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SEMICLASSICAL EIGENVALUE ESTIMATES UNDER MAGNETIC STEPS

WAFAA ASSAAD, BERNARD HELFFER AND AYMAN KACHMAR

We establish accurate eigenvalue asymptotics and, as a by-product, sharp estimates of the splitting between
two consecutive eigenvalues for the Dirichlet magnetic Laplacian with a nonuniform magnetic field having
a jump discontinuity along a smooth curve. The asymptotics hold in the semiclassical limit, which also
corresponds to a large magnetic field limit and is valid under a geometric assumption on the curvature of
the discontinuity curve.

1. Introduction

The paper studies a semiclassical Schrödinger operator with a step magnetic field and Dirichlet boundary
conditions, in a smooth bounded domain. The aim is to give accurate estimates of the lower eigenvalues
in the semiclassical limit.

Let � be an open, bounded, and simply connected subset of R2 with smooth C1 boundary. We consider
a simple smooth curve 0 ⊂ R2 that splits R2 into two disjoint unbounded open sets, P1 and P2, and such
that 0 is a semistraight line when |x | tends to +∞. We assume that 0 decomposes � into two sets �1

and �2 as follows (see Figure 1):

(1) 0 intersects ∂� transversally at two distinct points.

(2) �1 :=�∩ P1 ̸= ∅ and �2 :=�∩ P2 ̸= ∅.

Let h > 0 and F = (F1, F2) ∈ H 1
loc(R

2) be a magnetic potential whose associated magnetic field is

curl F = a11P1 + a21P2, a := (a1, a2) ∈ R2, a1 ̸= a2. (1-1)

When restricted to �, the vector field F satisfies

curl F = a11�1 + a21�2, a := (a1, a2) ∈ R2, a1 ̸= a2 and F ∈ L4(�). (1-2)

Note that the curve 0 separates the two regions �1 and �2 which are assigned with different values of
the magnetic field. For this reason, we refer to 0 as the magnetic edge. We consider the quadratic form
on H 1

0 (�)

u 7→ Qh(u)=

∫
�

|(h∇ − i F)u|
2 dx . (1-3)
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Figure 1. The curve 0 transversally cuts ∂� at two points and splits � into two regions,
�1 and �2.

This quadratic form is closed on the form domain H 1
0 (�). By the Friedrichs extension procedure, we can

associate its Dirichlet realization in �

Ph := −(h∇ − i F)2 = −

2∑
j=1

(h∂x j − i Fj )
2, (1-4)

whose domain is

Dom(Ph)= {u ∈ L2(�) : (h∇ − i F) j u ∈ L2(�), j ∈ {1, 2}, u|∂� = 0}. (1-5)

The operator Ph is self-adjoint, has compact resolvent, and its spectrum is an increasing sequence,
(λn(h))n∈N, of real eigenvalues listed with multiplicities.

In this contribution, we aim at giving the asymptotic expansion of the low-lying eigenvalues of Ph , in
the semiclassical limit, i.e., when h tends to 0.

Schrödinger operators with a discontinuous magnetic field, like Ph , appear in many models in
nanophysics such as in quantum transport while studying the transport properties of a bidimensional
electron gas [Reijniers and Peeters 2000; Peeters and Matulis 1993]. In that context, the magnetic edge is
straight and bound states interestingly feature currents flowing along the magnetic edge.

The present contribution addresses another appealing question on the influence of the shape of the
magnetic edge on the energy of the bound states. We give an affirmative answer by providing sharp
semiclassical eigenvalue asymptotics under a single “well” hypothesis on the curvature of the magnetic
edge (see Assumption 1.1 and Theorem 1.2 below). Loosely speaking, our hypothesis says that we perform
a local deformation of the magnetic edge so that its curvature has a unique nondegenerate maximum.

Another important occurrence of magnetic Laplace operators is in the Ginzburg–Landau model of
superconductivity [Saint-James and de Gennes 1963]. In bounded domains, the spectral properties of
these operators can describe interesting physical situations. In the context of superconductivity, accurate
information about the lowest eigenvalues is important for giving a precise description of the concentration
of superconductivity in a type-II superconductor. Moreover, it improves the estimates of the third critical
field, HC3 , that marks the onset of superconductivity in the domain. We refer the reader to [Assaad and
Kachmar 2022; Assaad 2021] for discontinuous field cases, and to [Fournais and Helffer 2006; Helffer
and Pan 2003; Lu and Pan 1999a; 1999b; 2000; Bonnaillie-Noël and Fournais 2007; Bonnaillie-Noël
and Dauge 2006; Bernoff and Sternberg 1998; Tilley and Tilley 1990] for a further discussion in smooth
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fields cases. In the present paper, the Dirichlet realization of Ph in the bounded domain � can physically
correspond to a superconductor which is set in the normal (nonsuperconducting) state at its boundary.

Using symmetry and scaling arguments, one can reduce the problem to the study of cases of a = (a1, a2),
where a1 = 1 and a2 = a ∈ [−1, 1). Moreover, we will soon make a more restrictive choice of cases of a
(see (1-11) below). Towards justifying the upcoming choice of a, we introduce the effective operator
ha[ξ ] with a discontinuous field, defined on R and parametrized by ξ ∈ R:

ha[ξ ] = −
d2

dτ 2 + (ξ + ba(τ )τ )
2, (1-6)

where
ba(τ )= 1R+

(τ )+ a1R−
(τ ). (1-7)

This operator arises from the approximation by the case where �= R2 and 0= {x2 = 0}, τ corresponding
to the variable x2 and ξ being the dual variable of x1. The known spectral properties of ha[ξ ], obtained
earlier in [Hislop et al. 2016; Assaad et al. 2019; Assaad and Kachmar 2022], are recalled in Section 2A.
Here, we only present some features of this operator that are useful to this introduction. The bottom
of the spectrum of ha[ξ ], denoted by µa(ξ), is a simple eigenvalue for a ̸= 0, usually called the band
function in the literature. Minimizing the band function leads us to introduce

βa = inf
ξ∈R

µa(ξ). (1-8)

We list the following properties of βa , depending on the values of a:

Case a = −1: In the case where � = R2 and 0 = {x2 =0}, this case is called the “symmetric trapping
magnetic steps” and is well-understood in the literature (see, e.g., [Hislop et al. 2016]). In this case, the
study of ha[ξ ] can be reduced to that of the de Gennes operator (a harmonic oscillator on the half-axis
with Neumann condition at the origin). We refer the reader to [Fournais and Helffer 2010] for the spectral
properties of this operator. Here,

20 := β−1 ≊ 0.59 (1-9)

is attained by µ−1( · ) at a unique and nondegenerate minimum ξ0 = −
√
20. Moreover, β−1 = µ−1(ξ0)

is a simple eigenvalue of h−1[ξ0].

Case −1< a < 0: This case is called the “asymmetric trapping magnetic steps” and is studied in many
works (see [Assaad and Kachmar 2022; Assaad et al. 2019; Hislop et al. 2016]). We have |a|20 < βa <

min(|a|,20) and βa is attained by µa( · ) at a unique ζa < 0 [Assaad and Kachmar 2022]

µa(ζa)= βa. (1-10)

Moreover, the minimum is nondegenerate, i.e., µ′′
a(ζa) > 0.

Case a = 0: This corresponds to the “magnetic wall” case studied for instance in [Reijniers and Peeters
2000; Hislop et al. 2016]. We refer to [Hislop et al. 2016, Section 2] for this case.

For ξ ≤ 0, we have
σ(ha[ξ ])= σess(ha[ξ ])= [ξ 2,+∞),

where σ and σess respectively denote the spectrum and essential spectrum.



538 WAFAA ASSAAD, BERNARD HELFFER AND AYMAN KACHMAR

For ξ > 0,
σess(ha[ξ ])= [ξ 2,+∞)

and ha[ξ ] may have positive eigenvalues λ < ξ2. Consequently, β0 = µ0(0)= inf σessh0[0] = 0, and β0

is not an eigenvalue of ha[ξ ] for all ξ ∈ R.

Case 0< a < 1: This corresponds with the “nontrapping magnetic steps” case; see [Assaad et al. 2019;
Hislop and Soccorsi 2015; Iwatsuka 1985]. Here, βa = a and µa( · ) doesn’t achieve a minimum; the
infimum is attained at +∞.

A key ingredient in establishing the asymptotics of the eigenvalues λn(h) is that βa is an eigenvalue
of ha[ξ ] for some ξ ∈ R. We will use the corresponding eigenfunction in constructing quasimodes of
the operator Ph . The above discussion shows that βa is an eigenvalue only when a ∈ [−1, 0). The case
a = −1 is excluded from our study, despite the fact that β−1 is an eigenvalue of h−1[ξ0]. Except when 0
is an axis of symmetry of � as in [Hislop et al. 2016], the situation is more difficult and the curvature
will play a more important role. We hope to treat this case in a future work. This explains our choice to
work under the following assumption on a (thus on the magnetic field curl F) throughout the paper:

a = (1, a), with − 1< a < 0. (1-11)

Under assumption (1-11), we introduce two spectral invariants

c2(a)=
1
2
µ′′

a(ζa) > 0 and M3(a)=
1
3

(1
a

− 1
)
ζaφa(0)φ′

a(0) < 0, (1-12)

where µa and ζa are introduced in (1-8) and (1-10), and φa is the positive L2-normalized eigenfunction
of ha[ζa] corresponding to βa .

Furthermore, we work under the following assumption:

Assumption 1.1. The curvature 0 ∋ s 7→ k(s) at the magnetic edge has a unique maximum

k(s) < k(s0)=: kmax for s ̸= s0.

This maximum is attained in 0 ∩� and is nondegenerate:

k2 := k ′′(s0) < 0.

The goal of this paper is to prove the following theorem:

Theorem 1.2. Let n ∈ N∗ and a = (1, a), with −1 < a < 0. Under Assumption 1.1, the n-th eigen-
value λn(h) of Ph , defined in (1-4), satisfies, as h → 0,

λn(h)= hβa + h3/2kmax M3(a)+ h7/4(2n − 1)

√
k2 M3(a)c2(a)

2
+O(h15/8),

where βa , c2(a) and M3(a) are the spectral quantities introduced in (1-8) and (1-12).

Remark 1.3. This theorem extends [Assaad and Kachmar 2022, Theorem 4.5], where the first two terms
in the expansion of the first eigenvalue were determined with a remainder in O(h5/3). The proof of
Theorem 1.2 partially relies on decay estimates of the eigenfunctions with the right scale; see Section 6
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and [Assaad and Kachmar 2022]. In fact, away from the edge 0, the eigenfunctions decay exponentially
at the scale h−1/2 of the distance to 0, while, along 0, they decay exponentially with a scale of h−1/8 of
the tangential distance on 0 to the point with maximum curvature.

Comparison with earlier situations. It is useful to compare the asymptotics of λn(h) in Theorem 1.2 with
those obtained in the literature for regular domains submitted to uniform magnetic fields. In bounded
planar domains with smooth boundary, subject to unit magnetic fields and when the Neumann boundary
condition is imposed, the low-lying eigenvalues of the linear operator, analogous to Ph , admit the following
asymptotics as h tends to 0 (see, e.g., [Fournais and Helffer 2006]):

λn(h)= h20 − h3/2k̃maxC1 + h7/4C12
1/4
0 (2n − 1)

√
3
2 k̃2 +O(h15/8),

where 20 is as in (1-9), C1 > 0 is some spectral value, and k̃max and k̃2 are positive constants introduced
in what follows. In this uniform field/Neumann condition situation, the eigenstates localize near the
boundary of the domain. More precisely, they localize near the point s̃ with maximum curvature k(s̃)
of this boundary, assuming the uniqueness and nondegeneracy of this point. We define k̃max = k(s̃) and
k̃2 = −k ′′(s̃) > 0. In [Fournais and Helffer 2006], the foregoing localization of eigenstates restricted the
study to the boundary, involving a family of one-dimensional effective operators which act in the normal
direction to the boundary. These are the de Gennes operators

hN
[ξ ] = −

d2

dτ 2 + (ξ + τ)2,

defined on R+ with Neumann boundary condition at τ = 0, and parametrized by ξ ∈ R. We recover the
value 20 as an effective energy associated to (hN

[ξ ])ξ ,

20 = inf
ξ∈R

µN (ξ),

where µN (ξ) is the bottom of the spectrum σ(hN
[ξ ]) of hN

[ξ ], for ξ ∈ R.
Back to our discontinuous field case with Dirichlet boundary condition, we prove that our eigenstates

are localized near the magnetic edge 0, and more particularly, near the point with maximum curvature of
this edge (see Section 6). Analogously to the aforementioned uniform field/Neumann condition situation,
our study near 0 involves the family of one-dimensional effective operators (ha[ξ ])ξ∈R which act in the
normal direction to the edge 0, along with the associated effective energy βa .

At this stage, it is natural to discuss our problem when the Dirichlet boundary conditions are replaced
by Neumann boundary ones. In this situation, one can prove the concentration of the eigenstates of the
operator Ph near the points of intersection between the edge 0 and the boundary ∂�. This was shown in
[Assaad 2021, Theorem 6.1] at least for the lowest eigenstate. In such settings, a geometric condition is
usually imposed related to the angles formed at the intersection 0∩∂�; see [Assaad 2021, Assumption 1.3
and Remark 1.4]. The localization of the eigenstates near 0 ∩ ∂� will involve effective models that are
genuinely two-dimensional, i.e., they cannot be fibered to one-dimensional operators; see [Assaad 2021,
Section 3]. Studying this case may show similarity features with the case of piecewise smooth bounded
domains with corners submitted to uniform magnetic fields, treated in [Bonnaillie-Noël and Dauge 2006];
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see also [Bonnaillie-Noël et al. 2007; Bonnaillie-Noël 2005; Bonnaillie-Noël 2003; 2007] for studies
on corner domains. Such similarities were first revealed in [Assaad 2021, Section 1.3]. More precisely,
one expects the result in the discontinuous field/Neumann condition situation to be similar to that in
[Bonnaillie-Noël and Dauge 2006, Theorem 7.1]. Such a result is worth establishing in a future work.

Theorem 1.2 permits us to deduce the splitting between the ground-state energy (lowest eigenvalue)
and the energy of the first excited state of Ph . More precisely, introducing the spectral gap

1(h) := λ2(h)− λ1(h),

we get by Theorem 1.2:

Corollary 1.4. Under the conditions in Theorem 1.2, we have as h → 0

1(h)= h7/4
√

2k2 M3(a)c2(a)+O(h15/8).

Apart from its own interest, estimating the foregoing spectral gap has potential applications in nonlinear
bifurcation problems, for instance, in the context of the Ginzburg–Landau model of superconductivity
(see [Fournais and Helffer 2010, Section 13.5.1]).

Remark 1.5. Altering the regularity/geometry of the edge 0 may lead to radical changes in Theorem 1.2.

• If 0 is a piecewise smooth curve (a broken edge) then we have to analyze a new model in the full plane
(reminiscent of a model in [Assaad 2021]). We expect analogies with domains with corners in a uniform
magnetic field [Bonnaillie-Noël 2003].

• If we relax Assumption 1.1 by allowing the curvature k to have two symmetric maxima, then a tunnel
effect may occur and the splitting in Theorem 1.2 becomes of exponential order. This was recently
analyzed in [Fournais et al. 2022] based on the analysis of this paper and [Bonnaillie-Noël et al. 2022].

• If the curvature along 0 or a part of 0 is constant, then we expect that the magnitude of the splitting
in Theorem 1.2 will change too, probably leading to multiple eigenvalues. It would be desirable to get
accurate estimates in this setting. We expect analogies with disc domains in a nonuniform magnetic field
[Fournais and Persson-Sundqvist 2015].

Heuristics of the proofs. Our proof of Theorem 1.2 is purely variational. The derivation of the eigenvalue
upper bound is rather standard. It is obtained by computing the energy of a well-chosen trial state, vapp

h,n ,
constructed by expressing the operator in a Frenet frame near the point of maximum curvature and doing
WKB like expansions (for the operator and the trial state).

Proving the eigenvalue lower bound is more involved. The idea is to project the actual bound state, vh,n ,
on the trial state vapp

h,n , and to prove that this provides us with a well-chosen trial state for a one-dimensional
effective operator, H harm

a = −c2(a)∂2
σ −

1
2 k2 M3(a)σ 2. To validate this method, we need sharp estimates

of the tangential derivative of the actual bound state, which we derive via a simple, but lengthy and quite
technical method involving Agmon estimates and other implementations from one-dimensional model
operators. At this stage, one advantage of our approach seems its applicability with weaker regularity
assumptions on the magnetic edge or the magnetic field, which could be useful in other situations as well,
like the study of the three-dimensional problem in [Helffer and Morame 2004].
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Outline of the paper. The paper is organized as follows. Sections 2 and 3 contain the necessary material
on the model one-dimensional problems for flat and curved magnetic edges, respectively. Section 4 is
devoted to the eigenvalue upper bounds matching with the asymptotics of Theorem 1.2. Here, we give
the construction of the aforementioned trial state vapp

h,n .
In Sections 5 and 6, we estimate the tangential derivative of the actual bound states, after being

truncated and properly expressed in rescaled variables. The tangential derivative estimate of the L2 norm
will follow straightforwardly from the main result of Section 5. However, a higher-regularity estimate
will require additional work in Section 6.

In Section 7, using the actual bound states, we construct trial states for the effective one-dimensional
operator, and eventually prove the eigenvalue lower bounds of Theorem 1.2. Finally, we give two
appendices, Appendix A on the Frenet coordinates near the magnetic edge, and Appendix B on the control
of a remainder term that we meet in Section 7.

2. Fiber operators

2A. Band functions. Let a ∈ [−1, 0). We first introduce some constants whose definition involves the
following family of fiber operators in L2(R):

ha[ξ ] = −
d2

dτ 2 + Va(ξ, τ ), (2-1)

where ξ ∈ R is a parameter,

Va(ξ, τ )= (ξ + ba(τ )τ )
2, ba(τ )= 1R+

(τ )+ a1R−
(τ ), (2-2)

and the domain of ha[ξ ] is given by

Dom(ha[ξ ])= B2(R).

Here the space Bn(I ) is defined for a positive integer n and an open interval I ⊂ R as

Bn(I )=

{
u ∈ L2(I ) : τ i d j u

dτ j ∈ L2(I ) for all i, j ∈ N such that i + j ≤ n
}
. (2-3)

The operator ha[ξ ] is essentially self-adjoint and has compact resolvent. Actually, it can also be defined
as the Friedrichs realization starting from the closed quadratic form

u 7→ qa[ξ ](u)=

∫
R

(|u′(τ )|2 + Va(ξ, τ )|u(τ )|2) dτ (2-4)

defined on B1(R).
For (a, ξ) ∈ [−1, 0)× R, the ground-state energy (bottom of the spectrum) µa(ξ) of ha[ξ ] can be

characterized by

µa(ξ)= inf
u∈B1(R),u ̸=0

qa[ξ ](u)
∥u∥

2
L2(R)

, (2-5)

and ξ 7→ µa(ξ) will be called the band function.
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We then introduce the step constant at a by

βa := inf
ξ∈R

µa(ξ). (2-6)

For a = −1, it is easy to identify by symmetrization µ−1(ξ) with the ground-state energy of the Neumann
realization of −(d2/dτ 2)+ (τ + ξ)2 in R+ and therefore

β−1 =20, (2-7)

where 20 is the celebrated de Gennes constant.
By the general theory for the Schrödinger operator, µa(ξ) is, for each ξ ∈ R, a simple eigenvalue, that

we associate with a unique positive L2-normalized eigenfunction denoted by ϕa,ξ , i.e., satisfying

ϕa,ξ > 0, (ha[ξ ] −µa(ξ))ϕa,ξ = 0 and
∫

R

|ϕa,ξ (τ )|
2 dτ = 1. (2-8)

By Kato’s theory, the band function µa is an analytic function on R. Its derivative was computed in
[Hislop and Soccorsi 2015] (see also [Assaad et al. 2019, Proposition A.4]),

µ′

a(ξ)=

(
1 −

1
a

)(
ϕ′

a,ξ (0)
2
+ (µa(ξ)− ξ

2)ϕa,ξ (0)2
)
, (2-9)

which results from the following Feynman–Hellmann formula (see [Assaad et al. 2019, equation (A.9);
Bolley and Helffer 1993; Dauge and Helffer 1993]):

µ′

a(ξ)= 2
∫

R

(ξ + ba(τ )τ )|ϕa,ξ (τ )|
2 dτ. (2-10)

2B. Properties of band functions/states. For a ∈ (−1, 0), the following results were recently established
in [Assaad and Kachmar 2022; Assaad et al. 2019; Hislop et al. 2016]:

(1) |a|20 < βa <min(|a|,20).

(2) There exists a unique ζa ∈ R such that βa = µa(ζa).

(3) ζa < 0, µ′′
a(ζa) > 0 and the ground state φa := ϕa,ζa satisfies

φ′

a(0) < 0 and ζa = −

√
βa + (φ

′2
a (0)/φ

2
a(0)).

In particular, using (2-10) for ξ = ζa , we observe that the functions φa and (ζa +ba(τ )τ )φa are orthogonal∫
R

(ζa + ba(τ )τ )|φa(τ )|
2 dτ = 0. (2-11)

Moreover, the ground-state φa satisfies the following decay estimates:

Proposition 2.1. Let a ∈ [−1, 0). For any γ > 0, there exists a positive constant Cγ such that∫
R

eγ |τ |(|φa(τ )|
2
+ |φ′

a(τ )|
2) dτ ≤ Cγ .
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Consequently, for all n ∈ N∗ there exists Cn > 0 such that∫
R

|τ |n|φa(τ )|
2 dτ ≤ Cn. (2-12)

The proof is classical by using Agmon’s approach for proving decay estimates. We omit it and refer the
reader to [Fournais and Helffer 2010, Theorem 7.2.2] or to the proof of Lemma 2.4 below.

2C. Moments. Later in the paper, we will encounter the moments

Mn(a)=

∫
+∞

−∞

1
ba(τ )

(ζa + ba(τ )τ )
n
|φa(τ )|

2 dτ, (2-13)

which are finite according to (2-12).
For n ∈ {1, 2, 3}, they were computed in [Assaad and Kachmar 2022] and we have

M1(a)= 0, (2-14)

M2(a)= −
1
2
βa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ +

1
4

(1
a

− 1
)
ζaφa(0)φ′

a(0), (2-15)

M3(a)=
1
3

(1
a

− 1
)
ζaφa(0)φ′

a(0). (2-16)

Remark 2.2. From the properties of the band function recalled in Section 2B, we get that M3(a) is
negative for −1< a < 0 and vanishes for a = −1.

Remark 2.3. The next identities follow in a straightforward manner from the foregoing formulas of the
moments: ∫

+∞

−∞

τ(ζa + ba(τ )τ )|φa(τ )|
2 dτ = M2(a),∫

+∞

−∞

τ(ζa + ba(τ )τ )
2
|φa(τ )|

2 dτ = M3(a)− ζa M2(a),∫
+∞

−∞

ba(τ )τ
2(ζa + ba(τ )τ )|φa(τ )|

2 dτ = M3(a)− 2ζa M2(a),∫
+∞

−∞

τ |φa(τ )|
2 dτ = −ζa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ,∫

+∞

−∞

τ |φ′

a(τ )|
2 dτ = βaζa

∫
+∞

−∞

1
ba(τ )

|φa(τ )|
2 dτ + 2M3(a)− 2ζa M2(a).

We will also encounter the moment

I2(a) :=

∫
R

(ζa + ba(τ )τ )φaRa[(ζa + ba(τ )τ )φa] dτ, (2-17)

involving the resolvent Ra , which is an operator defined on L2(R) by means of the following lemma:

Lemma 2.4. If u ∈ L2(R) is orthogonal to φa , we define (ha[ζa] − βa)
−1u in L2(R) as the unique

solution v orthogonal to φa to
(ha[ζa] −βa)v = u.
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We introduce the regularized resolvent Ra in L(L2(R)) by

Ra(u)=

{
0 if u ∥ φa,

(ha[ζa] −βa)
−1u if u ⊥ φa

(2-18)

(extended by linearity). Then, for any γ ≥ 0, Ra and (d/dτ) ◦ Ra are two bounded operators on
L2(R, exp(γ |τ |) dτ).

Proof. We follow Agmon’s approach. Consider v ∈ Dom(ha[ζa]) and u ∈ L2(R, exp(γ |τ |) dτ) such that

(ha[ζa] −βa)v = u.

For all γ > 0 and N > 1, consider the continuous function on R

8γ,N (τ )= min(γ |τ |, N ).

Observe that 8γ,N ∈ H 1
loc(R) and

|8′

γ,N (τ )| =

{
γ if γ |τ |< N ,
0 if γ |τ |> N .

Integration by parts yields

⟨u, e28γ,N v⟩ = ⟨(ha[ζa] −βa)v, e28γ,N v⟩

= ∥(e8γ,N v)′∥2
+

∫
R

((ζa + bτ)2 −βa)|e8γ,N v|2 dτ − ∥8′

γ,N e8ε,N v∥2

≥ ∥(e8γ,N v)′∥2
+

∫
R

((ζa + bτ)2 −βa − γ 2)|e8γ,N v|2 dτ.

Choose Aγ > 1 so that, for |τ | ≥ Aγ , we have (ζa + bτ)2 −βa − γ 2
≥ 1; consequently, for N ≥ γ Aγ ,

⟨u, e28γ,N v⟩ ≥ ∥(e8γ,N v)′∥2
+

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ − (βa + γ 2)e2γ Aγ ∥v∥2.

Using the Cauchy–Schwarz inequality, we get further

∥e8γ,N u∥∥e8γ,N v∥ ≥ ∥(e8γ,N v)′∥2
+

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ − (βa + γ 2)e2γ Aγ ∥v∥2.

Rearranging the terms in (2-19) and using Cauchy’s inequality

∥e8γ,N u∥∥e8γ,N v∥ ≤ 2∥e8γ,N u∥
2
+

1
2∥e8γ,N v∥2,

we get

∥(e8γ,N v)′∥2
+

1
2

∫
{|τ |≥Aγ }

|e8γ,N v|2 dτ ≤ (βa + γ 2
+ 1)e2γ Aγ ∥v∥2

+ 2∥e8γ,N u∥
2.

We end up with the estimate∫
|e8γ,N v′

|
2 dτ +

∫
|e8γ,N v|2 dτ ≤ Cγ (∥v∥2

+ ∥e8γ u∥
2),

where we note that the right-hand side is independent of N.
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Since8γ,N is nonnegative and monotone increasing with respect to N, we get by monotone convergence
that e8γ v and e8γ v′ belong to L2(R) and satisfy∫

|e8γ v′
|
2 dτ +

∫
|e8γ v|2 dτ ≤ Cγ (∥v∥2

+ ∥e8γ u∥
2), (2-19)

where
8γ (τ )= lim

N→+∞

8γ,N (τ )= γ |τ |.

To finish the proof, we note that, since the regularized resolvent is bounded and 8γ ≥ 0,

∥v∥2
= ∥Rau∥

2
≤ ∥Ra∥

2
∥u∥

2
≤ ∥Ra∥

2
∥e8γ u∥

2. □

Proposition 2.5. For any a ∈ (−1, 0), it holds

µ′′

a(ζa)= 2(1 − 4I2(a)) > 0. (2-20)

Proof. First we notice (ζa+ba(τ )τ )φa is orthogonal to φa in L2(R) (see (2-10)). Thus Ra[(ζa+ba(τ )τ )φa]

is well-defined as (ha[ζa] −βa)
−1(ζa + ba(τ )τ )φa . Let z ∈ R, and Ea(z) be the lowest eigenvalue of the

operator Ha(z), defined on L2(R) as

Ha(z) := ha[ζa + z] = −
d2

dτ 2 + (ζa + z + ba(τ )τ )
2.

We adopt the same proof of [Fournais and Helffer 2006, Proposition A.3] (replacing P0 by Ha(0)−βa

there) to get the identity in (2-20). Finally, by [Assaad and Kachmar 2022], µ′′(ζa) > 0. □

3. One-dimensional model involving the curvature

We consider a new family of fiber operators which are obtained by adding to the fiber operators in Section 2
new terms that will be related to the geometry of the magnetic edge. This family was introduced earlier
in [Assaad and Kachmar 2022] and their definition is reminiscent of the weighted operators introduced in
the context of the Neumann Laplacian with a uniform magnetic field [Helffer and Morame 2001].

We introduce the parameters

a ∈ (−1, 0), δ ∈
(
0, 1

12

)
, M > 0, h0 > 0 and κ ∈ [−M,M],

which satisfy
Mh1/2−δ

0 < 1
3 ,

and will be fixed throughout this section.
Consider on (−h−δ, h−δ) the positive function aκ,h(τ )=(1−κh1/2τ), the Hilbert space L2((−h−δ, h−δ);

aκ,h dτ) with the inner product

⟨u, v⟩ =

∫ h−δ

−h−δ

u(τ )v(τ ) (1 − κh1/2τ) dτ,

and, for ξ ∈ R, the operator

Ha,ξ,κ,h =−
d2

dτ 2 +(ba(τ )τ+ξ)
2
+κh1/2(1−κh1/2τ)−1∂τ+2κh1/2τ

(
ba(τ )τ+ξ−κh1/2ba(τ )

τ 2

2

)2

− κh1/2ba(τ )τ
2(ba(τ )τ + ξ)+ κ2hba(τ )

2 τ
4

4
, (3-1)
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where ba is the function in (2-2) and

Dom(Ha,ξ,κ,h)= {u ∈ H 2(−h−δ, h−δ) : u(±h−δ)= 0}. (3-2)

The operator Ha,ξ,κ,h is a self-adjoint operator in L2((−h−δ, h−δ); aκ,h dτ) with compact resolvent. We
denote by (λn(Ha,ξ,κ,h))n≥1 its sequence of min-max eigenvalues. The first eigenvalue can be expressed as

λ1(Ha,ξ,κ,h)= inf{qa,ξ,κ,h(u) : u ∈ H 1
0 (−h−δ, h−δ) and ∥u∥L2((−h−δ,h−δ);aκ,h dτ) = 1}, (3-3)

where

qa,ξ,κ,h(u)=
∫ h−δ

−h−δ

(
|u′(τ )|2+(1+2κh1/2τ)

(
ba(τ )τ+ξ−κh1/2ba(τ )

τ 2

2

)2
u2(τ )

)
(1−κh1/2τ) dτ. (3-4)

By Cauchy’s inequality, we write, for any ε ∈ (0, 1),(
ba(τ )τ + ξ − κh1/2ba(τ )

τ 2

2

)2
≥ (1 − ε)(ba(τ )τ + ξ)2 − ε−1κ2hba(τ )

2 τ
4

4
.

Noticing that hτ 4
≤h1−4δ for τ ∈ (h−δ, hδ) and optimizing with respect to ε, we choose ε=h1/2−2δ and get(

ba(τ )τ + ξ − κh1/2ba(τ )
τ 2

2

)2
≥ (1 − h1/2−2δ)(ba(τ )τ + ξ)2 − κ2ba(τ )

2h1/2−2δ. (3-5)

We plug (3-5) in (3-4) to get, for some C0 > 0,

qa,ξ,κ,h(u)≥ (1 − C0h1/2−2δ)qa[ξ ](u)− C0h1/2−2δ
∥u∥

2
L2(−h−δ,h−δ)

, (3-6)

where qa[ξ ] is the quadratic form in (2-4). The min-max principle ensures that

qa[ξ ](u)≥ βa∥u∥
2
L2(−h−δ,h−δ)

for all u ∈ H 1
0 (−h−δ, h−δ). (3-7)

Since βa > 0, (3-6) and (3-7) imply

qa,ξ,κ,h(u)≥ (1 − Ch1/2−2δ)qa[ξ ](u), (3-8)

with C = (1+β−1
a )C0. From (3-8) and the min-max principle we deduce the lower bounds in Lemma 3.1

below (see [Assaad and Kachmar 2022, Section 4.2] for details).

Lemma 3.1. Given a ∈ (−1, 0), there exist positive constants ε0(a), ε1(a), ε2(a), c0(a), h0(a),C0(a)
such that, for all h ∈ (0, h0(a)),

• For |ξ − ζa| ≥ ε0(a), we have
λ1(Ha,ξ,κ,h)≥ βa + c0(a).

• For ε2(a)h1/4−δ
≤ |ξ − ζa| ≤ ε0(a), we have

λ1(Ha,ξ,κ,h)≥ βa + ε1(a)(ξ − ζa)
2.

• For |ξ − ζa| ≤ ε2(a)h1/4−δ, we have

λ1(Ha,ξ,κ,h)≥ βa + c2(a)|ξ − ζa|
2
+ κM3(a)h1/2

− C0(a)max(h1/2
|ξ − ζa|, |ξ − ζa|

3, h),
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where
c2(a)=

1
2µ

′′

a(ζa) > 0. (3-9)

We can now state the following:

Proposition 3.2. There exists ĉ0(a) > 0 and, for all ε ∈ (0, 1), there exist Cε, hε > 0 such that, for all
h ∈ (0, hε) and ξ ∈ R, the following inequality holds:

λ1(Ha,ξ,κ,h)≥ βa + ĉ0(a)min((ξ − ζa)
2, ε)+ κM3(a)h1/2

− Cεh.

Proof. In the third item of Lemma 3.1, we estimate the remainder term

max(h1/2
|ξ − ζa|, |ξ − ζa|

3, h)≤ (η−1
+ 1)h + η|ξ − ζa|

2
+ |ξ − ζa|

3

for all η ∈ (0, 1). Choosing η = c2(a)/(4C0(a)), where C0(a) is the constant in Lemma 3.1, we deduce
from Lemma 3.1 the lower bound for the eigenvalue λ1(Ha,ξ,κ,h), with

ĉ0(a)=
1
2

min
(
ε1(a),

c0(a)
ε0(a)2

, c0(a)
)
. □

4. Upper bound

We establish an upper bound of the n-th eigenvalue λn(h) of Ph , which was defined in (1-4). This
will involve the spectral value βa introduced in (2-6), the moment M3(a) < 0 introduced in (2-16), and
c2(a) > 0 the value defined in (3-9). In this section, we consider two parameters η ∈

(
0, 1

8

)
and δ ∈

(
0, 1

2

)
.

Theorem 4.1. Let n ∈ N∗ and a = (1, a), with −1 < a < 0. Under Assumption 1.1, there exist h0 > 0
and C0 > 0 such that, for all h ∈ (0, h0), the n-th eigenvalue λn(h) of the operator Ph defined in (1-4)
satisfies

λn(h)≤ hβa + h3/2kmax M3(a)+ h7/4(2n − 1)

√
k2 M3(a)c2(a)

2
+ C0h15/8, (4-1)

where c2(a) and M3(a) were introduced in (1-12).

Proof. The approach is similar to the one used in the literature in establishing upper bounds for the
low-lying eigenvalues of operators defined on smooth bounded domains, like Schrödinger operators with
uniform magnetic fields (and Neumann boundary conditions) or the Laplacian (with Robin boundary
conditions). For instance, one can see [Bernoff and Sternberg 1998; Fournais and Helffer 2006; Helffer
and Kachmar 2017]. The proof relies on the construction of quasimodes localized near the point of
maximal curvature on 0.

Let h ∈ (0, 1). Working near 0, we start by expressing the operator Ph in the adapted (s, t)-coordinates
there (see Appendix A):

P̃h = −a−1(h∂s − i F̃1)a
−1(h∂s − i F̃1)− a−1(h∂t − i F̃2)a(h∂t − i F̃2). (4-2)

Recall that we assume that the maximum is attained for s = 0, hence kmax = k(0), and having Lemma A.1,
we perform a global change of gauge ω such that the magnetic potential F satisfies in � near the edge 0,
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when expressed in the (s, t)-coordinates,

F̃(s, t)=

(
−ba(t)

(
t −

1
2 t2k(s)

)
0

)
, (4-3)

where t 7→ ba(t) is defined by
ba(t)= 1R+

(t)+ a1R−
(t), t ∈ R.

Performing the change of variables

σ = h−1/8s and τ = h−1/2t,

the operator P̃h becomes in the (σ, τ )-coordinates

P̌h = −ǎ−1(h7/8∂σ + ih1/2ba(τ )τ ǎ2)ǎ
−1(h7/8∂σ + ih1/2ba(τ )τ ǎ2)− hǎ−1∂τ ǎ∂τ , (4-4)

with
ǎ(σ, τ ; h)= 1 − h1/2τk(h1/8σ) and ǎ2(σ, τ ; h)= 1 −

1
2 h1/2τk(h1/8σ). (4-5)

It is convenient to introduce the operator

Pnew
h = e−iσζa/h3/8

h−1P̌heiσζa/h3/8
−βa, (4-6)

where ζa is introduced in Section 2B and we get

Pnew
h = −ǎ−1∂τ ǎ∂τ −βa − ǎ−1(h3/8∂σ + i(ζa + ba(τ )τ )− iba(τ )τ (1 − ǎ2)

)
× ǎ−1(h3/8∂σ + i(ζa + ba(τ )τ )− iba(τ )τ (1 − ǎ2)

)
.

Using the boundedness and the smoothness of k, and the fact that k ′(0)= 0 and k ′′(0) < 0, we write

ǎ(σ, τ ; h)= 1 − h1/2τk(0)− h3/4τσ 2 k ′′(0)
2

+ h7/8e1,h(σ, τ ),

ǎ2(σ, τ ; h)= 1 − h1/2τ
k(0)

2
− h3/4τσ 2 k ′′(0)

4
+ h7/8e2,h(σ, τ ),

ǎ−1(σ, τ ; h)= 1 + h1/2τk(0)+ h3/4τσ 2 k ′′(0)
2

+ h7/8e3,h(σ, τ ),

ǎ−2(σ, τ ; h)= 1 + 2h1/2τk(0)+ h3/4τσ 2k ′′(0)+ h7/8e4,h(σ, τ ),

where (ei,h)i=1,...,4 are functions of σ and τ having the property that there exist C and h0 such that,1 for
h ∈ (0, h0), σ ∈ (−h−η, h−η) and τ ∈ (−h−ρ, h−ρ) we have

|e1,h(σ, τ )| + |e2,h(σ, τ )| ≤ C |τσ 3
|, |e3,h(τ, σ )| + |e4,h(τ, σ )| ≤ C(σ 6

+ τ 4
+ 1), (4-7)

and
4∑

i=1

( 2∑
j=1

(
|∂ j
τ ei,h(σ, τ )| + |∂ j

σ ei,h(σ, τ )|
)
+ |∂2

στ ei,h(σ, τ )|

)
≤ C(|σ |

5
+ |τ |3 + 1). (4-8)

1The following conditions on the length scales of τ and σ (namely that σ ∈ (−h−δ, h−δ) and τ ∈ (−h−ρ , h−ρ)), as well
as (4-7) and (4-8) below, are set for a later use in the paper.
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Hence,

Pnew
h = P0 + h3/8 P1 + h1/2 P2 + h3/4 P3 + h7/8 Qh, (4-9)

where

P0 = −∂2
τ + (ζa + ba(τ )τ )

2
−βa,

P1 = −2i(ζa + ba(τ )τ )∂σ ,

P2 = k(0)[2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )] + k(0)∂τ ,

P3 = −∂2
σ +

k ′′(0)
2

σ 2
[2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )] +
k ′′(0)

2
σ 2∂τ ,

(4-10)

and

Qh = E1,h(σ, τ )∂
2
σ + E2,h(σ, τ )∂σ + E3,h(σ, τ )∂τ + E4,h(σ, τ ). (4-11)

Here the terms (Ei,h)i=1,...,4 are functions in σ and τ having the property that there exist C and h0 such
that, for h ∈ (0, h0), σ ∈ (−h−η, h−η) and τ ∈ (−h−ρ, h−ρ), we have

|Ei,h(σ, τ )| + |∂σEi,h(σ, τ )| + |∂τEi,hσ, τ)| ≤ C (|σ |
6
+ |τ |6 + 1). (4-12)

In what follows, we will construct, for each n ∈ N∗, a trial function φn ∈ DomPnew
h satisfying∥∥∥∥Pnew

h φn −

(
h1/2kmax M3(a)+ h3/4(2n − 1)

√
k2 M3(a)c2(a)

2

)
φn

∥∥∥∥
L2(R2,h5/8ã dσ dτ)

= O(h7/8)∥φn∥L2(R2,h5/8ã dσ dτ) (4-13)

(recall k2 = k ′′(0)).
The result in (4-13), once established, will imply by the spectral theorem the existence of an eigenvalue

λnew
n (h) of Pnew

h such that

λnew
n (h)= h1/2kmax M3(a)+ h3/4(2n − 1)

√
k2 M3(a)c2(a)

2
+O(h7/8). (4-14)

Furthermore, by the definition of Pnew
h in (4-6) we have

σ(Ph)= h σ(Pnew
h ).

Thus, (4-14) will yield the result in (4-1). Hence, the discussion above shows that establishing (4-13) is
sufficient to complete the proof of the theorem.

We construct the trial functions in the form

φh(σ, τ )= h−5/16χ(hησ)χ(hρτ)g(σ, τ ), (4-15)

where χ is a smooth cut-off function supported in (−1, 1) and g = g[h] will be determined in L2(R2)

with rapid decay at infinity. First we set

g[h] = g0 + h3/8g1 + h1/2g2 + h3/4g3, (4-16)
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with gi ∈ L2(R2) for i = 0, . . . , 3, and

µ= µ(h)= µ0 + h3/8µ1 + h1/2µ2 + h3/4µ3, (4-17)

with µi ∈ R for i = 0, . . . , 3. We will search for µ and g satisfying on R2

(Pnew
h −µ)g = O(h7/8). (4-18)

More precisely, using the expansion of Pnew
h in (4-9), we will search for µi and gi satisfying the system

of equations 
(e0): (P0 −µ0)g0 = 0,
(e1): (P0 −µ0)g1 + (P1 −µ1)g0 = 0,
(e2): (P0 −µ0)g2 + (P2 −µ2)g0 = 0,
(e3): (P0 −µ0)g3 + (P1 −µ1)g1 + (P3 −µ3)g0 = 0.

Let u0 = φa be the positive normalized eigenfunction of the operator ha[ζa] (in (2-1)) corresponding
to the lowest eigenvalue βa .

Obviously, the pair
(µ0, g0)= (0, u0 f ) (4-19)

is a solution of (e0) for any f ∈ S(Rσ ).
We implement this choice of (µ0, g0) in (e1) and write

P0g1 = −(P1 −µ1)g0 = [2i(ζa + ba(τ )τ )∂σ +µ1]u0 f.

Noticing that (ζa +ba(τ )τ )u0 is orthogonal to u0 in L2(R), Ra[(ζa +ba(τ )τ )u0] is well-defined with Ra

in (2-18) (see (2-11) and Remark 2.2), and the pair

(µ1, g1)=
(
0, 2iRa[(ζa + ba(τ )τ )u0]∂σ f

)
(4-20)

is a solution of (e1).
Similarly,

P0g2 = −(P2 −µ2)g0 =
[
−kmax

(
2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )
)
+µ2

]
u0 f − kmax f ∂τu0.

From Remark 2.3, we observe that [2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )− M3(a)]u0 is orthogonal
to u0 in L2(R). Moreover, the normalization of u0 in L2(R) yields ∂τu0 ⊥ u0. Hence, the pair

(µ2, g2)=
(
kmax M3(a),

−kmaxRa([2τ(ζa + ba(τ )τ )
2
− ba(τ )τ

2(ζa + ba(τ )τ )− M3(a)]u0 + ∂τu0) f
)

(4-21)

is a solution of equation (e2).
Finally, we consider equation (e3):

P0g3 = −P1g1 − (P3 −µ3)g0.

We will search for µ3 and f satisfying(
P1g1(σ, · )+ (P3 −µ3)g0(σ, · )

)
⊥ u0( · ) (4-22)
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for every fixed σ . This orthogonality result will allow us to choose

g3(σ, · )= −Ra[P1g1(σ, · )+ (P3 −µ3)g0(σ, · )] (4-23)

in order to satisfy (e3). To that end, the aforementioned choice of g0, g1 and g2 gives for any fixed σ

⟨P1g1(σ, · )+ (P3 −µ3)g0(σ, · ), u0( · )⟩L2(R)

= 4∂2
σ f (σ )

∫
R

(ζa + ba(τ )τ )u0Ra[(ζa + ba(τ )τ )u0] dτ +
k2

2
σ 2 f (σ )

∫
R

u0∂τu0 dτ

+

∫
R

(
−∂2

σ f (σ )+
k2

2
σ 2 f (σ )[2τ(ζa + ba(τ )τ )

2
− ba(τ )τ

2(ζa + ba(τ )τ )] −µ3 f (σ )
)

u2
0 dτ

= −(1 − 4I2(a))∂2
σ f (σ )+

k2 M3(a)
2

σ 2 f (σ )−µ3 f (σ ) (using ∥u0∥L2(R) = 1)

= −c2(a)∂2
σ f (σ )+

k2 M3(a)
2

σ 2 f (σ )−µ3 f (σ ), (4-24)

where I2(a) is introduced in (2-17) and (2-20), and c2(a) is introduced in (1-12).
We consider the harmonic oscillator on R

H harm
a := −c2(a)

d2

dσ 2 +
1
2

k2 M3(a)σ 2. (4-25)

For each n ∈ N∗, let fn ∈ S(R) be the n-th normalized eigenfunction of H harm
a corresponding to the

eigenvalue (2n − 1)
√

k2 M3(a)c2(a)/2. The choice

f = fn and µ3 = (2n − 1)

√
k2 M3(a)c2(a)

2
(4-26)

makes the expression in (4-24) equal to zero, hence realizing the orthogonality result in (4-22).
We can now gather the above results. For each n ∈ N∗, we choose µ in (4-17) and g = g(n) in (4-16)

such that µi , gi and f are as in (4-19)–(4-21), (4-23) and (4-26).
For h sufficiently small, using the properties of Qh in (4-11) and (4-12), the fact that f ∈ S(R), the

decay properties of φa in Proposition 2.1 and those of the resolvent Ra in (2-18), the foregoing choice of
g and µ implies (4-18).

Now, we consider the trial function (see (4-15)) associated with g(n). Using again the decay properties
of u0 and f , and Lemma 2.4 for getting the same properties for the gj , one can neglect the effect of the
cut-off functions in the computation while concluding from (4-18) the desired result in (4-13). We omit
further details of the computation, and refer the reader to [Fournais and Helffer 2006, Sections 2–3]. □

Remark 4.2. The formal construction of the pairs (µi , gi )i=0,...,3 in the proof of Theorem 4.1 can be
pushed to any order, assuming that the curve 0 is C∞ smooth. Using the same approach we can construct
pairs (µi , gi )i∈N∗ for defining quasimodes yielding an accurate upper bound of the eigenvalue λn(h), which
is an infinite expansion of powers of h1/8. This upper bound will agree with the one in Theorem 4.1 up to
the order h7/4; see [Bernoff and Sternberg 1998; Fournais and Helffer 2006; Helffer and Kachmar 2017].
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Remark 4.3. In the derivation of the lower bound in Section 7, the operator H harm
a introduced in (4-25)

plays the role of an effective operator in the tangential variable. In light of (4-16), (4-19), (4-20), (4-21)
and (4-26), the quasimode

v
app
h,n = φa(τ ) fn(σ )+ 2ih3/8Ra

(
(ζa + ba(τ )τ )φa(τ )

)
∂σ fn(σ )+ h1/2g2(σ, τ )

is a candidate for the profile of an actual eigenfunction of the operator Ph , after rescaling and a gauge
transformation.

5. Functions localized near the magnetic edge

In this section, we consider functions satisfying the energy bound2 in (5-1), which are consequently
localized near the maximum of the curvature of the magnetic edge 0. We will be able to estimate the
tangential derivative of such functions.

As we shall see in Section 5A, bound states and their first-order tangential derivatives are examples of
the functions we discuss in this section.

5A. Localization hypotheses. We fix t0 > 0 so that the Frenet coordinates recalled in Appendix A are
valid in {d(x, 0) < t0}. We recall our assumption that the curvature of 0 attains its maximum at a unique
point defined by the tangential coordinate s = 0.

Let θ ∈
(
0, 3

8

)
be a fixed constant. Consider a family of functions (gh)h∈(0,h0] in H 1(�) for which

there exist positive constants C1, C2 such that, for h ∈ (0, h0],

Qh(gh)≤ (hβa + h3/2 M3(a)kmax + C1h7/4)∥gh∥
2
L2(�)

+ C2h5/2−θ , (5-1)

where Qh is the quadratic form introduced in (1-3).
Suppose also that there exist constants α,C > 0 and a family (rh)h∈(0,h0] ⊂ R+ such that

lim sup
h→0+

rh <+∞, (5-2)

and the following two estimates hold:∫
�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/2d(x, 0)) dx ≤ Crh, (5-3)∫

d(x,0)≤t0

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) exp(αh−1/8

|s(x)|) dx ≤ Crh . (5-4)

We can derive from the decay estimates in (5-3) and (5-4) four estimates.
The two first estimates follow from the inequality ez

≥ zN/N ! for z ≥ 0 and read: for N ≥ 1, there
exist CN , hN > 0 such that, for all h ∈ (0, hN ], we have

AN (gh) :=

∫
�

(d(x, 0))N (
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN hN/2rh, (5-5)

2This is coherent with (4-1) if we consider the function a normalized bound state.
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and, for ρ ∈
(
0, 1

2

)
, there exist CN ,ρ, hN ,ρ > 0 such that, for all h ∈ (0, hN ,ρ],

BN (gh) :=

∫
d(x,0)≤hρ

|s(x)|N (
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN hN/8rh . (5-6)

The two last estimates imply that, for a fixed ρ ∈
(
0, 1

2

)
, and N ≥ 1, there exist CN ,ρ, hN ,ρ > 0 such

that, for all h ∈ (0, hN ,ρ], we have∫
d(x,0)≥hρ

(
|gh(x)|2 + h−1

|(h∇ − i F)gh(x)|2
)

dx ≤ CN ,ρ hN rh, (5-7)

and for η ∈
(
0, 1

8

)
, there exist CN ,ρ,η, hN ,ρ,η > 0 such that, for all h ∈ (0, hN ,ρ,η], we have∫

d(x,0)≤hρ
|s(x)|≥hη

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ CN ,ρ,η hN rh . (5-8)

In fact, (5-7) and (5-8) follow in a straightforward manner from (5-3) and (5-4) after noticing that∫
d(x,0)≥hρ

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ Crh exp(−αhρ−1/2),∫

d(x,0)≤hρ
|s(x)|≥hη

(
|gh(x)|2 + h−1

|(h∇ − i F)gh|
2) dx ≤ Crh exp(−αhη−1/8).

5B. Rescaled functions and tangential estimates. Let δ ∈
(
0, 1

12

)
and η ∈

(
0, 1

8

)
be two fixed constants.

Consider the function wh defined as

wh(σ, τ )= h5/16χ(hησ)χ(hδτ)g̃h(h1/8σ, h1/2τ), (5-9)

where g̃h is the function assigned to gh by the Frenet coordinates as in (A-3), namely

g̃h(s, t)= gh(x),

and χ ∈ C∞
c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on

[
−

1
2 ,

1
2

]
.

Note that, due to our conditions on δ and η, wh can be seen as a function on R2, and its L2-norm can
be estimated by using (A-7) and (5-5) as follows:

∥wh∥
2
L2(R2)

= (1 +O(h1/2))∥gh∥
2
L2(�)

. (5-10)

Under our hypotheses on the function gh (particularly (5-1) for θ ∈
(
0, 3

8

)
and (5-3)–(5-4)), we can

estimate the tangential derivative of the function wh .

Proposition 5.1. For all θ ∈
(
0, 3

8

)
, there exist constants Cθ , hθ > 0 such that, if h ∈ (0, hθ ], and gh

satisfies (5-1)θ , (5-3) and (5-4), then the function wh introduced in (5-9) satisfies the estimate

∥(h3/8∂σ − iζa)wh∥L2(R2) ≤ Ch3/8−θ/2(∥wh∥L2(R2) +
√

rh + h3/8−3θ/4). (5-11)

Proof. The proof is split into four steps.
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Step 1: We localize the integrals defining the L2-norm and the quadratic form of gh to the neighborhood,
Nh = {x ∈� : d(x, 0)≤ h1/2−δ, |s(x)| ≤ hη}, of the point of maximal curvature, s = 0. In fact, by the
decay estimates in (5-7) and (5-8),

∥gh∥
2
L2(�)

=

∫
Nh

|gh(x)|2 dx +O(h∞) and Qh(gh)=

∫
Nh

|(h∇ − i F)gh|
2 dx +O(h∞).

We refine the localization of these integrals by using the decay estimates in (5-5) and (5-6), the change of
variable formulas in (A-7) and the expansions

k(s)= κ +O(s2), a(s, t)= 1 − tκ +O(s2t), a−2
= 1 + 2tκ +O(s2t),

where we set κ = kmax. More precisely,

∥gh∥
2
L2(�)

=

∫
R

∫ h1/2−δ

−h1/2−δ

|g̃h|
2(1 − tκ) ds dt +

∫
R

∫ h1/2−δ

−h1/2−δ

O(s2t)|g̃h|
2 ds dt +O(h∞).

To estimate the second term in the right-hand side we use the Cauchy–Schwarz inequality to obtain∫
R

∫ h1/2−δ

−h1/2−δ

s2
|t ||g̃h|

2 ds dt ≤

(∫
R

∫ h1/2−δ

−h1/2−δ

t2
|g̃h|

2 ds dt
)1/2(∫

R

∫ h1/2−δ

−h1/2−δ

s4
|g̃h|

2 ds dt
)1/2

.

Hence by (5-5) (with N = 2) and (5-6) (with N = 4) we get∫
R

∫ h1/2−δ

−h1/2−δ

s2
|t ||g̃h(s, t)|2 ds dt = O(h3/4)rh .

Implementing the above, we have

∥gh∥
2
L2(�)

≤

∫
R

∫ h−δ

−h−δ

|wh|
2(1 − h1/2τκ) dσ dτ +O(h3/4)rh +O(h∞) (5-12)

and

Qh(gh)=

∫
R

∫ h1/2−δ

−h1/2−δ

(
|h∂t g̃h|

2
+ (1 + 2κt)

∣∣∣(h∂s + iba(t)
(

t −
κt2

2

))
g̃h

∣∣∣2)
(1 − κt) ds dt

+O(h∞)+O(Rh), (5-13)

where

Rh =

∫
R2

s2
|t |

(
|h∂t g̃h|

2
+

∣∣∣(h∂s + iba(t)
(

t −
k(s)t2

2

))
g̃h

∣∣∣2)
ds dt

+

∫
R2

s4t4
|g̃h|

2 ds dt +

(∫
R2

s4t4
|g̃h|

2 ds dt
)1/2

∥(h∇ − i F)gh∥L2(�).

Proceeding as above for the treatment of
∫

R2 s4t4
|g̃h|

2 ds dt , we infer from (5-1), (5-5) and (5-6) that

Rh ≤ C
(
(A2(gh)B4(gh))

1/2h + (A8(gh)B8(gh))
1/2

+ (A8(gh)B8(gh))
1/4h1/2)

= O(h7/4rh).
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Now, coming back to (5-1), we get after performing a change of variable and dividing by h that3∫
R

∫ h−δ

−h−δ

(
|∂τwh|

2
+ (1 + 2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

ba(τ )τ − κh1/2ba(τ )
τ 2

2

))
wh

∣∣∣2)
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))mh +O(h3/4rh)+O(h3/2−θ ), (5-14)
where

mh :=

∫
R

∫ h−δ

−h−δ

|wh|
2(1 − κh1/2τ) dσ dτ = (1 + o(1))∥wh∥

2
L2(R2)

. (5-15)

In the sequel, we set
Mh = mh + rh . (5-16)

Next we perform a Fourier transform with respect to σ and denote the transform of wh by

ŵh(ξ, t)=
1

√
2π

∫
R

wh(σ, t)e−iσξ dσ.

Then it is immediate from (5-14) and (5-15) that we have∫
R

∫ h−δ

−h−δ

(
|∂τ ŵh|

2
+ (1+2κh1/2τ)

∣∣∣(h3/8ξ +ba(τ )τ −κh1/2ba(τ )
τ 2

2

)
ŵh

∣∣∣2)
(1−κh1/2τ) dξ dτ

≤ (βa + h1/2 M3(a)κ)mh +O(h3/4 Mh)+O(h3/2−θ ), (5-17)

and mh introduced in (5-15) now satisfies

mh =

∫
R

∫ h−δ

−h−δ

|ŵh|
2(1 − κh1/2τ) dξ dτ. (5-18)

Step 2: We introduce
fh(ξ)= qa,ζ,κ,h(ŵh)

∣∣
ζ=h3/8ξ

, (5-19)

where qa,ζ,κ,h is the quadratic form introduced in (3-4). We rewrite (5-17) as∫
R

fh(ξ) dξ ≤ (βa + h1/2 M3(a)κ)mh +O(h3/4 Mh)+O(h3/2−θ ). (5-20)

Fix a positive constant ε < 1. Then by Proposition 3.2,

fh(ξ)≥

∫ h−δ

−h−δ

(
βa + ĉ0(a)min((h3/8ξ − ζa)

2, ε)+ h1/2 M3(a)κ − Cεh
)
|ŵh|

2(1 − h1/2κτ) dτ. (5-21)

Inserting this into (5-20) we get∫
R

∫ h−δ

−h−δ

ĉ0(a)min((h3/8ξ − ζa)
2, ε)|ŵh|

2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ),

from which we infer the two estimates∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|h3/8ξ − ζa|
2
|ŵh|

2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ), (5-22)∫
|h3/8ξ−ζa |2≥ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ = O(h3/4 Mh)+O(h3/2−θ ). (5-23)

3Replacing the cut-off functions in (5-9) by 1 in the integrals produces O(h∞) errors by (5-7) and (5-8).
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Step 3: Noticing the simple decomposition∫
R

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ

=

∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ +

∫
|h3/8ξ−ζa |2≥ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ, (5-24)

we get from (5-23) and (5-18)∫
|h3/8ξ−ζa |2<ε

∫ h−δ

−h−δ

|ŵh|
2(1 − h1/2κτ) dξ dτ = mh +O(h3/4 Mh)+O(h3/2−θ ). (5-25)

Similarly, we decompose the integral in (5-20) as∫
R

fh(ξ) dξ =

∫
|h3/8ξ−ζa |2<ε

fh(ξ) dξ +

∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ. (5-26)

We write a lower bound of the integral on {|h3/8ξ − ζa|
2
≥ ε} by using (5-21). Noting that ĉ0(a) > 0, we

get, by (5-25),∫
|h3/8ξ−ζa |2<ε

fh(ξ) dξ ≥
(
βa + h1/2 M3(a)κ +O(h)

)
mh +O(h3/4 Mh)+O(h3/2−θ ).

Inserting this into (5-26) and using (5-20), we get∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ = O(h3/4 Mh)+O(h3/2−θ ). (5-27)

Step 4: We write a lower bound for fh(ξ) by gathering (5-19) and (3-8), thereby obtaining∫
|h3/8ξ−ζa |2≥ε

fh(ξ) dξ ≥ (1 − Ch1/2−2δ)

∫
|h3/8ξ−ζa |2≥ε

∫
R

(
|∂τ ŵh|

2
+ |(ba(τ )τ + h3/8ξ)ŵh|

2) dξ dτ.

Using (5-27) and the inequality (note that |ba| ≤ 1 since |a|< 1)

(ba(τ )τ + h3/8ξ)2 ≥
1
2(h

3/8ξ)2 − 2τ 2,

we get

1
2

∫
|h3/8ξ−ζa |2≥ε

∫
R

|h3/8ξŵh|
2 dξ dτ ≤2

∫
|h3/8ξ−ζa |2≥ε

∫
R

τ 2
|ŵh|

2 dξ dτ+O(h3/4 Mh)+O(h3/2−θ ). (5-28)

Let p = 1/θ and q = 1/(1 − θ). By the Hölder inequality, (5-5) and (5-23), we write∫
|h3/8ξ−ζa |2≥ε

∫
R

τ 2
|ŵh|

2︸ ︷︷ ︸
=τ 2|ŵh |2θ |ŵh |2−2θ

dξ dτ

≤

(∫
|ξh−ζa |2≥ε

∫
R

τ 2p
|ŵh|

2pθ dξ dτ
)1/p(∫

|ξh−ζa |2≥ε

∫
R

|ŵh|
q(2−2θ) dξ dτ

)1/q

≤

(∫
R2
τ 2p

|wh|
2 dτ ds

)1/p(∫
|ξh−ζa |2≥ε

∫
R

|ŵh|
2 dξ dτ

)1/q

= O(h3/4(1−θ)Mh)+O(Mθ
h h(1−θ)(3/2−θ))

= O(h3/4(1−θ)Mh)+O(h3/2−5θ/2),
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where, in the last step, we used Young’s inequality,

Mθ
h h(1−θ)(3/2−θ)

= Mhθhθ(3/4−θ)h(1−θ)(3/2−θ)−θ(3/4−θ)

≤ θMhh3/4−θ
+ (1 − θ)h3/2−θh−(3/4−θ)θ/(1−θ)

≤ θMhh3/4−θ
+ (1 − θ)h3/2−5θ/2 for 0< θ < 3

8 .

Inserting this estimate into (5-28), we get∫
|h3/8ξ−ζa |2≥ε

∫
R

|h3/8ξŵh|
2 dξ dτ = O(h3/4−θMh)+O(h3/2−5θ/2).

Collecting the foregoing estimate and those in (5-22) and (5-23), we deduce that∫
R2

|(h3/8∂σ − iζa)wh|
2 dσ dτ =

∫
R

∫ h−δ

−h−δ

|h3/8ξ − ζa|
2
|ŵh|

2 dξ dτ = O(h3/4−θMh)+O(h3/2−5θ/2).

With (5-15) and (5-16) in mind, this implies (5-11) as stated in the proposition. □

6. Localization of bound states

In this section, we fix a labeling n ≥ 1 and denote by ψh,n a normalized eigenfunction of the operator Ph

with eigenvalue λn(h). By Theorem 4.1, it holds

Qh(ψh,n)≤ (hβa + h3/2 M3(a)kmax + C1h7/4)∥ψh,n∥
2
L2(�)

, (6-1)

where Qh is the quadratic form introduced in (1-3).
The decay estimates in Sections 6A and 6B follow by standard semiclassical Agmon estimates. We

refer to [Helffer and Morame 2001; Fournais and Helffer 2006] for details in the case of the Laplacian
with a smooth magnetic field, and to [Assaad and Kachmar 2022] for adaptations in the piecewise constant
field discussed here.

Using the aforementioned decay estimates, the bound state ψh,n satisfies the hypotheses in Section 5.
Namely the estimates in (5-1)θ , (5-3) and (5-4) hold with gh = ψh,n , rh = 1 and for any θ ∈

(
0, 3

8

)
.

Consequently, we will be able to estimate its tangential derivative (see Proposition 6.2). Estimating the
second-order tangential derivative of ψh,n (as in Proposition 6.3) requires the analysis of the decay of its
first-order tangential derivative in order to verify the hypotheses of Section 5.

6A. Decay away from the edge. The derivation of an Agmon decay estimate relies on the following
useful lower bound of the quadratic form [Assaad and Kachmar 2022, Section 4.3]. For every R0 > 1,
there exists a positive constant C0 and h0 > 0 such that, for h ∈ (0, h0],

Qh(u)≥

∫
�

(Uh,a(x)− C0 R−2
0 h)|u(x)|2 dx (u ∈ H 1

0 (�)), (6-2)

where Qh is introduced in (1-3) and

Uh,a(x)=

{
|a|h if dist(x, 0) > R0h1/2,

βah if dist(x, 0) < R0h1/2.
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Note that the decay property is a consequence of βa < |a|. Following [Fournais and Helffer 2010,
Theorem 8.2.4], it results from the foregoing lower bound that the eigenfunction ψh,n decays roughly like
exp(−α0h−1/2d(x, 0)) for some constant α0 > 0. More precisely, the following holds:∫

�

(
|ψh,n|

2
+ h−1

|(h∇ − i F)ψh,n|
2) exp(2α0h−1/2 d(x, 0)) dx ≤ C. (6-3)

6B. Decay along the edge. Here we discuss tangential estimates along the edge 0. Recall that s = 0
corresponds to the (unique) point of maximal curvature.

The starting point is the following refined lower bound of the quadratic form [Assaad and Kachmar
2022, Section 4.3]:

Qh(u)≥

∫
�

(U0
h,a(x)− C0h7/4)|u|

2 dx (u ∈ H 1
0 (�)), (6-4)

where, with x =8(s, t), κ(s)= kmax − ε0s2 and ε0 a positive constant,

U0
h,a(x)=

{
|a|h if dist(x, 0)≥ 2h1/6,

βah + M3(a)κ(s)h3/2 if dist(x, 0) < 2h1/6.

Here we recall that M3(a) is negative so the potential in the second zone is minimal at the point of
maximal curvature. The lower bound (6-4) can be derived along the same arguments in [Fournais and
Helffer 2010, Proposition 8.3.3, Remark 8.3.6] and by using Proposition 3.2.

The eigenfunctionψn,h decays exponentially roughly like exp(−α1h−1/8s(x)) for some constant α1>0.
More precisely, picking t0 sufficiently small so that the Frenet coordinates recalled in Appendix A are
valid in {d(x, 0) < t0}, we have∫

d(x,0)≤t0

(
|ψh,n(x)|2 + h−1

|(h∇ − i F)ψh,n|
2) exp(2α1h−1/8

|s(x)|) dx ≤ C. (6-5)

Remark 6.1. We observe, by collecting (6-1), (6-3) and (6-5), that the eigenfunction gh = ψh,n satisfies
the hypotheses of Proposition 5.1, namely

• (5-1) holds for any θ ∈
(
0, 3

8

)
,

• (5-3) and (5-4) hold with 0< α ≤ min(2α1, 2α2) and rh = 1.

6C. Estimating tangential frequency. The localization of the eigenfunction ψh,n is to be measured by
two parameters ρ ∈

(
0, 1

2

)
and η ∈

(
0, 1

8

)
. We will choose ρ =

1
2 −δ with δ ∈

(
0, 1

12

)
; i.e., we are assuming

5
12 < ρ <

1
2 .

We introduce the function

uh,n(σ, τ )= h5/16χ(hησ)χ(hδτ)ψ̃h,n(h1/8σ, h1/2τ), (6-6)

where ψ̃h,n is the function assigned to ψh,n by the Frenet coordinates as in (A-3), χ ∈ C∞
c (R), suppχ ⊂

[−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on
[
−

1
2 ,

1
2

]
. Note that uh,n can be seen as a function on R2, and by (5-10)
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(applied with gh = ψh,n), its L2-norm satisfies

∥uh,n∥
2
L2(R2)

= ∥ψh,n∥
2
L2(�)

(1 +O(h1/2))= 1 +O(h1/2), (6-7)

since ψh,n is normalized in L2(�).
Using Proposition 5.1, we can estimate the tangential derivative of uh,n . More precisely, we apply

this proposition with gh = ψh,n , rh = 1 and any 0< θ < 3
8 (see Remark 6.1). In this case, the function

introduced in (5-9) is given by wh = uh,n .

Proposition 6.2. For all θ ∈
(
0, 3

8

)
, there exist constants Cθ , hθ > 0 such that, for all h ∈ (0, hθ ],

∥(h3/8∂σ − iζa)uh,n∥L2(R2) ≤ Cθ h3/8−θ .

We can estimate higher-order tangential derivatives of uh,n .

Proposition 6.3. For all θ ∈
(
0, 3

4

)
, there exist constants Cθ , hθ > 0 such that, for all h ∈ (0, hθ ],

∥(h3/8∂σ − iζa)
2uh,n∥L2(R2) ≤ Cθ h3/4−θ , (6-8)

where uh,n is introduced in (6-6).

Before proceeding with the proof of Proposition 6.3, we introduce the notation, rh = Õ(hγ ) for a
positive number γ , to mean

for all θ ∈ (0, γ ), there exists Cθ , hθ > 0 such that, for all h ∈ (0, hθ ), |rh| ≤ Cθhγ−θ. (6-9)

Proof of Proposition 6.3. We will apply Proposition 5.1 with an adequate choice of the function gh

defining the function wh in (5-9).
We introduce the function ϕh on � as

ϕh(x)= f (x)ψh,n(x), (6-10)

where f (x) = (1 − χ(dist(x, ∂�)/t1)) χ(dist(x, 0)/t0), t1 and t0 are constants so that the set {x ∈ � :

dist(x, ∂�) > t1} contains the point of maximum curvature and the transformation in (A-1) is a diffeo-
morphism, χ ∈ C∞

c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and χ = 1 on
[
−

1
2 ,

1
2

]
. Then we define

g̃h(s, t)= (h1/2∂s − iζa)ϕ̃h(s, t), (6-11)

where ϕ̃h is the function assigned to ϕh by (A-3). Notice that, using the notation in (6-9), the conclusion
of Proposition 6.2 can be written as

∥gh∥L2(�) = Õ(h3/8). (6-12)

We will show that gh satisfies (5-1)θ for any θ ∈
(
0, 3

8

)
, and that (5-3) and (5-4) hold with

rh = ∥gh∥
2
L2(�)

+ h3/4. (6-13)

This will be done in several steps outlined below.
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• In Step 1, we establish rough decay estimates for gh in the normal and tangential directions (see (6-20)).
These estimates are nevertheless weaker than the estimates in (5-3) and (5-4) that we wish to prove.

• In Step 2, we show that gh is in the domain of the operator Ph introduced in (1-4).

• In Step 3, using the rough estimates obtained in Steps 1 and 2, we can verify that (5-1) holds for any
θ ∈

(
0, 3

8

)
.

• In Step 4, using the estimates obtained in Steps 1 and 3, and the Agmon method, we derive the decay
estimates for gh as in (5-3) and (5-4) with rh given in (6-13).

• In Step 5, we can apply the conclusion of Proposition 5.1 and conclude the proof of Proposition 6.3.

Step 1: We show that the function gh decays exponentially in the normal and tangential directions. We
select the constant t0 so that the two functions

x 7→ dist(x, 0) and x 7→ s(x)

are smooth in the neighborhood, 02t0 , of the edge 0. Consequently, the transformation in (A-1) is valid
in 02t0 . Since we encounter integrals of the function gh , which is supported in 0t0 ∩�, we select the
gauge given in Lemma A.1. In particular, by (A-4), we have

|F(x)| = O(dist(x, 0)) on �∩0t0 . (6-14)

Let α2 ∈
(
0, 1

2 min(α0, α1)
)
, where α0, α1 are the positive constants in (6-3) and (6-5). We introduce on �

the weight functions

8norm(x)= exp
(
α2 dist(x, 0)

h1/2

)
and 8tan(x)= exp

(
α2 s(x)

h1/8

)
. (6-15)

By Remark 6.1, we can use (5-5) for ψh,n . It results from (6-5), (6-14), the Hölder inequality, and our
choice of α2, that, for j ∈ {1, 2},∫

�

|F|
2 j

|ψh,n|
282

tan dx =

∫
�∩0t0

|F|
2 j

|ψh,n|
282

tan dx +O(h∞)

≤ A4 j (ψh,n)
1/2

∥82
tanψh,n∥L2(�) +O(h∞)= O(h j ), (6-16)

where A4 j ( · ) is defined in (5-5) and∫
�

|F · (h∇ − i F)ψh,n|
282

tan dx =

∫
�∩0t0

|F · (h∇ − i F)ψh,n|
282

tan dx +O(h∞)

≤ A4(ψh,n)
1/2

∥82
tan(h∇ − i F)ψh,n∥L2(�) +O(h∞)= O(h2).

Similarly, we estimate the L2(�)-norms of Fψh,n8norm, (F · F)ψh,n8norm and 8norm F · (h∇ − i F)ψh,n

using (6-3). Eventually, we get the estimates

∥Fψh,n8norm∥L2(�∩02t0 ;R2) + ∥Fψh,n8tan∥L2(�∩02t0 ;R2)

≤ Ch1/2
∥F · ∇(ψh,n8norm)∥L2(�∩02t0 ;R2) + ∥F · ∇(ψh,n8tan)∥L2(�∩02t0 )

≤ C. (6-17)
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Furthermore, the following two estimates hold:

∥ψh,n8norm∥L2(�∩02t0 )
+ ∥ψh,n8tan∥L2(�∩02t0 )

≤ C,

∥ψh,n8norm∥H1(�∩02t0 )
+ ∥ψh,n8tan∥H1(�∩02t0 )

≤ Ch−1/2.
(6-18)

Notice that for w# := ψh,n8#, (# ∈ {norm, tan}), we have, with Ph the operator introduced in (1-4),

Phw# = λn(h)w# − 2h∇8# · (h∇ − i F)ψh,n − h218# ψh,n.

Hence, noting that Ph = −h21+ 2ih F · ∇ + ih divF + |F|
2, we find by (4-1), (6-16) and (6-17),

h2
∥1w#∥L2(�∩02t0 )

≤
(
∥Phw#∥L2(�) + ∥(h∇ − i F)w#∥L2(�∩02t0 )

+ h∥div Fw#∥L2(�∩02t0 )

+ 2h∥F · ∇w#∥L2(�∩0t0 )
+ ∥|F|

2w#∥L2(�∩02t0 )

)
= O(h).

By the L2-elliptic estimates for the Dirichlet problem in 02t0 ∩�, and noting that w# satisfies the Dirichlet
condition,

∥w#∥H2(�∩0t0 )
≤ C(t0, �)(∥1w#∥L2(�∩02t0 )

+ ∥w#∥L2(�∩02t0 )
).

Consequently, we get the estimate

∥ψh,n8norm∥H2(�∩0t0 )
+ ∥ψh,n8tan∥H2(�∩0t0 )

≤ Ch−1. (6-19)

Now we can derive decay estimates of the function gh introduced in (6-11). Controlling the decay of the
magnetic gradient of gh requires a decay estimate of ψh,n in the H 2 norm. Actually, collecting (6-18)
and (6-19), we observe that

∥gh8norm∥L2(0t0 )
+ h−1/2

∥((h∇ − i F)gh)8norm∥L2(0t0 ;R2) ≤ C,

∥gh8tan∥L2(0t0 )
+ h−1/2

∥((h∇ − i F)gh)8tan∥L2(0t0 ;R2) ≤ C. (6-20)

Step 2: By the definition of gh in (6-11), this function is compactly supported in �∩0t0 . Hence, there
exists a regular open set ω such that, for h ∈ (0, h0], supp gh ⊂ ω ⊂ ω̄ ⊂ � ∩ 02t0 . Consequently gh

satisfies the Dirichlet boundary condition on ∂ω. To prove that gh is in the domain of the operator Ph , it
suffices to establish that

∂sψ̃h,n ∈ H 2(8−1(ω)). (6-21)

To that end, we consider the spectral equation satisfied by the eigenfunction ψh,n

−(h∇ − i F)2ψh,n = λn(h)ψh,n. (6-22)

Using (A-5) with the potential F̃ in (4-3), (6-22) reads in the (s, t)-coordinates as

−
(
a−1(h∂s − i F̃1)a

−1(h∂s − i F̃1)+ h2a−1∂ta∂t
)
ψ̃h,n = λn(h)ψ̃h,n, (6-23)

that is,

h2(a−2∂2
s ψ̃h,n + ∂2

t ψ̃h,n)= f1(s, t)∂sψ̃h,n + f2(s, t)∂t ψ̃h,n + f3(s, t)ψ̃h,n, (6-24)
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where

f1(s, t)= −h2a−3tk ′(s)− 2ia−2ba(t)
(

t −
t2

2
k(s)

)
,

f2(s, t)= h2a−1k(s),

f3(s, t)= −iha−3tk ′(s)ba(t)
(

t −
t2

2
k(s)

)
+ ha−2 t2

2
k ′(s)+ a−2b2

a(t)
(

t −
t2

2
k(s)

)2
− λn(h).

We differentiate with respect to s in (6-24), and get

h2(a−2∂2
s + ∂2

t )(∂sψ̃h,n)

= ( f1 − h2∂sa
−2)∂2

s ψ̃h,n + f2 ∂s∂t ψ̃h,n + (∂s f1 + f3) ∂sψ̃h,n + ∂s f2 ∂t ψ̃h,n + ∂s f3 ψ̃h,n. (6-25)

Having s 7→ k(s) smooth, a = 1 − tk(s) for t ∈ (−2t0, 2t0), and ψn,h ∈ DomPh ensures that the function
in the right-hand side of (6-25) is in L2(8−1(�∩02t0)). Hence ∂sψ̃h,n ∈ H 1(�∩02t0) and satisfies

(a−2∂2
s + ∂2

t )∂sψ̃h,n ∈ L2(8−1(�∩02t0)). (6-26)

Hence (6-21) follows from (6-26) using the interior elliptic estimates associated with the differential
operator L := (a−2∂2

s + ∂2
t ).

Step 3: We prove that
Qh(gh)= λn(h)∥gh∥

2
L2(�)

+ Õ(h5/2), (6-27)

where Qh is the quadratic form introduced in (1-3).
With the notation introduced in (6-9), the estimates in (4-1) and (6-27) yield (5-1) for any θ ∈

(
0, 3

8

)
.

We start by noticing that

⟨Phϕh,Gh⟩L2(�) = λn(h)⟨ϕh,Gh⟩L2(�) + ⟨(Ph − λn(h))ϕh,Gh⟩L2(�), (6-28)

where ϕh is defined in (6-10) and
G̃h(s, t)= −(h1/2∂s − iζa)gh .

Recall that ϕh and Gh are compactly supported in �∩0t0 so that we can use the Frenet coordinates valid
near the edge 0. By (6-19) we have

∥(Ph − λn(h))ϕh∥L2(�) = O(h∞) (6-29)

and by (6-20)
∥Gh∥L2(�) = O(1). (6-30)

By Hölder’s inequality, we infer from (6-29) and (6-30)

⟨(Ph − λn(h))ϕh,Gh⟩L2(�) = O(h∞). (6-31)

Furthermore, computing the integrals in the Frenet coordinates and integrating by parts, we find

⟨ϕh,Gh⟩L2(�) = ⟨a(h1/2∂s − iζa)ϕ̃h + h1/2(∂sa)ϕ̃h, g̃h⟩L2(R2) = ∥gh∥
2
L2(�)

+O(h9/8)∥gh∥L2(�). (6-32)
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Here we get the O(h9/8) remainder by using that ∂sa = O(ts), the Hölder inequality and Remark 6.1 on
the decay estimates in (5-5) and (5-6) for ψh,n as follows:

|⟨a(∂sa)ϕ̃h, g̃h⟩L2(R2)| ≤ C(A4(ψh,n)B4(ψh,n))
1/4

∥gh∥L2(R2) = O(h5/8)∥gh∥L2(R2).

By (4-1) and (6-12), we infer from (6-32)

λn(h)⟨ϕh,Gh⟩L2(�) = λn(h)∥gh∥
2
L2(�)

+ Õ(h5/2). (6-33)

Therefore, inserting the estimates in (6-33) and (6-31) into (6-28), we find

⟨Phϕh,Gh⟩L2(�) = λn(h)∥gh∥
2
L2(�)

+ Õ(h5/2). (6-34)

Now, by Lemma A.2 (used with φ = 0), we get

Re⟨Phϕh,Gh⟩ = Qh(gh)− h1/2 Re⟨Rh, gh⟩L2(�), (6-35)

where the function Rh is defined via (A-3) as

R̃h(s, t)= (h∂s − i F̃1)
(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ̃h − ia−1(∂s F̃1)ϕ̃h

)
+ h2∂t(∂sa)∂t ϕ̃h . (6-36)

Our choice of gauge in Lemma A.1 ensures that F̃2 = 0 and F̃1 = O(t). By Remark 6.1 and (A-7), we
have ∫

R

∫ t0

−t0
|t |N (

|ϕ̃h|
2
+ a−1h−1

|(h∂s − i F̃1)ϕ̃h|
2
+ h|∂t ϕ̃h|

2)a ds dt = O(hN/2),∫
R

∫ t0

−t0
|s|N (

|ϕ̃h|
2
+ a−1h−1

|(h∂s − i F̃1)ϕ̃h|
2
+ h|∂t ϕ̃h|

2)a ds dt = O(hN/8).

Furthermore, by (6-19), ∫
R

∫ t0

−t0
|t |N (|∂2

s ϕ̃h|
2
+ |∂2

t ϕ̃h|
2) ds dt = O(hN/2−2),∫

R

∫ t0

−t0
|s|N (|∂2

s ϕ̃h|
2
+ |∂2

t ϕ̃h|
2) ds dt = O(hN/8−2).

Now we can estimate R̃h in (6-36), by expressing it as

R̃h = m1(h∂s − i F̃1)
2ϕ̃h + (m2 + h∂sm1)(h∂s − i F̃1)ϕ̃h + h(∂sm2)ϕ̃h + h2m3∂

2
t ϕ̃h + h2(∂t m3)∂t ϕ̃h,

where
m1 = ∂sa

−1
− ia−1∂s F̃1 = O(ts), ∂sm1 = O(t),

m2 = −ia−1∂s F̃1 = O(t2s), ∂sm2 = O(t3s2),

m3 = ∂sa = O(ts), ∂t m3 = O(s).

We get then that the norm of Rh satisfies

∥Rh∥L2(�) = O(h13/8). (6-37)
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By Hölder’s inequality, we infer from (6-37) and (6-12) the estimate

h1/2
| Re⟨Rh, gh⟩L2(�)| ≤ h1/2

∥Rh∥L2(�)∥gh∥L2(�) = Õ(h5/2).

Consequently, (6-34) and (6-35) yield (6-27).

Step 4: We refine the exponential decay of gh . To that end, consider a fixed constant 0< α < 1
4α2, where

α2 is the constant in (6-15), and a real-valued Lipschitz function φh,α ≥ 0, which will be either

φh,α(x)= φnorm
h,α (x) := αh−1/2 dist(x, 0) or φh,α(x)= φtan

h,α(x) := αh−1/8s(x).

We introduce the function Gh,α defined via (A-3) as

G̃h,α(s, t)= −(h1/2∂s − iζa)(e2φh,α g̃h(s, t)).

Since α < 1
4α2, we infer from (6-18) and (6-20)∫

�

(dist(x, 0))2|eφh,αϕh(x)|2 dx = O(h),∫
�

(s(x))2|eφh,αϕh(x)|2 dx = O(h1/4),

∥Gh,α∥L2(�) = O(1),
and also

⟨Phϕh,Gh,α⟩L2(�) = λn(h)∥eφh,αgh∥
2
L2(�)

+ Õ(h19/8),

which results similarly to (6-34).
Now, we write by Lemma A.2,

Re⟨Phϕh,Gh,α⟩ = Qh(eφh,αgh)− h2
∥|∇φh,α|eφh,αgh∥

2
L2(�)

− h1/2 Re⟨Rh, e2φh,αgh⟩L2(�),

where Rh is introduced in (6-36). Since α < 1
4α2, we get from (6-18) and (6-19),

∥eφh,α Rh∥L2(�) = O(h9/8) and ⟨Rh, e2φh,αgh⟩L2(�) = O(h9/8)∥gh∥L2(�).

Collecting the foregoing estimates, we get

Qh(eφh,αgh)= λn(h)∥eφh,αgh∥
2
L2(�)

+ Õ(h5/2). (6-38)

Now we can select α > 0 small enough so that the following two estimates hold. The first estimate is∫
�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/2 d(x, 0)) dx ≤ C∥gh∥

2
L2(�)

+ Õ(h3/2), (6-39)

and it follows after choosing φh,α = αh−1/2 dist(x, 0) and using (6-2). The second estimate follows by
choosing φh,α = αh−1/8s(x) and using (5-4); it reads as∫

�

(
|gh|

2
+ h−1

|(h∇ − i F)gh|
2) exp(αh−1/8s(x)) dx ≤ C∥gh∥

2
L2(�)

+ Õ(h). (6-40)
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Step 5: Let θ ∈
(
0, 3

8

)
. Collecting the estimates in (6-27), (6-39) and (6-40), we observe that the function gh

satisfies (5-1)θ , (5-3) and (5-4) with rh = O(h3/4−θ ). We can then apply Proposition 5.1 and get (recall
that ∥wh∥L2(�) ∼ ∥gh∥L2(�) ≤

√
rh by (5-10))

∥(h3/8∂σ − iζa)wh∥L2(�) ≤ Cθh3/8−θ/2(
∥gh∥L2(�) +

√
rh + h3/8−3θ/4)

= O(h3/4−5θ/4).

Since this holds for any θ ∈
(
0, 3

8

)
, we get that ∥(h3/8∂σ − iζa)wh∥L2(�) = Õ(h3/4), thereby finishing the

proof of Proposition 6.3. □

7. Lower bound

We fix a labeling n ≥ 1 corresponding to the eigenvalue λn(h) of the operator Ph introduced in (1-4).
The purpose of this section is to obtain an accurate lower bound for λn(h). This will be done by doing a
spectral reduction via various auxiliary operators.

7A. Useful operators. We introduce operators, on the real line and in the plane, which will be useful to
carry out a spectral reduction for the operator Ph and deduce the eigenvalue lower bounds that match
with the established eigenvalue asymptotics in Theorem 1.2.

These new operators are defined via the spectral characteristics of the model operator introduced in
Section 2B, namely, the spectral constants βa > 0 and ζa < 0 introduced in (1-10) and (1-12), and the
positive normalized eigenfunction φa ∈ L2(R) corresponding to βa . We introduce the two operators

R−

0 : ψ ∈ L2(R2) 7→

∫
R

φa(τ )ψ( · , τ ) dτ ∈ L2(R), (7-1)

R+

0 : f ∈ L2(R) 7→ f ⊗φa ∈ L2(R2), (7-2)

where ( f ⊗φa)(σ, τ ) := f (σ )φa(τ ).
Note that R+

0 R−

0 is an orthogonal projector on L2(R2) whose image is L2(R)⊗ span(φa). It is easy to
check that the operator norms of R±

0 are equal to 1; hence, for any f ∈ L2(R) and ψ ∈ L2(R2), we have

∥R+

0 f ∥L2(R) ≤ ∥ f ∥L2(R), ∥R−

0 ψ∥L2(R) ≤ ∥ψ∥L2(R2), ∥R+

0 R−

0 ψ∥L2(R2) ≤ ∥ψ∥L2(R2). (7-3)

If we denote by πa the projector in L2(Rτ ) on the vector space generated by φa , we notice that

50 := R+

0 R−

0 = I ⊗πa. (7-4)

7B. Structure of bound states. Our aim is to determine a rough approximation of the bound state ψh,n

of Ph satisfying

Phψh,n = λn(h)ψh,n, (7-5)

this approximation being valid near the point of maximum curvature and reading as follows in the Frenet
coordinates:

ψ̃h,n(s, t)≈ h−5/16eiζas/h1/2
φa(h−1/2t).
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Associated with ψh,n , we introduced in (6-6) the function uh,n which can be seen as a function on R2

with L2-norm satisfying (6-7). We recall that

uh,n(σ, τ )= h5/16χ(hησ)χ(hδτ)ψ̃h,n(h1/8σ, h1/2τ),

where ψ̃h,n is the function assigned to ψh,n by (A-3), χ ∈ C∞
c (R), suppχ ⊂ [−1, 1], 0 ≤ χ ≤ 1 and

χ = 1 on
[
−

1
2 ,

1
2

]
.

We consider the function defined as

vh,n(σ, τ )= e−iζaσ/h3/8
uh,n(σ, τ ). (7-6)

Approximating the function vh,n ∼ χ(hησ)χ(hδτ)φa(τ ) is the aim of the next proposition, which also
yields an approximation of the bound state ψh,n by the previous considerations.

Proposition 7.1. Let Pnew
h be the operator in (4-6). The following hold:

(1) ∥Pnew
h vh,n − (h−1λn(h)−βa)vh,n∥L2(R2) = O(h∞).

(2) ∥vh,n∥L2(R2) = 1 +O(h1/2).

(3) ∥vh,n −50vh,n∥L2(R2) = O(h1/4).

(4) ∥∂τvh,n − ∂τ50vh,n∥L2(R2) + ∥τ(vh,n −50vh,n)∥L2(R2) = O(h1/4).

Proof. Proof of item (1). Let zh be the function supported near 0 and defined in the Frenet coordinates
by means of (A-3) as

z̃h(s, t)= χ(h−1/8+ηs)χ(h−1/2+δt). (7-7)

We introduce the function involving the commutator of Ph and zh acting on ψh,n ,

fh = [Ph, zh]ψh,n = (Phzh − zhPh)ψh,n. (7-8)

By Remark 6.1, we may use the localization estimates in (5-7) and (5-8) with gh = ψh,n and rh = 1.
Consequently, ∫

R2
| f̃h(s, t)|2 ds dt ≤ C

∫
�

| fh(x)|2 dx = O(h∞),

where f̃h which is assigned to the function fh in (7-8) is supported in the set{{
|s| ≥

1
2 hη−1/8}

∪ {|t | ≥
1
2 hδ−1/2

}
}
∩ {{|s| ≤ hη−1/8

} ∩ {|t | ≤ hδ−1/2
}}.

We infer from (7-5), (4-2), (4-4) and (6-6),

P̌huh,n − λn(h)uh,n = h5/16 f̌h,

where
f̌h(σ, τ )= f̃h(h1/8σ, h1/2τ).

Consequently, after performing the change of variable (σ = h−1/8s, τ = h−1/2t),

∥P̌huh,n − λn(h)uh,n∥
2
L2(R2)

= ∥ f̃h∥
2
L2(R2)

= O(h∞). (7-9)
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By (4-6) and (7-6), we observe that

P̌huh,n = heiζaσ/h3/8
(Pnew

h +βa)vh,n,

which after being inserted into (7-9), yields the estimate in item (1).

Remark 7.2. By (6-21), ∂σvh,n ∈ H 2(R2). Furthermore, by (6-19), the function fh in (7-8) satisfies
∥∂σ f̌h∥L2(R2) = O(h∞). A slight adjustment of the proof of item (1) then yields

∥∂σPnew
h vh,n − (h−1λn(h)−βa)∂σvh,n∥L2(R2) = O(h∞).

Proof of item (2). By the normalization of ψh,n and Remark 6.1, we have

1 =

∫
�

|ψh,n|
2 dx =

∫
{|s(x)|<h−η+1/8,|t (x)|<h−δ+1/2}

|ψh,n|
2 dx +O(h∞),∫

�

(1 − z2
h)|ψh|

2 dx = O(h∞),∫
�

dist(x, 0)|ψh,n|
2 dx = O(h1/2).

We notice that the function zh introduced above in (7-7) equals 1 in
{
|s(x)|< 1

2 h−η+1/8, |t (x)|< 1
2 h−δ+1/2

}
.

Now we infer from (A-7)∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2|t | ds dt ≤ C
∫
�

dist(x, 0)|ψh,n|
2 dx = O(h1/2)

and∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2 ds dt =

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2(1 − tk(s)) ds dt

+

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n(s, t)|2 tk(s) ds dt

= 1 +O(h1/2).

Similarly we get ∫
{|s|< 1

2 h−η+1/8, |t |< 1
2 h−δ+1/8}

(1 − z̃2
h) |ψ̃h,n(s, t)|2 ds dt = O(h1/2).

Consequently, returning to (7-6), doing a change of variables and noticing that z̃h is supported in
{|s|< h−η+1/8, |t |< h−δ+1/8

}, we get

∥vh,n∥
2
L2(R2)

=

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

|ψ̃h,n|
2 ds dt −

∫
{|s|<h−η+1/8, |t |<h−δ+1/8}

(1 − z̃2
h)|ψ̃h|

2 ds dt

= 1 +O(h1/2).

Proof of items (3) and (4).

Step 1: We recall that the Õ notation was introduced in (6-9). Note that Proposition 6.2 yields

∥h3/8∂σvh,n∥L2(R2) = Õ(h3/8). (7-10)



568 WAFAA ASSAAD, BERNARD HELFFER AND AYMAN KACHMAR

By Remark 6.1, we can use (5-13) and (5-14) with gh = ψh,n , rh = 1 (and wh = ǔh,n). In the same vein,
we can use (5-5) and (5-6) too. Since uh,n = eiζaσ/h3/8

vh,n , we get∫
R2

(
|∂τvh,n|

2
+ |h3/8∂σvh,n + i(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ (βa +O(h1/2))∥vh,n∥
2
L2(R2)

. (7-11)

By Cauchy’s inequality and (7-10), we obtain, for any ε > 0,∫
R2

|h3/8∂σvh,n+i(ba(τ )τ+ζa)vh,n|
2 dσ dτ ≥

∫
R2

(
(1−ε)|(ba(τ )τ+ζa)vh,n|

2
−ε−1

|h3/8∂σvh,n|
2) dσ dτ

≥ (1−ε)

∫
R2

|(ba(τ )τ+ζa)vh,n|
2 dσ dτ−Õ(ε−1h3/4).

We choose ε = h3/8 and insert the resulting inequality into (7-11) to get∫
R2

(
|∂τvh,n|

2
+ |(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ βa + Õ(h3/8). (7-12)

Step 2: In light of (7-4), let us introduce

r :=50vh,n and r⊥ := (I −50)vh,n = (I ⊗ (I −πa))vh,n. (7-13)

Using the last relation, and since the orthogonal projection πa commutes with the operator ha[ζa], we
have the following two identities for almost every σ ∈ R:∫

R

|vh,n(σ, τ )|
2 dτ =

∫
R

|r(σ, τ )|2 dτ +

∫
R

|r⊥(σ, τ )|
2 dτ

and

qζa (vh,n(σ, · )) :=

∫
R

(
|∂τvh,n(σ, τ )|

2
+ |(ba(τ )τ + ζa)vh,n(σ, τ )|

2) dτ

= qζa (r(σ, · ))+ qζa (r⊥(σ, · ))

≥ βa

∫
R

|r(σ, τ )|2 dτ +µ2(ζa)

∫
R

|r⊥(σ, τ )|
2 dτ, (7-14)

by the min-max principle, where µ2(ζa) is the second eigenvalue of the operator ha[ζa], satisfying
µ2(ζa) > βa (see Section 2A). Integrating with respect to σ , we get∫

R2

(
|∂τvh,n(σ, τ )|

2
+ |(ba(τ )τ + ζa)vh,n(σ, τ )|

2) dσ dτ

≥ βa

∫
R2

|r(σ, τ )|2 dσ dτ +µ2(ζa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ. (7-15)

We deduce from (7-12) and the first item in Proposition 7.1

(µ2(ζa)−βa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ ≤ Õ(h3/8)

∫
R2

|r(σ, τ )|2 dσ dτ, (7-16)∫
R2

|r(σ, τ )|2 dσ dτ = 1 + Õ(h3/8), (7-17)∫
R2

(
|∂τr⊥(σ, τ )|

2
+ |(ba(τ )τ + ζa)r⊥(σ, τ )|

2) dσ dτ ≤ Õ(h3/8)

∫
R2

|r(σ, τ )|2 dσ dτ. (7-18)
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Step 3: Coming back to the definition of r⊥ in (7-13), we still have to improve the error term in (7-16) to
get the estimate of the third item in Proposition 7.1.

To that end, we will estimate the terms involving ∂σvh,n in (7-11). By (7-4) and dominated convergence,
it is clear that 50 commutes with ∂σ when acting on compactly supported functions of H 1(R2):

50∂σ = ∂σ50. (7-19)

By (2-11), φa is orthogonal to (ba(τ )τ + ζa)φa in L2(R), so

πa(ba(τ )τ + ζa)πa = 0,

which implies, by taking the tensor product,

50(ba(τ )τ + ζa)50 = 0. (7-20)

By (7-13), (7-19) and (7-20), we get

⟨r(σ, τ ), i(ba(τ )τ + ζa)∂σ r(σ, τ )⟩L2(R2) = 0.

Now, we inspect the term

⟨∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)

= −⟨vh,n, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)

= −⟨r, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)︸ ︷︷ ︸
=0

− ⟨r⊥, i(ba(τ )τ + ζa)∂σ r⟩L2(R2)

= −⟨r⊥, i(ba(τ )τ + ζa)∂σ r⟩L2(R2) = −⟨(ba(τ )τ + ζa)r⊥, i∂σ r⟩L2(R2). (7-21)

Since
∥h3/8∂σ r∥L2(R2) = h3/8

∥50∂σvh,n∥L2(R2) (by (7-19))

≤ h3/8
∥∂σvh,n∥L2(R2) (by (7-3))

= Õ(h3/8) (by (7-10)),

we get by the Cauchy–Schwarz inequality, (7-21) and (7-18)

h3/8
|⟨∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)| ≤ ∥(ba(τ )τ + ζa)r⊥∥L2(R2)∥h3/8∂σ r∥L2(R2) = Õ(h9/16). (7-22)

Now, we can estimate the following inner product term by using (7-13) and (7-22):

⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)

= ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⊥⟩L2(R2) + ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⟩L2(R2)

= ⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)r⊥⟩L2(R2) + Õ(h9/16). (7-23)

By the Cauchy–Schwarz inequality, (7-10), (7-18) and (7-23), we get

|⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)| ≤ ∥h3/8∂σvh,n∥∥(ba(τ )τ + ζa)r⊥∥ + Õ(h9/16)

= Õ(h9/16)= o(h1/2). (7-24)
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Consequently,

∥h3/8∂σvh,n + i(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

= ∥h3/8∂σvh,n∥
2
L2(R2)

+ ∥(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

+ 2 Re⟨h3/8∂σvh,n, i(ba(τ )τ + ζa)vh,n⟩L2(R2)

≥ ∥(ba(τ )τ + ζa)vh,n∥
2
L2(R2)

+ o(h1/2).

Inserting the previous inequality into (7-11) we get the following improvement of (7-12):∫
R2
(|∂τvh,n|

2
+ |(ba(τ )τ + ζa)vh,n|

2) dτ dσ ≤ βa +O(h1/2). (7-25)

Step 4: Now we are ready to finish the proof of items (3) and (4). By (7-15) and (7-14), we infer from
(7-25) and (7-13),

(µ2(ζa)−βa)

∫
R2

|r⊥(σ, τ )|
2 dσ dτ ≤ O(h1/2)

∫
R2

|r(σ, τ )|2 dσ dτ,∫
R2

(
|∂τr⊥(σ, τ )|

2
+ |(ba(τ )τ + ζa)r⊥(σ, τ )|

2) dσ dτ ≤ O(h1/2)

∫
R2

|r(σ, τ )|2 dσ dτ.

With (7-17) in hand, we get the estimates of items (3) and (4) of Proposition 7.1. □

7C. Projection on a refined quasimode. We wish to improve the approximation vh,n ∼χ(hησ)χ(hδτ)φa(τ )

obtained in Proposition 7.1 by two ways which eventually are correlated: displaying the curvature effects
in vh,n and getting better estimates of the errors. Along the proof of Proposition 7.1, curvature effects
were neglected and absorbed in the error terms. Not neglecting the curvature, we get the approximation
vh,n ∼ χ(hησ)χ(hδτ)φa,h(τ ), where φa,h(τ ) corrects φa(τ ) via curvature-dependent terms (see (7-31)).
This is precisely stated in Proposition 7.3 after introducing the necessary preliminaries.

7C1. Preliminaries. In this subsection, we write κ = k(0) = kmax and k2 = k ′′(0). We consider the
weighted L2 space

Xh,δ = L2((−h−δ, h−δ); (1 − h1/2κτ) dτ
)

(7-26)

endowed with the Hilbertian norm

∥ f ∥Xh,δ =

(∫ h−δ

−h−δ

| f (τ )|2(1 − h1/2κτ) dτ
)1/2

.

This norm is equivalent to the usual norm of L2(−h−δ, h−δ) provided h is sufficiently small.
With domain H 2(−h−δ, h−δ)∩ H 1

0 (−h−δ, h−δ), consider the operator in (3-1) for ξ = ζa:

Ha,κ,h = −
d2

dτ 2 + (ba(τ )τ + ζa)
2
+ κh1/2(1 − κh1/2τ)−1∂τ + 2κh1/2τ

(
ba(τ )τ + ζa − κh1/2ba(τ )

τ 2

2

)2

− κh1/2ba(τ )τ
2(ba(τ )τ + ζa)+ κ

2hba(τ )
2 τ

4

4
, (7-27)

which is self-adjoint on the space Xh,δ. This operator can be decomposed as follows:

Ha,κ,h = h[ζa] + κh1/2h(1)[ζa] + hLh, (7-28)
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where h[ζa] is introduced in (2-1) and

h(1)[ζa] = ∂τ + 2τ(ba(τ )τ + ζa)
2
− ba(τ )τ

2(ba(τ )τ + ζa) (7-29)

and
Lh = q1,h(τ )∂τ + q2,h(τ ), with |q1,h(τ )| ≤ C1|τ |, |q2,h(τ )| ≤ C2(1 + |τ |5), (7-30)

where C1,C2 are positive constants independent of h, τ .
We introduce the following quasimode in the space Xh,δ:

φa,h(τ )= χ(hδτ)
(
φa(τ )+ h1/2κ φcor

a (τ )
)
, (7-31)

where χ ∈ C∞
c (R; [0, 1]), suppχ ⊂ [−1, 1], χ = 1 on

[
−

1
2 ,

1
2

]
. The function φa is the positive ground

state of h[ζa] with corresponding ground state energy βa:

(h[ζa] −βa)φa = 0.

We now explain the construction of φcor
a . By (7-28), starting from some φcor

a to be determined,

(Ha,κ,h −βa − h1/2κM3(a))(φa + h1/2κ φcor
a )

= κh1/2((h[ζa]−)φ
cor
a + (h(1)[ζa] − M3(a))φa

)
+ hRa,h, (7-32)

where
Ra,h = Lh(φa + h1/2κ φcor

a )+ κ2(h(1)[ζa] − M3(a))φcor
a .

Note that, by Remark 2.3, h(1)[ζa]φa − M3(a)φa is orthogonal to φa in L2(R). Hence we can choose

φcor
a = −Ra(h

(1)
[ζa]φa − M3(a)φa), (7-33)

so that the coefficient of h1/2 in (7-32) vanishes. In this way, we infer from (7-32),(
Ha,κ,h −βa − h1/2κM3(a)

)
(φa + h1/2κφcor

a )= hRa,h .

Notice that φa,h is constructed so that it has compact support in (−h−δ, h−δ) and hence satisfies the
Dirichlet conditions at τ = ±h−δ. Since, φa and φcor

a decay exponentially at infinity by Lemma 2.4, we
deduce

∥Ha,κ,hφa,h − (βa + h1/2κM3(a))φa,h∥Xh,δ = O(h). (7-34)

We denote by φgs
a,h the normalized ground state of the Dirichlet realization of Ha,κ,h in the weighted

space Xh,δ (i.e., in L2((−h−δ, h−δ); (1−h1/2κτ)dτ)). By (3-8), the min-max principle and Proposition 3.2,
we have

λ1(Ha,κ,h)= βa + h1/2κM3(a)+O(h) and λ2(Ha,κ,h)≥ µ2(ζa)+ o(1), (7-35)

so we infer from (7-34) and the Hölder inequality〈
(Ha,κ,hφa,h − λ1(Ha,κ,h))(φ

gs
a,h −φa,h), φ

gs
a,h −φa,h

〉
Xh,δ

= O(h)∥φgs
a,h −φa,h∥Xh,δ .

Thus, by the spectral theorem,

∥φ
gs
a,h −φa,h∥Xh,δ + ∥τ(φ

gs
a,h −φa,h)∥Xh,δ + ∥∂τ (φ

gs
a,h −φa,h)∥Xh,δ = O(h). (7-36)
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7C2. New projections. We fix h0 > 0 so that 1 − h1/2−δ

0 κ > 1
2 . In the sequel, the parameter h varies in

the interval (0, h0). Consider the space

X2
h,δ = L2(R × (−h−δ, hδ); (1 − h1/2κτ) dσ dτ

)
(7-37)

endowed with the weighted norm

∥v∥X2
h,δ

=

(∫
R

∫ h−δ

−h−δ

|v(σ, τ )|2(1 − h1/2κτ) dσ dτ
)1/2

,

which is equivalent to the usual norm of L2(R × (−h−δ, hδ)).
We introduce the two operators

R−

h : v ∈ X2
h,δ 7→

∫
R

φa,h(τ )v( · , τ )(1 − h1/2κτ) dτ ∈ L2(R), (7-38)

R+

h : f ∈ L2(R) 7→ f ⊗φa,h ∈ X2
h,δ, where f ⊗φa,h(σ, τ )= f (σ )φa,h(τ ). (7-39)

The image of R+

h R−

h is L2(R)⊗ span(φa,h). Furthermore, for all v ∈ X2
h,δ, the functions R+

h R−

h v and
v− R+

h R−

h v are orthogonal in X2
h,δ, since the operator R+

h R−

h can be expressed as

5h := R+

h R−

h = I ⊗πa,h, (7-40)

where πa,h is the orthogonal projection, in the weighted Hilbert space Xh,δ , on the space spanφa,h . With
this projection in hand, we can approximate the truncated bound state vh,n , introduced in (7-6), with
better error terms, thereby improving Proposition 7.1.

Proposition 7.3. The following holds:

∥vh,n −5hvh,n∥X2
h,δ

+ ∥∂τ (vh,n −5hvh,n)∥X2
h,δ

+ ∥τ(vh,n −5hvh,n)∥X2
h,δ

= Õ(h5/16),

where 5h is the projection in (7-40).

Remark 7.4. By (7-31) and (7-32), we observe that

∥(5h −50)vh,n∥L2(R2) + ∥(∂τ5h − ∂τ50)vh,n∥L2(R2) + ∥τ(5h −50)vh,n∥L2(R2) = O(h1/2),

where 50 is the projection introduced in (7-4). Since the norm of X2
h,δ is equivalent to the usual norm

of L2, Proposition 7.3 yields the following improvement of Proposition 7.1:

∥vh,n −50vh,n∥L2(R2) + ∥∂τ (vh,n −50vh,n)∥L2(R2) + ∥τ(vh,n −50vh,n)∥L2(R2) = Õ(h5/16), (7-41)

where 50 is the projection in (7-4). This remark will be useful in the next subsection.

Proof of Proposition 7.3. Step 1: We give here preliminary estimates that we will use in Step 3 below.
Firstly, by Remark 6.1, ∫

R2
τ 4

|vh,n(σ, τ )|
2 dσ dτ = O(1). (7-42)



SEMICLASSICAL EIGENVALUE ESTIMATES UNDER MAGNETIC STEPS 573

Secondly, we will prove that

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2) = Õ(h5/8). (7-43)

By (7-10) and Proposition 7.1,

|⟨h3/8∂σvh,n, (ba(τ )τ + ζa)(vh,n −50vh,n)⟩L2(R2)|

≤ ∥h3/8∂σvh,n∥L2(R2)∥(ba(τ )τ + ζa)(vh,n −50vh,n)∥L2(R2) = Õ(h5/8).

Similarly, using (7-19) and Hölder’s inequality, we write

|⟨(ba(τ )τ + ζa)h3/8∂σ50vh,n, vh,n −50vh,n⟩L2(R2)|

≤ ∥h3/850∂σvh,n∥L2(R2)∥(ba(τ )τ + ζa)(vh,n −50vh,n)∥L2(R2) = Õ(h5/8).

Now, writing vh,n =50vh,n + (vh,n −50vh,n) and collecting the foregoing estimates, we get

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2)

= ⟨h3/8∂σvh,n, (ba(τ )τ + ζa)50vh,n⟩L2(R2) + Õ(h5/8)

= −⟨(ba(τ )τ + ζa)vh,n, h3/8∂σ50vh,n⟩L2(R2) + Õ(h5/8) (by integration by parts).

Again, decomposing vh,n by the projection 50 and observing that (7-20) yields

⟨(ba(τ )τ + ζa)50vh,n, h3/8∂σ50vh,n⟩L2(R2) = 0,

we get

⟨h3/8∂σvh,n, (ba(τ )τ + ζa)vh,n⟩L2(R2)

= −⟨(ba(τ )τ + ζa)h3/8∂σ50vh,n, vh,n −50vh,n⟩L2(R2) + Õ(h5/8)= Õ(h5/8),

thereby obtaining (7-43).

Step 2: We introduce operators involving the ground state φgs
a,h as follows. First we introduce the operators

R̃−

h : v ∈ X2
h,δ 7→

∫
R

φ
gs
a,h(τ )v( · , τ )(1 − h1/2κτ) dτ ∈ L2(R), (7-44)

R̃+

h : f ∈ L2(R) 7→ f ⊗φ
gs
a,h ∈ X2

h,δ, where ( f ⊗φ
gs
a,h)(σ, τ )= f (σ )φgs

a,h(τ ). (7-45)

Denoting by π̃a,h the orthogonal projection, in Xh,δ, on the space spanφgs
a,h , we introduce

5̃h := R̃+

h R̃−

h = I ⊗ π̃a,h . (7-46)

By (7-36) and (7-40), we observe that, for all g ∈ Xh,δ and f ∈ X2
h,,δ, we have

∥(R̃−

h − R−

h )g∥Xh,δ = O(h)∥g∥Xh,δ , ∥(5̃h −5h) f ∥X2
h,δ

= O(h)∥ f ∥X2
h,δ
.

So if we prove that

∥vh,n − 5̃hvh,n∥X2
h,δ

+ ∥∂τ (vh,n − 5̃hvh,n)∥X2
h,δ

+ ∥τ(vh,n − 5̃hvh,n)∥X2
h,δ

= Õ(h5/16), (7-47)

then we deduce the estimate in Proposition 7.3.
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Step 3: Adapting the proof of Proposition 7.1, we prove now (7-47). By Remark 6.1, we can use (5-14)
with wh = uh,n , rh = 1, mh = ∥uh,n∥

2
X2

h,δ
= 1 +O(h1/2) and θ =

1
4 . Thus∫

R

∫ h−δ

−h−δ

(
|∂τuh,n|

2
+(1+2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

baτ−κh1/2ba
τ 2

2

))
uh,n

∣∣∣2)
(1−κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))∥uh,n∥
2
X2

h,δ
. (7-48)

Since uh,n = eiζaσ/h3/8
vh,n (by (7-6)), we get∫

R

∫ h−δ

−h−δ

|∂τvh,n|
2(1 − κh1/2τ) dσ dτ

+

∫
R

∫ h−δ

−h−δ

(1 + 2κh1/2τ)

∣∣∣(h3/8∂σ + i
(

baτ + ζa − κh1/2ba
τ 2

2

))
vh,n

∣∣∣2
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ +O(h3/4))∥vh,n∥
2
X2

h,δ
. (7-49)

Using (7-10), (7-43) and (7-42), we deduce the following estimate from (7-49):∫
R

∫ h−δ

−h−δ

(
|∂τvh,n|

2
+ (1 + 2κh1/2τ)

∣∣∣(baτ + ζa − κh1/2ba
τ 2

2

)
vh,n

∣∣∣2)
(1 − κh1/2τ) dσ dτ

≤ (βa + h1/2 M3(a)κ + Õ(h5/8))∥vh,n∥
2
X2

h,δ
, (7-50)

where we used also that ∥vh,n∥
2
X2

h,δ
= 1 +O(h1/2), by (6-7) and (7-6).

Now we get (7-47) by decomposing vh,n in X2
h,δ in the form

vh,n = r̃h + r̃h,⊥, r̃h := 5̃hvh,n, r̃h,⊥ = (I − 5̃h)vh,n,

and by using the spectral asymptotics for the operator Hh,a,κ , recalled in (7-35). □

7D. Quasimodes for the effective operator. Let us start with some heuristic considerations. The derivation
of the eigenvalue upper bound of Theorem 4.1 suggested in the tangent variable the following one-
dimensional effective operator (see (4-25)):

H harm
a = −c2(a)∂2

σ −
M3(a)k ′′(0)

2
σ 2, (7-51)

where c2(a) > 0 is introduced in (1-12).
Moreover, by Remark 4.3, it is natural to consider the quasimode

v
app
h,n =

(
φa(τ )+ 2Ra((ζa + ba(τ )τ )φa)ih3/8∂σ + kmaxh1/2φcor

a (τ )
)

fn(σ ),

where Ra is the regularized resolvent introduced in (2-18), φcor
a is the function in (7-33), and fn is

the normalized n-th eigenfunction of the operator H harm
a . Denoting by 5app

h,n the orthogonal projection,
in L2(R2), on the space generated by vapp

h,n , we observe formally, by neglecting the terms with coefficients
having order lower than h3/4,

c2(a)5
app
h,nP

new
h ≈ h1/2(M3(a)kmax + h1/4 H harm

a )5new
n ,
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where 5new
n is the projection, in L2(R2), on the space generated by the function ϕa(τ ) fn(σ ), and

ϕa(τ ) := φa(τ )− 4(ba(τ )τ + ζa)Ra((ba(τ )τ + ζa)φa(τ )). (7-52)

Guided by these heuristic observations, we will use the truncated bound state vh,n in (7-6) to construct
quasimodes of the operator H harm

a by projecting vh,n on the vector space generated by the function ϕa

introduced in (7-52). To that end, we introduce the operator

Rnew
0 : v ∈ L2(R2) 7→

∫
R

ϕa(τ )v( · , τ ) dτ ∈ L2(R). (7-53)

We will prove the following proposition.

Proposition 7.5. Let n ∈ N be fixed. The following hold:

(1) ∥Rnew
0 vh,n − (1 − 4I2(a))R−

0 vh,n∥L2(R) = O(h1/4), where R−

0 is the operator in (7-1) and I2(a) is
introduced in (2-17).

(2) ∥Rnew
0 vh,n∥L2(R) = 1 − 4I2(a)+O(h1/4).

(3) For every n ∈ N, there exists hn > 0 such that, for all h ∈ (0, hn),

⟨Rnew
0 vh,k, Rnew

0 vh,k′⟩L2(R) = (1 − 4I2(a))2δk,k′ + o(1) (1 ≤ k, k ′
≤ n), (7-54)

and

Mn = span(Rnew
0 vh,k, 1 ≤ k ≤ n) satisfies dim(Mn)= n. (7-55)

(4) We have as h → 0+〈
(H harm

a − h−3/43n(h))Rnew
0 vh,n, Rnew

0 vh,n
〉
L2(R)

= o(1)∥Rnew
0 vh,n∥

2
L2(R)

,

where

3n(h)= h−1λn(h)−βa − M3(a)kmaxh1/2,

and H harm
a is the operator introduced in (7-51).

Proof. Proof of item (1). Consider 50 = R+

0 R−

0 the projection introduced in (7-4). By (2-17), Rnew
0 R+

0 =

(1 − 4I2(a))Id; hence, composing by R−

0 on the right gives

Rnew
0 50 = (1 − 4I2(a))R−

0 .

Writing vh,n =50vh,n + (vh,n −50vh,n), we get

Rnew
0 vh,n = Rnew

0 50vh,n + Rnew
0 (vh,n −50vh,n)

= (1 − 4I2(a))R−

0 vh,n + Rnew
0 (vh,n −50vh,n).

Then we observe that

∥Rnew
0 (vh,n −50vh,n)∥L2(R) ≤ ∥ϕa∥L2(R)∥vh,n −50vh,n∥L2(R2) = O(h1/4)

by Hölder’s inequality and Proposition 7.1. This yields the conclusion of item (1).
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Proof of item (2). By (2-20), 1 − 4I2(a) > 0. By (7-1) and Proposition 7.1, we have

∥R−

0 vh,n∥L2(R) = ∥50vh,n∥L2(R2) = 1 +O(h1/4).

Now item (2) follows from item (1).

Proof of item (3). If 1 ≤ k, k ′
≤ n and k ̸= k ′, we have as h → 0+,

⟨vh,k, vh,k′⟩L2(R2) = o(1)+ δk,k′ .

By Proposition 7.1, we get further

⟨R−

0 vh,k, R−

0 vh,k′⟩L2(R) = ⟨50vh,k,50vh,k′⟩L2(R2) = o(1)+ δk,k′ .

Thus, by item (1),
⟨Rnew

0 vh,k, Rnew
0 vh,k′⟩L2(R) = o(1)+ δk,k′ .

With item (2) in hand, we get the conclusion of item (3).

Proof of item (4).

Step 1: We introduce the operator

R̃new
h : v ∈ H 1(R2) 7→

∫
R

φnew
a,h (τ, i∂σ )v( · , τ ) dτ ∈ L2(R), (7-56)

where φnew
a,h (τ, i∂σ ) is the first-order differential operator

φnew
a,h (τ, i∂σ ) := φa(τ )+ 2h3/8Ra((ba(τ )τ + ζa)φa(τ ))i∂σ + κh1/2φcor

a (τ ), (7-57)

κ = kmax and φcor
a is the function introduced in (7-33).

By Hölder’s inequality, there exists a constant C1 such that, for all v ∈ H 1(R2),

∥R̃new
h v∥L2(R) ≤ C1(∥v∥L2(R2) + ∥∂σv∥L2(R2)). (7-58)

Thus, by Proposition 7.1 and Remark 7.2,

∥R̃new
h Pnew

h vh,n − (h−1λn(h)−βa)R̃new
h vh,n∥L2(R) = O(h∞), (7-59)

where Pnew
h is the operator in (4-6).

Step 2: We prove the estimate〈(
c2(a)R̃new

h Pnew
h − M3(a)kmaxh1/2 Rnew

0 − h3/4 H harm
a Rnew

0
)
vh,n, Rnew

0 vh,n
〉
L2(R)

= o(h3/4). (7-60)

We first observe that it results from (7-1), (7-10), (7-56), and (7-57),

∥R̃new
h vh,n − R−

0 vh,n∥L2(R) = O(h1/2). (7-61)

For the sake of simplicity, we write κ = k(0)= kmax. We introduce the functions in L2(R):

f1 = 2Ra((ba(τ )τ + ζa)φa) (7-62)
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and (see (7-29) and (7-33))

f2 = φcor
a = Ra

(
M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa
)
. (7-63)

Recall the operators P0, P1, P2, P3, Qh introduced in (4-10) and (4-11). Noticing the decomposition
in (4-9), we write, for any function v with compact support in R2,

R̃new
h Pnew

h v =

∫
R

φa(τ )P0v(σ, τ ) dτ + h3/8
∫

R

(i f1(τ )∂σ P0 +φa(τ )P1)v(σ, τ ) dτ

+ h1/2
∫

R

(φa(τ )P2 + κ f2(τ )P0)v(σ, τ ) dτ

+ h3/4
∫

R

(φa(τ )P3 + i f1(τ )∂σ P1)v(σ, τ ) dτ + Rh,nv, (7-64)

where

Rh,nv = h7/8 R̃new
h Qhv+h7/8

∫
R

(i f1(τ )∂σ P2 +κ f2(τ )P0)v(σ, τ ) dτ +hκ
∫

R

f2(τ )P2v(σ, τ ) dτ

+ h5/4κ

∫
R

f2(τ )P3v(σ, τ ) dτ + h9/8κ

∫
R

i f1(τ )∂σ P3v(σ, τ ) dτ. (7-65)

We now compute the first three terms on the right side of (7-64):
For the first term, since P0 is self-adjoint in L2(R), we have∫

R

φa(τ )P0v(σ, τ ) dτ =

∫
R

P0φa(τ )v(σ, τ ) dτ = 0.

For the second term, we have∫
R

i f1(τ )∂σ P0v(σ, τ ) dτ =

∫
R

i P0 f1(τ )∂σv(σ, τ ) dτ

=

∫
R

2iφa(τ )(ba(τ )τ + ζa)∂σv(σ, τ ) dτ.

Hence we find, by (4-10), ∫
R

(
i f1(τ )∂σ P0 +φa(τ )P1

)
v(σ, τ ) dτ = 0.

For the third term, noticing that

P0 f2 = M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa

and∫
R

φa(τ )P2v(σ, τ ) dτ = κ

∫
R

(
−φ′

a(τ )+ 2τ(ba(τ )τ + ζa)
2φa(τ )− ba(τ )τ

2(ba(τ )τ + ζa)φa(τ )
)
v dτ,

we get

(W2v)(σ ) :=

∫
R

(
φa(τ )P2 + κ f2(τ )P0

)
v(σ, τ ) dτ

=

∫
R

(
φa(τ )P2 + κ(P0 f2(τ ))

)
v(σ, τ ) dτ

= κ

∫
R

(
M3(a)φa(τ )− 2φ′

a(τ )
)
v(σ, τ ) dτ.
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By the forgoing computations, (7-64) becomes

R̃new
h Pnew

h v = h1/2W2v+ h3/4W3v+ Rh,nv, (7-66)

with

(W3v)(σ ) :=

∫
R

(
φa(τ )P3 + i f1(τ )∂σ P1

)
v(σ, τ ) dτ. (7-67)

We estimate W2vh,n by writing vh,n =50vh,n + (vh,n −50vh,n), with 50 the projection introduced in
(7-4), and by using (7-41). Eventually, since P050 = 0 and ⟨φa, φ

′
a⟩L2(R) = 0, we get by Remark 2.3,

∥W2vh,n − M3(a)κR−

0 vh,n∥L2(R) = o(h1/4). (7-68)

We still have to estimate the terms involving W3 and Rh,n in (7-66) when v = vh,n . By choosing η small
enough, the error term

rn(σ, h) := Rh,nvh,n, (7-69)

with Rh,n introduced in (7-65), satisfies

⟨rn( · , h), Rnew
0 vh,n⟩L2(R) = o(h3/4). (7-70)

The technical proof of (7-70) is given in Appendix B. So we are left (see (7-67)) with estimating

W3vh,n = w1 +w2, (7-71)

where

w1(σ ) :=

∫
R

φa(τ )P3vh,n(σ, τ ) dτ,

w2(σ ) :=

∫
R

i f1(τ )∂σ P1vh,n(σ, τ ) dτ.

In light of the definition of P3 in (4-10) and R−

0 in (7-1), we write

w1(σ )= −∂2
σ R−

0 vh,n(σ )+
k ′′(0)σ 2

2
w(σ),

where

w(σ)=

∫
R

(
∂τ + 2τ(ba(τ )τ + ζa)

2
− ba(τ )τ (ba(τ )τ + ζa)

)
φa(τ ) vh,n(σ, τ ) dτ.

Using Proposition 7.1 and that vh,n is supported in {|σ | ≤ h−η
}, we get

∥σ 2(w− M3(a)R−

0 vh,n)∥L2(R) = O(h1/4−2η).

Hence ∥∥∥∥w1 −

(
−∂2

σ +
k ′′(0)M3(a)

2
σ 2

)
R−

0 vh,n

∥∥∥∥
L2(R)

= O(h1/4−2η). (7-72)

Furthermore, by (4-10) and (7-62), the term w2 can be expressed as

w2(σ )= 2∂2
σ

∫
R

f1(τ )(ζa + ba(τ )τ )vh,n(σ, τ ) dτ

= 4∂2
σ

∫
R

(ba(τ )τ + ζa)Ra
(
(ba(τ )τ + ζa)φa(τ )

)
vh,n(σ, τ ) dτ. (7-73)
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Collecting (7-72) and (7-73), along with the definition of Rnew
0 in (7-53), we infer from (7-71)∥∥∥∥W3vh,n −

(
−∂2

σ Rnew
0 +

k ′′(0)M3(a)
2

σ 2 R−

0

)
vh,n

∥∥∥∥
L2(R)

= O(h1/4−2η). (7-74)

By Hölder’s inequality, we infer from (7-68) and (7-74)

h1/2
⟨(W2 − M3(a)κR−

0 )vh,n, Rnew
0 vh,n⟩L2(R)

+h3/4
〈
W3vh,n −

(
−∂2

σ Rnew
0 +

k ′′(0)M3(a)
2

σ 2 R−

0

)
vh,n, Rnew

0 vh,n

〉
L2(R)

= o(h3/4)∥Rnew
0 vh,n∥L2(R).

By (7-66) and (7-70), we get from the above estimate〈(
R̃new

h Pnew
h − h1/2 M3(a)κR−

0 − h3/4 H̃
)
vh,n, Rnew

0 vh,n
〉
L2(R)

= o(h3/4)∥Rnew
0 vh,n∥L2(R),

where

H̃ := −∂2
σ Rnew

0 +
k ′′(0)M3(a)

2
σ 2 R−

0 .

Finally, by item (1) and Proposition 2.5, we get (7-60).

Step 3: Using Steps 1 and 2, we are now able to finish the proof of item (4). By (1-12) and (2-20),
c2(a)= 1 − 4I2(a); hence (7-61) and item (1) yield that

∥c2(a)R̃new
h vh,n − Rnew

0 vh,n∥L2(R) = O(h1/4). (7-75)

Collecting (7-59), (7-60) and (7-75), we get〈
h3/4 H harm

a Rnew
0 vh,n −3n(h)Rnew

0 vh,n, Rnew
0 vh,n

〉
L2(R)

= O(|3n(h)|h1/4)+ o(h3/4),

where, by (6-4) and Theorem 4.1,

|3n(h)| = |h−1λn(h)−βa − M3(a)kmaxh1/2
| = o(h1/2).

Thus, we obtain 〈
h3/4 H harm

a Rnew
0 vh,n −3n(h)Rnew

0 vh,n, Rnew
0 vh,n

〉
L2(R)

= o(h3/4).

Dividing by h3/4 and using item (2), we get item (4). □

With Proposition 7.5 in hand, we can now finish the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound of λn(h) follows from Theorem 4.1. For the lower bound
of λn(h), consider u =

∑n
k=1 ak Rnew

0 vh,k such that ∥u∥L2(R) = 1, where Rnew
0 is introduced in (7-53).

From Proposition 7.5 we have

((1 − 4I2(a))2 + o(1))
n∑

k=1

|ak |
2
= 1

and

⟨(H harm
a − h−3/43n(h))u, u⟩L2(R) ≤ o(1)

n∑
k=1

|ak |
2.
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Consequently,
max

u∈Mn, ∥u∥=1
⟨(H harm

a − h−3/43n(h))u, u⟩L2(R) = o(1),

where Mn is the space defined in (7-55). By the min-max principle√
M3(a)k ′′(0)c2(a)

2
(2n − 1)≤ h−3/43n(h)+ o(1),

thereby leading to

λn(h)≥ βah + M3(a)kmaxh3/2
+

√
M3(a)k ′′(0)c2(a)

2
(2n − 1)h7/4

+ o(h7/4). □

Appendix A: Frenet coordinates near the magnetic edge

We introduce the Frenet coordinates near 0. We refer the reader to [Fournais and Helffer 2010, Appendix F]
and [Assaad et al. 2019] for a similar setup.

Let s 7→ M(s) ∈ 0 be the arc length parametrization of 0 such that

• ν(s) is the unit normal of 0 at the point M(s) pointing towards P1,

• T (s) is the unit tangent vector of 0 at the point M(s), such that (T (s), ν(s)) is a direct frame, i.e.,
det(T (s), ν(s))= 1.

We define the curvature k of 0 as T ′(s)= k(s)ν(s). Working under Assumption 1.1, we assume without
loss of generality that s0 = 0, where s0 is the unique maximum of the curvature at 0 (k(0)= kmax).

For t0 > 0, we define the transformation 8=8t0 as

8 : R × (−t0, t0)→ 0t0 := {x ∈ R2
: dist(x, 0) < t0}, (s, t) 7→ M(s)+ tν(s). (A-1)

We pick t0 sufficiently small so that 8 is a diffeomorphism, whose Jacobian is

a(s, t) := J8(s, t)= 1 − t k(s). (A-2)

We consider the following correspondence between functions u in H 1
loc(0t0) and those ũ in H 1

loc(R×(−t0,t0)):

ũ(s, t)= u(8(s, t)), (A-3)
and vice versa.

Moreover, we assign to the potential F in (1-1) a vector field F̃ ∈ H 1
loc(R × (−t0, t0)) as

F(x)= (F1(x), F2(x)) 7→ F̃(s, t)= (F̃1(s, t), F̃2(s, t)),
where

F̃1(s, t)= a(s, t)F(8(s, t)) · T (s) and F̃2(s, t)= F(8(s, t)) · ν(s). (A-4)

Consequently,

(h∇ − i F)2 = a−1(h∂s − i F̃1)a
−1(h∂s − i F̃1)+ a−1(h∂t − i F̃2)a(h∂t − i F̃2). (A-5)

Note that
curl F̃(s, t)= (1 − tk(s)) curl F(8(s, t))= (1 − tk(s))(1{t>0} + a1{t<0}), (A-6)

where curl F̃ = ∂s F̃2 − ∂t F̃1 and curl F = ∂x1 F2 − ∂x2 F1 is as in (1-2).
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Furthermore, we present the change of variable formulas (for functions compactly supported in 0t0):∫
0t0

|u|
2 dx =

∫
R

∫ t0

−t0
|ũ|

2 a dt ds,∫
0t0

|(h∇ − i F)u|
2 dx =

∫
R

∫ t0

−t0

(
a−2

|(h∂s − i F̃1)ũ|
2
+ |(h∂t − i F̃2)ũ|

2)a dt ds.
(A-7)

Now, we make a global change of gauge ω as follows:

Lemma A.1. There exists a function ω ∈ H 2(8−1(0t0 ∩�)) such that

F̃ − ∇s,tω =

(
−ba(t)

(
t −

1
2 t2k(s)

)
0

)
in 8−1(0t0 ∩�),

where t 7→ ba(t) is defined by ba(t)= 1{t>0} + a1{t<0}.

Proof. For (s, t)∈8−1(0t0 ∩�), let ω(s, t)=
∫ t

0 F̃2(s, t ′) dt ′
+

∫ s
0 F̃1(s ′, 0) ds ′. This choice of ω and (A-6)

establish the lemma. □

The gauge of Lemma A.1 is adequate when working with functions localized near the edge 0. With
this choice of gauge, we have the following identity which is useful to analyze the decay of functions
localized near 0.

Lemma A.2. Assume that ϕ ∈ H 2(�) with compact support in �∩0t0 . Let g and G be the functions
defined (by means of (A-3)) as

g̃(s, t)= (h1/2∂s − iζa)ϕ̃(s, t) and G̃(s, t)= −(h1/2∂s − iζa)(e2φ̃ g̃),

where ζa is the constant in Section 2B and φ is a Lipschitz real-valued function on �. If g ∈ H 2(�), then

Re⟨Phϕ,G⟩L2(�) = Qh(eφg)− h2
∥|∇g|eφϕ∥

2
L2(�)

− h1/2 Re(Th).

Here Qh is the quadratic form introduced in (4-11) and

Th =
〈
(h∂s − i F̃1)

(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ̃− ia−1(∂s F̃1)ϕ̃

)
+ h2∂t(∂sa)∂t ϕ̃, e2φ̃ g̃

〉
L2(R)

.

Proof. We assume that F̃2 = 0 and get from (A-5) and (A-2)

⟨Phϕ,G⟩L2(�) = ⟨(h∂s − i F̃1)a
−1(h∂s − i F̃1)ϕ+ h2∂ta∂tϕ, (h1/2∂s − iζa)(e2φg)⟩L2(R2), (A-8)

where we dropped the tildes from the notation for the sake of simplicity. Notice that

(h1/2∂s − iζa)∂ta∂tϕ = ∂t((h1/2∂s − iζa)a∂tϕ)

= ∂t(a∂t(h1/2∂s − iζa)ϕ)+ h1/2∂t(∂sa)∂tϕ

= ∂ta∂t g + h1/2∂t(∂sa)∂tϕ,
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and

(h1/2∂s − iζa)(h∂s − i F̃1)a
−1(h∂s − i F̃1)ϕ

= (h∂s − i F̃1)
(
(h1/2∂s − iζa)− ih1/2(∂s F̃1)

)
a−1(h∂s − i F̃1)ϕ

= (h∂s − i F̃1)
(
a−1(h∂s − i F̃1)(h1/2∂s − iζa)ϕ− ih1/2(∂s F̃1)a

−1(h∂s − i F̃1)ϕ
)

+ h1/2(h∂s − i F̃1)
(
(∂sa

−1)(h∂s − i F̃1)ϕ− ia−1(∂s F̃1)ϕ
)

= (h∂s − i F̃1)a
−1(h∂s − i F̃1)g +h1/2(h∂s − i F̃1)

(
(∂sa

−1
− ia−1∂s F̃1)(h∂s − i F̃1)ϕ− ia−1(∂s F̃1)ϕ

)
.

By integration by parts, we infer from (A-8)

⟨Phϕ,G⟩L2(�) = ⟨Phg, e2φg⟩L2(�) − h1/2Th . (A-9)

Finally, by integration by parts, we get

Re⟨Phg, e2φg⟩L2(�) = Qh(eφg)− h2
∥|∇φ|eφg∥

2
L2(�)

. □

Appendix B: Control of a remainder term

The aim of this appendix is to prove the estimate in (7-70). We fix a positive integer n ≥ 1 and two
positive constants η ∈

(
0, 1

8

)
and δ ∈

(
0, 1

12

)
.

For all h > 0, let vh,n be the function introduced in (7-6) which is supported in {|σ |< h−η, |τ |< h−δ
}.

Moreover, by (7-6) and Propositions 6.2 and 6.3, we observe that,

for all θ ∈
(
0, 3

8

)
, there exists Cθ > 0 such that ∥∂ j

σvh,n∥L2(R2) ≤ Cθh− jθ (0 ≤ j ≤ 2). (B-1)

Consider two functions f ∈ L2(R) and p ∈ L1
loc(R

2) so that,

for all α ≥ 1, τα f (τ ) ∈ L2(R),

and there exist k ≥ 1 and C such that

|p(σ, τ )| ≤ C(|σ |
k
+ |τ |k + 1) (σ, τ ∈ R).

For j ∈ {0, 1, 2}, we introduce the function

wj (σ )=

∫
R

f (τ )p(σ, τ )∂ j
σvh,n(σ, τ ) dτ, (B-2)

whose support is included in {|σ |< h−η
}, by the considerations on the support of vh,n .

Lemma B.1. Given η ∈
(
0, 1

8

)
, there exist two positive constants h0,C > 0 such that

∥wj∥L2(R) ≤ C h−(k+ j/2)η

for all h ∈ (0, h0) and j ∈ {0, 1, 2}.

Proof. By Hölder’s inequality

|wj (σ )|
2
≤

(∫
R

| f (τ )|2|p(σ, τ )|2 dτ
)(∫

R

|∂ j
σvh,n(σ, τ )|

2 dτ
)
. (B-3)
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For σ in the support of wj , we have∫
R

| f (τ )|2|p(σ, τ )|2 dτ ≤ C
∫

R

| f (τ )|2(1 + |τ |k + |σ |
k)2 dτ ≤ C̃k(1 + h−2kη).

Inserting this into (B-3) then integrating with respect to σ , we get∫
R

|wj (σ )|
2 dσ ≤ C̃k(1 + h−2kη)

∫
R2

|∂ j
σvh,n(σ, τ )|

2 dσ dτ.

Finally, we use (B-1) with θ = η. □

We will encounter functions of the form

wj (σ )=

∫
R

g(τ )q(σ )∂ j
τ vh,n(σ, τ ) dτ ( j ∈ {1, 2}, σ ∈ R), (B-4)

where g ∈ H j (R) and q ∈ H 1
loc(R) satisfy,

for all α ≥ 1, ταg(i)(τ ) ∈ L2(R) (1 ≤ i ≤ j),

and

there exists k ≥ 1 such that there exists Ck > 0 such that |q(σ )| ≤ Ck(1 + |σ |
k) (σ ∈ R).

Lemma B.2. Given η ∈
(
0, 1

8

)
, there exist two positive constants h0 and C such that

∥wj∥L2(R) ≤ Ch−(k+1)η

for all h ∈ (0, h0] and j ∈ {1, 2}.

Proof. Using integration by parts and that vh,n is with compact support, we get

wj (σ )= (−1) j
∫

R

g( j)(τ )q(σ )vh,n(σ, τ ) dτ.

This function has the form of functions in Lemma B.1, with f (τ )= g( j)(τ ) and p(σ, τ )= q(σ ). □

The inner product of the remainder, rn(σ, h) in (7-69), and the function, Rnew
0 vh,n in (7-53), can be

expressed as the inner product of a linear combination of functions having the forms in Lemmas B.1
and B.2. The polynomials we encounter are of degree 6 at most. More precisely,

⟨rn( · , h), Rnew
0 vh,n⟩L2(R) = h7/8 A1 + h7/8 A2 + h A3 + h9/8 A4 + h5/4 A5,

where

A1 = ⟨a1,1, b1⟩L2(R) + h3/8
⟨a1,2, b2⟩L2(R) + h1/2

⟨a1,3, b1⟩L2(R),

A2 = ⟨a2,1, b2⟩L2(R) + ⟨a2,2, b1⟩L2(R),

A3 = ⟨a3, b1⟩L2(R), A4 = ⟨a4, b2⟩L2(R), A5 = ⟨a5, b1⟩L2(R),

and

a1,1 =

∫
R

g1(τ )Qhvh,n dτ, a1,2 =

∫
R

g2(τ )Qhvh,n dτ, a1,3 =

∫
R

g3(τ )Qhvh,n dτ,

a2,1 =

∫
R

f1(τ )P2vh,ndτ, a2,2 = κ

∫
R

f2(τ )P0vh,n dτ,
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a3 = κ

∫
R

f2(τ )P2vh,n dτ, a4 = κ

∫
R

f1(τ )P3vh,n dτ, a5 = κ

∫
R

f2(τ )P3vh,n dτ,

b1 =

∫
R

g(τ )vh,n dτ, b2 = i
∫

R

g(τ )∂σvh,n dτ.

Here, Qh is the operator introduced in (4-11), P0, P1, P2, P3 are the operators introduced in (4-10), f1, f2

are the functions introduced in (7-62)-(7-63), the functions g1, g2, g3 and g are defined as follows (see
(7-57) and (7-53))

g1 = φa, g2 = f1 = 2Ra((ba(τ )τ + ζa)φa),

g3 = κ f2 = κRa
(
M3(a)φa −φ′

a − 2τ(ba(τ )τ + ζa)
2φa + ba(τ )τ

2(ba(τ )τ + ζa)φa
)
,

g = φa − 4(ba(τ )τ + ζa)Ra((ba(τ )τ + ζa)φa).

So, we get
⟨rn( · , h), Rnew

0 vh,n⟩L2(R) = O(h7/8−8η).

By choosing η < 1
64 , we get (7-70).
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