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We study an overlapping domain decomposition method for solving the coupled
nonlinear system of equations arising from the discretization of inverse elliptic
problems. Most algorithms for solving inverse problems take advantage of the fact
that the optimality system has a natural splitting into three components: the state
equation for the constraints, the adjoint equation for the Lagrange multipliers,
and the equation for the parameter to be identified. Such algorithms often involve
interiterations between the three separate solvers, and the intercomponent iteration
is sequential. Several fully coupled or so-called one-shot approaches exist, and the
main challenges in these approaches are that the system has stronger nonlinearity,
and the corresponding Jacobian system is more ill-conditioned, in addition to
being three times larger. Here we investigate a class of overlapping Newton–
Krylov–Schwarz algorithms for solving such coupled systems, obtained with a
pointwise ordering of the variables, and show numerically that, with a reasonably
large overlap, the algorithm is capable of finding the solution even with noise and
discontinuous coefficients. More importantly, we show that this approach is fully
parallel and scalable with respect to the size of the problems.

1. Introduction

As parallel computers become more powerful, researchers are paying more attention
to inverse problems which are more difficult and expensive to solve than forward
problems [1; 11; 15; 24]. A key step in designing a high performance parallel
algorithm is to formulate the problem with as few sequential calculations as possible.
Here we study a parallel domain decomposition method for solving the system of
nonlinear equations arising from the fully coupled finite difference discretization of
some inverse elliptic problems in two-dimensional space.
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Traditionally these problems are solved by using Uzawa-type algorithms which
split the system into two or three subsystems solved individually. Subiterations
are required between the subsystems. The subsystems are easier to solve than
the global coupled system, but the iterations between subsystems are sequential
in nature. There are several fully coupled approaches in which all variables are
solved at the same time. They are often referred to as the one-shot method or
the all-at-once method; see for example [3; 12; 16; 21]. In these approaches, the
resulting linear and nonlinear systems of equations are three times larger, have
stronger nonlinearity and are more ill-conditioned. Solving these fully coupled
systems is a major challenge for any iterative methods.

The focus of this paper is to investigate a parallel domain decomposition precondi-
tioning technique for the coupled systems. We show that with the powerful domain
decomposition based preconditioner the convergence of the iterative methods can
be obtained even for some difficult cases when the solution is discontinuous and
when the observation data has high level of noise.

We consider an inverse elliptic problem [14]: Find the coefficient function ρ(x)
in the system {

−∇ · (ρ∇u) = f, x ∈�,
u(x) = 0, x ∈ ∂�.

(1)

A widely used approach for solving the inverse problem is the output least-
squares Tikhonov regularization method, which formulates the ill-posed inverse
problem into different stabilized optimization problems, depending on the type of
data available [6; 8; 13; 14]. For example, when the measurement of u(x) is given,
denoted as z(x), the inverse problem can be transformed into the minimization
problem:

minimize J (ρ, u)=
1
2

∫
�

(u− z)2 dx +
β

2

∫
�

|∇ρ|2 dx, (2)

which is often referred to as the L2 least-squares problem.
When the measurement of ∇u(x) is given, denoted as ∇z(x), the inverse problem

can be transformed into the minimization problem:

minimize J (ρ, u)=
1
2

∫
�

ρ |∇u−∇z|2 dx +
β

2

∫
�

|∇ρ|2 dx, (3)

which is often referred to as the H 1 least-squares problem. Both minimization
problems (2) and (3) are subject to the constraint (1) satisfied by the pair (ρ, u), and
the β-term is called the regularization term, and the constant β is the regularization
parameter.
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Instead of solving the constraint optimization problems (2) and (3), we turn to
solving the saddle-point problems associated with the Lagrangian functional L:

L(ρ, u, λ)=
1
2

∫
�

(u− z)2 dx −
∫
�

(∇ · ρ∇u+ f )λ dx +
β

2

∫
�

|∇ρ|2 dx (4)

for the L2 case, or

L(ρ, u, λ)=
1
2

∫
�

ρ|∇u−∇z|2 dx−
∫
�

(∇ ·ρ∇u+ f )λ dx+
β

2

∫
�

|∇ρ|2 dx (5)

for the H 1 case [8]. Hence the solutions to both minimization problems can be
obtained by solving the corresponding optimality systems: Find (ρ, u, λ) such that

(∇ρL)p = 0,

(∇uL)w = 0,

(∇λL)µ= 0,

(6)

for any (p, w,µ). More explicitly, we can reduce (6) to
F (ρ) ≡−β1ρ+∇u · ∇λ= 0,
F (u) ≡−∇ · (ρ∇λ)+ (u− z)= 0,
F (λ) ≡−∇ · (ρ∇u)− f = 0,

(7)

in the L2 case. Similarly, in the H 1 case, we have
F (ρ) ≡−β1ρ+∇u · ∇λ+ 1/2|∇u−∇z|2 = 0,
F (u) ≡−∇ · (ρ∇λ)+∇ · (ρ∇z)+ f = 0,
F (λ) ≡−∇ · (ρ∇u)− f = 0.

(8)

Both systems (7) and (8) use the same boundary conditions
(∂ρ/∂n)= 0,
u = 0,
λ= 0,

(9)

on ∂�. The Dirichlet boundary conditions for u and λ are natural. The homogeneous
Neumann boundary condition on ρ is the side effect of the H 1 regularization in
(2) and (3). A derivation of the boundary condition ∂ρ/∂n = 0 is given in the
Appendix.

For solving the coupled systems, several techniques are available. For example,
in [6; 13; 14], an augmented Lagrangian method was used and the solution was
obtained by Uzawa-type algorithms, which decouples the problems into subproblems
associated with ρ, u and λ separately, and as a result, only smaller problems need
to be solved. The global convergence of these approaches was established in [7;
13]. In [2], a fully coupled discretization was used for some source term inverse
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problems, and the coupled system was first reduced by block eliminations and
then solved by a conjugate gradient (CG) method. Tremendous progress has been
made in using domain decomposition methods for optimization problems with
partial differential equations constraints [1; 2; 17; 18; 19]. The Newton–Krylov–
Schwarz methodology [18] studied here is a general purpose approach that is not
attached to any specific formulation of the inverse problem. We require a globally
convergent inexact Newton’s method with line search for the nonlinear systems;
a Krylov subspace method for the Jacobian systems; and, most importantly, an
additive Schwarz preconditioner, which works well with a scheme we use for the
orderings of the unknowns and the functions. Although we are still unable to
show theoretically that the linear and nonlinear iterative solvers are convergent, our
parallel numerical experiments have shown clearly that this approach works well
for some rather difficult test cases with jump coefficients and a high level of noise.

Section 2 addresses some basic properties of the linear and nonlinear systems
and a reordering scheme to avoid zero pivoting. We also describe a Newton–Krylov–
Schwarz algorithm for solving the fully coupled systems. We give numerical
experiments in Section 3, followed by concluding remarks in Section 4.

2. Scalable solvers

2.1. A reordered fully coupled system. We use the so-called fully coupled ordering,
by which we mean that all three variables defined at the same mesh point are always
together throughout the calculations. The unknowns are ordered mesh point by
mesh point, in contrast to physical variable by physical variable as required by most
existing sequential quadratic programming (SQP) methods. At each mesh point,
xi j , the unknowns are ordered in the order of ρi j , ui j , λi j , that is,

U = (ρ11, u11, λ11, ρ21, u21, λ21, . . . , ρnx ny, unx ny, λnx ny)
T . (10)

If we order the functions in exactly the same order,

F = (F (ρ)11 , F (u)11 , F (λ)11 , F (ρ)21 , F (u)21 , F (λ)21 , . . . , F (ρ)nx ny, F (u)nx ny, F (λ)nx ny)
T
= 0, (11)

then the Jacobian in the L2 case is a symmetric matrix of the form (12) with dense
3× 3 blocks of the form (13)

J =



× × ×
× × × ×
× × ×

× × × ×
× × × × ×
× × × ×

× × ×
× × × ×
× × ×


n×n(block)

, (12)
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where

×=

(
∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

)
3×3

. (13)

However, the zero value on the diagonal of (13) causes a pivoting problem in our
LU factorization based solvers. To avoid the zero pivot situation, we reorder the
unknowns (switching the u variable with the λ variable):

U = (ρ11, λ11, u11, ρ21, λ21, u21, . . . , ρnx ny, λnx ny, unx ny)
T
= 0, (14)

but keep the ordering of the functions unchanged as in (11). This reordering of
function values does not change the block structure of the matrix, but the 3× 3
block now takes the form:

×=

(
∗ ∗ ∗

∗ ∗ ∗

∗ 0 ∗

)
3×3

, (15)

which is no longer symmetric. In this paper, our algorithms are not based on the
structure of (13), but on the structure of (15), which is based on the ordering scheme
(11)+ (14).

For the purpose of parallel processing, the mesh points are ordered subdomain
by subdomain. The ordering of the subdomains is not important since we use an
additive method whose performance has nothing to do with the subdomain ordering.

2.2. Newton–Krylov method. The Newton–Krylov–Schwarz (NKS) methods [4]
are a family of general-purpose parallel algorithms for solving systems of nonlinear
algebraic equations. NKS has three main components: (i) an inexact Newton
method for the nonlinear system; (ii) a Krylov subspace linear solver for the
Jacobian systems (restarted GMRES [20]); and (iii) a Schwarz type preconditioner
[22; 23]. We only study the regular additive Schwarz preconditioner in this paper,
even though in some cases, the restricted version of the additive Schwarz method
[5] maybe better.

We carry out the Newton iterations:

Uk+1 =Uk − λk J (Uk)
−1 F(Uk), k = 0, 1, . . . , (16)

where U0 is an initial approximation to the solution, J (Uk)= F ′(Uk) is the Jacobian
at Uk , and λk is the steplength determined by a linesearch procedure [9; 10]. The
inexactness of Newton’s method is reflected in the fact that we do not solve the
Jacobian systems exactly. The accuracy of the Jacobian solver is determined by
some ηk ∈ [0, 1) and the condition

‖F(Uk)+ J (Uk)sk‖ ≤ ηk‖F(Uk)‖. (17)



6 XIAO-CHUAN CAI, SI LIU AND JUN ZOU

The overall algorithm can be described as follows:

(1) Inexactly solve the linear system J (Uk)sk =−F(Uk) for sk using a precondi-
tioned GMRES(30).

(2) Perform a full Newton step with λ0 = 1 in the direction sk .

(3) If the full Newton step is unacceptable, we backtrack using the cubic back-
tracking procedure until a new λ is obtained that makes U+ =Uk + λksk an
acceptable step.

(4) Set Uk+1 =U+ and return to step 1 unless a stopping condition has been met.

In step 1 above we use a right-preconditioned restarted GMRES to solve the
linear system; that is, the vector sk is obtained by approximately solving the right
preconditioned Jacobian system

J (Uk)M−1
k s ′k =−F(Uk),

where M−1
k is a one-level additive Schwarz preconditioner and sk = M−1

k s ′k .

2.3. One-level additive Schwarz preconditioning. To formally define M−1
k , we

need to introduce a partition of�. We first partition the domain into nonoverlapping
subdomains�l , l= 1, . . . , N , where N is the same as the number of processors (np).
In order to obtain an overlapping decomposition of the domain, we extend each
subdomain�l to a larger region�′l, that is,�l⊂�

′

l .Only simple box decomposition
is considered in this paper — all the subdomains �l and �′l are rectangular and
made up of integral numbers of fine mesh cells. The size of �l is Hx × Hy and
the size of �′l is H ′x × H ′y , where the H ′s are chosen so that the overlap (ovlp) is
uniform in the number of fine grid cells all around the perimeter, that is,

ovlp= (H ′x − Hx)/2= (H ′y − Hy)/2

for interior subdomains. For boundary subdomains, we simply cut off the part that
is outside �.

On each extended subdomain �′l , we construct a subdomain preconditioner Bl

which is the discretization of the Frechet derivative taken at the current iteration,

J =



∂F (ρ)

∂ρ

∂F (ρ)

∂λ

∂F (ρ)

∂u

∂F (u)

∂ρ

∂F (u)

∂λ

∂F (u)

∂u

∂F (λ)

∂ρ

∂F (λ)

∂λ

∂F (λ)

∂u


. (18)
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In the L2 case, the Frechet derivative at the point (ρ, λ, u) takes the form

F ′L2 =

 −β1 ∇u · ∇ ∇λ · ∇

−(1λ+∇λ · ∇) −∇ · (ρ∇) I
−(1u+∇u · ∇) 0 −∇ · (ρ∇)

 . (19)

Similarly, in the H 1 case, we have

F ′H1 =

 −β1 ∇u ·∇ ∇λ·∇+(∇u−∇z)·∇
−(1λ+∇λ·∇)+(1z+∇z ·∇) −∇·(ρ∇) 0

−(1u+∇u ·∇) 0 −∇·(ρ∇)

 . (20)

Using the derivative and some boundary conditions, we can define the subdomain
problems. For example, in the L2 case, we have

−β1p+∇λ · ∇w+∇u · ∇µ= g1 in �′l,
−∇ · (p∇λ)+w−∇ · (ρ∇µ)= g2 in �′l,
−∇ · (p∇u)−∇ · (ρ∇w)= g3 in �′l,
p = w = µ= 0 on ∂�′l ∩�,
(∂p/∂n)= w = µ= 0 on ∂�′l ∩ ∂�.

(21)

The solution (p, w,µ) and the right side (g1, g2, g3) of the subdomain problem are
not important at all. We only need the operator form (21) to construct a local solver
Bl defined on the subdomain ∂�′l . Note that homogeneous Dirichlet boundary
conditions are used on the internal subdomain boundary, and the original boundary
conditions are used on the physical boundary, if present. A similar system is used
for the H 1 least-squares problem.

Alternatively we can obtain Bl by extracting its elements from the global Jacobian
matrix; that is, Bi, j

l = {Ji j }, where the node indexed by (i, j) belongs to the interior
of �′l . The entry Ji j is calculated with finite differences Ji j = (Fi (U j + ε) −

Fi (U j ))/ε, where 0 < ε� 1 is a constant. The additive Schwarz preconditioner
can be written as

M−1
k = I1 B−1

1 (I1)
T
+ · · ·+ IN B−1

N (IN )
T . (22)

Let n be the total number of mesh points, and n′l the total number of mesh points in
�′l , then Il is an 3n× 3n′l extension matrix that extends each vector defined on �′l
to a vector defined on the entire fine mesh by padding an 3n′l × 3n′l identity matrix
with zero rows.

3. Numerical experiments

In this paper, we assume the problem is defined on �= (0, lx)× (0, ly), which is
covered by a uniform mesh of size h. To discretize the equations we use the usual
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5-point central finite difference method for all variables. For the L2 formulation
(7), we define

F (ρ)i j = β
4ρi j − ρi−1 j − ρi+1 j − ρi j−1− ρi j+1

h2

+
ui+1 j − ui−1 j

2h
λi+1 j − λi−1 j

2h
+

ui j+1− ui j−1

2h
λi j+1− λi j−1

2h
,

F (u)i j =−
ρi+1/2 j (λi+1 j − λi j )− ρi−1/2 j (λi j − λi−1 j )

h2

−
ρi j+1/2(λi j+1− λi j )− ρi j−1/2(λi j − λi j−1)

h2 + (ui j − zi j ),

F (λ)i j =−
ρi+1/2 j (ui+1 j − ui j )− ρi−1/2 j (ui j − ui−1 j )

h2

−
ρi j+1/2(ui j+1− ui j )− ρi j−1/2(ui j − ui j−1)

h2 − fi j ,

where the half-point values of ρ are calculated using the average of the two neigh-
boring values. Similarly, we obtain the discretization of the H 1 formulation (8):

F (ρ)i j = β
4ρi j−ρi−1 j−ρi+1 j−ρi j−1−ρi j+1

h2

+
ui+1 j−ui−1 j

2h
λi+1 j−λi−1 j

2h
+

ui j+1−ui j−1

2h
λi j+1−λi j−1

2h

+
1
2

((ui+1 j−ui−1 j

2h
−∇x z|i j

)2
+

(ui j+1−ui j−1

2h
−∇yz|i j

)2
)
,

F (u)i j =−
ρi+1/2 j (λi+1 j−λi j )−ρi−1/2 j (λi j−λi−1 j )

h2

−
ρi j+1/2(λi j+1−λi j )−ρi j−1/2(λi j−λi j−1)

h2

+
ρi+1 j∇x z|i+1 j−ρi−1 j∇x z|i−1 j

2h
+
ρi j+1∇yz|i j+1−ρi j−1∇yz|i j−1

2h
+ fi j ,

F (λ)i j =−
ρi+1/2 j (ui+1 j−ui j )−ρi−1/2 j (ui j−ui−1 j )

h2

−
ρi j+1/2(ui j+1−ui j )−ρi j−1/2(ui j−ui j−1)

h2 − fi j .

To form an algebraic system of nonlinear equations from the finite difference
equations, we need to order the unknowns and the corresponding functions. The
ordering of the unknowns and the equations is not a big deal at all for accuracy
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concerns, but is critically important for the linear Jacobian solver and for the
preconditioning techniques. For example, if we order the unknowns variable by
variable — that is, first ρ values for all mesh points, and second u values for all
mesh points, and last λ values for all mesh points, then the Jacobian matrix takes
the following block form:

J =



∂F (ρ)

∂ρ

∂F (ρ)

∂u
∂F (ρ)

∂λ

∂F (u)

∂ρ

∂F (u)

∂u
∂F (u)

∂λ

∂F (λ)

∂ρ

∂F (λ)

∂u
∂F (λ)

∂λ


=



∂F (ρ)

∂ρ

∂F (ρ)

∂u
∂F (ρ)

∂λ

∂F (u)

∂ρ
I

∂F (u)

∂u

∂F (λ)

∂ρ

∂F (λ)

∂u
0


3n×3n

. (23)

Many interesting algorithms are designed based on the particular block structure of
(23), and many algorithms fail to work also because of the structure of (23).

We study the performance of the proposed algorithm using four test cases.
The first test case is from [14], and the purpose is to verify the accuracy of the
algorithm. To understand the scalability of the algorithm, we introduce three more
test problems.

To test the robustness of the algorithms, we add some noise to the observation
data as

zδ = z+ δ rand (x, y) (24)

or

∇zδ =∇z+ δ (rand (x, y), rand (x, y))T , (25)

depending on whether the formulation is L2 or H 1. Here rand (x, y) is a random
scalar function available in the C library, and δ is responsible for the magnitude
of the noise. Some results with different levels of noise (δ = 0%, 1% and 10%)
will be presented. Since u needs to satisfy the elliptic equation, we assume that
u has some continuity and differentiability, as does ∇u. Therefore, we smooth u
in L2 formulation or ∇u in H 1 formulation before we start the Newton iteration.
This is necessary especially when the noise level is high. In particular, when the
noise level is 10%, we replace the value of u or ∇u by the weighted average value
around it. And the weight function is defined as

1
16

1
8

1
16

↘ ↓ ↙
1
8 →

1
4 ←

1
8

↗ ↑ ↖
1
16

1
8

1
16

.
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We repeat this operation 3 times in all of our tests when δ = 10%. No smoothing is
applied when δ is smaller than 10%.

To measure the accuracy of the numerical solution, we assume that the exact
solution of the test cases are known, and erroru and errorρ are the normalized
discrete L2 norms of the errors defined by

erroru =

√∑
(ui j − uexact

i j )2
hx h y

lx ly
and errorρ =

√∑
(ρi j − ρ

exact
i j )2

hx h y

lx ly
,

where hx and h y are mesh sizes along x and y directions, and lx and ly are sizes of
the computational domain along the x and y directions, respectively.

In Newton’s method, we use the initial guess

U0 = (ρ
(0), u(0), λ(0))T = (1, z, 0)T .

For the L2 formulation, z is the observation value. For the H 1 formulation, z is not
directly available, but is obtained as a line integral of ∇x z or ∇yz along the x or y
direction from one of the boundary points. In our test, at the point (xi , y j ),

z(xi , y j )= z(x0, y j )+

i∑
l=1

(∇x z)|xl hx

if we take the integral along the x direction, or

z(xi , y j )= z(xi , y0)+

j∑
l=1

(∇yz)|yl h y

if we take the integral along the y direction.
In the test runs, we stop the Newton iteration if the following condition is satisfied

‖F(Uk)‖ ≤max
{
10−6
‖F(U0)‖, 10−10} . (26)

For the Jacobian solver, the GMRES iteration is stopped if

‖F(Uk)+ J (Uk)sk‖ ≤max
{
10−6
‖F(Uk)‖, 10−10} . (27)

All the subdomain problems are solved with LU factorization. We implement the
proposed algorithms using the Portable Extensible Toolkit for Scientific Compu-
tation (PETSc), developed at Argonne National Laboratory. Note that the timing
results are obtained on a cluster of Linux PCs. The timings are just for references
and should not be taken too seriously since the network of the PC cluster is slow
and is also shared by many users.
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3.1. Test cases. We next describe four test cases with the observation function

z(x, y)= sin(πx) sin(πy),

and several different ρ functions and on several different computational domains.
Test 1. In the first test we take � = (0, 1) × (0, 1), and the right side f is

constructed such that
ρ = 1+ 6x2 y(1− y)

is the elliptic coefficient to be identified. Note that this function does not satisfy
∂ρ/∂n = 0 on the north boundary (y = 1), the south boundary (y = 0) and the east
boundary (x = 1) of the domain.

Test 2. In the second test we take � = (0, 1)× (0, 1) and the right side f is
chosen so that the elliptic coefficient to be identified is

ρ = 1+ 100(xy(1− x)(1− y))2.

Note that this function satisfies ∂ρ/∂n = 0 on the entire boundary of the domain.
Test 3. In the third test we take a domain �= (0, lx)× (0, ly) and the right side

f is chosen so that the elliptic coefficient to be identified is

ρ = 1+ (−1)li+l j 6
[
(x − li )(y− l j )(1− (x − li ))(1− (y− l j ))

]2
when (x, y) ∈ [li , li + 1)× [l j , l j + 1), li and l j are integers less than lx and ly ,
respectively.

We mention that ρ is a smooth function. Several different values of lx and ly are
tested and the details are given where the test results are shown.

Test 4. In the fourth test we take a domain � = (0, lx)× (0, ly) and the right
side f is chosen so that the elliptic coefficient to be identified is

ρ =

{
1 for x − li ≤ 1/2,
2 for x − li > 1/2,

(28)

when li is even, x ∈ [li , li + 1) and

ρ =

{
2 for x − li ≤ 1/2,
1 for x − li > 1/2,

(29)

when li is odd, x ∈ [li , li + 1), and li is an integer less than lx . This is a piecewise
constant function defined on the computational domain and this function has several
jumps along the x-direction.

Our discretization scheme and the solution algorithms do not require any a priori
knowledge of the locations of the jumps. We mention that there are several tech-
niques that are designed specifically for problems with discontinuous coefficients
[6; 7; 14].
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3.2. Results and discussions of numerical experiments.

3.2.1. Test 1. In this test, we solve the Jacobian systems using a global Gaussian
elimination, therefore the domain decomposition preconditioned iterative solver
introduced in the previous section plays no role at all. As mentioned earlier, this
equation does not satisfy the boundary condition

∂ρ

∂n
= 0.

We see from Figure 1 that the numerical solution has some visible difference from
the exact solution. To satisfy the above boundary condition, the numerical solution
has some distortion on the north, south and east boundaries. This is more obvious
near the two corners. Nevertheless, the results match that of [14]. When the
noise level is high, the effect of ∂ρ/∂n = 0 is larger near the corners for the L2

formulation of the inverse problem. The H 1 formulation is less sensitive to this
boundary condition.

From Table 1, we see that our method converges well. It takes about 3–5 Newton
iterations to converge. For a given level of noise, the results are more accurate when
we choose a finer mesh. When the noise level is high, we need larger β values for
the Newton to converge. Comparing the solution plots in Figure 1, we see that the
H 1 formulation generally gives us better solutions than the L2 formulation, but
somehow it takes slightly more Newton iterations to converge than the L2 case.
This is also true for our other test problems.

3.2.2. Test 2. The exact and numerical solutions are shown in Figure 2. It can be
seen that the numerical solutions are quite accurate (Table 2) in the whole domain
since the equation satisfies the Neumann boundary condition ∂ρ/∂n = 0 on all its
boundary. This is different from Test 1 where the accuracy is low near the corners.
We tested three meshes 41×41, 81×81, and 161×161. When the Jacobian systems
are solved exactly with a global Gaussian elimination, the total number of Newton
iterations ranges from 3–6, and the iteration numbers are not sensitive to the level
of noise.

We next look into the performance of the Newton–Krylov–Schwarz algorithm,
in particular, we would like to know how the convergence depends on the mesh
size, the number of subdomains, and the overlapping size. First, we study the
processor-scalability. We solve the problem on a 321× 321 mesh using different
numbers of processors. We show the results, in terms of iteration numbers and the
computing time totals, in Table 3. The number of Newton iterations does not change
when we change the number of processors or the overlapping size. If we fix the
number of subdomains or the number of processors, as we increase the overlapping
size, the number of GMRES iterations decreases. The computing time decreases
to a point and then begins to increase. This suggests that an optimal overlapping
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Figure 1. Test 1. Top: surface plot of the exact solution ρ. Bottom
six pictures are numerical solutions with δ = 0%, δ = 1% and
δ = 10%. Left: L2 formulation; right: H 1 formulation.
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Figure 2. Test 2. Top: surface plot of exact solution ρ. Bottom six
pictures are numerical solutions with δ= 0%, δ= 1% and δ= 10%.
Left: L2 formulation; right: H 1 formulation.
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erroru errorρ Newton

L2 formulation, 41× 41 mesh

β = 10−6, δ = 0 0.000535 0.042644 3
β = 10−5, δ = 1% 0.002032 0.073478 4
β = 10−4, δ = 10% 0.009951 0.143455 4

L2 formulation, 81× 81 mesh

β = 10−6, δ = 0 0.000455 0.034766 3
β = 10−5, δ = 1% 0.001759 0.062192 4
β = 10−4, δ = 10% 0.007615 0.119419 4

L2 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000424 0.031326 3
β = 10−5, δ = 1% 0.001683 0.058537 4
β = 10−4, δ = 10% 0.006975 0.113078 4

H 1 formulation, 41× 41 mesh

β = 10−5, δ = 0 0.000277 0.020434 5
β = 10−5, δ = 1% 0.000302 0.020677 5
β = 10−4, δ = 10% 0.006932 0.036644 5

H 1 formulation, 81× 81 mesh

β = 10−5, δ = 0 0.000083 0.010343 4
β = 10−5, δ = 1% 0.000103 0.010697 4
β = 10−4, δ = 10% 0.001959 0.021829 4

H 1 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000018 0.003760 5
β = 10−5, δ = 1% 0.000039 0.007377 4
β = 10−4, δ = 10% 0.000496 0.017599 5

Table 1. Test 1. Errors and number of Newton iterations for three
meshes with three levels of noise in L2 and H 1 formulations.

size exists if the goal is to minimize the total computing time when the number of
processors is not changed. On the fixed mesh, and with a fixed overlapping size, the
number of GMRES iterations increases as we use more processors. This is expected
since this is a single-level algorithm. Second, we check the h-scalability of our
algorithm. Here, we increase the mesh size for the test problem and the number of
processors at the same ratio in order for each processor to have a fixed number of
mesh points. Table 4 shows the results with different overlapping sizes for np= 4,
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erroru errorρ Newton

L2 formulation, 41× 41 mesh

β = 10−6, δ = 0 0.000078 0.003163 3
β = 10−5, δ = 1% 0.000765 0.010723 3
β = 10−4, δ = 10% 0.008222 0.038667 3

L2 formulation, 81× 81 mesh

β = 10−6, δ = 0 0.000073 0.003177 3
β = 10−5, δ = 1% 0.000532 0.010070 3
β = 10−4, δ = 10% 0.003849 0.029056 3

L2 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000072 0.003203 3
β = 10−5, δ = 1% 0.000504 0.009908 3
β = 10−5, δ = 10% 0.002064 0.026190 4

H 1 formulation, 41× 41 mesh

β = 10−5, δ = 0 0.000385 0.001559 5
β = 10−5, δ = 1% 0.000377 0.005097 6
β = 10−4, δ = 10% 0.006927 0.020951 4

H 1 formulation, 81× 81 mesh

β = 10−5, δ = 0 0.000089 0.000386 4
β = 10−5, δ = 1% 0.000108 0.003493 4
β = 10−4, δ = 10% 0.001907 0.009897 4

H 1 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000022 0.000098 4
β = 10−5, δ = 1% 0.000029 0.002355 4
β = 10−4, δ = 10% 0.000460 0.006295 4

Table 2. Test 2. Errors and number of Newton iterations for three
meshes with three levels of noise in L2 and H 1 formulations.

16 and 64. Both the number of Newton iterations and the number of GMRES
iterations are almost constants. The computing time is close to be quadrupled when
the size of the problem is quadrupled with np fixed.

3.2.3. Test 3. For forward elliptic problems, one can always obtain a large test
problem (with a large number of degree of freedoms) by refining the mesh, but for
inverse elliptic problems, sometimes it does not make sense to use a very fine mesh
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np Newton ovlp= 1 ovlp= 2 ovlp= 4 ovlp= 8 ovlp= 16

L2 formulation, β = 10−6, δ = 0%

4 3 45(134.68) 33(124.00) 19(111.96) 13(111.61) 8(118.08)
16 3 66(28.17) 46(24.35) 34(23.18) 22(24.73) 14(32.06)
64 3 128(8.73) 92(7.36) 63(6.64) 42(7.20) 25(9.17)

L2 formulation, β = 10−5, δ = 1%

4 3 43(131.74) 26(115.07) 19(111.84) 14(111.91) 9(118.45)
16 3 61(26.86) 45(23.89) 31(22.37) 23(24.55) 15(32.46)
64 3 134(8.99) 94(7.44) 62(6.59) 45(7.41) 25(9.74)

L2 formulation, β = 10−5, δ = 10%

4 4 49(184.48) 36(168.30) 23(154.74) 16(152.48) 10(159.11)
16 4 72(39.41) 54(34.92) 40(32.98) 25(34.12) 19(44.94)
64 4 179(15.21) 118(11.82) 79(10.30) 54(10.99) 35(14.75)

H 1 formulation, β = 10−5, δ = 0%

4 5 52(233.36) 34(202.76) 21(184.87) 14(182.29) 12(194.77)
16 4 96(47.03) 63(37.67) 41(32.62) 26(33.54) 17(43.48)
64 4 171(14.44) 110(11.07) 71(9.50) 46(9.81) 25(12.77)

H 1 formulation, β = 10−5, δ = 1%

4 5 48(227.45) 33(200.85) 20(184.23) 14(182.46) 10(194.16)
16 4 75(39.69) 55(34.75) 30(28.65) 22(31.67) 15(42.30)
64 4 142(11.60) 89(9.45) 53(7.79) 40(9.14) 23(12.28)

H 1 formulation, β = 10−4, δ = 10%

4 4 61(199.28) 43(176.87) 26(156.70) 18(151.73) 12(159.66)
16 4 89(44.54) 60(36.26) 45(34.41) 26(33.77) 18(43.76)
64 4 141(12.23) 104(10.58) 66(9.01) 46(9.82) 26(12.94)

Table 3. Test 2. Processor scalability in L2 and H 1 formulations
on a 321× 321 mesh, with total number of Newton iterations, aver-
age number of GMRES iterations per Newton, and total computing
time in seconds shown in ( ), with different overlapping sizes.

since the accuracy is determined by the mesh size and the level of noise. When the
level of noise is fixed, one may not always obtain a better solution even if a finer
mesh is used. To test the scalability of the proposed algorithm and software, we
construct larger test problems by increasing the computational domain.
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In this test case the solution has multiple peaks, and the exact and numerical
solutions are shown in Figure 3. We observe that the errors are kept at the same
level when we change the size of the computational domain for different numbers
of processors. The H 1 results are a little better than the L2 results. According to
the results shown in Table 5 we see that the number of Newton iterations is almost a
constant for different numbers of processors, but the number of GMRES iterations
slightly increases, which is expected for a single-level method. In some cases when
the computational domain is very large and the noise level is high, Newton fails to
converge unless we use a larger β.

3.2.4. Test 4. This problem is also defined on a large domain as in Test 3. The
difference is that ρ is a discontinuous function with several jumps in the x-direction
as shown in Figure 4. The surface plots of the computational results of ρ in L2 and
H 1 formulation are shown in Figure 4. The results obtained with the L2 formulation
are continuous and quite smooth even if the actual solutions should have jumps. The
H 1 formulation leads to piecewise continuous solutions and keeps the discontinuity
much better than the L2 formulation. As for the scalability of the algorithm, Table
6 shows that the performance is very similar to that of Test 3.

4. Concluding remarks

A parallel one-level Newton–Krylov–Schwarz method was investigated for solving
the nonlinear system of algebraic equations arising from the fully coupled finite
difference discretization of inverse elliptic problems in both the L2 and H 1 for-
mulations. We tested the algorithms for problems with smooth solutions and for
problems with discontinuous solutions. Acceptable solutions were obtained even
when the level of noise is quite large. The mesh and processor scalabilities of the
algorithm were studied for meshes up to 641× 641 in two dimensions and with
up to 64 processors. The iterative method was optimally scalable with respect to
the mesh size. The number of iterations increases as the number of processors
increases, which was expected for the one-level method. The algorithmic and
software framework is applicable to a wide range of inverse problems, and our
future research includes the extension of the algorithms to three dimensions, the
study of other regularization techniques and their impact on the linear and nonlinear
solvers, and the development of multilevel versions of the algorithm which will be
needed for parallel computers with a large number of processors.

Appendix

In this section, we prove that if we choose the regularization term

N (ρ)=
1
2

∫
�

|∇ρ|2 dx,
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Figure 3. Test 3 on computational domain (0, 4)× (0, 4). Top:
surface plot of the exact solution ρ. Bottom six pictures are nu-
merical solutions with δ = 0%, δ = 1% and δ = 10%. Left: L2

formulation; right: H 1 formulation.
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np Newton GMRES Newton GMRES Newton GMRES

81× 81 mesh 161× 161 mesh 321× 321 mesh

L2 formulation, β = 10−6, δ = 0%

4 3 7(2.84) 3 6(18.97) 3 6(142.96)
16 3 14(0.69) 3 14(4.51) 3 14(32.06)
64 3 38(0.32) 3 40(1.16) 3 42(7.21)

L2 formulation, β = 10−5, δ = 1%

4 3 7(2.85) 3 7(19.19) 3 6(143.01)
16 3 18(0.75) 3 17(4.73) 3 15(32.48)
64 3 47(0.38) 3 45(1.24) 3 45(7.41)

L2 formulation, β = 10−4, δ = 10%

4 3 9(2.99) 3 8(19.72) 3 8(146.54)
16 3 24(0.86) 3 23(5.34) 3 22(35.48)
64 3 75(0.54) 3 72(1.69) 3 66(9.38)

H 1 formulation, β = 10−5, δ = 0%

4 4 7(3.61) 4 7(24.77) 4 7(234.55)
16 4 17(0.94) 4 19(4.80) 4 17(43.50)
64 4 44(0.47) 4 47(1.23) 4 46(9.79)

H 1 formulation, β = 10−5, δ = 1%

4 4 8(3.66) 4 7(24.55) 5 7(234.02)
16 4 16(0.93) 4 15(5.89) 4 15(42.30)
64 4 44(0.47) 4 41(1.49) 4 40(9.15)

H 1 formulation, β = 10−4, δ = 10%

4 4 8(3.70) 4 8(25.23) 4 8(190.87)
16 4 17(0.95) 4 17(6.16) 4 18(43.77)
64 4 41(0.45) 4 48(1.66) 4 46(9.82)

Table 4. Test 2. Mesh size scalability in L2 and H 1 formulations,
with total number of Newton iterations, average number of GMRES
iterations per Newton, and total computing time in seconds, shown
in ( ), for different meshes and numbers of processors; ovlp= 1/5
diameter of the subdomain.
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np domain mesh erroru errorρ Newton GMRES

L2 formulation, β = 10−6, δ = 0%
1 (0, 1)× (0, 1) 81× 81 0.000004 0.000177 2 1
4 (0, 2)× (0, 2) 161× 161 0.000004 0.000190 2 15
16 (0, 4)× (0, 4) 321× 321 0.000004 0.000195 2 31
64 (0, 8)× (0, 8) 641× 641 0.000005 0.000220 2 130

L2 formulation, β = 10−5, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000359 0.004668 3 1
4 (0, 2)× (0, 2) 161× 161 0.000383 0.004655 3 14
16 (0, 4)× (0, 4) 321× 321 0.000381 0.004637 3 30
64 (0, 8)× (0, 8) 641× 641 0.000378 0.004637 3 61

L2 formulation, β = 10−4, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.003209 0.015846 3 1
4 (0, 2)× (0, 2) 161× 161 0.002886 0.017710 3 12
16 (0, 4)× (0, 4) 321× 321 0.002876 0.014799 3 24
64 (0, 8)× (0, 8) 641× 641 0.002844 0.014890 3 43

H 1 formulation, β = 10−5, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000066 0.000263 4 1
4 (0, 2)× (0, 2) 161× 161 0.000064 0.000260 5 30
16 (0, 4)× (0, 4) 321× 321 0.000065 0.000263 5 58
64 (0, 8)× (0, 8) 641× 641 0.000071 0.000278 5 123

H 1 formulation, β = 10−4, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000085 0.001706 4 1
4 (0, 2)× (0, 2) 161× 161 0.000067 0.001624 4 18
16 (0, 4)× (0, 4) 321× 321 0.000078 0.001569 4 42
64 (0, 8)× (0, 8) 641× 641 0.000091 0.001550 4 76

H 1 formulation, β = 10−3, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.001894 0.006133 3 1
4 (0, 2)× (0, 2) 161× 161 0.001752 0.005660 4 14
16 (0, 4)× (0, 4) 321× 321 0.001907 0.005773 4 26
64 (0, 8)× (0, 8) 641× 641 0.001933 0.004450 4 41∗

Table 5. Test 3 with ovlp= 16. ∗Bottom line: β = 10−2.



22 XIAO-CHUAN CAI, SI LIU AND JUN ZOU

np domain mesh erroru errorρ Newton GMRES

L2 formulation, β = 10−6, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000879 0.142454 3 1
4 (0, 2)× (0, 2) 161× 161 0.000879 0.142054 3 7
16 (0, 4)× (0, 4) 321× 321 0.000863 0.142271 3 21
64 (0, 8)× (0, 8) 641× 641 0.000861 0.142213 3 64

L2 formulation, β = 10−5, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.002342 0.175353 4 1
4 (0, 2)× (0, 2) 161× 161 0.002313 0.174540 4 7
16 (0, 4)× (0, 4) 321× 321 0.002280 0.174360 4 17
64 (0, 8)× (0, 8) 641× 641 0.002265 0.174064 4 50

L2 formulation, β = 10−4, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.006600 0.220451 4 1
4 (0, 2)× (0, 2) 161× 161 0.006522 0.219846 4 8
16 (0, 4)× (0, 4) 321× 321 0.006148 0.217108 4 19
64 (0, 8)× (0, 8) 641× 641 0.005972 0.215940 4 42

H 1 formulation, β = 10−5, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000093 0.078365 4 1
4 (0, 2)× (0, 2) 161× 161 0.000093 0.078148 6 29
16 (0, 4)× (0, 4) 321× 321 0.000093 0.078040 6 56
64 (0, 8)× (0, 8) 641× 641 0.000093 0.077985 6 95

H 1 formulation, β = 10−4, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000301 0.106186 4 1
4 (0, 2)× (0, 2) 161× 161 0.000298 0.105925 4 29
16 (0, 4)× (0, 4) 321× 321 0.000299 0.105777 4 38
64 (0, 8)× (0, 8) 641× 641 0.000301 0.105717 4 64

H 1 formulation, β = 10−3, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.002268 0.143252 4 1
4 (0, 2)× (0, 2) 161× 161 0.002167 0.142860 4 15
16 (0, 4)× (0, 4) 321× 321 0.002293 0.142457 4 28
64 (0, 8)× (0, 8) 641× 641 0.002334 0.142601 5 55

Table 6. Test 4 with ovlp= 16.
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Figure 4. Test 4 on computational domain (0, 4)× (0, 4). Top:
surface plot of the exact solution ρ. Bottom six pictures are nu-
merical solutions with δ = 0%, δ = 1% and δ = 10%. Left: L2

formulation; right: H 1 formulation.
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as in (4) and (5), then ρ automatically satisfies the zero Neumann boundary condition

∂ρ

∂n
= 0.

To see this, we take the derivative of L in (4) with respect to ρ at any direction
p ∈ H 1(�) to obtain

(∇ρL)p = β
∫
�

∇ρ · ∇ p dx +
∫
�

p∇u · ∇λ dx = 0 . (A.1)

Applying the integration by parts to the first term in (A.1),∫
�

∇ρ · ∇ p dx =−
∫
�

1ρ p dx +
∫
∂�

∂ρ

∂n
p ds ,

we obtain ∫
�

(−β1ρ+∇u · ∇λ) p dx +β
∫
∂�

∂ρ

∂n
p ds = 0

for any p. This implies that, if β 6= 0,

∂ρ

∂n
= 0

on ∂�. The same result can be obtained for the H 1 formulation (4).
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