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The balancing domain decomposition methods by constraints are extended to
solving nonsymmetric, positive definite linear systems resulting from the finite
element discretization of advection-diffusion equations. A preconditioned GM-
RES iteration is used to solve a Schur complement system of equations for the
subdomain interface variables. In the preconditioning step of each iteration, a
partially subassembled interface problem is solved. A convergence rate estimate
for the GMRES iteration is established for the cases where the advection is not
strong, under the condition that the mesh size is small enough. The estimate
deteriorates with a decrease of the viscosity and for fixed viscosity it is indepen-
dent of the number of subdomains and depends only slightly on the subdomain
problem size. Numerical experiments for several two-dimensional advection-
diffusion problems illustrate the fast convergence of the proposed algorithm for
both diffusion-dominated and advection-dominated cases.

1. Introduction

Domain decomposition methods have been widely used and studied for solving large
sparse linear systems arising from finite element discretization of partial differential
equations. The balancing domain decomposition methods by constraints (BDDC)
were introduced by Dohrmann [12] and they represent an interesting redesign of the
balancing Neumann-Neumann algorithms; see also [17; 11] for related algorithms.
Scalable convergence rates for the BDDC methods have been proved by Mandel
and Dohrmann [27] for symmetric positive definite problems. Connections and
spectral equivalence between the BDDC algorithms and the earlier dual-primal
finite element tearing and interconnecting methods (FETI-DP) [15] have been
established by Mandel et al. [28]; see also [25; 4]. The BDDC methods have also
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been extended to solving saddle point problems, for example, for Stokes equations
by Li and Widlund [24], for nearly incompressible elasticity by Dohrmann [13],
and for the flow in porous media by Tu [35; 37; 36].

The systems of linear equations arising from the finite element discretization of
advection-diffusion equations are nonsymmetric, but usually positive definite. A
number of domain decomposition methods have been proposed and analyzed for
solving nonsymmetric and indefinite problems. Cai and Widlund [5; 6; 7] studied
overlapping Schwarz methods for such problems, using a perturbation approach in
their analysis, and established that the convergence rates of the two-level overlapping
Schwarz methods are independent of the mesh size if the coarse mesh is fine enough.
Motivated by the FETI-DPH method proposed by Farhat and Li [16] for solving
symmetric indefinite problems, the authors [23] studied a BDDC algorithm for
solving Helmholtz equations and estimated its convergence rate using a similar
perturbation approach. For some other results using the perturbation approach for
domain decomposition methods, see [40; 38; 19].

For advection-diffusion problems, standard iterative substructuring methods
do not usually perform well when advection is strong. Dirichlet and Neumann
boundary conditions used for the local subdomain problems in these algorithms
are not appropriate because of loss of positive definiteness of the local bilinear
forms. More general boundary conditions need to be considered. Therefore, a class
of methods has been developed in [8; 9; 34; 18; 29], where additional adaptively
chosen subdomain boundary conditions are used to stabilize the local subdomain
problems; see also [30, Chapter 6] and the references therein for other similar
approaches.

The Robin-Robin algorithm, a modification of the Neumann-Neumann approach
for solving advection-diffusion problems, has been developed by Achdou et al. [3;
1; 2], where new local bilinear forms corresponding to Robin boundary conditions
for the subdomains are used and a coarse level basis function, determined by
the solution to an adjoint problem on each subdomain, is added to accelerate the
convergence. Equipped with the same type local subdomain bilinear forms with
Robin boundary conditions and a similar coarse level basis function, one-level and
two-level FETI algorithms were proposed by Toselli [32] for solving advection-
diffusion problems. Some additive and multiplicative BDDC algorithms with vertex
constraints and edge average constraints have also been studied by Conceição [10].
All these algorithms, based on subdomain Robin boundary conditions, have been
shown to be successful for solving advection-diffusion problems, including some
advection-dominated cases, but a theoretical analysis is still missing.

In this paper, we develop BDDC algorithms for advection-diffusion problems.
As in [2], local subdomain bilinear forms corresponding to Robin boundary con-
ditions are used. The original system of linear equations is reduced to a Schur
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complement problem for the subdomain interface variables and a preconditioned
GMRES iteration is then used. In the preconditioning step of each iteration, a
partially subassembled finite element problem is solved, for which only the coarse
level, primal interface degrees of freedom are shared by neighboring subdomains.
The convergence analysis of our BDDC algorithms requires that the coarse level
primal variable space contains certain flux average constraints, which depend on
the coefficient of the first order term of the problem, across the subdomain interface,
in addition to the standard subdomain vertex and edge/face average continuity
constraints. A convergence rate estimate for the GMRES iterations is established
for the cases where the advection is not strong, under the condition that the mesh
size is small enough. The estimate deteriorates with a decrease of the viscosity and
for fixed viscosity it is independent of the number of subdomains and depends only
slightly on the subdomain problem size. A perturbation approach is used in our
analysis to handle the nonsymmetry of the problem. A key point is to obtain an
error bound for the partially subassembled finite element problem; we view this
problem as a nonconforming finite element approximation.

For the cases where the advection is dominant, our BDDC algorithm also performs
satisfactorily, even though where the convergence rate estimate does not apply.

The rest of this paper is organized as follows. The advection-diffusion equation
and its adjoint form are described in Section 2. In Section 3, the finite element
space and a stabilized finite element problem are introduced. The local subdomain
bilinear forms and a partially subassembled finite element space are introduced
in Section 4. In Section 5, an error estimate for the partially subassembled finite
element problem is proved. The preconditioned interface problem for our BDDC
algorithm is presented in Section 6 and its convergence analysis is given in Section
7. To conclude, numerical experiments in Section 8 demonstrate the effectiveness
of our algorithm.

2. Problem setting

We consider the following second order scalar advection-diffusion problem in a
bounded polyhedral domain � ∈ Rd , d = 2, 3,{

Lu := − ν4 u + a · ∇u + cu = f, in �,
u = 0, on ∂�.

(1)

Here the viscosity ν is a positive constant. The velocity field a(x) ∈ (L∞(�))d and
∇ · a(x) ∈ L∞(�). The reaction coefficient c(x) ∈ L∞(�) and f (x) ∈ L2(�). We
define

c̃(x)= c(x)− 1
2∇ · a(x), c̃s = ‖c̃(x)‖L∞(�),

as = ‖a(x)‖L∞(�), cs = ‖c(x)‖L∞(�).
(2)
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For simplicity we assume that c̃s , as , cs , and the diameter of� are of the order O(1);
we focus on studying the dependence on ν of the performance of our algorithms.
We also assume that there exists a positive constant c0 such that

c̃(x)≥ c0 > 0, for all x ∈�. (3)

The bilinear form associated with the operator L is defined, for functions in the
space H 1

0 (�), by

ao(u, v)=

∫
�

(ν∇u · ∇v+ a · ∇uv+ cuv) dx, (4)

which is positive definite under assumption (3). The weak solution u ∈ H 1
0 (�)

of (1) satisfies

ao(u, v)=

∫
�

f v dx, for all v ∈ H 1
0 (�). (5)

We assume that the weak solution u of the original problem (1), as well as the
weak solution of the adjoint problem L∗u = −ν4 u −∇ · (au)+ cu = f , satisfies
the regularity result,

‖u‖H2(�) ≤
C
ν

‖ f ‖L2(�), (6)

where C is a positive constant independent of ν. Here we assume that ‖u‖H2(�)

grows proportionally with a decrease of the viscosity ν. In this paper, C always
represents a generic positive constant independent of ν and the mesh size.

3. Finite element discretization and stabilization

Let Ŵ ⊂ H 1
0 (�) be the standard continuous, piecewise linear finite element function

space on a shape-regular triangulation of�. We denote elements of the triangulation
by e, and their diameters by he. We set h = maxe he.

It is well known that the original bilinear form ao(·, ·) has to be stabilized to
remove spurious oscillations in the finite element solution for advection-dominated
problems. There are a large number of strategies for this purpose; see [20] and the
references therein. Here, we follow [20; 32] and consider the Galerkin/least-squares
method (GALS) of [20]. On each element e, we define the local Peclet number by

Pee =
he‖a‖L∞(e)

2ν
,

and we define a positive function C(x) by

C(x)=


τhe

2‖a‖L∞(e)
if Pee ≥ 1,

τh2
e

4ν if Pee < 1,
for all x ∈ e, (7)



BDDC FOR ADVECTION-DIFFUSION PROBLEMS 29

where τ is a constant. We set τ = 0.7 in our numerical experiments. We define
Cs = maxx∈� |C(x)| and Cm = minx∈� |C(x)|. From the definition of Cs , we know
that

Cs ≤ max
e⊂�

{
min

(
τhe

2‖a‖L∞(e)
,
τh2

e

4ν

)}
. (8)

The stabilized finite element problem for solving (5) is: find u ∈ Ŵ , such that

a(u, v) : = ao(u, v)+
∫
�

C(x)LuLv dx

=

∫
�

f v dx +

∫
�

C(x) f Lv dx, for all v ∈ Ŵ .

(9)

Here and from now on, the integration over � in the stabilization terms always
represents a sum of integrals over all elements of �. We note that for all piecewise
linear finite element functions u, Lu = − ν 4 u + a · ∇u + cu = a · ∇u + cu, on
each element.

The symmetric and skew-symmetric parts of a(u, v), respectively, are denoted
by

b(u, v)=

∫
�

(
ν∇u · ∇v+ C(x)LuLv+ c̃uv

)
dx, (10)

z(u, v)=
1
2

∫
�

(a · ∇uv− a · ∇vu) dx . (11)

The system of linear equations corresponding to the stabilized finite element
problem (9) is denoted by

Au = f, (12)

where the coefficient matrix A is nonsymmetric but positive definite. We denote the
symmetric part of A by B and its skew-symmetric part by Z ; they correspond to
the bilinear forms b(·, ·) and z(·, ·) in (10) and (11), respectively. In this paper, we
will use the same notation, for example, u, to denote both a finite element function
and the vector of its coefficients with respect to the finite element basis; we will
also use the same notation to denote the space of finite element functions and the
space of their corresponding vectors, for example, Ŵ .

4. Domain decomposition and a partially subassembled finite element space

The original finite element triangulation of � is decomposed into N nonoverlapping
polyhedral subdomains �i ; each subdomain is a union of shape regular elements.
The typical diameter of the subdomains is denoted by H . The nodes on the
boundaries of neighboring subdomains match across the subdomain interface 0 =

(∪∂�i )\∂�. The interface 0 is composed of subdomain faces Fl and/or edges Ek ,
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which are regarded as open subsets of 0, and of the subdomain vertices, which are
end points of edges. In three dimensions, the subdomain faces are shared by two
subdomains, and the edges typically by more than two; in two dimensions, each
edge is shared by two subdomains. The interface of subdomain �i is defined by
0i = ∂�i ∩0. We denote the space of finite element functions on �i , which vanish
at the nodes of ∂�, by W (i). The local bilinear and stabilized bilinear forms are
defined on W (i) by

a(i)o (u
(i), v(i))=

∫
�i

(
ν∇u(i) · ∇v(i) + a · ∇u(i)v(i) + cu(i)v(i)

)
dx, (13)

and

a(i)(u(i), v(i))=

∫
�i

(
ν∇u(i) ·∇v(i)+a · ∇u(i)v(i)+cu(i)v(i)+C(x)Lu(i)Lv(i)

)
dx

=

∫
�i

(
ν∇u(i) · ∇v(i) + C(x)Lu(i)Lv(i) + c̃u(i)v(i)

)
dx

+
1
2

∫
�i

(
a · ∇u(i)v(i) − a · ∇v(i)u(i)

)
dx +

1
2

∫
0i

a · nu(i)v(i) ds.

We note that, in general, we cannot ensure that the stabilized bilinear form
a(i)(·, ·) is positive definite on W (i) since the boundary integral on 0i does not
vanish and the sign of a · n depends on the orientation of the flow a in relation to
the external normal direction n on 0i . We therefore modify a(i)(·, ·) as in [2] and
introduce

a(i)(u(i), v(i))= a(i)(u(i), v(i))−
1
2

∫
0i

a · nu(i)v(i) ds, (14)

which corresponds to the Robin boundary condition on 0i . The assumption (3)
now ensures that the modified local bilinear forms a(i)(·, ·) are positive definite on
W (i), i = 1, 2. . . . , N . The symmetric and skew-symmetric parts of a(i)(u(i), v(i))
are represented, respectively, by

b(i)(u(i), v(i))=

∫
�i

(
ν∇u(i) · ∇v(i) + C(x)Lu(i)Lv(i) + c̃u(i)v(i)

)
dx, (15)

z(i)(u(i), v(i))=
1
2

∫
�i

(
a · ∇u(i)v(i) − a · ∇v(i)u(i)

)
dx . (16)

We now introduce a partially subassembled finite element space, which was
introduced by Klawonn et al. [22] in their analysis of FETI-DP algorithms for
symmetric positive definite problems. The partially subassembled finite element
space W̃ is the direct sum of a coarse level primal subspace Ŵ5, which is a space of
continuous coarse level finite element functions, and a dual subspace Wr , which is
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the product of local dual spaces W (i)
r . The space Ŵ5 corresponds to a few selected

subdomain interface degrees of freedom for each subdomain and is typically spanned
by subdomain vertex nodal basis functions, and/or interface edge and/or face basis
functions with weights at the nodes of the edge or face. These basis functions will
correspond to the primal interface continuity constraints enforced in the BDDC
algorithm. To simplify our analysis, we will always assume that the basis has been
changed so that we have explicit primal unknowns corresponding to the primal
continuity constraints of edges or faces; these coarse level primal degrees of freedom
are shared by neighboring subdomains. For more details on the change of basis, see
[21; 25]. Each subdomain dual space W (i)

r corresponds to the subdomain interior
and dual interface degrees of freedom and it is spanned by all the basis functions of
W (i) which vanish at the primal degrees of freedom. Thus, functions in the space
W̃ have a continuous coarse level, primal part and typically a discontinuous dual
part across the subdomain interfaces. We have Ŵ ⊂ W̃ and we denote the injection
operator from Ŵ to W̃ by R̃.

We define the bilinear form on the partially subassembled finite element space
W̃ by

ão(u, v)=

N∑
i=1

a(i)o (u
(i), v(i)), for all u, v ∈ W̃ ,

where u(i) and v(i) represent restrictions of u and v to subdomain�i . Corresponding
to the stabilized forms, we define, for all u, v ∈ W̃ ,

ã(u, v)=

N∑
i=1

a(i)(u(i), v(i)), b̃(u, v)=

N∑
i=1

b(i)(u(i), v(i)),

z̃(u, v)=

N∑
i=1

z(i)(u(i), v(i)).

Denote the partially subassembled matrices corresponding to the bilinear forms
ã(·, ·), b̃(·, ·), and z̃(·, ·) by Ã, B̃, and Z̃ , respectively. We have A = R̃T Ã R̃,
B = R̃T B̃ R̃, and Z = R̃T Z̃ R̃. We note that the use of the modified bilinear form
a(i)(·, ·), defined in Equation (14) corresponding to the Robin boundary condition,
does not affect the matrix A of the original problem when it is assembled from Ã,
since the additional interface terms in (14) cancel.

We define broken norms on the space W̃ by

‖w‖
2
L2(�)

=

N∑
i=1

‖w(i)‖2
L2(�i )

|w|
2
H1(�)

=

N∑
i=1

|w(i)|2H1(�i )
.

In this paper, ‖w‖L2(�) and |w|H1(�), for functions w ∈ W̃ , always represent these
broken norms. Since the subdomain bilinear forms b(i)(·, ·), i = 1, 2, ..., N , are
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symmetric positive definite on W (i), we define

‖u(i)‖2
B(i) = b(i)(u(i), u(i)) and ‖u(i)‖2

B(i)0
= b(i)(u(i), u(i))−

∫
�i

c̃u(i)u(i) dx,

for any u(i) ∈ W (i). We define

‖u‖
2
B =

N∑
i=1

‖u(i)‖2
B(i), ‖u‖

2
B0

=

N∑
i=1

‖u(i)‖2
B(i)0
,

for any u ∈ Ŵ , and

‖w‖
2
B̃ =

N∑
i=1

‖w(i)‖2
B(i), ‖w‖

2
B̃0

=

N∑
i=1

‖w(i)‖2
B(i)0
,

for any w ∈ W̃ . All the B-, B0-, B̃-, and B̃0- norms are also well defined for
functions in the space H 2(�).

Lemmas 4.1 and 4.2 are immediate consequences of the definitions of B(i)-, B(i)0 -
and B0- norms.

Lemma 4.1. There exists a positive constant C , such that for all w(i) ∈ W (i),
i = 1, 2, ..., N ,

‖w(i)‖B(i) ≤ C‖w(i)‖H1(�i ),
√
ν|w(i)|H1(�i ) ≤ ‖w(i)‖B(i)0

,

‖w(i)‖B(i)0
≤ C max(

√
ν,

√
Cs)‖w

(i)
‖H1(�i ),

max(
√
ν,

√
Cm)|a ·w(i)|H1(�i ) ≤ ‖w(i)‖B(i)0

.

Lemma 4.2. For all u ∈ H 2(�), ‖u‖B0 ≤ max(
√
ν,

√
Cs)‖u‖H2(�).

Lemma 4.3. There exists a positive constant C , such that for all u(i), v(i) ∈ W (i),
i = 1, 2, ..., N ,

|z(i)(u(i), v(i))| ≤ C
1

max(
√
ν,

√
Cm)

‖u(i)‖B(i)‖v
(i)

‖B(i),

and

|a(i)(u(i), v(i))| ≤ C
1

max(
√
ν,

√
Cm)

‖u(i)‖B(i)‖v
(i)

‖B(i) .

Proof. We only need prove the first inequality; the second one immediately follows.
Since

|a · ∇u(i)v(i)| ≤
C

max(
√
ν,

√
Cm)

√
ν|∇u|2 + C(x)|a · ∇u|2 · |v|,
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we have

|z(i)(u(i), v(i))| ≤
C

max(
√
ν,

√
Cm)

·

(∫
�

√
ν|∇u|2 + C(x)|a · ∇u|2 · |v| dx

+

∫
�

√
ν|∇v|2 + C(x)|a · ∇v|2 · |u| dx

)
≤

C
max(

√
ν,

√
Cm)

·

(∫
�

u2
+ ν|∇u|

2
+ C(x)|a · ∇u|

2 dx
)1/2

·

(∫
�

v2
+ ν|∇v|2 + C(x)|a · ∇v|2 dx

)1/2

≤
C

max(
√
ν,

√
Cm)

·

(∫
�

(1+C(x)c2)u2
+ν|∇u|

2
+C(x)|a ·∇u+cu|

2 dx
)1/2

·

(∫
�

(1 + C(x)c2)v2
+ ν|∇v|2 + C(x)|a · ∇v+ cv|2 dx

)1/2

≤ C
1

max(
√
ν,

√
Cm)

‖u(i)‖B(i)‖v‖B(i),

where we use the Cauchy–Schwartz inequality in the middle. �

Lemma 4.4. There exists a positive constant C , such that, for all u, v ∈ Ŵ ,

|z(u, v)| ≤ C
1

max(
√
ν,

√
Cm)

‖u‖B ‖v‖L2(�).

Proof. We find, by integration by parts and using Lemma 4.1, that

|z(u, v)| ≤
1
2

∫
�

|2a · ∇uv+ ∇ · auv| dx

≤ C
(
as |u|H1(�)‖v‖L2(�) + ‖∇ · a‖∞‖u‖L2(�)‖v‖L2(�)

)
≤ C

1
√
ν
‖u‖B‖v‖L2(�).

At the same time we have

|z(u, v)| ≤
1
2

∫
�

|2a · ∇uv+ ∇ · auv| dx

≤

∫
�

(|(a · ∇u + cu)v| + |cuv|) dx +
1
2

∫
�

|∇ · auv| dx

≤ C
1

√
Cm

‖u‖B‖v‖L2(�). �

Lemma 4.5. There exists a positive constant C , such that for all u(i), v(i) ∈ W (i),
if v(i) has zero values on ∂�i , then |a(i)(u(i), v(i))| ≤ C‖u(i)‖H1(�i )‖v

(i)
‖B(i) .
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Proof. As in the proof of Lemma 4.4, we have, by integration by parts,

|z(i)(u(i), v(i))| ≤
1
2

∫
�

|2a · ∇u(i)v(i) + ∇ · au(i)v(i)| dx

≤ C
(

as |u(i)|H1(�i )‖v
(i)

‖L2(�i )

+ ‖∇ · a‖L∞(�)‖u(i)‖L2(�i )‖v
(i)

‖L2(�i )

)
≤ C‖u(i)‖H1(�i )‖v

(i)
‖B(i) .

Therefore,

|a(i)(u(i), v(i))| ≤ |b(i)(u(i), v(i))| + |z(i)(u(i), v(i))|

≤ C‖u(i)‖B(i)‖v
(i)

‖B(i) + ‖u(i)‖H1(�i )‖v
(i)

‖B(i) ≤ C‖u(i)‖H1(�i )‖v
(i)

‖B(i),

where we use Lemma 4.1 at the last step. �

We also have the following approximation property in B-norm for the finite
element space Ŵ .

Lemma 4.6. There exists a positive constant C , such that for all u ∈ H 2(�),

inf
w∈Ŵ

‖u −w‖B ≤ C max(
√
ν,

√
Cs, h)h|u|H2(�).

Proof. We have, for any u ∈ H 2(�) and w ∈ Ŵ , that

‖u −w‖
2
B = b(u −w, u −w)≤ ν|u −w|

2
H1(�)

+Cs‖L(u −w)‖2
L2(�)

+ c̃s‖u −w‖
2
L2(�)

= ν|u −w|
2
H1(�)

+ Cs‖ν1u + a · ∇(u −w)+ c(u −w)‖2
L2(�)

+c̃s‖u −w‖
2
L2(�)

≤ ν2Cs |u|
2
H2(�)

+ (ν+ Csa2
s )|u −w|

2
H1(�)

+(Csc2
s + c̃2

s )‖u −w‖
2
L2(�)

.

We complete the proof by using (7) and the following standard finite element
approximation results [33, Lemma B.6],

inf
w∈Ŵ

{
‖u −w‖

2
L2(�)

+ h2
|u −w|

2
H1(�)

}
≤ Ch4

|u|
2
H2(�)

. �

For each subdomain interface edge Ek , let ϑEk be the standard finite element
edge cut-off function which vanishes at all interface nodes except those of the edge
Ek where it takes the value 1. For three-dimensional problems, we denote the finite
element face cut-off functions by ϑFl , which vanishes at all interface nodes except
those of Fl where it takes the value 1. Let Ih be the interpolation operator into
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the finite element space. In the convergence analysis of our BDDC algorithm for
advection-diffusion problems, we require that the coarse level primal subspace Ŵ5

satisfies the following assumption.

Assumption 4.7. For two-dimensional problems, the coarse level primal subspace
Ŵ5 contains all subdomain corner degrees of freedom, and for each edge Ek , one
edge average degree of freedom and two edge flux average degrees of freedom such
that for any w ∈ W̃ ,∫

Ek
w(i) ds,

∫
Ek

a · nw(i) ds,
∫

Ek
a · nw(i)s ds,

respectively, are the same (with a difference of factor −1 corresponding to opposite
normal directions) for the two subdomains �i that share Ek .

For three dimensional problems, Ŵ5 contains all subdomain corner degrees of
freedom, and for each face Fl , one face average degree of freedom and two face
flux average degrees of freedom, and for each edge Ek , one edge average degree of
freedom, such that for any w ∈ W̃ ,∫

Fl
Ih

(
ϑFlw(i)

)
ds,

∫
Fl

a · nIh
(
ϑFlw(i)

)
ds,

∫
Fl

a · nIh
(
ϑFlw(i)

)
s ds,

respectively, are the same (with a difference of factor −1 corresponding to opposite
normal directions) for the two subdomains �i that share the face Fl , and∫

Ek
Ih

(
ϑEkw(i)

)
ds

are the same for all subdomains �i that share the edge Ek .

We will need an error bound for the approximation of partially subassembled
finite element problems in the analysis of our BDDC algorithm. For this purpose,
we make an assumption for our decomposition of the global domain �.

Assumption 4.8. Each subdomain �i is triangular or quadrilateral in two dimen-
sions, and tetrahedral or hexahedral in three dimensions. The subdomains form a
shape regular coarse mesh of �.

Under Assumption 4.8, we can denote by ŴH the continuous linear, bilinear,
or trilinear finite element space on the coarse subdomain mesh, and denote by IH

the finite element interpolation operator into ŴH . We have the following Bramble–
Hilbert lemma [39, Theorem 2.3]:

Lemma 4.9. There exists a constant C , such that for all u ∈ H 2(�), i = 1, 2, ..., N ,

‖u − IH u‖H t (�i ) ≤ C H 2−t
|u|H2(�i ),

where t = 0, 1, 2.
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5. Error estimate for a partially subassembled finite element problem

In this section, we prove an error bound for the solution of a partially subassembled
finite element problem.

Given g ∈ L2(�), we define

ϕg ∈ H 1
0 (�) and ϕ̃g ∈ W̃

as the solutions to the following problems, respectively,

ao(u, ϕg)= (u, g), for all u ∈ H 1
0 (�), (17)

ão(w, ϕ̃g)+

∫
�

C(x)L∗wL∗ϕ̃g dx = (w, g)+
∫
�

C(x)L∗wg dx, for all w∈W̃ . (18)

We know from Equation (17) that ϕg is the weak solution to the adjoint problem
L∗ϕg = g, and ϕg ∈ H 2(�) under the regularity assumption Equation (6). We have
the following result.

Lemma 5.1. Let Assumption 4.7 hold. For any g ∈ L2(�), let ϕg be the solution
to Equation (17) and let Lh(q, ϕg)= ão(q, ϕg)− (q, g), for q ∈ W̃ . There exists a
constant C , such that for all q ∈ W̃ ,

|Lh(q, ϕg)| ≤ CCL(ν, H, h)‖ϕg‖H2‖q‖B̃,

where

CL(ν, H, h)=


1

√
ν

max
(
Hν, H 2

)
, d = 2,

1
√
ν

max
(

Hν, H 2,
√

Hh
) (

1 + log
( H

h

))
, d = 3.

Proof. We give the proof only for the three-dimensional case; the two-dimensional
case can be proved in a similar manner. For any q ∈ W̃ , we have

Lh(q, ϕg)= ão(q, ϕg)− (q, g)

=

N∑
i=1

∫
�i

(
ν∇q(i)∇ϕg + a · ∇q(i) ϕg + cq(i)ϕg − q(i)g

)
dx

=

N∑
i=1

{∫
∂�i

(
ν∂nϕgq(i) + a · nϕgq(i)

)
ds

−

∫
�i

(
ν1ϕgq(i) + ∇ · (aϕg)q(i) − cϕgq(i) + gq(i)

)
dx

}
=

N∑
i=1

∫
∂�i

(
ν∂nϕgq(i) + a · nϕgq(i)

)
ds
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=

N∑
i=1

∑
0i j ⊂∂�i

∫
0i j

(
ν∂nϕgq(i) + a · nϕgq(i)

)
ds,

where we use the fact that L∗ϕg = g holds in the weak sense. Here 0i j represents
the boundary faces of �i .

Denote the common average of q on the face Fl of 0i j by qFl and its common
averages on the edges Elk by qElk . Since the finite element cut-off functions ϑFl

and ϑElk provide a partition of unity [33, Section 4.6], we have

Lh(q, ϕg)=

N∑
i=1

∑
0i j ⊂∂�i

{∫
Fl

(
ν∂nϕg Ih(ϑFl (q(i) − qFl ))+ a · nϕg Ih(ϑFl (q(i) − qFl))

)
ds

+

∑
Elk⊂0i j

∫
Fl

(
ν∂nϕg Ih(ϑElk (q(i)−qElk ))+a · nϕg Ih(ϑElk (q(i)−qElk ))

)
ds

}
, (19)

where we have also subtracted the constant average values qFl and qElk from q(i),
which does not change the sum.

Then, from Assumption 4.7, we know that

Lh(q, ϕg)=

N∑
i=1

∑
0i j ⊂∂�i

∫
Fl

(
ν∂n(ϕg − I (i)H ϕg)

(
Ih

(
ϑFl (q(i) − qFl )

)))
ds

+

N∑
i=1

∑
0i j ⊂∂�i

∫
Fl

(
a·n(ϕg−I (i)H ϕg)

(
Ih

(
ϑFl (q(i)−qFl )

)))
ds

+

N∑
i=1

∑
0i j ⊂∂�i

∑
Elk⊂0i j

∫
Fl

(
ν∂nϕg

(
Ih

(
ϑElk (q(i) − qElk )

)))
ds

+

N∑
i=1

∑
0i j ⊂∂�i

∑
Elk⊂0i j

∫
Fl

(
a · nϕg

(
Ih

(
ϑElk (q(i) − qElk )

)))
ds

=: I1 + I2 + I3 + I4, (20)

where IHϕg represents the interpolation of ϕg into the space ŴH on the coarse
subdomain mesh. Each of the four terms in Equation (20) is bounded as follows.

For the first term I1, from the Cauchy–Schwarz inequality, we have

|I1| ≤ ν

N∑
i=1

∑
0i j ⊂∂�

(∫
Fl
|∇(ϕg − I (i)H ϕg)|

2ds
∫

Fl
|Ih(ϑFl (q(i) − qFl ))|2ds

)1/2
. (21)
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Using a trace theorem and Lemma 4.9, we have for the first factor∫
Fl

|∇(ϕg − I (i)H ϕg)|
2 ds ≤ C H‖∇(ϕg − I (i)H ϕg)‖

2
H1(�i )

≤ C H‖ϕg − I (i)H ϕg‖
2
H2(�i )

≤ C H |ϕg|
2
H2(�i )

.

(22)

For the second factor, we have∫
Fl

|Ih(ϑFl (q(i) − qFl ))|2 ds ≤ C H‖Ih(ϑFl (q(i) − qFl ))‖2
H1(�i )

≤ C H(1 + log
H
h
)2‖q(i) − qFl ‖

2
H1(�i )

≤ C H
(
1 + log

H
h

)2
|q(i)|2H1, (23)

where we have used a trace theorem for the first step, a Poincaré–Friedrichs in-
equality and Lemma 4.24 of [33] for the second step, and a Poincaré–Friedrichs
inequality in the last step. Combining Equation (21), (22), and (23), we have the
following bound for I1,

|I1| ≤ CνH(1 + log
H
h
)

N∑
i=1

|ϕg|H2(�i )|q|H1(�i )

≤ C
νH(1 + log H

h )
√
ν

|ϕg|H2(�)‖q‖B̃,

where we use the Cauchy–Schwarz inequality and Lemma 4.1 in the last step.
To derive a bound for I2, we find from the Cauchy–Schwarz inequality that

|I2|≤

N∑
i=1

∑
0i j ⊂∂�

(∫
Fl
|ϕg − I (i)H ϕg|

2ds
∫

Fl
|Ih(ϑFl (q(i)−qFl ))|2ds

)1/2
. (24)

Using a trace theorem and Lemma 4.9, we have, for the first factor on the right
hand side of Equation (24),∫

Fl
|ϕg − I (i)H ϕg|

2 ds ≤ C H‖ϕg − I (i)H ϕg‖
2
H1(�i )

≤ C H 3
|ϕg|

2
H2(�i )

. (25)

Combining Equation (24), (25), and (23), and using Lemma 4.1, we have

|I2| ≤ C H 2(1 + log
H
h
)

N∑
i=1

|ϕg|H2(�i )|q|H1(�i )

≤ C
H 2(1 + log H

h )
√
ν

|ϕg|H2(�)‖q‖B̃ .
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The estimate for I3 is similar to the estimate for I1. Instead of using Equation
(22) and (23), we have, by using a trace theorem,∫

Fl
|∇ϕg|

2 ds ≤ C H‖∇ϕg‖
2
H1(�i )

≤ C H‖ϕg‖
2
H2(�i )

, (26)

and∫
Fl

|IhϑElk (q(i) − qElk )|2 ds ≤ Ch‖IhϑElk (q(i) − qElk )‖2
L2(Elk)

≤ Ch(1 + log
H
h
)‖IhϑElk (q(i) − qElk )‖2

H1(�i )

≤ Ch(1 + log
H
h
)2|q(i)|2H1(�i )

.

(27)

In the first step of Equation (27), we use the fact that IhϑElk (q(i)−qElk ) is different
from zero only in the strip of elements next to the edge Elk ; in the second and the
last steps, we use [33, Lemma 4.16], [33, Corollary 4.20], and a Poincaré–Friedrichs
inequality. Combining Equation (26) and (27), we have

|I3| ≤ Cν
√

Hh (1 + log
H
h
)

N∑
i=1

‖ϕg‖H2(�i )|q|H1(�i )

≤ C
ν
√

Hh (1 + log H
h )

√
ν

‖ϕg‖H2(�)‖q‖B̃ .

Similarly, for I4, we have

|I4| ≤ C

√
Hh (1 + log H

h )
√
ν

‖ϕg‖H2(�)‖q‖B̃ . �

Remark 5.2. In the case of two-dimensional problems, Equation (19) becomes

Lh(q, ϕg)=

N∑
i=1

∑
Ei j ⊂∂�i

∫
Ei j

(
ν∂nϕg(q(i) − qEi j )+ a · n ϕg(q(i) − qEi j )

)
ds,

where the finite element cut-off functions are no longer used. The bound for
Lh(q, ϕg) then follows from the similar steps as for the bounds of I1 and I2 in the
proof applied on the edges, where the logarithmic factor related to the use of finite
element cut-off functions disappears.

Remark 5.3. The factor in the bound of I2 is proportional to H 2/
√
ν, where H

compensates for the effect of small ν in the advection-dominated case. Without
using the two face flux average continuity constraints as in Assumption 4.7, this
factor would become proportional to H/

√
ν instead. For two-dimensional problems,

the same benefits can be obtained by enforcing the two edge flux average continuity
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constraints as in Assumption 4.7. Our numerical experiments in Section 8 show the
effectiveness of using the two edge flux constraints for two-dimensional examples.
The factor in the bound of I4 (only appearing for three-dimensional problems) is
proportional to

√
Hh/ν where

√
Hh can be used to compensate for the effect of

small ν; in fact this factor can be improved to
√

H 3h/ν by introducing a few extra
edge normal flux average constraints [24, Equation (35)].

Lemma 5.4. There exists a positive constant C , such that for all q ∈ W̃ ,

∫
�

C(x)
(
Lq L(ϕ̃g − R̃ϕg)− L∗q L∗(ϕ̃g − R̃ϕg)

)
dx

≤ C
√

Cs‖q‖B̃
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
.

Proof. We have

∫
�

C(x)
(
Lq L(ϕ̃g − R̃ϕg)− L∗q L∗(ϕ̃g − R̃ϕg)

)
dx

=

∫
�

C(x)
(
(L + L∗)q L(ϕ̃g − R̃ϕg)− L∗q(L + L∗)(ϕ̃g − R̃ϕg)

)
dx

≤

(∫
�

C(x)((L + L∗)q)2
)1/2(∫

�

C(x)
(
L(ϕ̃g − R̃ϕg)

)2dx
)1/2

+

(∫
�

C(x)(L∗q)2
)1/2(∫

�

C(x)
(
(L + L∗)(ϕ̃g − R̃ϕg)

)2dx
)1/2

≤ 2
√

Cs‖q‖B̃‖ϕ̃g − R̃ϕg‖B̃0
+ 2

√
Cs

(∫
�

C(x)(−a · ∇q + (c − ∇ · a)q)2
)1/2

×
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
≤ C

√
Cs‖q‖B̃

(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
. �

Lemma 5.5. There exists a positive constant C , such that for all q ∈ W̃ and
u ∈ W̃ ∪ H 2(�),

∫
�

C(x)Lq Ludx ≤ C
√

Cs

max(
√
ν,

√
Cm)

‖q‖B̃‖u‖B̃0
.
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Proof. We have∫
�

C(x)Lq Ludx =

∫
�

C(x)(a · ∇q + cq)Ludx

≤

√
Cs

(∫
�

(a · ∇q + cq)2
)1/2(∫

�

C(x)(Lu)2dx
)1/2

≤

√
Cs

(∫
�

(a · ∇q + cq)2
)1/2(∫

�

C(x)(Lu)2dx
)1/2

≤ C
√

Cs

max(
√
ν,

√
Cm)

‖q‖B̃‖u‖B̃0
,

where we use Lemma 4.1 for the last inequality. �

Lemma 5.6. Let Assumption 4.7 hold. ϕg and ϕ̃g are solutions of Equation (17)
and Equation (18), respectively, for g ∈ L2(�). If h is sufficiently small, then there
exists a positive constant C , such that

‖ϕg − ϕ̃g‖B̃ ≤ CCL(ν, H, h)‖ϕg‖H2,

where CL(ν, H, h) is given in Lemma 5.1.

Proof. For any ψ̃ ∈ W̃ , we have

‖ϕ̃g − ψ̃‖
2
B̃ = ã(ϕ̃g − ψ̃, ϕ̃g − ψ̃)

= ã(ϕ̃g − ψ̃, ϕg − ψ̃)+ (̃a(ϕ̃g − ψ̃, ϕ̃g)− ã(ϕ̃g − ψ̃, ϕg))

= ã(ϕ̃g − ψ̃, ϕg − ψ̃)+ (̃ao(ϕ̃g − ψ̃, ϕ̃g)− ão(ϕ̃g − ψ̃, ϕg))

+

∫
�

C(x)L(ϕ̃g − ψ̃)L(ϕ̃g −ϕg) dx

= ã(ϕ̃g − ψ̃, ϕg − ψ̃)+ ((ϕ̃g − ψ̃, g)− ão(ϕ̃g − ψ̃, ϕg))

+

∫
�

C(x)L(ϕ̃g−ψ̃)L(ϕ̃g−ϕg)dx−

∫
�

C(x)L∗(ϕ̃g−ψ̃)L∗(ϕ̃g−ϕg)dx,

where in the last step we use Equation (18) and that L∗ϕg = g holds in the weak
sense. Dividing by ‖ϕ̃g − ψ̃‖B̃ on both sides and denoting ϕ̃g − ψ̃ by q, we have,
from Lemmas 4.3, 5.4, and 5.1, that

‖ϕ̃g − ψ̃‖B̃ ≤ C
1

max(
√
ν,

√
Cm)

‖ϕg − ψ̃‖B̃ +

∣∣(q, g)− ão(q, ϕg)
∣∣

‖q‖B̃

+ C
√

Cs
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
≤ C

1
max(

√
ν,

√
Cm)

‖ϕg − ψ̃‖B̃ + CCL(ν, H, h)‖ϕg‖H2

+ C
√

Cs
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
.
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Then, using a triangle inequality, we have

‖ϕg − ϕ̃g‖B̃ ≤ inf
ψ̃∈W̃

{
‖ϕg − ψ̃‖B̃ + ‖ϕ̃g − ψ̃‖B̃

}
≤ C

1
max(

√
ν,

√
Cm)

inf
ψ̃∈W̃

‖ϕg − ψ̃‖B̃ + CCL(ν, H, h)‖ϕg‖H2

+C
√

Cs
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
≤ CCL(ν, H, h)‖ϕg‖H2 + C

√
Cs‖ϕ̃g −ϕg‖B̃,

where we use Lemma 4.6 in the last step. From Equation (8), we know that if h is
small enough such that C

√
Cs < 1, then the second term on the right hand side can

be combined with the left hand side and our result is proved. �

6. The BDDC preconditioner

The BDDC algorithms and closely related primal versions of the FETI algorithms
were proposed by Dohrmann [12], Fragakis and Papadrakakis [17], and Cros [11],
for solving symmetric, positive definite problems. The formulation of BDDC
preconditioners can be applied equally well to nonsymmetric problems. In our
BDDC algorithm for solving the advection-diffusion problems, the global system of
linear equations (12) is reduced to a Schur complement problem for the subdomain
interface variables and then a preconditioned GMRES iteration is used to solve the
interface problem.

We decompose the space Ŵ into WI ⊕ Ŵ0, where WI is the product of local
subdomain spaces W (i)

I , i = 1, 2, ..., N , corresponding to the subdomain interior
variables. Ŵ0 is the subspace corresponding to the variables on the interface. The
original discrete problem (12) can be written as: find u I ∈ WI and u0 ∈ Ŵ0, such
that [

AI I AI0

A0 I A00

] [
u I

u0

]
=

[
f I

f0

]
, (28)

where AI I is block diagonal with one block for each subdomain, and A00 cor-
responds to the subdomain interface variables and is assembled from subdomain
matrices across the subdomain interfaces.

Eliminating the subdomain interior variables u I from (28), we have the Schur
complement problem

S0u0 = g0,

where S0 = A00 − A0 I A−1
I I AI0, and g0 = f0 − A0 I A−1

I I f I .
Correspondingly, we define a partially subassembled Schur complement operator

S̃0 as follows. We decompose the space W̃ into WI ⊕ W̃0. Here W̃0 contains the
coarse level, continuous primal interface degrees of freedom, in the subspace Ŵ5,
which are shared by neighboring subdomains, and the remaining dual subdomain
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interface degrees of freedom which are in general discontinuous across the subdo-
main interfaces. Then the partially subassembled problem matrix Ã can be written
in a two by two block form [

AI I ÃI0

Ã0 I Ã00

]
, (29)

where Ã00 is assembled only with respect to the coarse level primal degrees
of freedom across the interface. The partially subassembled Schur complement
operator S̃0 is defined by S̃0 = Ã00 − Ã0 I A−1

I I ÃI0 . From the definition of S0 and
S̃0 , we see that S0 can be obtained from S̃0 by assembling with respect to the dual
interface variables, i.e.,

S0 = R̃T
0 S̃0 R̃0,

where R̃0 is the injection operator from the space Ŵ0 into W̃0. We also define
R̃D,0 = DR̃0, where D is a diagonal scaling matrix. The diagonal elements of
D equal 1, for the rows of the primal interface variables, and equal δ†

i (x) for the
others. Here, for a subdomain interface node x , the inverse counting function δ†

i (x)
is defined by δ†

i (x)= 1/card(Nx), where Nx is the set of indices of the subdomains
which have x on their boundaries and card(Nx) is the number of the subdomains
in the set Nx .

The preconditioned interface problem in our BDDC algorithm is

R̃T
D,0 S̃−1

0 R̃D,0S0u0 = R̃T
D,0 S̃−1

0 R̃D,0g0. (30)

A GMRES iteration is used to solve Equation (30). In each iteration, to multiply
S0 by a vector, subdomain Dirichlet boundary problems need to be solved; to
multiply S̃−1

0 by a vector, a partially subassembled finite element problem with
the coefficient matrix Ã needs to be solved, which requires solving subdomain
Robin boundary problems and a coarse level problem; cf. [25]. After obtaining the
interface solution u0, we find u I by solving subdomain Dirichlet problems.

7. Convergence rate of the GMRES iteration

In this section, we give a convergence analysis of the GMRES iteration for solving
the preconditioned interface problem (30) for advection-diffusion problems.

For any u0 ∈ W̃0, we denote its standard discrete harmonic extension to the
interior of subdomains by uH,0 ∈ W̃ ; see [33, Section 4.4] for a definition of the
discrete harmonic extension. We have the following result on the equivalence of the
norms of local discrete harmonic extensions and traces on subdomain boundaries,
cf. [33, Lemma 4.10].
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Lemma 7.1. There exist positive constants c and C , which are independent of ν,
H and h, such that for all u0 ∈ W̃0, and i = 1, 2, ..., N ,

c|u(i)H,0|H1(�i ) ≤ |u(i)0 |H1/2(∂�i ) ≤ C |u(i)H,0|H1(�i ).

We define another discrete extension of u0 ∈ W̃0 to the interior of subdomains
by

uA,0 =

[
−A−1

I I ÃI0u0
u0

]
∈ W̃ . (31)

The discrete harmonic extension uH,0 can be obtained from u0 by solving subdo-
main Dirichlet problems corresponding to discrete Laplacian and it minimizes the
energy norms of all finite element functions which have the trace u0 on the interface.
uA,0 does not have this energy minimization property and it is obtained from u0 by
solving subdomain advection-diffusion problems with Dirichlet boundary conditions
as shown in Equation (31). We note that both uH,0 and uA,0 are also well defined
for u0 ∈ Ŵ0, and as a result uH,0 ∈ Ŵ and uA,0 ∈ Ŵ .

We define two bilinear forms for vectors in Ŵ0 and W̃0 respectively by

〈u0, v0〉B0 = vT
A,0BuA,0, 〈u0, v0〉Z0 = vT

A,0ZuA,0, for all u0, v0∈Ŵ0, (32)

〈u0, v0〉B̃0 = vT
A,0 B̃uA,0, 〈u0, v0〉Z̃0 = vT

A,0 Z̃uA,0, for all u0, v0∈W̃0. (33)

In general, we use the notation 〈p, q〉M to represent the product qT Mp, for any
given matrix M and vectors p and q.

From the definitions (31), (32), and (33), follows

Lemma 7.2. For any v ∈ W̃ , denote its restriction to 0 by v0 ∈ W̃0 . Then for any
u0 ∈ W̃0 and v ∈ W̃ ,

〈u0, v0〉S̃0 =
〈
uA,0, v

〉
Ã and 〈u0, v0〉S̃0 = 〈u0, v0〉B̃0 + 〈u0, v0〉Z̃0 .

For any u0 ∈ W̃0, 〈u0, u0〉S̃0 =
〈
uA,0, uA,0

〉
Ã =

〈
uA,0, uA,0

〉
B̃ = 〈u0, u0〉B̃0 ≥ 0,

and 〈u0, u0〉Z̃0 = 0. The same results also hold for functions and the corresponding
bilinear forms in the space Ŵ0.

From Lemma 7.2, we define B0- and B̃0- norms for elements in the spaces Ŵ0

and W̃0 respectively by:

‖u0‖2
B0 = 〈u0, u0〉B0 , for any u0 ∈ Ŵ0,

and
‖w0‖

2
B̃0

= 〈w0, w0〉B̃0 , for any w0 ∈ W̃0.

The following two lemmas can be obtained from definitions (32) and (33), and
Lemmas 7.2, 4.3, and 4.4.
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Lemma 7.3. There exist positive constants C1 and C2, which are independent of ν,
H and h, such that for all u0, v0 ∈ W̃0,

| 〈u0, v0〉Z̃0 | ≤ C1
1

max(
√
ν,

√
Cm)

‖u0‖B̃0‖v0‖B̃0 ,

and

| 〈u0, v0〉S̃0 | ≤ C2
1

max(
√
ν,

√
Cm)

‖u0‖B̃0‖v0‖B̃0 .

The same results hold for functions and the corresponding bilinear forms in the
space Ŵ0 as well.

Lemma 7.4. There exists a positive constant C , such that for all u0, v0 ∈ Ŵ0,

| 〈u0, v0〉Z0 | ≤ C
1

max(
√
ν,

√
Cm)

‖u0‖B0‖vA,0‖L2(�).

We denote the preconditioned operator

R̃T
D,0 S̃−1

0 R̃D,0S0

in (30) by T . The convergence rate of the GMRES iteration can be estimated by
using the following result due to Eisenstat et al. [14].

Theorem 7.5. Let c and C be two positive parameters such that

c 〈u, u〉B0 ≤ 〈u, T u〉B0 , (34)

〈T u, T u〉B0 ≤ C 〈u, u〉B0 . (35)

Then
‖rm‖B0

‖r0‖B0
≤

(
1 −

c2

C

)m/2

,

where rm is the residual of the GMRES iteration at iteration m.

Remark 7.6. In our convergence analysis of the GMRES iteration, we use the B0-
norm; the analysis in the L2-norm is not available yet. In our numerical experiments,
we have found that the convergence rates in both the B0- and L2- norms are quite
similar. For a study of the convergence rates of the GMRES iteration combined
with an additive Schwarz method in the Euclidean and energy norms, see Sarkis
and Szyld [31].

We define an interface average operator ED,0 for functions in the space W̃0 by

ED,0w0 = R̃0 R̃T
D,0w0,

for anyw0 ∈ W̃0 . This operator computes an average ofw0 across 0. The following
result on the stability of ED,0 can be found in [22; 21; 26].
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Lemma 7.7. Let Assumption 4.7 hold. There exists a positive constant C , such
that for all w0 ∈ W̃0, and i = 1, 2, ..., N ,

|
(
ED,0w0

)(i)
|H1/2(∂�i ) ≤8(H, h)|w(i)0 |H1/2(∂�i ),

where 8(H, h)= C(1 + log(H/h)).

Lemma 7.8. Let Assumption 4.7 hold. There exists a positive constant C , such
that for all w0 ∈ W̃0,

‖ED,0w0‖
2
B̃0

≤
C
ν
82(H, h)‖w0‖2

B̃0
,

where 8(H, h) is given in Lemma 7.7.

Proof. It is sufficient to show that ‖ED,0w0−w0‖
2
B̃0

≤
C
ν
82(H, h)‖w0‖2

B̃0
. Denote

ED,0w0 −w0 by v0. Let vA,0 and vH,0 be the extensions defined by Equation
(31) and the standard discrete harmonic extension of v0, respectively. From the
definition of vA,0, we know that a(i)(v(i)A,0, q(i))= 0, for any q(i) ∈ W (i), which
vanishes at the nodes of ∂�i . Take

q(i) = v
(i)
A,0 − v

(i)
H,0,

and we find a(i)(v(i)A,0, v(i)A,0 − v
(i)
H,0)= 0. Therefore, we have

‖v
(i)
A,0 − v

(i)
H,0‖

2
B(i) = |a(i)(v(i)A,0 − v

(i)
H,0, v

(i)
A,0 − v

(i)
H,0)|

= |a(i)(v(i)H,0, v
(i)
A,0 − v

(i)
H,0)|

≤ C‖v
(i)
H,0‖H1(�i )‖v

(i)
A,0 − v

(i)
H,0‖B(i),

where we use Lemma 4.5 in the last step. Canceling the common factor, we have

‖v
(i)
A,0 − v

(i)
H,0‖B(i) ≤ C‖v

(i)
H,0‖H1(�i ).

Therefore, by Lemma 4.1,

‖v
(i)
A,0‖B(i) ≤ C‖v

(i)
H,0‖H1(�i ).

From this and using Equation (33) and Lemmas 7.1, 7.7, and 4.1, noting that v(i)H,0

vanishes at the coarse level primal degrees of freedom, we have

‖ED,0w0 −w0‖
2
B̃0

= ‖vA,0‖
2
B̃
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=

N∑
i=1

‖v
(i)
A,0‖

2
B(i)

≤ C
N∑

i=1

‖v
(i)
H,0‖

2
H1(�i )

≤ C
N∑

i=1

|v
(i)
H,0|

2
H1(�i )

≤ C
N∑

i=1

|v
(i)
0 |

2
H1/2(∂�i )

≤ C82(H, h)
N∑

i=1

|w
(i)
0 |

2
H1/2(∂�i )

≤ C82(H, h)
N∑

i=1

|w
(i)
H,0|

2
H1(�i )

≤ C82(H, h)
N∑

i=1

|w
(i)
A,0|

2
H1(�i )

≤
C
ν
82(H, h)

N∑
i=1

‖w
(i)
A,0‖

2
B(i)0

=
C
ν
82(H, h)‖wA,0‖

2
B̃0

≤
C
ν
82(H, h)‖w0‖2

B̃0
. �

Lemma 7.9. Let w0 = S̃−1
0 R̃D,0S0u0, for u0 ∈ Ŵ0. Then

‖w0‖
2
B̃0

= 〈u0, T u0〉S0 .

Proof. Since R̃T
D,0w0 = R̃T

D,0 S̃−1
0 R̃D,0S0u = T u0, we have, using Lemma 7.2,

‖w0‖
2
B̃0

= 〈w0, w0〉S̃0 = w0
T S̃0w0

= w0
T S̃0 S̃−1

0 R̃D,0S0u0

= w0
T R̃D,0S0u0 =

〈
u0, R̃T

D,0w0
〉
S0

= 〈u0, T u0〉S0 . �

Lemma 7.10. Let Assumption 4.7 hold. Let w0 = S̃−1
0 R̃D,0S0u0, for u0 ∈ Ŵ0.

There then exists a positive constant C , such that for all u0 ∈ Ŵ0,

‖w0‖
2
B̃0

≤ C
82(H, h)

νmax(ν,Cm)
‖u0‖2

B0 ,

where 8(H, h) is given in Lemma 7.7.

Proof. We have, from Lemma 7.2,

〈T u0, T u0〉B0 = 〈T u0, T u0〉S0

=
〈
R̃T

D,0 S̃−1
0 R̃D,0S0u0, R̃T

D,0 S̃−1
0 R̃D,0S0u0

〉
S0

=
〈
R̃0 R̃T

D,0w0, R̃0 R̃T
D,0w0

〉
S̃0

= 〈EDw0, EDw0〉S̃0 = ‖EDw0‖
2
B̃0
.
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Then, from Lemmas 7.8, 7.9, and 7.3, we have

〈T u0, T u0〉B0 = ‖EDw0‖
2
B̃0

≤
C
ν
82(H, h)‖w0‖2

B̃0

=
C
ν
82(H, h) 〈u0, T u0〉S0

≤ C
82(H, h)

νmax(
√
ν,

√
Cm)

‖T u0‖B0‖u0‖B0 .

Therefore, we have

〈T u0, T u0〉B0 ≤ C
84(H, h)

ν2 max(ν,Cm)
〈u0, u0〉B0 . (36)

Then, using Lemmas 7.9 and 7.3, and Equation (36), we have,

‖w0‖
2
B̃0

= 〈u0, T u0〉S0 ≤ C
‖u0‖B0 ‖T u0‖B0

max(
√
ν,

√
Cm)

≤ C
82(H, h)

νmax(ν,Cm)
‖u0‖2

B0 . �

Lemma 7.11. Let w0 = S̃−1
0 R̃D,0S0u0, for u0 ∈ Ŵ0. Then for all v ∈ R̃(Ŵ ),〈
wA,0, v

〉
Ã =

〈
R̃uA,0, v

〉
Ã,

that is,
〈
wA,0 − R̃uA,0, v

〉
Ã = 0.

Proof. For any v ∈ R̃(Ŵ ), denote its continuous interface part by

v0 ∈ R̃0(Ŵ0).

Given u0 ∈ Ŵ0, from Lemma 7.2 and the fact that R̃0 R̃T
D,0v0 = v0, we have〈

wA,0, v
〉
Ã = 〈w0, v0〉S̃0 = vT

0 S̃0w0

= vT
0 S̃0 S̃−1

0 R̃D,0S0u0

= vT
0 R̃D,0 R̃T

0 S̃0 R̃0u0

=
〈
R̃0u0, R̃0 R̃T

D,0v0
〉
S̃0

=
〈
R̃0u0, v0

〉
S̃0

= vT
0 S̃0 R̃0u0 =

〈
R̃uA,0, v

〉
Ã. �

Lemma 7.12. Let Assumption 4.7 hold. Let w0 = S̃−1
0 R̃D,0S0u0, for u0 ∈ Ŵ0.

If h is sufficiently small, there then exists a positive constant C , such that for all
u0 ∈ Ŵ0,

‖wA,0 − uA,0‖L2(�) ≤ C
8(H, h) CL(ν, H, h)

√
νmax(ν2,Cmν)

‖u0‖B0 ,

where CL(ν, H, h) is given in Lemma 5.1, and 8(H, h) is given in Lemma 7.7.
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Proof. We have, from Equation (18), that

(wA,0 − uA,0, g)

= ão(wA,0, ϕ̃g)− ao(uA,0, ϕg)−

∫
�

C(x)L∗wA,0L∗(ϕg − ϕ̃g) dx

= ã(wA,0, ϕ̃g)− ã(uA,0, ϕg)

+

∫
�

C(x)
(
LuA,0Lϕg − LwA,0Lϕ̃g − L∗wA,0L∗(ϕg − ϕ̃g)

)
dx

= ã(wA,0 − uA,0, ϕ̃g)− ã(uA,0, ϕg − ϕ̃g)+

∫
�

C(x)
(
L(uA,0 −wA,0)Lϕg

+LwA,0L(ϕg − ϕ̃g)− L∗wA,0L∗(ϕg − ϕ̃g)
)

dx

≤ ã(wA,0 − uA,0, ϕ̃g)− ã(uA,0, ϕg − ϕ̃g)

+C
√

Cs

max(
√
ν,

√
Cm)

‖wA,0 − uA,0‖B̃‖ϕg‖B̃0

+C
√

Cs‖wA,0‖B̃
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
,

where we use Lemmas 5.5 and 5.4 in the last step.
Let ψ be any finite element function in the space Ŵ . Then from Lemma 7.11,

we know that ã(wA,0 − uA,0, ψ)= 0. Therefore,

ã(wA,0−uA,0, ϕ̃g)−ã(uA,0, ϕg−ϕ̃g)= ã(wA,0−uA,0, ϕ̃g−ψ)−ã(uA,0, ϕg−ϕ̃g).

Then, using Lemmas 4.3, 4.2, 4.6, and 5.6, and that ‖ϕg‖H2(�) ≤ C 1
ν
‖g‖L2(�), we

have

‖(wA,0 − uA,0, g)‖

≤ C
1

max(
√
ν,

√
Cm)

(‖wA,0−uA,0‖B̃ +‖uA,0‖B̃)(‖ϕ̃g −ψ‖B̃ +‖ϕg − ϕ̃g‖B̃)

+C
√

Cs

max(
√
ν,

√
Cm)

‖wA,0 − uA,0‖B̃‖ϕg‖B̃0

+C
√

Cs‖wA,0‖B̃
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
≤ C

1
max(

√
ν,

√
Cm)

(‖wA,0−uA,0‖B̃+‖uA,0‖B̃)(‖ϕg −ψ‖B̃ +2‖ϕg−ϕ̃g‖B̃)

+C
√

Cs

max(
√
ν,

√
Cm)

max(
√
ν,

√
Cs)‖wA,0 − uA,0‖B̃‖ϕg‖H2(�)

+C
√

Cs‖wA,0‖B̃
(
‖ϕ̃g − R̃ϕg‖B̃ +

√
ν‖ϕg‖H2(�)

)
≤ C

1
max(

√
ν,

√
Cm)

(
CL(ν, H, h)+

√
Cs max(

√
ν,

√
Cs)

)(
‖wA,0‖B̃

+‖uA,0‖B̃
)
‖ϕg‖H2(�)
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≤ C
CL(ν, H, h)

ν max(
√
ν,

√
Cm)

(
‖wA,0‖B̃ + ‖uA,0‖B̃

)
‖g‖L2(�).

Therefore, using Lemmas Lemma 7.2 and Lemma 7.10, we have

‖wA,0 − uA,0‖L2(�) = sup
g∈L2(�)

∣∣(w− uA,0, g)
∣∣

‖g‖L2(�)

≤ C
CL(ν, H, h)

ν max(
√
ν,

√
Cm)

(‖uA,0‖B̃ + ‖wA,0‖B̃)

= C
CL(ν, H, h)

ν max(
√
ν,

√
Cm)

(‖u0‖B̃0 + ‖w0‖B̃0 )

≤ C
8(H, h) CL(ν, H, h)

√
νmax(ν2,Cmν)

‖u0‖B0 . �

Lemma 7.13. Let Assumption 4.7 hold and let v0 = R̃T
D,0w0 , for w0 ∈ W̃0 . There

exists a positive constant C , such that

‖vA,0‖
2
L2(�)

≤ C
max(ν,Cs) 8

2(H, h)
ν2

H 2

h2 ‖wA,0‖
2
L2(�)

,

for all w0 ∈ W̃0, where 8(H, h) is given in Lemma 7.7.

Proof. We only need to show that

‖vA,0 −wA,0‖
2
L2(�)

≤ C
max(ν,Cs) 8

2(H, h)
ν2

H 2

h2 ‖wA,0‖
2
L2(�)

.

From Assumption 4.7, we know for any w0 ∈ W̃0 , vA,0−wA,0 has zero averages
over the subdomain interfaces. Using a Poincaré–Friedrichs inequality, Lemmas 4.1,
7.2, the proof in Lemma 7.8, and an inverse inequality, we have

‖vA,0 −wA,0‖
2
L2(�)

≤ C H 2
|vA,0 −wA,0|

2
H1(�)

≤ C
H 2

ν
‖vA,0 −wA,0‖

2
B̃

= C
H 2

ν
‖v0 −w0‖

2
B̃0

≤ C
H 2 82(H, h)

ν2 ‖wA,0‖
2
B̃0

≤ C
max(ν,Cs)H 2 82(H, h)

ν2 ‖wA,0‖
2
H1(�)

≤ C
max(ν,Cs) 8

2(H, h)
ν2

H 2

h2 ‖wA,0‖
2
L2(�)

. �
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Lemma 7.14. Let Assumption 4.7 hold and let v0 = T u0 − u0, for u0 ∈ Ŵ0. If
h is sufficiently small, there then exists a positive constant C , such that for all
u0 ∈ Ŵ0,

‖vA,0‖L2(�) ≤ C
max(

√
ν,

√
Cs)8

2(H, h) CL(ν, H, h)
ν5/2 max(ν,Cm)

H
h

‖u0‖B0 ,

where CL(ν, H, h) is given in Lemma 5.1, and 8(H, h) is given in Lemma 7.7.

Proof. Since T u0 = R̃T
D,0w0 and R̃T

D,0 R̃0 = I , we have

v0 = T u0 − u0 = R̃T
D,0w0 − R̃T

D,0 R̃0u0 = R̃T
D,0(w0 − R̃0u0).

Using Lemmas 7.13 and 7.12, we have

‖vA,0‖
2
L2(�)

≤ C
max(ν,Cs) 8

2(H, h)
ν2

H 2

h2 ‖wA,0 − uA,0‖
2
L2(�)

≤ C
max(ν,Cs) 8

2(H, h)
ν2

H 2

h2

82(H, h) C2
L(ν, H, h)

ν3 (max(ν,Cm))
2 ‖u0‖2

B0

= C
max(ν,Cs)8

4(H, h) C2
L(ν, H, h)

ν5 max(ν2,C2
m)

H 2

h2 ‖u0‖2
B0 . �

Theorem 7.15. Let Assumption 4.7 hold. If h is sufficiently small, there then exist
positive constants C1, C2, and C3, which are independent of H , h, and ν, such that
for all u0 ∈ Ŵ0,

〈T u0, T u0〉B0 ≤ C1
84(H, h)

ν2 max(ν,Cm)
〈u0, u0〉B0 , (37)

and

c0 〈u0, u0〉B0 ≤
C2

max(ν,Cm)
〈u0, T u0〉B0 , (38)

where 8(H, h) is given in Lemma 7.7. For two dimensions,

c0 = 1 − C3
max(

√
ν,

√
Cs)max(Hν, H 2)

ν3 max(ν2√ν,C2
m
√

Cm)

H
h
82(H, h),

and for three dimensions

c0 = 1 − C3
max(

√
ν,

√
Cs)max(Hν, H 2,

√
Hh)

ν3 max(ν2√ν,C2
m
√

Cm)

H
h
82(H, h)

(
1 + log(H/h)

)
.

Proof. The upper bound Equation (37) is an immediate result of (36).



52 XUEMIN TU AND JING LI

To prove the lower bound Equation (38), we have, from R̃T
0 R̃D,0 = I and Lem-

mas 7.2 and 7.3:

〈u0, u0〉B0 = 〈u0, u0〉S0

= u0T R̃T
0 S̃0 S̃−1

0 R̃D,0S0u0 =
〈
w0, R̃0u0

〉
S̃0

≤ C
1

max(
√
ν,

√
Cm)

‖w0‖B̃0‖u0‖B0

= C
1

max(
√
ν,

√
Cm)

〈u0, T u0〉
1/2
S0 ‖u0‖B0 .

Here we use Lemma 7.9 in the last step. Canceling the common factor, we have

‖u0‖2
B0 ≤ C

1
max(ν,Cm)

〈u0, T u0〉S0 . (39)

Let v0 = T u0 − u0. We have, from Equation (39), Lemmas 7.2, 7.4 and 7.14,

〈u0, u0〉B0 ≤ C
1

max(ν,Cm)

(
〈u0, T u0〉B0 + 〈u0, T u0 − u0〉Z0

)
≤

C 〈u0, T u0〉B0

max(ν,Cm)
+ C

1
max(ν

√
ν,Cm

√
Cm)

‖u0‖B0‖vA,0‖L2(�)

≤
C 〈u0, T u0〉B0

max(ν,Cm)

+
C max(

√
ν,

√
Cs)

ν2 max(ν3,C2
m
√
νCm)

H
h
82(H, h)CL(ν, H, h)‖u0‖2

B0 .

The second term on the right hand side can be combined with the left hand side
and Equation (38) is proved. �

Remark 7.16. For the case ν = O(1), in Theorem 7.15,

c0 = 1 − C H
H
h
82(H, h)

for two dimensions and

c0 = 1 − C H
H
h
82(H, h)

(
1 + log(H/h)

)
,

for three dimensions, which will be positive for appropriate choice of H and h.
In this case Theorem 7.5 applies and we can see that the convergence rate of our
BDDC algorithm deteriorates with a decrease of ν and for fixed ν the convergence
rate is independent of the number of subdomains and depends on H/h slightly. For
the advection-dominated cases, it is hard to choose practical H and h to make c0 in
Theorem 7.15 positive, and Theorem 7.5 does not apply for those cases. However,
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the numerical experiments in the following section show that our BDDC algorithm
in fact performs satisfactorily even for the advection-dominated examples.

8. Numerical experiments

We test our BDDC algorithm by solving three advection-diffusion examples in the
square domain �= [−1, 1]

2. These examples were used by Toselli [32] for testing
his FETI algorithms.

The domain � is decomposed into square subdomains and each subdomain into
uniform triangles. Piecewise linear finite elements are used in our experiments. The
stabilization function C(x) in Equation (9) is defined in (7). We also take f = 0
and c = 10−4 in (1) in our examples.

A GMRES iteration with the L2-norm is used without restart to solve the pre-
conditioned interface problem (30). The iteration is stopped when the L2-norm of
the residual has been reduced by a factor of 10−6; we have found consistently that
the convergence rate using the B0-norm is quite similar to that using the L2-norm.

We test two different sets of coarse level primal continuity constraints in our
BDDC algorithms. In BDDC-1, only subdomain vertex and edge average continuity
constraints are included in the coarse level primal subspace; in BDDC-2, as in
Assumption 4.7, two additional edge flux average constraints for each edge are
also included in the coarse level variable space. We also compare the performance
of our BDDC algorithms with that of the one-level and two-level Robin-Robin
algorithms which were developed in [3; 1; 2]. They are denoted by RR-1 and RR-2
in our tables. We do not present numerical results for the one-level and two-level
FETI algorithms here; their performances are in fact similar to the Robin-Robin
algorithms, cf. [32].

8.1. Thermal boundary layer (test problem I). First we consider a thermal boun-
dary layer problem. The velocity field a in Equation (1) is defined by

a =

(
1 + y

2
, 0

)
.

The boundary condition is given by:

u = 1,
{

x = − 1 −1< y ≤ 1,
y = 1, −1 ≤ x ≤ 1,

u = 0, y = − 1, −1 ≤ x ≤ 1,

u =
1 + y

2
, x = 1, −1 ≤ y ≤ 1.
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In our first set of experiments, reported in Table 1, we fix the subdomain problem
size and change the number of subdomains. We see that, for viscosity values ν
larger than 10−4 , the iteration counts of BDDC-2 do not change with an increase
of the number of subdomains and that it converges faster than BDDC-1. We believe
that for that range of viscosity values, the subdomain diameters in our experiments
satisfy that c0 is positive in Theorem 7.15; cf. Remark 7.16. For smaller viscosity,
the improvement in the convergence rate of BDDC-2 over BDDC-1 is no longer
clear in this example. In fact c0 may no longer be positive. We also see from Table 1
that RR-1 and RR-2 converge slower than the BDDC algorithms, and that their
iteration counts are more sensitive to an increase of the number of subdomains.

In our second set of experiments, in Table 2, we fix the number of subdomains
and change the local subdomain problem size. We see that for all four algorithms,
the iteration counts are not sensitive to an increase of the subdomain problem size
especially with small viscosity, and that BDDC-2 converges the fastest.

We can also see from Table 1 and Table 2 that the iteration counts of all the
algorithms are bounded when ν goes to zero.

8.2. Variable flow field (test problem II). We next consider a more complicated
flow. The velocity field is

a =
1
2

(
(1 − x2)(1 + y),−(4 − (1 + y)2)

)
.

The boundary condition is given by u = 1, for y = −1 and −1< x < 0, with u = 0,
elsewhere on the boundary of �.

Table 3 gives the iteration counts of the four algorithms, for different number of
subdomains with a fixed subdomain problem size. We have similar findings as for
the first example in Table 1. We see that BDDC-2 scales well with respect to an
increase of the number of subdomains for viscosity values larger than 10−4, and
that it converges the fastest among the four algorithms. The improvement in the
convergence rate of BDDC-2 over BDDC-1 is obvious, especially when ν > 10−5.

In Table 4, we can see that the iteration counts of each algorithm are insensitive
to an increase of the subdomain problem size, and they are bounded when ν goes
to zero.

8.3. Rotating flow field (test problem III). This example is the most difficult one
of the three examples, cf. [32]. Here the velocity field is a = (y,−x). The boundary
condition is given by:

u = 1, for


y = − 1, 0< x ≤ 1,
y = 1, 0< x ≤ 1,
x = 1, −1 ≤ y ≤ 1,

with u = 0 , elsewhere on ∂�.
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# of Sub. 42 82 162 322 42 82 162 322

ν BDDC-1 BDDC-2

1e0 3 3 3 3 3 3 3 3
1e − 1 5 4 4 4 4 4 4 4
1e − 2 6 7 8 7 4 5 5 5
1e − 3 5 8 12 18 5 6 7 6
1e − 4 5 8 12 20 5 7 11 17
1e − 5 5 8 12 21 5 8 12 20
1e − 6 5 8 13 21 5 8 12 21

ν RR-1 RR-2

1e0 13 45 176 >500 6 7 7 6
1e − 1 13 36 115 343 9 11 12 12
1e − 2 10 18 45 156 8 13 18 23
1e − 3 10 14 24 51 9 13 20 30
1e − 4 11 16 25 40 10 16 25 41
1e − 5 11 17 26 45 11 17 27 46
1e − 6 11 17 27 45 11 17 28 46

Table 1. Iteration counts for changing number of subdomains and
H/h = 6 for test problem I.

H/h 6 12 24 48 6 12 24 48

ν BDDC-1 BDDC-2

1e0 3 4 5 5 3 4 5 5
1e − 1 5 6 6 7 4 5 5 6
1e − 2 6 7 8 9 4 5 5 6
1e − 3 5 6 7 7 5 5 6 6
1e − 4 5 5 6 7 5 5 5 6
1e − 5 5 5 5 5 5 4 4 4
1e − 6 5 4 4 4 5 4 4 4

ν RR-1 RR-2

1e0 13 14 16 16 6 8 10 12
1e − 1 13 15 16 18 9 11 13 16
1e − 2 10 11 13 15 8 10 11 14
1e − 3 10 9 9 10 9 9 9 10
1e − 4 11 10 10 10 10 10 10 10
1e − 5 11 11 11 11 11 10 11 11
1e − 6 11 11 11 11 11 10 11 11

Table 2. Iteration counts for 4 × 4 subdomains and changing sub-
domain problem size for test problem I.
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# of Sub. 42 82 162 322 42 82 162 322

ν BDDC-1 BDDC-2

1e0 4 4 4 3 2 2 1 1
1e − 1 5 5 5 4 2 2 2 2
1e − 2 6 9 9 8 4 3 3 3
1e − 3 8 12 18 23 6 8 8 7
1e − 4 9 14 25 42 7 11 19 23
1e − 5 9 15 27 50 7 11 22 42
1e − 6 9 15 27 51 7 11 22 45

ν RR-1 RR-2

1e0 13 45 152 390 6 7 7 7
1e − 1 15 32 81 216 9 12 14 14
1e − 2 10 19 41 106 9 14 19 29
1e − 3 13 21 34 64 12 19 29 43
1e − 4 14 27 52 84 14 26 50 76
1e − 5 14 29 63 135 14 28 60 128
1e − 6 14 29 67 156 14 28 64 151

Table 3. Iteration counts for changing number of subdomains and
H/h = 6 for test problem II.

H/h 6 12 24 48 6 12 24 48

ν BDDC-1 BDDC-2

1e0 4 4 5 6 2 1 1 1
1e − 1 5 6 7 8 2 2 2 2
1e − 2 6 7 8 9 4 4 4 4
1e − 3 8 8 8 8 6 6 6 6
1e − 4 9 9 9 9 7 7 7 7
1e − 5 9 9 9 9 7 8 7 7
1e − 6 9 9 9 9 7 8 7 7

ν RR-1 RR-2

1e0 13 15 16 17 6 9 10 11
1e − 1 15 17 18 19 9 11 14 16
1e − 2 10 11 13 14 9 10 11 13
1e − 3 13 12 11 10 12 12 11 10
1e − 4 14 14 13 13 14 14 13 13
1e − 5 14 14 14 14 14 14 14 14
1e − 6 14 14 14 14 14 14 14 14

Table 4. Iteration counts for 4 × 4 subdomains and changing sub-
domain problem size for test problem II.
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# of Sub. 42 82 162 322 42 82 162 322

ν BDDC-1 BDDC-2

1e0 4 3 3 3 2 2 1 1
1e − 1 5 5 4 4 2 2 2 2
1e − 2 9 9 7 6 4 3 3 3
1e − 3 25 33 30 22 8 7 6 5
1e − 4 38 67 111 112 11 12 14 14
1e − 5 41 84 183 284 12 14 17 24
1e − 6 41 86 199 434 12 14 18 26

ν RR-1 RR-2

1e0 13 45 148 379 6 7 7 7
1e − 1 17 37 92 233 9 11 12 12
1e − 2 28 50 95 218 15 22 31 49
1e − 3 52 94 170 319 34 59 87 96
1e − 4 68 171 360 >500 49 114 251 475
1e − 5 71 201 >500 >500 52 141 359 >500
1e − 6 71 205 >500 >500 53 145 389 >500

Table 5. Iteration counts for changing number of subdomains and
H/h = 6 for test problem III.

H/h 6 12 24 48 6 12 24 48

ν BDDC-1 BDDC-2

1e0 4 4 5 6 2 2 1 1
1e − 1 5 6 7 7 2 2 2 2
1e − 2 9 11 12 13 4 4 4 4
1e − 3 25 35 39 41 8 12 14 14
1e − 4 38 72 104 122 11 26 39 45
1e − 5 41 85 156 245 12 33 74 96
1e − 6 41 87 165 290 12 34 88 142

ν RR-1 RR-2

1e0 13 14 15 16 6 8 10 12
1e − 1 17 17 19 21 9 12 14 16
1e − 2 28 30 31 30 15 17 18 20
1e − 3 52 62 68 70 34 43 47 49
1e − 4 68 104 141 166 49 83 110 128
1e − 5 71 119 189 279 52 98 171 250
1e − 6 71 121 197 318 53 100 180 296

Table 6. Iteration counts for 4 × 4 subdomains and changing sub-
domain problem size for test problem III.
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Table 5 gives the iteration counts of the four algorithms for different number of
subdomains with a fixed subdomain problem size. We see that BDDC-2 converges
much faster than BDDC-1 and the two Robin-Robin algorithms. For the cases
where ν > 10−5, the iteration counts are almost independent of the number of
subdomains. Even when the viscosity ν goes to zero, the convergence of BDDC-2
is still very fast, while the convergence rates of BDDC-1 and the two Robin-Robin
algorithms are not satisfactory at all.

From Table 6, we see that the iteration counts of all the algorithms increase
with an increase of the subdomain problem size; the increase for BDDC-2 is the
smallest.

Acknowledgments

The authors are very grateful to Professor Olof Widlund for suggesting this problem
and his continuing encouragement. The authors also thank the referee for helpful
suggestions.

References

[1] Yves Achdou, Caroline Japhet, Patric Le Tallec, Frédéric Nataf, François Rogier, and Marina
Vidrascu, Domain decomposition methods for non-symmetric problems, Domain Decomposi-
tion Methods in Sciences and Engineering: Eleventh International Conference London, UK
(Choi-Hong Lai, Petter E. Bjørstad, Mark Cross, and Olof B. Widlund, eds.), DDM.org, 1999,
Greenwich, England, July 20–24, 1998, pp. 3–17.

[2] Yves Achdou, Patrick Le Tallec, Frédéric Nataf, and Marina Vidrascu, A domain decoposition
preconditioner for an advection-diffusion problem, Comp. Methods Appl. Mech. Engrg 184
(2000), 145–170.

[3] Yves Achdou and Frédéric Nataf, A Robin-Robin preconditioner for an advection-diffusion
problem, C. R. Acad. Sci. Paris 325, Série I (1997), 1211–1216.

[4] Susanne C. Brenner and Li-Yeng Sung, BDDC and FETI-DP without matrices or vectors,
Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1429–1435. MR 2277027

[5] Xiao-Chuan Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations,
Numer. Math. 60 (1991), no. 1, 41–61.

[6] Xiao-Chuan Cai and Olof Widlund, Domain decomposition algorithms for indefinite elliptic
problems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 243–258.

[7] , Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems,
SIAM J. Numer. Anal. 30 (1993), no. 4, 936–952.

[8] Claudio Carlenzoli and Alfio Quarteroni, Adaptive domain decomposition methods for advection-
diffusion problems, The IMA Volumes in Mathematics and its Applications, Springer Verlag 75
(1995), 165–186.

[9] Marie-Claude Ciccoli, Adaptive domain decomposition algorithms and finite volume/finite
element approximation for advection-diffusion equations, J. Sci. Comput. 11 (1996), no. 4,
299–341. MR 97g:76068

http://www.ams.org/mathscinet-getitem?mr=2277027
http://www.ams.org/mathscinet-getitem?mr=97g:76068


BDDC FOR ADVECTION-DIFFUSION PROBLEMS 59

[10] Duilio Conceiçao, Balancing domain decomposition preconditioners for non-symmetric prob-
lems, Tech. Report Serie C 46, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil,
May 2006.

[11] Jean-Michel Cros, A preconditioner for the Schur complement domain decomposition method,
Domain decomposition methods in science and engineering, Proceedings of the 14th Interna-
tional Conference on Domain Decomposition Methods, National Autonomous University of
Mexico, 2003, pp. 373–380.

[12] Clark R. Dohrmann, A preconditioner for substructuring based on constrained energy minimiza-
tion, SIAM J. Sci Comput. 25 (2003), no. 1, 246–258.

[13] , A substructuring preconditioner for nearly incompressible elasticity problems, Tech.
Report SAND2004-5393, Sandia National Laboratories, Albuquerque, New Mexico, October
2004.

[14] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz, Variational iterative methods
for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (2) (1983), 345–357.

[15] Charbel Farhat, Michel Lesoinne, Patrick Le Tallec, Kendall Pierson, and Daniel Rixen, FETI-
DP: A dual-primal unified FETI method – part I: A faster alternative to the two-level FETI
method, Internat. J. Numer. Methods Engrg. 50 (2001), 1523–1544.

[16] Charbel Farhat and Jing Li, An iterative domain decomposition method for the solution of a class
of indefinite problems in computational structural dynamics, Appl. Numer. Math. 54 (2005),
150–166.

[17] Yannis Fragakis and Manolis Papadrakakis, The mosaic of high performance domain decompo-
sition methods for structural mechanics: Formulation, interrelation and numerical efficiency
of primal and dual methods, Comput. Methods Appl. Mech. Engrg 192 (2003), no. 35–36,
3799–3830.

[18] Fabio Gastaldi, Lucia Gastaldi, and Alfio Quarteroni, Adaptive domain decomposition methods
for advection dominated equations, East-West J. Numer. Math. 4 (1996), no. 3, 165–206.
MR 97k:65279

[19] Jayadeep Gopalakrishnan and Joseph E. Pasciak, Overlapping Schwarz preconditioners for
indefinite time harmonic Maxwell equations, Math. Comp. 72 (2003), no. 241, 1–15.

[20] Thomas J.R. Hughes, Leopoldo P. Franca, and Gregory M. Hulbert, A new finite element
formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for
advective-diffusive equations, Comput. Methods Appl. Mech. Engrg. 73 (1989), no. 2, 173–189.

[21] Axel Klawonn and Olof B. Widlund, Dual-primal FETI methods for linear elasticity, Comm.
Pure Appl. Math. 59 (2006), no. 11, 1523–1572.

[22] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja, Dual-primal FETI methods for
three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40
(2002), no. 1, 159–179.

[23] Jing Li and Xuemin Tu, Convergence analysis of a balancing domain decomposition method for
solving interior Helmholtz equations, Tech. Report LBNL-62618, Lawrence Berkeley National
Laboratory, May 2007.

[24] Jing Li and Olof B. Widlund, BDDC algorithms for incompressible Stokes equations, SIAM J.
Numer. Anal. 44 (2006), no. 6, 2432–2455.

[25] , FETI–DP, BDDC, and Block Cholesky Methods, Internat. J. Numer. Methods Engrg.
66 (2006), 250–271.

http://www.ams.org/mathscinet-getitem?mr=97k:65279


60 XUEMIN TU AND JING LI

[26] , On the use of inexact subdomain solvers for BDDC algorithms, Comput. Methods
Appl. Mech. Engrg. 196 (2007), no. 8, 1415–1428. MR 2277026

[27] Jan Mandel and Clark R. Dohrmann, Convergence of a balancing domain decomposition by
constraints and energy minimization, Numer. Linear Algebra Appl. 10 (2003), no. 7, 639–659.

[28] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur, An algebraic theory for primal and dual
substructuring methods by constraints, Appl. Numer. Math. 54 (2005), no. 2, 167–193.

[29] Frédéric Nataf and François Rogier, Factorization of the convection-diffusion operator and the
Schwarz algorithm, Math. Models Methods Appl. Sci. 5 (1995), no. 1, 67–93.

[30] Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential
equations, Oxford Science Publications, 1999.

[31] Marcus Sarkis and Daniel B. Szyld, Optimal left and right additive Schwarz preconditioning for
minimal residual methods with Euclidean and energy norms, Comput. Methods Appl. Mech.
Engrg. 196 (2007), 1507–1514.

[32] Andrea Toselli, FETI domain decomposition methods for scalar advection-diffusion problems.,
Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 43-44, 5759–5776.

[33] Andrea Toselli and Olof B. Widlund, Domain Decomposition Methods - Algorithms and Theory,
Springer Series in Computational Mathematics, vol. 34, Springer Verlag, Berlin, 2005.

[34] R. Loredana Trotta, Multidomain finite elements for advection-diffusion equations, Appl. Numer.
Math. 21 (1996), no. 1, 91–118. MR 97i:65180

[35] Xuemin Tu, A BDDC algorithm for a mixed formulation of flows in porous media, Electron.
Trans. Numer. Anal. 20 (2005), 164–179.

[36] , BDDC domain decomposition algorithms: Methods with three levels and for flow in
porous media, Ph.D. thesis, Courant Institute, New York University, January 2006, TR2005-879,
Department of Computer Science, Courant Institute.

[37] , A BDDC algorithm for flow in porous media with a hybrid finite element discretization,
Electron. Trans. Numer. Anal. 26 (2007), 146–160.

[38] Panayot S. Vassilevski, Preconditioning nonsymmetric and indefinite finite element matrices, J.
Numer. Linear Algebra Appl. 1 (1992), no. 1, 59–76.

[39] Jinchao Xu, Theory of multilevel methods, Ph.D. thesis, Cornell University, May 1989.

[40] , A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J.
Numer. Anal. 29 (1992), no. 2, 303–319.

Received June 6, 2007. Revised December 27, 2007.

XUEMIN TU: xuemin@math.berkeley.edu
Department of Mathematics, University of California and Lawrence Berkeley National Laboratory,
Berkeley, CA 94720-3840, United States
http://math.berkeley.edu/~xuemin

JING LI: li@math.kent.edu
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, United States
http://www.math.kent.edu/~li

http://www.ams.org/mathscinet-getitem?mr=2277026
http://www.ams.org/mathscinet-getitem?mr=97i:65180
mailto:xuemin@math.berkeley.edu
http://math.berkeley.edu/~xuemin
mailto:li@math.kent.edu
http://www.math.kent.edu/~li

	1. Introduction
	2. Problem setting
	3. Finite element discretization and stabilization
	4. Domain decomposition and a partially subassembled finite element space
	5. Error estimate for a partially subassembled finite element problem
	6. The BDDC preconditioner
	7. Convergence rate of the GMRES iteration
	8. Numerical experiments
	Acknowledgments
	References

