and Liu 1996]
we obtain (see Theorem 1) P9/2+δ(S)= 0 for any δ > 0. This reinforces our intuition that the situation
here is substantially more complex than that of Navier–Stokes. On the other hand, we show that under a
suitable uniform local decay condition on |d|

σ (|u|
3
+ |∇d|

3)1−σ/6 with σ ∈ (5, 6)— see (1-14) below,
which in particular holds when d ≡ 0 as in [Caffarelli et al. 1982] — one in fact obtains P1(S)= 0 as in
[Caffarelli et al. 1982; Lin and Liu 1996]. In particular, we verify the above-mentioned assertion made by
Scheffer [1985] regarding partial regularity for the Navier–Stokes inequality.

Our key observation which allows us to work without any maximum principle is that, in view of the
global energy (1-4) and the particular forms of F and f , it is reasonable (see Section 2) to assume (1-9);
this implies that d ∈ L∞(0, T ; L6(�)) which is sufficient for our purposes.

As alluded to above, for our purposes we actually do not require all of the information which appears
in (1-5). In view of the fact that

|R f (d, φ)| = |φ∇
T
[ f (d)] : ∇

T d| ≤ 12|d|
2
|∇d|

2φ+ 8
(

|∇d|
2

2
φ

)
(1-6)
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(see (2-21) below), a consequence of (1-5) is that

A′(t)+B(t)≤ 8A(t)+ C(t) for 0< t < T, (1-7)

with A,B, C ≥ 0 defined as

A(t) :=

∫
�×{t}

(
|u|

2

2
+

|∇d|
2

2

)
φ, B(t) :=

∫
�×{t}

(|∇u|
2
+ |∇

2d|
2)φ

and

C(t) :=

∫
�×{t}

[(
|u|

2

2
+

|∇d|
2

2

)
|φt +1φ| + 12|d|

2
|∇d|

2φ

]
+

∣∣∣∣∫
�×{t}

[(
|u|

2

2
+

|∇d|
2

2
+ p

)
u · ∇φ+ u ⊗ ∇φ : ∇d ⊙ ∇d

]∣∣∣∣,
where

∫
�×{t} g :=

∫
�

g( · , t) dx . Equation (1-7) is nearly sufficient, with the term A(t) on the right-hand
side — in fact, even with u omitted, which cannot be avoided as “R f (d, φ)” appears on the right-hand side
of (1-5) with a minus sign (see footnote 4) — actually being, for technical reasons, the only6 troublesome
term. (Note that if R f (d, φ) had appeared with a plus sign in (1-5), one could have simply dropped
the troublesome φ|∇d|

2 term in (2-21) as a nonpositive quantity.) We therefore use a Grönwall-type
argument to hide this term on the left-hand side of (1-7) so that (if φ|t=0 ≡ 0)

A′(t)+B(t)≤ C(t)+ 8e8T
∫ t

0
C(τ ) dτ for 0< t < T . (1-8)

The (formally derived) local energy inequality (1-8) implies (1-13) below (for an appropriate constant
C ∼ 8T e8T

+ 1), which is sufficient for our purposes. (In fact, for all elements of the proof other than
Proposition 8, a weaker form as in (3-5) is sufficient.)

Our main result is the following.

Theorem 1. Fix any open set � ⊂ R3 and any T,C ∈ (0,∞). Set �T := � × (0, T ) and suppose
u, d :�T → R3 and p :�T → R satisfy the following four assumptions:

(1) u, d and p belong to the following spaces:7

u, d, ∇d ∈ L∞(0, T ; L2(�)), ∇u, ∇d, ∇
2d ∈ L2(�T ) (1-9)

and

p ∈ L3/2(�T ); (1-10)

6In fact, the appearance of |d|
2 on the right-hand side of (1-6), and hence of (1-7) as well, is handled precisely by the

assumption that d ∈ L∞(0, T ; L6(�)), and is the reason for the slightly weaker results compared to the Navier–Stokes setting
(i.e., when d ≡ 0).

7For a vector field f or matrix field J and scalar function space X , by f ∈ X or J ∈ X we mean that all components or
entries of f or J belong to X ; by ∇

2 f ∈ X we mean all second partial derivatives of all components of f belong to X ; etc.
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(2) u is weakly divergence-free:8

∇ · u = 0 in D′(�T ); (1-11)

(3) The following pressure equation holds weakly:9

−1p = ∇ · [∇
T

· (u ⊗ u + ∇d ⊙ ∇d)] in D′(�T ); (1-12)

(4) The following local energy inequality holds:10∫
�×{t}

(|u|
2
+ |∇d|

2)φ dx +

∫ t

0

∫
�

(|∇u|
2
+ |∇

2d|
2)φ dx dτ

≤ C
∫ t

0

{∫
�×{τ }

[(|u|
2
+ |∇d|

2)|φt +1φ| + |d|
2
|∇d|

2φ] dx

+

∣∣∣∣∫
�×{τ }

[(
|u|

2

2
+

|∇d|
2

2
+ p

)
u · ∇φ+ u ⊗ ∇φ : ∇d ⊙ ∇d

]
dx

∣∣∣∣
}

dτ

for a.e. t ∈ (0, T ) and for all φ ∈ C∞

0 (�× (0,∞)) such that φ ≥ 0. (1-13)

Let S ⊂�T be the (potentially empty) set of singular points where |u| + |∇d| is not essentially bounded
in any neighborhood of each z ∈ S, and let Pk be the k-dimensional parabolic Hausdorff outer measure
(see Definition 2). The following are then true:

(i) P9/2+δ(S)= 0, for any δ > 0 arbitrarily small.

(ii) If 11

gσ := sup
z0∈�T

(
lim sup

r↘0

1
r2+σ/2

∫∫
Qr (z0)

|d|
σ (|u|

3
+ |∇d|

3)1−σ/6 dz
)
<∞ (1-14)

for some σ ∈ (5, 6), then P1(S)= 0.

Note that in the case d ≡ 0, we regain the classical result of P1(S)= 0 for Navier–Stokes as obtained
in, for example, [Caffarelli et al. 1982], and more specifically for the (weaker) Navier–Stokes inequality
mentioned in [Scheffer 1985].

We recall that the definition of the outer parabolic Hausdorff measure Pk is given as follows, see
[Caffarelli et al. 1982, pp. 783–784]:

Definition 2 (parabolic Hausdorff measure). For any S ⊂ R3
× R and k ≥ 0, define

Pk(S) := lim
δ↘0

Pk
δ (S),

8Locally integrable functions will always be associated to the standard distribution whose action is integration against a
suitable test function so that, e.g., [∇ · u](ψ)= −[u](∇ψ) := −

∫
u · ∇ψ for ψ ∈ D(�T ).

9Note that u ⊗ u + ∇d ⊙ ∇d ∈ L5/3(�T )⊂ L1
loc(�T ), see (2-18)–(2-19).

10For brevity, for ω ⊂ R3, we set
∫
ω×{t} g dx :=

∫
ω g(x, t) dx .

11In general we set z = (x, t) ∈�T , dz := dx dt and recall from Definition 2 that Qr (x0, t0) := Br (x0)× (t0 − r2, t0).
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where

Pk
δ (S) := inf

{ ∞∑
j=1

r k
j

∣∣∣∣ S ⊂

∞⋃
j=1

Qr j , r j < δ, ∀ j ∈ N

}
and Qr is any parabolic cylinder of radius r > 0, i.e.,

Qr = Qr (x, t) := Br (x)× (t − r2, t)⊂ R3
× R

for some x ∈ R3 and t ∈ R. We note that Pk is an outer measure, and all Borel sets are Pk-measurable.

Remark 3. In the case � = R3, the condition (1-10) on the pressure follows (locally, at least) from
(1-9) and (1-12) if p is taken to be the potential-theoretic solution to (1-12), since (1-9) implies that
u,∇d ∈ L10/3(�T ) by interpolation (see (2-18) below) and Sobolev embeddings, and then (1-12) gives
p ∈ L5/3(�T )⊂ L3/2

loc (�T ) by Calderón–Zygmund estimates. For a more general �, the existence of such
a p can be derived from the motivating equation (1-1) (e.g., by estimates for the Stokes operator); see
[Lin and Liu 1996]. Here, however, we will not refer to (1-1) at all and simply assume p satisfies (1-10)
and address the partial regularity of such a hypothetical set of functions satisfying (1-9)–(1-13).

We note that Theorem 1 does not immediately recover the result of [Lin and Liu 1996] (which would
correspond to σ = 6 in (1-14), which holds when d ∈ L∞ as assumed in that paper). Heuristically,
however, one can argue as follows:12

If d were bounded, then taking for example D := 24∥d∥
2
L∞(�T )

+ 8<∞ one would be able to deduce
from (1-6) that

|R f (d, φ)| ≤ D
(

|∇d|
2

2

)
φ.

Adjusting the Grönwall-type argument leading to (1-8), one could then deduce from (1-5) that (if A(0)= 0)

A′(t)+B(t)≤ C̃(t)+ DeDT
∫ T

0
C̃(τ ) dτ for 0< t < T,

where

C̃(t) :=

∫
�×{t}

(
|u|

2

2
+

|∇d|
2

2

)
|φt +1φ| +

∣∣∣∣∫
�×{t}

[(
|u|

2

2
+

|∇d|
2

2
+ p

)
u · ∇φ+ u ⊗ ∇φ : ∇d ⊙ ∇d

]∣∣∣∣.
Using such an energy inequality, one would not need to include the |d|

6 term in E3,6 (see (3-6)) as one
would not need to consider the term coming from R f (d, φ) at all in Proposition 6, and — noting that
the L∞ norm is invariant under the rescaling on d in (3-25) — one could then adjust Lemmas 4 and 7
appropriately to recover the result in [Lin and Liu 1996] using the proof of Theorem 1 below.

Finally, we remark that the majority of the arguments in the proofs given below are not new, with
many essentially appearing in [Lin and Liu 1996] or [Caffarelli et al. 1982]. However we feel that our
presentation is particularly transparent and may be a helpful addition to the literature, and we include all
details so that our results are easily verifiable.

12We assume this is roughly the argument in [Lin and Liu 1996], although the details are not explicitly given; see, in particular,
[Lin and Liu 1996, (2.45)] which appears without the remainder term denoted in [Lin and Liu 1996] by R( f, φ), and here by
R f (d, φ).
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2. Motivation

We will show in this section that the assumptions in Theorem 1 are at least formally satisfied by smooth
solutions to the system (1-1).

2.1. Energy identities. As in [Lin and Liu 1996], let us assume that we have smooth solutions to (1-1)
which vanish or decay sufficiently at ∂� (assumed smooth, if nonempty) and at spatial infinity as
appropriate so that all boundary terms vanish in the following integrations by parts, and proceed to
establish smooth versions of (1-4) and (1-5). First, noting the simple identities

∇
T

· (∇d ⊙ ∇d)= ∇

(
|∇d|

2

2

)
+ (∇T d)T1d (2-1)

and
[(∇T d)T1d] · u = [(∇T d)u] ·1d = [(u · ∇)d] ·1d, (2-2)

at a fixed t one may perform various integrations by parts — keeping in mind that ∇ · u = 0 — to see that

0 =

∫
�

[ut −1u + ∇
T

· (u ⊗ u)+ ∇ p + ∇
T

· (∇d ⊙ ∇d)] · u dx

=

∫
�

[
∂

∂t

(
|u|

2

2

)
+ |∇u|

2
+ [(u · ∇)d] ·1d

]
dx (2-3)

and — recalling that f = ∇F so that [dt + (u · ∇)d] · f (d)=
(
∂
∂t + u · ∇

)
[F(d)] — that

0 = −

∫
�

[dt + (u · ∇)d − (1d − f (d))] · (1d − f (d)) dx

= −

∫
�

[
−
∂

∂t

(
|∇d|

2

2
+ F(d)

)
+ [(u · ∇)d] ·1d − |1d − f (d)|2

]
dx . (2-4)

Adding the two gives the global energy identity for (1-1):

d
dt

∫
�

[
|u|

2

2
+

|∇d|
2

2
+ F(d)

]
dx +

∫
�

[|∇u|
2
+ |1d − f (d)|2] dx = 0 (2-5)

in view of the cancellation of the terms in bold in (2-3) and (2-4).
It is not quite straightforward to localize the calculations in (2-3) and (2-4), for example replacing the

(global) multiplicative factor (1d − f (d)) by (1d − f (d))φ for a smooth and compactly supported φ.
Arguing as in [Lin and Liu 1996], one can deduce a local energy identity by instead replacing (1d − f (d))
by only a part of its localized version in divergence-form, namely by ∇

T
· (φ∇

T d), at the expense of the
appearance of |1d − f (d)|2 anywhere in the local energy.

Recalling (2-1) and (2-2) and noting further that

[(u · ∇)d] · [∇
T

· (φ∇
T d)] = [(u · ∇)d] · [φ1d] + [(u · ∇)d] · [(∇φ · ∇)d]

= [(u · ∇)d] · [φ1d] + u ⊗ ∇φ : ∇d ⊙ ∇d
and

[1(∇T d)] : ∇
T d =1

(
|∇d|

2

2

)
− |∇

2d|
2,



PARTIAL REGULARITY FOR NAVIER–STOKES AND LIQUID CRYSTALS INEQUALITIES 1709

one may perform various integrations by parts to deduce (as ∇ · u = 0) that

0 =

∫
�

[ut −1u +∇
T

· (u ⊗u)+∇ p +∇
T

· (∇d ⊙∇d)] ·uφ dx

=

∫
�

[
∂

∂t

(
|u|

2

2
φ

)
+|∇u|

2φ−
|u|

2

2
(φt +1φ)−

(
|u|

2

2
+

|∇d|
2

2
+ p

)
u ·∇φ+ [(u ·∇)d] · (1d)φ

]
dx

and

0 = −

∫
�

[dt + (u · ∇)d − (1d − f (d))] · [∇
T

· (φ∇
T d)] dx

= −

∫
�

[
−
∂

∂t

(
|∇d|

2

2
φ

)
− |∇

2d|
2φ+

|∇d|
2

2
(φt +1φ)

− ∇
T
[ f (d)] : φ∇

T d + [(u · ∇)d] · (1d)φ + u ⊗ ∇φ : ∇d ⊙ ∇d

]
dx

for smooth and compactly supported φ. Upon adding the two equations above and noting again the
cancellation of the terms in bold, we obtain the local energy identity for (1-1):

d
dt

∫
�

[(
|u|

2

2
+

|∇d|
2

2

)
φ

]
dx +

∫
�

(|∇u|
2
+ |∇

2d|
2)φ dx

=

∫
�

[(
|u|

2

2
+

|∇d|
2

2

)
(φt +1φ)+

(
|u|

2

2
+

|∇d|
2

2
+ p

)
u · ∇φ

+ u ⊗ ∇φ : ∇d ⊙ ∇d −φ∇
T
[ f (d)] : ∇

T d︸ ︷︷ ︸
=:R f (d,φ)

]
dx . (2-6)

Note that the term

u ⊗ ∇φ : ∇d ⊙ ∇d = [(∇d ⊙ ∇d)∇φ] · u = [(u · ∇)d] · [(∇φ · ∇)d]

in (2-6) is a more accurate version of what is described in [Lin and Liu 1996] as “((u · ∇)d ⊙ ∇d) · ∇φ”,
and that the term “−R f (d, φ)” in (2-6) appears incorrectly in that paper as “+R f (d, φ)”.

2.2. Global energy regularity heuristics. Let us first see where the global energy identity (2-5) leads us
to expect weak solutions to (1-1) to live (and hence why we assume (1-9) in Theorem 1).

To ease notation, in what follows let us fix �⊂ R3, and for T ∈ (0,∞] let us set �T :=�× (0, T ) and

Lr
t Lq

x (T ) := Lr (0, T ; Lq(�).

According to (2-5), we expect, so long as

M0 :=
1
2∥u( · , 0)∥2

L2(�)
+

1
2∥∇d( · , 0)∥2

L2(�)
+ ∥F(d( · , 0))∥L1(�) <∞,

(which we would assume as a requirement on the initial data), to construct solutions with u in the usual
Navier–Stokes spaces:

u ∈ L∞

t L2
x(∞) and ∇u ∈ L2

t L2
x(∞). (2-7)
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As for d we expect as well in view of (2-5) that

∇d ∈ L∞

t L2
x(∞), F(d) ∈ L∞

t L1
x(∞) and [1d − f (d)] ∈ L2

t L2
x(∞). (2-8)

The norms of all quantities in the spaces given in (2-7) and (2-8) are controlled by either M0 (the F(d)
term) or (M0)

1/2 (all other terms), by integrating (2-5) over t ∈ (0,∞). Recalling that

F(d) := (|d|
2
− 1)2 and f (d) := 4(|d|

2
− 1)d, (2-9)

one sees that | f (d)|2 = 16F(d)|d|
2, and one can easily confirm the following simple estimates:

∥d∥
2
L∞

t L4
x (∞)

≤ ∥F(d)∥1/2
L∞

t L1
x (∞)

+ ∥1∥L∞
t L2

x (∞), (2-10)

∥F(d)∥1/2
L∞

t L3/2
x (∞)

≤ ∥d∥
2
L∞

t L6
x (∞)

+ ∥1∥L∞
t L3

x (∞), (2-11)

∥ f (d)∥2
L∞

t L2
x (∞)

≤ 16∥F(d)∥L∞
t L3/2

x (∞)
∥d∥

2
L∞

t L6
x (∞)

, (2-12)

∥1d∥L2(�T ) ≤ ∥1d − f (d)∥L2(�T ) + T 1/2
∥ f (d)∥L∞

t L2
x (∞). (2-13)

Therefore, if we assume that

|�|<∞, (2-14)

and hence

1 ∈ L∞(0,∞; L2(�))∩ L∞(0,∞; L3(�)),

(2-8) along with (2-10) and (2-14) implies that

d ∈ L∞(0,∞; L4(�))⊂ L∞(0,∞; L2(�)). (2-15)

This, along with (2-8), then implies that

d ∈ L∞(0,∞; H 1(�)) ↪→ L∞(0,∞; L6(�)) (2-16)

by the Sobolev embedding, from which (2-11) implies that

F(d) ∈ L∞

t L3/2
x (∞)

which, along with (2-12) and (2-16), implies that

f (d) ∈ L∞

t L2
x(∞)

which, finally, in view of (2-13) and the last inclusion in (2-8), implies that

1d ∈ L2(�T ) for any T <∞, (2-17)

with the explicit estimate (2-13) which can then further be controlled by M0 via (2-8) and (2-10)–(2-12).
We therefore see that it is reasonable (in view of the usual elliptic regularity theory) to expect that

weak solutions to (1-1) should have the regularities in (1-9) of Theorem 1.
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Note further that various interpolations of Lebesgue spaces imply, for example, that for any interval
I ⊂ R one has

L∞(I ; L2(�))∩ L2(I ; L6(�))⊂ L2/α(I ; L6/(3−2α)(�)) for any α ∈ [0, 1]; (2-18)

for example, one may take α =
3
5 so that 2/α = 6/(3 − 2α) =

10
3 . Using this along with the Sobolev

embedding we expect (as mentioned in Remark 3) that

(u and) ∇d ∈ L2/α(0, T ; L6/(3−2α)(�)) for any α ∈ [0, 1], T <∞ (2-19)

with the explicit estimate13

∥∇d∥
2/α
L2/α

t L6/(3−2α)
x (T )

≲ T ∥∇d∥
2/α
L∞

t L2
x (∞)

+ ∥∇d∥
2/α−2
L∞

t L2
x (∞)

∥∇
2d∥

2
L2(�T )

.

Note that (2-19) along with (2-16), (2-14) and the Sobolev embedding implies that d ∈ Ls(0, T ; L∞(�))

as well for any T <∞ and s ∈ [2, 4).

2.3. Local energy regularity heuristics. Here, we will justify the well-posedness of the terms appearing
in the local energy equality (2-6), based on the expected global regularity discussed in the previous
section. In fact, all but the final term in (2-6) (where one can furthermore take the essential supremum
over t ∈ (0, T )) can be seen to be well defined by (2-19) under the assumptions in (1-9) and (1-10).

The R f (d, φ) term of (2-6) requires some further consideration: in view of (2-9) we see that

1
4∇

T
[ f (d)] = ∇

T
[(|d|

2
− 1)d] = 2d ⊗ [d · (∇T d)] + (|d|

2
− 1)∇T d. (2-20)

Recalling that
R f (d, φ) := φ∇

T
[ f (d)] : ∇

T d,

we therefore have
1
4R f (d, φ)= φ(2d ⊗ [d · (∇T d)] : ∇

T d + |d|
2
|∇d|

2)−φ|∇d|
2, (2-21)

where we have to be careful how we handle the appearance of, essentially, |d|
2 in the first term (the

second term is integrable in view of (2-8)). We have, for example, that

∥φ|d|
2
|∇d|

2
∥L1(�T ) ≤ ∥φ∥L∞(�T )∥d∥

2
L6(�T )

∥∇d∥
2
L3(�T )

and that
∥d∥L6(�T ) <∞ for any T ∈ (0,∞) (2-22)

by (2-16), and either

∥φ|∇d|
2
∥L1(�T ) ≤ ∥φ∥L∞(�T )∥∇d∥

2
L2(�T )

or ∥φ|∇d|
2
∥L1(�T ) ≤ ∥φ∥L3(�T )∥∇d∥

2
L3(�T )

,

(recall that φ is assumed to have compact support) and, for example, that

∥∇d∥L10/3(�T ) <∞ for any T ∈ (0,∞) (2-23)

by (2-19).

13 A ≲ B means that A ≤ C B for some suitably universal constant C > 0.
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3. Proof of Theorem 1

The first part of Theorem 1 will be a consequence of a certain local L3 ϵ-regularity criterion (Lemma 4),
while the second part will be a consequence of a certain local Ḣ 1 ϵ-regularity criterion (Lemma 7, which
is itself a consequence of Lemma 4). In the remainder of the paper, for a given z0 = (x0, t0) ∈ R3

× R

and r > 0, as in [Caffarelli et al. 1982] we will adopt the following notation for the standard parabolic
cylinder Qr (z0) with time interval Ir (t0), along with their centered versions (indicated with a star):

Ir (t0) := (t0 − r2, t0), I ∗

r (t0) :=
(
t0 −

7
8r2, t0 +

1
8r2),

Qr (z0) := Br (x0)× Ir (t0), Q∗

r (z0) := Br (x0)× I ∗

r (t0).
(3-1)

These are defined in such a way that Q∗
r (x0, t0)= Qr

(
x0, t0 +

1
8r2

)
, and subsequently that

Qr/2
(
x0, t0 +

1
8r2)

= Br/2(x0)×
(
t0 −

1
8r2, t0 +

1
8r2)

is a centered cylinder with center (x0, t0).

Lemma 4 (L3 ϵ-regularity; cf. [Lin and Liu 1996, Theorem 2.6; Caffarelli et al. 1982, Proposition 1]).
Fix any C ∈ (0,∞). For each q ∈ (5, 6], there exists a small14 constant ϵ̄q = ϵ̄q(C) ∈ (0, 1) such that for
any z̄ = (x̄, t̄ ) ∈ R3

× R and ρ̄ ∈ (0, 1], the following holds:
Suppose (see (3-1)) u, d : Q1(z̄)→ R3 and p : Q1(z̄)→ R with

u, d,∇d ∈ L∞(I1(t̄ ); L2(B1(x̄))), ∇u,∇d,∇2d ∈ L2(Q1(z̄)),

p ∈ L3/2(Q1(z̄))
(3-2)

satisfy

∇ · u = 0 in D′(Q1(z̄)), (3-3)

−1p = ∇ · (∇T
· [u ⊗ u + ∇d ⊙ ∇d]) in D′(Q1(z̄)), (3-4)

and the following local energy inequality holds:15∫
B1(x̄)×{t}

(|u|
2
+ |∇d|

2)φ dx +

∫ t

t̄−1

∫
B1(x̄)

(|∇u|
2
+ |∇

2d|
2)φ dx dτ

≤ C
∫ t

t̄−1

{∫
B1(x̄)×{τ }

[(|u|
2
+ |∇d|

2)|φt +1φ| + (|u|
3
+ |∇d|

3)|∇φ| + ρ̄|d|
2
|∇d|

2φ] dx

+

∣∣∣∣∫
B1(x̄)×{τ }

pu · ∇φ dx
∣∣∣∣
}

dτ

for a.e. t ∈ I1(t̄ ) and for all φ ∈ C∞

0 (B1(x̄)× (t̄ − 1,∞)) such that φ ≥ 0. (3-5)

14Roughly speaking, ϵ̄q ≲ (C̄)−9(2αq − 1)9 with αq := 2(q − 5)/(q − 2); in particular, ϵ̄q → 0 as q ↘ 5.
15Since

∣∣( 1
2 |u|

2
+

1
2 |∇d|

2)
u · ∇φ+ u ⊗ ∇φ : ∇d ⊙ ∇d

∣∣ ≤
( 1

2 |u|
3
+

3
2 |u||∇d|

2)
|∇φ| ≤ (|u|

3
+ |∇d|

3)|∇φ|, we note that
(1-13) implies (3-5) with ρ̄ = 1 if Q1(z̄)⊆�T . See also footnote 10.
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Set16

E3,q :=

∫∫
Q1(z̄)

(|u|
3
+ |∇d|

3
+ |p|

3/2
+ |d|

q
|∇d|

3(1−q/6)) dz. (3-6)

If E3,q ≤ ϵ̄q , then u,∇d ∈ L∞(Q1/2(z̄)) with

∥u∥L∞(Q1/2(z̄)), ∥∇d∥L∞(Q1/2(z̄)) ≤ ϵ̄2/9
q .

In order to prove Lemma 4, we will require the following two technical propositions. In order to state
them, let us fix (recalling (3-1)) for a given z0 = (x0, t0)— to be clear by the context — the abbreviated
notations

rk := 2−k, Bk
:= Brk (x0),

I k
:= Irk (t0), Qk

:= Bk
× I k

(3-7)

(so that Qk
= Q2−k (z0)) and, for each k ∈ N, we define the quantities

Lk = Lk(z0) and Rk = Rk(z0)

(again, the dependence on z0 = (x0, t0) will be clear by context) by17

Lk := ess sup
t∈I k

−

∫
Bk
(|u(t)|2 + |∇d(t)|2) dx +

∫
I k

−

∫
Bk
(|∇u|

2
+ |∇

2d|
2) dx dt (3-8)

and

Rk := −

∫
−

∫
Qk
(|u|

3
+ |∇d|

3) dz + r1/3
k −

∫
−

∫
Qk

|u||p − p̄k | dz, (3-9)

where

p̄k(t) := −

∫
Bk

p(x, t) dx .

The terms Lk and Rk correspond roughly to the left- and right-hand sides of the local energy inequality (3-5).
We now state the technical propositions, whose proofs we will give in Section 4.

Proposition 5 (cf. [Lin and Liu 1996, Lemma 2.7]). There exists a large universal constant CA > 0 such
that the following holds:

Fix any z̄ = (x̄, t̄ ) ∈ R3
× R, and suppose u, d and p satisfy (3-2) and (3-4). Then for any z0 ∈ Q1/2(z̄)

we have (see (3-7)–(3-9))

Rn+1(z0)≤ CA
(

max
1≤k≤n

L3/2
k (z0)+ ∥p∥

3/2
L3/2(Q1/2(z0))︸ ︷︷ ︸

≤E3,q ∀q≥0, cf. (3-6)

)
for all n ≥ 2. (3-10)

The proof of Proposition 5 uses only the Hölder and Poincaré inequalities, Sobolev embedding and
Calderón–Zygmund estimates along with a local decomposition of the pressure (see (4-20)) using the
pressure equation (3-4).

16Note that E3,q <∞ by (3-2) and standard embeddings; see Section 2 along with (3-22) with σ = 6.
17We use the standard notation for averages, e.g., −

∫
B f (x) dx :=

1
|B|

∫
B f (x) dx .
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Proposition 6 (cf. [Lin and Liu 1996, Lemma 2.8]). There exists a large universal constant CB > 0 such
that the following holds:

Fix any z̄ = (x̄, t̄ ) ∈ R3
× R, suppose u, d and p satisfy (3-2), (3-3) and (3-5), and set E3,q as in (3-6).

Then for any z0 ∈ Q1/2(z̄) and any q ∈ (5, 6], we have (see (3-7)–(3-9))

Ln(z0)≤ C · CB

(
1

2αq − 1
· max

k0≤k≤n
Rk(z0)+ E2/3

3,q + (1 + k025k0)E3,q

)
for all n ≥ 2 (3-11)

for any k0 ∈ {1, . . . , n − 1}, where C is the constant from (3-5) and

αq :=
2(q − 5)

q − 2
> 0.

The proof of Proposition 6 uses only the local energy inequality (3-5), the divergence-free condition (3-3)
on u and elementary estimates. The quantities on either side of (3-11) do not scale (in the sense of (3-25))
the same way (as do those in (3-10)), which is why the energy inequality is necessary.

Let us now prove Lemma 4 using Propositions 5 and 6.

Proof of Lemma 4. Let us fix some q ∈ (5, 6] and C ∈ (0,∞). We first note that for any φ ≥ 0 as in (3-5)
we have18 (recalling that ρ̄ ≤ 1)

ρ̄

∫∫
Q1

|d|
2
|∇d|

2φ ≤
2
q

∫∫
Q1

|d|
q
|∇d|

3(1−q/6)
+

(
1 −

2
q

)∫∫
Q1

|∇d|
3φ(5−αq )/3,

with αq := 2(q − 5)/(q − 2) ∈
(
0, 1

2

]
. Taking φ in particular such that φ ≡ 1 on Q1

= Q1/2(z0), we see
easily from this along with (3-5) that

L1

C
≲ E3,q + E2/3

3,q for all z0 ∈ Q1/2(z̄). (3-12)

It is also easy to see that
Ln+1 ≤ 8Ln for any n ∈ N. (3-13)

Hence we may pick C0 = C0(q,C)≫ 1 such that for any z0 ∈ Q1/2(z̄)— and suppressing the dependence
on z0 in what follows — we have

L1, L2, L3 ≤
1
2(C0)

2/3(E3,q + E2/3
3,q ) (by (3-12), (3-13)), (3-14)

CA ≤
1
2C0 and ((2αq − 1)−1

+ 2 + 3 · 215)C · CB ≤ (C0)
2/3

for CA and CB as in Propositions 5 and 6. Having fixed C0 — uniformly over z0 ∈ Q1/2(z̄)— we then
choose ϵ̄q ∈ (0, 1) so small that

ϵ̄q <
1

(C0)6
⇐⇒ C2

0 ϵ̄q < ϵ̄
2/3
q .

Noting first that ϵ̄q ≤ (ϵ̄q)
2/3, under the assumption E3,q ≤ ϵ̄q we in particular see from (3-14) that

L1, L2, L3 ≤ (C0ϵ̄q)
2/3.

18The inequality in fact holds for any q ∈ (2, 6].
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Then, by Proposition 5 with n ∈ {2, 3} we have

R3, R4 ≤
1
2C0(max{L3/2

1 , L3/2
2 , L3/2

3 } + ϵ̄q) (by (3-10))

≤
1
2C0(C0 + 1)ϵ̄q ≤ C2

0 ϵ̄q < ϵ̄
2/3
q

which implies due to Proposition 6 with n = 4 and k0 = 3 that

L4 ≤ CB((2αq − 1)−1 max{R3, R4} + E2/3
3,q + (1 + 3 · 215)E3,q) (by (3-11))

≤ (C0ϵ̄q)
2/3.

Then in turn, Proposition 5 with n = 4 gives

L1, L2, L3, L4 ≤ (C0ϵ̄q)
2/3

H⇒ R5 < ϵ̄
2/3
q (by (3-10)),

from which Proposition 6 with n = 5 and, again, k0 = 3 gives

R3, R4, R5 < ϵ̄
2/3
q H⇒ L5 ≤ (C0ϵ̄q)

2/3 (by (3-11)),

and continuing we see by induction that Proposition 5 and Proposition 6 (with k0 = 3 fixed throughout)
imply that

Rn(z0) < ϵ̄
2/3
q and Ln(z0)≤ (C0ϵ̄q)

2/3 for all n ≥ 3.

This, in turn, implies (for example) that (see, e.g., [Wheeden and Zygmund 1977, Theorem 7.16])

|u(z0)|
3
+ |∇d(z0)|

3
≤ ϵ̄2/3

q

for all Lebesgue points z0 ∈ Q1/2(z̄) of |u|
3
+ |∇d|

3 which implies the L∞ statement, and Lemma 4 is
proved. □

Lemma 4 will be used to prove the first assertion in Theorem 1 as well as the next lemma, which in
turn will be used to prove the second assertion in Theorem 1.

Lemma 7 (Ḣ 1 ϵ-regularity; cf. [Lin and Liu 1996, Theorem 3.1; Caffarelli et al. 1982, Proposition 2]).
Fix any C ∈ (0,∞) and ḡ ∈ [1,∞). For each σ ∈ (5, 6), there exists a small constant ϵσ = ϵσ (C, ḡ) > 0
such that the following holds. Fix �T := �× (0, T ) as in Theorem 1, and suppose u, d and p satisfy
assumptions (1-9)–(1-13). If (recall (3-1))

lim sup
r↘0

1
r2+σ/2

∫∫
Q∗

r (z0)

|d|
σ (|u|

3
+ |∇d|

3)1−σ/6 dz ≤ ḡ (3-15)

and

lim sup
r↘0

1
r

∫∫
Q∗

r (z0)

(|∇u|
2
+ |∇

2d|
2) dz ≤ ϵσ , (3-16)

for some z0 ∈�T , then z0 is a regular point, i.e., |u| and |∇d| are essentially bounded in some neighbor-
hood of z0.
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For the proof of Lemma 7, for z0 = (x0, t0) ∈ �T and for r > 0 sufficiently small, we define Az0 ,
Bz0 , Cz0 , Dz0 , Ez0 , Fz0 (cf. [Lin and Liu 1996, (3.3)]) and Gq,z0 using the cylinders Q∗

r (z0)— whose
centers z0 are in the interior, see (3-1) — by

Az0(r) :=
1
r

ess sup
t∈I ∗

r (t0)

∫
Br (x0)

(|u(t)|2 + |∇d(t)|2) dx, Bz0(r) :=
1
r

∫∫
Q∗

r (z0)

(|∇u|
2
+ |∇

2d|
2) dz,

Cz0(r) :=
1
r2

∫∫
Q∗

r (z0)

(|u|
3
+ |∇d|

3) dz, Dz0(r) :=
1
r2

∫∫
Q∗

r (z0)

|p|
3/2 dz,

Ez0(r) :=
1
r2

∫∫
Q∗

r (z0)

|u|
{∣∣|u|

2
− |u|2

r ∣∣ + ∣∣|∇d|
2
− |∇d|2

r ∣∣} dz

where ḡr (t) := −

∫
Br (x0)

g(y, t) dy,

Fz0(r) :=
1
r2

∫∫
Q∗

r (z0)

|u||p| dz, Gq,z0(r) :=
1

r2+q/2

∫∫
Q∗

r (z0)

|d|
q(|u|

3
+ |∇d|

3)1−q/6 dz

(3-17)

(note that G0,z0 ≡ Cz0) and, for q ∈ [0, 6), define

Mq,z0(r) :=
1
2 [Cz0(r)+ G6/(6−q)

q,z0
(r)] + D2

z0
(r)+ E3/2

z0
(r)+ F3/2

z0
(r). (3-18)

The statement in Lemma 7 will follow from Lemma 4 along with the following technical decay estimate
which will be proved in Section 4.

Proposition 8 (decay estimate; cf. [Lin and Liu 1996, Lemma 3.1; Caffarelli et al. 1982, Proposition 3]).
Fix any C ∈ (0,∞). There exists some constant c̄ = c̄(C) > 0 such that the following holds. Fix any
q, σ ∈ R with 2 ≤ q < σ < 6, and define

ασ,q :=
6
σ

·
σ − q
6 − q

∈ (0, 1). (3-19)

If u, d and p satisfy (1-9)–(1-13) for �T as in Theorem 1, and z0 ∈ �T and ρ0 ∈ (0, 1] are such that
Q∗
ρ0
(z0)⊆�T and furthermore

sup
ρ∈(0,ρ0]

Bz0(ρ)≤ 1 and sup
ρ∈(0,ρ0]

Gσ,z0(ρ)≤ ḡ (3-20)

for some finite ḡ ∈ [1,∞), then for any ρ ∈ (0, ρ0] and γ ∈
(
0, 1

4

]
we have

Mq,z0(γρ)≤ c̄ · ḡ6/(6−σ)

[
γ ασ,q/8(Mq,z0 + Mασ,q

q,z0 )+ γ
−15 B3ασ,q/4

z0

2∑
k=0

(M1/2k

q,z0
+ Mασ,q/2k

q,z0 )

]
(ρ). (3-21)

(In fact, in the sum over k in (3-21), one can omit the term with ασ,q when k = 0.)
The key new element in our statement and proof of Proposition 8 (and hence in achieving Lemma 7) is

the fact that, for certain q > 0 (so that Gq,z0 ̸= Cz0 and hence Mq,z0 is notably different from the quantity
found in the standard literature, namely M0,z0), we can still derive an estimate for Mq,z0 of the form (3-21),
with a constant depending only on C , σ and ḡ (and not on q). This is made possible (see Claim 4 and its
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applications in Section 4.4) by the following interpolation-type estimate for the range of the quantities
Gq,z0 (including G0,z0 = Cz0), a simple consequence of Hölder’s inequality:

0 ≤ q ≤ σ ≤ 6 =⇒ Gq,z0(r)≤ Gq/σ
σ,z0
(r)C1−q/σ

z0
(r) for all r > 0. (3-22)

The estimate (3-22) follows by writing

|d|
q(|u|

3
+ |∇d|

3)1−q/6
= [|d|

σ (|u|
3
+ |∇d|

3)1−σ/6
]
q/σ

· (|u|
3
+ |∇d|

3)(σ−q)/σ

and applying Hölder’s inequality with

1 =
q
σ

+
σ − q
σ

to Gq,z0 , and noting that r2+q/2
= [r2+σ/2

]
q/σ

· [r2
]
1−q/σ . In particular, if 0 ≤ q ≤ σ < 6, setting

ασ,q :=

(
1 −

q
σ

)
·

6
6 − q

and βσ,q :=
q
σ

·
6

6 − q
and noting that

βσ,q =
6

6 − σ
· (1 −ασ,q)≤

6
6 − σ

,

we see that

G6/(6−q)
q,z0

(r)
(3-22)
≤ Gβσ,q

σ,z0(r)C
ασ,q
z0 (r)

(3-15)
≤ ḡ6/(6−σ)

· [2Mασ,q
q,z0 (r)] for all r > 0 (3-23)

as long as ḡ ≥ 1; this leads to the constants appearing in (3-21).
Let us now use Proposition 8 and Lemma 4 to prove Lemma 7.

Proof of Lemma 7. Fix any C ∈ (0,∞), σ ∈ (5, 6) and ḡ ∈[1,∞), and fix19 any q = q(σ ) ∈
(
5,min

{
σ, 11

2

})
,

noting that 6/(6−q) < 12 and 2(6−q) > 1; for the chosen q , let ϵ̄q = ϵ̄q(C)∈ (0, 1) be the corresponding
small constant from Lemma 4.

Let us first note the following important consequence of Lemma 4. Fix �T as in Lemma 4 and
z0 := (x0, t0) ∈�T , and suppose that

Mq,z0(r)≤
1
2

(
ϵ̄q

3

)12

(3-24)

for some r ∈ (0, 1] such that Q∗
r (z0)⊆�T . Setting

uz0,r (x, t) := ru(x0 + r x, t0 + r2t),

pz0,r (x, t) := r2 p(x0 + r x, t0 + r2t),

dz0,r (x, t) := d(x0 + r x, t0 + r2t),

(3-25)

a change of variables from z = (x, t) to

(y, s) := (x0 + r x, t0 + r2t) (3-26)

19In the requirement that q ∈ (5,min{σ, q̄}), the choice of q̄ :=
11
2 is somewhat arbitrary and taken only for concreteness;

one could similarly choose any q̄ ∈ (5, 6) and adjust the subsequent constants accordingly.
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implies that∫
Q∗

1(0,0)
(|uz0,r |

3
+ |∇dz0,r |

3
+ |pz0,r |

3/2
+ |dz0,r |

q(|uz0,r |
3
+ |∇dz0,r |

3)1−q/6) dz

= Cz0(r)+ Dz0(r)+ Gq,z0(r)≤

(
ϵ̄q

3

)12

+

(
ϵ̄q

3

)6

+

(
ϵ̄q

3

)2(6−q)

< ϵ̄q .

Since Q∗

1(0, 0)= Q1
(
0, 1

8

)
, it follows20 from assumptions (1-9)–(1-13) that uz0,r , dz0,r and pz0,r satisfy

the assumptions of Lemma 4 with z̄ = (x̄, t̄ ) :=
(
0, 1

8

)
and ρ̄ := r2

∈ (0, 1], with the same constant C
(see footnote 15). Since we have just seen that

E3,q = E3,q(uz0,r , dz0,r , pz0,r , z̄) < ϵ̄q ,

we therefore conclude by Lemma 4 that

|uz0,r (z)|, |∇dz0,r (z)| ≤ ϵ̄2/9
q for a.e. z ∈ Q1/2

(
0, 1

8

)
= B1/2(0)×

(
−

1
8 ,

1
8

)
and hence

|u(y, s)|, |∇d(y, s)| ≤
ϵ̄

2/9
q

r
for a.e. (y, s) ∈ Br/2(x0)×

(
t0 −

1
8r2, t0 +

1
8r2).

In particular, by definition, z0 = (x0, t0) is a regular point, i.e., |u| and |∇d| are essentially bounded in a
neighborhood of z0, so long as (3-24) holds for some sufficiently small r > 0.

In view of this fact, setting

δσ :=
1
2

(
ϵ̄q(σ )

3

)12

and c̄σ := c̄ · ḡ6/(6−σ),

we choose γσ ∈
(
0, 1

4

]
so small that

c̄σγ
ασ,q/8
σ ≤

1
4

(
δ
[1−ασ,q ]

σ

2

)
, (3-27)

where c̄ = c̄(C) is the constant from Proposition 8 and ασ,q is defined as in (3-19); finally, we choose
ϵσ ∈ (0, 1] so small that

c̄σγ−15
σ ϵ

3ασ,q/4
σ ≤

1
4

(
δ
[1−ασ,q/4]

σ

6

)
. (3-28)

If z0 ∈�T is such that (3-15) and (3-16) hold, it implies in particular that there exists some ρ0 ∈ (0, 1]

such that Q∗
ρ0
(z0)⊆�T and, furthermore,

sup
ρ∈(0,ρ0]

Gσ,z0(ρ)≤ ḡ (3-29)

20For example, if one fixes an arbitrary φ ∈ C∞
0 (Q∗

1(0, 0)) and sets φz0,r (x, τ ) := φ((x − x0)/r, (τ − t0)/r2), then
φz0,r ∈ C∞

0 (Q∗
r (z0)) ⊂ C∞

0 (�T ). One can therefore use the test function φz0,r in (1-13), make the change of variables
(ξ, s) := ((x − x0)/r, (τ − t0)/r2), so (x, τ )= (x0 + rξ, t0 + r2s), and divide both sides of the result by r to obtain the local
energy inequality (3-5) for the rescaled functions with ρ̄ = r2 (as all terms scale the same way except for |d|

2
|∇d|

2φz0,r ) and
z̄ =

(
0, 1

8
)
. The other assumptions are straightforward.
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and

sup
ρ∈(0,ρ0]

Bz0(ρ) < ϵσ . (3-30)

It then follows from (3-27), (3-28) and (3-30) — and the facts that ασ,q , δσ ≤ 1 — that

c̄σγ
ασ,q/8
σ

(3-27)
≤

1
4

(
δ
[1−ασ,q ]

σ

2

)
=

1
4

(
min{1, δ[1−ασ,q ]

σ }

2

)
,

and that

c̄σγ−15
σ B3ασ,q/4

z0 (ρ)
(3-30)
≤ c̄σγ−15

σ ϵ
3ασ,q/4
σ

(3-28)
≤

1
4

(
δ
[1−ασ,q/4]

σ

6

)

=
1
4

(
mink∈{0,2}{min{δ

[1−1/2k
]

σ , δ
[1−ασ,q/2k

]

σ }}

6

)
for all ρ ≤ ρ0. Suppose now that z0 is not a regular point. Then we must have

δσ < Mq,z0(ρ) for all ρ ∈ (0, ρ0], (3-31)

or else (3-24) would hold for some r ∈ (0, ρ0] which would imply that z0 is a regular point as we
established above using Lemma 4.

In view of (3-29) and (3-30) — so that in particular (3-20) holds, as we chose ϵσ ≤ 1 — we conclude
by the estimate (3-21) of Proposition 8 (along with (3-27), (3-28), (3-30), (3-31) and our calculations
above) that

Mq,z0(γσρ)≤
1
2 Mq,z0(ρ) for all ρ ∈ (0, ρ0]

for any z0 which is not a regular point. However, since γ k
σ ρ0 ∈ (0, ρ0] for any k ∈ N, by iterating the

estimate above we would conclude for such z0 that

Mq,z0(γ
n
σ ρ0)≤

1
2

Mq,z0(γ
n−1
σ ρ0)≤

1
22 Mq,z0(γ

n−2
σ ρ0)≤ · · · ≤

1
2n Mq,z0(ρ0) < δσ

for a sufficiently large n ∈ N which contradicts (3-31) (with ρ = γ n
σ ρ0), and hence contradicts our

assumption that z0 is not a regular point. Therefore z0 must indeed be regular whenever (3-29) and (3-30)
hold for our choice of ϵσ , which proves Lemma 7. □

In order to prove Theorem 1, we now prove the following general lemma, from which Lemma 4
and Lemma 7 will have various consequences (including Theorem 1 as well as various other historical
results, which we point out for the reader’s interest). As a motivation, note first that, for r > 0 and
z1 := (x1, t1) ∈ R3

× R, according to the notation in (3-25) a change of variables gives∫
Q∗

1(0,0)
|uz1,r |

q
+ |pz1,r |

q/2
=

1
r5−q

∫
Q∗

r (x1,t1)
|u|

q
+ |p|

q/2,∫
Q∗

1(0,0)
|∇uz1,r |

q
=

1
r5−2q

∫
Q∗

r (x1,t1)
|∇u|

q
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and ∫
Q∗

1(0,0)
|dz1,r |

q
|∇dz1,r |

3(1−q/6)
=

1
r2+q/2

∫
Q∗

r (x1,t1)
|d|

q
|∇d|

3(1−q/6) (3-32)

for any q ∈ [1,∞).

Lemma 9. Fix any open and bounded �⋐ R3, T ∈ (0,∞), k ≥ 0 and Ck > 0, and suppose further that
S ⊆�T :=�× (0, T ) and that U :�T → [0,∞] is a nonnegative Lebesgue-measurable function such
that the following property holds in general:

(x0, t0) ∈ S =⇒ lim sup
r↘0

1
r k

∫
Q∗

r (x0,t0)
U dz ≥ Ck . (3-33)

If , furthermore,
U ∈ L1(�T ), (3-34)

then (recall Definition 2) Pk(S) <∞ (and hence the parabolic Hausdorff dimension of S is at most k)
with the explicit estimate

Pk(S)≤
55

Ck

∫
�T

U dz; (3-35)

moreover, if k = 5, then

µ(S)≤
4π
3

P5(S)≤
55

· 4π
3C5

∫
�T

U dz (3-36)

where µ is the Lebesgue outer measure, and if k < 5, then in fact Pk(S)= µ(S)= 0.

Before proving Lemma 9, let us first use it along with Lemma 4 and Lemma 7 to prove Theorem 1.

Proof of Theorem 1. First note that for any r > 0 and z1 := (x1, t1) ∈ R3
× R such that Qr (z1) ⊆ �T ,

it follows (as in the proof of Lemma 7) that, according to the definitions in (3-25), the rescaled triple
(uz1,r , dz1,r , pz1,r ) satisfies the conditions of Lemma 4 with z̄ := (0, 0) and ρ̄ := r2. Therefore if q ∈ (5, 6]

and
1
r2

∫
Qr (x1,t1)

|u|
3
+ |∇d|

3
+ |p|

3/2
+

1
r2+q/2

∫
Qr (x1,t1)

|d|
q
|∇d|

3(1−q/6)

=

∫
Q1(0,0)

|uz1,r |
3
+ |∇dz1,r |

3
+ |pz1,r |

3/2
+ |dz1,r |

q
|∇dz1,r |

3(1−q/6) < ϵ̄q (3-37)

(with ϵ̄q = ϵq(C) as in Lemma 4), it follows that |uz1,r |, |∇dz1,r | ≤ C on Q1/2(0, 0) for some C > 0,
and hence |u|, |∇d| ≤ C/r on Qr/2(x1, t1); in particular, every interior point of Qr/2(x1, t1) is a regular
point, assuming (3-37) holds. Therefore, taking z0 := (x0, t0) such that

Qr/2(x1, t1)= Q∗

r/2(x0, t0),

(so x0 = x1 and t0 is slightly lower than t1 so that (x0, t0) is in the interior of the cylinder Qr/2(x1, t1)) and
letting S ⊂�T be the singular set of the solution (u, d, p), we see (in particular) that, since r2+q/2 < r2

for r < 1,

(x0, t0) ∈ S
q ∈ (5, 6]

}
=⇒ lim sup

r↘0

1
r2+q/2

∫
Q∗

r (x0,t0)
|u|

3
+ |∇d|

3
+ |p|

3/2
+ |d|

q
|∇d|

3(1−q/6)
≥ ϵ̄q (3-38)
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(in fact, (3-38) must hold with lim inf instead of lim sup). Therefore, since (1-9) and (1-10) imply that

|u|
3
+ |∇d|

3
+ |p|

3/2
+ |d|

q
|∇d|

3(1−q/6)
∈ L1(�T ) (3-39)

(for T <∞), we may apply Lemma 9 — it is not hard to see, by using a suitable covering argument, that
without loss of generality we can assume� is bounded — with U :=|u|

3
+|∇d|

3
+|p|

3/2
+|d|

q
|∇d|

3(1−q/6),
k = 2 +

1
2q and Ck := ϵ̄q to see

(
setting δ :=

1
2(q − 5) ∈

(
0, 1

2

)
⇐⇒ 5< q < 6 with 2 +

1
2q =

9
2 + δ

)
that

P9/2+δ(S)= 0 for any δ ∈
(
0, 1

2

)
.

Before continuing with the proof of Theorem 1, we describe some intermediate results (using only
Lemma 4), with historical relevance, for the interest of the reader:

Suppose that (1-14) holds for some σ ∈ (5, 6) which we now fix. We further fix any q ∈ (5, σ ), and
choose γσ,q > 0 small enough that

γ 1−q/σ
σ,q (γ q/σ

σ,q + (gσ )q/σ ) < ϵ̄q .

As in the proof of (3-22), Hölder’s inequality (along with (3-32)) implies that∫
Q1(0,0)

|dz1,r |
q
|∇dz1,r |

3(1−q/6)
≤ (gσ )q/σ

(∫
Q1(0,0)

|∇dz1,r |
3
)1−q/σ

,

so that if

1
r2

∫
Qr (x1,t1)

|u|
3
+ |∇d|

3
+ |p|

3/2
=

∫
Q1(0,0)

|uz1,r |
3
+ |∇dz1,r |

3
+ |pz1,r |

3/2 < γσ,q , (3-40)

it follows that ∫
Q1(0,0)

|uz1,r |
3
+ |∇dz1,r |

3
+ |pz1,r |

3/2
+ |dz1,r |

q
|∇dz1,r |

3(1−q/6) < ϵ̄q

and hence (x0, t0) /∈ S for (x0, t0) as above.
Therefore under the general assumption (1-14) with σ ∈ (5, 6), there exists γσ >0 (e.g., γσ :=γσ,(5+σ)/2)

such that

(x0, t0) ∈ S =⇒ lim sup
r↘0

1
r2

∫
Q∗

r (x0,t0)
|u|

3
+ |∇d|

3
+ |p|

3/2
≥ γσ . (3-41)

Therefore, as long as
(u,∇d, p) ∈ L3(�T )× L3(�T )× L3/2(�T ), (3-42)

we may apply Lemma 9 with U := |u|
3
+|∇d|

3
+|p|

3/2, k = 2 and Ck := γσ to see (similar to Scheffer’s
result [1977]) that

P2(S)= 0.

On the other hand, we know slightly more than (3-42). The assumptions on u and d in (1-9) imply
(for example, by (2-18) with α =

3
5 , along with Sobolev embedding) that u, ∇d ∈ L10/3(�T ). Suppose

we also knew (as in the case when �= R3) that p ∈ L5/3(�T )— which essentially follows from (1-9)
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and (1-12), see [Lin and Liu 1996, Theorem 2.5]. Then (3-34) holds with U := |u|
10/3

+|∇d|
10/3

+|p|
5/3,

and moreover Hölder’s inequality implies that(
1
r2

∫
Q∗

r (z0)

|u|
3
+ |∇d|

3
+ |p|

3/2
)10/9

≤ 210/9
|Q1|

1/9
(

1
r5/3

∫
Q∗

r (z0)

|u|
10/3

+ |∇d|
10/3

+ |p|
5/3

)
(|Q1| is the Lebesgue measure of the unit parabolic cylinder). In view of (3-41), one could therefore
apply Lemma 9 with

U := |u|
10/3

+ |∇d|
10/3

+ |p|
5/3, k =

5
3 and Ck =

γσ
10/9

210/9|Q1|1/9

to deduce (similar to Scheffer’s result [1980]) that

P5/3(S)= 0.

All of the above follows from Lemma 4 alone. We will now show that Lemma 7 allows one — under
assumption (1-14) for some σ ∈ (5, 6), and even if p /∈ L5/3(�T )— to further decrease the dimension of
the parabolic Hausdorff measure, with respect to which the singular set has measure zero, from 5

3 to 1.
This was essentially the most significant contribution of [Caffarelli et al. 1982] in the Navier–Stokes
setting d ≡ 0.

Let us now proceed with the proof of the second assertion in Theorem 1. Suppose d satisfies (1-14)
for some σ ∈ (5, 6). Taking ϵσ = ϵσ (C, gσ ) > 0 as in Lemma 7 with ḡ := gσ , we see from (3-16) that

(x0, t0) ∈ S =⇒ lim sup
r↘0

1
r

∫
Q∗

r (x0,t0)
(|∇u|

2
+ |∇

2d|
2)≥ ϵσ ,

so that (3-33) holds with U := |∇u|
2
+ |∇

2d|
2 and k = 1. The second assumption in (1-9) implies that

(3-34) holds as well with U := |∇u|
2
+ |∇

2d|
2. Therefore Lemma 9 with U := |∇u|

2
+ |∇

2d|
2, k = 1

and Ck = ϵσ implies that

P1(S)= 0.

This completes the proof of Theorem 1 (assuming Lemma 9). □

Proof of Lemma 9. Fix any δ > 0, and any open set V such that

S ⊆ V ⊆�× (0, T ). (3-43)

For each z := (x, t) ∈ S, by (3-33) we can choose rz ∈ (0, δ) sufficiently small so that Q∗
rz
(z)⊂ V and

1
r k

z

∫
Q∗

rz (z)
U ≥ Ck . (3-44)

By a Vitalli covering argument, see [Caffarelli et al. 1982, Lemma 6.1], there exists a sequence (z j )
∞

j=1 ⊆S
such that

S ⊆

∞⋃
j=1

Q∗

5rz j
(z j ) (3-45)
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and such that the set of cylinders {Q∗
rz j
(z j )} j are pairwise disjoint. We therefore see from (3-44) that

∞∑
j=1

r k
z j

≤
1

Ck

∞∑
j=1

∫
Q∗

rz j
(z j )

U ≤
1

Ck

∫
V

U ≤
1

Ck

∫
�T

U (3-46)

which is finite (and uniformly bounded in δ) by (3-34). Note that according to Definition 2 of the parabolic
Hausdorff measure Pk, (3-46) implies

Pk(S)≤
5k

Ck

∫
V

U ≤
5k

Ck

∫
�T

U (3-47)

which establishes (3-35).
Let us now assume that k ≤ 5. Letting µ be the Lebesgue (outer) measure, note that

µ(Q∗

5rz j
)≤ |B1|(5rz j )

5

so that

µ(S)
(3-45)
≤ |B1|

∞∑
j=1

(5rz j )
5
≤ 55

|B1|δ
5−k

∞∑
j=1

r k
z j

(3-46)
≤ δ5−k 55

|B1|

Ck

∫
�T

U, (3-48)

since we have chosen rz < δ for all z ∈ S. If k = 5, (3-48) along with Definition 2 gives the explicit
estimate (3-36) on µ(S). If k < 5, since δ > 0 was arbitrary, sending δ → 0 we conclude (by (3-34)) that
µ(S)= 0 and hence S is Lebesgue measurable with Lebesgue measure zero. We may therefore take V to
be an open set such that µ(V ) is arbitrarily small but so that (3-43) still holds, and deduce that Pk(S)= 0
by (3-34) and (3-47). □

4. Proofs of technical propositions

In order to prove Proposition 5 as well as Proposition 8, we will require certain local decompositions of
the pressure (cf. [Caffarelli et al. 1982, (2.15)]) as follows:

4.1. Localization of the pressure.

Claim 1. Fix open sets �1 ⋐�2 ⋐�⊂ R3 and ψ ∈ C∞

0 (�2; R) with ψ ≡ 1 on �1. Let

Gx(y) :=
1

4π
1

|x − y|
(4-1)

be the fundamental solution of −1 in R3 so that, in particular,

∇Gx
∈ Lq(�2) for any q ∈

[
1, 3

2

)
for any fixed x ∈ R3, and set

Gx
ψ,1: = −Gx

∇ψ,

Gx
ψ,2: = 2∇Gx

· ∇ψ + Gx1ψ,

Gx
ψ,3: = ∇Gx

⊗ ∇ψ + ∇ψ ⊗ ∇Gx
+ Gx

∇
2ψ,
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so that
Gx
ψ,1,Gx

ψ,2,Gx
ψ,3 ∈ C∞

0 (�2) for any fixed x ∈�1.

Suppose 5 ∈ C2(�; R), v ∈ C1(�; R3) and K ∈ C2(�; R3×3). If

−15= ∇ · v in �, (4-2)

then for any x ∈�1,

5(x)= −

∫
∇Gx

· vψ +

∫
Gx
ψ,1 · v+

∫
Gx
ψ,25. (4-3)

Similarly, if
−15= ∇ · (∇T

· K ) in �, (4-4)

then for any x ∈�1,

5(x)= S[ψK ](x)+
∫

Gx
ψ,3 : K +

∫
Gx
ψ,25, (4-5)

where

S[K̃ ](x) := ∇x ·

(
∇

T
x ·

∫
Gx K̃

)
=

∫
Gx

∇ · (∇T
· K̃ ) for all K̃ ∈ C2

0(�2; R3×3);

in particular (noting ∇
2Gx /∈ L1

loc), S : [Lq(�2)]
3×3

→ Lq(�2) for any q ∈ (1,∞) is a bounded, linear
Calderón–Zygmund operator.

Remark 10. We note, therefore, that under the assumptions (1-9), (1-10) and (1-12), by suitable regu-
larizations one can see that for almost every fixed t ∈ (0, T ), (4-3) and (4-5) hold for a.e. x ∈�1 with
5 := p( · , t), K := J ( · , t) and v := ∇

T
· J ( · , t), where

J := u ⊗ u + ∇d ⊙ ∇d.

Indeed, under the assumptions (1-9), we have u,∇d ∈ L10/3(�T ) so that (omitting the x-dependence)

J (t) ∈ L5/3(�) for a.e. t ∈ (0, T ). (4-6)

Moreover, since u,∇d ∈ L∞(0, T ; L2(�))∩ L10/3(�T ) and ∇u,∇2d ∈ L2(�T ), we have

∇
T

· J ∈ L2(0, T ; L1(�))∩ L5/4(�T )

so that
∇

T
· J (t) ∈ L1(�)∩ L5/4(�) for a.e. t ∈ (0, T ). (4-7)

Finally, (1-10) implies that
p(t) ∈ L3/2(�) for a.e. t ∈ (0, T ). (4-8)

Fix now any t ∈ (0, T ) such that the inclusions in (4-6)–(4-8) hold. Since Gx
ψ, j ∈C∞

0 for x ∈�1, the terms in
(4-3) and (4-5) containing Gx

ψ, j are all well defined for every x ∈�1 since J (t), ∇T
· J (t), p(t)∈ L1

loc(�).
The term in (4-3) containing ∇Gx is in Lr

x(�2) for any r ∈
[
1, 15

7

)
by Young’s convolution inequality (since

�2 is bounded), so that term is well defined for a.e. x ∈�2. Indeed, for R > 0 such that �2 ⊆ BR/2(x0)
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for some x0 ∈ R3, we have x − y ∈ BR := BR(0) for all x, y ∈�2. Setting G(y) := G0(y) and letting χBR

be the indicator function of BR , since ψ is supported in �2 we therefore have

−

∫
∇Gx

· vψ = [([∇G]χBR ) ∗ (vψ)](x)

for all x ∈�2. Therefore∥∥∥∥∫
∇Gx

· vψ

∥∥∥∥
Lr

x (�2)

≤ ∥([∇G]χBR ) ∗ vψ∥Lr (R3)

≤ ∥[∇G]χBR ∥Lq (R3)∥vψ∥Ls(R3) = ∥∇G∥Lq (BR)∥vψ∥Ls(�2) <∞

by Young’s inequality for any q ∈
[
1, 3

2

)
, s ∈

[
1, 5

4

)
and r such that 1+

1
r =

1
q +

1
s

(
note that 2

3 +
4
5 −1 =

7
15

)
.

Finally, S[ψ J (t)] ∈ L5/3(�2) by the Calderón–Zygmund estimates
(
as 1< 5

3 <∞
)

so again that term is
defined for a.e. x ∈�2.

Regularizing the linear equation (1-12) using a standard spatial mollifier at any t ∈ (0, T ) where (1-12)
holds in D′(�) and where the inclusions in (4-6)–(4-8) hold, applying Claim 1 and passing to limits gives
the almost-everywhere convergence (after passing to a suitable subsequence) due, in particular, to the
boundedness of the linear operator S on L5/3(�2).

Proof of Claim 1. Since (extending 5 by zero outside of �) ψ5 ∈ C2
0(R

3), by the classical representation
formula, see, e.g., [Gilbarg and Trudinger 1983, (2.17)], for any x ∈ R3 we have

ψ(x)5(x)= −

∫
Gx1(ψ5)= −

∫
Gx(ψ15+ 2∇ψ · ∇5+51ψ). (4-9)

In particular, for a fixed x ∈ �1 where ψ ≡ 1, we have Gx
∇ψ ∈ C∞

0 (R
3) so that integrating by parts

in (4-9) we see that

5(x)=

∫
Gxψ(−15)+

∫
Gx
ψ,25. (4-10)

If (4-2) holds, then by (4-10) we have

5(x)=

∫
Gxψ∇ · v+

∫
Gx
ψ,25 (4-11)

for any x ∈�1. One can then carefully integrate by parts once in the first term of (4-11) as follows: for a
small ϵ > 0,∫

|y−x |>ϵ

Gxψ∇ · v dy = −

∫
|y−x |>ϵ

[∇(Gxψ)] · v dy +
1

4πϵ

∫
|y−x |=ϵ

ψv · νy d Sy︸ ︷︷ ︸
=O(ϵ2)

and since the second term vanishes as ϵ → 0 due to the fact that |∂Bϵ(x)| ≲ ϵ2, we conclude (since
∇Gx

∈ L1
loc) that ∫

Gxψ∇ · v = −

∫
[∇(Gxψ)] · v = −

∫
∇Gx

· vψ +

∫
Gx
ψ,1 · v

which, along with (4-11), implies (4-3) for any x ∈�1.



1726 GABRIEL S. KOCH

On the other hand, if (4-4) holds, then by (4-10) we have

5(x)=

∫
Gxψ∇ · (∇T

· K )+
∫

Gx
ψ,25 (4-12)

and one can write

∇ · (∇T
· (ψK ))= [∇

2ψ]
T

: K + ∇
Tψ · [∇ · K ] +∇ψ · [∇

T
· K ] +ψ∇ · (∇T

· K )

so that (as ∇
2ψ = ∇

T (∇ψ)= ∇(∇Tψ)= [∇
2ψ]

T since ψ ∈ C2)∫
Gx

[ψ∇ · (∇T
· K )]

=

∫
Gx

[∇ · (∇T
· (ψK ))] −

∫
Gx

[∇
2ψ : K ] −

∫
([Gx

∇
Tψ] · [∇ · K ] + [Gx

∇ψ] · [∇
T

· K ]).

Since Gx
∇ψ ∈ C∞

0 for x ∈�1, one can again integrate by parts in the final term to obtain

5(x)=

∫
Gx

[∇ · (∇T
· (ψK ))] +

∫
Gx
ψ,3 : K +

∫
Gx
ψ,25

for x ∈�1 in view of (4-12). Moreover, since ψK ∈ C2
0 and Gx

∈ L1
loc, as usual for convolutions one can

change variables to obtain∫
Gx

∇ · (∇T
· (ψK ))=

[
∇x ·

(
∇

T
x ·

∫
GxψK

)]
(x)=: S[ψK ](x)

which gives us (4-5) for any x ∈�1, where S (see, e.g., [Gilbarg and Trudinger 1983, Theorem 9.9]) is
a singular integral operator as claimed. (Note that ∇

2Gx /∈ L1
loc so that one cannot simply integrate by

parts twice in this term putting all derivatives on Gx , but
∫

GxψK is the Newtonian potential of ψK
which can be twice differentiated in various senses depending on the regularity of K .) □

4.2. Proof of Proposition 5. In what follows, for O ⊆ R3 and I ⊆ R, we will use the notation

∥ · ∥q;O := ∥ · ∥Lq (O), ∥ · ∥s;I := ∥ · ∥Ls(I ), ∥ · ∥q,s;O×I := ∥ · ∥Ls(I ;Lq (O)) =
∥∥∥ · ∥Lq (O)

∥∥
Ls(I )

and we will abbreviate by writing

∥ · ∥q;O×I := ∥ · ∥q,q;O×I = ∥ · ∥Lq (O×I ).

We first note some simple inequalities. Letting Br ⊂ R3 be a ball of radius r > 0, from the embedding
W 1,2(B1) ↪→ L6(B1) applied to functions of the form gr (x)= g(r x)— or suitably shifted, if the ball is
not centered as zero — we obtain

∥gr∥6;B1 ≲ ∥gr∥2;B1 + ∥∇gr∥2;B1 = ∥gr∥2;B1 + r∥(∇g)r∥2;B1

whereupon — noting by a simple change of variables that

∥gr∥q;B1 = r−3/q
∥g∥q;Br
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for any q ∈ [1,∞)— we obtain for any ball Br of radius r > 0 and any g that

∥g∥6;Br ≲
1
r
∥g∥2;Br + ∥∇g∥2;Br (4-13)

where the constant is independent of r as well as the center of Br . Next, for any v(x, t), using Hölder’s
inequality to interpolate between L2 and L6 we have

∥v(t)∥3;Br ≤ ∥v(t)∥1/2
2;Br

∥v(t)∥1/2
6;Br

(4-13)
≲ r−1/2

∥v(t)∥2;Br + ∥v(t)∥1/2
2;Br

∥∇v(t)∥1/2
2;Br

. (4-14)

Then for Ir ⊂ R with |Ir | = r2 and Qr := Br × Ir , Hölder’s inequality in the t variable gives

∥v∥3;Qr ≲ r−1/2
|Ir |

1/3
∥v∥2,∞;Qr + ∥v∥

1/2
2,∞;Qr

(|Ir |
1/6

∥∇v∥2;Qr )
1/2

so that
r−1/6

∥v∥3;Qr ≲ ∥v∥2,∞;Qr + ∥v∥
1/2
2,∞;Qr

∥∇v∥
1/2
2;Qr

≲ ∥v∥2,∞;Qr + ∥∇v∥2;Qr

(the first of which is sometimes called the multiplicative inequality) with a constant independent of r .
From these, noting that |Br | ∼ r3 and |Qr | ∼ r5, it follows easily that, for example,

−

∫
−

∫
Qn

|v|3 dz ≲
(

ess sup
t∈I n

−

∫
Bn

|v(t)|2 dx
)3/2

+

(∫
I n

−

∫
Bn

|∇v|2 dx dt
)3/2

. (4-15)

Note also that a similar scaling argument applied to Poincaré’s inequality gives the estimate

∥g − gBr ∥q;Br ≲ r∥∇g∥q;Br ∼ |Br |
1/3

∥∇g∥q;Br (4-16)

for any r > 0 and q ∈ [1,∞], where gO is the average of g in O for any O ⊂ R3 with |O| <∞. Note
finally that a simple application of Hölder’s inequality gives

∥gO∥q;O ≤ ∥g∥q;O. (4-17)

Proceeding now with the proof, fix some φ̃ ∈ C∞

0 (R
3) such that

φ̃ ≡ 1 in Br2(0)= B1/4(0) and supp(φ̃)⊆ Br1(0)= B1/2(0).

Now fix z̄ = (x̄, t̄ ) ∈ R3
× R and z0 = (x0, t0) ∈ Q1/2(z̄), define Bk , I k and Qk by (3-7) for this z0 and

define φ by φ(x) := φ̃(x − x0). So

φ ≡ 1 in B2
= B1/4(x0) and supp(φ)⊆ B1

= B1/2(x0)⊂ B1(x̄),

since x0 ∈ B1/2(x̄). The following estimates will clearly depend only on φ̃, i.e., constants will be uniform
for all z0 ∈ Q1/2(z̄).

First, applying (4-15) to v ∈ {u,∇d} and recalling (3-8) we see that

1
r5

n
(∥u∥

3
3;Qn + ∥∇d∥

3
3;Qn )≲ −

∫
−

∫
Qn
(|u|

3
+ |∇d|

3) dz
(4-15)
≲ L3/2

n (4-18)

for any n, with a constant independent of n. In particular, for any n we have the estimate

∥u∥3;Qn + ∥∇d∥3;Qn ≲ r5/3
n L1/2

n . (4-19)
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Next, by Claim 1 and Remark 10 with ψ := φ, �2 := B1 and �1 := B2, noting that p ≡ φp on
Q2

= Q1/4(z0)= B1/4(x0)×
(
t0 −

(1
4

)2
, t0

)
, as in (4-5) we have

p(x, t)

= S[φ J (t)](x)+
∫

B1\B2
(2∇Gx

⊗σ∇φ+Gx
∇

2φ) : J (t) dy+

∫
B1\B2

(2∇Gx
·∇φ+Gx1φ)p(t) dy, (4-20)

at almost every (x, t) ∈ Q2, where
J := u ⊗ u + ∇d ⊙ ∇d, (4-21)

2a ⊗σ b := a ⊗ b + b ⊗ a and the operator S consisting of second derivatives of the Newtonian potential
given by

S[K̃ ](x) := ∇x ·

(
∇

T
x ·

∫
B1

Gx K̃
)

for K̃ ∈ Lq(B1) is a bounded linear Calderón–Zygmund operator on Lq(B1) for 1<q<∞. Hence for any
n ∈ N, denoting by χn the indicator function for the set Bn

= B2−n (x0) and splitting φ = χnφ+ (1−χn)φ

in the first term of (4-20), we can write

p = p1,n
+ p2,n

+ p3,n
≡ p1,n

+ p2,n
+ p3,

where, for almost every (x, t) ∈ Q2,

p(x, t)= S[χnφ J (t)](x)︸ ︷︷ ︸
=:p1,n(x,t)

+ S[(1 −χn)φ J (t)](x)︸ ︷︷ ︸
=:p2,n(x,t)

+

∫
B1\B2

(2∇Gx
⊗σ ∇φ+ Gx

∇
2φ) : J (t) dy +

∫
B1\B2

(2∇Gx
· ∇φ+ Gx1φ)p(t) dy︸ ︷︷ ︸

=:p3,n(x,t)≡p3(x,t)

(where the last term is clearly independent of n, but we keep the notation p3,n for convenience).
Note first that, by the classical Calderón–Zygmund estimates, there is a universal constant Ccz > 0

such that, for all n ∈ N, we have

∥p1,n(t)∥3/2;Bn+1 ≤ Ccz∥χnφ J (t)∥3/2;R3 ≤ Ccz∥φ̃∥∞;R3∥J (t)∥3/2;Bn . (4-22)

Next, since the appearance of ∇φ in p3 exactly cuts off a neighborhood of the singularity of Gx (see (4-1))
uniformly for all x ∈ B1/8(x0)— as we integrate over |x0 − y| ≥

1
4 , hence |x − y| ≥

1
8 — we see that

p3,n( · , t) ∈ C∞(B1/8(x0)) for t ∈ I1/8(t0) with, in particular,

∥∇x p3,n(t)∥∞;Bn+1
(n≥2)
≤ ∥∇x p3,n(t)∥∞;B1/8(x0) ≤ c(φ̃)(∥J (t)∥1;B1 + ∥p(t)∥1;B1). (4-23)

In the term p2,n, the singularity coming from Gx is also isolated due to the appearance of χn , but it is no
longer uniform in n so we must be more careful. As we are integrating over a region which avoids a neigh-
borhood of the singularity at y = x of Gx, we can pass the derivatives in S under the integral sign to write

∇x p2,n(x, t)=

∫
B1\Bn

∇x [(∇
2
x Gx)T : φ J (t)] dy =

n−1∑
k=1

∫
Bk\Bk+1

∇x [(∇
2
x Gx)T : φ J (t)] dy
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and note, in view of (4-1), that

|∇
3
x Gx(y)| ≲

1
|x − y|4

≤ (2k+2)4 ≲
2k

|Bk |
for all x ∈ Bk+2, y ∈ (Bk+1)c.

Therefore, since

Bn+1
= B(n−1)+2

⊆ Bk+2 for 1 ≤ k ≤ n − 1,

we see that

∥∇x p2,n( · , t)∥∞,Bn+1 ≲ c(φ̃)
n−1∑
k=1

2k
−

∫
Bk

|J (y, t)| dy (4-24)

for all t ∈ I1/8(t0).
Now, recalling the notation

f̄k(t) := −

∫
Bk

f (x, t) dx

for a function f (x, t) and k ∈ N, for any t ∈ I 2
=

(
t0 −

( 1
4

)2
, t0

)
and n ≥ 2, we estimate∫

Bn+1
|u(x, t)||p(x, t)− p̄n+1(t)| dx

≤

3∑
j=1

∫
Bn+1

|u(x, t)||p j,n(x, t)− p̄ j,n
n+1(t)| dx

≤ ∥u( · , t)∥3;Bn+1

3∑
j=1

∥p j,n( · , t)− p̄ j,n
n+1(t)∥3/2;Bn+1

≲ ∥u(t)∥3;Bn+1

(
∥p1,n(t)∥3/2;Bn+1 + |Bn+1

|

3∑
j=2

∥∇ p j,n(t)∥∞;Bn+1

)
(by (4-16), (4-17) and Hölder)

≲ ∥u(t)∥3;Bn+1

(
∥J (t)∥3/2;Bn + r3

n+1

{( n−1∑
k=1

2k
−

∫
Bk

|J (t)| dy
)

+ ∥J (t)∥3/2;B1 + ∥p(t)∥3/2;B1

})
, (4-25)

where the last inequality follows from (4-22)–(4-24) and Hölder’s inequality. Note further that, setting

LJ,k :=

∥∥∥∥−

∫
Bk

|J (t)| dy
∥∥∥∥

L∞
t (I k)

, (4-26)

we have ∥∥∥∥n−1∑
k=1

2k
−

∫
Bk

|J (t)| dy
∥∥∥∥

L3/2
t (I n+1)

≤ |I n+1
|
2/3( max

1≤k≤n−1
LJ,k

) n−1∑
k=1

2k

≤ r1/3
n+1 max

1≤k≤n−1
LJ,k,

since |I n+1
| = r2

n+1 and
n−1∑
k=1

2k
=

2n
− 2

2 − 1
< 2n

= r−1
n .
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Integrating over t ∈ I n+1 in (4-25), applying Hölder’s inequality in the variable t and recalling by (4-19)
that ∥u∥3;Qn+1 ≲ r5/3

n+1L1/2
n+1, we obtain∫∫

Qn+1
|u||p − pn+1| dz

≲ r5/3
n+1L1/2

n+1

{
∥J∥3/2;Qn + r10/3

n+1 max
1≤k≤n−1

LJ,k + r3
n+1(∥J∥3/2;Q1 + ∥p∥3/2;Q1)

}
. (4-27)

It follows now from (4-21) that

∥J∥3/2;Qk ≤ ∥u∥
2
3;Qk + ∥∇d∥

2
3;Qk

(4-19)
≲ (r5/3

k L1/2
k )2 = r10/3

k Lk (4-28)

and

LJ,k
(4-26)
≤

∥∥∥∥−

∫
Bk
(|u( · )|2 + |∇d( · )|2) dy

∥∥∥∥
∞;I k

≤ Lk . (4-29)

Now from (4-21), (4-27)–(4-29) and the simple fact that 1
2rn = rn+1 ≤ 1 we obtain

r1/3
n+1 −

∫
−

∫
Qn+1

|u||p − p̄n+1| dz ≲ L1/2
n+1

{
r1/3

n+1Ln + r1/3
n+1 max

1≤k≤n−1
Lk + r10/3

1︸︷︷︸
≤1

L1 + ∥p∥3/2;Q1
}

≲ L1/2
n+1

{
max

1≤k≤n
Lk + ∥p∥3/2;Q1

}
.

Since

−

∫
−

∫
Qn+1

(|u|
3
+ |∇d|

3) dz
(4-18)
≲ L3/2

n+1,

adding the previous estimates and recalling (3-8) and (3-9) we have

Rn+1 ≲ L3/2
n+1 + L1/2

n+1

(
max

1≤k≤n
Lk + ∥p∥3/2;Q1

)
(where the constant is universal). This along with (3-13) implies (3-10) and proves Proposition 5. □

4.3. Proof of Proposition 6. For simplicity, take z̄ = z0 = (0, 0), so that (recall (3-7)) Qk
= Qk(0, 0),

etc., as the rest can be obtained by appropriate shifts.
We want to take the test function φ in (3-5) such that φ = φn

:= χψn , where (recall that here
Q1

= Q1(0, 0)= B1/2(0)×
(
−

1
4 , 0

)
so χ will be zero in a neighborhood of the parabolic boundary of Q1)

χ ∈ C∞

0
(
B1/2(0)×

(
−

1
4 ,∞

))
, χ ≡ 1 in Q2, 0 ≤ χ ≤ 1 (4-30)

and

ψn(x, t) :=
1

(r2
n − t)3/2

e−|x |
2/(4(r2

n −t)) for t ≤ 0. (4-31)

Note that the singularity of ψn would naturally be at (x, t)= (0, r2
n ) /∈ Q1, so ψn

∈ C∞(Q1) and we may
extend ψn smoothly to t > 0 (where its values will actually be irrelevant) for each n so that, in particular,
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φn
∈ C∞

0 (B1(0)× (−1,∞)) as required21 in (3-5) with (x̄, t̄ )= (0, 0). Furthermore, we have

∇ψn(x, t)= −
x

2(r2
n − t)

ψn(x, t) and ψn
t +1ψn

≡ 0 in Q1. (4-32)

Note first that for (x, t) ∈ Qn (n ≥ 2), we have

0 ≤ |x | ≤ rn and r2
n ≤ [r2

n − t] ≤ 2r2
n

so that
r3

n = (r2
n )

3/2e0/(8r2
n ) ≤ (r2

n − t)3/2e|x |
2/(4(r2

n −t))
≤ (2r2

n )
3/2er2

n /(4r2
n ) = 23/2e1/4r3

n .

Hence
1

23/2e1/4 ·
1
r3

n
≤ ψn(x, t)≤

1
r3

n
for all (x, t) ∈ Qn (4-33)

and therefore (as r2
n − t > 0)

|∇xψ
n(x, t)| =

|x |

2(r2
n − t)

|ψn(x, t)| ≲
rn

r2
n

·
1
r3

n
=

1
r4

n
for all (x, t) ∈ Qn. (4-34)

Next, note similarly that for 2 ≤ k ≤ n and (x, t) ∈ Qk−1
\ Qk , we have

rk ≤ |x | ≤ rk−1 = 2rk and r2
k ≤ r2

n + r2
k ≤ [r2

n − t] ≤ r2
n + r2

k−1 ≤ 2r2
k−1 = 8r2

k ,

so that

e1/32r3
k = (r2

k )
3/2er2

k /(32r2
k ) ≤ (r2

n − t)3/2e|x |
2/(4(r2

n −t))
≤ (8r2

k )
3/2e(2rk)

2/(4r2
k ) = 29/2er3

k .

Therefore
1

29/2e
·

1
r3

k

≤ ψn(x, t)≤
1

e1/32 ·
1
r3

k

for all (x, t) ∈ Qk−1
\Qk (2 ≤ k ≤ n) (4-35)

and hence, as in (4-34),

|∇xψ
n(x, t)| ≲

rk

r2
k

·
1
r3

k

=
1
r4

k
for all (x, t) ∈ Qk−1

\Qk (2 ≤ k ≤ n). (4-36)

We can therefore estimate (for n ≥ 2 where φn
= ψn in Qn):

1
23/2e1/4 ·

1
r3

n

[
ess sup

I n

∫
Bn
(|u|

2
+|∇d|

2)+

∫∫
Qn
(|∇u|

2
+|∇

2d|
2)

]
(4-33)
≤ ess sup

I n

∫
Bn
(|u|

2
+|∇d|

2)φn
+

∫∫
Qn
(|∇u|

2
+|∇

2d|
2)φn

≤ C
{∫∫

Q1
[(|u|

2
+|∇d|

2)|φn
t +1φn

|+(|u|
3
+|∇d|

3)|∇φn
|+ ρ̄|d|

2
|∇d|

2φn
]+

∫
I 1

∣∣∣∣∫
B1

pu ·∇φn
∣∣∣∣},

where the last inequality follows from (3-5). Note that

φn
t +1φn (4-32)

= ψn(χt +1χ)+ 2∇χ · ∇ψn (4-30)
≡ 0 in Q2

21In (3-5) as well, the values of φ for t > t̄ are actually irrelevant.
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and hence, taking k = 2 in (4-35) and (4-36), we see that

|φn
t +1φn

| ≲
1
r3

2

+
1
r4

2
≲ 1 on Q1, (4-37)

so that ∫∫
Q1
(|u|

2
+ |∇d|

2)|φn
t +1φn

|

(4-37)
≲

∫∫
Q1
(|u|

2
+ |∇d|

2)
(3-6)
≲ E2/3

3,q

by Hölder’s inequality. Note similarly that

|∇φn
| = |χ∇ψn

+ψn
∇χ |

(4-30)
≲ |∇ψn

| + |ψn
| on Q1

so that (since r4
n < r3

n ) (4-33), (4-34) and (4-35), (4-36), respectively, give

|∇φn
| ≲

1
r4

n
on Qn and |∇φn

| ≲
1
r4

k
on Qk−1

\Qk (4-38)

for any n ≥ 2 and 2 ≤ k ≤ n. Therefore

n∑
k=2

∫∫
Qk−1\Qk

(|u|
3
+ |∇d|

3)|∇φn
|

(4-38)
≲

[
max

1≤k≤n−1
(rk)

1−α
−

∫
−

∫
Qk
(|u|

3
+ |∇d|

3)

] n∑
k=2

(rk)
α

and similarly ∫∫
Qn
(|u|

3
+ |∇d|

3)|∇φn
|

(4-38)
≲

[
(rn)

1−α
−

∫
−

∫
Qn
(|u|

3
+ |∇d|

3)

]
(rn)

α

for any α ∈ (0, 1], and we note that

∞∑
k=1

(rk)
α

=

∞∑
k=1

(2−α)k =
1

2α − 1
<∞ for any α > 0. (4-39)

Hence in view of the disjoint union

Q1
=

( n⋃
k=2

Qk−1
\Qk

)
∪ Qn (4-40)

we have, taking α = 1 in (4-39),∫∫
Q1
(|u|

3
+ |∇d|

3)|∇φn
| ≲ max

1≤k≤n
−

∫
−

∫
Qk
(|u|

3
+ |∇d|

3).

Similarly, setting

αq :=
2(q − 5)

q − 2

and noting that αq ∈
(
0, 1

2

]
for q ∈ (5, 6], we have

ρ̄

∫∫
Q1

|d|
2
|∇d|

2φn
≤

2
q

∫∫
Q1

|d|
q
|∇d|

3(1−q/6)︸ ︷︷ ︸
≤E3,q

+

(
1 −

2
q

)∫∫
Q1

|∇d|
3(φn)(5−αq )/3
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uniformly, of course, over ρ̄ ∈ (0, 1]. Since∫∫
Qn

|∇d|
3(φn)(5−αq )/3

(4-33)
≲ (rn)

αq−5
∫∫

Qn
|∇d|

3 ≲ (rn)
αq −

∫
−

∫
Qn

|∇d|
3

(as φn ≲ r−3
n on Qn) for n ≥ 2 and similarly∫∫

Qk\Qk+1
|∇d|

3(φn)(5−αq )/3
(4-35)
≲ (rk)

αq−5
∫∫

Qk
|∇d|

3 ≲ (rk)
αq −

∫
−

∫
Qk

|∇d|
3

(as φn ≲ r−3
k on Qk

\ Qk+1 ) for 1 ≤ k ≤ n − 1, we see that (4-39) with α = αq and (4-40) again give∫∫
Q1

|∇d|
3(φn)(5−αq )/3 ≤ (2αq − 1)−1 max

1≤k≤n
−

∫
−

∫
Qk

|∇d|
3.

We therefore see that

ρ̄

∫∫
Q1

|d|
2
|∇d|

2φn ≲ 2
5

E3,q +
2
3
(2αq − 1)−1 max

1≤k≤n
−

∫
−

∫
Qk

|∇d|
3 with αq :=

2(q − 5)
q − 2

,

uniformly for any ρ̄ ∈ (0, 1] and q ∈ (5, 6].
Putting all of the above together and recalling (3-8), we see that for n ≥ 2 we have

Ln

C
=

1

C

[
ess sup

I n
−

∫
Bn
(|u|

2
+ |∇d|

2)+

∫
I n

−

∫
Bn
(|∇u|

2
+ |∇

2d|
2)

]
≲ E3,q + E2/3

3,q + (2αq − 1)−1 max
1≤k≤n

−

∫
−

∫
Qk
(|u|

3
+ |∇d|

3)+

∫
I 1

∣∣∣∣∫
B1

pu · ∇φn
∣∣∣∣. (4-41)

Furthermore, we claim that for 1 ≤ k0 ≤ n − 1 we have∫
I 1

∣∣∣∣∫
B1

pu · ∇φn
∣∣∣∣ ≲ max

k0≤k≤n

(
r1/3

k −

∫
−

∫
Qk

|p − p̄k ||u|

)
+ k024k0

∫∫
Q1

|p||u|. (4-42)

Assuming this for the moment and continuing, for n ≥ 2, (4-41), (4-42) and Young’s convexity inequality
along with the fact that, for any k1 ≥ 1, we can estimate

max
1≤k≤k1

−

∫
−

∫
Qk
(|u|

3
+ |∇d|

3)≲ k125k1

∫∫
Q1
(|u|

3
+ |∇d|

3)

imply (recalling (3-9)) that

Ln

C
≲ E3,q + E2/3

3,q + (2αq − 1)−1 max
k0≤k≤n

Rk + k025k0

∫∫
Q1

|u|
3
+ |∇d|

3
+ |p|

3/2︸ ︷︷ ︸
≤E3,q

for any k0 ∈ {1, . . . , n − 1}, which proves Proposition 6.
To prove (4-42), we consider additional functions χk (so that χkφ

n
= χkχψ

n) satisfying (recall that
Qk

= Qk(0, 0)= Brk (0)×(−r2
k , 0), so χk will be zero in a neighborhood of the parabolic boundary of Qk)

χk ∈ C∞

0 (Q̃rk ) with Q̃r := Br (0)× (−r2, r2) for r > 0,

χk ≡ 1 in Q̃7rk/8, 0 ≤ χk ≤ 1 and |∇χk | ≲
1
rk

(4-43)



1734 GABRIEL S. KOCH

(χk |{t>0} will again actually be irrelevant) so that in particular (as Q̃rk+2 ⊂ Q̃7rk+1/8 where χk ≡ χk+1 ≡ 1)

supp(χk −χk+1)⊂ Q̃rk \Q̃rk+2 . (4-44)

Then, fixing any n ≥ 2, writing

χ0 = χn +

n−1∑
k=0

(χk −χk+1)

and noting that χ0 ≡ 1 on Q1
= Q1/2(0, 0) ⊂ Q7/8(0, 0) = Q7r0/8(0, 0), we see that for any fixed

k0 ∈ N ∩ [1, n − 1] and at each fixed τ ∈ I 1, we have∫
B1

pu · ∇φn
=

∫
B1

pu · ∇[χ0φ
n
] (by (4-43))

=

∫
B1

pu · ∇[χnφ
n
] +

n−1∑
k=0

∫
B1

pu · ∇[(χk −χk+1)φ
n
]

=

∫
Bn

pu · ∇[χnφ
n
] +

n−1∑
k=0

∫
[Bk\Bk+2]

pu · ∇[(χk −χk+1)φ
n
] (by (4-43), (4-44))

=

∫
Bn
(p − p̄n)u · ∇[χnφ

n
] +

k0−1∑
k=0

∫
[Bk\Bk+2]

pu · ∇[(χk −χk+1)φ
n
]

+

n−1∑
k=k0

∫
[Bk\Bk+2]

(p − p̄k)u · ∇[(χk −χk+1)φ
n
], (4-45)

where the final equality is due to (3-3), and where

p̄k = p̄k(τ )= −

∫
Bk

p(x, τ ) dx .

Note first that (4-35), (4-36) and (4-44) imply (since r j+1 = 2r j for any j) that

|∇[(χk −χk+1)φ
n
]| ≤ |χk −χk+1||∇φ

n
| + |φn

||∇(χk −χk+1)| ≲ r−4
k

on Qk
\ Qk+2

= (Qk
\ Qk+1)∪ (Qk+1

\ Qk+2)

for any k, and similarly

|∇[χnφ
n
]| ≤ |χn||∇φ

n
| + |φn

||∇χn| ≲ r−4
n on Qn.

Therefore we can estimate (recalling again (4-43) and (4-44) when integrating |(4-45)| over τ ∈ I 1)∫
τ∈I 1

∣∣∣∣∫
B1×{τ }

pu · ∇φn
∣∣∣∣ ≲ k024k0

∫∫
Q1

|p||u| +

n∑
k=k0

rk −

∫
−

∫
Qk

|p − p̄k ||u|

which, along with (4-39) with q =
3
2 implies (4-42) for any k0 ∈ [1, n − 1] as desired. □

4.4. Proof of Proposition 8. In this section we prove the technical decay estimate (Proposition 8) used to
prove Lemma 7. In all of what follows, recall the definitions in (3-17) and (3-18) of Az0 , Bz0 , Cz0 , Dz0 ,
Ez0 , Fz0 , Gq,z0 and Mq,z0 . We will require the following three claims which essentially appear in [Lin and
Liu 1996] and which generalize certain lemmas in [Caffarelli et al. 1982]; however we include full proofs
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in order to clarify certain details, and to highlight the role of Gq,z0 (not utilized in [Lin and Liu 1996]) in
Claim 4 which is therefore22 a slightly refined version of what appears in [Lin and Liu 1996].

Claim 2 (general estimates; cf. [Caffarelli et al. 1982, Lemmas 5.1 and 5.2]). There exist constants
c1, c2 > 0 such that for any u and d which have the regularities in (1-9) for �T := �× (0, T ) as in
Theorem 1, the estimates

Cz0(γρ)≤ c1[γ
3 A3/2

z0
+ γ−3 A3/4

z0
B3/4

z0
](ρ) (4-46)

and
Ez0(γρ)≤ c2[C1/3

z0
A1/2

z0
B1/2

z0
](γρ) (4-47)

hold for any z0 ∈ R3+1 and ρ > 0 such that Q∗
ρ(z0)⊆�T and any γ ∈ (0, 1].

Claim 3 (estimates requiring the pressure equation; cf. [Caffarelli et al. 1982, Lemmas 5.3 and 5.4]).
There exist constants c3, c4> 0 such that for any u, d and p which have the regularities in (1-9) and (1-10)
for �T :=�× (0, T ) as in Theorem 1 and which satisfy the pressure equation (1-12), the estimates

Dz0(γρ)≤ c3[γ (Dz0 + A3/4
z0

B3/4
z0

+ C1/2
z0
)+ γ−5 A3/4

z0
B3/2

z0
](ρ) (4-48)

and
Fz0(γρ)≤ c4[γ

1/12(Az0 + D4/3
z0

+ C2/3
z0
)+ γ−10 Az0(B

1/2
z0

+ B2
z0
)](ρ). (4-49)

hold for any z0 ∈ R3+1 and ρ > 0 such that Q∗
ρ(z0)⊆�T and any γ ∈

(
0, 1

2

]
.

The crucial aspect of the estimates (4-46)–(4-49) — which control Mq,z0(γρ)— in proving Lemma 7
(through Proposition 8) is that whenever a negative power of γ appears, there is always a factor of Bz0 as
well, which will be small when proving Lemma 7. Positive powers of γ will similarly be small; in each
term evaluated at ρ (see also (4-52) below), we must have either γ α or Bαz0

for some α > 0.
To complete the proof of Proposition 8, we require the following.

Claim 4 (estimate requiring the local energy inequality; cf. [Caffarelli et al. 1982, Lemma 5.5]). There
exists a constant c5 > 0 such that for any u, d and p which have the regularities in (1-9) and (1-10) for
�T :=�× (0, T ) as in Theorem 1 and such that u satisfies the weak divergence-free property (1-11) and
the local energy inequality (1-13) holds for some constant C ∈ (0,∞), the estimate

Az0

(
ρ

2

)
≤ c5 · C[C2/3

+ E + Fz0 + (1 + [ · ]
2)G4/(6−q)

q + (G2/(6−q)
q + C1/3)B1/2

](ρ) (4-50)

holds for any q ∈ [2, 6) and any z0 ∈ R3+1 and ρ > 0 such that Q∗
ρ(z0)⊆�T .

Postponing the proof of the claims, let us use them to prove the proposition. In all of what follows, we
note the simple facts that, for any ρ > 0 and α ∈ (0, 1],

K ∈ {Az0, Bz0} =⇒ K(αρ)≤ α−1K(ρ),

K ∈ {Cz0, Dz0, Ez0, Fz0} =⇒ K(αρ)≤ α−2K(ρ),

Gq,z0(αρ)≤ α−2−q/2Gq,z0(ρ).

(4-51)

22Note that Gz0(r)≲ ∥d∥∞ uniformly in r (and z0), though in our setting we may have d /∈ L∞.
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Proof of Proposition 8. Fixing z0 and ρ0 as in Proposition 8, under the assumptions in the proposition we
see that estimates (4-46)–(4-50) hold for all ρ ∈ (0, ρ0], γ ∈

(
0, 1

2

]
and q ∈ [2, 6) by Claims 2, 3 and 4.

Note first that (4-46), (4-47) and (4-51) imply that

Ez0(γρ)≲ [Az0 B1/2
z0

+ γ−2 A3/4
z0

B3/4
z0

](ρ)

and hence, for example, there exists some c6 > 0 such that

Ez0(γρ)≤ c6[γ
2 Az0 + γ−2(A1/2

z0
B1/2

z0
+ Az0 Bz0)](ρ), (4-52)

for ρ ∈ (0, ρ0] and γ ∈
(
0, 1

2

]
(in fact, for γ ∈ (0, 1]) and that it follows from (4-50), assumption (3-20)

and the assumption that ρ0 ≤ 1 that there exists some c7 > 0 such that

(C)−1 Az0

(
ρ

2

)
≤ c7[C2/3

z0
+ Ez0 + Fz0 + G4/(6−q)

q,z0
+ (G2/(6−q)

q,z0
+ Cz0

1/3)B1/2
z0

](ρ),

and hence, recalling (3-18), we have that, for some c8 > 0,

(C)−3/2 A3/2
z0

(
ρ

2

)
≤ c8[Mq,z0(ρ)+ M1/2

q,z0
(ρ)B3/4

z0
(ρ)] (4-53)

for ρ ∈ (0, ρ0]. We note as well that, as in (3-23), if σ ∈ [q, 6) and if (3-20) holds for some ḡ ≥ 1, then

G6/(6−q)
q,z0

(γρ)
(3-22)
≤ ḡ6/(6−σ)

· Cασ,q
z0 (γρ)

(4-46)
≤ ḡ6/(6−σ)

· [γ 3 A3/2
z0

+ γ−3 A3/4
z0

B3/4
z0

]
ασ,q (ρ) (4-54)

for ρ ∈ (0, ρ0]. Now, writing γρ = 2γ ·
(1

2ρ
)

for 2γ ≤
1
2 , it follows from (4-46), (4-48), (4-49), (4-52),

(4-54) and (3-18) followed by an application of (4-51)
(
with α =

1
2

)
to all terms except for Az0 along

with the facts that γ, Bz0(ρ)≤ 1 (so that you can always estimate positive powers by 1) as well as the
fact that ασ,q ∈ (0, 1) that

Mq,z0(γρ)≤ [Cz0 + G6/(6−q)
q,z0

+ D2
z0

+ E3/2
z0

+ F3/2
z0

](γρ)

≲
[
γ 3 A3/2

z0

(
ρ

2

)
+ γ−3 A3/4

z0

(
ρ

2

)
B3/4

z0
(ρ)

]
+ḡ6/(6−σ)

·

[
γ 3 A3/2

z0

(
ρ

2

)
+ γ−3 A3/4

z0

(
ρ

2

)
B3/4

z0
(ρ)

]ασ,q
+

[
γM1/2

q,z0
(ρ)+ γ−5 A3/4

z0

(
ρ

2

)
(B3/4

z0
(ρ)+ B3/2

z0
(ρ))

]2

+

[
γ 2 Az0

(
ρ

2

)
+ γ−2

(
A1/2

z0

(
ρ

2

)
B1/2

z0
(ρ)+ Az0

(
ρ

2

)
Bz0(ρ)

)]3/2

+

[
γ 1/12

(
Az0

(
ρ

2

)
+ M2/3

q,z0
(ρ)

)
+ γ−10 Az0

(
ρ

2

)
(B1/2

z0
(ρ)+ B2

z0
(ρ))

]3/2

≲ (1 + ḡ6/(6−σ))

[
γ ασ,q/8

(
Mq,z0(ρ)+

[
A3/2

z0

(
ρ

2

)]ασ,q
+

[
A3/2

z0

(
ρ

2

)])
+ γ−15

([
A3/2

z0

(
ρ

2

)]ασ,q/2
+

[
A3/2

z0

(
ρ

2

)]1/2
+

[
A3/2

z0

(
ρ

2

)])
B3ασ,q/4

z0 (ρ)

]
so long as γ ∈

(
0, 1

4

]
. Noting that 1 ≤ ḡ6/(6−σ), the estimate (3-21) for such γ and for ρ ∈ (0, ρ0] now

follows from the estimate above along with (4-53) as, in particular, (4-53) implies — as γ, Bz0(ρ)≤ 1
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and ασ,q ∈ (0, 1)— that

(C)−3/2 A3/2
z0

(
ρ

2

)
≲ Mq,z0(ρ)+ γ

−15−ασ,q/8 M1/2
q,z0
(ρ)B3ασ,q/4

z0 (ρ)

which we apply to the terms above with a positive power of γ , and that

(C)−3/2 A3/2
z0

(
ρ

2

)
≲ Mq,z0(ρ)+ M1/2

q,z0
(ρ),

which we apply to the terms above with a negative power of γ , completing the proof. □

Let us now prove the claims.

Proof of Claim 2. For simplicity, we will suppress the dependence on z0 = (x0, t0) in what follows.
Let us first prove (4-46). Note that for any r ≤ ρ, at any fixed t ∈ I ∗

r , taking v ∈ {u,∇d} we have∫
Br

|v|2 dx ≤

∫
Bρ

∣∣|v|2 − |v|2
ρ∣∣ dx + |Br ||v|2

ρ

≲ ρ
∫

Bρ

∣∣∇|v|2
∣∣ dx +

(r
ρ

)3
∫

Bρ
|v|2 dx

due to Poincaré’s inequality (4-16). Since
∣∣∇|v|2

∣∣ ≤ |v||∇v| almost everywhere, Hölder’s inequality then
implies that

∥v∥2
2;Br

≲ ρ∥v∥2;Bρ∥∇v∥2;Bρ +

(r
ρ

)3
∥v∥2

2;Bρ . (4-55)

Therefore

∥v∥3
3;Br

≲
1

r3/2 (∥v∥
2
2;Br

)3/2 + ∥v∥
3/2
2;Br

∥∇v∥
3/2
2;Br

(by (4-14))

≲
(
1 +

(
ρ

r

)3/2)
∥v∥

3/2
2;Bρ∥∇v∥

3/2
2;Bρ +

1
r3/2

(r
ρ

)9/2
∥v∥3

2;Bρ (by (4-55)).

Summing over v ∈ {u,∇d}, we see that

∥u∥
3
3;Br

+ ∥∇d∥
3
3;Br

≲
(
1 +

(
ρ

r

)3/2)
(∥u∥

2
2;Bρ + ∥∇d∥

2
2;Bρ )

3/4(∥∇u∥
2
2;Bρ + ∥∇

2d∥
2
2;Bρ )

3/4
+

r3

ρ9/2 (∥u∥
2
2;Bρ + ∥∇d∥

2
2;Bρ )

3/2.

Now integrating over t ∈ I ∗
r (where |I ∗

r | = r2), Hölder’s inequality implies that

r2C(r)≲ |I ∗

r |
1/4

(
1 +

(
ρ

r

)3/2)∥∥∥u∥
2
2;Bρ + ∥∇d∥

2
2;Bρ

∥∥3/4
∞;I ∗

r
(∥∇u∥

2
2;Q∗

ρ
+ ∥∇

2d∥
2
2;Q∗

ρ
)3/4

+ |I ∗

r |
r3

ρ9/2

∥∥∥u∥
2
2;Bρ + ∥∇d∥

2
2;Bρ

∥∥3/2
∞;I ∗

r

≲ r1/2
(
1 +

(
ρ

r

)3/2)
(ρA(ρ))3/4(ρB(ρ))3/4 +

r5

ρ9/2 (ρA(ρ))3/2,

which, upon dividing both sides by r2, setting γ := r/ρ and noting that 1 ≤ γ−3/2, precisely gives (4-46).



1738 GABRIEL S. KOCH

Next, to prove (4-47), we use the Poincaré–Sobolev inequality

∥g − ḡr
∥q∗;Br ≤ cq∥∇g∥q;Br

(the constant is independent of r due to the relationship between q and q∗) corresponding to the embedding
W 1,q ↪→ Lq∗

for q < 3 (in R3) and q∗
= 3q/(3 − q). Taking q = 1, at any t ∈ I ∗

r and for v ∈ {u,∇d} the
Hölder and Poincaré–Sobolev inequalities give us∫

Br

|u|
∣∣|v|2−|v|2

r∣∣ dx ≤ ∥u∥3;Br ∥|v|
2
−|v|2

r
∥3/2;Br ≲ ∥u∥3;Br ∥∇(|v|

2)∥1;Br ≲ ∥u∥3;Br ∥v∥2;Br ∥∇v∥2;Br .

Summing this first over v ∈ {u,∇d} at a fixed t and then integrating over t ∈ I ∗
r , we see that

r2 E(r)≲
∫

I ∗
r

∥u∥3;Br (∥u∥
2
2;Br

+ ∥∇d∥
2
2;Br

)1/2(∥∇d∥
2
2;Br

+ ∥∇
2d∥

2
2;Br

)1/2 dt

≲ ∥u∥3;Q∗
r

∥∥(∥u∥
2
2;Br

+ ∥∇d∥
2
2;Br

)1/2
∥∥

6;I ∗
r
(∥∇u∥

2
2;Q∗

r
+ ∥∇

2d∥
2
2;Q∗

r
)1/2

≲ |I ∗

r |
1/6(∥u∥

3
3;Q∗

r
)1/3

∥∥∥u∥
2
2;Br

+ ∥∇d∥
2
2;Br

∥∥1/2
∞;I ∗

r
(∥∇u∥

2
2;Q∗

r
+ ∥∇

2d∥
2
2;Q∗

r
)1/2

≲ r1/3(r2C(r))1/3(r A(r))1/2(r B(r))1/2 = r2
[C1/3 A1/2 B1/2

](r)

which proves (4-47) and completes the proof of Claim 2. □

Proof of Claim 3. As in (4-3) of Claim 1, for any t ∈ I ∗
r (z0) and almost every x ∈ B3ρ/4(x0) (with r ≤ ρ),

using a smooth cut-off function ψ equal to one in �1 := B3ρ/4(x0) and supported in �2 := Bρ(x0) so that

|∇ψ | ≲ ρ−1 and |1ψ | ≲ ρ−2, (4-56)

we use Remark 10 to write 5 := p( · , t) as

p(x, t)= −

∫
∇Gx

· v(t)ψ dy︸ ︷︷ ︸
=:p1(x,t)

+

∫
Gx
ψ,1 · v(t) dy︸ ︷︷ ︸
=:p2(x,t)

+

∫
Gx
ψ,2 p( · , t) dy︸ ︷︷ ︸
=:p3(x,t)

with

Gx
ψ,1 := −Gx

∇ψ, Gx
ψ,2 := 2∇Gx

· ∇ψ + Gx1ψ and v(t) := [∇
T

· (u ⊗ u + ∇d ⊙ ∇d)]( · , t).

Our goal is to estimate p(x, t) for x ∈ Bρ/2(x0).
Both p2 and p3 contain derivatives of ψ in each term so that the integrand can only be nonzero when

|y − x0|>
3
4ρ, and hence for x ∈ Bρ/2(x0) one has

|x − y| ≥
1
4ρ =⇒ |Gx(y)| ≲ ρ−1 and |∇Gx(y)| ≲ ρ−2. (4-57)

From (4-56) and (4-57) and the fact that ψ is supported in Bρ(x0), we have (omitting the dependence on t ,
and noting that the constants in the inequalities are independent of t as they come only from Gx and ψ)

sup
x∈Bρ/2(x0)

|p2(x)| ≲ ρ−2
∫

Bρ(x0)

(|u||∇u| + |∇d||∇
2d|) dy

≲ ρ−2
(∫

Bρ(x0)

(|u|
2
+ |∇d|

2) dy
)1/2(∫

Bρ(x0)

(|∇u|
2
+ |∇

2d|
2) dy

)1/2

(4-58)
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and similarly

sup
x∈Bρ/2(x0)

|p3(x)| ≲ ρ−3
∫

Bρ(x0)

|p| dy. (4-59)

For p1, Young’s inequality for convolutions (setting R := 2ρ as in Remark 10) with 2
3 + 1 =

3
4 +

11
12 gives

∥p1∥3/2;Bρ(x0) ≲

∥∥∥∥ 1
| · |2

∥∥∥∥
4/3;B2ρ(0)

∥(|u| + |∇d|)(|∇u| + |∇
2d|)∥12/11;Bρ(x0)

≲ ρ1/4
∥(|u| + |∇d|)(|∇u| + |∇

2d|)∥12/11;Bρ(x0)

and then Hölder’s inequality with 11
12 =

1
4 +

1
6 +

1
2 gives

∥p1∥
3/2
3/2;Bρ(x0)

≲ (ρ1/4
∥(|u| + |∇d|)1/2∥4;Bρ(x0)∥(|u| + |∇d|)1/2∥6;Bρ(x0)∥|∇u| + |∇

2d|∥2;Bρ(x0))
3/2

≲ ρ3/8(ρA(ρ))3/8∥|u| + |∇d|∥
3/4
3;Bρ(x0)

∥|∇u| + |∇
2d|∥

3/2
2;Bρ(x0)

. (4-60)

For the following, we fix now any r ∈
(
0, ρ2

]
and omit the dependence on x0, t0 and z0 in Br (x0), Bρ(x0),

I ∗(t0), Az0 , Bz0 , Cz0 and Dz0 (we will retain z0 in the notation for Fz0 to distinguish it from F = ∇ f ).
To first prove (4-48), we note that (4-58) implies — since r ≤

1
2ρ— that∫

Br

|p2|
3/2 dx ≲ r3ρ−3

(∫
Bρ
(|u|

2
+ |∇d|

2) dy
)3/4(∫

Bρ
(|∇u|

2
+ |∇

2d|
2) dy

)3/4

≤ r3ρ−3(ρA(ρ))3/4
(∫

Bρ
(|∇u|

2
+ |∇

2d|
2) dy

)3/4

so that, integrating over t ∈ I ∗
r and using Hölder’s inequality, we have

r−2
∫∫

Q∗
r

|p2|
3/2 dz ≲ r−2r3ρ−9/4 A3/4(ρ) · |I ∗

ρ |
1/4(ρB(ρ))3/4 =

r
ρ

· [(AB)3/4](ρ), (4-61)

and that (4-59) similarly implies that

r−2
∫∫

Q∗
r

|p3|
3/2 dz ≲ rρ−9/2

∫
I ∗
r

(∫
Bρ

|p| dy
)3/2

≲ r
ρ

· D(ρ). (4-62)

Finally, integrating (4-60) over t ∈ I ∗
r , Hölder’s inequality with 1 =

1
4 +

3
4 gives

r−2
∥p1∥

3/2
3/2;Q∗

r
≲ r−2ρ3/4 A3/8(ρ)∥|u| + |∇d|∥

3/4
3;Q∗

ρ
∥|∇u| + |∇

2d|∥
3/2
2;Q∗

ρ

≲ r−2ρ3/4 A3/8(ρ)(ρ2C(ρ))1/4(ρB(ρ))3/4 = (C1/4(ρ)) ·
((r
ρ

)−2
A3/8(ρ)B3/4(ρ)

)
.

Multiplying and dividing by (r/ρ)α/2 for any α ∈ R, Cauchy’s inequality gives

r−2
∥p1∥

3/2
3/2;Q∗

r
≲

(r
ρ

)α
C1/2(ρ)+

(r
ρ

)−α−4
A3/4(ρ)B3/2(ρ). (4-63)

Since we want a positive power of γ = r/ρ in the first term and a negative one in the second (because it
contains B which will be small), we want to take α > 0. Choosing α = 1 purely to make the following
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expression simpler, since p = p3 + p2 + p1, we see from (4-61)–(4-63) that

D(r)≲ r
ρ

· [D + (AB)3/4 + C1/2
](ρ)+

(r
ρ

)−5
[A3/4 B3/2

](ρ)

which implies (4-48) for γ := r/ρ ≤
1
2 .

To prove (4-49), we note that Fz0(r)≤ F1(r)+ F2(r)+ F3(r), where we set

F j (r) :=
1
r2

∫∫
Qr

|p j ||u| dz.

To estimate F1 we use Hölder’s inequality and (4-60) to see that (in fact, for r ≤ ρ)∫
Br

|p1||u| dx ≤ ∥u∥3;Bρ∥p1∥3/2;Bρ

≲ ∥u∥3;Bρ · ρ1/4(ρA(ρ))1/4∥|u| + |∇d|∥
1/2
3;Bρ∥|∇u| + |∇

2d|∥2;Bρ

≤ ρ1/2 A1/4(ρ)∥|u| + |∇d|∥
3/2
3;Bρ∥|∇u| + |∇

2d|∥2;Bρ

and hence the Cauchy–Schwarz inequality in time gives

F1(r)≲ r−2ρ1/2 A1/4(ρ)∥|u| + |∇d|∥
3/2
3;Q∗

ρ
∥|∇u| + |∇

2d|∥2;Q∗
ρ

≲ r−2ρ1/2 A1/4(ρ)(ρ2C(ρ))1/2(ρB(ρ))1/2

=

((r
ρ

)α
C1/2(ρ)

)
·

((r
ρ

)−2−α

[A1/4 B1/2
](ρ)

)
≲

((r
ρ

)α
C1/2(ρ)

)4/3
+

((r
ρ

)−2−α

[A1/4 B1/2
](ρ)

)4

for any α ∈ R. Taking, say, α =
1
2 , we have

F1(r)≲
(r
ρ

)2/3
C2/3(ρ)+

(r
ρ

)−10
[AB2

](ρ). (4-64)

Now for F2 note that, using (4-58), we have
(
since r ≤

1
2ρ

)
∫

Br

|p2||u| dx ≲ ρ−2
∫

Bρ
(|u||∇u| + |∇d||∇

2d|) dy
∫

Br

|u| dx

≲ ρ−2
∥|u| + |∇d|∥2;Bρ∥|∇u| + |∇

2d|∥2;Bρ (r
3)1/2∥u∥2;Br

≲ ρ−2r3/2(ρA(ρ))∥|∇u| + |∇
2d|∥2;Bρ

so that integrating over t ∈ I ∗
r and using Hölder’s inequality in time we have

F2(r)≲
1
r2

r3/2

ρ2 (ρA(ρ))(ρB(ρ))1/2(r2)1/2 =

(r
ρ

)1/2
[AB1/2

](ρ). (4-65)
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For F3, using (4-59) and Hölder’s inequality, we see that

1
r2

∫
Br

|p3||u| dx ≤
1

r2ρ3

(∫
Bρ

|p| dy
)(∫

Br

|u| dx
)

≤
1

r2ρ3

(∫
Bρ

|p|
3/2 dx

)2/3

(ρ3)1/3
(∫

Br

(|u|
1/2)4 dx

)1/4(∫
Br

(|u|
1/2)6 dx

)1/6

(r3)7/12

which gives us (setting γ := r/ρ)

F3(r)≲
1

r1/4ρ2 (r A(r))1/4
(∫∫

Q∗
ρ

|p|
3/2 dx

)2/3(∫∫
Q∗

r

|u|
3 dx

)1/6

(r2)1/6

≤
1

r1/4ρ2 (r A(r))1/4(ρ2 D(ρ))2/3(r2C(r))1/6(r2)1/6

≤

(r
ρ

)2/3
(γ−1 A)1/4(ρ)D2/3(ρ)(γ−2C)1/6(ρ)=

(r
ρ

)1/12
A1/4(ρ)D2/3(ρ)C1/6(ρ)

by (4-51). Hence Young’s inequality implies

F3(r)≲
(r
ρ

)1/12
(A(ρ)+ D4/3(ρ)+ C2/3(ρ)). (4-66)

Adding (4-64)–(4-66) and passing to the smallest powers of γ = r/ρ(< 1) we see that

Fz0(r)≲
(r
ρ

)1/12
(A + D4/3

+ C2/3)(ρ)+
(r
ρ

)−10
[A(B1/2

+ B2)](ρ)

which implies (4-49), and completes the proof of Claim 3. □

Proof of Claim 4. We will again omit the dependence on z0 (except in Fz0).
To estimate A(ρ/2), we use the local energy inequality (1-13) with a nonnegative cut-off function

φ ∈ C∞

0 (Q
∗
ρ) which is equal to 1 in Q∗

ρ/2, with

|∇φ| ≲ ρ−1 and |φt |, |∇
2φ| ≲ ρ−2.

We’ll need to estimate terms which control those that appear on the right-hand side of the local energy
inequality (1-13), which we’ll call I –V (all of which depend on ρ) as follows.

I :=

∫∫
Q∗
ρ

(|u|
2
+ |∇d|

2)|φt +1φ| dz ≲ ρ−2
∥|u|

2
+ |∇d|

2
∥3/2;Q∗

ρ
(ρ5)1/3

≲ ρ−2(ρ2C(ρ))2/3(ρ5)1/3 = ρC2/3(ρ). (4-67)

Using the assumption (1-11) that ∇ ·u = 0 weakly and indicating by ḡρ the average of a function g in Bρ ,
we have

II :=

∫
I ∗
ρ

∣∣∣∣∫
Bρ
(|u|

2
+ |∇d|

2)u · ∇φ dx
∣∣∣∣ dt =

∫
I ∗
ρ

∣∣∣∣∫
Bρ

[(|u|
2
− |u|2

ρ
)+ (|∇d|

2
− |∇d|2

ρ
)]u · ∇φ dx

∣∣∣∣ dt,

hence
II ≲ ρ−1(ρ2 E(ρ))= ρE(ρ). (4-68)
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Clearly we have

III :=

∫∫
Q∗
ρ

|pu · ∇φ| dz ≲ ρ−1(ρ2 Fz0(ρ))= ρFz0(ρ). (4-69)

Using the weak divergence-free condition ∇ · u = 0 in (1-11) to write (see (1-2))

(u · ∇)d = ∇
T

· (d ⊗ u)

(at almost every x) and integrating by parts we have

IV :=

∫
I ∗
ρ

∣∣∣∣∫
Bρ

u ⊗ ∇φ : ∇d ⊙ ∇d dx
∣∣∣∣ dt

=

∫
I ∗
ρ

∣∣∣∣∫
Bρ

[(u · ∇)d] · [(∇φ · ∇)d] dx
∣∣∣∣ dt

=

∫
I ∗
ρ

∣∣∣∣∫
Bρ

[∇
T

· (d ⊗ u)] · [(∇φ · ∇)d] dx
∣∣∣∣ dt

=

∫
I ∗
ρ

∣∣∣∣− ∫
Bρ

d ⊗ u : ∇
T
[(∇φ · ∇)d] dx

∣∣∣∣ dt,

and clearly
|∇

T
[(∇φ · ∇)d]| ≲ |∇

2φ||∇d| + |∇φ||∇
2d|.

Therefore, for q ∈ [2, 6] we have23

IV ≲
∫∫

Q∗
ρ

|d||u|(ρ−2
|∇d| + ρ−1

|∇
2d|) dz

≤ ∥|d||u|∥2;Q∗
ρ
(ρ−2

∥∇d∥2;Q∗
ρ
+ ρ−1

∥∇
2d∥2;Q∗

ρ
)

≲ ∥|d||u|∥2;Q∗
ρ
(ρ−2

· ρ5/6
∥∇d∥3;Q∗

ρ
+ ρ−1

∥∇
2d∥2;Q∗

ρ
)

≤ (ρ3G2(ρ))
1/2(ρ−2

· ρ5/6(ρ2C(ρ))1/3 + ρ−1(ρB(ρ))1/2)

= ρ(G2(ρ))
1/2(C1/3(ρ)+ B1/2(ρ))

≤ ρ(G2/q
q (ρ)C1−2/q(ρ))1/2(C1/3(ρ)+ B1/2(ρ)) (by (3-22)),

so that
IV ≲ ρ[G1/q

q (C5/6−1/q
+ C1/2−1/q B1/2)](ρ). (4-70)

Similarly, for q ∈ [2, 6] we have

V :=

∫∫
Q∗
ρ

|d|
2
|∇d|

2φ dz ≲ ρ3G2(ρ)
(3-22)
≤ ρ3G2/q

q (ρ)C1−2/q(ρ). (4-71)

23Note that it is only the appearance of ∇
2d in the estimate of term IV which forces us to include u in the definition of Gq,z0 .

Indeed, switching the roles of u (which appears in Cz0 along with ∇d) and ∇d (which appears in Gq,z0 even with u omitted),
one could otherwise control the term IV in precisely the same way. If u is omitted in Gq,z0 , one could still obtain the same
estimate of IV if one takes q = 6, but this would dramatically weaken the statement of Theorem 1. The remainder of the proof of
Theorem 1 does not require (but is not harmed by) the inclusion of u in Gq,z0 .
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Finally, using (4-67)–(4-71), the local energy inequality (1-13) (with constant C) gives

(C)−1ρ

2
A
(
ρ

2

)
≲ I + II + III + IV + V

≲ ρ[C2/3
+ E + Fz0 + G1/q

q (C5/6−1/q
+ C1/2−1/q B1/2)+ [ · ]

2G2/q
q C1−2/q

](ρ)

≲ ρ[C2/3
+ E + Fz0 + (1 + [ · ]

2)G4/(6−q)
q + (G2/(6−q)

q + C1/3)B1/2
](ρ)

as long as 2 ≤ q < 6, as in that case we have

G1/q
q C5/6−1/q

= (G4/(6−q)
q )(6−q)/(4q)(C2/3)(5q−6)/(4q)

≤

(
6 − q

4q

)
G4/(6−q)

q +

(
5q − 6

4q

)
C2/3

≤
3
4

G4/(6−q)
q +

5
4

C2/3,

G1/q
q C1/2−1/q

= (G2/(6−q)
q )(6−q)/(2q)(C1/3)(3q−6)/(2q)

≤

(
6 − q

2q

)
G2/(6−q)

q +

(
3q − 6

2q

)
C1/3

≤
3
2

G2/(6−q)
q +

3
2

C1/3,

G2/q
q C1−2/q

= (G4/(6−q)
q )(6−q)/(2q)(C2/3)(3q−6)/(2q)

≤

(
6 − q

2q

)
G4/(6−q)

q +

(
3q − 6

2q

)
C2/3

≤
3
2

G4/(6−q)
q +

3
2

C2/3.

This implies (4-50) and proves Claim 4. □
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