
Communications in
Applied
Mathematics and
Computational
Science

vol. 5 no. 1 2010

mathematical sciences publishers



Communications in Applied Mathematics and Computational Science
pjm.math.berkeley.edu/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu
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FETI AND BDD PRECONDITIONERS FOR
STOKES–MORTAR–DARCY SYSTEMS

JUAN GALVIS AND MARCUS SARKIS

We consider the coupling across an interface of a fluid flow and a porous media
flow. The differential equations involve Stokes equations in the fluid region,
Darcy equations in the porous region, plus a coupling through an interface with
Beaver–Joseph–Saffman transmission conditions. The discretization consists of
P2/P1 triangular Taylor–Hood finite elements in the fluid region, the lowest
order triangular Raviart–Thomas finite elements in the porous region, and the
mortar piecewise constant Lagrange multipliers on the interface. We allow for
nonmatching meshes across the interface. Due to the small values of the per-
meability parameter κ of the porous medium, the resulting discrete symmetric
saddle point system is very ill conditioned. We design and analyze precondi-
tioners based on the finite element by tearing and interconnecting (FETI) and
balancing domain decomposition (BDD) methods and derive a condition num-
ber estimate of order C1(1+ (1/κ)) for the preconditioned operator. In case
the fluid discretization is finer than the porous side discretization, we derive a
better estimate of order C2((κ + 1)/(κ + (h p)2)) for the FETI preconditioner.
Here h p is the mesh size of the porous side triangulation. The constants C1 and
C2 are independent of the permeability κ , the fluid viscosity ν, and the mesh
ratio across the interface. Numerical experiments confirm the sharpness of the
theoretical estimates.

1. Introduction

We consider the coupling across an interface of a fluid flow and a porous media
flow. The model consists of Stokes equations in the fluid region, Darcy equations
for the filtration velocity in the porous medium, and an adequate transmission con-
dition for coupling of these equations through an interface. Such problems appear
in several applications such as well-reservoir coupling in petroleum engineering,
transport of substances across groundwater and surface water, and (bio)fluid-organ
interactions. There are works that address numerical analysis issues of this model.
For inf− sup conditions and approximation results associated to the continuous and

MSC2000: 35Q30, 65N22, 65N30, 65N55, 76D07.
Keywords: Stokes–Darcy coupling, mortar, balancing domain decomposition, FETI, saddle point

problems, nonmatching grids, discontinuous coefficients, mortar elements.
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2 JUAN GALVIS AND MARCUS SARKIS

discrete formulations for Stokes–Laplacian systems we refer [15; 12], for Stokes–
Darcy systems we refer [31; 39; 2; 22], for Stokes–Mortar–Darcy systems, see [41;
26], and for DG discretizations [11; 41]. For studies on preconditioning analysis
for Stokes-Laplacian systems, see [13; 14; 16; 17], and for Stokes-Darcy systems
[3]. In this paper, we are interested in balancing domain decomposition (BDD)
and finite element by tearing and interconnecting (FETI) preconditioned conjugate
gradient methods for Stokes–Mortar–Darcy systems. For general references on
BDD and FETI type methods, see [18; 19; 23; 24; 30; 33; 34; 35; 36; 40; 42; 43;
44].

In this paper we both extend some preliminary results contained in [25] and intro-
duce and analyze new methods. We note that the BDD-I preconditioner introduced
in [25] is not effective for small permeabilities (in real applications permeabilities
are very small) while the preconditioner BDD-II in [25] requires constructing inter-
face base functions which are orthogonal in the Stokes inner product (this construc-
tion is very expensive and impractical because it requires, as a precomputational
step, solving many Stokes problems). Here in this paper we circumvent these
issues by introducing a dual formulation and considering FETI-based methods. We
propose and analyze FETI methods and present numerical experiments in order to
verify the theory. We note that the analysis of the FETI algorithms for Stokes–
Mortar–Darcy problems is very challenging due to the following issues:

(i) the mortar map from the Stokes to the Darcy side has a large kernel since the
Stokes velocity space is in general richer than the Darcy velocity space on the
interface;

(ii) the trace space of the Stokes velocity (H 1/2) is more regular than the trace
space of the Darcy flux (H−1/2), and due to a priori error estimates [31; 41;
26], the Stokes side must be chosen as the master side;

(iii) the energy associated to the Darcy region is much larger than the energy as-
sociated to the Stokes region due to the small value of the permeability.

Such issues imply that the master side must be chosen on the Stokes side and where
the energy is smaller and velocity space is richer. The mathematical analysis under
this choice is very hard to analyze even for simpler problems such as for transmis-
sion problems with discontinuous coefficients using Mortar or DG discretizations
[19; 20; 21]. For problems where both the smallest coefficient and the finest mesh
are placed on the master side, as far as we know, there are no optimal precondi-
tioners developed in the literature for transmission problems, and typically there is
a condition to rule out such a choice.

The rest of the paper is organized as follows: in Section 2 we present the Stokes–
Darcy coupling model. In Section 3 we describe the weak formulation of this
model. In Section 4 we introduce a finite element discretization. In Section 5 we
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study the primal and dual formulation of the discrete problem. Section 6 presents
a complete analysis of the BDD-I preconditioner introduced in [25]. In Section 7,
we design and analyze the FETI preconditioner; see Lemma 3 and Theorem 4. In
particular we obtain the condition number estimate of order C1(1+(1)/(κ)) for this
preconditioner and also prove Theorem 7, which gives a better estimate of order
C2((κ+1)/(κ+ (h p)2)) for the FETI preconditioner in case the fluid discretization
is finer than the porous side discretization; the case where the Stokes mesh is not
a refinement of the Darcy mesh is also discussed (see Remark 8). In Section 7
we also consider more general fluid bilinear forms by allowing the presence of a
tangential interface fluid velocity energy (Remark 10), and also translate the FETI
results to analyze certain BDD methods (Remark 9). In Section 8 we present the
numerical results, and in Section 9 we discuss the multisubdomain case.

Here h p is the mesh size of the porous side triangulation. The constants C1 and
C2 are independent of the permeability κ , the fluid viscosity ν, and the mesh ratio
across the interface. In Section 8 we present numerical results that confirm the
theoretical estimates concerning the BDD and the FETI preconditioners.

2. Problem setting

Let � f , �p
⊂ Rn be polyhedral subdomains, define � := int(�

f
∪�

p
) and 0 :=

∂� f
∩ ∂�p, with outward unit normal vectors ηi on ∂�i , i = f, p. The tangent

vectors on 0 are denoted by τ1 (n = 2), or τl , l = 1, 2 (n = 3). The exterior
boundaries are 0i

:= ∂�i
\0, i = f, p. Fluid velocities are denoted by ui

:�i
→Rn ,

i = f, p, and pressures by pi
:�i
→ R, i = f, p.

We consider Stokes equations in the fluid region � f and Darcy equations for the
filtration velocity in the porous medium �p. More precisely, we have the following
systems of equations in each subdomain:

Stokes equations Darcy equations
−∇ · T (u f , p f ) = f f in � f ,

∇ · u f
= g f in � f ,

u f
= h f on 0 f ,


up
=−

κ
ν∇ p p in �p,

∇ · up
= g p in �p,

up
· ηp
= h p on 0 p.

(1)

Here T (v, p) :=−pI+2νDv, where ν is the fluid viscosity, Dv := 1
2(∇v+∇vT ) is

the linearized strain tensor and κ denotes the rock permeability. For simplicity on
the analysis, we assume that κ is a real positive constant. We impose the following
conditions:

(1) Interface matching conditions across 0; see [15; 12; 16; 31] and references
therein.
(a) Conservation of mass across 0: u f

· η f
+ up

· ηp
= 0 on 0.

(b) Balance of normal forces across 0: p f
− 2νη f T D(u f )η f

= p p on 0.
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(c) Beavers–Joseph–Saffman condition: this condition is a kind of empirical
law that gives an expression for the component of the Cauchy stress tensor
in the tangential direction of 0; see [4] and [29]. It is expressed by

u f
· τl =−

√
κ

α f 2η f T D(u f )τl, l = 1, n− 1, on 0.

(2) Compatibility condition: the divergence and boundary data satisfy (see [26])

〈g f , 1〉� f +〈g p, 1〉�p −〈h f
· η f , 1〉0 f −〈h p, 1〉0 p = 0.

3. Weak formulation

In this section we present the weak version of the coupled system of partial differ-
ential equations introduced above. Without loss of generality, we consider h f

= 0,
g f
= 0, h p

= 0 and g p
= 0 in (1); see [26].

The problem can be formulated as: Find (u, p, λ) ∈ X ×M0×3 such that for
all (v, q, µ) ∈ X ×M0×3

a(u, v)+ b(v, p)+ b0(v, λ) = f (v),
b(u, q) = 0,
b0(u, µ) = 0,

(2)

where
X = X f

× X p
:= H 1

0 (�
f , 0 f )n × H0(div, �p, 0 p)

and M0 is the subset of M := L2(� f )× L2(�p) ≡ L2(�) of pressures with a
zero average value in �. Here H 1

0 (�
f , 0 f ) denotes the subspace of H 1(� f ) of

functions that vanish on 0 f . The space H0(div, �p, 0 p) consists of functions in
H(div, �p) with zero normal trace on 0 p, where

H(div, �p) :=
{
v ∈ L2(�p)n : div v ∈ L2(�p)

}
.

For the Lagrange multiplier space we consider 3 := H 1/2(0). See [26] for a
discussion on the choice of the Lagrange multipliers space 3 and how to derive
the weak formulation (2) and other equivalent weak formulations; see also [31].

The global bilinear forms are

a(u, v) := a f
α f (u f , v f )+ a p(up, v p),

b(v, p) := b f (v f , p f )+ bp(v p, p p),

with local bilinear forms a f
α f , b f and bp defined by

a f
α f (u f , v f ) := 2ν(Du f , Dv f )� f +

n−1∑
`=1

να f
√
κ
〈u f
·τ`, v

f
·τ`〉0, u f , v f

∈ X f , (3)
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a p(up, v p) := ((ν/κ)up, v p)�p , up, v p
∈ X p, (4)

b f (v f , q f ) := −(q f ,∇ · v f )� f , v f
∈ X f , q f

∈ M f , (5)

bp(v p, p p) := −(p p,∇ · v p)�p , v p
∈ X p, p p

∈ M p, (6)

and with weak conservation of mass bilinear form defined by

b0(v, µ) := 〈v f
· η f , µ〉0 +〈v

p
· ηp, µ〉0, v = (v f , v p) ∈ X, µ ∈3. (7)

The second duality pairing of (7) is interpreted as 〈v p
· ηp, Eηp(µ)〉∂�p . Here Eηp

is any continuous lift-in operator from H 1/2(0) to H 1/2(∂�p); recall that 0⊂ ∂�p

and v ∈ H0(div, �p, 0 p). It easy to see that this duality pairing is independent of
the lift-in operator Eηp . In particular, one example of such a lift-in operator can be
constructed by taking the trace on ∂�p of the harmonic extension with Dirichlet
data µ on 0 and homogeneous Neumann data on 0 p; see [26].

The functional f in the right side of (2) is defined by

f (v) := f f (v f )+ f p(v p), for all v = (v f , v p) ∈ X,

where f i (vi ) := ( f i , vi )L2(�i ) for all vi
∈ X i , i = f, p.

The bilinear forms a f
α f , b f are associated to Stokes equations, and the bilinear

forms a p, bp to Darcy law. The bilinear form a f
α f includes interface matching

conditions 1.b and 1.c above. The bilinear form b0 is used to impose the weak
version of the interface matching condition 1.a above. We have the following
lemma that addresses the well-posedness of the problem.

Lemma 1 (See [26; 31]). There exists β > 0 such that

inf
(q,µ)∈M0×3
(q,µ) 6=0

sup
v∈X
v 6=0

b(v, q)+ b0(v, µ)
‖v‖X (‖p‖M +‖µ‖3)

≥ β > 0. (8)

where
‖v‖2X := ‖v

f
‖

2
H1

0 (� f )2
+‖v p

‖
2
H(div,�p)

.

This inf-sup condition, together with the fact that a f
α f is X f

× H(div0, �p)-elliptic
and a f

α f , b and b0 are bounded, guarantees the well-posedness of the problem (2).

4. Discretization

From now on we consider only the two-dimensional case. We note that the ideas
developed in the following can be easily extended to case of three-dimensional
subdomains.

We assume that �i , i = f, p, are two-dimensional polygonal subdomains. Let
Ti

hi (�
i ) be a geometrically conforming shape regular and quasiuniform triangula-

tion of �i with mesh size parameter hi , i = f, p. We do not assume that these two
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triangulations match at the interface 0. For the fluid region, let X f
h f and M f

h f be
P2/P1 triangular Taylor–Hood finite elements; see [7; 8; 10]. More precisely,

X f
h f :=

{
u ∈ X f

:
uK = ûK ◦F−1

K and ûK ∈ P2(K̂ )2

for all K ∈ T
f
h f (� f )

}
∩C0(�

f
)2, (9)

where uK := u|K and

M f
h f :=

{
p ∈ L2(� f ) :

pK = p̂K ◦F−1
K and p̂K ∈ P1(K̂ )

for all K ∈ T
f
h f (� f ),

}
∩C0(�

f
).

Denote by M̊
f
h f ⊂ M f

h f the discrete fluid pressures with zero average value in
� f . For the porous region, let X p

h p ⊂ X p and M p
h p ⊂ L2(�p) be the lowest order

Raviart–Thomas finite elements based on triangles; see [7; 10]. Let M̊
p
h p ⊂ M p

h p be
the subset of pressures in M p

h p with zero average value in �p.
Define Xh := X f

h f × X p
h p ⊂ X and Mh := M f

h f × M p
h p ⊂ L2(� f )× L2(�p).

Note that in the definition of the discrete velocities we assume that the boundary
conditions are included, that is, for v

f
h f ∈ X f

h f , we have v
f

h f = 0 on 0 f and for
v

p
h p ∈ X p

h p we have that v
p
h · η

p
= 0 on 0 p.

Let T
p
h p(0) be the restriction to 0 of the porous side triangulation T

p
h p(�p). For

the Lagrange multipliers space we choose piecewise constant functions on 0 with
respect to the triangulation T

p
h p(0):

3h p :=
{
λ : λ|ep

j
= λep

j
is constant in each edge ep

j of T
p
h p(0)

}
, (10)

that is, the master is on the fluid region side and the slave is on the porous region
side; see [5; 6; 19; 45]. The choice of piecewise constant Lagrange multipliers
leads to a nonconforming approximation on 3h p since piecewise constant functions
do not belong to H 1/2(0). For the analysis of this nonconforming discretization
and a priori error estimates we refer to [26].

5. Primal and dual formulations

In order to simplify the notation and since there is no danger of confusion, we will
denote the finite element functions and the corresponding vector representation
by the same symbol, that is, when writing finite element functions we will drop
the indices hi . Recall that we have the pair of spaces (Xh,Mh) associated to
the coupled problem, and spaces associated to each subproblem: (X f

h f ,M f
h f ) and

(X p
h p ,M p

h p). We will keep the subscript hi , i = f, p, in the notation for local
subspaces X f

h f ,M f
h f , X p

h p and M p
h p .

Since we are interested in preconditioning issues we assume α f
= 0 in the

definition of the fluid side local bilinear form a f
α f in (3). We denote a f

= a f
0 . See

Remark 10 for the case α f > 0.
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With the discretization chosen in Section 4 we obtain the following symmetric
saddle point linear system


A f B f T 0 0 C f T

B f 0 0 0 0

0 0 Ap B pT
−C pT

0 0 B p 0 0

C f 0 −C p 0 0




u f

p f

up

p p

λ

=


f f

g f

f p

g p

0

 , (11)

with matrices Ai , Bi ,C i and columns vectors f i , gi , i = f, p, defined by

ai (ui , vi ) = viT Ai ui ,

bi (ui , q i ) = q iT Bi ui ,

(ui
· η f , µ)0 = µT C i ui ,

f i (vi ) = viT f i ,

gi (q i ) = q iT gi .

(12)

The matrix A f corresponds to ν times the discrete version of the linearized stress
tensor on � f . Note that in the case α f > 0, the bilinear form a f

α f in (3) includes a
boundary term; see Remark 10. The matrix Ap corresponds to ν/κ times a discrete
L2-norm on�p. Matrix−Bi is the discrete divergence in�i , i = f, p, and matrices
C f and C p correspond to the matrix form of the discrete conservation of mass on
0. Note that ν can be viewed as a scaling factor since it appears in both matrices
A f and Ap. Therefore, it is not relevant for preconditioning issues.

Consider the following partition of the degrees of freedom: for i = f, p, let
ui

I

pi
I

ui
0

p̄i


interior displacements + tangential velocities on 0,
interior pressures with zero average in �i ,

interface outward normal velocities on 0,
constant pressure in �i .

For i = f, p, we have the block structure

Ai
=

[
Ai

I I AiT
0 I

Ai
0 I Ai

00

]
, Bi

=

[
Bi

I I BiT
0 I

0 B̄iT

]
and C i

=
[
0 0 C̃ i 0

]
.

Note that the (2, 1) entry of Bi corresponds to integrating an interior velocity
against a constant pressure, then it vanishes due to the divergence theorem. We
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have the following matrix representation of the coupled problem in (11):

A f
I I B f T

I I A f T
0 I 0 0 0 0 0 0

B f
I I 0 B f T

0 I 0 0 0 0 0 0

A f
0 I B f T

I0 A f
00 B̄ f T 0 0 0 0 C̃ f T

0 0 B̄ f 0 0 0 0 0 0

0 0 0 0 Ap
I I B pT

I I ApT
0 I 0 0

0 0 0 0 B p
I I 0 B p

I0 0 0

0 0 0 0 Ap
0 I B pT

I0 Ap
00 B̄ pT

−C̃ pT

0 0 0 0 0 0 B̄ p 0 0

0 0 C̃ f 0 0 0 −C̃ p 0 0





u f
I

p f
I

u f
0

p̄ f

up
I

p p
I

u p
0

p̄ p

λ



=



f f
I

g f
I

f f
0

ḡ f

f p
I

g p
I

f p
0

ḡ p

0



. (13)

Following [19; 40], we choose the following matrix representation in each sub-
domain �i , i = f, p:

Ai
I I BiT

I I AiT
0 I 0

Bi
I I 0 Bi

I0 0

Ai
0 I BiT

I0 Ai
00 B̄iT

0 0 B̄i 0

=
[

K i
I I K iT

0 I

K i
0 I K i

00

]
. (14)

5.1. The primal formulation. From the last equation in (13) we see that the mortar
condition on 0 (using the Darcy side as the slave side) can be imposed as u p

0 =

(C̃ p)−1C̃ f u f
0 =5u f

0, where 5 is the L2(0) projection on the space of piecewise
constant functions on each subinterval ep

∈ T
p
h p(0). We note that C̃ p is a diagonal

matrix for the lowest order Raviart–Thomas elements.
Now we eliminate ui

I , pi
I , i = f, p, and λ, to obtain the following (saddle point)

Schur complement:

S

u f
0

p̄ f

p̄ p

=
b0

b̄ f

b̄p

 . (15)

Here S is given by

S : =

 S f
0 B̄ f T 0

B̄ f 0 0
0 0 0

+ 5̃T

 S p
0 0 B̄ pT

0 0 0
B̄ p 0 0

 5̃= S̃ f
+ S̃ p

=

S f
0 +5

T S p
05 B̄ f T 5T B̄ pT

B̄ f 0 0
B̄ p5 0 0

= [S0 B̄T

B̄ 0

]
,
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where

5̃ :=

5 0 0
0 1 0
0 0 1

 and B̄T
:= [B̄ f T 5T B̄ pT

]. (16)

Here, we have introduced

S̃ f
:=

 S f
0 B̄ f T 0

B̄ f 0 0
0 0 0

 , S̃ p
:= 5̃T

 S p
0 0 B̄ pT

0 0 0
B̄ p 0 0

 5̃ (17)

and

S0 := S f
0 +5

T S p
05. (18)

The local matrices Si
0 and B̄i and the local Schur complement Si are given by

Si
=

[
Si
0 B̄iT

B̄i 0

]
:= K i

00 − K i
0 I
(
K i

I I
)−1K iT

0 I , i = p, f. (19)

The right side of (15) is given byb0
b̄ f

b̄p

=

 f f

0

ḡ f

0

−
K f

0 I

(
K f

I I

)−1

[
f f

I

g f
I

]
0




+


5

T f p
0

0
ḡ p

− 5̃T

K p
0 I

(
K p

I I

)−1

[
f p

I

g p
I

]
0


 .

We note that the reduced system (15), as well as the original system (13), is
solvable when b̄ f

+ b̄p
= 0, and the solution is unique when we restrict to pressures

with zero average value on �.
From now on we only work with functions defined on 0 and extended inside

the subdomain using the discrete Stokes and Darcy problems. It is convenient to
define the space

V0 :=
{
v0 = (v

f
0, v

p
0) : v

f
0 = SH(v f

· η f
|0) and v p

0 = DH(v p
· ηp
|0))

}
(20)

and

Mh
0 :=

{
q ∈ Mh

: q i
= piecewise constant in �i for i = f, p,

and
∫
� f

q f
+

∫
�p

q p
= 0

}
. (21)
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Here SH (DH) is the velocity component of the discrete Stokes (Darcy) harmonic
extension operator that maps discrete interface normal velocity u f

0 ∈ H 1/2
00 (0) (re-

spectively u p
0 ∈ (H

1/2(0))′) to the solution of following problem: Find ui
∈ X i

hi

and pi
∈ M̊

i
hi such that for all vi

∈ X i
hi and q i

∈ M̊
i
hi , i = f, p, we have

a f (SHu f , v f )+ b f (v f , p f ) = 0,
b f (SHu f , q f ) = 0,

SHu f
· η f
= u f

0 on 0,
SHu f

= 0 on 0 f ,

(22)

and 
a p(DHu p, v p)+ bp(v p, p p) = 0,

bp(DHu p, q p) = 0,
DHu p

· ηp
= u p

0 on 0,
DHu p

· ηp
= 0 on 0 p.

(23)

The degrees of freedom associated with SHu f
· τ f on 0 are free. This cor-

responds to imposing the natural boundary condition τ T D(SHu f )η f = 0 on 0
which is the expression for interface condition of Beavers–Joseph–Saffman with
α f
= 0.

For i = f, p, define the normal trace component of X i
hi by

Z i
hi =

{
vi
· ηi
|0 : vi

∈ X i
hi

}
. (24)

Associated with the coupled problem (13) we introduce the balanced subspace:

V0,B̄ :=
{
v f
0 ∈ Z f

h f : (v
f
0,5v

f
0 ) ∈ V0 and

∫
0

v f
0 · η f = 0

}
, (25)

with V0 defined in (20); see [40]. Observe that V0,B̄ = KerB̄, where B̄ is defined
in (16) and (19). Then for v f

0 ∈ V0,B̄ we have B̄v f
0 = 0. We will refer to functions

v
f
0 ∈ V0,B̄ as balanced functions. If v p

0 =5v
f
0 and v f

0 is a balanced function, then
we also say that v p

0 is a balanced function or the pair (v f
0 ,5v

f
0) is balanced.

5.2. Dual formulation. In the system (13), we first eliminate the unknowns u f
I , p f

I
and up

I , p p
I . We obtain

S f
0 B̄ f T 0 0 C̃ f T

B̄ f 0 0 0 0

0 0 S p
0 B̄ pT

−C̃ pT

0 0 B̄ p 0 0

C̃ f 0 −C̃ p 0 0





u f
0

p̄ f

u p
0

p̄ p

λ

=


b̃ f

b̃p

0

 , (26)
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where the right side of (26) is given by

 b̃ f

b̃p

0

 =


[
f f
0

ḡ f

]
− K f

0 I

(
K f

I I

)−1
[

f f
I

g f
I

]
[

f p
0

ḡ p

]
− K p

0 I

(
K p

I I

)−1

[
f p

I

g p
I

]
0


.

Here Si
0, K i

I I and K i
I0, i = f, p, are defined in (19) and (14).

Let Ni :=
[
C̃ i 0

]
and consider Si , i = f, p, defined in (19). Then the matrix in

the left side of (26) can be rewritten as
S f 0 N f T

0 S p
−N pT

N f
−N p 0

 .
Now we eliminate the unknowns u f

0, p̄ f and u p
0, p̄ p. We end up with the reduced

system
Fλ= c, (27)

where the operator F is defined by

F := N f (S f )−1 N f T
+ N p(S p)−1 N pT , (28)

and the right side c is given by

c = N f (S f )−1

{[
f f
0

ḡ f

]
− K f

0 I

(
K f

I I

)−1

[
f f

I

g f
I

]}

− N p(S p)−1

{[
f p
0

ḡ p

]
− K p

0 I

(
K p

I I

)−1

[
f f

I
g p

I

]}
.

Note that F is positive semidefinite and since a discrete Lagrange multiplier in
3h p does not have necessarily zero mean average value on 0, the operator F has
one simple zero eigenvalue corresponding to a constant Lagrange multiplier. The
linear system above, as well as the original linear system (13), is solvable for zero
mean right side, that is, for cT

· (1, . . . , 1)= 0.

6. BDD preconditioner

In this section we design and analyze a BDD type preconditioner for the Schur
complement system (15); see [9; 19; 42] and also [1; 21; 35; 40; 43]. For the sake
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of simplicity on the analysis we assume that 0 = {1}× (0, 1), � f
= (1, 2)× (0, 1)

and�p
= (0, 1)×(0, 1). We introduce the velocity coarse space on 0 as the span of

the normal velocity v0 = y(1− y) (with v0 also denoting its vector representation).
Define

R0 :=

[
vT

0 0
0 I2×2

]
, S0 := R0S RT

0 and Q0 := RT
0 S†

0 R0. (29)

The system (15) is solvable when the right side satisfies b̄ f
+ b̄p

= 0 with
uniqueness of the solution in the space of vectors with pressure component having
zero average value on �. Then S0 is invertible restricted to vectors with pressure
component in Mh

0 defined in (21). The low dimensionality of the coarse space
(which is spanned by v0 and a constant pressure per subdomain �i , i = f, p) and
the fact that the function v0 is independent of the triangulation parameters imply
stable discrete inf-sup condition for the coarse problem.

Denote S̃0 := v
T
0 S0v0 and S̃ := B̄v0 S̃−1

0 vT
0 B̄T . We can write, see (18) and (29),

S0 =

[
S̃0 (B̄v0)

T

B̄v0 0

]
.

A simple calculation using the formula for the inverse of a saddle point matrix
gives

Q0 =

[
v0 S̃−1

0 vT
0 −v0 S̃−1

0 vT
0 B̄T S̃−1 B̄v0 S̃−1

0 vT
0 v0 S̃−1

0 vT
0 B̄T S̃−1

S̃−1 B̄v0 S̃−1
0 vT

0 S̃−1

]
,

and using (18) we obtain

Q0S =

[
v0 S̃−1

0 vT
0 S0−v0 S̃−1

0 vT
0 B̄T S̃−1 B̄v0 S̃−1

0 vT
0 S0+v0 S̃−1

0 vT
0 B̄T S̃−1 B̄ 0

S̃−1 B̄v0 S̃−1
0 vT

0 S0−S̃−1 B̄ I

]
,

or

Q0S =
[

P 0
G I

]
,

where we have defined

P :=
(
v0 S̃−1

0 vT
0 S0 − v0 S̃−1

0 vT
0 B̄T S̃−1 B̄v0 S̃−1

0 vT
0 S0

)
+ v0 S̃−1

0 vT
0 B̄T S̃−1 B̄,

G := S̃−1 B̄− S̃−1 B̄v0 S̃−1
0 vT

0 S0.

With this notation we have that

I−Q0S =
[

I−P 0
G 0

]
.
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Elementary calculations show that P2
= P and B̄(I−P) = 0, hence I−P is a

projection and its image is contained on the balanced subspace defined in (25); see
also [40].

Given a residual r =
[

f T
0 ḡT

]T , the coarse problem Q0r , with Q0 defined in (29),
is the solution of the coupled problem (13) with one velocity degree of freedom
(v0), and a constant pressure per subdomain �i , i = f, p, with mean zero in �=
int(�

f
∪�p). Note that the matrix S0 defined in (29) can be computed easily, and

in order to ensure zero mean pressure on � we can use a Lagrange multiplier.
For balanced functions v f

0 and u f
0 , the S0-inner product (see (18)) is defined by

〈u f
0, v

f
0 〉S0 := 〈S0u f

0, v
f
0 〉 = u f T

0 S0v
f
0 .

Recall that B̄u f
0 = 0 when u f

0 is balanced. Then, on this subspace of balanced
functions, the S0 inner product coincides with the S-inner product defined by

〈v f
0

q̄ f

q̄ p

 ,
u f

0

p̄ f

p̄ p

〉
S

:=

v f
0

q̄ f

q̄ p

T

S

u f
0

p̄ f

p̄ p

= [v f
0

q̄

]T [
S0 B̄T

B̄ 0

][
u f
0

p̄

]
,

where p̄T
=
[

p̄ p p̄ p
]T . Consider the BDD preconditioner operator given by

S−1
N := Q0+ (I−Q0S) (S̃ f )† (I−SQ0) , (30)

where S̃ f is defined in (17); see [19; 40]. The notation (S̃ f )† stands for the pseudo-
inverse of S̃ f , that is,

(S̃ f )† =

[
(S f )−1 0

0 0

]
,

with S f defined in (19). The preconditioned operator is given by

S−1
N S = Q0S+ (I−Q0S) (S̃ f )†S (I−Q0S)

=

[
P 0
G I

]
+

[
I−P 0

G 0

]
(S̃ f )†

[
S0 B̄T

B̄ 0

] [
I−P 0

G 0

]
. (31)

Note that applying (S f )−1 to a vector[
u f
0

p̄

]
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is equivalent to solving the linear system
A f

I I B f T
I I A f T

0 I 0

B f
I I 0 B f

I0 0

A f
0 I B f T

I0 A f
00 B̄ f T

0 0 B̄ f 0



w

f
I

s f
I

w
f
0

s̄ f

=


0
0

u f
0

p̄ f

 .

If u f
0 is balanced, so is the velocity component of

(S f )−1

[
u f
0

p̄ f

]
.

Using elementary calculations with the matrices in (31) we obtain〈
S−1

N S
[ u0

p̄

]
,
[ v0

q̄

]〉
S
= 〈(S f

0 )
−1S0u0, v0〉S0 ,

for u0, v0 ∈ Range(I−P). In order to bound the condition number of the pre-
conditioned operator S−1

N S, we need only analyze the condition of the operator
(S f
0 )
−1S0. Note that

c〈u f
0, u f

0〉S0 ≤
〈(

S f )−1
S0u f

0, u f
0

〉
S0
≤ C〈u f

0, u f
0〉S0

is equivalent to

c〈S f u f
0, u f

0〉 ≤ 〈S0u f
0, u f

0〉 ≤ C〈S f u f
0, u f

0〉. (32)

The next theorem shows that the condition number estimate for the BDD method
introduced in (30) is of order O(1+ (1/κ)), where κ is the permeability of the
porous medium; see (1).

Theorem 2. If u f
0 is a balanced function then

〈S f
0 u f

0, u f
0〉 ≤ 〈S0u f

0, u f
0〉 ≺

(
1+ 1

κ

)
〈S f
0 u f

0, u f
0〉.

Proof. The lower bound follows trivially from S̃ f
0 and S̃ p

0 being positive on the
subspace of balanced functions. Next we concentrate on the upper bound.

Let v f
0 be a balanced function and v p

0 = 5v
f
0 . Define v p

= DHv
p
0 ; see (23).

Using properties of the discrete operator DH [38] we obtain

〈S p
0v

p
0, v

p
0〉 = a p(v p, v p)�

ν

κ
‖v

p
0‖

2
(H1/2)′(0).

Using the L2-stability property of mortar projection 5, we have

‖v
p
0‖

2
(H1/2)′(0) ≺ ‖v

p
0‖

2
L2(0) = ‖v

f
0‖

2
L2(0) ≺ ‖v

f
0‖

2
H1/2

00 (0)
.
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With SH defined in (22), define v f
= SHv

f
0 . Using properties of SH [40], we

have
ν‖v

f
0‖

2
H1/2

00 (0)
� a f (v f , v f )

and then
〈S p
0v

p
0, v

p
0〉 ≺

1
κ
〈S f u f

0, u f
0〉. (33)

This gives the upper bound and finishes the proof. �

Recall that we consider the preconditioned projected conjugate gradient method
applied to the Schur complement problem (15). Here is the algorithm:

(1) Initialize

x (0) = Q0b+w

d(0) = b− Sx (0)

with w ∈ Range(I−Q0S). Recall that all vectors have three components,
for instance,

x =

 x0
x̄ f

x̄ p

 and b =

b0
b̄ f

b̄p

 .
(2) Iterate k = 1, 2, . . . until convergence

Precondition: z(k−1)
= (S̃ f )†d(k−1),

Project: y(k−1)
= (I−Q0S)z(k−1)

βk
= 〈y(k−1), d(k−1)

〉/〈y(k−2), d(k−1)
〉 [β(1) = 0] ,

r (k) = y(k−1)
+β(k)r (k) [r (1) = y(0)] ,

α(k) = 〈y(k−1), d(k−1)
〉/〈d(k), Sr (k)〉,

x (k) = x (k−1)
+α(k)r (k),

d(k) = d(k−1)
−α(k)Sr (k).

Implementation of the projected preconditioned conjugate gradient algorithm for the
system (15) involving the BDD preconditioner (30).

7. FETI preconditioner

In this section we analyze a FETI preconditioner for the reduced linear system
(27); see [9; 19; 42; 24; 30; 37]. Recall the definition of F in (28). We propose
the following preconditioner

(N p)†(S p)(N p)†T , (34)

where (N p)† is the pseudo-inverse (N p)† = [(C̃ p)−1 0].
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Note that after computing the action of (S f )−1 and (S p)−1 in the application of
F to a zero average Lagrange multiplier, we end up with balanced functions. There-
fore, to apply the preconditioned operator (N p)†(S p)(N p)†T F to a zero mean
Lagrange multiplier, we do not need to solve a coarse problem at the beginning of
the CG, nor inside of the CG iteration.

The FETI preconditioner in (34) can be considered as the dual preconditioner
of the BDD preconditioner defined in (30); see the proof of Lemma 3 below.

Recall the definition of Si , i = f, p, in (19) and the definition of space of
balanced functions V0 = V f

0 × V p
0 in (25) and (24). We prove the following result.

Lemma 3. Let λ ∈3h p ∩ L2
0(0) be a zero mean Lagrange multiplier. Then

〈N f (S f )−1 N f Tλ, λ〉 ≺
1
κ
〈N p(S p)−1 N pTλ, λ〉.

Proof. Consider a zero mean Lagrange multiplier λ. Define t = (S p
0)
−1/2C̃ pTλ and

w f
= C̃ f Tλ. Then it is enough to prove that

‖(S f
0 )
−1/2w f

‖
2
≺ ‖t‖2.

Since w f is balanced, that is, w f
∈ V f

0 , we have that

‖(S f
0 )
−1/2w f

‖
2
= sup

z f ∈Z f
h f

〈(S f
0 )
−1/2w f , z f

〉
2

‖z f ‖2
= sup
v f balanced

〈w f , v f
〉

2

‖(S f
0 )

1/2v f‖2

= sup
v f balanced

〈λ, N f v f
〉

2

‖(S f
0 )

1/2v f‖2

= sup
v f balanced

〈(S p
0)
−1/2C̃ pλ, (S p

0)
1/2(C̃ p)−1C̃ f v f

〉
2

‖(S f
0 )

1/2v f‖2
.

Then using the Cauchy–Schwarz inequality and (33) in the proof of Theorem 2,
we have

‖(S f
0 )
−1/2w f

‖
2
= sup
v f balanced

〈t, (S p
0)

1/2(C̃ p)−1C̃ f v f
〉

2

‖(S f
0 )

1/2v f‖2

≤ ‖t‖2 sup
v f balanced

‖(S p
0)

1/2(C̃ p)−1C̃ f v f
‖

2

‖(S f
0 )

1/2v f‖2
≺

1
κ
‖t‖2. �

Using Lemma 3 we can derive the following estimate for the condition number
of the FETI preconditioner defined in (34).

Theorem 4. Let λ be a zero mean Lagrange multiplier. Then

〈N p(S p)−1 N T
p λ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1+ 1

κ

)
〈N p(S p)−1 N pTλ, λ〉.
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The condition number estimate O((κ+1)/κ) can be improved in the case where
the fluid side triangulation is finer than the porous side triangulation. This case has
some advantages when κ is small. In order to fix ideas and simplify notation we
analyze in detail the case where the triangulation of the fluid side is a refinement
of the porous side triangulation. In particular, in Theorem 7, we will prove that the
condition of the FETI preconditioned operator is of order O((κ + 1)/(κ + (h p)2))

in this simpler situation. The analysis that we will present to prove Theorem 7 can
be extended easily for the case where the fluid side triangulation is finer than (and
not necessarily a refinement of) the porous side triangulation; see Remark 8.

We assume that the fluid side discretization on 0, T
f
h f (�

f )|0, is a refinement
of the corresponding porous side discretization, T

p
h p(�p)|0. That is, assume that

h p
= rh f for some positive integer r . We will refer to this assumption as the

nested refinement assumption. For j = 1, . . . ,m p, we introduce the normal fluid
velocity φ f

j as the P2 bubble function defined on T
p
h p(�p)|0 and with support on

the interval ep
j = {0} × [( j − 1)h p, jh p

]. Recall that we are using P2/P1 Taylor–
Hood discretization on the fluid side. Under the nested refinement assumption we
have φ f

j ∈ Z f
h f with Z f

h f defined in (24). Denote by Z f
h f ,b the subspace of Z f

h f

spanned by all φ f
j , j = 1, . . . ,m p, and by Z f

h f ,0 the subspace of Z f
h f spanned by

functions with zero average on all edges ep
j , j = 1, . . . ,m p. Note that Z f

h f ,b and
Z f

h f ,0 form a direct sum for Z f
h f and the image 5Z f

h f ,0 is the zero vector.
Before deriving the condition number estimate of the FETI preconditioner under

the nested refinement assumption we first prove a preliminary lemma.

Lemma 5. Assume that h p
= rh f , where r is a positive integer. If v f

0,b ∈ Z f
h f ,b is a

balanced function, then

〈S f
0 v

f
0,b, v

f
0,b〉 ≺

κ

(h p)2
〈S p
05v

f
0,b,5v

f
0,b〉.

Proof. Let

v
f
0,b =

m p∑
j=1

β jφ
f
j ∈ Z f

h f ,b ⊂ Z f
h f ,

and note that since the basis functions φ f
j , j = 1, . . . ,m p, do not overlap each

other on 0, they are orthogonal in L2(0) and also in H 1
0 (0). Then

‖v
f
0,b‖

2
L2(0) =

m p∑
j=1

β2
j ‖φ

f
j ‖

2
L2(0) � h p

m p∑
j=1

β2
j , (35)

|v
f
0,b|

2
H1(0) =

m p∑
j=1

β2
j |φ

f
j |

2
H1

0 (e
p
j )
�

1
h p

m p∑
j=1

β2
j . (36)
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Using (35), (36) and a interpolation estimate we see that

‖v
f
0,b‖

2
H1/2

00 (0)
�

m p∑
j=1

β2
j �

1
h p ‖v

f
0,b‖

2
L2(0).

Note also that 〈S f v
f
0,b, v

f
0,b〉 ≤ a f (SHv

f
0,b,SHv

f
0,b)� ν‖v

f
0,b‖

2
H1/2

00 (0)
.

Denote by

z p
0,b =

m p∑
j=1

ρ jχep
j

the unique piecewise constant function such that5v f
0,b= z p

0,b. Note that |ρ j |� |β j |,
j = 1, . . . ,m p. We obtain

〈S f
0 v

f
0,b, v

f
0,b〉 ≺

ν

h p ‖v
f
0,b‖

2
L2(0) �

ν

h p ‖z
p
0,b‖

2
L2(0) (37)

≺
ν

(h p)2
‖z p
0,b‖

2
(H1/2)′(0) �

κ

(h p)2
〈S p
0 z p
0,b, z p

0,b〉, (38)

where we have used an inverse inequality for piecewise constant functions. �

We now translate Lemma 5 in a result concerning the dual preconditioner.

Lemma 6. Assume that h p
= rh f , where r is a positive integer and let λ be a zero

mean Lagrange multiplier. Then

(h p)2

κ
〈N p(S p)−1 N pTλ, λ〉 ≺ 〈N f (S f )−1 N f Tλ, λ〉.

Proof. We proceed as before. Let t = (S f
0 )
−

1
2 C̃ f Tλ and w = C̃ pλ. Then

‖(S p
0)
−

1
2w‖2 = sup

z p∈Z p
h p

〈(S p
0)
−

1
2w, z p

〉
2

‖z p‖2
= sup
v pbalanced

〈w, v p
〉

2

‖(S p
0)

1
2 v p‖2

= sup
v pbalanced

〈λ, N pv p
〉

2

‖(S p
0)

1
2 v p‖2

= sup
v

f
b balanced

〈λ, C̃ f v
f
b 〉

2

‖(S p
0)

1
2 (C̃ p)−1 N f v

f
b‖

2

= sup
v

f
b balanced

〈(S f
0 )
−

1
2 C̃ f Tλ, (S f

0 )
1
2 v

f
b 〉

2

‖(S p
0)

1
2 (C̃ p)−1C̃ f v

f
b‖

2

≤ ‖t‖2 sup
v

f
b balanced

‖(S f
0 )

1
2 v

f
b‖

2

‖(S p
0)

1
2 (C̃ p)−1C̃ f v

f
b‖

2
≺

κ

(h p)2
‖t‖2,

where the last step follows from Lemma 5. �

From Lemmas 3 and 6, the next theorem follows.
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Theorem 7. Assume that h p
= rh f , where r is a positive integer. Let λ be a zero

mean Lagrange multiplier, then(
1+

(h p)2

κ

)
〈N p(S p)−1 N pTλ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1+

1
κ

)
〈N p(S p)−1 N pTλ, λ〉.

We solve the system (27) using preconditioned conjugate gradient. Here is the
algorithm:

(1) Initialize:

x (0) = 0 (no coarse problem)

λ(0) = c

(2) Iterate k = 1, 2, . . . until convergence:

Precondition: y(k−1)
= (N p)†(S p)(N pT )†d(k−1),

βk
= 〈y(k−1), d(k−1)

〉/〈y(k−2), d(k−1)
〉 [β(1) = 0] ,

r (k) = y(k−1)
+β(k)r (k) [r (1) = y(0)] ,

α(k) = 〈y(k−1), d(k−1)
〉/〈d(k), Fr (k)〉,

x (k) = x (k−1)
+α(k)r (k),

d(k) = d(k−1)
−α(k)Fr (k).

Implementation of the preconditioned conjugate gradient algorithm for the system (27)
involving the FETI preconditioner (34).

Remark 8. Theorem 7 can be extended for the case where h f
≤ 2h p. We only

need to extend the argument given in the proof of Lemma 5. The basic idea in
the proof of Lemma 5 is to associate a bubble function φ f

j ∈ Z f
h f to each porous

side element ep
j , j = 1, . . . ,m p, in such a way that we can construct a one to

one and continuous map v f
0,b 7→ z p

0,b. The bubble functions φ f
j , j = 1, . . . ,m p,

can be chosen orthogonal in L2(0) and in H 1
0 (0). This can also be done when

h f
≤ h p. The smaller the h f , the closer is the size of the support of the bubble φ f

j

to the size of the element ep
j since more and more elements e f can be associated

to only one element ep. This construction can also be carried out in the case
h p < h f

≤ 2h p where nonorthogonal Taylor–Hood basis functions must be used.
This last situation leads to the appearance of an additional constant that depends
on the nonorthogonality; see Section 8.

Remark 9. We note that Lemma 5 can be used directly to obtain a bound for the
balancing domain decomposition preconditioner similar to the one presented in
Section 6 but with S̃ p instead of S̃ f in (30); see Proposition 2 of [25]. In this case
an additional variable elimination is needed. We have to eliminate the component
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of the normal fluid velocity in the space Z f
h f ,0 and work with the Schur comple-

ment with respect to the space Z f
h f ,b. This is rather difficult to implement (we can

use Lagrange multipliers in this case). Then passing to the dual preconditioner
permits us to take advantage of the case where the fluid side discretization on 0 is
a refinement of the corresponding porous side discretization.

Remark 10. Theorems 2, 4 and 7 are also valid for the case α f > 0 in (3). To
see this we need to compare, for different values of α f , the energy of discrete
extensions for a given normal velocity defined on 0. Given the outward normal
velocity v f

0 on 0, let SHα f v
f
0 denote the discrete harmonic extension in the sense of

(a f
α f , b f ), that is, the solution of problem (22) with a f replaced by a f

α f . Recall that
a f
= a f

0 , where a f
0 = aα f when α f

= 0, and therefore, SHv
f
0 =SH0v

f
0 . Note that

in (22) we have imposed the natural boundary condition τ T D(SHu f )η f = 0 on 0.
Now we define another extension denoted by ŜHv

f
0 . Given the outward normal

velocity v f
0 on 0, let ŜHv

f
0 be the (a f , b f )-discrete harmonic extension given

by the solution of (22) with the boundary condition ŜHv
f
0 · τ = 0. For both SH

and ŜH are imposed essential boundary condition v f
0 for the normal component

on 0. The difference between them is in how the boundary condition is imposed
for the tangential component on 0: For the SH, is imposed homogeneous natural
boundary condition, while for ŜH, is imposed homogeneous essential boundary
condition.

Both extensions SHα f and ŜH satisfy the zero discrete divergence and boundary
conditions in (22). Using this fact and the minimization property of the (a f

α f , b f )-
discrete harmonic extension SHα f and the (a f , b f )-discrete harmonic extension
ŜH, we get

a f (SHv
f
0 ,SHv

f
0 )

= a f
0 (SHv

f
0 ,SHv

f
0 ) (by definition)

≤ a f
0 (SHα f v

f
0 ,SHα f v

f
0 ) (by the minimization property of SH)

≤ a f
α f (SHα f v

f
0 ,SHα f v

f
0 ) (α f > 0)

≤ a f
α f (ŜHv

f
0 , ŜHv

f
0 ) (by the minimization property of SHα f )

= a f
0 (ŜH0v

f
0 , ŜH0v

f
0 ) (because ŜHu f

· τ f
= 0 on 0)

� ν‖v
f
0‖

2
H1/2

00 (0)

� a f (SH0v
f
0 ,SHv

f
0 ).

The last two equivalences follow from properties of the (a f , b)-discrete harmonic
extensions SH and ŜH (which coincides with the discrete Stokes harmonic ex-
tension) [28; 40]. The two equivalences appearing above are independent of the
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permeability, fluid viscosity and mesh sizes. Then, the energy of the (a f
α f , b)-

discrete harmonic extensions is equivalent to the energy of the (a f , b)-discrete
harmonic extension, that is, the discrete Stokes harmonic extension. This equiva-
lence guarantees the extensions of Theorems 2, 4 and 7 to the case α f > 0.

8. Numerical results

In this section we present numerical tests in order to verify the estimates in Theo-
rems 2, 4 and 7. We consider� f

= (1, 2)×(0, 1) and�p
= (0, 1)×(0, 1). See [11]

and [26] for examples of exact solutions and compatible divergence and boundary
data. Note that the reduced systems (15) and (27) involve only degrees of freedom
on the interface 0. To solve both reduced systems (15) and (27) we can use the
PCG algorithms described on pages 15 and 19. Recall that the original system
(11) is a “three times” saddle point problem. Note that since the finite element
basis of M f

h f ×M p
h p and 3h p

have no zero mean, the finite element matrix in (13)
has the kernel composed by constant pressures in �= int(� f ∪�p) and constant
Lagrange multipliers on 0. The corresponding system is solved up to a constant
pressure and a constant Lagrange multiplier. These constants can be recovered
when imposing the zero average pressure constraint [26].

In our test problems we compute the eigenvalues of the preconditioned operators.
We also run PCG until the initial residual is reduced by a factor of 10−6.

8.1. BDD preconditioner. In the case of the BDD preconditioner (30) for (15), we
solve a coarse problem before reducing the system to ensure balanced velocities at
the beginning of the CG iterations.

We consider α f
= 0 and ν = 1, and different values of h f and h p with non-

matching grids across the interface 0. Table 1 shows results for κ = 1, Table 2
for κ = 10−3 and Table 3 for κ = 10−5. These three tables reveal growth of order
O(1+ (1/κ)) in κ and hence, verify the sharpness of the estimate in Theorem 2.

h f
↓ h p

→ 3−1
∗ 2−0 3−1

∗ 2−1 3−1
∗ 2−2 3−1

∗ 2−3 3−1
∗ 2−4

2−1
∗ 2−0 1, 1.0189(3) 1, 1.0198(3) 1, 1.0194(3) 1, 1.0193(3) 1, 1.0193(3)

2−1
∗ 2−1 1, 1.0209(3) 1, 1.0200(3) 1, 1.0197(3) 1, 1.0196(3) 1, 1.0196(3)

2−1
∗ 2−2 1, 1.0217(3) 1, 1.0205(3) 1, 1.0202(3) 1, 1.0201(3) 1, 1.0201(3)

2−1
∗ 2−3 1, 1.0220(3) 1, 1.0208(3) 1, 1.0204(3) 1, 1.0203(3) 1, 1.0203(3)

2−1
∗ 2−4 1, 1.0221(3) 1, 1.0209(3) 1, 1.0205(3) 1, 1.0204(3) 1, 1.0204(3)

Table 1. Minimum and maximum eigenvalues (and number of
PCG iterations) for the BDD preconditioned operator. Here κ = 1
and α f

= 0.
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h f
↓ h p

→ 3−1
∗ 2−1 3−1

∗ 2−2 3−1
∗ 2−3 3−1

∗ 2−4

2−1
∗ 2−0 1, 21.0147(3) 1, 20.6035(3) 1, 20.3686(3) 1, 20.2893(3)

2−1
∗ 2−1 1, 21.3303(6) 1, 20.8549(7) 1, 20.6550(7) 1, 20.5836(7)

2−1
∗ 2−2 1, 22.0017(6) 1, 21.3392(9) 1, 21.1424(10) 1, 21.0735(10)

2−1
∗ 2−3 1, 22.2367(6) 1, 21.6045(10) 1, 21.3626(9) 1, 21.2955(10)

2−1
∗ 2−4 1, 22.3479(6) 1, 21.7006(10) 1, 21.4666(11) 1, 21.3929(9)

Table 2. Minimum and maximum eigenvalues (and number of
PCG iterations) for the BDD preconditioned operator. Here κ =
10−3 and α f

= 0.

h f
↓ h p

→ 3−1
∗ 2−1 3−1

∗ 2−2 3−1
∗ 2−3 3−1

∗ 2−4

2−1
∗ 2−0 1, 1977.08(3) 1, 1945.05(3) 1, 1932.10(3) 1, 1928.32(3)

2−1
∗ 2−1 1, 1997.27(6) 1, 1972.77(7) 1, 1961.34(7) 1, 1957.88(7)

2−1
∗ 2−2 1, 2053.57(6) 1, 2021.03(13) 1, 2010.27(17) 1, 2006.90(17)

2−1
∗ 2−3 1, 2079.68(6) 1, 2044.05(13) 1, 2032.42(21) 1, 2029.13(31)

2−1
∗ 2−4 1, 2090.10(6) 1, 2054.33(13) 1, 2042.26(22) 1, 2038.90(28)

Table 3. Minimum and maximum eigenvalues (and number of
PCG iterations) for the BDD preconditioned operator. Here κ =
10−5 and α f

= 0.

8.2. FETI preconditioner. In the case of the FETI preconditioner (34), we solve
the reduced system (27) up to a constant Lagrange multiplier and a constant pres-
sure. These constants are recovered after enforcing zero mean pressure on � =
int (�

f
∪�

p
) [26]. We recall that the FETI method can be viewed as the dual

preconditioner counterpart of the BDD preconditioner. We repeat the same exper-
iments mentioned above for the latter preconditioner.

h f
↓ h p

→ 3−1
∗ 2−1 3−1

∗ 2−2 3−1
∗ 2−3 3−1

∗ 2−4

2−1
∗ 2−0 1.0000, 1.0208(3) 1.0000, 1.0194(3) 1.0000, 1.0193(3) 1.0000, 1.0193(3)

2−1
∗ 2−1 1.0017, 1.0200(3) 1.0000, 1.0197(3) 1.0000, 1.0196(3) 1.0000, 1.0196(3)

2−1
∗ 2−2 1.0026, 1.0205(3) 1.0004, 1.0202(3) 1.0000, 1.0200(3) 1.0000, 1.0201(3)

2−1
∗ 2−3 1.0027, 1.0208(3) 1.0007, 1.0204(3) 1.0001, 1.0203(3) 1.0000, 1.0203(3)

2−1
∗ 2−4 1.0028, 1.0209(2) 1.0007, 1.0205(3) 1.0002, 1.0204(3) 1.0000, 1.0204(3)

2−1
∗ 2−5 1.0028, 1.0209(2) 1.0007, 1.0206(3) 1.0002, 1.0205(3) 1.0000, 1.0204(3)

Table 4. Minimum and maximum eigenvalues (and number of
PCG iterations) of the FETI preconditioned operator. Here κ = 1
and α f

= 0.
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h f ↓ h p→ 3−1
∗ 2−1 3−1

∗ 2−2 3−1
∗ 2−3 3−1

∗ 2−4

2−1
∗ 2−0 1.000, 20.7608(3) 1.000, 20.4405(3) 1.000, 20.3110(3) 1.000, 20.2732(3)

2−1
∗ 2−1 2.707, 20.9627(5) 1.000, 20.7177(7) 1.000, 20.6034(7) 1.000, 20.5688(7)

2−1
∗ 2−2 3.634, 21.5257(5) 1.425, 21.2003(10) 1.000, 21.0927(12) 1.000, 21.0590(12)

2−1
∗ 2−3 3.714, 21.7868(5) 1.651, 21.4305(9) 1.106, 21.3142(11) 1.000, 21.2813(12)

2−1
∗ 2−4 3.760, 21.891 (5) 1.663, 21.5333(9) 1.162, 21.4126(11) 1.026, 21.3790(12)

2−1
∗ 2−5 3.771, 21.937 (5) 1.673, 21.5768(9) 1.164, 21.4561(11) 1.040, 21.4220(12)

Table 5. Minimum and maximum eigenvalues (and number of
PCG iterations) for the FETI preconditioned operator. Here κ =
10−3 and α f

= 0.

h f
↓ h p

→ 3−1
∗ 2−2 3−1

∗ 2−3 3−1
∗ 2−4

2−1
∗ 2−0 1.00, 1945.05(3) 1.00, 1932.10(3) 1.00, 1928.32(3)

2−1
∗ 2−1 1.00, 1972.77(7) 1.00, 1961.34(7) 1.00, 1957.88(7)

2−1
∗ 2−2 43.45, 2021.03(11) 1.00, 2010.27(17) 1.00, 2006.90(17)

2−1
∗ 2−3 66.10, 2044.05(11) 11.58, 2032.42(20) 1.00, 2029.13(37)

2−1
∗ 2−4 67.29, 2054.33(10) 17.20, 2042.26(19) 3.64, 2038.90(35)

2−1
∗ 2−5 68.32, 2058.68(10) 17.42, 2046.61(10) 5.04, 2043.20(36)

Table 6. Minimum and maximum eigenvalues (and number of
PCG iterations) for the FETI preconditioned operator. Here κ =
10−5 and α f

= 0.

We consider α f
= 0, ν = 1 and different values of h f and h p with nonmatching

grids across the interface 0; see Table 4 on the previous page for the results when
κ = 1, Table 5 for κ = 10−3 and Table 6 for the case κ = 10−5. Note that in Tables
4–6 the minimum eigenvalues are strictly greater than one when h f

≤ 2h p, and
the value of the minimum eigenvalues seem to stabilize very quickly for smaller
h f with fixed h p. This confirms the extension of Theorem 7 for the case where
h f
≤ 2h p (Remark 8). In Table 7 we present the numerical results where one of

the meshes on the interface is a refinement of the other side triangulation on the
interface. We observe a behavior similar to the behavior of Table 6 with a bigger
value for the minimum eigenvalue when h f ≤ h p. This verifies the estimates of
Theorem 7. This shows that the FETI preconditioner is scalable for the parameters
faced in practice, that is, when the fluid side mesh is finer than the porous side mesh,
and the permeability κ is very small. We conclude that the numerical experiments
concerning the FETI preconditioner reveal the sharpness of the results obtained in
Theorems 4 and 7 and Remark 8.

Recall that we have assumed α f
= 0. Now consider α f > 0. Numerical exper-

iment were performed with α f > 0 revealing results similar to the ones presented
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h f
↓ h p

→ 2−1
∗ 2−2 2−1

∗ 2−3 2−1
∗ 2−4

2−1
∗ 2−0 1.00, 1961.35(3) 1.00, 1937.86(3) 1.00, 1929.93(3)

2−1
∗ 2−1 1.00, 1986.49(7) 1.00, 1966.50(7) 1.00, 1959.36(7)

2−1
∗ 2−2 176.56, 2034.92(7) 1.00, 2015.24(18) 1.00, 2008.35(17)

2−1
∗ 2−3 151.62, 2061.45(7) 44.91, 2037.26(13) 1.00, 2030.55(45)

2−1
∗ 2−4 154.45, 2071.06(7) 38.04, 2047.66(13) 11.98, 2040.29(21)

2−1
∗ 2−5 154.86, 2075.43(7) 38.73, 2051.91(13) 10.20, 2044.66(24)

Table 7. Minimum and maximum eigenvalues (and number of
PCG iterations) for the FETI preconditioned operator. Here κ =
10−5 and α f

= 0. The refinement condition of Theorem 7 is satis-
fied under the diagonal.

h f
↓ h p

→ 3−1 2−2 3−1 2−3 3−1 2−4

2−1 2−0 1.00, 1678.07(3) 1.00, 1666.84(3) 1.00, 1663.55(3)
2−1 2−1 1.00, 1787.53(7) 1.00, 1776.50(7) 1.00, 1773.22(7)
2−1 2−2 41.65, 1812.69(17) 1.00, 1801.61(17) 1.00, 1798.29(17)
2−1 2−3 63.63, 1816.43(17) 11.24, 1804.66(13) 1.00, 1801.34(43)
2−1 2−4 66.82, 1817.38(17) 16.75, 1805.30(13) 3.58, 1801.91(23)
2−1 2−5 67.99, 1817.68(17) 17.37, 1805.57(13) 4.97, 1802.14(24)

Table 8. Minimum and maximum eigenvalues (and number of
PCG iterations) for the FETI preconditioned operator. Here κ =
10−5 and α f

= 1.

above for the case α f
= 0. We only include Table 8 which shows the extreme

eigenvalues of the FETI preconditioned operator for the case α f
= 1, ν = 1 and

κ = 10−5. This table presents a similar behavior to the one with α f
= 0 in Table

6 and hence confirms Remark 10, which says that the parameter α f does not play
much of a role for preconditioning.

9. The multisubdomain case

The methods introduced in the previous sections considered only the two-subdo-
main cases where discrete Stokes and Darcy indefinite subproblems are solved
exactly in each subdomain and in each CG iteration. These methods might be very
costly for large subproblems since direct or accurate iterative local solvers for the
indefinite systems have to be used. In this section we show that the methodology
developed for the two-subdomain cases can be developed also for the multisub-
domain case. The analysis (using tools developed in Section 7) and numerical
experiments for the multisubdomain case will be presented elsewhere.
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We now extend the FETI method of Section 7 for many subdomains when
the triangulations T

f
h f and T

p
h p coincide on the interface 0. Let {�i

j }
ni

j=1 be a
geometrically conforming substructures of �i , i = f, p. We also assume that
{�

f
j }

n f

j=1 ∪ {�
p
j }

n p

j=1 form a geometrically conforming decomposition of �; hence,
the two decompositions are aligned on the interface 0. We define the local inner
interfaces as 0i

j = ∂�
i
j \ ∂�

i , j = 1, . . . , ni , i = f, p. We also define

0̃ =

n f⋃
j=1

0
f
j ∪

n p⋃
j=1

0
p
j ∪0.

See Figure 1. In order to simplify the presentation, we assume that for the fluid
region, the spaces X f

h f and M f
h f are the P2/P0 triangular finite elements, while

for the porous region, the spaces X p
h p ⊂ X p and M p

h p ⊂ L2(�p) are the lowest
order Raviart–Thomas finite elements based on triangles. Similar as in the previous
sections, and using the FETI-DP framework [42], we decompose the velocity and
pressure spaces as follows:

X f
I : interior velocities in the subdomains {� f

j }
n f

j=1

X f
0̃

: interface velocities on 0̃ ∩�
f

X p
I : interior velocities in the subdomains {�p

j }
n p

j=1

X p
0̃

: interface velocities on 0̃ ∩�
p

M i
I , (i = p, f ): interior zero mean pressure in each subdomain {�i

j }
ni

j=1, i = f, p

M i
0, (i = p, f ): constant pressure in each subdomain {�i

j }
ni

j=1, i = f, p

MI = M f
I ×M p

I

X I = X f
I × X p

I , X0̃ = X f
0̃
× X p

0̃
, MI = M f

I ×M p
I and M0 = M f

0 ×M p
0

Figure 1. Global interface 0̃ that includes all local interfaces and
the Stokes–Darcy interface 0.
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After imposing the mortar condition as in Section 4 we can reduce (11) to a
Schur complement system on the interface 0̃,

S̃0̃u0̃ = b̃0̃ (39)

which is the multisubdomain generalization of the reduced system (15).
The 0̃-interface velocity space X0̃ can be decomposed in primal and dual de-

grees of freedom, that is, X0̃ = XC ⊕ X1 where XC consists of functions which
are continuous with respect to the primal degrees of freedom. The primal vari-
ables for the fluid velocity field satisfy the continuity of the fluid velocities at the
substructure corners and the continuity of the mean normal and mean tangential
component on each face of the substructures {� f

j }
n f

j=1. For the porous side, the
primal variables satisfy the continuity of the mean normal flux on the each face of
the subsubstructures {�p

j }
n p

j=1 [27; 32; 33; 34; 43]. For faces of the subdomains on
0, only the continuity of the mean fluxes is satisfied. The space X1 includes the
remaining fluid side velocity degrees of freedom and the remaining porous media
velocity degrees of freedom.

Functions in X1 do not satisfy the continuity requirements on 0̃. The continuity
requirement can be enforced using Lagrange multipliers λ̃ on 0̃ and represented
by the equation

B1v1 = 0.

We ensure that this condition coincides with the last equation of (13) that corre-
sponds to the flux continuity across the Stokes–Darcy interface 0. On that interface
we use the same Lagrange multipliers of the dual formulation (27). Proceeding as
in [32] we can obtain a reduced system of the form

F̃ λ̃= b̃,

which corresponds to the multisubdomain version of (27). The preconditioner op-
erator is of the form

B1 S̃0̃BT
1,

where S̃0̃ was introduced in (39). See [27] for a more detailed discussion and
numerical experiments for the FETI method in the multisubdomain case.

10. Conclusions and final comments

We consider the problem of coupling fluid flows with porous media flows with
Beavers–Joseph–Saffman condition on the interface. We choose a discretization
consisting of Taylor–Hood finite elements of order two on the free fluid side and the
lowest order Raviart–Thomas finite element on the porous fluid side. The meshes
are allowed to be nonmatching across the interface.
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We design and analyze two preconditioners for the resulting symmetric linear
system. We note that the original linear system is symmetric indefinite and involves
three Lagrange multipliers: one for each subdomain pressure and a third one to
impose the weak conservation of mass across the interface 0; see Section 1.

One preconditioner is based on BDD methods and the other one is based on
FETI methods. In the case of the BDD preconditioner, the energy is controlled
by the Stokes side, while in the FETI preconditioner, the energy is controlled by
the Darcy system; see Theorems 2 and 4. In both cases a bound C1((κ + 1)/κ) is
derived. Furthermore, under the assumption that the fluid side mesh on the inter-
face is finer than the corresponding porous side mesh, we derive the better bound
C2((κ + 1)/(κ + (h p)2)) for the FETI preconditioner; see Theorem 7 and Remark
8. This better bound also shows that the FETI preconditioner is more scalable for
parameters faced in practice, for example, problems with small permeability κ and
where the fluid side mesh is finer than the porous side mesh. The constants C1

and C2 above are independent of the fluid viscosity ν, the mesh ratio across the
interface and the permeability κ .
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A CUT-CELL METHOD FOR SIMULATING SPATIAL MODELS
OF BIOCHEMICAL REACTION NETWORKS

IN ARBITRARY GEOMETRIES

WANDA STRYCHALSKI, DAVID ADALSTEINSSON AND TIMOTHY ELSTON

Cells use signaling networks consisting of multiple interacting proteins to respond
to changes in their environment. In many situations, such as chemotaxis, spatial
and temporal information must be transmitted through the network. Recent
computational studies have emphasized the importance of cellular geometry in
signal transduction, but have been limited in their ability to accurately represent
complex cell morphologies. We present a finite volume method that addresses
this problem. Our method uses Cartesian-cut cells in a differential algebraic
formulation to handle the complex boundary dynamics encountered in biological
systems. The method is second-order in space and time. Several models of
signaling systems are simulated in realistic cell morphologies obtained from live
cell images. We then examine the effects of geometry on signal transduction.

1. Introduction

Cells must be able to sense and respond to external environmental cues. Information
about external signals, such as hormones or growth factors, is transmitted by
signaling pathways to the cellular machinery required to generate the appropriate
response. Defects in these pathways can lead to diseases, such as cancer, diabetes,
and heart disease. Therefore, understanding how intracellular signaling pathways
function is not only a fundamental problem in cell biology, but also important for
developing therapeutic strategies for treating disease.

In many pathways, proper signal transduction requires that both the spatial
and temporal dynamics of the system be tightly regulated [10]. For example,
recent experiments have revealed spatial gradients of protein activation in migrating
cells [19]. Mathematical models can be used to elucidate the control mechanisms
used to regulate the spatiotemporal dynamics of signaling pathways, and recent
computational studies emphasize the importance of cellular geometry in signaling
networks [16; 17; 23]. For computational simplicity, many of these investigations
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assume idealized cell geometries [12; 16], whereas others approximate irregularly
shaped cells using a “staircase” representation of the cell membrane [22].

Both finite element and finite volume methods have been used to simulate spatial
models of biochemical reaction networks [16; 22; 23; 31]. The most common finite
volume algorithm to simulate reaction networks in two and three dimensions is
the virtual cell algorithm [22]. Cellular geometries are represented by staircase
curves. The authors note that the approximation of fluxes across membranes leads
to a decrease in the spatial accuracy of the numerical method to first-order. The
temporal accuracy of algorithm in [22] is also limited to first-order. For finite
element methods, which typically require a triangulation of the computational
domain, grid generation can be a challenge. This becomes especially true if the
boundaries of the computational domain are moving.

To overcome the issues of accurate boundary representation and grid generation,
we developed a finite volume method that utilizes a Cartesian grid. Our numerical
scheme is based on a cut-cell method that accurately represents the cell boundary
using a piecewise-linear approximation. The method presented here extends the
results on embedded boundary methods to systems of nonlinear reaction diffusion
equations with arbitrary boundary conditions. Embedded boundary methods [4; 5;
9; 13; 15; 25] have been used to solve Poisson’s equation [9] and the heat equation
[15; 25] with homogeneous Dirichlet and Neumann boundary conditions as well
as hyperbolic conservation laws [5]. Surface diffusion of one species in three
dimensions was simulated with an embedded boundary discretization in [24]. We
also offer an alternative formulation to embedded boundary methods for handling
the temporal update. In our formulation, the boundary conditions form a system of
nonlinear algebraic equations that can be solved with existing differential algebraic
equation solvers. We provide a novel use of DASPK (Differential Algebraic Solver
Pack) [2] as a time integrator for the finite volume method. The embedded boundary
spatial discretization combined with the differential algebraic formulation allows
us to achieve second-order accuracy in space and time. Our method also provides
an appropriate framework for addressing moving boundary problems using level
set methods [18; 26].

The remainder of the article is organized as follows. In Section 2, we describe
the mathematical formulation and governing equations. In Section 3, we describe
the numerical scheme, the flux based formulation, and coupling reactions terms
on the interior and boundary with spatial terms to form one interconnected system.
We also outline how the system is adapted for the DASPK numerical solver [2]. In
Section 4, we verify the numerical method. The computed solution is compared to a
known solution on a circular domain. Additionally, we perform grid refinements of
the computed solution on a well resolved grid to show convergence in the absence of
an exact solution. The numerical method is then demonstrated on a more physically
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relevant domain with an irregular domain. Finally, we simulate a biologically
relevant reaction-diffusion model on a very irregular domain.

2. Mathematical formulation

Spatial models of biochemical reaction networks are typically represented using
partial differential equations consisting of reaction and diffusion terms. Active
transport, driven by molecular motors, also occurs within cells. This effect can be
included in our numerical scheme by the use of advection terms and will be addressed
in future work. For simplicity we restrict ourselves to two spatial dimensions x
and y. For a given chemical species, the reaction terms encompass processes such
as activation, degradation, protein modifications and the formation of molecular
complexes. These reactions typically include nonlinear terms, such as those arising
from Michaelis–Menten kinetics. In a system consisting of n chemical species,
the concentration of the i th species ci evolves in space and time according to the
equation

∂ci

∂t
=−∇ · J+ fi (c), (1)

where J = −Di∇ci is the flux density, Di is the diffusion coefficient, and the
function fi (c) models the reactions within the cell that affect ci . The elements of
the vector c are the concentrations of the n chemical species. Reactions also may
occur on the cell membrane yielding nonlinear conditions on the boundary ∂�:

−DEn · ∇ci |∂�+ g(c)|∂� = 0. (2)

Equations (1) and (2) are solved subject to appropriate initial conditions ci (x, y, 0)
for each species in the system.

3. Numerical methods

Our goal is to develop a simulation tool that can accurately and efficiently solve
spatial models of signaling and regulatory pathways in realistic cellular geometries.
We obtain the computational domain from live-cell images. The model equations
are solved on a Cartesian grid by discretizing the Laplacian operator, which models
molecular diffusion, with a finite volume method.

3.1. Computational domain. Figure 1 shows a gray-scale image of a mouse fi-
broblast [19]. Because the original image is noisy, the image was smoothed by
convolving it twice with the standard five-point Gaussian smoothing filter. After
smoothing, a suitable thresholding value was picked, and the front was computed by
an iso-contour finder. A signed distance function is constructed with the smoothened
boundary using fast marching methods [14]. The zero-level set of the signed distance
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Figure 1. Grayscale image of a mouse fibroblast taken from sup-
plemental data in [19] (left) and the smoothened boundary (right).

function yields piecewise linear segments used to define cut cells (Figure 2). Implicit
representation of irregular boundaries has also been proposed in [4; 13].

3.2. Discretization of the spatial operator. We utilize a Cartesian grid-based, finite
volume algorithm originally presented in [9] to discretize the diffusion operator
arising from (1). Finite volume methods store the average value of the concentration
over a computational grid cell at the location (i, j). That is,

c̄i, j =
1

Vi, j

∫∫
Vi, j

c(x, y) dV, (3)

Figure 2. Computational boundary (dashed line) with an assumed
higher-order representation of the cell boundary drawn as a solid
line.
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where Vi, j is the volume of the (i, j) grid cell. Inserting (3) into (1) produces

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

∫∫
Vi, j

∇ · J dV . (4)

The divergence theorem allows us to convert the above volume integral into a
surface integral,

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

∫
∂Vi, j

(J · En) d S. (5)

For interior grid cells, we have

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

[∫ y j+1/2

y j−1/2

(
Jx(xi+1/2, y)− Jx(xi−1/2, y)

)
dy

+

∫ xi+1/2

xi−1/2

(
Jy(x, y j+1/2)− Jy(x, y j−1/2)

)
dx

]
, (6)

where Jx =−D(∂c/∂x) and Jy =−D(∂c/∂y). Approximation of the integrals in
(6) with the midpoint rule yields

∂ci, j

∂t
− f (ci, j )≈−

1
Vi, j

[
1y(Jx(xi+1/2, y j )− Jx(xi−1/2, y j ))

+1x
(
Jy(xi , y j+1/2)− Jy(xi , y j−1/2)

)]
. (7)

By approximating the gradient terms with centered differences, we arrive at the
standard five-point Laplacian. Therefore in computational grid cells with volume
Vi, j = 1, the finite volume stencil is the same as the five-point Laplacian approxi-
mation.

The cut-cell method generalizes as follows. The boundary of the computational
domain is approximated as a piecewise linear segments (Figure 2, dashed line), and
grid cells that the boundary passes through are referred to as cut cells. The volume
of a cut cell is computed by recasting the volume integral as a boundary integral:

Vi, j =

∫∫
Vi, j

dV =
∫∫

Vi, j

∇ ·

( x
2
,

y
2

)
dV =

∫
∂Vi, j

(( x
2
,

y
2

)
· En
)

d S, (8)

where En is the normal vector to the surface. The integral on the right can be
computed exactly for the polygon. Each segment is evaluated, then summed. The
center of mass can also be computed using a boundary integral, for example:∫∫

Vi j

xdV =
∫∫

Vi j

∇ ·

( x2

2
, 0
)

dV =
∫
∂Vi, j

(( x2

2
, 0
)
· En
)

d S. (9)

We initialize cut cells with values computed at the centroid as in [15].
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Next, we construct the integral on the right side of (5) for a cut cell. In general,
there are up to five surface integrals to approximate. Let al,m ∈ [0, 1] represent the
fraction of each of the four cell edges covered by the cut cell and a f be the length
of the line segment representing the boundary. Then (7) becomes

∂ci, j

∂t
− f (ci, j )≈−

1
Vi, j

[
1y

(
ai+1/2, j Jx(xci+1/2, y j )− ai−1/2, j Jx(xci−1/2, y j )

)
+1x

(
ai, j+1/2 Jy(xi , yc j+1/2)− ai, j−1/2 Jy(xi , yc j−1/2)

)
+ a f J f

]
. (10)

The notation (xci±1/2, y j ) indicates the midpoint of partially covered (xi±1/2, y j )

face. Let

Fi±1/2, j =−ai±1/2, j1y Jx(xci±1/2, y j ), Fi, j±1/2 =−ai, j±1/21x Jy(xi , yc j±1/2).

With this notation, we rewrite the previous equation as

∂ci, j

∂t
− f (ci, j )≈

1
Vi, j

(
Fi+1/2, j − Fi−1/2, j + Fi, j+1/2− Fi, j−1/2− F f

i, j

)
. (11)

We refer to the Fs as the surface fluxes (Figure 3). On a full edge with al,m = 1 the
surface flux is calculated with centered differences. For example, in Figure 3, we
have

Fi−1/2, j+1 = D1y
ci, j+1− ci−1, j+1

1x
. (12)

The flux gradient across a cut edge, for example (xi−1/2, y j ), is approximated by
a linear interpolation of two gradients, which are computed by centered differences.
A linear interpolation formula between two points y1 and y2 as a function of a

ci−1, j+1 ci, j+1 ci+1, j+1

ci−1, j ci, j

Fi−1/2, j
Fi, j+1/2

F f
i, j

Outside

Figure 3. Diagram of fluxes for cut cells where shaded boxes
indicate cells that are inside the boundary.
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parameter µ ∈ [0, 1] is
y I
= (1−µ)y1+µy2. (13)

In the case of a cut-cell edge, µ= (1+ al,m)/2. For example, to construct Fi−1/2, j

in Figure 3, the gradient at (xi−1/2, y j ) and (xi−1/2, y j+1) is used:

Fi−1/2, j = Dai−1/2, j1y
[
(1+ ai−1/2, j )

2
(ci, j − ci−1, j )

1x

+
(1− ai−1/2, j )

2
(ci, j+1− ci−1, j+1)

1x

]
. (14)

To calculate the flux through a boundary, for example, F f
i, j , we compute the

gradient along a line normal to the boundary and centered at the boundary midpoint.
To find function values on the normal line, we interpolate using three equally spaced
cell-centered points (Figure 4). If the normal line is oriented with an angle of
π/4 < |θ | < 3π/4 relative to the horizontal grid lines, horizontal grid points are
used to compute the values on the line. Otherwise vertical points are used.

The two points computed along the normal line and the value on the boundary
are then used to construct a quadratic polynomial. The concentration gradient is
calculated by differentiating the quadratic polynomial and evaluating the result at
the boundary point c f :

G f
=

1
d2− d1

[
d2

d1
(c f
− cI

1)−
d1

d2
(c f
− cI

2)

]
, (15)

cI
2

cI
1

c f

Outside

Figure 4. White circles indicate interpolated values that depend
on the grid-based values.
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where cI
1 and cI

2 are the interpolated values along the normal line and d1 and d2,
respectively, are the distances of these two points from the boundary. The flux F f

i j
in (11) is calculated by multiplying G f by the area of the cut-cell edge a f and the
diffusion coefficient D. The discretization of the boundary condition (2) becomes
the algebraic equation

DG f
+ g(c f )= 0. (16)

Because all gradients are constructed with second-order methods, the overall dis-
cretization scheme is second-order in space. Further discussion on the accuracy of
the spatial discretization scheme can be found in [9].

3.3. Time discretization. Spatial discretizations of (1) and (2) are treated as a
differential-algebraic system of nonlinear equations (DAE). The general form for a
differential-algebraic system is

F(t,C,C ′)= 0, (17)

where C is an (Ng+Nb)×1 vector. The first Ng entries are associated with Cartesian
grid based values in the differential-algebraic system from the discretization of
(1) for the chemical species concentrations. These entries have an explicit time
derivative term. The Nb remaining entries arise from discretizing the boundary
conditions given in (2) that form algebraic constraints. As noted in [1], reformulating
algebraic constraints in a nonlinear model as a system of ordinary differential
equations may be time consuming or impossible. DAEs formed by reaction-diffusion
equations described in Section 2 are semiexplicit, index-1 systems of the form

C ′1 = F1(C1,C2, t),

0 = F2(C1,C2, t).
(18)

C1 represents the first Ng variables and C2 represents the remaining Nb variables.
Equation (18) is an index-1 system if and only if ∂F2/∂C2 is nonsingular [1].
Ordinary differential equations are index-0.

We use the DASPK solver described in [2] as a time integrator for our differential
algebraic system. In DAPSK, backward differentiation formulas (BDF) discretize
the time derivative in (17). A basic implicit method with a backward Euler time
discretization of (17) is given by,

F
(

tn+1,Cn+1,
Cn+1

−Cn

1t

)
= 0, (19)

where n is defined such that tn
= n1t . Newton’s method can be used to solve the

resulting nonlinear equations for Cn+1,

Cn+1
m+1 = Cn+1

m −

(∂F
∂C
+

1
1t

∂F
∂C ′

)∣∣∣−1

Cn+1
m

F
(

tn+1,Cn+1
m ,

Cn+1
m −Cn

1t

)
, (20)
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where m is the index of the Newton iteration. In order to achieve higher-order
temporal accuracy, a higher-order interpolating polynomial is used to approximate
the time derivative.

In a k-step BDF, the time derivative is replaced by the derivative of an inter-
polating polynomial at k + 1 times tn+1, tn . . . , tn+1−k evaluated at tn+1. If we
approximate the derivative using a kth order stencil using k known values and the
implicit value Cn+1 we get

C ′ n+1
≈

1
1t

(
α0Cn+1

+

k∑
i=1

αi Cn+1−i
)
. (21)

The coefficients of the BDF are given by αi s. In DAPSK, these values are coefficients
of the Newton divided difference interpolating polynomial [1]. The default order of
the BDF method in DASPK is five.

The new implicit equation to be solved at each time step is

F
(

tn+1,Cn+1,
1
1t

(
α0Cn+1

+

k∑
i=1

αi Cn+1−i
))
= 0. (22)

This can be rewritten as

F
(

tn+1,Cn+1,
α0

1t
Cn+1

+ v
)
= 0, (23)

where v is a vector that depends on previously computed time values. Details of
choosing step-size, starting selection and variable order strategies are found in [1].
The nonlinear system is solved with a modified Newton’s method, given by

Cn+1
m+1 = Cn

m − ζ
(∂F
∂C
+
α0

1t
∂F
∂C ′

)∣∣∣−1

Cn+1
m

F
(

tn+1,Cn+1
m ,

α0

1t
Cn+1

m + v
)
, (24)

where ζ is a constant chosen to speed up convergence and m is the iteration index.
Each step of the Newton iteration requires inverting the matrix

A =
∂F
∂C
+
α0

1t
∂F
∂C ′

. (25)

We store this matrix in sparse triple format, and use routines from SPARSKIT [20]
to solve the linear system iteratively. The generalized minimal residual (GMRES)
method [21] with an incomplete LU (ILU) preconditioner is used to solve the linear
system.

4. Results

4.1. Convergence tests. To demonstrate the accuracy of our method on a domain
containing all types of cut cells, the convergence of our method is compared against
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an exact solution on a circle. The exact solution to the diffusion equation with a
zero Dirichlet boundary condition can be found in terms of Bessel functions. Let λ
denote the first root of the Bessel function J0(x), and r be the radius of the circle
centered at the point (0.5, 0.5). Then the expression

f (x, y, t)= exp
(
−D

(
λ
r

)2
t
)

J0

(
λ

√

(x − 0.5)2+ (y− 0.5)2

r

)
(26)

is an exact solution to the diffusion equation.
For this example, the error is computed as the difference between computed

solution values on a triangular grid subtracted from the exact solution. The grids for
both two dimensional triangular meshes were the same. For purposes of generating
the following convergence data, the spatial steps 1x and 1y are equal and set to
1/N , where N is the grid size. The time step 1t is set to 1x/4 (that is, it is refined
with the spatial step size). Because DASPK uses variable time steps, the output at
the time step requested might be interpolated as described in [1]. A time series of
the truncation error in the infinity norm over time is shown in Figure 5. Table 1
lists the truncation error at the simulation time t = 0.4. The convergence rate r is
calculated as

r = log
e1

e2

/
log

1x1

1x2
, (27)

where e1 and e2 are errors computed in norms with grid spacing 1x1 and 1x2. A
log-log plot of truncation error as a function of the spatial step is shown in Figure 6.
The error was calculated with the computed and exact solutions at the time value of
t = 0.4. The results of this analysis demonstrate global second-order accuracy of
the numerical method.

Next we tested a nonlinear system in which a protein C can exist in two dis-
tinct chemical states: active and inactive. The reactions that convert the protein
between the two states are assumed to follow Michaelis–Menten kinetics, which
describes the kinetics of many enzymatic reactions including phosphorylation and
dephosphorylation events [11]. The protein C is deactivated in the interior of the

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.00·10−3 2.95·10−4
− 2.61·10−4

− 5.46·10−4
−

100 × 100 2.50·10−3 4.94·10−5 2.58 4.32·10−5 2.59 9.28·10−5 2.56
200 × 200 1.25·10−3 1.05·10−5 2.24 9.20·10−6 2.23 2.09·10−5 2.15
400 × 400 6.25·10−4 2.42·10−6 2.11 2.13·10−6 2.11 5.42·10−6 1.95

Table 1. The norms and convergence rates for the diffusion equa-
tion at the time value of 0.4.
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Figure 5. L∞-norm truncation error for the diffusion equation,
with size N = 100, 200, 400 (from top to bottom). The time step at
each refinement was set to 1/(4N ).

computational domain according to the following equations:

∂Ci

∂t
= D1Ci +

k2Ca

Km2+Ca
,

∂Ca

∂t
= D1Ca −

k2Ca

km2+Ca
, (28)

where Ci and Ca are the concentrations of inactive and active protein, respectively,
k2 is the maximum deactivation rate, and Km2 is the Michaelis constant. Activation
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Figure 6. Truncation error for the diffusion equation at the time
value of 0.4. The convergence data is the same as in Table 1.
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occurs on the boundary, ∂�, according to the following boundary conditions:

−DEn · ∇Ci |∂� =
k1SCi

Km1+Ci

∣∣∣
∂�
, −DEn · ∇Ca|∂� =−

k1SCi

Km1+Ci

∣∣∣
∂�
, (29)

where k1 is the maximum activation rate and Km1 is the Michaelis constant. The
equations are solved in the domain

�(r, θ)= r ≤ 0.3− 0.09 sin(4θ). (30)

In our simulation, � is shifted to the center of the unit box. The initial concentration
of inactive protein is assumed to be constant and equal to 1. There is initially no
active protein. Figure 7 shows a plot of the active concentration at t = 0.25.
For visualization purposes, the computational domain and boundary points are
triangulated with Triangle [27]. The concentration of the active protein is shown as
a cross-section of the two-dimensional geometry at several time values in Figure
7, bottom. The constants (see figure caption) were arbitrarily chosen to generate a
gradient. Execution times for Mac Pro desktop computer with dual-core 2.66 GHz
Intel Xeon processors for different grid sizes are listed in Table 2.

We compute the error as the difference between successive grid refinements as
follows. The truncation error function E(x, y, t) is defined on interior values of the
coarser grid. Computed solution values located in coarse grid cut cells are excluded
from the domain. This includes some values located in interior points for the more
refined grid (Figure 8). The truncation error function is defined as

E(x, y, t)= c1x(x, y, t)− c1x/2(x, y, t). (31)

The coarse grid values are located in the center of a box defined by four refined grid
values. Four refined grid values are averaged and subtracted from one coarse value.
Because the time integration is handled implicitly, a different convergence rate of
the truncation error in cut cells and boundary values would affect the convergence

Execution
Grid size Time step time

50 × 50 5.000·10−3 1.76 s
100 × 100 2.500·10−3 5.81 s
200 × 200 1.250·10−3 32.15 s
400 × 400 6.250·10−4 203.95 s
800 × 800 3.125·10−4 1202.18 s

Table 2. Execution times for the two-species model. The end time
of the simulation was t = 0.5.
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Figure 7. Concentration of the active species Ca at t = 0.25 (top)
and at evenly spaced time values for t ∈ [0, 0.25] (bottom) along the
section shown with a dashed line in the top figure. Values chosen
for the constants: D = Km1 = km2 = 0.2, S = k1 = k2 = 1.0.

rate of the truncation error for interior cells. Therefore, by computing the error with
interior cells, we are still able to draw conclusions about the order of the method.

Table 3 lists convergence data for the two-species system given by (28) and (29).
The data used for calculating the error was taken from computed solutions at the
simulation time value of t = 0.5. Note that the norms of truncation errors for both Ci

and Ca are the same. The system is mass conservative, and the computed solution
is also conservative to machine precision. Therefore we only show convergence
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Species Ci

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.000·10−3
− − − − − −

100 × 100 2.500·10−3 7.59·10−4
− 1.67·10−4

− 1.49·10−3
−

200 × 200 1.250·10−3 1.92·10−4 1.98 4.44·10−5 1.91 5.01·10−4 1.57
400 × 400 6.250·10−4 4.57·10−5 2.07 1.08·10−5 2.04 1.25·10−4 2.00
800 × 800 3.125·10−4 1.09·10−5 2.07 2.61·10−6 2.05 3.12·10−5 2.00

Species Ca

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.000·10−3
− − − − − −

100 × 100 2.500·10−3 7.59·10−4
− 1.67·10−4

− 1.49·10−3
−

200 × 200 1.250·10−3 1.92·10−4 1.98 4.44·10−5 1.91 5.01·10−4 1.57
400 × 400 6.250·10−4 4.57·10−5 2.07 1.08·10−5 2.04 12.5·10−4 2.00
800 × 800 3.125·10−4 1.09·10−5 2.07 2.61·10−6 2.05 3.12·10−5 2.00

Table 3. Norms and convergence rates for the two-species model
at the time value of 0.5.

Figure 8. Interior grid cells on the coarser grid (dashed lines) are
shaded. Square- and diamond-filled points indicate locations of
cell-centered values on the coarse grid. Values associated with
diamond-grid points represent cut cells for the coarser grid. Coarse
and refined values in these cut cells are not used in the averaging
scheme. The refined grid is indicated by solid lines. Circles mark
the cell centers of the refined grid cells. Four-refined point values
are averaged and compared to the square point on the coarse grid.
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Figure 9. L∞-norm truncation error for species Ci for the reaction-
diffusion equation. The values for the top plot were computed by
subtracting the solution at grid size N = 200 from the one at
N = 100 (see text). The middle plot was calculated with N = 200
and N = 400, and the bottom one with N = 400 and N = 800.

figures for species Ci . The truncation error for species Ci computed in the infinity
norm as a function of time is listed in Figure 9. A log-log plot of the truncation
error as a function of the grid size is listed in Figure 10. From this analysis, we
conclude second-order accuracy.
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Figure 10. Truncation error for the Ci at the time value of 0.5.
The convergence data is the same as that in Table 3.
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4.2. A two-compartment model. In this model, we have two compartments: cyto-
plasm and nucleus. The cellular geometry was taken from a yeast cell undergoing
chemotrophic growth in the direction of a pheromone gradient [8]. Proteins involved
in the pheromone response pathway are known to localize on the plasma membrane,
the nucleus, and in the cytosol [7]. The nucleus is modeled as a circle located
toward the front of the cell. Because yeast cells are three dimensional, we model
the top view of the cell as in [6], where membrane-bound species are located in
the interior of the computational domain but are assumed to diffuse slower than
cytosolic forms.

The model consists of two species, A and C , with inactive and active forms.
Protein C is allowed to enter and exit the nucleus, whereas protein A is restricted
to the cytoplasm (Figure 11, top).

A→ A∗

C
A∗
→ C∗

C∗ → C
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Figure 11. Two-compartment model. Top: reactions and species
in the two-compartment model. Bottom: steady-state concentration
values for active C species in the cytoplasm and nucleus.
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Initially both A and C are in their inactive forms. At the beginning of the
simulation, the reaction rate for the activation of A, k0, is instantaneously increased
from 0 to 1. This is meant to model the cell receiving an external signal. Once A is
activated it is assumed to interact with the cell membrane, causing a reduction in the
protein’s diffusion coefficient [30]. The active form of A can then activate protein
C . The active form of C is only deactivated within the nucleus. This simple model
captures some of the signaling events that occur during the pheromone response of
yeast [28]. If we denote the concentration of a chemical species with brackets, the
equations for the cytoplasmic species are:

∂[Ac]

∂t
= D11[Ac] − k0[Ac],

∂[A∗c ]
∂t
= D21[A∗c ] + k0[Ac],

∂[Cc]

∂t
= D11[Cc] − k1[A∗c ][Cc],

∂[C∗c ]
∂t
= D11[C∗c ] + k1[A∗c ][Cc],

(32)

where the asterisks denote the active form of the protein, D1 is the diffusion
coefficient in the cytoplasm, D2 is diffusion coefficient in the membrane, and the ks
represent the reaction rates. Subscripts indicate cytosolic and nuclear species. The
boundary conditions at the cell membrane ∂�1 are no flux for all chemical species.
The nuclear boundary conditions for A species are also no flux, whereas C species
are allowed to move through the nuclear membrane ∂�2 and satisfy the conditions

−D1(En · ∇[Cc])|∂�2 =−k2([Cn] − [Cc])|∂�2,

−D1(En · ∇[C∗c ])|∂�2 =−k2([C∗n ] − [C
∗

c ])|∂�2,

−D1(En · ∇[Cn])|∂�2 = k2([Cn] − [Cc])|∂�2,

−D1(En · ∇[C∗n ])|∂�2 = k2([C∗n ] − [C
∗

c ])|∂�2 .

(33)

Nuclear C∗ is deactivated according to the equations

∂[Cn]

∂t
= D11[Cn] + k3[C∗n ],

∂[C∗n ]
∂t
= D11[C∗n ] − k3[C∗n ]. (34)

The steady-state spatial distribution of active C is illustrated in Figure 11, bottom.
All reaction constants were arbitrarily chosen to be 1, D1=0.1, D2=0.01, and1x=
1/200. The initial values were zero except for [Ac](x, y, 0) = [Cc](x, y, 0) = 1.
The execution time of the simulation to run from t = 0 until t = 20 was 150 seconds
on Mac Pro desktop computer with dual-core 2.66 GHz Intel Xeon processors.

To verify that the system is close a steady-state solution at t = 20, we subtracted
the solution of active C in the cytoplasm [C∗c ] for all times from the assumed steady-
state solution at the time value of t = 20. If the system exponentially converges to
the computed solution at t = 20, we assume this time value is close to steady-state.
Figure 12 shows the infinity norm of the difference between the computed solution
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Figure 12. Solid line: norm of difference of the computed solution
at the assumed steady-state value at t = 20 from computed solution
over time. Dashed line: exponential fit.

and the solution at t = 20 sampled over time. Based on this data, the system is
close to its steady-state solution.

The model simulation suggests a spatial activation gradient can be generated by
the position of the nucleus. The inactivation of C in the nucleus leads to a higher
concentration of active protein in the rear of the cell in spite of a uniform spatial
signal from active A.

4.3. Rho family GTPase model. The Rho family of GTPases regulates many cel-
lular functions, including polarization and motility. We created a model with three
key members of this family, Cdc42, Rac, and Rho; the interactions, based on [3],
can be schematically represented as follows:

Signal Cdc42 Rac Rho

A more complicated model involving these proteins in one dimension can be found
in [6]. As in the previous example, we assume a top view of a three dimensional
cell with membrane bound active forms and cytosolic inactive forms of the three
proteins. The model has a total of six species. The cell boundary ∂� is taken from
supplemental material from [19].
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In our model, a uniform extracellular signal triggers the activation of Cdc42
protein on the cell edge,

−DEn · ∇ [Cdc42i ]
∣∣
∂�
=

k1S [Cdc42i ]
Km1+ [Cdc42i ]

∣∣∣
∂�
,

−DEn · ∇ [Cdc42a]
∣∣
∂�
=−

k1S [Cdc42i ]
km2+ [Cdc42i ]

∣∣∣
∂�
.

(35)

In the cell interior, active Cdc42 is inactivated. A positive feedback loop increases
the activation of Cdc42,

∂ [Cdc42i ]
∂t

= D1 [Cdc42i ]+
k2 [Cdc42a]

Km3+ [Cdc42a]
−

k3 [Cdc42a] [Cdc42i ]
Km4+ [Cdc42i ]

,

∂ [Cdc42a]
∂t

= D1 [Cdc42a]−
k2 [Cdc42a]

km5+ [Cdc42a]
+

k3 [Cdc42a] [Cdc42i ]
km6+ [Cdc42i ]

.

(36)

Rac is activated by Cdc42, and a positive feedback loop increases the concentration
of active Rac. Active Rho increases the deactivation of Rac in the cytosol,

∂[Raci ]

∂t
= D1[Raci ]+

(k4[Rhoa]+k5)[Raca]

Km7+[Raca]
−
(k6[Cdc42a]+k7[Raca])[Raci ]

Km8+[Raci ]
,

∂[Raca]

∂t
= D1[Raca]−

(k4[Rhoa]+k5)[Raca]

km9+[Raca]
+
(k6[Cdc42a]+k7[Raca])[Raci ]

km10+[Raci ]
.

Rho is activated by the active form of Rac and deactivated in the interior,

∂ [Rhoi ]
∂t

= D1 [Rhoi ] +
k8 [Rhoa]

Km11+ [Rhoa]
−

k9 [Raca] [Rhoi ]
Km12+ [Rhoi ]

,

∂ [Rhoa]
∂t

= D1 [Rhoa]−
k8 [Rhoa]

km13+ [Rhoa]
+

k9 [Raca] [Rhoi ]
km14+ [Rhoi ]

.

(37)

The boundary conditions for Rac and Rho species are no flux. The steady-state
distribution is displayed in Figure 13. To achieve these results, a step size 1x =
1/200 and a diffusion coefficient D = 0.1 were used. The reaction constants
for the simulation were arbitrarily chosen as follows: S = k3 = k5 = k7 = 1.0,
k2 = k4 = k8 = 3.0, k1 = k6 = k9 = 5.0, and all Kmi and kmi equal to 0.2.

The initial concentration of inactive chemical species was set to one and zero for
active species. The execution time was 217 seconds for 1600 time steps on a Mac
Pro desktop computer with dual-core 2.66 GHz Intel Xeon processors.

In this model, a gradient is formed by protein activation on the cell edge, and
propagated to the downstream signaling components Rac and Rho. Figure 13 shows
that filopodia and thin protrusions have higher activation levels due the increased
ratio of cell membrane to cell volume in these regions [16].
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Figure 13. Rho GTPase model: steady-state distribution of protein
concentration amounts in a fibroblast. The boundary was taken
from a live cell image [19]. Values chosen for the constants: S =
k3 = k5 = k7 = 1.0, k2 = k4 = k8 = 3.0, k1 = k6 = k9 = 5.0, and
all Kmi and kmi equal to 0.2.

5. Conclusions

We have developed an accurate and efficient cut-cell method for simulating spatial
models of signaling pathways in realistic cellular geometries. We demonstrated
our method using models that consist of multiple species interacting in multiple
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compartments. The examples were chosen to illustrate the numerical methods
and therefore lack many details found in real biological signaling systems. In
particular, feedback and feed forward control mechanisms that regulate pathway
activity were not considered in detail. Our numerical methods provide important
tools for investigating such regulatory mechanisms in realistic cell geometries
and, therefore, should provide important insights into the ways signaling networks
process and transmit information.

Our algorithm extends previous work on embedded boundary methods [5; 9;
15; 25]. These methods have been implemented in two and three dimension for
Poisson’s equation, the heat equation, and hyperbolic conservation laws. Our
formulation extends these methods to systems of reaction-diffusion equations with
nonlinear reactions in the interior as well as nonlinear reactions affecting boundary
values. The boundary conditions treated in previous work [9; 15; 25] have been
homogeneous Dirichlet and Neumann, which is not sufficient for many models
of signaling pathways [16]. In [15], a second-order implicit method was used to
update the heat equation in time [29]. In our method, we use an implicit nonlinear
solver to handle nonlinear reactions occurring in the interior. An advantage of the
differential-algebraic formulation is the ability to treat the boundary conditions
as algebraic constraints. This allows us to handle reactions that take place on the
physical boundary of the reaction-diffusion equation.

One limitation of the finite volume discretization arises from the interpolation
method to obtain the normal derivative to the surface as shown in Figure 4. Cut cells
must not have a zero volume cell within two rows or columns. For biological cells
with long, thin or irregularly-shaped components such as neurons, mesh adaptive
refinement may be needed to resolve the cellular geometry.

The underlying Cartesian-grid based finite volume discretization allows us to
use advection schemes originally developed for hyperbolic conservation laws to
simulate active transport or motility. In future reports, we will show how level set
methods [18; 26] can be combined with biochemical reaction networks to investigate
the effect of moving boundaries on cell signaling. Future work also includes a three-
dimensional implementation of our fixed boundary algorithm. A three-dimensional
extension of our method could be coupled with the method for simulating diffusion
on a surface presented in [24] to obtain an algorithm for simulating models that take
into account processes that occur both in the cytoplasm and on the cell membrane.
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AN URN MODEL ASSOCIATED WITH JACOBI POLYNOMIALS

F. ALBERTO GRÜNBAUM

We consider an urn model leading to a random walk that can be solved explicitly
in terms of the well-known Jacobi polynomials.

1. Urn models and orthogonal polynomials

There are two simple and classical models in statistical mechanics which have
recently been associated with very important classes of orthogonal polynomials.
The oldest one of these models is due to D. Bernoulli (1770) and S. Laplace (1810),
while the more recent model is due to Paul and Tatiana Ehrenfest (1907) [6]. While
both of these models are featured in very classical texts in probability theory, such
as [7], the connection with orthogonal polynomials is of much more recent vintage.
In fact, the polynomials in question due to Krawtchouk and Hahn had not been
recognized as basic objects with rich properties until around 1950. For a few
pertinent and useful references, see [1; 2; 4; 5; 11; 14; 16; 18].

From these comments one could get the impression that the relations between
orthogonal polynomials — especially some well-known classes of them — are only
a matter of historical interest. Nothing could be further from the truth: there
are several areas of probability and mathematical physics where recent important
progress hinges on the connections with orthogonal polynomials.

The entire area of random matrix theory starts with the work of E. Wigner and F.
Dyson and reaches a new stage in the hands of M. Mehta who brought the power
of orthogonal polynomials into the picture.

In the area of random growth processes, the seminal work of K. Johansson
depends heavily on orthogonal polynomials, specifically Laguerre and Meixner
ones; see [15].

The connection between birth-and-death processes and orthogonal polynomials
has many parents, but the people that made the most of it are S. Karlin and J.
McGregor [17]. We will have a chance to go back to their work in connection
with our model here. The ideas of using the spectral analysis of the corresponding
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one-step transition matrix have been pushed recently in the case of quantum random
walks, an area where physics, computer science and mathematics could make
important contributions. See [3; 12].

The study of the so-called ASEP (asymmetric simple exclusion processes), going
back to F. Spitzer [21] and very much connected with the work of K. Johansson
mentioned earlier, has recently profited from connections with the Askey–Wilson
polynomials. All of this has important and deep connections with combinatorics
and a host of other areas of mathematics; for example, the study of nonintersecting
or noncolliding random processes, which goes back to F. Dyson.

There are many interrelations among these areas. For one example: the Hahn
polynomials that were mentioned in connection with the Bernoulli–Laplace model
were studied by Karlin and McGregor [18] in connection with a model in genetics
due to Moran. They have also been found to be useful in discussing random
processes with nonintersecting paths [8].

All of these areas are places where orthogonal polynomials have been put to very
good use. For a review of several of these items, see [19]. Orthogonal polynomials
of several variables, as well as matrix-valued orthogonal polynomials, have recently
been connected to certain random walks. For three examples, see [9; 10; 13].

2. The Jacobi polynomials

The classical Jacobi polynomials are usually considered either over the interval
[−1, 1] or, as we will do, over [0, 1].

These polynomials are orthogonal with respect to the weight function

W (x)= xα(1− x)β .

Here we assume that α, β >−1; in fact it will be assumed throughout that α, β
are nonnegative integers.

These polynomials are eigenfunctions of the differential operator

x(1− x)
d2

dx2 +
(
α+ 1+ x(α+β + 2)

) d
dx
,

a fact that will not play any role in our discussion but which is crucial in most
physical and geometrical applications of Jacobi polynomials. These applications
cover a vast spectrum including potential theory, electromagnetism and quantum
mechanics.

Neither the orthogonality, nor the fact that our polynomials are eigenfunctions of
this differential operator are enough to determine them uniquely. One can multiply
each polynomial by a constant and preserve these properties. We chose to normalize
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our polynomials by the condition

Qn(1)= 1.

For us it will be important that these polynomials satisfy (and in fact be defined
by) the three-term recursion relation

x Qn(x)= An Qn+1(x)+ Bn Qn(x)+Cn Qn−1(x),

with Q0 = 1 and C0 Q−1 = 0.
The coefficients An, Bn,Cn are given by

An =
(n+β + 1)(n+α+β + 1)

(2n+α+β + 1)(2n+α+β + 2)
, n ≥ 0,

Bn = 1+
n(n+β)

2n+α+β
−
(n+ 1)(n+β + 1)

2n+α+β + 2
, n ≥ 0,

Cn =
n(n+α)

(2n+α+β)(2n+α+β + 1)
, n ≥ 1.

The coefficient Bn can be rewritten as

Bn =
2n(n+α+β + 1)+ (α+ 1)β +α(α+ 1)

(2n+α+β)(2n+α+β + 2)
,

which makes it clear that, along with the other coefficients, it is nonnegative.
Since we insist on the condition Qn(1)= 1, we can see, for instance by induction

and using the recursion relation, that

An + Bn +Cn = 1, n ≥ 1.

We also have

A0+ B0 = 1.

There are, of course, several explicit expressions for the different variants of the
Jacobi polynomials, and they can be used, for instance, in computing the integrals
that appear in the last section of this paper.

In terms of hypergeometric functions, the usual Jacobi polynomials are given by(
(α+ 1)n/n!

)
2F1

(
− n, n+α+β + 1; (1− x)/2

)
,

while our polynomials Qn(x) are obtained by multiplying these standard Jacobi
polynomials by (−1)nn!/(β + 1)n and replacing x by 1− 2x .

The normalization chosen above is natural when one thinks of these polynomials
(at least for some values of α, β) as the spherical functions for some appropriate
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symmetric space, and insists that these functions take the value 1 at the north pole
of the corresponding sphere. The simplest of all cases is the one where α = β = 0;
one gets the Legendre polynomials and the usual two-dimensional sphere sitting in
R3 (see [23]).

The fact that the coefficients are nonnegative and add up to one cries out for a
probabilistic interpretation of these quantities. This is the purpose of this paper. We
have not seen in the literature concrete models of random walks where the Jacobi
polynomials play this role. The urn model we give is admittedly a bit contrived, but
it is quite concrete. Hopefully it will motivate other people to find a more natural
and simpler model that goes along with this recursion relation.

3. The model

Here we consider a discrete-time random walk on the nonnegative integers whose
one-step transition probability matrix coincides with the one that gives the three-term
recursion relation satisfied by the Jacobi polynomials.

At times t = 0, 1, 2, . . . , an urn contains n blue balls and this determines the
state of our random walk on Z≥ 0.

The urn sits in a “bath” consisting of an infinite number of red balls. The
transition mechanism is made up of a few steps which are described now, leaving
some of the details for later.

In the first step a certain number of red balls from the surrounding bath are mixed
with the n blue balls in the urn.

In the second step a ball is selected (with uniform distribution) from among the
balls in the urn. This “chosen ball” can be blue or red. In either case an experiment
is performed in a parallel world, using an appropriate “auxiliary urn”, to determine
if this chosen ball will retain its color or have it changed (from red to blue or vice
versa).

Once this is settled, and the possible change of color has taken place, the main
urn contains the initial n balls plus a certain number of balls taken form the bath in
the first step, and we are ready for the third and last step. This final step consists of
having all red balls in the main urn removed and dropped back into the bath.

The state of the system at time t + 1 is given by the number of blue balls in the
urn after these three steps are completed. Clearly, the new state can take any of the
values n−1, n, n+1.

A more detailed description of the three steps above is given in the next section.

4. The details of the model

If at time t the urn contains n blue balls, with n = 0, 1, 2, . . . , we pick

n+α+β + 1
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red balls from the bath to get a total of 2n+α+β+ 1 balls in the urn at the end of
step one.

We now perform step 2: this gives us a blue ball with probability

n
2n+α+β + 1

and a red ball with probability

n+α+β + 1
2n+α+β + 1

.

If the chosen ball is blue, then we throw α blue balls and n+ β red balls into
an “auxiliary urn” with n blue balls, mix all these balls, and pick one with uniform
distribution. We imagine the auxiliary urn surrounded by a bath of an infinite
number of blue and red balls which are used to augment the n blue balls in this
auxiliary urn.

The probability of getting a blue ball in the auxiliary urn is

n+α
2n+α+β

,

and if this is the outcome, the chosen ball in the main urn has its color changed
from blue to red. If we get a red ball in this auxiliary urn, then the chosen ball
retains its blue color.

On the other hand, if in step 2 we had chosen a red ball, then we throw α+ 1
blue balls and n+ β + 1 red balls into a different auxiliary urn with n blue balls.
This auxiliary urn is also surrounded by a bath of an infinite number of blue and
red balls.

These balls are mixed and one is chosen with the uniform distribution. The
probability that this ball in the auxiliary urn is red is given by

n+β + 1
2n+α+β + 2

,

and if this is the case, the chosen ball in the main urn has its color changed from
red to blue. Otherwise the chosen ball retains its red color.

Notice that the chosen ball in the main urn has a change of color only when we
get a match of colors for the balls drawn in the main and an auxiliary urn: blue
followed by blue or red followed by red.

In either case once the possible change of color of the chosen ball in the main
urn has been decided upon, we remove all the red balls from the main urn.
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We see that the state of the system goes from n to n− 1 when the chosen ball is
blue and then its color gets changed into red. This event has probability

n
2n+α+β + 1

×
n+α

2n+α+β
.

Observe that this coincides with the value of Cn in the recursion relation satisfied
by our version of the Jacobi polynomials.

The state increases from n to n+ 1 if the chosen ball is red and its color gets
changed into blue. This event has probability

n+α+β + 1
2n+α+β + 1

×
n+β + 1

2n+α+β + 2
.

This coincides with the values of An given earlier.
As we noticed earlier, when the chosen ball is blue and the ball in the corre-

sponding auxiliary urn is red then the chosen ball retains its color. Likewise if the
chosen ball is red and the ball in the corresponding auxiliary urn is blue then the
chosen one retains its color. In either case, the total number of blue balls in the
main urn remains unchanged and the state goes from n to n.

Recall the basic property of the coefficients An, Bn,Cn , namely

An + Bn +Cn = 1.

This shows that the probability of going from state n to state n is given by Bn .
In summary, we have built a random walk whose one-step transition probability

is the one given by the three-term relation satisfied by our version of the Jacobi
polynomials.

5. Birth-and-death processes and orthogonal polynomials

A Markov chain with state space given by the nonnegative integers and a tridiagonal
one-step transition probability matrix P is called a birth-and-death process. Our
model given above clearly fits in this framework.

One of the most important connections between orthogonal polynomials and
birth-and-death processes, such as the one considered here, is given by the Karlin–
McGregor formula [17].

If the polynomials satisfy

π j

∫ 1

0
Qi (x)Q j (x)W (x)dx = δi j ,
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one gets the following representation formula for the entries of the powers of the
one-step transition probability matrix

(Pn)i j = π j

∫ 1

0
xn Qi (x)Q j (x)W (x)dx .

This compact expression gives the solution to the dynamics of our random walk
and allows for the study of many of its properties.

In the case of our version of the Jacobi polynomials, the squares of the norms of
the polynomials Qi are given by

0(i+1)0(i+α+1)0(β+1)2

0(i+β+1)0(i+α+β+1)(2i+α+β+1)
.

In our case, when α, β are assumed to be nonnegative integers, this expression
can of course be written without any reference to the Gamma function.

We recall how one can compute in the case of our transition matrix P its invariant
(stationary) distribution, that is, the (unique up to scalars) row vector

π = (π0, π1, π2, . . . )

such that
π P = π .

It is a simple matter of using the recursion relation for the polynomials Qi to
show that the components πi are given, up to a common multiplicative constant, by
the inverses of the integrals ∫ 1

0
Q2

i (x)W (x)dx

mentioned above. This justifies the notation πi for these two apparently unre-
lated quantities, and in our case furnishes an explicit expression for an invariant
distribution.

We close this paper with a note of historical interest. One of the referees
suggested that I contact Dick Askey, who reportedly had pointed out that the
Legendre polynomials had surfaced for the first time in connection with a problem
in probability theory.

Askey recalls that Arthur Erdélyi told him once that this occurred in a work by J.
L. Lagrange. Indeed in [20] , Lagrange considers such a problem. In the process of
solving it he needs to find the power series expansion of the expression

1√
1− 2az+ (a2− 4b2)z2

in powers of z.
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The three-term recursion for the coefficients in this expansion is explicitly written
down and considered well-known by Lagrange. The account of Lagrange’s work
given in the very complete and scholarly book [22] has a derivation of this recursion.
The case a2

− 4b2
= 1 gives the Legendre polynomials in the variable a. The work

of Lagrange took place in the period 1770–1773, and predates the work of Legendre
and Laplace. I am thankful to the anonymous referee and to Askey for pointing me
in the correct direction.
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ENSEMBLE SAMPLERS WITH AFFINE INVARIANCE

JONATHAN GOODMAN AND JONATHAN WEARE

We propose a family of Markov chain Monte Carlo methods whose performance
is unaffected by affine tranformations of space. These algorithms are easy to
construct and require little or no additional computational overhead. They should
be particularly useful for sampling badly scaled distributions. Computational tests
show that the affine invariant methods can be significantly faster than standard
MCMC methods on highly skewed distributions.

1. Introduction

Markov chain Monte Carlo (MCMC) sampling methods typically have parameters
that need to be adjusted for a specific problem of interest [9; 10; 1]. For example,
a trial step-size that works well for a probability density π(x), with x ∈ Rn , may
work poorly for the scaled density

πλ(x) = λ−n π (λx) , (1)

if λ is very large or very small. Christen [2] has recently suggested a simple
method whose performance sampling the density πλ is independent of the value of
λ. Inspired by this idea we suggest a family of many particle (ensemble) MCMC
samplers with the more general affine invariance property. Affine invariance implies
that the performance of our method is independent of the aspect ratio in highly
anisotropic distributions such as the one depicted in Figure 1.

An affine transformation is an invertible mapping from Rn to Rn of the form
y = Ax + b. If X has probability density π(x), then Y = AX + b has density

πA,b(y) = πA,b(Ax + b) ∝ π(x). (2)

Consider, for example, the skewed probability density on R2 pictured in Figure 1:

π(x) ∝ exp
(
−(x1− x2)

2

2ε
−
(x1+ x2)

2

2

)
. (3)
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Figure 1. Contours of the Gaussian density defined in expression (3).

Single-variable MCMC strategies such as Metropolis or heat bath (Gibbs sampler)
[13; 10] would be forced to make perturbations of order

√
ε and would have slow

equilibration. A better MCMC sampler would use perturbations of order
√
ε in the

(1,−1) direction and perturbations of order one in the (1, 1) direction.
On the other hand, the affine transformation

y1 =
x1− x2
√
ε
, y2 = x1+ x2,

turns the challenging sampling problem (3) into the easier problem

πA(y) ∝ e−(y2
1 + y2

2)/2. (4)

Sampling the well scaled transformed density (4) does not require detailed cus-
tomization. An affine invariant sampler views the two densities as equally difficult.
In particular, the performance of an affine invariant scheme on the skewed density
(3) is independent of ε. More generally, if an affine invariant sampler is applied to a
nondegenerate multivariate normal π(x)∝e−x t H x/2, the performance is independent
of H .

We consider general MCMC samplers of the form X (t + 1)= R(X (t), ξ(t), π),
where X (t) is the sample after t iterations, ξ(t) is a sequence of iid (independent
identically distributed) random variables1, and π is a probability density. General

1The probability space for ξ is not important. A Monte Carlo code would typically take ξ(t) to be
an infinite sequence of independent uniform [0, 1] random variables.
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purpose samplers such as Gibbs samplers have this form. We call such an MCMC
algorithm affine invariant if, for any affine transformation Ax + b,

R(Ax + b, ξ(t), πA,b) = AR(x(t), ξ(t), π) + b,

for every x and almost all ξ(t).
Less formally, suppose we make two Monte Carlo runs using the same random

number generator and seed so that the ξ(t) will be identical for both runs. Suppose
one of the runs uses probability density π and starting point X (0). Suppose the
other uses πA,b and initial point Y (0) = AX (0) + b. If the algorithm is affine
invariant, the sequences will satisfy Y (t) = AX (t)+ b. We are not aware of a
practical sampler that has this affine invariance property for any general class of
densities.

In this paper we propose a family of affine invariant ensemble samplers. An
ensemble, EX , consists of L walkers2 Xk ∈ Rn . Since each walker is in Rn , we may
think of the ensemble EX = (X1, . . . , X L) as being in RnL . The target probability
density for the ensemble is the one in which the walkers are independent and drawn
from π , that is,

5(Ex) = 5(x1, . . . , xL) = π(x1) π(x2) · · ·π(xL). (5)

An ensemble MCMC algorithm is a Markov chain on the state space of ensembles.
Starting with EX(1), it produces a sequence EX(t). The ensemble Markov chain can
preserve the product density (5) without the individual walker sequences Xk(t)
(as functions of t) being independent, or even being Markov. This is because the
distribution of Xk(t + 1) can depend on X j (t) for j 6= k.

We apply an affine transformation to an ensemble by applying it separately to
each walker:

EX = (X1, . . . , X L)
A,b
−→ (AX1+ b, . . . , AX L + b) = (Y1, . . . , YL) = EY . (6)

Suppose that EX(1)
A,b
−→ EY (1) and that EY (t) is the sequence produced using πA,b in

place of π in (5) and the same initial random number generator seed. The ensemble
MCMC method is affine invariant if EX(t)

A,b
−→ EY (t). We will describe the details of

the algorithms in Section 2.
Our ensemble methods are motivated in part by the Nelder–Mead [11] simplex

algorithm for solving deterministic optimization problems. Many in the optimization
community attribute its robust convergence to the fact that it is affine invariant.
Applying the Nelder–Mead algorithm to the ill conditioned optimization problem for

2Here xk is walker k in an ensemble of L walkers. This is inconsistent with (3) and (4), where x1
was the first component of x ∈ R2.
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the function (3) in Figure 1 is exactly equivalent to applying it to the easier problem
of optimizing the well scaled function (4). This is not the case for noninvariant
methods such as gradient descent [6].

The Nelder–Mead simplex optimization scheme evolves many copies of the
system toward a local minimum (in our terminology: many walkers in an ensemble).
A new position for any one copy is suggested by an affine invariant transformation
which is constructed using the current positions of the other copies of the system.
Similarly, our Monte Carlo method moves one walker using a proposal generated
with the help of other walkers in the ensemble. The details of the construction of
our ensemble MCMC schemes are given in the next section.

An additional illustration of the power of affine invariance was pointed out to
us by our colleague Jeff Cheeger. Suppose we wish to sample X uniformly in a
convex body, K (a bounded convex set with nonempty interior). A theorem of
Fritz John [8] states that there is a number r depending only on the dimension such
that for any convex body K there is an affine transformation Ax + B that makes
K̃ = AK+b well conditioned in the sense that B1⊆ K̃ and K̃ ⊆ Br , where Br is the
ball of radius r centered at the origin. An affine invariant sampling method should,
therefore, be uniformly effective over all the convex bodies of a given dimension
regardless of their shape.

After a discussion of the integrated autocorrelation time as a means of comparing
our ensemble methods with single-particle methods in Section 3 we present the
results of several numerical tests in Section 4. The first of our test distributions is a
difficult two-dimensional problem that illustrates the advantages and disadvantages
of our scheme. In the second example we use our schemes to sample from a 101-
dimensional approximation to the invariant measure of stochastic partial differential
equation. In both cases the affine invariant methods significantly outperform the
single site Metropolis scheme. Finally, in Section 5 we give a very brief discussion
of the method used to compute the integrated autocorrelation times of the algorithms.

2. Construction

As mentioned in the introduction, our ensemble Markov chain is evolved by mov-
ing one walker at time. We consider one step of the ensemble Markov chain
EX(t)→ EX(t + 1) to consist of one cycle through all L walkers in the ensemble.

This is expressed in pseudo-code as

for k = 1, . . . , L
{

update: Xk(t)→ Xk(t + 1)
}
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Each walker Xk is updated using the current positions of all of the other walkers in
the ensemble. The other walkers (besides Xk) form the complementary ensemble

EX[k](t)= {X1(t + 1), . . . , Xk−1(t + 1), Xk+1(t), . . . , X L(t)} .

Let µ(dx̃k, xk | Ex[k]) be the transition kernel for moving walker Xk . The notation
means that for each xk ∈ Rn and Ex[k] ∈ R(L−1)n , the measure µ(·, xk | Ex[k]) is the
probability measure for Xk(t + 1), if Xk(t)= xk and EX[k](t)= Ex[k].

Our single walker moves are based on partial resampling [13; 10]. This states
that the transformation EX(t)→ EX(t + 1) preserves the joint distribution 5 if the
single walker moves Xk(t)→ Xk(t + 1) preserve the conditional distribution of
xk given X[k]. For our 5 (which makes walkers independent), this is the same as
saying that µ(·, · | Ex[k]) preserves π for all Ex[k], or (somewhat informally)

π(x̃k) dx̃k =

∫
Rn
µ(dx̃k, xk | Ex[k])π(xk) dxk .

As usual, this condition is achieved using detailed balance. We use a trial
distribution to propose a new value of Xk and then accept or reject this move
using the appropriate Metropolis Hastings rule [13; 10]. Our motivation is that the
distribution of the walkers in the complementary ensemble carries useful information
about the density π . This gives an automatic way to adapt the trial move to the
target density. Christen [2] uses an ensemble of 2 walkers to generate scale invariant
trial moves using the relative positions of the walkers.

The simplest (and best on the Rosenbrock test problem in Section 4) move of this
kind that we have found is the stretch move. In a stretch move, we move walker Xk

using one complementary walker X j ∈ EX[k](t) (that is, j 6= k). The move consists
of a proposal of the form (see Figure 2)

Xk(t)→ Y = X j + Z(Xk(t)− X j ). (7)

The stretch move defined in expression (7) is similar to what is referred to as the
“walk move” in [2] though the stretch move is affine invariant while the walk move
of [2] is not. As pointed out in [2], if the density g of the scaling variable Z satisfies
the symmetry condition

g
(1

z

)
= z g(z), (8)

then the move (7) is symmetric in the sense that (in the usual informal way Metrop-
olis is discussed)

Pr (Xk(t)→ Y )= Pr (Y → Xk(t)) .



70 JONATHAN GOODMAN AND JONATHAN WEARE

X j

Xk

Y

Figure 2. A stretch move. The light dots represent the walkers not
participating in this move. The proposal is generated by stretching
along the straight line connecting X j to Xk .

The particular distribution we use is the one suggested in [2]:

g(z) ∝


1
√

z
if z ∈

[1
a
, a
]
,

0 otherwise.
(9)

where the parameter a > 1 can be adjusted to improve performance.
To find the appropriate acceptance probability for this move we again appeal to

partial resampling. Notice that the proposal value Y lies on the ray{
y ∈ Rn

: y− X j = λ (Xk(t)− X j ), λ > 0
}
.

The conditional density of π along this ray is proportional to

‖y− X j‖
n−1 π(y).

Since the proposal in (7) is symmetric, partial resampling then implies that if we
accept the move Xk(t + 1)= Y with probability

min
{

1,
‖Y − X j‖

n−1 π(Y )
‖Xk(t)− X j‖

n−1 π(Xk(t))

}
=min

{
1, Zn−1 π(Y )

π(Xk(t))

}
,

and set Xk(t + 1)= Xk(t) otherwise, the resulting Markov chain satisfies detailed
balance.

The stretch move, and the walk and replacement moves below, define irreducible
Markov chains on the space of general ensembles. An ensemble is general if there
is no lower-dimensional hyperplane (dim< n) that contains all the walkers in the
ensemble. The space of general ensembles is G⊂ RnL . For L ≥ n+ 1, a condition
we always assume, almost every ensemble (with respect to 5) is general. Therefore,
sampling 5 restricted to G is (almost) the same as sampling 5 on all of RnL . It is
clear that if EX(1) ∈ G, then almost surely EX(t) ∈ G for t = 2, 3, . . . . We assume
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that EX(1) is general. It is clear that any general ensemble can be transformed to
any other general ensemble by a finite sequence of stretch moves.

The operation EX(t)→ EX(t + 1) using one stretch move per walker is given by

for k = 1, . . . , L
{

choose X j ∈ EX[k](t) at random
generate Y = X j + Z(Xk(t)− X j ), all Z choices independent
accept, set Xk(t + 1)= Y , with probability (7)
otherwise reject, set Xk(t + 1)= Xk(t)
}

We offer two alternative affine invariant methods. The first, which we call the
walk move, is illustrated in Figure 3. A walk move begins by choosing a subset S
of the walkers in EX[k](t). It is necessary that |S| ≥ 2, and that the choice of S is
independent of Xk(t). The walk move offers a proposal Xk→ Xk +W , where W
is normal with mean zero and the same covariance as the walkers X j ∈ S.

More formally, let

πS(x)= (1/ |S|)
∑
X j∈S

δ(x − X j )

be the empirical distribution of the walkers in S. Given S, the mean of a random
variable X ∼ πS is

X S =
1
|S|

∑
X j∈S

X j .

Xk

Y

X S

Figure 3. A walk move. The dots represent the ensemble of par-
ticles. The dark ones represent the walkers in EX S . The diamond
inside the triangle represents the sample mean X S . The proposed
perturbation has covariance equal to the sample covariance of the
three dark dots. The perturbation is generated by summing random
multiples of the arrows from X S to the vertices of the triangle.
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The covariance is

CS =
1
|S|

∑
X j∈S

(X j − X S)(X j − X S)
t . (10)

It is easy to check that if the Z j are univariate standard normals then, conditioned
on S,

W =
∑
X j∈S

Z j (X j − X S) (11)

is normal with mean zero and covariance (10). The proposed trial move is

Xk(t)→ Xk(t)+W.

The random variable (11) is symmetric in that

Pr(X→ X +W = Y )= Pr(Y → Y −W = X).

Therefore, we insure detailed balance by accepting the move Xk(t)→ Xk(t)+W
with the Metropolis acceptance probability

min
{

1,
π ((Xk(t)+W )

π ((Xk(t))

}
.

The walk move ensemble Monte Carlo method just described clearly is affine
invariant in the sense discussed above. In the invariant density 5(Ex) given by (5),
the covariance matrix for W satisfies (an easy check)

cov [W ] ∝ covπ [X ].

The constant of proportionality depends on σ 2 and |S|. If π is highly skewed in the
fashion of Figure 1, then the distribution of the proposed moves will have the same
skewness.

Finally, we propose a variant of the walk move called the replacement move.
Suppose πS(x | S) is an estimate of π(x) using the subensemble S ⊂ X[k](t). A
replacement move seeks to replace Xk(t)with an independent sample from πS(x | S).
The probability of an x → y proposal is π(x)πS(y | S), and the probability of a
y→ x proposal is π(y)πS(x | S). It is crucial here, as always, that S is the same
in both expressions. If Px→y is the probability of accepting an x → y proposal,
detailed balance is the formula

π(x)πS(y | S)Px→y = π(y)πS(x | S)Py→x .

The usual reasoning suggests that we accept an x→ y proposal with probability

Px→y =min
{

1,
π(y)

πS(y | S)
·
πS(x | S)
π(x)

}
. (12)
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In the case of a Gaussian π , one can easily modify the proposal used in the walk
move to define a density πS(x | S) that is an accurate approximation to π if L and
|S| are large. This is harder if π is not Gaussian. We have not done computational
tests of this method yet.

3. Evaluating ensemble sampling methods

We need criteria that will allow us to compare the ensemble methods above to
standard single-particle methods. Most Monte Carlo is done for the purpose of
estimating the expected value of something:

A = Eπ [ f (X)]=
∫

Rn
f (x)π(x) dx, (13)

where π is the target density and f is some function of interest.3 Suppose X (t),
for t = 1, 2, . . . , Ts , are the successive states of a single-particle MCMC sampler
for π . The standard single-particle MCMC estimator for A is

Âs =
1
Ts

Ts∑
t=1

f (X (t)). (14)

An ensemble method generates a random path of the ensemble Markov chain
EX(t) = (X1(t), . . . , X L(t)) with invariant distribution 5 given by (5). Let Te be
the length of the ensemble chain. The natural ensemble estimator for A is

Âe =
1
Te

Te∑
t=1

(
1
L

L∑
k=1

f (Xk(t)
)
. (15)

When Ts = LTe, the two methods do about the same amount of work, depending
on the complexity of the individual samplers.

For practical Monte Carlo, the accuracy of an estimator is given by the asymptotic
behavior of its variance in the limit of long chains [13; 10]. For large Ts we have

var
[
Âs
]
≈

varπ [ f (X)]
Ts/τs

, (16)

where τs is the integrated autocorrelation time given by

τs =

∞∑
t=−∞

Cs(t)
Cs(0)

, (17)

3Kalos and Whitlock [9] make a persuasive case for making this the definition: Monte Carlo
means using random numbers to estimate some number that itself is not random. Generating random
samples for their own sakes is simulation.
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and the lag t autocovariance function is

Cs(t)= lim
t ′→∞

cov
[

f (X (t ′+ t)) , f (X (t ′))
]
. (18)

We estimate τs from the time series f (X (t)) using a shareware procedure called
Acor that uses a variant (described below) of the self consistent window method of
[7].

Define the ensemble average as F(Ex)= 1
L

L∑
k=1

f (xk). Then (15) is

Âe =
1
Te

Te∑
t=1

F( EX(t)).

The analogous definitions of the autocovariance and integrated autocorrelation time
for the ensemble MCMC method are

τe =

∞∑
t=−∞

Ce(t)
Ce(0)

,

with
Ce(t)= lim

t ′→∞
cov

[
F( EX(t ′+ t)) , F( EX(t ′))

]
.

Given the obvious relation (5 in (5) makes the walkers in the ensemble indepen-
dent)

var5 [F( EX)] =
1
L

varπ [ f (X)],

the ensemble analogue of (16) is

var[ Âe] ≈
varπ [ f (X)]

LTe/τe
.

The conclusion of this discussion is that, in our view, a sensible way to compare
single-particle and ensemble Monte Carlo is to compare τs to τe. This compares the
variance of two estimators that use a similar amount of work. Comparing variances
is preferred to other possibilities such as comparing the mixing times of the two
chains [4] for two reasons. First, the autocorrelation time may be estimated directly
from Monte Carlo data. It seems to be a serious challenge to measure other mixing
rates from Monte Carlo data (see, however, [5] for estimating the spectral gap).
Second, the autocorrelation time, not the mixing rate, determines the large time
error of the Monte Carlo estimator. Practical Monte Carlo calculations that are not
in this large time regime have no accuracy.

Of course, we could take as our ensemble method one in which each Xk(t) is
an independent copy of a single Markov chain sampling π . The reader can easily
convince herself or himself that in this case τe = τs exactly. Thus such an ensemble
method with Te = LTs would have exactly the same large time variance as the
single-particle method. Furthermore with Te = LTs the two chains would require
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exactly the same computation effort to generate. The two methods would therefore
be indistinguishable in the long time limit.

4. Computational tests

In this section we present and discuss the results of computational experiments to
determine the effectiveness of our ensemble methods relative to a standard single-
particle Markov chain Monte Carlo method. The MCMC method that we choose
for comparison is the single site Metropolis scheme in which one cycles through
the coordinates of X (t) perturbing a single coordinate at a time and accepting or
rejecting that perturbation with the appropriate Metropolis acceptance probability
before moving on to the next coordinate. For the perturbations in the Metropolis
scheme we choose Gaussian random variables. All user defined parameters are
chosen (by trial and error) to optimize performance (in terms of the integrated
autocorrelation times). In all cases this results in an acceptance rate close to 30%.
For the purpose of discussion, we first present results from tests on a difficult
two-dimensional example. The second example is a 101-dimensional, badly scaled
distribution that highlights the advantages of our scheme.

4.1. The Rosenbrock density. In this subsection we present numerical tests on the
Rosenbrock density, which is given by4

π(x1, x2)∝ exp
(
−

100(x2− x1
2)2+ (1− x1)

2

20

)
. (19)

Here are some contours of the Rosenbrock density:

4 To avoid confusion with earlier notation, in the rest of this section (x1, x2) represents an arbitrary
point in R2.
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f (x1, x2)= x1 f (x1, x2)= x2

method↓
ensemble

size→ 1 10 100 ∞ 1 10 100 ∞

Metropolis 163 – – – 322 – – –
stretch moves – 19.4 8.06 8.71 – 67.0 18.4 23.5
walk moves, |S| = 3 – 46.4 19.8 18.6 – 68.0 44.2 47.1

Table 1. Autocorrelation times (multiplied by 10−3) with the
functionals f (x1, x2) = x1 and f (x1, x2) = x2 for single-particle
isotropic Metropolis and the chains generated by the two ensemble
methods. The ensemble methods with ensemble size L =∞ gener-
ate complementary walkers by exact sampling of the Rosenbrock
density. The per-step cost of the methods are roughly equivalent
on this problem.

Though only two-dimensional, this is a difficult density to sample efficiently as it
exhibits the scaling and degeneracy issues that we have discussed throughout the
paper. Further the Rosenbrock density has the feature that there is not a single affine
transformation that can remove these problems. Thus in some sense this density
is designed to cause difficulties for our affine invariant estimators. Of course its
degeneracy will cause problems for the single-particle estimator and we will see
that the affine invariant schemes are still superior.

Table 1 presents results for the functionals f (x1, x2)= x1 and f (x1, x2)= x2. The
values given should be multiplied by 1000 because we subsampled every Markov
chain by 1000. In both cases, the best ensemble sampler has an autocorrelation time
about ten times smaller than that of isotropic Metropolis. The walk move method
with |S| = 3 has autocorrelation times a little more than twice as long as the stretch
move method. All estimates come from runs of length Ts = 1011 and Te = Ts/L .
In all cases we estimate the autocorrelation time using the Acor procedure.

To simulate the effect of L = ∞ (infinite ensemble size), we generate the
complementary X j used to move Xk by independent sampling of the Rosenbrock
density (19). For a single step, this is exactly the same as the finite L ensemble
method. The difference comes in possible correlations between steps. With finite L ,
it is possible that at time t = 1 we take j = 4 for k = 5 (that is, use X4(1) to help
move X5(1)), and then use j = 4 for k = 5 again at the next time t = 2. Presumably,
possibilities like this become unimportant as L→∞. We sample the Rosenbrock
density using the fact that the marginal of X is Gaussian, and the conditional density
of Y given X also is Gaussian.

Finally, we offer a tentative explanation of the fact that stretch moves are better
than walk moves for the Rosenbrock function. The walk step, W , is chosen using
three points as in Figure 3; see (11). If the three points are close to Xk , the covariance
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u

Figure 4. Sample path generated according to π in (22).

of W will be skewed in the same direction of the probability density near Xk . If
one or more of the Xm are far from Xk , the simplex formed by the Xm will have
the wrong shape. In contrast, the stretch move only requires that we choose one
point X j in the same region as Xk . This suggests that it might be desirable to use
proposals which depend on clusters of near by particles. We have been unable to
find such a method that is at the same time reasonably quick and has the Markov
property, and is even approximately affine invariant. The replacement move may
have promise in this regard.

4.2. The invariant measure of an SPDE. In our second example we attempt to
generate samples of the infinite-dimensional measure on continuous functions of
[0, 1] defined formally by

exp
(
−

∫ 1

0

1
2 ux(x)2+ V (u(x)) dx

)
, (20)

where V represents the double well potential

V (u)= (1− u2)2.

This measure is the invariant distribution of the stochastic Allen–Cahn equation

ut = uxx − V ′(u)+
√

2 η, (21)

with free boundary condition at x = 0 and x = 1 [3; 12]. In these equations η is a
space time white noise. Samples of this measure tend to resemble rough horizontal
lines found either near 1 or near −1 (see Figure 4).

In order to sample from this distribution (or approximately sample from it) one
must first discretize the integral in (20). The finite-dimensional distribution can
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method time

Metropolis 80
stretch moves 5.2
walk moves, |S| = 3 1.4

Table 2. Autocorrelation times (multiplied by 10−3 with f given
in (23) for single-particle Metropolis and the chains generated by
the two ensemble methods. The ensemble size is 102. Note that in
terms of CPU time in our implementation, the Metropolis scheme
is about five times more costly per step than the other two methods.
We have not adjusted these autocorrelation times to incorporate the
extra computational requirements of the Metropolis scheme.

then be sampled by Markov chain Monte Carlo. We use the discretization

π(u(0), u(h), u(2h) . . . , u(1))=

exp
(
−

N−1∑
i=0

1
2h
(u((i + 1)h)− u(ih))2+

h
2

(
V (u((i + 1)h)+ u(ih))

))
, (22)

where N is a large integer and h = 1/N . This distribution can be seen to converge
to (20) in an appropriate sense as N→∞. In our experiments we choose N = 100.
Note that the first term in (22) strongly couples neighboring values of u in the
discretization while the entire path roughly samples from the double well represented
by the second term in (22).

For this problem we compare the auto correlation time for the function

f (u(0), u(h), . . . , u(1))=
N−1∑
i=0

h
2

(
u((i + 1)h)+ u(ih)

)
, (23)

which is the trapezoidal rule approximation of the integral
∫ 1

0 u(x) dx . As before
we use |S| = 3 for the walk step and Te = Ts/L where Ts = 1011 and L = 102.
As with most MCMC schemes that employ global moves (moves of many or all
components at a time), we expect the performance to decrease somewhat as one
considers larger and larger problems. However, as the integrated auto correlation
times reported in Table 2 indicate, the walk move outperforms single site Metropolis
by more than a factor of 50 on this relatively high-dimensional problem. Note that
in terms of CPU time in our implementation, the Metropolis scheme is about 5 times
more costly per step than the other two methods tested. We have not adjusted the
autocorrelation times in Table 2 to incorporate the extra computational requirements
of the Metropolis scheme.
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5. Software

Most of the software used here is available on the web (for example, Acor). We
have taken care to supply documentation and test programs, and to create easy
general user interfaces. The user needs only to supply procedures in C or C++ that
evaluate π(x) and f (x), and one that supplies the starting ensemble EX(1). We
appreciate feedback on user experiences.

The Acor program for estimating τ uses a self consistent window strategy related
to that of [7] to estimate (18) and (17). Suppose the problem is to estimate the
autocorrelation time for a time series, f (0)(t), and to get an error bar for its mean,
f . The old self consistent window estimate of τ (see (17) and [13]) is

τ̂ (0) =min
{

s
∣∣∣∣ 1+ 2

∑
1≤t≤Ms

Ĉ (0)(t)

Ĉ (0)(0)
= s

}
, (24)

where Ĉ(t) is the estimated autocovariance function

Ĉ (0)(t)=
1

T−t

T−t∑
t ′=1

( f (0)(t ′)− f )( f (0)(t + t ′)− f ). (25)

The window size is taken to be M = 10 in computations reported here. An efficient
implementation would use an FFT to compute the estimated autocovariance function.
The overall running time would be O(T ln(T )).

The new Acor program uses a trick that avoids the FFT and has an O(T ) running
time. It computes the quantities Ĉ (0)(t) for t = 0, . . . , R. We used R = 10 in the
computations presented here. If (24) indicates that M τ̂ > R, we restart after a
pairwise reduction

f (k+1)(t)= 1
2

(
f (k)(2t) + f (k)(2t + 1)

)
.

The new time series is half as long as the old one and its autocorrelation time is
shorter. Repeating the above steps (25) and (24) successively for k = 1, 2, . . . gives
an overall O(T ) work bound. Of course, the (sample) mean of the time series
f (k)(t) is the same f for each k. So the error bar is the same too. Eventually we
should come to a k where (24) is satisfied for s ≤ R. If not, the procedure reports
failure. The most likely cause is that the original time series is too short relative to
its autocorrelation time.

6. Conclusions

We have presented a family of many particle ensemble Markov chain Monte Carlo
schemes with an affine invariance property. Such samplers are uniformly effective on
problems that can be rescaled by affine transformations to be well conditioned. All
Gaussian distributions and convex bodies have this property. Numerical tests indicate
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that even on much more general distributions our methods can offer significant per-
formance improvements over standard single-particle methods. The computational
cost of our methods over standard single-particle schemes is negligible.
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A SECOND-ORDER ACCURATE METHOD FOR SOLVING
THE SIGNED DISTANCE FUNCTION EQUATION

PETER SCHWARTZ AND PHILLIP COLELLA

We present a numerical method for computing the signed distance to a piecewise-
smooth surface defined as the zero set of a function. It is based on a marching
method by Kim (2001) and a hybrid discretization of first- and second-order
discretizations of the signed distance function equation. If the solution is smooth
at a point and at all of the points in the domain of dependence of that point, the
solution is second-order accurate; otherwise, the method is first-order accurate,
and computes the correct entropy solution in the presence of kinks in the initial
surface.

1. Introduction

Let 0 be a continuous, piecewise smooth (D−1)-dimensional manifold in RD

defined implicitly as the zero set of a function, that is, there is a continuous piecewise
smooth φ defined on some ε-neighborhood of 0 such that

0 = {x : φ(x)= 0}. (1)

We also assume that ∇φ is bounded and piecewise smooth on 0, and that there is a
constant c > 0 such that |∇φ(x0)| ≥ c at all points, x0 ∈ 0 where ∇φ is defined.
At such points, n̂, the unit normal to 0, is given by

n̂=
∇φ

|∇φ|
.

Given such a surface 0, we can define the signed distance function ψ

ψ(x)= s min
x′∈0
|x− x′| = sdist(x, 0), (2)

where s is defined to be the positive on one side of 0 and negative on the other. If
x0 ∈ 0, is a point at which the minimum in the right-hand side of (2) is achieved,
and 0 is smooth at that point, then, s = sign((x− x0) ·∇φ(x0)). If 0 is not smooth
at that point, then s is the single value taken on by sign((x − x′) · ∇φ(x′)) at all

MSC2000: primary 65-02; secondary 76-02.
Keywords: eikonal, narrow band, Hamilton–Jacobi, signed distance function.

81



82 PETER SCHWARTZ AND PHILLIP COLELLA

points sufficiently close to x0 such that ∇φ(x′) is defined. In any case, s =±1 on
RD
−0 and changes only at 0.

If ψ(x) is smooth, then ψ satisfies the signed distance function equation.

|∇ψ(x)| = 1. (3)

In that case, solutions to the signed distance function equation satisfy the character-
istic equations

dx
dσ
= w, x(0)= x0,

dw

dσ
= 0, w(0)= (∇ψ)(x0),

dψ
dσ
= 1, ψ(0)= ψ(x(0)),

where σ denotes arc length. These equations can be solved analytically to obtain

x(σ )= x(0)+σ(∇ψ)(x(0)), w(σ )=(∇ψ)(x(0)), ψ(σ )=ψ(x(0))+σ, (4)

that is, the curves are straight lines in (x, ψ) space, while w = ∇ψ is constant
along each trajectory.

The characteristic form of the equations suggest that signed-distance functions
can be constructed incrementally. Given that ψ is known on �r = {x : |ψ(x)| ≤ r},
then one can extend ψ to �r+δ using (4). It is easy to show that this reasoning
extends to nonsmooth signed distance functions, that is, ones defined by (2). Fast
marching methods [13; 7] are numerical methods for computing the signed distance
function based on this observation. Fast marching methods have two components:

(1) A discretization of the signed distance function equation that permits the
calculation of the signed distance at a given grid point by using a stencil of
nearby values that have already been computed.

(2) A marching algorithm, which is a method for determining the order in which
grid values are to be computed.

For example, the method in [7; 13] uses a first-order accurate discretization of the
signed distance function equation, and a marching algorithm based on computing,
at each step, the value of ψ that has the minimum magnitude among all of the
uncomputed values adjacent to valid values.

A number of problems in numerical simulation related to implicit function
representation of surfaces require the computation of the signed distance from a
given surface; see [14; 2]. The motivating application for this paper is the use of
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narrow-band level-set methods for representing the propagation of fronts in large-
scale fluid dynamics simulations combined with second-order accurate volume-of-
fluid methods [4] for discretizing the PDE on either side of the front. This imposes
two requirements that have not been simultaneously met by previous methods. The
first is the use of a marching method that is a good match for adaptive and parallel
implementation based on patch-based domain decomposition. We impose this
requirement for compatibility with the software frameworks typically used for high-
performance implementations of block-structured adaptive grid methods. In such an
approach, the construction of a solution is based on steps that update independently
the points on a collection of rectangles whose disjoint union covers the domain,
interleaved with steps that communicate ghost cell data. The marching method in
[7; 13; 6] does not fit into this category: it is specified as a serial algorithm, in
that the values on a grid are computed one at a time, with the next value/location
determined by the previously computed values. Not only is this a poor match for
the block-structured software frameworks, but it also imposes a serial bottleneck
in a parallel computation. The second requirement is that we obtain a solution
that is second-order accurate at all points whose domain of dependence includes
no singularities, since the volume-of-fluid discretizations requires that level of
accuracy [12; 5; 11]. In all cases, the solution should converge to a signed-distance
function, even in regions whose domain of dependence include discontinuities in
the derivatives. While second-order accurate algorithms have been proposed [14;
3; 9; 10; 15], not a great deal of attention has been paid to distinguishing between
converging and diverging characteristics for an initial surface that contains kinks in
the context of second-order accurate methods.

In the present work, we present a method that meets our requirements. We use a
variation on the global marching method in [8]. Given the values at grid points in
�r , we compute simultaneously and independently all of the grid values in �r+δ,
where δ is comparable to the mesh spacing. Since the method computes the solution
at a large number of points independently as local functions of the previously
computed values in �r , the method maps naturally onto a block-structured domain-
decomposition implementation. Second, our discretization of the signed distance
function equation is analogous to the construction of the fluxes for a second-order
Godunov method for a scalar conservation law. It is a hybridization of a high-order
and low-order method, where the choice of hybridization coefficient is based on a
local curvature calculation. The high-order method is a straightforward difference
approximation to the characteristic form of the equations (4). The low-order method
is similar to the method in [7; 13] but uses a least-squares approach for computing
∇ψ based on different approximations depending on whether the characteristics are
locally converging or diverging. The choice of δ is based on a condition analogous
to a Courant–Friedrichs–Lewy (CFL) condition under which all the points in the
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high-order stencil should be available for computing the value of ψ at a grid point.
The use of a least-squares algorithm for approximating the gradient in the low-order
method involving all of the valid nearest neighbors maximizes the likelihood that
there will be sufficient valid points for computing the low-order estimate for ψ
when it is needed.

The resulting method is second-order accurate in regions where the solution is
smooth, and characteristics trace back to portions of the original surface 0 that are
smooth. If there are kinks in the original surface or that form away from the original
surface due to convergence of characteristics, the method is first-order accurate in
the range of influence of the kinks. The method appears to provide solutions that
satisfy the entropy condition, correctly distinguishing between the two directions
of propagation from kinks in the original surface. The solution on the side of the
surface corresponding to converging characteristics propagates as a kink, while the
solution on the side corresponding to diverging characteristics takes the form of a
centered expansion fan.

2. Kim’s global marching method

We discretize the problem to a grid consisting of equally spaced points in ZD. We
denote the grid-spacing by h. Given

φi = φ(ih),

where i ∈ ZD and ih in a ε−neighborhood of 0, we wish to compute

ψi ≈ ψ(ih) , |ψi | ≤ R. (5)

Our marching algorithm for computing such solutions is given in the box on the
next page.

Here the function E(ψ,�valid, i) computes a value for ψ at i using only the set
of values {ψi } that have been computed on �valid. E can be undefined, for example,
if there are insufficient points in a neighborhood of i to perform the computation.
The quantity σ is a CFL number for the marching method, and depends on the
details of E. In determining which points over which to iterate in the for loop, we
have assumed that σ < 1. The computation in the for loop can be performed in
parallel using a domain-decomposition strategy over the points adjacent to the valid
region denoted by ⋃

s:|sd |≤1

(�valid
+ s)−�valid.

In principle, the method described here could iterate an arbitrarily large number of
times before updating r . For the discretization method described in the next section,
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�new
=∅

r = ε+ σh
while r ≤ R do

for i ∈
⋃

s:|sd |≤1(�
valid
+ s)−�valid do

if E(ψ, v, �valid, i) is defined then
(ψ̃ i , ṽi )= E(ψ, v, �valid, i)
if |ψ̃ i | ≤ r then
�new += {i}
numUpdate += 1

end if
end if

end for
�valid += �new

ψ = ψ̃ , v = ṽ on �new

�new
=∅

if numUpdate= 0 then
r += σh

end if
numUpdate = 0

end while

The global marching method. In each iteration of the while loop, we compute
the solution to on points adjacent to �r−σh ⊆�

valid
⊆�r independently of the

other values being computed in that iteration. After there are no longer any
points to compute, we increment r→ r + σh.

we have observed that numUpdate= 0 on the third iteration, so we could replace
the while loop by one performing a fixed number of iterations before updating r .

3. Discretizing the signed distance function equation

In this section, we define the discretization of the signed distance function equation
used to define E. It is computed as a linear combination of a low-order (first-order)
method and a high-order (second-order) method, with the hybridization coefficient
depending on the local curvature. This approach is analogous to that taken in
constructing fluxes for hyperbolic conservation laws. The low-order method is
based on a least-squares discretization of the gradient that distinguishes between
locally converging and diverging characteristics. The signed distance function (3) is
used to determine the free parameter in the gradient corresponding to the unknown
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value of 9. This step is similar to that used in [13] and [7]. The high-order method
is based on solving the characteristic form of the equations.

3.1. Least-squares discretization. Given a collection of points p ∈ P ⊂ ZD, we
have the following relationship between the values of the distance function, ψ , and
the gradient:

1
h

(
ψ(ih)−ψ((i + p)h)

)
=− p · ∇ψ + O(h) for p ∈ P . (6)

If P has D linearly independent elements, then we can use (6) as the starting
point for deriving a first-order accurate method for computing solutions to (3).
Given

ψi+ p ≈ ψ((i + p)h) for p ∈ P, (7)

we define ψ̃ ≈ ψ(ih), v ≈ (∇ψ)(ih) as satisfying a least-squares solution to the
coupled equations:

Av =−
1
h
(ψ̃ϒ −9), (8)

where the unknown ψ̃ is viewed as a free parameter, to be determined later, and

9 = (ψi+ p1, ψi+ p2, . . . ψi+ pr )
T , (9)

A = ( p1, p2, . . . pr )
T , (10)

ϒ = (1, 1, . . . 1)T . (11)

Since A is of rank D, the least-squares solution to (8) is given by

v =−(AT A)−1 AT 1
h
(ψ̃ϒ −9)=

ψ̃−ψ

`
n̂− (ω2− (ω2 · n̂)n̂), (12)

where

ω1 =−
1
h
(AT A)−1 ATϒ, ω2 =−

1
h
(AT A)−1 AT9,

`=
1
‖ω1‖

, n̂= ω1`, ψ̄ = (ω2 ·ω1)`
2
= ψ(ih− `n̂)+ O(h2).

(13)

We assume here that ω1 is not the zero vector. If ω1 = ω1(P)= 0, then the least-
squares problem does not produce a value for ψ̃ , although the expression (12) for
the gradient is still well-defined.

Following [7; 13], the condition ‖v‖2 = 1 leads to a quadratic equation for ψ̃ :

(ψ̃ −ψ)2+ `2
‖(ω2− (ω2 · n̂)n̂)‖2 = `2. (14)

If (14) has two real roots, we choose the root for which |ψ̃ |> |ψ |. If (14) has no
real roots, we set ψ̃ = ψ .
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We denote by L(ψ, i, h, P) the value of ψ̃ obtained from the least-squares
algorithm above. We can then define

EL(ψ,�valid, i, h)= (ψ L , vL), (15)

ψ L
=

{
si minB |L(ψ, i, h, B)| if κi < 0 or ω1 = 0,
L(ψ, i, h, P) if κi ≥ 0 and ω1 6= 0,

(16)

P = U ∩ (�valid
− i), (A, 9,ω1)= (A(P),9(P),ω1(P)), (17)

vL
=−(AAT )−1 AT 1

h
(ψ Lϒ −9). (18)

In (17) we have introduced U = {u : |ud − id | ≤ 1}. The minimum in (16) is over
the collection of all sets B of pairs of adjacent points (if D= 2) or 2× 2 blocks of
points (if D= 3) contained in U such that B+ i ⊂�valid. The quantity κ is a local
estimate of the curvature:

κi =min
t

si (1
hψ)i+t , (19)

where 1h is the 2D+ 1-point centered-difference discretization of Laplacian, and
the minimum is taken over all points t ∈ [−2 . . . 2]D such that the stencil for 1h

evaluated at i + t is contained in �valid. The minimum assumption for EL to be
defined is that at least one of the B in (16) is defined, and at least one of the 1hψ

in (19) is defined. Otherwise, EL is undefined.
We use the two different least-squares algorithm depending on the sign of the

curvature in order to obtain the correct distance function in the neighborhood of a
kink. If the curvature is negative, the characteristics are converging, and the distance
function is the minimum over as many candidates as possible based on using the
least-squares algorithm on 2D−1 points, analogous to choosing the minimum over
multiple distinct characteristics that might be reaching the same point. If the
curvature is positive, the characteristics are diverging, and the use of the single
stencil involving all of the valid points in U + i leads to interpolated intermediate
values for ψ and n̂, analogous to sampling inside a centered rarefaction fan in
computing a flux for Godunov’s method at a sonic point.

3.2. A second-order accurate method. We define a function that computes a sec-
ond order approximation to the distance function and the gradient of the distance
function. In the following, let π = ψ, v denote the field that we wish to compute
at i /∈ �valid, assuming that π is known on �valid. We also assume that we know
v̂ ≈ (∇ψ)(ih). The calculation of

π̄ = Q(π, i, v̂, h)≈ π(ih) (20)

is given as follows.
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1. Compute x̄, the first point along the ray {ih− si v̂δ : δ > 0} that intersects a
coordinate plane of gridpoints:

x̄ = ih− si h
v̂

v̂max
, (21)

where v̂max is the component of v̂ whose magnitude is largest, with dmax the
corresponding coordinate direction.

2. Compute a quadratic interpolant in the coordinate plane containing x̄:

j =
⌊

x̄/h− 1
2(u− edmax)

⌋
, ȳ = x̄− jh, (22)

π̄ = π j +
∑

d 6=dmax

(
∂π

∂xd
ȳd +

1
2
∂2π

∂x2
d

ȳ2
d

)
+

∂2π

∂xd1∂xd2

ȳd1 ȳd2, (23)

where all of the derivatives are evaluated at jh. The last term in (23) is defined
only for D= 3 and d1 6= d2, d1, d2 6= dmax. We denote by ed the unit vector in
the dth coordinate direction, and u = (1 . . . 1), both elements of ZD.

The derivatives appearing in the sum in (23) are computed using second-order
accurate centered differences at jh, assuming j , j ± ed

∈ �valid. The mixed
derivative is approximated by the average of centered differences:

∂2π

∂xd1∂xd2

≈
1
N

∑
(D2

d1,d2
π) j+s/2 (24)

where

(D2
d1,d2

π)k+ed1/2+ed1/2 =
1
h2 (πk+πk+ed1+ed1 −πk+ed1 −πk+ed2 ) (25)

is defined if k, k+ ed1 , k+ ed2 , k+ ed1 + ed2 are all in �valid. The sum in (24) is
taken over all s of the form α1ed1 +α2ed2 , α1 =±1, α2 =±1 for which (D2

d1,d2
) is

defined, and N is the number of terms in the sum.
Given the function Q defined above, we can define a second-order accurate

discretization of the characteristic form of the equations (4) at ih. We iterate twice
to obtain a sufficiently accurate computation of v, computing v̂ at the point i using
the least-squares algorithm defined in the previous section, and then

v̂ := Q(v, �valid, i, v̂, h), vH
= Q(v, �valid, i, v̂, h). (26)

We then use vH to compute ψH :

ψH
= Q(ψ,�valid, i, v̂H , h)+ si h

∣∣∣∣ vH

vH
max

∣∣∣∣. (27)

We denote by EH the resulting second-order accurate method for computing ψ, v:

EH (φ, v, �valid, i)≡ (ψH , vH ). (28)
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If the low-order method is defined, and the points required for the various evaluations
of Q are defined, then (28) is defined. Otherwise, it is undefined.

3.3. Hybridization. We hybridize the low- and high-order methods based on the
magnitude of the curvature. Assuming both EL and EH are defined, we compute

(ψ L , vL)= EL(ψ, v, �valid, i), (29)

(ψH , vH )= EH (ψ, v, �valid, i), (30)

E(ψ, v, �valid, i)=
(
(1− ηi )ψ

H
+ ηiψ

L , (1− η2
i )v

H
+ η2

i v
L), (31)

where the hybridization parameter η is given by

ηi =

{
1 if h|1hψ |max > C,

h/C |1hψ |max otherwise,
(32)

|1hψ |max =max
t
|(1hψ)i+t |, (33)

where the range over which the max is taken is the same as in (19). If the high-order
value EH (ψ, v, �valid, i) is not defined, but the low-order value is, then

E(ψ, v, �valid, i)= EL(ψ, v, �valid, i). (34)

If the low order value is not defined, then E(ψ, v, �valid, i) is not defined. The
constant C is an empirically determined parameter, independent of h. In our
numerical experiments, C = 1.

If σ < 1/
√

5, and we replace the values of ψ , v on grid points in �r with those
of a smooth distance function ψe, it is possible to show that, for sufficiently small
h, both EH and EL are defined for all grid points in �r+σh and that

ψH
i = ψ

e(ih)+ O(h3), vH
=∇ψe(ih)+ O(h3), (35)

ψ L
i = ψ

e(ih)+ O(h2), vL
=∇ψe(ih)+ O(h), (36)

from which it follows that

E(ψ, v, �valid, i)= (ψe(ih),∇ψe(ih))+ O(h3). (37)

Thus we expect that the global error in our solution will be O(h2). This also explains
why we use η2, rather than η, to hybridize the gradient calculation. Otherwise, we
would introduce an O(h2) contribution to the error in the gradient at every step,
leading to a first-order accurate method for the gradient, and hence for ψ . In the
neighborhood of kinks in the level sets of ψ , the value of the curvature is O(h−1),
and we will use the low-order method, leading to a first-order accurate method in
the range of influence of the kinks.
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3.4. Initialization. We now describe the method we use to provide test problems
with an initial, narrow band three or four cells wide. We are given an initial
representation of the surface by a discretized implicit function, from which we
construct the distance function and the gradient of the distance function an O(h)
distance. If the surface is smooth, then our initialization procedure is an O(h2)

approximation to the distance function. If the characteristics cross near the surface
or the surface is not smooth, then the initialization reduces to a first-order accurate
method within the range of influence of the kink.

We require some more notation. Denote by (G0φ) the centered difference
approximation to the gradient of φ. Given a grid location i , let

d =
φi

‖(G0φ)i‖
.

Let P⊂� denote i and its neighbors. Let

m i =min
p∈P
‖(G0φ) p‖, Mi =max

p∈P
‖(G0φ) p‖. (38)

We choose a nondimensional parameter, ε, independent of h and attempt to detect
a discontinuity in the gradient by checking whether M exceeds m by an amount
greater than ε. If so, we make a robust but lower order estimate of the gradient:

if 1−
m i

Mi
≥ ε, then v = (G0φ) p : ‖(G0φ) p‖ = Mi . (39)

In our numerical experiments, ε = 1/(2
√

2). Alternatively, if

1−
m i

Mi
< ε, (40)

then we define a point,

x0 = ih− d
(G0φ)i

‖(G0φ)i‖
. (41)

At x0 we biquadratically interpolate an estimate of the gradient v. Finally, we
use root-finding in the direction v to make an estimate of the distance.

4. Numerical results

For our fast marching problems, we always compute the max norm of the error.
Where useful, we also compute the L1 and the L2- norm of the solution error.

For a discrete variable, ζ , the max norm is given by

‖ζ‖∞ =max
i
|ζi |. (42)
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L1 norm rate L2 norm rate L∞ norm rate

4.4566e-02 1.0240e-02 2.1393e-02
1.0592e-02 2.07 2.4083e-03 2.08 5.9743e-03 1.84

Table 1. Solution error for 2D curve in polar coordinates: h = 1
100

and 1
200 .

The L p-norm is given by

‖ζ‖p =

(∑
i

|(ζi )
phD

)1/p

. (43)

For all of the test problems that follow we have used a marching parameter of
σ = 1/(2

√
5).

Our first test problem uses the implicit function r = 2 cos 4θ + 7. The domain
has a lower left corner with coordinates (−10,−10,−10) and an upper right corner
with coordinates (10, 10, 10). The initial bandwidth is approximately six grid cells
wide at all resolutions. The final bandwidth is approximately 1.2. Calculations were
performed on grids with h = 1

100 , 1
200 , and 1

400 . Richardson error extrapolation was
used to calculate the results presented in Table 1. The solution is shown in Figure 1
and the error is shown in Figure 2.

Figure 1. Curve in polar coordinates.
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Figure 2. Error for a curve given in polar coordinates.

Our second test problem has as its zero-level set a surface of revolution. The
domain has a lower left corner with coordinates (−10,−10,−10) and an upper
right corner with coordinates (10, 10, 10). The surface is centered at (0, 0, 0)
and obtained by rotating the function r = 2 cos 2θ + 7 around the y-axis. The
initial bandwidth is approximately six grid cells wide at all resolutions. The final
bandwidth is 1.5. Calculations were performed on grids with h = 1

100 , 1
200 , and 1

400 .
Richardson error estimation was used to calculate the results presented in Table 2.
Slices of the error are presented in Figure 3.

Our next example uses as an implicit function whose zero set is the surface of a
cube. In this case, to test the robustness of the algorithm we initialized the annular
region to the wrong weak solution of the signed distance function equation. In
particular, where the characteristics diverge we do not round the corners in the
initial narrow band. Nonetheless our algorithm extends this initial data to a distance
function.

In this example, the initial band has a diameter of about four grid cells at the
coarse resolution. The final bandwidth is about two and one half times the diameter

L1 norm rate L2 norm rate L∞ norm rate

7.0725 e-01 1.5893 e-02 7.2842e-04
1.2275 e-01 2.52 3.0446 e-03 2.38 1.813 e-04 2.00

Table 2. Solution error for surface of revolution: h = 1
100 and 1

200 .
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Figure 3. Slices of the error for a surface of revolution.

of the initial band. Since the only error occurs in places where the gradient is
discontinuous, we present the max norm of the error in Table 3.

Our final example uses an implicit function generated by taking the union of
parallelepipeds. The zero-set is in the shape of a cube whose corners are removed.
Two-dimensional slices are in the shape of a cross. This example tests cases where
characteristics meet at a corner as well cases where the characteristics diverge at a
corner.

In this problem the domain has a lower left corner with coordinates (0, 0) and
an upper right corner with coordinates (1, 1). The initial band is approximately six
cells in diameter at all resolutions. The final bandwidth is 0.15. Since the errors
only occur in places where the gradient is discontinuous, we present the max norm
of the error in Table 4. The error is in Figure 4. Three isosurfaces, including the
zero level set, are presented in Figures 5–7.

L∞ norm rate

0.00493
0.00260 0.92
0.0013 1.0

Table 3. Solution error for distance to a cube: h = 1
50 , 1

100 , and 1
200 .
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L∞ norm rate

.00120

.000580 1.05

Table 4. Solution error for distance to a union of parallelepipeds:
h = 1

50 , 1
100 , and 1

200 .

Figure 4. Slices of the error for a union of parallelepipeds.

Figure 5. The zero isosurface of the union of parallelepipeds.
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Figure 6. An interior isosurface (at a distance =−0.12 from the
zero set) of the union of parallelepipeds.

Figure 7. An exterior isosurface (at a distance = 0.12 from the
zero set) of the union of parallelepipeds.

5. Conclusion

We have described a numerical method for solving the signed distance function
equation that is second-order accurate at points whose domain of dependence
includes no singularities, which is useful for second-order accurate volume-of-
fluid discretizations. A salient feature of our algorithm is the hybridization of a
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high-order and low-order method, where the choice of hybridization coefficient is
based on a local curvature calculation. The resulting calculation appears to provide
solutions that satisfy the entropy condition, correctly distinguishing between the
two directions of propagation from kinks in the original surface. In addition, we use
a marching method that is a good match for adaptive and parallel implementation
based on patch-based domain decomposition, which is the software framework
typically used for high-performance implementations of block-structured adaptive
grid methods.

Our future work will focus on tracking moving fronts in hyperbolic problems.
In these problems, the motion of the interface naturally decomposes into advection
by a vector velocity combined with motion of the interface normal to itself at a
known scalar speed. The importance of the signed distance function equation may
be observed in the special case where the vector velocity is zero and the scalar
speed is spatially constant. In this context, a method of solving the Hamilton–Jacobi
equation reduces to a method for computing the signed distance function, up to a
relabeling of contours, which leads to the conclusion that numerical methods for
Hamilton–Jacobi can be no more accurate than the associated solution to the signed
distance function equation. Considering the general front-tracking problem, one
may begin by extending velocities and scalar speeds in the normal direction off
the interface by solving the transport equation, as was done in [1]. Established
algorithms for advection may be employed for the velocity component of the
motion, while an algorithm for solving the signed distance function equation may
be employed for motion given by scalar speeds.
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ON THE SECOND-ORDER ACCURACY OF
VOLUME-OF-FLUID INTERFACE RECONSTRUCTION
ALGORITHMS: CONVERGENCE IN THE MAX NORM

ELBRIDGE GERRY PUCKETT

Given a two times differentiable curve in the plane, I prove that — using only
the volume fractions associated with the curve — one can construct a piecewise
linear approximation that is second-order in the max norm. I derive two parame-
ters that depend only on the grid size and the curvature of the curve, respectively.
When the maximum curvature in the 3 by 3 block of cells centered on a cell
through which the curve passes is less than the first parameter, the approxima-
tion in that cell will be second-order. Conversely, if the grid size in this block
is greater than the second parameter, the approximation in the center cell can be
less than second-order. Thus, this parameter provides an a priori test for when
the interface is under-resolved, so that when the interface reconstruction method
is coupled to an adaptive mesh refinement algorithm, this parameter may be used
to determine when to locally increase the resolution of the grid.

1. Introduction

In this article I study the interface reconstruction problem for a volume-of-fluid
method in two space dimensions. Let � ∈ R2 denote a simply connected domain
and let z(s)= (x(s), y(s)), where s is arc length, denote a curve in�. The interface
reconstruction problem is to compute an approximation z̃(s) to z(s) in � using only
the volume fractions due to z on the grid. I define volume fractions and discuss
this problem in more detail in Section 1.1 below.

Let L be a characteristic length of the problem. Cover � with a grid consisting
of square cells each of side 1x ≤ L and let

h =
1x
L

(1)
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be a dimensionless parameter that represents the size of a grid cell as a nondimen-
sional quantity. Note that h is bounded above by 1. This ensures that second-order
accurate methods, which have O(h2) error, will be more accurate than first-order
accurate methods, which have O(h) error. For the remainder of this article it will
be understood that quantities such as the arc length s and the radius of curvature
R are also nondimensional quantities obtained by division by L as in (1) and that
the curvature κ has been nondimensionalized by dividing by 1/L .

In this article I prove that a piecewise linear volume-of-fluid interface reconstruc-
tion method will be a second-order accurate approximation to the exact interface
z(s)= (x(s), y(s)) in the max norm provided the following four conditions hold:

I. The interface z is two times continuously differentiable: z(s) ∈ C2 (�).

II. The maximum value
κmax =max

s
|κ(s)| (2)

of the curvature κ(s) of z(s) satisfies1

κmax ≤ Cκ ≡min
{
Ch h−1,

(√
h
)−1}

, (3)

where Ch is a constant that is independent of h and is defined by

Ch ≡

√
2− 1

4
√

3
. (4)

III. In each cell Ci j that contains a portion of the interface, the slope mi j of the
piecewise linear approximation

g̃i j (x)= mi j x + bi j (5)

to the interface in that cell is given by

mi j =
Si+α − Si+β

α−β
for α, β = 1, 0,−1 with α 6= β, (6)

where Si+α and Si+β denote two distinct column sums of volume fractions
from the 3× 3 block of cells Bi j surrounding the cell Ci j .2 The column sums
Si−1, Si , and Si+1 are defined and described in more detail in Section 1.3.

IV. The column sums Si+α and Si+β in (6) are sufficiently accurate that the slope
mi j defined in (6) is a first-order accurate approximation to g′(xc), where xc

is the center of the bottom edge of the cell Ci j .

1It is only necessary that the maximum curvature of the interface satisfy this condition in a neigh-
borhood of the cell Ci j in which one wishes to reconstruct the interface. For example, in the 3× 3
block of cells Bi j centered on Ci j .

2I will usually omit the subscript i, j when writing the piecewise linear approximation g̃ defined
in (5) and simply write g̃(x) instead of g̃i j (x). Similarly, when no confusion is likely to arise, I will
drop the subscript i, j from the slope m and the y-intercept b and simply write g̃(x)= m x + b.
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Section 3 is devoted to proving that if condition (3) above is satisfied, one can
always find an orientation of the 3×3 block of cells (say, after rotating by a multiple
of 90 degrees) so that there are two column sums Si+α and Si+β , both in the same
orientation of the 3× 3 block, satisfying the condition in item IV above. Note that
here I do not provide an algorithm for determining which orientation of the 3× 3
block of cells is the correct one to use or, given a correct orientation, how to find
the two column sums to use in (6). What I do prove is that if the interface satisfies
Equation (3), then one can find an orientation of the 3× 3 block of cells that has
two distinct column sums Si+α and Si+β such that the slope mi j obtained in (6)
is a first-order accurate approximation to g′(xc) and hence, g̃ is a second-order
accurate approximation to g in the max norm as illustrated in Figure 1.3

xi−2 xi−1 xi xi+1xc = 0
|yj−2

yj−1

yj

yj+1

yc = 0 −
g(x) = tanh(x)

(xl, yl)

(xr, yr)

g̃(x) = m x + b

Figure 1. In this example the interface is g(x)= tanh x . All three
column sums are exact (in the sense of Section 1.3), but for the
inverse function x = g−1(y) only the center column sum is exact.
Also plotted is the linear approximation g̃(x) = m x + b in the
center cell produced by the volume-of-fluid interface reconstruc-
tion algorithm when the slope m is chosen as half the difference
between the first and third column sums. The main result of this
paper is that |g(x)− g̃(x)| ≤ Ch2 for all x ∈ [xi−1, xi ] provided
that the slope m is defined in the manner described in Section 1.3.

3In this particular example all three of the column sums Si−1, Si and Si+1 are exact. Conse-
quently, Theorem 23 in Section 4 implies any two of them can be used in (6) and that the resulting
slope m = g̃′(xc) is a first-order accurate approximation to g′(xc), regardless of whether one chooses
the slope to be m = (Si − Si−1), m = (Si+1− Si−1)/2, or m = (Si+1− Si ).



102 ELBRIDGE GERRY PUCKETT

A variety of algorithms have been proposed for determining the correct column
sums to use to determine the approximate slope via Equation (6). I refer the inter-
ested reader to [6; 7; 11; 14; 22; 23; 25; 37] for further information.

Finally, I would like to emphasize that the criteria in (3) provides an a priori test
to determine when a given computation of the interface is well-resolved; namely,
the computation is well-resolved whenever

h ≤ Hmax =min{Ch (κmax)
−1 , (κmax)

−2
}. (7)

This will enable researchers who employ block structured adaptive mesh refine-
ment to model the motion of an interface [30; 31; 33; 34] to compute an approx-
imation to the curvature of the interface in each cell and then check to see if the
conditions in (7) are satisfied in order to determine if the computation is under-
resolved in that cell. Cells in which h > Hmax are then tagged for refinement. In
this regard I note that Sussman and Ohta [32] have developed second- and fourth-
order accurate volume-of-fluid algorithms for computing the curvature from the
volume fraction information.

1.1. A detailed statement of the problem. Suppose that I am given a simply con-
nected computational domain � ∈ R2 that is divided into two distinct regions �d

and �l so that �=�d ∪�l . I will refer to �d as the “dark” fluid4 and to �l as the
“light” fluid. Let z(s) = (x(s), y(s)), where s is arc length, denote the interface
between these two fluids. Cover � with a uniform square grid of cells, each with
side h, and let 3i j denote the fraction of dark fluid in the (i, j)-th cell. Each
number 3i j satisfies 0≤3i j ≤ 1 and is called the volume fraction (of dark fluid)
in the (i, j)-th cell.5 Note that

0<3i j < 1 (8)

if and only if a portion of the interface z(s) lies in the (i, j)-th cell and that 3i j = 1
(resp. 3i j = 0) if the i, j cell only contains dark (resp. light) fluid.

In this paper I consider the following problem. Given only the collection of vol-
ume fractions 3i j in the grid covering � I wish to reconstruct z(s); that is, to find
a piecewise linear approximation z̃ to z. Furthermore, the approximate interface z̃
must have the property that the volume fractions 3̃i j due to z̃ are identical to the

4Although these algorithms have historically been known as “volume-of-fluid” methods, they are
frequently used to model the interface between any two materials, including gases, liquids, solids
and any combination thereof [8; 16; 17; 18]. However, when analyzing the method, the convention
is to refer to the two materials as fluids.

5Even though in two dimensions 3i j is technically an area fraction, the convention is to refer to
it as a volume fraction.



SECOND-ORDER ACCURACY OF VOF INTERFACE RECONSTRUCTION 103

original volume fractions 3i j ; that is,

3̃i j =3i j for all cells Ci j . (9)

An algorithm for finding such an approximation is known as a volume-of-fluid
interface reconstruction method. The property that 3̃i j = 3i j is the principal
feature that distinguishes volume-of-fluid interface reconstruction methods from
other interface reconstruction methods. It ensures that the computational value of
the total volume of each fluid is exact. In other words, all volume-of-fluid interface
reconstruction methods are conservative in that they conserve the volume of each
material in the computation. When the underlying numerical method is a conser-
vative finite difference method this can be essential since, for example, in order to
obtain the correct shock speed it is necessary for all of the conserved quantities
to be conserved by the underlying numerical method; for example, see [5; 17; 18;
26]. More generally, a necessary condition for the numerical method to converge
to the correct weak solution of the underlying partial differential equation (PDE)
is that all of the quantities that are conserved in the PDE must be conserved by the
numerical method [15].

Volume-of-fluid methods have been used by researchers to track material inter-
faces since at least the early 1970s (see [20; 21], for example), and a variety of such
algorithms have been developed for modeling everything from flame propagation
[3] to curvature and solidification [4]. In particular, the problem of developing
high-order accurate volume-of-fluid methods for modeling the curvature and sur-
face tension of an interface has received much attention [1; 2; 4; 10; 13; 24].
Volume-of-fluid methods were among the first interface tracking algorithms to be
implemented in codes originally developed at the U.S. National Laboratories and
subsequently released to the general public which are capable of tracking fluid
interfaces in a variety of complex fluid flow problems [9; 12; 19; 35; 36]).

In this paper I do not consider the related problem of approximating the move-
ment of the interface in time, for which one would use a volume-of-fluid advection
algorithm. See [23; 27; 28] for a detailed description and analysis of several such
algorithms. In the present paper I only consider the accuracy that one can obtain
when using a volume-of-fluid interface reconstruction algorithm to approximate a
given stationary interface z(s).

1.2. Basic assumptions and definitions. Unless explicitly stated otherwise, I will
always assume that the exact interface z(s) = (x(s), y(s)) is twice continuously
differentiable: z ∈ C2(�). In particular, the derivatives ẋ(s), ẏ(s), ẍ(s) and ÿ(s)
exist and are continuous. I also assume that the curvature κ(s) of the interface z(s)
is bounded in �, so that there always exists a constant κmax independent of s such
that (2) holds.
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By the center cell Ci j I mean the square with side h that contains a portion of the
interface z(s)= (x(s), y(s)) for s in some interval, say s ∈ (sl, sr ). In what follows
I will consider the 3× 3 block of square cells Bi j — each with side h, surrounding
the center cell as shown, for example, in Figure 1. Unless I note otherwise, I will
denote the coordinates of the vertical edges of the cells in the 3× 3 block Bi j

centered on the cell Ci j by xi−2, xi−1, xi and xi+1 and the horizontal edges of the
cells in Bi j by y j−2, y j−1, y j , y j+1 as shown, for example, in Figure 1. It will
always be the case that

xi+1− xi = h, xi − xi−1 = h,

y j+1− y j = h, y j − y j−1 = h,

and so on, where h is the (nondimensional) grid size.

1.3. The column sums. The volume fraction3i j in the (i, j)-th cell Ci j is a nondi-
mensional way of storing the volume of dark fluid in that cell. Consider the column
consisting of Ci j and the cells immediately above and below Ci j . The column sum

Si ≡

j+1∑
j ′= j−1

3i j ′

is a nondimensional way of storing the total volume of dark fluid in those three
cells. In order to approximate the portion of the interface g(x) lying in the (i, j)-th
cell Ci j , I will use the three column sums in the 3× 3 block of cells Bi j that have
Ci j in its center to compute the slope m of the piecewise linear approximation g̃(x)
to g(x) (for example, see Figure 1). I use Si−1 to denote the column sum to the
left of Si and Si+1 to denote the column sum to the right of Si , so that

Si−1 ≡

j+1∑
j ′= j−1

3i−1, j ′, Si+1 ≡

j+1∑
j ′= j−1

3i+1, j ′ . (10)

Now consider an arbitrary column consisting of three cells with left edge x = xi

and right edge x = xi+1. Furthermore, assume that the interface can be written as a
function y = g(x) on the interval [xi , xi+1]. Assume also that the interface enters
the column through its left edge and exits the column through its right edge and
does not cross the top or bottom edges of the column, as is the case with all three
columns in the example shown in Figure 1. Then the total volume of dark fluid that
occupies the three cells in this particular column and lies below the interface g(x)
is equal to the integral of g over the interval [xi , xi+1]. This leads to the following
relationship between the column sum and the normalized 6 volume of dark fluid in

6The normalized volume is the nondimensional quantity obtained by dividing the integral of g(x)
over the interval [xi , xi+1] by h2.
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the column:

Si ≡

j+1∑
j ′= j−1

3i j ′ =
1
h2

∫ xi+1

xi

(
g(x)− y j−2 h

)
dx . (11)

I will use the phrase the i-th column sum Si is exact whenever (11) holds, and I
will refer to integrals such as the one on the right in (11) as the normalized integral
of g in that column.

Given the 3× 3 block of cells surrounding a cell Ci j that contains a portion
y = g(x) of the interface, most of the important results in this paper are based on
how well the column sums Si−1, Si and Si+1 approximate the normalized integral
of g in that particular column. This is because the slope mi j of the piecewise linear
approximation to g in Ci j will be the divided difference of two of these column
sums; that is, mi j is chosen to be one of the three quantities

ml
i j = Si − Si−1, mc

i j =
1
2(Si+1− Si−1), mr

i j = Si+1− Si . (12)

In particular, if two of the column sums Si+α and Si+β where α, β = 1, 0,−1 and
α 6= β are exact, then the slope

mi j =

(
Si+α − Si+β

)
(α−β)

(13)

will produce a piecewise linear approximation g̃(x) to the portion of the interface
g(x) in Ci j that is second-order accurate in the max norm as shown, for example,
in Figure 1.

In order to see why this will be the most accurate choice for the approximate
slope mi j , consider the case when the block Bi j has two exact column sums as
shown in Figure 2. In this example the interface is a line g(x)= m x + b. In this
particular orientation of the 3× 3 block of cells g has two exact column sums;
namely, the sums in the first and second columns. It is easy to check that

m =
1
h2

∫ xi

xi−1

( g(x)− y j−2h)dx

−
1
h2

∫ xi−1

xi−2

( g(x)− y j−2h)dx = (Si − Si−1)= ml
i j ,

where Si denotes the column sum associated with the interval [xi−1, xi ] and Si−1

denotes the column sum associated with the interval [xi−2, xi−1].
In this example, the divided difference ml

i j of the column sums Si−1 and Si is
exactly equal to the slope m of the exact interface. It is always the case that when
the exact interface is a line one can find an orientation of the 3× 3 block of cells
such that at least one of the divided differences of the column sums in (12) is exact.
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xi−2 xi−1 xi xi+1

yj−2

yj−1

yj

yj+1

g(x)

(xl, yl)

(xr, yr)

Figure 2. Here the interface is a line, g(x) = m x + b, having
two exact column sums (those in the first and second columns).
The slope ml

i j from (12) is then exactly equal to the slope m of the
interface: ml

i j = m. Whenever the exact interface is a line, one can
find an orientation of the 3× 3 block of cells such that at least one
of the divided differences of the column sums in (12) is exact.

For example, in the case shown in Figure 2 one could rotate the 3×3 block of cells
90 degrees clockwise and in this orientation the correct slope to use when forming
the piecewise linear approximation g̃(x)= mi j + bi j would be mi j = mr

i j , which
again would be exactly equal to the slope m of the exact interface.

However, as I will show in Section 3, there are some instances in which the
interface satisfies (3) but the center column sum Si is not exact. Much of the work
in Section 3 is devoted to showing that when the interface satisfies (3), the center
column sum Si are exact to O(h):

1
h2

∫ xi+1

xi

(g(x)− y j−2h)dx − Si = Ch,

where C > 0 is a constant that is independent of h. Then, in Section 4, I prove that
this is sufficient to still obtain second-order accuracy in the max norm.

I am now ready to finish the description of the volume-of-fluid interface recon-
struction algorithms that I study in this article. Given an arbitrary interface z in the
domain �, I choose an orientation of the 3× 3 block of cells such that at least two
of the column sums are sufficiently accurate that one of the divided differences in
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(12) satisfies
|mi j − g′(xc)| ≤ Ch, (14)

where C is a constant that is independent of h. In this article I prove that, provided
the condition in (3) is satisfied, it is possible to find such an orientation.

1.4. A brief overview of the structure of this article. In the next section I begin
by proving several lemmas that lead to Theorem 6, which states that if

h ≤ Ch (κmax)
−1 (15)

where Ch is defined in (4), then the interface can be written as a function of one of
the coordinate variables in terms of the other on an interval [a, b] with |b−a | ≥ 4 h.
This ensures that, given a cell Ci j that contains a portion of the interface, I can
always find a 3× 3 block of cells centered on the cell Ci j in which I can write the
interface as a function of one of the variables in terms of the other; for example,
y = g(x). To achieve this, it may be necessary to rotate the 3× 3 block of cells
centered on Ci j by 90, 180, or 270 degrees and/or reflect the coordinates about
one of the coordinate axes: x →−x or y→−y. No other coordinate transfor-
mations besides one of these three rotations and a possible reversal of one or both
of the variables x→−x and/or y→−y are required in order for the algorithms
studied in this article to converge to the exact interface as h→ 0. Furthermore,
these coordinate transformations are only used to determine a first-order accurate
approximation to the slope of the tangent to the interface z in the current cell of
interest, or equivalently, a first-order accurate approximation m to g′(xc) in the
center cell, as shown, for example, in Figure 1. The grid covering the domain �
always remains the same.

In particular, if one is using the interface reconstruction algorithm as part of a
numerical method to solve a more complex problem than the one posed here (for
example, the movement of a fluid interface where the fluid flow is a solution of the
Euler or Navier–Stokes equations), it is not necessary to perform these coordinate
transformations on the underlying numerical fluid flow solver. Therefore, unless
noted otherwise, in what follows I will always write y = g(x) and denote the
coordinates of the edges of the cells in the 3× 3 block by x = xi−2, xi−1, xi , xi+1

and y = y j−2, y j−1, y j , y j+1, it being implicitly understood that a transformation
of the coordinate system as described above may have been performed in order for
this representation of the interface to be valid, and that I may have interchanged
the names of the variables x and y in order to write the interface as y = g(x).

In Section 2 I will also prove that in the (possibly transformed) coordinates the
function y = g(x) that represents the interface satisfies

|g′(x)| ≤
√

3, max
x
|g′′(x)| ≤ 8κmax. (16)
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These inequalities are a part of Theorem 6. I use these bounds to prove several of
the results in Sections 3 and 4.

In Section 3 I prove that if h satisfies

h ≤max{Ch(κmax)
−1, (κmax)

−2
},

then, using one of the transformations described above, I can find a coordinate
frame in which there are at least two columns with column sums Si+α and Si+β in
the 3× 3 block of cells Bi j centered on the cell Ci j which contains the portion of
the interface of interest, such that their divided difference,

mi j =
(Si+α − Si+β)

(α−β)
for α, β =−1, 0, 1 and α 6= β,

satisfies (14).
In Section 4 I use this result to prove Theorem 24, which is the main result of

this paper. Namely that g̃(x) is a second-order accurate approximation to g(x) in
Ii in the max norm:

| g(x)− g̃i j (x) | ≤
( 50

3 κmax+CS
)
h2 for all x ∈ Ii = [xi−1, xi ].

Here CS is a constant that is independent of h and the approximate interface g̃i j (x)
is being constructed in the center cell Ci j = [xi−1, xi ] × [y j−1, y j ] of the 3× 3
block of cells Bi j that contains the portion of the interface that is of interest, as
shown, for example, in Figure 1. A corollary of this result is that when the size of
the computational grid h is too large

h ≥ Hmax, (17)

where Hmax is defined in (7), then the convergence rate may be less than second-
order. Thus, (17) may be used as a criterion for predicting when the computation
of the interface may be under-resolved.

2. The first constraint on the grid size h

The principle purpose of this section is to show that for a given interface z(s) with
a maximum curvature κmax there exists a value of the grid size h = hmax such that
the interface can be written as a function of one of the coordinate variables in terms
of the other in any given 3× 3 block of cells Bi j of side h ≤ hmax centered on a
cell Ci j that contains a portion of the interface. The main result in this section is
Theorem 6, in which I derive the constraint

h ≤ hmax ≡ Ch(κmax)
−1, (18)

where Ch is the constant defined in (4). I also prove that in the same 3× 3 block
of cells Bi j centered on the cell Ci j the bounds in (16) hold.
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The constraint in (18) is not sufficient to guarantee that the volume-of-fluid
interface reconstruction algorithm will be second-order accurate in the limit as
h→ 0. In Section 3 below, I will show that this requires a more stringent constraint
on h, namely

h ≤ (κmax)
−2.

Suppose that I am interested in a neighborhood of the point z(s0) = (x(s0),
y(s0))≡ (x0, y0) on the interface7 and at this point I have

ẋ2(s0)≥
1
2 . (19)

I will now show that in some neighborhood of the point (x0, y0) I can represent
the interface (x(s), y(s)) as the single valued function y(s) = g(x(s)). Then, in
Lemma 4 I will answer the question: Over how large an interval [xl, xr ] where
xl < x0 = x(s0) < xr is this representation of the interface valid? I will now
proceed to address this question.

Let sl < sr
8 chosen such that sl is the largest number less than s0 and sr is the

smallest number greater than s0 such that

ẋ2(s)≥ 1
4 for all s ∈ [sl, sr ]. (20)

Given that at the point z(s0) the inequality in (19) holds there are two possibilities
for the point z(sl) (resp. z(sr )).

(1) At the point z(sl) (resp. z(sr )) I have

ẋ2(sl)=
1
4

(
resp. ẋ2(sr )=

1
4

)
. (21)

In this case I can estimate the size of the interval [xl, x0] (resp. [x0, xr ]) over
which I can represent the interface as a function of one of the coordinate
variables in terms of the other, say y = g(x), and bound the first and second
derivatives of this function. All of these estimates will be in terms of one
quantity; namely, κmax, the maximum curvature of the interface.

(2) For all s < s0 (resp. s > s0) I have

ẋ2(s) > 1
4 ,

and at some point z(sl) (resp. z(sr )) the interface z(s) intersects the boundary
of the computational domain �. In this case the bound in (2) holds from the
point x0 up to the point xl (resp. xr ) on the boundary. In this case, I can

7In this section, and this section only, x0 and y0 denote a point on the interface z(s0) =
(x(s0), y(s0))≡ (x0, y0) rather than the location of one of the grid lines in the 3× 3 block of cells.

8Without loss of generality I can assume that x(s) increases with increasing s, since otherwise
the change of variables s→−s is also a parametrization of the interface by arc length for which x(s)
increases with increasing s.
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express the interface as a function such as y = g(x) from x0 ∈ [−h/2, h/2] all
the way to the boundary on the left (resp. right); that is, in the interval [xl, x0]

(resp. in the interval [x0, xr ]).

Note that since I have assumed that the domain � is bounded and that either the
interface enters and exits the domain across the boundary or it is a closed curve in
�, these are the only two possibilities. For if the interface is a closed curve, such
as a circle, it must be the case that eventually ẋ(s)→ 0.

In either case, there is an interval [xl, xr ] upon which I can express the interface
as a function y = g(x) and upon which all of the bounds that I prove below will
hold. The only difference between cases (1) and (2) above is that in case (2) one
or both of the points xl and xr lie on the boundary of the domain.

Since, for the purposes of the proving the lemmas and theorems below, I do
not know a priori the distance from x0 to the boundary, for the remainder of this
section I will assume that case (1) above holds and proceed to estimate the size
of the intervals [xl, x0] and [x0, xr ] in terms of the bound κmax on the curvature
of the interface. This will allow me to explicitly estimate the size of the interval
[xl, xr ] containing the point of interest (x0, y0)≡ (x(s0), y(s0)) over which I can
express the interface as a function y = g(x) and prove explicit bounds on the first
and second derivatives of g.

Remark 1. If the inequality in (19) fails to hold at the point z(s0) at which I wish
to reconstruct the interface, then ẏ2(s0)≥

1
2 instead, since s is arc length and hence

ẋ2(s)+ ẏ2(s)= 1. In this case I instead choose y to be the independent variable
and the same analysis will produce the same estimates throughout. Therefore, in
all of what follows x will denote the independent variable, it being understood that
in some cases y is the correct variable to choose.

Remark 2. The choice of the constant 1
2 in (19) and the constant 1

4 in (21) is
arbitrary. One could have chosen instead any two constants C1 and C2 that satisfy
C1 > C2 > 0 in the proof of Lemma 3. The lemma will continue to hold, but the
values of the constants Ch and hmax in Theorem 6 below will change. In other
words, all of our results will remain true, albeit with different constants.

I begin by finding a bounds on the second derivatives ẍ(s) and ÿ(s) of the
functions x(s) and y(s) in terms of the global bound κmax on the curvature of
the interface. I will use these bounds to estimate the size of the intervals [xl, x0]

and [x0, xr ] in terms of the intervals [sl, s0] and [s0, sr ], respectively, in the two
subsequent lemmas.

Lemma 3 (A bound on ẍ(s) and ÿ(s)). Suppose that I am given a point z(s0) =

(x(s0), y(s0)) on the interface at which the inequality

ẏ2(s)≤ 1
2 ≤ ẋ2(s) (22)
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holds. Let sl < s0 be the largest number less than s0 and sr > s0 be the smallest
number greater than s0 such that

1
4 ≤ ẋ2(s)

(
and hence ẏ2(s)≤ 3

4

)
for all s ∈ [sl, sr ] . (23)

Then
|ẍ(s)| ≤

√
3

2 κmax for all s ∈ [sl, sr ] . (24)

Similarly, if the roles of ẋ(s) and ẏ(s) are reversed in the inequalities in Equations
(22) and (23) above, then I have

|ÿ(s)| ≤
√

3
2 κmax for all s ∈ [sl, sr ] . (25)

Proof. To begin, recall that since the parameter s is arc length,

ẋ2(s)+ ẏ2(s)= 1 (26)

holds for all s, and hence the curvature κ(s) can be written as

κ(s)= ẋ(s)ÿ(s)− ẏ(s)ẍ(s) (27)

(see [29, page 555]). Differentiating (26) with respect to s I find that

ẋ(s)ẍ(s)=−ẏ(s)ÿ(s), (28)

or equivalently
−ẋ2(s)ẍ(s)= ẏ(s)ẋ(s)ÿ(s). (29)

Multiplying (27) by ẏ(s) I have

ẏ(s)κ(s)= ẏ(s)ẋ(s)ÿ(s)− ẏ2(s)ẍ(s), (30)

and thus, using (29) in (30), I obtain

ẏ(s)κ(s)=−ẍ(s)(ẋ2(s)+ ẏ2(s))=−ẍ(s). (31)

Combining (31) and (23) I obtain the following bound on ẍ(s) in terms of the
bound κmax on the curvature κ(s),

|ẍ(s)| = |ẏ(s)κ(s)| ≤ |ẏ(s)|κmax ≤
√

3
2 κmax.

One can use an identical argument to prove the bound on ÿ(s) in (25). �

In the next lemma I explicitly demonstrate how the size of the intervals [xl, x0] and
[x0, xr ] depend on the size of the intervals [sl, s0] and [s0, sr ] respectively. In the
lemma after that I provide an explicit relationship between the size of the intervals
[sl, s0] and [s0, sr ] the bound κmax in (2) on the curvature of the interface.
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Lemma 4. Let z(s0) = (x(s0), y(s0)) be a point on the interface at which the in-
equality

ẏ2(s0)≤
1
2 ≤ ẋ2(s0)

holds, and let sl < s0 be the greatest number less than s0 and sr > s0 the smallest
number greater than s0 such that

1
4 ≤ ẋ2(s) for all s ∈ [sl, sr ]. (32)

Then, letting xl ≡ x(sl), x0 ≡ x(s0), and xr ≡ x(sr ), the following inequalities hold:

1
2 |s0− sl | ≤ |x0− xl | ≤ |s0− sl |,

1
2 |sr − s0| ≤ |xr − x0| ≤ |sr − s0|. (33)

Proof. I prove that the inequalities involving sl are true. The proof of the other pair
of inequalities is identical. By the mean-value theorem I have

x0− xl = ẋ(s̃)(s0− sl) for some s̃ ∈ (s0, sl). (34)

Since both (26) and (32) hold I have 1
4 ≤ ẋ2(s)≤ 1 for all s ∈ [sl, sr ], and hence

1
2 ≤ |ẋ(s)| ≤ 1 for all s ∈ [sl, sr ]. (35)

Combining (34) and (35) I obtain

1
2 |s0− sl | ≤ |x0− xl | ≤ |s0− sl |,

as claimed. �

But how large are the intervals [sl, s0] and [s0, sr ] in terms of the physical coor-
dinates x and y? The following lemma addresses this question.

Lemma 5. Let z(s0) = (x(s0), y(s0)) be a point on the interface at which the in-
equality

ẏ2(s0)≤
1
2 ≤ ẋ2(s0) (36)

holds. If sl < s0 is the greatest number less than s0 and sr > s0 is the smallest
number greater than s0 such that

ẋ2(sl)=
1
4 = ẋ2(sr ), (37)

then the distances |sr − s0| and |s0− sl | satisfy

|s0− sl | ≥

√
2− 1
√

3
(κmax)

−1 , |sr − s0| ≥

√
2− 1
√

3
(κmax)

−1 . (38)

Proof. I will prove the first inequality; the proof of the second is identical. Let
ẋl = ẋ(sl) and ẋ0= ẋ(s0). By the mean-value theorem I have ẋ0− ẋl = ẍ(s̃)(s0−sl)

for some s̃ ∈ (s0, sr ), and hence

|ẋ0− ẋl | = |ẍ(s̃)||s0− sl | ≤
√

3
2 |s0− sl |κmax, (39)
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where the inequality in (39) follows from (24). Thus

|s0− sl | ≥
2
√

3
|ẋ0− ẋl |(κmax)

−1. (40)

Now from (36) and (37), I have |ẋl | =
1
2 and |ẋ0| ≥

1
√

2
, and hence

|ẋ0− ẋl | ≥

√
2− 1
2

. (41)

Combining (40) and (41) I obtain, as needed,

|s0− sl | ≥
2
√

3
|ẋ0− ẋl |(κmax)

−1
≥

√
2− 1
√

3
(κmax)

−1, �

I am now prepared to explicitly demonstrate the relationship between the max-
imum allowable cell size hmax and the bound on the curvature κmax such that for
all h ≤ hmax the inequality in (20) holds for all x in the interval [x0− 2h, x0+ 2h],
and hence the interface can be represented as a single-valued function y = g(x) in
the 3× 3 block of cells Bi j of side h surrounding the cell Ci j containing the point
(x0, y0) on the interface.

Theorem 6. Suppose that I wish to reconstruct the interface in a neighborhood of
the point z(s0)= (x(s0), y(s0)) and that at this point

ẏ2(s0)≤
1
2 ≤ ẋ2(s0). (42)

Let sl < s0 be the greatest number less than s0 and sr > s0 be the smallest number
greater than s0 such that

1
4 ≤ ẋ2(s) for all s ∈ [sl, sr ]. (43)

Let x0 = x(s0) and let
hmax = Ch(κmax)

−1, (44)

where

Ch ≡

√
2− 1

4
√

3
(45)

is the constant defined in (4). Then the interface can be represented as a single-
valued function y = g(x) on the interval [x0− 2 hmax, x0+ 2 hmax]. Furthermore,

max
x∈[a,b]

|g′(x)| ≤
√

3 (46)

and
max

x∈[a,b]
|g′′(x)| ≤ 8κmax (47)

where a = x0− 2 hmax and b = x0+ 2 hmax.
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Remark 7. As a consequence of this theorem, if the point z0 = z(s0) lies in some
cell Ci j of side h ≤ hmax, then the interface can be represented as a single-valued
function y = g(x) throughout the 3×3 block Bi j of square cells of side h surround-
ing Ci j and the bounds in (46) and (47) hold throughout Bi j .

Remark 8. It is apparent that interchanging the roles of x(s) and y(s) in Lem-
mas 3–5 and Theorem 6 above will show that the interface can be represented as
a single-valued function x = G(y) throughout the 3× 3 block Bi j of square cells
of side h surrounding Ci j and the bounds in (46) and (47) hold throughout the Bi j

with x replaced by y and g replaced by G.

Proof. Let xl = x(sl) and xr = x(sr ). Since, by the implicit function theorem, the
interface can be represented as a single-valued function y = g(x) on any interval
over which ẋ2(s)≥ 1

4 6= 0, it follows immediately from the assumption in (43) that
the interface z(s)= (x(s), y(s)) can be written as (x(s), g(x(s)) for all s ∈ [sl, sr ];
or, equivalently, as (x, g(x)) for all x ∈ [xl, xr ].

Now I need to prove that [x0 − 2hmax, x0 + 2hmax] ⊆ [xl, xr ], or equivalently,
that

xl ≤ x0− 2hmax (48)

and
xr ≥ x0+ 2hmax. (49)

To see that (48) holds note that (33) and (38) imply

|x0− xl | ≥
1
2 |s0− sl | ≥

√
2− 1
√

3
(κmax)

−1
=

√
2− 1

2
√

3
(κmax)

−1
= 2hmax.

Since x0− xl > 0, Equation (48) follows immediately. The proof of (49) is nearly
identical.

To see that (46) holds for x ∈ [xl, xr ] note that from (43) I have

1
ẋ2(s)

≤ 4 for all s ∈ [sl, sr ]. (50)

Furthermore, since s is arc length, I know that ẋ2(s)+ ẏ2(s) = 1 for all s, and
hence (43) also implies that

ẏ2(s)≤ 3
4 for all s ∈ [sl, sr ]. (51)

Combining (50) and (51) yields∣∣g′(x(s))∣∣2 = ∣∣∣∣ ẏ2(s)
ẋ2(s)

∣∣∣∣≤ 3, (52)

from which the expression in (46) follows immediately.
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To see that (47) holds on the interval [x0−2hmax, x0+2hmax], write the curvature
of the interface κ(x) in terms of the first and second derivatives of g [29, page 555]:

κ(x)=
g′′(x)(

1+ g′(x)2
)3/2 . (53)

The inequality in (47) follows immediately from the fact that (52) holds on x ∈
[x0− 2 hmax, x0+ 2 hmax]. �

3. The accuracy of the column sums in a 3× 3 block of cells

Notation. In this section I will often denote the edges of the 3× 3 block of cells
by x0, x1, x2, x3 and y0, y1, y2, y3 as shown, for example, in Figure 3, rather than
xi−2, xi−1, xi , xi+1 and y j−2, y j−1, y j , y j+1.

It is important to note that there is no bound of the form (3) that will ensure
that the interface will always have at least two exact column sums in any of the

x0 x1 x2 x3xc

|y0

y1

y2

y3

yc −
•(xl, yl)

•
(xr, yr)

•
(xm, ym)

c(x)

Figure 3. An example of a circular interface c(x) that satisfies
(3), but for which the center column sum is not exact in any of the
four standard orientations of the grid. Hence, any approximation
m to the slope c′(xc) of the form (13) will perforce have a nonexact
column sum Si . Theorem 15 shows that the error between the sum
Si and the normalized integral of c over the second column is O(h)
(that is, (3) implies that (54) holds). Theorem 23 shows that this
suffices to prove |m− c′(xc)| = O(h). Finally, Theorem 24 shows
that this yields an approximate interface g̃(x) which is a second-
order accurate approximation of c(x) in the max norm.
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four standard orientations of the grid. The argument is as follows. Consider the
curve shown in Figure 3, where I have chosen h so that (

√
h)−1
≤ Chh−1. Let

0< ε < h be a small parameter. I can always find a circle c(x)9 that passes through
the three noncollinear points (xl, yl)= (x0, y1+ε), (xm, ym)= (x1+ε, y2−ε) and
(xr , yr )= (x2−ε, y3) as shown in the figure. As ε→ 0 the arc of the circle passing
through (xl, yl), (xm, ym) and (xr , yr ) tends to the chord connecting (xl, yl) and
(xr , yr ), which, since the curvature of the chord is 0, implies that the radius R of
the circle tends to∞. Therefore, for some ε > 0, the radius will satisfy R ≥

√
h,

or equivalently, κmax = R−1
≤ (
√

h)−1, and hence the circle satisfies (3). However,
since by construction y1 < yl and xr < x2, the center column sum will not be exact
in any of the four standard orientations of the block Bi j . Consequently, if one
wishes to construct an approximation to c(x) based solely on the volume fraction
information contained in the 3× 3 block Bi j centered on the cell Ci j containing
the point (xm, ym), the best result that one can hope for is that the center column
sum Si is exact to O(h).

Much of the work in this section is devoted to showing that when cases such
as the one shown in Figure 3 occur, the error between the column sum Si and the
normalized integral of the interface in that column is O(h):∣∣∣∣Si −

1
h2

∫
Ii

(
g(x)− y j−2h

)
dx
∣∣∣∣≤ Ch, (54)

where the constant C > 0 is independent of h. In Section 4 I prove that this is
sufficient to ensure that the approximations

ml
i j = (Si − Si−1) , mr

i j = (Si+1− Si )

to g′(xc) are still first-order accurate, provided that the column sum Si−1 (resp. Si+1)
is exact. This fact is essential to the proof of Theorem 24, which is the main result
of this paper; namely, that the volume-of-fluid approximation g̃(x) to the interface
g(x) is second-order accurate in the max norm.

In this regard, I introduce the following terminology.

Definition 9. Let C > 0 be a constant that is independent of h and let Si denote
the column that is made up of the three cells that are centered on the cell Ci j =

[xi−1, xi ]× [y j−1, y j ] in which the interface will be reconstructed. Then I will say
that the i-th column sum Si is exact to O(h) if and only if (54) holds.

The main result in this section is Theorem 10; that a well-resolved interface has
two column sums that are exact to O(h). In other words, given a function g that
satisfies (3), one will always be able to find two columns whose divided difference

9When the exact interface is a circle, I will usually denote it by c(x), as I have done in Figure 3.
Otherwise, I always denote the exact interface by g(x).
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as defined in (12) will yield a first-order accurate approximation m to g′(xc) where
xc= (x1+x2)/2. This — together with the fact that I know the exact volume of fluid
in the center cell — will allow me to construct a piecewise linear approximation
g̃(x) to the interface in that cell which is second-order accurate in the max norm.

I have chosen to present the results in the remainder of this section (and only in
this section) in “top down” form. In other words, I state the main result first and
prove it, in part, using the results of lemmas and theorems that I state and prove
later in the section. I have chosen to structure the paper in this manner because I
believe that this makes it much easier for the reader to follow the motivation for the
various minor results that I need in order to prove the main results of the section.

3.1. Assumptions concerning the interface function g. In what follows, when I
speak about the interface entering and exiting the 3× 3 block of cells Bi j , I am
only concerned with the last time that it enters Bi j before entering the center cell
Ci j of the block Bi j and the first time that it exits Bi j after having exited the center
column Si of Bi j . As will be apparent from the material below, the condition in
(3) prevents a C2 function of x from entering Bi j through one of its edges, passing
through the center cell Ci j , exiting Bi j and then turning around and reentering Bi j

as shown, for example, in Figure 4. The critical assumptions are that the interface
must be a C2 function of x in some domain

D = [xi−2, xi+1]× [yb, yt ] ⊂�

x0 x1 x2 x3xc

|yb = y−1

y0

y1

y2

yt = y3

yc−

g(x)

(xl, yl) (xr, yr) Figure 4. Here h = 1 and the interface is
the parabola g(x)= a(x−xc)

2
−h/2 with

a= 9. The maximum curvature κmax= 18
exceeds (

√
h)−1

= 1, so g does not sat-
isfy (3). The interface enters the 3× 3
block of cells Bi j through the top edge of
the first column, passes through the cen-
ter cell Ci j , exits Bi j through the bottom
edge of the center column (that is, the
line y = y0), and then passes through Bi j

again; the second path being symmetric
to the first. In general, as h→ 0 the con-
straint κmax ≤ (

√
h)−1 on the curvature

ensures that the interface does not have
“hairpin” turns on the scale of the 3× 3
block of cells Bi j . A finer grid (that is, a

smaller h) is required in order to resolve curves such as the one illustrated here.
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with yb≤ y j−2< y j+1≤ yt that contains the 3×3 block Bi j (see Figure 4 again), and
that the interface must satisfy the constraint on the curvature in (3). This precludes
the interface from folding back upon itself on scales that are O(h).

Theorem 10 (A well-resolved interface has two column sums that are exact to
O(h)). Consider the 3× 3 block of square cells Bi j , each with side h, centered on
the cell Ci j through which the interface z(s) passes. Assume that in some domain
D = [xi−2, xi+1] × [yb, yt ] ⊆� with yb ≤ y j−2 < y j+1 ≤ yt (resp. D = [xb, xt ] ×

[y j−2, y j+1] ⊆� with xb ≤ xi−2 < xi+1 ≤ xt ) that contains the 3× 3 block of cells
Bi j the interface z(s) can be represented as a function y = g(x) (resp. x = G(y))
with g ∈ C2

[xi−2, xi+1] (resp. G ∈ C2
[y j−2, y j+1]). Furthermore, assume that the

interface z(s) satisfies the constraint on the curvature in Equation (3). Then in one
of the standard orientations of the grid (that is, rotation of the block by 0, 90, 180,
or 270 degrees and/or interchanging the arc length parameter s with s ′ =−s) the
interface has at least two column sums that are either exact or exact to O(h).

The remainder of Section 3 is concerned with proving Theorem 10 via a se-
quence of lemmas and theorems. In proving this theorem I will use symmetry
arguments such as the one demonstrated in Figure 5. In the following symmetry
lemma, I show that when the constraint on the curvature in Equation (3) holds there
are only four canonical ways the interface can enter the 3× 3 block of cells Bi j ,
pass through the center cell Ci j and then exit Bi j . In the remainder of the lemmas
and theorems in this section I will show that, given the assumptions of Theorem
10, two of these cases are not possible and in the other two cases either there are
at least two distinct column sums in Bi j that are exact to O(h) or the particular
interface configuration is not consistent with the hypotheses of Theorem 10.

The purpose of the symmetry lemma is to avoid having to prove that Theorem 10
holds for every possible way in which the interface can enter the 3× 3 block of
cells Bi j , pass through the center cell Ci j and then exit Bi j , and reduce all of
these possible cases to the four canonical cases mentioned above. In the proof
of the symmetry lemma, I will argue that one particular interface configuration is
equivalent to another, say configuration 1 is equivalent to configuration 2, in the
sense that the argument I use to prove Theorem 10 is true for configuration 1 can
also be used to prove that the theorem is true for configuration 2. In order to see
that configurations 1 and 2 are equivalent I will argue that by

(1) rotating the block Bi j by 90, 180, 270 degrees, and/or

(2) interchanging the arc length parameter s with s ′ =−s, and/or

(3) reflecting the block Bi j about one of the centerlines x = xc = (x1+ x2)/2 or
yc = (y1+ y2)/2.
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−3h/2

−h/2

h/2

3h/2

0 h 2h 3h

G(y)

(yl,−xl)

(yr,−xr)

−3h/2 −h/2 h/2 3h/2
0

h

2h

3h

g(x)

(xl, yl)

(xr, yr)

Figure 5. The same interface viewed in two different orientations.
Left: In this orientation the interface, written as −x = G(y), has
one exact column sum (the third); it enters through the top edge of
the center column and exits through the right-hand edge of Bi j , so
the hypotheses of Theorem 15 do not apply. Right: Upon rotation
of the grid clockwise by 270 degrees the interface, now described
by y = g(x) (g being the inverse funtion of G, which is strictly
monotonic), also has one exact column sum; but here it does sat-
isfy the hypotheses of Theorem 15, so Si is exact to O(h).

I can use the same proof for configuration 2 as for configuration 1. An example is
seen in Figure 5. Note that it is not necessary to reflect the block Bi j about either
of the centerlines x = xc or y = yc in order to determine the approximate slopes
ml

i j , mc
i j and mr

i j defined in (12). I only use reflection of the block about one of
the lines x = xc or y = yc in order to simplify the proof of the symmetry lemma
and hence, of Theorem 10.

Symmetry Lemma. Assume that the hypotheses of Theorem 10 hold. Since the
curvature of the interface z(s) is an intrinsic property of the interface, and hence
does not depend on the orientation of the coordinate system that I choose to work
in, I only need to prove that the conclusions of Theorem 10 hold in the following
four cases:

I. The interface z enters the 3 × 3 block of cells across its top edge, passes
through the center cell and exits the 3× 3 block of cells across its top edge.

II. The interface z enters the 3 × 3 block of cells across its left edge, passes
through the center cell and exits the 3× 3 block of cells across its right edge.
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III. The interface z enters the 3 × 3 block of cells across its top edge, passes
through the center cell and exits the 3× 3 block of cells across its bottom
edge.

IV. The interface z enters the 3× 3 block of cells across its left hand edge, passes
through the center cell and exits the 3× 3 block of cells across its top edge.

Proof. As already noted, without loss of generality I may assume that the arc length
s has been chosen so that the interface is traversed from left to right as s increases.
In particular, this implies that I do not need to consider any case in which the
interface enters the 3× 3 block of cells across its right edge.

To assist the reader in following the argument that I need only consider cases
I–IV, the following is a list of all of the ways in which the interface g can enter
and exit the 3× 3 block of cells together with which of cases I–IV it is equivalent
to.

(1) The interface z enters the 3× 3 block of cells across the left edge and exits
across:
(a) The left edge. This violates the assumption that the cell size h is suffi-

ciently small that the interface can be written as a function of one of the
coordinate variables in terms of the other in the 3× 3 block of cells Bi j .

(b) The right edge. This is case II. Since, the interface can be written as a
function on the 3× 3 block of cells Bi j and the first time that the interface
exits Bi j is across the right-hand edge, it has three exact column sums as
shown, for example, in Figure 1. Thus, I have just proved that Theorem
10 holds for case II.

(c) The top edge. This is case IV in the statement of the Symmetry Lemma
and is the subject of Lemma 13 and Theorem 15 below. (All of the work in
Section 3.2 below is concerned with proving this case when the interface
is an increasing, monotonic function of x .)

(d) The bottom edge. After reflection about the line y = yc and reversal of the
arc length parameter s→ s ′ =−s this is equivalent to (1c) immediately
above and hence falls under case IV in the statement of the Symmetry
Lemma.

(2) The interface z enters the 3× 3 block of cells across the top edge and exits
across:
(a) The left edge. Upon reversal of the arc length parameter s→ s ′ =−s this

case is equivalent to case (1c), and hence is equivalent to case IV in the
statement of the theorem.

(b) The right edge. Upon reflection of the 3 × 3 block of cells about the
midline x = xc this case is equivalent to case (1c), and hence is equivalent
to case IV in the statement of the theorem.
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(c) The bottom edge. This is case III of the Symmetry Lemma. It has two
subcases:
(i) The interface y = g(x) is strictly monotonic in the 3×3 block of cells

Bi j , and therefore it is invertible. Rotating the 3× 3 block of cells
90 degrees counterclockwise yields case (1b) and hence this case is
equivalent to case II of the Symmetry Lemma. I have already proven
that Theorem 10 holds in this case.

(ii) The interface z is not strictly monotonic in the 3× 3 block of cells
Bi j . In Lemma 12 I will prove that this case cannot occur.

(d) The top edge. This is case I of the symmetry lemma. In Lemma 11 I will
prove that the condition on the maximum curvature κmax in Equation (3)
prevents this case from occurring.

(3) The interface z enters the 3× 3 block of cells Bi j across the bottom edge and
exits across:
(a) The left edge. After rotation of the block Bi j clockwise by 90 degrees

this case is equivalent to case (1c), and hence is equivalent to case IV of
the symmetry lemma.

(b) The right edge. After rotation of the block Bi j by 180 degrees and reversal
of the arc length parameter s→ s ′ = −s this case is equivalent to case
(1c), and hence is equivalent to case IV of the symmetry lemma.

(c) The bottom edge. After rotation of the block Bi j by 180 degrees and
reversal of the arc length parameter s→ s ′ =−s this case is equivalent to
(2d) which is case I of the symmetry lemma, which I prove cannot occur.

(d) The top edge. After rotation of the block Bi j by 180 degrees and reversal
of the arc length parameter s → s ′ = −s this case is equivalent to (2c)
above.

(4) The interface z enters the 3× 3 block of cells Bi j across the right-hand edge
and exits across:
(a) The right edge. As in case (1a) above, this violates the assumption that

the cell size h is sufficiently small that the interface can be written as a
function in the block Bi j and hence, this case is not allowed.

(b) The left edge.
(c) The bottom edge.
(d) The top edge.

In each of cases 4(b-d) I can change the parametrization of the interface by
interchanging the arc length parameter s with s ′ =−s so that the interface en-
ters the 3×3 block of cells Bi j across its left, bottom, or top edge respectively
and exits Bi j across its right edge. Therefore, cases 4(b-d) are equivalent to
cases 1(b), 3(b), and 2(d), respectively. �
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In order to prove that if the interface satisfies the hypotheses of Theorem 10,
then it has at least two column sums that are exact to O(h), I will often need to
separate the proof into two parts:

A. The interface g is a strictly monotonic function on the interval under consid-
eration.

B. The interface g is not a strictly monotonic function on the interval under con-
sideration.

Recall that a function g(x) is strictly monotonic on the interval [a, b] if and only
if x < y H⇒ g(x) < g(y) for all x, y ∈ [a, b]. In the following, when I refer to
the interface g as being strictly monotonic or not strictly monotonic, the interval
[a, b] is implicitly understood to be [x0, x3]; that is, the bottom edge of the 3× 3
block of cells Bi j under consideration.

Recall that ξ is called a critical point of the function g if and only if g′(ξ)= 0.
If the function g is a strictly monotonic function on [x0, x3], then it cannot have a
critical point in [x0, x3]. In the simplest cases, if g is strictly monotonic then, since
it is invertible, the 3× 3 grid can be rotated by 90 degrees and an interface that has
only one or no exact column sums in the original orientation will have two or three
exact column sums in the new orientation. However in one case — namely, the one
shown in Figure 5 — the lack of a critical point makes it much more difficult to
prove that the interface has at least two column sums that are exact to O(h). The
existence of a critical point ξ ∈ [x0, x3] greatly simplifies the proof of Lemmas 11–
13. In fact, as will become apparent from the proofs of these lemmas, the existence
of a critical point ξ ∈ [x0, x3] is sufficient to force the middle column sum Si to be
exact.

Lemma 11 (Case I of the Symmetry Lemma cannot occur). Let g ∈ C2
[x0, x3] be

a nonmonotonic function that satisfies the assumptions of Theorem 10. Then case
I of the symmetry lemma cannot occur; the interface cannot enter the 3× 3 block
of cells Bi j across its top edge at some point (xl, y3), pass through the center cell
Ci j of Bi j , and exit Bi j across its top edge at some point (xr , y3).

Proof. Since g is assumed to cross the line y = y3 twice in the interval [x0, x3] it is
not monotonic, and since g must pass through the center cell of the 3× 3 block, it
follows that g must have at least one critical point ξ ∈ [x0, x3] such that g′(ξ)= 0
and y3− g(ξ) > h. There are two cases:

A. x3− ξ ≤ 3h/2; that is, ξ lies to the right of the midline x = xc of the block
Bi j .

B. x3− ξ > 3h/2; that is, ξ lies to the left of the midline x = xc of the block Bi j .

I will prove the theorem for case A. I will then indicate the changes one needs
to make in the proof of case A in order to prove case B. Consider the parabolic
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comparison function p defined by

p(x)= a(x − ξ)2+ g(ξ),

where the coefficient a is given by

a =
y3− g(ξ)
(x̃ − ξ)2

(55)

and x̃ = x3+ h/4. See Figure 6 for an example. Note that a was chosen so that

p(x̃)= g(xr )= y3, p′(ξ)= g′(ξ)= 0. (56)

Since g(xr )= y3 and p is a monotone increasing function for x >ξ , and ξ < xr < x̃ ,
I must have g(xr ) > p(xr ). Thus, the difference f (x) = g(x)− p(x) between g
and p satisfies

f (ξ)= g(ξ)− p(ξ)=0, f ′(ξ)= g′(ξ)− p′(ξ)=0, f (xr )= g(xr )− p(xr )>0.
(57)

x0 x1 x2 x3 x4xc

|y0

y1

y2

y3

+
(ξ, g(ξ)))

ξ

|

•(xr, yr)•(xl, yl)

g(x)

x̃

|

•(x̃, y3)

p(x)

Figure 6. An example in which the interface g(x) enters the top
edge of the 3× 3 block of cells Bi j at the point (xl, yl)= (xl, y3),
passes through the center cell Ci j and leaves Bi j at the point
(xr , yr )= (xr , y3). The function p(x) is the parabolic comparison
function that I use for this particular interface in the proof of case
A of Lemma 11. The presence of a critical point (ξ, g(ξ)) ∈ Bi j

with g(ξ) < y2 is essential to the successful use of a parabolic
comparison function in the proof of Lemma 11.
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The first and last of these equations imply there exists ζ ∈ [ξ, xr ] such that

f ′(ζ )= g′(ζ )− p′(ζ ) > 0, (58)

and this, together with the middle equation in (57), imply there exists η ∈ [ξ, ζ ]
such that

f ′′(η)= g′′(η)− p′′(η) > 0. (59)

In other words,

g′′(η) > p′′(η)= 2a for some η ∈ [ξ, ζ ]. (60)

Since x3− ξ ≤ 3h/2, it follows that x̃ − ξ ≤ 7h/4, and hence that

1
(x̃ − ξ)2

≥
16

49h2 .

This inequality, together with y3− g(ξ) > h, imply

g′′(ξ) > 2a = 2
(y3− g(ξ))
(x̃ − ξ)2

>
32h
49h2 >

32
49h

.

From (47), I have
max

x∈[x0,x3]
|g′′(x)| ≤ 8κmax,

and hence κg(ξ)≥ g′′(ξ)/8 where κg(x) denotes the curvature of the interface g(x)
at the point (x, g(x)). Thus

κg(ξ)≥
g′′(ξ)

8
>

4
49h

>
4

52h
=

1
13h

. (61)

Since Ch =

√
2−1

4
√

3
<

1
16

, it follows from (61) that

κg
max ≥ κ

g(ξ) >
1

13h
>

Ch

h
.

Hence, the interface does not satisfy the assumption (3) and thus this interface
configuration cannot occur.

In the event that case B holds, replace (xr , y3) with (xl, y3), set x̃ = x0−h/4, etc.,
and the proof that case I of the symmetry lemma cannot occur when x3− ξ > 3h/2
(case B) is essentially identical to the proof when x3− ξ ≤ 3h/2 (case A). �

Recall that in the proof of the Symmetry Lemma, I showed that case II will
always have three exact column sums. Hence case II has already been proved.
Therefore, I must now consider case III of the Symmetry Lemma. In the proof of
that case, I showed that when the interface function g is strictly monotonic it is
equivalent to case II of the Symmetry Lemma, so it also has three exact column
sums. Therefore, I only need to consider the nonmonotonic version of case III.
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Lemma 12 (Nonmonotonic version of case III of the Symmetry Lemma). Let g ∈
C2
[x0, x3] be a nonmonotonic function satisfying the assumptions of Theorem 10.

Then case III of the Symmetry Lemma cannot occur; that is, the interface cannot
enter the 3× 3 block of cells Bi j across its top edge at some point (xl, y3), pass
through the center cell Ci j of Bi j , and exit Bi j across its bottom edge at some point
(xr , y0) with x0 ≤ xl < xr ≤ x3.

Proof. I will show that if the interface g enters the 3×3 block of cells Bi j across its
top edge, passes through the center cell Ci j of Bi j , and exits Bi j across its bottom
edge, then it cannot satisfy

κg
max ≤ Chh−1 (62)

and hence it fails to satisfy the first constraint in (3).
First note that since g is nonmonotonic there is at least one point ξ ∈ [x0, x3]

such that g′(ξ) = 0. As in the proof of Lemma 11 there are two cases: A and B.
However, in this proof I must also consider two subcases of each of these cases:

A. The points ξ and x3 satisfy x3 − ξ ≤ 3h/2 and one of the following two
conditions hold:

(i) y3− g(ξ) > h (ii) y3− g(ξ)≤ h

B. The points ξ and x3 satisfy x3 − ξ > 3h/2 and one of the following two
conditions hold:

(i) y3− g(ξ) > h (ii) y3− g(ξ)≤ h

I will prove the lemma for case B(i). The proofs of the other three cases are nearly
identical.

Therefore, assume that x3− ξ > 3h/2 and y3− g(ξ) > h both hold and consider
the parabolic comparison function

p(x)= a(x − ξ)2+ g(ξ)

where the coefficient a is defined by

a =
3h− g(ξ)
(x̃ − ξ)2

(63)

and x̃ is defined by x̃ = x0− h/4. Note that a was chosen so that

p(x̃)= y3 = 3h, p′(ξ)= g′(ξ)= 0. (64)

Since x̃ < xl < ξ and p is a monotone decreasing function for x < ξ , I must have
g(xl) > p(xl) as shown in Figure 7. Thus, the difference f (x) = g(x)− p(x)
between g and p satisfies

f (ξ)=g(ξ)− p(ξ)=0, f ′(ξ)=g′(ξ)− p′(ξ)=0, f (xl)=g(xl)− p(xl)>0.
(65)
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x−1 x0 x1 x2 x3

y0

y1

y2

y3

ξ
|

g(ξ)−
x̃
|

g(x)
p(x)

(xl, yl)

(xr, yr)

Figure 7. An example in which the interface g(x) enters the
3× 3 block of cells Bi j at its upper left corner (xl, yl) = (x0, y3).
It then passes through the center cell and leaves Bi j at its lower
right corner (xr , yr ) = (x3, y3). The function p is the parabolic
comparison function used in the proof of case B(1) of Lemma 12.

The first and last of these equations imply that there exists ζ ∈ [xl, ξ ] such that

f ′(ζ )= g′(ζ )− p′(ζ ) < 0, (66)

and this, together with the middle equation in (65), implies there exists η ∈ [ζ, ξ ]
such that

f ′′(η)= g′′(η)− p′′(η) > 0. (67)

In other words,

g′′(η) > p′′(η)= 2a for some η ∈ [ζ, ξ ]. (68)

Note that ξ − x0 ≤ 3h/2 implies that ξ − x̃ ≤ 7h/4. This inequality, together with
y3− g(ξ) > h, implies

g′′(η) > p′′(η)= 2a = 2
y3− g(ξ)
(x̃ − ξ)2

>
32h
49h2 .

As in the proof of Lemma 11, it follows from (47) that κg(ξ) > g′′(ξ)/8; hence

κg(ξ)≥
g′′(ξ)

8
>

4
49h

>
4

52h
>

1
13h

. (69)
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Consequently,

κg
max ≥ κ

g(ξ) >
1

13h
>

Ch

h
,

whereby g fails to satisfy (62), and hence the constraint in (3) as claimed. �

Lemma 13 (Case IV of the Symmetry Lemma). Let g ∈ C2
[x0, x3] be a function

that satisfies the assumptions of Theorem 10. Assume also that the interface g
enters the 3× 3 block of cells Bi j across its left edge at the point (xl, yl)= (x0, yl),
passes through the center cell Ci j = [x1, x2]× [y1, y2], and exits Bi j across its top
edge at (xr , yr ) = (xr , y3) with x1 < xr ≤ x3. Then the interface has at least two
column sums in Bi j that are either exact or exact to O(h).

Proof. I will proceed by dividing the problem into two major divisions: (1) the
case in which the interface is strictly monotonic and (2) the case in which it is
not. The examples in which the center column sum is not exact in any of the four
standard orientations of the block Bi j — as shown, for example, in Figures 3, 5, 9
and 10 — are in the strictly monotonic category of case IV; the first of these two
major divisions.

In order to make the argument as clear as possible, I have enumerated the proof
of case IV into its various subdivisions here.

(1) The interface g is strictly monotonically increasing.
(a) The ordinate yl of the point (x0, yl) satisfies y0≤ yl ≤ y1. Since g is strictly

monotonic, it is invertible. Therefore it can be written as a function x =
g−1(x) on the interval [y0, y3]. Furthermore, since it must pass through
the center cell Ci j = [x1, x2]× [y1, y2] before exiting the block Bi j across
its top edge, rotation of the block clockwise by 90 degrees will yield an
orientation in which the second and third column sums are exact. Thus,
this particular case of the lemma is proved.

(b) The ordinate yl of the point (x0, yl) satisfies y1 < yl < y2. There are two
subdivisions of this case:
(i) The abscissa xr of the point (xr , y3) at which the interface exits Bi j

satisfies x2 ≤ xr ≤ x3. In this case the column sums Si−1 and Si are
both exact and the lemma is again proved.

(ii) The abscissa xr of the point (xr , y3) at which the interface exits Bi j is
strictly less than right-hand edge x = x2 of the second column. Since
the interface is assumed to be a function y = g(x) on the interval
[x0, x3], and since it must pass through the center cell Ci j = [x1, x2]×

[y1, y2], I have x1 < xr < x2. In this case the first column sum Si−1 is
exact and, since the interface satisfies the constraint κmax ≤ (

√
h)−1

in (3), the second column sum Si is exact to O(h). I will prove this
latter statement in Theorem 15 below.
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(c) The ordinate yl of the point (x0, yl) at which g enters Bi j satisfies y2 ≤

yl ≤ y3. Since the interface is strictly monotonically increasing, it cannot
enter the center cell Ci j = [x1, x2] × [y1, y2] if yl ≥ y2. This contradicts
the basic assumption that the interface passes through Ci j . Therefore this
case must be excluded.

(2) The interface is not strictly monotonically increasing.

(a) The abscissa xr of the point (xr , y3) at which the interface exits the block
satisfies x2 ≤ xr ≤ x3. In this case the column sums Si−1 and Si are exact
and once again the lemma is proved.

(b) The abscissa xr of the point (xr , y3) at which the interface g exits Bi j is
less than right-hand edge of the second column; that is, xr < x2. In this
case, since g is not strictly monotonic, and since it must pass through the
center cell Ci j = [x1, x2]× [y1, y2], g must have a critical point (ξ, g(ξ))
with y3 − g(ξ) > h which is also a local minimum of g. An example
appears in Figure 8. I will now prove that this is inconsistent with

κg
max ≤

Ch

h
, (70)

and hence with the constraint in (3).

Proof of case (2b). Assume that the conditions listed in (2b) above hold and recall
that the point (ξ, g(ξ)) is a local minimum of g. I form a comparison function p
of the form

p(x)= a(x − ξ)2+ g(ξ), (71)

where the coefficient a is defined by

a =
y3− g(ξ)
(ξ − x2)2

. (72)

Note that a was chosen so that

p(x2)= y3 = 3h, p′(ξ)= g′(ξ). (73)

Since p is a monotone increasing function for ξ < x and ξ < xr I must have
g(xr ) > p(xr ) as shown, for example, in Figure 8.

Thus, the difference f (x)= g(x)− p(x) between g and p satisfies

f (ξ)= g(ξ)− p(ξ)=0, f ′(ξ)= g′(ξ)− p′(ξ)=0, f (xr )= g(xr )− p(xr )>0.
(74)

The first and last of these equations imply there exists ζ ∈ [ξ, xr ] such that

f ′(ζ )= g′(ζ )− p′(ζ ) > 0, (75)
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x0 x1 x2 x3

y0

y2

y3

+
(ξ, g(ξ)))

•(xr, yr)

•(xl, yl)

g(x)

p(x)

Figure 8. An example in which a nonmonotonic interface g(x)
enters the left edge of the 3× 3 block Bi j at the point (xl, yl) =

(x0, yl) with y1 < yl < y2. It then passes through the center cell Ci j

and leaves Bi j at the point (xr , yr )= (xr , y3) on its top edge with
x0 < xr < x2. The function p(x) is the parabolic comparison func-
tion used in the proof of case (2b) of Lemma 13 to prove that this
case cannot occur whenever the interface g satisfies the condition
in (70); that is, the first of the two constraints in (3). The presence
of a critical point (ξ, g(ξ)) ∈ Bi j is essential to the success of the
arguments in which I use a parabolic comparison function p.

and this, together with the middle equation in (74), implies that there exists η ∈
[ξ, ζ ] such that

f ′′(η)= g′′(η)− p′′(η) > 0. (76)

In other words,

g′′(η) > p′′(η)= 2a for some η ∈ [ξ, ζ ]. (77)

Since x2− ξ < 2h and y3− g(ξ) > h it follows that

g′′(ξ) > 2a = 2
(y3− g(ξ))
(x2− ξ)2

=
(2h)

(x2− ξ)2
>

2h
4h2 =

1
2h
.

As in the proof of Lemma 11 I have κg(ξ)≥ g′′(ξ)/8 and hence

κg(ξ)≥
g′′(ξ)

8
>

1
16h

>
Ch

h
. (78)
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Consequently, κg
max ≥ κ

g(ξ) > Ch/h, whereby g fails to satisfy (70) and hence, the
constraint on κmax in (3) as claimed. �

3.2. The comparison circle z̃(s). All that remains is to prove (ii) from case (1b)
in the preceding proof. This is the case in which the center column sum is not exact
in each of the four standard orientations of the block Bi j as shown in the examples
in Figures 3 and 5. The remainder of this section is devoted to proving this result,
which is stated explicitly in Theorem 15 below.

Notation. In what follows it will be convenient to translate the coordinate system
so that the origin coincides with the point (x0, y1). This results in the follow-
ing relations, which I will use in several of the proofs below: (x0, y1) = (0, 0),
(x1, y2)= (h, h), and (x2, y3)= (2h, 2h), where x0, . . . , x3 and y0, . . . , y3 are the
coordinates of the grid lines as shown, for example, in Figure 9.

x0 = 0 x1 = h x2 = 2h x3 = 3h

y0 = −h

y1 = 0

y2 = h

y3 = 2h

•(xl, yl)

•
(xr, yr)

g(x)

•
(x̃r , ỹr)

c̃(x) = z̃(s)

×
(x̃0, ỹ0)

Figure 9. In this figure g is an arbitrary strictly monotonically
increasing function that enters the 3× 3 block Bi j through its left
edge at the point (xl, yl) with y1 ≤ yl < y2, passes through the
center cell Ci j , and exits Bi j through the top of its center column
Si at the point (xr , yr ) with x1 < xr < x2. Lemma 16 says that if g
satisfies κmax ≤ (

√
h)−1, the distance x2− xr is O(h3/2). In order

to prove this, I form a comparison function z̃(s) which is a circle
that has curvature κ̃ = (

√
h)−1 and passes through (x0, y1) and

(x1, y2). In the circle comparison theorem (Theorem 14) I prove
that g must eventually lie below the graph of z̃, thereby implying
that x̃r < xr . Then, in Lemma 17, I prove that x2− x̃r is O(h3/2).
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Now consider the circle z̃(s)= (x̃(s), x̃(s)) defined by

x̃(s)= R sin
(
φ0+

s
R

)
− R sinφ0, ỹ(s)=−R cos

(
φ0+

s
R

)
+ R cosφ0, (79)

together with the parameters

φ0 =
π
4
− sin−1 R

√
2
=
π
4
−

s1
2R
, (80)

s1 = 2R sin−1 R
√

2
, s2 = R cos−1(cosφ0− 2R)− Rφ0. (81)

It is relatively straightforward to check the equalities

z̃(0)=(x0,y1)=(0,0), z̃(s1)=(x1,y2)=(h,h), z̃(s2)=(x̃r ,y3)=(x̃r ,2h). (82)

Note that the variable x̃r in the last of these equations plays the same role with
respect to the function z̃(s) as the variable xr plays with respect to the interface
z(s)= (x, g(x)). Namely, x̃r is the x-coordinate at which the graph of z̃(s) exits
the top of the 3× 3 block Bi j . This is illustrated in Figure 9. In what follows I will
often use (x, c̃(x)) to denote the graph of z̃(s) reparametrized as a function of x
just as I use (x, g(x)) to denote the graph of the interface z(s).

3.3. The circle comparison theorem. Suppose that the interface (x, g(x)) satisfies
κmax ≤ (

√
h)−1. In the following theorem I prove that once g(x) < c̃(x) for some

x ∈ (x0, x2), then g(x) must remain below c̃(x) for all x ∈ (x̃0, x̃r ), where (x̃0, ỹ0)

is the point at which g initially crosses c̃ as shown in Figure 9. An immediate
consequence of this fact is that x̃r ≤ xr . Consequently, if xr < x2, then x̃r ≤ xr < x2

and hence |x2− xr | ≤ |x2− x̃r |. Since I have constructed the comparison function
c so that I can easily show that |x2 − x̃r | is O(h3/2), it follows that |x2 − xr | is
O(h3/2). This, together with the fact that g′(x) ≤

√
3 from (46), is sufficient to

show that the error in the second column sum associated with g is O(h).

Theorem 14 (The circle comparison theorem). Assume that R =
√

h and let g ∈
C2
[x0, x3] be a strictly monotonic function that satisfies

κmax ≤ (
√

h)−1. (83)

Furthermore, assume that g enters the 3× 3 block of cells Bi j on its left edge at the
point (xl, yl) with y1 < yl < y2, passes through the center cell Ci j , and exits Bi j

through the top of its center column at the point (xr , yr )= (xr , y3) with x1< xr < x2.
Let (x̃0, ỹ0) denote the first point at which the graph of g crosses the graph of c̃ as
shown in, for example, Figure 9. Then

g(x) < c̃(x) for all x ∈ (x0, x̃r ]. (84)
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Proof. First note that since c̃ is a circle, the curvature of c̃ is constant: κ c̃
= (
√

h)−1.
Hence, by (83),

κg(x)≤ κ c̃(x) for all x ∈ [x0, x̃r ].

To prove that (84) is true I start by assuming that

g(ξ)= c̃(ξ) for some ξ ∈ (x0, x̃r ], (85)

and then show that this implies that the maximum curvature κmax of g in (x̃0, x̃r )

must exceed (
√

h)−1, thereby contradicting (83).
Since g(x) > c̃(x) for x0 < x < x̃0 and g(x) < c̃(x) for x̃0 < x < ξ it follows

that
g′(x̃0) < c̃′(x̃0). (86)

However, since by (85) g(ξ) = c̃(ξ) for some ξ > x̃0 it must be the case that
eventually g′(x)≥ c̃′(x). Therefore let x∗ ∈ (x̃0, ξ) be the first x such that g′(x∗)=
c̃′(x∗). I have

g′(x∗)= g′(x̃0)+

∫ x∗

x̃0

g′′(x) dx = c̃′(x̃0)+

∫ x∗

x̃0

c̃′′(x) dx = c̃′(x∗),

which, by virtue of (86), can only be true if g′′(x) > c̃′′(x) on some subinterval of
(x̃0, x∗). So in particular g′′(η) > c̃′′(η) for some η ∈ (x̃0, x∗). Now recall that

(1) g is strictly monotonic and hence 0< g′(x) for all x ∈ (x0, x̃r ].

(2) 0< g′(x) < c̃′(x) for all x ∈ (x̃0, x∗).

(3) κg(x)= g′′(x)(1+ g′(x)2)−3/2 for all x .

Items (1)–(3) imply that

κg(η)=
g′′(η)

(
√

1+ g′(η)2)3
>

c̃′′(η)

(
√

1+ c̃′(η)2)3
= κ c̃(η)=

1
√

h
,

which contradicts (83) as claimed. �

3.4. The column sum Si is exact to O(h).

Theorem 15 (The column sum Si is exact to O(h)). Assume that the interface g ∈
C2
[x0, x3] and that g is a strictly monotonically increasing function that satisfies

κmax ≤ (
√

h)−1. (87)

Furthermore, assume that the g enters the 3× 3 block of cells Bi j on its left edge
at the point (xl, yl) with y1 ≤ yl ≤ y3, passes through the center cell Ci, j =

[x1, x2] × [y1, y2], and exits Bi j through the top of its center column at the point
(xr , yr )= (xr , y3) with x1 < xr < x2 as shown, for example, in Figure 10. Then the
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x0 x1 x2 x3

y0

y1

y2

y3

y4

•(xl, yl)

• (xr, yr)

g(x)

c̃(x) = z̃(s)

×
(x̃0, ỹ0)

Figure 10. To see the error between the center column sum Si

and the exact volume (area) under the interface y = g(x), I have
plotted the row of cells that lie above the standard 3× 3 block of
cells Bi, j centered on the cell Ci, j = [x1, x2] × [y1, y2] in which
the approximation to the interface g will be constructed. I have
also plotted the comparison circle c̃(x) which, in Theorem 14, I
prove provides an upper bound on g(x) for all x ∈ [x̃0, x2] where
(x̃0, ỹ0) is the point at which the interface g intersects comparison
circle c̃.

error between the column sum Si and the normalized integral of g over the second
column is O(h): ∣∣∣Si − h−2

∫ x2

x1

(g(x)− y0)dx
∣∣∣≤ CSh, (88)

where
CS = 8

√
3(2
√

2− 1)2. (89)

Proof. As one can see from the example shown in Figure 10, the error between
the column sum Si and the exact normalized volume (area) under the interface
y = g(x) in the center column is

h−2
∫ x2

x1

(g(x)− y0)dx − Si = h−2
∫ x2

xr

(g(x)− y3)dx,

since

Si = h−2
∫ x2

x1

(min{g(x), y3}− y0)dx,
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and, by assumption, min
[x0,xr ]

g(x)≥ yl ≥ y1. Thus, it suffices to show that∣∣∣∣∫ x2

xr

(g(x)− y3)dx
∣∣∣∣≤ CSh3. (90)

In other words, I need to show that the volume in the region below the interface
y = g(x) that lies in the cell C2,4 is O(h3).

By (46) in I have |g′(x)| ≤
√

3. This implies∣∣∣∣∫ x2

xr

(g(x)− y3)dx
∣∣∣∣≤ ∣∣∣∣∫ x2

xr

l(x)dx
∣∣∣∣, (91)

where l(x) is the line with slope
√

3 that passes through the point xr . The region
of integration on the right side of (91) is a right triangle with corners (xr , y3),
(x2, y3), and (x2, y3 +

√
3(x2 − xr )) and the integral is the area of this triangle,

namely,
√

3(x2− xr )
2/2. Thus I have∣∣∣∣∫ x2

xr

(g(x)− y3) dx
∣∣∣∣≤ ∣∣∣∣∫ x2

xr

l(x) dx
∣∣∣∣≤
√

3
2
(x2− xr )

2
≤

√
3

2
C̃2h3, (92)

where the bound (x2−xr )
2
≤ C̃2h3 between the second to last and last terms in (92)

follows from the inequality (93) immediately below. Equation (92) implies (90).
Equation (88) — and hence the theorem — follows immediately. �

Lemma 16 (x2− xr is O(h3/2)). Let g ∈ C2
[x0, x3] be a function that satisfies the

assumptions stated in Theorem 14. Then

x2− xr ≤ C̃h3/2, (93)

where
C̃ = 4(2

√
2− 1). (94)

Proof. By the circle comparison theorem (Theorem 14) there exists a point x̃0 ∈

[x0, xr ) such that
g(x)≤ c̃(x) for all x ∈ [x̃0, xr ].

This implies that x̃r ≤ xr . Since by assumption xr < x2, Equation (93) follows
immediately from Equation (95) in Lemma 17 below. �

Lemma 17 ( x2 − x̃r is O(h3/2)). Let R =
√

h and let x̃r be defined as in (82)
above. Then

x2− x̃r ≤ C̃h3/2, (95)

where C̃ is defined in (94).

Proof. Since the coordinate system has been arranged so that the origin is at the
point (x0, y1) and hence x2 = 2h = y3 (for example, see Figure 9), I have

x2 = ỹr = ỹ(s2).
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Thus

x2− x̃r = ỹ(s2)− x̃(s2)

= R{(cosφ0− cos(φ0+ s2/R))− (− sinφ0+ sin(φ0+ s2/R))},
(96)

and since R =
√

h, it suffices to show that the quantity inside the curly braces in
(96) is O(R2)= O(h). I can rewrite (96) as

x2− x̃r = R{(cosφ0+ sinφ0)− (cos(φ0+ θ)+ sin(φ0+ θ))}, (97)

where θ = s2/R. Consider the quantity A defined by dividing (97) by R:

A = {(cosφ0+ sinφ0)− (cos(φ0+ θ)+ sin(φ0+ θ))}. (98)

Now expand cos(φ0+ θ) and sin(φ0+ θ) in a Taylor series about cosφ0 and sinφ0

to obtain

A = (cosφ0+ sinφ0)−
(
cos(φ0+ θ)+ sin(φ0+ θ)

)
= − (cosφ0− sinφ0)θ + (cosφ0+ sinφ0)

θ2

2!
+ (cosφ0− sinφ0)

θ3

3!

− (cosφ0+ sinφ0)
θ4

4!
− (cosφ0− sinφ0)

θ5

5!
+ (cosφ0+ sinφ0)

θ6

6!
+ · · · .

After some manipulation one obtains

A = −
(
(cosφ0− sinφ0)− (cosφ0+ sinφ0)

θ

2

)
θ

+

(
(cosφ0− sinφ0)− (cosφ0+ sinφ0)

θ

4

)θ3

3!

−

(
(cosφ0− sinφ0)− (cosφ0+ sinφ0)

θ

6

)θ5

5!
+ · · · . (99)

The first term in this series is O(R2)= O(h). To see this note that by Lemma 19
below cosφ0− sinφ0 = R and cosφ0+ sinφ0 =

√
2− R2 so that the series for A

in (99) becomes

A =−
(

R− θ
2

√
2− R2

)
θ +

(
R− θ

4

√
2− R2

)
θ3

3!
−

(
R− θ

6

√
2− R2

)
θ5

5!
+ · · · .

(100)
The first term is positive, because R =

√
h, θ = s2/R, and s2 ≥ h (see (102) below).

Thus, (
θ
2

√
2− R2− R

)
θ ≥

( h
R

√
2− R2− R

) h
R
≥
(√

2− R2− 1
)
R2 > 0,
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for all 0< h ≤ 1, and hence all 0< R ≤ 1. Similarly, since s2 ≤ 4h (see Lemma
18 again), it follows that(

θ
2

√
2− R2− R

)
θ ≤

(
2R
√

2− R2− R
)
4R = 4

(
2
√

2− R2− 1
)
R2, (101)

for all 0< h ≤ 1, or equivalently all 0< R ≤ 1. Combining equations (97), (98),
(100), and (101) yields

x2− x̃r ≤ 4(2
√

2− R2− 1)R3
+ O(R5)≤ 4(2

√
2− 1)R3

+ O(R5).

It is possible to show — for example by plotting it with MATLAB — that the co-
efficient (R− θ

√
2− R2)/4 of the second term in the expansion of A in terms of

R in (100) is negative for 0< h ≤ 1 and that furthermore, the tail of the series is
bounded by this term. Equation (95) follows immediately. �

Lemma 18 (s2 = O(h)). Assume that h ≤ 1 and let s2 be defined as in (81). Then

h ≤ s2 ≤ 4h. (102)

Proof. First, note that I am only interested in functions g that exit the 3× 3 block
of cells at the point (xr , y3) when xr < x2 as shown for example in Figure 3. For
otherwise the first and second column sums would be exact and I would be done.

x0 x1 x2 x3

y0

y1

y2

y3

•
(x̃(0), ỹ(0))

•
(x̃(s2), ỹ(s2)) = (x̃r, ỹr)

z̃(s)

Figure 11. In this figure h = 1
4 and hence the comparison circle

z̃(s) has radius R =
√

h = 2h.
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Since a consequence of Theorem 14 is that x̃r = x̃(s2) ≤ xr , it follows that I am
only interested in values of R =

√
h and s2 such that x̃r < x2.

To obtain the lower bound on s2 in (102) note that s2 is an arc of the circle
z̃ and that when h = 1 the radius of z̃ is R =

√
h = h. In this case the point

(x̃r , ỹr ) = (x0, y3) and hence x̃r = x0. Since this is half the circumference of the
circle with center (x0, y2) and radius h, s2= π when h = 1. Since s2 will always be
greater than the length of the chord connecting the points (x0, y1) and (x̃r , ỹr ) and
since this particular chord is the diameter of z̃ all other chords of z̃ will be smaller.
In particular, since the radius of z̃ R =

√
h→ 0 as h→ 0, all chords connecting

(x0, y1) and (x̃r , ỹr ) will be smaller than this one. The lower bound on s2 in (102)
follows immediately.

In order to write s2 in the form s2 = Ch where C is a constant independent
of h note that since h ≤ 1 and x̃(s2) < x2, the arc of the circle that connects the
points (x̃(0), ỹ(0)) and (x̃(s2), ỹ(s2)) always lies entirely within the triangle with
vertices (x0, y1), (x2, y1) and (x2, y3), as shown in Figure 11, for example. Hence,
the arc length s2 will always be bounded above by the sum of the lengths of the
two perpendicular sides of this right triangle; namely,

s2 < 4h.

This is the upper bound on s2 in (102). �

In order to prove that x2 − x̃r = O(h3/2) in Lemma 17, I expanded x2 − x̃r

in a Taylor series about the point φ0. As we saw in Lemma 17 the coefficient of
the first nonzero term in this expansion is cosφ0 − sinφ0. Hence, the fact that
cosφ0 − sinφ0 = R is a crucial part of the proof that |x2 − x̃r | = O(h3/2). The
purpose of the following lemma is to prove this fact and also to establish the value
of cosφ0+ sinφ0.

Lemma 19 (cosφ0− sinφ0 = R). Let φ0 be defined as in (80):

φ0 =
π

4
− sin−1 R

√
2
.

Then
cosφ0− sinφ0 = R, cosφ0+ sinφ0 =

√
2− R2. (103)

Proof. Define θ by sin θ = R/
√

2, so that

φ0 =
π

4
− sin−1 R

√
2
=
π

4
− θ.

The first equation in (103) follows from writing φ0 as π/4− θ and applying the
trigonometric identities for the sine and cosine of the difference of two angles:

cosφ0− sinφ0 =
√

2 sin θ = R.
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To prove the second equality in (103) I again use the trigonometric identities for
the sine and cosine of the difference of two angles, together with the trigonometric
identity cos(arcsin x)=

√
1− x2, to obtain

cosφ0+ sinφ0 =
√

2 cos θ =
√

2 cos
(

sin−1 R
√

2

)
=

√
2− R2. �

4. Second-order accuracy in the max norm

In this section I will assume the coordinate system has been arranged so that the
bottom edge of the 3× 3 block of cells Bi j lies along the line y = 0 and that the
vertical line x = xc which passes through the center of the center cell is x = 0 as
shown in Figure 12. In particular, note that the origin is at the center of the bottom
edge of the 3× 3 block and the center of Ci j is (0, 3h/2) as shown in the figure.

I will also denote the interval that forms the bottom of the 3× 3 block Bi j by I ,
and the intervals [xi−2, xi−1], [xi−1, xi ] and [xi , xi+1] that are associated with the
three columns of Bi j by Ii+α for α =−1, 0, 1. Thus, I = [−3h/2, 3h/2] and

Ii+α ≡


[−3h/2,−h/2] if α =−1,

[−h/2, h/2] if α = 0,

[h/2, 3h/2] if α = 1.

−3h/2 −h/2 h/2 3h/2
0

h

2h

3h

|
(0,0)

+
(0,3h/2)

g(x)

Figure 12. In this section I will work with the coordinate system
shown here. The origin is at the center of the bottom of the 3× 3
block Bi j so that the center of the center cell Ci j is (0, 3h/2) as
shown in the figure. This latter point corresponds to the point
labeled (xc, yc) in some of the other figures.
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Given an arbitrary integrable function g(x) on the interval I = [−3h/2, 3h/2],
let 3i, j (g) denote the volume fraction due to g in the center cell

3i, j (g)= h−2
∫

Ii

θ j (g(x))dx . (104)

where θ j (g) is defined by

θ j (g)≡ (g(x)− ( j − 1)h)+− (g(x)− jh)+ (105)

and

x+ =
{

x if x > 0,
0 if x ≤ 0,

(106)

is the ramp function. I will denote the volume fractions in the other cells similarly;
that is, I will use 3i ′, j ′(g) for i ′ = i − 1, i, i + 1 and j ′ = j − 1, j, j + 1 to denote
the volume fraction in the (i ′, j ′)-th cell. When the function g under consideration
is apparent, I will simply write 3i ′, j ′ or equivalently 3i+α, j+β for some α, β =
−1, 0, 1.

In the following lemma I make the implicit assumption that the 3× 3 block of
cells Bi j has been arranged so that the volume fraction 3i, j (g) is the volume (area)
of dark fluid in the center cell. In other words, if one assumes that the block Bi j

has been rotated so that the interface z can be represented as a function g(x) on
the interval I = [−3h/2, 3h/2], then there are two possibilities:

(1) 3i, j (g)= h−2
∫

Ii
θ j (g)dx is the volume of dark fluid in Ci j ,

(2) 3i, j (g)= h−2
∫

Ii
θ j (g)dx is the volume of light fluid in Ci j .

In the event that (2) holds, one can reflect the 3× 3 block Bi j about the line y = yc,
where yc = (y j + y j+1)/2 is the line that divides the block Bi, j in half horizontally,
to ensure that case (1) holds. This is necessary because when I write the piecewise
linear approximation g̃i, j (x)=mi, j x+bi, j to g(x) in Ci, j I am implicitly assuming
that

3i, j (g̃i, j )= h−2
∫

Ii

θ j (g̃i, j (x))dx

is the volume of dark fluid in Ci, j . It is necessary to be consistent about which fluid
is represented by the volume fraction 3i, j in order to prove the following lemma.

Lemma 20 (Equal volume fractions ensure that g̃ intersects g in the center cell
Ci, j ). Let g(x) be a continuous function on the interval Ii ≡ [−h/2, h/2] and
assume that a portion of the interface g(x) passes through the center cell

Ci, j = [−h/2, h/2]× [h, 2h].
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Furthermore, assume that the 3× 3 block of cells Bi j centered on Ci, j has been
arranged so that

3i, j (g)= h−2
∫

Ii

θ j (g(x))dx (107)

is the (nonzero) volume fraction of dark fluid in Ci, j . Let

g̃(x)= mx + b (108)

be a piecewise linear approximation to g that passes through the center cell Ci, j

and assume that g and g̃ have the same volume fraction

0<3i, j (g)=3i, j (g̃) < 1

in Ci j . Then there exists a point x∗ ∈ Ii = [−h/2, h/2] such that

g(x∗)= g̃(x∗).

Proof. Consider

h−2
∫

Ii

[
θ j (g(x))− θ j (g̃(x))

]
dx =3i, j (g)−3i, j (g̃)= 0,

and note that θ j (g) defined in (105) is a strictly monotonically increasing function
of g(x):

g(x) < g̃(x)⇒ θ j (g(x)) < θ j (g̃(x)).

Therefore, in order for 3i, j (g)=3i, j (g̃) to hold, there are two possibilities. The
first is that g(x)= g̃(x) for all x ∈ Ii , in which case the theorem is true and x∗ is
any point in Ii .

The second possibility is that there exists a point x− ∈ Ii with g(x−) < g̃(x−)
and there also exists a point x+ ∈ Ii where g(x+) > g̃(x+). Thus, since both
g(x) and g̃(x) are continuous, there must be a point x∗ between x− and x+ where
g(x∗)= g̃(x∗). To see this, consider the function f (x)= g(x)− g̃(x). The function
f is continuous and furthermore,

f (x+)= g(x+)− g̃(x+) > 0, f (x−)= g(x−)− g̃(x−) < 0.

Hence, if x− < x+, then there must exist an x∗ ∈ (x−, x+) ⊂ Ii (or, if x+ < x−,
then x∗ ∈ (x+, x−)⊂ Ii ) such that f (x∗)= 0, or equivalently, g(x∗)= g̃(x∗), as
claimed. �

An immediate consequence of this lemma is that the piecewise constant volume-
of-fluid interface reconstruction algorithm as defined below must be first-order
accurate. The details are as follows.
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Definition 21. The piecewise constant VOF interface reconstruction algorithm is
defined by

g̃(x)= y j−1+ h3i, j (g) for all x ∈ Ii = [xi−1, xi ], (109)

where, as usual, I have assumed that the 3× 3 block Bi j centered about the cell Ci j

in which I want to reconstruct the interface has been rotated so that the interface
can be written as a single valued function g(x) on the interval I = [−3h/2, 3h/2]
and

3i, j (g)= h−2
∫

Ii

θ j (g)dx

is the volume of dark fluid in Ci j .

Corollary 22 (The piecewise constant VOF interface reconstruction algorithm is
first-order). Suppose that the interface passes through a portion of the cell Ci, j

and that it can be represented as a C2 function on the interval I = [−3h/2, 3h/2].
Then the piecewise constant interface reconstruction algorithm defined in (109)
produces a first-order accurate approximation g̃ to the exact interface g in Ci, j :

|g(x)− g̃(x)| ≤ CP h for all x ∈ Ii = [−h/2, h/2],

where CP =
√

3.

Proof. By assumption the interface g is continuous and passes through the center
cell Ci j . Furthermore, the piecewise constant interface reconstruction algorithm
defined in (109) is a member of the class of piecewise linear approximations to
g. Therefore, Lemma 20 applies, and hence there exists a point x∗ ∈ Ii such that
y j−1 ≤ g(x∗)≤ y j and

g(x∗)= g̃(x∗).

The assumption10 that g ∈ C2
[I ] allows me to apply Theorem 6 to obtain (see

Equation (46)) ∣∣g′(x)∣∣≤√3 for all x ∈ [−h/2, h/2]. (110)

Thus, applying the Taylor remainder theorem [29] to g(x), I find that for all x ∈
[−h/2, h/2]

|g(x)− g̃(x)| = |g(x∗)+ g′(ξ)(x − x∗)− g̃(x∗)| ≤ |g′(ξ)h| ≤
√

3h,

since ξ = ξ(x) is some number between x and x∗ (that is, ξ ∈ [−h/2, h/2]) and
hence, (110) applies. �

10Actually, I only need the interface g to be one times continuously differentiable on Ii ; that is,
g ∈ C1

[Ii ]. I have assumed g ∈ C2
[I ] here so that I will not have to prove a special version of

Theorem 6 in order to obtain the bound in (46) on g′(x).
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Theorem 23 (The approximation to g′ is first-order accurate). Assume that the
interface g ∈ C2

[I ] where I = [−3h/2, 3h/2] and that at least two distinct column
sums Si+α and Si+β with α, β = 1, 0,−1 and α 6= β are exact to O(h):∣∣∣∣Si+α − h−2

∫
Ii+α

g(x) dx
∣∣∣∣≤ CSh, (111)

∣∣∣∣Si+β − h−2
∫

Ii+β

g(x) dx
∣∣∣∣≤ CSh, (112)

where

CS = 8
√

3(2
√

2− 1)2 (113)

is the constant obtained in Theorem 15. Then the slope defined by

m =
Si+α − Si+β

α−β
for α, β = 1, 0,−1 with α 6= β

of the piecewise linear approximation g̃(x) = mx + b to the exact interface g
satisfies

|m− g′(0)| ≤
(26

3 κmax+CS
)
h. (114)

Proof. Note that during the course of proving Theorem 10, I have shown that the
only column sum that may not be exact is the middle one, Si ; for example, see the
list in the proof of the Symmetry Lemma. Therefore, I may assume that

Si+α = h−2
∫

Ii+α

g(x)dx if α = 1 or −1. (115)

Now note that the inequality in (88) can be rewritten in the following way. If (88)
holds for the i-th column sum Si , then there exists εi > 0 with |εi | ≤ CSh such that

h−2
∫

Ii

g(x)dx = Si + εi if α = 0. (116)

In other words, if the column sum Si is not exact, then εi is the area of the region
bounded by the horizontal line y = y3, the vertical line x = x2, and the graph of the
interface y = g(x) as shown in Figure 10. Otherwise, the column sum Si is exact
and εi = 0.

By the Taylor remainder theorem

g(x)= g(0)+ g′(0)x + 1
2 g′′(ξ)x2, (117)
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for some ξ ∈ (−x, x).11 Applying (117) to g and performing the integration in
equations (115) and (116) for each α =−1, 0, 1 yields

Si−1 = g(0)h−1
− g′(0)+ 13

24 g′′(ξ−1)h, (118)

Si = g(0)h−1
+

1
24 g′′(ξ0)h− εi , (119)

Si+1 = g(0)h−1
+ g′(0)+ 13

24 g′′(ξ1)h, (120)

where the term with g′(0) has dropped out of the expression for Si , since g′(0)x is
an odd function of x and the interval Ii = [−h/2, h/2] is centered about x = 0.

Subtracting the expression in (118) from the expression in (120) and dividing
by 2 yields the centered difference approximation to the derivative g′(0) plus error
terms:

Si+1− Si−1

2
= g′(0)+ 13

24

(
g′′(ξ1)+ g′′(ξ−1)

)
h. (121)

Rearranging the terms in (121) and using (47) yields∣∣∣∣ Si+1− Si−1

2
− g′(0)

∣∣∣∣= ∣∣ 13
24

(
g′′(ξ1)+ g′′(ξ−1)

)
h
∣∣≤ 26

3 κmaxh ≤
( 26

3 κmax+CS
)
h.

Similarly, subtracting Si−1 from Si and Si from Si+1 yield the two one-sided dif-
ference approximations to g′(0),

|(Si − Si−1)− g′(0)| ≤
( 14

3 κmax+CS
)
h,

|(Si+1− Si )− g′(0)| ≤
( 14

3 κmax+CS
)
h.

The inequality in (114) follows immediately. �

The following theorem is the main result of this paper.

Theorem 24. Assume the interface g ∈ C2
[I ] where I = [−3h/2, 3h/2] and that

at least two of the column sums Si+α and Si+β for α, β = 1, 0,−1 with α 6= β are
exact to O(h). Let

g̃(x)= mx + b

be a piecewise linear approximation to g(x) in Ii = [−h/2, h/2] with

m =
Si+α − Si+β

α−β
, (122)

and assume that g(x) and g̃(x) have the same volume fraction in the center cell:

3i, j (g)=3i, j (g̃).

11Technically speaking, if x > 0, then ξ ∈ (0, x), while if x < 0, then ξ ∈ (x, 0). My intention is
for the notation ξ ∈ (−x, x) to cover both cases.
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Then g̃(x) is a second-order accurate approximation to g(x) in Ii :

|g(x)− g̃(x)| ≤
( 50

3 κmax+CS
)
h2 for all x ∈ Ii = [−h/2, h/2]

where
CS = 8

√
3(2
√

2− 1)2. (123)

Proof. By Lemma 20 I know that there exists x∗ ∈ Ii = [−h/2, h/2] such that
g(x∗)= g̃(x∗). Let x ∈ Ii be arbitrary, but fixed. By the Taylor remainder theorem
I know that there exists ξ = ξ(x) ∈ Ii such that

g(x)= g(x∗)+g′(x∗)(x− x∗)+ 1
2 g′′(ξ)(x− x∗)2.

Hence,

|g(x)− g̃(x)| =
∣∣g(x∗)+g′(x∗)(x− x∗)+ 1

2 g′′(ξ)(x− x∗)2− g̃(x∗)−m(x− x∗)
∣∣

≤ |g′(x∗)−m||x− x∗|+ 1
2 |g
′′(ξ)|(x− x∗)2

≤ |g′(x∗)−m|h+4κmaxh2,

where I have used (47) to bound g′′(ξ) and the fact that x, x∗ ∈ Ii = [−h/2, h/2]
to obtain |x − x∗| ≤ h. In order to bound

∣∣g′(x∗)−m
∣∣ I rewrite this expression as:

|g′(x∗)−m| = |g′(x∗)− g′(0)| + |g′(0)−m|. (124)

In order to bound the first term on the right side of (124) I expand g′(x∗) in a Taylor
series about x = 0 and use the Taylor remainder theorem to obtain

g′(x∗)= g′(0)+ g′′(ζ )(x∗− 0),

for some ζ ∈ Ii . From (47) and, since x∗ ∈ Ii = [−h/2, h/2] implies |x∗| ≤ h/2, I
have

|g′(x∗)− g′(0)| ≤ |g′′(ζ )||x∗| ≤ 4κmaxh. (125)

Finally, using the bound on |g′(0)−m| in (114), I have

|g(x)− g̃(x)| ≤ (|g′(x∗)− g′(0)| + |g′(0)−m|)h+ 4κmaxh2

≤
(
8+ 26

3

)
κmaxh2

+CSh2
=
( 50

3 κmax+CS
)
h2,

as claimed. �

5. Conclusions

Given any C2 curve z(s) in R2 overlaid with a computational grid consisting of
square cells, each with (nondimensional) side h, I have proven that for each cell
Ci j that contains a portion of the curve z(s) there exist at least two columns or
two rows in the 3× 3 block of cells Bi j centered on the cell Ci j whose divided
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difference is a first-order accurate approximation mi j to the slope of the curve z(s)
in the center cell Ci j . This approximation to the slope of z in Ci j , together with the
knowledge of the exact volume fraction 3i j in Ci j , is sufficient to construct a line
segment g̃i j (x) that is an O(h2) approximation to the curve z(s)= (x(s), g(x(s))
it in the max norm in that cell:

|g(x)− g̃i j (x)| ≤ C(κmax)h2 for all x ∈ [xi , xi+1]. (126)

Here κmax is the maximum curvature of the interface z in the 3× 3 block of cells
Bi j centered on the cell Ci j , C (κmax) is a constant that depends on κmax but is
independent of h, and xi , xi+1 denote the left and right edges, respectively, of the
cell Ci j .

I have not demonstrated a way in which to find these two columns or two rows
given the volume fraction information in the 3× 3 block of cells Bi j centered on
the cell Ci j . However, there are at least two algorithms currently in use that may
provide the user with a way to choose the columns correctly, and hence produce a
first-order accurate approximation to the slope of the curve z(s) in the center cell
Ci j . These algorithms are the ones named LVIRA and ELVIRA in [23]. However
this remains to be proven. Computational studies in [23] show that these algorithms
are second-order accurate in the discrete max norm when the results are averaged
over many (for example, one thousand) computations. However these algorithms
may need to be modified in order to achieve strict second-order accuracy in the
max norm without averaging.

In Theorem 24, I have proven that (126) holds provided that the maximum value

κmax =max
s
|κ(s)|

of the curvature κ(s) of the interface z(s) in the 3× 3 block of cells Bi j satisfies

κmax ≤ Cκ ≡min{Chh−1, (
√

h)−1
}, (127)

where Ch is a constant that is independent of h. As h→ 0 the second constraint in
(127) eventually becomes the condition that must be satisfied; that is, (

√
h)−1 <

Chh−1 for h small enough. It is natural to ask if this constraint is necessary, since
I only need this constraint when the center column sum Si is not exact; that is, I
only use the constraint κmax ≤ (

√
h)−1 to prove Theorem 15.

I have performed a number of computations in an effort to determine if the first
constraint

κmax ≤ Chh−1

is sufficient to ensure that (126) holds. These computations, together with several
theorems I have proven in special cases when the center column sum Si is not
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exact,12 lead me to believe that the second constraint in (127)

κmax ≤ (
√

h)−1

is indeed necessary. However this issue requires further study.
In closing, I would like to emphasize that when the interface reconstruction

algorithm is coupled to an adaptive mesh refinement algorithm, the parameter

Hmax =min{Ch(κmax)
−1, (κmax)

−2
}

can be used to develop a criterion for determining when to increase the resolution
of the grid. Namely, the computation of the interface in a given cell Ci j is under-
resolved whenever

h > Hmax,

where κmax is the maximum curvature of the interface over the 3× 3 block of cells
Bi j centered on Ci j , and hence the grid needs to be refined in a neighborhood of
this block.
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