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PROBLEM REDUCTION, RENORMALIZATION, AND MEMORY

ALEXANDRE J. CHORIN AND PANAGIOTIS STINIS

We present methods for the reduction of the complexity of computational prob-
lems, both time-dependent and stationary, together with connections to renor-
malization, scaling, and irreversible statistical mechanics. Most of the methods
have been presented before; what is new here is the common framework which
relates the several constructions to each other and to methods of theoretical
physics, as well as the analysis of the approximate reductions for time-dependent
problems. The key conclusions are: (i) in time dependent problems, it is not
in general legitimate to average equations without taking into account memory
effects and noise; (ii) mathematical tools developed in physics for carrying
out renormalization group transformations yield effective block Monte Carlo
methods; (iii) the Mori–Zwanzig formalism, which in principle yields exact
reduction methods but is often hard to use, can be tamed by approximation; and
(iv) more generally, problem reduction is a search for hidden similarities.

1. Introduction

There are many problems in science that are too complex for numerical solution as
they stand. Examples include turbulence, molecular dynamics, and other problems
where multiple scales must be taken into account. Such problems must be reduced
to more amenable forms before one computes. In the present paper we would like
to summarize some of the reduction methods that have been developed in recent
years, together with an account of what was learned in the process. It is obvious
that the problem has not been fully solved, but we think that the examples and the
conclusions reached so far are useful.

In general terms, a reduction to a more amenable form is a renormalization
group transformation, as in physics — a transformation of a problem into a more
tractable form while keeping quantities of interest invariant. A renormalization
group transformation involves an incomplete similarity transformation, and thus a
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reduction method is a search for hidden similarities. This is a general feature of
reduction methods, and it will be illustrated in the examples. A successful problem
reduction produces a new problem which must in some asymptotic sense be similar
to the original problem. For general background on renormalization, see, e.g., [5;
20; 39].

In problems with strong time dependence, reduction methods resemble methods
for the analysis of thermodynamic systems not in equilibrium; indeed, those as-
pects of the problem that are ignored in a reduced description conspire to destroy
order and increase entropy. Problem reduction for time-dependent problems is
basically renormalization group theory for non-equilibrium statistical mechanics.
For background on such theory, see, e.g., [3; 22; 8; 44].

The content of the paper is as follows: In section 2 we consider Hamiltonian
systems and their conditional expectations. In section 3 we narrow the discussion
to statistically stationary Hamiltonian systems and recover Kadanoff real-space
renormalization groups and an interesting block Monte Carlo method. In section 4
we display an example that exhibits and also extends the main features of this
analysis in simple form.

In section 5 we explain the Mori–Zwanzig formalism for the reduction of statis-
tically time-dependent problems. The analysis shows that averaging the equations
is in general not enough; one must take into account noise and a temporal memory.
The Mori–Zwanzig formalism is rather dense, and in the sections that follow we
present various special cases in which it can be simplified, in particular when the
memory is very short or very long. We wish to draw the reader’s attention in
particular to the “t-model”, for which we present a new analysis; it seems to us
that it represents a step forward in modeling for a relatively small price in added
computational complexity.

One of our goals in exploring the connections between problem reduction and
irreversible statistical mechanics is to point out some of the places where the
knowledge acquired in statistical mechanics still awaits its proper integration into
computational practice.

The paper [21] is a survey of reduction methods organized along different lines
and can be profitably read in tandem with the present paper.

For the sake of readability, we remind the reader of the rudiments of similarity the-
ory [3]. Suppose a variable a is a function of variables a1, a2, . . . , am , b1, b2, . . . , bk ,
where a1, . . . , am have independent units, for example units of length and mass,
while the units of b1, . . . , bk , can be formed from the units of a1, a2, . . . , am . Then
there exist dimensionless variables 5 =

a
a
α1
1 ···aαm

m
, 5i =

bi

a
αi1
1 ···a

αim
m

, i = 1, . . . , k,

where the αi , αi j are simple fractions, such that 5 is a function of the 5i :

5=8(51, . . . ,5k). (1)
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This is just a consequence of the requirement that a physical relationship be indepen-
dent of the size of the units of measurement. At this stage nothing can be said about
the function 8. Now suppose the variables 5i are small or large, and assume that
the function 8 has a non-zero finite limit as its arguments tend to zero or to infinity;
then 5∼ constant, and one finds a power monomial relation between a and the ai .
This is a complete similarity relation. If the function 8 does not have the assumed
limit, it may happen that for 51 small or large, 8(51)=5α

181(51)+ · · · , where
the dots denote lower order terms, α is a constant, the other arguments of 8 have
been omitted and 81 has a finite non-zero limit. One can then obtain a scaling
expression for a in terms of the ai and bi , with undetermined powers which must
be found by means other than dimensional analysis. The resulting power relation is
an incomplete similarity relation. Of course one may well have functions 8 with
neither kind of similarity.

Incomplete similarity expresses what is invariant under a renormalization group;
all renormalization group transformations involve incomplete similarity. The expo-
nent α is called an anomalous exponent.

2. Averaging a Hamiltonian system

We begin by examining what happens when one tries to reduce the complexity of a
Hamiltonian system by averaging (see also [15; 16; 38; 2]). This first section is
partially historical – this is how our group in Berkeley started working on problem
reduction; part of this development has been superseded by the theory in the section
on the Mori–Zwanzig formalism below. It seems to us that this is still the right place
to start, because the conclusions here explain the (less than intuitively obvious)
need to go beyond averaging to a more complicated theory, and also because the
theory in this section is the basis for the analysis of the stationary case in the two
sections that follow.

Consider a system of nonlinear ordinary differential equations,

d
dt
ϕ(t)= R(ϕ(t)),

ϕ(0)= x, (2)

where ϕ and x are n-dimensional vectors with components ϕi and xi , and R is a
vector-valued function with components Ri ; t is time. To each initial value x in (2)
corresponds a trajectory ϕ(t)= ϕ(x, t).

Suppose that we only want to find m of the n components of the solution
vector ϕ(t) without finding the n − m others. One has to assume something
about the variables that are not evaluated, and we assume that at time t=0 we
have a joint probability density f (x) for all the variables. The variables we keep
will have definite initial values x1, x2, . . . , xm , and the rest of variables will then
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have a conditional probability density fm = f (x1, . . . , xm, xm+1, . . . )/Zm , where
Zm =

∫
+∞

−∞
f (x1, . . . , xm, xm+1, . . . )dxm+1dxm+2 · · · is a normalization constant.

Without some assumption about the missing variables the problem is meaningless;
this particular assumption is reasonable because in practice f can often be estimated
from previous experience or from general considerations of statistical mechanics.
The question is how to use this prior knowledge in the evaluation of ϕ(t).

Partition the vector x so that x̂ = (x1, x2, . . . , xm), x̃ = (xm+1, . . . , xn) and
x = (x̂, x̃), and similarly ϕ= (ϕ̂, ϕ̃), R = (R̂, R̃). In general, the first m components
of R depend on all the components of ϕ, R̂ = R̂(ϕ)= R̂(ϕ̂, ϕ̃); if they do not we
have a system of m equations in m variables and nothing further needs to be done.
We want to calculate only the variables ϕ̂; then (d/dt)ϕ̂(t) = R̂(ϕ(t)) where the
right-hand side depends on the variables ϕ̃ which are unknown at time t . We shall
call the variables ϕ̂ the “resolved variables” and the remaining variables ϕ̃ the
“unresolved variables”.

Consider in particular a Hamiltonian system as in [15],[16]. There exists then
by definition a Hamiltonian function H = H(ϕ) such that for i odd Ri , the i-th
component of the vector R in (2) satisfies Ri = ∂H

/
∂ϕi+1, while for i even, one

has Ri = −∂H
/
∂ϕi−1, with n, the size of the system, even. Assume furthermore

that f , the initial probability density, is f (ϕ) = Z−1 exp(−H/T ) where T is a
parameter, known in physics as the “temperature”, which will be set equal to one in
much, but not all, of the discussion below. In physics this density appears naturally
and is known as the “canonical” density; the normalizing constant Z = Z(T ) is the
“partition function”. This density f is invariant, i.e., sampling it and evolving the
system in time commute.

A numerical analyst who wants to approximate the solution of an equation usually
starts by approximating the equation. If one solves for the resolved variables one
has values for the variables ϕ̂ available at each instant t and the best approximation
should be a function of these variables; it is natural to seek a best approximation
in the mean square sense with respect to the invariant density f at each time;
the best approximation in this sense is the conditional expectation E[R(ϕ)|ϕ̂] =∫

Re−H dϕ̃
/∫

e−H dϕ̃ (note that we set T = 1 for simplicity). This conditional
expectation is the orthogonal projection of R onto the space of functions of ϕ̂
with respect to the inner product (u, v)= E[uv] =

∫
u(ϕ)v(ϕ) f (ϕ)dϕ, where dϕ

denotes integration over all the components of ϕ. We then try to approximate the
system (2) by:

d
dt
ϕ̂(t)= E[R(ϕ(t))|ϕ̂(t)],

ϕ̂(0)= x̂ . (3)
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It has been shown in [13; 15; 11] that: (i) the new system (3) is also Hamiltonian:

E
[
∂H
∂ϕi

|ϕ̂(t)
]

=

∫
∂H
∂ϕi

exp(−H)dϕ̃
/∫

exp(−H)dϕ̃ =
∂ Ĥ
∂ϕi

, (4)

where i ≤ m = the dimension of ϕ̂, and

Ĥ = −log
∫

exp(−H)dϕ̃ (5)

is the new Hamiltonian.
(ii) the new canonical density f̂ = Z−1 exp(−Ĥ) is invariant in the evolution of

the new, reduced, system.
(iii) when the data are sampled from the canonical distribution, the distribution

of ϕ̂ in the new system is its marginal distribution in the old system; equivalently,
the partition function Z is the same for the old system and for the new system.

Now the question is, what does the solution ϕ̂(t) of (3) represent? Having
averaged the equations, one could hope that the result is an average of the solution,
of course constrained by the initial data x̂ , i.e., that the solution of equations (3) is
E[ϕ̂(t)|x̂]. This is the case for linear systems (where averaging and time integration
commute), and is approximately the case for limited time in some other special
situations – nearly linear systems and some systems where the “unresolved variables”
are fast. However, in general this is not the case. On the other hand, the solution of
equations (3) does not approximate the true values of ϕ̂(t) in the full system either
– the latter depend strongly on the missing data x̃ while the former does not. We
shall see below that a reduced description of the solution of nonlinear systems in
time requires in general a “noise” (which describes the fluctuations in ϕ̃(t)) and
a “memory” (which depends on the temporal fluctuations of the noise and on the
history of the solutions).

The fact that the solution of the averaged equations is not the average of the
solutions can be understood by the following physics argument. In physics, a system
in which the values of all the variables are drawn from a canonical distribution
is a system in thermal equilibrium. The assignment of definite values x̂ to the
variables ϕ̂ at time t = 0 amounts to taking the system out of equilibrium at t = 0;
if the system is ergodic it will then decay to equilibrium in time, so that all the
variables become randomized and acquire the joint density f . Thus the predictive
value of the partial initial data x̂ decreases in time; all averages of the ϕ̂ approach
equilibrium averages. However, the reduced system (3) is Hamiltonian, and the
solutions it produces oscillate forever.

In Figure 1 we consider the Hald Hamiltonian system [13] with

H =
1
2

(
ϕ2

1 +ϕ2
2 +ϕ2

3 +ϕ2
4 +ϕ2

1ϕ
2
3
)

(6)
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Figure 1. Comparison of the evolution of E[φ1(t)|φ1(0), φ2(0)]
(truth), to the prediction by the “Galerkin” approximation and the
prediction by the averaging procedure described in the text.

(physically, two linear oscillators with a nonlinear coupling). We assume that
ϕ1(0), ϕ2(0) are given and sample the two other initial data from the canonical
distribution with T = 1.

Figure 1 displays (1) the result for ϕ1 of a “Galerkin” calculation in which
the unresolved variables are set to zero (this is what is implicitly done in many
unresolved computations); (2) the result of the averaging procedure just described,
and (3) the true E[ϕ1(t)|x̂], calculated by repeatedly sampling the initial data,
solving the full system, and averaging. As one can see, averaging is initially better
than the null “Galerkin” method, but in the long run the truth decays but the solution
of the averaged system oscillates forever. For more detail, see [13].

Consider now the current practice of “large-eddy simulation” in hydrodynamics
(see, e.g., [31]). One defines there as ϕ̂(t) “filtered” (i.e., locally averaged) variables
and one finds for the time evolution of these variables equations obtained by relating
various averaged terms in the Navier–Stokes equations to the filtered variables at
one time. The result can be exactly equivalent to equations (3), as in [30], or indeed
it could be an even worse approximation, because the conditional expectation of
R is the best approximation of R by a function of the ϕ̂. One should consider the
possibility that some of the well-known difficulties of large-eddy simulation are
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due to basic flaws in this procedure, and we will offer a possible alternative below.
For a description of special cases, with small fluctuations and particular structures,
where the use of equations (3) is legitimate, see [21].

3. Prediction with no data and block Monte Carlo

There is, however, a case where the construction of the preceding section can be
very useful – when one tries to predict the future with no initial information. All
the data are then sampled from the canonical density, which is invariant. If the
system is ergodic, the solutions of equations (2) sample the space of solutions and
their time average equals their average with respect to the canonical density. The
system then simply samples the canonical density, and the reduction by conditional
expectation of the previous section creates a smaller system whose variables have
the same probability density after reduction as they had before reduction, and can
be sampled at lower cost. This is the starting point for some interesting analysis
as well as for block sampling methods (see [38; 2] for applications to molecular
dynamics).

To see in detail what the reduction by conditional expectations of the previous
section accomplishes under these circumstances, suppose the variables ϕi are
associated with nodes on a regular lattice, for example, they may represent spins in
a solid, or originate in the spatial discretization of a partial differential equation.

Divide the lattice into blocks of some fixed shape (for example, divide a regular
one-dimensional lattice into groups of two contiguous nodes). We have not yet
specified how the variables are to be divided into resolved and unresolved. Now
decide to “resolve” one variable per block, and leave the others in the same block
unresolved. The transformation between the old variables and the smaller set of
resolved variables is a Kadanoff renormalization group transformation exactly as the
latter are defined in [28] even if the steps which lead to it are presented differently;
the Hamiltonian Ĥ defined above in equation (5) is the renormalized Hamiltonian
in the sense of Kadanoff. This is an easy instance of our general claim that problem
reduction is renormalization.

Suppose the system described by the Hamiltonian is translation invariant. The
equations of motion at any one point, say at the location labeled by 1, have the
same form as the equations of motion at any other point. The relation between the
right-hand side of the reduced system and the right-hand side of the old system can
be rewritten as:

∂ Ĥ
∂ϕ1

= E[
∂H
∂ϕ1

|ϕ̂], (7)

where the expected value is with respect to the invariant density as before. This
relation is the starting point for the evaluation of Ĥ .
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The key to success is to expand H and Ĥ in series, so that the calculation of the
conditional expectations becomes easier for each term than it is for the Hamiltonians
themselves. We use here a version of what is known in physics as an expansion in
successive couplings (see [28]). The Hamiltonians are functions of the variables ϕ
and can be expanded in the form:

H =

∑
j

a jψ j , (8)

where the ψ j are “elementary Hamiltonians”. In a translation invariant system,
where each equation has the same form as any other, the Hamiltonian is made up
of sums over i of terms of the form h(ϕiϕi+ j ) for various values of j , where h is
some function; these terms represent “couplings” between variables j apart; one
can then choose the elementary Hamiltonians to be polynomials in xi xi+ j with a
fixed j in each ψ j , i.e., one segregates the couplings between variables j apart into
separate terms.

In a homogeneous system where there is only one variable per site, it is enough
to satisfy (7) for one variable, say for ϕ1. Define ψ ′

j =
∂
∂ϕ1
ψ j , noting that though

each ψ j for a homogeneous system is necessarily a function with at least as many
arguments as there are components on ϕ, ψ ′

j can be sparse in the sense that it
depends only on a few of the variables (for example, if ψ0 =

∑
i ϕ

2
i , then ψ ′

0 = 2ϕ1).
Equation (7) reduces to

∂ Ĥ
∂ϕ1

=

∑
j

a j Pψ ′

j (ϕ) (9)

with the projection P defined as before by Pg(ϕ)= E[g|ϕ̂] for any function g of
ϕ. Now we’re almost done. Pick a basis in L̂2, the subspace of square integrable
functions that depend only on the variables ϕ̂, made up of a subset of the set of
functions ψ ′

j . The right-hand side of equation (9) is then again a linear combination
of ψ ′

j ; integration with respect to ϕ1 requires only the erasure of the primes and
yields a series for Ĥ . The elements of ϕ̃ are now gone, and one can relabel the
remaining variables ϕ̂ so that the terms in the series have exactly the same form as
before; the calculation can then be repeated, yielding a sequence of Hamiltonians
with ever fewer variables: H, H (1)

= Ĥ , H (2)
= Ĥ (1), . . . . The corresponding

densities f (n) = Z−1 exp(−H (n)/T ) can be sampled by any sampling scheme, for
example, by Metropolis sampling (see, e.g., [10]).

At this point we have reduced the number of variables by a factor L equal to the
number of variables in each block, but this may well seem to be a Pyrrhic victory.
The Hamiltonians one usually encounters are simple in the sense that they involve
few couplings – finite differences typically link a few neighboring variables, and so
do the usual spin Hamiltonians in physics. As one reduces the number of variables,
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the new Hamiltonians become more complex, with more terms in the series (8);
the cost per time step of solving the equations in time or the cost per move in a
Metropolis sampling typically increases quickly as well. To see what has been
gained one must again turn to the physics literature (see, e.g., [28],[24]).

Consider the spatial correlation length ` which measures the range of values
of | j | over which the spatial covariances E[ϕiϕi+ j ] are non negligible, and the
correlation time τ for which the temporal covariances E[ϕi (t)ϕ j (t + s)] are non-
negligible. For very large and very small values of the temperature T (the variance
parameter in the density f ) both the correlation time and the correlation length
are usually small (see [28],[17]); the properties of the system can then be found
from calculations with a small number of variables and it is not urgent to reduce
the number of variables. There is a range of intermediate values of T for which the
correlation length and time are large and then the reduction is worthwhile. There
often is a value Tc of T , the “critical value”, for which `= ∞. Values of T around
Tc are often of great interest.

Now we can see what the reduction can accomplish. If one tries to compute
averages with T near Tc one finds that the cost of computation is proportional to
τ and to some positive power of ` – one has to compute long enough to obtain
independent samples of ϕ, and a new independent sample will not appear until a
time ∼ τ has passed. The reductions above produce a system with smaller ` and τ
and therefore computation takes less time. Though we started with the declared goal
of reducing the number of variables, what has been produced is more interesting: a
new system with shorter correlations which is more amenable to computation. It
is not the raw number of variables that matters. It is important to notice that what
started as a scheme for winnowing out variables has ended up by producing a new
system related to the original system by a scaling transformation.

The renormalization can be used with a multigrid scheme, in which one runs
up and down on different levels of renormalization, on the finer ones to achieve
accuracy and the cruder ones to move fast from one macroscopic configuration to
another. It is well known that multigrid schemes require that one store conditional
expectations (see, e.g., [7]), and the physicists’ expansion in successive linkages
provides an effective way to do so; for details see [10],[35].

An alternative method for obtaining the expansion coefficients for the renormal-
ized Hamiltonians was proposed in [42]. The method is based on the maximization
of the likelihood of the renormalized density. The maximization of the likelihood
leads to a moment-matching problem. The moments in this case are the expectation
values of the “elementary Hamiltonians” (see above) with respect to the renormalized
density. The solution of the moment matching problem yields the expansion of the
renormalized Hamiltonian.
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The systematic development of the links of probability with renormalization
began with Jona–Lasinio (see, e.g., [26]). The connection of renormalization with
incomplete similarity is too well known (see [3; 28; 22]) to require further comment
here. The analysis of this section provides a striking example of the benefits to
be found in applying to computation ideas drawn from experience in statistical
physics.

4. An example: The Korteveg–deVries–Burgers equation

As a further illustration of the ideas in the previous section, consider the equation

ut + uux = εuxx −βuxxx , (10)

with boundary conditions

u(−∞)= u0, u(+∞)= 0, ux(−∞)= 0, (11)

where the subscripts denote differentiation, x is the spatial variable, t is time, ε > 0
is a diffusion coefficient, β > 0 is a dispersion coefficient, and u0 > 0 is a given
constant. The boundary conditions create a traveling wave solution moving to
the right (towards +∞) with velocity u0/2 which becomes steady in a moving
framework as t → ∞. In nondimensional form the equation can be written as:

ut + uux =
1
R

uxx + uxxx , (12)

with ux(−∞)= 0, u(+∞)= 0, u(−∞)= 1; R =
√
βu0/ε is a “Reynolds number”.

For R ≤ 1 the traveling wave has a monotonic profile, while for R > 1 the profile is
oscillatory, with oscillations whose wave length is of order 1 [6]. At zero diffusion
(R = ∞) the stationary asymptotic wave train extends to infinity on the left. For
finite R the wave train is damped and the solution tends to 1 as x decreases.

The steady wave profile can be found by noting that it satisfies an ordinary
differential equation, whose solution connects a spiral singularity at x = −∞ to a
saddle point at x = +∞. At the steady state we average the solution at each point x
over the region (x − `/2, x + `/2) and call the result ū. The task we set ourselves
is to find an effective equation g(v, vx , vxx , . . .)= 0 whose solution v approximates
ū; v can be expected to be smoother than the solution of (12) and thus require
fewer mesh points for an accurate numerical solution; this is analogous to finding a
renormalized Hamiltonian further from the critical point so that the solution of the
corresponding problem has lower fluctuations, as we did in the previous section;
note that the problem of this present section is not Hamiltonian.

We now make an analogy between the conditional expectations which define the
renormalized variables in the previous sections and an averaging in space which
defines “renormalized” variables for solutions of the KdVB equations that are
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stationary in a moving frame. Averaging over an increasing length scale corresponds
either to more renormalization steps or, equivalently, to renormalization with a
greater number of variables grouped together. We pick a class of equations in which
to seek the “effective” equation, the one whose solutions best approximate the
averages of the true solution in the mean square sense; the choice of mean-square
approximation in the KdVB case corresponds to the use of L2 norms implied by
the use of conditional expectations in the previous sections, and the choice of a
class of equations in which to look for the effective equation is analogous to the
choice of a basis for the representation of the Hamiltonian; the calculation of the
best coefficients in the chosen class of “effective” equations corresponds to the
evaluation of the coefficients in the series for the renormalized Hamiltonians. In
the Hamiltonian case we average the right-hand sides of the equations and in the
analogous KdVB case we attempt to average the solutions; this must be so because
in the KdVB case we do not have theorems which guarantee that averaging the
right-hand sides produces the correct statistics for the solutions.

We can look for an effective equation in the class of equations of the form

−cvx + vvx = εe f f vxx + vxxx +β|vx |
αvxx + · · · , (13)

where ε ≥ 0, α ≥ 0, β ≥ 0 are constants and c = 1/2 is the velocity of propagation
of the steady wave (see also [4]). This expansion is analogous to the expansion
in successive linkages (8) of the previous section; in a continuum limit, a series
of partial Hamiltonians, whose derivatives have larger and larger “stencils” across
which variables are connected, can be reorganized into an expansion in higher and
higher derivatives of the unknown. One knows a priori that u and v propagate at the
same velocity, which helps fix some of the parameters (i.e., expansion coefficients)
at the outset. The problem is to find the values of the parameters in the effective
equation which minimize

I =

∫
+∞

−∞

|ū(x)− v(x)|2dx . (14)

One finds numerically that the last terms have little effect on the minimum of I
when `≥ 5 (in physics terminology, they are “irrelevant”). The effective equation
is thus a Burgers equation with a value of the dimensionless diffusion coefficient
εe f f different from 1/R.

The minimization in (14) was carried out in [9], and it showed that the minimum
was achieved when εe f f = Rν8(`), with the exponent ν ∼ 0.75. Note that when the
diffusion coefficient ε→0, then εe f f →∞! This is an incomplete similarity relation,
as advertised, relating a “bare” Reynolds number R to a “dressed” Reynolds number
ε−1

e f f . The form of the effective equation could conceivably have been found by
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averaging the original equation, but the relation between the original ε and εe f f

requires some form of renormalization-like reasoning.

5. The Mori–Zwanzig formalism

We now return to the problem we started investigating in section 2: how to determine
the evolution of a subset ϕ̂ of components of a vector ϕ described by a nonlinear
set of equations of the form (2). This is a nonlinear closure problem of a type much
studied in physics, and a variety of formalisms is available for the job. We choose
the Mori–Zwanzig formalism of irreversible statistical mechanics [19; 23; 33; 46;
34], because it homes in on the basic difficulty, which is the description of the
memory in the system; the relation of this formalism to other nonlinear formalisms
is described in [14]. That a reduced description of a nonlinear system involves
a memory should be intuitively obvious: suppose you have n > 3 billiard balls
moving about on top of a table and are trying to describe the motion of just three;
the second ball may strike the seventh ball at a time t1 and the seventh ball may
then strike the third ball at a later time. The third ball then “remembers” the state of
the system at time t1, and if this memory is not encoded in the explicit knowledge
of where the seventh ball is at all times, then it has to be encoded in some other
way. We are no longer assuming that the system is Hamiltonian nor that we know
an invariant density.

It is much easier to do theory for linear equations, and we start by finding a linear
equation equivalent to (not approximating!) the system (2). Introduce the linear
Liouville operator L =

∑n
i=1 Ri (x) ∂∂xi

, and the Liouville equation:

∂

∂t
u(x, t)= Lu(x, t)

u(x, 0)= g(x), (15)

with initial data g(x). This is the partial differential equation for which (2) is the
set of characteristic equations. One can verify that the solution of the Liouville
equation is u(x, t) = g(ϕ(x, t)) (see, e.g., [11]). In particular, if g(x) = xi , the
solution is u(x, t)= ϕi (x, t), the i-th component of the solution of (2). This linear
partial differential equation is thus equivalent to the nonlinear system (2). The
linearity of equation (15) greatly facilitates the analysis.

Introduce the semigroup notation u(x, t)= (et L g)(x)= g(ϕ(x, t)), where et L is
the evolution operator associated with the operator L; therefore et L g(x)= g(et L x),
and one can also verify that et L L = Let L (this can be seen to be a change of
variables formula). Equation (15) becomes

∂

∂t
et L g = Let L g = et L Lg.
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We suppose that as before we are given the initial values of the m coordinates x̂ ,
and that the distribution of the remaining n − m coordinates x̃ is the conditional
density, f conditioned by x̂ , where f is initially given.

We define a projection operator P by Pg = E[g|x̂]. The conditioning variables
are the initial values of ϕ̂; in section 2 the conditioning variables were the values of
ϕ̂(t), which are unusable here when we do not know the probability density at time
t . Quantities such as Pϕ̂(t)= E[ϕ̂(t)|x̂] are by definition the best estimates of the
future values of the variables ϕ̂ given the partial data x̂ and are often the quantities
of greatest interest.

Consider a resolved coordinate ϕ j (x, t) = et L x j ( j ≤ m), and split its time
derivative, R j (ϕ(x, t))= et L Lx j as follows:

∂

∂t
et L x j = et L Lx j = et L P Lx j + et L QLx j , (16)

where Q = I − P . Define R̂ j (x̂) = (P R j )(x̂); the first term is et L P Lx j =

R̂ j (ϕ̂(x, t)) and is a function of the resolved components only (but it is a function
of the whole vector of initial data). Note that if Q were zero we would recover
something that looks like the crude approximation of an earlier section; however the
conditioning variables are not the same. We shall see that the term in Q is essential.

We further split the remaining term et L QLx j . This splitting will bring it into
a very useful form: a noise term, and a memory term whose kernel depends on
the correlations of the noise term. The fact that such a splitting is possible is the
essence of “fluctuation-dissipation” theorems (see, e.g., [29]).

The evolution operators et L and et QL satisfy the Duhamel relation

et L
= et QL

+

∫ t

0
e(t−s)L P Les QL ds.

Hence,

et L QLx j = et QL QLx j +

∫ t

0
e(t−s)L P Les QL QLx j ds. (17)

Collecting terms, we find

∂

∂t
et L x j = et L P Lx j +

∫ t

0
e(t−s)L P Les QL QLx j ds + et QL QLx j (18)

The first term on the right-hand side is the Markovian contribution to ∂tϕ j (x, t)—
it depends only on the instantaneous value of the resolved ϕ̂(x, t). The second
term depends on x through the values of ϕ̂(x, s) at times s between 0 and t , and
embodies a memory—a dependence on the past values of the resolved variables.
Finally, the third term, which depends on full knowledge of the initial conditions x ,
lies in the null space of P and can be viewed as noise.
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It is important to see that equation (18) is an identity. The memory and noise
terms have not been added artificially, their presence is a direct consequence of the
original equations of motion. However tempting it may be to average equations
by taking one-time averages, the results will, in general, be wrong; one must
add a memory and a noise as well. Note that the first term in equation (18) is,
apart from the change of conditioning variables, the same as the right-hand side in
equations (3).

If what is desired is Pϕ̂(t), the conditional expectation of ϕ̂(t) given x̂ (the
best approximation in the sense of L2 to ϕ̂ given the partial data x̂), then one can
premultiply equation (18) by P; the noise term then drops out and we find

∂

∂t
Pet L x j = Pet L P Lx j + P

∫ t

0
e(t−s)L P Les QL QLx j ds. (19)

Even if the system we start with is Hamiltonian, the Langevin equation (18) is not;
the memory and the noise allow the system to forget its initial values and decay to
“thermal equilibrium” as it should (see section 2).

Let w(x, t)= et QL QLx j ; by definition w, the noise, is a solution of the initial
value problem:

∂

∂t
w(x, t)= QLw(x, t) = Lw(x, t)− P Lw(x, t)

w(x, 0)= QLx j . (20)

If for some function h(x), Ph = 0, then Pet QLh = 0 for all time t , i.e., et QL

maps the null space of P into itself. The solution of the equations (20) defines the
“orthogonal dynamics” for the system (2) with with data x̂ and the given joint density
for all the data at the initial time. The initial data for the orthogonal dynamics,
QLx j = (I − P)R j = R j − E[R j |x̂] can be thought of as the fluctuations in the
initial values of the R j . The range of the projection P is everything that can
be expressed as a function of x̂ , i.e., everything that can be predicted from the
knowledge of x̂ ; one can think of the range of P as the “resolved space”. One can
think of the range of Q as the “noise space”. The orthogonal dynamics modify
the temporal evolution that starts from QLx j by continuously removing from the
evolutes any component that can be resolved or predicted; the result always remains
in the noise space.

We now show that the memory term is a functional of the temporal covariances
of the noise (i.e., of covariances of stochastic processes confined to the noise
space). To save on writing we restrict ourselves to cases where the operator L
is skew-symmetric, i.e, (Lu, v) = −(u, Lv), (remember (u, v) = E[uv]). The
skew-symmetry holds in particular for Hamiltonian systems with canonical data,
see [13],[18]; however, here the assumption of skew-symmetry is only an excuse
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to reduce the number of symbols, not a return to the Hamiltonian case. Pick an
orthonormal basis {hk = hk(x̂), k = 1, . . . } in the range of P , which is the space of
functions of x̂ (for example, the hk could be Hermite polynomials in the variables x̂).
The projection of any function ψ(x, t) can be written as ψ =

∑
k(ψ(x, t), hk)hk(x̂),

and in particular,

P(L Qes QL QLx j )=

∑
k

(L Qes QL QLx j , hk)hk(x̂), (21)

where a factor Q has been inserted before the exponential, harmlessly because
the operators that follow it all live in the null space of P . The memory term now
becomes∫ t

0
e(t−s)L P Les QL QLx j ds=

∫ t

0

∑
k

e(t−s)L(L Qes QL QLx j , hk)hk(x̂)ds

=

∑
k

∫ t

0
(L Qes QL QLx j , hk)hk(ϕ̂(t − s))ds. (22)

In the last identity we used the fact that the inner product in parentheses is inde-
pendent of time and therefore commutes with the time evolution operator et QL ,
and also the fact that e(t−s)Lhk(x̂)= hk(ϕ̂(t − s)). Now (L Qes QL QLx j , hk(x̂))=
−(es QL QLx j , QLhk(x̂)) by the symmetry of Q and the assumed skew-symmetry
of L; each term on the right-hand side of equation (22) is the ensemble average of
the product of the value of the stochastic process et QL QLx j at time s = t , with the
value of the stochastic process et QL QLhk(x̂) evaluated at time s = 0, i.e., it is a
temporal correlation. All these stochastic processes are in the range of Q for all t ,
and are therefore components of the noise. Remember that by definition Lx j = R j

(a right-hand side in equations (2)). P Lx j is then an average of the right-hand side
of (2) and QLx j = R j − E[R j |x̂] is the initial fluctuation in that right-hand side.

The first, “Markovian”, term in equations (18) looks straightforward, but perils
lurk there as well. In general R j in equations (2) is nonlinear, and so is P Lx j =

E[R j |x̂]. et L P Lx j is a nonlinear function of the functions ϕ̂(t) that depends on
all the components of x , not only on x̂ . Some way of approximating this function
must be found. If one looks for conditional expectations, one must find a way to
commute P with a nonlinear function; for a discussion, see [13]. This bullet was
dodged in section 2 when the conditioning variables were chosen to be ϕ̂(t) which
change in time, but it may be hard to dodge in general.

The task now at hand is to extract something usable from these rather cumbersome
formulas. A very detailed presentation of the analysis in this section can be found
in [17].
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6. Fluctuation-dissipation theorems

We have established a relation between kernels in the memory term and the noise
(the former is made up of covariances of the latter). This is the mathematical content
of what are known as “fluctuation-dissipation theorems” in physics. A key difficulty
is that the kernels in the memory term consist of covariances of the orthogonal
dynamics, whose determination requires in principle the solution of the orthogonal
dynamics equations (20), which can be very onerous. However, in the physics
literature fluctuation-dissipation theorems are presented in a way that does not stress
this difficulty, and we take a moment to explain how the usual physics versions
of the theorems come about; they are worth understanding because even though
they camouflage the orthogonal dynamics issue they contain significant additional
insights.

In the physics literature one often takes a restricted basis in the range of P
consisting of the coordinate functions x1, ..., xm (the components of x̂). The
resulting projection is called the “ linear projection” as if P as defined above
were not linear. The use of this projection is appropriate when the amplitude of the
functions φ̂(t) is small. One then has hk(x̂) = xk for k ≤ m. The covariances in
equation (22) are then simply the temporal covariances of the fluctuations in the
resolved variables only – all the other covariances have been set to zero. This is
known as the fluctuation-dissipation theorem of the second kind. The fluctuations
of course obey the orthogonal dynamics equation.

Specialize further to a situation where there is a single resolved variable, say φ1,
so that m = 1 and φ̂ has a single component. The Mori–Zwanzig equation becomes:

∂

∂t
et L x1 = et L P Lx1 + et QL QLx1 +

∫ t

0
e(t−s)L P Les QL QLx1ds,

or,

∂

∂t
φ1(x, t)= (Lx1, x1)φ1(x, t)+ et QL QLx1

+

∫ t

0
(L Qes QL QLx1, x1)φ1(x, t − s)ds

= (Lx1, x1)φ1(x, t)+ et QL QLx1 −

∫ t

0
(es QL QLx1, QLx1)φ1(x, t − s)ds,

(23)

where we have again inserted a harmless factor Q in front of eQL , assumed that L
was skew-symmetric as above, and for the sake of simplicity also assumed (x1, x1)=

1 (if the last statement is not true the formulas can be adjusted appropriately). Take
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the inner product of equation (23) with x1, you find:

∂

∂t
(φ1(x, t), x1)= (Lx1, x1)(φ1(x, t), x1)

+ (et QL QLx1, x1)−

∫ t

0
(es QL QLx1, QLx1)φ1(x, t − s)ds

= (Lx1, x1)(φ1(x, t), x1)−

∫ t

0
(es QL QLx1, QLx1)(φ1(x, t − s), x1)ds, (24)

because Pet QL QLx1 = (et QL QLx1, x1)x1 = 0 and hence (et QL QLx1, x1) = 0.
Multiply equation (24) by x1, and remember that Pφ1(x, t)= (φ1(x, t), x1)x1. You
find:

∂

∂t
Pφ1(x, t)= (Lx1, x1)Pφ1(x, t)−

∫ t

0
(es QL QLx1, QLx1)Pφ1(x, t − s)ds.

(25)
Observe that the covariance (φ1(x, t), x1) and the projection of φ1 onto x1 obey
the same homogeneous linear integral equation. This is the fluctuation-dissipation
theorem of the first kind, which embodies the Onsager principle, according to
which spontaneous fluctuations in a system decay at the same rate as perturbations
imposed by external means, when both are small (so that the linear projection
is adequate). This reasoning can be extended to cases where there are multiple
resolved variables, and this is usually done with the added simplifying assumption
that (xi , x j ) = 0 when i 6= j . We omit the details. Finally, if one makes short-
memory approximations as in the next section, the issue of orthogonal dynamics
disappears completely, as we shall now see.

7. Short-range memory

We have already pointed out that a salient difficulty in using the Mori–Zwanzig
equations (18) is the need to solve the orthogonal dynamics equation. We wish
now to examine what happens if one bypasses these equations by replacing the
orthogonal dynamics by the real dynamics, i.e., if one sets:

et QL ∼= et L . (26)

We will show that this is a reasonable approximation under some important circum-
stances, and that the approximation leads to greatly simplified equations.

First, some heuristic comments. If the resolved dynamics (what happens in the
range of P) have no effect on the noise, then the assumption (26) should be valid,
for then the unresolved variables interact just with each other; the resulting noise
remains unpredictable from the knowledge of x̂ and thus remains in the noise space;
et QL and et L acting on a vector in the noise space should be the same. The effect of
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the resolved variables on the noise is small in particular if (i) the memory (i.e., the
range of t’s for which the covariances in the memory term is significant) is short,
or (ii) the memory is long. The noise et QL QLx j starts out in the noise space by
construction, and if the memory is short the operator et L can take the quantities
QLx j only a small distance out of the noise space before it becomes irrelevant
for the evaluation of the covariances; in this short time et QL QLx j and et L QLx j

are the same. If the memory is long, the noise goes on unaffected by the resolved
variables. We therefore examine the approximation (26) in these two opposite cases.

In the present section we examine the case of short memory. The memory term
in the Mori–Zwanzig equations (18) can be rewritten as∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
e(t−s)L P L Qes QL QLx j ds, (27)

where the insertion of the extra Q is harmless. Adding and subtracting equal
quantities, we find:

P Les QL QLx j = P L QesL QLx j + P L Q(es QL
− esL)QLx j ; (28)

a Taylor series yields:

es QL
− esL

= I + s QL + · · · − I − sL − · · · = −s P L + O(s2), (29)

and therefore, using Q P = 0, we find:∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
e(t−s)L P L QesL QLx j ds + O(t3). (30)

If P is a finite rank projection then

P Les QL QLx j =

∑
k

(QLes QL QLx j , hk)hk(x̂), (31)

where, as before, one can write (QLes QL QLx j , hk) as −(es QL QLx j , QLhk)when
L is skew-symmetric. If the covariances (es QL QLx j , QLhk) and also the covari-
ances (esL QLx j , QLhk) are significant only over short times t0, the approximation
(26) provides an approximation with an error O(t3

0 ) without requiring the solution of
the orthogonal dynamics equation; this is still a short covariance time approximation
but it can be preferable to a white noise approximation (see [41] for an application
to the dimensional reduction of the Kuramoto–Sivashinsky equation and [2] for an
application to molecular dynamics).

One important short-memory situation where the Mori–Zwanzig formalism
simplifies even more is when the noise can be viewed as white noise. This is a valid
approximation in a number of important cases, in particular when there is scale
separation between the resolved and unresolved variables or when these variables
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are weakly coupled (for recent reviews see, e.g., [21],[32], [40]). These situations
are often encountered in applications, but we do not survey them here because their
analysis does not require all of our machinery.

If the noise can indeed be viewed as white, one sets:

et QL QLx j = A jw
′

j (t), (32)

where the prime denotes a derivative, the w j (t) are independent unit Brownian
motions so that that the w′ are white noises, and the A j are constants that must
be derived from some prior knowledge. The covariances of the noise are then
delta functions (thus the memory is vanishingly short). If one assumes further
that the projection P is well represented by the physicists’ “linear” projection,
then the integral in the memory term can be easily seen to reduce to a constant
times the unknowns, and equations (18) become stochastic ordinary differential
equations of the usual kind. As usual (see, e.g., [27]), the corresponding probability
densities can be found via Fokker–Planck formalisms (or Kolmogorov equations,
in mathematicians’ language).

It is important to note that the assumption of white noise does not require that the
linear projection be used. More noise terms appear when one uses a more general
linear projection, and one encounters situations where the additional noise terms
can no longer be viewed as white and their uses detracts from the overall accuracy
(see, e.g., [41; 42; 32]). These papers also include suggestions as to how to pick
the best number of terms to use in the projections. Projections other than linear are
important for mode-coupling theory in condensed matter physics, see, e.g., [45].

There is a comment to be added here. White noise and delta memory constitute
an important special case. However, this is not the general case and maybe not even
the usual case. It is rather surprising that 40 years after Alder and Wainwright [1]
demonstrated the long-range memory in a common physical system, years during
which physicists have learned how to model systems with arbitrary memory, most
numerical treatments of dimensional reduction seem to assume that all memory is
ultra-short. It is also surprising that most papers on dynamic renormalization (see,
e.g., [24]) assume that the noise is white without comment, making it pointless to
compare the schemes below with this dynamical renormalization literature.

Finally, it should be obvious that very short memory is very different from no
memory, i.e., from situations where the memory term is absent altogether.
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8. Long-range memory and the t-model

We examine now the validity of the ansatz et QL ∼= et L for cases with slowly decaying
memory. Write the memory term in the Mori–Zwanzig equation (18) as∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
Le(t−s)Les QL QLx j ds

−

∫ t

0
e(t−s)Les QL QL QLx j ds,

where we have used the commutation of L and QL with et L and es QL , respectively.
At this point, make the approximation (26), which eliminates the s dependence of
both integrands and we obtain:∫ t

0
e(t−s)L P Les QL QLx j ds ∼= tet L P L QLx j . (33)

All that remains of the integration in time is the coefficient t . To estimate the error,
consider the difference between the full memory term and its approximation:

∫ t

0
e(t−s)L P Les QL QLx j ds − tet L P L QLx j =∫ t

0
[e(t−s)L P Les QL

− et L P L]QLx j ds.

Adding and subtracting equal quantities, we find

e(t−s)L P Les QL
= et L P L + et L

[e−sL P Les QL
− P L],

and a Taylor series around s = 0 gives

e−sL P Les QL
− P L = (I − sL + . . .)P L(I + s QL + . . .)− P L = O(s). (34)

This implies ∫ t

0
e(t−s)L P Les QL QLx j ds = tet L P L QLx j + O(t2).

To understand this estimate, examine an alternate derivation of (33). Expand the
integrand of the memory term of the Mori–Zwanzig equation around s = 0 and
retain only the leading term, finding∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
[et L P L QLx j + O(s)]ds

= tet L P L QLx j + O(t2).
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If we retain only the leading term, we do not keep any information about the time
evolution of the integrand, which in turn means no information about the evolution
of the resolved component and of the coupling to the orthogonal dynamics (through
the term (L Qes QL QLx j , hk)). Such a drastic approximation is expected to be
appropriate in cases where the memory term integrand is slowly decaying, so that
information about its initial value is sufficient to make predictions.

We have just seen that if the memory is long the ansatz et QL ∼= et L reduces
the memory to a Markovian term with a time-dependent coefficient. Thus the
assumption et QL ∼= et L greatly simplifies the equations, as expected. The resulting
equations were introduced in [13] and are known as the “t-model”.

As an example, consider again the Hald model whose Hamiltonian is

H(φ)=
1
2
(φ2

1 +φ2
2 +φ2

3 +φ2
4 +φ2

1φ
2
3). (35)

The resulting equations of motion are:

dφ1

dt
= φ2

dφ2

dt
= −φ1(1 +φ2

3)

dφ3

dt
= φ4

dφ4

dt
= −φ3(1 +φ2

1).

Suppose one wants to solve only for φ̂ = (φ1, φ2), with initial data x̂ = (x1, x2).
Assume the initial data x3, x4 are sampled from a canonical density with temperature
T = 1. A quick calculation yields E[x2

3 |x1, x2] = 1/(1 + x2
1). The advance in time

described by the multiplication by et L requires just the substitution x̂ → φ̂. If one
commutes the nonlinear function evaluation and the conditional averaging, i.e.,
writes P f (φ̂) = f (Pφ̂) (a “mean-field approximation”), and writes furthermore
8(t)= Pφ̂ = E[φ̂|x̂] one finds Pet L P Lx1 =82, Pet L P Lx2 = −81(1 + 1/(1 +

82
2)); one can calculate Pet L L QLx j for j = 1, 2 and finally one finds:

d
dt
81 =82

d
dt
82 = −81(1 +

1
1 +82

1
)− 2t

82
182

(1 +82
1)

2
. (36)

The last term represents the damping due to the loss of predictive power of partial
data; the coefficient of the last term increases in time and one may worry that this
last term eventually overpowers the equations and leads to some odd behavior. This
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Figure 2. Comparison of the evolution of E[φ1(t)|φ1(0), φ2(0)]
(truth) with the prediction by the t-model; for comments, see the
text.

is not the case. Indeed, one can prove the following general result: If the system
one starts from, equation (2) is Hamiltonian with Hamiltonian H , and if the initial
data are sampled from an initial canonical density conditioned by partial data x̂ , and
if Ĥ is the renormalized Hamiltonian (in the sense of section 2), then (d/dt)Ĥ ≤ 0,
showing that the components of φ̂ decay as they should. The proof requires a
technical assumption (that the Hamiltonian H can be separated into the sum of
a function of the momenta and a function of the position, a condition commonly
satisfied) and we omit it (see [13]).

The solution of the t-model with the mean-field approximation for the Hald
model is presented in Figure 2. The applicability of the approximation suffers from
the fact that at the temperature T = 1 the Hald system is not ergodic. To see what
has been gained, contrast this figure with Figure 1.

If the t-model is not sufficient for the approximation of a given problem, one can
try to generalize it. Indeed, we have just seen that the t-model is the zero-th order
term in a Taylor expansion (around s = 0) of the integrand of the memory term in
(18). However, nothing prevents us from keeping more terms in this expansion. Let

K (ϕ̂(t − s), s)= e(t−s)L P Les QL QLx j



PROBLEM REDUCTION, RENORMALIZATION, AND MEMORY 23

and expand K around s = 0, i.e.,

K (ϕ̂(t − s), s)= K (ϕ̂(t), 0)+ s
∂K
∂s

|s=0 +
1
2

s2 ∂
2K
∂s2 |s=0 + O(s3).

In the case when P is the finite-rank projection and the density used to define
the projection is invariant, the derivatives of K at s = 0 are equal-time (static)
covariances. In mode-coupling theory, such expressions are known as “sum rules”.
One can assume a functional form for the memory term integrand around s = 0,
e.g., a Gaussian ae−bs2

, and use the derivatives of K at s = 0 to estimate a, b (see
[37] for more on sum rules and mode-coupling theory). This is potentially another
place where current ideas in physics can be helpful in numerical modeling.

The usefulness of the t-model depends on the range of the memory; this raises
the question of what this range depends on and whether it can be modified. If the
number of resolved variables is small, the range of the memory depends on the
range of the memory in the full system (2)- indeed, if there are no resolved variables,
as in section 3 above, the dynamics and the orthogonal dynamics are the same.
However, in the general case, is it possible to have a reduced model with very short
or very long memory, depending on how one coarse-grains a particular system at
hand? In [41] evidence was presented that, for the Kuramoto–Sivashinsky equation,
the range of the memory of a reduced model can vary dramatically, depending on
whether all the unstable modes in the system are resolved or not. The construction
of a reduced model corresponds to renormalization, and the two extreme cases can
be interpreted as two fixed points of a renormalization scheme. In which one a
reduced model will end up depends on how one renormalizes. How to formalize
these remarks and put them to use remains a topic for further work.

Both the long memory approximation and the short memory approximation have
been derived from the assumption et QL ∼= et L , but this assumption has been used
differently. In the short memory case one first makes this substitution in the memory
term and then one performs the projection in that term; in the long memory case one
performs these two operations in the reverse order. This leads to different results.

Finally, we go back to the remark at the end of section 2. We believe that the
t-model is a sound basis for large eddy simulation in hydrodynamics; the equations
are relatively simple and the memory is taken into account. We are acting on this
basis and expect to publish results soon.

9. Intermediate-range memory

There are intermediate cases where the memory cannot be viewed as either short
or long so that neither model above can be used. At present, it is not known how
to deal effectively with such cases. In a series of papers [11]-[13] we presented
special cases and their solutions. In particular in [13] we presented a detailed
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analysis of the Hald system without the t-model assumptions. We showed that the
memory decays roughly at the same rate as the solution itself (this is the general
case in the absence of separation of scales). We expanded the various covariances
at equilibrium (i.e., when there are no resolved variables) in Hermite polynomials,
evaluated the coefficients in the expansions by Monte Carlo once and for all, and
then obtained a system of integro-differential approximations to equations (18)
which we then solved in various cases. This is a legitimate procedure which may
be useful when the same system of equations has to be solved repeatedly. These
calculations do exhibit a salient feature of model reduction in time-dependent
problems, which is that its set-up costs are often very high. The future remedy, if
there is one, will surely lie in a deeper understanding of dynamical renormalization
and, in particular, of the way memory depends on scale.

10. Conclusions

We have made two sets of claims. First, theoretical claims: If one assumes that a
probability density is initially available for all the degrees of freedom in a complex
problem, then the problem of following the evolution of just a few degrees of freedom
becomes a problem in statistical mechanics, of the equilibrium kind for problems
with stationary densities, and of the non-equilibrium kind otherwise. Finding an
equivalent problem with lesser complexity is equivalent to a renormalization, and a
successful reduction in complexity corresponds to uncovering a similarity relation
between the full problem and the reduced problem. Physics is often a good guide
to what should be done.

On the practical side, reduction by conditional expectation is a powerful tool.
In the stationary case we have used it to generate block Monte Carlo algorithms
and effective equations for mean solutions. In the time dependent case it leads
to the Mori–Zwanzig formalism, generalized Langevin equations, and promising
approximation schemes. We have high hopes for the usefulness of one particular
approximation scheme, the t-model, which yields good approximations in interesting
cases with a relatively low overhead.
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The speed of propagation of a premixed turbulent flame correlates with the
intensity of the turbulence encountered by the flame. One consequence of this
property is that premixed flames in both laboratory experiments and practical
combustors require some type of stabilization mechanism to prevent blow-off
and flashback. The stabilization devices often introduce a level of geometric
complexity that is prohibitive for detailed computational studies of turbulent flame
dynamics. Furthermore, the stabilization introduces additional fluid mechanical
complexity into the overall combustion process that can complicate the analysis
of fundamental flame properties. To circumvent these difficulties we introduce a
simple, heuristic feedback control algorithm that allows us to computationally
stabilize a turbulent premixed flame in a simple geometric configuration. For the
simulations, we specify turbulent inflow conditions and dynamically adjust the
integrated fueling rate to control the mean location of the flame in the domain.
We outline the numerical procedure, and illustrate the behavior of the control
algorithm on methane flames at various equivalence ratios in two dimensions. The
simulation data are used to study the local variation in the speed of propagation
due to flame surface curvature.

1. Introduction

A well-known property of turbulent premixed flames is that their speed of propa-
gation correlates to the turbulent intensity in the unburned mixture. See Bradley
[5] and Peters [28] for a discussion of this issue. As a consequence, premixed
flames are inherently unstable when propagating against a turbulent flow whose
intensity increases upstream but decays downstream. To have a stable flame for
either laboratory analysis or for a practical combustor requires some type of flame
stabilization mechanism. A variety of approaches are used to stabilize premixed
turbulent flames in the laboratory [10]. For example, the Twenty-Ninth Combustion
Symposium includes studies by Sattler et al. [33] of a turbulent V-flame, Shepherd et
al. [34] of a swirl-stabilized flame, Most et al. [24] of a bluff-body stabilized flame,
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and Chen et al. [9] of Bunsen and stagnation flames. These stabilization mechanisms
are necessary to control the flame location so that data can be collected. Each
stabilization mechanism has advantages and disadvantages. Bluff-body stabilized
flames, V-flames and Bunsen flames are fluid-mechanically fairly simple but there
is substantial flow tangential to the flame and the flame encounters different levels
of turbulence further from the burner nozzle. The low-swirl geometry produces a
statistically nearly flat flame but the fluid mechanics of the stabilization are quite
complex. Stagnation plate flames are geometrically and fluid mechanically simple
but the flame experiences a substantial mean strain and heat loss to the plate. In each
case, the additional complexity introduced by the stabilization complicates both the
analysis of the flame data and the implication of the results to the characterization
of premixed turbulent flames.

For the most part, computational studies of premixed flames that include detailed
chemistry and transport and resolve the relevant fluid-mechanical scales have not
included any of these stabilization mechanisms. For an exception, see the model of
a three-dimensional (3D) turbulent V-flame by Bell et al. [4]. The computational
demands of these types of simulations combined with the specialized numerical
algorithms typically used for direct numerical simulations make including physical
stabilization mechanisms prohibitively expensive.

The idealized configuration that we use for the present study is a modified version
of one used frequently in the numerical study of premixed turbulent flames. A
flat steady laminar premixed flame is initialized in a computational domain and
allowed to propagate toward a boundary where turbulent perturbations have been
superimposed on a mean inflow. After the turbulence interacts with the flame for
a sufficient period of time, statistics are gathered from the solution to quantify
the extent to which the turbulent fluctuations modify the flame structure. There
is an extensive literature on computational studies of this type in 2D, both with
simplified and detailed chemistry. Examples germane this configuration include
Baum et al. [2] who studied turbulent flame interactions for detailed hydrogen
chemistry, and Haworth et al. [19] who examined the effect of inhomogeneous
reactants for propane–air flames using detailed propane chemistry. Analogous
studies in 3D have been performed by Rutland and Trouvé [32], Trouvé and Poinsot
[38], Zhang and Rutland [41], and Chakraborty and Cant [7]. All of these 3D
studies were based on simplified chemistry. More recently Tanahashi et al. [36; 37]
have performed simulations of this type for turbulent premixed hydrogen flames
with detailed hydrogen chemistry. Bell et al. [3] performed a similar study for a
turbulent methane flame.

Computational studies involving the idealized flow configuration suffer from a
fundamental instability that prevents stabilization of the computed flames. If the
flame begins to propagate faster than the specified inflow velocity, then the flame
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migrates upstream nearer the stronger turbulence which further increases its speed.
Similarly, a propagation speed slower than the inflow velocity causes the flame to
migrate downstream into further decayed turbulence where the flame propagation
is even slower. Thus the flame may not encounter a given turbulence intensity long
enough to gather statistics about its behavior at that intensity. Moreover, since
the flame is not statistically stationary in the computational domain, it will often
migrate to either the domain inflow or outflow boundary, terminating the simulation.

In this paper, we apply a simple, heuristic feedback control algorithm to automati-
cally adjust the inflow velocity to stabilize flames in the idealized configuration. The
control algorithm allows long-time simulation of statistically stationary flames in a
configuration free of complications associated with physical boundary conditions. In
the next section, we briefly describe the basic simulation methodology for low-speed
reacting flows, and describe the feedback control procedure. We then demonstrate
the ability of the algorithm to stabilize premixed methane flames in 2D. We next
demonstrate the utility of this algorithm by exploring global burning statistics and
correlations in localized burning with flame geometry.

2. Computational methodology

2.1. Simulation methodology. The simulations presented here are based on a low
Mach number formulation of the reacting flow equations. The methodology treats
the fluid as a mixture of perfect gases. We use a mixture-averaged model for
differential species diffusion and ignore Soret, Dufour, gravity and radiative transport
processes. Unless explicitly stated otherwise, the chemical kinetics are modeled
using the GRI-Mech 3.0 methane mechanism [15; 35] with 53 species and 325
fundamental reactions. The basic discretization combines a symmetric operator-split
coupling of chemistry and diffusion processes with a density-weighted approximate
projection method. The projection method incorporates the constraint on the velocity
divergence that arises in the low Mach number formulation. The resulting integration
of the advective terms proceeds on the time scale of the relatively slow advective
transport. Faster diffusion and chemistry processes are treated time-implicitly. This
integration scheme is embedded in a parallel adaptive mesh refinement algorithm
framework based on a hierarchical system of rectangular grid patches. The complete
integration algorithm is second-order accurate in space and time, and discretely
conserves species mass and enthalpy. The reader is referred to [13] for details of the
low Mach number model and its numerical implementation and to [3] for previous
applications of this methodology to the simulation of premixed turbulent flames.

2.2. Flow Configuration. The flow configuration we consider initializes a flat
laminar flame in a domain oriented so that the flame propagates downward. Since
there is no gravitational force included, up and down are for orientation only. A cold
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fuel-air premixture enters the domain through bottom boundary, and hot combustion
products exit the domain through the top. The remaining computational boundaries
are periodic. Along the inflow face we specify both a mean inflow velocity and
turbulent fluctuations that are superimposed on the mean inflow. A control algorithm
is used to adjust the mean inflow rate to hold the flame in the domain indefinitely.
As a result, the calculation essentially is carried out in a Lagrangian frame, moving
with the intrinsic mean speed of the flame for a particular fuel, stoichiometry, and
turbulence intensity. The following section details the strategy for computing the
mean inflow rate needed to hold the flame statistically steady in the simulation
domain.

2.3. Control Methodology. The inflow stream has turbulent fluctuations that inter-
act with the flame to cause fluctuations in the turbulent flame speed. To control the
flame location, we need to develop a control algorithm that will dynamically adjust
the inflow rate to compensate for these variations in the flame speed. Because the
types of flame simulation we want to control are extremely costly, it is infeasible
to develop the control algorithm directly in terms of actual simulations. As an
alternative, we will develop a simplified model to describe the flame dynamics
in 1D, and then develop the control algorithm for the multidimensional flame in
the context of that simplified model. The mean vertical flame location, h(t), is
computed from the evolving 2D solution by integrating the instantaneous mass of
fuel in the domain and dividing this result by the product of the fuel density and inlet
area at the inflow boundary. This averaged flame location propagates downward
at some effective turbulent flame speed, s, relative to the mean fluid motion. The
control problem is to specify a mean inflow velocity vin(t) that automatically pushes
the flame from an initial flame location, h(0) = α, to the target flame location,
h(t)= β.

The dynamics of the average flame position can be modeled using a stochastic
differential equation of the form

dh = (vin(t)− s(h))dt + dω (1)

where the effective flame speed, s(h(t)) is a function of the time-dependent flame
position, and must be estimated as part of the control process. The final term, dω,
represents high-frequency fluctuations in the turbulent flame speed due to stochastic
fluctuations in the inflow stream.

Given a quadratic cost functional associated with equation (1) and assumptions
about the noise term, there are well-known procedures for deriving optimal control
strategies: see Kushner [23], Caines [6] and Chen, Chen and Hsu [8]. However, in
the present case, we do not have a closed-form characterization of the fluctuations.
Further, since the control velocity, vin(t), determines the boundary condition for the
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low Mach number solver, we need to impose additional constraints on the profile.
In particular, we need vin(t) to be smooth in time and we need to impose limits on
how rapidly it can change. These heuristic constraints are chosen so that we do not
introduce instabilities or inaccuracies into the simulation algorithm or subject the
flame to large accelerations that could induce spurious fluid dynamical behavior
from Rayleigh-Taylor instabilities.

For each time step in the algorithm, we will take as an ansatz that vin(t) is linear
over the entire AMR coarse time step and limited such that the inflow velocity
cannot change dramatically during a time step. These smoothness criteria constrain
how rapidly vin can respond to changes in h and to noise. Consequently, we need
to introduce a time scale, τ , which is the target lag for reaching the control state.
We want to estimate 1v, the change in v from time t0 to t0 + τ , so that h reaches
β over the period τ . We assume that τ is sufficiently large that the noise dω has
mean zero over the interval [t0, t0 + τ ], yet assume that the turbulent flame speed,
s, is slowly varying. We are given a flame location, h(t0) and an inflow velocity,
vin(t0), at the beginning of the time step and an estimate sest of the mean flame
speed over the interval. Assuming 1v is constant over the interval t0 to t0 + τ , we
can integrate equation (1) and rearrange to obtain:

β = h(t0)+ τ(vin(t0)− sest)+
τ

2
1v

For the purposes of computing this integral, we estimate sest from the change in
fuel mass in the domain during the previous time step. To enforce the smoothness
required by the flow solver we then limit 1v so that over a time step the velocity
does not change by more than 0.1 max{vin(t0), vmin} where vmin is a minimum
velocity scale of the problem that can be computed from the post-flame velocity
of the laminar flame propagating into fluid at rest. Also, we find our simulation
methodology to be more robust if we avoid outflows at the inflow boundary by
requiring vin ≥ 0. (Note that this strategy therefore relies on burning to move the
flame in the upstream direction.) We then represent vin(t)= vin(t0)+ t1v/τ for
the current AMR time step. At the beginning of the next time step, we recompute
1v based on the new flame location and the estimated flame speed.

2.4. Determination of Control Parameters. Robustness of this control algorithm
depends strongly on the heuristic parameters. As note earlier, the cost of the com-
putations rules out using actual flame simulations to calibrate the control. Instead,
in order to explore the implications of these parameters, we specify a synthetic
turbulent flame speed model and noise term into the model equation (1) and perform
tests of the algorithm for this synthetic turbulent ”flame” with parameters chosen to
reflect conditions of a typical flame simulation. Experimental and computational
data suggests that the effective propagation speed of a turbulent premixed flame
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correlates with the intensity of the turbulence. We expect, therefore, that the closer
the flame is to the inlet boundary (turbulence source) the faster it will propagate. In
our configuration, this suggests that s ′(h) < 0. For our model, we set

s(h)= s̄ (1 − γ (h −β))

so that s ′(h)=−γ s̄. For our tests, we take the remaining parameters to reflect values
corresponding to a lean premixed methane flame: s̄ = 0.3, γ = 0.1, β = 0.005, α =

0.001 and 1t = 0.00002. This 1t is typical of timestep sizes found on the coarsest
meshes in our adaptive mesh refinement algorithm for low Mach number flows;
we refine in both space and time so the finer, refined meshes have proportionately
smaller time steps. To simulate noise due to the turbulent fluctuations, we used
uniformly distributed random perturbations of ±33%.
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Figure 1. Synthetic flame control simulations. Left: flame location.
Right: control velocity.

Simulation results showing the “flame location,” h, and control velocity computed
by the algorithm for various values of τ are shown in Figure 1. From the results, if
τ is too small, corresponding to quickly controlling the flame, then the restrictions
on changing the velocity lead to fluctuations on the synthetic flame location that
persist for considerable time. If τ is too large, the system is well-behaved but a
relatively long time is required to reach the desired state. Our test indicate that
τ = 101t appears to provide a robust control that relatively rapidly controls the
flame to the desired location. We note that even if the control is started at the correct
location and correct velocity, setting τ =1t does not provide satisfactory results.
The interplay of perturbations from the noise and the restrictions on changing vin

lead to fairly large oscillations as indicated in Figure 2. We note that the parameters
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selected here were chosen to introduce more variation in both noise and flame speed
than we expect to find in practice. Additional tests, however, have demonstrated
that the parameters continue to perform effectively over a range of conditions.
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Figure 2. Synthetic flame control simulations starting from correct
flame location and speed.

3. Controlled methane flames

3.1. 2-step mechanism. We validate the control algorithm using a representative
time-dependent simulation of premixed methane combustion. A simplified com-
bustion model reduces the cost of integration so that the control algorithm can be
observed over a long time period in order fully characterize the resulting performance
and system response. This simplified calculation assumes a unity Lewis number
[29] for transport and it has just 6 chemical species: CH4, O2, CO2, H2O, CO2,
N2. The 2-step kinetics mechanism (see [26], Model “2”, with Arrhenius rates
given by [14; 40; 42]) incorporates a global reaction step for methane oxidation,
and a reversible reaction to convert CO to CO2 in the product stream. The fuel
equivalence ratio of the methane-air mixture is φ = 1. For additional computational
convenience here, the flame chemistry and transport were modified to artificially
thicken the flame so that the thermal laminar flame thickness is δL = 0.7 mm,
and to adjust its propagation speed to sL = 36 cm/s. These values approximately
match those of the corresponding laminar flame computed with a more detailed
transport model and the GRI-Mech 3.0 [15; 35] mechanism. The modifications
were accomplished by uniformly increasing all transport coefficients by a factor of
2, and reducing chemical production rates uniformly by a factor of 3, following
ideas discussed in [12].
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The time-dependent calculation is performed using the flame sheet configuration
discussed above. Flow enters a 2D domain through the bottom boundary, proceeds
upward through a dynamically wrinkling flame surface, and exits the top outflow
boundary. The side walls are periodic. The length of the inlet face L = 28.6 δL , and
the height of the domain H = 2L . The fluctuations are generated in an auxiliary
calculation prior to the controlled flame simulation. A random velocity field is
generated on a L × L domain with an energy spectrum of the form

E(k)=
( k

ki
)4

[1 + ( k
ki
)2]

17
6

exp

[
−

9
4

(
k
kd

) 4
3
]

where k is the wavenumber, kd = 1/(21x), and ki is the peak frequency, which is
adjusted empirically to give the desired integral scale.. This form is characteristic of
2D decaying isotropic turbulence [21]. Rather than using the random field directly,
we first evolve it for several eddy turnover times using an incompressible Navier-
Stokes solver [1] at resolution comparable to the finest meshes in the reacting flow
simulations to ensure that the phases are realistic (see below). To accommodate
this evolution the initial field is generated at a somewhat higher turbulence intensity
and the incompressible evolution is continued until the turbulent intensity reaches
the desired level. The resulting fluctuations have an effective integral scale length
`t ∼ 2.6 δL and turbulent intensity u′

∼ 1.7sL . They are added to a mean vertical
flow given dynamically by the feedback control algorithm to model the advection of
turbulence through the inflow boundary. By cycling through the periodic fluctuation
data, this technique provides an endless source of fluctuations with a periodicity
length L . The amount of corresponding time for cycling through the data is
dependent on the (time-dependent) control velocity. The system is on the boundary
between the corrugated and distributed flamelet regime [28], but also very nearly
laminar.

The simulation is carried out with a three-level adaptive grid hierarchy. The
refinement criteria is such that the flame surface remains resolved with a uniform
grid spacing at the finest level of 1x = 39 µm. The base grid covering the entire
domain is a factor of four coarser, and an intermediate level a factor of two finer
than the base grid is used to resolve the turbulent fluctuations between the inlet
boundary and the flame surface.

A steady solution obtained from the PREMIX code [22] and the identical transport
and chemistry models is used to initialize a flat flame parallel to the inlet face. The
flame position is initially below the target height of β = 5 mm above the inlet
boundary. The flame is evolved using the control algorithm to automatically adjust
the inflow rate.
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Figure 3 shows the flame location and control velocity as a function of time over
approximately 75 integral-scale eddy turnover periods, τt = `t/u′

≈ 1.8 ms. The
initial transient indicates that the control quickly increases the inflow rate to shift
the flame upward. The flame overshoots the target so the inflow velocity is adjusted
automatically to zero for a short time interval. After the flame burns back upstream
to the set point, both the control and the burning speed briefly settle into a value,
about 38 cm/s, that is near the speed of a flat laminar flame. During this initial phase
the inflowing mixture is carrying decaying turbulence toward the flame, which is
only slightly wrinkled. At approximately 10 ms, the fluctuations begin to wrinkle
the flame causing a dramatic increase in flame surface area and a corresponding
increase in the burning speed. The control algorithm increases the inflow rate in
response to flame surface area perturbations so as to maintain a constant volume
of unburned mixture. Note that the large periodic transients in fuel consumption
correspond to flame topology changes such as localized necking and pinching off
of flame fragments, but that the volume of unburned mixture is steady as indicated
by the nearly constant mean flame position.

This example demonstrates that for atmospheric stoichiometric premixed methane
flames in this corrugated flamelet regime, our control algorithm is sufficiently
robust to stabilize the flame in the computational domain, allowing the collection
of detailed flame statistics. In Figure 3, we observe that after the initial transients,
the flame speed exhibits a cyclic repetition with a period of approximately 17 τt ,
corresponding to the time to traverse the auxiliary file of turbulent fluctuations.
With our current approach for introducing turbulent fluctuations, the size of the
auxiliary fluctuation file effectively places an upper bound on the scales of temporal
dynamics that are representable; however, there are several potential strategies for
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Figure 3. Performance of control algorithm for φ = 1.0 case with
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modifying the turbulence description and continuing the simulation if a longer
integration or a more diverse set of temporal scales are required.

3.2. GRI-Mech 3.0 Mechanism. We now apply the control methodology described
above to a series of methane flames modeled in significantly greater detail, using
the GRI-Mech 3.0 chemistry mechanism (53 species, 325 reactions) and a mixture-
averaged diffusive transport model. Three flames are chosen to highlight variations
observed in a methane flame’s response to flowfield flame surface curvature (see,
for example, Tseng et al. [39]). The three cases have stoichiometries, φ = 0.55,
0.75, 1.0. Table 1 lists various properties of the corresponding steady laminar one-
dimensional flame solutions computed using the PREMIX [22] code. As before,
the computational domain in all three cases is periodic in the horizontal direction
with inflow on the bottom face and outflow at the top. In all three cases, the
computational domains have dimensions L × H = 46 δL ×92 δL . The fluctuations in
the inflow stream were generated for each case separately using a process identical
to that discussed in the first example. The resulting fluctuations had an effective
integral scale length `t ∼ 2.6δL and turbulent intensity u′

∼ 1.7sL , measured with
respect to the properties of each flame.

Adaptive mesh refinement was used in all the simulations to maintain approxi-
mately 22 uniform grid cells across the thermal width of the flames throughout their
evolution. Dynamic refinement for these simulations was based on the magnitude of
vorticity and on a flame marker, CH3. In each case, we waited until the flame height
stabilized before collecting the statistical analysis data. The time-dependent data
represents snapshots of the three cases taken at uniform intervals over approximately
five τt .

Table 1. Characteristics of the three laminar methane-air flames of
different stoichiometries at 1 atmosphere. Thermal flame thickness
is calculated as the change in temperature through the flame divided
by the maximum temperature gradient, δL = (Tmax −

Tmin)/max ‖∇T ‖.

fuel equiv-
alence ratio

thermal
flame

thickness
flame
speed

fuel consum-
ption rate

isotherm of
peak heat

release

peak
local fuel

consumption
φ δL (µm) sL (cm / s) (g / cm s) (K) (mg / mL s)

1.00 433 36.2 0.2380 1684 134
0.75 584 22.34 0.1070 1516 51.3
0.55 1313 7.62 0.0273 1379 7.03
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4. Analysis of the GRI-Mech 3.0 flames

4.1. Appearance of the flames. Representative snapshots of the temperature fields
are shown in Figure 4. The three flames of different stoichiometries appear qualita-
tively similar, as expected given that the flames are at the same point on the regime
diagram for premixed turbulent combustion, the so-called Borghi diagram [27]. At
any instant in time, the flame surface shows the characteristic wrinkling expected
of a turbulent premixed flame, namely, regions where the flame is smoothly bowed
toward the reactants separated by sharper cusps protruding into the burned region.
Since the bows are the larger geometric feature, they consume more of the unburned
mixture whose amount in the domain is kept constant by the control. Thus the bows
are relatively stable in the frame of reference of the computational domain. The
behavior at the cusps is more dynamic. Cusps are observed to periodically grow into
elongated channels after which there is period of apparent rapid movement when
the sides of the channel close upon each other and the cusp returns to a more typical
position relative to the rest of the flame. Occasionally in this process, a channel
will burn through in its center detaching a bubble of unburned fuel surrounded
by products. An example of this is shown in the snapshot of the φ = 1 flame
in Figure 4 where an elongated channel extends through the periodic boundary.
Here, the unburned mixture at the cusp is about to detach. Extinction, marked by

Figure 4. Temperature in the three flames.
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dramatic and sudden reductions in fuel consumption along the flame surface, was
not observed in any of the cases.

We examine the distribution of the curvature of the flame over the course of the
simulation to quantitatively demonstrate the similarity of the flames. As indicated
in Table 1, we associate the location of the flame with a particular isotherm. The
vector field of unit normals to all the isotherms throughout the domain can be
calculated as a n̂ = −∇T/‖∇T ‖ using centered differences on the underlying
uniform, rectangular meshes. Note these normals have been chosen to point toward
the cold, unburned mixture. The curvature of the isotherms is then κ = ∇ · n̂ again
evaluated throughout the domain using centered differences. We then interpolate
this κ to the isotherm corresponding to the peak heat release from the laminar flame
solution, which we use as the operational definition of the flame surface. With this
definition, the curvature is negative at cusps and positive in the bowed regions.

When the curvature is scaled to the laminar flame thermal thickness, the prob-
ability density functions (PDFs) of curvature for all three flames are coincident,
indicating that all three flames are experiencing the same degree of wrinkling. See
Figure 5. These curves are the probability of finding a portion of flame with the
given value of curvature while the flame evolves through several hundred time
steps (spanning at least five eddy turnover periods) once reaching a statistically
stationary state. We note that the distributions peak slightly to the positive side
of zero. In general there is a greater probability of finding positive curvature (the
bowed regions), but at high curvature the distributions show a strong bias toward
negative values (the cusps). This skewness, emphasized here by the choice a log
scale on the ordinate, is typical of turbulent flames, as noted above. Finally, we
note that a nontrivial fraction of the flame surface is subject to curvature that is not
“small.”

These flame dynamics are all consistent with the regime diagram’s characteriza-
tion of these flames as being in the flamelet regime. Flames in the corrugated and
wrinkled flamelet regimes tend to maintain a well-defined flame front structure with
nearly parallel isocontours of species and temperature. A detailed attempt to base
the regime diagram on observations of 2D direct numerical simulations was carried
out by Poinsot, Veynante, and Candel [30] using interactions between flames and
single vortex pairs. Their work could be successfully extended to long-duration
observations of flames in more complicated, stochastic flow fields using the control
strategy developed here.

4.2. Global Turbulent Burning Speed. For the initial analysis of the results, we
look first at the effective turbulent flame speed SG

c , defined in terms of the integrated
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Figure 5. Probability density of curvature scaled by laminar flame
thickness for the three flames of different stoichiometries. Density
is calculated by a moving average over 5 intervals of width 0.02
(nondimensional) on the horizontal axis.

fuel consumption

SG
c =

1
AL

(
ρYCH4

)
in

∫
�

ρωCH4 d�

where AL is the area of the flat laminar flame (ie, the width of the domain, L),(
ρYCH4

)
in is the inflowing methane mass density and ρωCH4 is the rate of methane

mass consumption. In Figure 6 we plot SG
c , normalized by SL , versus time, normal-

ized by τt , for each case. In these figures, the dramatic drops in turbulent speed
correspond to rapid flame area loss at the burning of long thin channels, and to the
rapid consumption of detached pockets of unburnt material. The plot demonstrates
a large (20–50%) variability in the instantaneous turbulent flame speeds for all cases.
When examined at the length and time scales representative of the computation, it
makes little sense to talk about turbulent flame speed as a single number. More
revealing data may be the PDFs of turbulent flame speed shown in Figure 7. These
PDFs are centered at 200–250% of SL , and are quite broad. The φ = 0.75 case
appears bimodal; however, it is not clear if this is a real effect or evidence of a lack
of adequate statistics.

We now explore the relationship between aggregate fuel consumption rate and the
flame area resulting from wrinkling due to the inflow fluctuations. Figure 8 shows
a scatter plot of SG

c versus the instantaneous flame area AG (or, length of isotherm
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Figure 6. Turbulent flame speed for the three flames.

Figure 7. Probability density of overall turbulent speedup for the
three flames of different stoichiometries. Density is calculated by a
moving average over 5 intervals of width 0.05 (nondimensional)
on the horizontal axis.

contour we associated with the flame surface at that instant in time). The symbols
represent data from solutions taken at uniform intervals throughout the sample
period. To a very good approximation, the fuel consumption rate in the domain
scales with the overall area of the flame for all three stoichiometries. Thus, at least
on average, the turbulent flame speed is directly proportional to the flame area, even
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across the large excursions in turbulent flame speed. Note that the stoichiometric
flame is slightly slower than predicted by its area and the laminar flame speed. This
reflects associated changes in Markstein number with φ, which are discussed in
more detail in the next section.

4.3. Local Burning Speed Behavior. In this section, we look at the local flame
behavior in more detail. To refine the analysis of flame speed we look at the variation
in fuel consumption along the flame surface for each of the three cases. Figure 9
shows representative samples for each flame with a blow up of a localized region
of high curvature. For the φ = 1.0 flame, we see a dramatic enhancement in fuel
consumption at the cusps, which corresponds to a region of large negative curvature.
We observe a comparable reduction in fuel consumption in regions of large positive
curvature. Similar but less pronounced behavior is observed for φ = 0.75; however,
for φ = 0.55 the observed trends reverse with higher fuel consumption in regions
of positive curvature and lower fuel consumption in regions of negative curvature.

We would like to relate this change in the behavior of the fuel consumption to
the behavior of the local flame speed. There are several potential definitions of local
flame speed; see, e.g., Poinsot and Veynante [29] for a discussion of possible choices.
Here we will define a local flame speed based on integrated local fuel consumption
in the following way. To define the integrals we will define local coordinates near
the flame using arclength along the flame and a normal coordinate defined in terms
of a progress variable, c, defined such that c = 0 in the unburned reactants, and c = 1
in the products. The progress variable may be based on any scalar variable that is
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Figure 9. Fuel consumption is often used as a measure of local
flame speed. This figure depicts the ratio of local methane con-
sumption to peak consumption in unstretched laminar flames of
identical fuel equivalence ratios. Reference values are given in
Table 1.
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monotonic across the flame surface; here, we will use normalized temperature to
the define the progress variable.

At uniform intervals along the flame, we extend local normals by following
integral curves of the gradient of c toward both the products and fuel. These
normals define a series of adjacent disjoint wedge-shaped volumes, �, surrounding
the flame, and extending well beyond the region of high chemical reactivity. A
local burning speed may then be defined over each of these volume:

S`c =
1

A`
(
ρYCH4

)
in

∫
�

ρωCH4d� (2)

where A` is the area (length) of the intersection of � with the flame.
A typical example of a set of such normals, and the resulting wedge-shaped

volumes is depicted in Figure 10. The example is taken from the φ = 1.0 case,
and includes the instantaneous advection streamlines superimposed for reference.
Defining the local speed in this way has the property that the turbulent burning
speed is its area-weighted average:

SG
c =

Nwedges∑
i=1

S`c
,i A`,i

AG .

0.0032 0.0034 0.0036 0.0038 0.004 0.0042

0.0094

0.0096

0.0098

0.01

180
167
154
141
128
115
102
89
76
63
50

Consumption (mg/cm3)

Integration
Volume

Fluid Streamlines

Figure 10. Construction of local control volumes at a typical flame
surface. The volumes are centered on the flame, and extend normal
to the local isopleths in progress variable at uniform intervals along
the flame. Adjacent flame normals define a volume over which we
define the local consumption-based burning speed.
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where Nwedges is the number of discrete wedge-shaped volumes tiling the entire
flame surface. In addition to preserving the total integral of fuel consumption,
these integrals are relatively easy to evaluate accurately and provide a fairly robust
characterization of the local burning. Evaluation of the intersected area, A`,i , is
sensitive to the definition of the flame surface (in this case, the choice of progress
variable and of its isocontour) which can introduce a small bias into the curvature
correlation. In the present cases, however, the fuel consumption profile takes on
non-negligible values over a relatively limited range in temperature, so we can
minimize this bias by ensuring the flame isotherm is centered near this narrow
peak. The values chosen in Table 1 correspond to the peak in heat release for the
corresponding steady flat flame solution.

The data in Figure 9 shows a clear dependence of the local fuel consumption
on the local flame curvature. To make the notion more precise, we form the
consumption-based local flame speed S`c at each segment along the flame as dis-
cussed above and form scatter plots, shown in Figure 11, of the local flame speed
normalized by the laminar flame speed with the curvature normalized by thermal
flame thickness. The scatter plots confirm the trend shown in Figure 9, namely, that
the φ = 1.0 flame correlates negatively with curvature while the φ = 0.55 flame
correlates positively. In addition, the relative insensitivity of the φ = 0.75 flame
is apparent. If we associate a curvature Markstein number, Mκ , with the slope of
the correlation for each case in Figure 11, then the data matches the trend reported
in [39], including the change of sign of the Markstein number near φ = 0.75. The
magnitude of the Markstein number is sensitive to the definitions of flame thickness,
burning speed, flame isopleth, etc. For this reason, it is difficult in general to
make detailed quantitative comparisons with the results from other numerical and
experimental studies.

Each of the scatter plots shows a number of outlier points, most notably around
normalized curvature of −1. To explain this phenomena, we note that in rare
situations the regions used to define the integrated local flame speed can become
overly distorted or poorly defined. These correspond to regions where an elongated
cusp closes, or when the sides of an elongated cusp burn together and change
the local topology of the flame. In both cases, an ambiguity in definition of the
wedge-shaped regions develops approximately when the flame thickness is equal
to the local radius of curvature, that is, where the magnitude of the normalized
curvature is unity.

From wrinkled flame theory, as explained for example by Peters [28] and Poinsot
and Veynante [29], we expect the local flame speed to correlate with stretch, which
combines the effects of curvature, κ , and strain tangential to the flame surface,
St = t̂ · ∇Ev · t̂ , where t̂ ⊥ n̂ is the unit vector locally tangent to the flame. The
evaluation of stretch in an idealized setting of an “infinitely” thin flame propagating
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Figure 11. Scatter plot of local turbulent flame speed scaled by
laminar flame speed versus of curvature scaled by laminar flame
thickness, for the three flames of different stoichiometries.
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through a fluid is fairly straightforward. In the present setting, where the flame is
being resolved and has a finite thickness, it is unclear how to evaluate the strain term
in the definition of stretch. There is a large literature on the generalization of classical
flame theory to“thick” flames, see [11; 17; 16; 18] and references therein. We
pursued several possible approaches to computing stretch; however, local definitions
of the stretch appear to be highly sensitive to the method of evaluating the strain
rate. Furthermore, for the approaches we considered, the effects of strain on speed-
versus-stretch correlations were entirely explained by the correlation of strain with
curvature. A similar observation was made by Haworth and Poinsot [20]. Pope [31]
also discusses the interrelationship of curvature and strain. Consequently, at least
for the flames considered here, the variation in consumption speed along the flame
is essentially a function of curvature alone. The difficulties with defining a local
strain rate for the definition of stretch suggests that an integral-based approach, as
for example [18; 25], is needed to obtain a more robust and physically meaningful
method for computing stretch.

5. Conclusions

We have introduced a new computational tool based on applying a feedback mecha-
nism to control and stabilize a turbulent flame in a simple two dimension geometry
without introducing a geometric stabilization mechanism such as a flow obstruction
or a stagnation plate. We have used this tool to study the behavior of premixed
turbulent methane flames in two dimensions. For these simulations we examined
both the global flame behavior and the dependence of the local flame speed on
flame curvature. By using the control algorithm, we are able to hold the flame at
conditions that are statistically stationary, enabling us to obtain detailed diagnostics
for an ensemble of snapshots of the flame at the same turbulent conditions. For
the methane flame considered here, the simulations show that although the global
burning speed correlates well with the global flame area, there is substantial variation
in local burning speed over the flame for φ = 0.55 and φ = 1.00. These variations
are shown to correlate well with curvature: the negative correlation at φ = 1.00
and a positive correlation at φ = 0.55 reflect a change in Markstein number for
methane combustion as a function of equivalence ratio. In future work, we will
present a more detailed analysis of local flame dynamics and flame chemistry. In
addition, the methodology presented here extends in a straightforward fashion to
three dimensions. Applications to three-dimensional turbulent flames will also be
presented in future work.
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ESTIMATING HYDRODYNAMIC QUANTITIES IN THE
PRESENCE OF MICROSCOPIC FLUCTUATIONS

ALEJANDRO L. GARCIA

This paper discusses the evaluation of hydrodynamic variables in the presence of
spontaneous fluctuations, such as in molecular simulations of fluid flows. The
principal point is that hydrodynamic variables such as fluid velocity and temper-
ature must be defined in terms of mechanical variables such as momentum and
energy density). Because these relations are nonlinear and because fluctuations of
mechanical variables are correlated, care must be taken to avoid introducing a bias
when evaluating means, variances, and correlations of hydrodynamic variables.
The unbiased estimates are formulated; some alternative, incorrect approaches
are presented as cautionary warnings. The expressions are verified by numerical
simulations, both at thermodynamic equilibrium and at a nonequilibrium steady
state.

1. Introduction

Particle simulations are a useful tool in the study of continuum mechanics, especially
fluid mechanics [15; 16], and a variety of particle-based algorithms (e.g., molecular
dynamics [7], particle-in-cell (PIC) [12], direct simulation Monte Carlo (DSMC) [4],
dissipative particle dynamics (DPD) [10], and lattice gas automata (LGA) [24]) are
available to simulate hydrodynamic phenomena. In such simulations, the quantities
of interest are not the precise trajectories of the particles but rather the hydrodynamic
variables such as density, fluid velocity, temperature, pressure, etc. Compared to
macroscopic systems, the number of particles in a simulation is small (typically
fewer than 107) so the number of particles in a volume element is typically on
the order of 10 to 100. For this reason, the spontaneous fluctuations in a volume
element are significant and statistical samples are taken. The purpose of this paper
is to establish the correct construction for measuring hydrodynamic variables and
to point out some common errors that lead to biased results.

The bias described in this paper has already been studied in detail by Tysanner and
Garcia [26; 25] for the measurement of mean fluid velocity. This paper extends that
work in two important directions. First, we consider other hydrodynamic variables,
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most significantly temperature. Second, the study of hydrodynamic fluctuations is
an important topic in a variety of fields ranging from nanoscale fluid mechanics [5;
13] to molecular biology [14; 23]. We therefore also consider the measurement of
hydrodynamic fluctuations, such as the variance of fluid velocity and the correlation
of density and temperature fluctuations.

The paper is organized as follows: Section 2 defines mechanical densities and
relates them to hydrodynamic variables, specifically how the mean values of the
latter are defined in terms of the former. Variances and correlations of hydrodynamic
quantities are similarly described in Section 3. The bias observed when hydro-
dynamic quantities are measured incorrectly is described in Section 4 where the
effects are illustrated by numerical results from simulations. Section 5 summarizes
the main points and concludes with general remarks.

2. Mean values

First let us establish some notation: Consider a fluid of particles of mass m. The
position and velocity of particle k are rk and vk . The measurement of mechanical
variables in a cell, namely the instantaneous densities of mass, momentum, and
kinetic energy, may be written as,

ρ =
1
V

∑
rk∈C

m (1)

J =
1
V

∑
rk∈C

mvk (2)

K =
1
V

∑
rk∈C

1
2 m|vk |

2 (3)

where the sums are over particles located within cell C , which has volume V . One
may define other mechanical variables but these suffice for the present discussion.
For the equations of fluid dynamics these are the fundamental conserved variables.

For any of these mechanical variables (M = ρ, J, or K ) we may write the sample
mean as the average over S samples, that is,

〈M〉s =
1
S

S∑
j=1

M j (4)

where the subscript j indicates individual samples, which may be from an ensemble
of runs or, for steady state problems, samples taken at different times (i.e., a time
average). In the limit of infinitely many samples, this sample mean goes to the
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mean value, that is,
M = 〈M〉∞ ≡ lim

S→∞

〈M〉s . (5)

It is important to keep in mind that we are not considering the “thermodynamic
limit” because our interest is in the measurement of fluid variables in relatively
small volumes, so the number of particles, N = ρV/m = O(101–102), is by
no approximation approaching infinity. Of course it is not necessary to take the
thermodynamic limit in order to treat thermodynamic or hydrodynamic variables;
one simply has to be careful to retain terms that are O(1/N ).

From the sample measurements of the mechanical variables one may obtain
estimates of hydrodynamic variables, such as fluid velocity and temperature. How-
ever it is important to understand that for a hydrodynamic variable, H, the mean is
defined in terms of the means of mechanical variables. Specifically,

H = H(ρ, J, K ) 6= lim
S→∞

〈H(ρ, J, K )〉s, (6)

With this in mind, we introduce the notation

〈H〉
∗

s = H(〈ρ〉s, 〈J〉s, 〈K 〉s) (7)

with H =〈H〉
∗
∞

. The asterisk reminds us that the estimated mean of a hydrodynamic
variable is constructed from the sample means of mechanical variables.

Landau and Lifshitz (§49, [18]) warn of this subtlety in defining quantities
such as temperature and pressure: “Strictly speaking, in a system which is not in
thermodynamic equilibrium, such as a fluid with velocity and temperature gradients,
the usual definitions of thermodynamic quantities are no longer meaningful, and
must be . . . defined as being the same functions of [mechanical variables] “as they
are in thermal equilibrium. [. . . ] The introduction of any further terms (for example,
the inclusion in the mass flux density of terms proportional to the gradient of density
or temperature) has no physical meaning. . . . Worse still, the inclusion of such terms
may violate the necessary conservation laws.” Such a violation is demonstrated in
[26] and is discussed here in Section 4.1.

Intensivity (i.e., invariance with volume) is an important property that is lost when
hydrodynamic variables are measured incorrectly. Intensive and extensive variables
are familiar from equilibrium statistical mechanics, temperature and entropy being
examples of each, respectively. The property of intensivity requires that for two
volume elements A and B for which MA = MB, we have HA+B = HA = HB if
A+B is the union of the two elements.Intensivity is guaranteed when hydrodynamic
variables are defined in terms of mechanical densities as H = H(M). On the other
hand,

〈H(M)〉∞ = H +
1
2δM

2

(
∂2H

∂M2

)
M

+ . . . (8)
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where δM = M − M is the fluctuation of mechanical variables, and δM2 is their
covariance. Because the covariance is not intensive (e.g., δρ2 = mρ/V for a dilute
gas at equilibrium) one cannot guarantee that 〈H(M)〉∞ remains intensive (though in
some cases, typically at thermodynamic equilibrium, 〈H(M)〉∞ = H). This generic
analysis is illustrated in the next two subsections for the specific examples of fluid
velocity and temperature.

2.1. Fluid Velocity. The simplest example of a hydrodynamic variable is fluid
velocity, which from the development of the equation of continuity (§1, [18]) is
defined as

u =
J
ρ

= lim
S→∞

〈J〉s

〈ρ〉s
(9)

The unbiased sample mean for the fluid velocity is

〈u〉
∗

s =
〈J〉s

〈ρ〉s
=

S−1 ∑S
j J j

S−1
∑S

j ρ j
, (10)

so u = limS→∞〈u〉
∗
s .

It is important to note that

〈u〉
∗

s 6= 〈û〉s =
1
S

S∑
j

û(ρ j , J j , K j ) (11)

where û is any general function that defines an instantaneous fluid velocity in terms
of the instantaneous mechanical state.

Specifically, note that the instantaneous center-of-mass velocity, û j = J j/ρ j ,
when averaged over samples, may be written as

〈û〉s =
1
S

S∑
j=1

û j =
1
S

S∑
j=1

J j

ρ j
=

〈
J
ρ

〉
s
, (12)

so one might be tempted to define fluid velocity as the center of mass velocity.
This definition, though commonly used (eg. §9-4-1, [12]) for fluid velocity, is
problematic for two reasons.

First, there is an ambiguity since û j is not well defined for samples at which
ρ j = J j = 0, that is, when the instantaneous number of particles N j is zero. There
are twoways to remove this ambiguity: One could take û j = 0 for those samples, an
unacceptable approach because it introduces a bias proportional to 1 − S0/S where
S0 is the number of samples for which ρ j = 0 (see equation (61)). The acceptable
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approach is to define

〈û〉s =
1

S − S0

S∑
j=1

J j

ρ j
(1 − δ0,N j ) (13)

that is, to skip those samples with zero particles, which we shall implicitly assume
is how the averaging of samples is performed.

The second and far more serious issue is that using (12) to define fluid velocity
is biased when the fluid is not at equilibrium. To see why, recall that

〈û〉s =

〈
J
ρ

〉
s
6=

〈J〉s

〈ρ〉s
= 〈u〉

∗

s , (14)

The inequality should not be surprising since the instantaneous values of ρ and
J are correlated (e.g., if the instantaneous mass is greater than average then most
likely so is the instantaneous momentum). These correlations happen to cancel out
at equilibrium (even when u 6= 0) but out of equilibrium (e.g., temperature gradient)
the measurement of fluid velocity as 〈û〉s is biased and incorrect. This effect is
discussed further in Section 4.1.

2.2. Temperature. Next we consider the measurement of temperature (or more
specifically of translational temperature), which is defined from the principle of
equipartition of kinetic energy as

T =
1

cvρ

(
K −

|J|
2

2ρ

)
, (15)

where cv = d kB/2m is the heat capacity per unit mass due to the d translational
degrees of freedom. From the discussion above, the unbiased sample mean for
temperature is

〈T 〉
∗

s =
1

cv〈ρ〉s

(
〈K 〉s −

|〈J〉s |
2

2〈ρ〉s

)
(16)

=
1
cv

(
〈K 〉s

〈ρ〉s
−

1
2
|〈u〉

∗

s |
2
)
, (17)

solimS→∞〈T 〉
∗
s = T .

There are several alternative (and incorrect) hydrodynamic definitions for tem-
peraturein common use. The most naive is to define temperature in terms of the
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instantaneous internal energy per particle:

T̂ j =
1

cvρ j

(
K j −

|J j |
2

2ρ j

)
(18)

=
1
cv

(
K j

ρ j
−

1
2
|û j |

2
)
. (19)

Note that this definition is problematic if ρ j = 0, in the same fashion as already
discussed for û j , so the evaluation of the mean value should exclude those samples.
A more serious flaw with this definition of temperature is that it is biased, even
at equilibrium with u = 0, because it fails to account for the fluctuations of the
center-of-mass velocity, as shown in Section 4.2. This definition appears in the
standard literature of computational statistical mechanics (e.g., §2.4,[2]) and its use
is appropriate in the canonical ensemble (fixed N ) but not in general.

A simple modification improves the above definition. Arguing that the unbiased
estimate of variance must account for the statistical degree of freedom lost in
estimating û j , one writes the improved estimate thus:

T̂ j =
K j −

1
2ρ j |û j |

2

cv(ρ j − m/V )
=

K j −
1
2ρ j |û j |

2

cvm(N j − 1)/V
. (20)

Note that in this case averages are computed omitting samples where N j = 0 or 1.
This construction may be used in equilibrium simulations (e.g., §4.1, [7]) but in
Section 4.2 we show that it is biased out of equilibrium.

2.3. Other Hydrodynamic Variables. In this paper we focus on the hydrodynamic
variables of fluid velocity and translational temperature, but there are many others.
If the molecules have internal structure, one may separately define temperatures for
other degrees of freedom (e.g., rotational, vibrational) [4]. Here we only consider
a single species fluid but the more general case would include concentration as a
hydrodynamic variable.

The pressure in a fluid is defined by the equation of state, which may be quite
complicated in general. A simple case, however, is the ideal gas law P = ρRT ,
where R = kB/m is the gas constant and kB is Boltzmann’s constant. Using
mechanical variables, the unbiased sample estimate of the mean pressure is then

〈P〉
∗

s =
R
cv

(
〈K 〉s −

|〈J〉s |
2

2〈ρ〉s

)
=

R
cv

(
〈K 〉s −

1
2
〈ρ〉s |〈u〉

∗

s |
2
)
. (21)

The stress tensor and heat flux are also complicated in general, but for an ideal gas
they may be expressed in terms of moments of the molecular velocity distribution.

Evaluating means and variances from sample averages of instantaneous hydro-
dynamic variables isprone to the biases found for fluid velocity and temperature.
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Since the analysis for other variables follows the same lines, for brevity we simply
reiterate that unbiased estimates are only guaranteed when defining means and
variances in terms of mechanical variables.

3. Variances and correlations

To formulate the measurement of variances and correlations, recall that our hydro-
dynamic variables are defined in terms of mechanical variables as H = H(ρ, J, K ).
We define a fluctuation in H as

δH = H(ρ, J, K )− H(ρ, J, K ) (22)

= H(ρ+ δρ, J + δJ, K + δJ)− H(ρ, J, K ) (23)

= δρ
∂H

∂ρ

∣∣∣∣
ρ,J,K

+ δJ ·
∂H

∂J

∣∣∣∣
ρ,J,K

+ δK
∂H

∂K

∣∣∣∣
ρ,J,K

+ O(δM2), (24)

Note that

〈δH〉
∗

s = H(〈ρ〉s, 〈J〉s, 〈K 〉s)− H(ρ, J, K ), (25)

so limS→∞〈δH〉
∗
s = δH = 0. In general, the exact means are unknown so for

estimating δH we implicitly take M = 〈M〉s and also drop the higher order terms.
This construction allows us to formulate the variance of hydrodynamic variables
in terms of the variances of mechanical variables, which may be estimated from
samples. The remainder of this section presents expressions for variances and
correlations involving fluid velocity and temperature.

3.1. Fluid Velocity Fluctuations. First consider fluid velocity, whose fluctuations
are expressed in terms of fluctuations of mechanical variables as

δu =
δJ
ρ

−
J
ρ2 δρ =

1
ρ

(
δJ − u δρ

)
, (26)

or for the x-component,

δux =
1
ρ

(
δ Jx − ux δρ

)
. (27)

The correlation of mass density fluctuations in cell C and fluid velocity fluctuations
in cell C ′ is

〈δρ δu′

x 〉
∗

s =
1
ρ ′

(
〈δρ δ J ′

x 〉s − u′

x 〈δρ δρ ′
〉s

)
(28)

with similar expressions for the other components.
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The sample estimated variance of the x-component of fluid velocity is

〈δu2
x 〉

∗

s =
1
ρ2 〈(δ Jx − ux δρ)

2
〉s (29)

=
1
ρ2

(
〈δ J 2

x 〉s − 2ux 〈δρ δ Jx 〉s + u2
x 〈δρ

2
〉s

)
. (30)

If the system is isotropic (i.e., u = 0), then |δu|2 = d δu2
x = d δ J 2

x /ρ
2, where d is

the dimensionality. The correlations of velocity components are similarly obtained,
for example,

〈δux δu′

y〉
∗

s =
1
ρ ρ ′

(
〈δ Jx δ J ′

y〉s − ux 〈δρ δ J ′

y〉s − u′

y 〈δρ ′ δ Jx 〉s + ux u′

y 〈δρ δρ ′
〉s

)
,

(31)
with similar results for the other components.

3.2. Temperature Fluctuations. In terms of mechanical variables, the fluctuation
of temperature may be written as

δT =
1

cvρ

{
δK − u · δJ −

(
cvT −

1
2 |u|

2) δρ}
=

1
cvρ

{
δK − δG − Q δρ

}
, (32)

where δG ≡ u·δJ and Q ≡ cvT −
1
2 |u|

2. From this, the estimated sample correlation
of temperature fluctuations is

〈δT δT ′
〉
∗

s =
1

c2
vρ ρ

′

{
〈δK δK ′

〉s + 〈δGδG ′
〉s + Q Q

′
〈δρ δρ ′

〉s

− 〈δK δG ′
〉s − 〈δGδK ′

〉s − Q
′
〈δK δρ ′

〉s − Q〈δρ δK ′
〉s

+ Q
′
〈δG δρ ′

〉s + Q〈δρ δG ′
〉s

}
. (33)

The covariance of density and temperature fluctuations is

〈δρ δT ′
〉
∗

s =
1

cvρ ′

{
〈δρ δK ′

〉s − 〈δρ δG ′
〉s − Q

′
〈δρ δρ ′

〉s

}
. (34)

The covariance of fluid velocity and temperature is

〈δux δT ′
〉
∗

s =
1

cvρ ρ ′

{
〈δ Jx δK ′

〉s − ux 〈δρ δK ′
〉s

− 〈δ Jx δG ′
〉s + ux 〈δρ δG ′

〉s − Q
′
〈δ Jx δρ

′
〉s + ux Q

′
〈δρ δρ ′

〉s

}
. (35)
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4. Biases due to fluctuations

We now consider the possible bias in the statistical measurements of hydrodynamic
variables due to fluctuations. To derive and illustrate these results we consider
four separate approaches, two for equilibrium and two for nonequilibrium systems.
The first is the direct evaluation of statistical means at thermodynamic equilibrium;
this methodology is straightforward and details of the calculations are collected
in Appendix A. Results for the variances and correlations are compared with
fluctuating hydrodynamic theory, which is summarized in Appendix B. The second
approach is similar to the first but uses stochastic numerical simulations to generate
random samples (see Appendix C). These numerical results illustrate the predicted
phenomena and verify the accuracy of various approximate results.

For nonequilibrium systems, various definitions for mean values of fluid velocity
and temperature are compared to quadratic order in fluctuations, indicating how
a bias may be introduced by nonequilibrium correlations. The predicted bias is
confirmed by the fourth approach—molecular simulations of a dilute gas in a closed
system with a temperature gradient (see Appendix D). Note that the four approaches
are intertwined in the presentation below.

4.1. Bias for Fluid Velocity. First we consider two ways to estimate the mean value
of fluid velocity, 〈u〉

∗
s and 〈û〉s , as introduced in Section 2.1. By direct evaluation

(see (55), (56) and (59)) we find that both definitions are unbiased at equilibrium
(even if u 6= 0), a result confirmed by numerical simulation. However, 〈u〉

∗
s and

〈û〉s are not equivalent out of equilibrium. To see why, note that the sample mean
of the center-of-mass velocity from equation (12) may be written as

〈û〉s =

〈
J
ρ

〉
s
=

〈
J + δJ
ρ+ δρ

〉
s

(36)

=
J
ρ

〈(
1 +

δJ
J

)(
1 −

δρ

ρ
+
δρ2

ρ2

)〉
s
+ O(δM3) (37)

= u
(

1 +
〈δρ2

〉s

ρ2

)
−

〈δρ δJ〉s

ρ2 + O(δM3). (38)

From (26), δJ = ρδu + uδρ, so in the limit where the number of samples S → ∞,

〈û〉∞ = u −
δρ δu
ρ

+ O(δM3). (39)

The correlation δρ δu is zero at equilibrium (see Appendix B) but, in general,
nonzero for nonequilibrium systems [20]. The correlation δρδu ∝ ∇T and the
fact that 〈û〉∞ 6=0 in a closed system indicates a violation of mass conservation, as
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cautioned by Landau and Lifshitz (see Section 2 above). Finally, since δρ δu ∝ V −1,
the quantity 〈û〉∞ is not an intensive variable.

This bias of the center-of-mass fluid velocity is studied at length in [26] where
it is shown that the nonequilibrium correlation δρ δu leads to an anomalous flow,
as measured by 〈û〉s , in closed systems.1 For the simulation parameters listed in
Appendix D the anomalous flow velocity is about 10−4c for the large system and
10−3c for the small system, where c is the sound speed.

At equilibrium, the variance of fluid velocity is (see Appendix B),

|δu|2 = d
kB T
ρV

= d
C2

T

N
. (40)

By direct evaluation, the definition based on the variances of mechanical variables
is found to be unbiased, that is 〈|δu|

2
〉
∗
∞

= |δu|2, (see equation (62)) whereas the
center-of-mass definition gives (see equation (66)),

〈|δû|
2
〉∞ ≈ |δu|2

(
1 +

δN 2

N 2

)
. (41)

Figure 1 shows the fractional errors in the sample estimate for the variance of fluid
velocity, that is

〈|δu|
2
〉
∗
s − |δu|2

|δu|2
and

〈|δû|
2
〉s − |δu|2

|δu|2
.

In the simulations N is Poisson-distributed, so δN 2 = N ; thus the error goes roughly
as 1/N . Note that this fractional error is significant (e.g., about 5% for N = 20).

4.2. Bias for Temperature. Section 2.2 introduced three definitions for the sample
mean temperature, specifically the definition in terms of mean values of mechan-
ical variables, 〈T 〉

∗
s (equation (16)), and two definitions based on instantaneous

temperature. The latter may be combined and written as

T̂α =
K −

1
2ρ|û|

2

cV (ρ−αm/V )
, (42)

where α = 0 for equation (18) and α = 1 for equation (20).
By direct evaluation (see (73), (76)), we find that 〈T 〉

∗
∞

= 〈T̂1〉∞ = T at equilib-
rium, while

〈T̂0〉∞ ≈

(
1 −

1

N

)
T . (43)

1In [26] the quantity 〈u〉
∗
s is referred to as the Cumulative-Averaged-Measurement (CAM) of fluid

velocity and 〈û〉s is called the Sample-Averaged-Measurement (SAM) of velocity.
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Figure 1. Fractional error in the sample variance of fluid velocity
versus N for: 〈|δu|

2
〉
∗
s (asterisks); 〈|δû|

2
〉s (circles). Solid line

given by equation (63); dashed line is 1/N (dashed line).

Figure 2 confirms these results, showing the fractional error in the sample mean of
temperature (relative to T ) versus the mean number N of particles. Note that the
fractional error for 〈T̂0〉∞ is significant (e.g., about 5% for N = 20).

For a more general result, applicable to nonequilibrium cases, we write the
sample mean of instantaneous temperature as

〈T̂α〉s =
1

cV

〈
K −

1
2ρ|û|

2

ρ−αm/V

〉
s

(44)

=

(
1 +

αm
ρV

)
T −

1
ρcV

〈
δρ

ρ

(
δK −

1
2
δρ|u|

2
− ρu · δu

)〉
s
+ O(δM3).

Using the results from Section 3, after some algebra, we find

〈T̂α〉s =

[
1 +

α

N
−

〈δρ2
〉s

ρ2

]
T −

〈δρ δT 〉
∗
s

ρ
+ O(δM3). (45)
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Figure 2. Fractional error in the sample mean of temperature
versus N for: 〈T 〉

∗
s (asterisks), 〈T̂0〉s (crosses) and 〈T̂1〉s (circles).

Solid line given by equation (73); dashed line is −1/N .

At equilibrium δρδT = 0 so by comparison with the results from direct evaluation
we have

〈T̂1〉∞ = T −
δρ δT
ρ

+ O(δM3). (46)

This result is verified by molecular simulations of a nonequilibrium system at a
steady state, specifically a dilute gas between a pair of thermal walls at different
temperatures (see Appendix D). The predicted bias from (46) is in good agreement
with the bias measured in both the large (132 particles per sample cell) and small
(8.2 particles per sample cell) systems. In the latter case the absolute temperature
bias is a few Kelvin (about 1% of the mean), while in the large system the bias is
smaller by a factor of 132/8.2 ≈ 16, since δρ δT ∝ V −1. This result confirms the
warning given in Section 2 that the means of instantaneous hydrodynamic variables
are not intensive quantities.

Finally, we consider the measurement of temperature fluctuations, choosing
among the many possible examples the correlation of density and temperature
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Figure 3. Measured temperature difference 〈T 〉
∗
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[small (asterisks), large (crosses) systems] and theory prediction,
〈δρ δT 〉

∗
s /〈ρ〉s [small (circles), large (diamonds) systems] versus

position. Results for the large system are scaled by a multiplica-
tive factor of 16. Wall temperatures are 273 and 809 Kelvin; see
Appendix D for other parameters.

fluctuations. As mentioned above, at equilibrium δρ δT = 0; by direct evaluation
we get〈δρ δT 〉

∗
∞

=0 (see Appendix A), while for the two definitions of instantaneous
temperature we find (see eqns. (78) and (79)),

〈δρ δT̂0〉∞ = ρT
∞∑

N=1

(
N − 1

N
−

N − 1
N

)
P(N )

1 − P(0)
(47)

≈ ρT
δN 2

N 3
(48)

and

〈δρ δT̂1〉∞ =
ρT

N

(
NP(0)+ (N − 1)P(1)

1 − P(0)− P(1)

)
, (49)
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where P(N ) is the probability distribution for N . When this is the Poisson distribu-
tion, then

〈δρ δT̂0〉∞ ≈
ρT

N 2
(50)

and
〈δρ δT̂1〉∞ = ρT Ne−N . (51)

These results are illustrated and verified in Figure 4 where the scaled error (relative
to (δρ2 δT 2)1/2) in the correlation of density and temperature versus N is presented
for equilibrium simulation measurements (see Appendix C). The bias for 〈δρ δT̂0〉∞

is significant (scaled error of about 7% for N = 20) while the bias for 〈δρ δT̂1〉∞

decreases quickly with N (scaled error is less than 1% for N = 10). On the other
hand, the bias in the variance 〈δT̂ 2

1 〉∞ turns out to be significant (e.g., over 10% for
N = 20).

5. Summary and concluding remarks

In this paper we demonstrate that in the presence of spontaneous fluctuations the
statistical measurement of hydrodynamic quantities, such as fluid velocity and
translational temperature, should be done by sampling mechanical variables, such
as momentum and kinetic energy densities. The correct constructions for means and
variances are given in sections 2 and 3, respectively. In those sections we caution that
using definitions based on instantaneous fluid velocity and instantaneous temperature
leads to biased statistical results (as shown in Section 4).

Molecular simulations have been used in the study of fluids for nearly half a
century, so why are the results presented in this paper not well known? First, one
should recall that most molecular dynamics simulations are of equilibrium systems
for the purpose of computing thermodynamic properties, such as the equation of
state. The computation of means and fluctuations of thermodynamic quantities in
the various ensembles of statistical mechanics is certainly well known [2; 7].

Molecular dynamics simulations of hydrodynamic phenomena are more recent
(e.g. [17]) and often focus on qualitative features (e.g., appearance of vortex shed-
ding).2 Other molecular algorithms, such as direct simulation Monte Carlo [4] and
lattice gases [24], have always been applied to nonequilibrium flows, yet, as with
molecular dynamics, the biases due to fluctuations were not identified. Errors due
to these biases were either dismissed as small numerical artifacts (e.g., finite time
step effects) or masked by other errors (e.g., large statistical uncertainties). Since
the bias in the mean values is usually quite small (about 0.1 Kelvin for the large
system in Figure 3) either possibility is plausible.

2Evan’s nonequilibrium molecular dynamics (NEMD) approach is not designed for hydrodynamic
flows but rather is a method for obtaining transport properties, such as viscosity [6].
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cal predictions (47) and (49); dashed lines are approximations (50)
and (51).

Another possibility is that, in some cases, no errors were made in measuring
hydrodynamic quantities because the sampling happened to be equivalent to the
unbiased formulation using mechanical variables (e.g., programs in [4]). Unfor-
tunately, one rarely finds a detailed description in the literature of how statistical
measurements are performed, especially for fluid velocity.

In molecular simulations of hydrodynamic flows, variances are usually measured
only for the purpose of estimating error bars [11]. As such, the effects described
in this paper are unlikely to have been noticed by many computational scientists.
On the other hand, my own research is in the field of nonequilibrium fluctuations,
which is how these effects came to my attention. The recent computational studies
of nano-scale and multi-scale flows, as well as of Brownian motors, may also profit
from this paper’s analysis regarding the measurement of microscopic fluctuations
in molecular simulations. The importance of these fluctuations is appreciated by
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noting that a typical molecular motor protein consumes ATP at a power of roughly
10−16 watts while operating in a background of 10−8 watts of thermal noise power,
which has been said tobe “as difficult as walking in a hurricane is for us.” [3]

Finally, we have focused on the effect of fluctuations in particle-based simulations,
yet these effects have a physical rather than numerical origin so the discussion
also applies to continuum methods for stochastic partial differential equations.
The deterministic hydrodynamic equations can be augmented by the inclusion
of stochastic fluxes due to thermal fluctuations. These fluctuating hydrodynamic
equations [18] accurately capture equilibrium and nonequilibrium effects and can
be computed numerically (see [9] for a simple, finite-difference scheme). Any
numerical computation of hydrodynamic phenomena that includes spontaneous
fluctuations may be susceptible to the effects presented in this paper. Caveat
ratiocinator.

Appendix A: Direct evaluation at equilibrium

In this appendix we obtain, by direct evaluation, mean values and variances of
mechanical and hydrodynamic variables at thermodynamic equilibrium. To perform
this analysis, we first need to say something about the probability distributions for
the fluid particles, specifically, P(v), the probability that a particle has velocity v
and P(N ), the probability that a cell has N particles.

From the principle of equipartition, at thermodynamic equilibrium the veloci-
ties of classical particles are Gaussian-distributed with mean v = u and variance
|v − v|2 = |δv|2 = d C2

T = d kB T /m where CT is the thermal speed. Note that
thermodynamic equilibrium does not imply u = 0 since a system is in equilibrium
in all inertial frames of reference.

The distribution for N depends on the equation of state for the fluid. For the
present analysis we only require the mean N = N and variance δN 2 = σ 2

N . In dense
fluids σ 2

N is small since it is proportional to the fluids’ compressibility; in the case
of a dilute gas, N is Poisson-distributed with σ 2

N = N .
For some definitions of instantaneous variables (e.g., eqns. (12) and (18)) we

need to exclude the state N = 0, in which case we use the distribution

P0(N )=
1

1 − P(0)
P(N ) (52)

for N = 1, . . . ,∞. For the alternative temperature definition, equation (20), we
need to exclude the states N = 0 or 1, in which case we use the distribution

P01(N )=
1

1 − P(0)− P(1)
P(N ) (53)

for N = 2, . . . ,∞.
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Mean values may be obtained by direct evaluation,

〈X〉∞ =

∞∑
N=0

∫
dv1 . . .

∫
dvN X (N , v1, . . . , vN )P(N )P(v1) . . . P(vN ), (54)

with the minor modification that the sum starts at N = 1 or N = 2 if P0 or P01 is
used in place of P(N ). For the mechanical variables, we easily find

〈ρ〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

m
)

P(N )P(v1) . . . P(vN )

=
1
V

∞∑
N=0

(
Nm

)
P(N )=

m N
V

= ρ. (55)

Similarly,

〈J〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

mvk

)
P(N )P(v1) . . . P(vN )

=
1
V

∞∑
N=0

(
Nmv

)
P(N )=

m N
V

v = ρ u (56)

and

〈K 〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

1
2 m|vk |

2
)

P(N )P(v1) . . . P(vN )

=
m N
V

1
2 |v|2 = ρ(cvT +

1
2
|u|

2), (57)

confirming the expected result that 〈M〉∞ = M.
The variances and covariances of the mechanical variables may be evaluated

directly. For example,

〈δρ2
〉∞ =

1
V 2

∞∑
N=0

∫
dv1 . . .

∫
dvN

[( N∑
k=1

m
)

− ρ

]2

P(N )P(v1) . . . P(vN )

=
1

V 2

∞∑
N=0

[
Nm − Nm

]2
P(N )=

m2

V 2 δN 2 = ρ2 σ
2
N

N 2
. (58)

The procedure is straightforward (though tedious) for the other variables; the results
are the same as in eqns. (83)–(88) in Appendix B.



70 ALEJANDRO L. GARCIA

Fluid Velocity. From the results above, the mean fluid velocity

〈u〉
∗

∞
= 〈J〉∞/〈ρ〉∞ = J/ρ = u.

At equilibrium we find for the center-of-mass velocity,

〈û〉∞ =

∞∑
N=1

∫
dv1 . . .

∫
dvN

(
v1 + . . . vN

N

)
P0(N )P(v1) . . . P(vN ) (59)

=

∞∑
N=1

Nv
N

P0(N )= u, (60)

where the N = 0 case is excluded. An alternative approach would be to take û j = 0
when N j = 0 which gives

〈û′
〉∞ =

∞∑
N=0

Nu
N
(1 − δN ,0)P(N )= u

( ∞∑
N=0

P(N )
)

− uP(0)

= (1 − P(0))u, (61)

so at equilibrium this definition for the mean of the center-of-mass velocity does
not equal the fluid velocity except when u = 0.

From (29), the variance of fluid velocity as obtained from mechanical variables
is

〈|δu|
2
〉
∗

∞
=

1
ρ2 (|δJ|2 − 2u · δρJ + |u|

2δρ2). (62)

Using (80), (83), and (86), we find 〈|δu|
2
〉
∗
∞

=dC2
T /N =|δu|2. By direct evaluation,

the variance of the center-of-mass velocity is

〈|δû|
2
〉∞ =

∞∑
N=1

∫
dv1 . . .

∫
dvN

∣∣∣∣v1 + . . .+ vN

N
− u

∣∣∣∣2

P0(N )P(v1) . . . P(vN )

=

∞∑
N=1

N |δv|2

N 2 P0(N )= d C2
T

∞∑
N=1

1
N

P0(N ). (63)

By Jensen’s inequality

∞∑
N=1

1
N

P0(N ) >
∞∑

N=1

1
N

P(N )≥

( ∞∑
N=1

N P(N )
)−1

=
1

N
, (64)

with equality only if P0(N )= δN ,N . Excluding this trivial case, 〈|δû|
2
〉∞ > |δu|2.

Since

N−1 =
1

N

(
1 +

σ 2
N

N 2
+ O(δN 3)

)
, (65)
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we have

〈|δû|
2
〉∞ = |δu|2

(
1 +

σ 2
N

N 2
+ O(δN 3)

)
. (66)

If N is Poisson-distributed, then

〈|δû|
2
〉∞ = |δu|2

(
1 +

1

N
+ O(δN 3)

)
(67)

Finally, note that we may write

〈|δû|
2
〉∞ =

∞∑
N=1

〈|δû|
2
N 〉∞ P0(N ), (68)

where

〈|δû|
2
N 〉∞ =

d C2
T

N
(69)

is the variance of the center-of-mass velocity for a given value of N , a result used
below.

Temperature. From (16), (55), (56), and (57) we find 〈T 〉
∗
∞

= T . Turning to the
two definitions of instantaneous temperature, equation (18) and (20), note that they
may be combined as

T̂α; j =
1

2cV (N j −α)

N j∑
k

|vk, j − û j |
2 (70)

where α = 0 or 1 and

û j =
1

N j

N j∑
k

vk, j (71)

is the instantaneous center-of-mass velocity. First, consider the case α = 0, by
direct evaluation the mean value is,

〈T̂0〉∞ =
1

2cV

∞∑
N=1

∫
dv1 . . .

∫
dvN

(
1
N

N∑
k=1

|vk − û|
2
)

P0(N )P(v1) . . . P(vN )

=
1

2cV

∞∑
N=1

(
|v|2 − |û|2

)
P0(N )

(72)
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In general 〈T̂0〉∞ < T since |δû|
2
→ 0 only in the limit N → ∞. From the above

result for the variance of the center-of-mass velocity,

〈T̂0〉∞ = T
(

1 −

∞∑
N=1

1
N

P0(N )
)

(73)

≈

(
1 −

1

N
−
σ 2

N

N 3

)
T , (74)

so to leading order the bias for this definition of temperature is O(1/N ).
For the alternative definition of instantaneous temperature, equation (20), we

have

〈T̂1〉∞ =
1

2cV

∞∑
N=2

∫
dv1 . . .

∫
dvN

(
1

N−1

N∑
k=1

|vk− û|
2
)

P01(N )P(v1) . . . P(vN )

= T
∞∑

N=2

N
N − 1

(
1 −

|δû|
2
N

d C2
T

)
P01(N ), (75)

where |δû|
2
N is the variance of the center-of-mass velocity for a given value of N .

From (69),

〈T̂1〉∞ =
d C2

T

2cV

∞∑
N=2

N
N − 1

(
1 −

1
N

)
P01(N ) = T (76)

so using this definition gives the correct mean value.
Finally, consider thecorrelation of density and temperature fluctuations; from

(34) and the results for mechanical variables, 〈δρ δT 〉
∗
∞

= δρ δT . To obtain the
correlation for instantaneous temperature, we use 〈δρ δT̂α〉∞ = 〈ρT̂α〉∞ − ρ〈T̂α〉∞;
direct evaluation for T̂0 equation (18) gives

〈ρT̂0〉∞ =
m

2cV V

∞∑
N=1

∫
dv1 . . .

∫
dvN N

(
1
N

N∑
k=1

|vk− û|
2
)

P0(N )P(v1) . . . P(vN )

=
mT
V

∞∑
N=1

N
(

1 −
|δû|

2
N

d C2
T

)
P0(N )= ρT

∞∑
N=1

N − 1

N
P0(N ), (77)

so

〈δρ δT̂0〉∞ = ρT
∞∑

N=1

(
N − 1

N
−

N − 1
N

)
P0(N ). (78)
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For the alternative definition of instantaneous temperature (equation (20)) we get

〈ρT̂1〉∞

=
m

2cV V

∞∑
N=1

∫
dv1 . . .

∫
dvN N

(
1

N−1

N∑
k=2

|vk − û|
2
)

P01(N )P(v1) . . . P(vN )

=
mT
V

∞∑
N=2

N 2

N − 1

(
1 −

|δû|
2
N

d C2
T

)
P01(N )

= ρT
∞∑

N=2

N

N
P01(N )=

ρT

N

(
N − P(1)

1 − P(0)− P(1)

)
,

so

〈δρ δT̂1〉∞ =
ρT

N

(
N P(0)+ (N − 1)P(1)

1 − P(0)− P(1)

)
. (79)

Appendix B: Variances from fluctuating hydrodynamics

This appendix lists the variances and covariances of mechanical and hydrodynamic
variables in the case of thermodynamic equilibrium at the mean state, ρ, u, and
T . These results are from the theory of fluctuating hydrodynamics (§132, [18]) as
developed from equilibrium statistical mechanics (§112, [19]).

The variance of mass density depends on the compressibility (i.e., the equation
of state) of the fluid. In general,

δρ2 = ρ2 σ
2
N

N 2
, (80)

where N = ρV/m and σ 2
N is the variance of N at equilibrium. For example, for an

ideal gas N is Poisson-distributed so σ 2
N = N and δρ2 = ρ2/N . The more general

result is σ 2
N = −(kB T N 2/V 2)(∂V/∂P)T .

The variances of fluid velocity and temperature are

|δu|2 = d
kB T
ρV

= d
C2

T

N
(81)

δT 2 =
kB T 2

cvρV
=

C2
T T

cvN
(82)

where CT =

√
kB T /m is the thermal speed (and the standard deviation of the

Maxwell-Boltzmann distribution). The covariances are δρ δu = δρ δT = δu δT = 0.
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From the results above and those formulated in Section 3, the variances and
covariances of the mechanical densities at equilibrium are

δρδJ = ρJ1ρ, (83)

δρδK = ρK1ρ, (84)

δ Jαδ Jβ = Jα Jβ1ρ + ρ2C2
T1uδα,β, (85)

|δJ|2 = |J|
21ρ + d ρ2C2

T1u, (86)

δJ δK = J K1ρ + J ρC2
T1u, (87)

δK 2 = K 21ρ + |J|
2C2

T1u + c2
vρ

2T 21T , (88)

where J = ρ u and K = cvρT +
1
2ρ|u|

2; the dimensionless variances are defined by
(80), (81), and (82) normalized as 1ρ = δρ2/ρ2, 1u = δu2

x/C
2
T , and 1T = δT 2/T 2.

Appendix C: Equilibrium simulations

Simple stochastic simulations of a dilute gas at thermodynamic equilibrium were
performed to verify and illustrate the results obtained by direct evaluation (see
Appendix A). Sample means and variances of fluid velocity and temperature, using
the various definitions, were computed and compared with theoretical predictions,
as shown in the figures in Section 4.

From the principle of equipartition, at thermodynamic equilibrium the velocities
of the particles are Maxwell–Boltzmann-distributed,

P(v)=

(
m

2πkB T

)d/2

exp(−m|vk, j − u|
2/2kB T ), (89)

with mean v = u and variance |v − v|2 = |δv|2 = d C2
T where CT ≡

√
kB T /m is the

thermal speed. Note that this distribution is not restricted to a dilute gas but applies
to any classical fluid at equilibrium. Also note that thermodynamic equilibrium does
not imply u = 0 since a system is in equilibrium in all inertial frames of reference.

The number of particles in a given sample, N j , is a random variable whose
distribution depends on the equation of state for the fluid. For the simulations we
take the case of a dilute gas, so N j is Poisson-distributed,

P(N j )=
e−N N N j

N j !
(90)

with mean N = N and variance δN 2 = N .
Each simulation run consisted of S = 5000 samples for fixed N , varying from

0.5 to 20, and arbitrary u and T . For each sample, given (90), a random value of
N j was generated and then that many random particle velocities were generated
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according to (89). Means, variances, and correlations were estimated by the various
definitions presented in sections 2 and 3; note that for some definitions (e.g., (12),
(18), (20)) samples containing zero or one particle are omitted in evaluating sample
means.

Appendix D: Non-equilibrium simulations

In Section 4.2 the mean instantaneous temperature 〈T̂1〉s is predicted to have a bias
due to nonequilibrium correlations of density-temperature fluctuations. To test this
prediction, molecular simulations of a dilute gas were performed to measure 〈T 〉

∗
s ,

〈T̂1〉s , and 〈δρ, δT 〉
∗
s (see equation (46) and Figure 3). The simulations were of

a nonequilibrium state, specifically a temperature gradient produced by parallel
thermal walls at different temperatures. Similar simulations in [26] verified the
predicted bias in the instantaneous center-of-mass fluid velocity (see equation (39)).

The simulations used the direct simulation Monte Carlo (DSMC) algorithm, a
well-known method for computing gas dynamics at the molecular scale; see [1; 8]
for pedagogical expositions on DSMC, [4] for a complete reference, and [27] for
a proof of the method’s equivalence to the Boltzmann equation. As in molecular
dynamics, the state of the system in DSMC is given by the positions and velocities
of particles. In each time step, the particles are first moved as if they did not interact
with each other. After moving the particles and imposing any boundary conditions,
collisions are evaluated by a stochastic process, conserving momentum and energy
and selecting the postcollision angles from their kinetic theory distributions. DSMC
is a stochastic algorithm but the statistical variation of the physical quantities has
nothing to do with the “Monte Carlo” portion of the method. The equilibrium and
nonequilibrium variations in DSMC are the physical spectra of spontaneous thermal
fluctuations, as confirmed by excellent agreement with fluctuating hydrodynamic
theory [9; 20] and molecular dynamics simulations [21; 22].

The nonequilibrium system we consider is a dilute monatomic hard-sphere gas
between a pair of parallel thermal walls. The left wall is at the reference temperature
of 273 Kelvin and the right wall’s temperature is three times greater. Two cases,
hydrodynamically equivalent, are simulated. The distance between the walls is the
same in the two cases, but one system is 16 times larger in volume (and has 16
times more particles) than the other. All other parameters (e.g., mean free path,
transport coefficients) were the same in the two systems (see Table 1). Samples
are taken in forty rectangular cells sliced parallel to the thermal walls; in the large
system these cells are 16 times larger than in the small system. Starting near the
steady state (approximately linear temperature profile) the simulations of these two
systems are run for 2.5 × 107 time steps to dissipate any initial transients. After
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Molecular diameter (Argon) 3.66 × 108

Molecular mass (Argon) 6.63 × 1023

Reference mass density 1.78 × 10−3

Reference temperature 273
Sound speed 33700
Specific heat cv 3.12 × 106

Wall temperature (left) 273
Wall temperature (right) 819
System length 1.25 × 104

Reference mean free path 6.26 × 10−6

System volume (large) 1.96 × 10−16

System area (small) 1.23 × 10−17

Number of particles (large) 5265
Number of particles (small) 329
Number of sampling cells 40
Number of samples, S 2.5 × 107

DSMC time step 1.0 × 10−11

DSMC grid size 2.09 × 10−6

Table 1. System parameters (in cgs units) for DSMC simulations
of a dilute gas between thermal walls.

allowing the systems to relax, samples are taken at each time step for a total of
S = 2.5 × 107 samples.
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BIFURCATED EQUILIBRIA AND MAGNETIC ISLANDS IN
TOKAMAKS AND STELLARATORS

PAUL R. GARABEDIAN

The magnetohydrodynamic variational principle is employed to calculate equi-
librium and stability of toroidal plasmas without two-dimensional symmetry.
Differential equations are solved in a conservation form that describes force
balance correctly across islands that are treated as discontinuities. The method
is applied to both stellarators and tokamaks, and comparison with observations
is favorable in both cases. Sometimes the solution of the equations turns out
not to be unique, and there exist bifurcated equilibria that are nonlinearly stable
when other theories predict linear instability. The calculations are consistent with
recent measurements of high values of the pressure in stellarators. For tokamaks
we compute three-dimensionally asymmetric solutions that are subject to axially
symmetric boundary conditions.

1. Introduction

A community of industrialized nations is planning construction of the International
Thermonuclear Experimental Reactor (ITER). A facility has been designed to test
the concept of fusing deuterium and tritium ions so as to form helium and release
energetic neutrons that can produce electric power at commercially viable cost
[1]. This is to be achieved by confining a very hot plasma of ions and electrons
in a strong magnetic field with toroidal geometry and a major radius of 6m. The
magnetic fusion configuration preferred for ITER is a tokamak, which is axially
symmetric and requires net toroidal current for confinement of the plasma. An
alternate concept that seems to be more stable is the stellarator, which has fully
three-dimensional geometry generating a poloidal field that eliminates the need for
induced current.

Recent advances in high performance computing have led to significant progress
in the theory of equilibrium, stability and transport for fusion plasmas in three
dimensions. This has made it possible to design stellarators that are competitive
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with tokamaks as candidates for a fusion reactor. The work we shall describe in
this direction is based on the NSTAB, VMEC and TRAN computer codes [2; 4; 9;
12; 17]. In particular, we consider simulations of anomalous thermal transport in
tokamaks that result from calculations of bifurcated equilibria that do not have two-
dimensional symmetry. For both tokamaks and stellarators difficult mathematical
problems are encountered because accurate solutions of the relevant differential
equations turn out to have discontinuities associated with islands and current sheets
in the plasma (see Figure 1).

We begin with a study of weak solutions of the partial differential equations
governing magnetohydrodynamic (MHD) equilibrium in three dimensions. Then
we examine the role played by the magnetic spectrum in estimating the prompt loss
of α particles in a reactor. Finally, we discuss candidates for a demonstration of the
magnetic fusion concept after the ITER project is completed.

2. Computation of force balance

The KAM theory of dynamical systems predicts that smooth solutions of the partial
differential equations describing MHD equilibrium of a toroidal plasma cannot be
found in the absence of two-dimensional symmetry [2]. Let B be the magnetic
field, J = ∇ × B be the current density, p = p(s) be the scalar pressure, s be the
toroidal flux, θ + ιφ and φ be invariant poloidal and toroidal angles, and ι be the
rotational transform measuring how far a magnetic line circulates poloidally during
one transit the long way around the torus. We call the Fourier coefficients Bmn in a
representation

1/B2
=

∑
Bmn(s) cos

(
mθ − [n−ιm]φ

)
of the magnetic field strength the magnetic spectrum. For stellarators an elementary
manipulation of the MHD equations leads to a corresponding formula

J · B
B2 = p′

∑ m Bmn

n − ιm
cos

(
mθ − [n−ιm]φ

)
for the parallel current in which the term with m = n = 0 is omitted. In this
context the small denominators n − ιm explain why continuous solutions of the
fully three-dimensional equilibrium problem do not exist under the hypothesis that
the plasma is covered by nested toroidal flux surfaces s = const., which is important
for good confinement.

To handle discontinuous solutions of the MHD equilibrium equations we write
them in the conservation form

∇ · B = ∇ · T = 0 ,
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Figure 1. Poincaré section of the flux surfaces of a bifurcated
ITER equilibrium at β = 0.03 with p = p0(1 − s1.1)1.1 and with
net current bringing the rotational transform into the interval 0.8>
ι > 0.2. Ripples in the surfaces represent helical islands in this
fully converged three-dimensional solution of an axially symmetric
MHD problem.

where

T = B B − (B2/2 + p)I

is the Maxwell stress tensor. Then force balance over any test volume of plasma
reduces by the divergence theorem to the assertion that the surface integral∫∫

T · N d S = 0

vanishes over the boundary. Numerical methods that employ an analogous discrete
conservation form of the equations provide an accurate approximation of force
balance because when they are similarly summed over any collection of mesh points
the result telescopes down to a corresponding statement at the boundary.
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We illustrate the way conservation form captures discontinuities in weak solutions
of the MHD equations by considering a one-dimensional example of a reversed field
pinch (RFP) in slab geometry [8]. In a rectangular coordinate system we conceive of
x as a radius and y and z as toroidal and poloidal angles. Let (0, 9x ,C), (0, 0, 9xx)

and η(9xxx , 0, 0) represent the magnetic field, the current density and an artificial
resistivity, respectively, where 9 is a flux function depending only on x , and C and
η are constants. The MHD equilibrium equations reduce to an ordinary differential
equation that we write in the conservation form

(92
x )x = η9xxx ,

and we seek a solution on the interval −1 ≤ x ≤ 1 satisfying the boundary conditions

9(−1)=9(+1)= 0 , 9x(−1)= 1 .

The finite difference approximation

(9n+1 −9n)
2
− (9n −9n−1)

2
= η(9n+2 − 39n+1 + 39n −9n−1)

of the RFP equation is in conservation form and defines iterations that converge
in the limiting case η = 0 to the correct answer 9 = 1 − |x |. This has a jump in
its derivative at the origin, but satisfies force balance there because 92

x remains
continuous. It is easy to find less symmetrical difference schemes for the same
boundary value problem that are not in conservation form and therefore give results
that violate force balance significantly. The numerical example we have presented
is also applied in computational fluid dynamics to show that conservation form is
required to capture shock waves accurately [3].

The NSTAB computer code calculates toroidal equilibrium of stellarators and
tokamaks by a numerical scheme that is in a conservation form associated with the
MHD variational principle [4; 17]. Good convergence is achieved by applying the
spectral method to describe dependence of the solution on the poloidal and toroidal
angles and by using an exceptionally accurate finite difference approximation in the
radial coordinate s. The high resolution of the radial scheme has been established
by comparing numerical results with exact solutions [2]. The NSTAB code models
magnetic fusion configurations effectively using a suitable Fourier series to represent
the fixed boundary of the plasma.

Linear and nonlinear stability are tested by looking for bifurcated equilibria
that do not have symmetries occurring in conventional models. This method
has provided acceptable simulations of experiments for stellarators that exceed
stability predictions of linear theory [6]. More specifically, our computations agree
with recent observations [18] in the Large Helical Device (LHD) at the National
Institute for Fusion Science (NIFS) in Japan of values of the performance parameter
β = 2p/B2 as high as 4%. The equilibria we examine for the LHD at such values of



BIFURCATED EQUILIBRIA AND MAGNETIC ISLANDS 83

Figure 2. Four cross sections of the flux surfaces over half the
torus of a bifurcated DIII-D equilibrium at β = 0.02 with p =

p0(1−s1.1)1.1 and with net current bringing the rotational transform
into the interval 0.9 > ι > 0.3. There is a large m = 3, n = 2
magnetic island at ι= 2/3 in the solution that models an observed
mode.

β tend to be linearly unstable, but nonlinearly stable, so that a better understanding
of bifurcated solutions becomes desirable [11].

Our computational method has been applied to study neoclassical tearing modes
(NTM) in the Doublet III-D (DIII-D) tokamak at General Atomics (GA) with the
net current limited so that ι < 1. Three-dimensional equilibria are calculated by at
first imposing, but much later releasing, a suitable constraint in runs of the NSTAB
code chosen to find bifurcated solutions that cannot be obtained without introducing
discontinuous alterations in the topology of the magnetic surfaces. Figure 2 displays
Poincaré sections of the flux surfaces of such a bifurcated equilibrium. Solutions
like this are related to observations of NTM modes made in the experiment [5; 13].
On crude radial grids the computations are capable of capturing slender islands
whose widths are comparable to the mesh size. The physical significance of finding
many three-dimensional MHD equilibria in axially symmetric tokamaks needs
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m n Bmn

0 0 0.997
1 0 0.525
2 0 0.144
3 0 0.058
4 0 0.025
0 1 0.015
3 2 0.010
1 1 0.009
4 2 0.008
1 −1 0.007

Table 1. Nontrivial coefficients in the spectrum of an optimized
MHH2 configuration with a prompt loss of α particles below 10%.

further investigation. More specifically, one can ask how much their effect might
contribute to the prompt loss of α particles or to disruptions.

3. Prompt loss of α particles

Neoclassical transport in tokamak and stellarator plasmas with three-dimensional
geometry can be evaluated by tracking guiding center orbits of charged particles
that are subjected to a random walk representing collisions. The TRAN computer
code implements such a method that employs equilibria obtained from NSTAB
calculations, which are needed to estimate the magnetic spectrum [9]. Substantial
agreement has been found between computations of thermal transport from runs
of the TRAN code and experimental observations in tokamaks and stellarators
[7]. An algorithm determining the electric potential from quasineutrality in three-
dimensional equilibria has been applied successfully. This theory has been used
to demonstrate the advantage for stellarator transport of a magnetic spectrum
with quasihelical symmetry (QHS), where only the diagonal coefficients Bmm are
large, or with quasiaxial symmetry (QAS), where the first column of coefficients
Bm0 dominate [10; 16]. The computational approach facilitates designing new
configurations that may bring the concept of magnetic fusion closer to construction
of a commercially viable reactor.

The TRAN code has been modified to estimate the prompt loss of α particles
in a fusion plasma at reactor conditions. This is defined to be the percentage
of α particles that escape from the plasma during one slowing down time after
they are born. Samples of between 128 and 1024 particles are adequate to give a
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meaningful answer, but that requires significant resources on a commodity work
station. For stellarators the spectrum again plays a decisive role in the computations.
Experience shows that only a significant improvement in the quasisymmetry required
for satisfactory thermal transport can produce a loss of α particles as low as 10%
that might be acceptable in the design of a fusion reactor. Table 1 lists averages with
respect to s of the largest coefficients Bmn in a two field period configuration that
has been optimized for such an application [8]. The three-dimensional asymmetry
is seen to fall below half a percent if it is measured in units of the field strength B
itself rather than 1/B2. To achieve this level of quasisymmetry presents a challenge
not only to the accuracy of the codes that are used, but also to the precision of the
hardware that must be fabricated.

Figure 3. Zero β calculation of a Poincaré section of flux surfaces
for a stellarator with reversed poloidal field. Two magnetic surfaces
touch each other at an X-point where the rotational transform ι

changes sign. They surround a magnetic island that would other-
wise be obscured by the nested surface hypothesis implemented in
the NSTAB code.

4. Magnetic islands

The NSTAB code captures islands successfully despite a nested surface hypothesis
made in the coordinate system that is employed [11]. The resolution of the code
can be checked by applying it to the vacuum field of stellarators where islands are
known to exist in equilibria found by line tracing [14]. Figures 3 and 4 display
calculations of an example of this phenomenon in which the rotational transform
changes sign so that a sizeable island appears at ι = 0. The same numerical
construction produces helical islands in tokamaks like the DIII-D and ITER. When
such three-dimensional solutions of the tokamak problem were used in computations
of the energy confinement time, anomalous transport was not observed in the results
[9].
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Figure 4. Tracing of magnetic lines through a Poincaré section
of a stellarator with reversed poloidal field. A large magnetic
island is seen where the rotational transform ι changes sign. The
plasma surface is plotted together with a control surface used for
Biot–Savart computation of the vacuum magnetic field.

The problem of ideal MHD equilibrium is singular in two dimensions and
includes a continuous spectrum in the analysis of stability, and in three dimensions
the KAM theory shows that no differentiable solutions exist [2]. So we introduce
weak solutions of the kind constructed numerically by the NSTAB code, which
have magnetic islands that appear as discontinuities like current sheets. Artificial
resistivity implicit in the code captures the islands in a realistic fashion because
of the conservation form of the MHD equations that is employed. That results in
turn from a mixed Euler–Lagrange coordinate system featuring the toroidal flux as
a radius. The method produces three-dimensional tokamak equilibria with small
magnetic islands whose cumulative effect simulates experimental observations
better than two-dimensional models do [9].

5. Configurations for a fusion reactor

A tokamak like ITER is the candidate of choice by the fusion community for a
reactor. Disadvantages are that MHD instability tends to trigger disruptions, and
it is hard to control the induced net current in a steady state. The calculations of
NTM in the DIII-D at GA that we have described suggest that bifurcated equilibria
with three-dimensional asymmetries may turn out to be important in attacking
these problems [13]. Of special interest for reactors is that nuclear engineers may
ultimately come to prefer a stellarator-tokamak hybrid with good quasisymmetry
and small aspect ratio.

It is relatively easy to reduce the prompt loss of α particles in stellarators that have
good QHS, such as the Helically Symmetric Experiment (HSX) at the University
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of Wisconsin with four field periods or the Wendelstein 7-X (W7-X) at Greifswald
in Europe with five field periods [16]. We have studied a QHS version of the W7-X
with rotational transform in the interval 1< ι < 5/4 that has favorable properties of
thermal transport and MHD stability. The prompt loss of α particles can be brought
down to several percent by readjustment of the coefficients Bmn in the spectrum,
but many twisted modular coils are required to maintain an equilibrium with low
toroidal ripple of the magnetic field strength because the aspect ratio of the plasma
is large.

Most of our theoretical work with the NSTAB and TRAN computer codes has
been focused on QAS stellarators like the National Compact Stellarator Experiment
(NCSX) at the Princeton Plasma Physics Laboratory (PPPL) with three field periods
and the Modular Helias-like Heliac 2 (MHH2) with just two field periods [10].
The NCSX is a principal candidate for the ARIES CS compact stellarator study of
magnetic fusion reactors [15] funded by the United States Department of Energy
(DOE). It is difficult to reduce the prompt loss of α particles in both the NCSX and
the MHH2 because the necessary calculations are sensitive to small changes in the
magnetic spectrum [8]. Net current that raises the rotational transform is helpful in
these optimizations. For that one attractive configuration is a hybrid version of the
MHH2 shown in Figure 5, which has major radius 8m and plasma radius 3m.

It is hard to find modular coils that generate an external magnetic field compatible
with a plasma equilibrium optimized to bring the loss of α particles below 10% at
reactor conditions. One possibility is to determine the solution inside the plasma
from an equilibrium calculation and then apply the Biot–Savart law to match that
with a vacuum field defined by a distribution of current on a suitably chosen control
surface where the coils are to be placed [14]. This method could be applied to
smooth out unrealistic surface current on the separatrix of an alternate approximation
found by solving a free boundary value problem. The analysis taxes the resolution of
the best computer codes that are available because there is a high degree of magnetic
quasisymmetry required in the answer. Moreover, the harmonics specifying the
coils have to be filtered judiciously to eliminate erroneous excursions. The concept
is elucidated by Runge’s theorem, which asserts that an analytic function can be
approximated by polynomials in any simply connected region of the complex plane.

The MHH2 configuration that has been optimized to reduce the prompt loss of α
particles is a good candidate for a stellarator experiment to achieve ion temperatures
competitive with those in tokamaks. Moreover, three-dimensional equilibria are
found numerically in tokamaks, so two-dimensional models may be less realistic.
Because truncation error in the computations is insignificant compared to sources
hitting the plasma in an experiment, observations may exhibit effects associated
with three-dimensional asymmetries in a bifurcated solution of the problem.
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Figure 5. Diagram of a fusion reactor with low prompt loss of α
particles in a magnetic field given by the Biot–Savart law. Sixteen
moderately twisted modular coils produce robust flux surfaces
that do not deteriorate when changes are made in the vertical and
toroidal fields. This optimized configuration with two field periods
has stellarator stability and tokamak transport. (Courtesy of Tak-
Kuen Mau and Tsueren Wang.)

6. Conclusion

The NSTAB code has been applied to calculate a variety of bifurcated equilibria
in tokamaks with axially symmetric boundary conditions. The KAM theory of
dynamical systems displays small denominators at rational surfaces of 3D solutions,
and analysis of the continuous spectrum shows that linear stability of tokamaks
is singular. This is consistent with observations of sawtooth oscillations, NTM
and ELMS, and disruptions. Desirable 3D solutions of the MHD equations for
equilibrium may not exist, may not be unique, and may not depend continuously
on the data. Yet success of the DIII-D and LHD experiments fosters a belief that it
is possible to design a magnetic fusion reactor. Perhaps a QAS stellarator of very
low aspect ratio is the answer, since it is helpful if some of the rotational transform
comes from the external magnetic field.
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ON THE ACCURACY OF FINITE DIFFERENCE METHODS
FOR ELLIPTIC PROBLEMS WITH INTERFACES

J. THOMAS BEALE AND ANITA T. LAYTON

In problems with interfaces, the unknown or its derivatives may have jump
discontinuities. Finite difference methods, including the method of A. Mayo
and the immersed interface method of R. LeVeque and Z. Li, maintain accuracy
by adding corrections, found from the jumps, to the difference operator at grid
points near the interface and by modifying the operator if necessary. It has long
been observed that the solution can be computed with uniform O.h2/ accuracy
even if the truncation error is O.h/ at the interface, while O.h2/ in the interior.
We prove this fact for a class of static interface problems of elliptic type using
discrete analogues of estimates for elliptic equations. Moreover, we show that
the gradient is uniformly accurate to O.h2 log .1=h//. Various implications are
discussed, including the accuracy of these methods for steady fluid flow governed
by the Stokes equations. Two-fluid problems can be handled by first solving an
integral equation for an unknown jump. Numerical examples are presented which
confirm the analytical conclusions, although the observed error in the gradient is
O.h2/.

1. Introduction

Often in problems of fluid flow or wave propagation an interface between dif-
ferent regions exerts a force on the material, or an interface separates regions
of different material properties. The static problem is formulated as an elliptic
partial differential equation with possible discontinuities in the coefficients and
nonhomogeneous terms, and with possible jump conditions for the unknown and
its derivative across the interface. For the numerical solution a finite difference
method is straightforward away from the interface, but accuracy will be lost near
the interface unless special care is taken. A class of practical methods has been
developed, including the method of A. Mayo [32; 34; 31] and the immersed interface
method of R. LeVeque and Z. Li [24; 27; 26], in which the specified jumps at the
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interface are used to derive corrections to the difference operator when the stencil
crosses the interface, and, if needed, modification of the difference operator as well
[24; 27; 26]. Using Taylor expansions and incorporating jumps, the truncation
error is corrected to a desired order. It has long been observed that, with grid size
h and O.h2/ truncation error in the interior, but only O.h/ truncation error near
the interface, the solution is still uniformly accurate to O.h2/. In this paper we
provide a rigorous explanation for this fact in certain cases. Although we treat
steady problems here, this class of methods is naturally suited for time-dependent
problems with moving boundaries such as Stokes flow of a viscous fluid; see
[25].

We consider a problem in a rectangular region � in Rd , d D 2 or 3, of the form

ˇ��u� D f� in ��; ˇC�uC D fC in �C; (1–1)

Œu� D g0 on S; Œˇ@nu� D g1 on S (1–2)

in which a closed curve S (d D 2), or a closed surface S (d D 3), separates an inner
region �� from an outer region �C, with �D�� [S [�C. Here Œu�D uC �u�

on S and similarly for ˇ@nu D ˇ@u=@n, where n is the normal to S , outward
from ��. We assume here that ˇ˙ are positive constants, although operators in
divergence form with variable coefficients are dealt with by the immersed interface
method. We suppose u is given on @�. If the problem is given in free space, the
solution might first be computed on @� from an integral representation (see Section
4). Our results hold for other boundary conditions as well; the simplest would be
periodicity on @�.

We first treat the case ˇ� D ˇC; in that case Œ@nu� is known on S . In Sections 2
and 3 we prove that, with the truncation error as above, the computed solution is
uniformly O.h2/ accurate, and moreover the gradient can be found uniformly to
O.h2 log .1=h//. We verify that this result holds for the methods of Mayo and of
LeVeque and Li. The gain in accuracy is shown to be a consequence of two facts.
First, since the O.h/ truncation error is on a set of relative size O.h/, it can be
written as the discrete divergence of a function which is only O.h2/ in magnitude.
Second, the gain in regularity in solving the discrete elliptic problem means that
this part of the truncation error contributes an error to the solution which is O.h2/

in a higher norm. To make this plausible, we consider an analogous estimate with
continuous variable: If v is a localized function of x 2 Rd and �v D

Pd
kD1 @kFk ,

then v D
P
@kG ?Fk , where G is the fundamental solution, @k D @=@xk , and ?

denotes convolution. The kernel @kG is locally integrable, and if Fk is bounded,
then v is bounded. Moreover, estimates for @`@kG show that @`v 2 Lp for any
p < 1. We follow a related line of argument for the discrete problem, using a
discrete Green’s function.
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Various extensions and applications are discussed in Section 4. For the case
where ˇ�; ˇC are unequal positive constants, the problem (1–1), (1–2) in free
space can be treated by first solving an integral equation on S for Œ@nu� and then
proceeding as before. The theory of Sections 2 and 3 shows that the immersed
interface method for steady fluid flow governed by the Stokes equations as in [25]
is second-order accurate. The two-fluid case can again be treated by first solving an
integral equation. The analysis can be applied to higher-order methods; use of the
nine-point Laplacian in two dimensions, rather than the usual five-point Laplacian,
leads to uniform O.h4/ accuracy. Mayo [32] noted that a boundary value problem
could be treated as an interface problem by writing the solution as a layer potential
on S and first solving a classical integral equation for the strength of the potential.
A different but related method introduced by Mayo [33] and expanded on in [2]
for solving interface problems or boundary value problems can also be viewed
with the present analysis. This approach is to compute the solution near S as a
nearly singular integral, form the discrete Laplacian, and then invert. Computational
examples of the several types of problems are given in Section 5. We observe O.h2/

accuracy in the gradient, indicating that the O.h2 log.1=h// estimate proved here
may not be sharp.

The gain in accuracy which is established here has been noted and analyzed
since these methods were introduced [32; 33; 24]. The ideas in the Appendix of
[33] are related to those used here. In [32] it was shown that, with O.h/ truncation
error at the irregular points, the error in L2 norm is at most O.h3=2/. Proofs of
O.h2/ accuracy for general equations in one dimension have been given in [3; 37;
17]. Theorems with a conclusion similar to the present one were proved in [27],
Theorems 5.1 and 5.2, for a more general class of equations with Dirichlet boundary
condition, using the maximum principle and comparison functions. However, this
result required a hypothesis, related to the position of the interface with respect
to the grid points, which does not hold in general. In particular, the hypothesis
implies that, where the slope of the curve is close to horizontal, the curve cannot
cross a vertical grid line closer than C0h to a grid point, or the curve must be within
C1h1C� of the grid point for some � > 0 independent of h. This hypothesis is
violated for any parabola x2 D ax2

1
C b for arbitrarily small h; this is shown in the

Appendix.
Related but different methods for solving Dirichlet problems in general regions

by embedding in a larger domain and using a regular grid have been used since
the 1930’s. At internal grid points the standard discrete Laplacian can be used, but
a modified stencil must be used at the boundary of the region. A line of analysis
beginning with Gerschgorin, and presented in [15], Section 23, shows that the order
of accuracy can exceed that of the truncation error at the boundary by 2 under
certain circumstances; for example, the accuracy of the solution can be O.h2/
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when the truncation error is O.h2/ in the interior, but only O.1/ near the boundary.
The method of proof is based on the maximum principle, and the gain in accuracy
depends on the modification of the difference operator at the boundary. A general
approach for such results using discrete Green’s functions was developed in [5; 6],
and a convergence proof for a class of methods with interpolation at the boundary
was given by Böhmer [4]. For a recent review, see Jomaa and Macaskill [21].
Analysis and examples in [21] indicate that an O.h/ truncation error at the interface
is preferable despite the theoretical results. As noted in [32],[37], the interface
methods studied here can be used to solve boundary value problems, extending past
the boundary to a computational box. This approach has the important difference
from the one just described that the stencil of the differential operator is not modified
at the boundary.

Elliptic problems with interfaces can be solved by finite element methods. Con-
vergence results include [9; 11; 29]. In [28] a Cartesian grid method using a finite
element formulation is introduced, and the various numerical approaches to interface
problems are discussed and compared. Discrete elliptic estimates like Lemma 2.3
below are well known for finite element approximations to elliptic problems; see
[10], Chapter 8 and [12], Section 21.

The main result is presented in Section 2 as Theorem 2.1. It gives the error
estimate for the solution of Equations (1–1), (1–2) with ˇ˙ D 1, assuming estimates
for the truncation error. The theorem follows from two facts: Lemma 2.2 shows
that a grid function localized near the interface can be written as the divergence
of a function smaller in norm, and Lemma 2.3 gives a maximum norm estimate
for a discrete elliptic problem with a nonhomogeneous term of divergence form.
The applicability to the methods of Mayo, LeVeque, and Li is explained, including
a discussion of smoothness properties needed to justify the truncation error. The
lemmas are proved in Section 3. Extensions and applications are given in Section
4, and computational examples are presented in Section 5.

2. Main results

We consider the interface problem with ˇC Dˇ�, a positive constant. For simplicity,
we assume ˇ˙ D 1. We write the problem (1–1), (1–2) as

�u˙ D f˙ in �˙; Œu�D g0 on S; Œ@nu�D g1 on S (2–1)

where S � �, S�� D �� [ S , S�C D �C [ S ; f˙;u˙ are defined on S�˙; and
g0;g1 are on S . To complete the problem we assume u is specified on @�,

u D u0 on @�; (2–2)
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although other boundary conditions are considered below. We assume that f˙, g0,
g1, and S are fairly smooth, with a possible jump in f˙ at S . For appropriate u0

on @�, or for other boundary conditions, it follows that u˙ is smooth on S�˙, as
discussed below. In order to estimate truncation errors in difference schemes, we
suppose for now that u˙ is C 4 on S�˙ and also that S is C 4. It follows that each
of u˙ has a C 4 extension to an open set containing S ; this fact will be used to
justify the corrections at the interface. Sufficient conditions for the regularity of u

are given in Lemma 2.4.
To discuss discretization, we write the region � as

�D fx 2 Rd
W 0< xk <Ak ; 1 � k � dg: (2–3)

For simplicity, we assume ratios of the lengths Ak are rational, so that the domain
can be partitioned by grid cubes of size h for arbitrarily small h. We assume h is
chosen so that Ak D Nkh with integer Nk for each k. The computational domain
is

�h D fj h 2 hZd
W 1 � jk � Nk � 1; 1 � k � dg; (2–4)

with boundary

@�h D fj h W 0 � jk � Nk ; 1 � k � d I jk D 0 or Nk for some kg: (2–5)

The closure is S�h D�h [ @�h. We also need the partial boundary

@0�h D fj h W 0 � jk � Nk � 1; 1 � k � d I jk D 0 for some kg: (2–6)

We use the usual second-order discrete Laplacian, defined for a function uh on S�h

as

�huh
D

dX
kD1

D�
k DC

k
u; (2–7)

where D˙
k

is the usual forward or backward difference operator in the k-th direction;
for example, with d D 2,

DC

1
u.j1h; j2h/D

�
u..j1 C 1/h; j2h/� u.j1h; j2h/

�
=h:

We write r˙
h

u for the discrete gradient whose components are D˙
k

. We will use
the discrete Lp norm and maximum norm,

kuh
kp;�h

D

� X
jh2�h

juh.j h/jphd

�1=p

; kuh
kmax;�h

D max
jh2�h

juh.j h/j: (2–8)

Now suppose the grid size h is chosen and each grid point j h 2 S�h is labeled
as a point in S�C or S��; points lying on S can be assigned arbitrarily. We say a
grid point is regular with respect to S if all grid points in the stencil of the discrete
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Laplacian at that point are in the same closed region. Otherwise it is irregular. Let
ue be the exact solution of (2–1), (2–2). At each regular point we have the usual
truncation error

�hue.j h/ D f˙.j h/ C �h.j h/; j�h.j h/j � C h2; (2–9)

with f˙ chosen according to whether j h 2 S�C or S��. This holds even if there are
boundary points within h of j h, since the ue

˙
have smooth extensions independent

of h; the usual Taylor expansion applies to the extended ue
˙

, once h is small enough.
Next we consider the error at the irregular points. Suppose we identify the leading
terms in �hue.j h/, as is done in the methods under discussion, and explained
further below see (2–23)–(2–26), with a first order error remaining. That is, we find
T h.j h/, determined by the jumps, so that

�hue.j h/ D f˙.j h/ C T h.j h/ C �h.j h/; j�h.j h/j � C h: (2–10)

(If j h 2 S , f˙ is chosen to be consistent with the labeling of j h.) Now define f h

on �h by

f h.j h/ D

�
f˙.j h/ C T h.j h/; j h irregular;
f˙.j h/; j h regular:

(2–11)

Finally, as in [32; 34; 24], we take uh to be the solution of

�huh
D f h in �h; uh

D u0 on @�h: (2–12)

Then the error uh � ue satisfies

�h.u
h

� ue/ D ��h in �h; uh
� ue

D 0 on @�h: (2–13)

We can now state our main result. We assume that (2–9) and (2–10) hold, rather
than making assumptions about the smoothness of the problem. After the theorem
and related lemmas, we describe the assumptions which guarantee the needed
smoothness and then review the derivation of (2–10). The theorem implies that the
error in (2–13) is uniformly O.h2/, with a similar estimate for the discrete gradient.

Theorem 2.1. Let ue be the exact solution of the problem (2–1), (2–2) with S at
least C 1. Suppose �hue has the form given by (2–9), (2–10), with j�h.j h/j � C h

at irregular grid points and j�h.j h/j � C h2 at regular grid points. Let uh be the
solution of (2–11), (2–12). Then

juh.j h/ � ue.j h/j � C0h2; j h 2�h (2–14)

and for 1 � `� d ,

jDC

`
uh.j h/ � DC

`
ue.j h/j � C1h2 log .1=h/; j h 2�h [ @0�h (2–15)
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with C0;C1 dependent on ue but independent of h.

The discrete gradient estimate (2–15) can be interpreted as an estimate for

D�
` .u

h
� ue/

at a slightly different set of points, and thus a similar estimate also holds for
centered differences on �h. An accurate approximation to rue can thus be found;
see Corollary 2.5 and Equation (2–27) below.

Theorem 2.1 will follow directly from the next two lemmas, which are proved in
Section 3.

Lemma 2.2. Suppose f irr is a function on �h which is nonzero only on the set of
irregular points. Assume S is C 1. Then there exist functions Fk on �h [ @0�h,
1 � k � d , such that Fk D 0 on @0�h,

f irr
D

dX
kD1

D�
k Fk in �h (2–16)

and
kFkkmax;�h[@0�h

� C hkf irr
kmax;�h

; 1 � k � d; (2–17)

where C depends on S but is independent of h.

Lemma 2.3. Suppose

�hv D f reg
C

dX
kD1

D�
k Fk in �h; v D 0 on @�h; (2–18)

where

v W S�h ! R; f reg
W�h ! R; (2–19)

Fk W�h [ @0�h ! R; 1 � k � d (2–20)

and Fk.j h/D 0 for each j h 2 @0�h with j` D 0 for some `¤ k. Then

kvkmax;�h
� C0

�
kf reg

k2;�h
C

dX
kD1

kFkkmax;�h[@0�h

�
; (2–21)

kDC

`
vkmax;�h[@0�h

� C1 log .1=h/

�
kf reg

kmax;�h
C

dX
kD1

kFkkmax;�h[@0�h

�
(2–22)

for 1 � `� d , where C0;C1 depend only on the lengths Ak .
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To derive the theorem, we set f irr equal to the restriction of �h to the irregular
points and use Lemma 2.2, concluding that Fk D O.h �h/D O.h2/. Then we apply
Lemma 2.3 to v D uh � ue, using (2–13) with f reg equal to the regular part of �h.
The entire right side of (2–21) is O.h2/, and similarly for (2–22). Theorem 2.1 and
the lemmas also hold with periodic or Neumann boundary conditions, rather than
Dirichlet, as discussed below. For the discrete Dirichlet problem (2–18), it is well
known that the maximum of v can be estimated by the maximum of the right side,
using the discrete maximum principle, but (2–21) is sharper in dependence on Fk .

In order to verify Equations (2–9), (2–10) we need general conditions on the
problem (2–1), (2–2) to ensure the smoothness of u˙. An existence and regularity
theorem for a general class of interface problems is given in [22], Section 16.
The statement of higher regularity given below for the present case is based on
potential theory and the classical Schauder estimates for elliptic equations. A brief
justification is given in Section 3. This statement can be extended to the case with
a discontinuous coefficient in the jump in normal derivative; see Section 4. We
say that f 2 C mC˛.S�/, for integer m and 0< ˛ < 1, if f 2 C m.S�/ and Dmf is
uniformly Hölder continuous with exponent ˛ on S�.

Lemma 2.4. Suppose u˙ in Equation (2–1) is the restriction to � of a solution to
the extended problem in Rd . Suppose S is C 4C˛,

f� 2C 2C˛.S��/; fC 2C 2C˛.Rd
���/; g0 2C 4C˛.S/; and g1 2C 3C˛.S/;

for some 0< ˛ < 1. Then u˙ 2 C 4C˛.S�˙/.

We now describe the derivation of (2–10) as in Mayo’s method [32; 34; 31],
the related work of Wiegmann and Bube [37], or the immersed interface method
of LeVeque and Li [24; 27; 26]. All these methods start with the observation that
jumps in higher derivatives of u˙ in (2–1) can be found by differentiating the jumps
in u˙; @nu˙ along S and using �u˙ D f˙. To be specific, we emphasize Mayo’s
point of view. For dimension 2, writing .x;y/ 2 R2, the jumps in first and second
derivatives are

Œux � D x0g0
0 C y0g1; Œuy � D y0g0

0 � x0g1; (2–23)

Œuxx � D g2 C y02Œf �; Œuyy � D �g2 C x02Œf �; (2–24)

where
g2 � 2�x0y0g0

0 C .x02
� y02/.g00

0 � �g1/C 2x0y0g0
1; (2–25)

and where primes denote arclength derivative d=ds along S and � is the curvature
� D x00y0 � x0y00. These jump formulas, or equivalent ones, are used to find the
corrections Th at the irregular grid points. Suppose, for example, that

.j1h; j2h/ 2 S�� but ..j1 C 1/h; j2h/ 2 S�C:
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To correct �hu.j1h; j2h/, we find a point ..j1 C �/h; j2h/ 2 S , 0 � � � 1. A
Taylor expansion gives

uC..j1 C 1/h; j2h/� u�.j1h; j2h/ D hu�;x C
1
2
h2u�;xx

C Œu�C .1 � �/hŒux �C
1
2
.1 � �/2h2Œuxx �C O.h3/; (2–26)

where u�;x ,u�;xx are evaluated at .j1h; j2h/ and the jumps are located at

..j1 C �/h; j2h/:

This expression is valid even if S intersects the segment at more than one point; the
Taylor expansion for u˙ applies to the extended functions under the smoothness
assumptions of Lemma 2.4. To approximate �hu.j1h; j2h/ we consider four such
segments, finding jump terms if needed, add expressions similar to (2–26), and
divide by h2, to obtain an equation in the form (2–10), thus identifying T h.j1h; j2h/.
The procedure for the immersed interface method [24] is very similar, but for each
irregular point .j1h; j2h/, one nearby boundary point is chosen, and a Taylor
expansion in .x;y/ about this point is used for each of the points in the stencil. In
either case the derivation of (2–9), (2–10) is justified, and Theorem 2.1 applies:

Corollary 2.5. For the problem (2–1), (2–2), with the smoothness assumptions of
Lemma 2.4, either Mayo’s method [32; 34] or the immersed interface method of
LeVeque and Li [24], with corrections of the form (2–10), gives a computed solution
uh with juh � uej � C h2 uniformly. Moreover, rue can be found on �h from uh

with error uniformly O.h2 log .1=h//.

It remains to verify the last statement of the corollary. For regular points the
centered difference of uh gives a value of rue accurate to O.h2 log .1=h//, ac-
cording to (2–15). At irregular points we can correct the centered difference to
the same order using formulas such as (2–26). For example, suppose .j1h; j2h/

and ..j1 � 1/h; j2h/ are in S�� but ..j1 C 1/h; j2h/ 2 S�C. We find, for the exact
solution,

uC

�
.j1C1/h; j2h

�
� u�

�
.j1�1/h; j2h

�
D 2hu�;x.j1h; j2h/ C Œu�C .1 � �/hŒux �C

1
2
.1��/2h2Œuxx �C O.h3/: (2–27)

From this we obtain a computed value of ru which is again accurate to

O.h2 log .1=h//:

Similar results hold if we impose a boundary condition on @� other than (2–2).
No change is needed if we use the homogeneous Dirichlet condition u D 0 on
@�, provided f is the restriction to � of an odd, periodic function, with period
2Ak in direction k, which is smooth except for the jump at S and its reflections.
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(For example, this would be true if fC D 0 near @�.) The solution is then smooth,
since the problem extends to Rd with u odd and periodic. Alternatively, we could
use periodic boundary conditions for u on S�, if f extends smoothly to a periodic
function with periods Ak . In this case we have the necessary conditionZ

��

f� C

Z
�C

fC C

Z
S

Œg1� dS D 0 (2–28)

and u has an arbitrary constant. Finally, we could impose the Neumann, or no-flux,
condition

@nu D 0 on @�; (2–29)

again with condition (2–28), if f has a smooth, even, periodic extension. In this
case we solve for uh on S�h, with uh extended past @�h so that

u.�h; j2h/D u.h; j2h/;

etc., consistent with (2–29). The exact and discrete Neumann problems both extend
to even, periodic problems, and the analysis for the periodic case applies to this
case as well.

We discuss the modifications of the analysis for the periodic boundary condition.
We cannot solve �huh D f h exactly with uh periodic; instead we solve

�huh
D f h

� f h
0 ; (2–30)

where f h
0

is the mean value of f h. Since �huh has mean value zero, and the
number of irregular points is O.h�dC1/, it follows from (2–9), (2–10) that

f h
0 D O.h2/;

so that this term does not affect the error estimate. Lemma 2.2 must be replaced by
the version below. The proof of Lemma 2.3 is similar to the earlier case but simpler.
The new term F0 is treated in the theorem like the term f reg.

Lemma 2.6. Suppose f irr is a function on �h which is nonzero only on the set
of irregular points. Assume S is C 1. Then there exist periodic functions Fk on
�h [ @0�h, 0 � k � d , so that Fk D 0 on @0�h for 1 � k � d ,

f irr
D F0 C

3X
kD1

D�
k Fk in �h (2–31)

and
kFkkmax;�h[@0�h

� C hkf irr
kmax;�h

; 0 � k � d (2–32)

where C depends on S but is independent of h.
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3. Proofs of the lemmas

Proof of Lemma 2.2. For simplicity, we assume dimension d D 3. We wish to work
with pieces of S for which one spatial coordinate can be written as a function of
the others. We can localize using a partition of unity (see, for example, [14], p. 13):
Since S is C 1 and compact, there are finitely many open sets Ui ;Vi �� and C 1

functions �i � 0 on � so that SVi � Ui ; the Vi cover S ; each �i is supported in Vi ;P
i �i.x/D 1 for each x in an open neighborhood N of S ; and for each i we can

choose one coordinate, say x3, so that the part of S in Ui consists of

S \ Ui D f.x1;x2;Zi.x1;x2// W .x1;x2/ 2 U 0
i g; (3–1)

where U 0
i is an open subset of R2 and Z W U 0

i ! R is a C 1 function. Since the
irregular points are within distance h of S , they are contained in N once h is small
enough. For f irr as specified, we can then write f irr D

P
i �if

irr. It will suffice to
prove the lemma for each f .i/ D �if

irr.
Having localized the problem to considering f .i/ on Vi , we first estimate the

number of irregular points in Vi with given projection on U 0
i . Let V 0

i be the
projection of Vi on U 0

i . Suppose x0 D j h D .j1h; j2h/ 2 V 0
i . If p D .x0; z/ 2 Vi is

an irregular point, then there is some q 2 S with jq �pj � h, say q D .x00; z00/ with
x00 2 U 0

i . Then jx00 � x0j � h, jz00 � zj � h, and z00 D Zi.x
00/. If M is a bound for

jrZi j, then jZi.x
00/� Zi.x

0/j � M h, and

jz � Zi.x
0/j � jz � z00

j C jZi.x
00/� Zi.x

0/j � .1 C M /h: (3–2)

Thus z is restricted to an interval of length 2.M C 1/h, and the number of irregular
points in Vi projecting onto x0 is at most C1 � 2M C 3, a number bounded
independent of x0 D j h.

We will write f .i/ as D�
3

F .i/ for some F .i/. We set F .i/ D 0 on @0�h, and for
.j h; kh/D .j1h; j2h; kh/ 2�h we define

F .i/.j h; kh/ D

kX
`D1

f .i/.j h; `h/ h: (3–3)

Then, since kh is the third coordinate,

D�
3 F .i/

D f .i/ in �h: (3–4)

The function f .i/ can only be nonzero at irregular points, and as noted above, the
number of such points contributing to the sum (3–3) has a uniform upper bound.
The estimate (2–17) for F .i/ follows, and the proof is completed by summing
over i . �
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In proving Lemma 2.3 we will use a discrete Green’s function Gh on hZd ,
satisfying

�hGh.x/ D ıh.x/; x 2 hZd ; (3–5)

where ıh.x/D h�d for x D 0 and ıh.x/D 0 for x ¤ 0. For d D 2 or 3 such Gh

exists, with pointwise estimates analogous to those for the fundamental solution of
the exact Laplacian,

jGh.x/j � C00 C C0j log.jxj C h/j; d D 2; (3–6)

jGh.x/j � C0.jxj C h/�1; d D 3; (3–7)

and for the first and second differences in directions k or `, 1 � k; `� d ,

jDC

k
Gh.x/j � C1.jxj C h/1�d ; d D 2; 3; (3–8)

jDC

`
DC

k
Gh.x/j � C2.jxj C h/�d ; d D 2; 3: (3–9)

For example, for h D 1, G1 is introduced in [23] in terms of the expected number
of visits to x by a random walk on Zd starting at 0. The estimates (3–6)–(3–9)
follow from those in [23], (pp. 32, 40), after rescaling G1 to Gh. (For d D 2, Gh

must also be adjusted by a constant. For second differences, [23] gives an estimate
for a repeated difference in any direction, but DC

k
DC

`
can be reduced to this case

by writing, with h D 1,

.Sk � I/.S` � I/ D
1
2

�
.Sk � I/2 C .S` � I/2 � S2

` .SkS�1
` � I/2

�
(3–10)

where Sk is the forward shift in direction k.) If w is a function on hZd supported
in a bounded set, then

w.x/ D

X
y2hZd

Gh.x � y/.�hw/.y/ hd : (3–11)

This follows from (3–5) and the uniqueness of solution of the discrete Poisson
problem.

We will need estimates for norms of Gh, DC

k
Gh, and D�

`
DC

k
Gh which follow

directly from the pointwise estimates (3–6)–(3–9). With Bh.R/D fx 2 hZd W jxj<

Rg, we have

kGhk2;Bh.R/ � C0.R/; kDC

k
Ghk1;Bh.R/ � C1.R/; (3–12)

kDC

`
DC

k
Ghk1;Bh.R/ � C2.R/ log .1=h/; (3–13)

with constants depending on R. Discrete Green’s functions for more general elliptic
operators and domains were constructed by Bramble et al. [7] and pointwise
estimates for Gh were found using the maximum principle [8].
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Proof of Lemma 2.3. First we check that

kr
C

h
vk2;�h[@0�h

� C
�
kf reg

k2;�h
C

X
k

kFkk2;�h

�
: (3–14)

To show this, we multiply by v in (2–18), sum over �h, and then sum by parts on
the left and in the Fk terms, using the boundary conditions for v and Fk , to obtain

hr
C

h
v;rC

h
vi�h[@0�h

D �hf reg; vi�h
C

X
k

hFk ;D
C

k
vi�h

; (3–15)

where brackets denote the usual discrete inner product, for example,

hv;wi�h
D

X
jh2�h

v.j h/w.j h/hd ; kvk2;�h
D hv; vi

1=2
�h
: (3–16)

We can then derive (3–15) from the Cauchy–Schwarz inequality and the discrete
Poincaré inequality, valid since v D 0 on @�,

kvk2;�h
� kr

C

h
vk2;�h[@0�h

: (3–17)

Next we extend the Poisson equation from�h to hZd . Let Qf be the odd, periodic
extension of f reg, with period 2Nkh in direction k, with Qf D 0 on the faces

jkh D 0;Nkh

and their images. Let Q�k be the similar odd periodic extension of D�
k

Fk , and Qv the
odd periodic extension of v. Then

�h Qv D Qf C

X
k

Q�k in hZd : (3–18)

We want to write Q�k as D�
k

of some extension QFk of Fk . For example, if k D 1

and d D 3, for 1 � j1 � N1 and 0 � jk � Nk � 1, k D 2; 3, we define

QF1.�j1h; j2h; j3h/D F1..j1 � 1/h; j2h; j3/h:

We then extend QF1 to all j1h, with period 2N1h. Finally we extend QF1 to be odd
and periodic in j2h; j3h, with QF1.j1h; j2h; j3h/D 0 if jkh is a multiple of Nkh

for k D 2 or 3. With this definition, and a similar one for each QFk , we have

Q�k D D�
k

QFk in hZd : (3–19)

We can now derive the maximum estimate for v. Choose a smooth function
� W Rd ! Œ0; 1� with �.x/ D 1 for an open set containing S� and � D 0 outside a
bounded set B. Then

�h.� Qv/ D � Qf C �r�
h � QF � r

˙
h � � r

˙
h Qv � .�h�/ Qv in hZd ; (3–20)



104 J. THOMAS BEALE AND ANITA T. LAYTON

where QF is the vector with components QFk and ˙ indicates two terms. We use the
discrete Green’s function Gh to write, for x 2�h,

v.x/ D T1 C T2 C T3 C T4; (3–21)

where

T1 D

X
y2hZd

Gh.x�y/�.y/ Qf .y/ hd ; T2 D

X
y2hZd

Gh.x�y/�.y/r�
h � QF .y/ hd

or, after summation by parts,

T2 D

X
y2hZd

.rC

h
Gh/.x � y/�.y/ QF .y/ hd

�

X
y2hZd

Gh.x � y/.rC

h
�/.y/ QF .y/ hd (3–22)

and similarly T3;T4 are discrete convolutions of Gh with r˙
h
� � r˙

h
Qv and .�h�/ Qv.

To estimate these terms, let QB � Rd be a bounded set which contains all points
x � y with x 2 S� and y 2 B, and let Bh D B \ hZd , QBh D QB \ hZd . Then for
each x 2�h,

jT1j � kGhk
2; QBh

k Qf k2;Bh
;

jT2j �
�
kr

C

h
Ghk

1; QBh
C C2kGhk

2; QBh

� (3–23)

and
jT3j � C3kGhk

2; QBh

�
kr

C

h
Qvk2;Bh

C kr
�
h Qvk2;Bh

�
;

jT4j � C4kGhk
2; QBh

k Qvk2;Bh
:

(3–24)

The extension of f and F was such that

k Qf k2;Bh
� C kf reg

k2;�h
; k QFkmax;Bh

� C kFkmax;�h[@0�h
(3–25)

and using (3–12) we get

jT1j C jT2j � C
�
kf reg

k2;�h
C kFkmax;�h[@0�h

�
: (3–26)

Also v was extended so that

k Qvk2;Bh
� C kvk2;�h

; kr
˙
h Qvk2;Bh

� C kr
C

h
vk2;�h[@0�h

: (3–27)

Combining this with (3–24), (3–14), (3–17), and (3–12), we see that T3;T4 have
the same estimate as in (3–26), and (2–21) is now established.

The proof of (2–22) is very similar. We apply DC

`
to (3–21) with T2 in the form

(3–22); in each term D�
`

acts on the x-variable in Gh. In T3 and T4, DC

`
Gh is

uniformly bounded for x 2�h since the support of r˙
h
� is away from �h. �
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Proof of Lemma 2.4. We first reduce to the case f˙ D 0, as in [18]. From the
Schauder regularity theory, the presumed solution uC is C 4C˛ away from S . Using
this fact and the Schauder theory, we see that there exists vC in C 4C˛.Rd ���/

such that �vC D fC and vC D 0 on S , and there exists v� in C 4C˛.S��/ such that
�v� Df� and v� D 0 on S . Subtracting v˙, we now consider the reduced problem
with f˙ D 0. We can write a solution as the sum of a double layer potential and
a single layer, with strengths g0 and g1 respectively. The double layer potential
has boundary values on each side of S in C 4C˛ , the same as for g0, and it follows
from the Schauder theory that it has the desired regularity in S�˙. A similar remark
applies to the Neumann boundary condition for the single layer potential. This
solution may not be the same as u˙, since we have not imposed a condition at
infinity, but the difference is harmonic throughout and therefore is smooth. �

Proof of Lemma 2.6. We proceed as in the proof of Lemma 2.2, but in place of
(3–3), we set F .i/.j h; 0/D 0 and

F .i/.j h; kh/ D

kX
`D1

�
f .i/.j h; `h/� F

.i/
0
.j h/

�
h; 1 � k � N3; (3–28)

where F
.i/
0
.j h/ is the average of f .i/

0
.j h; `h/ over `, that is,

F
.i/
0
.j h/ D A�1

3

N3�1X
`D0

f .i/.j h; `h/ h (3–29)

for j h 2 V 0
i and F

.i/
0
.j h/ D 0 otherwise. Then F .i/.j h;N3h/ D 0, so that F .i/

extends periodically, and

f .i/
D D�

3 F .i/
C F

.i/
0
: (3–30)

For each j , there are at most C1 D O.1/ terms in the sum (3–28), and thus

kF
.i/
0

kmax � A�1
3 C1hkf .i/

kmax � A�1
3 C1hkf irr

kmax: (3–31)

Then (2–17) holds for F .i/, as defined in (3–28). Finally, we sum over i . �

4. Applications and extensions

Piecewise constant coefficients. In Section 2 we treated the problem (1–1), (1–2)
in the special case ˇC D ˇ�. We now return to the problem where ˇC, ˇ� are
unequal, positive constants, perhaps representing different material properties. The
important change is that Œ@nu� is not known, although Œˇ@nu� is known. One
possible approach is to enlarge the system of equations for the discretized elliptic
system ([37; 27]). Here we use a different strategy, assuming the problem is in free
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space: We first solve an integral equation on S for the unknown Œ@nu�, based on
an integral representation for the solution, thus reducing the problem to the earlier
case. A similar strategy is used below for Stokes flow with two fluids, using such a
representation, as described, for example, in [36].

Suppose the problem (1–1), (1–2) is the restriction to � of a problem in R2 in
which fC D 0 outside � and u ! 0 at infinity. We will assume u is continuous
across S , that is, g0 D 0 in (1–2), but Œˇ@nu�D g1 may be nonzero. The extra step
of solving for Œ@nu� is needed even if g1 D 0. The unknown u can be thought of as
a weak solution of

r � .ˇru/ D f C g1ıS ; (4–1)

where ıS is the measure that restricts to S . A recent analytical treatment of such
problems can be found in [18]. The solution has the form

u.x/ D

Z
�

G.x � y/
f .y/

ˇ.y/
dy C

Z
S

G.x � y/q.y/ ds.y/ (4–2)

for some q defined on S , where G.x/D .2�/�1 log jxj, ˇ.y/Dˇ˙ for y 2�˙ and
f D f˙. The last term is a single layer potential with strength q, to be determined.
From potential theory we have an expression for the normal derivative of u˙ at S :

@nu˙.x/DZ
�

@n.x/G.x�y/
f .y/

ˇ.y/
dy C

Z
S

@n.x/G.x�y/q.y/ ds.y/˙
1
2

q.x/: (4–3)

Here

@n.x/G.x � y/ D n.x/ � rG.x � y/; rG.x � y/ D
x � y

2�jx � yj2
: (4–4)

Subtracting, we see that

Œ@nu.x/� D q.x/ (4–5)

so that, once q is known, we have reduced the problem to one of the earlier type for
the unknown u. To find q we multiply (4–3) by ˇ˙, subtract, and use the second
condition in (1–2), obtaining the integral equation

1
2
.ˇC Cˇ�/q C .ˇC �ˇ�/

Z
S

.@nG/q ds D

g1 � .ˇC �ˇ�/

Z
�

.@nG/ .f=ˇ/ dy (4–6)

([36], Section 5.3). The equation has a unique solution since

j.ˇC Cˇ�/=.ˇC �ˇ�/j> 1
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(see, for example, [36], Section 5.4). In this two-dimensional case, @n.x/G.x � y/

is smooth for x;y 2 S , whereas the second integrand in (4–2) has an integrable
singularity. If fC D 0 near @�, u can be found on @� from (4–2) in a routine way,
and the solution u can be found as in Section 2 using (4–5). We see from (2–23)–
(2–26) that we need to solve for q with accuracy O.h2/ in order to obtain O.h/

truncation error near S , and thereby O.h2/ accuracy for the solution u, according
to the theory of Section 2. The solution of (4–6) is discussed further in Section 5;
see (5–10)–(5–11).

Higher order accuracy. In principle, the theory of Sections 2 and 3 can be applied
to higher order methods. In dimension d D 2, the nine-point Laplacian (see, for
example, [19], Section 7.3) has truncation error O.h2/ proportional to the Laplacian,
with remaining error O.h4/. The right-hand side of the discrete Poisson equation
can be modified so that the truncation error is O.h4/. In this way the methods
outlined in Section 2 can then be improved so that the error in the solution is
uniformly O.h4/. The jump conditions of (2–23)-(2–26) can be carried to the
fourth derivatives so that the truncation error �h in (2–10) remaining at the irregular
points after correction is O.h3/, while at the regular points the truncation error
is O.h4/. The analogue of Lemma 2.3 holds for the nine-point Laplacian; the
estimates (3–6), (3–8), (3–9) apply to the discrete Green’s function for this operator,
as can be seen from Theorem 2 in [16], and thus (3–12), (3–13) hold as well. It
then follows from Lemma 2.2 and the modified version of Lemma 2.3 that the
conclusion of Theorem 2.1 holds, with h4 in place of h2 in the estimates (2–14),
(2–15). Fourth order methods of this type have been given in [30] and [20].

Nearly singular integrals. Mayo [33] suggested a procedure to solve a problem
for a harmonic function with prescribed jumps, such as (2.1) with f˙ D 0, distinct
from the approach of [32]. The first step is to write the solution as a layer potential
and calculate it at grid points near the interface, directly as a nearly singular integral.
The discrete Laplacian is then formed at the irregular points from these values
and extended to be zero at regular points. Finally, a fast Poisson solver is used
to find the solution at all grid points. Mayo was able to solve a boundary value
problem in this manner by regarding the boundary as an interface and solving an
integral equation for the strength of the layer potential. Beale and Lai [2] developed
a method for computing nearly singular integrals and used the approach of [33]
to solve Dirichlet problems ([2], Section 4). An error estimate for the solution
resulting from this procedure is justified by the theory of Section 2: Suppose we
find the solution at the irregular points, accurate to O.h3/, as was essentially done
in [2], Section 4. The discrete Laplacian formed from these values at the irregular
grid points near the interface is accurate at least to O.h/. The discrete Laplacian is
set to zero elsewhere, with truncation error O.h2/. Thus it follows from Theorem
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2.1 that the computed solution is uniformly accurate to O.h2/. The estimate for
the gradient applies as well. Mayo gave an argument for a similar conclusion in the
Appendix of [33].

Stokes flow. The methods studied here have been used to solve the Stokes equations,
describing creeping flow of a very viscous fluid, with an interface separating regions.
The immersed interface method of LeVeque and Li was applied to problems with
moving interfaces in one fluid in a periodic region [25]. Here we discuss a very
similar method for the steady problem in free space. We emphasize the implications
of the present results for the error estimates. We see that choices for corrections
as in [25] lead to uniform O.h2/ accuracy for both pressure and velocity. We first
discuss the case of 2D flow with one fluid, and then explain how the procedure
can be extended to the two-fluid case by first solving an integral equation on the
interface.

We write the problem as

���v C rp D f ıS ; r � v D 0; (4–7)

where v D .v1; v2/ is the fluid velocity, � is the viscosity, p is the pressure, and
f D .f1; f2/ is a specified force on the interface S . The associated stress tensor is

�ij D �pıij C �
� @vi

@xj
C
@vj

@xi

�
; (4–8)

with i; j D 1; 2. We assume for now that � has the same value on both sides, but
later we consider the case of different viscosities. We always assume the velocity is
continuous across S . The delta function terms in the Stokes equations amount to a
jump condition on � (see [35]),

Œ�ij �nj D �fi ; i D 1; 2 (4–9)

with sum over j understood. From the jump in stress we obtain jump conditions
for p and @v=@n [35; 25]

Œp� D f � n; �

�
@v

@n

�
D �.f � �/�: (4–10)

We also need the jump condition for @p=@n, derived in [25],�
@p

@n

�
D
@.f � �/

@s
; (4–11)

where s is the arclength parameter on S .
To solve (4–7) we proceed in steps, as in [25], solving first for p and then for

v. We choose a computational rectangle � containing S and use a square grid
as before. We solve the free space problem, assuming decay at infinity. On the
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computational boundary we prescribe the exact solution, which is known in integral
form (for example, see [36; 13]). The pressure is

p.x/ D

Z
S

rG.x � y/ �f .y/ ds.y/; (4–12)

with rG as in (4–4). The velocity is

vi.x/ D
1

�

Z
S

Vij .x � y/fj .y/ ds.y/; (4–13)

Vij .x/ D �
ıij

4�
log jxj C

xixj

4�jxj2
: (4–14)

The pressure p is determined by a problem of the form (2–1), with �p D 0 in
�˙ and jump conditions for p; @p=@n given in (4–10), (4–11). We solve for p

using the procedure of Section 2, adding corrections to the discrete Laplacian. In
this way we obtain a solution ph with error uniformly O.h2/. Next we solve for
the velocity components vh

1
; vh

2
. For the exact v we have ��v D rp in �˙. We

find a computed velocity vh as the solution of

��hv
h

D r
hph

C T h; (4–15)

where rh is the centered difference operator for r. In T h we include correction
terms to account for the jumps in @v=@n and in rp, given in (4–10), (4–11), as well
as corrections for the difference approximation to rp, as in (2–27). According to
Theorem 2.1, the resulting vh would be uniformly second-order accurate if ph were
exact. However, since ph �pe D O.h2/ uniformly, the error on the right-hand side
of the form rh.ph � pe/ contributes an error to the solution which is uniformly
O.h2/, according to Lemma 2.3. (As noted in [25], we only need correct the
difference rhp to O.h/ near S to obtain O.h2/ accuracy for the velocity.)

Stokes flow with two fluids. Next we consider the case of two different viscosities,
�˙. With the Stokes equations (4–7) otherwise the same, we have the same jump
condition (4–9) for the normal stress. The solution can be written in integral form,
derived in [36], Section 5.3:

p.x/ D �˙

Z
S

rG.x � y/ � q.y/ ds.y/; (4–16)

vi.x/ D

Z
S

Vij .x � y/qj .y/ ds.y/: (4–17)

Here q D .q1; q2/ is a function on S which solves the integral equation

1
2
qi.x/ D ˛nk.x/

Z
S

Tijk.x � y/qj .y/ ds.y/ C f̌i.x/; (4–18)
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with

Tijk D �
xixj xk

�jxj4
; ˛ D

�C ���

�C C��

; ˇ D
1

�C C��

: (4–19)

(See equation (5.3.9) in [36], noting the factors of 4� should be replaced by 2�

in the two-dimensional case.) To solve the flow problem, we begin by solving
this integral equation for q. The solvability is discussed in [36], Section 5.4. The
kernel nkTijk is smooth on S , and the integrals can be computed in a standard way.
After solving for q, we can think of v;p=�˙ on �˙ as the solution of the Stokes
equations with �˙ replaced by 1 and with

Œ�
.1/
ij � nj D �qi ; (4–20)

where

�
.1/
ij D �

p

�˙

ıij C

� @vi

@xj
C
@vj

@xi

�
: (4–21)

It follows that v;p=�˙ have jumps as in (4–10), (4–11) but with f replaced by q.
Once these jumps are known, we can solve for p=�˙ and then v as in the earlier
one-fluid case. In view of (2–23)–(2–26), we need to find q to accuracy O.h3/ to
obtain an O.h/ truncation error near S in the problem for p of the form (4–10), in
order to solve for p, and then v, with O.h2/ accuracy. It is not difficult to solve
the integral equation (4–18) to this accuracy provided S and f are smooth enough.

5. Numerical examples

Interface problem with ˇC D ˇ�. In the first set of examples, we consider the
interface problem with ˇ˙ D 1:

�u˙ D f˙ in �˙; (5–1)

where the interface S is given by the ellipse

x2

a2
C

y2

b2
D 1 (5–2)

and �D Œ�1:1; 1:1�� Œ�1:1; 1:1�.
The first example we consider has a solution given by

u� D sin x cos y; uC D 0: (5–3)

With u˙ specified, f˙ in (5–1) and the jump conditions g0 and g1 can be determined.
Two choices for the semi-axes of the ellipse were used, first, .a; b/ D .0:7; 0:9/,
and then .a; b/D .0:9; 0:1/. In the latter, the curvature � D �90 at .˙a; 0/, leading
to a more severe test. The solution and its gradient were computed using the
technique of Mayo [32] and using the immersed interface method of LeVeque
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and Li [24]. Results for the two ellipses are reported in Table 1. Solutions were
obtained for N D 40, 80, 160, 320, and 640, where N denotes half of the number
of subintervals in each dimension. Normalized errors in the Lr -norm, defined
as kuh � uekr=kuhkr , are shown for r D 2 and 1. These results show O.h2/

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 5.106E-5 3.451E-5 1.448E-4 1.370E-4 2.120E-4 1.436E-4
80 1.415E-5 1.045E-5 3.565E-5 3.275E-5 5.475E-5 3.594E-5

160 3.416E-6 2.458E-6 8.980E-6 8.269E-6 1.336E-5 8.965E-6
320 8.217E-7 5.728E-7 2.262E-6 2.089E-6 3.269E-6 2.352E-6
640 1.180E-7 8.756E-8 4.189E-7 3.945E-7 5.532E-7 4.186E-7

Immersed interface method

40 2.345E-5 1.773E-5 1.107E-4 1.035E-4 1.362E-4 1.302E-4
80 2.748E-5 2.632E-5 2.748E-5 2.632E-5 3.613E-5 3.510E-5

160 1.510E-6 1.139E-6 6.912E-6 6.656E-6 8.856E-6 8.989E-6
320 3.722E-7 2.805E-7 1.731E-6 1.664E-6 2.199E-6 2.323E-6
640 9.732E-8 7.645E-8 4.305E-7 4.166E-7 5.184E-7 5.967E-7

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

20 2.377E-5 1.209E-5 4.926E-4 4.900E-4 1.506E-3 9.577E-4
40 6.020E-6 2.730E-6 1.231E-4 1.219E-4 3.637E-4 2.269E-4
80 2.261E-6 1.003E-6 3.057E-5 3.001E-5 1.424E-4 1.376E-4

160 5.730E-7 2.340E-7 7.637E-6 7.532E-6 3.649E-5 3.331E-5
320 1.297E-7 5.360E-8 1.915E-6 1.951E-6 8.189E-6 8.309E-6

Immersed interface method

20 7.134E-4 6.933E-4 1.601E-3 3.051E-3 6.267E-2 7.441E-2
40 1.311E-5 7.441E-6 1.221E-4 1.611E-4 9.386E-4 1.559E-3
80 4.750E-6 2.043E-6 2.993E-5 3.538E-5 3.019E-4 2.047E-4

160 1.210E-6 5.156E-7 7.468E-6 7.949E-6 7.696E-5 5.145E-5
320 2.972E-7 1.249E-7 1.869E-6 2.036E-6 1.881E-5 1.277E-5

Table 1. Results for interface problem with ˇ D 1, example (5–3).
Normalized errors in computed solution and first derivatives. Top:
a D 0:7, b D 0:9; bottom: a D 0:9, b D 0:1.
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convergence in the solution u, consistent with Theorem 2.1. In Section 2, we
proved that ru can be approximated from uh with error uniformly O.h2 log.1=h//.
However, results in both tables show O.h2/ accuracy in ruh.

We then consider a second example where the solution is given by

u� D x9y8; uC D 0: (5–4)

This example is constructed such that the solution has large high-order derivatives.
In particular, j@3u=@x3j and j@3u=@y3j, which occur in the lowest-order uncorrected
terms in both Mayo’s method and the immersed interface method, are large. Tables 2
and 3 show normalized errors in the solution and its gradient. Results in Table 2,
computed for the ellipse .a; b/D .0:7; 0:9/, show O.h2/ convergence, although the
magnitude of the errors is larger in this example. In particular, as in the previous
example, O.h2/ accuracy was obtained for ruh.

The ellipse .a; b/ D .0:9; 0:1/ used in the next example has large curvature
j�j � 90, compared to j�j< 1:84 in the previous example. As shown in Table 3, the
computed solution has large errors, compared to all previous examples. In particular,
solution errors are > 100% for N D 40. These large errors can be attributed to the
O.h3/ error terms neglected in (2–26) by Mayo’s technique and in the analogous
expression by the immersed interface method. The magnitude of these O.h3/ error
terms is proportional to � and to r3u — both of which are large in this example by

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 2.370E-2 6.401E-3 2.489E-2 1.994E-2 1.340E-2 1.046E-2
80 7.469E-3 2.764E-3 5.895E-3 5.520E-3 3.249E-3 2.385E-3

160 1.362E-3 4.802E-4 1.508E-3 1.411E-3 7.825E-4 6.834E-4
320 3.232E-4 9.426E-5 3.858E-4 3.532E-4 1.985E-4 1.768E-4
640 8.363E-5 2.952E-5 9.389E-5 9.304E-5 4.839E-5 4.211E-5

Immersed interface method

40 2.140E-2 5.699E-3 2.557E-2 2.096E-2 1.390E-2 1.144E-2
80 6.963E-3 2.478E-3 6.139E-3 5.840E-3 3.546E-3 2.695E-3

160 1.236E-3 3.719E-4 1.565E-3 1.489E-3 8.571E-4 7.456E-4
320 2.815E-4 7.053E-5 3.992E-4 3.749E-4 2.170E-4 1.931E-4
640 7.858E-5 2.502E-5 9.742E-5 9.795E-5 5.365E-5 4.618E-5

Table 2. Results for interface problem with ˇ D 1, example (5–4).
Normalized errors in computed solution and first derivatives, ob-
tained for a D 0:7, b D 0:9.
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construction. Thus, for a sufficiently coarse grid, these uncorrected O.h3/ error
terms result in large solution errors. Nonetheless, for sufficiently large N , the
approximations show O.h2/ convergence, although the error magnitude remains
large.

Interface problem with piecewise-constant ˇ . Next we consider the problem of
an interface with piecewise-constant coefficients ˇ˙

ˇ˙�u˙ D f˙ in �˙; (5–5)

Œu�D 0; Œˇ@nu�D g1; (5–6)

where the interface S is given by an ellipse (5–2) with a D 0:9 and b D 0:7, and
�D Œ�1:3; 1:3�� Œ�1:3; 1:3�. The solution is given in elliptic coordinates to be

u� D a3
0

�
cosh2 � sinh � cos2 � sin � C sinh3 � sin3 �

�
;

uC D ce�3� sin 3� C de�� sin �;
(5–7)

where � 2 Œ0;1/ and � 2 Œ0; 2��; � and � are defined by the conformal mapping

x C {y D a cosh.�C {�/ (5–8)
such that

x D a0 cosh � cos �; y D a0 sinh � sin �: (5–9)

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 5.068E0 2.356E0 4.146E0 3.575E0 8.513E-1 6.492E-1
80 6.787E-1 1.946E-1 6.443E-1 4.322E-1 2.004E-1 1.523E-1

160 1.388E-1 3.359E-2 1.236E-1 1.107E-1 4.859E-2 4.095E-2
320 3.777E-2 9.627E-3 2.523E-2 2.869E-2 1.120E-2 1.128E-2
640 8.629E-3 2.126E-2 5.548E-3 7.501E-3 3.003E-3 3.019E-3

Immersed interface method

40 4.683E0 2.291E0 4.183E0 3.663E0 8.542E-1 6.511E-1
80 6.262E-1 1.791E-1 6.452E-1 3.264E-1 2.009E-1 1.527E-1

160 1.391E-1 3.015E-2 1.251E-1 1.133E-1 4.871E-2 4.101E-2
320 3.493E-2 8.695E-3 2.549E-2 2.944E-2 1.202E-2 1.130E-2
640 8.665E-3 1.921E-3 5.731E-3 7.663E-3 3.009E-3 3.024E-3

Table 3. Results for interface problem with ˇ D 1, example (5–4).
Normalized errors in computed solution and first derivatives, ob-
tained for a D 0:9, b D 0:1.
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Note that uC is harmonic, that is, fC D 0. The coefficients c and d in (5–7) are set
to 1.26713535 and 1.12854242, respectively, so that Œu�D 0.

To compute the solution for (5–5) and (5–6), Œ@nu� � q is first computed by
solving (4–6) iteratively:

qŒkC1�
D

2

ˇC Cˇ�

�
g1 � .ˇC �ˇ�/

�Z
S

.@nG/qŒk� ds C

Z
��

�
@nG

�
.f�=ˇ/ dy

��
(5–10)

Because @n.x/G.x � y/ is nearly singular for y near (though not on) S , a naı̈ve
integration of the second integral containing @nG yields only O.h/ accuracy. To
attain O.h2/ accuracy, we follow a standard procedure and subtract

@n.x/G.x � y/f�.x/=ˇ

from the integrand, where x 2 S is the point at which q.x/ in (5–10) is being
evaluated; then we add an O.h2/ approximation to f�.x/=ˇ timesZ

�

@n.x/G.x � y/ dy D �

Z
S

n.x/ � n.y/G.x � y/ ds.y/: (5–11)

The resulting interface condition Œ@nu� D q, together with Œu� D 0, is then used
to solve (5–5): f˙ is divided by ˇ˙, and then u is computed as in the previous
example with constant coefficient ˇ D 1.

Normalized errors in u are shown in Table 4 for two pairs of coefficients. In
the first case, ˇC D 2 and ˇ� D 0:5; in the second case the difference between
ˇ’s is increased substantially: ˇC D 100 and ˇ� D 0:2. Mayo’s technique was
used to compute correction terms for the finite-difference stencil. The results in
Table 4 suggest that, for this problem, not only is O.h2/ accuracy obtained as
predicted by Theorem 2.1, but the accuracy of the method is insensitive to the
difference between the ˇ’s. We did observe a small increase (�20%) in the number

N L2 L1

ˇC D 2, ˇ� D 0:5

40 1.979E-2 7.252E-2
80 5.637E-4 1.058E-3

160 1.381E-4 2.565E-4
320 3.485E-5 6.507E-5

N L2 L1

ˇC D 100, ˇ� D 0:2

40 2.002E-2 7.298E-2
80 4.618E-4 9.524E-4

160 1.123E-4 2.302E-4
320 2.847E-5 5.857E-5

Table 4. Normalized errors in computed solution for the interface
problem with piecewise-constant ˇ˙. N denotes half of the number
of subintervals in each dimension and along the interface S .
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of iterations required for (5–10) to converge, when the ratio ˇC=ˇ� was increased
from 4 to 50. Similar results were also obtained for the immersed interface method,
and for the cases where ˇ� > ˇC.

Stokes equations. In the third example we solved the Stokes equations (4–7) for
two fluids. In [13], Cortez derived analytic solutions for the one-fluid case where
the enclosed boundary is a unit circle; see examples 4a and 4b in [13]. In each of
those examples, the boundary force has either a normal or a tangential component.
To obtain a more general example with nontrivial jumps Œp�, Œ@p=@n�, Œ@v=@n�,
we combined those two examples by adding the two solutions, and extended the
resulting example to the two-fluid case. To that end, we assumed the same v as
in [13], scaled p by the appropriate viscosity �˙, and computed boundary forces
using (4–8) and (4–9). The resulting pressure and velocities are given by

p.r; �/D

(
�Cr�3.sin 3� � cos 3�/; r � 1;

���r3.sin 3� C cos 3�/; r < 1;
(5–12)

v1.r; �/D

8̂̂̂̂
<̂
ˆ̂̂:

1
8
r�2.sin 2��cos 2�/C

1
16

r�4.�3 sin 4�C5 cos 4�/

C
1
4
r�2.sin 4��cos 4�/; r � 1;

1
8
r2.3 sin 2�Ccos 2�/C

1
16

r4.sin 4�Ccos 4�/

C
1
4
r4.� sin 2��cos 2�/; r < 1;

(5–13)

v2.r; �/D

8̂̂̂̂
<̂
ˆ̂̂:

1
8
r�2.sin 2�Ccos 2�/C

1
16

r�4.5 sin 4�C3 cos 4�/

C
1
4
r�2.� sin 4��cos 4�/; r � 1;

1
8
r2.3 sin 2��sin 2�/C

1
16

r4.sin 4��cos 4�/

C
1
4
r4.sin 2��cos 2�/; r < 1:

(5–14)

With p and v chosen, the boundary force f is determined by (4–8), (4–9). The
viscosities �C and �� were set to 0.5 and 2, respectively. The computational
domain � was chosen to be Œ�3:0; 3:0�� Œ�3:0; 3:0�.

The solution was computed following the procedure described in Section 4.
As noted there, the integral equation (4–18) must be solved to O.h3/ accuracy
so that the corrections at the interface lead to an O.h2/ solution of the problem.
The integral in (4–18) was approximated using the trapezoid rule, providing the
necessary accuracy when S is a unit circle. Table 5 shows normalized errors in
the solution obtained using Mayo’s technique [32]. These results show evidence of
the expected O.h2/ convergence. The immersed interface method yielded similar
accuracy.
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N
p u v

L2 L1 L2 L1 L2 L1

40 4.769E-2 7.646E-2 5.358E-2 4.558E-2 4.004E-2 3.726E-2
80 1.264E-2 2.192E-2 1.687E-2 1.377E-2 9.338E-3 8.745E-3

160 3.233E-3 5.485E-3 2.597E-3 2.268E-3 2.712E-3 2.564E-3
320 7.811E-4 1.352E-3 6.641E-4 5.825E-4 6.003E-4 5.458E-4
640 1.973E-4 3.385E-4 1.507E-4 1.326E-4 1.605E-4 1.480E-4

Table 5. Normalized errors in computed solution for the Stokes
equations. N denotes half of the number of subintervals in each
dimension and along the interface S . Results show second-order
convergence.

Appendix

The following lemma shows that a parabola y D ax2 C b can cross a vertical grid
line, near the vertex, such that the vertical distance from a grid point is of any
specified order in h for small h. Thus a hypothesis such as in Theorem 5.2 of Œ27�

is often violated.

Lemma A.1. Given a; b; � 2 R, with a ¤ 0 and 0<� < 1, there are infinitely many
integers N > 0 such that, with h D 1=N , there is a point .x;y/ 2 R2 on the curve
y D ax2 C b of the form

x D j h; y D kh C ch1C� (A–1)

for some j ; k; c depending on N , where j and k are integers, 1
2
< c < 2, and

x D j h D O.h.1C�/=2/.

Proof. According to a theorem of Dirichlet (see [1], Section 6.1, for instance), if b

is irrational, there are infinitely many fractions m=N such that b D m=N C �=N 2

with j� j< 1. If b is irrational, we choose these N ; if b is rational, we can choose
infinitely many N so that b D m=N for some m, and we take � D 0 in the argument
to follow.

Substituting for x;y and b in ax2 C b D y, we seek j ; k; c so that

aj 2h2
C mh C �h2

D kh C ch1C� (A–2)

or, multiplying by N 2 D h�2,

aj 2
C mN C � D kN C cN 1�� : (A–3)
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We choose k D m and divide by a, so that the equation is now

j 2
C �=a D .c=a/N 1�� : (A–4)

We will first choose j as an approximate solution, ignoring � and c, and then choose
c. Let r D

p
N 1��=a, and let j be the greatest integer � r . Finally, define c so that

(A.4) holds, that is, c D .j 2 C �=a/=r2. It is easy to check that c ! 1 as r ! 1,
that is, as N ! 1. Finally, j D O.N 1=2��=2/, and x D j h D O.N �1=2��=2/. �
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THE FAST SINC TRANSFORM
AND IMAGE RECONSTRUCTION FROM

NONUNIFORM SAMPLES IN k-SPACE

LESLIE GREENGARD, JUNE-YUB LEE AND SOUHEIL INATI

A number of problems in image reconstruction and image processing can be
addressed, in principle, using the sinc kernel. Since the sinc kernel decays slowly,
however, it is generally avoided in favor of some more local but less precise choice.
In this paper, we describe the fast sinc transform, an algorithm which computes
the convolution of arbitrarily spaced data with the sinc kernel in O.N log N /

operations, where N denotes the number of data points. We briefly discuss
its application to the construction of optimal density compensation weights for
Fourier reconstruction and to the iterative approximation of the pseudoinverse of
the signal equation in MRI.

1. Introduction

A number of imaging modalities require the inversion of the equation

s.n/D

Z
V

�.r/e2�{k.n/�rdr ; (1)

where k.n/ denotes the location of the nth measurement in the frequency domain
(“k-space”) and r denotes position in the image domain. It will be convenient below
to write this in operator form as

s D H�.r/ ; (2)

where H is the “continuous-to-discrete” Fourier operator which maps the image
space to the signal space. (In standard magnetic resonance imaging, �.r/ is the
proton spin density.)

We are particularly concerned with nonuniform sampling schemes, where the
points fk.n/g do not lie on a regular grid. The inversion of (2) is, of course, an

Keywords: sinc interpolation, fast transform, nonuniform fast Fourier transform, density
compensation weights, iterative methods, Fourier analysis, image reconstruction, magnetic
resonance imaging (MRI).
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inherently ill-posed problem; the space of all possible densities �.r/ is infinite
dimensional, while the vector of measurements fs.n/g is finite dimensional. In the
present paper, we concentrate on two possible approaches to reconstruction, leaving
a more general discussion to [12].

Scheme 1. The first reconstruction scheme relies on the inverse Fourier transform

�.r/D

Z Z
s.k/e�2�{k�rdk ; (3)

or, more precisely, its approximation at M locations rm via

�.rm/�

NX
nD1

s.n/e�2�{k.n/�rmwn: (4)

The computation of the sum (4) for every location appears to require O.NM /

operations. Using the nonuniform fast Fourier transform (NUFFT), however, this
can be accomplished using O..N C M / log.N C M // operations. This is now a
relatively mature technology [2; 6; 8; 9; 11; 14; 15; 17].

In (4), the values fwng can be considered quadrature weights, and it is shown in
[3; 12] that an optimal set of weights is given by the formula

1

wn
D

NX
mD1

sinc2.k.m/� k.n//: (5)

Here, sinc.k/� sin.�k/=�k and, in d dimensions, we define sinc.k/D sinc.k1/

� sinc.k2/ � � � sinc.kd /, where k D .k1; k2; : : : ; kd /. While the evaluation of these
weights appears to require O.N 2/ operations, the fast sinc2 transform, described
below, makes use of the NUFFT to reduce the cost to O.N log N /.

Scheme 2. A second class of reconstruction schemes is based directly on the signal
equation (2). The minimum-norm least-squares solution to this problem, denoted
by O�.r/, can be found by applying HC, the pseudo-inverse [10] of the operator H,
to the signal. Following the discussion of [19], we write

O�.r/D HCs D H|.HH|/Cs; (6)

where H| is the adjoint of H

ŒH|a�.r/D

X
n

e�2�{k.n/�ra.n/;

where a D .a.1/; : : : ; a.n// and .HH|/C is the pseudoinverse of HH|.
Given the N sample points fk.n/g in k-space, it is straightforward to verify that

.HH|/mn D sinc.km � kn/: (7)
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For notational convenience, we let M D HH|. The desired function O�.r/ in (6) can
then be computed in two steps:

(1) Solve the system

M a D s (8)

(2) Compute

O�.r/D H|a:

The matrix M , however, may be ill-conditioned, with the precise condition number
depending on the distribution of the sample points. (If two sample points coincide,
for example, M is actually singular.) Thus, it is natural, as in [19], to use the
pseudoinverse construction

a D M Cs ;

which can be computed using the singular value decomposition (SVD) at a cost
of O.N 3/ work. For this, some additional assumptions need to be made as to the
choice of regularization [10]. Alternatively, one can attempt an iterative solution of
(8). In [5], the authors suggest applying the conjugate gradient method, which is
suitable for symmetric positive definite matrices. Since the cost of applying M to a
vector is O.N 2/ work, the total cost of solving the system is of the order O.J �N 2/,
where J denotes the number of iterations.

Remark 1. Note that (4) can be written as

�.r/� H|W s

where W is the diagonal matrix of quadrature weights. Thus, the quadrature
approach based on the inverse Fourier transform can be viewed as a diagonal
approximation (W s) of the pseudoinverse construction (M Cs). As a result, W

serves as a good preconditioner for the conjugate gradient method applied to (8).

In summary, both Scheme 1 and Scheme 2 would benefit from appropriate fast
algorithms: the optimal weights require a single convolution with the kernel sinc2.k/
and the iterative solution of the signal equation requires repeated convolution with
the kernel sinc.k/.

2. The fast sinc transform

Suppose now that we are given two sets of points fkn D .k1
n ; k

2
n ; : : : ; k

d
n /j n D

1; : : : ;N g, and fvm D .v1
m; v

2
m; : : : ; v

d
m/j m D 1; : : : ;M g, which we think of as

located in the frequency domain in d dimensions. The point sets fkng and fvmg

may or may not coincide. We define the d-dimensional sinc and sinc2 transforms
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by

Um D

NX
nD1

qn sinc.kn � vm/ and Wm D

NX
nD1

qn sinc2.kn � vm/; (9)

respectively. Clearly, the naive computation of either Um or Wm from qn requires
O.M � N / work. Since the transforms take the form of convolutions, it is perhaps
not surprising that the Fourier transform will play a role in the fast algorithm. Since
the data are not assumed to lie on a regular mesh, however, an essential ingredient
will be the nonuniform fast Fourier transform (NUFFT), mentioned above. In its
most general form, the NUFFT of “type 3” computes sums of the form

Gj D

PX
pD1

gp e�ikj �xp ; (10)

for j D 1; : : : ;J or

gp D

JX
jD1

Gj eCikj �xp ; (11)

for p D 1; : : : ;P in O..J C P / log.J C P // operations to any desired precision.
We will refer to equation (10) as the forward NUFFT. We can think of it as a
discretization of the continuous Fourier transform,

G.k/D

Z 1

�1

� � �

Z 1

�1

g.x/ e�2� ix�k dx D Fg.x/; (12)

using nonuniformly sampled discretization points and evaluated at nonuniformly
sampled frequencies. We will refer to (11) as the adjoint NUFFT. We can think of
it as a discretization of the continuous inverse Fourier transform,

g.x/D

Z 1

�1

� � �

Z 1

�1

G.k/ e2� ix�k dk D F�1G.k/; (13)

using nonuniformly sampled frequencies and evaluated at nonuniformly sampled
discretization points.

Remark 2. The nomenclature inverse NUFFT would be misleading since, in the
discrete case with nonuniform points, it is not the inverse of the forward transform.

Remark 3. The NUFFT has been used previously in order to accelerate iterative
methods for the signal equation (1). In [5; 20], for example, the signal equation
(or an analog) was discretized and the resulting linear system was solved using
the conjugate gradient method applied to the normal equations. Their approach,
however, did not make use of the sinc kernel.
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The development of the fast sinc or sinc2 transform now follows. For the sake of
concreteness, we restrict our attention to the two-dimensional case, but the approach
is clearly independent of dimension. First, we observe that the first equation in (9)
can be viewed as the evaluation of the function

U.v/D

Z 1

�1

Z 1

�1

sinc.v � k/H.k/ dk (14)

at the points vm, due to the singular “source” distribution

H.k/D

NX
nD1

qnı.k � kn/:

This follows from the elementary properties of the ı-function. From the convolution
theorem we have that U.v/ is given by

U.v/D

Z 1

�1

Z 1

�1

u.x/ e�2�ix�v dx (15)

with
u.x/D F�1sinc.k/ � F�1H.k/: (16)

The latter two functions can be easily computed. The inverse Fourier transform
F�1sinc.k/ in two dimensions is simply

….x/D

�
0 if jx1j> 1=2 or jx2j> 1=2;

1 if jx1j< 1=2 and jx2j< 1=2;
(17)

where x D .x1;x2/. Further, it is easy to see that

h.x/D F�1H.k/D

NX
nD1

qne2�ix�kn : (18)

Thus, we can compute U.vm/ from (15)-(18):

U.vm/D

Z 1=2

�1=2

Z 1=2

�1=2

h.x/ e�2�ix�vm dx: (19)

This result is certainly classical.

2.1. Quadrature considerations. Equation (19) is an exact relation, and it remains
only to discretize the integral. Doing so is straightforward, because h.x/ consists of
a collection of exponential functions with maximum frequency given by Kmax D

maxn kknkL1 . Furthermore, we are only interested in computing U.vm/ itself up
to the frequency Kmax so that the term e�2�ix�vm also has a maximal frequency
content given by Kmax. Thus, the integrand in (19) is a band-limited function with
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band limit 2 � Kmax. Nyquist sampling (two points per oscillation) requires that an
accurate quadrature in two dimensions use at least .4Kmax/

2 points.
Gauss–Legendre quadrature [4] is particularly useful in this context. While this

approach is more involved than the trapezoidal rule or the rectangle rule, it achieves
much higher order accuracy. More precisely, the P -point Gauss–Legendre rule can
be defined by P weights fqpg and nodes fxpg so that the relationZ 1

�1

xndx D

PX
pD1

qpxn
p

is exactly satisfied for n D 0; : : : ; 2P � 1. This yields a 2P � 2P nonlinear system.
Fortunately, the weights and nodes are easy to compute using standard software
such as the Fortran routine gaussq.f from NETLIB (http://www.netlib.org). The
weights are positive, but the nodes are not equally spaced, tending to cluster at
the endpoints of the interval Œ�1; 1�. Given these weights and nodes, one of the
remarkable features of Gauss–Legendre quadrature,Z 1

�1

f .x/ dx �

PX
pD1

qpf .xp/;

is that it satisfies the error estimate:

E D

ˇ̌̌̌ Z 1

�1

f .x/ dx �

PX
pD1

qpf .xp/

ˇ̌̌̌
<

22PC1.P!/4

.2P C 1/Œ.2P /!�3
� max jf 2P .x/j;

where f 2P .x/ denotes the 2P -th derivative of the integrand. If the function f .x/
is band-limited by 2Kmax, then jf 2P .x/j < .4� Kmax/

2P . A modest amount of
algebra then shows that the error E in using the P -point rule satisfies:

E <
2
p
�

p
P

.2P C 1/

�
1

2e

�4P �
4� Kmax

P

�2P

<

�
1

e

�4P �
� Kmax

P

�2P

:

Thus we see that, once P exceeds � Kmax, the error decays exponentially.
Using a tensor-product rule for the double integral, we have

U.vm/D

Z 1=2

�1=2

Z 1=2

�1=2

h.x/ e�2�ix�vm dx

�

PX
p1D1

PX
p2D1

h.xp1
;xp2

/e�2�i.xp1
;xp2

/�vm qp1
qp2

(20)

The error, as in the one-dimensional case, decays at an exponential rate once P

exceeds �Kmax.
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Remark 4. The usual weights and nodes are defined on the interval Œ�1; 1� and we
have scaled them to the interval Œ�1=2; 1=2�.

In summary, the fast sinc transform requires the adjoint NUFFT to compute
h.x/ via (18) at the tensor product quadrature points. Given the values h.xp1

;xp2
/,

the forward NUFFT is used to compute (20). The amount of work is of the order
O..N CM CP2/ log.N CM CP2// = O..N CM CK2

max/ log.N CM CK2
max//.

Since the quadrature used is spectrally accurate, the error in the fast sinc transform
is dominated by the tolerance requested of the NUFFT. In most implementations,
this is a user-controlled parameter and affects only the constant prefactor implicit
in the O..N C M / log.N C M // notation.

Remark 5. For low accuracy, one could use the trapezoidal rule (a uniform mesh
on Œ�1=2; 1=2�). The NUFFTs in this case are slightly more efficient, with a net
savings of a factor of two or so in CPU time. The error is of the order O.1=P2/,
however, rather than exponentially small.

2.2. The fast sinc2 transform. The theory underlying the sinc2 transform is almost
identical. The only change is that the inverse Fourier transform of sinc2.k/ in two
dimensions is t.x1/ � t.x2/ where

t.x/D

�
0 if jxj> 1;

1 � jxj if jxj< 1:

We therefore need to compute

W .k/D

Z 1

�1

Z 1

�1

h.x1;x2/ t.x1/ t.x2/ e�2�i.x1;x2/�k dx1dx2: (21)

Since the integrand is piecewise smooth, we maintain high accuracy by using
four tensor product Gaussian quadrature rules (each with P2 > .� Kmax/

2 points)
on the four quadrants Œ�1; 0�� Œ�1; 0�, Œ�1; 0�� Œ0; 1�, Œ0; 1�� Œ�1; 0�, Œ0; 1�� Œ0; 1�.

In summary, the fast sinc2 transform requires the adjoint NUFFT to compute
h.x/ via (18) at the tensor product quadrature points, followed by the forward
NUFFT to compute (21) using tensor product Gaussian quadrature. The amount
of work is again of the order O..N C M C K2

max/ log.N C M C K2
max//. Related

algorithms that rely on the NUFFT for other convolution kernels are described in
[16].

3. Results

We illustrate the performance of the algorithm in the context of magnetic resonance
image reconstruction (MRI). In MRI, one seeks to produce a spatial map of the
effective spin density �.r/ from raw complex-valued data s.n/D s.k.n// acquired
in the Fourier domain. When the points k.n/ are located on a Cartesian grid, the



128 LESLIE GREENGARD, JUNE-YUB LEE AND SOUHEIL INATI

N TFST TFS2T Tdir Error

4096 0.05 0.26 9.1 < 10�3

16384 0.11 0.36 145 < 10�3

4096 0.09 0.34 9.1 < 10�5

16384 0.19 0.61 145 < 10�5

Table 1. Timing results for FST and FS2T on an Archimedean
spiral with Kmax D 64. N denotes the number of sampling points
along the spiral, TFST denotes the time required for the fast sinc
transform, TFS2T denotes the time required for the fast sinc2 trans-
form, and Tdir is the time required for the direct calculation. The
direct calculation for sinc and sinc2 are essentially the same, so
only one timing is listed. Error is the requested tolerance for the
NUFFT and is an upper bound on the L2 error in the transform
data. Calculations were carried out on a laptop computer with a
1.2GHz Pentium processor.

FFT is typically used to reconstruct the image according to (4) with constant weights
fwng. Many modern techniques in MRI, however, including functional MRI, MR
angiography, and abdominal imaging, use nonuniform samplings in k-space which
allow for significantly faster data acquisition rates [1; 18].

One prototypical acquisition scheme is the Archimedean spiral, which we truncate
at Kmax D 64 and sample at N points according to the formula

kn D Kmax

r
n

N

�
cos

�
3�Kmax

r
n

N

�
; sin

�
3�Kmax

r
n

N

��
:

Before discussing the image reconstruction process itself, we first use this sampling
pattern in order to test the efficiency of our fast transforms. For this, the points
kn serve as both the “source” locations and as the targets (the vm in the earlier
discussion). Sample timings are given in Table 1.

While the fast transform timings scale as expected with problem size, they rely on
the NUFFT algorithm from [14], which has not yet been fine-tuned for performance.
We believe that an order of magnitude improvement can be obtained through careful
code optimization.

To illustrate the performance of the algorithm in terms of image quality, we
generate synthetic data s.n/ according to (1) from a standard test image (the Shepp–
Logan phantom [7; 13]), depicted in Figure 1. We then consider two data acquisition
patterns: an integer Cartesian grid truncated at Kmax D 64 and the Archimedean
spiral above. Both data sets contained 1282 D 16; 384 (complex) values. The
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resulting reconstructions are shown in Figure 1. The top figure is based on the
FFT using the Cartesian data, the lower left figure is based on the optimal weight
reconstruction (Scheme 1) using (4), (5), and the lower right figure is obtained by
using 5 iterations of the preconditioned conjugate gradient method (Scheme 2),
with a diagonal preconditioner defined by the quadrature weights (5), as discussed
in Remark 1. The total time for image reconstruction was approximately 0.2
seconds using the quadrature method (the lower left figure) and 1 second using
the approximate pseudoinverse (lower right), the latter requiring 5 sinc transforms,

Figure 1. Image reconstruction from Cartesian (top) and spiral
(bottom) k-space sampling. Note that the quadrature approxi-
mation (left) gives a very reasonable image. The pseudoinverse
approximation (right) is nearly identical to that obtained in the
Cartesian case.
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one sinc2 transform and one final NUFFT to apply the adjoint H|. The FFT
reconstruction is, of course, much faster — it required less than 0:01 seconds.

4. Discussion

We have constructed a fast algorithm for the (discrete) sinc and sinc2 transforms
which have immediate application in MR image reconstruction. The two algorithms
will also accelerate, for example, the band-limited interpolation method of [3]. Since
sinc convolution arises naturally in many signal and image processing contexts, we
expect that the algorithms described here will be of fairly broad utility.
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ON INTERPOLATION AND INTEGRATION IN
FINITE-DIMENSIONAL SPACES OF BOUNDED FUNCTIONS

PER-GUNNAR MARTINSSON, VLADIMIR ROKHLIN AND MARK TYGERT

We observe that, under very mild conditions, an n-dimensional space of functions
(with a finite n) admits numerically stable n-point interpolation and integration
formulae. The proof relies entirely on linear algebra, and is virtually independent
of the domain and of the functions to be interpolated.

1. Introduction

Approximation of functions and construction of quadrature formulae constitute
an extremely well-developed area of numerical analysis; in most situations one is
likely to encounter in practice, standard tools are satisfactory. Much of the research
concentrates on obtaining powerful results under strong assumptions — designing
interpolation and quadrature formulae for smooth functions on subspaces of Rn,
manifolds, etc. In this note, we make a very general observation that, given a finite
set of bounded functions f1, f2, . . . , fn�1, fn (either real- or complex-valued)
defined on a set S , there exists an interpolation formula that is exact on all linear
combinations of f1, f2, . . . , fn�1, fn, is numerically stable, and is based on n

nodes in S (to be denoted x1, x2, . . . , xn�1, xn). If, in addition, S is a measure
space and the functions f1, f2, . . . , fn�1, fn are integrable, then there exists a
quadrature formula based on the nodes x1, x2, . . . , xn�1, xn that is exact on all
the functions f1, f2, . . . , fn�1, fn, and is also numerically stable. Both of these
statements are purely linear-algebraic in nature, and do not depend on the detailed
properties of S , or of the functions f1, f2, . . . , fn�1, fn.

It should be pointed out that all of the statements in this note follow easily
from the analysis found in [4]; moreover, Theorem 2 can be found (in a slightly
different form) in [7] and in [3]. Due to [3], the points used for interpolation in
Theorem 2 are often called (nonelliptic) Fekete points, at least when the functions
to be interpolated are polynomials. While we cannot cite earlier works where these
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observations are published, it seems unlikely that they had not been made a long
time ago (perhaps in contexts other than numerical analysis).

This note has the following structure: Section 2 defines notation used in later
sections, Section 3 provides a numerically stable interpolation scheme, Section 4
provides a numerically stable quadrature scheme, Section 5 provides a stronger
result on the numerical stability of the interpolation scheme from Section 3, and
Section 6 provides a couple of extensions to the techniques described in this note.

2. Notation

Throughout this note, S denotes an arbitrary set, n denotes a positive integer, and
f1, f2, . . . , fn�1, fn denote bounded complex-valued functions on S (all results
of this note also apply in the real-valued case, provided that the word “complex”
is replaced with “real” everywhere). For any n points x1, x2, . . . , xn�1, xn in S ,
we define A D A.x1; x2; : : : ; xn�1; xn/ to be the n � n matrix defined via the
formula

Aj ;k D fj .xk/ (1)

with j ; k D 1, 2, . . . , n � 1, n; we define the function gk on S to be the ratio of
the determinant of A.x1; x2; : : : ; xk�2; xk�1; x; xkC1; xkC2; : : : ; xn�1; xn/

to the determinant of A.x1; x2; : : : ; xn�1; xn/, via the formula

gk.x/ D
det A.x1; x2; : : : ; xk�2; xk�1; x; xkC1; xkC2; : : : ; xn�1; xn/

det A.x1; x2; : : : ; xn�1; xn/
(2)

(here, the numerator is the same as the denominator, but with x in place of xk). We
define D.x1; x2; : : : ; xn�1; xn/ to be the modulus of the determinant of A.x1;

x2; : : : ; xn�1; xn/, via the formula

D.x1; x2; : : : ; xn�1; xn/ D
ˇ̌
det A.x1; x2; : : : ; xn�1; xn/

ˇ̌
: (3)

We define B to be the supremum of D.x1; x2; : : : ; xn�1; xn/ taken over all sets
of n points x1, x2, . . . , xn�1, xn in S , via the formula

B D sup
x1; x2; :::; xn�1; xn in S

D.x1; x2; : : : ; xn�1; xn/: (4)

For any x in S , we define u D u.x/ to be the n � 1 column vector defined via the
formula

uk D fk.x/ (5)

with k D 1, 2, . . . , n � 1, n, and we define v D v.x/ to be the n � 1 column vector
defined via the formula

vk D gk.x/ (6)

with k D 1, 2, . . . , n � 1, n.
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3. Interpolation

Theorem 2 below asserts the existence of numerically stable n-point interpolation
formulae for any set of n bounded functions; first we will need the following lemma.

Lemma 1. Suppose that n is a positive integer, S is an arbitrary set containing at
least n points, and f1, f2, . . . , fn�1, fn are complex-valued functions on S that
are linearly independent.

Then, there exist n points x1, x2, . . . , xn�1, xn in S such that the vectors u.x1/,
u.x2/, . . . , u.xn�1/, u.xn/ defined in (5) are linearly independent.

Proof. We apply the modified Gram–Schmidt process (see, for example, [2]) to the
set of all n � 1 column vectors u.x/ defined in (5) for all x in S , while ensuring
that all pivot vectors are nonzero via appropriate column-pivoting. �

Theorem 2. Suppose that S is an arbitrary set, n is a positive integer, f1, f2,
. . . , fn�1, fn are bounded complex-valued functions on S , and " is a positive real
number such that

" � 1: (7)

Then, there exist n points x1, x2, . . . , xn�1, xn in S and n functions g1, g2, . . . ,
gn�1, gn on S such that

jgk.x/j � 1 C " (8)

for all x in S and k D 1, 2, . . . , n � 1, n, and

f .x/ D

nX
kD1

f .xk/ gk.x/ (9)

for all x in S and any function f defined on S via the formula

f .x/ D

nX
kD1

ck fk.x/; (10)

for some complex numbers c1, c2, . . . , cn�1, cn.

Proof. Without loss of generality, we assume that the functions f1, f2, . . . , fn�1,
fn are linearly independent.

Then, due to Lemma 1, B defined in (4) is strictly positive. Since the functions
f1, f2, . . . , fn�1, fn are bounded, D.x1; x2; : : : ; xn�1; xn/ (defined in (3)) is
also bounded, and hence the supremum B is not only strictly positive, but also
finite. Therefore, by the definition of a supremum, there exist n points x1, x2, . . . ,
xn�1, xn in S such that

B � D.x1; x2; : : : ; xn�1; xn/ �
B

2
" (11)
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and D.x1; x2; : : : ; xn�1; xn/ is strictly positive.
Defining g1, g2, . . . , gn�1, gn via (2), we obtain (9) from the Cramer rule applied

to the linear system
Av D u; (12)

where A D A.x1; x2; : : : ; xn�1; xn/ is defined in (1), v D v.x/ is defined in (6),
and u D u.x/ is defined in (5). Due to the combination of (11) and (7),

B

2
� D.x1; x2; : : : ; xn�1; xn/; (13)

and due to the combination of (11) and (13),

B

D.x1; x2; : : : ; xn�1; xn/
� 1 � "I (14)

we also observe that, due to (4),

D.x1; x2; : : : ; xk�2; xk�1; x; xkC1; xkC2; : : : ; xn�1; xn/ � B (15)

for all x in S . Now, (8) is an immediate consequence of (2), (3), (15), (14). �
Remark 3. Due to (8), the interpolation formula (9) is numerically stable.

Remark 4. When calculations are performed using floating-point arithmetic, it
is often desirable to “normalize” the set of functions f1, f2, . . . , fn�1, fn before
applying Theorem 2, by replacing this set with the set of functions Qf1, Qf2, . . . ,
Qfn�1, Qfn, where Qfk is the function defined on S via the formula

Qfk.x/ D
fk.x/Pn

jD1 jfj .x/j
; (16)

for example.

Remark 5. The proof of Theorem 2 does not specify a computational means
for choosing the points x1, x2, . . . , xn�1, xn so that (11) is satisfied (that is, so
that the interpolation scheme from Theorem 2 and the quadrature scheme from
Theorem 8 are guaranteed to be numerically stable). However, combining the
algorithms described in [1], [4] with appropriate discretizations of S yields methods
for choosing the points that are proven to work, both in theory and in practice.

Remark 6. It is not hard to see that, if m is a positive integer with m < n such that
any set of strictly more than m of the n functions f1, f2, . . . , fn�1, fn is linearly
dependent, then only m summands are required in (9); all but m of the functions
g1, g2, . . . , gn�1, gn can be arranged to vanish identically at all points in their
domain S . Slight variations on the algorithms in [5], [6] yield efficient, effective
computational methods for taking full advantage of this fact. For an application of
this fact, see [1].
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Remark 7. When S is compact and the functions f1, f2, . . . , fn�1, fn are
continuous, Theorem 2 holds with " D 0 rather than " > 0, since a continuous
function D on a compact space attains its maximal value. Analogously, Theorem
2 holds with " D 0 when S D Rd for some positive integer d , the functions f1,
f2, . . . , fn�1, fn are continuous, and fk.x/ ! 0 as jxj ! 1 for all k D 1, 2, . . . ,
n � 1, n.

4. Quadratures

The following theorem formalizes the obvious observation that integrating both
sides of (9) yields numerically stable quadrature formulae.

Theorem 8. Suppose that S is a measure space, w is a nonnegative real-valued
integrable function on S (that serves as the weight for integration), n is a positive
integer, f1, f2, . . . , fn�1, fn are bounded complex-valued integrable functions on
S , and " � 1 is a positive real number.

Then, there exist n complex numbers w1, w2, . . . , wn�1, wn such that

jwk j � .1 C "/

Z
w.x/ dx (17)

for all k D 1, 2, . . . , n � 1, n, andZ
f .x/ w.x/ dx D

nX
kD1

wk f .xk/ (18)

for any function f defined on S via (10), where x1, x2, . . . , xn�1, xn are the n

points in S chosen in Theorem 2.

Proof. For each k D 1, 2, . . . , n � 1, n, we define wk via the formula

wk D

Z
gk.x/ w.x/ dx; (19)

where g1, g2, . . . , gn�1, gn are the functions from Theorem 2. Then, (17) is an im-
mediate consequence of (19) and (8). Moreover, (18) is an immediate consequence
of (9) and (19). �

Remark 9. Needless to say, the weight function w in the above theorem is su-
perfluous; it could be absorbed into the measure on S . However, we found the
formulations of Theorems 8 and 12 involving w to be convenient in applications.
While Theorems 8 and 12 require the functions f1, f2, . . . , fn�1, fn to be bounded
(perhaps after “normalizing” them as in Remark 4 or otherwise rescaling them),
these theorems do not require the weight function w to be bounded.
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Remark 10. Theorem 8 asserts the existence under very mild conditions of numer-
ically stable quadratures that integrate linear combinations of n functions using the
values of these linear combinations tabulated at n appropriately chosen points. In
contrast, construction of optimal “generalized Gaussian” quadratures, which tabulate
the linear combinations at fewer nodes than the number of functions, requires more
subtle techniques (see, for example, the references cited in [8]).

5. Strengthened numerical stability

Theorem 2 provides the bound (8) under the rather weak assumption that the
functions f1, f2, . . . , fn�1, fn are bounded (in fact, this assumption is necessary for
(8)). Theorem 12 below provides a stronger bound under the additional assumption
that there exists a measure with respect to which the functions f1, f2, . . . , fn�1,
fn are orthonormal. This stronger bound can be obtained by first using Theorem
2 to reconstruct the function f defined in (10) on its entire domain S from its
values f .x1/, f .x2/, . . . , f .xn�1/, f .xn/, as per (9). Then, the coefficients c1,
c2, . . . , cn�1, cn in (10) can be calculated by taking the appropriate inner products
with the reconstruction of f just obtained. Finally, f can be reconstructed on its
entire domain S via (10), using the values of c1, c2, . . . , cn�1, cn just obtained,
and the values f1.x/, f2.x/, . . . , fn�1.x/, fn.x/, which are assumed to be known
for any x in S . (However, please note that the proof of Theorem 12 given below
follows this prescription only implicitly.) First, we will need the following lemma,
stating that the relation (9) determines the functions g1, g2, . . . , gn�1, gn uniquely,
provided that the functions f1, f2, . . . , fn�1, fn are linearly independent.

Lemma 11. Suppose that n is a positive integer, S is an arbitrary set containing
at least n points, f1, f2, . . . , fn�1, fn are bounded complex-valued functions on
S , and " � 1 is a positive real number. Suppose in addition that f1, f2, . . . , fn�1,
fn are linearly independent, and that h1, h2, . . . , hn�1, hn are functions on S such
that

f .x/ D

nX
kD1

f .xk/ hk.x/ (20)

for all x in S and any function f defined on S via (10), where x1, x2, . . . , xn�1,
xn are the n points in S chosen in Theorem 2.

Then,
hk.x/ D gk.x/ (21)

for all x in S and k D 1, 2, . . . , n � 1, n, where g1, g2, . . . , gn�1, gn are defined in
(2).

Proof. For any x in S , due to (20),

At D u; (22)
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where A D A.x1; x2; : : : ; xn�1; xn/ is defined in (1), u D u.x/ is defined in (5),
and t D t.x/ is defined to be an n � 1 column vector via the formula

tk D hk.x/ (23)

with k D 1, 2, . . . , n � 1, n; subtracting (12) from (22),

A.t � v/ D 0; (24)

where v D v.x/ is defined in (6). Due to Lemma 1, B defined in (4) is strictly
positive, so that A defined in (1) is invertible, and therefore, due to (24),

t.x/ D v.x/ (25)

for all x in S . Then, (21) is an immediate consequence of (25), (23), (6). �

Theorem 12. Suppose that n is a positive integer, S is a measure space containing
at least n points, w is a nonnegative real-valued integrable function on S (that
serves as the weight for integration), f1, f2, . . . , fn�1, fn are bounded complex-
valued square-integrable functions on S , and " � 1 is a positive real number.
Suppose further that f1, f2, . . . , fn�1, fn are orthonormal, that is,Z

jfk.x/j2 w.x/ dx D 1 (26)

for all k D 1, 2, . . . , n � 1, n, andZ
fj .x/ fk.x/ w.x/ dx D 0 (27)

whenever j ¤ k.
Then,

jgk.x/j � .1 C "/

sZ
w.y/ dy

nX
jD1

jfj .x/j (28)

for all x in S and k D 1, 2, . . . , n � 1, n, where g1, g2, . . . , gn�1, gn are defined in
(2), with the n points x1, x2, . . . , xn�1, xn in S chosen in Theorem 2.

Proof. In order to prove (28), for each k D 1, 2, . . . , n�1, n, we define the function
hk on S via the formula

hk.x/ D

nX
jD1

fj .x/

Z
fj .y/ gk.y/ w.y/ dy (29)
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and demonstrate both that (21) holds with the functions h1, h2, . . . , hn�1, hn defined
in (29), and that

jhk.x/j � .1 C "/

sZ
w.y/ dy

nX
jD1

jfj .x/j (30)

for all x in S and k D 1, 2, . . . , n � 1, n.
We first show that (21) holds with the functions h1, h2, . . . , hn�1, hn defined in

(29), by demonstrating that h1, h2, . . . , hn�1, hn satisfy the hypotheses of Lemma
11. Suppose that f is defined via (10). To verify that (20) holds with the functions
h1, h2, . . . , hn�1, hn defined in (29), we substitute (29) into the right hand side of
(20) and exchange the orders of summation and integration, obtaining that

nX
kD1

f .xk/ hk.x/ D

nX
jD1

fj .x/

Z
fj .y/

nX
kD1

f .xk/ gk.y/ w.y/ dy (31)

for all x in S . Due to the combination of (31) and (9),
nX

kD1

f .xk/ hk.x/ D

nX
jD1

fj .x/

Z
fj .y/ f .y/ w.y/ dy (32)

for all x in S . Then, (20) is an immediate consequence of applying (10), (26), and
(27) to the right hand side of (32).

Furthermore, the functions f1, f2, . . . , fn�1, fn are linearly independent, since
they are assumed to be orthonormal. Thus, all of the hypotheses of Lemma 11 are
satisfied, so (21) holds with the functions h1, h2, . . . , hn�1, hn defined in (29).

Finally, due to the Cauchy–Schwarz inequality,ˇ̌̌̌Z
fk.y/ gk.y/ w.y/ dy

ˇ̌̌̌
�

sZ
jfk.y/j2 w.y/ dy

sZ
jgk.y/j2 w.y/ dy;

(33)
and, due to (8), sZ

jgk.y/j2 w.y/ dy � .1 C "/

sZ
w.y/ dy (34)

for all k D 1, 2, . . . , n�1, n. Then, (30) is an immediate consequence of (29), (33),
(26), (34), and then (28) is an immediate consequence of (21) and (30). �

Remark 13. Due to (28), the interpolation formula (9) is numerically stable.
While the numerical stability guaranteed by (8) is sufficient under most conditions,
sometimes the bound (28) is more useful. The bound (28) is stronger than the bound
(8) in the sense that, if all of the values jf1.x/j, jf2.x/j, . . . , jfn�1.x/j, jfn.x/j are
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small at some point x in S , then all of the values jg1.x/j, jg2.x/j, . . . , jgn�1.x/j,
jgn.x/j are accordingly small at that point x.

Remark 14. Theorem 12 generalizes easily to the case when the functions f1, f2,
. . . , fn�1, fn are not precisely orthonormal, but only “close” to orthonormal, in the
sense that the condition number of their Gram matrix is reasonably small.

6. Concluding remarks

The following remarks pertain to some fairly obvious but nonetheless useful exten-
sions of the techniques described in this note.

Remark 15. One often encounters infinite-dimensional spaces of functions that are
finite-dimensional to a specified precision. A typical situation of this kind involves
the range of a compact operator, and the usual way to construct the finite-dimensional
approximation is via the Singular Value Decomposition (see, for example, [8]).
When combined with this observation, the apparatus of the present note becomes
applicable to many infinite-dimensional spaces of functions.

Remark 16. In numerical practice, rather than dealing directly with functions
that have finite mass or finite energy but are nevertheless unbounded, we often
instead treat the bounded functions obtained from the unbounded ones via either
spectral/pseudospectral transforms or localized averaging (involving convolution
with kernels that are bounded or have finite energy, for example).
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NONLOCAL DAMAGE ACCUMULATION AND FLUID FLOW IN
DIATOMITES

GRIGORY ISAAKOVICH BARENBLATT,
MICHIEL BERTSCH AND CARLO NITSCH

We investigate a new model for fluid flows in diatomite formations recently
introduced by Barenblatt, Patzek, Prostokishin and Silin. We provide numerical
evidences of the existence of a sharp front between the damaged and the undam-
aged rock, and we study the structure of this front. Finally, we simulate some
infield operations and we set up a qualitative model control problem to maximize
the profit during the oil extraction.

1. Introduction

In the last decades oil-bearing diatomite formations have attracted special attention.
An example of this kind of deposits is the giant oil fields of Lost Hills and Belridge in
California. The development of such deposits has some characteristic properties due
to certain peculiarities of diatomaceous rocks: high porosity, very low permeability
in the pristine state, and fragility. Because of the high porosity, the diatomite oil
reservoirs are often very rich, but, in view of the low permeability, the wells placed
in this kind of oil reservoirs have very low productivity unless the hydraulic fracture
technique is applied. This technique, which basically consists of injection under
high pressure of very viscous fluid from the wells inside the reservoir, increases
rock permeability. However, because of fragility, a long-term fracturing process
causes subsidence phenomena, with very serious consequences for the safety of the
wells themselves. Therefore, though the damaging process is necessary to increase
production, it has to be monitored to avoid well collapse.

Recently a new model of fluid flows through diatomaceous rocks was introduced
by Barenblatt, Patzek, Prostokishin and Silin [2], taking into account the microstruc-
tural changes in diatomites that occur during the filtration of fracturing fluid. In
Section 2 we shall review its physical background. The model contains several
functional relationships and coefficients which cannot be chosen quantitatively

MSC2000: primary 76S05; secondary 74A45, 35K65.
Keywords: flow in porous media, oil engineering, continuum damage mechanics, degenerate

parabolic system.
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without further experimental study. In this paper we restrict ourselves to power-type
functional relationships. In this case, the model leads to the system8<:@t! D

h
ƒ2

r
�
!�.p � I/

ˇ
C r!

�
C A.1 �!/.p � I/


C

i
C
;

@tp D K r
�
!˛

rp
�
;

where the subscript “C” indicates the positive part. The equations are obtained
by averaging over the height of the diatomaceous stratum, and thus the problem
becomes two-dimensional; the pressure of the fluid at a point x and time t is denoted
by p.x; t/, and, as usual in continuum damage mechanics, !.x; t/ is the so-called
“damage parameter”, with values between 0 and 1. The constant I takes into account
the strength of the rock; � is a nonnegative constant and ƒ, K, ˛, ˇ,  , and A are
positive constants.

As can be easily observed from the second equation, we have made the assumption
that in the undamaged rocks, where ! D 0, the permeability vanishes. Already in
[2] it was conjectured that this assumption leads to a free boundary problem. In
other words, we expect that there exists an a priori unknown front that separates
the damaged and undamaged rocks. A justification of this assumption is supplied
by experimental observations (see the satellite photograph in Figure 1). Throughout
this paper we shall show numerical simulations which validate such a conjecture,

Figure 1. The wells that failed in South Belridge diatomaceous
deposit in the year 2000 were located outside the large subsidence
bowl. Surface subsidence in mm/day. Courtesy of T. W. Patzek, D.
B. Silin (UC Berkeley, LBNL) and E. J. Fielding (NASA JPL).
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and for a slightly simplified form of the system it is even possible to perform an
analytical investigation (see [5; 4]) which leads to the same conclusion.

This model of fluid flow in diatomites has a wide range of applications, and in
this paper we show some of them by simulating infield operations. We simulate
several wells placed in five points formation and compute the accumulation of
damage and the fluid extraction rate. Moreover we shall set up some model control
problems for which it makes sense to look for an optimal strategy, if we impose
some feasible restriction on the fluid pressure variations at the wells.

2. Physical background

We remind that the model we shall consider has been specifically introduced in order
to deal with the filtration of fluids in a very special kind of rocks called diatomites.
A typical picture of the microstructure of the diatomite as it is observed with an
electronic microscope is given in Figure 2. The peculiarities of the diatomite in
its pristine state are: a very large bulk porosity m that can be up to 70%, and a
very low permeability k, of the order of 0.1–1 md (10�12–10�11 cm2) and even
less; therefore, for practical purposes, in its pristine state it can be considered as
impermeable. For this reason some of the wells in the Lost Hills field in California
at the beginning of the primary recovery had a very low, practically zero, production.
In fact, the oil production in diatomaceous deposits started only when the technique
of hydraulic fracturing was applied.

Hydraulic fracturing, a technology developed in the 1950s, gave producers the
possibility to extract more oil out of newly discovered and existing fields. Powerful
pumps at the surface inject a fluid (in the beginning a viscous fluid carrying sand was

Figure 2. The fragile microstructure of the diatomite rock in SEM
microphotograph. Courtesy of Prof. T. W. Patzek.
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used, the so-called “fracture fluid”) into the reservoir rocks. The pressure exerted
by the fluid exceeds the compressive stress of the rock, opening fractures which
constitute paths of increased permeability. Thus, when the pressure is released, the
sand supports the crack opening and the fluid can flow more easily. Sometimes
injection and extraction are performed through the same well.

In diatomaceous oil-bearing formations like Lost Hills, hydraulic fracturing is
performed by injecting water. Owing to the peculiarities of the diatomite, the
microstructure of this rock has to change to get any appreciable fluid flow. Actually,
during field operations the stress in the rock leads to the collapse of wall pores,
resulting in a network of microcracks that increases the permeability of the diatomite.
Eventually, the microcrack net connects with the macrofracture. Such an interaction
of fractures at different scales, which goes down to the microscopic level, is a
peculiarity of the diatomite oil-bearing formations, and motivated the development
of a new model based on the continuum damage mechanics approach.

We start from the assumption that the filtration of the fluid and the accumulation
of cracks are strongly coupled, so that we have to derive a model which solves
simultaneously the macroscopic fluid flow and the microstructural changes of
diatomite.

We begin from the filtration equation of the fluid in the diatomaceous stratum.
We make the following simplifying assumptions:

A1. Water and oil are not distinguished. Thereafter we use the word “fluid” to
refer to both species.

A2. The diatomaceous stratum is homogeneous, with constant height and depth,
and bounded from above and below by impermeable rocks.

A3. Inside the reservoir, during geologic times, the pressure p of the fluid and the
mean geostatic stress � assumed, respectively, the constant values pi and �i .
(The mean geostatic stress is 1

3
.�x C �y C �z/, that is, one-third of the first

invariant of the stress tensor.)

A4. The deposit is “deep”. This assumption together with A3 implies that also if
we perturb the fluid pressure p from its equilibrium initial value pi , the sum
p C � remains constant and is equal to pi C �i during the whole process.

A5. The diatomite is a weakly compressible elastic porous medium.

A6. The fluid is weakly compressible, so its density � is a linear function of pressure.

Under such hypotheses, following [2] (see also [1]), we obtain from the continuity
equation @t .m�/C r.�u/ D 0 (where u is the filtration velocity) and from Darcy’s
law u D �.k=�/rp (where � is the fluid viscosity) the equation for the pressure:

@tp D r.K rp/: (1)
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Here the “piezo-diffusivity” coefficient K is defined as

K D
k

�mc
;

where c is a constant taking into account the compressibility coefficient of the
fluid and the compressibility coefficient of the rock porosity. Equation (1) is
defined in two spatial dimensions, and all the quantities involved (pressure, porosity,
permeability, compressibility, etc.) have to be interpreted as averaged over the
height of the diatomaceous stratum.

The key idea in [2] was to consider permeability no longer as a fixed quantity, but
as a function of the rock damage, k D k.!/. In subterranean mechanics sometimes
one uses pressure-dependent permeability, but we will neglect this dependence. We
will also neglect the contribution to the porosity, given by the microcracks opened
during the damage accumulation, because the volume fraction of cracks is small.

The basic equation now becomes

@tp D r
�
K.!/rp

�
: (2)

Here K.!/ is a fast growing function of !, and K.0/D 0 by hypothesis. In [2] no
further assumption was made about the form of K. � / due to the lack of experimental
evidence. However, in the following, in order to perform a numerical and analytical
investigation, we will assume as a first step that K.!/D K!˛ , ˛ > 0. Clearly, the
permeability is the function of time and space, but here we assume that the space
and time variability of permeability is due only to space and time variability of
damage.

To complete the problem formulation, it is now necessary to add an equation for
the damage accumulation. Initially the rock is considered pristine (! D 0), with the
possible exception of small regions around the wells that appear during the drilling.
When the water is pumped into the wells and starts to filtrate in the diatomaceous
rock, the pressure in the pores eventually increases above a certain critical value I

and microcracks start to appear. The exact value of I is unknown and has to be
determined by infield experiments. We claim that it has to be not less then pi , since
during geological time no damage has been accumulated (we neglect seismic and
tectonic effects).

It is natural to make the basic assumption that locally the damage accumulation
rate @t! is proportional to a certain power of .p �I/C, and also proportional to the
fraction of undamaged bonds 1 �!. Therefore, as in classical continuum damage
mechanics, the process of damage accumulation is governed locally by a kinetic
equation of the following type:

d!

dt
D A.1 �!/.p � I/


C;
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where A is a constant. In addition, together with this bulk mechanism, we also
consider a nonlocal damage diffusion process. We expect, in fact, that fluid wedging
take place in the microcracks. Again, we are focused on qualitative evaluation of
the equations, and we choose a very simple nonlocal damage evolution equation, in
the form

@t! D
�
r
�
D.!;p/r!

�
C A.1 �!/.p � I/


C

�
C
; (3)

where the positive part on the right hand side avoids a nonphysical damage healing.
In particular, we will use the expression

D.!;p/ D ƒ2!�.p � I/
ˇ
C

for the damage diffusivity coefficient, where ƒ is constant.

3. The mathematical problem formulation

Equations (2) and (3) are the starting point for a mathematical formulation of the
problem of fluid flow in diatomaceous rocks, leading to the following nonlocal
damage accumulation and pressure evolution model:8<:@t! D

h
ƒ2

r
�
!�.p � I/

ˇ
Cr!

�
C A.1 �!/.p � I/


C

i
C
;

@tp D K r
�
!˛

rp
�
;

(4a)

!.x; 0/ D !0.x/; (4b)

p.x; 0/ D p0.x/; (4c)

where !0.x/ and p0.x/ are given initial distributions of the damage and pressure.
We will refer to system (4) as the 2D formulation of the “diatomite problem”.

We remind that ! is the vertically averaged damage in the oil-bearing layer of
diatomite rock, while p represents the averaged pressure of fluid contained in the
stratum. Moreover, I is related to the strength of the material and represents a
threshold pressure under which no damage accumulation or diffusion occurs. In
the analytical investigation, we assume for simplicity that p D 0 corresponds to
the rest pressure of the fluid, pi , in the undamaged zone. Therefore we shall also
assume I � 0. The constants ˛, ˇ,  , � and A satisfy

˛; ˇ; ;A> 0 and �� 0: (5)

System (4) exhibits two major mathematical difficulties:

� the nonnegativity of @t!, which physically represents the condition of no
healing but which mathematically renders the equation for ! “fully nonlinear”;

� the degeneracy of the diffusion coefficients !�.p � I/
ˇ
C and !˛ if ! D 0 and

p � I .
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We also consider the one-dimensional version of Equation (4a)

8<:@t! D

h
ƒ2 @x

�
!�.p � I/

ˇ
C @x!

�
C A.1 �!/.p � I/


C

i
C

@tp D K @x

�
!˛@xp

�
:

(6)

We will refer to it as the 1D formulation of the diatomite problem. In spite of its
simplification, such a formulation is traditional. Let us consider for example a
huge number of wells placed along a straight line and operating simultaneously:
this is customary for oil and water filtration problems, see the book [1] as well
as the comprehensive book [3]. Therefore it might be useful to replace a discrete
representation of the wells by a homogeneous distribution density of wells along the
line. This representation is called drainage gallery, and it works quite fine as soon
as we are not too close to the wells. The 1D formulation can very likely describe
the case where a drainage gallery is orthogonal to the x axis.

4. Numerical examples for the two-dimensional formulation

In this section we investigate some numerical examples for the 2D formulation
of the diatomite problem (4). Just to understand what happens in a very simple
case, we present a first example in which a single well placed in the center of an
ideal squared oil field injects fluid at constant pressure. This will help to capture
the qualitative behavior of the pressure and damage evolution inside the diatomite
stratum.

Subsequently, we simulate an oil field composed by five wells placed in diamond
formation (five points scheme). In this formation four of them are located in the
corners of a square and one is placed in the center of this square. This formation
is frequently used in oil fields, where usually the wells placed in the corners are
injectors, and the one in the center is a production well. We will simulate this
situation, but we will also do the opposite, using the corner wells as production
ones and the central one as injection well. For numerical simulations, we idealize
the oil field as a square with vertices .˙L;˙L/. The wells are represented by
circles of radius L=10. In the diamond formation, four of them are centered in
.˙0:4 � L;˙0:4 � L/, the fifth is centered in the origin. For the computation we
first rewrite the problem (4) in a nondimensional form. The spatial variables
.x;y/ are replaced by nondimensional ones: .�; �/� .L�1x; L�1y/. In the new
coordinates, the gradient is Qr � Lr. We use the nondimensional pressure P � p= Qp,
where Qp is a certain constant with the dimension of pressure. Finally, we define the
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nondimensional time �D tƒ2 QpˇL�2. If we choose Qp such that Qpˇ D K=ƒ2 , we get8<:@�! D

h
Qr
�
!� .P � I/

ˇ
C

Qr!
�

C Qa .1 �!/ .P � I/

C

i
C
;

@�P D Qr
�
!˛ QrP

� (7)

Here, I D
I

Qp
and Qa D

A Qp�ˇ L2

ƒ2
.

The pressure is initially everywhere equal to a constant P0< I. When an injection
well starts working, the pressure inside the corresponding circle is raised to a value
Pmax > I. In these examples the values of parameters are: P0 D 2, Pmax D 10,
Pmin D 0 and I D 5.

In the circle corresponding to a production well, the pressure is lowered to a value
Pmin < P0. The initial damage is prescribed to be equal to 0 in the whole domain,
except in the wells where it is equal to 1. We have chosen for these examples ˛D 2,
 D 5, ˇ D Qa D 1, �D 0, and we prescribed no flux boundary conditions on the
sides of the square. Finally, we have discretized the side of the domain in 161

points, and in order to handle the nonlinearity and the degeneracy we have used an
implicit finite difference scheme.

Example 4.1. The first example represents a single injection well placed in the
center of a squared region. The idea is to demonstrate the sharp front that separates
damaged and undamaged regions and that coincides with the pressure front. We
remind to the reader that the formation of the sharp front separating perturbed and
unperturbed regions is a well known feature for degenerate parabolic equations such
as “porous medium equations” (see [1] and references therein). In the following, it
will be clear that the degeneracies involved in system (7) make the problem much
more complicated than standard ones. The simulation runs from � D 0 to � D 0:6.
At time � D 0 the well starts working and the damaged region coincides with the
one occupied by the well. Figure 3 shows pictures corresponding to � D 0:09 and
� D 0:6.

Example 4.2. In this second example a production well is placed in the center
of a square, while the injection wells are in the corners. The configuration is
schematically represented in Figure 4.

The simulation runs from � D 0 to � D 0:21. At time � D 0, the injection wells
start working, while the production well initially is at rest and starts working at
time � D 0:15. The reason for this delay is that we wait until the damaging zone
propagating from the injection wells reaches the production well. The results are
represented in Figures 5–8. Figure 7 (bottom) shows the vector field of the velocity
of the fluid inside the oilfield at � D 0:21. Figure 8 shows on the same graph the
flux of fluid injected and extracted.
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Damage Pressure

� D 0

� D 0:09

� D 0:6

Figure 3. Extension of damage and pressure with increasing time � .

Figure 4. Schematic configuration of wells in the oil field. The
center spot indicates the production well, the rest injection wells.
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Figure 5. Initial pressure (top) and pressure at � D 0:21 (bottom).
All the wells are active.
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Figure 6. The initial damage (� D 0) is concentrated around the
five wells.
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Figure 7. Damage (top) and fluid velocity field (bottom) at � D 0:21.
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Figure 8. The total amount of fluid recovered per unit of time
(Out), and the total amount of fluid injected per unit time (In), are
plotted as functions of the nondimensional time � . At � � 0:1

the damage front reaches the production well. At � D 0:15 the
production well starts working.

Example 4.3. In this example, the well placed in the middle is an injection well,
while those placed in the corners are production wells. The configuration is schemat-
ically represented in Figure 9.

The simulation runs from � D 0 to � D 0:56. At time � D 0, only the injection
well is working, while the production wells start working at � D 0:2. The results

Figure 9. The schematic configuration of the wells in the oil field.
The spot in the center corresponds to the injection well. The spots
in the corners are the production wells.
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Figure 10. The initial pressure. Only the central well is active,
and injecting water.
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Figure 11. The pressure at � D 0:56 when all the wells are active.

are presented in Figures 10 through 13. In Figure 12 (bottom) we notice that the
flux line starting from the injection well reaches the production wells. Actually,
Figure 13 clearly shows that after a certain transition time the injected fluid flux is
equal to the extracted fluid flux.

These simple examples are the first step of a numerical investigation of the 2D
model. First of all, the numerical simulations confirm the conjecture that there is
a sharp front between the damaged and undamaged zones. We emphasize again
(see [1]) that such sharp fronts are a common feature of the degenerate parabolic
equations of the type considered in the present work. In addition, in Example 4.3 we
observe the main consequence of the threshold constant I . As expected, the front
propagation stops when the pressure at the front goes below the value I; see Figure
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Figure 12. Damage (top) and fluid velocity field (bottom) at � D

0:56. The initial damage is the same as the one in Figure 6.
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Figure 13. The total amount of fluid recovered per unit of time
(Out), and the total amount of fluid injected per unit time (In), as
functions of the nondimensional time � . At � � 0:1 the damage
front reaches the production wells. At � D 0:2 the production wells
start working.

11. After a while the system seems to reach a stationary configuration, where both
pressure and damage stop to evolve. As a consequence, all the fluid injected in the
reservoir is caught by the production wells, as can be seen from Figures 12 and 13.
So, from a mathematical point of view, the numerical simulations suggest that the
2D problem is well-posed, and that it has the structure of a free boundary problem,
as was suggested in [2]. In this sense, the numerical experiments form a basis for
further analytic studies. On the other hand, we are short of systematic quantitative
studies of the microstructural changes of diatomites subjected to mechanical stress,
and, in particular, the values of all the involved parameters are still unknown. Even
merely a rough estimate of these parameters would make it possible to begin the
simulation of real oilfields, a most important challenge for the future.

5. The one-dimensional formulation

In the following, we will deal with a flow to or from a drainage gallery described
by the system (6). The numerical scheme adopted to solve this system is essentially
the same as the one used for the 2D formulation. We begin our investigation by
giving an overview of the behavior of the solutions. For this purpose we consider
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on the interval Œ0; 1� the system(
@t! D @x

�
!�.p � I/

ˇ
C @x!

�
C A.1 �!/.p � I/


C ;

@tp D @x

�
!˛ @xp

�
;

(8)

where, without loss of generality, we have fixed ƒD K D 1. We choose initial data

!0.x/ D 0 for x 2 Œ0; 1�I p0.x/ D 0:1 for x 2 Œ0; 1�;

and boundary conditions

@x!.0; t/ D @x!.1; t/ D 0; p.0; t/ D 1:1 and p.1; t/ D 0:1:

We observe that the physical condition of positiveness of @t! expressed in (6)
has been removed, since it is never violated for these sets of initial and boundary
conditions. We expect a damage-pressure front propagating from the left to the
right.

We solved the problem numerically for several values of ˛, ˇ,  , �, I . We
selected some specific values that exhibit different types of behavior of the corre-
sponding solutions and illustrate strong dependence on the parameters. This strong
dependence will become even clearer when we investigate the traveling waves
(section Section 5.1).

In Figure 14 (top) we present the numerical approximations of the evolution of
damage and pressure with ˛D 2, ˇD 0:5,  D�D 1 and I D 0:8. The simulation
suggests that the damage is discontinuous across the free boundary. Moreover, the
pressure seems to decrease linearly on the left side of the free boundary, towards a
value which is reasonably close to the value I � 0:8.

In the middle row of the same figure we selected instead ˛ D 0:5, ˇ D 2,
 D � D 1 and I D 0:6, and the simulation suggests that ! goes down to zero
smoothly near the free boundary.

Finally, in the bottom part of the figure we have chosen ˛D 2, ˇD 2,  D�D 3

and I D 0:6, and it seems that p jumps across the free boundary to a value greater
than I � 0:6, while ! seems to be continuous across the boundary.

Actually the numerical scheme is surprisingly stable near the free boundary, and
preserves the sharpness of the boundary without smoothing it.

5.1. Traveling waves. A numerical investigation, the results of which were pre-
sented in the previous section, confirmed the conjecture that there exists a sharp
front separating damaged (! > 0) and undamaged (! D 0) regions. Therefore,
to investigate the local structure of such fronts (that is, the behavior of the flow
characteristics close to the front), the studying of the traveling waves is appropriate.
Naturally, the stretching of the horizontal coordinate is assumed, as it is always
done when the structure of the fronts is considered (for example, the structure of
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Figure 14. Numerical experiment. Left: damage; right: pressure.
Top: ˛ D 2, ˇ D 0:5,  D � D 1, I D 0:8; middle: ˛ D 0:5,
ˇD 2,  D�D 1, I D 0:6; bottom: ˛D 2, ˇD 2,  D 1, �D 3,
I D 0:6.

the shock waves in gas dynamics). We focus our attention to the case of moving
fronts. The rigorous mathematical investigation of the moving traveling waves can
be found in [4]. At first, we refer to [5] and present some general mathematical
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results concerning the existence of appropriate solutions for the system (8). In that
paper, a solution .!;p/ is constructed in the case

!0 > 0; p0 > 0 in an interval .a; b/;

!0 D p0 D 0 in .�1; a/ and .b;1/:

It is proved in [5] that there exist two fronts, x D a.t/ and x D b.t/ (where a.t/

and b.t/ are continuous functions with a.0/ D a, b.0/ D b) which separate the
damaged and undamaged rocks:

!.x; t/ > 0; p.x; t/ > 0 if a.t/ < x < b.t/,

!.x; t/ D p.x; t/ D 0 if x < a.t/ or x > b.t/:

The product !.p �I/C is, generally speaking, continuous across the fronts at t > 0,
which implies that at least one of the two functions ! and .p � I/C is continuous
across the fronts at such times t . Moreover, if p.x; 0/ > I in the interval .a; b/,
then p.x; t/ > I if a.t/ < x < b.t/, t > 0. We emphasize that still very little is
known mathematically about the general behavior of the solutions near the free
boundary, and about the dependence of the solutions on the various parameters in
the problem—this will be the problem of our further studies. In particular, it is
important to know if ! or .p�I/C can be discontinuous across the free boundaries,
as was suggested by the numerical simulations, and, if so, for which parameters.

Therefore we look for traveling waves of constant speed V , that is, for the
solutions to the system (8) of the type p D p.�/, ! D !.�/, � D x � V t . For
definiteness’ sake, we assume that V is positive, and that both p and ! vanish
when � > 0, and that 0< ! < 1 and p > I when �0 < � < 0 for some negative �0.
Under these assumptions, the system (8) leads to the system of ordinary differential
equations

�V
d!

d�
D

d

d�
.!�.p � I/ˇ

d!

d�
/ C A.1 �!/.p � I/ if �0 � � < 0;

�Vp D !˛ dp

d�
if �0 � � < 0;

with the properties that 0< ! < 1; p > I; d!=d� < 0 if �0 � � < 0, and

lim
�%0

!.p � I/ D 0 D !�.p � I/ˇ
d!

d�
C V!:

In [4] it has been shown that, for each choice of the values of the parameters
and for each given value of the velocity V > 0, there exists a one-parameter family
of solutions, and that the behavior of the traveling waves depends strongly on the
values of the parameters. In particular, it has been shown that, for every V > 0, !
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can be discontinuous across the free boundary (� D 0) if and only if 0< ˇ < 1 and
I > 0. In such a case the traveling waves solutions behave near � D 0 as

! � !�
C

V 1�ˇ

.1 �ˇ/Iˇ

�
!�
�1C˛ˇ��

j�j1�ˇ; p � I C V
�
!�
��˛

I j�j;

where !� > 0 is a free parameter. These analytic results are in agreement with the
numerical results of Figure 14(a).

The question is more complicated if we consider for which parameter values
there exist traveling waves for which .p �I/C is discontinuous across the interface.
If �� 1 and ˛ < �, there again exists, for every velocity V > 0, a one-parameter
family of traveling waves which, near the interface � D 0, behave as

! � B j�j1=�; p � p�
C C j�j1�˛=�:

Here p� > I is the free parameter, and B and C are constants determined by V ,
p� and by the parameters in the equations. But, if �� 1 and ˛ < 1, there exists as
well, for every V > 0, a two-parameter family of solutions which behave as

! � B1j�j; p � p�
C C1j�j1�˛:

Here p� > I is one of the free parameters, and B1 and C1 are constants determined
by V , p� and by the parameters in the equations (but not by the second free
parameter!).

The latter family has a remarkable property not satisfied by the former ones.
Returning to the original variables of problem (6) we obtain new coefficients
corresponding to B1 and C1, and it turns out that they do not depend on the
parameter ƒ. As a matter of fact they coincide with the coefficients of the traveling
wave solution of (6) if we put ƒD 0. Indeed, a straightforward calculation shows
that if ƒ D 0 and 0 < ˛ < 1, then for any p� > I and V > 0 problem (6) has a
traveling wave solution which, near the interface x D V t .x < V t/, behaves as

! �
A.p� � I/

V
jx � V t j;

p � p� V 1C˛p�

.1 �˛/KAa.p� � I/˛
jx � V t j1�˛:

We refer to [4] for a detailed discussion on families of traveling wave solutions.

5.2. Optimization of oil recovery, a qualitative example of control problem. In
this section we consider an application of the 1D formulation (6) of the problem
of fluid flow. Let the domain be the finite interval 0 � x � 1. We are describing a
flow to the “drainage galleries” placed in the section x D 0. We assume that such a
drainage gallery can work both as an injection and a production one. This means
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that it can work both at higher and lower pressure than the initial pressure of the
oil reservoir pi . It is feasible to suppose that pi � I , since the value of I is the
threshold pressure above which the microcracking starts to accumulate, and in the
pristine state there are no cracks in the rocks. The system can be controlled by
prescribing the pressure at x D 0, that is, in the gallery: we denote this value by
P .t/. To start to extract oil, some amount of water is pumped through the wells
(P is raised above I ) in the diatomaceous stratum. Microcracks will appear inside
the stratum and consequently the permeability of the rock will increase. After this
initial process of water pumping, the pressure P is lowered below pi in order to
extract oil from the wells.

The problem of finding the best strategy to maximize the amount of extracted
oil, as it was formulated, is ill-posed. In principle, a very long (in time) pulse, or
a very high pulse for the function P .t/, would allow to damage regions very far
from the wells. Moreover, there is no limitation on the amount of oil that can be
taken out from this damaged zone, if we are able to decrease the pressure enough
and wait for a long time.

However, the real conditions are far from this idealization, and there are several
aspects that we have to take into account. First of all, a realistic assumption is that
the device which controls the pressure in the wells, works only in a certain bounded
range of pressure. Moreover, the whole process of oil extraction has several aspects
to be taken into account by constructing a suitable “cost function” C . Therefore,
we make the following assumptions:

(1) There is a fixed cost k1 per unit of time to maintain the gallery operating.

(2) The cost per unit of time for injecting or extracting fluid is proportional to the
power (work per unit time)

k2

�
�.P .t/� pi/ˆ.t/

�
C
;

where pi is the pressure of the wells at rest (we simplified the problem by
considering the rest pressure in the wells equal to the initial pressure in the
deposit), ˆ.t/ is the flux of liquid, and k2 is a conversion factor.

(3) The profit F.t/ is assumed to be proportional to the volume of extracted liquid
E.t/:

F.t/ D k3E.t/:

Therefore, the total cost is C.t/ D k1t C k2

Z t

0

�
�.P .s/� pi/ˆ.s/

�
C

ds. On the
other hand,
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F.t/ D �k3

�Z t

0

K!˛.0; t/ @xp.0; t/ dt

�
C

D k3

�Z 1

0

p.x; t/ dx �

Z 1

0

p.x; 0/ dx

�
C

� .V .t//C:

Here V .t/ is the difference between the actual total volume and the initial total
volume of fluid in the reservoir. Hence, the net profit is

G.t/ D F.t/� C.t/: (9)

Our problem is to find the function P .t/ (with 0 � t � T ) that realizes the maximum
of G.T /. Here T is some instant of time that can be fixed a priori, or can be included
in the unknowns of the problem. We repeat that our formulation of the control
problem is a schematic one, and is used here only for presenting and illustrating
the basic idea.

We still need to specify the set of allowed control functions P .t/. We introduce
two numerical examples where we make strong assumptions on the possible shape
of P .t/.

Example 5.1. We assume that the device that regulates the pressure can only
perform a single cycle consisting of the following steps:

(1) Injection and damaging. Starting from the initial value of pressure pi , the
drainage gallery imposes a pulse of maximum amplitude pmax;

(2) Extraction. After returning to the value pi , the drainage gallery decreases the
pressure linearly until a certain value pmin is achieved, and keeps this value
constant as long as the incoming flux ensures a profit;

(3) Back to the beginning. The pressure increases linearly to its initial value pi ,
so that the cycle is completed.

This cycle can be repeated as long as it is profitable. A cycle of P .t/ can be
represented as follows (see Figure 15):

P .t/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�
pmax � pi

�
sin
�
�

t

t1

�
C pi if 0 � t � t1

�
�pmin C pi

�� t2�t

t2�t1

�
C

C pmin if t1 � t � t3 and t2 < t3

�
Cpmin � pi

�� t4�t

t4�t3

�
C pi if t3 � t � t4.

(10)

The intervals t1, t2 � t1, and t4 � t3 are fixed a priori, but the interval t2 � t3 is not
known a priori and is chosen by the program to optimize the profit in the cycle. In
particular we keep the pressure at the drainage gallery equal to pmin until the profit
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t1 t2 t3 t4

P .t/

pmin

pmax

pi

t

Figure 15. The cycle of the boundary pressure P .t/.

reaches a maximum (G0.t3/ D 0). Our choice is to optimize every single cycle,
although, in case of several cycles, this is not necessarily the best global strategy.

For the numerical simulation we have chosen:

K DƒD A D 1I

˛ D ˇ D 1I

 D 5I

�D 0

I D 0:2I

pi D 0:1; pmax D 1; and pmin D 0I

t1 D 0:2; t2 � t1 D t4 � t3 D 0:04:

To compute the cost function we have chosen:

k1 D 0:01; k2 D 1; k3 D 20:

We have performed 5 cycles. As Figure 16 clearly shows, the volume extracted at
the end of the cycles increases with the number of cycles performed. However, we
have to take into account the cost function C.t/, represented in Figure 17. In fact,
looking at the actual profit G.t/ in Figure 18, we conclude that the best strategy
consists in performing only two cycles.
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Figure 16. The volume function V .t/ is the difference between
the volume extracted and injected. It increases with the number of
pulses.
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Figure 17. The cost function C.t/. The jumps correspond to fluid
injections. During the injection, the main contribution is given
by the integral term of the cost function. Between two jumps,
instead, the cost increases almost linearly. This means that the
main contribution is given by the time-linear term.
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Figure 18. The profit function G.t/. The II pulse reaches the
maximal profit, although the difference between the II and III
pulses is very small (1:5511 versus 1:5496).

Example 5.2. We fix the total time T of the process and prescribe the form of the
function P .t/ as in Figure 19:

P .t/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
pmax � pi

�
sin
�
�

t

t1

�
C pi if 0 � t � t1;�

�pmin C pi

�� t2 � t

t2 � t1

�
C pmin if t1 � t � t2;

0 if t2 � t � T .

In this example t1 is the unknown parameter which we use to optimize the profit
function G.T /. For the sake of simplicity we prescribe the duration of the interval
t2 � t1 to be equal to T=10. For the numerical simulation we have chosen

K DƒD A D 1;

˛ D ˇ D 1;

 D 5;

�D 0;

I D 0:2;

pi D 0:1; pmax D 1 and pmin D 0;

T D 3; t2 � t1 D 0:3:

We have evaluated numerically the profit function G for several values of the time
t1. The results are shown in Figure 20.
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Figure 19. The boundary pressure P .t/.
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Figure 20. The profit function G as a function of the time t1.
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ON THE SPECTRAL DEFERRED CORRECTION OF
SPLITTING METHODS FOR INITIAL VALUE PROBLEMS

THOMAS HAGSTROM AND RUHAI ZHOU

Spectral deferred correction is a flexible technique for constructing high-order,
stiffly-stable time integrators using a low order method as a base scheme. Here we
examine their use in conjunction with splitting methods to solve initial-boundary
value problems for partial differential equations. We exploit their close connection
with implicit Runge–Kutta methods to prove that up to the full accuracy of the
underlying quadrature rule is attainable. We also examine experimentally the
stability properties of the methods for various splittings of advection-diffusion
and reaction-diffusion equations.

1. Introduction

Dutt et al. [7] have introduced a method of spectral deferred correction which allows
one to automatically increase the accuracy of a low order time-stepping method.
Defect and/or deferred correction methods for initial value problems have been
known for some time [23; 9]. The main innovation in [7] is the use of spectral
integration on Gaussian quadrature nodes to construct the corrections. This avoids
instabilities and conditioning problems associated with repeated differentiations.
They show that if forward or backward Euler methods are used as the base scheme
(2–5), stable and stiffly-stable methods of very high order result. More recently,
Auzinger et al. [3; 2] have analyzed similar algorithms and suggested various
improvements.

Our interest here is in the use of SDC methods in conjunction with operator
and/or dimensional splitting to solve initial-boundary value problems for partial
differential equations. In a series of papers [21; 6; 19] Minion et al. have explored
the use splitting methods as the base scheme in an SDC approach. However,
their implementations have mainly been designed to achieve an order of accuracy
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approximately equal to the number of time levels stored. (For an exception see [17].)
In our approach we exploit the close connection of SDC methods with implicit
Runge-Kutta methods to prove that up to double this accuracy is attainable, though
only for the approximate solutions at the boundaries of each correction interval.
(See also [3].) Again this result is expected from the perspective of the Runge-
Kutta methods as the approximate solutions on the interior nodes correspond to the
Runge-Kutta stage variables. We believe this possibility for enhanced accuracy is
of importance for large, memory-bound applications; our experiments indicate that
the efficiency of the proposed higher-order methods is essentially the same as for
the methods proposed in the above-cited works.

We also examine the stability properties of the methods for various special cases.
We begin by constructing stability domains for the standard model of operator
splitting applied to advection-diffusion problems (e.g., [1]). We have considered all
of the typical quadratures (Gauss–Legendre, Gauss–Lobatto, and Gauss–Radau) and
a variety of starting methods (2–4). We also compare consistent and inconsistent
correction methods (2–5). Second, we consider what we call preconditoned splitting
methods for both linear and nonlinear problems. We have used such techniques
to develop fourth and higher order solvers for complex models of reacting gases
[12; 11; 24]. We note that Layton and Minion [20] have carried out an extensive
stability study for SDC applied to splitting methods. We will compare our results to
theirs, in essence assessing the effect of our additional corrections on the stability
domains.

Finally, we verify the properties of the methods in nonlinear settings through
experiments with simpler reaction-diffusion and advection-diffusion problems,
focusing on the requirements on the preconditioner to obtain good accuracy and
stability. (A similar study for lower order splitting methods is presented in [22].)
Given the difficulties in fully analyzing splitting methods for complex problems,
such studies seem necessary to validate any proposed methods.

2. Spectral deferred correction with splitting

We consider the initial-value problem:

du

dt
D F.u; t/; u.t0/D u0; u;F 2 R� (2–1)

and recall the well-known fact that given t0 D T0 < T1 < � � � (2–1) can be reformu-
lated as a sequence of integral equations:

u.t/D u.Tj /C

Z t

Tj

F.u.�/; �/d�; t 2 ŒTj ;TjC1�: (2–2)
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Our formulation of spectral deferred correction of some splitting method for ap-
proximating (2–1) has three essentially independent ingredients. First we introduce
two splittings of F :

F D QFI C QFE ; F D FI C FE ; (2–3)

and two associated time-stepping formulas; a pth order multistep method (e.g., an
IMEX method [1]) which we call the starting method:

k�1X
jD�1

j̨v.tn�j /D hn

k�1X
jD�1

ˇ
.n/
j

QFI .v.tn�j /; tn�j /

Chn

k�1X
jD0

Q̌.n/
j

QFE.v.tn�j /; tn�j /; (2–4)

and the first order method,

v.tnC1/D v.tn/C hnFI .v.tnC1/; tnC1/C hnFE.v.tn/; tn/; (2–5)

which we call the correction method. Second, we introduce, as in [7], a collocation
method for approximating (2–2). Setting �T D TjC1 �Tj we introduce m nodes:

tjk D Tj C ck�T; 0 � c1 < c2 < � � �< cm � 1: (2–6)

A solution of the polynomial collocation approximation defined by these nodes is a
set of vectors vjk satisfying:

vjk D v.Tj /C

Z Tj Cck�T

Tj

 j .t/dt; (2–7)

D v.Tj /C�T

mX
˛D1

Sk˛F.vj˛;Tj C c˛�T //; (2–8)

where  j .t/ is the unique degree-.m�1/ interpolant of the data

.Tj C ck�T;F.vjk ;Tj C ck�T //; k D 1; : : : ;m:

Here, following [7], we note that the matrix S whose entries are Sk˛ is a well-
conditioned m � m spectral integration matrix.

The evolution of the approximate solution from Tj to TjC1 now proceeds as
follows:

i: Compute approximations, v0
jk

, using m steps of (2–4) with the appropriate
reduced time steps,

hk D .ck � ck�1/�T; c0 D 0: (2–9)
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(Note: a multistep starting method may make use of data at points tj�1;k .)

ii: Given our l th approximation, vl
jk

, we define residuals, r l
jk

, using the spectral
integration matrix, S :

r l
jk D v.Tj /C�T

mX
˛D1

Sk˛F.vl
j˛; tj˛/� vl

jk ; (2–10)

D v.Tj /C

Z Tj Cck�T

Tj

 l
j .t/dt � vl

jk :

Here  l
j .t/ is the unique degree-.m � 1/ interpolant of the data

.Tj C ck�T;F.vl
jk ;Tj C ck�T //; k D 1; : : : ;m:

iii: With the residual in hand, (2–5) is used to update the approximation. The
idea here is to write vlC1 D vl C ıl and note that the correction can be viewed
as an approximate solution to the perturbed equation:

dıl

dt
D F.vl

C ıl ; t/� F.vl/C
dr l

dt
; ıl.Tj /D 0: (2–11)

The most straightforward approach, used by Dutt et al. [7] and Minion [21], is
to apply (2–5) directly to (2–11) to obtain the correction formula:

ıl
jk D ıl

j ;k�1 C r l
jk � r l

j ;k�1

Chk

�
FI .v

l
jk C ıl

jk ; tjk/� FI .v
l
jk ; tjk/

�
(2–12)

Chk

�
FE.v

l
j ;k�1 C ıl

j ;k�1; tj ;k�1/� FE.v
l
j ;k�1; tj ;k�1/

�
;

ıl
j0 D 0; (2–13)

vlC1
jk

D vl
jk C ıl

jk : (2–14)

iv: Stop the process after L steps and define the solution update by:

v.TjC1/D v.Tj /C

Z Tj C1

Tj

 L
j .s/ds: (2–15)

Obviously, the description above leaves room for a wide range of implementations,
some of which we will discuss below.

Concerning the starting and correction methods, we note that in many cases it
is possible to choose FI and/or QFI to be linear in v, in which case the methods
are called linearly implicit. Also we assume that p � m where m is the number of
nodes in the quadrature formula underlying the correction process. Although we
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will prove that the overall method typically attains an order q > m, our analysis
indicates that there is no benefit to choosing p >m. Moreover, as multistep starting
methods may use stage values, we are limited by the stage order, which is m. We
emphasize that we could use the correction method as our starting method, and
indeed that is what has been done in the references mentioned herein. Also, as the
time steps will not be equally spaced, the coefficients in (2–4) will depend on n if a
truly multistep method is used. (See, though, [3; 2] for a method which allows an
equispaced temporal grid while maintaining the accuracy of the Gaussian quadrature
rules.) Lastly, it is possible to replace (2–5) and/or (2–4) with a multisplitting or
fractional step scheme as in [6], but for simplicity we will focus on the simpler
splittings for our analysis here.

Concerning the nodes, Dutt et al. [7] take them to be the Gauss–Legendre nodes.
Minion [21], on the other hand, suggests Gauss–Lobatto nodes, and we will also
consider right-handed Gauss–Radau nodes. In [20] uniform nodes are shown to be
feasible from the standpoint of stability, but their use would preclude the attainment
of the higher order accuracy which is a focus of the current work.

Lastly we note that alternative correction formulas are also possible. The correc-
tion method we have employed in [12; 11; 24; 25] follows [9]:

Nvl
jk D Nvl

j ;k�1 C ıtkFI . Nv
l
jk ; tjk/C ıtkFE. Nv

l
j ;k�1; tj ;k�1/C r l

j ;k�1 � r l
jk : (2–16)

where
Nvl
j0 D v.Tj /: (2–17)

Then set:
vlC1
jk

D v0
jk C vl

jk � Nvl
jk : (2–18)

However, the theoretical results in this paper only apply in general to corrections
based on (2–12)-(2–14). To apply them to corrections based on (2–16) we must
make the starting method and the correction method coincide, which is the case in
[12; 11; 24; 25]. Under those conditions, and for linear problems, the two correction
methods are mathematically identical.

3. Order of accuracy

In [7; 21] the correction process is carried out until an error on the order of the
truncation error in the approximations to (2–2) is attained. This leads to methods
of order m. More general analyses of the convergence and accuracy of this process
appear in recent manuscripts by Hansen and Strain [15; 16], where both single step
and multistep correction formulas are considered. However, their approach does
not take account of the full order of accuracy of the underlying quadrature rules
which is our aim here. (We note that we could use SDC methods as analyzed in
[15; 16] as our starting methods.)
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In this work we focus on the classical Gauss-type quadrature methods which are
of orders between 2m � 2 and 2m. We prove here that if further corrections are
made the order of accuracy of the underlying quadrature rule is in fact attainable,
albeit only for the approximate solutions at the coarse grid points, Tj . (See also
[3].) In practice, this allows the construction of higher order methods which are
more efficient from the perspective of the number of time levels which must be
stored. We also see that while the order of accuracy of the starting method affects
the number of corrections needed, the accuracy of the correction method does not.
This is in contrast with the results of [15; 16], which show that gains in accuracy
commensurate with the order of the correction method are possible until an order
m method is produced.

The accuracy result follows from the observation that if the residuals were zero,
that is if the related collocation approximations to (2–2) were constructed, then the
method would be equivalent to a standard implicit Runge–Kutta method (e.g., [13,
Chapter II]), which has the accuracy we claim. Thus we need only show that similar
conclusions follow from making these residuals sufficiently high order. We note
that one could more directly use the size of the residual as a basis for terminating
the correction process, as suggested in [17], but we do not consider that possibility
here.

To study the local truncation error we assume v.Tj /D u.Tj / and, for a multistep
starting scheme, vj�1;k D u.tj�1;k/. Set:

V l.t/D u.Tj /C

Z t

Tj

 l
j .s/ds; (3–1)

noting that v.TjC1/D V L.TjC1/. First we prove:

Lemma 3.1. Suppose F is smooth and that the polynomial quadrature rule based
on (2–6) has order q. Then there exists a constant, C , independent of �T , such
that for a sufficiently smooth solution, u, and a sufficiently smooth solution of the
SDC method, V l ,

ju.TjC1/� V l.TjC1/j � C�T max
k

jr l
jk j C O.�T qC1/:

Proof. Define the defect, d.t/, by:

d.t/D
dV l

dt
� F.V l.t/; t/D  l

j .t/� F.V l.t/; t/: (3–2)

Note that by (2–10):
V l.tjk/� vl

jk D r l
jk ; (3–3)

and by definition
 l

j .tjk/D F.vl
jk ; tjk/: (3–4)
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Thus by the Lipschitz continuity of F :

jd.tjk/j � Kjr l
jk j: (3–5)

Let the matrix ˆ.t; �;V l.�// be defined by:

ˆD DV l .�/w; (3–6)

where for t > � :
dw

dt
D F.w; t/; w.�/D V l.�/: (3–7)

We note that standard results on the differentiability of solutions of ordinary dif-
ferential equations with respect to their initial data imply that the derivatives of ˆ
with respect to � can be bounded in terms of the derivatives of V l which we have
assumed (and will subsequently prove) to be bounded independent of l and �T .
We then have the following nonlinear variation-of-constants formula, known as the
Alekseev–Gröbner Lemma [13, Chapter I]:

V l.TjC1/� u.TjC1/D

Z Tj C1

Tj

ˆ.TjC1; �;V
l.�//d.�/d�: (3–8)

Now replace the integral by the quadrature rule associated with the nodes. We have:

V l.TjC1/� u.TjC1/D�T
X

k

!kˆ.TjC1; tjk ;V
l.tjk// � d.tjk/

C

Z Tj C1

Tj

ˆ.TjC1; �;V
l.�//d.�/d� (3–9)

��T
X

k

!kˆ.TjC1; tjk ;V
l.tjk// � d.tjk/:

Using (3–5) the first term is bounded by C�T max jr l
jk

j while the difference of the

second and third is O.�T qC1/ by our assumption on the accuracy of the quadrature
rule and the smoothness of V l . This completes the proof of Lemma 3.1. �

To complete our analysis, we need only prove that the residual is reduced by the
correction process and that the approximate degree-m polynomial solution, V l , has
derivatives bounded independent of the time step.

Lemma 3.2. For a sufficiently smooth solution, u, and smooth functions, F , FI , FE ,
QFI , QFE , a starting method of order p � m, and corrections based on (2–12)-(2–14),

there exist constants, Cl and Mr;l , independent of �T sufficiently small such that
the residuals satisfy:

max
k

jr l
jk j � Cl�T pC1Cl ; (3–10)
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and, for l � m � p � 2 and 0 � r � m:

max
t2ŒTj ;Tj C1�

ˇ̌̌̌
ˇdr V l

dtr

ˇ̌̌̌
ˇ� Mr;l : (3–11)

Proof. Denote by QV .t/ the exact degree m polynomial solution of the collocation
equations. We have by [13, Theorem 7.10]:

dr u

dtr
�

dr QV

dtr
D O.�T mC1�r /; 0 � r � m: (3–12)

Also, the residual satisfies:

r l
jk D

Z tj k

Tj

. l
j .s/� QV 0.s//ds C QV .tjk/� vl

jk

D�T

mX
˛D1

Sk˛.F.v
l
j˛; tj˛/� F. QV .tj˛/; tj˛//C QV .tjk/� vl

jk : (3–13)

We proceed by induction on l . For l D0 (3–10) follows directly from the consistency
of (2–4). Precisely, since p � m, u.tjk/ � v0

jk
D O.�T pC1/, (3–12) implies

QV .tjk/�v
0
jk

D O.�T pC1/ with (3–10) following from the Lipschitz assumptions.

Denoting by Rl the residual vector,

Rl
D

0B@ r l
j1
:::

r l
jm

1CA 2 Rm� ; (3–14)

we recast the correction process as a fixed point iteration:

RlC1
D C.Rl/; (3–15)

and analyze the Jacobian derivative DRC.0/. From (3–13) and (2–14) we have:

r lC1
jk

D r l
jk � ıl

jk C�T

mX
˛D1

Sk˛.F.v
l
j˛ C ıl

j˛; tj˛/� F.vl
j˛; tj˛//: (3–16)

Taking the difference of (3–16) for consecutive values of k and using (2–12) we
arrive at the formula:

r lC1
jk

D r lC1
j ;k�1

C�T

mX
˛D1

.Sk˛ � Sk�1;˛/.F.v
l
j˛ C ıl

j˛; tj˛/� F.vl
j˛; tj˛//

�hk

�
FI .v

l
jk C ıl

jk ; tjk/� FI .v
l
jk ; tjk/

�
(3–17)

�hk

�
FE.v

l
j ;k�1 C ıl

j ;k�1; tj ;k�1/� FE.v
l
j ;k�1; tj ;k�1/

�
;
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where S0˛ D 0. Set:

Gkk0 D Dr l
j k0

r lC1
jk

; Hkk0 D Dr l
j k0
ıl
jk ; (3–18)

where the derivatives are evaluated at Rl D 0. Note that Gkk0 ;Hkk0 2 R��� with
Gkk0 being the block entries of DRC.0/. Noting that ıl

jk
D 0 if Rl D 0 we have

from (2–12):

Hkk0 D Hk�1;k0 C "kk0I � "k�1;k0I

C hk

�
DuFI . QV .tjk/; tjk/Hkk0 C DuFE. QV .tj ;k�1/; tj ;k�1/Hk�1;k0

�
; (3–19)

H0k0 D 0: (3–20)

(Here we are using "ij to denote the Kronecker ı to avoid confusion with the
correction vector.) Combining (3–19) with (3–20) and solving in increasing k we
conclude that Hkk0 D O.1/. Moreover,

Hkk0 D 0; k < k 0: (3–21)

(This fact proves to be a barrier to accelerating convergence; see the remark below.)
Differentiating (3–17) on the other hand we find:

Gkk0 D Gk�1;k0 C�T

mX
˛D1

.Sk˛ � Sk�1;˛/DuF. QV .tj˛/; tj˛/H˛k0

� hk

�
DuFI . QV .tjk/; tjk/Hkk0 C DuFE. QV .tj ;k�1/; tj ;k�1/Hk�1;k0

�
; (3–22)

G0k0 D 0: (3–23)

Solving (3–22) it is clear that Gkk0 D O.�T / which is sufficient to prove (3–10).
Finally we note that a direct consequence of the Lipschitz conditions and the

expression of V l and QV in Lagrange form is that:ˇ̌̌̌
ˇdr V l

dtr
�

dr QV

dtr

ˇ̌̌̌
ˇ� C�T 1�r max

k
jF.V l.tjk/; tjk/� F. QV .tjk/; tjk/j: (3–24)

Using (3–13) and (3–10) we find:ˇ̌̌̌
ˇdr V l

dtr
�

dr QV

dtr

ˇ̌̌̌
ˇ� C�T pClC2�r : (3–25)

By (3–12), (3–11) holds so long as p C l C 2 � m. This completes the proof of
Lemma 3.2. �
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Remarks. The proof of Lemma 3.2 makes no use of the assumption that FE CFI D

F and thus holds for inconsistent methods (2–5). We also see that the matrix on
the righthand side of (3–22) cannot in general be o.�T / since it is the difference
between nonzero full and block lower triangular matrices. Thus 3.2 is not directly
related to the accuracy of (2–5). However, the choice of (2–5) does effect the
stability of the overall method, though it may still be more efficient to use an
inconsistent formula in some cases. We note that these results differ from those
presented in [15; 16], where gains in accuracy commensurate with the order of the
correction method are proved. A difference is that we are proving higher order
convergence - in particular higher order than is attained at the interior quadrature
nodes. In [17] it is shown, for linear problems, that by using GMRES to accelerate
the correction process only half as many corrections are needed to attain the full
accuracy. In addition, they show that the use of GMRES improves the accuracy for
stiff problems.

We note that if (2–16)-(2–18) are used, then the analogue of ıl is given by
Nıl D v0 � Nvl . This correction satisfies:

Nıl
jk D Nıl

j ;k�1 C r l
jk � r l

j ;k�1 C v0
jk � v0

j ;k�1

�hk

�
FI .v

0
jk � Nıl

jk ; tjk/C FE.v
0
j ;k�1 � Nıl

j ;k�1; tj ;k�1/
�
: (3–26)

We see that unless v0 satisfies (2–5), that is unless the correction method and the
starting method coincide, the correction does not approach zero with the residual.
Hence the method cannot be interpreted as an approximation to an implicit Runge–
Kutta method. However, if they do coincide Lemma 3.2 also holds. The proof
follows essentially line for line, so we omit it.

Lastly we remark that our proof, relying as it does on the Lipschitz continuity
of F , fails in the stiff limit, though we will show that the order of accuracy is
attained for some stiff problems. In [2] experimental studies are presented of the
convergence of deferred correction of the backward Euler method to the underlying
implicit Runge–Kutta method.

Combining Lemma 3.1 and Lemma 3.2 we have proven our main theorem.

Theorem 3.3. For a sufficiently smooth solution, u, Lipschitz continuous functions,
F , FI , FE , QFI , QFE , a starting method of order p � m, and l � m � p � 2, there
exists a constant C independent of �T sufficiently small such that:

ju.TjC1/� V l.TjC1/j � C�T min.pClC1;qC1/:

Note that we have assumed that after the desired corrections are made the solution
is updated by (2–15). Of course, if TjC1 is a node, then nothing needs to be done;
we simply take vL

jm as the value at TjC1.
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If, on the other hand, TjC1 is not a node, we may typically replace (2–15) by
simple polynomial extrapolation using .Tj ; v.Tj // and all data on the quadrature
nodes, thus saving m evaluations of F . In particular, even if c1 ¤ 0, that is if Tj is
not a node, Theorem 3.3 is still valid. To see this, define the polynomial

�.t/D v.Tj /C

Z t

Tj

 L
j .s/ds � rL.t/; (3–27)

where rL.t/ is the polynomial that interpolates .Tj ; 0/ and .tjk ; r
L
jk
/, for k D

1; 2; : : : ;m. Obviously, the degree of �.t/ is m. Suppose Tj is not a node. Then
since �.tjk/D vL

jk
, �.t/ is exactly the polynomial that interpolates .Tj ; v.Tj // and

.tjk ; v
L
jk
/; k D 1; 2; : : : ;m. The update given by (2–15) is

v.TjC1/D �.TjC1/C r.TjC1/ ; (3–28)

while the update given by extrapolation is �.TjC1/. So the difference between
these two updates is controlled by r.TjC1/. Therefore, they have the same order,
though the stability characteristics may be altered.

4. Efficiency and linear stability of sample methods

We now consider, experimentally, the accuracy, efficiency and linear stability of
some simple examples of the methods discussed above. For simplicity, following
[1], we consider a Dahlquist-type problem modeling operator splitting applied to a
spatially discretized advection-diffusion equation. Precisely we consider:

u0
D .˛C iˇ/u; ˛; ˇ 2 R; ˛ � 0; (4–1)

and take
FE.u/D QFE.u/D iˇu or FE D 0; (4–2)

FI .u/D QFI .u/D ˛u: (4–3)

The range of methods tested includes:

(1) Gauss–Lobatto, Gauss–Legendre and right-handed Gauss–Radau quadrature
with m D 3; : : : ; 10 nodes, encompassing method orders from 5 through 20;

(2) Multistep IMEX methods [1] of orders 1 through m � 1 as starting methods
(2–4);

(3) Consistent correction methods with FE D iˇu and inconsistent correction
methods with FE D 0;

We note that the split multistep methods we use are based on backward differ-
entiation with FE extrapolated to the new time level. Thus they are the natural
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generalizations of the SBDF methods of [1] to nonequispaced grids. Their order is
k and we take k D 1; : : : ;m � 1. When k > 1 we are using values, vL

j�1;r
, which

are only accurate to order m. Also in that case we need to consider the eigenvalues
of the amplification matrix, A, mapping between values used in subsequent starting
formulas. The stability properties of the SBDF methods themselves are not directly
at issue and have not been studied, though we expect they are unstable at high order.

As the number of methods considered is in the hundreds we will limit our
discussion to a few representative cases. Mainly we will display results obtained
using the Gauss–Legendre and Gauss–Radau nodes. In most instances the behavior
of the Gauss–Lobatto methods was essentially the same. An exception is the stability
regions, where all three will be compared.

4.1. Accuracy and efficiency. We first verify that the methods attain the design
order even if inconsistent corrections are used. Precisely we consider (4–1) with
˛ D �1=20, ˇ D �2� , and solve up to T D 20. See Figure 1 for experiments with
Gauss–Legendre nodes and Figure 2 for experiments with Gauss–Radau nodes. In
each case we observe convergence at the correct rate, though the use of inconsistent
corrections clearly leads to less accurate results for a fixed time step. The accuracy
is insensitive to the order of the starting method, indicating higher efficiency with
the use of higher order starting methods.

From the point of view of computational effort, the efficiency of an ode solver is
typically measured by the number of function evaluations required to attain a given
accuracy. An emphasis of the current work is the possibility to achieve higher order
for fixed m than in earlier implementations of SDC, presumably with significant
savings in memory. However, these savings could conceivably be lost if the methods
proposed here turn out to be less efficient. Thus we wish to compare the efficiency
of different variations of SDC, including methods where m is chosen larger than
necessary to achieve the design order.

To facilitate comparisons with previously published results we consider here,
following [21], a nonstiff van der Pol equation for 0 � t � 4:

u0
1 D u2; u0

2 D �u1 C .1 � u2
1/u2; (4–4)

u1.0/D 2; u2.0/D
2

3
: (4–5)

As the equations are not stiff, we do not split them and simply use explicit starting
and correction methods.

We consider three comparisons. First we fix the starting method (first order) and
the number of corrections while varying m. Thus we are comparing methods of the
same order. The results, shown in Figure 3, show that efficiency measured in this
way is essentially independent of m; it is apparently determined by the average step
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Figure 1. The top graph shows the accuracy of the split SDC
methods using the same starting method (3rd order SBDF) and
different numbers of Gauss–Legendre nodes m. The bottom graph
shows the accuracy of SDC methods with 6 Gauss–Legendre nodes,
but different starting methods (k indicates the kth-order SBDF start-
ing method, c,i indicates consistent and inconsistent corrections,
respectively). The dotted line shows the theoretical convergence
order 12.
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Figure 2. The top graph shows the accuracy of the split SDC
methods using the same starting method (3rd order SBDF) and
different numbers of Gauss–Radau nodes m. The bottom graph
shows the accuracy of split SDC methods with 6 Gauss–Radau
nodes, but different starting methods (k indicates the kth-order
SBDF starting method, c,i indicates consistent and inconsistent
corrections, respectively). The dotted line shows the theoretical
convergence order 11.
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Figure 3. Efficiency in terms of function evaluations for 6th order
Gauss–Legendre and 5th order Gauss–Radau methods with first
order starting methods and varying numbers of quadrature nodes,
m.

size and the number of corrections. Thus the gains in memory utilization resulting
from the exploitation of the full order of the quadrature rules are fully realized, at
least for this example.
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Figure 4. The efficiency of Legendre and Radau methods for vari-
ous orders. In all cases we use a first order starting method.

Second, in Figure 4 we compare efficiency for differing orders and quadratures,
in each case using the full order of the quadrature rule. As expected, the “optimal”
method order depends on the desired tolerance, with the higher order methods
favored as the tolerances decrease.
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Figure 5. The efficiency of 12th order Legendre and 11th order
Radau methods varying the order of the starting method.

Lastly we consider the effect of varying the order of the starting method, fixing
m D 6. The results, shown in Figure 5, demonstrate a substantial gain in efficiency
as the starting method order is increased from 1 to 2 with modest, but measurable,
gains when it is increased from 2 to 3. Beyond third order there seems to be no
advantage in further increases.
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4.2. Stability for (4–1). The analysis of the stability of splitting methods in general
is difficult. Even for linear, constant coefficient systems, the fact that the matrices
defining the split operators cannot be expected to commute limits the predictive
value of analyzing a split version of Dahlquist’s model problem. Nonetheless, at
least to establish some basis for the comparison of stability for our different splitting
procedures, we will follow [1] and plot experimentally determined stability domains
associated with (4–1). In the following sections we will consider a more general
stability problem motivated by what we call preconditioned splitting methods.

We note that a more interesting definition of stability domains for splitting
methods has been proposed by Frank et al. [8]. Their idea is to consider stability
for a scalar, split system under the assumption that the time step is chosen so that
the explicit method is stable. This allows a clean definition of a stability domain
for split methods and a generalization of many of the standard notions of A.˛/ and
L.˛/ stability. Layton and Minion [20] have applied this definition to the SDC
of splitting methods and shown that quadrature rules excluding the left endpoint
such as the Gauss–Legendre and righthand Gauss–Radau rules lead to L.˛/-stable
methods with ˛ � �=2. However, this analysis is not general as one might often
want to use methods in regimes where the explcit scheme by itself is unstable. The
simple case of (4–1) illustrates this; the stability domain of explicit Euler contains
no points on the imaginary axis except the origin. Thus with the splitting considered
here the consistent explicit correction method is always unstable, so the results of
[8; 20] do not apply. Nonetheless, as in [20] we find that the stability properties of
the Gauss–Lobatto methods are clearly inferior to those based on Gauss–Legendre
or Gauss–Radau quadrature.

Figures 6 and 7 show stability domains for various Legendre and Radau-based
methods. The overall results are quite similar. The stability domains are somewhat
larger if inconsistent rather than consistent corrections are used. The domains
increase in size with increasing m but decrease with increasing k. Obviously,
except for k large, they contain a very large region near the negative real axis.

Lastly in Figure 8 we compare the stability of 8th order methods with m D 5. We
clearly see that the stability domain obtained using Gauss–Radau nodes is slightly
larger than that obtained with Gauss–Legendre nodes, but both are much larger
than the stability domain obtained using Gauss–Lobatto nodes.

4.3. Relative accuracy. Lastly we make some relative accuracy comparisons fixing
m and the order of the methods in Figure 9. Note that we are thus not carrying
out the full number of corrections when Legendre or Radau nodes are used. We
find that under these restrictions the Legendre nodes yield the most accurate results,
followed by the Radau nodes.
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Figure 6. The top graph shows the stability of the SDC meth-
ods using same starting method (2nd order SBDF) and different
numbers of Gauss–Legendre nodes m. The bottom graph shows
the stability of SDC methods with 6 Gauss–Legendre nodes, but
different starting methods (k indicates the kth-order SBDF starting
method).
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Figure 7. The top graph shows the stability of the SDC meth-
ods using same starting method (2nd order SBDF) and different
numbers of Gauss–Radau nodes m. The bottom graph shows the
stability of SDC methods with 6 Gauss–Radau nodes, but different
starting methods (k indicates the kth-order SBDF starting method).
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Figure 9. In all figures, we use the single step starting method
with consistent corrections. For the top two figures, m D 5, the
order is 8 for all methods. The top-left figure shows the accuracy
region for � D 10�4; while for the top-right figure, � D 10�9. For
the bottom two figures, m D 9, the order is 16 for all methods. For
the bottom-left figure, � D 10�9, while for the bottom-right figure,
� D 10�14.
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5. Preconditioned splitting methods

Although the stability and accuracy of the SDC methods used in conjunction with
advection-diffusion splittings is reasonable, we believe it is worthwhile to pursue a
more general and flexible approach. Introduce a preconditioning matrix P and the
splitting:

FI D �Pv; FE D F C Pv: (5–1)

Here, P will generally be dependent on t and local values of v. It should satisfy
the requirements:

i: P C P� � 0;

ii: I C hkP inexpensively invertible;

iii: the split methods have good stability and accuracy properties.

Of course the difficult property to satisfy is the third. For a simple model problem,
we will see that stability of the base method is ensured by choosing P sufficiently
large compared with the Jacobian of F , and then good accuracy follows from not
making it too large. (We suspect that generalizations of the stability analysis to
nonlinear problems satisfying appropriate one-sided Lipschitz conditions would be
straightforward.)

5.1. Linear stability for the scalar problem. We repeat the stability analysis for
Dahlquist’s equation (4–1) but now with the general preconditioner:

P D �C i�; �; � 2 R; �� 0: (5–2)

Note that we are allowing an imaginary part in P , corresponding to the inclusion of
a linear advection term in the preconditioner. The amplification factor of the first
order splitting (2–5) is then given by:

r2
D

ˇ̌̌̌
1 C h.˛C�C i.ˇC �//

1 C h.�C i�/

ˇ̌̌̌2
D
.1 C h.˛C�//2 C h2.ˇC �/2

.1 C h�/2 C h2�2
: (5–3)

For �D 0 we have A-stability if:

��
˛2 Cˇ2

2j˛j
: (5–4)

For a discretized advection-diffusion equation with Peclet number Pe we obtain:

P � C

�
�

1

Pe
D2

x C Pe

�
; (5–5)

where D2
x is an approximation to the Laplacian and the inequality is in the usual

sense of matrices. For large Peclet number such a choice is likely to have a negative
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impact on accuracy as the preconditioner is large. Of course one can give up on
A-stability. For example if �� j˛j=2 we have:

h �
2j˛j

ˇ2
D O.Pe�1/; (5–6)

independent of the spatial mesh width �x, which is acceptable if Pe is not too
large.

Much better results can be obtained if we choose � to be nonzero and of the
opposite sign of ˇ. Then we have A-stability if:

��
j˛j

2
; j�j �

jˇj

2
; ˛ˇ � 0: (5–7)

We will show nonlinear examples where a linear advection term is included in P .
Of course the sign condition can be difficult to satisfy where the advection term
nearly vanishes, but then the local Peclet number is not large. A-stability is not
generally preserved when the correction process is included, but we will see below
that the stability domains can be quite large.

We again note that we do not in general expect that our time step is chosen so
that the explicit method is stable. Thus the stability analyses of [8; 20] are not
directly applicable.

5.2. Linear stability domains of the preconditioned methods. In Figures 10, 11,
and 12 we plot linear stability domains of the consistently corrected methods
assuming:

�D dr˛; �D diˇ; (5–8)

with dr and di chosen from f
3
4
; 5

4
g. Clearly, di determines stability along the

imaginary axis and dr along the real axis.
As before, the stability characteristics of the Gauss–Legendre and Gauss–Radau

methods are quite similar, with the stability domains of the Gauss–Legendre methods
being generally a little larger. The Gauss–Lobatto methods, on the other hand, show
superior stability along the real axis for dr D

3
4

.
We also tested multistep starting methods and inconsistent corrections. Except

in the case of second order starting methods, the stability domains are significantly
reduced when consistent corrections are used. However, with inconsistent correc-
tions and dr D di D

5
4

they are enlarged. We plot below (Figure 13) results using
an 11th order Radau scheme with the 3rd order starting method.

6. Nonlinear numerical experiments

Finally we consider the actual accuracy and stability of one of the methods discussed
above for a collection of nonlinear parabolic initial-boundary value problems in
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Figure 10. Stability domains for Gauss–Legendre methods with
preconditioned splittings.
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Figure 11. Stability domains for Gauss–Radau methods with pre-
conditioned splittings.
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Figure 12. Stability domains for Gauss–Lobatto methods with
preconditioned splittings.
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Figure 13. Stability domains for 7th order Gauss–Radau methods
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method.
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1 C 1 dimensions:

ut D F.u;ux;uxx/; x 2 .xL;xR/; (6–1)

supplemented by boundary conditions. In all cases we use the 7th order Radau
method with a multistep SBDF preconditioned starting method and consistent
corrections. Our spatial discretizations are 8th order; one-sided differencing at the
boundaries is stabilized by the addition of a single sub-cell point at xL C 0:2�x

and xR � 0:2�x with central differences used in the interior. See [10] for details.
Various preconditioners are considered, but in all cases the spatial differencing

used in the preconditioning is limited to a 3-point stencil to minimize bandwidth.
In the interior, then, we are preconditioning 8th order differences by multiples, d ,
c , of 2nd order differencing. To better correlate the results with the simple linear
stability domains shown above we note that the symbols of the qth order central
difference approximations to dj

dxj , Odj ;q , satisfy:

max
j!hj��

Od1;8.!/

Od1;2.!/
� 2:66; (6–2)

max
j!hj��

Od2;8.!/

Od2;2.!/
� 1:68: (6–3)

Thus, for example, a preconditioned approximation to the heat equation is positive
independent of time step only if the damping factor,  , is chosen to be larger than
1:68.

Of course the examples are primarily meant to illustrate a viable preconditioning
strategy and to provide some experience in the method’s performance under a
variety of conditions. With experience for a given system we would expect that
better preconditioners could be found leading to further improvements in efficiency.
Most of our examples would benefit from the use of an adaptive spatial mesh, but
here we simply employ sufficiently fine uniform discretizations. We also compare
our results with those obtained using a standard second order Strang splitting in
time (e.g [22]) and a time step chosen so that the number of evaluations of the
nonlinearities are comparable. For example, if we use a fourth order starting method
an entire SDC step entails sixteen substeps, so we choose the time step for the
Strang method to be 1=16 times that of the SDC method. However, recall that our
method is linearly implicit while the Strang splitting employs Newton iterations;
thus the SDC method is noticeably faster for the time steps compared. We note, of
course, that we could have used the Strang splitting as our starting method or even
as our correction method, but we have not yet implemented this.
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Table 1. Error data for the Brusselator problem.

�T �x d emax.u/ q.u/ emax.v/ q.v/

2E.�1/ 2E.�2/ 2 3:13.�4/ 1:51.�4/

1E.�1/ 1E.�2/ 2 2:10.�6/ 7:2 1:73.�6/ 6:4

6.1. Brusselator. We consider for .x; t/ 2 .0; 1/� .0; 10/:

ut D 1 C u2v� 4u C 2 � 10�3uxx; (6–4)

vt D 3u � u2vC 2 � 10�3vxx; (6–5)

u.x; 0/D 1 C sin 20�x; v.x; 0/D 3; (6–6)

with Dirichlet boundary conditions. With this data the solution is known to oscillate;
see the graph of the fine grid solution in Figure 14 as well as [14; 22].

Here there is no convective term to be included in the preconditioner, but the
Jacobian of the reaction terms is included along with the scaled three point diffusion
approximation. That is with � D 2 � 10�3:

Pi D �

�
2uivi � 4 C �dd2;2 u2

i

3 � 2uivi �u2
i C �dd2;2

�
: (6–7)

We employ a fourth order starting method with three correction steps.
The results, displayed in Table 1, are consistent with the design accuracy. Error

data is obtained by comparison with a solution computed using �T D 2:5E.�4/

and �x D 1E.�3/.
By way of comparison, with �x D 2E.�2/ and �T D 1:25.�2/ the maximum

errors with Strang splitting were .1:70.�3/; 9:60.�4//, about six times larger than
those reported above. Halving the grid and step sizes the Strang errors are reduced
by about a factor of four to .3:56.�4/; 2:19.�4//, about two orders of magnitude
larger than were obtained with the SDC time stepping.

We also determined apparent time step stability limits. For d D 2 these were
weakly dependent on �x, but we could always take rather large steps; �T D

1
2

for �x D
1

50
, �T D

1
3

for �x D
1

100
and �T D

1
8

for �x D
1

150
. For d D 1, on

the other hand, they clearly took the form �T � c�x2. With �x D
1

150
it was

necessary to take �T D
1

101
.

6.2. Smoothed angiogenesis model. Here we consider a smoothed verison of a
tumor angiogenesis model presented in [18]:

�t D 10�3�xx � :75.�cx/x C 102�.1 � �/K.c/� 4�; (6–8)
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Figure 14. Fine grid solution of the Brusselator equation: v.

ct D cxx � c �
10�c

1 C c
; (6–9)

where .x; t/ 2 .0; 1/� .0; :7/ and:

K.c/D 5 � 10�3.100.c � :2/C ln .cosh .100.c � :2////; (6–10)

�.x; 0/D e�288.x�1/.x�1:08 N3/; c.x; 0/D cos�x=2; (6–11)

and �.0; t/D c.1; t/D 0, �.1; t/D c.0; t/D 1.
The evolution of � for a fine grid solution computed with �T D 5E.�4/,

�x D 1E.�3/ is shown in Figure 15. Comparison with the figures in [18] show
that the smoothing has had little effect on the solution.

As these equations involve both first and second order spatial derivatives both
d and c must be chosen. Precisely we used a block diagonal preconditioner:

Pi;11 D �

�
10�3dd2;2 � :75c.d1;2c/id1;2 � 102.1 � 2�i/K.ci/� 4

�
; (6–12)
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Figure 15. Fine grid solution of the angiogenesis equation: �.

Pi;22 D �

�
dd2;2 �

10�i

.1 C ci/2
� 1

�
: (6–13)

Due, we believe, to the presence of the additional second order term, acceptable
stability results led us to use a second order rather than a fourth order starting
method. We tested for stability with�x D 1E.�2/ and�x D 1E.�3/ for d D 1; 2

and c D 1; 2; 3. As in the previous example, with d D 1 it was necessary to
take �T / �x2. For d D 2, on the other hand, it was possible to choose �T

independent of �x. However, in contrast with the previous case, it was not possible
to take �T large. With c D 2 we found �T � 1E.�2/ while with c D 0; 1 we
could choose �T � 1:7E.�2/. However, we did observe better accuracy for large
steps with c D 0 than with c D 1.

The accuracy of the computed solutions with large steps, d D 2, and c D 0 is
displayed in Table 2. Obviously the results are consistent with the design accuracy.
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Table 2. Error data for the angiogenesis problem: �.

�T �x emax;� q� emax;c qc

1:N6E.�2/ 1E.�2/ 4:2.�3/ 1:4.�4/

8:N3E.�3/ 5E.�3/ 1:5.�5/ 8:1 1:5.�6/ 6:6

As we now require more corrections, Strang splitting was carried out with 24

times as many steps as taken by the SDC solver - precisely 1008 and 2016 steps
compared with the 42 and 84 which produced the results in Table 2. For the coarser
grid, the results with Strang splitting were slightly more accurate than those obtained
with the proposed method. On the finer grid, however, the SDC results were about
an order of magnitude better.

6.3. Pulsating flame with stiff kinetics. Lastly, we consider a simplified thermo-
diffusive combustion model with a stiff, intermediate reaction (e.g., [4]):

Yt D
1

LY

�
Yxx C

1

x
Yx

�
�

V

x
Yx � k1; (6–14)

Wt D
1

LW

�
Wxx C

1

x
Wx

�
�

V

x
Wx C k1 � k2; (6–15)

‚t D‚xx C
1

x
‚x �

V

x
‚x C k1 C  .k2 � k1/; (6–16)

k1 D A1Y exp
�

E1

.1 � �/.‚� 1/

� C‚.1 � �/

�
: (6–17)

k2 D A2W 2 exp
�

E2

.1 � �/.‚� 1/

� C‚.1 � �/

�
: (6–18)

The parameters are taken to be:

V D 11:7; E1 D 40; E2 D 2; LY D 2; LW D
3

2
; (6–19)

� D
1

2
; A1 D 2 � 102; A2 D 2 � 106: (6–20)

Note that if we assume the fast reaction is in balance with the slow reaction,
that is if we assume k1 D k2, we obtain a reduced model with one species at a
Lewis number, LY D 2, with a pulsating solution (e.g., [5]). Initial and Dirichlet
boundary conditions were obtained by interpolating a pulsating solution of the
reduced problem on the spatial domain 5 � x � 35. The initial W profile is then
obtained through the quasiequilibrium assumption and the full system is evolved
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Table 3. Observed maximum relative errors for t � 20, m D 4 pre-
conditioned Radau methods applied to the pulsating flame problem.
The order is calculated by q D log .eN2

=eN1
/= log .N1=N2/ where

N is the number of time steps and eN is the maximum absolute
error.

�T D 3:2E.�3/, �x D 1:2E.�2/ �T D 1:6E.�3/, �x D 6:0E.�3/ q

Y W ‚ Y W ‚ Y W ‚

3:1.�4/ 5:0.�3/ 1:0.�4/ 2:5.�5/ 3:2.�4/ 7:9.�6/ 3:6 4:0 3:7

up to t D 20. Plots of the computed profiles on the finest grids, �T D 4:1N6E.�5/,
�x D 1:25E.�3/, illustrating the flame oscillation are presented in Figure 16.

Note that around t D 3:5 the quasisteady initial flame destabilizes and moves
towards the fuel source. An oscillation is set up between times 13 and 19.

The preconditioner in this case is as in the previous examples; second order
spatial derivatives are approximated by dd2;2 and first order by cd1;2. We also
include the Jacobian of the reaction terms. As in the preceding case we found
it better to use a second order starting method. Choosing d D 2 the time step
limits were independent of c and �x, with a minimum time step of approximately
�T D 3:8E.�3/. Choosing d D 1, on the other hand, required �T /�x2 as in
the previous examples.

We compare the accuracy of results obtained with �T D 3:2E.�3/, �x D

1:2E.�2/ and �T D 1:6E.�3/, �x D 6E.�3/. Here we have taken d D c D 2.
The observed maximum errors, listed in Table 3, are consistent with 4th rather than
7th order convergence. This is the order of convergence expected for highly stiff
problems, being equal to the stage order of the associated Runge–Kutta method.
We note that, as might be expected for an oscillatory solution, the maximum errors
are out of phase and occur at very different times for the two resolutions. Recently,
Huang et al. [17] have shown how the order reduction phenomenon can be eliminated
through the use of GMRES-based convergence acceleration which would no doubt
improve our results in this case.

We have also solved this problem using Strang splitting and 24 times as many
steps. As in the previous example, the results are slightly more accurate for the
coarse resolution but less accurate for the fine resolution. We are confident that
an improved implementation of the SDC method as in [17] would prove to be
significantly more efficient than the traditional method.

7. Conclusion

In summary, we have shown that spectral deferred correction applied to a first order
splitting method can:
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Figure 16. Fine grid solution of the flame equation.
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i: Attain the full accuracy of the underlying quadrature rule;

ii: Have large stability domains.

We have also explored a general and flexible technique based on the concept
of splitting by preconditioning. We have demonstrated the effectiveness of a
particular instance of this strategy for reaction-advection-diffusion equations in one
space dimension where high order difference approximations were preconditioned
by lower order approximations with far narrower bandwidths. So long as the
preconditioner was large enough in comparison with the true Jacobian, time step
stability constraints independent of the spatial deiscretization were observed. This
is in line with our experience solving complex combustion models [12; 11; 24].
Moreover, despite the very simple choice for the preconditioner and the fact that no
convergence acceleration was employed, the methods were always as efficient and
in some instances far more efficient than the standard Strng splitting approach.

Of course the greatest potential payoffs in terms of efficiency are for problems
in multiple space dimensions. The fundamental issue is how simple (that is inex-
pensive) a preconditioner can be used without sacrificing too much accuracy or
stability. It is also of interest to combine the preconditioned time-stepping strategy
with the GMRES-based acceleration techniques described in [17]. We believe these
issues deserve further study.
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A COMPARISON OF THE EXTENDED FINITE ELEMENT
METHOD WITH THE IMMERSED INTERFACE METHOD FOR

ELLIPTIC EQUATIONS WITH DISCONTINUOUS
COEFFICIENTS AND SINGULAR SOURCES
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BRYAN GERARD SMITH AND DAVID L. CHOPP

We compare the Immersed Interface Method (IIM) with the Extended Finite
Element Method (X-FEM) for elliptic equations with singular sources and discon-
tinuous coefficients. The IIM has been compared favorably with a number of other
competing methods. These methods are of particular interest because they allow
for the solution of elliptic equations with internal boundaries on nonconforming
meshes. In the context of moving interface problems, the emphasis in this paper
is placed on accuracy of solutions and their normal derivatives on the interface.
These methods are briefly described and the results for benchmark problems are
compared.

1. Introduction

Consider the elliptic equation

r � .ˇru/C �u D f (1)

in a domain � in two dimensions. Embedded within �, there is an interface �I

(see Figure 1). The coefficients ˇ, �, and f may be discontinuous across �I and
jump conditions are given on the interface.

This type of problem arises in a broad spectrum of mathematical models and
hence, a wide range of numerical methods have been devised to solve it. Often, the
location of �I varies in time. As a result, methods which are easily adapted to an
arbitrary �I are important. Of particular note in this area is the Immersed Interface
Method (IIM) [7], which has been shown to perform very well against competing
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Keywords: cartesian grids, discontinuous coefficient, elliptic equation, extended finite element

method, finite difference methods, finite element methods, immersed interface method, immersed
boundary method, irregular domain, level set methods, singular source term.

Vaughan’s work was supported in part by a grant from the NIH under contract #R01-GM067248.
Smith’s work was supported in part by the DoD NDSEG Fellowship Program and the Chicago Chapter
of the ARCS Foundation.

207



208 BENJAMIN LEROY VAUGHAN, JR., BRYAN GERARD SMITH AND DAVID L. CHOPP

Ω

Γ

Figure 1. Domain � with interface �I .

algorithms [7; 9]. It is representative of a class of methods that are constructed to
be globally second order but locally first order on the interface.

In this paper, we compare the Extended Finite Element Method (X-FEM) [11; 3]
and the IIM. The X-FEM is a variation on the partition of unity method [10] and has
been used for the solution of crack growth problems [11; 2; 17; 15], arbitrary fixed
material interfaces and voids [16], solidification problems [5; 4], and modeling
rigid particles in Stokes flow [18].

These two methods offer similar advantages in that they both produce accurate
solutions without the need for a conforming mesh. This makes them particularly
attractive for coupling to methods for moving interfaces, e.g. the level set method
[12].

This paper is organized as follows: Sections 2 and 3 discuss the IIM and X-FEM,
respectively. A comparison of the numerical results for various types of problems
is given in Section 4. Finally, Section 5 gives a summary and concluding remarks.

2. The immersed interface method

The Immersed Interface Method is a finite difference method for approximating the
solution to (1). It was introduced in [7] and a detailed overview can be found in [9].

The method solves (1) with singular sources and discontinuous coefficients as
well as jump conditions given on the interface by using a regular cartesian grid
that does not conform to the interface. For grid points away from the interface,
the standard five-point finite difference stencil is used. As a result, the method is
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second order away from the interface. For grid points near the interface, a six-point
stencil and correction terms are added to the right hand side in order to maintain
global second order accuracy.

2.1. Stencil generation. For simplicity, suppose the domain � is a square with
space step of length h in both the x and y directions, and let the grid points be
located at points .xi ;yj /. In general, the goal is to develop a finite difference
equation of the form

1;0uiC1;j C �1;0ui�1;j C 0;1ui;jC1 C 0;�1ui;j�1

C 0;0ui;j C ˙1;˙1ui˙1;j˙1 C �i;j ui;j D fi;j C Ci;j

for the grid point at
�
xi ;yj

�
. Here, only one combination of ˙1 is used in the

subscripts above which corresponds to the extra point in the stencil as described
below.

For points away from the interface, i.e. a point where the interface does not come
between any points in the standard five-point stencil, the standard five-point stencil

1

h

��
ˇiC1=2;j

uiC1;j � ui;j

h
�ˇi�1=2;j

ui;j � ui�1;j

h

�
C

�
ˇi;jC1=2

ui;jC1=2 � ui;j

h
�ˇi;j�1=2

ui;j � ui;j�1

h

��
C �i;j ui;j D fi;j ;

with Ci;j D ˙1;˙1 D 0, is used.
For a grid point which bounds a square cut by the interface, the finite difference

equation is generated by using a first order expansion of the equation about some
point .x�;y�/ on the interface. The point is chosen to be the point on the interface
closest to the grid point .xi ;yi/ as shown in Figure 2. To achieve global second
order accuracy, a set of equations is solved to generate the coefficients k;` and
Ci;j .

First, a new transformed coordinate system is introduced. Let � be the angle be-
tween the x-axis and the normal direction as shown in Figure 2. The transformation
is:

� D
�
x � x�

i

�
cos � C

�
y � y�

j

�
sin �

�D �
�
x � x�

i

�
sin � C

�
y � y�

j

�
cos �

After the transform, the truncation error is of the form

Ti;j D a1u�
C a2uC

C a3u�
� C a4uC

�
C a5u�

� C a6uC
� C a7u�

�� C a8uC

��

C a9u�
�� C a10uC

�� C a11u�
�� C a12uC

��
C ��u�

�f �
� Ci;j C O .h/
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Figure 2. Geometry at a grid point .i; j / near the interface.

where aj is given by

a1 D

X
k2K �

k a2 D

X
k2K C

k

a3 D

X
k2K �

�kk a4 D

X
k2K C

�kk

a5 D

X
k2K �

�kk a6 D

X
k2K C

�kk

a7 D
1

2

X
k2K �

�2
kk a8 D

1

2

X
k2K C

�2
kk

a9 D
1

2

X
k2K �

�2
kk a10 D

1

2

X
k2K C

�2
kk

a11 D

X
k2K �

�k�kk a12 D

X
k2K C

�k�kk

and the sets KC and K� are defined as

K˙
D fk W .�k ; �k/ is on the ˙ side of �I g

In order to ensure Ti;j D O .h/, the coefficients of u�, uC, u�
�

, u�
� , u�

��
, u�

��
,

and u�
�� must vanish as well as the constant terms. This gives the following six
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equations for the unknowns k ; � � � ; k :

a1 C a2 � a8 Œ�� =ˇ
C

D 0 (2)

a3 C �a4 C a8

�
ˇ�

� � �ˇC

�
� Œˇ� �00

�
=ˇC

C a10 Œˇ� �
00=ˇC

C a12

�
ˇ�

� � �ˇC
�

�
=ˇC

D ˇ�
� (3)

a5 C a6 � a8

�
ˇ�

�
=ˇC

C a12 .1 � �/ �00
D ˇ�

� (4)

a7 C a8�D ˇ� (5)

a9 C a10 C a8 .�� 1/D ˇ� (6)

a11 C a12�D 0 (7)

where �D ˇ�=ˇC and �00 is the curvature of the interface at .x�;y�/.
Once the j ’s are computed, Ci;j can be obtained from

Ci;j D a2wC a12

v0

ˇC
C

 
a6 � a8

ˇC

�

ˇC
C a12�

00

!
w0

C a10w
00

C
1

ˇC

 
a4 C a8

 
�00

�
ˇC

�

ˇC

!
� a10�

00
� a12

ˇC
�

ˇC

!
v

C a8

�
Œf �

ˇC
�
�C

ˇC
w�w00

�
(8)

where w and v are defined from the jump conditions on the interface:

w .�/D uC
� u�

v .�/D ˇC @u

@ On

C

�ˇ� @u

@ On

�

For a detailed derivation of these equations, see [7].
To summarize, using (2)–(7) to solve for k and (8) for Ci;j , the stencil and

the right hand side corrections are obtained. For continuous coefficients ˇ and
�, the five-point stencil is obtained while a six-point stencil is needed if they are
discontinuous. These stencils and the correction term, Ci;j , is used to assemble the
linear system to solve for the values ui;j at the grid points.

3. The extended finite element method

The second method used in this paper is the Extended Finite Element Method
(X-FEM). Like the Immersed Interface Method, the X-FEM can use a regular
cartesian mesh that does not conform to the interface. Note that the X-FEM can
also be used on arbitrary triangulated meshes as well. Since there is no comparable
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review article discussing this method in detail, we provide here a little more detail
on its implementation.

In contrast to finite element meshes, where the mesh conforms to the interface,
the X-FEM uses a fixed mesh which does not need to conform to the interface. This
is done by extending the standard finite element approximation with extra basis
functions on certain “enriched” nodes that capture the behavior of the solution near
the interface. This is particularly useful for problems involving moving interfaces
where the mesh would otherwise require regeneration every time step. We present
here a summary of the method described in [2; 3; 11] with some slight modifications.
While the discussion here will focus on 2D problems, it should be noted that this
method can be readily applied to 3D as well.

Consider solving (1) on a rectangular domain� in two dimensions with Dirichlet
boundary conditions applied to the domain boundary @�. The X-FEM approxima-
tion of u is

uh .x;y/D

X
ni 2N

�i .x;y/ui C

X
nj 2NE

�j .x;y/  .'/ aj (9)

where ni and nj are the i-th and j -th nodes of their respective sets, N is the
set of all nodes in the domain, NE is the set of enriched nodes, � is a standard
finite element basis function (i.e., bilinear or biquadratic),  is the enrichment
function (described in Section 3.1), and ' is the signed distance function from
the interface. The variables ui and aj are the unenriched and enriched degrees of
freedom, respectively. Also, multiple enrichment functions can be used in the same
X-FEM approximation while in this paper, only one is used at a time.

The domain � may be meshed by an arbitrary finite element mesh, but in this
paper it is meshed with regular rectangular elements independent of the interface.
The interface �I is represented by a signed distance function ' and within each
element cut by the interface, �I is interpolated as a single line segment.

3.1. Enrichments. To include the interface’s effect, enrichment functions are added
to the standard finite element approximation for each element cut by the interface
(Figure 3). The choice of enrichment function is based on the behavior of the
solution near the interface. In this paper, two enrichment functions are used: a
discontinuous, generalized Heaviside function or step function [17] and a continuous
ramp function [5]. More application specific enrichment functions can also be used,
e.g., a square root singularity function around crack tips [1]. Each of these is a
function of the signed distance from the interface given as

' .x/D ˙ min
X2�I

jjx � X jj
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Enriched Node

Figure 3. Enriched nodes.

where the sign is positive (negative) if x is outside (inside) the region enclosed by
the interface �I . For moving interface problems, the signed distance function is
provided directly by the Level Set Method.

The step enrichment function is defined as:

 Step .'/D

�
1 ' > 0

�1 ' � 0

This enrichment function can yield a continuous or discontinuous solution across the
interface but requires Lagrange multipliers to apply the Dirichlet jump condition.

The ramp function is defined as:

 Ramp .'/D

�
1 ' > 0

1 � 2' ' � 0

This enrichment function yields only continuous solutions. The advantage is that it
automatically satisfies the continuity condition ŒŒu��D 0 and does not require the use
of Lagrange multipliers.

3.2. Element matrices. Using the weak form of (1), there are two types of integral
terms: domain and interface.

All the matrices computed from the integral terms are block matrices of the form

A D

�
AU U AUA

AAU AAA

�
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(b) Ramp function

Figure 4. Enrichment functions.

where AU U is the standard FEM element matrix. The AUA, AAU , and AAA

matrices are the new matrix terms that arise from the addition of the enriched
degrees of freedom. Note that the enriched matrix terms only appear when an
element has enriched degrees of freedom and are much smaller than the standard
FEM matrix term.

The vector terms also have the same form

v D

�
vU

vA

�
where vU is the standard FEM element vector and vA is the vector term from the
enriched degrees of freedom.

3.2.1. Domain integrals. The following domain integral terms come from the
Laplacian operator r � . ˇ r u /:

KU U
i;j D �

Z
�E

ˇ
�
r�i � r�j

�
@�E

KUA
i;j D �

Z
�E

ˇ
�
r�i � r

�
�j j

��
@�E D KAU

j ;i

KAA
i;j D �

Z
�E

ˇ
�
r .�i i/ �

�
r�j j

��
@�E

From the mass operator �u, the matrices are:

M U U
i;j D

Z
�E

��i�j@�E

M UA
i;j D

Z
�E

��i�j j@�E D M AU
j ;i

M AA
i;j D

Z
�E

��i i�j j@�E
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Interface Γ 

Sub-Partition 
Boundary

Figure 5. Element subpartitions.

and from the force operator f , the vectors:

f U
i D

Z
�E

�if .x;y/ @�E

f A
i D

Z
�E

�i if .x;y/ @�E

3.2.2. Element integration. Evaluating the domain integral terms requires a nu-
merical quadrature method. Elements away from the interface are evaluated using
standard Gaussian quadrature in two dimensions.

Elements that are cut by the interface must be treated differently due to discontinu-
ities in the coefficients and enrichment functions. The interface is first interpolated
as a line segment and the element is then divided into triangles and quadrilaterals
that conform to the interface as illustrated in Figure 5. The subdivisions are
for integration only and do not introduce any extra degrees of freedom. This
method is slightly different than the method used in [3] in that the elements are
not partitioned strictly into triangles. In this method, quadrilaterals are used with
triangles transformed into quads for integration using the method given in [14].

3.3. Interface conditions. After creating the element matrices for each element,
the only remaining terms arise from the interface conditions. Enforcing the Dirichlet
jump conditions are discussed in Section 3.4.
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The Neumann jump condition, ŒŒˇ On � ru��D v .x;y/, is enforced by introducing
a line source term with strength v. The term is of the formZ

�I

v .x;y/ ı .x � X .s// @�I (10)

where X .s/ is the parameterized coordinates of the interface and the direction of
integration is such that the normal points from the positive domain into the negative
domain. This term is only added if a source term is not already in the equation and
the Neumann jump condition is an external constraint.

Integrating (10) over each element yields the vector terms

U
i D

Z
�I

�iv .x;y/ @�I

A
i D  i .0

�/

Z
�I

�iv .x;y/ @�I

where  i .0
�/ indicates that the enrichment function is evaluated on the negative

side of the interface.

3.4. Lagrange multipliers. Since the Dirichlet jump condition on the interface has
not been satisfied when using step enrichments, Lagrange multipliers are used to
enforce this condition.

Equations (1) and (10) are combined and rewritten as

r � .ˇru/C �u C ŒŒu�� �D f C

Z
�I

v .x;y/ ı .x � X .s// @�I (11)

where v D

hh
ˇ @u

@n

ii
and � is the Lagrange multiplier used to enforce the jump in

the solution.
First, a one dimensional mesh is laid down along the interface as shown in Figure

6 by using a piecewise linear interpolation of the interface within each rectangular
element. Next, the Lagrange multipliers are approximated using a 1D finite element
approximation

�h
D

X
mi 2M

�i�i

where M is the set of all Lagrange multiplier nodes [6].
The jump in the solution ŒŒu��D w .x;y/ yields

C D

�
0

C A

�
where

C A
i;j D

Z
�I

�j�i ŒŒ i �� @�I
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Lagrange Node

Interface

Figure 6. Lagrange multiplier mesh.

and the vector term
gi D

Z
�I

�iw@�I

3.5. Linear system. The resulting linear system contains terms (see Section 3.2)
of the form

K D

�
KU U KUA

KAU KAA

�
M D

�
M U U M UA

M AU M AA

�
f D

"
f U

f A

#

 D

�
U

A

�
and the Lagrange multiplier terms C and g.

The final assembled linear system is Ax D b where

A D

�
K C M C

.C /T 0

�

x D

24 u

a

�

35



218 BENJAMIN LEROY VAUGHAN, JR., BRYAN GERARD SMITH AND DAVID L. CHOPP

b D

�
f C 

g

�
and K, M , and C are all block matrices and f and  are block vectors. When
using ramp enrichments, the Lagrange multiplier terms, C and g, along with the
Lagrange degrees of freedom, �, are not needed.

4. Results

In this section, the Immersed Interface Method and the X-FEM are compared on
three example problems that are originally from [7]. For all the examples, a square
domain is used with an embedded circular interface (Figure 7). Also, the results
are confined to be on the interface since the results there are the most important for
moving interface problems, and both methods become their standard counterparts
away from the interface. In addition, since the solution of the linear system with
the X-FEM requires very little time compared with the construction of the system,
a direct linear solver is used for the example problems.

Ω

Γ

Figure 7. Domain � with interface �I .

4.1. Example 1. The first example has a singular source on �I . The differential
equation is:

r
2u D

Z
�I

ı .r � RI / @�I (12)

where �I is a circle of radius RI D 1=2 and ı is the Dirac delta function.
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The solution to this equation is continuous, ŒŒu��D 0, but the line source gives a
jump in the normal ��

@u

@n

��
D �2

The exact solution to (12) is:

u .x;y/D

�
1 r �

1
2

1 C log .2r/ r > 1
2

Figure 8. Solution for example 1.

Table 1 shows the convergence results for the X-FEM using four node bilinear
elements with step and ramp enrichments. Piecewise constant Lagrange multipliers
are used to enforce the Dirichlet jump conditions at the interface when using step
enrichments. For comparison, convergence results for the Immersed Interface
Method and the Immersed Boundary Method (IBM) [13] are shown. The error
values for the Immersed Boundary Method data are taken from [7]. The error given
is the maximum error at the nodes defined as

kTnk1 D max
ni 2N

f

ˇ̌̌
u .xi ;yi/� uh

i

ˇ̌̌
g

where ni is the i-th node with coordinates .xi ;yi/, N is the set of all nodes, and
uh

i is the computed solution at that node. In addition, the ratio of successive errors
is given as kT2nk = kTnk.

Note that this is one of the two error measures that are given in [7]. The second,
En, is the measure of the error at the nodes away from the interface. In this paper,
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Tn is used since the error near or on the interface is of more concern for moving
interface problems. In addition, the results for our implementation of the IIM differ
from the results given in [7] possibly due to the representation of the interface, a
signed distance function, and the choice of the point on the interface for computing
the irregular stencil. This implementation does not converge as nicely but the error
values are much smaller.

n
Step Enrichment Ramp Enrichment
kTnk1 ratio kTnk1 ratio

19 3:8397 � 10�3 7:8138 � 10�3

39 9:3782 � 10�4 4.0943 3:9577 � 10�3 1.9743
79 2:3034 � 10�4 4.0715 1:9029 � 10�3 2.0798

159 6:4061 � 10�5 3.5956 9:3797 � 10�4 2.0287
319 1:5619 � 10�5 4.1015 4:7646 � 10�4 1.9686

n
IIM IBM

kTnk1 ratio kEnk1 ratio
19 3:1207 � 10�2 3:6140 � 10�1

39 4:3918 � 10�3 7.1057 2:6467 � 10�2 12.7939
79 3:2066 � 10�3 1.3696 1:3204 � 10�2 2.0045

159 8:9322 � 10�4 3.5899 6:6847 � 10�3 1.9753
319 3:4105 � 10�4 2.6190 3:3393 � 10�3 2.0018

Table 1. Numerical results for example 1.

From Table 1, the X-FEM is shown to be first order with ramp enrichments
and second order with step enrichments coupled with bilinear elements. Ramp
enrichments give accuracy comparable with IIM but are only first order. On the
other hand, step enrichments show second order accuracy and an order of magnitude
improvement over IIM. The first order convergence for the IIM is expected since
the error measure includes all the nodes near the interface where the approximation
is only first order. Away from the interface both IIM and X-FEM converge second
order. As shown before in [7], the IIM outperforms the IBM and consequently, the
X-FEM is more accurate than IBM.

Notice that with the X-FEM, the choice of enrichments can change the conver-
gence rate of the method. For this example, ramp enrichments converge first order
while step enrichments converge second order. The cause of this is a subject of
current research but it seems that extending the region where nodes are enriched,
ie enriching nodes a certain distance from the interface but whose support is not
necessarily cut by the interface, can regain the second order convergence for certain
enrichments.
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The X-FEM does show a slight increase in the linear system size. Table 2 gives
the linear system size and its sparsity. It is seen that the enrichments and Lagrange
multipliers introduce only a small number of new degrees of freedom (less than 2%
for a 319�319 mesh).

n
Step Enrichment Ramp Enrichment IIM

Sys. Size % Sparse Sys. Size % Sparse Sys. Size % Sparse
19 520 2.07396% 480 2.15625% 400 1.09250%
39 1,840 0.54277% 1,760 0.55191% 1,600 0.29234%
79 6,880 0.13840% 6,720 0.13940% 6,400 0.07558%
159 26,560 0.03490% 26,240 0.03501% 25,600 0.01921%
319 104,320 0.00876% 103,680 0.00877% 102,400 0.00484%

Table 2. System sizes for example 1.

Table 3 shows the errors interpolated on the interface using (9) for the X-FEM
and the method described in [8] for the IIM. The interpolated value on the interface
is important if the method is to be coupled with methods for evolving interfaces
where the interface velocity is tied to the value at the interface. The interface is
parameterized and the errors are computed at 10,000 evenly spaced points on the
interface. It is seen that the X-FEM still maintains an order of magnitude improve-
ment over IIM when using step enrichments and both maintain their respective
convergence rates.

n
Step Enrichment Ramp Enrichment IIM
kTnk1 ratio kTnk1 ratio kTnk1 ratio

19 5:1857�10�3 2:1871�10�2 6:1970�10�2

39 1:2444�10�3 4.1672 1:1708�10�2 1.8680 7:5111�10�3 8.2505
79 3:0043�10�4 4.1421 6:0996�10�3 1.9482 3:3766�10�3 2.2245

159 8:8146�10�5 3.4083 3:1101�10�3 1.9612 1:1298�10�3 2.9887
319 1:9315�10�5 4.5636 1:6142�10�3 1.9267 3:6684�10�4 3.0798

Table 3. Interface results for example 1.

Table 4 gives the error in the normal derivative on the interface. This data is
quite important when the speed of an evolving interface depends on the gradient of
the solution at the interface, eg when the speed is derived from a potential. With the
X-FEM using ramp enrichments and IIM, the normal derivative is not accurately
captured with O.1/ errors, which is expected since the IIM is only an O.h/ method
on the interface and taking the derivative costs the method an order of accuracy. On
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the other hand, using X-FEM with step enrichments captures the normal derivative
with first order accuracy.

n
Step Enrichment Ramp Enrichment IIM
kTnk1 ratio kTnk1 ratio kTnk1 ratio

19 4:1828 � 10�1 1:8292 � 10�0 4:6176

39 1:6067 � 10�1 2.6033 1:6479 � 10�0 1.1100 4:4095 1.0472
79 9:3826 � 10�2 1.7124 1:3096 � 10�0 1.2583 4:2222 1.0444

159 4:5301 � 10�2 2.0712 1:4733 � 10�0 0.8889 4:1219 1.0243
319 2:2290 � 10�2 2.0323 1:3818 � 10�0 1.0662 4:0640 1.0142

Table 4. Interface derivative results for example 1.

Since using step enrichments with the X-FEM yields much better accuracy while
only slightly increasing the system size, the remaining examples will only use step
enrichments with the X-FEM.

4.2. Example 2. The second example has discontinuous coefficients along with a
singular source term. The equation is

r � .ˇru/D f C C

Z
�I

ı .x � X .s// @�I (13)

where
f .x;y/D 8

�
x2

C y2
�

C 4

and

ˇ .x;y/D

�
r2 C 1 r �

1
2

b r > 1
2

with the following jump conditions

ŒŒu��D 0��
ˇ
@u

@n

��
D 0

The exact solution to (13) is:

u .x;y/D

(
r2 r �

1
2

1
4

�
1 �

1
8b

�
1
b

�
C

1
b

�
r4

2
C r2

�
C C log .2r/ r > 1

2

with b D 10 and C D 0:1.
Table 5 shows the results for the IIM and the X-FEM. Both methods handle

the discontinuous variable coefficient with the IIM still being first order while the
X-FEM achieves second order accuracy. The results are similar for interpolation on
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Figure 9. Solution for example 2.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:7613 � 10�3 2:5520 � 10�2

39 4:1771 � 10�4 4.2166 8:4159 � 10�3 3.0324
79 1:0289 � 10�4 4.0598 3:5290 � 10�3 2.3848
159 3:0164 � 10�5 3.4110 2:1227 � 10�3 1.6625
319 6:7960 � 10�6 4.4385 9:8789 � 10�4 2.1487

Table 5. Numerical results for example 2.

the interface as show in Table 6. In addition, Table 7 shows the same convergence
results as the previous example problem for evaluating the normal derivative on
the interface with no convergence for the IIM and first order convergence for the
X-FEM.

4.3. Example 3. For the third example, jumps in the function u are imposed on
the interface �I . The differential equation is

r
2u D 0 (14)

with the jump conditions
ŒŒu��D ex cos y��

@u

@n

��
D 2ex .x cos y � y sin y/

The exact solution of (14) is:
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n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:6517 � 10�3 2:5988 � 10�2

39 3:3824 � 10�4 4.8832 8:8692 � 10�3 2.9301
79 8:2238 � 10�5 4.1129 3:6100 � 10�3 2.4568
159 3:1568 � 10�5 2.6051 2:1768 � 10�3 1.6584
319 7:4612 � 10�6 4.2310 1:0004 � 10�4 2.1759

Table 6. Interface results for example 2.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 2:7307 � 10�1 4:6176 � 10�0

39 1:2776 � 10�1 2.1374 4:4095 � 10�0 1.0472
79 6:1203 � 10�2 2.0875 4:2222 � 10�0 1.0444
159 4:8216 � 10�2 1.2694 4:1219 � 10�0 1.0243
319 2:4790 � 10�2 1.9450 4:0640 � 10�0 1.0142

Table 7. Interface derivative results for example 2.

u .x;y/D

�
ex cos y r �

1
2

0 r > 1
2

(15)

Figure 10. Solution for example 3.
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Since (14) does not have a line source term explicitly, the equation is modified
for the X-FEM to include one that yields the correct jump in the normal derivative.
The new equation is

r
2u D

Z
�I

2ex .x cos y � y sin y/ ı .x � X .x// @�I (16)

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:7648 � 10�4 3:6253 � 10�3

39 6:0109 � 10�5 2.9360 4:6278 � 10�4 7.8337
79 1:7769 � 10�5 3.3828 3:0920 � 10�4 1.4967
159 4:8626 � 10�6 3.6542 1:1963 � 10�4 2.5846
319 1:2362 � 10�6 3.9335 4:5535 � 10�5 2.6272

Table 8. Numerical results for example 3.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 4:7842 � 10�4 4:0230 � 10�3

39 1:0659 � 10�4 4.4884 5:7563 � 10�4 6.9889
79 2:8361 � 10�5 3.7583 3:1617 � 10�4 1.8206
159 7:3603 � 10�6 3.8532 1:2004 � 10�4 2.6339
319 2:0634 � 10�6 3.5671 4:5526 � 10�5 2.6367

Table 9. Interface results for example 3.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 5:6520 � 10�2 3:0009 � 10C1

39 2:4190 � 10�2 2.3365 5:5185 � 10C1 0.5438
79 9:4512 � 10�3 2.5595 1:2034 � 10C2 0.5392

159 7:1671 � 10�3 1.3187 2:6466 � 10C2 0.4547
319 2:6865 � 10�3 2.6678 5:2870 � 10C2 0.5006

Table 10. Interface derivative results for example 3.
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Table 8 gives the results for the X-FEM and the IIM with the X-FEM is second
order while the IIM is first order with the X-FEM giving about an order of magnitude
better improvement at the nodes. The conclusions are similar for errors taken on the
interface as given in Table 9. Table 10 contains the errors in the normal derivative on
the interface for the X-FEM and the IIM. Once again, the X-FEM is first order when
computing the normal derivative and the IIM is unable give an accurate evaluation
of the normal derivative at the interface.

5. Conclusion

In this paper, the Extended Finite Element Method and the Immersed Interface
Method were compared. Both methods use a regular cartesian mesh, which does
not conform to an internal interface.

The Immersed Interface Method is a finite difference method that handles inter-
faces by using a six point stencil where needed, along with correction terms on the
right hand side, to handle the jump conditions. It is second order accurate at the
grid points away from the interface and first order accurate at the grid points near
the interface.

The Extended Finite Element Method is a finite element method where extra
“enriched” basis functions are added to the standard finite element approximation.
These enrichment functions add discontinuities that approximate the behavior near
the interface. These enrichments coupled with the enforcement of the interface
conditions yields accurate results both near and away from the interface. In addition,
the X-FEM is not restricted to enforcing only jump conditions on the interface in
its formulation. The lack of this restriction allows explicit boundary conditions to
be applied, which is a subject of current research.

Overall, the X-FEM performed well compared to the IIM. It provides second
order accuracy at the nodes and on the interface while more accurately capturing
the gradient on the interface for each of the problems. Against other methods like
the IIM, which are constructed as second order methods away from the interface
but only have a local O.h/ truncation error near the interface, the X-FEM maintains
an advantage due it being second order on all the nodes including the ones near the
interface. This is an advantage because an accurate approximation of the gradient
at the interface is important for moving interface problems where the velocity is
often derived from a gradient of the velocity potential. This makes the X-FEM
a more attractive choice for coupling with moving interface methods such as the
Level Set Method.
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