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MONGE-AMPERE GRAVITATION AS A T-LIMIT OF GOOD RATE FUNCTIONS

LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

Monge—Ampere gravitation is a modification of the classical Newtonian gravitation where the linear
Poisson equation is replaced by the nonlinear Monge—Ampere equation. This paper is concerned with
the rigorous derivation of Monge—Ampere gravitation for a finite number of particles from the stochastic
model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (Bull. Inst.
Math. Acad. Sin. 11:1(2016), 23—41). This is done in two steps. First, we compute the good rate function
corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity.
Second, we study the I'-convergence of this good rate function, as the diffusivity tends to zero, toward a
(nonsmooth) Lagrangian encoding the Monge—Ampere dynamic. Surprisingly, the singularities of the
limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to
sticky collisions in one space dimension.

1. Introduction

Monge-Ampére gravitation. On a periodic domain such as T¢ = (R/Z)“, Newtonian gravitation is
commonly described in terms of the density of probability f (¢, x, &) to find gravitating matter at time ¢,
position x € T¢ and velocity & € R?, subject to the Vlasov—Poisson equation

O f (2, x, &) +dive(§f (1, x, §)) — dive (Vo(r, x) f (1, x, §)) =0,
A(p(t,x)szdf(t,x,é)dS— I, (t,x,6) eRxT! xR,

where ¢ is the gravitational potential. Notice that the averaged density, say 1, has been subtracted out
from the right-hand side of the Poisson equation, due to the periodicity of the spatial domain. This is a
common feature of computational cosmology and it lets the uniform density be a stationary solution. The
Vlasov—Poisson system can be seen as an “approximation” to the more nonlinear Vlasov—-Monge—Ampere
(VMA) system

O f (1, x,8) +dive(§f (1, x, ) —dive (Vo(r, x) f (1, x, §)) =0, (1
det(l +D%p(t, x)) = /Rd fl,x,&)dE,  (t,x,6) eRx T xR, 2)

where the fully nonlinear Monge—Ampere equation substitutes for the linear Poisson equation of Newtonian
gravitation. Indeed, for “weak” gravitational potentials, by expanding the determinant around the identity
matrix [, we get

det(I4+D%p(t, x)) ~ 1 +tr(D?*p(t, x)) = 1 + Ap(t, x)
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and recover the Newtonian model approximately (and exactly as d = 1). In this paper, we will speak of
“Monge—Ampere gravitation” (“MAG” in short). The Vlasov—-Monge—Ampere system was introduced
and related to the Vlasov—Poisson system in [Brenier and Loeper 2004], and studied as an ODE on the
Wasserstein space in [Ambrosio and Gangbo 2008]. It can also be solved numerically thanks to efficient
Monge—Ampere solvers recently designed by Mérigot [2011]. It was argued in [Brenier 2011] that MAG

may also be seen as an approximation of Newtonian gravitation for which the “Zeldovich approximation’
[1970] (see [Frisch et al. 2002; Brenier et al. 2003]), popular in computational cosmology, becomes exact.

Derivation of a discrete model of MAG. In what follows, we will not be directly interested in the
aforementioned system, but rather in its discrete version, i.e., when the number of particles is finite.
As is well known in optimal transport theory [Brenier 1987; 1991; Villani 2003], the Monge—Ampere
equation (2) is solved by the unique function ¢ such that the map Id+ V¢ realizes the optimal transport with
quadratic cost from the density | f d& to the Lebesgue measure. Then, the kinetic equation (1) is known
to be the continuous version of the Newton equations of classical mechanics in a potential given by ¢.

In the discrete setting, the stationary Lebesgue measure is replaced by a family A = (ay, ..., an) €
(RY)N of N > 1 points in R? (here we make the presentation in R? instead of T¢ for the sake of simplicity).
One can for instance think of a regular lattice approximating in some region a constant density, even though
in the sequel the particular choice of (ay, ..., ay) will play no role. We will consider the evolution of a
cloud X = (xy, ..., xy) of N particles xy, ..., xy in RY whose dynamic is ruled by the (—1/N)-convex
function induced by the discrete optimal transport problem

N N N
L 1 . 2 1oo(1 1
F(X)i=— min 5 2;‘ ¥ = a0 )| = =3 W) (ﬁ lea 5 28) 3)
1= 1= 1=
where W, is the so-called Wasserstein distance on P,(R?), the set of Borel probability measures on R?
having a finite second-order moment. At least in the case where the optimization problem in (3) admits a
unique mMinimizer oy = o(ff)t, the analogue of (1), (2) in this framework is easily seen to be formally,

d2
foralli=1,.... N, —5xi() = xi(1) = oy )
which can be rewritten as, letting X} := (x1(¢), ..., xny()),
1d?

Following the ideas of the recent paper [Brenier 2016], we will derive this discrete dynamic from the
very elementary stochastic model of a Brownian point cloud. However, in [Brenier 2016], the derivation
was obtained by applying two successive large deviation principles (LDP), through a purely formal use of
the Freidlin—Wentzell theory [1998]. The main purpose of the present paper is to explain how such a
derivation can be made rigorous by substituting for one of the applications of the LDP a PDE method
inspired by the famous concept of “onde pilote” introduced by Louis de Broglie [1927] at the early stage
of quantum mechanics.
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Dealing with the singularities. Due to the lack of uniqueness in the discrete optimal transport problem,
solutions of (4) are not always well-defined a priori. Otherwise stated, F' is singular, and therefore V F
in (5) is not everywhere meaningful. A standard choice to give sense to (5) is to restate it as

1d?
_N@Xt € IF (X)), (6)
where 0 F (X;) is the subdifferential of F at X, or
1.d? s
—met =VF(X),

where V F (X;) is the element of d F (X;) with minimal Euclidean norm (see Definition 8 below). In these
formulations, existence results are available even in the nondiscrete case [Ambrosio and Gangbo 2008].

This is not what we do: our approach selects minimizers of actions appearing as I'-limits of good rate
functions associated with some LDP, under endpoint constraints. These curves do solve (4) in the case
where o,p is unique, but this time, the relaxation is made at the level of the Lagrangian formulation, and
not at the level of the Hamiltonian one. In view of (5), we would expect to find the action

"1l
—NF(X) ¢ dt, (N
Io 2
where 1y, t; are some prescribed initial and final times. Instead, our derivation ends up with the smaller
action - _ )
A, X, — V(X
/{|t|+|t f( t)l}dt’ ®)
0 2 2
N N
= e = , — d\N
f(X) = Gnelggil;xlaa(,) = ;xzaaglgl(,-), X=(x1,...,xy) € (RH™.

Note that these two actions coincide on curves X such that, for almost every z, (TOXplt is unique (see
Section 2.7 for more details). Unexpectedly, this action is exactly the one previously suggested by the
third author in [Brenier 2011] in order to include dissipative phenomena (such as sticky collisions in one
space dimension) in the Monge—Ampere gravitational model!

The classical theory for sticky particles vs. our approach. Systems of particles moving along the line
and that stick together when they meet have been studied for a long time, for instance because they were
suggested to model the formation of large structures in the universe [Zeldovich 1970]. On the mathematical
side, a lot of works have been devoted to studying the limit of this kind of system when the number of
particles tends to infinity (see for instance [E et al. 1996; Brenier and Grenier 1998]), and the most recent
works generally build on a connection with the theory of optimal transport (see [Natile and Savaré 2009;
Brenier et al. 2013; Hynd 2020]). An example illustrating this link, which is one of the main theorems
in [Natile and Savaré 2009], is that up to a change of time, the one-dimensional pressureless Euler system
with sticky collisions is the gradient flow in the Wasserstein space of —% W22(m, -), where m € P>(R) is
a reference probability measure on the line. In plain English, in these models, particles are only allowed
to stick when they meet, and it corresponds to the optimal way of decreasing a certain functional.
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Our approach is different. In fact, our model is a least action principle, and therefore is conservative
and time-reversible. In this context, sticky collisions happen due to the presence of an internal energy,
corresponding to the discontinuities of the potential energy X — —1|X — V f(X)|? (see formula (51)),
and which grows when particles aggregate. Kinetic energy can hence be transferred into internal energy
through perfectly inelastic shocks. An output of these considerations is that in our case, particles are not
only allowed to stick together; they can also separate.

Outline. In Section 2 we show how to derive MAG starting from a finite number of Brownian particles.
This is done in several steps, the main one being the I'-convergence towards the “effective” singular
functional (8) of the good rate functions associated with the large deviations of the solutions of a family
of SDEs (up to a change of time). This is stated in Theorem 9, which is our main result. Section 3 is
devoted to the proof of Theorem 9. The purpose of Section 4 is to show that in one space dimension, the
dissipative phenomena induced by this functional lead to sticky collisions.

Notation. We will work with N particles in R?, and hence in (R?)". Points of (R?)" will be denoted with
capital letters, mainly X, Y or Z. Curves with values in (R?)" will be denoted with calligraphic letters
X, Y or Z. The positions of X, Y and Z at time ¢ € R will be denoted by &}, J; and Z; respectively.

In order to avoid heavy notation, in most cases, the laws of the processes that we will consider will
be continuously parametrized. In these cases, we will use abuses of notation: for instance, we will say
that the family of laws (u,),~0 is tight whenever it is tight for sufficiently small values of . This is
equivalent to (uy,)nen being tight for all (n,) € (R )N decreasing to 0.

2. Derivation of the discrete model

2.1. The stochastic model of a lattice with Brownian motion. Take A = (ai, ..., ayn) € (R)" to be a
family of N > 1 points in R?. We assume each point of this lattice to be subject to Brownian motion for
times ¢ > 0. At time ¢, the position of point i is

a; +/eB!,

where (B');_1 .4 is a family of N independent normalized Brownian curves and & monitors the (common)

level of noise. As a consequence, at time ¢ > 0, the density of probability p. (¢, X) for the point cloud

(a1 ++/¢B/,....,ax +/eB")

to be observed at location X = (x, ..., xg) € (RHY, up to a permutation o € Gy of the labels, is easy

.....

to compute. We find

pb‘(ta X)

an(l)l )
E e p( ,
N' \ dN (TECNll_! ’

X — Aglz)
/—Nd Z Xp( ’
N' (7€6N

or, in short,
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where | - | denotes the euclidean norm in R¢ or (RY)N depending on the context, and where, for all
X =(x1,...,xy5) € RHY, we let

X% = Xg1), -« > Xo(N))-

This was the starting point of the discussion made in [Brenier 2016], using a double large deviation
principle.

In the present paper, we rather turn to a PDE viewpoint, where p, is the solution of the heat equation
in (RN,

9c 1 Xy = £ Apett, X) )
8[ ’ - 2 ,05 ) El
with, as initial condition, the delta measure located at A = (ay, ..., ay) € (RY)" and symmetrized with
respect to o € Sy, namely
1
pe0, X) =550 D Bac. (10)

’ O'EGN

In some sense, we have solved the heat equation in the space of “point clouds” (R¢)" /&, with initial
position A, defined up to a permutation o € Gy of the labelsi =1, ..., N.

2.2. “Surfing” the “heat wave”. After solving the heat equation (9)-(10), in the space of “clouds”
(RY)N /&y, we introduce the companion ODE in the space (RY)":

Xf ¢ €
dt :vs(t’Xt )’ v&‘(taX)=_§V10gp8(th)9 (11)
or, more explicitly
X — A% exp(—|X — A2/ (et
vg(t,X)ziZ“GN( ) exp(—| 17/ (2et))

2t Y seey EXP(—|X — A2/ (2et))

1 ( 2oesy A7 exp((X - A")/(St))>
=— X — ,
2oeey EXP(X - A%)/(e1))

> (12)
where if U and V are in (R)", then U - V denotes the inner product between U and V. This velocity is
chosen so that

0
ﬁ(t, X) +div(pe (1, X)ve (1, X)) =0,

i.e., for the density p, to be transported by the velocity field v.. We may solve this ODE for arbitrarily
chosen position X;, € (RY)N (up to reordering) and initial time 7y > 0.

Put another way, we consider the characteristics corresponding to the heat equation (9)—(10), interpreted
as a continuity equation, associated to our Brownian point cloud.

Remark 1. By doing that change of perspective, we just mimic the idea of quantum particles driven by
the “onde pilote”, as imagined by Louis de Broglie [1927; 1959] at the early stage of quantum mechanics.
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Indeed, in our case, the velocity v¥ = V¢? is the gradient of the scalar function ¢° := (—¢&/2) log p?,
and the pair (p%, ¢°) is easily seen to solve the system

dp® +div(p*Ve®) =0,

3¢8+l|v¢8|2=_fA_Vps (13)
t 2 2 /—IOE )

that is, the characteristics follow the trajectories of Newton’s law in a potential induced by p°®.
In the quantum case, something very similar can be found with the help of the Madelung transform
[1927]. Namely, if the complex function W* solves the Schrodinger equation

9, W + %Aqﬁ =0,

writing W = /p€e!?" /¢ for a pair (p°, ¢°) of real functions, then this pair is shown to formally solve the
very similar system
9 p° +div(p*Ve?) =0,
g2 A/p*f (14)
= E—\/F ,

and this observation was the starting point of de Broglie’s interpretation of quantum mechanics. In this

1
e\l

case, the potential in the right-hand side of the second equation is called the Bohm quantum potential.
However, the analysis of (14) is substantially more difficult than the one of (13), due to the possible
vanishing of the wave function W¢ during the evolution.

This analogy is not a coincidence. Indeed, it is known [von Renesse 2012] that the Schrodinger equation
in its Madelung formulation (14) is formally the Hamiltonian flow corresponding to the Lagrangian

e . 1 2 & 2
Lo V9) =5 [ 1Vl = |5V 108 | o,

in the geometry of optimal transport, while system (13), which admits solutions of the heat equations as
particular solutions, is rigorously the Hamiltonian flow corresponding to the Lagrangian

& . 1 2 & 2
heat(pvv(p)~:§ {|v(ﬂ| + EVIng }p,

in the geometry of optimal transport [Conforti 2019]. The latter Lagrangian appears naturally in the
theory of entropic optimal transport; see [Gentil et al. 2017; Gigli and Tamanini 2020].

2.3. Large deviations of the “heat wave”” ODE. Let us now add to the ODE of the previous subsection a
noise of the form

dx’" = v, (1, Xf’”)dtﬁ—\/?dwt, (15)

where 7 is a positive number, (W) is a standard Brownian motion in (R?)", and where the scaling
prefactor 1/4/t has been chosen to recover MAG at Section 2.6. That is, we include a second time-
dependent level of noise to the model: we perturb the characteristics that were already generated, through
the heat equation, by the Brownian motion of our original point cloud.
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Our main finding is that when n and ¢ are small and up to a change of time, the trajectories charged
by the solution of this SDE starting from P € (RH)N at time ty > 0 and which happen to be close to
0 € (RHN at time t| > ty are well-approximated by MAG.

The purpose of the rest of this section will be to make this rough statement precise. When we say that
some random trajectories are well-approximated by MAG, we mean that they are close in the uniform
topology to minimizers of the action (8), with large probability. Justifying this fact will require several steps
and intermediate functionals. As the times 7o and ¢1, as well as the endpoints P and Q, will be fixed in what
follows, we decided not to refer to them in the notation for the different functionals and laws that will appear.

Since for fixed ¢ > 0 and ¢ > 1y > 0, v, is a smooth velocity field, the existence of a strong solution
and pathwise uniqueness for (15) is standard once fixed a law for the initial position th)’" at some #y > 0.
Since we want to consider indistinguishable particles, a relevant choice of initial law consists in taking
X,f)’" = P? with probability 1/(N!), given some P € (RHN and o € Gy. For convenience, from now on,
we denote by {P?} the set { P° : 0 € Gy}. The law just described is nothing but the uniform law on {P?}.
Remark 2. Actually, at this stage, it would be possible to reintroduce distinguishability: Theorem 3,
Corollary 4, Proposition 7 and Theorem 9 below could easily be written for distinguishable particles,
that is, with constraints on the endpoints of the curves, and not on these endpoints up to reordering.
We decided to keep on working on clouds of indistinguishable particles in order to avoid crossings of
trajectories in Section 4.

The first step consists in using classical Freidlin—Wentzell theory [1998] (see also [Dembo and Zeitouni
1998]) in order to pass to the limit n — 0, while ¢ > 0 is kept fixed, in the sense of large deviations
(we omit the proof since it consists in adapting in a straightforward way [Dembo and Zeitouni 1998,
Theorem 5.6.3] to time-dependent entries and more general initial law for the SDE).

Theorem 3. Let us fix two positive times 0 <ty < t; and P € (RY)N. For fixed ¢ > 0 and as n — 0, the
family of laws (e, ) of the solution of (15) between times ty and t| and starting from the uniform law on
{ P°} satisfies the LDP on CO([to, 111; (RHN) with good rate function Lg defined for all X = (X;);c[19,1,1 bY

L0(x) = {% o [ —ve(t, XD xrdr if X € H' (to, n]; RDY) and X, € {P7},
+

00, else.

(16)

In the rest of the article, we will call these kind of functionals “actions”, instead of the usual terminology
“good rate function”.

An outcome of this result is that with large probability, when 7 is small, Xt'z’s is close to the position
at time ¢; of the solution of the ODE (11) starting from P, up to reordering. But now, we want to use
Theorem 3 in order to describe the behavior of the solutions of the SDE (15) when 7 is small, under the
large deviation assumption that its final position Xfl’" is far from this expected value.

For this, we take Q € (R?)V, and we assume that we observe Xfl’” to be close to Q, up to reordering.
To quantify this closeness, we consider a new small parameter 6 > 0, and we work with the laws (1 )
from Theorem 3, conditioned to the event {X,f’" € UG€6N B(Q°, 8)}, where for a given X € (RHN,
B(X, §) stands for the closed ball of center X and radius §. MAG will be obtained by studying the limit
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of these conditional laws when 1 — 0, then § — 0 and finally ¢ — 0. We refer to Remark 12 for a
discussion about the order in which we let the different parameters tend to O.
Concerning the limit  — 0, Theorem 3 implies the following.

Corollary 4. Let us fix , 8 > 0, and call £° the closed subset of C°([to, t11; (R))N) defined by

&= {X e Cto. 1l RHNy: x, e | ] B(Q°, 5)}.
O'GGN
The family of conditional laws ([Lgn = e (-t 55)),7>0 is tight. Moreover, its limit points for the topology
of narrow convergence as n — 0 only charge minimizers of the functional

L3y = {% o X—ve (1, X)Pxedeif X € H (lto, 1]; RDN), X € {P?) and X, € U,y e, B(Q7, ),
&

+o00, else. (17)
Proof. Let us first prove the tightness property. Let X be a curve in the interior of £2. As it satisfies an
LDP associated with a good rate function in a Polish space, by virtue of [Dembo and Zeitouni 1998,
Exercise 4.1.10], for fixed ¢ > 0, the family of laws (i, ,)y~0 is exponentially tight. Hence, there is a

compact K (we call K€ its complement in CO%[to, 111; (RY)N)) such that

lim sup 5 log pte n(K€) < —=L2(x) — 1.
n—0

Therefore, we find

lim sup 77 log g, (K©) = lim sup{n 10g e, , (K N %) — nlog e 5 (£%))
n—0 n—0

<limsupnlog e ,(K) —lim i(r)lfn log ,uw(cgj‘s)
n—0 n—
<L) —1+L0%x) < —1.
The tightness follows.

Now, let us consider u a limit point of (“g,n) as n — 0, and (n,) a sequence of positive numbers

8
£

then X is not in the support of w. First, for all n > 0, the support of ug,n is a subset of £%. As the latter

decreasing to 0, with “g,nn — u as n — +o0o. We will argue that whenever X" is not a minimizer of L

is closed, this is also the case for the support of . So let us take X € £% which is not a minimizer
of L2. In particular, L2(X) > infes LY. As LY is lower semicontinuous, there exists an open set U of
CO%([to, 11]; (RY)N) containing X such that inf; LY > infgs LY. Let us show that (U) = 0.
By the Portmanteau theorem, we have
.. §
nU) < Llinirgug,nn(U)-
By the definition of (ugyn), we have
M log 117, (U) = 1 10g e, (U NE®) =1 108 ey, (€°) < 1 108 ey, (U) — 12 108 ey, (E°).

The large deviation principle of Theorem 3 lets us estimate the lim sup of this quantity by

limsup 1, log 112 , (U) <'inf LY —inf LY.
£s U

n—+00
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To conclude that this quantity is negative, and therefore that /,Lg,nn (U) tends to 0 as n — 400, it suffices
to notice that infy, LY = infgs LY (for instance by the easy fact that the infimum of L? is continuous with
respect to §), and to use the definition of U. The result follows. (I

2.4. From the T'-convergence of the actions to the narrow convergence of the laws. In the previous

subsection, we justified why the conditional laws (“g,n) from Corollary 4 are well-described by the

action L? defined by formula (17) as  — 0: in this limit, these laws mainly charge small neighborhoods

of minimizers of that action. Now, we want to argue that in order to study these laws when not only 7 is

small, but also § and &, we have to study the action L? in that regime, in the sense of I'-convergence.
This assertion relies on the two following lemmas:

Lemma 5. Let (2, d) be a metric space, and (L,)neN be a sequence of lower semicontinuous functionals
from Q to Ry U {400} having compact sublevels, uniformly in n € N. Assume that (L,) has a I'-limit L.
Assume furthermore that L is not uniformly equal to +oo. Finally, consider (i,) € P(Q)N a sequence of
Borel probability measures on 2, such that, for all n, w, only charges minimizers of L,. Then, (it,) is

tight, and any of its limit points in the narrow topology only charges minimizers of L.

Lemma 6. The family of actions (Lg) defined in (17) have compact sublevels in CO[to, 111; (RHN),
uniformly in ¢, § > 0.

Using these lemmas, we see that if we manage to identify a I"-limit L for Lg as €, — 0, then in this
limit, any family (,ug) of limits of (Mg,n) as n — 0 will mainly charge small neighborhoods of minimizers
of the limiting L. Before doing so in the next subsection, let us prove our two lemmas.

Proof of Lemma 5. Let x be a minimizer of £, and (x,) be an associated recovery sequence, that is,
X, = x asn — +o00, and limsup,,_, , ., £,(x,) < L(x) =inf L. Up to forgetting the first terms, we can
assume that £, (x,) is finite for all n € N. Now, call M := sup,, .y £, (x,). By assumption, the set

K:=|JlzeQ: Lu(z) < M)
neN
is compact, and by definition of M it contains all the minimizers of all the functionals £,, n € N.
Therefore, for all n € N, u,(K) = 1, and the tightness follows.

Let  be a limit point of (w,,) for the topology of narrow convergence. Up to considering a subsequence,
we assume that i, — p. Let x be in the support of w. It is easy to see that there exists a sequence (x;,)
such that x, — x as n — +o00, and, for all n € N, x, is in the support of w,. But then by assumption,
for all n, x, is a minimizer of £,, and therefore, by standard considerations about I"-convergence, x is a
minimizer of L. (]

Proof of Lemma 6. For all ¢, § > 0, the action Lg coincides with Lg (defined in (16)) inside of the closed set
&% and is +o0 outside of this closed set. Therefore, we just need to prove that L? has compact sublevels,
uniformly in ¢ > 0. Actually, precompacity suffices by lower semicontinuity of Lg. To do so, we will
use the following bound, which holds as a consequence of (12) for all ¢ > 0, t € [ty, #;] and X € (RN
|Al+|X]

t, X)| <
[ve (2, X)| < 2

(18)
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We will prove that, for all M > 0, there exists M’ > 0 (uniform in &) such that, for all ¢ > 0 and
X € CO1, 11; (RY)N), whenever L2(X) < M, we have

1 " 2 /

= | X | de < M.

2/
This is enough to conclude since it is well-known that the set H Y(to, 111; (RHN) is compactly embedded
in C°([10, 11]; (RH)M).

So let us consider M, ¢ > 0, and a curve X such that LS(X ) < M. Note that in particular, X;, € {P?}.

We have, for all ¢ € [tg, #1],

l/tlj(SIst:/t |'j(s_vs(s’ Xs) +ve (s, Xs)|2 ds
2 o 1) 2

151 . t
E/ |XS_UE(S7XS)|2dS+f |v$(s7 Xs)lzds
to 0]

1 N . 1 t
<o [l P s ds o [ Al ds
tO 1) 4t0 0]

2

+ — ds

fo 212 212
_ 2
_2M N 1 —1o { [Al

t S
—+|P|2+/ | X, |2d‘cds},
to tg 2 toJ 1y !

_ 2 t
_2M (= r)lAl 1/
1o

N
X + / X, dt
1o

where we used (18) to get the third line. We deduce our claim from the Gronwall lemma. U

2.5. The convergence results. As already explained, understanding the behavior of families (1£8) of limit
points of (“g,n) as n — 0 when ¢ and § are small amounts to understanding the behavior of the family
of actions (Lg) in the I"'-convergence sense. This is what we propose to do now. More specifically, we
will see that (L?) has a ['-limit, when first § — 0, and then & — 0. Doing so, we ensure that limit points
of the family (112) in the relevant asymptotic only charge minimizers of the corresponding actions; see
Corollary 11 below. We discuss the question of swapping these limits in Remark 12.

Thanks to the smoothness of v®, the first I'-limit, as § — 0, is very simple and we omit the proof.

Proposition 7. Let ¢ > 0. As § tends to zero, the family of actions (Lg) I"-converges to

. (X):{% o X —ve(t, XD x 1 drif X € H' (1o, nl; RDN), X, € {P7} and X,, € {Q°),
¢ +00, else.

The second I'-convergence, as € — 0, is more intricate and can be seen as the main result of this paper,
because it involves the singular limit of the vector fields (v®) as ¢ — 0. Before stating it, we need to
introduce a few objects.

Define the following smooth functions, which are convex in X:

1 X-A°
foralle >0, 1>0, X e R,  fu(t, X):=stlog| — > exp . (19)
N! s te
N



MONGE-AMPERE GRAVITATION AS A I'-LIMIT OF GOOD RATE FUNCTIONS 2015

It has the property that, forall e > 0, r > 0, and X € ([R{d R
X—-Vf(t, X
ve(t, X) = +

As a consequence, we can rewrite L, for all ¢ > 0 as

LS(X):{% o | —(X=V [0, X)) /@) Pxrdr if XeH (10, 11]: (R)N), Xy, € {P7) and X;, €{Q),
+00 else.

When ¢ tends to zero, by virtue of the so-called Laplace’s principle, we have the pointwise convergence
lim fe(t, X) = max X - A° =: f(X). (20)
e—0 ceGy

Notice that f is linked to the function F defined in (3) by the formula,

AP+ X
for all X e (RHY, f(X)=%+NF(X). 21
The function f no longer depends on the time variable, and it is a convex function with finite values.
As a consequence, for each X € (RN, the subdifferential 9 f(X) of f at X is nonempty. We will consider

the extended gradient V f(X) of f at X defined as:

Definition 8 (extended gradient). We define the extended gradient of a real-valued convex function A
at X, denoted by Vh(X), to be the element of 34 (X) with minimal Euclidean norm.

We are now ready to state our result concerning the limit ¢ — 0.

Theorem 9. As ¢ tends to 0, the family of actions (L¢)¢~o ["-converges to

Lm_{% A (XY= (X))@ Pxedr if X € H' (Ito. 1] (RDY), Xy € (P} and X, € {Q°),
T +o0 else

(22)
for the topology of uniform convergence of C%([to, t1]; (RHM).

Remark 10. It is relevant to wonder what exactly in the convergence f. — f implies Theorem 9. It is not
so simple to answer due to the dependence in ¢ of f, and because the proof involves several manipulations
of formula (22). However, the main step of the proof is Lemma 15 below. Now, at least in the autonomous
case, several works that are posterior to the first version of the present paper study results similar to
Lemma 15 in greater generality, namely in Hilbert spaces [Ambrosio et al. 2021] or in measured metric
spaces [Monsaingeon et al. 2023]. In [Ambrosio et al. 2021], the good notion of convergence for f, — f
is Mosco convergence. We give more details on this in Remark 16.

As a consequence of Lemmas 5 and 6, this theorem clearly implies the following.

Corollary 11. Consider the family of laws (Mg,n) defined in Corollary 4, and three sequences (0;)neNs
(8m)meN and (€,) pen decreasing to 0. Then, there exist subsequences (1,)neNs, (8,,)meN and (8;))[76’\]
such that the triple limit
lim  lim_ lim
p—>+00 m—+00 n—+o0 P

exists in the topology of narrow convergence and only charge minimizers of L as defined by (22).
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In particular, if L admits a unique minimizer X, the whole family converges:

lim lim lim u}, =8x.
e—>0 §—0 n—0 N

Let us now comment on the order in which these limits are taken.

Remark 12. Up to potentially considering subsequences, we are studying the behavior of the conditioned
laws (/,Lgn) in the limit lim,_, ¢ lims_,¢ lim,_,¢, and one could wonder whether these limits could be
swapped. We recall that ¢ stands for the level of noise of the original point cloud, that n stands for the
level of perturbation of the companion ODE, and that § is the precision of the observation at the final time.

» Swapping lim,_,o and lim;_, is easy: it amounts to studying the dependence of the limiting action (22)
when Q varies. Essentially, this swap would be a consequence of the fact that v® is bounded on compact
sets, uniformly in time and e.

» Swapping lims_,¢ and lim,,_,¢ would be more delicate, but doable as well. We would first need to prove
that the family (/’Lg,n) from Corollary 4 converges when § — 0, with fixed ¢ and 5, as classically done
in the theory of bridges of processes, and then write a large deviation principle for these bridges in place
of Theorem 3.

« Finally, not taking into consideration the limit in § because of the two previous points, the question
of how to swap lim,_, o with lim,,_, relates to the question of building solutions to SDEs with singular
coefficients, and lies beyond the scope of this article. A related question that we also do not want to
address is the question of quantifying how small 1 needs to be with respect to ¢ to be able to take a
simultaneous limit in ¢ and 5. To answer it, we would need to study the dependence in ¢ of the rates
of convergence in the large deviation principle, which is probably a very delicate question, once again
because of the singularities of v® appearing as ¢ — 0.

We will prove Theorem 9 in Section 3 below, but before doing so, let us show that up to changing time,
we recover MAG. Notice L has compact sublevels as a consequence of the I'-convergence and Lemma 6.
Hence, the existence of global minimizers for L (and hence for all the forthcoming functionals) follows
from the direct method of calculus of variations.

2.6. A change of time leading to Monge—Ampére gravitation. Through the change of variable
= CXP(ZQ), Zy = Xexp(zg), 6y = %log ty, 01 = %log 1,

we observe that, for all X € CO([1, 11]; (RH)Y), L(X) = 3A(Z2), with

a2y |2 1B = o=V @)PdD it Z € HY (60,011 (RD™), 24, € (P7) and Zy, € (Q°),
400 else.

(Recall the definition (20) of f.)
It turns out to be equivalent to the following one (in which we recognize (8)):
W 3120245120V £ (20)P}d0 if Z € H' ([60.611: RV, 2y, € {P7} and Zy, €{Q°},

+00 else.

A/(Z)={
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To see this, it suffices to expand the square and to remark that the mixed product is an exact time derivative,
so that its integral only involves the endpoints P and Q. This is done in a slightly different context in the
proof of Lemma 14 below.

2.7. Application of the least action principle. We observe that the points Z where f is differentiable are
those for which the maximum in the definition (20) of f is reached by a unique permutation oq so that
V f(Z) is nothing but A°rt. For such points Z, we get

NZ=Vf@)P =31Z A" = -NF(2)
(by definition (3) of F), while, on the set A" of nondifferentiability of f, we rather have
31Z=Vf(@2)P < -NF(2);

see for instance Proposition 27 below in the case of dimension 1. So the action we have obtained in the
previous section, namely A’, bounds from below

W31Z0> = NF(29)}d0  if Z € H' (6. 01]: (RD)N), 25, € (P7} and Zp, € (Q7),

AT (Z2) =
+00 else.

This second action, already announced in (7), is definitely strictly larger than the first one for those curves
6 — Zy which take values in N (where f and F are not differentiable) on a set of times 0 € [0y, 6] with
positive Lebesgue measure. So the least action principle may provide different optimal curves, depending
on the action we choose. However, if a curve is optimal for A’ and almost surely takes value outside of N,
then it must also be optimal for A™. Clearly, it is much easier to get the optimality equation for such a
curve, by working with A rather than with A’. By varying action A™, we get (6) as optimality equation.
Therefore, the optimal curves of our functional A’ taking value in N for a negligible set of times solve (4)
(in a distributional sense), which is the MAG discrete model announced in the Introduction.

Of course, these equations have to be suitably modified for those curves which are optimal for the
action A’ but not for A™ because they take values in N for a nonnegligible amount of time. At this stage,
we do not know how to do it. However, at least in the one-dimensional case d = 1, such modifications
are tractable and correspond to sticky collisions as x; () = x; (¢) occurs for different “particles” of labels
i # j and during intervals of times of strictly positive Lebesgue measure; see Section 4.

3. Proof of the I'-convergence
The purpose of this section is to prove Theorem 9.

3.1. The proof as a consequence of three lemmas. As we will see, Theorem 9 will be a consequence

of three lemmas that we state below. Lemmas 14 and 15 both involve a family of smooth functions

1

(8e)e=0 on [By, 01] x R? for some 6y < 6 and p € N, pointwise converging to a L, .

function g. On these
functions, we will assume the following:

Assumptions 13. (H1) For all ¢ > 0 and 6 € [0y, 6], g-(6,0) = 0.
(H2) For all ¢ > 0 and 6 € [0y, 61], g-(0, -) is convex. Therefore, g(0, - ) is convex as well.
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(H3) The maps Vg, are uniformly bounded, that is,

L:=sup sup sup |[Vg.(0,Y)| <+oo. (23)
e>00¢€l6p,01] Y ERP

Therefore, we also have
sup sup |[Vg(@,Y)| <L.
0€l6p,01] Y eRP

(H4) The distributional derivative dpg is L>([0p, 011; L. (R?)N), and, for all Y € H'([6p, 611; (RH)N),

loc

the map 0 +— g(0, V) is also H', with, for almost all 8 € [6p, 6],

d — .
3080 Vo) = 38(8, Vo) +Vg(0, V) - Vp. (24)
(H5) The maps dg Vg, are uniformly bounded, that is,

M :=sup sup sup |0sVg:(0,Y)| < +oo0. (25)
e>06€[6p,01] YeRP

In order to keep the proofs simple, we did not try to optimize these assumptions for Lemmas 14 and 15,
which are probably true in a far more general context (see Remark 16 in the case of Lemma 15). However,
as we will see in the proof of Theorem 9, it suffices to check these assumptions for the family (fz):~0
after suitable change of temporal and spatial scale. This is done in Lemma 17.

Lemma 14. Let us consider 6y < 01 € R, n € C*([0y, 01]1; RY) and a family (g¢)e~0 of smooth functions
from [0y, 01] x R? to R pointwise converging to a function g, which satisfy (H1), (H3), (H4) and (HS)
from Assumptions 13. If a family of curves (V)g~o in H'([6o, 611; RP) uniformly converges to a curve
Y e H'([60, 61]; RP), then

o o _
Vi - Vg0, Yyn(©) do 5> Yo - Vg0, Vp)n(0)do.

6o Bo
Lemma 15. Let us consider 6y < 01 € R, n € C*([0y, 01]; RY) and a family (g¢)e~0 of smooth functions
from [0y, 01] x R? to R pointwise converging to a function g, and satisfying (H2), (H3)and (HS) from
Assumptions 13. Let us fix R, S € RP and define for ¢ > 0 and Y € C°([6p, 61]; RP)
K. e {% 1T + Ve (6. V)P0 (0)do  if Y € H'([61,611; RP), Vg, = R and Vs, = S.

+00 else,

KO e {% o 1Va2+ V2@, Y)Phn(©) do if ¥ € H' (161, 611: R”), Yoy = R and Yy, =S,
+

00, else.

Then (K;)e~o I'-converges to K for the topology of uniform convergence of CO%([6, 6:]1; RP).

Remark 16. This lemma is the keystone of the proof, and one may wonder how it can be generalized and
what is really necessary among our assumptions. In [Ambrosio et al. 2021], we show that at least when (g;)
and g have no dependence on 6 and n = 1, the result holds true, even in Hilbert spaces, whenever (g.) is
a family of proper lower semicontinuous uniformly A-convex functions Mosco converging towards g,
plus some uniform Lipschitz conditions at the extreme points.



MONGE-AMPERE GRAVITATION AS A I'-LIMIT OF GOOD RATE FUNCTIONS 2019

Lemma 17. With the notation of Theorem 9, let us define 6y :=logty/2, 0 :=logt, /2, p=dN, and for
6 €1[60,61], & >0and Y € (RN,
f(exp(0)Y)

Je(exp(20), exp(0)Y) and g0,Y) = ——"~. (26)
exp(20) exp(26)

Then (g¢):~0 converges pointwise to g, and satisfies (H1), (H2), (H3), (H4) and (H5) from Assumptions 13.

8:(0,Y) =

In the next subsections, we will prove these three lemmas one by one. The most involved one is
undoubtedly Lemma 15, which can be seen as the main step in the proof of Theorem 9. Let us start by
proving Theorem 9 using Lemmas 14, 15 and 17.

Proof of Theorem 9. In this proof, the notation X = X; will stand for a generic curve from [fg, #;]
to (RY)N. Associated with X', we define by Y = Yy the curve from [6p, 61] to (RN, where 6 := logty/2,
01 :=logt1/2, and, for all 6 € [0y, 01], Vo := Xexp29)/ €xp(0). Note that & is H'! if and only if Y
is H'. If (X%),-¢ is a family of curves from [fy, #;] to (R?)", we define in the same way the family of
corresponding curves ()°).~o from [6p, 0] to (RHN,

A quick computation shows that, for all X € H L([0o, 011; (RHN), considering n(0) := exp(26) and

(g¢)e>0, & as defined in Lemma 17, we have

Nl X =Vt A)|Pd o |
L8<X>=1/ g - T m VI ) —=1/ 3 + Ve @, Vo) n(6) do @7)
2 /4 2t t 4y,
1 o ’ 5 1 o
=3 | USP 198030 PIn@ a0+ 5 | 30 Vee®, yn©) a0 (28)
0 0
and
nlx =V o . _
L(X>=1/ g Z V(&) —=1/ 3 + Vg0, Vo) 0 (@) do
2 f0 2t 1 4 6o
9' . — 61 . —
= 9 (1362 + 26, V) P1(6) do + 3 30920, 300 do. (29)
0 0

(Note that due to Lemma 17, g is convex with respect to the space variable, and so Vg is well-defined.)

Proof of the ["-liminf: Let X* —> & for the topology of uniform convergence. Of course, we also
have Y* —> V. Without loss of generality, we can suppose

lim i(I)lng(Xe) < +o00.
£—>

Indeed, if it is not the case, there is nothing to prove. Let us take (¢,),en to be a sequence tending to 0
along which the liminf is achieved.
As Vg.(6,7Y) is bounded uniformly in &, 0, Y (this is (H3)), we easily deduce with (27)

01
1imsup/ V5712 d6 < +o0.

n—+00 J
In particular, by the lower semicontinuity of this H' seminorm with respect to uniform convergence, ) is
in H'([0y, 611; (RH)N). Applying Lemma 14, thanks to Lemma 17, we have
61 . 01 . —_—
Vi' Ve, 0, Y5 m(@)d0 w=> | Vo-Vg(@, Vo)n(®)do. (30)

—+00
6 " b
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On the other hand, for n sufficiently large, L., (X*") < +00. So the endpoints of X* belong to a finite
set, and because of the convergence X'*» — X, for even larger n the endpoints of X* are independent of n.
In other terms, X;;" = P° and Xé" = Q°! with oy, o independent of n. Hence, for such n, Y® satisfies
the endpoint constraint for K,, with R := P/ /tp and S := Q°'//f;. Hence, applying Lemma 15
thanks to Lemma 17, we have

01
1 : < .
3 [ 361 +1V8®. %)IPIn(9) d6 = K (V) < lim inf K., (V")
6o n——+00
. . 1 o 1En 12 Eny12
=liminf > [ {15 +1Ve., 0. ;) "In@)do. (1)
n—+4o00 2 6o

The result follows easily by gathering (28), (30), (31) and (29).

Proof of the [-limsup: Let X € C([to, t;]; (R?)N). Without loss of generality, we can suppose that
X € H'([tg, 1]; (RY)N) and that it satisfies the endpoint constraint for L. In particular, ) belongs to
H'([60, 611; (RY)N) and satisfies the endpoint constraint for K with R := X, //fo and S := X,/ /1.
Lemmas 15 and 17 let us find a family ()*).~¢ converging to the corresponding ) such that

limsup K (V*) < K (). (32)

e—>0

In particular }* is in H' for sufficiently small &, and by Lemmas 14 and 17,

91 . 01 . —
Vi - Vge(0, Yyn(©) db =5> Vo - Vg8, Yo)n(6)do. (33)
6o 0o
The result follows easily from (28), (32), (33) and (29), by noticing, that because of (32), )* satisfies the
endpoint constraint for K.. Hence, for such ¢, X satisfies the endpoint constraint for L.. U

3.2. Proof of Lemma 14. The proof of Lemma 14 just consists in integrating by parts and using the
convergence properties of (g:)e0-

Proof of Lemma 14. Integration by parts: First, notice that as soon as ) € H Y160, 6,]; R? ) and ¢ > 0,
then @ — g.(6, V) and 0 — g(0, )y) are also in H', with, for almost every 6,

d

@85(9, Vo) = 398:(0, Vo) + Vge(6,Vs) - Vo and %8(9, Vo) = 3986, Vo) + Vg0, Vo) - V.

It is clear in the case of g, because g, is smooth, and it is the assumption (H4) in the case of g. As a
consequence, by an integration by parts, it suffices to prove that whenever ()°)..( converges to ) as
& — 0 for the topology of uniform convergence,

01 01
26 (61, 2060 — 2060, V5,1 (60) — /9 4e(6. V) (6) d6 — /9 5.0, Y5)n(0) do

61 61
—> (61, Vo n(61) — 260, Yay)n(60) — /9 g(6, Yo)n'(6) do — /9 362(6, Yo)n(6) d6.
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Convergence term by term: The convergence

8e (61, Y5 )n (1) — 8= (60, Vg )n(60) s=5> 801, Yo, )n(01) — (00, Ve )1(60)

is an easy consequence of the pointwise convergence and of the uniform Lipschitz bound (H3).
For the same reason, we have, for all 6 € [0y, 611, g:(0, ;) —5> -0 g(6, Vy). But on the other hand,
because of (H1) and (H3), g. is locally bounded, uniformly in . Hence,

91 91
/ 4 (0. )1/ (0)d6 —o> f $(6. Vo) (6) do

o 0o
is a consequence of the dominated convergence theorem.

Because of (H1) and (HS), for all 8, (dyg:(8, - ))e~0 is compact for the topology of local uniform
convergence. But its only possible limit point is the distributional derivative dgg. As a consequence,
(098¢ )e=0 converges pointwise to dg g, and because of the uniform bound (HS), for all 0, 958:(0, V) —5>
0980, Vy). Because of (H1) and (HS5), dyg. is locally bounded, uniformly in &, and so

0

01
/93985(9 Vo )n(0) do —5> / d9g(0, Yo)n(0) do

o 0o

e—>0

is also a consequence of the dominated convergence theorem. (]

3.3. Proof of Lemma 15. Before entering the proof of Lemma 15, we need to state a few standard results
concerning the extended gradient V as defined in Definition 8, and its links with the so-called resolvent
map. These tools could even be set in the infinite-dimensional setting, that is, in Hilbert spaces [Stromberg
1996], or in metric spaces [Ambrosio et al. 2005].

The following proposition is a lower semicontinuity property of the slope with respect to both conver-
gence of the function and of the evaluation point.

Proposition 18. Consider h : R? — R a convex function with finite values. Let (h:)¢~q be a family of

convex functions on RP pointwise converging to h, and let (X?).~¢ be a family of points in RP converging
to X. Then
IVA(X)| < liminf VA, (X?)|.
e—0

Proof. As all these functions are convex and 4 has finite values, standard arguments show that the
convergence of h, — h is also locally uniform. First of all, if
ligri)igf |Vhe(X)| = +o0,
there is nothing to prove. Else, up to considering a subsequence, there exists D € R” such that
lim Vhe(X®)=D
But sending ¢ — 0 in the inequality,
forall Y e R?,  he(Y) > h(X®) 4+ (Vh(X?),Y — X¢),

and using the local uniformity of the convergence, we see that D € dh(X) (that is, the subdifferential is
upper semicontinuous). So |D| > |VA(X)|, and the result follows. U
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For t > 0 and X € R?, define the resolvent operator by

. Y — X|?
Jrp(X) :=argmin h(Y) + ———
YeRr 27
Once again, the following proposition is standard. It is an application in the very simple case of convex
functions in finite dimension of the so-called maximal monotone operators theory in Hilbert spaces,
for which we refer for instance to [Brézis 1973] (see in particular Section 2.4 for the properties of the
resolvent in a general setting).

Proposition 19. (1) We have for all X € R? and T > 0,

X_Jt,h(X)'
T

IVh(Jep (X)) < ‘ <|VR(X)I. (34)

(2) If h is differentiable at J; ,(X) for some X € RP, then the following first-order condition holds:

X —J (X
%” = Vh(Je (X))

(3) If (he)e=o is a family of convex functions on RP pointwise converging to h, then, for all T > 0
and X € R?,

Ten(X) —=5> Jen(X). (35)

Proof. By [Brézis 1973, Lemma 2.1], we have

X —Jep(X
%”‘() € Oh(Jrp(X)). (36)
The first inequality in (34) and the second point of the statement follow.

To get the second inequality in (34), apply the monotone inequality of [Brézis 1973, Definition 2.1]
to the maximal monotone operator 9% (see [Brézis 1973, Example 2.1.4]), with x; = X, x2 = J; 5 (X),

y1 = Vh(X) € dh(X) and (X — Jrn(X))/t € 0h(J; 1 (X)), thanks to (36). We find

_ X —J. (X
<Vh<X> X0 Jt,h<X>> > 0,
which can be rewritten as
X—T 2P [X=T0(X) —
‘ r,h( ) S< r,h( ),Vh(X)>.
T T

Therefore, the result follows from the Cauchy—Schwarz inequality.
Let us now focus on the third point. Let us fix T > 0 and X € R”, and set,

Y —X|? Y —X|?
foralle >0, Y €R?,  fo(V):=he(¥) + === and f(¥):=h(¥)+ 5.
T

The family (f;).~0 converges pointwise to f, but by convexity and finiteness of the limit, as before, this
convergence is also locally uniform. As a consequence, the only thing to prove is that for sufficiently small
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go > 0, the set {J; 5, (X) : 0 < & < ¢gp} is bounded. Indeed, if it is the case, by local uniform convergence,
any limit point Z of J; ;, (X) as € tends to 0 would satisty

f(2) =limsup f(Jep, (X)) = im fe (Jo5 (X)) = f (Je.1 (X)),

£—0
so that, by the definition of J; 5(X), Z = J; 4(X), which lets us conclude.
Call B the open ball of center J; ,(X) and radius 1. We have by the strict convexity of f and minimality
of J; 4(X)
fUrn(X)) < Ylg)fB f ),
and this property is open for the topology of local uniform convergence. Hence, we can find g sufficiently
small so that for all ¢ < g

Je(Jen(X)) < YienafB fe(Y).
Then, if ¥ ¢ B, we call Y the projection of ¥ on 9B and A := 1/|Y — J; 5,(X)| < 1, so that Y =
(1 —=A)Jrp(X)+AY. Assoon as € < &g, fe(¥Y) > fe(Jrn(X)). By using the convexity inequality
fe (V) < (1= 1) fe(Jen (X)) + 1 fe(Y),
we find f:(Y) > f:(Jrn(X)). As a consequence, {J; 5, (X) :0 <& < ¢&p} C B and the result follows. [
We are now ready for the proof of Lemma 15.

Proof of Lemma 15. Proof of the I"-lim inf: It is straightforward using Fatou’s lemma, Proposition 18 and

the lower semicontinuity of Y > |, 9?)1 |Vs|? dé with respect to the topology of uniform convergence.
Proof of the [-limsup: Let us consider a curve Y € H'([6y, 6;]; R?) with Yo, = R and Yy, = S (else

there is nothing to prove). For all ¢ > 0 and 7 > 0, we define

V210 Jrg6,)Va)s

and correspondingly
V' 0 Jr g0, 