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ON L*® ESTIMATES FOR MONGE-AMPERE AND HESSIAN EQUATIONS
ON NEF CLASSES

BIN GUO, DUONG H. PHONG, FREID TONG AND CHUWEN WANG

The PDE approach developed earlier by the first three authors for L™ estimates for fully nonlinear
equations on Kéhler manifolds is shown to apply as well to Monge—Ampere and Hessian equations on
nef classes. In particular, one obtains a new proof of the estimates of Boucksom, Eyssidieux, Guedj
and Zeriahi (2010) and Fu, Guo and Song (2020) for the Monge—Ampere equation, together with their
generalization to Hessian equations.

1. Introduction

The goal of this short note is to show that the PDE approach introduced in [Guo et al. 2023a; 2023b] for
L*> and Trudinger-type estimates for general classes of fully nonlinear equations on a compact Kéhler
manifold applies as well to Monge—Ampere and Hessian equations on nef classes.

The key to the approach in [Guo et al. 2023a; 2023b] is an estimate of Trudinger-type, obtained by
comparing the solution ¢ of the given equation to the solution of an auxiliary Monge—Ampere equation with
the energy of the sublevel set function —¢+s on the right-hand side. We shall see that, in the present case of
nef classes, the argument can still be made to work by replacing ¢ by ¢ —V, where V is the envelope of the
nef class. Applied to the Monge—Ampere equation, this gives a PDE proof of the estimates obtained earlier
for nef classes by Boucksom, Eyssidieux, Guedj and Zeriahi [Boucksom et al. 2010] and Fu, Guo and Song
[Fu et al. 2020]. The estimates which we obtain with this method applied to Hessian equations seem new.

We note that the use of an auxiliary Monge—Ampere equation was instrumental in the recent progress
of Chen and Cheng [2021] on the constant scalar curvature Kéhler metrics problem. There the auxiliary
equation involved the entropy, and not the energy, of sublevel set functions as in our case. More generally,
auxiliary equations have often been used in the theory of partial differential equations, notably by De
Giorgi [1961] and more recently by Dinew and Kotodziej [Demailly et al. 2014; Dinew and Kotodziej
2014] in their approach to Holder estimates for the complex Monge—Ampere equation.
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2. The Monge—~Ampere equation

We begin with the Monge—Ampere equation. Let (X, w) be a compact Kéhler manifold, and, without
loss of generality, let us assume that |’ y@" = 1. Let x be a closed (1, I)-form on X. We assume the
cohomology class [x] is nef and let v € {0, 1, ..., n} be the numerical dimension of [x], i.e.,

v =max{k | [x]* #0in H**(X, C)}.

When v = n we say the class [x] is big.
Let &, = x +tw for t € (0, 1]. The form @, may not be positive but its class is Kdhler. We consider
the family of complex Monge—Ampére equations

(& +i30¢)" =cre" 0", supg, =0, (2-1)
X

where ¢, = [@]'] = O(¢"") is a normalizing constant and F € C*°(X) satisfies fX efo' = fx w". This
equation admits a unique smooth solution ¢; by Yau’s theorem [1978].

The form y is not assumed to be semipositive, so the usual L estimate of ¢; may not hold [Kotodziej
1998]. As in [Boucksom et al. 2010; Fu et al. 2020], we need to modify the solution ¢, by an envelope V;
of the class [@;], defined as

V; = sup{v | v e PSH(X, &), v < 0}.

Then we have:

Theorem 1. Consider (2-1), and assume that the cohomology class of x is nef. For any s > 0, let
Qg = {@; — V; < —s} be the sublevel set of ¢; — V;.

(a) There are constants C = C(n, w, x) > 0 and ag = ag(n, w, x) > 0 such that

o -V (n+1)/n
f e"P{ o (%) }w <Cexp(CEy), (2-2)
Qs S

where A; = va(—(p, +V,—s)efw" and E, = fx(—(p, + Vel o
(b) Fix p > n. There is a constant C(n, p, w, X, ||eF||L1(]Og yr) such that, for allt € (0, 1], we have
0<—¢+V, <Cn, p,o, %, le" |11 gog Lyr)- (2-3)

We remark that the estimates in Theorem 1 continue to hold for a family of K&hler metrics (maybe
with distinct complex structures) which satisfy a uniform «-invariant-type estimate.

Proof. We would like to find an auxiliary equation with smooth coefficients, so that its solvability can be
guaranteed by Yau’s theorem. For this, we need a lemma due to Berman [2019] on a smooth approximation
for V;; see also Lemma 4 below. Fix a time ¢ € (0, 1].

Lemma 2. Let ug be the smooth solution to the complex Monge—-Ampére equation
(o + iaéulg)” =P 0.

Then ug converges uniformly to V; as f — oo.
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We remark that by [Chu et al. 2018], V; is a C"! function on X, although this fact is not used in this
note. We now return to the proof of Theorem 1(a).

We choose a sequence of smooth positive functions 7 : R — R such that 7; (x) decreases to x - xg, (x)
as k — oo. Fix a smooth function ug as in Lemma 2. The function ug depends on 7, but for simplicity
we omit the subscript 1. We solve the following auxiliary Monge—Ampere equation on X,

Tk (=@ +ug — S)eF "
As kB

(& + iaé‘/’t,k)n = sup ¥,k =0, (2-4)
X

where

Ag k. =/ T (—@r +ug — el "
X

Since v < V; and ug converges uniformly to V;, by taking B large enough, we may assume v, y <ug+1.
Define a function

O =—e(—Yrxtug+ 1+ A" — (o —ug +s),

with the constants
= A pn "+ 1", A=n"T 1)l (2-5)

As a smooth function on the compact manifold X, we know & must achieve its maximum at some xo € X.
If xp € X\ 27, then

O (xo) < —(pr —up+s) <=V, +upg <eg,

where €g — 0 as B — oo. On the other hand, if xo € @27, we calculate (A; denotes the Laplacian with
respect to the metric w;, = @; + i 85@)

0> A;®(xo)
1)~V tr,, (—id3Y x +i00ug) — try, (133, —iddug)

ne
T Yk s H 1A DD tr, 10 (Yo —up) APk —up)
an( Vi tug+ A+ DOt (@ g, — Bruy) — 1+ e, By
o 1/n
— y‘ﬂr.k
> Y Fug+ A+ DTV O, (DT
_n+1( Yk +up ) o
—n+ (1 — 1)—1/(Vl+1)> try, é)t,uﬂ
2
n
> (Vitup+ A+ DT VoD (e (g +ug — ) A )"
n-4+ B
ne
—n+(1— —AVOD ) o
2 ( I’l+1 Wy Z,Mﬂ
n
> L (kg + A+ DT (g g )AL

n+1
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Therefore, at xo € 7,

n+ 1Y\
—(p—upts) = (7) Assp(—Viitug+ A+ DD =e(—yptug+ A+ 1DV,

i.e., ®(xp) <0. Combining the two cases, we conclude that supy ® <eg — 0 as B — oo. It then follows
that, on g,

(=i +upg— )"V < Cu AL (—Viup+ 14+ Agip) +eg T

Letting 8 — oo, we have

(= + V=)D < C AV (i + Vi T+ Ay ),

where A ; = f x k(= + Vi +s)ef w". Observe that V, <0 by definition and, by the «-invariant estimate
[Hormander 1966; Tian 1987], there exists an ag(n, w, x) such that

—p,+V, —s (n+1)/n
/ exp(ao( i f;l e ) )w < / exp(aoCr (=W 4 + 1+ Agp))o" < CeCA%k. (2-6)
Qq sk Q

Letting k — oo, we obtain

_ V. — (n+1)/n
/ exp(ao( ¢+ zl/nS) )a)" < CeChs,
Qs Ay

Theorem 1(a) is proved by noting that A; < E; for any s > 0.

Once Theorem 1(a) has been proved, part (b) can be proved by following closely the arguments in
[Guo et al. 2023a].

Fix p > n, and define  : R — R4 by n(x) = (log(1 + x))?. Note that 5 is a strictly increasing
function with 7(0) = 0, and let ™! be its inverse function. Write

o)) (_(ﬂz +Vi— S)(n+1)/n

%o 2-7
2\ Al (2-7)

vi=
Then by the generalized Young’s inequality with respect to 5, for any z € €2,

exp(F(2)) V()P v
v(@)PeF @ < f n(x)dx+ f 1~ () dy < exp(F@)(1+IF @D+ f @' ~1)dy
0 0 0

v(2)
= eXp(F(Z))(1+|F(Z)I)p+p/ e’ yP~'dy < exp(F(2))(1+|F (2)])’ +C(p) exp(2v(2)).
0
We integrate both sides in the inequality above over z € 2 and get by Theorem 1(a) that

/ v(z)Pef @ 5/ eFA+|F@)))Po” —i—/ V@ < ||eF||L1(10gL)p +C+CetE,
Q

s Q s

where the constant C > 0 depends only on n, wy and x. In view of the definition of v, this implies

/ (—gr + Vi — )Pl @ < 2Po P AP/ ([l || 11 tog £yr + C + CeCF1). (2-8)
Qs
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From the definition of Ay, it follows from Holder’s inequality that

n/((n41)p) 1/q
A, :/ (= +V, —s)ef 0" < (/ (—o + Vi —S)(”“)”/”er”) : </ eFa)">
Qx Qs QS

1/q
< ASTDQ@Pay (1l 1 gog 1y + € + CeCENyM D) ( / er") :

where g > 1 satisfies n/(p(n+1))+1/g=1,ie.,g = p(n+1)/(p(n+ 1) —n). The inequality above
yields

(1+n)/(gn)
As < (2Pao_p(||eF||L1(logL)p +C+ CeCE’))l/p . (/ eFa)n) (2-9)
Qy
Observe that the exponent of the integral on the right-hand of (2-9) satisfies
1 —
PR _PREPTR s
qn pn
for §¢ := (p —n)/(pn) > 0. For convenience of notation, set
By := 2"y (le" | L1og Ly + C + Ce FIP. (2-10)

From (2-9) we then get

14680
A < Bo(/ er") . (2-11)
Qs

If we define ¢ : R;. — Ry by ¢(s) := fﬂs el w", then (2-11) and the definition of A, implies
ro(s+r) < Bogp(s)' ™ forall r €[0,1] and s > 0. (2-12)

Since ¢ is clearly nonincreasing and continuous, a De Giorgi-type iteration argument shows that there
is some S, such that ¢(s) = 0 for any s > Sy. This finishes the proof of the L>° estimate of ¢; — V,
combining with a bound on E, by [ || L' (log )! Which follows from Jensen’s inequality; see Lemma 6 in
[Guo et al. 2023a]. Il

Finally, we note the recent advances in the theory of envelopes in [Guedj and Lu 2021; 2023], which
can provide an approach to L estimates for Monge—Ampére equations on Hermitian manifolds.

3. Complex Hessian equations

We explain in this section how the proof of Theorem 1 can be modified to give a similar result for a
degenerate family of complex Hessian equations. With the same notations as above, we consider the
ok-equations

k

(& +i009) A" F =cef 0, supg, =0. (3-1)
X

Define the envelope corresponding to the I'x-cone

V.« = sup{v | v € SHi(X, w, &) N C?, v <0},
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where v € SHy (X, w, ;) N C 2 indicates that the vector of eigenvalues of the linear transformation
™! (&; +id0v) lies in the I';-cone, which is the convex cone in R" given by

Fi={LeR"|o1(A) >0,...,0r(2) >0},

where o (1) denotes the j-th elementary symmetric polynomial of A € R".
Let

E(¢) = / (—¢r + Vt,k)enF/kwn
X

be the entropy associated to (3-1) as in [Guo et al. 2023a], and let E, be an upper bound of E;(¢;). Then
the following L estimate holds for the solution ¢, to (3-1).

Theorem 3. Let ¢; be the solution to (3-1). There exists a constant depending on
Ct

E; eOF) L ,
’ BR[|

and p>n

such that
0<—¢+V<C.

This theorem can be derived using a similar argument as in Section 2 with suitable modifications for oy
equations — see [Guo et al. 2023a] — so we omit the details. The only novel ingredient is the smooth
approximation of \7t ¢ as in Lemma 2. One can adapt the method in [Berman 2019] to derive this required
approximation. For the convenience of the reader, we present a sketch of the proof.

Lemma 4. Fixt € (0, 1]. There exists a sequence of smooth functions ug € SHy(X, , &;) converging
uniformly to V, . as B — oo.

Proof. Let ug € SHy (X, w, @) be the solution to the oy-equations
(@& +iddug) A" F = cef 0", (3-2)

which admits a unique smooth solution by [Dinew and Kotodziej 2017]. We claim that there is a constant
C; > 0 such that
Cilogp

ﬁ b

sup lug — Vil <
X

from which the lemma follows.
By the maximum principle, at a maximum point of ug we have i dou g =0,s0

~k A wn—k

1)
up <log ——— <Gy,
pup <log o T

thatis, ug — C;/B < 0. By the definition of 17,’/{, it follows that

C ~
w—jgwb (3-3)
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On the other hand, we fix a smooth u < 0 such that &, +i9du > 0. Such a u exists because [@,] is a
Kihler class by assumption. For any v € SH; (X, w, @;) N C? with v < 0, we consider the barrier function

where C; > 0 is a large constant to be determined. By direct calculation, we have
_ 1 _ y
(& +i000) A" F > ﬁ@t +i00uw) A" h > P,
where the last inequality holds if we choose C; large enough such that

1 (& +i00u)k A"k
—_C’ . t
e Cilogh < —7 min .

X w"

Therefore, we get
(& +1330)" A" > P (&, +idug) A" E.

At the maximum point of it —ug, we have (&; + 109K A K < (&, + iaéuﬂ)k A" *. This shows that
u—ug <0 on X. Taking the supremum over all such v in u, it follows that

1\~ Ci
(1 ——>Vt,k §uﬁ+Lgﬂ.
B B

The lemma follows from this and (3-3). O
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