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A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE
IN THE NONLINEAR SCHRÖDINGER EQUATION

DAVID CHIRON AND ELIOT PACHERIE

For the nonlinear Schrödinger equation in dimension 2, the existence of a global minimizer of the energy
at fixed momentum has been established by Bethuel, Gravejat and Saut (2009) (see also work of Chiron
and Maris, (2017)). This minimizer is a traveling wave for the nonlinear Schrödinger equation. For large
momenta, the propagation speed is small and the minimizer behaves like two well-separated vortices. In
that limit, we show the uniqueness of this minimizer, up to the invariances of the problem, hence proving
the orbital stability of this traveling wave. This work is a follow up to two previous papers, where we
constructed and studied a particular traveling wave of the equation. We show a uniqueness result on this
traveling wave in a class of functions that contains in particular all possible minimizers of the energy.

1. Introduction and statement of the results

We consider the nonlinear Schrödinger equation

i∂t9 +19 − (|9|
2
− 1)9 = 0 (NLS)

in dimension 2 for 9 : Rt × R2
x → C, also called the Gross–Pitaevskii equation without potential. The

nonlinear Schrödinger equation is a physical model for Bose–Einstein condensation [1; 23; 37; 42],
superfluidity [40] and nonlinear optics [30]. The condition at infinity for (NLS) will be

|9| → 1 as |x | → +∞.

The (NLS) equation is associated with the Ginzburg–Landau energy

E(v) :=
1
2

∫
R2

|∇v|2 +
1
4

∫
R2
(1 − |v|2)2,

which is formally conserved by the (NLS) flow. We denote by E the set of functions with finite energy,
that is,

E := {u ∈ H 1
loc(R

2,C) : E(u) <+∞}.

Remark 1.1. The Cauchy problem for (NLS) is globally well-posed in the energy space; see [20; 21; 22].

Besides the energy, the momentum is another quantity formally conserved by the (NLS) flow and is asso-
ciated with the invariance by translation of (NLS). Formally, the momentum of u is 1

2

∫
R2 Re(i∇uū) ∈ R2,

but its precise definition requires some care in the energy space due to the condition at infinity (see [34]
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in dimension larger than 2 and [13] in dimension 2). If u ∈ 1 + C∞
c (R

2) for instance, or if u is a traveling
wave tending to 1 at infinity, then the expression of the momentum reduces to

P⃗(u)= (P1(u), P2(u))=
1
2

∫
R2

Re(i∇u(ū − 1)).

In addition to the translation invariance, the (NLS) equation is also phase-shift-invariant, that is, invariant
by multiplication by a complex of modulus 1, and rotation-invariant.

1A. Traveling waves for (NLS). Following the works in the physical literature of Jones and Roberts [28;
29], there has been a large number of mathematical works on the question of existence and properties of
traveling wave solutions in the (NLS) equation, which are solutions of

0 = (TWc)(u) := −ic∂x2u −1u − (1 − |u|
2)u

for some c > 0, corresponding to particular solutions of (NLS) of the form 9(t, x)= u(x1, x2 + ct) (due
to the rotational invariance, we may always assume that the traveling wave moves along the direction −e⃗2).
We refer to [9] for an overview on these problems in several dimensions. A natural approach is to look at
the minimizing problem for p> 0

Emin(p) := inf
u∈E

{E(u) : P2(u)= p}.

It was shown by Bethuel, Gravejat and Saut that there exists a minimizer to this problem.

Theorem 1.2 [10]. For any p > 0, there exists a nonconstant function up ∈ E and c(up) > 0 such that
P2(up)= p, up is a solution to (TWc(up))(up)= 0 and

E(up)= Emin(p).

Furthermore, any minimizer for Emin(p) is, up to a translation in x1, even in x1.

The strategy is to look at the corresponding minimization problem on larger and larger tori (this avoids
the problems with the definition of the momentum), and then pass to the limit. For the minimizing
problem Emin(p), the compactness of minimizing sequences has been shown later on in [13] for the
natural semidistance on E

D0(u, v) := ∥∇u − ∇v∥L2(R2) + ∥|u| − |v|∥L2(R2).

Theorem 1.3 [13]. For any p > 0 and any minimizing sequence (un)n∈N for Emin(p), there exists a
subsequence (un j ) j∈N, a sequence of translations (yj ) j∈N and a nonconstant function up ∈ E such that
D0(un j , up)→ 0, P2(un j )→ P2(up) = p and E(un j )→ E(up) = Emin(p) as j → +∞. In particular,
there exists c(up) > 0 such that P2(up)= p, up is a solution to (TWc(up))(up)= 0 and

E(up)= Emin(p).

Furthermore, the set Sp := {v ∈ E : P2(v)= p and E(v)= Emin(p)} of minimizers for Emin(p) is orbitally
stable for the semidistance D0.
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An open and difficult question is to show, up to the invariances of the problem, the uniqueness of the
energy minimizer at fixed momentum. In other words, the problem is to determine if Sp consists of a
single orbit under phase shift and space translation; that is, do we have, for some minimizer Up,

Sp = {Up( · − X)eiγ
: γ ∈ R, X ∈ R2

}?

The main consequence of our work is to solve this open problem of uniqueness for large momentum.

Theorem 1.4. There exists p0 > 0 such that, for any p> p0, if u, v ∈ E with P2(u)= P2(v)= p satisfy

E(u)= E(v)= Emin(p),

then, there exist X ∈ R2 and γ ∈ R such that

u = v( · − X)eiγ .

In fact, we will be able to show slightly stronger results than Theorem 1.4; see Theorem 1.11 below.
Even though we focus on the Ginzburg–Landau nonlinearity, it is plausible that our results hold true

(still for large momentum) for more general nonlinearities, provided vortices exist. For the Ginzburg–
Landau (cubic) nonlinearity, it is also possible that uniqueness of minimizers holds true for Emin(p) for
any p> 0. However, the numerical results given in [16] suggest that this may no longer be the case for
more general nonlinearities.

In the analysis of the minimization problem in [10] (and also [13]), the following properties of Emin

play a key role.

Proposition 1.5 [10]. The function Emin :R+ →R is concave, nondecreasing and
√

2-Lipschitz continuous.
In addition, there exists K ⩾ 0 such that, for any p⩾ 1, we have

Emin(p)⩽ 2π ln p+ K . (1-1)

1B. A smooth branch of traveling waves for large momentum. There have been several ways of
constructing traveling waves of the (NLS) equation, with different approaches. For instance, we may use
variational methods, such as a mountain-pass argument in [3; 5], or by minimizing the energy at fixed
kinetic energy [10; 13]. Also, we have constructed in [14] a traveling wave by perturbative methods,
taking for ansatz a pair of vortices, by following the Lyapunov–Schmidt reduction method as initiated
in [39]. Vortices are stationary solutions of (NLS) of degrees n ∈ Z∗ (see [12; 23; 26; 37; 45]):

Vn(x)= ρn(r)einθ ,

where x = reiθ, solving {
1Vn − (|Vn|

2
− 1)Vn = 0,

|Vn| → 1 as |x | → ∞.

In the previous paper [14], we constructed solutions of (TWc) for small values of c > 0 as a perturbation
of two well-separated vortices (the distance between their centers is large when c is small). We have
shown the following result.
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Theorem 1.6 [14, Theorem 1.1; 15, Proposition 1.2]. There exists c0 > 0 a small constant such that, for
any 0< c ⩽ c0, there exists a solution of (TWc) of the form

Qc = V1( · − dce⃗1)V−1( · + dce⃗1)+0c,

where dc = (1 + oc→0(1))/c is a C1 function of c. This solution has finite energy; that is, Qc ∈ E , and
Qc → 1 at infinity.

Furthermore, for all 2< p ⩽ +∞, there exists c0(p) > 0 such that, if 0< c ⩽ c0(p), for the norm

∥h∥p := ∥h∥L p(R2) + ∥∇h∥L p−1(R2)

and the space X p := { f ∈ L p(R2) : ∇ f ∈ L p−1(R2)}, one has

∥0c∥p = oc→0(1).
In addition,

c 7→ Qc − 1 ∈ C1(]0, c0(p)[, X p),

with the estimate∥∥∥∥∂c Qc +

(
1 + oc→0(1)

c2

)
∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

∥∥∥∥
p
= oc→0

(
1
c2

)
.

Finally, we have
d
dc
(P2(Qc))=

−2π + oc→0(1)
c2 < 0;

hence the C1 mapping
P : ]0, c0] → R, c 7→ P2(Qc),

is a strictly decreasing diffeomorphism from ]0, c0] onto [P2(Qc0),+∞[.

Remark 1.7. With the same kind of approach, [33] also provides an existence result of traveling waves
for (NLS), including some cases with more than two vortices. Our result has the advantage of showing
the smoothness of the branch with respect to the speed. In particular, with the last part of Theorem 1.6,
we see that we may also parametrize the branch c 7→ Qc by its momentum P.

It is conjectured that all these constructions yield the same branch of traveling waves (for large
momentum) when they are all defined, and that they are the solutions numerically observed in [16; 28]
for more general nonlinearities (see also [17]). We will show here that the construction of Theorem 1.6
yields the unique, up to the natural translation and phase invariances, constrained energy minimizers.

1C. A uniqueness result for symmetric functions. We have shown in [15] several coercivity results for
the traveling waves constructed in Theorem 1.6. This will allow us to show the following uniqueness
result for symmetric functions close to the branch constructed in Theorem 1.6. There, for d ∈ R, we use
the notation r̃d = min(| · −de⃗1|, | · +de⃗1|).

Proposition 1.8. There exists λ∗> 1 such that, for any λ⩾ λ∗, there exists ε(λ)> 0 such that if a function
u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) u = V1(x − de⃗1)V−1(x + de⃗1)+0, with d > 1/ε(λ), ∥0∥L∞({r̃d⩽2λ}) ⩽ ε(λ),
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(3) ∥|u| − 1∥L∞({r̃d⩾λ}) ⩽ 1/λ∗,

(4) (TWc)(u)= 0 for some c > 0 such that |dc − 1| ⩽ ε(λ),

then, there exist X ∈ R and γ ∈ R such that u = Qc( · − Xe⃗2)e
iγ, where Qc is defined in Theorem 1.6.

Remark 1.9. In view of the symmetry assumption, we may replace the second hypothesis by

∥u − V1( · − de⃗1)∥L∞(B(de⃗1,2λ)) ⩽ ε(λ).

We will discuss the main arguments of the proof of Proposition 1.8 in the next section. This result can
be seen as a local uniqueness result, but the uniqueness turns out to be in a rather large class of functions.
Indeed, two functions that satisfy the hypotheses of Proposition 1.8 can be very far from each other, for
two main reasons. First, in condition (2), the vortices that compose one of them have no reason to be
close to the ones composing the other function since d depends on u: their centers ±de⃗1 only need to
satisfy |dc − 1| ⩽ ε(λ), but for instance both d = 1/c and d = 1/c + 1/

√
c satisfy these conditions for

c > 0 small enough at fixed λ. Secondly, we only have that far from the vortices, the modulus is close
to 1 from condition (3), but we have no information on the phase. The proof of Proposition 1.8 will rely
on methods used in [15] in order to prove some coercivity, and we shall need to be very precise to take
into account all these cases.

A way to see that Proposition 1.8 is a strong unicity result is that it implies the following local
uniqueness result in L∞ for even functions in x1.

Corollary 1.10. There exist c0, ε > 0 such that, for 0< c < c0, if a function u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) (TWc)(u)= 0 in the distributional sense,

(3) ∥u − Qc∥L∞(R2) ⩽ ε,

then, there exist X ∈ R and γ ∈ R such that u = Qc( · − Xe⃗2)e
iγ.

We may now state our main result. It establishes that any traveling wave solution which is even
in x1 and within O(1) of the minimizing energy must be, for large momentum, the Qc traveling wave
constructed in Theorem 1.6, up to the natural translation and phase invariances.

Theorem 1.11. For any 30 > 0 there exists p0(30) > 0 such that, if u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) (TWc)(u)= 0 for some c > 0,

(3) P2(u)⩾ p0(30),

(4) E(u)⩽ 2π ln P2(u)+30,

then, there exist X ∈ R and γ ∈ R such that

u = Qc( · − Xe⃗2)e
iγ ,

where Qc is defined in Theorem 1.6. In particular, P2(u)= P(c) (where P is defined in Theorem 1.6).
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Section 3 is devoted to the proof of this result. We show there that a function satisfying the hypotheses
of Theorem 1.11 also satisfies the hypotheses of Proposition 1.8. Our result applies in particular to the
constraint minimizers for the problem Emin(p) for large p.

Corollary 1.12. There exist p0 > 0 such that, for any p ⩾ p0 and any minimizer U for Emin(p), there
exist γ ∈ R and X ∈ R2 such that, with c = P−1(p),

U = Qc( · − X)eiγ .

Moreover, (TWc)(U )= 0.

Proof. By a first translation in x1, we may assume, by Theorem 1.2, that this minimizer U is even in x1. By
Proposition 1.5, the last hypothesis (4) of Theorem 1.11 is satisfied; hence we may translate in x2 and use
phase shift and get that this minimizer U is Qc. Necessarily, P2(U )= p = P2(Qc); thus c = P−1(p). □

Theorem 1.4 is a direct consequence of this corollary. This allows us to derive several interesting
consequences on the function Emin. This also shows that the branch of Theorem 1.6 coincides with the
global energy minimizer at fixed momentum (up to translation and phase shift).

Theorem 1.13. There exists c∗ > 0 such that, for 0 < c ⩽ c∗, Qc is a minimizer for Emin(P2(Qc)).
Moreover, there exists p0 > 0 such that the following statements hold:

(1) The function Emin is of class C2 in [p0,+∞[ and

0> E ′′

min(p)∼ −
2π
p2 , 0< E ′

min(p)∼
2π
p
, Emin(p)= 2π ln p+O(1).

(2) For p⩾ p0, Sp = {QP−1(p)( · − X)eiγ
: γ ∈ R, X ∈ R2

}; hence, for any p⩾ p0, E ′

min(p) is the speed
of any minimizer for Emin(p).

(3) For any p⩾ p0, QP−1(p) is orbitally stable for the semidistance D0 (or, equivalently, for 0< c ⩽ c∗,
Qc is orbitally stable for the semidistance D0).

(4) For p⩾ p0 and any minimizer u for Emin(p), up to a space translation and a phase shift, u enjoys the
symmetry,

for all (x1, x2) ∈ R2, u(x1,−x2)= ū(x1, x2),

in addition to the symmetry in x1.

(5) For any 3 > 0, there exists p0(3) > 0 such that, if u ∈ E satisfies (TWc)(u) = 0 for some c > 0,
P2(u)⩾ p0(3) and u is even in x1, then either E(u)= Emin(P2(u)) or E(u)⩾ Emin(P2(u))+3.

Proof. By Theorems 1.2 and 1.3, we have the existence of at least one minimizer Up for Emin(p), where
p> 0. For large p, by applying Corollary 1.12, we have Up = Qc( · − X)eiγ for some X ∈ R2 and γ ∈ R,
thus proving that Qc is a minimizer for Emin(p) and that P2(Qc)= P(c)= p.

For (1), it suffices to notice that, in view of Corollary 1.12 applied to any minimizer (we have
existence by Theorems 1.2 and 1.3) Emin(p) = E(QP−1(p)). We then conclude by using that P is a
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C1 diffeomorphism and that c 7→ E(Qc) is also of class C1 (see [15, Proposition 1.2]), that Emin is of
class C1 in [p0,+∞[ and that

E ′

min(p)=
d
dc

E(Qc)|c=P−1(p) ×
1

P ′(P−1(p))
= P−1(p),

in view of the Hamilton-like relation (formally shown in [28] and rigorously proved for the branch
constructed in Theorem 1.6 in [15])

d
dc

E(Qc)= c d
dc

P2(Qc).

Since P is a C1 diffeomorphism, we deduce that E ′

min is of class C1. The asymptotics for E ′

min and
E ′′

min then follow from Proposition 1.2 in [15]. Integration would yield Emin(p)∼ 2π ln p, but we may
slightly improve this estimate. Indeed, Proposition 1.5 gives Emin(p) ⩽ 2π ln p+O(1), and the lower
bound is a straightforward consequence of Theorem 3.4(i) and the study in Section 3B3.

Statement (2) is a rephrasing of Corollary 1.12, combined with the existence of at least one constrained
minimizer. Statement (3) is then a direct consequence of Theorem 1.3. Statement (4) simply follows
from the fact that Qc enjoys by construction this symmetry (see [14]). Finally, statement (5) is also a
rephrasing of Theorem 1.11. □

Remark 1.14. Concerning the stability given in statement (3) in the above theorem, we quote [32], where
a linear “spectral” stability result is proved (through ad hoc hypotheses that were checked in [15]), namely
that the linearized equation i∂tv = L Qc(v) does not have exponentially growing solutions (in Ḣ1(R

2
; C),

say). Statement (3) in the above theorem does not rely on the result in [32], and is needed for the nonlinear
(orbital) stability (following the Cazenave–Lions approach).

Let us conclude this section with several comments on our result. First, let us explain the relevance of
the symmetry hypothesis, namely that we restrict to mappings that are even in x1. This symmetry is used
in the coercivity of the branch of Theorem 1.6, through the following arguments. The quadratic form
around the traveling wave Qc is decomposed in three areas, close to the two vortices, and far from them.
In the latter region, the coercivity can be shown without any orthogonality condition. Close to the vortices,
the quadratic form is close to the one of a single vortex, which was studied in [38]. Its coercivity requires
three orthogonality conditions, two for the translation, and one for the phase. Therefore, we can show the
coercivity of the full quadratic form with six orthogonality conditions, three for each vortex. However,
the family of traveling waves of Theorem 1.6 has only five parameters (two for the speed, two for the
translation, and one for the phase). The symmetry is then used to reduce the problem to three orthogonality
conditions into a family with three parameters. With this symmetry, both orthogonality conditions on
the phase for the two vortices become the same condition. It is possible to prove a coercivity result with
only five orthogonality conditions without symmetry (see [15]), but then the coercivity constant goes to 0
when c → 0. This would pose a problem for the uniqueness result. The last statement in Theorem 1.13
shows that, when restricting ourselves to symmetric traveling waves, there is an energy threshold under
which there is no traveling wave except the Qc branch.
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Secondly, the proof of the fact that Qc is a minimizer of the energy for fixed momentum relies on the
existence of such minimizers. In particular, we have not been able to use our coercivity results in [15] in
order to prove directly that Qc is orbitally stable (for small c).

Thirdly, the symmetry in x2 for the minimizers (statement (4)) is established as a consequence of the
uniqueness result and not in itself. Notice that the numerical studies in [16; 17; 28] assume the two
symmetries.

1D. The traveling wave Qc and two other variational characterizations. Before providing other varia-
tional characterizations of Qc, we have to define a distance on the energy space E . One can use (see [22])

DE(ψ1, ψ2) := ∥ψ1 −ψ2∥L2(R2)+L∞(R2) + ∥∇ψ1 − ∇ψ2∥L2(R2) + ∥|ψ1| − |ψ2|∥L2(R2),

which is adapted to the Cauchy problem. Actually, we may also use the pseudodistance1

D0(ψ1, ψ2) := ∥∇ψ1 − ∇ψ2∥L2(R2) + ∥|ψ1| − |ψ2|∥L2(R2).

Is it shown in [13, Corollary 4.13] that both the energy E and the momentum P2 are continuous for the
distance DE , and actually even for the pseudodistance D0.

The traveling wave Qc as a mountain-pass solution. Thanks to the results in Theorem 1.13, it is easy to
show that we have locally, near Qc, a mountain-pass geometry. Indeed, let c∗ > 0 be small, and define

ϒc∗
:= {υ : [−1,+1] → E continuous : v(−1)= Q3c∗/2, v(+1)= Qc∗/2},

the set of continuous paths from Q3c∗/2 to Qc∗/2 in E . Then, we claim that

inf
υ∈ϒc∗

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))= (E − c∗ P2)(Qc∗
). (1-2)

Indeed, let υ ∈ ϒc∗
. By the intermediate value theorem, there exists t∗ ∈ [−1,+1] such that P2(υ(t))=

P2(Qc∗
) (c 7→ P2(Qc) is a C1 function (see [15, Proposition 1.2]). Since Qc∗

is a minimizer for Emin(Qc∗
),

we infer

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))⩾ E(v(t∗))− c∗ P2(Qc∗
)⩾ E(Qc∗

)− c∗ P2(Qc∗
).

Moreover, considering the particular C1 path υ∗ : [−1,+1] → E defined by υ(t) := Qc∗−tc∗/2, we see that

d
dt
(E − c∗ P2)(υ∗(t))= −

c∗

2

( d
dc

E(Qc)− c∗

d
dc

P2(Qc)
)

|c=c∗−tc∗/2
=

c2
∗
t

4

( d
dc

P2(Qc)
)

|c=c∗−tc∗/2

in view of the Hamilton group relation d
dc E(Qc)= c d

dc P2(Qc) (see [15, Proposition 1.2]). Since
d
dc P2(Qc) < 0, we deduce that (E −c∗ P2)(υ∗(t)) increases in [−1, 0] and decreases in [0,+1], and hence
has maximal value E(Qc∗

)− c∗ P2(Qc∗
), as wished.

1 D0(ψ1, ψ2) is zero if and only if ψ2 −ψ1 is constant with |ψ1| − 1 = |ψ2| − 1 ∈ L2(R2).
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Furthermore, by the asymptotics given in [15] and the above-mentioned Hamilton group relation
d
dc E(Qc)= c d

dc P2(Qc), we have

(E − c∗ P2)(Qc∗
)− (E − c∗ P2)(Qc∗/2)=

∫ c∗

c∗/2
(c − c∗)

d
dc

P2(Qc) dc > 0

since c − c∗ < 0 and d
dc P2(Qc) < 0. Similarly, we prove that (E − c∗ P2)(Qc∗

)− (E − c∗ P2)(Q3c∗/2) < 0.
We now claim that if u ∈ E is such that (TWc∗

)(u)= 0 and

(E − c∗ P2)(u)= inf
υ∈ϒc∗

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))= (E − c∗ P2)(Qc∗
), (1-3)

by (1-2), that is, if u is a critical point of E − c∗ P2 at the good critical value, then we must have
P2(u)= P2(Qc∗

). Indeed, by the Pohozaev identity (2-2), we have

c∗ P2(u)=
1
2

∫
R2
(1 − |u|

2)2 dx ⩾ 0,

and hence P2(u) ⩾ 0. Furthermore, we know that Emin is concave in R+ (Proposition 1.5), and that
Emin is of class C1 and strictly concave on [p0,+∞[ (by statement (1) of Theorem 1.13). Therefore, if
P2(u) ̸= P2(Qc∗

), then

E(u)⩾ Emin(P2(u)) > Emin(P2(Qc∗
))+ E ′

min(P2(Qc∗
))(P2(u)− P2(Qc∗

))

= E(Qc∗
)+ c∗(P2(u)− P2(Qc∗

)),

in contradiction with (1-3).
As a consequence, we have

E(u)= E(Qc∗
)= Emin(P2(u))= Emin(P2(Qc∗

)),

implying that u is a minimizer for Emin(P2(Qc∗
)); hence there exist γ ∈ R and X ∈ R2 such that

u = Qc∗
( · −X)eiγ , proving a uniqueness result for mountain-pass-type traveling wave solutions. However,

stating rigorously a useful uniqueness result for this kind of variational solution is not so easy: In [5], the
mountain pass is implemented in the space 1 + H 1(R2), whereas we know (by the result in [25]) that
the nontrivial traveling wave does not belong to this affine space; in [3], the solution is constructed by
working first on [−N ,+N ]×R and then passing to the limit, and it is then not immediate to compute the
functional E − cP on the solution; in addition, the method does not provide easily some explicit bounds
on the energy or the momentum. We shall then not go further in this discussion even though the previous
arguments indicate that mountain-pass solutions are (at least for small c) only the orbit of Qc.

The traveling wave Qc as a minimizer of E − cP2 for fixed kinetic energy. In [13], for κ ⩾ 0, the
following variational problem is investigated:

Imin(κ)= inf
{

1
4

∫
R2
(1 − |v|2)2 dx − P2(v), v ∈ E :

1
2

∫
R2

|∇v|2 dx = κ

}
.

Any minimizer v for Imin(κ) is such that there exists c > 0 satisfying (TWc)(v( · /c)) = 0. In two
dimensions and for the Ginzburg–Landau nonlinearity, existence of minimizers for κ > 0 is established in
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Theorem 1.2 there. Furthermore, it is shown in [13] (see Proposition 8.4 there) that if p> 0 and if U is a
minimizer for Emin(p) with speed c, then U (c · ) is a minimizer for Imin(κ) with κ =

1
2

∫
R2 |∇U |

2 dx (this
last quantity is scale-invariant in two dimensions) and Imin is differentiable at this κ , with I ′

min(κ)=−1/c2.
Since Qc is a minimizer for Emin(P2(Qc)), if we prove that c 7→

1
2

∫
R2 |∇Qc|

2 dx is a decreasing
C1-diffeomorphism from ]0, c0], for some small c0, onto [κ0,+∞[, with κ0 :=

1
2

∫
R2 |∇Qc0 |

2 dx , then
we shall conclude that Imin is of class C1 on [κ0,+∞[, and that (by the arguments in [13]) the only
minimizer for κ =

1
2

∫
R2 |∇Qc|

2 dx (for some suitable c ∈ ]0, c0]) is Qc(c · ) up to the natural translation
and phase invariances and, in addition, I ′

min(κ)= −1/c2. In order to prove that statement, it suffices to
use the Pohozaev identity (2-2) and deduce

1
2

∫
R2

|∇Qc|
2 dx = E(Qc)−

1
4

∫
R2
(1 − |Qc|

2)2 dx = E(Qc)−
cP2(Qc)

2
.

Therefore, by using the Hamilton-like relation d
dc E(Qc)= c d

dc P2(Qc) and then the asymptotics of
c 7→ P2(Qc) obtained in [15], we arrive at

d
2dc

∫
R2

|∇Qc|
2 dx =

d
dc
(E(Qc))−

c
2

d
dc

P2(Qc)−
1
2

P2(Qc)=
c
2

d
dc

P2(Qc)−
1
2

P2(Qc)∼ −
2π
c
< 0.

The paper is organized as follows. In Section 2, we give the proof of the uniqueness result given in
Proposition 1.8. Section 3 is devoted to the vortex analysis of traveling waves with energy Emin(p)+O(1),
that are even in x2, in order to show that they satisfy the hypotheses of Proposition 1.8. Section 3D
contains a few remarks on the nonsymmetrical case. Finally, in Section 3C, we provide some decay
estimates slightly away from the vortices. For the Ginzburg–Landau (stationary) model, such estimates
were first given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions.
They improve some estimates in [14] and are not specific to the way we construct the solutions.

2. Proof of the local uniqueness result (Proposition 1.8)

This section is devoted to the proofs of Proposition 1.8 and Corollary 1.10. The proof of Proposition 1.8
uses arguments from the proof of [15, Theorem 1.14], another local uniqueness result for this problem,
but in different spaces. We explain here the core ideas of the proof.

Let us explain schematically the proof of Proposition 1.8. We first pick c′, X , γ ′ in such a way that
Q = Q′

c( · − X)eiγ has the same vortices as u. This is possible because c → dc, the position of the
vortices, is smooth. We then use the decomposition u = Qeψ, where ψ is the error term. This cannot be
done near the zeros of Q, but we focus here on the domain far from the vortices.

The equation satisfied by ψ is then (TWc)(u)= 0 = (TWc)(Q)+ L(ψ)+ NL(ψ), where we regroup
the linear terms in L and the nonlinear terms in NL, and (TWc)(Q) ̸= 0 because c ̸= c′. We then take the
scalar product of this equation with ψ , and we get 0 = ⟨(TWc)(Q), ψ⟩ + BQ(ψ)+ ⟨NL(ψ), ψ⟩. Now,
the coercivity of BQ has been studied in [15]. It holds (for even functions in x1) up to three orthogonality
conditions, which can be satisfied by changing slightly the modulation parameters c′, X, γ . We deduce
that BQ(ψ)⩾ K∥ψ∥

2
1 for some norm ∥ · ∥1.



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2183

There are two main difficulties at this point. First, since the hypotheses on u in Proposition 1.8 are
weak, we simply have ∥ψ∥1 <+∞, but not the fact that it is small. Therefore, an estimate of the form
|⟨NL(ψ), ψ⟩| ⩽ K∥ψ∥

3
1 would not be enough to conclude. Secondly, the norm ∥ · ∥1 is rather weak, and

in fact ⟨NL(ψ), ψ⟩ cannot be controlled by powers of ∥ψ∥1.
Concerning the term ⟨(T Wc)(Q), ψ⟩, we may show that we always have |c − c′

| ⩽ o(1)∥ψ∥1, and
thus |⟨(T Wc)(Q), ψ⟩| ⩽ o(1)∥ψ∥

2
1. Therefore, we are led to

K
2

∥ψ∥
2
1 ⩽ ⟨(TWc)(Q), ψ⟩ + BQ(ψ)= −⟨NL(ψ), ψ⟩.

Then, even if ∥ψ∥1 is not small, by the hypotheses of Proposition 1.8, ψ will be small in other (nonequiv-
alent) norms. Let us write one of them ∥ · ∥2. Our goal is then to show an estimate of the form
|⟨NL(ψ), ψ⟩|⩽ K∥ψ∥2 ∥ψ∥

2
1, which would conclude the proof. This is possible, except for one nonlinear

term, which contains two derivatives. We then perform some integrations by parts on it. When both
derivatives fall on the same term, we get a term containing 1ψ , which also appears in the equation
0 = (TWc)(Q)+L(ψ)+NL(ψ) (in L(ψ)). We thus replace it using this equation, which leads to another
term containing two derivatives (from NL(ψ)), and other terms that can be successfully estimated. After
n such integrations by parts, we have an estimate of the form

|⟨NL(ψ), ψ⟩| ⩽ K∥ψ∥2 ∥ψ∥
2
1 + ∥ψ∥3 ∥ψ∥

n
2 ∥ψ∥

2
1,

where ∥ · ∥3 is another (semi-)norm in which ψ is not necessarily small. Now, taking n large enough
(depending on ψ), since ∥ψ∥2 ≪ 1, we get |⟨NL(ψ), ψ⟩| ⩽ o(1)∥ψ∥

2
1, concluding the proof.

The problem is a lot simpler near the vortices. There, we write u = Q +φ and the coercivity norm is
equivalent to the H 1 norm, and the hypotheses of Proposition 1.8 give us ∥φ∥L∞ = o(1). The estimate of
the nonlinear terms then becomes trivial.

As stated in the Introduction, the symmetry condition is necessary to have a coercivity result where the
coercivity constant is uniform; see Corollary 2.6 below. This is the only place where the symmetry is
used in a crucial way.

2A. Some properties of the branch of traveling waves from Theorem 1.6. We recall here properties on
the branch c 7→ Qc from Theorem 1.6, coming mainly from [14; 15]. In this section, we will use the
notation

⟨ f, g⟩ :=

∫
R2

Re( f ḡ).

2A1. Properties of vortices. We start with some estimates on vortices, which compose the traveling wave
(see Theorem 1.6).

Lemma 2.1 [12; 26]. A vortex centered around 0, V1(x)= ρ1(r)eiθ, satisfies V1(0)= 0, E(V1)= +∞

and there exist constants K , κ > 0 such that,

for all r > 0, 0< ρ1(r) < 1, ρ1(r)∼r→0 κr, ρ ′

1(r)∼r→0 κ,

for all r > 0, ρ ′

1(r) > 0, ρ ′

1(r)= Or→∞

(
1
r3

)
, |ρ ′′

1 (r)| + |ρ ′′′

1 (r)| ⩽ K ,



2184 DAVID CHIRON AND ELIOT PACHERIE

1 − |V1(x)| =
1

2r2 + Or→∞

(
1
r3

)
,

|∇V1| ⩽
K

1 + r
, |∇

2V1| ⩽
K

(1 + r)2
,

∇V1(x)= iV1(x)
x⊥

r2 + Or→∞

(
1
r3

)
,

where x⊥
:= (−x2, x1), x = reiθ

∈ R2. Furthermore, similar properties hold for V−1, since

V−1(x)= V1(x).

2A2. Toolbox. We list in this section some results useful for the analysis of traveling waves for not
necessarily small speeds.

Theorem 2.2 (uniform L∞ bound [19]). Assume that U ∈ L3
loc(R

d) solves

1U + ic∂2U + U (1 − |U |
2)= 0.

Then,

∥U∥L∞(Rd ) ⩽ 1 +
c2

4
.

Corollary 2.3. There exists K > 0 such that, for any c ∈ [−
√

2,+
√

2] and any U ∈ L3
loc(R

d) satisfying
(TWc)(U )= 0, we have

∥∇U∥L∞(Rd ) + ∥∇
2U∥L∞(Rd ) ⩽ K . (2-1)

The following Pohozaev identity (see [10] for instance) will be useful in our analysis. If c ∈ R and
U ∈ E satisfies (TWc), then

1
2

∫
R2
(1 − |U |

2)2 dx = cP2(U ). (2-2)

We shall also make use of the algebraic decay of the traveling waves conjectured in [28] and shown
in [24].

Theorem 2.4 (algebraic decay of the traveling waves [24]). Let c ∈ [0,
√

2[. Assume that U ∈ E is a
solution of (TWc)(U )= 0. Up to a phase shift, we may assume U (x)→ 1 for |x | → +∞. Then, there
exists M, depending on U and c such that, for x ∈ R2,

|U (x)− 1| ⩽
M

1 + |x |
, |∇U (x)| ⩽

M
(1 + |x |)2

, ||U (x)| − 1| ⩽
M

(1 + |x |)2
.

2A3. Symmetries of the traveling waves from Theorem 1.6. We recall from [14] that the traveling wave Qc

constructed in Theorem 1.6 satisfies, for all x = (x1, x2) ∈ R2,

Qc(x1, x2)= Qc(−x1, x2)= Qc(x1,−x2).

This implies that, for all x = (x1, x2) ∈ R2,

∂c Qc(x1, x2)= ∂c Qc(−x1, x2)= ∂c Qc(x1,−x2),
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∂x1 Qc(x1, x2)= −∂x1 Qc(−x1, x2)= ∂x1 Qc(x1,−x2),

∂x2 Qc(x1, x2)= ∂x2 Qc(−x1, x2)= −∂x2 Qc(x1,−x2),

∂c⊥ Qc(x1, x2)= −∂c⊥ Qc(−x1, x2)= −∂c⊥ Qc(x1,−x2),

where ∂c⊥ Qc := x⊥.∇Qc; see Section 2.2 of [15]. Note that these quantities all have different symmetries.

2A4. A coercivity result. From Proposition 1.2 of [15], we recall that Qc defined in Theorem 1.6 has
two zeros, at ±d̃ce⃗1, with

dc − d̃c = oc→0(1). (2-3)

We define (as in [15]) the symmetric expended energy space by

H exp,s
Qc

:=
{
ϕ ∈ H 1

loc(R
2,C) : ∥ϕ∥H exp

Qc
<+∞ for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2)

}
,

where, with ϕ = Qcψ , r̃ = r̃d̃c
= min(r̃1, r̃−1), r̃±1 being the distances to the zeros of Qc (we use r̃

instead of r̃d̃c
to simplify the notation here), we define

∥ϕ∥
2
H exp

Qc
:= ∥ϕ∥

2
H1({r̃⩽10})

+

∫
{r̃⩾5}

|∇ψ |
2
+Re2(ψ)+

|ψ |
2

r̃2 ln2 r̃
.

By using (2-1), we deduce, for any R > 0, ∥ϕ∥H1({r̃⩽R}) ⩽ K (R)∥ϕ∥H exp
Qc

. The linearized operator
around Qc is

L Qc(ϕ) := −1ϕ− ic∂x2ϕ− (1 − |Qc|
2)ϕ+ 2Re(Qcϕ)Qc.

We take a smooth cutoff function η̃ such that

η̃(x)=

{
0 on B(±d̃ce⃗1, 2R),
1 on R2

\B(±d̃ce⃗1, 2R + 1),

where ±d̃ce⃗1 are the zeros of Qc and R > 0 will be defined later on (it will be a universal constant,
independent of any parameters of the problem). We define the quadratic form (as in [15])

Bexp
Qc
(ϕ) :=

∫
R2
(1 − η̃)

(
|∇ϕ|

2
−Re(ic∂x2ϕϕ̄)− (1 − |Qc|

2)|ϕ|
2
+ 2Re2(Qcϕ)

)
−

∫
R2

∇η̃.
(
Re(∇Qc Qc)|ψ |

2
− 2 Im(∇Qc Qc)Re(ψ) Im(ψ)

)
+

∫
R2

c∂x2 η̃Re(ψ) Im(ψ)|Qc|
2

+

∫
R2
η̃(|∇ψ |

2
|Qc|

2
+ 2Re2(ψ)|Qc|

4)

+

∫
R2
η̃
(
4 Im(∇Qc Qc) Im(∇ψ)Re(ψ)+ 2c|Qc|

2 Im(∂x2ψ)Re(ψ)
)
. (2-4)

We recall from [15] (or by integration by parts) that, for ϕ∈C∞
c (R

2,C), we have Bexp
Qc
(ϕ)=⟨L Qc(ϕ), ϕ⟩

and that Bexp
Qc
(ϕ) is well-defined for ϕ ∈ H exp,s

Qc
. This last point is the reason why we write the quadratic



2186 DAVID CHIRON AND ELIOT PACHERIE

form as (2-4), which is equal, up to some integration by parts, to the more natural definition∫
R2

|∇ϕ|
2
− (1 − |Qc|

2)|ϕ|
2
+ 2Re2(Qcϕ)−Re(ic∂x2ϕϕ̄),

but this integral is not well-defined for ϕ ∈ H exp,s
Qc

. See [15] for more details on this point. We now quote
the following coercivity result:

Theorem 2.5 [15, Theorem 1.13]. There exist R, K , c0 > 0 such that, for 0 < c ⩽ c0, Qc defined in
Theorem 1.6, if a function ϕ ∈ H exp,s

Qc
satisfies the three orthogonality conditions

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂c Qc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0,

then
1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
.

We will use a slight variation of this result, given in the next corollary.

Corollary 2.6. There exist R, K , c0 > 0 such that, for 0 < c ⩽ c0, Qc defined in Theorem 1.6, if a
function ϕ ∈ H exp,s

Qc
satisfies the three orthogonality conditions

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

i Qc ϕ̄ = 0,

then
1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
.

Note, with Theorem 1.6 (for p = +∞), that −(1/c2)∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc is the first
order of ∂c Qc when c → 0 in L∞(R2,C), and that (with Lemma 2.1) they both have the same symmetries.
We need to change the quantity Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂c Qc ϕ̄ in the orthogonality conditions because
we will differentiate it with respect to c, and

c 7→ ∂d
(
V1( · −de⃗1)V−1( · +de⃗1)

)
|d=dc

=−∂x1 V1( · −dce⃗1)V−1( · +dce⃗1)+∂x1 V−1( · +dce⃗1)V1( · −dce⃗1)

is a C1 function (c 7→ dc ∈ C1(]0, c0[,R) for c0 > 0 a small constant (see Section 4.6 of [14]), but it is
not clear that c 7→ ∂c Qc can be differentiated with respect to c. Precise estimates on

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

can be found in Lemma 2.6 of [14]. Furthermore, we changed, in the area of the integrals, d̃c to dc (they
are close when c → 0, see (2-3)).
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Proof. Step 1: changing the integrand but not the integration domain. Take a function ϕ ∈ H exp,s
Qc

satisfying

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0.

Let us show that it satisfies (1/K )∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥H exp

Qc
. For µ ∈ R, we define

ϕ∗
= ϕ+ c2µ∂c Qc.

We have that ∂c Qc ∈ H exp,s
Qc

. We want to choose µ∈ R such that ϕ∗ satisfies the hypothesis of Theorem 2.5.
By the symmetries of Section 2A3 and the hypotheses on ϕ, we have that

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ∗ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ∗ = 0,

and we compute, using

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d
(
V1( · − de⃗1)V−1( · + de⃗1)

)
|d=dc

ϕ̄ = 0,

that

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ∗

= Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ̄+µRe

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2

= Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

(
c2∂c Qc − ∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

)
ϕ̄

+µRe

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2.

By Theorem 1.6 (for p = +∞) and Lemma 2.6 of [14], we have∥∥c2∂c Qc − ∂d
(
V1( · − de⃗1)V−1( · + de⃗1)

)
|d=dc

∥∥
L∞(R2)

= oc→0(1),

and also that there exists a universal constant K > 0 (we recall that R > 0 is a universal constant) such
that

1
K

⩽Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2 ⩽ K .

Now, taking

µ=
−Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

(
c2∂c Qc − ∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

)
ϕ̄

Re
∫

B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)
c4|∂c Qc|

2 ,

we have
Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ∗ = 0,

with
|µ| ⩽ oc→0(1)∥ϕ∥L2(B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)) ⩽ oc→0(1)∥ϕ∥H exp

Qc
.
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Since ∂c Qc ∈ H exp,s
Qc

by Lemma 2.8 of [15], we deduce that ϕ∗ satisfies all the hypotheses of Theorem 2.5;
therefore

1
K

∥ϕ∗
∥

2
H exp

Qc
⩾ Bexp

Qc
(ϕ∗)⩾ K∥ϕ∗

∥
2
H exp

Qc
.

Now, from Lemma 6.3 of [15], we have 1/K ⩽ ∥c2∂c Qc∥H exp
Qc

⩽ K for a universal constant K > 0. With
|µ| ⩽ oc→0(1)∥ϕ∥H exp

Qc
, we deduce that, taking c > 0 small enough,

1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ∗)⩾ K∥ϕ∥

2
H exp

Qc

for some universal constant K > 0. Now, we have the decomposition (using Lemmas 6.2 and 6.3 of [15])

Bexp
Qc
(ϕ∗)= Bexp

Qc
(ϕ+ c2µ∂c Qc)

= Bexp
Qc
(ϕ)+ 2c2µ⟨L Qc(∂c Qc), ϕ⟩ + c4µ2 Bexp

Qc
(∂c Qc),

and by Lemmas 2.8, 5.4 and 6.1 of [15],

|⟨L Qc(∂c Qc), ϕ⟩| = |⟨i∂x2 Qc, ϕ⟩| ⩽ K ln
(1

c

)
∥ϕ∥H exp

Qc
;

hence
|2c2µ⟨L Qc(∂c Qc), ϕ⟩| ⩽ K c2 ln

(1
c

)
|µ|∥ϕ∥H exp

Qc
⩽ oc→0(1)∥ϕ∥

2
H exp

Qc
.

By Proposition 1.2 of [15], Bexp
Qc
(∂c Qc)= (2π + oc→0(1))/c2; thus

|c4µ2 Bexp
Qc
(∂c Qc)| ⩽ oc→0(1)∥ϕ∥

2
H exp

Qc
,

which concludes the proof of (1/K )∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
by taking c > 0 small enough.

Step 2: Changing the integration domain. To change the conditions

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0

to

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

i Qc ϕ̄ = 0,

we use similar arguments, using |dc − d̃c| = oc→0(1) by (2-3). We check for instance that∣∣∣∣Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄−Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄

∣∣∣∣ ⩽ K (R)|dc − d̃c|∥ϕ∥H exp
Qc

and |dc − d̃c| = oc→0(1).
Notice that the integration domain remains symmetric with respect to the x2-axis. □
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2B. Proof of Proposition 1.8. In this subsection, we take ν ∈ ]0, 1[ to be a small but universal constant,
which will be fixed at the end of the proof. We take

λ∗ = max
(

3R + 1,
1
ν2

)
in the statement of Proposition 1.8 (where R > 0 is defined in Corollary 2.6). Then, for any λ⩾ λ∗, we
take

ε(λ)= min
(
ν,

1
10λ2 + 100

)
in the statement of Proposition 1.8. The condition ε(λ)⩽ 1/(10λ2

+ 100) is required only to make sure
that the two balls B(de⃗1, 2λ) and B(−de⃗1, 2λ) are disjoint and at a distance at least 1 from one another.
This will be used only in the proof of Lemma 2.8.

We take u a function satisfying the hypotheses of Proposition 1.8 for these values of λ∗, λ and ε(λ). In
the rest of the subsection, K , K ′ > 0 denote universal constants, independent of any parameters of the
problem (in particular, λ, λ∗, ε(λ) and ν).

2B1. Modulation on the parameters of the branch. From Theorem 1.1 and the end of Section 4.6 of [14],
we have that Qc = V1( · − dce⃗1)V−1( · + dce⃗1)+0c, with dc = (1 + oc→0(1))/c, ∥0c∥L∞ → 0, and

c 7→ dc ∈ C1(]0, c0[,R),

with ∂cdc ∼ −1/c2 for c → 0 (see Section 4.6 of [14]). In particular, c 7→ dc is a smooth decreasing
diffeomorphism from ]0, c0] onto [d0,+∞[, and thus, given d > 1/ν > d0 (for ν small enough), there
exists a unique c′ > 0 such that dc′ = d . In addition, c′

∼d→∞ 1/d ⩽ Kν. Furthermore,

u(x)− Qc′(x)= V1(x − de⃗1)V−1(x + de⃗1)+0(x)− V1(x − dc′ e⃗1)V−1(x + dc′ e⃗1)−0c′(x)

= 0(x)−0c′(x).

From the hypotheses on 0, and the fact that ∥0c′∥L∞(R2) ⩽ 2ν (since c′ ⩽ 2/d ⩽ 2ν), we deduce that (we
write r̃ = r̃d = r̃dc′

to simplify the notation)

∥u − Qc′∥L∞({r̃⩽2λ}) ⩽ Kν.

Since (1 + oc′→0(1))/c′
= dc′ = d by Theorem 1.6, and |dc − 1| ⩽ ν, we have

d|c − c′
| ⩽ Kν. (2-5)

We now claim that, for a universal constant K > 0,

∥u − Qc′∥C1({r̃⩽λ}) ⩽ Kν. (2-6)

That is, u is close to Qc′ near the vortices (in the region {r̃ ⩽ λ}) in the C1 norm and not only in L∞. In
order to show this, we use the elliptic equation satisfied by u − Qc′ , that is,

1(u − Qc′)= −ic∂x2(u − Qc′)− (u − Qc′)(1 − |u|
2)+ (|u|

2
− |Qc′ |

2)Qc′ .
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Let us fix x ∈ {r̃ ⩽ λ}. We have ∥u − Qc′∥L∞({r̃⩽2λ}) ⩽ K ′ν by hypothesis; thus the right-hand side of the
equation is small in H−1(B(x, 4)). By a standard H 1

− H−1 estimate, we deduce

∥u − Qc′∥H1(B(x,3)) ⩽ K ′ν.

Then, the right-hand side is small in L2, and standard L2 elliptic regularity yields first

∥u − Qc′∥H2(B(x,2)) ⩽ K ′ν

and then

∥u − Qc′∥H3(B(x,1)) ⩽ K ′ν,

and we conclude by Sobolev imbedding.
Outside of this domain, u and Qc′ are close only in modulus. Indeed, by equation (2.6) of [15]

(
for

σ =
1
2

)
and the hypotheses on u, we have for a universal constant K > 0 that on {r̃ ⩾ λ},

∣∣|u| − |Qc′ |
∣∣ ⩽ ∣∣|u| − 1

∣∣ + ∣∣|Qc′ | − 1
∣∣ ⩽ ν+

K
λ3/2 ⩽ K ′ν.

Now, we modulate on the parameters of the family of traveling waves to get the orthogonality conditions
of Corollary 2.6. For c′′ > 0 close enough to c′ and X, γ ∈ R, we define

Q := Qc′′( · − Xe⃗2)e
iγ . (2-7)

Lemma 2.7. There exist K > 0, ν0 > 0 universal constants such that, for u satisfying the hypotheses of
Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if ν ⩽ ν0, then there exists c′′ > 0, X, γ ∈ R

such that, for R > 0 defined in Corollary 2.6, and d⃗± := ±dc′′ e⃗1 + Xe⃗2,

Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂d
(
V1( · − de⃗1 − Xe⃗2)V−1( · + de⃗1 − Xe⃗2)e

iγ )
|d=dc′′

(u − Q)

= Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u − Q)= Re

∫
B(d⃗+,R)∪B(d⃗−,R)

i Q(u − Q)= 0.

Furthermore,
|c′′

− c′
|

c′2 + |X | + |γ | ⩽ Kν.

Proof. To simplify the notation, in this proof, we define

∂d V := ∂d
(
V1( · − de⃗1 − Xe⃗2)V−1( · + de⃗1 + Xe⃗2)e

iγ )
|d=dc′′

.

We will keep the notation r̃ for the minimum of the distance to the zeros of Q.
First, from equation (7.5) of [15], there exists a universal constant K > 0 such that, for c′′ < c0,

c′/2 ⩽ c′′ ⩽ 2c′,

∥Q − Qc′∥L∞(R2) ⩽ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
. (2-8)
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Now, we follow closely the proof of Lemma 7.6 of [15], which is done in Appendix C.3 there. We define

G

 X
c′′

γ

 :=

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂x2 Q(u − Q)

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂d V (u − Q)

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
i Q(u − Q)

 .

Note that Q, ∂d V and d⃗± all depend on X and c′′, and Q depends also on γ . From (2-6) and the fact
that λ⩾ λ∗ > 2R, we have ∥u − Qc′∥L∞({r̃⩽R}) ⩽ Kν, and from Theorem 1.6 with p = +∞, as well as
Lemma 2.6 of [14],

∥∂x2 Qc′∥L∞(R2) + ∥∂d V ∥L∞(R2) + ∥i Qc′∥L∞(R2) ⩽ K (2-9)

for some universal constant K > 0. Therefore, since Q = Qc′ for X = γ = 0, c′′
= c′, we obtain∣∣∣∣∣∣G

 0
c′

0

∣∣∣∣∣∣ ⩽ K∥u − Qc′∥L∞({r̃⩽λ}) ⩽ Kν.

We want to show that G is invertible in a vicinity of (0 c′ 0)⊤. With (2-6) and (2-8), we check that (we
recall that r̃ = min(|x − d⃗+|, |x − d⃗−|))

∥u − Q∥L∞({r̃⩽2R}) ⩽ ∥u − Qc′∥L∞({r̃⩽2R}) + ∥Q − Qc′∥L∞(R2)

⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
,

and as in Lemma 7.1 of [15], this implies

∥u − Q∥C1({r̃⩽R}) ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
. (2-10)

Now, we compute∣∣∣∣∂X

(
Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u − Q)
)

−

∫
B(d⃗+,R)∪B(d⃗−,R)

|∂x2 Q|
2
∣∣∣∣

⩽
∫
∂B(d⃗+,R)∪∂B(d⃗−,R)

|∂x2 Q(u − Q)| +
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂2

x2
Q(u − Q)|.

Therefore, with (2-1) and (2-10), we check that∫
∂B(d⃗+,R)∪∂B(d⃗−,R)

|∂x2 Q(u − Q)| +
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂2

x2
Q(u − Q)| ⩽ Kν+ K

(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
;

hence∣∣∣∣∂X

(
Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u−Q)
)

−

∫
B(d⃗+,R)∪B(d⃗−,R)

|∂x2 Q|
2
∣∣∣∣⩽ Kν+K

(
|X |+

|c′′
−c′

|

c′2 +|γ |

)
.
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With similar computations, using Lemma 2.6 of [14], (2-1) and (2-10), we infer that∣∣∣∣∣∣∣∂X G −


∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂d V ∂x2 Q

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
i Q∂x2 Q


∣∣∣∣∣∣∣ ⩽ Kν+ K

(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

By the symmetries of Q( · + Xe⃗2)e
−iγ and ∂d V ( · + Xe⃗2)e

−iγ, we have that

Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂d V ∂x2 Q = 0,

and from Theorem 1.6 (with p = +∞), with the symmetries of Qc and V1 (see Sections 2A1 and 2A3),
we have ∣∣∣∣Re

∫
B(d⃗+,R)∪B(d⃗−,R)

i Q∂x2 Q − 2Re

∫
B(0,R)

iV1∂x2 V1

∣∣∣∣ ⩽ K
(
|X | +

|c′′
− c′

|

c′2

)
.

By decomposition in harmonics and Lemma 2.1, we check easily that Re
∫

B(0,R) iV1∂x2 V1 = 0; thus∣∣∣∣∣∣∂X G −


∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2

0
0

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

Similarly, we check that (using ∂c(dc)= (−1 + oc→0(1))/c2 from Section 4.6 and Lemma 2.6 of [14])∣∣∣∣∣∣c′2∂c′′ G −

 0∫
B(d⃗+,R)∪B(d⃗−,R)

|∂d V |
2

0

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)

(we use here the fact that c 7→ ∂d V and c 7→ d⃗± are differentiable) and∣∣∣∣∣∣∂γG −

 0
0

−
∫

B(d⃗+,R)∪B(d⃗−,R)
|Q|

2

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

From (2-1) and Theorem 1.6 (for p = +∞) as well as Lemma 2.6 of [14], there exists a universal constant
K > 0 such that

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2 ⩽ K ,

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂d V |

2 ⩽ K ,

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|Q|

2 ⩽ K ,

provided |X | + c′′ is small enough. We deduce that there exists K1, K2, ν0 > 0 such that, for 0< ν ⩽ ν0

and u satisfying the hypotheses of Proposition 1.8 with the parameters λ, ν, dG is invertible in the ball{
(X, c′′, γ ) ∈ R3

: |X | +
|c′′

− c′
|

c′2 + |γ | ⩽ K1ν

}
,
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and there exists X , c′′, γ ∈ R such that

G

 X
c′′

γ

 = 0,

with
|c′′

− c′
|

c′2 + |X | + |γ | ⩽ K2ν. □

2B2. Construction and properties of the perturbation term. We define η a smooth cutoff function with

η(x)=

{
0 for x ∈ B(d⃗±, 2R),
1 for x ∈ R2

\B(±d⃗±, 2R + 1),

which is even in x1. We infer the following result, where the space H exp,s
Q is simply defined by

H exp,s
Q := {ϕ ∈ H 1

loc(R
2,C) : ∥ϕ∥H exp

Q
<+∞ for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2)},

with, for r̃ the minimum of the distances to the zeros of Q, ϕ = Qψ ,

∥ϕ∥
2
H exp

Q
:= ∥ϕ∥

2
H1({r̃⩽10})

+

∫
{r̃⩾5}

|∇ψ |
2
+Re2(ψ)+

|ψ |
2

r̃2 ln2 r̃
,

and Bexp
Q has the same definition as Bexp

Qc
, replacing η̃ by η and Qc by Q.

Lemma 2.8. There exist K1, K2 > 0, ν0 > ν1 > 0 universal constants such that, for u satisfying the
hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if ν ⩽ ν1, then there exists a
function ϕ = Qψ ∈ H exp,s

Q ∩ C1(R2,C) such that, for Q defined in (2-7) with the values of c′′, X, γ ∈ R

from Lemma 2.7,
u − Q = (1 − η)ϕ+ ηQ(eψ − 1).

Furthermore,
Bexp

Q (ϕ)⩾ K1∥ϕ∥
2
H exp

Q

and
∥ϕ∥C1({r̃⩽λ}) + ∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ K2ν.

The goal of this lemma is to decompose the error u − Q into a particular form. In the area {η= 1}, that
is, far from the zeros of Q, the error is written in an exponential form: u = Qeψ. This form was already
used in [14; 15], and it is useful to have a particular form on the cubic error terms. Furthermore, we fix the
parameters of Q such that ϕ satisfies the orthogonality conditions of Corollary 2.6, yielding the coercivity.

Note that we have no smallness on Im(ψ) in {r̃ ⩾ λ}, where ϕ = Qψ . We will simply be able to show
that it is bounded (see (2-11) below), with no a priori bound on it. This lack of smallness is one of the
main difficulties in the proof of Proposition 1.8. Analogously, we show that ϕ ∈ H exp,s

Q , but we have no
good control on ∥ϕ∥H exp

Q
: this quantity might be a priori very large at this point.

Proof. This proof follows some ideas of the proofs of Lemmas 7.2 and 7.3 of [15]. First, in the area
{r̃ ⩽ λ}, the proof is identical to that of Lemma 7.2 of [15] for the existence of ϕ = Qψ ∈ C1({r̃ ⩽ λ},C)

such that u − Q = (1 − η)ϕ+ ηQ(eψ − 1) in {r̃ ⩽ λ}, with ∥ϕ∥C1({r̃⩽λ}) ⩽ Kν (this is a consequence of
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the estimate ∥u − Q∥C1({r̃⩽λ}) ⩽ Kν, obtained using Lemma 2.7). The main idea is that u − Q is small
there (in C1({r̃ ⩽ λ},C)), and the equation on ϕ is a perturbation of the identity for functions ϕ that are
small in C1({r̃ ⩽ λ},C). In particular, since u and Q are symmetric with respect to the x2-axis, ϕ and ψ
are also symmetric with respect to the x2-axis.

We then focus our attention in the area {r̃ ⩾ λ}, where η≡ 1, so that the problem reduces to the equation

u = Qeψ .

By Theorem 1.6 and the hypotheses of Proposition 1.8, there exists ν1 > 0 such that, if ν ⩽ ν1, then, as a
consequence of

ε(λ)⩽ min
(
ν1,

1
10λ2 + 100

)
,

the domain {r̃ ⩾ λ} consists of the complement of the two disjointed disks B(d⃗±, λ), with

|Q| ⩾ 1
2 , |u| ⩾ 1

2 in {r̃ ⩾ λ}

and
deg(Q, ∂B(d⃗±, λ))= deg(u, ∂B(d⃗±, λ))= ±1,

so that u/Q is smooth in {r̃ ⩾ λ} = R2
\ (B(d⃗+, λ)∪ B(d⃗−, λ)), does not vanish and has degree zero on

the two circles ∂B(d⃗±, λ). It then follows from standard lifting theorems (even though {r̃ ⩾ λ} is not
simply connected) that there exists ψ†

∈ C1({r̃ ⩾ λ}) such that eψ
†
= u/Q, as wished. We then notice that

u and Q are symmetric with respect to the x2-axis; thus x 7→ ψ†(−x1, x2) is also a lifting of u/Q in the
connected set {r̃ ⩾ λ}, which implies that there exists q ∈ Z such that ψ†(−x1, x2)= ψ†(x1, x2)+ 2iqπ
in {r̃ ⩾ λ}. Letting x1 = 0, we obtain q = 0; ψ† is also symmetric with respect to the x2-axis.

Recalling that ψ := ϕ/Q in the set {λ ⩽ r̃ ⩽ 2λ} (where Q does not vanish), we see that, since
η ≡ 1 there, the equation u − Q = (1 − η)ϕ+ ηQ(eψ − 1) becomes u = Qeψ. We then infer that there
exists m ∈ Z such that ψ = ψ†

+ 2imπ in the connected annulus B(d⃗+, 2λ) \ B(d⃗+, λ). By symmetry
in x1, this is also true in the annulus B(d⃗−, 2λ) \ B(d⃗−, λ). It then suffices to extend ψ by the formula
ψ = ψ†

+ 2imπ in {r̃ ⩾ λ} to obtain the formula u − Q = (1 −η)ϕ+ηQ(eψ − 1). In the region {r̃ ⩾ λ},
the relation u = Qeψ yields

eRe(ψ)
=

∣∣∣∣ u
Q

∣∣∣∣;
thus, taking the decomposition∣∣∣∣ u

Q

∣∣∣∣ = 1 + |u| − 1 +
(|u| − 1)− (|Q| − 1)

|Q|
,

since there exists a universal constant K ′ > 0 such that in this region∣∣∣∣|u| − 1 +
(|u| − 1)− (|Q| − 1)

|Q|

∣∣∣∣ ⩽ K ′ν,

we deduce that, for ν ⩽ ν1with ν1 small enough,

∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ Kν.
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Since u is a traveling wave and E(u) < +∞, u converges to a constant at infinity (uniformly in all
directions) by [24]. Therefore, u/Q converges to a constant at infinity, and the function ψ converges to a
constant, and thus it is bounded near infinity, that is,

∥ψ∥L∞({r̃⩾λ}) <+∞. (2-11)

Now, we want to show that ϕ ∈ H exp,s
Q . We already know that ϕ satisfies the symmetry,

for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2).

Furthermore, to check that ∥ϕ∥H exp
Q
<+∞, since ϕ ∈ C1(R2,C), we only have to check the integrability

in {r̃ ⩾ λ}, where eψ = u/Q. We check that there, with (2-11),∫
{r̃⩾λ}

|ψ |
2

r̃2 ln2(r̃)
<+∞.

Now, using Theorem 11 of [24] (we recall that E(u) <+∞, E(Q) <+∞),

|eRe(ψ)
− 1| =

∣∣|u| − |Q|
∣∣

|Q|
⩽ 2

(∣∣|u| − 1
∣∣ + ∣∣|Q| − 1

∣∣) ⩽ K (u, c, Q, c′′)

(1 + r)2
,

where K (u, c, Q, c′′) > 0 is a constant depending on u, c, c′′ and Q; hence

|Re(ψ)| ⩽
K (u, c, Q, c′′)

(1 + r)2

and ∫
{r̃⩾λ}

Re2(ψ)⩽
∫

{r̃⩾λ}

K (u, c, Q, c′′)

(1 + r)4
<+∞.

We finally compute

∇ψ =
∇u
u

−
∇Q
Q
,

and with Theorem 11 of [24], in {r̃ ⩾ λ}, we deduce that

(1 + r)2|∇ψ | ⩽ (1 + r)2
∣∣∣∣∇u

u

∣∣∣∣ + (1 + r)2
∣∣∣∣∇Q

Q

∣∣∣∣ ⩽ K (u, c, Q, c′′);

therefore ∫
{r̃⩾λ}

|∇ψ |
2 <+∞.

This concludes the proof that ϕ = Qψ ∈ H exp,s
Q . The fact that Bexp

Q (ϕ)⩾ K∥ϕ∥
2
H exp

Q
is a consequence of

Corollary 2.6 and Lemma 2.7, using in particular that

Bexp
Q (ϕ)= Bexp

Qc′′
(ϕ( · + Xe⃗2)e

−iγ ) and ∥ϕ∥H exp
Q

= ∥ϕ( · + Xe⃗2)e
−iγ

∥H exp
Qc′′
. □

We now compute the equation satisfied by ϕ. By Lemma 2.8, in {0< η < 1} = {2R < r̃ < 2R +1}, we
have |Re(ψ)| = |Re(ϕ/Q)| ⩽ Kν uniformly; thus |eRe(ψ)

− 1| ⩽ Kν uniformly in this region and then
|(1 − η)+ ηeψ | ⩾ 1

2 for ν ⩽ ν1, possibly diminishing ν1 of Lemma 2.8.
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Lemma 2.9. For u satisfying the hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described
above, if ν ⩽ ν1 (where ν1 is defined in Lemma 2.8), then the function ϕ = Qψ defined in Lemma 2.8
satisfies the equation

L Q(ϕ)− i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)= 0,

with L Q the linearized operator around Q: L Q(ϕ)= −1ϕ− ic′′∂x2ϕ− (1 − |Q|
2)ϕ+ 2Re(Qϕ)Q,

S(ψ) := e2Re(ψ)
− 1 − 2Re(ψ),

F(ψ) := Qη(−∇ψ.∇ψ + |Q|
2S(ψ)),

H(ψ) := ∇Q +
∇(Qψ)(1 − η)+ Q∇ψηeψ

(1 − η)+ ηeψ

and NLloc(ψ) is a sum of terms at least quadratic in ψ , localized in the area where η ̸= 1. Furthermore,

|⟨NLloc(ψ), Qψ⟩| ⩽ K∥ NLloc(ψ)∥L2({η<1})∥ϕ∥L∞({η<1}) ⩽ Kν∥ϕ∥
2
H1({η ̸=1})

.

Notice that F(ψ) (the notation X.Y for complex vector fields stands for X1Y1 + X2Y2) contains all the
nonlinear terms far from the zeros of Q, and its structure relies on the fact that the error is written in an
exponential form far from the vortices. Close to the zeros of Q, this particular form does not hold, but it
will not be necessary, since there the error ϕ is small in the C1 norm, whereas, at infinity, it is small only
in a weaker norm.

Proof. The proof is identical to the proof of Lemma 7.5 of [15], and it is in the particular case where all
the speeds are along e⃗2. The proof consists simply of decomposing the equation

0 = (TWc)(u)= TWc(Q + (1 − η)ϕ+ ηQ(eψ − 1))

into the different terms.
The last estimate uses Lemmas 2.8 and 2.7. □

This result shows in particular that ψ ∈ C2({η ̸= 0},C), and we can check with it, as in Lemma 7.3
of [15], that ∥1ψ(1 + r)2∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

We now infer a critical estimate on the differences of the speeds of the problem, namely c (the speed
of u) and c′′ (the speed of Q). The method for the estimate has been used in [15] (we take the scalar
product of the equation of Lemma 2.9 with ∂c Q), but since we have worse estimates on the error term,
we need to be more careful (∥ϕ∥H exp

Q
is not a priori small at this point).

Lemma 2.10. There exist universal constants K > 0, ν1 ⩾ ν2 > 0 (where ν1 is defined in Lemma 2.8),
such that, for u satisfying the hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if
ν ⩽ ν2, then, with ϕ = Qψ defined in Lemma 2.8, we have

|c′′
− c| ⩽ K

√
c′′∥ϕ∥H exp

Q
.

Proof. First, from (2-5) and Lemma 2.7, taking ν > 0 small enough, we have

|c′′
− c| ⩽ |c′′

− c′
| + |c′

− c| ⩽ K c′′. (2-12)
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We will show the estimate

|c′′
− c| ⩽ K

(
c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ ∥ϕ∥

2
H exp

Q

)
+ K |c′′

− c|∥ϕ∥H exp
Q
. (2-13)

This is related to equation (7.13) of [15] (its proof is in Step 1 in Section 7.3.1 of [15]). With both
estimates, we can conclude the proof of this lemma. Indeed, either ∥ϕ∥H exp

Q
⩾

√
c′′, and in that case

|c′′
− c| ⩽ K c′′ ⩽ K

√
c′′∥ϕ∥H exp

Q
,

or ∥ϕ∥H exp
Q

⩽
√

c′′, and then with (2-13),

|c′′
− c| ⩽ K

(
c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ ∥ϕ∥

2
H exp

Q

)
+ K |c′′

− c|∥ϕ∥H exp
Q

⩽ K
√

c′′∥ϕ∥H exp
Q

+ C2
√

c′′|c′′
− c|.

Therefore, for c′′ > 0 small enough such that C2
√

c′′ < 1
2 (which is implied by taking ν > 0 small enough,

independently of λ), we have |c′′
− c| ⩽ K

√
c′′∥ϕ∥H exp

Q
.

We now focus on the proof of (2-13). We take the scalar product of the equation

L Q(ϕ)− i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)= 0,

with c′′2∂c′′ Q. We estimate, as in Section 7.3.1 of [15], that

|⟨L Q(ϕ), c′′2∂c′′ Q⟩| = c′′2
|⟨ϕ, L Q(∂c′′ Q)⟩| = c′′2

|⟨ϕ, i∂x2 Q⟩| ⩽ K c′′2 ln
( 1

c′′

)
∥ϕ∥H exp

Q
.

We recall that

i e⃗2.H(ψ)= i∂x2 Q + i
∂x2(Qψ)(1 − η)+ Q∂x2ψηe

ψ

(1 − η)+ ηeψ
,

and we check that (estimating the local terms in the area where η ̸= 1 by Cauchy–Schwarz and
∥c′′2∂c′′ Q∥L∞(R2) ⩽ K from Theorem 1.6 for p = +∞ and Lemma 2.6 of [14])

|(c − c′′)⟨i e⃗2.H(ψ), c′′2∂c′′ Q⟩ − (c − c′′)⟨i∂x2 Q, c′′2∂c′′ Q⟩|

⩽ K (|c − c′′
|∥ϕ∥H1({η ̸=1}) + |(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩|)

⩽ K (|c − c′′
|∥ϕ∥H exp

Q
+ |(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩|).

We recall from Section 7.3.1 of [15] (using decay estimates on c′′2∂c′′ Q Q and integrations by parts), that

|(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩| ⩽ K |c − c′′
|∥ϕ∥H exp

Q

and, from Proposition 1.2 of [15] (we check easily that the translation and phase on Q instead of Qc′′ do
not change the computation),

(c − c′′)⟨i∂x2 Q, c′′2∂c′′ Q⟩ = (2π + oc′′→0(1))(c − c′′)= (2π + oν→0(1))(c − c′′).

We deduce that, taking ν > 0 small enough (independently of λ), that

|c − c′′
| ⩽ K c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ K |c − c′′

|∥ϕ∥H exp
Q

+ K |⟨NLloc(ψ)+ F(ψ), c′′2∂c′′ Q⟩|.
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We take ν2 > 0 with ν2 ⩽ ν1 such that all the above conditions on the smallness of ν are satisfied if
ν ⩽ ν2. Since NLloc(ψ) contains terms at least quadratic in ϕ, ∥ϕ∥C1({η ̸=1}) ⩽ C3ν from Lemma 2.8 and
∥c′′2∂c′′ Q∥L∞(R2)⩽ K , we obtain that for ν⩽ν2, diminishing ν2 if necessary so that ∥ϕ∥C1({η ̸=1})⩽ Kν⩽1,

|⟨NLloc(ψ), c′′2∂c′′ Q⟩| ⩽ K∥ϕ∥
2
H1({η ̸=1})

⩽ K∥ϕ∥
2
H exp

Q
.

Finally, we estimate, using ∥c′′2∂c′′ Q∥L∞(R2) ⩽ K ,

|⟨Qη∇ψ.∇ψ, c′′2∂c′′ Q⟩| ⩽ K
∫

R2
η|∇ψ |

2
∥c′′2∂c′′ Q∥L∞(R2) ⩽ K∥ϕ∥

2
H exp

Q
.

Similarly, since ∥ηRe(ψ)∥L∞({r̃⩾λ}) ⩽ Kν by Lemma 2.8, diminishing ν2 if necessary, for ν ⩽ ν2, we
have ∥ηRe(ψ)∥L∞({r̃⩾λ}) ⩽ 1, and hence

|Qη|Q|
2S(ψ)| = |Qη|Q|

2(e2Re(ψ)
− 1 − 2Re(ψ))| ⩽ KηRe2(ψ).

Therefore

|⟨Qη|Q|
2S(ψ), c′′2∂c′′ Q⟩| ⩽ K

∫
R2
ηRe2(ψ)∥c′′2∂c′′ Q∥L∞(R2) ⩽ K∥ϕ∥

2
H exp

Q
.

This concludes the proof of (2-13), and therefore of the lemma. □

2B3. Proof of Proposition 1.8 completed. We take u satisfying the hypotheses of Proposition 1.8 for
values of λ∗, λ, ε(λ), ν described above, with ν ⩽ ν2, where ν2 is defined in Lemma 2.10. We want to
take the scalar product of the equation of Lemma 2.9 with ϕ. It is however not clear at this point that
every term is integrable. In Section 7.3 of [15], we took the scalar product of the equation with ϕ+ iγ Q
for some γ ∈ R, using a decay estimate ∥ Im(ψ + iγ )(1 + r)∥L∞({r̃⩽λ}) ⩽ K (u, Q, c, c′′) to justify that
some terms are well-defined, and to do some integration by parts. Here, we need to change our approach
a little. We first require better decay estimates on ψ . At this stage, we know (see Theorem 11 of [24] and
the proof of Lemma 2.8) that

∥1ψ(1 + r)2∥L∞({r̃⩾λ}) + ∥(1 + r)2∇ψ∥L∞({r̃⩾λ})

+ ∥ψ∥L∞({r̃⩾λ}) + ∥(1 + r)2 Re(ψ)∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

Now, let us show the following improvements:

∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ}) + ∥(1 + r)3 Re(∇ψ)∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′). (2-14)

The proof of ∥(1 + r)3|Re(∇ψ)|∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′) is identical to the one for the same result in
Lemma 7.3 of [15] (see the penultimate estimate of its proof). We focus on the estimate on Im(1ψ). In
{r̃ ⩾ λ}, we have u = Qeψ ; therefore,

1ψ = −
1Q
Q

+
1u
u

− 2
∇Q
Q
.∇ψ − ∇ψ.∇ψ.

With the previous estimates and Theorem 11 of [24], we have∥∥∥∥(
−2

∇Q
Q
.∇ψ − ∇ψ.∇ψ

)
(1 + r)4

∥∥∥∥
L∞({r̃⩾λ})

⩽ K (u, Q, c, c′′),
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and since (TWc′′)(Q)= 0,
1Q
Q

= ic′′
∂x2 Q

Q
− (1 − |Q|

2);

therefore, with [24] (E(Q) <+∞),∣∣∣∣Im(
1Q
Q

)∣∣∣∣ ⩽ c′′

∣∣∣∣Re

(
∂x2 Q

Q

)∣∣∣∣ ⩽ K (Q, c′′)

(1 + r)3
.

Similarly, since (TWc)(u)= 0 and E(u) <+∞,∣∣∣∣Im(
1u
u

)∣∣∣∣ ⩽ c
∣∣∣∣Re

(
∂x2u

u

)∣∣∣∣ ⩽ K (u, c)
(1 + r)3

;

thus
∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

We infer, with these two additional estimates on ψ , that we can do the same computations as in the proof
of [15, Lemma 7.4], with γ =0. The only difference is that where we used ∥ Im(ψ+iγ )(1+r)∥L∞({r̃⩾λ})⩽
K (u, Q) we can use (2-14) instead to get the same decay for these terms, with ∥ Im(ψ)∥L∞({r̃⩽λ}) ⩽
K (u, Q). The only two terms where this change is needed are∣∣∣∣∫

R

η|Q|
2 Re(1ψψ̄)

∣∣∣∣ ⩽ ∣∣∣∣∫
R

η|Q|
2 Re(1ψ)Re(ψ)

∣∣∣∣ + ∣∣∣∣∫
R

η|Q|
2 Im(1ψ) Im(ψ)

∣∣∣∣
⩽ K (∥Re(1ψ)(1 + r)2∥L∞({r̃⩾λ})∥Re(ψ)(1 + r)2∥L∞({r̃⩾λ}))

+ K (∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ})∥ Im(ψ)∥L∞({r̃⩾λ}))

and∣∣∣∣∫
R

η|Q|
2 Re(i∂x2ψψ̄)

∣∣∣∣ ⩽ ∣∣∣∣∫
R

η|Q|
2 Re(∂x2ψ) Im(ψ)

∣∣∣∣ + ∣∣∣∣∫
R

η|Q|
2 Im(∂x2ψ)Re(ψ)

∣∣∣∣
⩽ K (∥Re(∂x2ψ)(1 + r)3∥L∞({r̃⩾λ})∥ Im(ψ)∥L∞({r̃⩾λ}))

+ K (∥ Im(∂x2ψ)(1 + r)2∥L∞({r̃⩾λ})∥Re(ψ)(1 + r)2∥L∞({r̃⩾λ})).

We deduce, taking the scalar product of the equation of Lemma 2.9 with ϕ, that

Bexp
Q (ϕ)− ⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩ + ⟨NLloc(ψ), ϕ⟩ + ⟨F(ψ), ϕ⟩ = 0. (2-15)

From Lemma 2.8,
Bexp

Q (ϕ)⩾ K∥ϕ∥
2
H exp

Qc
, (2-16)

and from Lemma 2.9,

|⟨NLloc(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H1({η ̸=1})

⩽ Kν∥ϕ∥
2
H exp

Qc
. (2-17)

Let us now show that
|⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩| ⩽ Kν∥ϕ∥

2
H exp

Qc
. (2-18)

We recall that

i e⃗2.H(ψ)= i∂x2 Q + i
∂x2(Qψ)(1 − η)+ Q∂x2ψηe

ψ

(1 − η)+ ηeψ
.
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We compute, with Lemma 2.10 and Lemma 5.4 of [15],

|(c − c′′)⟨i∂x2 Q, ϕ⟩| ⩽ K
√

c′′∥ϕ∥H exp
Q

|⟨i∂x2 Q, ϕ⟩| ⩽ K
√

c′′ ln
( 1

c′′

)
∥ϕ∥

2
H exp

Q
⩽ Kν∥ϕ∥

2
H exp

Q
.

Indeed, although Q = Qc′′( · − Xe⃗2)e
iγ has a phase that is not present in Lemma 5.4 of [15], since

ϕ = Qψ , we have ∂x2 Qϕ̄ = ∂x2 Q Qψ̄ , which no longer depends on γ .
Now, with ∥ϕ∥H1({η ̸=1}) ⩽ Kν from Lemmas 2.7 and 2.8, we compute easily that∣∣∣∣〈i

∂x2(Qψ)(1 − η)+ Q∂x2ψηe
ψ

(1 − η)+ ηeψ
, ϕ

〉
− ⟨i Q∂x2ψη, ϕ⟩

∣∣∣∣ ⩽ Kν∥ϕ∥H exp
Q

since the left-hand side is supported in {η ̸= 1}; therefore

|⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H exp

Qc
+ |(c − c′′)⟨i Q∂x2ψη, ϕ⟩|.

With the same computations as in Section 7.3.2 of [15] (taking γ ′
= 0), we check that

|⟨i Q∂x2ψη, ϕ⟩| ⩽ K∥ϕ∥
2
H exp

Q
;

therefore, using Lemma 2.7 and (2-12), for ν > 0 small enough,

|(c − c′′)⟨i Q∂x2ψη, ϕ⟩| ⩽ K |c − c′′
|∥ϕ∥

2
H exp

Q
⩽ Kν∥ϕ∥

2
H exp

Q
.

This completes the proof of (2-18). We focus now on the proof of

|⟨F(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H exp

Q
. (2-19)

We compute ∫
R2

Re(Qη(|Q|
2S(ψ))ϕ̄)=

∫
R2

|Q|
4η(e2Re(ψ)

− 1 − 2Re(ψ))Re(ψ),

and since, as already seen at the end of the proof of Lemma 2.10, we have ∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ 1 if
ν ⩽ ν2, we deduce

|e2Re(ψ)
− 1 − 2Re(ψ)| ⩽ K Re2(ψ)

and ∣∣∣∣∫
R2

Re
(
Qη(|Q|

2S(ψ))ϕ̄
)∣∣∣∣ ⩽ K

∫
R2
ηRe3(ψ)⩽ Kν

∫
R2
ηRe2(ψ)⩽ Kν∥ϕ∥

2
H exp

Q
.

We are left with the estimation of
∫

R2 Re(Qη(−∇ψ.∇ψ)ϕ̄), which will be slightly more delicate. First,
we compute, using ϕ = Qψ∫

R2
Re

(
Qη(−∇ψ.∇ψ)ϕ̄

)
= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψψ̄)

= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψ)Re(ψ)−

∫
R2

|Q|
2η Im(∇ψ.∇ψ) Im(ψ)

= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψ)Re(ψ)−2

∫
R2

|Q|
2ηRe(∇ψ). Im(∇ψ) Im(ψ).
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Note that there exists a universal constant K > 0 such that ∥Re(ψ)∥L∞({r̃⩾R}) ⩽ Kν by Lemma 2.8
(considering the regions {r̃ ⩾ λ} with ψ and {r̃ ⩽ λ} with ϕ). Then, we estimate∣∣∣∣− ∫

R2
|Q|

2ηRe(∇ψ.∇ψ)Re(ψ)

∣∣∣∣ ⩽ Kν
∫

R2
η|∇ψ |

2 ⩽ Kν∥ϕ∥
2
H exp

Q
.

Now, by integration by parts (that can be justified as in [15]), we have∫
R2

|Q|
2ηRe(∇ψ). Im(∇ψ) Im(ψ)

= −

∫
R2

∇(|Q|
2)ηRe(ψ). Im(∇ψ) Im(ψ)−

∫
R2

|Q|
2
∇ηRe(ψ). Im(∇ψ) Im(ψ)

−

∫
R2

|Q|
2ηRe(ψ) Im(1ψ) Im(ψ)−

∫
R2

|Q|
2ηRe(ψ) Im(∇ψ). Im(∇ψ),

and with |∇(|Q|
2)| ⩽ K/(1 + r̃)5/2 from equation (2.9) of [15]

(
for σ =

1
2

)
with K > 0 a universal

constant, we have by Cauchy–Schwarz∣∣∣∣∫
R2

∇(|Q|
2)ηRe(ψ). Im(∇ψ) Im(ψ)

∣∣∣∣ ⩽ Kν

√∫
R2
η|∇ψ |

2
∫

R2
η

|ψ |
2

(1 + r̃)5
⩽ Kν∥ϕ∥

2
H exp

Q
,∣∣∣∣∫

R2
|Q|

2ηRe(ψ) Im(∇ψ). Im(∇ψ)

∣∣∣∣ ⩽ Kν
∫

R2
η|∇ψ |

2 ⩽ Kν∥ϕ∥
2
H exp

Qc
.

Since ∇η is supported in {0< η < 1}, we check easily that∣∣∣∣∫
R2

|Q|
2
∇ηRe(ψ). Im(∇ψ) Im(ψ)

∣∣∣∣ ⩽ Kν∥ϕ∥
2
H exp

Q
.

We focus now on the estimation of the last remaining term,
∫

R2 |Q|
2ηRe(ψ) Im(1ψ) Im(ψ). For that

purpose, we define more generally for n ⩾ 1

An :=

∫
R2

|Q|
2ηn Ren(ψ) Im(1ψ) Im(ψ).

Note that we want to estimate A1.

We compute, using (TWc′′)(Q)= 0, that

L Q(ϕ)= Q
(
−1ψ − ic′′∂x2ψ − 2

∇Q
Q
.∇ψ + 2Re(ψ)|Q|

2
)

;

therefore, by Lemma 2.9, in {η ̸= 0},

Im(1ψ)= Im

(
−ic′′∂x2ψ − 2

∇Q
Q
.∇ψ + 2Re(ψ)|Q|

2
+

−i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)
Q

)
= −c′′ Re(∂x2ψ)− 2 Im

(
∇Q
Q
.∇ψ

)
+ Im

(
−i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)

Q

)
.
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We compute, by integration by parts, with Ren(ψ)Re(∂x2ψ)= (1/(n + 1))∂x2(Ren+1(ψ)), that∫
R2

|Q|
2ηn Ren(ψ)c′′ Re(∂x2ψ) Im(ψ)

= −
1

n+1

∫
R2
(∂x2 |Q|

2)ηn Ren+1(ψ)c′′ Im(ψ)

−
n

n+1

∫
R2

|Q|
2∂x2ηη

n−1 Ren+1(ψ)c′′ Im(ψ)−
1

n+1

∫
R2

|Q|
2ηn Ren+1(ψ)c′′ Im(∂x2ψ).

Since |c′′
| ⩽ ν by (2-5) (diminishing ν2 if necessary), Lemma 2.7 and the hypotheses of Proposition 1.8,

∥ϕ∥C1({r̃⩽λ})+∥Re(ψ)∥L∞({r̃⩾λ})⩽ Kν by Lemma 2.8 and |∇(|Q|
2)|⩽ K/(1 + r̃)5/2 from equation (2.9)

of [15], we infer by Cauchy–Schwarz that∣∣∣∣∫
R2
(∂x2 |Q|

2)ηn Ren+1(ψ)c′′ Im(ψ)

∣∣∣∣ ⩽ K c′′νn

√∫
R2
η Im2(ψ)(∂x2 |Q|

2)2
∫

R2
ηRe2(ψ)

⩽ Kνn
∥ϕ∥

2
H exp

Q
, (2-20)∣∣∣∣∫

R2
|Q|

2∂x2ηη
n−1 Ren+1(ψ)c′′ Im(ψ)

∣∣∣∣ ⩽ Kνn
∥ϕ∥

2
H exp

Q
, (2-21)∣∣∣∣∫

R2
|Q|

2ηn Ren+1(ψ)c′′ Im(∂x2ψ)

∣∣∣∣ ⩽ Kνn

√∫
R2
η|∇ψ |

2
∫

R2
ηRe2(ψ)⩽ Kνn

∥ϕ∥
2
H exp

Q
. (2-22)

We deduce that ∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ)c′′ Re(∂x2ψ) Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
. (2-23)

For ∫
R2

|Q|
2ηn Ren(ψ) Im

(
∇Q
Q
.∇ψ

)
Im(ψ),

we compute

Im

(
∇Q
Q
.∇ψ

)
= Re

(
∇Q
Q

)
. Im(∇ψ)+Re(∇ψ). Im

(
∇Q
Q

)
,

and with previous estimates, we check easily that∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ)Re

(
∇Q
Q

)
. Im(∇ψ) Im(ψ)

∣∣∣∣
⩽ (Kν)n

√∫
R2
η|∇ψ |

2
∫

R2
η Im2(ψ)Re2

(
∇Q
Q

)
⩽ (Kν)n∥ϕ∥

2
H exp

Q
, (2-24)

and by integration by parts, with computations similar to those for the proof of (2-23), using∣∣∣∣∇. Im(
∇Q
Q

)∣∣∣∣ ⩽ K
(1 + r̃)3/2

from (2.9) to (2.11) of [15]
(
for σ =

1
2

)
for a universal constant K > 0 and Lemma 2.1, we infer that∣∣∣∣∫

R2
|Q|

2ηn Ren(ψ)Re(∇ψ). Im

(
∇Q
Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
, (2-25)
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and we check easily that∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
NLloc(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
. (2-26)

Now, we look at ∫
R2

|Q|
2ηn Ren(ψ) Im

(
−i(c − c′′)e⃗2.H(ψ)

Q

)
Im(ψ)

for the part of e⃗2.H(ψ) related to the cutoff, the estimation can be done as previously, and we are left
with the estimation of

(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ) Im

(
−i
∂x2 Q

Q
− i∂x2ψ

)
Im(ψ)

= (c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re

(
∂x2 Q

Q
+ ∂x2ψ

)
Im(ψ).

From (2-5) and Lemma 2.7, we have |c − c′′
| ⩽ ν (diminishing ν2 if necessary), and from equation (2.9)

of [15], ∣∣∣∣Re

(
∂x2 Q

Q

)∣∣∣∣ ⩽ K
(1 + r̃)5/2

.

Therefore∣∣∣∣(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re

(
∂x2 Q

Q

)
Im(ψ)

∣∣∣∣
⩽ (Kν)n

√∫
R2
ηRe2(ψ)

∫
R2
ηRe2

(
∂x2 Q

Q

)
Im2(ψ)⩽ (Kν)n∥ϕ∥

2
H exp

Q
, (2-27)

and we estimate ∣∣∣∣(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re(∂x2ψ) Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
(2-28)

by (2-23). For the last remaining term, since

Im

(
F(ψ)

Q

)
= Im(−η∇ψ.∇ψ),

we have∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)= −2

∫
R2

|Q|
2ηn+1 Ren(ψ) Im(∇ψ).Re(∇ψ) Im(ψ).

In particular,∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥η Im(ψ)∥L∞(R2)

∫
R2
η|∇ψ |

2

⩽ (Kν)n∥η Im(ψ)∥L∞(R2)∥ϕ∥
2
H exp

Q
. (2-29)

Combining this result with the previous estimates, this implies that

|An| ⩽ (C6ν)
n(1 + ∥η Im(ψ)∥L∞(R2))∥ϕ∥

2
H exp

Q
(2-30)
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for some universal constant C6 > 0, but that is not enough to show that we have∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
,

since we have no control on ∥η Im(ψ)∥L∞(R2) other than the fact that it is a finite quantity. By integration
by parts (integrating Re(∇ψ)), with computations similar to those for the proof of (2-23), we infer that∣∣∣∣2 ∫

R2
|Q|

2ηn+1 Ren(ψ) Im(∇ψ).Re(∇ψ) Im(ψ)

∣∣∣∣
⩽

∣∣∣∣2 ∫
R2

|Q|
2ηn+1 Ren(ψ) Im(1ψ)Re(ψ) Im(ψ)

∣∣∣∣ + (Kν)n∥ϕ∥
2
H exp

Q

⩽ 2|An+1| + (Kν)n∥ϕ∥
2
H exp

Q
.

Combining this result with estimates (2-20) to (2-29), we deduce that, for some universal constant C7 > 0,

|An| ⩽ 2|An+1| + (C7ν)
n
∥ϕ∥

2
H exp

Q
.

Therefore, by induction,

|A1| ⩽ 2n
|An| +

n−1∑
k=1

(2C7ν)
k
∥ϕ∥

2
H exp

Q
.

Hence, with (2-30),

|A1| ⩽

(
(2C6ν)

n(1 + ∥η Im(ψ)∥L∞(R2))+

n−1∑
k=1

(2C7ν)
k
)

∥ϕ∥
2
H exp

Q
.

Taking ν > 0 such that ν ⩽ ν2 and 2C6ν <
1
2 and 2C7ν <

1
2 , then n ⩾ 1 large enough (depending on

∥η Im(ψ)∥L∞(R2)) such that
1

2n−1 (1 + ∥η Im(ψ)∥L∞(R2))⩽ 1,

we conclude that

|A1| ⩽

(
2C6 + 2C7

n−2∑
k=0

1
2k

)
ν∥ϕ∥

2
H exp

Q
⩽ 2(C6 + 2C7)ν∥ϕ∥

2
H exp

Q
.

This concludes the proof of (2-19).
Combining estimates (2-16) to (2-19) in (2-15), we deduce that

(1 − C8ν)∥ϕ∥
2
H exp

Q
⩽ 0

for some universal constant C8> 0; therefore, taking ν > 0 small enough such that the previous constraints
are satisfied and C8ν <

1
2 , we have ∥ϕ∥H exp

Q
= 0. From Lemma 2.10, we deduce c′′

= c. The proof is
complete.

2C. Proof of Corollary 1.10. Take a function u satisfying the hypotheses of Corollary 1.10. Then, u is
even in x1 and it has finite energy. Furthermore, by Theorem 1.6 (for p = +∞),

∥u−V1( ·−dce⃗1)V−1( ·+dce⃗1)∥L∞(R2)⩽ ∥u−Qc∥L∞(R2)+∥Qc−V1( ·−dce⃗1)V−1( ·+dce⃗1)∥L∞(R2)

⩽ ε+oc→0(1).
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Next,

∥|u| − 1∥L∞({r̃d⩾λ}) ⩽ ∥u − Qc∥L∞({r̃d⩾λ}) + ∥|Qc| − 1∥L∞({r̃d⩾λ}) ⩽ ε+
K
λ

by equation (2.6) of [15]. We now fix the parameters. We first choose λ ⩾ λ∗ large enough so that
K/λ⩽ 1/(2λ∗). Then, we fix c0 > 0 and ε > 0 so small that ε ⩽ 1/(2λ∗), |cdc − 1|⩽ ε(λ), dc ⩾ 1/ε(λ)
and ε+ oc→0(1)⩽ ε(λ) for c < c0. Therefore, u satisfies the hypotheses of Proposition 1.8 with d = dc,
and this concludes the proof.

3. Properties of quasiminimizers of the energy and proof of Theorem 1.11

3A. Tools for the vortex analysis. We list in this section some results useful for the analysis of traveling
waves for small speeds or, equivalently, large momentum, with vorticity. We shall denote by ⟨u | v⟩ =

Re(uv̄) the real scalar product of the complex numbers u, v. The Jacobian (or vorticity)

Jv := ⟨i∂1v | ∂2v⟩ =
1
2∂1⟨iv | ∂2v⟩ −

1
2∂2⟨iv | ∂1v⟩

is then relevant, and we shall use the following concentration property of the Jacobian. We define

Eε(u, �) :=
1
2

∫
�

|∇u|
2
+

1
2ε2 (1 − |u|

2)2 dx .

Theorem 3.1 (concentration of the Jacobian [2; 27]). Let M0 > 0, R > 0 and β ∈ ]0, 1]. Then, for every
δ > 0, there exists ε0 > 0 (depending only on β, δ, R and M0) such that, for any 0< ε < ε0, and for any
u ∈ H 1(B(0, 4R)) such that Eε(u, B(0, 4R)) ⩽ M0|ln ε| and |u| ⩾ 1

2 in B(0, 4R) \ B(0, R), there exist
N ∈ N, y1, . . . , yN ∈ B(0, R), d1, . . . , dN ∈ Z such that∥∥∥∥Ju −π

N∑
k=1

dkδyk

∥∥∥∥
[C0,β

c (B(0,4R))]∗
⩽ δ

and

π

N∑
k=1

|dk | ⩽
Eε(u, B(0, 4R))

|ln ε|
+ δ.

Finally, we may choose the points yk , 1 ⩽ k ⩽ N , in
{
|u| ⩽ 1

2

}
.

Here, we recall that the space [C0,β
c (B(0, R))]∗ is endowed with the dual norm associated with

∥ζ∥C0,β
c (B(0,R)) = sup

x ̸=y∈B(0,R)

|ζ(x)− ζ(y)|
|x − y|β

for ζ ∈ C0,β(B(0, R)) compactly supported.

Remark 3.2. The above-mentioned theorem is actually Lemma 3.3 in [8]. It is related to the works [2; 27],
which both correspond to the limit ε→ 0, whereas we have here a statement (obtained by compactness)
at fixed ε. The hypothesis “|u| ⩾ 1

2 in B(0, 4R) \ B(0, R)” ensures that the vortices do not approach the
boundary ∂B(0, 4R).
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Theorem 3.3 (clearing-out theorem [8]). Let M0 > 0 and σ > 0 be given. Then there exist ϵ0 > 0 and
η > 0, depending only on M0 and σ , such that, if R0 = 1/(1 + M0), if U : B(0, R0)→ C solves

1U + ic∂2U +
1
ϵ2 U (1 − |U |

2)= 0 (3-1)

in B(0, R0)⊂ R2, with ϵ < ϵ0, |c| ⩽ M0|ln ϵ|, and

Eϵ(U, B(0, R0))⩽ η|ln ϵ|,
then

|U (0)| ⩾ 1 − σ.

For the elliptic PDE

1U +
1
ε2U(1 − |U |

2)= 0, (3-2)

that is, without the transport term i∂2U , this result has been shown in two dimensions in [6] for minimizing
maps, and in [4] for the Ginzburg–Landau equation with magnetic field. In higher dimensions, see [7; 31]
for (3-2) and [8] for an equation including the Ginzburg–Landau equation with magnetic field and (3-1).
One may use the change of unknown

U(x) := (1 + c2ϵ2/4)−1/2eicx2/2U (x), ε = ϵ(1 + c2ϵ2/4)−1/2,

to transform (3-2) without the transport term into (3-1) with the transport term. However, the assumptions
Eϵ(U, B(0, R0))⩽ η|ln ϵ| and Eε(U, B(0, R0))⩽ η|ln ε| are not equivalent (due to the extra phase term).

3B. Vortex structure for quasiminimizers of E at fixed P. In this section, some 30 > 0 is fixed and we
consider a large momentum p and up such that

E(up)⩽ 2π ln p+30 (3-3)

and such that there exists cp > 0 (depending on up) such that

0 = (TWcp)(up)= −icp∂x2up −1up − (1 − |up|
2)up.

It then follows from [24] (see Theorem 2.4) that we may assume, using the phase-shift invariance, that
up → 1 at spatial infinity. In particular, we have

p = P2(up)=
1
2

∫
R2

⟨i∂2up|up − 1⟩ dx .

Our goal is to show that up satisfies the hypotheses of Proposition 1.8. We shall follow [5; 8] in order
to analyze the vortex structure of up.

3B1. Localizing the vorticity set at scale x/p. We define the following rescaling ûp of up:

ûp(x̂)= up(px̂). (3-4)
Therefore, ûp solves

1ûp + icpp∂2ûp + p2ûp(1 − |ûp|
2)= 0, (3-5)

which is a particular case of (3-1) with
ϵ = 1/p, c = cpp.
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The universal L∞ bound on the gradient of Corollary 2.3 reads now

∥∇ûp∥L∞(R2) ⩽ Kp. (3-6)

We shall have, in the end, cp ∼ 1/p. The first step provides a rough upper bound for the speed cp (the
Lagrange multiplier for the minimization problem Emin(p)).

Step 1: There exists p1 = p1(30) such that, for p⩾ p1, we have

0< cp ⩽
2E(up)

p
⩽ 13

ln p
p
.

In particular, cp ⩽ 1
2 and ln p⩽ 2|ln cp|.

We shall use the Pohozaev identity (2-2), that is,

1
2

∫
R2
(1 − |up|

2)2 dx = cpp.

At this stage, we only have the rough upper bound 0 ⩽ 1
4

∫
R2(1 − |up|

2)2 dx ⩽ E(up) ⩽ 2π ln p+30,
which concludes this step.

Another argument we could use for minimizers is that we know from [10] (see also [13]) that 0 ⩽ cp ⩽
d+Emin(p)⩽ Emin(p)/p.

Step 2: There exists p2 > p1, R∗ ⩾ 1
8 and n∗ ∈ N, depending only on 30, such that, if p > p2, there

exist np points ẑp, j , 1 ⩽ j ⩽ np, with np ⩽ n∗ such that
{
|ûp(x̂)| ⩽ 1

2

}
⊂

⋃np

j=1 B(ẑp, j , R∗) and the disks
B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np, are mutually disjoint.

We apply Theorem 3.3 with ϵ = 1/p, c = cpp and σ =
1
2 to ûp. This is possible in view of the upper

bound on 0 ⩽ cpp⩽ 13 ln p of Step 1 (that is, M0 = 13). We then let R0 := 1/(1 + 13)=
1

14 for p⩾ p1

and denote by η1/2 the positive constant η given by Theorem 3.3.
We now proceed in this way: we choose (if it exists) some ẑp,1 ∈ R2 such that |ûp(ẑp,1)| < 1

2 . If{
|ûp|⩽

1
2

}
⊂ B(ẑp,1, 2R0), then we stop. If not, we choose ẑp,2 ∈ R2

\B(ẑp,1, 2R0) such that |ûp(ẑp,2)|< 1
2 .

If
{
|ûp|⩽

1
2

}
⊂

⋃2
j=1 B(ẑp, j , 2R0), then we stop, if not, we continue. This process ends in a finite number

of steps (depending only on K0) since, by construction, the disks B(ẑp, j , R0), 1 ⩽ j ⩽ n, are pairwise
disjoint. Hence, by Theorem 3.3, we have

2π ln p+ K0 ⩾ E(up)= E1/p(ûp)⩾
n∑

j=1

E1/p(ûp, B(ẑp, j , R0))⩾ n × η1/2 ln p,

which implies

n ⩽
2π ln p+ K0

η1/2 ln p
⩽

7
η1/2

for p large enough, say p⩾ p2.
At this stage, the disks B(ẑp, j , 2R0), 1 ⩽ j ⩽ np, cover the vorticity set

{
|ûp| ⩽

1
2

}
, but the disks

B(ẑp, j , 8R0) may not be pairwise disjoint. To get this property, we argue as in [6, Theorem IV.1]. Let
us recall the idea: if the disks B(ẑp, j , 8R0), 1 ⩽ j ⩽ np, are pairwise disjoint, then we are done with
R∗ = 2R0. If not, then we have, for instance, |ẑp,1 − ẑp,2| ⩽ 16R0. We then remove the disk B(ẑp,1, 8R0)
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from the list and set R1 := 17R0. The disks B(ẑp, j , R1), 2 ⩽ j ⩽ np, cover
⋃

1⩽ j⩽np
B(ẑp, j , 2R0), and

hence the vorticity set
{
|ûp|⩽

1
2

}
, and their number has decreased. In a finite number of steps (depending

only on K0), we obtain the conclusion. The radius R∗ is necessarily ⩽ R0 × 17np ⩽ R0 × 17n∗ .
Similar arguments are given in [8], whereas in [5] the vorticity set is included in some disks of radii of

order cγp , which requires some extra work.

Step 3: We have

p2
∫

R2
(1 − |ûp|

2)2 dx̂ = op→+∞(ln p).

This follows exactly as in [8] (see Proposition A.1 in the Appendix there). Notice that the result in [8] is
stated for the potential on a compact set in a domain �, but it holds as well in the entire plane.

We then define, as in [8], the function û′
p : R2

→ C by

û′

p(x̂) :=



ûp(x̂) if x̂ ∈
⋃np

j=1 B(ẑp, j , 2R∗),

ûp(x̂)
|ûp(x̂)|

if x̂ ̸∈
⋃np

j=1 B(ẑp, j , 3R∗),(
3 −

|x̂− ẑp, j |

R∗

)
ûp(x̂)+

(
−2 +

|x̂− ẑp, j |

R∗

) ûp(x̂)
|ûp(x̂)|

if x̂ ∈ B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗)

for some 1 ⩽ j ⩽ np (this last formula is valid since the disks B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np, are mutually
disjoint).

Step 4: We have, as p → +∞,

E1/p(û′

p)⩽ 2π ln p+ o(ln p).

Letting �R :=
⋃np

j=1 B(ẑp, j , R), we have∫
R2
(1 − |û′

p|
2)2 dx̂ =

∫
�2R∗

(1 − |ûp|
2)2 dx̂ +

∫
�3R∗\�2R∗

(1 − |û′

p|
2)2 dx̂ .

We notice that in �3R∗
\�2R∗

, say for x̂ ∈ B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗), we have

|û′

p(x̂)| =

(
3 −

|x̂ − ẑp, j |

R∗

)
|ûp(x̂)| +

(
−2 +

|x̂ − ẑp, j |

R∗

)
∈ [|ûp(x̂)|, 1];

hence |1 − |û′
p(x̂)|

2
| ⩽ |1 − |ûp(x̂)|2| and thus∫
R2
(1 − |û′

p|
2)2 dx̂ ⩽

∫
�2R∗

(1 − |ûp|
2)2 dx̂ +

∫
�3R∗\�2R∗

(1 − |ûp|
2)2 dx̂

=

∫
�3R∗

(1 − |ûp|
2)2 dx̂ . (3-7)

For the kinetic term, we have

|∇û′

p(x̂)|
2
= |∇ûp(x̂)|2
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if x̂ ∈�2R∗
. Outside

⋃np

j=1 B(ẑp, j , R∗) we have |ûp|⩾
1
2 and we may then lift, at least locally, ûp = Aeiφ

and get
|∇ûp|

2
= A2

|∇φ|
2
+ |∇ A|

2.

If x̂ ̸∈�3R∗
, then, by (3-6),

|∇û′

p|
2
= |∇φ|

2
= A2

|∇φ|
2
+

1 − A2

A2 × A2
|∇φ|

2 ⩽ |∇ûp|
2
+ 4Kp|1 − A2

| × |∇ûp|

since A = |ûp| ⩾
1
2 outside �R∗

. Finally, in B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗) (for some unique 1 ⩽ j ⩽ np),
we have

|∇û′

p|
2
= |∇φ|

2
((

3−
|x̂−ẑp, j |

R∗

)
A+

(
−2+

|x̂−ẑp, j |

R∗

))2

+

∣∣∣∣∇[(
3−

|x̂−ẑp, j |

R∗

)
A+

(
−2+

|x̂−ẑp, j |

R∗

)]∣∣∣∣2

.

We then use that, since |ûp(x̂)| ⩾ 1
2 and letting θ = 3 − |x̂ − ẑp, j |/R∗ ∈ [0, 1],

|∇φ|
2
[(

3 −
|x̂ − ẑp, j |

R∗

)
A +

(
−2 +

|x̂ − ẑp, j |

R∗

)]2

= A2
|∇φ|

2
×

1
A2 [1 + θ(A − 1)]2 ⩽ A2

|∇φ|
2
× (1 + K |A2

− 1|)

⩽ A2
|∇φ|

2
+ Kp|∇ûp| × |A2

− 1|,

by Corollary 2.3. On the other hand, since | · | is 1-Lipschitz continuous,∣∣∣∣∇[(
3 −

|x̂ − ẑp, j |

R∗

)
A +

(
−2 +

|x̂ − ẑp, j |

R∗

)]∣∣∣∣2

⩽
1
R2

∗

|1 − A|
2
+ |∇ A|

2
+

2
R∗

|1 − A| × |∇ A|

⩽ |∇ A|
2
+ K (A2

− 1)2 + K |∇ A| × |A2
− 1|.

Therefore, by the Cauchy–Schwarz inequality, for some absolute constant K > 0,∫
R2

|∇û′

p|
2 dx̂ ⩽

∫
R2

|∇ûp|
2 dx̂ + K

(∫
R2

p2(1 −|ûp|
2)2 dx̂

)1/2(∫
R2

|∇ûp|
2 dx̂

)1/2

+ K
∫

R2
(1 −|ûp|

2)2 dx̂ .

Combining this with (3-7) yields

E1/p(û′

p)⩽ Ep(ûp)+ K
√

Ep(ûp)

(∫
R2

p2(1 − |ûp|
2)2 dx̂

)1/2

+ K
Ep(ûp)

p2 ⩽ 2π ln p+ o(ln p),

by the upper bound (3-3) and the estimate for the potential term of Step 3.

Step 5: We claim that for any δ ∈
]
0, π2

[
, there exist p†

δ > p2 such that, for all p⩾ p†
δ , we are in one of the

following cases:

(I) For any 1 ⩽ j ⩽ np,
∥J û′

p∥[C0,1
c (B(ẑp, j ,4R∗))]∗

⩽ δ.

(II) There exist (up to a relabeling) two points ŷp,± ∈ R2, depending on ûp, such that

max
1⩽ j⩽np

∥J û′

p −π(δŷp,+ − δŷp,−)∥[C0,1
c (B(ẑp, j ,4R∗))]∗

⩽ δ.
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We apply Theorem 3.1 to û′
p on each disk B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np. This yields points ŷp, j,k ∈{

|ûp| ⩽
1
2

}
⊂ B(ẑp, j , R∗)⊂ B(ẑp, j , 4R∗) and integers dp, j,k ∈ Z, 1 ⩽ k ⩽ Np, j , such that∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδŷp, j,k

∥∥∥∥
[C0,1

c (B(ẑp, j ,4R∗))]∗
⩽ δ (3-8)

and

π

Np, j∑
k=1

|dp, j,k | ⩽
E1/p(û′

p, B(ẑp, j , 4R∗))

ln p
+ δ. (3-9)

By summing the inequalities (3-9) over 1 ⩽ j ⩽ np, we infer

π

np∑
j=1

Np, j∑
k=1

|dp, j,k | ⩽
E1/p(û′

p, �4R∗
)

ln p
+ δ ⩽ 2.5π

by using δ < π
2 and Step 3, and for p large enough. Therefore,

np∑
j=1

Np, j∑
k=1

|dp, j,k | ⩽ 2 (3-10)

and two cases may occur: all the integers dp, j,k are zero (this is case (I)) or at least one of the integers
dp, j,k is not zero.

In addition, we have, for 1 ⩽ j ⩽ np,
Np, j∑
k=1

dp, j,k = deg(ûp, ∂B(ẑp, j , 3R∗)). (3-11)

Indeed, since |û′
p| = 1 on B(ẑp, j , 4R∗) \ B(ẑp, j , 3R∗), we have J û′

p = 0 there. Therefore, by fixing
χ ∈ C∞

c (B(0, 4R∗)) such that χ ≡ 1 on B(0, 3R∗), we deduce∣∣∣∣Np, j∑
k=1

dp, j,k − deg(ûp, ∂B(ẑp, j , 3R∗))

∣∣∣∣ =

∣∣∣∣∫
B(ẑp, j ,3R∗)

Np, j∑
k=1

dp, j,kδŷp, j,k dx̂ −
1
π

∫
B(ẑp, j ,4R∗)

J û′

p dx̂
∣∣∣∣

=
1
π

∣∣∣∣∫
B(ẑ j

p,4R∗)

χ(x̂ − ẑp, j )

( Np, j∑
k=1

dp, j,kδŷp, j,k − J û′

p

)
dx̂

∣∣∣∣
⩽ 1
π

∥χ∥ ×

∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδŷp, j,k

∥∥∥∥
[C0,1

c (D(ẑp, j ,4R∗))]∗

by (3-8). Since the left-hand side is an integer and the right-hand side is ⩽ 1
2 provided p⩾ p2,1(δ,30),

(3-11) follows.
We finally notice that the degree of û′

p on some large circle ∂B(0, R) (with R ≫ max1⩽ j⩽np |ẑp, j |) is
zero, for otherwise û′

p (and ûp) would have infinite kinetic energy. Therefore,

0 =

np∑
j=1

deg(ûp, ∂B(ẑp, j , 3R∗))=

np∑
j=1

Np, j∑
k=1

dp, j,k .
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Combining this with (3-10), we deduce that if we are not in case (I), then one of the dp, j,k must be equal
to +1 and another one must be equal to −1, which is case (II).

Notice that for case (II), if B(ẑp, j , 4R∗) contains neither yp,+ nor yp,−, then ∥J û′
p∥[C0,1

c (B(ẑp, j ,4R∗))]∗
⩽ δ.

As in [5], we now relate the location of the points ŷp,± to the momentum P(ûp).

Step 6: Case (I) does not occur for p sufficiently large, say p⩾ p3. In addition, we have

1 = P(ûp)= π((ŷp,+)1 − (ŷp,−)1)+ o(1).

First, we have, by computations similar to those of Step 3, ûp = Aeiϕ locally outside �R∗
; hence

⟨i ûp | ∇ûp⟩ = A2
∇ϕ and then, outside �3R∗

,

⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩ = A2
∇ϕ− ∇ϕ =

A2
− 1
A

× A∇ϕ.

In B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗), we obtain

|⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩| = |A2
∇ϕ− |û′

p|
2
∇ϕ| ⩽

|A2
− 1|

A
× |A∇ϕ|,

since |û′
p| ∈ [|ûp|, 1]. Therefore,

∥⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩∥L1(R2) ⩽ K
∫

R2\�2R∗

|1 − |ûp|
2
| × |∇ûp| dx̂ ⩽

K
p

E1/p(ûp)⩽ K
ln p
p
. (3-12)

Following [5; 8], we write

1 =
P(up)

p
= P(ûp)=

1
2

∫
R2

⟨i∂2ûp | ûp − 1⟩ dx̂

=
1
2

∫
R2

⟨i∂2û′

p | û′

p − 1⟩ dx̂ +
1
2

∫
R2
(⟨i∂2ûp | ûp − 1⟩ − ⟨i∂2û′

p | û′

p − 1⟩) dx̂ .

For the second integral, we write that, on the one hand,∣∣∣∣∫
R2
(⟨i ûp | ∂2ûp⟩ − ⟨i û′

p | ∂2û′

p⟩) dx̂
∣∣∣∣ ⩽ ∥⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩∥L1(R2) ⩽ K
ln p
p

→ 0

when p → +∞; on the other hand, by the decays given in Theorem 2.4,∣∣∣∣∫
R2
(⟨i∂2ûp | 1⟩ − ⟨i∂2û′

p | 1⟩) dx̂
∣∣∣∣ = lim

r→+∞

∣∣∣∣∫
∂B(0,r)

ν2 Im(ûp − û′

p) dℓ
∣∣∣∣

⩽ lim
r→+∞

∫
∂B(0,r)

|A − 1| dℓ= lim
r→+∞

O(1/r)= 0.

We then integrate by parts to get

1
2

∫
R2

⟨i∂2û′

p | û′

p − 1⟩ dx̂ =
1
2

∫
R2
∂1 x̂1⟨i∂2û′

p | û′

p − 1⟩ − ∂2 x̂1⟨i∂1û′

p | û′

p − 1⟩ dx̂ =

∫
R2

J û′

p x̂1 dx̂ .
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The integration by parts is justified by the algebraic decay at infinity given in Theorem 2.4:

x̂1⟨i∂2û′

p | û′

p − 1⟩ = O
(

1
|x |2

)
.

Then, since J û′
p is supported in �R∗

, we obtain∫
R2

x̂1 J û′

p dx̂ =

np∑
j=1

∫
B(ẑp, j ,3R∗)

x̂1 J û′

p dx̂

=

np∑
j=1

∫
B(ẑp, j ,3R∗)

(x̂1 − (ẑp, j )1)J û′

p dx̂ +

np∑
j=1

ẑp, j,1

∫
B(ẑp, j ,3R∗)

J û′

p dx̂ .

We then fix χ ∈ C∞
c (B(0, 4R∗)) such that χ ≡ 1 on B(0, 3R∗). Next, for any 1 ⩽ j ⩽ np, we write∫

B(ẑp, j ,3R∗)

(x̂1 − (ẑp, j )1)J û′

p dx̂

=

∫
B(ẑp, j ,4R∗)

(x̂1 − (ẑp, j )1)χ(x̂ − ẑp, j )J û′

p dx̂

=

∫
B(ẑp, j ,4R∗)

(x̂1 − (ẑp, j )1)χ(x̂ − ẑp, j )

(
J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

)
dx̂ +π

Np, j∑
k=1

dp, j,k((yp, j,k)1 − (ẑp, j )1).

We now estimate the first integral (actually, a duality bracket) by using Step 5:∣∣∣∣∫
B(ẑp, j ,2R∗)

(x̂1 − (ẑp, j )1)χ( · − ẑp, j )

(
J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

)
dx̂

∣∣∣∣
⩽ ∥(x̂1 − (ẑp, j )1)χ( · − ẑp, j )∥C0,1

c (B(ẑp, j ,2R∗))

∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

∥∥∥∥
[C0,1

c (B(ẑp, j ,2R∗))]∗

⩽ K o(1).

As a consequence of (3-11), which implies, for each 1 ⩽ j ⩽ np,
Np, j∑
k=1

dp, j,k = deg(ûp, ∂B(ẑp, j , 3R∗))= deg(û′

p, ∂B(ẑp, j , 3R∗))=

∫
B(ẑp, j ,3R∗)

J û′

p dx̂,

we infer, after some cancellation,∣∣∣∣P(ûp)−π

np∑
j=1

Np, j∑
k=1

dp, j,k(yp, j,k)1

∣∣∣∣ ⩽ K
ln p
p

+ n∗K o(1). (3-13)

Since P(ûp) = 1, it follows that for p large enough, we cannot be in Case (I), and the conclusion is a
recasting of (3-13).

Step 7: There exists p4 large such that, for p⩾ p4, we have
{
|ûp| ⩽

1
2

}
⊂ B

(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

)
and

deg
(
u, ∂B

(
ŷp,±, 3

20

))
= ±1.

From Step 6, we know that 1 = P(ûp)= π((ŷp,+)1 − (ŷp,−)1)+ o(1); hence the two points ŷp,± are
far away from each other:

|ŷp,+ − ŷp,−| ⩾ 4
10
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since 1

π
≈ 0.318< 4

10

)
for p large enough (but they may be, at this stage, very far away from each other).

By applying Theorem 1.1(i) of [2] or Theorem 3.1 of [27] (this is not very far from Theorem 3.1), since
J ûp(ŷp,± + · )→ ±πδ0 weakly, we deduce

E1/p
(
ûp, B

(
ŷp,±, 1

10

))
⩾ (π + o(1)) ln p;

hence, by the upper bound (3-3),

E1/p
(
ûp,R2

\
(
B

(
ŷp,+, 1

10

)
∪ B

(
ŷp,−, 1

10

)))
⩽ o(ln p),

and this in turn implies, by the clearing-out theorem (Theorem 3.3), that if p is large enough, say p⩾ p4,
then,

for all x̂ ∈ R2
\
(
B

(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

))
, |ûp(x̂)| ⩾ 3

4 ,

as wished. In particular, ẑp,± ∈ B
(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

)
.

We emphasize that at this stage, we have |ŷp,+− ŷp,−|≳ 1, but we do not know whether |ŷp,+− ŷp,−|≲ 1
or |ŷp,+ − ŷp,−| ≫ 1. We may now take advantage of the fact that ûp is by hypothesis symmetric with
respect to the x2-axis (i.e., ûp(−x̂1, x̂2)= ûp(x̂1, x̂2)), so that, possibly translating along the x2-axis, we
may assume

(ŷp,−)2 = (ŷp,+)2 = 0 and − (ŷp,−)1 = (ŷp,+)1 →
1

2π . (3-14)

If we do not assume a priori the symmetry in x1, then we may remove the translation invariance by
imposing ŷp,+ + ŷp,− = 0, and then we may still show that ŷp,+ = −ŷp,− →

( 1
2π , 0

)
by using the Hopf

differential as in [6, Chapter VII].

3B2. Strong convergence outside the vorticity set at scale x/p. We start with a W 1,p
loc bound at scale x̂ for

1 ⩽ p < 2.

Step 1: For any 1 ⩽ p < 2, there exists C p such that, for any X̂ ∈ R2, we have∫
B(X̂ ,1)

|∇ûp|
p dx̂ ⩽ C p.

We shall adapt the proof of [8] (see the proof of Theorem 4, Step 3, p. 83) to the two-dimensional
case. Actually, the only modification to make in the estimate is to replace (C.26) there by the standard
convolution

ψ0,i (x̂)= −
ln r
2π

⋆ω0,i (x̂)= −
1

2π

∫
Supp(ω0,i )

ω0,i (ŷ) ln |x̂ − ŷ| d ŷ,

and then use, for |x̂ − ŷp,±| ⩾ 3R∗, that

|∇ψ0,±(x̂)| =

∣∣∣∣ 1
2π

∫
Supp(ω0,±)

ω0,i (ŷ)∇x̂ ln |x̂ − ŷ| d ŷ
∣∣∣∣

⩽ 1
2π

∥ω0,±∥
[C0,1

c (B(ŷp,±,2R∗))]∗
∥(x̂ − ŷ)/|x̂ − ŷ|

2
∥C0,1(B(ŷp,±,3R∗))

⩽ K
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(the estimate ∥ψ0,±∥Ck(R2\B(ŷp,±,3R∗))
⩽ Ck does not hold since the two-dimensional fundamental solution

(ln r)/(2π) goes to +∞ at spatial infinity, but ∥∇ψ0,±∥Ck(R2\B(ŷp,±,3R∗))
⩽ Ck is true). The rest of the

proof remains unchanged.

Step 2: For any X̂ ∈ R2
\
(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
, we may write ûp = Aeiφ in B

(
X̂ , 1

20

)
, with, for

any k ∈ N, ∥∥∥∥2(1 − A)−
cp
p
∂2φ

∥∥∥∥
Ck(B(X̂ ,1/20))

⩽
Ck

p2 , ∥∇φ∥Ck(B(X̂ ,1/20)) ⩽ Ck, (3-15)

for some constant Ck independent of X̂ .
The proof (relying on Step 1) follows the lines of the proof of Step 7 (p. 48) of Theorem 1 in [8] and

is omitted.

In view of the upper bound of Step 1 of Section 3B1, we infer the uniform estimate

∥1 − |ûp|∥Ck(B(X̂ ,1/20)) ⩽ Ck
ln p
p2 (3-16)

for X̂ ∈ R2
\
(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
.

3B3. Lower bound for the energy and upper bound for the potential energy.
Step 1: Upper bound for the potential. We claim that∫

R2
|∇|ûp||

2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30),∫
R2\(B(ŷp,+,2/10)∪B(ŷp,−,2/10))

|∇ûp|
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30).

The proof of this upper bound will be a direct consequence of the lower bounds established in [43]
(see Theorems 2 and 3 there).

Theorem 3.4 [43]. Let � ⊂ R2 be a bounded smooth domain. Assume that u ∈ H 1(�,C) and that
u|∂� ∈ C1(∂�,S1). Let δ ∈ ]0, 1[.

(i) There exists a constant 31, depending on � and ∥u|∂�∥C1 , such that

1
2

∫
�

|∇u|
2
+

1
2δ2 (1 − |u|

2)2 ⩾ π |deg(u|∂�, ∂�)| ln(1/δ)−31.

(ii) If , moreover, for some constant 32, we have

1
2

∫
�

|∇u|
2
+

1
2δ2 (1 − |u|

2)2 ⩽ π |deg(u|∂�, ∂�)| ln(1/δ)+32,

then
1
2

∫
�

|∇|u||
2
+

1
2δ2 (1 − |u|

2)2 ⩽ C(�,32, ∥u|∂�∥C1).

We shall apply this result with δ = 1/p≪ 1, �= B
(
ŷp,±, 2

10

)
and u = ûp. In view of the upper bound

(3-3) on the energy of ûp and since deg
(
ûp, ∂B

(
ŷp,±, 2

10

))
= ±1, this yields∫

B(ŷp,±,2/10)
|∇ûp|

2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩾ π ln p−31,
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B(ŷp,±,2/10)

|∇|ûp||
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30).

We conclude by using once again the upper bound (3-3). Actually, ûp does not belong to C1
(
∂B

(
ŷp,±, 2

10

))
,

but it is easy, using (3-15), to construct an extension of ûp on B
(
ŷp,±, 3

10

)
with the required properties by

linear interpolation (see, for instance the lemma on p. 395-396 in [43]).

Step 2: There exists σ0 > 0 such that we have, for R ⩾ 1,∫
R2\B(0,R)

|∇ûp|
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽
C(30)

Rσ0
.

The proof is similar to that of Lemma 5.1 (p. 50) in [8], and relies on the fact that |ûp| ⩾
1
2 in

R2
\ B(0, 1) (hence we may write the PDE in terms of modulus and phase), and the upper bound in

R2
\

(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
⊃ R2

\ B(0, 1) of the energy of ûp (in [8], this last upper bound was
derived differently).

3B4. Convergence on the scale x/p. By Step 1 of Section 3B3 and (3-14), we have, as p → +∞,

ŷp,± → ŷ∞,± := ±(1/(2π), 0) ∈ R2. (3-17)

We then define (identifying R2 and C)

û∞(x̂) :=
x̂ − ŷ∞,+

|x̂ − ŷ∞,+|
×

x̂ + ŷ∞,−

|x̂ + ŷ∞,−|
.

Step 1: For any p ∈ [1, 2[, there holds, in W 1,p
loc (R

2),

ûp ⇀ û∞.

From the W 1,p
loc upper bound of Step 1 in Section 3B2 and by weak compactness, there exists Û ∈

W 1,p
loc (R

2) such that ûp ⇀ Û in W 1,p
loc (R

2). Moreover, Û ∈ C∞

loc(R
2
\ {ŷ∞,+, ŷ∞,−}) and the convergence

holds in Ck
loc(R

2
\ {ŷ∞,+, ŷ∞,−}) by Step 2 of Section 3B2 (for any k ∈ N). In order to determine Û , we

shall pass to the limit in the system{
∇ · (ûp ∧ ∇ûp)= −

1
2 cpp∂2(|ûp|

2
− 1),

∇
⊥

· (ûp ∧ ∇ûp)= 2J ûp

obtained from (3-5) and the definition of the Jacobian. From (3-3) (implying cpp∂2(|ûp|
2
− 1)→ 0 in the

distributional or the H−1 sense) and Step 5 of Section 3B1, we then infer{
∇ · (Û ∧ ∇Û )= 0,
∇

⊥
· (Û ∧ ∇Û )= 2π(δŷ∞,+

− δŷ∞,−
).

It then follows that Û ∧ ∇Û = û∞ ∧ ∇û∞; hence we have the existence of 2 ∈ R such that Û = ei2û∞.
We finally use the x1-symmetry to infer 2= 0.
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Step 2: As p → +∞, we have

pcp =
p2

2

∫
R2
(1 − |ûp|

2)2 dx̂ → 2π.

This is claimed in [5, Proposition VI.7], but the proof is not clearly given.
One way to prove this point is to use the Hopf differential as in [6, Chapter VII]. We shall follow the alter-

native proof of Theorem VII.2 given in Section VII.1 there. The first equality is the Pohozaev identity (2-2).
First, notice that

Wp :=
p2

2
(1 − |ûp|

2)2

is a nonnegative function which is bounded in L1(R2) by Step 1 of Section 3B3 and enjoys the decay
estimate of Step 2 of Section 3B3. In addition, by (3-16) (see Step 2 of Section 3B2), we have Wp → 0
locally uniformly in R2

\ {±(1/(2π), 0)}. Up to a subsequence, we may then assume that

Wp ⇀µ+δŷ∞,+
+µ−δŷ∞,−

in the weak ∗ topology of Cb(R
2) for some reals µ± ⩾ 0, with µ+ +µ− = limp→+∞

∫
R2 Wp.

We shall now compute µ+ (the case of µ− is similar). First, we write, for some R5 ⩽
2
10 , the Pohozaev

identity for ûp on B(ŷ∞,+, R5) (obtained by multiplying the equation by the conjugate of (x̂ − ŷ∞,+) ·∇ûp

and integrating the real part over B(ŷ∞,+, R5)), which yields∫
B(ŷ∞,+,R5)

p2

2
(1 − |ûp|

2)2 + cpp
∫

B(ŷ∞,+,R5)

(x̂1 − ŷ∞,+,1)⟨i∂2ûp | ∂1ûp⟩

=
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ ûp|
2
− |∂ν ûp|

2
+

p2

4
(1 − |ûp|

2)2.

We then pass to the limit p → +∞. For the boundary term, we use the strong convergences outside the
vorticity set; for the second term of the first line, we prove that it tends to zero by following the arguments
given for Step 6 in Section 3B1. We then get

µ+ =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ û∞|
2
− |∂ν û∞|

2.

By Step 1, we know that û∞ = exp(i Arg(x̂ − ŷ∞,+)−i Arg(x̂ − ŷ∞,−)) on ∂B(ŷ∞,+, R5), and the second
term Arg(x̂ − ŷ∞,−) is smooth and harmonic in D(ŷ∞,+, R5). As a consequence, we have the Pohozaev
identity for Arg( · − ŷ∞,−)

0 =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ Arg(x̂ − ŷ∞,−)|
2
− |∂ν Arg(x̂ − ŷ∞,−)|

2,

∂τ Arg(x̂ − ŷ∞,+)= 1/R5, ∂ν Arg(x̂ − ŷ∞,+)= 0, and thus by expansion

µ+ =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ û∞|
2
− |∂ν û∞|

2
=

R5

2

∫
∂B(ŷ∞,+,R5)

1
R2

5
+

2∂τ Arg(x̂ − ŷ∞,−)

R5
= π.

This concludes the proof.
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3B5. Convergence on the scale x. We shall now focus on verifying hypothesis (2) of Proposition 1.8.
The main tool is the following result. We now work on the scale x .

Proposition 3.5. Assume that ẑp ∈ R2 is such that

lim sup
p→+∞

|ûp(ẑp)|< 1

and consider the rescaled mapping
Up(y) := ûp(ẑp + y/p).

Then, there exists a sign ± and β ∈ R (depending on the choice of the family (ẑp)) such that, up to a
subsequence, we have, in Ck

loc(R
2) for any k ∈ N,

Up → eiβV±.

Proof. The rescaling Up solves

1Up + icp∂2Up + Up(1 − |Up|
2)= 0

and satisfies lim supp→+∞|Up(0)|< 1 and, by Step 2 of Section 3B4,∫
R2
(1 − |Up|

2)2 dy = 4π + op→+∞(1).

Then, from the uniform bounds of Theorem 2.2 and Corollary 2.3, we may assume, up to a subsequence,

Up → U∞ (3-18)

in Ck
loc(R

2) with |U∞(0)|< 1,
1U∞ + U∞(1 − |U∞|

2)= 0

and, by Fatou’s lemma, ∫
R2
(1 − |U∞|

2)2 dy ⩽ 4π.

By [11], we know that
∫

R2(1−|U∞|
2)2 dy = 2πd2, where d ∈ Z is the degree of U∞ at infinity. It follows

that |d| ⩽ 1, and that the case d = 0 is excluded since |U∞(0)|< 1; hence |U∞| ̸≡ 1. Therefore d = ±1.
It then follows from [36] that U∞ = eiβVd for some β ∈ R. □

We may now localize the set {|ûp| ⩽ 1 − 1/λ∗}, where λ∗ is as in Proposition 1.8, rather precisely.

Step 1: There exists p6 large such that, for p⩾ p6, ûp has exactly two zeros ẑp,±. Up to a translation in
the x2-direction, we may assume

R × {0} ∋ ẑp,± →
(
±

1
2π , 0

)
∈ R2.

Moreover, there exists R0 > 0 such that {|ûp|⩽ 1−1/λ∗} ⊂ B(ẑp,+, R0/p)∪ B(ẑp,−, R0/p). Here, λ∗> 0
is the large universal constant appearing in Proposition 1.8.

By Step 8 of Section 3B1, we know (due to the nonzero degree) that ûp has at least two zeros, one in
each disk B

(
ŷp,±, 3

20

)
.
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Now, if ẑp is a zero of ûp, we know by Proposition 3.5 that, for some β ∈ R (depending on the sequence
(ẑp)p) and d0 = ±1, we have

ûp(ẑp + py)→ eiβVd0(y) (3-19)

in Ck
loc(R

2). As noticed in [41], since V± : R2
→ C ≈ R2 has nonzero Jacobian at the origin, we deduce

that for any R > 0, and for p⩾ pR large enough, 0 is the only zero of Up in B(0, R). Roughly speaking,
there do not exist zeros ẑ, ẑ′ of ûp such that 0< |ẑ − ẑ′

| = O(1/p).
We now fix R0 > 0 sufficiently large so that∫

{|y|⩽R0/2}

(1 − |V1(y)|2)2 dy ⩾ 3π
2 .

and we assume that (for any large p) {|ûp|⩽1−1/λ∗} (where λ∗>0 is the one appearing in Proposition 1.8)
is not included in B(ẑp,+, R0/p) ∪ B(ẑp,−, R0/p). This means that there exists Ẑp ∈ B

(
ẑp,+, 3

20

)
\

B(ẑp,+, R0/p) (say) with |ûp(Ẑp)| ⩽ 1 − 1/λ∗. By Proposition 3.5, the rescaled mapping Up(y) :=

ûp(Ẑp + py) converges (up to a subsequence) in Ck
loc(R

2) to U∞ ∈ S1V± and we know (from [11]) that∫
R2(1 − |U∞|

2)2 dy = 2π . As a consequence, since |ẑp,+ − Ẑp| ⩾ R0/p,

2π + o(1)= p2
∫

B(ŷp,+,3/20)
(1 − |ûp|

2)2 dx̂

⩾ p2
∫

B(ẑp,+,R0/(2p))
(1 − |ûp|

2)2 dx̂ + p2
∫

B(Ẑp,R0/(2p))
(1 − |ûp|

2)2 dx̂

⩾
∫

{|y|⩽R0/2}

(1 − |V1|
2)2 dy +

∫
{|y|⩽R0/2}

(1 − |U∞|
2)2 dy + o(1)

⩾ 3π
2 +

3π
2 + o(1),

which is absurd. We then conclude ∥|up| − 1∥L∞({r̃d⩾R0}) ⩽ 1/λ∗ for p sufficiently large, then proving
hypothesis (3) of Proposition 1.8 with λ = max(R0, λ∗). Another consequence of this fact is that ûp

possesses at most two (simple) zeros ẑp,±.
We then define d = dp such that the unique zero ẑp,+ of ûp in the right half-plane is

ẑp,+ =
dp
p

e⃗1 →
( 1

2π , 0
)
∈ R2.

We deduce from Step 2 of Section 3B4 that

dp ∼
p

2π
∼

1
cp
,

so that hypothesis (4) of Proposition 1.8 is satisfied for p large enough (still for λ = max(R0, λ∗)).
Furthermore, hypothesis (2) of Proposition 1.8 is satisfied by taking p large enough, associated with the
choice λ= max(R0, λ∗).

Step 2: Conclusion. Applying Proposition 1.8 to e−iβup, we infer that there exists γp ∈ R such that (for
large p)

up = eiγp Qcp

(no translation is needed in the x2-direction at this stage since the zeros of ûp are on the x1-axis).
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3C. Decay slightly away from the vortices. In this section, we provide some estimates for ûp in the region
B(ẑp,+, 2R0) ∪ B(ẑp,−, 2R0). For the Ginzburg–Landau (stationary) model, such estimates were first
given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions. However,
since the paper [35] is difficult to find, we give here a proof of these estimates that includes the transport
term. They improve some estimates in [14] and are not specific to the way we construct the solutions.

Proposition 3.6. We have, for |ŷ|⩽ 3
20 ,∣∣|ûp(ẑp,± + ŷ)| − 1

∣∣ ⩽ C
p2|ŷ|2

, |∇|ûp|(ẑp,± + ŷ)| ⩽
C

p2|ŷ|3
, |∇ûp(ẑp,± + ŷ)| ⩽

C
|ŷ|
.

Proof. We work near ẑp,+ (the minus sign is similar), say in the annulus B
(
ẑp,+, 1

10

)
\ B(ẑp,+, 1/p) and set

ûp(ẑp,+ + ŷ)= Âp(ŷ)eiθ+i ϕ̂p(ŷ),

with Âp and ϕ̂p real-valued and smooth in the annulus (θ is the polar angle centered at ẑp,+). Then, we
obtain the system1 Âp − Âp|∇ϕ̂p|

2
+ p2 Âp|V1|

2(1 − Â2
p)− 2 Âp

∂θϕ

r2 − cpp Âp∂2ϕ̂p − cpp
cos θ

r
Âp = 0,

Âp1ϕ̂p + 2∇ Âp · ∇ϕ̂p + 2
∂θ Âp

r2 + cpp∂2 Âp = 0.

The second equation may be recast as

∇ · ( Â2
p∇ϕ̂p)+

∂θ Â2
p

r2 = −
cpp
2
∂2( Â2

p − 1). (3-20)

Multiplying by ϕ̂p and integrating over B
(
0, 3

20

)
\ B(0, R0/p), we obtain∫

B(0,3/20)\B(0,R0/p)
Â2
p|∇ϕ̂p|

2 d ŷ =

∫
B(0,3/20)\B(0,R0/p)

(1 − Â2
p)
∂θ ϕ̂p

r2 +
cpp
2
(1 − Â2

p)∂2ϕ̂p d ŷ

+

∫
∂B(0,3/20)

Â2
p

∂ϕ̂p

∂ν
+

cpp
2
( Â2

p − 1)ϕ̂pν2 dℓ.

By the Cauchy–Schwarz inequality, (3-3) and Step 1 of Section 3B3, we infer

∥∇ϕ̂p∥
2
L2(B(0,3/20)\B(0,R0/p))

⩽ C(1 + cp)∥∇ϕ̂p∥L2(B(0,3/20)\B(0,R0/p)) + C,

where, for the contribution of the integral over ∂B
(
0, 3

20

)
, we have used (3-16) and (3-15) (see Step 2

of Section 3B2). This implies

∥∇ϕ̂p∥L2(B(0,3/20)\B(0,R0/p)) ⩽ C. (3-21)

We fix ŷ ∈ R2 such that 2R0/p⩽ |ŷ|⩽ 3
20 . Then, since |ûp|⩾

1
2 in the annulus B

(
0, 3

20

)
\ B(0, R0/p)⊃

B(ŷ, |ŷ|/2), we deduce∫
B(ŷ,|ŷ|/2)

Â2
p|∇ϕ̂p + e⃗θ/r |

2 dx̂ ⩽ C
∫

B(ŷ,|ŷ|/2)
|∇ϕ̂p|

2
+

1
r2 dx̂ ⩽ C
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by (3-21) and the fact that r = |x̂ | ⩾ |ŷ|/2. By Step 1 of Section 3B3, we then infer the upper bound
(also shown in [35])

E1/p(ûp, B(ŷ, |ŷ|/2))⩽ C. (3-22)

We now make some rescaling and consider

v(X) := ûp

(
ŷ +

|ŷ|

2
X
)

in B(0, 1) (v depends on ŷ and p), which solves

1v+ i
cp
δ
∂2v+

1
δ2 v(1 − |v|2)= 0

in B(0, 1), with δ := 2/(p|ŷ|). This equation is of the type (3-1) with “ϵ = δ” and “c = cp/δ”. Let us
check that the assumption |c| ⩽ M0|ln ϵ| is satisfied with M0 = 1. As a matter of fact, we have

δ =
2

p|ŷ|
∈

]
40
3p
,

1
2

]
;

thus

M0δ|ln δ| ⩾
40
3p

ln 2 ⩾ cp =
2π
p

+ o(1)

by Step 2 of Section 3B4 (note 40(ln 2)/3≈9.24(1)>2π ). Furthermore, the upper bound (3-22) reads now

Eδ(v, B(0, 1))⩽ C.

It then follows from the proof of Step 7 (p. 48) of Theorem 1 in [8] that, for δ sufficiently small,

∥2δ−2(1 − |v|)− cpδ−1∂2 arg(v)∥C1(B(0,1/2)) ⩽ C, ∥∇ arg(v)∥C1(B(0,1/2)) ⩽ C.

Therefore, by Step 2 of Section 3B3,∣∣1 − |v(0)|
∣∣ + ∣∣∇|v|(0)

∣∣ ⩽ Ccpδ+ Cδ2 ⩽
C

p2|ŷ|2
, |∇ arg(v)(0)| ⩽ C,

and scaling this back yields the conclusion, at least for δ = 2/(p|ŷ|) sufficiently small, say p|ŷ|⩾ δ0/2,
but the estimate is easy to show if p|ŷ|⩽ δ0/2. □

3D. Some remarks on the nonsymmetrical case. In the case where we do not assume the x1-symmetry
for up, the location of the vortices ŷp,± is more delicate. Indeed, we can no longer assume (3-14), that is,

(ŷp,−)2 = (ŷp,+)2 = 0 and − (ŷp,−)1 = (ŷp,+)1 →
1

2π .

Up to a translation, we may assume ŷp,+ + ŷp,− = 0, and it remains true that ŷp,+,1 − ŷp,−,1 →
1
π

, but we
may have |ŷp,+ − ŷp,−| ≫ 1. By carefully following the proof in [43], one could show that

|ŷp,+ − ŷp,−| ⩽ C.

Then, the location of the limiting vortices ŷ∞,± = limp→+∞ ŷp,± can be obtained through the use of the
Hopf differential as in [6] (Chapter VII), and would lead as before to ŷ∞,± =

(
±

1
2π , 0

)
. This is of course
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related to the fact that the only critical point of the action functional

F(ŷ∞,+, ŷ∞,−) := 2π
(
2 ln|ŷ∞,+ − ŷ∞,−| − 2π [(ŷ∞,+)1 − (ŷ∞,−)1]

)
associated with the action of the Kirchhoff energy is (up to translation) (ŷ∞,+, ŷ∞,−)=

( 1
2π ,−

1
2π

)
∈ C2.

Next, Step 1 of Section 3B4 becomes, for any p ∈ [1, 2[, and in W 1,p
loc (R

2),

ûp ⇀ ei2û∞.

The term 2 is somewhat the phase at infinity, even though we do not claim some uniformity at infinity in
space. Next, for the local convergences, there are two phases β± ∈ R such that

ûp(ẑp,± + p · )→ eiβ± V± (3-23)

in Ck
loc(R

2) for any k ∈ N. We are then simply able to show that β± =2, but this is not enough for the
uniqueness result. This follows from the arguments given in [44], as we explain.

We work for the + sign. Integrating (3-20) over the disk B(0, R) yields∫
∂B(0,R)

Â2
p

∂ϕ̂p

∂ν
dℓ+ cpp

∫
∂B(0,R)

ν2( Â2
p − 1) dℓ= 0.

We now consider the average

βp(r) :=
1

2πr

∫
∂B(0,r)

ϕ̂p dℓ,

which satisfies, for 1/p⩽ r0 ⩽ r1 ⩽
3
20 ,

βp(r0)−βp(r1)=

∫ r1

r0

∂rβp(r) dr =

∫ r1

r0

1
2πr

∫
∂B(0,r)

∂r ϕ̂p dℓ dr

=

∫ r1

r0

1
2πr

∫
∂B(0,r)

(1 − Â2
p)∂r ϕ̂p dℓ dr + cpp

∫ r1

r0

1
2πr

∫
∂B(0,r)

ν2( Â2
p − 1) dℓ dr.

Therefore, by Step 5,

|βp(r0)−βp(r1)| ⩽ C
∫ r1

r0

dr
p2r3 + C

∫ r1

r0

dr
p2r2 ⩽

C
(r0p)2

+
C
p
.

We now fix η ∈ ]0, 1]. Taking r0 = 1/(
√
ηp) and r1 =

3
20 , we infer

|βp(r0)−βp(r1)| ⩽ Cη+
C
p
.

Moreover, by (3-23), we have
βp(r0)= βp(1/(

√
ηp))→ β+

as p → +∞, and by Step 1 of Section 3B4, we deduce

βp(r1)→2.

As a consequence,
|β+ −2| ⩽ Cη,

and the conclusion follows by letting η→ 0.



2222 DAVID CHIRON AND ELIOT PACHERIE

Acknowledgement

Pacherie is supported by Tamkeen under the NYU Abu Dhabi Research Institute grant CG002. We would
like to thank the referee for a careful reading of the manuscript and for suggestions that have helped and
clarified the presentation.

References

[1] M. Abid, C. Huepe, S. Metens, C. Nore, C. T. Pham, L. S. Tuckerman, and M. E. Brachet, “Gross–Pitaevskii dynamics of
Bose–Einstein condensates and superfluid turbulence”, Fluid Dynam. Res. 33:5-6 (2003), 509–544. MR Zbl

[2] G. Alberti, S. Baldo, and G. Orlandi, “Variational convergence for functionals of Ginzburg–Landau type”, Indiana Univ.
Math. J. 54:5 (2005), 1411–1472. MR Zbl

[3] J. Bellazzini and D. Ruiz, “Finite energy traveling waves for the Gross–Pitaevskii equation in the subsonic regime”, Amer. J.
Math. 145:1 (2023), 109–149. MR Zbl

[4] F. Bethuel and T. Rivière, “Vortices for a variational problem related to superconductivity”, Ann. Inst. H. Poincaré C Anal.
Non Linéaire 12:3 (1995), 243–303. MR Zbl

[5] F. Bethuel and J.-C. Saut, “Travelling waves for the Gross–Pitaevskii equation, I”, Ann. Inst. H. Poincaré Phys. Théor. 70:2
(1999), 147–238. MR Zbl

[6] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg–Landau vortices, Progr. Nonlinear Differ. Eq. Appl. 13, Birkhäuser, Boston,
1994. MR Zbl

[7] F. Bethuel, H. Brézis, and G. Orlandi, “Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions”, J. Funct.
Anal. 186:2 (2001), 432–520. Correction in 188:2 (2002), 548–549. Zbl

[8] F. Bethuel, G. Orlandi, and D. Smets, “Vortex rings for the Gross–Pitaevskii equation”, J. Eur. Math. Soc. 6:1 (2004), 17–94.
MR Zbl

[9] F. Béthuel, P. Gravejat, and J.-C. Saut, “Ondes progressives pour l’équation de Gross–Pitaevskii”, pp. exposé XV in
Séminaire: Équations aux Dérivées Partielles (Palaiseau, 2007–2008), École Polytech., Palaiseau, France, 2009. MR Zbl

[10] F. Béthuel, P. Gravejat, and J.-C. Saut, “Travelling waves for the Gross–Pitaevskii equation, II”, Comm. Math. Phys. 285:2
(2009), 567–651. MR Zbl

[11] H. Brezis, F. Merle, and T. Rivière, “Quantization effects for −1u = u(1 − |u|
2) in R2”, Arch. Ration. Mech. Anal. 126:1

(1994), 35–58. MR Zbl

[12] X. Chen, C. M. Elliott, and T. Qi, “Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation”,
Proc. Roy. Soc. Edinburgh Sect. A 124:6 (1994), 1075–1088. MR Zbl

[13] D. Chiron and M. Maris,, “Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity”, Arch.
Ration. Mech. Anal. 226:1 (2017), 143–242. MR Zbl

[14] D. Chiron and E. Pacherie, “Smooth branch of travelling waves for the Gross–Pitaevskii equation in R2 for small speed”,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22:4 (2021), 1937–2038. MR Zbl

[15] D. Chiron and E. Pacherie, “Coercivity for travelling waves in the Gross–Pitaevskii equation in R2 for small speed”, Publ.
Mat. 67:1 (2023), 277–410. MR Zbl

[16] D. Chiron and C. Scheid, “Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension
two”, J. Nonlinear Sci. 26:1 (2016), 171–231. MR Zbl

[17] D. Chiron and C. Scheid, “Multiple branches of travelling waves for the Gross–Pitaevskii equation”, Nonlinearity 31:6
(2018), 2809–2853. MR Zbl

[18] M. Comte and P. Mironescu, “The behavior of a Ginzburg–Landau minimizer near its zeroes”, Calc. Var. Partial Differential
Equations 4:4 (1996), 323–340. MR Zbl

[19] A. Farina, “From Ginzburg–Landau to Gross–Pitaevskii”, Monatsh. Math. 139:4 (2003), 265–269. MR Zbl

[20] C. Gallo, “The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity”,
Comm. Partial Differential Equations 33:4-6 (2008), 729–771. MR Zbl

http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://msp.org/idx/mr/2020428
http://msp.org/idx/zbl/1060.76528
http://dx.doi.org/10.1512/iumj.2005.54.2601
http://msp.org/idx/mr/2177107
http://msp.org/idx/zbl/1160.35013
http://dx.doi.org/10.1353/ajm.2023.0002
http://msp.org/idx/mr/4545844
http://msp.org/idx/zbl/1509.35089
http://dx.doi.org/10.1016/S0294-1449(16)30157-3
http://msp.org/idx/mr/1340265
http://msp.org/idx/zbl/0842.35119
http://www.numdam.org/item?id=AIHPA_1999__70_2_147_0
http://msp.org/idx/mr/1669387
http://msp.org/idx/zbl/0933.35177
http://dx.doi.org/10.1007/978-1-4612-0287-5
http://msp.org/idx/mr/1269538
http://msp.org/idx/zbl/0802.35142
http://dx.doi.org/10.1006/jfan.2001.3791
https://doi.org/10.1006/jfan.2001.3890
http://msp.org/idx/zbl/1077.35047
http://dx.doi.org/10.4171/JEMS/2
http://msp.org/idx/mr/2041006
http://msp.org/idx/zbl/1091.35085
http://www.numdam.org/item/SEDP_2007-2008____A15_0/
http://msp.org/idx/mr/2532950
http://msp.org/idx/zbl/1176.35154
http://dx.doi.org/10.1007/s00220-008-0614-2
http://msp.org/idx/mr/2461988
http://msp.org/idx/zbl/1190.35196
http://dx.doi.org/10.1007/BF00375695
http://msp.org/idx/mr/1268048
http://msp.org/idx/zbl/0809.35019
http://dx.doi.org/10.1017/S0308210500030122
http://msp.org/idx/mr/1313190
http://msp.org/idx/zbl/0816.34003
http://dx.doi.org/10.1007/s00205-017-1131-2
http://msp.org/idx/mr/3686002
http://msp.org/idx/zbl/1391.35351
http://dx.doi.org/10.2422/2036-2145.201906_015
http://msp.org/idx/mr/4360608
http://msp.org/idx/zbl/1484.35110
http://dx.doi.org/10.5565/publmat6712307
http://msp.org/idx/mr/4522936
http://msp.org/idx/zbl/1484.35110
http://dx.doi.org/10.1007/s00332-015-9273-6
http://dx.doi.org/10.1007/s00332-015-9273-6
http://msp.org/idx/mr/3441277
http://msp.org/idx/zbl/1336.35318
http://dx.doi.org/10.1088/1361-6544/aab4cc
http://msp.org/idx/mr/3816741
http://msp.org/idx/zbl/1393.35216
http://dx.doi.org/10.1007/BF01190822
http://msp.org/idx/mr/1393268
http://msp.org/idx/zbl/0869.35036
http://dx.doi.org/10.1007/s00605-002-0514-z
http://msp.org/idx/mr/2001707
http://msp.org/idx/zbl/1126.35063
http://dx.doi.org/10.1080/03605300802031614
http://msp.org/idx/mr/2424376
http://msp.org/idx/zbl/1156.35086


A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2223

[21] P. Gérard, “The Cauchy problem for the Gross–Pitaevskii equation”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23:5
(2006), 765–779. MR Zbl

[22] P. Gérard, “The Gross–Pitaevskii equation in the energy space”, pp. 129–148 in Stationary and time dependent Gross–
Pitaevskii equations (Vienna, 2006), edited by A. Farina and J.-C. Saut, Contemp. Math. 473, Amer. Math. Soc., Providence,
RI, 2008. MR Zbl

[23] V. L. Ginzburg and L. P. Pitaevskii, “On the theory of superfluidity”, Zh. Éksper. Teoret. Fiz. 34 (1958), 1240–1245. In
Russian; translated in Soviet Phys. JETP 34(7):5 (1958), 858–861.

[24] P. Gravejat, “Decay for travelling waves in the Gross–Pitaevskii equation”, Ann. Inst. H. Poincaré C Anal. Non Linéaire
21:5 (2004), 591–637. MR Zbl

[25] P. Gravejat, “Asymptotics for the travelling waves in the Gross–Pitaevskii equation”, Asymptot. Anal. 45:3-4 (2005),
227–299. MR Zbl

[26] R.-M. Hervé and M. Hervé, “Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de
Ginzburg–Landau”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11:4 (1994), 427–440. MR Zbl

[27] R. L. Jerrard and H. M. Soner, “The Jacobian and the Ginzburg–Landau energy”, Calc. Var. Partial Differential Equations
14:2 (2002), 151–191. MR Zbl

[28] C. A. Jones and P. H. Roberts, “Motions in a Bose condensate, IV: Axisymmetric solitary waves”, J. Phys. A 15:8 (1982),
2599–2619.

[29] C. A. Jones, S. J. Putterman, and P. H. Roberts, “Motions in a Bose condensate, V: Stability of solitary wave solutions of
nonlinear Schrödinger equations in two and three dimensions”, J. Phys. A 19:15 (1986), 2991–3011.

[30] Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications”, Phys. Rep. 298:2-3 (1998), 81–197.
[31] F. Lin and T. Rivière, “Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing

currents”, J. Eur. Math. Soc. 1:3 (1999), 237–311. MR Zbl
[32] Z. Lin and C. Zeng, Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs, Mem. Amer.

Math. Soc. 1347, Amer. Math. Soc., Providence, RI, 2022. MR Zbl
[33] Y. Liu and J. Wei, “Multivortex traveling waves for the Gross–Pitaevskii equation and the Adler–Moser polynomials”,

SIAM J. Math. Anal. 52:4 (2020), 3546–3579. MR Zbl
[34] M. Maris,, “Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity”, Ann. of Math. (2)

178:1 (2013), 107–182. MR Zbl
[35] P. Mironescu, “Explicit bounds for solutions to a Ginzburg–Landau type equation”, Rev. Roumaine Math. Pures Appl.

41:3-4 (1996), 263–271. MR Zbl
[36] P. Mironescu, “Les minimiseurs locaux pour l’équation de Ginzburg–Landau sont à symétrie radiale”, C. R. Acad. Sci. Paris

Sér. I Math. 323:6 (1996), 593–598. MR Zbl
[37] J. C. Neu, “Vortices in complex scalar fields”, Phys. D 43:2-3 (1990), 385–406. MR Zbl
[38] M. del Pino, P. Felmer, and M. Kowalczyk, “Minimality and nondegeneracy of degree-one Ginzburg–Landau vortex as a

Hardy’s type inequality”, Int. Math. Res. Not. 2004:30 (2004), 1511–1527. MR Zbl
[39] M. del Pino, M. Kowalczyk, and M. Musso, “Variational reduction for Ginzburg–Landau vortices”, J. Funct. Anal. 239:2

(2006), 497–541. MR Zbl
[40] L. M. Pismen, Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic

strings, Int. Ser. Monogr. Phys. 100, Oxford Univ. Press, 1999. Zbl
[41] J. Qing, “Zeros of wave functions in Ginzburg–Landau model for small ϵ”, Commun. Contemp. Math. 3:2 (2001), 187–199.

MR Zbl
[42] P. H. Roberts and N. G. Berloff, “The nonlinear Schrödinger equation as a model of superfluidity”, pp. 235–257 in Quantized

vortex dynamics and superfluid turbulence, edited by C. F. Barenghi et al., Lect. Notes in Phys. 571, Springer, 2001. Zbl
[43] E. Sandier, “Lower bounds for the energy of unit vector fields and applications”, J. Funct. Anal. 152:2 (1998), 379–403.

Correction in 171:1 (2000), 233. MR Zbl
[44] I. Shafrir, “L∞-approximation for minimizers of the Ginzburg–Landau functional”, C. R. Acad. Sci. Paris Sér. I Math.

321:6 (1995), 705–710. MR Zbl
[45] M. I. Weinstein, “On the vortex solutions of some nonlinear scalar field equations”, Rocky Mountain J. Math. 21:2 (1991),

821–827. MR Zbl

http://dx.doi.org/10.1016/j.anihpc.2005.09.004
http://msp.org/idx/mr/2259616
http://msp.org/idx/zbl/1122.35133
http://dx.doi.org/10.1090/conm/473/09226
http://msp.org/idx/mr/2522016
http://msp.org/idx/zbl/1166.35373
https://tinyurl.com/jetptrans
http://dx.doi.org/10.1016/j.anihpc.2003.09.001
http://msp.org/idx/mr/2086751
http://msp.org/idx/zbl/1057.35060
https://content.iospress.com/articles/asymptotic-analysis/asy719
http://msp.org/idx/mr/2191764
http://msp.org/idx/zbl/1092.35103
http://dx.doi.org/10.1016/S0294-1449(16)30182-2
http://dx.doi.org/10.1016/S0294-1449(16)30182-2
http://msp.org/idx/mr/1287240
http://msp.org/idx/zbl/0836.34090
http://dx.doi.org/10.1007/s005260100093
http://msp.org/idx/mr/1890398
http://msp.org/idx/zbl/1034.35025
http://dx.doi.org/10.1088/0305-4470/15/8/036
http://dx.doi.org/10.1088/0305-4470/19/15/023
http://dx.doi.org/10.1088/0305-4470/19/15/023
http://dx.doi.org/10.1016/S0370-1573(97)00073-2
http://dx.doi.org/10.1007/s100970050008
http://dx.doi.org/10.1007/s100970050008
http://msp.org/idx/mr/1714735
http://msp.org/idx/zbl/0939.35056
http://dx.doi.org/10.1090/memo/1347
http://msp.org/idx/mr/4352468
http://msp.org/idx/zbl/07455851
http://dx.doi.org/10.1137/18M119940X
http://msp.org/idx/mr/4129003
http://msp.org/idx/zbl/1445.35106
http://dx.doi.org/10.4007/annals.2013.178.1.2
http://msp.org/idx/mr/3043579
http://msp.org/idx/zbl/1315.35207
http://msp.org/idx/mr/1423093
http://msp.org/idx/zbl/0857.35021
http://msp.org/idx/mr/1411048
http://msp.org/idx/zbl/0858.35038
http://dx.doi.org/10.1016/0167-2789(90)90143-D
http://msp.org/idx/mr/1067918
http://msp.org/idx/zbl/0711.35024
http://dx.doi.org/10.1155/S1073792804133588
http://dx.doi.org/10.1155/S1073792804133588
http://msp.org/idx/mr/2049829
http://msp.org/idx/zbl/1112.35055
http://dx.doi.org/10.1016/j.jfa.2006.07.006
http://msp.org/idx/mr/2261336
http://msp.org/idx/zbl/1387.35561
http://msp.org/idx/zbl/0987.76001
http://dx.doi.org/10.1142/S0219199701000354
http://msp.org/idx/mr/1831928
http://msp.org/idx/zbl/0992.35030
http://dx.doi.org/10.1007/3-540-45542-6_23
http://msp.org/idx/zbl/0994.82105
http://dx.doi.org/10.1006/jfan.1997.3170
https://doi.org/10.1006/jfan.1999.3530
http://msp.org/idx/mr/1607928
http://msp.org/idx/zbl/0908.58004
http://msp.org/idx/mr/1354710
http://msp.org/idx/zbl/0851.49008
http://dx.doi.org/10.1216/rmjm/1181072971
http://msp.org/idx/mr/1121545
http://msp.org/idx/zbl/0732.35093


2224 DAVID CHIRON AND ELIOT PACHERIE

Received 16 Sep 2021. Revised 26 Feb 2022. Accepted 9 Apr 2022.

DAVID CHIRON: david.chiron@univ-cotedazur.fr
Université Côte d’Azur, CNRS, LJAD, Nice, France

ELIOT PACHERIE: ep2699@nyu.edu
NYUAD Research Institute, New York University, Abu Dhabi, United Arab Emirates

mathematical sciences publishers msp

mailto:david.chiron@univ-cotedazur.fr
mailto:ep2699@nyu.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Zbigniew Błocki Uniwersytet Jagielloński, Poland
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