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The one-dimensional wave equation describing propagation and reflection of
waves in a layered medium is transformed into an exact first-order system for the
amplitudes of coupled counter-propagating waves. Any choice of such amplitudes,
out of continuous multitude of them, allows one to get an accurate numerical
solution of the reflection problem. We discuss relative advantages of particular
choices of amplitude.

We also introduce the notion of reflection strength S of a plane wave by a
nonabsorbing layer, which is related to the reflection intensity R by R = tanh2 S.
We show that the total reflection strength by a sequence of elements is bounded
above by the sum of the constituent strengths, and bounded below by their
difference. Reflection strength is discussed for propagating acoustic waves and
quantum mechanical waves. We show that the standard Fresnel reflection may be
understood in terms of the variable S as a sum or difference of two contributions,
one due to a discontinuity in impedance and the other due to a speed discontinuity.

1. Introduction

The reflection of waves by layered media is the subject of a large number of
articles and monographs, such as [1; 2; 3; 4; 6; 9; 10; 12; 13; 14; 16; 17]. Here
we undertake a theoretical study of the general properties of reflecting elements,
supported by numerical computations. First we consider the reflection problem for
the Schrödinger equation. We then discuss electromagnetic waves, allowing for
variations in dielectric susceptibility ε(z) and magnetic permeability µ(z). This
is relevant in connection with new types of materials, including ones with ε < 0,
µ < 0; on this subject see [15]. Our study of electromagnetic waves also bears on
the reflection of light by volume Bragg gratings, which have usually been studied in
the slowly varying envelope approximation [7; 5; 18], but can be dealt with exactly
with our treatment. We also discuss briefly the reflection of longitudinal acoustic
waves.
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2. Reflection and transmission in the one-dimensional Schrödinger problem

We start with the one-dimensional stationary Schrödinger equation (see [4; 9] for
instance):

d2ψ

dz2 +
2m

h̄2 [E −U (z)]ψ(z)= 0. (2.1)

Here h̄ is Planck’s constant, m is the particle’s mass, E is the total energy, U (z) is
the potential energy, and ψ(z) is the wavefunction. It is convenient to introduce the
squared local wavenumber,

k2(z)=
2m

h̄2 [E −U (z)] = k2
0 −

2m

h̄2 U (z), where k0 =

√
2m E
h̄

. (2.2)

With this notation,
d2ψ

dz2 + k2(z)ψ(z)= 0.

The expression for the z-component of the flux J (with dimensions of m−2s−1) and
the conservation law are

J (z)=
i h̄
2m

(
ψ

dψ∗

dz
−ψ∗

dψ
dz

)
, J (z)= const; (2.3)

the conservation of flux is a consequence of the real-valuedness of k2(z). One must
bear in mind, however, that in regions of classically forbidden motion one gets
k2(z) < 0, so a real-valued k(z) can not be defined. We assume that k2(z) acquires
positive limiting values at z→+∞ and z→−∞, so that

k+ = lim
z→+∞

√
k2, k− = lim

z→−∞

√
k2. (2.4)

Our technical tool to solve the problem of reflection and transmission is to
introduce amplitudes A(z) and B(z) through the definitions

A(z)=

√
h̄

4m
e−iϕ(z)

[
Y (z)ψ(z)−

i
Y (z)

dψ
dz

]
,

B(z)=

√
h̄

4m
e+iϕ(z)

[
Y (z)ψ(z)+

i
Y (z)

dψ
dz

]
.

(2.5)

Here Y (z) is a (for now) arbitrary positive function of z, and φ(z) is a (for now)
arbitrary real function of z. Neither A(z) separately, nor B(z) separately, constitute a
solution of our system, either fundamental, or of any other type. But the amplitudes
A(z) and B(z) do have the advantage that the flux (which is conserved) is expressed
simply as

J = |A(z)|2− |B(z)|2. (2.6)
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In this sense one may consider A(z) and B(z) as amplitudes of waves propagating
in opposite directions.

Exact coupled first-order differential equations for A(z) and B(z) follow from
the original Schrödinger equation (2.1); they are

d
dz

(
A
B

)
= V̂ (z)

(
A
B

)
, (2.7)

and

V̂ (z)=

 i
[1

2

(
Y 2
+

k2(z)
Y 2

)
−

dϕ
dz

]
e−2iϕ

[
g− i

2

(
Y 2
−

k2(z)
Y 2

)]
e2iϕ

[
g+ i

2

(
Y 2
−

k2(z)
Y 2

)]
−i
[1

2

(
Y 2
+

k2(z)
Y 2

)
−

dϕ
dz

]
 ,

g(z)=
d ln Y (z)

dz
.

(2.8)

Later we will discuss the particular choices of Y (z) and ϕ(z) that provide for the
existence of a definite limit for M̂(z) as z→±∞. Here we start by choosing some
reasonable classes of functions Y (z) and φ(z). It is natural to choose Y (z) so that

Y (z→+∞)=
√

k+, Y (z→−∞)=
√

k−. (2.9)

Then the coupling between the counter-propagating amplitudes vanishes at z→±∞.
Besides that, it is advantageous to choose such φ(z), that

dϕ
dz
(z→+∞)= k+,

dϕ
dz
(z→−∞)= k−. (2.10)

Then, with the conditions (2.9) and (2.10) granted, the matrix V̂ (z) of evolution
has zero limits both at z→+∞ and z→−∞. In that distant regions the solution
of the system (2.8) becomes constants [A(−∞), B(−∞)] and [A(+∞), B(+∞)].
We can formulate our task as a Cauchy problem: given A(−∞), B(−∞), find A(z)
and B(z). A numerical (or, with some luck, analytical) solution of that Cauchy
problem may be represented as(

A(z)
B(z)

)
=

(
MAA(z) MAB(z)
MB A(z) MB B(z)

)(
A(−∞)
B(−∞)

)
, (2.11)

where the matrix M̂(z) satisfies the equation

d M̂(z)
dz

= V̂ (z)M̂(z), M̂(−∞)= 1̂. (2.12)

Using MathCAD and Maple, we integrated numerically the system of ordinary
differential equations (2.12) for the matrix elements of M̂(z) in the Cauchy problem
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with initial condition M̂(z = −∞) = 1̂. Both software packages automatically
adjust the step size, and they gave identical results to within about 10−10.

In most cases one is interested in the problem of reflection and transmission.
That requires the solution of a two-boundary problem, as opposed to a Cauchy
problem. For example, for the wave incoming from z→−∞ one has the boundary
conditions

A(z→−∞)= 1, B(z→+∞)= 0. (2.13)

That allows one to find complex reflection and transmission coefficients

r(B← A)=−MB A/MB B, t (A← A)= 1/MB B . (2.14)

Here M̂ (without an argument) denotes the limit matrix at z→+∞:

M̂ = lim
z→+∞

M̂(z).

It is worth noting that the matrix approach for one-dimensional Schrödinger reflec-
tion/transmission problems is mentioned in the textbook [4]. However, their matrix
operates with free asymptotic waves only (the analog of our matrix M̂), and no
suggestions are made there on how to calculate such a matrix.

Any choices of Y (z) and φ(z) satisfying the conditions (2.9), (2.10) yield the
same results for the reflectivity |r |2 and the transmissivity |t |2. The current values of
|A(z)|2 and |B(z)|2 in the reflection/transmission problem do depend on the choice
of Y (z) and φ(z), as will be shown below by numeric calculations. Nevertheless,
one can find the explicit expression of the wavefunction of the relevant solution:

ψ(z)=
1

Y (z)

√
m
h̄

[
A(z)e+iϕ(z)

+ B(z)e−iϕ(z)], (2.15)

and this solution, up to a constant factor, does not depend on the choice of Y (z)
and φ(z).

Let us discuss some variants of that choice, which yield a different structure for
evolution matrix V̂ and a different physical sense of coupled counter-propagating
amplitudes A(z) and B(z).

1. Suppose that k2(z) > 0 for all z, so there is no classically forbidden region. Then
the choice Y (z) =

√
k(z) considerably simplifies the expression of the evolution

matrix:

V̂ (z)=

i
[
k(z)− dϕ

dz

]
e−2iϕg

e2iϕg −i
[
k(z)− dϕ

dz

]
 ,

g(z)=
d ln Y (z)

dz
=−

1
4

1
E −U (z)

dU (z)
dz

.

(2.16)
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We can say that the scattering processes A→ B and B→ A are generated (for the
choice Y (z)=

√
k(z)) by the potential gradient.

1′. The choice Y (z)=
√

k(z), ϕ(z)=
∫ z

z1
k(z′)dz′ allows us to eliminate completely

the diagonal elements in the evolution matrix (2.16). This may or may not be
advantageous in the numerical solution of the coupled wave equations (2.7), (2.12).

1′′. The choice Y (z)=
√

k(z), φ(z)= k0z leads to

V̂ (z)=

(
i[k(z)− k0] g(z)e−2ik0z

g(z)e−2ik0z
−i[k(z)− k0]

)
,

g(z)=−
1
4

1
E −U (z)

dU (z)
dz

.

(2.17)

A choice analogous to this one will be used in Section 6 for the Maxwell equations.

2. Consider the special case when U (+∞) = U (−∞) = 0; then k+ = k− = k0.
Then the choice Y (z) =

√
k0, still with arbitrary φ(z), yields for the evolution

matrix with g ≡ 0 the expression

V̂ (z)=

i
(

k0

[
1− U (z)

2E

]
−

dϕ
dz

)
−ie−2iϕ(z) k0

2E
U (z)

ie2iϕ(z) k0
2E

U (z) −i
(

k0

[
1− U (z)

2E

]
−

dϕ
dz

)
 . (2.18)

Two features of this special choice (Y (z) =
√

k0) should be mentioned. First,
the passage of the particle under the potential barrier (U (z) > E) adds no extra
computational difficulties here, since we do not have to take the square root of
E −U (z). Second, the scattering processes A→ B and B→ A for this special
choice are governed by the potential U (z) itself, and not by its gradients, as was
the case in Equation (2.16).

2′. Choosing φ(z) = k0z for the same Y (z) =
√

k0 affords an especially simple
expression for the evolution matrix:

V̂ (z)= iU (z)
k0

2E

(
−1 −e−2ik0z

e2ik0z 1

)
. (2.19)

This equation for the evolution matrix V̂ (z) is especially convenient for the use
of perturbation theory, since the whole matrix V̂ (z) in (2.19) is of first order with
respect to the potential U (z). Taking A(0) = 1 in the zeroth approximation and
B(1)(+∞)= 0, one gets

B(1)(z)=−i
k0

2E

∫
+∞

z
U (z′)e2ik0z′dz′, (2.20)
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and the first order reflection amplitude is given by (2.20) with the integral taken
from z =−∞.

This same integral taken from−∞ to+∞, which is to say, the Fourier component
of the potential at k0, may be transformed (by integration by parts) into

r (1)(B← A)= B(1)(z =−∞)=
1

4E

∫
+∞

−∞

dU (z′)
dz′

e2ik0z′dz′. (2.21)

This last expression coincides with the perturbative use of (2.17) at |U (z)| � E .
We may conclude that in the case U (+∞)=U (−∞)=0 our transformation from

Y (z)=
√

k0 to Y (z)=
√

k(z) is equivalent to integration by parts in perturbation
theory. It should be emphasized, however, that we managed to perform such a
transformation in exact equations, without the perturbative approach.

3. Particular examples of numerical modeling; low-reflecting potentials

We foresee various applications of the computational technique described above.
One application, which we explored ourselves, is the problem of reflectionless
potentials, those that do not reflect Schrödinger waves at any value of energy of
incident particles. The best known example is the inverse square of the hyperbolic
cosine potential well:

k2(z)= k2
0 +

D

cosh2 z
, D = s(1+ s). (3.1)

It is well known that a one-dimensional potential well with limz→+∞U (z) =
limz→−∞U (z)= 0 always allows at least one state with negative energy eigenvalue
(bound state). We call the lowest such state the zeroth bound state. There are certain
values of the depth D of the well when the first bound state, then the second, then
the third, and so on, first appear in the continuous spectrum. For the potential (3.1),
these special values are (see [9]) D1 = 2 (at s = 1), D2 = 6 (at s = 2), D3 = 12 (at
s = 3), and so on for all positive integer values of s. Exactly for these values of
the depth, the well is reflectionless: R(k2

0) ≡ 0, at all k2
0 . This property plays an

important role in the nonlinear theory of solitons; see [8], for example.
Using our technique for calculating the reflectivity R(k2

0), we tried to answer
the question whether a similar property of “low reflection at all energies” might be
valid for potential wells of other shapes. We studied, for example, the Gaussian
potential well

k2(z)= k2
0 + D exp(−z2). (3.2)

We found that for this well, the first few depth values D when new bound states
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appear are

D1 = 2.6840, D2 = 8.6491, D3 = 17.7957,

D4 = 30.1063, D5 = 45.5735, D6 = 64.1933.
(3.3)

We then calculated the reflectivity R(k2
0) for a wide range of incident particle

energies. While there is no value of D for which the reflectivity vanishes identically,
we found remarkably low reflectivity in the whole energy range when the depth of
the Gaussian well coincided with the values from (3.3).

As an example, Figure 1 shows the energy dependence of the reflection coefficient
for Gaussian wells with depths D = 2, D = 2.684005, D = 3 and D = 4. At large
k2

0 reflection becomes exponentially small for any D. However, at small k2
0 (less

than or about k2
0 ∼ 0.2) reflectivity becomes close to 100%. A happy exception

is the value D1 = 2.684005, when reflectivity goes to zero at k2
0 → 0 as well.

The maximum reflectivity for this D is a mere Rmax = 1.1 · 10−2, achieved for
k2

0 in the range 0.3–1.0. For the value D2 = 8.6491 the maximum reflectivity is
Rmax = 1.4 · 10−2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.04

0.08

0.12

0.16

0.20

2.684

3.0

2.0

4.0

R=|r|2

k
0

2

Figure 1. Reflection coefficient R = |r |2 by a Gaussian potential
well δk2(z) = D · exp(−z2), with different values of the well’s
depth, D = 2.0, D = D1 = 2.684005, D = 3.0 and D = 4.0, as
functions of incident energy h̄2k2

0/(2m). At D > D1, z-odd bound
state emerges in the well. For D = D1 the maximum reflectivity is
quite small, Rmax = 1.1 · 10−2.
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It is worth nothing that the results for R(k2
0) were identical for both methods of

computation: with Y (z)=
√

k(z), ϕ(z)= k0z, and with Y (z)=
√

k0, ϕ(z)= k0z.
This confirms numerically the validity of different approaches. We have yet to
explore the variant with Y (z)=

√
k(z), ϕ(z)=

∫ z
z1

k(z′)dz′. Besides the solution of
a system of ordinary differential equations, that variant would require calculating
of the above integral with the continuous upper limit, and therefore we decided to
postpone its study. We also postponed the study of the problems with k+ 6= k−,
where the choice ϕ(z)= k0z would be impossible.

Similar results of suppressed reflection were also obtained for the potential well
with the double Lorentzian profile,

k2(z)= k2
0 +

D
(1+ z2/2)2

. (3.4)

Here the depth values Ds at which the s-th level (with z-parity (−1)s) acquires zero
energy are Ds = s(1+ s/2), so that D1 = 1.5, D2 = 4, D3 = 7.5, D4 = 12. We
did observe the suppressed reflection in the whole energy range for these discrete
values of well depth. For D1 = 1.5, the maximum reflectivity equals Rmax = 3.3%.
It is possible that these results about suppressed reflectivity may have applications
to soliton theory.

We also calculated the curves |A(z)|2, |B(z)|2 and |ψ(z)|2 for the reflectionless
potential well k2(z)= k2

0 + 2/cosh2 z, in the case k2
0 = 0.2 (Figure 2). We see that
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|B|2
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|A|2

|A|2

z z z

Figure 2. Transmission of Schrödinger wave over a reflectionless
potential well, k2(z) = k2

0 + 2/cosh2 z, at k2
0 = 0.2. Left: |A(z)|2

and |B(z)|2 for the choice (2′), when Y (z) =
√

k0, ϕ(z) = k0z.
Middle: |A(z)|2 and |B(z)|2 for the choice (1′′), when Y (z) =
√

k(z), ϕ(z) = k0z. Right: profile of |ψ(z)|2 in this problem; it
does not depend on the choice of Y (z) and φ(z).



REFLECTION OF VARIOUS TYPES OF WAVES BY LAYERED MEDIA 69

while the shapes of |A(z)|2 and |B(z)|2 depend on the choice of Y (z), the shape of
|ψ(z)|2 does not depend on that choice, just as expected.

4. The matrix method and the notion of reflection strength

For a better perspective, we now consider transmission through a volume Bragg
grating (VBG), which couples two plane electromagnetic waves, A and B, both
having Poynting vector with positive z-component: Pz = |A|2 + |B|2. Here the
z-axis is normal to the boundaries of VBG. The absence of absorption results in the
conservation law Pz = const. Writing the matrix relationship for wave coupling in
linear media, A(z) = NAA · A(0)+ NAB · B(0), B(z) = NB A · A(0)+ NB B · B(0),
one comes to the conclusion that the matrix N̂ (z) must be unitary: N̂ (z) ∈U (2).

Now consider a reflecting device where the waves A and B propagate in opposite
directions with respect to z-axis, so that Pz =|A|2−|B|2. The absence of absorption
results in the conservation law |A|2−|B|2 = const. Writing the matrix relationship
for wave coupling in linear media (compare to Equation (2.11) above),

A(z)= MAA · A(0)+MAB · B(0), B(z)= MB A · A(0)+MB B · B(0), (4.1)

one can deduce from the assumption of energy conservation that the matrix M̂(z)=(
α
γ
β
δ

)
satisfies

|α|2− |γ |2 = 1, |δ|2− |β|2 = 1, αβ∗ = γ δ∗. (4.2)

The most general form of such a matrix M̂ depends on four real parameters: a
strength S, an inessential phase ψ and two phases ζ and η:

M̂ = eiψ
(

eiζ 0
0 e−iζ

)(
cosh S sinh S
sinh S cosh S

)(
e−iη 0

0 eiη

)
. (4.3)

The determinant of M̂ equals exp(2iψ), and so has modulus 1. The set of such
matrices is closed under multiplication and inversion, and so forms a group, denoted
U (1, 1); it is the complex analog of Lorentz group SL(2) (|A|2 being analogous to
x2 and |B|2 analogous to (ct)2).

The consecutive application of two elements of U (1, 1), with parameters S1, ψ1,
ζ1, η1 and S2, ψ2, ζ2, η2, yields the element described by the matrix M̂3 = M̂2 M̂1,
which is also of the same type (4.3). The expression for the resultant strength
parameter S3 is

S3 = arcsinh
√

sinh2(S1+ S2) cos2 τ + sinh2(S1− S2) sin2 τ , τ = ζ1− η2, (4.4)

which can vary due to the phase difference τ between the reflective elements.
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Knowledge of the matrix M̂(z) allows one to find the reflection and transmission
amplitudes. Thus, for the problem where the wave A is incident on the front layer,
z = 0, and there is no wave B incident on the back, z = L , one uses the boundary
conditions A(0)= 1, B(L)= 0, to get, just as for Schrödinger equation,

0= MB A(L)+MB B(L) · r,

which implies

r = r(B← A)=−
MB A(L)
MB B(L)

=−e−2iη tanh S, (4.5)

R = |r(B← A)|2 = tanh2 S. (4.6)

The presence of the hyperbolic tangent function is very satisfying: as the strength
S goes to infinity, the reflection coefficient goes to 1 asymptotically. The notion of
reflection strength is applicable to the gratings in single-mode optical fibers as well.
Kogelnik’s theory of reflection by VBGs [7] predicts the following value for the
resulting strength:

RVBG = tanh2 S, S = arcsin h
(

S0
sinh

√
S2

0 − X2√
S2

0 − X2

)
,

S0 = |κ|L , X =
(
ωn
c

cos θinside−
Q
2

)
L .

(4.7)

Here S0 is the strength of the VBG at perfect Bragg matching, i.e., when the detun-
ing parameter X vanishes, the coupling parameter |κ| = 1

2(n1ω/c)
∣∣cos(E A, E B)

∣∣
corresponds to modulation of refractive index δn(z) = n1 cos(Qz). The angle
θinside is the propagation angle of the waves A and B inside the material of VBG.
(Formula (4.7) is mathematically identical, for a lossless medium, to the result
found in [7], but is written somewhat differently.)

If reflective VBG slab has certain residual reflection by the boundaries, R1=|r1|
2

and R2=|r2|
2, then the question arises about coherent interference between the main

VBG refection from Equation (4.7) and these two extra contributions. Attentive
consideration of the result (4.4) allows to predict, that at any particular wavelength
and/or angle of the incident wave, the strength Stot of the total element will be
within the limits

SVBG− |S1| − |S2| ≤ Stot ≤ SVBG+ |S1| + |S2|, S1,2 =−arctanh r1,2. (4.8)

This allows the easy estimation of the influence of Fresnel reflections.

5. Fresnel reflection and reflection of acoustic waves

Now consider a fundamental problem of electrodynamics: reflection of light by a
sharp boundary between two media at an incidence angle θ1, so that the refraction
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angle is θ2. We denote by ε1, µ1, ε2, µ2 the dielectric permittivity and magnetic per-
meability in these two media, so the phase propagation speeds v1,2 and impedances
Z1,2 are

v j =
c

n j
, c =

1
√
εvacµvac

, n j =

√
ε jµ j

εvacµvac
, Z j =

√
µ j

ε j
, j = 1, 2. (5.1)

The angles θ1, θ2 are related by Snell’s law, which is governed by the ratio of
propagation speeds, or, which is the same, the ratio of refractive indices n1, n2:

n1 sin θ1 = n2 sin θ2. (5.2)

The cases of total internal reflection (TIR) or an absorbing second medium require
the definition

cos θ2 =

√
1− (n1/n2)2 sin2 θ2 = C ′2+ iC ′′2 , C ′′2 > 0. (5.3)

The condition C ′′2 > 0 guarantees an exponential attenuation of the transmitted wave
into the depth of second medium. The reflection amplitudes for TE (transverse
electric) and TM (transverse magnetic) polarization can be found easily:

rTE ≡ r(Ey← Ey)=
cos θ1/Z1− cos θ2/Z2

cos θ1/Z1+ cos θ2/Z2
,

rTM ≡ r(Ex ← Ex)=−
Z1 cos θ1− Z2 cos θ2

Z1 cos θ1+ Z2 cos θ2
.

(5.4)

These expressions have two very instructive limiting cases. The first is when the
two media have the same propagation speed v1 = v2 (and refractive indices), so
Snell’s law (5.2) yields θ1 = θ2. Surprisingly, the reflection coefficients in this case
are equal and independent of the angle:

rTE = rTM ≡ r1Z =
Z2− Z1

Z2+ Z1
. (5.5)

The second limiting case is when the media have the same impedance, Z1 = Z2,
but different propagation speeds, n1 6= n2. Then the two reflection coefficients are
equal up to a sign:

rTE =−rTM ≡ r1v(θ1)=
cos θ1− cos θ2

cos θ1+ cos θ2
. (5.6)

Thus there is no reflection at normal incidence for impedance-matched media
(stealth technology).

The reflection strengths S =−arctanh r for these two limiting cases are

S1Z =
1
2 ln

Z1

Z2
, S1v(θ1)=

1
2 ln

cos θ2

cos θ1
. (5.7)
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Here is the relationship we found. One can produce the reflection strengths STE(θ1)

and STM(θ1) by simple addition (for TE) or subtraction (for TM) of the speed-
governed and impedance-governed contributions from (5.7):

STE(θ1)= S1Z + S1v(θ1), STM(θ1)= S1Z − S1v(θ1), (5.8)

and according to Equation (4.5), r =−tanh S. One can easily verify that expressions
(5.7), (5.8) and (4.5) reproduce the standard formulae (5.4) identically.

It is interesting that the reflection in the TIR regime is also described by S =
−arctanh r and Equations (5.7), (5.8) are still valid. In this case we have

S1Z =
1
2

ln
Z1

Z2
, S1v(θ1)= i

π

4
+

1
2

ln
(√
(n1/n2)2 sin2 θ1− 1/cos θ1

)
. (5.9)

As expected, |r | = |tanh(iπ/4+ S′)| = 1 for the case of TIR.
It is instructive to consider the reflection of longitudinal acoustic waves from

the boundary between two liquids having densities ρ1 and ρ2, propagation speeds
c1 and c2 and therefore acoustic impedances Z1 = ρ1c1 and Z2 = ρ2c2. The well
known expression for the reflection coefficient for the wave’s pressure [3; 11] is

rlongitud ≡ r(p← p)=
cos θ1/Z1− cos θ2/Z2

cos θ1/Z1+ cos θ2/Z2
. (5.10)

For this acoustic case we see that again, the reflection strength is given by the sum
of two contributions,

rlongitud =− tanh[Sp(θ1)], Sp(θ1)= S1Z + S1c(θ1), (5.11)

similar to the case of TE polarization in electrodynamics.

6. Maxwell equations for coupled waves: exact approach

We have actually found the relationship (5.8) for ourselves not empirically; we
have derived the result of additivity for reflection strength S directly from Maxwell
equations. The idea is to formulate exact Maxwell equations for the layered medium
in terms of two coupled amplitudes A and B propagating with Pz > 0 and Pz < 0
respectively. Let the incidence plane be the (x, z)-plane, for a monochromatic wave
∝ exp(−iωt) incident upon a layered medium whose properties depend on z only.
By θair we denote the incidence angle of the wave in air, so

kair = x̂kx + ẑkair,z, kx =
ω

c
nair sin θair, kair,z =

ω

c
nair cos θair. (6.1)

Again here the waves separate naturally into TE and TM parts. We write the electric
and magnetic vectors for each polarization by means of appropriately normalized
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components ux , u y , uz and wx , wy , wz:

TE : E(r, t)=− ŷu y(z)eikx x−iωt
√

Z(r),

H(r, t)= [x̂wx(z)+ ẑwz(z)]eikx x−iωt/
√

Z(r),
(6.2)

TM : E(r, t)= [x̂ux(z)+ ẑuz(z)]eikx x−iωt
√

Z(r),

H(r, t)= ŷwy(z)eikx x−iωt/
√

Z(r).
(6.3)

Here and below we use the quantities

k(z)=
ωn(z)

c
, p(z)=

√
k2(z)− k2

x = k(z) cos θ(z), (6.4)

g(z)=
1
2

d
dz

ln
1

Z(z)
, f (z)=

1
2

d
dz

ln
p(z)
k(z)
≡

1
2

d
dz

ln cos θ(z). (6.5)

The Maxwell equations for the TE polarization amplitudes are

iku y = ∂zwx − ikxwz + gwx , −ikwx =−∂zu y + gu y, −ikwz = ikx u y; (6.6)

they may be rewritten as

∂zu y = gu y + ikwx , ∂zwx = i p2/ku y − gwx . (6.7)

It is convenient to introduce the amplitudes A(z) and B(z) for TE polarization by
the definitions

ATE(z)eikair,z z
=

1
√

8

(√
p
k

u y(z)+
√

k
p
wx(z)

)
,

BTE(z)e−ikair,z z
=

1
√

8

(√
p
k

u y(z)−
√

k
p
wx(z)

)
.

(6.8)

This definition is analogous to the choice (1′′) for the Schrödinger equation. The
z-component of the Poynting vector for any incidence angle at any point z is
Pz=|A|2−|B|2. One may consider the transformation (6.8) as a transition to slowly
varying envelopes A(z) and B(z). We emphasize, however, that no approximations
have been made up to this point. Indeed, the exact Maxwell equations for TE
polarization reduce to the very simple coupled pair

d
dz

(
ATE(z)
BTE(z)

)
= V̂TE

(
ATE(z)
BTE(z)

)
,

V̂TE =

(
i(p(z)− kair,z) (g(z)+ f (z))e−2ikair,z z

(g(z)+ f (z))e2ikair,z z
−i(p(z)− kair,z)

)
.

(6.9)
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A similar set of transformations may be done for TM polarization:

−ikux =−∂zwy − gwy,

−ikuz = ikxwy,

−ikwy = ikx uz − ∂zux + gux ⇐⇒ ∂zux = gux + i p2/k,

∂zwy = ikux − gwy,

(6.10)

with the same parameters k(z), g(z), p(z). The coupled TM wave amplitudes are

ATM(z)eikair,z z
=

1
√

8

(√
k
p

ux(z)+
√

p
k
wy(z)

)
,

BTM(z)e−ikair,z z
=

1
√

8

(√
k
p

ux(z)−
√

p
k
wy(z)

)
.

(6.11)

Finally, the exact Maxwell equations for TM polarization are

d
dz

(
ATM(z)
BTM(z)

)
= V̂TM

(
ATM(z)
BTM(z)

)
,

V̂TM =

(
i(p(z)− kair,z) (g(z)− f (z))e−2ikair,z z

(g(z)− f (z))e2ikair,z z
−i(p(z)− kair,z)

)
,

(6.12)

with the same parameters f (z), g(z) as in (6.5). The gradient functions f (z) and
g(z)— related respectively to propagation speed and impedance — appear as sums
(for TE polarization) or differences (for TM) in our “coupled” equations. The
discontinuities in n(z) and Z(z) yield our resulting equations (5.8).

For brevity we omit the discussion of other possible choices of electromagnetic
amplitudes A(z) and B(z) analogous to (1′), (2′) of the Schrödinger problem.

7. Conclusions

We have introduced the notion of reflection strength S, related to the reflection
intensity R by R= tanh2 S. The total reflection strength Stot from a sequence of two
lossless elements equals at most the sum of the constituent strengths, and equals at
least their difference. We have shown that the amplitudes of standard processes of
Fresnel reflection may be understood in terms of S as a linear sum or difference of
two independent contributions, one due to the discontinuity in impedance and the
other due to the speed discontinuity. A similar result is obtained for the reflection
of longitudinal acoustic waves. The one-dimensional Schrödinger equation is
also treated with specially introduced amplitudes of coupled counter-propagating
components.
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