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We consider the coupled motion of a passive interface separating two immiscible
fluids of different viscosities. There are several applications where the velocity
of the two fluids is needed everywhere within the domain. Examples include
the transport of bacteria and diffusing substances within a biofilm matrix and
the transport of cations throughout the mucociliary and periciliary layer in the
lung lining. In this investigation, we use a hybrid approach which employs the
boundary integral method to determine the interface velocity and the method of
regularized stokeslets to determine the velocity elsewhere in the domain.

Our approach capitalizes on the strengths of the two methods, yielding an
intuitive, efficient procedure for determining the velocity of a two-fluid system
throughout the domain. A key feature of the method is the extension to two-
fluid systems with varying viscosity. We describe the results of three numerical
simulations designed to test the numerical method and motivate its use.

1. Introduction

We consider the dynamics of two immiscible fluids of different viscosities separated
by a passive interface. The motion of both fluids is assumed to be dominated by
viscosity and described mathematically by the incompressible Stokes equations. In
the absence of a background flow the fluids move because of stress differences at
the interface that arise due to different viscosities. Due to the linearity of Stokes
equations, the dynamics of the system with a background flow is the superposition
of the motion due to jump in the traction across the interface and the background
motion of the fluids.

Though the fluid equations are linear, the coupling between two fluids renders the
full system nonlinear. Moreover, the interface between the fluids is typically hetero-
geneous and not aligned with a regular grid, complicating numerical approximations
as well as being time-dependent. In particular, standard grid-based methods are
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prone to large approximation errors while standard finite element methods require
substantial computation in order to triangulate the dynamic domain.

Several methods have been introduced to address these issues [2; 10; 11; 12; 17].
One class of these methods transforms the equations into integral equations and
then attempts to solve the integral equations as accurately as possible, with the least
computational effort. In [2; 10], methods are developed to produce solutions that
are second order accurate both on and near the interface. The main idea is to take a
standard quadrature approximation of the solution to the integral equation and add a
correction term. This correction term is computed using asymptotic analysis of the
error due to smoothing of the nearly singular kernel and that due to discretization
of the integral equation. It is shown that a second order accurate method can be
developed in this manner. In [12], the computational effort was addressed. A fast
multipole method was introduced to solve the integral equation associated with
the bi-harmonic equation. This method requires O(N ) operations, where N is the
number of points in the discretization.

Rather than transform the equations into integral equations, a different class
of methods attempts to solve the associated primitive variable formulation using
finite difference methods. For typical applications there is a jump in the material
properties across a curve in the domain. This jump introduces unacceptable errors
in the solution via standard finite difference discretization. In [11; 17], the standard
finite difference stencil is altered for points near the interface in order to maintain
the accuracy. LeVeque and Li [11] introduced a method incorporating the interface
jump condition into the discretized Laplacian operator. The resulting scheme is
second order accurate. Wei et al. [17] introduced a method termed the matched
interface and boundary method. Rather than use the jump condition to alter the
discretization, this method uses the jump conditions iteratively. At irregular points
on the grid (i.e., those whose finite difference stencil overlaps the two regions),
values of the stencil are given at fictitious grid points and are iteratively determined
to satisfy the lowest order approximate jump condition. This subtle difference
allows for the generation of discretizations of very high order.

The overall method described in this report is a hybrid method that uses different
methods to determine the velocities at points on the interface and points within the
domain, but away from the interface. We use the well described boundary integral
method (BIM) to evaluate the velocity at the interface. These velocities are used
as data for the method of Regularized Stokeslets (RS) to obtain the velocity at
points on a regular background grid. This hybrid approach is an efficient method
that capitalizes on the strengths of each of these methods and is a conceptually
straightforward method for tracking the dynamics of a two-fluid system. Although
the method is applicable in higher dimensions, for simplicity we will restrict our
domain to two dimensions throughout.
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We organize the manuscript as follows: the first sections introduce the notation
and governing equations and briefly describe the methods that are used. The
purpose of this investigation is not to develop more powerful implementations of
these methods, but to describe how to use each of them to increase the efficiency of
the numerical simulations. Therefore we describe the methods briefly and describe
the development of the numerical method; we then focus on several simulations
aimed at validating and applying the numerical methods and finally summarize the
results. The focus of this report is on the development of the method rather than
the applications which will be described elsewhere; hence we give two examples
where this method is applicable.

2. Derivation of the hybrid approach

2.1. Model equations. We consider the coupled motion of two fluids of different
viscosities. We assume that viscosity dominates both fluids, so the inertial terms
may be neglected. The fluids occupy a region � and are separated by a surface, 0.
We denote the two sub-regions as �(1) and �(2) for the external and internal fluids,
respectively.

The dynamics of both fluids are governed by the incompressible Stokes equations

∇ · σ (∗)
= F (1)

∇ · U(∗)
= 0, (2)

where ∗ = 1, 2 denotes variables in the external and internal regions, respectively,
U is the velocity vector and F denotes an applied force . Stokes equations describe
conservation of momentum and mass with stress tensors σ ∗

= −P∗I + µ∗(∇U∗
+

∇U∗T) that contain both the hydrostatic pressures, P∗, and the viscous stresses
proportional to the deformation gradient tensor with viscosities µ∗ that are generally
different.

The solution to Equations (1) and (2) when F is a force applied at a single point,
F = fδ(x−x0), is referred to as a stokeslet or the Greens’ function. The key property
of Stokes equations that is exploited by both BIM and RS is the existence of a
functional representation of the stokeslet for a variety of domains [13]. The free
space Green’s function, G, in two dimensions is,

Gi j (x) = −δi j ln r +
(x − x0)i (x − x0) j

r2 . (3)

The related stress tensor,T, is,

Ti jk = −4
(x − x0)i (x − x0) j (x − x0)k

r4 , (4)

where r = |x − x0|.
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Instead of using the free-space Green’s function we could use the Green’s function
that enforces the zero-flow boundary condition by subtracting image singularities
if the domain is bounded (e.g. channel flow) [13]. We also note that G and T are
often referred to as the single and double layer potentials, respectively.

2.2. Boundary integral method. The boundary integral method (BIM) exploits
the linearity of the basic flows and translates the differential equations (1) and
(2) to integral equations determining the velocities within the domain. These
are used along with continuity of the flow to determine an integral equation that
determines the velocity of the interface. This method has several advantages
including reduction in the dimensionality of the problem, ability to handle generic
interfaces and incorporation of different material properties [15; 6].

To derive the BIM equations, we relate the unknown velocity U∗ to the flow
induced by a singular force with intensity f at a point x0, U′. Thus U′ is a fundamental
solution to the incompressible Stokes equations

∇ · σ ′
= fδ(x − x0) (5)

∇ · U′
= 0, (6)

where σ ′
= −PI + µ(∇U + ∇UT). This is a convenient flow to use since the

solution is given by Equation (3).
The reciprocal relation for the bulk flow is determined by relating solutions to

Equations (1) and (2), with F = 0, to (5), (6). By direct calculation, we find that

∇ · (Uσ ′) − ∇ · (U ′σ) = δ(x − x0)U, (7)

which is the classical reciprocal relation.
Integrating the reciprocal relation, with various placements of the singular force,

we recast Equations (1) and (2), with ∗ = 1, as an integral equation whose domain
is the interface 0. The integral equation relates the bulk fluid velocity to the traction
jump across the interface, denoted 1σ = (σ (1)

− σ (2)), and the velocity; see [13,
Chapter 5]. The motion of the bulk fluid is

U(1)
j (x0) = −

1
4πµ(1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
1 − λ

4π

∫
0

Ui (x)Ti jk(x, x0)ηk(x) dl(x), (8)

where λ =
µ(2)

µ(1)
and we denote the outward normal to the interface as η.
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Equation (8) governs the j-th component of the external fluid velocity. In a
similar manner, we obtain an integral equation for the motion in �(2),

U(2)
j (x0) = −

1
4πµ(1)λ

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
1 − λ

4πλ

∫
0

Ui (x)Ti jk(x, x0)ηk(x) dl(x). (9)

These two integral equations govern the coupled motion of the external and
internal materials. Because the flows must be continuous at the boundary, we can
obtain the boundary velocity by taking the limit of (8) and (9) as x0 moves to the
boundary. These limits both converge to

U j (x0) = −
1

2πµ(1)(λ + 1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

+
κ

2π

∫ PV

0

Ui (x)Ti jk(x, x0)ηk(x) dl(x), (10)

where κ =
1−λ
1+λ

. The latter integral must be handled with care. There are many
methods for evaluating this integral that depend on the dimension of 0 as well
as the kernel of the integral. In this situation, the singularity is integrable and
straightforward quadrature rules work well [14]. The methods used are described
in more detail below.

To close the system we impose a constitutive relation relating the jump in traction,
1σ , to the curvature, ω. We assume that the surface traction is proportional to the
curvature, with constant of proportionality γ . This constitutive relation is interpreted
as a traction arising from surface tension. We note that this is substantially different
than what needs to be done in higher dimensions (see [13, Section 5.5] for a
description in three-dimensions).

2.3. Regularized stokeslets. This method, described in [5], is an efficient method to
approximate the solution to Stokes equations in the presence of immersed boundaries
or obstacles. Conceptually, RS uses the fact that Stokes equations are linear so
the velocity at a given point is linearly related to the force applied at that point.
Given a collection of points, xi, at which singular forces are applied , F = fδ(x−xi),
the total flow is given as the superposition of each of the stokeslets. However,
this representation of the velocity is singular at each of the points. In RS, the
forces are applied over a small ball, regularizing Stokes equations. The forces
are given by F = fφε(x − x0), where φε is a smooth function with support ε. For
particular choices of φε , analytic expressions for the solution to Stokes equations
with regularized forces can be recovered. These ’regularized stokeslets’ are analytic
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and converge to the classical stokeslet as ε tends toward zero. The flow due to a
collection of forces is a linear combination of the regularized stokeslets.

A specific blob in three dimensions is

φε(x) =
3ε3

2π(|x|2 + ε2)5/2 .

The corresponding Green’s function is

Gε(r) =
1

2π

(
ln(
√

r2 + ε2 + ε) −
ε

√
r2 + ε2

)
,

where r = |x − xi|. The velocity at x due to a collection of forces centered at xi is

U(x) = −fi
1

4πµ

N∑
i=1

(
ln(
√

r2
i + ε2 + ε) −

ε(
√

r2
i + ε2 + 2ε)

(
√

r2 + ε2 + ε)
√

r2
i + ε2

)

+
1

4πµ

(
fi · (x − xi)

)
(x − xi)

( √
r2

i + ε2 + 2ε

(
√

r2
i + ε2 + ε)2

√
r2

i + ε2

)
. (11)

This relationship can also be used to determine forces that yield particular flows.
For example, if the velocities at a collection of N points , xi , are known, one has
U = MF. The vectors U and F are 2N × 1 and M is a 2N × 2N matrix. Inverting
this relation gives the forces in terms of the (known) velocities. It should be noted
that M is typically not invertible. This can be avoided by adding a constant to the
normal component of the forces, affecting the pressure but not the velocity [5] and
using an iterative solver. We can then reconstruct the velocity everywhere within
the domain, since it is a superposition of the background flow and the flow due to
the calculated forces. This method can be made second-order accurate everywhere
using the techniques described in [2].

2.4. Hybrid method. Although much work has been done for determining the
velocity and evolution of the interface, in many applications, the velocity is needed
throughout the domain. In applications where the concentration of advected sub-
stances (such as oxygen) is needed throughout the domain such as biofilms [4], the
velocity at all points of a regular grid is required.

The general method begins by initializing the interface between the two fluids, 0.
We parameterize the coordinates of the interface by s, 0(x, y, t) = (x(s, t), y(s, t)).
The interface is discretized into control points and Equation (10) is solved at each of
the discrete points. We then use RS to determine the velocity at regular grid points.
The velocities can then used to determine the transport of a chemical throughout
the domain.



HYBRID TREATMENT OF TWO-FLUID PROBLEMS WITH PASSIVE INTERFACES 123

Because the surface traction is assumed to be proportional to the curvature, the
right-hand-side of Equation (10) is

−
1

2πµ(1)(λ + 1)

∫
0

1σikηk(x)Gi j (x, x0) dl(x)

= −
γ

2πµ(1)(λ + 1)

∫
0

ω(G1 jη1 + G2 jη2) dl(x).

The curvature of the boundary is

ω =
xs yss − ys xss

(x2
s + y2

s )(3/2)
. (12)

The outward normal is calculated using the parameterization of the interface.
To solve Equation (10), we are then confronted with a system of coupled integral

equations which can be written as

W = b +
κ

2π

∫
0

KW dl(x). (13)

where W = (U(1)
1 , U(1)

2 ). The vector b contains the stokeslet and the tensor K
contains the related stress tensor, both of which are known.

A straightforward method for solving the discretized integral equations is Ny-
ström’s method [16], which requires a quadrature rule:∫ b

a
y(s)ds =

n∑
j=1

ω j y(s j ),

where ω j denotes the weights of the quadrature rule. For our simulations we use
Gauss-Legendre quadrature. Although the kernel of Equation (13) has an integrable
singularity, it has been shown that the convergence of Nyström’s method is the
same as the rate of convergence of the quadrature and, if the singularity is of a
known type, the rate of convergence can be increased by correcting the quadrature
weights [1]. We note that we do not use this acceleration technique in the present
investigation.

Once we have solved this system, we have the velocity of the interface at the
discrete control points. We could proceed in a similar manner and find the velocity
at each point in a regular lattice using Equations (8) and (9). Instead we use the
method described above. We first determine the forces that must be applied to the
fluid in �(1) so that the velocities at the control points on the interface match those
obtained by the BIM. Using these forces and Equation (11), we find the velocities
at regular grid points in �(1). The forces required to force the internal fluid to
match the velocity of the interface are proportional to the forces obtained for the
external fluid and we can then determine the velocity within �(2). The velocities
are continuous at the interface and both agree with the velocity found using BIM.
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This hybrid method is computationally less expensive than naive implementation
of the boundary integral method. The operation count using the BIM equation to
determine the velocity at each point on a regular (M × M) grid using a trapezoidal
approximation of the integral, with N discrete points on the interface, is O(N 3 M2)

for each time step. For the RS the operation count is O(N 2
+ N M2) since each

time step requires a matrix inversion (using GMRES O(N 2) and the summation of
the stokeslet solutions for each of the N control points at each of the M2 points on
the regular grid). Thus in problems which require the velocity at all points on a
background grid, the interface can be accurately discretized without undo cost.

It should be noted that the above discussion does not consider less naive methods
for solving the integral equations that arise from BIM. There are several techniques
that are used to reduce the operation count. In particular fast summation multipole
methods can be much less computationally expensive [2; 12]. Using these methods
the operation count for using BIM alone can be reduced to O(N M2) for each time
step. Thus for problems for which the fluid flow throughout the domain is needed
accurately throughout the domain (i.e., where M is much large than N ), BIM with
multipole methods can be slightly better than the hybrid method. In our simulations
it is typical to have N = 100, while M = 250 so that the relative difference in the
orders is very small, about 0.5%.

3. Simulations

3.1. Steady flow. We first describe the numerical results of applying the method
for a single time step to validate the implementation of Nyström’s method as well as
demonstrate the behavior of the method for systems with differing viscosities. We
begin with a square domain located at (−2, 2) × (−2, 2). A fluid of viscosity µint

located at the interior of a circle of radius one. The fluid outside of the circle has
viscosity µext. We use methods described in [10] to derive an analytic solution to
the problem with given forces. We parameterize the circle by x = (cos(θ), sin(θ))

and take the analytic solutions given in [5] and scale the pressure with the internal
and external viscosities.

The analytic representation of the pressure and velocities, namely

p(r, θ) =

{
µextr−3 sin(3θ) for r ≥ 1,

µintr3 sin(3θ) for r < 1,

u1(r, θ) =

{
1
8r−2 sin(2θ) −

3
16r−4 sin(4θ) +

1
4r−2 sin(4θ) for r ≥ 1,

3
8r2 sin(2θ) +

1
16r4 sin(4θ) −

1
4r2 sin(2θ) for r < 1,

u2(r, θ) =

{
1
8r−2 cos(2θ) +

3
16r−4 cos(4θ) −

1
4r−2 cos(4θ) for r ≥ 1,

3
8r2 cos(2θ) −

1
16r4 cos(4θ) −

1
4r2 cos(2θ) for r < 1,
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are used in the equations

[σi j ]η j = − fi , for i = 1, 2,

to calculate the boundary forces. Here the stress tensor σ is

σi j = −pδi j + µ

(
∂ui

∂x j
+

∂u j

∂xi

)
.

For our calculations we prescribe the boundary forces at discrete points repre-
senting the boundary and solve Equation (13) to determine the boundary velocities.
The velocities at the control points are used to determine the forces to apply to the
fluid regions to match the calculated velocities which in turn is used to determine
the external and internal velocities via the RS. Because we are only considering the
steady problem for prescribed boundary forces we do not need to use the curvature
constitutive assumption to specify the boundary traction. Instead, ∇σi jη j = fi

To consider the convergence of the numerical approximation to the exact solution,
we allow the the number of points discretizing the interface, N , to increase while
the background grid used to determine the velocity away from the interface is fixed.
Following [5], we measure the error along the line (x, 3/10). We first consider the
case where the viscosities are equal as in [5] (see Table 1). The velocity field and
the x- and y- components of the velocity along the line (x, 3/10) are shown in in
Figure 1. By comparing the ratios of the errors as the number of interface points
is doubled we find the order of the comparison. For a first order method the ratio
is two while a second order method would have a ratio of four. These ratios are
provided in the tables indicating that the method is between first and second order
for each of the examples.

Next, we consider the behavior when the viscosities of the two fluids are not
equal. In general the convergence rate is reduced as the jump in the viscosity
increases . The results for two simulations with different viscosities are summarized
in Tables 2 and 3. To determine the rate of convergence we compare the errors for
subsequent refinements. We note that this convergence would be improved if the
methods in [2] were implemented; however, our results are in agreement with those
in [5] for the single viscosity case.

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 2.99 × 10−2 3.14 × 10−2

N = 100 7.89 × 10−3 3.7896 6.46 × 10−3 4.8606
N = 200 1.83 × 10−3 4.3833 1.03 × 10−3 6.2718
N = 400 4.47 × 10−4 4.0268 3.53 × 10−3 2.9178

Table 1. Velocity errors: µ1 = µ2 = 1.
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Figure 1. Comparison of the analytic velocities (solid) and the
numerical approximation (dotted) along the line (x, 3/10). Left
caption shows u1 while the right shows u2. The background mesh
has 100×100 points and the boundary is discretized with 200 points.
The solution is being approximated well.

3.2. Viscous suctioning. We have just computed the approximate solution for a
single time step. To determine the behavior of the numerical methods for a moving
boundary, we choose to examine a problem that is similar to the well known
Hele-Shaw problem with a singular sink term [3]. Here, we consider the flow of
a two-fluid system where an initially circular blob of fluid with viscosity µ2 is

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 3.33 × 10−2 2.42 × 10−2

N = 100 8.86 × 10−3 3.7584 9.76 × 10−3 2.4795
N = 200 2.54 × 10−3 3.4881 2.50 × 10−3 3.9040
N = 400 9.67 × 10−4 2.6266 6.17 × 10−4 4.0518

Table 2. Velocity errors: µ1 = 1, µ2 = 2.

# boundary points L2 error in u1 ratio L2 error in u2 ratio

N = 50 2.68 × 10−2 5.06 × 10−2

N = 100 9.94 × 10−3 2.6962 1.96 × 10−2 2.5816
N = 200 4.78 × 10−3 2.0795 8.90 × 10−3 2.2022
N = 400 1.50 × 10−3 3.1867 4.35 × 10−3 2.0460

Table 3. Velocity errors: µ1 = 1, µ2 = 5.
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immersed in a viscous fluid of viscosity µ1. The circle is initially of radius one
and centered at the origin. At time t = 0, we initiate a singular sink term at a
point interior to the circle that draws the interior fluid out of the domain causing
motion of the interface and the external fluid. This problem has been treated in
many investigations (see [7] for analytic treatment and references). In general, in
the absence of surface tension there is a singularity in finite time whenever µ2 > µ1.
With small surface tension, the problem is regularized and various smooth solutions
can be found depending on the location of the sink relative to the circle as well as
the strength of the point-sink.

To include a singular sink term in our scheme, we consider the background flow
that is the solution to

1U = ∇ p,

∇ · U = qδ(x − x0),

namely

Usuction = q
x − x0

|x − x0|
.

This is added to the flow obtained due to the interface motion to give the motion of
the interface.

The computational domain [−1.5, 1.5]× [−1.5, 1.5] is discretized into a regular
background grid with 200 × 200 grid points. This initial interface is a circle of
radius one centered at the origin. There are 150 regularly spaced control points.
The viscosities are µ1 = 1 and µ2 = .1, for the internal and external viscosities,
respectively. The analytic studies rely on complex function theory and mapping
techniques to determine the dynamics of the interface. In general, our method is
able to capture, qualitatively, the behaviors that are found analytically. We are also
able to determine the velocities throughout the domain. In particular, the solutions
exhibit singularities at a time, tb(γ ), that depends on the value of the surface tension.
In our simulations, tb is an increasing function of γ , indicating the role of surface
tension regularization. We have not done a complete investigation of the behavior
as a function of surface tension as that is not the focus of this investigation; however,
we show the velocity of the fluids near the developing cusp to indicate that our
method can capture the fluid flow near the interface as well as the motion of the
interface. The results for various simulations are shown in Figures 2 and 3.

3.3. Advection. One strength of the method described above is efficient approx-
imation of the velocity everywhere in the domain. This is important in transport
problems such as biofilm disinfection, where the main goal is to determine the
concentration of biocide and nutrient as it moves in the bulk fluid and into the
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Figure 2. Results for viscous suctioning. (a) Initially circular
interface with singularity at (0, 0.1). (b) To break the symmetry,
we perturb the circle into an ellipse with major axis 1 and minor axis
0.9 in the y-direction. The singularity is placed at the origin. (c)
To break the symmetry, we perturb the circle by adding a periodic
fluctuation in the radius with amplitude .01. The singularity is
placed at the origin. In all simulations the µ1 = 1 and µ2 = 0.1 and
the initial interface is indicated with the dotted line while the other
curves are shown after 100 and 250 time steps.

biofilm domain. Several models treat the biofilm as a viscous fluid with a viscosity
that is substantially different than that of the external fluid [4; 9; 8].

The domain is a channel with a parabolic background flow. Within the channel a
generic biofilm interface separates the biofilm fluid, with viscosity µbio f ilm from the
bulk fluid with viscosity µbulk . Although biofilms display viscoelastic properties,
the relaxation time has been measured to be on the order of minutes [9]. Because
transport of biocide within the biofilm typically takes place on a time scale of
hours to days, we treat the biofilm as a viscous fluid immersed in a fluid of much
less viscosity [8]. Measurements of biofilm viscosity indicate that the viscosities
differ by several orders of magnitude [9]. We set µbio f ilm = µbulk × 106 and
impose a parabolic background flow which is altered by the presence of the biofilm.
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Figure 3. Zoom in of the internal and external velocity field near
the forming cusp in Figure 2(a). The top figure shows the total
velocity, while the bottom shows the contribution from the interface
(without the background flow). Note that the scales have been
altered for visualization and do not reflect the magnitudes.

Following the methods described above, we determine the velocity of the interface
and fluid in both the bulk and biofilm regions. This is used to track the advection
and diffusion of a chemical whose concentration, C , is determined mathematically
by a conservation law

∂C
∂t

+ (U · ∇)C = D1C,

where the concentration is fixed at C0 at the leading edge of the channel. No-flux
and outflow conditions are applied at the channel walls and trailing edge of the
channel. Given the velocity at time t we determine the concentration at time t +1t
using upwinding and ADI to solve the discretized equation.

In Figure 4 we show the developing concentration contours as well as the biofilm/
bulk fluid interface for various times. We plan to indicate the effects of including
the motion of the biofilm in a future investigation.
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Figure 4. Time-dependent concentration profiles indicating the
diffusion and advection of a chemical through the two-fluid domain.
We show only part of the domain: [0, 1] × [0, 0.4]. The dynamic
fluid/biofilm interface is in black and the concentration for all
figures is indicated by the colorbar.
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4. Discussion

This investigation describes the development of a hybrid method for numerically
approximating the motion to two viscous fluids separated by an interface. The
interface velocity at control points is determined by solving an integral equation.
The velocity at the control points is then used as data to determine the flow outside
and inside the interface using the RS. Our method capitalizes on the strengths of
both of the methods, since RS is an efficient method but leads to errors at the
interface which is precisely where BIM is being applied. We have also indicated
that the computational complexity of the hybrid approach is comparable to fast
multipole methods applied to BIM, motivating the use of the method for problems
where the total flow is needed. We also feel that this investigation indicates an
area where the strengths of various methods including RS, multipole methods and
matched boundary methods can be exploited.

To apply the numerical method, we studied three different problems. The first
was a static problem for which there is an analytic solution. We found that when
the viscosities of the fluids are equal, the method behaves as in [5]. However, we
have extended the treatment to case with differing viscosities. We then treated a
viscous suctioning problem where we were able to capture the qualitative nature
of the development of cusps. More importantly for this method, we were able to
examine the velocity near the interface. Both the total flow and the flow without
the background flow are readily calculated. Finally, we applied our method to
determine the concentration of a chemical as it diffuses and advects throughout a
channel filled with two immiscible fluids of extremely different viscosities. The last
example is the motivation for the numerical method. In particular, the efficiency
of the method is desirable since in this situation, the simulations must be carried
out for relatively long times (hours, whereas a typical time scale is on the order
of seconds to minutes). Other applications where this method could be of use
include the diffusion of various cations through the mucociliary layer and into the
periciliary layer lining the lungs. This transport problem is a necessary component
toward understanding the production and motion of the mucous lining, in particular,
for Cystic Fibrosis patients. Reports of the application of this method for more
practical problems will be described elsewhere.
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