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OVERDETERMINED BOUNDARY PROBLEMS
WITH NONCONSTANT DIRICHLET AND NEUMANN DATA

MIGUEL DOMINGUEZ-VAZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

We consider the overdetermined boundary problem for a general second-order semilinear elliptic equation
on bounded domains of R”, where one prescribes both the Dirichlet and Neumann data of the solution.
We are interested in the case where the data are not necessarily constant and where the coefficients of the
equation can depend on the position, so that the overdetermined problem does not generally admit a radial
solution. Our main result is that, nevertheless, under minor technical hypotheses nontrivial solutions to
the overdetermined boundary problem always exist.

1. Introduction

The study of overdetermined boundary problems, that is, problems where one prescribes both Dirichlet and
Neumann data, has grown into a major field of research in the theory of elliptic PDEs since its appearance
in Lord Rayleigh’s classic treatise [1877]. An outburst of activity started with the groundbreaking paper
[Serrin 1971], where he combined an adaptation of Alexandrov’s moving planes method with a subtle refine-
ment of the maximum principle to prove a symmetry result for an overdetermined problem. More precisely,
Serrin proved that, under mild technical hypotheses, positive solutions to elliptic equations of the form

Au+ F(u)=0
inside a bounded domain 2 C R” satisfying the boundary conditions
u=0 and OJ,u=-—c onadL2, (1-1)

where c is an unspecified constant that can be picked freely, only exist if €2 is a ball, in which case u
is radial. The result remains true if F' also depends on the norm of the gradient of u and if we replace
the Laplacian by other position-independent operators of variational form [Cianchi and Salani 2009].
The influence of Serrin’s result is such that the very considerable body of literature devoted to
overdetermined boundary problems is mostly limited to proofs that solutions need to be radial in cases
that can be handled using the method of moving planes. Without attempting to be comprehensive, some
remarkable results about overdetermined boundary value problems include alternative approaches to radial
symmetry results using P-functions [Garofalo and Lewis 1989; Kawohl 1998] or Pohozaev-type integral
identities [Brandolini et al. 2008; Magnanini and Poggesi 2020a; 2020b], extensions of the moving
plane method to the hyperbolic space and the hemisphere [Kumaresan and Prajapat 1998], to degenerate
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elliptic equations such as the p-Laplace equation [Damascelli et al. 1999], and to exterior [Aftalion and
Busca 1998; Garofalo and Sartori 1999], unbounded [Farina and Valdinoci 2010] or nonsmooth domains
[Prajapat 1998], and stability of symmetry [Aftalion et al. 1999]. Another direction of research that
has attracted considerable recent attention is the study of connections with the theory of constant mean
curvature surfaces and the construction of nontrivial solutions to Serrin-type problems in exterior domains
[Traizet 2014; del Pino et al. 2015; Ros et al. 2020]. Nontrivial solutions for partially overdetermined
problems or with degenerate ellipticity are also known to exist [Alessandrini and Garofalo 1989; Fragala
and Gazzola 2008; Fragala et al. 2006; Farina and Valdinoci 2013].

In two surprising papers, Pacard and Sicbaldi [2009] and Delay and Sicbaldi [2015] proved the existence
of extremal domains with small volume for the first eigenvalue of the Laplacian in any compact Riemannian
manifold, that is, domains for which the overdetermined problem for the linear elliptic equation

Agu+2iu=0

has a positive solution with zero Dirichlet data and constant Neumann data. Here A, is the Laplacian
operator associated with a Riemannian metric g on a compact manifold and the constant A (which one
eventually chooses as the first Dirichlet eigenvalue of the domain €2) is not specified a priori. Very
recently we managed to show the existence of nontrivial solutions, with the same overdetermined Dirichlet
and Neumann conditions, for fairly general semilinear elliptic equations of second order with possibly
nonconstant coefficients [Dominguez-Vazquez et al. 2019].

In all these results, the fact that one is imposing precisely the standard overdetermined boundary
conditions (1-1) plays a crucial role. Roughly speaking, this is because one can relate the existence
of overdetermined solutions with the critical points of certain functional via a variational argument.
Therefore, the gist of the argument in these papers is that the overdetermined condition with constant
data is connected with the local extrema for a natural energy functional, restricted to a specific class of
functions labeled by points in the physical space. This ultimately permits one to derive the existence of
solutions from the fact that a continuous function attains its maximum on a compact manifold. However,
this strategy is successful only for constant boundary data. To our best knowledge, the only result in
the literature which considers nonconstant (albeit special) Neumann data in relation to overdetermined
boundary problems is [Bianchini et al. 2014].

In the recent paper [Dominguez-Véazquez et al. 2021], we have constructed new families of compactly
supported stationary solutions to the three-dimensional Euler equation by proving that there are solutions
to an associated overdetermined problem in two dimensions where one prescribes (modulo constants
that can be picked freely) zero Dirichlet data and nonconstant Neumann data. The proof uses crucially
that the space is two-dimensional, which ensures that the kernel and cokernel of a certain operator are
one-dimensional, and does not work in higher dimensions.

Our objective in this paper is to prove the existence of solutions to overdetermined problems where
one prescribes general Dirichlet and Neumann data (just as before, up to unspecified constants). For
concreteness, we consider the model semilinear equation

Lu+AF(x,u)=0 (1-2)



OVERDETERMINED BOUNDARY PROBLEMS WITH NONCONSTANT DIRICHLET AND NEUMANN DATA 1991

in a bounded domain 2 C R”, with Dirichlet and Neumann boundary conditions
u= folx), v-Ax)Vu=—cfi(x) onofQ. (1-3)

Here fy, f1 are functions on R”, F is a function on R” x R, A, ¢ are unspecified positive constants, v is
the outer unit normal on d€2 and L is the second-order operator

Lu :=a;j(x) 0;ju + b; (x) d;u,

where A(x) = (a;;(x)) is a (symmetric) matrix-valued function on R" satisfying the (possibly nonuniform)
ellipticity condition
lIEl‘linlé -A(x)E >0 forall x e R".

Theorem 1.1. Given any noninteger s > 2, let us take any functions F, fo, f1, b of class C* and A of
class CS*2. Assume that the functions F(-, fo(-)) and f, are positive and that the function fy has
a nondegenerate critical point. Then there is a family of domains 2, ;5 for which the overdetermined
problem (1-2)-(1-3) admits a solution.

More precisely, let p € R" be a nondegenerate critical point of fy. Then, for any ¢ # 0 small enough
and ). > 0, the following statements hold:

(1) The domain 2, 3 is a small deformation of the ball of radius ¢ centered at p, characterized by an
equation of the form |x — P> <2+ 0(3).

(i1) The dependence of ) and c on the parameter ¢ is of the form
A= 8_2)_», c= 8_15,
where ¢ = (g, A) is a positive constant of order 1.

Remark 1.2. In the case of the torsion problem, i.e., Au+X =0 (i.e., F (x, u) =1 in the previous notation),
the condition that fy has a critical point can be relaxed: it is enough that the function G, := fy + « log fi
has at least one nondegenerate critical point for some constant x > 0. The statement then applies if p is a
nondegenerate critical point of G, and taking A := nk > 0 (not necessarily small).

Also, it is easy to obtain different variations on our main theorem following the same method of
proof. In fact, one obtains new results even for the linear equation Au + b(x) - Vu + Af (x) = 0 with
standard overdetermined boundary data fy := 0, f; := 1; specifically, if p is a nondegenerate zero
of the vector field nV f — fb, then the statement still holds taking any A > 0. This does not follow
from [Dominguez-Vazquez et al. 2019]. However, we shall not pursue these generalizations here.

Compared with [Dominguez-Vazquez et al. 2019], a major difference is that the theorem does not
only ensure the existence of domains where the overdetermined problem under consideration admits a
nontrivial solution, but also specifies the points around which those domains are located. This immediately
permits one to translate this existence result to problems that are only defined in a subset of R” or on a
differentiable manifold. In view of the heuristic but fruitful connection between overdetermined boundary
problems and the study of CMC hypersurfaces, a result that is somehow akin to our existence results for



1992 MIGUEL DOMINGUEZ-VAZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

overdetermined boundary problems for semilinear equations is Ye’s classical theorem [1991] on foliations
by small CMC spheres on n-dimensional Riemannian manifolds.

The paper is organized as follows. We will start by setting up the problem in Section 2. For clarity
of exposition, in Sections 2 to 4 we have chosen to assume that the matrix A(x) is the identity and
carry out the proof in this context. An essential ingredient of the proof is the computation of asymptotic
expansions for the solution to the Dirichlet problem in small perturbations of a ball of radius ¢ < 1,
when the constants A and ¢ scale with the radius as in Theorem 1.1. This computation is carried out
in Section 3. These asymptotic estimates are put to use in Section 4, where we prove Theorem 1.1 in
the particular case when A(x) = 1. To obtain the general result, in Section 5 we show that the case of
a general matrix-valued function A(x) reduces to the study of the easiest case A(x) = I subject to an
inessential perturbation of order 2. Making this precise, however, involves using a heavier notation and
geodesic-type normal coordinates adapted to the matrix A(x) that might unnecessarily obscure the simple
ideas the proof is based on. As a side remark, let us point out that the reason we ask for more regularity of
the matrix A (which is of class C**2 in contrast with the C* regularity of the other functions) is precisely
due to our use of geodesic coordinates.

2. Setting up the problem

For clarity of exposition, until Section 5 we will assume that A(x) = I. This assumption will enable us to
obtain more compact expressions for the various quantities that appear in the problem and it will make it
easier to point out the salient features of the proof.

Let us fix a point p € R" and introduce rescaled coordinates z € R" centered at p as

X—=p
Z:: b
&

where ¢ is a suitably small nonzero constant. We now consider spherical coordinates (r, w) € R™ x S

for z, defined as

X—p
3

‘ z  x—p
, wi=— = .
Izl lx—pl

Here and in what follows,
S={weR":|w|=1)}

denotes the unit sphere of dimension n — 1. For simplicity of notation, we will notationally omit the
dependence on the point p. Also, with some abuse of notation, we will denote the expression of the
function u(x) in these coordinates simply by u(r, w).

Let us now consider a C**! function B : S — R and, for suitably small ¢, let us describe the domain
in terms of the above coordinates as

Q,ep:={r <l+eB(w)} (2-1)
We now consider (1-2) in the domain €2, g and choose the constants A, ¢ as

A= s_zk, c=: 8_15,



OVERDETERMINED BOUNDARY PROBLEMS WITH NONCONSTANT DIRICHLET AND NEUMANN DATA 1993

where we think of ¢ as a small constant and of A, ¢ as positive constants of order 1. Equation (1-2) can
then be rewritten in the rescaled coordinates as
Lu+iF(z,u)=0, (2-2)
where
F(z.u):= F(p+ez,u)
and L is the differential operator
Lu=Au +8l;(z) -Vu,

with b (2) :==b; (p + €z). We also denote the functions f; and f in these coordinates as

fo@) = fo(p+ez), fi@) = fi(p+ez).

Here and in what follows, A and V denote the Laplacian and gradient operators in the rescaled coordi-
nates z.
The Dirichlet boundary condition on €2, g can be simply written in rescaled hyperspherical coordi-
nates as
u(l+eB(w), ) = fo(l +eB(w), ®) =: fole, w). (2-3)

We notice that fy(0, @) = fo(p). Analogously, the Neumann boundary condition reads as
du(l+eB(w), ) = —¢ fi(l + £B(w), w),

where v is the outwards normal unit vector on €2, ..

We denote by Cj). (B) the space of C* functions on the unit n-dimensional ball B := {|z| < 1} with
zero trace to the boundary. Also, L C C*°(S) denotes the restriction to the unit sphere of the space of
linear functions on R”,

K:={V-z:]zl=1, Ve R"}.

Equivalently, K is the eigenspace of the Laplacian As of the unit sphere corresponding to the second
eigenvalue, n — 1. Also, in what follows we will denote the partial derivatives of F' (or F ) as

F'(x,u):=0,F(x,u), VF(x,u):=V,.F(x,u), 0 F(x,u) =0y, F(x,u).

The following lemma is a reformulation of [Dominguez-Vazquez et al. 2019, Theorem 2.3 and Proposi-
tion 2.4]. Here s > 2 is assumed to be a noninteger real.

Lemma 2.1. For each p € R, there is some A » > 0 such that the following statements hold for all
L€ (0, Ap):

(i) There is a unique function ¢, 5 (r) of class C* +2 satisfying the ODE
n—1 -
¢,:"(r)+ T%,x/(i’) +AF(p, fo(p)+¢,;(0)=0

and the boundary condition ¢, 5 (1) = 0 which is regular at r = 0. The function ¢, 5 is well-defined
forr €[0,1+6,], with 5, > 0. Furthermore, ¢p,i(’”) >0 forr <1 and (j)p’)-t/(l) < 0.
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(i) The operator
T,5v:=Av+AF'(p, fo(p)+¢,:(1zD)v
defines an invertible map T), 5 Ci";{rl(B) — C~(B).
(iii) Consider the map H, ; defined for each function ¥ on the boundary of the ball as
Hyi =~/ (D vy +¢, 5" (Duy,

where vy, is the only solution to the problem T, ;vy, = 0 on B, vylsg = . Then H, ; maps
CStI(S) — C(S), its kernel is KC, and its range is the set C*(B) N K+ of C* functions orthogonal
to K. Furthermore,

[Vllesn < C, 5l H, 3% Mles (2-4)
forall y € C*H' NKCE.

(iv) The function ¢, ; satisfies |§, 3/llcs(0,1+s,) < Ch and is of class C* in p and .

Remark 2.2. When the equation is linear (that is, F(x, u) = f(x)), one can take A p arbitrarily large and

A 2
Gp i) =—2-f(p) (" = D).
The operator H), ; is then
A
Hy 59 =—f(p) (ho¥ —¥),
where Ag :=[(n/2 — )% — Ag]/? — n/2+ 1 is the Dirichlet-Neumann map of the ball.
In what follows we shall always assume that A < A,.

Proposition 2.3. For any & small enough and any function B € C**1(S) with || B||cs+1 < 1, there is a
unique function u =u, . 5 g in a small neighborhood of fo(p) + ¢, ; in cstl (2,¢B) that satisfies (2-2)
and the Dirichlet boundary condition (2-3).

Proof. Let xp ¢p : B — @, ¢p be the diffeomorphism defined in spherical coordinates as

(p, 0) = ([1+ex(p) Blwlp, w),
where x (p) is a smooth cutoff function that is zero for p < }1 and 1 for p > % Then one can define a map
M, (—€p.£p) x CHLN(B) —> C7'(B)

as
H, 5506 8) =L ox, )0 xpes+EoXpen+AF(-, fo+dox, tp)loxp.es:

with the function E defined as
E:=Lf. (2-5)

Note that [|E|l¢cs-1(q,,,) < Ce? because fo(z) := fo(p + €2). Clearly, H, ; p(¢, ¢) = 0 if and only
if u:= fo+@ o x, L solves the Dirichlet problem (2-2)-(2-3) in 2, ¢5.
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Note that, by definition and using (2-5), H i 50, ¢ b, 7) = 0. Also, a short computation shows that the
derivative of H, ; 5(e, ¢) with respect to ¢ satisfies

D¢Hp,)_\,B(07 ¢p,x) = Tp,}:’

so it is an invertible map Ci";i;l (B) — C*~1(B); see Lemma 2.1. The implicit function theorem in Banach

spaces then ensures that, for any ¢ close enough to 0, there is a unique function ¢?° in a small neighborhood

of ¢, ; in CE}tI(B) satisfying

HP,Z,B(E’" ¢8) == 0
Thenu, 5 = fo+¢fox ’ i  1s the desired solution to the Dirichlet problem in Q2 .. O
We will henceforth denote by

P B! CS+1(§) — CS+1 (Qp,eB)

phe

the map ¥ — vy, where vy, is the only solution to the problem

Tp’)’tvv, =0 in Q[),SB7
with the boundary condition

vy (1 +eB(w), w) =¥ (w).

Note that the existence and uniqueness of vy, is an easy consequence of Lemma 2.1.
For future reference, let us record here the definition of the associated Dirichlet—-Neumann operator
A, e CHHS) = C5(S),

A, epV (@) :=v-AVP 5 p¥(1+eB(w), ).

As A, 5 . reduces to the standard Dirichlet-Neumann map Ao when & = A =0, it is standard that

1A, 78— Ay 5 0les+is)>css) < Clel, (2-6)
<

1A, 58 = Dollesis)scs(s) < Cllel + ). (2-7)

3. Asymptotic expansions

In this section we compute asymptotic formulas for the solution to the Dirichlet problem in the domain (2-1)
obtained in Proposition 2.3, valid for |¢| < 1. Let us begin with the estimates for the solutions to the
Dirichlet problem:

Proposition 3.1. The function u, 5 g is of the form

Uy eip=Jo(P)+0, () +e{W,50) - 2+P, . plVio(p)-0—¢,;5 (1) Bl} + 0(&?),

where Wp,i 1[0, 146,] — R" is a function with ”Wp,XHCH" < CA.
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Remark 3.2. In the case when F(x, u) = f(x), the formula is slightly more explicit:

S A 2
u,e5p=Jfo(p)— %f(l?) (r"=1

Ar?—1 b X
+e{ [Vfo(p) - ;—H)(Vﬂp) - WH 2+ 20D PEBB} L0,

Here we are using the notation P, = [®}, ¢ . g, which does not depend on p because F' = 0.

Proof. Note that ug := fo(p) + qbp, 5 (r) satisfies the equation
Aug+AF(p,ug) =0, uol=1 = fo(p).
Let us write u := (upygyxyB — up) /e and observe that
F(z, Uy eip)=F(p+ez,uo+eur) =F(p,uo)+e[VF(p,uo)-z+ F'(p, up)uil+ 0(e?).
As i,up’s’;\’B +AF(z, u, .5 ) =0 with the boundary condition
p e i.5(1+eB®), ) = fol +eB@),w) = fo(p) +eV fo(p) - 0+ O(e?),
this ensures that u; satisfies an equation of the form
T, 51 +AVF(p,ug)-2+b(p) - = §,5(r) + 0(e) = 0
in , .p and the boundary condition
ui(1+eB(w), ®) =V fo(p)-@— ¢, ;'(1) B(w) + O(e).
To analyze u;, we start by noting that
=P, 5V fo(p)-0—¢,5 (1) B@)]
satisfies the equation T, ;uj =01in €2, . and the boundary condition
ui(1+eB(w), w) =V fo(p)-@—¢, ;' (1) B(w).
It is an easy consequence of Lemma 2.1 that the equation
T, 50+ AVF(p.uo(z) -2 +b(p)- ~up(zh) =0 in B, wlsp =0,

has a unique solution w, which is then of the form w = Wp, 5(|z]) - z for some R"-valued function Wp’ 5
Specifically, its j-th component W;(r) := W, ;5 (r) - ¢; satisfies the ODE

uy(r)
)

1 - _
W)+ W)+ L (g ()W) + 7.0 F (p, o) + b (p) 0,

with the boundary condition W;(1) = 0 and the requirement that W; must be regular at 0. As uo(r) is
well-defined up to r = 1+ 6, so is W;(r). The function W, 5 is obviously bounded as

)
r

W, 5 lles+10.148,)) < CA|19;F (p, uo)les=1¢.1+s,) +C .
C5=1((0,145,))

Since ||M6||CS((0,1+3p)) < Cx by Lemma 2.1, we infer that ||Wp,;||C.v+| = O(X) as well.
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By construction, we immediately obtain that u; = u} + w + O(g), so the proposition follows. The
expression of Remark 3.2 follows from the same argument taking into account the formula for ¢, 5
provided in Remark 2.2. (|

Next we obtain asymptotic formulas for the normal derivative of u:

Proposition 3.3. The normal derivative of the function u, , 5 p satisfies

ity 55=0,; D) +elH,;B+IVfo(p)+V,;] -0} +0(),
where the constant vector V,, 5 € R" satisfies |V, ;| < C M.
Remark 3.4. When F(x,u) = f(x), one can obtain a more compact formula:

avup,s,X,B

A X A b
- ——f(p)+8{——f(p) (B—AoB)+Y fo(p)-— —(Vf(p)— M) a)} +0E). (1)
n n n+2 n

Proof. Since the boundary of €2, ,p is the zero set of the function r — e B(w) — 1, it is clear that its unit
normal vector at the point (1 4 ¢ B(w), w) is

_ £ g2 9 _1/2_ 2
V= (60— mVSB(w)) (1+m|VSB(O))| ) =w—¢eVsB(w)+ 0 (&),

where Vs denotes covariant differentiation on the unit sphere.
Using this formula, it follows from Proposition 3.1 that
8Uup’8’;\73 =v- Vup’g’;hB(l +eB(w), w)
= ¢p’;\/(1 +eB(w)) + 8{(er’;)/(1) cw+v- VP, 2 p[Viop) o— ¢p’;/(1) Bl} + O(s?).
Since ¢, 5(r) is Cs*t1-smooth for r < 1+ §,, let us now expand ¢,;' and use the definition of the

operator A, 5 . to write

aVup,s,X,B = ¢p,i/(1) +8{¢p,i//(l)B - ¢p,}:/(1) Ap,X,SBB + Ap,i,gB(va(p) a)) + W;y):(l) a)} + 0(82)-

Let us now recall that H, ;B := ¢,37"(1)B — ¢,;'(1) A, 7 ¢B (see Lemma 2.1) and that the usual
Dirichlet-Neumann map of the ball satisfies Ag(V -w) =V - w for all V € R”". Therefore, we can use the
bounds (2-6)-(2-7) and the estimate |V, ;| < C X with

Vp,)_L = W;,,X(l)a

proven in Proposition 3.1, to obtain the formula of the statement. The expression of Remark 3.4 follows

from the above argument after taking into account the expression for u g given in Remark 3.2. [

D&,

4. Proof of Theorem 1.1 when A(x) =1
For any given point p € R", let us now define a map

Fpii(—epep) x X1 — C(S),
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with X! :={b e C*(S) : |Ib|cs < 1}, as

6,51
Ay It

Roughly speaking, this map measures how far the Dirichlet solution u, , ; p is from satisfying the

J-"p’;(e, B) = 8v”p,s,i,B —

Neumann condition in the domain €2, . g with a constant
_ ¢, (1)
¢i= — 22 >0
Sfi(p)

An immediate consequence of the asymptotic formulas for 8,u, , 5 p proved in Proposition 3.3 and
the fact that

fill +eB(), ®) = fi(p) + eV fi(p) @+ O(e?),

is the following:

Proposition 4.1. For any fixed p € R", any B € XSIH(S) and any |g| < &,

¢, (1)
F,i(e B) = e{Hp,;B + [Vfo(m — 2V fi(p) + vp,;} w} +0().
fi(p)
Remark 4.2. When F(x, u) = f(x), one can obtain a slightly more explicit formula:
IR P f(p)
Foile, B)y=¢ey——f(p) (B—AoB)+ |V folp)+ Vi) | o
n n f1(p)

A [vf(p)_ f(p)b(p)].w}JrO(gz). @-1)
n+2 n

It then follows that the function ), 5 (¢, B)/¢ can be defined at ¢ = 0 by continuity. Furthermore, its

derivative with respect to B involves the operator H, 5, whose kernel was shown to be the space K in

Lemma 2.1. Consequently, let us define the spaces
X :={beC°(S): Pxb=0}, XSI ={beX;:||blles <1},
with Px being the orthogonal projector onto the subspace K. We also define the operator
Pb:=b—Pxb.

It is clear from these expressions that 7 maps each space C*(S) into itself and X! C X!
By Proposition 4.1, we can now define a map

. 1
Qp’i C(—gp,ep) X Xy —> Xy
as

PF,; (e, B)
G, (e, B) = —L1
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Lemma 4.3. Let U C R”" be any bounded domain. For any € (0, Ay), with

Ay = inf ip > 0,
peU

there exist some ¢ ; > 0 and a C* function Y, 5 : U — R" such that

¢,: (1) -
avupaS»Xng,p_; - fl (P) fl = Ys,i(p) cw

forall pe U and all |e| < ey ;. Here Y, 5(p) :=Y (¢, p, 1) is of class C* in all its arguments, and can be
interpreted as a family of parametrized vector fields on U, and B, , 5 is a certain function in X, s] Ry

Proof. Let us begin by showing that the Fréchet derivative DgG », 5(0,0) : X;41 — X is one-to-one. To
see this, note that Proposition 4.1 and the fact that P(A - w) = 0 for any A € R” imply that the derivative
of G, 5 with respect to B is of the form

DyG,;(5,0) = H, ; +&,

with ||€] x, ., x, < Cle|. Here we have used that, by Lemma 2.1, PHP,;\ = Hp’; because the range of the
elliptic first-order operator H i is contained in K. The estimate (2-4) then ensures that DG 3 5.(¢,0) is
an invertible map X — X, provided that ¢ is small enough.

As G b 5(0,0) = 0, the invertibility of DgG ». 5 (¢, 0) implies, via the implicit function theorem, that for
any ¢ small enough, there is a unique function B, , ; in a small neighborhood of 0 such that

G,i(e, B, ,;)=0.

By the definition of 7, 5 and the fact that C ={Y-w:Y € R"}, this implies that there is some Y (¢, p, 1) eR"
such that
¢, (1)

U, .35 -— fi=Y(E p.b) o
v¥p.ehB, 5 f1 (p)

Furthermore, Y (¢, p, ):) is a C*-smooth function of its arguments because so is the left-hand side of this
identity. O

Let us now note that the asymptotic expression of the vector field Y, ; (p) can be read off Proposition 4.1:

Lemma 4.4. The vector field Y, ; is of the form

¢, (1)
Y, 5(p) ZS[Vfo(p) — ;1 oy VP + Vp,;} +0(e).
When F(x,u) = f(x), one can write down the more precise expression
o A f(p) A _ f(p)b(p) >
Y, :(p) —E{Vfo(p)Jr nfl(p)vﬁ(p) —n+2[Vf(p) — ]} + O0(&%).
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Proof of Theorem 1.1 when A(x) = I and of Remark 1.2. Let us suppose that p* is a nondegenerate
critical point of the function fy. As ¢, ;/(1) = O (%) by Lemma 2.1, Lemma 4.4 implies that

Y, 5(p)

=V fo(p)+¢&,

with an error bounded as ||€|¢1 ) < CylA| + Cyle| for any bounded domain U > p* If |A| and |g| are
small enough, it is then standard that there is a unique point p, ; in a small neighborhood of p* such that
Y5 (pe5) =0.
By Lemma 4.3, and setting ¢ := —¢; i X(l)/fl (p,.;), this ensures that
e\ ’

avu&’ps,X’X’Bs,p,X +cfi =0,

which implies the claim of the theorem with the domain €2 PeseeB. i
To prove Remark 1.2 on overdetermined solutions for the torsion problem, let us assume that F'(x, u) =
f(x) =1 and that p* is a nondegenerate critical point of the function fy-+« log f; for some constant « > 0.

In this case, since f(x) =1 and b(x) = 0, Lemma 4.4 implies that
Y, 5(p)

x
=Vfo(p)+ - Vg fi(p)+¢&',

with ||5’||C1(U) < Cype. As one can pick any positive value of X by Remark 2.2, let us fix r=A*:=nk > 0.
The previous argument then allows us to conclude that, for any ¢ small enough, there exists some point p,
close to p* for which Y, ;(pe) = 0. Note that the condition that p* is a nondegenerate critical point of
fo+« log fi is crucially used to solve

V fo(pe) +« Vdog fi1(pe) = =&

for small & > 0 via the inverse function theorem. As above, this implies the existence of solutions to the
overdetermined torsion problem. The case of fy =0, f; =1 and F(x, u) = f(x) is handled similarly, so
Remark 1.2 then follows. 0

5. Introduction of a nonconstant matrix A (x) and conclusion of the proof

In this section we will show why the proof of Theorem 1.1 carried out for the case when A(x) = I remains
valid, with only minor variations, in the case of a general matrix A(x).

The key idea is that we are constructing domains that are small deformations of the ball of radius ¢,
with ¢ < 1. Over scales of order ¢, the function A(x) is essentially constant, so it stands to reason that
one might be able to compensate for the effect of having a nonconstant matrix A(x) (at least, to some
orders when considering an asymptotic expansion in &) by deforming the balls accordingly. More visually,
this would correspond essentially to picking an ellipsoidal domain at each point x with axes determined
by the matrix A(x).

The way to implement this idea is through (a rescaling of) the normal coordinates associated with the
matrix-valued function A, which we now regard as a Riemannian metric on R”" of class C**2. These are
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defined through the exponential map at a point p € R”,
expl’;‘ U, - R",

which maps a certain domain U, C R" diffeomorphically onto its image. It is standard [DeTurck and
Kazdan 1981] that exp;}(Z) is a C**! function of Z € U p and of p € R". The normal coordinates at p
are just the Cartesian coordinates Z = (Z, ..., Z,) on U, C R". In these coordinates, the metric reads
as A(Z) =14 0(]Z|?). More precisely, A(Z) = (a;j(Z)) is given by the pullback by the exponential
map of the metric tensor, which is well known to be of the form

(exp)¥[a;j (x) dx; dx;] = 4;;(Z) d Z; d Z;,
with functions g;; of class C*(U,,) such that
a;j(0) =6;j, 9z7.a;;(0) =0.

Therefore, normal coordinates enable us to write the matrix as the identity plus a C*-smooth quadratic
error. Incidentally, it is well known that the leading-order contribution of the error is determined by the
curvature of the metric A at the point p.

We are now ready to reformulate the overdetermined problem with a general function A as a small
perturbation of the case A(x) = I. For each function B € C**!(S) with || B||cs+1 < 1 and each & small
enough, one can then define the domain 2, .3 C R" (which will play the same role as (2-1)) as

QB = {exp?(sz) Szl < 1+eB(z/|z])}-
Note that, in terms of the spherical coordinates associated with a point z,
r o= z] € (0, 00), a)::ﬁeg,
Z
the above condition reads simply as r < 1 + ¢B(w). In the domain €2, g, (1-2) reads in the rescaled

normal coordinates z at p as
Lu +if(z, u) =0,

where F (z,u):=F (expg (¢2), u) and now the linear operator L is of the form
Lu:= a;j(e7) 0y,z;u + eb;(e2) o, u,

with d;;(Z) as above and some functions 13,- (Z) of class C*.
Therefore,
Lu= Au+ebi(ez) o, u+Eu,

where the error term is bounded as ||Eu||cs—1 < C82||u||cs+1 and Lu — Eu is just like the operator Lu
introduced below (2-2). One can now go over the proof of Theorem 1.1 and readily see that all the
arguments remain valid when one introduces an error of this form in the expressions. This is not surprising,
as the proof only uses the formulas for the terms in the equations that are of zeroth and first order in ¢.
Since the nondegenerate critical points of fy do not depend on the coordinate system, Theorem 1.1 is
then proven for a general matrix-valued function A.



2002 MIGUEL DOMINGUEZ-VAZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

Acknowledgements

Dominguez-Vazquez is supported by the grants PID2019-105138GB-C21 (AEI, Spain) and ED431C
2019/10, ED431F 2020/04 (Xunta de Galicia, Spain), and by the Ramén y Cajal program of the Spanish
Ministry of Science. This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme through the Consolidator Grant
agreement 862342 (Enciso). It is also supported by the grants CEX2019-000904-S, RED2022-134301-T,
and PID2022-136795NB-100 (Enciso and Peralta-Salas) funded by MCIN/ AEI.

References

[Aftalion and Busca 1998] A. Aftalion and J. Busca, “Radial symmetry of overdetermined boundary-value problems in exterior
domains”, Arch. Ration. Mech. Anal. 143:2 (1998), 195-206. MR Zbl

[Aftalion et al. 1999] A. Aftalion, J. Busca, and W. Reichel, “Approximate radial symmetry for overdetermined boundary value
problems”, Adv. Differential Equations 4:6 (1999), 907-932. MR Zbl

[Alessandrini and Garofalo 1989] G. Alessandrini and N. Garofalo, “Symmetry for degenerate parabolic equations”, Arch.
Ration. Mech. Anal. 108:2 (1989), 161-174. MR Zbl

[Bianchini et al. 2014] C. Bianchini, A. Henrot, and P. Salani, “An overdetermined problem with non-constant boundary
condition”, Interfaces Free Bound. 16:2 (2014), 215-241. MR Zbl

[Brandolini et al. 2008] B. Brandolini, C. Nitsch, P. Salani, and C. Trombetti, “Serrin-type overdetermined problems: an
alternative proof™, Arch. Ration. Mech. Anal. 190:2 (2008), 267-280. MR Zbl

[Cianchi and Salani 2009] A. Cianchi and P. Salani, “Overdetermined anisotropic elliptic problems”, Math. Ann. 345:4 (2009),
859-881. MR Zbl

[Damascelli et al. 1999] L. Damascelli, F. Pacella, and M. Ramaswamy, “Symmetry of ground states of p-Laplace equations via
the moving plane method”, Arch. Ration. Mech. Anal. 148:4 (1999), 291-308. MR Zbl

[Delay and Sicbaldi 2015] E. Delay and P. Sicbaldi, “Extremal domains for the first eigenvalue in a general compact Riemannian
manifold”, Discrete Contin. Dyn. Syst. 35:12 (2015), 5799-5825. MR Zbl

[DeTurck and Kazdan 1981] D. M. DeTurck and J. L. Kazdan, “Some regularity theorems in Riemannian geometry”, Ann. Sci.
Ecole Norm. Sup. (4) 14:3 (1981), 249-260. MR Zbl

[Dominguez-Vazquez et al. 2019] M. Dominguez-Véazquez, A. Enciso, and D. Peralta-Salas, “Solutions to the overdetermined
boundary problem for semilinear equations with position-dependent nonlinearities”, Adv. Math. 351 (2019), 718-760. MR Zbl

[Dominguez-Vazquez et al. 2021] M. Dominguez-Vazquez, A. Enciso, and D. Peralta-Salas, “Piecewise smooth stationary Euler
flows with compact support via overdetermined boundary problems”, Arch. Ration. Mech. Anal. 239:3 (2021), 1327-1347. MR
Zbl

[Farina and Valdinoci 2010] A. Farina and E. Valdinoci, “Flattening results for elliptic PDEs in unbounded domains with
applications to overdetermined problems”, Arch. Ration. Mech. Anal. 195:3 (2010), 1025-1058. MR Zbl

[Farina and Valdinoci 2013] A. Farina and E. Valdinoci, “On partially and globally overdetermined problems of elliptic type”,
Amer. J. Math. 135:6 (2013), 1699-1726. MR Zbl

[Fragala and Gazzola 2008] I. Fragala and F. Gazzola, “Partially overdetermined elliptic boundary value problems”, J. Differential
Equations 245:5 (2008), 1299-1322. MR Zbl

[Fragala et al. 2006] 1. Fragala, F. Gazzola, and B. Kawohl, “Overdetermined problems with possibly degenerate ellipticity: a
geometric approach”, Math. Z. 254:1 (2006), 117-132. MR Zbl

[Garofalo and Lewis 1989] N. Garofalo and J. L. Lewis, “A symmetry result related to some overdetermined boundary value
problems”, Amer. J. Math. 111:1 (1989), 9-33. MR Zbl

[Garofalo and Sartori 1999] N. Garofalo and E. Sartori, “Symmetry in exterior boundary value problems for quasilinear elliptic
equations via blow-up and a priori estimates”, Adv. Differential Equations 4:2 (1999), 137-161. MR Zbl


http://dx.doi.org/10.1007/s002050050103
http://dx.doi.org/10.1007/s002050050103
http://msp.org/idx/mr/1650014
http://msp.org/idx/zbl/0911.35008
http://dx.doi.org/10.57262/ade/1366030751
http://dx.doi.org/10.57262/ade/1366030751
http://msp.org/idx/mr/1729395
http://msp.org/idx/zbl/0951.35046
http://dx.doi.org/10.1007/BF01053461
http://msp.org/idx/mr/1011556
http://msp.org/idx/zbl/0697.35074
http://dx.doi.org/10.4171/IFB/318
http://dx.doi.org/10.4171/IFB/318
http://msp.org/idx/mr/3231971
http://msp.org/idx/zbl/1297.35153
http://dx.doi.org/10.1007/s00205-008-0119-3
http://dx.doi.org/10.1007/s00205-008-0119-3
http://msp.org/idx/mr/2448319
http://msp.org/idx/zbl/1161.35025
http://dx.doi.org/10.1007/s00208-009-0386-9
http://msp.org/idx/mr/2545870
http://msp.org/idx/zbl/1179.35107
http://dx.doi.org/10.1007/s002050050163
http://dx.doi.org/10.1007/s002050050163
http://msp.org/idx/mr/1716666
http://msp.org/idx/zbl/0937.35050
http://dx.doi.org/10.3934/dcds.2015.35.5799
http://dx.doi.org/10.3934/dcds.2015.35.5799
http://msp.org/idx/mr/3393256
http://msp.org/idx/zbl/1334.49131
http://dx.doi.org/10.24033/asens.1405
http://msp.org/idx/mr/644518
http://msp.org/idx/zbl/0486.53014
http://dx.doi.org/10.1016/j.aim.2019.05.017
http://dx.doi.org/10.1016/j.aim.2019.05.017
http://msp.org/idx/mr/3954957
http://msp.org/idx/zbl/1418.35280
http://dx.doi.org/10.1007/s00205-020-01594-4
http://dx.doi.org/10.1007/s00205-020-01594-4
http://msp.org/idx/mr/4215194
http://msp.org/idx/zbl/1462.35266
http://dx.doi.org/10.1007/s00205-009-0227-8
http://dx.doi.org/10.1007/s00205-009-0227-8
http://msp.org/idx/mr/2591980
http://msp.org/idx/zbl/1236.35058
http://dx.doi.org/10.1353/ajm.2013.0052
http://msp.org/idx/mr/3145008
http://msp.org/idx/zbl/1312.35138
http://dx.doi.org/10.1016/j.jde.2008.06.014
http://msp.org/idx/mr/2436831
http://msp.org/idx/zbl/1156.35049
http://dx.doi.org/10.1007/s00209-006-0937-7
http://dx.doi.org/10.1007/s00209-006-0937-7
http://msp.org/idx/mr/2232009
http://msp.org/idx/zbl/1220.35077
http://dx.doi.org/10.2307/2374477
http://dx.doi.org/10.2307/2374477
http://msp.org/idx/mr/980297
http://msp.org/idx/zbl/0681.35016
http://msp.org/idx/mr/1674355
http://msp.org/idx/zbl/0951.35045

OVERDETERMINED BOUNDARY PROBLEMS WITH NONCONSTANT DIRICHLET AND NEUMANN DATA 2003

[Kawohl 1998] B. Kawohl, “Symmetry or not?”’, Math. Intelligencer 20:2 (1998), 16-22. MR Zbl

[Kumaresan and Prajapat 1998] S. Kumaresan and J. Prajapat, “Serrin’s result for hyperbolic space and sphere”, Duke Math. J.
91:1 (1998), 17-28. MR Zbl

[Magnanini and Poggesi 2020a] R. Magnanini and G. Poggesi, “Nearly optimal stability for Serrin’s problem and the soap
bubble theorem”, Calc. Var. Partial Differential Equations 59:1 (2020), art.id. 35. MR Zbl

[Magnanini and Poggesi 2020b] R. Magnanini and G. Poggesi, “Serrin’s problem and Alexandrov’s soap bubble theorem:
enhanced stability via integral identities”, Indiana Univ. Math. J. 69:4 (2020), 1181-1205. MR Zbl

[Pacard and Sicbaldi 2009] F. Pacard and P. Sicbaldi, “Extremal domains for the first eigenvalue of the Laplace—Beltrami
operator”, Ann. Inst. Fourier (Grenoble) 59:2 (2009), 515-542. MR Zbl

[del Pino et al. 2015] M. del Pino, F. Pacard, and J. Wei, “Serrin’s overdetermined problem and constant mean curvature
surfaces”, Duke Math. J. 164:14 (2015), 2643-2722. MR Zbl

[Prajapat 1998] J. Prajapat, “Serrin’s result for domains with a corner or cusp”, Duke Math. J. 91:1 (1998), 29-31. MR Zbl
[Rayleigh 1877] J. W. Strutt, 3rd baron Rayleigh, The theory of sound, 1, Macmillan, London, 1877.

[Ros et al. 2020] A. Ros, D. Ruiz, and P. Sicbaldi, “Solutions to overdetermined elliptic problems in nontrivial exterior domains”,
J. Eur. Math. Soc. 22:1 (2020), 253-281. MR Zbl

[Serrin 1971] J. Serrin, “A symmetry problem in potential theory”, Arch. Ration. Mech. Anal. 43 (1971), 304-318. MR Zbl

[Traizet 2014] M. Traizet, “Classification of the solutions to an overdetermined elliptic problem in the plane”, Geom. Funct.
Anal. 24:2 (2014), 690-720. MR Zbl

[Ye 1991] R. Ye, “Foliation by constant mean curvature spheres”, Pacific J. Math. 147:2 (1991), 381-396. MR Zbl
Received 18 Aug 2020. Revised 23 Mar 2022. Accepted 14 Apr 2022.

MIGUEL DOMINGUEZ-VAZQUEZ: miguel.dominguez@usc.es
CITMAga, Department of Mathematics, Universidade de Santiago de Compostela, Spain

ALBERTO ENCISO: aenciso@icmat.es
Instituto de Ciencias Matematicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain

DANIEL PERALTA-SALAS: dperalta@icmat.es
Instituto de Ciencias Matemadticas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain

mathematical sciences publishers :'msp


http://dx.doi.org/10.1007/BF03025292
http://msp.org/idx/mr/1631417
http://msp.org/idx/zbl/0947.00004
http://dx.doi.org/10.1215/S0012-7094-98-09102-5
http://msp.org/idx/mr/1487977
http://msp.org/idx/zbl/0941.35029
http://dx.doi.org/10.1007/s00526-019-1689-7
http://dx.doi.org/10.1007/s00526-019-1689-7
http://msp.org/idx/mr/4054869
http://msp.org/idx/zbl/1440.35221
http://dx.doi.org/10.1512/iumj.2020.69.7925
http://dx.doi.org/10.1512/iumj.2020.69.7925
http://msp.org/idx/mr/4124125
http://msp.org/idx/zbl/1445.35257
http://dx.doi.org/10.5802/aif.2438
http://dx.doi.org/10.5802/aif.2438
http://msp.org/idx/mr/2521426
http://msp.org/idx/zbl/1166.53029
http://dx.doi.org/10.1215/00127094-3146710
http://dx.doi.org/10.1215/00127094-3146710
http://msp.org/idx/mr/3417183
http://msp.org/idx/zbl/1342.35188
http://dx.doi.org/10.1215/S0012-7094-98-09103-7
http://msp.org/idx/mr/1487978
http://msp.org/idx/zbl/0943.35022
https://archive.org/details/theorysound06raylgoog
http://dx.doi.org/10.4171/jems/921
http://msp.org/idx/mr/4046014
http://msp.org/idx/zbl/1440.35167
http://dx.doi.org/10.1007/BF00250468
http://msp.org/idx/mr/333220
http://msp.org/idx/zbl/0222.31007
http://dx.doi.org/10.1007/s00039-014-0268-5
http://msp.org/idx/mr/3192039
http://msp.org/idx/zbl/1295.35344
http://dx.doi.org/10.2140/pjm.1991.147.381
http://msp.org/idx/mr/1084717
http://msp.org/idx/zbl/0722.53022
mailto:miguel.dominguez@usc.es
mailto:aenciso@icmat.es
mailto:dperalta@icmat.es
http://msp.org




ANALYSIS AND PDE
Vol. 16 (2023), No. 9, pp. 20052040

DOI: 10.2140/apde.2023.16.2005

MONGE-AMPERE GRAVITATION AS A T'-LIMIT OF GOOD RATE FUNCTIONS

LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

Monge—Ampere gravitation is a modification of the classical Newtonian gravitation where the linear
Poisson equation is replaced by the nonlinear Monge—Ampere equation. This paper is concerned with
the rigorous derivation of Monge—Ampere gravitation for a finite number of particles from the stochastic
model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (Bull. Inst.
Math. Acad. Sin. 11:1(2016), 23—41). This is done in two steps. First, we compute the good rate function
corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity.
Second, we study the I'-convergence of this good rate function, as the diffusivity tends to zero, toward a
(nonsmooth) Lagrangian encoding the Monge—Ampere dynamic. Surprisingly, the singularities of the
limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to
sticky collisions in one space dimension.

1. Introduction

Monge-Ampére gravitation. On a periodic domain such as T¢ = (R/Z)¢, Newtonian gravitation is
commonly described in terms of the density of probability f(z, x, &) to find gravitating matter at time ¢,
position x € T and velocity & € R?, subject to the Vlasov—Poisson equation

8l‘f(t7x7 S)“*’diVx(sf(tvxv S)) —dng(Vgﬂ(I,X)f(l,X, S)) :07
A<p(z,x)=/Rdf(t,x,g)dg—1, (t,x,&) e Rx T¢ x RY,

where ¢ is the gravitational potential. Notice that the averaged density, say 1, has been subtracted out
from the right-hand side of the Poisson equation, due to the periodicity of the spatial domain. This is a
common feature of computational cosmology and it lets the uniform density be a stationary solution. The
Vlasov—Poisson system can be seen as an “approximation” to the more nonlinear Vlasov—Monge—Ampere
(VMA) system

O f(t,x,8) +dive (51 (1, x, ) —dive (Vo(t, x) f (£, x, §)) =0, (D
det(l+D?p(t, x)) = /Rd flt,x,6)ds,  (t,x,6) e RxTY xR, (2)

where the fully nonlinear Monge—Ampere equation substitutes for the linear Poisson equation of Newtonian
gravitation. Indeed, for “weak” gravitational potentials, by expanding the determinant around the identity
matrix [, we get

det(14+D%p(t, x)) ~ 1 + tr(D*¢(z, x)) = 1 + Ap(t, x)
MSC2020: 49J52, 60F10, 70F40, 70B0S.
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and recover the Newtonian model approximately (and exactly as d = 1). In this paper, we will speak of
“Monge—Ampere gravitation” (“MAG” in short). The Vlasov—-Monge—Ampere system was introduced
and related to the Vlasov—Poisson system in [Brenier and Loeper 2004], and studied as an ODE on the
Wasserstein space in [Ambrosio and Gangbo 2008]. It can also be solved numerically thanks to efficient
Monge—Ampere solvers recently designed by Mérigot [2011]. It was argued in [Brenier 2011] that MAG
may also be seen as an approximation of Newtonian gravitation for which the “Zeldovich approximation”
[1970] (see [Frisch et al. 2002; Brenier et al. 2003]), popular in computational cosmology, becomes exact.

Derivation of a discrete model of MAG. In what follows, we will not be directly interested in the
aforementioned system, but rather in its discrete version, i.e., when the number of particles is finite.
As is well known in optimal transport theory [Brenier 1987; 1991; Villani 2003], the Monge—Ampere
equation (2) is solved by the unique function ¢ such that the map Id+ V¢ realizes the optimal transport with
quadratic cost from the density | f d& to the Lebesgue measure. Then, the kinetic equation (1) is known
to be the continuous version of the Newton equations of classical mechanics in a potential given by ¢.

In the discrete setting, the stationary Lebesgue measure is replaced by a family A = (ay, ..., ay) €
(RY)N of N > 1 points in R? (here we make the presentation in R? instead of T¢ for the sake of simplicity).
One can for instance think of a regular lattice approximating in some region a constant density, even though
in the sequel the particular choice of (ay, ..., ay) will play no role. We will consider the evolution of a
cloud X = (x1, ..., xy) of N particles xq, ..., xy in R? whose dynamic is ruled by the (—1/N)-convex
function induced by the discrete optimal transport problem

N N N
. | . 2 laof1 1
F(X):=— min 55 le i — o) * = =5 W5 (ﬁ ;5 5 ;8) 3)

where W is the so-called Wasserstein distance on P, (R?), the set of Borel probability measures on R4
having a finite second-order moment. At least in the case where the optimization problem in (3) admits a

unique mMinimizer oop; = U())I()t’ the analogue of (1), (2) in this framework is easily seen to be formally,
d 2
foralli =1.....N. 5xi(0) = 2(1) = doyi. )
which can be rewritten as, letting &; := (x((¢), ..., xny (1)),
1 d?

Following the ideas of the recent paper [Brenier 2016], we will derive this discrete dynamic from the
very elementary stochastic model of a Brownian point cloud. However, in [Brenier 2016], the derivation
was obtained by applying two successive large deviation principles (LDP), through a purely formal use of
the Freidlin—Wentzell theory [1998]. The main purpose of the present paper is to explain how such a
derivation can be made rigorous by substituting for one of the applications of the LDP a PDE method
inspired by the famous concept of “onde pilote” introduced by Louis de Broglie [1927] at the early stage
of quantum mechanics.
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Dealing with the singularities. Due to the lack of uniqueness in the discrete optimal transport problem,
solutions of (4) are not always well-defined a priori. Otherwise stated, F' is singular, and therefore V F
in (5) is not everywhere meaningful. A standard choice to give sense to (5) is to restate it as

1d?
_N@Xt € IF (X)), (6)
where 0 F (X;) is the subdifferential of F at X}, or
1 d? =
_ﬁ@)(t = VF(Xt),

where V F (X;) is the element of d F (X;) with minimal Euclidean norm (see Definition 8 below). In these
formulations, existence results are available even in the nondiscrete case [Ambrosio and Gangbo 2008].

This is not what we do: our approach selects minimizers of actions appearing as I'-limits of good rate
functions associated with some LDP, under endpoint constraints. These curves do solve (4) in the case
where o, is unique, but this time, the relaxation is made at the level of the Lagrangian formulation, and
not at the level of the Hamiltonian one. In view of (5), we would expect to find the action

oLk
— NF(X;) ¢ dt, (7
to 2
where 1y, t; are some prescribed initial and final times. Instead, our derivation ends up with the smaller
action - . 5
(A, X, — V(X
/{|t|+|t f( t)|}dt’ 8)
0 2 2

N N
— g — . — d\N
f(X):= ;relg)liv leaa(,) = 2x1a6(3§t(i)’ X =(x1,...,xy) € (RH™.
1= 1=
Note that these two actions coincide on curves X such that, for almost every ¢, acjg’t is unique (see
Section 2.7 for more details). Unexpectedly, this action is exactly the one previously suggested by the
third author in [Brenier 2011] in order to include dissipative phenomena (such as sticky collisions in one
space dimension) in the Monge—Ampere gravitational model!

The classical theory for sticky particles vs. our approach. Systems of particles moving along the line
and that stick together when they meet have been studied for a long time, for instance because they were
suggested to model the formation of large structures in the universe [Zeldovich 1970]. On the mathematical
side, a lot of works have been devoted to studying the limit of this kind of system when the number of
particles tends to infinity (see for instance [E et al. 1996; Brenier and Grenier 1998]), and the most recent
works generally build on a connection with the theory of optimal transport (see [Natile and Savaré 2009;
Brenier et al. 2013; Hynd 2020]). An example illustrating this link, which is one of the main theorems
in [Natile and Savaré 2009], is that up to a change of time, the one-dimensional pressureless Euler system
with sticky collisions is the gradient flow in the Wasserstein space of —%W%(m, -), where m € P> (R) is
a reference probability measure on the line. In plain English, in these models, particles are only allowed
to stick when they meet, and it corresponds to the optimal way of decreasing a certain functional.
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Our approach is different. In fact, our model is a least action principle, and therefore is conservative
and time-reversible. In this context, sticky collisions happen due to the presence of an internal energy,
corresponding to the discontinuities of the potential energy X +— ——|X v f(X )|? (see formula (51)),
and which grows when particles aggregate. Kinetic energy can hence be transferred into internal energy
through perfectly inelastic shocks. An output of these considerations is that in our case, particles are not
only allowed to stick together; they can also separate.

Outline. In Section 2 we show how to derive MAG starting from a finite number of Brownian particles.
This is done in several steps, the main one being the I'-convergence towards the “effective” singular
functional (8) of the good rate functions associated with the large deviations of the solutions of a family
of SDEs (up to a change of time). This is stated in Theorem 9, which is our main result. Section 3 is
devoted to the proof of Theorem 9. The purpose of Section 4 is to show that in one space dimension, the
dissipative phenomena induced by this functional lead to sticky collisions.

Notation. We will work with N particles in R?, and hence in (R?)". Points of (R?)" will be denoted with
capital letters, mainly X, Y or Z. Curves with values in (R%)"
X, Y or Z. The positions of X',  and Z at time ¢ € R will be denoted by &}, )J; and Z, respectively.

In order to avoid heavy notation, in most cases, the laws of the processes that we will consider will

will be denoted with calligraphic letters

be continuously parametrized. In these cases, we will use abuses of notation: for instance, we will say
that the family of laws (u,),~0 is tight whenever it is tight for sufficiently small values of 7. This is
equivalent to (i,, )sen being tight for all (1,) € ([R{jr)N decreasing to O.

2. Derivation of the discrete model

2.1. The stochastic model of a lattice with Brownian motion. Take A = (ai, ..., an) € (R)" to be a
family of N > 1 points in R?. We assume each point of this lattice to be subject to Brownian motion for
times ¢ > 0. At time ¢, the position of point i is

a; +/eB!,

where (B");—1_._4 is a family of N independent normalized Brownian curves and & monitors the (common)

level of noise. As a consequence, at time ¢ > 0, the density of probability p. (¢, X) for the point cloud

(a1 ++/¢B!,....ay +eB))

to be observed at location X = (x1, ..., xg) € (RH)Y, up to a permutation o € Gy of the labels, is easy

.....

to compute. We find

pu(t, X) = dN Z HGXP( ,—ag(,)| )’

N oeGy i=1
or, in short,

1 |1X — A°|?
X ew(- ),
N\ 2met &t

O'EGN
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where | - | denotes the euclidean norm in R¢ or (R%)N depending on the context, and where, for all
X =(x1,...,xy5) € RHN, we let

X7 = (Xg(1), -+ s Xo(N))-

This was the starting point of the discussion made in [Brenier 2016], using a double large deviation
principle.

In the present paper, we rather turn to a PDE viewpoint, where p, is the solution of the heat equation
in RHN,

9: ( xy= £ Ap(r. X) )
8t l - 2 p8 ’ 9
with, as initial condition, the delta measure located at A = (ay,...,ay) € (IRd)N and symmetrized with
respect to o € Sy, namely
1
Pe0,X) =~ D bae. (10)
O'EGN

In some sense, we have solved the heat equation in the space of “point clouds” (R%)" /&y, with initial
position A, defined up to a permutation o € Gy of the labelsi =1, ..., N.

2.2. “Surfing” the “heat wave”. After solving the heat equation (9)—(10), in the space of “clouds”
(RY)N /&y, we introduce the companion ODE in the space (R?)V:

&

d‘Xt &
dt =v8(taXt )’ vé‘(th)=

&

2

Vlog pe(t, X), (11)
or, more explicitly

1 2peey (X = A7) exp(—|X — A%?/2¢1))

2t > sesy EXP(—|X — A° 12/ (2¢t))

1 < 2oesy A7 exp((X - A")/(St)))
= —| X —
2t D oeay SXP((X - A7)/ (1))

ve(t, X) =

(12)

where if U and V are in (R9)", then U - V denotes the inner product between U and V. This velocity is
chosen so that

0
%(n X) +div(pe (7, X)ve (1, X)) =0,

i.e., for the density p. to be transported by the velocity field v.. We may solve this ODE for arbitrarily
chosen position X;, € (RY)N (up to reordering) and initial time 7y > 0.

Put another way, we consider the characteristics corresponding to the heat equation (9)—(10), interpreted
as a continuity equation, associated to our Brownian point cloud.

Remark 1. By doing that change of perspective, we just mimic the idea of quantum particles driven by
the “onde pilote”, as imagined by Louis de Broglie [1927; 1959] at the early stage of quantum mechanics.
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Indeed, in our case, the velocity v¥ = V¢? is the gradient of the scalar function ¢* := (—&/2) log p?,
and the pair (p?, ¢°) is easily seen to solve the system

0 p® +div(p*Ve®) =0,

az¢e+l|V¢£|2=_£AVp8 (13)
2 JpE

2

that is, the characteristics follow the trajectories of Newton’s law in a potential induced by p°.
In the quantum case, something very similar can be found with the help of the Madelung transform
[1927]. Namely, if the complex function W# solves the Schrodinger equation

9,0 + %Aqﬁ =0,

writing W = /p€e'?"/¢ for a pair (p°, ¢°) of real functions, then this pair is shown to formally solve the

very similar system
0 p® +div(p*Ve?) =0,

a¢8+1|w8|2=fAVpg 14
t 2 2 /—ps )

and this observation was the starting point of de Broglie’s interpretation of quantum mechanics. In this
case, the potential in the right-hand side of the second equation is called the Bohm quantum potential.
However, the analysis of (14) is substantially more difficult than the one of (13), due to the possible
vanishing of the wave function W¢ during the evolution.

This analogy is not a coincidence. Indeed, it is known [von Renesse 2012] that the Schrédinger equation
in its Madelung formulation (14) is formally the Hamiltonian flow corresponding to the Lagrangian

5.y =L [11vel = [EVi0g o]
quantum P, % _2 % 2 ng P,

in the geometry of optimal transport, while system (13), which admits solutions of the heat equations as
particular solutions, is rigorously the Hamiltonian flow corresponding to the Lagrangian

LE voy =L [[ivol? +|E¥10e o
heat (P 90)-—2 |90|+2 ogp| (P,

in the geometry of optimal transport [Conforti 2019]. The latter Lagrangian appears naturally in the
theory of entropic optimal transport; see [Gentil et al. 2017; Gigli and Tamanini 2020].

2.3. Large deviations of the “heat wave”’ ODE. Let us now add to the ODE of the previous subsection a
noise of the form

dXS " = v (e, X7 dt + @dW,, (15)

where 7 is a positive number, (W) is a standard Brownian motion in (R?)", and where the scaling
prefactor 1/4/t has been chosen to recover MAG at Section 2.6. That is, we include a second time-
dependent level of noise to the model: we perturb the characteristics that were already generated, through
the heat equation, by the Brownian motion of our original point cloud.
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Our main finding is that when n and € are small and up to a change of time, the trajectories charged
by the solution of this SDE starting from P € (RO at time ty > 0 and which happen to be close to
0 € (RHN at time 11 > to are well-approximated by MAG.

The purpose of the rest of this section will be to make this rough statement precise. When we say that
some random trajectories are well-approximated by MAG, we mean that they are close in the uniform
topology to minimizers of the action (8), with large probability. Justifying this fact will require several steps
and intermediate functionals. As the times 7 and #;, as well as the endpoints P and Q, will be fixed in what
follows, we decided not to refer to them in the notation for the different functionals and laws that will appear.

Since for fixed ¢ > 0 and ¢ > 1y > 0, v, is a smooth velocity field, the existence of a strong solution
and pathwise uniqueness for (15) is standard once fixed a law for the initial position X,‘Z’" at some fy > 0.
Since we want to consider indistinguishable particles, a relevant choice of initial law consists in taking
X,‘;’” = P° with probability 1/(N!), given some P € (R?)" and o € Gy. For convenience, from now on,
we denote by {P?} the set {P° : 0 € Gy}. The law just described is nothing but the uniform law on { P?}.
Remark 2. Actually, at this stage, it would be possible to reintroduce distinguishability: Theorem 3,
Corollary 4, Proposition 7 and Theorem 9 below could easily be written for distinguishable particles,
that is, with constraints on the endpoints of the curves, and not on these endpoints up to reordering.
We decided to keep on working on clouds of indistinguishable particles in order to avoid crossings of
trajectories in Section 4.

The first step consists in using classical Freidlin—Wentzell theory [1998] (see also [Dembo and Zeitouni
1998]) in order to pass to the limit » — 0, while ¢ > 0 is kept fixed, in the sense of large deviations
(we omit the proof since it consists in adapting in a straightforward way [Dembo and Zeitouni 1998,
Theorem 5.6.3] to time-dependent entries and more general initial law for the SDE).

Theorem 3. Let us fix two positive times 0 < ty < t; and P € (RY)N. For fixed ¢ > 0 and as n — 0, the
family of laws (e, ) of the solution of (15) between times ty and t and starting from the uniform law on
{P°} satisfies the LDP on CO[to, 111; (RHN) with good rate function LS defined for all X = (X;)te(1,11 bY

VA — v, )P x tde if X € H' (1o, 1]; (RDN) and X, € [P},

Lox)=12"/n 16
¢ () {+ (16)

else.

’

In the rest of the article, we will call these kind of functionals “actions”, instead of the usual terminology
“good rate function”.

An outcome of this result is that with large probability, when 7 is small, Xt'f’g is close to the position
at time f; of the solution of the ODE (11) starting from P, up to reordering. But now, we want to use
Theorem 3 in order to describe the behavior of the solutions of the SDE (15) when 7 is small, under the
large deviation assumption that its final position X,f’" is far from this expected value.

For this, we take Q € (R?)V, and we assume that we observe Xfl’" to be close to Q, up to reordering.
To quantify this closeness, we consider a new small parameter § > 0, and we work with the laws (u, )
from Theorem 3, conditioned to the event {th’77 € ereN B (Q°, 8)}, where for a given X € (RHN,
B(X, 8) stands for the closed ball of center X and radius §. MAG will be obtained by studying the limit
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of these conditional laws when n — 0, then § — 0 and finally ¢ — 0. We refer to Remark 12 for a
discussion about the order in which we let the different parameters tend to 0.
Concerning the limit 7 — 0, Theorem 3 implies the following.

Corollary 4. Let us fix e, 8 > 0, and call £ the closed subset of C°([ty, t1]; (R)N) defined by

&= {X e COlto. nl: RHM): 1, e ) B(Q”. 5)}.
O’GGN
The family of conditional laws (“g,n = e y( - 53)),,>0 is tight. Moreover, its limit points for the topology
of narrow convergence as n — 0 only charge minimizers of the functional

L IM& v, X)Pxede i X € H (0,11 RDY), Xy € (P} and X, € Uy e, B(Q, ),
+00, else.

8
L (X)= {
A7)
Proof. Let us first prove the tightness property. Let X be a curve in the interior of £%. As it satisfies an
LDP associated with a good rate function in a Polish space, by virtue of [Dembo and Zeitouni 1998,
Exercise 4.1.10], for fixed ¢ > 0, the family of laws (i, ,),~0 is exponentially tight. Hence, there is a
compact K (we call K€ its complement in C°([to, #;1; (R9)")) such that
lim sup 1 log e, (K€) < —L2(x) — 1.
n—0
Therefore, we find
lim sup 17 log u , (K©) = lim sup{n 10g e, , (K N %) — 1log e 5 (£%))
n—0 n—0

<limsup n log pe ,(K) —lim i(r)lfn log p,gy,,(é"s)
n—0 n—

<—LYX)—1+L%x) < -1
The tightness follows.

Now, let us consider p a limit point of (,ugn) as n — 0, and (n,) a sequence of positive numbers

8

decreasing to 0, with ug n, —> 1 asn — +oo. We will argue that whenever X’ is not a minimizer of Ly,

then X is not in the support of w. First, for all > 0, the support of /Lﬁ’n is a subset of £%. As the latter
is closed, this is also the case for the support of . So let us take X € £%, which is not a minimizer
of Lg. In particular, Lg(é\,’ ) > infgs Lg. As Lg is lower semicontinuous, there exists an open set U of
C%([to, 11]; (R)N) containing X such that inf;; L > infgs L. Let us show that u(U) = 0.
By the Portmanteau theorem, we have
.. 5
nU) < gglfgug,nn(U)-
By the definition of (14 ), we have
N log 1l (U) = 11,108 ey, (U NE®) = 0y 10g e, (€°) < 0y 10g phe., (U) =y 1og pre , (7).

The large deviation principle of Theorem 3 lets us estimate the lim sup of this quantity by

lim sup 1, log ug p, (U) <inf Lg — inng.
s»fin 505 l7

n—+00
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To conclude that this quantity is negative, and therefore that '““g,nn (U) tends to 0 as n — 400, it suffices
to notice that infy, L% = infgs LY (for instance by the easy fact that the infimum of L? is continuous with
respect to §), and to use the definition of U. The result follows. (|

2.4. From the I'-convergence of the actions to the narrow convergence of the laws. In the previous

subsection, we justified why the conditional laws (ui,n) from Corollary 4 are well-described by the

action Lg defined by formula (17) as n — 0: in this limit, these laws mainly charge small neighborhoods

of minimizers of that action. Now, we want to argue that in order to study these laws when not only 7 is

small, but also § and &, we have to study the action L? in that regime, in the sense of I'-convergence.
This assertion relies on the two following lemmas:

Lemma 5. Let (2, d) be a metric space, and (L,),eN be a sequence of lower semicontinuous functionals
Sfrom Q to Ry U {400} having compact sublevels, uniformly in n € N. Assume that (L,) has a I'-limit L.
Assume furthermore that L is not uniformly equal to +o0. Finally, consider (it,) € P(Q)N a sequence of
Borel probability measures on 2, such that, for all n, |, only charges minimizers of L,. Then, (i) is
tight, and any of its limit points in the narrow topology only charges minimizers of L.

Lemma 6. The family of actions (Lg) defined in (17) have compact sublevels in C°([ty, t;]; (RHN),
uniformly in ¢, 5 > 0.

Using these lemmas, we see that if we manage to identify a I"-limit L for Lg as g,8 — 0, then in this
limit, any family (149) of limits of (Mg.n) as 1 — 0 will mainly charge small neighborhoods of minimizers
of the limiting L. Before doing so in the next subsection, let us prove our two lemmas.

Proof of Lemma 5. Let x be a minimizer of £, and (x,) be an associated recovery sequence, that is,
Xp — x as n — 400, and limsup,_, , . £,(x,) < L(x) =inf L. Up to forgetting the first terms, we can
assume that £, (x,) is finite for all n € N. Now, call M := sup,,.y £, (x,). By assumption, the set

K:=|JlzeQ: Li(2) < M)
neN
is compact, and by definition of M it contains all the minimizers of all the functionals £,, n € N.
Therefore, for all n € N, ©,(K) = 1, and the tightness follows.

Let  be a limit point of () for the topology of narrow convergence. Up to considering a subsequence,
we assume that i, — w. Let x be in the support of w. It is easy to see that there exists a sequence (x;,)
such that x, — x as n — 400, and, for all n € N, x, is in the support of u,. But then by assumption,
for all n, x, is a minimizer of £, and therefore, by standard considerations about I"-convergence, x is a
minimizer of L. O

Proof of Lemma 6. For all ¢, § > 0, the action Lg coincides with Lg (defined in (16)) inside of the closed set
£% and is 400 outside of this closed set. Therefore, we just need to prove that L(g) has compact sublevels,
uniformly in ¢ > 0. Actually, precompacity suffices by lower semicontinuity of Lg. To do so, we will
use the following bound, which holds as a consequence of (12) for all ¢ > 0, f € [ty, #;] and X € (RN

A X
lve (2, X)| < A+ 1] |- (18)
2to
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We will prove that, for all M > 0, there exists M’ > 0 (uniform in ¢) such that, for all ¢ > 0 and
X e CO[1o, t11; (R)N), whenever L2(X) < M, we have

1 ne 2 /

= || dt < M.

2/
This is enough to conclude since it is well-known that the set H Y([to, t11: RHN) is compactly embedded
in C%([10, 111; RHN).

So let us consider M, ¢ > 0, and a curve X such that LS(X) < M. Note that in particular, X;, € {P°}.

We have, for all ¢ € [1g, 1],

1/H%P$=/w&—wcﬂo+wmﬁwﬁd
2 o o 2

N . t
§/|%—%@%WM+/|M&%W®
fo

To

1 131 A 1 t
s—/|&—m@&ﬁxmwu7/um+mww
fo 4t0 10

fo

M (H—1)|AF 1 [! s,
—+%+—2/ Xzo+/ er‘f
o 2t0

2M ) — |A|?
<—+— —+|P| + |X| dr ds
fo %

where we used (18) to get the third line. We deduce our claim from the Gronwall lemma. Il

2
ds

2.5. The convergence results. As already explained, understanding the behavior of families (14%) of limit
points of (ugn) as 1 — 0 when ¢ and § are small amounts to understanding the behavior of the family
of actions (Lg) in the I"'-convergence sense. This is what we propose to do now. More specifically, we
will see that (L?) has a ['-limit, when first § — 0, and then & — 0. Doing so, we ensure that limit points
of the family (112) in the relevant asymptotic only charge minimizers of the corresponding actions; see
Corollary 11 below. We discuss the question of swapping these limits in Remark 12.

Thanks to the smoothness of v®, the first I'-limit, as § — 0, is very simple and we omit the proof.

Proposition 7. Let ¢ > 0. As 8 tends to zero, the family of actions (Lg) I"-converges to

LAn:{%gvh—%mxm%um if X € H'(lto, 11]; R)N), X, € {P°} and X;, € {Q°}
_l’_

00, else.

The second I'-convergence, as ¢ — 0, is more intricate and can be seen as the main result of this paper,
because it involves the singular limit of the vector fields (v®) as ¢ — 0. Before stating it, we need to
introduce a few objects.

Define the following smooth functions, which are convex in X:

foralle >0, >0 Xe(Rd)N fe(t, X):=¢tlo L Zex XA (19)
9 ) ’ & ) L g N' p tg .

’ UEGN
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It has the property that, for all e > 0, # > 0, and X € (RHN,
X—-Vfit, X
ve(t, X) = +

As a consequence, we can rewrite L for all ¢ > 0 as

. m_{% G — (X =V £, X)) /@D P xrde it XeH ([, 1]; R)V), X, €{P7} and X, €{Q"},
()=

400 else.

When ¢ tends to zero, by virtue of the so-called Laplace’s principle, we have the pointwise convergence

lim f(z, X) = max X - A° =: f(X). (20)
e—0 oeGy
Notice that f is linked to the function F defined in (3) by the formula,
A2+ 1X)?
for allXe(IRd)N, f(X)=%+NF(X). (21)

The function f no longer depends on the time variable, and it is a convex function with finite values.
As a consequence, for each X € (RN, the subdifferential 9 f(X) of f at X is nonempty. We will consider
the extended gradient V f (X) of f at X defined as:

Definition 8 (extended gradient). We define the extended gradient of a real-valued convex function &
at X, denoted by Vh(X), to be the element of 34 (X) with minimal Euclidean norm.

We are now ready to state our result concerning the limit & — 0.

Theorem 9. As ¢ tends to 0, the family of actions (L;)¢~q ['-converges to

LX) = {% ==V )/ @ Pxide if X € H (1o, n]; RDN), X € {P7} and X, €{Q°},
400 else 22)
for the topology of uniform convergence of C%([ty, t11; (RHM).

Remark 10. It is relevant to wonder what exactly in the convergence f, — f implies Theorem 9. It is not
so simple to answer due to the dependence in ¢ of f, and because the proof involves several manipulations
of formula (22). However, the main step of the proof is Lemma 15 below. Now, at least in the autonomous
case, several works that are posterior to the first version of the present paper study results similar to
Lemma 15 in greater generality, namely in Hilbert spaces [Ambrosio et al. 2021] or in measured metric
spaces [Monsaingeon et al. 2023]. In [Ambrosio et al. 2021], the good notion of convergence for f, — f
is Mosco convergence. We give more details on this in Remark 16.

As a consequence of Lemmas 5 and 6, this theorem clearly implies the following.

Corollary 11. Consider the family of laws (“g,n) defined in Corollary 4, and three sequences (1) neNs,
(8m)meN and (ep) pen decreasing to 0. Then, there exist subsequences (1,)neNs (8,)men and (8;;)])6’\]
such that the triple limit
lim  lim  lim pd"
p—~>+00 m—>+00 n—+o0 Pt

exists in the topology of narrow convergence and only charge minimizers of L as defined by (22).



2016 LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

In particular, if L admits a unique minimizer X, the whole family converges:

lim lim lim u, = 8x.
e—>0 §—0 n—0 &

Let us now comment on the order in which these limits are taken.

Remark 12. Up to potentially considering subsequences, we are studying the behavior of the conditioned
laws (“g,n) in the limit lim,_, ¢ lim;s_,¢ lim,_,, and one could wonder whether these limits could be
swapped. We recall that ¢ stands for the level of noise of the original point cloud, that n stands for the
level of perturbation of the companion ODE, and that § is the precision of the observation at the final time.

o Swapping lim,_,o and lims_,¢ is easy: it amounts to studying the dependence of the limiting action (22)
when Q varies. Essentially, this swap would be a consequence of the fact that v® is bounded on compact
sets, uniformly in time and €.

 Swapping lims_,¢ and lim,_,o would be more delicate, but doable as well. We would first need to prove
that the family (“g,n) from Corollary 4 converges when § — 0, with fixed ¢ and 5, as classically done
in the theory of bridges of processes, and then write a large deviation principle for these bridges in place
of Theorem 3.

« Finally, not taking into consideration the limit in § because of the two previous points, the question
of how to swap lim,_, o with lim,,_,( relates to the question of building solutions to SDEs with singular
coefficients, and lies beyond the scope of this article. A related question that we also do not want to
address is the question of quantifying how small 1 needs to be with respect to ¢ to be able to take a
simultaneous limit in ¢ and 5. To answer it, we would need to study the dependence in ¢ of the rates
of convergence in the large deviation principle, which is probably a very delicate question, once again
because of the singularities of v® appearing as ¢ — 0.

We will prove Theorem 9 in Section 3 below, but before doing so, let us show that up to changing time,
we recover MAG. Notice L has compact sublevels as a consequence of the I'-convergence and Lemma 6.
Hence, the existence of global minimizers for L (and hence for all the forthcoming functionals) follows
from the direct method of calculus of variations.

2.6. A change of time leading to Monge-Ampére gravitation. Through the change of variable
t =exp(20), Zy= Xexp(20)7 6y = %log to, 61 = %log t,

we observe that, for all X € CO([t, 11]; (RH)Y), L(X) = 3A(2), with

AE) = LI 2o — (29— V f(Z0))I7d0 if Z€ H' ([0, 01]: (RD)N), 25, € (P7} and Zp, € (Q7),
+00 else.

(Recall the definition (20) of f.)
It turns out to be equivalent to the following one (in which we recognize (8)):
w1202 +5120—V f(Z0)P}do i Z e H'([60,61]: R)Y), Zg, € {P°} and Zy, € {Q7},

+00 else.

A’(Z)={
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To see this, it suffices to expand the square and to remark that the mixed product is an exact time derivative,
so that its integral only involves the endpoints P and Q. This is done in a slightly different context in the
proof of Lemma 14 below.

2.7. Application of the least action principle. We observe that the points Z where f is differentiable are
those for which the maximum in the definition (20) of f is reached by a unique permutation oo so that
V f(Z) is nothing but A°rt. For such points Z, we get

}Z V@) =31Z~ A% = -NF(Z)
(by definition (3) of F), while, on the set A of nondifferentiability of f, we rather have
51Z=Vf(@D)P <-NF(2);

see for instance Proposition 27 below in the case of dimension 1. So the action we have obtained in the
previous section, namely A’, bounds from below

W 31Z01> = NF(29)}do  if Z € H' ([0, 01]: (R)N), 25, € (P7} and Zp, € {Q7),

AT (2) =
+00 else.

This second action, already announced in (7), is definitely strictly larger than the first one for those curves
0 — Zy which take values in N (where f and F are not differentiable) on a set of times 6 € [0, 6;] with
positive Lebesgue measure. So the least action principle may provide different optimal curves, depending
on the action we choose. However, if a curve is optimal for A’ and almost surely takes value outside of N,
then it must also be optimal for A*. Clearly, it is much easier to get the optimality equation for such a
curve, by working with A™ rather than with A’. By varying action A™, we get (6) as optimality equation.
Therefore, the optimal curves of our functional A’ taking value in N for a negligible set of times solve (4)
(in a distributional sense), which is the MAG discrete model announced in the Introduction.

Of course, these equations have to be suitably modified for those curves which are optimal for the
action A’ but not for A" because they take values in A for a nonnegligible amount of time. At this stage,
we do not know how to do it. However, at least in the one-dimensional case d = 1, such modifications
are tractable and correspond to sticky collisions as x; (¢) = x;(t) occurs for different “particles” of labels
i # j and during intervals of times of strictly positive Lebesgue measure; see Section 4.

3. Proof of the I'-convergence
The purpose of this section is to prove Theorem 9.

3.1. The proof as a consequence of three lemmas. As we will see, Theorem 9 will be a consequence

of three lemmas that we state below. Lemmas 14 and 15 both involve a family of smooth functions

1

(8¢)e=0 on [6p, 01] x RP for some 6y < 6 and p € N, pointwise converging to a L, .

function g. On these
functions, we will assume the following:

Assumptions 13. (H1) For all ¢ > 0 and 6 € [0y, 0:], g-(6,0) = 0.

(H2) For all ¢ > 0 and 6 € [0y, 011, g(0, -) is convex. Therefore, g(0, -) is convex as well.
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(H3) The maps Vg, are uniformly bounded, that is,

L:=sup sup sup |[Vg.(0,Y)| <+oo. (23)
£>00€[6p,01] Y eRP

Therefore, we also have

sup sup IVg(@®,Y)|<L.
0€l60,61]1 Y RP

(H4) The distributional derivative dgg is L2([0p, 61]; L.(R?)N), and, for all ¥ € H'([6p, 61]; (RHN),

loc

the map 6 — g(0, )y) is also H', with, for almost all 8 € [y, 6],
d
o’
(H5) The maps dg Vg, are uniformly bounded, that is,

0, Vo) =086, Ys) +Vg©®, Vo) Vp. (24)

M :=sup sup sup |9pVg:(6,Y)| < +o0. (25)
e>00€[6p,01] Y eRP
In order to keep the proofs simple, we did not try to optimize these assumptions for Lemmas 14 and 15,
which are probably true in a far more general context (see Remark 16 in the case of Lemma 15). However,
as we will see in the proof of Theorem 9, it suffices to check these assumptions for the family (f;)e-0
after suitable change of temporal and spatial scale. This is done in Lemma 17.

Lemma 14. Let us consider 6y < 01 € R, n € C*([0y, 01]; RY) and a family (g¢)e=0 of smooth functions
Sfrom [0y, 01] X R? to R pointwise converging to a function g, which satisfy (H1), (H3), (H4) and (HS)
from Assumptions 13. If a family of curves (V)g=0 in H'([60, 611; RP) uniformly converges to a curve
Y e H'([6y, 611; RP), then
6 6
Vi - Vge (0, V5)n(®) do —5> Vo - Vg0, Yo)n() do.

e—0
0o o

Lemma 15. Let us consider 6y < 01 € R, n € C*([0y, 01]; RY) and a family (g¢)e~0 of smooth functions
from [0y, 01] x R? to R pointwise converging to a function g, and satisfying (H2), (H3)and (HS) from
Assumptions 13. Let us fix R, S € RP and define fore > 0and ) € CY([6y, 61]; RP)
Koo |2 S {90 V2@ Y0 PYn@) d6 - if V& (101,611 RP), Yoy = R and Yy =S,
+00 else,
LI U3 +1V8(0, Vo) Pin®) do if Y € H'([61.61]: R”), Vg, = R and Yy, = S,
+00, else.

K () 22[

Then (K;)e~o I'-converges to K for the topology of uniform convergence of C 0([6, 6;1; RP).

Remark 16. This lemma is the keystone of the proof, and one may wonder how it can be generalized and
what is really necessary among our assumptions. In [Ambrosio et al. 2021], we show that at least when (g;)
and g have no dependence on 6 and 1 = 1, the result holds true, even in Hilbert spaces, whenever (g.) is
a family of proper lower semicontinuous uniformly A-convex functions Mosco converging towards g,
plus some uniform Lipschitz conditions at the extreme points.
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Lemma 17. With the notation of Theorem 9, let us define 6y :=logtg/2, 61 :=logt, /2, p =dN, and for

0 €6y, 6i],e>0and¥ € (RHN,
__ Je(exp(20), exp(0)Y) __ Sf(exp(0)Y)
8:(0,Y):= oxp(26) and g(0,Y) = T op(20) (26)

Then (g:)e>0 converges pointwise to g, and satisfies (H1), (H2), (H3), (H4) and (HS) from Assumptions 13.

In the next subsections, we will prove these three lemmas one by one. The most involved one is
undoubtedly Lemma 15, which can be seen as the main step in the proof of Theorem 9. Let us start by
proving Theorem 9 using Lemmas 14, 15 and 17.

Proof of Theorem 9. 1In this proof, the notation X = &; will stand for a generic curve from [y, #]
to (R9)N. Associated with X', we define by V = )y the curve from [6p, 61] to (RN, where 6 := logty/2,
01 :=logt/2, and, for all 6 € [0y, 01], Vo := Xexp26)/ €xp(0). Note that X is H' if and only if Y
is H'. If (X®),-¢ is a family of curves from [fy, #;] to (RN, we define in the same way the family of
corresponding curves ()*).~o from [6p, 6] to (RHN.

A quick computation shows that, for all X € H L([0o, 011; (RHM), considering 1(0) := exp(26) and
(g¢)e>0, g as defined in Lemma 17, we have

Nl X =V, &) Pdr o
Lgmzlf g G VI ) —=1f 196 + Vg (6, Vo) Pn(9) db @7)
2 Ju 2t t 4y
1 ., 5 1 (7.
=3 | WP +1V&@ 3P @ a0+ 5 | I Vee®. Yn®) a0 (28)
0 0
and
n X =V |Fdr o . _
=3 [ & - L L [T 54 Te0. v oo a0
1o ! ! 4 o
o o o _
=7 9 (13612 + V26, Y) P} () do + 5 35950, 30m@) a0, (29)
0 0

(Note that due to Lemma 17, g is convex with respect to the space variable, and so Vg is well-defined.)

Proof of the '-liminf: Let A* ——> A’ for the topology of uniform convergence. Of course, we also

have Y* —> V. Without loss of generality, we can suppose
limi(r)lng(X‘g) < +o00.
&—

Indeed, if it is not the case, there is nothing to prove. Let us take (g,),en to be a sequence tending to 0
along which the liminf is achieved.
As Vg.(6,7Y) is bounded uniformly in ¢, 6, Y (this is (H3)), we easily deduce with (27)

01
lim sup/ IL))g”l2 df < 4o0.
)

n—+00 o
In particular, by the lower semicontinuity of this H' seminorm with respect to uniform convergence, ) is
in H' ([0, 611; (RY)N). Applying Lemma 14, thanks to Lemma 17, we have

01

o . —
9 V5" Vge, (0, Y n(®) df ——— j Yo -Vg(®, Vo)n(0)do. (30)
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On the other hand, for n sufficiently large, L, (X*") < +00. So the endpoints of X** belong to a finite
set, and because of the convergence X'*» — X, for even larger n the endpoints of X'** are independent of 7.
In other terms, X,f)” = P9 and X,gl” = Q°' with oy, o independent of n. Hence, for such n, Y% satisfies
the endpoint constraint for K., with R := P%/,/tp and S := Q°'//f;. Hence, applying Lemma 15
thanks to Lemma 17, we have

1

61 . —
5 [ 1l +1V8(0, V)" }n(0) 4o = K (V) < liminf K., (V*")
6o n— 400

01
| .
=liminf 5 | {|V5"*+|Vge, O, Vi) IFn@)ds.  (31)
Oo

n——+00 2

The result follows easily by gathering (28), (30), (31) and (29).

Proof of the [-limsup: Let X € C%([1, t;]; (RY)N). Without loss of generality, we can suppose that
X € H'([tg, t;]; (RY)N) and that it satisfies the endpoint constraint for L. In particular, ) belongs to
H'([60, 61]; (RY)N) and satisfies the endpoint constraint for K with R := X;,//fp and S := X, //11.
Lemmas 15 and 17 let us find a family ()*).-¢ converging to the corresponding ) such that

lim sup K, (V%) < K()). (32)

e—0

In particular )¢ is in H' for sufficiently small ¢, and by Lemmas 14 and 17,

o o _
Vo Vg0, YIn(®)do > | Yo -Vg(®, Vo)n(®)do. (33)
9() 90
The result follows easily from (28), (32), (33) and (29), by noticing, that because of (32), J* satisfies the
endpoint constraint for K. Hence, for such ¢, X satisfies the endpoint constraint for L.. U

3.2. Proof of Lemma 14. The proof of Lemma 14 just consists in integrating by parts and using the
convergence properties of (g:)e=0-

Proof of Lemma 14. Integration by parts: First, notice that as soon as Y € H I ([60, 61]; R?) and ¢ > O,
then 6 +— g. (6, Vy) and 6 — g(0, )y) are also in H 1 with, for almost every 6,

800, 35) = Dy (0, V) + Vge(0, %) Ty and (60, V) = (6, Vo) + Vg(®. ¥ - -

It is clear in the case of g, because g. is smooth, and it is the assumption (H4) in the case of g. As a

consequence, by an integration by parts, it suffices to prove that whenever ()*)..( converges to ) as
& — 0 for the topology of uniform convergence,

01 01
ge(el,ygl)n(é’l)—88(90,)750)77(90)—/0 86(073)98)77/(9)(19_/9 8= (6, Vg)n(0) do
0 0

01 01
m)g(91,y01)'7(91)—8(90,3790)'7(90)—/9 g(e,ye)n%e)de—/e 9g(6. Vo) (6) do.
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Convergence term by term: The convergence

8e (01, Vg )n(01) — ge (o, Yg,)1(60) s=5> 801, Yo, )n (1) — g(Eo, Vo)1 (6o)

is an easy consequence of the pointwise convergence and of the uniform Lipschitz bound (H3).
For the same reason, we have, for all 6 € [0y, 01], g.(9, V) = g(6, YVy). But on the other hand,
because of (H1) and (H3), g. is locally bounded, uniformly in . Hence,

91 91
/ 2:(0. V' (0) d8 —5> /9 2(0, Yo)n'(6) do

6o 0
is a consequence of the dominated convergence theorem.

Because of (H1) and (HS5), for all 8, (dypg.(8, -))e~0 is compact for the topology of local uniform
convergence. But its only possible limit point is the distributional derivative dgg. As a consequence,
(098¢ )e>0 converges pointwise to dp g, and because of the uniform bound (H5), for all 6, dpg.(6, V) =0
098 (0, Vp). Because of (H1) and (HS), dy g, is locally bounded, uniformly in ¢, and so

01 91
/9 99200, VEIn(6) d6 —o> /9 92 (0. Vo) (0) do

is also a consequence of the dominated convergence theorem. 0

3.3. Proof of Lemma 15. Before entering the proof of Lemma 15, we need to state a few standard results
concerning the extended gradient V as defined in Definition 8, and its links with the so-called resolvent
map. These tools could even be set in the infinite-dimensional setting, that is, in Hilbert spaces [Stromberg
1996], or in metric spaces [Ambrosio et al. 2005].

The following proposition is a lower semicontinuity property of the slope with respect to both conver-
gence of the function and of the evaluation point.

Proposition 18. Consider h : R? — R a convex function with finite values. Let (hy).~q be a family of

convex functions on RP pointwise converging to h, and let (X?).~q be a family of points in RP converging
to X. Then
IVA(X)| < liminf VA, (X?)].
e—0

Proof. As all these functions are convex and /4 has finite values, standard arguments show that the
convergence of h, — h is also locally uniform. First of all, if
limiélf IVh,(X?)| = 400,
E—>

there is nothing to prove. Else, up to considering a subsequence, there exists D € R” such that

lim Vh,(X?) = D.

e—0
But sending ¢ — 0 in the inequality,

forall Y e R?,  hy(Y) > ho(X®) 4+ (Vhe(X?), Y — X°),

and using the local uniformity of the convergence, we see that D € dh(X) (that is, the subdifferential is
upper semicontinuous). So |D| > |IVAh(X)|, and the result follows. O
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For T > 0 and X € R?, define the resolvent operator by

. Y —X?
Jrp(X) :=argmin A(Y) + ————
Y eRr 2t
Once again, the following proposition is standard. It is an application in the very simple case of convex
functions in finite dimension of the so-called maximal monotone operators theory in Hilbert spaces,
for which we refer for instance to [Brézis 1973] (see in particular Section 2.4 for the properties of the
resolvent in a general setting).

Proposition 19. (1) We have for all X € R? and t > 0,

X — -]r,h(X)
T

IVA(Je 1 (X)) < < |VA(X)|. (34)

(2) If h is differentiable at J; ,(X) for some X € RP, then the following first-order condition holds:

Lﬁh(}() = Vh(Jrp(X)).

(3) If (he)e=o is a family of convex functions on RP pointwise converging to h, then, for all T > 0
and X € R?,

Jepn (X) =5 Jen(X). (35)

Proof. By [Brézis 1973, Lemma 2.1], we have

X —Jon(X
%”’() € (T (X)). (36)
The first inequality in (34) and the second point of the statement follow.

To get the second inequality in (34), apply the monotone inequality of [Brézis 1973, Definition 2.1]

to the maximal monotone operator 0/ (see [Brézis 1973, Example 2.1.4]), with x; = X, xo = J; ,(X),
y1 = Vh(X) € dh(X) and (X — Jrn(X))/t € 0h(Jr p(X)), thanks to (36). We find

_ X — J, (X
<Vh<X) X)) Jr,h<X>> > 0,
T
which can be rewritten as
X— T, X [X=J.,X) —
‘ o.h(X) §< . ( ),Vh(X)>.
T T

Therefore, the result follows from the Cauchy—Schwarz inequality.

Let us now focus on the third point. Let us fix t > 0 and X € R?”, and set,
w2
foralle >0, Y e R?, f.(Y):=h(Y)+ |2—| and f(Y):=h(¥)+ |2—
T T

The family ( f;).~0 converges pointwise to f, but by convexity and finiteness of the limit, as before, this

_|2

convergence is also locally uniform. As a consequence, the only thing to prove is that for sufficiently small
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go > 0, the set {J; p, (X) : 0 < & < ¢gp} is bounded. Indeed, if it is the case, by local uniform convergence,
any limit point Z of J; 5,(X) as € tends to 0 would satisfy

f(2) =limsup f(Jep, (X)) = im f (o5 (X)) = f (Jen (X)),

e—0
so that, by the definition of J; 5 (X), Z = J; 4(X), which lets us conclude.
Call B the open ball of center J; 5 (X) and radius 1. We have by the strict convexity of f and minimality
of J; n(X)
fUrn(X)) < Ylng f ),
and this property is open for the topology of local uniform convergence. Hence, we can find ¢g sufficiently
small so that for all ¢ < g

fe(Ten(X)) < Yient)fB fe(Y).
Then, if Y ¢ B, we call Y the projection of ¥ on 0B and A := 1/|Y — J; ,(X)| < 1, so that Y =
(1 =2)Jrn(X)+1Y. As soon as & < g9, fe(Y) > f(Jr.n(X)). By using the convexity inequality

fe(V) = (1 =0 fo(Jen (X)) + A fe (V),
we find f(Y) > fe(Jr.n(X)). As a consequence, {J;  (X) :0 <& < g} C B and the result follows. [
We are now ready for the proof of Lemma 15.

Proof of Lemma 15. Proof of the I'-lim inf: It is straightforward using Fatou’s lemma, Proposition 18 and

the lower semicontinuity of ) /0? || d6 with respect to the topology of uniform convergence.
Proof of the I'-lim sup: Let us consider a curve ) € H'([6, 6;]; R?) with Yo, = R and Yy, = S (else

there is nothing to prove). For all ¢ > 0 and t > 0, we define

V10 Jrg0,) Vo),

and correspondingly
V'O Jr g0, (Vo).
First, we prove
61 01
. . 1 T,€12 7,652 1 ) 12 N 2
limsuplimsup - | {17 " +1Vge(0, V) ["n(0)d0 < 5 | {Ip]"+1Vg(®, Vo)|"}n(©) do. (37)

T—0 e—0 6o 6o

We will then choose 7 as a function of ¢ and show how to fix the endpoints.

Proof of (37): By the second point of Proposition 19, for all ¢, t, 8, we have
Yo=Yy +1Vge(0, ;).

For all 8, g.(0, -) is convex, so Y — Y +Vg. (6, Y) is invertible and its inverse is 1-Lipschitz. In addition,
the smoothness of g. = g.(9, Y) with respect to 6 lets us deduce from ) € H ! that Y™¢ is in H!, and
that, for almost all 6,

Vo= (+1D%(0, V%) - Vp* +186Vg: (0, V).
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By the convexity of g., we have | <[+ rngS in the sense of symmetric matrices, and hence

V51 <195 — T Ve (0, V) < |Tol +TM. (38)

Recall that M was defined in the uniform integrability assumption (25) on dgVg.. (In the case when
99 Vg. = 0, we recover the known fact that for # independent of time, J; j is contractive.) Then, we

deduce
. 1 T _ 34),(38) I Vy—YTe 2
limsup > {|y9 2+ Vge (6, Vo’ )2 }77(9)(19 < limsupz / (1 Vg |+7M)*+ AR n(0)de
e—>0 2 o e—0 2 6o T
391 [ Vo—Y§
23 [ Moo 22 }w)de
o
(34) o
1 : 2, 2
< 3 {(| Vel +TM)"+|Vg(0, Vo) | In(0)do.
o

Formula (37) follows.

Choice of T = 7(¢g): Because of (37), and because,

forall ¢ > 0, ygos —o> R and yﬁtls 5,

=0

it is possible to find a nonincreasing function T = t(¢) converging sufficiently slowly to O so that

o _
{| ViR 4 Vg0, V)2 ©)do < [ (132 + Vg0, Y Pn@) do,  (39)

hmsup
e—0 2 2 6o
Vi —p» R and Vi —p 8. (40)

Fixing the endpoints: For fixed ¢ and small § > 0, we will define Z%¢ as a slight modification of the
curve V7@ in such a way that zoe joins R to S. For this, we just set for 8 € [0, 6]
R+ (0 —00)/8)(V55° — R) i 6 € [60. 60 + 51,
zZpt =1y if 6 € [0+ 38, 0y — 8],
S+ (01 —0)/8) Vi~ ) if 0 e[0 —5,01].

A quick computation shows

01
1 .
3 {|Z§8|+|Vge(0,23’s)lz}n(9)d9
r(e)s Rlz 1V T(S)E

19, |2
_2f (135 +|Vgs<9,y§<”’8>|2}n(9>d9+||n||oo( — = +8L2>, @1

268 268

where L is defined in the uniform Lipschitz assumption (23) for g..
r(e) e

Let us estimate |V, 5" — R|?/28. We have

6o+38 Bo+6
26 - 8 8 - 8

(e),e 2 T(e),¢e 2 I(S) € 7(8),€2 T(e),¢e 2
|Vos” — R| N7 — R| | — Vo | N7 —R| bo+s
< <% +/ 13517 do.
o

0
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Because of (38), (25) and ) € H', the integral f6i0+8 A ©)-£12 49 tends to 0 as § — 0, uniformly in &: we

bound it by a function v; = v;(§) tending to 0 as § — 0. In the same way,
Vo =8P _ 19— sP
28 - )

+vr(d),
where v (§) — 0 as § — 0.

Plugging these bounds into (41), we get

01

1 .

5 [ UZ5 P+ 1986, 25 P)n(®) do
fo

01
1 . u(e)
<3 / (V5P + V80, V5 P n(6) do + ||n||oo<T + v<5>),

o
where u(e) := |V;©° — R> +1V; " — 5> — 0 as & — 0 by (40), and v(8) := v; (8) +v(8) +5L> — 0
as § — 0. Hence, choosing §(¢) := +/u(e), we find with the help of (39) that 258 s a reECOVery sequence
for the I' — lim sup of K, towards K. O
3.4. Proof of Lemma 17. The proof is straightforward, and relies on explicit computations.
Proof of Lemma 17. Let us define for X e (R9)N

1 g

h(X):= 1og[m Z exp(X - A )]. (42)

’ O‘EGN

Fore >0, 0 € [0y, 0;] and Y € (RY)V, we have by the definition of f; and g, (formulas (19) and (26)

respectively)
Y
gg(e,Y)=eh( (9)). )
£ exp
Proof of (H1): It is obvious.

Proof of (H2): By (43), it suffices to check that % is convex. Differentiating (42) twice, we get for all
X € (RHN

D*h(X) = (A7 ® A%)x — (A%)x ® (A%)x = (A" — (A”)x)x ® (A" — (A%)x)x, (44)

where if a is a function of o, then {(a(o))x stands for

2066Na(0) exp(X - A%)
Y oesy EXP(X - A%)

It follows that D?4(X) is a nonnegative symmetric matrix.

Proof of (H3): In view of (43) and as 6y > —o0, it suffices to check that V4 is bounded. Differentiating (42)
at X € (RN leads to

(a(o))x =

Vh(X) =(A%)x,
which is clearly bounded by |A|.
Proof of (H4): By the definitions (20) of f and (26) of g, we have for all 6 € [0y, 6;] and Y € (RHN
_f)

80 1) = @)
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The integrability property of dyg is clear; let us check (24). Let us consider Y € H L([60, 611; (RH)N). The
function g is locally Lipschitz both in # and Y. As a consequence, the map G : 6 — g(6, )p) is also H'.
Now, instead of proving (24), we will prove that for all curves D = Dy such that, for almost all
6 € [6o, 01], Dy belongs to the subdifferential of g(6, -) at Y = )y, we have for almost all 6 € [6p, 6]
d
@g
so that (24) is an application of this property to Dy := Vg(8, Vs). Notice that this property implies that
up to negligible sets, Dy - )y does not depend on the choice of D. Let us give ourselves such a curve D.

0, Vo) = 3086, Vo) +Dp - Vo,

Let us take a point 8 € (6, 61) where both )V and G are differentiable (this happens for almost every 6).
We have

G0) =1 1 { fQoys) Qo) } SO . 808, Vors) — 88, Vo)
(#) =1lim - — =— +lim
810 6 |exp(@+68) exp(0) exp(@) slo 1)
> SO0 up Dy YT 00, 3+ Dy - i
exp(0) 540 )

where we used g(0, Vo+s) = g0, Vo) + Dy - (Vo+s — Vo) to get the second line.
In the same way, we have

G'(0) = lim =
@) slﬁ)la

1 { fQo)  fVs-s)
exp(0) exp(@ —9)

The result follows from gathering these two inequalities.

Proof of (HS): Using (43), we get forall e > 0, 6 € [6p,01] and ¥ € (RHN,

Vg (0,Y)=— ! (Vh( Y >+D2h< Y ) Y )
oY ) = T (0) ¢ exp() cexp@) ) eexp@) )

As we already saw in (H3) that V/ is bounded, it suffices to prove that X + D?4(X) - X is bounded. Let
us expand everything in (44) and apply X to the right. We get

3 ey X (A — AT)A% exp(X - (A” + A7)
Yoy EXP(X - (A7 + AM))
As a consequence, it suffices to show that, for each o, n € Gy,
X - (A° — AN exp(X - (A% + AM))
> eey EXP(X - (A7 + AT))
is bounded, uniformly in X. First, if n = o, then T (o, o, X) = 0. Else, let us use the bound

} < 3g(®,Ye) +Dy-Vs.

D’h(X)-X =

T(o,n, X):=

> exp(X (A% + A7) <exp(2X - A”) +exp(2X - A7),
o/, n"eGy
obtained by only keeping the terms corresponding to o’ =1’ = o and o’ = ' = 5 in the sum. This leads to
| X - (A7 — A |exp(X - (A" + AT)) |X - (A7 — A"
exp(2X - A%) +exp(2X - A")  exp(—|X - (A7 — AN)|) +exp(|X - (A7 — AN)])’

IT (o, n, X)| <

which is clearly bounded uniformly in X. The result follows. O
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4. The case of dimension 1: sticky collisions

In this section, we will study the global minimizers of the functional A’ obtained in Section 2.6, in
dimension d = 1. If we call ¢ the time variable and if we replace 8y and 6; by 0 and T respectively, due
to the invariance of the functional through translation in time, A’ reads

N (@)= ST EPH 2 -V F(E)1P)de if Z€ H'(10, T RY), Zp € (P°} and Z7 € {Q°}, 45)
B +00 else,

where

f(X)=max X-A°, XeR". (46)
O'GGN

Here, we chose a strictly ordered A = (ay, ..., ay), thatis, such thata; <--- <ay, P, Q € RN and
T > 0. Once again, when X = (x1,...,xy) € RY and o € Sy, we let X7 := (X5 (1), -+ Xo(n)), and
{P°} and {Q7} referto {P° :0 € Gy} and {Q° : 0 € Gy} respectively. Of course P = (py, ..., py) and
0 =(qi,--.,qn) can be supposed to be ordered, thatis, p; <--- < py and gq; <--- < gn. We recall

that we defined the extended gradient V f in Definition 8. As already noticed in Section 2.5, the existence
of global minimizers for A’ follows from the direct method of calculus of variations. Uniqueness does
not hold in general, even up to permutations.

The purpose of the section is two-fold. On the one hand, we will show that the model has nice regularity
properties: any global minimizer of A’ is smooth except on a finite number of “sticking” or “separation”
times.! On the other hand, we will justify as claimed in Section 2 that A’ describes a model with sticky
collisions in the sense that a minimizer Z = (z1(¢), ..., zy (¢)) of A’ will typically exhibit some sticking
effects as z; (1) = z;(¢) for i # j on nontrivial intervals.

To describe the sticking effect, it is convenient to introduce the following definition:

Definition 20 (partition of [1, N])). Let X € R". We say that X is divided according to 77 (X) when 7 (X)
is the partition of [1, N] induced by the relation,
forall (i, j) € [1, NI?, i~j < xi=ux.

We call C(X, 1) the class of i € [1, N] in 7(X), namely, C(X, i) = {j : x; = x;}.

The main result of the section is the following:
Theorem 21 (regularity of the optimal trajectories). For given A, P, Q € RN and T > 0 as before, let Z
be a global minimizer of N defined in (45). Then Z is continuous and there exist

O=tn<ty<---<t,=T,

a family of times such that, for eachi = 1,..., p, Z is smooth on [t;_1, t;], and 7w (Z) is constant
on (ti—1, ;).

It will be quite clear from the proof that sticking effects do occur. This exactly means that there exist
trajectories Z for which, with the notation of Section 2.7, A'(Z) < A1 (Z). For such trajectories, Z; is

INotice that A’ is invariant under time inversion, so that if particles are allowed to stick, they are also allowed to separate.
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located on the set where f is not differentiable for a set of times of positive Lebesgue measure. But in
dimension 1, this set is exactly the set where at least two particles are located at the same place. That is,
the set of times when 7 (2) # {{1}, ..., {N}} is typically of positive Lebesgue measure. As a consequence
of Theorem 21, it is even a finite union of intervals.

Still it might be convenient to illustrate the sticking effects included in the model by the following
easy proposition. It asserts that the set of times when all the particles are stuck is an interval: if all the
particles are stuck at two different times, the cheapest behavior between these two times is to remain
stuck. It also shows that this phenomenon occurs: if all the particles are sufficiently close at the initial
and final time, then they necessarily stick together during a nontrivial interval along the evolution.

Proposition 22 (intervals of full degeneration). (1) For given A, P, Q € RN and T > 0 as before, let

Z=(z1(),...,zN(t)) be a global minimizer of N. Suppose there exist two times 0 <t; <t, <T
such that
z1(t) =---=zn(t1) and zi(t) =---=zn(t).
Then, for allt € [t, t2], we have 7;(t) = - - - = zn(2).
(2) For given A € RN and T > 0 as before, the set U of endpoints P, Q € RN with the property that, for
all minimizers Z = (z1(t), ..., zn (1)) of N, the set of times
{rel0,T]:z1(t) =---=zn (D)}
is a nontrivial interval, is a neighborhood of {P, Q e RN : p1=-..=pyandq; =--- =qn).

The proof of Proposition 22 uses almost nothing and is given in Section 4.2. Except for that, the whole
section is dedicated to the proof of Theorem 21. For this we take once for all A, P, Q € RN and T > 0,
A being strictly ordered and P, Q being ordered.

Even if all the arguments are elementary, we will need a certain number of steps, including:

« The explicit computation of the potential |X — V f(X)|? (Section 4.1 and 4.4).

o The justification of a priori knowledge on the optimal trajectories: they can be supposed to be ordered
at all times (Section 4.3).

o The conservation of energy and momentum holds during shocks? (Section 4.5).

Then, the main ingredient in the proof of Theorem 21 is an estimate given in Section 4.6: during
a nonpathological shock (pathological shocks are excluded a posteriori), at least one particle has a
lower-bounded jump in its velocity (Proposition 31). We finally provide the proof of Theorem 21 in
Section 4.7.

Throughout the section, we will work with several types of finite sets: the partitions of type (X)
and the class of particles of type C (X, i). Some of the arguments or computations will deal with their
cardinality. Thus, if F is a finite set, we will denote by #F its cardinality.

ZWe say that Z presents a shock at time ¢ if ¢ is a discontinuity point of 7 (Z); see Definition 30.
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4.1. Properties of the extended gradient. In Lemma 24, we gather easy properties of V f that will be
needed in the following. Before doing so, let us introduce some notation.

Definition 23. Let 7 be a partition of [1, N]. We call E,, the linear subspace of RY of all X such that 7
is a refinement of 7 (X), that is,

E, = ﬂ ﬂ{X:(xl,...,xN)e[RN:xi=xj}.

Cermi,jeC
Lemma 24 (properties of V f). (1) The extended gradient V f has the following symmetry:

forall X eRY, 0 e Gy, V(X7 =V (X))°. (47)
(2) The function X — |X —V f(X)| is symmetric:
forall X eRY, 0 € Gy, |X°=VFX)>=|X-Vf(X). (48)

(3) If X is ordered, then V f(X) is the orthogonal projection of A on Eqx).
@) If X isorderedandi € {1,..., N},

_ 1
VIO =455 > (49)

JjeC(X,i)

(Recall that C (X, i) is defined in Definition 20.)
Remark 25. The extended gradient Vv f is completely characterized by points (1) and (3) (or (4)) of
Lemma 24.
Proof. (1) Let 0 € & y. By the definition (46) of f, forall X e RV, f(X°)= f(X). Letting I° : X > X°,
we easily deduce that at the level of subdifferentials: df (X?) = I°(df(X)). We conclude by the fact that
1° is orthogonal.
(2) It is a direct consequence of point (1).
(3) Let X = (xq, ...xy) € R" be an ordered vector. Considering the definition (46) of f and noticing
that the maximum is achieved exactly for those o such that X° = X, it appears that V f(X) belongs to

the convex hull:
Conv({A° : 0 € Sy such that X° = X}).

For a giveni € {1, ..., N}, we call Vi e RV the vector whose j-th coordinate is 1 if j € C(X,i) and 0
otherwise. On the one hand, we have E,x) = Span{Vf :i=1,..., N}, and on the other hand, for all i,
the scalar product V- Y is constant on the above-mentioned convex hull. So we deduce

A=V f(X) € (Exx)™.

Hence, we just have to prove that V f (X) € E(x). If i, j € {1, ..., N} are such that x; = xj, let us apply
formula (47) to the permutation o := (i, j):

(VX)) = (VX)) = (VX)) = (Vf(X));.

The result follows.
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(4) Let X be ordered andi € {1, ..., N}. As ﬁf(X) € E;(x), with the notation of the proof of (3),

VX = o Z VIX0) = pez 7 VS0V
jeC(X,i) ( )

1 1
= v 'Vl = A v E a]v
#C(X, i) #C(X, i) . )
jeC(X,i)

where we used A — V f(X) L V' to get the first identity in the second line. O
The three next subsections will be dedicated to consequences of this lemma:

A proof of Proposition 22.
e When proving Theorem 21, it is enough to consider ordered trajectories (Proposition 26).

o For ordered trajectories, the potential in A’ can be decomposed as sum of a smooth “external”
potential and an “internal” energy only depending on 7 (X) (Proposition 27).

4.2. Proof of Proposition 22. With the help of Lemma 24, we are ready to prove Proposition 22.

Proof of Proposition 22. (1) Without loss of generality, we can suppose t; = 0 and #, = 7, that is,
=pt,...,pn)and Q =(qq,...,qn) aresuch that py=---=pyand g; =--- =gn.

Call ¥ the orthogonal projection on the line Epj yy:={X = (x,...,xy) € RV |x; =--- =xy}. It
suffices to prove that when Z is a continuous trajectory joining P to Q, then A'(W(Z2)) < A'(Z), and with
equality if and only if Z = W(Z). As W is 1-Lipschitz, it reduces the kinetic part of A’. For the potential
part, we remark that, for all X € RY, Erw(x) = Eq1.n3 C Ex(x)- As a consequence, by point (3) of
Lemma 24, we have as soon as X is ordered §f(\IJ(X)) = W(?f(X)). Hence

W(X) = VXD = WX -V X)) <IX-VFXI,

with equality if and only if X € Ej yq, i.e., if and only if W(X) = X. This property is extended to
nonordered X using (48), and the result follows.

(2) The function A’ = A'(P, Q) , defined for all P, Q € RV as the minimal value of A/, is continuous.
Indeed, if P, P’, Q, Q' € RY are chosen so that |P' — P|+|Q’— Q| <« 1 and if Z is a trajectory joining P
to Q, we can find a trajectory Z joining P’ to Q' with?

N(Z) < N(2Z)+ o (I). (50)

(P, Q")—>(P.Q)

To do so, it suffices to choose T ~ | P’ — P|+|Q’ — Q], and to define Z as the trajectory joining P’ to P
in straight line between times O and 7, joining P to Q between times 7 and 7 — 7 by following Z with
a proper affine change of time, and finally joining Q to Q' in straight line between times 7 — 7 and T.
This shows that A’ is lower semicontinuous, but the continuity is obtained by noticing that the o in (50)
is locally uniform on P, Q € R". The argument is easily adapted to show that N=N (P, Q), defined

3with a slight abuse of notation, we do not refer explicitly to the dependence of A’ on P, Q.
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for P, Q € RN by
K/(P, Q) :=inf{A'(Z) : Z whose set of  such that Z, € Ef; yj is negligible},
is also continuous. Additionally, the set ¢/ defined in the statement clearly satisfies
V:={P,0eRY: N(P, Q) < N(P, Q)} CU.
By the continuity of A’ and A, Vis an open set. Hence it remains to prove that
{P,OQeR :py=---=pyandqi = =qy}=Epny X Efi,ng C V.

To do so, we take P, Q € Ey1 vy and Z a curve joining P to Q such that {¢ : Z, € Ef1 vy} is negligible,
we still call W the orthogonal projection on Ef; y7, and we prove that

N(Z)= N¥(2)) +a,

where a > 0 does not depend on Z. Let us call ® :=1d — W the orthogonal projection on the orthogonal
of Ef1.yy- As in the proof of the first point, Vf o W = W o V f. As a consequence

T T
A/<Z>=/O {|\v(2t)|2+|w<zt>—wﬁf(zz>)|2}dr+/o {RE)I*+12(2) — D(VF(2))*) dt

T
_ N W)+ /0 (ZLP 112 — (T f(2)P)dr.

where 21 = ZtL = ®(Z;) is a curve joining O to 0. But for almost all ¢, Z; ¢ Ey1 nj, so as we saw in the
proof of the first point, Vf(Z)¢E [L.N7- As Vf only takes a finite number of values (see Lemma 24),
for almost all t, ®(V £(Z,)) belongs to some finite set, say G, which does not contain 0. Hence,

T T
/ (ZSP 412 — @ fE )P di = / (2112 + dist(Z, )2 dr,
0 0

where dist(Z, G) denotes the distance from Z to G. Because z+ joins O to 0 and G does not contain 0, this
last integral is easily seen to be bounded below away from 0 independently of Z, and the result follows. [

4.3. Ordering of the particles. The purpose of this subsection is to show that when proving Theorem 21,
we can restrict ourselves to study trajectories that remain ordered (see Figure 1). This is due to the
following proposition.

Proposition 26. Let Z = Z; be a global minimizer of N'. We call Z = Z, the trajectory obtained by
reordering the coordinates of Z in increasing order. Then Zisalsoa global minimizer of A

Moreover, Z has the regularity stated in Theorem 21 if and only if Z does.

In particular, N' always admits an ordered minimizer, and it is enough to prove Theorem 21 for such

minimizers.

Thanks to this proposition, from now on, we only work with ordered minimizers of A". These minimizers
Z = Z,; satisfy in particular Zy = P and Z7 = Q (as we chose them to be ordered in the first place).
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T 41 92 q3 T 41 92 q3
T ¥

p3 pi p2 p3

Figure 1. These two trajectories share their initial and final positions up to ordering and
their actions. But to the right, the order is preserved, while to the left, this is not the case.

Proof. Let Z and Z be as in the statement of the proposition. Point (2) of Lemma 24 implies

T T
/ AR AT =f 12, — T F ()P dr.
0 0

We call W : RY — RY the operator that reorders the coordinates of a vector in increasing order, so that
in particular, for all ¢, Z,=W(Z). A simple application of the rearrangement inequality shows that W is
1-Lipschitz. In particular, it reduces the action of curves

T - T .
/|zt|2dzs/ PAR S
0 0

By adding the two last formulas, and by noticing that the endpoint constraint is fulfilled, we get A’ (2) <
N (Z). As Z is a minimizer, this inequality is in fact an equality, and Z is also a minimizer.

Note that both Z and Z are continuous because they have finite action. Hence, the second claim of the
proposition is a consequence of the two following facts:

e Forallt € [0, T], #n(Z,) = #1(Z,).

« For any continuous trajectory ¢ € I — X; € R", where I is an interval, t > 7 (X,) is constant if and
only if ¢ — #m(X};) is constant.

Indeed in that case, r — 7 (Z;) and t — n(g ;) are constant on the same intervals, and the result follows.

The first point and the “only if” part of the second point are trivial.

For the “if” part of the second one, we reason by contraposition. Suppose s — 7 (X;) has a discontinuity
at time ¢ and we prove that s — #m(X;) also does. If s — 7 (X;) has a discontinuity at time ¢, we can
find two distinct accumulation points 71 and mp of s — 7 (X;) at time ¢. As the set E; is closed for all ,
we find that X; belongs to E;, N E,. But this set is nothing but E;, where 7 is the finest partition of
which ; and 7, are refinements, that is, the partition corresponding to the relation

i~j <= thereexists C € m; Um, such that {i, j} C C.
In particular, 7w (X;) is a refinement of 7 and as ) # 7o,
# (X)) < #m < max(#my, #m17).

So s — #m(X;) has a discontinuity at time #, and the result follows. O
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4.4. Decomposition of the potential. Here, we compute explicitly the values of the potential X
|X — V f£(X)|? on ordered vectors X € R". Notice that, for such vectors X, 7 (X) has an additional
structure: if C € w(X), then C is an interval of integers. We say that such partitions are ordered. We
prove the following:

Proposition 27. For all ordered X € RV,
X =V XOP =X - AP +h(n (X)) — AP, (51)
where h is defined on a partition w of [1, N] by

h(w) := Z %

Cen

2

2.4

jeC

(52)

In particular, h has the following monotonicity property: if w and 7w’ are two ordered partitions and if 7’
is a strict refinement of 7, then h(w) < h(z’).

The more particles are stuck together, the lower % is. This is the reason for which A’ favors the sticking
of particles. The function —//2 can be understood as the internal energy of the system.
Dropping the constant term |A|?/2 in (51) and defining A” on a trajectory Z by

LITUZPH 2~ AP+h((Z))) e if Ze H'(10, T;RY), Z9= P and Z7 = Q,

A// (Z) —
400 else,

(53)
it is clear that A" and A” have the same minimizers in the class of ordered trajectories. Hence, as a
consequence of Proposition 26, it suffices to prove the conclusion of Theorem 21 for the minimizers
of A” in the class of ordered trajectories.

Proof of Proposition 27. Let X € RY be an ordered vector. By point (3) of Lemma 24, we have
A— ﬁf(X) € (E;,(X))L and both X and ﬁf(X) € E;(x). So using the Pythagorean theorem twice, we get
X =VIXOP=1X-AP=|A=VfXOP =X - AP+ IV f(X)I? - AP,

The identities (51) and (52) are obtained by computing IV £ (X)|? using (49).

If we recap, h(7r) is the squared norm of the orthogonal projection of A on E;. Butif 7’ is a refinement
of m, E; C En, and hence h(w) < h(x’). The strict inequality is obtained by noticing with the help
of (49) and using the strict ordering of A that if in addition 7 and 7’ are ordered and 7’ # 7, then the
projection of A on E+ does not belong to E;. O

4.5. Conserved quantities. In this subsection, we discuss two simple and yet structural properties of the
dynamic prescribed by the functionals A’, A”: the Hamiltonian of the system is conserved (Proposition 28),
and its center of mass draws a smooth curve (Proposition 29). In particular, the momentum of the system
is conserved during shocks.

Proposition 28. Ler Z be an ordered minimizer of N'. Then
E=E@)=HIZ ] —12 — AP — h(n(Z)} (54)

is constant in the sense of distributions.
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Proof. The proof is completely standard and is done by comparing the value of A” on Z and ¢ — Z; 0
for small ¢ and functions ¢ that are smooth and compactly supported in (0, T'). (|
Proposition 29. Let Z = (z1(¢), ..., zn(t)) be an ordered minimizer of A’. Call a := (a1 +---+an)/N
and fort € [0, T]

| |

M) = ;zi (1) and P():= ngi (1).
1= 1=

(M is well-defined for all t, and P for almost all t.) Then M, P solve distributionally
M) =P(), PE)=M(@) —a.
In particular, M is smooth and P coincide almost surely with a smooth function.

Proof. Here the proof consists in comparing the value of A” on Z and t > Z; + e¢(¢)V for small ¢,
smooth and compactly supported ¢, and where we call V = (1, ..., 1). The only somehow unusual thing
to remark is that 7 and hence % o 7w are invariant under translations in the direction of V. g

4.6. Shocks, isolated shocks and minimal deviation. This subsection contains the main estimate that
allows us to prove Theorem 21. Roughly speaking, if at time ¢ some of the particles stick or separate,
there is a lower bound on the change of the velocity of at least one particle. The proof of Theorem 21
will then consist in showing that this cannot happen an infinite number of times.

Let us first define as “shocks” these sticking and separating behaviors:

Definition 30 (shocks). Let X = X, = (x| (¢), ..., xy(¢)) be a continuous trajectory on R,

(1) We call a shock of X a triplet (¢, g, C) witht € [0, T], ¢ € Rand C C [1, N] such that

» Cen(X),
e foralli e C, x;(t) =gq,
e for all T > 0, there exists s € (t — 7, t 4+ 7) such that C ¢ mw(Xj).

(2) If (¢, g, C) is a shock of X', we say that it is isolated if (¢, ¢) is isolated in
{(', q") : there exists C" C [1, N such that (¢, g’, C’) is a shock]},
i.e., if there is no other shock than (¢, g, C) in the neighborhood of (¢, g) € [0, T] x R.

We provide in Figure 2 a picture of a shock which does not seem to be isolated. The following result
is the main step in the proof of Theorem 21.

Proposition 31. Let Z = (z1(2), ..., zn(t)) be an ordered minimizer of N (or equivalently a minimizer
of N’ in the class of ordered trajectories), and let t € [0, T1].

(1) If particle i is not involved in a shock at time t, then for s in the neighborhood of t, C := C(Z;,1) is
constant and z; is a smooth solution of

55 =2(5) — 5 2 (55)

jeC
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T q3

T +
0 4

P1=p2=p3

Figure 2. A shock with three particles which does not seem to be isolated. We will see
later on that this kind of shock cannot occur in our model.

In particular, if i is involved in an isolated shock at time t, then z; admits left and right derivatives at
time t, denoted by z; (t—) and z; (t+) respectively.

(2) Thereis « = a(N, A) > 0 such that for any isolated shock (t, q, C), calling i == minC,
zi(t—=) —zi(t4) = a. (56)

(Note that the quantity z; (t—) — z; (t+) is not affected by time inversion. In particular, this lower
bound is coherent with the invariance of the Lagrangian through time inversion.)

Proof. (1) If particle i is not involved in a shock at time ¢, by the definition of a shock, it means that
C:=C(Z;,i)en(Z) for all s in a neighborhood of ¢. In particular, for all j € C and s sufficiently close
to ¢, by (49),
V1)) = g Yt
keC
On the other hand, it is easy to find a neighborhood U of (¢, z;(¢)) in [0, T] x R such that, for all
Jje{l,...,N}andalls € [0, T], (s,z;(s)) € U implies j € C.

As a consequence, if £ : [0, 7] — R is smooth and compactly supported in a sufficiently small
neighborhood of ¢, and if ¢ is sufficiently small, by defining Z= (z1(s), ..., zZy(s)) forany j {1, ..., N}
and s € [0, T'] by
zj(s)+e&(s) if jeC,

Z;(s) else,

Zj(s) == {

then 7(2) and 7(Z) (and hence V f(Z) and V f(Z)) coincide at all time. The ODE follows from
comparing the values of A’ on Z and trajectories of type Z.

In particular, by boundedness of Z, if particle i is not involved in a shock at time ¢, |Z;| is bounded by
a constant that is not depending on ¢. The existence of z; (—) and z; (+) at the times of isolated shocks
follows easily.

(2) This is the heart of our study of the dynamical system, and maybe the less standard part of Section 4.
But still the idea is very easy: with the notation of the statement, if z; (r—) — z; (¢+) is too small, then it
is cheaper to stick particle i with other particles, as shown in Figure 3. The proof goes as follows.
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t+o t t+o t
t+Ao 1 t+Ao 1
! . ! q

Figure 3. To the left, a piece of the trajectory Z, and to the right, the competitor Z%*
that we describe in the proof.

Step 1: Definition of a competitor. Let us consider (¢, g, C) an isolated shock. Because it is isolated, we
can find t > 0 such that the particles of C are not involved in another shock between times r — v and
t + 7. By the definition of a shock, we cannot have C € 7w (Z;) for all s € (¢t — 7, t 4 1), so either, for all
se(t—r1,t), C¢n(25) or,foralls € (t,t+ 1), C ¢ n(Z;). Without loss of generality, we suppose
that the second one holds: the particles of C are not all stuck right after the shock. Moreover, by our
choice of t, for all C' C C, the assertion C’ € 7w (Z;) is either true or false independently of s € (¢, t + 7).
Then, for s € (¢, t + 7), the following definitions of C, C, € w(Z;) do not depend on s:

C;:=C(Z,,i) fori=minC and Cr:=C(Z,i) fori=minC\Cj.

(The classes C; and C; are the two leftmost packs of particles of C right after the shock.) Let us define
forj=1,2

. kv +kavy
ki :=#C;, =zt fori € Cj, d =— 57
g vj:=z;(t+) fori an P (57)
For 0 <o <t and A € [0, 1), we define a competitor Z%* = (ZT’)‘(S), c, Z%A(S)) by setting for all
i={l,...,N}ands € [0, T]
zi (s) ifi¢gCiUCrors ¢(t,t+0),
Z;’*’\(s)z g+(s—1t)p ifieCiUCyand s € (¢, 1+ 1o),
140 =5 (0t aop)+ 32029 Loy ifieCiUC, ands € (1 + Aoyt +0).
(1-XA)o (1-Mo ™ ’

(See Figure 3 for an illustration of this competitor.) We will get a lower bound on v, — v; by comparing
the value of A” on Z and Z°*, and by differentiating the corresponding inequality first with respect to &
at 0 = 0 (we zoom so that the particles of Z only travel along straight lines), and then with respect to A
at A = 0 (we compute the first variation of the action when we let the particles stick together).

Step 2: A lower bound on v, —v;. The partitions 7 (Z{ **) and 7 (Z;) coincide at all times except between
t and r + Ao, when 7 (Zy) is a strict refinement of n(Z;”A). Hence, letting

8§ =8(N, A) :=min{h(rw) — h(n') : (7w, ®") ordered partition of [1, N, m strict refinement of 7’} > 0,
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we have, for all s € (¢, ¢t + Ao),
h(w(Z17)) +8 < h(n(Zy)). (58)

As Z? coincide with Z for times outside (¢, + o) and for coordinates that are not in C; U C», by
definition (53) of A”, we have

t+o
N(EZH=-N(@Z)= ) UEPH O+ 120 9) —ail? = 12:(9)) = |zi(s) — ai [P} ds
iEC]UC2t t+ro
[ e~ herzoyas
t+o
T V2 (5 ()12 ds —
< > / 1277 )P = 1) ds —8ho + 0 (@), (59)

ieC1UC,

where to obtain the second line, we used (58) and the fact that between times ¢ and ¢ + o, both z; and Z?’A
remain at a distance of order o of g.
Let us consider i € C; for j =1, 2. On one hand, as z; admits v; as a right derivative at time 7, we have

t+o
f ()P ds =vio+ o (o). (60)
t o—

On the other hand, we can compute explicitly

z,»(r+a)—(q+xpa))2

t+o
<o, 2 2
. ds=A +(1—-A
/t 1277 (s)|7ds = Ap~o +( )0( T

1
2 2
=Ap 0+m(¢1+?}j0+030(0)—6]—)~190)

2 2 ¢
=ip7o+(j—Ap) ——+ o (o). (61)
1—X o-0
By plugging (60) and (61) into (59) and by using the definition (57) of k1, k> and p, we get

ki (v — Ap)? + ka2 (v2 — Ap)?
1—A

N'(Z7M = N'(2) < {(lq +k)Ap? + — kv — kpv3 — 5,\}0 + o0 0(0)

A
={(k1 +ka)p +krv] +kav3 = 2p(kivs +hovo) = 8(1 = M)} 0 + 0 (o)
- o

(k11 + kovy)? A
=kt hovr——— 2 51—
{ Vi + v k1 + ko ( ) 1—)\.0+020(0)
kiko 2 A
= — —5(1—=A) —— .
{k1+k2(v2 v)” —8( )}1_k0+0g0(0)

By the minimality of A”(Z), this quantity must be nonnegative. If we divide it by Ao, and if we let o
and then XA go to zero, we end up with
kiko
ki + ko

(v —v1)? = 8. (62)
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Step 3: Conservation of momentum during an isolated shock and conclusion. Because (¢, g, C) is isolated,
it is easy to justify that we can replace V by the vector V¢ whose j-th coordinate is 1 if j € C and 0
otherwise in the proof of Proposition 29. Doing so, we obtain the “local” conservation of momentum

1 . 1 . c
ic Zz,-(t—) =1c Zz,-(wr) = PC@).
ieC ieC
By ordering of the particles, we have, for i = minC,

. 1 . kl #C—kl
C § :

(t=)>P (1) = — (t+) > —v +

Zl( )_ () Cieczt( )_ C 1 C

U2.

(Indeed, j € C+ z;(t—) and j € C > z;(t+) are clearly nonincreasing and nondecreasing respectively.)
By recalling that v; = z;(#+) and using (62), we get

)y 2 TR L #C—k btk
(t=) —z; > vy —vp) > .
& . gc 2 #C kika

The minimal right-hand side’s value is v/8/(#C? — #C), obtained for k; = #C — 1 and k, = 1. Hence, we
get the result by choosing a = /8/(N% — N). g

4.7. Conclusion: proof of Theorem 21. We are now ready to give the proof of Theorem 21. We give

ourselves Z a global minimizer of A’. Thanks to Proposition 26, we can suppose that Z is ordered, and
thanks to Proposition 27, we can consider A” instead of A'.

Because of Proposition 31, it suffices to prove that there is a finite number of shocks. Indeed, in that
case one can take for 0 =7y < t; <--- <t, =T the moments of these shocks (and the endpoints of
[0, T']). The smoothness of Z on each [#;_1, 1], i =1, ..., p, follows directly from Proposition 31. Then
m(Z2) is constant on each (t;_1,t;), i =1, ..., p, because by Definition 30 of a shock, at each time of
discontinuity of 7 (Z), there is at least one shock.

The set

{(¢', q") : there exists C’ C [1, N] such that (¢', ¢’, C’) is a shock}

is easily seen to be compact. So if it is not finite, it admits at least one accumulation point. That is, if
there is an infinite number of shocks, then there is at least one shock which is not isolated. Let us consider
such a shock (¢, g, C) with minimal number of particles involved, i.e., with minimal #C. The rest of the
proof is dedicated to showing that the existence of (¢, g, C) leads to a contradiction.

Step 1: The velocities are bounded. As Z is continuous on [0, T'], it is bounded. On the other hand, by
definition, 7 < |A|%2. Now ifi € {1, ..., N} and ¢ € [0, T] is such that Z is differentiable at  (which is
true for almost any ¢), recalling the definition (54) of &,

40 <127 <28 +12, — AP+ h(m(2),
which is bounded uniformly in .

Step 2: All the shocks in the neighborhood of (¢, g) that are distinct from (¢, g) are isolated. Let U be
a neighborhood of (¢, ¢) in [0, T'] x R such that, forall s € [0, T] and i € {1,..., N}, (s,z;(s)) € U
implies i € C. This is possible since Z is continuous and, for all j ¢ C, z;(t) # g by Definition 30 of a
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shock. Let us consider (¢/, ¢’, C’) a shock with (¢, ¢") € U. If #C' < #C, then (¢, ¢’, C’) is isolated by
the minimality of #C. If #C’ = #C, then C’ = C by the definition of U. But then it is easy to adapt the
proof of point (1) of Proposition 22 to prove that C € 7 (Z;) for all s between 7 and ¢, and so there is no
shock in U between ¢ and ¢’. Hence there exists at most one such shock in U: either one before ¢ or one
after ¢, but not both because else (¢, g, C) would contradict the third point of the definition of a shock.
Up to reducing U, we can then exclude (¢, ¢’, C’).

Step 3: Conclusion using Proposition 31. As (¢, g, C) is not isolated, there is an infinite number of
(isolated) shocks in U. Without loss of generality, we can assume that there is an infinite number of shocks
in U after time ¢. Call i € C the smallest index such that particle i is involved in an infinite number of
shocks in U after time . When i # min C, up to reducing U and by the minimality of i, we can assume
that no particle j € C with j < i is involved in a shock in U after time ¢.

As the shocks in U involving i after time ¢ are isolated (Step 2), we can enumerate their times in
decreasing order (7,) pen. The boundedness of Z together with (55) allows us to take M as an upper
bound for Z; between the times of shocks. For all p € N and s € (¢,41, 7,), taking « as in (56), we have

P tr s
2i(s) =zi(to—) + Z{ii (=) — zi(tx+) — / Zi(7) df} - / Zi(r)de
k=1 =1 I
> zi(to—) + pa — M (o — 1),
which contradicts Step 1 as soon as p is sufficiently large. O
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IDA AND HANKEL OPERATORS ON FOCK SPACES

ZHANGIJIAN HU AND JANI A. VIRTANEN

We introduce a new space IDA of locally integrable functions whose integral distance to holomorphic
functions is finite, and use it to completely characterize boundedness and compactness of Hankel operators
on weighted Fock spaces. As an application, for bounded symbols, we show that the Hankel operator H
is compact if and only if H is compact, which complements the classical compactness result of Berger
and Coburn. Motivated by recent work of Bauer, Coburn, and Hagger, we also apply our results to the
Berezin—Toeplitz quantization.

1. Introduction

Denote by L? the Hilbert space of all Gaussian square-integrable functions f on C”, that is,
[ 1F@Pe  du(z) < oo,

where v is the standard Lebesgue measure on C". The Fock space F? (aka Segal-Bargmann space)
consists of all holomorphic functions in L?. The orthogonal projection of L? onto F? is denoted by P
and called the Bergman projection. For a suitable function f : C" — C, the Hankel operator Hy and the
Toeplitz operator T are defined on F 2 by

Hy=(—P)M; and T;=PM;.

The function f is referred to as the symbol of Hy and Ty. Since P is a bounded operator, it follows that
both Hy and Ty are well-defined and bounded on F 2 if f is a bounded function. For unbounded symbols,
despite considerable efforts, see, e.g., [Bauer 2005; Berger and Coburn 1994; Coburn et al. 2021; Hu and
Wang 2018], characterization of boundedness or compactness of these operators has remained an open
problem for more than 20 years.

In this paper, as a natural evolution from BMO (see [John and Nirenberg 1961; Zhu 2012]), we
introduce a notion of integral distance to holomorphic (aka analytic) functions IDA and use it to completely
characterize boundedness and compactness of Hankel operators on Fock spaces. Recently, in [Hu and
Virtanen 2022], which continues our present work, we used IDA in the Hilbert space setting to characterize
the Schatten class properties of Hankel operators. Indeed, the space IDA is broad in scope, and should have
more applications, which we hope to demonstrate in future work in connection with Toeplitz operators.

All our results are proved for weighted Fock spaces F”(¢) consisting of holomorphic functions
for which

[LIF@1Pe " du(e) < oo,
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where 0 < p < oo and ¢ is a suitable weight function (see Section 2 for further details). Obviously, with
p =2 and ¢(z) = («/2)|z|?, we obtain the weighted Fock space F(f. The study of L?-type Fock spaces
was initiated in [Janson et al. 1987] and has since grown considerably, as seen in [Zhu 2012].

We also revisit and complement a surprising result due to [Berger and Coburn 1987], which states that
for bounded symbols

Hy: F 2 > L? is compact if and only if H 7 1s compact.

In particular, we give a new proof and show that this phenomenon remains true for Hankel operators from
FP(p) to L9(¢p) for general weights. What also makes this result striking is that it is not true for Hankel
operators acting on other important function spaces, such as Hardy or Bergman spaces.

As an application, we will apply our results to the Berezin—Toeplitz quantization, which complements
the results in [Bauer et al. 2018].

1A. Main results. We introduce the following new function spaces to characterize bounded and compact

Hankel operators. Let 0 < s < oo and 0 < g < co. For f € quoc, set

1
in —_
heH(B(.r) |B(z, )| Jpi.r

(Ggr(N)! = |f—h|*dv, zeC,

where H (B(z, r)) stands for the set of holomorphic functions in the ball B(z, r). We say that f € Lfoc is
in IDA%4 if

I fllpass = 1Gg,1(f)lLs < o0.

We further write BDA? for IDA®? and say that f € VDAY if
lim G, 1(f)(z) =0.
Z—>00

The properties of these spaces will be studied in Section 3.

We denote by S the set of all measurable functions f that satisfy the condition in (2-7), which ensures
that the Hankel operator H is densely defined on F”(¢) provided that 0 < p < oo and ¢ is a suitable
weight. Notice that the symbol class S contains all bounded functions. Further, we write Hessg ¢ for the
Hessian of ¢ and E for the 2n x 2n identity matrix — these concepts will be discussed in more detail in
Section 2. It is important to notice that the condition Hessg ¢ ~ E in the following theorems is satisfied
by the classical Fock space F?, the Fock spaces F‘f generated by standard weights ¢(z) = (a/2)|z|?,
o > 0, Fock—Sobolev spaces, and a large class of nonradial weights.

Theorem 1.1. Let f € S and suppose that Hessg ¢ >~ E as in (2-1).

(@) ForO < p<g <ooandq > 1, Hy : FP(¢p) — L9(p) is bounded if and only if f € BDAY, and Hy
is compact if and only if f € VDAY For the operator norm of Hy, we have the estimate

IHyll = |1 flIBDA? - (1-1)
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(b) For1 <q < p <oo, Hy: FP(¢) — Li(p) is bounded if and only if it is compact, which is equivalent
to f € IDA>Y, where s = pq/(p —q), and

I Hpll 2 Il fllipase. (1-2)
(c) ForO<p<g=<land f € L*, Hy : FP(¢p) — L%(p) is bounded with
IHpll < Cllf L (1-3)

and compact if and only if f € VDAY

We first note that Theorem 1.1 is new even for Hankel operators acting from F? to L. Previously
only characterizations for Hy and H; to be simultaneously bounded (or simultaneously compact) were
known. These were given in terms of the bounded (or vanishing) mean oscillation of f in [Bauer 2005]
for F? and in [Hu and Wang 2018] for Hankel operators from FZ to L. In Theorem 7.1 of Section 7,
we obtain these results as a simple consequence of Theorem 1.1. We also mention our recent work [Hu
and Virtanen 2022], which gives a complete characterization of Schatten class Hankel operators.

Theorem 1.1 should also be compared with the results for Hankel operators on Bergman spaces A”.
Indeed, characterizations for boundedness and compactness can be found in [Axler 1986] for antianalytic
symbols, in [Hagger and Virtanen 2021] for bounded symbols, and in [Hu and Lu 2019; Li 1994; Luecking
1992; Pau et al. 2016] for unbounded symbols. These two cases are different to study because of properties
such as F? C F4 for p <q (as opposed to A? C A?) and certain nice geometry on the boundary of these
bounded domains, which in turn helps with the treatment of the d-problem.

What is very different about the results on Hankel operators acting on these two types of spaces
is that our next result is only true in Fock spaces (see [Hagger and Virtanen 2021] for an interesting
counterexample for the Bergman space).

Theorem 1.2. Let f € L™ and suppose that Hessgr ¢ ~E asin (2-1). If 0< p<qg<ooorl <g < p < o0,
then Hy : F¥(¢) — L9(¢) is compact if and only if H is compact.

For Hankel operators on the Fock space F?, Theorem 1.2 was proved in [Berger and Coburn 1987]
using C*-algebra and Hilbert space techniques and in [Stroethoff 1992] using elementary methods. More
recently in [Hagger and Virtanen 2021], limit operator techniques were used to treat the reflexive Fock
spaces FJ. However, our result is new even in the Hilbert space case because of the more general weights
that we consider. As a natural continuation of our present work, in [Hu and Virtanen 2022], we prove
that, for f* € L*, the Hankel operator Hy is in the Schatten class S, if and only if H is in the Schatten
class S, provided that 1 < p < oo.

As an application and further generalization of our results, in Section 6, we provide a complete
characterization of those f € L for which

: O _ 7@y _ -
lim 17777 = Tyl =0 (1-4)

for all g € L™, where T;t) = P(I)Mf : F2(¢) — F*(¢) and P is the orthogonal projection of L?(¢p)
onto th((p). Here Lt2 = L*(C", du,;) and

1
dui(@) = exp{—zgz)(%) } dv(2).
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The importance of the semiclassical limit in (1-4) stems from the fact that it is one of the essential
ingredients of the deformation quantization of [Rieffel 1989; 1990] in mathematical physics. Our
conclusion related to (1-4) extends and complements the main result in [Bauer et al. 2018].

1B. Approach. A careful inspection shows that the methods and techniques used in [Berger and Coburn
1986; 1987; Hagger and Virtanen 2021; Perild et al. 2014; Stroethoff 1992] depend heavily upon the
following three aspects. First, the explicit representation of the Bergman kernel K (z, w) for standard
weights ¢(z) = («/ 2)|z|? has the property that

K (z, wye~ @@/l _ j@/lz-vl (1-5)

However, for the class of weights we consider, this quadratic decay is known not to hold (even in
dimension n = 1) and is expected to be very rare [Christ 1991]. The second aspect involves the Weyl
unitary operator W, defined as

Waf = fotika,

where 7, is the translation by a and k, is the normalized reproducing kernel. As a unitary operator
on FJ (oron L%), W, plays a very important role in the theory of the Fock spaces F (see [Zhu 2012]).
Unfortunately, no analogue of Weyl operators is currently available for F”(¢) when ¢ # («/2)|w|?. The
third aspect we mention is Banach (or Hilbert) space techniques, such as the adjoint (for example, H ]’f)
and the duality. However, when 0 < p < 1, F”(gp) is only an F-space (in the sense of [Rudin 1973]) and
the usual Banach space techniques can no longer be applied.

To overcome the three difficulties mentioned above, we introduce function spaces IDA, BDA and
VDA, and develop their theory, which we use to characterize those symbols f such that Hy are bounded
(or compact) from F?(¢) to L9(¢). Our characterization of the boundedness of Hy extends the main
results of [Bauer 2005; Hu and Wang 2018; Perild et al. 2014]. It is also worth noting that as a natural
generalization of BMO, the space IDA will have its own interest and will likely be useful to study other
(related) operators (such as Toeplitz operators).

In our analysis, we appeal to the d-techniques several times. As the canonical solution to du = gdf,
Hyg is naturally connected with the d-theory. Hormander’s theory provides us with the L2-estimate, but
less is known about L”-estimates on C" when p # 2. With the help of a certain auxiliary integral operator,
we obtain LP-estimates of the Berndtsson—Anderson solution [1982] to the 3-equation. Our approach
to handling weights whose curvature is uniformly comparable to the Euclidean metric form is similar
to the treatment in [Schuster and Varolin 2012] which was initiated in [Berndtsson and Ortega Cerda
1995], and a number of the techniques we use here were inspired by this approach. Although the work in
[Berndtsson and Ortega Cerda 1995] is restricted to n = 1, some of the results were extended to higher
dimensions in [Lindholm 2001], and the others are easy to modify.

The outline of the paper is as follows. In Section 2 we study preliminary results on the Bergman kernel
which are needed throughout the paper, and we also establish estimates for the d-solution developed
in [Berndtsson and Andersson 1982]. In Section 3, a notion of function spaces IDA*“ is introduced.
We obtain a useful decomposition for functions in IDA*9 (compare with the decompositions of BMO
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and VMO). Using this decomposition, we obtain the completeness of IDA*9/H (C") in || - |lipas<. In
Sections 4 and 5 we prove Theorems 1.1 and 1.2, respectively. For the latter theorem, we also appeal
to the Calder6n—Zygmund theory of singular integrals, and in particular employ the Ahlfors—Beurling
operator to obtain certain estimates on d- and d-derivatives. In Section 6, we present an application of
our results to quantization. In the last section, we give further remarks together with two conjectures.

Throughout the paper, C stands for positive constants which may change from line to line, but does not
depend on functions being considered. Two quantities A and B are called equivalent, denoted by A >~ B,
if there exists some C such that C~'A < B < CA.

2. Preliminaries

Let C" = R?" be the n-dimensional complex Euclidean space and denote by v the Lebesgue measure on C”.
Forz=(z1,...,2,) and w = (wy, ..., w,) in C", we write z-W = z; W1 +- - -+ 2, Wy and |z| = /7 - 7. Let
H (C") be the family of all holomorphic functions on C". Given a domain €2 in C" and a positive Borel mea-
sure i on €2, we denote by L? (€2, du) the space of all Lebesgue measurable functions f on €2 for which

1/p
| fllLr@.dp) = {/Qlflpdu} <00 for0<p<oo

and || f || Lo (,av) = €88 8Up,cq | f(2)| < 00 for p = oo. For ease of notation, we simply write L? for the
space L?(C", dv).

2A. Weighted Fock spaces. For a real-valued weight ¢ € C>(C") and 0 < p < 00, denote by L”(¢) the
space L?(C", e"??dv) withnorm || - || ., = || - lLr(C,e-r¢av)- Then the Fock space F”(¢) is defined as

FP(p)=LP(p)Nn H(C"),
FX(p)={f € HC") : | flloo,p = SUp,ccn | f (2)]e ¥ < 00}.

For 1 < p < oo, FP(¢) is a Banach space in the norm || - |, , and F?(p) is a Hilbert space. For0 < p < 1,
FP(p) is an F-space with metric given by d(f, g) = Il f — gll}.¢-

Other related and widely studied holomorphic function spaces include the Bergman spaces A% (B")
of the unit ball B" consisting of all holomorphic functions f in L?(B", dvy), where 0 < p < oo,
dvy(z) = (1 —|z])* dv(z) and o > —1.

In this paper we are interested in Fock spaces F?(¢) with certain uniformly convex weights ¢. More
precisely, suppose ¢ = @(x1, X2, . .., X2,) € C>(R?") is real-valued, and there are positive constants m
and M such that Hessg ¢, the real Hessian, satisfies

< ME, (2-1)
Jk=1

azw(x))z"

mE < Hessg ¢(x) = (8x~8xk
J

where E is the 2n x 2n identity matrix; above, for symmetric matrices A and B, we used the convention
that A < B if B — A is positive semidefinite. When (2-1) is satisfied, we write Hessg ¢ >~ E. A typical
model of such weights is given by ¢(z) = (o/2)|z)?* for z = (z1, 22, - - . , Zn) With Zj = Xx2j—1+1x2;, which
induces the weighted Fock space F studied by many authors (see, e.g., [Zhu 2012]). Another popular



2046 ZHANGIJIAN HU AND JANI A. VIRTANEN

example is ¢(z) = |z|> — 1 log(1 + |z|?), which gives the so-called Fock-Sobolev spaces studied for
example in [Cho and Zhu 2012]. Notice that the weights ¢ satisfying (2-1) are not only radial functions,
as the example ¢(z) = |z|? +sin[(z; + Z1)/2] clearly shows.

For x = (x1,x2, ..., x0,), t =(t1, 12, ..., 1) € RZn’ write Zj = X2j-1 +iij, Sj =11 +il‘2j and
& =(&1,&,...,&,). An elementary calculation similar to that on page 125 of [Krantz 1992] shows

n

82<p " 82(,0 _ 1 2n 82<p 1 )
ejEk_l 92,008 (z)é‘,é‘kJrjEk_l 92,0% (2)&j6k 2,-%—1 T o (X)tjte > 2m|g|

Replacing & with i§ in the above inequality gives

g 9% 1
—Re Y _ Q&+ Y ()& = FmlE|*.
o, 9202 ymd 2

—~ 07,02k
Thus, ; 5
0 = 1
> — (2)&;& > ~mlE|*.
_ 0z;02x 2
J.k=1

Similarly, we have an upper bound for the complex Hessian of ¢. Therefore, mwy < dd“¢p < Mwy, where
wo = dd€|z|?* is the Euclidean Kihler form on C* and d¢ = }‘\/—_1 (8 — ). This implies that the theory in
[Schuster and Varolin 2012; Hu and Lv 2014] is applicable in the present setting.

ForzeC"andr > 0, let B(z,r) = {w € C" : |[w — z| < r} be the ball with center at z with radius r.
For the proof of the following weighted Bergman inequality, we refer to Proposition 2.3 of [Schuster and
Varolin 2012].

Lemma 2.1. Suppose 0 < p < oco. For each r > 0 there is some C > 0 such that if f € FP(¢) then
F@e*@P=cf 1f©e O dve),
B(z,r)
It follows from the preceding lemma that || ||, < C|l f |,y and
FP(p) C Fi(p) for0 < p<gq<oo. (2-2)
This inclusion is completely different from that of the Bergman spaces.
Lemma 2.2. There exist positive constants 0 and C1, depending only on n, m and M, such that
1K (z, w)| < Cre?@FeWe=blz=wl for gl 7, w e C", (2-3)
and there exist positive constants Cy and rq such that
K (z, w)| = Coe? o) (2-4)
for z € C" and w € B(z, rp).
The estimate (2-3) appeared in [Christ 1991] for n = 1 and in [Delin 1998] for n > 2, while the

inequality (2-4) can be found in [Schuster and Varolin 2012].

For z € C", write
K(-,2)

k()= — %2
2(+) Ko
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for the normalized Bergman kernel. Then Lemma 2.2 implies
%eW) <|IK(-,2)llpp < Ce?@ and % <|lk;llp., <C forzeC", (2-5)
and limy;|—,  k;(§) = 0 uniformly in £ on compact subsets of C".

2B. The Bergman projection. For Fock spaces, we denote by P the orthogonal projection of L?(¢)
onto F?(p), and refer to it as the Bergman projection. It is well known that P can be represented as an
integral operator

Pf(z) = /@ K (@ow) f(w)e ™ dv(w) (2-6)

for z € C", where K (-, -) is the Bergman (reproducing) kernel of F 2((p).

As a consequence of Lemma 2.2, it follows that the Bergman projection P is bounded on L?(¢) for
1 < p=<o0,and P|pr(y =Ifor 0 < p < oo; for further details, see Proposition 3.4 and Corollary 3.7 of
[Schuster and Varolin 2012].

2C. Hankel operators. To define Hankel operators with unbounded symbols, consider
Fz{zyzlajK(-,zj):NeN, aj€C, z;eC forl < j <N},
and the symbol class
S = {f measurable on C" : fg € L'(¢) for g e T'}. 2-7)

Given f € S, the Hankel operator Hy = (I — P)M with symbol f is well-defined on I'. According to
Proposition 2.5 of [Hu and Virtanen 2020], for 0 < p < oo, the set I' is dense in F”(¢), and hence the
Hankel operator Hy is densely defined on F7(¢).

2D. Lattices in C". Given r > 0, a sequence {ay};2, in C" is called an r-lattice if the balls {B(ax, r)}}2,
cover C" and {B(ax, r/(24/n))}32, are pairwise disjoint. A typical model of an r-lattice is the sequence

{%(ml F kil mo + ko, .. my 4 ki) €C imy K € Z, j = 1,2,...,n}. 2-8)
n

Notice that there exists an integer N depending only on the dimension of C" such that, for any
r-lattice {ax}p2 .

o0
1<) XBa@an@ <N (2:9)
k=1

for z € C", where yg is the characteristic function of £ C C". These well-known facts are explained in
[Zhu 2012] when n = 1 and they can be easily generalized to any n € N.

2E. Fock Carleson measures. In the theory of Bergman spaces, Carleson measures provide an essential
tool for treating various problems, especially in connection with bounded operators, functions of bounded
mean oscillation, and their applications; see, e.g., [Zhu 2005]. In Fock spaces, Carleson measures play a
similar role; see [Zhu 2012] for the Fock spaces F{ . Carleson measures for Fock—Sobolev spaces were
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described in [Cho and Zhu 2012]. In [Schuster and Varolin 2012], Carleson measures for generalized
Fock spaces (which include the weights considered in the present work) were used to study bounded and
compact Toeplitz operators. Finally, their generalization to (p, g)-Fock Carleson measures was carried
out in [Hu and Lv 2014], which is indispensable to the study of operators between distinct Banach spaces
and will be applied to analyze Hankel operators acting from F?(¢) to L?(¢) in our work.

We recall the basic theory of these measures. Let 0 < p, g < 0o and let i« > 0 be a positive Borel measure
on C". We call i a (p, g)-Fock Carleson measure if the embedding 1 : F?(p) — L1(C", e™1%dp) is
bounded. Further, the measure u is referred to as a vanishing (p, ¢)-Fock Carleson measure if in addition

lim [ |fj(2)e *@17du(z) =0

j—)OO (4

whenever { fj}]?i] is bounded in F'”(¢) and converges to 0 uniformly on any compact subset of C" as

Jj — oo. Fock Carleson measures were completely characterized in [Hu and Lv 2014] and we only add
the following simple result, which is trivial for Banach spaces and can be easily proved in the other cases.

Proposition 2.3. Let 0 < p, g < 00 and  be a positive Borel measure on C". Then [ is a vanishing
(p, q)-Fock Carleson measure if and only if the inclusion map 1 is compact from F?(p) — L1(C", du).

Proof. 1t is not difficult to show that the image of the unit ball of F'”(¢) under the inclusion is relatively
compact in L2(C", ¢?? du). We leave out the details. O

2F. Differential forms and an auxiliary integral operator. As in [Krantz 1992], given two nonnegative
integers s, t < n, we write

o= Y  wupd®ndZ’ (2-10)

la|=s.18]=t

for a differential form of type (s, ). We denote by L ; the family of all (s, #)-forms w as in (2-10) with
coefficients w,, g measurable on C" and set

wl=" Y loasl and [olpo=llolllp.,. (2-11)

lae|=s,|B|=t

Given a weight function ¢ satisfying (2-1), we define an integral operator A, as

058 3 ) p NE I N QIIGEN A @0l — Py

JUIE — 222 (12

Ap(@)(2) = /

C

j<n

for w € Ly,;, where
n

(), z—&) =)

j=1

dp

%, &)z — &)

as denoted on page 92 in [Berndtsson and Andersson 1982].
For an (s, #1)-form w4 and an (s», ,)-form wp with s; 4+ 50 <n, t; + 1 <n, it is easy to verify that
|wa Awp| < |wa||wp|. Therefore, for the (n, n)-form inside the integral of the right-hand side of (2-12),
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we obtain

91& — 2I” A 2539 A (B31€ — 2Py~ 0 @)
w@n U — <P = zpra

because 199 ¢(£) ~ 199 |£]>.
Recall that

r={> 4K, :NeN qeC z;eC for1 <j<N}|
is dense in F?(p) forall 0 < p < oo.
Lemma 2.4. Suppose 1 < p < 0.
(I) There is a constant C such that ||Ay(®)|lp,e < Cllwllp,e for w € Lo1.
(1) For g € T and f € C*(C") satisfying | f| € LP, it holds that 3A,(gd ) = g f.
Proof. Let z € C". By (2-1), using Taylor expansion of ¢ at £, we get

Bw(é)(
38;

9(x) —p(E) = 2Re Y j— &) +mlz—&.

Then (2-12) gives
1A, (0)(z)e ?@| < C/ |a)(5)|e—¢(§){ 1 " 1
T Jo E_z| ' |E—z>]

For [ < 2n fixed, define another integral operator .4, as

o—mlE—zI?
Ajih— h(";‘) E—2f dv(§).

It is easy to verify, by interpolation, that .4, is bounded on L? for 1 < p < co. Therefore,
lAg(@)lp,e < CI(AL + Azp—1)(J@le™ ) || Lr
< C(lAillLr—rr +AsntllLrsro)ll@ll e,

which completes the proof of part (A).

}e—mé—zl2 dv(&).

2049

(2-13)

Notice that the convexity assumption in (2-1) yields dd“¢ =~ wq, which in turn means that |85(p(§ )| ~ 1.
We use p’ to denote the conjugate of p, 1/p+1/p’ = 1. Now, for f € C>(C") satisfying |3 f| € L?, and

z, 2o € C", we have

e 9190 J
/ 190G zo>af(s>|2 'Pnﬂ(,@l dv(®)

sC{ sup |K(&,20)df(E)e @]+ /@ . ])|K(s,zo>5f(s>|e‘*’@)dv(s)}

£eB(z,1)

<Ce?C sup [3fE+HIfr K-, z0)ll e} <00
£e€B(z,1)
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Hence, for g € I and z € C", it holds that
e ¢<f>|aa<p<s>|f
[ sire § j IO ) <ox,

From Proposition 10 of [Berndtsson and Andersson 1982], we get (B) (pay attention to the mistake in the
last line of that result where f is left out on the right-hand side). O

Corollary 2.5. Suppose f € SNC'(C") and |3 f| € L* with some 1 <s < oo. For g € T, it holds that
Hy(8) = Ap(80 f) — P(Ay(89.1)). (2-14)
Proof. Given f € SNC'(C") with |3 f| € L* and g € I, we have ||g8f||1¢ < gl ¢,||8f||Lv < 00,

where s is the conjugate of s. Lemma 2.4 implies that u = A¢(g8f) € L'(p) and du = gd f. Then

fg—ue L' (p). Notice that (fg —u) =gd f —du =0, and so fg—u € F'(p). Since P|py =1, we have
fg—u=P(fg—u)=P(fg) = Pu).

This shows that Hy(g) =u — P (u). O

3. The space IDA

We now introduce a new space to characterize boundedness and compactness of Hankel operators. The
space IDA is related to the space of bounded mean oscillation BMO (see, e.g., [John and Nirenberg 1961;
Zhu 2012]), which has played an important role in many branches of analysis and their applications for
decades. We find that IDA is also broad in scope and should have more applications in operator theory
and related areas.

3A. Definitions and preliminary lemmas. Let 0 < g < oo and r > 0. For f € L (the collection of

loc

q-th locally Lebesgue integrable functions on C"), following [Luecking 1992], we define G, . (f) as

1/q
Gyr(f)2)= inf{ <; |f—h|? dv) :h e H(B(z, r))} 3-1)
|B(z, )| JBz.r)
for z € C".

Definition 3.1. Suppose 0 < s < oo and 0 < g < 0o. The space IDA*? (integral distance to holomorphic
such that

[ fllpase = 1G g1 (s < o0.
The space IDA°>? is also denoted by BDAY. The space VDAY consists of all f € BDA? such that
lim G4,1(f)(z) =0
=0

We will see in Section 6 that IDA®-? is an extension of the space IMO®*¢ introduced in [Hu and Wang
2018].
Notice that the space BDA? was first introduced in the context of the Bergman spaces of the unit

functions) consists of all f € Ll o

disk in [Luecking 1992], where it is called the space of functions with bounded distance to analytic
functions (BDA).
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Remark 3.2. As is the case with the classical BMO? and VMO spaces, we have
BDA? ¢ BDAY" and VDA% c VDAY

properly for 0 < g1 < g» < o0.

Let0 <g <o0. Forz € C", f e L1(B(z,r),dv) and r > 0, we define the g-th mean of | /| over
B(z, r) by setting

1 . 1/q
Mq,r<f><z>=<—|3(z’r)| [ dv> .

For w € Lo,1, we set My ,(w)(z) = M, ,(|o|)(2).

Lemma 3.3. Suppose 0 < g < oo. Then for f € Lfoc, z€C"andr > 0, there is some h € H(B(z, 1))
such that

My (f—h)()=Gy,(f)) (3-2)
and
sup  |[h(w)| < Cll fllLaBez,r).dv), (3-3)
weB(z,r/2)

where the constant C is independent of f and r.

Proof. Let f € L] , 7€ C" and r > 0. Taking & = 0 in the integrand of (3-1), we get

loc?
Gyr(f)@) =My, (f)(z) <oo.

Then for j =1, 2, ..., we can pick h; € H(B(z, r)) such that

Mg (f —hj) (@) = Gg,r(f)(2) (3-4)
as j — oo. Hence, for j sufficiently large,
Mg r(hj)(2) = C{My ,(f —hj)(@) + My, () (@)} = CMy, (/) (2). (3-5)

This shows that {h; }f.i | is a normal family. Thus, we can find a subsequence {A;,}72, and a function
h € H(B(z,r)) so that limy_, hj, (w) — h(w) for w € B(z, r). By (3-4), applying Fatou’s lemma, we
have

Gq.r(f)(@) = My, (f = h) (@) =liminf My, (f = hj)(2) = Gg.r (f)(2),

which proves (3-2). It remains to note that, with the plurisubharmonicity of |i|?, for w € B(z,r/2), we
have
lh(w)| = My rp2(h)(w) < CMg,,(h)(2) < CMy (f)(2),

which completes the proof. O

q

Corollary 3.4. For 0 <s <, there is a constant C > 0 such that for f € L, .

holds that

and w € B(z,r —s), it

Ggs(f)w) <My s(f —h)(w) = CGy r(f)(2), (3-6)

where h is as in Lemma 3.3.
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Proof. For0 <s <r and w € B(z,r —s), we have B(w, s) C B(z, r). Then, the first estimate in (3-6)
comes from the definition of G, ;(f), while (3-2) yields

My s(f —h)(w) = CMy ,(f —h)(2) = CGq,r(f)(2),
which completes the proof. O
Forze C" and r > 0, let
AY(B(z,r),dv) = LY(B(z,r),dv)N H(B(z,r))

be the ¢g-th Bergman space over B(z, r). Denote by P, , the corresponding Bergman projection induced
by the Bergman kernel for A%(B(z,r),dv). It is well known that P, . (f) is well-defined for f €
LY(B(z,r), dv).

Lemma 3.5. Suppose 1 <q < oo and 0 < s < r. There is a constant C > 0 such that, for f € L?OC and
w e Bz, r—s/(2)),
Gy s (W) <My s(f = Py ()W) <CGy,(f)(2) forzeC" (3-7)

Proof. We only need to prove the second inequality. Suppose 1 < g < co. Notice that Py ; is the standard
Bergman projection on the unit ball of C". Theorem 2.11 of [Zhu 2005] implies that

| Po, 11l 29(B(0,1),dv)— A9 (B(0,1),dv) < OO.

Now for » > 0 fixed and f € LY((B(0, r), dv), set f.(w) = f(rw). Then

)
I lLeBO.1y.dv) = 729N £l La(B0.1).dv)-

Furthermore, it is easy to verify that the operator f — Py 1(f;)(-/r) is self-adjoint and idempotent, and
it maps L?((B(0, r), dv) onto A%((B(0, r), dv). Therefore,

Py, (f)(2) = PO,I(fr)(§> for f € L9(B(0, r), dv),
and hence

| Po,r Il La(B©O,r),dv)— A2(B(©0,r),dv) = [P0, 11l L(B(0,1),dv)— A9(B(0,1),dv)-

Now for z € C" and r > 0, using a suitable dilation, it follows that

| Pl La(B(z,r),dv)— A9 (B(z,r),dv) = 1 P01l La(B(0,1),dv)— A2(B(0,1),dv) < OC. (3-8)

Unfortunately, P, , is not bounded on L! (B(z, 1), dv), but with the same approach as above, by Fubini’s
theorem and Theorem 1.12 of [Zhu 2005], we have

| Pl L1 (Bry.dv)— AV (BGr). (2= - —z2)dv) < C (3-9)
forzeC"and r > 0.
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Choose h as in Lemma 3.3. Then h € A9(B(z, r), dv) because f € L?OC. Thus, P, ,(h) = h. Now for
we B(z,(r—s)/2)and 1 < g < o0,

() 1= pacpran)

q 1/q
f |f = P ()1 dv)
B(z,(r+s)/2)

1/
sclf 1r®-P(D@IC - g -Prdve]
B(z,r)

sc{[f,_r=mra] L [f R —-m@ne - —ave)] )

1/q
<C / |f—h|qdv} . (3-10)
B(z,r)
From this and Lemma 3.3, (3-7) follows. O

Given t > 0, let {q; }]?’il be a (t/2)-lattice, set J; = {j : z € B(aj, t)} and denote by |J;| the cardinal
number of J,. By (2-9), |/J;| = 27021 XB(a;.1)(2) < N. Choose a partition of unity {1 ]Qip Y e C(C),
subordinate to {B(aj, t/2)} such that

supp ¥ C B(aj, 1/2), ¥;x) =0, Y (@) =1,
j=l1

) 0o (3-11)
By () <Ct™', Y () =0,
j=1
Given f € Lfoc, for j=1,2,...,pick hj € H(B(aj, t)) as in Lemma 3.3 so that
My (f —hj)(a;) =Gq.(f)(a)).
Define
o0
fi=) hiy; and fo=f— fi. (3-12)

j=1
Notice that fi(z) is a finite sum for every z € C" and hence well-defined because we have supp ¢; C
B(Clj, t/2) C B(a.,-, l).
Inspired by a similar treatment on pages 254-255 of [Luecking 1992], using the partition of unity, we
can prove the following estimate.

q
loc

Lemma 3.6. Suppose 0 < g <oo. For f € L
have f, € C*(C") and

and t > 0, decomposing f = f1 + f» as in (3-12), we

10 f1(2) |+ Mg.1120 1) (2) + Mg 2(f2)(2) < CG g2 (f)(2) (3-13)
for z € C", where the constant C is independent of f.

Proof. Observe first that f; € C*(C") follows directly from the properties of the functions h; and ;. For
z € C", we may assume z € B(ay, t/2) without loss of generality. Then for those j that satisfy 51//j (z) #0,
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|hj — h1]? is plurisubharmonic on B(z, t/2) C B(aj, t). Hence, by Corollary 3.4,

19 f1(2)| =

D (hj(2) = @)Y ()] < Y 1hj(@) — ()] 1395 (2)]
j=1 j=1

<C Y Myl —h)(@)
{j:laj—zl<t/2}

<C ) [IMyya(f —hp) @)+ My ija(f —hp)(w)]
{J:laj—zl<t/2}

<C ) GuH@).

{j:laj—zl<t/2}

Thus, using Corollary 3.4 again, we get

10 f1(2)] < CGy32(f)(z) forzeC,

and so,

My p(@f)(2)7<C Gy 3i2(f)(w) dw < CGy o (f)(2)1.

|B(z,1/2)| JBz1/2)
Similarly, we have | f2(§)|1 < C Z;’il [f(E) —h;(&)I9¥;(§)4, and so

1

. _ . q q ‘ q
BG D] Sy TV 0SC D GaulDi@)

(it laj—zl<t/2)

Myip(f)@)7<CY
j=1

Therefore,
My i2(f2)(2) < CGy3i2(f)(2).

Combining this and the other two estimates above gives (3-13). O
Given {y;} as in (3-11), we have another decomposition f = § + §2, where

F1=) Pyu(H)Y; and Fo=f-Fi. (3-14)

j=1

When g = 2, the two decompositions coincide.

Corollary 3.7. Suppose 1 < g < oo. For f € L?OC andt > 0, we have §| € C*(C") and

1031(2) + My.12(0F1)(2) + M1 2(§2)(2) < CG g (f)(2) (3-15)
for z € C", where the constant C is independent of f.

Proof. The proof can be carried out as that of Lemma 3.6 using (3-7) instead of (3-6). We omit the
details. O

3B. The decomposition. In our analysis, we will appeal to d-techniques several times. Let  C C" be
strongly pseudoconvex with C* boundary, and let S be a 3-closed (0, 1) form on Q with L” coefficients,
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1 < p <oo. As in [Krantz 1992], we denote by Hq(S) the Henkin solution of 5—equation du = S on Q.
We observe that Theorem 10.3.9 of that work implies that, for 1 < g < oo,

Ho (S za@,av) < ClISlLa(@,dv) (3-16)

where the constant C is independent of S and of “small” perturbations of the boundary. (We note that the
second item in Theorem 10.3.9 of [Krantz 1992] is stated incorrectly and should read [|u|[z« < C,ll fll,
instead.) Indeed, to deduce (3-16), we consider three cases. First, for 1 <g < (2rn+2)/2n+1),

IHo (O Le(@.av) < CISIL1(@.av) < CISILa(,dv)-

Forg =2n+2)/2n+1),take 1l < p=¢qg <2n+2and q; = 2n+2)/(2n) > q. Then 1/q; =
1/p—1/(2n +2), and by the second item in Theorem 10.3.9 of [Krantz 1992], we have

IHo(S) | La(@,qv) < ClIHQ(S)|L91(Q,4v) < CIISILr(Q,dv)-

Finally, for ¢ > 2n+2)/(2n + 1), choose p sothat 1/g =1/p —1/(2n+2). Then 1 < p <2n+2 and
p < g. Now Theorem 10.3.9 of [Krantz 1992] implies

IHo () |La(,dv) < ClISILr(@,dv) < ClISILa(@,dv)-

Theorem 3.8. Suppose 1 <q <00, 0 <s <o0,and f € L] .. Then f € IDA™ if and only if f admits a
decomposition f = f| + f> such that

freCHCY, My, @fi)+ My, (f2) €L’ (3-17)
for some (or any) r > 0. Furthermore, for fixed t,r > 0, it holds that

I fllibase = 1Gq e ()l 2 inf{| My fO)llLs + 1My - (F)ll s} (3-18)

where the infimum is taken over all possible decompositions f = fi + f that satisfy (3-17) with a fixed r.

Proof. First, given 0 <r < R < 0o, we have some ay, ay, ..., a, € C" so that B(0, R) C U’J’-’:] B(aj,r).
Then, for g € L1

loc? "
My r(9)@)° <CY M, (8)(z+a)', zeC
j=1
and

A My k()@ dv@) <C Y /@ My ()Gt a) du) < C A M@ @ (19
j=1

This implies that (3-17) holds for some r if and only if it holds for any r.
Suppose that f € L with 1G4, (f)llLs < oo for some T > 0 and decompose f = f| + f2 as in

loc

Lemma 3.6 with t = t/2. Then f; € C*(C") and

18 1|+ My /a3 [1) (@) + My 1/a(2)(2) < CGy o (f)(2).
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Now for any r > 0, we have

1My @ flls + 1My (f)Nls < CllGg e (f)lLs-

This implies that, f = f; + f satisfies (3-17).

(3-20)

Conversely, suppose f = fi + f» with f; € C*(C") and Mq,,((‘_if]) + M, (f2) € L* for some r > 0 as

in Theorem 3.8. Then, for any 7 > 0,

1Gq.« (Sl = CliMg - (f)lls = CliMg.r (s

(3-21)

So f> € IDA%?. To consider f|, we write u = HB(z,Zt)(é f1) for the Henkin solution of the equation

ou = 5f1 on B(z,2t). From (3-16) and (3-17), u satisfies
My 20 (u)(z) < CMy 2:(3 f1)(z) forzeC",
which implies that u € LY(B(z, 21), dv). Similarly to (3-10),

Mq,T(PZ,Zt ) (z) < CMq,Zt (u)(2).

Thus,
Mg (=P o (u))(2) < My, (u)(2) + Mg, (P2 (u))(2)
< CMy 2 (u)(2).
Since
fi—ueLi(B(z,21),dv) and d(f; —u)=0,
we have

f1—ue A4(B(z,21), dv).
Notice that Pz,Zr |A‘1(B(z,2t),dv) = I, and so

J1(E) =P o (f1)(E) =u(§) — P 2 (u)(§) for§ € B(z, 21).
Combining (3-22), (3-23) and (3-24), we get

Mq,r(fl - Pz,ZI(fl))(Z) = Mq,r(u - Pz,2t (M))(Z)
< My (u)(2) < CMy 22 (3 f1)(2).
Therefore, by (3-19),
1Gg.-(FOllLs < 1My (f1 —Proc (SOl s

< ClIMy2:@ f)llLs < ClIMy.,r (3 f1)]lLs-
This and (3-21) yield
1Gy (s < CUIMy@f) s + 1My - (F2)ll1s -

Thus, f = fi + f> € IDA®,

It remains to note that the norm equivalence (3-18) follows from (3-20) and (3-25).

With a similar proof we have the following corollary.

(3-22)

(3-23)

(3-24)

(3-25)
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Corollary 3.9. Suppose 1 <q < oo, and f € L . Then f € BDAY (or VDAY) ifand only if f = fi + f,

loc*
where

fieCHC, dfieLy, (or lim |3fi|=0) (3-26)
’ 7—> 00
and
Mqr(f2) € L™ (or lim My, (f2) =0) (3-27)

for some (or any) r > 0. Furthermore,

£ IBDAs == inf(11d f1llgs, + 1My - (f2) L),

where the infimum is taken over all possible decompositions f = fi + f», with f1 and f, satisfying the
conditions in (3-26) and (3-27).

Corollary 3.10. Suppose 1 < q < oo. Different values of r give equivalent seminorms |G, ,(-)||Ls on
IDA*? when 0 < s < o0 and on both BDA? and VDA? when s = oo.

Remark 3.11. Recall that each f in BMO? can be decomposed as f = f; + f2, where fj is of bounded
oscillation BO and f, has a bounded average BA? (see [Zhu 2012] for the one-dimensional case and [Lv
2019] for the general case). Furthermore, we may choose f; to be a Lipschitz function in C 2(C™) (see
Corollary 3.37 of [Zhu 2012]); that is, f € BMO? if and only if f = f; + f> with all 9f;/9dx; € L for
j=1,2,...,2n and f, € BAY, or in the language of complex analysis both 8 f; and 9 f; are bounded.
Therefore, f € BMOY if and only if f, f € BDAY. For a similar relationship between IMOY and the IDA
spaces, see Lemma 6.1 of [Hu and Virtanen 2022] and Theorem 7.1 below.

3C. IDA as a Banach space. We next prove that IDA*>?/H (C") with 1 <s, ¢ < o0 is a Banach space
when equipped with the induced norm

If +HEC)Il = | fllpasa (3-28)

for f € IDA%1.
Theorem 3.12. For 1 <s, g < 00, the quotient space IDA*?/H(C") is a Banach space with the norm
induced by || - ||ipas9.
Proof. Obviously H(C") CIDA*?. Now given f €IDA®% and h € H(C"), wehave G, () =G, (f+h).
This means that the norm in (3-28) is well-defined on IDA*9/H (C"). If || f |ipas« =0, then G, - (f)(z) =0
in C". By Lemma 3.3, f € H(B(z,r)) and hence f € H(C").

Let f1, f> € IDA*? and z € C". According to Lemma 3.3, there are functions /; holomorphic in
B(z, r) such that

Mq,r(fj —hj)(Z) = Gq,r(fj)(z) for j=1,2.

Then, since

Mq,r((fl + f2) = (h1 +h2))(2) < Mq,r(fl —h)(2) + Mq,r(fZ —h2)(2),
we have
Gq,r(fl + 2)(@) < Gq,r(fl)(z) + Gq,r(fZ)(Z) forz € C".
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Hence, || fi+ f2llipass < |l fillipase +1 f2llipase. In addition, || f[lipas« >0 and [laf lipas« = |a|l| f lipas«
for a € C. Therefore, || - ||ipas« induces a norm on IDA*?/H (C").
o0

It remains to prove that the norm is complete. Suppose that { f,,};°_, is a Cauchy sequence in

Il lpase = 1G4, 1 () llLs-

o_, is a Cauchy sequence in |Gy (- )|l with

r > 0 fixed. We now embark on proving that, for some f € IDA™, lim, 00 |Gy, r/2(fin — f)llLs =0,
which implies { f;,},_, converges to some f € IDA™ in the || - [|pas<-topology. For this purpose, let

{aj }j?‘il be some t = (r/4)-lattice. We decompose each f;,, similarly to (3-14) as

According to Corollary 3.10, we may assume that { f;,

x
fm,l =ZPaj,r(fm)1/fj and fm,2:fm_fm,17
j=1
where {1/fj}j°i1 is the partition of unity subordinate to {B(a;, r/4)}j’i1 as in (3-11). It follows from
Corollary 3.7 that

My 8(fin2— fi,2) (@) = My .8 ((fm - fi) — Z Po; i (fmn — fkﬁﬁj) (2)°
j=1
= CGq,r/Z(fm - fk)(z)s

<cC / Gy (fn — FOE) dv(E).
B(z,r/2)

This implies that { fm,z}j?’i1 converges to some function f, in the Lf’oc-topology. In addition, by Lemma 3.5,
we have

My p2(fn2— fe2=Por(fn2— fi2))(@ < CGyr(fm2 — fi2)(2).
Letting k — oo and applying Fatou’s lemma, we get
Gyr2(fm2— )@ <My, 20(fn2— for—=Por(fno— )Q@)°
<C 1ikrgg;f Gyr(fm2— fi2) (@) .

Integrate both sides over C" and apply Fatou’s lemma again to obtain the estimate

[ Gurrathna = £ dv = Climint 1 2= ol

Therefore,
Jlim | fin2 = follipase = 0. (3-29)
Next we consider { f;,1};,_,- Applying the estimate (3-15) to f,, — fi,
18(fm1 = fi) @] = CGqrpp(fn = f) (@) (3-30)

Hence, {5fm,1};’f:1 isa Cauclzy sequence in Lf)’l (see (2_—11)). We may assume E_)fm,l — S= Z}:l S; dz;
under the_Lf)’l—norm. Since 92 =0, 9 fm.1 1s trivially d-closed, and so, as the Lal limit of {0 fi,1}5_ ;>
S is also d-closed weakly. Let ¢ (z) = %|z|2 and g =1 €T, and define

fi(@) =Ay(S) and [ =Ag(d fin1).
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Then, by Lemma 2.4,
fio fm1 €L%(®) C Liye,  9fin 1 =0fm1,

and {f, |},_; converges to fi in L°(¢). Therefore, for ¢y € C°(C") (the family of all C* functions
with compact support) and j = 1,2, ..., n, it holds that

8 *
—<f1,—a‘/’> =—1im<f,;‘;,1,—a‘/’> zlim<f’:”1,w> =1im<8§’1“,w> = (5, Yo
L2 LZ L2 L2

azj azj m—>00 8Zj m—>00 Zj

Hence, 9 f1 =8 weakly. Then for H B(”)(E_) fm.1—8), the Henkin solution to the equation du=2a fma1—S
on B(z,r), (3-16) gives

IH () (0 fin.t = S ILaBry.dv) < CNO fint — SllLoBzr).dv)- (3-31)
In addition, according to (3-24), it holds that
(fnd = F1) =P (fn1 — 1) =Hpen (0 fin1 — ) =Py (Hp.ry (3 fin1 — 5))
on B(z, r). Therefore, by (3-8), (3-9), and (3-31) we have
I fomt = 1) = Per(font = O La(Ber/2). av)
= IHp(.r) @ fin.1 = S) = Por (Hp(e. @ fin.t = D a(8e.r/2). vy
< ClIHBeH @ frnt = N i (80, dvy
< ClB w1 = SN a(Bry.dv) (3-32)
Since S = limy_, o 3 fi.1 in L} ,, by Fatou’s lemma,
10 font = S Loy < CHmInf U fm 1 = fe DN Lo (pe.r).avy
<C likrgiongq,Zr(fm,l = fi) (@)1, (3-33)
where the last inequality follows from (3-30). We combine (3-32) and (3-33) to get
I(fn = f1) =P (fnt = [ LaBizr/2).av) = Climinf G (fm.1 — Je (@)

Integrating both sides over C" with respect to dv and applying Fatou’s lemma once more gives the
estimates

I fn,1 = fillipasa < C/@ It = 1) = Por (fnt — O L0 Bzr /2y AV
<C / liminf Gy (fy1 — fi)* dv
n k—>00
< Clikn_l)iof.}f I fm.1 — fi1lipasa- (3-34)
Therefore, lim;,, . || fin.1 — fillipase =0. Set f = f1+ fr € Lfoc. From (3-29) and (3-34) it follows that
lim || fn — fllipase < lim (|| fin,1 — fillipase + || f2 — f2llipase) =0,
m—0o0 m—0oQ0

which completes the proof of the completeness and of the theorem. O
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Corollary 3.13. Let 1 < g < oco. With the norm induced by || - ||gpa¢, the quotient space BDAY /H(C") is
a Banach space and VDAY is a closed subspace of BDAY.

Proof. The proof of Theorem 3.12 works for s = oo, so BDA?/H (C") is a Banach space in || - || gpa¢-
That VDAY is a closed subspace of BDA? can be proved in a standard way. O

4. Proof of Theorem 1.1

Given two F-spaces X and Y, we write B(X) for the unit ball of X. A linear operator T from X to Y is
bounded (or compact) if T(B(X)) is bounded (or relatively compact) in Y. The collection of all bounded
(and compact) operators from X to Y is denoted by B(X, Y) (and by (X, Y) respectively). We use
I T||x—y to denote the corresponding operator norm. In particular, we recall that when 0 < p < 1, the
Fock space F?(¢) with the metric given by d(f, g) = | f — glliﬂw is an F-space.

To deal with the boundedness and compactness of Hankel operators, we need an additional result
involving positive measures and their averages. More precisely, given a positive Borel measure 1 on C*
and r > 0, we write 1,(z) = u(B(z, r)). Notice, in particular, (i, is a constant multiple of the averaging
function induced by the measure .

Lemma 4.1. Suppose 0 < p <1 andr > 0. There is a constant C such that, for | a positive Borel
measure on C", Q a domain in C", and g € H(C"), it holds that

P
([ 1e@erane) <c [ w@erraer e
Q Q;
where QF = cq) B(z, 7).
Proof. Let {a; }f.i , be an (r/4)-lattice. Notice that
Ar )<C inf Ar
Hrjalaj) < weBl(Ialj,r/Z)M (w)

for all j e Nand (a +b)? <a? +b? fora, b > 0. Then

p o p
( / Ig(é)e_“’@)ldu(é)> 52( / |g<s>e—¢@>|du<s))
Q izl B(aj,r/HNQ

=c ) sup  1(®)e PP A, 4(a)”

{j: Blaj.r/nQz-z) §€B@,r/HNQ

<C ) p@)’ 2E)e O du @)
B(aj,r/2)

{j: B(aj,r/[HNQL#ES}

¢ Y [ @ P @ due)
{j: Blaj.r/HnQo) ¥ B@-r/2)

¢ [ 8@ Or L E) due)

which completes the proof. U
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Remark 4.2. To prove compactness of Hankel operators on spaces that are not necessarily Banach spaces,
we use the following result. For 0 < p, g < oo, Hy : FP(¢) — L9(p) is compact if and only if

mh—>moo ||Hf(gm)||q,<p =0
for any sequences {g,}>°_, in B(F?(p)) satisfying

lim sup |g,(w)[ =0
m—>00

wekE
for compact subsets E in C".

Necessity is trivial. To prove sufficiency, we notice that B(F?(¢)) is a normal family, so for any
sequence {gn},_; C B(F”(¢)), there exist a holomorphic function gop on C" and a subsequence {g; }]?’il
such that

lim sup |gm; (w) — go(w)| =0.

J 7P weE
This and Fatou’s lemma imply that go € B(F?(¢)), and hence by the hypothesis, we get
lim ||Hy(gm;) — Hy(go)llg,p = lim [[Hy(gm; — g0)llg.p = 0.
J—>00 J—>00

Thus, Hy (B(F?(¢))) is sequentially compact in LY (¢), that is, the Hankel operator Hy : F'?(¢) — L9(¢p)
is compact.

4A. Thecase 0 < p <q <ooand g > 1.
Proof of Theorem 1.1(a). By (2-3)—(2-5),

lkllpp<C,  sup |k (&)|e™®® >C and lim sup |k (w)| =0 (4-1)
£eB(z,r9) TP yeE

for any compact subset £ C C". As in the proof of Theorem 4.2 of [Hu and Lu 2019], there is an ry such
that, for all z € C", we have

IHy kN, 2/ |fk; — P(fk,)|?e™ 9% dv
B(z,ro)

1 q
>C—rr—rr f——P(fky)| dv>CG?, (f)(z). 4-2)
[B(z,70)| JB(zr0) k. ) @10
If Hy € B(FP(p), L1(¢)),
| fliBpa? < ClIlHfll Frip)—La(p) < 00; (4-3)
if Hy € K(FP(¢), L(p)), then f € VDA because
lim G, (f)(2) = C lim [ Hp(k)llq.e =0. (4-4)

Next we prove sufficiency. Suppose that f € BDA? and decompose f = f| + f> as in (3-12). Write
diu=|f2|%dv and dv = |5f1 |7dv. According to Theorem 2.6 of [Hu and Lv 2014] and Corollary 3.9,



2062 ZHANGIJIAN HU AND JANI A. VIRTANEN

both du and dv are (p, ¢q)-Fock Carleson measures. We claim that both f, f> € S. Indeed, since ¢ > 1,
we can use Lemma 4.1 with Q = C" and the measure | f>|dv to get

[m | AE)K (E, 2)le ) dvE) < C/@n My (F)(OIK (&, 2)]e @ du(g)

<c /C My, (F)OIK €, 2)le ) du(@). (4-5)
Since f € BDAY, Lemma 3.6 implies

/C | LEVK(E, 2)le P dvE) < Cll fllppas /(E IK (€, 2)le ) dv(€) < oo

for z € C". Hence, f> € S, and so also f; = f — f» € S because f € S by the hypothesis. Since the
Bergman projection P is bounded on L4(¢) when ¢ > 1, we have, for g € T,
IHp (@) g9 = (L4 1P llLs o) Far) | 2840
< ClIMgr(fDNIL=lgllg.e = CliMg(f2)Iz=lgllp.g

where the second inequality follows from Lemma 4.1. For Hy, (g) with g € I, Corollary 2.5 shows that
Hp (g) = Ay(g0 f1) — P(Ay(gd f1)). Lemma 2.4 implies

1Hs (@llg.p < Cllg10 filllg.p < ClII fillxligllg.e < ClIA fill < lgl .o (4-6)

From the above estimates and the fact that I" is dense in F'”(¢), it follows that, for 0 < p < g < oo, we
have

IHf Nl Fr)—rat) < CLID fillz + 1My, (f2) |} < CIl £ |1BDAS (4-7)

where the latter inequality follows from Lemma 3.6.

For compactness, suppose f € VDAY so that f = f] + f» is as (3-12). Notice that both d = | f>]9 dv
and dv = |9 1|9 dv are vanishing (p, ¢)-Fock Carleson measures. Let {g,,} be a bounded sequence in
F?(p) converging to zero uniformly on compact subsets of C". Then

1/q
||Hf2(gm)”L‘1(<p) =< ||gmf2”q,<p + ||P(gmf2)||q,<p = C([ |gme—<p|q dﬂ) -0
C

as m — oo. To prove lim,, . o || H, (&)l L4 (o) =0, for each m we pick some g, €I so that |[g,, —g, [ p.o <
1/m. Clearly, {g;,}>°_, is bounded in F?(¢), and lim,_, », sup,,c ¢ |g, (w)| = 0 for any compact subset E.
Again by Corollary 2.5,

IHy, (85 10ty < Cllghd fill Ly < Cllgllla@ravy — 0 asm — oo.

Thus, since Lemma 3.6 guarantees Hy, € B(F? (@), L9(p)), it follows that lim,,, . o || Hf, (gm) I La(p) = 0,
and so

Hy = Hy + Hy, € K(FP(p), LY(p)).

Finally, it remains to notice that the norm equivalence (1-1) follows from (4-3) and (4-7). O
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4B. The case 1 < q < p < 0co. We can now prove the case ¢ < p under the assumption that g > 1.

Proof of Theorem 1.1(b). Suppose that Hy € B(F?(¢), L9(¢)). Because the proof of sufficiency is similar
to the implication (A) = (C) of Theorem 4.4 in [Hu and Lu 2019], we only give the sketch here.
Indeed, take r¢ as in (4-1), and set t =r( /4. Let {a; }]?’i | be a (z/2)-lattice. By Lemma 2.4 of [Hu and Lv
20141, |Z?’;1 Ajka, ||p’(p < Cll{2j} e for all {3;}52 € 17, where the constant C is independent of {2;}%,.
Let {¢; }j’il be the sequence of Rademacher functions on the interval [0, 1]. Using the boundedness of Hy,

we get
o0
H Hy (Z hj by (sVka, (- )) < CllHy ooy oo 11219310 (4-8)
j=1 q.¢
for s € [0, 1]. On the other hand,
/ |Hp(k)(E)e @19 dv(€) = CGy (f) (). (4-9)
B(a;j.1)

This and Khintchine’s inequality yield
1 o q o0
/ Hy <Z ACINE )) dt = C Y M 17G g (f) (@)
0 .
j=1

Combining this with (4-8) gives

o0
D 119G (@) = CUHf NSy Lo 11121 oo
j=1

for all {|)»j|q}j°il € [P/4. By duality with the exponentials p/q and its conjugate,

o
- (r—q)
Y Goa ()@ "0 < CllHp | pH 5, .

j=1
Therefore, by (3-7),
(o¢]
/ G (@P P D dv(z) <Y f Gy ()P P~V du(z)
cr j=1 B(aj,t/Z)
/(p—q)
< ClH/ 55 a0 (4-10)

which means that f € IDA*? with the estimate || f [lipas« < C||Hy|.

It should be pointed out that the right-hand side of the estimate (4.24) (the analogue of (4-10) above)
in [Hu and Lu 2019] should read C||H ||§%/LPL‘ZJ‘”, and not C||Hyll4»_, ;¢ as stated there.

Conversely, suppose f € IDA*Y. As before, decompose f = fi + f> as in (3-12). From Lemma 3.6 we
know that || M, (f2) |l pg/(p—q) = CIl f llipas2. Applying Holder’s inequality to the right-hand side integral
in (4-5) with exponent pg/(p — q) and its conjugate exponent ¢, since we have |K (-, 2)[;, < 00, it

follows that
/@ | 2E)VK (E)]e™?® dv(€) < ClIMy,r ()l pg/p—a) - 1Kzl < 00.

This implies f, € S, and so also f] € S.
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Now for dv = |3 f1|9dv, applying Holder’s inequality again with p/(p —¢) and its conjugate exponent
p/q, we get

_ p/(p=q)
g =c [ { / |8f1(§)|qdv(§)} dv(®)
" LS B(E,r)
<C / dv(&) 10 f1(0) P4/ P=D du(t)
cn B(,r)

~C / 1310179/ P du () < oo, @-11)
Cn

Theorem 2.8 of [Hu and Lv 2014] shows that v is a vanishing (p, g¢)-Fock Carleson measure; that is,
the multiplier My, : g — glé f1l| is compact from F?(¢) to L9(¢) (see Proposition 2.3). Therefore, by
Lemma 2.4(A), Ay (- éf]) is compact from F?(p) to L9(¢). Moreover, I" is dense in F”(¢) and, by
Corollary 2.5, Hy, (g) = Ay (g dfi)— P 0Ay(g d f1) for g € I". Hence, Hy, : FP(p) — L9(p) is compact
and we obtain the norm estimate

|Hp llFrpy—>rap) <C sup A4 (g9 f)llg.o < ClID fill pg/(p—g)- (4-12)
{geFP(p): lgllpe=1}

Similarly to (4-11), using Lemma 3.6, for du = | f>|?7dv, we get

o) r/(p—q)
12,7279 = ¢ /C { /B . )Ifz(§)|"dv(§)} dv(e)

= CIMyr (PNPED < Il f Iippca < 00
Hence, du = | f2]7 dv is a vanishing (p, q)-Fock Carleson measure. It follows from Proposition 2.3 that
the identity operator

I: FP(p) - LI(C",e 1% du)

is compact. Using the inequality

I1Hp, (@)lg.o = Cllf28llg.0 = CIIKG) I L4 (C, e-9¢ap0) (4-13)

we see that Hy, is compact from F7(¢) to L9(¢).
It remains to notice that the norm equivalence in (1-2) follows from combining the estimates in (4-10),
(4-12), and (4-13). O

Remark 4.3. In [Stroethoff 1992], it was proved that for bounded symbols f, the Hankel operator
Hy : F? — L? is compact if and only if

(I = P)(fod)l|l =0 (4-14)

as |A| — oo, where ¢, (z) = z + A. This characterization was recently generalized to F, with 1 < p < 0o
in [Hagger and Virtanen 2021]. Here we note that, using a generalization of Lemma 8.2 of [Zhu 2012] to
the setting of C”, one can prove that Stroethoff’s result remains true for Hankel operators acting from Fg’
to L¢ whenever 1 < p, ¢ < oo even for unbounded symbols.
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4C. The case 0 < p < q <1 with bounded symbols. We start with the following preliminary lemma
whose proof can be completed with a standard ¢ argument.

Lemma 4.4. Suppose that 0 < p < 0o, h € L*® and lim,_,», h(z) = 0. Then for any bounded se-
quence {gj} 2, in LY satisfying lim; 00 & (2) = 0 uniformly on compact subsets of C", it holds that
hm]—>oo ”gjh”p,go =0.

Proof. If R is sufficiently large, there is a C > 0 such that

lghlL., = ( [ oo+ )|g,-(§)h(s>e—¢@>|P dv(®)
B(0,R) "\ B(0,R)

< a1}~ sup |g;(€)e " S1” +Cligjllb , — 0
|EI=R
as j — oo. O
Proof of Theorem 1.1(c). Suppose that f € S. Then f € L loc for 0 < g <1, and we may decompose
f = f1+ f2asin (3-12) with t = r/2. We claim that, for g € T,

IHs (DI, < / 12E)e™ 100 fill o 56.ry.av) AV E) (4-15)

IHp @I, < / 1gE)e @M, (f2)(E)T dv(&). (4-16)
To estimate || Hy, (g)ll4,4» We use the representation
Hy,(8) = Ap(gd fi) — P(Ay(gd f1))
(see (2-14)), which suggests that we define a measure d ., as
1 N 1
& —z| [§—z

Then there is a constant C such that, for w € C”,

_ 1 1 2
E <s>|{ + }em'“' dv(§) < C/ dp,(&).
/mw,r) NN e Bawr
Also, it is easy to verify that

dp (&) = |5f1(§)l{ e }e""'“' dv(§).

(), (w) < C sup |3 fi(m)le”™w=,
neB(w,r)

where the constant C is independent of z, w € C". Recall that

dl& — 2> A 339 (£)) A (301§ — 22"~
JVIE — 7|22 .

A3 @) = [ B0 S g )d i) A

j<n

Therefore, using (2-13) and Lemma 4.1, we get
_ q
|44(89 fi)@)e | < c( 8(§)e™*] duz@))

<€ [ 18O NI AN ey e 0O 1D
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Fubini’s theorem yields

1A, (g3 IS, <C fc dv(z) /@ 8@ ONNB Al e py.anye ™ dv(E)
=C/, 12E)e™ 1110 fill ] oo g e ry.aw) AVE)- (4-18)

To deal with P(A, (gE_) /1)), we use Lemma 2.2 to obtain positive constants € and C so that, for z € C”,
we have

/ |K (w, 2)|e ™=@ gy(z) §Ce‘p(w)/ e MEz gm0 =2l 1y (7)

n

— Cetw) (/ +/ )e—m|w—z|e—es—z| dv(2)
{zilz—&1=]z—w(} {z:lz—§I<lz—wl}

< Ce¥ W —rli—ul,

where T = min{@, m}. Therefore, (4-17) and Fubini’s theorem yield
P (Ag(gd fi))(w)] = C /@ 8@ e D fill L8 r/2.a0) AV (E) A 1K @, )l e du ()
< Ce?™) /C" 18E)e O3 fill L Be.r/2).ame” " dv(&).
Lemma 4.1 again gives

I1P(Ap(gd fi))w)lld , < C /@ 12E)e™ 1110 fill o pe.ry.av) AV E)-

Combining this and (4-18), we get (4-15).
For (4-16), notice first that

I f2gl8, <C A 8@ 1 Mg ()(E) dv@), (4-19)
and, by Lemma 4.1 with the measure M, ,2(f2) dv, we have
P(LO@I = c( [C g®K @, s>e—2“’<f>|M1,r/z(fz><s>dv(é-))q
<C| 18®KG, £)e 2O My, (f)(E) dv(&). (4-20)
Integrating both sides of (4-20) against e~9¢ dv over C" and using (2-5), we get

1P, <C /C 8@ 1M (L)E)T do®). (4-21)

This and (4-19) imply (4-16).
Now we suppose that f € L*° and 0 < p <g < 1. For g € H(C"), similarly to the proof of (4-16), we have

1/q
IHf(©)llg.o < c( fc ) 1g(&)e S M, . (f) (&) dv@)) <Clfli=liglpe-

This implies boundedness of Hy with the norm estimate (1-3).
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For the second assertion, suppose first that lim;| . o G, (f)(z) =0 for some r > 0 and write f = f1+ f>
as above. Since the unit ball B(F?(¢)) of F?(¢) is a normal family, to show that H; is compact from
F?(p) to L9(¢p), it suffices to prove that, for k =1, 2,

lim ||Hp (g)llq.o = lim | frgj — P(figi)llq.p =0
j—o00 j—o00
for any bounded sequence {g;} 2 in F?(¢) with the property that

lim sup |g;j(w)| =0

J7 O weE

for E compact in C". From the assumption that lim,_, o, M, ,(f2)(z) =0, it follows that du = | f2| dv
is a vanishing (p, g)-Fock Carleson measure (see Theorem 2.7 of [Hu and Lv 2014] and Proposition 2.3).
Therefore, we get

1 /28jllq.0 = IgjlILaccr,| fr19av) = O as j — o0.
Notice also that ||g|ly,o < Cllgllp,, for g € F9(p) and p < gq. Further, by (4-16), we obtain
1—
My (f2)(€) < | fall j My.r (f2) ()Y,
and applying Lemma 4.4 to h = M,N(fz)qz, we get

IHpg g, = C [l @e Ot () due)

_ _ 2
< C| fll 5P / 12;(E)e 1M, (f2)(E) dv(E) — 0
Cl‘l
as j — 00. So Hy, € K(FP(¢), LY(¢p)). As for Hy,, it follows from Lemma 3.6 that

19 fill oo B ry.dvy < CGqr(f)(E) — 0 when & — oo.
Therefore, by (4-15),

1 Hy, (gp)IIE , < Cf@,, 18/ E)e 100 F111 o pe.ry.av) AV E) = O

as j — 00, and hence we have Hy, € K(FP(¢), LY(¢p)).
Conversely, suppose that Hy is compact from F?(¢) to LY(¢). Then, as in (4-4), we have

lim G, (f)() = C lim |[Hy(k:)llg.p =0 (4-22)

for r € (0, ro] fixed. We claim that (4-22) is valid for any » > 0. To see this, we consider the Hankel
operator Hy on the Fock space FY. From (4-22), using the sufficiency part, it follows that H '+ is compact
from FY to LI(C", e~ q%/2)Iz *aq v). Notice that the equality (1-5) yields

inf )|K(w,z)| >C=>0

weB(z,r
for any r > 0 fixed, where the constant C is independent of z € C". As in (4-2), we have
1lim Gy, (1)) < C Hm I Hy Rl e -urit gy = O
Thus, f € VDAY, O
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The following Corollary 4.5 is a direct consequence of the proof of Theorem 1.1(c) which we use to
complement and extend the classical result of Berger and Coburn in the next section.

Corollary 4.5. Suppose that0 <q <1 and f € L*. Then the limit lim,_, oo G ,(f)(z) =0 is independent
of r > 0.

5. Proof of Theorem 1.2

Proof of the case 0 < p < q < oco. For R > 0, let {a;}72 | be the (R/2)-lattice
R . . . .
{m(ml +kii,my+koi, ..., m, +kyi)eC"imj kjeZ, j=1,2,..., n}
Choose p € C°°(C") such that

0<p=<1, plpoip=1suppp<B(0,3).
Then |[Vp| L~ < 0o and
o0
0<) p(c—a)/R)=C
k=1
for z € C". Define v; p € C*°(C") by
p((z—aj)/R)
Y s p((z—ar)/R)
o0

Then {Wj,R};il is a partition of unity subordinate to {B(a;, R)} 2

RIVYjr()ll~ = C, (5-1)

Y r(2) =

and

where the constant C is independent of j and R.
Now we suppose that f € L> and Hy € K(F?(¢), LY(¢)). Theorem 1.1 and Corollary 4.5 imply that

lim Gy 2r(f)(2) =0 (5-2)

for R > 0 fixed. As in (3-2), pick h; g € H(B(a;,2R)) so that
1

— o |f —hjrlTdv=Gyar(f)(a))!. (5-3)
|B(aj, 2R)| Jp(;.2R) ! 1 !
By (3-3),
sup  |hj r(2D)| = Cll fliLe-.
z€B(a;,R)
Set

x
SiLr= Z Virhjr and frr=f— fir.
j=1
From estimates (2-9) and (3-3), it follows that there is a positive constant C such that

| f1,rllze + I f2,rllLe < Cll fllLoe (5-4)
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for R > 0. Lemma 3.6 and (5-2) imply that

lim M, r(f2.r)(z) = lim My g(f2.r)(z) =0,
—> 00 —>00
and so

Hp, € K(F?(9), LY(9)). (5-5)

Recall that P, p is the standard Bergman projection from L?(B(z, R), dv) to A%2(B(z, R), dv). Since
hj g is bounded on B(a;, R), we have hj p = Paj,R(hj,R), that is,

1 R%h; g(§) dv(§)
h; = — . — , B(a;, R).
i, R(2) - /B(a 0 R G —ap) - G—a )y z € B(aj, R)

Hence,
172 Rl L (B(z,R).dv)

oh; <C
[0hj r(2)| < R

for z € B(aj, 3R/4). (5-6)

Notice that supp ¥ g hj g € B(aj, 3R/4), and the estimates (5-1) and (5-6) imply that

|8 fl Rl < Zl(awj R)h] R|+ij R|8(h] R < C”f”L

Jj=1 Jj=1

Therefore, using (4-6) (when g > 1) and (4-15) (when ¢ < 1), we have

1S Nl
”HflR”Fp((/J)—)L‘I((/)) C”afl Rlle =C R
The constants C above are all independent of f and R. Therefore,
_ ) _ ILf Nl
||Hf — Hf“ | Fr(p)—La(p) = ||Hf1,R | Frip)—rip) < C 2 0

as R — oo. Finally, using (5-5) and the fact that JC(F? (), L9(¢p)) is closed under the operator norm, we
see that H i€ IC(FP(¢), L1(p)), which completes the proof. Il

To deal with the case 1 <g < p < oo, we use the Ahlfors—Beurling operator, which is a very well-known
Calderén—Zygmund operator on L?(C), 1 < p < 00, defined as

TN =pv.— = @f © _ que),

where p.v. means the Cauchy principal value. The Ahlfors—Beurling operator connects harmonic analysis
and complex analysis, and it is of fundamental importance in several areas of mathematics including PDE
and quasiconformal mappings. See [Ahlfors 2006; Astala et al. 2009] for further details and examples.

Lemma 5.1. Suppose 1 < s < 0o. Then there is some constant C, depending only on s, such that, for
feC*CHNL®and j=1,2,...,n

2

0z

af

o
LV

5-7
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Proof. We consider the case n = 1 first. Let f € C>(C) N L. If |af/dZ||s =0, then f € H(C)NL>,
which implies that the function f is constant and the estimate (5-7) follows. Next we suppose that
10f/0z]ls > 0. Take ¥ (r) € C*(R) to be decreasing such that ¥(x) = 1 for x <0, ¥(x) = 0 for
x>1,and 0 < —y/(x) <2 for x € R. For R > 0 fixed, we set ¥g(x) = ¥ (x — R) for x € R and define
fr(z) = f(@¥r(|z]) for z € C. Since f € C*(C) N L, it is obvious that fr(z) € C>(C), the set of
C? functions on R? with compact support. From Theorem 2.1.1 of [Chen and Shaw 2001], it follows that

1 dfr/0z .
o) = 5 [ de nd.
Notice that dfg/0Z = Y r(0f/0z) + f(d¥g/0Z). By Lemma 2 on page 52 of [Ahlfors 2006], we get
a a
ﬁ( =7 (fR>< )== (wR—f)(z)w(fﬂ)() (5-8)
Now for r > 0 and |z| < r, when R is sufficiently large, it holds that
BWR)‘ I llzes 3RIIfIILoo
T dv —
( @ = k-r? (R —1)? Jr<ig|<rt1 ® = (R—r)?
and hence
ST -
L5(DO.r).dv) Il 92

where D(0,r) = {z € C: |z| < r}. In addition, by the boundedness of T on L* (see, for example, the
estimate (11) on page 53 in [Ahlfors 2006]), we get

) B 0
H (w—f) iCHI/fR—Jj 5CH—J_C (5-10)
Is 0z ||,
For R sufficiently large, from (5-8), (5-9) and (5-10) it follows that
o P = L 1
92 | s (D(0,r).dv) Ly(DO,r).dv) 9z
Therefore,
H ‘ (5-11)
0z
Now forn>2and f € LN CZ(C”), by (5-11), we have
f S
/ > dv(g) =/ dv(&1)
Cn 1 n—1
<C/ dv (5)/‘—(51, dv(&1).
cr-!
This implies (5-7) for j = 1. Similarly, (5-7) holds for j =2, ..., n, and the proof is complete. O

Proof of the case 1 < q < p < oo. Notice first that if Hy € K(F(¢), LY(¢), then by Theorem 1.1, we
have f € IDA®? with s = pq/(p —q) > 1. We use a decomposition f = f; + f> as in (3-17) with r = 1.
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Furthermore, by (5-4), we may assume that || fi||z~ < C|| f|lL~. Then, from Lemma 5.1 it follows that

n
0
=CY_ S <
— 119z,

j=1
We also observe that ||M,N(f2)||Ls =My, (f2)|lLs < oo. Now Theorem 3.8 implies that f=fi+the
IDA*4, and hence, by Theorem 1.1, we get Hj e K(F?P(p), L1(p)). O

19 filles <CZ

2 <Cldfillps.
L.Y

8z,

Remark 5.2. Notice that it follows from the preceding proof that
1HfllFr(p)>Latp) < CIH I Frip)>19(p)-

6. Application to Berezin-Toeplitz quantization

As an application and further generalization of our results, we consider deformation quantization in the
sense of [Rieffel 1989; 1990] and focus on one of its essential ingredients in the noncompact setting
of C" that involves the limit condition

. () (1) (0
hm 7777 = Tyl o) F2o) = 0-
Recently this and related questions were studied in [Bauer and Coburn 2016; Bauer et al. 2018; Fulsche

2020], which also provide further physical background and references for this type of quantization.
Recall that ¢ € C*(C") is real-valued and Hessg ¢ ~ E, where E is the 21 x 2n-unit matrix. For 7 > 0,

we set |
du(z) = — exp{ 2¢ (%) } dv(z)

and denote by Ltz(go) the space of all Lebesgue measurable functions f in C" such that

12
= [ 1reano]

Further, we let th((p) = L,Z((p) N H(C™). Then clearly Flz(qo) = F?(p) and L%(go) = L?*(¢p) in terms of the
spaces that were considered in the previous sections. Given f € L™, we use the orthogonal projection P
from L%(go) onto th (¢) to define the Toeplitz operator TJE’) and the Hankel operator H j(f), respectively, by

7 =POM; and H\=(1-P)M,.
Let U, be the dilation acting on measurable functions in C" as
U f= f( V).
It is easy to verify that U, is a unitary operator from L?(¢) to L?(¢) (as well as a unitary operator from
F,Z(go) to F%(¢)). Further, we have U, P® Ut_] = PM, which implies that
O ypr—1 _ Oyr—1 _

UTy U =Ty ypy UHp U7 = Hy gpy (6-1)

Therefore,

0 B
1T 20y F20) = 1T ¢yl P20 > F2(0) (6-2)
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and
0
IH 1 r2 o) 260 = 1 (. yp L2 (0)— L260)- (6-3)

Given f € L2 ,for z € C" and r > 0 set

loc?

1/2
MOy, (f)(z) = \f — fBen | dv}

{ 1
|B(z, )| JB@.r

where fs = (1/]S]) fs fdv for S € C" measurable.
The following definitions of BMO and VMO are analogous to the classical definition introduced in [John
and Nirenberg 1961], but they differ from those widely used in the study of Bergman and Fock spaces.

Definition 6.1. We denote by BMO the set of all f € L2 _such that

loc

[flls=sup MO, (f)(z) <00

zeC*, r>0

and by VMO the set of all f € BMO such that

liII(l) sup MOy, (f)(z) =

r—=VzeCr

Definition 6.2. We define BDA, to be the family of all f € L2 _ such that

loc

I fllBDA, = sup G2, (f)(z) <00

zeC",r>0

and VDA, to be the subspace of all f € BDA, such that

hrr(l) sup G2, (f)(z) =

zeCn
Given a family X of functions on C*, we set X = {f : f € X}.

Proposition 6.3. It holds that
BMO = BDA,NBDA, and VMO = VDA, NVDA,.

Furthermore, we have
I fllBmo, = || f lBDA, + Il f1IBDA, (6-4)
for f € LloC

Proof. From a careful inspection of the proof of Proposition 2.5 in [Hu and Wang 2018], it follows that

there is a constant C > 0 such that, for f € L? _and z € C*, r > 0, there is a constant ¢(z) for which

loc
1 1/2 _
{— If—C(z)Izdv} < C{G2,- (/@) + G2, ()2}
|B(z, )| JB(z.r)
It is easy to verify that

12
MO, (f)(z) < { If—c(z)lzdv} :

|B(z, )| JB(z.r)
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and hence

MOy, (f)(@) < C{G2,(f)(2) + G2, (f)@)}.

On the other hand, by definition, we have

Go, (f)(2) = MO, (f)(2).
Thus, we have C| and C;, independent of f, r and z, such that

Ci{G2, (@) + Gor (/@) < MO2,(f)(2)

< Co{G2r (f) (@) + G2 (N2} (6-5)
Therefore, f € BMO (or f € VMO) if and only if f € BDA, NBDA, (or f € VDA, N VDA,). The
estimate in (6-4) follows from (6-5). O

Theorem 6.4. Suppose f € L. Then for all g € L™, it holds that

fim | TOTE = TR gy 20y = O (6-6)
if and only if f € VDA,.

Proof. Given f € L, it follows from (6-3) that
IH 12~ 2 = 1H 1200 260 = 1Hp (il 200 1200
This and Theorem 1.1 imply
1
G20 (FCVD s < IHDY N2~ r2 < CIG21(f VD)2, (6-7)

where the constant C is independent of f and 7.
Suppose f € VDA,. Then, by definition, we have

lim sup G».,(f)(z) =0.

—VzeCr

It is easy to verify that
G21(f(-vVD)(2) =Gy i (/)(V1).
Now by (6-7), we get

. 1) : £ _
tim (1)l 2y 2 < € im Gy, i (Dllw =0. (6-8)
In addition, for f, g € L, it is easy to verify that

Oy 7@ _ gy @) _
Tf Tg ng = (Hf ) Hg . (6-9)

Therefore, for all g € L,
: O () (@) : 1)\ _
Um |77, = T Nl p2p) r2p) < N8 M1zoe HMICH ) 2¢0)— r2(p) = O,

which gives (6-6).
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Conversely, suppose that (6-6) holds for every g € L®. Let g = f € L™. Then it follows from (6-9) that

: ()2 _ 1 (O F720)
,h_I)r(l, ”Hf ”F,2(<p)—>L,2(<,,) —th_f)% ||(H]z ) Hf‘ ||F,2(<p)—>F,2(<p)
_ 1 (@) = (1) Q)] _
=hm W Te T3 = 1)l 2y ) = 0-
This and (6-7) imply that f € VDA,. g

Combining Proposition 6.3 with Theorem 6.4, we obtain the following corollary, which is the main
result of [Bauer et al. 2018] when ¢(z) = %Izlz.

Corollary 6.5. Suppose f € L™ Then for all g € L™, it holds that
: Oty Oy _ : O Oy _ i
tlg% 1T T, Ti Il = 0 and tlgl(l) IT,"T, " =T, |l = 0 (6-10)
if and only if g € VMO. Here || - || = || - ||th((p)_)F[z((p).

7. Further remarks

For 1 < p, g < 00, we have characterized those f € S for which Hy : FP(¢) — L4(p) is bounded (or
compact). For small exponents 0 < p < g < 1, we have proved that this characterization remains true for
compactness when f € L. We also note that when p < ¢ and ¢ > 1, boundedness and compactness of
Hankel operators Hy : F”(¢) — L?(¢p) depend on g (see Remark 3.2 and Theorem 1.1), while for p > ¢
we cannot say the same — we note that we have no statement analogous to Remark 3.2 for IDA*4,

Moreover, for harmonic symbols f € S and 0 < p, ¢ < 00, using the Hardy-Littlewood theorem on the
submean value (see Lemma 2.1 of [Hu et al. 2007], for example), we are able to characterize boundedness
of Hy : FP(p) — L9(p) with the space IDA*9. We will return to this topic in a future publication.

We also note that the space F°°(¢) does not appear in our results because I is not dense in it. Instead,
it may be possible to consider the space

@) ={f e F®(p): fe ¥ € Co(CM)},

which can be viewed as the closure of I" in F°°(¢), and extend our results to this setting.

Regarding weights, the Fock spaces studied in this paper are defined with weights ¢ € C(C") satisfying
Hessr ¢ ~ E. As stated in Section 2A, these weights are contained in the class considered in [Schuster
and Varolin 2012]. Now, we note that for the weights ¢ in that work, iaécp >~ wyq, and from Hormander’s
theorem on the canonical solution to the d-equation it follows that

1Hgl2, < fc 1830 dv < CllglifIIE,,.

and hence we know that the conclusions of Theorem 1.1 remain true when g = 2 (see Theorem 4.3 of
[Hu and Virtanen 2022]). Upon these observations, we raise the following conjecture.

Conjecture 1. Suppose ¢ € C>(C") satisfying idd¢ ~ wy. Then for f € Sand 0 < p, g < oo, Hy €
B(F?(p), L1(p)) if and only if f € IDA*9, where s = pq/(p —q) if p > g and s = o0 if p <gq.
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In the literature, there are a number of interesting results on the simultaneous boundedness (and
compactness) of Hankel operators Hy and H. These types of characterizations often involve the function
spaces BMOY and IMO®*? in their conditions; see, e.g., [Hu and Wang 2018; Zhu 2012]. For 1 < ¢ < oo
and 1 < s < o0, set IDA%Y = {f : f € IDA®?}. Then Proposition 2.5 of [Hu and Wang 2018] shows
that IDA®? NIDA%? = IMO*“ and the results of Section 4 provide a description of the simultaneous
boundedness (or compactness) of Hy and H as seen in the following theorem, where as before, we set
s=pq/(p—q)ift p>qgands=oc0if p<gq.

Theorem 7.1. Let ¢ € C>(C") be real-valued, Hessg ¢ ~ E, and let f € S. For 1 < p, q < oo, Hankel
operators Hy and Hj are simultaneously bounded from F?(¢) to L (¢)) if and only if f € MO,

We state one more conjecture related to Theorem 1.2, in which we proved that for f € L*° and 0 < p < oo,
Hy is compact on F”(p) if and only if Hy in compact on F”(g). Recall that this phenomenon does not
occur for Hankel operators on the Bergman space or on the Hardy space. As predicted in [Zhu 2012],
and verified for Hankel operators on the weighted Fock spaces F”(«) with 1 < p < oo in [Hagger and
Virtanen 2021], a partial explanation for this difference is the lack of bounded holomorphic or harmonic
functions on the entire complex plane. From this point of view it is natural to suggest that a similar result
should remain true for Hankel operators mapping from F? (¢) to L1 (¢p).

Conjecture 2. Suppose that ¢ € C?(C") satisfies idd¢ ~ wy and 0 < p, g < oo. Then for f € L™,
H; e K(FP(¢), LY(¢p)) if and only if Hf e K(FP (@), L1(p)).

Notice that IDA*9 N L is a Banach algebra under the norm || - ||ipas« + || - ||co. We can also express
Conjecture 2 in algebraic terms; that is, we conjecture that IDA®*? N L*> on C" is closed under the
conjugate operation f > f, where 1 <s < oo and 0 < ¢ < oo.

Related to our work on quantization and Theorem 6.4 in particular, we conclude this section with the
following problem: characterize those f € L® for which it holds that

() Oy
th_r)% 1T, Ty = Ty lls, =0

for all g € L™, where || - ||5, stands for the Hilbert—Schmidt norm. It would also be important to consider
this question for other Schatten classes S,,.
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GLOBAL STABILITY OF SPACETIMES WITH
SUPERSYMMETRIC COMPACTIFICATIONS

LARS ANDERSSON, PIETER BLUE, ZOE WYATT AND SHING-TUNG YAU

This paper proves the stability, with respect to the evolution determined by the vacuum Einstein equations,
of the Cartesian product of higher-dimensional Minkowski space with a compact, Ricci-flat Riemannian
manifold that admits a spin structure and a nonzero parallel spinor. Such a product includes the example of
Calabi—Yau and other special holonomy compactifications, which play a central role in supergravity and
string theory. The stability result proved in this paper shows that Penrose’s instability argument [2003]
does not apply to localised perturbations.

1. Introduction

Let (R, ngi+) be the (1+n)-dimensional Minkowski spacetime, and let (K, k) be a compact, Ricci-flat
Riemannian manifold that has a cover that admits a spin structure and a nonzero parallel spinor. The
spacetime M = R!*" x K with metric

g =npi +k (1)

is globally hyperbolic and Ricci flat, i.e, it is a solution to the (1+4n-+d)-dimensional vacuum Einstein
equations. Such spacetimes play an essential role in supergravity and string theory [Candelas et al. 1985].
In this paper we refer to (M, &) as a spacetime with a supersymmetric (SUSY) compactification and
(K, k) as the internal manifold.

The simplest spacetime with a supersymmetric compactification, which has been studied since the 1920s,
is the Kaluza—Klein spacetime (R'*3 x S}, ngi+s +d6?) [Kaluza 1921; Klein 1926]. As shown by Witten
in an influential paper [1982], this spacetime is unstable at the semiclassical level. Nonetheless in the
same work Witten argued that the spacetime should be classically linearly stable.

By contrast, Penrose has sketched an argument intended to show that spacetimes with supersymmetric
compactifications are generically classically unstable, for every dimension n and all internal manifolds,
except possibly when the internal manifold is a flat d-dimensional torus [Penrose 2003; 2005]. There are
theorems motivated by these considerations that generalise the classical singularity theorems to trapped
surfaces of arbitrary codimension [Cipriani and Senovilla 2019; Galloway and Senovilla 2010]. However,
the results of the present paper show that for spacetimes with supersymmetric compactifications the
instability argued by Penrose does not hold for n > 9, and we conjecture here that in fact stability holds for
n > 3. The nonnegativity of the spectrum of the Lichnerowicz Laplacian on symmetric 2-tensors, which
holds for the internal spaces by the result of Dai, Wang, and Wei [Dai et al. 2005], plays a crucial role
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in our stability proof. In fact, this nonnegativity, which is conjectured to hold for all compact Ricci-flat
manifolds, is sufficient for our result. See Section 2A for details.

In order to state our main theorem, we need to introduce some notation. For the product spacetime
R!*" x K we denote spacetime indices by «, u, v, ..., Minkowski indices by i, j, k, ..., and internal
indices by A, B, C, .... For a general pseudo-Riemannian metric g, let V[g] denote its Levi-Civita
connection, Riem[g] its Riemann curvature tensor, Ric[g] its Ricci curvature, and dug its volume form.
Define the contraction

(R[glou)uw = Ryupvilglu’?, (2)

which acts on symmetric (0, 2)-tensors u,,,. Given the supersymmetric spacetime metric § on R'*" x K,
let

(gE);w = é;;w + z(dt)u(dt)v: 3)

where dr is with respect to the standard Cartesian coordinates on R'*”. On K and R!*" x K, define the
inner products on (0, 2) tensors, respectively, as

P = kACkBD

(u, v) uspvep and (U, v)g = gk’ gr UupUvo- (4)

Define |u; = ((u, u)x)'/?, and similarly for |u|f.
The following is our main result. The details of some of the concepts appearing in the statement of the
theorem appear in Definitions 2.10, 2.11, 2.12, 2.14 and Theorem 2.15.

Theorem 1.1. Letn,d € Z" be such thatn >9, and let N € Z be sufficiently large. Consider a spacetime
(R x K, § = ngi+n + k) with a supersymmetric compactification. Let gg denote the Schwarzschild
metric in the ngi+-wave gauge with mass parameter Cgs > Q.

There is an € > 0 such that if (R" x K, y, k) is an initial data set satisfying that outside the unit ball
the initial data coincides with the product of Schwarzschild initial data with the unperturbed internal
metric (i.e., y = gs +k and k = 0 where |x| > 1) and satisfying

DIV = 8= gy + D, IV K gk, +C5 <€, 5)
[I|I<N [I|I<N-1
then there is a solution g of the vacuum Einstein equations on Rt x K with initial data (R*x K, y, k)

and satisfying the g-wave gauge. There is the bound

sup PO g(r,x, w) — 31, x, w)|% S, (6)
(t,x',w)ex;xK

where the decay rate is given by
8(n) = 3(n —2). (7)
Finally (R'™ x K, g) is globally hyperbolic and causally geodesically complete.

The stability result obtained in Theorem 1.1 covers a large class of product spacetimes, including
many special holonomy compactifications relevant in supergravity and string theory. Although this
paper succeeds in its goal of providing a counterexample to the dimension-independent argument in
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[Penrose 2003], from a PDE perspective, Theorem 1.1 should be seen as a preliminary result, and we
expect that the assumptions that n > 9 and that the Cauchy data is Schwarzschild near infinity can be
relaxed. In fact we make the following conjecture.

Conjecture 1.2. Spacetimes with a supersymmetric compactification' and n = 3 are nonlinearly stable.

As explained below, this paper uses a relatively simple vector field argument, while, for example, the
proof of global stability for the coupled Einstein—Klein—Gordon system in (14-3)-dimensions [LeFloch
and Ma 2016] has required combining vector field arguments with estimates arising from control on the
fundamental solution for the wave equation. Such detailed analysis is beyond the scope of this paper, but
we intend to explore this in future work. Note that our current method can be easily used to show linear
stability as far as n = 3.

The decay rate of |i| < 7% arises essentially as a linear estimate. The linearisation of the Einstein
equation is

(Dn+Ak+2R[§]o)huv =0. 3)

To study conservation properties of the linear equations we introduce a novel stress-energy tensor
T[hl", = 8" (VIglah, VIgloh) e — 58°7 (VI§1ph, VIglah)£d! + (R[&1 0 h, h) g5l )

which is specifically adapted to the tensorial operator appearing in (8). The conditions on (K, k) imply
(see Section 2A) that the energy integral derived from (9) is nonnegative.

The conditions on (K, k) imply that the operator —(A; +2R o) has a nonnegative discrete spectrum, so
a spectral decomposition can be applied to solutions % of the linearised Einstein equation (8). The spectral
component corresponding to the zero eigenvalue satisfies an effective wave equation Dn(ho) w =0,
and the components corresponding to positive eigenvalues A satisfy effective Klein—Gordon equations
(0, —A)(h*) = 0. A decomposition of this type has been used in the analysis of wave guides, where K
is replaced by a compact subset of R¢ with Neumann boundary conditions; see e.g., [Metcalfe and Stewart
2008; Metcalfe et al. 2005]. When applying the vector field method to the wave and Klein—Gordon
equations, there is a unified approach using a basic energy of the form [ >, [9;4|*> + A|h|* du that
can be strengthened by commuting the equation with I', the set of generators of translations, rotations,
and boosts. The use of this set of vector fields in the vector field method, with particular application to
Klein—Gordon equations, goes back to [Klainerman 1985].

This unified approach then bifurcates: the Klein—Gordon equation does not admit any further commuting
first-order operators but the energy has a nonvanishing lower-order term A|%|?; in contrast, the wave
equation allows for commutation with the generator of dilations, S = 19, + rd,, but the lower-order term
in the energy vanishes. For the quasilinear Einstein equation, we refrain from performing a spectral
decomposition into wave and Klein—Gordon components. Thus, we use only the unified part of the
approach (following especially the treatment of quasilinear Klein—Gordon equations in [Hérmander 1997]),

IRecall that the definition of a spacetime with a supersymmetric compactification, as introduced in the opening paragraph of
this paper, includes the assumption that the spacetime is a fibre bundle with base space (R, NRi+n). Stability for a certain
class of cosmological spacetimes as base spaces is proved in [Branding et al. 2019].
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leaving us with a decay rate that is far from the sharp decay rates of the wave and Klein—Gordon equations.
In particular, the vector field method can be used to prove decay rates, for the wave and Klein—Gordon
equations, of t~"~1/2 and t~"/2, respectively.

In light of this, it seems likely that some novel refinement should allow for a significantly better decay
rate than %™ with §(n) = %(n — 2). This paper contains two types of refinement. First, the decay rate
is shown to be s72™, where 52 = t? — x? inside light cones. The exponent 28(n) = 3(n — 2) is much
closer to the decay rate for the wave and Klein—Gordon equations. Second, the same decay rates are
proved for I'' i as for A, but, since the I' contain ¢- and x-dependent weights, with respect to a translation
invariant basis in Minkowski space, derivatives decay faster than the field 4 itself.

Having obtained a linear estimate that improves with increasing n, we take n large enough that
28(n) —2 > 1, so that the nonlinear terms decay sufficiently fast for the linear estimates to remain valid. In
particular, we take n large enough that we can ignore all nonlinear structure in the Einstein equation. It is
well known that global existence results for semilinear equations in (14-3)-dimensions depend delicately
on the nonlinearities, for example the null condition [Klainerman 1986]. Christodoulou and Klainerman
[1993] used the vector field method to prove the stability of Minkowski spacetime. One of the major
advances in the simplified vector field argument in [Lindblad and Rodnianski 2003; 2005; 2010] was the
introduction of the weak null condition and the observation that the Einstein equations in the harmonic
gauge satisfy this condition. LeFloch and Ma [2016] identified the relevant nonlinear structures for
Klein—Gordon equations coupled to the (1+3)-dimensional Einstein equation.

The dimension of the compact manifold only appears in the required regularity of the initial data,
which is given explicitly in Theorem 5.1. The restriction to initial data which is exactly Schwarzschild
outside of a compact set mirrors the proof of Minkowski stability in (143)-dimensions by Lindblad and
Rodnianski [2005].

Background and previous work. Theories of higher-dimensional gravity are of great interest in super-
gravity and string theory as possible models of quantum gravity. Many of these theories are built around
the spacetimes with supersymmetric compactifications discussed above.

The background spacetimes considered in this paper are of the form R"*! x K, with K compact
and Ricci flat, and are hence anisotropic. Among the first stability results for anisotropic spacetimes
of a related form was the proof of future stability of flat cosmological spacetimes of the form M3 x S,
where M? is a flat (2+1)-dimensional Milne spacetime with metric —dt> +t>H? and H? is a hyperbolic
surface, was considered by Choquet-Bruhat and Moncrief [2001]. See also [Andersson 2014; Reiris 2010].

Until now, the only nonlinear stability results for spacetimes with supersymmetric compactification
have concerned the simplest Kaluza—Klein case when the internal space is the circle S', or in slightly
more generality, the flat d-dimensional torus. It was shown by one of the authors [Wyatt 2018] that this
spacetime is classically stable to toroidal-independent perturbations. A model problem to remove this
restriction with toroidal internal space has recently appeared [Huneau and Stingo 2021]. We remark that in
the physics literature, these are known as zero-mode perturbations. An analogous result for cosmological
Kaluza—Klein spacetimes, where the Minkowski spacetime is replaced by the four-dimensional Milne
spacetime, has also recently been shown [Branding et al. 2019].
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The spacetimes of importance in supergravity and string theory involve a nontrivial (i.e., nontoroidal)
internal manifold with parallel spinors, such as a Calabi—Yau, G, or Spin(7) manifold. Note that a
solution of the 10- or 11-dimensional vacuum Einstein equations can be considered as a particular solution
of the supergravity equations. Local-in-time existence results are known for both the vacuum Einstein
equations [Choquet-Bruhat 1952; Choquet-Bruhat and Geroch 1969] and for the supergravity equations
[Choquet-Bruhat 1985]. Furthermore, global-in-time existence and decay results for a nonlinear wave
equation for 3-form fields, on a fixed background spacetime with compact internal dimensions have
been shown in [Ettinger 2015]. The field equation studied in that paper is modelled on the supergravity
equations with the gravitational interaction turned off. In our present work, we consider the stability of
spacetimes with supersymmetric compactifications as solutions to the vacuum Einstein equations. In
future work we intend to study their stability under the supergravity equations.

In addition to determining the dynamics, the Einstein equations also imply that any initial data set must
satisfy the constraint equations, which are themselves an important topic of study and have important
consequences. A positive mass theorem holds for initial data (X, y, k) provided that X\ X for some
compact X is topologically (R"\B) x K for some ball B, that the dimension of the base space is at
least n > 3, that the initial data (X, y, k) is asymptotically flat in the sense that the metric (including
its derivatives) converges to & + k sufficiently fast and that k¥ converges to zero sufficiently rapidly, that
the background internal space (K, k) is a simply connected Calabi—Yau manifold, and that the scalar
curvature is nonnegative [Dai 2004]. Recent work has shown the existence of such solutions in the case
(K, k) = (T, §) [Huneau and Valcu 2021].

L? stability and L™ instability. Several people have suggested that the instability argument of Penrose
[2003; 2005] should be interpreted as a statement with respect to perturbations that are not localised.?
This unlocalised interpretation could be stated as saying that SUSY compactifications are unstable against
perturbations of the initial data that depend only upon the position in the internal space K but are
independent of x € R". Considering the behaviour of the initial data in x € R”, this distinction can be
interpreted as a being between unlocalised perturbations that merely have a small supremum (for the
metric and a suitable number of derivatives) and localised perturbations that have finite and small norms
based on the square integral of the perturbation (again including a suitable number of derivatives), such
as we use in (5) of Theorem 1.1. We view this as a distinction between, on the one hand, instability in
L>®-based Sobolev spaces and, on the other, stability in L?-based Sobolev spaces.

Although it is true that SUSY compactifications are unstable against perturbations in L°°-based Sobolev
spaces, this instability does not arise from the presence of the internal space but is already present in
Minkowski space for n > 3. In particular, there is the explicit Kasner solution

g=—dr* + A +en*?dxH)? + 1+ enN*Pdx?)2 4+ (1 + )23 dx )2

This is typically considered with (x!, x%, x3) being taken as coordinates on the torus T?, but it applies
equally well on R®. By taking a tensor product with (R"~3, 8g.—3) or (R"~3 x K, 8gu—3 + k) one can

ZWe thank the first reviewer for emphasising this perspective.
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extend this example to show L instability also for higher-dimensional Minkowski space and for SUSY
compactifications.

The L°° instability of Minkowski space and SUSY compactifications can be viewed as part of a
broader set of instability phenomena. The L* instability of Minkowski space can be viewed as essentially
equivalent to the instability of (R x T", —dr? + 87+). Bartnik [1988] has conjectured that a globally
hyperbolic spacetime with compact Cauchy surface and satisfying the strong energy condition is either
causally incomplete or split as a metric product (and hence flat in the (341)-dimensional case). See also
[Galloway 2019]. One heuristic justification for this conjecture follows a contradiction argument, which
begins by considering what would happen if there were not some major divergence from the original
solution. In this case, the metric perturbations would satisfy something close to energy conservation,
would exhibit something close to Poincaré recurrence, and would eventually be found in any configuration
compatible with the bound on the initial energy. However, just as it is possible to imagine black holes
of arbitrarily small mass, it is possible to form trapped surfaces with arbitrarily small energy. Thus, the
Poincaré recurrence would imply the eventual formation of trapped surfaces and hence of singularities.
This would imply instability, which concludes the contradiction argument. There is a further extension
of this belief that if a spacetime with a compact hypersurface does not expand sufficiently rapidly, then
metric perturbations will not decay sufficiently rapidly and singularities will form. It is essential to make
the distinction between L> and L? perturbations when making PDE estimates.

Outline of paper. In Section 2 we introduce: the Lichnerowicz Laplacian, the foliation by hyperboloids,
the gauge condition, and the higher-dimensional Schwarzschild-product spacetime. In Section 3 we prove a
Sobolev estimate on hyperboloids with respect to wave-like energies. In Section 4 we define an energy func-
tional adapted to the internal manifold and to hyperboloids. Finally in Section 5 we prove the main theorem.

There are four key elements that we add to the standard energy-estimates framework to prove the
stability of SUSY compactifications. First, we observe that we can obtain arbitrarily rapid decay by
going to sufficiently high dimension and that this decay allows us to control nonlinear terms. Second,
the new Sobolev estimates in Section 3 give decay estimates that do not require decomposing metric
perturbations into massive and massless parts. Following an argument of Hérmander, the Sobolev estimate
in Lemma 3.2 holds on hyperboloids to exploit the fact that the initial data is essentially trivial outside
the unit ball. Third, it is possible to introduce an energy that simultaneously enjoys several desirable
properties. Namely, the energy introduced in Definition 4.1 is not merely the energy constructed from the
energy-momentum tensor (9) for the linearised Einstein equation (8), but we show it is positive using
known results on Ricci-flat compact manifolds with special holonomy which we review in Section 2A,
and it is the basis for the Sobolev norms in Section 3. Fourth, in defining pointwise norms of derivatives
(e.g., Definition 2.4), we commute the equation with the second-order Ay rather than just first-order vector
fields, which are sufficient in Minkowski space. The higher-order Sobolev estimate in Corollary 4.7 has to
use separate indices to count the Minkowski and internal derivatives, because our L°°-norms use only an
even number of derivatives in internal directions, while our L?-norms use integer number of derivatives.
Once we have used these four elements, it is possible to control the nonlinear (including quasilinear)
terms in the Einstein equation using standard energy-estimate techniques.
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2. Preliminaries

2A. Parallel spinors and the Lichnerowicz Laplacian. Our main theorem has been stated for an internal
manifold that has a cover that admits a spin structure and a nonzero parallel spinor. In this subsection we
detail how this condition relates to a linear stability condition involving the eigenvalues of an operator
closely related to the Lichnerowicz Laplacian.

Definition 2.1 (Riemannian linear stability). Define A, = kABV[k],V[k]p to be the standard Laplacian
on (K, k). Let usp be a symmetric (0, 2) tensor defined on K. Define £ to act on such tensors by

(Lu)ap = —Aruap —2(R[k]ou)ap. (10)

We define a Ricci-flat manifold (K, k) to be Riemannian linearly stable if and only if

/(Eu,u)k dug =0, (1)
K
for all symmetric (0, 2)-tensors u4p.

The operator L is closely related to the Lichnerowicz Laplacian A, which acts on symmetric tensors by
(Apu)ap = (Lu) ap + Ric[klacu® g + Ric[k] puac. (12)

Clearly on a Ricci-flat space these operators are equivalent. The operator £ is self-adjoint and elliptic,
and consequently by the compactness of K and spectral theory, it has a discrete set of eigenvalues of
finite multiplicity. Hence definition (11) amounts to a condition Ap;, > 0 on the lowest eigenvalue A,
of L. For further details see, e.g., [Besse 1987].

Our main Theorem 1.1 in fact applies more generally to internal manifolds which are Riemannian lin-
early stable. For the purposes of this paper, the crucial relation between spacetimes with a supersymmetric
compactification and with an internal space that is Riemannian linearly stable is the following.

Theorem 2.2 [Dai et al. 2005, Theorem 1.1]. If a compact, Ricci-flat Riemannian manifold (K, k) has a
cover which is spin and admits a nonzero parallel spinor then it is Riemannian linearly stable.

Note that some of the ideas established in [Dai et al. 2005] date back to work of Wang [1991] on the
deformation theory of parallel and Killing spinors. A spin manifold (K, k) with a nonzero parallel spinor is
Ricci flat and has special holonomy; see [Wang 1989] for a classification. It is not known if any hypotheses
on the internal space beyond Ricci flatness are necessary for stability to hold, as all known examples of
compact Ricci-flat manifolds admit a spin cover with nonzero parallel spinors. The problem of constructing
Ricci-flat manifolds including ones with nonspecial holonomy has been widely studied. A few relevant
references on the topic are [Biquard 2013; Brendle and Kapouleas 2017; Tian and Yau 1990; 1991].

The spatial equivalent of the g-wave gauge was used in the proof of Milne stability [Andersson
and Moncrief 2011]. This led to terms involving £ appearing in their PDEs, which were treated using
Riemannian linear stability properties specific to the Milne spacetime. Further results on Riemannian
linear stability for Einstein manifolds can be found in [Kroncke 2015].
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2B. Cartesian, hyperbolic, and hyperbolic polar coordinates.

Definition 2.3 (Minkowski space). Let n > 1 be an integer, let @O xl = x L ) = (1, X)
be Cartesian coordinates parametrising R'*", and define
n
Ngen = —di? + ) (dx'). (13)
i=1
Define, fori € {1, ..., n}, the translation vector fields 7 and X; so that, in the Cartesian coordinates, they
are given by
X;i=0,, T=Xo=02. (14)
Define, for i, j € {0, ..., n}, the vector fields Z;; so that, in the Cartesian coordinates, they are given by
Zij = (o) jux 9 — (g )inx*9;. (15)

Define the collection of Lorentz generators by

Z=\{Z;, T, X;}. (16)

Define |x|?> = 27:1 (x)? and define, in the region t > |x|, the hyperboloidal coordinates to be
s=(@2—xPHY?, y=x. (17)
Define, fori € {1, ..., n}, the vector fields ¥; so that, in the hyperboloidal coordinates, they are given by
Y =0, (18)

For sg > 0, define the spacelike hyperboloidal hypersurface

%, ={(t,x) e R 11> 0, s =s0). (19)
Note that, because (ngi+:)o0 = —1, we have Zy; = t9,: + x;0;. Furthermore the collection Z is closed

under commutation and forms a basis for the Poincaré Lie algebra.

Definition 2.4 (pointwise derivative norms based on commuting operators). On R'*" x K, define,
fori € {0,...,n}, X;, ¥;, and Z;; to be as in Rt Let primed roman letters denote spatial indices
i’,j e€{l,...,n+d+ 1}. Define the following collection of vector fields

I'=ZU{Ay}. (20)

Note that [Z, A¢] = 0. Define N = {0, 1,2, ... }. We will now define {Z;}{"TV"*2/2 {0 be a reindexing
of {Xi}'_ o U{Zij}o<i<j<n, define a multi-index to be an ordered list of arbitrary length of elements
from {1, e %(n +1(n —|—2)}, and for a multi-index I = (iy, ..., ix) define the length |/| = k and the
differential operator Z/ = Zjo---0Z;.ForI eN and u,, atensor defined on R!'*" x K, define the
generalised multi-index notation
MMup= > 1Z"Aful}, (21)
I | +2j=|1]

where the sum is taken over all multi-indices /; of length ||| = k and integers j such that k +2j = |I|.
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Definition 2.5 (Sobolev norms). Let u,,, be a tensor defined on R'*" x K and let j € N. Define

IVIkVulg = kAP kA gl gl (VIky, -+ VIK] g upp) (VIK]p, - - VK] tte). (22)
For ¢ € N, define the norms
' 12

luC-, - )l gecr) = < > VK u(-, -,w>|éduk> : (23)

Ko<j<e

1/2
lu(t, x, @)l 1205, xx) = (/ lu(t, x, w>|%dxduk) : (24)
YyxK

where dx = dx! - .- dx" is defined to be the flat Euclidean volume form.
Lemma 2.6. Yi=Xi+ /0T, Zo=tY;, Zijj=yY —yY.
Proof. Since t = \/sz—l——yz, by the chain rule, for j € {1, ..., n},

9 _dx' 9 9 83 d yd

9yl oyidaxt  ox oyior  ox) 1o
which gives the first result. The second follows from multiplying both sides of the first by 7. The third
follows from

Zij = x,-Xj —XjX,' = x,-(Xj +le71T) —Xj(X,' +x,~t71T). O
The following two lemmas relate the ¢ coordinate to the s coordinate.
Lemma 2.7. Lets > 1. Suppose (ty, xo) € X and (t, x) € X with |x —xg| < %to. In this case, Lt <t < 21.

Proof. For the graph 1 = /52 + |x|?, the gradient

ot X
—|= == (25)
dx '\/s2 + |x|?

so the change from ¢ to 7y is less than the change from |x| to |xg]. O

Lemma 2.8. There is a constant C > 0 such that for all s > 1, in the portion of s where |x| <t —1, one
has 2t — 1 < s% < 12

Proof. Observe that 12 =52+ |x|? > 5% Since |x|?> <t?—2¢+1, one has s2 =% — |x|? > 2t — 1. Il
The following are standard elliptic estimates; see for example [Besse 1987, Appendix H].

Lemma 2.9 (elliptic estimates on (K, k)). For £ € N and u,, a sufficiently regular tensor defined on

R x K, there exist constants ¢y, ¢z, ¢3 > 0 such that

¢
lull goe ey < ctll(A) ull g2y +c2llull2ky < eallull ey (26)

In Lemma 2.9, if u is orthogonal to the kernel of Ag, then there is a ¢ such that the first estimate holds
with ¢ = 0.
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2C. The Einstein equations. The theory of the Einstein equations is well known. In this section, we
review this theory, for the sake of providing a self-contained presentation in this paper, and in particular
to provide a self-contained statement of our main Theorem 1.1.

Definition 2.10 (geometric initial data set). Let m € NT. An m-dimensional initial data set is defined
to be a triple (X, y, «) such that ¥ is an m-dimensional manifold, y; ;- is a Riemannian metric on X,
kjrjr 1s a symmetric 2-tensor on X, and the following equations (the constraint equations) are satisfied:

RIyl— k> + (tr()?> =0, VIylitr() — VIyl ()ij =0, (27)
where tr(k) =y ki jr.

Definition 2.11 (solution of the Einstein equations with specified initial data). Let M be a manifold. A
Lorentzian metric g on M is defined to be a solution of the vacuum Einstein equations if and only if its
Ricci curvature vanishes,

Ric[g],, =0. (28)

Let (X, y, k) be a geometric initial data set. A solution to the (geometric) Einstein equations with
initial data (X, y, «) is defined to be a Lorentzian metric g on / x X for some interval / where one has:
0 € 1, g is a solution of the Einstein equations (28), {0} x ¥ and g restricted to vectors in 7 ({0} x X) are
isometric in the category of Riemannian manifolds to (X, y), and, with the identification given by this
isometry, the second fundamental form of the embedding of {0} x ¥ into I x ¥ is k.

As is well known, Definition 2.11 is stated in a more restrictive form than necessary. In Definition 2.11,
for convenience, we have required that the initial data be specified at # = 0. This may initially appear more
restrictive than definitions that are stated in other sources. By a translation in the ¢ variable, Definition 2.11
could be stated on any level set of 7. Furthermore, because of the freedom to introduce new coordinate
systems on the manifold / x ¥, Definition 2.11 is actually equivalent to definitions that allow initial data
to specified on more general spacelike hypersurfaces.

2D. The reduced Einstein equations. To obtain a well-posed evolution problem for the Einstein equations
we choose a gauge with respect to a fixed Lorentzian metric ¢,,, defined on M.

Definition 2.12 (e-wave gauge). For Lorentzian metrics g and ¢ defined on some manifold M, let V[g]
and V[e] be the Levi-Civita connections with corresponding Christoffel symbols I'[¢] and I'[¢] in local
coordinates. Define the vector field V" in local coordinates by

VY =g (Tl el - Tlylel). (29)
Define also V), = gup VA, The é-wave gauge condition is given by
VY =0. (30)

Recall that the difference of two Christoffel symbols is a tensor, and so V7 is in fact a well-defined
vector field on M.
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Definition 2.13 (reduced Einstein equations). Let M be a manifold with Lorentzian metric é. A Lorentzian
metric g on M is defined to be a solution of the reduced Einstein equations if and only if

§°PV[elaVIelpgun — 87° (816" Riem[e]yvs + 116" Riem[e]y u5) = Q,v[g](VIelg, VIElg), (3la)
where we have defined
0, lg1(VIelg, VIelg) = 8¢ (VIelgss VIlagyy + VILu8ya VIelsgus — §VIEL 55 VIEi8 e

+ v[é]yguav[ékgvﬂ - V[é]yg/mv[é]ﬁguS)- (31b)

2E. The higher-dimensional Schwarzschild spacetime. In this subsection, the higher-dimensional
Schwarzschild solution is considered and its relationship to the initial data for the Einstein equations (28)
and the reduced Einstein equations (31) is discussed. The form of the metric follows.

Definition 2.14. Let n € Z be such that n > 5, and let Cg € [0, 00). In Schwarzschild coordinates, the
Schwarzschild metric is defined, for (¢, 7, w) € R x (Cl/ =2 ,00) x S" 1 to be

CS CS - — —
gs = _<1 — r—_2> dr® + (1 — r_—2) di? +ogii. (32)
The above metric can also be written in the wave gauge. For n = 3, it is sufficient to replace
(t, 7, ) € Rx (C/ "™, 00) x §"!

by (¢, x) = (¢, rw) with r = r — M; the resulting explicit metric can be found in [LeFloch and Ma 2016;
Lindblad and Rodnianski 2005]. Although the case n =4 leads to complicated terms involving logarithms,
for n > 5, there is the following theorem.

Theorem 2.15 [Choquet-Bruhat et al. 2006, Section 5.2]. Let n € Z be such that n > 5, and let Cg € [0, 00).
There are coordinates (t, x) related to those in Definition 2.14 by (x' )iy = (t, r(r)w) with

+0( 5— 2n)

r(f):f—2 —

such that the (x' )” _o satisfy the harmonic gauge, that is, the ngi+-wave gauge. Furthermore, there exist
functions hoy(R), h(R), and h(R), defined on an interval around R = 0, that are analytic and bounded
by a multiple of Cg near R =0, and such that

h h —1 l:\l -1 iy . ,
gs=—<1 Of,frz )>(d 02+ Z[(H v ))5”+ r(:_z)“ ]dX’ . (33)

72
i,j=1

In particular, the difference between the components of gs with respect to the harmonic coordinates and
the corresponding components of the Minkowski metric are such that any 3! derivative decays at least as
fast as Csr~ =211,

Note a result in [Dai 2004] ensures that Cs > 0 for the spacetimes of interest in our main Theorem 1.1.
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3. Sobolev estimates on hyperboloids

We begin in Lemma 3.1 by recalling Hérmander’s proof of a Sobolev estimate on hyperboloids. This
allows us to introduce some of the key ideas that appear in our proof of the main result of this section,
Lemma 3.2. The use of the vector field method to prove Sobolev estimates on hyperboloids originates in
[Klainerman 1985].

Lemma 3.1 (Sobolev estimate for compactly supported functions on hyperboloids in Minkowski space
[Hormander 1997, Lemma 7.6.1]). Let v be the smallest integer greater than %n, and let v € C*(R'*)
have support in |x| <t — 1. There is a constant C such that

sup#"|v(t, x)* < C > f |Z v)? dx. (34)
% <v %

Proof. Consider a point (ty, xg) € X with lxo|?> < tg —1. Setrg= %to and yg = xg. Set X to be the portion
of ¥ on which |x —xg| <rg. Let (¢, x) € X. This implies |t — fg| < rg, which implies %t <19 <2t. Thus,

Zf |Zlv(t,x)|2deCZ/ 1Y u(e, y) 2 dy.
[<v /% [T)<v ¥ >

The right side can be rewritten, by introducing rescaled coordinates

y=2t,"(y—y) and #GF) =0, y).

One can now decompose the portion of X where |x| <t — 1 into many subregions where ¢ does not vary
by more than a factor of 2. Let x (¥) be a smooth cut-off such that y is 1 on a neighbourhood of 0 and
is 0 for |y| > %, it can further be bounded from below. A Sobolev estimate can then be applied to give a
further lower bound on v. Combining these yields

Yoo 'Y P dy = Z/ 015121 5
s I51<1

|<v 1<
> C1y ”Zq - 01 (D) (5))I* d5
> C1|5(0)]
= C1§|v(to, x0)I7,

which completes the proof. O

In the following lemma we obtain a Sobolev estimate for functions supported on product spacetimes
with specified properties outside a compact set. In particular we obtain a pointwise estimate (36) in terms
of the hyperboloidal time s, as well as a t-weighted pointwise estimate on a fixed hyperboloid (37).

Lemma 3.2 (Sobolev estimate for eventually prescribed functions on hyperboloids foliating product
spacetimes). Let n > 4, let d be the smallest even integer larger than %d , and let V be the smallest integer
greater than %n +d. Let u wv and f,., be tensors on R'*" x K with f depending only on the Minkowski
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coordinates x'. Let u € C*(R'"™" x K) satisfy u = f for |x| >t — 1. Let f € C®(R't" x K) be smooth
and be such that, for all I € N, there is a C| such that®
IVIZY fle < Cypylx |~ =D/ (35)

Let 5(n) = Alf(n —2). There is a constant C such that

sup s, x w3 <C Z Z/ |Y; Z w3 dx duy + C Z cy. (36)

(t,x!,w)eTyx K |1]<b i=1 s x K [1|<v—1

lx|<t—1

Furthermore there is a constant C such that

sup PO, x w)k <C Z Z/ ¥ Z'u|% dx duy + C Z Ci. 37

i ~
(13" w)eX; x K 1)< i=1 " 27 K []=v—1

Proof. Lemma 2.9 and the standard Sobolev estimate imply

d/2
sup [u(-, -, )| < lull ya gy < 1A ull 2k + lluell 2k,
wekK

for d the smallest even integer greater than %d . This choice of d being even is simply to make the elliptic
estimate cleaner. Note the trivial estimate

Szl anPup+1vzup < Y 12N A0 ulg
|I|<p—d [I|+2j<b

It is thus sufficient to prove in Minkowski space that

sups" 2ut, x)|% <C |YZIu| dx+C Cc?, (38)
E E 1

[|<v—d i=1 []<v—1

since this would then imply

sup 5" lu(t, X' )F S Y ZHsup(YZIu)IILz—{—C >

zox K [1)<i— dl—l [1|<p—1
I a2, 2 2
<) § 1%z (A Pul?,,. +C > CF
x—K
|I|<p—d i=1 []<v—1

For |x| >t —1 and (¢, x) € X, one has t ~ |x|, and so
S"Hu(t, X)|% < ", )% < Clx|" 2 lult, )5 < Clx|" | f(x)|3 < CC].

Thus, it remains to prove (38) for |x| <t — 1.

3The exponent on f is set to match that corresponding to the exponent arising from the pointwise estimate (36) on u in the
region |t —r| < C. The limiting factor on the exponent in (36) arises from estimates on the hyperboloid, not from the decay of
the prescribed function f. If a faster decay rate =B could be proved (using similar methods) on hyperboloids for compact data,
then a similar +—# decay could be proved for prescribed functions satisfying f < rB.
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Consider the region |x| <t — 1. Set fpax = %(s2 + 1), which is the value of ¢ at which X; intersects
|x] =t —1 and which satisfies ¢t < tax < %(t2 + 1) on the portion of X where |x| <¢—1 by Lemma 2.8.
Let x : R — [0, 1] be a smooth cut-off function such that y () =1 for @ < 1 and x (&) =0 for o > 2, and
define the (0, 2) tensor vy, (¢, x) = x (|x|/tmax) 4,0 (¢, x). Observe that u,, = v, in the region |x| <7 —1.

Hormander’s proof of Lemma 3.1 relies on a carefully chosen rescaling of a portion of the hyperboloid,
and the rest of this proof follows the same idea, although the scaling is chosen differently. Recall both
the Cartesian (¢, x) and hyperboloidal (s, y) coordinates in Minkowski space, which are related via
(s,y) = (/1?2 —|x|2, x). Given a choice of s, define = s~'y and set #(¥) to be the value of v at
hyperboloidal coordinates (s, sy). With this, d"y = s™" dy and 95i = 59, = sY;. Recall that Z; =1Y;.
Thus, by a Sobolev estimate that exploits the fact that 1 < %n < %n +1,

sup [v(t, x)[z =sup THF S D f|a;ﬁ|2Ed"y.
Zs 1<1]<4+1

From rescaling and the facts that s < ¢ and that Zy; = tY;, it follows that

sup [v(t, x)|% Ss7" Z /I(SY)Jv|%d”y§s_"+2 Z Z/szl]llYJYivl%;d”y

s 1<|J|<5+1 0=|J|<% i
<5 Y Z/t“'lY’le%d”ygs_”“ > Z/ v,z ol 'y,
o<|J|<5 i o<|J|<5 i

The last integral can be decomposed into the regions where x| <t —1 and |x| >t — 1. Where |x| <f¢—1,
the integral can be bounded by the integral term on the right-hand side of (38) since ¥ —d > %n Now
consider the region |x| > r — 1. Because of the support of x, it is sufficient to consider the region
fmax — 1 < |x| < 2(tmax — 1). In this region, v = x f. When a derivative is applied to v, it is applied to
either y or to f, in which case one obtains an additional factor of trngx or |x|~!, from the properties of x
and f, respectively. Since |x|/tmax € [1, 2] in the support of d x, effectively one obtains an extra factor
of |x|~! in all cases, so |Y; Z/v|g < CC|J|+1|x|_("_1)/2_1, and

2(tmax—1)
2 2 —(n=1)/2=12..|n—1 -1 2
X[ 2Imax— " !

maxfl

Observing that s > Ct'/? in the region |x| <t — 1 allows us to obtain

sup tz‘s(”)lu|2E < sup tZ‘S(”)Iuli— + sup tz‘s(”)|u|%
Yyx K Ty x KN{|x|<t—1} Ty x KN{|x|>t—1}
S osup o SPPwz+ osup PO
Ty x KN{|x|<t—1} T x KN{|x|>t—1}

n
< Z Z/ |Y,-Zlu|2ded,uk+ Z C%—i—Co sup p1=2/2, ==/,
Ty x K \1|<p—1 Ty x KN{|x|>t—1}

[I<v i=1 el

In the final line we applied estimate (36) to the first term and assumption (35) to the second term. [
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4. Energy integrals and inequalities

4A. Basic properties of the energy. The energy introduced in the following definition is related to the
standard energy used to study quasilinear hyperbolic PDEs, albeit with additional terms included in order
to be compatible with the linearised equations (8).

Definition 4.1 (Lichnerowicz-type energy on hyperboloids). Let n € Z* and let U*" and u,,, be tensors
defined on R'*" x K. For u, U € CH(R'*" x K) and s > 2, define

S[U;u;s]:/ ((s/r)2|atu|’é+z|Y,-u|2E+<V[k]Au,V[k]Au>E—2<R[§]ou,u>E
Yy xK i=1

— 20 (VI[§)pu, diut) png + U (VIglau, V[§],3M)E> dxdur, (39)

where ng =1 and n; = —x; /t fori € {1, ...,n} and n4 =0, and dx is the flat Euclidean volume form.

The final terms on the first line could equally well be written as (V[k]Au, VIklqu)g —2(R[k]ou, u)g,
since the covariant derivative with respect to ¢ in directions tangent to K are given by the covariant
derivative with respect to k, and similarly for the curvature.

The terms on the second line of (39) are chosen so that, for solutions to the wave equation (42), the
change in energy E[U; u; s3] — E[U; u; s4] is given in (43) by an integral which has an integrand with no
terms involving (V[g]u)(V[g]V[g]u). The relevant cancellations to eliminate such terms follow from
the properties of T[U; u]*, introduced in the proof of Lemma 4.2.

Note that, following [Hormander 1997; LeFloch and Ma 2016], we have defined £[U; u; s] so that it is
not the naturally induced energy associated with the metric ¢ + U. This is because we have endowed X
with the flat Euclidean volume form dx, instead of the induced Riemannian volume form (s/¢) dx.

The following lemma provides us with an energy functional which allows us to measure the perturbation
of the spacetime. Note that in (40) we require some weighted ¢-decay on hyperboloids which we recover
from (37) in Lemma 3.2.

Lemma 4.2 (basic properties of the energy). Take the conditions of Definition 4.1.

(1) There is an €, > 0 such that if

sup t|U|g < Cep, (40)
YyxK
then for s > 2,
3ELU; u; 1 < E[0; u; 5] < 26U u; 1. (41)
(i1) If uy is a solution of
@+ U)PVI[glaVIglputuy +2(RI81 0 U)y = Fpuv, (42)
then
5
ELUs i) = E1Us i 2] + (F, 8u) (s /1) dy djui ds
S1 EsXK

+ f / (—=2(VIglaU*P)(VI8)pu, diu) g + (3, UP)(V[8)au, VIg1gu)g)(s/t) dy dug ds.  (43)
S1 ESXK
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Proof. We first derive the energy £[U; u; s] by considering the following nonlinear version of the stress
energy tensor (9)

TIU; ul*y = (@+U)"*(V[§lau, VIglot) e — 3 (@+U)*P (V[&1gu, V[glatt) £8) +(R[§]ou, u) 8l (44)
We calculate
VI TIU; ul*y = (& + U)*P V(81 VIg1su, VIglu) g + (& + U (VIglau, VIl VIglou)
— @+ U (Vg1 VIglpu. VIglat) g + VIZ1(R[glou, u)g
+ (VLU (VIglau, VIghu) g — 3(VIZLUP)(VIglau, V[glgu)e. (45)

Let X* be a vector field on R'*" x K tangent to R'*”. We have
VI8l VIglpuys = VIZ1gVIglattys + Riem[glagy  ups + Riem[glups upy -

Since (R, ngi+x) has zero Riemann curvature, and since the Riemann curvature for a product manifold
is given by Riem[g] = Riem[ng,,, ] + Riem[k], it follows that all components of the Riemann curvature
Riem[g]o,ﬂy‘s vanish unless all the indices «, 8, y, 6 correspond to internal directions tangent to K. Thus,
the contraction with a vector tangent to R!*" vanishes, and, in particular,

Riem[§]y5,sX° = 0. (46)
Consequently
(VIglaVIglpu, VIghu)eX* = (VIglgVI&lau, VIglu) g X*.
and also
VIglu(RIglou, u)p X" =2(R[glou, X"VI[&l,u)E.

This allows us to calculate
Vg1 (T[U; ul*,X") = TH [UIV[g] X" + (F, X"V[§lu) g + (VI§1, U")(VI[glau, X" V[&lou)
— J(X"VIZLU)(VIglau, VIg1pu) k.

Consider the hyperboloidal energy

ELU; u; 5] =/ —2T[U; ul",(9;)"n, dx dug
YyxK

n n
= f <|atu|i~ + D 10l + )2/ 0w, B g + kAP (VIR]au, VIZlpu)E
ZyxK i=1 i=1
—2(R[8lou, u)g —2U" (VI[g)ou, du) pny + U (VG u, V[g’]xu)E) dx dpur,
where ng = 1, n; = —n;;x7 /t fori € {1,...,n} and n, = 0. Note that

n
E10; u; 51 = / (|atu|i~ + D10l + 26/ 1) (Ou, diu)
Yy xK i=1

+(VI81u, VIglau)g — 2(R[g] ou, u>E> dx dug, (47
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which alternatively can be written in hyperboloidal coordinates as
n
E[0; us s] = / (<s/r>2|zw%E + > Yiulg + (VIg1 u, VIglau)e —2(R[§] ou, m) dx . (48)
Yy xK i=1

Since the contraction of R[g] with any direction tangent to R!*” vanishes, and since |w|g > |w]|x for any
tensor field w, it follows from the definition of £ that

/((V[é’]Au, VIglauye —2(R[&)ou, u)p) dux = / ((VI21"u, VIglau)k — 2(RI2] o u, u)) dpug
K K

= [ teuundp
K
Thus, from Theorem 2.2 and the condition of Riemannian linear stability (11), it follows that
f((V[é’]Au, VIglau)e —2(R[glou, u)g) dug > 0. (49)
K

Thus, £[0, u, s] > 0.
Using our previously calculated expression for the divergence of T[U; u]*, X", we obtain

$2
ELU; u; s11=E[U; u; s3] +/ (=2F, 0u)p(s/1) dy duy ds
S1 Yy xK

+/A f (=2(VI&1U)(VIg1gu, dyu)
S1 Xyx K

+ @ UP)(VIglau, VIglpu)g)(s/1) dy duuy ds
via Stoke’s theorem. This proves equality (43).
Condition (40) combined with s > Ct'/2 implies supy, , x |U|g(z /s)? < Ce,. For simplicity denote
kAB(V[glau, V[21pu)E by [04ul3. then

s2
ﬁ(wtul% > oy + |V[k]u|%) < (|atu|2 + ) ol + |V[k]u|%)(1 —|x|/0)

< |8ul% + |8ul% +2(x" /1) (Bu, du) g + |VIKulz.  (50)

Using this and Young’s inequality we find

IELU; u; s1—E[0; u; s]| =

[ QU1 by — U (TG, VI ) )
Yy xK
< C&,&[0; us 5],
and thus the energies are equivalent for sufficiently small &,,. This proves estimate (41) and the lemma. [

Having defined the energy involving first-order derivatives, we now introduce higher-order energies.

Definition 4.3 (symmetry boosted energy). Let (R'*" x K, §) be a spacetime with a supersymmetric
compactification and N € N. For k < N, define the energy of a symmetric tensor field g to be

Eri() =) €l =g T g sl (51)
[T1<k
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We end this section with the following Hardy estimate on hyperboloids. The proof is standard; see for
example [LeFloch and Ma 2016, Lemma 2.4].

Lemma 4.4 (Hardy estimate on hyperboloids). Let u,, be a tensor defined on R Then one has
n
Il sy S Iintl s, (52)
i=1

4B. Preliminary L* and L™ estimates. In our nonlinear estimates we will estimate terms of the form

Z' A wvy= Y Z"VIK w2V k). (53)

L+ Ll=1|
PARPAE,

In the following lemma we estimate terms which appear as factors in the right-hand side of (53) in L? by
using the elliptic estimates of Lemma 2.9 and the Hardy estimate of Lemma 4.4. Note the use of elliptic
estimates allows us to avoid commuting derivatives, such as [V[k], Ax], which shortens the argument.

Lemma 4.5 (L? estimate for distributed derivatives). Let u wv be a tensor defined on R'*" x K. Suppose N
iseven, £ e N,and £ < N + 1, then

D I ZIVIK ul g k) S Ever (). (54)
1+J]<¢

Proof. We prove the estimate by considering separately the cases of [I| = 0 and |/| # 0. Firstly take
|1]| > 1, suppose |J| =2m where m € N, and consider |/|+|J| =€ < N + 1. Using the elliptic estimates
of Lemma 2.9 we find

—1 —1 —1 —1
e ZIV Y wll s, ) S 1T 20l o i || 2y S 101200 w205 k) + 10 20l 25, 0

n n
SO INZH A ull 2 k) + DI Z s, <k

i=1 i=1

S E[0; 2N (A u; 512+ £10; 217 s 512 < &)V

Next take |/| > 1 and suppose |J| = 2m + 1 where m € N. For |[I| 4+ |J| =€ < N + 1, again using
Lemma 2.9, we have

e Z VKT ull 2, k)

S || ”t_lZ[u”H2m+l(K) ||L2(2x)

n n
S NZ oz + DNV ZITH A ull 25, k) + IVIRIZ (AD™10) | 1205, 1)
i=1

i=l

SEM0; 2"y 512+ £[0; 2" (A u; 512 + €[0; ZT (A u; 512 S Ee(s)'2.

We now turn to the case |I| = 0. Again we split into the cases of |J| being even and odd. Start with
|J| =2m for m € N. Note that N is chosen to be even so that we have the strict inequality 2m < N 4 1.
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Applying the Hardy estimate from Lemma 4.4, and recalling that ¢ > r on the hyperboloid, yields

-1 -1 -1 -1
1=V wll s, ) S e el o [ 2y S 177 AR 0l 2,y + 17 el L2, k)

n n
SY YA ull s, k) + Y IYittl s, k)

i=1 i=1

< EI0, (A u; 12 4 €10, u; s1Y2 < Engr ()2
Finally we have the case |/|=0and |J|=2m+1 < N + 1 for m € N. Again using Lemma 4.4 we obtain

-1 J -1 -1 -1
VI ull 20y S [ el s i | o,y S I VIRIARD ] 25,0 + 17 0l 220, k)

SIVIKIAD ull 25, k) + D IYiull s, k)

i=1
S EL0, (A" u; s1'2 +E[0, u3 512 S €51 ()' /2.
Adding together the above estimates over all appropriate multi-indices gives the required result. 0

Corollary 4.6 (L? estimate for eventually prescribed functions on hyperboloids foliating product space-
times). Let n > 4. Let u,, and f,, be tensors defined on R'*" x K with f depending only on the
Minkowski coordinates. Suppose u = f for|x| >t —1. Let f € C®(R'*" x K) be smooth and such that,
forall I € N, there is a Cy such that*

|V[g]1f| <(I(|x| (n+1)/2 l”. (55)
E =%
Suppose N is even, le N, and L < N + 1, then

> IG/DZVIKY ullas i) SsEva P+ Y Ci. 56)
[+t [1]+]J]|=<¢t

Proof. We will consider separately the regions |x| <¢—1 and |x| > ¢ — 1. The estimate in the region
|x] <t —1 follows by applying Lemma 4.5 with an additional factor of s. Next consider the region
|x] >t —1=>1ty— 1, where we let g = %(s2 + 1) be the value of ¢t at which X, intersects |x| = — 1.
Using assumption (55) we find

1 Jo2
|(s/t)Z" V[k] u||L2(2S><Kﬂ{\x|>tfl})

< / \ZIVIKY ul dy duy < C/ \ZIVIKY 12 de
Ty x KN{|x|>1o—1} XN{|x|>10—1}

< CCiyy / / (]~ D22 = dr dwgn
st Jein(ixlzo-1)

o st Imin(lxz-1) ’

Adding together the above estimates over all appropriate multi-indices yields (56). O

4Note that the decay assumption on f is stronger here than the assumption (35) in Lemma 3.2.
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We next use Lemma 3.2 to obtain L estimates for terms which appear as factors in the right-hand
side of (53).

Corollary 4.7 (higher-order Sobolev estimates). Let n > 7. Let d, v, Uy, and f,, be as defined in
Lemma 3.2. Then for |I|+ |J| = £ € N there is a constant C such that

sup (sPDZIV [k u% +sM0D72|(2/5) 2"V [k ul%)
Yy xK

<C Y &0z ausl+C Y Ch. 67
[1+2)<v+€+1 [I]<D+e—1

Proof. We consider the left-most term in (57) first. Let j be the smallest even integer such that j > |J|.
In particular this means

I+ <+]=t+1.

Recall that d is the smallest even integer larger than %a’ and v is the smallest integer greater than %n +d.
Applying Lemma 2.9 yields

d+j)/2
sup |VIk) ule < llull s gy < 1D 2ull oy + lull 2k -
K

Thus, using in particular (38), we have

sup sV ZIVE u(t, X', w)|%
(t,x,w)eXsx K

n
S X DIz 2K 0l + Y €

| |<v—d i=1 [1]<b—1

n
SO D N2 Gk H I ZT AN PU ) +C DY G

[1|<P—d i=1 |1]<P-1
S D 0 ZN A uss1+C Y C
[T]4+2j <v+e+1 [I|<v—1

172

To complete the proof for the second term of (57) we observe that s > Ct'/~ in the region |x| <t —1

while we only have s <t <r in the region |x| > ¢ — 1. Since n > 7 we have §(n) > 1 and thus

sup sP=2\(/)Z! VK] u|%

Yy xK
< sup (t*/sHs® D ZIV k) ul% + sup sPO=421 719 (k] 1%
Yo x KN{|x|<t—1} Y x KN{|x|>t—1}
< Z £[0; ZI(Ak)ju; s]+ Z C%—i—C,2 sup p1=2)=2, ==
1+2) <441 |<i+e-1 Zex KO{lx|>1=1)

Note in the final line we applied (35) and the first estimate of (57). Il
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5. Proof of stability

S5A. Stability for the reduced Einstein equations. We now restate our main Theorem 1.1 in terms of the
reduced Einstein equations. For convenience we translate the initial data of Theorem 1.1 to { =4}.

Theorem 5.1 (stability for the reduced Einstein equations). Let n,d € Z be such that n > 9, and let
N €N be an even integer strictly larger than %(n +d+8). Let (R'*" x K, g = ngi+n + k) be a spacetime
with a supersymmetric compactification.

Let ({t = 4} x R" x K, go, g1) be Cauchy data for the reduced Einstein equations (31). Assume
that, for |x| > 1 with respect to Minkowski coordinates on R'*", (go, g1) = (gs + k, 0) where gs is the
Schwarzschild metric in the npi+.-wave gauge with parameter Cgs € [0, 00).

There is an € > 0 such that, if the initial data satisfies

> IVIgol (80— 8li=d 1 Taquinry T 2 11801 1l 2inky +C5 <€ (58)
[TI=N [I|<N-1
then there is a future global solution g,, of the reduced Einstein equations (31) with initial data

(h, 0:h)|;=4 = (g0, g1). Furthermore, there is the bound

sup  s®® g, x', w) — g1, X', w)|% Se, (59)
(t,x,w)eX s xK

where §(n) was defined in (7).

Proof. Let the perturbation and inverse perturbation be denoted, respectively, by
Ry =8uv — 8uv and  H"" =gh" —gh".
Since g is a solution of the reduced Einstein equation (31), it follows that
@ + H*")VI[21aVIglghuy +2(RI81 0 h)y = Qun[1(VI&1h, VIZIh) + Fpuy(H, h), (60)
where Q,,, is defined in (31b) and F),, is defined by
Fuo(H, h) = H* (hes Riem[g1° g + hos Riem[21° ) + H*P (hs Riem[21 aup + s Riem[£1°,5).

By commuting the symmetries Z/(A;)/ through the system (60) we obtain
3
@ + H")V[21aVIg1s(Z' (M) hyy) — 2(R[8) 0 Z (A )y = Y Fil, (61)

i=1
where _ _
FLM =21 (A 0ulg1(VIgIh, VIR,

Fili =72 (M) Fu(H, h), (62)
FhlM =12" (a0, HP V(81 V12111

The symmetry boosted energy is given by

Epi()= Y EH; Z' (M) g; s, (63)
[T]+2j=<k



2100 LARS ANDERSSON, PIETER BLUE, ZOE WYATT AND SHING-TUNG YAU

From Lemma 4.2 and the Cauchy—Schwarz inequality we obtain

oo . 172
Enp)' P <En @'+ > / (f (Z|F’v”f|%;+|G”f|i~)dyduk) ds,  (64)
4 z

\T]4+2j<N KNy

where the G’/ terms arise from applying Z’(A)/ to the terms involving V[g]y or 9,y on the right side
of the energy equality (43). In particular, these can be bounded by

(G < CIVIZIHBIZ! (A0 VIZIAL (©3)

The reduced field equations (60) are a system of quasilinear, quasidiagonal wave equations for the
perturbation £, of the spacetime metric. The existence of unique local solutions emanating from Cauchy
data is standard [Choquet-Bruhat 2009, Theorem 4.6 Appendix III].

The proof then follows a bootstrap argument (or continuous induction): we prove that there exist C > 0
and € > 0 such that, if Ey11(4) +Cs < € and En41(s) < Ce for all s, then En11(s) <€+ Ce? for all s
and hence En41(s) < %C €. We note that there is no loss of generality in placing our initial data at t = 4.

We consider the integral term on the right-hand side in (64) as the sum of integrals over X;N{|x| <t—1}
and over X; N{|x| > ¢t — 1}. Our approach is that, for sufficiently small Cg, in the latter exterior region
the solution is identically the product of Schwarzschild with the internal manifold. Thus in the region
|x| > —1 the perturbation /4, is only nonzero on its Minkowski indices and on these indices it is identically
Schwarzschild. We note that sufficiently small compactly supported initial data on {r =4} N {|x| < 1} can
be extended to compactly supported initial data on X4 [LeFloch and Ma 2014, Chapter 39].

Recall from Section 2E that the difference between components of the Minkowski metric and the

n —n+1

Schwarzschild metric in wave coordinates decay as Csr ~"+2 and the Christoffel symbols decay as Csr

Along a geodesic parametrised by A, one has
d*x! ; dx/ dx*
— =T
daz TEda da

"+1 is integrable in r, there are geodesics along which ¢ and r grow linearly and the dx//dA

Since Cgr~
approach constant values, not all of which are vanishing. In particular, dr/d¢ asymptotically approaches a
constant, and this constant is 1 for null geodesics. The next-to-leading-order term in the geodesic equation
arises from the metric, so it is of the form Cr~"%2, which is again integrable. Furthermore, the smaller
the mass Cy the sooner this asymptotic behaviour comes to dominate. In particular, if Cy is sufficiently
small, then any causal curve launched from within X4 N {|x| <t — 2} can never reach the region where
|x| >t — 1. Furthermore, by uniqueness of solutions to quasilinear wave equations, since the initial
data on X4 is identically Schwarzschild for |x| > ¢ — 2, the solution is identically Schwarzschild for
|x| > ¢t — 1. In particular, when estimating the components of the solution to (61), we can use the Sobolev
Lemma 3.2 and Corollary 4.6 on hyperboloids with eventually prescribed functions. (The conclusion of
this paragraph is essentially Proposition 2.3 of [LeFloch and Ma 2016].)

The estimate (40) required by Lemma 4.2 is established by combining (37) with the bootstrap as-
sumptions and noting that since n > 9 we certainly have é(n) > 1. Similarly since n > 9 the decay
assumptions (55) in Corollary 4.6 and (35) in Lemma 3.2 are satisfied.
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We are now in a position to apply the results from Section 4B to the nonlinearities in (64). In general
we will distribute (s/¢)(¢/s) = 1 across the terms and estimate high-derivative terms with a factor of (s/¢)
using Corollary 4.6 and low-derivative terms with a factor of (¢/s) using Corollary 4.7. We begin by
estimating the term G’/ Using (65) we find

Z IG 2z k) S Z (/2

|42 <N |+ J[<N Y ZsxK

1/2
< sup (|<r/s)V[§]h|E>< / I(s/1)Z' VK] VIg1h|3 dy duk)
XyxK Sy x K

172
(1 /$)VIRIH 2 |(s/DZ! VIKY VIgTh[2 dy d,uk>

1
S o G0 @)+ Co)sEn 1 ()7 + Cs). (66)

The term F /iu involves the standard quadratic derivative nonlinearities of the Einstein equations. Their
weak null structure is of course not relevant here since the Minkowski dimension is taken so high. We
first look at what type of terms are contained in F ;v:

1,1,j
> IEL 2 <k

I1+2j<N

1/2
S ) (f |<§+H)‘l|%|Z’V[k]’<V[§]hV[§]h>|%dydm)
11+ |<N N 2 xK

1/2

. (/ lzllv[k]J1h|ZE|ZIZV[k]JZ(V[§]hV[§]h)IZEdyduk) . (67)
|I;|+|J;|<N Sy x K
[ [+]J1]=1

We treat the first term on the right-hand side of (67) since the second term is higher-order and thus easier
to estimate. Once again we estimate high-derivative terms with a factor of (s/¢) using Corollary 4.6 and
low-derivative terms with a factor of (¢/s) using Corollary 4.7. This yields

1/2
> ( / 1@+ H) 312" VIK) (VIgIhVIgIh) |5 dy duk>
Yy xK

I+IJI<N

1/2
s D0 (/ C|Z"V[k]’1vu§]h||Z’ZV[k]’2w§]h|%dyduk) . (68)
Ll+GI<N - N ExK

[I2|+]J2|<N /241

where by symmetry we can assume |I| + | /2| < %N + 1. After using (s/¢)(z/s) = 1 we find

> (U

|1 |+ J; | <N sxK
|| +] 2| <N/2+1

S sup( > |<r/s>Z’ZV[k]JZV[§]h|E)

KN | <N /241

1/2
Cl(s/HZN VK VIgIh||(2/s) 22 VK12 V[g]h|% dy duk)

1/2
<) |(s/0Z" VK1 Vg1 dy da
Yy xK

[ |+IJi1I=N
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1 .
5W( Yo €0 Z A s P Cs Y C%)<s5N+1<s>1/2+cs)

[I|4+2j<v+N/2+3 [I|<D+N/2
1
SJ st(n)_z (5§+N/2+4(S)1/2 + CS)(((/‘N+1 (S)l/z —+ CS) (69)
The term F /%V involves the new nonlinearities which are only nonzero when both u, v € {A, ..., B}.

This means we can control F/ jv as follows:

Y IER lmxx S sup ( > VK Riem[ku)

[T14+2j<N XK\ 1<

172
x Z (/ | ZIV k] |3 | 22V [k] 2R3 dy duk) . (70
i1+ <N N Eex K
The Riemann curvature components of k are bounded (since K is compact) which allows us to control the
first factor in (70). To estimate the second factor in (70) we follow the same procedure as in F ;v, by con-
trolling high-derivatives with a factor of (s/¢) using Corollary 4.6 and low-derivatives with a compensating
factor of (¢/s) using Corollary 4.7. The result of this procedure leads to a term controlled by (69).
The final term F va is a commutator involving the quasilinear perturbation of the principal part of the
differential operator. Note first the identity

Yo oAFRE=C Y 12"V HIg|1Z" VK VIZIVIZIhE. (71)
[I|4+2j<N ;| +|Ji <N
[L|+]J2|<=N-1

Once again we distribute the product (s/¢)(¢/s) = 1 across the two terms appearing here depending on
where the derivatives land. The term with high-derivatives gains a factor of (s/¢) and is controlled using
Corollary 4.6 while the term with low-derivatives absorbs a compensating factor of (z/s) and is estimated
using Corollary 4.7. Note that when the term Z Ly (k) (V[g1VI[glh) is estimated in L*°, the Sobolev
inequality will lead to a symmetry boosted energy at order v + %N + 5. We eventually obtain

; 1
> IR e S s Eenzes) 2 + C)(Evn )2+ Cs). (72)
[114+2j <N

Putting these all together, inserting the bootstrap assumptions, and using also C§ < €, we find

’

s/ 3 i Ly 1/2 s 1
> L (fz XK(ZW 241G ’.1|E) dyd,uk) dsgeA o & (73)
s i=1

I|+2j<N

For integrability we require 2§(n) — 2 > 1, which is equivalent to each of the following:
8(n)>3 and n>8. (74)
This implies n > 9. For the Sobolev estimates we require
D+IN+4<N. (75)

Recalling the definition of ¥ given in Lemma 3.2, this holds provided N > %(n +d+8) and N is even.
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Consequently for sufficiently small € and by Gronwall’s inequality applied to the energy estimate (64)
we find £,41(s) < %Cle. We have thus obtained a future global solution %, = g, — &, to the reduced
Einstein equations which clearly satisfies the decay bounds given in Theorem 5.1. (|

Remark 5.2. The system (60) contains quadratic nonlinearities F4p and F;,4 that are new compared to
the weak null terms identified in the proof of Minkowski stability in [Lindblad and Rodnianski 2003;
2010] and the proof of zero-mode Kaluza—Klein stability in [Wyatt 2018].

5B. Proof of Theorem 1.1. We are now in a position to use the results from Theorem 5.1 in order to
prove our main result. Take an initial data set (R” x K, y, k) as specified in Theorem 1.1 with smallness
conditions (5). We now transform this data into the form required by Theorem 5.1, which is a standard
procedure; see for example [Lindblad and Rodnianski 2005]. We first set ((go)i'j, (g1)irj) = (Virjr» Kirjr).
Diffeomorphism invariance allows us the freedom to choose the lapse and shift. We set the shift to be
zero: X;» = (0. We choose the lapse to be a smooth function satisfying

N =1, r<l,
IN —1] < Cs, 1<r<l,
B (F— 1)\ /2
N(r)=<1—M> , r>1.
rn72

We relate the lapse and shift with the Cauchy data for the reduced equations in Theorem 5.1 by setting
(80)o0 = —N? and (go)oi = X;+. The initial data for (3, N, 3, X;") = ((g1)00, (g1)0i") is chosen by satisfying
V¥ = 0. This amounts to solving the following equations on R" x K:

N7 (8000 + N2y iiry) = g0’ T TLEI) .

—N72y T (@oy = N7 9N +y KTy ] = g0/ FTIEY

We have now brought the initial data of Theorem 1.1 into the form of Theorem 5.1. It remains to check

(76)

that our assumptions on the lapse and shift are compatible with smallness conditions (58). To do this,
recall the final sentence of Theorem 2.15. This implies that

/ V[0l (—=N? —noo)|* dx < / C3(r =272 =1 dr 4" wg
{r>1}NR" {r>1}NR"

< cgf pm =972 qr 4" g < CCEL
{r=1}NR"

By inverting the expressions (76) for (9, N, 9, X;/) it is clear that the smallness conditions (58) are satisfied.
Furthermore it is a standard result, see for example [Choquet-Bruhat 2009, Theorem 8.3], that the future
global solution constructed in Theorem 5.1 is in fact also a solution to the full Einstein equations.

Finally, note that the solution found in Theorem 5.1 is only defined to the future ¢ > 4. Nonetheless, by
time translation, we can treat the initial data as being on {t = 0} instead of {t =4}, so that Theorem 5.1
ensures the existence of a solution for > 0. By time reversibility for the Einstein equation (and the
reduced Einstein equation), we similarly obtain a solution for r < 0. Thus, we can construct the global
solution required in Theorem 1.1.
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It now remains to prove the causal geodesic completeness of (R'*" x K, g).

Globally, the metrics g and g are very close, in the sense that, with respect to a basis constructed
from the X; and an orthonormal basis on K, their components vanish to order € globally. Denote from
now onwards T = dr. This is a globally timelike one-form such that |g(T, T) — 1| < €. Thus, g — 27T
defines a Riemannian metric. (Note that in the introduction, we used the slightly different Euclidean
metric ¢ — 27T T.) Within this proof, we define, for a vector u, the Euclidean length to be

ul*> = u®uP (gop + 2T, Tp). (717)

Note that the fact that g and g are very close implies the equivalence |u|g ~ |ul.

Consider a causal geodesic y that is affinely parametrised by A. For the remainder of this paragraph,
let = ¢()) denote the value of the Cartesian coordinate ¢ at the point y (1). By rescaling, we may assume
that d¢z/dXx =1 at t = 0. Let v be the (artificial, Euclidean) speed defined by v > 0 and

2 _ dy“
dxr

2
: (78)

v

Since g and g are very close, the rate of change in the ¢ direction cannot be (much) greater than the
Euclidean speed, i.e.,
dt

_|dy°
dA

= <y
da

~

On the other hand, since y is causal, the component of dy/dX in the T direction cannot vanish faster than
the length of the component in the orthogonal spatial directions, and the square of the Euclidean velocity
is the sum of the squares of the lengths of the 7" components and the orthogonal spatial component (up to

order € multiplicative errors); thus
dt

_|d°
dA

= >
da

~

In particular, there is the equivalence |dz/dA| ~ v.
Since V[glg = 0 and V[glq,,a4:.dy/dA =0, the rate of change of the velocity is given by

d , dy“ dy?
—v =4 Ty || —V T ). 79
T < i a) ( m [glay/anTp (79)
Since the absolute value of (dy“/dA)T, = dt/dA and the Euclidean length of dy/dX are dominated by v,
dv
an SIVIglayanT v. (30)

The V[g]T can be expanded in terms of g and V[2]g. Both of these have norms that decay as 12 due

to (74). Thus,

d
d—; Ser 2, 81)
Thus, for € sufficiently small, a simple bootstrap argument shows that v ~ 1 along all of y, and hence

dt/dA ~ 1. In particular, ¢ is monotone along y.
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Let f5up be the supremum of the 7 values that are achieved along y. For contradiction, suppose fg, < 0.
Since the length of the spatial component of dy/dA is also uniformly equivalent to v, and hence to dz/dA,
it follows that, as ¢  fgyp, the curve y has a limit in R'*" x K. Because of the global bounds on g and
its derivatives, by the standard Picard-Lindelof theorem for ODEs, the curve y must smoothly extend
through this limiting point, contradicting the definition of #g,,. Thus, fs,, = 0o. The only other way in
which y can be future incomplete is if ¢ diverges to oo in a finite A interval, but this is also impossible,
since df/dA ~ 1. By time symmetry, the same argument holds in the past. Thus, any causal geodesic is
complete.

The previous construction shows that every causal geodesic goes through each level set of ¢. Thus, the
level sets of ¢ are Cauchy surfaces, and (R'*" x K, g) is globally hyperbolic.
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We consider smooth solutions of the Burgers—Hilbert equation that are a small perturbation é from a
global periodic traveling wave with small amplitude €. We use a modified energy method to prove the
existence time of smooth solutions on a time scale of 1/(e8), with 0 < § < € <« 1, and on a time scale of
€/ 82, with 0 < § « €2 « 1. Moreover, we show that the traveling wave exists for an amplitude € in the
range (0, €*), with €* ~ (.23, and fails to exist for € > 2/e.
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1. Introduction

1A. The Burgers—Hilbert equation (BH). We study the size and stability of traveling waves of the
Burgers—Hilbert equation (BH),
fi=Hf+ ffy for(x,1)e QxR, (1-1)
f(x,0) = folx), (1-2)
where €2 is the real line R or the torus T = R/2wZ and Hf is the Hilbert transform which is defined for
f R (resp. T) > R by

21 _
/) dy resp. Hf (x) = %P. V. ; f(y)cotx 4

Hf (x) = %P.V./ dy.

RX—Y
Its action in the frequency space is ﬁ?(k) = —isgnk f (k) for k £ 0, and f[?(()) =0.

This equation arose in [Marsden and Weinstein 1983] as a quadratic approximation for the evolution
of the boundary of a simply connected vorticity patch in two dimensions. Later, Biello and Hunter [2010]
proposed the model as an approximation for describing the dynamics of small slope vorticity fronts in the
2-dimensional incompressible Euler equations. Recently, the validity of this approximation was proved in
[Hunter et al. 2022].
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By standard energy estimates the initial value problem for (BH) is locally well-posed in H*® for s > %
Bressan and Nguyen [2014] established in global existence of weak solutions for initial data fy € L*(R),
with f(x,t) € L*(R) N L*(R) for all + > 0. Bressan and Zhang [2017] constructed locally in time
piecewise continuous solutions to the BH equation with a single discontinuity where the Hilbert transform
generates a logarithmic singularity. Uniqueness for general global weak solutions of [Bressan and Nguyen
2014] is open. But piecewise continuous solutions are shown to be unique in [Krupa and Vasseur 2020].

The Burgers—Hilbert equation can indeed form shocks in finite time. Various numerical simulations
have been performed in [Biello and Hunter 2010; Hunter 2018; Klein and Saut 2015]. Finite time
singularities, in the C 1.5 norm, with 0 < 8 < 1, were shown to exist in [Castro et al. 2010] for initial
data fy in L2(R) NC 1% (R) that has a point xq € R such that H (fo)(xo) > 0 and fo(xo) = (327 ]| foll.2)/3.
Recently, with a different approach, Saut and Wang [2022] proved shock formation in finite time for (BH)
and Yang [2021] constructed solutions that develop an asymptotic self-similar shock at one single point
with an explicitly computable blowup profile for (BH).

In this paper we are concerned with the dynamics in the small amplitude regime where (BH) can be
viewed as a perturbation of the linearized (BH) equation f; = H[ f]. Since the nonlinear term in (1-1) is
quadratic and the Hilbert transform is orthogonal in L?, standard energy estimates yield a time of existence
of smooth solutions 7 ~ 1/| fo||. Thanks to the effect of the Hilbert transform and using the normal form
method, Hunter, Ifrim, Tataru and Wong (see [Hunter and Ifrim 2012; Hunter et al. 2015]) were able to im-
prove this time of existence. More precisely, if € is the size of the initial data, they prove a lifespan 7 ~ 1/¢>
for small enough € (see also [Ehrnstrém and Wang 2019] for a similar approach with a modified version of
the (BH) equation). The proofs are based on the normal form method and on the modified energy method.
Furthermore, Hunter [2018] showed for 0 < € < 1 the existence of C*°-traveling wave solutions of the form

Je(x, 1) = ue(x + vet),
with
ue(x) =ecos(x)+ 0(€?), (1-3)
ve = —14 0(€?). (1-4)

Notice that, (u.(nx)/n, ve/n) is also a C*°-traveling wave solution.
Throughout the paper we will assume that the initial data fj has zero mean. Since (1-1) preserves
the mean,

2
f f(x,t)dx =0 forallz.
0
Since in the construction above u. also has zero mean,
2
/ f(x,t)dx =0 forallz.
0
1B. The main theorem. In the present work we extend the results in the small amplitude regime in the
following way:

(1) Size of the traveling waves: We show that the traveling waves exist for an amplitude € in the range
(0, €), with €* ~ 0.23, and fail to exist for € > 2/e.
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(2) Extended lifespan from a traveling wave: We prove that a §-perturbation of u, lives, at least, for a
time T ~ 1/(8¢) for 0 < 8§ < € <« 1, and for a time T ~ €/82 for 0 < § <« €? « 1. This is an
improvement compared with the time 7 ~ 1/€? provided by the results in [Hunter and Ifrim 2012;

Hunter et al. 2015]. Indeed, our main theorem reads:

Theorem 1.1. For 0 < |€]|, § K 1 let (ue, ve) € C°(T) x R be a traveling wave solution of (1-1) as in
(1-3) and (1-4) and

I fo—uellgacry < 9.
Then there exist 0 < €9 KL 1, T (€, 8) > 0 and a solution of (1-1)
f@x, 1) € C(0, T(e, 8)); H*(T))
such that

(1) if 8§ < |€| and |€| < €q, then T (€, 8) ~ 1/(€8),
(2) if 8 K €2 and |€| < €y, then T (¢, §) ~ € /8>

Moreover, there are two differentiable functions €(t) and a(t) such that
I f . 1) — ey (x +a) g+ S 6.

1C. Sketch of the proof of Theorem 1.1. Now we briefly describe the proof of Theorem 1.1. Assume
that the solution

FO, ) =ue(x +vet) + g(x +vet, 1)

is a small perturbation around the traveling wave u.(x +v¢t). Then the linearization of the Burgers—Hilbert
equation (1-1) is

Leg:=—vegy+Hg+ (uc(x)g)x =0
so to the first order, the perturbation g solves the equation g, = L.g, with solution
glx, 1) =e'tg(x,0).

Therefore the linear evolution of g is determined by the eigenvalues of L..
The full nonlinear evolution of g is

gl:L€g+N(gag)a

where N (g, g) is a nonlinearity that is (at least) quadratic in g. We plug in the linear solution to get
gr =" Leg(x,0) + N(eg(x,0), e g(x, 0))

to second order, which integrates to

t
glx, 1) = e’Lfg(x, 0) + e’LG/O e_“'LfN(e“'Lfg(x, 0), e“'LGg(x, 0)) ds.
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Expand (at least formally) the initial data and the nonlinearity in terms of the eigenvectors of L. as

g(x,0) = ch(pn(-x)a N (o, om) = chmnwn,

n n
where the eigenvalue of ¢, is A,,. Then

e()hl+)‘4m)t — e)hnt

glx, 1)~ ancne“’wn(m +> A G () (1-5)

I,m,n
to second order, provided that the denominator A; 4+ A, — A, is not equal to 0, i.e., that the eigenvalues
are “nonresonant”’. Then we can integrate (1-1) up to a cubic error term, yielding the “cubic lifespan”,
i.e., initial data of size € leads to a solution that exists for a time at least comparable to € ~2. This is the
“normal form transformation”, first proposed by Poincaré in the setting of ordinary differential equations
(see [Arnold 1983] for a book reference). Its application to partial differential equations was initiated by
Shatah [1985] in the study of the nonlinear Klein—-Gordon equation, and then extended to the water wave
problem by Germain, Masmoudi and Shatah [Germain et al. 2012; 2015] and Ionescu and Pusateri [2015;
2018], the Burgers—Hilbert equation by Hunter, Ifrim, Tataru and Wang [Hunter et al. 2015], and more
recently, the Einstein—Klein—Gordon equation by Ionescu and Pausader [2022].

Unfortunately, nonresonance fails for L. because O is an eigenvalue, and 0 + A, — A, = 0. The
eigenvalue O arises from the symmetry of (1-1). Indeed, the initial data uc(x + 8) = u(x) + Su.(x)
produces the solution

Fx, 1) = ue(x +vet +8) X e (X 4 vet) + Sul (x + vet).

In this case g (x, t) =8u_ (x), with g, =0, so u, e ker L. Also, the initial data ue45(x) X uc (x)+80cue(x)
produces the solution

F, 1) = theqs(X 4 Veyst) R e (X 4 Vet) + 80ette (x + vet) + Sv_tul (x + vet).
In this case g(x, 1) = §cuc(x) + Sv.tu,(x), so
Leg =8Lcdcuc =g =8v.u, €kerlL,,

and thus dcu. is in the generalized eigenspace corresponding to the eigenvalue 0.
These perturbations generate translations and variations along the bifurcation curve. We treat them
separately using a more sophisticated ansatz

f @, 0) =ucry(x +a() +gx +a(),1).

We will show in Proposition 4.1 that if |e9| and || f — u¢, || y2/l|€o| are sufficiently small, then f can
always be put in the form above, with |e — €p|/|€g| also small and the expansion of g not involving any
eigenvector with eigenvalue 0. This way we remove the resonance caused by the eigenvalue 0 from the
evolution of g.

We also need to analyze the other eigenvalues of L., a first-order differential operator with variable
coefficients, and a quasilinear perturbation from Lo = 9, + H, whose eigenvectors are the Fourier modes e'"~.
Just like the Schrodinger operator with potential —A + V, with a basis of eigenvectors known as the “Jost
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functions”, giving rise to the “distorted Fourier transform” (see [Agmon 1975]), L can also be diagonalized
using a combination of conjugation and perturbative analysis. More precisely, let g = h,. Then

Leg = ((ue(x) —ve)g)x + Hg = ((ue(x) —ve)hy + Hh),,

so L. is conjugate to the operator i — (uc(x) —ve)hy +Hh. Let h = h o ¢, where ¢_ (x) is proportional
to (ue (x) — ve) "L Then

Leg = ((ccdy + H + R o)y,

where cc — 1 as € — 0, and R, is a small smoothing remainder (i.e., it gains derivatives of arbitrarily high
orders). Thus L. is conjugate to ccd, + H + R, whose eigenvalues can be approximated by those of ¢, 9y +
H, which are £(nc.i —i), n =1, 2, .... The general theory of unbounded analytic operators developed
in [Kato 1976] allows us to justify this approximation up to 0 (€%) (see Corollary 3.10), and to relate
the eigenvectors of L. to the Fourier modes (see Lemma 3.7), in the sense that another linear map h— h
conjugates L. into a Fourier multiplier whose action on e/ "+$€""¥ is multiplication by A, (n # 0).

At the end of the day we have the following estimate for small €:

, l+m+#n,

2

[Af 4+ A — Au| >
€, l+m=mn;

= N|—

see Proposition 3.11. Because this value appears in the denominator in (1-5), if g has size §, a direct
application of the normal form transformation yields a lifespan comparable to €2/82. To improve on this,
we will make use of the structure of the nonlinearity:

N(b, h) = 1hT + O(le)).

The first term is the usual product-style nonlinearity, which imposes the restriction / +sgnl/+m+sgnm =
n +sgnn, and implies [ +m —n = 1 # 0, so the normal form transformation can be carried out as
before. The second term is of size |€| and gains a factor of 1/|€| in the lifespan. Thus the usual energy
estimate can show a lifespan comparable to 1/|€d|, and the normal form transformation can show a
lifespan comparable to |€|/82. This decomposition of the nonlinearity into one part satisfying classical
additive frequency restrictions and another part enjoying better estimates analytically was first used by
Germain, Pusateri and Rousset [Germain et al. 2018] to show global well-posedness of the 1-dimensional
Schrédinger equation with potential (see also [Chen and Pusateri 2022]). Our result shows that this
approach can be adapted to quasilinear equations and to the case of discrete spectrum.

1D. Outline of the paper. In Section 2 we study the traveling waves solutions for (1-1). For sake of
completeness we sketch the proof of existence which follows from bifurcation theory. In addition we
analyze the size of the traveling waves. In Section 3 we study the linearization of (1-1) around the
traveling waves. In Section 4, we introduce a new frame of reference which will help us to avoid the
resonances found in Section 3. Finally, in Section 5 we prove Theorem 1.1.
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2. Traveling waves

The existence of traveling waves for (1-1) was shown in [Hunter 2018]. Here we will study their size
after we give some details about the existence proof. We look for solutions of (1-1) of the form

Je(x, 1) = ue(x + vet);
thus we have to find (u., ve¢) solving
Hue —veu, +ucu, =0. (2-1

If (ue, ve) is a solution, so is (u (x), v7) = (ue(nx)/n, ve/n). Thus from one solution we can get n-fold
symmetric solutions for all n > 1.
To solve (2-1) we can apply the Crandall-Rabinowitz theorem [1971] to

F:HT(T)xC— H"~ (),
(u, ) = Hu +uu' — (=14 pwu’,
where

Hrk’+(TT) = {27 -periodic, mean zero, even functions analytic in the strip {|Im(z)| < r}},

endowed with the norm

L gty = D NFC i) e,
+

and
H,"’*(T) = {2 -periodic, odd functions analytic in the strip {|Im(z)| < r}},

endowed with the norm

1F gty = D IFC i) e
+

Here || - || gt 1s the usual Sobolev norm, and it is enough to take k > 1 and r = 1.
We notice that (0, u) = 0 and the derivative of F atu =0, u =0,

D,F(0,00h=Hh+H

has a nontrivial element in its kernel belonging to H**(T), namely, & = cos(x).

Thus, the application of the Crandall-Rabinowitz theorem allows to show the existence of a branch of
solutions (u¢, v¢) € (H11’+, R), bifurcating from (0, —1) for (2-1) with the leading-order term

ue(x) = €cos(x) + 0(€?), ve=—1+0(e).
We remark that we obtain a bifurcation curve
€ = (ue, ve),

. @2)
Bs={zeC:|z]<é} = (H'™ " ,R),

which is differentiable and hence analytic on Bs for § small enough.
The rest of this section is devoted to proving further properties of these solutions.
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Introducing the asymptotic expansion

o0 o
Ue(X) =Y up()e", ve =Y vy€", (2-3)
n=1 n=0
taking u; = cos(x), Ao = —1 and comparing the coefficient in €”* we obtain that
n—2 n—
u, + Huy, = —v,_; sin(x) + Z Uy — %8x Z Up—mlm = —Vy_1 8in(x) + f,
m=1 m=1
forn=2,3,....

We notice that in order to solve the equation Hu + u’ = f we need (f, sin(x)) = 0. Therefore we
have to choose Vo] = l(sin(x) fn). This gives us a recurrence for (u,, v,—1), n > 2, in terms of
{(Um, vm—1)},_;- In order to study this recurrence we will introduce the ansatz

U, = Z U i cos(kx). (2-4)
k=2

By induction, one can check that the rest of coefficients in the expansion on cosines of u, must be zero.
In addition, if u.(x) solves (2-1), u_.(x + ) is also a bifurcation curve in the direction of cos(x), and
then by uniqueness, u.(x) = u_(x 4+ ), which yields 4, y =0if n —k =1 (mod 2).

Comparing the coefficient of sin(kx) with k =n (mod 2), and 2 < k < n, we have

min(m,k—1)
(1 _k)”nk+kzvf11un mk_Z Z Z Um [ Un—m, k—I
m=1 [=max(1,k—n+m) n—1 min(m,n—m—k)
Z Z Um, i Un—m k+1 = 0. (2'5)
m=1 =1
And comparing with sin(x) we have
1 n—1 min(m,n—m—1)
Up—1 = 5 Zl ; Um, I Un—m, 1+1- (2‘6)
m= =

Up to order O (e*) we find
U (x) = €cosx — 162 cos2x—|—%e3 cos3x+0(e4), 0-7)
—1— 1?4+ 0(eM.

The recurrence (2—5)—(2—6) allows us to prove the following result.

Theorem 2.1. The radius of convergence of the series (2-3), with the coefficients given by (2-4)—(2-6), is
not bigger than 2 /e.

Proof. From (2-5) and (2-6) we have
1

(n — k) ug xn—kn—k-
|

3
|

(I— n)un,n =

N[ —
~
Il

Let
o0
y=yx)=x +Zun,nxn~

n=2
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Then y — xy’ = xyy’/2, which, together with y ~ x for small x, yields y = 2W (x/2), where W is the
Lambert W-function. Since the radius of convergence of W at 0 is 1/e, the radius of convergence of y
at 0 is 2/e, so the radius of convergence of (2-5) and (2-6) is at most 2/e. O

In addition we can get a bound for how large the traveling wave can be.
Theorem 2.2. The series (2-3), with the coefficients given by (2-4)—(2-6), converges for any € < x* ~ (0.23.

Proof. This proof is based on the implicit function theorem.

First we introduce the spaces
L*~ = {odd functions f € L*(T)},

H'* = {even functions f € H'(T)}.

The space X is the orthogonal complement of the span of cos(x) in H'*. We will equip L>~ with the

norm .
1
lull3,- == [ lu@x)|*dx (2-8)
T[ —TT
in such a way that ||sin(nx)||;2- = 1 for n > 1. We also define
1 T
lulli = — [ (/@) + o) = 2u () Au(x)) dx. (2-9)

—TT
Thus |[cos(nx)||x =n — 1 for n > 2. The reason why we take these norms is technical and it will arise
below. Finally we define

X=XxR
equipped with the norm
1@, ) llx = Vilalg + vl
Since u, = e cosx — %62 cos2x + O(€®) and ve = —1 4+ O(€?), we can let
G(e, u, p)
_ lF( 12 cos 2 2, ep)
=3 €COSX — 5€7COS2X +-€"U, €N

= Hii + € (cos x(sin2x + ') + (3 cos 2x — i1) (sinx — € sin2x — eit')) + i’ — ju(sinx — € sin 2x — €ii’)
map R x X to L>~.
Because of the existence of traveling waves, we already know that there exists €* such that, for every
€ € [0, €*), there exist i, and . satisfying

G(G, ﬁé? MG) = O
In addition we have

dG(e,tic+sv, u+sv)
ds =0

=dGe g, . (V,v)
= Hi+€(0 cosx—i(sinx—e sin2x—ei/)—e(% cos2x—ii)v')
+0'—v(sinx —esin2x—eit ) +epv’

maps (7, v) € X linearly to L%~
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Thus as far as dG ;. (i, ) is invertible from X to L%~ for € € [0, x*) we will be able to extend
the solution (u, we) from [0, €*) to [0, x*) by the implicit function theorem.
Note that

dGooo(v,v)=Hv+ v —vsinx
is an isometry from X to L>~ under the norms given by (2-8) and (2-9). Therefore one can compute
dGe i, . =dGyg o 1+dGyg ((dGei, . —dGo00))-

By the Neumann series and the fact that dGo 0,0 is an isometry, dG ;.. Will be invertible, as long as
ldGe i, . —dGoo0llx—r2- < 1. In order to show this last inequality we will bound

Ac = dGe g, p. —dGooollx—r2-

in terms of ||iz¢||x and u.. After that we will bound ||z, || x and .. To do it we will use the information
we have about 9,1t and O tie.
Along the bifurcation curve,
dGe i, e (Belle, ur)
=—0:G(€, e, pe)
= cosx(sin2x+ii’é)+% sinx (cos2x —2ii¢) —€ (cos2x —2i¢ ) (sin2x+i, )+ (sin2x+i.).  (2-10)

Thus

Beiic, 1) =dG_} |, (=0cG(€, e, pe))-

Therefore
= 1 ~
VIeiiell} + 11 < 7= 10:G e e, )l o (2-11)
€

In addition we have, for ro = /|| ¢ |I§( + e l?

\/ ~ 2 112 1 ~

Ocre < “86’/‘6”)( + “’l’gl = 1—A 10cG (€, e, pe)ll 2.
€

Thus, explicit estimates for A and [|0.G (€, ii¢, (e)|l 2~ in terms of r. and € give a differential
inequality for r. which can be used to bound A..

We will need the following lemmas to bound A, and the norm ||0:G (€, ii¢, pe) || 2-, Where 0.G (€, tie, [Le)
is given by the right-hand side of (2-10).

Lemma 2.3. If f € X then || f sinx — f' cos x|l ;2 < /3| flx-
Lemma 24. If f € X then |2 f sin2x — f'cos2x||;2 < %«/17||f||x.

Proof. We only show Lemma 2.3. The proof of Lemma 2.4 is similar.
Let f =) 72, facosnx. Then

o0
2(fsinx — f'cosx) = frsinx +2 f3 sin 2x —{—Zn(f,,_l + fuy1) sinnx,
n=3
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and

41 f sin(x) = f'cos(D)17. = f5 + 415+ Y n* (o1 + fur1)’

n=3
<10f7 +20f2+59f7 +88f2 + 182 fs+ 3213 f5 +4Z(n +Df.
n=6
The infinite sum is bounded by 1.48) % ((n — 1) £2, and it remains a finite-dimensional problem to
show that the remaining terms are bounded by 122222 (n—1)2f2. O
Lemma 2.5. If f, g € X then ||(f8)'ll> < Bl fllxllgllx, where
869
B = 3 + Taa ™~ ~ 3.05.
Proof. Let f =Y 72, facosnx, g = Z _,8&ncosnx € X. Then
(fe) =—5 Zn Z fim|8ln—m| sSinnx,
n>1 m|>2,|ln—m|>2
so by Cauchy—Schwarz,
2
1
I/ I =35 2 nz( > ﬁmg.n_m|) <ClfIxlgl%,
In|=1 Im|=2,|ln—m|>2
where )
1 o n w2 869
C== == 0
s ) (ml—DXn—m -2 3 ' 144

=L 22, |n—m|>2

Now, with Lemmas 2.3, 2.5 and 2.4 we are ready to bound the right-hand side of (2-10). Indeed,
A/ 1044¢€2 V17

||right-hand side of (2-10)]|,2 < 1 +2r + TEHfte lx + Belliie|| 5 + llcll% + el

Turning to the other side, we have
G c.iic.n0) —dG0,0,0)(0, V)
= €(?' cosx — D(sinx — e sin2x — €ii,) — €(5 cos 2x — iic) V') + €v(sin2x + ii,) + epev’.  (2-12)

Again by Lemmas 2.3, 2.5 and 2.4 we find

|left-hand side of (2-12)]|;2 < («/§€ +— 17 €? + Be? llite || x +26|,u€|) 1Vl x + €1 +2|ielx)|v]

4
= (A4 2l 1+ 2l - (. o + (VT2

\/_2

+ Belaclx ) I5]1x.
SO

A¢ <2€+2er. + + Be? Te.

Since dG (0,0,0) is an isometry, the Neumann series (1 —T) = Z;’;O T" shows that if A, < 1, then
dG i, .. 1 invertible, and ”dG(_elﬁ u )|| <(1—-4)"" s0

AV 10+4€2
4

+2re + Te||u€||x + Ber; +r;

1 V17 -
Videiel + 1 = 1= 2+ r2).
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Then ro = 0 and
LV104 42+ 2+ YWe)r. 4 Ber? 412

1 —2¢ —2ere — {62 Be?r,

=

/
ré

By the comparison principle, . is bounded from above by the solution to

dy , ~10+4x2+ (8+2v17x)y +4Bxy? +4y? (2-13)
dx_y_ 4 —8x —8xy —+/17x2 —4Bx2%y ’

with y(0) = 0, which is
(2Bx* 4+ 4x)y* + (8x + vV 17x> —4)y + xv/x2 + 2.5+ 2.5sinh ' (+/0.4x) =0

When x > 0, the quadratic coefficient and the constant are positive, so this equation has a nonnegative
root if and only if

8x ++17x* —4 < —2\/ (2Bx2 +4x)(xvVx* +2.5+2.5sinh ™! (v/0.4x)),

whose solution is x < x* &2 0.23 numerically. Hence the solution can be extended to € = x* ~ 0.23. In

order to achieve this last conclusion we notice that the solution to (2-13), with y(0) = 0 can be extended
only if Ac < 1, since 1 — A arises in the denominator.

The above argument shows that for € € (—x*, x*), the bifurcation curve produces a traveling wave
U = E€COSX — %62 cos 2x + €2ii,, which travels at speed v, = —1 — e . Since all the operators involved
are analytic in all its arguments, the bifurcation curve is analytic in € on (—x*, x*). It may be the case,
however, that the power series for u, and v, around € = 0 has a smaller radius of convergence than x* (for
example, the function f(x) = (x> 4 1)~! is analytic on the whole real line, but the radius of convergence
of its power series around O is only 1.) We now show that the radius of convergence of the power series
for u. and v, are indeed at least x*.

We note that the above argument also works if € is replaced with ee’® (a € R), so the bifurcation curve
(e, ve) is also analytic in a neighborhood of {ee!® : € € (—x*, x*)}. Hence the curve is analytic in the
disk of radius x* centered at 0, so the radius of convergence of its power series around 0 is at least x* [

3. Linearization around traveling waves
In this section we will analyze the spectrum of the operator

Leg=—vegy +Hg+ (e(x)g)x

corresponding to the linearization of (1-1) around the traveling wave (u., v¢) bifurcating from zero in the
direction of the cosine studied in the previous section.
Actually, let

fx, )= fe(x, 1) +g(x +vet, 1),
with fe(x, 1) = uc(x + vet). Then

fi(x, 1) = 0r fe(x, 1) + (Vegx + &) (X + Vet , 1)
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and
(Hf + ffo&x, 1) = (Hfe + fedc f)(x, 1) + Hg(x + vt 1)
+ 0y (fe(x, )g(x +vet, 1)) + g(x + vet, 1)0: g (x + vet, 7).
Putting these in (1-1), we get the equation for g(x, t)
0 8(x, 1) = —veg(x, 1)y + Hg(x, 1) + (ue (x)g(x, 1)x + 8 (x, 1)g(x, 1)y

The linearization around g = 0 is

atg = Legs
where
o
Leg=—vege+He+ueg)e = Hg+gc+ ) €" (™ —v")g), . (-1)
n=1 )
Lg - Lng

3A. The eigenvalue 0. The action of L on the Fourier modes is
F(Lg)(m) =i(m —sgnm)g(m),

with eigenvalues 0 (double), i, +2i, ... (on L?(T) with zero mean). We first study the perturbation of
the eigenspace corresponding to the double eigenvalue of 0. By translational symmetry, for any § € R,
uc(x + 8) is also a solution to

Hu —veu+uu' = 0.

Differentiation with respect to é then shows that
Leu, = Hu, — veu!, + (ueu.) = 0.
Also, since u. lies on a bifurcation curve, we can differentiate

Hu, —veu, +ucu., =0,

with respect to € to get
Ledeue = Hoeue — (Dcveul, + ucdeu, + uldeue = (deveu,

so on the span V. of u, and dcu., L¢ acts nilpotently by the matrix

0 0cve
0 0 /)’
3B. Simplifying the linearized operator. We want to solve the eigenvalue problem
Leg = ((ue —ve)g)' + Hg = A(e)g.

Let g = /. Then the antiderivative of the above is

(e — vo)l' + Hh = A(€)h (mod 1). (3-2)

, 27 27 dy -1
¢ = ( / ) ) (3-3)
Ue — Ve 0 Ue(y)—ve

Let h = h o ¢e, where ¢, satisfies
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Then
(e —v)PL(h' 0 pe) + H(hope) = h(€)hope (mod 1),
When € is small enough, ¢ is a diffeomorphism of R/27Z, so
2 dy -1 5 B B
27 (/ —) B +H(hop)op " =€) (mod1).
0o ue(y)—ve
By the change of variable z = ¢ (y),
2 -1
- B 1 ~ P (x) —
H(hoge)od ' (x) = / h(dk(y))cot(ny) dy

27 Jo

2 —1 _ o1
:%/0 h(z) cot(q>€ (x)2 o (Z))(qﬁe—l)/(Z)dz.

The convolution kernel of the operator

Rh=H(hog)ogp, ' — Hh

N .
Ko(x,2) = cot(¢€ Db D )«b;l)’(z) - cot(xTZ) (3-4)

is

and the e-derivative of the kernel is

-1 _ a1 ae —1 _ae -1 1y
o0 9 <z>> P @b @ oy

|
+cot<¢€ (x)zd)e (2)

0cKc(x,2) = —cscz<

>a€<¢;1)/<z>.

Near x =0, cscx — 1/x2 and cotx — 1 /x are smooth, and (p- 1)’ is smooth everywhere, so when x — z is
small enough, up to a smooth function in (x, z),

1K) _ 09 -0 @)@ @) | 86 @
2 (@' ()= (2))? ¢ (0)—¢c ' (2)
(07 (@ (97 (1) =7 ()~ (e () —Bep7 () (97 (2)
a (@' () =9 (2))?
07 @ (=22 [y 10 (1—1)z+1x)dt
a (¢ (1) —¢c ' (2))?

@Y @E=2)? [y 1=Dd(@ )" (1—t)z+tx) dr
(9 () —¢c ' (2))2 ’

which is itself a smooth function of (x, z) when x — z is small enough (because ¢ I'is smooth). Then

10 R ™ | g Seom Nillp2jcry.  kom=0,1,...,
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where the constant does not depend on €, for all he H™ /(1), or, equivalently,
19 Rehll i Seom W2l jg-ms  kom=0,1,..., (3-5)
where the dot over H means that the norm does not measure frequency zero.

Definition 3.1. We say an operator is of class S if it satisfies (3-5). We say a family of operators is of
class S uniformly if for each k and m there is an implicit constant that makes (3-5) true for all operators
in the family.

Thus 9 R, is of class S uniformly in €. Since Ry =0, R¢/¢€ is also of class S uniformly in €.
Now the eigenvalue problem for £ is of the form

(cedy + H + R)h = A(e)h (mod 1)
or, equivalently,
By +c."H+c"R)h = c7'A(e)h (mod 1), (3-6)

2 dy -1
o= 2m f —) (3-7)
< 0 Ue(y)— Ve

and R./e is of class S uniformly in €. Note that since u. and v, are analytic functions of € on a

where

neighborhood of 0, with ug = 0 and vy = —1, so are ¢, R and ¢ with ¢pg =1, Ry =0 and ¢y = 1.

3C. Spectral analysis of the linearization. The eigenvalue problem (3-6) is a perturbation of the eigen-
value problem
h'+Hh=xh (mod 1),
with explicit eigenvalues
0 (double), ni, n==41,+£2,...,
and eigenfunctions
eF, TSNy — 4D

They form an orthogonal basis of H*/(1) for any nonnegative integer k.
Definition 3.2. Let 7 : H*(T) — H*(T) for k € N be a linear operator. We will define
ITN =Tl gy v 1y
The resolvent (3, + H —z)~! is also a Fourier multiplier whose action on Fourier modes is
(O + H —2) 'eH DY = (£ni — )~ leF DY p=0,1,.... (3-8)

The circle
Th={z:1z—ni|=3}, n=+1,42,...,

encloses a single eigenvalue +ni, and the circle

Fo={z:lzl =1}
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encloses the double eigenvalue 0. On I';, and I'y we have

lz—mi|>1, meZ,
so by (3-8),
10+ H —2)~"

| <2, zel,, nel.

Moreover the projection
Pn:_ l-f(ax+H_Z)_le7 n::i:l,:I:Z,...,
2ri Jr,

is the projection on the span of ¢/ *$8""¥ and the projection

Pom—t [ o+ H—2""dz
2ri Jp,

is the projection on the span of ¢/* and e~*.
Now when € is small enough and z € I';;, we have

d+c'H+c'Re—z2=0,+H—2)(1+ @ +H—2)""'R)),
where
Ro=@+c.'"H+c'R)— @+ H)=(c.' —1)H+c 'R,

is analytic in € near 0, with R, = 0, thanks to the analyticity of c.. Taking the inverse gives
(Octc.'H+c'Re—2) ' =4+ @0+H—-2)"'R) 0+ H—2)"

and the Neumann series

o
I+ @ +H=-2"R)™'=> (0 +H—2)"'R)"
n=0
converges because
1@y +H —2) 'R < 2| R || See < 1

when € is small enough (depending on k). Moreover,

I(1+@+H—-2)""RY™ 1| g e
and so
1@ +c'"H4c'Re—2) ' — (@, +H—2)""|| Se

uniformly for z € I';,. Hence the projections

Qn(e):—ﬁf @By +c'H+c 'R —2)'dz, nez,
T,

exist and satisfy
”Qn(e)_Pn” §k65 neZ?

2123

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

uniformly in n. Then by [Kato 1976, Chapter I, Section 4.6], when € is small enough, O, (¢) is conjugate
to P,. Thus dimran Q,,(¢) = 1 for n # 0 and dimran Qy(¢) = 2. So dy + c;lH + ce_lRe has a single
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eigenvalue enclosed by I, for n # 0. In Section 3A we showed that the action on the range of Qg(€) is
given by a nonzero nilpotent 2-by-2 matrix. If z is outside all these circles, then (3-10) still holds and
the Neumann series (3-12) still converges to show that oy + c¢_ 'H+ c;lR6 — z is invertible, so it has no
other eigenvalues.

3D. Analyticity of eigenvalues and eigenvectors. By (3-8) and (3-9), (8, + H —z)~! is analytic in (z, €)
for z in a neighborhood U of ( J,.; I's, and € near 0. By (3-11), R{ is analytic in € near 0, so the series
(3-12) shows that (0, +c;1H +CE_1R€ —2)7lis analytic in (z, €) for z € U and € near 0, and the integral
(3-13) shows that all the projections Q,(¢) (n € Z) are analytic in a neighborhood of 0 independent of r.

Let v, (¢) be the corresponding eigenvectors to Q,,(€) for n # 0. Thanks to (3-14), a good choice is
VUn(€) = Qp(€)e! 58X which is nonzero and analytic in a neighborhood of 0 independent of n. Then
by (3-6),

0,,(€) (0 —I—ce—l([-[ 1 R,))ei rHsenmx — (5 +c€_1(H L R))Wn(e) = Cg_l)»n(f)wn(é).
On the other hand, the left-hand side equals
(n + Sgnn)i Qn(e)ei(n+sgnn)x + Ce_l Qn(e)(H + Re)e:ti(n-l—sgnn)x,

which is another vector analytic in € near 0. Then by the next lemma, all the eigenvalues c;lkn (e), and
hence A, (¢), are analytic in a neighborhood of 0 independent of .

Lemma 3.3. Let u(e) and v(e€) be two vectors analytic in € € U satisfying
u(e) 20 and v(e) =A(e)u(e), ee€l.
Then A(¢€) is analytic in € € U.

Proof. Without loss of generality assume that 0 € U. Since the result is local in €, it suffices to show that
A(€) is analytic in a smaller neighborhood of 0.

Since u(0) # 0, we can find a linear functional f such that f(u(0)) # 0. Then f(u(e)) #0 in a
neighborhood of 0, and so
()
 flue)
is analytic in a neighborhood of 0. (|

A(€)

Regarding the double eigenvalue 0, in Section 3A we showed that u and d.u. are two generalized
eigenvectors of the operator L.. Using the relation given in Section 3B, they correspond to two generalized
eigenvectors v, (¢) and W(T (¢) of the operator 0y + c_ 'H+ ce_lRe, via the relation (v, (€) o ) =u.
and (w(;r (€) o) = dcue. Then clearly woi (e) are both analytic in €.

From the analyticity of the eigenvalues ¢ ' 4, (€), it is easy to derive bounds on their Taylor coefficients.

Proposition 3.4. For k > 1 and n # 0, the coefficient of €* in cZ'A,(€) is bounded in absolute value
by C* for a constant C > 0 independent of n,



STABILITY OF TRAVELING WAVES FOR THE BURGERS-HILBERT EQUATION 2125

Proof. At the end of Section 3C we showed that when € is in a neighborhood of 0 independent of #n, the
eigenvalues c;l)Ln (¢) are enclosed in the circle I'},. Then

lc-'hn(e) —nil <3, n==£1,£2,....
The result follows from Cauchy’s integral formula for Taylor coefficients. U

Corollary 3.5. Fork > 0 and n # 0, the coefficient of €* in A, (€) is bounded in absolute value by |n|C*
for a constant C > 0 independent of n.

Proof. Since c. is analytic in € near 0 with co =1, and A, (0) =ni, the result follows from Leibniz’s rule. [J

3E. Conjugation to a Fourier multiplier. We have conjugated the eigenspaces of T =, +c. ' H+c 'R,
(and also of c.9, + H + R¢) to Fourier modes via the operator

L4+ We=Y" P,Qule),
neZ
where P, is the projection onto the span of =¥, Qg (¢) is the projection onto the span of 1//(;—L (e), P, is the
projection onto the span of e/ "+5€"* and Q,, (¢) is the projection onto the span of v, (€), n==41, +2, ....
We will view T as a perturbation of d, + ce_lH and follow the proof of [Kato 1976, Chapter V,
Theorem 4.15a]. In the process we will extract more information from the fact that R is of class S. Since

Pl=P, Y P,=1, (3-15)
neZ
we have
We=_ Py(Qu(€) = Py) (3-16)
neZ
and Wy =0.

Proposition 3.6. W, /¢ is of class S uniformly in €.

Proof. We bound each term on the right-hand side separately. By [Kato 1976, Chapter V, (4.38)],

0n(€) = Py = —c. ' Qu(€)R Z,(€) — ¢ ' Z) ()R Py,
where
zn(e):L_/ z—m+0—cYsgnn)i) '@, +c'H -2 dz,
2r7i Jr,

z;,(e):ﬁfr z—c "M@ (T —2) 1 dz.

We now bound the operator norms of the right-hand side, with uniformity in € and decay in n, in order to
show that the sum in n converges.

First note that it is clear from the frequency side that when € is in a neighborhood of 0 independent of n
and z € |,y I for all m > 0, the operator (3 +c_ ' H —z)~! is bounded from H™ to H™, uniformly in
€ and z. Since R, /¢ is of class S uniformly in € (see (3-5) and notice that Ry = 0), it follows from the
Neumann series that || (7 —z)~!|| gm_s ym 18 finite and only depends on m. Since |z —(n+(1 —c;l) sgnn)i|
and |z — c;lkn (€)| are uniformly bounded from below, both Z, (¢) and Z,(¢) are bounded from H™
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to H™, uniformly in € and n. Since Q,(€) is given by a similar integral (3-13), it also has this property,
which is also trivially true for P,. Now, for all n,m, k € Z, m,k > 0 and hel?,

1Zy () Re Pultll sy Sk I Re Patl e Sk V€1l Pull -
Sk €1+ )TNl - (3-17)
because P, is the projection onto very specific Fourier modes. For the first term we have
IR Zu (| g S €11 Zu (@R fr-n Sone L€l Nl -

To introduce the action of Q,(¢), note that the image of Q,(¢) lies in the eigenspace of the operator
ce0y + H + R, with eigenvalue A, (¢), so for n 0 and u € Im Q,, (¢) we have

u =€) ce' + Hu + Reu),
50 [lull g Sk (A (1 Hlull e S In| = [Jull s . Hence
1Qn(€) R Zn ()l st Sk n 2N R Zn(€) | prrse Somoke 1€l (14 [0 22l gy (3-18)

This also holds for n = 0 because R /¢ is of class S uniformly, so W, /e is of class S uniformly in €
thanks to the convergence of ), (1 + In|)~2. O

Now for £k = 0, 1, ..., there is a neighborhood of O such that when € is in this neighborhood,
N Well o e < 1,50 14+ We : H* — H* is invertible. By (3-15) and (3-16) it follows easily that

(1 +Wo)Qn(e) = P(1+ We), (3-19)

so the eigenspace of T is conjugated to the (span of) Fourier modes, and hence T is conjugated to a
Fourier multiplier.
We have proven the following lemma:

Lemma 3.7. For € small enough, there exists an operator W, such that W /€ is of class S, uniformly in €.

Moreover:
(H 1+ W, H* — HF is invertible.
(2) I+ Wo)Qu(e) = P(1+We), ne .
) If ¥ is in the closed linear span of the eigenvectors Vr,(€) (n # 0) of c.9y + H 4+ R, then
(14 Wo)(cedx + H+ Re)Y = Ac(1+ Wo) v,
where A is a multiplier such that
Ace TN = ) (€)' TN g =], 2,

3F. Taylor expansion of eigenvalues. Now we Taylor expand the eigenvalues A, (¢) for n # 0. To do so
it is more convenient to study the eigenvalue problem (3-2) for h:

Leg:=((ue —ve)g) + Hg = Ae)g.
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Recall the operator L = Ly = d, + H whose action on the Fourier modes is
F(Lg)(m)=i(m—sgnm)g(m),

with eigenvalues O (double), +i, £2i, ... (g mean zero).
Since (u¢, ve) is analytic in € on a neighborhood of 0, and

1A' |2 < I+ Hhll g2 + | Hhl 2 = | Lhll 2 + 2l 2,

by [Kato 1976, Chapter VII, Theorem 2.6], L. is a holomorphic family of operators of type (A), so by
Chapter VII, Section 2.3, all the results in Chapter II, Sections 1 and 2 apply, and we can compute the
Taylor coefficients of A(¢) as if L, acted on a finite-dimensional vector space.
We start with computing the resolvent of L,
R@)=(L—2)"

whose action on the Fourier modes is
F(R(2)g)(m) = (i(m —sgnm) —2) ' g(m).
Around the eigenvalue ni (n = +1, 2, ...) we have the expansion

oo
R(@)=(ni—2)"'Py+ ) (z—ni)sit,
k=0

where P, is the projection on the span of ¢/ " T522* and
g(m)
i(m—sgnm—n)’

F(S,g)(m) = m #n+sgnn. (3-20)

By [Kato 1976, (I1.2.33)],

o0
(@) =ni+Y AP, n=x%1,42,...,
k=1
where

k
20 — Z (—1)P Z TrL(UP)Sr(th) o L(v')S(h'),

p=1 vi+tvp=n, vj>1
hl+“'+h1):p_l

where S,(ZO) = —P, and, for h > 1, S,(lh) = S,’l’, with S, defined in (3-20), and L") is the coefficient of
€’ in the Taylor expansion of L.. Note that the constraints in the summation imply that there is some
Je€fl,..., p}suchthat h; =0 and so S,(Zhj ) — —P,, so every summand is a finite-rank operator whose
trace is thus well-defined.

Lemma 3.8. If A is a finite-rank operator, then Tr AB = Tr BA.

Proof. By linearity we can assume A has the form A(-) = f(-)v for some (not necessarily continuous)
linear functional f. Then Tr A = f(v). Since AB(-) = f(B-)v and BA(-) = f(-)Bv, it follows that
TrAB = f(Bv) =Tr BA. O
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Using the lemma above, we can simplify the sum in Af,k) a little. Indeed, there are p circular rotations
of the tuple (hy, ..., hp). Since (Z i hj, p) =1, the p circular rotations are all distinct, so we can choose
the lexicographically smallest one as a representative. For such a representative, /1 = min; h; =0, so

h .
s — _p.and thus we only need to act L(”P)S,(l P L) on e HSEX and take the (n+ sgnn)-th
mode to compute the trace. Thus

k
)\',(,lk) — Z(_l)p—l Z f[L(Up)S}Ylp) L L(vl)ei(n+sgnn)x](n + Sgnn). (3_21)
p=1

vi+tv,=k, vj>1
hi+-+hp=p—1
(hy,..., hp) is a representative

Let us compute some terms Aflk) by using the formula (3-21). We have

AV =Tr LV P, =0
because L shifts the mode by 1, and

AD =Te(LP P, — LS, LV P,).

Put s = sgnn. We extract the (n+s)-th mode of each term:

T LOP, = FILO 209 4 5) = ")
n 4 .
| b iLVs, ——— .
LS )SnL( )l (nts)x _ T((n s+ l)et(n—i-s-l- x4 (n+s— l)ez(n-i-s— )x)

1
= LT((H +s5+ l)gi(n+s+l)x —(n+s— l)ei(n+sfl)x)’

in+s+Dm+s)—iln+s—1Dn+s) ints)
4 2

Tr LS, LV p, =

SO
5,0 i(n+s) _2i(n+s) __i(n+s)

n 4 4 4

We can further compute that

2iln+s) 1le*i(n+s) 527ie®(n+s)
4 32 768

An(€) =in — + O, (e

forn =41, +2,4+3,....
Proposition 3.9. Forn =4+1,42,...,

k) _ 0, 2’Tk,
" ic®(n+sgnn), k<2ln|+2,
where ¢® is the k-th Taylor coefficient of c as defined in (3-7).
When k > 2|n| +4, )\,(1]() is still purely imaginary but the formula )L,(lk) =ic® (n +sgnn) does not hold

in general.
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Proof. Firstly we notice that, for n = %1, the coefficient of €in Ay (¢) is

€4 11€% 529¢€%
ME)=i————-—

0 7
2 16 382 TOE)

which does not hold for 1) = +2i ¢

Next, we prove the fist part of the lemma. In each summand of (3-21), all the coefficients are real,
except that each operator L brings a factor of i to the Fourier coefficients (via the operator d,), and each
operator S, removes a factor of i (see (3-20)). Hence each summand is purely imaginary, and so is A,gk).

In each summand of (3-21), the operator S,(l”‘f ) is a Fourier multiplier that does not shift the modes,
while the operator L™ g = ((u"™ — v'™)g)’ shifts the modes by at most m because u"™ only contains
modes up to e™"*_ Also the amount of shift is equal to m (mod 2). Thus when acting the sequence
L(“P)S,(,h”) < LD op ! 19X the mode is consecutively shifted by at most vy, v2, ..., v,, and the total
amount of shift is equal to ) Vi = k (mod 2). Since in the end we are taking the (n+s)-th mode, the
total amount of shift must be O in order to count, so when k is odd )\ﬁlk) = (0. When k is even, the mode
¢/"+9% can only be shifted as far as e/ "+5¥%/2*; otherwise it can never be shifted back. Hence when
k <2|n|+2 =2|n+s|, the frequency always has the same sign as n or becomes 0. In the former case we
can take sgnm = sgnn in (3-20), while in the latter case the derivative in L kills it, so it does not hurt if
we still take sgnm = sgnn in (3-20). Either way we can take sgnm = sgnn in (3-20). Thus the action of

Sy is the same as that of S, where

g(m)

F(S,8)(m) = - :
i(m—n—sgnn)

m #n+sgnn.
For n > 0, the operator S/, is the analog of S, for L™, with
F(LTg)(m) =i(m —1)g(m),
ie., LTg =g —ig. Hence A% remains the same if we replace L with L™. Now we have
Lig:=L"g+ i "L™Mg=—vg —ig+ (ucg) = (e —ve)g) —ig,

n=1

whose eigenvalue problem is
(e —ve)g) —ig = 21" (e)g.
Using the same change of variable as in Section 3B, the problem above can be transformed to
R —icZ'h=c"AT (o),
whose eigenvalues are
Ah(e)=n'cei —i.
Since when € — 0, A,(¢) — ni and ¢ — 1, we must have n’ =n + 1, and so
Au(€) = (n+ Deei —i + 0, (™).

For n < 0, note that since L preserves real-valued functions, its eigenvalues come in conjugate pairs,
SO Ap(€) = Ajy|(€) = —An(€) has the same property. O
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Corollary 3.10. When |€| is small enough,
IAn(€) — (n+sgnn)cei +isgnn| < |n|(Ce)?"+* < 'S, n e 7\{0},
A (€) — (n+sgnn)decei| < [n|(Ce)?" T3 < C'e>, ne2\(0},
for some constant C, C' > 0 independent of n.

Proof. By Proposition 3.9. the Taylor expansions of A, (€) and (n + sgnn)cei — i sgnn differ only from
the term €*"**, By Corollary 3.5, the error terms of the former sum up to O (|n| Y32, 14(Ce)*) =
O(|n|(Ce)*M+4y if, say, Cle| < % The error term of the latter clearly also satisfy this bound.

To extend the chain of inequalities it suffices to note that |n|(C €)2In=2 is uniformly bounded for n £ 0
if [Ce| < 3. O

3G. Time resonance analysis. For m, n and [ € Z we consider

Am(€) +An(€) +ri(€) =(m+n+1Dcei + (sgnm +sgnn +sgnl)(ce — 1)i + 0(66).
Proposition 3.11. If m, n,l € Z and mnl # 0, then when € is small enough, |\, (€)+A,(€)+A;(€)| > %62.
Proof. By (3-7) and (2-7),

R —
2 0 Ue(y) —ve 0 1+ecosy—%62c052y+%e2

2
= (/ (1 —ecosy+ezcos2y+%626032y— %ez)dy)
0

Ce = (1 + ‘—1‘62)_1 +0@E)=1- %62 + 0(€).

We distinguish three cases.

1
+ 0(e?),

Case l: m+n—+1+#0. Then |m+n+1|>1. Since cc — 1 562,
A (€) + A (€) + Ai(€) = (m +n+Deci + O(€2).

Since ¢ — 1 as € — 0, we have |1, (€) + A, (€) + A (€)] > %|m +n 41| for small €.

Case 2: m+n+1 =0 and mnl # 0. Then
Am(€) +An(€) + Mi(e) = —X(sgnm +sgnn +sgnl)e’i + O(”).

Since |sgnm|=|sgnn|=|sgnl| =1, we have |[sgnm+sgnn+sgnl|>1,s0 |, (€)+r,(€)+1(€)] > %62
when € is small enough. O

When m +n+1 =0 and mnl = 0, since A, (¢) is odd in n, it follows that A,,(€) + A, (€) + A;(¢) = 0.
We do have time resonance in this case. We will eliminate this case by choosing a new frame of reference.
4. A new frame of reference

Recall that the traveling wave solution

fe(x, 1) =uc(x +vet)
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satisfies

0 fe = Hfe + feOx fe,
1.€.,

Veu, = Hue + ueu.

Now we aim to find a new reference frame. Let POi (¢) be the projection on the 1-dimensional space

-1,/

spanned by the eigenvector (pg (€) = Ocue and @, (€) = —€ ™ u, respectively. Then we aim to rewrite

f, ) =uery(x +a() +glx +a(), 1),

where €, a € R and POlL (e(t))g = 0. We first show that it is always possible, provided that f is close to a
traveling wave.

Proposition 4.1. Let k > 2. Then there is r = r(k) > 0 such that if |eg| < r and || f — ue, |l gr < rleol,
then there is € € R, a € R/2nZ and g € H* such that

J) =uex +a)+gx+a), 4-1)
Pi(e)g =0, (4-2)
€ —€ol + llgllme SIS — theyll - (4-3)

Moreover, €, a and g depend smoothly on f.
Proof. Define the map F : (—r,r)> — R?, (¢,a) — (yT, y7), with
PyE(O(f (x —a) —uc(x)) = y g5 (€). (4-4)

We now find the solution to the equation F (€, a) = 0. Since POjE (¢) is uniformly bounded in L? and
||g05IE (e)]| is uniformly bounded from below,

|F(e, ) SIIf(x —a) —uell 2. (4-5)
Summing the two equations in (4-4) and taking the total derivative yields
— (Py () + Py () (f'(x —a))da — gy (€)de + (3 Py (€) + e Py (€))(f (x —a) —uc(x))de  (4-6)
=@y ()dy" + ¢y ()dy™ +yTdeqy (€)de +y depy (€)de. (4-7)
Since || fll g2 < llue ll g2 +rléol < l€ol, we have

If(x—a)—ucllg <1 f(x—a) = fF) g+ 11 f —uell g + e — e ll g
S laeol +rlegl + € — €ol. (4-8)

Since both POjE (¢) and 0, POlL (e) are uniformly bounded on L?, and u, = —€q, (),
1(4-6) — €@y (€)da+ ¢j (€)de|l 12 S (lae| +rleo| + |€ — o)) (|dal + |del).

By (4-5) and (4-8),
1y*3ey (ll2 S IF (e, @)l S laeol +rleol + e — €ol,
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SO
1(4-7) — @5 (€)dy™ — 95 (€)dy™ |2 S (laeo] + rleol + € — eol)|de].

Hence the equality between (4-6) and (4-7) gives an estimate of the differential

jerca=(5 -0

We assume that the solution (e, a) satisfies |e — €g| 4 |a€p| < roleo|, where rg is small enough. This in

< laeo] +rlegl + € —eol.

particular implies %|€0| < |€] < 2]eg]. Then

1
HdF(e, a) - (O _060) H < (ro+ el

omte (arco () ))( ).

1 0
dF—G(0 _€0>

IG =Ml <Sro+r.

is also small enough. Let

Then

and

If rg and r are small enough, then |G| and IG~1 <2.
Let (e1, a;) = (eg, 0) — d F (g, 0) "' F (€, 0). Then (recalling (4-5))

le1 — €0l + lareol < 1G ™' F(eo, 0)| S 1F (€0, 0)| S I f —uellz2 Srleol.
Since [02F| and |3, F| <1, and |82 F| < || f 2 < |€ol, by Taylor’s theorem,
|F (€1, an)| S ler — €0l + ler — eollar| + leol la1|* S 7| F (€0, 0)].

Hence the iteration (€41, an+1) = (€, ay) +d F (e, a,) " F (e, ay) converges when r is small enough.
Moreover €, — €o| + |an€o| S |F (€0, 0)|. Then (€, a) := lim,_(€,, a,) satisfies F(e,a) = 0 and
le —€o| + laeo| S |F (€9, 0)] S rleo| < roleol if r is small compared to ry.
Let g = f(x —a) — uc. Then (4-1) and (4-2) clearly hold. Moreover,
gl = lgCr + @)l = 1Lf () = ue (x4l s

<1 =tz + e (3 +@) = ey () |

SIf = teylzs + le = €ol + laeol

S — el e+ 1F (€0, 0) S N f — e ll 1
showing (4-3). The smooth dependence of €, a and g on f is also clear. U

By translation symmetry, if f is r|ep|-close to u¢,(x +a) for some a € R/2wZ, we can reach a similar
conclusion. Then we can write

Fx ) =uery(x +a@)) +gx+a),1).
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We will obtain an energy estimate for g. Combined with local well-posedness of (1-1) and Proposition 4.1,
we can show that the solution extends as long as the energy estimate closes, see the end of Section 5B.

To get the energy estimate, we first need to derive an evolution equation for g. Since f is differentiable
in ¢, so are €(t), a(t) and g, and we get

filx, 1) =a' () (u, + gx) (x +a(t)) + € () deuc(x +a(t)) + g (x +a(t), 1)
and
(Hf + ffo)(x, 1) = (Hue +ucuy)(x +a(t)) + Hg(x +a(t), 1)
+0x(ue(x +a(®)gx +a(r), 1) + (ggx) (x +a(1), 1).
The equation for g is then
8t = Ueu/é - a/(t)(u/e +8x) — 6/(I)8eue +Hg+ (ueg)x + 88x
=Lcg+ (ve — a/(t))(u/e +8x) — 6/(2‘)86146 + 88x-

Since POjE (e)g(t) =0, we have POjE (6)g: = —€'(t)0 POjE (€)g, so the action of the projections POjE (¢) on
the above equation is

(ve —d' (1)) Py (€)8x + € (1) (3 Py (€)g — Beute) + Py (€)(g8x) =0,
(ve —d' (1)) (ug + Py (€)gx) +€ (1)d: Py (€)g + Py (€)(ggx) =0.

Since POjE (¢) are bounded on L2, we have ||P0i(e)gx lz2 S llgllg- Since POjE (e) are analytic in €, we have
[|0¢ POjE ©gllz2 < llgllz2- Since POjE (e) is a projection, we have POjE (€)* = POjE (€). Taking the derivative
in € and using the constraint Poi(e)g =0, we have Poi(e)ae Poi(e)g = 0, Poi(e)g, 1.€., Oc Poi(e)g is in
the 1-dimensional space spanned by (,00i (¢). Hence

1P (€)g /o OIS Nglu, 1P g/oi @] S gl

Thus, dividing the two equations by (,00i (e) we get

01 1 Us—a/(t) _ Po—i_(E)(ggx)/(P(-)i_(E)>‘ < )
‘((e 0>+0(”g”” )>( €(r) )‘ _'(Po‘@)(ggx)/cpa(e) S N8Oy

Assuming || g(#)|| z1/|€] is small enough we have

ve—d' (1) _ 0<||g(r>||§,1/|e|>> "
( €(1) )‘( TGIERA 9

4A. Diagonalization. To find the evolution of other modes, we diagonalize the equation for g. Let
g=hyand h = h o ¢, where ¢, satisfies (3-3). Recall from (3-1) that Leg=—vege+Hg+ (eg)y, S0

hy = —vehy + Hh +uchy — € ()3 Ue + (ve — ' (1)) (e + hy) + 1h} (mod 1),
where Uk is a primitive of u.. Differentiating h = h o ¢ with respect to € we get

he =hy o e +€ () Dcpe) iy 0 pe).
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On the other hand,

(—vehy + Hh+uchy)y = Leg = (((cedy + H + Re)R) 0 ¢,
SO
By = (cedy + H+ R)h — € (1) 0cpe 0 . Vi — € (1) Ue 0 !
+ (e —d' () e +h) o + 3hT 0! (mod 1).
By the chain rule, /i, = ¢/ (h, 0 ), 0 hy 0 ¢! = (¢ 0 7y, and
hy = (cedy + H+ Rh+ ®chy — € )3 Uc 09 + (ve —a' ()uc o ' + 2(pL 0. )?hT (mod 1),
O = —€' () (Depe 097" + (e —d (1)) (PLop7 ).

Using the operator W, from Lemma 3.7 we have
(I 4+ Wo)(cedr + H+ Re) = A (1 + W),

where A is a Fourier multiplier whose action on the Fourier mode el (mtsgnmx 4o multiplication by A, (¢€).
Since W, /¢ is of class S, uniformly in €, for any smooth function F', the operator

hi> Re(F)h =1+ W) (Fhy) — F((1+ W.)h),

is of class S, with the implicit constants depending on the C* norms of F.
Let h = (1 + W,)h. Then

(1+ Wk = Ach+ ®chy — € ()(1+ Wo) (B Ue 0 9.
+ (ve —a' )1+ Wo) (e 0. ") + Nelb, bl + Re(P)h (mod 1),
where
Nelb, bl = 3@, 0. H* (1 + W) 'p)3. (4-10)

Both R (0cpe 0 ¢ 1y and R. (PLop” I'— 1) /e are of class S, uniformly in € when € is small. Moreover,
since W, is analytic in € with Wy =0, so is R¢ (1) with Ro(1) = 0. Hence R.(1)/¢ is of class S uniformly
in €, and s0 is Re (@, o g 1) /€.

Since d.ue and u/ are in the generalized eigenspace of L associated with the eigenvalue 0, we have
0cUc o ¢€_1 and u, o qﬁ;l are in the corresponding space of ccd, + H + R, so (1 + W) (0 U o qb;l) and
14+ We)(ue o ¢€_1) are in the space spanned by sin x and cos x, according to Lemma 3.7.

Now we have

b = (1 + Wo)h, + €' ()3 Wehn

= Ah+ Db, + N[b, h] 4+ Rest (mod 1, sin x, cos x), “4-11)
where N[0, b] is given by (4-10) and
Rest = €' (1) (3 WA + Re (P)h

is also of class S uniformly in € when € is small.
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Recall that €'(¢) and a’(¢) are chosen such that Py(e)g(¢) = O for all ¢, where Py(¢) is the projection
onto the span of dcu, and u. This implies Qo(e)fz(t) =0 for all #, where Qg(¢) is the projection onto
the span of d. U, o qbe_l and u. o ¢€_1. Since 1+ W, maps the span of d.U, o ¢)€_1 and u, o d);l to the span
of sinx and cos x, we have 6(1) = 6(—1) =0 for all .

5. Energy estimates

Since 6(1) = 6(—1) =(0forall¢, fork=0,1,... we define the energy

—Lypn2 — 1ypg2
Ek ) ” b ”H" -2 ” b ”H"/(l,sinx,cosx)
and aim to control its growth.
Using the evolution equation (4-11) for h and the anti-self-adjointness of A we get

4 EL(t) = Eo(t) + Ex(0) + Exex(0),
Eq(t) = (Peby, b) e,
En(1) = (Nelb(2), h(D], h(0)) g«
Erest(1) = (€ ()3 Weh (1) + Re (PR (), H(1)) .
Recall that g = i, h = ho ¢ and h = (1 + W,)h. When € is small enough, the last two are bounded
operators with bounded inverse between Hf k= 0,1,...,s0

g1z 20 W e 22k 1 g 22 D1 gracn (5-1)
Since Re(dcpe 0 p 1), Re(¢pL o p ') /e and 3. W, are of class S uniformly in e,

(€' ()3 We — € (t)YRe (Bepe 0 NAD | e Sk 8O3 1O g1 Sk E2(6),

|(ve —d' ()Re(@. 0 7 DOl g Sk (O3 /) €l ]l g1 Sk E2 (1)
SO

| Erest ()] Sk E2(1) 2 E(1)'/2. (5-2)
To bound E¢ we use (4-9) and (5-1) to get

I llex Sk g3 + Ng @I /leD el Sk Ea(t).

Since E¢ loses only one derivative in fj, we have
|Ea(t) — (e 10(1), 950(0)) 12/1)| Sk E2(0) Ex(0). (5-3)

For the sake of bounding this term, since the inner product is taken in the space L?/(1), we can without
loss of generality assume that h(0) = O (which is not true in general) and integrate by parts to get

2

27
2050 (1), 5h(1)) 12/1) = /O D, (85 (1)) dx = — fo L8 (1)) dx

so again by (4-9) and (5-1),
|Ea (1) Sk E2(t) Ex(2). (5-4)
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Combining (5-2), (5-3) and (5-4) shows that

d
dt

5A. Normal form transformation. To bound Ey we recall the expression of N, from (4-10). Since N,

Ei(t) — En(t)| Sk Ex(t) Ex(2). (3-5)

does not depend on the constant mode of f, we can also assume without loss of generality that 6(0) =0.
We further have the decompositions
En(t) = Eni(t) + Ena(1),

L [k/2]+1 o . . (5-6)

Eni() =5 fo DO B:h1)) dx= Y a /0 H@ T h)a]h),
j=2
where ¢i; € R are constants and we integrated by parts to get rid of the terms with k + 1 derivatives falling
on a single factor of b.
We use the normal form transformation to bound them. Define the trilinear map

1 2N .
D, s J2s = i(m-+sgnm)x
B Bl= D o S wane Jy it senme X
mnl#Q % fz(n +sgn n)ei(n+sgnfz)xf3(l + Sgnl)ei(l-i-sgnl)x dx
and put
Dy j(t) = Dy [95h(0), H2770(), 316 (D)1
Then

%Dl,k, J() =€ )@ DLH (), 3> Th(1), 3/h(1)]
+ D0y 9, b (1), 077 h(0), 0 h(0)]
+ D[0gh(@), 077 8,h(1), 01 H(1)]
+ D J3h (), 32 h(1), 93, h()].

Note that Ex(¢) is a linear combination of the last three lines on the right-hand side, with 0, replaced
with A, so (d/dt) Z[.]{/Z]Jrlcjle,k,j(t) — En1(2) is a linear combination of

j=2
€ (1) D)LH(1), 9>779(1), 3/h (1], (5-7)
D [35 (3, — AOb(), 37 h(1), 3/ b(D)], (5-8)
D [3h(1), 0577 (8, — Ah(1), 8] h(1)], (5-9)
D.[850(1), 95277 0(1), 8] (3 — A)h()). (5-10)

We estimate these terms one by one.
By the definition of D,

» O (€A, (€)+) (€))
(57 = <f>mn%0z<xm(e>+xn<e)+kz<e>>2
2

x | bm+sgnm,1)ake! " TEMWYG (ntsgnn, 1)k T2 ! TG (1 sgn i, 1)9) e T
0
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We first bound the fraction. By Corollary 3.10, when € is small enough,

A, (€)+ A, (€)+Aj(€) = (m+n+1+sgnm~+sgnn+sgnl)decei + 0(ed)
S(Um+n+11+1)lel. (5-11)

On the other hand, the integral vanishes unless
m4n—+I1+sgnm-+4sgnn—+sgnl =0, (5-12)
in which case m 4+ n + [ is an odd number, and so is nonzero. Then by Case 1 of Proposition 3.11,

A (€) + An(€) + 1i(€)] > 3lm +n+1], (5-13)

SO

e (€) + 2 (&) + 2 ()] _

|Am(€) + An(€) + A1 (e)]> ™ €l (5-14)

Then for k > 3,

(5D S le@e' ] Y 1om+sgnm) hm +sgnm, 1)

ey x (n+sgnn)*t>7h(n +sgnn, ) +sgn )’ Hl +sgnl, 1)|
2w
m|e(t)e/(t)|/ OFH (x, 0"~ H(x, 1)d] H(x, 1)| dx
0
Sk le(®)e' (O]1H (x, t)”i])lg’ I1H (e, )|y terrr00 Sk le(t)e' (01 H (x, t)llzf (5-15)

since k > [k/2] + 2, where

H(x, )= [h(m+sgnm, 1)|e'mHenms
m#0
satisfies
IH G, )l e = 15O e S Ex()'?
so by (4-9) and (5-1),
(5-7)] Sk el E2 (1) Ex ()2 (5-16)

To bound the other terms (5-8), (5-9) and (5-10), we use the evolution equation (4-11) of f, which
loses one derivative in §, so

13 = ADB@ et S N30 /1EDIH@ | 75 + 1B 1

If lg(@) || 51/ €] is small enough and & > 2, the first term is dominated by the second term thanks to (5-1).
Since in the summation of D it holds that m +n + [ # 0, the denominator is uniformly bounded from
below thanks to (5-13). Unless j =2 in (5-8) and (5-9), we can integrate by parts if necessary to ensure
that at most k — 1 derivatives in x hit each factor of j. Then similarly to (5-15) it follows that for k > 5,

1((5-8), j = 3) 4+ ((5-9), j = 3) + (5-10)| Sk Ex (1), (5-17)
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For j =2, by symmetry of D, it is clear that

((5-9), j=2) = ((5-8), j=2), (5-18)
which according to (4-11) equals

De[35(@cbh, (1) + Ne[b(1), h()]+ R(1)), 35h(1), 37H(1)].
Similarly to (5-15),
ID[OER(1), 35h(1), 370()]] Sk E3(1)*Ex(1)'/2. (5-19)
Similarly to (5-3),

| D35 (@b (1)) — DX (), 950(2), 32601 Sk E3(2) 2 Er(2). (5-20)
By the definition of D,

De[®:05 (1), 95h(1), 326(1)]

1 2 . A ) R
— / . (p)e'P h(m~+-sgnm, 1)dF el MTEMTG (4 sonn, 1)
0

x 9! MY (1 4 son, 1)2e TN gy (5-21)

where m’ 4+ sgnm’ = p+m +sgnm # 0, £1. We break the summation into several parts.

Part 1: |p| > %|m + sgnm|. Then we can transfer the extra derivative from f to ., and compute as in
(5-3) to get
|Part 1] Sk E3(1)?Ex (0). (5-22)

Part 2: |p| < |m +sgnm|/3 but |p| > |n+sgnn|/3. If |n+sgnn| > |m|/3 then |p| > |m|/9, and we get
the same bound as before. Otherwise, since the integral vanishes unless

p+m+n+l+sgnm+sgnn+sgnl=0 (5-23)

in which case we have |/ +sgn/| > |n +sgnn|/3, we can transfer the extra derivative to the factor 8%?) to
get (note that [| D |[cx i lIg11%,/1€])

|Part 2| S (Ig()113,1 /1D E4(t)' P Er(t) S E4(t) Ex(2) (5-24)

provided that || g(¢) || 51/ |€]| is small enough.

Part 3: |p| < %|m + sgnm| and |p| < %ln + sgnn|. Then sgn(m’ + sgnm’) = sgn(m + sgnm), i.e.,
sgnm’ =sgnm, so m’' =m + p. By symmetry,

1 2w
Part 3 = 2 h(l+sgnl, )82 TDXG_(p)eP*h(m+senm, t
m%o Ot ), sl 0 c(p)eP*h(m—+sgnm. 1)
|pl<Im+sgnm|/3 x gk H Ll tmsenmXfy (L sonp, 1)9k el HEIY g
|pl<In+sgnn|/3 1 o
2 n 2 i(l+sgnhx & ipx,
+ [+sgnl,t)dze O] e m-sgnm, t
m%() o (@ Fmep (@t (@) Jy TEND% «(PeTblmrsgnm. 1
|pl<lm-+sgnm|/3 x kel mHSENmIX (L sonp, )9k H eI HSENIX gy

Ipl<In+sgnnl/3
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Note that the two denominators are uniformly bounded from below. Also, sgn(m + p) = sgnm and
|m + p| > %(2|m| — 1), and similarly for /. Then by Corollary 3.10, the two denominators differ by
0(|m|€4|m|/3+3 4 |n|64|n\/3+3), SO

1 2r . R ' A
P ) bh(l+sgnl, 1)d2e' DD (p)eP* o, (h(m—+sgnm, 1)
m%() )xin+p(6)+)n;1(6)+kl(e) 0 X € N
|pl<|m+sgnm|/3 % a)]ccei(m+sgnm)x6(n+8gnn, t)a)’;ei(n-i-Sgnn)x) "

|pl<Intsgnn|/3

2
+Y O(m|e!m3H 4 n|etinI313) f |(+sgnd)*h(U+sgnl, 1) D (p) (m-+sgnm)
0

(5-23) N K17
xh(m-+sgnm, t)(n+sgnn)" " h(n+sgnn,t)|
_1 21
_ 2 n 2 i(l+sgnDx & ipxX\p
= dx(h(l+sgnl,t)d;e D (p)e'P*)h(m+sgnm,t)
m%éo Do+ p(€)Fn (€)1 (€) /0 i ! ‘
|pl<|m+sgnm|/3 x 8fei<m+sgnm)xh(n+sgnn, t)afei("“g“")x dx

[pl<|n+sgnn|/3

2
+Y 0 / |(I+sgnl)?h(I+sgnl, 1)
0 I R R
(5-23) x P, (p)(m+sgnm)kb(m+sgnm, t)(n—i—sgnn)kb(n—l—sgnn, 1),

4)m|/343

where we integrated by parts in the first integral and used the bounds |m|e and

In(n +sgnn)et™V/33) <
in the second. Then as in (5-15) it follows that

|Part 3| <y (lg 1131 /1N Es@)' 2 Er () +€* (g3, /1D E3@) 2 Ex (t)
< Es(t) Ex(1) (5-25)

provided that € and ||g(¢)|| g1/|€| are small enough.
Combining (5-20), (5-22), (5-24) and (5-25) shows that

| D[35 (@b (1)), 350(2), 320(0)]] Sk Ea(t) (1 + E4(1)'/?) Ex (1) (5-26)

provided that € and ||g(¢)|| g1 /|€| are small enough.
We now turn to D[3*N[h(2), h(t)], 3%h(z), 32h(1)]. Similarly to (5-3),

| D[OXN[H(1), h()], 356 (1), 32H(1)]
—Dc[(pLop. )20, (1+Wo) ') @ 1+ W) 'h(2)), 35h(1), 320 (1)]| Sk lel E3 ()2 Ex (1) (5-27)

Since W, /€ is of class S uniformly in €, sois ((1 + W)~ — 1)/e, so

|Del(@L 0 07 (0 (1+ W) " o) @5 (1 4+ W) ™' — Dh(2)), 85h (1), 325 ()]
<k lelEs()*PEx)'/?. (5-28)
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Finally, Dc[(¢. 0. ") (x (14+ W) ~1h(£)) (85T 1h (1)), 3% (2), 32 (#)] is of the same form as the left-hand
side of (5-21), so we trace the same argument to get

|Part 1] g E3(t) Ex (1),
|Part 2| g E4(t) Ex (1),
|Part 3| g E4(t) Ex(t) + €* E3(t) Ex(t) S E4(t) Ex(t)

provided that € is small enough. Hence

| Del(¢L 0 7 (0 (1+ W)~ o)) @51 0(1)), 356(1), 26()]1] Sk Ea(t) Ex(2). (5-29)
Combining (5-27), (5-28) and (5-29) shows that, for k > 4,

|D[BX N[ (1), H(D)], 356(2), 326()]1| i Ea(t) 2 Ex ()2 (5-30)

provided that € is small enough.
Combining (5-19), (5-26) and (5-30) shows that, for k > 4,

1((5-8), j =2)| <k Ea()V2(1 + E4(1)'/?) Ex (1)*? (5-31)

provided that € and ||g(¢)|| g1/|€| are small enough.
Finally, combining (5-16), (5-17), (5-18) and (5-31) shows that, for k > 5,
[k/2]+1
‘E D D) = Eni(0)] S (1+ Ea()'?) Ex(t)? (5-32)
j=2

provided that € and ||g(¢)|| g1 /|€| are small enough.

5B. Lifespan when § < €. In this section we will obtain a preliminary bound for Ey, = Exy — Enp and
show a lifespan of 1/(ed) when ||goll g5y = K €, i.e., § < ce for some ¢ > 0 independent of €.
Recall from (5-6) that
17 Kigar — a—1\2 —1 2
En(t) = 5/0 0:h(@)0; (e 0 )™ ((1 4+ We) ™ h(2))y) dx.
Similarly to (5-3), for k > 3,

2

En®)— [ (@Lod )20 ()% (1 + Wo) " (1))?) dx| Sk el Ex(t)/2
0

Since ((1+ W,)~! —1)/e is of class S uniformly in e,
2

(@ o p D21+ W)™ b, (1) — by (1))?) dx

0

<k €2 Ex(1)*?,

27
2‘ i (@, 0 p-H?EH()E (1 + W) 1o (1) — b (1)) (1)) dx
2T

- (@, 0 A+ W) T b (1) — b ()5G35 (1) dx| Sk lel Ex ().
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Finally, by integration by parts,

2

‘2 i (@L o (1 + W) ' (1) — b ()L ()T h (1) dx

27
/0 A ((PL o d (1 + W)™ (1) — b (1)) (B¥h (1) dx| Sy el Ex ()2

Combining the bounds above shows that, for k > 3,
|En, ()] = |En(t) — En,(1)] Sk €] Ex(8)*? (5-33)

provided that € is small enough.
Now combining (5-5), (5-32) and (5-33) shows that, for k > 5,

[k/2]+1
Tl 22 D0 = Ex®)] S L+ Ea() ) Ex (1) + e Ee (1)), (5-34)
j=2
provided that € and ||g(¢)|| g1 /|€| are small enough. Hence
[k/2]+1
1/2 2
Ef0) = Ex0) = Y cji(D1xj(®) = Dri;(0) + Ox(I(1+ E)E} +1€1E; [l 11 go.01)-
j=2

Similarly to (5-15),
D1k j ()] = | Dey [350(2), 35T270(2), 316 (0)1] Sk Ex ().

Now we are able to show a lifespan longer than what follows from local well-posedness. Assume that
the initial data is

F(x,0) = ue(x) + g(x),

where |€| < €q is small enough, the energy E;(0) computed from g is E;(0) = 82, and |8/€] is also small
enough. Let

T = sup{T : there exists a solution f(x,?) = uc)(x +a(t)) +gx +a(t), 1), (5-35)
t € [0, T] such that %|e| <le(®)| <2le|, Ex(t) < 482}. (5-36)

Then the above conditions hold for all ¢+ < T* Moreover, the energy estimate implies
Ei(t) =87 4 Or(8> +1(8* +1€]8%)) = 8 + 0k (8> (1 +t]e])).
Then there is ¢ > 0 such that if T* < ¢;/|€]|§, then Ex(t) < 252. Also,
HF G Olle = Nuell 2l = 1L (e, O)llze — Nluell 2l < Ngll2 S8

by conservation of the L? norm. Meanwhile || f (x, #)|l;2 — el 2] S8, 80 [luewllzz — Nuellz2] S 6.
When |€e]| is small enough, | u.| ;2 is differentiable in € with nonzero derivative at € = 0. Since |§/¢€] is
small enough, |e(t) — €] < 6.



2142 ANGEL CASTRO, DIEGO CORDOBA AND FAN ZHENG

By local well-posedness, the solution can be extended to a time * > T*, with

Lf G ) = £ e, T e S @ =TS Dl + 1F (x, Dl133) < (@ = T*)e]

fort € [T* t*]. Then || f(x, 1) —uer+)(x +a(T*)| g2 S (¢* —T*)|e| + 8. Take t* = T* 4 §/|¢|. Then
f(x, t) satisfies the conditions in Proposition 4.1, so (5-35) holds up to time ¢* Since f(x, T*) is small
in H, f(x,t) is uniformly bounded in H 4on [T* t*], so it stays within a compact set in H 2. Since €
is differentiable in f € H?, |e(t) —e(T*)| < (t* —T*)|e| <8, 50 |e(t) —e| < 8,50 |€]/2 < |e(t)] < 2le|
holds up to time #*. The energy estimate then implies E; < 3582 also up to time ¥, so (5-36) holds up to
time ¢*, contradicting the definition of 7* Hence the lifespan T* 2, 1/]€|3.

5C. Longer lifespan when § < €*. When the perturbation g is very small compared to €2, that is,
lgoll s =0 K €2, we can obtain a longer lifespan by applying the normal form transformation to

Eny=EyNy —En1 = En21 + En2n+ En2z + Enog,
where
[k/2]4+1

2 ) )
Eny= Y. c,@,-/o BT (Pl o N1+ W)™ = D)3 (¢L 0 ¢ (1 +Wo)~'h(1)) dx,
j=1

[k/2]+1 k+2—j

2
Evp= ) chﬁfo OH(D (DL o d NI ()] (¢L o ¢ N1+ We) ™' h(1)) dx,
=1 i=1

[k/2]+1

2
Evp= ) «j /0 HO) (@ op = DA IH(1)d] (L o)1+ W) ~'h(1)) dx,
j=2

[k/2]+1

27
Enu= Y ckjf OHOT (1] (¢l op (1 + W)~ —b) dx,
=7

where c¢;, C;q and c;; € R are constants and we integrated by parts to get rid of the terms with
k + 1 derivatives falling on a single factor of fj, except for the term with j = 1 in Ep»;, in which
the k + 1 derivatives do not matter in view of the fact that the operator (¢, o ¢_ DA+ w)"1=1)isof
class S.

Now we define

D1l f1, f2, f3]

[k/2]+1 Cl/cj 2 f( ) i (m4-sgnm)x
_ Z 1(m—+sgnm)e ‘
j=1 Am(€) +A,(€) +Ai(e) 0 g ; i
o X 9 (@0 A+ W)™ = D fa(n +sgnnye! HET)

X 0)((@L 09 N1+ W™ il +sgnbyel(HeD),
and

D1 (1) = De21[h(0), b(1), h(®)],
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and similarly define Dy, D)3 and Dy4. Then

%Dm(t) — En21(t) = € (1) (3 De 21) [H (1), h(1), h(1)] (5-37)
+ De21[(3; — Ah (D), b(1), bh(®)] (5-38)

+ De21[h(0), (8 — A)b (1), h(n)] (5-39)

+ De21[h(2), b(2), (8 — Ae)b(®)]. (5-40)

We estimate these terms one by one.

For (5-37), (5-11) still holds, but there are nontrivial actions on h in the slots, so no frequency restriction
such as (5-12) exists. When m +n 4+ # 0, we are in Case 1 of Proposition 3.11, so (5-13), and hence
(5-14), still hold. When m +n +1 = 0, by Case 2 of Proposition 3.11, when € is small enough,

A (€) + An(€) + i(€)] > 3€7, (5-41)
which, combined with (5-11), shows that the multiplier in 9 D, is bounded by

A (€) 4 Ay (€) + A ()] < e (5-42)
|2om (€) + A (€) + 21 (€)1

instead of (5-14). Since both (¢, o ¢ 1) (1 + W)~ — 1) /€ and 3 (¢ 0 p7 1) (1 + We)~! — 1) are of
class S uniformly in €, it follows that, for k > 3,

I(5-37)] <k €' ()€ 2Ex(1)** < € 2 Ex (1) Ex ()2 (5-43)

provided that € is small enough.

The terms (5-38), (5-39) and (5-40) are like (5-8), (5-9) and (5-10) respectively, except that instead of
the uniform lower bound of A,,(¢) + A, (¢) + A;(¢) we now have (5-41), which loses two factors of €, but
we are helped by the e-smallness of (¢ o ¢_ D1+ W)~ = 1), which wins back a factor of €. All told
we lose a factor of € compared to (5-32), so, for k > 5,

1(5-38) + (5-39) + (5-40)| Sk lel (1 + E4()'/*) Ex (1) (5-44)

provided that € and ||g(¢)|| 1 /|€| are small enough.
Combining (5-43) and (5-44) shows that, for k > 5,
D210 = Exan (0] S el ™! (1 + Ea(0) ) Ew(r)? (5-45)
provided that € and ||g(¢)| z1/|€| are small enough. We can also save a factor of € in the other terms
En2, En23 and E o4 thanks to the e-smallness of (¢, o ¢€_1)’ and ¢, o qﬁe_l — 1. Hence the bound (5-45)
also holds for En22, En23 and Epnog4.
Combining (5-5), (5-32) and (5-45) shows that, for k > 5,
[k/2]+1 4
E(t) = Ex@) = Y cjx(Draj(t) = D j(0)+ Y _(Daj(t) — D2;(0))
=2 =! + Ol 10+ Ey*) ERll L o.)
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provided that € and ||g(¢)|| g1 /|€| are small enough. Similarly to (5-33), for k > 3,
Do, j (D] Sk €)1 Ex (1) = Ex (1) /|e].
Hence if E;(0) =8> <1 and E; < 252 on [0, ¢] then
Ei(t) =82+ |e|718% + O (r]e]718%).

Assume §/€? is small. Then the second term on the right-hand side is < 8°/2, so we close the estimate for
atime t <; |€|/82, which is also the lifespan in this case.
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DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN

RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into
Neumann domains, a.k.a. a Morse—Smale complex. This partition is generated by gradient flow lines of
the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian
defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that
the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann
Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an
eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain
may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful
common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet
Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the result-
ing spectral position problem for Neumann domains, which is much more involved than its nodal analogue.

1. Introduction and statement of results

Let M be a closed, connected, orientable surface with a smooth Riemannian metric g. It is well known
that the Laplace—Beltrami operator A is self-adjoint and has a purely discrete spectrum. We arrange the
eigenvalues in increasing order

O=dp <A <A <--. (1'1)

and let { f,,}7°, denote a corresponding complete system of orthonormal eigenfunctions, so that

Afn=ufn- (1-2)

While we are motivated by the study of eigenfunctions, most of the results and constructions in this paper
are valid for arbitrary Morse functions. It is well known that for a generic Riemannian metric all of the
Laplace—Beltrami eigenfunctions are Morse [Uhlenbeck 1976].

The main objects of study in this paper are the Neumann domains of a Morse function, to be defined
next. Given a smooth function f on M, we let ¢ : R x M — M denote the flow along the gradient vector
field, i.e., the solution to

g, x) = —grad floe.x), ¢(0,x) =x. (1-3)
For a critical point ¢ of f, we define its stable and unstable manifolds by
Wie):={xeM: lim o(t,x)=c}, W'(c):={xeM: lim ¢, x)=c}. (1-4)
t—00 t——00
We denote the sets of minima, maxima and saddles of f by Min(f), Max(f) and Sad(f), respectively.
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Figure 1. Left: An eigenfunction corresponding to the eigenvalue A = 17 on the flat torus
with fundamental domain [0, 2] x [0, 2 ]. Circles mark saddle points and triangles mark
extremal points (maxima by triangles pointing upwards and vice versa for minima). The
nodal set is marked by dashed lines and the Neumann line set by solid lines. The Neumann
domains are the domains bounded by the Neumann line set. Right: A magnification of
the marked square from the left figure, showing Neumann domains with and without
cusps. (This figure was produced using [Taylor 2018].)

Definition 1.1 [Band and Fajman 2016]. Let f be a Morse function on M.

(1) Let p e Min(f) and g € Max( f) such that W¥(p) N W"(q) # &. Each of the connected components
of W¥(p) N W*(q) is called a Neumann domain of f.

(2) The Neumann line set of f is

N= | wmyuwea). (1-5)
reSad(f)

This defines a partition of the manifold M, which we call the Neumann partition. It is not hard to show
that M equals the disjoint union of all Neumann domains and the Neumann line set, under the assumption
that A/ # &; see [Band and Fajman 2016, Proposition 1.3]. (Note that A’ = & means f has no saddle
points; this is only possible when M is a sphere and f has exactly two critical points.) Figure 1 depicts
the Neumann partition of a particular eigenfunction on the flat torus.

By construction we have that grad f is parallel to the boundary of any Neumann domain €2, as
the boundary is made up of gradient flow lines, so we conclude that the normal derivative vanishes,
dy flag = 0, assuming 9€2 is sufficiently smooth. This formal observation motivates our study of the
Neumann Laplacian on €2, which we precisely define in Definition 4.1.

While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum, the same is
not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum may be nonempty, and in
fact can be an arbitrary closed subset of [0, 00); see [Hempel et al. 1991]. Nevertheless, the Neumann
Laplacian of a Neumann domain is well-behaved.

Theorem 1.2. Let Q2 be a Neumann domain of a Morse function f. Then the Neumann Laplacian Ag on 2
(see Definition 4.1) is a nonnegative, self-adjoint operator with purely discrete spectrum, i.e., consisting
only of isolated eigenvalues of finite multiplicity.
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The main difficulty in proving this theorem is due to possible cusps on the boundary of the Neumann
domain; see Proposition 2.5 and the discussion preceding it. Such cusps prevent the application of
standard results on density and compact embeddings of Sobolev spaces. We overcome this difficulty
in the proof of Theorem 1.2 by using some particular geometric properties that the Neumann domain
boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction of the Dirichlet
Laplacian. Similarly, we have:

Theorem 1.3. If Q2 is a Neumann domain of a Morse function f, then f|q € D(Ag). In particular, if f
is an eigenfunction of A, then f|q is an eigenfunction of Ag with the same eigenvalue.

In fact, we prove much more: in Proposition 4.3 we completely characterize the domain of the Neumann
Laplacian, and in Proposition 4.8 and Corollary 4.9 we give some easily verified sufficient conditions for a
function to be in the domain of Ag . Given a Morse eigenfunction, by which we mean an eigenfunction of
the Laplace—Beltrami operator that is also a Morse function, Theorem 1.2 allows us to define its spectral
position as follows.

Definition 1.4. Let f be a Morse eigenfunction for an eigenvalue A, and let 2 be a Neumann domain
of f. We define the spectral position of €2 as the position of A in the Neumann spectrum of €2, i.e.,

No () = {1tn € 0 (AN) : un < A}, (1-6)

where 0 (£2) := {1n}, 2 is the Neumann spectrum of €2 (which is discrete by Theorem 1.2), containing
multiple appearances of degenerate eigenvalues and including po = 0.

From Theorem 1.3 we in fact have A = u,, for some n, and so we can equivalently write
No(A) =min{n : u, = A}.

In particular, if A € O’(Ag ) is simple, then A = u,, for a unique n, and hence Ng()) = n. This equality
explains the terminology “spectral position” for Ng ().

The spectral position is a key notion for Neumann domains. Finding its value is a great challenge
and is of major importance in studying Neumann domains and their properties [Band and Fajman 2016;
Band et al. 2021; Alon et al. 2020]. The corresponding notion for a nodal domain is trivial: if D is a
nodal domain of f, then f|p is always the first eigenfunction of the Dirichlet Laplacian on D. This is a
basic observation which serves as an essential ingredient in many nodal domain proofs. No such result
holds for Neumann domains, and in fact the spectral position of an eigenfunction restricted to a Neumann
domain can be arbitrarily high, by [Band et al. 2021, Theorem 1.4].

Structure of the paper. In Section 2 we describe some essential geometric properties of Neumann domains,
emphasizing the potentially singular nature of their boundary. In Section 3 we use this geometric structure
to establish fundamental properties of Sobolev spaces on Neumann domains, including nonstandard
density and compactness results. Finally, in Section 4 we use these properties to study the Neumann
Laplacian, in particular proving Theorems 1.2 and 1.3.
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2. Geometric properties of Neumann domains

As above, we take M to be a closed, connected, orientable surface with a smooth Riemannian metric g.
Note that all of the statements in this section hold for arbitrary Morse functions, and not only for
eigenfunctions. For convenience we recall the following definitions.

Definition 2.1. Let f : M — R be a smooth function.

(1) f is said to be a Morse function if the Hessian, Hess f(p), is nondegenerate at every critical point p
of f.

(2) A Morse function f is said to be Morse—Smale if for all critical points p and ¢, the stable and unstable
manifolds W*(p) and W*(q) intersect transversely (see Lemma 2.4 for an equivalent definition in
two dimensions).

We now recall some basic topological properties of Neumann domains.

Theorem 2.2 [Band and Fajman 2016, Theorem 1.4]. Let f be a Morse function with a nonempty set
of saddle points. Let p € Min(f), q € Max(f) with W¥(p) N W"(q) # &, and let 2 be a connected
component of W*(p) N W*(q), i.e., a Neumann domain. The following properties hold:

(1) The Neumann domain 2 is a simply connected open set.
(2) All critical points of [ belong to the Neumann line set.
(3) The extremal points of f on Q are exactly p and q.

@) If f is a Morse—Smale function, then 02 consists of Neumann lines connecting saddle points with p
or q. In particular, 02 contains either one or two saddle points.

(5) If c € R is such that f(p) < c < f(q), then QN f~1(c) is a smooth, non-self-intersecting one-
dimensional curve in Q, with its two boundary points lying on <.

Parts (2) and (4) of this theorem motivate us to examine individual Neumann lines and their connectivity
to the critical points of f.

Definition 2.3. (1) A Neumann line is the closure of a connected component of W*(r)\{r} or W*(r)\{r}
for some r € Sad(f).
(2) For a critical point ¢ of f, we define its degree, deg(c), to be the number of Neumann lines connected

to c.

Each Neumann line is thus the closure of a gradient flow line, connecting a saddle point to another
critical point. Note that r is removed prior to taking the closure, as the closure of either W*(r) or W*(r)
will consist of two Neumann lines meeting tangentially at r. The connectivity of Neumann lines is directly
related to the Morse—Smale property of f.

Lemma 2.4 [Alon et al. 2020]. On a two-dimensional manifold a Morse function is Morse—Smale if and
only if there is no Neumann line connecting two saddle points.

The following properties of Neumann lines will be used throughout the rest of the paper.
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Proposition 2.5. Let f be a Morse function and 2 one of its Neumann domains.

(1) If ¢ is a saddle point of f, then deg(c) = 4 and the angle between any two adjacent Neumann lines
which meet at ¢ is 7.

(2) If c is an extremal point of f whose Hessian is not proportional to the metric g, then any two
Neumann lines meet at ¢ with angle 0, Z or 7.

(3) Let ¢ be an intersection point of a nodal line and a Neumann line. If ¢ is a saddle point, then the
angle between those lines is 7. Otherwise, the angle is 7.

Remark 2.6. More generally, if ¢ is a saddle point and there exist coordinates (x, y) near ¢ in which f is
given by the homogeneous harmonic polynomial Re(x + iy)*, then deg(c) = 2k. For a nondegenerate
saddle the existence of such coordinates (with k = 2) is an immediate consequence of the Morse lemma,
so we obtain Proposition 2.5(1) as a special case of this remark. Sufficient conditions for f to be written
in this form are given in [Cheng 1976, Lemma 2.4].

The first and third parts of Proposition 2.5 were proved in [McDonald and Fulling 2014; Banyaga and
Hurtubise 2004, Theorem 4.2; Alon et al. 2020, Proposition 4.1]. The second part of the proposition is
proved below (see Remark 2.9 after the proof) using the following version of Hartman’s theorem, which
will also be used in the proofs of Lemma 3.2 and Proposition 3.3 to give a canonical description of the
boundary of a Neumann domain near a cusp point.

Proposition 2.7 [Hartman 1960]. Let E be an open neighbourhood of p € R%. Suppose F € C*(E, R?)
and let ¢ be the flow of the nonlinear system 0,¢(t, x) = F(p(t, x)). Assume that F(p) = 0 and the
Jacobian DF(p) is diagonalizable and its eigenvalues have nonzero real part. Then, there exists a
C'-diffeomorphism ® : U — V of an open neighbourhood U of p onto an open neighbourhood V of the
origin such that D® (p) = and for each x € U the flow line through x is mapped by ® to

D(p(t, x)) =P D (x) 2-1)
for small enough t values.

Remark 2.8. The textbook version of Hartman’s theorem in n dimensions (see, for instance, [Perko
2001, p. 120]) only guarantees the existence of a homeomorphism ®. For n = 2, the proposition above
guarantees that ® is a C'-diffeomorphism, but for n > 2 further assumptions on the Jacobian are required
to obtain this additional regularity. For instance, it suffices to assume that all of the eigenvalues of DF(p)
are in the same (left or right) half-plane; see [Perko 2001, p. 127]. That version of the theorem would
be sufficient for our purposes, since we only apply Proposition 2.7 at nondegenerate extrema, where all
eigenvalues have the same sign. However, it is interesting to note that Proposition 2.7 also applies at
saddle points in two dimensions.

Proof of Proposition 2.5(2). Let ¢ be an extremal point of f whose Hessian is not proportional to g. Since
Hess f(c) is nondegenerate, both eigenvalues of Hess f (c) are either strictly positive or strlctly negative.
We choose normal coordinates in an open neighbourhood E of ¢, with respect to which E is represented
by an open subset E C R?, ¢ corresponds to the origin 0 € R?, and g;; ;(0) = 4.
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We now apply Proposition 2.7 to F' = — grad f. Since DF(0) = — Hess f(0) is diagonalizable and has
nonzero eigenvalues, there exist U C E and V C R?, both containing the origin, and a C'-diffeomorphism
® : U — V such that the gradient flow lines are mapped by & to the flow lines e " Hess f O ¢ (x) of the
linearized system. In [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] it
was shown that the angle between such flow lines at an extremal point is either 0, 7 or 7z, under the
assumption that Hess f(0) is not a scalar matrix. This assumption holds, as the Hessian is not proportional
to the metric and we have chosen coordinates with respect to which g(0) is the identity.

It is left to relate the meeting angle between the gradient flow lines in M and the corresponding flow
lines e =" Hess /O @ (x) in V. Since the tangent map D®(0) : TyU — TyV is the identity, and g;;(0) = §;;,
the meeting angle of any two curves at 0 is preserved by ®; hence this angle is either 0, 5 or 7. O

Remark 2.9. The argument for Proposition 2.5(2) given in [Alon et al. 2020, Proposition 4.1] is incomplete
and hence we have supplied a complete proof here. In particular, the Taylor expansion argument used in
the proofs of [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] does not
suffice. Substituting the Taylor expansion of F into 0,¢(¢, x) = F(p(t, x)) gives

x'(t) _ x(1) 5 _
(y/(t)) = DE(p) (y(t)) + Ol x (@), yE)lg2), (2-2)

0) due to the

X
Yo

possible coupling of higher-order terms in (2-2). A simple example is F(x, y) = (—A1x, —A2y 4+ x?2),

but this does not allow us to conclude that the flow may be approximated by e’ DF(I’)(

with 0 < 241 < A,. For the resulting system x’ = —X;x, y’ = —X,y + x? we have x (1) = xoe !/, but

x(% Aot x(% 201t
; —hat 0 -2 23
y(@) |:y0 )»2—2)»1:|e )»2—2%16 (2-3)

is dominated by e~2*!’ for large ¢, and hence is not approximated by a solution to the linearized equation
/
Y = —Aay.

From Proposition 2.5(2) we see that the boundary of a Neumann domain may possess a cusp (when
the meeting angle is 0) and so it can fail to be Lipschitz continuous. Furthermore, it may even fail to be
of class C, where we recall that the boundary of a domain is of class C if it can be locally represented as
the graph of a continuous function, alternatively, if the domain has the segment property (see [Edmunds
and Evans 1987; Mazya and Poborchi 1997] for details). To demonstrate that this is a subtle property, we
bring as an example the domains

Ql={(x,y)eR2:%x2<y<x2, O<x<l},

(2-4)
D={(x,y)eR’:—x?<y<x? 0<x <1},

which are shown in Figure 2. The domain €2; does not satisfy the segment property at the origin, and
hence is not of class C, even though its boundary is the union of two smooth curves. On the other hand,
2, (which contains €21) is of class C. This example will be important later, in the proof of Proposition 3.3.



DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN 2153

Figure 2. The regions 21 (left) and 2, (right) defined in (2-4) both have a cusp at the
origin. However, €2 is not of class C, whereas €2 is.

p
b p
Figure 3. Possible types of Neumann domains for a Morse function: regular (left);
cracked (centre); and doubly cracked (right). Saddle points are represented by balls,
maxima by triangles pointing upwards and vice versa for minima. If f is Morse—Smale,
its Neumann domains must look like one of the first two examples, with either one or
two saddle points on the boundary. For the cracked domain shown in the centre, 7 is
the only Neumann line connected to ¢, hence deg(q) = 1. If f is not Morse—Smale, its
Neumann domains can have additional saddle points on the boundary, and can have both
extremal points of degree one, as shown on the right. (This last example has a Neumann

line connecting two saddle points, which is not possible if f is Morse—Smale, by
Lemma 2.4.)

We add that there is very little known in general regarding the asymptotic behaviour of Neumann lines
near cusps. In particular, methods to treat cusps in a spectral-theoretic context, as in, e.g., [JakS$i¢ et al.
1992; Flamencourt and Pankrashkin 2020; Band et al. 2021], have to be generalized for our purpose.

We end this section by examining Theorem 2.2 and its implications for the structure of Neumann
domains. By the statement of the theorem, the boundary of a Neumann domain always contains a
maximum and a minimum, but no other extrema. It follows that each Neumann domain must belong to
one of the following two types (illustrated in Figure 3):

e a regular Neumann domain has on its boundary a maximum and a minimum, each of degree at least 2
(see Definition 2.3);

* a cracked Neumann domain has on its boundary an extremal point which is of degree 1.
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Moreover, since the boundary is made up of Neumann lines, it must contain at least one saddle point. If
f is Morse—Smale, the boundary contains at most two saddle points, by Theorem 2.2(4), but for a general
Morse function it is possible to have more. The possible existence of additional saddle points is irrelevant
for our analysis, however, since the boundary is Lipschitz near these points by Proposition 2.5(1).

Numerical observations suggest that generic Neumann domains are regular. However, it is not hard to
construct Morse functions having cracked Neumann domains; see the Appendix. Theorems 1.2 and 1.3
apply to both types of domains, but in the proofs we need to pay careful attention to cracked domains. In
particular, a cracked Neumann domain is not of class C, as the domain lies on both sides of its boundary.

Remark 2.10. In summary, a Neumann domain may fail to be of class C for two reasons: a cusp on the
boundary or a crack in the domain, i.e., a Neumann line contained in the interior of Q. These are the
main technical obstacles to overcome in proving Theorems 1.2 and 1.3.

3. Sobolev spaces on Neumann domains

We now discuss properties of Sobolev spaces on Neumann domains. As described in the Introduction, and
indicated in Proposition 2.5(2) (see also Remark 2.10), the difficulty is that the boundary of a Neumann
domain need not be of class C, so standard density and compactness results do not apply.

In Section 3A we define Sobolev spaces on a Neumann domain and various subsets of its boundary. In
Sections 3B and 3C we describe some technical constructions (dissection and truncation) that allow us to
deal with cracks and cusps. Finally, in Section 3D we prove the main result of this section, Proposition 3.3,
which establishes density and embedding properties for the space W!2(2) on a Neumann domain.

3A. Preliminaries. As above, we assume that (M, g) is a smooth, closed, connected, oriented Riemannian
surface. For an open submanifold N C M, the Sobolev space W52 (N) is defined to be the completion of
C°°(N) with respect to the norm

k
sy = 3 [ 19777, (3-1)
j=0

where V denotes the covariant derivative with respect to the metric g. The norm depends on g, but since
M is compact, different metrics will produce equivalent norms. We will sometimes take advantage of
this fact and compute the Sobolev norm using a metric g defined in a local coordinate chart to have
components g;; = J;; (so that covariant derivatives become partial derivatives, the Riemannian volume
form reduces to the Euclidean one, etc.). This allows us to apply standard methods in the theory of
Sobolev spaces on Lipschitz domains in M.

Now suppose that N C M is an open submanifold with Lipschitz boundary. We will later choose N to
be a Neumann domain €2, or a proper subset thereof (see Section 3C) if 92 has a crack or a cusp. We
define the boundary Sobolev spaces H*(dN) for |s| < 1 via the Fourier transform and a suitable partition
of unity, following [McLean 2000, p. 96], so that the dual space is given by H*(AN)* = H *(dN).
Moreover, for any open subset I' C dN we let

H* ) :={fIr: f € H(ON)}, ﬁS(F) := closure of Cg°(T") in H*(T"). (3-2)
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The space s (I") has an equivalent description that is often useful in practice:
H*(T)={f € H*(AN) : supp f C T'}. (3-3)

This equivalence follows from [McLean 2000, Theorem 3.29]. Another convenient description, valid for
s >0,1is
H(T)={f e LXT): f e H*BN)), (3-4)

where f denotes the extension of f by zero to dN \ I'; this is [McLean 2000, Theorem 3.33].

It follows from the definitions that H* (I') ¢ H5(I") for all |s| < 1, and it is well known that these
spaces coincide for |s| < % However, for |s| > % we have H S(I') € H*(I") whenever I is a proper subset
of dN. To see this, consider the constant function f = 1 on I', which is clearly in H*(I") for any s. It is
easily verified that its extension f, which is just the indicator function .., is not in H*(dN) for s > %, in
which case we conclude from (3-4) that f ¢ H S(I"). This distinction between the H® and H spaces will
be important when we consider the normal derivative of a function restricted to a subset of the boundary;
see in particular Lemma 3.1 and its application in the proof of Proposition 4.3.

The H* spaces arise naturally as duals to the H® spaces. That is, for any |s| < 1 we have H*(I")* =

H —5(I"), from [McLean 2000, Theorem 3.30]. In particular,
H™'V2() = H'>()* C H/*()* = H~'2(I). (3-5)
Using (3-2) we obtain
=0 inH*T) <= «(f)=0 forall feC5T). (3-6)
We thus define for 0 < s < 1 the mapping
Ldual . 72y S (D)*
g™ = (f gy, [ e HD),

observing that the L? inner product is well-defined because H*(I") C L") for 0 <s < 1. As a result,
we will often abuse notation and use integral notation to denote the action of £ € H*(I")* on f € H*(I'),

(3-7)

i.e., we will write
«n=| e
r

even when £ is not in the range of the map - %; see in particular Green’s identity (3-10) below.

Given a decomposition IN = [, UT,, where I} and I, are disjoint, open subsets of dN, and a
1

distribution £ € H*(dN) for some s > 0, we have £|r, € H™*(I';) fori =1, 2. For 0 <s < 5 we obtain

the decomposition

€(¢) = LI, (@Ir,) + £Ir,(Ir,)

for every ¢ € H*(dN). However, this is not true for s > % and in fact the right-hand side is not even
defined in this case, since ¢|r, € H*(I';), whereas £|r, € H*(I';) might not be contained in H*(I";)¥, as
indicated in (3-5). However, such a splitting does hold for £ if we assume that I} and I", are separated by
a third subset I'g on which £ vanishes.
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Lemma 3.1. Suppose 0N = Ty UT; UT,, where Ty, Iy, Ty are disjoint, open subsets of dN with
Nh,=2. If L e H~Y2(dN) vanishes on Ty, then L, € ﬁ*I/Z(Fi) fori=1,2,and

(@) =LIr, (@Ir,) + €I, (PIr,) (3-8)
for every ¢ € H'/2(3N).

Such a partition of the boundary is illustrated in Figure 6, where N = , N, ['g =y, I'1 =17 and
1:'2 = )/_, t-

Proof. We will use (3-3) to prove that £|r, € H™Y 2(T';). This does not follow immediately, however,
since £ is not necessarily supported in T';. Therefore, we will create a modified distribution, £, such that
supp ¢; C T'y and €|, = £]r,.

Since I') NI, = &, we can find a smooth bump function x; that equals 1 on I'} and 0 on I';. Consider
the distribution £; (¢) := £(x1¢), which is in H~'/2(3N). If supp ¢ C ['oUT,, then supp(x1¢) C Iy, and
hence £;(¢) = £(x1¢) = 0, because £ vanishes on I'y. This shows that supp£; C N \ (TgUT,) =T}.
On the other hand, if supp¢ C I't, then x;¢ = ¢, and hence £1(¢) = £(¢). We have thus shown that
e, = tlr, € H7V2(I). ~

Similarly, we obtain ¢, € H™'2(3N), with supp £» C I, and Llr, =42, € H~'2(I",). Tt follows
that the distribution

(:=t—t,—t,e H'2ON)

has supportin 0N \ (ToUT UT) = (ToNT)U(TyNT,), which is a finite set. However, a distribution
in H~!/2 cannot be supported on a finite set of points, by [McLean 2000, Lemma 3.39], so we conclude
that £ is identically zero, which completes the proof. (|

Since N was assumed to have Lipschitz boundary, the trace map - [sn : WL2(N) - HY2(N) is
continuous. To define the normal derivative we first introduce the weak Laplace—Beltrami operator,
A:WH(Q) —» WOI’Z(SZ)*, where Q2 C M is any open subset of M. By definition, Ay = f means

f (grad v, grad ¢) = / £ (3-9)
Q Q

forall ¢ € WO1 ’2(9), where the integral on the right-hand side is shorthand for the action of f € WO1 ’Z(Q)*
on ¢ € WOI’Z(Q). If Ay = f € L*(R), then this is a genuine L? inner product of f and ¢.

The weak version of Green’s identity then says that for any v € WL2(N) with Ay € L?(N), there
exists a unique 8,1 € H~'/2(dN) such that

/ (grad y, grad §) = / (Av)o + / G (3-10)
N N IN

for all ¢ € W2(N) [McLean 2000, Theorem 4.4]. The boundary term has to be understood as the action
of 3,9 € H-Y2(3N) on ¢|yn € HY/?(AN), i.e., (3,¥)(¢|n), but to simplify the presentation we use
the integral notation of (3-10).

Finally, consider an open subset I' C dN. For a function ¢ € W"2(N) we define ¥|r to be the
restriction of /|3y € H'/>(3N) to T, so that (3-2) implies ¥ | € H'/>(I"). Similarly, if ¥ € W"2(N)
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and Ay € L?(N), we have 8, |r € H~/>(I"). It is not necessarily true that 0,1 |r is contained in the
smaller space HY 2(I') = H'2(I")*; see (3-5). However, this will be the case if 9,1 vanishes on N \ T,
by Lemma 3.1. This fact will play a crucial role in the proof of Proposition 4.3 below.

We conclude the section by explaining our decision to use W*2-Sobolev spaces on N but H*-Sobolev
spaces on d N. Recall that H 1(©Q) ¢ W1%(Q) holds for any open set €2, but the inclusion can be strict
unless one has additional regularity of the boundary. In Definition 4.1 we construct the Neumann Laplacian
as the self-adjoint operator corresponding to a nonnegative, symmetric bilinear form. For this we require
the form to be closed, which is the case if the form domain is W'-?(), but need not be true if the form
domain is H'(2). On the other hand, the H*-Sobolev spaces, defined via the Fourier transform, provide
a more natural setting for the discussion of traces: If N is an open submanifold with Lipschitz boundary,
there is a bounded, surjective trace map - |3y : H'(N) — H'/2(dN). For N Lipschitz we have the equality
H'(N) = W'2(N), and hence a well-defined trace map - [an : WL2(N) - H'2(3N).

3B. Dissections of Neumann domains. The boundary of a cracked Neumann domain cannot be of
class C, whether or not there is a cusp on the boundary, due to the Neumann line n contained in the
interior of Q; see Figure 3. We deal with this by dissecting such a Neumann domain into two pieces, as
shown in Figure 4, where one piece has Lipschitz boundary, and the other has boundary that is Lipschitz
except possibly at a cusp point; i.e., it has the same regularity as a regular Neumann domain. For doubly
cracked domains as in Figure 3, an analogous statement holds as the proof for that case is essentially the
same. The dissection thus reduces many of the proofs for cracked domains to the corresponding results
for regular domains.
This dissection is made possible by the following lemma.

Lemma 3.2. Assume f is a Morse function and let y be a Neumann line. Then y has finite length
L(y) < o0, and admits an arc-length parametrization with y € C L0, L(y))), i.e., boundary points are
included.

Proof. We decompose y = yg U y; U y», where y; is defined in a small neighbourhood of the initial
endpoint of y and y; is defined in a small neighbourhood of the terminal endpoint. Then it is enough to
prove the corresponding statement for yy, y; and y».

The result for y follows by standard results for flows of smooth vector fields. Definition 2.3 implies
that the endpoints of y are critical points of f. If the initial endpoint (which we label ¢) is a saddle,
then the result for y; follows, e.g., by [Banyaga and Hurtubise 2004, Theorem 4.2 (p. 94)]. On the other
hand, if ¢ is an extremum we use the map & from Proposition 2.7. Then ® o y; is a flow line generated
by e~ Hess f(¢)t

finite length. As @~ isa C' map and y; = ®~! o (® 0 ) is a composition of C! functions, the claim

, and hence satisfies the properties of the claim, i.e., it is C' up to the endpoint and has

for y; follows. The proof for y, is identical. Il

Now suppose that €2 is a cracked Neumann domain. The doubly cracked case in Figure 3 can be treated
analogously. Denote by ¢ the extremum in the interior of , and let 7 be the Neumann line attached to q;
see Figure 4. Choosing a Lipschitz curve 7 in 2 that joins ¢ with a noncusp point of d€2, we obtain a
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p p

Figure 4. The dissection of a cracked Neumann domain, as given in (3-11). The Neumann
line n is extended to a Lipschitz curve n U 1, so that € is a Lipschitz domain and €2;
possesses a cusp at p.

dissection of €2 into disjoint parts €21 and €2, i.e.,
Q\ 7 =Q U, (3-11)

as shown in Figure 4. Lemma 3.2 guarantees that n U7 is a Lipschitz curve, so €2; has Lipschitz boundary,
and €2; has Lipschitz boundary with the possible exception of a cusp at p. This dissection induces an

isometric embedding
Wh2(Q) — w2 @) e W' (),

¢ (dla, Pla)-

3C. Truncated Neumann domains. To deal with potential cusps at the maximum and minimum of f,

(3-12)

we introduce truncated versions of 2. Denoting by p € Min(f) and ¢ € Max(f) the minimum and
maximum of f in &, we observe that f(g) < f(p), since otherwise f would be constant on €, which is
not possible as it is a Morse function. Adding a constant to f, which does not affect the gradient flow
lines, we can thus assume that f(g) <0 < f(p). (In the special case that f is an eigenfunction this
condition holds automatically, so it is not necessary to shift f.)

We then define for each 0 < ¢ < 1 the truncated domains

{xeQ: f(x)<tf(q)}, q is a cusp, p is not,
{xeQ:tf(p) < f(x)}, P is a cusp, q is not,

a {xeQ:tf(p) < f(x) <tf(q)}, q and p are cusps, (3-13)
Q, otherwise.

Some examples of this construction are shown in Figure 5.
The boundary of €2; can be decomposed as 9€2; = y1 ; U s, Where y4 ; are level lines defined by

Yoo = f)=1f(@}, y-.t={x:fx)=tf(p} (3-14)

and yp, = 0€2; N 02 is the part of 2 that remains after the truncation. Note that yy; # &, and
Proposition 2.5(3) implies that y4 ; meets 92 perpendicularly, except for a finite number of exceptional
times where y. ; meets 0€2 at a saddle point, in which case the meeting angle is 7; see Figure 5.
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1 P

Figure 5. Neumann domains and their truncations, with the dotted line indicating the
curve y+ ;. The top two figures show regular and cracked domains for ¢ close to 1. For
the same cracked domain the bottom left figure shows an exceptional value of #, where
Y+, meets 92 at angle 7, and the bottom right figure shows a smaller value of ¢.

For a truncated Neumann domain €2; we denote its complement in €2 by Qf :=Q\ ;. Forany 0 <7 <1
and sufficiently small € > 0, we can find a smooth cutoff function y on M such that

0, xe;,
x(x) = : (3-15)
I, xeQy,,.

If desired, we can assume that x is of the form « o f for some o € C°°(R), in which case x has the same
level lines as f. For the arguments to follow, however, a generic smooth cutoff will suffice.

3D. Density and embedding results. We now state and prove the main result of this section.

Proposition 3.3. Let (M, g) be a closed, connected, oriented Riemannian surface. If Q@ C M is a

Neumann domain of a Morse function f, the following hold:
(1) The embedding Wh2(Q) — L3(Q) is compact.
(2) If 2 is regular, then CY(Q) is dense in WH2(Q).
(3) If Q2 is cracked, then there exists t € (0, 1) such that the set of functions
{p e WH2(Q): glg € C1(Q)) (3-16)
is dense in WH2(Q).

The result is known if 02 is of class C (see [Mazya and Poborchi 1997]) but, as noted above, the
boundary of a Neumann domain does not need to have this property. If € is cracked and ¢ € W!2(Q),
its values on opposite sides of the crack n need not be close, so we cannot hope to approximate it by a
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function in C'(R). However, by choosing ¢ sufficiently large, we can ensure that S_Zf is disjoint from n,
and hence (3-16) holds.

The idea of the proof is to use Hartman’s theorem (Proposition 2.7) to find a canonical description of
the boundary near a cusp, and then apply the following lemma, which allows us to extend functions to a
larger domain which still has a cusp but is of class C; see the domains €21 and €2, in Figure 2.

Lemma 3.4 [Mazya and Poborchi 1997, §5.4.1, Lemma 1, p. 285]. Consider the domain
Q={(x,n) eR:c1P(x)<y<cd(x), 0<x <1}

for some c| < ¢y, where ¥ € c%1([0, 1) is an increasing function with ©(0) = 0 and ¥'(t) — O ast — 0,
and define

G={(x,y)eR?: |y| < M®(x), 0 <x <1} (3-17)
for M > max{|c1|, |c2|}. Then there exists a continuous extension operator & : Wl’z(ﬁ) — WL2(G).
We will apply this lemma with ¢ (x) = x“ for some o > 1.

Proof of Proposition 3.3. We first prove (1) and (2) for regular Neumann domains. Only the behaviour
near the cusps has to be investigated, as they are the only possible non-Lipschitz points on d€2. A cusp is
either a maximum or a minimum by Proposition 2.5. Without loss of generality, let ¢ € Max( f) be the
only cusp on 9€2.

We localize at ¢ by taking a smooth cutoff function x, as in (3-15), that equals 1 in €7, . and vanishes
in €;, and hence is supported in 2, := Q7. Now take ¢ € W2(Q). We write ¢ = x¢ + (1 — x)¢ and
observe that x¢, (1 — x)¢ € WH2(Q). Thus, it is sufficient to prove the statements for both functions
separately. For the latter function the observation that it is supported in a Lipschitz domain implies both
(1) and (2) in Proposition 3.3.

For the former we choose ¢ close to 1 and employ Proposition 2.7. Let ® be the resulting C'-
diffeomorphism and define ﬁc = ®(£2,). Owing to (2-1), the image in E’zc of the two boundary curves
meeting at ¢ consists of flow lines obeying 3, = — Hess f(c)y. These are generated by e~/ Hess /(©) x
where xg is a suitable point on y. An easy calculation as in [McDonald and Fulling 2014, Section 3; Alon
et al. 2020, Proof of Proposition 4.1] shows that the flow lines near the origin may be parametrized in
suitable coordinates by y (x) = (x, cx%), where « > 0 depends only on the eigenvalues of Hess f(c) (in
fact only on their ratio). This implies that near the origin the domain Q. is described by

(x,y) € Q. = cx“< y < cx* and x > 0. (3-18)

We can assume that @ > 1. (If & = 1, then €, is in fact Lipschitz near ¢, so there is nothing to prove;
if @ < 1, we exchange x and y to obtain a similar description of the boundary with « replaced by 1/«.)
Now Lemma 3.4 says that there exists a continuous extension operator £ : Wl’z(ﬁc) — W2(G), where
Q. C G and near 0 the domain G is characterized by

x,y)eG <<= |y|<Mx“andx >0, (3-19)
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with M large enough. Since the boundary 9G is of class C, we can now infer by [Edmunds and Evans
1987, Theorem 4.17, p. 267; Mazya and Poborchi 1997, §1.4.2, Theorem 1, p. 28] that WL2(G) satisfies
statements (1) and (2) of the proposition. In particular, Wl2(G) - L*(G) is compact and C 1(G) is
dense in W12(G).

Using the fact that ® is a C'-diffeomorphism, it is easily shown that the pull-back map

% Wh2(Qo) > WA (R, ¢ pod, (3-20)

is well-defined and bijective, with

1 2 2 2
Elld)uwlz(féc) < ||¢ o CD”WLZ(QC) < Cl”¢”w12(50)

for some C’ > 0. Therefore, the inclusion W!2(Q,) — L?(2,) can be written as the composition of a
compact operator

—1\% ~
wi2@) 20 w2 @,) 5 w2(G) — LA(G)

and a bounded operator

L2(G) —> L(§2) 25 L2(Q0)

(where the first map is restriction), and hence is compact. This completes the proof of (1) for regular
Neumann domains.

To prove (2), let ¢ € W2(Q,), so that o @~ € W'2(Q,) and E(pod~!) € W2(G). For any § > 0,
there exists ¢ € C!(G) with |¢ — E(p o @~ ly126) < 8, and hence

I¢ls, 0 @ —pllwig,) < C'ldlg, —do @y,
<C'll¢—E(@o @ Hwizg < C's.

Since $|§c o ® e C'(Q,), this completes the proof of (2).

We next prove (1) for cracked Neumann domains, using the decomposition (3-12). More precisely,
using Lemma 3.2 we may dissect €2 as in (3-11) and, without loss of generality, assume that the cusp is
located on the boundary of €2;, as in Figure 3. Note that

Wh(Q) — Wh(Q) @ WhA(Q) — LA(Q) © L* () = L*(Q)

and so it is enough to prove compactness of the embedding W'2(2,) — L?(2,) for e =1,r. For e =1
this follows from the Lipschitz property of 0€2;. For e =1 we observe that d€2; is Lipschitz except at the
cusp, and so the proof given above for regular domains applies.

Finally, we prove (3). For 0 < ¢ < 1 sufficiently close to 1 we have Qf C €2, for either e =1 or r (the
case » = r is shown in Figure 4), so we choose ¢ sufficiently close to 1 and € > 0 small enough that
Q. = Q¢ C Q,. Now let ¢ € W2(Q). Given § > 0, there exists by (2) a function ¢s € C'(O,) such that

¢ — dsllwi2q,) <J. Choosing a smooth cutoff function x that equals 1 in €27, . and vanishes in €,, we
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define ¢~>5 =x¢s+ (1 —x)p € W12(Q) and compute

I — sl = Ilx (@ — ) lwi2y
< Kll¢p — dslwiag,, < K8, (3-21)

where K is a constant depending only on x. Finally, since supp x C Q¢, we have

$slge = xPslge € C1(QY). O

4. The Neumann Laplacian on a Neumann domain

In this section we define the Neumann Laplacian on a Neumann domain €2, and establish some of its
fundamental properties, in particular proving Theorems 1.2 and 1.3. This relies on the technical results of
the previous section, namely Proposition 3.3.

4A. Definition and proof of Theorem 1.2. We define the Neumann Laplacian in the usual way, via a
symmetric bilinear form.

Definition 4.1. The Neumann Laplacian on an open set Q C M, denoted by AY, is the unique self-adjoint
operator corresponding to the bilinear form

a(yr, @) = /Q(grad Y, gradg), D(a):= Wl’z(Q). 4-1)

More precisely, Ag is an unbounded operator on L?(2), with domain
D(AY)={ e W'(Q):there exists f, € L*(Q) with a(¥,§)=(fy.$)12q) for all pe W3(Q)}, (4-2)

and for any ¢ € D(Ag ) we have Ag Y = fy. The existence and uniqueness of such an operator follows
immediately from the completeness of the form domain D(a) = W12() and standard theory of self-
adjoint operators, for instance [Reed and Simon 1972, Theorem VIII.15]. If ¢ € D(Ag ), then (4-2)
implies

f (grad v, grad ¢) = / AN y)e
Q Q

for all ¢ € WOI’Z(Q), and hence Ay = Agw € L*(Q). That is, Ag acts as the weak Laplace—Beltrami
operator A defined in (3-9).
The next result is nontrivial, and relies on the special geometric structure of Neumann domains.

Proposition 4.2. [f Q C M is a Neumann domain for a Morse function, then Ag has compact resolvent,
and hence has purely discrete spectrum o (Ag ) C [0, 00).

Proof. Proposition 3.3(1) says that the form domain Wh2(Q) is compactly embedded in L?(R), so the
result follows from [Reed and Simon 1978, Theorem XII1.64]. O
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4B. Domain of the Neumann Laplacian. We now describe the domain of the Neumann Laplacian,
working towards the proof of Theorem 1.3. Recalling the truncated domain €2; introduced in Section 3C,
and the decomposition 0€2; = y+ ; U yp; of its boundary in (3-14), we have the following.

Proposition 4.3. Let Q2 be a Neumann domain of a Morse function f. The domain of the Neumann
Laplacian is given by
DAY = [ € W'H(Q) : Ay € LX), 8,(¥lg,)lye, = 0forall 0 <1t < 1
and lim [, 9,(¥|g)¢ =0forallg € WH3(Q)} (4-3)
t—17YE
if Q is regular, and

D(Ag) ={¥ e W'(Q): AY € LX(Q), 0¥ laina)lye, = W@ lana)ly, =0
forall0 <t <1, and lin} [y, Wla)p =0forall ¢ € whi@} 44
t— !
if Q is cracked.

That is, to be in the domain of Ag, a function must satisfy Neumann boundary conditions on the
Lipschitz part of the boundary, as well as a limiting boundary condition at each cusp. While this completely
characterizes the domain of Ag, the limiting boundary conditions on y4 ; may be difficult to check in
practice. Therefore, in the following section we will give simple criteria (Proposition 4.8 and Corollary 4.9)
which guarantee these limiting conditions are satisfied.

Remark 4.4. Our techniques actually give a more general result, not just valid for Neumann domains.
The key points are that d€2 is Lipschitz except for a finite number of cusps and cracks, and the cracks
admit a Lipschitz continuation. A stronger result will be given below (in Remark 4.7) that relies on the
detailed structure of the cusps, which for Neumann domains is a consequence of Hartman’s theorem.

In proving the proposition, we must take into account the fact that 2; and €2; need not be Lipschitz;
see Figure 4, where €2; has a cusp on its boundary. We therefore combine the dissection and truncation of
Sections 3B and 3C, respectively. The resulting domains are shown in Figure 6. Note that the boundaries
of 2, N Q2 and 2, N ; can be partitioned into three parts: y4 , coming from the truncation; 77 coming
from the dissection; and yp;, coming from the original domain 2. We emphasize that the dissection
(3-11) is an auxiliary construction, and our analysis does not depend on the specific choice of 7.

Since 1 U 7 has a Lipschitz neighbourhood in both €, N ) and €, N Q2;, see Figure 6, we have

@la)lie = @le)lp € H2(°)  for ¢ e WH(Q), (4-5)
with - © denoting the interior in yp U 7. Therefore, the map
WhAQ) - H' 2 @ H'? (%) @ H'/* (i),
¢ = (@la) e, @la)lpe, dlie),

is well-defined, where ¢ |5 denotes the common value in (4-5). We first analyze the normal derivatives on 7.

Lemma 4.5. Let Q be a cracked Neumann domain. If ¥ € W'2(Q) and Ay € L*(R2), then

d (W la)lie + 8 (W) |5 =0 H™2(7°). (4-7)

(4-6)
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Figure 6. The dissected and truncated domains appearing in the proof of Proposition 4.3.
Here y. , is a result of the truncation, 7 is from the dissection, and yy , is the part of the
original boundary, 0€2, that remains after the truncation.

Proof. The hypothesis Ay € L?(2) means

A;gmdw»gad¢>=<A¢»¢nam (4-8)

for all ¢ € C3°(R2). Together with Green’s formula (3-10), this implies

/ﬁ(au(l/llszl)Jrau(l/flszr))(P =0 (4-9)
for all ¢ € C§°(£2). Since any function in C;°(77) can be realized as ¢|; for some ¢ € C3°(£2), the result
follows from (3-6). O

We next analyze the normal derivative on the Lipschitz part of the boundary, yp ;.
Lemma 4.6. If € D(AY), then
(W lana)lye, =0€ H™2((3(2: M) Ny0.1)°) (4-10)
forany O <t <1, where e =1,r1.

Proof. We prove the result for €2;, the argument for €2, is identical. For any test function ¢ € Wh2(Q,NQ)
with ¢|; =0 and ¢|,, , =0, we get from Green’s formula (3-10) that

/' 30 (Wleyno)d = 0
B(Q,ﬂﬂl)ﬂyo_,

The image of the trace map restricted to
(¢ e W@ NQ) : gl5 = ¢ly,, =0}
is precisely H'/? ((8 (Q,ﬂQl)ﬂyo,,)o), by (3-3) and [McLean 2000, Theorem 3.37], so the result follows. [
Now, equipped with our preliminary analysis of normal derivatives, we prove Proposition 4.3.

Proof of Proposition 4.3. We only prove (4-4); the proof of (4-3) for regular domains is similar but
less involved, so we omit it. Let ¢ € W!2(Q). From (4-2) we have that € D(AY) if and only if
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Ay € L*(Q) and

fg (D) = /Q (grad v grad ) @-11)

for all ¢ € W'2(Q). Thus, we fix ¥, ¢ € W2(Q) with Ay € L?(R2). Since (grad ¥, grad ¢) and (Ayr)¢
are in L'(Q), their integrals over €, converge to their integrals over Q as t — 1 by the dominated
convergence theorem; hence (4-11) is equivalent to

lim/ (Alﬁ)¢=lim/ (grad ¢, grad ¢). (4-12)
t—1 Q t—1 Q

We now use the dissection (3-11), applying Green’s formula on the truncated and dissected domains to
obtain

/ (grad ¥, grad ¢) :f (A¢)¢+/ 8v(1lf|sz,mszl)¢+f o (Vlone,)P.
Q Q 3(QNQ) QN2

Comparing with (4-12), we see that ¥ € D(AY) if and only if

1im{/ o (Yle,ne)@ +/ 8u(¢|Q,ﬂQr)¢} =0 (4-13)
=1 1Ja,n) QN2

for each ¢ € W12(Q). Therefore, it suffices to show that (4-13) is equivalent to the conditions in (4-4).
We claim that if ¥ € W!2(Q) satisfies Ay € L*(Q2) and 0, (¥]o,ne)lye, = (¥ |o,ne,)lye, =0, then

/ 80 (Wl )+ / B Wlano)d = | 8 (Wlana)d (4-14)
a(2,NL2) 9(2,NLy) Vit

forany 0 <t < 1 and ¢ € WH2(Q). To prove this, we decompose the integrals over 8($2; N ;) and
d(2; N 2;) into a sum of integrals over the different parts of the boundary. This is nontrivial, since this
integral notation actually represents the action of the normal derivative distribution on a test function
in H'/?, and a distribution in H~!/? does not necessarily split into the sum of its restriction to different
parts of the boundary, as discussed in Section 3A.

Here we make use of Lemma 3.1, as well as the assumption that 9, (¥ |,ng,) |V6’,t =0, (V|a,ng,) |Vé’,t =0.
Applying the lemma to N = ; N 2, with the boundary decomposed into I'j = 7, I'y = y4, and
o = 3(£2; N'21) Ny, We obtain

/ 3u(1//|sz,mszl)¢=/3v(¢|9,mgl)¢+/ O (Vlene)o-
3(Q,NQ) ] Vot

Similarly, for ; N Q; we get
/ 0 (W o0 )b = / 0 (W lona )b+ f 0 (W oy )b
3(2;N;) ;] Y-t

Adding these together and using Lemma 4.5 to cancel the 7 terms completes the proof of (4-14).
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To finish the proof of the proposition, suppose that i € D(Ag ), so (4-13) holds. Lemma 4.6 implies
that Bv(z//mmgl)ly& = 8v(1//|g,mr)|y6>, =0, so we can use (4-14) to conclude that

tim [ 9,(1a,00)0 =0
V-t

—

for any ¢ € W2(Q). Therefore, the boundary conditions given in (4-4) are satisfied. Conversely, if ¥
satisfies the boundary conditions in (4-4), we take the limit of (4-14) to find that (4-13) holds and so
¥ € D(AY). O

Remark 4.7. For the y. ; boundary condition in (4-3) or (4-4), it is enough to check that

lim [ 8,(¥]g)p =0 (4-15)

t—1 Vi

for test functions ¢ € W!2(Q) that are C! in a neighbourhood of the cusp. If ¥ satisfies this, and the
other conditions in (4-3) or (4-4), the proof of Proposition 4.3 shows that (4-11) holds for all such ¢. It
then follows from Proposition 3.3(3) that (4-11) in fact holds for all ¢ € W2(Q), and so ¢ € D(Ag).

4C. Proof of Theorem 1.3. If Q has no cusps or cracks, then Proposition 4.3 says that D(AY) simply
consists of functions that are sufficiently regular and satisfy Neumann boundary conditions everywhere
on 9€2. On the other hand, when a cusp is present we must also impose the condition (4-15), which says
the normal derivative of ¥ on y4 ; does not blow up as the cusp is approached. We now give a simple
condition that guarantees this is the case.

For simplicity we only state the result for a cusp at ¢; the corresponding statement for a cusp at p is
analogous. We define the “doubly truncated domain”

Q={xeQ:nflg<fx <tf(@)} (4-16)
for a fixed 0 <y < 1.

Proposition 4.8. If v € W!2(Q) and there exists ty such that v € W>*(Q)) forallty <t < 1 and
(=2 y 13, () i bounded near t = 1, then (4-15) holds.

The proposition does not assume ¥ is in W22(Q), but only that its WZ’Z(Q;) norm does not blow up
too quickly near the cusp. Of course this condition is automatically satisfied if ¥ € W22(Q).
Corollary 4.9. If € W>2(Q), then (4-15) holds.

Since the Morse function f that generated the Neumann domain 2 was assumed to be smooth, f|q
satisfies the hypotheses of Corollary 4.9, and Theorem 1.3 follows immediately.

The main ingredient in the proof is a trace estimate for the doubly truncated domain 2/, with controlled
dependence on .

Lemma 4.10. There exist constants A, B > 0 such that

/ W< 2 >+ B | |Vu)? (4-17)
V4.t B Vl_t A Q

forallu e WI’Z(Q;) and t sufficiently close to 1.
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Proof. Increasing t if necessary, we can assume that ¢ is the only critical point of f in §_2§0. Consider the

2 Vf

V£l
where x is a smooth cutoff function that vanishes on y, ;, and equals 1 in a neighbourhood of ¢. Since
f is smooth and has no critical points in 5_2;, we have X € W“(Q;). Observe that V f/|V f] is tangent
to Y., Whereas on y ; it coincides with the outward unit normal. This implies

/ X-v=/ u?
39; Y+t

for any ¢ large enough that x|,, , = 1. On the other hand, the divergence theorem implies

\Y \Y
/ X-v:/ diVX:/ (V(Xuz)- / + xu*di / ),
Elod Q Q

[ V—
V7] V7]
/ i < Blul g, +/ 2
Y+t Q;

for some constant B depending only on .

vector field

X :=xu

SO we obtain

div

v

f ‘ (4-18)
V£l

To estimate the integral on the right-hand side, we observe that the level sets of f have mean curvature
div(V f/|V f1]). Using the Morse lemma, we can find coordinates (x, y) in a neighbourhood of ¢ such
that f(x,y) = f(g) —x>—y% A straightforward computation (see [Beck et al. 2021, Lemma 4.7]) gives

C

<

divv—f(x ) ¢ _
= T@—T@

IV £l

and so we have the uniform estimate

C
V@) —=1)

on 5_2; Substituting this into (4-18) completes the proof. U

vy
aw IVfI' =

The other ingredient in the proof of Proposition 4.8 is the following geometric estimate.
Lemma 4.11. The length of y+.; is o((1 —t)'/?) near t = 1.

Proof. We prove the result for y; ;, assuming there is a cusp at the maximum ¢; the proof for y_ ; is
identical. Using the Morse lemma, we can find coordinates (x, y) near g such that f(x, y) = f(q)—x>—y?,
and so y ; is contained in the circle of radius p = /(1 — 1) f(q). More precisely, it is the arc bounded by
the angles 0;(¢) and 6,(¢). Parametrizing this as y (§) = (p cos 0, p sinf), we have |y’'(0)|, < CJ1-t,
where | - |, denotes the length computed using the metric g and C is some constant depending on f(q)
and the components of g in this coordinate chart. This implies

0(t)
L(V+,t)=/ 1y (0)|g d6 < CN1—1]02(1) — 61 (1)].
01(t)

Near ¢, the boundary 9€2 consists of two Neumann lines meeting tangentially at ¢ (since there is a cusp).
This implies |6;(¢) — 61(¢)| = 0 as t — 1 and completes the proof. O
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We are now ready to prove Proposition 4.8.

Proof. Since |0,| < |V, it is enough to show that

lim | |Vylp=0 (4-19)

t—1 V2%

for all ¢ € W12(Q) that are C! in a neighbourhood of ¢; see Remark 4.7. Fix such a ¢ and define
u = x|Vy|¢, where x is a smooth cutoff function that equals 1 near ¢ and is supported in the region
where ¢ is smooth. The hypotheses on v imply u € L*(Q2) and u € W'2(Q)) for all to < ¢ < 1, with

lullz2@) = CliYliwizy.  lullwizg)y < CllYllwaeq)

for some constant C depending only on ¢ and y.
Using Holder’s inequality and Lemma 4.10, we obtain

2
(f u) 5(/ uZ)L(yi,»
Y+t Y+t

A
< <ﬁnuniz(m + B||u||%vl,2m;))L<yi,t>
L(y+.)

< (Allull7 g+ BV1— z||u||%vl,2(g;))ﬁ.

By Lemma 4.11 this tends to zero as t — 1. O

Appendix: Morse—Smale functions with cracked Neumann domains

In this appendix we construct Morse—Smale functions having cracked Neumann domains. As in the rest
of the paper, we assume M is a smooth, closed, connected orientable surface.

Theorem A.1. Let f be a Morse—Smale function on M and 2 a Neumann domain of f. Then there exists
a Morse—Smale function f that has a cracked Neumann domain $ C .

We will see in the proof that f can be chosen to agree with f outside an arbitrary open set U C €2.
However, the difference f — f may be large inside U. The existence of f is given by the following
general lemma.

Lemma A.2. Let U C M be an open subset and f : U — R a smooth function having no critical points.
There exists a smooth function f : U — R, with supp (f — f) C U, whose only critical points are a
nondegenerate maximum and a nondegenerate saddle.

Proof. Since f has no critical points in U, we can invoke the canonical form theorem for smooth
vector fields and find local coordinates (x, y) with respect to which f(x,y) = Ax + B for (x,y) €
(—1,1) x (=1, 1). Now choose a smooth function «(x) with supp o C (—1, 1) and

1
/ a(x)dx =0, (A-1)

1
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Figure 7. The function «(x) used in the proof of Lemma A.2.

so that there exist points —1 < x; < xp < 1 with

a(x)>—-A, —-1l<x<ux,

a(x)=—A, x=x,

a(x) <—A, x1<x<xp, (A-2)
a(x)=—A, x=x,

a(x)>—A, xx<x<l,
as shown in Figure 7.
We define

fO,y) =, ) +BE)YO), (A-3)

where B(x) = ffl a(t)dt and y(y) =exp{—1/(1 — yz)}. Note that y is a nonnegative bump function
supported in (—1, 1) with '(0) = 0 and " (0) < 0. It follows that

af af
0 _a +a(x)y(y) and 8 _ BX)Y (),
ox ay
and so the only critical points of f in U are (x1, 0) and (x3, 0). We compute
3 f )
O (e, ) = )y () <0,
0x
3 f .
—];(xz, 0) =a'(x2)y(0) > 0,
0x
32 f

a—yz(xi, 0) = ,B(x,-)y”(O) <0,

and conclude (x1,0) and (x7,0) are a nondegenerate maximum and a nondegenerate saddle, respectively. [

Proof of Theorem A.1. If § is cracked we simply choose f = f and there is nothing to prove. Therefore
we assume that €2 is regular. Since f is Morse—Smale, Theorem 2.2 says the closure of €2 contains exactly
four critical points, all of which are on the boundary: a maximum ¢, a minimum p, and saddle points r|
and r;; see Figure 3.
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p

\

q q
Figure 8. Left: The cracked Neumann domain constructed in Theorem A.1, with Neu-
mann lines shown in purple. Right: If two Neumann lines connected r, to g, one of them
(shown in red) would have to intersect another Neumann line, which is impossible. The
dashed line represents the boundary of the set U containing supp ( f=0.

r r

Now choose f according to Lemma A.2, for some open set U € 2. By construction, f has two critical
points in : a maximum g, and a saddle point r,. Since f is a Morse function, r, has degree 4; i.e., there
are four Neumann lines connected to r,. We obtain the result by studying the endpoints of these lines, as
depicted in Figure 8. Since f agrees with f in a neighbourhood of 9€2, the invariant manifolds W*(r;)
and W*"(r;) are unchanged by the perturbation. As a result, it is not possible for any of the Neumann
lines coming from r, to end at r; or r,. Therefore, the four Neumann lines from r, can only end at g, p
or ¢, so it follows from Lemma 2.4 that f is Morse—Smale. The two lines along which f is decreasing
must end at p, since it is the only minimum in Q. This means the two lines along which f is increasing
are connected to either ¢ or g,.. We claim that there is one Neumann line connected to each maximum.

Suppose instead that both ended at ¢. Then the union of these Neumann lines forms a closed loop.
Similarly, the union of the two lines ending at p is a closed loop. Both loops intersect at r,., where they
are orthogonal by Proposition 2.5(1). Since €2 is simply connected, this can only happen if the loops also
intersect at a point other than r,, but this is impossible since gradient flow lines cannot cross. The same
argument shows that these lines cannot both be connected to ¢,; hence one must end at each maximum.

Since all of the Neumann lines in Q have been accounted for, this means q. has degree 1; hence the
Neumann domain with ¢, on its boundary is cracked. O
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A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE
IN THE NONLINEAR SCHRODINGER EQUATION

DAVID CHIRON AND ELIOT PACHERIE

For the nonlinear Schrédinger equation in dimension 2, the existence of a global minimizer of the energy
at fixed momentum has been established by Bethuel, Gravejat and Saut (2009) (see also work of Chiron
and Maris (2017)). This minimizer is a traveling wave for the nonlinear Schrodinger equation. For large
momenta, the propagation speed is small and the minimizer behaves like two well-separated vortices. In
that limit, we show the uniqueness of this minimizer, up to the invariances of the problem, hence proving
the orbital stability of this traveling wave. This work is a follow up to two previous papers, where we
constructed and studied a particular traveling wave of the equation. We show a uniqueness result on this
traveling wave in a class of functions that contains in particular all possible minimizers of the energy.

1. Introduction and statement of the results
We consider the nonlinear Schrddinger equation
iU+ AV — (W —1H¥ =0 (NLS)

in dimension 2 for ¥ : R, x [F\R)zc — C, also called the Gross—Pitaevskii equation without potential. The
nonlinear Schrodinger equation is a physical model for Bose—FEinstein condensation [1; 23; 37; 42],
superfluidity [40] and nonlinear optics [30]. The condition at infinity for (NLS) will be

|W|—1 as|x|— 4o0.

The (NLS) equation is associated with the Ginzburg—Landau energy

1 1
E(v) = Efz |Vv|2+1/2<1— )%,
R R

which is formally conserved by the (NLS) flow. We denote by £ the set of functions with finite energy,
that is,
E:={ueH! (R*C): Eu) < +o0}.

Remark 1.1. The Cauchy problem for (NLS) is globally well-posed in the energy space; see [20; 21; 22].

Besides the energy, the momentum is another quantity formally conserved by the (NLS) flow and is asso-
ciated with the invariance by translation of (NLS). Formally, the momentum of u is % fRZ Re(iVuir) € R?,
but its precise definition requires some care in the energy space due to the condition at infinity (see [34]
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in dimension larger than 2 and [13] in dimension 2). If u € 1 + Cfo([RRz) for instance, or if u is a traveling
wave tending to 1 at infinity, then the expression of the momentum reduces to

P(u) = (Py(u), Py(u)) = % fRZ Re(i Vu(ii — 1)).

In addition to the translation invariance, the (NLS) equation is also phase-shift-invariant, that is, invariant
by multiplication by a complex of modulus 1, and rotation-invariant.

1A. Traveling waves for (NLS). Following the works in the physical literature of Jones and Roberts [28;
29], there has been a large number of mathematical works on the question of existence and properties of
traveling wave solutions in the (NLS) equation, which are solutions of

0= (TW)(u) := —icdgu — Au— (1 — |u|P)u

for some ¢ > 0, corresponding to particular solutions of (NLS) of the form W (¢, x) = u(x1, xo + ct) (due
to the rotational invariance, we may always assume that the traveling wave moves along the direction —é5).
We refer to [9] for an overview on these problems in several dimensions. A natural approach is to look at
the minimizing problem for p > 0

Enin(p) := inf{E(u) : P(u) = p}.
uek
It was shown by Bethuel, Gravejat and Saut that there exists a minimizer to this problem.

Theorem 1.2 [10]. For any p > 0, there exists a nonconstant function uy € € and c(uy) > 0 such that
Py(up) =p, uy is a solution to (TWC(up))(up) =0and

E(up) = Emin(p)~
Furthermore, any minimizer for Ewin (p) is, up to a translation in x1, even in xi.

The strategy is to look at the corresponding minimization problem on larger and larger tori (this avoids
the problems with the definition of the momentum), and then pass to the limit. For the minimizing
problem E;,(p), the compactness of minimizing sequences has been shown later on in [13] for the
natural semidistance on £

Do(u, v) := [|[Vu — Vvl 2@y + [lu] — [v]ll 22@2)-

Theorem 1.3 [13]. For any p > 0 and any minimizing sequence (U)neN for Emin(p), there exists a
subsequence (un;) jen, a sequence of translations (y;) jen and a nonconstant function uy € £ such that
Do(u,,j, up) — 0, Pz(unj) — Py(up) =p and E(u,,j) — E(up) = Enin(p) as j — +oo. In particular,
there exists c(uy) > 0 such that P>(uy) = p, uy is a solution to (TW,))(up) = 0 and

E(up) = Emin(p)-

Furthermore, the set Sy :={v € £ : P,(v) =p and E(v) = Enin(p)} of minimizers for Enin(p) is orbitally
stable for the semidistance D.



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2175

An open and difficult question is to show, up to the invariances of the problem, the uniqueness of the
energy minimizer at fixed momentum. In other words, the problem is to determine if S, consists of a
single orbit under phase shift and space translation; that is, do we have, for some minimizer Uy,

Sp=1{Up(- —X)e"” 1y e R, X € R*}?
The main consequence of our work is to solve this open problem of uniqueness for large momentum.

Theorem 1.4. There exists po > 0 such that, for any p > po, if u, v € € with P,(u) = P,(v) = p satisfy
E(u) = E(v) = Emin(p),
then, there exist X € R* and y € R such that
u=v(- —X)e’.

In fact, we will be able to show slightly stronger results than Theorem 1.4; see Theorem 1.11 below.

Even though we focus on the Ginzburg—Landau nonlinearity, it is plausible that our results hold true
(still for large momentum) for more general nonlinearities, provided vortices exist. For the Ginzburg—
Landau (cubic) nonlinearity, it is also possible that uniqueness of minimizers holds true for Ey,(p) for
any p > 0. However, the numerical results given in [16] suggest that this may no longer be the case for
more general nonlinearities.

In the analysis of the minimization problem in [10] (and also [13]), the following properties of Ep;,
play a key role.

Proposition 1.5 [10]. The function Emyin : Ry — R is concave, nondecreasing and ~/2-Lipschitz continuous.
In addition, there exists K > 0 such that, for any p > 1, we have

Emin(p) <27 Inp + K. (1-1)

1B. A smooth branch of traveling waves for large momentum. There have been several ways of
constructing traveling waves of the (NLS) equation, with different approaches. For instance, we may use
variational methods, such as a mountain-pass argument in [3; 5], or by minimizing the energy at fixed
kinetic energy [10; 13]. Also, we have constructed in [14] a traveling wave by perturbative methods,
taking for ansatz a pair of vortices, by following the Lyapunov—Schmidt reduction method as initiated
in [39]. Vortices are stationary solutions of (NLS) of degrees n € Z* (see [12; 23; 26; 37; 45]):

Va(x) = pu(r)e”,
where x = re'?, solving
AVy = (Val? = DV, =0,
{IV,,| —1 as|x|— oo.
In the previous paper [14], we constructed solutions of (TW,) for small values of ¢ > 0 as a perturbation
of two well-separated vortices (the distance between their centers is large when ¢ is small). We have
shown the following result.
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Theorem 1.6 [14, Theorem 1.1; 15, Proposition 1.2]. There exists cy > 0 a small constant such that, for
any 0 < ¢ < ¢, there exists a solution of (TW,) of the form

Qc — Vl(' _dczl)v—l(' +dcgl) + Fc’
where d, = (1 +0.-0(1))/cisa C! function of c. This solution has finite energy; that is, Q. € &£, and
Q. — 1 at infinity.
Furthermore, for all 2 < p < 400, there exists co(p) > 0 such that, if 0 < ¢ < co(p), for the norm
120y == Al @2y + VAN Lr-1 (w2
and the space X, :={f € LP(R?) :Vf e LP~1(R?)}, one has
”Fc”p = 0c—o(1).
In addition,

c> Q.—1eC'(0, co(p)l. X)),
with the estimate

1+ o00-0(1 . .
0.0+ (HTO())ad(VI(' —de))V_i(- +dey))a=a.

(=)
=0c—0\ 3 |-
p c

Finally, we have o4 0

d —LZTT T 0c—0

L (P2(Q0) = =5 < s
c c

hence the C! mapping
P:10,c0l = R, c— Pr(Q0),

is a strictly decreasing diffeomorphism from 10, co] onto [ P2(Q.,), +00l.

Remark 1.7. With the same kind of approach, [33] also provides an existence result of traveling waves
for (NLS), including some cases with more than two vortices. Our result has the advantage of showing
the smoothness of the branch with respect to the speed. In particular, with the last part of Theorem 1.6,
we see that we may also parametrize the branch ¢ — Q. by its momentum P.

It is conjectured that all these constructions yield the same branch of traveling waves (for large
momentum) when they are all defined, and that they are the solutions numerically observed in [16; 28]
for more general nonlinearities (see also [17]). We will show here that the construction of Theorem 1.6
yields the unique, up to the natural translation and phase invariances, constrained energy minimizers.

1C. A uniqueness result for symmetric functions. We have shown in [15] several coercivity results for
the traveling waves constructed in Theorem 1.6. This will allow us to show the following uniqueness
result for symmetric functions close to the branch constructed in Theorem 1.6. There, for d € R, we use
the notation 7y = min(| - —deé,|, | - +déi|).

Proposition 1.8. There exists L, > 1 such that, for any X > A, there exists €(A) > 0 such that if a function
u € € satisfies

(1) forall (x1, x2) € R?, u(xy, x2) = u(—xi, x2),

(2) u=Vi(x —deé))V_1(x +dé) + T, withd > 1/e(1), |IT||Leqr,<20)) < €A,
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(3) NMul = Uleogigzay < 1/ Ak,
4) (TW.)(u) =0 for some ¢ > 0 such that |dc — 1| < e(}),
then, there exist X € R and y € R such that u = Q.(- — Xé»)e'Y, where Q. is defined in Theorem 1.6.

Remark 1.9. In view of the symmetry assumption, we may replace the second hypothesis by
llu— Vi(- —der)|lLo(Be 20)) < Q).

We will discuss the main arguments of the proof of Proposition 1.8 in the next section. This result can
be seen as a local uniqueness result, but the uniqueness turns out to be in a rather large class of functions.
Indeed, two functions that satisfy the hypotheses of Proposition 1.8 can be very far from each other, for
two main reasons. First, in condition (2), the vortices that compose one of them have no reason to be
close to the ones composing the other function since d depends on u: their centers dé; only need to
satisfy |dc — 1] < &()), but for instance both d = 1/c and d = 1/c + 1/4/c satisfy these conditions for
¢ > 0 small enough at fixed L. Secondly, we only have that far from the vortices, the modulus is close
to 1 from condition (3), but we have no information on the phase. The proof of Proposition 1.8 will rely
on methods used in [15] in order to prove some coercivity, and we shall need to be very precise to take
into account all these cases.

A way to see that Proposition 1.8 is a strong unicity result is that it implies the following local
uniqueness result in L*° for even functions in x;.

Corollary 1.10. There exist cy, € > 0 such that, for O < ¢ < cy, if a function u € £ satisfies
(1) for all (x1, x2) € R%, u(xy, x2) = u(—x1, x2),

(2) (TW.)(u) = 0 in the distributional sense,

(3) llu— Qcllpomey <&,

then, there exist X € Rand y € R such that u = Q.(- — Xeé,)e'.

We may now state our main result. It establishes that any traveling wave solution which is even
in x; and within O(1) of the minimizing energy must be, for large momentum, the Q. traveling wave
constructed in Theorem 1.6, up to the natural translation and phase invariances.

Theorem 1.11. For any Ay > O there exists po(Ao) > O such that, if u € & satisfies
(1) forall (x1, x2) € R%, u(xy, x2) = u(—x1, x2),
2) (TW.:)(u) =0 for some c > 0,
(3) Pr(u) = po(Ao),
4) E(u) <2mIn Py(u) + Ao,
then, there exist X € R and y € R such that
u=Qc( —Xée,

where Q. is defined in Theorem 1.6. In particular, P>(u) = P(c) (where P is defined in Theorem 1.6).
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Section 3 is devoted to the proof of this result. We show there that a function satisfying the hypotheses
of Theorem 1.11 also satisfies the hypotheses of Proposition 1.8. Our result applies in particular to the
constraint minimizers for the problem E;,(p) for large p.

Corollary 1.12. There exist pg > 0 such that, for any p = po and any minimizer U for Epnin(p), there
exist y € R and X € R? such that, with c = P~ (p),

U= 0. —X)e.
Moreover, (TW,)(U) = 0.

Proof. By a first translation in x|, we may assume, by Theorem 1.2, that this minimizer U is even in x;. By
Proposition 1.5, the last hypothesis (4) of Theorem 1.11 is satisfied; hence we may translate in x, and use
phase shift and get that this minimizer U is Q.. Necessarily, P,(U) =p = P»(Q.); thus ¢ = P‘l(p). Il

Theorem 1.4 is a direct consequence of this corollary. This allows us to derive several interesting
consequences on the function Ey,. This also shows that the branch of Theorem 1.6 coincides with the
global energy minimizer at fixed momentum (up to translation and phase shift).

Theorem 1.13. There exists ¢, > 0 such that, for 0 < ¢ < ¢4, Q. is a minimizer for Epnin(P2(Q.)).
Moreover, there exists po > 0 such that the following statements hold.:

(1) The function Ewyn is of class C? in [pg, +00[ and

p 2w , 2w

(2) Forp =po, Sp={0p-1(- — X)e'” 1y € R, X € R?}; hence, for any p > po, E| . (p) is the speed
of any minimizer for Epnin(p).

(3) Forany p > po, Qp-1(p) is orbitally stable for the semidistance Dy (or, equivalently, for 0 < ¢ < ¢y,
Q. is orbitally stable for the semidistance D).

(4) For p = po and any minimizer u for Enin(p), up to a space translation and a phase shift, u enjoys the
symmetry,

forall (x1,x) € R?,  u(xy, —x2) = it(x1, x2),

in addition to the symmetry in x;.

(5) For any A > 0, there exists po(A) > 0 such that, if u € £ satisfies (TW,)(u) = 0 for some ¢ > 0,
Pr(u) = po(A) and u is even in x1, then either E(u) = Enin(P>(1)) or E(u) 2 Enin(P2(u)) + A.

Proof. By Theorems 1.2 and 1.3, we have the existence of at least one minimizer Uy, for Ey;,(p), where
p > 0. For large p, by applying Corollary 1.12, we have U, = Q (- — X)e'” for some X € R%and y € R,
thus proving that Q. is a minimizer for E,(p) and that P,(Q.) = P(c) = p.

For (1), it suffices to notice that, in view of Corollary 1.12 applied to any minimizer (we have
existence by Theorems 1.2 and 1.3) Enin(p) = E(Qp-1()). We then conclude by using that P is a



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2179

c! diffeomorphism and that ¢ — E(Q.) is also of class C I (see [15, Proposition 1.2]), that Ep;, is of
class C! in [pg, +oo[ and that

Epn(®) = L E(Q0) i1y X P,

1
P (Pt p)
in view of the Hamilton-like relation (formally shown in [28] and rigorously proved for the branch
constructed in Theorem 1.6 in [15])

dpion—ed
%E(Qc) —CdCPz(Qc)-

Since P is a C! diffeomorphism, we deduce that E| . is of class C !, The asymptotics for E{ . and
Er/rllin
slightly improve this estimate. Indeed, Proposition 1.5 gives Enin(p) < 27 Inp + O(1), and the lower
bound is a straightforward consequence of Theorem 3.4(i) and the study in Section 3B3.

then follow from Proposition 1.2 in [15]. Integration would yield Epi,(p) ~ 27 Inp, but we may

Statement (2) is a rephrasing of Corollary 1.12, combined with the existence of at least one constrained
minimizer. Statement (3) is then a direct consequence of Theorem 1.3. Statement (4) simply follows
from the fact that Q. enjoys by construction this symmetry (see [14]). Finally, statement (5) is also a
rephrasing of Theorem 1.11. O

Remark 1.14. Concerning the stability given in statement (3) in the above theorem, we quote [32], where
a linear “spectral” stability result is proved (through ad hoc hypotheses that were checked in [15]), namely
that the linearized equation i9;v = L (v) does not have exponentially growing solutions (in H|(R*; C),
say). Statement (3) in the above theorem does not rely on the result in [32], and is needed for the nonlinear
(orbital) stability (following the Cazenave—Lions approach).

Let us conclude this section with several comments on our result. First, let us explain the relevance of
the symmetry hypothesis, namely that we restrict to mappings that are even in x;. This symmetry is used
in the coercivity of the branch of Theorem 1.6, through the following arguments. The quadratic form
around the traveling wave Q. is decomposed in three areas, close to the two vortices, and far from them.
In the latter region, the coercivity can be shown without any orthogonality condition. Close to the vortices,
the quadratic form is close to the one of a single vortex, which was studied in [38]. Its coercivity requires
three orthogonality conditions, two for the translation, and one for the phase. Therefore, we can show the
coercivity of the full quadratic form with six orthogonality conditions, three for each vortex. However,
the family of traveling waves of Theorem 1.6 has only five parameters (two for the speed, two for the
translation, and one for the phase). The symmetry is then used to reduce the problem to three orthogonality
conditions into a family with three parameters. With this symmetry, both orthogonality conditions on
the phase for the two vortices become the same condition. It is possible to prove a coercivity result with
only five orthogonality conditions without symmetry (see [15]), but then the coercivity constant goes to 0
when ¢ — 0. This would pose a problem for the uniqueness result. The last statement in Theorem 1.13
shows that, when restricting ourselves to symmetric traveling waves, there is an energy threshold under
which there is no traveling wave except the Q. branch.
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Secondly, the proof of the fact that Q. is a minimizer of the energy for fixed momentum relies on the
existence of such minimizers. In particular, we have not been able to use our coercivity results in [15] in
order to prove directly that Q. is orbitally stable (for small ¢).

Thirdly, the symmetry in x, for the minimizers (statement (4)) is established as a consequence of the
uniqueness result and not in itself. Notice that the numerical studies in [16; 17; 28] assume the two
symmetries.

1D. The traveling wave Q. and two other variational characterizations. Before providing other varia-
tional characterizations of Q., we have to define a distance on the energy space £. One can use (see [22])

De (Y1, ¥2) = Y1 — Y2l 2mey+ Lo m2) + IV = Vil 2@y + V1] = 120l 2 w2,

which is adapted to the Cauchy problem. Actually, we may also use the pseudodistance'

Do(Y1, ¥2) == IVt = Vil 2we) + 1Y = (2l 2@2)-

Is it shown in [13, Corollary 4.13] that both the energy E and the momentum P, are continuous for the
distance D¢, and actually even for the pseudodistance Dy.

The traveling wave Q. as a mountain-pass solution. Thanks to the results in Theorem 1.13, it is easy to
show that we have locally, near ., a mountain-pass geometry. Indeed, let ¢, > 0 be small, and define

Y, :={v:[—1,+1] — & continuous : v(—1) = Q3. /2, v(+1) = O, 2},
the set of continuous paths from Q3,2 to O, /2 in £. Then, we claim that

inf  max (E—c.P)(v(t)) = (E—cP2)(0Qc,). (1-2)
veY,, te[—1,+1]
Indeed, let v € Y,. By the intermediate value theorem, there exists 7, € [—1, +1] such that P»(v(?)) =
Py (Q¢,) (c— P2(Q.)isa C'! function (see [15, Proposition 1.2]). Since 0., is aminimizer for Enin(Q.,),
we infer

te[n—l?)-(i-]](E —c:P)(W(®) 2 E(v(ty)) — e P2(Qc,) 2 E(Qc,) — ¢ P2(Qc,)-

Moreover, considering the particular C 1 path v, : [—1, +1] — & defined by v (?) := Q, ¢, /2, We see that

d cx(d d 3ty d
S(E = cuPY(,(0) = =5 (- E(Q0) — et P2(Q0) (= P00)

le=cx—tcy/2 4 [e=cx—tcy/2

in view of the Hamilton group relation %E (Q.) = cj—c P, (Q.) (see [15, Proposition 1.2]). Since
j—CPz(Qc) < 0, we deduce that (E — ¢« P>)(v4(2)) increases in [—1, 0] and decreases in [0, +1], and hence
has maximal value E(Q.,) —c.P2(Q.,), as wished.

LDo(r1, W) is zero if and only if yry — | is constant with [1] — 1 = |yra] — 1 € LZ(R?).



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2181

Furthermore, by the asymptotics given in [15] and the above-mentioned Hamilton group relation
LEQ) =cLPy(Q,), we have

(E =)~ (E=cP)Qup) = [ (= el Pa(Qode =0
cs/)2 ¢

since ¢ — ¢y < 0 and %PZ(QC) < 0. Similarly, we prove that (E — ¢, P2)(Q¢,) — (E — ¢4« P2)(Q3c,/2) <0.
We now claim that if ¥ € £ is such that (TW,,)(u) =0 and

(E—ciP)(w)= inf max (E—ciP)(v (1)) =(E—ciP2)(Qc,), (1-3)
veY,, te[—1,+1]

by (1-2), that is, if u is a critical point of £ — ¢, P, at the good critical value, then we must have
Py(u) = P2(Q.,). Indeed, by the Pohozaev identity (2-2), we have

1
cxPy(u) = 5 /2(1 —u»H?dx >0,
R

and hence P>(u) > 0. Furthermore, we know that E;, is concave in Ry (Proposition 1.5), and that
Emin is of class C! and strictly concave on [pg, +o0[ (by statement (1) of Theorem 1.13). Therefore, if

Py(u) # P(Q,), then

E(u) 2 Emin(P2(4)) > Emin(P2(Qc,)) + Epin(P2(Qc,) (P2 () — P2(Qe,))

= E(Qc,) +cx(P2(u) — P2(Q¢,)),
in contradiction with (1-3).
As a consequence, we have

E(u) = E(Qc*) = Enin(P2(n)) = Emin(PZ(Qc*)),

implying that u is a minimizer for Enin(P2(Q.,)); hence there exist y € R and X € R? such that
u= Q. (-—X)e'’, proving a uniqueness result for mountain-pass-type traveling wave solutions. However,
stating rigorously a useful uniqueness result for this kind of variational solution is not so easy: In [5], the
mountain pass is implemented in the space 1 + H 1(R?), whereas we know (by the result in [25]) that
the nontrivial traveling wave does not belong to this affine space; in [3], the solution is constructed by
working first on [N, +N] x R and then passing to the limit, and it is then not immediate to compute the
functional E — ¢ P on the solution; in addition, the method does not provide easily some explicit bounds
on the energy or the momentum. We shall then not go further in this discussion even though the previous
arguments indicate that mountain-pass solutions are (at least for small c¢) only the orbit of Q..

The traveling wave Q. as a minimizer of E — c P, for fixed kinetic energy. In [13], for k > 0, the
following variational problem is investigated:

Imin() = inf 1/ (1 —v»)?dx — P(v), veg:lf IVv?dx =k }.
4 Rz 2 RZ

Any minimizer v for Ini,(x) is such that there exists ¢ > 0 satisfying (TW.)(v(-/c)) = 0. In two
dimensions and for the Ginzburg—Landau nonlinearity, existence of minimizers for ¥ > 0 is established in



2182 DAVID CHIRON AND ELIOT PACHERIE

Theorem 1.2 there. Furthermore, it is shown in [13] (see Proposition 8.4 there) that if p > 0 and if U is a
minimizer for Eni,(p) with speed ¢, then U (c -) is a minimizer for Iy, (k) with xk = % fRZ VU |? dx (this
last quantity is scale-invariant in two dimensions) and Iy 1S dlfferentlable at this «, with I . (k) =—1/ 2.
Since Q. is a minimizer for Eni,(P>(Q.)), if we prove that ¢ — 5 R? IVO.|?dx is a decreasing
C 1—diffeomorphism from ]O, ¢p], for some small ¢y, onto [xq, +00[, with kg := % fR2 |VQCO|2 dx, then
we shall conclude that Iy, is of class C! on [k, +00[, and that (by the arguments in [13]) the only
minimizer for x = % R2 IVO.|?dx (for some suitable ¢ € ]0, cg]) is Q(c -) up to the natural translation
and phase invariances and, in addition, I . (k) = —1 / c”. In order to prove that statement, it suffices to
use the Pohozaev identity (2-2) and deduce

cPy(Qc)

1 24y = _1 102 dx = _
[ verar=Eo- [ a-10. dr =B -

Therefore, by using the Hamilton-like relation %E(Qc) = C%Pg(QC) and then the asymptotics of
c+— P>(Q.) obtained in [15], we arrive at

d

d 1 27
2dc %PZ(QC)_EPZ(QC) - <0.

IVQcI dX——(E(Q ))———Pz(Q ) — Pz(QC):%

The paper is organized as follows. In Section 2, we give the proof of the uniqueness result given in
Proposition 1.8. Section 3 is devoted to the vortex analysis of traveling waves with energy Epin(p) +O(1),
that are even in x;, in order to show that they satisfy the hypotheses of Proposition 1.8. Section 3D
contains a few remarks on the nonsymmetrical case. Finally, in Section 3C, we provide some decay
estimates slightly away from the vortices. For the Ginzburg—Landau (stationary) model, such estimates
were first given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions.
They improve some estimates in [14] and are not specific to the way we construct the solutions.

2. Proof of the local uniqueness result (Proposition 1.8)

This section is devoted to the proofs of Proposition 1.8 and Corollary 1.10. The proof of Proposition 1.8
uses arguments from the proof of [15, Theorem 1.14], another local uniqueness result for this problem,
but in different spaces. We explain here the core ideas of the proof.

Let us explain schematically the proof of Proposition 1.8. We first pick ¢/, X, ' in such a way that
0=0.(-—-X )e'” has the same vortices as u. This is possible because ¢ — d,, the position of the
vortices, is smooth. We then use the decomposition u = Qe¥, where 1 is the error term. This cannot be
done near the zeros of Q, but we focus here on the domain far from the vortices.

The equation satisfied by 1 is then (TW,)(u) =0 = (TW,)(Q) +L() + NL(¢), where we regroup
the linear terms in L and the nonlinear terms in NL, and (TW,)(Q) # 0 because ¢ # ¢’. We then take the
scalar product of this equation with ¥, and we get 0 = ((TW,)(Q), ¥) + Bo(¥) + (NL(¢), ¥). Now,
the coercivity of By has been studied in [15]. It holds (for even functions in x;) up to three orthogonality
conditions, which can be satisfied by changing slightly the modulation parameters ¢/, X, y. We deduce
that Bo(y) > K ||y/|1? for some norm || - ||;.
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There are two main difficulties at this point. First, since the hypotheses on u in Proposition 1.8 are
weak, we simply have ||y ||; < +00, but not the fact that it is small. Therefore, an estimate of the form
[(NL(Y), ¥)| < K ||1p||? would not be enough to conclude. Secondly, the norm || - || is rather weak, and
in fact (NL(¥), ¥) cannot be controlled by powers of ||¢/]|;.

Concerning the term ((T W,.)(Q), V), we may show that we always have |¢ — ¢/| < o(1)||¥ |1, and
thus [((TW.)(Q), ¥)| < 0(1)”1/[”%. Therefore, we are led to

SIVIR < UTW(Q), ) + Bo() = —(NL(), ¥).

Then, even if |[1]|; is not small, by the hypotheses of Proposition 1.8, ¢ will be small in other (nonequiv-
alent) norms. Let us write one of them || - ||o. Our goal is then to show an estimate of the form
[(NL(y), )| < K || |l2 [l ||, which would conclude the proof. This is possible, except for one nonlinear
term, which contains two derivatives. We then perform some integrations by parts on it. When both
derivatives fall on the same term, we get a term containing A, which also appears in the equation
0=(TW.)(Q)+L)+NL(1) (in L(¥)). We thus replace it using this equation, which leads to another
term containing two derivatives (from NL(v)), and other terms that can be successfully estimated. After
n such integrations by parts, we have an estimate of the form

UNL@), ¥ < K1Y 2 I 1T+ 1 s 1wl 1w T,

where || - ||3 is another (semi-)norm in which i is not necessarily small. Now, taking n large enough
(depending on ), since || ||2 < 1, we get [(NL(y), ¥)| < e AR concluding the proof.

The problem is a lot simpler near the vortices. There, we write u = Q + ¢ and the coercivity norm is
equivalent to the H ! norm, and the hypotheses of Proposition 1.8 give us ||¢|| L = o(1). The estimate of
the nonlinear terms then becomes trivial.

As stated in the Introduction, the symmetry condition is necessary to have a coercivity result where the
coercivity constant is uniform; see Corollary 2.6 below. This is the only place where the symmetry is
used in a crucial way.

2A. Some properties of the branch of traveling waves from Theorem 1.6. We recall here properties on
the branch ¢ — Q. from Theorem 1.6, coming mainly from [14; 15]. In this section, we will use the
notation

)i [ e

2A1. Properties of vortices. We start with some estimates on vortices, which compose the traveling wave
(see Theorem 1.6).

Lemma 2.1 [12; 26]. A vortex centered around 0, Vi (x) = p1(r)e'?, satisfies V1(0) =0, E(V)) =400
and there exist constants K, k > 0 such that,

forallr >0, 0<pi(r) <1, pi(r) ~ookr, pi(r) ~r=ok,

1
forallr >0, pj(r)>0, pj(r)= OHOO<F—3>, ol (D + 10" (1] < K,



2184 DAVID CHIRON AND ELIOT PACHERIE

1 1
1 - |V1(x)| = ﬁ+0r—>oo(r_3>a

K
VVI| < —, |V*Vi|< —,
1+r (14+r)?

. x+ 1
VVl(x):le(x)—2+0raoo 3 )
r r
where x* := (—x3, x1), x =re'? € R%. Furthermore, similar properties hold for V_y, since
Voi(x) = Vi(x).

2A2. Toolbox. We list in this section some results useful for the analysis of traveling waves for not
necessarily small speeds.

Theorem 2.2 (uniform L bound [19]). Assume that U € L3 _(R?) solves

loc
AU +ichU+U1—|UP) =0.
Then,
2
10Ny <1+
Corollary 2.3. There exists K > 0 such that, for any ¢ € [—/2, ++/2] and any U € Lfoc(le ) satisfying
(TW)(U) =0, we have
IVU Il ooty + I V2U | Loy < K- 2-1)

The following Pohozaev identity (see [10] for instance) will be useful in our analysis. If ¢ € R and
U € € satisfies (TW,.), then
1
5/ (1= |U»?*dx =cPy(U). (2-2)
R2
We shall also make use of the algebraic decay of the traveling waves conjectured in [28] and shown
in [24].

Theorem 2.4 (algebraic decay of the traveling waves [24]). Let ¢ € [0, \/5[. Assume that U € € is a
solution of (TW.)(U) = 0. Up to a phase shift, we may assume U (x) — 1 for |x| — +00. Then, there
exists M, depending on U and c such that, for x € R?,

U(x) =1 < IVU(x)| < U@ =1 <

14 [x|” (I+|xD*’ (I+[xp?
2A3. Symmetries of the traveling waves from Theorem 1.6. We recall from [14] that the traveling wave Q.
constructed in Theorem 1.6 satisfies, for all x = (x1, x») € R2,

Qc(x1, x2) = Qc(—x1, x2) = Qc(x1, —X2).
This implies that, for all x = (x1, x2) € R?,

0:0c(x1,x2) = 0:0c(—x1, X2) = 0 Qc(x1, —X2),
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Ox; Qc(x1, X2) = =0y, Qc(—x1, X2) = 0y, Qc(x1, —X2),
8x2 Qc(x1, x2) = axz Qc(—=x1,x2) = _axz Oc(x1, —x2),
0,1 Qe(x1, x2) = —0,1 Qc(—x1, X2) = —0,1 Qc(x1, —X2),

where 9.1 Q. := x 1.V Q,; see Section 2.2 of [15]. Note that these quantities all have different symmetries.

2A4. A coercivity result. From Proposition 1.2 of [15], we recall that Q. defined in Theorem 1.6 has
two zeros, at +d,é;, with

de —d. = 0c0(1). (2-3)
We define (as in [15]) the symmetric expended energy space by

Hy?* =g € Hyoo(R?, ©) : [lgll e < o0 for all (x1, x2) € R?, p(=x1, x2) = p(x1, 1)},

where, with ¢ = Q. Y, ¥ = F[;C = min(r, 7_1), 7+] being the distances to the zeros of Q. (we use r
instead of r; to simplify the notation here), we define

ly

72 1n* 7

2. 2
”‘p”HZ*f = el <o +/

{r=

IV |2+ Re2 (V) +
5}

By using (2-1), we deduce, for any R > 0, [l¢[lg1r<ry < K(R)||<p||HeQxy. The linearized operator
around Q. is '

Lo, (9) :=—Ap—icdng — (1 —[Qc)p +2Re(0cp) Q.
We take a smooth cutoff function 7 such that

0 on B(£d.é,,2R),

n0x) = {1 on R2\ B(+d.2,, 2R + 1),

where :l:c?cél are the zeros of Q. and R > 0 will be defined later on (it will be a universal constant,
independent of any parameters of the problem). We define the quadratic form (as in [15])

B, (¢) = /Rz(l — D (IVel* = Re(icdy,0@) — (1 — QcD)pl* + 2R (0c9))
- fR Vi (Re(VQ Q0 [Y P —2Im(VQ: Qo) Re(w) Im())
+ [ ctniew) Imeniocf
+/Rzﬁ(|vw|2|Qc|2+2me2<w>|Qc|“)

+ /Rz 7(4Im(V Qe 00) Im(VY) Re(¥) +2¢| Qc > Tm (0, ¥) Re(¥)).  (2-4)

We recall from [15] (or by integration by parts) that, for ¢ € C2° (R%, C), we have Bgi? (@)= (Lo (@), p)
and that BZ‘f((p) is well-defined for ¢ € H, g‘(p’s. This last point is the reason why we write the quadratic
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form as (2-4), which is equal, up to some integration by parts, to the more natural definition

/2 Vol® = (1= 1Qc)lgl” +2Re? (Qep) — Relicdu9P),
R

but this integral is not well-defined for ¢ € H g‘(p’s. See [15] for more details on this point. We now quote

the following coercivity result:

Theorem 2.5 [15, Theorem 1.13]. There exist R, K, cy > 0 such that, for 0 < ¢ < ¢g, Q. defined in
Theorem 1.6, if a function ¢ € H gip ** satisfies the three orthogonality conditions

ne f 0= [  9,006=0,
B(d.¢1,R)UB(—d.é1,R) B(d.¢,,R)UB(—d.e|,R)

S‘ief i i iQ.9=0,
B(d.é,,R)UB(—d.é1,R)

1 2 exp 2
—— €x] 2 B 2 K exp «
0 le > BEP @) > Kl oo

then

We will use a slight variation of this result, given in the next corollary.

Corollary 2.6. There exist R, K, cy > 0 such that, for 0 < ¢ < ¢g, Q. defined in Theorem 1.6, if a
Sfunction ¢ € H gcp’s satisfies the three orthogonality conditions

%8/ da(Vi(- —de)V_i(- +d51))|d:d6¢=9%/ 0, 0c 9 =0,
B(d.é1,R)UB(—d,é1,R) B(dvé1,R)UB(—d.é1,R)

Re / 0.6 =0,
B(dfa,R)UB(—dca,R)

exp

1
E'“‘)“igﬂ’ > ByP(p) > K||<p||§,gf.

then

Note, with Theorem 1.6 (for p = 400), that —(1/c2)8d(V1(- —de)V_i(- +dé1))a=q, is the first
order of 3. Q. when ¢ — 0 in L®(R?, C), and that (with Lemma 2.1) they both have the same symmetries.

We need to change the quantity Die 9. 0. ¢ in the orthogonality conditions because

fB(J(,El,R)UB(—J(,EI,R)
we will differentiate it with respect to ¢, and

cr>04(Vi(- —deé)V_i(- +déy)) =3, Vi(- —dce)V_1(- +dce1) 40, Vo1 (- +d.e1)Vi(- —dcer)

ld=d. —

is a C! function (¢ — d. € C'(]0, co[, R) for ¢y > 0 a small constant (see Section 4.6 of [14]), but it is
not clear that ¢ — 9. Q. can be differentiated with respect to c. Precise estimates on

da(Vi(- —de)V_i(- +deé1))ja=d,

can be found in Lemma 2.6 of [14]. Furthermore, we changed, in the area of the integrals, cfc to d, (they
are close when ¢ — 0, see (2-3)).
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Proof. Step 1: changing the integrand but not the integration domain. Take a function ¢ € Hy""*
satisfying
E)fief i i da(Vi(- —de)V_i(- +dgl))|d=dc¢_)=9%/ ) i 0,09 =0,
B(d.é1,R)\UB(—d.21,R) B(d.é1,R)\UB(—d.21,R)

Re / ) . iQ.¢=0.
B(d.é1,R)UB(—d.€|,R)

Let us show that it satisfies (1/K)||<,0||§1,exp = ng(w) > K||¢||H2xp. For i € R, we define
Qc ¢ ¢
¢* =9 +cud Q..

We have that 0. Q. € H Sip **. We want to choose 1 € R such that ¢* satisfies the hypothesis of Theorem 2.5.
By the symmetries of Section 2A3 and the hypotheses on ¢, we have that

%ef~ . ch(szg}‘e'/‘~ . 8szc(F<=0’
B(d.é1,R)UB(—d.é1,R) B(d.é1,R)UB(—d.é1,R)

and we compute, using

SRe/ i ) a(Vi(- —dépV_i(- +dgl))|d=d.¢ =0,
B(d:é1,R)UB(~dcé1,R) ‘
that

Re / 29,0, ¢*
B(d.é1,R)UB(—d.é1,R)

:me/ ] ] czaCQC¢+M9%e/ ~ i *19.Qc)?
B(d.e;,R)UB(—d.e|,R) B(d.é1,R)UB(—d.é1,R)

=5R8/ ) ) (Czach —04(Vi (- —de)V_1(+ +deé1))4=d,)®
B(d.é;,R)UB(—d.é;,R)

+u9%e/ ~ Mo
B(d.¢|,R)UB(—d.é1,R)

By Theorem 1.6 (for p = +00) and Lemma 2.6 of [14], we have

[*0:0c = 3a(Vi(- —denVoi(- +dé) || ey = 0e—0(D),

and also that there exists a universal constant K > 0 (we recall that R > 0 is a universal constant) such

that
1
g | M<K
B(d.é;,R)UB(—d.¢1,R)

—Re fB(d}E],R)UB(-LLE],R) (CZaC Qc - 8d(‘/l( t T dzl)vfl( -+ dgl))|d=dc)¢

~ - 4 2 9
Re [pd.z.m1uB(—d.z k) €10 Qc]
mef *9.Qc 9* =0,
B(d.é,R)UB(—d.é1,R)

|/’L| < Oc_)O(l)”(p||L2(B(d~pgl,R)UB(—L?CEI,R)) < 06—)0(1)”90“H8QXLP

Now, taking

I,L:

we have

with
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Since 0. Q. € H gip’s by Lemma 2.8 of [15], we deduce that ¢* satisfies all the hypotheses of Theorem 2.5;
therefore

1 *)12 eXp .k *12
210 W > B > Kllg" e

Now, from Lemma 6.3 of [15], we have 1/K < ||c?3. Q.|| HYY < K for a universal constant K > 0. With
| < oco(D)|lell HEP> We deduce that, taking ¢ > 0 small enough,

1 2 exp, 2
;IlfpllH;xfp > B, (¢%) = 1<||¢||chp
for some universal constant K > 0. Now, we have the decomposition (using Lemmas 6.2 and 6.3 of [15])
By (9") = ByP (9 + 9. Q.)
= BSP(9) + 22 u{L g, (3. Q0. ) + ¢ > BEY(0.0.),

and by Lemmas 2.8, 5.4 and 6.1 of [15],

, 1
(Lo, @00), )] =10, Qe ) < K In( 2 )1l e
hence
1
261 (Lo, (300 ) < K In(= ) Inlllpl e < ocro (Dl e

By Proposition 1.2 of [15], BgP(aCQC) = (27 4 00 0(1))/c?; thus
12 By (000 < 0co(D @ l7e0,

exp

which concludes the proof of (1/K )||<p||§chp Z B, (p) =2 K ||(p||12qcxp by taking ¢ > 0 small enough.
Qc ¢ Qc
Step 2: Changing the integration domain. To change the conditions

%ef i _ da(Vi(- —de))V_1(- +dgl))|d=d0(/_3=9{€/ 0,0, =0,
B(d.é1, R\UB(~d.é1,R) B

(d.é1,R)UB(—d é1,R)
Re / i i iQ.p=0
B(dzrzl 9R)UB(_dzrgl ,R)

to

9‘{6/ da(Vi(- —de)V_y(- +d51))|d=dc¢=9{€/ 0x, Qc 9 =0,
B(d.1,R)UB(—d.é|,R) B(d.21,R)UB(—d.é|,R)
e / i0.5=0,
B(d.é,,R)UB(—d.é|,R)
we use similar arguments, using |d. — cfcl = 0.-0(1) by (2-3). We check for instance that

‘%ef ~ 3x2Qc¢—9‘ief axZQc«s‘ < K(R)lde —del ¢l e
B(d.é;,R)UB(—d.e|,R) B(d.¢1,R)UB(—d.é1,R) Qe

and |de — d| = oc—o(1).
Notice that the integration domain remains symmetric with respect to the x,-axis. O
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2B. Proof of Proposition 1.8. In this subsection, we take v € ]0, 1[ to be a small but universal constant,
which will be fixed at the end of the proof. We take

1
Ae = max(3R +1, —2)
v

in the statement of Proposition 1.8 (where R > 0 is defined in Corollary 2.6). Then, for any A > A,, we
take

%) =minfv, —
@) nnn(?’10A24—100)

in the statement of Proposition 1.8. The condition (1) < 1/ (1012 + 100) is required only to make sure
that the two balls B(de;, 2A) and B(—dey, 2)) are disjoint and at a distance at least 1 from one another.
This will be used only in the proof of Lemma 2.8.

We take u a function satisfying the hypotheses of Proposition 1.8 for these values of A,, A and (1). In
the rest of the subsection, K, K’ > 0 denote universal constants, independent of any parameters of the
problem (in particular, A, A, €(A) and v).

2B1. Modulation on the parameters of the branch. From Theorem 1.1 and the end of Section 4.6 of [14],
we have that Q. = V(- —d.e1)V_1(- +d.e;) +T., withd,. = (1 +0._0(1))/c, |Tcllz~ — 0, and

c—d. e C'(10, col, R),

with 8.d. ~ —1/c* for ¢ — 0 (see Section 4.6 of [14]). In particular, ¢ — d, is a smooth decreasing
diffeomorphism from ]0, cg] onto [dy, +o<[, and thus, given d > 1/v > dy (for v small enough), there
exists a unique ¢’ > 0 such that d- = d. In addition, ¢ ~4_,~ 1/d < Kv. Furthermore,

u(x) — Qu(x)=Vi(x —de))V_i(x +de)) +T'(x) — Vi(x —dwe))V_1(x +deey) — Te(x)
=T(x) =T (x).

From the hypotheses on T", and the fact that ||[¢/[| Lo g2y < 2V (since ¢’ < 2/d < 2v), we deduce that (we
write 7 = rq =7y, to simplify the notation)

lu — Qe llLei<any < Kv.
Since (1 +0¢—0(1))/¢’ =d. = d by Theorem 1.6, and |dc — 1| < v, we have
dlc—c'| < Kv. (2-5)
We now claim that, for a universal constant K > 0,
llu— Qc’||c1({F<A}) < Kv. (2-6)

That is, u is close to Q. near the vortices (in the region {r < A}) in the C ! norm and not only in L*. In
order to show this, we use the elliptic equation satisfied by u — Q, that is,

Al — Qp) = —icdy,— Q) — — Q)1 —[ul®) + (ul* = 1QwH) 00
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Let us fix x € {F < A}. We have [[u — Q¢ || L=i<2ay < K'v by hypothesis; thus the right-hand side of the
equation is small in H “1(B(x, 4)). By a standard H' — H —1 estimate, we deduce

lu — Qe llg g3y < K'v.

Then, the right-hand side is small in L2, and standard L? elliptic regularity yields first

lu — Qcll g2(pr.y < K'v
and then

lu — Qell 3 Bx,1y < K',

and we conclude by Sobolev imbedding.
Outside of this domain, # and Q. are close only in modulus. Indeed, by equation (2.6) of [15] (for
o= %) and the hypotheses on u, we have for a universal constant K > 0 that on {r > 1A},

K /
<||u|—1|+||Qc/|—1|<v+m<1{v.

|lu] = 1Qc]

Now, we modulate on the parameters of the family of traveling waves to get the orthogonality conditions
of Corollary 2.6. For ¢” > 0 close enough to ¢’ and X, y € R, we define

Q=0 (- —Xér)e”, (2-7)

Lemma 2.7. There exist K > 0, vg > 0 universal constants such that, for u satisfying the hypotheses of
Proposition 1.8 for values of Ay, A, €(X), v described above, if v < vy, then there exists ¢’ >0, X,y € R
such that, for R > 0 defined in Corollary 2.6, and dy := +d.e| + X e,

z)%e/ i} (Vi —dé = X&) V(- +dé — Xéne”) ,_, (u—0)
B(dy,R)UB(d_,R) =d

=9‘ie/q ) BxZQ(u—Q)=9%/ﬂ  iQu-0)=0.
B(d+,R)UB(d_,R) B(dy+,R)UB(d_,R)

|//

Furthermore,

'l

X+l < Kv.

Proof. To simplify the notation, in this proof, we define

gV = ad(Vl( - —dey — XEZ)Vfl( - +de + ng)ei)/)‘dZd =

We will keep the notation 7 for the minimum of the distance to the zeros of Q.
First, from equation (7.5) of [15], there exists a universal constant K > 0 such that, for ¢” < ¢y,
/2 <" <2,

C/Z

|C//—C/|
19— QellLeme) < K(IX]+ +1vl)- (2-8)
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Now, we follow closely the proof of Lemma 7.6 of [15], which is done in Appendix C.3 there. We define

X Re [pi. musd g QU —0)
G C” = me‘/‘B(dJr.R)UB(d,,R) adV(I/t— Q)
Fe IB(3+,R)UB(3,,R) iQu—0)

Note that Q, 9,V and Eii all depend on X and ¢”, and Q depends also on y. From (2-6) and the fact
that A > A, > 2R, we have |lu — Q¢ |l1=(7<r)) < KV, and from Theorem 1.6 with p = 400, as well as
Lemma 2.6 of [14],

9%, Q' ll Loom2) + 110a VI ooy + 11 Qerll oo m2) < K (2-9)
for some universal constant K > 0. Therefore, since Q = Q. for X =y =0, ¢” = ¢/, we obtain

0
G| || <Klu—Qcllregi<y < Kv.
0

We want to show that G is invertible in a vicinity of (0 ¢’ 0)T. With (2-6) and (2-8), we check that (we
recall that ¥ = min(|x — dy|, |[x —d_]))

lu— Qllreqr<ary < llu — Qe llL=i<2ry + 119 — Ocll Lo @)

Ic cl
<Kv+K(I1X]+ +1Ivl),

and as in Lemma 7.1 of [15], this implies

|//

_C/|
lu— Qllcrr<ry < KV+K(|X|+ +|V|)- (2-10)

Now, we compute

ax(srie/ o asz(u—Q)>—/ S
B(d+,R)UB(d_,R) B(dy+,R)UB(d_,R)

</ﬁ ] |asz(u—Q>|+/ﬂ 12060
dB(d+,R)UIB(d-,R) B(d+,R)UB(d-,R)

Therefore, with (2-1) and (2-10), we check that

X2

|axQQ(u—Q>|+/

- C//_C/
o |a§2Q(u—Q>|<Kv+K<|X|+' - '+|y|>;
B(dy+,R)UB(d_,R) C

/BB(3+,R)U33(3,R)

hence

c—c'
ax<me/q 0,00 Q)) [ |asz|2’<Kv+K(|X|+' - '+|y|).
B(d,R)UB(d_,R) B(d,R)UB(d_,R) 4
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With similar computations, using Lemma 2.6 of [14], (2-1) and (2-10), we infer that

2
fB((L,R)uB(J_,R) |8x, O 1" —¢/|
oxG — %efB(L,R)UB(J,,R) 94V 0y, O gKv+K<|X|+ 7 —|—|y|).

Ne fB(zL,R)UB(J_,R) 1Q0,,0

By the symmetries of Q(- + Xé;)e™'” and 9,V (- + Xé>)e™'7, we have that

me/ )  94V,0=0,
B(d+,R)UB(d-,R)

and from Theorem 1.6 (with p = 4+00), with the symmetries of Q. and V) (see Sections 2A1 and 2A3),

we have
|c// _ C/I
<KX+ .

C/2

'%e/ ) ianZQ—ZERe/ iVidg, Vi
B(d.,.,R)UB(cL,R) B(0,R)

By decomposition in harmonics and Lemma 2.1, we check easily that Re [ BO.R) V105, VI = 0; thus

2
fB(J+,R)UB(J_,R) |8X2Q| | //_c/|
IxG — 0 < Kv+K(|X|+ — +|y|>.
0

Similarly, we check that (using d.(d.) = (—1 + 0,—0(1)) /c2 from Section 4.6 and Lemma 2.6 of [14])

O /! /
2 —C
?00:G — | o, rusd .z 194V <Ku+K<|X|+' 3 '+|y|)
0

(we use here the fact that ¢ —~ 9;V and ¢ — c?i are differentiable) and

0

|C//—C/|
3,G — 0 <Kv+K(IX]+ = +1rl).

- /B([L,R)UB(E,,R) 10
From (2-1) and Theorem 1.6 (for p = 4+00) as well as Lemma 2.6 of [14], there exists a universal constant
K > 0 such that
< . 10,0 <K,
B(dy,R)UB(d_,R)

</ i _ 1VIPLK,
B(dy,R)UB(d_,R)
<

<[ QP LK,
B(dy,R)UB(d_,R)

X|= =N[= X[|=

provided | X| + ¢” is small enough. We deduce that there exists K1, K3, vgp > 0 such that, for 0 < v < vy
and u satisfying the hypotheses of Proposition 1.8 with the parameters A, v, dG is invertible in the ball

| " _ /|

{(X,c//,y)eR3:|X|+ >
c

+lyl < Klv},
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and there exists X, ¢”, ¥ € R such that

X
G| |=0,
14
with
| " /|
T+|X|+|V|<K2V. O
C

2B2. Construction and properties of the perturbation term. We define n a smooth cutoff function with

0 forx € B(dy,2R),

nex) = {1 for x € R2\B(+d., 2R + 1),

which is even in x;. We infer the following result, where the space Hgm"Y is simply defined by
Hp™" = {p € Hipe R, C) : ||l ygo < +o00 for all (x1, x2) € R?, ¢(—x1,x2) = p(x1, x2)},

with, for 7 the minimum of the distances to the zeros of Q, ¢ = QV,

2
2 o2 2 2 4
101,50 = 10151 510 + /{M} VR +REW) + 5
and ng has the same definition as BeQ’?, replacing 7 by n and Q. by Q.

Lemma 2.8. There exist K1, K, > 0, vy > vy > 0 universal constants such that, for u satisfying the
hypotheses of Proposition 1.8 for values of \y, A, e(A), v described above, if v < vy, then there exists a
function ¢ = QY € HZXP’S N CY(R?, C) such that, for Q defined in (2-7) with the values of ¢, X,y € R
from Lemma 2.7,
u—Q=(1-me+n0E’ 1.
Furthermore,
Bo' (@) = Killglyer
and
lellcrgr<oy + | Re(W) Lo izay < Kav.

The goal of this lemma is to decompose the error u — Q into a particular form. In the area {n = 1}, that
is, far from the zeros of Q, the error is written in an exponential form: u = QeY. This form was already
used in [14; 15], and it is useful to have a particular form on the cubic error terms. Furthermore, we fix the
parameters of Q such that ¢ satisfies the orthogonality conditions of Corollary 2.6, yielding the coercivity.

Note that we have no smallness on Jm(v) in {r > 1}, where ¢ = Q. We will simply be able to show
that it is bounded (see (2-11) below), with no a priori bound on it. This lack of smallness is one of the
main difficulties in the proof of Proposition 1.8. Analogously, we show that ¢ € H, ZXP’S, but we have no
good control on ||¢|| HEP this quantity might be a priori very large at this point.

Proof. This proof follows some ideas of the proofs of Lemmas 7.2 and 7.3 of [15]. First, in the area
{7 < A}, the proof is identical to that of Lemma 7.2 of [15] for the existence of ¢ = Q¢ € C!({F < A}, C)
such thatu — Q = (1 — ) +n Q¥ — 1) in {F < A}, with lellcri<ayy < Kv (this is a consequence of
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the estimate ||u — Q|| ¢1 (7<) < Kv, obtained using Lemma 2.7). The main idea is that u — Q is small
there (in C!' ({7 < A}, C)), and the equation on ¢ is a perturbation of the identity for functions ¢ that are
small in C!({# < A}, C). In particular, since u and Q are symmetric with respect to the x,-axis, ¢ and ¥
are also symmetric with respect to the x;-axis.

We then focus our attention in the area {7 > 1}, where = 1, so that the problem reduces to the equation

u= Qe’/’.

By Theorem 1.6 and the hypotheses of Proposition 1.8, there exists v; > 0 such that, if v < vy, then, as a

1
e(M) < min(vl, —),

consequence of

1012 4100
the domain {7 > A} consists of the complement of the two disjointed disks B(c?i, ), with

101>3, |ul>3 in{Ff>2}
and
deg(Q, dB(dx, 1)) = deg(u, IB(d<, 1)) = 1,

so that u/Q is smooth in {FF > A} = R? \ (B(cL, AU B(J_, A)), does not vanish and has degree zero on
the two circles aB(c?i, A). It then follows from standard lifting theorems (even though {7 > A} is not
simply connected) that there exists v e C'({f > A}) such that A / Q, as wished. We then notice that
u and Q are symmetric with respect to the x;-axis; thus x W’(—xl , X2) is also a lifting of u/Q in the
connected set {7 > A}, which implies that there exists ¢ € Z such that lﬁ(—xl, X)) = tﬂ(xl, x3) +2igm
in {7 > A}. Letting x; = 0, we obtain ¢ = 0; T is also symmetric with respect to the x,-axis.

Recalling that ¢ := ¢/Q in the set {A < 7 < 21} (where Q does not vanish), we see that, since
n = 1 there, the equation u — Q = (1 — n)¢ + nQ(e¥ — 1) becomes u = Qe¥. We then infer that there
exists m € Z such that ¢ = T 4 2imm in the connected annulus B(CL_, 20)\ B(J+, A). By symmetry
in x1, this is also true in the annulus B (3,, 2AM)\ B (J,, A). It then suffices to extend y by the formula
W =¥ +2imm in {7 > A} to obtain the formula u — Q = (1 — )¢ +nQ(e?¥ — 1). In the region {7 > A},
the relation u = QeY yields

Jew) — | L.
Q
thus, taking the decomposition
u ul—1)— —1
—‘=1+|u|—1+(' -h-(0I-1
Q 1Y
since there exists a universal constant K’ > 0 such that in this region
—-1) - -1
‘Iul 14 (fu] )|Q|(|Q| ) <K',

we deduce that, for v < vywith v; small enough,

| Re(W) Loz < Kv.
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Since u is a traveling wave and E (1) < +00, u converges to a constant at infinity (uniformly in all
directions) by [24]. Therefore, u/Q converges to a constant at infinity, and the function ¥ converges to a
constant, and thus it is bounded near infinity, that is,

1V [l L (7=np < +00. (2-11)
Now, we want to show that ¢ € H ZXP’S. We already know that ¢ satisfies the symmetry,
for all (x1,x2) € R?,  ¢(—x1,x2) = 9(x1, x2).

Furthermore, to check that ||¢|| HY? < +00, since ¢ € C'(R?, C), we only have to check the integrability
in {¥ > A}, where ¥ = u/Q. We check that there, with (2-11),

2
[owE
(7> 72 In”(F)

Now, using Theorem 11 of [24] (we recall that E(u#) < +o00, E(Q) < +00),

||M|—|Q|| K(M,C, Q,C//)
) — 1) = —— 2(|[ul = 1] +]IQ] - 1]) « ———5—
where K (u, ¢, Q, ¢”) > 0 is a constant depending on u, ¢, ¢’ and Q; hence
K(u,c,Q,c")
[ Re(y)| < W

and

m62(¢) < / M < 400.

24 ey (4!

We finally compute

and with Theorem 11 of [24], in {F > A}, we deduce that

(L+r)? VY| < (1 +7)? | — Vu K(u,c, Q,c");

’+(1+ ) —

‘
Q

/ IV |? < +o0.
(7>}

This concludes the proof that ¢ = Qyr € ngp **. The fact that Bg(p () > K ||go||ilexp is a consequence of
Corollary 2.6 and Lemma 2.7, using in particular that ¢

By (@) = By" (p(- + Xé)e™) and gl yge = lp(- + Xexe || yow . O

We now compute the equation satisfied by ¢. By Lemma 2.8, in {0 <n <1} ={2R <r <2R+ 1}, we
have |Re(Y¥)| = | Re(p/ Q)| < Kv uniformly; thus W) 1] < Kv uniformly in this region and then
[(1—n)+ne¥| > % for v < vy, possibly diminishing v; of Lemma 2.8.
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Lemma 2.9. For u satisfying the hypotheses of Proposition 1.8 for values of L, A, €(A), v described
above, if v < vy (where v is defined in Lemma 2.8), then the function ¢ = Qv defined in Lemma 2.8
satisfies the equation

Lo(p) —i(c—c")éa. H(Y) +NLjoc(¥) + F () =0,
with L g the linearized operator around Q: Lo(p) = —A¢ —ic" 3,0 — (1 —|0*)p +2Re(Q9) 0,
S() 1= W) —1 -2 Re(y),
F(y) == Qn(=Vy.V{ + | Q1*S()),
V(Qy)(1—n) + QVyne’
(I—n)+ne
and NLijoc (V) is a sum of terms at least quadratic in , localized in the area where n # 1. Furthermore,

[{(NLioc (%), O¥)| < K || NLioc (V) 22¢n<1p 1@l Lo ((n<1p) < KV||§0||311({,7#1})-

Notice that F'(y) (the notation X.Y for complex vector fields stands for X;Y; + X,Y>) contains all the
nonlinear terms far from the zeros of Q, and its structure relies on the fact that the error is written in an

HY):=V0+

exponential form far from the vortices. Close to the zeros of Q, this particular form does not hold, but it
will not be necessary, since there the error ¢ is small in the C' norm, whereas, at infinity, it is small only
in a weaker norm.

Proof. The proof is identical to the proof of Lemma 7.5 of [15], and it is in the particular case where all
the speeds are along €,. The proof consists simply of decomposing the equation

0= (TW,)(u) = TW.(Q + (1 — g +nQ(e¥ — 1))

into the different terms.
The last estimate uses Lemmas 2.8 and 2.7. O

This result shows in particular that ¢ € C({n # 0}, C), and we can check with it, as in Lemma 7.3
of [15], that |AY (1 4+ r)?|| (=i < K(u, O, ¢, c”).

We now infer a critical estimate on the differences of the speeds of the problem, namely ¢ (the speed
of u) and ¢” (the speed of Q). The method for the estimate has been used in [15] (we take the scalar
product of the equation of Lemma 2.9 with 9. Q), but since we have worse estimates on the error term,
we need to be more careful (||¢]| HE® is not a priori small at this point).

Lemma 2.10. There exist universal constants K > 0, vy > vy > 0 (where vy is defined in Lemma 2.8),
such that, for u satisfying the hypotheses of Proposition 1.8 for values of Ay, X, €(A), v described above, if
v < Vo, then, with ¢ = Q1 defined in Lemma 2.8, we have

" —c| <KV "llell pge-
Proof. First, from (2-5) and Lemma 2.7, taking v > 0 small enough, we have

I —c| <" = |+ | —c| < K. (2-12)
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We will show the estimate
¢ = el <K (2 2 ) lelluge + I lZe0) + Kl = cllglgge. (2-13)

This is related to equation (7.13) of [15] (its proof is in Step 1 in Section 7.3.1 of [15]). With both
estimates, we can conclude the proof of this lemma. Indeed, either ||¢]|| HEP > +/c”, and in that case

" —cl < K" < KVellgll g
or ||‘P||HZ*P < +/¢”, and then with (2-13),

¢ = el <K (< n( 27 ) lelge + gl ) + K1e" = clllgl e

<KV gl o+ Cov/le” = cl.

Therefore, for ¢’ > 0 small enough such that C>v/¢” < % (which is implied by taking v > 0 small enough,
independently of 1), we have |¢” —c| < K“/CN”‘/’”H;X"'
We now focus on the proof of (2-13). We take the scalar product of the equation

Lo(p) —i(c—c")ér. H(Y) +NLjoe(¥) + F(¥) =0
with ¢”28.» Q. We estimate, as in Section 7.3.1 of [15], that
. 1

(Lo(@), "0 0)] =", Lo Q)] =" l{@, 10, 0) < K" In( )¢l -
We recall that ’
.q . 0y, (QY) (1 — 1) + Q0y,Yne
H =10
82 H(Y) =00, 0 +i -

and we check that (estimating the local terms in the area where n # 1 by Cauchy—-Schwarz and
llc”"%d e Q|| Loy < K from Theorem 1.6 for p = +00 and Lemma 2.6 of [14])

l(c —c"Yiea. H(Y), "8 Q) — (c — " Widy, O, ¢"*er Q)]

<K (le ="l ey + ¢ = YN Qidy, ¥, "3 Q)])
<K(le = c"lllgllgge + (e = ) nQide, . "0 Q).

’

We recall from Section 7.3.1 of [15] (using decay estimates on ¢”2d.» Q Q and integrations by parts), that

(e =) nQiduw, "0 Q)| < Kle = ¢"lllg e

and, from Proposition 1.2 of [15] (we check easily that the translation and phase on Q instead of Q. do
not change the computation),

(c—c"Ni0,, @, ¢"*0 Q) = 27 + 0o (D) (c — ") = @7 + 0y0(D))(c — ).

We deduce that, taking v > 0 small enough (independently of 1), that

="l < Ke" (5 Yliglyge + Kle = ¢lgl o + K1 NLie W) + F ), ¢35 0)].
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We take v, > 0 with v, < v; such that all the above conditions on the smallness of v are satisfied if
v < v2. Since NLjoc (%) contains terms at least quadratic in @, [|¢|lc1(g,21y) < C3v from Lemma 2.8 and
¢ % Oll =@ < K, we obtain that for v < v2, diminishing v; if necessary so that || || 1,21y < Kv <1,

|(NLioc (1), €20 O)1 < K@l g1y < K Il

Finally, we estimate, using ||¢”2d. Q|| Lemwe) < K,

(VY. VY, 0. 0)| < K /nlvl/fl 1" 3er Qll Loy < K ll@ I3, o

Similarly, since || Re(¥) || 7> < Kv by Lemma 2.8, diminishing v, if necessary, for v < vy, we
have |[nRe(¥) L =1y < 1, and hence

1001 QIPS(W)| = 100| Q1 @7V — 1 —2Re(¥))| < KnRe* ().

Therefore

(OnQI*S(¥), "* 0. Q)| < K f n R W) [0 Qll Loy < Kllsoll

This concludes the proof of (2-13), and therefore of the lemma. Il

2B3. Proof of Proposition 1.8 completed. We take u satisfying the hypotheses of Proposition 1.8 for
values of A, A, (A1), v described above, with v < v, where v, is defined in Lemma 2.10. We want to
take the scalar product of the equation of Lemma 2.9 with ¢. It is however not clear at this point that
every term is integrable. In Section 7.3 of [15], we took the scalar product of the equation with ¢ +iy Q
for some y € R, using a decay estimate || Jm(y +iy) (1 + 1)l eqr<ap < K(u, Q, ¢, ¢”) to justify that
some terms are well-defined, and to do some integration by parts. Here, we need to change our approach
a little. We first require better decay estimates on 1. At this stage, we know (see Theorem 11 of [24] and
the proof of Lemma 2.8) that

IAY (1 +7)2 [l Loeizay + 1L+ )2V ]| Lo s
H Wl Legrsay + 1+ Re() | ey < K @, O, ¢, ).

Now, let us show the following improvements:
| Im(AY) (1 +7) | Loerzay + 1 (1+7)? Re(Vi) | Lo sy < K (u, O, ¢, ). (2-14)

The proof of ||(1+ )3 Re(Vy)| L=y < K(u, Q, ¢, ¢”) is identical to the one for the same result in
Lemma 7.3 of [15] (see the penultimate estimate of its proof). We focus on the estimate on Jm(Ar). In
{F > 1}, we have u = QeV; therefore,

AQ Au _VQ
AYy=——Z2 4 2 = Vy—VyV
4 Q+u 0 Y —Vy.Vy.

With the previous estimates and Theorem 11 of [24], we have

<K(u, Q,c,c"),
L ({F=0})

(—2%.vw - pr.Vw)(l +ryt
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and since (TW )(Q) =0,
20 _ .8 (1 opy,
0 0 ’

< (axQ)‘ K(QC‘
(147r)3

therefore, with [24] (E(Q) < +00),

0

Similarly, since (TW,)(#) =0 and E(u) < o0,
m ﬂ <m BxZu K(u )
u (1 (1+r)3

1 Im(AY) A +r) | oz < K, Q. ¢, ).

thus

We infer, with these two additional estimates on v/, that we can do the same computations as in the proof
of [15, Lemma 7.4], with y =0. The only difference is that where we used || Jm(¥+iy) (1+r) [ L= (7=n)) <
K (u, Q) we can use (2-14) instead to get the same decay for these terms, with || Im(y)l =<y <
K (u, Q). The only two terms where this change is needed are

‘/RnIQIQ%e(AM_/)‘ <

fR 11 Q1 Re(AY) Re(yr)

+ VRmQPJm(Aw) me)‘

<K (I Re(AY) (141 [l Lorzap | Re@) (1 +1)? | Lo (7))

+ K (| Im(AY) 1+ 1) (| oo s | TME) || oo (7))
and

/Rn|Q|29%e(iaxzz/~ﬁ>)<'An|Q|2me(aXQw>ﬁm<W)‘+‘/Rn|Q|23m<axzw)%e(w>‘

< K ([ Re@u, ) (141 | Loogrzap | TM@) [l L (72ap)
+ K (| Tm(@, ) (1 + 1) [ oo gimap | Re@W) (1 + 1) (| Loo(izap)-
We deduce, taking the scalar product of the equation of Lemma 2.9 with ¢, that
ByP(p) — (i(c —")ér. HW), ¢) + (NLioe (), 9) + (F(¥), ¢) =0. (2-15)

From Lemma 2.8,

B"(9) > Klgler, (2-16)

and from Lemma 2.9,
|(NLioc(¥), )| < KVIlwllHl({ £1)) KVIlprI o (2-17)

Let us now show that
(i (c —c")ea. H(W), 9)| < Kvllwll?,gy. (2-18)

We recall that
0, (QY)(1 —1n) + anﬂl/ne

(1—n)+ne?

iep, HW) =i0,,Q+1i
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We compute, with Lemma 2.10 and Lemma 5.4 of [15],

(e = )19, 0. )| < KNIl 18y €, 9] < KV n( 1 )00 < K@l

Indeed, although Q = Q. (- — X 2,)e!” has a phase that is not present in Lemma 5.4 of [15], since
¢ = QY, we have 0y, Q¢ = 0y, Q O, which no longer depends on .
Now, with [|¢|| g1 (y1y) < Kv from Lemmas 2.7 and 2.8, we compute easily that

K 3, (QY) (1 —n) + anzlﬁne'”
(1—1n)+nev

>— (i Q0x, ¥, <p)‘ S Kvliellgge
since the left-hand side is supported in {n # 1}; therefore
[i(c —cer HW), ¢)| < KVIlfpllf,gP +1(c = )i Qdn ¥, ).
With the same computations as in Section 7.3.2 of [15] (taking 3’ = 0), we check that
(i Q0,¥rm, )] < K 1011300
0
therefore, using Lemma 2.7 and (2-12), for v > 0 small enough,
(e = )i QY. )] < Kle— @] ew < K@l
0 0
This completes the proof of (2-18). We focus now on the proof of

(F(), o)l < KWI(/)II%,;xp- (2-19)

We compute

/R 2 Re(On(1Q1*S(WY))@) = fR 2 1014 (2T — 1 —2Re(y)) Re(y),

and since, as already seen at the end of the proof of Lemma 2.10, we have || Re(y) |l zoizny < 1if
v < vy, we deduce

12750 _ 1 2 %Re(y)] < K Re2 ()

and

[ me(enaorswnd)| <k [ anewr <o [ nndw) < Kvlolie

We are left with the estimation of fRZ Re(On(—Vy¥.Vir)@), which will be slightly more delicate. First,
we compute, using ¢ = QY

/sﬁe(Qn( VY. VY)§) = /|Q|nme<wvw>
__ /R QP Re(V Y.V Re(y) /R QPR IM(VY V) Im(y)

_/Rz 10°n %Q(Vlﬁ-vtl/)%e(l/f)—ZfRz |00 Re(Vp). Tm(Vy) Tm(y).
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Note that there exists a universal constant K > 0 such that || Re(¥) ||z~ i=r)) < Kv by Lemma 2.8
(considering the regions {r > A} with ¢ and {F < A} with ¢). Then, we estimate

‘—fw 01 %e(vw.vwm(w’ < K"/Rz NVY < Kvlloler.
Now, by integration by parts (that can be justified as in [15]), we have
| 1070369, 360091 T
=~ [ V4P e, 3w i) ~ [ 10PInRe(). In(v) I
= [ 10Pn et Imay) ) — [ 10PnRet) IV, Im(vip),

and with |V(]Q[*)| < K/(1+47)%? from equation (2.9) of [15] (for 0 =
constant, we have by Cauchy—Schwarz

%) with K > 0 a universal

v

g 2‘3" ’
s < Kl

‘/R V(20 Re (). Im(Vy) me/)‘ < K”\//Rz nWWfRz n

/Rz 10°n %e(@ﬁm(vwﬁm(vw‘ < K"/Rz nVY < Kvl@le.

Since V) is supported in {0 < n < 1}, we check easily that
‘ / 101V %ewmm(wnm(xm‘ < Kvllple-
R

We focus now on the estimation of the last remaining term, fRZ | Q>0 Re(y) Im(AY) Im(y). For that
purpose, we define more generally for n > 1

Awi= [ 1OPY" e () Ima ) T,
R
Note that we want to estimate Aj.
We compute, using (TW.»)(Q) = 0, that

\Y%
Lo(p) = Q(—Aw —ic" 3y, — ZEQ-VW +29{2(W)|Q|2>;

therefore, by Lemma 2.9, in {n # 0},

Im(AY) = 3m<—ic//8x21/f - 2%%1/ +2Re(p| 0 + C”)ez'H(‘/’)QJF Nlioe () + F(‘/f))

—i(c—c")é2.H(Y) +NLioc (¥) + F(l//))
o :

" ~ (VO -
= —c" Re(0y,¥) — 2Jm(?.vw) + Jm(
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We compute, by integration by parts, with Re” () Re(dy, ) = (1/(n+ 1))0y, (mg"“ (y)), that
/2 1012 1" Re" ()" Re(dy, ) Tm(Yr)

R

=g [ GuloPr B e i)

__n 2 n—1 ¢p n+1 "~ _ 1 2. n ¢ ntl "~
o 1R e e Iy — g [ 0P R e T

Since |¢”| < v by (2-5) (diminishing v, if necessary), Lemma 2.7 and the hypotheses of Proposition 1.8,

l@llcrgreny + I Re@) | L=y < Kv by Lemma 2.8 and |V(|Q|*)| < K /(1 + 7)/? from equation (2.9)
of [15], we infer by Cauchy—Schwarz that

[ Guiopr e ame)| < ke [ nameroalons [ amew

<KV ll9le, (2-20)
/ 0P dmy" R (e ﬁmw)‘ <KV lgll e, (2-21)
R

‘ /R o R e menw)’ < Kv"\/ /R vyl /R IREW) KV gller.  (2-22)

We deduce that
‘ f QP Re" (Y)e” Re(dr Y) gm(,/,)‘ < (K0)"llg e (2-23)
R
For

\Y%
/R 0Py R @) Jm(jQw) Jm(),

Jm(%.vw> = %e(%) IM(VY) +Re(V). jm(%),

and with previous estimates, we check easily that

we compute

Vv
‘ fR 0Py W) me(f)ﬁmwwnm(w‘

\Y%
<o [oavur [ s ne(T2) < @orton. e

and by integration by parts, with computations similar to those for the proof of (2-23), using

V.J vo ‘<—K
' m(?) S Utrpn

from (2.9) to (2.11) of [15] (for o= %) for a universal constant K > 0 and Lemma 2.1, we infer that

2.n n ~ VQ ~ n 2
Rlel n" Re" (Y) Re(Vy). Im o Jm(y)| < (Kv) ||<p||Hpr, (2-25)




A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2203

and we check easily that

NLioe
|10 s Jm(%) mef)' < K0l (2:26)

/ 0P 7" Re" () ﬁm(_i(c ¢ Q)ez'H (‘”)) ()
R2

for the part of ¢;.H () related to the cutoff, the estimation can be done as previously, and we are left

Now, we look at

with the estimation of

(c—c") f 0P e wwm( O QQ—zaxzx/f) Im(y)
— (=" / oP" %e"(xﬂ)me(a“Q
R2 0

+ 8x21ﬁ> Jm(y).

From (2-5) and Lemma 2.7, we have |c — ¢”| < v (diminishing v; if necessary), and from equation (2.9)

of [15], 00 p
‘m< >‘<<1+f>5/2'

(c— " / 0Py e (wme( “QQ)Jmom‘

Therefore

axz ~ n
<<Kv)"\/ fR REW) /R zn%ez(TQ> I () < (KV) el (2-27)

and we estimate

(c—=c") fquz Q170" Re" () Re (D, ¥) jm(l/f)' < (Kv)" ||¢|I§,5xp (2-28)

by (2-23). For the last remaining term, since

3m<—F (Q‘”)> = Im(— VY.V,

we have

/ 0P 7" e <w>4m< (Qw))ﬁm<w)=—2 fR QP R () Im(V ). Re(V ) I

In particular,

W)\ ~ N
‘ f Q1" Re" (%) Jm( o) M@ < K In Im) e | 0|V ?
< (KWY"In Im) e 9 - (2-29)
Combining this result with the previous estimates, this implies that

|Anl < (Ce)"(1+In jm(w)”LOO(RZ))”(p”iIgP (2-30)
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for some universal constant Cg > 0, but that is not enough to show that we have

F
[ 10Pi e ﬁm(ﬂ> Jm(llf)‘ < (K0 Il e
R2 0 o

since we have no control on || Im () ||~ (g2 other than the fact that it is a finite quantity. By integration
by parts (integrating PRe(V/)), with computations similar to those for the proof of (2-23), we infer that

2 [ 0PI 9 ) ). Re(V ) )

< ‘2 / 100" 9" () Tm(AY) Re(¥) Tm(y)| + (Kv)"ngoui,gp
R
<2|Ap1] + (Kv)” ||<P||§,pr-
Combining this result with estimates (2-20) to (2-29), we deduce that, for some universal constant C7 > 0,

|Anl < 20 Ant1 ]+ (C70)" 19l

Therefore, by induction,
n—1

A1 <2 Anl+ Y @C) gl

k=1
Hence, with (2-30),

n—1

411 < <<2c6v>"<1 + I IOl o) + Z@Cﬂ’)k) Il
k=1

Taking v > 0 such that v < v, and 2Cgv < 3 and 2C7v < % then n > 1 large enough (depending on

2
17 Im(Y) || L (r2)) such that |

2n—1

(L1l Im (W) | ) < 1
we conclude that
n—2 1
A1l < (2(:6 +2C7) ?)vuwnggp <2(Ce+2C7) Vgl
k=0

This concludes the proof of (2-19).
Combining estimates (2-16) to (2-19) in (2-15), we deduce that

(1= Cyv)gll e <O

for some universal constant Cg > 0; therefore, taking v > 0 small enough such that the previous constraints
are satisfied and Cgv < %, we have ||<p||H5xp = 0. From Lemma 2.10, we deduce ¢” = c. The proof is
complete.

2C. Proof of Corollary 1.10. Take a function u satisfying the hypotheses of Corollary 1.10. Then, u is
even in x; and it has finite energy. Furthermore, by Theorem 1.6 (for p = +00),

lu=Vi(- —dee) Vo1 (- +dce)ll L me) < = Qell Loy H1 Qe — Vi (- —dce) Vo (- +dee) || Lo w2y
< et0oc-0(1).
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Next,

K
Nl = Ul zoogi = < llu— Qcllreiz=ay + 11 Qcl — Ulroqi=i) < €+ —

A
by equation (2.6) of [15]. We now fix the parameters. We first choose A > A, large enough so that
K/A<1/(2A,). Then, we fix ¢y > 0 and € > 0 so small that ¢ < 1/(2)1,), |cd. — 1| < e(A), d. = 1/e(X)
and € + o0.-0(1) < e(A) for ¢ < ¢o. Therefore, u satisfies the hypotheses of Proposition 1.8 with d =d,,
and this concludes the proof.

3. Properties of quasiminimizers of the energy and proof of Theorem 1.11

3A. Tools for the vortex analysis. We list in this section some results useful for the analysis of traveling
waves for small speeds or, equivalently, large momentum, with vorticity. We shall denote by (u | v) =
Re(uv) the real scalar product of the complex numbers u, v. The Jacobian (or vorticity)

Jv = (idyv | dpv) = 30 (iv | v) — 302 (iv | B1v)

is then relevant, and we shall use the following concentration property of the Jacobian. We define
Eou, @) =+ [ 1Vl + -2 (1 = u®)?dx.
’ 2 Q 282

Theorem 3.1 (concentration of the Jacobian [2; 27]). Let My >0, R > 0 and 8 € 10, 1]. Then, for every
8 > 0, there exists g9 > 0 (depending only on B, §, R and My) such that, for any 0 < & < &y, and for any
u € H'(B(0, 4R)) such that E.(u, B(0,4R)) < My|ln¢| and |u| > % in B(0,4R)\ B(0, R), there exist
NeN, y,...,yvn€ B(O,R), dy, ...,dy € Z such that

N
‘Ju—ndeSyk <8
k=1

(€2 (B(0,4R))I*

and

N
E.(u, B0, 4R))
di| < 8.
n;| tl e

Finally, we may choose the points yi, 1 <k < N, in {|u| < %}
Here, we recall that the space [C? P (B(0, R))]* is endowed with the dual norm associated with

1E(x) =<
sup ————

11l 0.6 =
CTBOR) L epor) X —yIP

for ¢ € C%#(B(0, R)) compactly supported.

Remark 3.2. The above-mentioned theorem is actually Lemma 3.3 in [8]. It is related to the works [2; 27],
which both correspond to the limit ¢ — 0, whereas we have here a statement (obtained by compactness)
at fixed . The hypothesis “|u| > % in B(0,4R) \ B(0, R)” ensures that the vortices do not approach the
boundary 0 B(0, 4R).
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Theorem 3.3 (clearing-out theorem [8]). Let My > 0 and o > 0 be given. Then there exist €y > 0 and
n > 0, depending only on My and o, such that, if Ry =1/(1 + My), if U : B(0, Rg) — C solves
1
AU+ic82U+—2U(1—|U|2):O (3-1)
€
in B(0, Ry) C R?, with € < €, |c| < My|lne€|, and
E.(U, B(0, Rp)) < n|lne|,
then
[U0)=21-o0.
For the elliptic PDE |
AU+ —U = UPP) =0, (3-2)
&

that is, without the transport term i d, U, this result has been shown in two dimensions in [6] for minimizing
maps, and in [4] for the Ginzburg-Landau equation with magnetic field. In higher dimensions, see [7; 31]
for (3-2) and [8] for an equation including the Ginzburg-Landau equation with magnetic field and (3-1).
One may use the change of unknown

U) = (1 + e/ 712220 (x), e =€(1+c*e?/4)712,

to transform (3-2) without the transport term into (3-1) with the transport term. However, the assumptions
E.(U, B(0, Ry)) < n|lne| and E. (U, B(0, Rg)) < n|lne| are not equivalent (due to the extra phase term).

3B. Vortex structure for quasiminimizers of E at fixed P. In this section, some Ay > 0 is fixed and we
consider a large momentum p and u;, such that

E(upy) <2mInp+ Ag (3-3)
and such that there exists ¢, > 0 (depending on u;) such that
0 - (Twcp)(up) - _iCpaxzup - Aup - (1 - |Mp|2)up

It then follows from [24] (see Theorem 2.4) that we may assume, using the phase-shift invariance, that
up — 1 at spatial infinity. In particular, we have

p:Pg(up):l/ (iOoupluy — 1) dx.
2 e

Our goal is to show that u, satisfies the hypotheses of Proposition 1.8. We shall follow [5; 8] in order
to analyze the vortex structure of uy.

3B1. Localizing the vorticity set at scale x /p. We define the following rescaling iy, of uy:
Up(X) = up(px). (3-4)

Therefore, i, solves
Adiy +icopdaity + p*itp (1 — |ip]*) =0, (3-5)

which is a particular case of (3-1) with
e=1/p, c=cpp.
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The universal L* bound on the gradient of Corollary 2.3 reads now
Vil oo ey < Kp. (3-6)

We shall have, in the end, ¢, ~ 1/p. The first step provides a rough upper bound for the speed ¢, (the
Lagrange multiplier for the minimization problem E i, (p)).

Step 1: There exists p; = p;(Ag) such that, for p > p;, we have

In particular, ¢, < 5 Land Inp <2|In Cpl-
We shall use the Pohozaev identity (2-2), that is,

1 N2 g
2/[R2(1 lup|™)”dx = cpp.

At this stage, we only have the rough upper bound 0 < ; fRZ(l — |up|2)2 dx < E(up) < 2w Inp + Ao,
which concludes this step.
Another argument we could use for minimizers is that we know from [10] (see also [13]) that 0 < ¢, <

d+Emin(p) < Emin(p)/p'

Step 2: There exists py > py, Ry > % and n, € N, depending only on Ay, such that, if p > p,, there
exist np, points Zy j, 1 < j < ny, with ny < ny such that { i, (£)] < %} C U'}pzl B(Zy.j, R.) and the disks
B(Zp,j,4Ry), 1 < j < ny, are mutually disjoint.

We apply Theorem 3.3 with e = 1/p, c=c¢pp and o = % to i,. This is possible in view of the upper
bound on 0 < ¢pp < 131Inp of Step 1 (that is, My = 13). We then let Ry :=1/(1+13) = ﬁ for p >y
and denote by 7/, the positive constant 1 given by Theorem 3.3.

We now proceed in this way: we choose (if it exists) some Z, | € R* such that |iy(Z1)| < % If
{|L7p| < %} C E(Ep,l, 2Ry), then we stop. If not, we choose Z » € [REZ\E(EPJ, 2Ry) such that |12p(2p’2)| < %
If {lid,| < 3} C U2 1 B(Zp.j, 2Ry), then we stop, if not, we continue. This process ends in a finite number
of steps (depending only on K) since, by construction, the disks B(z,J j» Ro), 1 < j < n, are pairwise
disjoint. Hence, by Theorem 3.3, we have

n
2 Inp + Ko > E(up) = E1p(ily) > ZEl/p(ﬁp, B(Zp,j, Ro)) Zn xmiplnp,
j=1
which implies
271 lnp+K0 7

n2lnp 771/2

for p large enough, say p > po.

At this stage, the disks B(Z,, ;,2Ro), 1 < j < ny, cover the vorticity set {|i,| < 3}, but the disks
B(zlJ j» 8Rp) may not be pairwise disjoint. To get this property, we argue as in [6, Theorem IV.1]. Let
us recall the idea: if the disks B(Zp j» 8Ro), 1 < j < ny, are pairwise disjoint, then we are done with

R, =2Ry. If not, then we have, for instance, |2 | — zp,zl < 16Ry. We then remove the disk B(Zp, 1, 8Ro)
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from the list and set R := 17R0 The disks B(Zp,j, R1), 2 < j < ny, cover U1<]<n B(Zp,j,2Rp), and
hence the vorticity set {|u pl < } and their number has decreased. In a finite number of steps (depending
only on Kj), we obtain the conclusion. The radius R, is necessarily < Ry x 17" < Rg x 17"+,

Similar arguments are given in [8], whereas in [5] the vorticity set is included in some disks of radii of
order c,’,f , which requires some extra work.

Step 3: We have
p? /2(1 —|dyp|*)? dR = 0p— oo (Inp).
R
This follows exactly as in [8] (see Proposition A.1 in the Appendix there). Notice that the result in [8] is

stated for the potential on a compact set in a domain €2, but it holds as well in the entire plane.
We then define, as in [8], the function u ‘R?2—>C by

fip () if £ e UL, B, 2R,
iy (X) N T
NS B~ if X > B(Zp.j,3R,),
u;,(x) =1 [y (X)) ¢ U}—l (Zp,j> 3Ry)
_If—ip,ﬂ)A . (_ If—ép,ﬂ) iy(X) oo pes B
(3 Rl )i+ (=24 EBL) G € B, 3R\ B 2R)
for some 1 < j < ny (this last formula is valid since the disks B(zp j»4Ry), 1 < j < nyp, are mutually

disjoint).

Step 4: We have, as p — +o00,
El/p(up) 2 Inp + o(Inp).

Letting Qg := U;";l E(Ep,j, R), we have

f(1—|ﬁ;,|2)2d)2= (1—|ﬁp|2)2d£+/ (1 — ity |*)* dX.
R2 Q

QoR, 3R« \S22R,

We notice that in Q3g, \ Q2r,, say for £ € B(Zp.j, 3R.) \ B(Zp,;, 2R.), we have

o £ =201\ o £ =251\ o n s
iy (D)) = (3= ==L )@ + | 24+ =L ) e [lap @)1, 11;
R, R,

hence |1 — it (£)|*] < |1 — |itp(%)|?| and thus

/(1—|ﬁ;|2>2d£< (1—|ﬁp|2>2d£+/ (1 — layl?)? di
R2 Qop, Q3 \ 22k,
:f (1— |ay|*)? di. (3-7)
Q3R

For the kinetic term, we have
AL AN 2 A AN 2
Vit (2)|” = |Vity (%)
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if £ € Qag,. Outside (2| B(Zy.;, Ry) we have || > 5 and we may then lift, at least locally, i, = Ae'®
and get
[Vip|* = A%|Vo[* + VAL
If X & Q3g,, then, by (3-6),
2

. 1 - A A
Vit |* = |V@|* = A*|Vo|* + —— x A*|Vo|* < |Vity|> + 4K p|1 — A%| x |Vily|

since A = |ity| > % outside Qg, . Finally, in E(Ep,j, 3R\ E(Ep,j, 2R,) (for some unique 1 < j < nyp),
we have

A 22,1 R=2p,1\\ £ =21 22,1\
Vi 2 _ \V4 2 3 p.J A -2 p.J v|(3— p.J A -2 p.J
Vi[> = V9| (( o)A )+ e L e

We then use that, since |i,(X)] > % and letting 0 =3 — [X — 2 j|/R. € [0, 1],

£ — 2p.1 £ =21\
Vol?| (3= =211 )4 24—
V| [( R. + + R,

1
= A%|Vo|* x ol e DI < AYVo* x (1+K|A*—1])

< AYVQ)2 + Kp|Viy| x |A% - 1],

by Corollary 2.3. On the other hand, since | - | is 1—Lipschitz continuous,
IX — Zp |X —Zp 1
VI{[3———— A+ |24+ ———
‘ [( g, )T TR

Therefore, by the Cauchy—Schwarz inequality, for some absolute constant K > 0,

1/2 1/2
|Vﬁ;|2d)e</ |Vﬁp|2d)?+K(/ p2(1—|ﬁp|2)2d)?) (/ |Vﬁp|2d£> +K/ (1= |dy|H)? dX.
R2 R2 R2 R2 R2

Combining this with (3-7) yields

12 E
Evjp(ity) < Ep(ity) + K/ Ep(ily) (/2 p*(1 — iy |*)? d)%) K ”p(up) 2 Inp+o(Inp),
R

by the upper bound (3-3) and the estimate for the potential term of Step 3.

1— AP +|VAP+—|1—A| x |[VA
R2| >+ |+R| | < [VA|

< VAP + K(A2 = 1)+ K|VA| x |A®> —1].

Step 5: We claim that for any § € ]O, %[, there exist p:; > p, such that, for all p > pg, we are in one of the
following cases:

(I) Forany 1 < j <ny,

< 4.

~/
I apllicor gz, amae S

(IT) There exist (up to a relabeling) two points yj, + € R?, depending on ity, such that

max ||Ju — (5

12 <n Sor 05 1018y ar ) SO
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We apply Theorem 3.1 to 12;, on each disk B(Zp j,4R,), 1 < j < np. This yields points , jx €
{lap] < 3} € B(Zp,j, Ry) C B(Zy,j, 4R,) and integers dy j x € Z, 1 <k < Ny, such that
Nyp,j
H Jiy = Z dp, k05, x <6 (3-8)
k=1 (€N (B(Gp. j 4RI

and
Nyp,j
Eyjp(ity, B(Zp,j, 4Ry))
T Z|dp,j,k| P ™ pp AR +34. (3-9)

By summing the inequalities (3-9) over 1 < j < ny, we infer

ny Npj ~)
Eqp(uy, Q24r,)
Y Y ldy il < h‘;’—p +8<2.57
j=1 k=1

by using § < 5 and Step 3, and for p large enough. Therefore,
np Ny
D ldp il <2 (3-10)
j=1 k=1
and two cases may occur: all the integers dy ; x are zero (this is case (I)) or at least one of the integers
dy, j k 1s not zero.
In addition, we have, for 1 < j <ny,
Np,j
> dy jk = deg(iiy, 9B(Zp.j. 3R.)). (3-11)
k=1
Indeed, since |12;,| =1 on B(Zp j,4R.) \ B(Zp,j, 3R:), we have Jﬁ;J = 0 there. Therefore, by fixing
x €C(B(0,4R,)) such that x =1 on B(0, 3R,), we deduce
Np,j
> " dy ji — deg(iiy. By, ;.
=1

Np.j

l A/ A
= /B > oy, dE— Jii, dR

(Zp Js J3Ry) k=1 B(ép,j;4R>k)

Np.j

A A NAPE

o, 760 (s v s
B(Z}.4R.) k=1

Np.j

A/
Jiy =Y dyjids,
k=1

1

i

< Sl x o
[Cc " (D(Zp, j,4R))]I*
by (3-8). Since the left-hand side is an integer and the right-hand side is < % provided p = p7 1(8, Ao),
(3-11) follows.
We finally notice that the degree of L?;J on some large circle 9 B(0, R) (with R >> max;<j<n,|Zp. ;1) is
zero, for otherwise ft; (and ity) would have infinite kinetic energy. Therefore,
np Np,j

0= Zdeg(up, 0B(Zp,j,3Ry)) = Z de Jok-

j=1 k=1



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2211

Combining this with (3-10), we deduce that if we are not in case (I), then one of the d, ; x must be equal
to +1 and another one must be equal to —1, which is case (II).
Notice that for case (II), if B(Zy, j, 4R,) contains neither y, ; nor y, _, then || Jﬁ;J ||[C?,1(B(2p,j’4R*))J* <6.

As in [5], we now relate the location of the points J, + to the momentum P (ii).

Step 6: Case (I) does not occur for p sufficiently large, say p > p3. In addition, we have
1= P(iy) = 7((Fp,+)1 — Gp,-)1) +o(D).

First, we have, by computations similar to those of Step 3, i, = Ae'? locally outside Qpg,; hence
(ifiy | Viiy) = A*V¢ and then, outside Q3. ,

2_
(il | Vitp) — (idiy | Vily) = A*V — Vo = x AVg.
In B(Zp,j, 3Rs) \ B(Zp,j, 2R,), we obtain
. . . N N |A% —1]
(il | Vity) — (idty, | Vity)| = |A*V — |, * V| < x |[AVgl,
since |ﬁ;3| € [|itp], 11. Therefore,
. R . R R . . K R Inp
ity | Vi) — (it | Vi)l ey < K L= liip|?] x |Viip| df < ?El/p(up) <K—. (3-12)
R2\Q2p,

Following [5; 8], we write

_ P(up)
p

N 1 ca A A A
1 =P(up)=§/2(182up|up—1)dx
R

1 in AL A ~ 1 io A A vo Al g A N
=§/RZ(182M;J|u;,—1)dx+§/Rz((182up|up—l)—(182u;|u;—l))dx.

For the second integral, we write that, on the one hand,

. A A c A/ A~/ hlp
< ||(Wp | Vup) - (lup | VUp)”Ll(RZ) < KT —0

M;{Z((iﬁp | dattp) — (1'12;J | 82%))(1)2
when p — +00; on the other hand, by the decays given in Theorem 2.4,

= lim
r——400

‘/Rz((iazﬁp | 1) — (it | 1) d

/ vy Jm(iy, — 12;) dﬁ‘
dB(O0,r)
< lim |[A—1|d¢= lim O(/r)=0.
r—+00 3B(0,r) r— 400
We then integrate by parts to get

1 ca AL A A 1 A gea AL A A gra AL AL A AL A A
Efw(lazupwp—l)dxzsz 81x1<182”p|”p_1>_82x1<181”p|”p_1>dx:/Rz Jupxldx.
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The integration by parts is justified by the algebraic decay at infinity given in Theorem 2.4:

1
A . A/ Al
X1 <lazup | Mp — 1) = O(W)

Then, since J ﬁ; is supported in Qg _, we obtain

Mp

X Ju,dx = / xiJu, dx
/Rz P ; BGp.j.3R,) i
p p
=y f &1 — Cp )ity d3+ Y 2y / Jit)ds.
21V BGy.j 3R o B(2p,;.3Ry)
We then fix x € C2°(B(0, 4R,)) such that x =1 on B(0, 3R,). Next, for any 1 < j < nyp, we write
/ (il—(ip,j)l)fﬁ;dﬁ
B(zp.j.3R,)
=[G GuoxG - g i di
B4R Ny, Ny, j
= f (&1 — Gp DX E —2p.)) (Jﬁ; —7 Y d, ,-,ksy,,,,.k) df+7 Y dy ;a1 — Gp. ).
B(zp.jq4R*) k=1 k=1
We now estimate the first integral (actually, a duality bracket) by using Step 5:

Nyp.j

/ ) (1= Gp)OXx (- —2Zp.j) (Jﬁ; -7 Z dp,j,ksymk) dx
B(Zp,j,2Ry) k=1

Np,j
< ||()2] —(2p,j)l)X(' _2p,j)||@?,1(3(2p,j,21g*))‘ Jﬁ; _nzdp,j,kgyp,j,k ol

— Czr. (B(Z )2R*))]*
< Ko(D). k=l [ "

As a consequence of (3-11), which implies, for each 1 < j <ny,

Ny, j
de’j’k =deg(itp, 0B(Zp,j, 3R)) = deg(ﬁ;, dB(Zp,j. 3R.)) = / ) J12;J dx,
P B(p;3R.)
we infer, after some cancellation,
np Ny j
‘P(um—nZdeJk(yp,k)l K—+n*Ko(1> (3-13)
j=1 k=1

Since P (itp) = 1, it follows that for p large enough, we cannot be in Case (I), and the conclusion is a
recasting of (3-13).
Step 7: There exists p4 large such that, for p > p4, we have {|ip| < 3} C B($p.4. 55) UB(Fp,—. 35) and

deg(u 83()’13 + 20)) +1
From Step 6, we know that 1 = P (ity) = 7 ((Jp,+)1 — (Jp,—)1) + o(1); hence the two points J, 4 are
far away from each other:

A A 4
[Yp+ = .- 2 15
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(since % ~0.318 < %) for p large enough (but they may be, at this stage, very far away from each other).
By applying Theorem 1.1(i) of [2] or Theorem 3.1 of [27] (this is not very far from Theorem 3.1), since
Jip(Yp + + -) = £y weakly, we deduce

E1jp(dip, B(Pp.x. 15)) = (r +0(1)) Inp;

hence, by the upper bound (3-3),

E1yp(itp, R\ (B(9p,++ 15) U B(Fp,—» 15))) < olnp),

and this in turn implies, by the clearing-out theorem (Theorem 3.3), that if p is large enough, say p > pa,
then,

forall £ € R*\ (B($p.+. 55) UB(Pp—. 35))  lip(@)] >3,
as wished. In particular, Zy 1+ € B($p.+, 25) U B($p.—. 55)-

We emphasize that at this stage, we have |, 1 — 3, —| 2 1, but we do not know whether |y, + —J, | S1
or |Jp,+ — p,—| > 1. We may now take advantage of the fact that i, is by hypothesis symmetric with
respect to the xp-axis (i.e., iy (—X1, X2) = it (X1, X2)), so that, possibly translating along the x,-axis, we
may assume

Gp)2=Fp)2=0 and — Fp )1 = Gp.)1 = 2 (3-14)

If we do not assume a priori the symmetry in x;, then we may remove the translation invariance by
! O) by using the Hopf

imposing Jp + + Jp,— = 0, and then we may still show that §, = -9, ~ — (E’

differential as in [6, Chapter VII].

3B2. Strong convergence outside the vorticity set at scale x /p. We start with a Wl:)’cp bound at scale X for
1<p<?2.

Step 1: For any 1 < p < 2, there exists C), such that, for any X e R2, we have

/A|Wmﬁ<q.
B(X,1)

We shall adapt the proof of [8] (see the proof of Theorem 4, Step 3, p. 83) to the two-dimensional
case. Actually, the only modification to make in the estimate is to replace (C.26) there by the standard

convolution
1
27

n 1 n
Yo%) = =L wawg, (£) = —

o o0 (M| = 313,

Supp(wo, i)

and then use, for [X — J; +| > 3R, that

Vhoshi= | [

1 T SNIPSNY
< E”wo’i”[Cf.)’l(B(y”'p,i,ZR*))]* (X =¥)/1x =yl ”CO»I(B@‘J,:E,CSR*)) <K

004 ()V; In —ﬁldﬁ‘
upp(wo,+)
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(the estimate || Yo, + || ox w2\ B(5p.+.3R,) < Cy, does not hold since the two-dimensional fundamental solution
(Inr)/(2m) goes to 400 at spatial infinity, but || Vo, +[lck®2\B(5, 1.38,)) < Ck is true). The rest of the
proof remains unchanged.

Step 2: For any X e R? \ ( (y,J + 10) U B(y,J -, %)), we may write i, = Ael? in B(f(\, 21—0) with, for

any k e N,
<&

Ck(B()? 1/20)) pZ s ||V¢||Ck(B(X 1/20)) X Ck, (3_15)

Jpa-0-3
21— A) — Lo

for some constant Cy independent of X.
The proof (relying on Step 1) follows the lines of the proof of Step 7 (p. 48) of Theorem 1 in [8] and
is omitted.

In view of the upper bound of Step 1 of Section 3B1, we infer the uniform estimate

Inp
1 — |”p|||ck(3(x 1200 S < Cr—- ) (3-16)

5% - 2 - 2
for X € Rz \ (B(yp’+, m) @) B(yp’_, m))
3B3. Lower bound for the energy and upper bound for the potential energy.
Step 1: Upper bound for the potential. We claim that

2
[ 9l + B = P i < Cao,
R

2
/ ip >+ (1~ 13, )? d < C(A).
RA\(B(Fp,+,2/10)UB(Jp,-,2/10)) 2
The proof of this upper bound will be a direct consequence of the lower bounds established in [43]
(see Theorems 2 and 3 there).

Theorem 3.4 [43]. Let Q C R? be a bounded smooth domain. Assume that u € H' (2, C) and that
upg € CHONQ, SY. Let § €10, 1[.

(i) There exists a constant A1, depending on Q and |\u3qllct, such that
% /Q|Vz4|2 + 252(1 ~ul?)? > wldeg(uian, 9| In(1/8) — A
@i1) If, moreover, for some constant A,, we have
1 1
_/|W|2+ — [ul?)?* < 7|deg(ujpg, 3Q)| In(1/8) + A,
2 Jq 262

then
lf|V|u||2+—1 (1 —u>)? < C(Q, A, [lupalle).
2 Jq 2682

We shall apply this result with § = 1/p < 1, Q= B($y.+, %) and u = il,,. In view of the upper bound
(3-3) on the energy of i, and since deg (iip, 9 B(Jp.+, %)) = =1, this yields

2
/ |vap|2+p—(1 i) dE > Inp — Ay,
B($p.+.2/10) 2
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2
n p n n
/ Vi P+ 2~ 16, Y df < C(Ag).
B(Jp,+,2/10)

We conclude by using once again the upper bound (3-3). Actually, i, does not belong to C ! (aB (fp,i, %)),
but it is easy, using (3-15), to construct an extension of i, on B(jzp,i, %) with the required properties by
linear interpolation (see, for instance the lemma on p. 395-396 in [43]).

Step 2: There exists og > 0 such that we have, for R > 1,

C(Ao)

2
A P A 2\2 1A
Vi P+ 51— dx <
/W\B(O’RJ fip|* + - (1= liip ) *df < —

The proof is similar to that of Lemma 5.1 (p. 50) in [8], and relies on the fact that |i,]| > % in
RZ\ B(0, 1) (hence we may write the PDE in terms of modulus and phase), and the upper bound in
R\ (B ($p,+. 15) U B(Pp.—. 75)) D R*\ B(0, 1) of the energy of iy, (in [8], this last upper bound was
derived differently).

3B4. Convergence on the scale x /p. By Step 1 of Section 3B3 and (3-14), we have, as p — +o0,
Fpt = Yoot 1= £(1/(27),0) € R, (3-17)

We then define (identifying R? and C)

x _)A’oo,—i- f"*‘j\’oo,—
I¥ = Yoo, 411X+ Joo,—|

oo (X) :=

Step 1: For any p € [1, 2[, there holds, in W,.” (R?),
iy — oo

From the Wllo’cp upper bound of Step 1 in Section 3B2 and by weak compactness, there exists Ue
WIL’CP (R?) such that np — U in Wllo’cp (R%). Moreover, U € Cfo“(’:(lR2 \ {¥o0.+» Yoo.—}) and the convergence
holds in C{;C([RR2 \ {¥oo.+» Yoo.—}) by Step 2 of Section 3B2 (for any k € N). In order to determine fj, we
shall pass to the limit in the system

V- (lip A Vilp) = —3eppda iy — 1),
VL. (ly A Vily) =210y

obtained from (3-5) and the definition of the Jacobian. From (3-3) (implying cpp82(|ﬁp|2 — 1) — 0 in the
distributional or the H~! sense) and Step 5 of Section 3B1, we then infer

V- (UAVU)=0,

V(U AVD) =218, , — 8. )

It then follows that U A VU = fis A Viio; hence we have the existence of ® € R such that U = e/®ii.
We finally use the x|-symmetry to infer ® = 0.
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Step 2: As p — +00, we have

2
p A o
pep = 5 /RZ(I — |up|2)2 dx — 2m.

This is claimed in [5, Proposition VI.7], but the proof is not clearly given.
One way to prove this point is to use the Hopf differential as in [6, Chapter VII]. We shall follow the alter-
native proof of Theorem VII.2 given in Section VII.1 there. The first equality is the Pohozaev identity (2-2).
First, notice that

pz
Wy:="Z(1- |ty |*)?

is a nonnegative function which is bounded in L'(R?) by Step 1 of Section 3B3 and enjoys the decay
estimate of Step 2 of Section 3B3. In addition, by (3-16) (see Step 2 of Section 3B2), we have W, — 0
locally uniformly in R?\ {#(1/(27), 0)}. Up to a subsequence, we may then assume that

Wy — 485, + 185,

in the weak * topology of Cj,(R?) for some reals .+ > 0, with 4 + pu_ = limp_, 4o IRZ Wy.
We shall now compute 4 (the case of p_ is similar). First, we write, for some Rs5 < %, the Pohozaev
identity for it, on B(Js0,+, Rs) (obtained by multiplying the equation by the conjugate of (X — Yoo +) - Vil

and integrating the real part over B(Jso +, Rs)), which yields

2

p A 1202 P R .
/ (I —up|?)" +cpp (X1 = Yoo,+,1) (i 02uyp | 01up)
B($sc,+.Rs) B(Joo,++Rs)

Rs . . 2 A
=2 13cdigl? — 13uiap > + 2o (1 — iy )2,
2 JoBGao s RS) 4
We then pass to the limit p — +4-o00. For the boundary term, we use the strong convergences outside the
vorticity set; for the second term of the first line, we prove that it tends to zero by following the arguments
given for Step 6 in Section 3B1. We then get

A 2 A 2
M+ = [0z thoo|” — |Ovitoo] .

2 J3BGooiRs)

By Step 1, we know that it = exp(i Arg(X — Yoo +) —i Arg(X — Yoo.—)) on d B(¥oo. +, Rs), and the second
term Arg(X — yoo,—) is smooth and harmonic in D (Jo0.+» Rs). As a consequence, we have the Pohozaev
identity for Arg(- — Yo0,—)

2 JoBGu s Rs)

0 19: ATg(R — Joo,)|* — 18y Arg(® — Foo. )%,

d; Arg(X — Yoo.+) = 1/Rs, 9, Arg(X — Yoo.+) = 0, and thus by expansion

_Rs Rs 1 20, Arg(X — Yoo )
My = — > | 2 + R =7
0B (Yoo,+,Rs5) 5 5

- -
5 |0rthoo|” — [Opllool|” = B
3B (Jo0,+:Rs)

This concludes the proof.
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3BS. Convergence on the scale x. We shall now focus on verifying hypothesis (2) of Proposition 1.8.
The main tool is the following result. We now work on the scale x.

Proposition 3.5. Assume that 2, € R? is such that

lim suplity (Zp)| < 1
p——+o0

and consider the rescaled mapping
Up(y) :=1p(Zp + y/p).

Then, there exists a sign £ and p € R (depending on the choice of the family (Z,)) such that, up to a
subsequence, we have, in CII‘OC([R{z) foranyk e N,

Uy, — P V.
Proof. The rescaling U, solves
AUp +icydr Uy + Up(1 — [Uy|*) = 0

and satisfies lim SUPp_, 400l Up (0)] < 1 and, by Step 2 of Section 3B4,

[ =10 dy = 400
R
Then, from the uniform bounds of Theorem 2.2 and Corollary 2.3, we may assume, up to a subsequence,

Uy — Uso (3-18)
in Cf_(R?) with |Uss (0)] < 1,
AUs + Uso(1 = [Us|?) =0

and, by Fatou’s lemma,

/ (1 = |Uno 2 dy < 4.
RZ

By [11], we know that fRz(l —|Us|?)? dy = 2 d?, where d € 7 is the degree of U at infinity. It follows
that |d| < 1, and that the case d = 0 is excluded since |Ux(0)| < 1; hence |Uy| £ 1. Therefore d = £1.
It then follows from [36] that Uy, = /#V; for some B eR. O

We may now localize the set {|i,| < 1— 1/A,}, where A, is as in Proposition 1.8, rather precisely.

Step 1: There exists pe large such that, for p > pe, i, has exactly two zeros Z, +. Up to a translation in
the x,-direction, we may assume

Rx {0} 32+ — (£5-,0) e R%.

Moreover, there exists Ry > 0 such that {|ii,| <1—1/1,} C B(Zp +, Ro/p)UB(Zy,—, Ro/p). Here, A, >0
is the large universal constant appearing in Proposition 1.8.

By Step 8 of Section 3B1, we know (due to the nonzero degree) that i, has at least two zeros, one in
each disk B(Jp,+. %)
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Now, if Z,, is a zero of iy, we know by Proposition 3.5 that, for some € R (depending on the sequence
(Zp)p) and dp = 1, we have
ity (Zp +py) — PV () (3-19)
in Cf._(R?). As noticed in [41], since V4 : R — C ~ R? has nonzero Jacobian at the origin, we deduce
that for any R > 0, and for p > py large enough, 0 is the only zero of Uy in B(0, R). Roughly speaking,
there do not exist zeros Z, " of i, such that 0 < |2 — 2| = O(1/p).
We now fix Ry > 0 sufficiently large so that

/ (L= 1VimIH*dy = 2.
{ly|<Ro/2}

and we assume that (for any large p) {|it,| < 1—1/A.} (where A, > 0 is the one appearing in Proposition 1.8)
is not included in B(Zp 4, Ro/p) U B(Zp,—, Ro/p). This means that there exists ZJ € B(Ep,+, ;—0) \
B(Zp,+, Ro/p) (say) with |ﬁp(2p)| < 1—1/A,. By Proposition 3.5, the rescaled mapping U, (y) :=
ﬁp(fp + py) converges (up to a subsequence) in Cﬁ)c([R{z) to Uso € S!' V4 and we know (from [11]) that
fRZ(l — |Uso|»)?dy = 27. As a consequence, since |1Zp,+ — 2p| = Ro/p,

27 4+ o(1) = p? (1 — |ap|H* dz
B(3p.+.3/20)

>p2f (1—ap|H*dz +p* | (1 — |ay|*)? di
B(Zp,+,Ro/(2p)) B(Zy,Ro/(2p))

2/' a—wwﬂfdy+/" (1—Usx|*)?dy +o0(1)
{lyI<Ro/2} {ly|<Ro/2}

>3+ 3T +o(l),
which is absurd. We then conclude |[|up| — 1|17, Rry)) < 1/« for p sufficiently large, then proving
hypothesis (3) of Proposition 1.8 with A = max(Ry, 1.). Another consequence of this fact is that i,
possesses at most two (simple) zeros Zp 4.

We then define d = dj, such that the unique zero Zz,  of i, in the right half-plane is
. dy .
Zp+ = fel — (,0) e R%.

We deduce from Step 2 of Section 3B4 that

so that hypothesis (4) of Proposition 1.8 is satisfied for p large enough (still for A = max(Ryp, A,)).
Furthermore, hypothesis (2) of Proposition 1.8 is satisfied by taking p large enough, associated with the
choice A = max(Ry, Ay).

Step 2: Conclusion. Applying Proposition 1.8 to e~/ uy, we infer that there exists y;, € R such that (for
large p)

up=¢e"Q.

(no translation is needed in the x,-direction at this stage since the zeros of i, are on the x;-axis).
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3C. Decay slightly away from the vortices. In this section, we provide some estimates for ity in the region
B(Zp,+,2R0) U B(Zp,—, 2Ry). For the Ginzburg-Landau (stationary) model, such estimates were first
given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions. However,
since the paper [35] is difficult to find, we give here a proof of these estimates that includes the transport
term. They improve some estimates in [14] and are not specific to the way we construct the solutions.

Proposition 3.6. We have, for |9|< 2 359

C C C
lipGps + ) — 1| < ==, [VIdplGpr 4+ < == [VipGpr+ | < —.
ity Gy | 232 e 233 e 13

Proof. We work near Z,, 4 (the minus sign is similar), say in the annulus B (Ep,+, 11—0) \ B(Zp,+, 1/p) and set

fip(Zp 1 4 3) = Ap(§)e /D)

with Ap and ¢, real-valued and smooth in the annulus (¢ is the polar angle centered at z,, ;). Then, we
obtain the system

A A oA A A ~ Oy 0 »

ARy — Ay |V |2 +p2 Ay Vi 2(1 — A2) — 24, f — cppApdaPy — cppcos A, =0,

— . . 9 A .

AyAy +2VA, -V, + 2% +cppdrA, =0.
The second equation may be recast as

A R BQAZ C p
VAV + —5F == (A - D). (3-20)
Multiplying by ¢, and integrating over B (O, 23—0) \ B(0, Ry/p), we obtain
ay R ~ Py C ~ A
/ A§|wp|2dy=f (1—A)2% L B0 _ 2506, a5
B(0,3/20)\B(0,Ro/p) B(0,3/20)\B(0,Ro/p) r 2

~ a@p Cpp ) R
+/ A2 PR A2 D)gpvr di.
9B(0.3/20) & 0V 2 F ’

By the Cauchy-Schwarz inequality, (3-3) and Step 1 of Section 3B3, we infer

IV, ||L2(B(0 3/200\B(0,Ro/p)) S CA+cp)IVepllLa(80,3/200\B0, Ry + C-

where, for the contribution of the integral over 8B(0, ;0) we have used (3-16) and (3-15) (see Step 2
of Section 3B2). This implies

IV @pll 2(B(0,3/200\BO, Ro/p)) < C- (3-21)

We fix § € R? such that 2Ry /p <
B(y,191/2), we deduce

A o NP
/ A§|V¢p+e9/r|2dx<C/ V@l + 5 di<C
B(3.191/2) B(3.191/2) r

Then, since |iip| > 5 1n the annulus B(O 3 ) \B(0, Ry/p) D

\20 > 20
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by (3-21) and the fact that r = |X| > |y|/2. By Step 1 of Section 3B3, we then infer the upper bound
(also shown in [35])

Eqp(ity, B3, 191/2)) < C. (3-22)
We now make some rescaling and consider
v(X) =it (5) + %X)

in B(0, 1) (v depends on y and p), which solves
Cp 1 2y _
Av—i-lgazv—i- 8—2v(1 —|v[©)=0
in B(0, 1), with § :=2/(p|y]). This equation is of the type (3-1) with “e = §” and “c = ¢,/§”. Let us
check that the assumption |¢| < My|ln €] is satisfied with My = 1. As a matter of fact, we have

2 ]40 1}
d=—¢€|—, = |
pIvl  13p 2

Mosins) > 1025 e = 2 4 o(1)
0o0|in Z —InNZ2c¢cy = — o
3p Ty

thus

by Step 2 of Section 3B4 (note 40(In2) /3% 9.24(1) > 2m). Furthermore, the upper bound (3-22) reads now
Es(v, B(0,1)) <C.
It then follows from the proof of Step 7 (p. 48) of Theorem 1 in [8] that, for § sufficiently small,
125721 v]) — cpd ™ B arg()llerpo,1/2) < €. IV arg@)ller o, 12 < C-

Therefore, by Step 2 of Section 3B3,

1= 10| + | VIvI(0)] < Cepd +C8% < |V arg(v)(0)] < C,

P9I
and scaling this back yields the conclusion, at least for § = 2/(p|y|) sufficiently small, say p|y|> 80/2,
but the estimate is easy to show if p|y|< 8p/2. U

3D. Some remarks on the nonsymmetrical case. In the case where we do not assume the x;-symmetry
for uy, the location of the vortices J, + is more delicate. Indeed, we can no longer assume (3-14), that is,

()A’p,—)Z = ()A’p,+)2 =0 and — ()A’p,—)l = (5\))3,4-)1 — %

Up to a translation, we may assume y,  + Yo, — = 0, and it remains true that y, ; | — Yy — 1 — % but we
may have |y, + — Jp.—| > 1. By carefully following the proof in [43], one could show that

[Jp,+ — Ip—| < C.

Then, the location of the limiting vortices yoo + = limy_ 4 ﬁp,i can be obtained through the use of the
Hopf differential as in [6] (Chapter VII), and would lead as before to yoo + = (i% 0). This is of course
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related to the fact that the only critical point of the action functional

F (Yoo, 45 Yoo,—) :=21 (2 In|Yoo,+ — Yoo,— | = 27 [(Joo,4+)1 — (5’00,—)1])
associated with the action of the Kirchhoff energy is (up to translation) Voo +» Yoo,—) = (% —%) e C2.

Next, Step 1 of Section 3B4 becomes, for any p € [1, 2[, and in wh P(R?),

loc
iy — € ©l.

The term ® is somewhat the phase at infinity, even though we do not claim some uniformity at infinity in
space. Next, for the local convergences, there are two phases S+ € R such that

y(Zps+p-) — ePrVy (3-23)

in Cﬁ)c([@z) for any k € N. We are then simply able to show that 8+ = ®, but this is not enough for the
uniqueness result. This follows from the arguments given in [44], as we explain.
We work for the + sign. Integrating (3-20) over the disk B(0, R) yields

/ AR Z; d£+cpp/ (A2 —1)dt=0.
dB(0,R) dv 9B(0,R)

We now consider the average

ﬂp(”) = @p dﬁ,

2mr 9B(O.r)

which satisfies, for 1/p <rg <rp < %,

" o .
ﬂp(ro)—ﬂp(rl):/ Brﬂp(r)dr:f 2—/ OrPpdl dr
ro o 4T JaB(,r)

T f ORI | )
= — (1—-A))0,¢pdldr+c p/ —/ v(A; —1)dedr.
/rO 27‘[1’ 9B(0,r) pIurYR P ro 27‘[r dB(0,r) i

Therefore, by Step 5,
1By(r0) ﬁ<n<C/”d’+C/”dr< € _+¢
ro) — Bu(r))] < —_ — K —— 1+ —.
’ P no P Sy pE? T (o) p

We now fix n € ]0, 1]. Taking ro = 1/(/7p) and r| = we infer

20’

1Bp(ro) — Bp(r)l < Cn + %
Moreover, by (3-23), we have
By(ro) = By (1/(/np)) — B+
as p — 400, and by Step 1 of Section 3B4, we deduce
Bp(r)) — O.
As a consequence,

B+ — O] < Cn,

and the conclusion follows by letting n — 0.
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CLASSIFICATION OF CONVEX ANCIENT FREE-BOUNDARY
CURVE-SHORTENING FLOWS IN THE DISC

THEODORA BOURNI AND MAT LANGFORD

Using a combination of direct geometric methods and an analysis of the linearization of the flow about
the horizontal bisector, we prove that there exists a unique (modulo rotations about the origin) convex
ancient curve-shortening flow in the disc with free boundary on the circle. This appears to be the first
result of its kind in the free-boundary setting.

1. Introduction

Curve-shortening flow is the gradient flow of length for regular curves. It models the evolution of grain
boundaries [Mullins 1956; von Neumann 1952] and the shapes of worn stones [Firey 1974] in two
dimensions, and has been exploited in a multitude of further applications; see, for example, [Sapiro 2001].

The evolution of closed planar curves by curve-shortening was initiated by Mullins [1956] and was later
taken up by Gage [1984] and Gage and Hamilton [1986], who proved that closed convex curves remain
convex and shrink to “round” points in finite time. Soon after, Grayson showed that closed embedded
planar curves become convex in finite time under the flow, thereafter shrinking to round points according
to the Gage—Hamilton theorem. Different proofs of these results were discovered later by others [Andrews
2012; Andrews and Bryan 2011a; 2011b; Hamilton 1995b; Huisken 1998]. Ancient solutions to geometric
flows (that is, solutions defined on backwards-infinite time-intervals) are important from an analytical
standpoint as they model singularity formation [Hamilton 1995a]. They also arise in quantum field theory,
where they model the ultraviolet regime in certain Dirichlet sigma models [Bakas and Sourdis 2007].
They have generated a great deal of interest from a purely geometric standpoint due to their symmetry and
rigidity properties. For example, ancient solutions to curve-shortening flow of convex planar curves have
been classified through the work of Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2010] and
the authors in collaboration with Tinaglia [Bourni et al. 2020]. Bryan and Louie [2016] proved that the
shrinking parallel is the only convex ancient solution to curve-shortening flow on the two-sphere, and
Choi and Mantoulidis [2022] showed that it is the only embedded ancient solution on the two-sphere
with uniformly bounded length.

The natural Neumann boundary value problem for curve-shortening flow, called the free-boundary
problem, asks for a family of curves whose endpoints lie on (but are free to move on) a fixed barrier curve
which is met by the solution curve orthogonally. Study of the free-boundary problem was initiated by
Huisken [1989] and further developed by Stahl [1996a; 1996b]. In particular, Stahl proved that convex
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curves with free boundary on a smooth, convex, locally uniformly convex barrier remain convex and
shrink to a point on the barrier curve.

The analysis of ancient solutions to free-boundary curve-shortening flow remains in its infancy. Indeed,
to our knowledge, the only examples previously known seem to be those inherited from closed or complete
examples (one may restrict the shrinking circle, for example, to the upper halfplane). We provide here a

1

classification of convex' ancient free-boundary curve-shortening flows in the disc.

Theorem 1.1. Modulo rotation about the origin and translation in time, there exists exactly one convex,
locally uniformly convex ancient solution to free-boundary curve-shortening flow in the unit disc D C R2.
It converges to the point (0, 1) as t — 0 and smoothly to the segment [—1, 1] x {0} as t — —o0. It is
invariant under reflection across the y-axis. As a graph over the x-axis, it satisfies

e)‘zty(x, t) > Acosh(Ax) uniformlyinx ast — —oo0
for some A > 0, where A is the solution to X tanh A = 1.

Theorem 1.1 is a consequence of Propositions 2.8, 3.4, and 3.5 proved below. Note that it is actually a
classification of all convex ancient solutions, since the strong maximum principle and the Hopf boundary
point lemma imply that any convex solution to the flow is either a stationary segment (and hence a bisector
of the disc by the free-boundary condition) or is locally uniformly convex at interior times.

A higher-dimensional counterpart of Theorem 1.1 will be treated in a forthcoming paper.

Another natural setting in which to seek ancient solutions is within the class of soliton solutions. Since
free-boundary curve-shortening flow in the disc is invariant under ambient rotations, one might expect to
find rotating solutions. In Section 4, we provide a short proof that none exist.

Theorem 1.2. There exist no proper rotating solutions to free-boundary curve-shortening flow in the disc.

2. Existence

Our first goal is the explicit construction of a nontrivial ancient free-boundary curve-shortening flow in
the disc. It will be clear from the construction that the solution is reflection-symmetric about the vertical
axis, emerges at time negative infinity from the horizontal bisector, and converges at time zero to the
point (0, 1). We shall also prove an estimate for the height of the constructed solution (which will be
needed to prove its uniqueness).
2A. Barriers. Given 0 € (0, %), denote by Cy the circle centered on the y-axis which meets 9 B?
orthogonally at (cos 8, sin6). That is,

Co={(x,y) 6R22x2+(0309—y)2:c0t29}. (D)
If we set

0~ (t) = arcsine’ and 67 () = arcsine”,

A free-boundary curve in the open disc B2 is convex if it bounds a convex region in B2 and locally uniformly convex if it is
of class C2 and its curvature is positive.
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then Cy+(;) is defined for ¢ € (—o0, 0) and flows from the x-axis to the point (0, 1). Moreover, since the
inward normal speed of Cg-(;) is no greater than its curvature «~ and the inward normal speed of Cy+ ()
is no less than its curvature «*, the maximum principle and the Hopf boundary point lemma imply that:

Proposition 2.1. A solution to free-boundary curve-shortening flow in B> which lies below (resp. above)
the circle Cq, at time 1o lies below Coy i+, ) (resp. above Cy- ) for all t > ty, where 25 =
log sin 6 (resp. 1, = logsin ).

Consider now the shifted scaled Angenent oval {A’};c(—c0.0), Where
Ak = {(x, y) R x (0, %) sin(hy) = e~ cosh(kx)}.

This evolves by curve-shortening flow, passes through the point (cos @, sin#) € d B> at a time ¢ given by
2 10g< sin(A sin 9) )
cosh(A cos )
and at that point, the normal satisfies
cos 0 tanh(A cos ) — sin O cot(A sin )
Vtanh2(A cos 6) + co2(A sin 0) '
Lemma 2.2. For each 6 € (0, %), there is a unique A(0) € (0, w/(2sin6)) such that

V) (cos B, sinf) - (cos O, sinf) =

V).0)(cos 8, sin @) - (cos B, sinf) = 0.
Given 6,0 € (0, 3) with 6 > 6y,

Vi(6y) (c0s 0, sinf) - (cos 6, sin0) < 0.
Proof. Define
f (A, 0) =cos6tanh(X cos ) — sin  cot(A sinf)).
Observe that

P{% f(x,0)=—o0, an/iglsme) f(X,0) =cos6 tanh(5 cotf) >0
and 5
% = cos? 6(1 — tanh? (A cos 0)) + sin® O(1 + cot?(A sin 0)) > 0. (2)

The first claim follows.
Next observe that

% = —sin @ tanh(\ cos 8) — A cos 0 sin 6 sech? (AcosB) —cos B cot(Asinf) + A sinb cos cscz(k sin6).
Given 6 € (0, %), we obtain, at the unique zero A € (0, w/(2sin6)) of f(-,6),

d

—f = —sin# tan 6 cot(X sin0) — A cos 0 sin (1 — tan” 6 cot? (A sin 0))

30
— cos 6 cot(x sin ) + A sin 6 cos 6 csc? (A sin §)
= —secH cot(AsinfB)(1 — A sin b cot(A sinh)).

Since YcotY <1forY e (0, %), this is less than zero. The second claim follows. O
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The maximum principle and the Hopf boundary point lemma now imply the following.

Proposition 2.3. Let {I'};c[a,) be a solution to free-boundary curve-shortening flow in B2. Suppose that
A < A(By), where 0,, denotes the smaller, in absolute value, of the two turning angles to Ty at its boundary.
If Ty lies above A, then T lies above AL, forallt € (&, w) N (—00, & — 3).

Proof. By the strong maximum principle, the two families of curves can never develop contact at an
interior point. Since the families are monotonic, they cannot develop boundary contact at a boundary
point (cos 8, sin @) with |6| < ,. On the other hand, since A < A(6,), (2) implies that

f()‘, 0y) < f()\oz» 0s) =0,
and hence, by the argument of Lemma 2.2,
f(x,0)<0 forf>6,.

So the Hopf boundary point lemma implies that no boundary contact can develop for 6 > 6, either. [J
Remark 2.4. Since s cots — 1 as s — 0, we have that f (X, 6) is nonnegative at 8 = 0 so long as A > X,
where Agtanh Ao = 1.
2B. Old-but-not-ancient solutions. For each p >0, choose a curve I'? in B? with the following properties:
 I'” meets d B> orthogonally at (cos p, sin p).
o I'? is reflection-symmetric about the y-axis.
« ' N B? is the relative boundary of a convex region Q” C B2.
e k! >0in BZN{x > 0}.

For example, we could take I'? = A,Apﬂ N B2, where A p > Ao and 7, are (uniquely) chosen so that

cos p tanh(, cos p) — sin p cot(A, sin p)) =0

h(x
~t, =A% log —CO,S ( pc‘osp) .
P sin(A, sin p)

and

Observe that the circle Co, defined by

. 2sin p
Sll’lep = 1—2
+sin” p

is tangent to the line y = sin p, and hence lies above I'”.
Work of Stahl [1996b; 1996a] now yields the following old-but-not-ancient solutions.

Lemma 2.5. For each p € (O, %), there exists a smooth solution® {F,p},e[a ,.0) fo curve-shortening flow
with T} , = I'? which satisfies the following properties:

e T/ meets d B* orthogonally for each t € (ap, 0).

2Given by a one parameter family of immersions X : [—1, 1] x [a,, 0) — B satisfying X € C®°([—1, 1] x (a,, 0)) N
C2HBIFBI2([—1, 1] x [ap, 0)) for some B € (0, 1).
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o 'Y is convex and locally uniformly convex for eacht € (« 05 0).

o T/ is reflection-symmetric about the y-axis for eacht € (@, 0).

e I'” — (0, 1) uniformly as t — 0.

e k' >0in B>N{x > 0}

ey < %log(2 sinp/(1+ sin’ p)) — —ocoas p — O.

Proof. Existence of a maximal solution to curve-shortening flow out of I'* which meets d B> orthogonally
was proved by Stahl [Stahl 1996b, Theorem 2.1]. Stahl [1996a, Proposition 1.4] also proved that this
solution remains convex and locally uniformly convex and shrinks to a point on the boundary of B? at
the final time (which is finite). We obtain { F,p }tela,.0) by time-translating Stahl’s solution.

By uniqueness of solutions I remains reflection-symmetric about the y-axis for ¢ € (a,, 0), so the
final point is (0, 1).

The reflection symmetry also implies that «f = 0 at the point p, = I N {x = 0} for all 7 € [«,, 0). By
[Stahl 1996a, Proposition 2.1], k!’ = k” > 0 at the boundary point g, = 3T N {x > 0} for all 7 € («,,, 0).
Applying Sturm’s theorem [Angenent 1988] to k¥, we thus find that «/ > 0 on I'’ N B% N {x > 0} for all
t € (ap,0).

Since Cy, C €2”, the final property follows from Proposition 2.1. U

We now fix p > 0 and drop the super/subscript p. Set
k(1) = n}itn/c =«(p) and k(1) = max i = k(q:),
and define y(r), y(¢) and 6(t) by
pr=1(0,y(), g =(cosf(t),sinf(t)), and J(r)=sin6().

Lemma 2.6. Each old-but-not-ancient solution satisfies

gftanéfﬁ, 3)
sinf < ¢, “4)

sin 6 -
— <y <sinb. 5
1+cosf =X= ©)

Proof. To prove the lower bound for «, it suffices to show that the circle Cé(z) (see (1)) lies locally below I'y

near ¢,. If this is not the case, then, locally around ¢,, I} lies below C(;(,) and hence k(¢g;) <tanf(z). But

then we can translate Cj,) downwards until it touches I'; from below in an interior point at which the

curvature must satisfy « > tan 0(¢). This contradicts the unique maximization of the curvature at g;.
The estimate (4) now follows by integrating the inequality

D

d . = = _ .
— sinf = cos 6 k > sin
dt

T

between any initial time ¢ and the final time O (at which § = 7 since the solution contracts to the
point (0, 1)).
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The upper bound for y follows from convexity and the boundary condition y = sin 6. To prove the
lower bound, we will show that the circle Cy, lies nowhere above I';. Suppose that this is not the case.
Then, since Cj, lies locally below I near g;, we can move Cj,) downwards until it is tangent from
below to a point p; on I'; N {x > 0}, at which we must have x > tan6(z). But then, since x; > 0 in
{x > 0}, we find that ¥ > tan6(¢) for all points between p; and ¢;. But this implies that this whole arc
(including p;) lies above Cy,), a contradiction. To prove the upper bound for «, fix ¢ and consider the
circle C centered on the y-axis through the points p; and ¢;. Its radius is r(¢), where

~cos? 0+ (sinf — y)?
r= — =
2(sinf — X)
We claim that I lies locally below C near p;. Suppose that this is not the case. Then, by the symmetry
of Iy and C across the y-axis, I} lies locally above C near p,. This implies two things: first, that
k(p) =r -1
and second, that, by moving C vertically upwards, we can find a point p; (the final point of contact)
which satisfies
k(p) <rt.

These two inequalities contradict the (unique) minimization of x at p,. We conclude that

2(sinf — y) _
= —= <tan6
cos? 6 + (sinf —2)2
due to the lower bound for Y. O

K =

Remark 2.7. If we parametrize by turning angle € [0, ], so that
T = (cos b, sinf),

then the estimates (3) are also easily obtained from the monotonicity of « and the formulas

sin u

k(1)

¥ cosu 0
x(0) =x0+ du and y(0)=yo+ du. (6)
0 0

K (u)
2C. Taking the limit.

Proposition 2.8. There exists a convex, locally uniformly convex ancient curve-shortening flow in the disc
with free boundary on the circle.

Proof. For each p > 0, consider the old-but-not-ancient solution {Ftp }rela,.0)5 F,'O = 8Qf , constructed in
Lemma 2.5. By (4), Q7 contains Cq, ) N B2, where w(t) € (0, Z) is uniquely defined by

1 —cosw(t) o

sin w(t)
If we represent I'/” as a graph x > y”(x, t) over the x-axis, then convexity and the boundary condition
imply that |y{| < tanw. Since w(¢) is independent of p, the (global-in-space, interior-in-time) Ecker—
Huisken-type estimates in [Stahl 1996b] imply uniform-in-p bounds for the curvature and its derivatives.
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So the limit
(T Yrefa,.0) = {Tihe(=00,0)

exists in C*° (globally in space on compact subsets of time) and the limit {I';};c(—o0,0) satisfies curve-
shortening flow with free boundary in B2. On the other hand, since {I“tp }re(e,.0) contracts to (0, 1) asz — 0,
(the contrapositive of) Proposition 2.1 implies that I’ must intersect the closed region enclosed by Cp+ ()
for all + < 0. It follows that I'; must intersect the closed region enclosed by Cgy+(,) for all # < 0. Since
each I is the limit of convex boundaries, each is convex. It follows that I, converges to (0, 1) ast — 0
and, by [Stahl 1996b, Corollary 4.5], that I'; is locally uniformly convex for each ¢. 0

2D. Asymptotics for the height. For the purposes of this section, we fix an ancient solution {I7} 0,0
obtained as in Proposition 2.8 by taking a sublimit as A \( Ao of the specific old-but-not ancient solutions
{Ff},e[%o) corresponding to Féx = Ag N B2, t, being the time at which {A?},E(,OO,O) meets B2
orthogonally. The asymptotics we obtain for this solution will be used to prove its uniqueness.

2
A2t

We will need to prove that the limit lim;_, _ € () exists in (0, co). The following speed bound

will imply that it exists in [0, 00).

Lemma 2.9. The ancient solution {I';}(—«o,0) satisfies

© > o tan(ioy). (7)
cosf

Proof. 1t suffices to prove that x /cos 8 > XA tan(Ay) on each of the old-but-not-ancient solutions {F;\} relay,0)-
Note that equality holds on the initial timeslice Fék = A,AA .
Given any u < A, set u = ptan(uy) and v = x; = cos 6 = (v, e2). Observe that

Ug = uz secz(uy) sinf, (9, — A)u = —2u2 SCCZ(;Ly) sin® Ou,

vy =—ksinf and (9, —A)v= K.

At an interior maximum of uv/k we observe that

Ve Vu Vv
_ = 4+ —
K u v
and hence
uv  uv (0 — A)u Vu Vv S .9 uv
0<@-A)—=———"""-2(—,—) ) =2u"sec (uy)sin“0(1 ——|. (8)
K K u u v K

At a (without loss of generality right) boundary maximum of uv/k, we have y; = y and k; = «, and
(uv) uv(us Uy KS) uv(secz(uy),uy y )
— )=+ =———«k=-1
K /g K \u v K K tan ny v

- ( Ry 1)ﬂ + (E - 1) tan(py) Ly
tan(uy) K K

< (u?v — 1) tan(uy)py. )

hence
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We may now conclude that max; uv/k remains less than 1. Indeed, if uv/« ever reaches 1, then there
must be a first time #y > 0 and a point xg € I'; at which this occurs (note that uv/k is continuous on I'; up
to the initial time). The point xy cannot be an interior point, due to (8), and it cannot be a boundary point,
due to (9) and the Hopf boundary point lemma. We conclude that

K
> ptan(uy)
cos 6

on {T'}*}/c(a,.0) for all u < A. Now take p — A. O
If we parametrize I, as a graph x — y(x, t) over the x-axis, then (7) yields
. K .
(sin(R0y)); = Ao cos(hoy)k v 1+ [y, [* = Ao cos(hoy) 0 = A sin(roy)

and hence
(e sin(hoy(x, 1)), > 0. (10)

In particular, the limit
A) = lim e 'y(x, 1)
1——00

exists in [0, 0o) for each x € (—1, 1), as claimed.
We want next to prove that the above limit is positive. We will achieve this through a suitable upper
bound for the speed. Recall that

(0, — Ay =4’y and (9 — A){(y, v) =« (y, v) — 2k, (11)

where y denotes the position and s is an arc-length parameter. The good —2«-term in the second equation
may be exploited to obtain the following crude speed bound.

Lemma 2.10. There exist T > —o0 and C < oo such that
k<Cé forallt <T. (12)

Proof. We will prove the estimate for each old-but-not-ancient solution {I'*},c(,.0). We first prove a
crude gradient estimate of the form
lies| < 2k (13)

for ¢ sufficiently negative. It will suffice to prove that
liis| =Kk +(y,v) <0, (14)

where y denotes the position. Indeed, since (y, v); = k (y, T) has the same sign as the x-coordinate, we
may estimate, as in (7),

[V, V)] < 1Yy V) lemo < A2k |0 = A2 mink <. (15)

For A sufficiently close to Ao, we have «|;—,, < % Denote by T* the first time at which « reaches %
Since « is continuous up to the initial time «;, we have T* > a;. We claim that (14) holds for t < T*.
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Indeed, it is satisfied on the initial timeslice Fék = A,AA since

KSZ —k?= )Lz(cos2 0 sin> 0 — sin® 6 — a%) = —)Lz(sin4 0+ a%) <0,

whereas (y, v) < 0. We will show that

o)

Je = lis| — Kk +(y, V>_8et_

remains negative up to time T*. Suppose, to the contrary, that f, reaches zero at some time t < T* at
some point p € f‘,k. Since |ks| — k + (y, v) vanishes at the boundary, p must be an interior point. Since
ks vanishes at the y-axis, and the curve is symmetric, we may assume that x(p) > 0. At such a point,
using the evolution equations (11), we have

0< @ —A)f. =1*(dis — Kk + (y,v) — 2k — ge' ~%
=k>(Blk — (y, V)] +4ee' %) — 2k — ge! "%,
Recalling (15) and estimating « < % yields
0 < 6K> — 2k + (4% — 1)ge' ™% <0,

which is absurd. So f; does indeed remain negative, and taking & — 0 yields (13) for t < T*.
Since Length(I'* N {x > 0}) < 1, integrating (13) yields

k <e’x fort<T.

Recalling (3) and (4), this implies that

~

-_2 °© A
Kk <e ———— fort <T".
V1 —e2
Taking t = T* we find that T* > T, where T is independent of A, so we conclude that
k<Ce' fort<T,
where C and T do not depend on A. U

We now bootstrap (12) to obtain the desired speed bound.

Lemma 2.11. There exist C < oo and T > —oo such that

£§A§+C62t fort <T.
y

Proof. Consider the old-but-not-ancient solutions { F}},E(_oo,o). By (12), we canfind C <ocoand T > —o0
such that

\Y% \Y%
(3,_A>£:Kzf+z<vf,_y>SCezr£+z<vf,_y> fort < T
y Yy y y Yy y y

Since, at a boundary point,
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the Hopf boundary point lemma and the ODE comparison principle yield

K K
max — < Cmax— forte (o), T).
rry r}

But now
\Y
0, — A)E < Ce? max l +2<V£, _y> fort < T,
y i,y y oy
and hence, by ODE comparison,
max = < max E(1 +Ce*) forte (a;,T).
rry Ty

A
1754

Kk  Atan(Ly)
—_— = —2C
Yy Yy

the claim follows upon taking A — Xg. g

Since, on the initial timeslice I', = A

0s0,

It follows that
(log y(t) — A1), < Ce* fort <T,

and hence, integrating from time ¢ up to time 7,

log y(t) — Ajt = log y(T) —AgT —C  fort <T.
So we indeed find that:

Lemma 2.12. The limit
A% lim e My (16)

exists in (0, 00) on the particular ancient solution {I'; }(—co,0)-

3. Uniqueness

Now let {I't}/e(—0,0), I't = 0re1€2;, be any convex, locally uniformly convex ancient free-boundary curve-
shortening flow in the disc. By Stahl’s theorem [1996a], we may assume that I'; contracts to a point on
the boundary as t — 0.

3A. Backwards convergence. We first show that ', converges to a bisector as t — —00.
Lemma 3.1. Up to a rotation of the plane,
I, > [=1, 11 x {0} ast — —c0.

Proof. Set A(t) = area(€2;). Integrating the variational formula for area yields

0
A(t):// de,
t JIy
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where 6 is the turning angle. Since convexity ensures that the total turning angle fl“f d@ is increasing and
A(t) < m for all t, we find that

/d9—>0 ast — —o00.
I;

Monotonicity of the flow, the free-boundary condition and convexity now imply that the enclosed
regions €2, satisfy

Q — Bzﬂ{yzO} ast — —oo
in the Hausdorff topology.

If we now represent I, graphically over the x-axis, then convexity and the boundary condition ensure
that the height and gradient are bounded by the height at the boundary. Stahl’s estimates [1996b] now
give bounds for « and its derivatives up to the boundary depending only on the height at the boundary. We
then get smooth subsequential convergence along any sequence of times ¢; — —oo. The claim follows
since any sublimit is the horizontal segment. (|

We henceforth assume, without loss of generality, that the backwards limit is the horizontal bisector.

3B. Reflection symmetry. We can now prove that the solution is reflection-symmetric using Alexandrov
reflection across lines through the origin; see [Chow and Gulliver 2001].

Lemma 3.2. T is reflection-symmetric about the y-axis for all t.
Proof. Given any w € (0, %), we define the halfspace
H,={(x,y):(x,y) - (—sinw, cos w) > 0}
and denote by R,, the reflection about d H,,. We first claim that, for every w, there exists ¢t = ¢, such that

(Ry, - THNNH,) =2 forallt<t,. (17)

b
)
sequence of pairs of points p;, ¢; € I', such that R, (p;) = ¢;. This implies that the line passing through p;

Assume that the claim is not true. Then there exists w € (0 ) a sequence of times f; - —oo, and a

and g; is parallel to the vector (sinw, — cos @), so the mean value theorem yields for each i a point r;
on I';, where the normal is parallel to (cos w, sin w). This contradicts Lemma 3.1.

The strong maximum principle now implies that (17) holds for all # < 0 (note that R,, - I'; also intersects
dB? orthogonally). In fact, (R, - I}) N H, lies above Iy N H,, for all t < 0 and all w € (O, %) and by
continuity the same holds for @ = 7. Repeating the argument on the “other side” with the halfspaces

Hy,={(x,y): (x,y)-sinw, —cosw) >0}, we (3, 7),
implies the reflection symmetry. O

3C. Asymptotics for the height. We begin with a lemma.

Lemma 3.3. Forallt <0,
ks >0 in{x>0}NTI}
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and hence -
sin 6
—— <. (18)
1+cosfd =
Proof. Choose T > —o0 so that ¥ < % for t < T and, given ¢ > 0, set
Ve = ks +e(1 —(y, v)).

We claim that v, > 0 in {x > 0} N (—oo, T). Suppose that this is not the case. Since at the spatial boundary
ve > &, and v, — € as t — —o0, there must exist a first time in (—o0, T') and an interior point at which
ve = 0. But, at such a point,
0> (3 — A)ve = k2 (ks — (¥, V) + 3k %ks + 2K

= —ex? —3ex’(1 — (y, v)) + 2¢ek

>e(2—Tk)k >0,
which is absurd. Now take & — 0 to obtain x; > 0 in {x > 0} NI} for t € (—o0, T']. Since x; = 0 at the
y-axis and «; = k > 0 at the right boundary point, the strong maximum principle and the Hopf boundary
point lemma imply that x; > 0 in {x > 0} NI for ¢ € (—oo, T']. But then Sturm’s theorem implies that &

does not develop additional zeroes up to time O.
Having established the first claim, the second follows as in Lemma 2.6. O

Proposition 3.4. If we define A € (0, 00) as in (16), then
ekgty(x, t) — Acosh(hox) uniformly ast — —o0.
Proof. Given t < 0, consider the rescaled height function
YO 1) = e Ty, 14 T),
which is defined on the time-translated flow {I'} };c(—co0,—r), Where I'} = I';,. Note that

{(at —A%)y*=0 in {Ftr}te(foo,fr),
(VIy",N)=y on {3l }ie(00,—1)s

where V' and A" are the gradient and Laplacian on {I'} };c(—o0,—7), respectively, and N is the outward

(19)

unit normal to d B.

Since {I';};e(—00,0) T€aches the origin at time zero, it must intersect the constructed solution for all
¢ < 0. In particular, the value of y on the former can at no time exceed the value of y on the latter. But
then (16) and (18) yield

lim sup e_k%ty < 00. (20)
t——00
This implies a uniform bound for y* on {I'} };c(—c0,7] for any T € R. So Alaoglu’s theorem yields
a sequence of times t; — —oo such that y% converges in the weak® topology as j — 0o to some
y>* e leoc([—l, 1] x (=00, 00)). Since convexity and the boundary condition imply a uniform bound for
V*y® on any time interval of the form (—oo, T'], we may also arrange that the convergence is uniform in

space at time zero, say.
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Weak™* convergence ensures that y*° satisfies the problem

{yt = Yxx in [_17 1] X (—OO, OO), (21)

ye(£D = £y (ED).

Indeed, a smooth function y® satisfies the boundary value problem (19) (and analogously for (21)) if and

-7
f / y(@ —A)'n=0
—00 ’T

for all smooth 1 which are compactly supported in time and satisfy

only if

Vin-N=n ondl;,

where (0, —A")* = —(9;,+ A7) is the formal Lz—adjoint of the heat operator. Since {I'} };c(—c0,—r) CcOnverges
uniformly in the smooth topology to the stationary interval {[—1, 1] x {0}};e(—c0,00) @5 T — —00, We
conclude that the limit y*° must satisfy (21) in the L? sense (and hence in the classical sense due to
the L? theory for the heat equation). Indeed, by the definition of smooth convergence, we may (after
possibly applying a diffeomorphism) parametrize each flow {f‘: J }te(—00,—1;) over I = [—1, 1] by a family

[eS]
loc

stationary embedding (x, 1) > xej. Given n € C§°(I x (—00, 00)) satisfying 1, (1) = %n, set n/ =¢/n,
where <pj ‘[—1, 1] x (=00, —t/) — R is defined by

of embeddings ¥, : I x (—o0, —1;) — B? which converge in C°(I x (—00,00)) as j — oo to the

ol +(1—ly!De’ =0, ¢/0.0=1.

That is, ¢/ (¢, t) = e*' D¢ where s/ (¢, 1) = fo{ |V;j (£, 1)| d€. This ensures that V¥ n/ - N =/ at the
boundary, and hence

oo . .
0:/ fyff(at — AUyl ds/ dt.
—o0 v 1

o0

Since ¢/ — 1in CroeI x (=00, 00)), a short computation reveals that

0=f /y”(&,—A)*ndg dt.
—oo J I

Finally, we characterize the limit (uniqueness of which implies full convergence, completing the proof).
Separation of variables leads us to consider the problem

{—¢>xx =u¢ in[-1,1],
¢ (£1) = £p (D).
There is only one negative eigenspace, and its frequency turns out to be Ao, with the corresponding mode
given by

¢—1(x) = cosh(Xox).

Thus, recalling (20), we are able to conclude that

y®(x, 1) = Ae’ cosh(Aox)
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for some A > 0. In particular,
e_’\gffy(x, 7j) = y"(x,0) = Acosh(iox) uniformly as j — oo.

Now, if A is not equal to the corresponding value on the constructed solution (note that the full limit
exists for the latter), then one of the two solutions must lie above the other at time t; for j sufficiently
large. But this violates the avoidance principle. U

3D. Uniqueness. Uniqueness of the constructed ancient solution now follows directly from the avoidance
principle.

Proposition 3.5. Modulo time translation and rotation about the origin, there is only one convex, locally
uniformly convex ancient solution to free-boundary curve-shortening flow in the disc.

Proof. Denote by {I'};¢(—c0.0) the constructed ancient solution and let {I'}};c(—oc,0) be a second ancient
solution which, without loss of generality, contracts to the point (0, 1) at time 0. Given any t > 0, consider
the time-translated solution {I'f };¢(—oo,—¢) defined by I'Y =T'/ .. By Proposition 3.4,

2 2
e M yT(x, 1) — Ae™® cosh(hox) ast— —oo

uniformly in x. So I'} lies above I'; for —t sufficiently large. The avoidance principle then ensures that I'}
lies above I for all € (—o0, 0). Taking T — 0, we find that I'; lies above I'; for all 7 < 0. Since the
two curves reach the point (0, 1) at time zero, they intersect for all # < 0 by the avoidance principle. The
strong maximum principle then implies that the two solutions coincide for all ¢. (|

4. Supplement: nonexistence of rotators

Free-boundary curve-shortening flow in B? is invariant under rotations about the origin, so it is natural to
seek solutions which move by rotation, that is, solutions y : (—L/2, L/2) x (—o0, c0) — B? satisfying
v, =ePy(-,0

for some B > 0. Differentiating yields the rotator equation
Kk =—B(y, 1). (22)

It turns out, however, that there are no solutions to (22) in B? satisfying the free-boundary condition.

Proof of Theorem 1.2. Following [Halldorsson 2012], we rewrite the rotator equation as the pair of
ordinary differential equations
xX'=B+xy and y =—x?, (23)
where
x=B(y,t) and y=B(y,v).

Arc-length parametrized solutions y to the rotator equation (22) can be recovered from solutions to the
system (23) via

y =B l(x+iy)e?, 0(5)#—/5)6(0)610,
0
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and this parametrization is unique up to an ambient rotation and a unit linear reparametrization, i.e.,
@, s) = (£0 + 6y, £5 + 50).
Note that
y1=B""Va?+y%

So we seek solutions (x, y): (—L/2, L/2) — B? to (23) satisfying the free-boundary condition

(Eh) ) =0

Let y be such a solution. Since (23) can be uniquely solved with initial condition (x (so), y(so)) = (B, 0)
(which corresponds to y (sg) € dB? with (y, 7)| so = 1), we find that y must be invariant under rotation
by 7 about the origin. In particular, the points y (—L/2) and y (L /2) are diametrically opposite. It follows
that y (0) is the origin. Indeed, for topological reasons, y must cross the line orthogonally bisecting
the segment joining its endpoints an odd number of times (with multiplicity). But since the rotational
invariance pairs each crossing above the origin with one below, we are forced to include the origin in the
set of crossings. We conclude that

L)2 L2
_ (L) _ r_ 2
O—y<2>—f0 y = /0 x-ds,

which is impossible since x(L/2) = B > 0. Il
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