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IMPLICATIONS OF THE CHOICE OF PREDICTORS FOR
SEMI-IMPLICIT PICARD INTEGRAL DEFERRED

CORRECTION METHODS

ANITA T. LAYTON AND MICHAEL L. MINION

High-order semi-implicit Picard integral deferred correction (SIPIDC) methods
have previously been proposed for the time-integration of partial differential
equations with two or more disparate time scales. The SIPIDC methods studied to
date compute a high-order approximation by first computing a provisional solution
with a first-order semi-implicit method and then using a similar semi-implicit
method to solve a series of correction equations, each of which raises the order
of accuracy of the solution by one. This study assesses the efficiency of SIPIDC
methods that instead use standard semi-implicit methods with orders two through
four to compute the provisional solution. Numerical results indicate that using a
method with more than first-order accuracy in the computation of the provisional
solution increases the efficiency of SIPIDC methods in some cases. First-order
PIDC corrections can improve the efficiency of semi-implicit integration methods
based on backward difference formulae (BDF) or Runge–Kutta methods while
maintaining desirable stability properties. Finally, the phenomenon of order
reduction, which may be encountered in the integration of stiff problems, can
be partially alleviated by the use of BDF methods in the computation of the
provisional solution.

1. Introduction

The dynamics of many physical and biological systems of interest today involve
processes with two or more characteristic time scales. When the time scales of the
physical processes vary widely, efficient time-marching of the partial differential
equations (PDEs) that describe the dynamics may require specialized numerical
methods, particularly when one wishes to accurately resolve processes at each time
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scale. For example, following the method-of-lines approach, when the PDEs are
discretized in space, the resulting system of coupled ordinary differential equations
(ODEs) typically contains both stiff and nonstiff terms. When the stiffness of one of
these terms corresponds to eigenvalues with a large negative real part (for example,
from the discretization of a diffusive term), an implicit treatment of this term can
allow a much larger stable time step (without significantly sacrificing accuracy) than
an explicit treatment. Hence, the use of semi-implicit methods for such systems,
that is, methods that treat only the stiff terms implicitly, can result in a considerable
improvement in efficiency compared to fully implicit methods, particularly when
other nonstiff terms in the equations are computationally expensive to treat implicitly.
Provided that a sufficiently high level of accuracy is desired, and/or the temporal
interval is sufficiently long, high-order methods for ODEs are more efficient than
low-order methods in that less computational cost is required by high-order methods
to achieve a given, sufficiently stringent error tolerance. Hence the construction of
stable and efficient higher-order semi-implicit methods for ODEs is desirable.

Indeed, semi-implicit (also known as implicit-explicit or IMEX) versions of
popular time-integration methods such as Runge–Kutta (RK), linear multistep, or
backward difference formulae (BDF) methods have been developed to efficiently
integrate ODEs with both nonstiff and stiff components. Semi-implicit RK methods
have been proposed and tested by a number of authors [Ascher et al. 1997; Kennedy
and Carpenter 2003; Pareschi and Russo 2001; Shen and Zhong 1996; Calvo et
al. 2001]; however, owing in part to the complexity of deriving such schemes,
only semi-implicit RK methods with order up to five have so far been developed.
Similarly, several papers have analyzed the stability and accuracy of semi-implicit
methods derived from linear multistep methods [Akrivis et al. 1999; Ascher et al.
1995; Frank et al. 1997; in’t Hout 2002]. In this case, stable schemes up to order
six are easily constructed, although higher-order versions have the disadvantages
that they require multiple starting values, require care when used with variable
time stepping schemes, and, as further discussed in Section 3, have less satisfactory
stability characteristics.

In a series of studies [Minion 2003; Minion 2004; Layton and Minion 2005],
we developed and analyzed a new class of semi-implicit methods for integrating
ODEs that arise from a method-of-lines discretization of PDEs involving time-
scale disparity. The methods are based on a semi-implicit Picard integral deferred
correction (SIPIDC) approach, which is a generalization of the explicit and implicit
spectral deferred correction (SDC) methods introduced in [Dutt et al. 2000]. SDC
methods use a low-order numerical method to compute an approximate solution
with an arbitrarily high order of accuracy. This is achieved by using the low-order
numerical method to solve a series of correction equations, each of which increases
the order of accuracy of the approximation.
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The SDC methods introduced in [Dutt et al. 2000] and the SIPIDC methods
described in [Layton and Minion 2005], as well as most of the SISDC methods
described in [Minion 2003], use a first-order method both to compute the provi-
sional solution and to approximate the correction equations. It has previously been
demonstrated that higher-order versions of these methods are more efficient than
lower-order methods, and that the stability properties of the methods with very high
order remain similar to those with lower order [Dutt et al. 2000; Minion 2003]. A
reasonable question to ask is whether the efficiency of SIPIDC methods can be
improved by using a semi-implicit method with higher than first-order accuracy to
compute the provisional solution. (We will refer to the standard method used to
compute the provisional solution in a particular PIDC method as the predictor.)
Hence we wish to investigate whether using a semi-implicit BDF or RK method
as the predictor in a PIDC method improves the overall efficiency of the PIDC
method. PIDC methods using a predictor with higher than first-order accuracy
require fewer iterations of the correction equation to achieve the same overall order
of accuracy relative to methods using a first-order predictor. However, it is not
immediately clear if the lower computational cost comes at the expense of a loss
in accuracy, or if using such a predictor negatively affects the stability of PIDC
methods. Another relevant question addressed here is whether performing a series
of SIPIDC corrections on a solution generated from a semi-implicit BDF or RK
method results in a SIPIDC method with greater numerical efficiency than that
afforded by simply using the base methods alone. The primary goal of this paper
is to address these questions using the linear stability analysis in Section 3 and
numerical tests in Section 4.

A further issue addressed here concerns order reduction for stiff problems,
something observed in connection with both SIPIDC methods and semi-implicit RK
methods [Minion 2003; Layton and Minion 2005; Kennedy and Carpenter 2003]. In
[Layton and Minion 2005] the effect of the choice of quadrature nodes on the extent
and character of order reduction of SIPIDC methods on stiff problems is investigated.
Both analytical and numerical results in [Layton and Minion 2005] show that, for a
sufficiently stiff problem, SIPIDC methods using a first-order forward-backward
Euler predictor exhibit a reduction of order for a range of time steps, and the extent
and character of the reduction depends on the choice of quadrature rule used in the
method. The results presented in Section 4.3 show that the extent and character of
order reduction also depend critically on the predictor. Specifically, when a kth-
order IMEX BDF predictor is used with uniform quadrature nodes, the convergence
rate in the region of order reduction is k − 1, compared to a reduction to first-order
when an IMEX RK predictor (regardless of order) is used.
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2. SIPIDC methods

Below is a short description of SIPIDC methods. A detailed derivation of the
SIPIDC methods for ODEs and for an advection-diffusion-reaction equation can
be found in [Minion 2003] and [Bourlioux et al. 2003]. The target ODE takes the
form

u′(t)= FE
(
t, u(t)

)
+ FI

(
t, u(t)

)
, t ∈ [a, b]

u(a)= ua,
(1)

where FI is assumed to be significantly stiffer than FE . Thus, SIPIDC methods
compute u(t) by integrating FE explicitly and FI implicitly.

Without loss of generality, a uniform time step 1t = (b − a)/NT , for some
positive integer NT , is assumed in the numerical discretization. Let tn = n1t , for
n = 0, 1, 2, . . . , NT , be the n-th time-level. In the integration of the solution from tn
to tn+1, the time interval [tn, tn+1] is divided into P subintervals by choosing points
tn,m for m = 0, 1, . . . , P such that tn = tn,0 < tn,1 < · · ·< tn,m < · · ·< tn,P ≤ tn+1.
For notational simplicity, the subscript n in tn,m is omitted and tn,m is written as tm .
Let 1tm ≡ tm+1 − tm ; the interval [tm, tm+1] is referred to as a substep.

For an arbitrary function ψ(t), let ψk and ψk
m denote numerical approximations

to ψ(t) and ψ(tm), respectively, after k iterations. To advance the solution from
tn to tn+1, a SIPIDC method first computes a provisional solution ũ(tm) ≡ u0

m ,
for m = 0, 1, . . . , P , by means of a semi-implicit method that we refer to as the
predictor. Presumably any method could be chosen to compute the provisional
solution, and the main point of this paper is to investigate the relative performance
of SIPIDC methods using different predictors.

Given a provisional solution ũ(t), the accuracy of that solution can be improved
using an estimate of its error (or correction): u(t)− ũ(t), denoted by δ(t). Using
the Picard integral form of the solution to Equation (1), one can express δ(t) as the
solution to the integral equation

δ(t)=
∫ t

a

(
FE(τ, ũ + δ)− FE(τ, ũ)+ FI (τ, ũ + δ)− FI (τ, ũ)

)
dτ + E(t, ũ), (2)

where E is the residual function given by

E(t, ũ)= u0 +

∫ t

a
FE(τ, ũ)+ FI (τ, ũ) dτ − ũ(t).

We have suppressed the time dependence of ũ(t) and δ(t) in the integrands to avoid
clutter. A detailed derivation of Equation (2) is given in [Minion 2003].

In SIPIDC methods, a semi-implicit discretization of Equation (2) is used to
iteratively increase the order of accuracy of the provisional solution, that is,

uk+1
m = uk

m + δk
m .
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Specifically, a forward-backward Euler method for computing δk
m is given by

δk
m+1 = δk

m +1tm
(
FE(uk+1

m )− FE(uk
m)+ FI (uk+1

m+1)− FI (uk
m+1)

)
+ Em+1(uk)− Em(uk), (3)

where the terms Em(uk) are approximated with numerical quadrature. Let

Qm+1
m (F)

be a Pth-order numerical quadrature approximation to
∫ tm+1

tm
F(τ )dτ , that is,

Qm+1
m (F)=1tm

p∑
l=0

qm
l Fl =

∫ tm+1

tm
F(τ )dτ + O(1t P+1). (4)

By adding uk to both sides of (3), one obtains a direct update equation that can be
used to improve the accuracy of uk :

uk+1
m+1 = uk+1

m +1tm
(
FE(uk+1

m )− FE(uk
m)+ FI (uk+1

m+1)− FI (uk
m+1)

)
+ Qm+1

m
(
FE(uk)+ FI (uk)

)
. (5)

Equation (5) is solved at the k-th iteration, referred to as a deferred correction
iteration; see [Minion 2003] for details. The quadrature Q should have at least
the same order of accuracy as the updated approximation uk+1. As in [Bourlioux
et al. 2003; Minion 2003], the quadrature Qm+1

m is computed as the integral of
an interpolating polynomial over the subinterval [tm, tm+1] (see further discussion
below).

In the SDC methods presented in [Dutt et al. 2000], the points tm are chosen to
be the Gaussian quadrature nodes of the interval [tn, tn+1], and the solution is only
integrated at these nodes on the interior of the interval. In [Bourlioux et al. 2003;
Minion 2003] the points tm are chosen to be Gauss–Lobatto quadrature nodes, which
are more convenient in that the solution is directly computed at both endpoints of the
time step interval. However, because Gauss–Lobatto nodes are not evenly spaced
for orders of accuracy >2, predictors with higher than first order are less convenient
to implement (nonetheless, it can be done; see [Minion 2003]). This is particularly
true if the SIPIDC method is used for the temporal integration of PDEs in which
block structured adaptive mesh refinement is used (see [Berger and Oliger 1984]). In
this instance (currently a topic of research by the authors), the colocation of coarse
and fine grid data requires the use of uniform substeps. Other examples in which it
is either convenient or necessary to choose substeps that are uniformly spaced have
been discussed in [Layton and Minion 2005]. For these reasons, SIPIDC methods
presented here use uniform nodes such that 1t1 = · · · =1tm · · · ≡1ts .
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The form of the quadrature rule also has a significant effect on the stability
and accuracy of the SIPIDC method for stiff equations. The methods in [Layton
and Minion 2005] actually use two separate quadrature rules for the two terms in
Qm+1

m
(
FE(uk)+ FI (uk)

)
in Equation (4). It is shown in [Layton and Minion 2005]

that, when function values at the left endpoint tn are omitted in the quadrature
rule associated with the stiff component (that is, qm

0 = 0 for all m), the resulting
SIPIDC method is L(α)-stable. Also, by including the left endpoint in the nonstiff
quadrature rule, the accuracy of the quadrature associated with the explicit piece
is improved. This choice of quadrature rules, denoted LR in [Layton and Minion
2005], is adopted in this study. To construct a method with K th-order accuracy, the
quadrature Q should also have at least K th-order accuracy. If P + 1 nodes (or P
substeps) are used in the interval [tn, tn+1], uniform integration nodes yield order
P accuracy for the integral Qm+1

m over the subinterval [tm, tm+1]. Thus, to construct
a K th-order SIPIDC method with uniform nodes that uses the LR quadrature rule
(which excludes the left endpoints in the stiff quadrature rule), K + 1 nodes or K
substeps are required.

2.1. Moderate-order predictors. The SDC methods presented in [Bourlioux et al.
2003; Dutt et al. 2000] are based on forward-backward Euler methods; that is,
the prediction and correction steps are first order. Because higher-order methods
are generally more efficient than lower-order methods, we investigate SIPIDC
methods that are based on second- through fourth-order semi-implicit methods in
the prediction step. We refer to these predictors as moderate-order predictors. The
methods that we use for computing the provisional solution are based on Euler
methods, IMEX BDF [Ascher et al. 1995], IMEX RK methods [Ascher et al. 1997;
Kennedy and Carpenter 2003], and classical Adams-type multistep methods. These
methods, chosen either for their popularity or known stability, are described below.

IMEX BDF methods. BDF methods are a class of linear multistep methods specifi-
cally developed for the solution of stiff ODEs. Hence it is natural when constructing
semi-implicit generalizations of linear multistep methods to base the treatment of
the stiff piece of the equation on BDF methods. IMEX BDF methods have been
previously studied [Ascher et al. 1995; Akrivis et al. 1998; in’t Hout 2002]. Here
we use second- through fourth-order semi-implicit BDF methods from [Ascher et al.
1995] (denoted BDF2, BDF3, and BDF4) in the provisional step. Forward-backward
Euler methods, which can be considered as either a first-order IMEX BDF or IMEX
RK method, are included here. For brevity, IMEX BDF will be referred to simply
as BDF. The specific formulae are

Euler: u0
m+1 = u0

m +1ts
(
FE(u0

m)+ FI (u0
m+1)

)
, (6)
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BDF2: 3
2 u0

m+1 = 2u0
m −

1
2 u0

m−1

+1ts
(
2FE(u0

m)− FE(u0
m−1)+ FI (u0

m+1)
)
, (7)

BDF3: 11
6 u0

m+1 = 3u0
m −

3
2 u0

m−1 +
1
3 u0

m−2

+1ts
(
3FE(u0

m)− 3FE(u0
m−1)+ FE(u0

m−2)+ FI (u0
m+1)

)
, (8)

BDF4: 25
12 u0

m+1 = 4u0
m − 3u0

m−1 +
4
3 u0

m−2 −
1
4 u0

m−3

+1ts
(
4FE(u0

m)− 6FE(u0
m−1)+ 4FE(u0

m−2)

− FE(u0
m−3)+ FI (u0

m+1)
)
. (9)

IMEX RK methods. There are several different implementations of second-order
IMEX RK methods. The one used in this study is a two-stage L-stable RK2 method
described by Ascher et al [Ascher et al. 1997]. This particular implementation of
IMEX RK2 is chosen owing to its L-stability, even though it requires two stages
and is thus more costly than some alternative implementations (for example, the
IMEX midpoint [Ascher et al. 1997]). The L-stable IMEX RK2 method, which we
refer to as RK2 for brevity, generates a provisional solution as follows:

RK2: φ(1)m+c1
= u0

m + c11ts
(
FE(u0

m)+ FI (φ
(1)
m+c1

)
)
,

φ
(2)
m+1 = u0

m +1ts
(

c2 FE(u0
m)+ (1 − c2)FE(φ

(1)
m+c1

)

+ (1 − c1)FI (φ
(1)
m+c1

)+ c1 FI (φ
(2)
m+1)

)
,

u0
m+1 = u0

m +1ts
(
(1 − c1)

(
FE(φ

(1)
m+c1

)+ FI (φ
(1)
m+c1

)
)

+ c1
(
FE(φ

(2)
m+1)+ FI (φ

(2)
m+1)

))
,

where c1 = 1 −
√

2/2, c2 = −2
√

2/3.
The third- and fourth-order IMEX RK methods used here are based on the

Additive RK methods developed by Kennedy and Carpenter [Kennedy and Carpenter
2003], specifically, the ARK3(2)4L[2]SA-ERK and ARK4(3)6L[2]SA methods.
These methods, which we refer to simply as ARK3 and ARK4, involve three and
five stages, respectively, and we refer interested reader to [Kennedy and Carpenter
2003] for the relevant coefficients. There is a fifth-order ARK method introduced in
[Kennedy and Carpenter 2003], but Kennedy and Carpenter determine that it is not
competitive with the fourth-order methods, and hence we do not study it here. We
know of no IMEX RK methods of order greater than five in the literature (although
it is possible to construct such methods).
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Multistep methods. We also investigate the well known second- and third-order
multistep methods: Crank–Nicolson/Adam–Bashforth (CNAB) and Adam–Bash-
forth/Adam–Moulton (ABAM) methods. When these methods are used, the provi-
sional solution is given by:

CNAB: u0
m+1 = u0

m +1ts
(

3
2 FE(u0

m)

−
1
2 FE(u0

m−1)+
1
2 FI (u0

m+1)+
1
2 FI (u0

m)
)
,

ABAM: u0
m+1 = u0

m +
1ts
12

(
23FE(u0

m)− 16FE(u0
m−1)+ 5FE(u0

m−2)

+5FI (u0
m+1)+ 8FI (u0

m)− FI (u0
m−1)

)
. (10)

Both BDF and multistep methods require function values from multiple previous
time-levels, values that are not available at the initial substeps of the first time
step [t0, t1]. To generate these starting values for a K th-order SIPIDC method,
initial conditions at t0 are advanced to t1 using one time step (or K substeps) of
the K th-order SIPIDC method that uses the forward-backward Euler method in the
prediction step. The substep values from this first step are then used as starting
values for the subsequent time steps.

We use the notation SIPIDCK [Pname] to denote a K th-order SIPIDC method
using Pname as the predictor, where Pname is one of the methods described above.
The forward-backward Euler method in (3) is used in the correction steps, hence,
if a pth-order predictor is used to construct a K th-order SIPIDC method, then the
correction equation must be iterated K − p times.

3. Linear stability analysis

One of the motivations for the development of high-order SIPIDC methods is that
stable methods with very high order of accuracy can be easily constructed. This
is in contrast to BDF methods, the stability of which degrades significantly as the
order increases, and to IMEX RK methods, where no methods of order greater than
five are known. When using either of these methods as predictors in a SIPIDC
method, it is important to understand the effect these predictors have on the stability
of the overall method.

Hence, the linear stability of SIPIDC methods using BDF or RK predictors is
studied in this section. Traditionally, the stability of single-step implicit or explicit
methods is studied by considering the model problem

u′(t)= λu(t),

u(0)= 1, (11)
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for some complex constant λ. By applying a numerical method to this problem,
one can derive an amplification factor ρ(λ1t), such that

un+1 = ρ(λ1t)un,

where un is the numerical solution at the nth time step.
When studying the linear stability of semi-implicit methods, one must specify

how the standard model problem Equation (11) is decomposed into explicit and
implicit parts. Numerous choices of the splitting have appeared in the literature
[Frank et al. 1997; Ascher et al. 1995; Pareschi and Russo 2001; Zhong 1996;
Pareschi and Russo 2005]. The most general approach is to decompose the problem
into explicit and implicit terms by

u′(t)= λE u + λI u,

u(0)= 1,

where λE and λI are complex constants [Frank et al. 1997; Pareschi and Russo
2001; Liotta et al. 2000; Pareschi and Russo 2005; Zhong 1996]. Then additional
constraints are made to define a stability region which depends only on a single
complex number. For example in [Frank et al. 1997] the stability region is defined
as the set of λI such that the method is stable for all λE in the stability region of
the explicit method. This approach is also used in [Layton and Minion 2005] but
is not used in the following comparisons, since by this definition a method could
have a very large stability region despite a severe restriction on the step size due
to the properties of the explicit method. Instead, the procedure used in [Ascher
et al. 1995; Ascher et al. 1997; Minion 2003] is followed, wherein the imaginary
part of the right side of Equation (11) is associated with the nonstiff process and
treated explicitly, while the real part is associated with the stiff process and treated
implicitly. It should be noted that, regardless of the choice of splitting, the scalar
stability analysis only carries over to linear systems when the matrices which define
the explicit and implicit terms are simultaneously diagonalizable.

SIPIDC methods using a p-step method in the prediction step advance u(tn) to
u(tn+1) using p starting values un−1,P(≡ un), un−1,P−1, . . . , un−1,P−p+1, where
P denotes the number of substeps. Let Eun denote the vector (un−1,0, un−1,1, . . . ,
un−1,P). Then the procedure for advancing un to un+1 can be written in matrix
form:

M(λ1t)Eun = Eun+1,

where M ∈ <
P×P and depends on the product λ1t . To define the stability region

for this method, set 1t = 1 and denote by ρ(λ), the maximum magnitude of the
eigenvalues M(λ). The stability region is then the set of λ such that ρ(λ)≤ 1. For
SIPIDC methods with single-step predictors, this definition reduces to the usual
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definition of the amplification factor of a method. In the following, the stability
regions for SIPIDC methods with multistep predictors are numerically computed
by setting Eun to be e j for j = 1, . . . , P , where the i-th entry of e j is given by

(e j )i =

{
0, i 6= j,
1, i = j.

For each λ, the resulting P vectors Eun+1 form the P columns of M(λ). MATLAB is
used to compute the maximum of the magnitude of eigenvalues of M(λ) at a regular
array of points in the complex plane. The condition number of the eigenvalues
are also monitored to check for degenerate eigenvalues with magnitude near 1,
but none were found. The standard definition of A(α)-stability [Widlund 1967] is
easily extended to the semi-implicit case by defining a method to be A(α)-stable
for some α > 0, if the defined stability region contains the region λ= reiθ , for all
θ ∈ [π −α, π +α].

It is well known that the size of the stability region for implicit BDF methods
decreases as the order increases; indeed, BDF methods with order above six are
not acceptable [Gear 1971]. However, the stability properties of IMEX versions
of these methods are not as well known and hence are investigated here. The
numerically computed stability diagrams for IMEX BDF methods of orders 2, 3,
4, 6, and 7 are displayed in Figure 1. In this and all other figures in this section,
the axes are scaled cubically to show both detail near the origin and the general

−125 −64 −27 −8 −1 0 1 80
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Re(λ)
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(λ
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BDF3
BDF4
BDF6
BDF7

Figure 1. Stability diagrams for second-, third-, fourth-, sixth-,
and seventh-order IMEX BDF. Stability regions for IMEX BDF
decrease significantly as the order increases, and BDF7 is not stable
near the origin.
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shape of the stability region in the left half of the complex plane. Figure 1 shows
that, as with fully implicit methods, the size of the stability regions of IMEX BDF
methods decreases significantly as the order of the method increases, and that the
seventh-order method is not stable near the origin. In particular, each method is
A(α)-stable with α decreasing with increasing order. The stability of certain IMEX
RK methods of orders up to three has been studied previously (e.g. [Ascher et al.
1997]). For completeness, we include a plot of the stability regions of the ARK
methods of orders 3 and 4 used in this study in Figure 2, which demonstrates that
both methods are A(α)-stable with similar stability regions. As noted previously,
we do not consider fifth-order ARK as it has been deemed to be not competitive
[Kennedy and Carpenter 2003], and we are not aware of sixth- or higher-order
IMEX RK methods.

Extending the standard definition of L-stability [Ehle 1969] requires care since

lim
<(λ)→−∞

ρ (λ) (12)

will in general depend on how the limit is taken. Here we define a method to be
L(α)-stable if it is A(α)-stable and the limit in Equation (12) is zero whenever the
imaginary part of λ is fixed in the limit, that is,

lim
<(λ)→ −∞

=(λ)≡ c

ρ (λ)= 0, (13)
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Figure 2. Stability diagrams for third- and fourth-order ARK methods.
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for all c ∈ <. This, for example, would be the relevant infinitely diffusive stabil-
ity limit of an approximation to an advection-diffusion equation based on finite
differences and the method of lines.

It is shown in [Layton and Minion 2005] that A(α)-stable SIPIDC methods can
be constructed using forward-backward Euler methods, and that those methods
using LR quadrature rules are also L(α)-stable. Given an SIPIDC method for which
the corrector is based on the forward-backward Euler method and for which the
quadrature rule for the implicit piece does not include the left endpoint, one can
show that if the predictor satisfies Equation (13), then the overall scheme will
also (see [Layton and Minion 2005, Theorems 3.1–3.3].) Hence, since the IMEX
BDF and RK methods that are used as predictors in this paper are L(α)-stable,
A(α)-stability for the SIPIDC methods in this paper implies L(α)-stability. As an
example, stability regions for the SIPIDC6[ARK3] method are shown in Figure 3.
In this figure, stability curves corresponding to ρ(λ)= 0.001 0.01, 0.1, and 1 are
shown to demonstrate that the method is L(α)-stable.

An L(α)-stable method can also be constructed using BDF3 in the prediction
step (not shown). Note also that the stability region of the SIPIDC6[ARK3] method
corresponding to ρ = 1 in Figure 3 is significantly larger than the stability region
of IMEX BDF6 (see Figure 1). However, the SIPIDC6[ARK3] method is also
computationally more expensive than IMEX BDF6, owing to the deferred correction
iterations and the multiple stages. Thus, it is not immediately clear that for a given
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computational cost, the SIPIDC[ARK3] has a larger stability region than IMEX
BDF6. This issue is further investigated below using scaled stability diagrams.

We will now use three different examples to demonstrate the main point of this
section, namely that higher-order SIPIDC methods using moderate-order predictors
have similar stability regions as the predictors. A corollary to this is that combining
moderate-order IMEX BDF or ARK methods with SIPIDC corrections results in
a higher-order method with better stability characteristics than the corresponding
higher-order IMEX BDF or RK methods. We will demonstrate these points with
three separate comparisons:

(1) a comparison of SIPIDC methods of a fixed order using different types of
predictors of the same order (that is, IMEX BDF, RK, or multistep);

(2) a comparison of SIPIDC methods of a fixed order using one specific type of
predictor with differing orders;

(3) a comparison of SIPIDC methods of differing order using one specific type of
predictor with fixed order.

In the first example, we consider the effect of applying SIPIDC corrections on the
stability region of different third-order predictors. To this end, we obtain stability
diagrams (contour curves of |ρ| = 1) for IMEX BDF3, ARK3, and ABAM. These
stability diagrams, shown in Figure 4A, indicate that BDF3 and ARK3 are A(α)-
stable, whereas ABAM is not. SIPIDC methods using the above three methods as
predictors (not shown) exhibit similar stability properties as the predictors, that is,
SIPIDC6[BDF3] and SIPIDC6[ARK3] are A(α)-stable, but SIPIDC6[ABAM] is
not.
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Although the ARK3 method has the largest stability region of the three predictors
above (see Figure 4A), ARK3 is also more computationally expensive owing to the
multiple stages required. To take into account the additional computational costs,
we show scaled stability diagrams for SIPIDC6 methods using the three predictors
in Figure 4B. By assuming that the solution of the implicit part of the system is
much more expensive than the explicit part (even though in the model problem (11),
the solution of the implicit piece is a simple scalar division), the computational
costs of SIPIDC methods are measured in terms of the numbers of implicit solves.
To obtain the scaled stability diagrams, Re(λ) and Im(λ) are divided by the number
of implicit function evaluations. These results show that even with computational
costs taken into account, SIPIDC6[ARK3] still has the largest stability region.

We now present the second example to examine the effect on the stability of the
overall SIPIDC method for a given type of predictor of differing orders. To this
end, we compare the stability of SIPIDC6 methods implemented using first-order
forward-backward Euler, IMEX BDF2, and IMEX BDF3 in the prediction step,
and using forward-backward Euler methods in the correction steps. Figure 5 shows
the scaled stability diagrams for the three SIPIDC6 methods, with the stability
diagram for BDF6 included for comparison. (Note that the BDF6 method is applied
to compute the solution at each substep of the SIPIDC methods as is done with
the other BDF predictors, hence the stability region for BDF6 is scaled by a factor
of 6 compared to Figure 1.) The unscaled stability diagrams for SIPIDC6[Euler],
SIPIDC6[BDF2], SIPIDC6[BDF3], and BDF6 are qualitatively similar to those
for the predictors (Figure 1); however, when computational costs are taken into
account, the relative size of the stability diagrams change. The scaled stability region
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associated with the SIPIDC6[BDF3] is the largest, followed by SIPIDC6[BDF2],
and by SIPIDC6[Euler]. Also noteworthy is that the stability regions of all three
SIPIDC6 methods are substantially larger than that of the BDF6 method, even when
the stability diagrams are scaled by the computational costs. This suggests that
applying PIDC steps to a provisional solution computed by a BDF method generates
an approximation with accuracy comparable to that computed by a high-order BDF
method, without a decrease in the size of the stability region associated with the
BDF6 scheme.

Finally, we consider the stability regions of SIPIDC schemes of varying order
using the BDF3 scheme as a predictor. Figure 6 shows the scaled stability regions
for SIPIDCk[BDF3] schemes for k ranging from 4 to 7, as well as that of the BDF3
method for comparison. Each method is A(α)-stable with roughly the same α.
Comparing Figure 6 with Figure 1 further demonstrates that higher-order SIPIDC
methods do not suffer from a reduction in the size of the stability region as do
the BDF methods. Note in particular that the stability region for SIPIDC7[BDF3]
method is not significantly smaller than that of the moderate-order methods.

The accuracy and stability of SIPIDC methods using predictors of differing types
and orders will be further assessed in Section 4 using more complex problems.

4. Numerical examples

In this section, numerical examples are used to further assess the stability and
accuracy of SIPIDC methods. The first example is the van der Pol’s equation,
which is a popular nonlinear test problem for methods for stiff ODEs. The equation
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prescribes the motion of a particle x(t) governed by

x ′′(t)+µ(1 − x(t)2)x ′(t)+ x(t)= 0.

After applying the transformation y1(t)= x(t), y2(t)= µx ′(t), and t = t/µ, one
obtains the system

y1(t)′ = y2(t), (14)

y2(t)′ = 1
ε

(
− y1(t)+ (1 − y1(t)2)y2(t)

)
, (15)

where ε = 1/µ2. As ε approaches zero, these equations become increasingly stiff.
In the integration of (14) and (15), the first equation is treated explicitly, whereas
the second equation is treated implicitly. Equations (14) and (15) are integrated for
t ∈ [0, 0.5] with the equilibrium initial conditions shown in Table 1. Because an
exact solution is not known for this problem, errors are computed from a reference
solution obtained using a 7th-order implicit PIDC[Euler] method and a very small
time step, chosen so that the solutions computed with the PIDC method and the
ARK4(3)6L[2]SA method in [Kennedy and Carpenter 2003] agree to 14 digits.

ε y1(0) y2(0)

10−3 2 -0.66654321
10−4 2 -0.666654321
10−5 2 -0.6666654321
10−6 2 -0.66666654321
10−7 2 -0.666666654321

Table 1. Initial conditions for van der Pol’s equation.

The second example is a linear system of four equations given by

y′(t)= Ay + By (16)

where B ∈ <
4×4 contains at least one eigenvalue with a large negative real part that

scales as 1/ε, and A ∈ <
4×4 has eigenvalues close to the origin. A and B are given
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by

A =


0 c1 0 0

−c1 2a1 0 0
0 0 0 c2

0 0 −c2 2a2

 , D =


−1 0 0 0
0 −10 0 0

0 0 −102 0
0 0 0 1/ε

 ,

S =


1 0.5 0 0
0 1 0.5 0
0 0 1 0.5

0.5 0 0 1

 , B = SDS−1

where a1 = −0.2, b1 = 5, a2 = −0.4, b2 = 12, and ck =
√

ak + bk for k = 1 and 2.
If ε is chosen carefully, then the sum A + B contains one complex eigenvalue pair
with small negative real part, and two negative real eigenvalues, one with magnitude
of ∼1/ε. A and B do not commute, so the eigenvalues of A + B do not correspond
to the sum of eigenvalues of A and B. Equation (16) is integrated for t ∈ [0.4, 2.4].
The initial conditions are chosen to be the sum of the two normalized eigenvectors
corresponding to the complex eigenvalues, so that transients are eliminated from
the solution. We refer to this example as the linear system test.

The third example is the cosine test, which consists of the ODE

y(t)′ = −2π sin(2π t)− 1
ε

(
y − cos(2π t)

)
,

y(0)= 0,

for t ∈ [0, 10]. The exact solution of is y(t)= cos(2π t), and as ε→ 0, this equation
becomes increasingly stiff. In this implementation, SIPIDC methods treat the term
−2π sin(2π t) explicitly and the term −(y−cos(2π t))/ε implicitly. A slightly more
general problem was studied in [Prothero and Robinson 1974] and is considered
here in Appendix A, since its simplicity allows an explicit examination of dominant
error terms.

Because SIPIDC methods can be used to integrate ODEs arising from a method-
of-lines discretization of PDEs, we include here a PDE example: the Kuramoto–
Silvashinsky (KS) equation, which is used in [Akrivis and Smyrlis 2004] to study
the accuracy of IMEX BDF methods. The inhomogeneous KS equation is given by

ut + uux + uxx + νuxxxx = f (x, t), (17)

u(x, 0)= g(x),

for x ∈[0, 2π ] and t ∈[0, T ] and periodic boundary conditions u(x+2π, t)=u(x, t).
As in [Akrivis and Smyrlis 2004], the functions f (x, t) and g(x) are constructed
so that the exact solution is u(x, t) = sin(x + t); T and µ are taken to be 1 and
0.5, respectively. Equation (17) is first discretized in space using a pseudo-spectral
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method as in [Akrivis and Smyrlis 2004], and then integrated in time using SIPIDC
methods.

Note that the use of periodic boundary conditions for this problem avoids the
issue of how to correctly impose boundary conditions for the provisional solutions
in SIPIDC methods applied to PDEs with time-dependent boundary conditions. It
is now well established that a naive imposition of the exact boundary conditions
for PDEs within a RK method often results in a reduction of order of accuracy in
the solution [Sanz-Serna et al. 1987; Carpenter et al. 1995], and a similar problem
exists for PIDC methods. Strategies for addressing this problem have been proposed
for RK methods for certain classes of problems (see [Abarbanel et al. 1996; Pathria
1997; Calvo and Palencia 2002; Alonso-Mallo 2002b; Alonso-Mallo 2002a; Portero
et al. 2004]). Results in this direction for PIDC methods will be reported in future
works.

All calculations reported below were performed using MATLAB programs. For
brevity, we report results of only one or two examples for each study. Unless other-
wise stated, qualitatively similar results were also obtained using other examples.
For the ODE problems, the error reported is the discrete L2 norm of the error in
time of the computed solution y(tn) at each time step. For the KS equation, the
error reported is the discrete L2 norm of the error at the final time.

4.1. Efficiency improvement due to deferred corrections. We first assess the ef-
fect on the accuracy and stability of solutions computed by IMEX BDF and ARK
methods after SIPIDC correction steps have been applied to those solutions. To
this end, we compare the efficiency of IMEX BDF and ARK methods with SIPIDC
methods that use these BDF and ARK methods in the prediction step. The SIPIDC
methods use the first-order Euler method in the correction steps to improve the
accuracy of the intermediate approximations. As noted previously, the solution of
the implicit part of the ODEs is assumed to be much more expensive than the explicit
part. For simplicity, we further assume that the implicit solves in all methods have
similar computational costs. With these assumptions, we measure computational
costs in terms of the numbers of implicit solves. Recall that starting values required
for IMEX BDF and multistep methods are generated using a SIPIDC[Euler] method
to advance the initial solution to t1. The computational cost associated with this
initial step is included in the total cost.

A comparison among SIPIDC5, SIPIDC7, BDF, and ARK methods using the van
der Pol and cosine problems is shown in Figure 7. The comparison is obtained for
the nonstiff case, with the stiffness parameter ε set to 10−1. We first compare IMEX
BDF methods with SIPIDC methods that use BDF as predictor. The left panels of
Figure 7 show log-log plots of solution error versus the number of implicit function
evaluations obtained using SIPIDC5[BDFk], SIPIDC7[BDFk], and BDFk methods,
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for k = 3 and 4. The errors shown in Figure 7 for the van der Pol problem are for y2;
results for y1 are similar. For a sufficiently high accuracy requirement, the method
with the highest order, i.e., the SIPIDC7[BDFk] method, is the most efficient; and
both SIPIDC5[BDFk] and SIPIDC7[BDFk] methods are more efficient than IMEX
BDF3 and BDF4.

The comparisons between SIPIDC5[ARKk], SIPIDC7[ARKk], and ARKk, for
k = 3 and 4, are similar. The results shown in the right-hand panels of Figure 7
indicate that, for a sufficiently high accuracy requirement, SIPIDC7[ARKk] is the
most efficient, and that both SIPIDC methods are more efficient than the moderate-
order ARK methods. Similar results (not shown) were also obtained for SIPIDC
methods of order > 4, using a third- or fourth-order predictor and at least one
correction step.

4.2. Comparison of predictors. In the next set of tests, we compare the efficiency
of SIPIDC methods using different predictors. We first consider predictors of
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the same order but differing types (for example, BDF2 versus RK2). Results are
obtained for the van der Pol problem with both nonstiff and stiff parameters. In the
first set of experiments, we compare SIPIDC methods using second-order methods in
the prediction step. Figure 8A1 and Figure 8A2 compare the efficiency of SIPIDC6
methods using three different second-order predictors—BDF2, RK2, and CNAB.
Error curves obtained for IMEX BDF4 and ARK4 are also included for comparison.
The stiffness parameters ε are 10−1 and 10−4 for results in Figure 8A1 and Figure
8A2, respectively. For the nonstiff problem (panel A1), the SIPIDC6[BDF2] and
SIPIDC6[CNAB] methods, which have similar accuracy and the same computational
costs, are the most efficient for sufficiently high accuracy requirement. (The two
error curves approximately overlap.) These methods are more efficient than the
SIPIDC6[RK2] method because of the lower computational costs in their prediction
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step. The IMEX BDF4 and ARK4 are less efficient, as expected, at sufficiently
high accuracy requirement.

For the stiff case, the results shown in Figure 8A2 are markedly different. First,
in this case SIPIDC6[CNAB] is unstable for sufficiently large 1t , owing to its
lack of L-stability, and thus its error curve is not shown. Secondly, although
approximations computed by BDF4 converge at fourth order, the SIPIDC6[RK2]
and ARK4 methods appear to be converging at approximately a first-order rate in
the range of 1t shown. Finally, the SIPIDC6[BDF2] method exhibits two regions
of convergence: an approximately first-order convergence region at sufficiently
small 1t and a higher-order region at larger 1t (although the latter region is too
small for the order of convergence to be determined).

The results of the above tests are now presented using third-order predictors—
IMEX BDF3, ARK3, and AMAB. The nonstiff results (ε = 10−1) are shown in
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Figure 8B1 and are very similar to those for the second-order predictors in Figure
8B2. The SIPIDC6[BDF3] and SIPIDC6[AMAB] methods are more efficient than
SIPIDC6[ARK3] as well as the BDF4 and ARK4 methods for a sufficiently high
accuracy requirement.

For the stiff problem (ε = 10−4) the observed results shown in panel B2 are
again different from the nonstiff results, although they are similar to the results for
second-order methods in the stiff case shown in panel A2. The SIPIDC6[AMAB]
method, with a predictor that is not L-stable, is unstable like the SIPIDC6[CNAB]
above and is not shown. Both ARK4 and SIPIDC6[ARK3] appear to be converging
at approximately a first-order rate in the range of1t shown, while the BDF4 method
converges at the proper order. Also, the solutions computed by SIPIDC6[BDF3],
show two different convergence regimes, although the limits of machine precision
make it difficult to determine the respective rates. The order reduction behavior
of SIPIDC methods with BDF and RK predictors will be further investigated in
Section 4.3.

We will now compare predictors of the same type but differing orders. For
a SIPIDCK method that is based on a first-order method, K implicit solves are
required (one for each of the K substeps) for the provisional step and for each of the
K −1 correction steps. Thus, a total of K 2 implicit solves are required. On the other
hand, an SIPIDCK method that uses a first-order corrector but a pth-order predictor
requiring s implicit solves per substep will require K − p correction iterations and
thus a total of (K − p + s)K implicit solves per time step. Hence, assuming the
implicit solves require similar computational costs for all methods, the resulting
SIPIDC methods have the same order but a smaller computational cost if p > s
(e.g BDF methods where s = 1). However, regardless of whether p > s, it is not
clear that increasing the order of the predictor results in a more efficient method in
terms of error per function evaluation.

The linear system test is used to assess the extent to which the efficiency of a
SIPIDC method is improved by using IMEX BDF and RK methods in the prediction
step, first for a nonstiff problem with ε=1. For BDF methods, Figure 9A1 compares
the efficiency of SIPIDC6 methods using BDF predictors of order one (Euler)
through three. The error curve for BDF4 is included for comparison. In this case
SIPIDC6[BDF3] requires the fewest correction steps and it is indeed the most
efficient, albeit by a slight amount. Next we compare the efficiency of SIPIDC6
methods using IMEX RK-type predictors of differing orders (see Figure 9B1). For
this comparison, the three SIPIDC6 methods have similar computational costs, but
SIPIDC6[ARK3] and SIPIDC[RK2] appear more efficient than SIPIDC6[Euler].
Similar results were also obtained for SIPIDC methods of other overall orders.

The comparison is repeated for a stiff problem (ε=10−4) in Figures 9A2 and 9B2.
Results in Figure 9A2 show the advantage of using a moderate-order BDF method
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in the provisional step. The error curve for SIPIDC6[Euler] shows three regions of
convergence: for sufficiently large 1t (fewer than 2×103 function evaluations) and
for sufficiently small 1t (more than 104 function evaluations, where convergence
begins to increase), convergence is approximately sixth order; however, order
reduction is observed for middle range 1t , where the curve is flat (i.e., zeroth-order
convergence). Unlike SIPIDC6[Euler], the error curve corresponding to the order
reduction region for SIPIDC6[BDF2] is less flat, although the region is too small
for a reasonable estimate of the order of accuracy. Order reduction is not observed
for BDF4, which is consistent with the analysis for fully implicit BDF methods (see
[Hairer and Wanner 1991] Chapter V). Finally, the behavior of the SIPIDC6[BDF3]
is difficult to determine due to machine precision. The extent of order reduction of
SIPIDC methods using BDF predictors of differing orders is further investigated in
Section 4.3

The stiff test is repeated for SIPIDC6[Euler], SIPIDC6[RK2], SIPIDC6[ARK3],
and ARK4 and the results are shown in Figure 9B2. Three regions of convergence
were obtained for each of these methods. As noted previously, the order reduction
region for SIPIDC6[Euler] error curve is flat. In contrast, the order reduction region
for the error curves associated with SIPIDC6[RK2], SIPIDC6[ARK3], and ARK4
appears to be first order. For sufficiently small 1t , the methods will again exhibit
full order accuracy (in the absence of precision errors).

4.3. Order reduction. Numerical results in [Layton and Minion 2005] show that
the characteristics of order reduction of SIPIDC methods depends critically on
the choice of quadrature nodes: when uniform nodes are used and when the left
endpoint is not used in the quadrature rule associated with the implicit piece (recall
that such quadrature nodes are referred to as “LR” [Layton and Minion 2005]),
an order reduction to O(ε2) is observed, compared to O(ε1t) for SIPIDC methods
using nonuniform nodes (for example, Gauss quadrature nodes) or those including
the left endpoint in the quadrature rules. SIPIDC methods studied in [Layton and
Minion 2005] use Euler in both the provisional and correction steps. Below we
examine convergence behavior and order reduction for stiff problems of SIPIDC
methods using moderate-order methods in the provisional step, using first the van
der Pol’s problem and then the cosine problem.

To investigate the dependence of order reduction on the choice of predictor,
we computed solutions for the van der Pol equation for increasing stiffness (for
ε= 10−k , k = 1, 3, 4, 5, 6) by means of SIPIDC5 methods using different predictors
(Euler, BDF2, BDF3, and ARK3). Log-log plots of errors for y2 versus implicit
function evaluations are shown in Figure 10. For sufficiently stiff parameters
(ε < 10−3), the convergence rate drops to the zeroth order for SIPIDC5[Euler],
to the first order for SIPIDC5[BDF2] and SIPIDC5[ARK3], and to the second
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order for SIPIDC5[BDF3] in the order-reduction regime. We see that for the
methods SIPIDC5[Euler], SIPIDC5[BDF2], and SIPIDC5[BDF3], the magnitude
of the error in the regions of reduced convergence scales approximate as ε2, and
for SIPIDC5[ARK3] it scales approximately as ε. It is noteworthy that the order
reduction results for SIPIDC5[ARK3] are similar to the SIPIDC[Euler] method
using nonuniform points or using the left endpoint in the quadrature rules [Layton
and Minion 2005]. Similar results are also shown for the cosine problem for
increasingly stiff values of ε in Figure 11, shown as log-log plots of errors versus
time step size 1t .

The above results for SIPIDC5[Euler] are consistent with those reported in
[Layton and Minion 2005] for SIPIDC6[Euler] and SIPIDC7[Euler] using LR
uniform nodes. The error formula derived in [Layton and Minion 2005] shows
that the dominant error term for these methods, after one correction step, is O(ε2);
thus, the region of reduced convergence is flat with magnitude that scales as ε2.
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Figure 10. Error curves obtained for the van der Pol problem with
a range of ε values, computed using the SIPIDC5 methods with
differing predictors. The region of order reduction shows zeroth-
order convergence in A, first-order in B and D, second-order in C.
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Analogous error formulae are derived in the Appendix for SIPIDC[BDF2] and
SIPIDC[BDF3]; these error formulae show that for SIPIDC[BDF2], the dominant
error term is O(ε21t), and for SIPIDC[BDF3], it is O(ε21t2), thereby explaining
the shape of the error curves shown in Figure 10 and Figure 11.

4.4. A ladder approach. The approximations computed by the provisional step
and by the initial correction steps have lower orders of accuracy than the final
solution. A “ladder” approach makes use of this fact to reduce the computational
cost of a SIPIDC method without compromising the overall order of the solution.
This is achieved by allowing larger temporal or spatial errors in the initial PIDC
iterations. One such ladder approach was implemented in [Minion 2003]. To
obtain a K th-order solution, the quadrature Q in (5) must be approximated to K th
order. When LR uniformly-spaced nodes are used, K + 1 nodes or K substeps are
required. In [Minion 2003], based on the observation that the kth correction equation
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Figure 11. Error curves obtained for the cosine problem with
a range of ε values, computed using the SIPIDC methods with
differing predictors. The region of order reduction shows O(ε2) in
A, O(ε21t) in B, O(ε21t) C, and O(ε1t) in D.
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computes a globally O(1tk+1) approximation (Euler is used in the predictor in
[Minion 2003]), the number of substeps used to compute the solution during the
initial PIDC iterations was reduced, i.e., fewer substeps were used when k is small.
Although no significant improvement in efficiency was noted in [Minion 2003]
when this approach was applied to a linear problem, the nonlinear KS equation
(17) is used here to re-examine the effects of ladder approach, with a new focus on
SIPIDC methods using BDF2 and BDF3 as predictors.

We compare the efficiency among SIPIDC6 methods using Euler, BDF2, and
BDF3 methods in the provisional step, and with or without incorporating the ladder
approach. Results are shown in Figure 12 . Consistent with results described
previously, SIPIDC6 methods using moderate-order predictors are more efficient.
Also, although the ladder approach reduces computational cost, it also increases
error. These two competing effects result in a negligible improvement in efficiency.
Qualitatively similar results were also obtained for SIPIDC methods of other orders.

5. Discussion

We have presented alternative implementations of SIPIDC methods for the temporal
integration of ODEs with both nonstiff and stiff components corresponding to
eigenvalues with large negative real part. In these implementations, various types
of second- through fourth-order integration methods are used in the prediction step.
The stability and efficiency of these SIPIDC methods are assessed and compared to
traditional IMEX methods. High-order SIPIDC methods are proposed as alternatives
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Figure 12. Error curves obtained for the KS equation using the
SIPIDC6 methods. ‘-L’ denotes methods using ladder approach.
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to IMEX BDF or IMEX RK methods, which exhibit instability at high orders. In
contrast, our stability analysis shows attractive stability properties for high-order
SIPIDC methods using a moderate-order IMEX BDF or IMEX RK method in the
prediction step.

Another goal of this study is to determine whether SIPIDC methods that use
moderate-order predictors are more efficient. Numerical results suggest that using
moderate-order IMEX BDF methods in the prediction step gives rise to SIPIDC
methods that are more efficient and also stable for stiff problems. In contrast,
moderate-order predictors based on IMEX RK do not significantly improve effi-
ciency because of the multiple implicit solves required at the stages, and predictors
based on multistep methods such as AMAB result in overall methods that are
unstable when applied to stiff problems.

Although we only consider SIPIDC methods that use the forward-backward Euler
method to solve the correction equations, moderate-order integration methods can
no doubt be used in the correction steps. For example, the correction Equation (2)
may be discretized by means of a second-order method, for example, CNAB, IMEX
RK2, or IMEX BDF2. Such methods require fewer iterations of the correction
equation to achieve the same overall order of accuracy relative to methods based
on first-order methods, but each iteration of the correction equation may be more
expensive. The behavior of various moderate-order correctors is the focus of an
on-going project.

IMEX BDF predictors also change the extent and characteristics of order re-
duction of the SIPIDC methods when applied to stiff problems. The convergence
rate in the region of order reduction is k − 1 for a kth-order BDF predictor, with
errors of O(ε2) magnitude, where ε is the stiffness parameter such that as ε → 0
the problem becomes increasingly stiff. In contrast, IMEX RK predictors give rise
to first-order convergence in the region of order reduction, with O(ε) errors. Thus,
for stiff problems SIPIDC methods with IMEX BDF predictors likely generate
solutions with higher accuracy than SIPIDC methods using non-BDF predictors.

A uniform time-step has been assumed throughout this work. However, SIPIDC
methods are suitable candidates for adaptive time-marching: the correction term
can be used to dynamically determine the appropriate time step size to meet certain
accuracy requirements. However, when a BDF or multistep predictor is used, where
solution values at k previous substeps are needed to advance the solution, care must
be taken in computing the provisional solution at the first k−1 substeps, because the
substep size may not be equal in [tn−1, tn] and [tn, tn+1]. In this case, variable-step
form of the methods can be used for the first k −1 iterations, where the coefficients
in (7)–(9) and in (10) depend on the relative substep sizes.

The ultimate target applications for PIDC methods are PDEs with multiple stiff
terms, such as the advection-diffusion-reaction equations. Indeed, in earlier studies
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[Bourlioux et al. 2003; Layton and Minion 2004], we have proposed the multi-
implicit PIDC (MIPIDC) methods (formerly MISDC methods) which decouple
the stiff processes and integrate them separately, possibly using differing time
steps. The MIPIDC methods developed so far are based on the forward/backward
Euler methods and a first-order splitting. A project that develops and analyzes the
performance of MIPIDC methods based on moderate-order IMEX BDF methods and
on a moderate-order splitting is underway. It should be noted that no analysis of semi-
and multi-implicit PIDC methods applied to PDEs with stiffness characterized by
rapidly oscillatory modes (that is, corresponding to eigenvalues with large imaginary
parts) has yet been attempted.

A ladder approach, which uses fewer substeps in the initial PIDC iterations,
fails to significantly improve the efficiency of SIPIDC methods. Because of the
extra effort involved in its implementation, the value of this ladder approach is not
obvious. Alternatively, when integrating a PDE, one may use a less refined spatial
grid during the initial PIDC iterations. This spatial ladder approach is likely to be
particularly effective in higher spatial dimensions and warrants attention.

Appendix

In this Appendix we develop an analytical formulation for the truncation error for
SIPIDC methods applied to the simple stiff equation analyzed in [Prothero and
Robinson 1974].

Given a smooth function p(t), consider the ODE with exact solution y(t)= p(t)
given by

y′
= p′(t)−

1
ε

(
y − p(t)

)
, (A.1)

y(0)= p(0).

Here ε is the stiffness parameter where the equation becomes more stiff as ε → 0.
We integrate (A.1) by treating the first term explicitly and the second term implicitly.
The following analysis applies to the stiff case where ε �1t .

We first consider a provisional solution computed using the BDF2 method given
by (7). Let pm ≡ p(tm) and yk

m ≡ yk(tm). Given a previously computed value y0
m

with error e0
m = y0

m − pm , one step of BDF2 applied to Equation (A.1) yields

y0
m+1 =

2y0
m −

1
2 y0

m−1 +1tm(2p′
m − p′

m−1 +
1
ε

pm+1)

3
2 +

1tm
ε

. (A.2)

When ε < 1tm , the quantity 1/( 3
2 +

1tm
ε
) can be expanded into the series

1
3
2 +

1tm
ε

=
ε

1tm

(
1 −

3
2
ε

1tm
+

(3
2
ε

1tm

)2
− . . .

)
. (A.3)
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Substituting (A.3) into (A.2) yields

y0
m+1 = pm+1 +

(
2p′

m − p′

m−1 +
2y0

m −
1
2 y0

m−1 −
3
2 pm+1

1tm

)
×

(
ε−

3
2
ε2

1tm
+

(
3
2
ε

1tm

)2

ε− . . .

)
(A.4)

To simplify (A.4), we make use of the following relations derived using Taylor’s
expansion

2p′

m − p′

m−1 = p′

m+1 −1t2
m p(3)m+1 +1t3

m p(4)m+1 + O(1t4
m),

−
3

21tm
pm+1 = −p′

m+1 −
1
1tm

(
2pm −

1
2 pm−1

)
+
1t2

m

3
p(3)m+1

+
3
41t3

m p(4)m+1 + O(1t4
m). (A.5)

From (A.5), one obtains

2p′

m − p′

m−1 +
2ym −

1
2 ym−1 −

3
2 pm+1

1tm
=

2em −
1
2 em−1

1tm

−
2
31t2

m p(3)m+1 +
3
41t2

m p(4)m+1 (A.6)

Thus,

ym+1 = pm+1 +

(2em −
1
2 em−1

1tm
−

2
31t2

m p(3)m+1 +
3
41t3

m p(4)m+1

)
×

(
ε−

3
2
ε2

1tm
+

(
3
2
ε

1tm

)2
ε− . . .

)
. (A.7)

Substituting (A.6) into (A.4) and making use of the definition of e0
m ≡ pm − y0

m ,

e0
m+1 =

2e0
m −

1
2 e0

m−1

1tm

(
ε−

3
2
ε2

1tm
+

(3
2
ε

1tm

)
ε

)
−

2
31t2

m p(3)m+1

(
ε−

3
2
ε2

1tm
+

(3
2
ε

1tm

)
ε

)
+ O(ε1t3)+ O(ε21t2)+ O(ε3). (A.8)

Now consider the correction equation given a provisional solution y0
m . Note

that f (y0
m, tm) = p′

m −
1
ε
e0

m . The direct form of the correction equation using
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forward-backward Euler for (A.1) is

y1
m+1 =

y1
m +1tm

(
p′

m − p′

m −
1
ε
(y1

m+1 − pm+1)+
1
ε
(y0

m+1 + pm+1)
)

+ Qm+1
m (y0)

= y1
m +1tm

(
−

1
ε
(y1

m+1 − y0
m+1)

)
+ Qm+1

m (y0).

Solving for y1
m+1 yields

y1
m+1 =

y1
m +

1tm
ε

y0
m+1 + Qm+1

m
(

p′(t)− 1
ε
e0(t)

)
1 +

1tm
ε

. (A.9)

To derive an error formula for y1
m+1, we first consider the last quadrature term in

the numerator. The integration rule given by Equation (4) defines

Qm+1
m

(
p′(t)− 1

ε
e0(t)

)
=1tm

p∑
l=0

ql
m
(

p′

l −
1
ε
e0

l
)
.

Since the integration rule is assumed to be O(1tq), the first term can be integrated
to give

Qm+1
m

(
p′(t)− 1

ε
ẽ(t)

)
= pm+1 − pm + O(1tq)−

1tm

ε

p∑
l=0

ql
me0

l .

Substituting this expression into Equation (A.9) gives

ym+1 =

y1
m + pm+1 − pm+

1tm
ε

(
y0

m+1 −
∑p

l=0 ql
me0

l

)
+ O(1tq)

1 +
1tm
ε

.

Applying the expansion (A.3), one obtains

y1
m+1 =

ε

1tm

(
y1

m + pm+1 − pm+
1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)

−

( ε

1tm

)2
(

y1
m + pm+1 − pm+

1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)

+

( ε

1tm

)
3
(

y1
m + pm+1 − pm+

1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)
. . . ,
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hence

y1
m+1 = y0

m+1

(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+

(
y1

m − pm + pm+1

)( ε

1tm
−

( ε

1tm

)2
+

( ε

1tm

)3
. . .

)
−

( p∑
l=0

ql
me0

l

)(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+O(ε1tq−1)+ O(ε21tq−2)+ O(ε31tq−3) . . . .

Finally, define the error in the updated solution e1
m = y1

m − pm . Then subtracting
pm+1 from both sides of the equation and manipulating yields

e1
m+1 = e1

m

(
ε

1tm
−

( ε

1tm

)2
+

(
ε

1tm

)3

. . .

)
+

(
e0

m+1 −

p∑
l=0

ql
me0

l

)(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+O(ε1tq−1)+ O(ε21tq−2)+ O(ε31tq−3)+ . . . . (A.10)

Consider now the first time step of a SIPIDC method for Equation (A.1). Assume
that the error at the beginning of the time step is given by e0

0. The dominant error
terms in the provisional solution Equation (A.8) are

e0
m+1 = −

2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+ zm, (A.11)

where

zm =


ε
1tm

(
2e0

0 −
1
2 e0

−1

)
, m = 1,

−
4
3 p(3)1 1tmε

2
−

ε
21tm

e0
0, m = 2,(

4
3 p(3)m −

1
3 p(3)m−1

)
1tmε

2, m > 2.

In deriving the above expression, we made use of the assumption of uniform substep,
i.e., · · · = tm−2 = tm−1 = tm = . . . . Likewise, the dominant pieces of the correction
equation error (A.10) comes from the term

e1
m+1 = e0

m+1 −

p∑
l=0

ql
me0

l + e1
m
ε

1tm
. (A.12)
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Substituting the dominant provisional error (A.11) into the dominant correction
error (A.12) gives

e1
m+1 = −

2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+

zm −

p∑
l=1

ql
m

(
−

2
3
1t2

m p(3)l

(
ε−

2
3
ε2

1tm

)
+ zl

)
. (A.13)

The summation term can be rewritten via a Taylor series expansion

p∑
l=1

ql
m

(
−

2
3
1t2

m p(3)l

(
ε−

2
3
ε2

1tm

)
+ zl

)

= −
2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+ O(ε1t3

m + ε21t2
m)+

p∑
l=1

ql
mzl . (A.14)

Substituting (A.14) into (A.13) and simplifying gives

e1
m+1 = zm −

p∑
l=1

ql
mzl + O(1tq

+ ε1t3
+ ε21t2) (A.15)

owing to the mismatch between zm for m = 1 and 2 and for m > 2, zm −
∑

ql
mzl =

O(ε21tm). Thus, e1
m+1 = O(1tq

+ ε21t).
Following similar procedures, an error formula for the correction step of a SIPIDC

method using uniform quadrature nodes and BDF3 in the predictor step can be
shown to be O(1t p

+ ε21t2).
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THE EXTENDED FINITE ELEMENT METHOD FOR
BOUNDARY LAYER PROBLEMS IN BIOFILM GROWTH

BRYAN G. SMITH, BENJAMIN L. VAUGHAN JR. AND DAVID L. CHOPP

In this paper, we use the eXtended Finite Element Method, with customized
enrichment functions determined by asymptotic analysis, to study boundary layer
behavior in elliptic equations with discontinuous coefficients. In particular, we
look at equations where the coefficients are discontinuous across a boundary
internal to the domain. We also show how to implement this method for Dirichlet
conditions at an interface. The method requires neither the mesh to conform to the
internal boundary, nor the mesh to have additional refinement near the interface,
making this an ideal method for moving interface type problems. We then apply
this method to equations for linearized biofilm growth to study the effects of
biofilm geometry on the availability of substrate and the effect of tip-splitting in
biofilm growth.

1. Introduction

Consider the equation
∇ · (β∇u)+ κu = f, (1)

on a two-dimensional domain, �, containing an interface 0. The coefficients β,
κ , and f may be discontinuous across 0, leading to discontinuities in the normal
derivative of the solution, u. In addition, large variations between these coefficients
can lead to the existence of boundary layers near the interface, particularly when β
is small relative to κ or f .

This type of equation governs a wide range of physical processes, and thus
a variety of numerical methods have been devised to solve it. The three most
commonly used approaches are finite difference methods — such as those described
in [9; 11; 14] — finite element methods, and boundary element methods. One
method that has been shown to perform well in comparisons with other methods is
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the eXtended Finite Element Method (X-FEM) [8; 16]. In fact, it was shown in [12]
that this method produced significantly more accurate solutions near the interface 0.
The X-FEM is a partition of unity method [15] in which extra functions containing
information about the location of an interface are added to the standard finite element
approximation. The method is particularly suited to problems involving a moving
interface, since it does not require a conforming mesh, and can be easily coupled to
interface tracking methods such as the level set method [17].

The X-FEM has been used to model crack growth [7; 16; 18; 20], solidification
[3; 10], arbitrary fixed material interfaces and voids [19], rigid particles in Stokes
flow [21], and multiphase fluids [2]. The majority of this work has relied on
generic enrichment functions, such as Heaviside or absolute value functions, to
enforce interfacial boundary conditions. However, in [7], it was shown that a special
enrichment function given by the exact near-tip asymptotic functions, could be
added to the approximation at the crack tip to improve accuracy. In this paper, we
show how the X-FEM can be used to efficiently model systems that exhibit boundary
layer behavior at the interface by expanding the function space with customized
enrichment functions along the entire interface, presenting as an example a new
exponential enrichment function that captures solutions which grow or decay rapidly
near the interface.

The application to which we apply this method concerns the growth of biofilms.
Biofilms are microbial communities that grow attached to solid surfaces, and are
one of the most ubiquitous forms of life on the planet. More than 90% of all bacteria
live in biofilms [1]. Biofilms are used in wastewater treatment and bioremediation
of contaminated soils, lakes, and rivers. Biofilms also cause disease in plants
and animals, and damage pipes, heat exchangers, and ship hulls. Consequently,
understanding biofilms is important for a wide range of health and engineering
disciplines. The work we present here is toward a goal of building continuum level
model tools for simulating biofilm growth and development.

In this paper, we solve the linearized biofilm growth equations in order to
determine how the geometry of the colony affects the profile of its growth, addressing
two specific phenomena: fingering growth due to a tip-splitting instability and the
shadowing effect generated by large colonies.

2. Numerical method

The eXtended Finite Element method (X-FEM) is a modified finite element method
used for approximating the solution to (1). However, unlike conventional finite
element methods, the X-FEM does not require the mesh to conform to the interface
geometry, allowing us to utilize a standard Cartesian mesh. This is particularly



X-FEM FOR BOUNDARY LAYER PROBLEMS IN BIOFILM GROWTH 37

useful in problems involving moving interfaces, due to the fact that the mesh does
not have to be regenerated at each timestep.

The X-FEM avoids the need for a conforming mesh by supplementing the
standard finite element functions with enrichment functions that contain information
about the interface. The X-FEM approximation for the solution u is written as

uh (x, y)=

∑
ni ∈N

φi (x, y) ui +

∑
k

∑
n j ∈NE

φ j (x, y) ψk (ϕ) a j , (2)

where N is the set of all nodes in the domain, NE is the set of enriched nodes, φ is
a standard finite element test function, ψk is the enrichment function, and ϕ is the
signed distance function representing the interface.

Here we describe only the construction of the enrichment functions as well as
the application of boundary conditions. A detailed treatment of the full X-FEM
implementation is found in [12].

2.1. Determining enrichment functions. The enrichment functions added to the
standard finite element approximation in the X-FEM serve two purposes. First,
they encode the location of the interface into the function space itself, which allows
for the application of both Dirichlet and Neumann interface conditions without
the need for a conforming mesh. Second, they may contain information about
the asymptotic behavior of the solution near the interface, allowing the method
to accurately capture boundary layer behavior without the need for a very fine
mesh. Here we test three types of enrichment functions. The first two, the step
enrichment and the absolute value enrichment, are generic enrichment functions
that can be applied to any problem that is continuous across the interface. The
third, the exponential enrichment, is a custom enrichment function that is tailored
to problems that display exponential behavior within the interfacial boundary layer.
Each enrichment is a function only of the signed distance from the interface:

ϕ = ± min
X∈0

‖x − X‖ ,

where the sign depends on whether x is inside or outside the region enclosed by the
interface 0. This signed distance function is typically determined using the Level
Set Method [17].

The step and absolute value enrichment functions are defined as

ψstep (ϕ)=

{
1 ϕ > 0,
−1 ϕ ≤ 0,

and

ψabs (ϕ)=

{
ϕ if ϕ > 0,
−ϕ if ϕ ≤ 0.
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These are simple enrichment functions that can be implemented without any a
priori knowledge of solution behavior near the interface.

The exponential enrichment function is defined as

ψexp (ϕ)=

{
1 − eµϕ if ϕ > 0,
−ϕ if ϕ ≤ 0.

This enrichment is most effective when asymptotic analysis indicates the presence of
a boundary layer which exhibits exponential behavior. The value of the parameter µ
depends on the specific parameters of the problem. It is important to note that both
the absolute value and exponential enrichments decay to zero at the interface. This
condition is necessary for stability when a nonzero Dirichlet condition is applied at
the interface.

While the X-FEM has traditionally only added enrichment functions to elements
containing the interface, it can be advantageous to enrich beyond this layer of
elements when using enrichment functions other than the step enrichment. This
is particularly important when using a custom enrichment because it allows the
enrichment function to be applied throughout the boundary layer, thus capturing the
behavior more completely. In the case of the absolute value enrichment, extending
the enrichment distance effectively increases the order of the finite element approxi-
mation in the critical region near the interface. It is also useful to enrich to a different
distance on either side of the interface when the enrichment function is asymmetric.
As it is difficult to determine the optimal enrichment distance analytically, trial and
error is generally the best method. For the problems presented here, an enrichment
distance of µ log 10−3 is used for exponential functions and µ log 10−2 is used for
linear functions. These correspond to the distance it takes the function eµϕ to decay
to 10−3 and 10−2 respectively.

2.2. Interface conditions. Once the enrichment function has been determined, the
next consideration is the proper application of the boundary conditions. Here we
only consider problems which are continuous across the interface, so there are two
types of conditions that can be applied: Dirichlet conditions, u = h (x, y), and
Neumann jump conditions,

[[
βn̂ · ∇u

]]
= v (x, y), where [[·]] indicates the jump

across 0.

Neumann jump conditions. The Neumann jump condition is enforced primarily by
introducing a line source term to the right hand side of (1). This line source has
strength v (x, y) and is written as∫

0

v (x, y) δ (x − X (s)) d0, (3)

where X (s) is the parameterized interface.
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This technique can be used with both continuous and discontinuous enrichment
functions and typically yields the best results with the Step enrichment. However,
approximations using continuous enrichment functions can also utilize Lagrange
multipliers to enforce jump conditions. In this case, the governing equation is
rewritten as

∇ · (β∇u)+ κu +

[[
β
∂u
∂n

]]
λ= f +

∫
0

v (x, y) δ (x − X (s)) d0,

along with the condition [[
βn̂ · ∇u

]]
= v (x, y) .

A one dimensional finite element mesh is laid down on the interface using piecewise
linear elements, and the Lagrange multipliers are approximated by:

λh
=

∑
mi ∈M

θiλi ,

where M is the set of all Lagrange multiplier nodes.

Dirichlet conditions. Dirichlet conditions on an internal interface have not been
considered in previous implementations of the X-FEM. This type of condition
is unusual because it divides the domain into two independent pieces, which are
typically solved separately. However, in order to avoid the generation of meshes
which conform to each piece, it can be useful to solve on the whole domain at once.

In contrast to the derivative jump conditions, Dirichlet interface conditions can
only be applied using Lagrange multipliers. This is done in a similar manner as
above, with the governing equation rewritten to include the extra terms:

∇ · (β∇u)+ κu + λu |0 = f,

with the condition

u|0 = h (x, y) .

For systems with continuous enrichment functions, only one set of Lagrange multi-
pliers is necessary to apply the boundary condition. Discontinuous enrichments,
however, do not have a single value at the interface, so the condition must be
applied to the positive and negative sides separately, requiring two sets of Lagrange
multipliers.

2.3. Evaluation of interface derivatives. In order to accurately determine the de-
rivative jump across the interface, a domain integral method, similar to the one
described in [8], is employed. We first consider a section of interface, 0i , within the
support, �i , of a test function φi . Equation (1) is multiplied by φi and integrated
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over �i . Integrating by parts yields∫
�i

(−β∇u · ∇φi + κuφi − f φi ) d�i =

∫
0i

[[
βn̂ · ∇u

]]
0i
φi d0i . (4)

Using a first order approximation, the derivative jump is assumed to be constant
along 0i . Equation (4) can then be rewritten as[[

βn̂ · ∇u
]]
0i

=
1∫

0i
φi d0i

∫
�i

(−β∇u · ∇φi + κuφi − f φi ) d�i . (5)

To then determine the jump at a single point on the interface, xd , the jump across
the interface segment is determined using each test function, φi , which has support
containing xd . In order to avoid oscillations due to roundoff error, interface segments
are discarded if the integral of φi over the segment is less than 10−13. These values
are then weighted appropriately and summed:[[

βn̂ · ∇u
]]

xd
=

∑
j

[[
βn̂ · ∇u

]]
0 j
φ j (xd) .

3. Results

In this section, different types of enrichment functions are applied to the solution
of two example problems. In each problem, exponential enrichment functions are
compared to both absolute value enrichments and step enrichments when finding
a solution that contains a boundary layer. For each problem the interface 0 is the
circle

(
x −

1
2

)2
+
(
y −

1
2

)2
=

1
16 within the domain 0 ≤ x, y ≤ 1.

We solve each example problem using both types of interface conditions discussed
in Section 2.2. These two types of boundary conditions demonstrate how the custom
enrichment function can improve the accuracy of both the solution and its derivative
at the interface.

3.1. Example 1: enriching with the exact solution. The first example shows the
improvement in the finite element approximation when the exact solution is included
in the enriched function space. The differential equation is

∇
2u +

κ

ε

(
1
ε

−
1
r

)
u = 0, (6)

where

κ (x, y)=

{
0 if r ≤

1
4 ,

1 if r > 1
4 .

The exact solution to (6) is
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Figure 1. Solution of Example 1. (a) A surface plot of the solution
on the entire domain. (b) A cross section of the solution, taken at
an angle of one radian. The numerical approximation overlaps the
exact solution and is computed using the exponential enrichment
function on a 799 × 799 grid.

u (x, y)=

{
1 if r ≤

1
4 ,

exp
[ 1
ε

(1
4 − r

)]
if r > 1

4 ,

where ε is 1
200 . The expression 1

4 − r is equivalent to the level set variable ϕ, so
the exact solution on the exterior of the circle is contained within the exponential
enrichment function.

Equation (6) is solved with two sets of boundary conditions. The first prescribes
continuity and sets a derivative jump condition on 0:

[[u]] = 0,
[[
∂u
∂n

]]
=

1
ε
.

Because the derivative jump along the interface is already known, the important sim-
ulation results to consider are the solution values along the interface and throughout
the domain.

Table 1 shows the convergence results for the X-FEM using three types of enrich-
ment functions: the step enrichment, absolute value enrichment, and exponential
enrichment. The error given is the maximum error at the nodes, defined as

‖Tn‖∞ = max
i

ni ∈N

{
∣∣u (xi , yi )− uh

i

∣∣},
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 1.3367 × 10−1 2.8126 × 10−1 3.6922 × 10−2

99 7.8584 × 10−2 1.701 4.9647 × 10−2 5.665 8.1788 × 10−3 4.514
199 2.6213 × 10−2 2.998 9.8545 × 10−3 5.038 1.8534 × 10−3 4.413
399 8.5907 × 10−3 3.051 3.5610 × 10−3 2.760 4.6404 × 10−4 3.994
799 2.9094 × 10−3 2.953 9.7458 × 10−4 3.663 1.1565 × 10−4 4.013

Table 1. Domain results for Example 1 with Neumann jump inter-
face conditions.

where N is the set of all nodes, (xi , yi ) is the location of the i-th node, and uh
i is

the computed value at the node. The ratios of successive errors are included as well
to show convergence rates. As Table 1 shows, the exponential enrichment is more
accurate than both the absolute value and step enrichments, and it converges more
uniformly as well.

Of greater importance for moving interface problems is the accuracy of the
solution at the interface. This can be problematic for some methods even though
they exhibit good accuracy away from the interface [12]. Table 2 shows the error
interpolated along the interface. This error is computed at 1,000 evenly spaced
points along the parameterized interface. The results are similar to those seen
in Table 1, but the disparity between the exponential enrichment and the other
enrichments is more significant.

The second boundary condition we consider is a Dirichlet condition on both
sides of the interface:

u = 1.

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.4331 × 10−1 4.5436 × 10−1 3.6860 × 10−2

99 1.4444 × 10−1 2.377 1.3363 × 10−1 3.400 9.1137 × 10−3 4.045
199 3.9447 × 10−2 3.662 4.5511 × 10−2 2.936 1.9652 × 10−3 4.638
399 1.1170 × 10−2 3.531 1.4101 × 10−2 3.228 5.3682 × 10−4 3.661
799 3.1200 × 10−3 3.580 3.6471 × 10−3 3.866 1.3277 × 10−4 4.043

Table 2. Interface results for Example 1 with Neumann Jump
interface conditions.
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 2.5623 × 10−2 1.9174 × 10−1 1.1620 × 10−2

99 2.2492 × 10−2 1.135 6.9352 × 10−2 2.765 4.4235 × 10−3 2.627
199 1.4385 × 10−2 1.564 2.1398 × 10−2 3.241 8.7237 × 10−4 5.071
399 6.0928 × 10−3 2.361 5.9632 × 10−3 3.588 3.1170 × 10−4 2.799
799 1.9458 × 10−3 3.131 1.5402 × 10−3 3.872 6.0066 × 10−5 5.189

Table 3. Domain results for Example 1 with Dirichlet interface conditions.

The exact solution remains the same as above. Here, the value at the interface is
known, so the important computational results are the solution values within the
domain and the jump in the derivative across the interface.

Table 3 contains the convergence results for the X-FEM using this boundary
condition. Once again, the asymptotic enrichments perform much better than the
other two, by more than an order of magnitude. Table 4 shows the gradient results
on the interface. Due to the magnitude of the gradient jump

(
∼ 102

)
, this table

presents relative errors rather than absolute errors:∥∥T ′

n

∥∥
∞

=
1

1/ε
max

i
ni ∈N

{
∣∣u (xi , yi )− uh

i

∣∣}.
3.2. Example 2: enriching with an asymptotic solution. In the second example,
the custom enrichment function does not contain the exact solution, but instead
includes the asymptotic approximation of the solution near the interface. The
equation in this example is the Helmholtz Equation on the interior of a circle with
radius 1

4 :

n
Step Absolute Value Exponential∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio

49 4.2738 × 10−1 2.2663 × 10−1 3.1433 × 10−2

99 1.9041 × 10−1 2.245 9.1789 × 10−2 2.469 1.5427 × 10−2 2.038
199 6.8870 × 10−2 2.765 3.4742 × 10−2 2.642 3.8923 × 10−3 3.964
399 3.1636 × 10−2 2.177 1.7591 × 10−2 1.975 1.4946 × 10−3 2.604
799 1.3817 × 10−2 2.290 8.5566 × 10−3 2.056 5.5810 × 10−4 2.678

Table 4. Interfacial gradient results for Example 1 with Dirichlet
interface conditions.
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Figure 2. Solution of Example 2. (a) A surface plot of the solution
on the entire domain. (b) A cross section of the solution, taken at
an angle of one radian. The numerical approximation overlaps the
exact solution and is computed using the exponential enrichment
function on a 799 × 799 grid.

∇
2u + κ2u = 0, (7)

where κ is given by

κ (x, y)=

{
200 if r ≤

1
4 ,

0 if r > 1
4 .

The exact solution to (7) is

u (x, y)=

{
I0(κr)
I0( κ4 )

if r ≤
1
4 ,

1 if r > 1
4 ,

where In (x) is the modified Bessel function of the first kind.
An asymptotic analysis of (7) shows that the behavior of the solution in the

boundary layer near the interface is of the form u ≈ eκr . Therefore, the exponential
enrichment function is appropriate here as well, using κ as the parameter. It is
important to note that while an exact solution to (7) is available, we only use
information from the asymptotic analysis to construct our approximation.

As in Example 1, we once again consider two types of interface conditions.
First, the solution is again prescribed to be continuous, with a jump in the normal
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 1.6496 × 10−1 2.8971 × 10−1 1.8642 × 10−2

99 7.7465 × 10−2 2.130 5.8281 × 10−2 4.971 5.4660 × 10−3 3.429
199 2.8396 × 10−2 2.728 1.1361 × 10−2 5.130 1.5259 × 10−3 3.582
399 8.8436 × 10−3 3.211 2.4660 × 10−3 4.607 3.8795 × 10−4 3.933
799 2.8451 × 10−3 3.108 8.1249 × 10−4 3.035 9.7831 × 10−5 3.966

Table 5. Domain results for Example 2 with Neumann jump inter-
face conditions.

derivative at the interface:

[[u]] = 0,
[[
∂u
∂n

]]
= κ

I1 (κr)
I0
(
κ
4

) .
Table 5 shows the error on the domain, and Table 6 shows the error on the interface.
The results are similar to those in the Example 1.

Like the first example, the second set of boundary conditions applies a Dirichlet
condition at the interface, and the solution gradient at the interface is the desired
result:

u = 1.

Table 7 shows that the asymptotic enrichment again outperforms the other generic
enrichment functions with an error of less that 0.1% for the largest system. For the
sake of completeness, Table 8 charts the maximum error on the domain.

Finally, the exponential enrichment function not only increases the accuracy at
the nodes and the interface, it improves the approximation within the elements
as well. Because the asymptotic solution is contained in the interpolant, fewer

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.2720 × 10−1 3.6044 × 10−1 3.4735 × 10−2

99 1.2621 × 10−1 2.593 1.1859 × 10−1 3.040 7.1808 × 10−3 4.837
199 3.9873 × 10−2 3.165 4.0367 × 10−2 2.938 1.9359 × 10−3 3.709
399 1.0574 × 10−2 3.771 1.2436 × 10−2 3.246 4.9710 × 10−4 3.887
799 2.9643 × 10−3 3.567 3.3563 × 10−3 3.705 1.2127 × 10−4 4.106

Table 6. Interface results for Example 2 with Neumann jump in-
terface conditions.



46 BRYAN G. SMITH, BENJAMIN L. VAUGHAN JR. AND DAVID L. CHOPP

n
Step Absolute Value Exponential∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio

49 3.5875 × 10−1 2.3265 × 10−1 3.6010 × 10−2

99 1.5830 × 10−1 2.266 9.0700 × 10−2 2.565 1.6945 × 10−2 2.125
199 5.7291 × 10−2 2.763 4.0960 × 10−2 2.214 4.0448 × 10−3 4.189
399 2.4665 × 10−2 2.323 1.8754 × 10−2 2.184 1.6265 × 10−3 2.487
799 1.2950 × 10−2 1.905 9.9692 × 10−3 2.067 5.9443 × 10−4 2.736

Table 7. Interface gradient results for Example 2 with Dirichlet
interface conditions.

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.0534 × 10−2 1.3923 × 10−1 6.6740 × 10−3

99 2.2035 × 10−2 1.386 6.1419 × 10−2 2.267 3.1346 × 10−3 2.129
199 1.4526 × 10−2 1.517 1.6752 × 10−2 3.666 7.4375 × 10−4 4.215
399 6.6449 × 10−3 2.186 4.8119 × 10−3 3.481 2.8600 × 10−4 2.601
799 2.0239 × 10−3 3.283 1.2758 × 10−3 3.772 5.6394 × 10−5 5.071

Table 8. Domain results for Example 2 with Dirichlet interface conditions.

elements are needed to capture the boundary layer. Figure 3 shows the exact solution
plotted next to the numerical approximation for varying mesh sizes. Each plot
is generated by evaluating the exact solution and the numerical approximation at
10,000 points along a line from r = 0.23 to r = 0.26 at an angle of one radian. This
clearly demonstrates the advantage of using a customized enrichment function, as
the exponential enrichment accurately approximates the solution on a 25 × 25 grid,
where the entire boundary layer is contained within one element.

4. Biofilm growth

We now consider the problem of bacterial biofilms. The addition of substrate
nutrients to the top of the film drives the growth of the biofilm. Here we explore
how the geometry of the biofilm colonies affects the profile of their growth. We
first consider the phenomenon of tip-splitting [4], where the colony does not grow
directly toward the substrate, but develops fingers that grow at an angle into the film.
We then analyze how the shadowing effect of a large colony decays with distance.

The system is considered on a domain �, periodic in x and consisting of two
regions, the interior of the bacterial colonies, �b, and the exterior fluid film, � f .
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Figure 3. Cross sections generated using various mesh sizes. Each
cross section is taken at an angle of one radian, to avoid alignment
with the mesh. Note that in the coarsest plot, the entire boundary
layer is contained in one element.

The substrate concentration s and velocity potential ϕ are governed by

D∇
2s = αs (8)

and

∇
2ϕ = βs, (9)

where

D (x, y) =

{
120 if (x, y) ∈�b,

150 if (x, y) ∈� f ,

α (x, y) =

{
3.6 × 106 if (x, y) ∈�b,

0 if (x, y) ∈� f ,

and

β (x, y)=

{
106 if (x, y) ∈�b,

0 if (x, y) ∈� f .

Figure 4 shows the boundary conditions applied to each equation. This follows
the description given in [6] without erosion, with the parameters chosen to approx-
imate the behavior of the nonlinear system described in [5]. Both the substrate
concentration and the velocity potential are continuous throughout the domain.
In the substrate equation, a derivative jump condition is applied at the interface
between the colony and the liquid, and in the velocity equation, a Dirichlet condition
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D b∇²s = αs

∇²ϕ = βs

D f ∇² s = 0

∇²ϕ = 0

[[D n̂ · ∇ s]] = 0

ϕ = 0

∂s

∂y
=

∂ϕ

∂y
= 0

s = γ

ϕ = 0
Ωf

Ωb

Figure 4. The domain and governing equations for the biofilm problem.

is prescribed: [[
Dn̂ · ∇s

]]
= 0, ϕ = 0.

In both cases, a Dirichlet condition is applied at the top boundary:

s = 10−5, ϕ = 0,

and a Neumann condition is applied at the bottom:

∂s
∂y

=
∂ϕ

∂y
= 0.

We solve for the growth rate profile for a given colony via a three step process.
First, the substrate concentration is found by solving (8) with the given boundary
conditions. This solution is then fed back into (9) to find the velocity potential
within the colony, and finally the rate of growth at the biofilm surface is given by
the normal derivative of the velocity potential at the interface, n̂ · ∇ϕ. We calculate
this quantity at a large number of points along the parameterized interface to obtain
an overall profile of the colony’s growth. Both the substrate and velocity equations
are solved using the X-FEM with the exponential enrichment function. The relevant
boundary layer exists on the interior of the colony, and we use µ=

√
α/Db as the

parameter in the exponential enrichment definition.

4.1. Tip splitting. As biofilm colonies grow, they do not always grow in a uniform
fashion. Sometimes the tip of the colony splits into separate fingers instead [4].
This instability appears to be distinct from the fingering instability described in
[6], where it is observed that peaks have a greater growth rate than valleys. Due to
random fluctuations, one of the fingers generally overtakes the other resulting in an
irregularly shaped colony. The conditions driving this instability are unknown, but a
possible mechanism is the splitting of a mushroom-shaped tip due to the instability
described in [6]. This is similar to the well known tip-splitting instability in the
Stefan problem, where a flattened dendritic tip splits due to the Mullins-Sekerka
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instability [13]. Here we look at the ways in which the shape of a biofilm colony
can lead to mushrooming of the tip.

To study the onset of mushrooming, we examine the velocity profiles of individual
colonies on a periodic domain. The period of the domain is large enough to prevent
interaction between neighboring colonies, and all of the colonies are hemielliptical
in shape. Due to this simple geometry, the interface is easily parameterized from 0
to π , and Figure 5 shows some examples of parameterized velocity profiles. In the
first case, the biofilm has an aspect ratio (height/width) of 2.25, and the maximum
velocity is obtained at the peak of the biofilm colony, precluding a change in the
shape of the tip. In the second case, the colony is much taller and thinner, with an
aspect ratio of 16, and the maximum velocity is obtained on either side of the peak,
which may allow for mushrooming to take place. Thus, to determine whether or
not mushrooming can occur, we consider the ratio of the maximum velocity to the
peak velocity. If this ratio is one, the maximum occurs at the peak, and the colony
will grow normally. The strength of the mushrooming instability increases as this
ratio moves above unity.
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Figure 5. Representative velocity profiles. Shown here are two
examples of velocity profiles, from colonies with different aspect
ratios but the same mass. (a) Normal velocity vs. surface parameter-
ization. In the second case, the maximum velocity is not attained at
the tip, so mushrooming may occur. (b) Velocity vectors along the
biofilm surface. The taller colony has a large aspect ratio, and the
shape of the velocity field near the peak indicates that mushrooming
may occur.
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Figure 6. The effect of aspect ratio on mushrooming.

To demonstrate, we first explore how the aspect ratio of the hemielliptical colony
affects the velocity profile. As we change the aspect ratio, we keep the area of
the colony constant so that the total amount of biomass is unchanged. The colony
shape is defined as

a2 (x − x0)
2
+

y2

a2 = R2,

where a2 is the aspect ratio of the ellipse, and R2/2 is the area. We vary the aspect
ratio between 1.0 to 25.0 (height to width) for colonies with three different masses.

Figure 6 shows the relationship between the aspect ratio and the strength of the
mushrooming instability. While the curves are qualitatively similar, the mass of the
colony is clearly important. This mass effect can be removed by considering the
radius of curvature at the colony peak, R/a3, rather than the aspect ratio. Figure 7
contains the same velocity data as Figure 6 but plotted against the radius of curvature.
In this case, all three curves lie on top of each other, indicating that tip splitting is a
function of the radius of curvature at the tip of the colony. So that we may ensure
that other factors are not also important, the height of the film and the period of the
domain were varied. As Figure 8 shows, these variations have no effect.

This dependence on radius of curvature is probably due to elevated substrate
concentrations within the biofilm colony. As the tip radius decreases, less biomass
is present near the peak, and unconsumed substrate can diffuse farther down into
the colony. To quantify the substrate penetration, we calculate the depth within the
colony at which the concentration of substrate is 10% of the concentration at the
colony tip. In order to compare biofilms containing different amounts of biomass,
we normalize all of the values by the substrate penetration depth into a circular
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Figure 7. The effect of radius of curvature on mushrooming.
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Figure 8. Domain period and film thickness have no effect on mushrooming.

colony with radius R. As shown in Figure 9, the substrate penetration depth is
correlated with the radius of curvature.

4.2. Shadowing. Another important feature of biofilm growth is the interaction
between neighboring colonies. Competition for substrate creates a shadowing effect
near large colonies as nearby colonies are unable to attain their optimal growth
rate. This shadowing effect depends on the relative sizes of the colonies as well as
the separation distance. In order to determine the relative importance of these two
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Figure 9. Normalized substrate penetration depths. (a) The nor-
malized penetration depths for colonies of various sizes against the
aspect ratio of the colony. (b) The normalized penetration depths
against the radius of curvature at the colony tip.

parameters, we consider a system consisting of alternating large and small colonies
along a periodic domain. In each case the large colony remains a standard size,
with a = 2.0 and R = 0.2. The smaller colony maintains the same aspect ratio, but
R is varied from 0.02 to 0.18. The different size cases are then simulated using a
wide range of period lengths.

Proper determination of the effects of the interaction requires the maximum
growth rate of an uninfluenced single colony, the natural growth rate for that colony.
Due to the fact that the majority of a biofilm colony’s growth occurs at or near the
tip, this maximum growth rate is a reasonable measure of the overall growth rate of
the colony. To find this rate, simulations are performed using a single colony on a
periodic domain, using the same film height as in the combined system. The period
of the domain is increased until maximum growth rate asymptotes to a constant
value. Figure 10 shows maximum growth rate plotted against the period size for
several representative colony sizes. Interestingly, the maximum growth rate of the
smallest colonies is greater than that of the medium sized colonies. This effect is
caused by mushrooming. When the colonies are relatively large, growth occurs
primarily at the tip, and therefore the maximum growth rate scales with the size of
the colony. However, in small colonies, growth occurs throughout the colony due
to the greater substrate availability. This allows for large growth rates in areas far
from the peak and creates the effect in Figure 10.
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Figure 10. Selected natural growth rates. (a) The maximum
growth rate for each colony size is reached on a domain with a
relatively small period. (b) While the velocity at the peak decreases
monotonically with colony size, the maximum velocity begins to
increase again for the smallest colonies. This effect is caused by
mushrooming.

Once the natural growth rate for each colony size has been found, it is possible
to quantify the shadowing that takes place in the combined system. For each colony
size and period length, the maximum growth rate can be expressed as a percentage
of the natural rate for that colony. Figure 11 shows this ratio for each colony size,
plotted against the length of the period. Using this data, it is then possible to create
pictures of the “shadow” for a given influence percentage. For example, the portrait
of a 50% influence shadow is shown in Figure 12. In the center of the figure is the
large colony, surrounded by colonies placed so that their maximum growth rate
is 50% of their natural rate. The tops of the colonies are connected to create a
shadow region. Any colony which is contained within this shadow region will grow
at a maximum of 50% of its natural rate. Of particular interest is the 97% shadow,
shown in Figure 13, because rather than decaying asymptotically, the region of
influence appears to have a sharp cutoff outside of which the presence of the large
colony is virtually undetectable.

5. Conclusion

The eXtended Finite Element Method has already been shown to capture the
location of an embedded interface without the need for a conforming mesh. This is
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Figure 11. The effect of period length on shadowing. For all
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Figure 12. The 50% shadow. Any colony contained within this
region around the large central colony will achieve less than 50%
of its maximal growth rate.
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Figure 13. The 97% shadow. Any colony which falls outside of
this region will achieve at least 97% of its maximal growth rate.
While this shadow is significantly wider than the 50% shadow, it
exhibits a steep drop off at the edges, so the effect of the central
colony is largely confined to a finite area.
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accomplished by adding “enriched” basis functions containing information about
the interface position into the standard finite element approximation. Here we have
used information about the asymptotic behavior of the solution near the interface to
create customized enrichment functions which not only include the position of the
interface but the boundary layer behavior of the solution as well.

The examples presented here have shown that when solutions exhibit extreme be-
havior in the boundary layer around the interface, the use of customized enrichment
functions increases both the accuracy and the convergence rate of the numerical
approximation. This is true even if the enrichment contains only the asymptotic
approximation of the boundary layer behavior rather than the exact solution. While
all of the problems presented here are in two dimensions, the method, including the
customized enrichment functions, can be extended to three dimensions.

We then used this technique to simulate the growth of bacterial colonies in a thin
film. In solving the linearized biofilm equations we have explored the relationship
between the shape of the colony and the profile of its growth. The simulations have
shown that the radius of curvature at the peak of the colony is the dominant factor
in determining whether tip-splitting will occur as well as demonstrating that large
colonies within a biofilm create a large but finite area of influence in which the
growth of smaller colonies is inhibited.
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A LOCAL CORRECTIONS ALGORITHM FOR SOLVING
POISSON’S EQUATION IN THREE DIMENSIONS

PETER MCCORQUODALE, PHILLIP COLELLA,
GREGORY T. BALLS AND SCOTT B. BADEN

We present a second-order accurate algorithm for solving the free-space Poisson’s
equation on a locally-refined nested grid hierarchy in three dimensions. Our
approach is based on linear superposition of local convolutions of localized charge
distributions, with the nonlocal coupling represented on coarser grids. The repre-
sentation of the nonlocal coupling on the local solutions is based on Anderson’s
Method of Local Corrections and does not require iteration between different
resolutions. A distributed-memory parallel implementation of this method is
observed to have a computational cost per grid point less than three times that
of a standard FFT-based method on a uniform grid of the same resolution, and
scales well up to 1024 processors.

1. Introduction

We want to compute the solution to Poisson’s equation on R3 with a charge distri-
bution ρ with support on a compact set �. Specifically, we seek the solution φ to

1φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = ρ(x, y, z) (1)

that has the far-field behavior

φ(x)= −
Q

4π |x|
+ o

(
1

|x|

)
, |x| → ∞; (2)

Q =

∫
�

ρ(x)dx. (3)

Using the maximum principle for harmonic functions, it is not difficult to show
that equations (1)–(2) have a unique solution. This solution can be written as a
convolution with the Green’s function G [16]:

φ(x)= (G ∗ ρ)(x)≡

∫
G(x − y)ρ( y) d y , G(z)= −

1
4π |z|

. (4)

Keywords: Poisson’s equation, local corrections, domain decomposition, adaptive mesh refinement.
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Solutions to (1) have a strong form of elliptic local regularity. If D ⊂ � is
contained in a ball of radius r , then the function

φD(x)=

∫
D

G(x − y)ρ( y)d y (5)

is real analytic at all points not contained in D, and its derivatives are rapidly
decaying functions of dist (x, D)/r . This suggests that an efficient method for
computing the potential φ would be to compute local convolutions of the form (5) on
a disjoint union of patches, and then compute the smooth global coupling among the
patches using a calculation with a much coarser (and less computationally expensive)
discretization. In fact, this is the underlying approach to all O(N )− O(N log N )
methods for potential theory, include the Fast Multipole Method (FMM) [12] and
the Method of Local Corrections (MLC) [2] for particles, and FFT-based methods
[13], multigrid [7] and domain decomposition [20] for gridded data.

In principle, the same strategy should also lead to efficient parallel methods. The
local convolutions are independent, and therefore can be performed in parallel on
separate processors, while the nonlocal coupling between patches is representable by
such a small number of degrees of freedom so as to have a negligible impact on the
computational cost. For the particle methods such as FMM and MLC, this is indeed
the case [3]. For algorithms for gridded data, particularly on structured and locally-
structured grids, the results are mixed. FFT-based methods are probably optimal
in terms of the number of floating point operations required, but are limited to
uniform grids and require some form of global communication of all the data (such
as transpose) or complex mappings of data onto processors. Multigrid iteration is
applicable to locally-structured multiresolution grids [4; 1] and effectively exploits
local regularity to reduce the number of floating point operations to a few hundred
per grid point. However, it has an unacceptably high communication cost, with
communication / synchronization steps required after each local relaxation step —
that is, every few tens of floating point operations per grid point. Furthermore, there
is so little computation being done between communication steps that the opportunity
to overlap computation with communication is limited. The domain decomposition
methods have typically led to iterative methods by constructing a dense linear system
for the degrees of freedom on the boundaries between subdomains using a Schur
complement. Such approaches reduce that communication load somewhat, but are
still iterative, and for Poisson’s equation are substantially more compute-intensive
than multigrid or FFT-based methods.

A natural strategy is to apply the ideas developed for particle methods to gridded
data. For FMM, this has been done in two dimensions [9; 8] by applying the fast
multipole method directly to volume potentials on the grid, with methods that have
a computational cost per grid point of less than three times that of an FFT on a
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uniform grid, and furthermore have the locality of the FMM approach with respect to
communication. However, the direct extension of that approach to three dimensions,
while feasible, will not have the same absolute floating-point performance of a
modest integer multiple of that of an FFT-based method, due to the substantially
larger cost per grid point of the FMM method for computing volume potentials in
3D relative to that of 2D. To deal with that problem, one can take the approach of
Greengard and Lee [11], in which local volume potentials on patches are computed
using fast transform methods, with the FMM at the boundaries of patches to resolve
the mismatch in the solutions at patch boundaries as well as the nonlocal coupling
between patches. Using FMM only on two-dimensional surfaces might reduce the
cost of that part of the calculation so as to make the overall floating-point cost,
relative to FFT, more like that of the 2D FMM-based algorithms. However, such an
approach has been carried out to date only in 2D.

The starting point for our approach is an extension of Anderson’s MLC algorithm
in two dimensions to gridded data in two dimensions [5; 6]. In this approach,
local convolutions are computed using the James–Lackner method [14; 17] of
representing infinite-domain boundary condition in terms of solutions to two Dirich-
let problems on nested domains, plus a boundary-to-boundary convolution. The
nonlocal coupling between patches is represented by solving a coarse grid problem
and interpolating a correction back to the fine grid patches in a manner similar
to full-approximation-storage multigrid. Unlike multigrid, though, the method
is noniterative. In the present work, we generalize the method to locally-refined
grids in three dimensions. A principal technical issue is the generalization to three
dimensions of the James–Lackner method for computing local convolutions. We
do this using a simplified FMM to compute the boundary-boundary convolutions,
combined with FFT methods to compute the volume potentials. Thus, the method
is similar in spirit to the approach of Greengard and Lee [11], but with different
technical details.

2. Preliminaries

We represent both the potential field, φ, and the charge, ρ, on a discrete, three-
dimensional Cartesian grid, with grid points spaced equally in all three directions
by the same mesh spacing h. A triple of integers i = (ix , iy, iz) indexes a point
in real space x i = (ix h, iyh, izh) . Typically, our computational domain will be
described in terms of unions of rectangular patches of the form �h

= [l, u], where
l and u are the integer triples corresponding to the lower and upper corners of the
region. Our grids are node-centered, with �h representing the region in physical
space [lh, uh]. Thus a union of rectangular patches representing a disjoint union
of regions in physical space may have nonempty intersections in index space. We
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define a coarsening operator C as

C(�h,C)= [bl/Cc, du/Ce] (6)

where the operators b·c and d·e round down and up to the nearest integer, respectively.
We also need the grow operation G, which extends or shrinks an index domain by a
uniform amount in each direction:

G(�h, p)= [l − (p, p, p), u + (p, p, p)]. (7)

When p < 0, G returns a shrunken domain. We denote by ∂�h the set of boundary
points of �h :

∂�h
=�h

− G(�h,−1). (8)

A field ψ is represented on this discrete grid by ψh such that

ψh
i ≈ ψ(x i ). (9)

We can also define a sampling operator S that projects a discrete field on �h onto
C(�h,C):

S(ψh,C)i = ψh
C i , i ∈ C(�h,C).

We denote by χh a discrete characteristic function defined as follows. For an interval
[l, u] with l and u integers, the function χh

[l,u]
on the real line has the value 1 in

the interval (l, u), 0 outside [l, u], and 1
2 at l and u. Then for a box B = [l, u], the

function χh
B is defined on index space as the product of interval functions over all

dimensions: χh
B = χh

[lx ,ux ]
χh

[ly ,uy ]
χh

[lz,uz]
. We also define a characteristic function

χ for the corresponding region in R3,

χB(x)=

{
1, if x ∈ [lh, uh] ;
0, otherwise.

We use a discretization of the Laplacian operators with the stencil points contained
in a three-by-three block surrounding the evaluation point:

(1hφh)i =
1
h2

∑
j∈{−1,0,1}3

a‖ j‖φ
h
i+ j (10)

where ‖ j‖ is the number of nonzero components in j ∈ {−1, 0, 1}
3 and falls in

the range {0, 1, 2, 3}. We shall use the 19-point Mehrstellen operator, specified by
a0 = −4, a1 =

1
3 , a2 =

1
6 , a3 = 0. If φexact,h is the exact solution evaluated at grid

points, and the truncation error, τ h
j , is defined as

τ h
j = ρh

j − (1hφexact,h) j , (11)
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then we can use Taylor expansion, along with the fact that 12φ =1ρ, to determine
that

τ h
j = ρh

j − (1hφexact,h) j =
−h2

12
1ρ+ O(h4). (12)

Thus a solution to the system

1hφh
= ρh , (ρh) j = ρ( jh) (13)

is second-order accurate: φh
j = φ

exact,h
j + O(h2). The particular form of the trunca-

tion error in (12) leads to a strong localization of the O(h2) error: if jh is contained
in the complement of the closure of the support of ρ, then it is not difficult to show
that φh

j = φ
exact,h
j + O(h4) [6]. More classically, one can also precondition the

charge and solve

1hφ∗,h
= ρ∗,h

= ρh
+

h2

12
1̃hρh, (14)

where 1̃h is any second-order accurate discretization of the Laplacian, to obtain a
solution that is O(h4) everywhere. With infinite-domain boundary conditions, it is
also possible to make a Mehrstellen correction to the solution after solving (13):

φh
:= φh

+
h2

12
ρh . (15)

3. Convolutions on bounded domains

A basic component of our method of local corrections is a single-grid solver
for Poisson’s equation with infinite-domain boundary conditions. We follow the
approach used for the 2D problem by James [14] and Lackner [17].

Let � be the support of the right-hand side ρ in (1). Clearly, we can represent the
solution to (1)–(2) on � in terms of solutions of Poisson’s equation with Dirichlet
boundary conditions on a slightly larger domain, where the boundary conditions
are computed using the convolution operator (4). We can reduce the convolution to
a boundary-boundary convolution by solving an additional Dirichlet problem. Let
�1 and �2 contain � with �2 ⊃�1 ⊃�. Let φ1 be the solution to

1φ1
= ρ on �1 ; φ1

= 0 on ∂�1

and define a boundary charge distribution q

q ≡
∂φ1

∂n
on ∂�1

where n is the unit outward normal. Then the boundary potential φB induced by q

φB(x)=

∫
∂�1

G(x − y)q( y) d A y (16)
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is a solution to Laplace’s equation on R3
− ∂�1, and satisfies the jump relations

[φB] = 0, [
∂φB
∂n ] = −q on ∂�1. Thus the function φ given by

φ =

{
φ1 +φB, on �1;

φB elsewhere

is a solution to (1)–(2). In particular, φ is a solution to the Dirichlet problem

1φ = ρ on �2 ; φ = φB on ∂�2

for any �2 ⊃ �1. Note that the calculation of the Dirichlet boundary conditions
requires only the convolution of the Green’s function with the boundary charge q .

We use the representation described above to compute an approximation of the
convolution (4). We assume that � is a cube, which we discretize to obtain the
discrete domain �h with mesh spacing h and containing (N + 1)3 points. We
also define discrete domains �h

1 = G(�h, s1) and �h
2 = G(�h, s1 + s2), for some

s1, s2 ≥ 0.

The 3D James–Lackner algorithm.

Step 1. Solve the homogeneous Dirichlet problem on �1:

1hφh
1 = ρ on G(�h

1,−1) ; φh
1 = 0 on ∂�h

1

and compute the discrete boundary charge qi = DB(φ
h
1 )i , i ∈ ∂�h

1 . We use a
fourth-order one-sided difference approximation of the normal derivative for DB ,
e.g.,

DB( f )0, j,k =
−25 f0, j,k + 48 f1, j,k − 36 f2, j,k + 16 f3, j,k − 3 f4, j,k

12h
.

Step 2. Given the discrete charge distribution q on ∂�1, compute an approximation

to the convolution integral (16) to obtain gi ≈ φB(ih) for i ∈ ∂�h
2 .

Step 3. Solve the inhomogeneous Dirichlet problem on �2:

1hφh
= ρ on G(�h

2,−1) ; φh
= g on ∂�h

2 .

The solution of the Dirichlet problems in Steps 1 and 3 can be done in O(N 3 log N )
operations using a fast discrete sine transform to diagonalize1h . Step 2 is performed
using a fast multipole method that takes advantage of the fact that the charge is
defined on a union of planar surfaces:

∂�1 =�1(+, 0)∪�1(−, 0)∪�1(+, 1)∪�1(−, 1)∪�1(+, 2)∪�1(−, 2)
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where �1(+, d) and �1(−, d) are respectively the high and low faces of �1 in
which coordinate d ∈ {0, 1, 2} is fixed. Then the integral in (16) can be split up as

φB(x)=8+,0(x)+8−,0(x)+8+,1(x)+8−,1(x)+8+,2(x)+8−,2(x) (17)

where 8±,d is the contribution from face �1(±, d):

8±,d(x)=

∫
�1(±,d)

G(x − y)q( y) d A y, (18)

which is a planar integral. Step 2, then, can be broken down as follows.

2a. Split each face �h
1(±, d) into patches of dimensions r × r centered at points

on the face coarsened by r , where r is divisible by 4. Then calculate the
multipole moments up to order M of qh on each patch. For the patch on
the face �h

1(−, 2) that is centered at the point (i0, i1,−s1/r) in r-coarsened
coordinates, the (p0, p1) moment is

Ap0,p1,−,2
i0,i1

=

∑
−r/2≤ j0≤r/2

∑
−r/2≤ j1≤r/2

w j0w j1q(ri0+ j0,ri1+ j1,−s1)( j0h)p0( j1h)p1

(0 ≤ p0 + p1 ≤ M; p0, p1 ≥ 0) (19)

where the w j are the weights from Boole’s rule of integration, which is O(h6)

accurate:

w j =



14
45 if | j | =

r
2 ;

28
45 if r

2 + j ≡ 0 mod 4 and | j |< r
2 ;

64
45 if j is odd;
8

15 if r
2 + j ≡ 2 mod 4.

(20)

The moments for the other faces are computed analogously.

2b. On each face of ∂�h
2 coarsened by r in each dimension, plus a layer of coarse

points of width P , add up the evaluations 8±,d of multipole expansions due
to all patches of all faces of ∂�h

1 . As an example,

8−,2(Ex)=
∑

i0,i1

∑
p0,p1

Ap0,p1,−,2
i0,i1

× (21)

(−1)p0+p1

p0!p1!

∂ p0+p1 G
∂z p0

0 ∂z p1
1
(x0 − i0rh, x1 − i1rh, x2 + s1h)

using two-dimensional Taylor expansions of the Green’s function G around the
points (x0 − i0rh, x1 − i1rh, x2 + s1h). The indices i0, i1 in the sum are over
indices of coarse points on the face �h

1(−, 2), and p0, p1 ≥ 0; p0 + p1 ≤ M .
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� �
� �
� �

� �
� �
� �

P = 1

P = 1

Figure 1. In Step 2 of our implementation of the 3D James–
Lackner algorithm, multipole moments are calculated for each
patch on each face of ∂�h

1 , such as the patch shown cross-hatched
in red. The multipole expansions are then evaluated at the coarse
points on the faces of�h

2 augmented by an additional layer of width
P , indicated with blue circles for one face. These evaluations are
interpolated to all the fine points on the faces of ∂�h

2 , located at
intersections of the black lines, using two passes. The evaluation
points of the first pass are shown as small green diamonds.

2c. On each face of ∂�h
2 , interpolate from the coarse points to the remaining fine

points on the face, using a tensor product of Lagrange interpolating polynomials
as illustrated in Figure 1.

Choosing r ≈
√

N provides sufficient accuracy for the solution and allows the
integration step to be completed in O((M2

+ P)N 2) work. For O(h4) error, we set
M = 7 and P = 3, and these are independent of N . Hence Step 2 requires O(N 2)

work.
We also note constraints required on s2, the spacing between �h

1 and �h
2 . Con-

vergence requirements of the multipole method force us to choose s2 with care.
In order for the multipole expansions from a patch to converge, the distance from
the center of a patch on a face of �h

1 to the points on the faces of �h
2 , on which

the expansion is evaluated, should be at least twice the radius of the patch. Here
we define the radius of a patch as the maximum distance from the patch center
to any point on the patch. Recall that we chose our patches to be r × r fine grid
points. Thus our patches have a radius of rh/

√
2, and the distance requirement

becomes s2h ≥ 2rh/
√

2. We also need the number of cells along the length of �h
2

to be divisible by r . Combining these two requirements, we arrive at the following
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formula for s2:

s2 =
r
2

⌈
2
√

2 +
N + 2s1

r

⌉
−

N + 2s1

2
. (22)

For efficiency, both s1 and s2 should be as small as possible. If the distance of the
support of ρ to ∂�1 is nonzero, then we can set s1 = 0.

We now examine the computational costs in the single-grid solver, listing the
operation counts for each step:

1. FFT-based Poisson solver on �h
1 : O(N 3 log N ).

Normal derivatives on faces of �h
1 : O(N 2).

2. Integration to boundary conditions on faces of �h
2 using FMM: O(N 2).

3. FFT-based Poisson solver on �h
2 : O(N 3 log N ).

Thus the single-grid infinite-domain solver operation count is bounded by the fast
Poisson solves that use Dirichlet boundary conditions, and the overall computational
cost of an infinite-domain solution is O(N 3 log N ).

4. Method of local corrections

The domain decomposition algorithm described here is the finite-difference ana-
logue [6] of Anderson’s Method of Local Corrections (MLC) [2], extended to
locally-refined nested grids in three dimensions. To simplify the presentation, we
describe the MLC algorithm on two levels. We use a fine-grid discretization �h

corresponding to a rectangular domain � that contains the support of the charge
ρ. Within �h we have a set of cubic patches �h

k of equal size that overlap only
at patch boundaries. These subdomains make up a region on which the charge
is finely resolved. For each patch, the charge ρh

k is defined on �h
k . Our method

entails solving local problems on each of the �h
k in parallel, as well as on a single

coarse global mesh �H . The spacing of the coarse mesh is H = Ch, where C is a
specified coarsening factor.

Because our meshes are node-centered, the points of �H map directly onto
corresponding points in �h , and no averaging is required to coarsen the mesh data.
Thus, we can coarsen the mesh by sampling the mesh without having to interpolate.
In particular, we coarsen a fine grid representation using the sample operator SH :
for each point xC , we can find the coarse grid value ψH (xC) (where ψH has grid
spacing H ) by finding the fine grid point x at the corresponding position in ψh

(with grid spacing h = H/C):

ψH (xC)= (SH (ψh))(x/C)= ψh(x). (23)
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If ρ = ρ(x) is the continuous charge, we set the discrete coarse-level charge ρH

on �H and fine-level charge ρh
k on each �h

k to be

(ρH )i = ρ(i H) , i ∈�H
;

(ρh
k )i = (χh

�h
k
)i ρ(ih) , i ∈�h

k .

The algorithm has three computational steps interspersed by two communication
steps.

Method of Local Corrections.

1. INITIAL LOCAL SOLUTION. Using the 3D James–Lackner algorithm, calcu-
late a local infinite-domain solution on each local subdomain, �h

k , augmented
with an overlap region:

1hφ
h,init
k = ρh

k on G(�h
k , s + Cb) (24)

and construct a coarsened version of the solution, φH,init
k , by sampling:

φ
H,init
k = SH (φ

h,init
k ) on G(�H

k , s/C + b). (25)

Here s is a correction radius, C is the coarsening factor, and b is the width of
a layer for polynomial interpolation to be used in step 3.

2. GLOBAL COARSE SOLUTION. Couple the individual local solutions by solving
another Poisson equation on a coarsened mesh covering the entire domain.
First construct coarsened local charge fields:

RH
k =

{
1Hφ

H,init
k on G(�H

k , s/C − 1);
0 elsewhere

(26)

and sum these charge fields to form a global coarse representation of the charge:

RH
=

∑
k

RH
k . (27)

Then solve

1HφH
= RH

+ (1 −

∑
k

χ�H
k
)ρH on G(�H , s/C + b) (28)

with infinite-domain boundary conditions, using the 3D James–Lackner algo-
rithm. For this solve, we take the base domain to be G(�H , 2d(s/C − 1)/2e)

because the length must be divisible by 4.

3. FINAL LOCAL SOLUTION. Solve

1hφh
k = ρh

k on �h
k (29)
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Figure 2. Setting boundary values for a final local solution in
step 3 of MLC. For the face shaded red in the top of the figure,
in a layout of eight cubes, the lower diagrams depict the regions
from which data are copied from faces of different neighboring
boxes. Solid lines indicate the boundaries of the boxes �h

k′ , dashed
lines the boundaries of the boxes G(�h

k′, s), and dotted lines the
boundaries of the boxes G(�h

k′, s + Cb). Fine-grid data are copied
to the red face from the nodes inside and on the edges of the regions
shaded dark blue. Coarse grid data are copied from nodes inside
and on the edges of the regions shaded both dark and light blue,
and then interpolated to nodes on the red face that are inside and
on the edges of the regions shaded dark blue.

with Dirichlet boundary conditions on ∂�h
k :

φh
k (x)=

∑
k′:x∈G(�h,init

k′ ,s)

φ
h,init
k′ (x)+ I(φH,corr) (30)

where I is the same interpolation operator used in step 2c. of the single-grid
infinite-domain Poisson solver (setting the layer width P to b), and

φH,corr
= φH (x)−

∑
k′:x∈G(�h

k′ ,s)

φ
H,init
k′ (x), (31)

which is the global coarse solution with the local contribution subtracted. Figure
2 depicts the regions from which data are taken to set boundary conditions on
a face.

Finally, we apply the Mehrstellen correction (15) to the solution.
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For O(h2) accuracy of the method, we set b = 2 and s = 2C .

4.1. Separating the monopole component. In order to minimize the cost of the
infinite-domain solution, we would like to set s1, the amount by which we grow
the domain in the initial Dirichlet solution for the James–Lackner algorithm, to be
zero. In the present application, the charge on each patch is nonzero all the way
out to the boundary, so that the conditions under which this would be valid do not
hold. In particular, for the fixed-size patches (relative to the mesh spacing) we are
using here, this leads to an O(1) relative error in the monopole component of the
field used to compute the boundary conditions for the second Dirichlet solution.
We eliminate this error by separating out the monopole component on each patch,
and treating it exactly.

Specifically, for a given patch B, we compute ρ̄, the mean of ρ over B, and
subtract ρ̄χh

B from the right-hand side of (1) before solving, then add ρ̄ξB to the
solution, where ξB ≡ G ∗χB is computed analytically and stored.

In the initial local solve, we replace (24) by

1hφ̃
h,init
k = ρh

k − ρ̄h
k χ

h
�h

k
on G(�h

k , s + Cb) (32)

and then sample the solution:

φ̃
H,init
k = SH (φ̃

h,init
k ) on G(�H

k , s/C + b). (33)

The updated solutions are

φ
h,init
k = φ̃

h,init
k + ρ̄h

k ξ
h
�h

k
; (34)

φ
H,init
k = φ̃

H,init
k + ρ̄h

k ξ
H
�H

k
. (35)

In forming the right-hand side for the global coarse solve, we replace (26) by

RH
k =

{
1H φ̃

H,init
k + ρ̄h

k χ
H
�H

k
on G(�H

k , s/C − 1);

0 elsewhere.

In the final local Dirichlet solves, we replace (29) by

1hφ̃h
k = ρh

k − ρ̄h
k χ

h
�h

k
on �h

k (36)

and the Dirichlet boundary conditions (30) by

φ̃h
k (x)=

∑
k′:x∈G(�h,init

k′ ,s)

φ
h,init
k′ (x)+ I(φH,corr)+ ρ̄h

k ξ
h
�h

k
(x). (37)

Finally, we have the solution

φh
k = φ̃h

k +
¯ρh
k ξ

h
�h

k
. (38)
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4.2. Extending to more than two levels. In extending the MLC solver from two
levels to three, we assume a hierarchical nesting of patches, such that each fine-level
patch is contained in one and only one middle-level patch. We run the two-level
MLC solver separately within each middle-level patch, except that we perform the
global coarse solve (28) on the middle-level patches with a two-level MLC solver
using all the middle-level patches and the domain of the coarsest level.

The MLC solvers between the middle and fine levels require an expansion of
the middle-level patches, specifically by 2d(s/C − 1)/2e, taking s and C to be
respectively the correction radius and coarsening ratio between these two levels.
Then in the MLC solver between the middle and coarse levels, the finer-level patches
�h

k will overlap by this amount.
We may similarly extend to an arbitrary number of levels. In our implementation

of the MLC solver on three levels, in order to retain accuracy we set b = 2 and a
larger buffer size s = 4C (instead of s = 2C) relating the coarse and the middle
levels where C is the coarsening factor between middle and coarse levels. Between
the fine and middle levels, we retain buffer size s = 2C where C is the coarsening
factor between these levels.

5. Results

As an example, we use right-hand sides built from ρosc
m , a spherically symmetric

function with high-wavenumber component:

ρosc
m (r)=

{
((r − r2) sin(2mπr))2, if r < 1 ;
0, if r ≥ 1 .

The wavelength of ρosc
m is 1/(2m). If we set α = 4mπ , then the integral of ρosc

m
over space is ∫

ρosc
m dV = π

( 2
105

+
48
α4 −

1440
α6

)
,

and the exact solution of
1φosc

m = ρosc
m

with infinite-domain boundary conditions is

φosc
m (r)=



r6/84 − r5/30 + r4/40+

60/α6
− 9/α4

− 1/120 + 120/(α6r)+
(−120/(α6r)− 9/α4

+ 300/α6
+ 36r/α4

+ r2/(2α2)

− 30r2/α4
− r3/α2

+ r4/(2α2)) cos(αr)+
(12/(α5r)− 360/(α7r)− 96/α5

+ 120r/α5

− 3r/α3
+ 8r2/α3

− 5r3/α3) sin(αr) if r < 1;

(−1/210 − 12/α4
+ 360/α6)/r if r ≥ 1.
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This solution is negative and has its minimum value at the origin:

φosc
m (0)= −

1
120

−
6
α4 .

We test with three different charge densities on the unit cube [0, 1]
3, with m set

to either 7, 15, or 30, and R = 0.05 in

ρ(x)=
1
R3

(
ρosc

m (|x − c1|/R)+ ρosc
m (|x − c2|/R)+ ρosc

m (|x − c3|/R)
)
, (39)

where c1 = ( 3
16 ,

7
16 ,

13
16), c2 = ( 7

16 ,
13
16 ,

3
16), and c3 = (13

16 ,
3

16 ,
7
16) . This is a su-

perposition of three disjoint spherical charge distributions. The wavelength is
λ= R/(2m)= 1/(40m). The solution, which is negative, attains its minimum value
at the sphere centers,

φexact(c1)=φ
exact(c2)=φ

exact(c3)=
(
−

1
120

−
6
α4

)
/R+

(
−

1
105

−
24
α4 +

720
α6

)
/D,

where D = |c1 − c2| = |c1 − c3| = |c2 − c3| is the distance between any two sphere
centers.

Our example uses three levels of boxes shown in Figure 3, with a coarsening
factor of 4 between adjacent levels. The boxes are as follows.

• Fine level: all boxes are cubes of length 32. If the whole domain is split into
512 = 83 subdomains of length 1

8 , then three of these subdomains contain the
support of the charge; these subdomains are then fully refined with fine-level
boxes.

• Middle level: all boxes are cubes of length 32 (becoming 36 after expansion,
as described in Section 4.2). Boxes at this level cover the three subdomains
with the support of the charge, plus an additional layer of boxes.

• Coarse level: these boxes cover the entire domain and are parallel slabs in one
direction. The number of slabs is the domain length in coarse cells divided by
4, or the number of processors, whichever is less.

5.1. Convergence results. In reporting our convergence results, we show the max
norms and L2 norms of solution error (difference between calculated solution and
exact solution) normalized by the max norm of the exact solution. We also show the
L2 norm of the error on the finest grids alone. (For all the cases discussed here, the
max norm on the finest grids is equal to the max norm on the whole domain.) We
also calculate a convergence rate, p, defined such that if ε f and εc are the norms of
the solution error with mesh spacings h f and hc, respectively, then

p = log2
ε f

εc

/
log2

h f

hc
. (40)
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Figure 3. Boxes in three-level solve used in example. All boxes
at the fine and middle levels have dimensions 32 × 32 × 32. The
coarse level is split into slabs across processors.

See Table 1 for convergence results with m set to 7, 15, and 30, in the example
with three-level MLC separating monopole solutions. The tables show the fine-
level mesh spacing h and norms of the normalized solution error εh , which is the
difference between calculated solution and exact solution, divided by ‖φexact

‖∞,
when the finest-level mesh spacing is h. While overall the solution error is O(h2),
there is considerable variation in the rates, depending on the norm used and the grid
resolution. This variation is not surprising, given the fact that there are multiple
parameter choices for the method that correspond to different asymptotic contribu-
tions to the error. The local James–Lackner computations have a contribution to
the error that is O(h2) coming from the choice of multipole parameters, while the
local truncation error for the Mehrstellen operator is O(h4), since we are applying
the Mehrstellen correction in the form of (15). Finally, the choice of b = 2 in the
boundary interpolation (30) for the final local solution step (29) corresponds to an
error that is formally O(h6), although in this case, the contribution to the solution
that is being interpolated is not sufficiently smooth to justify such an error estimate.
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In fact, the choice b = 2 was made empirically, with that choice leading to the
most uniform convergence behavior. Such empirical choices are a weakness in the
algorithm, and one that we intend to correct in future work.

Table 2 shows solution error on the three-level example with m = 7 when it is run
without separating the monopole solution. This does not converge in L2 norm, and
has very poor convergence in max norm, thus illustrating the need for separating
the monopole contribution to the solution.

Table 3 shows convergence results for the same examples (m set to 7, 15, and 30)
with boxes at only two levels of refinement instead of three. The boxes at the fine
level are the same as in the three-level arrangement, but the middle level is removed,
and there is a coarsening factor of 4 from the fine level to a coarse level covering
the full domain and split into parallel slabs. The mesh spacing at the coarser level in
the two-level arrangement is the same as that of the middle level in the three-level
arrangement. Comparing the two-level results in Table 3 and the three-level results
in Table 1, with finest-level mesh spacings of h = 1/2048 and h = 1/4096, we see
that the increased accuracy in the two-level calculation is worth approximately a
factor of two in mesh spacing, with the difference decreasing as the wavenumber
m increases. For the m = 30 cases, the three-level computation has essentially the
same error as the two-level computation at the same fine-grid resolution. As m
decreases to 15 and 7, the error of the two-level calculation becomes much smaller
than that of the three-level calculation. This is consistent with the observation
that there are two competing sources of error: that induced by the local truncation
error, which for a fixed h scales like m2; and that coming from the error in the
representation of far-field effects, which is only weakly dependent on m. Thus as
m decreases from m = 30, the contribution of the local truncation error rapidly
decreases, leaving only the contribution from the error in the representation of the
far-field effects. These are more accurately represented by a single-level calculation
than by a two-level calculation at the same resolution. Nonetheless, we shall see
below that, in these cases, the two-level and three-level calculations provide roughly
the same accuracy for a given computational cost.

We also ran the problem on different sizes of a single grid with the James–Lackner
solver of Section 2 and Mehrstellen preconditioning (14). The results on the left
side of Table 4 show solution error converging in max norm at a rate that is fourth
order in the mesh spacing, as long as the oscillating right-hand side is resolved
sufficiently. Nonetheless, the accuracy of the Mehrstellen method, by itself, is
insufficient to make up for the lack of resolution in the coarsest-level calculation,
so that the MLC method on the locally-refined grids substantially increases the
accuracy of the overall solution. This is demonstrated in Table 4 by listing, beside
the Mehrstellen result, the max norm error of the three-level MLC result whose
coarsest level has the same mesh spacing as that of the Mehrstellen result.
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m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 2.132 E−5 1.632 E−7 1.738 E−7 7.31
7 1/4096 4.735 E−6 2.17 2.379 E−8 2.78 4.712 E−8 1.88 14.63
7 1/8192 1.130 E−6 2.07 5.720 E−9 2.06 8.419 E−9 2.48 29.26

15 1/2048 2.437 E−5 2.009 E−7 2.357 E−7 3.41
15 1/4096 4.906 E−6 2.31 2.642 E−8 2.93 3.061 E−8 2.95 6.83
15 1/8192 1.157 E−6 2.08 6.648 E−9 1.99 9.737 E−9 1.65 13.65

30 1/2048 5.022 E−5 3.798 E−7 3.848 E−7 1.71
30 1/4096 5.274 E−6 3.25 3.795 E−8 3.32 6.296 E−8 2.61 3.41
30 1/8192 1.542 E−6 1.77 7.593 E−9 2.32 1.270 E−8 2.31 6.83

Table 1. Norms and convergence rates of solution error with adap-
tive three-level MLC separating monopole solutions, for example
with m = 7, 15, and 30. The norms ‖εh

fine‖ are over the finest level,
and ‖εh

all‖ are over all three levels.

m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 4.280 E−5 8.449 E−7 2.608 E−6 7.31
7 1/4096 2.794 E−5 0.62 7.009 E−7 0.27 2.500 E−6 0.06 14.63
7 1/8192 1.971 E−5 0.50 6.713 E−7 0.06 2.521 E−6 −0.01 29.26

Table 2. Norms and convergence rates of solution error with adap-
tive three-level MLC without separating monopole solutions, for
the example with m = 7. Compare with Table 1, which shows
results of MLC separating monopole solutions. The norms ‖εh

fine‖

are over the finest level, and ‖εh
all‖ are over all three levels.

5.2. Timing results. In this section we present computational results demonstrating
the low communication overhead of our implementation of the MLC algorithm on
up to 1024 processors.

We ran on NERSC’s Seaborg IBM SP system, located at the National Energy
Research Scientific Computing Center1. Seaborg contains POWER3 SMP High
Nodes interconnected with a “Colony” switch. Each node is an 16-way Symmetric
Multiprocessor (SMP) based on 375 MHz Power-3 processors2, sharing between
16 and 64 Gigabytes of memory, and running AIX version 5.1.

1 http://www.nersc.gov/nusers/resources/SP
2http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/nighthawk.html
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m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 4.498 E−6 2.431 E−8 2.471 E−8 7.31
7 1/4096 9.698 E−7 2.21 7.664 E−9 1.67 3.373 E−8 −0.45 14.63

15 1/2048 7.845 E−6 7.889 E−8 1.232 E−7 3.41
15 1/4096 1.121 E−6 2.81 6.919 E−9 3.51 9.526 E−9 3.69 6.83

30 1/2048 3.681 E−5 3.380 E−7 3.381 E−7 1.71
30 1/4096 2.530 E−6 3.86 2.365 E−8 3.84 5.587 E−8 2.60 3.41

Table 3. Norms and convergence rates of solution error with adap-
tive two-level MLC, for examples with m = 7, 15, and 30. Compare
with Table 1, which shows results with three-level MLC. The norms
‖εh

fine‖ are over the finer level, and ‖εh
all‖ are over both levels.

one-grid Mehrstellen three-level MLC
m H ‖εH

‖∞ p λ/H h ‖εh
‖∞ p λ/h

7 1/256 3.529 E−2 0.91 1/4096 4.735 E−6 14.63
7 1/512 4.193 E−4 6.40 1.83 1/8192 1.130 E−6 2.07 29.26
7 1/1024 1.726 E−5 4.60 3.66

15 1/256 1.019 E−2 0.43 1/4096 4.906 E−6 6.83
15 1/512 3.288 E−3 1.63 0.85 1/8192 1.157 E−6 2.08 13.65
15 1/1024 1.446 E−4 4.51 1.71

30 1/256 4.556 E−2 0.21 1/4096 5.274 E−6 3.41
30 1/512 4.167 E−3 3.45 0.43 1/8192 1.542 E−6 1.77 6.83
30 1/1024 9.687 E−4 2.10 0.85

Table 4. Max norms and convergence rates of solution error with
Mehrstellen on a single grid (on left), for examples with m = 7, 15,
and 30. Also shown (on right) are the max norms of the solution
error for the three-level MLC, copied from Table 1, with the same
mesh spacing H at the coarse level.

The solver is written in a mixture of C++ and Fortran 77, and calls the FFTW
library [10] for the fast discrete sine transforms in the Dirichlet Poisson solves.
We used the IBM C++ and Fortran 77 compilers, mpCC and mpxlf. C++ code
was compiled with the IBM mpCC compiler, using options -O2 -qarch=pwr3
-qtune=pwr3. Fortran 77 was compiled with mpxlf with -O2 optimization. We
used the standard environment variable settings, and we collected timings in batch
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Size three-level example two-level example
N fine middle coarse fine coarse

2048 50 923 779 6 440 067 2 146 689 50 923 779 135 005 697
4096 405 017 091 21 567 171 16 974 593 405 017 091 1 076 890 625
8192 3 230 671 875 99 228 483 135 005 697

Table 5. Numbers of solution points at each level in the three-level
MLC example (with timing results in Table 6) and the two-level
MLC example (with timing results in Table 7).

mode using loadleveler. The timings reported are based on wall-clock times,
obtained with MPI_Wtime().

The times reported are for the runs with the shortest total times of m set to 7, 15,
or 30. Timers were placed around large function calls rather than inner loops to
reduce the effects of noise in the timing results. The bulk-synchronous nature of
the algorithm allows us to fully separate computation times from communication
times. Reported running times do not include one-time startup costs such as a
preprocessing phase for the serial James–Lackner solver that computes a matrix
for obtaining outer-grid boundary conditions from multipole coefficients due to
charges on the inner-grid boundary. This matrix depends only on the problem size
and accuracy parameters, and its computation is considered a fixed overhead to be
amortized over many calls to the solver.

In measuring the performance, we scaled the work with the number of processors.
The run parameters and timing results for the performance tests of the three-level
MLC are shown in Table 6. Processors are allocated to SMP nodes in such a way
that each node runs 16 processors.

Results for performance tests of the two-level MLC are shown in Table 7. Since
execution slows down when the memory capacity of a node is close to being reached,
in the two-level MLC runs, processors are allocated to SMP nodes in such a way
that each SMP node runs only eight processors — that is, half of the processors on
the node.

Results for performance tests of the parallelized single-grid solver are shown
in Table 8. In these examples, as with the two-level MLC runs, processors are
allocated to SMP nodes with eight processors per node.

We define grind time as the processor-time taken per fine-level solution point.
Ideally the grind time would remain constant over problem sizes and numbers of
processors. We see from Table 6 that for the three-level MLC, grind times are fairly
stable, at around 22 to 23 µs/point.



76 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

Size Times for each stage (seconds) Total Grind
P N InitF InitM Crse BndM FinM BndF FinF (s) (µs/pt)

16 2048 44.99 12.52 3.51 0.33 0.66 2.64 4.89 69.57 21.86
128 4096 45.51 6.76 10.19 0.15 0.30 4.12 4.75 71.83 22.70

1024 8192 46.01 3.95 13.04 0.15 0.17 4.03 4.78 72.28 22.91

Table 6. Timing breakdowns for runs of an adaptive three-level
MLC solver, with P processors and domain length N . Boxes at
the fine and middle levels are all cubes of length 32. InitF: Initial
fine-level local solve. InitM: Initial middle-level local solve. Crse:
Coarse-level solve. BndM: Boundary communication to middle-
level final solve. FinM: Final middle-level solve. BndF: Boundary
communication to fine-level final solve. FinF: Final fine-level
solve.

Size Times for each stage (seconds) Total Grind
P N Init Crse Bnd Fin (s) (µs/pt)

64 2048 11.73 22.61 0.26 1.22 35.84 45.04
512 4096 13.25 47.46 0.50 1.21 62.44 78.93

Table 7. Timing breakdowns for runs of an adaptive two-level
MLC solver, with P processors and domain length N . Boxes at
the fine level are all cubes of length 32. Init: Initial fine-level local
solve. Crse: Coarse-level solve. Bnd: Boundary communication to
fine-level final solve. Fin: Final fine-level solve.

Size Times for each stage (seconds) Total Grind
P N points Homo Normal FMM Inhomo (s) (µs/pt)

4 256 16 974 593 10.53 0.08 2.23 57.34 70.20 16.54
32 512 135 005 697 13.39 0.87 4.51 22.93 41.72 9.89

256 1024 1 076 890 625 13.65 3.06 10.53 19.26 46.52 11.06

Table 8. Timing breakdowns for runs of infinite-domain solver
on one level, with P processors and domain length N , and given
number of points, which is (N + 1)3. Homo: Initial homogeneous
Dirichlet Poisson solve. Normal: Copying of Poisson solution and
evaluation of normal derivatives. FMM: Fast multipole method.
Inhomo: Final inhomogeneous Dirichlet Poisson solve.



A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 77

Size Communication in stages (seconds) Total % of
P N Boundary Coarse Residuals (s) runtime

16 2048 0.37 0.22 0.08 0.68 0.97 %
128 4096 1.56 0.58 0.14 2.28 3.17 %

1024 8192 1.40 1.77 0.68 3.85 5.32 %

Table 9. Communication time in the adaptive three-level MLC
solve, for the same runs as reported in Table 6. Boundary: Copying
of solutions within and between fine and middle levels (as illus-
trated in Figure 2). Coarse: Communication in the solve at the
coarsest level. Residuals: Copying of residuals at the fine and
middle levels.

Grind times vary by almost a factor of two in the two-level MLC examples in
Table 7. These results are not as consistent as with the three-level example, because
the coarse-level solution takes a majority of the run time: it is computed using a
conventional parallel FFT algorithm that does not scale as well as the local solves,
and has 2.65 times as many points as the local fine grids (Table 5). This lack of
scaling also had an impact on the memory requirements. The two-level calculations
required substantially more memory than the three-level calculations, so that we
were only able to use eight processors per node for these runs, rather than the full
16 processors per node used in the three-level runs. In reporting the number of
processors and computing the grind times in Table 7, we report the number of
processors actually used, whereas the system resources required corresponded to
double that number.

The lower parallel performance of the two-level calculations also affects the
tradeoffs between using the two-level and three-level algorithms from an accuracy
standpoint. For the m = 30 case, the accuracy of the two-level and three-level
calculations are almost the same, and the cost of the two-level calculation is far
greater: for example, the system resources required for the 4096-resolution two-
level calculation are the same as those used for the 8192-resolution three-level
calculation. As m decreases, the tradeoffs favor the two-level calculation more,
but the computational costs of obtaining a given level of accuracy using the two
different strategies remains within a factor of two.

In the runs of the three-level MLC, as shown in Table 6, over half the time
is spent in the initial fine-level solves. With the particular problem sizes, each
processor holds data for 96 fine-level boxes. The grind time for the initial fine-level
solves ranges from 14.1 to 14.6 µs/point, and for the final fine-level solves ranges
from 1.50 to 1.54 µs/point. Overall, we are able to scale a problem up from 16 to
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Size AMR Time Grind Communication time
P N iterations (s) (µs/pt) (s) % of runtime

16 2048 9 352.04 110.61 25.81 7.49%
128 4096 9 468.41 148.03 78.87 17.65%

Table 10. Times for multigrid Poisson solver with Dirichlet bound-
ary conditions. Compare with Table 6 for MLC on the same fine-
level and middle-level grids.

1024 processors with, at worst, a 4% increase in the grind time. The increase is due
primarily to the increased cost of the global FFT solution at the coarsest level. We
believe that the performance of our implementation of the global FFT solver can be
improved from that seen here.

We compare these results with timings for an adaptive node-centered multigrid
algorithm for solving Poisson’s equation with Dirichlet boundary conditions [18]
on the same platform. This algorithm is run on three levels of boxes, with the fine
and middle levels being the same as were used with MLC, but the coarse level
being fully refined into cubes of length 32, instead of parallel slabs. Although we
are solving a different problem here, we believe that these results are typical of
the cost of using the same algorithm to solving the infinite-domain problem along
the lines of the algorithm in [1]. Comparison of results of the multigrid timings in
Table 10 with the MLC timings in Table 6 shows that the multigrid algorithm takes
5 to 7 times longer than MLC, although a count of the number of floating-point
operations shows that it uses only 1.38 to 1.45 times as many such operations as
MLC. Considerably more time is spent in communication in this algorithm than
in MLC (comparing Table 10 with Table 9). On the example on 128 processors,
the time for communication, at 78.87 seconds, exceeds the total time for the MLC
solve on the same grids.

Finally, we can infer from these results a lower bound on the grind time required
for a Hockney algorithm to solve Poisson’s equation at the same resolution as that
on our finest grid. Judging from the time in the FinF column of Table 6, the time
per grid point of an FFT solver for a 323 grid is about 1.52 µs per grid point. Thus
the cost per mesh point per processor of performing an infinite-domain solution
on a uniform grid with linear dimension N using the James–Lackner algorithm is
at least 1.52 × 2 × 0.2 log2 N µs, where the factor of 2 comes from the minimum
cost of solving the two Dirichlet problems for the James–Lackner algorithm, and
0.2 = 1/ log2 32. This leads to grind times of 6.7 to 7.9µs for the range of mesh
resolutions given here. Thus, the grind times for the three-level MLC calculations
are approximately three times the lower bound we’ve estimated here.
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6. Conclusions and future work

We have described here an extension to Anderson’s Method of Local Corrections
for solving Poisson’s equation in free space on nested multiresolution grids in
three dimensions. This is a noniterative domain-decomposition method based on
computing local convolutions with the free-space Green’s function on overlapping
rectangular subdomains with a fixed number of grid points, combined with a
representation of the nonlocal coupling between subdomains by a coarse-grid
calculation in a manner that is structurally similar to a single iteration of an FAS
multigrid method. The extension to locally-refined grids and to more than two
levels is straightforward. A key technical step is an extension to three dimensions of
the James–Lackner method for computing local convolutions, based on using FFTs
for computing the volume potentials combined with a simplified version of the fast
multipole method for surface-surface convolutions. This is combined with an exact
treatment of the contribution to the local potential from the piecewise-constant
component of the charge in each rectangle.

We demonstrated second-order accuracy of the method for a nontrivial example.
We also found that the computational cost of the method is approximately three
times per grid point that of FFT calculation at the same resolution, and scales to
1024 processors at approximately 95% parallel efficiency, with less than 7% of the
run time in MPI communication calls. We have also compared the performance
of this method to that of a conventional AMR multigrid solver on the same grid
hierarchy, and found that, on 128 processors, the latter takes seven times as much
time overall to compute the result, and spends 16 times as much time in MPI
communication than the present method. We know of no other method for Poisson’s
equation in 3D that exhibits the same combination of performance and scalability
on multiresolution grid. We believe that the results presented here indicate the
possibility of scaling effectively to a PetaFlop computer (105 processors).

The results given here, while extremely promising, must be viewed as a first step
in developing a robust and automatic piece of software. There are free parameters
in the method, such as the dependence of the degree of overlap on the level of
refinement, that are ad-hoc, and need to be defined systematically. One of the
principal difficulties in this area is estimating and controlling the different sources
of error in the algorithm separately and with complete generality. One aspect
of solving that problem is for all components of the algorithm to have tunable
accuracy, as opposed the present situation, in which the fourth-order Mehrstellen
algorithm is a fixed target. Also, the current formulation of the algorithm does
not preserve the geometric locality of the charge distributions. For example, the
field induced on a patch on the middle level in a three-level calculation includes
contributions from the charge distribution on finer patches not covered by the middle



80 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

patch. This feature makes it difficult to estimate the error as it propagates down
through refinement levels. We are currently working on a version of the algorithm
that will preserve locality under coarsening. As is the case with other adaptive
methods, the general question of criteria for determining the needed grid refinement,
as a function of space, time, and data, is not completely resolved. However, our
treatment of the coupling between refinement levels may simplify the problem,
relative to conventional finite difference methods [18]. Finally, there is still room
for further performance improvement. For example, the parallel FFT solver used
for the coarsest level is implemented using the Chombo communication primitives,
that were not designed for the global communications required in the transform
step. Since this calculation is a parallel bottleneck for the overall algorithm, any
improvements would significantly improve the overall scaling of the method.

There are a number of directions in which the method described here could
be extended. These include cell-centered solvers, solvers for the 3D Helmholtz
equations, and higher-order methods. The extension to other boundary conditions
on the domain boundary (Dirichlet, Neumann) is straightforward using method of
images ideas [9]; a more challenging question is the extension of this approach to
the case of Cartesian-grid representations of irregular boundaries [19; 15; 18].
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DUAL-BASED A POSTERIORI ERROR ESTIMATE FOR
STOCHASTIC FINITE ELEMENT METHODS

LIONEL MATHELIN AND OLIVIER LE MAÎTRE

We present an a posteriori error estimation for the numerical solution of a sto-
chastic variational problem arising in the context of parametric uncertainties. The
discretization of the stochastic variational problem uses standard finite elements
in space and piecewise continuous orthogonal polynomials in the stochastic
domain. The a posteriori methodology is derived by measuring the error as
the functional difference between the continuous and discrete solutions. This
functional difference is approximated using the discrete solution of the primal
stochastic problem and two discrete adjoint solutions (on two imbricated spaces)
of the associated dual stochastic problem. The dual problem being linear, the
error estimation results in a limited computational overhead. With this error
estimate, different adaptive refinement strategies of the approximation space
can be thought of: applied to the spatial and/or stochastic approximations, by
increasing the approximation order or using a finer mesh. In order to investigate
the efficiency of different refinement strategies, various tests are performed on the
uncertain Burgers’ equation. The lack of appropriate anisotropic error estimator
is particularly underlined.

1. Introduction

Simulation of physical systems is often challenged by incomplete knowledge of
model parameters, including initial conditions, boundary conditions, external forc-
ing, physical properties and modeling constants. In these situations, it is relevant
to rely on a probabilistic framework and to consider the unknown model data as
random quantities. Consequently, it becomes essential to assess the variability of
the model solution induced by the variability of the model data, i.e., to propagate
and quantify the impact of the uncertainty on the model solution. In a probabilistic
framework, the uncertainty quantification consists in the determination of the
probability law of the model solution induced by the probability law of the data, in
order to establish confidence intervals, to estimate limits of predictability and/or to
support model-based decision analysis.

Keywords: error analysis, stochastic finite element method, uncertainty quantification, refinement
scheme.
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Uncertainty propagation and quantification has recently received considerable
attention, particularly through the development of efficient spectral techniques
based on Polynomial Chaos (PC) expansions. PC based methods were originally
developed for engineering problems in solid mechanics [10; 25] and subsequently
applied to a large variety of problems, including flow through porous media [8; 9],
thermal problems [12; 13], incompressible [19; 20; 30] and compressible flows [18;
21] (see also [14] for a review of recent developments in PC methods for fluid
flows) and reacting systems [7; 24]. PC expansions consist in the representation
of the uncertain data as functionals of a finite set of independent random variables
with prescribed densities, the uncertainty germ, and in expanding the dependence
the model solution using a suitable basis of uncorrelated functionals of the germs.
A classic choice for the basis is a set of polynomials in the germ. If the germ has
zero-mean normalized Gaussian components, one obtains the Wiener–Hermite PC
basis [28; 5], which is formed of generalized Hermite polynomials. Other density
types of the germ components result in various families of orthogonal polynomials
or mixtures of orthogonal polynomials [29]. Two distinct types of solution methods
can be used to compute the expansion coefficients of the stochastic solution: the
sampling based approaches and the Galerkin projection. In the former type of
methods, one solves a series of deterministic problems for different values of the
uncertain model data and makes use of the resulting sample set of solutions to
estimate the expansion coefficients (see for instance [24; 20]). The second type
of methods, which is considered in the following, consists on the contrary in a
projection of the model equations (weak formulation) on the expansion basis. This
Galerkin projection results in a set of generally coupled deterministic problems for
the stochastic modes of the solution.

Piecewise polynomials [27] and multiwavelets [15; 16] were recently proposed
as elements of the stochastic basis. These representations were developed to
address the limitations of global spectral representations for complex, steep or
even discontinuous dependencies of the model solution with regard to the data,
for instance when a bifurcation appears for values of the data in the uncertainty
domain. A key aspect of these discontinuous stochastic approximations is that they
naturally offer flexibility for a local adaptation of the representation to the solution.
This adaptation allows for improvements of the computed solution, through local
refinements of the approximation space, while maintaining the dimension of the
representation basis and of the set of coupled problems to be solved at a reasonable
level. The refinement of the stochastic approximation space can in fact consist in
an increase of the local expansion order (p-refinement) or in using polynomials
being continuous over smaller supports (h-refinement). For instance, in [15; 16]
the domain of the random parameters is partitioned in subdomains over which
independent discontinuous low order expansions are employed. Heuristic criteria,
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based on the spectrum of the local expansion, is used to decide whether the local
expansion is sufficient or whether it should be improved by means of h-refinement,
i.e., by splitting the subdomain into smaller ones, and along which dimension of
the germ. A similar strategy is pursued in [27] but in the context of hp-spectral
approximations. The refinement is also based on heuristic arguments involving the
relative contribution of the higher order terms to the local solution expansion.

Although these schemes have been shown to provide significant improvements
over global PC expansions, in terms of robustness (see for instance [17]) and
computational efficiency, they still lack rigorous criteria for triggering the refinement.
The objective of the present paper is therefore the derivation of a rigorous error
estimator, to be used in place of the heuristic error indicators. To this end, we have
decided to extend the dual-based a posteriori error technique commonly used in the
(deterministic) finite element community. This choice was motivated by the firm
and rigorous theoretical foundations of this error estimate technique, and because
of its variational framework which makes it suitable for extension to the Galerkin
projection of stochastic problems.

The paper is organized as follows. In Section 2, the variational formulation
of a generic stochastic problem, based on a mathematical model involving para-
metric (data) uncertainties, is considered. The stochastic variational problem and
construction of the approximation space are detailed. The latter involves a finite
element discretization in space and a piecewise continuous approximation along the
stochastic dimensions. In Section 3, the dual-based a posteriori error estimation is
introduced. The methodology makes use of a differentiable functional to measure
the difference between the exact (continuous) and approximated (discrete) stochastic
solutions. Provided the discrete solution is sufficiently close to the continuous one,
their functional difference is shown to be well approximated by a simple estimate.
This estimate involves the discrete solutions of the primal and associated dual
problems, and the continuous adjoint solution of the dual problem. A classic
surrogate of the continuous adjoint solution is proposed, resulting in an error
estimate methodology requiring the resolution of the discrete primal problem and
two dual problems on different approximation spaces. The dual problems to be
solved being linear, the computational overhead of the error estimator is expected to
be limited. In Section 4, we discuss the various strategies that can be subsequently
used to improve the approximation in order to reduce the error. The reduction of
the error can be performed by using smaller elements or by increasing the orders of
the spatial and stochastic approximation spaces. As in the deterministic context,
the determination of the optimal refinement strategy is an open question, which is
made even more difficult and critical in the present stochastic context where the
stochastic space (domain of the germ) may have many dimensions. Consequently,
Section 5 presents some numerical tests aiming at showing the validity of the
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proposed dual-based error estimator in deciding which spatial/stochastic elements
need priority refinement. The test problem is based on the 1-D Burgers’ equation,
with uncertainty on the viscosity and a boundary condition. Different algorithms of
increasing complexity are proposed for the local refinement of the stochastic and
spatial approximations, based on the dual-based error estimation. Finally, major
findings of this work and a few recommendations for future developments are
summarized in Section 6.

2. Variational formulation of uncertain flow

2.1. Deterministic variational problem. We will consider the standard variational
problem for u on a M-dimensional domain �x ⊂ RM with homogeneous Dirichlet
boundary condition (u = 0) on the boundary ∂�x of �x :

a(u;ϕ)= b(ϕ) ∀ϕ ∈ Vx , (1)

to be solved for u ∈Vx , a suitable Hilbert space of�x . In Eq. (1), a is a differentiable
semilinear form and b a linear functional.

2.2. Stochastic variational problem. It is assumed that the mathematical model
given by Eq. (1) involves some parameters, or data, denoted by a real-valued vector
d. The data may for instance consist of some physical constants involved in the
model. Clearly, the solution u of the variational problem depends on the data value,
a fact stressed by making explicit the dependence of the variational problem with d:

a(u;ϕ|d)= b(ϕ|d) ∀ϕ ∈ Vx . (2)

If the actual value of the data d is not exactly known, (is uncertain), it is suit-
able to consider d as a random quantity defined on an abstract probability space
(2,B, dP), 2 being the set of elementary outcomes θ , B the σ -algebra of the
events and dP a probability measure. In this context, the solution of the model
is also random. In the following, we adopt the convention consisting in using
uppercase letters to denote random quantities. Therefore, the random solution U
and data D are dependent stochastic quantities defined on the same probability
space (2,B, dP); the dependency between U and D is prescribed by the model.
Uncertainty propagation and quantification thus consists in the inference of the
probability law of U , given the probability law of D and the mathematical model
relating the two. It is assumed that the problem is well-posed in the sense that
problem (2) has almost surely a unique solution.

We denote V2 = L2(2, dP) the space of second order random variables. We
thus have to solve, for U ∈ Vx ⊗ V2,

A(U ;8|D)= B(8|D) ∀8 ∈ Vx ⊗ V2, (3)
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where

A(U ;8|D)≡

∫
2

a(U (θ);8(θ)|D(θ)) dP(θ),

B(8|D)≡

∫
2

b(8(θ)|D(θ)) dP(θ).
(4)

2.3. Stochastic discretization. We assume that D is parameterized as a functional
of a finite number N of independent identically distributed real valued random
variables ξi , defined on (2,B, dP) with value in Sξ ⊂ R:

D = D(ξ), ξ = (ξ1, . . . , ξN) ∈ (Sξ )N ≡�ξ ⊂ RN. (5)

The vector ξ of random parameters is often referred to as the uncertainty germ. We
denote p the known probability density function of ξi such that, by virtue of the
independence, the joint distribution of ξ is given by

pξ (ξ)= pξ (ξ1, . . . , ξN)=

N∏
i=1

p(ξi ). (6)

Without loss of generality, we shall restrict ourself in the following to germs having
uniformly distributed components on Sξ = [−1, 1] and consequently we have

p(ξi )=

{
1/2 if ξi ∈ [−1, 1],

0 otherwise,
�ξ = [−1, 1]

N. (7)

Note however that the developments given below can be easily extended to the
situation where the ξi have different ranges and/or different distributions. The
variational problem can be formulated in the image probability space (�ξ ,Bξ , pξ ),
using

A(U ;8|D)=

∫
2

a(U (θ);8(θ)|D(θ)) dP(θ)

=

∫
�ξ

a(U (ξ);8(ξ)|D(ξ) pξ (ξ))dξ ≡ 〈a(U ;8|D)〉�ξ , (8)

B(8|D)=

∫
2

b(8(θ)|D(θ)) dP(θ)

=

∫
�ξ

b(8(ξ)|D(ξ)) pξ (ξ)dξ ≡ 〈b(8|D)〉�ξ . (9)

Moreover, the stochastic functional space is now Vξ = L2(�ξ , pξ ) and the varia-
tional problem becomes

A(U ;8|D)= B(8|D) ∀8 ∈ Vx ⊗ Vξ , (10)

to be solved for U ∈ V ≡ Vx ⊗ Vξ .
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Following [27], we rely on piecewise orthogonal polynomials to construct the
stochastic approximation space. The stochastic range �ξ is divided into a collection
of Nb nonoverlapping subdomains �(m)ξ referred to as stochastic elements (SEs) in
the following. In this work, the SEs are hyper-rectangles:

�ξ =

Nb⋃
m=1

�
(m)
ξ , �

(m)
ξ = [ξ

(m),−
1 , ξ

(m),+
1 ] × · · · × [ξ

(m),−
N , ξ

(m),+
N ]. (11)

On �(m)ξ , the dependence of the data and solution with the random germ ξ is
expressed as a truncated Fourier-like series,

U (ξ ∈�
(m)
ξ )=

P(m)∑
k=0

u(m)k 9
(m)
k (ξ), D(ξ ∈�

(m)
ξ )=

P(m)∑
k=0

d(m)k 9
(m)
k (ξ), (12)

where 9(m)
k (ξ) are orthogonal random polynomials in ξ and u(m)k , d(m)k are the deter-

ministic expansion coefficients over �(m)ξ of the solution and data respectively. The
orthogonality of the random polynomials is defined with regard to the expectation
over the respective SE. Denoting by 〈·〉

�
(m)
ξ

the expectation over the m-th SE, we
can write the orthogonality of the polynomials as〈

9
(m)
k 9

(m)
k′

〉
�
(m)
ξ

=
1∣∣∣�(m)ξ

∣∣∣
∫
�
(m)
ξ

9
(m)
k (ξ)9

(m)
k′ (ξ) pξ (ξ) dξ

= δkk′

〈
9
(m)
k

2〉
�
(m)
ξ

, (13)

where ∣∣∣�(m)ξ

∣∣∣= ∫
�
(m)
ξ

pξ (ξ) dξ, (14)

and δkk′ is the usual Kronecker delta symbol. These polynomials vanish outside
their respective support:

9
(m)
k (ξ /∈�

(m)
ξ )= 0 ∀k = 0, . . . ,P(m). (15)

The number of terms P(m) in the expansions Eqs. (12) is a function of the selected
stochastic expansion order q(m) of the SE:

P(m)+ 1 =
(q(m)+ N)!

q(m)! N!
. (16)

The ξi being uniformly distributed, the polynomials 9(m)
k are simply rescaled and

shifted multidimensional Legendre polynomials [1]. The stochastic approximation
space is

Vh
ξ = span

(
{9

(m)
k }, 1 ≤ m ≤ Nb, 0 ≤ k ≤ P(m)

)
, (17)
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and the stochastic approximation can be improved by increasing the number Nb

of SEs, i.e., through refinement of the partition of �ξ , and/or by increasing the
stochastic expansion order q(m) over some stochastic elements.

2.4. Finite element discretization. Consider a partition of �x into a set of Nx

nonoverlapping finite elements (FE) with respective support �(l)x for l = 1, . . . ,Nx:

�x =

Nx⋃
l=1

�(l)x . (18)

The FE approximation of the continuous solution U , denoted by U h , over the
element �(l)x , is given by

U h(x ∈�(l)x )=

Nd(l)∑
i=1

U (l)
i N(l)

i (x), (19)

where Nd(l) is the number of degrees of freedom of the l-th element and N(l)
i the

associated spatial shape functions. We denote p(l) the polynomial order of the
shape functions over �(l)x . The spatial approximation space is thus

Vh
x = span

(
{N(l)

i }, 1 ≤ l ≤ Nx, 1 ≤ i ≤ Nd(l)
)
, (20)

and the spatial approximation can be improved by a refinement of the partition of
the spatial domain �x or by increasing the spatial order p(l) of some finite elements.

2.5. The approximation space Vh. From the stochastic and spatial approximation
spaces defined above, the approximation space Vh of the stochastic variational
problem is seen to be:

Vh
= Vh

x ⊗ Vh
ξ . (21)

The solution at a point (x, ξ) of �≡�x ×�ξ has for expression:

U (x ∈�(l)x , ξ ∈�
(m)
ξ )=

Nd(l)∑
i=1

P(m)∑
k=0

u(l,m)i,k N(l)
i (x)9

(m)
k (ξ), (22)

where the deterministic coefficient u(l,m)i,k is the k-th uncertainty mode of the m-th
SE for the i-th degree of freedom of the l-th FE.

An immediate consequence of the tensored construction of the approximation
space Vh is that the spatial FE discretization is the same for all the stochastic
elements �(m)ξ , and conversely the stochastic discretization is the same for all

spatial finite elements �(l)x . This is clearly not optimal as some portions of the
stochastic domain �ξ may require finer spatial discretization than others to achieve
a similar accuracy. Conversely, the solution in some parts of spatial domain �x
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may exhibit more complex dependences with regard to D(ξ), therefore requiring
a finer stochastic discretization than at other locations. However, for the tensored
construction Vh , the discrete solution can be improved through a) refinement of the
FE approximation space Vh

x uniformly over �ξ , and b) refinement of the stochastic
approximation space Vh

ξ uniformly over �x .
In fact, this symmetric situation can be easily relaxed: an adaptation to each

SE of the spatial discretization, i.e., the number of elements Nx and/or the number
of degrees of freedom of the elements Nd, causes no difficulty. This is due to the
complete independence of the solution over different stochastic elements, a feature
emerging from the absence of any differential operator along the uncertainty dimen-
sions. Consequently, the adaptation of Vh

x with the SEs was actually implemented
and used for the generation of the results presented hereafter. However, to simplify
the presentation of the method and the notation, this feature is not detailed here.
On the other hand, using a variable stochastic approximation for different spatial
FE is much more cumbersome and remains to be investigated. This adaptation
would require the development of nonobvious matching conditions of the stochastic
approximation across FE boundaries.

3. Dual-based a posteriori error estimate

3.1. A posteriori error. For a finite dimensional subspace Vh
⊂ V, the discretized

solution U h
∈ Vh is the Galerkin approximation defined as the solution of the

discrete problem

A(U h
;8h

|Dh)= B(8h
|Dh) ∀8h

∈ Vh . (23)

Let J :�→ R be a differentiable functional of the solution. In the spirit of [3] and
[2] among others, one is interested in approximating J(U ) as closely as possible
by J(U h), i.e., to minimize the difference J(U )− J(U h) in some sense. We seek
for an expression of J(U )− J(U h). To this end, let us define the Lagrangian L of
the continuous solution by:

L(U ; Z)≡ J(U )+ B(Z |D)− A(U ; Z |D), (24)

where Z ∈ V is the adjoint variable of the continuous problem. The adjoint variable
Z is a Lagrange multiplier of the optimization problem for the minimization of
J(U ) under the constraints of Eq. (10). Formally, this minimum corresponds to the
stationary points of L:

∂L

∂U
= J′(U ;8′)− A′(U ;8′, Z |D)= 0 ∀8′

∈ V, (25)

∂L

∂Z
= B(8|D)− A(U ;8|D)= 0 ∀8 ∈ V. (26)
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Eq. (25) is the adjoint (or dual) problem, while Eq. (26) is the state (or primal)
problem. The derivatives are here in the Gâteaux sense:

J′(U ;8′)= lim
ε→0

J(U + ε 8′)− J(U )
ε

,

A′(U ;8′, Z |D)= lim
ε→0

A(U + ε 8′
; Z |D)− A(U ; Z |D)

ε
.

Assuming that these limits exist, the derivatives are unique. Note that following
these definitions, the derivatives are generally nonadditive and nonlinear with regard
to U and 8′. However, the derivatives are homogeneous,

J′(U ;α8′)= α J′(U ;8′), A′(U ;α8′, Z |D)= α A′(U ;8′, Z |D),

so we will adopt the convention that functionals are at least homogeneous with
regard to the first argument after the right-side of a semicolon, and linear with
regard to the second argument, if any.

The discrete counterpart of the dual and primal problems are in turn

J′(U h
;8h′

)− A′(U h
;8h′

, Zh
|Dh)= 0 ∀8h′

∈ Vh, (27)

B(8h
|Dh)− A(U h

;8h
|Dh)= 0 ∀8h

∈ Vh . (28)

Combining these results, one obtains at the solutions {U, Z} ∈ V, {U h, Zh
} ∈ Vh

L(U, Z)−L(U h, Zh)= J(U )+B(Z)− A(U ; Z)−J(U h)−B(Zh)+ A(U h
; Zh)

= J(U )−J(U h), (29)

where the dependences of A and B on D have been dropped to simplify the notations.
Here, the operators applied to discrete solutions are understood to correspond to their
respective discrete counterpart. Then, the error estimates derived below account
for the discretization error. It is seen from Eq. (29) that the difference in J for
the continuous and discrete solutions is equal to the difference in their respective
Lagrangian.

3.2. A posteriori error estimation. Following [4], among others, we now derive
a more practical expression for the difference J(U ) − J(U h). Let K (· ) be a
differentiable functional on a given functional space W. The difference K (v)−
K (vh), for v and v′

∈ W, can be expressed as an integral between v and vh of the
derivative of K :

K (v)− K (vh)=

∫ v

vh
K ′(v′) dv′. (30)

The integration path can be parameterized to obtain

K (v)−K (vh)=

∫ 1

0
K ′(vh

+s(v−vh))(v−vh)ds =

∫ 1

0
K ′(vh

+ s ev; ev)ds, (31)
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where ev ≡ v−vh . Using K ′(v)= 0, we can rewrite the right-hand side of Eq. (31)
as

K (v)−K (vh)=

∫ 1

0
K ′(vh

+sev; ev)ds+ 1
2

(
K ′(vh

; ev)− K ′(vh
; ev)+ K ′(v; ev)

)
.

(32)
Making use of the Galerkin orthogonality and the trapezoidal rule we obtain

K (v)− K (vh)=
1
2

K ′(vh
; ev)+

1
2

∫ 1

0
K (3)(vh

+ s ev; e3
v) s (s − 1) ds. (33)

Applying this relation to the difference of the Lagrangian of the continuous and
discrete solutions leads, after some algebra, to:

J(U )− J(U h)=
1
2

[
ρ(U h, Z −8′h)+ ρ∗(Zh,U −8h)

]
+ R̃, (34)

with the residuals

ρ(U h, · )≡ B(· )− A(U h
; · ), (35)

ρ∗(Zh, · )≡ J′(U h, · )− A′(U h
; ·, Zh). (36)

The remainder term R̃ in Eq. (34) has for expression

R̃ =
1
2

∫ 1

0

(
J(3)(U h

+ s EU ; E3
U )− A(3)(U h

+ s EU ; E3
U , Zh

+ s EZ )

− 3 A′′ (U h
+ s EU ; E2

U EZ )
)

s (s − 1) ds, (37)

with the error terms defined as EU = U − U h and EZ = Z − Zh . Thus R̃ is
cubic in the error, suggesting that it can be neglected provided that the continuous
and discrete solutions are sufficiently close. It is also seen that the residuals are
functional of both the primal and dual continuous solutions U and Z , such that
using Eq. (34) to estimate J(U )−J(U h) would require two surrogates of U and Z
even if R̃ is neglected. In fact, the expression can be further simplified to remove
the contribution of U . Using an integration by part of R̃, one obtains [4]

ρ∗(Zh,U −8h)= ρ(U h, Z −8′h)+1ρ, (38)

where

1ρ =

∫ 1

0

[
A′′(U h

+ s EU ; E2
U , Zh

+ s EZ )− J′′(U h
+ s EU ; E2

U )
]

ds. (39)

Introducing this result into Eq. (34) leads to the final expression for the approxima-
tion error:

J(U )− J(U h)= ρ(U h, Z −8′h)+ r, (40)
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where

r =

∫ 1

0

[
A′′(U h

+ s EU ; E2
U , Z)− J′′(U h

+ s EU ; E2
U )
]

s ds. (41)

The remainder term r is now quadratic in EU and will be neglected, assuming again
that the discrete solution U h is indeed a close enough approximation of U .

3.3. Methodology. At this point we have an estimate of the approximation error
given by

J(U )− J(U h)≈ B(Z − Zh
|Dh)− A(U h

; Z − Zh
|Dh), (42)

where we have substituted 8′h by the adjoint solution of the discrete problem in
Eq. (40), as usual in a posteriori error methodology. To evaluate this estimate, one
needs to know the solutions U h and Zh of the primal and dual discrete problems
and the solution Z of the continuous dual problem given by Eq. (25). However,
the continuous dual problem can not be solved as it requires the knowledge of
the exact solution U . Instead, a surrogate of Z denoted Z̃ is used. This surrogate
is classically constructed by solving a discrete dual problem on a refined finite
dimensional space Vh̃ containing Vh . The methodology is thus the following. Given
an approximation space Vh we solve the primal and dual problems Eqs. ((28),(27))
for U h and Zh

∈ Vh . The refined space Vh̃
⊃ Vh is constructed by increasing the

polynomial orders of both the approximation space Vh
x and Vh

ξ , and we solve the

following dual problem for Z̃ ∈ Vh̃

J′(U h
;8)− A′(U h

;8, Z̃ |Dh̃)= 0 ∀8 ∈ Vh̃ . (43)

It yields the a posteriori error estimate given by

J(U )− J(U h)≈ B(Z̃ − Zh
|Dh)− A(U h

; Z̃ − Zh
|Dh). (44)

Two important remarks are necessary at this point. First, it is underlined that
the dual problems are linear and significantly less expansive to solve than the
primal problems, even in an enriched approximation space. Second, as shown by
Eq. (43), the adjoint solution Z̃ is based on a functional form A′ constructed with
the approximation of D on the enriched space Vh̃ . As a consequence, the resulting
error estimate based on Z̃ accounts for possible error in the approximation of the
uncertain data D(ξ) on Vh

ξ .

4. Refinement procedures

4.1. Global and local error estimates. The a posteriori error methodology de-
scribed in Section 3 gives access to an estimate of J(U )− J(U h) according to
Eq. (44). The global approximation error η is therefore
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η =
∣∣A(U h

; Z̃ − Zh
|Dh)− B(Z̃ − Zh

|Dh)
∣∣

=

∣∣∣〈a(U h
; Z̃ − Zh

|Dh)− b(Z̃ − Zh
|Dh)

〉
�ξ

∣∣∣
≤

Nb∑
m=1

∣∣∣�(m)ξ

∣∣∣ ∣∣∣〈a(U h
; Z̃ − Zh

|Dh)− b(Z̃ − Zh
|Dh)

〉
�
(m)
ξ

∣∣∣ . (45)

Defining the local error on the element �(l)x ×�
(m)
ξ by

ηl,m ≡

∣∣∣∣∣
∫
�
(m)
ξ

∫
�
(l)
x

[̃
a(U h

; Z̃ − Zh
|Dh)− b̃(Z̃ − Zh

|Dh)
]

pξ (ξ) dx dξ

∣∣∣∣∣ , (46)

where ∫
�x

ã(u; v|d)dx = a(u; v|d),
∫
�x

b̃(v|d)dx = b(v|d),

we obtain the following inequality:

η ≤

Nx∑
l=1

Nb∑
m=1

ηl,m . (47)

Then, the objective is to refine the approximation space Vh in order to reduce the
global error η as estimated from the a posteriori error analysis. A popular strategy
to ensure that the global error gets below a given threshold value εη is to refine the
approximation such that

ηl,m <
εη

NxNb
= ε, ∀l,m ∈ [1,Nx] × [1,Nb]. (48)

4.2. Refinement strategies. If the criterion given in Eq.(48) is not satisfied for
at least one SFE, the approximation space needs refinement. Different types of
refinements are possible. First, from the tensored construction of the approximation
space, Vh

= Vh
x ⊗ Vh

ξ , it is seen that the refinement may concern the spatial
or stochastic approximation spaces, or both. To distinguish these two types of
refinement we shall refer in the following to x and ξ -refinement for the spatial
and stochastic refinements respectively. Second, the refinement can be based on
construction of finer partitions of the domains or on increased approximation orders,
hereafter referred to as h- and p-refinements respectively. Therefore, we can choose
between four fundamental types of refinements to reduce the approximation error
to satisfy Eq. (48), hξ -, hx -, pξ - or px -refinements, or any combination of the four.

The problem is thus to find the refinement strategy that yields the largest decay of
the discretization error for the lowest computational cost. The difficulty here is that
the local error estimate only provides some information about the elements (SEs
and FEs) over which the approximation is insufficient. In other words, if for some l
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and m the local error is such that ηl,m > ε then we can only safely consider that the
approximation error over �(m)ξ ×�

(l)
x is too large but nothing more. Specifically, it

is not possible to decide (a) between h- or p-refinement and (b) whether one should
enrich the approximation space Vh

x or Vh
ξ .

Difficulty (a) is a classic problem in (deterministic) hp-finite-element methods.
In the deterministic context, different strategies have been proposed to support the
decision regarding h- or p-refinement, and most of these strategies are based on trial
approaches. For instance, in [11], a systematic trial of h-refinement is performed.
The efficiency of the h-refinement is subsequently measured by comparing the
resulting error reduction with its theoretical value estimated using the convergence
rate of the FE scheme. If the efficiency of the h-refinement is not satisfactory, a p-
refinement is enforced at the following refinement step. This type of trial/verification
approach has not been retained here because of its numerical cost. Difficulty (b) is on
the contrary specific to stochastic finite-element methods and thus remains entirely
to be investigated. A possible way to deal with difficulty (b) can be envisioned
again by a trial approach where one would apply successively x and ξ -refinements
to measure the respective effectiveness in error reduction. Again, trial approaches
are expected to be overly expensive in the stochastic context where the size of the
discrete problems to be solved can be many times larger than for the deterministic
case: better approaches, yet to be thought, are needed here.

Another issue arising in the stochastic context is the potentially large dimen-
sionality N of the stochastic domain �ξ : an isotropic hξ -refinement, where SEs
are broken into smaller ones along each dimension ξi , can quickly result in a
prohibitively large number of SEs. This issue was already observed in [15; 16; 17]
where adaptive multiwavelet approximations are used. Rather, it is desirable to
gain further information on the structure of the local error ηl,m in order to refine
along the error’s principal directions solely. Several approaches may be thought of
to deal with this constraint. In the context of deterministic finite element method,
several anisotropic error estimators have been rigorously derived based on higher
order information. Among others, [23] and [22] use the Hessian matrix based on
Clément interpolants [6] to derive an estimate of the directional errors. Thought
attractive, this method has only been derived for first-order finite elements (P1)
and its extension to higher order remains largely an open problem. This limitation
precludes its use in the present context where approximation order q is routinely
larger than one. As a result, we feel that the issue of anisotropic refinement remains
largely to be addressed while being the most critical aspect of the refinement
strategies; it is also the possible source of significant improvements for the Adaptive
Stochastic Finite Element method. In fact, it is anticipated that the derivation of
anisotropic refinement techniques will allow to deal with problems involving a
larger set of random variables than currently tractable.
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Considering all these difficulties, it was decided to first verify the effectiveness
of the dual-based a posteriori error estimation in indicating which elements need
refinement, and to delay the question of the refinement strategy decision to a future
work. Consequently, we present in a next section some numerical tests which
essential purposes are to prove that the proposed error estimator indeed detect areas
of � where the error is the most significant. Still, we perform refinements, of
increasing complexity, without pretending in any way that the decision algorithms
used yield optimal approximation spaces, but merely that they allow for a reduction
of the global error to an arbitrary small level.

5. Numerical examples

5.1. Uncertain Burgers’ equation. To test the a posteriori error estimator, we
consider the 1-D Burgers’ equation on the spatial domain �x ∈ [x−, x+

]:
1
2
(u (1 − u))x −µ uxx = 0 ∀x ∈ [x−, x+

],

u(x−)= u−, u(x+)= u+.
(49)

This equation is widely used in particular in the fluid dynamics community as
it features essential ingredients: diffusion as well as a quadratic convective term.
Depending on the boundary conditions, the solution of the Burgers’ equation
exhibits areas where u(x) is nearly constant and equal to u− (for x ' x−) and u+

(for x ' x+) with a central area, the transition layer, where u quickly evolves from
u− to u+ according to an hyperbolic tangent profile having an increasing steepness
with decreasing the fluid viscosity.

5.1.1. Uncertainty settings. We consider the random solution U (x, ξ) of the Burg-
ers’ equation which arises when the viscosity µ is uncertain and parameterized by
the random vector ξ : µ= µ(ξ). As discussed above, ξ is uniformly distributed in
[−1, 1]

N. The number N of random variables depends on the parameterization. To
ensure the existence of a solution to the stochastic problem, the parameterization is
selected such that the viscosity is almost surely positive. The stochastic Burgers’
equation is thus:

1
2

[U (x, ξ) (1 − U (x, ξ))]x −µ(ξ)Uxx(x, ξ)= 0 ∀x ∈ [x−, x+
],

U (x−, ξ)= u−, U (x+, ξ)= u+.
(50)

The viscosity is parameterized using N = 2 random variables as follows

µ(ξ)= µ0 +µ1ξ1 +µ2ξ2, µ0 > 0. (51)

The expectation of the viscosity is 〈µ〉�ξ = µ0, and provided that |µ1|+ |µ2|<µ0,
µ(ξ) is almost surely positive. We shall set in the following µ0 = 1, µ1 = 0.62 and
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µ2 = 0.36. The resulting probability density function (pdf) of the random viscosity
is plotted in Figure 1.
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Figure 1. Probability density function of the viscosity.

Finally, we set x−
= −10 and x+

= 10 and we use for the boundary conditions,

u−
=

1
2

[
1 + tanh

(
x−

4µ0

)]
≈ 0, u+

=
1
2

[
1 + tanh

(
x+

4µ0

)]
≈ 1. (52)

For these boundary conditions,

u(x)=
1
2

[
1 + tanh

(
x

4µ0

)]
,

is in fact solution of the deterministic Burgers’ equation for µ= µ0 [26].

5.1.2. Variational problems. The variational formulation of the Burgers’ equation
is derived. By means of integration by parts, one obtains for the primal problem to
be solved for U ∈ V:

A(U ;8|D)− B(8|D)=

〈∫
�x

[U (1 − U )− 2µUx ] 8x dx
〉
�ξ

= 0 ∀8 ∈ V∗,

(53)
where V∗

= V∗
x ⊗Vξ is constructed using the restriction of Vx to functions vanishing

on ∂�x . For the derivation of the adjoint problem, an obvious choice is here to
base the a posteriori error estimate on the solution itself, i.e., using

J(U )=

〈∫
�x

U dx
〉
�ξ

. (54)
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For this choice, we have

J′(U ;8′)= lim
ε→0

J(U + ε 8′)− J(U )
ε

=

〈∫
�x

8′ dx
〉
�ξ

∀8′
∈ V. (55)

and

A′(U ;8′, Z |D)= lim
ε→0

A(U + ε 8′
; Z |D)− A(U ; Z |D)

ε
(56)

=

〈∫
�x

[
(1 − 2 U ) Zx 8

′
− 2µ Zx 8

′

x
]

dx
〉
�x

. (57)

Thus the dual problem can be written as〈∫
�x

[
(1 − 2 U ) Zx 8

′
− 2µ Zx 8

′

x +8′
]

dx
〉
�x

= 0 ∀8′
∈ V, (58)

for Z ∈ V and deterministic boundary conditions Z(x−)= Z(x+)= 0.
For the discretization of the primal and dual problems, we use Chebyshev finite

elements to construct Vh
x , and Legendre polynomials (uniform distribution) for

Vh
ξ [1].
To compute the surrogate of the exact adjoint solution, the approximation space

Vh is extended to Vh̃ by increasing the orders of the Chebyshev (p) and Legendre
polynomials (q), as seen in Section 3. This surrogate has to be close enough to
the exact adjoint solution to yield correct error estimates through Eq. (46). This
is controlled by the construction of Vh̃ . For example, Table 1 shows the error
estimate ηl,m , at some element (l,m), obtained using increasing polynomial orders
when solving Eq. (58) for the surrogate of the adjoint solution. The convergence
of the error estimate is observed. It is seen that increasing the orders to p + 1 and
q + 1 provides an estimate within 15% of its “exact” value (taken as achieved for
p and q increased by 4). Since the dimension of the stochastic problem quickly
increases with the stochastic order, it has been decided to solve Z̃ with orders p
and q increased by one in the following numerical examples. However, if one is
willing to pay the price of a better accuracy in the error estimate, we recommend
the use of a a larger increase in the polynomial orders, noticing that thanks to the
linearity of the dual problem, as seen from Eq. (58), its resolution only contributes
to a reduced fraction of the global CPU time.

A fundamental point is that primal and dual problems do not involve any op-
erator in the stochastic directions (derivatives in ξi ) but in the spatial direction x
solely. This has the essential implication that realizations of the Burgers’ flow for
different realizations of the viscosity are fully independent. As a result, the solution
of the primal and dual problems over different SEs are uncoupled, allowing for
straightforward parallelization with drastic speed-up of the computation. We took
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degree 1(p, q) error estimate

1 1.0667 10−3

2 1.2078 10−3

3 1.2140 10−3

4 1.2151 10−3

Table 1. Convergence of the error estimate ηl,m with the increase
in the Legendre and Chebyshev polynomial orders to p +1p and
to q +1q when computing the adjoint solution surrogate Z̃ .

advantage of this characteristic by solving SE-wise the primal and dual problems on
a Linux-cluster having 4 nodes with dual processors. Another interesting property
of the stochastic decoupling between SEs is that, during the refinement process, the
approximation needs only to be updated for the stochastic subdomains �(m)ξ that
have been x or ξ -refined.

5.2. Isotropic hξ -refinement. In a first series of tests, the spatial discretization if
held fixed with Nx = 6 Chebyshev finite elements having equal size and order p = 6.
For the refinement, only hξ -refinement is allowed here while the stochastic order is
maintained to a constant value.

For the purpose of comparison, we show in Figure 2 the convergence of the error
in the computed mean and variance of U at the point x = 0.52 when the partition
of �ξ is uniformly refined by increasing the number Nb of SEs from 22 to 1002.
The mean is given by

〈
U h 〉

�ξ
=

Nb∑
m=1

∣∣∣�(m)ξ

∣∣∣ 〈U h 〉
�
(m)
ξ

,

and the variance by

σ 2(U )≡

〈[
U h

−
〈
U h 〉

�ξ

]2
〉
�ξ

=

Nb∑
m=1

∣∣∣�(m)ξ

∣∣∣ 〈[U h
−
〈
U h 〉

�ξ

]2
〉
�
(m)
ξ

. (59)

In this experiment, the SEs are squares with equal size. To estimate the errors,
surrogates of the exact mean and variance of U were computed using Nx = 6, p = 6,
Nb = 1282 and q = 6. Note that these surrogates are in fact approximations of the
exact mean and variance of the semicontinuous problem, the spatial discretization
being held fixed. Consequently, it is not expected that the a posteriori error estimate
η goes to zero since a small but finite spatial error persists even for Vh

ξ → Vξ . The
plot in Figure 2 shows the convergence of the errors on the mean and variance at
x = 0.52 of the semicontinuous solution for two stochastic orders q = 2 and q = 4.
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The error is seen to quickly decrease as the number of SEs increases, illustrating the
convergence of the solution process. The errors on the mean and variance converge
with a similar rate which is function of the stochastic order q.
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Figure 2. Evolution of the errors on the computed (semicontinu-
ous) mean and variance of the solution at x = 0.52 as a function
of Nh =

√
Nb when using uniform hξ -refinement. Two stochastic

orders q = 2 and q = 4 are reported as indicated.

However, it is known that this uniform refinement is not optimal, since some areas
of �ξ may require a finer discretization than others. Thus, instead of employing
a uniform refinement, we now use the a posteriori error estimate to identify the
SEs requiring refinement. Following Eq. (48), an hξ -refinement is to be performed
on a SE �(m)ξ whenever ηl,m ≥ ε for some l ∈ [1,Nx = 6]. If so, the refinement

consists in splitting �(m)ξ into 2N
= 4 smaller SEs of equal size (i.e., isotropically).

Applying this scheme for q = 2 gives the evolution with the refinement iterations
of the errors in the computed mean and variance of U h at x = 0.52 reported in
Figure 3. These results were generated using ε = 2 10−5. The errors are plotted
as a function of the total number of dual and primal problems actually solved
during the iterative refinement process. The evolution of the errors for the uniform
refinement previously shown in Figure 2 is also reported for comparison. A dramatic
improvement of the convergence of the errors on the two first moments is observed
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when the a posteriori error based refinement scheme is used, compared to the
uniform refinement. Specifically, an error of ∼ 10−7 in the (semicontinuous) mean
and variance is achieved at a cost of roughly 128 resolutions of the primal and dual
problems when using the adaptive hξ -refinement, while about 5000 primal problems
have to be solved to reach a similar accuracy when using a uniform refinement.
Clearly, the adaptive hξ -refinement out-performs the uniform refinement, not only
in terms of CPU-cost, but also in terms of memory requirements.
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Figure 3. Evolution of the errors in computed (semicontinuous)
mean and variance of the solution at x = 0.52 as a function of the
number of primal and dual problems solves during the isotropic
hξ -refinement and q = 2. Also plotted are the evolutions of the
errors for the uniform refinement.

A better appreciation of the performance of the adaptive hξ -refinement can be
gained from the analysis of the data reported in Table 2, which presents the evolution
of the number Nb of SEs, the number of resolutions of primal and dual problems
and the errors in the first two moments as the refinement proceeds. Starting from
a partition of �ξ into 4 equal SEs, they are first all refined along the two-directions
ξ1 and ξ2 leading to a partition involving 16 SEs. At the second iteration, all these
SEs are still considered too coarse to match the prescribed accuracy and are refined
again in the two stochastic directions, resulting in 64 SEs. After the third iteration,
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only a fraction of the SEs needs further refinement and the process eventually stops
after 6 iterations with a partition of the stochastic space into 97 SEs.

Iteration Nb # of resolutions error on mean error on variance

1 4 4 4.1074 10−5 1.0189 10−3

2 16 20 4.7861 10−5 2.7054 10−3

3 64 84 1.0813 10−5 7.1067 10−4

4 76 100 1.3056 10−6 1.0944 10−4

5 88 116 8.7892 10−8 8.5915 10−6

6 97 128 6.9087 10−9 1.4032 10−7

Table 2. Evolution of the SE discretization (Nb), number of primal
and dual problems solves and errors on mean and variance of the
solution (at x = 0.52), with hξ -refinement iteration and q = 2.

In a second series of test, the a posteriori error based isotropic hξ -refinement is
applied with different stochastic orders q. The refinement criterion ε is increased
to 5.10−5 while other numerical parameters are kept constant (say p = 6, Nx = 6).
Figure 4 shows the resulting partition of �ξ and surface response of the solution
at x = 0.1 for q = 1, 3 and 5. It is seen that to satisfy the same error criterion a
lower number of FEs is necessary when the stochastic order increases. Specifically,
for q = 1, 174 SEs are needed compared to 10 for q = 5. It is also seen that the
partition of �ξ is essentially refined in the lower quadrant corresponding to lower
values of the viscosity. An asymmetry of the resulting partition of �ξ is also seen
for q = 1, denoting the different contributions of ξ1 and ξ2 to the uncertainty of the
solution as one may have expected from the parameterization in Eq. (51).

Furthermore, the surface responses in Figure 4 show that the refinement of �ξ
takes place in areas where the solution exhibits the steepest dependence with regard
to ξ , but also in areas where it is essentially unaffected by the viscosity; this is due
to the fact that the refinement is based on a criterion involving all spatial locations:
the solution at different spatial locations requires refinement at different places in
�ξ .

5.3. Isotropic hξ,x-refinement. In the previous tests, an isotropic hξ -refinement
only was applied. However, as discussed previously, the a posteriori error estimate
incorporate both the stochastic and spatial errors. In fact, it is expected that when
lowering µ a finer and finer spatial FE discretization in the neighborhood of x = 0
is needed as the solution becomes stiffer and stiffer. Consequently, one may find
advantages in adapting the FE discretization to�(m)ξ . This is achieved by introducing
an additional test before applying the isotropic hξ -refinement. If the local error ηl,n
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Figure 4. Partition of �ξ (left) and surface response for U (ξ) at
x = 0.1 (right) at the end of the isotropic hξ -refinement process
using ε = 5.10−5. Plots correspond to q = 1, 3 and 5 from top to
bottom.

is greater than ε, the spatial discretization is first checked by computing an estimate
of the spatial error ηx

l,m from

(
ηx

l,m
)2

=

∫
�
(l)
x

〈[
U h

−5l(U h)
]2〉

�
(m)
ξ

dx, (60)
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where 5l(U h) is the (spatial) Clément interpolant [6] of U h over the spatial patch
defined by the union of the FEs having a common point with the element �(l)x . The
order of the Clément interpolant is set to p(l,m)+ 1. If this estimate of the spatial
error is greater than a prescribed second threshold εx a hx -refinement is applied to
the FE �(l)x (for the SE �(m)ξ only), consisting in its partition into two Chebyshev
elements of equal size. On the contrary, if ηx

l,m < εx for all l ∈ [1,Nb(m)], the
hξ -refinement is applied as previously.

This strategy is applied to the test problem, with the initial discretization using
Nx = 6 identical FEs with p = 6, over 4 equal SEs with q = 2 and a refinement
criteria ε = 10−4. The partition of � at the end of the refinement process is shown
in Figure 5. The left plot shows the partition of �ξ and highlights again the need
for refinement for the lowest values of the viscosity. The right plot shows the
dependence of the refinement of the FE discretization with ξ . Specifically, it is
seen that hx -refinement essentially occurs for the lowest values of the viscosity (i.e.,
when the solution exhibits the steepest spatial evolutions) and in the neighborhood
of x = 0 as one may have expected.
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Figure 5. Partition of �ξ (left) and � (right) after the hξ,x -
refinement procedure. Numerical parameters are given in the text.

Additional insights about the distribution of the local a posteriori error estimate
ηl,m in � can be gained examining Figure 6, where plotted is the local error
magnitude as spheres. A large sphere corresponds to a large error ηl,m , with a
scaling of the spheres’ diameter as d ∼ η0.25

l,m . As already stated, it is seen that the
maximum error occurs around x = 0 and that it decreases very quickly as one gets
away from that location. This plot clearly exemplifies the h-refinement strategy:
divide elements where a large error occurs to make the error magnitude below the
prescribed tolerance ηl,m .
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Figure 6. Distribution of the local a posteriori error estimate ηl,m

after hξ,x -refinement. The spheres’ diameter d scales as d ∼ η0.25
l,m .

We present in Figure 7 the expectation (left) and variance (right) of the approxi-
mate solution U h after refinement as a function of x . The plot of the expectation〈
U h
〉
�ξ

is also compared with the deterministic solution u(x) for the mean viscosity
µ0 = 1. This deterministic solution has for expression:

u(x;µ= 1)=
1
2

[
1 + tanh

x
4

]
. (61)

It is seen that the expected solution also has an hyperbolic tangent-like profile but is
not equal to the deterministic solution: the differences are due to the nonlinearities
of the Burgers’ equation. The right plot in Figure 7 depicts the solution variance
σ 2(U h). The boundary conditions being deterministic the variance vanishes at x−

and x+. The uncertainty in the viscosity produces a symmetric variance with regard
to x = 0 as it only affects the steepness of the hyperbolic tangent-like profile since

U (x, ξ)≈
1
2

[
1 + tanh

x
4µ(ξ)

]
. (62)

Also, due to the selected boundary conditions, we have at the center of the spatial
domain U (ξ)= (u−

+u+)/2=1/2 almost surely, provided thatµ(ξ)>0. Therefore,
the variance of U h vanishes at x = 0 as shown in Figure 7.

The probability density functions of U h , together with the solution’s quantiles,
are reported in Figure 8 as functions of x . The quantiles are defined as the level
u(Q), for Q ∈]0, 1[, such that the probability of U h(x) < u is equal to Q. The
plot of the pdf shows dramatic changes with x . For x = x− the pdf is a Dirac of
unit mass (no-uncertainty); then when x increases the pdf evolves from a sharp
lower tail distribution to a long lower tail distribution. At x = 0 it is again a Dirac
(no-uncertainty). For x increasing further to x+ the opposite evolution is observed
(due to the central symmetry of the settings). Note that the distribution of the
solution is bounded since U almost surely ∈ [u−, 1/2] for x ≤ 0 and U almost
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Figure 7. Expectation (left) and variance (right) of the approxi-
mate solution U h(x, ξ) at the end of the hξ,x -refinement process.

surely ∈ [1/2, u+
] for x ≥ 0. The quantiles reflect the complexity of the distribution

with important changes with x of the spacing between quantiles.
To further illustrate the need of refinement to properly capture the solution

distribution, we present in Figure 9 the convergence of the pdf of U h at x = 0.52
along the hξ,x -refinement process. The left plot shows the pdf in linear-log scales
to appreciate the improvement in the tails of the distribution, while the right plot in
linear-linear scales shows the improvement in the high density region. It is seen that
during the first iterations of the refinement process the pdf presents under-estimated
right-tails and some spurious oscillations, which are due to discontinuities of the
approximate solution across SEs boundaries.

5.4. Anisotropic h/q-refinement. In the previous tests, an isotropic h-refinement
was used in the stochastic domain. As a result, each refined SE is split into 2N SEs.
For large N this simple procedure quickly results in a prohibitively large number
of SEs. Instead, one finds advantage in splitting �(m)ξ only along the stochastic
directions yielding the largest error reduction. Obviously, the a posteriori error
estimate does not provide enough information to decide along which directions
�
(m)
ξ should be split: an anisotropic error estimator is necessary to this end. In

the absence of an such estimator, we rely on a criterion, inspired from [16; 27],
which is based on the relative contributions of each stochastic directions to the local
variance. The local variance is defined as

σ 2
�
(m)
ξ

(U )=

〈[
U − 〈U 〉

�
(m)
ξ

]2
〉
�
(m)
ξ

. (63)
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Figure 8. Top: pdf of the approximate solution U h as a function
of x at the end of the hξ,x -refinement. The pdf-axis is truncated for
clarity. Bottom: quantiles u(Q) of the solution, as a function of x ,
for Q = 0.05 to 0.95 with constant increment 1Q = 0.1.

Since the stochastic expansion of U over �(m)ξ is of the form

U (ξ ∈�
(m)
ξ )=

P(m)∑
k=0

u(m)k 9
(m)
k (ξ),
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and because by convention 9(m)
k = 1 for k = 0 (i.e., mode 0 is the mean mode), the

local variance becomes

σ 2
�
(m)
ξ

(U )=

P(m)∑
k=1

(
u(m)k

)2 〈
9
(m)
k

2〉
�
(m)
ξ

, (64)

and we define

σ 2
�
(m)
ξ ×�

(l)
x
(U )=

P(m)∑
k=1

〈
9
(m)
k

2〉
�
(m)
ξ

∫
�
(l)
x

(
u(m)k (x)

)2
dx . (65)

It is seen that the integral of the local variance on the FE �(l)x is a weighted sum of
the integral of the squared stochastic expansion coefficients over the FE. The idea
is thus to define, for each direction i = 1, . . . ,N, the contribution of the polynomial
of degree q(m) in ξi to this variance integrated on �(l)x . This contribution is denoted
σ 2

l,m(U ; i, q(m)). Using the respective contributions of each direction, it is decided
that �(m)ξ has to be split along the i-th stochastic direction if the following test is
satisfied for at least one FE:

σ 2
l,m(U ; i, q(m))∑N

i=1 σ
2
l,m(U ; i, q(m))

≥ ε2. (66)

where 0 < ε2 < 1 is an additional threshold parameter. If none of the stochastic
directions satisfies the previous test, it is on the contrary decided to increment by
one unit the stochastic expansion order q(m) over �(m)ξ .

The anisotropic h/p-refinement strategy now follows the general algorithm:
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1. solve the primal and dual problems for the current approximation space Vh;
get U h and Zh .

2. Solve the adjoint problem in the enriched space Vh̃ ; get Z̃ .

3. Compute the local error ηl,m from Eq. (46) for m = 1, . . . ,Nb and l = 1, . . . ,
Nx(m).
If ηl,m < ε for m = 1, . . . ,Nb, l = 1, . . . ,Nx(m), then end computation.

4. For m = 1, . . . ,Nb and l = 1, . . . ,Nx(m)
If ηl,m > ε:

a. Compute the estimate of the spatial error ηx
l,m using Eq. (60).

b. If ηx
l,m > εx , mark element for hx -refinement.

c. If the element has not been marked for hx -refinement,
(a) Compute the directional variances.
(b) For i = 1, . . . ,N if the directional variance is greater than ε2 then mark
element �(m)ξ for hξ -refinement in direction i .

5. For m = 1, . . . ,Nb: if �(m)ξ has not been marked for some hξ -refinement,

and none of the elements �(m)ξ ×�
(l)
x , l = 1, . . . ,Nx(m), are marked for hx -

refinement but there exists at least one l ∈ [1,Nx(m)] such that ηl,m > ε, then
increase q(m) by one.

6. Construct the refined approximation space and restart from 1.

This refinement scheme has been successfully applied to the test problem, with
µ1 =0.82 andµ2 =0.16. The viscosity parameterization was changed to increase the
contribution of the first direction compared to the second to the solution uncertainty.
Note that the pdf of µ is affected by this change of the parameterization, but the
uncertainty range is kept constant. For illustration purposes, we present in Figure 10
an example of the partition of the stochastic space into SEs with variable stochastic
expansion orders. The initial discretization involves Nb = 4 equal SEs with q = 2.
At the first iteration, all SEs were split isotropically, the expansion order being
kept constant. At the second iteration, the SEs with boundary at ξ1 = −1 were
further refined but in the ξ1 direction only. For the following iterations, no further
hξ -refinement was required while some SEs still have a significant estimated error:
it yielded increase in the stochastic expansion order q(m). Again, the final expansion
order is the greatest for the SEs with ξ1 = −1 and/or ξ2 = −1 boundaries (where
viscosity is small), and is the lowest for the SE having boundary ξ1 = 1 and ξ2 = 1
where q has been kept constant.

5.5. Tests for N = 3. To conclude this series of tests, an additional uncertainty
source is considered by taking the left boundary condition as random, U−. The
random boundary condition is assumed independent of the viscosity value and
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consequently parameterized using an additional random variable ξ3. The complete
uncertainty settings are:

µ(ξ)= 1 + 0.5 ξ1 + 0.05 ξ2, U−(ξ)= u−

0 + u′ ξ3, (67)

with u−

0 given by Eq. (52) and u′
= 5. 10−4. This low value of u′ is selected as it is

known that small perturbations of the boundary condition leads to O(1) changes in
the solution of the Burgers’ equation (see [31]). This is due to the “supersensitivity”
of the transition layer location with the boundary condition: the low variability in
U− will result in large variability of the solution but essentially around the center of
the spatial domain and not in the neighborhood of x− where the solution variability
is low. This problem is thus well suited to test the effectiveness of the a posteriori
error methodology in providing correct local error estimators. Moreover, as the
sensitivity of the solution with regard to U− increases when the viscosity is lowered,
a finer partition of �ξ is expected for low values of ξ1, while the contribution of ξ2

will be less as seen from Eq.(67).
The spatial discretization (Nx = 20, p = 6) and stochastic orders q being held

fixed, we proceed with the previously described a posteriori error based anisotropic
hξ -refinement scheme. The target precision is set to εη = 0.001. In Figure 11 we
show the reduction of the a posteriori error η along the refinement process for
orders q = 1 and 2. The evolution of the error estimate for a uniform refinement of
the stochastic space is also reported for comparison. Because the stochastic space
now has 3 dimensions, the increase in number of SEs for the uniform refinement
is seen to be dramatically large for a low resulting reduction of the a posteriori
error. On the contrary, using the local error estimate to guide the refinement process
is seen to significantly improve the error reduction with the number of SEs. It is
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also remarked that the anisotropic refinement requires 3 iterations to achieve the
prescribed precision for q = 1, while only 2 iterations are needed for q = 2.
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Figure 11. Reduction of the a posteriori error estimate η with the
number Nb of stochastic elements involves in the partition of �ξ .
Plotted are the results for the anisotropic hξ -refinement procedure
(labeled Error-based) and uniform refinement, using q = 1 and 2 as
indicated.

Figure 12 depicts the partition of the stochastic space at the end of the hξ -
refinement process. The initial partition uses Nb = 2N

= 8 identical SEs. In fact,
the anisotropic hξ -refinement process never requires refinement along the second
dimension ξ2: the plots of Figure 12 thus show the partition of �ξ in a plane where
ξ2 is constant. The independence of the partition with regard to ξ2 denotes the
capability of the proposed scheme to detect the weak influence of ξ2 on the solution.
On the contrary, it is seen that for fixed ξ2 and ξ3 a finer division of �ξ along the
first direction is necessary when ξ1 decreases, because of the steeper behavior of the
solution when the viscosity decreases. In contrast, for fixed ξ1 and ξ2 the partition
is uniform along the third direction, but is finer for low viscosity and q = 1, as one
may have anticipated from the behavior of the Burgers’ solution.

To conclude these tests, we show in Figure 13 the variance of the stochastic
solution along the spatial domain, for the two stochastic orders q = 1 and 2, at the
end of the anisotropic refinement process. The effect of the uncertain boundary
condition on the solution variance can be appreciated through comparison with
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the result reported in Figure 7. Specifically, the variance of the solution at the
center of the spatial domain is now different from zero. It is seen that even so both
orders leads to similar estimated error, small but noticeable differences are visible
in the spatial distribution of the solution variance. These difference in terms of
predicted variance can be better appreciated from the right plot in Figure 13 where
the differences for q = 1 and q = 2 are plotted.

6. Concluding remarks

A dual-based a posteriori error analysis has been proposed in the context of sto-
chastic finite element methods with stochastic discretization involving piecewise
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continuous orthogonal polynomials approximations. The error estimation involves
the resolution of a linear stochastic dual problem, which computational cost is
deemed negligible compared to the primal problem (provided the latter is nonlin-
ear). Numerical tests on the uncertain Burgers’ equation have demonstrated the
effectiveness of the methodology in providing relevant error estimates that can be
localized in the spatial and stochastic domain.

The principal limitation of the proposed method is the lack of resulting infor-
mation regarding the structure of the estimated error. Specifically, the respective
contributions of the spatial and stochastic approximations to the estimated error
are not accessible. At a finer level, the error estimator does not allow for the
discrimination between the relative contributions of the stochastic directions to the
overall error. We believe this is the most severe limitation in view of anisotropic
refinement of the stochastic approximation space required to treat problems with
high dimensional uncertainty germs. However, we consider that the proposed
methodology constitutes a significant improvement compared to error indicators
previously proposed in the stochastic context [16; 17; 27], which were based on the
spectrum of the local stochastic expansion.

Several potential improvements of the refinement strategy have been identified
throughout this work. It includes the derivation of rigorous and efficient anisotropic
error estimators for high order approximation schemes. Another area of potential
application of the a posteriori estimator is the coarsening of the approximation
space in view of application to, say, unsteady flows. Both of these developments
are the subject of on-going work.
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HYBRID NUMERICAL TREATMENT OF TWO-FLUID
PROBLEMS WITH PASSIVE INTERFACES

NICHOLAS G. COGAN

We consider the coupled motion of a passive interface separating two immiscible
fluids of different viscosities. There are several applications where the velocity
of the two fluids is needed everywhere within the domain. Examples include
the transport of bacteria and diffusing substances within a biofilm matrix and
the transport of cations throughout the mucociliary and periciliary layer in the
lung lining. In this investigation, we use a hybrid approach which employs the
boundary integral method to determine the interface velocity and the method of
regularized stokeslets to determine the velocity elsewhere in the domain.

Our approach capitalizes on the strengths of the two methods, yielding an
intuitive, efficient procedure for determining the velocity of a two-fluid system
throughout the domain. A key feature of the method is the extension to two-
fluid systems with varying viscosity. We describe the results of three numerical
simulations designed to test the numerical method and motivate its use.

1. Introduction

We consider the dynamics of two immiscible fluids of different viscosities separated
by a passive interface. The motion of both fluids is assumed to be dominated by
viscosity and described mathematically by the incompressible Stokes equations. In
the absence of a background flow the fluids move because of stress differences at
the interface that arise due to different viscosities. Due to the linearity of Stokes
equations, the dynamics of the system with a background flow is the superposition
of the motion due to jump in the traction across the interface and the background
motion of the fluids.

Though the fluid equations are linear, the coupling between two fluids renders the
full system nonlinear. Moreover, the interface between the fluids is typically hetero-
geneous and not aligned with a regular grid, complicating numerical approximations
as well as being time-dependent. In particular, standard grid-based methods are
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prone to large approximation errors while standard finite element methods require
substantial computation in order to triangulate the dynamic domain.

Several methods have been introduced to address these issues [2; 10; 11; 12; 17].
One class of these methods transforms the equations into integral equations and
then attempts to solve the integral equations as accurately as possible, with the least
computational effort. In [2; 10], methods are developed to produce solutions that
are second order accurate both on and near the interface. The main idea is to take a
standard quadrature approximation of the solution to the integral equation and add a
correction term. This correction term is computed using asymptotic analysis of the
error due to smoothing of the nearly singular kernel and that due to discretization
of the integral equation. It is shown that a second order accurate method can be
developed in this manner. In [12], the computational effort was addressed. A fast
multipole method was introduced to solve the integral equation associated with
the bi-harmonic equation. This method requires O(N ) operations, where N is the
number of points in the discretization.

Rather than transform the equations into integral equations, a different class
of methods attempts to solve the associated primitive variable formulation using
finite difference methods. For typical applications there is a jump in the material
properties across a curve in the domain. This jump introduces unacceptable errors
in the solution via standard finite difference discretization. In [11; 17], the standard
finite difference stencil is altered for points near the interface in order to maintain
the accuracy. LeVeque and Li [11] introduced a method incorporating the interface
jump condition into the discretized Laplacian operator. The resulting scheme is
second order accurate. Wei et al. [17] introduced a method termed the matched
interface and boundary method. Rather than use the jump condition to alter the
discretization, this method uses the jump conditions iteratively. At irregular points
on the grid (i.e., those whose finite difference stencil overlaps the two regions),
values of the stencil are given at fictitious grid points and are iteratively determined
to satisfy the lowest order approximate jump condition. This subtle difference
allows for the generation of discretizations of very high order.

The overall method described in this report is a hybrid method that uses different
methods to determine the velocities at points on the interface and points within the
domain, but away from the interface. We use the well described boundary integral
method (BIM) to evaluate the velocity at the interface. These velocities are used
as data for the method of Regularized Stokeslets (RS) to obtain the velocity at
points on a regular background grid. This hybrid approach is an efficient method
that capitalizes on the strengths of each of these methods and is a conceptually
straightforward method for tracking the dynamics of a two-fluid system. Although
the method is applicable in higher dimensions, for simplicity we will restrict our
domain to two dimensions throughout.
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We organize the manuscript as follows: the first sections introduce the notation
and governing equations and briefly describe the methods that are used. The
purpose of this investigation is not to develop more powerful implementations of
these methods, but to describe how to use each of them to increase the efficiency of
the numerical simulations. Therefore we describe the methods briefly and describe
the development of the numerical method; we then focus on several simulations
aimed at validating and applying the numerical methods and finally summarize the
results. The focus of this report is on the development of the method rather than
the applications which will be described elsewhere; hence we give two examples
where this method is applicable.

2. Derivation of the hybrid approach

2.1. Model equations. We consider the coupled motion of two fluids of different
viscosities. We assume that viscosity dominates both fluids, so the inertial terms
may be neglected. The fluids occupy a region � and are separated by a surface, 0.
We denote the two sub-regions as �(1) and �(2) for the external and internal fluids,
respectively.

The dynamics of both fluids are governed by the incompressible Stokes equations

∇ · σ (∗) = F (1)

∇ · U(∗)
= 0, (2)

where ∗ = 1, 2 denotes variables in the external and internal regions, respectively,
U is the velocity vector and F denotes an applied force . Stokes equations describe
conservation of momentum and mass with stress tensors σ ∗

= −P∗I +µ∗(∇U∗
+

∇U∗T) that contain both the hydrostatic pressures, P∗, and the viscous stresses
proportional to the deformation gradient tensor with viscosities µ∗ that are generally
different.

The solution to Equations (1) and (2) when F is a force applied at a single point,
F = fδ(x−x0), is referred to as a stokeslet or the Greens’ function. The key property
of Stokes equations that is exploited by both BIM and RS is the existence of a
functional representation of the stokeslet for a variety of domains [13]. The free
space Green’s function, G, in two dimensions is,

Gi j (x)= −δi j ln r +
(x − x0)i (x − x0) j

r2 . (3)

The related stress tensor,T, is,

Ti jk = −4
(x − x0)i (x − x0) j (x − x0)k

r4 , (4)

where r = |x − x0|.
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Instead of using the free-space Green’s function we could use the Green’s function
that enforces the zero-flow boundary condition by subtracting image singularities
if the domain is bounded (e.g. channel flow) [13]. We also note that G and T are
often referred to as the single and double layer potentials, respectively.

2.2. Boundary integral method. The boundary integral method (BIM) exploits
the linearity of the basic flows and translates the differential equations (1) and
(2) to integral equations determining the velocities within the domain. These
are used along with continuity of the flow to determine an integral equation that
determines the velocity of the interface. This method has several advantages
including reduction in the dimensionality of the problem, ability to handle generic
interfaces and incorporation of different material properties [15; 6].

To derive the BIM equations, we relate the unknown velocity U∗ to the flow
induced by a singular force with intensity f at a point x0, U′. Thus U′ is a fundamental
solution to the incompressible Stokes equations

∇ · σ ′
= fδ(x − x0) (5)

∇ · U′
= 0, (6)

where σ ′
= −PI + µ(∇U + ∇UT). This is a convenient flow to use since the

solution is given by Equation (3).
The reciprocal relation for the bulk flow is determined by relating solutions to

Equations (1) and (2), with F = 0, to (5), (6). By direct calculation, we find that

∇ · (Uσ ′)− ∇ · (U ′σ)= δ(x − x0)U, (7)

which is the classical reciprocal relation.
Integrating the reciprocal relation, with various placements of the singular force,

we recast Equations (1) and (2), with ∗ = 1, as an integral equation whose domain
is the interface 0. The integral equation relates the bulk fluid velocity to the traction
jump across the interface, denoted 1σ = (σ (1) − σ (2)), and the velocity; see [13,
Chapter 5]. The motion of the bulk fluid is

U(1)
j (x0)= −

1
4πµ(1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
1 − λ

4π

∫
0

Ui (x)Ti jk(x, x0)ηk(x) dl(x), (8)

where λ=
µ(2)

µ(1)
and we denote the outward normal to the interface as η.
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Equation (8) governs the j-th component of the external fluid velocity. In a
similar manner, we obtain an integral equation for the motion in �(2),

U(2)
j (x0)= −

1
4πµ(1)λ

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
1 − λ

4πλ

∫
0

Ui (x)Ti jk(x, x0)ηk(x) dl(x). (9)

These two integral equations govern the coupled motion of the external and
internal materials. Because the flows must be continuous at the boundary, we can
obtain the boundary velocity by taking the limit of (8) and (9) as x0 moves to the
boundary. These limits both converge to

U j (x0)= −
1

2πµ(1)(λ+ 1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
κ

2π

∫ PV

0

Ui (x)Ti jk(x, x0)ηk(x) dl(x), (10)

where κ =
1−λ
1+λ

. The latter integral must be handled with care. There are many
methods for evaluating this integral that depend on the dimension of 0 as well
as the kernel of the integral. In this situation, the singularity is integrable and
straightforward quadrature rules work well [14]. The methods used are described
in more detail below.

To close the system we impose a constitutive relation relating the jump in traction,
1σ , to the curvature, ω. We assume that the surface traction is proportional to the
curvature, with constant of proportionality γ . This constitutive relation is interpreted
as a traction arising from surface tension. We note that this is substantially different
than what needs to be done in higher dimensions (see [13, Section 5.5] for a
description in three-dimensions).

2.3. Regularized stokeslets. This method, described in [5], is an efficient method to
approximate the solution to Stokes equations in the presence of immersed boundaries
or obstacles. Conceptually, RS uses the fact that Stokes equations are linear so
the velocity at a given point is linearly related to the force applied at that point.
Given a collection of points, xi, at which singular forces are applied , F = fδ(x−xi),
the total flow is given as the superposition of each of the stokeslets. However,
this representation of the velocity is singular at each of the points. In RS, the
forces are applied over a small ball, regularizing Stokes equations. The forces
are given by F = fφε(x − x0), where φε is a smooth function with support ε. For
particular choices of φε , analytic expressions for the solution to Stokes equations
with regularized forces can be recovered. These ’regularized stokeslets’ are analytic
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and converge to the classical stokeslet as ε tends toward zero. The flow due to a
collection of forces is a linear combination of the regularized stokeslets.

A specific blob in three dimensions is

φε(x)=
3ε3

2π(|x|2 + ε2)5/2
.

The corresponding Green’s function is

Gε(r)=
1

2π

(
ln(
√

r2 + ε2 + ε)−
ε

√
r2 + ε2

)
,

where r = |x − xi|. The velocity at x due to a collection of forces centered at xi is

U(x)= −fi
1

4πµ

N∑
i=1

(
ln(
√

r2
i + ε2 + ε)−

ε(
√

r2
i + ε2 + 2ε)

(
√

r2 + ε2 + ε)
√

r2
i + ε2

)

+
1

4πµ

(
fi · (x − xi)

)
(x − xi)

( √
r2

i + ε2 + 2ε

(
√

r2
i + ε2 + ε)2

√
r2

i + ε2

)
. (11)

This relationship can also be used to determine forces that yield particular flows.
For example, if the velocities at a collection of N points , xi , are known, one has
U = MF. The vectors U and F are 2N × 1 and M is a 2N × 2N matrix. Inverting
this relation gives the forces in terms of the (known) velocities. It should be noted
that M is typically not invertible. This can be avoided by adding a constant to the
normal component of the forces, affecting the pressure but not the velocity [5] and
using an iterative solver. We can then reconstruct the velocity everywhere within
the domain, since it is a superposition of the background flow and the flow due to
the calculated forces. This method can be made second-order accurate everywhere
using the techniques described in [2].

2.4. Hybrid method. Although much work has been done for determining the
velocity and evolution of the interface, in many applications, the velocity is needed
throughout the domain. In applications where the concentration of advected sub-
stances (such as oxygen) is needed throughout the domain such as biofilms [4], the
velocity at all points of a regular grid is required.

The general method begins by initializing the interface between the two fluids, 0.
We parameterize the coordinates of the interface by s, 0(x, y, t)= (x(s, t), y(s, t)).
The interface is discretized into control points and Equation (10) is solved at each of
the discrete points. We then use RS to determine the velocity at regular grid points.
The velocities can then used to determine the transport of a chemical throughout
the domain.
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Because the surface traction is assumed to be proportional to the curvature, the
right-hand-side of Equation (10) is

−
1

2πµ(1)(λ+ 1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

= −
γ

2πµ(1)(λ+ 1)

∫
0

ω(G1 jη1 + G2 jη2) dl(x).

The curvature of the boundary is

ω =
xs yss − ys xss

(x2
s + y2

s )
(3/2) . (12)

The outward normal is calculated using the parameterization of the interface.
To solve Equation (10), we are then confronted with a system of coupled integral

equations which can be written as

W = b +
κ

2π

∫
0

KW dl(x). (13)

where W = (U(1)
1 ,U(1)

2 ). The vector b contains the stokeslet and the tensor K
contains the related stress tensor, both of which are known.

A straightforward method for solving the discretized integral equations is Ny-
ström’s method [16], which requires a quadrature rule:∫ b

a
y(s)ds =

n∑
j=1

ω j y(s j ),

where ω j denotes the weights of the quadrature rule. For our simulations we use
Gauss-Legendre quadrature. Although the kernel of Equation (13) has an integrable
singularity, it has been shown that the convergence of Nyström’s method is the
same as the rate of convergence of the quadrature and, if the singularity is of a
known type, the rate of convergence can be increased by correcting the quadrature
weights [1]. We note that we do not use this acceleration technique in the present
investigation.

Once we have solved this system, we have the velocity of the interface at the
discrete control points. We could proceed in a similar manner and find the velocity
at each point in a regular lattice using Equations (8) and (9). Instead we use the
method described above. We first determine the forces that must be applied to the
fluid in �(1) so that the velocities at the control points on the interface match those
obtained by the BIM. Using these forces and Equation (11), we find the velocities
at regular grid points in �(1). The forces required to force the internal fluid to
match the velocity of the interface are proportional to the forces obtained for the
external fluid and we can then determine the velocity within �(2). The velocities
are continuous at the interface and both agree with the velocity found using BIM.



124 NICHOLAS G. COGAN

This hybrid method is computationally less expensive than naive implementation
of the boundary integral method. The operation count using the BIM equation to
determine the velocity at each point on a regular (M × M) grid using a trapezoidal
approximation of the integral, with N discrete points on the interface, is O(N 3 M2)

for each time step. For the RS the operation count is O(N 2
+ N M2) since each

time step requires a matrix inversion (using GMRES O(N 2) and the summation of
the stokeslet solutions for each of the N control points at each of the M2 points on
the regular grid). Thus in problems which require the velocity at all points on a
background grid, the interface can be accurately discretized without undo cost.

It should be noted that the above discussion does not consider less naive methods
for solving the integral equations that arise from BIM. There are several techniques
that are used to reduce the operation count. In particular fast summation multipole
methods can be much less computationally expensive [2; 12]. Using these methods
the operation count for using BIM alone can be reduced to O(N M2) for each time
step. Thus for problems for which the fluid flow throughout the domain is needed
accurately throughout the domain (i.e., where M is much large than N ), BIM with
multipole methods can be slightly better than the hybrid method. In our simulations
it is typical to have N = 100, while M = 250 so that the relative difference in the
orders is very small, about 0.5%.

3. Simulations

3.1. Steady flow. We first describe the numerical results of applying the method
for a single time step to validate the implementation of Nyström’s method as well as
demonstrate the behavior of the method for systems with differing viscosities. We
begin with a square domain located at (−2, 2)× (−2, 2). A fluid of viscosity µint

located at the interior of a circle of radius one. The fluid outside of the circle has
viscosity µext. We use methods described in [10] to derive an analytic solution to
the problem with given forces. We parameterize the circle by x = (cos(θ), sin(θ))
and take the analytic solutions given in [5] and scale the pressure with the internal
and external viscosities.

The analytic representation of the pressure and velocities, namely

p(r, θ)=

{
µextr−3 sin(3θ) for r ≥ 1,

µintr3 sin(3θ) for r < 1,

u1(r, θ)=

{
1
8r−2 sin(2θ)− 3

16r−4 sin(4θ)+ 1
4r−2 sin(4θ) for r ≥ 1,

3
8r2 sin(2θ)+ 1

16r4 sin(4θ)− 1
4r2 sin(2θ) for r < 1,

u2(r, θ)=

{
1
8r−2 cos(2θ)+ 3

16r−4 cos(4θ)− 1
4r−2 cos(4θ) for r ≥ 1,

3
8r2 cos(2θ)− 1

16r4 cos(4θ)− 1
4r2 cos(2θ) for r < 1,
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are used in the equations

[σi j ]η j = − fi , for i = 1, 2,

to calculate the boundary forces. Here the stress tensor σ is

σi j = −pδi j +µ

(
∂ui

∂x j
+
∂u j

∂xi

)
.

For our calculations we prescribe the boundary forces at discrete points repre-
senting the boundary and solve Equation (13) to determine the boundary velocities.
The velocities at the control points are used to determine the forces to apply to the
fluid regions to match the calculated velocities which in turn is used to determine
the external and internal velocities via the RS. Because we are only considering the
steady problem for prescribed boundary forces we do not need to use the curvature
constitutive assumption to specify the boundary traction. Instead, ∇σi jη j = fi

To consider the convergence of the numerical approximation to the exact solution,
we allow the the number of points discretizing the interface, N , to increase while
the background grid used to determine the velocity away from the interface is fixed.
Following [5], we measure the error along the line (x, 3/10). We first consider the
case where the viscosities are equal as in [5] (see Table 1). The velocity field and
the x- and y- components of the velocity along the line (x, 3/10) are shown in in
Figure 1. By comparing the ratios of the errors as the number of interface points
is doubled we find the order of the comparison. For a first order method the ratio
is two while a second order method would have a ratio of four. These ratios are
provided in the tables indicating that the method is between first and second order
for each of the examples.

Next, we consider the behavior when the viscosities of the two fluids are not
equal. In general the convergence rate is reduced as the jump in the viscosity
increases . The results for two simulations with different viscosities are summarized
in Tables 2 and 3. To determine the rate of convergence we compare the errors for
subsequent refinements. We note that this convergence would be improved if the
methods in [2] were implemented; however, our results are in agreement with those
in [5] for the single viscosity case.

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 2.99 × 10−2 3.14 × 10−2

N = 100 7.89 × 10−3 3.7896 6.46 × 10−3 4.8606
N = 200 1.83 × 10−3 4.3833 1.03 × 10−3 6.2718
N = 400 4.47 × 10−4 4.0268 3.53 × 10−3 2.9178

Table 1. Velocity errors: µ1 = µ2 = 1.
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Figure 1. Comparison of the analytic velocities (solid) and the
numerical approximation (dotted) along the line (x, 3/10). Left
caption shows u1 while the right shows u2. The background mesh
has 100×100 points and the boundary is discretized with 200 points.
The solution is being approximated well.

3.2. Viscous suctioning. We have just computed the approximate solution for a
single time step. To determine the behavior of the numerical methods for a moving
boundary, we choose to examine a problem that is similar to the well known
Hele-Shaw problem with a singular sink term [3]. Here, we consider the flow of
a two-fluid system where an initially circular blob of fluid with viscosity µ2 is

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 3.33 × 10−2 2.42 × 10−2

N = 100 8.86 × 10−3 3.7584 9.76 × 10−3 2.4795
N = 200 2.54 × 10−3 3.4881 2.50 × 10−3 3.9040
N = 400 9.67 × 10−4 2.6266 6.17 × 10−4 4.0518

Table 2. Velocity errors: µ1 = 1, µ2 = 2.

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 2.68 × 10−2 5.06 × 10−2

N = 100 9.94 × 10−3 2.6962 1.96 × 10−2 2.5816
N = 200 4.78 × 10−3 2.0795 8.90 × 10−3 2.2022
N = 400 1.50 × 10−3 3.1867 4.35 × 10−3 2.0460

Table 3. Velocity errors: µ1 = 1, µ2 = 5.
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immersed in a viscous fluid of viscosity µ1. The circle is initially of radius one
and centered at the origin. At time t = 0, we initiate a singular sink term at a
point interior to the circle that draws the interior fluid out of the domain causing
motion of the interface and the external fluid. This problem has been treated in
many investigations (see [7] for analytic treatment and references). In general, in
the absence of surface tension there is a singularity in finite time whenever µ2 >µ1.
With small surface tension, the problem is regularized and various smooth solutions
can be found depending on the location of the sink relative to the circle as well as
the strength of the point-sink.

To include a singular sink term in our scheme, we consider the background flow
that is the solution to

1U = ∇ p,

∇ · U = qδ(x − x0),

namely

Usuction = q
x − x0

|x − x0|
.

This is added to the flow obtained due to the interface motion to give the motion of
the interface.

The computational domain [−1.5, 1.5]× [−1.5, 1.5] is discretized into a regular
background grid with 200 × 200 grid points. This initial interface is a circle of
radius one centered at the origin. There are 150 regularly spaced control points.
The viscosities are µ1 = 1 and µ2 = .1, for the internal and external viscosities,
respectively. The analytic studies rely on complex function theory and mapping
techniques to determine the dynamics of the interface. In general, our method is
able to capture, qualitatively, the behaviors that are found analytically. We are also
able to determine the velocities throughout the domain. In particular, the solutions
exhibit singularities at a time, tb(γ ), that depends on the value of the surface tension.
In our simulations, tb is an increasing function of γ , indicating the role of surface
tension regularization. We have not done a complete investigation of the behavior
as a function of surface tension as that is not the focus of this investigation; however,
we show the velocity of the fluids near the developing cusp to indicate that our
method can capture the fluid flow near the interface as well as the motion of the
interface. The results for various simulations are shown in Figures 2 and 3.

3.3. Advection. One strength of the method described above is efficient approx-
imation of the velocity everywhere in the domain. This is important in transport
problems such as biofilm disinfection, where the main goal is to determine the
concentration of biocide and nutrient as it moves in the bulk fluid and into the
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Figure 2. Results for viscous suctioning. (a) Initially circular
interface with singularity at (0, 0.1). (b) To break the symmetry,
we perturb the circle into an ellipse with major axis 1 and minor axis
0.9 in the y-direction. The singularity is placed at the origin. (c)
To break the symmetry, we perturb the circle by adding a periodic
fluctuation in the radius with amplitude .01. The singularity is
placed at the origin. In all simulations the µ1 = 1 and µ2 = 0.1 and
the initial interface is indicated with the dotted line while the other
curves are shown after 100 and 250 time steps.

biofilm domain. Several models treat the biofilm as a viscous fluid with a viscosity
that is substantially different than that of the external fluid [4; 9; 8].

The domain is a channel with a parabolic background flow. Within the channel a
generic biofilm interface separates the biofilm fluid, with viscosity µbio f ilm from the
bulk fluid with viscosity µbulk . Although biofilms display viscoelastic properties,
the relaxation time has been measured to be on the order of minutes [9]. Because
transport of biocide within the biofilm typically takes place on a time scale of
hours to days, we treat the biofilm as a viscous fluid immersed in a fluid of much
less viscosity [8]. Measurements of biofilm viscosity indicate that the viscosities
differ by several orders of magnitude [9]. We set µbio f ilm = µbulk × 106 and
impose a parabolic background flow which is altered by the presence of the biofilm.
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Figure 3. Zoom in of the internal and external velocity field near
the forming cusp in Figure 2(a). The top figure shows the total
velocity, while the bottom shows the contribution from the interface
(without the background flow). Note that the scales have been
altered for visualization and do not reflect the magnitudes.

Following the methods described above, we determine the velocity of the interface
and fluid in both the bulk and biofilm regions. This is used to track the advection
and diffusion of a chemical whose concentration, C , is determined mathematically
by a conservation law

∂C
∂t

+ (U · ∇)C = D1C,

where the concentration is fixed at C0 at the leading edge of the channel. No-flux
and outflow conditions are applied at the channel walls and trailing edge of the
channel. Given the velocity at time t we determine the concentration at time t +1t
using upwinding and ADI to solve the discretized equation.

In Figure 4 we show the developing concentration contours as well as the biofilm/
bulk fluid interface for various times. We plan to indicate the effects of including
the motion of the biofilm in a future investigation.
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Figure 4. Time-dependent concentration profiles indicating the
diffusion and advection of a chemical through the two-fluid domain.
We show only part of the domain: [0, 1] × [0, 0.4]. The dynamic
fluid/biofilm interface is in black and the concentration for all
figures is indicated by the colorbar.
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4. Discussion

This investigation describes the development of a hybrid method for numerically
approximating the motion to two viscous fluids separated by an interface. The
interface velocity at control points is determined by solving an integral equation.
The velocity at the control points is then used as data to determine the flow outside
and inside the interface using the RS. Our method capitalizes on the strengths of
both of the methods, since RS is an efficient method but leads to errors at the
interface which is precisely where BIM is being applied. We have also indicated
that the computational complexity of the hybrid approach is comparable to fast
multipole methods applied to BIM, motivating the use of the method for problems
where the total flow is needed. We also feel that this investigation indicates an
area where the strengths of various methods including RS, multipole methods and
matched boundary methods can be exploited.

To apply the numerical method, we studied three different problems. The first
was a static problem for which there is an analytic solution. We found that when
the viscosities of the fluids are equal, the method behaves as in [5]. However, we
have extended the treatment to case with differing viscosities. We then treated a
viscous suctioning problem where we were able to capture the qualitative nature
of the development of cusps. More importantly for this method, we were able to
examine the velocity near the interface. Both the total flow and the flow without
the background flow are readily calculated. Finally, we applied our method to
determine the concentration of a chemical as it diffuses and advects throughout a
channel filled with two immiscible fluids of extremely different viscosities. The last
example is the motivation for the numerical method. In particular, the efficiency
of the method is desirable since in this situation, the simulations must be carried
out for relatively long times (hours, whereas a typical time scale is on the order
of seconds to minutes). Other applications where this method could be of use
include the diffusion of various cations through the mucociliary layer and into the
periciliary layer lining the lungs. This transport problem is a necessary component
toward understanding the production and motion of the mucous lining, in particular,
for Cystic Fibrosis patients. Reports of the application of this method for more
practical problems will be described elsewhere.
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