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In this paper, we use the eXtended Finite Element Method, with customized
enrichment functions determined by asymptotic analysis, to study boundary layer
behavior in elliptic equations with discontinuous coefficients. In particular, we
look at equations where the coefficients are discontinuous across a boundary
internal to the domain. We also show how to implement this method for Dirichlet
conditions at an interface. The method requires neither the mesh to conform to the
internal boundary, nor the mesh to have additional refinement near the interface,
making this an ideal method for moving interface type problems. We then apply
this method to equations for linearized biofilm growth to study the effects of
biofilm geometry on the availability of substrate and the effect of tip-splitting in
biofilm growth.

1. Introduction

Consider the equation
∇ · (β∇u)+ κu = f, (1)

on a two-dimensional domain, �, containing an interface 0. The coefficients β,
κ , and f may be discontinuous across 0, leading to discontinuities in the normal
derivative of the solution, u. In addition, large variations between these coefficients
can lead to the existence of boundary layers near the interface, particularly when β
is small relative to κ or f .

This type of equation governs a wide range of physical processes, and thus
a variety of numerical methods have been devised to solve it. The three most
commonly used approaches are finite difference methods — such as those described
in [9; 11; 14] — finite element methods, and boundary element methods. One
method that has been shown to perform well in comparisons with other methods is
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the eXtended Finite Element Method (X-FEM) [8; 16]. In fact, it was shown in [12]
that this method produced significantly more accurate solutions near the interface 0.
The X-FEM is a partition of unity method [15] in which extra functions containing
information about the location of an interface are added to the standard finite element
approximation. The method is particularly suited to problems involving a moving
interface, since it does not require a conforming mesh, and can be easily coupled to
interface tracking methods such as the level set method [17].

The X-FEM has been used to model crack growth [7; 16; 18; 20], solidification
[3; 10], arbitrary fixed material interfaces and voids [19], rigid particles in Stokes
flow [21], and multiphase fluids [2]. The majority of this work has relied on
generic enrichment functions, such as Heaviside or absolute value functions, to
enforce interfacial boundary conditions. However, in [7], it was shown that a special
enrichment function given by the exact near-tip asymptotic functions, could be
added to the approximation at the crack tip to improve accuracy. In this paper, we
show how the X-FEM can be used to efficiently model systems that exhibit boundary
layer behavior at the interface by expanding the function space with customized
enrichment functions along the entire interface, presenting as an example a new
exponential enrichment function that captures solutions which grow or decay rapidly
near the interface.

The application to which we apply this method concerns the growth of biofilms.
Biofilms are microbial communities that grow attached to solid surfaces, and are
one of the most ubiquitous forms of life on the planet. More than 90% of all bacteria
live in biofilms [1]. Biofilms are used in wastewater treatment and bioremediation
of contaminated soils, lakes, and rivers. Biofilms also cause disease in plants
and animals, and damage pipes, heat exchangers, and ship hulls. Consequently,
understanding biofilms is important for a wide range of health and engineering
disciplines. The work we present here is toward a goal of building continuum level
model tools for simulating biofilm growth and development.

In this paper, we solve the linearized biofilm growth equations in order to
determine how the geometry of the colony affects the profile of its growth, addressing
two specific phenomena: fingering growth due to a tip-splitting instability and the
shadowing effect generated by large colonies.

2. Numerical method

The eXtended Finite Element method (X-FEM) is a modified finite element method
used for approximating the solution to (1). However, unlike conventional finite
element methods, the X-FEM does not require the mesh to conform to the interface
geometry, allowing us to utilize a standard Cartesian mesh. This is particularly
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useful in problems involving moving interfaces, due to the fact that the mesh does
not have to be regenerated at each timestep.

The X-FEM avoids the need for a conforming mesh by supplementing the
standard finite element functions with enrichment functions that contain information
about the interface. The X-FEM approximation for the solution u is written as

uh (x, y)=

∑
ni ∈N

φi (x, y) ui +

∑
k

∑
n j ∈NE

φ j (x, y) ψk (ϕ) a j , (2)

where N is the set of all nodes in the domain, NE is the set of enriched nodes, φ is
a standard finite element test function, ψk is the enrichment function, and ϕ is the
signed distance function representing the interface.

Here we describe only the construction of the enrichment functions as well as
the application of boundary conditions. A detailed treatment of the full X-FEM
implementation is found in [12].

2.1. Determining enrichment functions. The enrichment functions added to the
standard finite element approximation in the X-FEM serve two purposes. First,
they encode the location of the interface into the function space itself, which allows
for the application of both Dirichlet and Neumann interface conditions without
the need for a conforming mesh. Second, they may contain information about
the asymptotic behavior of the solution near the interface, allowing the method
to accurately capture boundary layer behavior without the need for a very fine
mesh. Here we test three types of enrichment functions. The first two, the step
enrichment and the absolute value enrichment, are generic enrichment functions
that can be applied to any problem that is continuous across the interface. The
third, the exponential enrichment, is a custom enrichment function that is tailored
to problems that display exponential behavior within the interfacial boundary layer.
Each enrichment is a function only of the signed distance from the interface:

ϕ = ± min
X∈0

‖x − X‖ ,

where the sign depends on whether x is inside or outside the region enclosed by the
interface 0. This signed distance function is typically determined using the Level
Set Method [17].

The step and absolute value enrichment functions are defined as

ψstep (ϕ)=

{
1 ϕ > 0,
−1 ϕ ≤ 0,

and

ψabs (ϕ)=

{
ϕ if ϕ > 0,
−ϕ if ϕ ≤ 0.
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These are simple enrichment functions that can be implemented without any a
priori knowledge of solution behavior near the interface.

The exponential enrichment function is defined as

ψexp (ϕ)=

{
1 − eµϕ if ϕ > 0,
−ϕ if ϕ ≤ 0.

This enrichment is most effective when asymptotic analysis indicates the presence of
a boundary layer which exhibits exponential behavior. The value of the parameter µ
depends on the specific parameters of the problem. It is important to note that both
the absolute value and exponential enrichments decay to zero at the interface. This
condition is necessary for stability when a nonzero Dirichlet condition is applied at
the interface.

While the X-FEM has traditionally only added enrichment functions to elements
containing the interface, it can be advantageous to enrich beyond this layer of
elements when using enrichment functions other than the step enrichment. This
is particularly important when using a custom enrichment because it allows the
enrichment function to be applied throughout the boundary layer, thus capturing the
behavior more completely. In the case of the absolute value enrichment, extending
the enrichment distance effectively increases the order of the finite element approxi-
mation in the critical region near the interface. It is also useful to enrich to a different
distance on either side of the interface when the enrichment function is asymmetric.
As it is difficult to determine the optimal enrichment distance analytically, trial and
error is generally the best method. For the problems presented here, an enrichment
distance of µ log 10−3 is used for exponential functions and µ log 10−2 is used for
linear functions. These correspond to the distance it takes the function eµϕ to decay
to 10−3 and 10−2 respectively.

2.2. Interface conditions. Once the enrichment function has been determined, the
next consideration is the proper application of the boundary conditions. Here we
only consider problems which are continuous across the interface, so there are two
types of conditions that can be applied: Dirichlet conditions, u = h (x, y), and
Neumann jump conditions,

[[
βn̂ · ∇u

]]
= v (x, y), where [[·]] indicates the jump

across 0.

Neumann jump conditions. The Neumann jump condition is enforced primarily by
introducing a line source term to the right hand side of (1). This line source has
strength v (x, y) and is written as∫

0

v (x, y) δ (x − X (s)) d0, (3)

where X (s) is the parameterized interface.
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This technique can be used with both continuous and discontinuous enrichment
functions and typically yields the best results with the Step enrichment. However,
approximations using continuous enrichment functions can also utilize Lagrange
multipliers to enforce jump conditions. In this case, the governing equation is
rewritten as

∇ · (β∇u)+ κu +

[[
β
∂u
∂n

]]
λ= f +

∫
0

v (x, y) δ (x − X (s)) d0,

along with the condition [[
βn̂ · ∇u

]]
= v (x, y) .

A one dimensional finite element mesh is laid down on the interface using piecewise
linear elements, and the Lagrange multipliers are approximated by:

λh
=

∑
mi ∈M

θiλi ,

where M is the set of all Lagrange multiplier nodes.

Dirichlet conditions. Dirichlet conditions on an internal interface have not been
considered in previous implementations of the X-FEM. This type of condition
is unusual because it divides the domain into two independent pieces, which are
typically solved separately. However, in order to avoid the generation of meshes
which conform to each piece, it can be useful to solve on the whole domain at once.

In contrast to the derivative jump conditions, Dirichlet interface conditions can
only be applied using Lagrange multipliers. This is done in a similar manner as
above, with the governing equation rewritten to include the extra terms:

∇ · (β∇u)+ κu + λu |0 = f,

with the condition

u|0 = h (x, y) .

For systems with continuous enrichment functions, only one set of Lagrange multi-
pliers is necessary to apply the boundary condition. Discontinuous enrichments,
however, do not have a single value at the interface, so the condition must be
applied to the positive and negative sides separately, requiring two sets of Lagrange
multipliers.

2.3. Evaluation of interface derivatives. In order to accurately determine the de-
rivative jump across the interface, a domain integral method, similar to the one
described in [8], is employed. We first consider a section of interface, 0i , within the
support, �i , of a test function φi . Equation (1) is multiplied by φi and integrated
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over �i . Integrating by parts yields∫
�i

(−β∇u · ∇φi + κuφi − f φi ) d�i =

∫
0i

[[
βn̂ · ∇u

]]
0i
φi d0i . (4)

Using a first order approximation, the derivative jump is assumed to be constant
along 0i . Equation (4) can then be rewritten as[[

βn̂ · ∇u
]]
0i

=
1∫

0i
φi d0i

∫
�i

(−β∇u · ∇φi + κuφi − f φi ) d�i . (5)

To then determine the jump at a single point on the interface, xd , the jump across
the interface segment is determined using each test function, φi , which has support
containing xd . In order to avoid oscillations due to roundoff error, interface segments
are discarded if the integral of φi over the segment is less than 10−13. These values
are then weighted appropriately and summed:[[

βn̂ · ∇u
]]

xd
=

∑
j

[[
βn̂ · ∇u

]]
0 j
φ j (xd) .

3. Results

In this section, different types of enrichment functions are applied to the solution
of two example problems. In each problem, exponential enrichment functions are
compared to both absolute value enrichments and step enrichments when finding
a solution that contains a boundary layer. For each problem the interface 0 is the
circle

(
x −

1
2

)2
+

(
y −

1
2

)2
=

1
16 within the domain 0 ≤ x, y ≤ 1.

We solve each example problem using both types of interface conditions discussed
in Section 2.2. These two types of boundary conditions demonstrate how the custom
enrichment function can improve the accuracy of both the solution and its derivative
at the interface.

3.1. Example 1: enriching with the exact solution. The first example shows the
improvement in the finite element approximation when the exact solution is included
in the enriched function space. The differential equation is

∇
2u +

κ

ε

(
1
ε

−
1
r

)
u = 0, (6)

where

κ (x, y)=

{
0 if r ≤

1
4 ,

1 if r > 1
4 .

The exact solution to (6) is
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Figure 1. Solution of Example 1. (a) A surface plot of the solution
on the entire domain. (b) A cross section of the solution, taken at
an angle of one radian. The numerical approximation overlaps the
exact solution and is computed using the exponential enrichment
function on a 799 × 799 grid.

u (x, y)=

{
1 if r ≤

1
4 ,

exp
[ 1
ε

(1
4 − r

)]
if r > 1

4 ,

where ε is 1
200 . The expression 1

4 − r is equivalent to the level set variable ϕ, so
the exact solution on the exterior of the circle is contained within the exponential
enrichment function.

Equation (6) is solved with two sets of boundary conditions. The first prescribes
continuity and sets a derivative jump condition on 0:

[[u]] = 0,
[[
∂u
∂n

]]
=

1
ε
.

Because the derivative jump along the interface is already known, the important sim-
ulation results to consider are the solution values along the interface and throughout
the domain.

Table 1 shows the convergence results for the X-FEM using three types of enrich-
ment functions: the step enrichment, absolute value enrichment, and exponential
enrichment. The error given is the maximum error at the nodes, defined as

‖Tn‖∞ = max
i

ni ∈N

{
∣∣u (xi , yi )− uh

i

∣∣},
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 1.3367 × 10−1 2.8126 × 10−1 3.6922 × 10−2

99 7.8584 × 10−2 1.701 4.9647 × 10−2 5.665 8.1788 × 10−3 4.514
199 2.6213 × 10−2 2.998 9.8545 × 10−3 5.038 1.8534 × 10−3 4.413
399 8.5907 × 10−3 3.051 3.5610 × 10−3 2.760 4.6404 × 10−4 3.994
799 2.9094 × 10−3 2.953 9.7458 × 10−4 3.663 1.1565 × 10−4 4.013

Table 1. Domain results for Example 1 with Neumann jump inter-
face conditions.

where N is the set of all nodes, (xi , yi ) is the location of the i-th node, and uh
i is

the computed value at the node. The ratios of successive errors are included as well
to show convergence rates. As Table 1 shows, the exponential enrichment is more
accurate than both the absolute value and step enrichments, and it converges more
uniformly as well.

Of greater importance for moving interface problems is the accuracy of the
solution at the interface. This can be problematic for some methods even though
they exhibit good accuracy away from the interface [12]. Table 2 shows the error
interpolated along the interface. This error is computed at 1,000 evenly spaced
points along the parameterized interface. The results are similar to those seen
in Table 1, but the disparity between the exponential enrichment and the other
enrichments is more significant.

The second boundary condition we consider is a Dirichlet condition on both
sides of the interface:

u = 1.

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.4331 × 10−1 4.5436 × 10−1 3.6860 × 10−2

99 1.4444 × 10−1 2.377 1.3363 × 10−1 3.400 9.1137 × 10−3 4.045
199 3.9447 × 10−2 3.662 4.5511 × 10−2 2.936 1.9652 × 10−3 4.638
399 1.1170 × 10−2 3.531 1.4101 × 10−2 3.228 5.3682 × 10−4 3.661
799 3.1200 × 10−3 3.580 3.6471 × 10−3 3.866 1.3277 × 10−4 4.043

Table 2. Interface results for Example 1 with Neumann Jump
interface conditions.
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 2.5623 × 10−2 1.9174 × 10−1 1.1620 × 10−2

99 2.2492 × 10−2 1.135 6.9352 × 10−2 2.765 4.4235 × 10−3 2.627
199 1.4385 × 10−2 1.564 2.1398 × 10−2 3.241 8.7237 × 10−4 5.071
399 6.0928 × 10−3 2.361 5.9632 × 10−3 3.588 3.1170 × 10−4 2.799
799 1.9458 × 10−3 3.131 1.5402 × 10−3 3.872 6.0066 × 10−5 5.189

Table 3. Domain results for Example 1 with Dirichlet interface conditions.

The exact solution remains the same as above. Here, the value at the interface is
known, so the important computational results are the solution values within the
domain and the jump in the derivative across the interface.

Table 3 contains the convergence results for the X-FEM using this boundary
condition. Once again, the asymptotic enrichments perform much better than the
other two, by more than an order of magnitude. Table 4 shows the gradient results
on the interface. Due to the magnitude of the gradient jump

(
∼ 102

)
, this table

presents relative errors rather than absolute errors:

∥∥T ′

n

∥∥
∞

=
1

1/ε
max

i
ni ∈N

{
∣∣u (xi , yi )− uh

i

∣∣}.
3.2. Example 2: enriching with an asymptotic solution. In the second example,
the custom enrichment function does not contain the exact solution, but instead
includes the asymptotic approximation of the solution near the interface. The

n
Step Absolute Value Exponential∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio

49 4.2738 × 10−1 2.2663 × 10−1 3.1433 × 10−2

99 1.9041 × 10−1 2.245 9.1789 × 10−2 2.469 1.5427 × 10−2 2.038
199 6.8870 × 10−2 2.765 3.4742 × 10−2 2.642 3.8923 × 10−3 3.964
399 3.1636 × 10−2 2.177 1.7591 × 10−2 1.975 1.4946 × 10−3 2.604
799 1.3817 × 10−2 2.290 8.5566 × 10−3 2.056 5.5810 × 10−4 2.678

Table 4. Interfacial gradient results for Example 1 with Dirichlet
interface conditions.
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Figure 2. Solution of Example 2. (a) A surface plot of the solution
on the entire domain. (b) A cross section of the solution, taken at
an angle of one radian. The numerical approximation overlaps the
exact solution and is computed using the exponential enrichment
function on a 799 × 799 grid.

equation in this example is the Helmholtz Equation on the interior of a circle with
radius 1

4 :

∇
2u + κ2u = 0, (7)

where κ is given by

κ (x, y)=

{
200 if r ≤

1
4 ,

0 if r > 1
4 .

The exact solution to (7) is

u (x, y)=

{
I0(κr)
I0( κ4 )

if r ≤
1
4 ,

1 if r > 1
4 ,

where In (x) is the modified Bessel function of the first kind.
An asymptotic analysis of (7) shows that the behavior of the solution in the

boundary layer near the interface is of the form u ≈ eκr . Therefore, the exponential
enrichment function is appropriate here as well, using κ as the parameter. It is
important to note that while an exact solution to (7) is available, we only use
information from the asymptotic analysis to construct our approximation.

As in Example 1, we once again consider two types of interface conditions.
First, the solution is again prescribed to be continuous, with a jump in the normal
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n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 1.6496 × 10−1 2.8971 × 10−1 1.8642 × 10−2

99 7.7465 × 10−2 2.130 5.8281 × 10−2 4.971 5.4660 × 10−3 3.429
199 2.8396 × 10−2 2.728 1.1361 × 10−2 5.130 1.5259 × 10−3 3.582
399 8.8436 × 10−3 3.211 2.4660 × 10−3 4.607 3.8795 × 10−4 3.933
799 2.8451 × 10−3 3.108 8.1249 × 10−4 3.035 9.7831 × 10−5 3.966

Table 5. Domain results for Example 2 with Neumann jump inter-
face conditions.

derivative at the interface:

[[u]] = 0,
[[
∂u
∂n

]]
= κ

I1 (κr)
I0

(
κ
4

) .
Table 5 shows the error on the domain, and Table 6 shows the error on the interface.
The results are similar to those in the Example 1.

Like the first example, the second set of boundary conditions applies a Dirichlet
condition at the interface, and the solution gradient at the interface is the desired
result:

u = 1.

Table 7 shows that the asymptotic enrichment again outperforms the other generic
enrichment functions with an error of less that 0.1% for the largest system. For the
sake of completeness, Table 8 charts the maximum error on the domain.

Finally, the exponential enrichment function not only increases the accuracy at
the nodes and the interface, it improves the approximation within the elements
as well. Because the asymptotic solution is contained in the interpolant, fewer

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.2720 × 10−1 3.6044 × 10−1 3.4735 × 10−2

99 1.2621 × 10−1 2.593 1.1859 × 10−1 3.040 7.1808 × 10−3 4.837
199 3.9873 × 10−2 3.165 4.0367 × 10−2 2.938 1.9359 × 10−3 3.709
399 1.0574 × 10−2 3.771 1.2436 × 10−2 3.246 4.9710 × 10−4 3.887
799 2.9643 × 10−3 3.567 3.3563 × 10−3 3.705 1.2127 × 10−4 4.106

Table 6. Interface results for Example 2 with Neumann jump in-
terface conditions.
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n
Step Absolute Value Exponential∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio
∥∥T ′

n

∥∥
∞

ratio

49 3.5875 × 10−1 2.3265 × 10−1 3.6010 × 10−2

99 1.5830 × 10−1 2.266 9.0700 × 10−2 2.565 1.6945 × 10−2 2.125
199 5.7291 × 10−2 2.763 4.0960 × 10−2 2.214 4.0448 × 10−3 4.189
399 2.4665 × 10−2 2.323 1.8754 × 10−2 2.184 1.6265 × 10−3 2.487
799 1.2950 × 10−2 1.905 9.9692 × 10−3 2.067 5.9443 × 10−4 2.736

Table 7. Interface gradient results for Example 2 with Dirichlet
interface conditions.

n
Step Absolute Value Exponential

‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖Tn‖∞ ratio

49 3.0534 × 10−2 1.3923 × 10−1 6.6740 × 10−3

99 2.2035 × 10−2 1.386 6.1419 × 10−2 2.267 3.1346 × 10−3 2.129
199 1.4526 × 10−2 1.517 1.6752 × 10−2 3.666 7.4375 × 10−4 4.215
399 6.6449 × 10−3 2.186 4.8119 × 10−3 3.481 2.8600 × 10−4 2.601
799 2.0239 × 10−3 3.283 1.2758 × 10−3 3.772 5.6394 × 10−5 5.071

Table 8. Domain results for Example 2 with Dirichlet interface conditions.

elements are needed to capture the boundary layer. Figure 3 shows the exact solution
plotted next to the numerical approximation for varying mesh sizes. Each plot
is generated by evaluating the exact solution and the numerical approximation at
10,000 points along a line from r = 0.23 to r = 0.26 at an angle of one radian. This
clearly demonstrates the advantage of using a customized enrichment function, as
the exponential enrichment accurately approximates the solution on a 25 × 25 grid,
where the entire boundary layer is contained within one element.

4. Biofilm growth

We now consider the problem of bacterial biofilms. The addition of substrate
nutrients to the top of the film drives the growth of the biofilm. Here we explore
how the geometry of the biofilm colonies affects the profile of their growth. We
first consider the phenomenon of tip-splitting [4], where the colony does not grow
directly toward the substrate, but develops fingers that grow at an angle into the film.
We then analyze how the shadowing effect of a large colony decays with distance.

The system is considered on a domain �, periodic in x and consisting of two
regions, the interior of the bacterial colonies, �b, and the exterior fluid film, � f .
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Figure 3. Cross sections generated using various mesh sizes. Each
cross section is taken at an angle of one radian, to avoid alignment
with the mesh. Note that in the coarsest plot, the entire boundary
layer is contained in one element.

The substrate concentration s and velocity potential ϕ are governed by

D∇
2s = αs (8)

and

∇
2ϕ = βs, (9)

where

D (x, y) =

{
120 if (x, y) ∈�b,

150 if (x, y) ∈� f ,

α (x, y) =

{
3.6 × 106 if (x, y) ∈�b,

0 if (x, y) ∈� f ,

and

β (x, y)=

{
106 if (x, y) ∈�b,

0 if (x, y) ∈� f .

Figure 4 shows the boundary conditions applied to each equation. This follows
the description given in [6] without erosion, with the parameters chosen to approx-
imate the behavior of the nonlinear system described in [5]. Both the substrate
concentration and the velocity potential are continuous throughout the domain.
In the substrate equation, a derivative jump condition is applied at the interface
between the colony and the liquid, and in the velocity equation, a Dirichlet condition
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D b∇²s = αs

∇²ϕ = βs

D f ∇² s = 0

∇²ϕ = 0

[[D n̂ · ∇ s]] = 0

ϕ = 0

∂s

∂y
=

∂ϕ

∂y
= 0

s = γ

ϕ = 0
Ωf

Ωb

Figure 4. The domain and governing equations for the biofilm problem.

is prescribed: [[
Dn̂ · ∇s

]]
= 0, ϕ = 0.

In both cases, a Dirichlet condition is applied at the top boundary:

s = 10−5, ϕ = 0,

and a Neumann condition is applied at the bottom:

∂s
∂y

=
∂ϕ

∂y
= 0.

We solve for the growth rate profile for a given colony via a three step process.
First, the substrate concentration is found by solving (8) with the given boundary
conditions. This solution is then fed back into (9) to find the velocity potential
within the colony, and finally the rate of growth at the biofilm surface is given by
the normal derivative of the velocity potential at the interface, n̂ · ∇ϕ. We calculate
this quantity at a large number of points along the parameterized interface to obtain
an overall profile of the colony’s growth. Both the substrate and velocity equations
are solved using the X-FEM with the exponential enrichment function. The relevant
boundary layer exists on the interior of the colony, and we use µ=

√
α/Db as the

parameter in the exponential enrichment definition.

4.1. Tip splitting. As biofilm colonies grow, they do not always grow in a uniform
fashion. Sometimes the tip of the colony splits into separate fingers instead [4].
This instability appears to be distinct from the fingering instability described in
[6], where it is observed that peaks have a greater growth rate than valleys. Due to
random fluctuations, one of the fingers generally overtakes the other resulting in an
irregularly shaped colony. The conditions driving this instability are unknown, but a
possible mechanism is the splitting of a mushroom-shaped tip due to the instability
described in [6]. This is similar to the well known tip-splitting instability in the
Stefan problem, where a flattened dendritic tip splits due to the Mullins-Sekerka
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instability [13]. Here we look at the ways in which the shape of a biofilm colony
can lead to mushrooming of the tip.

To study the onset of mushrooming, we examine the velocity profiles of individual
colonies on a periodic domain. The period of the domain is large enough to prevent
interaction between neighboring colonies, and all of the colonies are hemielliptical
in shape. Due to this simple geometry, the interface is easily parameterized from 0
to π , and Figure 5 shows some examples of parameterized velocity profiles. In the
first case, the biofilm has an aspect ratio (height/width) of 2.25, and the maximum
velocity is obtained at the peak of the biofilm colony, precluding a change in the
shape of the tip. In the second case, the colony is much taller and thinner, with an
aspect ratio of 16, and the maximum velocity is obtained on either side of the peak,
which may allow for mushrooming to take place. Thus, to determine whether or
not mushrooming can occur, we consider the ratio of the maximum velocity to the
peak velocity. If this ratio is one, the maximum occurs at the peak, and the colony
will grow normally. The strength of the mushrooming instability increases as this
ratio moves above unity.
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Figure 5. Representative velocity profiles. Shown here are two
examples of velocity profiles, from colonies with different aspect
ratios but the same mass. (a) Normal velocity vs. surface parameter-
ization. In the second case, the maximum velocity is not attained at
the tip, so mushrooming may occur. (b) Velocity vectors along the
biofilm surface. The taller colony has a large aspect ratio, and the
shape of the velocity field near the peak indicates that mushrooming
may occur.
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Figure 6. The effect of aspect ratio on mushrooming.

To demonstrate, we first explore how the aspect ratio of the hemielliptical colony
affects the velocity profile. As we change the aspect ratio, we keep the area of
the colony constant so that the total amount of biomass is unchanged. The colony
shape is defined as

a2 (x − x0)
2
+

y2

a2 = R2,

where a2 is the aspect ratio of the ellipse, and R2/2 is the area. We vary the aspect
ratio between 1.0 to 25.0 (height to width) for colonies with three different masses.

Figure 6 shows the relationship between the aspect ratio and the strength of the
mushrooming instability. While the curves are qualitatively similar, the mass of the
colony is clearly important. This mass effect can be removed by considering the
radius of curvature at the colony peak, R/a3, rather than the aspect ratio. Figure 7
contains the same velocity data as Figure 6 but plotted against the radius of curvature.
In this case, all three curves lie on top of each other, indicating that tip splitting is a
function of the radius of curvature at the tip of the colony. So that we may ensure
that other factors are not also important, the height of the film and the period of the
domain were varied. As Figure 8 shows, these variations have no effect.

This dependence on radius of curvature is probably due to elevated substrate
concentrations within the biofilm colony. As the tip radius decreases, less biomass
is present near the peak, and unconsumed substrate can diffuse farther down into
the colony. To quantify the substrate penetration, we calculate the depth within the
colony at which the concentration of substrate is 10% of the concentration at the
colony tip. In order to compare biofilms containing different amounts of biomass,
we normalize all of the values by the substrate penetration depth into a circular
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Figure 7. The effect of radius of curvature on mushrooming.
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Figure 8. Domain period and film thickness have no effect on mushrooming.

colony with radius R. As shown in Figure 9, the substrate penetration depth is
correlated with the radius of curvature.

4.2. Shadowing. Another important feature of biofilm growth is the interaction
between neighboring colonies. Competition for substrate creates a shadowing effect
near large colonies as nearby colonies are unable to attain their optimal growth
rate. This shadowing effect depends on the relative sizes of the colonies as well as
the separation distance. In order to determine the relative importance of these two
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Figure 9. Normalized substrate penetration depths. (a) The nor-
malized penetration depths for colonies of various sizes against the
aspect ratio of the colony. (b) The normalized penetration depths
against the radius of curvature at the colony tip.

parameters, we consider a system consisting of alternating large and small colonies
along a periodic domain. In each case the large colony remains a standard size,
with a = 2.0 and R = 0.2. The smaller colony maintains the same aspect ratio, but
R is varied from 0.02 to 0.18. The different size cases are then simulated using a
wide range of period lengths.

Proper determination of the effects of the interaction requires the maximum
growth rate of an uninfluenced single colony, the natural growth rate for that colony.
Due to the fact that the majority of a biofilm colony’s growth occurs at or near the
tip, this maximum growth rate is a reasonable measure of the overall growth rate of
the colony. To find this rate, simulations are performed using a single colony on a
periodic domain, using the same film height as in the combined system. The period
of the domain is increased until maximum growth rate asymptotes to a constant
value. Figure 10 shows maximum growth rate plotted against the period size for
several representative colony sizes. Interestingly, the maximum growth rate of the
smallest colonies is greater than that of the medium sized colonies. This effect is
caused by mushrooming. When the colonies are relatively large, growth occurs
primarily at the tip, and therefore the maximum growth rate scales with the size of
the colony. However, in small colonies, growth occurs throughout the colony due
to the greater substrate availability. This allows for large growth rates in areas far
from the peak and creates the effect in Figure 10.
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Figure 10. Selected natural growth rates. (a) The maximum
growth rate for each colony size is reached on a domain with a
relatively small period. (b) While the velocity at the peak decreases
monotonically with colony size, the maximum velocity begins to
increase again for the smallest colonies. This effect is caused by
mushrooming.

Once the natural growth rate for each colony size has been found, it is possible
to quantify the shadowing that takes place in the combined system. For each colony
size and period length, the maximum growth rate can be expressed as a percentage
of the natural rate for that colony. Figure 11 shows this ratio for each colony size,
plotted against the length of the period. Using this data, it is then possible to create
pictures of the “shadow” for a given influence percentage. For example, the portrait
of a 50% influence shadow is shown in Figure 12. In the center of the figure is the
large colony, surrounded by colonies placed so that their maximum growth rate
is 50% of their natural rate. The tops of the colonies are connected to create a
shadow region. Any colony which is contained within this shadow region will grow
at a maximum of 50% of its natural rate. Of particular interest is the 97% shadow,
shown in Figure 13, because rather than decaying asymptotically, the region of
influence appears to have a sharp cutoff outside of which the presence of the large
colony is virtually undetectable.

5. Conclusion

The eXtended Finite Element Method has already been shown to capture the
location of an embedded interface without the need for a conforming mesh. This is
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Figure 11. The effect of period length on shadowing. For all
colony sizes, the shadowing effect of the large colony decreases for
longer periods.
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Figure 12. The 50% shadow. Any colony contained within this
region around the large central colony will achieve less than 50%
of its maximal growth rate.
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Figure 13. The 97% shadow. Any colony which falls outside of
this region will achieve at least 97% of its maximal growth rate.
While this shadow is significantly wider than the 50% shadow, it
exhibits a steep drop off at the edges, so the effect of the central
colony is largely confined to a finite area.
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accomplished by adding “enriched” basis functions containing information about
the interface position into the standard finite element approximation. Here we have
used information about the asymptotic behavior of the solution near the interface to
create customized enrichment functions which not only include the position of the
interface but the boundary layer behavior of the solution as well.

The examples presented here have shown that when solutions exhibit extreme be-
havior in the boundary layer around the interface, the use of customized enrichment
functions increases both the accuracy and the convergence rate of the numerical
approximation. This is true even if the enrichment contains only the asymptotic
approximation of the boundary layer behavior rather than the exact solution. While
all of the problems presented here are in two dimensions, the method, including the
customized enrichment functions, can be extended to three dimensions.

We then used this technique to simulate the growth of bacterial colonies in a thin
film. In solving the linearized biofilm equations we have explored the relationship
between the shape of the colony and the profile of its growth. The simulations have
shown that the radius of curvature at the peak of the colony is the dominant factor
in determining whether tip-splitting will occur as well as demonstrating that large
colonies within a biofilm create a large but finite area of influence in which the
growth of smaller colonies is inhibited.
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