
Communications in
Applied
Mathematics and

Computational
Science

mathematical sciences publishers

vol. 3 no. 1 2008

THEORETICAL APPROACH TO AND NUMERICAL
SIMULATION OF INSTANTANEOUS COLLISIONS

IN GRANULAR MEDIA USING THE A-CD2

METHOD

STEFANO DAL PONT AND ERIC DIMNET



COMM. APP. MATH. AND COMP. SCI.
Vol. 3, No. 1, 2008

THEORETICAL APPROACH TO AND NUMERICAL
SIMULATION OF INSTANTANEOUS COLLISIONS IN

GRANULAR MEDIA USING THE A-CD2 METHOD

STEFANO DAL PONT AND ERIC DIMNET

This paper presents a model for the description of instantaneous collisions and
a computational method for the simulation of multiparticle systems’ evolution.
The description of the behavior of a collection of discrete bodies is based on
the consideration that the global system is deformable even if particles are rigid.
Making use of the principle of virtual work, the equations describing the regular
(that is, smooth) as well as the discontinuous ( that is, the collisions) evolutions
of the motion system are obtained. For an instantaneous collision involving
several rigid particles, the existence and the uniqueness of the solution as well
as its satisfaction of a Clausius–Duhem inequality (proving that the evolution is
dissipative) are proved. In this approach, forces are replaced by a succession of
percussions (that is, forces concentrated in time). The approach is therefore named
Atomized stress Contact Dynamics respecting the Clausius–Duhem inequality
(A-CD2). This paper focuses also on nonassociated behaviors, and in particular
on Coulomb’s friction law. The use of this constitutive law represents a further
theoretical and numerical enhancement of the model. The theory is finally
illustrated by some numerical examples, using the associated constitutive laws
and Coulomb’s (nonassociated) friction law.

1. Introduction

Many engineering problems require a description of the contact mechanisms oc-
curring among colliding solids. The classical continuum approach presents several
well-known drawbacks, especially when large strains and crack propagation take
place. Discrete approaches representing the medium as a granular material have been
proposed by many authors [3; 11; 10; 15]. The description of a multiparticle system
evolution requires the description of the interactions among these particles both
during the regular, smooth evolution as well as in the instant of nonsmooth evolution,
that is, during a collision. The velocity discontinuity at the instant of a collision does
not allow us to solve the classical smooth equations of motion because velocities are
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not differentiable. In this paper, the nonsmooth equations of motions describing a
collision derive from the principle of virtual work together with an appropriate set of
constitutive laws. Constitutive laws can be both associated as well as nonassociated,
that is, Coulomb’s friction law can be taken into account. Moreover, the existence
and the uniqueness of the solution as well as the satisfaction of the Clausius–Duhem
inequality are demonstrated. The Clausius–Duhem inequality assures us that the
solution of the equations describing the collisions always corresponds to a dissipative
evolution. During the evolution of multibody system each particle undergoes regular
stress (forces) and nonregular stress (percussions). In consequence, their movement
is a succession of smooth evolutions (with differentiable velocities) mixed with
nonsmooth evolutions (collisions with discontinuity of velocity). For this reason, a
method which leads to a set of equations describing smooth as well as nonsmooth
evolutions is proposed. It results from the general principle of atomization of the
stress (see Section 4), known as the Percussion Method (or PM) [11; 5].

The presented method is therefore named atomized stress contact dynamics
respecting a Clausius–Duhem inequality (A-CD2). The approach is illustrated by
the numerical simulation of two multiparticle systems’ evolutions: the dynamic
evolution of a granular flow and the quasistatic evolution of a biaxial test.

2. The instantaneous collision model

For simplicity, the mechanical model describing collisions will be first presented
by treating the case of a single moving point colliding with a rigid fixed body. This
simplified formulation reduces the degrees of freedom (DOFs) of the system and
allows one to focus on the shock mechanism.

In the following, the equation of motion will be given in the time interval [t1, t2].
We assume that collisions are instantaneous, and thus forces must be modeled

by forces concentrated in time. These stresses are contact percussions P int [5; 4].
The velocity U of the point is therefore discontinuous at the instant of the collision
tc and its left and right limits will be noted − and +.

2.1. The principle of virtual work. Regarding time dependency, we consider that
our mechanical system may undergo two kind of actions, forces and percussions.
Forces have a density with respect to Lebesgue’s measure in time, (that is, they are
regular and smooth functions of time). Percussions have a density with respect to
Dirac’s measure in time (that is, the action is concentrated in an instant). These two
actions are named regular stresses (forces) and nonregular stresses (percussions).

Interior stress (both forces r int and percussions P int) are defined by their work.
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The principle of virtual work leads us to choose the following expression for the
virtual work of the internal stress [9; 6; 4]:

W int(t1, t2, tc, V )= −
∫ t2

t1
dτ V · r int(τ )− P int(tc) ·

V−(tc)+ V+(tc)
2

, (1)

where V is a virtual velocity of the point and tc is a virtual time of collision.
In particular, Equation (1) allows one to establish a duality between the internal
percussion P int and the quantity V6

= (V−+ V+)/2, which can be interpreted as
the rate of deformation of the system formed by the point and the fixed body at
the collision instant. Similarly, we define V1

= V+− V− and likewise for other
quantities superscripted by + and −.

The virtual work of the acceleration is [5; 9; 6]:

W acc(t1, t2, tc, V )=
∫ t2

t1
dτ m

dU(τ )
dτ
· V (τ )+mU1

· V6,

where m is the mass of the point and U is the actual velocity.
The virtual work of an exterior percussion is [5; 9; 6]:

W ext(t1, t2, tc, V )=
∫ t2

t1
dτ V (τ ) · rext(τ )+ Pext(tc) · V6.

The principle of virtual work implies that for any velocity V and any virtual
time of collision tc, the following expression holds:

W acc(t1, t2, tc, V )=W int(t1, t2, tc, V )+W ext(t1, t2, tc, V ).

According to this principle, the equations of motion are written in the following
form on [t1, t2]:

m
dU
dτ
= − r int

+ rext almost everywhere, (2)

and

mU1
= − P int

+ Pext everywhere. (3)

Thus, the internal percussion P int in Equation (3) is the internal stress of the
point-fixed body system at the instant of the collision. Due to the duality (established
by the principle of virtual work) between P int and V6 and following the classical
mechanical approach, constitutive laws are given by expressing P int as a function
of V6 .

An appropriate set of constitutive laws describing the behavior and the interactions
between the colliding bodies must now introduced.
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2.2. The constitutive laws. Constitutive laws take into account the interactions
among particles during the collision and assure the noninterpenetration of the
bodies. These two aspects are made explicit by splitting the internal percussion into
a dissipative percussion Pd that takes into account the behavior during the collision
and a reactive percussion P reac that assures the noninterpenetration:

P int
= Pd

+ P reac. (4)

The dissipative percussion. This describes the (dissipative) interactions among the
colliding bodies. A general, associated dissipative interaction can be described
introducing a pseudopotential of dissipation 8d, which is a convex and positive
function which is null in the origin [14; 11; 7; 8; 17; 5]: Pd

∈ ∂8d
(
U6

)
.

The reactive percussion. The term P reac describes the reaction to the noninterpen-
etration condition, which implies U+N ≥ 0 (where U+N = U+ · N , see Figure 1).
This percussion is equal to 0 if U+N > 0, is nonnull if U+N = 0, and implies that the
condition U+N < 0 cannot hold. All these properties can be naturally written by
means of the indicator function [14; 11] in the following way:

P reac
∈ ∂ IK

(
U6
· N
)
, K =

[
U−N
2
,+∞

[
.

This percussion P reac is the (mechanical) reaction to the noninterpenetration condi-
tion U+N ≥ 0. From the mathematical point of view, P reac

= ||P reac
|| is the Lagrange

multiplier associated to the constraint U+N ≥ 0 (see also Figure 2). Therefore, there
is no need to add any penalties to the model.

In particular, because K is convex and contains the origin, the indicator function
IK is a pseudopotential of dissipation [7; 8; 17]. The internal percussion can be

Figure 1. Instantaneous collision between a point and a rigid and
fixed plane.
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Figure 2. Indicator function.

therefore written in the following form:

P int
∈ ∂8

(
U6

)
, where 8=8d

+ IK ,

that is, the internal percussion derives from a pseudopotential of dissipation.
Using the pseudopotential of dissipation and the indicator function is a natural

and effective way to introduce into the model both the dissipative character of
the evolution and the necessity of the noninterpenetration among particles. More-
over, these mathematical tools are characterized by some properties (for example,
convexity) which will be particularly useful in the following (see Section 4).

3. Simultaneous collision of N solids

In the previous section, the main characteristics of the model were presented. In
particular, the general equations describing the evolution of the system (Equations
(2) and (3)) as well as the general form of the constitutive relationships (4) are
presented. This approach can be naturally extended to the case of N colliding
solids.

We consider N solids colliding at time t , defined by their mass mi , a center of
gravity Gi and an inertial tensor Ii . Contacts between solids are assumed to be
punctual. The k-th contact between the solid i and the solid j takes place at points
Ai, j,k . The set of contact points between the solids i and j is named Si, j . If these
two solids are not in contact, this set is not necessarily empty. The interactions
between distant (not in contact) particles can be taken into account (for details, see
[5]). In this paper these interactions will not be considered. Percussion P int

i, j,k is
applied at contact point Ai, j,k . V i is the virtual velocity of the center of gravity Gi

and ωi is the virtual rotational velocity. External percussions Pext
i,l are applied at
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points Bi,l of solid i . S′i contains the points Bi,l on which external percussions are
applied on the solid i .

If we define the vector V̂ = (V i ,ωi ) which takes into account both translational
and rotational degrees of freedom, we can write the relative velocities of the solids
in contact at point Ai, j,k in the following form:

Di, j (V̂ , Ai, j,k)= V i +ωi ∧
−−−−→
Gi Ai, j,k − (V j +ω j ∧

−−−−−→
G j Ai, j,k),

where we denote by
−→
AB the vector from point A to point B. The relative velocities

at the contact points Bi,l of solid i are

Ei (V̂ , Bi,l)= V i +ωi ∧
−−−→
Gi Bi,l .

In the following, we will focus our attention on the instant of the collision, t . If
we denote by U i , �i the actual velocities of the solid i and by V i , ωi its virtual
velocities, we can write the principle of virtual work in the following generalized
form, which holds for all V̂ :

0=
N∑

i=1

{
mi U1

·
(
V6

i −U6
i
)
+ Ii�

1
i ·

(
ω6i −�6

i
)}

+

N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

P int
i, j,k ·

{
D6

i, j (V̂ , Ai, j,k)− D6
i, j (Û , Ai, j,k)

}

−

N∑
i=1

∑
Bi,l∈S′i

Pext
i,l ·

{
E6

i, j (V̂ , Bi,l)− E6
i, j (Û , Bi,l)

}
, (5)

where

D6
i, j (V̂ , Ai, j,k)= (Di, j (V̂+, Ai, j,k)+ Di, j (V̂−, Ai, j,k))/2,

and so on.
As in the previous case, it is necessary to introduce a set of constitutive laws

describing the behavior and the interactions among the colliding bodies.
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3.1. Constitutive laws.

3.1.1. Associated constitutive law. Associated constitutive laws can be defined by
means of a pseudopotential of dissipation in the following way:

P int
i, j,k ∈ ∂8i, j,k

(
D6

i, j (Û , Ai, j,k).
)

(6)

8i, j,k is a pseudopotential of dissipation formed from the sum of the pseudopotential
describing the dissipation during the percussion and of the function ĨK : D →
IK (D · N) which assures the noninterpenetration condition. The second term
requires the existence of a normal at the contact point (see for example Figure 1),
that is, the boundary of at least one colliding solid must be regular at this point. If
this condition is not satisfied (for example, a corner-corner collision), an appropriate
normal at the contact point must be defined (see [5]).

If we introduce Equation (6) into Equation (5) and apply the inequality of the
subdifferential (see for example [11]), we can write for all V̂ :

0≤
N∑

i=1

{
mi U1

i ·
(
V6

i −U6
i
)
+ Ii�

1
i · (ω

6
i −�6

i )
}

+

N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

8i, j,k

{
D6

i, j (V̂ , Ai, j,k)− D6
i, j (Û , Ai, j,k)

}

−

N∑
i=1

∑
Bi,l∈S′i

Pext
i,l ·

{
E6

i (V̂ , Bi,l)− E6
i (Û , Bi,l)

}
≥ 0. (7)

As every function

V̂ →8i, j,k(Di, j (V̂ , Ai, j,k))

=8i, j,k

(
V i +ωi ∧

−−−−→
Gi Ai, j,k − (V j +ω j ∧

−−−−−→
G j Ai, j,k)

)
is a pseudopotential of dissipation, the function

V̂ →
N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

8i, j,k(Di, j (V̂ , Ai, j,k))=8(V̂ )

is also a pseudopotential of dissipation.
The definition of the scalar product

〈
Û , V̂

〉
=

N∑
i=1

(mi U i · V i + Ii�i ·ωi )
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allows us to rewrite Equation (7) in the following way:〈
Û1
− T ext, V̂ − Û6

〉
+8(V̂ )−8

(
Û6

)
≥ 0, (8)

for every V̂ ∈ R6N . T ext
∈ R6N is defined by

〈
T ext, V̂

〉
=

N∑
k=1

(Rk · V k +Mk ·ωk) ,

where Rk is the resultant of all the exterior percussions applied on the solid k and
Mk is the resultant of their angular moment applied with respect to the center of
gravity of the solid k.

Given that R6N has a scalar product defined by 〈 · , · 〉 and given the definition
of subgradient, the formulation (8) is equivalent to the following inclusion:

−(Û1
− T ext) ∈ ∂8(Û6),

or, given the definition of Û6 , to the following form:

2Û−+ T ext
∈ 2Û6

+ ∂8(Û6). (9)

This inclusion is finally equivalent to the minimization problem

inf
{
〈Y, Y 〉+8(Y )−

〈
2Û−+ T ext, Y

〉 ∣∣Y ∈ R6N
}
,

and the argument X that minimizes this satisfies the Karush–Kuhn–Tucker condition:
0(6N ) ∈ 2X + ∂8(X)− 2Û−− T ext, that is, the inclusion (9).

3.1.2. Existence and uniqueness of the solution. The existence and the uniqueness
of the solution in the case of an associated constitutive law can be stated by the
following theorem:

Theorem 1. If all the constitutive laws derive from a pseudopotential of dissipation,
then the problem of the multiple collision of N rigid solids has a unique solution
Û+.

The demonstration of this theorem is a direct consequence of the strong convexity
of the function

Y → F(Y )= 〈Y, Y 〉+8(Y )−
〈
2Û−+ T ext, Y

〉
,
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proved from〈
X + Y

2
,

X + Y
2

〉
≤

1
4
(〈X, X〉+ 〈Y, Y 〉+ 2 〈X, Y 〉)

≤
1
4
(2 〈X, X〉+ 2 〈Y, Y 〉− 〈X − Y, X − Y 〉)

≤
〈X, X〉+ 〈Y, Y 〉

2
−

2
8
〈X − Y, X − Y 〉 ,

and

−

〈
2Û−+ T ext,

X + Y
2

〉
= −

〈
2Û−, X

〉
+

〈
2Û−, Y

〉
2

.

As 8 is a pseudopotential of dissipation,

8

(
X + Y

2

)
≤
8(X)+8(Y )

2
,

and we can state that R6N is characterized by the scalar product 〈 · , · 〉 and by the
associated norm

F

(
X + Y

2

)
≤

F(X)+F(Y )
2

−
2
8
‖X − Y‖2 .

Therefore, F is strongly convex, as it is an α-convex function (α = 2). Such
functions admit only one minimum on the Hilbert space

(
R6N
; 〈 · , · 〉

)
, that is, the

existence and the uniqueness of the solution is given.

3.1.3. Dissipative character of the collision. The constitutive law (6) describing
the internal stress derives from a pseudopotential of dissipation:

P int
i, j,k · D

6
i, j (Û , Ai, j,k)≥ 0 (10)

in every point Ai, j,k and

N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

P int
i, j,k · D

6
i, j (Û , Ai, j,k)≥ 0. (11)

This inequality, under the hypothesis that the temperature does not vary during the
collision, represents the inequality of Clausius–Duhem of the shock [12].

This inequality shows that the collision is dissipative if no exterior percussion is
applied. In this case, the kinetic energy balance (sum of the translational energy
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1
2 mU2 and the rotational energy 1

2 I�2) is negative because

N∑
i=1

(
1
2

mi ·
(
(U+i )

2
− (U−i )

2)
)
+

1
2

Ii
(
(�+i )

2
− (�−i )

2))
=

N∑
i=1

(
mi U1

i ·U
6
i + Ii�

1
i ·�

6
i
)

= −

N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

P int
i, j,k · D

6
i, j (Û , Ai, j,k)≤ 0.

(12)

3.1.4. Nonassociated constitutive law. Associated constitutive laws derive from a
pseudopotential of dissipation. However, many real behaviors are well modeled
by means of nonassociated constitutive laws. In particular, the behavior of brittle
materials such as rocks, concrete or ceramics is well represented by Coulomb’s
friction law. In this case, the tangential components (those in the plane perpendicular
to the contact normal) of the percussion are described as follows:

||PT || ≤ µ||P N ||, where µ > 0.

If ||PT ||< µ||P N ||, then XT = 0.

If ||PT || = µ||P N ||, then ∃λ such that XT = λPT .

This behavior does not derive from a pseudopotential of dissipation; nevertheless,
it can be shown that this problem is also dissipative and can lead to a unique
solution. Due to the nonassociated form of Coulomb’s friction law, the existence
and the uniqueness of the solution can not be directly deduced as in the previous
case. However, if the solution exists, Coulomb’s law describing the percussions
P int

i, j,k corresponding to the solution verifies the inequality (10). This implies also
conditions (11) and (12) and assures the dissipative character of the collision.

The problem of the existence and uniqueness of a solution can be approached by
a series of solutions obtained by the Tresca associated constitutive law (see Figure
3). It will be shown that this series converges to the unique solution of the problem
if the friction coefficient verifies certain conditions.

If at every contact, the value of the normal percussion PN is known or fixed, the
tangential part of the constitutive law derives from a pseudopotential of dissipation:

PT ∈ ∂8T
(
V6

T
)

,

that is, 8T (V6
T ) = µPN |V6

T |, where V T is the tangential relative velocity be-
tween two colliding solids. X is the solution of the problem in which the normal
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percussions are known or fixed:

X = arg inf
{
〈Y, Y 〉+8(P̂N (X), Y )−

〈
2Û−+ T ext, Y

〉 ∣∣ Y ∈ R6N
}
,

where the vector P̂N (X) contains the (a priori unknown) values of PN and where
the pseudopotential 8(P̂N (X), Y ) is the sum, for each contact, of the expression

µPN
∥∥V6

T

∥∥ . (13)

The Coulomb friction problem is treated by an iterative procedure solving at
each iteration a problem in which a Tresca constitutive law (in which the slipping
threshold is fixed) is used. As this law is associated (see Figure 3), the solution of
the equations is unique. The values of the normal percussions PN are multiplied by
the frictional coefficient and then used in the following iteration as the new slipping
thresholds µPN :

Xn+1 = arg inf
{
〈Y, Y 〉+8(P̂N (Xn), Y )−

〈
2Û−+ T ext, Y

〉
| |Y ∈ R6N

}
,

the existence and uniqueness of the solution is assured by the convergence of the
series. It can be shown [5] that two real positive numbers (depending on the grain
size) M and M ′ exist such that, if the friction coefficient µ is the same for every
NC contact, the condition implies the uniqueness and the existence of the velocities

PT

Coulomb

P N

V6
T

(V6
N , P N )

(V6
T , PT )

µ

1

Tresca

Figure 3. Friction laws: Tresca versus Coulomb.
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after the collision:

µ <
1

16 · NC3/2 ·M(1+M ′)2
.

If more than one friction coefficient is given (at different contacts), the inequality
should be verified by the largest coefficient.

4. Numerical method

In the previous section, a theory describing rigid bodies collisions was proposed.
The full set of equations describing the smooth and nonsmooth evolution of the
system are given. To compute an approximation of the evolution described by
this set of equations over a time interval [0, T ], one must deal with forces having
a density with respect to Lebesgue’s measure in time and percussions having a
density with respect to Dirac’s measure in time. The A-CD2 method consists of
approximating all the forces by a succession of percussions, in order to have all the
stresses described as percussions.

In the following section, the time-discretization technique of the forces (atom-
ization) is presented. The consequence of the atomization of forces is to make
the evolution a succession of instantaneous velocity discontinuities. To solve
the equations of velocity discontinuities, a constrained minimization algorithm is
proposed.

f int is a vector in R6N containing the sum of the internal forces (for example,
contact forces) exerted on the system during the regular evolution of the system.
The coordinates 6(i−1)+1, 2, 3 represent the three linear momenta in the principal
directions exerted on the particle i ; the coordinates 6(i − 1)+ 4, 5, 6 represent the
three angular momenta with respect to the center of gravity of i . Similarly, f ext

contains the sum of the external forces exerted on the system during the regular
evolution of the system (for example, weight; see also Section 4.1). P int and Pext

stand for the sums of the internal and external percussions during contacts.
The equations of motion have the following form:

dU
dt
= − f int

+ f ext, almost everywhere,

U1
= − P int

+ Pext, everywhere.

From time 0 to t , the accumulated stresses Rint and Rext are defined by:

Rint(t)=
∫ t

0
dτ f int(τ )+

∫ t

0
dτ

∑
ti

P int(ti )δti (τ ),

=

∫ t

0
dτ f int(τ )+

∑
ti

P int(ti )H(t − ti ),
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and

Rext(t)=
∫ t

0
dτ f ext(τ )+

∫ t

0
dτ

∑
t j

Pext(t j )δt j (τ ),

=

∫ t

0
dτ f ext(τ )+

∑
t j

Pext(t j )H(t − ti ),

where ti and t j are the instants when internal and external percussions are exerted.
We can write

dV (t)= − d Rint(t)+ d Rext(t).

The percussion method (PM) approximates the regular elements of Rint and Rext

by the percussions. This procedure is named stress atomization. The approximated
evolution is obtained by calculating a series of velocities discontinuities separated
by constant velocity evolutions. If this procedure is applied to a system formed by
solids, this procedure is known as A-CD2 method. Practically, the application of
the A-CD2 method can be summarized as follows:

• The time length [0, T ] is discretized in n regular steps
[
tk, tk+1

]
of length

1n = T/n. In each time step, active forces are “atomized”, that is, replaced
by percussions exerted at the instant θk = tk +1n/2.

• All the percussions exerted during the time gap
[
tk, tk+1

]
are also exerted at

the instant θk . It follows that velocities are discontinuous at the instants θk

when the percussions are exerted and are constant elsewhere.

4.1. Atomization of a regular force. The atomization of a regular force f on the
time interval

[
tk, tk+1

]
consists of replacing it with the percussion P exerted at the

instant θk . If f depends on a time-dependent quantity y, we can write on
[
tk, tk+1

]
that ∫ tk+1

tk
dτ f (y(τ ))' (tk+1− tk) f

(
y+(θk)+ y−(θk)

2

)
,

and thus f can be replaced by the percussion

P(t)=1n f
(

y+(θk)+ y−(θk)

2

)
δθk (t),

which is the derivative of

EP(t)=1n f
(

y+ (θk)+ y−(θk)

2

)
H(t − θk),

where δ is the Dirac function and H is the Heaviside function. Practically, three
cases must be treated: a constant force, a time dependent force, and position
dependent forces.
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4.1.1. Constant force. The atomization of a constant force f0 consists of approxi-
mating it with a percussion of intensity f01n , on any time interval1n . For example,
the action of the weight −

∫ tk+1
tk

dτ g at time θk is approximated by

(0, 0,−g1n, 0, 0, 0, . . . , 0, 0,−g1n, 0, 0, 0, . . . , 0, 0,−g1n, 0, 0, 0).

4.1.2. Time dependent force. The force f (t) exerted on the system at the time gap[
tk, tk+1

]
is replaced by a percussion of intensity 1n f (θk) exerted at the instant θk .

4.1.3. Position dependent force. The force f (Y (t)) exerted on the system at the
time

[
tk, tk+1

]
is replaced by a percussion of intensity 1n f (Y (θk)) exerted at the

instant θk . If we consider, for example, that two points are elastically bounded and
note the elongation x(t) at the instant t , the modulus of the elastic force exerted on
every point is k |x(t)|. This force is therefore replaced by a percussion of intensity
1nk |x(θk)|.

4.2. Solution algorithms. The atomization of the regular stress, in which forces
are replaced by a succession of percussions, makes the velocities become step
functions with respect to time. At any instant θk velocities are discontinuous while
their value is constant elsewhere. Between θk and θk+1 every particle moves with a
constant velocity. The way in which discontinuities are calculated at the instant θk

requires further development.

4.2.1. Constitutive law deriving from a pseudopotential of dissipation. The percus-
sion responsible for the velocity discontinuity at the instant θk are caused either
by a collision occurring in the time [tk, tk+1] or by the atomization of a regular
stress in this interval. Under the hypothesis that the percussions derive from a
pseudopotential of dissipation, the problem can be written in any of the three
following forms:

for all V,
〈
U1
− T ext, V −U6

〉
+8(V )−8

(
U6

)
≥ 0,

2U−+ T ext
∈ 2X + ∂8(U6),

inf
Y∈R6n

{
〈Y, Y 〉+8(Y )−

〈
2U−+ T ext, Y

〉}
.

In particular, if the internal percussions are derived from a pseudopotential of
dissipation,

X→8i, j,k(Di, j (X, Ai, j,k)),
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the function

X→
N−1∑
i=1

N∑
j=i+1

∑
Ai, j,k∈Si, j

8i, j,k(Di, j (X, Ai, j,k))=8(X)

is a pseudopotential of dissipation that can be divided in two parts:

8(X)=8d(X)+8r (X).

8r (X) is the sum of all the indicator functions modeling the noninterpenetration
conditions and renamed Bl , l = 1, . . . , p (p is the total number of indicator func-
tions):

8r (X)=
p∑

i=1

I[
dl

(
V−

2

)
,+∞

[ (ϕl(X)) ,

dl(X)= Di, j (X, Bl) · N l, l = 1, . . . , p.

8d(X) is differentiable.
The equation is therefore equivalent to:

F(Y )= 〈Y, Y 〉+8(Y )−
〈
2V−+ Pe, Y

〉
, where Y ∈ R6N ,

which implies the following minimization problem:

F(Y )= 〈Y, Y 〉+8d(Y )−
〈
2V−+ Pe, Y

〉
,

where

Y ∈�=
{

Y ∈ R6N �ϕl(Y )= − dl(Y )+ dl

(
V−

2

)
≤ 0, l = 1, . . . , p

}
. (14)

The solution of this minimization problem is a saddle point of the application
(Lagrangian) [5]:

L(Y, µ) ∈�× R p
+→ F(Y )+

p∑
l=1

µlϕl(Y ).

The domain � as well as the functions F and 8d(Y ) is convex. This means that
if X is a solution of the problem, there exists at least one λ ∈ R p

+ such that (X, λ) is
a saddle point of L . If (X, λ) is a saddle point of L , then X ∈� and X is a solution
of the problem.

This problem is characterized by the following property [1]:

L(X, λ)= inf
Y∈R6N

sup
µ∈R p

+

L(Y, µ)= sup
µ∈R p

+

inf
Y∈R6N

L(Y, µ),
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which leads us to the dual problem (Q), which is the maximization of:

G(µ)= inf
Y∈R6N

L(Y, µ), with µ ∈ R p
+.

The dual problem can be solved by the Uzawa method, which can be defined as
a fixed point gradient method with a projection applied to the dual problem (Q).

Given a point µ ∈ R p
+, we denote Xµ as the element that minimizes L(Y, µ)

such that:

G(µ)= L(Xµ, µ)= F(Xµ)+
p∑

l=1

µlϕl(Xµ),

which allows one to write ∇ (G(µ))l = ϕl(Xµ) of the gradient of G(µ). The path
is denoted ρ and the projection on the domain R p

+ is stated as max{0, ρϕl(Xµ)},
l = 1, . . . , p.

The algorithm can be therefore summarized as follows:

(i) µ0
∈ R p
+ is fixed at step 0;

(ii) at every step n,

Xn = arg min{F(Y )+
p∑

i=l

µn
l ϕl(Y ), Y ∈ R6N

}

is calculated;

(iii) µn+1 is updated as µn+1
l =max{0, ρϕl(Xµn )}.

This algorithm allows one to replace the initial constrained minimization problem

arg min
{
〈Y, Y 〉+8d(Y )−

〈
2V−+ Pe, Y

〉
, Y ∈�

}
,

with a suite of unconstrained minimization problems

arg min

{
F(Y )+

p∑
l=1

µn
l ϕl(Y ), Y ∈ R6N

}
.

Further details, as well as the necessary conditions for convergence, can be found,
for example, in [2].

4.2.2. Case of Coulomb’s friction law. Friction problems using Coulomb’s consti-
tutive law can be approached by a strategy similar to the one used for demonstrating
the existence and the uniqueness of the solution. If fi, j,k stands for the frictional
coefficient at contact Ai jk , and starting from a first approximation of the normal
percussions G0, the problem can be solved in an iterative way by the associated
Tresca’s law

XG0 = arginf
{
〈Y, Y 〉+8(G0, Y )−

〈
2U−+ Pext, Y

〉 ∣∣Y ∈ R6N } ,
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where 8(G0, Y ) is the pseudopotential of dissipation defined in (13). The unique
solution (due to Theorem 1) XG0 allows one to define the new normal stress

PG0
Ni, j,k = P int

Ai, j,k
· N Ai, j,k = Di, j (2U−+ Pext

− 2XG0, Ai, j,k) · N Ai, j,k ,

constituting the new slipping thresholds of successive iteration of the cycle.
This approach requires the convergence of two imbricated suites (the first one

computes the slipping threshold, the second contains the Uzawa algorithm) which
consume excessive computation time. It is therefore proposed an original approach
that consists of solving one unique suite in which the slipping thresholds and the
reactions are updated simultaneously. For simplicity, only a two dimensional case
is given (in such a case, the tangent at the contact point has only one dimension).

The original problem 4.2.1 can be therefore modified by defining a further
nonslipping condition

ψ(X)= 0, sl(X)= Di, j (X, Bl) · T l, l = 1, . . . , p,

where T is the tangential direction and by introducing the following problem:

F(Y )= 〈Y, Y 〉+8d(Y )−
〈
2V−+ Pe, Y

〉
, where Y ∈�,

�=

Y ∈ R6N �


ϕl(Y )= − dl(Y )+ dl

(
V−

2

)
≤ 0, l = 1, . . . , p,

ψl(Y )= − sl(Y )+ sl

(
V−

2

)
= 0, l = 1, . . . , p


 , (15)

that is, the tangential nonslipping condition enforces the solution lies on path
I in Figure 4. Thanks to Theorem 1, this problem has a unique solution. The
solution of such a problem can be approached, as in the previous case, by defining

g
Path II

Path I

PT

V6
T

Figure 4. Scheme of Coulomb’s law behavior.
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a modified Lagrangian taking into account the additional nonslipping condition and,
numerically, by means of a modified Uzawa algorithm (see the previous section)
[2]:

L(Y, µ, ζ ) ∈�× R p
+→ F(Y )+

p∑
l=1

µlϕl(Y )+
p∑

l=1

ζlψl(Y ).

The algorithm is then modified as follows (paths are noted as ρ and %):

(i) µ0
∈ R p
+ and ζ 0

∈ Rp are fixed at step 0;

(ii) at every step n,

Xn = arg min{F(Y )+
p∑

i=1

µn
l ϕl(Y )+

p∑
l=1

ζlψl(Y ), Y ∈ R6N
}

is calculated;

(iii) µn+1 is updated as µn+1
l =max{0, ρϕl(Xµn )};

(iv) ζ n+1 is updated as ζ n+1
l = %ψl(Xζ n ).

If X is a solution of the problem, there exists at least one λ ∈ R p
+ and ξ ∈ Rp such

that (X, λ, ξ) is a saddle point of L .
The unconstrained minimization has not been yet discussed. However, given the

strong convexity of the functions we deal with, the solution can be easily approached
by classical newtonian methods (for example, BFGS [1]).

As Lagrange multipliers correspond to the normal (λ associated to the condition
ϕ) and to the tangential (ξ associated to the condition ψ) stress, their values can be
directly compared as follows:

If |λ| ≤ µ|ξ |, then V6
T = 0 and Section 4.2.2 holds.

If |λ| ≤ µ|ξ |, then V6
T = 0 and Section 4.2.2 holds.

If |λ|> µ|ξ |, then Section 4.2.2 is violated.

(16)

In particular, if |λ|> µ|ξ |, it means that the tangential nonslipping condition does
not hold and contact behavior must follow path II in Figure 4. The problem must be
reformulated on contacts where the condition no longer holds, taking into account
that tangential slipping occurs. This means that if the k-th contact violates condition
(16), the tangential stress is greater than the slipping threshold g, and the problem
must be reformulated to take into account that the condition ψ no longer holds on
this contact. A further pseudopotential defining the frictional behavior on slipping
contacts must be defined, that is, the pseudopotential 8d

G(Y ) applies on slipping
contacts m = 1, k while the nonslipping condition ψ holds on n = k+1, p slipping



INSTANTANEOUS COLLISIONS IN GRANULAR MEDIA 19

contacts:

8d f
=

∑
i

µi |λi |‖V6
Ti
‖.

An alternative method consists in extending this sum at all the terms. Adding
|λl |‖V6

Tl
‖ to a term corresponding to a contact l where the constraint ψl is kept

does not affect the solution. This further term accelerates the convergence as it acts
as a penalty function associated to the constraints ψl .

The second step of the computation can be explicitly taken into account by
defining the problem modified as follows:

J(Y )= 〈Y, Y 〉+8d
G(Y )+8

d(Y )−
〈
2V−+ Pe, Y

〉
, where Y ∈ ϒ,

ϒ =

Y ∈ R6N �


ϕl(Y )= − dl(Y )+ dl

(
V−

2

)
≤ 0, l = 1, . . . , p,

ψ j (Y )= − s j (Y )+ s j

(
V−

2

)
= 0, j = k+ 1, . . . , p


 .
(17)

Equation (17) constitutes, as in the previous case, a constrained minimization
problem where the constraints are given by inequalities (that is, the noninterpen-
etration condition on all the p contacts) and equalities (that is, the nonslipping
conditions on n contacts where Equation (16) holds). Slipping behavior on contacts
where Equation (16) is violated is taken into account by the pseudopotential 8d f .
The algorithm is then modified as follows:

(i) µ0
∈ R p
+ and ζ 0

∈ Rp−k are fixed at step 0;

(ii) at every step n,

Xn = arg min{J(Y )+
p∑

l=1

µn
l ϕl(Y )+

p∑
i=k+1

ζ n
j ψ j (Y ), Y ∈ R6N

}

is calculated;

(iii) µn+1 is updated as µn+1
l =max{0, ρϕl(Xµn )};

(iv) ζ n+1 is updated as ζ n+1
j = %ψ j (Xζ n ).

It should be finally verified that contacts following path I behavior in Figure 4
still respect the nonslipping condition (that is, the tangential percussion is below
the slipping threshold). Otherwise the computation should be iterated starting from
the new initial condition.
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5. Numerical simulations

To illustrate the theory, some numerical simulations based on the described numeri-
cal method will be presented.

Molecular dynamics (MD) methods, for example, [16; 18; 15], are often used
when approaching similar problems. MD methods consider, in general, the contin-
uum discretized by a collection of rigid disks suitably linked with contact elements.
The definition of the contact model reproducing the behavior of the media results
from the overlapping of the disks. The mechanical answer is then governed by
the contact law which transforms the error of the penalty contact formulation into
a displacement field [15]. This approach turns out to be particularly effective
in solving quasistatic problems, but less effective in dynamics problems such
as fragmentations or granular flows, where gap functions can hardly be defined
[13]. The A-CD2 method turns out to be particularly effective in solving both
dynamics problems such as fragmentations or granular flows (as gap functions used
in molecular dynamics methods [13] are not required) and quasistatic problems
such as compaction.

5.1. Associated constitutive law. The case of an associated constitutive law has
been applied to an example of a landslide formed from 300 rigid regular bodies.
Similar results with more than 1200 particles can be found in [4]. In this example,
regular stresses (that is, contact forces) exerted on particles are associated to multiple
percussions due to collisions. In such a situation, the A-CD2 method turns out to
be well adapted to reproduce such a dynamic case. Let us recall that dissipation is
always assured when an associated constitutive law (or a Coulomb’s friction law)
is used. In these cases, the Clausius–Duhem inequality (Equation (12)) holds. It
proves that the evolution is dissipative, regardless of whether the solids are sliding
or rolling.

The geometry of the slide is given in Figure 5.
To simulate the dispersion of material properties of an irregular assembly, a

random generation of the initial configuration has been set. This means that the
bodies have a random number of sides and a random initial rotation. The mass and
the inertia modulus of every polygon is therefore calculated according to its random
number of sides. In the first part of the analysis, particles are generated as shown
in Figure 5. The rigid bodies are then submitted to the action of gravity and the
package arranges to a stable position behind a floodgate. After the gate removal,
the final, stable configuration of packaging is computed while observing the value
of kinetics energy, that is, if kinetics energy is below an established threshold, final
stabilized position is considered to be achieved (see Figure 6).
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Figure 5. Initial packaging of the polygons.

The constitutive law describing the behavior of the solids during the shock has
been chosen in a quadratic form:

8=
1
2

KT

((
Û++ Û−

)
· T
)2
+

1
2

KN

((
Û++ Û−

)
· N
)2
,

KT ≥ 0, KN ≥ 0,

Figure 6. Evolution of the system at t = 1 s, 2.5 s, 5 s, 10 s.
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Radius Density KN KT 1n

0.25 m 2500 kg m−3 78 kg m−1 78 kg m−1 10−4 s

Table 1. Parameters used in the numerical simulation of the slide.

where KT and KN represent the tangential and the normal elastic constants (see
for example [11]) and U is written in a compact form standing for Û = (U i ,ωi )).
This choice leads to the following form of the functional:

Find U+ ∈ C that minimizes J (V )=
1
2

a(V, V )− l(V ),

which can be solved by the Uzawa method [2].
The parameters describing the packaging as well as the contact laws are summa-

rized in Table 1. The choice of the time step 1n is particularly important as small
interpenetrations may occur between θk and θk+1. This numerical problem can be
avoided (at a higher computational cost) by decreasing 1n.

5.2. Coulomb’s friction law. The nonassociated constitutive law has been applied
for the simulation of a biaxial test. The geometry of the assembled specimen is
given in Figure 7. The assembly phase has been performed as in the previous
case: the specimen is formed by an irregular packing of 200 particles, obtained by
imposing a random geometrical perturbation on the initial (regular) arrangement.

Two horizontal rigid walls are defined as the loading plates. The left and the
right external columns of particles constitute flexible boundaries where an external
elastic force is continuously exerted. This flexible boundary is stress-controlled and
simulates the membrane usually used in biaxial tests. After generation, the particles
are compacted, and the biiaxial test is performed by applying the confining force
and moving the upper platen. The parameters used in this simulation are presented
in Table 2.

The results of the simulation are presented in Figure 7. These results correspond
to Mohr–Coulomb’s theory. The last image shows the specimen configuration after
fracture. The shear band corresponds to a slipping band between particles forming

Parameter Value

Radius 0.1
Friction coefficient µ 0.1

Table 2. Parameters used in the numerical simulation of the biiax-
ial test.
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Figure 7. Evolution of the system during the biiaxial test.

an angle of about 50◦. The shear bands predicted by Mohr–Coulomb’s theory
(π/4±φ/2 where µ= tgφ) are therefore respected.

6. Conclusion

This paper has proposed a description of instantaneous collisions among rigid
particles respecting the principle of virtual work and a method, named A-CD2,
for describing the evolution of a multiparticle system. This method constitutes a
general framework capable of integrating all the stress which are generally present
in a mechanical system. The numerical examples that have been presented include
features such as gravitational forces, viscous friction, unilateral contact, Coulomb’s
friction, and elastic forces exerted by a membrane. The proposed method is par-
ticularly effective in simulating evolution in which collisions among particles or
contact fracture with velocity discontinuity are observed together with regular
evolutions. The proposed A-CD2 method is therefore well adapted for describing
the mechanical behavior of granular media.
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