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A higher-order Godunov method for the radiation subsystem of radiation hydro-
dynamics is presented. A key ingredient of the method is the direct coupling of
stiff source term effects to the hyperbolic structure of the system of conservation
laws; it is composed of a predictor step that is based on Duhamel’s principle and
a corrector step that is based on Picard iteration. The method is second-order
accurate in both time and space, unsplit, asymptotically preserving, and uniformly
well behaved from the photon free streaming (hyperbolic) limit through the weak
equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion
(hyperbolic) limit. Numerical tests demonstrate second-order convergence across
various parameter regimes.

1. Introduction

Radiation hydrodynamics is a fluid description of matter (plasma) that absorbs
and emits electromagnetic radiation and in so doing modifies dynamical behavior.
The coupling between matter and radiation is significant in many phenomena
related to astrophysics and plasma physics, where radiation comprises a major
fraction of the internal energy and momentum and provides the dominant transport
mechanism. Radiation hydrodynamics governs the physics of radiation-driven
outflows, supernovae, accretion disks, and inertial confinement fusion [Castor
2004; Mihalas and Mihalas 1984]. Such physics is described mathematically by
a nonlinear system of conservation laws that is obtained by taking moments of
the Boltzmann and photon transport equations. A key difficulty is choosing the
frame of reference in which to take the moments of the photon transport equation.
In the comoving and mixed frame approaches, one captures the matter/radiation
coupling by adding relativistic source terms correct to O(u/c) to the right side of
the conservation laws, where u is the material flow speed and c is the speed of
light. These source terms are stiff because of the variation in time/length scales
associated with such problems [Mihalas and Klein 1982]. This stiffness causes
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numerical difficulties and makes conventional methods such as operator splitting
and method of lines break down [LeVeque 1992; 2002].

Previous research in numerically solving radiation hydrodynamical problems
was carried out by Caster [1972], Pomraning [1973], Mihalas and Klein [1982],
and Mihalas and Mihalas [1984]. There are a variety of algorithms for radiation hy-
drodynamics. One of the simplest approaches was developed by Stone et al. [1992]
and implemented in the ZEUS code, which was based on operator splitting and
Crank–Nicholson finite differencing. Since then, higher-order Godunov methods
have emerged as a valuable technique for solving hyperbolic conservation laws
(for example, hydrodynamics), particularly when shock capturing and adaptive
mesh refinement is important [Stone et al. 2008]. However, developing upwind
differencing methods for radiation hydrodynamics is a difficult mathematical and
computational task. In many cases, Godunov methods for radiation hydrodynamics
either:

(i) neglect the heterogeneity of weak/strong coupling and solve the system of
equations in an extreme limit [Dai and Woodward 1998; 2000];

(ii) are based on a manufactured limit and solve a new system of equations that
attempts to model the full system [Jin and Levermore 1996; Buet and Despres
2006]; or

(iii) use a variation on flux limited diffusion [Levermore and Pomraning 1981;
Gonzalez et al. 2007].

All of these approaches fail to treat the full generality of the problem. For exam-
ple, Balsara [1999] proposed a Riemann solver for the full system of equations.
However, as pointed out by Lowrie and Morel [2001], Balsara’s method failed
to maintain coupling between radiation and matter. Moreover, Lowrie and Morel
were critical of the likelihood of developing a Godunov method for full radiation
hydrodynamics.

In radiation hydrodynamics, there are three important dynamical scales and each
scale is associated with either the material flow (speed of sound), radiation flow
(speed of light), or source terms. When the matter-radiation coupling is strong, the
source terms define the fastest scale. However, when the matter-radiation coupling
is weak, the source terms define the slowest scale. Given such variation, one aims
for a scheme that treats the stiff source terms implicitly. Following [Miniati and
Colella 2007], this paper presents a method that is a higher-order modified Godunov
scheme that directly couples stiff source term effects to the hyperbolic structure of
the system of conservation laws; it is composed of a predictor step that is based
on Duhamel’s principle and a corrector step that is based on Picard iteration. The
method is explicit on the fastest hyperbolic scale (radiation flow) but is unsplit and



A HIGHER-ORDER GODUNOV METHOD FOR RADIATION HYDRODYNAMICS 137

fully couples matter and radiation with no approximation made to the full system
of equations for radiation hydrodynamics.

A challenge for the modified Godunov method is its use of explicit time differ-
encing when there is a large range in the time scales associated with the problem,
c/a∞ � 1, where a∞ is the reference material sound speed. One could have
built a fully implicit method that advanced time according to the material flow
scale, but a fully implicit approach was not pursued because such methods often
have difficulties associated with conditioning, are expensive because of matrix
manipulation and inversion, and are usually built into central difference schemes
rather than higher-order Godunov methods. An explicit method may even out
perform an implicit method if one considers applications that have flows where
c/a∞ . 10. A modified Godunov method that is explicit on the fastest hyperbolic
scale (radiation flow) as well as a hybrid method that incorporates a backward Euler
upwinding scheme for the radiation components and the modified Godunov scheme
for the material components are under construction for full radiation hydrodynamics.
A goal of future research is to directly compare these two methods in various limits
for different values of c/a∞.

2. Radiation hydrodynamics

The full system of equations for radiation hydrodynamics in the Eulerian frame that
is correct to O(1/C) is

∂ρ

∂t
+∇·(m)= 0, (1)

∂m
∂t
+∇·

(m ⊗ m
ρ

)
+∇ p =−P

[
−σt

(
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uEr+u·Pr

C

)
+σa

u
C
(T 4
−Er )

]
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∂t
+∇·

(
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ρ
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σa(T 4

−Er )+(σa−σs)
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·

(
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C
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, (3)

∂Er

∂t
+C∇·Fr = C

[
σa(T 4

−Er )+(σa−σs)
u
C
·

(
Fr−

uEr+u·Pr

C

)]
, (4)

∂Fr

∂t
+C∇·Pr = C

[
−σt

(
Fr−

uEr+u·Pr

C

)
+σa

u
C
(T 4
−Er )

]
, (5)

Pr = fEr (closure relation). (6)

For the material quantities, ρ is density, m is momentum, p is pressure, E is
total energy density, and T is temperature. For the radiative quantities, Er is energy
density, Fr is flux, Pr is pressure, and f is the variable tensor Eddington factor.
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In the source terms, σa is the absorption cross section, σs is the scattering cross
section, and σt = σa + σs is the total cross section.

Following [Lowrie et al. 1999; Lowrie and Morel 2001], the system of equations
above has been nondimensionalized with respect to the material flow scale so that
one can compare hydrodynamical and radiative effects as well as identify terms
that are O(u/c). This scaling gives two important parameters:

C= c/a∞, P=
ar T 4
∞

ρ∞a2
∞

.

C measures relativistic effects, while P measures how radiation affects material
dynamics and is proportional to the equilibrium radiation pressure over material
pressure. ar = (8π5k4)/(15c3h3) is a radiation constant, T∞ is the reference material
temperature, and ρ∞ is the reference material density.

For this system of equations, one has assumed that scattering is isotropic and
coherent in the comoving frame, emission is defined by local thermodynamic
equilibrium (LTE), and that spectral averages for the cross-sections can be employed
(gray approximation). The coupling source terms are given by the modified Mihalas–
Klein description [Lowrie et al. 1999; Lowrie and Morel 2001], which is more
general and more accurate than the original Mihalas–Klein [1982] source terms
because it maintains an important O(1/C2) term that ensures the correct equilibrium
state and relaxation rate to equilibrium.

Before investigating full radiation hydrodynamics, it is useful to examine the
radiation subsystem, which is a simpler system that minimizes complexity while
maintaining the rich hyperbolic-parabolic behavior associated with the stiff source
term conservation laws. This simpler system allows one to develop a reliable and
robust numerical method. Consider Equations (4) and (5) for radiation hydrodynam-
ics in one spatial dimension not affected by transverse flow. If one only considers
radiative effects and holds the material flow stationary such that u→ 0, then the
conservative variables, fluxes, and source terms for the radiation subsystem are
given by

∂Er

∂t
+C

∂Fr

∂x
= Cσa(T 4

− Er ),
∂Fr

∂t
+C f

∂Er

∂x
=−Cσt Fr . (7)

Motivated by the asymptotic analysis of Lowrie et al. [1999] for full radiation
hydrodynamics, one investigates the limiting behavior for this simpler system of
equations. For nonrelativistic flows 1/C= O(ε), where ε� 1. Assume that there
is a moderate amount of radiation in the flow such that P = O(1). Furthermore,
assume that scattering effects are small such that σs/σt = O(ε). Lastly, assume
that the optical depth can be represented as L= `mat/λt = `mat σt , where λt is the
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total mean free path of the photos and `mat = O(1) is the material flow length scale
[Lowrie et al. 1999].

Free streaming limit: σa, σt ∼ O(ε). In this regime, the right side of (7) is neg-
ligible, so that the system is strictly hyperbolic; f → 1 and the Jacobian of the
quasilinear conservation law has eigenvalues ±C:

∂Er

∂t
+C

∂Fr

∂x
= 0,

∂Fr

∂t
+C

∂Er

∂x
= 0, (8)

Weak equilibrium diffusion limit: σa, σt ∼ O(1). One obtains this limit by plug-
ging in σa, σt ∼ O(1), matching terms of like order, and combining the result-
ing equations. From the definition of the equilibrium state, Er = T 4 and Fr =

−(1/σt)∂Pr/∂x . Therefore, the system is parabolic and resembles a diffusion
equation, where f → 1/3:

∂Er

∂t
=

C

3σt

∂2 Er

∂x2 , Fr =−
1

3σt

∂Er

∂x
. (9)

Strong equilibrium diffusion limit: σa, σt ∼ O(1/ε). One obtains this limit by
plugging in σa, σt ∼ O(1/ε) and following the steps outlined for the weak equilib-
rium diffusion limit. One can consider the system to be hyperbolic, where f → 1/3
and the Jacobian of the quasilinear conservation law has eigenvalues ±ε:

∂Er

∂t
= 0, Fr = 0. (10)

Lowrie et al. [1999] investigated an additional limit for full radiation hydro-
dynamics, the isothermal regime. This limit has some dynamical properties in
common with the weak equilibrium diffusion limit, but its defining characteristic is
that the material temperature T (x, t) is constant. When considering the radiation
subsystem, there is little difference between the weak equilibrium diffusion and
isothermal limits because the material quantities, including the material temperature
T , do not evolve. T enters the radiation subsystem as a parameter rather than a
dynamical quantity.

3. Higher-order Godunov method

In one spatial dimension, systems of conservation laws with source terms have the
form

∂U
∂t
+
∂F(U )
∂x

= S(U ), (11)
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where U : R×R→ Rn is an n-dimensional vector of conserved quantities. For the
radiation subsystem,

U =
(

Er

Fr

)
, F(U )=

(
CFr

C f Er

)
, S(U )=

(
CSE

CSF

)
=

(
Cσa(T 4

− Er )

−Cσt Fr

)
.

The quasilinear form of this system of conservation laws is

∂U
∂t
+ A

∂U
∂x
= S(U ), A =

∂F
∂U
=

(
0 C

C f 0

)
. (12)

A has eigenvalues λ = ± f 1/2C and it also has right eigenvectors R (stored as
columns) and left eigenvectors L (stored as rows):

R =
(

1 1
− f 1/2 f 1/2

)
, L =

(
1
2 −

1
2 f −1/2

1
2

1
2 f −1/2

)
. (13)

Godunov’s method obtains solutions to systems of conservation laws by using
characteristic information within the framework of a conservative method:

U n+1
i =U n

i −
1t
1x

(Fi+1/2− Fi−1/2)+1t S(U n
i ). (14)

Numerical fluxes Fi±1/2 are obtained by solving the Riemann problem at the cell
interfaces with left/right states to get U n±1/2

i−1/2 and computing

Fi±1/2 = F
(
U n+1/2

i±1/2

)
,

where i represents the location of a cell center, i ± 1/2 represents the location cell
faces to the right and left of i , and superscripts represent the time discretization.
An HLLE (Harten–Lax–van Leer–Einfeldt) solver, used in this work, or any other
approximate Riemann solver may be employed because the Jacobian ∂F/∂U for
the radiation subsystem is a constant valued matrix and by definition a Roe matrix
[LeVeque 1992; 2002; Roe 1981]. This property also implies that one does not
need to transform the system into primitive variables (∇U W ). The power of the
method presented in this paper is that the spatial reconstruction, eigenanalysis, and
cell-centered updating directly plug into conventional Godunov machinery.

3.1. Predictor step. One computes the flux divergence (∇ · F)n+1/2 by using the
quasilinear form of the system of conservation laws and the evolution along La-
grangian trajectories:

DU
Dt
+ AL ∂U

∂x
= S(U ), AL

= A− uI,
DU
Dt
=
∂U
∂t
+

(
u
∂

∂x

)
U. (15)

From the quasilinear form, one derives a system that includes (at least locally in
time and state space) the effects of the stiff source terms on the hyperbolic structure.
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Following [Miniati and Colella 2007; Trebotich et al. 2005], one applies Duhamel’s
principle to the system of conservation laws, thus giving

DU eff

Dt
= IṠn

(η)
(
−AL ∂U

∂x
+ Sn

)
, (16)

where IṠn
is a propagation operator that projects the dynamics of the stiff source

terms onto the hyperbolic structure and Ṡn = ∇U S|Un . The subscript n designates
time t = tn . Since one is considering a first-order accurate predictor step in a
second-order accurate predictor-corrector method, one chooses η =1t/2 and the
effective conservation law is

DU
Dt
+IṠn

(1t/2)AL ∂U
∂x
= IṠn

(1t/2)Sn

which implies
∂U
∂t
+ Aeff

∂U
∂x
= IṠn

(1t/2)Sn, (17)

where Aeff = IṠn
(1t/2)AL

+ uI . In order to compute IṠn
, one first computes Ṡn .

Since C, σa , and σt are constant and one assumes that ∂T/∂Er , ∂T/∂Fr = 0:

Ṡn =

(
−Cσa 0

0 −Cσt

)
. (18)

IṠn
is derived from Duhamel’s principle and is given by

IṠn
(1t/2)=

1
1t/2

∫ 1t/2

0
eτ Ṡn dτ =

(
α 0
0 β

)
, (19)

with

α =
1− e−Cσa1t/2

Cσa1t/2
, β =

1− e−Cσt1t/2

Cσt1t/2
. (20)

Before applying IṠn
to AL , it is important to understand that moving-mesh

methods can be accommodated in nonrelativistic descriptions of radiation hydro-
dynamics whenever an Eulerian frame treatment is employed. These methods do
not require transformation to the comoving frame [Lowrie and Morel 2001]. Since
the nondimensionalization is associated with the hydrodynamic scale, one can use
umesh = u from Lagrangean hydrodynamic methods.

The effects of the stiff source terms on the hyperbolic structure are accounted
for by transforming to a moving-mesh (Lagrangean) frame AL = A− uI , applying
the propagation operator IṠn

to AL , and transforming back to an Eulerian frame
Aeff=IṠn

AL+uI [Miniati and Colella 2007]. However, because only the radiation
subsystem of radiation hydrodynamics is considered umesh = u→ 0. Therefore, the



142 MICHAEL DAVID SEKORA AND JAMES M. STONE

effective Jacobian is given by

Aeff =

(
0 αC

β f C 0

)
, (21)

which has eigenvalues λeff =±(αβ)
1/2 f 1/2C with the limits

σa, σt → 0⇒ α, β→ 1⇒ λeff→± f 1/2C (free streaming),

σa, σt →∞⇒ α, β→ 0⇒ λeff→±ε (strong equilibrium diffusion).
(22)

Aeff has right eigenvectors Reff (stored as columns) and left eigenvectors Leff (stored
as rows):

Reff =

(
1 1

−(β f/α)1/2 (β f/α)1/2

)
, Leff =

(
1
2 −

1
2(α/β f )1/2

1
2

1
2(α/β f )1/2

)
. (23)

3.2. Corrector step. The time discretization for the source term is a single-step,
second-order accurate scheme based on the ideas from [Dutt et al. 2000; Minion
2003; Miniati and Colella 2007]. Given the system of conservation laws, one aims
for a scheme that has an explicit approach for the conservative flux divergence term
∇ ·F and an implicit approach for the stiff source term S(U ). Therefore, one solves
a following collection of ordinary differential equations at each grid point:

dU
dt
= S(U )− (∇ · F)n+1/2, (24)

where the time-centered flux divergence term is taken to be a constant source which
is obtained from the predictor step. Assuming time t = tn , the initial guess for the
solution at the next time step is

Û =U n
+1t (I −1t∇U S(U )|U n )−1(S(U n)− (∇ · F)n+1/2), (25)

where

(I −1t∇U S(U ))=
(

1+1tCσa 0
0 1+1tCσt

)
, (26)

(I −1t∇U S(U ))−1
=

(
(1+1tCσa)

−1 0
0 (1+1tCσt)

−1

)
. (27)

The error ε is defined as the difference between the initial guess and the solution
obtained from the Picard iteration equation, where the initial guess was used as a
starting value:

ε(1t)=U n
+
1t
2

(
S(Û )+ S(U n)

)
−1t (∇ · F)n+1/2

− Û . (28)
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Following [Miniati and Colella 2007], the correction to the initial guess is given by

δ(1t)= (I −1t∇U S(U )|Û )
−1ε(1t). (29)

Therefore, the solution at time t = tn +1t is

U n+1
= Û + δ(1t). (30)

3.3. Stability and algorithmic issues. The higher-order Godunov method satisfies
important conditions that are required for numerical stability [Miniati and Colella
2007]. First, λeff =±(αβ)

1/2 f 1/2C indicates that the subcharacteristic condition
for the characteristic speeds at equilibrium is always satisfied, such that: λ− <
λ−eff < λ

0 < λ+eff < λ
+. This condition is necessary for the stability of the system

and guarantees that the numerical solution tends to the solution of the equilibrium
equation as the relaxation time tends to zero. Second, since the structure of the
equations remains consistent with respect to classic Godunov methods, one expects
the CFL (Courant–Friedrichs–Lewy) condition to apply: max(|λ∗|)(1t/1x)≤ 1,
for ∗ = −, 0,+.

Depending upon how one carries out the spatial reconstruction to solve the
Riemann problem in Godunov’s method, the solution is either first-order accurate
in space (piecewise constant reconstruction) or second-order accurate in space
(piecewise linear reconstruction). Piecewise linear reconstruction was employed in
this paper, where left/right states (with respect to the cell center) are modified to
account for the stiff source term effects [Miniati and Colella 2007; Colella 1990]:

U n
i,± =U n

i +
1t
2

IṠn

(1t
2

)
S(U n

i )+
1
2

(
±I −

1t
1x

An
eff

)
P±(1Ui ),

P±(1Ui )=
∑
±λk>0

(Lk
eff ·1Ui ) · Rk

eff.
(31)

Left/right one-sided slopes as well as cell center slopes are defined for each
cell centered quantity Ui . A van Leer limiter is applied to these slopes to ensure
monotonicity, thus giving the local slope 1Ui .

4. Numerical tests

Four numerical tests spanning a range of mathematical and physical behavior were
carried out to gauge the temporal and spatial accuracy of the higher-order Godunov
method. The numerical solution is compared with the analytic solution where
possible. Otherwise, a self-similar comparison is made. Using piecewise constant
reconstruction for the left/right states, one can show that the Godunov method
reduces to a consistent discretization in each of the limiting cases.
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The optical depth τ is a useful quantity for classifying the limiting behavior of a
system that is driven by radiation hydrodynamics:

τ =

∫ xmax

xmin

σt dx = σt(xmax− xmin), (32)

Optically thin/thick regimes are characterized by

τ < O(1) (optically thin),
τ > O(1) (optically thick).

In optically thin regimes (free streaming limit), radiation and hydrodynamics
decouple such that the resulting dynamics resembles an advection process. In
optically thick regimes (weak/strong equilibrium diffusion limit), radiation and hy-
drodynamics are strongly coupled and the resulting dynamics resembles a diffusion
process.

We use the following definitions for the norms and convergence rates throughout
this paper. Given the numerical solution qr at resolution r and the analytic solution
u, the error at a given point i is: εr

i = qr
i −u. Likewise, given the numerical solution

qr at resolution r and the numerical solution qr+1 at the next finer resolution r + 1
(properly spatially averaged onto the coarser grid), the error resulting from this
self-similar comparison at a given point i is: εr

i = qr
i − qr+1

i . The 1-norm and
max-norm of the error are

L1 =
∑

i

|εr
i |1xr , Lmax =max

i
|εr

i |. (33)

The convergence rate is measured using Richardson extrapolation:

Rn =
ln(Ln(ε

r )/Ln(ε
r+1))

ln(1xr/1xr+1)
. (34)

4.1. Exponential growth/decay to thermal equilibrium. The first numerical test
examines the temporal accuracy of how variables are updated in the corrector step.
Given the radiation subsystem and the initial conditions

E0
r = constant across space, F0

r = 0, T = constant across space,

We have Fr → 0 for all time. Therefore, the radiation subsystem reduces to the
ordinary differential equation

d Er

dt
= Cσa(T 4

− Er ), (35)

which has the analytic solution

Er = T 4
+ (E0

r − T 4)exp(−Cσat). (36)



A HIGHER-ORDER GODUNOV METHOD FOR RADIATION HYDRODYNAMICS 145

For E0
r < T 4 and F0

r = 0, one expects exponential growth in Er until thermal
equilibrium (ER=T 4) is reached. For E0

r >T 4 and F0
r =0, one expects exponential

decay in Er until thermal equilibrium is reached. This numerical test allows one to
examine the order of accuracy of the stiff ODE integrator.

Parameters:

C= 105, σa = 1, σt = 2, f = 1,

Ncell = [32, 64, 128, 256],

xmin = 0, xmax = 1, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for growth: E0
r = 1, F0

r = 0, T = 10,

IC for decay: E0
r = 104, F0

r = 0, T = 1.

From Figure 1, one sees that the numerical solution corresponds with the analytic
solution. In Table 1 on the next page, the errors and convergence rates are see to
be identical for growth and decay. This symmetry illustrates the robustness of the
Godunov method. Furthermore, one finds that the method is well behaved and
obtains the correct solution with second-order accuracy for stiff values of the e
folding time (1t σaC ≥ 1), although with a significantly larger amplitude in the
norm of the error. This result credits the flexibility of the temporal integrator in the
corrector step.

In a similar test, the initial conditions for the radiation energy and flux are zero
and the temperature is defined by some spatially varying profile (a Gaussian pulse).
As time increases, the radiation energy grows into T (x)4. Unless the opacity is
sufficiently high, the radiation energy approaches but does not equal T (x)4. This

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t / σ
a
 C

E
r / 

T4

Figure 1. Exponential growth/decay to thermal equilibrium;
Ncell = 256.
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Ncell L1(E
g
r ) Rate L∞(E

g
r ) Rate L1(Ed

r ) Rate L∞(Ed
r ) Rate

32 1.4E-1 – 1.4E-1 – 1.4E-1 – 1.4E-1 –
64 3.7E-2 2.0 3.7E-2 2.0 3.7E-2 2.0 3.7E-2 2.0

128 9.3E-3 2.0 9.3E-3 2.0 9.3E-3 2.0 9.3E-3 2.0
256 2.3E-3 2.0 2.3E-3 2.0 2.3E-3 2.0 2.3E-3 2.0

Table 1. Errors and convergence rates for exponential growth and
decay in Er to thermal equilibrium. Errors were obtained through
analytic comparison. t = 10−5

= 1/σaC.

result shows that the solution has reached thermal equilibrium and any spatially
varying temperature will diffuse.

4.2. Free streaming limit. In the free streaming limit, τ � O(1) and the radiation
subsystem reduces to (8). If one takes an additional temporal and spatial partial
derivative of the radiation subsystem in the free streaming limit and subtracts the
resulting equations, then one finds two decoupled wave equations that have the
analytic solutions

Er (x, t)= E0(x − f 1/2Ct), Fr (x, t)= F0(x − f 1/2Ct). (37)

Parameters:
C= 105, σa = 10−6, σt = 10−6, f = 1, T = 1,

Ncell = [32, 64, 128, 256],

xmin = 0, xmax = 1, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian pulse: E0
r , F0

r = exp(−(ν(x −µ))2), ν = 20, µ= 0.3,

IC for square pulse: E0
r , F0

r =

{
1 if 0.2< x < 0.4,
0 otherwise.

Since the Gaussian pulse results from smooth initial data, one expects R1 = 2.0.
However, the square wave results from discontinuous initial data and one expects
R1 ' 0.67. This is true for all second-order spatially accurate numerical methods
when applied to an advection-type problem (ut + aux = 0) [LeVeque 1992]. See
Figure 2 for the shape of the pulses in the free streaming limit, and Table 2 for the
corresponding errors and convergence rates.

4.3. Weak equilibrium diffusion limit. In the weak equilibrium diffusion limit,
τ > O(1) and the radiation subsystem reduces to (9). The optical depth suggests
the range of total opacities for which diffusion is observed: if τ = σt `diff > 1,
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Figure 2. Gaussian pulse (left) and square pulse (right) in free
streaming limit; t = 4× 10−6

= 0.4(xmax− xmin)/C.

Gaussian pulse

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

32 3.8E-2 – 3.9E-1 – 3.8E-2 – 3.9E-1 –
64 1.3E-2 1.5 1.8E-1 1.1 1.3E-2 1.5 1.8E-1 1.1

128 3.6E-3 1.9 8.0E-2 1.2 3.6E-3 1.9 8.0E-2 1.2
256 8.6E-4 2.1 3.1E-2 1.4 8.6E-4 2.1 3.1E-2 1.4

square pulse

Ncell L1(Er ) Rate L1(Fr ) Rate

32 6.0E-2 – 6.0E-2 –
64 4.2E-2 0.5 4.2E-2 0.5

128 2.6E-2 0.7 2.6E-2 0.7
256 1.5E-2 0.8 1.5E-2 0.8

Table 2. Errors (obtained through analytic comparison) and con-
vergence rates for Gaussian and square pulses in free streaming
limit; t = 4× 10−6

= 0.4(xmax− xmin)/C.

then one expects diffusive behavior for σt > 1/`diff. Additionally, Equation (9)
sets the time scale tdiff and length scale `diff for diffusion, where tdiff ∼ `

2
diff/D and

D = f C/σt for the radiation subsystem. Given a diffusion problem for a Gaussian
pulse defined over the entire real line (ut−Duxx = 0), the analytic solution is given
by the method of Green’s functions:

u(x, t)=
∫
∞

−∞

f (x̄)G(x, t; x̄, 0)dx̄ =
1

(4Dtν2+ 1)1/2
exp

(
−(ν(x−µ))2

4Dtν2+ 1

)
. (38)
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Parameters:
C= 105, σa = 40, σt = 40, f = 1/3, T 4

= Er ,

Ncell = [320, 640, 1280, 2560],

xmin =−5, xmax = 5, 1x =
xmin− xmax

Ncell
, CFL = 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian pulse:


E0

r = exp
(
−(ν(x −µ))2

)
, ν = 20, µ= 0.3,

F0
r =−

f
σt

∂E0
r

∂x
=

2 f ν2(x−µ)
σt

E0
r

One’s intuition about diffusive processes is based on an infinite domain. So to
minimize boundary effects in the numerical calculation, the computational domain
and number of grid cells were expanded by a factor of 10. In Figure 3, one
observes the diffusive behavior expected for this parameter regime. Additionally, the
numerical solution compares well with the analytic solution for a diffusion process
defined over the entire real line (38). However, diffusive behavior is only a first-order
approximation to more complicated hyperbolic-parabolic dynamics taking place in
radiation hydrodynamics as well as the radiation subsystem. Therefore, one needs
to compare the numerical solution self-similarly. In Table 3, one sees convergence
results for two different time steps: a hyperbolic time step 1th =CFL 1x/( f 1/2C),
and parabolic one, 1tp = CFL (1x)2/(2D). This difference in the convergence
rate results from the temporal accuracy in the numerical solution. In the weak
equilibrium diffusion limit, the Godunov method reduces to a forward-time/centered-
space discretization of the diffusion equation. Such a discretization requires a
parabolic time step 1t ∼ (1x)2 in order to see second-order convergence because
the truncation error of the forward-time/centered-space discretization of the diffusion
equation is O(1t, (1x)2).
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Figure 3. Er (left) and Fr (right) in weak equilibrium diffusion
limit; t = [0.25, 1, 4, 16, 64]× 10−6.
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Hyperbolic time step: 1th = CFL 1x/( f 1/2C)

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

320 8.9E-3 – 4.5E-2 – 1.1E-3 – 3.7E-3 –
640 6.6E-3 0.4 3.4E-2 0.4 8.3E-4 0.4 3.1E-3 0.2

1280 3.4E-3 1.0 1.6E-2 1.1 4.1E-4 1.0 1.4E-3 1.2
2560 1.6E-3 1.1 7.1E-3 1.1 1.9E-4 1.1 6.0E-4 1.2

Parabolic time step: 1tp = CFL (1x)2/(2D)

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

320 1.7E-2 – 8.3E-2 – 2.0E-3 – 7.9E-3 –
640 5.0E-3 1.7 2.5E-2 1.7 6.0E-4 1.7 2.0E-3 2.0

1280 1.1E-3 2.2 5.1E-3 2.3 1.3E-4 2.3 3.6E-4 2.4
2560 2.5E-4 2.1 1.2E-3 2.1 2.8E-5 2.2 7.4E-5 2.3

Table 3. Errors (obtained through analytic comparison) and con-
vergence rates for Er and Fr in the weak equilibrium diffusion
limit, when time is advanced according to each indicated scheme;
t = 4× 10−6.

4.4. Strong equilibrium diffusion limit. In the strong equilibrium diffusion limit,
τ � O(1). From (10), we have Fr → 0 for all time and space while Er = E0

r .

Parameters:

C= 105, σa = 106, σt = 106, f = 1/3, T 4
= Er ,

Ncell = [320, 640, 1280, 2560],

xmin =−5, xmax = 5, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian Pulse:


E0

r = exp
(
−(ν(x −µ))2

)
, ν = 20, µ= 0.3,

F0
r =−

f
σt

∂E0
r

∂x
=

2 f ν2(x−µ)
σt

E0
r

In this test, the numerical solution is held fixed at the initial distribution because
σa, σt are so large. However, if one fixed `diff and scaled time according to

tdiff ≈ `
2

diff/D = ` 2
diffσt/ f C,

then one would observe behavior similar to Figure 3. This test illustrates the
robustness of the Godunov method to handle very stiff source terms. (See Table 4
for errors and convergence rates.)
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Ncell L1(Er ) Rate L∞(Er ) Rate

320 2.2E-3 – 1.8E-2 –
640 5.3E-4 2.1 5.6E-3 1.6

1280 1.3E-4 2.0 1.5E-3 1.9
2560 3.3E-5 2.0 3.8E-4 2.0

Table 4. Errors and convergence rates for Er in the strong equi-
librium diffusion limit. Errors were obtained through self-similar
comparison. t = 4× 10−6.

5. Conclusions and future work

This paper presents a Godunov method for the radiation subsystem of radiation
hydrodynamics that is second-order accurate in both time and space, unsplit, asymp-
totically preserving, and uniformly well behaved. Moreover, the method employs
familiar algorithmic machinery without a significant increase in computational cost.
This work is the starting point for developing a Godunov method for full radiation
hydrodynamics. The ideas in this paper should easily extend to the full system in one
and multiple dimensions using the MUSCL (monotone upstream-centered schemes
for conservation laws) or CTU (corner transport upwind) approaches of [Colella
1990]. A modified Godunov method that is explicit on the fastest hyperbolic scale
(radiation flow) as well as a hybrid method that incorporates a backward Euler
upwinding scheme for the radiation components and the modified Godunov scheme
for the material components are under construction for full radiation hydrodynamics.
A goal of future research is to directly compare these two methods in various limits
for different values of c/a∞. Nevertheless, one expects the modified Godunov
method that is explicit on the fastest hyperbolic scale to exhibit second-order
accuracy for all conservative variables and the hybrid method to exhibit first-
order accuracy in the radiation variables and second-order accuracy in the material
variables. Work is also being conducted on applying short characteristic and Monte
Carlo methods to solve the photon transport equation and obtain the variable tensor
Eddington factors. In the present work, these factors were taken to be constant in
their respective limits.
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