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A modified model of turbulent shear flow of a suspension of small heavy particles
in a fluid is presented. The modification is based on the assumption that in the
flow there are two sorts of particles. For the particles of the first sort the velocity
of free fall a1 is larger than the characteristic velocity fluctuation, for the particles
of the second sort the velocity of free fall a2 is less than the characteristic velocity
of fluctuation.

Introduction

The energy of turbulent vortices (energy of turbulence) in a horizontal or slightly
inclined shear flow is reduced by suspended heavy particles, and this reduction leads
to flow acceleration. The basic model of this seemingly paradoxical phenomenon
was suggested by A.N. Kolmogorov (see [13]), and developed quantitatively by the
present author ([1; 2], see also the book of Monin and Yaglom [15], pp. 412–416).
Later this model, properly modified, was applied to several natural flow phenomena,
in particular to dust storms, both terrestrial and Martian [10], and lower quasi-
homogeneous layers of the ocean [8; 9]. It is important to mention that in the basic
model and its applications it was always assumed that the particles are identical.

Meanwhile, Sir James Lighthill (see his published paper [14]) proposed the
“sandwich model” of tropical hurricanes. A detailed analysis of the observations
(especially of the expedition on the Russian vessel “Priliv”) led Lighthill to the
fundamental assumption that a specific feature of hurricanes is the availability of
an intermediate layer between the sea and air; Lighthill called it “ocean spray”. In
this layer, air is filled by suspended water droplets, formed during the process of
the breaking of surface water waves. Lighthill specially emphasized “the need to
fill the gaps in knowledge about ocean spray at extreme wind speeds”.
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Following the direct suggestion of M.J. Lighthill, the original basic model
was applied by A.J. Chorin, V.M. Prostokishin and the present author [7] to the
flow in ocean spray. The main result obtained in this paper is that indeed the
droplets accelerate the wind, and, if they are large, “ocean spray” plays the role
of a lubrication layer for the wind: that is the reason for the wind acceleration.
However, the calculated increase of wind velocity happened to be less than was
expected.

In the present paper a modified model is proposed for ocean spray. The key point
of the modification is that it is assumed that in ocean spray there are droplets of
different sizes: small and large ones. The most important result, obtained using
this assumption, is that ocean spray is acting not only as a lubrication layer for the
wind, but also as a source of smaller droplets which are suspended by the wind and
which suppress the turbulence in the core of the air flow. Suppression of turbulence
by small droplets in the core of the wind is, according to the modified model, the
basic cause of extreme wind speeds.

The same modified model can be suggested for dust storms and for large fires, in
particular, forest and grass fires. In particular it allows us to understand the nature
of the firestorms observed in great fires (e.g., Chicago 1871, Dresden, 1945, and
Hiroshima, 1945). These topics are considered in the present paper.

1. Kolmogorov’s example

A.N. Kolmogorov, whose ideas shaped the modern theory of turbulence, posed at
the beginning of his course on turbulence at Moscow State University in 1954 the
following question: what would the velocity be at the surface of the river Volga
(in Russia, its parameters are close to those of the Mississippi River), if, by a
miracle, the river, having preserved its geometry, became laminar. It was clear for
the listeners that the velocity at the surface will increase, but to what extent?

Naturally, Kolmogorov modelled the river by a weakly inclined (the slope i is
small, i � 1), spatially homogeneous open channel (Figure 1a). In this simple case
of a laminar flow in a channel the basic Navier-Stokes equations are reduced to a
single equation, and the easily obtainable solution to this equation has the form

u =
ρgi H 2

2η

(2z
H
−

z2

H 2

)
. (1-1)

Here u is the velocity component along the bottom, η the dynamic viscosity of
water, ρ its density, z is the coordinate perpendicular to the bottom, and reckoned
from it, and g is the acceleration of gravity, so the the velocity usurf at the surface
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z = H is equal to

usurf =
ρgi H 2

2η
. (1-2)

Now, substitute into (1.2) realistic values of the parameters: η/ρ = 10−2 cm2/s,
H = 20 m = 2 · 103 cm, i = 10−4, g = 103 cm/s2. We obtain a value usurf =
2 · 107cm/s = 200km/s ∼= 400, 000 miles per hour! The reason for this obviously
absurd result is that the flow in the river is not laminar, it is “stuffed” with vortices
(Figure 1b). These vortices make the flow field random; they transfer the momentum
across the flow immensely faster than the thermal oscillations of the water molecules
in the laminar flow (which is the mechanism of the molecular fluid viscosity). This
basic idea was introduced by the French applied mathematician J. Boussinesq,
who in fact was the first to study turbulent flows mathematically. Boussinesq
introduced the basic concept of the “eddy viscosity” (viscosité tourbillonaire) ηturb:
the effective viscosity of the turbulent flow, created by vortices which remains
one of the basic concepts in turbulence studies. We emphasize that contrary to
the molecular viscosity η, the eddy viscosity ηturb is no longer a fluid property,
it is a flow property, different at different places. In the present case the value of
ηturb needed in (1.2) to obtain a realistic value of the velocity at the river surface
is ∼ 200, 000η!

However, the Kolmogorov example is especially significant, even fundamental
due to the following reason. It demonstrates clearly the huge reserves of energy
available in natural fluid flows.

These reserves can be revealed if somehow even a partial flow laminarization is
achieved. And this happens in reality: such partial laminarization is achieved in dust
storms (the laminarizing factor is the suspended dust particles), tropical hurricanes
(the laminarizing factor is the water droplets formed on the oceanic surface when

Figure 1. Kolmogorov’s example (a) Laminar flow in a channel,
(b) Turbulent flow in a river
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water waves are breaking), firestorms (the laminarizing factor is unburnt debris and
soot particles), and other natural flows.

2. Turbulent shear flows. The Kolmogorov-Prandtl model

Turbulent flows are random, and turbulence studies operate with the averages of flow
field properties. In theoretical studies the “ensemble”, or “probability” averages are
used (the averages over the whole ensemble of possible turbulent flow realizations
under given external conditions (e.g., pressure drop at the ends of a pipe).

Shear flow is a steady flow, homogeneous in the direction of average velocity.
All properties of the shear flow field vary only in the direction z perpendicular to
the direction of the mean velocity.

Studies of turbulent shear flows are of special importance for theoretical and
experimental investigations. They allow us, due to substantial simplifications,
to advance deeper without accepting doubtful assumptions. Indeed, in general
turbulent flows are non-local, both in time and space: The properties of a flow
field at a certain point and at a certain moment depend on the flow properties in a
certain neighborhood around the point, and at a certain time interval. This is not
the case for shear flows: The average flow field at a point can be assumed to be
a local property, depending only upon the flow characteristics at this point. Also,
an important advantage of shear flows from a practical viewpoint is that ensemble
(probability) averages can be replaced (the “ergodicity” property) by averaging over
time intervals (due to steadiness) or longitudinal space intervals (due to the spacial
homogeneity along the flow direction).

By averaging the Navier-Stokes equations and integrating we obtain only one
equation for shear flows due to steadiness and the homogeneity of the mean flow:

d
dz
(−ρu′w′)= 0, −ρu′w′ = Const= τ. (2-1)

Here the velocity components u, v, w correspond to the axis x , y, z; bars denote the
mean values and primes denotethe fluctuations. In Equation (2.1) the contribution
of the molecular viscosity was neglected in comparison with the contribution of
the eddy viscosity: we consider the turbulence as a “developed” one. The term
neglected is important in the close vicinity of the wall which we exclude from
consideration. The term −ρu′w′ represents the turbulent flux of momentum, the
“Reynolds stress”.

Of fundamental importance for future consideration is the equation of turbulent
energy balance. For shear flow the equation obtained in this way assumes the form

(−ρu′w′)
du
dz
− ρε = 0. (2-2)
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The first term is the rate of inflow of turbulent energy per unit volume from the
energy of mean motion, and

ε =
ν

2
(∂αu′β + ∂βu′α)(∂αu′β + ∂βu′α) (2-3)

(summation by Greek indexes from 1 to 3 is assumed) is the rate of turbulent energy
dissipation into heat per unit mass.

In Equation (2.2) the term neglected is responsible for the contribution of turbulent
diffusion of turbulent energy. This assumption is plausible in the main core of shear
flow, but not close to the boundaries (see e.g. Monin and Yaglom, 1971).

In the Kolmogorov[12]-Prandtl[16] semi-empirical theory for shear flow, the
coefficient of turbulent momentum exchange, k = (−ρu′w′)/ρ(du/dz), is the
kinematic eddy viscosity. This introduction for shear flow is not a new hypothesis.
Equations (2.1) and (2.2) take the form

k
du
dz
= u∗2, k

(du
dz

)2
− ε = 0. (2-4)

Here the quantity u∗ = (τ/ρ)1/2 is an important governing parameter of shear flow:
“dynamic” or “friction” velocity.

The basic hypothesis underlying the Kolmogorov-Prandtl theory can be presented
in the following way: at large Reynolds numbers the local structure of the set of
vortices around any point is statistically identical for all shear flows at a given
Reynolds number; only the time and space scales are different. Therefore, leaving
aside the Reynolds number dependence, all dimensionless flow properties should
be identical. This means that all kinematic flow properties at a certain point
including the momentum exchange coefficient k and the dissipation rate ε could
be determined by the local values of two kinematic properties having different
dimensions. Properties such as the turbulent energy of the unit mass

b =
u′2+ v′2+w′2

2
(2-5)

and the external length scale (mean length scale of vortices) `, can be selected (b, `
version). Also in wide use is the (b, ε) version, where as basic quantities b and
ε—the dissipation rate—are selected. We will use the (b, `) version, in fact both
versions are logically equivalent.

Dimensional analysis leads to the following relations:

k = `
√

b, ε = γ 4b3/2/`. (2-6)

The coefficient in the first Equation (2.6) can be selected equal to one because
the length scale is determined with accuracy up to a constant factor. The constant γ
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is a Reynolds number-dependent quantity; at large Reynolds numbers this quantity
is close to 0.5 (see the book of Monin and Yaglom [15]).

Thus, Equations (2.4) assume the form

`
√

b
du
dz
= u∗2, `

√
b
(du

dz

)2
− γ 4 b

`

3/2
= 0. (2-7)

It is important that from Equations (2.7) without any assumptions concerning
the length scale `, the relation for turbulent energy can be obtained:

b =
u2
∗

γ 2 . (2-8)

Relation (2.8) shows that the dynamic, or friction velocity u∗, determines the
order of magnitude of the velocity fluctuations.

Thus, if the length scale is known, the mean velocity u can be easily obtained
from the first equation of the system. The situation of determining the length scale
is, however, non-trivial. Using dimensional analysis a relation is obtained

`= z8
(

Re,
u∗z
ν

)
. (2-9)

We remind the reader that shear flow at large Reynolds numbers is considered,
and also that the value u∗z/ν is large outside the close vicinity of the boundary
z = 0, which, as was mentioned before, is excluded from consideration. Therefore,
traditionally “complete” similarity (see, e.g., [4]) in both parameters Re and u∗z/ν
is assumed. This means that function8 can be replaced by its limit8(∞,∞)= κγ ,
which is assumed to be finite. The new constant κ is known as the von Kármán
constant. The relation ` = κγ z and relation (2.8) are substituted into the first
Equation of (2.7), and the resulting relation is integrated, so the equation traditionally
obtained is

u
u∗
=

1
κ

ln
(u∗z
ν

)
+ B, (2-10)

known as the universal (Reynolds number-independent) von Kármán-Prandtl loga-
rithmic law. It is also tacitly assumed that the constant B is finite and Reynolds
number-independent. The values κ = 0.4, B = 5.1 are usually accepted, although
large deviations from these values have been reported in processing the experimental
data.

However, as it was shown in a cycle of works by A.J. Chorin, V.M. Prostokishin
and the present author (see [5; 6] and monograph [4] as well as the references
presented there) this is not the case. There is “incomplete similarity” (see e.g. [4])
in parameter u∗z/ν and no similarity in parameter Re. In fact, at large Reynolds
numbers and large u∗z/ν the mean velocity is represented by a family of Reynolds
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number-dependent power laws:

u
u∗
=

( 1
√

3
ln Re+

5
2

)(u∗z
ν

)3/2 ln Re
. (2-11)

Furthermore, in the basic working interval of u∗z/ν, the family of velocity
distribution curves (2.11) can be represented in the form of a Reynolds number-
dependent logarithmic law:

u
u∗
=

1
κ(Re)

ln
(u∗z
ν

)
+ B(Re), (2-12)

where

κ(Re)=
e−3/2

√
3/2+ 15/(4 ln Re)

, B(Re)=−
e3/2 ln Re

2
√

3
−

5
4

e3/2. (2-13)

We mention several important properties of (2.12), (2.13). Firstly, at Re→∞ the
quantity κ(Re) tends to a limit κ∞ = 2

√
3e3/2

' 0.2776. However, this tendency to
the limit is very slow, so approximating the limiting value of κ∞ with accuracy, for
example, 10% κ requires huge values of Re, Re∼ 1020. For realistic lower values
of Re, κ(Re) are significantly less than κ∞, so the slope of the straight line u/u∗
vs ln(u∗z/ν) is steeper than the slope of the straight line representing the usually
accepted universal logarithmic law. At the same time the additive constant B(Re)
at Re→∞ tends not to a finite limit but to minus infinity. All that means is that at
large but realistic Re the universal (Reynolds number-independent) law for velocity
distribution is not valid, although the velocity distributions in the ln(u∗z/ν), u/u∗
plane are represented by a family of Reynolds number-dependent straight lines
(logarithmic laws) in the significant interval of the values of u∗z/ν. These properties
of velocity distributions obtained an instructive confirmation in the experiments by
Zagarola [18], performed in pipe flows. Summing up we obtain an expression for
the length scale `, using formulae (2.7), (2.8) and (2.12):

`= κ(Re)γ z. (2-14)

From (2.14) and the first Equation of (2.7) it follows

du
dz
=

u∗
κ(Re)z

. (2-15)

By integration we return to the relation (2.12), the constant of integration cannot be
assumed to be a universal one.
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3. Shear flow laminarization by suspended heavy particles. Mono-disperse
particles size distribution

Consider a horizontal or slightly inclined shear flow in a gravity field loaded by small
suspended heavy particles. We assume that both volume and mass concentrations of
particles are small. Nevertheless as we will see, the dynamic effect of particles can
be large: dust storms, firestorms, and tropical hurricanes give instructive examples.
The reason for such large influence of heavy particles is that due to large gravitational
force the vortices in turbulent flow have to spend a substantial part of their energy
on suspending the particles, and this energy is not returned to the flow when the
particles fall down but is dissipated into heat via viscosity. Namely, that is the
main cause of a substantial laminarization and acceleration of natural flows. An
instructive example: The Martian atmosphere is very subtle; the thickness of the
sand layer in absence of a wind is a certain fraction of a millimeter only, but this
tiny amount of sand was enough in the year 1972 to create a dust storm that quickly
destroyed American and Soviet landing vehicles.

The suspended particles are assumed to be smaller than the internal turbulence
length scale (the Kolmogorov scale) below which turbulent vortices begin to be
affected by viscosity. Therefore the time of viscous relaxation of the velocity of
particles can be considered as negligibly small. This means that it can be assumed
that the horizontal components of the instantaneous velocity of particles coincide
with those of fluid whereas the vertical component of the instantaneous velocity
of particles is equal to that of fluid minus a constant quantity: the velocity of the
free fall of a particle in an infinite fluid a (the concentration of particles, we remind
you, is assumed to be small).

The density of the fluid-particles mixture is equal to ρ f (1−s)+ρps=ρ f (1+σ s),
σ = (ρp−ρ f )/ρ f , where ρp is the density of particles, ρ f -the density of fluid, and
s is the volume concentration of the particles. In agreement with natural observation
it can be assumed also that σ s� 1, so the density of the mixture can be taken equal
to the density of the fluid everywhere that the difference of fluid density and density
of mixture is not multiplied by the gravity acceleration. Therefore the transverse
component of the momentum balance equation

−u′w′ = u∗2 (3-1)

can be taken identical to the corresponding equation for pure fluid.
The balance of particles leads to a simple equation: the turbulent flux of particles

is equal to the amount of falling particles per unit time and unit area:

−s ′w′− as = 0 (3-2)

(we denote by s the average concentration of particles and by s ′ its fluctuation).
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The difference of the energy balance equation for pure fluid and fluid-particles
mixture is the key point. Indeed, the inflow rate of turbulent energy from the mean
flow is balanced for the mixture not only by the rate of viscous dissipation into heat,
but, in addition by the work of suspension of particles by turbulent vortices which,
we repeat, is not returned to the mean flow when the particles fall down. This
work (per unit time, unit area and unit mass) is equal to the mean turbulent flux of
particles s ′w′ times extra-weight (weight minus to Archimedean force (ρp − ρ f )g
per unit volume of particles), divided by the fluid density ρ f . We obtain for this
specific work the expression σgs ′w′, so that the equation of balance of turbulent
energy for the fluid-particles mixture takes the form:

u′w′
du
dz
+ ε+ σgs ′w′ = 0. (3-3)

We emphasize that the last term of (3.3) is the only term where the concentration
enters, and it is significant because it contains a large factor — gravity acceleration
g.1 Equation (3.3) can be rewritten in the form, emphasizing its difference from
the corresponding equation for pure fluid (2.2):

u′w′(1−Ko)
du
dz
+ ε = 0, (3-4)

where the dimensionless parameter

Ko=−(σgs ′w′)/(u′w′(du/dz)), (3-5)

named the Kolmogorov parameter (number) represents the relative part of the
turbulent energy influx from the mean flow, spent for the work of suspension of
particles by turbulent vortices.

Our further consideration follows the lines of the Kolmogorov-Prandtl analysis
of turbulent shear flow.

By analogy with the coefficient of the turbulent momentum exchange k we
introduce the coefficient of the particle exchange ks :

ks =−s ′w′/(ds/dz). (3-6)

As is the case of eddy viscosity k the introduction of ks , for shear flow, is not a new
hypothesis. Assuming, following the Kolmogorov-Prandtl shear flow model, the
similarity hypothesis we obtain:

ks = αs`
√

b. (3-7)

1As far as is known to the author, the expression for the work of suspension of particles was first
obtained by M.A. Velikanov[18]. However, Velikanov deliberately included this work in the equation
of the energy balance of the mean flow, not the turbulent energy balance, which cannot be considered
as quite correct.
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The quantity αs , which can be called the turbulent Prandtl number for the fluid-
particles mixture is a Reynolds number-dependent quantity. Generalizing the
considerations of the length scale in the previous section we assume

`= κ(Re)γ z8`(Re,Ko), (3-8)

where the function 8`(Re,Ko) is equal to one for Ko= 0 (pure fluid) and is less
than one for Ko> 0,

Using similarity relations (2.6): k = `
√

b, ks = αs`
√

b, ε = γ 4b3/2/`, we come
to a closed system of equations of our model

`
√

b du
dz = u∗2,

αs`
√

b ds
dz + as = 0,

b2
=

u∗4

γ 4 (1−Ko),

`= κ(Re)γ z8`(Re,Ko).

(3-9)

The Kolmogorov number can be presented in the following form:

Ko=− σgs ′w′

u′w′(du/dz)
=−

σgαs(ds/dz)
(du/dz)2

=−
σgas

u∗2(du/dz)
(3-10)

=
σgas · `

√
b

u∗4
=

σga2s2

u∗4αs(ds/dz)
=

ω2

d R/d Z ,

where

R =
1
s
, Z =

αsσgκ2

u∗2
z, ω =

a
καsu∗

. (3-11)

The system (3.9) can be reduced to a single equation of first order

1
ω2

d R
d Z

8`

( ω2

(d R/d Z)

)(
1−

ω2

(d R/d Z)

)1/4
=

R
ωZ

. (3-12)

We recognize that both κ and 8` depend on Reynolds number Re, however we
omit this argument in the following formulae.

We emphasize that parameter ω = a/καsu∗ plays a basic role in our model. Its
physical meaning is transparent: with accuracy up to a constant of the order one it
is the ratio of the particle free fall velocity to the characteristic value of the velocity
fluctuation.
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Figure 2. Functions u(w) and w(u) (see the text).

We introduce the function w(u)

w = u8`
(1

u

)(
1−

1
u

)1/4
, (3-13)

and the function u(w), the inverse to it. They are presented in Figure 2. Both
functions at w, u→∞ have an asymptote u = w, represented by the bisectrix of
the first quadratures in the u, w plane.

Equation (3.12) can be rewritten in the form

d R
d Z
= ω2u

( R
ωZ

)
. (3-14)

Equation (3.14) is a homogeneous one, and it can be integrated by quadratures.
Introducing a new variable P = R/ωZ , so that d R/d Z = ωP +ωZ(d P/d Z), and
we obtain

Z
d P
d Z
= ωu(P)− P, (3-15)

or, after integration,

ln Z +Const= ln
z
z0
=

P∫
P0

d P
ωu(P)− P

. (3-16)

Here z0, P0 are constants.
The structure of the integral curves of Equation (3.15) in the P ln Z plane is

substantially different in ω < 1 and ω > 1. In the case ω < 1 there exits one and
only one root P = P∗ of equation ωu(P)− P = 0; this is clear from elementary
geometric considerations. There are two classes of integral curves separated by
the straight line P = P∗. All integral curves approach the asymptotics P = P∗ at
ln(z/z0)→∞. Returning to the plane s, z, we obtain a picture of integral curves,
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represented in Figure 3. At z→∞ all distributions of the concentration of particles
tend asymptotically to the curve s = 1/P∗ωZ . The curves of class 1, lying under
the separatrix s = 1/P∗ωZ , approach the bottom z = 0 asymptotically. The curves
of class 2 go to s =∞ at a certain finite value of z. The integral curves of each
class can be obtained one from another by shifting along the ln Z axis. Therefore,
the initial height z = z0, where the concentration s = s0 can be prescribed, can be
crossed by the integral curves of both classes.

It follows from the previous investigation that at large z the distributions of
the concentration of particles, if ω is less than one independently of the boundary
condition at a certain level z= z0, are described by the curve s=1/P∗ωZ . Physically
this means that if the velocity fluctuations are sufficiently large, and exceed the
free fall velocity a, turbulent flow “takes” as much of the particles as it can, i.e.,
as much as is allowed by the prescribed shear stress τ = ρu∗2. Therefore this
asymptotic regime is called “the regime of limiting saturation”. The regime of
limiting saturation corresponds to a constant value of the Kolmogorov number
Ko= Ko∗, which can be obtained from the following equation:

8`(Ko∗)(1−Ko∗)1/4 = ω. (3-17)

Figure 3. The field of concentration distributions for the case
ω < 1. The regime of limiting saturation (Curve L) for which
s ∼ Const/z attracts all curves, corresponding to the regimes with
various boundary conditions at z = z0. It should be emphasized
that these curves have physical meaning only at s� 1.
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Furthermore, using Equation (3.17) we obtain from system (3.9)

du
dz
=

u∗
κ(Re)ωz

. (3-18)

This means that the velocity gradient at the core of the flow, where the regime of
limiting saturation is achieved is (1/ω) times larger than the velocity gradient in
pure fluid flow, given by Equation (2.16). The case when ω is much less than one
(very small particles) is of special interest. In this case the Kolmogorov number
(in the regime of limiting saturation) is close to one, so nearly the whole inflow
of turbulent energy from the mean motion is spent for the suspension of particles.
Turbulent energy is strongly reduced. The distribution of concentration in this case
takes the form

s =
1
ω2 Z
=
αsu∗4

a2σgz
. (3-19)

For the case ω > 1, when the velocity fluctuations are smaller than free fall
velocity of particles the situation is different. The denominator of the integrand in
(3.16) is positive everywhere. The concentration distributions go to infinity at a
certain z, like the curves of the second class in the case ω < 1. Clearly, when s is
no longer sufficiently small, these curves make no physical sense. It is important
that there is a strong difference between the cases ω > 1 and ω < 1 in the behavior
of integral curves, i.e., concentration distributions at large z. It is easy to show that
as z→∞ the distributions behave as s ∼ Const/zω, and the Kolmogorov number
goes to zero as Const/zω−1. This means that at large heights the velocity gradient
du/dz becomes undisturbed by particles, and is given by relation (2.15). The work
of suspension of particles is negligible, and there is no flow acceleration in the core
of the flow. The particles create a “lubrication layer”, so that the velocities increase
at any height but only due to “lubrication”.

4. Geophysical applications. The modified model

An instructive application of the theoretical construction presented in the previous
section is the mathematical modelling of the tropical hurricane. The basis for
further consideration will be the “sandwich” model of the hurricane proposed by
Sir James Lighthill (see his posthumously published paper [14]). According to this
model between the air and the sea there exists an intermediate layer (see Figure
4). Lighthill called it “ocean spray”—which consists of suspended water droplets
formed in the process of the breaking of water waves and air. Lighthill proposed
to consider ocean spray as a “third fluid”, and strongly emphasized “the need to
fill the gap in knowledge about ocean spray at extreme wind speeds”. Lighthill
himself concentrated on the thermodynamic side of the modelling. In paper [7] a
model, complementary to the Lighthill one was proposed. We emphasize that the
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possibility of constructing such a model was anticipated by Sir James Lighthill, who
discussed it with the authors. However, further analysis showed that a substantially
modified model was needed, and it is presented below.

We concentrate here, as in paper [7] mentioned above, on a single effect: flow
acceleration in ocean spray by water droplets. We leave aside the effect of the
Coriolis force, as well as the cooling effect due to evaporation of droplets and
other thermal effects. These effects can be incorporated into the model as was
done previously when modelling other atmospheric and oceanic phenomena, see
for example [8; 9].

The essence of the modification of the model is as follows. In paper [7] it was
naturally assumed as the first step that all the water droplets in ocean spray are
identical, and the construction described in the previous section was applied. It was
assumed that the water droplets are large, so that the basic parameter ω is larger
than one.

The effect of flow acceleration was obtained, but it was less than expected, in
spite of the large values of the parameter ω and large concentrations that were
assumed in the numerical calculations.

We will demonstrate below that taking into account the availability in ocean
spray both of large and small droplets changes the situation. It is difficult to take
into consideration the whole spectrum of droplet sizes, in particular, because it is
unknown, and it is changing due to various factors, basically unknown. However, it
happens to be enough to assume that in ocean spray there are droplets of two sizes,
corresponding to the values of parameter ω = ω1 > 1 and ω = ω2 < 1. Under such
a simplified assumption much larger wind accelerations are obtained. The general

Figure 4. The Lighthill “sandwich model” of a tropical hurricane
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consideration of a more realistic case of the continuous spectrum of particle sizes
will also be presented below.

As considered previously, we assume that ocean spray occupies the region z≥ z0,
where z0 is the thickness of the layer where the droplets are produced, and the
vertical coordinate z is reckoned from the average sea surface. As before we neglect
the coalescence of the droplets and the variation of their size due to evaporation.
Thus, we assume that two sorts of particles are available in the flow in ocean
spray; due to smallness of the concentrations s1 and s2 of both kinds of droplets the
interference of droplets can be neglected.

The basic system of equations of the modified model is taken in the form
suggested by previous analysis, presented in Section 3:

`
√

b
du
dz
= u∗2, (4-1)

- the momentum balance equation

αs`
√

b
ds1

dz
+ a1s1 = 0, (4-2)

αs`
√

b
ds2

dz
+ a2s2 = 0, (4-3)

- the equations of conservation of both sorts of droplets,

b2
=

u4
∗

γ 4 (1−Ko); (4-4)

- the equation of turbulent energy balance.
Here the Kolmogorov number Ko=Ko1+Ko2, Ko1 is the Kolmogorov number,

corresponding to larger droplets:

Ko1 =−
αsσg(ds1/dz)
(du/dz)2

, (4-5)

whereas Ko2 is the Kolmogorov number, corresponding to smaller droplets:

Ko2 =−
αsσg(ds2/dz)
(du/dz)2

. (4-6)

Thus, a separate balance of droplets of both sizes and their contributions to the
work of suspension are considered.

For the length scale the following relation is proposed

`= κγ z8`(Ko), (4-7)
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naturally generalizing relation (3.8) for the monodisperse mixture; the Reynolds
number dependence of the parameters αs, κ, γ and the function 8`(Ko) are also
assumed.

Although system (4.1)–(4.7) seems to be more complicated than the system
for the monodisperse mixture, it can also be reduced to a Cauchy problem for an
ordinary differential equation of first order due to existence of a first integral. This
reduction allows us to perform an asymptotic analysis.

Indeed, we obtain from Equations (4.2), (4.3)

ds1

ds2
=
ω1
ω2

s1
s2
,

ω1 =
a1

καsu∗ , (4-8)

ω2 =
a2

καsu∗ ,

and, by integration
s2

s20
=

( s1

s10

)ω2/ω1
, (4-9)

where s10 and s20 are the concentrations of both kinds of droplets at z = z0. Also,
we obtain, similarly to what was done previously,

Ko1 =
σga1s1

u∗2(du/dz)
,

(4-10)

Ko2 =
σga2s2

u∗2(du/dz)
.

As previously, it is convenient to pass to dimensionless variables

U =
κu
u∗
, Z =

αsκ
2σg

u∗2
z, S1 =

s1

s0
, S2 =

s2

s0
. (4-11)

We assumed here for simplicity s10 = s20 = s0, and we reduced the system to the
form

8`(Ko)(1−Ko)1/4 Z dU
d Z = 1

8`(Ko)(1−Ko)1/4 Z d S1
d Z +ω1S1 = 0 (4-12)

8`(Ko)(1−Ko)1/4 Z d S2
d Z +ω2S2 = 0.

The boundary conditions we take are of the form

S1 = S2 = 1, U = 0 at Z = Z0 =
αsκ

2σg
u2
∗

z0. (4-13)
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Let’s estimate the orders of magnitude of all quantities that enter the problem:
z0 = 102

−103 cm– is the range of the amplitudes of the waves; αsκ
2 is of the order

of one, σg ∼ 106 cm/s2, u∗ is of the order of 102 cm/s, therefore Z0 is in the range
104
− 106. Furthermore, s0 should be in the range of 10−6

− 10−4, so the values of
the parameter A = s0 Z0 can be assumed to be in the range 10−1

− 10.
Introducing the variable ζ = ln(Z/Z0)= ln(z/z0)we come to the ultimate system

of equations and initial conditions

(1−Ko)1/48`(Ko)
dU
dζ
= 1 (4-14)

(1−Ko)1/48`(Ko)
d S1

dζ
+ω1S1 = 0 (4-15)

(1−Ko)1/48`(Ko)
d S2

dζ
+ω2S2 = 0 (4-16)

Ko=
Aeζ (ω1S1+ω2S2)

dU/dζ
(4-17)

with the boundary conditions S1 = S2 = 1, U = 0 at ζ = 0. The first integral (4.9)
takes the form

S2 = Sω2/ω1
1 . (4-18)

From system (4.13), (4.14), (4.16), (4.17) a relation for Ko can be obtained:

Ko= Aeζω1
2(1+ θR1−θ

1 )/(d R1/dζ ), (4-19)

where

R1 = 1/S1,

(4-20)

θ = ω2/ω1.

After division by S2
1 Equation (4.14) can be reduced to the form:

(1−Ko)1/48`(Ko)
d R1

dζ
−ω1 R1 = 0. (4-21)

Finally, dividing by Aeζω1
2(1+ θR1−θ

1 ) we obtain

d R1
dζ

1
Aω2

1eζ (1+θR1−θ
1 )

(
1− Aeζω2

1(1+θR1−θ
1 )

d R1/dζ

)1/4

8`

(
Aeζω2

1(1+θR1−θ
1 )

d R1/dζ

)
=

R1

Aeζω1(1+θR1−θ
1 )

. (4-22)
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Using the function u(w) introduced by the relation (3.13), we present Equation
(4.21) in the form:

d R1

dζ
= Aω2

1eζ (1+ θR1−θ
1 )u

(
R1

Aeζω1(1+ θR1−θ
1 )

)
. (4-23)

This is an ordinary differential equation of first order, which is to be solved under
the initial condition

R1 = 1 at ζ = 0. (4-24)

Under the assumption that θ = ω2/ω1 is small, the solution to Equation (4.22)
can be investigated asymptotically. Indeed, θR1 is much less than one, i.e., s1� θs0

in a certain interval 0 ≤ ζ ≤ ζ∗. In this interval the term θR1−θ
1 in (4.22) can be

neglected in comparison with 1, and Equation (4.22) takes the form

d R1

dζ
= Aω2

1eζu
(

R1

Aeζω1

)
. (4-25)

This equation coincides with Equation (3.12) for ω=ω1 (monodisperse flow of large
particles). Furthermore, the function u(w) is larger than one, i.e., R1 is growing
faster than Aω2

1eζ at all ζ . Therefore there exist a number ζ∗∗ where θR1 becomes
much larger than one, and Equation (4.22) takes the form

d R1

dζ
= Aω2

1eζ θR1−θ
1 u

(
Rθ1

Aeζω1θ

)
, (4-26)

which can be transformed easily using the integral (4.17) to the form

d R2

dζ
= Aω2

2eζu
(

R2

Aeζω2

)
, (4-27)

i.e., to Equation (3.12) for ω = ω2 (monodisperse flow of small particles).
In the interval 0 ≤ ζ < ζ∗, according to the investigation of the monodisperse

flows, the Kolmogorov number is decreasing; in the interval ζ∗∗ < ζ it is increasing,
reaching the value Ko∗ satisfying the equation

8`(Ko∗)(1−Ko∗)1/4 = ω2. (4-28)

Somewhere in between ζ∗ and ζ∗∗ a minimum of the Kolmogorov number is
reached. Therefore the flow is separated in two regions: the lower region, where
the Kolmogorov number is decreasing and reaching a minimum, and the upper
region where the Kolmogorov number is growing from the minimum to the final
value Ko∗. It is natural to consider the lower region as a “lubrication layer” and
the upper region as a “suspension layer”. The graphs presented in Figures 5,6,
constructed by Dr. C.H. Rycroft on the basis of numerical computations, illustrate
a typical structure of the flow in ocean spray if the availability of droplets of two
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Figure 5. The distribution of the total Kolmogorov number Ko and
the Kolmogorov number corresponding to large and small particles
Ko1,Ko2 for various values of parameter A = Z0s0

sizes, large ones (ω1 > 1) and small ones (ω2 < 1), is taken into account. In the
numerical computations, function 8`(Ko) was taken equal to one, and the values
of ω of order one were taken in both cases: ω1 =

√
10, ω2 = 1/

√
10. However,

the ratio θ = ω2/ω1 = 1/10 is a small parameter, allowing an asymptotic analysis.
Computations support the results of the asymptotic analysis.
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Figure 6 is especially instructive: it demonstrates the strong increase of wind
speed in ocean spray in comparison with pure air flow (S1 = S2 = 0) and also with
the flow of fluid-particle mixtures where only large particles are available, S2 = 0.

The analysis presented above can be extended to the case of a continuous spectrum
of particle sizes: �1 ≥ ω ≥ �2, where �1 > 1, �2 < 1. Equations (4.13), (4.14)
remain valid if ω1 is a certain reference parameter of value 1< ω1 <�1), whereas
Equation (4.15) is replaced by the equation of conservation of particles for arbitrary
ω in the interval �1 ≥ ω ≥�2

(1−Ko)1/48`(Ko)
d S
dζ
+ωS = 0. (4-29)

The first integral takes the form S= Sω/ω1
1 . Here it is assumed that the concentration

at the boundary z = z0 of particles in the range between ω and ω+ dω is s0(ω)dω.
The expression for the Kolmogorov number is given by the following relation:

Ko=
eζ
∫ ω1
ω2

A(ω)Sω/ω1
1 dω

dU/dζ
, (4-30)

where A(ω)= s0(ω)Z0. The previous case of the two-point spectrum corresponds
to

s0(ω)= s01δ(ω−ω1)+ s02δ(ω−ω2), (4-31)

where δ(ω) is the Dirac delta function. There is no principal distinction in the
results obtained for the case of the continuous spectrum or the two-point spectrum.

5. Conclusion and discussion

The modified model of turbulent shear flow of a suspension of small heavy particles
in a fluid is presented. The modification is based on the assumption that in the flow
there are two sorts of particles. For the particles of the first sort the velocity of
free fall a1 is larger than the characteristic velocity fluctuation, for the particles of
the second sort the velocity of free fall a2 is less than the characteristic velocity of
fluctuation. Considering a2/a1 as a small parameter allowed an effective asymptotic
analysis of the model equations that were obtained. The investigation was simplified
by the existence of a first integral found for the system. The numerical computations
are in agreement with the asymptotic analysis.

The main result is that a two-layered flow structure is obtained. In the lower
layer, which we called the lubrication layer, the Kolmogorov number—the ratio of
the work spent on the suspension of particles to the turbulent energy influx from the
mean flow—is decreasing. In the upper layer, which we called the suspension layer,
the Kolmogorov number is increasing after reaching a minimum, until it reaches
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Figure 6. The distributions of dimensionless velocity U and in-
verse concentrations 1/Si for various values of parameter A= Z0s0

the ultimate value at large heights. The basic flow acceleration occurs in the upper
layer, where the velocity gradient is small.

Numerical investigation showed that significant laminarization of the flow can
be obtained by the addition of heavy particles. What is specifically significant is
that the large particles could be of moderate size for reaching high flow speed.
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The modified model is applied to the flow in the oceanic spray of a tropical
hurricane. It seems that it gives a more realistic structure of the flow than the
previously used mono-disperse model.

The modified model can also be applied to dust storms and to big forest and
grass fires as well as to other fires when the debris (larger particles) and particles
of soot (small particles) are caught by the wind. If the process of combustion is
an intensive one so that a sufficiently large amount of small (e.g., soot) particles
is produced in the combustion zone, a suspension layer can be formed, and the
transition to firestorms—large wind accelerations by intensive fire—can happen,
as apparently was the case in the large Chicago fire, 1871. Such firestorms due to
intense fires created by large scale bombing (Dresden, February 1945; Hiroshima,
August 1945) were also observed.
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