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This paper discusses the evaluation of hydrodynamic variables in the presence of
spontaneous fluctuations, such as in molecular simulations of fluid flows. The
principal point is that hydrodynamic variables such as fluid velocity and temper-
ature must be defined in terms of mechanical variables such as momentum and
energy density). Because these relations are nonlinear and because fluctuations of
mechanical variables are correlated, care must be taken to avoid introducing a bias
when evaluating means, variances, and correlations of hydrodynamic variables.
The unbiased estimates are formulated; some alternative, incorrect approaches
are presented as cautionary warnings. The expressions are verified by numerical
simulations, both at thermodynamic equilibrium and at a nonequilibrium steady
state.

1. Introduction

Particle simulations are a useful tool in the study of continuum mechanics, especially
fluid mechanics [15; 16], and a variety of particle-based algorithms (e.g., molecular
dynamics [7], particle-in-cell (PIC) [12], direct simulation Monte Carlo (DSMC) [4],
dissipative particle dynamics (DPD) [10], and lattice gas automata (LGA) [24]) are
available to simulate hydrodynamic phenomena. In such simulations, the quantities
of interest are not the precise trajectories of the particles but rather the hydrodynamic
variables such as density, fluid velocity, temperature, pressure, etc. Compared to
macroscopic systems, the number of particles in a simulation is small (typically
fewer than 107) so the number of particles in a volume element is typically on
the order of 10 to 100. For this reason, the spontaneous fluctuations in a volume
element are significant and statistical samples are taken. The purpose of this paper
is to establish the correct construction for measuring hydrodynamic variables and
to point out some common errors that lead to biased results.

The bias described in this paper has already been studied in detail by Tysanner and
Garcia [26; 25] for the measurement of mean fluid velocity. This paper extends that
work in two important directions. First, we consider other hydrodynamic variables,
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most significantly temperature. Second, the study of hydrodynamic fluctuations is
an important topic in a variety of fields ranging from nanoscale fluid mechanics [5;
13] to molecular biology [14; 23]. We therefore also consider the measurement of
hydrodynamic fluctuations, such as the variance of fluid velocity and the correlation
of density and temperature fluctuations.

The paper is organized as follows: Section 2 defines mechanical densities and
relates them to hydrodynamic variables, specifically how the mean values of the
latter are defined in terms of the former. Variances and correlations of hydrodynamic
quantities are similarly described in Section 3. The bias observed when hydro-
dynamic quantities are measured incorrectly is described in Section 4 where the
effects are illustrated by numerical results from simulations. Section 5 summarizes
the main points and concludes with general remarks.

2. Mean values

First let us establish some notation: Consider a fluid of particles of mass m. The
position and velocity of particle k are rk and vk . The measurement of mechanical
variables in a cell, namely the instantaneous densities of mass, momentum, and
kinetic energy, may be written as,

ρ =
1
V

∑
rk∈C

m (1)

J =
1
V

∑
rk∈C

mvk (2)

K =
1
V

∑
rk∈C

1
2 m|vk |

2 (3)

where the sums are over particles located within cell C , which has volume V . One
may define other mechanical variables but these suffice for the present discussion.
For the equations of fluid dynamics these are the fundamental conserved variables.

For any of these mechanical variables (M = ρ, J, or K ) we may write the sample
mean as the average over S samples, that is,

〈M〉s =
1
S

S∑
j=1

M j (4)

where the subscript j indicates individual samples, which may be from an ensemble
of runs or, for steady state problems, samples taken at different times (i.e., a time
average). In the limit of infinitely many samples, this sample mean goes to the
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mean value, that is,
M = 〈M〉∞ ≡ lim

S→∞

〈M〉s . (5)

It is important to keep in mind that we are not considering the “thermodynamic
limit” because our interest is in the measurement of fluid variables in relatively
small volumes, so the number of particles, N = ρV/m = O(101–102), is by
no approximation approaching infinity. Of course it is not necessary to take the
thermodynamic limit in order to treat thermodynamic or hydrodynamic variables;
one simply has to be careful to retain terms that are O(1/N ).

From the sample measurements of the mechanical variables one may obtain
estimates of hydrodynamic variables, such as fluid velocity and temperature. How-
ever it is important to understand that for a hydrodynamic variable, H, the mean is
defined in terms of the means of mechanical variables. Specifically,

H = H(ρ, J, K ) 6= lim
S→∞

〈H(ρ, J, K )〉s, (6)

With this in mind, we introduce the notation

〈H〉
∗

s = H(〈ρ〉s, 〈J〉s, 〈K 〉s) (7)

with H =〈H〉
∗
∞

. The asterisk reminds us that the estimated mean of a hydrodynamic
variable is constructed from the sample means of mechanical variables.

Landau and Lifshitz (§49, [18]) warn of this subtlety in defining quantities
such as temperature and pressure: “Strictly speaking, in a system which is not in
thermodynamic equilibrium, such as a fluid with velocity and temperature gradients,
the usual definitions of thermodynamic quantities are no longer meaningful, and
must be . . . defined as being the same functions of [mechanical variables] “as they
are in thermal equilibrium. [. . . ] The introduction of any further terms (for example,
the inclusion in the mass flux density of terms proportional to the gradient of density
or temperature) has no physical meaning. . . . Worse still, the inclusion of such terms
may violate the necessary conservation laws.” Such a violation is demonstrated in
[26] and is discussed here in Section 4.1.

Intensivity (i.e., invariance with volume) is an important property that is lost when
hydrodynamic variables are measured incorrectly. Intensive and extensive variables
are familiar from equilibrium statistical mechanics, temperature and entropy being
examples of each, respectively. The property of intensivity requires that for two
volume elements A and B for which MA = MB, we have HA+B = HA = HB if
A+B is the union of the two elements.Intensivity is guaranteed when hydrodynamic
variables are defined in terms of mechanical densities as H = H(M). On the other
hand,

〈H(M)〉∞ = H +
1
2δM2

(
∂2H

∂M2

)
M

+ . . . (8)
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where δM = M − M is the fluctuation of mechanical variables, and δM2 is their
covariance. Because the covariance is not intensive (e.g., δρ2 = mρ/V for a dilute
gas at equilibrium) one cannot guarantee that 〈H(M)〉∞ remains intensive (though in
some cases, typically at thermodynamic equilibrium, 〈H(M)〉∞ = H). This generic
analysis is illustrated in the next two subsections for the specific examples of fluid
velocity and temperature.

2.1. Fluid Velocity. The simplest example of a hydrodynamic variable is fluid
velocity, which from the development of the equation of continuity (§1, [18]) is
defined as

u =
J
ρ

= lim
S→∞

〈J〉s

〈ρ〉s
(9)

The unbiased sample mean for the fluid velocity is

〈u〉
∗

s =
〈J〉s

〈ρ〉s
=

S−1 ∑S
j J j

S−1
∑S

j ρ j
, (10)

so u = limS→∞〈u〉
∗
s .

It is important to note that

〈u〉
∗

s 6= 〈û〉s =
1
S

S∑
j

û(ρ j , J j , K j ) (11)

where û is any general function that defines an instantaneous fluid velocity in terms
of the instantaneous mechanical state.

Specifically, note that the instantaneous center-of-mass velocity, û j = J j/ρ j ,
when averaged over samples, may be written as

〈û〉s =
1
S

S∑
j=1

û j =
1
S

S∑
j=1

J j

ρ j
=

〈
J
ρ

〉
s
, (12)

so one might be tempted to define fluid velocity as the center of mass velocity.
This definition, though commonly used (eg. §9-4-1, [12]) for fluid velocity, is
problematic for two reasons.

First, there is an ambiguity since û j is not well defined for samples at which
ρ j = J j = 0, that is, when the instantaneous number of particles N j is zero. There
are twoways to remove this ambiguity: One could take û j = 0 for those samples, an
unacceptable approach because it introduces a bias proportional to 1 − S0/S where
S0 is the number of samples for which ρ j = 0 (see equation (61)). The acceptable
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approach is to define

〈û〉s =
1

S − S0

S∑
j=1

J j

ρ j
(1 − δ0,N j ) (13)

that is, to skip those samples with zero particles, which we shall implicitly assume
is how the averaging of samples is performed.

The second and far more serious issue is that using (12) to define fluid velocity
is biased when the fluid is not at equilibrium. To see why, recall that

〈û〉s =

〈
J
ρ

〉
s
6=

〈J〉s

〈ρ〉s
= 〈u〉

∗

s , (14)

The inequality should not be surprising since the instantaneous values of ρ and
J are correlated (e.g., if the instantaneous mass is greater than average then most
likely so is the instantaneous momentum). These correlations happen to cancel out
at equilibrium (even when u 6= 0) but out of equilibrium (e.g., temperature gradient)
the measurement of fluid velocity as 〈û〉s is biased and incorrect. This effect is
discussed further in Section 4.1.

2.2. Temperature. Next we consider the measurement of temperature (or more
specifically of translational temperature), which is defined from the principle of
equipartition of kinetic energy as

T =
1

cvρ

(
K −

|J|
2

2ρ

)
, (15)

where cv = d kB/2m is the heat capacity per unit mass due to the d translational
degrees of freedom. From the discussion above, the unbiased sample mean for
temperature is

〈T 〉
∗

s =
1

cv〈ρ〉s

(
〈K 〉s −

|〈J〉s |
2

2〈ρ〉s

)
(16)

=
1
cv

(
〈K 〉s

〈ρ〉s
−

1
2
|〈u〉

∗

s |
2
)

, (17)

solimS→∞〈T 〉
∗
s = T .

There are several alternative (and incorrect) hydrodynamic definitions for tem-
peraturein common use. The most naive is to define temperature in terms of the
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instantaneous internal energy per particle:

T̂ j =
1

cvρ j

(
K j −

|J j |
2

2ρ j

)
(18)

=
1
cv

(
K j

ρ j
−

1
2
|û j |

2
)

. (19)

Note that this definition is problematic if ρ j = 0, in the same fashion as already
discussed for û j , so the evaluation of the mean value should exclude those samples.
A more serious flaw with this definition of temperature is that it is biased, even
at equilibrium with u = 0, because it fails to account for the fluctuations of the
center-of-mass velocity, as shown in Section 4.2. This definition appears in the
standard literature of computational statistical mechanics (e.g., §2.4,[2]) and its use
is appropriate in the canonical ensemble (fixed N ) but not in general.

A simple modification improves the above definition. Arguing that the unbiased
estimate of variance must account for the statistical degree of freedom lost in
estimating û j , one writes the improved estimate thus:

T̂ j =
K j −

1
2ρ j |û j |

2

cv(ρ j − m/V )
=

K j −
1
2ρ j |û j |

2

cvm(N j − 1)/V
. (20)

Note that in this case averages are computed omitting samples where N j = 0 or 1.
This construction may be used in equilibrium simulations (e.g., §4.1, [7]) but in
Section 4.2 we show that it is biased out of equilibrium.

2.3. Other Hydrodynamic Variables. In this paper we focus on the hydrodynamic
variables of fluid velocity and translational temperature, but there are many others.
If the molecules have internal structure, one may separately define temperatures for
other degrees of freedom (e.g., rotational, vibrational) [4]. Here we only consider
a single species fluid but the more general case would include concentration as a
hydrodynamic variable.

The pressure in a fluid is defined by the equation of state, which may be quite
complicated in general. A simple case, however, is the ideal gas law P = ρRT ,
where R = kB/m is the gas constant and kB is Boltzmann’s constant. Using
mechanical variables, the unbiased sample estimate of the mean pressure is then

〈P〉
∗

s =
R
cv

(
〈K 〉s −

|〈J〉s |
2

2〈ρ〉s

)
=

R
cv

(
〈K 〉s −

1
2
〈ρ〉s |〈u〉

∗

s |
2
)

. (21)

The stress tensor and heat flux are also complicated in general, but for an ideal gas
they may be expressed in terms of moments of the molecular velocity distribution.

Evaluating means and variances from sample averages of instantaneous hydro-
dynamic variables isprone to the biases found for fluid velocity and temperature.
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Since the analysis for other variables follows the same lines, for brevity we simply
reiterate that unbiased estimates are only guaranteed when defining means and
variances in terms of mechanical variables.

3. Variances and correlations

To formulate the measurement of variances and correlations, recall that our hydro-
dynamic variables are defined in terms of mechanical variables as H = H(ρ, J, K ).
We define a fluctuation in H as

δH = H(ρ, J, K ) − H(ρ, J, K ) (22)

= H(ρ + δρ, J + δJ, K + δJ) − H(ρ, J, K ) (23)

= δρ
∂H

∂ρ

∣∣∣∣
ρ,J,K

+ δJ ·
∂H

∂J

∣∣∣∣
ρ,J,K

+ δK
∂H

∂K

∣∣∣∣
ρ,J,K

+ O(δM2), (24)

Note that

〈δH〉
∗

s = H(〈ρ〉s, 〈J〉s, 〈K 〉s) − H(ρ, J, K ), (25)

so limS→∞〈δH〉
∗
s = δH = 0. In general, the exact means are unknown so for

estimating δH we implicitly take M = 〈M〉s and also drop the higher order terms.
This construction allows us to formulate the variance of hydrodynamic variables
in terms of the variances of mechanical variables, which may be estimated from
samples. The remainder of this section presents expressions for variances and
correlations involving fluid velocity and temperature.

3.1. Fluid Velocity Fluctuations. First consider fluid velocity, whose fluctuations
are expressed in terms of fluctuations of mechanical variables as

δu =
δJ
ρ

−
J
ρ2 δρ =

1
ρ

(
δJ − u δρ

)
, (26)

or for the x-component,

δux =
1
ρ

(
δ Jx − ux δρ

)
. (27)

The correlation of mass density fluctuations in cell C and fluid velocity fluctuations
in cell C ′ is

〈δρ δu′

x 〉
∗

s =
1
ρ ′

(
〈δρ δ J ′

x 〉s − u′

x 〈δρ δρ ′
〉s

)
(28)

with similar expressions for the other components.
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The sample estimated variance of the x-component of fluid velocity is

〈δu2
x 〉

∗

s =
1
ρ2 〈(δ Jx − ux δρ)2

〉s (29)

=
1
ρ2

(
〈δ J 2

x 〉s − 2ux 〈δρ δ Jx 〉s + u2
x 〈δρ

2
〉s

)
. (30)

If the system is isotropic (i.e., u = 0), then |δu|2 = d δu2
x = d δ J 2

x /ρ2, where d is
the dimensionality. The correlations of velocity components are similarly obtained,
for example,

〈δux δu′

y〉
∗

s =
1

ρ ρ ′

(
〈δ Jx δ J ′

y〉s − ux 〈δρ δ J ′

y〉s − u′

y 〈δρ ′ δ Jx 〉s + ux u′

y 〈δρ δρ ′
〉s

)
,

(31)
with similar results for the other components.

3.2. Temperature Fluctuations. In terms of mechanical variables, the fluctuation
of temperature may be written as

δT =
1

cvρ

{
δK − u · δJ −

(
cvT −

1
2 |u|

2) δρ
}

=
1

cvρ

{
δK − δG − Q δρ

}
, (32)

where δG ≡ u·δJ and Q ≡ cvT −
1
2 |u|

2. From this, the estimated sample correlation
of temperature fluctuations is

〈δT δT ′
〉
∗

s =
1

c2
vρ ρ ′

{
〈δK δK ′

〉s + 〈δGδG ′
〉s + Q Q

′
〈δρ δρ ′

〉s

− 〈δK δG ′
〉s − 〈δGδK ′

〉s − Q
′
〈δK δρ ′

〉s − Q〈δρ δK ′
〉s

+ Q
′
〈δG δρ ′

〉s + Q〈δρ δG ′
〉s

}
. (33)

The covariance of density and temperature fluctuations is

〈δρ δT ′
〉
∗

s =
1

cvρ
′

{
〈δρ δK ′

〉s − 〈δρ δG ′
〉s − Q

′
〈δρ δρ ′

〉s

}
. (34)

The covariance of fluid velocity and temperature is

〈δux δT ′
〉
∗

s =
1

cvρ ρ ′

{
〈δ Jx δK ′

〉s − ux 〈δρ δK ′
〉s

− 〈δ Jx δG ′
〉s + ux 〈δρ δG ′

〉s − Q
′
〈δ Jx δρ ′

〉s + ux Q
′
〈δρ δρ ′

〉s

}
. (35)
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4. Biases due to fluctuations

We now consider the possible bias in the statistical measurements of hydrodynamic
variables due to fluctuations. To derive and illustrate these results we consider
four separate approaches, two for equilibrium and two for nonequilibrium systems.
The first is the direct evaluation of statistical means at thermodynamic equilibrium;
this methodology is straightforward and details of the calculations are collected
in Appendix A. Results for the variances and correlations are compared with
fluctuating hydrodynamic theory, which is summarized in Appendix B. The second
approach is similar to the first but uses stochastic numerical simulations to generate
random samples (see Appendix C). These numerical results illustrate the predicted
phenomena and verify the accuracy of various approximate results.

For nonequilibrium systems, various definitions for mean values of fluid velocity
and temperature are compared to quadratic order in fluctuations, indicating how
a bias may be introduced by nonequilibrium correlations. The predicted bias is
confirmed by the fourth approach—molecular simulations of a dilute gas in a closed
system with a temperature gradient (see Appendix D). Note that the four approaches
are intertwined in the presentation below.

4.1. Bias for Fluid Velocity. First we consider two ways to estimate the mean value
of fluid velocity, 〈u〉

∗
s and 〈û〉s , as introduced in Section 2.1. By direct evaluation

(see (55), (56) and (59)) we find that both definitions are unbiased at equilibrium
(even if u 6= 0), a result confirmed by numerical simulation. However, 〈u〉

∗
s and

〈û〉s are not equivalent out of equilibrium. To see why, note that the sample mean
of the center-of-mass velocity from equation (12) may be written as

〈û〉s =

〈
J
ρ

〉
s
=

〈
J + δJ
ρ + δρ

〉
s

(36)

=
J
ρ

〈(
1 +

δJ
J

)(
1 −

δρ

ρ
+

δρ2

ρ2

)〉
s
+ O(δM3) (37)

= u
(

1 +
〈δρ2

〉s

ρ2

)
−

〈δρ δJ〉s

ρ2 + O(δM3). (38)

From (26), δJ = ρδu + uδρ, so in the limit where the number of samples S → ∞,

〈û〉∞ = u −
δρ δu

ρ
+ O(δM3). (39)

The correlation δρ δu is zero at equilibrium (see Appendix B) but, in general,
nonzero for nonequilibrium systems [20]. The correlation δρδu ∝ ∇T and the
fact that 〈û〉∞ 6=0 in a closed system indicates a violation of mass conservation, as
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cautioned by Landau and Lifshitz (see Section 2 above). Finally, since δρ δu ∝ V −1,
the quantity 〈û〉∞ is not an intensive variable.

This bias of the center-of-mass fluid velocity is studied at length in [26] where
it is shown that the nonequilibrium correlation δρ δu leads to an anomalous flow,
as measured by 〈û〉s , in closed systems.1 For the simulation parameters listed in
Appendix D the anomalous flow velocity is about 10−4c for the large system and
10−3c for the small system, where c is the sound speed.

At equilibrium, the variance of fluid velocity is (see Appendix B),

|δu|2 = d
kB T
ρV

= d
C2

T

N
. (40)

By direct evaluation, the definition based on the variances of mechanical variables
is found to be unbiased, that is 〈|δu|

2
〉
∗
∞

= |δu|2, (see equation (62)) whereas the
center-of-mass definition gives (see equation (66)),

〈|δû|
2
〉∞ ≈ |δu|2

(
1 +

δN 2

N 2

)
. (41)

Figure 1 shows the fractional errors in the sample estimate for the variance of fluid
velocity, that is

〈|δu|
2
〉
∗
s − |δu|2

|δu|2
and

〈|δû|
2
〉s − |δu|2

|δu|2
.

In the simulations N is Poisson-distributed, so δN 2 = N ; thus the error goes roughly
as 1/N . Note that this fractional error is significant (e.g., about 5% for N = 20).

4.2. Bias for Temperature. Section 2.2 introduced three definitions for the sample
mean temperature, specifically the definition in terms of mean values of mechan-
ical variables, 〈T 〉

∗
s (equation (16)), and two definitions based on instantaneous

temperature. The latter may be combined and written as

T̂α =
K −

1
2ρ|û|

2

cV (ρ − αm/V )
, (42)

where α = 0 for equation (18) and α = 1 for equation (20).
By direct evaluation (see (73), (76)), we find that 〈T 〉

∗
∞

= 〈T̂1〉∞ = T at equilib-
rium, while

〈T̂0〉∞ ≈

(
1 −

1

N

)
T . (43)

1In [26] the quantity 〈u〉
∗
s is referred to as the Cumulative-Averaged-Measurement (CAM) of fluid

velocity and 〈û〉s is called the Sample-Averaged-Measurement (SAM) of velocity.
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Figure 1. Fractional error in the sample variance of fluid velocity
versus N for: 〈|δu|

2
〉
∗
s (asterisks); 〈|δû|

2
〉s (circles). Solid line

given by equation (63); dashed line is 1/N (dashed line).

Figure 2 confirms these results, showing the fractional error in the sample mean of
temperature (relative to T ) versus the mean number N of particles. Note that the
fractional error for 〈T̂0〉∞ is significant (e.g., about 5% for N = 20).

For a more general result, applicable to nonequilibrium cases, we write the
sample mean of instantaneous temperature as

〈T̂α〉s =
1

cV

〈
K −

1
2ρ|û|

2

ρ − αm/V

〉
s

(44)

=

(
1 +

αm
ρV

)
T −

1
ρcV

〈
δρ

ρ

(
δK −

1
2

δρ|u|
2
− ρu · δu

)〉
s
+ O(δM3).

Using the results from Section 3, after some algebra, we find

〈T̂α〉s =

[
1 +

α

N
−

〈δρ2
〉s

ρ2

]
T −

〈δρ δT 〉
∗
s

ρ
+ O(δM3). (45)
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Figure 2. Fractional error in the sample mean of temperature
versus N for: 〈T 〉

∗
s (asterisks), 〈T̂0〉s (crosses) and 〈T̂1〉s (circles).

Solid line given by equation (73); dashed line is −1/N .

At equilibrium δρδT = 0 so by comparison with the results from direct evaluation
we have

〈T̂1〉∞ = T −
δρ δT

ρ
+ O(δM3). (46)

This result is verified by molecular simulations of a nonequilibrium system at a
steady state, specifically a dilute gas between a pair of thermal walls at different
temperatures (see Appendix D). The predicted bias from (46) is in good agreement
with the bias measured in both the large (132 particles per sample cell) and small
(8.2 particles per sample cell) systems. In the latter case the absolute temperature
bias is a few Kelvin (about 1% of the mean), while in the large system the bias is
smaller by a factor of 132/8.2 ≈ 16, since δρ δT ∝ V −1. This result confirms the
warning given in Section 2 that the means of instantaneous hydrodynamic variables
are not intensive quantities.

Finally, we consider the measurement of temperature fluctuations, choosing
among the many possible examples the correlation of density and temperature
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〈δρ δT 〉

∗
s /〈ρ〉s [small (circles), large (diamonds) systems] versus

position. Results for the large system are scaled by a multiplica-
tive factor of 16. Wall temperatures are 273 and 809 Kelvin; see
Appendix D for other parameters.

fluctuations. As mentioned above, at equilibrium δρ δT = 0; by direct evaluation
we get〈δρ δT 〉

∗
∞

=0 (see Appendix A), while for the two definitions of instantaneous
temperature we find (see eqns. (78) and (79)),

〈δρ δT̂0〉∞ = ρT
∞∑

N=1

(
N − 1

N
−

N − 1
N

)
P(N )

1 − P(0)
(47)

≈ ρT
δN 2

N 3
(48)

and

〈δρ δT̂1〉∞ =
ρT

N

(
NP(0) + (N − 1)P(1)

1 − P(0) − P(1)

)
, (49)
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where P(N ) is the probability distribution for N . When this is the Poisson distribu-
tion, then

〈δρ δT̂0〉∞ ≈
ρT

N 2
(50)

and
〈δρ δT̂1〉∞ = ρT Ne−N . (51)

These results are illustrated and verified in Figure 4 where the scaled error (relative
to (δρ2 δT 2)1/2) in the correlation of density and temperature versus N is presented
for equilibrium simulation measurements (see Appendix C). The bias for 〈δρ δT̂0〉∞

is significant (scaled error of about 7% for N = 20) while the bias for 〈δρ δT̂1〉∞

decreases quickly with N (scaled error is less than 1% for N = 10). On the other
hand, the bias in the variance 〈δT̂ 2

1 〉∞ turns out to be significant (e.g., over 10% for
N = 20).

5. Summary and concluding remarks

In this paper we demonstrate that in the presence of spontaneous fluctuations the
statistical measurement of hydrodynamic quantities, such as fluid velocity and
translational temperature, should be done by sampling mechanical variables, such
as momentum and kinetic energy densities. The correct constructions for means and
variances are given in sections 2 and 3, respectively. In those sections we caution that
using definitions based on instantaneous fluid velocity and instantaneous temperature
leads to biased statistical results (as shown in Section 4).

Molecular simulations have been used in the study of fluids for nearly half a
century, so why are the results presented in this paper not well known? First, one
should recall that most molecular dynamics simulations are of equilibrium systems
for the purpose of computing thermodynamic properties, such as the equation of
state. The computation of means and fluctuations of thermodynamic quantities in
the various ensembles of statistical mechanics is certainly well known [2; 7].

Molecular dynamics simulations of hydrodynamic phenomena are more recent
(e.g. [17]) and often focus on qualitative features (e.g., appearance of vortex shed-
ding).2 Other molecular algorithms, such as direct simulation Monte Carlo [4] and
lattice gases [24], have always been applied to nonequilibrium flows, yet, as with
molecular dynamics, the biases due to fluctuations were not identified. Errors due
to these biases were either dismissed as small numerical artifacts (e.g., finite time
step effects) or masked by other errors (e.g., large statistical uncertainties). Since
the bias in the mean values is usually quite small (about 0.1 Kelvin for the large
system in Figure 3) either possibility is plausible.

2Evan’s nonequilibrium molecular dynamics (NEMD) approach is not designed for hydrodynamic
flows but rather is a method for obtaining transport properties, such as viscosity [6].
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∗
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〈δρ δT̂0〉s , (crosses) and 〈δρ δT̂1〉s (circles). Solid lines are theoreti-
cal predictions (47) and (49); dashed lines are approximations (50)
and (51).

Another possibility is that, in some cases, no errors were made in measuring
hydrodynamic quantities because the sampling happened to be equivalent to the
unbiased formulation using mechanical variables (e.g., programs in [4]). Unfor-
tunately, one rarely finds a detailed description in the literature of how statistical
measurements are performed, especially for fluid velocity.

In molecular simulations of hydrodynamic flows, variances are usually measured
only for the purpose of estimating error bars [11]. As such, the effects described
in this paper are unlikely to have been noticed by many computational scientists.
On the other hand, my own research is in the field of nonequilibrium fluctuations,
which is how these effects came to my attention. The recent computational studies
of nano-scale and multi-scale flows, as well as of Brownian motors, may also profit
from this paper’s analysis regarding the measurement of microscopic fluctuations
in molecular simulations. The importance of these fluctuations is appreciated by
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noting that a typical molecular motor protein consumes ATP at a power of roughly
10−16 watts while operating in a background of 10−8 watts of thermal noise power,
which has been said tobe “as difficult as walking in a hurricane is for us.” [3]

Finally, we have focused on the effect of fluctuations in particle-based simulations,
yet these effects have a physical rather than numerical origin so the discussion
also applies to continuum methods for stochastic partial differential equations.
The deterministic hydrodynamic equations can be augmented by the inclusion
of stochastic fluxes due to thermal fluctuations. These fluctuating hydrodynamic
equations [18] accurately capture equilibrium and nonequilibrium effects and can
be computed numerically (see [9] for a simple, finite-difference scheme). Any
numerical computation of hydrodynamic phenomena that includes spontaneous
fluctuations may be susceptible to the effects presented in this paper. Caveat
ratiocinator.

Appendix A: Direct evaluation at equilibrium

In this appendix we obtain, by direct evaluation, mean values and variances of
mechanical and hydrodynamic variables at thermodynamic equilibrium. To perform
this analysis, we first need to say something about the probability distributions for
the fluid particles, specifically, P(v), the probability that a particle has velocity v
and P(N ), the probability that a cell has N particles.

From the principle of equipartition, at thermodynamic equilibrium the veloci-
ties of classical particles are Gaussian-distributed with mean v = u and variance
|v − v|2 = |δv|2 = d C2

T = d kB T /m where CT is the thermal speed. Note that
thermodynamic equilibrium does not imply u = 0 since a system is in equilibrium
in all inertial frames of reference.

The distribution for N depends on the equation of state for the fluid. For the
present analysis we only require the mean N = N and variance δN 2 = σ 2

N . In dense
fluids σ 2

N is small since it is proportional to the fluids’ compressibility; in the case
of a dilute gas, N is Poisson-distributed with σ 2

N = N .
For some definitions of instantaneous variables (e.g., eqns. (12) and (18)) we

need to exclude the state N = 0, in which case we use the distribution

P0(N ) =
1

1 − P(0)
P(N ) (52)

for N = 1, . . . ,∞. For the alternative temperature definition, equation (20), we
need to exclude the states N = 0 or 1, in which case we use the distribution

P01(N ) =
1

1 − P(0) − P(1)
P(N ) (53)

for N = 2, . . . ,∞.
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Mean values may be obtained by direct evaluation,

〈X〉∞ =

∞∑
N=0

∫
dv1 . . .

∫
dvN X (N , v1, . . . , vN )P(N )P(v1) . . . P(vN ), (54)

with the minor modification that the sum starts at N = 1 or N = 2 if P0 or P01 is
used in place of P(N ). For the mechanical variables, we easily find

〈ρ〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

m
)

P(N )P(v1) . . . P(vN )

=
1
V

∞∑
N=0

(
Nm

)
P(N ) =

m N
V

= ρ. (55)

Similarly,

〈J〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

mvk

)
P(N )P(v1) . . . P(vN )

=
1
V

∞∑
N=0

(
Nmv

)
P(N ) =

m N
V

v = ρ u (56)

and

〈K 〉∞ =
1
V

∞∑
N=0

∫
dv1 . . .

∫
dvN

( N∑
k=1

1
2 m|vk |

2
)

P(N )P(v1) . . . P(vN )

=
m N
V

1
2 |v|2 = ρ(cvT +

1
2
|u|

2), (57)

confirming the expected result that 〈M〉∞ = M.
The variances and covariances of the mechanical variables may be evaluated

directly. For example,

〈δρ2
〉∞ =

1
V 2

∞∑
N=0

∫
dv1 . . .

∫
dvN

[( N∑
k=1

m
)

− ρ

]2

P(N )P(v1) . . . P(vN )

=
1

V 2

∞∑
N=0

[
Nm − Nm

]2
P(N ) =

m2

V 2 δN 2 = ρ2 σ 2
N

N 2
. (58)

The procedure is straightforward (though tedious) for the other variables; the results
are the same as in eqns. (83)–(88) in Appendix B.
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Fluid Velocity. From the results above, the mean fluid velocity

〈u〉
∗

∞
= 〈J〉∞/〈ρ〉∞ = J/ρ = u.

At equilibrium we find for the center-of-mass velocity,

〈û〉∞ =

∞∑
N=1

∫
dv1 . . .

∫
dvN

(
v1 + . . . vN

N

)
P0(N )P(v1) . . . P(vN ) (59)

=

∞∑
N=1

Nv
N

P0(N ) = u, (60)

where the N = 0 case is excluded. An alternative approach would be to take û j = 0
when N j = 0 which gives

〈û′
〉∞ =

∞∑
N=0

Nu
N

(1 − δN ,0)P(N ) = u
( ∞∑

N=0

P(N )

)
− uP(0)

= (1 − P(0))u, (61)

so at equilibrium this definition for the mean of the center-of-mass velocity does
not equal the fluid velocity except when u = 0.

From (29), the variance of fluid velocity as obtained from mechanical variables
is

〈|δu|
2
〉
∗

∞
=

1
ρ2 (|δJ|2 − 2u · δρJ + |u|

2δρ2). (62)

Using (80), (83), and (86), we find 〈|δu|
2
〉
∗
∞

=dC2
T /N =|δu|2. By direct evaluation,

the variance of the center-of-mass velocity is

〈|δû|
2
〉∞ =

∞∑
N=1

∫
dv1 . . .

∫
dvN

∣∣∣∣v1 + . . . + vN

N
− u

∣∣∣∣2

P0(N )P(v1) . . . P(vN )

=

∞∑
N=1

N |δv|2

N 2 P0(N ) = d C2
T

∞∑
N=1

1
N

P0(N ). (63)

By Jensen’s inequality

∞∑
N=1

1
N

P0(N ) >

∞∑
N=1

1
N

P(N ) ≥

( ∞∑
N=1

N P(N )

)−1

=
1

N
, (64)

with equality only if P0(N ) = δN ,N . Excluding this trivial case, 〈|δû|
2
〉∞ > |δu|2.

Since

N−1 =
1

N

(
1 +

σ 2
N

N 2
+ O(δN 3)

)
, (65)
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we have

〈|δû|
2
〉∞ = |δu|2

(
1 +

σ 2
N

N 2
+ O(δN 3)

)
. (66)

If N is Poisson-distributed, then

〈|δû|
2
〉∞ = |δu|2

(
1 +

1

N
+ O(δN 3)

)
(67)

Finally, note that we may write

〈|δû|
2
〉∞ =

∞∑
N=1

〈|δû|
2
N 〉∞ P0(N ), (68)

where

〈|δû|
2
N 〉∞ =

d C2
T

N
(69)

is the variance of the center-of-mass velocity for a given value of N , a result used
below.

Temperature. From (16), (55), (56), and (57) we find 〈T 〉
∗
∞

= T . Turning to the
two definitions of instantaneous temperature, equation (18) and (20), note that they
may be combined as

T̂α; j =
1

2cV (N j − α)

N j∑
k

|vk, j − û j |
2 (70)

where α = 0 or 1 and

û j =
1

N j

N j∑
k

vk, j (71)

is the instantaneous center-of-mass velocity. First, consider the case α = 0, by
direct evaluation the mean value is,

〈T̂0〉∞ =
1

2cV

∞∑
N=1

∫
dv1 . . .

∫
dvN

(
1
N

N∑
k=1

|vk − û|
2
)

P0(N )P(v1) . . . P(vN )

=
1

2cV

∞∑
N=1

(
|v|2 − |û|2

)
P0(N )

(72)
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In general 〈T̂0〉∞ < T since |δû|
2
→ 0 only in the limit N → ∞. From the above

result for the variance of the center-of-mass velocity,

〈T̂0〉∞ = T
(

1 −

∞∑
N=1

1
N

P0(N )

)
(73)

≈

(
1 −

1

N
−

σ 2
N

N 3

)
T , (74)

so to leading order the bias for this definition of temperature is O(1/N ).
For the alternative definition of instantaneous temperature, equation (20), we

have

〈T̂1〉∞ =
1

2cV

∞∑
N=2

∫
dv1 . . .

∫
dvN

(
1

N−1

N∑
k=1

|vk− û|
2
)

P01(N )P(v1) . . . P(vN )

= T
∞∑

N=2

N
N − 1

(
1 −

|δû|
2
N

d C2
T

)
P01(N ), (75)

where |δû|
2
N is the variance of the center-of-mass velocity for a given value of N .

From (69),

〈T̂1〉∞ =
d C2

T

2cV

∞∑
N=2

N
N − 1

(
1 −

1
N

)
P01(N ) = T (76)

so using this definition gives the correct mean value.
Finally, consider thecorrelation of density and temperature fluctuations; from

(34) and the results for mechanical variables, 〈δρ δT 〉
∗
∞

= δρ δT . To obtain the
correlation for instantaneous temperature, we use 〈δρ δT̂α〉∞ = 〈ρT̂α〉∞ − ρ〈T̂α〉∞;
direct evaluation for T̂0 equation (18) gives

〈ρT̂0〉∞ =
m

2cV V

∞∑
N=1

∫
dv1 . . .

∫
dvN N

(
1
N

N∑
k=1

|vk− û|
2
)

P0(N )P(v1) . . . P(vN )

=
mT
V

∞∑
N=1

N
(

1 −
|δû|

2
N

d C2
T

)
P0(N ) = ρT

∞∑
N=1

N − 1

N
P0(N ), (77)

so

〈δρ δT̂0〉∞ = ρT
∞∑

N=1

(
N − 1

N
−

N − 1
N

)
P0(N ). (78)
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For the alternative definition of instantaneous temperature (equation (20)) we get

〈ρT̂1〉∞

=
m

2cV V

∞∑
N=1

∫
dv1 . . .

∫
dvN N

(
1

N−1

N∑
k=2

|vk − û|
2
)

P01(N )P(v1) . . . P(vN )

=
mT
V

∞∑
N=2

N 2

N − 1

(
1 −

|δû|
2
N

d C2
T

)
P01(N )

= ρT
∞∑

N=2

N

N
P01(N ) =

ρT

N

(
N − P(1)

1 − P(0) − P(1)

)
,

so

〈δρ δT̂1〉∞ =
ρT

N

(
N P(0) + (N − 1)P(1)

1 − P(0) − P(1)

)
. (79)

Appendix B: Variances from fluctuating hydrodynamics

This appendix lists the variances and covariances of mechanical and hydrodynamic
variables in the case of thermodynamic equilibrium at the mean state, ρ, u, and
T . These results are from the theory of fluctuating hydrodynamics (§132, [18]) as
developed from equilibrium statistical mechanics (§112, [19]).

The variance of mass density depends on the compressibility (i.e., the equation
of state) of the fluid. In general,

δρ2 = ρ2 σ 2
N

N 2
, (80)

where N = ρV/m and σ 2
N is the variance of N at equilibrium. For example, for an

ideal gas N is Poisson-distributed so σ 2
N = N and δρ2 = ρ2/N . The more general

result is σ 2
N = −(kB T N 2/V 2)(∂V/∂ P)T .

The variances of fluid velocity and temperature are

|δu|2 = d
kB T
ρV

= d
C2

T

N
(81)

δT 2 =
kB T 2

cvρV
=

C2
T T

cv N
(82)

where CT =

√
kB T /m is the thermal speed (and the standard deviation of the

Maxwell-Boltzmann distribution). The covariances are δρ δu = δρ δT = δu δT = 0.
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From the results above and those formulated in Section 3, the variances and
covariances of the mechanical densities at equilibrium are

δρδJ = ρJ1ρ, (83)

δρδK = ρK1ρ, (84)

δ Jαδ Jβ = Jα Jβ1ρ + ρ2C2
T 1uδα,β, (85)

|δJ|2 = |J|
21ρ + d ρ2C2

T 1u, (86)

δJ δK = J K1ρ + J ρC2
T 1u, (87)

δK 2 = K 21ρ + |J|
2C2

T 1u + c2
vρ

2T 21T , (88)

where J = ρ u and K = cvρT +
1
2ρ|u|

2; the dimensionless variances are defined by
(80), (81), and (82) normalized as 1ρ = δρ2/ρ2, 1u = δu2

x/C2
T , and 1T = δT 2/T 2.

Appendix C: Equilibrium simulations

Simple stochastic simulations of a dilute gas at thermodynamic equilibrium were
performed to verify and illustrate the results obtained by direct evaluation (see
Appendix A). Sample means and variances of fluid velocity and temperature, using
the various definitions, were computed and compared with theoretical predictions,
as shown in the figures in Section 4.

From the principle of equipartition, at thermodynamic equilibrium the velocities
of the particles are Maxwell–Boltzmann-distributed,

P(v) =

(
m

2πkB T

)d/2

exp(−m|vk, j − u|
2/2kB T ), (89)

with mean v = u and variance |v − v|2 = |δv|2 = d C2
T where CT ≡

√
kB T /m is the

thermal speed. Note that this distribution is not restricted to a dilute gas but applies
to any classical fluid at equilibrium. Also note that thermodynamic equilibrium does
not imply u = 0 since a system is in equilibrium in all inertial frames of reference.

The number of particles in a given sample, N j , is a random variable whose
distribution depends on the equation of state for the fluid. For the simulations we
take the case of a dilute gas, so N j is Poisson-distributed,

P(N j ) =
e−N N N j

N j !
(90)

with mean N = N and variance δN 2 = N .
Each simulation run consisted of S = 5000 samples for fixed N , varying from

0.5 to 20, and arbitrary u and T . For each sample, given (90), a random value of
N j was generated and then that many random particle velocities were generated
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according to (89). Means, variances, and correlations were estimated by the various
definitions presented in sections 2 and 3; note that for some definitions (e.g., (12),
(18), (20)) samples containing zero or one particle are omitted in evaluating sample
means.

Appendix D: Non-equilibrium simulations

In Section 4.2 the mean instantaneous temperature 〈T̂1〉s is predicted to have a bias
due to nonequilibrium correlations of density-temperature fluctuations. To test this
prediction, molecular simulations of a dilute gas were performed to measure 〈T 〉

∗
s ,

〈T̂1〉s , and 〈δρ, δT 〉
∗
s (see equation (46) and Figure 3). The simulations were of

a nonequilibrium state, specifically a temperature gradient produced by parallel
thermal walls at different temperatures. Similar simulations in [26] verified the
predicted bias in the instantaneous center-of-mass fluid velocity (see equation (39)).

The simulations used the direct simulation Monte Carlo (DSMC) algorithm, a
well-known method for computing gas dynamics at the molecular scale; see [1; 8]
for pedagogical expositions on DSMC, [4] for a complete reference, and [27] for
a proof of the method’s equivalence to the Boltzmann equation. As in molecular
dynamics, the state of the system in DSMC is given by the positions and velocities
of particles. In each time step, the particles are first moved as if they did not interact
with each other. After moving the particles and imposing any boundary conditions,
collisions are evaluated by a stochastic process, conserving momentum and energy
and selecting the postcollision angles from their kinetic theory distributions. DSMC
is a stochastic algorithm but the statistical variation of the physical quantities has
nothing to do with the “Monte Carlo” portion of the method. The equilibrium and
nonequilibrium variations in DSMC are the physical spectra of spontaneous thermal
fluctuations, as confirmed by excellent agreement with fluctuating hydrodynamic
theory [9; 20] and molecular dynamics simulations [21; 22].

The nonequilibrium system we consider is a dilute monatomic hard-sphere gas
between a pair of parallel thermal walls. The left wall is at the reference temperature
of 273 Kelvin and the right wall’s temperature is three times greater. Two cases,
hydrodynamically equivalent, are simulated. The distance between the walls is the
same in the two cases, but one system is 16 times larger in volume (and has 16
times more particles) than the other. All other parameters (e.g., mean free path,
transport coefficients) were the same in the two systems (see Table 1). Samples
are taken in forty rectangular cells sliced parallel to the thermal walls; in the large
system these cells are 16 times larger than in the small system. Starting near the
steady state (approximately linear temperature profile) the simulations of these two
systems are run for 2.5 × 107 time steps to dissipate any initial transients. After
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Molecular diameter (Argon) 3.66 × 108

Molecular mass (Argon) 6.63 × 1023

Reference mass density 1.78 × 10−3

Reference temperature 273
Sound speed 33700
Specific heat cv 3.12 × 106

Wall temperature (left) 273
Wall temperature (right) 819
System length 1.25 × 104

Reference mean free path 6.26 × 10−6

System volume (large) 1.96 × 10−16

System area (small) 1.23 × 10−17

Number of particles (large) 5265
Number of particles (small) 329
Number of sampling cells 40
Number of samples, S 2.5 × 107

DSMC time step 1.0 × 10−11

DSMC grid size 2.09 × 10−6

Table 1. System parameters (in cgs units) for DSMC simulations
of a dilute gas between thermal walls.

allowing the systems to relax, samples are taken at each time step for a total of
S = 2.5 × 107 samples.

Acknowledgements

The author wishes that thank M. Malek Mansour, M. Tysanner, and W. Wagner
for helpful discussions. This work was completed in part during the author’s visit
to Weierstrass Institute for Applied Analysis and Stochastics and partially funded
by the Department of Energy through Lawrence Berkeley National Laboratory
subcontract #6719615.

References

[1] F. J. Alexander and A. L. Garcia, The direct simulation Monte Carlo method, Computers in
Physics 11(6) (1997), 588–593.

[2] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, 1987.

[3] R. D. Astumian and P. Hanggi, Brownian motors, Physics Today (November 2002), 33–39.



HYDRODYNAMIC IN THE PRESENCE OF MICROSCOPIC FLUCTUATIONS 77

[4] G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford Engineer-
ing Science Series, vol. 42, The Clarendon Press Oxford University Press, New York, 1995.
MR 97e:76078

[5] J. Eggers, Dynamics of liquid nanojets, Physical Review Letters 89(8) (2002), 084502.

[6] D. J. Evans and G. P. Morriss, Statistical mechanics of nonequilibrium liquids, Academic Press,
1990.

[7] D. Frenkel and B. Smit, Understanding molecular simulation, Academic Press, 2002.

[8] A. L. Garcia, Numerical methods for physics, Prentice Hall, 2000.

[9] A. L. Garcia, M. M. Mansour, G. C. Lie, M. Mareschal, and E. Clementi, Hydrodynamic
fluctuations in a dilute gas under shear, Physical Review A 36 (1987), 4348–4355.

[10] R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic
and mesoscopic simulation, The Journal of Chemical Physics 107(11) (1997), 4423–4435.

[11] Nicolas G. Hadjiconstantinou, Alejandro L. Garcia, Martin Z. Bazant, and Gang He, Statistical
error in particle simulations of hydrodynamic phenomena, J. Comput. Phys. 187 (2003), no. 1,
274–297. MR 2004c:76113 Zbl 1047.76578

[12] R. W. Hockney and J. W. Eastwood, Computer simulation using particles, Inst. of Physics Publ.,
1988.

[13] George Em Karniadakis and Ali Beskok, Micro flows, Springer-Verlag, New York, 2002.
MR 2002i:76050 Zbl 1035.76052

[14] M. Karplus and J. Kuriyan, Molecular dynamics and protein function, Proc Natl Acad Sci U S A
102(19) (2005), 6679–85.

[15] J. Koplik and J. R. Banavar, Continuum deductions from molecular hydrodynamics, Annual
Review of Fluid Mechanics 27 (1995), 257–292.

[16] Petros Koumoutsakos, Multiscale flow simulations using particles, Annual review of fluid
mechanics. Vol. 37, Annu. Rev. Fluid Mech., vol. 37, Annual Reviews, Palo Alto, CA, 2005,
pp. 457–487. MR 2005i:76085 Zbl 02212509

[17] G. C. Lie L. Hannon and E. Clementi, Molecular dynamics simulation of flow past a plate, J.
Sci. Comput. 1(2) (1986), 145–150.

[18] L. D. Landau and E. M. and Lifshitz, Fluid mechanics, Translated from the Russian by J. B.
Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6, Pergamon Press, London, 1959.
MR 21 #6839 Zbl 0655.76001

[19] E. M. Lifshitz and L. P. Pitaevskiı̆, Course of theoretical physics, vol. 9, Pergamon Press, Oxford,
1980. MR 84m:82003a Zbl 0655.76001

[20] G. C. Lie M. M. Mansour, A. L. Garcia and E Clementi, Fluctuating hydrodynamics in a dilute
gas, Physical Review Letters 58 (1987), 874–877.

[21] J. W. Turner M. Malek Mansour, A. L. Garcia and M. Mareschal, On the scattering function of
simple fluids in finite systems, J. Stat. Phys. 52 (1988), 295.

[22] G. Sonnino M. Mareschal, M. M. Mansour and E.Kestemont, Dynamic structure factor in a
nonequilibrium fluid: A molecular-dynamics approach, Physical Review A 45 (1992), 7180–
7183.

[23] G. Oster, Darwin’s motors, Nature 417 (2002), 25.

[24] J.-P. Rivet and J. P. Boon, Lattice gas hydrodynamics, Cambridge Nonlinear Science Series,
vol. 11, Cambridge University Press, Cambridge, 2001. MR 2002c:82077

[25] M. Tysanner and A. L. Garcia, Non-equilibrium behavior of equilibrium reservoirs in molecular
simulations., International Journal of Numerical Methods in Fluids, (to appear) 2005.

http://www.ams.org/mathscinet-getitem?mr=97e:76078
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1016/S0021-9991(03)00099-8
http://dx.doi.org/10.1016/S0021-9991(03)00099-8
http://www.ams.org/mathscinet-getitem?mr=2004c:76113
http://www.emis.de/cgi-bin/MATH-item?1047.76578
http://www.ams.org/mathscinet-getitem?mr=2002i:76050
http://www.emis.de/cgi-bin/MATH-item?1035.76052
http://dx.doi.org/10.1073/pnas.0408930102
http://dx.doi.org/10.1146/annurev.fl.27.010195.001353
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175753
http://www.ams.org/mathscinet-getitem?mr=2005i:76085
http://www.emis.de/cgi-bin/MATH-item?02212509
http://dx.doi.org/10.1007/BF01061390
http://www.ams.org/mathscinet-getitem?mr=21:6839
http://www.emis.de/cgi-bin/MATH-item?0655.76001
http://www.ams.org/mathscinet-getitem?mr=84m:82003a
http://www.emis.de/cgi-bin/MATH-item?0655.76001
http://dx.doi.org/10.1007/BF01016416
http://dx.doi.org/10.1007/BF01016416
http://dx.doi.org/10.1038/417025
http://www.ams.org/mathscinet-getitem?mr=2002c:82077


78 ALEJANDRO L. GARCIA

[26] , Measurement bias of fluid velocity in molecular simulations, Journal of Computational
Physics 196 (2004), 173–183.

[27] W. Wagner, A convergence proof for bird’s direct simulation monte carlo method for the
boltzmann equation, Journal of Statistical Physics 66 (1992), 1011.

Received June 19, 2005. Revised January 12, 2006.

ALEJANDRO L. GARCIA: algarcia@algarcia.org
Department of Physics, San José State University, San José, CA 95192-0106, United States
www.algarcia.org

http://dx.doi.org/10.1016/j.jcp.2003.10.021
mailto:algarcia@algarcia.org
file:www.algarcia.org

	1. Introduction
	2. Mean values
	3. Variances and correlations
	4. Biases due to fluctuations
	5. Summary and concluding remarks
	Appendix A: Direct evaluation at equilibrium
	Appendix B: Variances from fluctuating hydrodynamics
	Appendix C: Equilibrium simulations
	Appendix D: Non-equilibrium simulations
	Acknowledgements
	References

